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ABSTRACT

Colin James Grudzien: The method of the geometric phase in the
Hopf bundle as a reformulation of the Evans function for reaction

diffusion equations
(Under the direction of Christopher Jones)

This thesis develops a stability index for the travelling waves of non-linear reaction diffusion

equations using the geometric phase induced on the Hopf bundle, an odd dimensional sphere

realized in an arbitrary complex vector space. This can be viewed as an alternative formulation

of the winding number calculation of the Evans function, whose zeroes correspond to the

eigenvalues of the linearization of reaction diffusion operators about a wave or, time invariant,

coherent state. The stability of such a state can be determined by the existence of eigenvalues

of positive real part for the linear operator associated to it. The method of geometric phase for

locating and counting eigenvalues as demonstrated in this thesis is inspired by the numerical

results in Way’s Dynamics in the “Hopf bundle, the geometric phase and implications for

dynamical systems,” but it diverges on several important points. This thesis develops a

detailed proof of the relationship between the phase and eigenvalues for dynamical systems

defined in a simple case and sketches the proof of the generalized method of geometric

phase for arbitrary systems on unbounded domains and its generalization to boundary-value

problems. In addition it establishes novel links between the geometric phase generated in the

Hopf bundle, and an equivalent phase generated by a path in the Stiefel bundle.

A demonstration of the numerical method is included for a simple bistable equation, and

the Hocking-Stewartson Pulse of the Complex Ginzburg-Landau equation. These examples

highlight the novel features of this formulation of the winding of the Evans function, namely

the use of either the stable or unstable manifold, and the dependence on the wave parameter

for the eigenvalue calculation. The continuous accumulation of the eigenvalue count is
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exhibited with a characteristic phase change, depending on the wave parameter. This thesis

concludes with a discussion of open questions arising from the numerical implementation,

regarding the phase transition, its link to the underlying wave structure and the possible

formulation of the method of geometric phase with respect to a phase generated on the Stiefel

bundle.
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CHAPTER 1

Introduction

When studying systems of non-linear reaction diffusion equations, coherent states such

as travelling waves and solitons give important qualitative information about the system.

While the system of differential equations may not be analytically solvable in general, the

time invariant solutions can help one understand the long time behaviour of solutions of the

full system. In particular, steady states that are stable will attract nearby solutions in the

function space asymptotically in their evolution, and these solutions represent those which

are most robust as model solutions in realistic, noisy conditions. Determining the stability

of time invariant solutions to non-linear reaction diffusion equations has been long studied

to simplify the analysis of complex systems and one of the major tools of analysis that has

emerged is the Evans function.

The Evans function is a complex analytic function constructed from the linearization of

a system of partial differential equations on one spatial variable, with zeros corresponding

to the eigenvalues of the associated linear operator. With this correspondence of the zeros

of the Evans function and the eigenvalues of the operator, one may determine the existence

and location of eigenvalues via winding number arguments and root finding methods for the

Evans function. The Evans function was first derived in a series of papers [2],[3],[4],[5] by

Evans on nerve impulse equations, and was generalized by Alexander, Gardner & Jones [6]

to general systems of reaction diffusion equations. The Evans function has been applied

in many more situations and its development as well as the current state-of-the-art is well

documented and explained in Kapitula & Promislow [7].

The major work of this thesis is to reformulate the winding number calculation with

the Evans function into a new geometric setting, as was suggested by Way [1] in his PhD
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thesis. Way developed numerical results supporting the hypothesis that parallel translation

in the Hopf bundle could be used to locate and measure the multiplicity of eigenvalues

for linearizations of reaction-diffusion equations on the real line about travelling waves,

but the central conjecture was left as an open question. This work builds on Way’s by

developing a precise methodology for this eigenvalue calculation for general systems and

proving the connection between the geometric phase in the Hopf bundle and the Chern

number calculation of Alexander, Gardner & Jones. The construction of the Evans function

by Alexander, Gardner & Jones [6] utilizes the geometry of vector bundles, taking advantage

of the unique classification of complex vector bundles over 2-spheres with their Chern number.

By framing the discussion of the Evans function in the bundle setting developed by Alexander,

Gardner & Jones, this thesis demonstrates the link between the Chern number, equal to

the eigenvalue calculation, and the geometric phase in the Hopf bundle via a particular

construction denoted the relative phase [8].

The total space of the Hopf bundle is an odd dimensional sphere, S2n−1 ⊂ Cn—therefore,

any non-zero vector in the space Cn can be mapped to the total space of the Hopf bundle,

S2n−1, simply via spherical projection. This realization of the S2n−1 as a subset of Cn allows

one to consider an arbitrary complex dynamical system, such as that arising in the Evans

function theory, and map non-zero solutions onto the Hopf bundle. Constructing the problem

appropriately, one may develop a winding number through the displacement in the fibers of

the Hopf bundle induced by the dynamics in the phase space. By defining the horizontal

and vertical subspaces of the tangent space, any differentiable path in the sphere describes

parallel transport. This choice of decomposition, called a connection, defines the movement

of a path along the fiber—for the fiber S1 which in turn describes a winding number.

One may consider, in particular, the eigenvalue problem for a reaction-diffusion operator,

linearized about a steady state travelling wave. This operator will give rise to a dynamical

system on Cn, and for such linearizations, Way studied the winding in the fiber S1 and its

relationship to the eigenvalues of the operator. Projecting particular λ dependent solutions
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onto S2n−1, the dynamics on Cn induce parallel translation in the Hopf bundle. As a property

of linear systems, any non-zero solution will remain non-zero over finite integration scales and

in this way the dynamics act naturally on the Hopf bundle. Loops of solutions in the phase

space parametrized in the value λ will define parallel translation which, for closed contours in

λ, generates a holonomy angle in S1. The winding in the fiber is called the geometric phase,

because of its relationship with Berry’s phase in quantum mechanics (e.g. Berry [9], Way [1],

Chruscinski & Jamiolkowski [10]). This thesis shows that particular choices of solutions pick

up information from the dynamics on Cn, and that the winding of these loops of particular

solutions can be used to describe the spectrum of the linear operator.

This work is to be considered as an advancement of the Evans function, but it has intrinsic

value in opening new modes of analysis. The general approach of calculating the dynamically

accumulated winding in the Hopf bundle relative to some asymptotic value was denoted

the method of geometric phase by Grudzien, Bridges & Jones in Geometric Phase in

the Hopf bundle and the stability of non-linear waves [8]—this work considered the winding

induced on a particular choice of solutions for a reaction diffusion equation, though the

method of geometric phase does not seem limited to this setting. The method of geometric

phase formalized by Grudzien, Bridges & Jones differs from Way’s numerical method of

geometric phase by realizing the necessity of computing the relative phase with respect to

the asymptotic conditions for the dynamical system—the total accumulated phase of a loop

of these particular solutions, relative to the asymptotic conditions, will yield the eigenvalue

count. The work of Grudzien, Bridges & Jones formally proved that the asymptotic relative

phase agrees with the Chern number calculation of Alexander, Gardner & Jones [6].

A sketch of the contents of this thesis is as follows: the basic framework for the thesis

and essential background is included in Chapter 2; the full development of the method of

geometric phase for scalar equations on unbounded domains is in Chapter 3, and a numerical

example of the method of geometric phase in this setting is included in §3.5. For higher

dimensional systems of equations, the method of geometric phase uses the exterior algebra
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and the determinant bundle construction, as in Alexander, Gardner & Jones [6]. Passing

to the exterior algebra the proof of the relative phase calculation holds, and the method is

explained and proven for general systems on unbounded domains in Chapter 4. In addition,

Chapter 4 includes a demonstration of the general method on unbounded domains, as was

performed in The instability of the Hocking-Stewartson pulse and its geometric phase in the

Hopf bundle [11]. Grudzien, Bridges & Jones also formulated an adaptation of the method of

geometric phase to calculate the winding of the Evans function for boundary value problems

on finite domains, and this is treated in Chapter 5. The main results for demonstrating the

method of geometric phase are stated in the Theorems 3.4.1, 4.1.9, 4.2.3 and 5.2.3. Finally

Chapter 6 develops an original result concerning the analytic formulation of the connection

of the Hopf bundle in the exterior algebra, and its relationship to canonical connection on

the Stiefel bundle. This formulation of the geometric phase in the Stiefel bundle, described in

Proposition 6.1.7, leaves open questions, both in its geometric implications and the numerical

development of the method. These open questions will be discussed in the conclusion.
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CHAPTER 2

The unstable bundle and the Hopf bundle

This chapter formally introduces the major objects of study for developing the method

of geometric phase—in particular, the Evans function on unbounded domains, the unstable

bundle construction for the Evans function and the generic Hopf bundle S2n−1 ⊂ Cn. While

this work does not treat the theory of connections or characteristic classes in a deep way,

introducing basic terminology and properties of principal fiber bundles and vector bundles is

necessary for the proof. After a brief treatment of connections of principal fiber bundles and

vector bundles, and the Chern classes of vector bundles over spheres, this chapter concludes

with a sketch of how these concepts will come together in the method of the geometric phase

for a simple system.

2.1 Reaction diffusion equations on unbounded domains

Define a system of non-linear reaction diffusion equations,

Ut = Uxx + f(U) , U(x, 0) = U0(x) ∈ Rm ,

U : R2 → Rm
(2.1.1)

where f : Rm → Rm is a smooth (at least C2) non-linear mapping, and x ∈ R. Assume that

there exists a travelling wave solution, i.e., a solution of the single variable ξ = x − ct, so

U(ξ) satisfies:

−cU ′ = U ′′ + f(U)
(
′ = d

dξ

)
.

The stability of travelling wave solutions for a system as above is determined by the existence

of eigenvalues of positive real part for the linearized operator about the wave, as shown by

Bates and Jones [12].
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The system (2.1.1) is re-written in a moving frame as

Ut =Uξξ + cUξ + f(U) (2.1.2)

for which the travelling wave is a time independent solution. Linearizing equation (2.1.2)

about the wave U(ξ), one obtains the ξ dependent operator L such that:

L(p) = pξξ + cpξ + F
(
U(ξ)

)
p (2.1.3)

with p ∈ B(R,Rm), the bounded, uniformly continuous functions from R to Rm, and F the

Jacobian of f .

Let Ω ⊂ C be an open, simply connected domain that contains only discrete spectrum of

L. For λ ∈ Ω, consider the equation

(L − λI)(p) = 0

that has the equivalent formulation as the system

p′ =q

q′ =− cq +
(
λ− F (U)

)
p

Let I be the m×m identity matrix—one can write the above as the linear system,

Y ′ = A(λ, ξ)Y Y =

p
q

 ∈ C2m

A(λ, ξ) =

 0 I

λ− F (U) −cI


(2.1.4)

where A is an n× n complex matrix with n ≡ 2m.
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The matrix system (2.1.4) for the eigenvalue problem is non-autonomous with dependence

on U(ξ), but the travelling wave solution U(ξ) must be bounded as ξ → ±∞. Hence, consider

systems such that the travelling wave (2.1.2) satisfies the following hypothesis.

Hypothesis 2.1.1. Define the limits of the wave, limξ→±∞ U(ξ) = U(±∞). Assume that

there are positive a, C ∈ R for which

‖ U(ξ)− U(+∞) ‖≤ Ce−aξ for ξ ≥ 0 (2.1.5)

‖ U(ξ)− U(−∞) ‖≤ Ceaξ for ξ ≤ 0 (2.1.6)

‖ U ′(ξ) ‖≤ Ce−a|ξ| for all ξ. (2.1.7)

Under this hypothesis, one may define asymptotic, autonomous systems by the limiting

values of the wave:

Y ′ = A±∞(λ)Y

A±∞(λ) := limξ→±∞A(λ, ξ) =

 0 I

λ− F
(
U(±∞)

)
−cI


(2.1.8)

Definition 2.1.2. Let L be a linear operator derived as in equation (2.1.3) from a non-linear

reaction diffusion equation. Suppose the equation (L − λ)p = 0 defines a flow on Cn for

λ ∈ Ω ⊂ C:
Y ′ = A(λ, ξ)Y

A±∞(λ) := limξ→±∞A(λ, ξ)
(2.1.9)

System (2.1.9) is said to split in Ω if A±∞ have no pure imaginary eigenvalues and each have

exactly k eigenvalues of positive real part (unstable eigenvalues) and n− k eigenvalues of

negative real part (stable eigenvalues), including multiplicity, for every λ ∈ Ω.

Given a system as described above, the following hypotheses are sufficient to construct

the Evans function on unbounded domains.
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Hypothesis 2.1.3. Assume Ω is open, simply connected and contains only discrete eigenval-

ues of L. Note that under this hypothesis, equation (2.1.9) splits in the domain Ω.

Hypothesis 2.1.4. Let K ⊂ C be a contour in C, describing a path for the spectral parameter

λ. Assume that the contour K is a piecewise smooth, simple closed curve in Ω ⊂ C such

that there is no spectrum of L in K. Let K◦ be the region enclosed by K—assume K◦ is

homeomorphic to the disk D ⊂ R2 and that K is parametrized by λ(s) : [0, 1] ↪→ K with

standard orientation.

Recall that the eigenfunctions for L, as in equation (2.1.3), are required to be bounded for

all ξ ∈ R. For the associated system of equations (2.1.8), the eigenvalues of A±∞ determine

the asymptotic growth and decay rates of potential eigenfunctions. By a compactification of

the ξ parameter one may define a dynamical system for
{
ξ ∈ [−∞,+∞]

}
“capped” on the

ends by these asymptotic, autonomous systems. The asymptotic systems have fixed points at

0, by linearity of the dynamics, and thus un/stable manifolds in the extended system. The

un/stable eigenvectors of the system at ±∞ determine the asymptotic behavior of solutions

that lie in the un/stable manifolds of the critical points of the asymptotic systems.

Definition 2.1.5. Define the ξ dependent variable τ where

ξ =: 1
2κ log

(1 + τ

1− τ

)

for some κ ∈ R. Appending τ yields the new, compacted system

Y ′ = A(λ, τ)Y A(λ, τ) =


A(λ, ξ(τ)) for τ 6= ±1

A±∞(λ) for τ = ±1

τ ′ = κ(1− τ 2) ′ = d
dξ

(2.1.10)

Lemma 2.1.6. One may choose κ > 0 such that the flow defined by equation (2.1.10) is C1

on the entire compact interval.
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Proof. On finite time scales the flow (2.1.10) is smooth by linearity, but Lemma 3.1 in

Alexander, Gardner & Jones [6] shows that if κ < a
2 , where a is defined in Hypothesis 2.1.1,

then equation (2.1.10) C1 on the entire compact interval.

Hypothesis 2.1.7. Assume that for all systems under consideration, 0 < κ < a
2 .

Within the invariant planes {τ = ±1} of system (2.1.10), the dynamics are governed by

the linear, autonomous equations

Y ′ = A±∞Y
′ = d

dξ

τ ′ ≡ 0 (τ = ±1)

so that solutions in these planes are determined entirely by the stable and unstable directions

of the asymptotic systems. For
{
τ ∈ (−1,+1)

}
, solutions are governed by the non-autonomous

system and have limits in the invariant planes as ξ → ±∞.

Consider the un/stable manifolds of the critical points

(0,±1) ∈ Cn × {τ = ±1}

The dynamics in the invariant planes are linear with k unstable directions and n− k stable

directions; with the appended τ equation, the system gains one real unstable/ stable direction

at τ = ∓1 respectively. Standard invariant manifold theory dictates that there is a 2k + 1

(real) dimensional local unstable manifold in some neighborhood of (0,−1) that can be

extended globally by taking its flow forward for all time. In the invariant plane τ = −1, the

unstable manifold is just the span of the unstable eigenvectors, but for τ > −1, this becomes

a τ dependent subspace of Cn.

Lemma 2.1.8. Under the above hypotheses 2.1.1, 2.1.3 and 2.1.7, a solution to the extended

system is an eigenfunction for L corresponding to λ if and only if it is in the unstable manifold

for A−∞(λ) and the stable manifold of A+∞(λ).
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Proof. This is proved by Alexander, Gardner & Jones [6], in Lemma 3.6.

This geometric characterization of the eigenfunctions of the linear operator L allows

a novel construction for the Evans function. Locating the eigenfunctions with the Evans

function often relies on a matching of these unstable and stable manifolds and describing

the Evans function through the Wronskian of the matched solutions. The Evans function

was first derived in a series of papers [2],[3],[4],[5] by Evans on nerve impulse equations, and

was generalized by Alexander, Gardner & Jones [6] to general systems of reaction diffusion

equations—they characterized the eigenvalues for the operator L geometrically as the Chern

number of a vector bundle, and this vector bundle formulation of the Evans function is the

one considered in this work. The construction of this vector bundle, denoted the unstable

bundle, will be described in the following section.

2.2 The Unstable bundle

The following definitions will introduce the terminology necessary to construct this trivial

bundle and its sub-bundle, the unstable bundle. This exposition will follow from Morita

Chapter 5 [13], and the reader is referred there for further discussion.

Definition 2.2.1. Let M,E be a smooth manifold. An n-dimensional complex vector

bundle over M, (E, π,M), is defined

π : E →M (2.2.1)

such that π is smooth and for each point p ∈M ,

• π−1(p) is isomorphic to Cn. The preimage π−1(p) is defined the fiber above p.

• there is a neighborhood U containing p, and a diffeomorphism φU , such that

φU : π−1(U) ∼= U × Cn. (2.2.2)

Moreover, this diffeomorphism restricted to any point π−1(q) ∈ π−1(U) is a linear

10



isomorphism of

φU : π−1(q)→ {q} × Cn. (2.2.3)

A smooth map s : M → E such that π ◦ s = Id is defined as a section of the vector bundle.

Definition 2.2.2. For an n-dimensional vector bundle (E, π,M), let U ,V ⊂M be neighbor-

hoods such that

φU : π−1(U) ∼= U × Cn (2.2.4)

φV : π−1(V) ∼= V × Cn. (2.2.5)

The diffeomorphisms φU , φV are defined as local trivializations of M . Over the intersection

U ∩ V define the smooth map

gUV : U ∩ V → GL(C, n) (2.2.6)

pointwise via the mapping

φU ◦ φ−1
V : (U ∩ V)× Cn ∼= (U ∩ V)× Cn(

p, V
)

7→
(
p, gUV(p)(V )

)
.

(2.2.7)

The map gUV is defined as the transition map of U ∩ V.

From the contour K and the τ variable, one may construct a “parameter sphere”. Above

this parameter sphere, one can view solutions to the system in equation (2.1.10) as paths

in an appended trivial Cn bundle representing the phase space, and the unstable bundle

is constructed within the trivial bundle by the evolution of the unstable manifold. The

trivializations and transition map of the unstable bundle will play an important role in the

proof of the method of geometric phase, where the Chern number of the unstable bundle

is related to the geometric phase of a particular choice of trivialization. The details of this

construction are in Chapter 3.
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Definition 2.2.3. The set K ×
{
τ ∈ [−1,+1]

}
defines a topological cylinder as K is

topologically equivalent to S1. Gluing copies of the region enclosed by K, K◦, to the cylinder

one obtains a topological 2-sphere

M ≡ K ×
{
τ ∈ [−1,+1]

}
∪K◦ × {τ = ±1} (2.2.8)

hereafter defined as the parameter sphere. The trivial Cn bundle over the parameter sphere

is defined as M × Cn.

Solutions to the system in equation (2.1.10) can be tracked in the fibers of the trivial

bundle, with their evolution defined by the flow and the parameter values in M . Alexander,

Gardner & Jones [6] show that for fixed λ ∈ K, the unstable manifold of the critical point

(0,−1) ∈ Cn × [−1, 1] converges to the unstable space of A+∞(λ) for τ = 1 in Grassmann

norm. The unstable manifold is extended to the caps by foliating the unstable manifold over

{λ ∈ K◦}×{τ = +1} with fibers defined by the span of the unstable eigenvectors of A+∞(λ).

12



τ = -1

τ = +1

ℂ 
n

K
○

Y(λ,τ)

Figure 2.1: The trivial bundle over the parameter sphere.

Definition 2.2.4. The unstable manifold of the critical point (0,−1) ∈ Cn × [−1, 1] defines

a subspace of Cn of trajectories that approach (0,−1), exponentially decaying as ξ → −∞ for

| ξ | sufficiently large. For each fixed (λ, τ) let W u(λ, τ) define the unstable manifold in

Cn defined by the flow at (λ, τ). The total space E defines a non-trivial bundle over M with

projection πE : E →M ,
W u −−−→ Ey πE

M

(2.2.9)

E is contained in the trivial bundle M × Cn, and is called the unstable bundle.

Lemma 2.2.5. The unstable bundle is a k dimensional vector bundle over the sphere M .
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Proof. For a proof the reader is referred to the construction in §3 of Alexander, Gardner &

Jones [6].

Chern numbers are topological invariants for a complex vector bundle, and there are

several ways to treat their definition. This work provides only a cursory description of the

Chern numbers, describing them in terms of connections on the vector bundle. Connections

can be intuitively described as how the fibers above points in the base manifold M are glued

together—more formally, this is constructed with the covariant derivative.

Definition 2.2.6. Let X (M) be the space of vector fields on M . Then the covariant

derivative is a mapping

∇ : X (M)×X (M) → X (M)

(X, Y ) 7→ ∇XY
(2.2.10)

such that, for any f ∈ C∞(M) and X, Y,X1, X2, Y1, Y2 ∈ X (M), the following relationships

hold

∇X1+X2Y = ∇X1Y +∇X2Y (2.2.11)

∇X(Y1 + Y2) = ∇XY1 +∇XY2 (2.2.12)

∇fXY = f∇XY (2.2.13)

∇X(fY ) = f∇XY +X(f)Y (2.2.14)

The notion of a connection thus extends naturally from the covariant derivative, by

applying the same framework to sections of the vector bundle.

Definition 2.2.7. Let Γ(E) define the space of sections for the complex vector bundle

(E, π,M). A connection is a bilinear map

∇ : X (M)× Γ(M)→ Γ(M) (2.2.15)
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such that, for f ∈ C∞(M), X ∈ X (M) and s ∈ Γ(M), ∇ satisfies the following relations

∇fXs = f∇Xs (2.2.16)

∇X(fs) = f∇Xs+X(f)s (2.2.17)

Proposition 2.2.8. Let ∇ be a connection defined for the n-dimensional vector bundle

(E, π,M), then ∇ can be equivalently defined by a collection of n2 1-forms, described collec-

tively by an n× n matrix of 1-forms ω = (ωij). Given a connection ω, the curvature form for

the bundle can be described by the relation

dω = −ω ∧ ω + Ω (2.2.18)

where Ω is the curvature form. Let Hj(M,Z) be the jth cohomology group of M with

coefficients in Z. The Chern class of degree j for the vector bundle is an element

Cj(E) ∈ H2j(M,Z), (2.2.19)

and is the jth coefficient of the characteristic polynomial of the curvature form Ω, ie:

det
(
I + t

2πiΩ
)

= 1 +
n∑
j=1

tjCj(E) (2.2.20)

Note, the Chern classes are independent of the choice of the connection ω.

Proof. The above proposition consists of classical results for deriving Chern classes—for a

discussion of the results and a derivation of characteristic classes for general vector bundles

consult Morita Chapter 5 [13].

Corollary 2.2.9. For the k dimensional unstable bundle, C1(E) is the only non-trivial Chern

class.
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Proof. Recall that the parameter sphere M ∼= S2 and the cohomology groups are given

Hj(S2,Z) ∼=


Z if j = 0, 2

0 otherwise
(2.2.21)

Definition 2.2.10. The Chern number of the unstable bundle is defined to be the integral

of the Chern class over the sphere M .

Lemma 2.2.11. The Chern number of the unstable bundle equals the total multiplicity of

the eigenvalues enclosed by the contour K.

Proof. This is the result used by Alexander, Gardner & Jones [6] to construct the Evans

function in their §6.

The above lemma establishes the essential link in the existing Evans function constructions

that will be utilized for validating the method of geometric phase. The next section will

formally introduce principal fiber bundles and the Hopf bundle in particular.

2.3 The Hopf bundle

Following the exposition of Kobayashi & Nomizu [14], the following definition will allow

the introduction of the Hopf bundle.

Definition 2.3.1. Let M be a smooth manifold and G be a Lie group. A principal fiber

bundle P over M with group G is described by the diagram

G −−−→ Py π
M

(2.3.1)

such that the following hold

• G acts freely on M on the right
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• M is the quotient space of P with respect to the group action of G.

• Every point p ∈M has a neighborhood U and a diffeomorphism ΨU such that

ΨU : π−1
U (U) ∼= U ×G

u 7→
(
π(u), φU(u)

) (2.3.2)

where φU : π−1(U)→ G such that

φU(ua) =
(
φU(u)

)
a (2.3.3)

for any u ∈ π−1(U) and a ∈ G.

The Hopf bundle is a classical example of a principal fiber bundle, which has a total space

with a realization in Cn—this realization allows one to re-frame the winding of the unstable

bundle in terms of the geometric phase induced in the fibers.

Definition 2.3.2. The Hopf bundle is a principal fiber bundle with total space P = S2n−1 ⊂

Cn, base space M = CP n−1, and fiber G = S1. The fiber group S1 acts naturally on S2n−1

by complex scalar multiplication; with respect to this action the quotient is CP n−1.

Definition 2.3.3. Let (P,G,M, π) define a principal fiber bundle and let Tp(P ) be the tangent

space of P at p. The vertical subspace Vp(P ) ⊂ Tp(P ) is canonically defined by the kernel

of the derivative of the projection map

Dπ : Tp(P )→ Tπ(p)(M) (2.3.4)

A connection on the principal fiber P is a choice of a horizontal subspace Hp(P ) ⊂ Tp(P )

for each p ∈ P satisfying the following conditions

• Tp(P ) ∼= Vp(P )⊕Hp(P )
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• If Rg is the map defining the right action of g ∈ G, then

(Rg)∗Hp(P ) = Hpg(P ) (2.3.5)

• Hp(P ) depends smoothly on p ∈ P

The choice of a connection therefore defines a smooth decomposition of the tangent space

for the principal fiber bundle. While the vertical subspace is canonically defined, the choice

of the transverse horizontal subspace is not generally unique. A useful characterization of the

horizontal subspace is through the use of 1-forms.

Definition 2.3.4. Let (P,G,M, π) define a principal fiber bundle, and let G be the Lie algebra

of G. Let A∗ be the fundamental vector field of A ∈ G induced on P . A connection 1-form

ω is defined

ω : T (P )→ G (2.3.6)

such that

• ω(A∗) = A for all A ∈ G

• ω
(
(Ra)∗X

)
= ad(a−1) ◦ ω(X) for every a ∈ G and every vectorfield X on P , where ad

denotes the adjoint representation of G in G.

Lemma 2.3.5. The choice of a connection 1-form ω defines a connection of P , ie: H(P )

defined by the kernel of ω satisfies the conditions for a connection on a principal fiber bundle.

Likewise, the choice of H(P ) defines a connection 1-form.

Proof. This is a classical result and the reader is referred to Kobayashi & Nomizu Chapter 2

[14] for a full discussion of vertical and horizontal subspaces, and the theory of connections.

For a generic Hopf bundle, of dimension 2n−1, there exists an intuitive choice of connection

between fibers. The realization of S2n−1 ⊂ Cn by spherical projection can be used to define

the connection pointwise.
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Definition 2.3.6. For the Hopf bundle S2n−1, viewed in coordinates for Cn, define the

connection 1-form ω pointwise for p ∈ S2n−1 as a mapping of the tangent space of the Hopf

bundle Tp (S2n−1) ⊂ Tp (Cn)

ωp : Tp (S2n−1) → iR

Vp 7→ 〈Vp, p〉Cn

(2.3.7)

where iR is the Lie algebra of the fiber S1 [1]. The connection defined by ω is defined to be

the natural connection on the Hopf bundle.

Lemma 2.3.7. The natural connection is a connection of the generic Hopf bundle S2n−1 and

it is the unique connection for the S3 Hopf bundle.

Proof. This is proven byWay [1] in §3.5 and the reader is referred there for a full discussion.

Given a differentiable path in the Hopf bundle, and a choice of connection, one may

always choose a corresponding “horizontal lift”, which will describe the displacement in the

fiber. Here the horizontal lift is defined in a similar vein as Kobayashi & Nomizu page 64 [14].

Definition 2.3.8. Let v(s) : [0, 1]→ S2n−1 be a differentiable path in the Hopf bundle. The

horizontal lift of v(s) is a path w(s) : [0, 1]→ S2n−1 for which

w(0) = v(0)

π
(
w(s)

)
≡ π

(
v(s)

)
∀s

ω

(
d

ds
(w(s)

)
≡ 0 ∀s.

ie: d
ds
w(s) ∈ H (S2n−1) for all s.

Definition 2.3.9. Let v(s) be a differentiable path, v : [0, 1] 7→ S2n−1, and let w(s) be its

horizontal lift. The phase curve θ(s) for v(s) is defined by the equation

v(s) = eiθ(s)w(s) (2.3.8)
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ie: the path in the fiber describing the displacement along v(s) between v(s) and its horizontal

lift w(s). The geometric phase is the change in the phase curve, ie:

GP
(
v
(
[0, 1]

))
≡θ(1)− θ(0)

2π (2.3.9)

Figure 2.2: The phase curve defined by parallel translation.

Lemma 2.3.10. Let v(s) ⊂ S2n−1 parametrize a smooth path Γ in the Hopf bundle for

s ∈ [0, 1], and let θ(s) be the phase curve with respect to the horizontal lift w(s). Then the

phase curve satisfies the differential equation

θ′(s) = −iω
(
v′(s)

)
θ(0) = 0 (2.3.10)

and the geometric phase can be computed as the pull back of the connection 1-form along Γ,

20



ie:

θ(1)
2π = 1

2πi

∫
Γ
ω (2.3.11)

= 1
2πi

∫ 1

0

〈
v′(s), v(s)

〉
ds (2.3.12)

Proof. The general form of the differential equation describing the phase curve is derived

by Kobayashi & Nomizu in Chapter 2 [14], and is formulated with respect to the natural

connection on the Hopf bundle by Way in Chapter 3 [1].

Remark 2.3.11. The geometric phase has important connections to the Berry phase in

quantum mechanics, discussed by Way [1], and Chruscinski & Jamiolkowski [10].

The method for computing eigenvalues with geometric phase utilizes general non-zero,

differentiable paths in Cn—a useful reformulation of the phase integral in equation (2.3.11)

for non-zero paths is given in the following lemma.

Lemma 2.3.12. Suppose for s ∈ [0, 1], u(s) is a non-zero, differentiable path in Cn. Then

the connection of the tangent vector of its spherical projection, û(s) ∈ S2n−1, can be written

ω

(
d

ds
û(s)

)
=i
Im

(〈
u′(s), u(s)

〉)
〈
u(s), u(s)

〉 (2.3.13)

and the geometric phase along û(s) can be computed as

θ(1)
2π = 1

2π

∫ 1

0

Im
(〈
u′(s), u(s)

〉)
〈
u(s), u(s)

〉 ds (2.3.14)

If u(s) is also a closed curve, then

0 =
∫ 1

0

Re
(〈
u′(s), u(s)

〉)
〈
u(s), u(s)

〉 ds (2.3.15)
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and the geometric phase is equivalent to

θ(1)
2π = 1

2πi

∫ 1

0

〈
u′(s), u(s)

〉
〈
u(s), u(s)

〉 ds (2.3.16)

Proof. Consider the alternative form of the connection (2.3.13). If û(s) is the spherical

projection of the path u(s), then the natural connection is identically

ω

(
d

ds
û(s)

)
=
〈
d

ds

u(s)〈
u(s), u(s)

〉 1
2
,

u(s)〈
u(s), u(s)

〉 1
2

〉

=
〈
u′(s)

〈
u(s), u(s)

〉 1
2〈

u(s), u(s)
〉 −

u(s)Re
(〈
u′(s), u(s)

〉)
〈
u(s), u(s)

〉 3
2

,
u(s)〈

u(s), u(s)
〉 1

2

〉

=

〈
u′(s), u(s)

〉
〈
u(s), u(s)

〉 − Re
(〈
u′(s), u(s)

〉)
〈
u(s), u(s)

〉

= i
Im

(〈
u′(s), u(s)

〉)
〈
u(s), u(s)

〉

which verifies the equations (2.3.13) and (2.3.14). Suppose that u(s) is also a closed curve—

then notice,

0 = log
(
‖ u(s) ‖2

) ∣∣∣∣s=1

s=0

=
∫ 1

0

d
ds

〈
u(s), u(s)

〉
〈
u(s), u(s)

〉 ds

= 2
∫ 1

0

Re
(〈
u′(s), u(s)

〉)
〈
u(s), u(s)

〉 ds

which verifies equation (2.3.15)—combining this with equation (2.3.14) this verifies equation

(2.3.16).

Remark 2.3.13. Given the formulation (2.3.14) of the geometric phase in terms of any

non-zero path, one may unambiguously refer to the geometric phase of a path u(s) ∈ Cn,
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describing the geometric phase of its normalization.

2.4 A sketch of the method of geometric phase on C2

The method of geometric phase may be easily understood in the case where the dynamical

system is defined on C2, and the low dimension allows geometric intuition. This intuition is

useful in proving the general technique, and much of the argument is identical for systems of

larger dimension after introducing determinant bundle. The reader can consider the scalar

bistable equation as a typical example of a PDE for which L − λ = 0 defines a system on C2

satisfying the Hypotheses 2.1.1 and 2.1.3:

ut = uxx + f(u) f(u) = u(u+ 1)(u− 1) (2.4.1)

This PDE has steady localized solutions, and the spectral problem associated with the

linearization about such a state can be formulated as in (2.1.4) with Y ∈ C2. This example is

revisited in §3.5, with results demonstrating the numerical method. The method of geometric

phase for such a PDE defining an ODE system on C2 is described as follows.
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Table 2.1: The Method of Geometric Phase on C2

Step 1: Choose a contour K in C that does not intersect the spectrum of the

operator L.

Step 2: Varying λ ∈ K define X+(λ) to be an analytic loop of eigenvectors for

the A+∞(λ) system in equation (2.1.9) where X+(λ) corresponds to

the eigenvalue of positive real part.

Step 3: Suppose Z
(
λ, τ(ξ)

)
is a solution to the system defined by equation (2.1.9),

such that
(
Z
(
λ, τ(ξ)

)
, τ
)
is in the unstable manifold (0,−1) ∈ C2 × [−1, 1]

for equation (2.1.10).

Step 4: Calculate the relative geometric phase of Z
(
λ, τ(ξ)

)
with respect to

X+(λ), ie: GP
(
Z
(
K, τ(ξ)

))
−GP

(
X+

(
K
))

, where GP
(
u
(
[0, 1]

))
is the geometric phase of a non-zero, differentiable path in C2, defined in

equation (2.3.14).

The main result. The central theme of this work is demonstrating that, for an appropriate

choice of X+(λ) and Z(λ, τ), the asymptotic relative phase

lim
ξ→∞

GP
(
Z
(
K, τ(ξ)

))
−GP

(
X+(K)

)
(2.4.2)

equals the total multiplicity of the eigenvalues enclosed by K.

Way’s numerics supported the hypothesis that the geometric phase of Z
(
λ, τ(ξ1)

)
should

equal the total multiplicity of the eigenvalues for L in K◦ when ξ1 is taken sufficiently

large [1]. However, in this study the idea is reformulated with the asymptotic relative

phase calculation, in equation (2.4.2), and the machinery of the determinant bundle. The

dependence on the eigenvectors for A+∞(λ) in the computation of the relative phase

turns out to be an essential point in formulating the method, as is using the determinant
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bundle. The original numerical method studied the geometric phase of a single eigenvector

corresponding to the strongest growing/decaying eigenvalue but in general the information

of the full un/stable subspace is required. The method of geometric phase was proven in

general by relating the Chern number and geometric phase of such a solution Z as above,

treated as a trivialization of the determinant bundle [8]. The following chapter develops the

proof of the method of geometric phase for systems defined on C2 and revisits the example

(2.4.1) in §3.5 to demonstrate the technique.
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CHAPTER 3

The method for scalar equations

The systems under consideration in this chapter will be restricted to the case of scalar

equations, where m = 1 in equation (2.1.4), and to the case where the asymptotic system is

symmetric,

lim
ξ→±∞

A(λ, ξ) ≡ A±∞(λ) ≡ A∞(λ) .

This restriction on the boundary conditions will give useful geometric intuition of the method,

but the restriction is not necessary in general. The theory and proofs presented in Chapter

3 will be adapted to the general construction of the unstable bundle for n dimensions, k

unstable directions, and non-symmetric asymptotic limits in Chapter 4.

3.1 Center-unstable manifold on C2

Let L be the linearization of a reaction diffusion equation about a steady state. From

(L − λ)p = 0, where λ ∈ Ω ⊂ C, one can derive the system on C2:

Y ′ = A(λ, τ)Y A∞(λ) := limξ→±∞A(λ, τ)

τ ′ = κ(1− τ 2)

A(λ, τ) =


A
(
λ, ξ(τ)

)
for τ 6= ±1

A∞(λ) for τ = ±1

(3.1.1)

where Ω is open and simply connected, and the system at infinity, A∞(λ), has one stable

and one unstable eigenvalue for every λ ∈ Ω. Let K be a smooth, simple closed curve in

Ω ⊂ C that contains no spectrum of L, let the enclosed region be denoted K◦ and let K be

parametrized by λ(s) : [0, 1] ↪→ K.
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Denote the eigenvalues of A∞(λ) by µ1(λ),µ2(λ) with

Re(µ1) < 0 < Re(µ2)

for each λ ∈ Ω. The vector

X := e−µ2(λ)ξY

is in W u(λ, τ) provided Y ∈ W u(λ, τ), because W u(λ, τ) is a subspace. Let d
dξ

=′, then

X ′ =− µ2(λ)e−µ2(λ)ξY + e−µ2(λ)ξY ′

=(A− µ2I)X

This motivates the following system on C2:

X ′ = BX B(λ, τ) :=
(
A(λ, τ)− µ2(λ)I

)
τ ′ = κ(1− τ 2) B∞(λ) := limξ→±∞B(λ, τ)

(3.1.2)

The ξ dependent rescaling transforms the A system in equation (3.1.1) into the B system in

equation (3.1.2) where it will be more convenient to work with the trajectories in the unstable

manifold.

Definition 3.1.1. Solutions to the A system (3.1.1) will be denoted with a ]. That is, if

Z] ∈ W u(λ, τ0), then there is a ξ0 for which Z ≡ e−µ2(λ)(ξ−ξ0)Z] is the unique solution to the

B system (3.1.2) that agrees with Z] at (λ, τ0). Similarly if Z is a solution to the B system,

then Z] ≡ eµ2(λ)(ξ−ξ0)Z is the unique solution to the A system that agrees with Z at ξ0.

Let X−(λ) be an unstable eigenvector for A−∞(λ). Then in the B system (3.1.2), if

Z ∈ spanC

{
X−(λ)

}
, then (Z,±1) is a fixed point. By the construction of B∞, in τ = −1,

there is exactly one complex stable direction, one complex center direction corresponding

to the line of fixed points, and the real unstable τ direction. One may thus construct the

center-unstable manifold of a non-zero path of eigenvectors X−(λ) that correspond to the
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zero eigenvalue in the B(λ) system (3.1.2).

3.2 The induced phase on the Hopf bundle

In order to measure the geometric phase of a solution which spans the unstable subspace

W u(λ, τ), the solution must project onto S3. On finite timescales, ie: τ ∈ (−1, 1), this is

not an issue. A non-zero solution to equation (3.1.1) may be viewed in hyper-spherical

coordinates {
r ∈ (0,+∞)

}
× S3 ×

{
τ ∈ (−1, 1)

}
because no solution reaches zero in finite time. However, to measure the phase over the entire

bundle, one may appeal to solutions to the B system; Lemma 3.7 in Alexander, Gardner &

Jones [6] demonstrates that a solution to equation (3.1.1) that is in W u, is unbounded and

converges to the unstable subspace of (0,+1) in the Grassmann norm as ξ → +∞. Because

the solutions of the system (3.1.1) in W u approach 0 as ξ → −∞ and are unbounded as

ξ →∞, the proof will appeal to solutions of the B system instead.

Lemma 3.2.1. There exists a choice of unstable eigenvectors for A±∞(λ), X±(λ), that are

analytic in λ for λ ∈ Ω.

Proof. For a constructive algorithm for such bases the reader is referred to Humpherys,

Sandstede & Zumbrun [15].

Note that under spherical projection, these bases may lose C differentiability, but will

retain the differentiability in s, where λ(s) : [0, 1] ↪→ K and s is the path parameter.

Definition 3.2.2. Let the contour K ⊂ C be given. A reference path for λ ∈ K, defined

X±(λ) at τ = ±1 respectively, is a loop of eigenvectors for A±∞(λ) that corresponds to the

eigenvalue of largest, positive, real part for A±∞.

Definition 3.2.3. Let X±(λ) be a reference path chosen analytically in λ over K that can

be extended smoothly over K◦ without zeros. X±(λ) are defined non-degenerate as X±(λ)

defines fibers compatible with the unstable bundle construction.
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Lemma 3.2.4. Let X−(λ) be a non-degenerate reference path for A−∞. Let the center-

unstable manifold of this line of critical points, in the B system (3.1.2), be parametrized by

(λ, τ) as Z(λ, τ). Then Z(λ, τ) is non-singular and continuous in its limit ξ → +∞, and the

span equals the unstable manifold W u(λ, τ) for all (λ, τ) ∈ K × [−1, 1].

Proof. As in §4 of Alexander, Gardner & Jones [6], the center-unstable manifold of the path

X−(λ) in the B system can parametrized by (λ, τ)

Z(λ, τ) Z(λ,−1) ≡ X−(λ)

such that it is C differentiable in λ for τ ∈ [−1, 1) fixed.

The ξ dependent scaling of Z

Z](λ, τ) = eµ2(λ)ξZ(λ, τ)

yields a solution to the A system which is necessarily in W u, by the exponential decay

condition as ξ → −∞. Therefore Z(λ, τ) spans W u(λ, τ) for each τ ∈ [−1,+1). Lemma

6.1 in [6] demonstrates that the limit of Z(λ, τ) as ξ →∞ is non-zero and continuous in λ.

This means that Z(λ, τ) spans the unstable bundle for τ ∈ [−1, 1], and has a non-singular

projection on to S3 for all τ .

Remark 3.2.5. The above Lemma 3.2.4 holds for systems with non-symmetric asymptotic

limits provided the appropriate scaling is used. The case of non-symmetric asymptotic limits

will be treated in Chapter 4, in Proposition 4.2.2.

Let Z and X±(λ) be defined as in Lemma 3.2.4, and Ẑ, X̂±(λ) be their projections onto

S3, then Ẑ defines a mapping to S3 for which the following hold:

• Ẑ(λ, τ)→ X̂−(λ) as ξ → −∞

• Ẑ(λ, τ)→ ζ(λ)X̂+(λ) as ξ → +∞ for some ζ(λ) ∈ C
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• spanC

{
Ẑ(λ, τ)

}
≡ W u(λ, τ)

Definition 3.2.6. Let X±(λ) be reference paths for A±∞(λ) respectively. The induced

phase, with respect to X±(λ), is the complex scalar such that

ζ(λ)X̂+(λ) ≡ Ẑ(λ,+1).

Remark 3.2.7. Note that by this construction, both Ẑ and X̂+ are unit vectors, ie: ζ(λ) ∈ S1.

In the simple case where A−∞(λ) ≡ A+∞(λ) one may also take X+(λ) = X−(λ) so that

the induced phase is clearly a measure of the winding accumulated as the unstable manifold

traverses M . For systems with non-symmetric asymptotic limits, the proof of the method

must be adapted, but the intuition remains the same.

Firstly the goal is to prove that, as a function of s, ζ is differentiable. Having this condition,

the connection between ζ(s), the choice of reference paths, the total multiplicity of the

eigenvalue in K◦ and the geometric phase will be established.

Proposition 3.2.8. Let X±(λ) be non-degenerate reference paths for A±∞(λ) respectively.

For each λ ∈ K, define ζ(λ) such that Ẑ(λ,+1) = ζ(λ)X̂+(λ). If λ(s) is a smooth parametriza-

tion of K, then

ζ
(
λ(s)

)
: [0, 1]→ S1

is a differentiable function.

Proof. As in Lemma 3.2.4 the limit Z(λ, τ)→ Z(λ,+1) is non-zero for each λ and Z(λ,+1)

is continuous. Moreover, Lemma 3.7 in Alexander, Gardner & Jones [6] demonstrates that the

convergence of the manifold Z(λ, τ)→ Z(λ,+1) is locally uniform outside of the spectrum

of L and thus uniform on K. Lemma 4.1 of [6] demonstrates that the solutions Z(λ, τ)

are analytic in λ for τ ∈ [−1, 1). But limτ→1 Z(λ, τ) converges uniformly for λ ∈ K, so

the limiting function of λ, Z(λ,+1), is also analytic in λ. The spherical projection Ẑ(λ, τ)

is not C analytic, but it will be real differentiable as a map from R4 → S3. This means

30



the composition function Ẑ
(
λ(s),+1

)
is differentiable with respect to the real parameter

s ∈ [0, 1]. The quantity ζ(λ) is given as the ratio of components of Ẑ(λ, 1) and X̂+(λ) and is

therefore differentiable in s.

Definition 3.2.9. Let Z and X±(λ) be defined as in Lemma 3.2.4 and fix some τ0 ∈ [−1, 1].

The relative phase of Z(λ, τ0) is defined

GP
(
Z(K, τ0)

)
−GP

(
X+(K)

)
(3.2.1)

Lemma 3.2.10. For non-degenerate reference paths X±(λ) for A±∞(λ) and Z, Ẑ as defined

in Lemma 3.2.4 above, the relative phase of Ẑ(λ,+1) equals the winding of the induced

phase.

Proof. The natural connection on the Hopf bundle, S3, is given by the 1-form

ω(Vp) ≡ 〈Vp, p〉C2 , Vp ∈ Tp (S3) ⊂ Tp (C2)

so that to calculate the geometric phase of Ẑ
(
λ(s),+1

)
, consider

Ẑ
(
λ(s),+1

)
= ζ

(
λ(s)

)
X̂+

(
λ(s)

)
⇒ d

ds
Ẑ
(
λ(s),+1

)
= ζ ′

(
λ(s)

)
λ′(s)X̂+

(
λ(s)

)
+ ζ

(
λ(s)

)
d
ds
X̂+

(
λ(s)

)
⇒ ω

(
d
ds
Ẑ
(
λ(s),+1

))
= ζ(s)ζ ′

(
λ(s)

)
λ′(s) + ω

(
d
ds
X̂+

(
λ(s)

))
because X̂+

(
λ(s)

)
is a unit vector and ζ(s) ∈ S1. But the geometric phase of Ẑ(λ,+1) is
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given by

GP
(
Z(K,+1)

)
= 1

2πi

∫ 1

0
ω

(
d

ds
Ẑ
(
λ(s),+1

))
ds

= 1
2πi

∫ 1

0

[
ζ(s)ζ ′

(
λ(s)

)
λ′(s) + ω

(
d

ds
X̂+

(
λ(s)

))]
ds

= 1
2πi

∫ 1

0

ζ ′
(
λ(s)

)
ζ
(
λ(s)

) λ′(s)ds+ 1
2πi

∫ 1

0
ω

(
d

ds
X̂+

(
λ(s)

))
ds (3.2.2)

= 1
2πi

∫ 1

0

ζ ′
(
λ(s)

)
ζ
(
λ(s)

) λ′(s)ds+GP
(
X+(K)

)
, (3.2.3)

so that the relative phase of Z(λ(s),+1) equals the winding of the induced phase.

The following two lemmas elaborate the dependence of the relative phase upon the

reference paths.

Lemma 3.2.11. Given the contour K, let V1(λ) be a non-degenerate reference path and

V2(λ) be a meromorphic reference path for A+∞(λ). Then

GP
(
V1(K)

)
= GP

(
V2(K)

)
+ Ind(V2) (3.2.4)

where Ind(V2) is plus or minus multiplicity of any zero or pole for V2 in K◦.

Proof. Suppose V2 has no essential singularity in K◦. This is a generic choice as V2 is an

eigenvector of A+∞(λ); λ appears linearly in L − λ so that the only generic degeneracy of V2

in K◦ is a pole or a zero. As eigenvectors, there must be some smooth scaling σ : K → C∗

such that V1(λ) ≡ σ(λ)V2(λ). Moreover, σ(λ) can be extended over K◦ up to any zeros or

poles enclosed by K. Consider the connection of V1
(
λ(s)

)
, for some parametrization λ(s),

ω

(
d

ds
V̂1
(
λ(s)

))
= d

ds
σ̂
(
λ(s)

)
σ̂
(
λ(s)

)
+ ω

(
d

ds
V̂2
(
λ(s)

))

where σ̂
(
λ(s)

)
≡

σ

(
λ(s)
)

∣∣∣σ(λ(s)
)∣∣∣ . Therefore the geometric phase of V1 equals that of V2 plus the
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winding of σ̂
(
λ(s)

)
; this agrees with Ind(V2) by the argument principle.

Lemma 3.2.12. Let V (λ) be a reference path for A−∞(λ), with corresponding solution

V (λ, τ), such that V (λ) has a pole or zero in K◦. Then the geometric phase of V (λ,+1)

equals the geometric phase of a solution evolved from a non-degenerate reference path plus the

index of its degeneracy.

Proof. By definition V (λ) is an eigenvector and therefore there must be some smooth scaling

α : K → C∗ and non-degenerate reference path X−(λ) such that

V −(λ) ≡ α(λ)X−(λ) (3.2.5)

Let V and Z denote solutions in the center unstable manifolds for these reference paths

respectively, then by linearity of the flow the connection of the solution corresponding to

V (λ) is given

V̂ (λ, 1) = α̂(λ)Ẑ(λ, 1)

⇒ ω
(
d
ds
V̂
(
λ(s)

))
= d

ds
α̂
(
λ(s)

)
α̂
(
λ(s)

)
+ ω

(
d
ds
Ẑ
(
λ(s)

)) (3.2.6)

Corollary 3.2.13. Given a choice of reference paths X±(λ) for A±∞(λ), and Z(λ, τ) as

defined above, the relative phase of Z(λ,+1),

GP
(
Z(K,+1)

)
−GP

(
X+(K)

)
, (3.2.7)

equals the winding of the induced phase if and only if X±(λ) each have the same index of

degeneracy. In particular, the relative phase is the winding of the induced phase when X±(λ)

are non-degenerate.

Proof. This is a direct consequence of Lemmas 3.2.10, 3.2.11 and 3.2.12.
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3.3 The trivializations and the transition map

The unstable bundle is a non-trivial complex line bundle contained in the ambient trivial

C2 vector bundle over the parameter sphere; for fixed λ, as τ moves between ±1, the

parameters in the sphere are the values (λ, τ) which describe the motion of solutions Z(λ, τ).

Recall, taking a trivialization of this line bundle amounts to finding a linear isomorphism

φα : Uα × C ↪→Uα × C2

where Uα is a neighborhood in M , and the image of φα is the unstable bundle over Uα.

Definition 3.3.1. Define the following:

• Let H− be the lower hemisphere of M , given by

K◦ × {τ = −1} ∪K ×
{
τ ∈ [−1, 1]

}
∪ V × {τ = +1}

where V is an open neighborhood in K◦ homotopy equivalent to S1 with K in the closure

of V . Assume no eigenvalue of L is contained in V . Thus H− is an open neighborhood

of M .

• Let H+ be the upper hemisphere of M , given by

K◦ × {τ = +1} ∪K ×
{
τ ∈ (−1, 1]

}

so H+ is an open neighborhood of M .

• Let Z and Ẑ be as given in §3.2; abusing notation, let Z and Ẑ also denote their

extensions into V × {τ = +1} so that for λ ∈ V , Z(λ,+1) is smoothly compatible with

the values Z(λ,+1), λ ∈ K.

• For some non-degenerate reference path X+(λ) for A+∞(λ), let Y (λ, τ) be in the center

stable manifold of X+(λ). Extend Y into K◦ × {τ = +1} so that for λ ∈ K◦, Y (λ,+1)
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is an eigenvector for the unstable direction of A+∞(λ), smoothly compatible with the

values on the boundary K. Define the spherical projection of Y to be Ŷ .

For fixed (λ, τ), where they are defined, Ẑ, Ŷ each span the unstable bundle. Ẑ is defined

over H− and Ŷ is defined over H+, so that for any point p in the unstable bundle one may

choose a unique z ∈ C for which p ≡ (λ, τ, zẐ) if p is is over H−, or choose a unique y ∈ C for

which p ≡ (λ, τ, yŶ ) if p is over H+. Thus the projections Ẑ, Ŷ give choices of trivializations

for the unstable bundle over H−, H+ respectively.

Definition 3.3.2. Given Z, Y as above, and a choice of hemispheres H±, define the following

maps:
φ− : H− × C ↪→ H− × C2

(λ, τ, z) 7→
(
λ, τ, zẐ(λ, τ)

)

φ+ : H+ × C ↪→ H+ × C2

(λ, τ, y) 7→
(
λ, τ, yŶ (λ, τ)

)
These maps are the trivializations of the unstable bundle with respect to H±, Ẑ and

Ŷ . The maps φ± are linear vector bundle isomorphisms, and their composition φ̂ ≡ φ−1
+ ◦ φ−

defined on H− ∩H+ × C will define the transition map of the unstable bundle.

Fixing τ such that (λ, τ) ∈ H−∩H+ ∀λ ∈ K, the transition map can be seen as a mapping

from S1 to GL(1,C), ie: take the restriction of the composition of trivializations to the λ

parameter
φ+
−1 ◦ φ−(λ, τ,−) : K ∼= S1 → GL(1,C)

(λ,−) 7→ φ̂(−)

φ̂ : C → C

z 7→ y

where

z(λ, τ)Ẑ(λ, τ) = y(λ, τ)Ŷ (λ, τ)
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Viewed this way

φ+
−1 ◦ φ−(−, τ,−) ≡ φ̂τ

is seen to have a representation in the fundamental group of GL(1,C) ∼= C∗. The fundamental

group π1 (C∗) ∼= π1 (S1) ∼= Z, so one may identify
[
φ̂τ
] ∼= d where d ∈ Z is the winding of φ̂τ

about K.

Lemma 3.3.3. The winding of the map φ̂τ (λ) is equal to the Chern number of the unstable

bundle, and therefore the total multiplicity of the eigenvalues contained in K◦.

Proof. See Alexander, Gardner & Jones [6] §6.

Lemma 3.3.4. For a choice of non-degenerate reference paths X±(λ) for A±∞(λ), the

winding of the induced phase equals the Chern number of the unstable bundle.

Proof. Notice that for (λ,+1) ∈ H− ∩H+ the transition map can be described through the

induced phase:

z 7→ zẐ
(
λ(s),+1

)
≡ zζ

(
λ(s)

)
X̂+

(
λ(s)

)
≡ zζ

(
λ(s)

)
Ŷ
(
λ(s),+1

)
7→ zζ

(
λ(s)

)

so that the transition map φ̂ is exactly given by z 7→ ζ
(
λ(s)

)
z. But the number of windings

ζ
(
λ(s)

)
takes around the K is given by

d = 1
2πi

∫
ζ(K)

1
z
dz (3.3.1)

= 1
2πi

∫ 1

0

ζ ′
(
λ(s)

)
ζ
(
λ(s)

) λ′(s)ds (3.3.2)

so that the Chern number of the unstable bundle is given by the equation (3.3.2) for the

winding of the induced phase.

3.4 The geometric phase and the transition map

The previous section establishes the relationship between the induced phase ζ(s), for

non-degenerate reference paths, and the Chern number of the unstable bundle over M .
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However, this must be related to the geometric phase in the Hopf bundle for a solution in

the unstable manifold. Let Z, Ẑ be defined as in §3.2. Then each Z, Ẑ ∈ W u for all ξ and

Z] := e
iµ2

(
λ(s)
)
ξ
Z

is the corresponding solution to the A system at ξ. It remains to show that the geometric

phase of the two solutions agree for each ξ, and to relate the phase to the winding of the

transition map for the unstable bundle as ξ → +∞.

Theorem 3.4.1 (The method of geometric phase—case I). Given a choice of reference

paths X±(λ) for A±∞(λ) and Z defined as in §3.2, the asymptotic relative phase of Z
(
λ, τ(ξ)

)
,

lim
ξ→∞

GP
(
Z
(
K, τ(ξ)

))
−GP

(
X+(K)

)
, (3.4.1)

equals the total multiplicity of the eigenvalues enclosed by K if X±(λ) are non-degenerate.

Proof. This theorem is a direct consequence of Lemmas 3.3.3 and 3.3.4, and Corollary

3.2.13.

Finally, the relationship between the solutions to the B, system defined for the proof, and

the solutions to the A system will be established.

Proposition 3.4.2. Let X−(λ) be a reference path for A±∞ and suppose Z and Z] are

solutions to the B and A system respectively, and that they agree at ξ0; then for arbitrary

finite ξ the geometric phase of Z
(
λ, τ(ξ)

)
and Z]

(
λ, τ(ξ)

)
agree.

Proof. Suppose µ2(λ) ≡ α(λ) + iβ(λ), and recall the solution to the A system given by

Z]
(
λ, τ(ξ)

)
= eµ2(λ)(ξ−ξ0)Z

(
λ, τ(ξ)

)
.

Without loss of generality, suppose ξ0 = 0 so that Z] is the unique solution to the A system

that agrees with Z at ξ = 0; the proof will not depend on the constant. The projection of Z]
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onto the Hopf bundle is given by

Ẑ]
(
λ, τ(ξ)

)
≡ eiβ(λ)ξẐ

(
λ, τ(ξ)

)
,

so that calculating the phase:

Ẑ]
(
λ(s), τ(ξ)

)
= e

iβ

(
λ(s)
)
ξ
Ẑ
(
λ(s), τ(ξ)

)
⇒ d

ds
Ẑ]
(
λ(s), τ(ξ)

)
= iβ′

(
λ(s)

)
λ′(s)ξeiβ

(
λ(s)
)
ξ
Ẑ
(
λ(s), τ(ξ)

)
+

e
iβ

(
λ(s)
)
ξ d
ds
Ẑ
(
λ(s), τ(ξ)

)
⇒ ω

(
d
ds
Ẑ]
(
λ(s), τ(ξ)

))
= iβ′

(
λ(s)

)
λ′(s)ξ + ω

(
d
ds
Ẑ
(
λ(s), τ(ξ)

))
(3.4.2)

But µ2(λ), µ′2(λ) are each holomorphic by construction so that

∫
K
µ′2(λ) =

∫
K
α′(λ) + i

∫
K
β′(λ) ≡ 0

and the real and imaginary parts both must equal zero. The iβ′
(
λ(s)

)
λ′(s)ξ term thus

vanishes in equation (3.4.2) when integrated for s ∈ [0, 1]. This proves the geometric phase of

Z](λ, ξ) of the A system corresponds to the phase of the solution Z(λ, ξ) for the B system

for arbitrary ξ. For systems defined on C2, one may thus obtain the total multiplicity of the

eigenvalues contained in K◦ with a solution to either the A or B system utilizing the method

of geometric phase.

3.5 The method of geometric phase on the bistable equation

This section presents an example exploring Way’s numerical method for computing the

geometric phase on the Hopf bundle. This example illustrates some of the properties of the

phase and its variation along paths, and it demonstrates a clear dependence on the length of

the integration in the ξ direction, where the relative phase changes continuously from zero

to the value of the multiplicity of the eigenvalue. The geometric phase of a differentiable path

in the unstable manifold is not generically zero, as demonstrated in the examples. However,
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for symmetric systems, the relative phase will always transition from zero to the eigenvalue

count, by the construction of the relative phase.

Returning to the bi-stable example, equation

ut = uxx + f(u) f(u) = u(u+ 1)(u− 1)

consider the case when c = 0. Then ξ = x and u(ξ) =
√

2sech(ξ) is a time independent

solution to the equation ut = uξξ−u+u3, with −∞ < ξ < +∞. Consider the linearization L

about the basic state. Trivially, 0 is an eigenvalue of multiplicity one for the linear operator

L. The dynamical systems formulation of L is

Y ′ = A(λ, ξ)Y ξ ∈ (−∞,∞) , λ ∈ Ω ⊂ C

A =

 0 1

λ+ 1− 6sech2(ξ) 0

 A∞(λ) =

 0 1

λ+ 1 0


(3.5.1)

which is equivalent to the operator Lξ(p) = pξξ + f ′(u(ξ))p. The eigenvalues/vectors for the

asymptotic system are of the form

+
√
λ+ 1,


1

√
λ+ 1

 (3.5.2)

−
√
λ+ 1,


1

−
√
λ+ 1

 (3.5.3)

Take the contour K to be a circle of radius 0.1 about the origin in the complex plane. In

the figures below plot the building of the geometric phase versus the integration interval in ξ.

By discretizing the contour K into 10, 000 even steps, the geometric phase of the forward
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integrated loop of eigenvectors in equation (3.5.2) is plotted from ξ = −11 to ξ = 11 with two

different scalings of initial conditions. For each point λ ∈ K, the initial condition is integrated

forward in ξ and the equation (2.3.14) is computed, with the derivative approximated with

the difference

∂s |s=s0 u(s, ξ) ≈u(s0 + δs, ξ)− u(s0 − δs, ξ)
2δs .
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Figure 3.1: The phase profile for non-degenerate initial conditions.
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Figure 3.2: The phase profile with initial conditions scaled with simple pole.

The geometric phase experiences a transition near ξ = 0 in these two examples. Hence, the

phase calculation need not be performed for ξ “close” to +∞, but simply past a threshold

where the change of phase occurs. The first figure plots the geometric phase of the eigenvectors

in equation (3.5.2) exactly as the initial condition, but the second figure instead plots the

initial condition scaled by the factor 1
λ
, so there is a pole enclosed at 0. In the degenerate case

the geometric phase of the initial condition is −1, and thus the phase profile is translated by

the index of the degeneracy.

Although in the above non-degenerate example, the initial geometric phase is zero, it

need not be so in general. The contour K defined as the circle with center at 0.1 and radius

1 nears λ = −1, where A∞(λ) is singular. In the plots below, the contour is discretized into

20, 000 even steps and the geometric phase of of the non-degenerate initial condition is evolved

as in the previous example. For this contour, the geometric phase of the non-degenerate

initial conditions in equation (3.5.2) has a different profile, beginning with phase greater zero

and terminating with phase greater than the eigenvalue count.
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Figure 3.3: The geometric phase profile of the evolved solution.
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Figure 3.4: The relative phase profile of the evolved solution.

This specific example demonstrates the necessity of the relative phase formulation; in
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this system with symmetric asymptotic conditions, the relative phase may be formulated as

GP
(
Z(K, τ)

)
−GP

(
Z(K,−1)

)
(3.5.4)

because the reference paths may be chosen X−(λ) = X+(λ). The relative phase is plotted

as the terminal geometric phase minus the initial geometric phase; here the relative phase

transitions between zero and the eigenvalue count as expected. This second example moreover

demonstrates the non-uniform nature of the phase transition, which is also exhibited in

the phase transition for the system defined by the Hocking-Stewartson pulse solution of

the complex Ginzburg-Landau equation. The general method for systems defined on Cn is

fully developed in the subsequent chapter, concluding with a numerical treatment of the

Hocking-Stewartson pulse of the complex Ginzburg-Landau equation.
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CHAPTER 4

The method for general equations

In considering general systems of reaction diffusion equations equations (2.1.1), this

chapter adapts the techniques developed for scalar equations, taking advantage of the full

generality in which the unstable bundle and Evans function can be constructed. Firstly, the

case when n > 2 and there are k > 1 unstable directions will be considered—once a multi-

dimensional formulation is established, the full generalization for systems with non-symmetric

asymptotic limits will be presented. The statements of the method of geometric phase in this

chapter reduce to the case in the previous chapter, so the theorems of this chapter may be

considered the fully general statements for reaction diffusion systems defined on unbounded

domains.

4.1 The determinant bundle of the unstable manifold

Suppose now the operator L defines an A system and B system, as in Chapter 3, but

these systems are on Cn for n > 2. If for all λ ∈ Ω, A∞ = A±∞ has one unstable direction

and n− 1 stable directions, the proof in two dimensions holds; although the ambient complex

dimension has increased, the unstable bundle is still one-dimensional. Likewise if the stable

manifold is 1-dimensional, one may calculate the Chern number of the analogous stable

bundle without any serious modification of the method.

Suppose more generally there are 1 < k < n− 1 unstable directions for the system A∞.

The k dimensional unstable bundle is again formed from the unstable manifoldW u(λ, τ) of the

critical point (0,−1), and the Chern number of this vector bundle equals the total multiplicity

of the eigenvalues contained in K◦. However, it is no longer sufficient to only consider

solutions corresponding to a single eigenvector, as this will not capture the information of

the full unstable bundle. To map the transition map of the unstable bundle, E, to a value in
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S1 this section introduces the determinant bundle constructed from a k dimensional vector

bundle. This technique uses subspace coordinates, reducing the dimension of the unstable

bundle to one, while raising the ambient complex dimension of the system. With respect to

this coordinatization, the unstable manifold is a trajectory on which one can again calculate

the geometric phase, and the goal is thus to apply the same method used in C2 to the

determinant bundle of the k dimensional unstable space.

Definition 4.1.1. The kth exterior power of Cn, Λk (Cn) ≡ C(n
k), is the complex vector

space of non-degenerate k forms on Cn. Λk (Cn) is spanned by

v = v1 ∧ · · · ∧ vk vi ∈ Cn ∀i

and v is non-degenerate provided {vi}k1 are linearly independent in Cn.

Definition 4.1.2. Given a dynamical system

X ′ = AX ′ = d
dξ

X ∈ Cn

let Y = Y1 ∧ · · · ∧ Yk ∈ Λk (Cn). The associated A(k) system on Λk (Cn) is generated by

Y ′ = A(k)Y (4.1.1)

:= AY1 ∧ · · · ∧ Yk + · · ·+ Y1 ∧ · · · ∧ AYk (4.1.2)

Remark 4.1.3. By equation (4.1.2) it is clear that the eigenvalues for the A(k) system are

the sums of all k-tuples of eigenvalues for A. Thus for A(k), there is a unique eigenvalue of

largest positive real part given by the sum of all eigenvalues with positive real part, including

multiplicity.

Definition 4.1.4. Suppose L defines a system of the form (3.1.1) on Cn. Denote {µ±i }ki=1

the eigenvalues of positive real part for A±∞(λ) respectively, and define µ± := ∑k
i=1 µ

±
i . The
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corresponding A(k) and B(k) systems on Λk (Cn) ≡ C(n
k) are defined:

Y ′ = A(k)(λ, τ)Y A
(k)
±∞(λ) = limξ→±∞A

(k)(λ, τ)

τ ′ = κ(1− τ 2)
(4.1.3)

B(k)(λ, τ) :=
(
A(k)(λ, τ)− µ−(λ)

)
X ′ = B(k)X

B
(k)
±∞(λ) := limξ→±∞B

(k)(λ, τ) τ ′ = κ(1− τ 2)
(4.1.4)

Allen & Bridges [16] demonstrate that there is an explicit algorithm to compute the A(k)

system (4.1.2) on the exterior power Λk (Cn) where the coefficients of A(k) are calculated

through the inner product on Cn.

Definition 4.1.5. Let e1, · · · , en denote the standard basis on Cn and ω1, · · · , ωd be the

orthonormal basis for Λk(Cn) generated from the {ei}ni=1, ie: all k-forms

ei1 ∧ · · · ∧ eik ij < ij+1 ∀j.

If x := x1 ∧ · · · ∧ xk and y := y1 ∧ · · · ∧ yk are k-forms in Λk(Cn), their inner product is

defined

� x, y �k = det


〈x1, y1〉Cn · · · 〈x1, yk〉Cn

... . . . ...

〈xk, y1〉Cn · · · 〈xk, yk〉Cn

 (4.1.5)

For A(k)x = ∑k
j=1 x1 ∧ · · · ∧Axj ∧ · · · ∧ xk, Allen and Bridges show the coefficients of A(k)

can be computed following

A
(k)
i,j =� ωi, Aωj �k i, j = 1, · · · , d =

(
n
k

)

An explicit calculation of the A(2) system on Λ2(C4) is given by Afendikov and Bridges [17]

for the linearization of the complex Ginzburg-Landau equation about the Hocking-Stewartson
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pulse; this example was developed in the context of the asymptotic relative phase calculation

in The instability of the Hocking-Stewartson pulse and its geometric phase in the Hopf bundle

[11], and will be used to demonstrate the method of geometric phase for general unbounded

domains at the end of this chapter. Generally for a 4× 4 matrix A this algorithm generates

the following A(2) system:

A(2) =



a11 + a22 a23 a24 −a13 −a14 0

a32 a11 + a33 a34 a12 0 −a14

a42 a43 a11 + a44 0 a12 a13

−a31 a21 0 a22 + a33 a34 −a24

−a41 0 a21 a43 a22 + a44 a23

0 −a41 a31 −a42 a32 a33 + a44



(4.1.6)

For the symmetric form of system (4.1.4), B(k)
∞ has a center direction of critical points, an

unstable real direction, and all other directions are stable; the line of critical points is given

by the span of the wedge of linearly independent eigenvectors corresponding to {µ−i }ki=1.

Definition 4.1.6. For all (λ, τ) ∈ M , let
{
wi(λ, τ)

}k
i=1

be a spanning set for the unstable

manifold W u at (λ, τ), and define

Λk
(
W u(λ, τ)

)
≡ spanC

{
w1(λ, τ) ∧ · · · ∧ wk(λ, τ)

}
.

Then Λk
(
W u(λ, τ)

)
can be taken as the fiber for a non-trivial vector bundle Λk(E) over M

with projection πEk : Ek →M ,

Λk
(
W u(λ, τ)

)
−−−→ Λk(E)y πEk

M

(4.1.7)

Λk(E) is called the determinant bundle of the unstable manifold over M ; henceforth
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Λk(E) is referred to simply as the determinant bundle. The determinant bundle is a line

bundle.

Let the transition map of the unstable bundle E be denoted φ̂E. The determinant bundle

acquires its namesake from the construction of its transition map φ̂kE. The transition map of

the k-dimensional unstable bundle is a λ dependent, non-singular mapping of k-frames of n

dimensional complex vectors. Restricting to the equator of M , one may thus interpret the

transition map
φ̂E : S1 → GL(C, k)

λ 7→ ψ(λ)

so that it defines an element of π1
(
GL(C, k)

)
. But notice, det

(
φ̂E(λ)

)
∈ GL(C, 1) for all

λ ∈ K, so that the determinant induces a homomorphism of fundamental groups

det∗ : π1
(
GL(C, k)

)
→ π

(
GL(C, 1)

)
[
φ̂E
]

7→
[
det ◦φ̂E

]

Definition 4.1.7. The mapping,

det ◦φ̂E(λ) ≡ φ̂kE, (4.1.8)

is the transition map of the determinant bundle.

Lemma 4.1.8. The Chern number of the determinant bundle of the unstable manifold over

M equals the Chern number of the unstable bundle, and therefore the total multiplicity of

eigenvalues for L contained in K.

Proof. This is proven by Alexander, Gardner & Jones [6] §6.

For systems (4.1.3) with symmetric asymptotic limits, one may utilize the method of

geometric phase, calculating the geometric phase of the solution Z(λ, τ) corresponding to the
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eigenvalue of most positive real part, where Z(λ, τ) describes the determinant bundle. These

modifications are presented in the following theorem.

Theorem 4.1.9 (The method of geometric phase—case II). Let the A(k) and B(k)

systems be defined as in equations (4.1.3) and (4.1.4) above. Let X±(λ) be reference paths

for A(k)
±∞(λ) and suppose Z

(
λ, τ(ξ)

)
is in the center-unstable manifold of X−(λ) with respect

to B(k). Then the asymptotic relative phase of Z
(
λ, τ(ξ)

)
,

lim
ξ→∞

GP
(
Z
(
K, τ(ξ)

))
−GP

(
X+(K)

)
, (4.1.9)

equals the total multiplicity of the eigenvalues enclosed by the contour K if X±(λ) are

non-degenerate.

Proof. As in the two dimensional case, Z forms a C analytic section of the line bundle over

M for τ ∈ [−1, 1]. §4 of Alexander, Gardner & Jones [6] shows that this solution is analytic

on [−1,+1) and §6 shows that the limit as ξ → +∞ is non-zero and continuous. The proof

of locally uniform convergence in Proposition 3.2.8 holds here as well, so that the extension

of Z to Z(λ,+1) is C analytic.

Therefore take the projection of Z, Ẑ, onto the sphere

S(2(n
k)−1) ⊂ C(n

k) ∼= Λk (Cn) ,

then with respect to X±(λ) the induced phase ζ(λ) is recovered as a value in S1.

Let Y (λ, τ) be a solution to the B(k) system that is in the center-stable manifold of a

non-degenerate reference path X̂+(λ) at τ = +1, and let Ŷ be the projection of this solution.

The trivializations of the determinant bundle can be expressed in terms of Ẑ and Ŷ , which

yields transition map

Ẑ(λ,+1) ≡ ζ(λ)X̂+(λ) ≡ ζ(λ)Ŷ (λ,+1)

The winding of ζ(λ) is thus equal to the Chern number of the determinant bundle, and is
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related to the geometric phase of Z(λ,+1) by the same formulation described in the two

dimensional case.

Thus in the case of k unstable directions, one may calculate the total multiplicity of

the eigenvalues contained in the region K◦ by an adaptation of the method of geometric

phase applied to the determinant bundle of the unstable manifold. The same proof as in

Lemma 3.4.2 will demonstrate that the geometric phase is equivalent in both the A(k) and

B(k) systems.

4.2 The general method for systems of equations on unbounded domains

This section includes the statement of the general method of geometric phase for systems

of reaction diffusion equations on unbounded domains, defining a dynamical system for any

n ≥ 2. The preceding sections developed a method for finding the total multiplicity of

eigenvalues for L in the region K◦, but the method was restricted to the case for which

limξ→−∞A(λ, ξ) ≡ limξ→+∞A(λ, ξ). The unstable bundle construction, however, is valid

for general systems A±∞ that split in Ω, i.e., each have exactly k unstable, and n − k

stable directions for every λ ∈ Ω. The final modification is to account for systems with

non-symmetric asymptotic limits. The following construction will reduce to that in the

previous sections if the system is symmetric or the dimension of the unstable manifold is

k = 1, so this may be considered to be the fully general statement of the method of geometric

phase for systems on unbounded domains.

Define the determinant bundle system

Y ′ = A(k)(λ, τ)Y A
(k)
±∞(λ) = limξ→±∞A

(k)(λ, τ)

τ ′ = κ(1− τ 2)
(4.2.1)

derived from the flow Y ′ = AY on Cn.

Given a non-degenerate reference path for A−∞(λ), X−(λ), one may construct the center-

unstable manifold of the direction of critical points at τ = −1 in the B(k) system as before.

However, the behavior of such a solution will differ when τ → +1. The dominating unstable
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eigenvalue for the system at τ = +1 does not in general equal the value at τ = −1, and to

calculate the asymptotic relative phase a solution that is non-singular as ξ → ∞ will be

needed.

Definition 4.2.1. Let µ±(λ) be the eigenvalue of most positive real part for A(k)
±∞(λ). For a

reference path X−(λ) for A(k)
−∞(λ) define the center-unstable manifold of X−(λ) in the B(k)

system to be Z(λ, τ) for τ ∈ [−1, 1). Define

Z](λ, τ) := e(µ−(λ)ξ)Z(λ, τ) τ ∈ (−1,+1)

so that

Γ(λ, τ) :=



e(−µ−ξ)Z](λ, τ) for τ ∈ [−1, 0)

e(−µ+ξ)Z](λ, τ) for τ ∈ [0,+1)

limξ→∞ e
(−µ+ξ)Z](λ, τ) for τ = +1

(4.2.2)

Proposition 4.2.2. Γ(λ, τ) satisfies the equation

Y ′ = Ψ(λ, ξ)Y Ψ =


(
A(k)(λ, ξ)− µ−(λ)I

)
for ξ ∈ (−∞, 0)(

A(k)(λ, ξ)− µ+(λ)I
)
for ξ ∈ [0,+∞)

(4.2.3)

Moreover, Γ(λ, τ) is non-zero and analytic in λ for fixed τ , and spans the determinant bundle

∀(λ, τ) ∈ H−.

Proof. Notice that Γ(λ, τ) is a solution to equation (4.2.3) by construction and, moreover,

the analyticity of Γ for τ ∈ [−1,+1) is obvious from the analyticity of Z. Under the flow

defined by

Y ′ =
(
A(k)(λ, τ)− µ+(λ)I

)
Y (4.2.4)

the eigenvector corresponding to µ+(λ) is once again a line of critical points. The solution
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Γ(λ, τ) will converge uniformly in λ to a non-zero critical point defined by the flow in Ψ, as is

demonstrated in Lemma 6.1 in Alexander, Gardner & Jones [6], utilized in its full generality.

Likewise, following the proof of the Proposition 3.2.8 in Chapter 3, Γ(λ, τ) indeed defines a

section of the determinant bundle over the lower hemisphere H−.

Theorem 4.2.3 (The method of geometric phase—general systems on unbounded

domains). If X±(λ) are reference paths for A(k)
±∞(λ), and Γ

(
λ, τ(ξ)

)
is defined as in Definition

4.2.1, then the asymptotic relative phase of Γ
(
λ, τ(ξ)

)
,

lim
ξ→∞

GP
(

Γ
(
K, τ(ξ)

))
−GP

(
X+(K)

)
, (4.2.5)

equals the total multiplicity of the eigenvalues enclosed by the contour K if X±(λ) are

non-degenerate.

Proof. To adapt the determinant bundle method from here, it remains only define Y, Ŷ

appropriately so they converge to a non-degenerate reference path for A(k)
+∞. The construction

of the induced parallel translation will follow analogously, as will the lemmas of §3.

Remark 4.2.4. The equivalence of the geometric phase for Γ(λ, τ) and Z](λ, τ) for τ ∈

(−1, 1) follows from the proof of Proposition 3.4.2.

4.3 The Hocking-Stewartson pulse of the CGL equation

This section demonstrates the method of geometric phase for an ODE system defined on

Cn with n > 2 and an unstable manifold of dimension k = 2; this situation will give rise to a

compound matrix system of the form in equation (4.1.6), defining the phase space C6 where

the geometric phase is computed.

The scaled, complex Ginzburg-Landau equation is given by

ρeiψYt = Yxx − (1 + iω)2Y + (1 + iω)(2 + iω) | Y |2 Y (4.3.1)
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where ρ > 0, ψ and ω are specified real parameters for the system. The Hocking-Stewartson

pulse is the steady state solution for the Complex Ginzburg-Landau equation, given by

Y (x, t) = (cosh(x))−1−iω (4.3.2)

Let L be the linearization of the operator defining equation (4.3.1) about the Hocking-

Stewartson pulse (4.3.2). Considering solutions proportional to eλt, one can derive a non-

autonomous system on C4, with asymptotic limits in x, as done by Afendikov & Bridges [17].

The system is of the form

v′ = A(x, λ)v v ∈ C4

limx→±∞A(x, λ) = A±∞(λ) ′ = d
dx

(4.3.3)

Remark 4.3.1. The linearization of the complex Ginzburg-Landau equation about the pulse,

L, has essential spectrum on the set

Sess =
{
ρ−1e∓iψ(ω − s2 − 1)∓ 2iρ−1ωe∓iψ, s ∈ R+

}
(4.3.4)

and for the parameter values ω = 3, ρ = 1√
5 , and ψ = arctan(2) there is a known double

eigenvalue at λ = 0, and simple eigenvalues at approximately λ = −6.6357 and λ = 15

estimated by Afendikov & Bridges [17].

Lemma 4.3.2. For the parameter values ω = 3, ρ = 1√
5 , and ψ = arctan(2) system (4.3.3)

splits on the domain {λ ∈ C : Re(λ) > 0}. Moreover, Ω ⊂ C can be chosen such that

{λ ∈ C : Re(λ) > 0} ⊂ Ω and −6.6357 ∈ Ω.

Proof. Afendikov & Bridges [17] demonstrate that the autonomous limits, A±∞(λ), each have

exactly 2 stable and unstable eigenvalues respectively, for each λ such that Re(λ) > 0, and in

general for λ /∈ Sess. For ω = 3, ρ = 1√
5 , and ψ = arctan(2), the essential spectrum is a curve

in C that does not intersect −6.6357; therefore an open Ω ⊂ C can be chosen containing
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λ = −6.6357 without intersecting the essential spectrum, and for such an Ω, system (4.3.3)

splits on the domain.

In order to capture the winding of the unstable manifold of the asymptotic system A−∞(λ),

we define the dynamical system on the exterior algebra Λ2(C4). Explicitly, Afendikov &

Bridges derive the compound matrix system

ux = A(λ, x)u x ∈ R λ ∈ C u ∈ C6

A(λ) =



0 0 1 −1 0 0

a32 0 0 0 0 0

a42 0 0 0 0 1

−a31 0 0 0 0 −1

−a41 0 0 0 0 0

0 −a41 a31 −a42 a32 0



(4.3.5)

with components defined

a31 =λρ cos(ψ) + 1− ω2 − (2− ω2)(q̂2
2 + 3q̂2

1) + 6ωq̂1q̂2

a32 =− λρ sin(ψ)− 2ω − 2(2− ω)q̂1q̂2 + 3ω(q̂2
1 + 3q̂2

2)

a41 =λρ sin(ψ) + 2ω − 2(2− ω)q̂1q̂2 − 3ω(3q̂2
1 − q̂2

2)

a42 =λρcos(ψ) + 1− ω2 − (2− ω2)(q̂2
1 + 3q̂2

2)− 6ωq̂1q̂2

and q̂1, q̂2 derived from the expression for the pulse in C4, where

q̂1 =
cos

(
ω log

(
cosh(x)

))
cosh(x)

q̂2 =
− sin

(
ω log

(
cosh(x)

))
cosh(x)
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The non-autonomous system (4.3.5) has the symmetric asymptotic limits

A∞(λ) = limx→±∞A(λ, x) =



0 0 1 −1 0 0

−p(λ) 0 0 0 0 0

η(λ) 0 0 0 0 1

−η(λ) 0 0 0 0 −1

−p(λ) 0 0 0 0 0

0 −p(λ) η(λ) −η(λ) −p(λ) 0



(4.3.6)

where the parameters are defined

p(λ) = 2ω + λρ sin(ψ) (4.3.7)

η(λ) = 1− ω2 + λρ cos(ψ) (4.3.8)

For the asymptotic system (4.3.6), non-degenerate reference paths can be constructed explicitly.

The unique eigenvalues of most positive and most negative real part for system (4.3.6) are

given by σ+, σ− respectively, and have associated eigenvectors

σ+ =
√

2
√
η +
√
η2 + p2, X+(λ) =



2σ+

−2p

(σ+)2

−(σ+)2

−2p

σ+
(
(σ+)2 − 2η

)



(4.3.9)
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σ− = −
√

2
√
η +
√
η2 + p2, X−(λ) =



2σ−

−2p

(σ−)2

−(σ−)2

−2p

σ−
(
(σ−)2 − 2η

)



. (4.3.10)

These eigenvectors correspond to the Grassmann coordinates for the un/stable subspace of

the asymptotic system on C4, and for x < 0 and | x | taken sufficiently large, the λ dependent

initial conditions defined by (4.3.9) will approximate the unstable manifold of the fixed point

0 for the asymptotic system.

In each example below the contour K is chosen to be the circle of radius .1 about λ0

where λ0 ∈ {0, 15,−6.6537}. The contour is discretized into 10, 000 even steps, and for each

fixed λ in the discretization of K, the the unstable eigenvector (4.3.9) is integrated from

x0 = −10 forward to some x1. The Matlab ODE45 solver is used to find the trajectory of the

initial condition X+(λ, x0) with respect to the system (4.3.5), and the trajectory is stored

at step sizes of .04 in x. To compute the relative phase in equation, the geometric phase of

the solution and the reference path is computed with the Euler method from the connection

equation (2.3.13). The relative phase is computed for each stored value of x and plotted for

each of the three contours below—because the system is symmetric, the relative geometric

phase is described by subtracting the initial geometric phase from the terminal geometric

phase.

The first figure demonstrates the phase transition for the simple eigenvalue at λ0 = 15,

where the transition is almost monotonic.

56



−10 −8 −6 −4 −2 0 2 4 6 8 10
−0.5

0

0.5

1

1.5

Integration in x

G
e

o
m

e
tr

ic
 P

h
a
s
e

Figure 4.1: The phase transition plotted for the simple eigenvalue at λ ≈ 15

However, the other two plots for λ0 ∈ {0,−6.6357} demonstrate a non-uniform transition

both in terms of the monotonicity in the phase calculation, as well as the value of x for which

the transition begins.
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Figure 4.2: The phase transition plotted for the double eigenvalue at λ = 0.
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Figure 4.3: The phase transition plotted for the simple eigenvalue at λ ≈ −6.6357

The scale in x direction for the plot of the phase transition at λ0 = −6.6357 is longer,

ending at x1 = 14. Noticeably, the transition here begins later, and doesn’t terminate until it

is nearly at the end of the other plots, at x1 ≈ 10. This example in particular highlights the

importance of understanding the phase transition for applications. It is still an open question

as to what triggers the change of mode in the phase, how this is related to underlying wave,

and the spectrum of the operator L. Understanding the nature of the phase transition may

itself provide additional means of analysing the the stability of the underlying wave.
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CHAPTER 5

The method for systems on bounded domains

While the previous chapters dealt with ODE systems defined on unbounded domains,

the Evans function may also be used to locate and count the spectrum of linear operators

defined for boundary value problems. Gardner & Jones made further developments in the

bundle construction for the Evans Function to study boundary value problems with parabolic

boundary conditions [18], ie: problems of the form

ut = Duxx + f(x, u, ux) (0 < x < 1)

u(x, 0) = u0 B0u = 0 B1u = 0

where u ∈ Rn, f : R2n+1 → Rn is C2. The matrix D is a positive diagonal matrix and the

boundary operators are defined

B0u = D0u(0, t) +N0ux(0, t)

B1u = D1u(0, t) +N1ux(0, t)

such that Dj, N j are diagonal with entries αji , β
j
i respectively that satisfy

(
αji
)2

+
(
βji
)2

= 1 1 ≤ i ≤ n; i = 1, 2

Austin & Bridges built upon and generalized these bundle methods into a vector bundle

construction for boundary value problems for which the boundary conditions can depend on

λ, and allow for general splitting of the boundary conditions [19]. This chapter will consider

how the method of geometric phase can be adapted to boundary value problems, using the
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techniques Austin and Bridges developed for the general boundary conditions.

5.1 The boundary bundle for Cn

For n ≥ 2, consider a system of ODE’s defining a flow on Cn, derived from the linearization

L of a reaction diffusion equation about a steady state. Assume the system is of the form

ux = A(λ, x)u 0 < x < 1 λ ∈ Ω ⊂ C

a∗j
(
λ̄
)

: C→ Cn j = 1, ..., n− k b∗j
(
λ̄
)

: C→ Cn j = 1, ..., k
(5.1.1)

where A(λ, x) depends analytically on λ, and the a∗j , b∗j are holomorphic functions of λ̄ that

describe the boundary conditions for the operator L—the specific conditions are described

with respect to the section product below.

The ambient trivial bundle is once again constructed from the product M × Cn. The

vectors
(
λ, x, a∗j

)
,
(
λ, x, b∗j

)
for each (λ, x) ∈M are anti-holomorphic sections of the trivial

bundle, motivating the above dual notation.

Definition 5.1.1. For a pair ν(λ, x), η(λ, x) where ν is a holomorphic section and η is an

anti-holomorphic section of the trivial bundle M × Cn, their product is defined as:

〈η, ν〉λ =
n∑
j=1

ηj
(
λ
)
νj(λ) (5.1.2)

where ηj, νj are their respective components.

Remark 5.1.2. This scalar product is holomorphic for all λ ∈ Ω, and the boundary value

problem is formulated as follows: u(λ, x) is an eigen function of the operator L for the

eigenvalue λ if and only if u(λ, x) is a solution to ux = A(λ, x)u and

〈
a∗j
(
λ̄
)
, u(λ, 0)

〉
λ

= 0 j = 1, ..., n− k〈
b∗j
(
λ̄
)
, u(λ, 1)

〉
λ

= 0 j = 1, ..., k

A significant difference in this construction from the unbounded systems is that there are

no dynamics to consider on the caps of the parameter sphere, nor eigenvalues of a limiting
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system to describe eigenfunctions. What is needed then is an analogue to the unstable bundle

that will trace the dynamics and pick up winding while traversing the parameter sphere

between τ = ∓1. One choice is the orthogonal complement to the initial conditions, dimension

k, and the manifold defined by their evolution. First is to show that these subspaces, and their

evolution under the flow, vary holomoprhically with respect to λ ∈ Ω. With a holomorphic

basis, one may construct a non-trivial vector bundle over M through which the geometric

phase can be computed as in previous chapters.

Theorem 5.1.3. For a system of the form (5.1.1) derived from the operator L there exist

analytic choices of orthogonal bases for Cn such that

V0 :=
{
νj(λ) : λ ∈ Ω

}n−k
j=1

U0 :=
{
ξj(λ) : λ ∈ Ω

}k
j=1

V0 ⊕ U0 = Cn (5.1.3)

V1 :=
{
υj(λ) : λ ∈ Ω

}n−k
j=1

U1 :=
{
ηj(λ) : λ ∈ Ω

}k
j=1

V1 ⊕ U1 = Cn (5.1.4)

spanC{νj}n−kj=1 = spanC{a∗j}n−kj=1 spanC{ηj}kj=1 = spanC{b∗j}kj=1 (5.1.5)

and with respect to the product of sections (5.1.2)

〈
a∗i
(
λ̄
)
, ξj(λ)

〉
λ

=0 0 ≤ i ≤ n− k, 0 ≤ j ≤ k (5.1.6)〈
b∗i
(
λ̄
)
, υj(λ)

〉
λ

=0 0 ≤ i ≤ k, 0 ≤ j ≤ n− k (5.1.7)

Proof. This is the content of Austin & Bridges’ results in Lemmas 3.1 through 3.3 in [19]

and the reader is referred there for a full discussion.

Remark 5.1.4. Reformulating the problem in this context, u(λ, x) is an eigenfunction of L

with eigenvalue λ if and only if

u(λ, 0) ∈ spanC
{
U0(λ)

}
u(λ, 1) ∈ spanC

{
V1(λ)

}
.
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Foliating the subspaces U0(λ), U1(λ) ⊂ Cn on the caps of M and constructing subspaces

that connect U0(λ), U1(λ) will define a “boundary bundle” over M . Choosing U0(λ), U1(λ) as

fibers above the caps of the boundary bundle is analogous to the case of unbounded domains

because, if λ is not an eigenvalue, a solution to the system u′ = Au cannot be in the span U0

at x = 0 and in the span of V1 at x = 1. Any collection of solutions
{
γj(λ, x)

}k
j=1

that satisfy

the boundary conditions at x = 0, and are linearly independent for (λ, 0), will be linearly

independent for (λ, x) where x ∈ [0, 1). In particular when λ is not an eigenvalue of L, then{
γj(λ, 1)

}k
j=1

are linearly independent and must span some compliment of V1(λ); in general

this need not be the orthogonal complement, i.e., U1(λ), but it is possible to smoothly deform

the solutions into U1(λ) with the projection operator.

Definition 5.1.5. Define the λ dependent projection operator

Qλ : Cn → U1(λ)

and define the orthogonal projection operator

Pλ = (I −Qλ) : Cn → V1(λ)

Proposition 5.1.6. Let uj(λ, x) be solutions to the flow on Cn such that uj(λ, 0) = ξj(λ)

for each j = 1, ..., k, and let
{
ηj(λ)

}k
j=1

be a holomorphic basis for U1(λ). Define

σj(λ, x) ≡


(I− xPλ)

(
uj(λ, x)

)
(λ, x) ∈ K × [0, 1]

ξj(λ) (λ, 0) ∈ K◦ × {0}

Then
{
σj(λ, x)

}k
j=1

are linearly independent and holomorphic for all (λ, x) ∈M \
(
K◦×{1}

)
.

Proof. This proposition follows immediately from the results of §4 in Austin & Bridges

[19].
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Definition 5.1.7. Define Eλ,x ⊂ Cn to be the k dimensional subspace spanned by
{
σj(λ, x)

}k
j=1

for (λ, x) ∈ K × [0, 1]. Over K◦ × {0} define Eλ,0 = spanC
{
U0(λ)

}
. Finally over K◦ × {1},

define Eλ,1 = spanC
{
U1(λ)

}
. For the fibers defined as above,

E ≡
{

(λ, x, Eλ,x) : (λ, x) ∈M
}

is defined to be the boundary bundle with respect to equation (5.1.1) over M .

It follows from Proposition 5.1.6 that E is a holomorphic vector bundle for which{
σj(λ, x)

}k
j=1

and
{
ηj(λ)

}k
j=1

define local trivializations over the upper and lower hemispheres

of M , similarly to Chapter 3. For (λ, x) ∈ K × (0, 1], define
{
ηj(λ, x)

}k
j=1

as the solutions

to equation (5.1.1) which converge to
{
ηj(λ)

}k
j=1

at x = 1, and extend the
{
σj(λ, 1)

}k
j=1

holomorphically into an open set in K◦ homotopy equivalent to S1.

Definition 5.1.8. Define the trivializations of the boundary bundle E over open sets in M ,

by
φ− : H− × Ck ↪→ H− × Cn

(λ, x, zej) 7→
(
λ, x, zσj(λ, x)

)

φ+ : H+ × Ck ↪→ H+ × Cn

(λ, x, zej) 7→
(
λ, x, zηj(λ, x)

)
whereby the transition map at {1}×K is defined by the matrix φ̂(λ, 1,−) := φ−1

+ ◦φ−(λ, 1,−).

Lemma 5.1.9. The winding of the determinant of the transition function,

det ◦φ̂(1,−)(λ) : K → GL(C),

equals the total multiplicity of eigenvalues of L contained within K◦.

Proof. This is Theorem 5.1 in Austin & Bridges [19].

63



5.2 The method of geometric phase for boundary value problems

With the bundle view of boundary value problems with λ−dependent boundary conditions,

one is in the position to utilize the method geometric phase to relate the total multiplicity

of eigenvalues contained within K◦ to the relative phase of paths in the bundle. Utilizing

the determinant bundle, as in Chapter 4, the Chern number of the boundary bundle E will

be recovered through the relative phase. In particular, the wedge product of the solutions{
σj(λ, x)

}k
j=1

will form a solution to the associated system on Λk (Cn) A(k) for which one can

compute the phase.

Definition 5.2.1. Let U(λ, x) := σ1(λ, x) ∧ ... ∧ σk(λ, x), and denote Û(λ, x) to be the

spherical projection of U(λ, x). Similarly let η(λ, x) := η1(λ, x) ∧ ... ∧ ηk(λ, x), and η̂(λ, x)

be the normalization of η in the exterior algebra. Then the line bundle over the parameter

sphere with fibers defined by the span of U(λ, x) for 0 ≤ x ≤ 1 and the span of η(λ, x) for

x = 1 is defined to be the determinant bundle of the boundary bundle.

Note that Û may not be holomorphic, but as in previous sections it inherits infinite

differentiability in the parameter s, where λ(s) : [0, 1] ↪→ K. One may thus calculate the

geometric phase of the vector Û
(
λ(s), x

)
on the Hopf bundle S(2(n

k)−1). From the above, one

may define trivializations of the determinant bundle similarly to the previous sections via

Û(λ, x) over H− and η̂(λ, x) over H+. The Chern number of this vector bundle is equal to

the winding of the transition function, given exactly by the winding of det ◦φ(1,−)(λ).

Definition 5.2.2. The relative phase of U(λ, x), as in Definition 5.2.1, is defined to be the

quantity

GP
(
U(K, x)

)
−GP

(
η(K, 1)

)
(5.2.1)

Theorem 5.2.3 (The method of geometric phase—systems on bounded domains).
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Let U(λ, x), η(λ, x) be defined as in Definition 5.2.1; the relative phase of U(λ, 1),

GP
(
U(K, 1)

)
−GP

(
η(K, 1)

)
, (5.2.2)

is equal to the total multiplicity of the eigenvalues enclosed by the contour K if U(λ, 0) and

η(λ, 1) are holomorphic and non-zero over K◦.

Proof. The calculations of the winding of the transition function and the geometric phase

are analogous to the calculations performed in Chapter 4; there is no difference in calculating

the geometric phase and transition function with respect to these trivializations, and the

proofs of the lemmas of Chapter 3 and Chapter 4 will also work for the boundary bundle

setting. Therefore, the relative phase of U(λ, x) at x = 1 agrees with the total multiplicity of

the eigenvalues contained in K◦ if the paths U(λ, 0) and η(λ, 1) enclose no zeros or poles.
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CHAPTER 6

The method in the Stiefel bundle

This chapter proves a reformulation of the Chern number calculation for the method

of geometric phase, but formulating the calculation in the Stiefel bundle. The following

propositions establish the relationship between the natural connection on the Hopf bundle

and the universal connection on the Stiefel bundle, when considering a spanning frame for the

unstable manifold. Although the exterior algebra and the determinant bundle is a natural

setting to analytically study the Evans function, the computation of the Evans function in

the exterior algebra becomes prohibitive for systems of large dimension. With the un/stable

manifolds typically of dimension k, n − k ≈ n
2 , the state space dimension for the exterior

algebra, C(n
k), grows approximately exponentially in the dimension n [20], [21]. Several works

have proposed methods to overcome the computational cost of the exterior power formulation

in the Evans function and in particular, Humpherys & Zumbrun [20], and Ledoux, Malham

& Thummler [21], develop shooting algorithms that grow in polynomial complexity, O(n3),

in the system dimension n.

These shooting formulations of the Evans function are similar to the method of geometric

phase as presented in the above chapters but the work of Humpherys & Zumbruns computes

a spanning frame of vectors, in Cn, for the un/stable manifolds rather than the Grassmann

coordinates in Λk (Cn); Avitabile & Bridges built on this, connecting the work directly to

the integration of paths in the Stiefel manifold [22]. This chapter similarly considers the

geometric phase of the unstable manifold in Λk(Cn), but in terms of an associated k frame of

vectors and the evolution of this frame on the Stiefel manifold. After deriving original results

describing the analytic formulation of the connection for a k frame of vectors, spanning the

unstable manifold in Λk (Cn), the remaining sections in this chapter will discuss a possible
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numerical implementation of this analytic result, and compare it to similar formulations

described above. The results of this section are to be understood as a novel formulation of

the method of geometric phase, calculating the winding of the Evans function, but in the

Stiefel bundle.

6.1 The geometric phase for a frame

The Stiefel manifold is a fundamental object in differential geometry and algebraic topology,

and its geometric and topological properties are discussed, for instance, by Kobayashi &

Nomizu [14] and Hatcher [23]. The Stiefel manifold also admits a principal fiber bundle

structure—the Stiefel bundle and its canonical connection are defined as follows.

Definition 6.1.1. Define V (n, k) to be the set of matrices V ∈ Cn×k such that V ∗V = Ik×k,

U(k) to be the unitary group over Ck and Gr(n, k) to be the Grassmannian of k-dimensional

subspaces of Cn. The Stiefel bundle is the principal fiber bundle V (n, k) over Gr(n, k),

induced by right multiplication by elements in the fiber U(k). These spaces are related by the

diagram
U(n) −−−→ V (n, k)y π

Gr(n, k)

(6.1.1)

where π is the quotient map induced by the group action of U(k).

Definition 6.1.2. Let V (s) be a differentiable path in the Stiefel manifold V (n, k). The

canonical connection of the Stiefel bundle is defined by the map ω such that

ω : T
(
V (n, k)

)
→ U

ω
(
d
ds
V (s)

)
7→ V (s)∗ d

ds
V (s)

(6.1.2)

where U is the Lie algebra of the unitary group U(k), ie: the k × k skew-Hermitian matrices.

Remark 6.1.3. Narasimhan & Ramanan [24] demonstrate that the canonical connection of

the Stiefel bundle represents a universal connection for principal fiber bundles with fiber
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given by the unitary group. In this sense, the canonical connection on the Stiefel bundle is a

natural construction.

Formulations of the Evans function utilizing the Stiefel manifold decompose the Grass-

mannian coordinates for un/stable manifolds into angular and radial parts; by utilizing only

the angular part, and an associated n× k matrix, these methods describe the evolution of a

loop in the Stiefel manifold. Likewise, for the method of geometric phase, one may consider

this decomposition. Suppose as in the preceding chapters there is a system of ODE’s defined

on Cn derived from a reaction diffusion equation linearized about a steady state. Let this

system be described by

Y ′ = A(λ, τ)Y A∞(λ) := limξ→±∞A(λ, τ)

τ ′ = κ(1− τ 2) Y ∈ Cn

A(λ, τ) =


A(λ, ξ(τ)) for τ 6= ±1

A∞(λ) for τ = ±1

(6.1.3)

Let K be a simple, closed contour in Ω ⊂ C containing no eigenvalues for the operator

associated to the system (6.1.3), and let K◦ ⊂ C define the region enclosed by K. Suppose

the asymptotic A±∞(λ) systems split in Ω, and that they have exactly k and n− k unstable

and stable eigenvalues respectively. Define W u(λ, ξ) be the k dimensional unstable manifold

for 0 in Cn.

Definition 6.1.4. For ξ0 fixed such that
(
λ, τ(ξ0)

)
∈ K × [−1, 1], let

{
σj(λ, ξ) ∈ Cn

}k
j=1

be

an orthonormal set of vectors spanning the unstable manifold W u(λ, ξ0). Let λ(s) : [0, 1]→ K

be a parametrization of K and suppose the vectors
{
σj
(
λ(s), ξ0

)}k
j=1

are each differentiable

in s. The set of σj(λ, ξ0) is defined as a frame for the unstable manifold at ξ0, and

68



likewise denote the matrix with columns given by the σj and the wedge product of the σj as

Σ
(
λ(s), ξ0

)
≡
(
σ1
(
λ(s), ξ0

)
, · · · , σk

(
λ(s), ξ0

))
(6.1.4)

σ
(
λ(s), ξ0

)
≡ σ1

(
λ(s), ξ0

)
∧ · · · ∧ σk

(
λ(s), ξ0

)
(6.1.5)

respectively.

Lemma 6.1.5. Given a frame for the unstable manifold
{
σj
(
λ(s), ξ0

)}k
j=1

at ξ0, the wedge

product σ(s) gives a path in the Hopf bundle S(2(n
k)−1) ⊂ Λk (Cn).

Proof. Consider the inner product on Λk(Cn), defined in equation (4.1.5); suppressing the

dependence on the parameters, the norm squared of σ is given by

� σ, σ �k = det


〈σ1, σ1〉Cn · · · 〈σ1, σk〉Cn

... . . . ...

〈σk, σ1〉Cn · · · 〈σk, σk〉Cn


= det

(
Ik×k

)
= 1

and thus σ
(
λ(s), ξ0

)
is in Hopf bundle for all s.

The above lemma motivates considering a solution in Λk (Cn) explicitly in terms of a

frame for the unstable manifold and its radial component. Neglecting the radial component,

one may calculate the geometric phase of a solution in the determinant bundle σ, but in

terms of Σ and its component-wise ∂s derivatives. This is formalized in the following lemma.

Lemma 6.1.6. Let Γ(λ, τ) be a solution, as in Definition 4.2.1, spanning the determinant

bundle for τ ∈ [−1, 1]. For fixed ξ0 define

Γ
(
λ, τ(ξ0)

)
≡ γ(λ, ξ0)σ1 ∧ · · · ∧ σk(λ, ξ0) (6.1.6)
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for a frame for the unstable bundle at ξ0. Then the projection of Γ(λ, τ) on the Hopf bundle

is given by

Γ̂(λ, τ) = σ(λ, τ) ∈ S(2(n
k)−1), (6.1.7)

and the connection of ∂sΓ̂
(
λ(s), τ(ξ0)

)
in the Hopf bundle can be expressed in terms of the

frame as

σ
(
∂sΓ̂

)
=

k∑
i=1

k∑
j=1

(−1)i+j〈∂sσi, σj〉Cn (6.1.8)

Proof. Recall, one may distribute the s derivative over the wedge product via the Leibeniz

rule, so that

∂sσ = ∑k
i=1 σ1 ∧ · · · ∧ ∂sσi ∧ · · · ∧ σk.

Therefore natural connection of this tangent vector for the path Γ̂(λ, τ) in the Hopf bundle is

given by

� ∂sσ, σ �k,

which can be distributed over sum

� ∂sσ, σ �k =
k∑
i=1
� σ1 ∧ · · · ∧ ∂sσi ∧ · · · ∧ σk, σ � (6.1.9)

=
k∑
i=1

det



〈σ1, σ1〉Cn · · · 〈σ1, σk〉Cn

... ...

〈∂sσi, σ1〉Cn · · · 〈∂sσi, σk〉Cn

... ...

〈σk, σ1〉Cn · · · 〈σk, σk〉Cn


. (6.1.10)
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Due to the orthonormality of the frame, this may be written as

� ∂sσ, σ �k =
k∑
i=1

det



1 · · · 0
... ...

〈∂sσi, σ1〉Cn · · · 〈∂sσi, σk〉Cn

... ...

0 · · · 1


, (6.1.11)

and expanding cofactors along the row of derivatives in each term yields precisely the

alternating sum in equation (6.1.8).

Lemma 6.1.6 shows that the connection on the Hopf bundle S(2(n
k)−1) ⊂ Λk(Cn) can be

computed with respect to the frame for the unstable manifold. The following proposition will

simplify this formulation in terms of a matrix equation for Σ.

Proposition 6.1.7. Define

∂sΣ = (∂sσ1, · · · , ∂sσk) (6.1.12)

jk =



(−1)2

(−1)3

...

(−1)k+1


. (6.1.13)

Then for Γ and σ as defined in Lemma 6.1.6

σ
(
∂sΓ̂

)
= jTk (Σ∗∂sΣ)jk (6.1.14)

Proof. It remains only to verify that the equations (6.1.8) and (6.1.14) agree. Notice, Σ∗∂sΣ
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is the k × k matrix given by

Σ∗∂sΣ =


〈∂sσ1, σ1〉 〈∂sσ2σ1〉 · · · 〈∂sσk, σ1〉

... ...

〈∂sσ1, σk〉 〈∂sσ2σk〉 · · · 〈∂sσk, σk〉

 (6.1.15)

⇒Σ∗∂sΣjk =


∑k
i=1(−1)i+1〈∂sσ1, σi〉

...∑k
i=1(−1)i+1〈∂sσk, σi〉

 (6.1.16)

⇒jTk (Σ∗∂sΣ)jk =
k∑
l=1

k∑
i=1

(−1)2+l+i〈∂sσl, σi〉 (6.1.17)

The above formulation of the connection for the Hopf bundle S(2(n
k)−1) establishes a

relationship with the canonical connection of the associated Stiefel manifold. The geometric

implications of this relationship is currently unclear, but it is worth noting this fact for further

research. Avitabile and Bridges make note that the trace of a skew symmetric matrix is pure

imaginary, and thus the trace of the canonical connection of the Stiefel bundle generates

a phase analogous to the geometric phase in the Hopf bundle [22]. The above formulation

in Proposition 6.1.7 similarly yields an imaginary phase with the Stiefel bundle, and there

may be important connections to explore geometrically. As of now, this establishes the

analytic relationship between the universal connection for the Stiefel bundle and the natural

connection of the Hopf bundle, allowing one to compute the relative phase. The next section

will consider possible numerical implementations of this formulation.

6.2 Methods of continuous orthogonalization and future work

Given a frame for the unstable manifold
{
σj(λ, τ)

}
corresponding to a solution Γ(λ, τ) ∈

Λk(Cn) spanning the unstable manifold of the associated A(k)(λ, τ), one may compute the

relative phase at τ strictly in terms of the frame for the unstable manifold. It may be

useful, therefore, to evolve a frame for the unstable manifold as a point in the Stiefel bundle,
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with respect to the dynamics induced by A(λ, τ). Humphreys and Zumbrun [20] propose

a formulation of this type for the traditional formulation of the Evans function, matching

asymptotic conditions for the un/stable manifolds of the system, usually at τ = 0; their

method is based on the numerical methods of Drury [25] and Davey [26], which were proposed

as an alternatives to the compound matrix method for numerical solutions boundary value

problems.

Definition 6.2.1. The flow on the Stiefel bundle with respect to a linear non-autonomous

system,

Y ′ = A(λ, τ)Y A(λ, τ) =


A±∞(λ) τ = ±1

A
(
λ, τ(ξ)

)
τ ∈ (−1, 1)

(6.2.1)

is generated by the matrix system

V ′ = A(λ, ξ)V − V g

g = V ∗AV − S(ξ, V )
(6.2.2)

for V ∈ V (n, k) and S a value in Ck×k such that S∗ = −S.

Lemma 6.2.2. If S(ξ, V ) is any skew-Hermitian matrix valued function, depending smoothly

on its arguments, then a solution to equation (6.2.2) with initial condition in V (n, k) will

remain in V (n, k) for all ξ ∈ (−∞,∞).

Lemma 6.2.3. If S = 0, so that g is set equal to V ∗AV , then the flow on the Stiefel bundle

is precisely the method of Drury and Davey, and moreover defines the evolution of a horizontal

path in the Stiefel bundle with respect to the canonical connection.

Proof. The above two lemmas are demonstrated by Avitabile and Bridges [22] in pages

1040-1041.

Numerically integrating the flow on the Stiefel bundle, by continuously orthogonalizing

the initial frame for the unstable manifold, may prove challenging. Dieci, Russell & Van
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Vleck [27] demonstrated that implicit, Gauss-Legendre Runge-Kutta integration schemes

preserve the orthonormality of the frame, but these implicit methods are computationally

costly. Additionally they suggest that a solution may be integrated at each step in ξ and

projected onto a unitary frame, but this may not preserve the differentiability in the path

parameter for computing the connection. Avitabile and Bridges [22] have also suggested

that the appropriate choice of g may be used as a stabilization term for explicit, two-step

Runge-Kutta algorithms to balance the precision and computational costs, while maintaining

the differentiability of the flow. The specific choice of numerical implementation will go

beyond the scope of this thesis, and this final section is written to suggest future work on the

method of geometric phase. Although the efficacy of numerically computing the connection

on a frame for the unstable manifold is unclear, this chapter demonstrates that analytically

one may compute the asymptotic relative phase and therefore the Chern class of the unstable

bundle via a frame for the unstable bundle. A complete numerical study of the method of

geometric phase applied to a frame in the Stiefel bundle is thus worthy of consideration.
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CHAPTER 7

Conclusion

This final chapter will review the work of the thesis, highlighting the key results and the

open questions arising from them.

7.1 Discussion of results and open questions

This thesis work formalizes the method of geometric phase for locating and counting

eigenvalues of linear operators associated to reaction diffusion equations, as was originally

proposed by Way [1]. The method demonstrated in this thesis differs significantly from Way’s

conjecture by realizing the necessity of computing the asymptotic relative phase, as was given

in Definition 3.2.9, and passing to the exterior algebra system for the computation of the

relative phase for systems of arbitrary dimension. The veracity of the method of geometric

phase was demonstrated by equating this method to the winding number calculation in

the Evans function for non-linear reaction diffusion equations on unbounded domains, as

formulated by Alexander, Gardner & Jones [6]. Furthermore, this led to the natural extension

to boundary problems for reaction diffusion equations of the form described by Austin &

Bridges [19]. The main results describing this equivalence of these two winding number

calculations are in Theorems 3.4.1, 4.1.9, 4.2.3 and 5.2.3.

While the above results are inspired from Way’s work on the geometric phase in the Hopf

bundle, this thesis makes an additional departure, demonstrating a novel formulation of the

method of geometric phase in terms of a loop in the Stiefel bundle; the phase generated from

the loop in the Stiefel bundle is shown to be related to the canonical connection on the Stiefel

bundle and the result is described in Proposition 6.1.7. This calculation of the phase in the

Stiefel bundle yields an analytic reformulation of the relative phase calculation in the Hopf

bundle, and therefore the Chern number. Finally, building on Way’s numerical study, this
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thesis includes demonstrations of the method of geometric phase with a new attention to the

phase transition and dependence on the asymptotic conditions in the wave parameter.

More than a proof of concept, the numerical implementation of the analytic results leave

important theoretical questions to be examined. The numerical examples exhibit a clear

dependence on the length of the forward integration in the wave parameter direction and

it suggests firstly that it is not in general necessary to integrate the λ dependent loop of

eigenvectors to a value “close to +∞”, but rather, past some critical point at which there

is a transition in the relative phase. The relative phase in the numerics initially equals

zero, but there is a discernible transition of regimes terminating with the relative phase

equal to the total multiplicity of the eigenvalues enclosed by the spectral path. Given that

the proof of the method equates the relative phase to the Chern number of the unstable

bundle over the parameter sphere, it seems intuitive that this should be the case. Indeed,

the Chern number describes a gluing condition for the trivializations of the hemispheres,

and the relative phase seems to “feel” the transition between these trivializations at some

intermediate point, rather than at “+∞”. Understanding the nature of this transition is of

critical importance to the computational method, and the relationship of the phase transition

to the underlying wave is currently unclear. The numerical considerations also bring to light

the apparently rich connections between the method of geometric phase in the Hopf bundle,

and an equivalent formulation of a geometric phase in the Stiefel bundle. There appears to

be room for improving the computational performance of the method by formulating the

method of geometric phase as the evolution of the Stiefel bundle itself.

7.2 Concluding remarks

Evans function calculations are often useful as a stability index [6], describing the multi-

plicity of eigenvalues of positive real part by computing the winding of the Evans function

along the imaginary axis, and bounding the integral of the winding along a semi-circle of

radius r, as r →∞. In particular, in order to utilize the method of calculating the winding

with the geometric phase in the Hopf bundle, it will be critical to understand the nature of
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the phase transition. As demonstrated in the numerical examples, the phase transition need

not be uniform in the integration of the wave parameter, nor uniform across eigenvalues of

the operator—indeed the calculation may fluctuate and the initiation and termination of

the transition differs for each of the examples demonstrated in this work. For utilization

as a stability index, one must understand the relationship between the transition and the

underlying steady state to efficiently compute the eigenvalues. The geometric phase must

eventually converge to the multiplicity of the eigenvalues enclosed by the contour, but a

theoretical understanding of the transition of the phase will be an important development for

both the numerical method and the understanding the eigenvalue problem itself—indeed the

method of the geometric phase offers a unique insight into the continuous accumulation of

the eigenvalue as driven by the system dynamics, a new insight not afforded by other Evans

function methods.

Currently the general computational method of geometric phase is limited by the de-

pendence on the exterior algebra formulation—for usual systems on Cn, where the stable

and unstable manifolds are of dimension approximately n
2 , the dimension of phase space for

the exterior algebra grows approximately exponentially in n, as discussed by Humpherys &

Zumbrun [20]. However, the fact that the method of geometric phase relies only on either

the unstable or stable manifold for the eigenvalue calculation highlights the potential for

future reductions. The numerical calculation of the phase of a frame of solutions spanning

the unstable manifold evolved via a continuous orthonogonalization scheme, as discussed

in Section 6.2, is worthy of its own study. The method of geometric phase furthermore has

the potential to be formulated entirely as a geometric phase of the Stiefel bundle itself, as

suggested by Proposition 6.1.7.
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