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ABSTRACT 

Jacob Wayne Gauer: SINGLE-MOLECULE FLUORESCENCE STUDIES OF DNA BENDING 

DURING PROKARYOTIC MISMATCH REPAIR INITIATION 

(Under the direction of Dorothy Erie) 

DNA mismatch repair (MMR) is a process that is responsible for repairing base-base mismatches 

and insertion/deletion loop errors incorporated during DNA replication. In humans, deficiencies in MMR 

are linked to cancers, including Lynch Syndrome. MMR is initiated by MutS in prokaryotes (or the MutS 

homologs in eukaryotes), which is responsible for recognizing the error in the DNA. Upon error 

recognition, MutS undergoes ATP-dependent conformational changes to form a sliding clamp state that 

moves along the length of the DNA. This state is thought to be important for downstream repair events, 

such as recruitment of the second protein in the pathway, MutL. 

Recent single-molecule fluorescence studies have led to a refined model for error recognition and 

sliding clamp formation by Thermus aquaticus MutS. While it is well established that MutS bends DNA 

and that this DNA bending is dynamic in the absence of nucleotides, little evidence for the DNA bending 

status through MMR initiation exists in the presence of ATP. 

In this work, the nucleotide dependence of Thermus aquaticus MutS-induced DNA bending 

throughout sliding clamp formation is characterized. The current model for MutS conformational changes 

is then modified to reflect the newfound DNA bending information. To this end, single-molecule 

fluorescence resonance energy transfer (smFRET) between two arms of specially designed DNA 

oligonucleotides is monitored. These substrates are designed such that changes in DNA bending would 

result in changes in FRET efficiency. Finally, a data analysis pipeline developed specifically for high 

throughput analysis of data of this type is presented. 



  

iv 
 

To Aaron, 

My favorite. 



  

v 
 

ACKNOWLEDGEMENTS 

I did not want to do this. I never really saw myself earning a Ph.D. doing scientific research. 

Somehow, though, I have dragged, clawed, and whined my way through the last several years to make it 

here. I could not have done this alone, and I owe so many people for encouraging me, forcing me even, to 

stay the path and make it to the end. 

I must start by recognizing my advisor, Dorothy. You have allowed me to define success in my 

own way, a trait that has been vital to perseverance. You have shown me that in a sea of never-ending 

disappointment and discouragement, nothing is ever as bad as it seems. At many times, I have been close 

to quitting, but you have always managed to pull me back from the edge to face the problems at hand. 

This thesis only exists because of your guidance. You are a wise, fervid, and, at times, weird mentor, and 

I aspire to become more like you. 

To my husband, Aaron, words cannot express my gratitude. No one else has felt the impact of this 

experience more than you. Living in different states for years, dealing with my grumpiness, tolerating 

while I talk at you about my research – you have sacrificed for this thesis. I owe you. I love you. But 

seriously, let’s never do this again. 

I want to thank my colleagues, past and present, both in and out of the Erie lab, for tolerating my 

never-ending stream of whining. Despite having your own lives and your own problems, you have 

listened. You have offered advice. You have cared. And you have never stopped being helpful. 

Kira, I have leaned on you more than anyone. When I think back on graduate school, after my 

initial shiver of dread, I will remember it as the time that started our friendship. Vanessa, I have been 

jealous of your success since the beginning. Your shoes were hard to fill, and I only hope I have come 

close. Jackie, I will miss your Christmas Tree Burning Party, your “pseudo-sister” stories, and our “laser 



vi 

 

room chats”. Remember me when you become Queen of the World. Zimeng, I cannot wait to see what 

you accomplish. You are someone I’ll overhear people talking about in the future, and I’ll get to say that I 

knew you before you were famous. Marc, you certainly are memorable. Legendary even. The stuff of 

stories passed on for generations. Danielle, few people make me smile every time I interact with them. 

Few people can beam optimism during graduate school. I don’t know how you do it. Sarah, ***waves 

arms excitedly***. (I’m going to miss that.) Hunter, it amazes me that you met me at my most 

curmudgeon-y and thought, “Hey, why don’t I try that?” I like how you don’t back down from a 

challenge. Matt Satusky, I will miss your punny crossword talents. It will be difficult to find someone else 

who is willing to giggle at my terrible jokes. Sharonda, I have been and continue to be nothing but 

impressed by you. I am humbled by the way, even when faced with challenges, you make it work and 

carry on. I admire your diligence. Logan, it’s still weird how our similar experiences somehow brought us 

to the Erie lab at the same time. I suspect it’ll happen for no apparent reason again someday. See you 

then. Thao, you are super fun, and I am so glad that we met each other when we did. You made the final 

race to the end a good time. I hope I did the same for you. Matt Meiners, Cassandra, Jet, Rebecca, Karen, 

Minu, Adrienne, and Lior, you all have been there for me, commiserated with me, leaned on me, 

collaborated with me, and brought me cupcakes. I’m in your debt. 

To everyone who contributed their scientific expertise to my thesis, thank you. As a person who 

often struggles at the bench, I have leaned on your guidance and, on occasion, your hands to help me 

complete these projects. Special thanks go to Keith, Ruoyi, Lauren, and Vanessa whose work provided 

the entire basis of my project. 

I must also thank Brian Hogan and Laura Benton for showing me that, Ph.D. or not, the career I 

want is out there; I just have to go and get it. I have. Thank you. 

Finally, to my family: Yes, I’m finally done with school. I promise I’ll get a real job now.



  

vii 
 

TABLE OF CONTENTS 

LIST OF TABLES ....................................................................................................................................... xi 

LIST OF FIGURES .................................................................................................................................... xii 

LIST OF ABBREVIATIONS .................................................................................................................... xiv 

CHAPTER 1: 

DNA MISMATCH REPAIR AND SINGLE-MOLECULE FLUORESCENCE: 

THE STUFF OF NOBEL PRIZES ............................................................................................................... 1 

 Introduction ............................................................................................................................................ 1 

 DNA Mismatch Repair .......................................................................................................................... 3 

 Error Recognition by Thermus aquaticus MutS .................................................................................. 6 

  MutS Structural Information ............................................................................................................... 6 

  The Role of DNA Bending in Error Recognition by MutS  ................................................................. 6 

  ATP-induced Conformational Changes in Taq MutS.......................................................................... 7 

 Formation of Taq MutS:MutL:DNA Ternary Complexes ................................................................. 8 

 Single-molecule Fluorescence .............................................................................................................. 11 

  Single-molecule FRET ...................................................................................................................... 11 

  Total Internal Reflection Fluorescence Microscopy ......................................................................... 13 

 Thesis Statement .................................................................................................................................. 15 

CHAPTER 2: 

A GUIDE TO MONITORING PROTIEN-INDUCED DNA BENDING BY smFRET ............................ 16 

 Introduction .......................................................................................................................................... 16 

 Designing Fluorescently Labelled DNA Oligonucleotides ................................................................ 17 

  Selecting the Fluorophores ............................................................................................................... 17 

  Optimizing the Fluorophore Positions .............................................................................................. 19 



viii 

 

  Choosing the Fluorophore Attachment Chemistry ............................................................................ 21 

  Other Considerations ........................................................................................................................ 21 

 Optical Setup and Data Collection ..................................................................................................... 22 

 Data Analysis ........................................................................................................................................ 23 

  Extracting the Fluorescence Time Traces of Individual DNA Molecules ......................................... 24 

  Correcting the Donor and Acceptor Signals ..................................................................................... 25 

  Smoothing the Donor and Acceptor Time Traces Using the Chung-Kennedy Filter ........................ 26 

  Screening Time Traces for Data Quality .......................................................................................... 28 

  Calculating FRET and Identifying Transitions in the FRET Time Traces ........................................ 29 

   Method 1: The Gaussian Kernel Method ..................................................................................... 30 

   Method 2: The Chung-Kennedy Method ..................................................................................... 30 

  Alignment and Confirmation of Transitions in the FRET Time Traces ............................................ 32 

  User Interaction and FRET-TACKLE ............................................................................................... 33 

 Conclusion ............................................................................................................................................ 34 

CHAPTER 3: 

CHANGES IN DNA BENDING CORRELATE WITH MUTS  

CONFORMATIONAL CHANGES DURING SLIDING CLAMP FORMATION .................................. 35 

 Introduction .......................................................................................................................................... 35 

 Results ................................................................................................................................................... 38 

  MutS:ADP bends DNA to a single bent conformation. ..................................................................... 38 

  In the presence of ATP, most MutS:DNA complexes adopt a single bent conformation. ................. 41 

  ATP-induces a subset of MutS:DNA complexes adopt multiple conformations. ............................... 43 

  DNA bending by MutS:ATP follows a preferred pathway of transitions. ......................................... 45 

 Discussion .............................................................................................................................................. 51 

  MutS and DNA conformational changes during error recognition and sliding clamp formation. ... 52 

  The molecular states identified by smFRET can be unified by their kinetics  

   and transition sequence. ............................................................................................................... 55 



ix 

 

  Model of sliding clamp formation. .................................................................................................... 57 

  Biological Significance ..................................................................................................................... 58 

 Materials and Methods ........................................................................................................................ 59 

  Protein and DNA substrates .............................................................................................................. 59 

  Single-molecule FRET experiments .................................................................................................. 59 

  Data analysis ..................................................................................................................................... 60 

CHAPTER 4: 

MONITORING DNA BENDING BY MUTS IN OTHER CONTEXTS .................................................. 61 

 Introduction .......................................................................................................................................... 61 

 Results and Discussion ......................................................................................................................... 62 

  MutS bends GT DNA to a broad range of conformations in the presence of ADP and ATP. ........... 62 

  MutS sliding clamps can return to the T-bulge on end-blocked DNA. .............................................. 66 

  MutS:MutL complexes may adopt a rapid equilibrium between DNA bending states. ..................... 67 

 Conclusion ............................................................................................................................................ 69 

  GT mismatch DNA vs. T-bulge DNA ................................................................................................. 69 

  T-bulge DNA with blocked vs. free ends ........................................................................................... 70 

  DNA bending by MutS vs. MutS:MutL .............................................................................................. 70 

 Materials and Methods ........................................................................................................................ 70 

  Protein and DNA substrates .............................................................................................................. 70 

  Single-molecule FRET experiments .................................................................................................. 71 

  Data analysis ..................................................................................................................................... 72 

CHAPTER 5: 

LINGING DNA MISMATCH REPAIR AND PROTEOTOXIC STRESS:  

AN EXPLORATORY STUDY IN SACCHAROMYCES CEREVISIAE .................................................... 73 

 Introduction .......................................................................................................................................... 73 

 Materials and Methods ........................................................................................................................ 75 

  Yeast Strains and Plasmids ............................................................................................................... 75 



x 

 

  Transformations ................................................................................................................................ 75 

  Culture Normalizations and Dilution Plates ..................................................................................... 76 

 Results and Discussion ......................................................................................................................... 76 

APPENDIX A: 

USING THE TWO-COLOR TIRF MICROSCOPE................................................................................... 81 

APPENDIX B: 

BUILDING AND ALIGNING A TIRF EXCITATION PATH ................................................................. 95 

APPENDIX C: 

smFRET DATA ANALYSIS PROTOCOL ............................................................................................. 105 

 Stage 1 – Extracting intensity time traces of single molecules from the movies. .......................... 105 

 Stage 2 – Calculating FRET and detecting transitions from the single molecules. ...................... 106 

 Stage 3 – Confirming the analysis, transitions, and “bad” data. ................................................... 110 

REFERENCES ......................................................................................................................................... 118 



xi 

 

LIST OF TABLES 

Table 3.1 – Kinetic parameters from the smFRET experiments. ................................................................ 57 

 

  



xii 

 

LIST OF FIGURES 

Figure 1.1 – DNA Mismatch Repair ............................................................................................................. 2 

Figure 1.2 – Crystal Structure of Taq MutS .................................................................................................. 5 

Figure 1.3 – Models of MutS:MutL:DNA Ternary Complexes ................................................................. 10 

Figure 1.4 – TIRF Microscopy ................................................................................................................... 14 

Figure 2.1 – Considerations for Designing Fluorescent Oligonucleotides to Study DNA Bending ........... 18 

Figure 2.2 – Optical Setup and Data Analysis Pipeline .............................................................................. 23 

Figure 2.3 – Chung-Kennedy Smoothing Algorithm .................................................................................. 27 

Figure 2.4 – A Novel Transition Detection Method based on the Chung-Kennedy Filter ......................... 31 

Figure 3.1 - The existing model of sliding clamp formation by Taq MutS. ............................................... 37 

Figure 3.2 – In the presence of ADP, Taq MutS bends T-Bulge DNA to a single bent state. .................... 40 

Figure 3.3 – In the majority of Taq MutS:DNA complexes formed in the presence of ATP,  

the DNA adopts a single bent state.. .............................................................................................. 42 

Figure 3.4 – In a subset of Taq MutS:DNA complexes formed in the presence of ATP, 

switching between multiple bents states is observed. .................................................................... 44 

Figure 3.5 – The DNA bending transitions for the multi-state bending events follows 

a D-U1-B-U2-D pattern. .................................................................................................................. 46 

Figure 3.6 – The distributions of FRET values for each state in the D-U1-B-U2-D pathway. .................... 47 

Figure 3.7 – The dwell time distributions for the U1, B, and U2 states. ...................................................... 48 

Figure 3.8 – Transition density plots depicting each step of the D-U1-B-U2-D pathway. .......................... 49 

Figure 3.9 – Transition density plots depicting the pathway of conversion between  

the DNA bending states for all molecules studied. ........................................................................ 50 

Figure 3.10 – A model of sliding clamp formation using the results of three smFRET  

experimental designs. ..................................................................................................................... 53 

Figure 3.11 – Control experiments. ............................................................................................................ 55 

Figure 4.1 – In the presence of ADP, GT DNA bound by Taq MutS adopts multiple bent states. ............ 63 

Figure 4.2 – In the presence of ATP, GT DNA bound by Taq MutS also adopts multiple bent states. ..... 64 

Figure 4.3 – On end-blocked T-bulge DNA Taq MutS may return to the error. ........................................ 67 



xiii 

 

Figure 4.4 – DNA bending by Taq MutS may be affected by Taq MutL. .................................................. 68 

Figure 5.1 – Msh2Δ strains are more sensitive than WT strains to proteotoxic stress. .............................. 77 

Figure 5.2 – Msh3Δ and Msh6Δ strains display intermediate susceptibility to proteotoxic stress. ............ 78 

Figure A.1 – Power-up Switches ................................................................................................................ 81 

Figure A.2 – Mounting a Slide ................................................................................................................... 83 

Figure A.3 – Prism Placement .................................................................................................................... 85 

Figure A.4 – TIRF Spot .............................................................................................................................. 86 

Figure A.5 – Adjusting the TIRF Spot ........................................................................................................ 88 

Figure A.6 – Aligning the Red and Green TIRF Spot ................................................................................ 89 

Figure A.7 – Adjusting the TIRF Spot for the Camera ............................................................................... 91 

Figure A.8 – Widening the TIRF Spot for the Camera ............................................................................... 91 

Figure C.1 – Batch Analysis of Movies .................................................................................................... 106 

Figure C.2 – Batch Analysis of .traces Files ............................................................................................. 109 

Figure C.3 – User-interface for Trace Analysis ........................................................................................ 111 

Figure C.4 – Example Analysis ................................................................................................................ 117 



xiv 

 

LIST OF ABBREVIATIONS 

° Degrees 

ʹ Prime 

A Adenine 

Å Angstrom 

α Leakage Constant 

ADP Adenosine Diphosphate 

AFM Atomic Force Microscopy 

ATP Adenosine Triphosphate 

ATPγS Adenosine 5ʹ-[γ-thio]triphosphate 

b Biotin 

B Bent State 

bp Base Pairs 

BSA Bovine Serum Albumin 

C Cytosine 

d Penetration Depth 

D Free DNA State 

dig Digoxigenin 

DNA Deoxyribonucleic Acid 

Δ Deletion 

E Fluorescence Resonance Energy Transfer Efficiency 

E. coli Escherichia coli 

EDTA Ethylenediaminetetraacetic Acid 

emCCD Electron Multiplying Charge Coupled Device  

Exo I Exonuclease I 

Exo VI Exonuclease VI 



xv 

 

Exo X Exonuclease X 

FEN I Flap Endonuclease I 

FRET Fluorescence Resonance Energy Transfer 

FRET-TACKLE Fluorescence Resonance Energy Transfer Transition Analysis Coupled with 

 Kinetic Lifetime Examination 

G Guanine 

γ Gamma Factor 

HCl Hydrochloric Acid 

Htt Huntingtin Gene 

HTT Huntingtin Protein 

I Intensity 

IA Acceptor Intensity 

ID Donor Intensity 

IDL Insertion/Deletion Loops 

k Exponential Decay Constant 

KD Dissociation Constant 

mg Milligram 

ml Milliliter 

mM Millimolar 

min Minute 

MMR Mismatch Repair 

MLH1 MutL Homolog 1 

MSH2 Human MutS Homolog 2 

Msh2 Yeast MutS Homolog 2 

MSH3 Human MutS Homolog 3 

Msh3 Yeast MutS Homolog 3 



xvi 

 

MSH6 Human MutS Homolog 6 

Msh6 Yeast MutS Homolog 6 

µl Microliter 

n Refractive Index 

N Number of Molecules 

N.A. Numerical Aperture 

nm Nanometer 

nM Nanomolar 

η Detection Efficiency 

OD Optical Density 

p Exponential Weighting Term 

PCNA Proliferating Cell Nuclear Antigen 

PDB ID Protein Database Identification 

PEG Polyethylene Glycol 

PMS2 Human Postmeiotic Segregation Increased 2 

Pol III DNA Polymerase III 

Pol δ DNA Polymerase δ 

ppm Parts per million 

Q Glutamine 

RecJ  Exonuclease 

RPA Replication Protein A 

r Interfluorophore Distance 

R0 Förster Radius 

S. cerevisiae Saccharomyces cerevisiae 

sec Second 

smFRET Single-molecule Fluorescence Resonance Energy Transfer 



xvii 

 

SSB Single-stranded Binding Protein 

t Time 

T Thymine 

TAMRA Carboxytetramethylrhodamine 

Taq Thermus aquaticus 

T-Bulge Single Thymine Insertion 

TDP Transition Density Plot 

TIRF Total Internal Reflection Fluorescence 

Tris Tris(hydroxymethyl)aminomethane Buffer 

θC Critical Angle 

U Enzymatic Units 

U1 Unbent State 1 

U2 Unbent State 2 

URA Uracil 

φ Quantum Yield 

WT Wild Type 

w/v Weight by Volume 

YAPD Yeast Extract, Adenine, Peptone, Dextrose 



  

1 
 

CHAPTER 1: DNA MISMATCH REPAIR AND SINGLE-MOLECULE FLUORESCENCE: THE 

STUFF OF NOBEL PRIZES 

 

Introduction 

Maintaining the integrity of genetic information during DNA replication is vital for all organisms. 

Due to the high fidelity of the DNA polymerases, including their 3’ to 5’ proofreading activity, DNA 

replication is inherently highly accurate. Unfortunately, bases are sometimes misincorporated resulting in 

non-Watson/Crick base pairs; the polymerases can also slip, leading to insertion/deletion loop errors 

(IDLs). Errors like these occur approximately once every 107 bases replicated (Iyer, Pluciennik, Burdett, 

& Modrich, 2006; Kunkel & Erie, 2005). In the human genome (approximately 109 base pairs), this error 

rate results in hundreds of mistakes per round of replication (Iyer et al., 2006). If these errors are left 

unresolved, the misincorporated bases will be read as the template strand in subsequent rounds of DNA 

replication, leading to mutations, genomic instability, and even cancer (Kunkel & Erie, 2005). 

Unsurprisingly, several enzymatic pathways have evolved to post-replicatively resolve the errors 

introduced into the genome. One such pathway, DNA mismatch repair (MMR), increases the fidelity of 

DNA replication 100-1000 fold by correcting the base-base mismatches and IDLs introduced during 

DNA replication (Iyer et al., 2006; Kunkel & Erie, 2005; Modrich, 1987; Schofield & Hsieh, 2003). 

MMR can occur bi-directionally (i.e. 5’ to 3’ or 3’ to 5’) and is highly conserved across prokaryotes and 

eukaryotes. Notably, MMR is important to human health, as defects in MMR are linked to greater than 

80% of hereditary non-polyposis colorectal cancer cases (Kaur et al., 2011). 
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Figure 1.1: DNA Mismatch Repair. 

The three panels diagram the steps of DNA mismatch repair in A) Escherichia coli, B) humans, and C) 

Thermus aquaticus.  
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DNA Mismatch Repair 

Mismatch repair has been well characterized in Escherichia coli (E. coli). Several proteins are 

required to carry out MMR in E. coli, including MutS, MutL, MutH, UvrD, SSB, an exonuclease (Exo I, 

Exo VII, RecJ, or Exo X), DNA polymerase III (Pol III) and DNA ligase (Figure 1.1A). Following DNA 

replication, errors left behind by DNA polymerase are first recognized by a MutS homodimer. Upon 

introduction of ATP, MutS undergoes a conformational change into a sliding clamp conformation that 

encircles the DNA and is able to freely diffuse along the length of the DNA. After error recognition, 

MutS is also responsible for the ATP- and mismatch-dependent recruitment of a MutL homodimer. This 

MutS:MutL complex then induces the latent endonuclease activity in MutH, which nicks the daughter 

strand at a hemi-methylated GATC site on either side (i.e. either 5’ or 3’) of the error. At the hemi-

methylated GATC site, the template strand is methylated while the newly synthesized strand is 

unmethylated. This difference in methylation status between the strands allows for discrimination 

between the correct (template) and incorrect (daughter) bases. The helicase UvrD then unwinds the DNA 

at the nick, and SSB binds to and stabilizes any single-stranded regions of DNA. An exonuclease then 

digests the daughter strand past the error, and the resulting single-stranded gap is resynthesized by Pol III. 

Finally, DNA ligase seals the nick (P Hsieh, 2001; Iyer et al., 2006; Jiricny, 2006; Kunkel & Erie, 2005; 

Schofield & Hsieh, 2003). 

The initiation steps of MMR are highly conserved across several organisms, and homologs of 

several of the E. coli MMR proteins have been identified in other prokaryotes and in eukaryotes. In 

humans (Figure 1.1B), MMR is initiated by one of two isoforms of the heterodimeric MutS homologs. 

MutSα (a heterodimer of MSH2 and MSH6) is the isoform responsible for recognizing base-base 

mismatches and short IDLs, while MutSβ (a heterodimer of MSH2 and MSH3) recognizes longer IDLs. 

MutSα and MutSβ both undergo ATP-dependent conformational changes that allows them to recruit 

MutLα (a heterodimer of the MutL homologs MLH1 and PMS2) and/or form mobile “sliding clamps” 

(Erie & Weninger, 2014; Peggy Hsieh & Yamane, 2008; Iyer et al., 2006; Kunkel & Erie, 2005). 
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Interestingly, eukaryotes and most prokaryotes do not have a MutH homolog; instead, MutLα possesses 

the endonuclease activity that introduces a nick into the DNA on either side of the error. This activity is 

induced via an ATP-dependent interaction with MutSα or MutSβ (Constantin, Dzantiev, Kadyrov, & 

Modrich, 2005; F. A. Kadyrov et al., 2007; F. A. Kadyrov, Dzantiev, Constantin, & Modrich, 2006). If 

the nick introduced by MutLα occurs 5’ of the error, the daughter strand can be excised by Exo I, leaving 

single stranded regions that are stabilized by the SSB homolog RPA until DNA Polymerase δ refills the 

gap (Constantin et al., 2005; Genschel, Bazemore, & Modrich, 2002; Longley, Pierce, & Modrich, 1997). 

Alternatively, the error-containing daughter strand may be removed by the DNA Polymerase itself via 

strand displacement synthesis. The resulting flap is then subsequently processed by FEN I (Kadyrov et 

al., 2009). In either case, the remaining nick is sealed by DNA ligase (Constantin et al., 2005). 

In the absence of a MutH homolog, the eukaryotic mechanism for discrimination between the 

daughter and template DNA strands is achieved through an interaction between MutLα and Proliferating 

Cell Nuclear Antigen (PCNA), the processivity factor used in DNA replication. PCNA is loaded onto 

nicked DNA with a specific orientation, presumably at the replication fork. This orientation relative to the 

nicked strand positions a specific interaction surface of PCNA toward MutLα, thereby directing MutLα to 

preferentially nick the daughter strand (Pluciennik et al., 2010). 

Thermus aquaticus (Taq) MMR (Figure 1.1C) shares many mechanistic similarities with both E. 

coli MMR and human MMR. Like E. coli MMR, Taq MutS and Taq MutL are asymmetric homodimers, 

meaning that both monomers within the dimer have identical primary structure but adopt slightly different 

conformations upon dimerization (Obmolova, Ban, Hsieh, & Yang, 2000). This asymmetry is somewhat 

mimicked in eukaryotes where homologs of MutS and MutL heterodimerize to form functional MMR 

proteins. It is also well established that Taq MutS also undergoes ATP-dependent conformational change 

to form a mobile “sliding clamp” state (Jeong et al., 2011; Qiu et al., 2012, 2015). Unlike E. coli, Taq 

does not possess a MutH homolog, though the remaining downstream events (i.e. error excision, 

resynthesis, and ligation) are thought to be similar. Due to its similarity to eukaryotic MMR, the Taq 
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MMR system is a more suitable model system for understanding human MMR, especially during MMR 

initiation by MutS and MutL. In addition, Taq MMR proteins are relatively easy to purify and study 

compared to their eukaryotic counterparts. 

 

 

Figure 1.2: Crystal Structure of Taq MutS. 

Front view (left) and side view (right) of Taq MutS in complex with DNA containing a single thymine 

insertion (PDB ID: 1EWQ). The two subunits of the homodimer are colored blue and green, and the DNA 

is shown in orange (Obmolova et al., 2000). 
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Error Recognition by Thermus aquaticus MutS 

MutS Structural Information 

Errors in the genome are vastly outnumbered by properly base-paired (homoduplex) DNA, 

making error recognition an enormous challenge. This monumental task is undertaken by MutS and the 

MutS homologs. In Taq, MutS forms an obligate homodimer (hereafter referred to as MutS) that contains 

a DNA binding domain and two adenosine nucleotide binding sites. Upon binding DNA, the homodimer 

becomes asymmetric, and this asymmetry is conferred to the nucleotide binding sites. As is apparent in 

the crystal structure (Figure 1.2), MutS induces a significant bend in the DNA of approximately 60 

degrees at the mismatch. This kink in the DNA is thought to be important for mismatch recognition, as 

the DNA near the error is expected to be more inherently flexible. By better tolerating protein-induced 

DNA bending, the position of the error becomes a localized energy minimum. Upon binding to the site of 

the error, the erroneous base is rotated 3Å out into the minor groove of the double helix and stacks with a 

conserved phenylalanine residue in the DNA binding domain of MutS (Obmolova et al., 2000). Taq MutS 

retains some affinity for homoduplex DNA (KD = 20-35 µM), though, as a result of the specific 

interactions formed upon error recognition, MutS has a greater affinity for DNA containing a mismatch 

(KD = 5-40 nM) (Yang, Sass, Du, Hsieh, & Erie, 2005). 

 

The Role of DNA Bending in Error Recognition by MutS 

An atomic force microscopy (AFM) studies in our lab further implicated DNA bending in 

mismatch recognition and MMR initiation by Taq MutS (Tessmer et al., 2008; Wang et al., 2003). In this 

study, Taq MutS interacting with DNA containing a single thymine IDL (T-bulge), a GT mismatch, or no 

error was visualized. The resulting images revealed two distinct populations of protein:DNA complexes 

with different degrees of DNA bending. In the “bent” population, the DNA bend angle was approximately 

42°, while the DNA in the “unbent” population was fairly straight (a DNA bend angle of ~0°). Notably, 
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the “unbent” population was only found at the position of the GT mismatch or T-bulge, and the 

protein:DNA complexes observed on homoduplex DNA were all found to be bent. These results led to the 

development of a model wherein a mismatch-dependent “bent” to “unbent” transition was proposed to be 

vital for signaling downstream MMR events (Wang et al., 2003). 

A single-molecule fluorescence study in our lab further explored DNA bending conformations 

adopted by Taq MutS:DNA complexes. Six different DNA-bending conformations were identified using 

DNA containing a GT mismatch, two of which correspond to the “bent” and “unbent” populations seen in 

the AFM studies. Importantly, this study revealed that MutS-induced DNA bending is highly dynamic, 

and certain transitions between states were preferentially observed, most notably the “bent” to “unbent” 

transition (Sass, Lanyi, Weninger, & Erie, 2010). Subsequent single-molecule fluorescence studies on 

DNA substrates containing either a T-bulge or a CC mismatch revealed that preservation of this “bent” to 

“unbent” transition correlated with repair efficiencies (Derocco, Sass, Qiu, Weninger, & Erie, 2014). 

These data, taken together, suggest that error recognition by Taq MutS in the absence of ATP can 

occur through the following mechanism: MutS first binds to and bends homoduplex DNA and then slides 

along the DNA until it encounters the error. Once at the error, MutS bends the DNA into the initial 

recognition complex observed in the crystal structure. The MutS:DNA complex can then undergo a series 

of dynamic conformational changes that leads to the formation of the ultimate recognition complex in 

which the DNA is unbent (Wang et al., 2003).  

 

ATP-induced Conformational Changes in Taq MutS 

Following error recognition, Taq MutS undergoes a series of ATP-dependent conformational 

changes to signal for downstream MMR events. Like E. coli MutS and the human homologs, Taq MutS in 

the presence of ATP and DNA containing a mismatch can form a sliding clamp conformation. Once in 

this state, MutS can freely diffuse along the length of the DNA (Jeong et al., 2011; Qiu et al., 2012, 
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2015). While the existence of this state is well established, its purpose remains unclear. The sliding clamp 

is thought to be involved one or more downstream events of MMR, such as recruitment of MutL or an 

exonuclease. The purpose of the sliding clamp may also be to clear the error site for recognition by a 

second MutS and/or searching for the strand discrimination signal. 

 

Formation of Taq MutS:MutL:DNA Ternary Complexes 

Following error recognition, MMR initiation continues in all species with the ATP-dependent 

recruitment of MutL to the mismatched site by MutS. The Taq MutL homodimer (in humans, the 

heterodimer MutLα) is then responsible for nicking the error-containing daughter strand on either side of 

the error. To accomplish this task, the N-terminal domain of each MutL monomer has a DNA binding 

domain, while the C-terminal domain has endonuclease activity. These two domains are connected by a 

flexible linker that is thought to be intrinsically disordered. While X-ray crystallography has provided 

structural information for the N- and C-terminal domains of E. coli MutL (Ban, Junop, & Yang, 1999), a 

structure of full length MutL for any species has remain elusive, likely as a result of the disordered linker 

region. 

Several models have been proposed to describe the nature of the MutS:MutL:DNA ternary 

complexes that vary in terms of size, structure, position on the DNA relative to the mismatch, and relative 

stoichiometries (Figure 1.3A) (Iyer et al., 2006). In the first model, MutS first recognizes the mismatch 

and then undergo ATP-dependent movement along the DNA in the sliding clamp state. This state then 

recruits MutL forming mobile MutS:MutL complexes. In the second model, MutS recognizes the error. 

ATP-dependent MutL recruitment by MutS to the site of the mismatch leads to MutL polymerization 

forming long MutL tracks along the DNA that are nucleated by MutS. In the third model, MutS:MutL 

complexes bend or loop the DNA. It is important to note that these models are not mutually exclusive. 

Recently, the structure of a cross-linked complex of E. coli MutS and the N-terminal domain of MutL was 
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solved that revealed large conformational changes in MutS (Groothuizen et al., 2015). In the Taq system, 

single-molecule fluorescence experiments using labeled MutS and labeled DNA reveal that MutL can trap 

MutS at the mismatch. These trapped complexes were shown to be in a rapid conformational equilibrium 

between two states. These data have led to a refined model for MMR initiation in Taq that accounts for 

the ATP-dependent conformational changes of MutS following error recognition, as well as what occurs 

upon introduction of MutL (Figure 1.3B) (Qiu et al., 2015). However, while it is clear that MutS can bend 

and straighten DNA in the absence of nucleotides, particularly when bound at the site of an error, little is 

known about the conformation of the DNA throughout this model of MMR initiation, particularly in the 

presence of adenosine nucleotides. 
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Figure 1.3: Models of MutS:MutL:DNA Ternary Complexes. 

A) Three models depicting possible arrangements of MutS:MutL complexes on DNA during mismatch 

repair initiation. Adapted from (Iyer, Pluciennik, Burdett, & Modrich, 2006). B) A model of the ATP-

dependent conformational changes in Taq MutS and Taq MutS:Taq MutL complexes on DNA during 

mismatch repair initiation. Adapted from (Qiu et al., 2015). 
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Single-molecule Fluorescence 

Few tools are able to track the molecular events of complex biological processes; however, 

single-molecule fluorescence techniques are well suited for such studies. Unlike their bulk fluorescence 

counterparts, observations made using single-molecule techniques are not limited to the ensemble 

average. Rather, single-molecule methods are well suited for studying systems where the average does not 

represent any species. In addition, single-molecule methods are able to reveal relatively rare or transient 

events whose contributions to the ensemble would otherwise be hidden beneath the signals from more 

dominant populations in the ensemble. These rare or transient events are often vital to understanding the 

detailed molecular mechanisms behind complex, heterogeneous, and asynchronous molecular biology 

processes, such as DNA mismatch repair (Erie & Weninger, 2014; Gell, Brockwell, & Smith, 2006; 

Lakowicz, 2006). 

 

Single-molecule Fluorescence Resonance Energy Transfer (smFRET) 

Single-molecule fluorescence resonance energy transfer (smFRET) has emerged as a useful tool 

for detecting changes in the separation between two molecules of 10-100Å, a scale pertinent to molecular 

biological events. FRET was first described by Forster and Perrin and is defined as the non-radiative 

transfer of energy through long-range dipole-dipole interactions between two fluorophores dubbed the 

“donor” and “acceptor” (Förster, 1959). The efficiency of energy transfer from the donor fluorophore to 

the acceptor fluorophore depends on several factors, including: 1) the interfluorophore distance, 2) the 

relative orientations of the donor and acceptor fluorophores’ transition dipoles, 3) the overlap between the 

donor fluorophore’s emission spectrum and the acceptor fluorophore’s excitation spectrum, and 4) the 

quantum yield of the donor fluorophore (i.e. the fraction of photons emitted by the donor fluorophore 

relative to the amount absorbed). FRET efficiency is defined mathematically as: 
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 𝐸 =  
1

(1+
𝑟6

𝑅0
6)

 Eq. 1.1 

where r is the interfluorophore distance and R0 is known as the Forster radius. Due to the 1/r6 relationship 

shown in Eq. 1, FRET efficiency is exquisitely sensitive to changes in interfluorophore distance (Gell et 

al., 2006; Lakowicz, 2006). 

The Förster radius R0 is defined for a given pair of fluorophores as the interfluorophore distance 

at which the FRET efficiency is 50%. Importantly, R0 represents the orientational-, spectral-, and 

quantum yield-dependence of FRET; thus, every FRET pair of fluorophores will have a unique Förster 

radius depending on these properties. Furthermore, since the fluorophore orientations, spectral properties, 

and quantum yields all depend on the local environment of the fluorophores, the Förster radius of a given 

FRET pair can vary depending on the labeling strategies and experimental conditions. Practically, 

however, these conditional variations are difficult to predict (Lakowicz, 2006). 

When exciting only the donor fluorophore of a FRET pair, any emission from the acceptor dye 

will be indicative of FRET. Thus, the energy transfer efficiency can be described as fraction of the total 

detected intensity (i.e. the intensity of both the donor and acceptor) due to emission from the acceptor. 

Mathematically, this relationship is described as: 

 𝐸 =  
𝐼𝐴

𝐼𝐷+𝐼𝐴
 Eq. 1.2 

where IA and ID are the intensities of the acceptor and donor fluorophore emissions, respectively.  

This simplified expression for smFRET is problematic for several reasons. First, the donor and 

acceptor emission spectra may overlap. If this occurs donor emission, albeit minimal, can be detected at 

wavelengths assigned to acceptor emission. The acceptor intensity must be corrected to account for 

leakage of the donor signal into the acceptor channel.  Second, there may be differences in the quantum 

yields and detection efficiencies of the dyes. These difference result in differential changes between the 
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donor and acceptor intensity when there are changes in transfer efficiency. Thus, a more exact description 

of smFRET is: 

 𝐸 =  
𝐼𝐴−𝛼𝐼𝐷

𝛾𝐼𝐷+(𝐼𝐴−𝛼𝐼𝐷)
 Eq. 1.3 

where IA and ID are the raw, uncorrected intensities of the acceptor and donor fluorophore emissions, 

respectively. The α term accounts for leakage of a fraction of the donor signal into the acceptor signal. 

The factor γ corrects for the photophysical differences between the dyes and can be defined as: 

 𝛾 =  
𝜑𝐴𝜂𝐴

𝜑𝐷𝜂𝐷
 Eq. 1.4 

where φA and φD represent the quantum yields of the acceptor and donor fluorophores, respectively, and 

ηA and ηD represent the detection efficiencies of the acceptor and donor fluorophores, respectively (Gell et 

al., 2006; Lakowicz, 2006; McCann, Choi, Zheng, Weninger, & Bowen, 2010). 

 

Total Internal Reflection Fluorescence Microscopy 

Emissions from single fluorophores are often sufficiently bright for modern detection technology; 

however, distinguishing the fluorophore emission from the background is much more challenging. Total 

internal reflection fluorescence (TIRF) microscopes are able to selectively excite only those fluorophores 

within ~200 nm of the surface of a slide by exploiting differences in the refractive index properties of the 

optical components and slides. Two optical setups for TIRF microscopes exist: through-prism and 

through-objective (Gell et al., 2006). This work was completed using a through-prism setup (Figure 

1.4A). 

When an excitation beam of light hits the interface of two materials with differing refractive 

indeces (n1 and n2), it can either be reflected or transmitted (possibly with some refraction). Total internal 

reflection (i.e. when all of the beam’s intensity is reflected) occurs when the incident beam hits the 

interface at an angle that is greater than or equal to a critical angle (θC) defined as: 
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 𝜃𝑐 =  sin−1 (
𝑛2

𝑛1
) Eq. 1.5 

At the point of reflection (Figure 1.4B), an electric field referred to as the evanescent field is created, 

which propagates through the interface. The intensity of this evanescent field decays exponentially as the 

distance from the interface increases according to the following relationship: 

 𝐼(𝑧) = 𝐼(0)𝑒
(−

𝑧

𝑑
)
 Eq. 1.6 

where I(z) is the intensity of the evanescent field at a distance z from the interface. I(0) is the intensity of 

evanescent field at the interface (i.e. where z = 0), and d is the penetration depth. The penetration depth of 

an evanescent field depends on several factors, including the refractive indices of the two materials (n1 

and n2) and the wavelength and incidence angle of the excitation light (Gell et al., 2006; Lakowicz, 2006).  

 

Figure 1.4: TIRF Microscopy. 

A) Our optical setup:  532 nm and 638 nm lasers are used for TIRF excitation. The image is collected 

through a 60X water immersion, 1.2 numerical aperture objective and then split by a Dualview optical 

splitter (645 nm dichroic mirror). The donor and acceptor signals then pass through optical filters (donor: 

585/70 bandpass; acceptor: 655 longpass) before detection by an emCCD camera. B) Total internal 

reflection at the quartz:water interface produces an evanescent wave that excites only those molecules 

within ~200 nm of the slide surface. 
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In practice, a quartz (n1 = 1.55) slide and prism are used, and biological samples are typically 

studied in aqueous environments (n2 = 1.33). 532 and 638 nm are common wavelengths of lasers used for 

excitation in smFRET experiments. Given these parameters and a 60° angle of incidence, the predicted 

penetration depths for the two excitation beams are 233 and 278 nm for 532 and 638 nm laser beams, 

respectively. Remembering that the evanescent wave decays exponentially as distance from the 

quartz:water interface increases, only those fluorophores very close to the slide (~200 nm) are sufficiently 

excited. By limiting off-target excitation in this way, background fluorescence is minimized. 

Thesis Statement 

This thesis aims to characterize the nucleotide dependence of Thermus aquaticus MutS-induced 

DNA bending throughout sliding clamp formation during mismatch repair initiation. The current model 

for MutS conformational changes that occur upon error recognition will be expanded to include DNA 

bending information. Largely, this aim will be achieved through the use of single-molecule fluorescence 

resonance energy transfer experiments designed to be sensitive to changes in DNA bending. Finally, a 

data analysis pipeline has been developed to streamline the analysis as well as optimize detection of 

small, yet significant changes in FRET. 

Chapter 2 of this thesis outlines key components of the methodology used to study DNA bending 

using smFRET, including oligonucleotide design and data analysis strategies. Chapter 3 then applies these 

approaches to study DNA bending by Taq MutS during sliding clamp formation. Chapter 4 presents 

several unfinished extensions of the project presented in Chapter 3. Finally, Chapter 5 describes a brief 

side-project studying the link between MMR deficiencies and proteotoxic stress in yeast. The subsequent 

appendices include protocols for operating (Appendix A) and assembling (Appendix B) the two-color 

TIRF microscope used for single-molecule fluorescence studies in our lab, as well as a protocol for using 

the data analysis software written to complete this work (Appendix C). 
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CHAPTER 2: A GUIDE TO MONITORING PROTEIN-INDUCED DNA BENDING BY smFRET 

 

Introduction 

Protein-induced DNA bending is used as a signaling mechanism in many molecular biological 

processes, such as DNA mismatch repair (Iyer et al., 2006; Kunkel & Erie, 2005). Thus, measuring the 

extent of DNA bending, identifying DNA bending states, and characterizing the dynamics of exchange 

between these states can provide mechanistic insight into these processes. Several structural methods for 

observing protein-induced DNA bending exist, including atomic force microscopy and x-ray 

crystallography, but these methods are limited to static images of the protein:DNA complexes. Single-

molecule fluorescence resonance energy transfer (smFRET), however, is able to sensitively detect changes 

in DNA bending in real time. This technique provides kinetic and conformational information that can 

elucidate the molecular details of these processes (Derocco et al., 2014; Erie & Weninger, 2014; Sass et al., 

2010). 

While smFRET can detect even small changes in DNA bending, the experimental design is vital to 

success. In addition, an efficient data analysis pipeline is essential to discern patterns from thousands of 

molecules worth of data. Here, key considerations for designing the labeling scheme of DNA 

oligonucleotides used in the smFRET experiments are outlined, and a data analysis pipeline for the resulting 

data is presented. 
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Designing Fluorescently Labelled DNA Oligonucleotides 

When monitoring protein-induced DNA bending, the oligonucleotide labeling strategy must be 

thoughtfully designed such that the fluorescent properties of the fluorophores are sensitive to changes in 

the DNA conformation. Also, fluorescently labelled oligonucleotides are quite expensive (e.g. several 

hundred dollars per 100 nanomoles). Therefore, it is important to take care when deciding where and how 

to label the DNA. The specific fluorophores used, the position of the fluorophores on the DNA, and the 

fluorophore attachment chemistries have significant impacts on the sensitivity of the DNA substrates’ 

fluorescent properties. Each of these parameters is discussed below. 

 

Selecting the Fluorophores 

There are several fluorescent tags that are commercially available for labeling oligonucleotides 

(e.g. TAMRA, the Cy dyes, Alexa dyes, and many others). When choosing which specific fluorophores to 

use, it is important to select dyes that have high quantum yields so they can be more easily detected. Also, 

the dyes’ excitation and emission spectra should be compatible with your optical setup such that 

independent excitation and emission detection for each dye is possible. For FRET between the dyes to be 

possible, the emission spectrum of the donor fluorophore must overlap with the excitation spectrum of the 

acceptor fluorophore. Donor-acceptor dye pairs commonly used to label DNA in smFRET experiments 

include: Alexa 555-Alexa 647, TAMRA-Cy5, and Cy3-Cy5 (Derocco et al., 2014; Qiu et al., 2012, 2015; 

Sass et al., 2010). 

When deciding between the many options for fluorophores, there are several unknown parameters 

that complicate dye selection. Notably, the structures of several commercially available fluorophores are 

proprietary information; thus, there is no way to know the exact nature of the perturbations being introduced 

into the DNA structure. Also, fluorophores that behave well in bulk fluorescence experiments may be prone 

to blinking or bleaching (i.e. transient or permanent dark states) in single-molecule experiments, making 
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them poor choices for monitoring DNA bending. Finally, some dyes are prone to interactions with the DNA 

(e.g. stacking with the nitrogenous bases), which may change their fluorescence properties in ways that do 

not depend on DNA bending or any other property. Due to these factors, it is often best to use a pair 

fluorophores which have proven successful in other experimental contexts. 

 

Figure 2.1: Considerations for Designing Fluorescent Oligonucleotides to Study DNA Bending 

A) A schematic of a doubly-labeled oligonucleotide sensitive to changes in DNA bending. Donor (green) 

and acceptor (red) fluorophores flank either side of a site of protein-induced DNA bending (blue arrow). 

B) FRET curve showing the relationship between inter-fluorophore distance and FRET efficiency. C) Heat 

map showing the predicted change in FRET (according to the color scale) for oligonucleotides labeled in 

different positions (x and y from panel A). These simulations used the following parameters: θ = 60°, R0 = 

5 nm, 1 bp = 0.34 nm. D) Crystal structure of Thermus aquaticus MutS showing DNA bending (PDB ID: 

1EWQ). E) Two different attachment chemistries for labeling DNA internally. Shown are a thymine-linked 

TAMRA and a backbone Cy5. 
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Optimizing the Fluorophore Positions 

Consider an oligonucleotide that is bent upon protein binding (Figure 2.1A) (Derocco et al., 2014; 

Sass et al., 2010). Such protein-induced bend in the DNA brings the two flanking arms of the DNA (x and 

y) nearer to each other. Thus, if a DNA substrate is labelled with a donor and acceptor fluorophore on either 

side of a site of protein-induced DNA bending (Figure 2.1A), the induced DNA bend angle (θ) will decrease 

the interfluorophore distance (from z to zʹ) thereby increasing the FRET efficiency between the two dyes. 

The sensitivity and reliability of this increase in FRET can be optimized by considering several parameters, 

including the predicted bend angle, the placement of the dyes relative to the site of DNA bending, and the 

protein footprint. 

 Changes in interfluorophore distance cause changes in FRET efficiency (E) following the equation: 

 𝐸 =  
1

1+(
𝑟

𝑅0
)

6 Eq. 2.1 

where r is the interfluorophore distance and R0 is the Förster radius of the donor:acceptor fluorophore pair 

(Figure 2.1B) (Gell et al., 2006; Lakowicz, 2006).  

More significant bend angles (θ) will produce larger changes in interfluorophore distance, and thus, 

larger changes in FRET efficiency. Placing the fluorophores far from the site of bending (large values of x 

and y), will increase the change in interfluorophore distance before and after bending (z-zʹ); however, 

because FRET efficiency is related to (1/r)6, large changes in interfluorophore distance will not always 

result in large changes in FRET efficiency. If z >> R0 or if z << R0, the FRET efficiency will not change 

significantly upon bending. Instead, placing the dyes such that the FRET efficiency is near 0.2-0.4 (i.e. z > 

R0) in the absence of DNA bending is best. From this position, even small changes in DNA bending will 

decrease the interfluorophore distance, causing large changes in FRET efficiency. 

If the arms of the DNA are assumed to be rigid, the interfluorophore distances before and after 

bending (z and zʹ) can be calculated. Likewise, the change in FRET efficiency can also be predicted for 
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every combination of labeling positions (x and y), base-by-base along the DNA (Figure 2.1C). In the 

resulting heat map, warmer colors indicate regions of the greatest change in FRET upon bending. A clear 

maximum is observed when both fluorophores are placed 8 base pairs from either side of the site of DNA 

bending.  

Note that this simulation is limited by several factors. The calculations require prior knowledge of 

the expected bend angle as well as the Förster radius for the FRET pair used. The bend angle may be known 

if structural information (i.e. a crystal structure) of your protein:DNA complexes of interest is available. 

Förster radii are available for several FRET pairs, but these values are determined using fluorophores free 

in solution. Attachment to DNA can change the properties of the dyes, so it is impossible to know how the 

exact Förster radius of a given FRET pair in these contexts. Also, this simulation does not account for DNA 

twisting that may occur during DNA bending, nor does it consider slight differences in interfluorophore 

distance caused by placing both fluorophores the same DNA strand or on opposite strands of the helix. 

These simplifications are used, in part, because protein-induced twisting and its effects on changes in 

interfluorophore separation are difficult to predict. 

Finally, it is crucial to position the labels such that they are not within the binding footprint of the 

protein being studied because the fluorescent properties of fluorophores are sensitive to changes in their 

local chemical environment. Protein-dye interactions often change the fluorescent properties of 

fluorophores, resulting in bending-independent changes in fluorescence intensity and/or FRET. Thus, 

labeling positions very near the site of DNA bending (i.e. low values of x and y) are often not ideal. For 

example, in the crystal structure of the Thermus aquaticus DNA repair protein MutS (Figure 2.1D), 

protein:DNA interactions occur as far as 8 nucleotides from the site of MutS-induced bending (Obmolova 

et al., 2000). Thus, fluorescent labels should be placed outside this range. If the greatest predicted change 

in FRET is found to be at labeling positions within the protein’s footprint, changing to a different FRET 

pair with a greater R0 is recommended. 
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Choosing the Fluorophore Attachment Chemistry 

Several chemical strategies exist to link fluorophores to the DNA (Figure 2.1E). Labeling the 5ʹ- 

or 3ʹ-ends of the DNA is one option; however, being limited to only the ends of the DNA may be 

problematic. While internally labeling DNA oligonucleotides provides much more flexibility in choosing 

labeling positions, fewer commercially available options for fluorophores exist. There are two major types 

of internal labels: 1) fluorophores are covalently attached to thymine bases via a flexible carbon linker 

extending from the major groove in the DNA, and 2) certain dyes (e.g. the Cy dyes) can be incorporated 

directly into the DNA backbone. Note that these backbone fluorophores are rigidly locked into a specific 

orientation relative to the DNA backbone as they are covalently attached at both ends. Conversely, 

fluorophores on a flexible linker have more conformational freedom. As the Förster radius of a given FRET 

pair of fluorophores depends, in part, on the relative orientation of the transition dipoles of the two 

fluorophores (Lakowicz, 2006), limiting both fluorophore moieties’ conformational freedom may lead to 

unpredictable changes in FRET upon DNA bending due to changes in their relative orientations. For more 

predictable changes in FRET, at least one freely rotating dye (i.e. those attached to flexible linkers) is 

recommended. 

 

Other Considerations 

To study protein induced DNA bending using single-molecule microscopy, the so-designed DNA 

oligonucleotides must be immobilized onto a slide. To this end, labeling the 5ʹ end with biotin provides an 

anchor to attach the oligonucleotide to the slide surface via an interaction with streptavidin. Streptavidin 

adheres well to slide surfaces, and this adherence can be further encourage by pre-treating the surface with 

biotinylated bovine serum albumin (BSA) (Derocco et al., 2014; Roy, Hohng, & Ha, 2008; Sass et al., 

2010).  
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In several studies, blocking the ends of the DNA may be experimentally useful, such as when 

studying proteins that are topologically linked around the DNA. To prevent dissociation of such proteins 

from the end of the DNA oligonucleotides, the ends must be blocked. One end of the DNA is blocked by 

the slide surface. By attaching a digoxigenin moiety to the 5ʹ-end of the unbiotinylated strand, end-blocking 

can be achieved using an anti-digoxigenin antibody (Qiu et al., 2012, 2015).  

 

Optical Setup and Data Collection 

Biotinylated fluorescently-labeled DNA oligonucleotides can be immobilized onto the surface of a 

quartz slide pre-functionalized with biotinylated BSA and streptavidin. Importantly, the slide surface 

coverage must not be overcrowded so that emissions from single DNA molecules can be resolved. These 

samples can then be imaged using a through-prism total internal reflection single molecule fluorescence 

microscope. For oligonucleotides labeled with TAMRA (donor) and Cy5 (acceptor), an appropriate optical 

setup (Figure 2.2A) is as follows: Donor and acceptor fluorophore excitation is achieved using 532 nm and 

638 nm lasers respectively. The fluorophore emission is collected through a 60X water immersion, 1.2 N.A. 

objective, and the image is split by a DualView optical splitter with a 645 nm dichroic mirror. The donor 

and acceptor signals then pass through optical filters (i.e. a 585/70 bandpass filter for TAMRA, and a 655 

longpass filter for Cy5) before detection by an emCCD camera. To observe changes in DNA bending over 

time, movies of approximately 1000 frames are collected using the following excitation sequence: 1) 

Excitation of the acceptor dye (~ 1 sec) to locate DNA molecules; 2) Excitation of the donor dye (~2 min) 

to monitor changes in FRET; 3) Excitation of the acceptor dye (~5 sec) to reveal whether the acceptor has 

photobleached (Derocco et al., 2014; Qiu et al., 2012, 2015; Sass et al., 2010). 

 

 

 



23 

 

 

Figure 2.2: Optical Setup and Data Analysis Pipeline. 

A) An example total internal reflection fluorescence microscopy set up suitable for the described DNA 

bending measurements. B) A schematic of the data analysis pipeline. 

 

Data Analysis 

Given proper slide coverage by a sample of labelled oligonucleotide and protein, a single movie 

collected as described above may contain fluorescence information for 200-500 DNA molecules. While 

already a large amount of information, the amount of data to analyze multiplies with varying experimental 

conditions and replicate experiments. Thus, an automated computational analysis approach is vital. 

However, automated analyses require verification to identify unexpected patterns and check for systematic 

errors. Below, a computational analysis pipeline is presented that systematically applies an analysis routine 

and outputs the results for a user interface: 
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Extracting the Fluorescence Time Traces of Individual DNA Molecules 

Data acquisition by the aforementioned setup produces a movie made up of approximately 1000 

frames. Each frame contains the fluorescence emission intensity gathered over a period of time for 512 X 

512 pixels using a DualView splitter, the emissions from the donor and acceptor dyes are projected to the 

right and left halves, respectively, of each frame (Figure 2.2B, Top). So long as the slides are not overloaded 

with DNA substrate, emissions from each individual DNA molecule appears as two distinct foci (a focus 

from the acceptor emission on the left half and a focus from the donor emission on the right).  

By initially exciting only the acceptor dye, local maxima on the left half of the image can be 

identified. The pixel coordinates of these maxima represent the positions of the DNA molecules within the 

image. These same pixel coordinates mapped to the other half of the frame should locate the emissions 

from the donor dye; however, the two halves of each frame must first be aligned to one another to account 

for misalignments in their optical paths. To determine the relative offset between the two halves of the 

image, beads with a broad emission spectra are imaged. These images allow an experimentally determined 

offset to be determined, which is then applied to the experimental movies. 

Using an approach developed by the Weninger lab, the sum of the fluorescence intensities of a 3 X 

3 pixel square centered on the local maxima pixel coordinates for the donor and acceptor dyes are 

determined for each DNA molecule. The local background intensity is subtracted, and those foci below a 

threshold intensity are discarded. Foci too close to the camera edges or another focus are also discarded. 

For those foci that remain, the intensity is determined for each from the movie for both the donor and 

acceptor, ultimately resulting in a “time trace” of the donor and acceptor fluorescence emission intensities 

as a function of time (Figure 2.2B, Second Row) (Derocco et al., 2014; Qiu et al., 2012, 2015; Sass et al., 

2010). 
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Correcting the Donor and Acceptor Signals 

Emissions from the donor and acceptor must be corrected to account for differences in the 

photophysical properties of the dyes. First, it is important to note that the donor and acceptor fluorescence 

emission spectra may not be completely distinct. That is to say that despite using optical filters and dichroic 

mirrors to separate emissions from the two dyes, the donor dye may still emit at wavelengths assigned to 

the acceptor. Even though these emissions are likely not large, they may still introduce significant error. 

This “leakage” into the acceptor detection window is proportional to the donor intensity. Thus, a 

proportionality constant can be empirically determined and used to subtract the “leaked” donor signal from 

the acceptor intensity at each time point using the following equation: 

 𝐼𝐴,𝑐𝑜𝑟 = 𝐼𝐴,𝑟𝑎𝑤 −  𝛼𝐼𝐷,𝑟𝑎𝑤 Eq. 2.2 

where α represents the leakage proportionality constant, IA,raw and IA,cor are the raw and corrected acceptor 

intensities, respectively, and ID,raw is the raw donor intensity at each time point (Gell et al., 2006; Lakowicz, 

2006). 

Additionally, the donor and acceptor dyes may have different quantum yields and/or different 

detection efficiencies. These differences can be corrected using a method described by McCann et al. using 

an empirically determined gamma factor by the following equation: 

 𝐼𝐷,𝑐𝑜𝑟 = 𝛾𝐼𝐷,𝑟𝑎𝑤 Eq. 2.3 

where γ represents the empirically determined correction factor. IA,raw and IA,cor are the raw and corrected 

acceptor intensities, and ID,raw and ID,cor are the raw and corrected donor intensities (McCann et al., 2010). 
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Smoothing the Donor and Acceptor Time Traces Using the Chung-Kennedy Filter 

Due to the sensitivity of single-molecule detection, the resulting fluorescence intensity time traces 

have relatively high noise. This noise is problematic when monitoring small changes in FRET. 

Consequently, if the change in DNA bending is small, it can be difficult to detect such changes in noisy 

data. Several methods exist to smooth noisy data, such as box-car averaging, but most of these smoothing 

methods do not preserve sharp edges, making the transition even more difficult to detect. 

To overcome this limitation, Chung and Kennedy developed a non-linear smoothing algorithm 

designed specifically to smooth data while preserving edges (Chung & Kennedy, 1991; Haran, 2004). This 

algorithm smoothes data containing transitions (Figure 2.3A) by first determining the averages for windows 

of data of various size on either side of a given data point (dubbed the “forward” and “backward” average 

windows, Figure 2.3B). To preserve edges, “forward” and “backward” averages that contain transitions are 

given less weight in the overall average. The statistical weights assigned to the “forward” and “backward” 

averages are determined as follows: The standard deviations for windows of data on either side of the data 

point being smoothed (referred to as the “forward” and “backward” predictor windows, Figure 2.3C) are 

determined. The inverse of these standard deviations raised to a user-defined exponential term p are then 

used to calculate the statistical weights.  

For example, consider a data point (at time t) with a transition occurring within the forward 

predictor window but not in the backward predictor window (Figure 2.3A). The forward predictor (Figure 

2.3C, green) window would have a large standard deviation relative to the backward window (Figure 2.3C, 

red). Thus, the averages from the forward average windows (Figure 2.3B, green) would be assigned lower 

weight in the overall average, while the averages from backward average windows (Figure 2.3B, red) would 

be assigned a larger statistical weight. Smoothing is this way results in preservation of the transition in the 

forward predictor window. 
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Figure 2.3: Chung-Kennedy Smoothing Algorithm. 

A) An example of data containing a transition between t + 2 and t + 3. B) A schematic depicting three sizes 

of “forward” (green) and “backward” (red) average windows. C) A schematic depicting 4-point “forward” 

(green) and “backward” predictor windows. 

 

Note that in this approach, the average windows and the predictor windows need not be the same 

size, nor is it necessary to use only one window size for each type of window. In fact, transitions that occur 

on different timescales can be preferentially preserved using windows of various sizes. Furthermore, the 

statistical weight term can be raised to the power of an empirically determined value (p) to exaggerate the 

different contributions of the forward and backward window averages. Thus, the input parameters of the 
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average window size(s), predictor window size(s), and exponent term(s) can be defined by the user, and the 

optimal values in a given application can be empirically determined. Over filtering (i.e. introduction of false 

transitions) can be minimized by optimizing these input parameters. 

When properly applied to the donor and acceptor time traces, the signal-to-noise ratio is 

significantly improved (Figure 2.2B, Third Row), and transitions in the data are clearer. Notably, in single-

molecule FRET experiments, transitions in the donor and acceptor traces are expected to be anti-correlated 

(i.e. if the donor intensity increases, the acceptor intensity should simultaneously decrease, and vice versa). 

Because transitions in the donor and acceptor traces are expected to be simultaneous, the Chung-Kennedy 

smoothing algorithm can be improved by using the sum of the predictor window standard deviations for 

the both the donor and acceptor to determine the statistical weights. As a result, simultaneous donor and 

acceptor intensity transitions will be more strongly preserved compared to uncorrelated donor and acceptor 

changes in intensity (Haran, 2004). 

 

Screening Time Traces for Data Quality 

To expedite analysis of large amounts of single-molecule data, time traces of insufficient quality 

should be discarded from further analysis. There are several reasons a time trace or portions of a time trace 

may not be worth analyzing. For example, the detected fluorescence emission intensities may be too low to 

reliably detect changes in intensity, or they may be too high to represent emission from only one molecule. 

More commonly, either the donor or acceptor fluorophore (or both) may permanently or temporarily loose 

its fluorescence properties (i.e. bleach or blink) during data acquisition. 

To identify unanalyzable regions of time traces, the fluorescence intensity of each data point can 

first be checked against user-defined minimum and maximum thresholds. To assess for bleaches or blinks 

in the remaining data, the average and standard deviation of a moving seven-point window can be used to 
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determine a 95% confidence interval for each data point. If this interval includes zero, the data point can be 

considered as part of a bleaching or blinking event and discarded from analysis. 

Time traces made up entirely of data points that cannot be analyzed can be discarded out right. 

Those containing both analyzable and unanalyzable regions, however, may contain useful information (e.g. 

prior to photobleaching). While this screening process greatly increases the efficiency of data processing, 

false-positives and/or false-negatives may occur. For example, individual data points in analyzable regions 

may be falsely identified as unusable by this method. For this reason, the quality of each data point can be 

iteratively compared to its neighboring data points and, in the event of discrepancies, changed to conform 

to its neighbors. 

 

Calculating FRET and Identifying Transitions in the FRET Time Traces 

Regions of the remaining donor and acceptor time traces that are of sufficient quality to analyze 

can then be used to calculate single-molecule FRET efficiency using the following equation: 

 𝐸 =  
𝐼𝐴

𝐼𝐴+𝐼𝐷
 Eq. 2.4 

where IA and ID represent the corrected and smoothed fluorescence emission intensities of the acceptor and 

donor fluorophores, respectively (Derocco et al., 2014; Gell et al., 2006; Lakowicz, 2006; Qiu et al., 2012, 

2015; Sass et al., 2010). The resulting FRET time trace (Figure 2.2B, Fourth Row) contains several pieces 

of information: 1) the FRET at any given point in time is a readout of the interfluorophore distance, which 

represents the different DNA bending states; 2) the dwell time of a given FRET state provides kinetic 

information, such as the characteristic lifetimes associated with each DNA bending state; and 3) the 

transitions provide insight into the preferred pathways of conformational changes. To extract this 

information, it is crucial to identify the time point at which the FRET time trace undergoes a transition.  
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Several methods exist to detect transitions in data, though each has its own limitations. False-

positives (i.e. finding transitions that do not exist) and false-negatives (i.e. missing transitions that should 

be detected) can both hinder interpretation of the data. Applying the same transition detection method at 

different levels of stringency can minimize these mistakes, as transitions that withstand more stringent 

thresholds are more likely to be “real”. Comparing the results of multiple methods, can also help to 

overcome the limitations of using just one technique, as different detection methods will be better suited 

for detecting different types of changes (e.g. short- vs. long-lived states) and will have different limitation. 

Edges detected by multiple methods at multiple stringency levels can then be assigned a higher confidence 

score. Presented here are two transition detection methods that can be independently applied at multiple 

thresholds to smFRET data.  

Method 1: The Gaussian Kernel Method (Sass et al., 2010) 

Mathematically, transitions in continuous functions can be identified by finding inflection points 

(i.e. maxima and minima in the first derivative of the time trace). Unfortunately, the FRET time traces are 

made up of discrete data points that have many apparent inflection points due to the significant noise in the 

signal. These issues can be circumvented by first convolving the FRET time traces with a Gaussian kernel 

of various widths and subsequently detecting inflection points in the convolved data. To ensure only “real” 

transitions are kept, a threshold can be incorporated. By changing the rigor of the threshold, the remaining 

“real” transitions can also be scored for confidence. 

Method 2: The Chung-Kennedy Method 

The previously described smoothing algorithm developed by Chung and Kennedy uses increases 

in the predictor windows’ standard deviations to calculate statistical weights (Chung & Kennedy, 1991; 

Haran, 2004). These increases in standard deviation can also be used to detect transitions in the FRET time 

traces as follows: 
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Figure 2.4: A Novel Transition Detection Method Based on the Chung-Kennedy Filter. 

“Forward” and “backward” predictor windows (left column, green and red brackets, respectively) are 

shown for successive time points (blue diamonds). Standard deviations for the depicted predictor windows 

(right column) reveal two identical peaks. The orange dotted line depicts the midpoint between these peaks 

(between t + 2 and t + 3) and identifies the time of the transition in the data.  
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Consider a data point at time t with a transition occurring between time t + 2 and t + 3 (Figure 2.4). 

Using a predictor window of 4 data points, the standard deviation of both the forward and backward 

predictor windows can be calculated at each value of t. (Figure 2.4 depicts these calculations for t - 2 to t + 

7.) In this example, the standard deviation of the forward predictor window at time t is at a local maximum. 

This also occurs in backward predictor window at time t + 5 because these windows contain the same range 

of data points. Thus, transitions can be detected by finding the midpoint between local maxima in the 

standard deviations of the forward and backward predictor windows. To ensure only “real” transitions are 

kept, only the highest percentile local maxima (e.g. 95th-99th percentile) are considered. By changing this 

percentile, the transitions can then be scored for confidence. 

Notably, this method’s ability to detect transitions is depends on the noise in the FRET time traces, 

as those traces with low signal-to-noise will have inherently high standard deviations, confounding the 

results. The most common source of false-positives is bleaching and blinking events where either the donor 

or acceptor fluorescence intensity is approximately zero. Very low donor or acceptor intensity can cause 

the FRET time trace to be very noisy, oscillating between 1 and 0. To circumvent this issue, regions of data 

previously identified as bleaches and blinks can be assigned a constant FRET (e.g. 0 or -1), which eliminates 

their standard deviations and allows this transition detection method to function properly. 

 

Alignment and Confirmation of Transitions in the FRET Time Traces 

Typically, the timing of each transition identified by both methods are in agreement. However, the 

two described methods occasionally produce slightly disparate results. In these instances, any transitions 

occurring within 0.3 seconds can be empirically aligned taking the weighted average of the time detected 

by each method. The weights used in this average can be determined using the confidence scores provided 

by each method. 
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Both of the methods described here require user input to choose the appropriate thresholds. In the 

event that transitions are being missed (false-negatives), the thresholds ought to be made less stringent. 

More often, though, too many “unreal” transitions are identified (false-positives). To test the significance 

of each transition, the FRET efficiency between each transition can be averaged, and the averages of 

adjacent FRET states can be subjected to a t-test. If two states are deemed not statistically significantly 

different from one another (p level 0.05), then the transition between the two states can be identified as a 

false-positive and discarded. 

 

User Interaction and FRET-TACKLE 

The resulting set of transitions (Figure 2.2B, Bottom Row) represents a best approximation of the 

simultaneous donor and acceptor changes in intensity. In the analysis described so far, the user is only 

required for the initial input parameters, such as smoothing windows and transition detection thresholds; 

the rest of the analysis can be completed by a computer in batch. Upon completion of the batch analysis, 

the computationally discovered transitions can be verified by the user, and any remaining false-positives in 

each molecule’s FRET time trace can be discarded by hand. This process, though tedious, can be crucial to 

recognizing patterns or detecting systematic errors in the computational approach. 

Once the transitions have been determined, FRET-TACKLE (FRET Transition Analysis Coupled 

with Kinetic Lifetime Evaluation) analysis can extract the pertinent mechanistic information from the 

compiled data (Derocco et al., 2014; Sass et al., 2010). In this method, distinct molecular conformations 

are identified by their characteristic FRET and kinetic lifetime properties. This approach allows molecular 

states with the same extent of DNA bending (i.e. the same FRET) but distinct kinetics to be distinguished, 

and vice versa. 
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Conclusion 

Using the design strategies and analysis approach outlined here, smFRET data monitoring protein-

induced DNA bending can be produced and interpreted. As previously discussed, DNA oligonucleotides 

used in these experiments must be thoughtfully labelled with the proper fluorophores in the proper positions 

using the proper attachment chemistries. A mistake in any of these considerations not only produces an 

oligonucleotide that is insensitive to changes in DNA bending, but is often costly.  Furthermore, an 

automated analysis approach can allow the plethoric amounts of data to be more efficiently analyzed. By 

systematically locating foci, extracting and smoothing intensity time traces, determining which data are 

usable, and detecting and verifying transitions in the data, little user input is needed. Final analysis of the 

distribution of FRET efficiencies, the characteristic lifetimes, and the preferred transitions reveals 

conformational, kinetic, and pathway preference information for the protein:DNA complexes being studied, 

which can provide mechanistic insights. Examples of this approach successfully applied to understanding 

DNA bending by MutS during DNA mismatch repair can be found in this thesis (Chapter 3). 
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CHAPTER 3: CHANGES IN DNA BENDING CORRELATE WITH MUTS CONFORMATIONAL 

CHANGES DURING SLIDING CLAMP FORMATION 

 

Introduction 

Errors introduced during DNA replication must be corrected to maintain genomic stability. DNA 

mismatch repair is a biochemical pathway that increases the fidelity of DNA replication 100-fold by 

correcting misincorporated bases or insertion/deletion loop errors. The proteins involved in mismatch repair 

proteins are also involved in a range of other biochemical processes, including DNA damage response and 

double strand break repair. Unsurprisingly, mutations in the mismatch repair proteins are associated with 

several types of cancer, including certain hereditary nonpolyposis colorectal cancers (Iyer et al., 2006; 

Kunkel & Erie, 2005). 

Mismatch repair is initiated by the protein MutS, which is responsible for recognizing the 

replicative errors in the DNA. Though prokaryotic MutS homodimerizes and the eukaryotic MutS 

homologs function as heterodimers, the mechanism of error recognition appears to be conserved (Iyer et 

al., 2006; Kunkel & Erie, 2005). Functional MutS dimers (referred to hereafter as simply “MutS”) possess 

DNA-binding and ATPase activities. MutS can bind to homoduplex DNA and slide along the DNA in 

search of an error. Upon encountering an error, MutS forms specific interactions with the mispaired base(s) 

and can then undergo a series of nucleotide-dependent conformational changes to signal for downstream 

repair events  (Alani et al., 2003; Jeong et al., 2011; Obmolova et al., 2000; Qiu et al., 2012, 2015). Most 

notably, both prokaryotic and eukaryotic MutS form a mobile “sliding clamp” state that can move along 

the length of the DNA. Forming this state is known to be both ATP- and mismatch-containing DNA-

dependent, and it is believed to be important in mismatch repair signaling. 
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Recent studies using single-molecule fluorescence resonance energy transfer (smFRET) 

successfully characterized the conformational and kinetic properties of Taq MutS during sliding clamp 

formation (Jeong et al., 2011; Qiu et al., 2012, 2015). In these studies, MutS was tagged with a donor 

fluorophore and the DNA containing an error tagged was tagged with an acceptor fluorophore such that 

when MutS bound to the error, FRET between the dyes could occur. In the presence of saturating ATP, Taq 

MutS bound to the error in a state with high FRET. Qiu et al. observed that a subset of these mismatch-

binding events (~20%) underwent a preferred pathway of changes in FRET (high FRET  intermediate 

FRET  zero FRET). These changes were attributed to sliding clamp formation, as the final zero FRET 

could only occur if MutS had moved away from the acceptor dye (i.e. far from the mismatch) while still 

bound to the DNA. In addition, kinetic analysis of the total time MutS spent bound to T-bulge substrates 

yielded a characteristic lifetime of 11.7 sec (Qiu et al., 2012, 2015). In additional experiments, the DNA 

binding domains of each monomer of MutS was labeled with one dye from a FRET pair. Using this method, 

conformational changes within the MutS dimer were identified during sliding clamp formation. 

Importantly, the lifetimes associated with the states identified in the intramolecular FRET experiments 

correlated with those observed in the protein-to-DNA FRET experiments (Qiu et al., 2012). 

These smFRET results were combined to create a model for the conformational changes 

experienced by Taq MutS during sliding clamp formation (Figure 3.1). In this model, free MutS exists in a 

conformational equilibrium between an “open” and “closed” state when not bound to DNA (Figure 3.1, 

state i). Upon mismatch recognition (Figure 3.1, state ii), MutS binds to the DNA in a high FRET state in 

a “closed” conformation. A subsequent conformation change with no associated change in FRET was 

identified by the kinetic analysis and was proposed to be associated with exchange of ADP for ATP (Figure 

3.1, state iii). This state then transitions to a state with intermediate FRET (Figure 3.1, state iv) associated 

with movement of the DNA binding domains. Finally, the sliding clamp (Figure 3.1, state v) with zero 

FRET is formed, and the DNA binding domains fully open. Importantly, this model depicts changes in 
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DNA bending throughout the process of sliding clamp formation without evidence for these changes (Qiu 

et al., 2012, 2015). 

 

 

Figure 3.1: The existing model of sliding clamp formation by Taq MutS.  

(i) Prior to binding DNA, MutS exists in a conformational equilibrium. (ii) MutS binds and bends the DNA 

at the error. MutS adopts a conformation where the two DNA binding domains are near each other. (iii) 

MutS exchanges ADP for ATP, and the conformation changes little. (iv) MutS undergoes a conformational 

change that slightly opens the DNA binding domains. (v) The DNA binding domains fully open as MutS 

becomes a sliding clamp and moves away from the mismatch. Adapted from (Qiu et al., 2015). 

 

DNA bending by Taq MutS has been well characterized by X-ray crystallography and atomic force 

microscopy (Alani et al., 2003; Obmolova et al., 2000; Wang et al., 2003). This MutS-induced DNA 

bending is not static, and several single molecule studies have dissected the DNA bending dynamics of 

MutS:DNA complexes in the absence of adenosine nucleotides (Derocco et al., 2014; Sass et al., 2010). In 

these studies, a key “bent-to-unbent” transition has been identified, and preservation of this transition 

correlates with efficient repair (Derocco et al., 2014; Wang et al., 2003). However, little is known about the 

nucleotide dependence of these DNA bending conformations, nor is the contribution of DNA bending 

throughout process of forming the sliding clamp well understood. To fully understand the actions of MutS 

in mismatch repair initiation, we must elucidate the molecular changes occurring in both MutS and the 

DNA. 

Here, we use smFRET to monitor changes in DNA bending induced by Thermus aquaticus (Taq) 

MutS in the presence of saturating concentration of ADP or ATP. The results of these experiments are then 
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correlated to the previous smFRET studies via their characteristic kinetics. Notably, a pathway of DNA 

bending states was identified, and the kinetics of this pathway correlate well with the sliding clamp 

formation kinetics from the previous studies. Moreover, a conformational change previously identified only 

by kinetic analysis was characterized by changes in the DNA bending conformation. We then refine the 

model for sliding clamp formation to account for conformational changes in both MutS and the DNA. 

 

Results 

To study the nucleotide dependence of MutS-induced DNA bending during sliding clamp 

formation using smFRET, we designed a 68 bp oligonucleotide that is doubly-labeled with a FRET pair of 

dyes, TAMRA (donor) and Cy5 (acceptor). These dyes are separated by 19 bp flanking a single thymine 

insertion error (referred to herein as T-bulge) near the midpoint of the oligonucleotide (Figure 3.2A). This 

oligonucleotide is also biotinylated on one end so that it could be immobilized via an interaction with 

streptavidin-biotinylated BSA on the surface of a quartz slide. The cysteine mutant C42A/M88C Thermus 

aquaticus MutS with wild type ATPase and DNA binding activities is used in this study to allow for direct 

comparison to existing smFRET data (Qiu et al., 2012, 2015). 

 

MutS:ADP bends DNA to a single bent conformation. 

We first determined the DNA bending properties of Taq MutS in the presence of saturating 

concentrations of ADP. We measured the smFRET efficiency from the donor to the acceptor dyes on either 

side of a T-bulge (Figure 3.2A). On linear DNA in the absence of MutS, the FRET efficiency between the 

dyes remained constant over time with a peak centered around 0.25 (Figure 3.2C, black dotted cityscape). 

Upon introduction of 10 nM MutS and 2 mM ADP, anti-correlated changes in the donor and acceptor 

fluorescence intensity time traces were observed, resulting in brief periods of increased FRET efficiency 

followed by a return to the original FRET efficiency (Figure 3.2B). In each time trace, the FRET efficiency 
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was observed to transition between only two distinct FRET states, a low FRET state (Figure 3.2B, red 

arrows) and a high FRET state (Figure 3.2B, cyan arrows). A histogram of the average FRET efficiency of 

the low FRET states (Figure 3.2C, red bars) shows a peak centered around 0.25, similar to the free DNA 

distribution. A histogram of the average FRET efficiency of the high FRET states in each trace (Figure 

3.2D) is shifted to higher FRET with a peak centered around 0.35. This result is consistent with MutS-

induced DNA bending  upon binding to DNA containing a T-bulge, as was observed previously in the 

absence of ADP (Derocco et al., 2014; Sass et al., 2010; Wang et al., 2003). The FRET transitions detected 

in these transitions are depicted in a transition density plot (TDP), where warmer colors represent more 

frequent transitions (Figure 3.2E). Two dominant types of transitions are observed: (1) a low FRET state 

transitioning to a high FRET state, and (2) a high FRET state transitioning to a low FRET state.  

Using the observed change in FRET efficiency and the law of cosines, the DNA bend angle can be 

calculated; however this calculation is complicated by variations in the Förster radius caused by linking the 

fluorophores to the DNA and fluorophore-DNA interactions. If these complications are ignored, the 

observed change in the average FRET efficiency from ~0.25 to ~0.35 corresponds to a DNA bend angle of 

~45°, which agrees well with the DNA bend angle observed in the crystal structure and in the AFM studies 

(Alani et al., 2003; Obmolova et al., 2000; Wang et al., 2003).  

For most of the observed transitions to the high FRET state, the time spent in the high FRET state 

before returning to the low FRET state (i.e. the dwell time) was measured. The distribution of dwell times 

(Figure 3.2F, cyan bars) fit well to a single exponential decay (Figure 3.2F, black line), which is consistent 

with a stochastic transition out of a single discrete molecular state. The characteristic lifetime of these states 

(i.e. the reciprocal of the exponential decay term, k) is 3.2 ± 0.6 sec. This value is in good agreement with 

the characteristic lifetime found for donor-labeled MutS binding to acceptor-labeled T-bulge DNA in the 

presence of ADP observed in smFRET experiments at the same conditions (2.7 sec) (Qiu et al., 2012, 2015). 
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Figure 3.2: In the presence of ADP, Taq MutS bends T-Bulge DNA to a single bent state.  

A) Schematic of a surface immobilized 70mer DNA molecule bound by Taq MutS at the location of the 

single thymine insertion (blue arrow). B) Example donor (green) and acceptor (red) intensity time traces 

and their corresponding FRET time traces (magenta) for experiments conducted at 10 nM Taq MutS and 2 

mM ADP. The black line represents the smoothed signal. The red and cyan arrows denote low FRET and 

high FRET states, respectively. C) The distributions of FRET values for the low FRET states (red bars) and 

for DNA in the absence of Taq MutS (black dotted cityscape). D) The distribution of FRET values for the 

high FRET states (cyan bars). E) Transition density plot depicting the frequency of transitions converting 

between the low and high FRET states. F) The distribution of dwell times for the high FRET states (cyan 

bars) fit to a single exponential decay (black line). 
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In the presence of ATP, most MutS:DNA complexes adopt a single bent conformation. 

To ascertain how the conformation of the DNA changes upon introduction of ATP, we monitored 

the smFRET efficiency of our doubly labeled oligonucleotide (Figure 3.2A) in the presence of Taq MutS 

and saturating concentrations of ATP. Again, anti-correlated changes in the donor and acceptor 

fluorescence intensity time traces are observed when MutS and ATP are added. Dynamic changes in the 

FRET efficiency were observed (Figure 3.3A). In the majority of these events (70%), only two FRET states 

were observed: a low FRET state (Figure 3.3A, red arrows) and a high FRET (Figure 3.3A, cyan arrows), 

similar to the ADP FRET time traces. Histograms of the average FRET efficiency of each state show that 

the low FRET state (Figure 3.3B, red bars) exhibits a peak centered around 0.25. This peak is slightly 

broader than that observed in the presence of ADP but is still quite similar to the free DNA FRET 

distribution (Figure 3.3B, black dotted cityscape). The high FRET distribution observed in the presence of 

ATP (Figure 3.3C) was shifted to higher FRET with a peak centered around 0.4. This distribution is also 

broader than the high FRET distribution observed in the presence of ADP, perhaps due to MutS being 

inherently more dynamic in the presence of ATP.  

For these transitions between low FRET and high FRET states in the presence of ATP, the TDP 

(Figure 3.3D) again reveals two dominant transitions: (1) a low FRET state transitioning to a high FRET 

state, and (2) a high FRET state transitioning to a low FRET state The breadth observed in the FRET 

efficiency histograms (Figures 3.3B and 3.3C) is also evident in the TDP, as the peaks representing the 

major transitions span a wider range of FRETs. Interestingly, the TDP reveals a systematic error in these 

data. Traces starting in a below average low FRET state (i.e. FRET < 0.25) transition to a state with a 

correspondingly below average high FRET state (i.e FRET < 0.4); likewise, traces starting in an above 

average low FRET state (i.e. FRET > 0.25) transition to a state with a correspondingly above average high 

FRET state (i.e. FRET > 0.4). This systematic error may explain the breadth of the distributions for the 

events involving a single bent conformation in the presence of ATP. 



42 

 

For this subset of transitions, the distribution of dwell time in the high FRET state (Figure 3.3E, 

cyan bars) fit well to a single exponential decay (Figure 3.3E, black line), yielding a characteristic lifetime 

of 4.2 ± 0.6 sec, within error of the lifetime observed in the presence of ADP and very close to that observed 

previously (2.7 sec) (Qiu et al., 2012, 2015).  

 

Figure 3.3: In the majority of Taq MutS:DNA complexes formed in the presence of ATP, the DNA 

adopts a single bent state.  

A) Example donor (green) and acceptor (red) intensity time trace and its corresponding FRET time trace 

(magenta) for experiments conducted at 10 nM Taq MutS and 2 mM ATP. The black line represents the 

smoothed signal. The red and cyan arrows denote low FRET and high FRET states, respectively. B) The 

distributions of FRET values for the low FRET states (red bars) and for DNA in the absence of Taq MutS 

(black dotted cityscape). C) The distribution of FRET values for the high FRET states (cyan bars). D) 

Transition density plot depicting the frequency of transitions converting between the low and high FRET 

states. E) The distribution of dwell times for the high FRET states (cyan bars) fit to a single exponential 

decay (black line). 
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ATP induces a subset of MutS:DNA complexes to adopt multiple conformations. 

In the remaining subset (30%) of the DNA bending events observed in the presence of Taq MutS 

and ATP, more than two FRET states are observed: a low FRET state, an intermediate FRET state, and a 

high FRET state (Figure 3.4A, red, blue, and yellow arrows, respectively). The distribution of FRET values 

for the low FRET state (Figure 3.4B, red bars) is again similar to the free DNA FRET (Figure 3.4B, black 

dotted cityscape), as both exhibit a peak centered around 0.25. The average FRET efficiency peaks for the 

intermediate and high FRET states (Figures 3.4C and 3.4D, respectively) are centered around 0.35 and 0.45, 

respectively. Such shifts in the FRET values predict DNA bend angles of ~45° and ~60°, respectively. 

These results are consistent with the previously observed range of Taq MutS:DNA complex conformations 

with distinct extents of DNA bending in the absence of nucleotides using T-bulge DNA ( Alani et al., 2003; 

Obmolova et al., 2000; Derocco et al., 2014; Wang et al., 2003).  

Examination of the TDP (Figure 3.4E) reveals four major transitions: (1) a low FRET state 

transitioning to an intermediate FRET state, (2) an intermediate FRET state transitioning to a high FRET 

state, (3) a high FRET state transitioning back to an intermediate FRET state, and (4) an intermediate FRET 

state returning to a low FRET state. Notably, the systematic error responsible for broadening the peaks in 

the TDP of the events with a single bent (Figure 3.3D) is again apparent in the TDP for the events 

transitioning through multiple bent states. 

For this subset of DNA bending events in the presence of ATP, the total time spent in a FRET state 

other than the low FRET state (Figure 3.4A, asterisked braces) was recorded. The distribution of these 

overall dwell times (Figure 3.4G, gray bars) fit to a single exponential decay yielding a characteristic 

lifetime of 13 ± 2 sec. This lifetime is similar to the previously determined characteristic time (11.7 sec) 

that MutS spent at the T-bulge before forming the sliding clamp state. (Qiu et al., 2012, 2015). 
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Figure 3.4: In a subset of Taq MutS:DNA complexes formed in the presence of ATP, switching 

between multiple bent states is observed.  

A) Example donor (green) and acceptor (red) intensity time trace and its corresponding FRET time trace 

(magenta) for experiments conducted at 10 nM Taq MutS and 2 mM ATP. The black line represents the 

smoothed signal. The red, blue and yellow arrows denote low, intermediate, and high FRET states, 

respectively, between the detected FRET transitions (dotted gold lines). B) The distribution of the number 

of FRET states per bending event. C) The distributions of FRET values for the low FRET states (red bars) 

and for DNA in the absence of Taq MutS (black dotted cityscape). D) The distribution of FRET values for 

the intermediate FRET states (blue bars). E) The distribution of FRET values for the high FRET states 

(yellow bars). F) Transition density plot depicting the frequency of transitions between the low, 

intermediate and high FRET states (dotted magenta circles). (1) low FRET to intermediate FRET; (2) 

intermediate FRET to high FRET; (3) high FRET to intermediate FRET; and (4) intermediate FRET to low 

FRET. G) The distribution of dwell times (gray bars) for the total time in a bent state (i.e. the time marked 

by the asterisked braces) fit to a single exponential decay (black line). 
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DNA bending by MutS:ATP follows a preferred pathway of transitions. 

In the events with multiple bent states, the number of intermediate and high FRET states entered 

before returning to the low FRET state (Figure 3.4F) shows a preference for fewer transitions. 

Approximately 75% of the events with multiple bent states adopt only two or three bent FRET states before 

returning to the low FRET state (Figure 3.5A). Rarely, the FRET oscillates between the high and 

intermediate FRET states 4 or more times before returning to the low FRET state (Figure 3.4A, right 

column).  

The events adopting only two or three bent FRET exhibit a three preferred transition paths: Path 1) 

low FRET  intermediate FRET  high FRET  low FRET (Figure 3.5A, left), Path 2) low FRET  

high FRET  intermediate FRET  low FRET (Figure 3.5A, middle), and Path 3) low FRET  

intermediate FRET  high FRET  intermediate FRET  low FRET (Figure 3.5A, right). As depicted 

in the simplified schematics (Figure 3.5B), Paths 1 and 2 may represent subsets of Path 3 where one 

conformation was not observed. Using this model, each state is assigned an extent of MutS-induced DNA 

bending based on the FRET value as follows: Low FRET states (Figure 3.5A, red arrows) are assumed to 

be linear DNA (Figure 3.5C, D). This assumption is supported by the FRET distribution of these states 

(Figure 3.5D, red bars D), which is centered around 0.25 similar to free DNA. The intermediate FRET 

states (Figure 3.5A, blue arrows) are attributed to slightly bent DNA (Figure 3.5C, U1 and U2) because their 

FRET distributions (Figure 3.5D, blue bars and green bars for U1 and U2 respectively) have shifted to higher 

FRETs and are centered around 0.35. Interestingly, the FRET associated with U2 appears to be significantly 

broader than that of U1. Finally, the high FRET state (Figure 3.5B, yellow arrows) represents more sharply 

bent DNA (Figure 3.5C, B), as suggested by the FRET distribution (Figure 3.5D, yellow bars B) shifting 

to even higher FRET values centered around 0.45. For the three internal states, U1, B, and U2, the 

distribution of dwell times fit well to a single exponential decay yielding characteristic time constants of 

3.3 ± 1.2, 2.3 ± 0.3, and 1.3 ± 0.4 sec, respectively. Importantly, both FRET distributions (Figure 3.6).and 

the kinetic analyses (Figure 3.7) for each of these states appear to be independent of the transition path. 
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Figure 3.5: The DNA bending transitions for the multi-state bending events follows a D-U1-B-U2-D 

pattern.  

A) Example FRET time traces (magenta) representing the three most common paths for multi-state traces. 

The black line represents the smoothed signal, and the arrows point to FRET states between the detected 

FRET transitions (dotted gold lines). Throughout the figure, the D, U1, B, and U2 states are color coded in 

red, blue, yellow, and green, respectively. B) Schematic representations of the most common transition 

paths. C) Models depicting the DNA bending conformations through the D-U1-B-U2-D pathway. D) The 

combined distributions of FRET values for each state. E) The combined distribution of dwell times for each 

state fit to a single exponential decay (black line).  
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Figure 3.6: The distributions of FRET values for each state in the D-U1-B-U2-D pathway. 

FRET distributions for each DNA bending state are shown separately for the Path 1 (row 1), Path 2 (row 

2), and Path 3 (row 3). The combined distributions are also shown (row 4). Throughout the figure, the D, 

U1, B, and U2 states are color coded in red, blue, yellow, and green, respectively.  
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Figure 3.7: The dwell time distributions for the U1, B, and U2 states. 

Dwell time distributions are shown separately for the Path 1 (row 1), Path 2 (row 2), and Path 3 (row 3). 

The combined distributions are also shown (row 4). Throughout the figure, the U1, B, and U2 states are 

color coded in blue, yellow, and green, respectively.  
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Figure 3.8: Transition density plots depicting each step of the D-U1-B-U2-D pathway.  

Transition density plots depicting the preferred pathway (white arrows) of conversion between the DNA 

bending states. Each step is shown separately for Path 1 (row 1), Path 2 (row 2), and Path 3 (row 3) traces.  
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Figure 3.9: Transition density plots depicting the pathway of conversion between the DNA bending 

states for all molecules studied. 

Each step is shown separately for the Path 1 (row 1), Path 2 (row 2), and Path 3 (row 3). Transitions 

occurring in molecules with a systematically high D FRET (omitted in Figure 3.4F) are circled in magenta. 
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To further analyze the transitions involved in these paths, the FRET efficiency before and after 

each transition are depicted in TDPs (Figure 3.8). Moving from left to right across each row, the transitions 

through each pathway become apparent. For Path 1, a clear transition from D (FRET = 0.2-0.3) to U1 (FRET 

= 0.35-0.4) is observed. Next, U1 transitions to B (FRET = 0.4-0.45). As U2 is not observed in this pathway, 

B then transitions directly to D (FRET = 0.2-0.3). For Path 2 (Figure 3.4F, middle row), D (FRET = 0.2-

0.3) transitions directly to B (FRET = 0.4-0.45), skipping U1. B then transitions to U2 (FRET = 0.3-0.4) 

before finally arriving back at D (FRET 0.15-0.25). Finally, in Path 3 (Figure 3.4F, bottom row), all of the 

states are observed. D (FRET = 0.2) transitions to U1 (FRET = 0.35), which switches to B (FRET = 0.45). 

B then transitions to U2 (FRET = 0.35-0.4) before returning to D (FRET = 0.2). While slight variations in 

the FRET values for each state are apparent, the sequence of transitions is conserved. Notably, the 

systematic error that has been observed in all of the experiments in the presence of ATP complicates this 

analysis. Thus, for clarity, only transitions from FRET time traces whose D states had an average FRET 

efficiency below 0.3 were included in these TDPs. Importantly, though, the remaining transitions (i.e. those 

from traces whose state D had a FRET efficiency above 0.3) follow the same D-U1-B-U2-D transition 

pattern with every state exhibiting a systematically shifted higher FRET (Figure 3.9, magenta circles).  

 

Discussion 

During mismatch repair initiation, MutS is tasked with recognizing the error in the DNA. Upon 

error recognition, MutS undergoes a series of ATP-dependent conformational changes resulting in 

formation of a sliding clamp state and/or recruitment of MutL. These conformational changes are necessary 

for signaling downstream mismatch repair events. Using smFRET, much has been learned about nucleotide-

dependent conformational changes involved in forming a MutS sliding clamp; however, little is known 

about the conformation of the DNA during this process. In this study, we used smFRET to monitor changes 

in DNA bending induced by MutS in the presence of saturating concentrations of ADP and ATP. 
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MutS and DNA conformational changes during error recognition and sliding clamp formation. 

In two recent smFRET studies (Qiu et al., 2012, 2015), MutS-DNA interactions during sliding 

clamp formation and intramolecular MutS conformational dynamics were monitored. By placing the donor 

and acceptor fluorophore in different positions, we gain insight into the conformational properties of various 

components of the Taq MutS:DNA complex. Placing the donor fluorophore on the DNA binding domain 

of MutS and the acceptor fluorophore on the DNA near the mismatch (Figure 3.10A), the dynamics of 

MutS binding to the mismatch and the subsequent conformational changes leading to sliding clamp 

formation were tracked (Qiu et al., 2012, 2015). In these experiments, sliding clamp formation was 

characterized by a consistent pattern of transitions: MutS bound to the T-bulge in a high FRET state (FRET 

= 0.65) before transitioning to an intermediate state (FRET = 0.45). This intermediate then transitioned to 

the sliding clamp (FRET = 0) (Qiu et al., 2012, 2015). 

With both the donor and acceptor fluorophores on the DNA binding domains of MutS (Figure 

3.10B) intramolecular conformational changes were monitored (Qiu et al., 2012). These experiments 

revealed that, in the absence of DNA, Taq MutS exists mainly in two conformations: a low FRET “open” 

structure (FRET = 0.2) a high FRET “closed” structure (FRET = 0.9). Upon binding to DNA containing an 

error, MutS favors the high FRET “closed” conformation (FRET = 0.9). In the presence of ATP, a subset 

of MutS dimers transitioned to an “open” conformation following a consistent pathway: MutS bound to the 

error in the high FRET “closed” conformation (FRET = 0.9) transitioned to a “partially open” state (FRET 

= 0.65) before finally adopting the low FRET “open” state (FRET = 0.2). Not only were these transitions 

ATP- and mismatch-dependent, but they also correlated kinetically with the protein-to-DNA FRET 

experiments. Thus, these intramolecular conformational changes were attributed to MutS sliding clamp 

formation (Qiu et al., 2012). 
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Figure 3.10: A model of sliding clamp formation using the results of three smFRET experimental 

designs.  

Molecular states identified by smFRET experiments where A) The donor fluorophore is on the DNA 

binding domain of one MutS monomer, and the acceptor fluorophore is on the DNA near the mismatch, B) 

the donor and acceptor fluorophores are on the DNA binding domains of each MutS monomer, or C) the 

donor and acceptor fluorophores are on the DNA flanking the error. Average FRET values for each 

molecular state identified by each experiment are given below each cartoon. D) A model for sliding clamp 

formation for the Taq MutS:DNA complex: (i) Prior to binding DNA, MutS exists in a conformational 

equilibrium. DNA not bound by MutS remains unbent. (ii) MutS binds and bends the DNA at the error. 

MutS adopts a conformation where the two domains I are near each other. (iii) The DNA is briefly bent at 

a sharper angle while the MutS conformation changes little. (iv) The DNA unbends slightly as MutS 

undergoes a conformational change that increases the distance between the domains I. (v) The separation 

between the domains I increases again, forming the sliding clamp. The DNA near the error returns to its 

original unbent form. 
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While these approaches have provided much insight into the conformation changes experience by 

the MutS:DNA complexes, neither technique has reported on the DNA bending conformation through the 

sliding clamp formation process. Here, we track the extent of DNA bending by MutS in the presence of 

ADP and ATP using DNA labeled with both the donor and acceptor fluorophores (Figure 3.10C). Our 

results reveal at least three distinct FRET states: 1) a low FRET state (FRET = 0.25, D) that corresponds to 

free DNA that is not bound by MutS and is therefore straight, 2) an intermediate FRET state (FRET = 0.35, 

U1 or U2) representing DNA that has been slightly bent or unbent by MutS, and 3) a high FRET state (FRET 

= 0.45, B) attributed to a state with a greater extent of MutS-induced DNA bending. In a subset of MutS-

induced DNA bending events (30%) in the presence of ATP, a dominant transition sequence through these 

DNA bending states is apparent: D (low FRET = 0.25)  U1 (intermediate FRET = 0.35)  B (high FRET 

= 0.45)  U2 (intermediate FRET = 0.35)  D (low FRET 0.45). In some of these events, the U1 or U2 

states are not detected, which may be due to the relatively short lifetime of these states. 

In the absence of nucleotides, MutS-induced DNA bending states similar to those observed in the 

presence of ADP and ATP have been observed, both in control experiments (Figures 3.11A and 3.11B) and 

in previous studies using a different T-bulge DNA substrate (Derocco et al., 2014); however, these bent 

states are significantly longer lived rarely transition to other states during the observation period (100 sec). 

Most likely this lack of dynamics can be explained by the stability of the Taq MutS on T-bulge DNA in the 

absence of ADP or ATP. As expected, high FRET states as a result of DNA bending are not observed on 

homoduplex DNA labeled with a FRET pair of fluorophores (Figure 3.11C). 
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Figure 3.11: Control Experiments. 

A) The distribution of FRET values for the low FRET states for experiments conducted with T-bulge DNA 

and 10 nM Taq MutS (red bars) and the distribution of FRET values for T-bulge DNA in the absence of 

Taq MutS (black dotted cityscape). B) The distribution of FRET values for the high FRET states for 

experiments conducted with T-bulge DNA and 10 nM Taq MutS (blue bars). C) The distribution of FRET 

values for the high FRET states for experiments conducted with homoduplex DNA in the presence (purple 

bars) and absence (dotted black cityscape) of 10 nM Taq MutS (purple bars). 

 

The molecular states identified by smFRET can be unified by their kinetics and transition sequence. 

In each of the experiments discussed above, changing the position of the donor and acceptor 

fluorophores provides unique insight into the nucleotide-dependent conformational changes within the 

MutS-DNA complexes. The distinct molecular states identified by each of these independent experimental 

designs can be correlated using their kinetics and by the transition sequence. Importantly, the characteristic 

lifetime a given MutS:DNA complex conformation should be approximately equal regardless of the 

fluorophore locations, and both the number of events as well as the preferred pathway of transitions should 

be preserved.  
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The protein-to-DNA FRET experiments (Figure 3.10A) directly visualized formation of the sliding 

clamp and observed three FRET states (high FRET  intermediate FRET  zero FRET). The dwell time 

distribution of the high FRET state required a two-step kinetic model to fit the data. Thus, four characteristic 

lifetimes were identified in these experiments: 2.2 and 0.9 sec (FRET = 0.65), 1.8 sec (FRET = 0.45), and 

2.2 sec (FRET = 0) (Qiu et al., 2015). In the intramolecular FRET experiments (Figure 3.10B), sliding 

clamp formation was characterized by three FRET states (high FRET = 0.9  intermediate FRET = 0.65 

 low FRET = 0.2). The characteristic lifetimes of these states were found to be 4.7, 1.3, and 2.4 sec, 

respectively (Qiu et al., 2012).  

With no label on MutS in the DNA-to-DNA FRET experiments, there is no way to directly visualize 

whether or not MutS is bound to the DNA during the experiment; however, several pieces of evidence allow 

us to conclude that the dynamic changes in FRET are due to MutS-induced changes in DNA bending. First, 

these events are not observed in the absence of MutS. Second, the characteristic lifetimes identified of the 

high FRET states in the presence of ADP and for the single-state events in the presence of ATP are very 

similar to those observed in the protein-to-DNA experiments at the same conditions. Third, the population 

of ADP-like events in the presence of ATP are similar in both the protein-to-DNA and DNA-to-DNA 

experiments (80% and 70%, respectively). Finally, the events known to form the sliding clamp in the 

protein-to-DNA experiments (20% of events in the presence of ATP) had a total characteristic lifetime at 

the mismatch of around 11.7 sec, which is strikingly similar to that of the subset of DNA bending events 

exhibiting multiple bent states (30% of events in the presence of ATP), 12.5 sec. Taken together, these data 

suggest that this subset of DNA bending events represents the population of MutS:DNA complexes that are 

competent to form sliding clamps in the presence of ATP. 

The dominant pathway of DNA bending transitions identified in the events leading to sliding clamp 

formation was: D (low FRET, free DNA)  U1 (intermediate FRET, slight bending)  B (high FRET, 

greater extent of bending)  U2 (intermediate FRET, slight bending)  D (low FRET, free DNA). Not 

only does the number of states in this pathway correlate with the number of states in the existing model for 
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MutS sliding clamp formation (Figure 3.1), but the kinetics of these states also correlate (Table 3.1). Thus, 

the states identified in each of the smFRET experiments are combined in a unified model for sliding clamp 

formation by Taq MutS (Figure 3.10D). 

Table 3.1: Kinetic parameters from the smFRET experiments. 

Donor 

Location 

Acceptor 

Location 

Free DNA 

(D) 

State 1  

(U1) 

State 2  

(B) 

State 3  

(U2) 

Sliding 

Clamp (D) 

MutS MutS - 4.7 sec (total) 1.3 sec 2.4 sec 

MutS DNA - 2.2 sec & 0.9 sec 1.8 sec 2.2 sec 

DNA DNA - 3.3 sec 2.3 sec 1.3 sec - 

 

Model of sliding clamp formation 

Single-molecule FRET is a powerful tool to resolve asynchronous dynamic changes in complicated 

samples at steady-state conditions. The sequence of FRET states observed during error recognition and 

sliding clamp formation by Taq MutS, both in this work and previous single-molecule FRET studies, 

allowed us to develop the following model for the MutS:DNA complexes during mismatch repair initiation 

(Figure 3.10D): 

Based on the intrinsic ATPase activity MutS and the physiologically high concentrations of ADP 

and ATP, free MutS that is not bound to a mismatch most likely exists in an ADP:ADP or ATP:ADP 

liganded state. In either case, the MutS-to-MutS FRET experiments suggest that these MutS molecules will 

exist in a conformational equilibrium between an “open” and “closed” state (Figure 3.11D, i). The “open” 

state may facilitate loading onto the DNA, while the “closed” state may stabilize the MutS:DNA interaction. 

ATP:ATP liganded MutS molecules, if they exist, are expected to exist exclusively in a “closed” 

conformation, and are therefore not expected to bind DNA.  

Upon encountering the error (Figure 3.8E, ii), MutS adopts a “closed” conformation and the DNA 

is bent slightly, in an initial recognition complex. The fate of this state now depends on the nucleotide 

ligation status of the involved MutS. The ADP:ADP liganded molecules would directly dissociate from the 

mismatch, as would the majority of the ATP:ADP molecules. A subset of the ATP:ADP molecules, 
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however, will successfully transition to the penultimate recognition state (Figure 3.8E, iii). In this state, the 

DNA is significantly bent, but conformations of the DNA binding domains of MutS change very little. 

Based on the kinetics of the transition from the initial recognition state to the penultimate recognition state 

could be the result of ADP release followed by rapid ATP binding. Thus, the penultimate recognition state 

is likely ATP:ATP liganded, which could serve to stabilize the MutS-DNA interactions by locking MutS 

into a “closed” conformation.  

Next MutS transitions to the ultimate recognition complex (Figure 3.8E, iv) via two major 

conformational changes: 1) the DNA binding domains of MutS “partially open”, and 2) the DNA unbends 

slightly. This transition to the ultimate recognition state includes the hallmark “bent-to-unbent” change in 

the DNA conformation that has been observed in several studies (Derocco et al., 2014; Sass et al., 2010; 

Wang et al., 2003). Notably, this change in DNA bending is predictive for repair efficiency (Derocco et al., 

2014; Tessmer et al., 2008). The nucleotide ligation status of MutS in the ultimate recognition complex is 

unclear, as ATP hydrolysis may occur in one (or both) ATPase sites. In the final transition, MutS becomes 

a sliding clamp (Figure 3.8E, v). In the sliding clamp state, the DNA binding domains are fully “open”, and 

MutS is free to move away from the mismatch. Though it is unclear whether MutS sliding clamps bend 

DNA, the DNA near the mismatch that is left behind by MutS returns to its original straight conformation. 

Biological Significance 

Using smFRET, we identified a preferred pathway of Taq MutS-induced DNA bending state in the 

presence of ATP. These results have refined our understanding of MMR initiation by Taq MutS by 

providing evidence of dynamic changes in DNA bending during sliding clamp formation. Interestingly, the 

“bent-to-unbent” transition that is known to correlate with repair efficiency (observed in previous studies 

in the absence of nucleotide) was identified here (Figure 3.10D, B to U2) as part of the conformational 

changes expected during sliding clamp formation. Thus, the conformational dynamics observed in the 

absence of ATP seems to be predictive of those observed with ATP.  



59 

 

Materials and Methods 

Protein and DNA substrates 

C42A/M88C Taq MutS was provided graciously provided by Dr. Keith Weninger. The following 

fluorescently labeled DNA oligonucleotides (IDT) were used to prepare the 68 bp T-bulge DNA substrate: 

b-CTC TAG AGG ATC CGC TGA GGC CAG CTG AGG CCT GGC TGA GGA TTG CTG A(T*)G AAT 

TCA CTG GCC GTC G; dig-CGA CGG CCA GTG AAT TCA TCA GCA ATC TCT CAG CCA 

G/iCy5/GC CTC AGC TGG CCT CAG CGG ATC CTC TAG AG. The “b” represents a 5ʹ biotinylation, 

and “dig” represent a 5ʹ digoxigenin modification added to facilitate blocking of the free end. The bold and 

underlined thymine is the single base insertion. TAMRA was linked to the thymine base denoted (T*), and 

an internal Cy5 was incorporated at the position marked /iCy5/. The sequence of this oligonucleotide was 

based on the DNA substrates used in previous studies, with the only change being substituting a thymine 

(T*) into the sequence to allow labeling (Qiu et al., 2012, 2015). The dye separation (19 bp) was selected 

based on previous studies (Derocco et al., 2014; Sass et al., 2010). 

 

Single-molecule FRET experiments 

Quartz slides were plasma cleaned and used to construct home-built flow cells. The slides were 

then pre-functionalized by sequentially incubating the flow cells with 1 mg/ml biotinylated BSA and 0.1 

mg/ml streptavidin. Biotinylated fluorescently-DNA oligonucleotides were then immobilized onto the 

surface of the quartz slide (as depicted in Figure 3.2A). The samples were then imaged using a through-

prism total internal reflection single molecule fluorescence microscope. Donor and acceptor excitation was 

achieved using 532 nm and 638 nm lasers respectively. The fluorophore emission is collected through a 

60X water immersion, 1.2 N.A. objective, and the image is split by a DualView optical splitter with a 645 

nm dichroic mirror. The donor and acceptor signals then pass through optical filters (i.e. a 585/70 bandpass 

filter for TAMRA, and a 655 longpass filter for Cy5) before detection by an emCCD camera. To observe 
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changes in DNA bending over time, movies of approximately 1000 frames are collected using the following 

excitation sequence: 1) Brief excitation of the acceptor dye (~ 1 sec) to locate DNA molecules; 2) Excitation 

of the donor dye (~2 min) to monitor changes in FRET; 3) Brief excitation of the acceptor dye (~5 sec) to 

reveal whether the acceptor has photobleached. All experiments were performed at room temperature in 50 

mM Tris, 100 mM sodium acetate, 5 mM magnesium chloride, 2% glucose (w/v), pH 7.8, in the presence 

of an oxygen scavenging and triplet state quenching system of 100 U/ml glucose oxidase, 1000 U/ml 

catalase, 0.05 mg/ml cyclooctatetraene and 143 mM 2-mercaptoethanol. 

 

Data analysis 

Data analysis was carried out using the approach described in Chapter 2. Only those FRET time 

traces exhibiting changes in FRET were analyzed; traces whose FRET was constant over the entire 

observation window were discarded. Only traces with intensities consistent with one MutS were analyzed. 

FRET traces showing evidence of protein:dye interactions (i.e. changes in fluorescence intensity of either 

the donor or acceptor dye that are not anti-correlated) were also discarded from analysis. 
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CHAPTER 4: PRELIMINARY STUDIES MONITORING DNA BENDING BY MUTS 

 

Introduction 

Mismatch repair is initiated by MutS, which recognizes errors left behind by DNA replication. 

These errors can be base-base mismatches and/or insertion/deletion loop errors (Iyer et al., 2006; Kunkel 

& Erie, 2005). Error recognition by MutS occurs upon formation of specific interactions with the 

mispaired base(s) (Obmolova et al., 2000). Subsequently, MutS undergoes ATP-dependent 

conformational changes to form a mobile “sliding clamp” state and/or to recruit MutL, a downstream 

mismatch repair protein (Qiu et al., 2012, 2015). Recent studies using single-molecule fluorescence 

resonance energy transfer (smFRET) successfully characterized the conformational and kinetic properties 

of MutS during sliding clamp formation and MutL recruitment on a DNA substrate containing a single 

thymine insertion (T-bulge) (Qiu et al., 2015). To assess the stoichiometries of these complexes, 

fluorescently labelled MutS and MutL were incubated with DNA containing an error and then cross-

linked. The resulting complexes were then imaged, and the number of each protein was counted using 

stochastic photobleaching. Ternary MutS:MutL:DNA complexes studied this way were found to be 

widely varied, but they typically consisted of one MutS homodimer and two MutL homodimers (Qiu et 

al., 2015). While the mechanism of error recognition and mismatch repair initiation appears to be 

conserved, repair efficiency varies among the different DNA errors.  

Dynamic DNA bending by MutS is a well-established and well-characterized phenomenon 

(Derocco et al., 2014; Sass et al., 2010). These DNA bending conformational dynamics, particularly a 

transition from “bent” to “unbent” DNA, appear to correlate with repair efficiency for the different types 
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of errors. While the evidence suggests that DNA bending plays a key role in repair, DNA bending states 

adopted by the mismatch repair initiation complex have not been studied in the presence of MutL. In 

addition, differences between the DNA bending dynamics on DNA substrates containing different types of 

DNA errors have not been studied in the presence of ATP. Finally, changes in the DNA bending states 

caused by blocking the free end of the DNA, thereby preventing dissociation of the MutS sliding clamp 

from the end of the DNA, have also gone uncharacterized. 

Here, preliminary studies to address these gaps in our understanding mismatch repair initiation are 

presented. We use smFRET to monitor changes in DNA bending induced by Thermus aquaticus (Taq) 

MutS in the presence of saturating concentration of ADP or ATP on DNA substrates containing a GT 

mismatch. Subsequently, we study DNA bending on end-blocked substrates containing a T-bulge error. 

Finally, we monitored bending of T-bulge DNA in the presence of MutL. The results of these experiments 

are then compared to the results presented in Chapter 3 (T-bulge DNA with free ends and without MutL). 

Key findings of these studies include: 1) MutS bends GT DNA to a wider range of conformations, 

complicating the FRET-TACKLE analysis, 2) the kinetics of the DNA bending events observed on GT 

DNA do not correlate with previous FRET studies, complicating interpretation of these results, 3) MutS 

sliding clamps on end-blocked DNA substrates may return to the site of the mismatch, though these events 

are very rare, and 4) preliminary evidence of an equilibrium between two DNA bending states in the 

presence of MutL exists, though protein:dye interactions complicate their interpretation. 

 

Results and Discussion 

MutS bends GT DNA to a broad range of conformations in the presence of ADP and ATP. 

To study the nucleotide dependence of MutS-induced DNA bending on oligonucleotides containing 

a GT mismatch using smFRET, we designed a 68 bp oligonucleotide that was doubly-labeled with a FRET 

pair of dyes, TAMRA (donor) and Cy5 (acceptor). These dyes were separated by 19 bp flanking GT 
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mismatch error near the midpoint of the oligonucleotide (Figure 4.1A). This oligonucleotide was also 

biotinylated on one end so that it could be immobilized via an interaction with streptavidin-biotinylated 

BSA on the surface of a quartz slide. The cysteine mutant C42A/M88C Thermus aquaticus MutS with wild 

type ATPase and DNA binding activities was used in this study for direct comparison to existing smFRET 

data (Qiu et al., 2012, 2015). 

 

Figure 4.1: In the presence of ADP, GT DNA bound by Taq MutS adopts multiple bent states.  

A) Schematic of a surface immobilized 70mer DNA molecule bound by Taq MutS at the location of the 

GT mismatch (blue arrow). B) Example donor (green) and acceptor (red) intensity time traces and their 

corresponding FRET time traces (magenta) for experiments conducted at 10 nM Taq MutS and 2 mM ADP. 

The black line represents the smoothed signal. The red, cyan, and yellow arrows denote low, intermediate, 

and high FRET states, respectively. C) The distributions of FRET values for the low FRET states (red bars) 

and for DNA in the absence of Taq MutS (black dotted cityscape). D) The distribution of FRET values for 

the high FRET states (cyan bars). E) Transition density plot depicting the frequency of transitions 

converting between the low and high FRET states. F) The distribution of dwell times for the high FRET 

states (cyan bars) fit to a single exponential decay (black line). For multi-step events, the dwell time of the 

full event (asterisked brace) was used. 

 

We first determined the DNA bending properties of Taq MutS in the presence of saturating 

concentrations of ADP. We measured the smFRET efficiency from the donor to the acceptor dyes on either 

side of a T-bulge (Figure 4.1A). The FRET efficiency associated with free DNA was broadly distributed 

near 0.3 (Figure 4.1C, black dotted cityscape). Introduction of 10 nM MutS and 2mM ADP produced donor 

and acceptor time traces (Figure 4.1B, green and red lines, respectively) with anti-correlated dynamics. 

These fluorescence intensity changes resulted in changes in FRET efficiency (Figure 4.1B, magenta lines). 
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Most of these FRET time traces showed transitions between only two states: a low FRET state consistent 

with the free DNA (Figure 4.1B, red arrows) and a high FRET state (Figure 4.1B, cyan arrows). In contrast 

to the T-bulge studies, intermediate FRET states were also observed in the presence of ADP (Figure 4.1B, 

yellow arrow).  The distribution of FRET values for the low FRET states (Figure 4.1C, red bars) was near 

0.3, which is loosely similar to that of the free DNA. However, the distribution of FRET values for the 

intermediate and high FRET states (Figure 4.1D) is very broad and appears to include several distinct FRET 

states. This wide range of FRET states is also visible in the transition density plot (TDP) which depicts the 

distribution of transitions observed by the MutS:GT DNA complexes in the presence of ADP (Figure 4.1E, 

warmer colors represent more frequent transitions). Many states with distinct FRET are observed, and the 

transitions between these states are widely varied, which is similar to previous DNA bending studies in the 

absence of nucleotide (Sass et al., 2010). 

 

Figure 4.2: In the presence of ATP, GT DNA bound by Taq MutS also adopts multiple bent states. 

A) Example donor (green) and acceptor (red) intensity time traces and their corresponding FRET time 

traces (magenta) for experiments conducted at 10 nM Taq MutS and 2 mM ATP. The black line represents 

the smoothed signal. The red arrows denote the low FRET states, and the cyan, yellow, and green arrows 

denote different high FRET states. B) The distributions of FRET values for the low FRET states (red bars) 

and for DNA in the absence of Taq MutS (black dotted cityscape). C) The distribution of FRET values for 

the high FRET states (cyan bars). D) Transition density plot depicting the frequency of transitions 

converting between the low and high FRET states. E) The distribution of dwell times for the high FRET 

states (cyan bars) fit to a single exponential decay (black line). For multi-step events, the dwell time of the 

full event (asterisked brace) was used. 
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In the presence of 10 nM MutS and 2 mM ATP, donor and acceptor time traces with anti-correlated 

transitions were again observed (Figure 4.2A, green and red lines, respectively). The resulting FRET time 

traces (Figure 4.2A, magenta lines) revealed two classes of transitions. Most traces showed traces from a 

low FRET (Figure 4.2A, red arrows) state to a higher FRET state (Figure 4.2A, cyan arrows), while a few 

rare bending events transitioned through multiple states of relatively high FRET (Figure 4.2A, cyan, yellow, 

and green arrows). The distribution of low FRET states (Figure 4.2B, red bars) was consistent with the free 

DNA distribution (Figure 4.2B, black dotted cityscape). The high FRET state states were broadly 

distributed across higher FRET values (Figure 4.2C), though a bending state with a FRET of ~0.4 appears 

to dominate. Analysis of the TDP in the presence of ATP reveals an increase in transitions between many 

distinct FRET states relative to those observed with ADP. This increase in dynamics upon introduction of 

ATP could be caused by the ATP-dependent conformational changes previously observed in MutS on DNA 

containing a mismatch (Qiu et al., 2012, 2015). 

Kinetic analysis of the observed increases in FRET yields lifetimes that are significantly shorter 

than those seen in MutS DNA studies monitoring sliding clamp formation. Here, overall time the DNA is 

bent in the presence of ADP (Figure 4.1F) or ATP (Figure 4.2E) was fit to a single exponential decay, 

resulting in characteristic lifetimes of 1.6 ± 0.3 sec and 1.0 ± 0.2 sec, respectively. These results are in stark 

contrast to those observed in previous single-molecule FRET studies, which found that MutS was bound to 

GT mismatch DNA with lifetimes on the order of 30-60 seconds (Qiu et al., 2012, 2015; Sass et al., 2010). 

This discrepancy makes interpretation of the observed changes in FRET on GT DNA difficult.  

Three models may be able to unify these seemingly conflicting results: 1) Upon recognizing the 

mismatch, MutS bends the DNA for approximately one second before transitioning to an unbent state. This 

unbent state then persists for tens of seconds; 2) MutS initially binds a GT mismatch in an unbent state and 

then transiently bends the DNA for about one second before returning to an unbent state. In total, these 

transitions would take around 30-60 seconds. This model is unlikely given that MutS is expected to bend 

DNA substrates upon mismatch recognition; or 3) MutS binds GT mismatch DNA in an unbent state and 
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persists this way for 30-60 seconds. Then, just before forming the sliding clamp, MutS bends the DNA for 

about one second before sliding away. To clarify which of these models is most likely, three color FRET 

experiments using tagged MutS could be done, just as has been done previously with yeast MutSα 

(DeRocco, Anderson, Piehler, Erie, & Weninger, 2010). Using this approach, the DNA bending event could 

be placed within the MutS binding event. 

 

MutS sliding clamps may return to the T-bulge on end-blocked DNA. 

To study MutS-induced DNA bending on end-blocked oligonucleotides containing a T-bulge using 

smFRET, we used the 68 bp oligonucleotide described in Chapter 2. Anti-digoxigenin antibodies (20 µg/ml, 

incubated for 10 min) were used to block the ends, thereby prevent MutS sliding clamps from dissociated 

directly from the free end of the DNA (Figure 4.3A). This oligonucleotide was also biotinylated on one end 

so that it could be immobilized via an interaction with streptavidin-biotinylated BSA on the surface of a 

quartz slide. The cysteine mutant C42A/M88C Thermus aquaticus MutS with wild type ATPase and DNA 

binding activities was used in this study for direct comparison to existing smFRET data (Qiu et al., 2012, 

2015). 

MutS-induced DNA bending of end-blocked T-bulge oligonucleotides was monitored in the 

presence of 10 nM MutS and 2 mM ATP. At these concentrations of MutS and ATP, approximately 20-

30% of the DNA bending events were observed to form sliding clamps in previous studies (Chapter 3, Qiu 

et al., 2012). Analysis of hundreds of traces revealed that, generally, the donor and acceptor intensity time 

traces exhibited non-correlated transitions, likely due to protein:dye interaction. These events could be due 

to loading of multiple MutS sliding clamps onto the DNA, as has been observed previously (Qiu et al., 

2015). In a handful of traces (< 1%), the data were of sufficient quality to see the following pattern of 

events: a low FRET state (Figure 4.3B, red arrows)  a multi-state, higher FRET event (Figure 4.3B, cyan 

arrows)  a second low FRET state  a single-state, high FRET event (Figure 4.3B, gold arrows)  a 
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low FRET state. These states can be interpreted as follows: free DNA being bound by MutS (red arrow to 

cyan arrow)  the MutS:DNA complex undergoing conformational changes typical of sliding clamp 

formation (cyan to cyan arrows)  MutS sliding away from the T-bulge (cyan arrows to red arrow)  

MutS sliding back to the T-bulge (red arrow to yellow arrow)  MutS dissociating or sliding away from 

the T-bulge site. Alternatively, the second event may be interpreted as loading of a second MutS at the T-

bulge site. Extensive analysis of these traces would require collecting larger amounts of data in hopes of 

observing more of these rare events. In addition, the three-color experiment using tagged MutS could allow 

us to ascertain if multiple MutS loading events were taking place. 

 

Figure 4.3: On end-blocked T-bulge DNA, Taq MutS may return to the error.  

A) Schematic of a surface immobilized 70mer DNA molecule bound by Taq MutS at the location of the T-

bulge (blue arrow). Note the free end of the DNA is blocked by an anti-digoxigenin antibody (magenta). 

B) Example donor (green) and acceptor (red) intensity time traces and their corresponding FRET time traces 

(magenta) for experiments conducted at 10 nM Taq MutS and 2 mM ATP. The black line represents the 

smoothed signal. The red, cyan, and yellow arrows denote the low FRET state, a multi-FRET state, and a 

subsequent bending event, respectively. 

 

MutS:MutL complexes may adopt a rapid equilibrium between DNA bending states. 

To study MutS:MutL-induced DNA bending on T-bulge using smFRET, we used the 68 bp 

oligonucleotide described in Chapter 2 (Figure 4.4A). This oligonucleotide was also biotinylated on one 

end so that it could be immobilized via an interaction with streptavidin-biotinylated BSA on the surface of 

a quartz slide. The cysteine mutant C42A/M88C Thermus aquaticus MutS with wild type ATPase and DNA 
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binding activities was used in this study for direct comparison to existing smFRET data (Qiu et al., 2012, 

2015). Nickel-affinity chromatography was used to purify N-terminally his-tagged Thermus aquaticus 

MutL that has been used in previous studies (Qiu et al., 2015). 

 

Figure 4.4: DNA bending by Taq MutS may be affected by MutL. 

A) Schematic of a surface immobilized 70mer DNA molecule bound by Taq MutS and MutL at the location 

of the T-bulge (blue arrow). B) Example donor (green) and acceptor (red) intensity time traces and their 

corresponding FRET time traces (magenta) for experiments conducted at 10 nM Taq MutS, 100 nM Taq 

MutL and 2 mM ATP. The black line represents the smoothed signal. The red arrows point to “false-

positive” apparent FRET changes likely due to protein:dye interactions. 

 

DNA bending by the ternary complex of MutS:MutL:T-bulge DNA was studied at 10 nM MutS, 

100 nM MutL, and 2 mM ATP. Previous studies at these concentrations revealed that MutS existed in a 

rapid equilibrium between two states while in a MutS:MutL complex that was trapped at the site of the 

error. Analysis of hundreds of traces revealed that, generally, the donor and acceptor intensity time traces 

exhibited non-correlated transitions, likely due to protein:dye interaction. This observation was not entirely 

unexpected, as the position of the fluorophores are within the expected footprint of a MutS:MutL complex 

formed at the T-bulge. Rarely (>1% of the traces), rapid oscillation between two (or more) FRET states 

was observed (Figure 4.4B). However, these observations suffer from several shortcomings: 1) The changes 

in donor and acceptor fluorescence intensity, and thereby, the changes in FRET efficiency, are very small; 

2) Non-correlated changes in donor and acceptor intensity intermittently occur during these oscillations 

(Figure 4.4B, red arrows), and they often produce changes in FRET of approximately equal magnitude to 
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the identified oscillations; 3) DNA bending dynamics between similar states were observed in the absence 

of MutL (Chapter 3, Figure 3.3A); and 4) The dwell times of the observes states (~1-5 sec) are much longer 

than the MutS conformational states observed previously (typically <2 sec) (Qiu et al., 2015). To effectively 

monitor DNA bending in the presence of MutL, it may be necessary to redesign the DNA substrate to 

reposition the dyes outside of the expected footprint of the MutS:MutL complex. Unfortunately, the exact 

nature of this complex is not well understood. 

 

Conclusion 

The preliminary studies presented in this chapter sought to compare DNA bending by Taq MutS 

on T-bulge DNA with other contexts. While each of these experiments suffer from unique limitations, the 

preliminary results can be compared to those presented in Chapter 3.  

 

GT mismatch DNA vs. T-bulge DNA 

Studies on GT-mismatch DNA reveal that MutS is able to bend GT DNA into many more 

conformations than was observed with T-bulge DNA. These results are in agreement with previous studies 

in the absence of ADP or ATP. (Derocco et al., 2014; Sass et al., 2010) Not only are were DNA bending 

states observed in the GT DNA substrate, but there were also many more transitions between these states. 

Notably, the nucleotide-dependent kinetics of DNA bending observed here did not correlate well with 

previous studies (Qiu et al., 2012, 2015). As a result, development of a model for sliding clamp formation 

on GT DNA substrates that includes DNA bending, as was presented in Chapter 3 for T-bulge substrates, 

is impossible. 
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T-bulge DNA with blocked vs. free ends 

On blocked DNA, FRET traces were identified that could be interpreted as MutS sliding clamps 

moving away from and then returning to the site of the T-bulge error. Similar FRET traces were observed 

on DNA with free ends (i.e. multiple DNA bending events were observed on the same molecule during the 

observation window), but these events were also rare. The rarity of these events makes direct comparison 

between the experiments with blocked and unblocked ends difficult. Further study is needed to see if these 

events are favored on blocked DNA substrates. 

 

DNA bending by MutS vs. MutS:MutL 

The DNA substrates used to study bending by Taq MutS are ill-suited to studying bending by larger 

complexes. This observation is likely due to the dyes being positioned within the protein complex’s 

footprint on the DNA. Still, some FRET traces appeared to show signs of a conformational equilibrium 

between two DNA bending states, which may corroborate a previously identified MutL-induced MutS 

conformational equilibrium (Qiu et al., 2015). Further study, perhaps with a DNA substrate using different 

fluorophore positions, is necessary to further elucidate these events. 

 

Materials and Methods 

Protein and DNA substrates 

C42A/M88C Taq MutS was provided graciously provided by Dr. Keith Weninger. His-tagged 

MutL was purified using nickel affinity chromatography as previously described (Qiu et al., 2015). The 

following fluorescently labeled DNA oligonucleotides (IDT) were used to prepare the 68 bp GT DNA 

substrate: b-CTC TAG AGG ATC CGC TGA GGC CAG CTG AGG CCT GGC TGA GGG ATT GCT 

GA(T*) GAA TTC ACT GGC CGT CG; dig-CGA CGG CCA GTG AAT TCA TCA GCA ATC TCT 
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CAG CCA G/iCy5/GC CTC AGC TGG CCT CAG CGG ATC CTC TAG AG. The following fluorescently 

labeled DNA oligonucleotides (IDT) were used to prepare the 68 bp T-bulge DNA substrate: b-CTC TAG 

AGG ATC CGC TGA GGC CAG CTG AGG CCT GGC TGA GGA TTG CTG A(T*)G AAT TCA CTG 

GCC GTC G; dig-CGA CGG CCA GTG AAT TCA TCA GCA ATC TCT CAG CCA G/iCy5/GC CTC 

AGC TGG CCT CAG CGG ATC CTC TAG AG. The “b” represents a 5ʹ biotinylation, and “dig” represent 

a 5ʹ digoxigenin modification added to facilitate blocking of the free end. The bold and underlined thymine 

is the single base insertion. TAMRA was linked to the thymine base denoted (T*), and an internal Cy5 was 

incorporated at the position marked /iCy5/. The sequence of this oligonucleotide was based on the DNA 

substrates used in previous studies, with the only change being substituting a thymine (T*) into the sequence 

to allow labeling (Qiu et al., 2012, 2015). The dye separation (19 bp) was selected based on previous studies 

(Derocco et al., 2014; Sass et al., 2010). 

 

Single-molecule FRET experiments 

Quartz slides were plasma cleaned and used to construct home-built flow cells. The slides were 

then pre-functionalized by sequentially incubating the flow cells with 1 mg/ml biotinylated BSA and 0.1 

mg/ml streptavidin. Biotinylated fluorescently-DNA oligonucleotides were then immobilized onto the 

surface of the quartz slide (as depicted in Figure 4.1A). The samples were then imaged using a through-

prism total internal reflection single molecule fluorescence microscope. Donor and acceptor excitation was 

achieved using 532 nm and 638 nm lasers respectively. The fluorophore emission is collected through a 

60X water immersion, 1.2 N.A. objective, and the image is split by a DualView optical splitter with a 645 

nm dichroic mirror. The donor and acceptor signals then pass through optical filters (i.e. a 585/70 bandpass 

filter for TAMRA, and a 655 longpass filter for Cy5) before detection by an emCCD camera. To observe 

changes in DNA bending over time, movies of approximately 1000 frames are collected using the following 

excitation sequence: 1) Brief excitation of the acceptor dye (~ 1 sec) to locate DNA molecules; 2) Excitation 

of the donor dye (~2 min) to monitor changes in FRET; 3) Brief excitation of the acceptor dye (~5 sec) to 
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reveal whether the acceptor has photobleached. All experiments were performed at room temperature in 50 

mM Tris, 100 mM sodium acetate, 5 mM magnesium chloride, 2% glucose (w/v), pH 7.8, in the presence 

of an oxygen scavenging and triplet state quenching system of 100 U/ml glucose oxidase, 1000 U/ml 

catalase, 0.05 mg/ml cyclooctatetraene and 143 mM 2-mercaptoethanol. 

 

Data analysis 

Data analysis was carried out using the approach described in Chapter 2. In the GT mismatch 

experiments, only those FRET time traces exhibiting changes in FRET were analyzed; traces whose FRET 

was constant over the entire observation window were discarded. Only traces with intensities consistent 

with one MutS were analyzed. FRET traces showing evidence of protein:dye interactions (i.e. changes in 

fluorescence intensity of either the donor or acceptor dye that are not anti-correlated) were also discarded 

from analysis. For the end-blocked experiments and experiments with MutL, only traces interpretable traces 

were considered. 
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CHAPTER 5: LINKING DNA MISMATCH REPAIR AND PROTEOTOXIC STRESS: AN 

EXPLORATORY STUDY IN SACCHAROMYCES CEREVISIAE 

 

Introduction 

Proteasomes and molecular chaperones work together to maintain cellular proteostasis by either 

degrading incorrectly translated proteins or helping proteins to fold properly. Without these systems, 

erroneously translated proteins can misfold, aggregate, and cause cellular proteotoxic stress. However, the 

ability of the proteostasis machinery to minimize proteotoxic stress is limited to some maximum threshold 

of proteomic errors. Beyond this threshold, cells will no longer maintain proteostasis ultimately leading to 

proteotoxicity and cell death (Leak, 2014; Vermulst et al., 2015). 

Some genes are intrinsically prone to causing proteotoxic stress, and several of these genes are 

linked to human disease. For example, the Huntingtin gene Htt contains a CAG trinucleotide repeat which 

can be erroneously expanded during DNA replication. The codon CAG encodes for the amino acid 

glutamine (Q), so expansion of the CAG repeat leads to incorporation of excess glutamines into the 

polypeptide chain. Depending on the number of additional glutamines, these poly-Q regions can then lead 

misfolding and aggregation of the HTT protein. Notably, 25 glutamines are insufficient to produce 

symptoms, while 105 glutamines will lead to aggregates of HTT. This aggregation will cause proteotoxic 

stress that ultimately will lead to Huntingtin disease (McMurray, 2010). Similarly, the protein TDP-43 

forms protein aggregates associated with Lou Gehrig’s disease (Latouche et al., 2006). Finally, the prion 

RNQ1 is associated with the formation of protein aggregates in yeast (Sondheimer & Lindquist, 2000). 

Errors introduced during DNA replication lower the integrity of the genomic information. 

Fortunately, DNA repair processes such as DNA mismatch repair (MMR) to increase the fidelity of 
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replication such that errors are safely minimized. However, if left unrepaired, genomic errors will ultimately 

be transcribed in to RNA and translated into protein, leading an increase in sporadic proteomic errors 

(Kunkel & Erie, 2005).  

Budding yeast (Saccharomyces cerevisiae) are a common eukaryotic model system to study DNA 

repair due their simplicity and relatively tractable genome. In yeast, DNA MMR is initiated when one of 

two isoforms of a heterodimeric MutS homolog recognizes an error in the DNA. MutSα (a heterodimer of 

Msh2 and Msh6) is responsible for recognizing base-base mismatches, while MutSβ (Msh2-Msh3) 

recognizes small insertion/deletion loop errors. Thus, by knocking out Msh2, MMR is completely removed, 

while knocking out either Msh3 or Msh6 will allow only a subset of DNA errors to go uncorrected. Any of 

these knockouts will have an increased pool in sporadic errors in their proteome relative to WT strains 

(Kunkel & Erie, 2005). 

Using a galactose promoter, we induced expression of four known proteotoxic genes (Htt25Q, 

Htt105Q, TDP-43, and RNQ1) and assessed the survivability of four strains of yeast (wild type (WT), Msh2 

deletion (Msh2Δ), Msh3 deletion (Msh3Δ), and Msh6 deletion (Msh6Δ)). We hypothesized that the MMR 

deficient strains would exhibit decreased viability due to an increase in proteotoxic stress caused by an 

increase in sporadic proteomic errors. Furthermore, we hypothesized that expression of genes that cause 

proteotoxic stress would further exacerbate the proteotoxicity by further increasing the pool or proteomic 

errors to surpass the maximum threshold for the proteostasis machinery, leading to decreased cell viability. 

 

 

 

 

Materials and Methods 
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Yeast Strains and Plasmids 

Wild type (WT), Msh2 deletion (Msh2Δ), Msh3 deletion (Msh3Δ), and Msh6 deletion (Msh6Δ) 

yeast strains missing the URA3 locus were provided by Dr. Mara Duncan. Plasmids containing the URA3 

auxotrophic marker and the Htt25Q, Htt105Q, TDP-43, and RNQ1 genes under an inducible galactose 

promoter were provided by Dr. Marc Vermulst. 

 

Transformations 

Four plasmids containing the genes and one control plasmid with no insert were transformed into 

each of the four yeast strains as follows: A saturated 3 ml culture of each yeast strain was grown overnight 

at 30°C in liquid YAPD media (1% yeast extract (w/v), 2% peptone (w/v), 2% glucose (w/v), 80 ng/ml 

adenine). This culture was used to inoculate a 100 ml culture of YAPD, which was incubated at 30°C until 

the OD600 reached 0.5. The cells were then spun down (3000 rpm for 3 min), and the supernatant was 

discarded. The cells were then washed with sterile water and repelleted, again discarding the supernatant. 

The cells were resuspended in fresh sterile filtered 10 mM Tris-HCl, 1 mM EDTA, and 100 mM lithium 

acetate at pH 7.5. Salmon sperm DNA was prepared at 2 mg/ml and boiled for 5 min. In a 1.5 ml tube, 0.2-

2 µg of plasmid DNA and 30-50 µl of salmon sperm DNA were added and mixed thoroughly. Then, 100 

µl of the yeast cell suspension and 600 µl of fresh sterile filtered 40% PEG 3350, 10 mM Tris-HCl, 1 mM 

EDTA, and 100 mM lithium acetate at pH 7.5 were added to the tube and mixed very vigorously. The 

transformation reaction was then heat shocked for 30 min at 42°C and then spun for ~15 sec to produce a 

cell pellet. The supernatant was discarded, and the cells were resuspended in 10 mM Tris-HCl and 1 mM 

EDTA at pH 7.5. 100 µl of the transformation reaction was then plated onto –URA Simple Complete media 

(6.7 mg/ml nitrogen base without amino acids, 2% glucose, 60 ppm adenine, 300 ppm leucine, 600 ppm 

histidine, 600 ppm methionine, 1200 ppm lysine, 600 ppm tryptophan, 6 ppm threonine, 3 ppm isoleucine, 
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3 ppm valine, and 3 ppm phenylalanine) to select for successful transformants. These plates were incubated 

at 30°C until transformants appeared, typically 3-4 days. 

 

Culture Normalization and Dilution Plates 

Successful transformants for each genotype:plasmid pair (N = 20) were cultured in triplicate 

overnight at 30°C in –URA Simple Complete minimal media containing 2% raffinose instead of glucose as 

the food source. All of these cultures were normalized by diluting an appropriate amount (usually 50-100 

µl) of the culture in 1 ml of –URA Simple Complete media to the same OD600 +/- 0.01. Each of these 

normalized cultures (N = 60) were used as a stock solution (dubbed 1:1) for four serial dilutions (1:4, 1:16, 

1:64, and 1:256). 7 µl of each of these dilutions (N = 180) was plated in duplicate on –URA Simple 

Complete media containing either 2% glucose (control) or 2% galactose (to induce expression of the gene 

on the plasmid). These plates were incubated at 30°C, and growth was monitored at 2, 3, and 4 days after 

the initial plating. The greatest differences in cell growth were observed on Day 3. This procedure was 

repeated three times with fresh transformants (Vermulst et al., 2015). 

 

Results and Discussion 

Representative images of the WT and Msh2Δ yeast strains grown on –URA plates are shown in 

Figure 5.1. As can be seen in the right column of Figure 5.1, S. cerevisiae cells are able to survive even in 

the absence of functional MMR (Msh2Δ). Upon galactose-induced expression of the proteotoxic genes 

Htt25Q, TDP-43, and RNQ1, notable differences in survivability between the WT and Msh2Δ yeast strains 

appear as shown in the left column of Figure 5.1. Galactose-induced expression of Htt105Q is lethal to both 

WT and Msh2Δ yeast, though WT yeast grew very slightly at the highest concentration of cells. While the 

vector only control does show differences between the WT and Msh2Δ strains in the presence of galactose, 

these differences are slight and not as significant as the differences observed in the experimental strains. 
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Figure 5.1: Msh2Δ strains are more sensitive than WT strains to proteotoxic stress.  

Marked differences in survivability between WT and Msh2Δ yeast strains are observed upon galactose-

induced expression of the Htt25Q, RNQ1, and TDP-43 genes. The Htt105Q gene is lethal in both WT and 

Msh2Δ strains. No significant differences in survivability are observed in the presence of glucose (no gene 

expression). 

 

Deletion of Msh2 completely knocks out mismatch repair, while deletion of either Msh3 or Msh6 

knocks out repair of either insertion/deletion errors or base-base mismatches, respectively. To test if specific 

types of errors could be linked to proteotoxicity, the experiments were repeated in Msh3Δ and Msh6Δ 

strains. Representative images of these strains grown on –URA plates are shown in Figure 5.2. Again, no 

noticeable differences in survivability are apparent in between the different knock out strains on –URA 

media with glucose. Galactose-induced expression of either Htt25Q or TDP-43 caused decreased 

survivability in the Msh2Δ, Msh3Δ, and Msh6Δ strains relative to the WT strain. Again, Htt105Q 

expression was lethal to all of the strains, most notably the Msh2Δ strain. Interestingly, upon expression of 

RNQ1, the survivability of Msh3Δ and Msh6Δ strains was decreased to relative to WT strains. However, 

this decrease was not as severe as the decrease noticed in the Msh2Δ strain. As expected, the vector only 

control show little to no effect on survivability. 
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Figure 5.2: Msh3Δ and Msh6Δ strains display intermediate susceptibility to proteotoxic stress. 

Marked differences in survivability between WT and Msh2Δ yeast strains are still observed upon galactose-

induced expression of the Htt25Q and TDP genes; however, these differences are not apparent between the 

WT compared to the Msh3Δ and the Msh6Δ yeast strains. Upon expression of RNQ1, the survivability of 

the Msh3Δ and Msh6Δ strains are intermediate relative to the WT and Msh2Δ strains. The Htt105Q gene 

is lethal to all strains. No significant differences in survivability are observed in the presence of glucose (no 

gene expression). 
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Taken together, these data support the hypothesis that increased genomic errors resulting from 

deficiencies in mismatch repair can exacerbate proteotoxic stress leading to decreased survivability in yeast. 

These effects are clearly demonstrated in the strains expressing Htt25Q and TDP-43 genes. Interestingly, 

in strains expressing RNQ1, there was a noticeable decrease in the survivability of the Msh2Δ strain relative 

to the Msh3Δ or Msh6Δ strains. This effect is expected, as deletion of Msh2 would knock out repair of all 

errors rather than one subset of errors, thereby producing a large pool of sporadic proteomic errors. This 

effect was not observed in any other experimental condition perhaps as a result of the relative crude 

sensitivity of this assay. Another expected observation was the more dramatic effect of Htt105Q relative to 

Htt25Q. The increased length of the poly-Q repeat is expected to lead to more misfolded and aggregated 

proteins, and therefore, decreased cell survival. 

While these data do demonstrate that MMR deficient yeast expressing proteotoxic genes will have 

decreased survivability, they do not clearly demonstrate the mechanism behind this observation. We 

presume that the observed effects are the results of an increased pool of genomic errors that results in an 

increase pool of proteomic errors. We posit that the cells cannot survive this assault to their proteostasis 

and therefore die due to proteotoxicity. More experiments are necessary to demonstrate that proposed 

mechanism is true. For example, similar experiments should be done to test the survivability of yeast strains 

with both MMR proteins and chaperone proteins knocked out. These studies could provide more insight 

into the relationship between DNA repair and proteotoxicity. 
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APPENDIX A: USING THE TWO-COLOR TIRF MICROSCOPE 

1) Turning the Scope On: 

a. Ensure that the appropriate emission filters are in place in the DualView splitter. 

b. Flip on the necessary lasers and the shutter control box using the switches (pink arrows 

below) and keys (blue arrows below). If you do not plan to use a specific laser, do not 

turn it on. 

c. Be sure the shutter to the camera is closed, and then turn on the camera (gold arrow 

below). Give the camera 20 minutes to warm up before collecting data. 

 

Figure A.1 Power-up Switches.  

Lasers are turned on with switches (pink arrows) and keys (blue arrows). The camera is turned on with a 

switch (yellow arrow). 

 

d. Start the “DualView” computer, and open the program named WFI.exe and the “data” 

folder. (Note: There are shortcuts on the desktop for both.) Be sure the “data” folder is 

empty, as WFI.exe will write over any files already in the folder. 

e. Ensure that the computer has the capacity to store the amount of data you anticipate 

collecting. Movies around 1000 frames will take about half a gigabyte of storage space. 

* This guide will describe aspects of WFI.exe useful in typical smFRET experiment. For more details on 

operation of WFI.exe, contact Dr. Keith Weninger, the program’s author, at keith_weninger@ncsu.edu. * 

mailto:keith_weninger@ncsu.edu
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2) Mounting a Slide (see the diagram on the next page): 

* This description assumes that the objective you will use is the 60x UPlanApo water immersion objective 

(typical for a smFRET experiment). Be sure the desired objective is in the light path. If using a different 

objective (e.g., an oil immersion objective), be sure to use the appropriate immersive fluid. * 

a. Lower the objective using the coarse adjustment knob to prevent the slide from hitting the 

objective lens. (Spin it clockwise.) 

b. Pipet 30-70 µL of ddH2O onto the objective. The resulting bead of water should be large 

enough such that it makes contact with the coverslip of the slide placed on top but 

sufficiently small so that it does not run off of the objective lens.  

c. With a KimWipe, clean and dry the quartz slide loaded with your sample in the 

appropriate imaging buffer. Mount the slide coverslip down onto the stage. Secure it 

using tape or stage clips. 

d. Move the stage so that the objective is directly below where you would like to image. 

Place a 30-70 µL drop of immersion oil (Type FF) on the slide above where you would 

like to image. Be sure none of the oil gets into the optics below the slide. 

e. Pick up the prism mount by the gold portion. Only one set screw secures the gold piece 

to the silver piece – holding the mount by the silver piece risks dropping the quartz 

prism! Place the mount above the slide into the grooves. The prism should sit gently on 

the slide in the oil.  
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Figure A.2: Mounting a slide. 

A) Microscope stage. B) Water added to objective. C) Slide mounted. D) Oil added to slide. E) Prism 

placed. F) Set screw adjusted. 

 

* Note that the prism must be resettled each time a slide is mounted. This act is necessary because slight 

differences in slide thickness may cause the prism to sit too low (bowing the slide, which risks cracking 

the slide, prism, and/or objective) or too high (creating a gap between the prism and the slide, which 

disrupts the TIRF spot). Moving the prism changes the location of the TIRF spot such that it may not be 

directly above the objective (as shown to the right).  Resettling the prism is very challenging for new 

users and requires practice! It is so challenging that when you cannot find a TIRF spot, you should 

assume that this step is what has gone wrong and resettle the prism. * 
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f. Partially screw the silver prism mount into place lining up the “X”s, but do not fully 

tighten the screws. Without allowing the gold prism mount to move left and right, 

loosen the set screw (pink arrow) with an Allen wrench. Allow the gold prism mount to 

settle, and retighten the set screw. Then hand-tighten the silver prism mount screws while 

ensuring the “X”s are aligned. 

3) Focusing on a TIRF Spot: 

a. Turn off the lights, and open a laser shutter using a switch on the shutter control box.  

* Using the red laser to find the TIRF spot is usually best, as it has lower energy and will bleach less of 

the molecules while focusing. However, you can use the green lasers, if desired (e.g. for bead images). * 

b. Look into the eyepieces. STOP LOOKING if the laser light is very bright! Don’t ruin 

your eyes! Adjust the eyepieces as needed to fit the spacing between your eyes and to 

compensate for differences in your eye’s vision. The light may be very bright because: 

i. The slide may be positioned such that the laser is hitting tape or an air bubble, 

which causes a great deal of scatter. Move the stage slightly to look at a different 

spot. 

ii. The prism may be positioned incorrectly such that the TIRF spot is not aligned 

properly within the field of view. Resettle the prism by adjusting the gold mount 

slightly to the left or right until there is no scatter throughout the prism.  

* Note that when properly aligned, the laser should travel through the prism, reflect off of the slide, travel 

through the prism again, and then exit cleanly out the other side (Figure A.3, A). There should be little 

scattered light in the prism itself. If there is significant scatter (Figure A.3, B), consider slightly moving 

the prism to the left or right until the prism clears. * 
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Figure A.3: Prism placement.  

A) Proper prism placement will produce a relatively clear prism. B) Improper prism placement creates 

scatter. 

 

c. Using the fine adjustment knob, slowly raise the objective closer to the slide. (Spin it 

counterclockwise.)  

* YOU MAY DAMAGE THE SCOPE by ramming the objective into the slide. With the prism locked in 

place on the opposite side, this mistake can permanently crack the expensive objective lens! Be very 

careful! * 

NEVER USE THE COARSE ADJUSTMENT KNOB TO FOCUS ON THE TIRF SPOT! 

d. Continue focusing on the TIRF spot. STOP ADJUSTING the focus if: 

iii. The spots of light visible through the eyepieces stop moving. You have hit the 

slide with the objective! Lower the objective with the fine adjustment knob 

(spin it clockwise). 

iv. The entire field of view is dark. Either the laser is too dim or the TIRF spot may 

be misaligned. First, try turning up the laser power; if you can see laser light, 
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continue focusing. If not, try resettling the prism by adjusting the gold mount 

slightly to the left or right. Then, refocus on the TIRF spot. 

IF YOU AREN’T SURE, STOP AND ASK! 

* If you cannot find the TIRF spot after repeated tries, consider resettling the prism, moving it slightly to 

the left or right. If this still does not work, consider realigning the focusing lens. * 

4) Aligning the TIRF Spots of Both Lasers: 

a. If properly aligned, the laser should travel through the center of the focusing lens to 

create a TIRF spot in the center of the view through the eyepieces. 

 

Figure A.4: TIRF spot.  

With a good TIRF spot, scratches on the slide surface will be clearly visible and focus to a sharp image. 
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b. If the first laser’s TIRF spot is off center, i.e. the most intense portion of the spot is not 

centered within the field of view, use the lens micrometers to move the spot (according to 

the instructions below and the diagrams on the next page). 

* Note that the micrometers are calibrated. Before moving the micrometers, record their original 

position. That way, you can reset the scope to its previous settings if you need to start over. * 

i. Use the front micrometer to move the TIRF spot in the eyepieces up and down. 

ii. Use the upper micrometer and/or the left micrometer to move the TIRF spot in 

the eyepieces left and right. 

c. Once the first TIRF spot is focused and centered, look away from the eyepieces. 

* Note that having a clean TIRF spot from one laser does not mean that the TIRF spot from the other will 

be clean. There may be a lot of intense scattered light when turning on the second laser, so look away! * 

d. Open the other laser shutter. Carefully look at the two spots to see if they are in the center 

of the field of view and overlap each other. STOP LOOKING if the laser light is very 

bright! Don’t ruin your eyes! (Depending on the intensities of the lasers, you may need to 

turn the individual lasers off and on to see each spot.) If the two spots are: 

i. Centered and overlapping – continue with your experiment. 

* Note that differently sized spots are still usable so long as the spots are centered and overlapping as 

much as possible. Molecules in the area where the spots overlap will be excited by both lasers. * 

ii. Overlapping but not centered – use the micrometers to center both spots. 

iii. Not overlapping – start by centering the green/teal TIRF spot with the 

micrometers. Then, move the red spot to the green/teal spot using the alignment 

knobs on the “over” mirror nearest to the scope.  
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Figure A.5: Adjusting the TIRF spot.  

A) Adjusting the TIRF spot up and down in the field of view. B) Adjusting the TIRF spot left and right in 

the field of view. 
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* It is possible that only one TIRF spot will be visible through the eyepieces, even with both laser shutters 

open, which most likely means that the lasers are misaligned. Using the micrometers, you can search for 

the second spot. If you find it, use the strategy described in iii. above to get the two spots to overlap. If 

you cannot find the second spot, consider resettling the prism OR realigning the whole table. * 

 

Figure A.6: Aligning the red and green TIRF spots. 

Ideally, the spots will be centered and overlapping and the same size (i.) though different sizes are okay as 

well. (*** i.) Not centered (ii.) and not overlapping (iii.) is unacceptable. 
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5) Directing the Image to the Camera: 

a. Turn off the lights. In WFI.exe, hit the FOCUS button to reveal the real-time image. 

* YOU MAY DAMAGE THE SCOPE by exposing the camera’s detectors to the overhead lights, which 

are designed to detect a very small amount of photons, and exposure to high intensity light can blow the 

detectors. Be sure that the lights are turned off before opening the shutter to the camera. * 

NEVER EXPOSE THE CAMERA TO INTENSE LIGHT! 

b. Open the shutter to the camera. If most of the field of view is white or orange, close the 

shutter! You are exposing the camera to too much light! Move to a new slide position. 

WHEN IN DOUBT, CLOSE THE SHUTTER AND ASK! 

c. With the appropriate laser(s) on, check to see if you can see fluorescence emissions from 

the individual molecules. If not, adjust the fine focus to sharpen the image.  

* Typically, the objective will need to be in a slightly different position to focus the image for your eyes 

versus the camera. Thus, a focused TIRF spot through the eyepieces may be appear out of focus when 

viewed by the camera. This difference is especially apparent if you have poor vision. * 

d. Ensure the TIRF spots are positioned properly as viewed by the camera. Be sure the 

spot(s) are: 

i. Centered – if not, move them with the micrometers (as shown on the next page) 

until most of the spots in the camera’s field of view are excited. 

ii. Even – if not, use the top and left micrometers together to spread the spots (as 

described on the next page) until most of the spots in the camera’s field of view 

are approximately the same intensity. Alternatively, consider introducing the 

diffuser if you’d like to spread only the green spot. 
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Figure A.7: Adjusting the TIRF spot for the camera.  

A) Adjusting the TIRF spot up and down in the field of view moves the spot left and right for the camera. 

B) Adjusting the TIRF spot left and right in the field of view moves the spot up and down for the camera. 

 

Figure A.8: Widening the TIRF spot for the camera. 

Adjusting the TIRF spot up slightly out of the plane of focus will result a in a wider spot with more even 

excitation. 
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iii. Bright – if not, increase the laser power using the power supply or by adjusting 

the polarizer. Also, consider tightening the TIRF spot with the micrometers. 

* After making all of these adjustments in one position on the slide, you may have bleached many or all of 

the molecules in that region. Consider moving to a new position before collecting data. * 

e. In WFI.exe, if the background intensity makes identifying individual molecules difficult, 

try adjusting the Floor ADU (default value: 3900). Hit the STOP button, change the Floor 

ADU (in steps of 100 or so), and then hit the FOCUS button. Repeat until the background 

appears acceptably dark relative to the individual molecules. 

6) Collecting Data: 

a. Flip the switches on the shutter control box to the off position (down). The laser shutters 

can be controlled in WFI.exe using the J, K, and L keys for the red, green, and teal lasers, 

respectively.  

b. To start and stop collecting data in WFI.exe, use the spacebar. 

* A common mistake of first time WFI.exe users is to hit spacebar to stop the movie while WFI.exe is not 

the active window. This mistake will not stop the movie, and WFI.exe will continue collecting data until it 

is stops or crashes! If the program does not stop collecting data, be sure it is the active window! * 

c. To collect a snapshot (e.g. for bead movies): 

i. Open the shutter(s) for the appropriate laser(s). 

ii. Ensure the molecules are in focus. 

iii. Hit the spacebar twice in rapid succession (once to start, once to stop). 

d. To collect a movie with constant excitation: 

i. Open the shutter(s) for the appropriate laser(s). 

ii. Ensure the molecules are in focus. 

iii. Hit the spacebar to start the movie. 
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iv. After adequate time has elapsed, hit the spacebar to stop the movie. 

e. To collect a FRET movie (0-15 frames, red; 15-1000 frames, green; 1000-X frames, red): 

i. Be sure the Red Green Alt Mode box is checked. If it is not, hit the STOP button, 

check the box, and then hit the FOCUS button. 

ii. Open the shutter(s) for the appropriate laser(s). 

iii. Ensure the molecules are in focus. 

iv. Leave only the red laser open (J). 

v. Hit the spacebar to start the movie. 

vi. The shutters will open and close automatically as programmed. 

vii. After around 1020 frames, hit the spacebar to stop the movie. 

* The extra 20 frames after 1000 (with the red laser on) are important for the background determination 

in the data analysis. Do not stop the movies after only 1000 frames! Also, do not let the movies run 

forever, as they will become very large data files (1000 frames is around half a gigabyte already!). * 

f. If you would like to adjust other parameters in the data collection, such as frame rates or 

the time at which the shutters automatically switch open and closed, contact Dr. Keith 

Weninger, the program’s author, at Keith_weninger@ncsu.edu. 

7) Shutting Down the Microscope: 

a. Close the shutter to the camera. 

b. With all of the laser shutters closed, remove the prism mount and place it in its tray next 

to the microscope. Return the screws to their original place on the scope.  

c. Remove your slide and cover the objective with a swatch of lens paper to avoid 

accumulation of dust on the objective. 

d. Turn off the lasers, the camera, and the shutter control box using the switches and keys. 

e. Close WFI.exe by hitting STOP and QUIT. 

f. Cut and paste your data out of the data folder and into your own folder. 

mailto:Keith_weninger@ncsu.edu
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* It is important to ‘cut and paste’ (not ‘copy and paste’ or ‘drag and drop’) your data, as ‘cut and paste’ 

is a significantly faster way to transfer large amounts of data. * 

g. As soon as possible, transfer your data from the “DualView” computer to a hard drive. 

h. Check how much storage space remains on the “DualView” computer. If the computer is 

nearly at capacity, inform whoever is in charge of transferring the data to mass storage 

via killdevil. Transferring the data will open up space for the next user to collect data! 
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APPENDIX B: BUILDING AND ALIGNING A TIRF EXCITATION LASER PATH 

1) Light Path Components: 

a. Lasers – Photodiode lasers at the desired wavelengths are used for excitation. Exciting at 

only one wavelength limits nonspecific background excitation. Other properties of the 

lasers include: 

i. Beam Diameter: 1 mm 

ii. Operation mode: Continuous wave (i.e. light is continuously emitted rather than 

pulsed) 

iii. Power: 100-300 mWatts 

b. Prism-Type TIRF – Total internal reflection occurs at the quartz:water interface of the 

slide because the refractive index of quartz is greater than that of water. This reflection 

creates an evanescent wave that penetrates only a few hundred nanometers into the 

sample. In this way, only molecules close to the slide are excited.  

* The quartz prism, immersion oil, and quartz slide have the same refractive index; thus, minimal scatter, 

reflection, or refraction should occur as light travels through the interfaces between these materials. The 

prism is required to allow the beam to escape; without the prism, the beam would internally reflect 

through the slide. * 

To excite the same region of a slide at multiple wavelengths, overlapping TIRF spots 

must be made from multiple lasers. To detect fluorescent emissions from this region, the 

overlapping TIRF spots must be positioned above the objective.  

* Note that while this result can be achieved by directing the lasers to the spot via independent paths, best 

practice suggests aligning the lasers so that they travel the same light path to the path. This approach 

ensures that the TIRF spots will overlap and allows for simpler simultaneous realignment of all of the 

TIRF spots. * 
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c. Mirrors – Dielectric mirrors are be used to reflect the beam, as they scatter less light than 

regular mirrors, reducing losses in intensity. 

* When directing the laser beam to the TIRF spot, use as few optics in the light path as possible. Each 

component is imperfect and will scatter/reflect some light; the incremental losses will add up! * 

d. Lenses – When installing lenses, be sure the focal length is appropriate for the desired 

focusing and/or spreading. Notably, the lenses used to focus the TIRF spot should not be 

exchanged or mixed in with the other lenses, as they have been specifically chosen for 

their purpose. 

e. Dichroic Mirrors – Dichroic mirrors have a critical wavelength (λcrit). Light having a 

wavelength λ < λcrit will be reflected and light having a wavelength λ > λcrit will be 

transmitted. Using these properties, multiple laser beams can be brought into alignment 

on the same light path. 

f. Half-Wave Plates and Polarizing Beamsplitting Cubes – Together, these components use 

polarization to control the beam intensity. A half-wave plate is made of a birefringent 

crystalline material, which allows it to change the polarization angle of an incident beam 

of polarized light (e.g. the laser beam). A polarizing beamsplitting cube splits an incident 

beam into the horizontal and vertical components. The horizontal component is 

transmitted through the cube, while the vertical component is reflected. 

* Note that half-wave plates and polarizing beamslitting cubes are made for specific wavelengths! * 

Used together, the intensity of an output beam can be controlled by rotating the half-wave 

plate, which changes the polarization angle of the light entering the polarizing 

beamsplitting cube. Since the magnitudes of the horizontal and vertical components of 

the polarized light depend on this angle, the intensity of the light transmitted through the 

cube is changed. 
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* Note that this approach produces a stray beam (the beam reflected by the cube). Be sure to install a 

beam blocker to stop the stray beam and prevent potential injuries. * 

g. Diffuser - Since laser light is coherent (i.e. in phase), TIRF spots sometimes exhibit 

diffraction patterns, leading to uneven excitation of molecules within the TIRF spot. 

Introducing a spinning diffuser disc with pinholes into the beam path will render the 

beam incoherent (i.e. out of phase) due to the light periodically traveling through a 

medium with a different refractive index. The resulting TIRF spot will be more diffuse, 

even, and spread. Lenses are used to focus the beam through the pinholes. 

2) Assembling and Aligning the Light Path 

a. Secure the laser platforms in the desired positions on the table. Secure the lasers in place 

on the platforms pointing in the desired direction. Tape out the laser’s outline onto the 

platform in case the laser is ever moved and needs to be replaced in the same position.  

* It is best to orient the laser such that the beam will run parallel to the edge of the table. Use the screw 

holes in the breadboard as a guide to ensure that the laser is properly oriented. * 

b. Attach the lasers to their power supplies and plug in the power supplies. If possible, put 

the power supplies on the table within easy reach of the microscope for ease of use. 

* Cord management will quickly become an issue on the table top. Keep the cords organized as you go! 

Do not save untangling the cords until after the light path is assembled, as it will be very easy to knock 

the components out of alignment by struggling with the tangled cords. * 

c. Put on the laser safety goggles. This safety gear is especially important during 

construction and alignment, as you do not know where the laser beams will be headed. 

Protect your eyes! 
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* Always be aware of where the laser beam(s) are pointed. If you are working as a team, be sure to point 

out the beam to each other and tell each other as you add new optical components. Be sure you do not 

direct the laser toward anyone’s face. Always know where the laser is and think about where it’ll be! * 

d. When it is safe, turn on the lowest energy laser (longest wavelength) at a very low power 

using the power supply. You only need enough power to just see the laser, no more. 

* Be very careful when installing “up” mirrors. These mirrors direct the laser toward eye level! * 

e. Even on the platform, the laser beam’s height will be too low. Install an “up” mirror 

immediately in front of the laser, and install an “over” mirror directly above the “up” 

mirror. Position this “over” mirror at the desired height of your light path. 

* Ideally, the majority of the light path should be built 4-6 inches above the table, parallel to the table 

top. Not only do we have the most hardware (posts, feet, etc.) to build the light path at this height, but this 

height also keeps he beam at a workable height that is safely below eye level! * 

f. Construct a guide post by mounting a beam target onto a post at your desired light path 

height. Using this guide post, check to see if the beam leaving the initial “over” mirror is 

parallel to the table top by checking the beam’s height in two positions (e.g. near to and 

far from the “over” mirror). Make adjustments to the “over” mirror as necessary until the 

beam is parallel. 

g. “Rough in” the first laser’s path to the TIRF spot using the dielectric mirrors. This path 

should include three final mirrors to be used by all of the lasers: 

i. An “up” mirror that directs the beam(s) from 4-6 inches above the table up 

toward 

ii. An “over” mirror taller than the microscope stage that directs the beam(s) toward  

iii. The final mirror that reflects the beam(s) at a shallow angle toward the objective. 



99 

 

* It is best to install the optics with the laser beam passing through the center and with any adjustment 

knobs at intermediate settings. Centering the beam prevents loss of intensity due to scatter, and both of 

these precautions ensure that there is adequate wiggle room for minor realignment later. * 

h. Align the mirrors you have just installed so that the following criteria are met: 

i. Use the guide post to check (in two places) that the beam is parallel to the table. 

ii. Place a beam target on the face of each mirror to ensure that the beam hits each 

mirror near the center. 

* While aligning the mirrors, it is best to first coarsely align the light path using the breadboard 

hardware (i.e. posts, pedestals, mounts, etc.). Only once everything is coarsely aligned to the best of your 

abilities and secured into place should you then use the adjustment knobs on the mirrors to finely align 

the light path. * 

i. Continue installing the optical components (i.e. the half-wave plate, beamsplitting cube, 

and/or diffuser, as appropriate) specific to the first laser. Install them in the beam path 

paying special attention to their order. Leave space for, but do not install any dichroic 

mirrors at this point. 

j. Repeat steps d.-i. with the next lowest energy laser using the same guide post to ensure 

the light path of all of the lasers are kept at the same height. Direct the second beam such 

that it intersects the first laser’s light path at a right angle just before the final three 

mirrors.  

k. At the point where the two beams cross, install the appropriate dichroic mirror (i.e. one 

with a critical wavelength between the wavelengths of the two lasers) such that the low 

energy beam is transmitted and the high energy beam is reflected. CAREFULLY align 

this mirror until: 
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i. The two beams are perfectly combined (i.e. overlapping perfectly) so that they hit 

each mirror in exactly the same spot and arrive together at a spot near the 

objective. 

ii. The transmitted and reflected beams are centered on the mirror. 

iii. The transmitted beam shows no reflection and the reflected beam shows no 

transmission (i.e. no stray beams are produced by the mirror). 

* Note that the ability of a dichroic mirror to transmit and reflect light depends on the angle at which the 

beams hit the mirror. If the mirror is not properly oriented, some of the intensity may be lost. * 

l. To add additional lasers, repeat steps j. and k.  as needed in order of increasing energy. 

For each new laser, introduce a dichroic mirror to combine the beams prior to the final 

three mirrors. 

* There are two major approaches to combining multiple lasers: from lowest to highest energy or from 

highest to lowest energy. * 

m. Install an external shutter for each laser into the light path at a point where that laser has 

not yet been combined with the others. Plug the shutters into the control box, ensure that 

the cords are secured out of the light path. 

3) Aligning the TIRF Spot 

a. Use the coarse adjustment knob on the microscope to fully lower the objective. Adjust 

the final mirror of the light path until the laser spot(s) hits just to the right of the objective 

lens. 

* To better see where the laser hits near the objective, put some water (around 50 µL) on the objective 

lens and then cover it with a scrap of lens paper (NOT A KIMWIPE!). This approach will give you a 

better view. * 
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b. Set the micrometers to an intermediate setting (i.e. around 5). Mount the TIRF focusing 

lens onto the micrometer setup. Adjust the TIRF focusing lens so that the beam passes 

through the center of the lens at a right angle. If the laser light is bent by the lens, use the 

micrometers to adjust the spot’s position until it hits just to the right of the objective lens 

again (see below). 

* Note that aiming off of the objective’s center will compensate for both the refraction occurring at the 

air:quartz interface as well as the difference in height between the objective and a mounted slide. * 

c. Ensure that all of the focused spots from all of the lasers overlap. If they do not, use the 

adjustment knobs on mirrors in the light path until they overlap. 

* For this fine adjustment, it is best to use mirrors that are specific to each laser. Common choices 

include the “over” mirror just after the “up” mirror in front of each laser or the dichroic mirrors. * 

d. Mount a prepared quartz slide filled with water. (See the Using the “DualView” TIRF 

Microscope protocol for details on how to mount a slide.)  

e. Open the shutter to only one of the lasers. Look into the eyepieces. STOP LOOKING if 

the laser light is very bright! Don’t ruin your eyes! Using the fine adjustment knob, 

slowly raise the objective closer to the slide until the TIRF spot comes into focus. (Spin it 

counterclockwise.) 

* YOU MAY DAMAGE THE SCOPE by ramming the objective into the slide. With the prism locked in 

place on the opposite side, you can permanently crack the expensive objective lens! Be very careful! * 

NEVER USE THE COARSE ADJUSTMENT KNOB TO FOCUS ON THE TIRF SPOT! 

f. Continue adjusting the focus until the TIRF spot comes into focus. STOP ADJUSTING 

the focus if: 
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i. The spots of light visible through the eyepieces stop moving. You have hit the 

slide with the objective! Lower the objective with the fine adjustment knob 

(spin it clockwise). 

ii. The entire field of view is dark. Either the laser is too dim or the TIRF spot may 

be misaligned. First, try turning up the laser power; if you can see laser light, 

continue focusing. If not, try resettling the prism by adjusting the gold mount 

slightly to the left or right. Then, refocus on the TIRF spot. 

IF YOU AREN’T SURE, STOP AND ASK! 

g. The TIRF spot may never come into focus, as getting it centered just above the objective 

is difficult. If you do not see the TIRF spot, adjust the following (in order): 

i. The Focusing Lens Micrometers – While looking through the eyepieces, adjust 

the micrometers and the fine adjustment focusing knob on the microscope. As 

you make these adjustments, watch for signs that the TIRF spot is near the field 

of view through the eyepieces. Remember that it may be out of focus! 

* Note that the micrometers are calibrated. Before moving the micrometers, note their original 

position. That way, you can reset the scope to its previous settings if you need to start over. * 

ii. The Prism – Resettle the prism slightly to the right or left and try to refocus on 

the spot.  

* Note that the laser should travel through the prism, reflect off of the slide, travel through the prism 

again, and then exit cleanly out the other side. There should be little scattered light in the prism itself. 

If there is significant scatter, consider slightly moving the prism to the left or right until it clears. * 

iii. The Final Mirror in the Light Path – If all else fails, take the slide off of the scope 

and readjust the laser beam to hit just to the right of the objective in a new 

position. Remount the slide, and check for a TIRF spot again. 
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* Note that, to some degree, these adjustments end up being largely trial-and-error. Keep making small 

adjustments, noting what does and does not seem to work. * 

h. To align the TIRF spots of multiple lasers, open the other laser shutter(s). Carefully look 

at the spots to see if they are all in the center of the field of view and overlapping. STOP 

LOOKING if the laser light is very bright! Don’t ruin your eyes! (Depending on the 

relative intensities of the lasers, you may need to turn the individual lasers off and on to 

see each spot.) If the spots are: 

i. Centered and overlapping – the microscope is sufficiently aligned for 

experiments. 

* Note that differently sized spots are still usable so long as the spots are centered and overlapping as 

much as possible. Molecules in the area where the spots overlap will be excited by both lasers. * 

ii. Overlapping but not centered – use the micrometers to center both spots. 

iii. Not overlapping – start by centering the one TIRF spot with the micrometers. 

Then, use the alignment knobs on the mirrors that are specific to the other lasers 

to move the other TIRF spots until they overlap with the first.  

* It is possible that only one TIRF spot will be visible through the eyepieces, even with more than one 

laser shutter open. Using the micrometers, you can search for the other spot(s). If you find it, use the 

strategy described in iii. above to get the spots to overlap. If you cannot find the other spot(s), consider 

repeating steps e.-g. above using a different color laser. * 

4) Confirming the Alignment 

a. Following the “Using the Scope” protocol, mount a slide with known contents (e.g. the 

bead slide or a slide prepared with DNA). Assess the image as viewed through the 

camera.  
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b. If necessary, make small adjustments to the micrometers until sufficiently even and 

intense TIRF excitation is achieved at the TIRF spot(s). 
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APPENDIX C: smFRET DATA ANALYSIS PROTOCOL 

Stage 1 – Extracting intensity time traces of single molecules from the movies. 

I. Data collected in a given experiment will be a series of .pma files with the name 

“cascadeX.pma” where X is a number. Some of these (typically at least 5) should be images of 

beads. (Figure C.1A) 

II. To begin the analysis, run the complexingui2.m script. Click “Open” and open a bead movie. 

(Figure C.1B) 

a. Note that the color map can be changed with the drop-down menu in the upper left. 

III. Choose “Find Offset” from the drop-down menu. The X and Y offsets will appear in the 

Command Window. Open and assess the offsets of all of the bead movies. (Figure C.1C) 

IV. Choose “Locate Leftside Molecules”. This option will circle local maxima on the left half of 

the image as well as the mapped X and Y coordinates (accounting for the offset) on the right 

half of the image. Local maxima too close to each other or too close to the edges are discarded. 

Inspect the circled maxima, and ensure that the local maxima are near the centers of the circles. 

(Figure C.1D) 

a. If the maxima are systematically off center, choose a different bead movie to establish a 

more appropriate offset. 

b. If no offset is appropriate, particularly if there seems to be rotational offset rather than 

simple X and Y displacement between the two sides, consider realigning to DualView. 

V. Choose the bead movie that best represents the average offset, locate the leftside molecules, 

and check the “Use current mapping function” check box. 

VI. Once the offset is established, choose “Batch Analysis Leftside”. This option will extract the 

time traces for all of the local maxima in all of the movies in a given folder. (Figure C.1E) 
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a. Ensure that all movies to be analyzed in one batch are in the same folder. Be sure that it is 

appropriate for all of the movies in a given folder to have the same offset applied (i.e. the 

data were collected on the same day). 

b. Note that this will take quite a bit of time, especially for movies with a lot of molecules. 

 

Figure C.1: Batch analysis of movies. 

 

Stage 2 – Calculating FRET and detecting transitions from the single molecules. 

I. The .traces files extracted from the .pma files should be in the same folder. Move the bead 

movies out of this folder, and create a new folder named “all_traces”. (Figure C.1F) 

II. Move the .traces files and the empty all_traces folder into the MATLAB folder. (Figure C.2A) 

The MATLAB folder must contain the following .m files necessary for this stage of the 

analysis: 

a. align_extract_trans_data.m 

b. baddata.m 

c. batch_trace_analysis.m 
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d. CKedgedetection.m 

e. FRET_ck.m 

f. GKedgedetection.m 

III. For the next stage of analysis, ensure the following .m files are also in the MATLAB folder: 

a. new_bkgrd_TA.m 

b. new_edges_TA.m 

c. new_tmpts_TA.m 

d. transition_analysis.m 

IV. To begin the batch analysis, run the batch_trace_analysis.m script.  

V. A dialog box will open with the title “Select the starting .traces file.” Choose the .traces file 

you’d like to analyze with the lowest number. A second dialog box will open with the title 

“Select the final  .traces file.” Choose the .traces file you’d like to analyze with the highest 

number. (Figure C.2B) 

VI. Three dialog boxes containing default analysis parameters will open successively. (Figure 

C.2C) These boxes allow you to input your own parameters for the following analyses: 

a. The Chung-Kennedy Filter is an edge preserving filter used to smooth the donor and 

acceptor traces using the following parameters: 

i. Windows – Used to calculate the averages ahead of and behind the data. 

ii. Predictor Windows – Used to find the standard deviation ahead of and behind the 

data. Note that standard deviation increases when a transition occurs within the 

window. 

iii. Exponents – Used to exaggerate the weight assigned to the averages. Note that the 

averages are weighted more when the standard deviation of the predictor window 

is low, and the exponent controls the extent to which this occurs. 
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b. The Gaussian Kernel is a mathematical method of detecting edges based on finding 

inflection points in the data (i.e. maxima/minima in the second derivative) using the 

following parameters: 

i. Thresholds – Used to determine how if maxima/minima are significant enough to 

count. 

ii. Scales – Used to convolve the data with a Gaussian function of different breadths. 

iii. Transition Width – Used to establish how separated transitions must be. 

c. The Chung-Kennedy Edge Detection method uses the standard deviations of the predictor 

windows, which increase during transitions, to detect edges using the following 

parameters: 

i. Windows – Used to find the standard deviation ahead of and behind the data. 

ii. Percentile – Used to determine which peaks in the predictor window standard 

deviations qualify as a transition. 

iii. Separation – Used to establish how separated transitions must be. 

VII. Once the parameters are entered, the batch_trace_analysis.m script will analyze each .traces 

file. Updates on its progress will appear in the command window. The following analysis is 

done with each single molecule’s fluorescence intensity time traces: 

a. The gamma and leakage corrections are applied to the donor and acceptor traces, 

respectively. 

b. The corrected donor and acceptor traces are smoothed using the Chung-Kennedy filter by 

the FRET_ck.m script. 
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Figure C.2: Batch analysis of .traces files. 
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c. The data are checked for bleaches and blinks by the baddata.m script, which does the 

following: 

i. A 5 point boxcar average is applied to the data, and a 95% confidence interval is 

determined. If this interval contains zero, the data are considered “bad”. 

ii. Data points where the donor intensity and/or acceptor intensity are below 100 or 

above 3000 are considered “bad”. 

iii. Short-lived “good” or “bad” data are set to the quality of their neighbors (i.e. a 

single “bad” point surrounded by “good” points is set as “good”). 

iv. Molecules found to be all “bad” are discarded and not analyzed further. 

d. FRET is calculated for the “good” data from both the raw and smoothed donor and acceptor 

traces. Residuals between the raw and smoothed FRET are calculated. 

e. A histogram of the FRET at each time point is calculated. 

f. Edges are detected by both the Gaussian kernel and the Chung-Kennedy method using the 

GKedgedetection.m and CKedgedetection.m scripts.  

g. In the align_extract_trans_data.m script, the time resolution of the transitions detected by 

both methods is aligned using a weighted average. The averages of the donor, acceptor, 

and FRET between each transition are calculated. The standard deviations are also 

calculated and are used to determine 95% confidence intervals. 

h. A .txt file containing the results of these analyses is saved into the “all_traces” folder. 

(Figure C.2D) 

 

Stage 3 – Confirming the analysis, transitions, and “bad” data. 

I. The .txt files within the “all_traces” files can be read in Excel (if desired) for individual 

assessment. For more interactive analysis, open the transition_analysis.m script. 
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Figure C.3: User-interface for trace analysis. 
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II. A dialog box will open with the title “Select the starting .traces file.” Choose the .traces file 

you’d like to analyze with the lowest cascade and trace number. (Figure C.3A) 

III. A figure will open with the following plots: (Figure C.3B) 

a. A bar that is black where there is “bad” data and white where there is “good” data. 

b. A line plot showing the raw donor (green) and acceptor (red) traces, the smoothed donor 

(black) and acceptor (black) traces, and the automatically detected transitions (vertical 

lines). 

i. Note that the strength of the edge detection is denoted by the color of the vertical 

line according to the color bar to the right (red = obvious transition, blue = vague 

transition). 

c. A series of dots for each transition, colored an arranged vertically according to the strength 

of the transition. These large dots are used to more easily select the transitions with the 

mouse. 

d. A line plot showing the FRET calculated from the raw (magenta) and smoothed (black) 

donor and acceptor traces, the residuals (yellow) between the raw and smoothed FRET, 

and the automatically detected transitions (vertical lines). 

e. A line plot showing the average donor and acceptor intensities (black) between the each 

transition and the 95% confidence intervals for the donor (green) and acceptor (red) 

averages. 

f. A line plot showing the average FRET (black) between the each transition and the 95% 

confidence interval for the FRET (magenta) average. 

g. A histogram of the (non-zero) smoothed FRET efficiency at each time point. 

IV. A user interface to be used with a number pad and a mouse will appear in the command 

window. This user interface has the following menus and submenus: 

a. Main Menu (Figure C.3C) 

i. Redo Trace: Used to plot the current molecule using the .txt  file. 
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ii. Skip Trace: Used to discard the current molecule and move to the next molecule. 

iii. Save Trace: Used to accept the current molecule as analyzed (i.e. the edges, 

background, and “bad” data determination are all good), save the analysis results, 

and move to the next molecule. 

iv. Back Up Trace: Used to back up to the most recently analyzed molecule. 

v. Change Time Points: Opens a submenu to change which data are considered “bad”. 

(Figure C.3D) 

1. Keep Time Points: Used to accept the changes to the “bad” data and 

analyze the data accordingly. 

2. Include All: Used to include all time points in the analysis. 

3. Exclude All: Used to exclude all time points in the analysis. 

4. Reset Time Points: Used to reset the “bad” data to that determined by the 

batch analysis script. 

5. Include Time Points: Used to include time points in a range chosen by the 

user using mouse left clicks. (Right click to escape.) 

6. Exclude Time Points: Used to exclude time points in a range chosen by 

the user using mouse left clicks. (Right click to escape.) 

7. Show Changes: Used to plot both the original and new “bad” data. 

8. Include State: Used to include a range of time points between two 

transitions as chosen by the user with a mouse left click. (Right click to 

escape.) 

9. Exclude State: Used to exclude a range of time points between two 

transitions as chosen by the user with a mouse left click. (Right click to 

escape.) 
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vi. Change Edges: Opens a submenu to change the transitions. (Figure C.3E) 

1. Keep Edges: Used to accept the current edges and analyze the data 

accordingly. 

2. See Chung-Kennedy Edges: Used to show only the edges detected by the 

Chung-Kennedy edge detection method. 

a. Note that you are given the option to keep only these edges, if 

desired. 

3. See Gaussian Kernel Edges: Used to show only the edges detected by the 

Gaussian Kernel. 

a. Note that you are given the option to keep only these edges, if 

desired. 

4. Reset Edges: Used to reset the edges to those found by the batch analysis 

script. 

5. Add Edges: Used to add edges using mouse left clicks. (Right click to 

escape.) 

6. Remove Edges: Used to remove edges using moues left clicks on the large 

dots between the intensity and FRET traces. (Right click to escape.)  

vii. All Done: Used to compile all of the analyzed molecules, produce histograms of 

the FRET states and the dwell times, and make a transition density plot. 

viii. Adjust Background: Opens a submenu to change the donor and acceptor traces’ 

background subtractions. (Figure C.3F) 

1. Keep Background: Used to accept the current data corrections and analyze 

the data accordingly. 

2. Pick Acceptor Background: Used to set the acceptor intensity of a state 

between two transitions as zero. The user chooses this state with a mouse 

left click. (Right click to escape.) 
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3. Bump Acceptor Background: Used to bump the acceptor intensity up or 

down 10 intensity units by clicking above or below the data, respectively. 

(Right click to escape.) 

4. Reset Background: Used to reset the data to those in the batch analysis 

script. 

5. Pick Donor Background: Used to set the donor intensity of a state between 

two transitions as zero. The user chooses this state with a mouse left click. 

(Right click to escape.) 

6. Bump Donor Background: Used to bump the donor intensity up or down 

10 intensity units by clicking above or below the data, respectively. (Right 

click to escape.) 

ix. Add Flags (Figure C.3G) 

1. Keep Flags: Used to save the current flags. 

2. Flag State: Used to flag the region between two transitions. 

a. Note that the flag can be no longer than 20 characters. 

3. Flag Edge: Used to flag the transitions. 

a. Note that the flag can be no longer than 20 characters. 

4. Clear Flags: Used to clear the current flags. 

5. See Flags: Used to display the current flags. 

6. Flag Trace: Used to flag the entire trace. 

V. To analyze each molecule, use the following example workflow: 

a. Decide if the molecule is worth analyzing at all. If not, skip to the next molecule. 

i. Note that the “bad” data bar can help in determining if a molecule is worth 

analyzing, as it regions of data with intensities that are too low or too high will 

already be identified. (Figure C.4A vs. B) 
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b. If a bleach or blink is present, ensure that the background subtraction correctly places these 

intensities as zero. If not, use the “Change Background” submenu to correct the baseline. 

(Figure C.4B  C) 

c. After applying any necessary background corrections, ensure that the time points included 

in the analysis are satisfactory. If not, use the “Change Time Points” submenu to correctly 

assign which data are “bad” data. (Figure C.4C  D) 

d. Next, verify that the edges detected by the program are correct. Remove or add edges as 

appropriate using the “Change Edges” submenu. (Figure C.4D  E) 

e. If desired, add flags at this time. (Figure C.4F) 

f. When satisfied with the molecule’s analysis, choose “Save Trace” to move to the next 

molecule. This creates a new .txt file named “analysis.txt” which contains the results of the 

analysis and the flags. 

g. Continue analyzing until you have finished with all of the molecules. Then, choose “All 

Done”. 
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Figure C.4: Example analysis 
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