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ABSTRACT

TING-HUEI CHEN: Penalized Estimation Methods and Their Applications in
Genomics and Beyond

(Under the direction of Wei Sun and Jason P. Fine)

Various forms of penalty functions have been developed for regularized estima-

tion. The tuning parameter(s) of a penalty function play a key role in penalizing

all the noise to be zero and obtaining unbiased estimation of the true signals. For

penalty functions with more than one tuning parameters, previous studies have not

emphasized on the joint effect of all the tuning parameters. In the first topic, we

conduct a theoretical analysis to relate the ranges of tuning parameters of penalty

functions with the dimensionality of the problem and the minimum effect size. We

exemplify our theoretical results in several well-known penalty functions. The results

suggest that a class of penalty functions that bridges L0 and L1 penalties require less

restrictive conditions for variable selection consistency. The simulation analysis and

real data analysis support these theoretical results.

For the second topic, we consider the problem of identifying genomic features to

predict cancer drug sensitivity. Several drugs that share a molecular target may also

have some common predictive features. Therefore, it is desirable to analyze these

drugs as a group to identify the associated genomic features. Motivated by this prob-

lem, we develop a new method for high-dimensional feature selection using a group of

responses that may share a common set of predictors in addition to their individual

predictors. Simulation results show that our method has better performances than

existing methods. Between-study validation in real data shows that the genomic fea-
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tures selected for a drug target can form good predictors for other drugs designed for

the same target.

For the third topic, we address an estimation problem where certain parameter

values such as 0 would cause an identifiability issue. In the maximum likelihood

estimation framework, due to the issue of the unidentifiable parameter, the maximum

likelihood estimator have regular properties only if the likelihood function is specified

correctly with respect to the parameter values. We propose a penalized estimation

procedure using the adaptive Lasso penalty to address the potential identifiability

issue. We study the asymptotic property of the proposed estimator and evaluate our

method in extensive simulations and real data analysis.
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CHAPTER 1: Introduction

1.1 The role of tuning parameters of penalty functions

Variable selection has been well studied in the classical setting of fixed dimen-

sional covariates, with numerous penalization methods shown to yield sparse oracle

estimation. Asymptotically, such procedures guarantee that the zero coefficients are

estimated to be zero exactly and the non-zero coefficients are efficiently estimated

with variance equal to that with known zero coefficients. Extending such methods

to high dimensional covariates is technically challenging. Valid estimation is only

possible if the regression model is sufficiently sparse, that is, a high percentage of

covariates have no effect, with the number of non-zero effects growing at some rate

that depends on the sample size.

Several penalty functions have been proposed for regularized estimation in such

high dimensional setting. One of the most popular penalty functions is the Lasso

penalty [Tibshirani, 1996]. Lasso is a convex penalty, so that including this penalty

in the objective function (e.g., adding it to residual sum squares or subtracting it from

log likelihood) does not change the convexity (e.g., residual sum squares) or concavity

(e.g., log likelihood of generalized linear model) of the objective function. Therefore,

it is computationally efficient to solve the penalization problem because finding the

global minimum/maximum is equivalent to finding the local minimum/maximum.

Recently, several groups have studied the theoretical properties of Lasso for fixed
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p [Zou, 2006] or for high-dimensional regression problems [Zhao and Yu, 2006; Mein-

shausen and Bühlmann, 2006; Zhang and Huang, 2008]. One important finding of

these studies is that the variable selection consistency of Lasso requires the irrep-

resentable condition on the design matrix [Zhao and Yu, 2006], or equivalently, the

neighborhood stability condition [Meinshausen and Bühlmann, 2006]. Intuitively,

this condition requires that the covariates not in the true model (which are referred

to as “unimportant covariates” hereafter) cannot be represented by the covariates be-

longing to the true model (which are referred to as “important covariates” hereafter).

This condition is often not satisfied at high dimensionality such as NP dimensionality,

i.e. the dimensionality of nonpolynomial (NP) order of sample size. For example, in

GWAS, an important covariant, which is a SNP associated with the disease status, is

often correlated with several nearby SNPs that are unimportant. In other words, the

SNP-to-SNP correlations are totally due to linkage disequilibrium and have nothing

to do with disease association.

In a pioneering work, Fan and Li [2001] have build a theoretical framework for non-

concave penalized likelihood for variable selection, and advertised a folded-concave

penalty, the Smoothly Clipped Absolute Deviation Penalty (SCAD) proposed by Fan

[1997], which is defined by

p′SCAD(|βj|) = {λI(|βj| ≤ λ) + [(aλ− |βj|)/(a− 1)]I(λ < |βj| < aλ)} ,

where λ > 0 and a > 2 are two regularization parameters. SCAD employs Lasso

penalty for signals smaller than a threshold λ, then reduces the penalty increase rate

for stronger signals, and finally the penalty becomes a constant for signals larger

than aλ. This reduction of penalty for stronger signals effectively removes the bias

of Lasso for strong signals.
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Another penalty, the Minimax Concave Penalty (MCP) [Zhang, 2010], is defined

by

p′MCP(|βj|) = I(|βj| < aλ)(aλ− |βj|)/a,

where λ > 0 and a > 0 are two regularization parameters. MCP increases with a rate

of λ from effect size zero, i.e., lim|βj |→0+ p
′
MCP(|βj|)→ λ. Then it immediately reduces

the penalty increase rate. The penalty becomes constant for effect size larger than

aλ. MCP converges to L0 penalty when a→ 0, and it converges to L1 penalty when

a→∞.

Another folded-concave penalty, the Smooth Integration of Counting and Absolute

deviation penalty (SICA) [Lv and Fan, 2009] is a linear combination of L0 and L1

penalties:

pSICA(|βj|) = λ

[
|βj|
|βj|+ τ

I(|βj| 6= 0) +
τ

|βj|+ τ
|βj|
]
,

where λ > 0 and τ > 0 are two regularization parameters. A more general class of

linear combination of L0 and L1 penalties has been studied by Liu and Wu [2007].

The Log penalty [Friedman, 2008; Sun et al., 2010] is defined by

plog(|βj|) = λ log(|βj|+ τ),

where λ > 0 and τ > 0 are two tuning parameters. As mentioned by Friedman

[2008], Log penalty bridges L0 and L1 penalties. Specifically, it converges to L0 or

L1 penalties if τ → 0 or τ → ∞, respectively. Lv and Fan [2009] pointed out the

Log penalty is closely related with the SICA penalty. Sun et al. [2010] suggested

the Log penalty can be viewed as iterative adaptive Lasso and provides a Bayesian

interpretation of the Log penalty.
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Another class of folded-concave penalty is the bridge penalty pBridge(|βj|) = |βj|a,

where 0 < a < 1. Friedman [2008] has shown that the bridge penalty spans a similar

spectrum as Log penalty, and the latter has smaller discontinuities, hence more stable

coefficient estimates. In addition, lim|βj |→0+ p
′
Bridge(|βj|) → ∞, which leads to extra

computational challenge for implementation. Therefore we do not include the bridge

penalty for the latter theoretical studies.

It has been established, in both finite dimensions and diverging dimensions where

p = O(na) or p = O(exp(na)) (a > 0) that penalization methods based on folded-

concave penalties provide consistent estimates without requiring the irrepresentabil-

ity condition [Fan and Lv, 2010]. In addition, Mazumder et al. [2011] have studied

properties of Log, SCAD and MCP in the optimization using a coordinate-descent

approach.

The performances of the variable selection rely on the proper selection of regu-

larization parameters $. All of these four penalties (SCAD, MCP, SICA and Log)

have two regularization parameters. In practice, immediate questions concerning

these regularization parameters are whether they both should be tuned, and what

is the consequence to tune only one of them in order to improve computational ef-

ficiency? Previous works have provided recommendations regarding to the choice of

tuning parameters, but there is no systematic asymptotic studies on the roles of mul-

tiple tuning parameters. This motivates us to asymptotically study the relation of

the choice of tuning parameters with the difficulty of the variable selection problem,

namely the minimum effect size and the dimensions (both the number of important

and unimportant covariates).
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We will study the role of tuning parameters of penalty functions by evaluating

if they could satisfy the conditions of weak oracle properties. Weak oracle prop-

erty of penalized likelihood method in NP dimensionality (i.e., the dimensionality of

nonpolynomial order of sample size) was introduced by Lv and Fan [2009] for pe-

nalized least squares, and was extended to generalized linear regression by [Fan and

Lv, 2011]. An estimator β̂ = (β̂T
1 , β̂

T
2 )T is considered to have weak oracle property if

β̂2 = 0 with probability tending to 1 as n→∞, and consistency for β̂1 under L∞ loss.

However, the conditions of weak oracle properties in Fan and Lv [2011] are mainly

imposed on a single tuning parameter of penalty functions, and it is unclear the role

of multiple tuning parameters. Therefore, we propose to generalize the theorems of

weak oracle properties in Fan and Lv [2011]. This modification is necessary to allow

more penalties to be studied for their tuning parameters.

1.2 Prediction of cancer drugs’ sensitivities

Cancer drugs development has shifted from traditional one-size-fits-all cytotoxic

chemotherapy to molecularly targeted cancer drug therapy. The cytotoxic chemother-

apy drugs target the signaling pathway for cell division. Although cancer cells have

out of control of growth pattern, normal cells such as cells in the bone marrow and

hair follicles also divide regularly. The chemotherapy drugs cannot distinguish cancer

cells from normal ones so that its side-effects can be severe. Unlike chemotherapy

drugs, molecularly targeted cancer drugs aim to exploit the specific vulnerability of

cancer cells. With advances in biotechnology, the studies of genomics and proteomics

have generated huge amount of molecular data for targeted cancer drugs development.
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Hoelder et al. [2012] gives a review about the targeted cancer drugs development.

For instances, several drugs have been approved by FDA to target mutational activa-

tion of BCR-ABL tyrosine kinase in chronic myeloid leukemia, EGFR tyrosine kinase

in non-small cell lung cancer, BRAF kinase in melanoma, and HER2 amplification

in breast cancer [Yap and Workman, 2012].

Despite the effectiveness of these drugs in many patients, not all the patients

who have a targeted mutation response to the corresponding drug, which is partly

due to the (genome-wide) genetic heterogeneity among cancer patients. For example,

only 30% patients with HER2 amplification and 50% patients with BRAF muta-

tion respond to the corresponding drugs [De Palma and Hanahan, 2012]. Therefore,

statistical models that can predict drug sensitivities from patient-specific genomic

data will be of great value for cancer treatment. Such genomic data may include

DNA alterations, gene expression, and epigenetic marks. Owing to the advance of

high-throughput array/sequencing techniques, these genomic data can be collected

in routine clinical practice in the near future [Yap and Workman, 2012]. Robust

preclinical model systems such as cancer cell lines that reflect the genomic diversity

of human cancers can be used to build such predictive model [Caponigro and Sellers,

2011].

Recently, two groups have studied drug sensitivities in a large number of cancer

cell lines [Garnett et al., 2012; Barretina et al., 2012]. In a panel of several hundred

human cancer cell lines, Garnett et al. [2012] measured the sensitivities of 130 drugs,

mutation statuses of 64 commonly mutated cancer genes, and genome-wide copy

number alterations and gene expression. In a panel of 479 cancer cell lines, Barretina

et al. [2012] have screened 24 anticancer drugs and measured the mutation statuses
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of 1600 genes, as well as genome-wide copy number alterations and gene expression.

Both studies conducted univariate drug-by-drug analysis to select genomic features

associated with drug sensitivity as measured by the half-maximal inhibitory concen-

tration (IC50), i.e., the amount of drugs to kill 50% of the cancer cells. Since drugs

can be grouped by their targets such as a gene product or a signaling pathway, jointly

analysis of the drugs sharing a target may improve the power to identify common

genomic features.

Regarding feature selection for multivariate responses, two types of methods have

been applied: group-wise selection and bi-level selection. Group-wise variable selec-

tion methods, such as group Lasso [Yuan and Lin, 2006] or group adaptive Lasso

[Wang and Leng, 2008], assume all the response variables within a group are asso-

ciated with the same set of covariates [Huang et al., 2012]. The assumption that

all drugs sharing the same target (response variables within a group) have the same

associated genomic features is unrealistic. The analysis results of the studies (Gar-

nett et al. [2012] and Barretina et al. [2012]) show that in addition to some shared

features, drugs with the same target have their own individual features respectively.

In contrast, bi-level selection methods encourage the selection of covariates associ-

ated with all the response variables, but also allow some covariates to be associated

with one or a few response variables [Breheny and Huang, 2009] are more appropriate

for the application. A few methods have been developed for bi-level selection, such

as group bridge [Huang et al., 2009] and composite MCP [Breheny and Huang, 2009].

Suppose in a group of n samples, we observe q response variables, denoted by

yk = (y1k, ..., ynk)
T (1 ≤ k ≤ q), and p covariates, denoted by xj = (x1j, ..., xnj)

T

(1 ≤ j ≤ p). In addition, let β denote the coefficients matrix with each row as
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bj = (βj1, ..., βjq) and each column as bk = (β1k, ..., βpk), and ‖‖1 to be the 1-norm.

The objective function of 1-norm group bridge is

1

2n

q∑
k=1

‖yk −Xbk‖2
2 + λ

p∑
j=1

cj‖bj‖γ1 , (1.2.1)

where λ > 0 is the tuning parameter, γ is the bridge index, and cj is constants.

Following [Huang et al., 2012], composite penalties are defined as:

ρO(

q∑
k=1

ρI(|βjk)|),

where ρO is an outer penalty applying to a some of inner penalties ρI . Composite

MCP is using both ρO and ρI to be the MCP penalty, which is presented in the

previous section.

Although these methods work satisfactorily in many real data analyses, we find

that their performances are limited in our preliminary simulation analysis for ge-

nomic applications where the genomic features have strong correlations. As shown

in our study results on the penalty functions in the previous section, their limited

performance may be due to the properties of incorporated penalty functions. These

issues motivate us to develop a new method to construct predictive models of cancer

drug sensitivities using genomic features.

Based on the study results of the first paper, the Log penalty has its advantages

in the high dimension and low sample size problem. In addition, the previous study

of penalized estimation with univariate response variable has shown that the method

incorporated with Log penalty has better performance than other existing penalty

functions including Lasso or elastic net [Sun et al., 2010]. Therefore, we propose to
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extend the univariate version of method in [Sun et al., 2010] for multivariate penal-

ized estimation.

The penalized estimation method in [Sun et al., 2010] is built based on the

Bayesian hierarchical model, which can be considered as Bayesian shrinkage estima-

tion. The principle is to assign priors with mean 0 on the parameters that are subject

for shrinkage. Consider a univariate linear regression problem with both response and

covariates being standardized, yi =
∑p

j=1 xijβj + ei, where e ∼ N(0n×1, σ
2In×n) and

p is the number of covariates. In this case, the parameters which are subject for

shrinkage are the coefficients βj. One choice for the prior of βj is Normal distribution

with mean 0 and variance σ2
j . The assigned priors on σ2

j are key to the performance

of the Bayesian shrinkage methods. Several priors have been proposed for σ2
j such as

inverse-Gamma or exponential prior, and the obtained Bayesian shrinkage methods

have been suggested as Bayesian Lasso [Yi and Xu, 2008].

The priors in [Sun et al., 2010] are set as

p(βj|κj) =
1

2κj
exp

(
−|βj|
κj

)
, (1.2.2)

p(κj|δ, τ) = inv-Gamma(κj; δ, τ) =
τ δ

Γ(δ)
κ−1−δ
j exp

(
− τ

κj

)
, (1.2.3)

where δ > 0 and τ > 0 are two hyperparameters. The Bayesian shrinkage method

constructed by the above priors has shown its advantages compared to other existing

methods [Sun et al., 2010].
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1.3 Models that are subject to unidentifiable parameters

The problem of statistical inference in the presence of nuisance parameters that

are not identified under the null hypothesis has been studied in several literatures. It

is a non-regular testing framework since the nuisance parameter only present under

the alternative hypothesis. Therefore, the standard large sample asymptotic theory

cannot be directly applicable (Davtes [1977], Davies [1987]). Andrews [1993] consid-

ers the tests of structural change with unknown change point, where the unknown

change point is not identifiable under the null hypothesis, and provides tests for var-

ious nonlinear models applied in econometric applications. Hansen [1996] studies the

asymptotic distribution theory for the tests of model that are subject to unidentifiable

parameters including the form of additive nonlinearity and allowing for stochastic re-

gressors and weak dependence.

For the estimation problems, there are extensive literatures on estimation of the

change point. For instance, Bai [1997] establishes the convergence rate and asymp-

totic distribution for the least square estimation of a change point in multiple regres-

sion. Muggeo [2003] considers the regression models with one or more break-points

parameters and utilizes a linearization technique for fitting piecewise terms in the

models. He and Severini [2010] studies the theoretical properties of maximum likeli-

hood estimators of the parameters of a multiple change-point model. They establish

the consistency, the convergence rate, and the asymptotic distribution of the maxi-

mum likelihood estimators.

In the maximum likelihood estimation framework, due to the unidentifiable pa-

rameter (ζ) issue under null hypothesis (β = 0), the maximum likelihood estimator
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(MLE) have regular properties only if the likelihood function is specified correctly

with respect to the parameter value of β. Specifically, when β = 0, the parameters

ζ and β should be both absent from the likelihood function; then the MLE for the

rest parameters are regular. On the contrary, when β 6= 0, the parameters ζ and

β are both present in the likelihood function; the MLE do not have identifiability

issues. Take the change point model estimation as an example. The parameter ζ is

the change point parameter, and it exists only when β 6= 0. Instead of estimating the

change points like the above methods, we are interested in designing an estimation

procedure that can automatically take care of the specification of correct likelihood

function with respect to the values of β without assuming the existence of change

points.

Since whether β equals to 0 plays a key role in determining the form of likeli-

hood function, we utilize the idea of penalization estimation procedure and apply

adaptive Lasso penalty to β. The adaptive Lasso penalty incorporated to β has the

form: λ|β|w, where λ is a tuning parameter, and w stands for the adaptive weight

associated to β. As shown in [Zou, 2006], given a proper chosen w, adaptive lasso

performs as well as if the true underlying likelihood were given in advance.

To choose a proper weight for β, we propose to apply the idea of constructing a test

statistics in (Davtes [1977]. They have established the weak asymptotic optimality

properties against local alternatives for their proposed test statistics, and its form of

critical region is:

{ sup
L≤ζ≤U

T (ζ) > c}, (1.3.1)

where T (ζ) is assumed to be an appropriate test statistic and the range of [L,U ] is

the possible values for ζ. For large values of supL≤ζ≤U T (ζ), the null hypothesis will

11



be rejected. Similarly, we take the supremum of profile likelihood estimates of β̂(ζ)

over a range of possible values of ζ to be the weight for β to construct our estimation

procedure.
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CHAPTER 2: The role of tuning parameters

2.1 Introduction

In genome-wide association (GWA) studies, the goal is to identify the genetic

factors such as single nucleotide polymorphisms (SNPs) that are associated with dis-

eases. With the availability of a dense map of SNPs, it is statistically very challenging

to select the important SNPs from millions of SNPs using only a couple of thousand

samples. Regularized estimation procedures can be applied for simultaneous selec-

tion of important variables (SNPs) and estimation of their effects for high dimensional

data in GWA studies. The objective function of the regularized estimation is com-

posed of a model fitting metric (e.g., likelihood function) and a penalty function for

the parameters subject to regularization. Prior to the usage of regularized estimation,

screening can be applied to reduce the number of SNPs to be considered for penalized

estimation. However, due to the high correlation of neighboring SNPs, the number

of SNPs that pass a reasonable screening criterion is often larger than or much larger

than the sample size.

We use the real SNP genotype data from a recent study [Wright et al., 2014] to il-

lustrate the correlation structure of genotype data. We take the genotypes of 645,316

SNPs in chromosome 1 from 1,198 samples, and randomly pick 30 SNPs as important

variables to simulate the response under the linear model assumption. The effect size

is simulated as 0.7 and the residual errors are standard normal variables. Figure

4.1 shows a Manhattan plot of the marginal association p-values. The 30 important

SNPs are labeled by grey vertical lines. It is obvious that the high correlation among
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nearby SNPs leads to small p-values for those SNPs that are close to the 30 impor-

tant SNPs. If we apply screening using the p-value cut-off 10−4, 3,087 SNPs will be

selected which include 20 of the 30 important SNPs. Alternatively, if the p-value

cut-off is 10−8, 991 SNPs will be selected, which include only 13 of the 30 important

SNPs. Thus screening method can be helpful to certain extend, and screening with

stringent threshold would lead to many false negatives. This conclusion is consistent

with the extensive empirical study by Bühlmann and Mandozzi [2012]. Therefore,

the penalty function itself is still the key for high dimensional data analysis, and it

is desirable to identify penalty functions that can tolerate higher dimension.

Genomic Location
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og
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-v
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ue
)

Figure 2.1: Marginal association p-values for 645,316 SNPs on chromosome 1. The
grey vertical lines denote the positions of 30 important SNPs. The genomic location
spans 248,484,829 base-pairs. Note that a SNP is at a single base-pair location.

Several penalty functions have been proposed for high dimensional data analy-

sis. One of the most popular penalty functions is the Lasso penalty [Tibshirani,

1996]. The variable selection consistency of the Lasso requires the irrepresentable

condition [Zhao and Yu, 2006] that there is no strong correlation between the “im-

portant covariates” that have non-zero effects and the “unimportant covariates” that

have zero effects. This condition may not be satisfied in some applications, such as

GWAS studies. Recent studies have shown that a class of folded concave penalties

can achieve variable selection consistency without requiring such an irrepresentable

condition [Fan and Lv, 2010]. These folded concave penalties include, but are not
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limited to SCAD (Smoothly Clipped Absolute Deviation) [Fan, 1997; Fan and Li,

2001], MCP (Minimax Concave Penalty) [Zhang, 2010], SICA (Smooth Integration

of Counting and Absolute deviation) [Lv and Fan, 2009], and a Log penalty (Fried-

man [2008], Sun et al. [2010]).

A common concern in real data applications of penalized estimation is to tune the

regularization parameters to achieve the two fundamental goals of penalized estima-

tion: to penalize all the noise to be zero and to obtain an unbiased estimation of the

true signals. However, it may not be clear whether such “optimal” tuning is possible,

and this is the focus of our study. Moreover, all the aforementioned folded-concave

penalties have two tuning parameters, and thus in practice, the immediate questions

concern whether they both should be tuned, and what is the consequence of tuning

only one of them in order to improve computational efficiency. Previous work has

provided recommendations regarding the choice of tuning parameters, but there is no

systematic asymptotic study on the roles of multiple tuning parameters. To address

those issues, we will relate the choice of tuning parameters to the difficulty of the

variable selection problem, namely the minimum effect size and the dimensions, i.e.,

the number of important and unimportant covariates.

The results suggest that a class of penalty functions that bridges L0 and L1

penalties such as Log and SICA requires less restrictive conditions on dimensionality

and minimum effect sizes, while achieving the two fundamental goals of penalized

estimation. For the tuning of the regularization parameters, our study shows that

both SICA and Log penalties have very limited performance if only one of the two

regularization parameters is tuned, while tuning both regularization parameters can

significantly improve their performances, although at the price of heavier computa-
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tional burden. Our results are also insightful for designing other penalty functions.

For example, our results imply that two tuning parameters are sufficient to achieve

the two fundamental goals. Therefore, penalties with more than two regularization

parameters may not be needed due to the substantial increase of computational cost.

We conducted empirical analyses of the penalty functions using both simulated

data and real data in GWA settings. Those empirical results support the idea that the

class of penalty functions that bridges L0 and L1 hold promise for genomic studies.

2.2 Theoretical results

2.2.1 Notations and problem setup

Let p$(β) be a penalty function of β, where $ are regularization parameters with

arbitrary dimension. p$(β) is referred to as a folded concave penalty if it satisfies

the following condition:

Condition 1. p$(β) is concave in β ∈ [0,∞), with continuous derivative p′$(β) ≥ 0,

and p′$(0+) > 0.

We formulate the effects of the covariates via a generalized linear regression model,

permitting continuous and discrete outcome variables. Consider a sample of n re-

sponses, y = (y1, ..., yn)T, where each yi, i = 1, ..., n, is independently generated from

an exponential family distribution with a density: p(yi|θi) = exp {[yiθi − b(θi)]/φ+ c(yi, φ)},

where θi is the canonical parameter and φ ∈ (0,∞) is the dispersion parameter. Let

xij be the value of the j-th covariate in the i-th sample, and let X = (xij) be a
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n × p matrix of the covariates’ values. We assume that X has been normalized

such that
∑n

i=1 x
2
ij = n, for j = 1, ..., p. Under the assumed generalized linear

model, θi =
∑p

j=1 xijβj, where βj’s are regression coefficients. Let E(y) = µ(θ) =

(∂θ1b(θ1), ..., ∂θnb(θn))T and Σ(θ) = diag
{
∂2
θ1
b(θ1), ..., ∂2

θn
b(θn)

}
. We maximize the pe-

nalized likelihood Qn(β) = ln(β)−
∑p

j=1 p$(|βj|), where ln(β) = n−1
[
yTθ − 1Tb(θ)

]
is an affine transformation of the log-likelihood.

Without loss of generality, we assume that the first s covariates of X are impor-

tant (i.e., having non-zero effect on the response variable) and denote them collec-

tively by X1, and then denote the remaining p − s unimportant covariates by X2,

such that X = (X1, X2). Similarly, we partition β and θ = Xβ for the impor-

tant and unimportant covariates such that β = (βT
1 , β

T
2 )T and θ = (θT

1 ,θ
T
2 )T. Let

β0 = (βT
01, β

T
02)T = (β01, ..., β0p)

T be the true coefficients, such that β02 = 0. Let θ0

be the true values of θ such that θ0 = Xβ0.

It is difficult to analytically study the global maximizer of the penalized likelihood.

Following previous works [Fan and Lv, 2011], we study the local maximizer of the

penalized likelihood that satisfies the set of sufficient and almost necessary conditions

specified in Theorem 1 (see Appendix).

2.2.2 The role of the tuning parameters

The dimension of the regression problem and the minimum effect size are assumed

to satisfy the following conditions:
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Condition 2.1. log p = O(nα) and s = O(nν), respectively, with 0 ≤ α < 1 and

0 ≤ ν < 1/2.

Condition 2.2. dn ≡ 2−1 min1≤j≤s{|βj0|} = O(n−γ0(log n)1/2) for some γ0 ∈ (ν, 1/2).

The restriction of γ0 > ν (which is equivalent to s < nγ0) in Condition 2.2 can

be understood as an identifiability condition so that dns = O(nν−γ0(log n)1/2) can be

bounded by a constant. Otherwise the response variable is unbounded, with non-

trivial probability.

A maximizer of the penalized likelihood, β̂ = (β̂T
1 , β̂

T
2 )T, is considered to have

weak oracle property if β̂2 = 0 with probability tending to 1 as n → ∞, and β̂1

is consistent under L∞ loss [Lv and Fan, 2009]. We will study the role of tuning

parameters by studying the conditions for the weak oracle property. To this end, we

generalize the conditions for the weak oracle property in Fan and Lv [2011] to impose

constraints on the penalty function rather than particular tuning parameters, which

gives the following conditions 3.1-3.3. This generalization is necessary because the

original conditions are too stringent for any penalty function whose p′$(0+) involves

more than one tuning parameter. For example, the Log penalty cannot satisfy the

original conditions for the weak oracle property. After generalizing the conditions,

we can show that the Log penalty can indeed fulfills the conditions of the weak oracle

property.

Condition 3.1. p′$(dn) � b−1
s dn, where bs ≡ O(nγs) = O(n‖[XT

1 Σ(θ0)X1]−1‖∞) with

γs ≥ 0. A corollary of condition 3.1 is p′$(dn)� dn.
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Condition 3.2.
∥∥XT

2 Σ(θ0)X1[XT
1 Σ(θ0)X1]−1

∥∥
∞ ≤ min {Kp′$(0+)/p′$(dn), O(nν)} for

K ∈ (0, 1).

Condition 3.3. p′$(0+)� max(n−2γ0+2ν log n, nν−1/2(log n)1/2) and p′$(0+) > ηpσ
−1/2(1−

K)−1, where K is defined in condition 3.2, σ is a constant that is defined based on the

range of the response variable y (see proposition A1 in the Supplementary Materials

for details), and ηp = n−1/2+α/2(log n)1/2.

Condition 3.1 requires the derivative of the penalty function (i.e., the increase

of penalization as the regression coefficient increases) for important covariates to be

small enough. Condition 3.2 says that the ratio of the penalties’ derivatives for unim-

portant covariates and for important ones (p′$(0+)/p′$(dn)) should be large enough

relative to the maximum correlation between important and unimportant covariates,

which is a generalization of the irrepresentable condition for Lasso [Zhao and Yu,

2006]. Condition 3.3 requires the derivative of the penalty function for unimportant

covariates to be large enough. In contrast to the conditions for the weak oracle prop-

erty in Fan and Lv [2011], a critical modification is that we restrict the size of p′$(0+)

in condition 3.3, which replaces the condition λn � n−α(log n)2 stated in equation

(18) of Fan and Lv [2011]. For SCAD and MCP, p′$(0+) = λn, and thus constraints

on λn or p′$(0+) are equivalent. However, for Log and SICA, p′$(0+) = O(λn/τn).

Therefore, the generalized condition only requires the ratio of the two regulariza-

tion parameters to be large enough instead of imposing a constraint on λn itself.

Given conditions 2.1-2.2, conditions 3.1-3.3, and conditions 4.1-4.4 (presented in the

Appendix), which are for the design matrix X, we have the weak oracle property

(Theorem 2 in the Appendix).
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One immediate conclusion from conditions 3.1-3.3 is that the constraints on the

penalty function p$(β) are applied on the two quantities p′$(0+) and p′$(dn). With

the appropriate design, two tuning parameters can give enough degrees of freedom

on these two quantities so that conditions 3.1-3.3 are satisfied.

Next we discuss the implications of conditions 3.1-3.3 for the four folded concave

penalties: SCAD, MCP, Log, and SICA. It is more convenient to define SCAD and

MCP by their derivatives.

p′SCAD(|βj|;λ, a) = {λI(|βj| ≤ λ) + [(aλ− |βj|)/(a− 1)]I(λ < |βj| < aλ)} ,

where λ > 0 and a > 2 are two regularization parameters.

p′MCP(|βj|;λ, a) = I(|βj| < aλ)(aλ− |βj|)/a,

where λ > 0 and a > 0 are two regularization parameters. The Log and SICA

penalties are defined as

plog;λ,τ (|βj|) = λ log(|βj|+ τ), and

pSICA(|βj|;λ, τ) = λ {I(|βj| 6= 0)|βj|/(|βj|+ τ) + τ |βj|/(|βj|+ τ)} ,

respectively, where λ > 0 and τ > 0 are two regularization parameters. In the fol-

lowing discussions, the tuning parameters employed by a penalty are indicated by

subscripts. For example, the SCAD penalty with one tuning parameter λn (the other

regularization parameter a being set as constant) is denoted by SCADλn and the

SCAD penalty with two tuning parameters λn and an is denoted by SCADλn,an .

Let ηp = n−1/2+α/2(log n)1/2, which is a monotone transformation of dimension

log(p) = O(nα). Let ηd = min(nγ0/2(log n)−1/4, n−γ0+1/2), which, by condition 2.2, is
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a function of the minimum effect size: dn ≡ min1≤j≤s{|βj0|} = O(n−γ0(log n)1/2). In

the following propositions, we will discuss the properties of different penalties with

respect to s (the number of non-zero coefficients), dn, ηd, and ηp.

Proposition 1. [SCADλn , SCADλn,an , or MCPλn ] If dn � ηp and s � ηd, there

exist λn such that dn � λn > ηp to satisfy conditions 3.1-3.3 for the weak oracle

property. However, there is no such tuning parameter if dn � ηp.

Proposition 2. [MCPλn,an ] There are tuning parameters that satisfy conditions

3.1-3.3 for the weak oracle property without further constraints other than s� nγ0 ,

as is specified in condition 2.2.

Proposition 3. [SICAλn or Logλn ] There are tuning parameters that satisfy con-

ditions 3.1-3.3 for the weak oracle property if dn � ηp, s� ηd, and

∥∥XT
2 Σ(θ0)X1(XT

1 Σ(θ0)X1)−1
∥∥
∞ ≤ K (dn/τ + 1)2 ,

where K ∈ (0, 1) was defined in condition 3.3. There is no such tuning parameter if

dn � ηp.

Proposition 4. [SICAλn,τn or Logλn,τn ] There are tuning parameters that satisfy

conditions 3.1-3.3 for the weak oracle property without further constraints other than

s� nγ0 , as is specified in condition 2.2.

Corollary 1. [Restriction on tuning parameter if dn � ηp] To satisfy condition

3.1-3.3 requires an → 0+ for MCPλn,an , and τn → 0+ for SICAλn,τn and Logλn,τn .
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The proofs of Propositions 1-4 and Corollary 1 are presented in the Supplemen-

tary Materials.

By Proposition 1, if dn � ηp or dn � ηp, SCAD has similar theoretical proper-

ties when one or two tuning parameters are used. This conclusion is consistent with

many previous works where SCAD has satisfactory performance when the regulariza-

tion parameter a is set to be a constant, e.g., 3.7. Using two tuning parameters (λn

and an) does have some advantage over one tuning parameter (λn) when dn = O(ηp).

However, since the situation of dn = O(ηp) only covers a negligible part of the space

for dn, we do not discuss it further here. Proposition 1 also states that if dn � ηp,

in other words, if the effect size is not large enough relative to the dimension, then

there is no tuning parameter of SCAD to satisfy conditions 3.1-3.3. Specifically, con-

dition 3.1 requires p′$(dn) � dn, and condition 3.3 requires p′$(0+) > cηp, where

c is a constant. These two conditions cannot both be satisfied if dn � ηp. Specif-

ically, if SCAD satisfies condition 3.3, then p′$(0+) = λn > cηp. Given dn � ηp

and ηp < λn/c, we have dn � λn, and then we can show that p′$(dn) = λn, which

contradicts condition 3.1. In addition, we can see that in this situation, both p′$(0+)

and p′$(dn) are functions of λn so that a plays no role in fulfilling conditions 3.1 and

3.3. On the other hand, tuning only one regularization parameter is a computational

advantage of SCAD.

By Propositions 1 and 2, tuning both λn and an significantly improves the per-

formance of MCP if dn � ηp. Specifically, if MCP satisfies condition 3.3, then

p′$(0+) = λn > cηp. Then given dn � ηp, we have dn � λn. However, given a

properly tuned an = o(1) such that dn ≥ anλn, we have p′$(dn) = 0, which allows

MCP to satisfy condition 3.1.
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By Proposition 3, if we set τ = O(1) and only tune the regularization parameter

λ, then SICAλn and Logλn require the following condition to achieve the weak oracle

property: ∥∥XT
2 Σ(θ0)X1(XT

1 Σ(θ0)X1)−1
∥∥
∞ ≤ K (dn/τ + 1) .

This condition is similar to the irrepresentable condition of Lasso because when

τ = O(1), dn/τ+1→ 1. Therefore, asymptotically SICAλn and Logλn would perform

in a way similar to Lasso. If dn � ηp, then SICAλn and Logλn cannot simultaneously

satisfy conditions 3.1 and 3.3, even if the irrepresentable condition is satisfied.

By Proposition 4, tuning both λn and τn significantly improves the performance

of SICA and Log. Specifically, SICA and Log can have satisfactory variable selection

performances even if the minimum effect size is much smaller with respect to the di-

mension of the problem: dn � ηp. This can be justified by the following arguments.

For Log penalty, p′$(dn) = p′$(0+)/(dn/τn + 1). Even condition 3.3 requires a large

value of p′$(0+); a small enough τn can help p′$(dn) to satisfy condition 3.1. SICA

has similar properties since it has p′$(dn) = p′$(0+)/(dn/τn + 1)2. Therefore, the

implications of Proposition 3 and Proposition 4 for the practical use of SICA and

Log penalties would be that we should not treat τ as a constant.

Corollary 1 shows that for a difficult variable selection problem where dn � ηp,

the tuning parameter an of MCP or τn of SICA or Log should be on the scale of o(1).

Zhang [2010] suggests that a larger tuning parameter a in MCP leads to a bigger bias

and less accurate variable selection, a = 1 leads to a singularity problem, and a < 1

leads to a dramatic increase in computational cost. Similarly, Lv and Fan [2009]

suggest that for penalized estimates using SICA, the bias decreases to 0 as τn goes

to 0+, but the computational difficulty increases because the maximum concavity
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goes to infinity. Similar conclusions apply to the Log penalty. Although MCPλn,an ,

SICAλn,τn , and Logλn,τn have similar theoretical properties by Propositions 2 and 4,

the following numerical studies show that the computation cost for SICA and Log is

more affordable than that of MCP.

2.3 Algorithm and tuning parameter selection

We obtain the penalized estimates using SCAD or MCP by the coordinate descent

algorithms implemented in the R package ncvreg [Breheny and Huang, 2011]. We

implement the penalized estimation using SICA and Log penalties by a combination

of the coordinate descent algorithm and Local Linear Approximation (LLA) [Zou

and Li, 2008]. Specifically, we update the estimate of each regression coefficient

sequentially (which is the coordinate decent part), and the solution of each coefficient

is obtained after applying a local linear approximation:

p$ (|βj|) ≈ p$

(
|β̂(k)
j |
)

+ p′$

(
|β̂(k)
j |
)(
|βj| − |β̂(k)

j |
)
,

where β̂
(k)
j is the estimate of regression coefficient βj at the k-th iteration.

We present the computational algorithms for linear and logistic regression sepa-

rately. The objective function for linear regression is:

Qn(β) = − 1

2n
(y −Xβ)T (y −Xβ)−

p∑
j=1

p$(|βj|).

After applying LLA for the penalty function, the objective function to be maximized

at the (k + 1)-th step, while solving for βj, is

Q(k+1)
n (βj) = − 1

2n
‖y −X−jβ̂(k)

−j − xjβj‖2 +

p∑
j=1

p′$

(
|β̂(k)
j |
)
|βj|,
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where X−j is the matrix X without the jth column, and β̂
(k)
−j is β̂(k) without the jth

element. By letting ∂Q
(k+1)
n (βj)/∂βj = 0, we can obtain the solution for βj β̂

(k+1)
j = 0 if |z(k)

j | ≤ v−1
j p′$

(
|β̂(k)
j |
)

β̂
(k+1)
j = sgn(β̂

(k
j )
[
|z(k)
j | − v−1

j p′$

(
|β̂(k)
j |
)]

if |z(k)
j | > v−1

j p′$

(
|β̂(k)
j |
) ,

where z
(k)
j = xj(y −X−jβ(k)

−j )/vj, and vj = xTj xj.

The penalized likelihood for logistic regression is

Qn(β) =
1

n

n∑
i=1

{
yi log

πi
1− πi

+ log (1− πi)
}
−

p∑
j=1

p$(|βj|),

where πi = Pr(yi = 1). By applying the iteratively reweighted least squares algorithm

[McCullagh and Nelder, 1989] and the LLA of the penalty function, the objective

function to be maximized at the (k + 1)-th step, while solving for βj, is

Q(k+1)
n (βj) ≈ − 1

2n

(
ỹ(k) −X−jβ̂(k)

−j − xjβj
)T

W (k)
(
ỹ(k) −X−jβ̂(k)

−j − xjβj
)

+

p∑
j=1

p′$

(
|β̂(k)
j |
)
|βj|,

where ỹ(k) = Xβ̂(k) +
(
W (k)

)−1
(y − π(k)), W (k) is a diagonal matrix with the i-th

diagonal element w
(k)
i = π

(k)
i (1− π(k)

i ), and π
(k)
i = exp

(
Xβ̂(k)

)
/
[
1 + exp

(
Xβ̂(k)

)]
.

Letting ∂Q
(k+1)
n (βj)/∂βj = 0, the estimate of βj is β̂

(k+1)
j = 0 if |z(k)

j | ≤ v−1
j p′$

(
|β̂(k)
j |
)

β̂
(k+1)
j = sgn(β̂

(k
j )
[
|z(k)
j | − v−1

j p′$

(
|β̂(k)
j |
)]

if |z(k)
j | > v−1

j p′$

(
|β̂(k)
j |
) ,

where z
(k)
j = xTjW

(k)(ỹ(k) −X−jβ(k)
−j ) and vj = xTjW

(k)xj.

The iterative estimation process ends if the maximum difference of the estimates

of β between consecutive iterations is less than 10−5.

25



We follow a strategy similar to the ones in Breheny and Huang [2011] to obtain

an initial set of tuning parameter combinations. For SCAD and MCP, the tuning

parameter a is given as a constant or a vector of legitimate values such as a > 2 for

SCAD and a > 1 for MCP (the implementation of MCP in the R package ncvreg

requires a > 1). The λ’s for SCAD and MCP are given as N numbers equally spaced

on a log scale, with the largest one corresponding to the largest marginal effect size

and the smallest one being a fraction of the largest one. In our experience, the frac-

tion is set as 1/10 from the linear model, and 1/100 for the logistic model.

For SICA and Log, the tuning parameter τ is set as a constant or a vector of

legitimate values such as τ > 0. The theoretical results in previous sections suggest

that τ should be much smaller than the minimum effect size. In practice, because we

do not know which set of variables is important, we use the largest marginal effect size

as the upper bound for τ . Neither λ nor τ alone determines the penalization strength.

Instead, their combination in the form of the threshold v−1
j p′$(|β̂(k)

j |) specifies the

penalization strength. Without loss of generality, we assume xj (j = 1, ..., p) is

standardized with mean 0 and vj =
∑n

i=1 x
T
ijxij = n. It follows that the thresholds

for SICA and the Log penalties are p′$ (0) /vj = p′$ (0) /n. The largest threshold

corresponds to the largest marginal coefficient estimates (by absolute value), denoted

by β̂M , a predefined number of τ ’s uniformly distributed on a log scale from 10−6 to

β̂M , and the smallest threshold is 1/10 of the largest one, i.e., β̂M/10 for the linear

model, and 1/100 for the logistic model respectively:

{Threshold1, ..., ThresholdN} =

{
β̂M , ...,

β̂M
100

}
.

For example, for Log penalty, the threshold in the first iteration is λ/(nτ). Then

given a specific value of τ and a set of thresholds, N λ’s can be generated based on
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the equation:

{λ1/nτ, ..., λN/nτ} = {Threshold1, ..., ThresholdN} .

A similar strategy is used to determine the initial set of tuning parameters for SICA.

We select a particular combination of tuning parameters from the initial tuning

parameter pool using the extended BIC [Chen and Chen, 2008, 2012]. As discussed

in Chen and Chen [2008], if log p/log n > 0.5, the conventional BIC [Schwarz, 1978]

is not consistent. In all the scenarios considered in this paper, log p/ log n > 1. Our

empirical studies confirm that in these scenarios the conventional BIC tends to be

too liberal, and the extended BIC performs satisfactorily. The extended BIC for the

linear model m is:

BIC%(m) = −2 log ln{θ̂(m)}+ dfm log n+ 2% log ς(Sdfm),

where dfm is the degrees of freedom for model m and ς(Sdfm) is the number of the

models containing dfm covariates. We take the number of the nonzero coefficient

estimates in the model m as dfm and set ς(Sdfm) =
(
p
dfm

)
, the number of combinations

of dfm covariates chosen from p covariates. In addition, we set % ' 1−1/(2log p/log n)

while % > 1 − 1/(2log p/log n) is suggested in Chen and Chen [2008]. The extended

BIC for a generalized linear model m is:

BIC%(m) = −2 log ln{θ̂(m)}+ dfm log n+ 2dfm% log p,

where dfm is the number of nonzero coefficient estimates, and similar to the above

% ' 1− 1/(2log p/log n), as suggested in Chen and Chen [2012].
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2.4 Simulation

We evaluated those four penalties using a set of simulated data for multiple loci

mapping problems. Specifically, the response variable is either a continuous trait

(linear regression) or the case/control status (logistic regression), and the covari-

ates are the genotypes of the SNPs. One particular challenge in a multiple loci

mapping problem is that nearby SNPs often have correlated genotypes due to link-

age disequilibrium, and such correlations may violate the irrepresentable condition,

which is needed for the consistency of Lasso. To faithfully reproduce such correla-

tion structure, we directly used genotype data of European Ancestry (EA) samples

from a GWAS study of schizophrenia [Shi et al., 2009]. The dataset was obtained

from NCBI dbGaP, which includes GAIN (Genetic Association Information Network)

samples (2,686/2,656: cases/controls, dbGaP Accession: phs000021.v3.p2) and non-

GAIN samples (1,217/1,442: cases/controls, dbGaP Accession: phs000167.v1.p1)

genotyped by Affymetrix 6.0 SNP arrays with ∼900,000 SNPs.

To compare the performances of those penalty functions, we use two criteria to

select the tuning parameters. One is the extended BIC as introduced earlier, and

the other is an oracle criterion that uses the knowledge of the true model to select

the tuning parameters. Certainly the oracle criterion is not applicable in practice

when the true model is unknown. However, in simulation studies, the oracle criterion

permits us to evaluate the performance of a penalty function rather than the combined

outcome of a penalty function and a tuning parameter selection method. The oracle

criterion is defined as follows. Let D be the number of discoveries, i.e., the covariates

with non-zero regression coefficient estimates. D = TD + FD, where TD and FD are the

number of true discoveries and false discoveries, respectively. Our oracle criterion

evaluates a model based on the three measures, the false discovery rate FD/D, power
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TD/s, and the sum of squared error of regression coefficient estimates
∑p

j=1 |β̂j −

β0j|2, where β0j is the true value of βj. The model with the minimum of wt(FD/D−

TD/s) +
∑p

j=1 |β̂j − β0j|2 is selected, where wt is a weight to balance the number of

true/false discoveries and bias. Models selected with larger wt tend to have more

true discoveries and fewer false discoveries, but have a larger bias in their regression

coefficient estimates.

2.4.1 Linear model

For computational efficiency when there are a large number of simulations, we

randomly selected n = 222 samples and 12,656 SNPs with no missing values, and

with a minor allele frequency greater than 5% on chromosome 20. The response

variables y were simulated by y = Xβ + ε, where ε ∼ N(0, In×n). We considered 3

situations involving different combinations of p and s: p = 12,656 and s = 12, 16, or

20. Let uT1 = (0.5,−0.5, 0.4,−0.4). When s = 12, 16, and 20, β0 are set by repeating

u1 three, four, and five times, respectively. In addition, we considered null situations

with s = 0 and p = 12,656.

The tuning parameter grids were chosen as follows: a = (2.1, 2.5, 3.0, 3.7, 4.5,

6.0) for SCAD, a = (1.1, 2.0, 3.0, 4.0, 5.0, 6.0) for MCP, and 6 τ ’s for Log and SICA

as described in the section 3. We also applied Lasso implemented in R/glmnet.

For each of these five penalties, 100 λ’s uniformly distributed on a log scale were

generated as described in section 3.

We used the extended BIC and oracle criteria 10(FD/D− TD/s) +
∑p

j=1 |β̂j − βj0|2

to select the tuning parameters. We give the term (FD/D − TD/s) a larger weight
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of 10 so that the oracle criterion selects the model with the smaller false discovery

rate FD/D, greater power TD/s first, and use the sum of squared error of regression

coefficient estimates
∑p

j=1 |β̂j − βj0|2 as a secondary criterion.

For null simulation situations, all penalties have at most 1 or 2 false discoveries

by the extended BIC tuning parameter selection criterion. Table 2.1 summarizes

the simulation results in non-null situations with 12, 16, or 20 important covariates.

The folded concave penalties perform better than the Lasso penalty. Among the

four folded concave penalties, SICA, Log and MCP have comparable performance,

and are better than SCAD when the tuning parameters are selected by the oracle

criterion. When the tuning parameters are selected by the extended BIC, SICA

and Log have comparable performance, and are better than SCAD and MCP. In

additional simulation studies (results not shown), SCAD and MCP with one tuning

parameter (λ) have slightly worse performance than the situations with two tuning

parameters. In contrast, Log and SICA with one tuning parameter (λ) have much

worse performance than the situations with two tuning parameters. Therefore, the

extra tuning parameter (a or τ) gives SCAD and MCP limited additional advantage,

but significantly improves the performances of Log and SICA.

Table 2.1: Simulation results for penalized linear regression with (n=222, p = 12,656).
The headers indicate the tuning parameter selection criterion (Oracle or the extended
BIC) and the numbers in parentheses are the number of important covariates. For
each penalty, we present the median of the number of true discoveries, false discoveries
(in parentheses), and average bias of the true discoveries (in brackets) across 100
simulations.

Oracle (12) Ext BIC (12) Oracle (16) Ext BIC (16) Oracle (20) Ext BIC (20)
Lasso 11 (8) [0.33] 0 (0) [−] 7 (3) [0.39] 0 (0) [−] 14 (112) [0.34] 0 (0) [−]
SCAD 11 (3) [0.28] 0 (0) [−] 15 (25) [0.13] 0 (0) [−] 19 (27) [0.12] 0 (0) [−]
MCP 11 (1) [0.08] 10 (20) [0.08] 14 (2) [0.07] 11 (39) [0.10] 17 (3) [0.08] 5 (39) [0.11]
Log 11 (1) [0.07] 10 (3) [0.07] 14 (3) [0.07] 11 (7) [0.07] 17 (3) [0.08] 8 (10) [0.08]
SICA 11 (1) [0.06] 10 (3) [0.06] 14 (2) [0.06] 11 (6) [0.07] 17 (4) [0.07] 5 (7) [0.08]
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2.4.2 Simulation for logistic model

For penalized logistic regression, a larger sample size is needed for simulations

with reasonable effect sizes. We randomly selected 10,156 SNPs (with a minor allele

frequency larger than 5%) from chromosomes 1 to 22 and X and 750 samples (with

a missing values percent smaller than 3%). We simulated the individual SNP effect

so that the disease odds ratios are 2.0, corresponding to regression coefficients of

0.7. The binary response variable y was simulated based on the logistic regression

model: log{Pr(y = 1)/Pr(y = 0)} = Xβ, where s = 4, 8, or 12. In addition, the

null model where s = 0 was simulated. The intercept was set as −2, corresponding

to a disease prevalence of 0.12. The initial pool of tuning parameters were gen-

erated in the same way as linear regression, and then a particular combination of

tuning parameters was selected to minimize the extended BIC, or an oracle criterion

10(FD/D− TD/s) +
∑p

j=1 |β̂j − βj0|2.

For the simulation of null models, all penalties have at most 1 or 2 false discover-

ies by the extended BIC tuning parameter selection criterion. The simulation results

of non-null models are shown in Table 2.2. In general, the results of logistic model

simulation have a trend similar to that of linear model simulation. When the oracle

criterion is used, all penalties have satisfactory variable selection performances, al-

though SICA and Log have a smaller bias on effect size estimation. It can be observed

that the models chosen by the oracle criterion are different from those selected by

the extended BIC for SCAD and MCP. This is because the models chosen by the

oracle criterion tend to have larger biases, which reduces the likelihood, and thus

increases the realized value of the extended BIC. On the other hand, for Log and

SICA, the models chosen by the oracle criterion are similar to those chosen by the

extended BIC. Additional simulations (results not shown) confirm that SCAD with
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one or two tuning parameters have similar performance, and an additional tuning

parameter improves MCP’s performance. Moreover, the additional tuning parameter

significantly improves the performance of the SICA and Log penalties.

Finally, Table 2.3 presents the comparison of the computational burden for MCP,

Log and SICA across various values of a and τ , respectively. It can be observed that

the computation time of Log and SICA is much less than that of MCP.

In summary, Log and SICA have a smaller bias for the coefficient estimates of

important covariates, and therefore, more accurate estimates of the likelihood func-

tion. In addition, they have lower computational burden compared to MCP. As a

consequence, Log and SICA penalties have advantages in empirical usage.

Table 2.2: Simulation results for penalized logistic regression (n=750, p = 10,156).
The headers indicate the tuning parameter selection criterion (Oracle or the extended
BIC) and the numbers in parentheses are the number of important covariates. For
each penalty, we present the median of the number of true discoveries, the number of
false discoveries (in parentheses), and the average bias of true discoveries (in brackets)
across 100 simulations.

Oracle (4) Ext BIC (4) Oracle (8) Ext BIC (8) Oracle (12) Ext BIC (12)
Lasso 4(0) [0.49] 4 (0) [0.47] 7(0) [0.55] 6 (0) [0.53] 11(2) [0.59] 0 (0) [−]
SCAD 4 (0) [0.48] 4 (0) [0.39] 7 (0) [0.53] 6 (0) [0.43] 11(2) [0.58] 0 (0) [−]
MCP 4 (0) [0.093] 4 (0) [0.097] 7 (0) [0.25] 6 (1) [0.14] 11(1) [0.32] 11 (7) [0.25]
Log 4 (0) [0.085] 4 (0) [0.096] 7 (0) [0.085] 7 (1) [0.09] 11(1) [0.10] 11 (1) [0.10]
SICA 4 (0) [0.084] 4 (0) [0.094] 7 (0) [0.095] 7 (1) [0.099] 11(1) [0.12] 11 (1) [0.096]

Table 2.3: Running time rounded to minutes per simulation (n=750, s = 12, p =
10,156) for 100 λ’s and a fixed a of MCP or τ of Log and SICA.
MCP 21.1 (a = 1.1) 5.2 (a = 2.0) 7.1 (a = 3.0) 6.3 (a = 4.0) 9.7 (a = 5.0)
Log 2.1 (τ = 10−6) 1.9 (τ = 10−5) 1.9 (τ = 10−4) 1.9 (τ = 10−3) 1.8 (τ = 0.6)

SICA 2.0 (τ = 10−6) 2.1 (τ = 10−5) 1.9 (τ = 10−4) 1.8 (τ = 10−3) 1.8 (τ = 0.6)
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2.5 Real data analysis

We analyzed the data of GWA studies of schizophrenia on European-ancestry sam-

ples (2,195 cases vs. 2,617 controls). The missing genotypic data were imputed using

BEAGLE software [Browning and Browning, 2007], and 677,163 autosome SNPs with

minor allele frequency no less than 5% were selected for the analysis. We included

23 principle components (PCs) of genotype data in the model to account for possible

population stratification. First, a univariate logistic regression is conducted on the

case-control status for each of the 677,163 SNPs, conditioning on the covariates: age,

gender and 23 PCs. Using the resulting 677,163 p-values, we calculated a genomic

control factor of 1.0445 [Devlin and Roeder, 1999], implying that there is no strong

population stratification not accounted for in our model. The 7,984 SNPs with p-

values smaller than 0.01 were selected for the following variable selection. We applied

the penalized logistic regression on the 7,984 SNPs and 4,812 samples with the four

folded-concave penalties, while accounting for the effects of age, gender and 23 PCs,

by including them as unpenalized covariates.

We applied SCAD with a = 3.7 and MCP with a = 3, the default value of R pack-

age ncvreg, and chose to use two tuning parameters for SICA and Log. Using the

extended BIC for tuning parameter selection, the penalized logistic regressions with

Log and SICA selected 38 and 22 SNPs, respectively (Supplementary Table 1-2).

However, penalized logistic regressions with both MCP and SCAD selected the null

model since the null model has the lowest value of the extended BIC.

A joint model was fitted by a logistic regression using the 38 SNPs identified by the

Log penalty together with age, gender, and 23 PCs to obtain the p-values for the 38

SNPs. The results are illustrated in Figure 3.5, together with the marginal p-values

for the 677,163 SNPs. There are 43 genes within 10kb distance of these 38 SNPs,
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and among them 21 are in the Database for Annotation, Visualization and Integrated

Discovery (DAVID) [Huang et al., 2008]. By functional category enrichment analysis

at the DAVID website, 16 of the 21 genes are bound by transcription factor FOXO1,

with significant enrichment p-value after a Benjamini correction. Recent studies have

shown that FOXO1 regulates neuroblastoma differentiation [Mei et al., 2012], which

is relevant to schizophrenia. In contrast, we also did the functional category analysis

for those genes within 10 kb of the 38 SNPs with the smallest marginal p-values, but

no functional category was significantly over-represented.
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Figure 2.2: GWA marginal p-values (colored circles) and the 38 SNPs (black crosses)
identified by penalized logistic regression using Log penalty.

2.6 Asymptotic results

We present the following Theorem 1 of Fan and Lv [2011] for the self-completeness

of this paper. This Theorem gives a set of sufficient and almost necessary conditions

of a local maximizer of the penalized likelihood.

Theorem 1. (Characterization of PMLE): β̂ ∈ Rp is a strict local maximizer of
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the non-concave penalized likelihood Qn(β) = ln(β)−
∑p

j=1 p$(|βj|) if

XT
1 µ(θ̂)−XT

1 y + np′$(β̂01) = 0 (2.6.1)

‖XT
2 (y − µ(θ̂))‖∞ − np′$(0+) < 0 (2.6.2)

λmin

(
XT

1 Σ(θ̂)X1

)
− nκ(p$, β̂01) > 0. (2.6.3)

The following conditions 4.1-4.4 are for the design matrix X, and they are es-

sentially the same as the corresponding conditions from Fan and Lv [2011]. We

first define a few notations used in the following regularity conditions. L∞ norm

of a matrix is the maximum of the L1 norm of each row. λmax()/λmin() denotes

the maximum/minimum eigen-value of a symmetric matrix, respectively. Denote a

neighborhood of the non-zero coefficients as N0 = {δ ∈ Rs : ‖δ − β01‖∞ ≤ dn}.

Condition 4.1. ‖[XT
1 Σ(θ0)X1]−1‖∞ = O(bsn

−1), where

bs = O(nγs)� min(n1/2−γ0 , nγ0−ν(log n)−1/2) and γs ≥ 0.

Condition 4.2 maxδ∈N0 maxpj=1 λmax[XT
1 |xj|diag{|µ′′(X1δ)|}X1] = O(n), where the

derivative µ′′(X1δ) is taken component-wise.

Condition 4.3 maxpj=1 ||xj||∞ = o(n(1−α)/2(log n)−1/2) if the responses are unbounded.

Condition 4.4 maxδ∈N0 κ(p$, δ) ≤ minδ∈N0 λmin[n−1XT
1 Σ(X1δ)X1], where κ(p$, δ) is

defined as the local concavity of a penalty function at v = (v1, ..., vq)
T:

κ(p$, v) = lim
ε→0+

max
1≤j≤q

sup
t1<t2∈(|vj |−ε,|vj |+ε)

−p
′
$(t2)− p′$(t1)

t2 − t1
.
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For the penalties with continuous second derivatives, κ(p$, v) = max1≤j≤q−p′′$(vj).

Given conditions 1 to 4, we have the following weak oracle property.

Theorem 2. (Weak oracle property) Given the conditions 1 to 4, with probability

at least Pconverage = 1−2 [sn−1 + (p− s) exp (−nα log n)] , there exists a penalized

likelihood estimator β̂ = (β̂T
1 , β̂

T
2 )T which satisfies

(a) Sparsity: P (β̂2 = 0)→ 1, (b) L∞ loss: ‖β̂1 − β10‖∞ = o(n−γ0
√

log n).

Lemma 1 (for proofs of the propositions 2 and 3)

For condition 3.3, if s = O(nν)� min(nγ0/2(log n)−1/4, n−γ0+1/2), then

max(n−2γ0+2ν log n, nν−1/2
√

log n)� n−γ0
√

log n = O(dn). (2.6.4)

Proof:

If 1/3 < γ0 < 1/2, then min(nγ0/2(log n)−1/4, n−γ0+1/2) = n−γ0+1/2

max(n−2γ0+2ν log n, nν−1/2
√

log n) = max(s2n−2γ0 log n, sn−1/2
√

log n)

� max(n1−4γ0 log n, n−γ0
√

log n)

= n−γ0
√

log n = O(dn).
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If 0 ≤ γ0 ≤ 1/3, then min(nγ0/2(log n)−1/4, n−γ0+1/2) = nγ0/2(log n)−1/4,

max(n−2γ0+2ν log n, nν−1/2
√

log n) = max(s2n−2γ0 log n, sn−1/2
√

log n)

� max(n−γ0
√

log n, nγ0/2−1/2(log n)1/4)

= n−γ0
√

log n = O(dn).

Therefore, max(n−2γ0+2ν log n, nν−1/2
√

log n)� n−γ0
√

log n = O(dn).

Lemma 2 (for proofs of propositions 2 and 3)

For condition 3.3, if s� min(nγ0/2−γs/2(log n)−1/4, n−γ0−γs+1/2), then

max(n−2γ0+2ν log n, nν−1/2
√

log n)� n−γ0−γs
√

log n = O(b−1
s dn). (2.6.5)

Proof:

If γ0 +γs/3 > 1/3, then min(nγ0/2−γs/2(log n)−1/4, n−γ0−γs+1/2) = n−γ0−γs+1/2, and

max(n−2γ0+2ν log n, nν−1/2
√

log n) = max(s2n−2γ0 log n, sn−1/2
√

log n)

� max(n1−4γ0−2γs log n, n−γ0−γs
√

log n)

= n−γ0−γs
√

log n = O(b−1
s dn).

If 0 ≤ γ0+γs/3 ≤ 1/3, then min(n
γ0
2
− γs

2 (log n)−1/4, n−γ0−γs+1/2) = nγ0/2−γs/2(log n)−1/4,

and

max(n−2γ0+2ν log n, nν−1/2
√

log n) = max(s2n−2γ0 log n, sn−1/2
√

log n)

� max(n−γ0−γs
√

log n, nγ0/2−γs/2−1/2(log n)1/4).

= n−γ0−γs
√

log n = O(b−1
s dn).
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Thus max(n−2γ0+2ν log n, nν−1/2
√

log n)� n−γ0−γs
√

log n = O(b−1
s dn)

Proof of Proposition 1

For SCAD:

• Given dn � ηp and s � ηd, we will show that if λn = O(dn) and dn ≥ aλn

(more precisely, dn ≥ aλn for SCADλn or dn ≥ anλn for SCADλn,an), conditions

3.1-3.3 and 4.4 are satisfied.

– Since dn ≥ aλn, p′SCADλn (dn) = p′SCADλn,an (dn) = 0. Therefore condition 3.1

is satisfied.

– Because p′SCADλn (0+) = p′SCADλn,an (0+) = λn, condition 3.3 becomes

λn >
σ−1/2

(1−K)
n−1/2+α/2

√
log n and λn � max(n−2γ0+2ν log n, nν−1/2

√
log n).

First, λn >
σ−1/2

(1−K)
n−1/2+α/2

√
log n by our choice of λn = O(dn), and the

assumption

dn � n−1/2+α/2
√

log n. Next, λn � max(n−2γ0+2ν log n, nν−1/2
√

log n) is

satisfied by Lemma 1, and the choice of λn = O(dn). Therefore condition

3.3 is satisfied.

– For either SCADλn or SCADλn,an , we have p′$(0+)/p′$(dn) = ∞ because

p′$(0+) > 0 and p′$(dn) = 0. Therefore condition 3.2 is satisfied.

– For any δ = (δ1, ..., δs)
T ∈ N0 ≡ {δ ∈ Rs : ‖δ − β01‖∞ ≤ dn}, we have

|δj| ≥ dn ≥ aλn, and thus κ(p$, δj) = 0 for either SCADλn or SCADλn,an .

Therefore condition 4.4 is satisfied.

38



• Given dn � O(n−1/2+α/2
√

log n),

– Condition 3.3 requires λn >
σ−1/2

(1−K)
n−1/2+α/2

√
log n. Given dn � n−1/2+α/2

√
log n,

we have dn � λn. Therefore, p′SCADλn (dn) = p′SCADλn,an (dn) = λn.

– Condition 3.1 requires p′$(dn) = λn � dn since b−1
s dn � dn.

Clearly, no such λn exists to satisfy dn � λn and dn � λn or dn < λn

simultaneously.

For MCPλn :

• Given dn � σ−1/2

(1−K)
n−1/2+α/2

√
log n and s � min(nγ0/2(log n)−1/4, n−γ0+1/2), we

will show that if λn = O(dn) and dn ≥ aλn, conditions 3.1-3.3 and 4.4 are

satisfied.

– Since dn ≥ aλn, p′MCPλn (dn) = 0. Therefore condition 3.1 is satisfied.

– Because p′MCPλn (0+) = λn, condition 3.3 becomes

λn >
σ−1/2

(1−K)
n−1/2+α/2

√
log n and λn � max(n−2γ0+2ν log n, nν−1/2

√
log n).

First, λn >
σ−1/2

(1−K)
n−1/2+α/2

√
log n by our choice of λn. Next, by Lemma 1,

λn � max(n−2γ0+2ν log n, nν−1/2
√

log n) because λn = O(dn). Therefore

condition 3.3 is satisfied.

– For MCPλn , p′MCP(0+)/p′MCP(dn) =∞ because p′MCP(0+) > 0 and p′MCP(dn) = 0.

Therefore condition 3.2 is satisfied.

– Because dn ≥ aλn, κ(p$, δ) = 0 for any δ ∈ N0 ≡ {δ ∈ Rs : ‖δ − β01‖∞ ≤ dn}.

Thus condition 4.4 is satisfied.
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• Given dn � O(n−1/2+α/2
√

log n),

– Condition 3.3 requires λn >
σ−1/2

(1−K)
n−

1
2

+α
2

√
log n. Given dn � n−

1
2

+α
2

√
log n,

it leads dn � λn or dn < λn. Therefore, p′MCPλn (dn) = λn.

– Condition 3.1 requires p′$(dn) = λn � dn since b−1
s dn � dn.

Clearly, no such λn exists to satisfy both conditions simultaneously.

Proof of Proposition 2

For MCPλn,an , we will show that if (λn, an) satisfy λn > ηp,

λn � max(n−2γ0+2ν log n, nν−1/2
√

log n)

, and anλn < dn, conditions 3.1-3.3 and 4.4 are satisfied.

• Since dn ≥ anλn, p′MCPλn,an (dn) = 0. Therefore, condition 3.1 is satisfied.

• Because p′MCPλn,an (0+) = λn, condition 3.3 becomes

λn >
σ−1/2

(1−K)
n−1/2+α/2

√
log n and λn � max(n−2γ0+2ν log n, nν−1/2

√
log n).

By our choice of λn, condition 3.3 is satisfied.

• For MCPλn,an , p′MCP(0+)/p′MCP(dn) = ∞ because p′MCP(0+) > 0 and p′MCP(dn) = 0.

Therefore condition 3.2 is satisfied.

• Because dn ≥ aλn, κ(p$, δ) = 0 for any δ ∈ N0 ≡ {δ ∈ Rs : ‖δ − β01‖∞ ≤ dn}.

Thus condition 4.4 is satisfied.
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Proof of Proposition 3

For SICAλn :

• p′SICAλn (0+) = λn(1 + 1/τ) = O(λn) and p′SICAλn (dn) = λnτ(τ+1)
(dn+τ)2

= O(λn).

Because s � min(nγ0/2−γs/2(log n)−1/4, n−γ0−γs+1/2) and α < 1− 2γ0 − 2γs, we

have

max(n−1/2+α/2
√

log n, n−2γ0+2ν log n, nν−1/2
√

log n)� n−γs−γ0
√

log n

by Lemma 2. In addition, given
∥∥XT

2 Σ(θ0)X1(XT
1 Σ(θ0)X1)−1

∥∥
∞ ≤ K (dn/τ + 1)2,

we will show that if

max(n−1/2+α/2
√

log n, n−2γ0+2ν(log n)2, nν−1/2
√

log n)� λn � n−γs−γ0
√

log n,

conditions 3.1-3.3 and 4.4 are satisfied.

– Since p′SICAλn (dn) = O(λn)� n−γs−γ0
√

log n, condition 3.1 is satisfied.

– Because p′SICAλn (0+) = O(λn) by the choice of λn, condition 3.3 is satisfied

by

max(n−1/2+α/2
√

log n, n−2γ0+2ν(log n)2, nν−1/2
√

log n)� λn

– Since p′SICAλn (0+)/p′SICAλn (dn) = (dn/τ + 1)2, condition 3.2 is satisfied by

∥∥XT
2 Σ(θ0)X1(XT

1 Σ(θ0)X1)−1
∥∥
∞ ≤ K

(
dn
τ

+ 1

)2

.

– Because p′′SICAλn (dn) = O(λn) = o(1), condition 4.4 is satisfied.

• Given dn � O(n−1/2+α/2
√

log n),

– Condition 3.3 requires p′SICAλn (0+) = O(λn) > σ−1/2

(1−K)
n−

1
2

+α
2

√
log n. Given

dn � n−
1
2

+α
2

√
log n, it leads dn � λn. Therefore, p′SICAλn (dn) = O(λn).
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– Condition 3.1 requires p′$(dn) = λn � dn since b−1
s dn � dn.

Clearly, no such λn exists to satisfy both conditions simultaneously.

For Logλn :

• p′Logλn (0+) = λn/τ = O(λn) and p′Logλn
(dn) = λn/(dn + τ) = O(λn).

Given α < 1 − 2γ0 − 2γs and s � min(nγ0/2−γs/2(log n)−1/4, n−γ0−γs+1/2), by

Lemma 2, we have

max(n−1/2+α/2
√

log n, n−2γ0+2ν log n, nν−1/2
√

log n)� n−γs−γ0
√

log n.

Given the additional condition
∥∥XT

2 Σ(θ0)X1(XT
1 Σ(θ0)X1)−1

∥∥
∞ ≤ K (dn/τ + 1),

we will show that if

max(n−1/2+α/2
√

log n, n−2γ0+2ν log n, nν−1/2
√

log n)� λn � n−γs−γ0
√

log n,

conditions 3.1-3.3 and 4.4 are satisfied.

– Since p′Logλn
(dn) = O(λn) � n−γs−γ0

√
log n by the choice of λn, condition

3.1 is satisfied.

– Because p′Logλn
(0+) = O(λn), by the choice of λn, condition 3.3 is satisfied

by

max(n−1/2+α/2
√

log n, n−2γ0+2ν log n, nν−1/2
√

log n)� λn.

– Since p′Logλn
(0+)/p′Logλn

(dn) = dn/τ + 1, condition 3.2 is satisfied given

∥∥XT
2 Σ(θ0)X1(XT

1 Σ(θ0)X1)−1
∥∥
∞ ≤ K

(
dn
τ

+ 1

)
.

– Because p′′Logλn
(dn) = O(λn) = o(1), condition 4.4 is satisfied.

• Given dn � O(n−1/2+α/2
√

log n),
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– Condition 3.3 requires p′Logλn
(0+) = O(λn) > σ−1/2

(1−K)
n−

1
2

+α
2

√
log n. Given

dn � n−
1
2

+α
2

√
log n, it leads dn � λn. Therefore, p′Logλn

(dn) = O(λn).

– Condition 3.1 requires p′$(dn) = λn � dn since b−1
s dn � dn.

Clearly, no such λn exists to satisfy both conditions simultaneously.

Proof of Proposition 4

For SICAλn,an :

• Let λn = O(nγλ) and τn = O(nγτ ). Given 0 < α < 1 and ν ≤ γ0, we will show

that if γτ < −2γ0 − γs < γλ < −γ0, conditions 3.1-3.3 and 4.4 are satisfied.

– Given γτ < −γ0, ∃ constant C such that dn + τn ≥ C−1n−γ0 . Therefore

p′SICAλn,an (dn) =
λnτn(τn + 1)

(dn + τn)2
≤ C2n2γ0λnτn(τn + 1) = O(n2γ0+γλ+γτ ),

κ(p$, δ) = |p′′SICAλn,τn (dn)| = 2λnτn(τn + 1)

(dn + τn)3
≤ 2C3n3γ0λnτn(τn + 1)

= O(n3γ0+γλ+γτ ).

– p′SICAλn,an (dn) = O(n2γ0+γλ+γτ )� b−1
s dn = O(n−γs−γ0

√
log n) by the choice

of λn, τn with γλ + γτ < −3γ0 − γs. Therefore, condition 3.1 is satisfied.

– Since p′SICAλn,τn (0+) = O(nγλ−γτ ), condition 3.3 becomes

nγλ−γτ � max(n−2γ0+2ν log n, nν−1/2
√

log n)

and

nγλ−γτ >
σ−1/2

(1−K)
n−1/2+α/2

√
log n.

Given 0 ≤ α < 1 and ν < γ0 < 1/2 (conditions 2.1 and 2.2),

max

(
σ−1/2

(1−K)
n−1/2+α/2

√
log n, n−2γ0+2ν log n, nν−1/2

√
log n

)
� log n

and nγλ−γτ � log n by γλ − γτ > 0. Thus condition 3.3 is satisfied.
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– By conditions 2.1 and 2.2, 0 ≤ ν < γ0 < 1/2, thus γτ < −2γ0 < −γ0−ν/2.

Thus
p′SICAλn,τn

(0+)

p′SICAλn,τn
(dn)

= (dn/τn+1)2 = O(n−2γ0−2γτ log n)� O(nv). Therefore

condition 3.2 is satisfied

– Condition 4.4 is fulfilled by κ(p$, δ) = |p′′SICAλn,τn (dn)| = O(n3γ0+γλ+γτ ) =

o(1) because γτ + γλ < −3γ0.

For Logλn,an :

• Given 0 < α < 1 and ν ≤ γ0, we will show that if γτ < γλ < −2γ0 − γs,

conditions 3.1-3.3 and 4.4 are satisfied. Given γτ < −γ0, ∃ constant C such

that dn + τn ≥ C−1n−γ0 . Therefore

p′Logλn,τn
(dn) = λn/(dn + τn) ≤ Cnγ0λn = O(nγ0+γλ)

κ(p$, δ) = |p′′Logλn,τn (dn)| = λn/(dn + τn)2 ≤ C2n2γ0λn = O(n2γ0+γλ).

– p′Logλn,τn
(dn) = O(nγ0+γλ) � b−1

s dn = O(n−γs−γ0
√

log n) by the choice of

λn with γλ < −2γ0 − γs. Therefore, condition 3.1 is satisfied.

– Since p′Logλn
(0+) = λn/τn = O(nγλ−γτ ). Condition 3.3 becomes

nγλ−γτ � max(n−2γ0+2ν log n, nν−1/2
√

log n)

and

nγλ−γτ >
σ−1/2

(1−K)
n−1/2+α/2

√
log n.

Given 0 ≤ α < 1 and ν < γ0 < 1/2 (conditions 2.1 and 2.2),

max

(
σ−1/2

(1−K)
n−1/2+α/2

√
log n, n−2γ0+2ν log n, nν−1/2

√
log n

)
� log n.

Because γλ − γτ > 0, nγλ−γτ � log n. Thus condition 3.3 is satisfied.
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– By conditions 2.1 and 2.2, 0 ≤ ν < γ0 < 1/2, thus γτ < −2γ0 < −γ0 − ν.

Thus
p′Logλn,τn

(0+)

p′Logλn,τn
(dn)

= dn/τn + 1 = O(n−γ0−γτ
√

log n) � O(nv). Therefore

condition 3.2 is satisfied

– Condition 4.4 is fulfilled by κ(p$, δ) = |p′′Logλn,τn (dn)| = O(n2γ0+γλ) = o(1)

because γλ < −2γ0.

Proof of Corollary 1

Given dn � ηp:

• For MCPλn,an , :

– Condition 3.3 requires λn > ηp.

– If an is tuned such that dn < anλn, then p′$(dn) = λn + dn/an. Ccondi-

tion 3.3 requires λn > ηp so that condition 3.1 cannot be satisfied due to

p′$(dn) > ηp � dn.

– If an is tuned such that dn ≥ anλn, then p′$(dn) = 0. Therefore, condition

3.1 can be satisfied. This restricts the valid range of an: an < dn/λn <

dn/ηp = o(1).

• For SICAλn,τn :

– Condition 3.3 requires p′$(0+) > ηp.

– Note that p′$(dn) of SICA can be expressed as p′$(dn) = p′$(0+)/(dn/τn +

1)2. Condition 3.1 requires p′$(dn) = p′$(0+)/(dn/τn+1)2 � dn. Combin-
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ing condition with 3.3, it leads that ηp/(dn/τn + 1)2 � p′$(0+)/(dn/τn +

1)2 � dn. Note that condition 3.2 requires dn/τn →∞ as shown in proof

of proposition 4 so that O(dn/τn + 1) = O(dn/τn). Therefore, the valid

range of τn is restricted as τn < d
3/2
n /η

1/2
p = o(1).

• For Logλn,τn :

– Condition 3.3 requires p′$(0+) > ηp.

– Note that p′$(dn) of Log can be expressed as p′$(dn) = p′$(0+)/(dn/τn+1).

Condition 3.1 requires p′$(dn) = p′$(0+)/(dn/τn + 1) � dn. Combined

with condition 3.3, it leads that ηp/(dn/τn + 1)� p′$(0+)/(dn/τn + 1)�

dn. Note that condition 3.2 requires dn/τn → ∞ as shown in proof of

proposition 4 so that O(dn/τn+1) = O(dn/τn). Therefore, the valid range

of τn is restricted as τn < d2
n/ηp = o(1).
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CHAPTER 3: Prediction of cancer drug sensitivity

3.1 Introduction

Human cancer arises from an accumulation of somatic mutations during the life-

time of a patient. Recent studies have shown that cancer growth is often driven by

a few somatic mutations (so-called driver mutations), which may be buried among

a large number of “passenger” mutations [Hanahan and Weinberg, 2011]. Interven-

tions targeting these driver mutations or relevant pathways have proved to be effective

treatment options. However, not all the patients with the targeted somatic lesions

respond to the therapy. Take the targeted breast cancer treatment on the oncogene

HER2 as an example. The HER2 gene encodes a protein product that promotes

the growth of cancer cells. The amplification of the HER2 gene in breast cancer

increases the aggressiveness of the tumor. A drug, Trastuzumab, has been developed

to target HER2 amplification. However, among those breast cancer patients with

HER2 over-expression, only 30% respond to Trastuzumab therapy [De Palma and

Hanahan, 2012]. It is believed that genome-wide genetic heterogeneity among cancer

patients is one of the main reasons for the diverse treatment responses. In other

words, patients with HER2 amplification may have very different genomic features

(e.g., DNA alterations, gene expression, and epigenetic marks) in their genomes, and

these differences may lead to diverse treatment responses.

Preclinical model systems such as cancer cell lines that reflect the genomic diver-

sity of human cancers can be used to identify predictive genomic features/biomarkers

for drug sensitivity [Caponigro and Sellers, 2011]. Recently, two groups (Garnett et al.
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[2012] and Barretina et al. [2012]) have studied drug sensitivity in a large number of

cancer cell lines and measured several types of genomic features including mutations

of cancer genes, genome-wide copy number alterations, and gene expression. The

sample size ranges from 200 to 500 per drug, while the number of genomic features

is greater than 10,000. The authors conducted drug-by-drug analysis to identify as-

sociated genomic features, and they demonstrated that these cell line systems can

capture expected molecular targets of cancer drugs and provide novel findings on the

genomic basis of drug sensitivity.

It is expected that drugs with the same targets may have some common genomic

features in addition to their individual features. The results of the aforementioned

studies [Garnett et al., 2012; Barretina et al., 2012] support this speculation. There-

fore, a joint analysis of the drugs sharing a target may improve the sensitivity and

specificity with which we can identify their shared genomic features. To this end, we

consider the feature selection method for multivariate responses to identify predictive

genomic features of drugs with the same target.

Two types of methods have been developed for feature selection for multivariate

responses: group-wise selection and bi-level selection. Group-wise variable selection

methods, such as group Lasso [Yuan and Lin, 2006] or group adaptive Lasso [Wang

and Leng, 2008], assume that all the response variables within a group are associ-

ated with the same set of covariates [Huang et al., 2012]. This assumption is not

reasonable for cancer drug-sensitivity studies. For example, Garnett et al. [2012]

and Barretina et al. [2012] have shown that drugs with the same target may have

some shared genomic features, but they also have individual features. In contrast,

bi-level selection methods encourage the selection of covariates associated with all
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the response variables, but they also allow some covariates to be associated with one

or a few response variables [Breheny and Huang, 2009]. These flexibilities in bi-level

selection methods are desirable for cancer drug-sensitivity applications. A few meth-

ods have been developed for bi-level selection, such as group bridge [Huang et al.,

2009] and composite MCP [Breheny and Huang, 2009]. Although these methods work

satisfactorily in many real-data analyses, we find that their performance is limited

in some genomic applications where the genomic features have strong correlations.

These issues motivate us to develop a new method to construct predictive models of

cancer drug sensitivity using genomic features.

In this paper, we propose a new bi-level selection method called BipLog. Sim-

ulation studies show that it has substantially higher sensitivity and specificity than

existing methods. We apply BipLog to identify the genomic features associated with

drug sensitivity for two sets of real data [Garnett et al., 2012; Barretina et al., 2012].

We seek to answer a few important questions in our data analysis. First, by splitting

the data from Garnett et al. [2012] into training and testing sets, we assess the vari-

ation in the drug sensitivity that can be explained by our predictive model. Second,

we use all the data from Garnett et al. [2012] to select genomic features associated

with each drug target, and we evaluate their prediction performance using indepen-

dent data from Barretina et al. [2012]. There are substantial differences in these two

studies in terms of the drugs studied and the method to estimate the drug sensitiv-

ity. Therefore, this between-study comparison helps to evaluate the robustness and

generality of our method. Third, we use this between-study comparison to compare

the results of BipLog with those of the “drug-by-drug” analysis using the elastic net

[Zou and Hastie, 2005].
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The remainder of this paper is organized as follows. We introduce BipLog and

its implementation in Section 2. We present the simulation studies and real-data

analyses in Sections 3 and 4. Section 5 provides concluding remarks.

3.2 Method

3.2.1 Objective function

Suppose in a group of n samples, we observe q response variables, denoted yk =

(y1k, ..., ynk)
T (1 ≤ k ≤ q), and p covariates, denoted xj = (x1j, ..., xnj)

T (1 ≤ j ≤ p).

We assume that q is much smaller than the sample size n, but p is often larger or much

larger than n. After standardizing yk and xj to have mean 0 and ‖yk‖2
2 = ‖xj‖2

2 = 1,

we assume a linear system: E(yk) = Xβk =
∑p

j=1 xjβjk, where Xn×p = (x1, ...,xp)

and βk = (β1k, ..., βpk)
T . Let β = (β1, ..., βq), and denote each row of β by bj =

(βj1, ..., βjq). Let |bj| =
∑q

k=1 |βjk|. The objective function that we aim to minimize

is a penalized least squares:

Q(β) =
1

2n

q∑
k=1

‖yk −Xβk‖2
2 +

p∑
j=1

q∑
k=1

pθ1 (|βjk|) +

p∑
j=1

pθ2(|bj|), (3.2.1)

where pθ1 (|βjk|) = λ1 log(|βjk| + τ1), pθ2(|bj|) = λ2 log(|bj| + τ2), θ1 = (λ1, τ1), and

θ2 = (λ2, τ2).

In its general form, p$(β) = λ log(|β| + τ) is the Log penalty for a parameter β

with tuning parameters $ = (λ, τ). The Log penalty is a nonconvex penalty, or more

precisely a folded concave penalty [Fan and Lv, 2010] in the sense that it is concave for

β ∈ [0,∞), with continuous derivative p′$(β) ≥ 0, and p′$(0+) > 0. Friedman [2008]

originally proposed the Log penalty in an alternative form: λ log[(1− r)|β|+ r], with

0 < r < 1. Friedman [2008] observed that the Log penalty bridges the L1 penalty
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(Lasso) and the L0 penalty (all-subset selection) as r changes from 1 to 0. To illustrate

the characteristics of the Log penalty, we compare it with one of the most commonly

used penalties, the Lasso penalty (Figure 1). Lasso gives biased penalized estimation

since the penalty increases linearly as the regression coefficients increase. The Log

penalty mitigates this issue by reducing the penalty increase rate for larger regression

coefficients. In a previous study of penalized estimation with a univariate response

variable, we have shown that the Log penalty has better performance than Lasso in

some genomic applications [Sun et al., 2010].

0.0 0.5 1.0 1.5 2.0

0.
0

0.
2

0.
4

P(z)

z

SCAD
MCP
Log
SICA
Lasso

0.0 0.5 1.0 1.5 2.0

0.
0

0.
2

0.
4

P'(z)

z

SCAD
MCP
Log
SICA
Lasso

2 d
im

en
si

on
al

se
tt

in
g,

tr
ad

it
io

n
al

va
ri

ab
le

se
le

ct
io

n
m

et
h
o
d
s,

su
ch

as
b
es

t
su

b
se

t
se

le
ct

io
n
,

a
re

n
ot

co
m

p
u
ta

ti
on

al
ly

fe
as

ib
le

an
d

ar
e

ch
al

le
n
gi

n
g

to
ju

st
if
y

th
eo

re
ti

ca
ll
y.

A
lt

er
n
at

iv
e

re
g
u
la

ri
za

ti
o
n

st
ra

te
gi

es
w

h
ic

h
u
ti

li
ze

p
en

a
li
za

ti
on

to
ex

p
lo

it
sp

ar
sn

es
s

in
th

e
u
n
d
er

ly
in

g
m

o
d
el

ar
e

n
ec

es
sa

ry
to

a
ch

ie
ve

es
ti

m
a
ti

o
n

w
it

h
re

as
on

ab
le

em
p
ir

ic
al

an
d

th
eo

re
ti
ca

l
p
er

-
fo

rm
an

ce
.

E
ar

ly
w

or
k

on
fi
n
it

e
d
im

en
si

on
al

va
ri

a
b
le

se
le

ct
io

n
fo

cu
se

d
on

co
n
ve

x
p
en

al
ty

fu
n
ct

io
n
s,

li
ke

th
e

L
a
ss

o
(i

.e
.,

L
1

p
en

a
lt
y
)

(T
ib

sh
ir

a
n
i,

19
96

),
to

sh
ri

n
k

so
m

e
p
ar

am
et

er
es

ti
m

at
es

to
0
’s

.
A

d
d
in

g
th

is
p
en

al
ty

to
a

co
n
ve

x
ob

je
ct

iv
e

fu
n
ct

io
n

d
o
es

n
ot

ch
an

ge
th

e
co

n
ve

x
it
y

of
th

e
ob

je
ct

iv
e

fu
n
ct

io
n

an
d

th
e

co
m

p
u
ta

ti
on

s
ar

e
st

ra
ig

h
tf

or
w

ar
d
.
F
in

d
in

g
th

e
m

in
im

iz
er

o
f

th
e

p
en

a
li
ze

d
co

n
ve

x
ob

je
ct

iv
e

fu
n
ct

io
n

m
ay

b
e

ac
co

m
p
li
sh

ed
u
si

n
g

av
ai

la
b
le

al
go

ri
th

m
s

fo
r

co
n
ve

x
op

ti
m

iz
at

io
n

(E
fr

on
et

al
.,

20
04

;
F
ri

ed
m

an
,
H

as
ti

e
an

d
T

ib
sh

ir
an

i,
20

10
).

T
h
e

th
eo

re
ti

ca
l

p
ro

p
er

ti
es

of
L
as

so
h
av

e
b
ee

n
w

el
l

st
u
d
ie

d
in

b
ot

h
fi
n
it

e
d
im

en
si

on
al

(Z
ou

,
2
00

6
)

a
n
d

h
ig

h
-d

im
en

si
o
n
al

re
g
re

ss
io

n
p
ro

b
le

m
s

(Z
h
ao

an
d

Y
u
,

20
06

;
M

ei
n
sh

au
se

n
an

d
B

ü
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2

dimensional setting, traditional variable selection methods, such as best subset selection,
are not computationally feasible and are challenging to justify theoretically. Alternative
regularization strategies which utilize penalization to exploit sparsness in the underlying
model are necessary to achieve estimation with reasonable empirical and theoretical per-
formance.

Early work on finite dimensional variable selection focused on convex penalty functions,
like the Lasso (i.e., L1 penalty) (Tibshirani, 1996), to shrink some parameter estimates to
0’s. Adding this penalty to a convex objective function does not change the convexity of
the objective function and the computations are straightforward. Finding the minimizer of
the penalized convex objective function may be accomplished using available algorithms
for convex optimization (Efron et al., 2004; Friedman, Hastie and Tibshirani, 2010). The
theoretical properties of Lasso have been well studied in both finite dimensional (Zou,
2006) and high-dimensional regression problems (Zhao and Yu, 2006; Meinshausen and
Bühlmann, 2006; Zhang and Huang, 2008). Even in finite dimensions, the selection consis-
tency of Lasso requires an irrepresentability condition on the design matrix (Zhao and Yu,
2006), or equivalently, a neighborhood stability condition (Meinshausen and Bühlmann,
2006). These conditions posit that there are weak correlations between the “important
covariates” which have non-zero effects and the “unimportant covariates” which have zero
effects. The assumptions may be questionable in high dimensions, for example, in GWAS
studies, where an important SNP may be highly correlated with nearby SNPs.

To address the limitations of convex penalty functions in finite dimensional variable se-
lection, Fan and Li (2001) developed a theoretical framework for non-concave penalized
likelihood based on so-called folded-concave penalty functions. Let p�(β) be a function
of x with parameter �. A folded-concave penalty p�(β) is symmetric around 0, and it is
concave in β for either β > 0 or β < 0 p��(β). The popular Smoothly Clipped Absolute
Deviation Penalty (SCAD) (Fan, 1997) was especially developed to have such features.
Recently, other folded-concave penalties have been investigated, including the Minimax
Concave Penalty (MCP) (Zhang, 2010)), the Smooth Integration of Counting and Abso-
lute deviation penalty (SICA) (Lv and Fan, 2009)), and the log penalty (Friedman, 2008;
Sun, Ibrahim and Zou, 2010). It has been theoretically established that in finite dimensions,
penalization methods based on folded-concave penalties provide selection consistent esti-
mates in which zero coefficients are shrunk to zero exactly in finite samples and non-zero
coefficient estimates are asymptotically as efficient as an oracle estimator in which the zero
coefficients are known a priori. These results do not require the irrepresentability condition
for the Lasso. However, they do rely on the proper selection of a scalar tuning parameter
� which controls the shrinkage of the parameter estimators to zero. This theory has been
adapted to high dimensional problems, in which the number of covariates p increases with
the sample size n. In such settings, the theoretical justification requires careful tuning of
the penalty function to balance the tradeoff between false positives, e.g., zero coefficients
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Bühlmann, 2006; Zhang and Huang, 2008). Even in finite dimensions, the selection consis-
tency of Lasso requires an irrepresentability condition on the design matrix (Zhao and Yu,
2006), or equivalently, a neighborhood stability condition (Meinshausen and Bühlmann,
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(a) (b)

Figure 3.1: (a) The Log and Lasso penalty functions. For the Log penalty, λ =
0.09, τ = 0.225 and for Lasso, λ = 0.4. These two sets of tuning parameters are
comparable in the sense that they provide the same penalty derivative at 0+. (b)
The derivatives of these two penalty functions for the tuning parameters of Figure
1(a).

We achieved bi-level selection by applying Log penalties to each coefficient and

each group of coefficients (i.e., the coefficients of the same covariate across all re-

sponses) through
∑p

j=1

∑q
k=1 pθ1 (|βjk|) and

∑p
j=1 pθ2(|bj|), respectively. Given that

the observations of the responses and covariates have been standardized, the mag-

nitudes of the regression coefficients are comparable across different responses and

covariates. Here we choose to use a group penalty of the form pθ2(|bj|) = λ2 log(|bj|+

τ2) = λ2 log(
∑q

k=1 |βjk|+τ2). In the following section, we will explain why we use this

group penalty and why an alternative form of the L2 penalty (i.e., λ2 log(‖bj‖2 + τ2)
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where ‖bj‖2 ≡ (
∑q

k=1 β
2
jk)

1/2) does not lead to desirable penalization.

3.2.2 Computation

We estimate the β that minimizes Q(β) in Equation (3.2.1) using a combination

of local linear approximation (LLA) [Zou and Li, 2008] and a coordinate descent al-

gorithm. Specifically, given initial values of β, or the estimates from the tth iteration,

denoted {β̂(k)
j }, we apply LLA to the Log penalty functions pθ1 (|βjk|) and pθ2 (|bj|)

to update them at the (t+ 1)th iteration:

pθ1 (|βjk|) ≈ pθ1

(
|β̂(k)
j |
)

+
∂pθ1 (|βjk|)
∂|βjk|

∣∣∣∣
|βjk|=|β̂(k)

j |

(
|βjk| − |β̂(k)

j |
)

=
λ1|βjk|
|β̂(k)
j |+ τ1

+ C1,

pθ2(|bj|) ≈ pθ2

(
|b̂(t)
j |
)

+

q∑
k=1

∂pθ2 (|bj|)
∂|βjk|

∣∣∣∣
|βjk|=|β̂(k)

j |

(
|βjk| − |β̂(k)

j |
)

=

q∑
k=1

λ2|βjk|
|b̂(t)
j |+ τ2

+ C2,

where C1 and C2 are constants with respect to βjk. Then the objective function at

the (t+ 1)th iteration, denoted Q̃(t+1)(β), can be written

Q̃(t+1)(β) =
1

2n

q∑
k=1

‖yk −Xβk‖2
2 +

p∑
j=1

q∑
k=1

λ1|βjk|
|β̂(k)
j |+ τ1

+

p∑
j=1

q∑
k=1

λ2|βjk|
|b̂(t)
j |+ τ2

. (3.2.2)

Q̃(t+1)(β) should be understood as a working objective function, which is a function

of the regression coefficients of interest together with estimates of these coefficients at

previous iteration. Therefore, it is different from the objective function Q(β) specified

in Equation (3.2.1). We use a coordinate descent approach to find each regression

coefficient βjk sequentially. To solve for βjk, we minimize the following objective

function

Q̃(βjk) =
1

2

(
βjk − β̄(t)

jk

)2

+

{
λ1

|β̂(k)
j |+ τ1

+
λ2∑q

k=1 |β̂
(k)
j |+ τ2

}
|βjk|, (3.2.3)
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where β̄
(k)
j = (1/n)

∑n
i=1 xij

(
yik −

∑
l 6=j xilβ̂

(t)
lk

)
. In summary, this “LLA + coor-

dinate descent” algorithm alternates through different iterations indexed by t, and

within each iteration, it estimates all the regression coefficients sequentially. Finally,

this algorithm is considered to have converged if the maximum difference in the co-

efficient estimates between consecutive iterations is less than a predefined threshold,

say 10−4.

The penalty term for each step of the coordinate descent algorithm (Equation (3.2.3))

can be written as an adaptive Lasso form of λ1ŵjk|βjk| where the weight is

ŵjk =

(|β̂(k)
j |+ τ1

)−1

+ (λ2/λ1)

(
q∑

k=1

|β̂(k)
j |+ τ2

)−1
 . (3.2.4)

Therefore, the above computational algorithm is reminiscent of adaptive Lasso [Zou,

2006] rather than adaptive group Lasso [Wang and Leng, 2008], which uses the L2

norm of β as a group-level penalty. In contrast to the adaptive Lasso, which adapts a

weight function 1/|β̂(k)
j |, our weight function in Equation (3.2.4) is a weighted sum of

the contributions of the individual coefficient estimates (|β̂(k)
j |+ τ1)−1 and the group-

level estimates (
∑q

k=1 |β̂
(k)
j |+ τ2)−1, with weights 1 and λ2/λ1, respectively. Another

important difference between our penalty and the adaptive Lasso penalty is the in-

clusion of the tuning parameters τ1 and τ2, which prevent an infinite penalty for any

regression coefficient with a previous estimate of 0. This is necessary for the iterative

estimation procedure to proceed with one or more regression coefficients penalized

to 0. The sizes of τ1 and τ2 can be adjusted to apply penalties of the appropriate

strength.

In summary, the penalty terms used in the intermediate steps of our algorithm

(namely in Equations (3.2.2) and (3.2.3)) are different from those of adaptive Lasso
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and adaptive group Lasso. More importantly, they are part of the intermediate ob-

jective function that is updated at each iteration. The ultimate objective function is

that in Equation (3.2.1), with bi-level Log penalties.

3.2.3 A Bayesian interpretation of BipLog

The following Bayesian interpretation provides additional insight into our method

and the role of the tuning parameters. Recall that bj = (βj1, ..., βjq)
T are the regres-

sion coefficients for the jth covariate across the q response variables. Our BipLog

penalty can be derived from a Bayesian setup using the following priors:

p(bj|ωj1, ..., ωjq, ωj) =

{
q∏

k=1

1

2
(ω−1

jk + ω−1
j ) exp

(
−|βjk|
ωjk

)}
exp

(
−
∑q

k=1 |βjk|
ωj

)
,

p(ωjk|δ1, τ1) = inv-Gamma(ωjk; δ1, τ1) =
τ δ11

Γ(δ1)
ω−1−δ1
jk exp

(
− τ1

ωjk

)
,

p(ωj|δ2, τ2) = inv-Gamma(ωj; δ2, τ2) =
τ δ22

Γ(δ2)
ω−1−δ2
j exp

(
− τ2

ωj

)
,

where δ1 > 0, δ2 > 0, τ1 > 0, and τ2 > 0 are four hyperparameters. Given the above

specification, after integrating out ωjk and ωj, we obtain the density of bj:

f(bj|δ1, τ1, δ2, τ2) ∝ τ δ22 δ2

2(
∑q

i=1 |βjk|+ τ2)1+δ2

q∏
i=1

τ δ11 δ1

2(|βjk|+ τ1)1+δ1
. (3.2.5)

This Bayesian interpretation illustrates the similarities and differences of our

method and adaptive Lasso. The priors for bj include the Laplace prior for each

regression coefficient βjk and the Laplace prior for the L1 norm of bj. The Laplace

prior corresponds to the Lasso penalty [Tibshirani, 1996; Park and Casella, 2008].

The fact that we assign different parameters ωjk and ωj for the Laplace priors of the

regression coefficients βjk and |bj| implies that these priors correspond to adaptive

Lasso penalties. In the high-dimensional setting where the number of covariates p
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is much larger than n, one cannot obtain a good initial estimate of each regression

coefficient to decide the prior distribution of βjk. Therefore, we further assign prior

distributions for ωjk and ωj, and after integrating out ωjk and ωj, we obtain the

density of bj (Equation (3.2.5)) in terms of the hyperparameters δ1 > 0, δ2 > 0,

τ1 > 0, and τ2 > 0. This density of bj is connected to the Log penalty. In fact,

− log{f(bj|δ1, τ1, δ2, τ2)} gives exactly the same form of the BipLog penalty as in

Equation (3.2.1) if we set nλ1 = 1 + δ1 and nλ2 = 1 + δ2. This also gives more

insight into the scale of the tuning parameters of λ1 and λ2. Empirically, the grids

of possible values of λ1 and λ2 could be set at the scale of n−1 since both δ1 and δ2

are constant O(1).

3.2.4 A penalized maximum likelihood estimation perspective

A generalized form of PMLE is:

n−1ln(β)− ρ(β),

where ln(β) is the log-likelihood function and ρ(.) is a general form of the penalty

function. The goal of PMLE is to select the important variables for which the penal-

ized coefficient estimates are nonzero [Fan and Lv, 2010].

If we assume that the q response variables follow a multivariate Gaussian distribu-

tion, the penalized least squares estimation problem addressed in this paper is closely

related to the PMLE. The difference is that in the PMLE estimation, we also need to

estimate the inverse covariance matrix of the q response variables given the covariates,

and the strength of the penalization is related to not only the tuning parameters but

also the residual variance. A smaller residual variance leads to a smaller penalization.
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This is reasonable since a smaller residual variance means a better model fitting, and

thus it deserves less penalization. However, in a high-dimensional setting, where p is

larger or much larger than n, the relationship between the residual variance and the

penalization strength may introduce instability into the iterative updating algorithm.

During the iterations, if several covariates are mistakenly included in the model be-

cause of their spurious correlations with the residual errors, the residual variance will

become smaller, which further attenuates the penalty strength. This then encourages

the selection of more covariates and may lead to overfitting problems. We have ob-

served this type of overfitting for PMLE in our preliminary work. Therefore, although

PMLE is expected to be more efficient than penalized least squares estimation, we

choose to use the latter since it is more robust.

3.2.5 Tuning parameter selection

We choose the best set of tuning parameters by a grid search over an initial pool of

parameters. Based on the Bayesian interpretation of BipLog, we set λ1 = (1 + δ1)/n

and λ2 = (1 + δ2)/n. The initial values for δ1 and δ2 range from 0 to 5.0 with a

0.5 increment. Let β̂mlsji denote the estimates of the marginal regression coefficients.

The initial values for τ1 and τ2 are from 1−3 to maxj,k{|β̂mlsjk |} and from 1−3 to

maxj{
∑q

k=1 |β̂mlsjk |}, respectively, in predefined numbers. We select a combination of

tuning parameters using the extended BIC [Chen and Chen, 2008]. The extended

BIC for a model m is:

BIC%(m) = −2 log ln{θ̂(m)}+ κm log n+ 2% log ς(Sκm),

where ln{θ̂(m)} is the log likelihood, θ̂(m) are estimates of all the parameters, κm

is the degree of freedom for model m, and ς(Sκm) is the number of models with

degree of freedom equal to κm. Specifically, ln{θ̂(m)} is calculated using the pe-

nalized coefficient estimates assuming a multivariate Gaussian distribution. Given
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the coefficient estimates, we can calculate the determinant of the residual covariance

matrix, denoted |Σ̂|, and then the log likelihood is simply −(1/2) log |Σ̂|. Note that

the calculation of |Σ̂| is straightforward because of our assumption that the number

of response variables is much smaller than the sample size n. We set the number of

nonzero coefficient estimates to κm and ς(Sκm) =
(
pq
κm

)
, i.e., the number of choices of

κm coefficients from a total of pq regression coefficients. In addition, following Chen

and Chen [2008], we set % ≈ 1− 1/[2log(pq)/log n].

3.3 Simulation Studies

3.3.1 Simulation setup

We used simulated data to evaluate our method and two existing methods for

bi-level variable selection. The major challenges of feature selection using genomic

data are the high dimensionality and the correlations among the genomic features.

It is difficult to simulate high-dimensional genomic data with a realistic correlation

structure except in a few special cases. One such case is the correlation structure

among SNPs (single nucleotide polymorphisms) in an F2 cross. The R package qtl

provides a set of utility functions for such simulations [Broman et al., 2003]. Using

the function sim.map in R/qtl, we first simulated a genetic marker map of 2,000

SNPs from 20 chromosomes of length 90 cM, with 100 SNPs per chromosome. Then

we used the function sim.cross in R/qtl to simulate the genotype data of an F2

cross with sample size n = 200 based on the simulated marker map. As expected, the

simulated genotypes show strong correlations for nearby SNPs (average R2 is 0.96

for SNPs within 1 cM) and no correlation for SNPs from different chromosomes. We

randomly selected p = 600 SNPs from the 2,000 SNPs for the following simulation of

quantitative traits.
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We simulated a total of q = 30 quantitative traits from the multivariate linear

model

Yn×q = Xn×pβp×q + En×q, (3.3.1)

where Y = (y1, ..., yq). The residuals E were simulated from a multivariate Gaussian

distribution with mean 0 and compound symmetry covariance structure with diago-

nal variance (0.25+0.5) and off-diagonal covariance 0.5. Traits 1 to 10 share a pair of

causal SNPs, and each has its own causal SNP. Traits 11 to 30 do not have individual

causal SNPs. Traits 11 to 20 share two pairs of causal SNPs, and traits 21 to 30

share one pair of causal SNPs. The pairs of causal SNPs shared across traits may be

located in different chromosomes (unlinked) or at the same chromosome with the ef-

fect sizes being (η, η) (SNPs linked in coupling) or (η, -η) (SNPs linked in repulsion).

We set the genotype effect size η = 0.3 or 0.6. Given the three relationships between

the causal SNP pairs and the two effect sizes, there are six simulation scenarios in

total.

We compared BipLog with group bridge and composite MCP [Huang et al., 2012].

We used the implementation of group bridge and composite MCP in R/grpreg, with

the default choice of 100 possible values of the tuning parameter λ, which were uni-

formly distributed on a log scale. We used an oracle criterion to select the tuning

parameters to avoid confounding the feature-selection performance with the crite-

rion for the tuning-parameter selection. Specifically, let s be the number of causal

SNPs, and let D be the number of discoveries, i.e., the number of nonzero regression

coefficient estimates. D = TD + FD, where TD and FD are the number of true and

false discoveries. Under nonnull simulations, the oracle criterion evaluates a model

based on three measures: the false discovery rate FD/D, the power TD/s, and the sum

of the squared errors of the regression coefficient estimates
∑p

j=1

∑q
k=1 |β̂jk − β̃jk|2,
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where β̃jk is the true value of βjk. We select the model with the smallest value of

wt(FD/D−TD/s)+
∑p

j=1

∑q
k=1 |β̂jk− β̃jk|2, where wt is a weight to balance the number

of true/false discoveries and the bias. We set wt to 10 so that we select the models

mainly based on (FD/D−TD/s), and the sum of squared errors is a secondary criterion.

We also set wt = 1 or 0.1 for comparison purposes, and the conclusions are consistent

with the results for wt = 10 (results not shown).

Table 3.1 summarizes the empirical performance of the three bi-level selection

methods: BipLog, group bridge (gBridge), and composite MCP (cMCP). When the

shared SNPs are unlinked or linked in coupling, the three methods have a comparable

number of true discoveries while BipLog has many fewer false discoveries. When the

shared SNPs are linked in repulsion and the effect size is relatively small (η = 0.3),

gBridge and cMCP fail to identify most of the true discoveries while BipLog finds

almost 50% of them. In general, BipLog can identify true signals with a smaller bias

in the coefficient estimates.

3.4 Genomic signatures of cancer drug sensitivity

For a panel of 639 human cancer cell lines, Garnett et al. [2012] measured the mu-

tation statuses of 64 commonly mutated cancer genes (exon-sequencing), the genome-

wide copy number alterations (Affymetrix SNP array 6.0), and the gene expression

(Affymetrix HT-U133A microarray). A total of 130 drugs, including those for tar-

geted cancer therapy or broad-spectrum chemotherapy, were selected for the analysis.

Each drug was studied in a range of 275 to 505 cell lines. For a panel of 947 hu-

man cell lines, Barretina et al. [2012] measured the mutation statuses of 1600 genes

(targeted-sequencing), the genome-wide copy number alterations (Affymetrix SNP

array 6.0), and the gene expression (Affymetrix U133 plus 2.0 array). Twenty-four
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Table 3.1: Comparisons of three bi-level selection methods (group bridge (gBridge),
composite MCP (cMCP), and BipLog) via simulation studies. For each of the 6
simulation scenarios, 30 traits are considered. The total number of true trait-SNP
associations is 90, which includes 10 associations due to SNPs affecting only one
trait (individual SNPs) and 80 associations due to SNP pairs shared across traits
(shared SNPs). The tuning parameters are selected to minimize 10(FD/D−TD/s) +∑p

j=1

∑q
k=1 |β̂jk−βjk|2. We present the median number of true discoveries (TD) and

false discoveries (FD) and the average bias of the regression coefficient estimates (in
brackets []) for the true signals over 100 simulations.

gBridge cMCP BipLog
Shared SNPs are unlinked

η = 0.3
individual-SNPs:TD [bias] 9 [0.14] 9 [0.20] 7 [0.10]
shared-SNPs:TD [bias] 72 [0.16] 68 [0.20] 80 [0.076]
total FD 172 39 3

η = 0.6
individual-SNPs:TD [bias] 10 [0.26] 10 [0.29] 10 [0.071]
shared-SNPs:TD [bias] 78 [0.29] 80 [0.30] 80 [0.059]
total FD 117 11 0

Shared SNPs are linked in coupling

η = 0.3
individual-SNPs:TD [bias] 1 [0.15] 8 [0.21] 7 [0.10]
shared-SNPs:TD [bias] 72 [0.15] 69 [0.14] 77 [0.082]
total FD 60 17 4

η = 0.6
individual-SNPs:TD [bias] 1 [0.30] 10 [0.31] 10 [0.086]
shared-SNPs:TD [bias] 77 [0.27] 80 [0.18] 80 [0.075]
total FD 44 3 1

Shared SNPs are linked in repulsion

η = 0.3
individual-SNPs:TD [bias] 2 [0.14] 6 [0.24] 7 [0.061]
shared-SNPs:TD [bias] 0 [0.13] 0 [0.28] 36 [0.12]
total FD 1 1 7

η = 0.6
individual-SNPs:TD [bias] 10 [0.21] 10 [0.19] 10 [0.077]
shared-SNPs:TD [bias] 72 [0.28] 69 [0.46] 80 [0.14]
total FD 127 87 4

anticancer drugs were screened for 500 cell lines on average. In both studies, the drug

sensitivity was assessed by IC50, which is half-maximal inhibitory concentration.
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3.4.1 Evaluation of prediction model using training/testing data

Of the 130 drugs analyzed by Garnett et al. [2012], 41 have non-missing IC50

values in fewer than 331 cell lines, while the other 89 drugs have non-missing IC50

values in more than 561 cell lines. These 89 drugs were grouped by their targets, and

two drugs were excluded from our analysis because they do not group with any other

drugs. We will first study these 87 drugs since a larger sample size is necessary for

the following studies using training/testing sets.

Of the 87 drugs, 57, 69, and 56 are grouped by targeted family, targeted process,

and targeted molecule, respectively. One drug is often grouped in multiple ways.

There are four targeted families: chemotherapy, CTK (cytoplasmic/non-receptor ty-

rosine kinase), RTK (receptor tyrosine kinase), and S/T Kinase (serine/threonine

protein kinase), which include 12, 7, 10, and 30 drugs respectively. There are 18

targeted processes and 24 targeted molecules groups. Most groups based on the tar-

geted processes have fewer than 10 drugs, and the two largest groups have 17 and

20 drugs, respectively. For the targeted molecules, most of the groups have fewer

than 5 drugs, and the largest group has 7 drugs. The three grouping strategies have

a semi-hierarchical order: targeted family > targeted process > targeted molecule.

For example, the group for the RTK targeted family includes the groups for targeted

processes such as ERK Signaling and PI3K/MTOR. Furthermore, the ERK signaling

targeted process includes targeted molecules such as EGFR and MET.

To evaluate the validity of the selected features, we split the cell lines into training

and testing sets. For the testing set, we randomly selected 65 cell lines from those

with non-missing IC50 values for all 87 drugs. We used the remaining cell lines as the
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training set. Both the training and testing data were standardized to have a mean of

0 and a standard deviation of 1 for the response and covariates. The training data

were then used for feature selection. If a drug belonged to more than one group, we

took the union of the genomic features associated with that drug across the groups.

Given the genomic features selected for each drug, we re-estimated the regression

coefficients using the training data (denoted β̂train) and thus obtained a predictive

model for each drug. Next, we used the testing data to estimate the percentage of

the variance explained by the predictive model. Let SSz be the sum of squares of

z, and let ytest and Xtest be the standardized log(IC50) and genomic features in the

testing set. Then

Prediction R-square ≡ 1− SSεtest
SSytest

, where εtest = ytest −Xtestβ̂train.

The possible range for prediction R-square is (−∞, 1]. A negative value clearly indi-

cates a bad prediction, and the significance of a positive value was evaluated by the

following approach. Given a drug with k associated features, we randomly chose k

features from the candidate 13,847 features including 84 binary variables of cancer

gene mutation statuses, 426 copy number alterations, 13,321 gene expressions, and 16

binary variables for cancer types, under the null scenario where these k features are

irrelevant to the drug sensitivity. We estimated their regression coefficients using the

training data, and then evaluated the prediction R-square using the testing data. We

constructed the null distribution of the prediction R-square by repeating the above

procedure 1,000 times, and then we calculated the p-value as the percentage of the

null simulations where the prediction R-squares were greater than or equal to the

observed prediction R-square. This approach is computationally efficient: it took 8

seconds on average to generate the p-value for each drug.

BipLog identified that 70 of the 87 drugs were associated with at least one ge-
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nomic feature. Figures 3.2a and 3.2b show the distributions of the number of selected

features and the prediction R-squares across these 70 drugs. Forty-nine (70%) of the

70 drugs had prediction R-squares greater than 0, and 17 (24%) had prediction R-

squares greater than 20%. Forty-one of the drugs had significant prediction R-squares

at the 0.05 significance level (Figure 3.2c), which corresponds to an estimate of FDR

= 87× 0.05/41 ≈ 0.1. As expected, there is a strong correlation between the predic-

tion R-squares and their p-values, although the relationship is not monotonic (Figure

3.2d). Therefore, in practice it is helpful to consider both the size of the prediction

R-square and its p-values. Overall, these results suggest that the identified genomic

features could provide useful predictions of drug sensitivity. We will give specific

examples in the next subsection.

3.4.2 Construction of prediction model

Next, we combined the training and testing sets and selected the genomic features

using all the available data for the 87 drugs. A feature was selected by a group if it

had a nonzero coefficient for at least one drug in the group. For the drugs grouped by

target family, we selected 10, 4, 6, and 0 features for the groups Chemotherapy, RTK,

CTK, and S/T Kinase, respectively. Figure 4.2 shows the distribution of the number

of features selected per group for the targeted processes and targeted molecules.

Next we discuss a few examples, shown in Figure 3.4; the complete results can be

found in the supplementary materials. Somatic mutations may lead to the fusion of

two genes. The abnormal gene BCR-ABL is formed by the fusion of genes BCR and

ABL; this is often observed in chronic myeloid leukemia (CML). BCR-ABL encodes

a tyrosine kinase that is not regulated by cellular signals and thus causes unregulated
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Figure 3.2: Summary of the genomic feature selection results of the within-study
analysis. (a) Distribution of the number of genomic features selected per drug. (b)
Distribution of the prediction R-squares for each drug. (c) Distribution of the p-
values of the prediction R-squares. (d) Scatter plot of the prediction R-squares and
their corresponding p-values. Since the null distribution was simulated as 1000 null
samples, the smallest p-value is 0.001.
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Figure 3.3: Distribution of the number of selected features by the two grouping
strategies.
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B. MEK1/MEK2

D. Mitosis
1

Groupwise_mitosis.xls

Vinorelbine EpothiloneB Vinblastine Docetaxel BX-795 SL0101-1 BI-D1870 ZM-447439 RO-3306
ABCB1 0.23 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
YAP1 0.00 0.00 -0.25 -0.24 0.00 0.00 -0.10 0.00 0.00
AXL 0.00 -0.13 0.00 -0.17 -0.36 0.00 0.00 -0.19 -0.15
blood 0.00 0.00 0.00 0.28 0.18 0.00 0.33 0.21 0.15

1

Groupwise_MEK1.2.xls

RDEA119 CI-1040 PD-0325901 AZD6244
PHLDA1 -0.49 -0.39 -0.43 -0.36

A. BCR_ABL 

1

Groupwise_ABL.xls

AP-24534 Nilotinib Bosutinib
EGFR 0.00 0.00 -0.19
AZU1 -0.20 0.00 0.00
CAV2 0.00 0.00 -0.19
BCR_ABL_MUT -0.39 -0.67 0.00

C. ERBB2

C1ORF116 Lapatinib ERBB2 -0.30713692
CYR61 Lapatinib ERBB2 -0.34903966

ERBB2 MUT Lapatinib ERBB2 -0.31306867
C1ORF116 BIBW2992 ERBB2 -0.36339611

STAM2 BIBW2992 ERBB2 -0.15896628
ERBB2 CN BIBW2992 ERBB2 -0.25649148

Lapatinib BIBW2992
C1ORF116 -0.31 -0.36

CYR61 -0.35 0.00
ERBB2_CN 0.00 -0.26

ERBB2_MUT -0.31 0.00
STAM2 0.00 -0.16

Figure 3.4: Genomic features associated with four groups of drugs that share the
molecular targets BCR ABL (A), MEK1/MEK2 (B), ERBB2 (C) or the process
target Mitosis (D). For each group, the regression coefficient matrix is shown for
those genomic features with at least one nonzero coefficient, where a row corresponds
to a genomic feature and a column corresponds to a drug. The feature X MUT is
a binary indicator showing whether or not gene X has mutation; ERBB2 CN is the
copy number of the gene ERBB2; blood is a binary indicator showing whether or
not the cell line is derived from a blood tumor. The remaining features are gene
expressions.

cell proliferation, which may lead to cancer. Three drugs that target BCR-ABL pro-

tein products are included in this study (Figure 3.4A). The sensitivity of two of these

drugs is negatively correlated with the occurrence of the BCR-ABL mutation, which

is expected. The negative correlation indicates that the presence of the BCR-ABL

mutation is related to a reduction in log(IC50), hence an increase in the drug sensi-

tivity. There are two interesting new findings in this example. (1) The sensitivity

of AP-24534 also increases as the expression of AZU1 increases, which is consistent

with the tumor suppressor role of AZU1 [Chen et al., 2000]. (2) The sensitivity of

Bosutinib is associated with the expression of two cancer-related genes, EGFR and

CAV2, instead of the BCR-ABL mutation. EGFR is a signaling protein that plays an

important role in many types of cancer, and CAV2 is potentially a tumor suppressor

[Lee et al., 2011].
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Figure 3.4B shows that when the gene encoding PHLDA1 has a higher expression,

all four drugs that target MEK1/MEK2 (mitogen-activated protein (MAP) kinase)

have higher sensitivity. Several previous studies have suggested that PHLDA1 may

be functionally important in cancer, and some studies have shown that it functions

in the MEK1/MEK2 pathway [Oberst et al., 2008]. This finding suggests that the

expression of PHLDA1 could be an informative biomarker for the efficacy of cancer

drugs targeting MEK1/MEK2.

The ERBB2 (also known as the HER2) gene encodes a protein product that

promotes the growth of cancer cells. The amplification of the ERBB2 gene in breast

cancer increases the aggressiveness of the tumor. Our analysis identifies several genes

related to the two drugs targeting ERBB2 (Figure 3.4C): BIBW2992 and Lapatinib.

BIBW2992 has been approved by the U.S. Food and Drug Administration for use

against non-small cell lung carcinoma (NSCLC), and its efficacy for breast cancer

treatment is being evaluated. Lapatinib has been approved for treatment in ad-

vanced HER2-receptor-positive breast cancer patients. As expected, we identified

the ERBB2 mutation or the ERBB2 copy number variation as genomic features

associated with these drugs. The novel findings are the association with the gene

expressions of C1ORF116, CYR61, and STAM2. C1ORF116 interacts with SMD2

and SMD3, which are both closely related to growth-factor signaling and tumorige-

nesis [Tian et al., 2003]. Several studies have shown that CYR61 is involved with

breast cancer tumorigenesis and progression [Tsai et al., 2002; Planque and Perbal,

2003]. Furthermore, the gene expression CYR61 has been found to be associated

with stage, tumor size, and estrogen receptor expression in breast cancer patients

[Xie et al., 2001]. In addition, STAM2 may be involved in “signaling by EGFR in

cancer” [Croft et al., 2011]. Therefore, the combined information from the ERBB2

mutation (or copy number alterations) and gene expression of C1ORF116, CYR61,
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and STAM2 may provide a more accurate prediction of drug efficacy than the ERBB2

mutation/copy number alteration alone.

Figure 3.4D presents the estimated coefficient matrix for nine drugs that target

the Mitosis process. The features shared by several drugs include the expression of

genes YAP1 and AXL and the blood-tissue indicator. YAP1 encodes “YES-associated

protein 1,” which has been shown to be related to different types of cancer [Wang

et al., 2012; Rosenbluh et al., 2012]. AXL encodes a receptor tyrosine kinase, which

is also involved with tumorigenesis [Hong et al., 2013]. Previous studies have shown

that the protein products of YAP1 and AXL may function together [Cui et al., 2011].

3.4.3 Validation of the prediction model

We treated the data of Garnett et al. [2012] and Barretina et al. [2012] as the

training and testing study data, respectively, constructed the prediction models from

the training data, and then evaluated them using the testing data. Of the 24 drugs

analyzed by Barretina et al. [2012], 12 were analyzed in the training study. Five of

the 12 drugs had missing values in more than 325 cell lines in the training study, so

they were not included in the 87 drugs in the above analysis. To address this issue, we

conducted another group-wise analysis using the training data for groups involving

any of these 12 drugs. Then we chose the features associated with each drug as the

union of the features selected in this new analysis and those from the above analysis,

whenever possible. For the 12 drugs that were analyzed using the testing data but

not the training data, we fitted the prediction models using the features selected for

their drug targets. For example, for the drug Topotecan, which targets the molecule

TOP1, we used the features from the training study associated with the drug group

that targeted TOP1 as the features associated with Topotecan.
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To determine whether at least one of the selected features is associated with drug

sensitivity in the testing data, we used an F-test to compare the intercept-only model

and the model with all the identified genomic features. The analysis results are pre-

sented in Figure 3.5. The F-test p-values are smaller than 0.05 in most cases (note

that only drugs with at least one identified genomic feature are included in the fig-

ure). The drugs PLX4720 and Lapatinib are particularly significant, with p-values

of 10−39 and 10−17 respectively.

●
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●
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●
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●
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Figure 3.5: Evaluation of the predictive model in the study of Barretina et al. [2012];
the models themselves were constructed using the data of Garnett et al. [2012]. The
“validated drugs” are the drugs that were analyzed in both studies. The inferred
drugs are the drugs that were analyzed only in the study of Barretina et al. [2012]. The
x-axis shows the drug targets, and the y-axis shows the − log 10(p-values) from the F-
test that compares the model with all the identified genomic features to the intercept-
only model using the data of Barretina et al. [2012]. The numbers in brackets are
the number of features in the corresponding prediction model.

To compare the genomic features identified by our method and the elastic net

analysis in the study of Garnett et al. [2012], we calculated the prediction R-square

of log(IC50) in the testing study for the 12 drugs that were analyzed in both the

training and testing studies. Because of the disparate ranges and scales of log(IC50)

in the two studies, as shown in Figure 3.6, we could not directly use the regression

coefficients estimated from the data of Garnett et al. [2012]. Instead, we used the
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following procedure to estimate the prediction R-squares. First, for each drug, we

●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●

●

●

●
●

●

●

●●

●

●
●

●

●

●

●
●
●
●

●

●

●

●
●

●

●●

●

●

●
●

●
●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●●

●

●

●

●●

●
●●

●

●

●

●

●

●

●
●

●●

●
●

●

●

●

●
●

●●

●
●
●

●
●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●
●
●
●

●

●
●
●

●

●●

●

●

●

●

●
●●
●●

●
●
●
●

●

●●
●●

●

●
●●

●

●

●
●

●

●
●●

●

●●

●●
●

●

●
●

●
●

●
●
●

●

●
●

●

●

●●

●

●

●

●

●

●●

●

●

●

●
●

●●

●

●●

●●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●
●●

●●
●

●

●
●
●●

●

●●●●
●

●●

●
●
●
●●
●
●
●●

●

●
●

●

●●●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●
●
●●

●
●
●
●
●

●

●
●
●

●

●

●

●

●

●

●
●

●

●●
●●
●

●
●
●●

●

●

●
●

●

●

●

●

●

●

●

●

●
●
●●

●

●●●

●

●

●

●

●
●
●●●●●

●
●

●●
●

●

●

●
●●
●
●
●
●

●

●●●●●●●
●

●

●●
●
●●
●
●●
●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●●
●

●
●

●

●

●

●

●

●●

●
●

●

●

●

●
●●

●
●
●

●

●

●
●●

●

●

●
●●
●

●

●

●
●●
●
●●●
●
●
●

●●

●

●●
●

●

●●

●●

●●●●●●
●●
●

●
●●

●

●●●
●

●

●

●

●

●

●●

●
●
●●
●

●
●●

●●

●

●●

●

●

●

●

●
●●

●

●
●●●●

●

●

●●
●

●●

●

●

●
●

●

●
●

●

●

●

●

●●

●●

●

●●

●
●
●

●

●

●
●

●

●
●

●

●
●

●
●
●

●

●

●

●

●

●
●●
●●
●
●●

●●

●

●●●●

●

●●
●

●
●
●

●

●

●

●●●
●●

●

●
●

●

●●
●

●

●

●
●

●●

●

●

●

●

●

●

●

●●

●
●
●

●
●

●

●
●●
●

●

●

●

●

●

●
●

●

●●
●
●

●
●
●

●●●●
●●

●

●

●●
●

●
●●
●●●
●

●●

●

●

●

●

●

●●●●

●

●

●●

●

●●
●

●

●●
●
●

●
●●

●

●

●●

●

● ●

●

●●●
●●●●

●

●●
●
●

●

●

●

●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●

●

●●●●

●

●●●●

●

●
●●

●

●

●

●●●●
●
●●
●
●●●

●

●
●
●

●

●●●

●

●●●●

●

●
●

●
●●●
●●●●●●●
●

●

●
●●●●
●
●
●

●

●●
●

●

●●

●

●●
●

●●
●
●

●

●●●

●

●●

●

●

●
●

●

●
●

●●
●●
●●

●

●
●●

●

●●●●
●●
●●●
●

●

●●●●●●

●

●

●

●

●

−1
4

−8
−4

0
4

17−AAG

AZD6244

Erlotinib

Lapatinib

Nilotinib

Nutlin−3a

PD−0325901

PD−0332991

PHA−665752

PLX4720

Paclitaxel

Sorafenib

Figure 3.6: Pairwise box-plots of logIC50 for the 12 drugs that were analyzed in both
Barretina et al. [2012] and Garnett et al. [2012]. For each drug, the blue box-plot
corresponds to the study of Barretina et al. [2012], and the transparent box-plot
corresponds to the study of Garnett et al. [2012].

randomly split the cell lines in the testing data into two groups of equal size, and

denoted them set1 and set2. We used the cell lines of set1 to estimate the linear

regression coefficients of the features identified by the training data. Then we used

set2 to estimate the prediction R-square. We repeated this procedure 100 times to

obtain median prediction R-squares as our final estimates. Then we applied Monte

Carlo simulations to evaluate the significance of the prediction R-squares, similarly

to our approach in Section 4.1.

Of the 12 drugs, 6 had a prediction R-square greater than 0 using a set of features

selected by our method or the elastic net analysis in the training study. The results

for these 6 drugs are presented in Table 3.2. In general, BipLog tended to choose

more parsimonious models than those chosen by the elastic net, and the estimates

of the prediction R-square were statistically significant in all but one case. Some of

the models selected by the elastic net had greater prediction R-squares than those

from BipLog, such as AZD6244 and PLX4720. However, because more variables were

included in the model, they were not significantly larger than what was expected from
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the null distributions.

Table 3.2: Prediction R-squares in the study of Barretina et al. [2012].
Groupwise analysis by BipLog

Drug 17-AAG AZD6244 PD-0325901 PLX4720 Erlotinib Lapatinib

Prediction R2 [Num of X] 15% [5] 2.5% [1] 7.3% [1] 27% [3] < 0.0% [2] 21% [5]
p-value < 0.001 < 0.001 < 0.001 < 0.001 1.00 < 0.001

Drug-by-drug analysis by Elastic Net
Drug 17-AAG AZD6244 PD-0325901 PLX4720 Erlotinib Lapatinib

Prediction R2 [Num of X] 15% [16] 10% [7] 29% [17] 29% [5] 1.5% [7] 14% [16]
p-value < 0.001 0.275 < 0.001 0.525 0.949 0.430
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CHAPTER 4: Models that are subject to unidentifiable parameters.

4.1 Introduction.

In this paper, we consider an estimation problem where a certain parameter values

such as β = 0 will cause an identifiability issue. Similar problem has been addressed

in the hypothesis testing framework, where a nuisance parameter ζ is present only

under the alternative hypothesis (β 6= 0). Therefore, the nuisance parameter is not

identifiable under the null hypothesis (β = 0). It is a non-regular testing frame-

work since the nuisance parameter only present under the alternative hypothesis.

Therefore, the standard large sample asymptotic theory cannot be directly applica-

ble (Davtes [1977], Davies [1987]).

For the estimation problems of change points, there are extensive literatures. For

instance, Bai [1997] establishes the convergence rate and asymptotic distribution for

the least square estimation of a change point in multiple regression. Muggeo [2003]

considers the regression models with one or more break-points parameters and utilizes

a linearization technique for fitting piecewise terms in the models. He and Severini

[2010] studies the theoretical properties of maximum likelihood estimators of the pa-

rameters of a multiple change-point model.

In the maximum likelihood estimation framework, due to the unidentifiable pa-

rameter (ζ) issue under null hypothesis (β = 0), the maximum likelihood estimator

(MLE) have regular properties only if the likelihood function is specified correctly
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with respect to the parameter value of β. Specifically, when β = 0, the parameters

ζ and β should be both absent from the likelihood function; then the MLE for the

rest parameters are regular. On the contrary, when β 6= 0, the parameters ζ and β

are both present in the likelihood function; the MLE for all parameters are regular

as well. Unlike the methods for estimation of the change points, we are interested in

designing an estimation procedure which can automatically take care of the specifi-

cation of correct likelihood function with respect to β = 0 or β 6= 0.

Since whether β equals to 0 plays a key role in determining the form of likeli-

hood function, we utilize the idea of penalization estimation procedure and apply

adaptive Lasso penalty to β. The adaptive Lasso penalty incorporated to β has the

form: λ|β|w, where λ is a tuning parameter, and w stands for the adaptive weight

associated to β. As shown in [Zou, 2006], given a proper chosen w, adaptive lasso

performs as well as if the true underlying likelihood were given in advance.

To choose a proper weight for β, we apply the idea of constructing a test statistics

in (Davtes [1977], Davies [1987]), where the author considers a test statistic, which

is a function of the nuisance parameter ζ. If ζ is unknown, the test statistics takes

supremum over a range of possible values of ζ. For large values of test statistic, the

null hypothesis (β = 0) will be rejected. Similarly, we take the supremum of profile

likelihood estimates of β̂(ζ) over a range of possible values of ζ to be the weight for

β. The weight shares similar properties of the test statistic. For large values of the

weight, the true value of β is more likely to be non-zero.

The paper is organized as following. In the section 2, we present the asymptotic

results for our penalized estimation procedure. Section 3 shows the simulation study
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and section 4 presents a real data analysis.

4.2 Asymptotic results.

4.2.1 Notations

Let Y represent a random sample (y1, ...yn) of observations and each yi, i = 1, ..., n

is independently and identically distributed with density {f(yi; θ, ζ) : θ ∈ Θ, ζ ∈ Ξ}

with respect to some σ-finite measure µ. The parameter spaces Θ and Ξ are assumed

to be a compact subset of metric spaces Rs and R1 respectively. The parameter

θ takes the form θ = (β′, γ′)′, and β ∈ B, γ ∈ Γ,Θ = B × Γ , where B ∈ R1, and

Γ ∈ Rs−1. The likelihood function is L(n)(θ, ζ) = Πn
i=1f(yi; θ, ζ) and the log-likelihood

function is l (n)(θ, ζ) =
∑n

i=1 log f(yi; θ, ζ). Note that given that β ∈ B0 = 0, the

parameter ζ is absent from the likelihood function so that it renders ζ to be uniden-

tifiable, i.e. the densities are equivalent to all values of ζ at fixed values γ and β = 0.

Let Θ0 = B0 × Γ, and let θ0 denote the θ ∈ Θ0. In this case, since β is realized at 0,

the density f(yi; θ0, ζ) is independent of ζ and let f0(yi; γ) denote this special class

density. The corresponding likelihood function is given by L(n)
0 (γ) = Πn

i=1f0(yi; γ) and

l
(n)
0 (γ) =

∑n
i=1 log f(yi; γ). On the other hand, given that β ∈ Bc0, θ ∈ Bc0 × Γ = Θ1,

and ζ ∈ Ξ, all parameters (θ, ζ) are identifiable.

Additionally, let l̇ (n)(θ; ζ) be the s-vector of partial derivatives of l (n)(θ, ζ) with

respect to θ, and l̈ (n)(θ; ζ) be the s×s matrix of second partial derivatives of l (n)(θ, ζ)

with respect to θ. Note that l̇ (n)(θ; ζ)|θ=θ0 and l̈ (n)(θ; ζ)|θ=θ0 depend on ζ in general

even though l (n)(θ, ζ)|θ=θ0 and L(n)(θ, ζ)|θ=θ0 do not [Andrews and Ploberger, 1995].
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4.2.2 The estimation procedure

To address the non-identifiability issues for θ ∈ Θ0 in parameter estimation,

we apply the idea of penalized estimation with adaptive Lasso penalty [Zou, 2006].

Specifically, we consider the penalized log-likelihood function

Q(n)(θ; ζ) = l (n)(θ; ζ)− λnŵn|β| − λnn−1/2I(β = 0)|ζ|, (4.2.1)

where λn > 0 is a tuning parameter, and the weight ŵn = |β̂∗|−τ for some τ > 0,

β̂∗ is supζ∈Ξ β̂(ζ), the supremum over the profiled maximum likelihood estimator of

L(n)(θ; ζ) at any ζ ∈ Ξ. β̂(ζ) is the element in θ̂(ζ) = (β̂(ζ), γ̂(ζ)), which satisfies

l (n)(θ̂(ζ); ζ) = supθ∈Θ l (n)(θ; ζ) ∀ζ ∈ Ξ with probability to 1 for θ ∈ Θ.

Next, we study the theoretical properties of the penalized estimator of (4.2.1)

when the underlying true model is either (β = 0; unidentifiable ζ) or (β 6= 0; identifi-

able (θ, ζ)). The weight ŵn is the key in dealing with the non-identifiability issue for

θ ∈ Θ0. First, we give the assumption 1 for the weight of β to ensure the desirable

properties of the penalized estimator under the potential identifiability issue.

Assumption 1.

1.1 Given the likelihood function with θ ∈ Θ0, where β = 0, supζ∈Ξ |β̂(ζ)− 0| →p 0

as n goes to ∞ with rate nα, where α > 0.

1.2 Given the true distribution with parameter θ ∈ Θ1, where β 6= 0, supζ∈Ξ |β̂(ζ)| →p

cβ as n goes to ∞, where cβ is some nonzero constant.

Similar to [Andrews and Ploberger, 1995], we assume the parametric model is suf-

ficiently regular such that the MLE θ̂(ζ) is consistent for θ ∈ Θ0 uniformly over ζ ∈ Ξ
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for the above Assumption 1.1. Assumption 1.2 holds for any regular likelihood func-

tion since supζ∈Ξ |β̂(ζ)| covers the maximum likelihood estimator at the true value of

ζ, which is consistent for the true parameter non-zero β. Under the assumption 1,

when β = 0, the weight inflates to infinity as the sample size grows, this induces the

estimator of β to be penalized to zero. Once the estimator of β is penalized to be 0,

the realized equation (4.2.1) is equivalent to l
(n)
0 (γ), and the penalized estimator of

γ is equivalent to the maximum likelihood estimator of l
(n)
0 (γ).

For the following theoretical discussion, we first consider the case where

(β = 0; unidentifiable ζ), if Assumption 1 and Assumption 2 (presented in the Ap-

pendix) are hold, we will show that the penalized estimator is equivalent to the MLE

of the likelihood function L(n)
0 (γ) = Πn

i=1f0(yi; γ). Next, for the case where (iden-

tifiable (θ, ζ)), if Assumptions 1 and 3 (presented in the Appendix) are hold and

without assuming the differentiability of likelihood function with respect to ζ, we

will show that the penalized estimator is consistent. In addition, if the likelihood

function is differentiable with respect to ζ, we provide a standard argument for the

convergence rate and asymptotic normality of the penalized estimator. For the case

where the likelihood function it not differentiable with respect to ζ, we consider the

change-point model as an example, and provide specialized arguments for it.

4.2.3 Model of (β = 0; unidentifiable ζ)

We establish that if β = 0, then the penalized estimation procedure is equivalent

to the maximum likelihood estimation for the true likelihood L(n)
0 (θ0) with probability

going to one asymptotically in the following Theorem 1. In other words, the estimator

of the non-zero parameters γ is asymptotically equivalent to the maximum likelihood

estimator for L(n)
0 (θ0). Its proof can be found in the Appendix.
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Theorem 1. Given θ ∈ Θ0, and under the assumptions 1 and 2 (presented in

the Appendix) for the likelihood function, if λnn
−1/2 → 0 and λnn

(2ατ−1)/2 → ∞,

then with probability to 1, there exists a maximizer (θ̃(n), ζ̃(n)) of Q(n)(θ, ζ) such that

P (β̃(n) = 0)→ 1 as n→∞. In addition, ‖γ̃−γ0‖ = Op(n
−1/2) with

√
n(γ̃(n)−γ0)→d

N(0, I(γ0)−1), where I(γ0) is the Fisher information matrix corresponding to L(n)
0 (θ0).

4.2.4 Model of (β 6= 0; identifiable (θ, ζ))

Next, we study the properties of the penalized estimation procedure given that

the true β is not 0. First, we show that the penalized estimator is consistent if

assumptions 1 and 3 (presented in the Appendix) are hold. Note that assumption

3 for the likelihood function does not put constraints on the differentiability of the

likelihood function with respect to the parameter ζ. It is because the differentia-

bility with respect to ζ might not be hold in general. For examples, if we consider

the parametric model of the example 3 in [Davtes, 1977], let Y = (y1, ..., yn) repre-

sent a random n independently and identically distributed sample from the density

f(y; β, ζ) = (1− β)e−y + βζe−ζy, where 1 < ζ <∞. The likelihood function is differ-

entiable with respect to parameter ζ. When β = 0, it renders ζ to be unidentifiable.

However, for the linear model with change point in [Bacon and Watts, 1971],

Y = (γ0 + γ1X) + β(X − ζ)I(X > ζ) + ε, (4.2.2)

where X is covariate, ε is random error following standard normal distribution, and

I(X > ζ) is an indicator variable: I(X > ζ) = 1 if X > ζ. The likelihood function

for this model is not differentiable with respect to ζ. Similarly, if β = 0, it renders ζ

to be unidentifiable.
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We first establish consistency property of the penalized estimator (θ̃(n), ζ̃(n)) with-

out assuming the differentiability of likelihood function with respect to ζ in the The-

orem 2.

Theorem 2. Given β 6= 0, and under the assumptions 1 and 3 (the assumption 3 is

from Wald [1949] presented in the Appendix), then P (limn→∞(θ̃(n), ζ̃(n)) = (θ, ζ)) =

1, where (θ, ζ) ∈ Θ1 × Ξ1. (The proof of Theorem 2 can be found in the Appendix.)

The argument to establish the property of the asymptotic normality of the penal-

ized estimator depends on the differentiability of the likelihood function with respect

to ζ. If Assumptions 1 3, and 4 (presented in the Appendix): the likelihood func-

tion is second order differentiable with respect to ζ, holds, Theorem 3 gives that the

asymptotic normality of the penalized estimator (θ̃(n), ζ̃(n)).

Theorem 3. Under the assumptions 1, 2, and 4 for likelihood functions and assume

(θ, ζ) ∈ Θ1 × Ξ1, if λnn
−1/2 → 0, then

√
n((θ̃(n), ζ̃(n)) − (θ, ζ)) →d N(0, I(θ, ζ)−1),

where I(θ, ζ) is the fisher information matrix. The proof of Theorem 3 is a direct

adaption from Fan and Li [2001]; therefore, it is omitted.

However, if the Assumption 4 does not hold, it is required to address this issue

specifically to prove the asymptotic normality of the penalized estimator. In this pa-

per, we take the one change point model as an example, and establish the asymptotic

normality of the penalized estimator for this particular model, where the likelihood

function is not differentiable with respect to ζ.
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Asymptotic normality of the penalized estimator for the one change

point model

Consider (y1, ..., yn) to represent a independent n samples, where yi = (zi, wi),

zi is a random vectors, and wi is a 1-dimension random variable associated to the

change point ζ. Specifically, the sample points yi are assumed to be independently

drawn from the parametric model:

f1(yi; γ) for wi ≤ ζ; f2(yi; γ, β) for wi > ζ, (4.2.3)

This model describes that the density function f of each sample i depends on the

value of wi with respect to the thresholding parameter ζ. Furthermore, to adapt a

similar set-up from [He and Severini, 2010], the n sample can be rearranged to an

order as drawn from the one change point model by 0 < n1 < n based on wi and ζ,

f1(yi; γ) for 1 ≤ i ≤ n1, where wi ≤ ζ (4.2.4)

f2(yi; γ, β) for n1 + 1 ≤ i ≤ n, where wi > ζ. (4.2.5)

Clearly, both n1 and ζ are change point parameters. An known parameter ζ and

the observed values of wi for each sample can transform to an known parameter n1.

The parameter γ, a vector with s − 1 elements is unknown common parameter for

f1 and f2, and β is an one-dimensional unknown within-segment parameter for f2.

Note that if β = 0, f2(yi; γ, β = 0) is equivalent to f1(yi; γ), which renders ζ to be

unidentifiable. The corresponding log likelihood function is

ĺ ≡ l(θ, ζ) =
n∑
i=1

log {I(wi ≤ ζ)f1(yi; γ) + I(wi > ζ)f2(yi; γ, β)} (4.2.6)

. (4.2.7)

Theorem 4. Given β 6= 0 and under the Assumptions 5 from [He and Severini,

2010], which are presented in the Appendix for likelihood function, if λnn
−1/2 → 0,
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then
√
n(θ̃(n) − θ)→d N(0, I(θ)−1), where θ ∈ Θ1.

Theorem 4 establishes the asymptotic normality property of the penalized esti-

mator for one change point model. The corresponding proof can be found in the

Appendix.

The following simulation section is based on the one change point model to eval-

uate the empirical performance of the penalized estimator.

4.3 Simulation studies

To evaluate the performance of the penalization estimation approach, we compare

our method to the regular maximum likelihood estimation procedure by a set of

simulated data under the non-identifiable or identifiable model scenarios. Specifically,

we consider yi = (zi, wi) following the one change point model:

zi = δ0 + wiδ1 + wiβI(wi > ζ) + εi. (4.3.1)

Covariates X = (x1, ...xn) and W = (w1, ...wn) are both simulated as n i.i.d standard

normal random variables respectively. The change point ζ is set as 0, the intercept δ0

is set as 0.5, and the slope δ1 is set as 0.25. Additionally, each residual εi is indepen-

dently and identically distributed random variable following normal distribution with

mean 0 and variance 0.5. We consider 16 situations involving different combinations

of sample size n and effect sizes of β: n = 50, 200, 1000, or 3000, and β = 0, 0.5, 1.0, or

2.0. The response variables z = (z1, ..., zn) are simulated accordingly based on (4.3.1).

The likelihood incorporated into the penalized estimation procedure is from one
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change point model for all 16 simulation scenario. When β = 0, which corresponds

to no change point model, the maximum likelihood estimation is based on the likeli-

hood from the model without change point or the model with one change point with

unknown change point position. On the other hand, when β 6= 0, the maximum

likelihood estimation is based on the likelihood from one change point model with

known or unknown change point position.

To estimate the position of the unknown change point, an arbitrary interval

(−2, 2) by 0.01 increment is provided for both penalized and regular maximum like-

lihood estimation procedures. In addition, an initial set of 25 tuning parameter λ is

provided for penalized estimation. Bayesian Information Criterion (BIC) is used for

the selection of tuning parameter.

Each simulation scenario consists of 1000 replications. We calculate the mean,

median, mean and median of the model based variance, empirical variance and cov-

erage probability of the true values of δ1 and β. Let PMLE denote our penalized

estimation procedure. Additionally, let MLEn, MLEc and MLEuc denote regular

maximization likelihood estimation approach for model without change point, one

change point model with known position or unknown position respectively.

The results shown in Table 1 are for the not identifiable model where β = 0.

They suggest that as sample size becomes larger, the performance of the penalized

estimator becomes similar to that of regular maximum likelihood estimation based

on model without change point.
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The results shown in Tables 2 to 4 are for the identifiable model where β 6= 0. They

suggest that as sample size and the effect size of β become larger, the performance

of the penalized estimator becomes similar to that of regular maximum likelihood

estimation based on one change point model with unknown change point position.

Table 4.1: Empirical studies of the penalized estimation procedure for model without
change point, with sample size n = (50, 200, 1000, or 3000), δ1 = 0.25 and β = 0. For
penalization estimation approach, the tuning parameter is selected to minimize BIC. We
compare the penalization estimation approach to regular maximum likelihood function
estimation for one change point model with known or unknown change point. We present
the mean of the estimates of δ1, β and ζ across 1000 simulations. In addition, we present
the mean of model-based variance estimator, and empirical variance estimator for δ1 and
β. Moreover, the coverage probabilities for δ1 and β are presented.

δ1 = 0.25 δ̃1 varm(δ̃1) vare(δ̃1) cover # sim β̃ varm(β̃) vare(β̃) ζ̃

β = 0 mean mean P β̃ = 0 mean mean mean

n = 50

MLEn 0.245 0.01019 0.0117 0.925 − − − − −
MLEuc 0.246 0.02074 0.04109 0.83 − -0.005 0.07312 0.21068 -0.304

PMLEbic 0.247 0.01047 0.01483 0.909 966 -0.002 0.05699 0.02047 -0.018

n = 200

MLEn 0.252 0.00274 0.00263 0.955 − − − − −
MLEuc 0.257 0.00779 0.02145 0.755 − -0.008 0.01716 0.06346 -0.031

PMLEbic 0.251 0.00281 0.00363 0.944 987 0 0.01708 0.00304 -0.001

n = 1000

MLEn 0.252 0.00052 0.00053 0.946 − − − − −
MLEuc 0.254 0.00163 0.00505 0.752 − -0.002 0.00352 0.01487 -0.094

PMLEbic 0.252 0.00053 0.00062 0.942 995 -0.001 0.00329 0.00027 -0.002

n = 3000

MLEn 0.25 0.00017 0.00018 0.936 − − − − −
MLEuc 0.251 0.00051 0.00147 0.769 − -0.003 0.00112 0.00444 0.042

PMLEbic 0.25 0.00017 0.00019 0.934 998 0 0.00097 3e-05 0

−: Not applicable.
MLEn: MLE with likelihood for no change point model.
MLEuc: MLE with likelihood for unknown change point position.
PMLEbic: PMLE using BIC to select tuning parameter.
varm: Model based variance estimator.
vare: Empirical variance estimator.

4.4 Real data analysis

To evaluate the performance of the penalized estimation procedure, we analyze

three data sets.
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Table 4.2: Empirical studies of the penalized estimation procedure for one change point
model, with sample size n = (50, 200, 1000, or 3000), δ1 = 0.25 and β = 0.5. For penaliza-
tion estimation approach, the tuning parameter is selected to minimize BIC. We compare
the penalization estimation approach to regular maximum likelihood function estimation
for one change point model with known or unknown change point. We present the mean of
the estimates of δ1, β and ζ across 1000 simulations. In addition, we present the mean of
model-based variance estimator, and empirical variance estimator for δ1 and β. Moreover,
the coverage probabilities for δ1 and β are presented.

δ1 = 0.25 δ̃1 varm(δ̃1) vare(δ̃1) cover # sim β̃ varm(β̃) vare(β̃) cover ζ̃

β = 0.5 mean mean P β̃ = 0 mean mean P mean

n = 50

MLEc 0.249 0.03271 0.03533 0.933 − − − − − −
MLEuc 0.244 0.02224 0.03151 0.892 − 0.505 0.0565 0.08905 0.889 -0.144

PMLEbic 0.396 0.01177 0.04144 0.396 759 0.199 0.05326 0.13256 0.198 -0.029

n = 200

MLEc 0.258 0.01001 0.01028 0.955 − − − − − −
MLEuc 0.274 0.00709 0.00956 0.868 − 0.451 0.01825 0.02231 0.912 -0.023

PMLEbic 0.353 0.00495 0.02312 0.492 467 0.294 0.01868 0.08198 0.518 0.014

n = 1000

MLEc 0.253 0.00185 0.00191 0.94 − 0.496 0.00528 0.00551 0.948 −
MLEuc 0.272 0.00158 0.00223 0.859 − 0.457 0.00419 0.00642 0.812 0.007

PMLEbic 0.272 0.00158 0.00223 0.859 0 0.457 0.00419 0.00642 0.812 0.007

n = 3000

MLEc 0.249 0.00061 0.00063 0.942 − 0.502 0.00185 0.00185 0.954 −
MLEuc 0.26 0.00057 0.00081 0.876 − 0.48 0.00165 0.00249 0.858 -0.002

PMLEbic 0.26 0.00057 0.00081 0.876 0 0.48 0.00165 0.00249 0.858 -0.002

−: Not applicable.
MLEc: MLE with likelihood for known change point position.
MLEuc: MLE with likelihood for unknown change point position.
PMLEbic: PMLE using BIC to select tuning parameter.
varm: Model based variance estimator.
vare: Empirical variance estimator.

4.4.1 Stagnant band height data example

The first dataset we consider is from [Bacon and Watts, 1971], which were origi-

nally obtained from the Ph.D. thesis of R. A. Cook. The dataset is from the experi-

ments to study the relationship between the stagnant-band-height and the controlled

various flow rate of water down an inclined channel using different surfactants. The

response variable is the logarithm of stagnant surface layer height in centimeters and

the predictor variable is the logarithm of the water flow rate in grams per centimeter
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Table 4.3: Empirical studies of the penalized estimation procedure for one change point
model, with sample size n = (50, 200, 1000, or 3000), δ1 = 0.25 and β = 1.0. For penaliza-
tion estimation approach, the tuning parameter is selected to minimize BIC. We compare
the penalization estimation approach to regular maximum likelihood function estimation
for one change point model with known or unknown change point. We present the mean of
the estimates of δ1, β and ζ across 1000 simulations. In addition, we present the mean of
model-based variance estimator, and empirical variance estimator for δ1 and β. Moreover,
the coverage probabilities for δ1 and β are presented.

δ1 = 0.25 δ̃1 varm(δ̃1) vare(δ̃1) cover # sim β̃ varm(β̃) vare(β̃) cover ζ̃

β = 1.0 mean mean P β̃ = 0 mean mean P mean

n = 50

MLEc 0.246 0.03756 0.03958 0.93 − − − − − −
MLEuc 0.28 0.02729 0.03544 0.9 − 0.939 0.07679 0.09672 0.905 0.009

PMLEbic 0.374 0.02195 0.07847 0.63 320 0.738 0.07501 0.29628 0.651 0.016

n = 200

MLEc 0.254 0.00916 0.00863 0.955 − − − − − −
MLEuc 0.301 0.00737 0.01068 0.843 − 0.903 0.02148 0.03362 0.802 -0.026

PMLEbic 0.301 0.00736 0.01111 0.843 3 0.902 0.0215 0.03521 0.802 -0.023

n = 1000

MLEc 0.25 0.00178 0.00172 0.952 − − − − − −
MLEuc 0.267 0.00167 0.00203 0.894 − 0.965 0.00498 0.00631 0.866 -0.007

PMLEbic 0.267 0.00167 0.00203 0.894 0 0.965 0.00498 0.00631 0.866 -0.007

n = 3000

MLEc 0.249 0.00065 0.00064 0.955 − 1.002 0.00183 0.00172 0.959 −
MLEuc 0.257 0.00063 0.00072 0.922 − 0.985 0.00176 0.00208 0.903 0

PMLEbic 0.257 0.00063 0.00072 0.922 0 0.985 0.00176 0.00208 0.903 0

−: Not applicable.
MLEc: MLE with likelihood for known change point position.
MLEuc: MLE with likelihood for unknown change point position.
PMLEbic: PMLE using BIC to select tuning parameter.
varm: Model based variance estimator.
vare: Empirical variance estimator.

per second.

We fit a linear regression model to this data: zi = δ0 + w′iδ1 + wiβI(wi > ζ) + εi,

where zi and wi stand for the response and predictor variables respectively. The

obtained model is E(zi) = 0.46− 0.46wi − 0.53wiI(wi > 0.29); the left plot in figure

1 shows the sample points with the fitted line.
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Table 4.4: Empirical studies of the penalized estimation procedure for one change point
model, with sample size n = (50, 200, 1000, or 3000), δ1 = 0.25 and β = 2.0. For penaliza-
tion estimation approach, the tuning parameter is selected to minimize BIC. We compare
the penalization estimation approach to regular maximum likelihood function estimation
for one change point model with known or unknown change point. We present the mean of
the estimates of δ1, β and ζ across 1000 simulations. In addition, we present the mean of
model-based variance estimator, and empirical variance estimator for δ1 and β. Moreover,
the coverage probabilities for δ1 and β are presented.

δ1 = 0.25 δ̃1 varm(δ̃1) vare(δ̃1) cover # sim β̃ varm(β̃) vare(β̃) cover ζ̃

β = 2.0 mean mean P β̃ = 0 mean mean P mean

n = 50

MLEc 0.257 0.03159 0.03223 0.939 − − − − − −
MLEuc 0.323 0.02612 0.03595 0.865 − 1.839 0.07382 0.11555 0.795 -0.058

PMLEbic 0.323 0.02612 0.03595 0.865 0 1.839 0.07382 0.11555 0.795 -0.058

n = 200

MLEc 0.249 0.01041 0.01049 0.95 − 2.005 0.03322 0.03494 0.94 −
MLEuc 0.292 0.00947 0.0126 0.889 − 1.912 0.02919 0.04387 0.845 0.003

PMLEbic 0.292 0.00947 0.0126 0.889 0 1.912 0.02919 0.04387 0.845 0.003

n = 1000

MLEc 0.25 0.00185 0.00184 0.956 − 2.002 0.00552 0.00544 0.952 −
MLEuc 0.263 0.0018 0.0021 0.922 − 1.975 0.00534 0.0064 0.911 0.002

PMLEbic 0.263 0.0018 0.0021 0.922 0 1.975 0.00534 0.0064 0.911 0.002

n = 3000

MLEc 0.251 0.00065 0.00064 0.95 − 1.998 0.00182 0.0018 0.953 −
MLEuc 0.258 0.00064 0.00066 0.936 − 1.985 0.0018 0.00194 0.921 -0.003

PMLEbic 0.258 0.00064 0.00066 0.936 0 1.985 0.0018 0.00194 0.921 -0.003

−: Not applicable.
MLEc: MLE with likelihood for known change point position.
MLEuc: MLE with likelihood for unknown change point position.
PMLEbic: PMLE using BIC to select tuning parameter.
varm: Model based variance estimator.
vare: Empirical variance estimator.

4.4.2 Metabolic pathways data example

The second data is from [Julious, 2001], which aims to study the switch of

metabolic pathways in persons during physical exercise. To examine whether the

metabolic pathways change from aerobic to anaerobic when people produce energy

during exercise, volume of carbon dioxide exhaled and volume of oxygen inhaled are

measured for outcome and predictor variables. The measurements are taken on a sin-

gle person per every 30 seconds up to a maximum of 17.5 minutes. A linear regression
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model with a change point between two segmented lines was fitted to this data, where

the change point, if exists, represents the switch between metabolic pathways. As

shown in [Julious, 2001], the best fitting two segmented lines model is

zi = 0.076 + 0.042wi (wi ≤ 39.46); zi = −1.659 + 0.086wi (39.46 < wi).

We also fit a linear regression model with two segmented lines to this data, and the

obtained model is the same as above. The right plot in figure 1 shows the sample

points with the fitted line.

●
●
●

●●

●●

●●

●●

●●

●●

●●●

●●

●●

●
●

●●●

●●

●
●

●
●

●
●

●
●●

●●

●
●

●●

●

●

●

●

−1.5 −1.0 −0.5 0.0 0.5 1.0

−
0.

5
0.

0
0.

5
1.

0

log (flow rate in grams/cm sec)

lo
g 

(h
ei

gh
t i

n 
cm

)

●

●

●

●

●

●

●

●●

●

●
●●

●●

●

●
●●

●

●●●

●●

●●

●
●
●●

●●

●

●

20 30 40 50 60

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

Volume of Oxygen

V
ol

um
e 

of
 C

ar
bo

n 
D

io
xi

de

Figure 4.1: The left plot is for the stagnant band height data from [Bacon and Watts,
1971] with the fitted line by the penalized estimation procedure. The right plot is
for the metabolic pathways data from [Bacon and Watts, 1971] with the fitted line
by the penalized estimation procedure.

4.4.3 Drug sensitivity data example

In a panel of several hundred human cancer cell lines, [Garnett et al., 2012] mea-

sured the sensitivities of drugs and genomic factors. We have applied our method to
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the data of drug 17-AAG to identify the change point linear relationship between the

response variable, the half-maximal inhibitory concentration (IC50), i.e., the amount

of drugs to kill 50% of the cancer cells on the log scale, and the logarithm of gene

expression. Drug 17-AAG is an HSP90 inhibitor, and has shown its significant anti-

tumor activity for various types of cancer in clinical studies Usmani et al. [2009].

Figure 2 presents the relationship between the log(IC50) of 17-AAG and two gene

expression variables NQO1 and ZNF273 on the log scale. The gene expression of

NQO1 is upregulated in livers of hepatocarcinoma patients, and has been studied its

role in the cancer development Joseph et al. [1994]. Moreover, it has been suggested

a promising therapeutic target for pancreatic cancer Ough et al. [2005]. ZNF273 is

a member of the zinc-finger protein family and involved in transcriptional regulation

(NCBI Gene ID: 10793). The analysis results by our method suggest that the re-

lationship between log(IC50) of 17-AAG and NQO1 gene expression on log scale is

simple linear trend while a change-point linear model fits better for the relationship

between log(IC50) of 17-AAG and ZNF273 gene expression on log scale.

4.5 Additional conditions and asymptotic results

Following [Andrews and Ploberger, 1995],the likelihood function L(n)(θ, ζ) is as-

sumed to satisfy the following assumption 2. The Assumption 2.3 is the simplified

version assuming for nontrending data.

Assumption 2.

2.1 L(n)(θ, ζ) does not depend on ζ for all θ ∈ Θ0.

2.2 l (n)(θ; ζ) is twice differentiable with respect to θ for all (θ, ζ) ∈ Θ0 × Ξ.

2.3 supζ∈Ξ, θ∈Θ0
| − n−1 l̈ (n)(θ; ζ) − I(θ; ζ)| →p 0, where I(θ; ζ) is the asymptotic

information matrix for θ ∈ Θ0 at a given ζ ∈ Ξ, which depends on both θ and
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Figure 4.2: The left plot shows the fitted line for log(IC50) of 17-AAG and the gene
expression of NQO1 on log scale by the penalized estimation procedure. The right
plot is for log(IC50) of 17-AAG and the gene expression of ZNF273 on log scale.

ζ, and is assumed to be positive definite.

2.4 For each θ ∈ Θ0, n−1/2 l̇ (n)(θ; ·) → G(θ, ·), as processes indexed by ζ ∈ Ξ for

some mean zero Rs-valued Gaussian stochastic process {G(θ, ζ) : ζ ∈ Ξ} that

has E[G(θ, ζ)G(θ, ζ)T] = I(θ; ζ) ∀ζ ∈ Ξ and has continuous sample path as

functions of ζ for a fixed θ with probability 1. Moreover, we assumed that

supζ∈Ξ n
−1/2 l̇ (n)(θ; ζ) = Op(1)

2.5 For all j, k, l = 1, ...s, and all θ in some neighborhood of θ ∈ Θ0,

sup
ζ∈Ξ
| ∂3

∂θj∂θk∂θl
log f(yi; θ, ζ)|

are dominated by integrable functions.
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Assumption 3. Following [Wald, 1949], let F (y; (θ, ζ)) denote the cumula-

tive distribution function of yi; i.e., F (y; (θ, ζ)) = P (yi < y). Additionally, let

f(y; (θ, ζ), ρ) be the supremum of f(y; (θ′, ζ ′)) with respect to (θ′, ζ ′) when ‖(θ, ζ)−

(θ′, ζ ′)‖ ≤ ρ. For any positive r, let π(y, r) be the supremum of f(y; (θ′, ζ ′)) with re-

spect to (θ′, ζ ′) when ‖(θ, ζ)‖ ≥ r. In addition, let f ∗(y; (θ, ζ), ρ) = f(y; (θ, ζ), ρ) when

f(y; (θ, ζ), ρ) > 1, and = 1 otherwise. Also, let π∗(y, r) = π(y, r) when π(y, r) > 1,

and = 1 otherwise. (The following assumptions 3.1 to 3.4 are from [Wald, 1949].)

3.1 F (y; (θ, ζ)) is either discrete or absolutely continuous for all (θ, ζ) ∈ Θ1 × Ξ1.

3.2 For sufficiently small ρ and large r, the expected values∫∞
−∞ log f ∗(y; (θ, ζ), ρ)dF (y; (θ1, ζ1)) and

∫∞
−∞ log π∗(y, r)dF (y; (θ1, ζ1)) are finite,

where (θ1, ζ1) ∈ Θ1 × Ξ1 denote the true parameter.

3.3 If (θj, ζj) is a parameter point different from the true parameter (θ, ζ) ∈ Θ1×Ξ1,

then F (y; (θj, ζj)) 6= F (y; (θ, ζ)) for at least one value of y.

3.4 For (θ, ζ) ∈ Θ1 × Ξ1,
∫∞
−∞ | log f(y; (θ, ζ))|dF (y; (θ, ζ)) <∞.

3.5 λnL(n)(θ1; ζ1)−1 → 0.

Assumption 4

l (n)(θ, ζ) is second order differentiable with respect to ζ.

Proof of Theorem 1

The proof consists of three parts. The first part is to show that there exists a local

maximizer (θ̃(n), ζ̃(n)) of Q(n)(θ, ζ) satisfying ‖θ̃(n) − θ0‖ = Op(n
−1/2), and the second

part is to prove P (β̃(n) = 0)→ 1 as n→∞. The final part is to show the asymptotic
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normality of γ̃(n).

First, we show that there exists a local maximizer (θ̃(n), ζ̃(n)) ofQ(n)(θ, ζ) satisfying

‖θ̃(n) − θ0‖ = Op(n
−1/2). Letting θ̃(n) = θ0 + n−1/2u for a fixed u = (u1, u2)T, where

u1 corresponds to β, and u2 corresponds to γ. In particular, for any ε > 0, there

exists a large enough constant C such that

P

{
sup
ζ∈Ξ

[
sup
‖u‖=C

Q(n)(θ0 + n−1/2u; ζ)−Q(n)(θ0; ζ)

]
< 0

}
≥ 1− ε, (4.5.1)

where Q(n)(θ0; ζ) = L(n)(θ0)− λn√
n
|ζ|.

The first step is to consider at a fixed ζ, we want to show that there exists a large

enough constant Cζ for any ε > 0 such that

P

{
sup
‖u‖=Cζ

[
Q(n)(θ0 + n−1/2u; ζ)−Q(n)(θ0; ζ)

]
< 0

}
≥ 1− ε. (4.5.2)

Define

D(n)(u; ζ) = Q(n)(θ0 + n−1/2u; ζ)−Q(n)(θ0; ζ).
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By Taylor expansion of L(n)(θ0 + n−1/2u; ζ) at θ0, we can obtain

D(n)(u; ζ) = n−1/2 ˙ln(θ0; ζ)Tu

−− 1

2n
uT
{
l̈n(θ0; ζ)

}
u

+(n−3/2/6)
s∑

j,k,l=1

...
ln(θ̌; ζ)ujukul

+λnn
−1/2ŵnn

1/2
{
|β0| − |β0 + n−1/2u1|

}
+
λn√
n

{
I(β0 = 0)− I(β0 + n−1/2u1 = 0)

}
|ζ|

= n−1/2 ˙ln(θ0; ζ)Tu

−− 1

2n
uT
{
l̈n(θ0; ζ)

}
u

+(n−3/2/6)
s∑

j,k,l=1

...
ln(θ̌; ζ)ujukul

+λnn
−1/2ŵn {−|u1|}

+
λn√
n

{
1− I(β0 + n−1/2u1 = 0)

}
|ζ|

≡ Γ
(n)
1 (ζ)− Γ

(n)
2 (ζ) + Γ

(n)
3 (ζ) + Γ

(n)
4 + Γ

(n)
5 (ζ),

for some θ̌ between θ0 and θ0 + n−1/2u.

By the assumptions 2.3 and 2.4, Γ
(n)
1 = Op(1), Γ

(n)
2 → I(θ0; ζ), the asymptotic

information matrix. Both Γ
(n)
3 and Γ

(n)
5 converge to zero by assumption. If u1 6= 0,

then Γ
(n)
4 = λnn

(2ατ−1)/2|nαβ̂∗|−τ |u1| → −∞ by nαβ̂∗ = Op(1) and λnn
(2ατ−1)/2 →∞.

Since the rest terms are all finite, D(n)(u; ζ) → −∞ and (4.5.2) holds for any ζ.

On the other hand, if u1 = 0, then Γ
(n)
4 = 0. Since Γ

(n)
22 is positive, by choosing a

sufficiently large Cζ to have Γ
(n)
1 dominated by the rest terms, (4.5.2) holds.

To establish equation (4.5.1), note that if u1 6= 0, since Γ
(n)
4 → −∞ regardless of

the value of ζ, equation (4.5.1) is satisfied automatically. Therefore, we only need

consider the situation where u1 = 0 so that Γ
(n)
4 = 0, and the event we are interested
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in is

sup
ζ∈Ξ

sup
‖u‖=Cζ

[
Q(n)(θ0 + u; ζ)−Q(n)(θ0; ζ)

]
= sup

‖u‖=C
sup
ζ∈Ξ

[
D(n)(u; ζ)

]
.

Note that

sup
ζ∈Ξ

D(n)(u; ζ) = sup
ζ∈Ξ

{
Γ

(n)
1 (ζ)− Γ

(n)
2 (ζ) + Γ

(n)
3 (ζ) + Γ

(n)
5 (ζ)

}
≤ sup

ζ∈Ξ
Γ

(n)
1 (ζ) + sup

ζ∈Ξ
[−Γ

(n)
2 (ζ)] + sup

ζ∈Ξ
Γ

(n)
3 (ζ) + sup

ζ∈Ξ
Γ

(n)
5 (ζ)

Similar to the above argument, both supζ∈Ξ Γ
(n)
3 (ζ) and supζ∈Ξ Γ

(n)
5 (ζ) converges to 0.

By assumptions 2.3 and 2.4, supζ∈Ξ Γ
(n)
1 (ζ) is Op(1), and supζ∈Ξ[−Γ

(n)
22 (ζ)] is negative.

Taking a large enough C so that supζ∈Ξ[−Γ
(n)
22 (ζ)] dominates the rest of terms; then

sup
‖u‖=C

sup
ζ∈Ξ

D(n)(u; ζ) < 0.

Therefore, for any ε > 0, there exists some constant C such that equation 4.5.1 holds.

For the second part, consider the event
{
β̃(n) 6= 0

}
. By the Karush-Kuhn-Tunker

optimality conditions, we have

n∑
i=1

∂

∂β
log f(yi;X, θ̃

(n), ζ̃(n)) = λnŵnsgn(β̃(n)).

Therefore, P (β̃(n) 6= 0) ≤ P
{∑n

i=1
∂
∂β

log f(yi;X, θ̃
(n), ζ̃(n)) = λnŵnsgn(β̃(n))

}
. To

study the event
{
n−1/2 ∂

∂β
log f(yi;X, θ̃

(n), ζ̃(n)) = n−1/2λnŵnsgn(β̃(n))
}

, by Taylor ex-
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pansion on the left-had side,

n−1/2

n∑
i=1

∂

∂β
log f(yi;X, θ̃

(n), ζ̃(n))

= n−1/2

n∑
i=1

∂

∂β
log f(yi; θ0, ζ̃

(n))

+ n−1

n∑
i=1

∂2

∂β2
log f(yi;X, θ0, ζ̃

(n))n1/2(θ̃(n) − θ0)(1 + op(1))

≡ U
(n)
1 + U

(n)
2 .

Both U
(n)
1 and U

(n)
2 are Op(1) by assumptions 2.3 and 2.4, and (θ̃(n)−θ0) = Op(n

−1/2)

as shown in the first part of the proof. On the right-hand side, n−1/2λnŵnsgn(β̃(n))) =

λnn
(2ατ−1)/2|nαβ̂∗|−τ →∞; as a consequence, P (β̃(n) 6= 0)→ 0.

Finally, to show the normality of γ̃(n), since the likelihood L(n)(θ, ζ) is unidenti-

fiable when θ = θ0. We cannot use the same approach to establish the normality of

the nonzero estimator γ̃(n) as [Fan and Li, 2001]. They conduct the partial Taylor

expansion with respect to γ of ∂Q(n)(θ,ζ)
∂γ

|(θ,ζ)=((0,γ̃),ζ̃) = 0 as follows.

0 =
1√
n

∂L(n)(θ, ζ)

∂γ
|θ=θ0,ζ=ζ0

+
1

n

[
n∑
i=1

∂2

∂γ2
log f(yi; θ, ζ)|θ=θ0,ζ=ζ0 + op(n)

]
√
n(γ̃(n) − γ0).

Clearly, due to the unidentifiability issue, when θ = θ0, there is no existence of ζ0.

Therefore, the limits of 1√
n
∂L(n)(θ,ζ)

∂γ
|θ=θ0,ζ=ζ0 and 1

n

∑n
i=1

∂2

∂γ2
log f(yi; θ, ζ)|θ=θ0,ζ=ζ0 do

not exist. Only the point-wise limits of 1√
n
∂L(n)(θ,ζ)

∂γ
|θ=θ0 and 1

n

∑n
i=1

∂2

∂γ2
log f(yi; θ, ζ)|θ=θ0

at any fixed point of ζ ∈ Ξ exist.

Since we already show that there exists a large enough N , for any n ≥ N , β̃(n) = 0,

it can be observed that Q(n)(β̃(n) = 0, γ̃(n); ζ̃(n)) = l (n)(γ̃(n)). Therefore, l (n)(γ̃(n)) is
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no longer involving with β and ζ, and equivalent to l
(n)
0 (γ̃(n)). At this point, γ̃(n)

essentially maximizes l
(n)
0 (γ).

By Taylor expansion of
∑n

i=1
∂
∂γ

log f0(yi; γ̃
(n)) around γ0,

0 =
n∑
i=1

∂

∂γ
log f0(yi; γ0) +

n∑
i=1

∂2

∂γ2
log f0(yi; γ0)(γ̃(n) − γ0)(1 + op(n)),

After rearrangement

n−1/2

n∑
i=1

∂

∂γ
log f0(yi; γ0) = − 1

n

n∑
i=1

∂2

∂γ2
log f0(yi; γ0)

√
n(γ̃(n) − γ0) + op(1).

Therefore,
√
n(γ̃(n)−γ0)→d N(0, I(γ0)−1), where I(γ0) is the Fisher information ma-

trix corresponding to L(n)
0 (γ0)

Proof of Theorem 2

To show P (limn→∞(θ̃(n), ζ̃(n)) = (θ1, ζ1)) = 1, we follow the strategy of proof for

the Theorem 2 in [Wald, 1949].

Since (θ̃, ζ̃) satisfies

Q(n)(θ̃, ζ̃)

Q(n)(θ1, ζ1)
≥ 1 > 0, for all n and for all y1, ..., yn.

It is sufficient to show that for any ε > 0 the probability is one that all limit

points (θ̃, ζ̃) of (θ̃(n), ζ̃(n)) satisfying ‖(θ̃, ζ̃)− (θ1, ζ1)‖ ≤ ε.

Consider the event that there exists a limit point (θ̆, ζ̆) such that ‖(θ̆, ζ̆)−(θ1, ζ1)‖ >

ε. This implies that sup‖(θ,ζ)−(θ1,ζ1)‖>εQ
(n)(θ, ζ) ≥ Q(n)(θ̆, ζ̆) so that

sup‖(θ,ζ)−(θ1,ζ1)‖>εQ
(n)(θ, ζ)

Q(n)(θ1; ζ1)
≥ c > 0
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for infinitely many n. Therefore, it is sufficient to show that this is an event with

probability 0.

To establish this, we will show that

P

{
lim
n→∞

sup(θ,ζ)∈ωQ
(n)(θ; ζ)

Q(n)(θ1; ζ1)
= 0

}
= 1, (4.5.3)

where ω be any closed subset of the parameter space Θ× Ξ which does not contain

the true parameter point (θ1, ζ1).

Clearly, sup(θ,ζ)∈ωQ
(n)(θ; ζ) ≤ sup(θ,ζ)∈ω L(n)(θ; ζ). Therefore, equation (4.5.3) is

proved if we can show that

P

{
lim
n→∞

sup(θ,ζ)∈ω L(n)(θ; ζ)

Q(n)(θ1; ζ1)
= 0

}
= 1, (4.5.4)

Based on the assumption 3 and the Theorem 1 in [Wald, 1949], the likelihood

part of Q(n)(θ; ζ) satisfies

P

{
lim
n→∞

sup(θ,ζ)∈ω L(n)(θ; ζ)

L(n)(θ1; ζ1)
= 0

}

= P

{
lim
n→∞

log

{
sup(θ,ζ)∈ω L(n)(θ; ζ)

L(n)(θ1; ζ1)

}
= −∞

}
= 1.
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Therefore,

P

{
sup(θ,ζ)∈ω L(n)(θ; ζ)

Q(n)(θ1; ζ1)
= 0

}

= P

{
sup(θ,ζ)∈ω L(n)(θ; ζ)

L(n)(θ1; ζ1)[1− (λnŵn|β1|+ λn√
n
I(β1 = 0)|ζ1|)/L(n)(θ1; ζ1)]

= 0

}

= P

{
lim
n→∞

{
log

[
sup(θ,ζ)∈ω L(n)(θ; ζ)

L(n)(θ1; ζ1)

]
+ log

[
1

(1− δn(θ1, ζ1))

]}
= −∞

}

≈ P

{
lim
n→∞

log

{
sup(θ,ζ)∈ω L(n)(θ; ζ)

L(n)(θ1; ζ1)

}
= −∞

}
= 1 since

1− δn(θ1, ζ1)

= 1−
{[

λnŵn|β1|+
λn√
n
I(β1 = 0)|ζ1|

]
/L(n)(θ1; ζ1)

}
= 1−

{
λnŵn|β1|/L(n)(θ1; ζ1)

}
→ 1

by the assumptions 1.2 and 3.5, ŵn → |cβ|−τ and λn/L(n)(θ1; ζ1)→ 0.

Therefore, with probability 1, limn→∞(θ̃(n), ζ̃(n)) = (θ1, ζ1).

Notations

Following [He and Severini, 2010], let Λ1 = n1/n be the true percentage of sample with

the observed wi less than or equal to ζ for a sample with size n, and Λ0
1 be the constant

fraction value as n→∞. Additionally, let ñ
(n)
1 denote the estimate of the percentage

of sample with the observed wi less than or equal to ζ, ñ
(n)
1 =

∑n
i=1 I(wi ≤ ζ̃(n)). The

expected information matrix is given by I(θ) = E[− ∂2

∂θ2
ĺ ], where θ ∈ Θ1.
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Assumption 5

5.1 f1(yi; γ) 6= f2(yi; γ, β) on a set of non-zero measure given β 6= 0.

5.2 ĺ is third-order continuously differentiable with respect to θ.

5.3 The expectations of the first and second order derivatives of ĺ with respect to

θ exist for θ in its parameter space.

Proof of Theorem 4

The penalized likelihood function is differentiable at β 6= 0,

∂

∂θ
Q(n)(θ, ζ) =

∂

∂θ
ln(θ, ζ)− λnŵnsgn(β).

Since (θ̃(n), ζ̃(n)) maximizes Q(n)(θ; ζ),

0 =
∂

∂θ
Q(n)(θ̃(n), ζ̃(n)) =

∂

∂θ
ln(θ̃(n), ζ̃(n))− λnŵnsgn(β̃(n))

=
∂

∂θ
ln(θ̃(n), ñ

(n)
1 )− λnŵnsgn(β̃(n)).

Then expand ∂
∂θ
ln(θ̃(n), ñ

(n)
1 ) around ∂

∂θ
ln(θ, ñ

(n)
1 ),

√
n(θ̃(n) − θ) =

[
− 1

n

∂2

∂θ2
ln(θ, ñ

(n)
1 ) + op(1)

]−1
1√
n

[
∂

∂θ
ln(θ, ñ

(n)
1 )− λnŵnsgn(β̃(n))

]
.

Since n−1/2λnŵnsgn(β̃(n))→ 0, only 1√
n
∂
∂θ
ln(θ, ñ

(n)
1 ) plays a critical role in determin-

ing the limiting distribution of
√
n(θ̃(n)−θ). This makes the proof for

√
n(θ̃(n)−θ)→d

N(0, I(θ)−1) be a special case of Theorem 2.2 and 2.3 in [He and Severini, 2010].

First, we study the behavior of 1√
n
∂
∂θ
ln(θ, ñ

(n)
1 ). Consider

1√
n

[
∂

∂θ
ln(θ, ñ

(n)
1 )− ∂

∂θ
ln(θ, n1)

]
+

1√
n

∂

∂θ
ln(θ, n1),
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and study the limiting behavior of 1√
n

[
∂
∂θ
ln(θ, ñ

(n)
1 )− ∂

∂θ
ln(θ, n1)

]
:

1√
n

[
∂

∂θ
ln(θ, ñ

(n)
1 )− ∂

∂θ
ln(θ, n1)

]

=
1√
n

I(ñ
(n)
1 ≥ n1)

ñ(n)
1∑
i=1

∂

∂θ
log f1(yi; γ) +

n∑
i=ñ

(n)
1 +1

∂

∂θ
log f2(yi; γ, β)




=
1√
n

I(ñ
(n)
1 ≥ n1)

ñ
(n)
1∑

i=n1+1

[
∂

∂θ
log f1(yi; γ)− ∂

∂θ
log f2(yi; γ, β)

]
+

I(ñ
(n)
1 < n1)

n1−1∑
i=ñ

(n)
1 +1

[
− ∂

∂θ
log f1(yi; γ) +

∂

∂θ
log f2(yi; γ, β)

]
By the consistency of ζ̃(n) in the Theorem 2 and the Theorem 2.2 in [He and

Severini, 2010], 1√
n

[
∂
∂θ
ln(θ, ñ

(n)
1 )− ∂

∂θ
ln(θ, n1)

]
→ 0. Using similar argument, it can

be shown that − 1
n
∂2

∂θ2
ln(θ, ñ

(n)
1 ) → Ī(θ) as n → ∞. Furthermore, since ∂

∂θ
l0(θ) →d

N(0, Ī(θ)),
√
n(θ̃(n) − θ)→d N(0, I(θ)−1), where θ ∈ Θ1.

97



CHAPTER 5: Conclusion

To summarize, the first paper investigates the applicability of the penalty func-

tions in challenging high dimensional settings such as genomic studies. We conducted

a theoretical analysis on the roles of tuning parameters with respect to the dimension

of the problem and minimum effect size. The results suggest that the derivatives

of the penalty function around 0 and the minimum effect size are two important

quantities to be considered. A good performance of the penalized estimation requires

that these two quantities be asymptotically different. Among the four penalties dis-

cussed in this paper, tuning one regularization parameter is sufficient to exploit the

advantages of SCAD. In contrast, MCP, SICA and Log’s performances can be signif-

icantly improved if two instead of one (λ) regularization parameter is tuned. These

theoretical conclusions are well supported in our empirical studies. In our simula-

tions, we also observe that a penalized estimation using SICA or Log appears to be

computationally more efficient than using MCP. The good performance of tuning

two regularization parameters comes with the cost of added computational time. In

real data analysis, one needs to judge the difficulty of the penalization problem in

terms of effect size and dimensionality in order to choose whether one or two regu-

larization parameters are needed, and the theoretical results of this paper can guide

such choices. These theoretical results are based on the sufficient conditions of the

weak oracle property, and thus they could be refined if the sufficient and necessary

conditions of the weak oracle property are available, though deriving such conditions

itself is a very challenging task.
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Based on the results in the first paper, we designed a new method, BipLog, for the

bi-level selection of genomic features related to cancer drug sensitivity. BipLog can

select the covariates shared by a group of response variables as well as the covariates

that are associated with one or a few of the response variables. The application of Bi-

pLog to real-data analysis reveals many interesting results. This is partly due to the

strong effect size in the data. In contrast to genome-wide association studies where a

genetic variant may explain only a few percentage of the variation in the trait of in-

terest, the genomic features measured in tumor tissues have a strong influence on the

cancer progression and its response to drug treatment. This makes cancer genomic

studies one of a few areas where statistical methods can make a major contribution

in the near future to disease prevention and treatment.

For the third paper, we constructed an estimation procedure for the models where

a certain parameter values such as β = 0 will cause an identifiability issue. We uti-

lize the idea of penalization estimation procedure and apply adaptive Lasso penalty.

In addition, we established the asymptotic results for our penalized estimation pro-

cedure, and evaluated its performances in the simulation study and real data analysis.
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Meinshausen, N. and Bühlmann, P. (2006). High-dimensional graphs and variable
selection with the lasso. The Annals of Statistics, 34(3):1436–1462.

Muggeo, V. M. (2003). Estimating regression models with unknown break-points.
Statistics in medicine, 22(19):3055–3071.

Oberst, M. D., Beberman, S. J., Zhao, L., Yin, J. J., Ward, Y., and Kelly, K. (2008).
Tdag51 is an erk signaling target that opposes erk-mediated hme16c mammary
epithelial cell transformation. BMC Cancer, 8(1):189.

Ough, M., Lewis, A., Bey, E. A., Gao, J., Ritchie, J. M., Bornmann, W., Boothman,
D. A., Oberley, L. W., and Cullen, J. J. (2005). Efficacy of beta-lapachone in
pancreatic cancer treatment: exploiting the novel, therapeutic target nqo1. Cancer
biology & therapy, 4(1):95–102.

Park, T. and Casella, G. (2008). The Bayesian lasso. Journal of the American
Statistical Association, 103(482):681–686.

Planque, N. and Perbal, B. (2003). A structural approach to the role of ccn
(cyr61/ctgf/nov) proteins in tumourigenesis. Cancer Cell International, 3(1):15.

Rosenbluh, J., Nijhawan, D., Cox, A. G., Li, X., Neal, J. T., Schafer, E. J., Zack,
T. I., Wang, X., Tsherniak, A., Schinzel, A. C., et al. (2012). β-catenin-driven
cancers require a yap1 transcriptional complex for survival and tumorigenesis. Cell,
151:1457–1473.

Schwarz, G. (1978). Estimating the dimension of a model. The Annals of Statistics,
6(2):461–464.

Shi, J., Levinson, D., Duan, J., Sanders, A., Zheng, Y., Peâ, I., et al. (2009). Com-
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