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ABSTRACT 

 

Timothy C. Mauntel: Group comparison of lower extremity muscle activation and lower 

extremity muscular flexibility and their effect on single leg squat performance. 

(Under the direction of Darin Padua, Troy Blackburn, and Rebecca Begalle). 

 

Knee valgus is a potential risk factor for lower extremity (LE) injuries.  LE 

movement screenings and flexibility measurements may be utilized to identify 

neuromuscular patterns, which contribute to knee valgus.  There are few studies that have 

investigated how flexibility and muscular activation differ between individuals who display 

medial knee displacement (MKD) during a single leg squat (SLS) and those who do not.  We 

hypothesized that flexibility and muscular activation would differ between the groups.  Forty 

individuals completed flexibility measurements and a SLS task while EMG data were 

collected from eight LE muscles.  Three MANOVAs were run comparing flexibility 

measurements, EMG data, and muscle co-activation ratios.  The MKD group had 

significantly less dorsiflexion, greater talar glide motion, and smaller hip adductor and 

gluteal co-activation ratios compared to the control group.  Therefore, knee valgus appears to 

be influenced by decreased dorsiflexion and decreased co-activation of the Hip ADD and 

GMed and GMax muscles.
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CHAPTER I 

 

INTRODUCTION 

 

BACKGROUND 

Noncontact knee injuries are a common occurrence among physically active 

populations.  In particular, physically active people are susceptible to injury of the anterior 

cruciate ligament (ACL) (Noyes, Mooar et al. 1983; Hewett, Lindenfeld et al. 1999; Griffin, 

Albohm et al. 2006), and medial collateral ligament (MCL) (Fetto and Marshall 1978; 

Griffith, LaPrade et al. 2009; Wijdicks, Griffith et al. 2009), and to developing 

patellofemoral pain syndrome (PFPS) (Devereaux and Lachmann 1984; Stathopulu and 

Baildam 2003).  There are an estimated 80,000 to 250,000 ACL injuries annually; (Griffin, 

Albohm et al. 2006) approximately 70% of these injuries result from noncontact 

mechanisms, the majority of which involve landing from a jump (Boden, Griffin et al. 2000; 

Hewett, Myer et al. 2006).  The average cost of surgical repair and rehabilitation is 

approximately $17,000 per incident (Hewett, Lindenfeld et al. 1999).  The MCL is one of the 

most commonly injured ligaments in the knee (Grood, Noyes et al. 1981; LaPrade 1999).  

Cases of PFPS also account for a large percentage of all knee injuries seen in sports medicine 

clinics (up to 25%) (Devereaux and Lachmann 1984) and result in a restriction of physical 

activity in 36% of all people affected by it (Stathopulu and Baildam 2003).  Active persons 

between the ages of 15 and 25 years are the most commonly afflicted with ACL injury or 

PFPS (Devereaux and Lachmann 1984; Griffin, Albohm et al. 2006).  These injuries not only 

affect an individual’s physical health, but also the financial cost resulting from the treatment 
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of these injuries, the potential loss of time from competition, and/or the possible loss of 

scholarship funding can negatively affect a person’s mental health (Freedman, Glasgow et al. 

1998).  These factors make it important to study noncontact knee injuries in order to obtain a 

better understanding of predisposing factors that might be used to both identify and treat 

individuals at risk for these injuries.  Therefore it is important to develop clinical screening 

instruments to identify these high risk individuals and provide information to guide 

rehabilitation strategies. 

Malalignment of lower extremity segments during functional activities has been 

shown to increase the likelihood of sustaining a noncontact knee injury (Hewett, Stroupe et 

al. 1996; Boden, Griffin et al. 2000; Griffin, Agel et al. 2000; Griffin, Albohm et al. 2006; 

Hewett, Ford et al. 2006).  One of the most common predisposing factors for noncontact knee 

injuries is greater knee valgus movement during functional tasks, such as landing or cutting 

(Hughston, Andrews et al. 1976; Hewett, Stroupe et al. 1996; Ford, Myer et al. 2003; Hewett, 

Myer et al. 2005).  It has been suggested that as the knee goes into a valgus or varus position 

during activity it places the joint in a less stable position and makes it more susceptible to 

injury (Hewett, Stroupe et al. 1996).  Injuries commonly associated with greater dynamic 

knee valgus movement include injury to the ACL (Kennedy, Weinberg et al. 1974; Hewett, 

Lindenfeld et al. 1999; Boden, Griffin et al. 2000; Hewett, Myer et al. 2005; Hewett, Ford et 

al. 2006) and MCL (Hughston, Andrews et al. 1976), and PFPS (Reikeras 1992; Ireland, 

Willson et al. 2003; Lee, Morris et al. 2003; Powers 2003; Willson and Davis 2008).  The 

association between knee valgus and noncontact knee injuries makes it important to 

understand those factors which contribute to this movement pattern.  
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 In an effort to combat the high incidence of noncontact knee injuries, especially 

injuries to the ACL, a number of lower extremity screenings have been developed to aid in 

identifying risk factors associated with these injuries (Bonci 1999; Hewett, Myer et al. 2001; 

Crill, Kolba et al. 2004; DiMattia, Livengood et al. 2005; McLean, Walker et al. 2005; 

Newton, Gerber et al. 2006; Hirth 2007; Willson and Davis 2008; Padua, Marshall et al. 

2009).  Clinical assessments of those persons who demonstrate dynamic valgus as it relates 

to injury risk have typically been described during squatting and landing tasks.  The Landing 

Error Scoring System (LESS) (Padua, Marshall et al. 2009), observation of a drop landing 

task (Ekegren, Miller et al. 2009), the forward lunge (Crill, Kolba et al. 2004), and the 

overhead squat test (Hirth 2007) are all validated lower extremity screenings which require 

no equipment and can be effectively used by new clinicians with only minimal instruction 

(Hirth 2007; Padua, Marshall et al. 2009).  The benefits of these screenings are that they are 

practical, cost effective, and require minimal space to complete.  Similar to other clinical 

screenings the single leg squat has been utilized to identify persons with faulty lower 

extremity biomechanics, primarily through the observation of knee valgus displacement. 

Traditionally, greater knee valgus observed during the single leg squat has been attributed to 

poor hip strength or muscle imbalances and poor neuromuscular control of key hip and trunk 

musculature (Zeller, McCrory et al. 2003; DiMattia, Livengood et al. 2005; Willson, Ireland 

et al. 2006).   

Lower extremity musculature has been suggested as a contributing factor to knee 

valgus.  Many studies have examined the musculature surrounding the hip and its effect on 

knee valgus movement during a single leg squat (SLS) (Zeller, McCrory et al. 2003; 

Lawrence, Kernozek et al. 2008).  Traditionally, a lot of attention has been given to the 
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strength of the hip abductor group, specifically the gluteus medius, and its effect on frontal 

plane knee movement; however, recent studies have shown little to no correlation between 

the two (DiMattia, Livengood et al. 2005; Claiborne, Armstrong et al. 2006).  Therefore, 

other factors such as lower extremity muscular activation and lower extremity flexibility may 

play an important role in dynamic valgus. 

The activation of the musculature surrounding the hip and knee appears to play a 

major role in the kinematics of the knee joint during functional activities.  A relationship has 

been established between lesser gluteus medius activation and greater knee valgus movement 

during a single leg squat (Zeller, McCrory et al. 2003).  The musculature acting on the knee 

has been shown to effect knee frontal plane motion.  Decreased neuromuscular control of the 

rectus femoris (DiMattia, Livengood et al. 2005) and/or increased activation of it during 

single leg activities has been seen in individuals with greater dynamic knee valgus (Zeller, 

McCrory et al. 2003).  Also, an imbalance in the hamstring-to-quadriceps peak torque ratio 

(Hewett, Stroupe et al. 1996; Hewett, Myer et al. 2005; Hewett, Myer et al. 2006), and 

decreased medial-to-lateral firing ratio of the quadriceps and hamstrings during a landing or 

cutting task can increase knee valgus by compressing the lateral side of the joint while 

distracting the medial joint space (Lloyd and Buchanan 2001; Ford, Myer et al. 2003; Myer, 

Ford et al. 2005).  Palmieri-Smith et al. reported greater peak knee valgus angles during a 

single leg forward-jump task in persons with greater activity in the vastus lateralis and biceps 

femoris, and lesser peak knee valgus angles in those persons with heightened vastus medialis 

activity (Palmieri-Smith, Wojtys et al. 2008).  Decreased quadriceps and hamstring 

cocontraction activity during a single leg forward-jump task has also been suggested to 

decrease knee joint stability and, in turn, increase peak knee valgus moments (Palmieri-
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Smith, McLean et al. 2009).  The medial gastrocnemius acts as a dynamic stabilizer of the 

knee and helps offset knee valgus moment; therefore decreased activation of the medial 

gastrocnemius during functional tasks may result in decreased frontal plane stability and 

result in greater knee valgus (Lloyd and Buchanan 2001).  Decreased activation of the medial 

grastrocnemius during functional tasks has been shown to have significant effect on valgus-

varus stability (Lloyd and Buchanan 2001).  No previous research has examined the 

relationships between the activation of the gluteals, hip adductors, hamstrings, quadriceps, 

and medial head of the gastrocnemius and their influence on lower extremity kinematics 

during a single leg squat task.  

Lower extremity muscular flexibility has also been associated with greater knee 

instability and dysfunctional kinematics.  Greater flexibility of the hamstrings resulting in 

lesser activation has been suggested to decrease dynamic knee stiffness (Boden, Griffin et al. 

2000; Zeller, McCrory et al. 2003) and increase the likelihood of greater knee valgus.  One 

study that examined the causes of PFPS showed that increasing the flexibility of the iliotibial 

band and hip flexors decreased the symptoms of the participants in the study.  One 

hypothesized explanation for this is that the factors that contribute to tight iliotibial band and 

hip flexors may cause the pelvis to tilt anteriorly, resulting in femoral internal rotation and 

therefore altering patellar alignment in the femoral groove (Tyler, Nicholas et al. 2006).  It 

has also been shown that increasing iliotibial band flexibility reduces the pull of the lateral 

patellar retinaculum and allows the patella to track properly during single-legged partial 

squat (Powers, Ward et al. 2003).  It is has been suggested that tightness of the hip adduction 

and internal rotation musculature may result in hip adduction and internal rotation motion 

(Clark and Lucett 2004; Hirth 2007).  Similarly if there is increased flexibility of the hip 
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external rotators this may allow for greater hip internal rotation and further contribute to 

greater knee valgus during dynamic tasks.  Tightness of the lower-leg musculature, especially 

the lateral gastrocnemius and peroneals, may contribute to tibial abduction and external 

rotation thus increasing knee valgus (Clark and Lucett 2004; Hirth 2007).  It has been 

suggested that decreased posterior talar mobility would result in decreased dorsi flexion and 

therefore should be assessed when assessing plantar flexor flexibility (Denegar, Hertel et al. 

2002).  However, no previous studies have examined the relationships between the flexibility 

of the hip external rotators, hip internal rotators, hip adductors, hamstrings, iliopsoas, plantar 

flexors, and talar glide mobility and their effect on lower extremity kinematics during a 

single leg squat. 

Therefore the purpose of this study was to compare lower extremity muscle activation 

and flexibility between subjects who display medial knee displacement (MKD) and those 

who do not during a single leg squat.  Determining these differences will aid clinicians by 

identifying the neuromuscular patterns that are associated with different movement patterns 

that can be discriminated using cost effective clinical assessments and thereby provide a 

guide for future rehabilitation interventions to correct these faulty mechanics. 

VARIABLES 

 Independent:  

 Group  

 Control: Individuals who maintain a neutral knee position during a single leg 

squat (Figure 1.1) 

 Medial Knee Displacement (MKD): Individuals who display excessive MKD 

during a single leg squat (Figure 1.2) 
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 Dependent:  

 Lower extremity muscle activation intensity (EMG amplitude) during the single 

leg squat 

 Gluteus maximus 

 Gluteus medius 

 Hip adductors 

 Medial hamstrings 

 Biceps femoris 

 Vastus medialis oblique 

 Vastus lateralis 

 Medial head of gastrocnemius 

 Lower extremity passive range of motion (ROM) muscle flexibility 

 Hip external rotators 

 Hip internal rotators 

 Hip adductors 

 Iliotibial Band 

 Hamstrings (90-90) 

 Hip flexors 

 Plantar flexors (leg straight) 

 Plantar flexors (knee bent) 

 Hip anteversion 

 Posterior talar glide

RESEARCH QUESTIONS & RESEARCH HYPOTHESES 

1) Research Question 1: Is there a significant difference in lower extremity (LE) muscle 

activation amplitude between healthy, physically active individuals who demonstrate 

MKD during a single leg squat compared to those who do not? 

i) Research Question 1a: Does mean gluteus maximus EMG amplitude differ 

between these groups during the descent phase of a single leg squat? 

ii) Research Question 1b: Does mean gluteus medius EMG amplitude differ 

between these groups during the descent phase of a single leg squat? 

iii) Research Question 1c: Does mean hip adductor EMG amplitude differ between 

these groups during the descent phase of a single leg squat? 
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iv) Research Question 1d: Does mean medial hamstrings EMG amplitude differ 

between these groups during the descent phase of a single leg squat? 

v) Research Question 1e: Does mean biceps femoris EMG amplitude differ 

between these groups during the descent phase of a single leg squat? 

vi) Research Question 1f: Does mean vastus medialis EMG amplitude differ 

between these groups during the descent phase of a single leg squat? 

vii) Research Question 1g: Does mean vastus lateralis EMG amplitude differ 

between these groups during the descent phase of a single leg squat? 

viii) Research Question 1h: Does mean medial head of the gastrocnemius EMG 

amplitude differ between these groups during the descent phase of a single leg 

squat? 

 Hypothesis 1: The MKD group (MKD Group - MKD) will have one or more LE 

muscular groups with a significantly higher mean amplitude compared to the control 

group (Control Group - CG) during a single leg squat. 

i) Research Hypothesis 1a: The MKD group will have significantly lower mean 

amplitude gluteus maximus activation compared to the control group during a 

single leg squat.  

ii) Research Hypothesis 1b: The MKD group will have significantly lower mean 

amplitude gluteus medius activation compared to the control group during a 

single leg squat. 

iii) Research Hypothesis 1c: The MKD group will have significantly higher mean 

amplitude hip adductor activation compared to the control group during a single 

leg squat. 
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iv) Research Hypothesis 1d: The MKD group will have significantly lower mean 

amplitude medial hamstring activation compared to the control group during a 

single leg squat. 

v) Research Hypothesis 1e: The MKD group will have significantly higher mean 

amplitude biceps femoris activation compared to the control group during a 

single leg squat. 

vi) Research Hypothesis 1f: The MKD group will have significantly lower mean 

amplitude vastus medialis oblique activation compared to the control group 

during a single leg squat. 

vii) Research Hypothesis 1g: The MKD group will have significantly higher mean 

amplitude vastus lateralis activation compared to the control group during a 

single leg squat. 

viii) Research Hypothesis 1h: The MKD group will have significantly lower mean 

amplitude medial head of the gastrocnemius activation compared to the control 

group during a single leg squat. 

2)  Research Question 2: Is there a significant difference in lower extremity passive 

range of motion (ROM) muscular flexibility between healthy, physically active 

individuals who demonstrate excessive knee valgus during a single leg squat 

compared to those who do not? 

i) Research Question 2a: Do the hip external rotators mean degrees of passive 

movement differ between these groups?  

ii) Research Question 2b: Do the hip internal rotators mean degrees of passive 

movement differ between these groups? 
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iii) Research Question 2c: Do the hip adductors mean degrees of passive movement 

differ between these groups? 

iv) Research Question 2d: Does the iliotibial band mean degrees of passive 

movement differ between these groups? 

v) Research Question 2e: Do the hamstrings mean degrees of passive movement 

differ between these groups? 

vi) Research Question 2f: Do the hip flexors mean degrees of passive movement 

differ between these groups? 

vii) Research Question 2g: Do the plantar flexors (knee extended) mean degrees of 

passive movement differ between these groups?  

viii) Research Question 2h: Do the plantar flexors (knee flexed) mean degrees of 

passive movement differ between these groups? 

ix) Research Question 2i: Does the hip anteversion mean degrees of femoral neck 

rotation differ between these groups? 

x) Research Question 2j: Does the posterior talar glide mean degrees of passive 

movement differ between these groups? 

 Hypothesis 2: The MKD group (MKD Group - MKD) will have one or more 

decreased lower extremity ROM patterns compared to the control group (Control 

Group - CG). 

i) Research hypothesis 2a: The MKD group will have significantly more mean 

external rotator ROM compared to the control group.  

ii) Research hypothesis 2b: The MKD group will have significantly less mean 

internal rotator ROM compared to the control group.  
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iii) Research hypothesis 2c: The MKD group will have significantly less mean hip 

abduction ROM compared to the control group.  

iv) Research hypothesis 2d: The MKD group will have significantly less mean 

iliotibial ROM compared to the control group.  

v) Research hypothesis 2e: The MKD group will have significantly more mean 

hamstring ROM compared to the control group.  

vi) Research hypothesis 2f: The MKD group will have significantly less mean hip 

flexor ROM compared to the control group.  

vii) Research hypothesis 2g: The MKD group will have significantly less mean 

plantar flexor (knee extended) ROM compared to the control group.  

viii) Research hypothesis 2h: The MKD group will have significantly less mean 

plantar flexor (knee flexed) ROM compared to the control group. 

ix) Research hypothesis 2i: The MKD group will have significantly more hip 

anteversion mean degrees of femoral neck rotation compared to the control 

group. 

x) Research hypothesis 2j: The MKD group will have significantly less posterior 

talar glide ROM compared to the control group. 

Statistical Hypothesis 

 Research Question 1 

 Hypothesis 1: 

 H0:  MKDA = CGA 

 HA: MKDA ≠ CGA 

 HR: MKDA > CGA 
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 Research Question 2 

 Hypothesis 2: 

 H0:  MKDF = CGF 

 HA: MKDF ≠ CGF 

 HR: MKDF < CGF 

OPERATIONAL DEFINITIONS 

 Medial Knee Displacement: Mid-point of the patella passing medially over the great 

toe during a single leg squat 

 Dominant leg: The leg the subject would use to kick a soccer ball for maximal 

distance. 

 Active: Consistently has participated in at least 30 minutes of physical activity three 

times a week for the past six months. 

ASSUMPTIONS 

 The use of a digital inclinometer to measure passive range of motion is representative 

of the antagonists muscle’s flexibility. 

 The use of a standard goniometer to measure passive range of motion is representative 

of the antagonists muscle’s flexibility. 

 The Motion Star Motion Tracking System is a valid measure of joint angles during a 

dynamic movement. 

 The subjects used in this study have similar characteristics to physically active 

individuals used in other studies, and is representative of the population in which the 

findings will be generalized to. 
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 All subjects will truthfully report past and present medical conditions which could 

exclude them from the study.  

 The testing equipment will not inhibit normal body motions. 

DELIMINATIONS 

 Only subjects who are healthy and active at the University of North Carolina at Chapel 

Hill will be tested. 

 Participants will be categorized based on the criteria established by the researcher. 

 People who have had a lower extremity or a low back surgical procedure or have had a 

lower extremity or low back injury in the past two years which has resulted in three 

consecutive days of time loss from activity will be excluded. 

 All testing will take place in the UNC-CH Neuromuscular Research Laboratory. 

LIMITATIONS 

 The findings of this study may not be applicable to other populations.  

 The individual effort each participant put into correctly completing the SLS and MVIC 

cannot be assessed.  

 The findings of this study are only applicable to the SLS and not other dynamic tasks 

 This study did not measure the muscular activation of the other hip, thigh, and lower 

leg muscles 

 EMG electrodes on the skin may not give a true reading of the underlying muscle 

activity 

SIGNIFICANCE OF THIS STUDY 

 Many certified athletic trainers utilized the single leg squat (SLS) in pre-participation 

examination to asses an athlete’s lower extremity strength and coordination.  Through 
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observation of the single leg squat, many clinicians “diagnose” muscular 

imbalances/weakness and develop treatment plans to address these.  There is little to no 

research supporting these “diagnoses” through observation; the research which has examined 

the single leg squat previously has focused on hip abductor strength and knee valgus 

movement during the single leg squat.  This research study will help to serve as a reference to 

clinicians in identifying problematic lower extremity muscular firing imbalances and lower 

extremity passive range of motion muscular flexibility while observing the SLS test.
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CHAPTER II 

 
LITERATURE REVIEW 

 

INTRODUCTION 

Noncontact knee injuries are a common occurrence among physically active 

populations.  These noncontact injuries include injury of the anterior cruciate ligament 

(ACL) (Noyes, Mooar et al. 1983; Hewett, Lindenfeld et al. 1999; Griffin, Albohm et al. 

2006), medial collateral ligament (MCL) (Fetto and Marshall 1978; Grood, Noyes et al. 

1981; Griffith, LaPrade et al. 2009; Wijdicks, Griffith et al. 2009), and patellofemoral pain 

syndrome (PFPS) (Devereaux and Lachmann 1984; Stathopulu and Baildam 2003).  These 

three injuries share one common mechanism, increased knee valgus movement during 

activity. 

Knee valgus collapse during functional activity has been defined as a result of 

transverse plane knee rotation motions (Hollis, Takai et al. 1991; Quatman and Hewett 

2009).  Factors associated with knee valgus collapse include: anatomical boney anomalies 

(Hewett, Stroupe et al. 1996; Boden, Griffin et al. 2000; Griffin, Albohm et al. 2006; Hewett, 

Myer et al. 2006), lower extremity muscular strength (Hewett, Stroupe et al. 1996; DiMattia, 

Livengood et al. 2005; Claiborne, Armstrong et al. 2006; Hewett, Myer et al. 2006; 

Lawrence, Kernozek et al. 2008), and lower extremity neuromuscular control (Lloyd and 

Buchanan 2001; Ford, Myer et al. 2003; Zeller, McCrory et al. 2003; DiMattia, Livengood et 

al. 2005; Hewett, Myer et al. 2005; Myer, Ford et al. 2005).  These factors can act
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 independently or in conjunction with one another to increase knee valgus during both static 

posture and functional movements.   

Injury intervention programs have been developed to aid in counteracting these faulty 

lower extremity biomechanics.  It has been shown that neuromuscular training (Caraffa, 

Cerulli et al. 1996; Hewett, Lindenfeld et al. 1999; Hewett, Ford et al. 2006; Myer, Ford et al. 

2007; DiStefano, Padua et al. 2009), strength training (Hewett, Lindenfeld et al. 1999; 

Hewett, Ford et al. 2006), and plyometric training are effective in decreasing the risk of ACL 

injury (Hewett, Stroupe et al. 1996).  These prevention strategies focus on teaching proper 

landing techniques and increasing lower extremity strength and proprioception, in hopes to 

decrease knee valgus collapse episodes (Caraffa, Cerulli et al. 1996; Hewett, Stroupe et al. 

1996; Hewett, Lindenfeld et al. 1999; Hewett, Ford et al. 2006; Myer, Ford et al. 2007; 

DiStefano, Padua et al. 2009).  Recent research suggests that individualized programs based 

on individual’s biomechanical needs may be more effective than group based programs 

(Myer, Ford et al. 2007; DiStefano, Padua et al. 2009). 

 Lower extremity functional screening assessments have been suggested to aid in 

identifying individuals at increased risk of noncontact knee injury (Bonci 1999; DiMattia, 

Livengood et al. 2005; Newton, Gerber et al. 2006; Hirth 2007).  Three-dimensional and two-

dimensional video analysis has been utilized in the research setting and shown to be effective 

in identifying these risk factors (McLean, Walker et al. 2005; Thijs, Van Tiggelen et al. 

2007; Ekegren, Miller et al. 2009; Padua, Marshall et al. 2009).  These screenings require 

equipment which is unavailable to many clinicians.  Therefore clinically based screenings 

have been developed.  These screenings have gained popularity and are now commonly used 
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to asses lower extremity tasks (DiMattia, Livengood et al. 2005; Newton, Gerber et al. 2006; 

Willson, Ireland et al. 2006).   

In recent years the single leg squat has gained popularity as one such clinical 

screening (Zeller, McCrory et al. 2003; Livengood, DiMattia et al. 2004; DiMattia, 

Livengood et al. 2005; Claiborne, Armstrong et al. 2006).  However findings of the single leg 

squat have been based largely on anecdotal evidence and have not been strongly supported 

by the research.  Therefore, additional research is needed to examine the effectiveness of 

single leg squat as a lower extremity functional clinical assessment.  Also, additional 

research is needed to identify which risk factors can be observed through the single leg squat 

and what the underlying causes of these injury risk factors are.  

ANATOMY OF THE KNEE 

 In order to have an understanding of knee biomechanics during functional tasks it is 

important to have a strong understanding of both the dynamic and static anatomical 

structures which form the knee joint and those structures which act on it.  The knee is a 

diarthrodial synovial hinge joint comprised of the distal femur, proximal tibia, and patella.  

The medial condyle of the femur is larger than the lateral condyle and projects more distally; 

this creates an anterior projection of the lateral femoral condyle.  These condyles are 

separated by the femoral notch (Chhabra, Elliott et al. 2001).  This arrangement allows for 

movement in both the sagittal and transverse planes; the knee’s primary motions are flexion 

and extension and its secondary motions are internal and external rotation.   

The femur and tibia are separated by the medial and lateral menisci, two crescent 

shaped fibrocartilaginous structures.  These fibrocartilaginous structures help to increase the 

conformity between the two articulating surfaces and aid in shock absorbency during weight 
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bearing activities, especially the more “O-shaped” lateral meniscus (Chhabra, Elliott et al. 

2001).  The medial meniscus is more “C-shaped” than the lateral meniscus and 

accommodates the larger medial femoral condyle allowing for greater rotation of the femur 

on the tibia.  Only about 20-30% of the of the peripheral menisci are vascularized (Chhabra, 

Elliott et al. 2001), limiting the abilities of the menisci to heal after injury.  The menisci are 

connected to the tibial plateau by the coronary ligaments and joined together anteriorly by the 

transverse ligament (Chhabra, Elliott et al. 2001).   

 The patella is the largest sesamoid bone in the body and lies in the quadriceps tendon 

(Chhabra, Elliott et al. 2001).  The bone is triangular in shape and sits between the femoral 

condyles in the femoral groove.  The patella serves two major functions in the knee: it acts as 

a fulcrum for the quadriceps and it is a protective surface for the anterior aspect of the knee 

joint (Chhabra, Elliott et al. 2001). 

 The anterior cruciate ligament (ACL) extends from the posteromedial surface of the 

lateral femoral condyle to the anterior aspect of the intercondyler eminence on the tibia.  It is 

composed of two bundles, an anteromedial bundle and a posterolateral bundle; the 

anteromedial bundle is taught in flexion while the posterolateral bundle is taught in extension 

(Chhabra, Elliott et al. 2001).  The ACL has been shown to range from 3 to 38 mm in length 

and 10 to 12 mm in width (Smith, Livesay et al. 1993).  Even though the ACL is 

intraarticualr it is surrounded by its own synovial sheath and derives is blood supply from the 

middle geniculate artery (Arnoczky 1983).  The major function of the ACL is to limit 

anterior translation of the tibia on the femur; it also aids in limiting rotation of the tibia on the 

femur (Chhabra, Elliott et al. 2001; Shimokochi and Shultz 2008).  As such the ACL is 
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loaded during anterior tibial translation, transverse plane knee rotations, and valgus collapse 

(Ferretti, Papandrea et al. 1992; Boden, Griffin et al. 2000; Cochrane, Lloyd et al. 2007). 

 Similarly the posterior cruciate ligament (PCL) is also intraarticualr and 

extrasynovial.  The PCL extends from the lateral aspect of the medial femoral condyle to a 

sulcus located posterior and inferior to the tibial plateau.  The PCL is also composed of two 

bundles: the anterolateral bundle and the posteromedial bundle.  The anterolateral bundle is 

taught in flexion while the posteromedial bundle is taught in extension (Chhabra, Elliott et al. 

2001).  Girgis et al. has reported the average length of the PCL as 38 mm and its average 

width as 13mm (Girgis, Marshall et al. 1975).  The PCL is assisted in preventing posterior 

translation of the tibia by the ligaments of Humphrey and Wrisberg; which run from the 

posterior horn of the lateral meniscus to just posterior to the attachment of the PCL on the 

femoral condyle (Harner, Xerogeanes et al. 1995).  The blood supply of the PCL is also 

provided by the middle geniculate artery (Chhabra, Elliott et al. 2001). 

 The medial collateral ligament (MCL) acts as the primary static stabilizer of the 

medial aspect of the knee.  Like the ACL and PCL, the MCL is comprised of two portions: 

the tibial collateral ligament (superficially) and the medial capsular ligament (deep) 

(Chhabra, Elliott et al. 2001; LaPrade, Engebretsen et al. 2007).  Each portion of the MCL 

has its proximal attachment on the medial femoral epicondyle.  The superficial tibial 

collateral ligament is further divided into anterior and posterior bundles; the anterior bundle 

has vertically oriented fibers and inserts posterior to the pes anserine tendon, while the 

posterior bundle has obliquely oriented fibers and inserts inferiorly to the tibial plateau 

(Chhabra, Elliott et al. 2001).  Likewise the medial capsular ligament has two bundles as 

well, the meniscofemoral and the meniscotibial portions (Chhabra, Elliott et al. 2001; 
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LaPrade, Engebretsen et al. 2007).  These two bundles attach to the medial meniscus with the 

coronary ligaments (Chhabra, Elliott et al. 2001) and just distal to the articular cartilage of 

the tibial plateau (LaPrade, Engebretsen et al. 2007).  Unlike the superficial tibial collateral 

ligament which is an independent structure, the medial capsular ligament is a thickening of 

the medial joint capsule (LaPrade, Engebretsen et al. 2007). The primary function of the 

MCL complex is to resist valgus forces applied to the knee and resist rotation of the tibia on 

the femur (Griffith, LaPrade et al. 2009).   

 The lateral aspect of the knee is primarily stabilized by the lateral collateral ligament 

(LCL).  The LCL runs from the lateral femoral condyle to the head of the fibula and 

primarily resists varus forces to the knee, but also resists external rotation of the tibia on the 

femur.  The LCL is assisted in resisting varus force by the iliotibial band (IT band), patellar 

retinaculum, patellofemoral ligaments, fabellofibular ligament, arcuate ligament, and the 

lateral joint capsule (Chhabra, Elliott et al. 2001).   

The posterolateral corner of the knee is supported by the popliteofibular ligament 

which connects the fibular head and popliteus tendon.  This ligament resists posterior 

translation, external rotation, and varus forces on the knee.  The arcuate, fabellofibular, and 

oblique popliteal ligaments and the proximal popliteus capsular expansion, part of the 

posterior capsule, also help resist these motions (Chhabra, Elliott et al. 2001; LaPrade, 

Morgan et al. 2007).   

 The primary movers of the knee are the quadriceps and hamstrings.  The quadriceps 

sit on the anterior aspect of the femur and consists of the rectus femoris, vastus lateralis, 

vastus medialis, and vastus intermedius (Chhabra, Elliott et al. 2001).  These four muscles 

originate from the anterior superior iliac spine (ASIS) and anterior inferior iliac spine (AIIS) 
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and form a common tendon which attaches to the tibial tuberoscity and act to extend the 

knee.  The hamstrings sit on the posterior aspect of the femur and consists of the biceps 

femoris (laterally) and the semimembranosus and semitendinosus (medially).  These muscles 

have a common proximal origin off of the ischial tuberoscity and linea aspera of the femur, 

with individual distal attachments.  The short head of the biceps femoris attaches to the 

lateral tibial condyle while the long head attaches to the fibular head and lateral tibia.  The 

semimembranosus has between five and eight distal points of attachment; these attachments 

include the oblique popliteal ligament, the posterior capsule, the posterior tibia, the popliteus, 

and the medial meniscus (Chhabra, Elliott et al. 2001; LaPrade, Engebretsen et al. 2007; 

LaPrade, Morgan et al. 2007).  The semitendinosus joins with the sartorius and gracilis to 

form the pes anserine tendon which attaches to the anteromedial aspect of the tibia (Chhabra, 

Elliott et al. 2001).   

The popliteus originates on the posterior tibia and inserts on the lateral femoral 

condyle anterior to the LCL (Chhabra, Elliott et al. 2001).  It assists the hamstrings in knee 

flexion but its primary function is to internally rotate the tibia, in a non-weight bearing 

position, or to externally rotate the femur in a weight bearing position; in each case it 

“unlocks” the knee and allows flexion to occur.  The popliteus also passively resists 

hyperexternal rotation of the tibia (Chhabra, Elliott et al. 2001).  The gastrocnemius and 

plantaris muscles act on the knee in a much smaller degree than the other surrounding knee 

musculature.  The gastrocnemius and plantaris muscles primarily act as plantar flexors of the 

foot but also as weak knee flexors.  The gastrocnemius has both medial and lateral heads 

which along with the semimembranosus and biceps femoris form the medial and lateral 

borders of the popliteal fossa (Chhabra, Elliott et al. 2001). 
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The hip adductors also act on the medial knee joint.  The adductors have their 

common distal attachment on the medial femoral condyle, at the adductor tubercle.  The 

adductor magnus has its own separate attachment just posterior and proximal to the adductor 

tubercle.  The adductor magnus tendon fans out and also attaches to the medial 

gastrocnemius tendon, the posterior oblique ligament, and posteromedial capsule (LaPrade, 

Engebretsen et al. 2007).   

Understanding knee anatomy will allow clinicians to better understand injury that can 

result from faulty movement patterns.  The increased ability to better evaluate knee injuries 

and movement patterns will allow clinicians to develop individualized prevention and/or 

rehabilitation programs which better serve their patients. 

NONCONTACT KNEE INJURIES 

Incidence and Prevalence  

Noncontact knee injuries are a common occurrence among physically active 

populations.  In particular physically active people are susceptible to injury of the anterior 

cruciate ligament (ACL) (Noyes, Mooar et al. 1983; Hewett, Lindenfeld et al. 1999; Griffin, 

Albohm et al. 2006), medial collateral ligament (MCL) (Fetto and Marshall 1978; Grood, 

Noyes et al. 1981; Griffith, LaPrade et al. 2009; Wijdicks, Griffith et al. 2009), and to 

developing patellofemoral pain syndrome (PFPS) (Devereaux and Lachmann 1984; 

Stathopulu and Baildam 2003).  Active persons between the ages of 15 and 25 years are the 

most commonly afflicted population with ACL injury or PFPS (Devereaux and Lachmann 

1984; Griffin, Albohm et al. 2006).   

There are an estimated 80,000 to 250,000 ACL injuries annually (Griffin, Albohm et 

al. 2006).  The average cost of surgical repair and subsequent rehabilitation for these injuries 
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is approximately $17,000 per incident (Hewett, Lindenfeld et al. 1999); this results in a total 

yearly cost ranging from $1.36-4.25 billion.  Both males and females are susceptible to 

noncontact ACL injuries.  However, females sustain 2-8 times more noncontact ACL injuries 

than males participating in the same sport (Boden, Griffin et al. 2000); this translates to more 

than 2200 ACL ruptures annually among female collegiate athletes (Hewett, Lindenfeld et al. 

1999).  The MCL has been reported as one of the most commonly injured ligaments of the 

knee (Grood, Noyes et al. 1981; LaPrade 1999).  The majority of MCL injuries are the result 

of direct contact to the lateral aspect of the knee with another person or object during 

activity; however, noncontact MCL injuries are common as well (Hughston, Andrews et al. 

1976).  Patellofemoral pain syndrome (PFPS) is an encompassing term which refers to all 

conditions that manifest as pain and point tenderness in or around the patellofemoral joint 

(Boling, Padua et al. 2009).  PFPS affects 1 in 4 people (DeHaven and Lintner 1986; Duffey, 

Martin et al. 2000), which accounts for up to 25% of all knee related injuries seen in sports 

medicine clinics (Devereaux and Lachmann 1984).  One study of patients suffering from 

PFPS showed that 36% of all people affected by PFPS must restrict their physical activity 

because of symptoms associated with the condition (Stathopulu and Baildam 2003).   

Injuries to the knee not only affect an individual’s physical health, but also the 

financial cost resulting from these injuries as well as the potential loss of time from 

competition or the possible loss of scholarship funding can negatively affect a person’s 

mental health (Freedman, Glasgow et al. 1998).  These factors make it important to study 

knee injuries in order to obtain a better understanding of their causes and to identify 

predisposing risk factors in hopes to form individualized noncontact knee injury intervention 

programs.  
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Risk Factors and Mechanisms of Injury 

Nearly 70% of ACL injuries result from noncontact mechanisms, the majority of 

which involve landing from a jump (Boden, Griffin et al. 2000; Hewett, Myer et al. 2006).  

Inward buckling of the knee has been discouraged during jump-landing and plyometric tasks 

(Hewett, Stroupe et al. 1996; Hewett, Myer et al. 2005); this is because as the knee buckles 

inward as a result of a valgus load, the lateral femoral condyle impinges on the ACL.  

Kennedy et al. (Kennedy, Weinberg et al. 1974) has suggested this impingement of the ACL 

by the lateral femoral causes a traumatic shearing of the ACL which results in a tearing of the 

ligament.  The connection between dynamic knee valgus during landing and ACL injury has 

been used as a strategy to help identify those persons who are at risk for future ACL injury 

(Decker, Torry et al. 2003; Ford, Myer et al. 2003; Hewett, Myer et al. 2005; Kernozek, 

Torry et al. 2005; Chappell, Creighton et al. 2007; Jacobs, Uhl et al. 2007; Joseph, Tiberio et 

al. 2008; Lawrence, Kernozek et al. 2008; Boling, Padua et al. 2009; Ekegren, Miller et al. 

2009; Kiriyama, Sato et al. 2009; Padua, Marshall et al. 2009). 

 Females have been shown to have greater total knee valgus motion and greater 

maximum knee valgus compared to males during vertical jump-landing tasks (Ford, Myer et 

al. 2003), which increases their susceptibility to noncontact knee injury.  Hewett et al. 

(Hewett, Stroupe et al. 1996) has hypothesized that landing with the knee in either a valgus 

or varus position places the joint in a less than optimally stable position and in turn makes the 

knee more susceptible to injury.  The increased knee valgus and resulting unstable position 

has been suggested by Ford et al. (Ford, Myer et al. 2003) as one reason why females have a 

higher incidence of noncontact ACL injuries compared to males.  Ireland et al. (Ireland 1999) 

termed this position of hip adduction and internal rotation, external rotation of the tibia 



25 
 

relative to the femur, internal rotation of the tibia relative to the foot, and forefoot pronation 

as “the point of no return.”  Implying that if a person is placed in this position it is highly 

likely he/she will damage his/her ACL.  

 Noncontact MCL injuries most commonly occur during “cutting” maneuvers.  

Valgus forces applied to the knee during these cutting maneuvers can cause the tibia to 

externally rotate as the femur remains fixed.  This type of valgus injury generally results in 

tearing of the medial capsular ligament first, and if the force is sufficient enough a 

subsequent tearing of the tibial collateral ligament is likely as well (Hughston, Andrews et al. 

1976).  

Many risk factors have been suggested to increase the likelihood of developing PFPS, 

these include: increased compressive forces on the patellofemoral joint (Boling, Padua et al. 

2009), abnormal frontal plane movement of the lower extremity (Willson and Davis 2008), 

and an increased Q-angle (Reikeras 1992).  Many of these risk factors are associated with 

increased knee valgus during functional tasks.  Increased hip internal rotation and knee 

valgus can greatly increase the lateral compressive forces on the patellofemoral joint 

(Ireland, Willson et al. 2003; Lee, Morris et al. 2003).  An increased Q-angle can result in 

subsequent increased knee valgus, and any abnormal movement of the femur or tibia in the 

frontal plane has been suggested to predispose an individual to develop PFPS (Reikeras 

1992; Powers 2003). 

There are a wide variety noncontact knee injury risk factors and mechanisms of 

injury.  Dynamic knee valgus during functional tasks is a common result of many of these 

risk factors and often times a key factor in the mechanism of injury. This is why it is 
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important for clinicians to have a strong understanding of the underlying causes of knee 

valgus.  

KNEE VALGUS 

 Valgus movement of the knee during functional activities has been disputed through 

the literature (Hollis, Takai et al. 1991; Quatman and Hewett 2009).  Traditionally knee 

valgus movement has been defined as a pure abduction motion of the tibia relative to the 

femur (Quatman and Hewett 2009).  Quatman et al. (Quatman and Hewett 2009) and Hollis 

et al. (Hollis, Takai et al. 1991) have further defined dynamic knee valgus, as a valgus 

collapse episode during functional activity as a result of transverse plane knee rotation 

motions.  Hollis et al. (Hollis, Takai et al. 1991) has described the transverse rotation of the 

tibia relative to the femur during the application of a valgus load, and found that tibial 

internal rotation increased as weight bearing knee flexion angles increased.  Therefore, 

functional knee valgus movement is a result of tibial movement in both the frontal and 

transverse planes (Hollis, Takai et al. 1991; Quatman and Hewett 2009).  

 When clinically evaluating knee valgus movement during functional tasks, it is often 

times very difficult, if not impossible, to distinguish what motions at the knee are creating the 

valgus movement.  In order to distinguish between a true valgus episode, where the tibia is 

abducted from the femur solely in the frontal plane, and an episode where the valgus 

movement is created by both abduction in the frontal plane and rotation of the tibia in the 

transverse plane clinicians must use three-dimensional (3-D) motion analysis software to 

make this distinction.  Three-dimensional motion analysis is commonly used to asses knee 

kinematics during a variety of tasks (Ekegren, Miller et al. 2009; Padua, Marshall et al. 

2009).  Three-dimensional motion analysis software is used in conjunction with an infrared 
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optical motion capture system (ie. Vicon) (Myer, Ford et al. 2002; Decker, Torry et al. 2003; 

Ford, Myer et al. 2003; Hewett, Myer et al. 2005; Kernozek, Torry et al. 2005; Claiborne, 

Armstrong et al. 2006; Russell, Palmieri et al. 2006; Chappell, Creighton et al. 2007; Heinert, 

Kernozek et al. 2008; Joseph, Tiberio et al. 2008; Lawrence, Kernozek et al. 2008; Richards, 

Thewlis et al. 2008; Ekegren, Miller et al. 2009; Kiriyama, Sato et al. 2009) or an 

electromagnetic motion analysis system (ie. Flock of Birds) (DiMattia, Livengood et al. 

2005; Jacobs, Uhl et al. 2007; Boling, Padua et al. 2009; Padua, Marshall et al. 2009); both 

the motion analysis software and the motion capture system are expensive, time consuming 

to operate, and unavailable to most clinicians.  Motion analysis systems used for the study of 

knee kinematics have been predominately used to study frontal and sagittal plane movements 

of the knee during drop-landing tasks (Decker, Torry et al. 2003; Ford, Myer et al. 2003; 

Kernozek, Torry et al. 2005; Lawrence, Kernozek et al. 2008; Kiriyama, Sato et al. 2009), 

drop-jump tasks (Hewett, Myer et al. 2005; Chappell, Creighton et al. 2007; Joseph, Tiberio 

et al. 2008; Ekegren, Miller et al. 2009), jump-landing tasks (Jacobs, Uhl et al. 2007; Boling, 

Padua et al. 2009; Padua, Marshall et al. 2009), the forward lunge (Thijs, Van Tiggelen et al. 

2007), single leg squats (Zeller, McCrory et al. 2003; DiMattia, Livengood et al. 2005; 

Claiborne, Armstrong et al. 2006; Richards, Thewlis et al. 2008), and running (Heinert, 

Kernozek et al. 2008). 

 Two-dimensional (2-D) video analysis of functional activities has been shown to be 

effective in identifying variations in knee valgus during functional tasks between subjects.  

The authors agree two-dimensional video analysis has its limitations.  The primary limitation 

of two-dimensional video analysis is that it does not allow for the clinician to properly 

identify the degree of knee valgus or if there is a rotational component involved (McLean, 
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Walker et al. 2005; Ekegren, Miller et al. 2009; Padua, Marshall et al. 2009).  Thijs et al. 

(Thijs, Van Tiggelen et al. 2007) evaluated frontal plane knee movement during a forward 

lunge and reported that peak knee valgus angle could be properly identified with the use of 

two-dimensional video analysis.  However, Thijs et al. incorporated retroreflective markers 

to aid in identifying anatomical landmarks on video as well as video analysis software to 

identify peak knee valgus angles (Thijs, Van Tiggelen et al. 2007). 

 Valgus movement has been shown to occur as a result of movement of the tibia in 

both the frontal and transverse planes.  The multiple components associated with knee valgus 

collapse during activity make it a complex motion commonly associated with injury to the 

ACL, MCL, and other supporting knee structures.  Due to the complexity of this motion 

further study is needed to better understand the motion as a whole and each of its 

components. 

Causes of Knee Valgus 

 There are a wide variety of factors associated with increased knee valgus.  These 

factors include: anatomical boney anomalies (Hewett, Stroupe et al. 1996; Boden, Griffin et 

al. 2000; Griffin, Albohm et al. 2006; Hewett, Myer et al. 2006), lower extremity muscular 

strength (Hewett, Stroupe et al. 1996; DiMattia, Livengood et al. 2005; Claiborne, Armstrong 

et al. 2006; Hewett, Myer et al. 2006; Lawrence, Kernozek et al. 2008), and lower extremity 

neuromuscular control (Lloyd and Buchanan 2001; Ford, Myer et al. 2003; Zeller, McCrory 

et al. 2003; DiMattia, Livengood et al. 2005; Hewett, Myer et al. 2005; Myer, Ford et al. 

2005).  These factors can act independently or in conjunction with one another to increase 

knee valgus during both static posture and functional movements. 
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Anatomical Factors 

 The Quadriceps angle, more commonly known as “Q-angle” is a measurement of the 

vector of pull of the knee extensor musculature and patella tendon.  It is measured by 

drawing a line from the ASIS to the center of the patella, then a second line from the center 

of the patella to the center of the tibial tuberoscity.  This measurement can be done with the 

subject in either a supine or standing position (Smith, Hunt et al. 2008).  Larger than normal 

Q-angles (males > 10
o
, females > 15

0
) have been shown to increase lower extremity 

malalignment; the most common malalignment is increased knee valgus during a static 

posture (Boden, Griffin et al. 2000).  Females have an increased risk of large Q-angles 

because of their genetic predisposition of wider hips, compared to males.  This has been 

suggested as one reason as to why females traditionally have greater knee valgus than males 

during both static and functional tasks (Hewett, Stroupe et al. 1996; Boden, Griffin et al. 

2000; Griffin, Albohm et al. 2006; Hewett, Myer et al. 2006).   

 Increased hip adduction and hip internal rotation have also been associated with 

increased knee valgus movement during lower extremity closed kinetic chain activities 

(Hewett, Myer et al. 2005).  If the hip is naturally in an adducted position while standing in a 

neutral position there is commonly an associated increased internal rotation of the hip joint as 

well.  This position can predispose an individual to increased knee valgus during activity 

since it promotes abnormal rotation of the tibia on the femur associated with the knee valgus 

collapse described by Hollis et al. and Quatman et al. (Hollis, Takai et al. 1991; Quatman and 

Hewett 2009). 
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Lower Extremity Muscular Strength 

Lower extremity muscular strength has been suggested by many authors as a 

contributing factor of knee valgus movement during functional tasks (Hewett, Stroupe et al. 

1996; DiMattia, Livengood et al. 2005; Claiborne, Armstrong et al. 2006; Hewett, Myer et al. 

2006; Lawrence, Kernozek et al. 2008).  Traditionally many studies have examined the 

relationship between hip abductor strength, specifically gluteus medius strength, and knee 

frontal plane motion; little to no correlation has been found between the two.  Claiborne et al. 

and DiMattia et al. specifically examined the correlation between hip abductor strength and 

knee valgus movement and hip adduction during a single leg squat.  DiMattia’s  findings 

agree with past literature and show there is little to no correlation between hip abductor 

strength and knee valgus movement (DiMattia, Livengood et al. 2005).  However, Claiborne 

et al. (Claiborne, Armstrong et al. 2006) disagree and found a negative correlation between 

hip abductor strength and knee valgus movement; showing that as hip abductor strength 

increased, knee valgus movement decreased. 

 The musculature acting directly on the knee has also been suggested to contribute to 

knee valgus movement.  Hewett et al. has demonstrated in two separate studies that 

decreased hamstring-to-quadriceps peak torque ratios has led to increased knee valgus 

movement (Hewett, Stroupe et al. 1996; Hewett, Myer et al. 2006).  This decreased 

hamstring-to-quadriceps ratio is more evident in females than males.  Hewett, et al. has 

attributed this decreased ratio as one factor contributing to greater knee valgus movement in 

females than in males during functional tasks (Hewett, Stroupe et al. 1996; Hewett, Myer et 

al. 2006).  Even though some correlations have been found between hip and knee muscular 

strength and predicting knee frontal plane movement, Claiborne et al. found that these 
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strength factors only account for 22% of the variability in predicting knee frontal plane 

movement (Claiborne, Armstrong et al. 2006).   

Lower Extremity Neuromuscular Control 

 The relationship between lower extremity muscular control and knee frontal plane 

movement has been studied extensively.  Some studies have suggested hip musculature has 

an effect on knee frontal plane movement during the SLS (Zeller, McCrory et al. 2003; Hart, 

Garrison et al. 2007; Lawrence, Kernozek et al. 2008).  While others have examined the 

relationship between the knee’s primary movers and knee frontal plane movement (Hewett, 

Stroupe et al. 1996; Lloyd and Buchanan 2001; Ford, Myer et al. 2003; Zeller, McCrory et al. 

2003; DiMattia, Livengood et al. 2005; Hewett, Myer et al. 2005; Myer, Ford et al. 2005).  

Decreased control of either hip or knee musculature (Zeller, McCrory et al. 2003; DiMattia, 

Livengood et al. 2005; Hart, Garrison et al. 2007), imbalances in muscle firing amplitudes of 

antagonist movers acting on either the hip or knee (Hewett, Stroupe et al. 1996; Boden, 

Griffin et al. 2000; Zeller, McCrory et al. 2003; Hewett, Myer et al. 2005), or imbalances in 

firing intensities of the medial and lateral portions of muscle groups acting on either the hip 

or knee have all been suggested as causes of abnormal knee frontal plane movement (Lloyd 

and Buchanan 2001; Ford, Myer et al. 2003; Myer, Ford et al. 2005). 

 Decreased neuromuscular control of either the hip or knee musculature has been 

hypothesized to be correlated to increased knee valgus movement.  Zeller et al. (Zeller, 

McCrory et al. 2003) showed that females have greater knee valgus movement than males 

during a SLS task; the author attributes this mainly to what he believes is a decreased control 

of the gluteus medius muscle found amongst females.  The findings of Zeller et al. are 

supported by similar research that examined gluteus medius activation during a single leg 
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forward jump task.  Hart et al. (Hart, Garrison et al. 2007) found that females had 

significantly decreased activation of the gluteus medius muscle during a single leg forward 

jump compared to males.  The authors attributed this to decreased control of the gluteus 

medius muscle and hypothesized this decreased activation was one reason why females 

exhibited greater hip internal rotation, commonly associated with “the point of no return” 

(Ireland 1999; Hart, Garrison et al. 2007).  Lack of control of the quadriceps muscle has been 

suggested by DiMattia et al. (DiMattia, Livengood et al. 2005) as one risk factor for 

increased knee valgus movement during single leg activities.   

 Imbalances in neuromuscular firing intensities between antagonist movers are 

predominately seen between the knee’s primary movers, the quadriceps and hamstrings.  

Hewett et al. (Hewett, Stroupe et al. 1996; Hewett, Ford et al. 2006) showed females have 

decreased hamstring-to-quadriceps peak torque ratios compared to males which the authors 

believe results in increased knee valgus.  Similarly, Hewett et al. (Hewett, Myer et al. 2005) 

believes if the hamstrings are weak or under recruited during closed kinetic chain knee 

flexion activities then it could lead to a decrease in quadriceps activation as well; this dual 

decrease in muscle activation has been hypothesized to lead to decreased dynamic knee 

stiffness.  Decreased dynamic knee stiffness has been associated with unwanted frontal plane 

knee movement.  It has also been suggested that female’s increased hamstring flexibility may 

limit that muscle group’s ability to add stability to the knee during functional activities 

(Boden, Griffin et al. 2000).  Electromyography (EMG) studies have shown the rectus 

femoris to have increased activation in females who went into knee valgus during a SLS 

(Zeller, McCrory et al. 2003).  This supports Hewett et al.’s (Hewett, Stroupe et al. 1996) 
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theory that males’ generally have greater use of the knee flexor musculature during landing 

tasks which may act as a protective mechanism to prevent knee valgus. 

 Decreased medial-to-lateral muscular firing ratio during a landing or cutting task can 

increase knee valgus by compressing the lateral joint and distracting the medial joint surfaces 

(Lloyd and Buchanan 2001; Ford, Myer et al. 2003; Myer, Ford et al. 2005).  Therefore co-

contraction of not only the quadriceps and hamstrings collectively but also co-contraction of 

the medial and lateral components of each muscular group has been suggested to increase 

frontal plane knee stiffness and aid in preventing knee valgus movement (Hewett, Myer et al. 

2005) 

 There are multiple factors which can contribute to knee valgus movement during 

activity.  Knee valgus movement may be caused by one or all of these factors.  It is important 

to gain a better understanding of these contributory factors and how each factor affects the 

individual’s performance during functional tasks.  By better understanding how each factor 

affects the individual’s performance, clinicians may be able to develop injury intervention 

programs for these valgus contributors.   

INTERVENTION PROGRAMS 

 Injury intervention programs have been developed in hopes of correcting faulty lower 

extremity biomechanics which predispose individuals to injury and ultimately decreasing the 

incidence of noncontact knee injuries, in particular noncontact ACL injury.  Injury 

intervention programs have utilized a variety of strategies to correct faulty biomechanics.  

These strategies include plyometric training (Hewett, Stroupe et al. 1996), strength training 

(Hewett, Lindenfeld et al. 1999; Hewett, Ford et al. 2006), and neuromuscular training 

(Caraffa, Cerulli et al. 1996; Hewett, Lindenfeld et al. 1999; Griffin, Albohm et al. 2006; 
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Myer, Ford et al. 2007; DiStefano, Clark et al. 2009).  All three strategies have been shown 

to be effective in reducing the incidence of noncontact knee injuries; however, 

neuromuscular training programs have had the greatest success in altering and decreasing 

faulty lower extremity biomechanics (Caraffa, Cerulli et al. 1996; Hewett, Lindenfeld et al. 

1999; Hewett, Ford et al. 2006; Myer, Ford et al. 2007; DiStefano, Clark et al. 2009).   

Lower extremity neuromuscular training programs have focused on teaching proper 

landing techniques, balance, and proprioception.  The aim of these programs is to decrease 

knee valgus collapse episodes commonly associated with noncontact knee injuries during 

functional tasks (Caraffa, Cerulli et al. 1996; Hewett, Stroupe et al. 1996; Hewett, Lindenfeld 

et al. 1999; Hewett, Ford et al. 2006; Myer, Ford et al. 2007; DiStefano, Padua et al. 2009).  

These injury intervention programs have had positive results in decreasing noncontact knee 

injuries.  However, these programs are designed to be implemented to large groups of 

individuals and therefore assign all participants the same exercises.  Recent research suggests 

individuals in these programs respond differently to them based on their initial biomechanical 

profile.  Those individuals in the program who were labeled as “high risk” had greater 

improvement than those individuals who were labeled as “low risk” at the beginning of the 

studies (Myer, Ford et al. 2007; DiStefano, Padua et al. 2009).   

Therefore it has been suggested that similar injury intervention programs based on 

biomechanical preparticipation screenings may be more effective in the reduction of 

noncontact knee injuries (Myer, Ford et al. 2007; DiStefano, Padua et al. 2009).  Ideally each 

individual in an injury intervention program would undergo a dynamic lower extremity 

biomechanical assessment prior to participation in the program.  By screening each 
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individual the intervention programs could be tailored to meet the individual’s biomechanical 

needs and in turn increase the efficacy of the program. 

In order for these individualized programs to be successful clinicians must have 

reliable and validated lower extremity clinical screening assessments.  Clinicians must also 

be able to correctly identify the underlying causes of their findings of these screenings.  

Therefore it is essential to provide clinicians with reliable screenings and data on how to 

interpret the findings of these screenings. 

LOWER EXTREMITY CLINICAL SCREENING ASSESSMENTS 

 Lower extremity functional screening assessments have been suggested to aid in 

identifying athletes at increased risk of noncontact knee injury (Bonci 1999; DiMattia, 

Livengood et al. 2005; Newton, Gerber et al. 2006; Hirth 2007).  Therefore there is a need to 

develop screening assessments which are quick, easy to complete, and do not require extra 

equipment to administer the assessment. 

 Screening tools have gained popularity and are now commonly used to asses parts of 

lower extremity tasks (DiMattia, Livengood et al. 2005; Newton, Gerber et al. 2006; Willson, 

Ireland et al. 2006).  Hewett et al. (Hewett, Myer et al. 2001) has suggested that when 

screening for ACL risk factors these clinical assessments should focus on quadriceps 

dominance, dynamic knee valgus movement during landing, and single leg stance balance.  

Many of the clinical based assessments evaluate the same or similar tasks as the laboratory 

based assessments.  Clinically based assessments examining knee frontal plane movement 

have looked at: the overhead squat (Hirth 2007), jump-landing tasks (Padua, Marshall et al. 

2009), the forward lunge (Crill, Kolba et al. 2004; Thijs, Van Tiggelen et al. 2007), and the 
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single leg squat (Zeller, McCrory et al. 2003; DiMattia, Livengood et al. 2005; Claiborne, 

Armstrong et al. 2006; Willson and Davis 2008).   

The overhead squat test and Landing Error Scoring System (LESS) have been 

validated as screening tools for identifying lower extremity risk factors for noncontact knee 

injury.  These tests require little space and can be completed in a clinical setting without 

specialized equipment.  They can be effectively carried out by even new clinicians with only 

minimal instruction (Hirth 2007; Padua, Marshall et al. 2009).  Similarly the forward lunge 

requires little space to complete and can also be completed without specialized equipment.  It 

is becoming a popular screening tool amongst physical therapists and athletic trainers 

because it is similar to the gait cycle.  It too has been shown to be a reliable functional test to 

asses an individual’s ability to move the lower extremity in the frontal and sagittal planes 

(Crill, Kolba et al. 2004) 

 The single leg squat (SLS) has gained popularity in recent years as a lower extremity 

screening assessment.  It has traditionally been used to identify individuals with poor hip 

abductor strength and poor trunk control (Zeller, McCrory et al. 2003).  However these 

assessments have been based almost entirely on anecdotal evidence and not strongly 

supported by the current literature.  Willson, et al. (Willson, Ireland et al. 2006) found a weak 

correlation between core strength and knee frontal plane movement during a single leg squat.  

A weak correlation was also found between hip abductor strength and increased knee valgus 

movement during a single leg squat (Claiborne, Armstrong et al. 2006); but a recent study by 

DiMattia et al. (DiMattia, Livengood et al. 2005) has shown there is little to no correlation 

between hip abductor strength and frontal plane knee motion.  In a later study Willson and 

Davis (Willson and Davis 2008) showed the measure of the frontal plane projection angle 
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(FPPA) during the SLS may be a useful clinical measure to determine an individual’s 

predisposition to develop PFPS (Willson and Davis 2008) 

 The development of lower extremity clinical screening assessments is vital to aid in 

decreasing the amount of noncontact knee injuries which affect a large portion of physically 

active people.  These screening assessments must be cost and time effective, require minimal 

space to complete, mimic lower extremity functional tasks, and be well researched and 

understood.  Thorough research of these assessments will allow clinicians to have a better 

understanding of what the assessment is telling them and in turn how to better develop 

rehabilitation and treatment plans. 

AREAS OF NEEDED RESEARCH 

 Additional research continues to be needed in the examination of the single leg squat 

as a lower extremity functional clinical assessment.  The SLS has yet to be validated as a 

screening tool for identifying noncontact knee injury risk factors (Willson and Davis 2008).  

Also, if validated, additional research is needed to identify which risk factors can be observed 

through the SLS.  More importantly further research is needed to identify what the 

underlying causes of these injury risk factors are, because these underlying causes are what 

should be addressed through individualized rehabilitation programs. 

SUMMARY 

 Noncontact knee injuries are common among physically active people.  One of the 

leading predisposing factors associated with noncontact knee injuries is increased valgus 

during activity.  Laboratory testing has identified a multitude of factors associated with 

increased knee valgus.  Injury intervention programs have been developed to address a 

number of these factors and have been successful in correcting faulty biomechanics and 
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decreasing the rate of noncontact injuries.  These injury intervention programs traditionally 

have taken a group approach and assigned all participants the same set of exercises, but 

recently it has been suggested that individualized programs may be more effective in 

correcting faulty biomechanics.  Therefore it is essential to provide clinicians with low cost, 

easily administered clinical assessments of lower extremity functionality and guides on how 

to interpret their findings so clinicians can develop highly effective biomechanical injury 

intervention programs.
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CHAPTER III 

 
METHODS 

 

SUBJECTS 

 A total of forty individuals (20 males, 20 females) were selected from a larger group 

of participants who volunteered to participate in this study.  All participants were selected 

from a convenience sample of students, faculty, and staff from the University of North 

Carolina at Chapel Hill.  Each participant was assigned to either the “control” group or 

“MKD” group based on his/her performance of the single leg squat (SLS) test.  Each group 

contained a total of twenty participants, ten males and ten females; there were no significant 

differences between groups for height, weight, or age (descriptive statistics available in Table 

3.1). 

Inclusion Criteria 

 All study participants were students, faculty, or staff at the University of North 

Carolina at Chapel Hill, between the ages of 18 and 35 years.  All participants self-reported 

to be in good physical condition and physically active, defined as consistent participation in 

at least 30 minutes of physical activity, three times a week for the past six months. 

Exclusion Criteria 

 Study participants were excluded from this study if they had any history of a surgical 

procedure to their lower extremity or low back and/or reported an injury to the lower 

extremity or low back within the past six months which had resulted in an inability to 
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participate in physical activity for three consecutive days.  Persons with a known neurologic 

condition resulting in decreased balance and/or proprioception, and knowingly pregnant 

females were excluded.  Participants were also excluded from the study if they went into a 

knee varus position during their single leg squat group assignment trials. 

INSTRUMENTATION 

Electromagnetic Tracking System 

 A Motion Star (Ascension Technologies, Inc, Burlington, VT) electromagnetic 

motion tracking system was used to track lower extremity kinematics.  The device consists of 

an extended range transmitter that emits an electromagnetic field and standard receivers 

(dimensions 25.4 X 25.4 X 20.3 mm) that detect the electromagnetic field.  The Motion Star 

system tracked and recorded the position and orientation of the receivers about the x, y, and z 

axes relative to the transmitter.  Electromagnetic tracking systems have been reported to 

provide accurate (An, Jacobsen et al. 1988; Milne, Chess et al. 1996) and reliable (An, 

Jacobsen et al. 1988) data for 3-dimensional movement of body segments and joints.  These 

data were used to objectively identify the start position, the point of greatest knee flexion, 

and the end position as the subject returned to the start position. 

Digital Inclinometer 

Joint angles for measures of flexibility of the hip external rotators, hip internal 

rotators, hamstrings, iliotibial band, and iliopsoas were measured using a digital inclinometer 

(Saunders Group, Inc, Chaska, MN).  Intersession and intrarater reliability of the passive 

range of motion testing procedure of the investigator responsible for taking the measures in 

this study was calculated with intraclass coefficients (ICC) and standard errors of the 
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measurement (SEM) for each range of motion measurement (ICC3,1 range, .64-.93; 

SEM range, .68
0
-7.45

0
) (Table 3.2).   

Standard Goniometer 

 Joint angles for measures of flexibility of the hip adductors, plantar flexors, and dorsi 

flexors were measured using a standard 30.5 cm (12 in) plastic goniometer.  Intersession and 

intrarater reliability of the passive range of motion testing procedure of the investigator 

responsible for taking the measures in this study was calculated with intraclass coefficients 

(ICC) and standard error of the measurement (SEM) for each range of motion measurement 

(ICC3,1 range, .82-.90; SEM range, 2.52
0
-3.60

0
) (Table 3.2).   

Electromyography 

A surface electromyography (EMG) system (Bagnoli-8; Delsys, Inc, Boston, MA) 

with an interelectrode distance of 10 mm, amplification factor of 1,000 (20 – 45 Hz), 

common-mode rejection ratio of 60 Hz (>80 dB), and  input impedance > 10
15

//0.2 Ω//pF 

was used to record lower extremity muscle activity.  Kollmitzer et al. (Kollmitzer, 

Ebenbichler et al. 1999) showed EMG measures of lower extremity muscle activity to be 

reliable for short-term and long-term test-retest intervals. 

Videography 

Two 2-dimensional video cameras (DCR-HC38 MiniDV Handycam Camcorder; 

Sony Electronics, San Diego, CA) were positioned to capture and record an anterior view and 

a lateral view of each single leg squat trial so that they could be reviewed at a later date if 

necessary to observe knee position during the trials.  
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PROCEDURES 

Screening Session 

Prior to data collection each participant underwent a screening protocol to determine 

his/her inclusion into the study and group assignment.  The participants read and signed an 

informed consent form approved by the Institutional Review Board (IRB) of the University 

of North Carolina at Chapel Hill, and each participant was able to ask questions to clarify any 

part of the informed consent form prior to signing it.  All participants also completed a 

questionnaire to confirm inclusion/exclusion criteria, the participant’s dominant leg (the leg 

that would be used to kick a soccer ball for maximal distance), and the participant’s contact 

information.  Following completion of the questionnaire anthropometric measurements of 

height (cm) and mass (kg) were taken.  All participants wore their own t-shirt and athletic 

shorts and were barefoot throughout the screening and all data collection.  

 Participants then completed a warm-up on a stationary cycle ergometer at a self-

selected pace for 5-minutes.  Following the warm-up the participant underwent a screening 

protocol to determine group assignment.  The screening protocol consisted of each study 

participant completing five consecutive single leg squat trials while being visually observed 

by one of the researchers.     

Prior to screening each participant performed a single leg squat while having his/her 

knee flexion angle measured with a standard goniometer.  Once the participant reached 60
0
 

of knee flexion a mechanical block was set so that it just touched the participant’s gluteus 

maximus muscles.  Each participant was then instructed to stand on his/her dominant leg, 

with his/her toes facing forward.  The non-weightbearing leg was flexed at the knee to 90
0
 

and 45
0
 at the hip, the hands were placed on the hips, and the head and eyes faced forward.  
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The participant then flexed the weightbearing knee to 60
0
 as he/she descended for two beats 

of the metronome until the gluteals touched the mechanical block, then returned to the 

starting position in two beats.  The metronome was set at a frequency of 60 beats/minute.   

Participants were placed in the “control” group if in at least three of five trials he/she 

maintained a neutral knee position (knee remained in line with the hip and ankle joints 

throughout the single leg squat); participants were placed in the “MKD” group if in at least 

three of five trials he/she went into medial knee displacement (midpoint of patella moving 

medially to the great toe during the single leg squat) (Bell, Padua et al. 2008).  Selected 

participants were contacted at a later date to complete data collection. 

Lower Extremity Flexibility 

 On the day of data collection participants again completed the 5-minute warm-up on 

the cycle ergometer and were rescreened to confirm group assignment.  If a participant no 

longer fit into his/her originally assigned group he/she was excluded from the study, in order 

to not confound the study results.  Lower extremity passive range of motion (ROM) was then 

measured for each participant in a counterbalanced order to prevent any potential order 

effect.  All ROM measurements were measured with a digital inclinometer or standard 

goniometer. Intersession and intrarater reliability and precision were established prior to data 

collection.  For each of the following muscle groups the tester passively moved the 

associated joint through its range of motion from a neutral position to the point of first 

resistance.  The point of first resistance was defined as the point where the tester felt 

resistance from tension in the muscle and other soft tissue structures, or the participant 

vocalized discomfort.  Three trials were taken for each ROM measurement.  The following 

procedures were utilized for ROM measurements: 
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 Hip external rotators: The participant was positioned in a prone position with his/her 

knee bent to 90
0
, so that the shank and foot were perpendicular to the floor, and the 

femur was in line with the body; the other leg was flat on the table.  One researcher 

stabilized the participant’s pelvis by placing a hand on the sacrum then grasped the 

shank of the leg to be measured with the opposite hand and passively internally 

rotated the femur until the point of first resistance.  Once this point was reached a 

second researcher measured the angle, with respect to the horizontal, with a digital 

inclinometer placed perpendicular to the length of the lateral tibia (Starkey and Ryan 

2002). (Figure 3.1) 

 Hip internal rotators: The participant was positioned in a prone position with his/her 

knee bent to 90
0
, so that the shank and foot were perpendicular to the floor, and the 

femur was in line with the body; the other leg was flat on the table.  One researcher 

stabilized the participant’s pelvis by placing a hand on the sacrum, then grasped the 

shank of the leg to be measured and passively externally rotated the femur until the 

point of first resistance.  Once this point was reached a second researcher measured 

the angle, with respect to the horizontal, with a digital inclinometer placed 

perpendicular to the length of the medial tibia (Starkey and Ryan 2002). (Figure 3.2) 

 Hip adductors: The participant was placed in a supine position with his/her legs in 

full extension, flat on the table.  One researcher stabilized the pelvis by placing a 

hand on the contralateral anterior superior iliac spine (ASIS) of the leg being tested 

then grasped the medial aspect of the shank on the leg being measured and passively 

abducted the leg until the point of first resistance.  Once this point was reached a 

second researcher measured the angle with a standard goniometer with the stationary 
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arm positioned so the distal portion was placed over the contralateral ASIS, the 

fulcrum over the ipsilateral ASIS, and the movement arm over the long axis of the 

femur, with the middle of the patella as the distal reference (Starkey and Ryan 2002). 

(Figure 3.3) 

 Iliopsoas: The participant was placed in a supine position with his/her hip joint 

positioned over the edge of the table.  He/she flexed the nondominant hip, brought the 

nondominant knee to the chest and held this position while the low back, sacrum, and 

pelvis remained horizontal to the table and were stabilized by one researcher; the 

participant relaxed the contralateral leg and let it drop down toward the table until the 

point of first resistance.  Once this point was reached a second researcher measured 

the angle, with respect to the horizontal, with a digital inclinometer placed along the 

anterior aspect of the thigh at the midpoint between the ipsilateral ASIS and the 

patella (Ferber, Kendall et al. 2010). (Figure 3.4) 

 Hamstrings-Leg at 90-90: The participant was placed in a supine position with the 

dominant leg flexed to 90
0
 of hip flexion and 90

0
 of knee flexion (stabilized by one 

researcher) and the contralateral leg flat on the table.  A second researcher grasped 

the shank of the leg being tested and passively extended the knee until the point of 

first resistance.  Once this point was reached the second researcher measured the 

angle, with respect to the horizontal, with a digital inclinometer placed along the 

anterior aspect of the tibia (Magee 2006). (Figure 3.5) 

 Iliotibial band: The participant was placed in a side lying position on his/her 

nondominant side with the pelvis and shoulders aligned along the vertical plane and 

his/her dominant knee flexed to 90
0
, the contralateral leg was in full extension, flat on 
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the table with the dominant leg resting on top. One researcher stabilized the pelvis by 

placing a hand on the ASIS of the leg being tested then grasped the dominant knee on 

the medial side and moved the thigh into hip flexion, abduction, and extension and 

then lowered the leg into adduction until the point of first resistance.  Once this point 

was reached a second researcher measured the angle, with respect to the horizontal, 

with a digital inclinometer placed along the lateral aspect of the thigh at the midpoint 

between the ipsilateral ASIS and patella (Ferber, Kendall et al. 2010). (Figure 3.6) 

 Plantar flexors: The participant was placed in a supine position with both legs fully 

extended, the foot being tested was positioned so the ankle extended off the end of the 

table.  One researcher stabilized the shank by grasping the tibia/fibula at mid-shaft 

and grasped the foot with the opposite hand and passively moved the foot into a dorsi 

flexed position until the point of first resistance.  Once this point was reached he 

measured the angle with a standard goniometer with the stationary arm aligned with 

the long axis of the fibula, the fulcrum centered over the lateral malleolus,  and the 

movement arm placed parallel with the long axis of the fifth metatarsal; the procedure 

was repeated with the knee flexed to a 90
0
 angle (Starkey and Ryan 2002). (Figures 

3.7 & 3.8) 

 Hip anteversion: The participant was positioned in a prone position with his/her knee 

bent to 90
0
, so that the shank and foot were perpendicular to the floor, and the femur 

was in line with the body; the other leg was flat on the table.  One researcher 

stabilized the participant’s pelvis by placing a hand on the sacrum.  A second 

researcher palpated the greater trochanter of the dominant leg while passively rotating 

the hip until the most prominent part of the greater trochanter was in the most lateral 
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position.  Once this point was the second researcher measured the angle, with respect 

to the horizontal, with a digital inclinometer placed perpendicular to the length of the 

medial tibia (Nguyen and Shultz 2007). (Figure 3.9) 

 Posterior talar glide: The participant was positioned seated so that the legs hung off 

of the end of the table so the knees were in a flexed position.  One researcher 

established subtalar neutral position with his/her thumbs and maintained the foot in 

this neutral position.  The researcher then applied a posteriorly directed force to the 

talus until a capsular end-feel was detected.  Once this point was reached a second 

researcher measured the angle, with respect to the vertical, with a digital inclinometer 

placed along the length of the tibia (Grindstaff, Beazell et al. 2009). (Figure 3.10) 

Electromyography 

 Prior to electrode application, each electrode site was identified and marked with a 

felt tip marker.  Each site was shaved using an electric razor and cleaned with a 70% 

isopropyl alcohol solution to reduce skin impedance.  The following muscles and electrode 

sites were utilized for the study (Figures 3.11 & 3.12): 

 Gluteus maximus: 20% of the distance from the second sacral vertebra to a point 

10 cm distal to the greater trochanter, starting from the second sacral vertebra 

(Ericson, Nisell et al. 1985) 

 Gluteus medius: 33% of the distance from the iliac crest to the greater trochanter, 

starting from the greater trochanter (Rainoldi, Melchiorri et al. 2004)  

 Hip adductors: medial thigh approximately 2 cm distally from the pubic bone (Cram, 

Kasman et al. 1998) 



48 
 

 Medial hamstrings: 36% of the distance from the ischial tuberoscity to the medial 

side of the popliteus cavity, starting from the ischial tuberosity (Rainoldi, Melchiorri 

et al. 2004) 

 Biceps femoris: 35% of the distance from the ischial tuberosity to the lateral side of 

the popliteus cavity, starting from the ischial tuberosity (Rainoldi, Melchiorri et al. 

2004) 

 Vastus medialis oblique: 20% of the distance from the ASIS to the medial joint space, 

starting from the joint line (Ericson, Nisell et al. 1985) 

 Vastus lateralis: 25% of the distance from the ASIS to the lateral joint space, starting 

from the joint line (Ericson, Nisell et al. 1985) 

 Medial head of gastrocnemius: 50% of the distance from the medial side of the 

popliteus cavity to the medial side of the Achilles tendon insertion, starting from the 

Achilles tendon insertion (Rainoldi, Melchiorri et al. 2004) 

Each electrode was placed parallel to the orientation of the muscle fibers; one 

reference electrode was placed over the anteromedial portion of the proximal tibia.  Electrode 

placement was confirmed with manual muscle testing of each muscle and observation of the 

muscle activity on an oscilloscope.  Once electrode placement was confirmed, the electrodes 

and leads were secured with clear, plastic surgical tape.  Each respective muscle group (hip 

extensors, hip abductors, hip adductors, hamstrings, quadriceps, and plantar flexors) then 

underwent testing for maximal voluntary isometric contraction (MVIC); three, 5 second 

isometric holds, with one minute of rest between trials.  The MVIC data were used to 

normalize all EMG activation amplitude data.  This was done by dividing the average MVIC 

activation, averaged over a one second window during the period of greatest EMG activation, 
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by the average EMG activation during the descent phase of the single leg squat.  All EMG 

data were collected at 1000 Hz.  The following positions were used for MVIC testing:   

 Hip extensors: The participant was placed in a prone position with the dominant leg 

flexed at the knee to 90
0
 and the contralateral leg lying flat on the table.  The 

researcher stabilized the pelvis by placing a hand on the subject’s sacrum.  The 

researcher’s other hand was placed over the posterior aspect of the participant’s thigh, 

just proximal to the knee joint line.  The participant was instructed to maintain the 

flexed knee position during testing and to attempt to raise his/her thigh off of the 

testing table while the researcher applied downward pressure (Kendall FP, McCreary 

EK et al. 1993). (Figure 3.13) 

 Hip adductors: The participant was placed in a side lying position on the side of the 

dominant leg with the dominant leg fully extended and the nondominant leg flexed at 

the knee and hip, so that the sole of the participant’s nondominant foot could be 

placed on the testing table in front of the dominant leg.  The researcher stabilized the 

pelvis by placing a hand on the subject’s nondominant side iliac crest.  The 

researcher’s other hand was placed over the medial aspect of the knee, just proximal 

to the knee joint line.  The participant was instructed to maintain a neutral hip rotation 

position throughout the testing and to attempt raise his/her dominant leg off of the 

testing table while the researcher applied downward pressure (Kendall FP, McCreary 

EK et al. 1993). (Figure 3.14) 

 Hip abductors: The participant was placed in a side lying position on the side of the 

nondominant leg with both legs fully extended and the dominant leg resting on top of 

the nondominant leg.  The researcher stabilized the pelvis by placing a hand on the 
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subject’s dominant side iliac crest.  The researcher’s other hand was placed over the 

lateral aspect of the knee, just proximal to the knee joint line.  The participant was 

instructed to maintain a neutral hip rotation position throughout the testing and to 

raise his/her dominant leg until it was parallel with the testing table and hold it there 

while the researcher applied downward pressure (Kendall FP, McCreary EK et al. 

1993). (Figure 3.15) 

 Hamstrings: The participant was placed in a prone position with the dominant leg 

flexed at the knee to 90
0
 and the nondominant leg lying flat on the table.  The 

researcher stabilized the leg to be tested by placing one hand on the distal 1/3 of the 

posterior aspect of the thigh.  The researcher’s other hand grasped the posterior aspect 

of the dominant leg’s heel.  The participant was instructed to attempt to pull his/her 

heel in towards his/her gluteal muscles as the researcher resisted the motion with 

pressure opposing the motion (Anderson, Hall et al. 2005). (Figure 3.16) 

 Quadriceps: The participant was placed in a seated position with both of his/her legs 

extending off of the table and flexed at the knee to 90
0
 and his/her hands crossed 

across the chest.  The researcher stabilized the thigh to be tested by placing one hand 

on the distal 1/3 of anterior aspect of the thigh.  The researcher’s other hand grasped 

anterior aspect of the participant’s shank just proximal to the malleoli.  The 

participant was instructed to attempt to fully extend his/her knee as the researcher 

applied downward pressure (Anderson, Hall et al. 2005). (Figure 3.17) 

 Plantar flexors: The participant was placed in a prone position with both of his/her 

legs fully extended.  The researcher stabilized the shank by grasping the dominant leg 

at mid-shaft of the tibia/fibula.  The other hand was placed on the plantar aspect of 
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the foot over the metatarsal heads. The participant was instructed to attempt plantar 

flex his/her foot while the researcher applied pressure directed towards the participant 

(Kendall FP, McCreary EK et al. 1993). (Figure 3.18) 

Motion Analysis 

Each subject was fitted with three electromagnetic sensors placed over the sacrum, 

lateral aspect of the thigh, and the anteromedial aspect of the proximal tibia.  All sensors 

were placed over the area of least muscle mass and secured with double-sided tape, prewrap, 

and athletic tape.  Six additional boney landmarks were digitized with a fourth 

electromagnetic sensor placed on the end of a point stylus: medial and lateral femoral 

condyles, medial and lateral malleoli, and left and right anterior superior iliac spines (ASIS).  

Joint centers for the ankle and knee were calculated as the midpoints of the respective points 

based on the position of the medial and lateral malleoli and medial and lateral femoral 

condyles, respectively; the Bell method was used to approximate the hip joint centers (Bell, 

Pedersen et al. 1990).  Three-dimensional coordinate data were collected at a sampling rate 

of 100 Hz. 

Single Leg Squat Task 

Prior to data collection each participant performed a single leg squat while having 

his/her knee flexion angle measured with a standard goniometer.  Once the participant 

reached 60
0
 of knee flexion the mechanical block was set so that it just touched the 

participant’s gluteus maximus muscles.  Each participant was then instructed to stand on 

his/her dominant leg, with the toes facing forward.  The non-weightbearing leg was flexed at 

the knee to 90
0
 and 45

0
 at the hip, the hands were placed on the hips, and the head and eyes 

faced forward.  The participant then flexed the weightbearing knee to 60
0
 as he/she 
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descended for two beats of the metronome until the gluteals touched the mechanical block, 

then returned to the starting position in two beats.  The metronome was set at a frequency of 

60 beats/minute.  The participant was also instructed as to what constituted a successful trial; 

no additional feedback, coaching, or other instruction were provided to the participant 

concerning technique.  A trial was deemed successful if: 1) the participant maintained proper 

testing position throughout the entire motion; 2) the participant squatted until the gluteals 

came in contact with the mechanical block; 3) the task was completed at the appropriate rate; 

4) the participant did not touch down with the nondominant foot; 5) the legs did not touch 

together, and the heel maintained contact with the ground and; 6) the task was completed in a 

fluid motion.  The participants were given as many practice trials as needed to perform the 

task successfully.   

 Once the participant felt comfortable with the single leg squat task, EMG and motion 

analysis data were then collected simultaneously for five successful single leg squats.  The 

participant completed as many trials as necessary until five successful trials were recorded.  

Following each trial the participant was given a one minute break, in which time he/she could 

relax and place both feet on the ground. 

DATA PROCESSING AND REDUCTION 

 The Motion Monitor Software (Innovative Sports Training, Inc, Chicago, IL) was 

used to control both the Motion Star and EMG systems. A global coordinate system was 

established for the Motion Star system where the x-axis corresponded to the participant’s 

antero-posterior axis, the y-axis corresponded to the medio-lateral axis, and the z-axis 

corresponded to the longitudinal axis; local coordinate systems were established for each 

sensor once it was placed on the participant and the participant stood in anatomical position.   
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A right-handed Cartesian coordinate system was used to estimate 3-dimensional (3-D) 

coordinates of lower extremity bony landmarks.  Joint angles were calculated with Euler 

angles (Euler sequence y, x’, z”).  Knee flexion/extension was defined as the shank relative 

to the thigh about the y-axis; knee valgus/varus was defined as the shank relative to the thigh 

about the x-axis, and tibial internal/external rotation was defined as the shank relative to the 

thigh about the z-axis.  All kinematic data were filtered using a fourth-order low-pass 

Butterworth filter at 14.5 Hz.  EMG data were passively demeaned, bandpass (10-350 Hz) 

and notch (59.5-60.5 Hz) filtered, and smoothed using a 25 ms root mean squared sliding 

window function.  Kinematic and EMG data were exported to and reduced using a custom 

Matlab program (Math Works, Natick, MA).   

EMG and kinematic data were recorded during the descent phase of the single leg 

squat; the time from the start of the trial to the point of greatest knee flexion.  Three-

dimensional joint angles were also recorded at the participant’s initial position at the start of 

the trial (start position: the static position when the participant stood on his/her dominant leg 

and had the nondominant leg flexed at the knee to 90
0
 and 45

0
 at the hip and the hands were 

placed on the hips), the point when the participant reached peak knee flexion, and once the 

participant returned to his/her initial position (end position).  EMG and kinematic data were 

averaged over the five trials of the single leg squat and range of motion data were averaged 

from the three trials of each passive range of motion measurement.     

STATISTICAL ANALYSIS 

To compare normalized EMG mean amplitude over the course of the descent phase of 

the single leg squat and passive range of motion mean measurements between the control and 

MKD groups PASW Statistics for Windows software (version 18.0, SPSS Inc, Chicago, IL) 
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was used to run three separate multivariate analysis of variance (MANOVAs): one 

MANOVA was run comparing the peak EMG amplitude of the valgus group to the mean 

peak EMG amplitude of the control group for each of the eight muscles examined in this 

study; one MANOVA was run comparing the EMG co-activation ratios of gluteus medius to 

hip adductors and gluteus maximus to hip adductors; one MANOVA was run comparing the 

comparing the mean passive range of motion measurements of the valgus group to the mean 

passive range of motion measurements of the control group, for each one of the ten muscle 

groups examined in this study.  Appropriate post hoc one-way between subjects ANOVAs 

were run for significant MANAOVAs.  Statistical significance was set at α<0.05.
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CHAPTER IV 

 
RESULTS 

 

HEIGHT, WEIGHT, and AGE 

Means, standard deviations, and 95% confidence intervals for all height, weight, and 

age measures are presented in Table 4.1.  Three separate independent-samples t-tests were 

utilized to compare the means for each measurement between the control and MKD groups.  

No significant differences were observed between height (T38 = -.250, P=.804), weight (T38 = 

-.184, P=.855), or age (T38 = .000, P=1.00) between the control and MKD groups.         

PASSIVE RANGE OF MOTION (ROM) MEASUREMENTS 

Means, standard deviations, and 95% confidence intervals for all passive range of 

motion measures are presented in Table 4.2.  A multivariate analysis of variance 

(MANOVA) test was utilized to compare the mean ROM dependent variables between the 

control and MKD groups.  A significant multivariate main effect for group was observed for 

ROM measurements (Wilks’ Lambda = .555, F(10, 29) P=.038, η
2
 = .83).  Follow up one-

way ANOVAs revealed significant differences in dorsiflexion range of motion with knee 

straight (F1,38 = 4.203, P=.047), dorsiflexion range of motion with knee flexed (F1,38 = 4.857, 

P=.034), and posterior talar glide motion (F1,38 = 7.040, P=.012) between the control and 

MKD groups. Specifically, individuals in the MKD group displayed significantly lesser 

dorsiflexion ROM with knee straight (5.5±5.4, control = 8.8±4.7), lesser dorsiflexion ROM 

with knee flexed (9.5±6.2, control = 14.2±7.3) and greater posterior talar glide

 



56 
 

 (29.8±4.8, control = 25.7±5.0) in comparison to the control group. No other significant 

differences were observed. 

ELECTROMYOGRAPHY MEASUREMENTS 

Means, standard deviations, and 95% confidence intervals for all EMG measures are 

presented in Table 4.3.  A MANOVA was run comparing the mean normalized EMG 

activation between the control and MKD groups.  No significant differences were observed 

between the normalized EMG activation of the two groups (Wilk’s Lambda = .742, F(10, 29) 

P=.280, η
2
 = .49).  While not significant, it is worth noting the group differences in hip 

adductor muscle activation was trending toward significance (F1,38 = 3.059, P=.089).  

Specifically, individuals in the MKD group tended to display greater hip adductor EMG 

activation (20.1±14.0, control = 13.3±9.8).  One MKD subject’s EMG data were unable to be 

used in the MANOVA analysis due to abnormal recording of the hamstring EMG activity. 

ELECTROMYOGRAPHY CO-ACTIVATION RATIOS 

Means, standard deviations, and 95% confidence intervals for calculated co-activation 

ratios presented in Table 4.4.  Muscle co-activation ratios were calculated for gluteus medius 

activation and hip adductor muscle activation by dividing the mean gluteus medius activity 

by the mean hip adductor activity (GMed : Hip Add).  In addition, co-activation ratios were 

calculated for gluteus maximus activity and hip adductor muscle activation by dividing the 

mean gluteus maximus activity by the mean hip adductor activation (GMax : Hip Add).  A 

ratio resulting in 1.0 would indicate completely balanced muscular activation; ratios resulting 

in values greater than 1.0 indicate greater activation of the muscle in the numerator (GMed 

and GMax) compared to the muscle in the denominator (Hip Add).  A MANOVA was run 

comparing the ratio of gluteus medius EMG activation to hip adductor EMG activation 



57 
 

between the control and MKD groups and the ratio of gluteus maximus EMG activation to 

hip adductor EMG activation between groups.  A significant multivariate main effect for 

group was observed for the co-activation ratios (Wilks’ Lambda = .822, F(10,29) P=.027, η
2
 

= .68).  Follow-up one-way ANOVAs revealed significant differences between the ratio of 

gluteus medius EMG activation to hip adductor EMG activation (F1,38 = 5.187, P=.028) and 

the ratio of gluteus maximus EMG activation to hip adductor EMG activation (F1,38 = 8.201, 

P=.007) between the control and MKD groups.  Specifically, individuals in the MKD group 

displayed significantly lesser gluteus medius EMG activation to hip adductor EMG 

activation ratio (2.4±1.1, control = 4.5±3.9); indicating greater hip adductor EMG activation 

compared to gluteus medius EMG activation in the MKD group when compared to the 

control group.  The MKD group also had significantly lesser gluteus maximus EMG 

activation to hip adductor EMG activation ratio (1.1±.62, control = 2.4±1.8) compared to the 

control group; greater hip adductor EMG activation compared to gluteus maximus EMG 

activation in the MKD group when compared to the control group. 

POWER AND EFFECT SIZE 

Observed power (range, .050-.797) and effect size (range, .01-1.07) for each ROM 

and EMG measure were calculated and are presented in table 4.5.  This information will be 

discussed to describe the clinical significance of these findings.
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CHAPTER V 

 

DISCUSSION 

 

  To our knowledge, this is the first study to compare hip, knee, and ankle passive 

range of motion (ROM) measurements, and hip, thigh, and lower leg muscle activation 

between individuals presenting with medial knee displacement (MKD group) to those who 

do not (control group) during a single leg squat task.  In summary, our findings revealed that 

dorsiflexion ROM measurements with the knee straight and flexed were significantly lesser 

and posterior talar glide was significantly greater in the MKD group compared to the control 

group.  However, no other ROM measurements (hip internal rotation, hip external rotation, 

hip abduction, hip extension, knee extension, femoral anteversion) were different between 

groups, which suggests that ROM differences may be isolated to ankle dorsiflexion.  Muscle 

activation amplitude of the gluteus medius, gluteus maximus, hip adductors, vastus medialis, 

vastus lateralis, medial hamstrings, biceps femoris, and medial gastrocnemius were also not 

significantly different between the two groups.   However, co-activation ratios involving the 

hip adductors and gluteal musculature were different between groups.  Specifically, we 

calculated the co-activation ratio between gluteus medius activation and hip adductor 

activation (GMed : Hip Add) and gluteus maximus activation and hip adductor activation 

(GMax : Hip Add).  The GMed : Hip Add and GMax : Hip Add ratios were both 

significantly lesser in the MKD group compared to the control group.  Decreased co-

activation ratios in the MKD group indicates these individuals use a more hip adductor 

dominant activation strategy compared to control subjects.  Our combined results suggest the 
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combination of lesser ankle dorsiflexion ROM with altered hip adductor and gluteal 

musculature co-activation may contribute to dynamic knee valgus during a single leg squat 

task; each of these findings will be discussed in greater detail throughout the subsequent 

paragraphs.  

 Lesser ankle dorsiflexion ROM in the MKD group supports our hypotheses.  Based 

on these findings we believe decreased dorsiflexion ROM may be a large contributor to 

MKD during functional tasks.  The MKD group was observed to have 37.5% and 33.1% less 

dorsiflexion ROM with the knee straight (effect size = 0.65) and flexed (effect size = 0.70), 

respectively.  These values represent moderate to large effect sizes and further indicate the 

importance of these differences.  Similar findings have been reported when observing ROM 

differences between a MKD group and a control group who maintained a neutral knee 

position, in the frontal plane during a double leg squat (Vesci, Padua et al. 2007; Bell, Padua 

et al. 2008).  Limited dorsiflexion has been proposed to contribute to excessive rearfoot 

pronation and, in turn, result in compensatory increases in lower extremity internal rotation 

(DiGiovanni and Langer 2007).  Greater lower extremity internal rotation may contribute to 

dynamic knee valgus (Hollis, Takai et al. 1991).  The relationship between decreased 

dorsiflexion and increased knee valgus during dynamic tasks is further supported by Cortes 

et al. who reported that subjects had significantly greater knee valgus angle at initial contact 

and decreased dorsiflexion motion after landing when they performed rearfoot landings 

compared to self-preferred landing styles (Cortes, Onate et al. 2007).  Based on these 

combined findings it appears that restricted ankle dorsiflexion ROM may be an important 

factor contributing to MKD across a variety of functional tasks.  These findings may have 

important implications in the design of exercise programs aimed at decreasing MKD. 
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Decreased ankle dorsiflexion ROM may be due to decreased flexibility of the 

gastrocnemius/soleus complex and/or restricted posterior talar glide on the tibia (Denegar, 

Hertel et al. 2002).  Posterior glide of the talus within the talocrural joint is a necessary 

accessory motion to allow for full ankle dorsiflexion ROM.  Previous research investigating 

subjects with chronic ankle instability has revealed decreased ankle dorsiflexion ROM and 

posterior talar glide in these individuals (Vicenzino, Branjerdporn et al. 2006).  We originally 

hypothesized decreased ankle dorsiflexion ROM in the MKD group may be due to restricted 

posterior talar glide motion.  However, this hypothesis was not supported as MKD subjects 

demonstrated greater posterior talar glide compared to the control subjects (effect size = 

0.84).  This finding suggests that decreased ankle dorsiflexion ROM in the MKD group was 

most likely due to decreased flexibility of the gastrocnemius/soleus complex and not 

restriced posterior talar glide.  The sensitivity of the posterior talar glide test has been 

questioned based on research demonstrating weak associations between the posterior talar 

glide test with open and closed kinetic chain measures of ankle dorsiflexion ROM (Cosby 

and Hertel 2011).  Thus, future research is needed to better understand the underlying 

mechanism (decreased muscle flexibility or restricted posterior talar glide) contributing to 

decreased dorsiflexion ROM in the MKD subjects.    

There were no other observed significant differences in ROM measurements between 

groups.  Greater hip internal rotation ROM (Clark and Lucett 2004; Hirth 2007) and femoral 

anteversion (Nguyen and Shultz 2007) have been suggested to lead to increased femoral 

internal rotation during dynamic tasks, which could contribute to MKD.  Likewise, tightness 

of the hip adductors and internal rotators has been theorized to result in greater femoral 

adduction and internal rotation (Clark and Lucett 2004; Hirth 2007), again contributing to 
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dynamic knee valgus.  Tyler et al. (Tyler, Nicholas et al. 2006) has proposed that the factors 

contributing to iliotibial band and hip flexor tightness may cause the pelvis to tilt anteriorly 

and result in internal rotation the femur (Tyler, Nicholas et al. 2006).  Greater hamstring 

flexibility, resulting in lesser activation of the hamstrings, may decrease knee stiffness 

(Boden, Griffin et al. 2000; Zeller, McCrory et al. 2003) and increase the likelihood of 

greater MKD during activity.  However, our findings indicate the flexibility of these muscle 

groups did not contribute to the presence of MKD. 

Our findings suggest that restricted dorsiflexion ROM appears to be the key factor in 

predicting MKD during the single leg squat.  In our study each participant stood so that 

his/her foot was fixed on the ground with the toes pointing straight ahead, and we assured the 

heel remained in contact with the ground throughout each trial.  As the subject lowered 

his/her body to the required 60
0
 of knee flexion, dorsiflexion also had to occur at the ankle 

joint.  Limited dorsiflexion ROM would inhibit the tibia from moving forward over the foot 

and may have caused the subject to compensate for this lack of motion.  We speculate that 

MKD subjects compensated for a lack of sagittal plane ankle motion by increasing frontal 

and/or transverse plane motion at the foot and up through the kinetic chain.  Individuals may 

have compensated by going into more pronation of the foot, eversion of the talus, and 

internal rotation of the tibia (DiGiovanni and Langer 2007) thus creating the visual 

appearance of medial knee displacement.  Future research investigating the three-

dimensional kinematics of the foot and lower leg is needed to better understand if these 

compensatory motions actually do occur in those individuals displaying MKD. 

We observed no statistically significant differences in EMG activation between 

groups for all muscles investigated.  These findings are in agreement with comparable 
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research, which has demonstrated few differences in EMG activity during single leg squat 

tasks; however, these past studies examined EMG differences between sexes and not group 

assignment based on single leg squat performance.  Previous research, looking at differences 

in muscle activation between sexes during the single leg squat, has shown greater activation 

of the rectus femoris (Zeller, McCrory et al. 2003) and lesser activation of the gluteus medius 

(Hart, Garrison et al. 2007) in females, both of which are believed to contribute to increased 

risk of noncontact ACL injury.  Padua et al. reported muscle activation amplitude differences 

between a group visually displaying MKD and a control group that did not during a double 

leg squat task.  These authors reported 34% greater hip adductor muscle activity in the group 

displaying MKD (Padua, Bell et al. In review).  Similar to this finding, our current study 

showed the MKD group to have 34% greater EMG activity of the hip adductors during the 

descent phase of the single leg squat; this finding was not statistically significant, but was 

trending toward it (P = .089).  In addition, there were no differences found between groups 

for the activation of the gluteus medius and gluteus maximus muscles, also similar to Padau 

et al. (Vesci, Padua et al. 2007; Padua, Bell et al. In review).   

Therefore, it is proposed that the relative co-activation between the gluteus medius 

and gluteus maximus with the hip may contribute to MKD.  Increased hip adductor activity 

which is not offset by associated increases in gluteus medius and gluteus maximus activation 

may allow for the femur to be pulled into a more adducted and internally rotated position 

(Padua, Bell et al. In review).  This is supported by our calculated co-activation ratios 

between the gluteus medius and the hip adductors (GMed : Hip Add) and the gluteus 

maximus and the hip adductors (GMax : Hip Add), both of which revealed significant 

differences between groups that are accompanied by large effect sizes.  The co-activation 
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ratio of GMed : Hip Add for the MKD group was 2.4 while the control group’s ratio was 4.5 

(effect size = 0.84); similarly, the ratios for the MKD  and control groups for the GMax : Hip 

Add co-activation ratio were 1.1 and 2.4, respectively (effect size = 1.07).  The co-activation 

ratios were calculated by dividing the gluteal muscle activation (GMed or GMax) by Hip 

Add activation.  Larger co-activation ratios indicate that the GMed or GMax were more 

active relative to the Hip Add.  Conversely, smaller co-activation ratios indicate greater 

reliance on the Hip Add muscles.  Our findings indicate the MKD group places greater 

reliance on their Hip Add musculature compared to the control group.  It is generally thought 

that MKD may be caused by decreased gluteal muscle strength (Claiborne, Armstrong et al. 

2006) or activation (Hart, Garrison et al. 2007). Our findings may help refine this current 

theory and suggest that MKD may be caused by greater reliance on the Hip Add muscles 

rather than weakness or decreased activation of the gluteal musculature.  We believe that 

increased hip adductor relative to GMed and GMax activation played a role in facilitating 

visual MKD during the single leg squat.   

There were no differences observed in hip or knee ROM measurements, but there 

were differences in ankle dorsiflexion ROM.  We therefore propose that the imbalance we 

observed in hip adductor to gluteal activation stems from a neuromuscular compensation as a 

result of the decreased ankle dorsiflexion ROM.  Decreased ankle dorsiflexion ROM creates 

an abnormal axis of rotation of the tibia on the talus, resulting from altered arthokinematics 

which limit roll and glide between the joint surfaces.  This abnormal rotation applies 

abnormal stresses on the tissues which have been suggested to produce altered proprioceptive 

input, which in turn causes the motor control system to adapt (Denegar and Miller 2002).  

We propose one such altered motor control response is using more frontal and transverse 
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plane motion when sagittal plane motion is restricted, resulting in the leg being pulled 

actively inward.  One possible neuromuscular mechanism utilized to achieve this is altering 

the adductor and gluteal co-activation ratios.  

 Our findings of lesser dorsiflexion ROM measurements and smaller co-activation 

ratios as potential factors contributing to MKD may have important implications on injury 

prevention and rehabilitation programs aimed at decreasing MKD.  Individuals displaying 

lesser dorsiflexion range of motion may benefit from increasing gastrocnemius and soleus 

flexibility.  Also, the clinician could utilize an inhibition technique, such as self-myofascial 

release (ie. foam rolling), to decrease muscle spindle activity and allow the muscle to relax 

and be further stretched (Hirth 2007).  The clinician could also apply a similar treatment to 

improve the GMed : Hip Add and GMax : Hip Add ratios by inhibiting the hip adductors.  In 

addition the clinician could utilize rehabilitation exercises focused on increasing gluteus 

medius and gluteus maximus muscle activation and improving neuromuscular control. 

LIMITATIONS 

The following limitations should be considered when interpreting the findings of our 

study.  First, our findings are limited to a single leg squatting task as we did not incorporate 

other functional tasks in our investigation of range of motion and muscle activation.  Future 

research should look at whether findings carryover to when individuals perform more 

challenging dynamic tasks (ie. jump-landing or cutting maneuvers).  Also, our findings are 

limited to healthy, physically active individuals who display visual MKD during a single leg 

squat and those who did not; therefore, they may not be applicable to an injured population.  

We cannot speculate if these individuals would display knee MKD during other tasks.  In 

addition, other lower extremity muscles not investigated in this study could be involved in 
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dynamic control during a single leg squat.  We are also only able to speculate if MKD during 

a single leg squat is indicative of increased injury risk during physical activity.   

Inherent limitations exist with the use of surface EMG.  The assumption was made 

based on previous literature that EMG signal amplitudes represent levels of muscle activity.  

Crosstalk may occur with the placement of the EMG surface electrodes on the skin and may 

not give a true reading of the underlying muscle activity.  However, we minimized the 

potential for error by using standard methods of applying the electrodes, sufficiently securing 

the electrodes to prevent movement, and checking the output of the electrodes prior to data 

collection to ensure proper placement.  Finally, interpretation of our results was based on 

EMG signals normalized to maximal isometric voluntary activity (MVIC).  Another 

assumption was made that all participants gave their maximal effort during the MVIC 

measurements and during the single leg squat; this would affect the normalized percentages 

used during the statistical analyses.   

Another potential limitation of our study is that our measure of posterior talar glide 

was dependent on the investigator’s ability to subjectively determine subtalar neutral position 

and the end feel/restriction in motion as the knee was moved into flexion.  However, the 

investigator responsible for all ROM measurements established himself to have good 

reliability and precision with this measure (ICC = .93, SEM = 1.2
0
); therefore, we do not 

believe this limitation was a major issue with data collection.  Future research should look at 

a more sensitive measure of quantifying restricted posterior talar glide as a possible factor 

limiting dorsiflexion ROM.  Use of an ankle arthrometer to quantify posterior talar 

displacement and stiffness has been described in previous literature and may be a good tool 

for future research investigating factors associated with MKD. 
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CONCLUSION 

 In conclusion, our findings indicate that dorsiflexion ROM measurements were lesser 

in subjects displaying MKD compared to those who did not.  We believe this limited 

dorsiflexion may result in compensatory movements in the ankle and lower leg, resulting in 

foot pronation and tibial internal rotation.  Greater levels of hip adductor activity without an 

associated increase in gluteus medius and/or gluteus maximus activity may increase femoral 

adduction and internal rotation (Padua, Bell et al. In review); potentially increasing MKD 

during dynamic tasks.  MKD is suggested to be a biomechanical factor associated with 

anterior cruciate ligament injury, medial collateral ligament injury, and patellofemoral pain 

syndrome.  Rehabilitation and injury prevention programs that increase dorsiflexion, 

decrease hip adductor activity, and increase hip abductor and external rotator 

activity may potentially decrease the incidence of these injuries.



67 
 

Table 3.1 Height (cm), Weight (kg), and Age (yr) Presented as Mean ± SD with 95% 

Confidence Intervals 

  Control Valgus 

Variable Mean ± SD 95% CI Mean ± SD 95% CI 

Height, Weight, Age     

Height 173.1 ± 10.1 (168.3, 177.8) 173.8 ± 8.8 (169.7, 177.9) 

Weight 71.0 ± 14.6 (64.1, 77.8) 71.8 ± 14.7 (64.9, 78.7) 

Age 20.2 ± 1.5 (19.5, 20.9) 20.2 ± 1.8 (19.3, 21.1) 

 

Table 3.2 Intraclass Correlation Coefficients and Standard Error of the Measurement for 

Passive Range of Motion Measurements  

Variable ICC SEM 

Passive Range of Motion   

Hip External Rotators .894 4.5 

Hip Internal Rotators .644 7.5 

Femoral Anteversion .731 .68 

Iliotibial Band .752 3.4 

Hip Adductors .906 5.5 

Iliopsoas .898 4.0 

Hamstrings (90-90) .853 5.9 

Dorsiflexion (straight) .821 3.6 

Dorsiflexion (flexed) .904 2.5 

Talar Glide .931 1.2 
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Table 4.1 Height (cm), Weight (kg), and Age (yr) Presented as Mean ± SD with 95% 

Confidence Intervals 

  Control Valgus 

Variable Mean ± SD 95% CI Mean ± SD 95% CI 

Height, Weight, Age     

Height 173.1 ± 10.1 (168.3, 177.8) 173.8 ± 8.8 (169.7, 177.9) 

Weight 71.0 ± 14.6 (64.1, 77.8) 71.8 ± 14.7 (64.9, 78.7) 

Age 20.2 ± 1.5 (19.5, 20.9) 20.2 ± 1.8 (19.3, 21.1) 

 

Table 4.2 Passive Range of Motion Measurements (degrees) Presented as Mean ± SD with 

95% Confidence Intervals 

  Control Valgus 

Variable Mean ± SD 95% CI Mean ± SD 95% CI 

Passive Range of Motion     

Hip External Rotators 54.7 ± 9.9 (50.0, 59.3) 59.6 ± 8.1 (55.8, 63.4) 

Hip Internal Rotators 69.9 ± 12.0 (64.3, 75.5) 72.4 ± 7.3 (69.0, 75.8) 

Femoral Anteversion 3.5 ± 3.1 (2.1, 4.9) 3.2 ± 2.8 (1.9, 4.5) 

Iliotibial Band 9.9 ± 4.8 (7.6, 12.1) 9.3 ± 4.6 (7.1, 11.4) 

Hip Adductors 57.4 ± 9.1 (53.2, 61.7) 53.0 ± 9.9 (48.4, 57.7) 

Iliopsoas 21.3 ± 9.9 (16.7, 25.9) 21.4 ± 5.2 (19.0, 23.9) 

Hamstrings (90-90) 73.6 ± 12.3 (67.4, 79.8) 69.6 ± 10.8 (64.7, 74.8) 

Dorsiflexion (straight)* 8.8 ± 4.7 (6.6, 11.0) 5.5 ± 5.4 (3.0, 8.1) 

Dorsiflexion (flexed)* 14.2 ± 7.3 (10.8, 17.6) 9.5 ± 6.2 (10.8, 17.6) 

Talar Glide* 25.7 ± .50 (23.4, 28.1) 29.8 ± 4.8 (27.6, 32.1) 

*Statistically significant (P < 0.05) 

 

Table 4.3 Normalized EMG Measurements Presented as % MVIC ± SD with 95% 

Confidence Intervals 

  Control Valgus 

Variable Mean ± SD 95% CI Mean ± SD 95% CI 

Muscle     

Gluteus Maximus 19.5 ± 8.7 (15.5, 23.6) 17.1 ± 9.1 (12.7, 21.5) 

Gluteus Medius 37.1 ± 17.3 (29.0, 45.2) 32.9 ± 17.2 (24.6, 41.1) 

Hip Adductors 13.3 ± 9.8 (8.7, 17.9) 20.1 ± 14.0 (13.3, 26.8) 

Medial Hamstrings 24.7 ± 16.0 (17.2, 32.2) 29.6 ± 16.3 (21.8, 37.4) 

Biceps Femoris 30.1 ± 17.8 (21.8, 38.4) 44.4 ± 39.4 (25.5, 63.4) 

Vastus Medialis 66.6 ± 26.3 (54.3, 78.9) 70.4 ± 24.8 (58.4, 82.3) 

Vastus Lateralis 69.0 ± 23.7 (57.9, 80.1) 75.2 ± 29.1 (61.2, 89.2) 

Medial Gastrocnemius 20.4 ± 16.8 (12.5, 28.2) 14.9 ± 18.8 (5.9, 24.0) 

 



69 
 

 

Table 4.4 Muscular Co-Activation Ratios Presented as Mean ± SD with 95% Confidence 

Intervals 

  Control Valgus 

Variable Mean ± SD 95% CI Mean ± SD 95% CI 

Co-Activation Ratio     

GMed : Hip Adductors* 4.5 ± 3.9 (2.7, 6.3) 2.4 ±1.1 (1.5, 3.2) 

GMax : Hip Adductors* 2.4 ± 1.8 (1.5, 3.2) 1.1 ± 0.62 (0.79, 1.4) 

*Statistically significant (P < 0.05) 

 

Table 4.5 Power and Effect Size of PROM and EMG Measurements 

Variable Effect Size Observed Power 

Passive Range of Motion   

Hip External Rotators .54 .385 

Hip Internal Rotators .26 .121 

Femoral Anteversion .10 .063 

Iliotibial Band .13 .069 

Hip Adductors .46 .299 

Iliopsoas .01 .050 

Hamstrings (90-90) .35 .165 

Dorsiflexion (straight) .65 .515 

Dorsiflexion (flexed) .70 .575 

Talar Glide .84 .734 

Muscle   

Gluteus Maximus .27 .133 

Gluteus Medius .24 .116 

Hip Adductors .57 .399 

Medial Hamstrings .30 .154 

Biceps Femoris .50 .302 

Vastus Medialis .15 .073 

Vastus Lateralis .23 .111 

Medial Gastrocnemius .31 .155 

Co-Activation Ratio   

GMed : Hip Adductors .84 .603 

GMax : Hip Adductors 1.07 .797 
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Figure 1.1 Control Group Subject 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.2 Valgus Group Subject 
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Figure 3.1 Hip External Rotators Passive Range of Motion Measurement  

 
 

Figure 3.2 Hip Internal Rotators Passive Range of Motion Measurement 
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Figure 3.3 Femoral Adductors Passive Range of Motion Measurement 

 
 

Figure 3.4 Iliopsoas Passive Range of Motion Measurement 
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Figure 3.5 Hamstring Passive Range of Motion Measurement (Leg at 90-90) 

 
 

Figure 3.6 Iliotibial Band Passive Range of Motion Measurement 
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Figure 3.7 Plantar Flexors Passive Range of Motion Measurement (knee extended) 

 
 

Figure 3.8 Plantar Flexors Passive Range of Motion Measurement (knee flexed) 
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Figure 3.9 Hip Anteversion Meaurement 

 
 

Figure 3.10 Posterior Talar Glide Measurement 
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Figure 3.11 Anterior View of EMG 

Electrode Sites 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.12 Posterior View of EMG 

Electrode Sites 
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Figure 3.13 Hip Extensors MVIC Testing Position 

 
 

Figure 3.14 Hip Adductors MVIC Testing Position 
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Figure 3.15 Hip Abductors MVIC Testing Position 

 
 

Figure 3.16 Hamstrings MVIC Testing Position  
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Figure 3.17 Quadriceps MVIC Testing Position 

 
 

Figure 3.18 Plantar Flexors MVIC Testing Position 
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Lower extremity muscle activation and muscular flexibility and their effect on single leg 

squat performance 

 

Context: Knee valgus is a potential risk factor for lower extremity (LE) injuries.  LE 

movement screenings and flexibility measurements may be utilized to identify 

neuromuscular patterns, which contribute to knee valgus.  There are few studies that have 

investigated how flexibility and muscular activation differ between individuals who display 

knee valgus during a single leg squat (SLS) and those who do not.  We hypothesized that 

flexibility and muscular activation would differ between the groups.   

Objective: To compare LE muscle activation and flexibility between subjects who display 

visual knee valgus and those who do not during a SLS 

Design: Cross-sectional study. 

Setting: Neuromuscular research laboratory. 

Patients or Other Participants: 40 physically active adults (20 control, 20 valgus) 

Main Outcome Measure(s): Subjects completed ten LE flexibility measurements and a five 

SLS tasks while EMG data were collected from the GMax, GMed, Hip Add, medial 

hamstrings, biceps femoris, VMO, VL, and medial gastrocnemius.  Three MANOVAs were 

run comparing flexibility measurements, EMG data, and muscle co-activation ratios.   

Results: The valgus group had significantly less dorsiflexion (P = .047 and P = .034), greater 

talar glide motion (P = .012), and smaller gluteus medius to hip adductor co-activation ratio 

(P = .028) and gluteus maximus to hip adductor co-activation ratio (P = .007) compared to 

the control group.  There were no differences in individual muscle activation between the 

two groups 

Conclusions: Knee valgus during a SLS appears to be influenced by decreased dorsiflexion 

and decreased co-activation of the Hip ADD and GMed and GMax muscles.  Therefore, 

rehabilitation and injury prevention programs that increase dorsiflexion, decrease hip 

adductor activity, and increase hip abductor and external rotator activity may potentially 

decrease the incidence of these injuries. 

Key Words: Single leg squat, knee valgus, dorsi flexion, hip adductor, gluteus medius, 

gluteus maximus



82 
 

INTRODUCTION 

Noncontact knee injuries are common among physically active populations.  In 

particular, physically active people are susceptible to injury of the anterior cruciate ligament 

(ACL) (Noyes, Mooar et al. 1983; Hewett, Lindenfeld et al. 1999; Griffin, Albohm et al. 

2006), and medial collateral ligament (MCL) (Fetto and Marshall 1978; Griffith, LaPrade et 

al. 2009; Wijdicks, Griffith et al. 2009), and to developing patellofemoral pain syndrome 

(PFPS) (Devereaux and Lachmann 1984; Stathopulu and Baildam 2003).  Therefore it is 

important to identify those individuals at increased risk of noncontact knee injury through the 

use of effective clinical screening instruments that provide insight to the direction of injury 

prevention and rehabilitation programs. 

Malalignment of lower extremity segments during functional activities has been 

associated with an increase risk of sustaining a noncontact knee injury (Hewett, Stroupe et al. 

1996; Boden, Griffin et al. 2000; Griffin, Agel et al. 2000; Griffin, Albohm et al. 2006; 

Hewett, Ford et al. 2006).  One of the most common predisposing factors for noncontact knee 

injuries is greater knee valgus motion during functional tasks. (Hughston, Andrews et al. 

1976; Hewett, Stroupe et al. 1996; Ford, Myer et al. 2003; Hewett, Myer et al. 2005).   

 In an effort to combat the high incidence of noncontact knee injuries, especially 

injuries to the ACL, a number of lower extremity screening tools have been developed for 

identifying injury risk factors associated with these injuries (Bonci 1999; Hewett, Myer et al. 

2001; Crill, Kolba et al. 2004; DiMattia, Livengood et al. 2005; McLean, Walker et al. 2005; 

Newton, Gerber et al. 2006; Hirth 2007; Willson and Davis 2008; Padua, Marshall et al. 

2009).  The single leg squat has been utilized to identify persons with faulty lower extremity 

biomechanics (Claiborne, Armstrong et al. 2006), primarily through the observation of 
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medial knee displacement (MKD). Traditionally, greater MKD observed during the single 

leg squat has been attributed to poor hip strength or muscle imbalances and poor 

neuromuscular control of key hip and trunk musculature (Zeller, McCrory et al. 2003; 

DiMattia, Livengood et al. 2005; Willson, Ireland et al. 2006).   

Muscular imbalance has been implicated as a contributing factor to knee valgus.  

Many studies have examined the influence of musculature surrounding the hip on knee 

valgus movement during a single leg squat (SLS) (Zeller, McCrory et al. 2003; Lawrence, 

Kernozek et al. 2008).  Strength of the hip abductor group, has received considerable 

attention in the literature regarding its potential influence on frontal plane knee motion, 

specifically the gluteus medius; however, recent studies have shown little to no correlation 

between the two (DiMattia, Livengood et al. 2005; Claiborne, Armstrong et al. 2006).  

Therefore, other factors such as lower extremity muscular activation and lower extremity 

flexibility may play an important role in dynamic valgus. 

The activation of the musculature surrounding the hip and knee appears to play a 

major role in the kinematics of the knee joint during functional activities.  A relationship has 

been established between lesser gluteus medius activation and greater knee valgus movement 

during a single leg squat (Zeller, McCrory et al. 2003).  The musculature acting on the knee 

has been shown to effect knee frontal plane motion.  Palmieri-Smith et al. reported greater 

peak knee valgus angles during a single leg forward-jump task in persons with greater 

activity in the vastus lateralis and biceps femoris, and lesser peak knee valgus angles in those 

persons with heightened vastus medialis activity (Palmieri-Smith, Wojtys et al. 2008).  The 

medial gastrocnemius has been suggested to act as a dynamic stabilizer of the knee and helps 

offset knee valgus moment (Lloyd and Buchanan 2001).  Therefore decreased activation of 
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the medial gastrocnemius during functional tasks may result in decreased frontal plane 

stability and result in greater knee valgus.  No previous research has examined the 

relationships between the activation of the gluteals, hip adductors, hamstrings, quadriceps, 

and medial head of the gastrocnemius and their influence on lower extremity kinematics 

during a single leg squat task.  

Lower extremity muscular flexibility has also been associated with greater knee 

instability and dysfunctional kinematics.  Greater flexibility of the hamstrings resulting in 

lesser activation has been suggested to decrease dynamic knee stiffness (Boden, Griffin et al. 

2000; Zeller, McCrory et al. 2003) and increase the likelihood of greater knee valgus.  It has 

been suggested that the factors that contribute to tight iliotibial band and hip flexors may 

cause the pelvis to tilt anteriorly, potentially resulting in femoral internal rotation (Tyler, 

Nicholas et al. 2006).  Tightness of the hip adductor and internal rotator muscles and 

increased flexibility of the hip external rotators may allow for greater hip internal rotation 

and further contribute to greater knee valgus during dynamic tasks. (Clark and Lucett 2004; 

Hirth 2007) Similarly, tightness of the lower-leg musculature, especially the lateral 

gastrocnemius and peroneals, may contribute to tibial abduction and external rotation thus 

increasing greater knee valgus (Clark and Lucett 2004; Hirth 2007).  It has been suggested 

decreased posterior talar mobility would result in decreased dorsi flexion and therefore 

should be assessed when assessing plantar flexor flexibility (Denegar, Hertel et al. 2002).  

However, no previous studies have examined the relationships between the flexibility of the 

hip external rotators, hip internal rotators, hip adductors, hamstrings, iliopsoas, plantar 

flexors, and talar glide mobility and their effect on lower extremity kinematics during a 

single leg squat. 
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Therefore the purpose of this study is to compare the lower extremity muscle 

activation and flexibility between subjects who display dynamic knee valgus and those who 

do not during a single leg squat.  Determining these differences will aid clinicians by 

identifying the neuromuscular patterns that are associated with different movement patterns 

that can be discriminated using cost effective clinical assessments and thereby provide a 

guide for future rehabilitation interventions to correct these faulty mechanics.  Our first 

hypothesis was that the MKD group will have one or more lower extremity (LE) muscular 

groups with a significantly higher mean amplitude compared to the control group during a 

single leg squat.  Our second hypothesis was that the MKD will have would have one or 

more decreased LE passive range of motion patterns compared to the control group.  

METHODS 

SUBJECTS 

Forty individuals (20 males, 20 females) were selected from a larger group of 

participants who volunteered to participate in this study.  Each participant was assigned to 

either the “control” group or “medial knee displacement” (“MKD”) group based on his/her 

performance of the single leg squat (SLS) test.  Each group 20 subjects (10 males and 10 

females).  Descriptive statistics are available in Table 1. 

All participants were self-reported to be in good physical condition and physically 

active, defined as consistent participation in at least 30 minutes of physical activity, three 

times a week for the past six months.  Subjects were excluded if they had any history of a 

surgical procedure to their lower extremity or low back and/or reported an injury to the lower 

extremity or low back within the past six months which had resulted in an inability to 

participate in physical activity for three consecutive days.  Persons with a known neurologic 
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condition resulting in decreased balance and/or proprioception, and knowingly pregnant 

females were excluded.  Participants were also excluded from the study if they went into a 

knee varus position during their single leg squat group assignment trials.  The participants 

read and signed an informed consent form approved by the University’s Institutional Review 

Board (IRB). 

Instrumentation 

 A Motion Star (Ascension Technologies, Inc, Burlington, VT) electromagnetic 

motion tracking system was used to track lower extremity kinematics.  These data were used 

to objectively identify the start position, the point of greatest knee flexion, and the end 

position as the subject returns to the start position.  Joint angles for measures of flexibility of 

the hip external rotators, hip internal rotators, hamstrings, iliotibial band, and iliopsoas were 

measured using a digital inclinometer (Saunders Group, Inc, Chaska, MN).  Joint angles for 

measures of flexibility of the hip adductors, plantar flexors, and dorsi flexors were measured 

using a standard 30.5 cm (12 in) plastic goniometer.  Intersession and intrarater reliability of 

the passive range of motion testing procedure of the investigator responsible for taking the 

measures in this study was calculated with intraclass coefficients (ICC) and standard error of 

the measurement (SEM) for each range of motion measurement (ICC3,1 range, .64-.93; 

SEM range, .68
0
-7.45

0
) (Table 3.2).  A surface electromyography (EMG) system (Bagnoli-8; 

Delsys, Inc, Boston, MA) was used to record lower extremity muscle activity.  Two 2-

dimensional video cameras (DCR-HC38 MiniDV Handycam Camcorder; Sony Electronics, 

San Diego, CA) were positioned to capture and record an anterior view and a lateral view of 

each single leg squat trial so that they could be reviewed at a later date if necessary.  
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Screening Session 

Prior to data collection each participant underwent a screening protocol to determine 

group assignment.  Participant’s height (cm), mass (kg), and leg dominance (the leg that 

would be used to kick a soccer ball for maximal distance) were recorded.   

 Participants completed a warm-up on a stationary cycle ergometer at a self-selected 

pace for 5-minutes.  Following the warm-up the participant underwent a screening protocol 

to determine group assignment.  The screening protocol consisted of each study participant 

completing five consecutive single leg squat (SLS) trials, to a preset depth of 60
0
 of knee 

flexion (mechanical block set to touch bottom of gluteus maximus during the SLS) while 

being visually observed by one of the researchers.  Each participant was instructed to stand 

on his/her dominant leg, with his/her toes facing forward.  The non-weightbearing leg was 

flexed at the knee to 90
0
 and 45

0
 at the hip, the hands were placed on the hips, and the head 

and eyes faced forward.  The participant descended for two beats of the metronome until the 

gluteals touched the mechanical block, then returned to the starting position in two beats.  

The metronome was set at a frequency of 60 beats/minute. 

Participants were placed in the “control” group if in at least three of five trials his/her 

knee remained in line with the hip and ankle joints throughout the SLS; participants were 

placed in the “MKD” group if in at least three of five trials the midpoint of his/her patella 

moved medially to the great toe during the SLS (Bell, Padua et al. 2008).  Selected study 

participants then went through the following testing procedures at a later date (if a participant 

did not fit into his/her originally assignment group he/she was excluded from the study). 

Lower Extremity Flexibility 
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 Lower extremity passive range of motion (PROM) was measured for each participant 

in a counterbalanced order.  All PROM measurements were measured with a digital 

inclinometer or standard goniometer.  For each of the following muscle groups the tester 

passively moved the associated joint through its range of motion from a neutral position to 

the point of first resistance, or the participant vocalized discomfort.  Three trials were taken 

for each ROM measurement.  The following procedures were utilized for PROM 

measurements: 

 Hip external rotators: The participant was positioned in a prone position with his/her 

knee bent to 90
0
, the femur was then passively internally rotated.  The angle was then 

measured with a digital inclinometer placed perpendicular to the length of the lateral 

tibia (Starkey and Ryan 2002). (Figure 3.1) 

 Hip internal rotators: The participant was positioned in a prone position with his/her 

knee bent to 90
0
, the femur was then passively externally rotated.  The angle was then 

measured with a digital inclinometer placed perpendicular to the length of the lateral 

tibia (Starkey and Ryan 2002). (Figure 3.2) 

 Hip adductors: The participant was placed in a supine position with his/her legs in 

full extension, the leg being tested was abducted.  The angle was then measured, the 

leg until the point of first resistance.  The angle with a standard goniometer (Starkey 

and Ryan 2002). (Figure 3.3) 

 Iliopsoas: The participant was placed in a supine position and completed a Thomas 

Test for iliopsoas tightness. The angle was measured with a digital inclinometer 

placed along the anterior aspect of the thigh (Ferber, Kendall et al. 2010). (Figure 3.4) 
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 Hamstrings-Leg at 90-90: The participant was placed in a supine position with his/her 

dominant leg flexed to 90
0
 of hip flexion and 90

0
 of knee flexion and the contralateral 

leg flat on the table; the knee was then passively extended.  The angle was measured 

with a digital inclinometer placed along the anterior aspect of the tibia (Magee 2006). 

(Figure 3.5) 

 Iliotibial band: The participant was placed on his/her nondominant side and an Ober’s 

Test for iliotibial band tightness was completed.  The angle was measured with a 

digital inclinometer placed along the lateral aspect of the thigh (Ferber, Kendall et al. 

2010). (Figure 3.6) 

 Plantar flexors: The participant was placed in a supine position with both legs fully 

extended, the foot being tested was positioned so the ankle extended off of the end of 

the table; the foot was passively moved dorsi flexion.  The angle was measured with a 

standard goniometer.  The procedure was repeated with the knee flexed to a 90
0
 angle 

(Starkey and Ryan 2002). (Figures 3.7 & 3.8) 

 Hip anteversion: The participant was positioned in a prone position and Clarke’s Test 

for hip anteversion was completed.  The angle was measured with a digital 

inclinometer placed perpendicular to the length of the medial tibia (Nguyen and 

Shultz 2007). (Figure 3.9) 

 Posterior talar glide: The participant was positioned in a seated position so that 

his/her legs hung off of the end of the table so the knees were in a flexed position.  

Subtalar neutral position was determined and the researcher applied a posteriorly 

directed force to the talus until a capsular end-feel was detected.  The angle was 
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measured with a digital inclinometer placed along the length of the tibia (Grindstaff, 

Beazell et al. 2009). (Figure 3.10) 

Electromyography 

 Prior to electrode application, each electrode site was identified and marked with a 

felt tip marker.  Each site was shaved using an electric razor and cleaned with a 70% 

isopropyl alcohol solution to reduce skin impedance.  The following muscles and electrode 

sites were utilized for the study: 

 Gluteus maximus: 20% of the distance from the second sacral vertebra to a point 

10 cm distal to the greater trochanter, starting from the second sacral vertebra 

(Ericson, Nisell et al. 1985) 

 Gluteus medius: 33% of the distance from the iliac crest to the greater trochanter, 

starting from the greater trochanter (Rainoldi, Melchiorri et al. 2004)  

 Hip adductors: medial thigh approximately 2 cm distally from the pubic bone (Cram, 

Kasman et al. 1998) 

 Medial hamstrings: 36% of the distance from the ischial tuberoscity to the medial 

side of the popliteus cavity, starting from the ischial tuberosity (Rainoldi, Melchiorri 

et al. 2004) 

 Biceps femoris: 35% of the distance from the ischial tuberosity to the lateral side of 

the popliteus cavity, starting from the ischial tuberosity (Rainoldi, Melchiorri et al. 

2004) 

 Vastus medialis oblique: 20% of the distance from the ASIS to the medial joint space, 

starting from the joint line (Ericson, Nisell et al. 1985) 
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 Vastus lateralis: 25% of the distance from the ASIS to the lateral joint space, starting 

from the joint line (Ericson, Nisell et al. 1985) 

 Medial head of gastrocnemius: 50% of the distance from the medial side of the 

popliteus cavity to the medial side of the Achilles tendon insertion, starting from the 

Achilles tendon insertion (Rainoldi, Melchiorri et al. 2004) 

Each electrode was placed parallel to the orientation of the muscle fibers; one 

reference electrode was placed over the anteromedial portion of the proximal tibia.  Electrode 

placement was confirmed with manual muscle testing of each muscle and observation of the 

muscle activity on an oscilloscope.  The electrodes and leads were secured with clear, plastic 

surgical tape.  Each respective muscle group (hip extensors, hip abductors, hip adductors, 

hamstrings, quadriceps, and plantar flexors) then underwent testing for maximal voluntary 

isometric contraction (MVIC).  Three, 5 second isometric holds, with one minute rest 

between trials.  The MVIC data were used to normalize all EMG activation amplitude data.  

This was done by dividing the peak MVIC activation averaged over a one second window, 

by the average EMG activation during the descent phase of the single leg squat.  All EMG 

data were collected at 1000 Hz.  The following positions were used for MVIC testing:   

 Hip extensors: The participant was placed in a prone position with the dominant leg 

flexed at the knee to 90
0
 while he/she attempted to raise his/her thigh off of the table 

against the downward resistance of the researcher (Kendall FP, McCreary EK et al. 

1993). (Figure 3.13) 

 Hip adductors: The participant was placed in a side lying position on the side of the 

dominant leg with the nondominant leg flexed at the knee and hip, so that the sole of 

the participant’s nondominant foot could be placed on the testing table in front of the 
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dominant leg.  The participant attempted to adduct his/her hip against the researcher’s 

downward resistance (Kendall FP, McCreary EK et al. 1993). (Figure 3.14) 

 Hip abductors: The participant was placed in a side lying position on the side of the 

nondominant leg and he/she attempted to abduct his/her leg against the researcher’s 

downward resistance (Kendall FP, McCreary EK et al. 1993). (Figure 3.15) 

 Hamstrings: The participant was placed in a prone position with the dominant leg 

flexed at the knee to 90
0
 and the nondominant leg lying flat on the table.  He/she 

attempted to flex his/her knee against the researcher’s resistance. (Anderson, Hall et 

al. 2005). (Figure 3.16) 

 Quadriceps: The participant was placed in a seated position with both of his/her legs 

extending off of the table and flexed at the knee to 90
0
 and his/her hands crossed 

across the chest.  The participant attempt to extend his/her knee against the 

researcher’s downward resistance (Anderson, Hall et al. 2005). (Figure 3.17) 

 Plantar flexors: The participant was placed in a prone position with both of his/her 

legs fully extended, he/she attempted to plantar flex his/her foot against the 

researcher’s resistance (Kendall FP, McCreary EK et al. 1993). (Figure 3.18) 

Motion Analysis 

Each subject was fitted with three electromagnetic sensors placed over the sacrum, 

lateral aspect of the thigh, and the anteromedial aspect of the proximal tibia.  All sensors 

were placed over the area of least muscle mass and secured with double-sided tape, prewrap, 

and athletic tape.  Six additional boney landmarks were digitized so joint centers for the 

ankle and knee were calculated as the midpoints of the respective points based on the 

position of the medial and lateral malleoli and medial and lateral femoral condyles, 
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respectively; the Bell method was used to approximate the hip joint centers (Bell, Pedersen et 

al. 1990).  Three-dimensional coordinate data were collected at a sampling rate of 100 Hz. 

Single Leg Squat Task 

The subject completed the same procedures for the single leg squat tasks as they did 

during the screening session.  A trial was deemed successful if the participant: 1) maintained 

proper testing position throughout the entire motion; 2) squatted until the gluteals came in 

contact with the mechanical block; 3) completed the task at the appropriate rate; 4) the 

participant did not touch down with the nondominant foot; 5) did not touch the legs together; 

6) maintained the heel in contact with the ground and; 7) the task was completed in a fluid 

motion.  The participants were given as many practice trials as needed to perform the task 

successfully.  EMG and motion analysis data were collected simultaneously for five 

successful SLSs.  The participant completed as many trials as necessary until five successful 

trials were recorded.   

Data Processing and Reduction  

 The Motion Monitor Software (Innovative Sports Training, Inc, Chicago, IL) was 

used to control both the Motion Star and EMG systems.  All kinematic data were filtered 

using a fourth-order low-pass Butterworth filter at 14.5 Hz.  EMG data were passively 

demeaned, bandpass (10-350 Hz) and notch (59.5-60.5 Hz) filtered, and smoothed using a 25 

ms root mean squared sliding window function.  Kinematic and EMG data were exported to 

and reduced using a custom Matlab program (Math Works, Natick, MA).   

EMG and kinematic data were recorded during the descent phase of the single leg 

squat (the time from the start of the trial to peak knee flexion).  Three-dimensional joint 

angles were also recorded at the participant’s initial position at the start of the trial (start 
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position: the participant stood on his/her dominant leg and the nondominant knee was flexed 

to 90
0
 and the hip to 45

0
 with the hands on the hips), the point when the participant reached 

peak knee flexion, and once the participant returned to his/her initial position (end position).  

EMG and kinematic data were averaged over the five trials of the single leg squat and range 

of motion data were averaged from the three trials of each passive range of motion 

measurement.     

Statistical Analyses  

PASW Statistics for Windows software (version 18.0, SPSS Inc, Chicago, IL) was 

used to run three separate multivariate analysis of variance (MANOVAs): one MANOVA 

was run comparing the peak EMG amplitude of the valgus group to the mean peak EMG 

amplitude of the control group for each of the eight muscles examined in this study; one 

MANOVA was run comparing the EMG co-activation ratios of gluteus medius to hip 

adductors and gluteus maximus to hip adductors; one MANOVA was run comparing the 

comparing the mean passive range of motion measurements of the valgus group to the mean 

passive range of motion measurements of the control group, for each one of the ten muscle 

groups examined in this study.  Appropriate post hoc one-way between subjects ANOVAs 

were run for significant MANAOVAs.  Statistical significance was set at α<0.05. 

RESULTS 

Height, Weight, and Age 

Means, standard deviations, and 95% confidence intervals for all height, weight, and 

age measures are presented in Table 4.1.  Three separate independent-samples t-tests were 

utilized to compare the means for each measurement between the control and valgus groups.  
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No significant differences were observed between height (T38 = -.250, P=.804), weight (T38 = 

-.184, P=.855), or age (T38 = .000, P=1.00) between the control and valgus groups.         

Passive Range of Motion (PROM) Measurements  

Means, standard deviations, and 95% confidence intervals for all passive range of 

motion measures are presented in Table 4.2.  A multivariate analysis of variance 

(MANOVA) test was utilized to compare the mean PROM dependent variables between the 

control and valgus groups.  A significant multivariate main effect for group was observed for 

PROM measurements (Wilks’ Lambda = .555, F(10, 29) P=.038, η
2
 = .83).  Follow up one-

way ANOVAs revealed significant differences in dorsiflexion range of motion with knee 

straight (F1,38 = 4.203, P=.047), dorsiflexion range of motion with knee flexed (F1,38 = 4.857, 

P=.034), and posterior talar glide motion (F1,38 = 7.040, P=.012) between the control and 

valgus groups. Specifically, individuals in the valgus group displayed significantly lesser 

dorsiflexion PROM with knee straight (5.5±5.4, control = 8.8±4.7), lesser dorsiflexion 

PROM with knee flexed (9.5±6.2, control = 14.2±7.3) and greater posterior talar glide 

(29.8±4.8, control = 25.7±5.0) in comparison to the control group. No other significant 

differences were observed. 

Electromyography Measurements  

Means, standard deviations, and 95% confidence intervals for all EMG measures are 

presented in Table 4.3.  A MANOVA was run comparing the mean normalized EMG 

activation between the control and valgus groups.  No significant differences were observed 

between the normalized EMG activation of the two groups (Wilk’s Lambda = .742, F(10, 29) 

P=.280, η
2
 = .49).  While not significant, it is worth noting the group differences in hip 

adductor muscle activation was trending toward significance (F1,38 = 3.059, P=.089).  
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Specifically, individuals in the valgus group tended to display greater hip adductor EMG 

activation (20.1±14.0, control = 13.3±9.8).  One valgus subject’s EMG data were unable to 

be used in the MANOVA analysis due to abnormal recording of the hamstring EMG activity. 

Electromyography Co-Activation Ratios  

Means, standard deviations, and 95% confidence intervals for calculated co-activation 

ratios presented in Table 4.4.  Muscle co-activation ratios were calculated for gluteus medius 

activation and hip adductor muscle activation by dividing the mean gluteus medius activity 

by the mean hip adductor activity (GMed : Hip Add).  In addition, co-activation ratios were 

calculated for gluteus maximus activity and hip adductor muscle activation by dividing the 

mean gluteus maximus activity by the mean hip adductor activation (GMax : Hip Add).  A 

ratio resulting in 1.0 would indicate completely balanced muscular activation; ratios resulting 

in values greater than 1.0 indicate greater activation of the muscle in the numerator (GMed 

and GMax) compared to the muscle in the denominator (Hip Add).  A MANOVA was run 

comparing the ratio of gluteus medius EMG activation to hip adductor EMG activation 

between the control and valgus groups and the ratio of gluteus maximus EMG activation to 

hip adductor EMG activation between groups.  A significant multivariate main effect for 

group was observed for the co-activation ratios (Wilks’ Lambda = .822, F(10,29) P=.027, η
2
 

= .68).  Follow-up one-way ANOVAs revealed significant differences between the ratio of 

gluteus medius EMG activation to hip adductor EMG activation (F1,38 = 5.187, P=.028) and 

the ratio of gluteus maximus EMG activation to hip adductor EMG activation (F1,38 = 8.201, 

P=.007) between the control and valgus groups.  Specifically, individuals in the valgus group 

displayed significantly lesser gluteus medius EMG activation to hip adductor EMG 

activation ratio (2.4±1.1, control = 4.5±3.9); indicating greater hip adductor EMG activation 
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compared to gluteus medius EMG activation in the valgus group when compared to the 

control group.  The valgus group also had significantly lesser gluteus maximus EMG 

activation to hip adductor EMG activation ratio (1.1±.62, control = 2.4±1.8) compared to the 

control group; greater hip adductor EMG activation compared to gluteus maximus EMG 

activation in the valgus group when compared to the control group. 

Power and Effect Size  

 Observed power (range, .050-.797) and effect size (range, .01-1.07) for each PROM 

and EMG measure were calculated and are presented in table 4.5.  This information will be 

discussed to describe the clinical significance of these findings 

DISCUSSION 

 To our knowledge, this is the first study to compare hip, knee, and ankle passive 

range of motion (ROM) measurements, and hip, thigh, and lower leg muscle activation 

between individuals presenting with medial knee displacement (MKD group) to those who 

do not (control group) during a single leg squat task.  In summary, our findings revealed that 

dorsiflexion ROM measurements with the knee straight and flexed were significantly lesser 

and posterior talar glide was significantly greater in the MKD group compared to the control 

group.  However, no other ROM measurements (hip internal rotation, hip external rotation, 

hip abduction, hip extension, knee extension, femoral anteversion) were different between 

group, which suggests that ROM differences may be isolated to ankle dorsiflexion.  Muscle 

activation amplitude of the gluteus medius, gluteus maximus, hip adductors, vastus medialis, 

vastus lateralis, medial hamstrings, biceps femoris, and medial gastrocnemius were also not 

significantly different between the two groups.   However, co-activation ratios involving the 

hip adductors and gluteal musculature were different between groups.  Specifically, we 
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calculated the co-activation ratio between gluteus medius activation and hip adductor 

activation (GMed : Hip Add) and gluteus maximus activation and hip adductor activation 

(GMax : Hip Add).  The GMed : Hip Add and GMax : Hip Add ratios were both 

significantly lesser in the MKD group compared to the control group.  Decreased co-

activation ratios in the MKD group indicates these individuals use a more hip adductor 

dominant activation strategy compared to control subjects.  Our combined results suggest the 

combination of lesser ankle dorsiflexion ROM with altered hip adductor and gluteal 

musculature co-activation may contribute to dynamic knee valgus during a single leg squat 

task; each of these findings will be discussed in greater detail throughout the subsequent 

paragraphs.  

 Lesser ankle dorsiflexion ROM in the MKD group supports our hypotheses.  Based 

on these findings we believe decreased dorsiflexion ROM may be a large contributor to 

MKD during functional tasks.  The MKD group was observed to have 37.5% and 33.1% less 

dorsiflexion ROM with the knee straight (effect size = 0.65) and flexed (effect size = 0.70), 

respectively.  These values represnt moderate to large effect sizes and further indicate the 

importance of these differences.  Similar findings have been reported when observing ROM 

differences between a MKD group and a control group who maintained a neutral knee 

position, in the frontal plane, during a double leg squat (Vesci, Padua et al. 2007; Bell, Padua 

et al. 2008).  Limited dorsiflexion has been proposed to contribute to excessive rearfoot 

pronation and, in turn, result in compensatory increases in lower extremity internal rotation 

(DiGiovanni and Langer 2007).  Greater lower extremity internal rotation may contribute to 

dynamic knee valgus (Hollis, Takai et al. 1991).  The relationship between decreased 

dorsiflexion and increased knee valgus during dynamic tasks is further supported by Cortes 
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et al. who reported that subjects had significantly greater knee valgus angle at initial contact 

and decreased dorsiflexion motion after landing when they performed rearfoot landings 

compared to self-preferred landing styles (Cortes, Onate et al. 2007).  Based on these 

combined findings it appears that restricted ankle dorsiflexion ROM may be an important 

factor contributing to MKD across a variety of functional tasks.  These findings may have 

important implications in the design of exercise programs aimed at decreasing MKD. 

Decreased ankle dorsiflexion ROM may be due to decreased flexibility of the 

gastrocnemius/soleus complex and/or restricted posterior talar glide on the tibia (Denegar, 

Hertel et al. 2002).  Posterior glide of the talus within the talocrural joint is a necessary 

accessory motion to allow for full ankle dorsiflexion ROM.  Previous research investigating 

subjects with chronic ankle instability has revealed decreased ankle dorsiflexion ROM and 

posterior talar glide in these individuals (Vicenzino, Branjerdporn et al. 2006).  We originally 

hypothesized decreased ankle dorsiflexion ROM in the MKD group may be due to restricted 

posterior talar glide motion.  However, this hypothesis was not supported as MKD subjects 

demonstrated greater posterior talar glide compared to the control subjects (effect size = 

0.84).  This finding suggests that decreased ankle dorsiflexion ROM in the MKD group was 

most likely due to decreased flexibility of the gastrocnemius/soleus complex and not 

restriced posterior talar glide.  The sensitivity of the posterior talar glide test has been 

questioned based on research demonstrating weak associations between the posterior talar 

glide test with open and closed kinetic chain measures of ankle dorsiflexion ROM (Cosby 

and Hertel 2011).  Thus, future research is needed to better understand the underlying 

mechanism (decreased muscle flexibility or restricted posterior talar glide) contributing to 

decreased dorsiflexion ROM in the MKD subjects.    
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There were no other observed significant differences in ROM measurements between 

groups.  Greater hip internal rotation ROM (Clark and Lucett 2004; Hirth 2007) and femoral 

anteversion (Nguyen and Shultz 2007) have been suggested to lead to increased femoral 

internal rotation during dynamic tasks, which could contribute to MKD.  Likewise, tightness 

of the hip adductors and internal rotators has been theorized to result in greater femoral 

adduction and internal rotation (Clark and Lucett 2004; Hirth 2007), again contributing to 

dynamic knee valgus.  Tyler et al. (Tyler, Nicholas et al. 2006) has proposed that the factors 

contributing to iliotibial band and hip flexor tightness may cause the pelvis to tilt anteriorly 

and result in internal rotation the femur (Tyler, Nicholas et al. 2006).  Greater hamstring 

flexibility, resulting in lesser activation of the hamstrings, may decrease knee stiffness 

(Boden, Griffin et al. 2000; Zeller, McCrory et al. 2003) and increase the likelihood of 

greater MKD during activity.  However, our findings indicate the flexibility of these muscle 

groups did not contribute to the presence of MKD in this study. 

Our findings suggest that restricted dorsiflexion ROM appears to be the key factor in 

predicting MKD during the single leg squat.  In our study each participant stood so that 

his/her foot was fixed on the ground with the toes pointing straight ahead, and we assured the 

heel remained in contact with the ground throughout each trial.  As the subject lowered 

his/her body to the required 60
0
 of knee flexion, dorsiflexion also had to occur at the ankle 

joint.  Limited dorsiflexion ROM would inhibit the tibia from moving forward over the foot 

and may have caused the subject to compensate for this lack of motion.  We speculate that 

MKD subjects compensated for a lack of sagittal plane ankle motion by increasing frontal 

and/or transverse plane motion at the foot and up through the kinetic chain.  Individuals may 

have compensated by going into more pronation of the foot, eversion of the talus, and 
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internal rotation of the tibia (DiGiovanni and Langer 2007) thus creating the visual 

appearance of medial knee displacement.  Future research investigating the three-

dimensional kinematics of the foot and lower leg is needed to better understand if these 

compensatory motions actually do occur in those individuals displaying MKD. 

We observed no statistically significant differences in EMG activation between 

groups for all muscles investigated.  These findings are in agreement with comparable 

research, which has demonstrated few differences in EMG activity during single leg squat 

tasks; however, these past studies examined EMG differences between sexes and not group 

assignment based on single leg squat performance.  Previous research, looking at differences 

in muscle activation between sexes during the single leg squat, has shown greater activation 

of the rectus femoris (Zeller, McCrory et al. 2003) and lesser activation of the gluteus medius 

(Hart, Garrison et al. 2007) in females, both of which are believed to contribute to increased 

risk of noncontact ACL injury.  Padua et al. reported muscle activation amplitude differences 

between a group visually displaying MKD and a control group that did not during a double 

leg squat task.  These authors reported 34% greater hip adductor muscle activity in the group 

displaying MKD (Padua, Bell et al. In review).  Similar to this finding, our current study 

showed the MKD group to have 34% greater EMG activity of the hip adductors during the 

descent phase of the single leg squat; this finding was not statistically significant, but was 

trending toward it (P = .089).  In addition, there were no differences found between groups 

for the activation of the gluteus medius and gluteus maximus muscles, also similar to Padau 

et al. (Vesci, Padua et al. 2007; Padua, Bell et al. In review).   

Therefore, it is proposed that the relative co-activation between the gluteus medius 

and gluteus maximus with the hip may contribute to MKD.  Increased hip adductor activity 
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which is not offset by associated increases in gluteus medius and gluteus maximus activation 

may allow for the femur to be pulled into a more adducted and internally rotated position 

(Padua, Bell et al. In review).  This is supported by our calculated co-activation ratios 

between the gluteus medius and the hip adductors (GMed : Hip Add) and the gluteus 

maximus and the hip adductors (GMax : Hip Add), both of which revealed significant 

differences between groups that are accompanied by large effect sizes.  The co-activation 

ratio of GMed : Hip Add for the MKD group was 2.4 while the control group’s ratio was 4.5 

(effect size = 0.84); similarly, the ratios for the MKD  and control groups for the GMax : Hip 

Add co-activation ratio were 1.1 and 2.4, respectively (effect size = 1.07).  The co-activation 

ratios were calculated by dividing the gluteal muscle activation (GMed or GMax) by Hip 

Add activation.  Larger co-activation ratios indicate that the GMed or GMax were more 

active relative to the Hip Add.  Conversely, smaller co-activation ratios indicate greater 

reliance on the Hip Add muscles.  Our findings indicate the MKD group places greater 

reliance on their Hip Add musculature compared to the control group.  It is generally thought 

that MKD may be caused by decreased gluteal muscle strength (Claiborne, Armstrong et al. 

2006) or activation (Hart, Garrison et al. 2007). Our findings may help refine this current 

theory and suggest that MKD may be caused by greater reliance on the Hip Add muscles 

rather than weakness or decreased activation of the gluteal musculature.  We believe that 

increased hip adductor relative to GMed and GMax activation played a role in facilitating 

visual MKD during the single leg squat.   

There were no differences observed in hip or knee ROM measurements, but there 

were differences in ankle dorsiflexion ROM.  We therefore propose that the imbalance we 

observed in hip adductor to gluteal activation stems from a neuromuscular compensation as a 
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result of the decreased ankle dorsiflexion ROM.  Decreased ankle dorsiflexion ROM creates 

an abnormal axis of rotation of the tibia on the talus, resulting from altered arthokinematics 

which limit roll and glide between the joint surfaces.  This abnormal rotation applies 

abnormal stresses on the tissues which have been suggested to produce altered proprioceptive 

input, which in turn causes the motor control system to adapt (Denegar and Miller 2002).  

We propose one such altered motor control response is using more frontal and transverse 

plane motion when sagittal plane motion is restricted, resulting in the leg being pulled 

actively inward.  One possible neuromuscular mechanism utilized to achieve this is altering 

the adductor and gluteal co-activation ratios.  

 Our findings of lesser dorsiflexion ROM measurements and smaller co-activation 

ratios as potential factors contributing to MKD may have important implications on injury 

prevention and rehabilitation programs aimed at decreasing MKD.  Individuals displaying 

lesser dorsiflexion range of motion may benefit from increasing gastrocnemius and soleus 

flexibility.  Also, the clinician could utilize an inhibition technique, such as self-myofascial 

release (ie. foam rolling), to decrease muscle spindle activity and allow the muscle to relax 

and be further stretched (Hirth 2007).  The clinician could also apply a similar treatment to 

improve the GMed : Hip Add and GMax : Hip Add ratios by inhibiting the hip adductors.  In 

addition the clinician could utilize rehabilitation exercises focused on increasing gluteus 

medius and gluteus maximus muscle activation and improving neuromuscular control. 

Limitations  

The following limitations should be considered when interpreting the findings of our 

study.  First, our findings are limited to a single leg squatting task as we did not incorporate 

other functional tasks in our investigation of range of motion and muscle activation.  Future 
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research should look at whether findings carryover to when individuals perform more 

challenging dynamic tasks (ie. jump-landing or cutting maneuvers).  Also, our findings are 

limited to healthy, physically active individuals who display visual MKD during a single leg 

squat and those who did not; therefore, they may not be applicable to an injured population.  

We cannot speculate if these individuals would display knee MKD during other tasks.  In 

addition, other lower extremity muscles not investigated in this study could be involved in 

dynamic control during a single leg squat.  We are also only able to speculate if MKD during 

a single leg squat is indicative of increased injury risk during physical activity. 

Inherent limitations exist with the use of surface EMG.  The assumption was made 

based on previous literature that EMG signal amplitudes represent levels of muscle activity.  

Crosstalk may occur with the placement of the EMG surface electrodes on the skin and may 

not give a true reading of the underlying muscle activity.  However, we minimized the 

potential for error by using standard methods of applying the electrodes, sufficiently securing 

the electrodes to prevent movement, and checking the output of the electrodes prior to data 

collection to ensure proper placement.  Finally, interpretation of our results was based on 

EMG signals normalized to maximal isometric voluntary activity (MVIC).  Another 

assumption was made that all participants gave their maximal effort during the MVIC 

measurements and during the single leg squat; this would affect the normalized percentages 

used during the statistical analyses.   

Another potential limitation of our study is that our measure of posterior talar glide 

was dependent on the investigator’s ability to subjectively determine subtalar neutral position 

and the end feel/restriction in motion as the knee was moved into flexion.  However, the 

investigator responsible for all ROM measurements established himself to have good 
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reliability and precision with this measure (ICC = .93, SEM = 1.2
0
); therefore, we do not 

believe this limitation was a major issue with data collection.  Future research should look at 

a more sensitive measure of quantifying restricted posterior talar glide as a possible factor 

limiting dorsiflexion ROM.  Use of an ankle arthrometer to quantify posterior talar 

displacement and stiffness has been described in previous literature and may be a good tool 

for future research investigating factors associated with MKD. 

Conclusion 

In conclusion, our findings indicate that dorsiflexion range of motion measurements 

were lesser in subjects displaying MKD compared to those who did not.  We believe this 

limited dorsiflexion may result in compensatory movements in the ankle and lower leg, 

resulting in foot pronation and tibial internal rotation.  Greater levels of hip adductor activity 

without an associated increase in gluteus medius and/or gluteus maximus activity may 

increase femoral adduction and internal rotation; potentially increasing MKD during dynamic 

tasks (Padua, Bell et al. In review).  MKD is suggested to be a biomechanical factor 

associated with anterior cruciate ligament injury, medial collateral ligament injury, and 

patellofemoral pain syndrome.  Rehabilitation and injury prevention programs that increase 

dorsiflexion, decrease hip adductor activity, and increase hip abductor and external rotator 

activity may potentially decrease the incidence of these injuries.
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