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ABSTRACT

JEFFREY T. DEBERARDINIS: Nitrogen Mass Balance For Spray Fields Fertilized With 
Liquid Swine Waste

(Under the direction of Dr. Stephen C. Whalen)

The swine industry has expanded rapidly in North Carolina over the last two decades.  

Animals are raised in confined facilities where waste is flushed into open-air lagoons and the 

liquid phase is land-applied to receiving fields as an organic fertilizer.  The post-application 

fate has not been fully documented.  Therefore, on three occasions I experimentally applied 

liquid swine waste at typical doses (40 to 130 kg N ha-2) to defined plots in an active spray 

field on a representative North Carolina swine production facility and constructed an N mass 

balance for a 14 to 18 d period.  Most of the N (52%) was assimilated into plants, while 

surprisingly little (9%) was volatilized.  Microbial immobilization accounted for 10% of the 

applied N, while 12% migrated below the active soil zone (surface 20 cm) and was 

presumably lost to groundwater.  The soil storage term averaged 16%, while the 

denitrification sink was inconsequential (<1%).
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CHAPTER I

INTRODUCTION

Modern agriculture is characterized by increasing specialization, which began with 

crops and has extended to animal production.  The swine industry has historically been 

located in the mid-west, but recent growth has shifted toward the southeast, particularly 

eastern North Carolina.  Growth of North Carolina’s swine industry accelerated enormously 

in the early 1990s while the number of hog farms actually decreased (Figure 1.1), as hogs 

were increasingly produced in Confined Animal Feeding Operations (CAFOs).  Currently, 

North Carolina is the second largest swine producing state surpassed only by Iowa.   

December 2005 statistics show that 9.8 million hogs were resident in the state (NCDA 

2006a).  The most intense concentrations of swine occur in Duplin and Sampson counties, 

each housing over 2 million animals (NCDA 2006b).  Trends toward farm consolidation, 

specialization and intensification may be sound from economic and management 

perspectives, but may fail to adequately address important environmental impacts resulting 

from amplified generation of organic waste in localized regions (Barker and Zublena 1995).

With roughly 2 million more hogs than humans in the state, management of swine waste 

presents enormous problems for controlling nutrient loading to adjacent ecosystems.
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Figure 1.1.  Consolidation of the swine industry in North Carolina.

The method of choice for swine waste disposal in North Carolina is the anaerobic 

lagoon/spray field system.  Swine waste generated in confinement houses is typically flushed 

into open, anaerobic holding lagoons.  While providing efficient and cost effective manure 

collection, these flush facilities produce a large volume of dilute liquid manure from a 

relatively small mass of concentrated feces and urine (Lowrance and Hubbard 2001).  

Although exposed to the atmosphere, lagoons are essentially anaerobic due to their high 

biochemical oxygen demand.  The stored liquid is periodically land applied to crops as an 

organic fertilizer with solid set or traveling sprinkler systems.  This management technique 

requires crops that assimilate high amounts of nutrients year round, so that applications can 

be made throughout the year if necessary (Crouse 1995).  Typically, spray fields are planted 

with Coastal Bermudagrass (Cynodon dactylon L.) during the growing season and often over-



3

seeded in winter months with tall fescue (Festuca sp.).  The accepted agronomic rate of 

application for these crops is based on the effluent N content and crop N requirements 

(Zublena et al. 1993).

The state vigorously regulates the industry with mandatory permitting and lagoon 

inspections.  Nonetheless, ammonia volatilization and offsite runoff from hog farms has been 

implicated in the contemporary deterioration of coastal water quality in North Carolina (Paerl 

1997).  North Carolina is not unique in this regard.  Agriculture in general is under increasing 

scrutiny, and the EPA is now working on regulations to control ammonia emissions from 

agricultural operations.  Growth of the hog industry has plateaued in recent years both in 

North Carolina and the entire US because of a decline in price paid to the farmer for pork 

products.  Further, in North Carolina, there is a moratorium on “general” permitting, which 

means no more lagoon/spray field systems can be implemented until the moratorium is lifted. 

This does not preclude CAFOs from employing other management systems.  During the 

moratorium, the industry has undergone consolidation such that the majority of swine-

producing CAFOs are owned or under contract with Smithfield Foods.  During the 

moratorium, alternate technologies are being tested via a cooperative agreement between 

Smithfield Foods and NCSU.    Once new technologies have been approved, Smithfield-

owned farms (roughly 10% of NC CAFOs) must adopt the approved the waste management 

techniques and it is hoped that contract growers will follow suit. 

Effluent stored in anaerobic lagoons contains nitrogen in the forms of organic-N, 

ammonium (NH4
+-N), and ammonia (NH3-N).  During storage, 50-75% is of the flushed 

waste-N is transformed into ammonium by mineralization or hydrolysis (Kirchman 1994).  

Once applied to spray fields, there are several fates for N (Figure 1.2).  Organic-N can be 
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microbially mineralized to NH4
+-N.  Ammonium can be assimilated into plant material or 

microbial biomass, volatilized as NH3, or can participate in cation exchange reactions in soil.  

Ammonia can be oxidized to nitrate (NO3
--N) under aerobic conditions by nitrifying bacteria.  

Nitrate can be converted into plant biomass or reduced into inert dinitrogen gas (N2) within 

anaerobic microzones by various facultative anaerobes (denitrifying bacteria).  All forms of 

gaseous N (NH3, N20 and N2) can be lost to the atmosphere and dissolved forms (NH4
+ and 

NO3
-) can potentially be lost through surface water runoff and ground water leaching.
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Figure 1.2.  Nitrogen cycle for land-applied liquid lagoonal swine waste

To date, the emphasis on the fate of swine waste has been on ammonia volatilization 

(Hoff et al. 1981; Gordon et al. 1988; Safley et al. 1992; Halloran 1993; Sommer and Ersboll 

1994; Sommer et al. 1997; Sharpe and Harper 1997, 2002; Dendooven et al. 1998; Rochette 

et al. 2001) and to a lesser extent on crop utilization (Cummings et al. 1975; Westerman et 
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al. 1977; Burns et al. 1985, 1990; Rees et al. 1993; Liu et al. 1997; Adeli and Varco 2001; 

Adeli et al. 2003).  Fewer studies have focused on other individual processes such as 

nitrification and denitrification (Watanabe et al. 1997; Arcara et al. 1999; Harper et al. 2000; 

Whalen 2000; Whalen et al. 2000; Lowrance and Hubbard 2001 and Petersen et al. 2001).  

Others have also addressed microbial immobilization of N (Persson 1988; Kirchmann 1989; 

Fauci and Dick 1994) or ground water leaching and surface water runoff following 

fertilization (Cummings et al. 1975; Evans et al. 1984; King et al. 1985, 1990; Westerman et 

al. 1985, 1995, 1996; Karr et al. 2001).

A complete analysis of the fate of swine waste in the framework of an N mass 

balance has not been performed in North Carolina, but is necessary for perspective.  

Informed management and policy decisions rest on a more complete understanding of the 

fates, pools, transformations and the time course associated with each.  Not only is an 

analysis of this nature lacking for land applied swine waste, it has been rarely performed for 

other forms of organic and inorganic fertilizers.  Broadly, Best Management Practices 

(BMPs) for all facets of agriculture will benefit from improved knowledge of the fate of N-

fertilizer in all forms, as N-fertilizer use has increased exponentially over the last 20 years 

and is projected to continue increasing (Howarth et al. 2002).



CHAPTER II

OBJECTIVE

The objective of this research was to investigate the rates of all fluxes and 

transformations among N pools associated with the microbially active soil zone (0-20 cm) in

an agricultural spray field for approximately two weeks following liquid swine lagoon 

effluent irrigation.  Specifically, on three occasions, rates of abiotic (ammonia volatilization 

and leaching) and biotic (denitrification, plant and microbial assimilation) processes were 

measured for two weeks in a crop of Coastal Bermudagrass after a simulated spray event of 

liquid effluent at two loading rates.  The focus of each experiment was the construction of an 

event-specific N mass balance for a representative spray field in North Carolina in an effort 

to evaluate the relative importance of various post-application fates of land-applied liquid 

swine waste.  Data will be useful to evaluate the effectiveness of lagoon/spray fields as a 

waste management tool and to aid managers and policy makers in determining the future role 

of this practice for swine production on North Carolina CAFOs.



CHAPTER III

REVIEW OF THE LITERATURE

3.1.  Importance of ammonia-N 

 Atmospheric concentrations of biogenic gases such as NH3 are determined by the 

balance between local emissions and sinks (Schlesinger 1997). Despite a relatively short 

atmospheric residence time (10 d), NH3 is the third most abundant nitrogen gas following N2

and N2O.  Atmospheric NH3 readily reacts with acidic gasses and airborne particles that form 

hydroscopic salts containing ammonium sulfate and ammonium nitrate, which contribute to 

airborne particulate matter (PM2.5) (Krauter et al. 2003).  These reactions occur in the 

troposphere within a few hours to days, rapidly returning NHx salts and aerosols to the earth 

in wet and dry deposition, thereby fertilizing terrestrial and aquatic systems (Ferm 1998; 

Mosier 2001).

3.2.  Sources of ammonia-N 

 Oxidized forms of N (eg. NOx) dominate in the atmosphere near sources of 

photochemical smog, while reduced forms (NH4
+ and NH3) are more prevalent in agricultural 

areas (Krauter and Potter 2002).  The process by which gases are released from soils to the 

atmosphere is termed volatilization.  In particular, NH3 is volatilized from animal waste and 

NH4
+-based fertilizers, and to some extent by decomposition of organic matter by soil fungi 

and bacteria.  Agricultural activity contributes significantly to the annual global emission of 
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NH3 to the atmosphere.  An estimated 50 to 75% of the ~55 Tg NH3-N yr-1 emitted from 

terrestrial sources originates from animal- and crop- based agriculture, with domestic animals 

contributing over half of the agricultural component (Schlesinger and Hartley 1992; Mosier 

2001).  The three primary sources of NH3 from livestock production are animal houses, waste 

storage systems and land–applied waste (Sharpe and Harper USDA/ARS).

3.3.  Hydrolysis and NH3 volatilization potential from waste storage

Prior to volatile loss as NH3 from manures, N compounds must first be converted to 

ammoniacal (NH4
+ and NH3) forms.  Roughly 75% of the N found in mammalian urine is in 

the form of urea (Pinder et al. 2003).  Excreted urea is rapidly hydrolyzed in the presence of 

the microbial enzyme urease that is present in fecal material (Whitehead and Raistrick 1990).

-
34

Urease
222 OHHCONH2OH3)CO(NH ++ →+ −+      (3.3.1)

Following hydrolysis, NH4
+ dissociates into aqueous phase NH3 and H+ according to a 

temperature and pH-dependent equilibrium constant (Monteny 2000).  Ammonia then 

equilibrates between the aqueous and gas phase at the air-liquid boundary (Monteny 2000; 

Pinder 2003).

OHNHOHNH 2)aq(3
-

4 +→++      (3.3.2)

Gaseous NH3 at this boundary may volatilize into ambient air by convective mass transfer 

depending on Henry’s Law and the air temperature and wind velocity above the solution  

(Monteny 2000).

(g)3aq)(3 NHNH →      (3.3.3)

Additional nitrogenous compounds in urine include organic acids that are also subject 

to hydrolysis (Whitehead and Raistrick 1990).  Efficient and rapid mineralization and 
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hydrolysis of urine ensure that stored liquid waste from CAFOs has a high potential for 

volatilization. Additional factors also contribute to a high potential for volatilization of stored 

waste.  Deprotonation (eq. 3.3.2) ensures that the pH of stored waste remains high, favoring 

NH3 in the NH4
+ - NH3 acid-base pair (pK = 9.3).  High temperatures and the oxidation of 

fatty acids in manure also favor the formation of NH3 (Dendoovan et al. 1998; Pinder 2003).  

Physical attributes of the waste storage and animal holding facilities also contribute to the 

potential for NH3 volatilization.  Confined or semi-enclosed facilities reduce air exchange, 

which increases the partial pressure of NH3 within the parlors and thereby discourages 

volatilization (Monteny 2000).  Overall, 50 to 75% of the total-N in liquid manures is in the 

ammoniacal form (Kirchman 1994), and is therefore available for rapid volatilization.

3.4.  Ammonia volatilization from waste

Volatile losses of NH3 occur from environments with open surroundings such as 

fertilized agricultural fields, as the system attempts to reestablish equilibrium between 

aqueous and gas phases.  Several studies show that these losses are influenced by the NH3

partial pressure gradient created between manure surfaces and the overlying air, evaporative 

conditions, and the method of application (Gordon et al. 2001).  Evaporative conditions are 

the principal controllers of the rate and duration of NH3 loss from liquid effluents under field 

conditions and include air temperature and density, water vapor pressure, barometric 

pressure, and changes in net radiant energy (Lauer et al. 1976).  Liquid manures are 

especially prone to N loss during application due to evaporation and drift.  Westerman et al. 

(1996) observed effluent volume losses of 5 to 20% and Safley (1992) noted NH3 losses of 
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14 to 37% during field application of liquid swine waste with the big gun sprinkler systems 

commonly used in waste management at CAFOs in the southeastern US.

3.5.  Ammonia volatilization from soil

Ammonia also volatilizes from fertilized agricultural soils.  In addition to the factors 

that control NH3 losses from the early stages of waste management (i.e. housing and storage), 

losses from agricultural fields are also determined by the characteristics specific to soil-

cropping systems and by climate.  Variables that influence volatilization from soils include 

moisture, temperature, buffering capacity, the form and rate of N applied, the depth of 

application and the resident urease activity (Demeyer et al. 1995; Dendoovan et al. 1998).  

Ammonia loss from soil depends partly on the rate at which effluent infiltrates the soil 

(Sommer and Ersboll 1994).  Increasing resident soil water can promote NH3 loss by 

reducing soil porosity and, consequently, the rate of infiltration (Petersen and Andersen 

1996).  In extreme cases, ponding may result enhancing loss to volatilization.  Additionally, 

crop residue can retard infiltration and provides additional surface area from which 

volatilization can occur (Rochette et al. 2001).  Methods of waste application also regulate 

the depth of N integration into soils.  Incorporation of waste (i.e. till or injection) into soil has 

been demonstrated to reduce NH3 emissions (Rochette et al. 2001).  Sommer and Ersboll 

(1994) reported that NH3 loss from slurry applied to the surface of no-till soil plots was 

roughly two times the loss from tilled soil and three times the loss from injected slurry.

Waste characteristics such as the quantity and activity of urease also affect rates of 

NH3 volatilization from soil.  The production of ammonium carbonate during the hydrolysis 

of urea generates localized increases in soil pH, which promote volatilization to an extent, 
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which is influenced by the initial soil pH, organic carbon content and cation exchange 

capacity CEC (Whitehead and Raistrick, 1990).  Adsorption to soil and organic colloids 

influences the distribution of urease, NH4
+ and other N-compounds in a soil matrix.  Urease 

activity is also dependant on soil temperature.  The greatest loss of NH3 occurs in the 

temperature range of maximum urease activity (10 to 38°C), with the loss rate doubling for 

every 5.6°C temperature increase within this range 

(www.misschem.com/scrReports/cotton.pdf).

3.6.  Fate of emitted NH3

Depending on meteorological conditions, emitted NH3 may be rapidly redeposited or 

carried 10’s of km from the source. (Mosier 2001).  The latter has the potential to impact 

downwind ecosystems.  Ammonia and its atmospheric products make up a substantial 

portion of total aerial N deposition worldwide, ranging from 47 to 87% (Marshall et al.

1998).  Ammonia and NOx have a relatively short atmospheric life span, so they are usually 

deposited in dryfall and precipitation, relatively close to their point of origin (Schlesinger 

1997).  Model estimates indicate that about 50% of the NH3 evolved from terrestrial systems 

is redeposited within 50 km of the source, and since most is redeposited within 20 km, total 

ammoniacal nitrogen (TAN) deposition near large animal operations can be substantial 

(Mosier 2001).  Paerl (1997) noted that an increase in the ratio of NH4
+:NO3

- in wet 

precipitation recorded over the last 20 years at National Atmospheric Deposition Program 

(NADP) sites in Eastern North Carolina corresponds to the contemporary regional increase in 

the number of swine and poultry CAFOs.
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3.7.  Effects of NH3 deposition

Natural ecosystems that receive NH3 gas or its deposition products are thought to be 

net sinks for NH3 (Sharpe and Harper 1997).  Foliar absorption of NH3 is recognized as a 

sink for airborne NH3 and several studies have shown that agricultural crops can both absorb 

and emit NH3 depending on their N status and atmospheric concentrations of NH3 (Sharpe 

and Harper 1997).  Above threshold levels, NH3 can damage vegetation and reduce plant 

species biodiversity in natural ecosystems (McGinn and Janzen 1997).  Ammonia emitted 

from agricultural sources has been implicated in forest decline (Nihlgard 1985; McLeod et al.

1990) and species changes within Europe (Van Hove et al. 1987).

Wet or dry deposition of the NH3 may also contribute to undesired changes in aquatic 

ecosystems (Schulze et al. 1989).  Excessive N deposition, has led to the acidification and 

eutrophication of aquatic systems (Mosier 2001).  Eutrophication of aquatic systems is 

manifested as the development of harmful (toxic, hypoxia-inducing, food web altering) algal 

blooms (Paerl and Whitall 1999).  In particular, the rapid proliferation of CAFOs in eastern 

North Carolina coincides with a contemporaneous increase in the frequency of fish kills, 

hypoxia events and development of Cyanobacterial blooms in the Neuse River estuary.

Comparison of global magnitudes of emission indicate that NH3 is potentially more 

acidifying than emissions of sulfur dioxide (SO2) or nitrogen oxides (NOx =NO+NO2) 

(Bouwman et al. 1997).  Deposition of NH3 and NH4
+ on poorly buffered soils can lead to an 

increase in soil acidification by increasing rates of nitrification and root uptake as well as 

increasing rates of acid formation from the chemical oxidation of NH4
+ salts (Marshall et al.

1998).  The effects of soil acidification include accelerated leaching of cations from plant 

tissues and soil, and increased mobilization of Al3+, which is toxic to plant roots (Marshall et 
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al. 1998).  The input of one mole of ammonium sulfate ((NH4)2SO4) can result in the release 

of 4 moles of acidity (H+) by nitrification (Bouwman et al. 1997).

3.8.  Nitrogen cycling

Nitrogen is an essential component of amino acids, proteins and enzymes, all of 

which are critical to all life forms.  The most bioavailable forms of nitrogen include 

ammonium (NH4
+-N) and nitrate (NO3

--N), which dominate the inorganic pools of N.  Other 

forms of nitrogen include nitrite (NO2
--N), simple organic compounds such as free amino 

acids, urea, and poorly characterized, complex forms of organic N.  Amino acids and urea are 

readily available to the biosphere, while NO2
--N is toxic and little is known about the 

bioavailability of complex organics.  The nitrogen cycle is the sum of physical and 

biochemical transformations and transfers of N among these pools, primarily through 

reactions that incorporate N into organic matter and subsequently release inorganic N into the 

environment (Stevenson and Cole 1999).  Globally, the uptake of N from the inorganic N 

pool by organisms in the pedosphere is so rapid that little N remains in inorganic form, 

despite the large annual flux through this pool (Schlesinger 1997).  

3.9.  Immobilization and mineralization

Immobilization and assimilation are processes where microbes and plants, 

respectively, transform inorganic N from the environment into biomass.  Mineralization is 

the parallel process where the microbial decomposition of organic N releases NH4
+-N into 

the surrounding environment.  Turnover of the immobilized or assimilated N occurs through 

the death and decomposition of biomass, once again transforming organic-N into 
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bioavailable inorganic forms (Fischer and Whalen 1999).  Immobilization, assimilation and 

mineralization occur simultaneously in soils.  Changes to the mineral N pool in the soil 

depend on the balance between plant and microbial demand for mineral N and the quality of 

carbon substrate for the microbes (Brady 2002).

Microbial biomass dynamics play a critical role in mediating organic matter 

decomposition and turnover and therefore are central to nutrient cycling in soil (Fauci and 

Dick 1994).  Studies have shown that fertilizer use impacts the relative size of microbial 

biomass present in soils, but there is little information about the effects of fertilizers upon 

microbial community structure (O’Donnell et al. 2001).  Soils with a long-term history of 

organic amendments, such as animal manure, generally maintain high levels of microbial 

biomass and have a high potential to respond to new organic inputs (Fauci and Dick 1994).

3.10.  Microbes

A large number of biochemical transformations of nitrogen in soil are possible since 

N is found at valence states ranging from –3 (NH4
+) to +5 (NO3

-).  A variety of specialized 

microorganisms found in soils participate in the transformations of N among these valence 

states and use the energy associated with redox changes for energy and growth (Rosswall 

1982; Sclesinger 1997; Madigan et al. 2000).  Collectively, these microbial activities are 

integral components of the soil N cycle (Schlesinger 1997).  Two important microbially-

mediated N cycling activities are nitrification and denitrification.
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3.11.  Nitrification

Nitrification is the microbial oxidation of NH4
+-N to NO3

--N by chemolithotrophic 

bacteria.  The complete oxidation of NH4
+-N to NO3

--N is an eight-electron transfer and is 

accomplished by two bacterial genera acting in sequence (Madigan et al. 2000; Tate 2000):

O2H4H2NO3O2NH 2224 ++→+ +−+      (3.11.1)

−− →+ 322 2NOO2NO      (3.11.2)

The genus Nitrosomonas oxidizes NH4
+ to NO2

- (eq. 3.11.1) and the genus Nitrobacter

subsequently oxidizes NO2
- to NO3

- (eq. 3.11.2).  Nitrification is an obligatory aerobic 

process that occurs readily in well-drained soils (<60% water filled pore space; WFPS) with 

neutral pH and low C/N ratios (Jones and Jacobsen 2001).  The energy recovered by 

microbes during the conversion of NH4
+-N to NO3

--N ranges from about 5 to 15%, indicating 

that large quantities of N must be nitrified for every CO2 molecule fixed by these microbes 

(Tate 2000).

3.12.  Denitrification

Denitrification is the microbial respiratory process where nitrate is sequentially 

reduced and returned to the atmosphere as nitrogen gases (NO, N2O, and N2) (Schlesinger 

1997).

O7HCO52N4NO4HOCH5 22232 ++→++ −+      (3.12.1)

This reductive sequence is coupled to electron transport phosphorylation and serves to 

support cellular metabolism (Fischer and Whalen 1999) Denitrifying bacteria are facultative 

anaerobes that utilize NO3
- as an alternative electron acceptor for respiration when O2 is low 
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or absent (Crouse 1995).  Oxygen supply is the most important environmental factor 

regulating denitrification in agricultural soils.

Soil oxygen supply is regulated by the partial pressure of O2, the physical 

characteristics of the soil (i.e. diffusion of O2), soil moisture content, and the rate of O2

consumption through microbial respiration (Tiedje 1988; Fischer and Whalen 1999).  

Additional factors influencing rates of denitrification are soil temperature, NO3
-

concentration, and availability of labile C, which acts as an electron donor (Fischer and 

Whalen 1999).  Many denitrifying bacteria will also reduce other electron acceptors 

anaerobically such as ferric iron (Fe3+) and certain organic electron acceptors in the absence 

of NO3
-.  Further, some denitrifying bacteria are also capable of fermentative metabolism 

(Madigan et al. 2000).

3.13.  Coupled nitrification/denitrification

Nitrification and denitrification are frequently ‘coupled’ in soils because the latter 

relies on the former to provide a substrate (NO3
-) that can be reduced.  Consequently, 

denitrification rates in soil are often limited by rates of nitrification.  Soil aggregates facilitate 

coupled nitrification-denitrification by the separation of aerobic soil and microaerophylic 

zones where oxidizers and reducers exist in close proximity (Seech and Beauchamp 1988).  

Rates of nitrification and denitrification are highly variable in soils.  However, they affect the 

efficiency of fertilizer N use in agroecosystems, through the emissions of gaseous end-

products (denitrification) and the production of NO3 (nitrification), which is highly mobile 

and therefore subject to offsite transport.  If denitrification leads to the evolution of large 



17

proportions of N as N2O, the net effect could be trading a potential water pollutant, NO3, for 

an air pollutant, N2O (Lowrance et al. 1998).

3.14.  N2O and NO emissions from nitrification and denitrification

Under unfavorable soil conditions (low O2), N2O and NO increase in importance as 

an endproduct of denitrification, while N2O becomes a byproduct of nitrification. Global 

monitoring over the last 20 years indicates that atmospheric concentrations of N2O continue 

to rise about 0.25% yr-1 (Houghten et al. 1996).  Estimates indicate that nitrification and 

denitrification in agricultural soils contribute about 90% of the total anthropogenic N2O 

emissions (Duxbury 1994).  In fact, the acceleration of N fertilizer application in crop 

production is regarded as a major reason for enhanced N2O emission from soils (Eichner 

1990; Mosier et al. 1996).  Cultivated soils are the largest source of atmospheric N2O, 

emitting 3.5 Tg N2O-N yr-1, or ~ 24% of the 14.7 Tg released annually from all sources 

(Houghten et al. 1996).

Gaseous products of nitrification and denitrification have several negative 

environmental consequences (Brady 2002).  First, nitric oxide (NO) and N2O from 

denitrification can contribute to the formation of nitric acid, a principal component of acid 

rain.  Second, as N2O rises into the upper atmosphere, it acts as a greenhouse gas (300 times 

as effective as CO2 on a per molecule basis) by absorbing infrared radiation that would 

otherwise exit the troposphere. Third and possibly most significantly, N2O destroys 

stratosphere O3, which shields the earth from harmful ultraviolet radiation.
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3.15.  Influence of fertilizers on N2O emissions

Interacting physiochemical and biological factors influence rates of N2O release from 

agricultural soils (Whalen et al. 2000). Enhanced short term or episodic N2O efflux is often 

associated with the application of synthetic fertilizers, which provide substrates readily 

utilizable (NH4
+ and NO3

-) by nitrifiers or denitrifiers upon contact with these soil microbes 

(Ellis et al. 1998).  In contrast, manures and slurries have medium term (i.e. several months) 

effects on soil nutrient status and microbial activity because these nutrients are made 

available by gradual decomposition of organics (Kirchmann 1994).

For three reasons, liquid swine waste contrasts sharply with slurries and solid 

organics with respect to microbial processing.  First, the waste is largely (~80 to 90%) in the 

inorganic phase (NH4
+), and is therefore immediately available for microbial utilization.  

Second, liquid application ensures that the waste makes immediate contact with the microbial 

population as it drains downward in soil profile.  Finally, management techniques frequently 

call for repeated application, ensuring the development of a highly responsive microbial 

community that can rapidly process the applied waste (Brown and Whalen 1999).  In 

particular, liquid swine effluent provides not only a ready source of NH4
+ for nitrifiers, but 

also a source of high quality C (volatile fatty acids) (Paul and Beauchamp 1989) for 

denitrifiers.  Denitrifying activity is further enhanced by liquid waste through the reduction in 

soil O2 concentration that occurs when air-filled pore spaces become liquid-filled and 

community respiration increases (Whalen et al. 2000; Sharpe and Harper 2002).

Liquid waste applied to an established community of microbes ensures a sharp post-

fertilization decline in soil NH4
+-N and promotes a rapid and short lived (i.e. days) burst of 

nitrification, denitrification and N2O emission (Whalen et al. 2000).  The limited information 
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on N2O emission indicates that slurries and liquid manure lead to the highest denitrification 

rates (Lowrance and Hubbard 2001).  However, comparisons of total N loss from various 

forms of organic waste (i.e. liquids and solids) show a wide range overall losses (Meisinger 

and Randall 1991).

3.16.  Loss of NO3
--N to surface and ground water

The addition of large quantities of NH4
+-N in animal waste to soils may lead to NO3

-

losses to groundwater if rates of nitrification are stimulated and recovery by the receiving 

crop is inefficient (Cooper 1974).  Nitrate has a low affinity for anion exchange sites in soils 

(Karr et al. 2001) and is therefore easily leached. Consequently, high NO3
- levels are 

frequently associated with drinking water contamination (Evans et al. 1984).  High levels of 

NO3
-N in drinking water lead to methemoglobinemia in infants (Jennings and Sneed 1996), 

which reduces the oxygen carrying capacity of blood (Owens 1994).  Leaching occurs mostly 

on sandy soils and at sites with shallow water tables, both of which are common on the 

Coastal Plain where swine producing CAFOs have proliferated.

Studies of NO3
- movement through sandy soils in the southeast are limited, but show 

that subsurface loss to groundwater is more common than surface runoff of NO3
- (Westerman 

et al. 1985a).  Regionally, losses of NO3
- to groundwater are most likely during winter, due 

to low temperatures (i.e. less active microbes) and increases in precipitation (Karr et al.

2001).  In some sandy North Carolina soils, high concentrations of NO3
- have been found as 

deep as 65 cm below the surface after only 7.5 cm of rain (Baird 1990).  Although it is clear 

that water contamination is a problem for CAFOs in the southeast, most cases of NO3
-
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contaminated groundwater have been documented when fertilizer application rates exceeded 

BMP recommendations (Barker 1995).

3.17.  Cropping systems used for swine waste disposal

Swine CAFOs in North Carolina are located primarily on sandy Coastal Plain soils 

(Aneja et al. 2001).  The use of lagoon spray field waste handling systems in CAFOs has 

transformed a large segment of the Coastal Plain into highly productive grassland (Poore and 

Green 1996).  Disposal of swine effluent on spray fields requires crops that assimilate large 

amounts of nutrients year round, so waste applications can be made whenever necessary 

(Crouse 1995; Liu et al. 1997).  Sod crops such as coastal bermudagrass (Cynodon dactylon) 

and tall fescue (Festuca sp.) meet this requirement and are therefore preferred cover crops by 

the swine production industry.

The ability of a cropping system to assimilate nutrients from animal waste is largely 

dependent upon plant characteristics (Rouquette et al. 1973; Cummings et al. 1975).  

Bermudagrass has several desirable attributes that account for its widespread use in spray 

fields.  First, bermudagrass is a long-lived perennial with a hot weather growth period from 

April through September, and is well suited for sandy soils (Westerman et al. 1977).  Second, 

it has a deep root system, high yield potential and good forage quality (Ball et al. 1991; Liu 

et al. 1997).  Finally, rhizomes and stolons give coastal bermudagrass a vigorous spreading 

habit that is critical for receiving yearly effluent applications (Burns et al. 1990).  Often, 

spray fields are over-seeded with fescue, which has growth characteristics that compliment 

those of bermudagrass.  Rye fescue is a cool season perennial with peak production in North 



21

Carolina during March through May and a surge of re-growth in September through 

November (Westerman et al. 1977).

Plant recovery rates of N following effluent application vary depending on conditions 

that influence the form, availability and mobility of N in cropping soils (Adeli et al. 2003).  

These factors include crop density, rates and timing of application, waste composition (i.e. 

organic content, plant available N), soil physical characteristics and climate (Cummings et al.

1975; Westerman et al. 1977; Adeli et al. 2003).  Most effluent applications are performed 

during the summer months when forages are actively growing to facilitate maximum nutrient 

uptake. (King et al. 1985).  However, crop removal values reflect a minimum amount of N

required by plants because they do no account for N losses nor the quality and availability of 

nutrient reserves already in the soil (Zublena 1991).  Plant available N in swine effluent is 

only estimated at 50% of the total effluent N (i.e. availability coefficient of 0.5), in 

recognition of the potential for loss through volatilization, denitrification and leaching 

(Zublena 1991; Poore and Green 1996).

A number of studies in the southern United States have assessed the effectiveness of 

coastal bermudagrass and other forage grasses at assimilating the N in liquid swine effluent. 

(Cummings et al. 1975; Westerman et al. 1977; Burns et al. 1985, 1990; Liu et al. 1997; 

Adeli and Varco 2001; Adeli et al. 2003).  Up to 90 percent or more of the plant available N 

applied to sod crops in North Carolina is commonly recovered when BMPs are followed 

(Baird 1990).  Studies have also revealed the correlation between N removal and 

aboveground dry matter yield, both of which increase quadratically with increasing swine 

effluent irrigation rates (Burns et al. 1990; Adeli and Varco 2001; Adeli et al. 2003).  

However, the capacity to assimilate waste N is not infinite.  Excess N loading to plants can 
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reduce yields by rendering plants more susceptible to diseases and insect lodging, and 

stimulating vegetative growth at the expense of grain production (Crouse 1995).



CHAPTER IV

MATERIALS AND METHODS

4.1.  Description of study site

The study site is a corporate, farrow to half finish swine production facility located in 

Sampson County (34°48’N, 78°18’W), one of several counties that collectively make up 

North Carolina’s ‘Hog Belt’ (Figure 4.1.1).  This facility maintains an on site population of 

approximately 2200 head and employs regionally representative waste management 

practices.  Within animal confinement houses, swine waste is deposited through slatted floors 

into a belowground sump and then flushed into an outdoor, anaerobic lagoon of 1.52 ha 

surface area and 44 x 103 m3 volume.  The liquid phase is subsequently recirculated to flush 

the collection pits.  Stored, liquid phase swine waste is eventually land applied via a set 

sprinkler system to a summer crop of coastal bermudagrass (Cynodon dactylon L.) that is 

often overseeded with tall fescue (Festuca sp.) in the winter.  Fertilization is at the agronomic 

rate, which is roughly similar for both crops at 18 to 23 kg (dry tonne) –1 (Zublena et al.

1995)
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Figure 4.1.1.  Location of the study site within North Carolina’s hog belt

The spray field selected for this study has received liquid swine waste for 

approximately 12 years.  The soil is a Blanton sand with zero to six percent slope and high 

permeability in the 0 to 20 cm layer (Brandon 1986).  Soils are slightly acidic and are 

generally low in organic content.  Concentrations of soil NH4
+ and NO3

- are highly variable 

depending on proximity of the sampling date to the previous spray event.  Table 4.1.1 gives 

ranges and means of selected soil physiochemical properties previously reported (Brown 

1999; Nelson 1999) for the site.
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Table 4.1.1.  Ranges and means of selected soil physiochemical characteristics at the study 
site.  Data are from homogenized samples collected monthly from the active 0 to 20 cm soil 
zone during the period December 1996 through October 1997.

Soil Characteristic Range Mean

pH 5.5 – 7.1 6.4

Moisture (%) 1.8 – 15.5 9.0

Particle Density (g cm–3)* 2.5 – 2.6 2.56

Bulk Density (g cm–3)* 1.19 – 1.40 1.31

Organic Matter (%) 1.2 – 5.0 3.4

Total-C (%) 0.79 – 2.66 1.16

Total-N (%) 0.05 – 0.14 0.07

NO3
--N (µg g dw-1) 1.1 – 55.8 8.5

NH4
+-N (µg g dw-1) 0.5 – 60.0 2.1

*Determined during this study.

4.2.  Experimental design

4.2.1.  General. Experiments were performed in the spring (March 2002), and late 

summer/early fall (August 2001 and 2002).  Each experiment involved application of 0.5 and 

1 inch (1.3 and 2.5 cm, respectively) of freshly collected liquid swine lagoon effluent to 

duplicate 1.5 m x 1.5 m (2.25 m2) plots.  A fifth, unfertilized plot served as a control.  Each 

plot was defined by an aluminum frame that extended 4 cm below the soil surface to prevent 

effluent loss.  Prior to experimentation, vegetation within each plot and the surrounding area 

was cut to a uniform height of 18 cm for trial 1, not cut for trial 2 (vegetation < 12 cm at start 

of experiment) and 7-12 cm in height for trial 3 due to haying the previous week.  Soil N 
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pools and transformations (Figure 1.2) were assessed for up to 19 d following waste addition.  

Sampling frequency (below) was guided by previous time course analyses conducted by this 

and other research groups for the response of various physicochemical and microbial 

processes to swine waste addition.  The duration of each experiment was dictated by local 

weather and previous knowledge of the time required following waste application for soil N 

to decrease to pre-fertilization levels.  Sample plots were positioned on level ground to 

minimize lateral off-plot transport of liquid swine waste during application or rainfall in the 

subsequent observational period.

All soils were collected with stainless steel sleeved (4.8 cm i.d.) or non-sleeved (5.4 

cm i.d.) coring devices.  The effect of destructive sampling was minimized by immediately 

replacing cores taken from experimental plots with cores from similarly fertilized companion 

plots.  Locations of core removal and replacement in experimental plots were flagged to 

avoid later resampling.  A previous study at this site (Nelson 1999) showed that >90% of the 

N-cycling microbial activity was localized in the surface 20 cm of soil.  Except where noted, 

sampling was focused on this 20 cm “active zone”.  All soil, liquid and plant materials 

intended for later analysis were kept at 4°C during storage and transport and were 

immediately frozen or processed on return to the laboratory.

Soil cores returned to the laboratory were sieved (4.75-mm mesh) and homogenized.  

Soil nutrients were extracted in 2 M KCl (10:1 volume/soil wet weight) and filtered 

(Whatman no. 42 paper).  Nitrate plus NO2
--N (thereafter referred to as NO3

--N) and NH4
+-N 

were determined by the copperized cadmium reduction and the indophenol blue methods 

(Keeney and Nelson 1982) using a Lachat QuikChem 4000 (Zellweger Analytics, 

Milwaukee, WI) automated flow injection analyzer.  Soil moisture was measured 
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gravimetrically (oven dried at 105°C), particle density was determined pycnometrically, and 

bulk density was computed as the quotient of oven-dried mass divided by field volume.  

Percentage water-filled pore space (%WFPS) was calculated as the ratio of volumetric soil 

water content to total soil porosity.

Liquid swine waste was analyzed for total-N (TN) by persulfate oxidation (Solorzano 

and Sharpe 1980) and for NH4
+-N as described above.  A prior study at this site (Nelson 

1999) showed no NO3
--N in liquid swine waste from this lagoon.  TN in oven-dried, 

homogenized plant material was assayed by dry combustion with a Carlo Erba (Milan, Italy) 

NA 1500 elemental analyzer.

Fertilization was accomplished by adding either 29 or 58 L of liquid swine effluent to 

designated plots (no addition to the control) to achieve the target applications of 1.25 and 2.5 

cm.  Effluent was added slowly with a hand-held watering can over approximately 45 

minutes to avoid ponding, and to allow ample time for infiltration.  Collector cups (300 mL 

mason jars) were distributed throughout each plot to visually ensure uniform waste 

distribution.  Following waste application, the contents of three randomly selected cups from 

each of two plots were composited for NH4
+-N and TN analyses and the remaining cups were 

emptied onto the plots.

Soil moisture and temperature were measured continuously in the active soil zone 

during each experimental period.  Soil moisture was determined with Campbell Scientific 

(Logan, UT) averaging water content reflectometers (Model CS 615) and temperature was 

determined with Campbell Scientific averaging thermocouple probes (Model TCAV) 

positioned at 5, 10, 15 and 20 cm below the soil surface.  All data were recorded on a 
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Campbell Scientific Model CR10X data logger.  Rainfall was determined with a Rainwise 

tipping bucket rain gauge.

4.2.2.  Ammonia volatilization.  Ammonia volatilization was measured using a 

dynamic chamber technique that has been demonstrated (Ruess and McNaughton 1988) to be 

97% efficient at absorbing NH3 volatilized within the chamber.  A single PVC soil collar (20 

cm inside diameter x 14 cm height) equipped with an inlet and outlet was permanently 

emplaced to a soil depth of 5.5 cm in each plot.  The system was sealed during measurement 

periods with a PVC lid fitted with an o-ring that had been lubricated with low-vapor vacuum 

grease.  The system inlet consisted of a 2 cm inside diameter x 1.7 m long PVC pipe that 

extended beyond each plot.  The distal end of the inlet was fitted with a removable cartridge 

of acid-coated (5% v/v H3BO4) fiberglass batting to scrub inlet air of NH3.  Tests indicated 

that air entering the chamber was NH3-free.  A Gast (Benton Harbor, MI) rotary vane 

vacuum pump drew air through the chamber.  A fraction of the outlet air was directed 

through Teflon tubing to a 500 ml gas-washing bottle where NH3 volatilized from the soil 

surface was trapped in 200 ml of 2% H3BO4 solution.  Flow rates through the chamber and 

NH3 trap were maintained at 15.7 and 0.7 L min-1 with Dwyer (Michigan City, IN) gas flow 

meters.

Ammonia volatilization was presumed to represent a major loss term from waste-

amended soils.  To ensure accurate loading, each soil collar was covered during waste 

application to the remainder of the 2.25m2 plot and the exact volume of waste needed to 

achieve each target application (400 and 800 ml for 1.3 and 2.5 cm fertilizations) was added 

to the collar immediately thereafter.  Ammonia flux measurements of 0.5 h duration were 
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made at increasing intervals from the time of application to 12 h (6 determinations), at 18, 

24, 48 and 72 h and at 2 to 3 d intervals thereafter to the termination of the experiment.  Inlet 

NH3 scrubbers and outlet H3BO4 traps were replaced for each flux determination and soil 

collars were uncovered between flux determinations to allow free exchange of gases between 

the soil and atmosphere.  Ammonia in boric acid traps was determined by automated 

colorimetry (above).  Hourly, area-based rates of NH3 volatilization were determined from 

the fraction of chamber outlet air directed through the NH3 traps, the concentration of NH3 in 

the H3BO4 solution and measurements of trapping efficiency.

4.2.3.  Nitrous oxide flux.  Nitrous oxide emission was determined using a static 

chamber technique (Whalen 2000).  Briefly, a single soil collar of similar dimensions to 

those described above, but without inlet or outlet ports, was permanently installed in each 

plot.  Covers were fitted with a capillary bleed to equalize pressure and a Swagelok o-seal 

fitting equipped with a septum for syringe sampling.  A butyl o-ring on the cover effected the 

seal between it and the soil collar.  Chamber headspaces were sampled using 10-cm3 SESI 

nylon syringes equipped with pistons modified to accept a larger diameter sealing o-ring.  

Chamber headspaces were sampled on cover emplacement and at 20 min intervals thereafter 

to 60 min.  Samples were stored prior to analysis by inserting the hypodermic needles of 

syringes into butyl stoppers.  Covers were removed between sampling sessions, which 

occurred immediately following waste addition and at three-hour intervals to 11h (4 

determinations), at 20, 24, 48, and 72 h, and at 2 to 3 day intervals thereafter to the end of 

each experiment.
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Nitrous oxide was determined with a Shimadzu (Columbia, MD) GC-14A 63Ni 

electron capture detector gas chromatograph fitted with a 0.5-mL sample loop.  Gases were 

separated on a 1-m pre-column and a 3-m analytical column (both Porapak-Q) operated at 

40°C with a 5% CH4 – 95% Ar carrier flowing at 25 mL min-1.  The instrument was 

calibrated with commercial N2O air blends (Scott Specialty Gases; Plumbstead, PA) 

following verification of stated concentrations with National Institute of Standards and 

Technology standards.  Hourly, area-based rates of N2O emission were calculated from the 

time-linear rate of concentration increase in the headspace during chamber deployment.

4.2.4.  Denitrification.  Rates of denitrification (N2 + N2O production) were 

determined with the C2H2-block technique (Yoshinari et al. 1977; Klemedtsson et al. 1990), 

using duplicate 4.8 cm diameter soil cores collected from the 20 cm active zone of each plot.  

Stainless steel corer sleeves (total length 30.5 cm) containing the 20 cm intact soil cores were 

sealed at both ends with caps fitted with the Swagelok sampling ports described above.  

Cores were injected from the bottom with acid-washed C2H2 (Paul and Zebarth 1997a) via a 

perforated stainless steel cannula (1 mm diameter x 20 cm length), which facilitated 

homogeneous distribution of C2H2 through the soil profile.  The volume of C2H2 added was 

sufficient to achieve a partial pressure of 10 kPa, which has been demonstrated to inhibit the 

reduction of N2O to N2 by denitrifiers (Balderston et al. 1976).  Cores were equilibrated to 

atmospheric pressure by briefly cracking the headspace sampling port and C2H2 was then 

allowed to diffuse through the soil for 1 h, a time period that has been previously 

demonstrated (Fischer 2000) to be sufficient to evenly distribute C2H2 through similar soil 

cores.  Headspaces were then sampled at 30 min intervals to 1 h using modified (above) 5 ml 
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SESI nylon syringes and N2O was determined by electron capture gas chromatography.  

Hourly, area-based rates of denitrification were calculated from the time-linear rate of N2O 

increase in the headspace of the core sleeve.  Denitrification flux measurements were 

determined at 2, 6, 10, 20, and 24h, and at 1, 2, or 3d intervals thereafter, to the termination 

of each experiment. 

4.2.5.  Microbial biomass-N. Microbial biomass-N was determined by the 

chloroform fumigation method (Horwath and Paul 1994) using 5.4 cm diameter cores (n=4) 

from the active zone of each plot.  A homogenized 50 g sample of field-moist soil from each 

core was fumigated with ethanol-free CHCl3 for 24 h at 25°C.  Moisture content of 

unfumigated and fumigated samples was adjusted to 55% of water holding capacity and 

fumigated soil was inoculated with 2 g of unfumigated soil.  All soils were incubated in 

sealed containers in the dark at 25°C for 10 d.  Microbial biomass-N was calculated as the 

flush of NH4
+-N due to fumigation, corrected for the NH4

+-N mineralized from the 

unfumigated soil.  Following Jenkinson (1988), an average extraction efficiency of 0.54 was 

assumed.  Microbial biomass-N was determined prior to fertilization (day 0), on day 3 and at 

the termination of each experiment.

4.2.6.  Plant biomass-N.  Prior to experimentation, above- and belowground live 

plant biomass collected in 25 cm diameter cores (n=5) was separated from soil and detritus 

by elutriation.  Cores were randomly collected from outside of the sample plots, but within 

an area where vegetation was cut to a height similar to that of the sample plots.  At the 

termination of each experiment, cores (n=4) were collected from within each sample plot and
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similarly processed.  Oven-dried plant material was homogenized (Wiley Mill; 40 mesh 

screen) and analyzed for TN by dry combustion (Carlo Erba NA 1500 Elemental Analyzer).

4.2.7.  Soil-N concentrations.  After each denitrification rate determination, soil 

cores were homogenized and analyzed for NH4
+-N and NO3

--N to assess the time course for 

change in soil inorganic-N during the experimental period.  Additional 5.4 cm diameter cores 

were periodically collected to 50 cm, sectioned at 10 cm intervals and analyzed for 

inorganic-N.  Five cores randomly collected near the study plots prior to experimentation and 

three collected from within each plot at the termination of the experiment were used to 

determine zero time (T0) and final time (TF) depth distributions of soil inorganic-N.  

Duplicate cores were collected within each plot and adjacent to each plot following each 

rainfall >2.5 cm, to assess vertical and lateral transport of inorganic-N from the 20 cm active 

zone.

4.3.  Calculations.

Gaseous N losses through volatilization (NV), N2O emission (NN2O) and total 

denitrification (ND = N2O + N2) were calculated by time-integrating rate measurements over 

the observational period.  The fractional loss of N to N2O in denitrification was calculated as 

the quotient of the time-integrated rates, NN2O/ND.  Net N assimilation into plant material 

(NP) and microbial biomass (NM) was calculated as the difference between TF and T0 assays.  

Inorganic-N storage in the 0 to 20 cm active zone at T0 (Nin-0) and TF (Nin-F) was calculated 

from the total dry mass of soil and measured inorganic-N concentrations.  Nitrogen loss 

below the active zone (NG) was calculated as the difference in inorganic-N stored in the 20 to 
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50 cm depth interval at TF and T0, based on dry soil mass and inorganic-N determinations.  A 

nitrogen mass balance was constructed for each plot:

Nin-0 + NS = Nin-F + NM + NP - NV – ND – NG         (4.3.1)

where NS is the mass of N added to each plot as swine waste and all other terms are as 

previously defined.  Due to the difficulties in monitoring fluxes into and out of soil dissolved 

organic-N reservoirs, I did not consider this reservoir.  Instead, following Pakrou and Dillon 

(2000), I focused on the mineral-N pool in constructing a simplified N budget.



CHAPTER V

RESULTS

5.1.  Swine effluent-N 

Ammonium-N and TN contents of the swine effluent collected from the lagoon prior 

to the three experiments ranged over factors of about 2 and 1.5, respectively (Table 5.1.1).  

The waste was highly mineralized, as NH4
+-N accounted for roughly 75% of the TN.

Table 5.1.1.  Ammonium and TN concentrations in liquid swine lagoon effluent used to 
fertilize experimental plots.

Experiment Date NH4
+-N (mg l-1) TN (mg l-1) % TN as NH4

+-N 

1 12 Aug 01 222 330 67

2 25 Mar 02 444 506 88

3 7 Aug 02 205 331 62

Average 290 389 72

SD 133 101 -

5.2.  Experiment 1

Immediately following the first experimental application, NH3 emission from the soil 

increased to 79 mg m-2 h-1 and 186 mg m-2 h-1 in the plots amended with 1.25 cm and 2.5 cm 

of swine waste, respectively (Figure 5.2.1).  In contrast, emission from the control
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plot was only 7 mg m-2 h-1, or 9% and 4% of the emission from the fertilized plots.  The 

period of elevated emission was brief, as NH3-N fluxes had declined to 15 mg m-2 h-1 and 40 

mg m-2 h-1 in the respective fertilized plots only 1.5 h following waste addition.  Within 6 h 

of waste addition, NH3-N fluxes in the fertilized plots were indistinguishable from that of the 

control plot.

Figure 5.2.1.  Time course for NH3 volatilization in experiment 1.  Low and high doses 
represent 1.25 and 2.5 cm additions of waste, which correspond to area-based N additions of 
3.94 and 8.44 g m-2.  The SD for the duplicate plots (error bars not shown) at each time point 
averaged 8.1 mg NH3

--N m-2 h-1 and 10.2 mg NH3
--N m-2 h-1 for the low and the high dose 

plots, respectively.

Soil percent water filled pore space responded immediately to the simulated spray 

event by increasing from a pre-fertilization value of around 30% to about 45% and 55% in

the low and high dose plots, respectively (Figure 5.2.2a).  Thereafter, these sandy soils 

rapidly drained with an accompanying decline in %WFPS.  Soils in all plots showed 

increases in %WFPS, followed by rapid draining in response to storms that occurred roughly 

1, 2, 6 and 8 d after waste addition.  Soil %WFPS was essentially similar in all plots from 

about day 8 to the termination of the experiment.  A total of about 18 cm of rain was 

recorded during the observational period.
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Soil temperatures showed diurnal variations of about 3°C and declined gradually 

throughout the experiment (Figure 5.2.2b).  The maximum soil temperature of 30°C was 

observed at the time of waste addition and corresponded to an air temperature of 32°C.  The 

lowest soil temperature was 24°C, in the evenings of days 14 and 15.  Thus, soils varied over 

only 6°C during the entire observational period. 

Immediately after fertilization, soil NH4
+-N increased from a pre-fertilization 

concentration of 3 µg gdw
-1 to roughly 9 µg gdw

-1 and 17µg gdw
-1 in the high and low dose 

plots, respectively (Figure 5.2.2c).  Within 10 h of waste application, concentrations reached 

maxima of 15 µg gdw
-1 and 25 µg gdw

-1 in these plots.  By day 6, NH4
+-N concentrations had 

steadily declined to about 9 µg gdw
-1 in both treatments, but still exceeded the 6 µg gdw

-1 of 

the control plot.  Thereafter, concentrations of NH4
+-N fluctuated over a range of about 10 µg 

gdw
-1 in all plots to the end of the experiment.  Changes in NH4

+-N concentrations in the 

fertilized plots tracked those of the control plot, suggesting that the fluctuations were 

unrelated to waste amendment.  However, soil NH4
+-N levels in the high dose treatment were 

consistently higher than those in the low dose treatment, and NH4
+-N in the control plot was 

consistently lower than in the waste-amended plots. 

Soil NO3
--N concentrations began a slow increase immediately after waste 

amendment from a pre-fertilization value of 0.1 µg gdw
-1 to 1.3 µg gdw

-1 and 2.9 µg gdw
-1 by 

day 4 in the low and high dose treatments (Figure 5.2.2d).  These increases in NO3
--N 

concentrations accompanied the decline in soil NH4
+-N levels observed to day 4 (Figs. 5.2.2c 

& d).  Nitrate values in the plots fertilized with the high dose of swine waste remained 

elevated until day 6, then rapidly decreased to about 0.5 µg gdw
-1.  Thereafter, soil NO3

--N 

concentrations remained below 1 µg gdw
-1 with small peaks on days 8, 14, and 18.  Consistent 
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with the time course for change in soil NH4
+-N, soil concentrations of NO3

--N reflected the 

level of fertilization.  That is, concentrations in the high dose treatment exceeded those of the 

low dose treatment, which were elevated with respect to the control.

Highest denitrification rates were observed in all of the fertilized plots on days 2, 7 

and 10 (Figure 5.2.2e).  Fluxes of N2 at these sampling points varied from approximately 500 

to 840 µg m-2 h-1 in the low dose plots and from about 800 to 860 µg m-2 h-1 in the high dose 

plots.  All emissions of soil N2 corresponded with rain events of about 9, 7, and 2 cm 

immediately preceding these respective dates.  Elevated rates of denitrification were 

observed in the control plot between day 7 and 12, corresponding to the increase in soil 

moisture following the day 7 shower.

Nitrous oxide, an additional endproduct of denitrification, showed much higher 

spatiotemporal variability in emission than N2 (Figure 5.2.2f).  The N2O flux abruptly 

increased from 26 to 615 µg m-2 h-1 in the plots amended with the high dose of effluent on 

day 2.  Reduced, but measurable fluxes were also observed on days 4 and 6.  A small flux of 

95 µg N2O
--N m-2 h-1 was also observed on day 2 from the plots amended with the low dose 

of swine effluent.  Otherwise, N2O fluxes were undetectable in the fertilized plots.  Low 

levels of emission were observed on three dates in the control plot, with rates varying from 1 

to 9 µg N2O
--N m-2 h-1.  Otherwise, N2O emissions were not detected in control plots.
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Figure 5.2.2.  Swine waste fertilization experiment 1.  Time course for change in: (a) percent 
water filled pore space (%WFPS); (b) temperature; (c) NH4

+-N; (d) NO3
--N; and soil emissions 

of (e) N2; and (f) N2O-N from plots amended with low and high doses (as per Figure 5.2.1) of 
liquid swine effluent.  Data points for all variables are the average of duplicate plots at each 
dose except temperature (n = 3).  The SD for duplicate plots at the high and low doses (error 
bars not shown) averaged: 1.4 and 1.8 µg NH4

+-N gdw
-1, 0.2 and 0.3 µg NO3

--N gdw
-1, 74.3 and 

66.8 µg N2-N m-2 h-1 and 5.1 and 17.4 µg N2O
--N m-2 h-1.
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5.3.  Experiment 2

Consistent with the first simulated spray event, NH3
--N emissions from soils 

immediately increased to 50 mg m-2 h-1 and 68 mg m-2 h-1 in the low and high dose plots, 

respectively (Figure 5.3.1).  In contrast, the immediate emission from the control plot was 

only 1.5 mg m-2 h-1, or 3% and 2% of the flux from the fertilized soils.  Within 1.5 h of waste 

addition, NH3
--N fluxes had dropped to 8 mg m-2 h-1 in the low dose plots and 20 mg m-2 h-1 

in the high dose plots.  However, by 10 h, NH3-N fluxes were indistinguishable among all 

treatments.

Figure 5.3.1.  Time course for NH3 volatilization in experiment 2.  Low and high doses 
represent 1.25 and 2.5 cm additions of waste, which correspond to area-based N additions of 
6.1 and 12.9 g m-2.  The SD for the duplicate plots (error bars not shown) at each time point 
averaged 1.7 mg NH3

--N m-2 h-1 and 2.0 mg NH3
--N m-2 h-1 for the low and the high dose 

plots, respectively.

Soil percent water filled pore space responded immediately to the simulated spray 

event by increasing from a pre-fertilization value of around 35% to about 46% and 56% in 

the low and high dose plots, respectively (Figure 5.3.2a).  As in the first experiment, %WFPS 

immediately increased in waste-amended plots following fertilization, but rapidly declined as 

0 2 4 6 8 1 0 1 2

H o u r s  A f t e r  F e r t i l i z a t i o n

0

2 0

4 0

6 0

m
g

 N
H

3- -N
 m

-2
 h

-1

c o n t r o l
l o w
h i g h



40

soils drained.  Soils in all plots also showed increases and subsequent decreases in %WFPS 

in response to 1 and 4 cm storms that occurred on days 1 and 6.  As soils drained and dried 

following the day 6 rainfall, %WFPS steadily declined in all plots until reaching pre-

fertilization values at the end of the experiment.  A total of 6.4 cm of rain was recorded 

during the observational period. 

Soil temperatures showed diurnal variations ranging from 1 to 5oC as daily 

temperatures generally increased to the middle of the experiment (Figure 5.3.2b).  The 

maximum soil temperature of about 19°C was observed on day 9 and corresponded to an air 

temperature of 20°C.  The lowest soil temperature of 12°C was observed in the mornings of 

days 0 and 13.  Thus, soils varied over only 7°C during the entire observational period. 

Immediately following waste addition, soil NH4
+-N increased from a pre-fertilization 

concentration of 3 µg gdw
-1 to roughly 13 µg gdw

-1 and 45 µg gdw
-1 in the low and high dose 

plots, respectively (Figure 5.3.2c).  Ammonium concentrations continued to increase to a 

maximum of 25 µg gdw
-1 at 10 h post-fertilization in the low dose plots, but declined from the 

45 µg gdw
-1 observed immediately after fertilization in the high dose plots to about 30 µg gdw

-

1 in the same time period.  By day 6, NH4
+-N concentrations had steadily declined to about 9 

µg gdw
-1 in both treatments, but still exceeded the 2.5 µg gdw

-1 of the control plot.  Thereafter, 

concentrations of NH4
+-N fluctuated over a range of roughly 12 µg gdw

-1 in fertilized plots 

until the end of the experiment.  In agreement with experiment 1, changes in NH4
+-N 

concentrations in fertilized plots generally tracked those of the control plot, suggesting that 

the fluctuations were unrelated to waste amendment.  Furthermore, soil NH4
+-N levels in the 

high dose plots were consistently higher than those in the low dose plots and NH4
+-N in the 

control plot was consistently lower than all waste-amended plots.
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Soil NO3
--N concentrations slowly increased after waste amendment from a pre-

fertilization value of 0.5 µg gdw
-1 to 4 µg gdw

-1 and 7 µg gdw
-1 by day 6 in the low and high 

dose treatments, respectively (Figure 5.3.2d).  These increases in NO3
--N concentrations 

accompanied the decline in soil NH4
+-N observed to day 6 (Figure 5.3.2c).  Nitrate 

concentrations at both doses remained elevated between days 6 and 10, fluctuating between 

about 2 and 4 µg gdw
-1 in the low dose plots and between 5 and 8 µg gdw

-1 in the high dose 

plots.  Thereafter, NO3
--N values generally declined in both fertilized plots to the end of the 

experiment, but remained elevated above concentrations in the control.  Overall, the time 

course for change in soil NO3
--N and NH4

+-N and concentration differences among 

treatments in this experiment corroborated well the data from experiment 1.  That is, 

concentrations in the high dose treatment always exceeded those of the low dose treatment, 

which always exceeded those of the control, and soil NO3
--N increased as NH4

+-N declined 

in waste-amended plots.

Noteworthy increases in rates of denitrification in fertilized plots were observed only 

on day 7 (Figure 5.3.2e).  Peak fluxes of N2 reached approximately 2600 µg m-2 h-1 in the low 

dose plots and 5400 µg m-2 h-1 in the high dose plots subsequent to a 4 cm rainfall on day 6.  

Dinitrogen gas emission from the control plot also increased on day 7 to 365 µg m-2 h-1 from 

a baseline value of about 5 µg m-2 h-1.  However, this elevated value for the control was only 

14% and 7% of the N2 emitted from the high and low dose fertilized plots, respectively.

Nitrous oxide emissions tracked that of N2 in the fertilized plots (Figure 5.3.2f).  

Emission of N2O-N was limited to a single event in response to the day 6 rain, and resulted in 

fluxes of 175 µg m-2 h-1 from the low dose plot and 1000 µg m-2 h-1 from the high dose plot.  
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Otherwise, N2O emissions were undetectable from the fertilized plots.  Nitrous oxide 

emission was never observed from the control plot.
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Figure 5.3.2.  Swine waste fertilization experiment 2.  Time course for change in: (a) percent 
water filled pore space (%WFPS); (b) temperature; (c) NH4

+-N; (d) NO3
--N; and soil 

emissions of (e) N2; and (f) N2O-N from plots amended with low and high doses (as per 
Figure 5.3.1) of liquid swine effluent.  Data points for all variables are the average of 
duplicate plots at each dose except temperature (n = 3).  The SD for duplicate plots at the high 
and low doses (error bars not shown) averaged: 2.9 and 4.3 µg NH4

+-N gdw
-1, 0.9 and 1.3 µg 

NO3
--N gdw

-1, 148.3 and 493.9 µg N2-N m-2 h-1 and 34.3 and 104.0 µg N2O
--N m-2 h-1.
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5.4.  Experiment 3

Immediately following the third experimental fertilization, NH3 emissions from soils 

increased to 38 mg m-2 h-1 and 74 mg m-2 h-1 in the plots amended with 1.25 cm and 2.5 cm of 

swine waste, respectively (Figure 5.4.1).  In contrast, emission from the control plot was 16 

mg m-2 h-1, or 42% and 22% of the emission from the fertilized plots.  Consistent with the 

previous experiments, the period of elevated emission was brief.  Ammonia fluxes declined 

to about 10 mg m-2 h-1 in all of the fertilized plots 5 h after fertilization.  Thereafter, NH3-N 

fluxes from the fertilized plots were indistinguishable from that of the control plot.

Figure 5.4.1.  Time course for NH3 volatilization in experiment 3.  Low and high doses 
represent 1.25 and 2.5 cm additions of waste, which correspond to area-based N additions of 
4.0 and 8.5 g m-2.  The SD for the duplicate plots (error bars not shown) at each time point 
averaged 2.6 mg NH3

--N m-2 h-1 and 4.3 mg NH3
--N m-2 h-1 for the low and the high rate 

plots, respectively.

Soil percent water filled pore space responded immediately to the third simulated 

spray event by increasing from a pre-fertilization value of around 25% to about 34% and 

42% in the low and high dose plots, respectively (Figure 5.4.2a).  As soils drained over the 

next 6 d, moisture values in all fertilized plots declined to about 18% WFPS.  Soils showed 
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increases in %WFPS on day 12 following a 4 cm rain on the preceding day.  In total, soil 

moisture values fluctuated over about 25%WFPS throughout the 16 d experiment.  A total of 

4.8 cm of rain was received during the experimental period.  This value excludes a 

malfunction of the rain gauge on day 9 where an apparent 9 cm of rainfall was not evident in 

continuously recorded soil moisture data (Figure 5.4.2a).

Fertilized soils showed diurnal temperature variations of 3 to 6°C and generally 

increased throughout the 16 d observational period (Figure 5.4.2b).  The lowest soil 

temperature of 24°C was observed the morning of day 1 in response to an air temperature of 

14°C the previous evening.  The maximum soil temperature of 31°C was observed on days 6, 

11 and 16, corresponding to air temperatures of around 40°C.  Thus, soil temperatures varied 

over about 7°C during the entire 16 d observational period.

Soil NH4
+-N rapidly increased from a pre-fertilization concentration of 4 µg gdw

-1 to 

roughly 23 µg gdw
-1 in both the high and low dose plots immediately following waste 

application (Figure 5.4.2c).  Ammonium concentrations fluctuated over the next 6 h at both 

doses, but by day 12, soil NH4
+-N concentrations had declined to about 5 µg gdw

-1 in both 

treatments.  However, NH4
+-N concentrations still exceeded the 3 µg gdw

-1 of the control plot.  

As in the first two fertilizations, changes in the control plot tracked those of the fertilized 

plots, suggesting that the fluctuations were unrelated to waste amendment.  Once again, soil 

NH4
+-N levels were consistently highest in the high dose treatment, and NH4

+-N in the 

control plot was consistently lower than the waste-amended plots.

Soil NO3
--N concentrations started increasing in the high dose plot about 1 d after 

waste amendment from a pre-fertilization value of roughly 1 µg gdw
-1 to a maxima of 11 and 

8 µg gdw
-1 on day 6 and day 12 in the high and low dose treatments, respectively (Figure 
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5.4.2d).  Nitrate concentrations in the low dose treatment were only slightly elevated relative 

to controls until the day 12 increase, when the concentration exceeded that of the high dose 

treatments, which was declining.  In accord with the entire data for fertilized plots in 

previous experiments, the temporal decrease in soil NH4
+-N at the high dose coincided with 

the increase in NO3
--N.  However, this pattern was not readily apparent for the low dose 

treatment.

Maximum denitrification rates of 149 and 386 µg m-2 h-1 were observed immediately 

following waste addition in the low and high dose treatments (Figure 5.4.2e).  Small peaks in 

denitrification rates were also observed in the low dose treatment on days 1, 6 and 12, while 

peaks in the high dose treatment occurred on days 3 and 12.  Fluxes of N2 on these dates 

varied from approximately 40 to 150 µg m-2 h-1 in the low dose plots and from about 100 to 

400 µg m-2 h-1 in the high dose plots.  The day 12 pulses were likely related to the increase in 

% WFPS from precipitation the preceding day (Figure 5.4.2a), while the cause for other 

small increases was unclear.  Rates of N2 emission from the control plot generally varied 

from 0 to 5 µg m-2 h-1.  However, the flux increased to 50 µg m-2 h-1 on day 13, which may 

have also been related to the day 11 rain.

Nitrous oxide emissions showed temporal variations similar to the N2 flux in 

fertilized plots (Figures 5.4.2e & f).  Nitrous oxide fluxes increased immediately following 

waste addition in both treatments to maximum values of 35 µg m-2 h-1 from the low dose 

plots and 76 µg m-2 h-1 from the high dose plots.  Smaller peaks were observed on days 2 and 

6.  All fluxes of N2O were considerably less than those of the first and second experiment, 

and by day 12, were indistinguishable from that of the control plot, which showed little or no 

N2O flux.
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Figure 5.4.2.  Swine waste fertilization experiment 3.  Time course for change in: (a) 
percent water filled pore space (%WFPS); (b) temperature; (c) NH4

+-N; (d) NO3
--N; and 

soil emissions of (e) N2; and (f) N2O-N from plots amended with low and high doses (as per 
Figure 5.4.1) of liquid swine effluent.  Data points for all variables are the average of 
duplicate plots at each dose except temperature (n = 3).  The SD for duplicate plots at the 
high and low doses (error bars not shown) averaged: 2.1 and 3.4 µg NH4

+-N gdw
-1, 0.9 and 

1.5 µg NO3
--N gdw

-1, 23.0 and 81.1 µg N2-N m-2 h-1 and 8.2 and 9.4 µg N2O
--N m-2 h-1.
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5.5.  Microbial biomass-N 

Microbial biomass showed a consistent pattern of change in all experiments (Table 

5.5.1).  Fertilization at the high dose resulted in a ~100% increase in microbial biomass at 

day 3, while a proportionately lesser increase of about 50% was observed in low dose plots.  

Microbial biomass declined in all plots by the termination of all three experiments, but, 

relative to the control, remained elevated by about and 22 to 30% and 35 to 50% in the low 

and high dose treatments.  

The mass of N immobilized by the end of the ~two week experiments varied from 0.6 

to 0.9 g m-2 in the low dose treatments and from 0.7 to 1.2 g m-2 in the high dose treatments.  

This represented 13 to 22% and 8 to 14% of the total waste-N applied in the respective 

treatments.

Table 5.5.1.  Percent increase in microbial biomass relative to control plots at selected time 
points during three liquid swine waste fertilization experiments.  Waste was applied at two 
doses (high and low) corresponding to 1.25 and 2.5 cm additions.  See text for mass of N 
applied during each experiment.  The last sampling date for each experiment corresponded to 
the termination of that experiment.

Experiment 1 2 3

Day 3 19 3 14 3 16

Low 63 27 77 22 47 30
Microbial Biomass

High 109 35 141 35 94 50

5.6.  Plant biomass-N 

Relative to the control, plant biomass also increased in waste-amended plots (Table 

5.6.1), but the response was more variable than for microbial biomass.  The low dose plots in 

experiment 1 showed only a 4% increase in plant biomass relative to the control, compared 
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with the 43% increase observed in the high dose plots.  The mass of swine effluent-N 

assimilated into plant biomass varied from 2.0 g m-2 in the low dose treatment of experiment 

1 to 9.7 g m-2 in the high dose plot of experiment 2.  A dose response was evident in 

experiments 1 and 2, as the mass of effluent-N assimilated into plant biomass was about two-

fold or more higher for the high versus low dose plots. In contrast, plant assimilation 

accounted for about 4.5 g N m-2 at both application levels in experiment 3.  Overall, 

incorporation into plant biomass represented 46 to 117% of the waste-N.

Table 5.6.1.  Percent increase in plant biomass relative to control plots at selected time points 
during three liquid swine waste fertilization experiments.  Waste was applied at two doses 
(high and low) corresponding to 1.25 and 2.5 cm additions.  See text for mass of N applied 
during each experiment.  The last sampling date for each experiment corresponded to the 
termination of that experiment.

Experiment 1 2 3

Day 3 19 3 14 3 16

Low - 4 - 33 - 69
Plant Biomass

High - 43 - 87 - 67

5.7.  N transport below the active 20 cm soil zone

Fertilizer-N was transported below the microbially active surface 20 cm of soil at 

both loading rates for each experiment (Table 5.7.1).  The mass of N loss was roughly similar 

at both loading rates for Experiment 1, but was seemingly dose-related during the two

successive trials, as the higher dose showed higher N loss.  Leaching losses varied over a 

factor of about 20, with values ranging from 0.2 g N m-2 for the low dose in Experiment 3 to 

4.5 g N m-2 for the high dose in Experiment 2.  The mass of N transported below the active 

zone appeared to be unrelated to rainfall, as largest values were associated with relatively 
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little rainfall (6.4 cm).  However, the largest mass losses did correspond with the highest 

loading rate in all experiments.

Table 5.7.1.  Rainfall received, fertilizer-N loading rate and N lost to leaching below the 20 
cm microbially active soil zone for each experiment.  All N loss rates are the means of 
duplicate plots at each loading rate.

Loading rate Leaching loss
Experiment Date Rainfall (cm)

(g N m-2) (g N m-2)

4.0 0.5
1 12 Aug 01 18.1

8.4 0.6

6.1 1.2
2 25 Mar 02 6.4

12.9 4.5

4.0 0.2
3 7 Aug 02 4.8

8.5 0.8

5.8.  Mass balance

The relative importance of sink terms for applied N was assessed by a mass balance 

approach at the termination of each experiment (Table 5.8.1).  Assimilation by plants was 

consistently the most important sink, accounting for 46 to 117% of the liquid waste when the 

entire data were considered.  Losses to the atmosphere through denitrification and 

volatilization were relatively minor.  Denitrification was negligible in all experiments, 

accounting for ≤2% of the N applied, while NH3 volatilization accounted for only 5 to 17% 

of the N loss.  The storage term was important in experiment 1 only, representing 30 to 50% 

of the applied N in this trial, but only about 10% on other dates.  Microbial immobilization 

and leaching loss were of about equal importance, accounting for roughly 10 to 15% of the 
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applied-N, with the exception of experiment 2 when leaching loss assumed greater 

significance.

Table 5.8.1.  Fate of applied N in three experimental fertilizations of agricultural fields with 
liquid swine waste at two loading rates.  All percentages are the means of duplicate plots at 
each loading rate.

Experiment 12-Aug-01 25-Mar-02 7-Aug-02

Loading rate (g N m-2) 4.0 8.4 6.1 12.9 4.0 8.5

Percent of applied N

Denitrification (ND) 2 1 1 1 0 0

Plant assimilation (NP) 49 46 70 75 117 52

Microbial immobilization (NM) 22 14 13 9 14 8

Leaching loss (NG) 14 15 19 35 6 9

NH3 volatilization (NV) 5 6 17 17 13 14

Storage (Nin F-0) 50 30 10 10 14 9

Total 142 112 130 147 164 92



CHAPTER VI

DISCUSSION

6.1.  Swine effluent TN and NH4
+-N 

Concentrations of total-N and NH4-N in the liquid swine waste used in my 

experimental fertilizations (Table 5.5.1) agree with previous chemical analyses of lagoonal 

swine waste.  Safely et al. (1992) reported average TN and NH4
+-N concentrations of 381 

and 308 mg l-1 for three mid-summer experiments at an eastern North Carolina farm.  

Likewise, Adeli et al. (2003) found TN and NH4
+-N concentrations of 341 and 280 mg l-1 in 

liquid swine waste during two late summer studies on a commercial swine facility in 

Mississippi.  Finally, Sharpe and Harper (2002) provide somewhat higher concentrations for 

TN and NH4
+-N, 561 and 482 mg l-1, for lagoonal swine effluent at another eastern North 

Carolina facility.

The percentage of TN accounted for by NH4
+-N in the effluent applied in my three 

experiments was about 75%.  These results are consistent with previous reports for swine 

lagoons in this region, which show NH4
+-N percentages ranging from 64 to 92% of the TN 

(Westerman et al. 1985; Safely et al. 1992; Zublena et al. 1996; Sharpe and Harper 1997, 

2002; Adeli and Varco 2001; Adeli et al. 2003).  This predominance of NH4
+-N over 

organic-N reflects the efficiency of anaerobic decomposition in swine lagoons (Adeli and 

Varco 2001), whereby mineralization converts the majority of organic N to NH4
+-N and lack 

of O2 prevents oxidation of the NH4
+-N to NO3

--N.
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6.2.  Ammonia volatilization

The time trajectory, hourly rates and fractional loss of fertilizer-N to NH3

volatilization following animal waste applications to cropping systems are highly variable 

depending on waste characteristics, method of application, field conditions, and the technique 

employed to measure NH3 emission.  However, all investigations consistently show 

maximum rates of NH3 efflux shortly after waste application and my study is consistent with 

these previous reports.  Maximum NH3-N efflux rates from my experimental plots were 

observed within 1 h after swine waste amendment in all three experimental fertilizations 

(Figures 5.2.1, 5.3.1 & 5.4.1).  These transient NH3 fluxes agree with other studies from this 

region (Safely et al. 1992; Sharpe and Harper 1997, 2002), and elsewhere for this waste type 

(Hoff et al. 1981; Beauchamp et al. 1982; Lockyer et al. 1989; Pain et al. 1989; Bless 1991) 

that report large pulses of NH3 immediately upon application, followed by gradual returns to 

background fluxes within ~1 d.

Despite the common observation of peak NH3-N emissions shortly after waste 

amendment, maximum rates differ among studies.  My low dose plots subjected to total N 

loading rates of 40 to 60 kg ha-1 produced maximum volatilization rates that varied from 0.4 

to 0.8 kg NH3-N ha-1 h-1 while the high dose plots amended with 84 to 129 kg ha-1 showed 

rates about twice as high, with maxima varying from 0.7 to 1.9 kg NH3-N ha-1 h-1.  My 

results compare favorably with a regional (Georgia) whole field spray study (Sharpe and 

Harper 1997), where somewhat lower total-N loading rates (13 to 18 kg ha-1) gave maximum 

effluxes of 1.1 to 1.6 kg NH3-N ha-1 h-1.  My maximum rates are also consistent with other 

reports involving swine waste addition in other locales, employing measurement 

technologies both similar and different from those used here.  Hoff et al. (1981) showed a 
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maximum NH3-N efflux of 1.3 kg ha-1 h-1 from a similar microplot/closed chamber study in 

the Midwestern U.S. (Indiana), but the swine effluent loading rates of 273 to 551 kg N ha-1 

exceeded those used here by a factor of 2 to 14.  Pain et al. (1990) observed a maximum 

NH3-N emission of 1.5 kg ha-1 h-1 in the UK with a series of wind tunnels on small plots 

following swine slurry treatments at loading rates of about 250 kg NH4
+-N ha-1, which are 2 

to 10 times those used here.  Other investigations involving liquid swine waste fertilization 

(Lockyer et al. 1989; Pain et al. 1989; Thompson et al. 1990; Bless et al. 1991; Sharpe and 

Harper 2002) give higher NH3 emission maxima (ranging from 2.5 to 12.1 kg ha-1 h-1) in 

European and North American studies involving wind tunnels and whole field fertilization.

Maximum NH3-N effluxes similar to mine have also been shown following 

application of other liquid animal wastes.  Beauchamp et al. (1982) showed maximum NH3-

N effluxes varying from approximately 1 to 3 kg ha-1 h-1 immediately following whole field 

fertilizations with liquid cattle slurry at TN loading rates of 325 to 387 kg ha-1 in Ontario 

Canada, while Lockyer et al. (1989) observed maximum NH3 emissions of 1 kg ha-1 h-1 

following cattle slurry additions at TN loading rates similar to mine (75 and 102 kg ha-1).

Over the courses of my ~two week experiments, NH3 volatilization losses represented 

7 to 22% of the swine effluent NH4
+-N applied to the low dose plots and 10 to 22% of the 

NH4
+-N applied to the high dose plots.  These fractional losses corroborate well the values of 

about 10 to 15% given by Hoff et al. (1981) and Pain et al. (1990) involving liquid or 

slurried swine waste in closed chamber/microplot and wind tunnel studies, respectively, and 

are somewhat lower than the 15 to 30% loss reported by Sharpe and Harper (2002) in a 

whole field fertilization within several km of my study site.  Overall, my fractional losses fall 

toward the low end of values given for many whole field and wind tunnel studies involving 
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slurried or liquid animal wastes, which center around 30 to 40% (Beauchamp et al. 1982; 

Lockyer et al. 1989; Thompson et al. 1990; Bless et al. 1991; Safley et al. 1992), but are as

high as 82% (Sharpe and Harper 1997).

My fractional losses of NH4
+-N to volatilization are likely underestimated relative to 

expected losses in whole field fertilizations.  The regional standard for liquid swine waste 

application to agricultural soils involves the use of traveling big gun sprinkler systems or less 

common solid set sprinkler systems.  Significant NH3 losses are incurred during these high-

pressure spray events due to evaporation and offsite drift of waste droplets.  For example, in 

a full-scale swine effluent spray event in Georgia, Sharpe and Harper (1997) demonstrated 

that out of 82% of the NH4
+-N lost as NH3 within 24 h, 13% occurred due to evaporation and 

drift during application.  Similarly, another study at a Georgia facility (Safley et al. 1992) 

noted that 62 to 100% of the NH4-N lost from liquid swine waste during volatilization 

occurred as volumetric loss throughout the spray event.  My method of pouring liquid swine 

effluent into small field plots does not represent the regional industry standard of large-scale 

sprinkler application to cropping systems.  Instead, my treatment method was more 

representative of more conservative techniques such as trail hose application, injection or 

tillage incorporation (Sommer and Ersboll 1994; Sommer et al. 1997; and Dendooven et al.

1998b), whereby losses via small droplet production and drift are eliminated.

An additional factor that may have reduced volatilization in my study is soil texture.  

Anaerobic liquid lagoon effluents have lower organic dry matter contents than animal slurries 

(Kirchman 1994), and will rapidly infiltrate a sandy soil upon application if directly applied 

to the surface.  This was clearly evident in my study as liquid effluent permeated the soil 

surface within a few minutes of fertilization.  In comparison to soils with high organic 
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matter, sandy soils improve the ionic mobility of an effluent by way of a reduced CEC 

(USDA 1992).  Accordingly, this rapid infiltration may have reduced NH3 fluxes in all three 

of my experiments.  Rather than being volatilized, the majority of the applied N in my three 

experiments was made available for plant and microbial uptake or leaching.

6.3.  Denitrification/N2O

Much like NH3-N volatilization, the time courses, hourly rates, and fractional losses 

of fertilizer-N to denitrification (N2+N2O) following animal waste applications are highly 

variable depending on waste characteristics, loading rates, field conditions, and the duration 

and frequency of flux measurements.  Because denitrification is confined to heterogeneously 

distributed anaerobic microsites in arable soils, it has the largest spatial and temporal 

variability of any of the microbial processes involved in N cycling (Tiedje et al. 1989), with 

coefficients of variation exceeding 100% for multiple measurements at the same site (Parkin 

and Robinson 1989).

The rapid post-fertilization increase in denitrification-N fluxes from my plots was 

clearly dose-related, as soils receiving 40 to 60 kg total-N ha-1 showed emissions ranging 

from 70 to 149 µg N2 m
-2 h-1, while the soils amended with 85 to 130 kg total-N ha-1 

generated initial N2 peaks of 373 to 550 µg m-2 h-1.  These rates are 4 to 8-fold lower than the 

600 and 1720 µg N2 m
-2 h-1 given by Fischer and Whalen (2005) in a study involving liquid 

swine waste additions at comparable loading rates to intact soil cores at another eastern North 

Carolina swine production facility.

Denitrification rates returned to baseline levels in ≤ 1 d in my study as well as in 

these previous reports.  In contrast, surface applications of slurried animal wastes to intact 
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soils (Thompson et al. 1987; Loro et al. 1997; Paul and Zebarth 1997a, b; Ellis et al. 1998) 

have generally shown enhanced rates of denitrification lasting weeks or months.  Overall, 

high variability in the duration of the immediate post-application denitrification pulse for 

organic fertilizers indicates that the factors driving enhanced emissions are complex and 

interact nonlinearly, discouraging generalizations.

The immediate response of soil denitrifiers to liquid swine effluent application 

suggests that fertilizer addition rapidly promoted soil conditions favoring denitrification.  

Specifically, the immediate infiltration of liquid swine effluent rapidly increased soil WFPS 

(Figures 5.2.2a, 5.3.2a, & 5.4.2a) and likely produced local anaerobic microzones.  Increased 

rates of denitrification in normally aerated soils are generally associated with increases in soil 

moisture that impede O2 diffusion by reducing air-filled pore spaces and enhance O2

consumption by stimulating microbial respiration (reviewed by Firestone 1982; Granli and 

Bockman 1994; Beauchamp 1997; and Mosier 1998).  Further, rapid waste infiltration 

quickly established contact between the extant microbial community and a substrate

immediately available for nitrification (NH4
+-N) in aerobic zones.  Finally, the waste 

provided labile C substrates (Whalen 2000) such as volatile fatty acids (Paul and Beauchamp 

1989a; Sommer et al. 1996) that support high rates of coupled nitrification-denitrification 

(Peterson et al. 1991; Nielsen and Revsbeck 1994) at the oxic-anoxic boundary within soil 

aggregates.  Following these initial increases in denitrification, emissions quickly settled to 

pre-fertilization levels because the coarse soil texture encouraged rapid drainage, ensuring 

that anaerobic conditions necessary for denitrification were temporary.

Rates of denitrification following rainfall were frequently higher than the initial post-

fertilization spikes.  Fluxes of roughly 850 µg N2 m
-2 h-1 were observed for both doses 
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following rainfall on days 2, 7, and 10 of experiment 1 (Figure 5.2.2e), while fluxes of about 

2600 µg N2 m
-2 h-1 and 5,300 µg N2 m

-2 h-1 were associated with the low and high dose 

treatments on day 7 in response to 1.6 inches of rain in experiment 2 (Figure 5.3.2e). 

Rainfall-induced peaks in denitrification, which lasted 1 to 4 d, persisted longer than the 

fertilization-induced peaks (Figures 5.2.2e, 5.3.2e, & 5.4.2e).  Collectively, higher peaks of 

longer duration following rainfall suggest N2 emission is a consequence of denitrification 

uncoupled to nitrification.  Accumulated soil NO3
--N (Figures 5.2.2d, 5.3.2d & 5.4.2d) from 

ongoing nitrification provided nitrogenous substrate, while increased soil moisture promoted 

the development of anaerobic microzones.  In contrast, denitrification immediately following 

waste application was dependent in part on NO3-N supply from nitrification, as pre-

fertilization NO3-N concentrations were low, at <0.5 µg g dw
-1 soil (Figures 5.2.2d & 5.3.2d).  

Denitrification uncoupled from nitrification has been reported in laboratory (Nielsen and 

Revsbech 1998) and field (Whalen 2000) studies involving soil-applied liquid cattle manure 

and swine waste, respectively.  Episodic pulses of denitrification are likely associated with 

each post-fertilization rainfall as long as NO3
--N persists in the soil and, depending on 

weather, are probably a more important loss term for N than the initial, post-application 

burst.

Within each experiment, rates of denitrification closely tracked % WFPS (Figures 

5.2.2a&e, 5.3.2a&e, & 5.4.2a&e), with maximum rates observed in experiments 1 and 3 at 

~60 to 65% WFPS.  This is in close accord to previous observations involving liquid organic 

wastes that show maximum rates above 60% WFPS (Linn and Doran 1984), although the 

optimum moisture content is likely dependent on soil texture.  Fischer and Whalen (2005) 

observed similar correlations between moisture and denitrification, as their homogenized 
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sandy soils from a NC swine waste-receiving field approached or exceeded water-holding 

capacity.  Denitrification rates were 39-fold higher for their saturated soils compared to the 

soils below saturation.  Lowrance et al. (1998) also showed significant correlations between 

denitrification and soil moisture following liquid dairy amendments to loamy sand plots of 

bermudagrass.  Maximum denitrification rates (2,080 to 8,250 µg N2 m
-2 h-1) exceeded my 

maxima by about a factor of two, which may be related to differences in soil 

physicochemical characteristics.

Applications of liquid swine effluent to soils also produced transient N2O emissions 

(an additional endproduct of denitrification) that generally showed higher spatiotemporal 

variability than N2 emissions (Figures 5.2.2f, 5.3.2f, & 5.4.2f).  The immediate N2O fluxes 

were low (8 to 115 µg m-2 h-1), and returned to prefertilization levels within 1 d of 

application.  Maximum N2O fluxes closely tracked the initial N2 peaks in all trials, again 

pointing to the close coupling between soil moisture and denitrifying activity. Maximum 

post-fertilization N2O fluxes in my study were generally lower than the maxima observed 

elsewhere for liquid swine waste.  Peak fluxes from my three fertilization experiments 

averaged 559 µg N2O-N m-2 h-1, which agrees with the average maxima of 650 µg N2O-N m-

2 h-1 reported by Fischer and Whalen (2005).  However, this mean is around five times lower 

than the maxima of 2,500 and 3,250 µg N2O-N m-2 h-1 inferred from the data of Sharpe and 

Harper (1997), and Sharpe and Harper (2002) respectively, during two field studies involving 

triplicate sprinkler applications of swine effluent on Coastal Plain soils in GA and NC.  

Moreover, this N2O maximum is roughly 16.5 times lower than the maximum N2O flux of 

9,240 µg N m-2 h-1 reported by Whalen et al. (2000) during an investigation in North 

Carolina involving multiple swine effluent fertilizations interspersed with rainfall.  Nitrous 
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oxide is an endproduct of denitrification, but is also a byproduct of nitrification (Bandibas et 

al. 1994).  Close coupling between denitrification and N2O spikes suggest that denitrifiers 

dominate N2O production during pulsed emission while nitrifiers provide a constant, baseline 

N2O flux.

My three soil fertilization experiments indicate losses to denitrification of 0 to 2.06% 

of the applied N from liquid swine waste (Table 5.8.1).  This percentage of N lost to 

denitrification compares favorably with the 0.57 to 1.63% reported by Fischer and Whalen 

(2005) for an NC receiving field.  Comfort et al. (1990) also reported comparable 

denitrification-N loss (1.0 to 1.3%) for relatively dilute cattle slurry (5% total solids) injected 

into repacked cores.  Nonetheless, my data for N loss to denitrification are generally much 

lower than previous reports for other types of animal wastes.  Losses vary from 0.6 to 21.3% 

for slurried cattle and pig wastes (Thompson et al. 1987; Thompson 1989; Loro et al. 1997; 

Paul and Zebarth 1997b; Ellis et al. 1998; Acara et al. 1999), 4.2 to 18.8% for solid manures 

(Loro et al. 1997; Mahmood et al. 1998; Mogge et al. 1999) and are as high as 11 to 37% for 

liquid dairy cattle waste (Lowrance et al. 1998).  Generally lower fractional losses of applied 

N to denitrification for liquid swine waste than slurried and solid wastes likely reflects the 

lower mineralization potential of lagoonal effluent (Table 5.5.1) as well as the coarser soil 

texture characteristic of this region (Brandon 1986).  Further, many of these estimates 

involve longer-term (weeks to seasonal) measurements.  In a review of N emissions from 

agroecosystems, Bouwman (1996) noted that fractional loss estimates increased with 

increasing duration of the observational period.  Fractional loss values given here and by 

Fischer and Whalen (2005) for liquid swine waste are undoubtedly underestimates.
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The fractional loss of applied N to N20-N varied from 0 to 0.62%.  These estimates 

compare well with the values of 0.05 to 2.3% given by Whalen (2000) and Whalen et al.

(2000) from short term (1 to 3 weeks) static chamber-derived N2O field measurements 

(Whalen 2000; Whalen et al. 2000), as well as the values of 0.47 to 0.84% reported for short 

term (8 days) intact core-derived measurements (Fischer and Whalen 2005) from North 

Carolina soils.  Consistent with estimates for fractional total gaseous N loss to denitrification, 

these percentages fall toward the low end of reports for annual N2O emissions for a variety of 

mineral and organic fertilizers (range to 6.8%; summarized by Bouwman 1994; Dobbie and 

Smith 2003).  Again, the short observational period ensures that fractional loss values are 

underestimates.

6.4.  Plant uptake

My values of around 45 to 70% for recovery of applied N as plant material (Table 

5.8.1) in short term experiments fall midway among previous regional reports involving 

liquid swine waste application to coastal bermudagrass in experiments of variable duration.  

Several multiyear investigations for repeated waste application give values that center around 

70% (Cummings et al. 1975; Westerman et al. 1977; Burns et al. 1985; Burns et al. 1990).  

Otherwise, Adeli et al. (2003) showed an overall recovery of 40% of waste-N following two 

applications of swine effluent over a growing season, but the maximum recovery of 51% was 

observed in the fall fertilization.  Liu et al. (1997) reported even lower dry matter N 

recoveries of 13 to 32% over the course of a 2y study in Alabama.

Decreased efficiency of recovery appears to be loosely correlated with increased 

loading rates.  Studies cited above that report ~70% recovery have annual loads of 300 to 400 
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kg N ha-1, somewhat lower than the 400 to 800 kg N ha-1 my sites would experience if it is 

reasonably assumed that fertilization occurred monthly for an 8 mo growing season.  Lowest 

dry matter N recoveries (20 and 13%) of Liu et al. (1997) were associated with loading rates 

of 1120 and 2240kg N ha-1, with a 32% recovery observed at 560 kg N ha-1.  However, the 

40% recovery of Adeli et al. (2003) was observed at a loading rate of 300 kg N ha-1 that was 

elsewhere affiliated with ~70% recovery.  Studies aimed at determining the maximum 

efficiency of N recovery at harvest recommend annual application rates of 335 to 550 kg N 

ha-1 (Westermann 1977; King et al. 1990; Adeli and Varco 2001).  However, high variability 

in recovery indicates that many additional factors such as physical soil characteristics, dosage 

per application and variations in weather influence the efficiency of bermudagrass recovery 

of waste N in this geographical region.

6.5.  Microbial biomass

Immobilization represented an important sink for swine waste-N, as 8 to 22% of the 

added effluent was incorporated into microbial biomass (Table 5.8.1).  Liquid phase waste 

ensures immediate post-application transport to microbially active soil zones, while rapid 

(within 3 d) immobilization of waste-N points to a highly active microbial population.  To 

my knowledge, this is the first study explicitly relating microbial community dynamics to 

liquid swine waste application.  Nonetheless, my data are consistent with direct (15N) 

observations of accelerated microbial immobilization of N following fertilization with 

slurried manures (Persson 1988; Kirchmann 1989) as well as reported increases of 50 and 

140% (Fauci and Dick 1994) in microbial biomass relative to the control for greenhouse soils 

amended with poultry and beef wastes, respectively.
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Soils managed with long-term solid or slurried organic fertilizers generally have 

larger and more active microbial populations than those managed with mineral fertilizers 

(Bolton et al. 1985; McGill et al. 1986; Dick et al. 1988; Alef et al. 1988; Anwarzay et al.

1990) because of the larger C:N ratios associated with organic wastes.  My results suggest 

that this generalization can be extended to liquid swine waste, although the C:N ratio is lower 

than the value of ~10:1 which is frequently associated with solid and slurried organics (see 

review by Kirchmann 1994).  Although liquid swine waste has a relatively low 

mineralization potential, the standard management practice of repeatedly fertilizing receiving 

fields ensures a continuous C and N supply for microbes in a manner similar to the slower 

decomposition of solids and slurries.

6.6.  N transport below the active soil zone

Inorganic-N concentrations showed an increase below the active soil zone in all 

fertilized plots at the termination of all experiments relative to day 0 values (Tables 5.7.1, 

and 5.8.1).  The mass of N draining below my defined 0 to 20 cm active zone provides an 

estimate of the maximum waste-N lost to subsurface transport.  Although, ~95% of the 

microbial activity has been shown to be localized in the active zone of NC spray fields 

(Whalen et al. 2000), roots of coastal bermudagrass extend to a greater depth and can 

potentially withdraw additional waste-N.  Remaining, unassimilated fertilizer-N below the 

active zone is likely subject to downward transport to shallow groundwater at this site and 

additional, lateral subsurface flow in areas of greater relief.  My observations are consistent 

with previous reports of high NO3
--N concentrations (>5 mg N l-1) in subsurface drainage 

waters and wells beneath receiving fields in these regionally sandy soils (Evans et al. 1984; 
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Mikkelsen 1995; Gilliam et al. 1996; Stone 1998; Sloan et al. 1999; Karr et al. 2001; Israel et 

al. 2005).  However, the susceptibility of a swine production facility to groundwater 

contamination and severity of the problem must be evaluated on a case-by-case basis (e.g. 

Stone et al. 1998).

My limited data suggest that the mass of N lost to leaching below the active zone is 

unrelated to the rainfall.  It is more likely that timing of rainfall rather than absolute volume 

in the post-application observational period is a stronger determinant of leaching loss of 

fertilizer-N.  Nitrate is more mobile than NH4
+-N, which is frequently substituted for 

common interlayer cations within the lattices of soil particles (Stevenson and Cole 1999).  

The potential for leaching then increases with time after fertilization, as applied waste is 

increasingly transformed into NO3
--N by nitrification.  Nitrate loss to leaching is apparent in 

experiments 1 and 2, where accumulated NO3
--N declines and % WFPS increases (Figs. 

5.2.2 & 5.3.2, panels a & d), in response to rainfall events of 7 and 4 cm, respectively on day 

6 of both experiments.  Residual N at the termination of an experiment (e.g Experiment 1; 

Figure 5.2.2c & d) is also subject to continued nitrification and down-profile transport during 

subsequent rains.

6.7.  N mass balance

My study gives a comprehensive N mass balance for agricultural soils amended with 

liquid swine effluent, as I have attempted to assess most important N reservoirs, transfers and 

transformations in receiving soils for a post application period sufficient to allow most rates 

of transformation and the storage term to approach pre-fertilization values.  The single 

previous effort (King et al. 1985) was not aimed at a complete mass balance, and focused on 



65

plant recovery and the soil storage term.  The authors reported recovery of 34 to 73% of 

applied N in plant material and total recovery (defined as plant + soil-N) of 44 to 58% of 

applied-N in a 6 yr study involving annual loading rates of 335 to 1340 kg N ha-1.  Partial 

mass balances have also been attempted for cattle slurry applied to grasslands.  In a 3 month 

study, Thompson et al. (1987) reported recoveries of 49 to 109% of cattle slurry N as plant 

material when waste was surface-applied or injected into grassland soils as well as 1 to 31%

and 2 to 21% losses to volatilization and denitrification.  Estavillo et al. (1997) showed 16 to 

70% incorporation of applied N into the cover crop, 17 to 78% immobilization and losses of 

2 to 5% and 3 to 11% to leaching and denitrification.  The relative importance of 

immobilization and plant assimilation showed high interannual variability in this 2 yr study.

My attempt at assessing all major terms in the budget helped ensure rigorous 

evaluation of the error of closure and I consistently accounted for a higher mass of N than 

was applied (Table 5.8.1).  As discussed above, my estimates for most terms fall within the 

range of values reported for this waste management practice except perhaps the percent loss 

to volatilization.  My estimates of 5 to 17% loss to volatilization are low relative to the 23 to 

69% given by Sharpe and Harper (1997, 2002) in whole field fertilization experiments.  If 

my data are underestimates, the error term will increase.  This is not likely, however.  

Gaseous emissions are affected by waste characteristics, climate and physicochemical soil 

properties (Misselbrook et al. 1996; Lowrance et al. 1998) that differ among sites.  The 

estimate of 23% loss to volatilization by Sharpe and Harper (2002) is reasonably close to my 

estimates, but was reported for a receiving field characterized by soils of higher clay content 

where localized ponding was observed (Whalen 2000) for several hours following waste 

application.  Rapid infiltration of liquid waste in my soil will decrease volatile loss.
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Ammonia volatilization loss for cattle slurry injected into grassland soil was only 0.9% 

compared to 20 to 31% for surface applied material (Thompson et al. 1987).

Other sources of error may have contributed to the error of closure in my 

experiments.  I did not account for atmospheric N inputs as rainfall or dry deposition.  No 

data exist for dry deposition in the study area.  However, this is likely a negligible source of 

N input to my plots during the ~2 wk observational period of my experiments, assuming the 

maximum value of 136 kg N ha-1 given in a review of observations for Europe (Pearson and 

Stewart 1998).  Likewise, direct precipitation is a minor input.  Using an average 

concentration of 1.25 mg N L-1 (NO3
- + NH4

+) in rainfall recorded at the NADP observatory 

in Clinton, NC (nadp.sws.uiuc.edu/trends) and my precipitation volumes (Table 5.7.1), I 

calculate inputs of 0.08 to 0.22 g N m-2 via precipitation for the three experiments.  

Incorporation of these values into the mass balances improves the mass balances an average 

of only 2%.  The largest source of error may involve transformations of endogenous organic-

N, a reservoir that was not assessed in this study.  Organic-N may comprise 96 to 98% of the 

total-N pool in soils (Bardgett 2005).  The organic-N pool may amount to 3400 kg N ha-1 15 

cm-1 in agroecosystems (Meisinger and Randall 1991), dwarfing the total-N loads of 40 to 

129 kg ha-1 experimentally added as swine effluent.  Mineralization of a small fraction of this 

reservoir and subsequent immobilization or plant assimilation can lead to budgetary errors.

6.8.  Summary and conclusions

It is impossible to assess the error involved in individual terms of the mass balances 

(Table 5.8.1).  I therefore assumed that the error was proportional to the magnitude of each 

term in scaling down my overall N recovery to force a mass balance (e.g. total = 100%) in an 
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effort to evaluate the fate of land-applied liquid swine waste-N at the study site (Figure 

6.8.1).  Roughly half (52%) of the waste-N is sequestered in plant material that can be 

removed from the site and recycled into livestock, while a smaller percentage (10%) remains 

in the soil as microbial biomass.  A total of 22% is involved in unintended offsite transport.  

This is about equally divided between losses to the atmosphere via volatilization plus 

denitrification (10%) and leaching loss (12%).  The 16% of applied waste remaining in soil 

storage is subject to any of these fates.

Figure 6.8.1.  Generalized mass balance for 100 kg of liquid swine effluent-N applied to a 
receiving field associated with a North Carolina CAFO.

My study best addresses the post-application fate of N in liquid lagoonal swine waste 

and does not include losses incurred during surface application by traveling or center pivot 

sprinkling systems, which can be as high as 40% (Safley et al. 1992).  The post-application 
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fate of N in liquid swine waste does not differ fundamentally from other organic and 

inorganic fertilizers, as the relative importance of all loss and storage terms fall within the 

ranges of values given for other fertilizers (comprehensively summarized in Meisinger and 

Randall 1991).  However, liquid swine waste does differ from other N fertilizers in the rate of 

processing, due to its immediate contact with and availability for plants and microbes.
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