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ABSTRACT

TEAGUE R. HENRY: Modeling Heterogeneous Peer Assortment Effects using Latent
Class Pseudo-Maximum Likelihood Exponential Random Graph Models.

(Under the direction of Kathleen Gates)

This thesis develops a class of models for inference on networks called Sender/Receiver

Latent Class Exponential Random Graph Models (SRLCERGMs). This class of models

extends the existing Exponential Random Graph Modeling framework to allow analysts to

model unobserved heterogeneity in the effects of nodal covariates and network features.

Simulations across a variety of conditions are presented to evaluate the performance of this

technique, and an empirical example regarding substance use among adolescents is also

presented. Implications for the analysis of social networks in psychological science are

discussed.
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1 INTRODUCTION

Network methods have emerged as an increasingly prominent tool in both psychologi-

cal science and the broader social sciences. For example, recent research in adolescent de-

velopment, behavior, and health utilize network methods to study the association between

peers and a variety of behaviors such as adolescent alcohol use and smoking (Osgood, Ra-

gan & Wallace, 2013; Mercken, Steglich, Sinclair & Holliday, 2012), childhood obesity

(Shin, Valente, Riggs & Hu, 2014), deviant behavior (Osgood, Feinberg & Ragan, 2015),

and sexual behavior (Ali & Dwyer, 2011). Any behavior or trait of interest to researchers

that is associated with a social network structure is likely the result of two processes, in-

fluence processes, where the network structure (who is connected with whom) changes the

behavior or trait of an individual over time and the reverse, selection processes, where the

behavior or trait changes the network structure over time. These two processes are inter-

related and together impact both network structure and the individual processes within the

network such that, over time both processes can drive dynamic, multi-level shifts. Given

this synergy between influence and selection processes, and their joint implications for

change over time, network data analysis poses a variety of complex methodological prob-

lems.

However, in recent years, new methodologies have been developed to either simulta-

neously analyze peer selection and influence processes (e.g., SIENA; Snijders, de Bunt, &

Steglich 2010), or focus on one, such as peer selection processes (e.g., STERGMs, Kriv-

itsky & Handcock, 2014). Of additional interest is peer assortment, that is, the cross-

sectional pattern of peer nominations which are conditioned upon individual traits and co-

variates. Although cross-sectional network analysis confounds the effects of peer influence



and peer selection (Kandel, 1978), it provides greater insight into the nature of a given net-

work structure at any time-point. Additionally, models that investigate cross-sectional peer

assortment are similar to models that assess peer selection processes, specifically the ex-

ponential random graph modeling framework (ERGM; Frank & Strauss, 1986; Wasserman

& Pattison, 1996; Moriss, Handcock & Hunter 2008), and its longitudinal extension, the

separable temporal exponential random graph modeling framework (STERGM; Krivitsky

& Handcock, 2014).

What underlies all of these network analytic methods is their ability to assess the ef-

fect of individual level traits and covariates, such as personality characteristics or observed

behaviors, on the network structure. Furthermore, in directed networks (i.e. networks in

which edges have a beginning and end point; e.g., peer friendship networks where indi-

viduals nominate peers as friends), researchers can assess sender and receiver effects of

covariates. These effects assess the impact of a behavior, such as substance use, on the ten-

dency for individuals to send or receive edges. Breaking apart covariate effects into sender

and receiver components may prove useful when investigating the impact of individuals

behaviors on network structure (i.e., selection processes).

Parallel to network methods recent flourishing in the psychological and social sciences,

methods that seek to model and capture individual (or ideographic) differences are also

resurging and may benefit from a network approach. Modeling ideographic differences can

be done a variety of different ways, depending on the research question at hand and also

the research design. For example, an ideographic analysis of relations of effects (Molenaar,

2004) allows researchers to examine a single individuals pattern of behavior, while other

methods test the aggregate relations between outcomes as moderated by some individual

trait or other behavior (Bauer, 2011). Of the existing individual differences methods, mod-

eration by an observed variable is by far the most commonly used (Bauer, 2011). When

modeling individual differences, methods such as multiple regression or ANOVAs are the
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typical statistical techniques used. However, current methods that analyze whole networks

can also model observed variable moderators, typically through a multiplicative interaction

effect. As such, further work that focuses on improving cross-sectional and selection net-

work processes may be valuable for ideographic research, as these network methods would

allow researchers to examine individual differences in social structure and effects.

This is even more vital, given that failure to model individual differences based on

observed or unobserved variables can be significantly detrimental to researchers confidence

in the validity of their data . For example, neglecting to include moderation effects in non-

network data may result in biased estimates (Jaccard & Turrisi, 2003) and even spurious

random effects (Bauer & Cai, 2009) It follows that in network analysis, failure to account

for heterogeneity could have potentially severe consequences, especially because certain

parameter combinations can cause the estimation to converge on a degenerate solution

(Chatterjee & Diaconis, 2013). This risk of degeneracy is increased when estimating a

mis-specified model, such as the failure to account for individual differences in effects.

Given burgeoning interests in networks and individual differences, a growing number

of researchers are seeking to examine the role of moderators and individual differences

in networks. For example, in adolescent peer influence work, researchers focus on peer

selection and peer influence processes, and on how individual differences in traits and be-

haviors can shape network structure as a whole. Within this body of literature, the greatest

amount of research has examined peer influence processes (for review see, Brechwald &

Prinstein, 2011), with little work exploring potential moderators of peer selection or peer

assortment (with exception; see Kiuru et al., 2010) Furthermore, there have been no stud-

ies that have used a whole network analysis method such as exponential random graph

modeling or SIENA (Snijders, de Bunt, & Steglich, 2010) to study the moderation of peer

influence, selection, or assortment by individual characteristics. However, this paucity of

research is not due to a lack of research interest, but rather that current methodologies for
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testing network-based moderation effects in peer selection or peer influence do not allow

for moderation in the estimates of behavioral or endogenous effects on network structure

that is based on unobserved or latent variables.

Latent class models and mixture models are also commonly used in psychological re-

search to assess individual differences based on unobserved data, and thus may provide

a solution to this methodological hindrance. Specifically, finite mixture linear regression

(DeSarbo & Cron, 1988) and finite mixture general linear regression (Wedel & DeSarbo,

1995) can be used to partition a sample into groups, in which each group has different re-

lations among observed variables. This potentially models individual differences that are

not due to an observed variable. One advantage to using a finite mixture regression ap-

proach in the presence of unobserved individual differences is that the regression models

for each mixture component can be a combination of component-specific parameters as

well as general parameters for which no individual differences are proposed.

In network modeling, latent variables and mixtures are commonly defined as latent

communities, or groups of individual entities (be they humans, neurons, etc.) who tend

to nominate each other more than they nominate entities in other groups. A great deal

of methodology has been developed in the last decade to assess latent community struc-

tures, chief of which are heuristic algorithms that partition networks (for review, see For-

tunato, 2010). There are several statistical methods for detecting latent communities, such

as stochastic block modeling (Nowicki & Snijders, 2001), latent space modeling (Hoff,

Raftery & Handcock, 2002), and more recently, the ERGM approach (Schweinberger &

Hancock, 2014); however, all of these approaches focus on assessing latent community

structure and do not focus on assessing individual differences in the effects of covariates

based on unobserved subgroups.
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By contrast, the present thesis aims to extend the definition of latent classes and mix-

tures on networks, and model latent classes of individuals who differ in their effect of ob-

served variables on their position in the network. To accomplish this, this thesis develops a

sender/receiver finite mixture modeling approach for ERGMs, focusing on cross-sectional

or peer assortment models. This work will help address the methodological conundrum fac-

ing researchers who wish to utilize a whole network analysis method to test the moderation

of peer influence, selection, or assortment by individual differences. ERGMs are a class of

exponential family inferential models that allow the modeling of the effect of covariates on

network structure, as well as modeling the complex dependencies in networks. The form

of an ERGM makes it amenable to a mixture modeling approach. A set of simulations will

be presented that demonstrate the sender/receiver finite mixture ERGMs ability to recover

the mixture components, as well as the consequences of failing to model the individual

differences. Finally, an empirical example examining individual differences in the effect of

alcohol use on the network structure in a middle-school will be presented.

1.1 Network Terminology and Model Description

In order to work with networks as a data structure, the terminology used to describe

networks in this thesis needs to be established.

A network consists of a set of nodes and a set of edges that connect the nodes together.

Nodes define the members of a network, and can represent anything that has relations with

other things. Nodes commonly represent individuals, corporations, townships, network

routers, and brain regions of interest (ROIs). Edges define the relationship between nodes

in the network, such as friendships, board interlock, information exchange, or functional

connections. Edges can be directed (e.g., friendship nominations among adolescents) or

undirected (e.g., board interlock among companies). To store edges, and to represent them

in a fashion that amenable to analysis, an adjacency matrix is used. An adjacency matrix,A,

is a N ×N matrix where the Aij is the edge value between each unique pair of individuals
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i and j for all N individuals.

This data structure allows the analyst to represent any network structure, be it directed

or undirected, weighted or un-weighted in a portable fashion. A directed edge Aij is the

relationship from node i to node j, and does not inform on the relationship from node j to

node i. An example of an directed edge would be a friendship nomination. The nomina-

tion of friendship from individual i to individual j does not necessitate the nomination of

friendship from individual i to individual j. Other networks have undirected edges, where

Aij = Aji. One common example of this is the correlation network between regions of

interest (ROI) in the brain. A correlation is a bi-directional effect, and the corresponding

edge between ROI i and ROI j will have the same value from regardless of the direction of

the edge.

Friendship nominations and brain ROI correlations also provide examples as to differ-

ing types of edges. The edges corresponding to friendship nominations take on the value

of 0, for no friendship nomination, or 1 for a friendship nomination. This type of edge

is referred to as binary. Binary networks reflect the presence or absence of a connection

between nodes. The brain ROI correlations take on any value between -1 and 1. These

connections are referred to as weighted edges. The edges in a weighted network can take

on any real number value.

In addition to the presence or absence of edges, and possible weights on edges, often

times node-level attributes are also included in the analysis. Node level attributes are sim-

ply values that reference particular nodes. Gender is a node level value for a adolescent

friendship network, while size of an ROI is a node level variable for a brain ROI correla-

tion network. In this manuscript, the N × P matrix of node level variables will be denoted

using X .

The present thesis focuses on directed, binary graphs that take into account node-level

attributes.
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1.2 A Brief Description of Exponential Random Graph Models

Exponential Random Graph Models (ERGMs; Wasserman & Pattison, 1996) are a fam-

ily of models used to analyze network structure both contingent on endogenous predictors

as well as on covariates of the individual nodes. ERGMs model the entire network as a

sample from a population of networks with a set of sufficient statistics associated with the

population. These sufficient statistics can include the number of edges in the network,

the number of edges between individuals with dissimilar values on one specific covariate

and/or the number of closed triangles in the network, to name a few examples. These mod-

els were originally developed to analyze dyad independent networks, where the probability

of an edge between two nodes was only dependent on the characteristics of those two nodes

(Holland & Leinhardt, 1981). They were extended by Frank and Strauss (1986) to include

transitivity effects, where the probability of an edge existing depends on the existence of

neighboring edges.

The modeling of transitivity proves to be difficult, and only in recent years has there

been estimation procedures developed to successfully model transitivity (Hunter & Hand-

cock, 2006). Since the development of a efficient estimation procedure, ERGMs have been

actively researched in several fields, and have been extended in a variety of ways. A longi-

tudinal extension was recently developed (STERGMs; Krivitsky & Handcock, 2014) that

model the formation and dissolution of ties over multiple observations of a network. Ad-

ditionally, there has been work on modeling latent community structures within ERGMs.

Schweinberger and Handcock (2015) developed a Bayesian procedure for analyzing very

large networks, something that ERGMs typically struggle with. They succeed by modeling

a large network as a mixture of smaller sub-networks.

Increasingly in the past decade, methodology to model heterogeneity and individual dif-

ferences in networks has been under development. Heterogeneity in networks is commonly

described as a latent community structure. Broadly speaking, latent community structure
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is a type of individual difference as different nodes (individuals) are following different

rules regarding association. However, it is an overly restrictive form of heterogeneity, as

it doesn’t allow for nodes to have behave differently and not group into community struc-

tures. Instead, a broader definition of a heterogeneity in network structure will be used in

this manuscript, that is a network is heterogeneous if the nodes that make up the network

behave differentially.

There are two dominant statistical methods for analyzing latent classes as latent com-

munities in random networks. Those are the Latent Space Model (Hoff, Raftery & Hand-

cock, 2002) and the Stochastic Block Modeling framework of (Nowicki & Snijders, 2001).

The latent space model posits that every node is located in a latent social space, and the

nodes connectivity to other nodes is dependent on the location of each node in the social

space. This method can be used to find community structure and implicitly accounts for

transitivity and the effects of covariates, however does not allow any heterogeneity in the

effects of the covariates on network structure.

The stochastic block modeling framework posits that a network structure is entirely

due to the latent community structure, and if the latent community structure is known, then

the edges within the network are dyad independent given community assignment. Further-

more, this framework models the network as a mixture of Erdős-Rényi graphs (Erdős &

Rényi, 1961) (networks where each edge is distributed i.i.d Bernoulli), which is a even

more restrictive assumption than dyadic independence. This framework has been extended

in recent years most notably with the work of Daudin (2008), where the authors develop

a mixture model on random graphs that allow for community structure to be defined in

several different ways.

In this thesis, we use the exponential random graph modeling framework to construct

latent class models. Exponential random graph models are a model based inferential system

for analyzing networks, one of the two that are in use now. The other method, stochastic
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actor based modeling (Snijders, de Bunt & Steglich, 2010) is primarily used for longitudi-

nal data, and relies on agent based simulation for estimation. Due to these properties, the

focus of development will be on exponential random graph models.

As a model based inferential system, ERGMs require the analyst to specify which ef-

fects they want to model. This provides fine grained control to the analyst, however, the

price is that these effects are homogeneous across all nodes in the network, in that ev-

ery node given the nodal covariates behaves the same. It is fairly apparent that real-data

networks are not completely homogeneous, given the recent interest in latent community

detection and other methods that explicitly assess for heterogeneity within a network. This

interest suggests that a model that allows for heterogeneities and individual differences in

ERG modeling would be of great assistance. Although it is fairly simple to model moder-

ation between observed variables using multiplicative interactions in ERG modeling, there

has been no methodology to date that allows for the modeling of latent category mod-

eration, in which the nodes in a network are partitioned into a set of latent classes, and

each class potentially has a different effect of nodal covariates and network features. This

modeling of unobserved heterogeneity is similar to the approach taken in finite mixture

regression (Wedel & de Sarbo, 1995)

The model that is developed in this thesis is termed a Sender/Receiver Latent Class

ERGM. This class of models posits that every node has a latent class assignment, and this

latent class assignment moderates the effect of specific nodal covariates on the probability

of edges directed towards the node (A Receiver Latent Class ERGM), or edges directed

away from the node (A Sender Latent Class ERGM), but not both. This division often

aligns with hypotheses made by researchers who are interested in associations between

nodal attributes and nominations. The choice to restrict the model to either assess the effect

of either sender latent class or receiver latent class was made to render the model tractable

to estimation via a hard type EM algorithm (Kearns, Mansour & Ng, 1998; MacQueen,
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1967; Dempster, Rubin & Laird, 1977) for reasons elaborated below.

In what follows, ERGMs and the Sender/Receiver Latent Class ERGMs will be ex-

plained in technical detail.

1.3 Exponential Random Graph Models

An exponential random graph model models the observed network as a sample from

a exponential family distribution with the following form. Let A be a random directed

network of size N with sample space A, and X a N × P matrix of fixed and known nodal

covariates, with a being a sample realization of A. Then the distribution of A is

P (A = a|X) =
exp[〈θ, s(a,X)〉]

ψ(θ)
(1.1)

Where θ is a d length vector of natural parameters in log-odds metric, s(a,X) is a d length

vector of sufficient statistics, 〈θ, s(a,X)〉 is the inner product of the vector of natural pa-

rameters and the vector of sufficient statistics and ψ(θ) is a normalizing constant. The

log-likelihood of the parameters (Hunter & Handcock, 2006) is then:

`(θ) = 〈θ, s(a,X)〉 − log(ψ(θ)) (1.2)

As was outlined above, the vector of sufficient statistics s(a,X) can contain a variety

of terms. Sufficient statistics that will be used in the simulation studies and the empirical

examples are described below. Broadly, these can be divided into two categories, sufficient

statistics that are wholly based on the network structure, structural statistics, and statistics

that are based on the node level attributes, node level attribute statistics.

1.3.1 Structural Statistics

What follows are the technical definitions as defined in the statistical literature.

Edges. The parameter estimate associated with the edges statistic in any ERGM acts as

an intercept for the model. The sufficient statistic described by this term is a count of the
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number of edges in the network.

Mutuality. This sufficient statistic is used when modeling directed networks, and the

sufficient statistic is the total number of reciprocated dyads (Holland & Leinhart, 1981).

These are dyads where aij = aji = 1. The parameter associated with this statistic can be

described as the tendency for edges to be reciprocated.

Geometrically Weighted Edgewise Shared Partners (GWESP). This sufficient statistic

is used to account for transitivity in the network (Hunter, Goodreau & Handcock, 2008).

Transitivity is the phenomena where an edge is more likely to be present if the edge has

shared partners. This is commonly referred to colloquially as ”A friend of a friend is

my friend.” Transitivity is a common phenomena in real-world networks, and failure to

model transitivity can result in bias in the estimates of other effects (Van Duijn, Gile, &

Handcock, 2009). However, when a term that models transitivity is added, this induces a

dependency structure in the network that prevents a direct maximization of the likelihood

during estimation. This dependency structure also runs the risk of causing degeneracy in

estimation, where the expected value of the networks distribution converges to a completely

empty or completely full network. Details of why this occurs can be found in Chatterjee

and Diaconis (2014). The geometrically weighted edgewise shared partners term works

to prevent degeneracy by down-weighting large numbers of shared partners. A GWESP

term has both an effect parameter θ(GWESP ) and a weight parameter τ . τ ranges from 0

to∞, with 0 meaning that the effect of shared partners does not increase beyond having 1

shared partner, and ∞ meaning that the effect of additional shared partners is linear with

no asymptote.

If τ is allowed to be freely estimated, then the ERGM becomes a member of a curved

exponential family (Efron, 1978), which complicates estimation. In the simulations that

follow, τ is considered fixed and known, a practice that is done in substantive analysis
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where the curved exponential family models fail to estimate. (Hunter, Goodreau & Hand-

cock, 2008)

1.3.2 Nodal Attribute Terms

All terms below are described in Pattison and Robins (2001).

Attribute Matching. The parameter estimate associated with this sufficient statistic is

used to evaluate the effect of nodes matching on a categorical variable such as gender or

ethnicity. The sufficient statistic is the number of edges between nodes that match on the

categorical variable.

Attribute Outdegree The parameter estimate associated with this sufficient statistic is

used to evaluate the effect of a continuous variable on the number of edges coming out

of nodes. The node level sufficient statistic is the outdegree of a node multiplied by the

attribute value for that node.

Attribute Indegree Similarly to the Attribute Outdegree term, the parameter estimate

associated with this sufficient statistic reflects the effect of a continuous variable on the

number of edges nodes in the network receive. The node level sufficient statistic is indegree

of the node multiplied by the attribute value for that node.

Attribute Absolute Difference The parameter associated with this sufficient statistic

evaluates the effect of similarity on a continuous variable between nodes on the proba-

bility of an edge. The edge level sufficient statistic is the absolute difference in the values

of the attribute for the sender and receiver of the edge multiplied by the presence or absence

of that edge.

1.4 Estimation for ERGMs

Estimation of the parameter vector θ for an ERGM model is complicated when a term

that measures transitivity is included in the model. ERGMs, as originally proposed by

Holland and Leinhardt (1981), did not contain transitivity terms, and instead were consid-

ered dyad independent models. As was outlined above, dyad independent models are ones
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where the state of a dyad (what edges in a dyad are active), are conditionally independent

of all other dyads given the characteristics of the nodes that make up the dyad in question.

This simplifies the likelihood of a dyad independent ERGM to that of a multinomial regres-

sion for a directed network (the categories being the 4 possible states of a directed dyad),

or a binary logistic regression for an undirected network, which in turn makes estimation

of a dyad independent ERGM trivial.

However, when a term that accounts for transitivity, such as a GWESP term, is added to

the model the resulting dependency structure changes the likelihood into something that is

less tractable to estimation. The core of the problem with transitivity assessing ERGMs was

first realized by Frank and Strauss (1986) and stems from the definition of the normalizing

constant ψ(θ). In a general ERGM, ψ(θ) is defined as such:

ψ(θ) =
∑
a∈A

exp[〈θ, s(a,X)〉] (1.3)

Where A is the sample space of the distribution of the random graph A. This sum over

all networks of a given size is intractable for any reasonable sized network. For exam-

ple, the number of possible directed networks of 25 nodes is 225
2−25 1 or approximately

4.4∗10180. Iterating over this number of networks in a reasonable time frame is impossible

for any computing system currently in existence. An approximate solution to this estima-

tion problem was proposed by Hunter and Handcock (2006), which uses Markov Chain

Monte Carlo sampling to obtain a sample of networks at a given set of parameters, and

then maximize the likelihood of the parameter values using that sample to approximate the

normalizing constant. This procedure, when applied iteratively, converges to the maximum

likelihood estimates of the parameters θ as the number of iterations approach ∞. There

1 For a directed network of size N, each node has a possible number of edges equal to N-1, as self edges
are not allowed. As such, the maximum number of edges in a directed network of size N is N ∗ (N − 1) or
N2−N . If the network is binary, then each edge can have a value of 0 or 1. As such, using permutation with
replacement, the number of possible networks (each of which can be considered a N2 −N tuple) is 2N

2−N
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are several problems with this sampler, most notable of which is the difficulty in getting a

sample of networks that properly covers the density of the distribution for approximating

the normalizing constant. Estimation for ERGMs is an ongoing field of research.

Due to the iterative nature of the approximate ML estimator of Hunter and Handcock

(2006), it is less than ideal to implement in an Expectation Maximization framework, which

in of itself is iterative. Additionally, the MCMC sampler does not scale well to larger

networks, limiting the practical size of a network to less than 300 nodes. An alternative

to the ML estimator appears in the maximum pseudolikelihood approach of Frank and

Strauss (1986). Very recently there was a deterministic approximation to the normalizing

constant that operates in quadratic time, which is promising for estimating ERGMs on

larger networks (Pu et al., 2015).

1.4.1 Maximum Pseudolikelihood Estimation of ERGMs

When transitivity terms were first introduced by Frank and Strauss (1986), the estimator

proposed for ERGMs was a pseudo likelihood approach first inspired by Besag (1974)

pseudolikelihood approach for spatial models.

Recall that the distribution of observed variable ERGM is:

P (A = a|X) =
exp[〈θ, s(a,X)〉]

ψ(θ)
(1.1)

Consider now the conditional probability of an edge Aij given the rest of the network,

Ac
ij:

P (Aij = 1|Ac
ij = ac

ij) =
exp(〈θ, sij〉)

1 + exp(〈θ, sij〉)
(1.4)

Where sij is the change in the sufficient statistics when Aij goes from 0 to 1. This

expression is identical to a logistic regression model treating the sij as fixed and known

covariates. The pseudo-likelihood approximation to the log-likelihood as developed by

Frank and Strauss (1986) for an ERGM is then the likelihood for a binary logistic regression
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of the following form:

P (A = a|θ) ≈
∏

(i,j)∈a

(exp(〈θ, sij〉))aij
1 + exp(〈θ, sij〉)

(1.5)

Taking the log of the above transforms it to the pseudo-log-likelihood which can be

simplified as shown:

ˆ̀(θ) = log

 ∏
(i,j)∈a

(exp(〈θ, sij〉))aij
1 + exp(〈θ, sij〉)


= log

[
exp(

∑
(i,j):aij=1〈θ, sij〉)∏

(i,j)∈a 1 + exp(〈θ, sij〉)

]

=
∑

(i,j):aij=1

〈θ, sij〉 −
∑

(i,j)∈a

log(1 + exp(〈θ, sij〉)

Note that 〈θ, s(a,X)〉 is equal to
∑(k) θ(k)s(k)(a,X), and that s(k)(a,X) is equal to∑

(i,j):aij=1 s
(k)
ij . Therefore

∑
(i,j):aij=1〈θ, sij〉 = 〈θ, s(a,X)〉. This leads to the final ex-

pression of the pseudo-log-likelihood below:

ˆ̀(θ) =
∑

(i,j)∈a

log(P (Aij = 1|Ac
ij)) = 〈θ, s(a,X)〉 −

∑
(i,j)∈a

log(1 + exp(〈θ, sij〉)) (1.6)

Note that this pseudo-log-likelihood differs from the log-likelihood only in the normal-

izing constant. This pseudo-log-likelihood is identical to that of a binary logistic regression,

and can be maximized by established means.

There are several issues with using the MPLE for ERGMs that model transitivity. Lub-

bers and Snijders (2007) provide evidence that the standard errors of the estimates in an

MPL fit ERGM tend to be underestimated, and the whole model tends to overfit to the data.

Van Duijn, Giles and Handcock (2009) show in a simulation study that the estimates of the
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transitivity parameter from an MPL fit ERGM are substantially less efficient than that of

a ML fit ERGM. However, recently it has been proposed that the properties of the MPL

estimator have not been thoroughly studied (Chatterjee & Diaconis, 2013), and that there

is evidence for its asymptotic normality (Comets & Janzura, 1998).

Although it is entirely possible to use MLE when obtaining latent class solutions, there

are several issues that suggest MPLE is a better choice for estimation. As will be shown,

the latent class solution for a sender/receiver latent class ERGM is estimated using the

EM algorithm. Using the MLE during the maximization step is computationally intensive,

with running times an order of magnitude above the running time of MPLE. Furthermore,

in light of the possibility of degeneration, repeated applications of the MLE while using

non-optimal latent class solutions increases the probability that at least one iteration will

be degenerate, which would cause estimation to fail. As such, in current thesis, we use

MPLE during the maximization step of an EM algorithm implementation. Given the known

issues with MPLE, we use MLE to obtain a final set of parameter estimates, once the EM

algorithm has converged.

1.5 Sender/Receiver Latent Class ERGMs

1.5.1 Latent Class Generalized Linear Models

In 1988, Wedel and Desarbo developed a mixture model for generalized linear models.

This approach relies on the hard EM type algorithm for estimation, otherwise known as

the k-means algorithm (MacQueen 1967, Dempter, Rubin & Laird, 1977), and provides an

elegant solution to the estimation problem in this thesis. As the MPL for an exponential

random graph model is identical to the likelihood for a binary logistic regression, Wedel

and Desarbo’s approach can be applied.

The joint log pseudolikelihood for a Sender Latent Class ERGM as derived for the first

time in this thesis is:
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ˆ̀(Z,θ) =
∑
i

Q∑
q=1

Ziq log(αq)+
∑
i

∑
j 6=i

[
aij

[
Q∑

q=1

Ziq〈θq, sij〉

]
−

Q∑
q=1

Ziq log(1 + exp(〈θq, sij〉))

]
(1.7)

Where Ziq is 1 if node i is in class q and 0 otherwise. αq is the marginal probability

of a node being in class q. θq is a vector of parameters for class q. aij is the value (0 or 1

for a binary network) of the edge from node i to node j. sij is the vector of changes in the

sufficient statistics of the network if edge aij went from 0 to 1, given the rest of the network.

Any parameter θ may be held equal across all classes, and thus rendered homogeneous.

1.5.2 Expectation Step

The general expectation for a latent class general linear model (where the probability

densities are exponential family) is in the following form (Wedel & DeSarbo, 1995, Eq 7):

E[ziq|θ,yi] =
αq

∏K
k=1 fik|q(yik|θq)∑Q

q=1 αq

∏K
k=1 fik|q(yik|θq)

(1.8)

Where yi is a vector of observations (each of which can come from a different arbitrary

probability density) for case i and fik|q(.) is the probability density function for the kth

element of the ith case given the ith case is in class q.

Here we can express the expectation for the sender latent class exponential random

graph model in precisely that form of Equation 1.8.

E[ziq|θ, a] =
αq exp(

∑
j 6=i [aij [〈θq, sij〉]− log(1 + exp(〈θq, sij〉))])∑Q

q=1 αq exp(
∑

j 6=i [aij [〈θq, sij〉]− log(1 + exp(〈θq, sij〉))])
(1.9)

Note that in the above likelihood, edges that share the same sender node all are assigned

the same latent class. Intuitively, this is due to the assignment of the latent class being

sender based rather than edge based. This maps onto the Wedel and DeSarbo approach,
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as they classify observation vectors. In this case the observation vector is the vector of all

possible edges a node could and did send.

With the expectation derived, we diverge from the approach laid out in Wedel and De-

Sarbo (1995). In Wedel and DeSarbo’s approach, the expectations produce probabilities

of class membership, and these probabilities are then used in the maximization step. This

approach is known as mixture EM, which is the EM algorithm laid out originally by Demp-

ster, Rubin and Laird (1977). In this thesis, we take a classification likelihood approach.

The classification likelihood approach (for examples see: Symons, 1981; McLachlan &

Peel, 2005), assigns each case the class label that has the highest probability. This hard as-

signment of classes implies that although the likelihood of the data will be a mixture across

the classes, each case is not a mixture across the latent classes. Classification likelihood

can be fit using an EM-type algorithm that instead of using the expected value of class

membership (a mixture approach), instead uses the class label with the highest probability.

This hard assignment has advantages and disadvantages. Classification likelihood al-

gorithms consistently find more informative latent classes than mixture algorithms in the

sense that the KL divergence of the mixture components is maximized, however does not

maximize the likelihood of the data as the mixture EM algorithm does (Kearns, Mansour

& Ng, 1998). Additionally, classification likelihood works well for small sample sizes

(Celeux & Govaert, 1993). There are several disadvantages to classification likelihood.

Classification likelihood does not recover ill-separated mixture components well, nor does

it recover very unbalanced group sizes (Celeux & Govaert, 1993; Govaert & Nadif, 1996).

This failure to recover ill-separated groups directly comes from the maximization of the

KL divergence. If the groups are ill separated, classification likelihood tends to model the

data using a single distribution in which the majority of cases are placed. This can be an

advantage if the presence of latent classes is being tested, however, if the presence of latent

classes is assumed, this approach will not detect them if they are ill separated. Finally,
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classification likelihood does not exhibit optimal large sample properties in that it tends to

be asympototically biased (Bryant, 1991), though this bias appears to be lessened when

allowing for different cluster sizes (Celeux & Govaert, 1993). In this thesis, classification

likelihood is used for both its computational benefits (in that the likelihood easily separates

on a case by case basis), as well as its property of maximum informativeness as measured

by KL divergence. Finally, the classification likelihood approach used in this thesis does

not assume equal cluster sizes. This choice tends to lessen the bias inherit in using clas-

sification likelihood. In larger samples however, mixture maximum likelihood estimation

should be used to take advantage of the asymptotic consistency inherit in that approach.

1.5.3 Maximization Step

With the latent class labels assigned, the conditional likelihood is:

ˆ̀(θ|Z, a) =
∑

(i,j)∈a

[
aij

[∑
q

Ziq〈θq, sij〉

]
−
∑
q

Ziq log(1 + exp(〈θq, sij〉))

]
(1.10)

Where Ziq is a binary indicator of node is membership in latent class q. This likelihood

is the same as the likelihood for a binary logistic regression, and as such can be maximized

in θ using standard ML estimation, specifically iteratively weighted least squares.

1.5.4 A Note on Standard Errors

In Wedel and DeSarbo’s (1995) description of a mixture model on the general linear

model, they note that the standard errors of the estimates can be calculated using a weighted

information matrix, taking into account the uncertainty of latent class assignments. How-

ever, this relies on the mixture EM approach. In a classification EM-like approach, the

parameters are estimated at each maximization step with each node assigned to a class with

a weight of 1. As such, the standard errors of the estimates can be interpreted as the stan-

dard error of the estimated parameters if the estimated latent class solution was observed

and true. Again, estimation with a mixture EM approach is entirely tenable for this model,

in which case the standard errors would be weighted.
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1.5.5 Estimation for Sender/Receiver Latent Class ERGMs

There are two additional considerations for estimating Sender/Receiver Latent Class

ERGMs. The first is that of multiple start values. The EM algorithm, either classification

or mixture type is susceptible to local maxima (Hipp and Bauer, 2006; Rubin, Dempster

and Laird, 1977). To account for this, we initialize the estimation with multiple start values.

Once every model has converged, the latent class solution with the greatest likelihood is

selected.

Additionally, there are the multiple issues with using the MPLE to obtain parameter

estimates. To account for this, once the EM algorithm has converged the latent class labels

are used to estimate an MLE ERGM. The parameter estimates of that model are presented.

The full estimation algorithm proceeds as follows:

1. Initialize starting values for latent class labels Z0

2. For iteration k

(a) Maximize the likelihood `(θk|Zk−1) to obtain θk

(b) Compare `(θk|Zk−1) against `(θk − 1|Zk−2). If change in log-likelihood is less

than tolerance, estimation has converged to a solution.

(c) Obtain the hard latent class labels using E(Zk|θk)

3. Once estimation has converged, save solution, initialize a new set of starting values

and return to step 2.

4. Once solutions are saved for a pre-defined number of starting values, choose the

converged solution with the greatest final `(θ|Z). This solution has the most probable

set of latent class labels out of all of the solutions.

5. With the most probable solution selected, fit a MLE ERGM considering the latent

class labels as observed, and return the parameter estimates θ.
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2 SIMULATIONS

2.1 Methods

In order to test the performance of the Sender/Receiver Latent Class ERGM and to

assess the consequences of neglecting to model latent class heterogeneities, a set of simu-

lations were performed.

In order to more accurately reflect the type of data a researcher would encounter as

well as to follow good practice in ERGM methodology development (van Duijn, Gile, &

Handcock, 2009), the simulations were based off of an empirical dataset, consisting of a

single network of 151 middle schoolers. In addition to directed friendship nomination,

information on gender, ethnicity, tobacco use, alcohol use, marijuana use and antisocial

behavior were collected. Heterogeneity on sender alcohol use, sender absolute difference

in alcohol use, and the edge parameter was modeled in the empirical analysis. For detailed

descriptive statistics, and results of the empirical analysis see Section 3.

Due to missing data at the covariate levels, multiple imputation was used to generate

a set of covariate datasets for the empirical analysis in Section 3. In these simulations, a

single dataset of covariates was randomly selected from the multiply imputed datasets, and

was used for all simulated networks. This follows the simulation procedure outlined in Van

Duijn, Giles and Handcock (2009). For each simulation trial, a new network was simulated

without changing the covariate dataset.

There were 9 simulation conditions in total (See Table 2.1). Simulation conditions

were arrived at by examining the parameter estimates from the empirical model and chang-

ing some of the parameter values to reflect different situations. For example, the empirical

model indicated heterogeneity in the effect of both sender alcohol use and the edge term.



For condition 1 of the simulations, which only modeled a heterogeneous effect of the edge

term, the parameter for sender alcohol use was set to be equal across both classes. Addi-

tionally, for all conditions the edge parameter was increased from the empirical example to

simulate less sparse matrices and therefore increase the amount of information in the data.

Finally, in all conditions, approximately 25% of nodes were in class 2. This was derived

from the empirical results.

Four out of the 9 simulation conditions were replications of conditions, but with in-

creased effect sizes. These increased effect size conditions are denoted with a +. Increased

effect sizes were assessed to get a sense of what approximate effect sizes return accurate

latent class labeling. Condition 1 and Condition 1+ simulated networks with two latent

classes that differed only in the edge parameter. Condition 2 and Condition 2+ simulated

networks with two latent classes that differed only in the effect of a sender nodal attribute

(alcohol use) . Condition 3 and Condition 3+ simulated networks with two latent classes

that differed only in the effect of sender nodal attribute and the edge parameter. Condi-

tion 4 and Condition 4+ simulated networks with two latent classes that differed only in

the GWESP effect. Note that the homogeneous edge effect for Conditions 4 and 4+ was

increased from -3.85 to -3.65 to ensure that the total edge count in Condition 4 and 4+ was

comparable to the edge count in other conditions. Finally, Condition 5 generated networks

with no latent class structure. Simulation parameters are presented in Table 2.1.

In Conditions 1 through 4 and 1a though 4a, correctly specified models were fit to

the data as well as homogeneous models. In Condition 5 a model that specified 2 latent

classes and heterogeneity on the sender alcohol use parameter and the edges parameter was

estimated, along with a homogeneous model.

Raw and relative bias were assessed, as well as computed standard errors from the sim-

ulation set and average estimated standard errors. Additionally, Rand Indices and Adjusted

Rand Indices (Steinley, 2004) were computed for the comparison of the estimated latent

22



Table 2.1: Simulation Conditions: Values are the data generating parameters per condition.
Condition 1 1+ 2 2+ 3 3+ 4 4+ 5
GWESP (.1) Class 1 0.97 0.97 0.97 0.97 0.97 0.97 1 1.2 0.97
GWESP (.1) Class 2 0.97 0.97 0.97 0.97 0.97 0.97 0.2 0.2 0.97
Mutual 2.34 2.34 2.34 2.34 2.34 2.34 2.34 2.34 2.34
Gender Match 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52
Ethnicity Match 0.84 0.84 0.84 0.84 0.84 0.84 0.84 0.84 0.84
Sender Tobacco Use 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13
Receiver Tobacco Use -0.11 -0.11 -0.11 -0.11 -0.11 -0.11 -0.11 -0.11 -0.11
Sender Anti Social -0.64 -0.64 -0.64 -0.64 -0.64 -0.64 -0.64 -0.64 -0.64
Receiver Anti Social 0.24 0.24 0.24 0.24 0.24 0.24 0.24 0.24 0.24
Sender MJ 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33
Receiver MJ 0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.21
Receiver Alcohol Use 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04
Abs Diff Tobacco Use -0.21 -0.21 -0.21 -0.21 -0.21 -0.21 -0.21 -0.21 -0.21
Abs Diff MJ -0.39 -0.39 -0.39 -0.39 -0.39 -0.39 -0.39 -0.39 -0.39
Abs Diff Anti Social -0.08 -0.08 -0.08 -0.08 -0.08 -0.08 -0.08 -0.08 -0.08
Abs Diff Alcohol Use -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01
Sender Alcohol Use Class 1 0.06 0.06 0 0 0 0 0.06 0.06 0.06
Sender Alcohol Use Class 2 0.06 0.06 -0.25 -1 -0.25 -1 0.06 0.06 0.06
Edges Class 1 -3.5 -3.25 -3.85 -3.85 -3.5 -3.25 -3.65 -3.65 -3.85
Edges Class 2 -4.25 -4.5 -3.85 -3.85 -4.25 -4.75 -3.65 -3.65 -3.85

MJ: Marijuana, Abs Diff: Absolute Difference

class labels and the true latent class labels. This indicates performance of the method, in

that if the method failed to detect true latent class labels for a condition, the method would

have not performed well with that parameter set. Both Rand Index and Adjusted Rand In-

dex are presented. Rand Index is a raw measure of agreement between two sets of labels,

while the Adjusted Rand Index is a measure of agreement that accounts for the expected

level of agreement if the labels were assigned randomly. Finally, Rand and Adjusted Rand

are presented for the latent class labels of only the nodes that had a value higher than 0

for alcohol use. These results are presented as there are several conditions where the latent

classes are in part defined on the effect of sender alcohol use. If alcohol use is 0 for an

individual, and the latent classes are defined wholly on alcohol use, then the node with no

alcohol use would be assigned to any latent class at random. By examining the subset of

nodes with positive alcohol use, we can examine the performance of the method when the

latent classes are defined only for a subset of nodes.
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All conditions had 500 networks simulated. The networks were simulated using the

MCMC approach used in the R package statnet (Handcock, Hunter, Butts, Goodreau &

Morris, 2003). This approach randomly toggles edges within a network with the probabil-

ity according to the generating model. This allows the simulated data to properly reflect

transitivity, as well as contain sampling variability. To clarify, only the networks them-

selves were simulated. The covariate data set was the same across all simulations as was

the true latent class labeling.

Estimation of these models used twenty random start values per trial as per the algo-

rithm described above.

2.2 Simulation Results for Heterogeneous Models

Table 2.2 contains the estimated parameters for the heterogeneous models, while Table

2.3 shows the mean Rand Indices and Adjusted Rand Indices for latent class recovery for

every individual, as well as individuals who use alcohol. Table 2.4 contains the relative bias

and Table 2.5 contains the raw bias. Table 2.6 presents average estimated standard error

and standard deviation of the estimates across the simulated networks. Finally, Table 2.7

contains the mean probability of class membership, and standard deviation of class mem-

bership for correctly and incorrectly classified nodes across all conditions. As described

below, these simulations indicate that the model can recover true latent class structure, and

gives an indication as to what level of class difference would be necessary.
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Table 2.2: Mean Estimated Parameters calculated across 500 trials in each condition
Condition 1 1+ 2 2+ 3 3+ 4 4+ 5

GWESP (.1) Class 1 0.997 0.979 0.982 0.994 0.999 0.980 0.892 1.091 1.017

GWESP (.1) Class 2 - - - - - - 0.221 0.246 -

Mutual 2.340 2.340 2.340 2.338 2.339 2.337 2.340 2.339 2.342

Gender Match 0.519 0.523 0.518 0.521 0.519 0.521 0.513 0.511 0.522

Ethnicity Match 0.837 0.848 0.844 0.838 0.836 0.852 0.821 0.819 0.854

Sender Tobacco Use 0.173 0.174 0.128 0.119 0.153 0.134 0.155 0.161 0.125

Receiver Tobacco Use -0.114 -0.121 -0.124 -0.132 -0.126 -0.131 -0.117 -0.117 -0.128

Sender Anti Social -0.458 -0.594 -0.709 -0.785 -0.511 -0.620 -0.466 -0.524 -0.594

Receiver Anti Social 0.226 0.227 0.242 0.252 0.242 0.228 0.232 0.226 0.237

Sender MJ 0.271 0.308 0.300 0.336 0.265 0.307 0.254 0.259 0.335

Receiver MJ 0.208 0.212 0.216 0.212 0.201 0.196 0.212 0.209 0.212

Receiver Alcohol Use 0.043 0.040 0.034 0.029 0.040 0.048 0.039 0.036 0.039

Abs Diff Tobacco Use -0.207 -0.202 -0.196 -0.189 -0.195 -0.191 -0.199 -0.199 -0.194

Abs Diff MJ -0.392 -0.391 -0.397 -0.390 -0.385 -0.380 -0.391 -0.387 -0.391

Abs Diff Anti Social -0.046 -0.067 -0.087 -0.121 -0.052 -0.081 -0.040 -0.041 -0.077

Abs Diff Alcohol Use -0.013 -0.011 -0.004 -0.001 -0.009 -0.016 -0.012 -0.010 -0.011

Sender Alcohol Use Class 1 0.077 0.064 0.005 -0.001 0.024 0.000 0.090 0.083 0.053

Sender Alcohol Use Class 2 - - -0.262 -0.987 -0.209 -0.997 - - 0.046

Edges Class 1 -3.691 -3.299 -3.845 -3.836 -3.672 -3.277 -3.721 -3.684 -3.773

Edges Class 2 -4.384 -4.528 - - -4.368 -4.519 - - -4.097

MJ: Marijuana, Abs Diff: Absolute Difference
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Table 2.3: Mean Rand Indices and Adjusted Rand Indices (Standard Deviations computed

from the sample) computed across 500 trials within each condition. Results indicate best

recovery occurs in the + conditions, with higher class separation. Structural effects such as

GWESP are also recovered well.

Condition RI ARI RI Alcohol Users ARI Alcohol Users

1 0.773 (.064) 0.541 (.126) 0.766 (.089) 0.532 (.179)

1+ 0.963 (.025) 0.924 (.051) 0.945 (.052) 0.89 (.104)

2 0.573 (.055) 0.06 (.120) 0.636 (.056) 0.272 (.137)

2+ 0.591 (.086) 0.1 (.178) 0.851 (.054) 0.703 (.108)

3 0.817 (.060) 0.629 (.120) 0.899 (.069) 0.798 (.137)

3+ 0.98 (.017) 0.959 (.034) 0.998 (.007) 0.997 (.014)

4 0.841 (.048) 0.667 (.096) 0.839 (.076) 0.678 (.153)

4+ 0.932 (.034) 0.862 (.069) 0.924 (.056) 0.848 (.113)

Rand Indices and Adjusted Rand Indices were computed as the empirical mean and

empirical standard deviation over every trial in a given condition. These are not analytic

results from a hyper-geometric distribution and are not meant to test for significance. For

class recovery, the mean adjusted Rand indices contained in Table 2.3 indicate that across

all simulation conditions, increasing the difference between the latent classes leads to in-

creased recovery of the latent classes. However, for conditions with smaller class separation

(Conditions 1, 2, 3, 4), the recovery of the latent classes was not optimal. This is likely due

to the use of the classification likelihood, which doesn’t perform well for classes that are

ill-separated. For most conditions, the greatest improvement in recovery of the latent class

labels occurred only when looking at alcohol users. Conditions 2 and 2+ reveals even at

larger differences between the latent classes, recovery of the class labels for alcohol users

is still not as good as for other conditions (ARI of .272 and .703 for Conditions 2 and 2+
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respectively). This is likely due to the latent class being defined solely on individuals who

used alcohol, a subset of the sample, as opposed to other conditions that had the latent

classes also be defined by structural parameters such as edges or GWESP.

These results indicates caution when using a latent class ERGM, as the effect size for a

latent class that is wholly defined by a covariate needs to be larger than the effect size for a

latent class that is defined by covariates and network structures. Additionally, with the use

of classification likelihood, caution should be taken when analyzing a network to ensure

that theoretically the classes are well separated.

One set of results of note is that Condition 4 and 4+ had remarkably good recovery

of the latent class labels, even at at the lower class difference (ARI of .667 and .862 for

Condition 4 and 4+ respectively). This suggests that heterogeneities in the GWESP term

are reflected strongly in observed network structure. Finally, standard deviations of the

Adjusted Rand Indices suggest that there was variability in recovery rates due to sampling

fluctuations. This variability can lead, particularly in conditions with low class separa-

tion, to very poor rates of classification. As one would expect, there is more variability

in the ARIs the lower the average ARI becomes, again, suggesting that the classification

likelihood version of this method should be used when class separation is high.
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Table 2.4: Relative Bias in the Parameter Estimates For Heterogeneous Models, calculated

using Mean Raw Bias over True Parameter Value. Results indicate modest levels of bias

in homogeneous parameters. This bias is in line with expected bias from the approximate

MLE estimation
Condition 1 1+ 2 2+ 3 3+ 4 4+ 5

GWESP (.1) Class 1 0.027 0.009 0.013 0.025 0.030 0.010 -0.108 -0.091 0.048

GWESP (.1) Class 2 - - - - - - 0.107 0.228 -

Mutual 0.000 0.000 0.000 -0.001 -0.001 -0.001 0.000 0.000 0.001

Gender Match -0.002 0.006 -0.003 0.002 -0.003 0.001 -0.013 -0.016 0.003

Ethnicity Match -0.004 0.010 0.005 -0.002 -0.005 0.014 -0.023 -0.025 0.017

Sender Tobacco Use 0.332 0.340 -0.013 -0.088 0.175 0.032 0.191 0.240 -0.035

Receiver Tobacco Use 0.032 0.099 0.131 0.198 0.145 0.188 0.063 0.060 0.167

Sender Anti Social -0.285 -0.071 0.108 0.227 -0.201 -0.031 -0.272 -0.182 -0.072

Receiver Anti Social -0.059 -0.052 0.007 0.049 0.007 -0.051 -0.034 -0.058 -0.012

Sender MJ -0.180 -0.067 -0.090 0.017 -0.196 -0.071 -0.230 -0.216 0.016

Receiver MJ -0.010 0.010 0.029 0.010 -0.043 -0.065 0.007 -0.003 0.009

Receiver Alcohol Use 0.083 -0.011 -0.145 -0.263 -0.012 0.198 -0.036 -0.100 -0.013

Abs Diff Tobacco Use -0.013 -0.039 -0.066 -0.100 -0.073 -0.093 -0.051 -0.054 -0.074

Abs Diff MJ 0.004 0.002 0.019 -0.001 -0.014 -0.026 0.002 -0.009 0.003

Abs Diff Anti Social -0.425 -0.165 0.085 0.517 -0.353 0.011 -0.495 -0.486 -0.032

Abs Diff Alcohol Use 0.341 0.137 -0.570 -0.950 -0.055 0.638 0.232 0.036 0.141

Sender Alcohol Use Class 1 0.291 0.075 NA NA NA NA 0.502 0.388 -0.110

Sender Alcohol Use Class 2 - - 0.050 -0.013 -0.163 -0.003 - - -0.237

Edges Class 1 0.055 0.015 -0.001 -0.004 0.049 0.008 0.020 0.009 -0.020

Edges Class 2 0.031 0.006 - - 0.028 -0.049 - - 0.064

MJ: Marijuana, Abs Diff: Absolute Difference, NAs due to true effect being 0.

Red highlights indicates relative bias in homogeneous parameters above .1, blue high-

lights indicate relative bias in heterogeneous parameters above .1.

In terms of bias in the parameter estimates, there was good recovery of heterogeneous

parameters. In Condition 4 and 4+, the relative bias for the recovery of the lower GWESP
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term (GWESP Class 2), which had a true value of .2 in both conditions, was the worst.

The relative bias here was .107 for Condition 4 and .228 for Condition 4+. However, the

raw bias (contained below in Table 2.5) in terms of magnitude was quite small, .021 and

.046 respectively. This level of bias is not relevant to researchers analyzing empirical data,

and is likely due to the GWESP term being difficult to estimate in general. The one other

heterogeneous term that had a relative bias of above .1 was that of Sender Alcohol Use in

Class 2 for Condition 3. The relative bias for this parameter was -.163, with a raw bias of

.041. The true parameter value was -.25, which suggests that while the relative bias was

high, the actual level of raw bias was comparatively low.

The homogeneous parameters recovery (such as gender match, ethnicity match, etc.)

was reasonable with very few parameters having greater than .1 absolute raw bias or greater

than .1 relative bias. However the Sender Anti Social effect for conditions 1, 2+, 3, 4,

and 4+ all have raw bias magnitude greater than .1. This effect was held homogeneous

across all conditions and had the highest magnitude of the homogeneous effects (-.64). The

patterning of bias across all conditions was not consistent, and this likely indicates that

the effect was being disrupted by the effects of the structural parameters such as GWESP.

Additionally, with Sender Tobacco Use, several conditions had relative bias greater than .1.

However, the true effect of Sender Tobacco Use was small (.13) in all conditions, which

can lead to small levels of raw bias translating into large relative bias.

This occurrence of high relative biases for very small true parameters is expected and

most notably occurs for the Absolute Difference of Anti-Social Behavior, Sender Alcohol

use (for models with homogeneous Sender Alcohol Use), and Absolute Difference in Al-

cohol Use. Furthermore, for conditions 2, 2+, 3 and 3+ the true effect of Sender Alcohol

Use in Class 1 was 0, which would lead to undefined relative bias for any level of raw bias.

As for Condition 5, recovery of homogeneous parameters was quite good, with no raw

bias being greater than .1, and very few relative biases greater than .1. This suggests that
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the mis-specification of the latent class structure did not lead to systematic bias in the

homogeneous parameters. Additionally, the spread of the latent class parameters around

the true homogeneous parameters was quite reasonable, with Sender Alcohol Use having a

true effect of .06, and the latent classes returning an effect of .053 and .046, while the Edge

effect is 3.85 while the latent classes returned effects of 3.773 and 4.097 respectively.

Table 2.5: Mean Raw Bias in the Parameter Estimates for Heterogeneous Models, calcu-

lated across 500 trials in each condition
Condition 1 1+ 2 2+ 3 3+ 4 4+ 5

GWESP (.1) Class 1 0.027 0.009 0.012 0.024 0.029 0.010 -0.108 -0.109 0.047

GWESP (.1) Class 2 - - - - - - 0.021 0.046 -

Mutual 0.000 0.000 0.000 -0.002 -0.001 -0.003 0.000 -0.001 0.002

Gender Match -0.001 0.003 -0.002 0.001 -0.001 0.001 -0.007 -0.009 0.002

Ethnicity Match -0.003 0.008 0.004 -0.002 -0.004 0.012 -0.019 -0.021 0.014

Sender Tobacco Use 0.043 0.044 -0.002 -0.011 0.023 0.004 0.025 0.031 -0.005

Receiver Tobacco Use -0.004 -0.011 -0.014 -0.022 -0.016 -0.021 -0.007 -0.007 -0.018

Sender Anti Social 0.182 0.046 -0.069 -0.145 0.129 0.020 0.174 0.116 0.046

Receiver Anti Social -0.014 -0.013 0.002 0.012 0.002 -0.012 -0.008 -0.014 -0.003

Sender MJ -0.059 -0.022 -0.030 0.006 -0.065 -0.023 -0.076 -0.071 0.005

Receiver MJ -0.002 0.002 0.006 0.002 -0.009 -0.014 0.002 -0.001 0.002

Receiver Alcohol Use 0.003 0.000 -0.006 -0.011 0.000 0.008 -0.001 -0.004 -0.001

Abs Diff Tobacco Use 0.003 0.008 0.014 0.021 0.015 0.019 0.011 0.011 0.016

Abs Diff MJ -0.002 -0.001 -0.007 0.000 0.005 0.010 -0.001 0.003 -0.001

Abs Diff Anti Social 0.034 0.013 -0.007 -0.041 0.028 -0.001 0.040 0.039 0.003

Abs Diff Alcohol Use -0.003 -0.001 0.006 0.009 0.001 -0.006 -0.002 0.000 -0.001

Sender Alcohol Use Class 1 0.017 0.004 0.005 -0.001 0.024 0.000 0.030 0.023 -0.007

Sender Alcohol Use Class 2 - - -0.012 0.013 0.041 0.003 - - -0.014

Edges Class 1 -0.191 -0.049 0.005 0.014 -0.172 -0.027 -0.071 -0.034 0.077

Edges Class 2 -0.134 -0.028 - - -0.118 0.231 - - -0.247

MJ: Marijuana, Abs Diff: Absolute Difference
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In summary, Tables 2.4 and 2.5 suggest that the sender latent class models fit to hetero-

geneous data do a reasonable job at recovering the model parameters. Bias in the parameter

estimates is in part due to ERG modeling being approximate even when using the MCMC-

MLE. A degree of bias is to be expected. That being said, the fact that bias still remained

even when fitting the generating model to data suggests that researchers should have strin-

gent criteria for interpreting results from latent class ERGMs, interpreting both effect size

as well as significance level.
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Table 2.6: Mean Estimated Standard Error calculated across 500 trials per condition | Sim-

ulation Error calculated from the difference between the parameter estimates and the true

parameter estimates across 500 trials per condition - Heterogeneous Networks. Results

indicate disagreement between estimated standard error and simulation error due to the

implementation of classification likelihood estimation.
Condition 1 1+ 2 2+ 3 3+ 4 4+ 5

GWESP (.1) Class 1 .153|.152 .140|.126 .172|.158 .148|.148 .137|.137 .122|.118 .086|.342 .099|.430 .207|.199

GWESP (.1) Class 2 -|- -|- -|- -|- -|- -|- .086|.348 .099|.434 -|-

Mutual .070|.063 .072|.065 .068|.060 .071|.067 .072|.071 .077|.071 .096|.069 .094|.067 .068|.060

Gender Match .039|.033 .040|.036 .037|.032 .038|.035 .039|.036 .042|.038 .056|.040 .056|.039 .037|.032

Ethnicity Match .039|.038 .041|.038 .038|.033 .039|.035 .041|.038 .043|.040 .056|.044 .055|.041 .038|.034

Sender Tobacco Use .075|.076 .074|.086 .087|.083 .092|.091 .084|.090 .081|.083 .107|.086 .103|.088 .082|.080

Receiver Tobacco Use .073|.066 .073|.065 .086|.081 .091|.088 .082|.080 .079|.076 .106|.077 .101|.072 .081|.073

Sender Anti Social .130|.198 .131|.150 .134|.129 .135|.136 .134|.200 .138|.145 .171|.200 .168|.161 .129|.150

Receiver Anti Social .128|.113 .130|.119 .127|.117 .131|.128 .131|.127 .137|.127 .172|.132 .171|.120 .126|.110

Sender MJ .074|.077 .077|.078 .076|.079 .097|.094 .082|.095 .107|.104 .108|.099 .109|.100 .076|.069

Receiver MJ .074|.064 .077|.070 .076|.069 .098|.097 .083|.077 .108|.104 .108|.077 .109|.078 .075|.065

Receiver Alcohol Use .042|.037 .043|.038 .045|.042 .056|.052 .046|.044 .053|.049 .058|.044 .057|.040 .042|.037

Abs Diff Tobacco Use .073|.067 .072|.064 .086|.082 .091|.089 .082|.079 .079|.075 .106|.076 .101|.075 .081|.073

Abs Diff MJ .068|.058 .071|.065 .071|.063 .095|.091 .078|.071 .105|.097 .104|.072 .106|.072 .069|.058

Abs Diff Anti Social .113|.114 .115|.109 .111|.107 .115|.107 .116|.114 .122|.111 .162|.127 .160|.119 .113|.101

Abs Diff Alcohol Use .035|.031 .036|.032 .039|.034 .051|.049 .040|.035 .047|.043 .051|.037 .051|.035 .035|.031

Sender Alcohol Use Class 1 .042|.055 .043|.051 .054|.145 .068|.498 .055|.136 .079|.505 .057|.059 .057|.056 .050|.049

Sender Alcohol Use Class 2 -|- -|- .053|.144 .068|.499 .055|.129 .076|.504 -|- -|- .051|.050

Edges Class 1 .189|.420 .174|.653 .207|.193 .183|.183 .173|.409 .155|.632 .132|.121 .143|.115 .246|.289

Edges Class 2 .189|.390 .174|.618 -|- -|- .173|.379 .156|.644 -|- -|- .246|.289

MJ: Marijuana, Abs Diff: Absolute Difference

Red Highlights indicate substantial disagreement between mean estimated standard er-

ror and simulation error.

As for estimated standard errors of the estimates and the standard deviations across

the simulation trials for every homogeneous parameter the estimated standard error and

the standard deviation of the parameter across the condition agreed. However, for the

heterogeneous parameters the estimated standard error is considerably smaller than the
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simulation standard deviation (Table 2.6 highlighted to show). This is in part due to error in

classification across the simulation trials. If there are simulation trials where the individuals

are mis-classified then the estimates of the heterogeneous effects will be more variable than

if in every trial the latent class labels were recovered with perfect fidelity. Additionally, the

estimated standard errors assume that the latent class assignment is the true assignment, and

are not adjusted for uncertainty in class assignment. This is a reflection of the hard-type

EM algorithm in use in the estimation.

Table 2.7: Mean Posterior Class Probabilities For True Class Assignment for both correctly

classified and incorrectly classified nodes (Standard Deviation), calculated over 500 trials

for each condition. Results indicate that when nodes are correctly classified, they have a

high probability of being in the correct class. When nodes are incorrectly classified, the

probability of being in the correct class is substantially lower than .5.

Condition Correctly Classified Incorrectly Classified

1→ 1 2→ 2 1→ 2 2→ 1

1 0.958 (0.085) 0.928 (0.106) 0.197 (0.145) 0.225 (0.151)

1+ 0.996 (0.027) 0.992 (0.036) 0.163 (0.154) 0.176 (0.154)

2* 0.949 (0.1) 0.929 (0.115) 0.134 (0.146) 0.149 (0.15)

2+* 0.997 (0.021) 0.988 (0.056) 0.08 (0.129) 0.067 (0.094)

3 0.972 (0.071) 0.94 (0.1) 0.217 (0.14) 0.238 (0.148)

3+ 0.997 (0.023) 0.994 (0.032) 0.163 (0.139) 0.212 (0.154)

4 0.984 (0.052) 0.953 (0.096) 0.174 (0.158) 0.202 (0.142)

4+ 0.994 (0.031) 0.981 (0.061) 0.181 (0.157) 0.191 (0.138)

5 0.769 (0.138) 0.758 (0.139) 0.244 (0.137) 0.232 (0.139)

*: Mean and Standard deviation based on nodes with Alcohol Use greater than 0.
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The posterior class probabilities contained in Table 2.7 indicate that for nodes that were

correctly classified, the posterior class probabilities for that classification were close to 1.

This in turn suggests that for the most part, the latent class model correctly parsed the dif-

ferences between the classes. However, for individuals that were mis-classified, the prob-

ability that individuals would be in their correct class was quite low across all conditions

(approximately .2). Ideally, mis-classified nodes would have correct class probabilities

close to .5, which would suggest issues with sampling variability. The standard deviations

on the mis-classified probabilities are also quite high, suggesting that the correct classi-

fication probability ranged quite widely between trials. The high probability of correct

classification as well as the small standard deviations lend support to this method doing a

reasonable job in recovering the latent classes of the individuals.

Additionally we can infer from Table 2.7 that as a result of the use of classification like-

lihood, the latent classes were inferred to be quite separated from each other. This in turn

results in the extreme pattern of mis-classification found in the low posterior probabilities

of assignment to the correct class for nodes who where miss-classified.

Finally, it is important to note that the posterior class probabilities presented in Table

2.7 do not reflect the amount of mis-classification. For example, by the ARI Condition 2+

performed significantly better than condition 2, yet in Table 2.7 it appears that for individu-

als who were mis-classified they had lower probability of correct classification in condition

2+ than in condition 2. This is in part due to condition 2+ having better classification than

condition 2, which forces those nodes which are mis-classified to have worse posterior class

probabilities. This effect can be seen in each of the condition pairs.

The posterior class probabilities for condition 5 simply reflect that for that condition,

nodes were classified into each group nearly randomly, so the errors in classification reflect

the sizes of the latent classes.
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2.3 Results for Homogeneous Models

What follows are the results from fitting homogeneous models to the data generated

from the conditions. Mean parameter values are presented in Table 2.8. Relative biases

are presented in Table 2.9 and Raw biases in the parameter estimates are presented in Table

2.10. Mean estimated standard error and standard deviations across the simulation trials are

presented in Table 2.11. Note that for Conditions 1 through 4+, the homogeneous model

fitted is not the generative model, while for Condition 5, the homogeneous model is the

true model.

Table 2.8: Mean Parameters for Homogeneous Models calculated across 500 trials for each

condition
Condition 1 1+ 2 2+ 3 3+ 4 4+ 5

GWESP (.1) 1.097 1.290 0.993 1.069 1.142 1.622 0.535 0.586 1.006

Mutual 2.348 2.359 2.339 2.331 2.348 2.332 2.344 2.343 2.344

Gender Match 0.505 0.480 0.517 0.511 0.499 0.440 0.482 0.474 0.519

Ethnicity Match 0.785 0.710 0.844 0.806 0.767 0.619 0.716 0.692 0.852

Sender Tobacco Use 0.181 0.209 0.157 0.199 0.209 0.271 0.180 0.193 0.117

Receiver Tobacco Use -0.097 -0.087 -0.111 -0.100 -0.090 -0.062 -0.094 -0.088 -0.128

Sender Anti Social -0.347 -0.139 -0.539 -0.408 -0.274 0.001 -0.200 -0.113 -0.632

Receiver Anti Social 0.214 0.198 0.230 0.209 0.219 0.152 0.207 0.195 0.236

Sender MJ 0.234 0.157 0.299 0.302 0.193 0.143 0.188 0.155 0.327

Receiver MJ 0.203 0.201 0.214 0.208 0.198 0.201 0.209 0.207 0.209

Receiver Alcohol Use 0.036 0.022 0.030 -0.011 0.026 0.014 0.025 0.019 0.039

Abs Diff Tobacco Use -0.218 -0.214 -0.208 -0.212 -0.219 -0.215 -0.200 -0.202 -0.194

Abs Diff MJ -0.383 -0.365 -0.395 -0.389 -0.378 -0.348 -0.372 -0.365 -0.388

Abs Diff Anti Social 0.042 0.111 -0.029 0.073 0.089 0.215 0.085 0.113 -0.078

Abs Diff Alcohol Use -0.011 -0.008 -0.002 0.041 0.003 0.024 -0.011 -0.009 -0.011

Sender Alcohol Use 0.109 0.140 -0.146 -0.467 -0.068 -0.164 0.119 0.135 0.059

Edges -4.267 -4.618 -3.913 -4.061 -4.354 -5.088 -3.852 -3.843 -3.895

MJ: Marijuana, Abs Diff: Absolute Difference
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Table 2.9: Relative Bias for Homogeneous Models calculated with Mean Raw Bias (Table

2.10) over True Parameter Values. Results indicate that there is a substantial and systematic

pattern of bias in the homogeneous parameters when heterogeneity is not properly modeled.
Condition 1 1+ 2 2+ 3 3+ 4 4+ 5

GWESP (.1) Class 1 0.131 0.330 0.024 0.102 0.177 0.672 -0.465 -0.512 0.037

GWESP (.1) Class 2 - - - - - - 1.675 1.930 -

Mutual 0.003 0.008 0.000 -0.004 0.003 -0.003 0.002 0.001 0.002

Gender Match -0.029 -0.077 -0.006 -0.017 -0.040 -0.154 -0.073 -0.088 -0.002

Ethnicity Match -0.065 -0.155 0.005 -0.040 -0.087 -0.263 -0.148 -0.176 0.014

Sender Tobacco Use 0.392 0.608 0.208 0.531 0.608 1.085 0.385 0.485 -0.100

Receiver Tobacco Use -0.118 -0.209 0.009 -0.091 -0.182 -0.436 -0.145 -0.200 0.164

Sender Anti Social -0.458 -0.783 -0.158 -0.363 -0.572 -1.002 -0.688 -0.823 -0.013

Receiver Anti Social -0.108 -0.175 -0.042 -0.129 -0.088 -0.367 -0.138 -0.188 -0.017

Sender MJ -0.291 -0.524 -0.094 -0.085 -0.415 -0.567 -0.430 -0.530 -0.009

Receiver MJ -0.033 -0.043 0.019 -0.010 -0.057 -0.043 -0.005 -0.014 -0.005

Receiver Alcohol Use -0.100 -0.450 -0.250 -1.275 -0.350 -0.650 -0.375 -0.525 -0.025

Abs Diff Tobacco Use 0.038 0.019 -0.010 0.010 0.043 0.024 -0.048 -0.038 -0.076

Abs Diff MJ -0.018 -0.064 0.013 -0.003 -0.031 -0.108 -0.046 -0.064 -0.005

Abs Diff Anti Social -1.525 -2.388 -0.638 -1.913 -2.113 -3.688 -2.063 -2.413 -0.025

Abs Diff Alcohol Use 0.100 -0.200 -0.800 -5.100 -1.300 -3.400 0.100 -0.100 0.100

Sender Alcohol Use Class 1 0.817 1.333 - - - - 0.983 1.250 -0.017

Sender Alcohol Use Class 2 - - -0.416 -0.533 -0.728 -0.836 - - -

Edges Class 1 0.219 0.421 0.016 0.055 0.244 0.566 0,055 0.053 0.012

Edges Class 2 0.004 0.026 - - 0.024 0.071 - - -

MJ: Marijuana, Abs Diff: Absolute Difference

Red highlights indicates relative bias in homogeneous parameters above .1, blue high-

lights indicate relative bias in heterogeneous parameters above .1.

All of the heterogeneous conditions (1 through 4+) demonstrated large relative bias

in many of the homogeneous parameters (Highlighted in Table 2.9 in red) and increased

raw bias (See Table 2.10). Five effects that had consistent relative bias above .1 in all
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heterogeneous conditions were Sender Tobacco Use, Sender Anti Social, Receiver Alcohol

Use, Absolute Difference in Anti Social and Absolute Difference in Alcohol Use. Absolute

Difference in Anti Social and Absolute Difference in Alcohol Use both had true parameters

close to 0 (-.08 and -.1 respectively), therefore a certain amount of relative bias is expected.

However, when examining the raw biases for the Absolute Difference in Anti Social term

a trend emerges. As shown in Table 2.10, there is increased raw bias in the Absolute

Difference in Anti Social Behavior parameter as one increases the difference between the

latent classes, and this increase in raw bias is greater when one increases the difference

between latent classes defined on the edge statistic (Conditions 1 and 1+) than when one

increases the difference between latent classes defined on Sender Alcohol Use (Conditions

2 and 2+). When one increases the difference between latent classes defined on both edge

parameter and the effect of Sender Alcohol Use, the raw bias in the estimate of the Absolute

Difference in Antisocial Behavior is even greater than in any other condition.

Intuitively this is due to the scope of the latent class definition. If a latent class is

defined on a structural parameter such as the edge parameter, that effect is present for every

node in the network. Therefore the bias caused by specifying a heterogeneous effect of a

structural as homogeneous has the potential to spread to any number of other homogeneous

parameters. On the other hand, if the latent class is defined only for a subset of nodes, such

as when it is defined on a covariate effect, then bias due to mis-specification has a smaller

scope, in that only nodes that have the covariate can be influenced by the mis-specification,

thus leading to smaller amounts of bias as seen here in conditions 2 and 2+. There is a

similar pattern of results for the relative bias in Sender Tobacco Use as well as the Absolute

Difference in Anti social behavior.

There is an opposite pattern of bias for homogeneous parameters that involve alcohol

use, Receiver Alcohol Use and Absolute Difference in Alcohol Use. For these parameters,

the relative biases are greater for Conditions 2 and 2+ then they are for Conditions 1 and 1+.
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This is due to the mis-specification of the Sender Alcohol Use parameter forcing the effect

into the other Alcohol Use parameters, biasing the estimates. Curiously, the relative bias

for either Receiver Alcohol Use or Absolute Difference in Alcohol Use is greater in Con-

dition 2+ (-1.275, -5.100 respectively) than in Condition 3+ (-.650, -3.400 respectively). It

appears that the additional mis-specification in the edge parameter is leading to less bias in

the alcohol use parameters, yet more bias in general.

Another result of note is the pattern of bias in the GWESP term for Simulations 1

through 3+. With the exception of Condition 2, the relative biases in the estimate of

the GWESP term are above .1. This suggests that the GWESP term is sensitive to mis-

specification of other heterogeneous effects as homogeneous, and it responds to mis-specification

by increasing in magnitude. Intuitively, this is due to transitivity effects being intrinsically

confounded with covariate effects. An edge might form because of a similarity on behav-

ior, or due to the influence of shared partners, and if the effect of similarity on behavior is

underestimated, the effect of shared partners might be overestimated to compensate. This

bias in a structural effect is not replicated in the mutuality parameter, which suggests that

mutuality is robust to mis-specifications in the rest of the model.

Additionally, Conditions 4 and 4+ show patterns of bias similar to Conditions 1 and 1+,

with relative bias being slightly higher in magnitude for most terms in Conditions 4 and

4+. This suggests that bias due to structural parameters such as GWESP and Edges have a

tendency to express itself similarly.

As expected, there was bias in the parameter estimates that were truly heterogeneous

(Highlighted in blue in Table 2.9), as it would be impossible to correctly recover the true

parameter estimates that were heterogeneous with a single parameter that is homogeneous.

Note no relative bias was calculated for the Sender Alcohol Use of Class 1 for Conditions

2 through 3+ as the true value of the parameter was 0.

As for Condition 5, while there was some cases of relative bias being higher than .1
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(Sender and Receiver Tobacco Use, and Absolute Difference in Alcohol Use) the rest of

the parameters were recovered well. This was expected, as for Condition 5 a homogeneous

model is the true model.

Table 2.10: Raw Bias for Homogeneous Models
Condition 1 1+ 2 2+ 3 3+ 4 4+ 5

GWESP (.1) Class 1 0.127 0.320 0.023 0.099 0.172 0.652 -0.465 -0.614 0.036

GWESP (.1) Class 2 0.127 0.320 0.023 0.099 0.172 0.652 0.335 0.386 0.036

Mutual 0.008 0.019 -0.001 -0.009 0.008 -0.008 0.004 0.003 0.004

Gender Match -0.015 -0.040 -0.003 -0.009 -0.021 -0.080 -0.038 -0.046 -0.001

Ethnicity Match -0.055 -0.130 0.004 -0.034 -0.073 -0.221 -0.124 -0.148 0.012

Sender Tobacco Use 0.051 0.079 0.027 0.069 0.079 0.141 0.050 0.063 -0.013

Receiver Tobacco Use 0.013 0.023 -0.001 0.010 0.020 0.048 0.016 0.022 -0.018

Sender Anti Social 0.293 0.501 0.101 0.232 0.366 0.641 0.440 0.527 0.008

Receiver Anti Social -0.026 -0.042 -0.010 -0.031 -0.021 -0.088 -0.033 -0.045 -0.004

Sender MJ -0.096 -0.173 -0.031 -0.028 -0.137 -0.187 -0.142 -0.175 -0.003

Receiver MJ -0.007 -0.009 0.004 -0.002 -0.012 -0.009 -0.001 -0.003 -0.001

Receiver Alcohol Use -0.004 -0.018 -0.010 -0.051 -0.014 -0.026 -0.015 -0.021 -0.001

Abs Diff Tobacco Use -0.008 -0.004 0.002 -0.002 -0.009 -0.005 0.010 0.008 0.016

Abs Diff MJ 0.007 0.025 -0.005 0.001 0.012 0.042 0.018 0.025 0.002

Abs Diff Anti Social 0.122 0.191 0.051 0.153 0.169 0.295 0.165 0.193 0.002

Abs Diff Alcohol Use -0.001 0.002 0.008 0.051 0.013 0.034 -0.001 0.001 -0.001

Sender Alcohol Use Class 1 0.049 0.080 -0.146 -0.467 -0.068 -0.164 0.059 0.075 -0.001

Sender Alcohol Use Class 2 0.049 0.080 0.104 0.533 0.182 0.836 0.059 0.075 -0.001

Edges Class 1 -0.767 -1.368 -0.063 -0.211 -0.854 -1.838 -0.202 -0.193 -0.045

Edges Class 2 -0.017 -0.118 -0.063 -0.211 -0.104 -0.338 -0.202 -0.193 -0.045

MJ: Marijuana, Abs Diff: Absolute Difference

In summary, Tables 2.9 and 2.10 suggest that fitting homogeneous models to networks

that are heterogeneous results in unpredictable patterns of high bias in both parameters that

are supposed to be heterogeneous, as well as parameters that are indeed homogeneous.
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Table 2.11: Mean Standard Errors averaged across 500 trials per condition | Standard Devi-

ations of the Estimated Parameters calculated across 500 trials per condition for Homoge-

neous Models. Results indicate that there is close agreement between the estimated errors

and the simulation errors.
Condition 1 1+ 2 2+ 3 3+ 4 4+ 5

GWESP (.1) 0.156|0.160 0.153|0.156 0.172|0.160 0.151|0.154 0.141|0.146 0.144|0.171 0.075|0.081 0.088|0.089 0.204|0.197

Mutual 0.069|0.063 0.071|0.063 0.067|0.060 0.070|0.067 0.070|0.069 0.077|0.069 0.074|0.065 0.072|0.063 0.066|0.060

Gender Match 0.037|0.033 0.038|0.032 0.037|0.033 0.037|0.035 0.038|0.035 0.039|0.032 0.039|0.035 0.038|0.034 0.036|0.032

Ethnicity Match 0.038|0.034 0.038|0.034 0.037|0.033 0.038|0.034 0.039|0.034 0.040|0.034 0.040|0.035 0.038|0.033 0.036|0.032

Sender Tobacco Use 0.071|0.062 0.067|0.054 0.085|0.079 0.088|0.083 0.076|0.073 0.071|0.056 0.076|0.069 0.069|0.066 0.080|0.075

Receiver Tobacco Use 0.069|0.061 0.064|0.053 0.084|0.079 0.087|0.082 0.075|0.070 0.068|0.055 0.075|0.068 0.067|0.059 0.079|0.074

Sender Anti Social 0.128|0.116 0.129|0.121 0.127|0.122 0.130|0.122 0.129|0.116 0.134|0.120 0.131|0.132 0.128|0.118 0.124|0.116

Receiver Anti Social 0.126|0.114 0.127|0.116 0.125|0.117 0.128|0.125 0.128|0.126 0.133|0.117 0.129|0.120 0.126|0.110 0.123|0.109

Sender MJ 0.073|0.060 0.073|0.063 0.075|0.070 0.091|0.082 0.077|0.071 0.091|0.069 0.073|0.066 0.073|0.065 0.072|0.065

Receiver MJ 0.072|0.062 0.072|0.062 0.075|0.068 0.093|0.088 0.077|0.071 0.093|0.074 0.074|0.063 0.073|0.064 0.072|0.065

Receiver Alcohol Use 0.041|0.036 0.041|0.036 0.045|0.041 0.055|0.051 0.045|0.043 0.050|0.043 0.043|0.039 0.042|0.037 0.040|0.037

Abs Diff Tobacco Use 0.069|0.061 0.064|0.052 0.084|0.080 0.088|0.084 0.075|0.071 0.069|0.055 0.074|0.068 0.066|0.062 0.078|0.073

Abs Diff MJ 0.066|0.054 0.067|0.056 0.069|0.061 0.089|0.081 0.072|0.065 0.089|0.068 0.068|0.059 0.067|0.058 0.066|0.058

Abs Diff Anti Social 0.110|0.100 0.110|0.098 0.111|0.105 0.115|0.105 0.112|0.097 0.117|0.096 0.114|0.095 0.111|0.098 0.107|0.096

Abs Diff Alcohol Use 0.034|0.030 0.034|0.030 0.039|0.034 0.050|0.049 0.039|0.034 0.046|0.039 0.036|0.033 0.035|0.031 0.034|0.031

Sender Alcohol Use 0.041|0.036 0.041|0.039 0.044|0.043 0.054|0.053 0.045|0.041 0.050|0.043 0.043|0.040 0.041|0.040 0.040|0.036

Edges 0.192|0.199 0.188|0.195 0.208|0.194 0.185|0.192 0.176|0.179 0.177|0.204 0.110|0.115 0.122|0.124 0.241|0.230

MJ: Marijuana, Abs Diff: Absolute Difference

In terms of standard errors and standard deviation of the simulations for these homoge-

neous models (Table 2.11), there was close agreement for all terms.
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3 EMPIRICAL STUDY

The above simulations were based on an empirical data set of high middle school stu-

dents. In this empirical example, we examine potential heterogeneity in the effect of alcohol

use on peer assortment. Peer assortment on the basis of substance use and other deviant

behaviors has been a continually studied topic in clinical psychology (Brechwald & Prin-

stein, 2011), however, whenever network models are applied to network data to study peer

assortment on substance use, researchers have used homogeneous models. Heterogeneous

effects of alcohol use on peer assortment could potentially have important implications for

network intervention design, as an intervention model based on homogeneous results may

not be applicable to all at risk individuals in the intervention population.

We use alcohol use here due to its fairly high use rate among this sample (26.67% of

the sample have used alcohol). In future studies of heterogeneous peer assortment and

selection effects of substance use, other substances such as marijuana and tobacco should

be considered.

Three parameters were used to model each of the effects of alcohol use, marijuana use,

tobacco use and anti-social behavior. Indegree parameters measure the effect of the vari-

able on an individuals tendency to receive friendship nominations, outdegree parameters

measure the effect of a variable on an individuals tendency to send friendship nominations.

Finally, absolute difference terms measure the effect of different values of the variable on

the tendency for two individuals to form a friendship.

In the heterogeneous model, we propose a sender-type heterogeneity for the outdegree

effect of alcohol use and the absolute difference effect of alcohol use. This can be inter-

preted as allowing the effect of alcohol use to differ in its effect on an individuals tendency



to nominate friends both generally, and with regards to the potential friends alcohol use.

3.1 Data Characteristics and Measures

This empirical data-set consisted of a 151 students who attended the same high school.

Students were assessed on a variety of demographics and risk behaviors. The current anal-

ysis focuses on substance use of three types, alcohol, tobacco and marijuana, as well as

general anti-social behavior. Descriptive statistics of the data are provided in Table 3.1.

Table 3.1: Demographic and Descriptive Statistics
Male Female Missing

Gender 46% 51.30% 2.60%

African-American Asian Latino/Hispanic White Mixed Missing

Ethnicity 23.03% 1.32% 18.42% 48.03% 6.58% 2.63%

Mean 25% Quantile Median 75% Quantile % Above 1 Missing

Age 15.07 14.65 15.01 15.33 - 0.66%

Alcohol Use 0.4476 0 0 1 26.97% 5.92%

Tobacco Use 0.1724 0 0 0 6.58% 4.61%

Marijuana Use 0.1781 0 0 0 9.21% 3.95%

Anti social behavior 0.305 0.129 0.258 0.4516 - 4.61%

3.1.1 Measures

Friendship Nominations. Individuals were provided a full roster of the school and were

allowed to nominate any number of individuals as friends. These nominations were binary

(Yes a friend, or No not a friend), and directed.

Alcohol Use. Alcohol use was assessed with a single item which asked ”In the last 6

months on how many days did you have at least one drink of alcohol?” With the following

answer choices: 1) 0 days, 2) 1-2 days, 3) 3-5 days, 4) 6-9 days and 5) 10 or more days.

Tobacco Use. Tobacco use was assessed with a single item which asked ”In the last

6 months on how many cigarettes did you smoke per day?” With the following answer

choices: 1) 0, 2) 1, 3) 2-3 , 4) 6-10 and 5) 10-20, 6) more than a pack.
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Marijuana Use. Marijuana use was assessed with a single item which asked ”In the last

6 months how many times did you use marijuana?” With the following answer choices: 1)

0, 2) 1-2 times, 3) 3-9 times, 4) 10-19 and 5) 20 or more times.

Anti Social Behavior. Antisocial behavior was assessed with a subset of 31 items from

the Youth Self Report scale (Achenbach, 1991). These items assessed behaviors over the

previous 6 month period and had text such as ”I get in many fights”, ”I set fires,” and ”I

tease others a lot.” Responses were on a 3 point scale with 0 being ”Not True”, 1 being

”Somewhat True”, and 2 being ”Very/Often True.” These items were mean scored for a

final Anti-Social behavior Composite.

3.1.2 Missing Data

Due to ERGM modeling inability to handle missing data at the nodal attribute level,

multiple imputation was used to account for missingness (Rubin, 1987). 500 covariate

datasets were simulated using information on gender, age, ethnicity, substance use and all

anti social behavior items. Results for the 500 covariate datasets were combined according

to Rubin (1987). There are two competing interests to the use of multiple imputation here.

As was mentioned, ERG modeling cannot account for missingness among the nodal co-

variates, as such one option would be to remove those individuals from the network. How-

ever, as networks are highly interdependent systems by definition, this would substantially

change the network structure, possibly leading to different results. Multiple imputation

however, does not take into a account the dependency between individuals on their nodal

attributes, rather assuming them to be independent. This assumption leads to an attenua-

tion of any homophily effects within the network, when nodal covariates are modeled using

multiple imputation. In the case of this application, it was decided that the damage to the

network structure outweighed the attenuation of homophily, and multiple imputation was

used.
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3.1.3 Model Specification

Of substantive interest for these analysis is potential heterogeneity in the sender effects

of alcohol use, as well as the Sender Effect of the Absolute Difference in Alcohol Use.

Additionally, a general heterogeneity was modeled using a heterogeneous edge parameter.

This model nearly identical to the model presented in Condition 3 of the simulations was fit.

The sole addition to the model was allowing the effect of Absolute Difference in Alcohol

Use to vary between the two latent classes. This heterogeneous effect was not included

in the simulation conditions due to a lack of heterogeneity in the effect exhibited in the

empirical data, as shown below.

Additionally, a homogeneous model was fit to the empirical data.
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3.2 Results of the Empirical Analysis.

Table 3.2: Empirical Results for both heterogeneous model and homogeneous model. Es-

timates are in mean log-odds metric calculated across 500 multiply imputed datasets with

(multiple imputation standard error)

Parameter Heterogeneous Model Homogeneous Model

GWESP (alpha = .1) 0.97 (0.07)* 1.25 (0.07)*

Mutuality 2.34 (0.14)* 2.26 (0.15)*

Gender Match 0.52 (0.06)* 0.44 (0.06)*

Ethnicity Match 0.85 (0.06)* 0.47 (0.06)*

Sender Tobacco Use 0.13 (0.11) 0.29 (0.10)*

Receiver Tobacco Use -0.11 (0.10) -0.05 (0.09)

Sender Anti Social -0.64 (0.21)* -0.23 (0.20)

Receiver Anti Social 0.24 (0.20) 0.24 (0.20)

Sender MJ 0.33 (0.11)* 0.14 (0.10)

Receiver MJ Use 0.21 (0.11) 0.19 (0.10)

Receiver Alcohol Use 0.04 (0.07) -0.02 (0.06)

Abs Difference Anti Social -0.08 (0.11) -0.02 (0.18)

Abs Difference Tobacco Use -0.21 (0.10)* -0.13 (0.10)

Abs Difference MJ Use -0.39 (0.19)* -0.18 (0.10)

Abs Difference Alcohol Use Class 1 -0.01 (0.08) -0.01 (0.06)

Abs Difference Alcohol Use Class 2 -0.05 (0.07)

Sender Alcohol Use Class 1 -0.21 (0.10)* 0.02 (0.06)

Sender Alcohol Use Class 2 0.06 (0.07)

Edges Class 1 -5.28 (0.11)* -5.09 (0.10)*

Edges Class 2 -4.22 (0.12)*

MJ: Marijuana, Abs Difference: Absolute Difference

*: p <.05
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Table 3.2 contains the results for the heterogeneous and homogeneous analysis. Of note

in these results is the effect of Sender Alcohol Use in Class 1 versus the effect of Alcohol

Use in Class 2 . These effects are significantly different from one another (z = -2.21, p

<.05), suggesting that for members of class 1, alcohol use reduces the number of friendship

nominations sent out while for members of Class 2, alcohol use does not effect the number

of friendship nominations sent out. Additionally, there is a significant difference between

the edges effect of Class 1 and Class 2 (z = 6.51, p <.05). This suggests that members

of Class 1 have fewer friendship nominations made in general, while members of Class 2

make more friendship nominations.

There are several significant homogeneous effects in the heterogeneous model. The

effect of Sender Anti Social Behavior is negative suggesting that individuals with more

antisocial behavior nominate fewer friends. The effects of Absolute Difference in Tobacco

and Marijuana Use are both negative suggesting that individuals who are different on their

usage of those substances are less likely to nominate each other as friends. Finally there

was a positive significant effect of Sender Marijuana Use suggesting that individuals who

use more Marijuana make more friendship nominations in general.

There are expected positive significant findings for GWESP, mutuality, gender and

ethnicity matching. The significant GWESP finding suggests that individuals who share

friends are more likely to be friends themselves. Additionally there is a strong effect for

mutuality suggesting that reciprocal friendship nominations are the norm in this network.

As for the differences between the heterogeneous model and the homogeneous model,

it is apparent that the modeling of heterogeneous effects of alcohol use and the edge param-

eter clarifies several of the homogeneous parameters. Specifically, the effects for Sender

Anti Social Behavior, Sender Marijuana Use, Absolute Difference in Tobacco Use and Ab-

solute Difference in Marijuana Use are significant in the Heterogeneous Model and not

significant in the Homogeneous Model. Interestingly, one effect, that of Sender Tobacco
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Use, was significant in the homogeneous model and not significant in the heterogeneous

model.

It is worthwhile to note that significantly fewer individuals were classified into class 2

than into class 1, with the average proportion of individuals in class 2 across all the multiply

imputed datasets being 27.8%. Class separation on the basis of class membership probabil-

ity was exceptionally good for every multiply imputed dataset. The average probability of

membership in class 1 for individuals with a higher than .5 probability of being in class 1

was .939, while the average probability of class membership in class 2 for individuals with

a higher than .5 probability of being in class 2 was .9671. This level of class separation is

in part due to the classification EM algorithm used in estimation, which tends to find the

latent class labeling that is the most informative rather than the latent class probabilities

that maximize the labeling.

In summary, the findings support a level of heterogeneity in the effect of alcohol use,

specifically for the effect of alcohol use on general outdegree. Indeed, some individuals

are less likely to nominate friends the more alcohol they drink, while other individuals

exhibit no effect of alcohol use on friendship formation. Of broader interest, there are more

significant findings in the heterogeneous model as compared to the homogeneous model.

This suggests that the inclusion of the heterogeneous model parameters clarified the effects

of the other parameters.
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4 DISCUSSION

This thesis presented the Sender/Receiver Latent Class ERGM, provided a estimation

routine, presented simulations that demonstrated its ability to detect latent class structures

in networks, and demonstrated the consequences of failing to model latent class structures

in network. Finally, this thesis presented an empirical example rooted in adolescent peer

networks that demonstrated this models ability to obtain reasonable results from real, rather

than simulated data.

There are several broad results that can be gleaned from the simulations. First, recov-

ery of the latent class structures is sensitive to the difference between the latent classes,

as demonstrated by the increased difference conditions in the simulations. This is to be

expected; however, caution is advised when using these models on empirical data as the

models will return solutions regardless of underlying differences between the latent classes.

One solution to this problem is examining the a posteriori probabilities of class member-

ship given the returned set of parameter estimates. If there is a large amount of uncertainty

in the classifications of individuals, then the model should be reassessed. Simulation re-

sults suggest that the classification probabilities should be quite high for correctly classified

individuals.

There is also caution warranted when analyzing data with homogeneous models. As

shown in the simulations, mis-specifying structural parameters such as edges or GWESP

can result in wide-ranging estimate bias of many other model parameters, where this bias

is generally unpredictable in its direction. Additional caution is warranted when looking

at the effects of covariates as a mis-specification of one covariate effect (such as a sender

effect) as homogeneous when really there are heterogeneous effects leads to bias in other



effects of the same covariate (such as absolute difference). This is particularly concerning

as the direction of the bias is unpredictable, and therefore mis-specification could lead to

spurious findings.

As another finding of particular interest, mis-specifying a heterogeneous model to a

truly homogeneous network did not result in any real bias, other than in the mis-specified

terms. Even with the mis-specified terms the differences in effect size were small. This

suggests that researchers can use heterogeneous models as an exploratory method, without

worry that a heterogeneous mis-specification of a homogeneous network would result in

biased estimates.

The empirical example demonstrates the utility of these models for answering substan-

tive questions. Here, that question was: does the effect of alcohol use on the number of

friends one nominates differ between individuals? With this sample, there appears to be at

least some level of heterogeneity in the effect of alcohol use on the number of friends an

individual nominates. Furthermore, by modeling heterogeneity, several effects were clari-

fied that would have not been significant if a homogeneous model was run. These findings

further emphasize the importance of modeling individual differences in network data.

There were several limitations to the Sender/Receiver latent class ERGMs and to this

thesis as a whole. First, the Sender/Receiver Latent Class ERGM requires a directed net-

work. In many cases, the network, and the relation that defines the edges in the network

would not be directed, and these models would not be able to be fit. Secondly, these models

require the analyst to make a choice to model either Sender latent classes, or Receiver la-

tent classes, but not both. This restricts the type of heterogeneity that an analyst can model.

Finally, as developed the Sender/Receiver Latent Class ERGM is only for cross-sectional

data, which limits its use in answering substantive questions.

As for the thesis itself, one key limitation is the choice not to manipulate sample sizes.

Adjusting sample sizes in networks is a complex matter, as a network by definition is not
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a sample of independent observations. However, larger networks imply more information,

and it would be expected that with larger networks, latent class recovery would be simpler.

As another limitation, the routine for estimating Sender/Receiver Latent Class ERGMs

rely on a classification type EM algorithm. This algorithm is well known to perform badly

when classes are ill-separated, or have radically different proportions of cases (Bryant,

1991; Celeux & Govaert, 1993). Well defined classes are not often the case in psychological

research, as such the use of the classification likelihood method as outlined in this thesis

would not be warranted in cases where the class separation is not a priori thought to be

high. Additional simulations should be done comparing the performance of mixture and

classification type EM algorithms at estimating these models.

However, these limitations open up several new directions for future work. First, and

possibly most importantly, would be to expand the estimation to use mixture modeling as

opposed to classification likelihood. This would allow researchers to investigate scenarios

where class separation is small. The next step would be extending these models to fit

general latent class ERGMs, rather than restricting the latent class definition to be sender

or receiver. This likely would require several approximations, and therefore a Bayesian

approach might be warranted. A general Latent Class ERGM would very much resemble

the ERGM models proposed by Schweinberger and Handcock (2014), however, would

not focus so much on latent community detection (though they would be capable of it).

Additionally, a general latent class ERGM would be able to model undirected networks.

Another extension would be to develop a longitudinal version. Adapting the separable

temporal ERGMs (Krivitsky & Handcock, 2014) which can model peer selection processes

over time, would allow analysts to investigate heterogeneous peer selection processes.

Overall, this thesis introduces a new way of modeling network data and a different defi-

nition of heterogeneity on networks that could better serve substantive researchers studying
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a variety of heterogeneous and latent network-rooted behaviors and traits, such as in ado-

lescent peer influence of substance abuse (eg., Brechwald & Prinstein, 2011), in clinical

domains such as autism research (eg., Gilman, et al., 2011), and also in social, cognitive,

and affective neuroscience (Wager et al., 2015). Further work is needed to refine and ex-

pand the latent class ERGM so that psychological and social scientists can advance our

understanding of ideographic variation in network settings.
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