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Abstract

QIANCHUAN HE: Variable Selection, Sparse Meta-Analysis and Genetic
Risk Prediction for Genome-Wide Association Studies

(Under the direction of Dr. Danyu Lin and Dr. Hao Helen Zhang)

Genome-wide association studies (GWAS) usually involve more than half a mil-

lion single nucleotide polymorphisms (SNPs). The common practice of analyzing one

SNP at a time does not fully realize the potential of GWAS to identify multiple causal

variants and to predict risk of disease. Recently developed variable selection methods

allow the joint analysis for GWAS data, but they tend to miss causal SNPs that are

marginally uncorrelated with disease and have high false discovery rates (FDRs). Ge-

netic risk prediction becomes highly challenging when the number of causal variants

is large and many of the effects are weak. Existing methods mostly rely on marginal

regression estimates, and their prediction power is quite limited. In meta-analysis, the

involvement of multiple studies adds one more layer of complexity to variable selection.

While existing variable selection methods can be potentially applied to meta-analysis,

they require direct access to raw data, which are often difficult to be obtained.

In the first part of this dissertation, we introduce GWASelect, a statistically power-

ful and computationally efficient variable selection method for analyzing GWAS data.

This method searches iteratively over the potential SNPs conditional on previously

selected SNPs and is thus capable of capturing causal SNPs that are marginally cor-

related with disease as well as those that are marginally uncorrelated with disease. A

special resampling mechanism is built into the method to reduce false-positive findings.
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Simulation studies demonstrate that the GWASelect performs well under a wide spec-

trum of linkage disequilibrium patterns and can be substantially more powerful than

existing methods in capturing causal variants while having a lower FDR.

In the second part, we propose a new approach, Sparse Meta-Analysis (SMA), which

performs variable selection for meta-analysis based solely on summary statistics and

allows the effect sizes of each covariate to vary among studies. We show that the

SMA enjoys the oracle property if the estimated covariance matrix of the parameter

estimators from each study is available. We also consider the situations in which the

summary statistics include only the variances or no variance/covariance information at

all. Simulation studies and real data analysis demonstrate that the proposed methods

perform well. Since summary statistics are far more accessible than raw data, our

methods have broader applications in high-dimensional meta-analysis than existing

ones.

In the third part, we investigate the issue of genetic risk prediction when the number

of true causal SNPs is large and many of the effect sizes are small. We show that

the estimators obtained from marginal logistic regression can be severely biased and

that using these estimators for prediction can lead to highly inaccurate results. To

construct a joint-effects model, we propose a new method based on the smoothly clipped

absolute deviation-supporting vector machine (SCAD-SVM). We conduct a series of

simulation studies to show that our method outperforms the methods based on marginal

estimators. We further assess the performance of our method by applying it to real

GWAS studies.
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Chapter 1

Introduction

Genome-wide association studies (GWAS) have become one of the most important

tools to study the genetics of human diseases. By typing a large number of single

nucleotide polymorphisms (SNPs) in thousands of subjects, researchers are empowered

to search the whole genome for potential targets that predispose a person to disease.

At the same time, GWAS also pave the way for predicting personal genetic risk.

While many SNPs have been identified to be associated with diseases, current meth-

ods do not realize the full potential of GWAS. The most common way to analyze GWAS

data is to examine each SNP one at a time. Although simple and convenient, this strat-

egy ignores the correlations between SNPs and can yield highly biased results. A more

appropriate way to analyze GWAS is to conduct joint analysis for all the SNPs (or at

least a large subset of them) so that better estimation and more accurate prediction

can be achieved.

Unfortunately, traditional statistical methods for joint analysis (such as multivariate

linear regression and logistic regression) are not amenable to high dimensional data,

such as GWAS data. An effective strategy to deal with high dimensions is to conduct

variable selection. However, most of the existing variable methods are designed for a

moderate number of features, and cannot handle the ultra-high dimensions associated



with GWAS. A few recently developed variable selection methods are designed for

GWAS data, but they tend to miss causal SNPs that are marginally uncorrelated with

disease and have high false discovery rates (FDRs). Indeed, how to select important

variables and accurately estimate their joint effects under ultra-high dimensions is one

of the most challenging topics in the current research of statistics.

Meta-analysis plays an important role in summarizing and synthesizing evidence

from multiple GWAS studies. Because the dimensions of GWAS are high, it is desirable

to incorporate variable selection into meta-analysis for better model interpretation and

prediction. Existing variable selection methods require direct access to raw data, but

in practice, it can be extremely difficult to collect GWAS data from multiple resources.

Genetic risk prediction represents another important application of GWAS. For

many complex diseases, the number of true predictors tends to be high and the effects

of genetic variants are usually weak. How to choose the most informative set of SNPs for

prediction and how to construct an effective prediction model are still elusive. Currently

adopted methods are primarily based on marginal regression coefficient estimates and

often yield low prediction power. Constructing prediction models that are based on the

joint effects of SNPs deserves more research efforts.

In this dissertation, we first conduct a literature review on the aforementioned issues

in the remaining of this Chapter. In Chapter 2, we introduce a new method that is

able to conduct variable selection at the genome-wide level. In Chapter 3, we propose

a novel method for sparse meta-analysis, i.e., variable selection for meta-analysis. In

Chapter 4, we investigate a strategy for building prediction models based on the joint

effects of SNPs. In Chapter 5, we outline a future research project on variable selection

for multivariate-outcome data.
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1.1 Variable Selection for Genome-Wide Association Studies

Genome-wide association studies provide an important tool to study the genetic

components of human diseases (McCarthy et al., 2008). In GWAS, researchers are able

to examine more than half a million of SNPs in the human genome in search for potential

associations between genetic variants and diseases. Many disease-associated SNPs have

been identified (Ku et al., 2010), and the number of publications on GWAS has reached

nearly one thousand in the year of 2011 according to the National Human Genome

Research Institute’s Catalog of GWAS (http://www.genome.gov/gwastudies/).

A number of methods have been used to analyze GWAS data, such as the Fisher’s

exact test, logistic regression, and the Armitage trend test (ATT). Regardless of which

method is chosen, common practice is to analyze each SNP one at a time. However,

the marginal effects of SNPs can deviate from their joint effects significantly due to

correlations among the SNPs. For example, a group of SNPs may have weak marginal

effects but strong joint effects. Conversely, a SNP that has a strong marginal effect

may simply be an unimportant SNP that happens to correlate with a causal SNP. As

Wu et al. (2009) have pointed out, marginal analysis “goes against the grain of most

statisticians, who are trained to consider predictors in concert”. A more appropriate

way to analyze SNPs is to estimate their joint effects.

Traditional joint-analysis methods are paralyzed by the enormous dimension of

GWAS. This is because the sample covariance matrix is no longer invertible when

the dimension p is greater than the sample size n. To reduce p, there are two common

strategies: one is Principle Component Analysis (PCA), and the other is variable selec-

tion. PCA is less appealing for GWAS, because the main goal of GWAS is to identify

potential causal SNPs rather than to find the best linear combination of all the SNPs

for explaining the observed variance.

Early variable selection methods require to search the model space exhaustively and

3



evaluate each model by a pre-specified criterion, such as the AIC (Akaike, 1973) and

the BIC (Schwarz, 1978). When p is large, it is computationally infeasible to search

the entire model space. This spurred the development of penalized regression methods,

including the bridge regression (Frank and Friedman, 1993) and the least absolute

shrinkage and selection operator (LASSO) (Tibshirani, 1996). Let y denote the n× 1

response vector, and X = (x1, ...,xn)T denote the n × p covariates matrix. Let β be

the regression coefficients vector. The bridge regression methods take the form of

(y −Xβ)T(y −Xβ) + λ

p∑
j=1

|βj|γ,

where λ is a tuning parameter, βj is the jth component of β, and γ is a number greater

than zero. In contrast, the LASSO takes the form of

(y −Xβ)T(y −Xβ) + λ

p∑
j=1

|βj|.

Clearly, the LASSO is a special case of the bridge regression in that γ is fixed at 1.

When γ = 2, bridge regression reduces to the well-known ridge regression.

The LASSO quickly becomes a popular tool for variable selection because it can

estimate many covariates exactly as zero, and hence naturally yields a sparse model.

For other bridge regression methods with γ 6= 1, the estimated models are either

non-sparse or discontinuous (Fan and Li, 2001). The magic of the LASSO hinges on

the absolute-value operator on the βj’s. When taken the first derivative, this operator

essentially translates into a thresholding function that forces some regression coefficients

to zero if those coefficients are below a certain threshold. The theoretical property of

the LASSO was studied by Knight and Fu (2000). Surprisingly, they found that the

limiting distribution of the LASSO can have a positive probability mass at 0 when

the true parameter is equal to 0, which indicates that the LASSO does not have the

4



model-selection consistency. In light of this issue, Zou (2006) developed the adaptive

LASSO that is consistent for model selection. The adaptive LASSO, in the form shown

below,

(y −Xβ)T(y −Xβ) + λ

p∑
j=1

wj|βj|,

replaces the penalty terms of the LASSO by λwj|βj|, where wj is a feature-specific

penalty weight pre-specified by the user. Zou (2006) proved that, if wj’s are chosen to

be sufficiently small for the true features and sufficiently large for the null features, then

adaptive LASSO can select models consistently. In practice, one can choose 1/β̂j for

wj, where β̂j is the least-squares estimate. However, if p > n, then β̂j is not available

and hence adaptive LASSO is no longer applicable.

On a different line, the inconsistency of the LASSO also triggered the innovation

of other penalty terms. For example, Fan and Li (2001) realized that the convexity of

the LASSO penalty is primarily responsible for the inconsistency of the LASSO, and

introduced the smoothly clipped absolute deviation (SCAD) penalty which is concave.

They showed that if the tuning parameter is chosen properly, then SCAD is able to

select the correct model with probability tending to 1, and estimate the covariance

matrix as efficiently as if the true features were known beforehand. They call this type

of property as the oracle property.

Another variable selection method, the elastic net (Zou and Hastie, 2005), has also

received wide attention in the past several years. The elastic net penalty is a weighted

sum of the L1 and the L2 penalty, and was conjectured to behave somewhat between

the LASSO and the ridge regression. Empirical evidence suggests that the elastic net

can significantly improve the prediction accuracy when features are highly correlated.

The elastic net was later extended to adaptive elastic net (Zou and Zhang, 2011), which

was shown to have the oracle property too.

5



A method that is quite different from the penalized regression methods is the dantzig

selector (Candes and Tao, 2007), which solves the following problem,

minβ ||β||1 subject to ||XT(y −Xβ)||∞ ≤ t.

Here ||.||1 denotes the L1 norm, and ||.||∞ denotes the L∞ norm, i.e., the maximum

absolute value of the components of the vector. Candes and Tao (2007) proved that the

dantzig estimator can estimate the true β quite accurately even under p > n, with a

loss that is within a logarithmic factor of the ideal mean squared error. However, it was

found that the dantzig selector sometimes has erratic operating behaviors in variable

selection (Hastie et al., 2009).

Most of the aforementioned methods were designed for a moderate number of pre-

dictors, and become nonfunctional when p is greater than n. For example, the adaptive

LASSO can not be applied when p > n, because the penalty weights, usually borrowed

from the least-squares estimates, are no longer available due to the non-invertibility of

XTX. Besides the non-invertibility issue, other challenges exist for high-dimensional

variable selection, such as the spurious correlations between the null features and the

true features, and the decay of the true signals (Fan and Lv, 2008). For example, when

p > n, even if all the predictors are independent, the maximum absolute sample corre-

lation coefficient between features can be unusually large (Figure 1.1). As a matter of

fact, how to conduct variable selection under ultra-high dimensions has become one of

the most challenging problems in the current statistical research.

One solution to deal with high-dimensionality is to conduct a pre-screening step to

reduce the dimension, and this idea lies in the heart of the Sure Independence Screening

(SIS) proposed by Fan and Lv (2008). Precisely, they suggest to shrink the number

of features from a very large scale to a moderate scale that is below sample size by

univariate correlation learning, and then select important predictors by a moderate-

scale variable selection method, such as the LASSO or SCAD. Subsequent work on SIS
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Figure 1.1: Distributions of the maximum absolute sample correlation coefficient when
n=60 and p=1000 (inline image) and n=60 and p=5000 (- - - - -). (Fan and Lv, 2008.)

(Fan and Song, 2010) follows the same assumption that marginal screening utilities

have a high probability of preserving all the important features.

In a similar spirit to the SIS, Wu et al. (2009) reduced the dimension of GWAS to

several hundreds using a simple score criterion and applied the LASSO to the reduced

set of SNPs. A drawback of this approach is that important features that are marginally

uncorrelated with response are bound to be missed because the univariate screening

step is based entirely on marginal correlations. Fan and Lv (2008) suggested the iter-

ative sure independence screening (ISIS) procedure, which iterates the SIS procedure

conditional on the previously selected features so as to capture important features that

are marginally uncorrelated with response. Fan and Lv’s work is confined to linear re-

gression of a continuous response, and the number of features they considered is merely

thousands.

7



It is important to control the false discovery rate (FDR) of a variable selection

method. The FDR associated with ISIS, and indeed with any existing variable selec-

tion method, tends to be high. For GWAS, false discoveries can be easily made because

the linkage disequilibrium (LD) between SNPs can be extremely high. Recently, Mein-

shausen and Bühlmann (2010) proposed the stability selection strategy to reduce the

FDR. The procedure is to repeatedly subsample the original data and perform variable

selection on each subsample. The rationale behind the stability selection is that, the

features selected frequently among the subsamples tend to be truly associated with

outcome and thus should be included in the final model. Fan et al. (2009) suggested a

simpler way to reduce FDR. They divide the data into two halves, and then conduct

variable selection for each half separately. Subsequently, the intersection of the two

obtained models is designated as the final model. Zhao and Li (2010) provided some

theoretic guidance on the control of FDR, but how practically useful their formula is

remains to be examined.

Our review so far is mainly focused on the pivotal properties of variable selection

methods, such as the model-selection consistency, oracle property and FDR. Next, we

touch issues on to how to efficiently implement penalized regression methods and how

to properly choose the tuning parameter. We first review some publications on the first

issue.

The LASSO was initially implemented by a two-step procedure as follows. One

first reexpresses the LASSO as least-squares problems with a number of inequality

constraints, and then solves these problems by standard quadratic programming (Tib-

shirani, 1996). This algorithm was later replaced by the Least Angle Regression (LARS)

algorithm, which is faster and only requires the same order of computation as a full

least-squares problem (Efron et al., 2004). The Cyclic Coordinate Descent algorithm

(CCD, also called the shooting algorithm) was hinted to solve the LASSO by Knight
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and Fu (2000), but did not receive full attention until Friedman (2007) and Wu and

Lange (2008) discovered that it is extremely efficient in solving the LASSO. This al-

gorithm cycles through each feature one by one, and thus one only needs to optimize

with respect to a single variable at each time. Since many features are estimated to

be null features, the computation task quickly reduces to the optimization of a small

subset of features, and hence the algorithm converges very fast.

It is more difficult to implement the SCAD because of the concavity of its penalty.

The SCAD was initially implemented by a local quadratic approximation algorithm

(Fan and Li, 2001), but this algorithm has a problem similar to the backward selection.

That is, once a feature is estimated to be a null feature, it can never be selected

back into the set of important features. Zou and Li (2008) proposed the local linear

approximation algorithm, which covers all the penalized regression methods that have

a concave penalty. With this algorithm, the SCAD can be casted as a series of LASSO

problems, which can be quickly solved by the aforementioned CCD algorithm.

Another critical issue is how to choose the tuning parameter. A common strategy

is to run a grid of tuning parameters, and then determine the best value of the tuning

parameter by some evaluation criteria, such as the AIC and BIC. When p is large, BIC is

no longer appropriate because it assigns a much higher probability to models with larger

sizes than to models with smaller sizes. To correct this defect, Chen and Chen (2008)

proposed the extended BIC and showed that it is consistent for model selection. Zou

et al. (2007) provided some guidance on how to calculate the degree of freedom along

the variable selection path. When AIC and BIC do not perform very well in practice,

researchers often resort to the k-fold cross-validation or generalized cross-validation,

which are often computation-intensive and sometimes require an independent validation

data set.
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1.2 Variable Selection for Meta-Analysis

Genetic studies of complex diseases often suffer from the problem of irreproducibil-

ity (Ioannidis, 2005). The leading factors responsible for this problem include small

sample sizes, weak genetic effects and genetic heterogeneity (Burton et al., 2009; Mc-

Carthy et al., 2008; Ioannidis et al., 2007). Meta-analysis provides a way to obtain

more robust and more reproducible results by combining the information from multiple

studies. As a matter of fact, many highly influential findings in GWAS were discov-

ered through meta-analysis (see for example, Scott et al., 2007; Zeggini et al., 2008;

Lindgren et al., 2009).

Meta-analysis has been widely used in many quantitative research areas. By pooling

multiple data sets together, one usually achieves higher statistical power, more accurate

estimates, and improved reproducibility (Noble, 2006). Meta-analysis can be broadly

classified into two classes, the one that requires access to the raw data, and the other

one that only needs the summary statistics. The former one is sometimes called the

Integrative-analysis. Let βk = (β1k, ..., βpk)
T denote the vector of regression parameters

in the kth study for k = 1, ..., K. Integrative-analysis can be conducted under two

models: the first assumes that βk are identical across all k studies, i.e., the fixed-effect

model, while the second allows βk to vary among different studies, i.e., the random

effects model.

It is easier to collect summary statistics than the raw data, and many methods have

been developed to analyze summary statistics. The frequently used one in GWAS is the

weighted inverse variance method. Let β̂k be the estimator of βk, and V̂ k the variance

estimator of β̂k. The inverse-variance estimate of the overall regression coefficients is

{
K∑

k=1

V̂
−1

k

}−1 K∑
k=1

V̂
−1

k β̂k,
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and the inverse-variance estimate of the overall variance is

{
K∑

k=1

V̂
−1

k

}−1

.

Once these quantities are obtained, one can make statistical inference accordingly.

Traditional meta-analysis methods were mainly designed for low dimensional data

sets. When the number of features becomes very large, such as that in the gene expres-

sion analysis or in the genome-wide association studies, it is desirable to incorporate

variable selection into meta-analysis for better model interpretation and higher predic-

tion accuracy.

A variety of variable selection techniques have been developed, including the LASSO

(Tibshirani, 1996), the SCAD (Fan and Li, 2001) and the adaptive LASSO (Zou, 2006).

If all the original data can be pooled together, a simple strategy is to apply these variable

selection methods directly to the pooled data. By doing so, one essentially assumes

that the effect sizes of a feature are identical across different studies (i.e., the fixed-

effect model). For example, given a SNP, one needs to assume that its odds ratios are

identical among all the studies. However, in real situations, the effect sizes of a feature

often vary in different studies, i.e., following the random effects model. To avoid the

‘fixed-effect’ assumption, one can conduct variable selection for each study individually

and then combine the results together. For example, let K be the total number of

studies and M̂(k) be the important set selected for the kth study, then ∪K
k=1M̂(k) may be

considered as an estimate for the final set of important variables across multiple studies.

The disadvantage of this strategy, though, is that each study is analyzed separately and

hence it tends to be less efficient. It is also against the principle of meta-analysis, which

emphasizes the importance of analyzing multiple studies together.

Very recently, Ma et al. (2011) proposed a more efficient approach that is able to

overcome the weaknesses of the above methods. Their approach was motivated by the
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gene expression analysis, where data collected from multiple resources are incompatible

(due to different laboratory platforms) and are difficult to be combined. Their idea

is explained as follows. Let R1(β1), ..., RK(βK) be the likelihood for the K studies

respectively, and R ≡ R1(β1) + · · · + RK(βK) be the likelihood summed over the K

studies. They seek to solve

argmaxβ1,...,βK

{
R− λn

p∑
j=1

(β2
j1 + · · ·+ β2

jK)1/2

}
,

where λn is a tuning parameter. The penalty in the above expression is called the group

bridge penalty. Under this formulation, the p features are treated as p groups, with

each group consisting of its corresponding regression parameters from the K studies.

The group bridge penalty actually is a special case of the group penalty proposed

by Yuan and Lin (2006), which has the form of

λn

p∑
j=1

{
(βj1, ..., βjKj

)× Γj × (βj1, ..., βjKj
)T
}1/2

,

where Γj is a Kj×Kj weight matrix specified by the user. To see why the group penalty

can be reduced to the group bridge penalty, simply let all Kj = K and replace all Γj by

the identity matrix. The motivation behind the group penalty is to produce sparsity

at the group level, that is, some groups will be completely dropped during the variable

selection process. By assigning different penalty weights to the regression parameters,

the group-level sparsity allows one to select features based on some prior information,

such as biological pathways or networks. Because of this attractive property, the group

penalty has been adopted by a number of methods in the last few years (Ma et al.,

2007; Wang et al., 2009; Meier et al., 2008; Zhou et al., 2010).

While Ma et al.’s approach (2011) is interesting, it requires direct access to the raw

data. Unfortunately, it is not always possible to have all the raw data at hands due
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to various reasons, such as IRB restriction, prohibition of data transfer, or unwilling-

ness of the investigators to share data. Instead, most often we can only collect the

summary statistics from each study, such as the least-squares estimates and their esti-

mated variances. Surprisingly, some recent work by Lin and Zeng (2010a) and Lin and

Zeng (2010b) indicated that summary statistics can provide almost an equal amount

of information as the complete raw data when the sample sizes are sufficiently large.

Hence, a natural question arises as to whether it is still possible to conduct effective

variable selection solely based on summary statistics. This question turned out to have

a positive answer, which is relegated to Chapter 3.

During the last decade, many progresses have been made on elucidating the asymp-

totic behaviors of the penalized regression methods. Knight and Fu (2000) obtained

the limiting distribution of the LASSO estimator by deriving the limit of its penalized

function. Fan and Li (2001) studied the oracle property for the SCAD in a completely

different way. Fan and Li’s proof essentially contains three steps: first, they showed

that if the tuning parameter λn → 0, then the estimator of the regression coefficients

is
√
n consistent; second, they proved that if λn → 0 and

√
nλn →∞, then with prob-

ability tending to 1, all the null features will be estimated as null features; third, based

on the second result, they established the estimation efficiency for the true features.

Zou (2006) followed the idea of Knight and Fu, and proved that the adaptive LASSO

enjoys the oracle property as well. A by-product of Zou’s article is that the nonnegative

garrote (Breiman, 1995) was found to be a special case of the adaptive LASSO with

additional sign constraints, agreeing with the results obtained by Yuan and Lin (2007).

All the above results assume that the dimension p is fixed and smaller than n.

However, this assumption can be easily violated in real situations, for example, in the

analysis of microarray data or GWAS. In the following discussion, we add a subscript

n to the dimension p to emphasize that the dimension pn is no longer a fixed number.
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Let γ0 denote the true regression parameter, and γ̂ denote its estimator. A number of

researchers have attempted to relax the assumption of ‘p < n’. Fan and Peng (2004)

proved that, as long as p5
n/n→ 0, even if pn diverges possibly to infinity, one can still

achieve ||γ̂−γ0|| = O(
√
pn/n) and the oracle property still holds. Huang et al. (2008)

showed similar results for the bridge estimator when pn is diverging. They further

showed that, under the partial orthogonality condition (explained in the sequel), one

can still achieve the oracle property even if pn > n. Let I denote the set of important

features, and N denote the set of unimportant features. Let xij be the jth covariate

of the ith person. The partial orthogonality condition stipulates that, there exists a

constant c0 > 0 such that

∣∣∣∣∣n−1/2

n∑
i=1

xijxik

∣∣∣∣∣ ≤ c0, j ∈ I, k ∈ N ,

for all large n. This condition essentially says that the correlations between important

features and unimportant features cannot be too high so that it is possible to conduct

marginal regression to reduce the dimension to a number less than n. Zou and Zhang

(2011) proved similar asymptotic properties for the adaptive elastic-net. How to relax

the partial orthogonality condition and how to better deal with the ‘p > n’ situation

remain to be one of the most active research areas in high dimensional data analysis.

1.3 Genetic Risk Prediction

Genome-wide association studies provide unprecedent opportunities for genetic risk

prediction for human diseases (Kraft and Hunter, 2009). By harnessing the prediction

power of single nucleotide polymorphisms, it is anticipated that disease prevention and

clinical practice will be revolutionized in the near future (Collins, 2010).

The prediction power of SNPs varies dramatically among different diseases. For a
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few diseases, such as the age-related macular degeneration, a handful of large-effect

SNPs can yield a high prediction accuracy with regard to the disease outcome (Seddon

et al., 2009). For many other diseases, the prediction power garnered from SNPs is

fairly low. In fact, the proportion of phenotypic variance that can be explained by

genetic factors is called the heritability , and is typically estimated from family studies.

Because current methods that exploit SNPs for risk prediction can only explain a

small proportion of the heritability, the remaining part is commonly called the ‘missing

heritability’ (Manolio et al., 2009).

At least part of the missing heritability can be ascribed to insufficient number of

SNPs being included in the prediction model. Current literature suggests that many

complex diseases are contributed by a large number of causal SNPs (Barrett et al., 2008;

Barret et al., 2009). Thus, it is natural to consider including as many SNPs as possible

into the prediction model. A typical GWAS encompasses more than half a million

SNPs, and it is certainly not proper to include all of them. One popular strategy is to

conduct the marginal logistic regression for each SNP individually, and then use SNPs

that reach a pre-specified statistical significance level for model construction (Wray

et al., 2007). The resulting prediction model is essentially an inner product between

those ‘significant’ SNPs and their estimated marginal effects, and we call this method

as the Marginal method. This strategy has been adopted in a recent article (The

international schizophrenia consortium, 2009), where thousands of SNPs were included

in the prediction model, with the hope to harvest more prediction power. Another

commonly used strategy is based on the genotype score, which is defined as the total

number of risk alleles a person carries with respect to some predetermined candidate

SNPs (James et al., 2008; Kang et al., 2010). Once the genotype score is obtained,

one simply fits a logistic regression model (with the genotype score as the covariate)

to construct the prediction model. This model can be somehow seen as a special case

15



of the first approach, with the absolute values of the effect sizes of all the SNPs being

equal. We name the second method as the Count method.

There are at least two problems associated with the aforementioned two approaches.

First, both of them rely on an arbitrary threshold/criterion to select SNPs and thus are

quite ad hoc; second, it is known that marginal effects can be quite different from the

joint effects of SNPs, hence the prediction power can be severely compromised. In fact,

a recent study (Machiela et al., 2010) shows that using thousands of SNPs is no better

than simply using dozens of SNPs for risk prediction when the above two methods are

employed. Compared to the Marginal method and the Count method, a better strategy

to deal with the aforementioned problems is to conduct variable selection on all the

SNPs so that a smaller subset of SNPs can be prioritized and the joint effects of SNPs

can be estimated.

While existing variable selection methods are abundant, few of them are suitable

for the task of genetic risk prediction under the GWAS setting. This is because the

dimension of GWAS is extremely high, and the linkage disequilibrium among SNPs

is extensive. Beside these issues, the fact that the number of causal SNPs is large

and many of their effects are weak poses additional challenges for risk prediction. The

Support Vector Machine (SVM) is known for its superior performance in classification

of high-dimensional data (Vapnik, 1999). For example, two articles that describe the

application of the SVM to microarray data analysis (Furey et al., 2000; Guyon et al.,

2002) have been cited more than 3000 times in total as of 2011. The SVM has many

subtypes, and we focus on its linear subtype, i.e., the linear SVM. Let zi denote the

outcome for the ith subject, with 1 for case and -1 for control. Let α denote the

intercept, and xi and β be defined as in Section 1.1. The linear SVM can be written as

min
α,β1,...,βp

n∑
i=1

[1− zi(α+ xT
i β)]+ + λ

p∑
j=1

β2
j ,
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where [.]+ is called the hinge loss, and [s]+ equals to the positive part of s.

Since the penalty term in the above function is an L2 penalty, the SVM does not

provide sparse solution with respect to β. On the other hand, it has been observed

that removing noise features from prediction models (i.e., achieving model sparsity) can

often improve the prediction accuracy (Zou and Hastie, 2005; Kooperberg, et al., 2010).

To achieve model sparsity, Zhang et al. (2006) replaced the L2 penalty in the SVM

with the smoothly clipped deviation (SCAD) penalty, and named the new method as

the SCAD-SVM. The SCAD penalty is a concave penalty, and has the form of

pλ(|βj|) =


λ|βj| if 0 ≤ |βj| < λ

(a2−1)λ2−(|βj |−aλ)2

2(a−1)
, i.e.,− (|βj |2−2aλ|βj |+λ2)

2(a−1)
if λ ≤ |βj| < aλ

(a+1)λ2

2
if aλ ≤ |βj| ,

where a is usually chosen to be 3.7. It has been shown that the SCAD penalty possesses

better theoretical property than the L1 penalty (Fan and Li, 2001). Zhang et al. (2006)

found that the SCAD-SVM competes favorably with the SVM in both variable selection

and prediction.

The SCAD-SVM was designed for the analysis of gene expression data, whose di-

mension is much lower than GWAS. To extend the SCAD-SVM to the analysis of GWAS

data, at least two issues need to be addressed. First, the original implementation of

the SCAD-SVM requires inversion of a large matrix, which may encounter difficulties

when the matrix is ill-conditioned. Second, dimension reduction is needed to reduce

the enormous dimension of GWAS to a more manageable number. The recently pro-

posed local linear approximation (LLA) algorithm (Zou and Li, 2008) has a potential

to handle the first issue, while the Sure Independence Screening theory (Fan and Lv,

2008) provides some clues for the second issue. The local linear approximation works
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as follows,

pλ(|βj|) ≈ pλ(|β(0)
j |) + p′λ(|β

(0)
j |)(|βj| − |β(0)

j |),

which is essentially a first-order Taylor expansion of the pλ(|βj|) around the pλ(|β(0)
j |).

The advantage of this approximation is that it accommodates the CCD algorithm

and hence is highly efficient. The LLA algorithm is considered to be a significant

improvement over the local quadratic approximation,

pλ(|βj|) ≈ pλ(|β(0)
j |) +

1

2
{p′λ(|β

(0)
j |)/|β(0)

j |}(β2
j − β

(0)2
j ),

which has been found to be often less stable.

An important topic we have not touched so far is how to evaluate the prediction

accuracy of various prediction methods. In simulation studies, because the true liability

of disease is known, one can directly compare the estimated liability and the true

liability. In real practice, the true liability is, of course, unknown, and other criteria

need to be considered. A traditional criterion is the 0/1 mis-classification error rate.

Let z̃i be the predicted outcome for zi, then the mis-classification error rate under the

SVM setting is defined as

1

n

n∑
i=1

|I(z̃i = 1)− I(zi = 1)|,

where I(.) is an indicator function. This criterion essentially measures the proportion

of subjects who were mis-classified with respect to their disease outcomes. Another

popular measure of prediction accuracy is the Area Under Curve (AUC) with respect

to the Receiver Operating Curve (ROC) (Lusted, 1971). The ROC is closely related

to the concept of sensitivity and specificity, which is explained in the sequel. Let

TP, TN, FP and FN denote the true positive, true negative, false positive and false
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negative, respectively. The sensitivity is defined as TP
TP+FN

, and the specificity is defined

as TN
TN+FP

. Plotting the sensitivity against the (1 – specificity) yields the ROC. An

important difference between the two measures is that, the mis-classification error rate

is critically dependent upon a single cut-off value on the decision rule, while AUC is

averaged across all possible cut-off values. In fact, ROC curve depends only on the

ranks of the liability scores (Lu and Elston, 2008), and hence is a more robust measure.

In the current literature of genetic risk prediction, it appears that AUC is far more

widely used than the mis-classification error rate (Wei et al., 2009; Kang et al., 2010;

Machiela et al., 2011).

Most of the existing methods for genetic risk prediction are focused on SNPs data

alone. Ruderfer et al. (2010) proposed to incorporate family information into dis-

ease prediction, but their method can only handle low-dimensional data. Developing

methods that can handle high-dimensional data as well as family structures is likely to

become an interesting research topic in future.

19



Chapter 2

A Variable Selection Method for
Genome-wide Association Studies

2.1 Introduction

In this chapter, we propose a new variable selection method, GWASelect, for

genome-wide association studies. Our method is motivated by the Iterative Sure In-

dependence Screening (ISIS) of Fan and Lv (2008). The ISIS essentially consists of

two major components in its concept: the first one is to conduct dimension reduction

through the utility of marginal regression, while the second one is to iteratively search

for conditionally important predictors. The former component provides a powerful tool

to reduce the dimension from ultra-high to a more manageable number, while the latter

reminds us that marginal regression alone is not sufficient to capture the complexity of

correlations among predictors.

Our extension of ISIS to GWASelect is not trivial. First, the original ISIS proposed

by Fan and Lv was designed specifically for linear regression model, where the condi-

tional screening can be readily performed based on the residuals. In contrast, we are

dealing with the logistic regression model, where residuals cannot be used as response

variables for conditional screening. Second, prediction errors tend to be much higher



for binary outcomes than continuous outcomes, because the former outcomes contain

less information than the latter. Third, Fan and Lv were considering microarray data

analysis, where the number of predictors is at most several thousands, whereas the

number of SNPs we are dealing with can be extremely large, typically more than half

a million. Fourth, the effects of causal SNPs on complex diseases tend to be small to

modest, so the signal-to-noise ratio in GWAS data is low. Fifth, the LD among SNPs

is extensive and can be extremely high in certain regions.

Another distinct feature of our method is that we incorporate a subsampling pro-

cedure into GWASelect to reduce the FDR. The subsampling procedure is based on

the theory of stability selection by Meinshausen and Bühlmann (2010), and has been

proved to be consistent for variable selection.

We describe our approach in the next section. In Section 2.3, we demonstrate

through simulation studies that GWASelect has robust performance under a variety

of LD structures and can substantially increase the power and reduce the FDR com-

pared to existing methods. In addition, the regression models generated by GWASelect

significantly improve prediction accuracy. In Section 2.4, we apply GWASelect to the

GWAS data from the Wellcome Trust Case-Control Consortium (WTCCC) (2007) and

show that it yields several novel discoveries and improves prediction accuracy.

2.2 Methods

Our ISIS method consists of one marginal SIS and two rounds of conditional SIS.

We first describe the marginal SIS procedure. The data contain n subjects and p SNPs.

The genotypes of each SNP are standardized by its sample standard derivation. The SIS

theory suggests to reduce the original set of features to a small subset whose dimension

is in the order of n/ log n. Since binary outcomes generally contain less information

than continuous outcomes, we shrink the dimension of SNPs from p to n/(4 log n). The
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SIS theory also suggests to use a large proportion of the subset for the marginal SIS;

therefore, we choose to use t SNPs, where t is the integer part of 0.9n/(4 log n). That

is, we perform the ATT (under the additive model) on each SNP and select the t most

significant SNPs to form a set S1. Then we apply the LASSO to S1 as follows.

For i = 1, . . . , n, let Yi denote the disease status (1=case, 0=control), and Xi denote

the (t+ 1)-vector consisting of 1 and the genotypes of the t SNPs in S1. The genotype

of each SNP is represented by the number of minor alleles. It is natural to assume the

logistic regression model

Pr(Yi = 1|Xi) =
exp(βTXi)

1 + exp(βTXi)
,

where β = (β0, β1, . . . , βt)
T denotes the vector of unknown regression coefficients. The

penalized log-likelihood function takes the form

l̃(β) =
n∑

i=1

[
Yiβ

TXi − log{1 + exp(βTXi)}
]
− λ

t∑
j=1

|βj|,

where λ is the tuning parameter.

We adopt the cyclic coordinate decent algorithm (CCD) (Genkin et al., 2007; Fried-

man et al., 2010), which is tantamount to maximizing l̃(β) in a component-wise manner.

Cross-validation can be used to determine the tuning parameter (and consequently the

model size), but for now, we set the model size to a user-specified number, say d.(We

will show later how to determine the model size adaptively.) That is, we run the LASSO

on a dense grid of λ until it generates a model containing d predictors. If the exact

number of d cannot be achieved, we choose the model whose size is right below d. This

model is labeled M1.

To reduce potential collinearity, we prune M1 using pairwise correlations. Our

analysis revealed that 99.9% of the pairwise correlations among the Illumina300K SNPs
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have absolute values less than 0.8 (corresponding to r2 of 0.64). Thus, we set the

pruning threshold for r2 to 0.64 so as to minimize the loss of information due to pruning.

The pruned model is labelled M∗
1. This marks the end of the marginal SIS.

Assuming that M∗
1 contains t1 SNPs, we label the set of the remaining (p − t1)

SNPs as M∗
1. We use the conditional SIS described below to capture important SNPs

in M∗
1 that are marginally uncorrelated with disease. The first step is to screen all

the SNPs in M∗
1 to identify a small set of candidate SNPs that are correlated with Y

conditional on M∗
1. This step is computationally challenging because the cardinality

of M∗
1 is close to p, which can be 1 million. We develop the following conditional score

test to accomplish this task in a very efficient manner.

For the ith subject, let Wi be the (t1 + 1)-vector consisting of 1 and the genotypes

of the t1 SNPs in M∗
1. Let Zj be the jth SNP in M∗

1, and Zji be the value of Zj on

the ith subject, where j = 1, . . . , p− t1. We assume the logistic regression model:

Pr(Yi = 1|Zji,Wi) =
exp(γZji + ηTWi)

1 + exp(γZji + ηTWi)
,

where γ and η are unknown regression coefficients. We are interested in testing the null

hypothesis H0 : γ = 0. It is computationally intensive to fit the above model for each

of the (p − t1) SNPs. To bypass this difficulty, we perform the conditional score test.
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Specifically, we calculate S = U/V 1/2, where

U =
n∑

i=1

{
Yi −

exp(η̂TWi)

1 + exp(η̂TWi)

}
Zji,

V = Iγγ − IγηI
−1
ηη I

T
γη,

Iγγ =
n∑

i=1

exp(η̂TWi)

{1 + exp(η̂TWi)}2
Z2

ji,

Iγη =
n∑

i=1

exp(η̂TWi)

{1 + exp(η̂TWi)}2
ZjiWi

T,

Iηη =
n∑

i=1

exp(η̂TWi)

{1 + exp(η̂TWi)}2
WiWi

T,

and η̂ is the maximum likelihood estimator of η under H0. Note that η̂ and Iηη do not

involve any data in M∗
1 and thus need to be calculated only once at the outset of the

conditional SIS. Given η̂ and I−1
ηη , we calculate the test statistic S for each of the (p−t1)

SNPs in M∗
1. In vein with the SIS theory, we choose the most significant q SNPs, where

q is the integer part of 0.05n/(4 log n), and call this set of SNPs S2.(We use 0.05 since

0.9 + 0.05 + 0.05 = 1, where 0.9 pertains to the marginal SIS, and (0.05 + 0.05) to the

two rounds of conditional SIS.)

The first step of the conditional SIS is aimed at identifying important SNPs that

are marginally uncorrelated (but conditionally correlated) with disease while weakening

the priority of those unimportant SNPs that are highly associated with disease through

their correlations with the SNPs in M∗
1. In the second step, we combine S2 with M∗

1

and run the LASSO to select a model M2 with d SNPs. During this process, new SNPs

may be selected, and previously selected SNPs have a chance to be removed from the

model. We prune M2 to form a new model M∗
2. This completes the conditional SIS.

To increase the opportunities of capturing important SNPs, we repeat the condi-

tional SIS once and call the final model M∗
3. We refer to M∗

3 as the ISIS model.
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Conditional SIS

Conditional SIS

Figure 2.1: Flowchart of the proposed GWASelect method.
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To reduce the FDR, we combine the extended ISIS procedure with the stability se-

lection strategy (Meinshausen and Bühlmann, 2010) to create the GWASelect method,

as illustrated in Figure 2.1. Specifically, we randomly obtain half of the cases and half

of the controls from the GWAS data to form a subsample and then run the ISIS on

this subsample. The resulting model is named T1. Repeating this subsampling con-

catenated with the ISIS 50 times, we obtain T1, . . . , T50. Let T = ∪50
j=1Tj, and denote

T = {v1, . . . , vL}. We then calculate the selection probabilities for the L SNPs in T

πl =
50∑

j=1

I(vl ∈ Tj)/50, l = 1, . . . , L,

where I(·) is the indicator function. We choose the d SNPs with the highest selection

probabilities from T to form the GWASelect model.

It is sometimes desirable to determine the model size adaptively from the data. To

this end, we develop dynamic-GWASelect (d-GWASelect), which contains two modi-

fications to the GWASelect. The first modification is that cross-validation is used to

determine the tuning parameter for the LASSO embedded in the ISIS. Specifically, we

divide the data randomly into 5 equal parts, with the kth (k = 1, . . . , 5) part being

the testing data and the remaining 4 parts being the training data. For a given tun-

ing parameter λ, we apply the LASSO to the training data and select the SNPs that

have nonzero regression coefficients. We calculate the liability score (i.e., the linear

predictor) for each testing subject. Let J1 denote the set of subjects with the high-

est δ × 100% liability scores, and J2 the set with the lowest δ × 100%, where δ is a

user-specified number between 0 and 0.5. We then calculate the δ-error-rate, defined

as (
∑

i∈J1
|Yi − 1| +

∑
i∈J2

|Yi − 0|)/(2δñ), where ñ is the number of subjects in the

testing data. We choose the value of λ that minimizes the δ-error-rate averaged over

the 5 testing data sets for δ = 0.1.
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The second modification is that, instead of fixing the model size at d, we specify a

selection threshold ξ and select all SNPs with selection probabilities ≥ ξ. As shown in

the next section, the influence of ξ on the final model is typically small.

2.3 Simulation Studies

Each simulated data set contained 2,000 cases and 2,000 controls. For each subject,

we simulated 20 chromosomes, each containing 3,000 SNPs. The disease status was

generated from the logistic regression model containing 10 causal variants, G1, . . . , G10,

with the vector of log odds ratios β∗.

We considered three simulation schemes for the causal SNPs. In the first scheme, we

simulated 10 independent causal SNPs that are located on 10 different chromosomes,

with minor allele frequencies (MAFs) of 0.3. We set β∗ = (−0.35,−0.35, 0.35, 0.35, 0.35,

0.35, 0.35,−0.35,−0.35,−0.35)T.

In the second scheme, we let {G1, . . . , G10} reside on one chromosome and have a

special correlation structure such that the correlation between any two causal variants

is nearly 0.6. We set β∗ = (0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3)T.

In the third scheme, multiple causal SNPs were generated to be marginally un-

correlated with Y . We let the first causal SNP be independent of the other 9 causal

SNPs. The latter were simulated to form three clusters, {G2, G3, G4}, {G5, G6, G7} and

{G8, G9, G10}, each cluster residing on one chromosome. The three clusters are indepen-

dent of each other, but within each cluster, SNPs have a compound symmetry correla-

tion structure with correlation 0.5. We set β∗ = (0.5,−0.5,−0.5, 0.5, 0.5,−0.5, 0.5,−0.5,

0.5,−0.5)T. Under this scheme, corr(Y,G4), corr(Y,G6) and corr(Y,G9) are equal to 0.

For all three schemes, the positions of the causal variants on the chromosomes were

randomly chosen. Thus, our simulation results would not be affected by any local LD

patterns.
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It is not trivial to simulate non-causal SNPs as they are desired to mimic the

actual LD structure of human population. There exist several genome simulators based

on the coalescent approach (Hudson, 2002), for which the users have to arbitrarily

specify a number of parameters. As an alternative, the GWAsimulator of Li and Li

(2008) employs a moving-window mechanism and can simulate genotypes based on

the Illumina HumanHap300 chip data. We adopted the latter approach. Because the

average distance between two SNPs for the Illumina HumanHap300 chip data is roughly

10 kb, the total length we simulated is approximately 600 Mb, which accounts for 1/5

of the whole genome. The LD was well preserved and no trimming was done for the

simulated data.

Hoggart et al. (2008) explored variable selection from a Bayesian point of view

by imposing the Laplace prior or the normal exponential gamma prior on each SNP.

The former prior yields the LASSO procedure, while the latter generates a more sparse

model and is called hyper-LASSO (HLASSO). We included the HLASSO in our sim-

ulation studies. Thus, we analyzed the simulated data by five methods: 1) the ATT

method, for which the threshold for declaring significance was set to 0.05/60, 000 (i.e.,

Bonferroni correction); 2) the method by Wu et al. (2009); 3) the (extended) ISIS

method; 4) the HLASSO; and 5) the GWASelect method. For the HLASSO, we ap-

plied a tuning parameter that yields an average model size of 15; for the other methods

except the ATT, we also set the model sizes to 15. We chose 15 because most biology

labs are likely to restrict their resources to a small number of top SNPs.

There are different criteria to evaluate a variable selection method. We chose to

use the true discovery rate (TDR) and false discovery rate (FDR) (Benjamini and

Hochberg, 1995) because the main goal of GWAS is to identify causal variants. For

genetic studies, how to define the true discovery and false discovery is a delicate issue.

This is because once a SNP is declared to be significant, all SNPs that are close to
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and in LD with that SNP will be followed up. We defined the true positive and false

positive as follows. If a captured SNP was no more than 50 SNPs away from a true

causal SNP and had r2 > 0.05 with that same causal SNP, then we classified it as a true

positive. (Our experiments revealed that replacing 50 with 20 yielded similar results;

Hoggart et al. (2008) provided a rationale for choosing 0.05 for r2.) If more than one

SNP satisfied these conditions, we counted them only as one true positive cluster. The

remaining captured SNPs were classified as false positives. If two false positive SNPs

were no more than 10 SNPs apart (i.e., within 100 kb in distance), we counted them

as only 1 false positive cluster. The calculations of the TDR and FDR were based on

clusters, rather than on individual SNPs. For each simulation scheme, the number of

replications was set to 200. The results are shown in Table 2.1.

Scheme 1 was designed to compare the five methods under a scenario where all

causal variants are independent and their effects are moderate. Under this scheme, all

five methods yield high TDRs (>95%), but the FDRs are highly variable. Despite a

large model size, the ATT method has the lowest FDR. This seemingly paradoxical

phenomenon is explained by the fact that most of the SNPs in the ATT model are

highly clustered due to strong LD. The GWASelect model has an elevated FDR, but

far lower than the ISIS and the HLASSO, and slightly lower than the Wu et al. model.

This demonstrates that, by repeated subsampling and variable selection, GWASelect is

able to remove many noise features from the model. Overall, the ATT method appears

to be a good option when causal variants are independent with moderate effects, but if

one wishes to achieve higher power without too many false discoveries, the GWASelect

method would be a reasonable choice.

In scheme 2, all ten causal variants are correlated with each other, which makes vari-

able selection more challenging. It can be shown that under this scheme, the marginal
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effects of the causal SNPs are much higher than their joint effects. For variable selec-

tion, this has the undesired effect of including unimportant SNPs that are in proximity

of the causal SNPs. Reflecting this fact, the ATT, the ISIS, and the HLASSO all have

FDR above 30%. The GWASelect is able to keep the FDR at a low level and preserve

most of the power because of the stability selection. The Wu et al. method has high

power and a relatively low FDR, suggesting that this method is particularly capable of

distinguishing causal SNPs from unimportant SNPs that are in LD with them.

Scheme 3 represents a more complex correlation structure in which the three causal

SNPs (i.e., the fourth, sixth and ninth SNPs) are marginally uncorrelated with Y . As

expected, methods that are strongly driven by marginal correlations, such as the ATT

and the Wu et al. method, almost completely missed G4, which drives down their

power to 70%. Both the ISIS and the HLASSO methods achieved higher power, but

at the price of high FDR (around 30%). Overall, the GWASelect model offers a more

balanced solution in terms of the TDR and FDR.

In summary, only the HLASSO and the GWASelect were able to keep their power

above 90% under all three schemes, and the latter appears to have a much lower FDR.

The other three methods either lack power under some schemes or entail high FDRs in

others.

Next, we investigated the prediction accuracy of the five methods. For each scheme,

we further simulated 2,000 testing subjects under the prospective sampling. To avoid

numerical instabilities, we pruned the obtained models and used the pruned models for

prediction. We calculated the true liability score and the estimated liability score for

each subject and used the correlation between the two scores as a measure of prediction

accuracy. We also calculated the absolute difference between the model-predicted and

true disease probabilities, termed as p-diff, to measure the prediction error. The results

are shown in Table 2.2.
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Table 2.1: True and false discoveries of variable selection methods when the model sizes
are fixed at 15 (except for the ATT method)

ATT Wu et al. ISIS HLASSO GWASelect
Scheme 1
Model size 26 15 15 15 15

TPCa 9.59 9.92 9.98 9.99 9.93
FPCb 0.06 2.02 4.04 3.84 1.52

TDRc (%) 95.9 99.2 99.8 99.9 99.3
FDRd (%) 0.6 15.8 28.5 26.4 12.4
Scheme 2
Model size 103 15 15 15 15

TPCa 9.90 9.68 7.99 9.27 9.07
FPCb 4.8 1.05 3.88 4.89 0.03

TDRc (%) 99.0 96.8 79.9 92.7 90.7
FDRd (%) 31.5 8.6 31.0 32.8 0.3
Scheme 3
Model size 41 15 15 15 15

TPCa 7.07 6.97 8.80 9.99 9.29
FPCb 0.08 4.97 4.88 4.47 1.92

TDRc (%) 70.7 69.7 88.0 99.9 92.9
FDRd (%) 1.0 40.3 35.3 29.4 16.0
G4e (%) 0 1 89 100 96

a. Number of true positive clusters

b. Number of false positive clusters

c. True discovery rate

d. False discovery rate

e. The rate of capturing the fourth causal SNP, which is marginally
uncorrelated with disease under schemes 3.
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Table 2.2: Prediction accuracy of variable selection methods when the model sizes are
fixed at 15 (except for the ATT method)

ATT Wu et al. ISIS HLASSO GWASelect
Scheme 1

p-diffa 0.023 0.023 0.028 0.028 0.021
liab-correlb 0.931 0.943 0.919 0.920 0.948

log-likelihood -760.0 -759.3 -763.4 -763.1 -758.6
Scheme 2

p-diffa 0.067 0.028 0.073 0.048 0.053
liab-correlb 0.912 0.986 0.912 0.961 0.955

log-likelihood -976.0 -938.9 -983.8 -955.7 -957.7
Scheme 3

p-diffa 0.045 0.050 0.037 0.028 0.027
liab-correlb 0.801 0.771 0.874 0.937 0.926

log-likelihood -720.0 -725.9 -710.9 -701.9 -701.7

a. The absolute difference between the model-predicted and true
disease probabilities

b. liability correlation

32



The Wu et al. method excels under scheme 2, consistent with its high TDR and

low FDR under this scheme. However, both the Wu et al. and the ATT are less

accurate than the other methods under scheme 3 because they missed those marginally

uncorrelated SNPs. The HLASSO performs well under scheme 2 and 3, suggesting that

high prediction power can be achieved even if some noise features are included in the

model. Overall, only the HLASSO and the GWASelect have prediction accuracy above

90% under all three schemes.

To assess data-adaptive choice of model size, we repeated the above simulation stud-

ies but now incorporated a 5-fold cross-validation into all the methods (except the ATT)

by using the 10%-error-rate as the evaluation criterion (see Methods) For d-GWASelect,

we set the selection threshold ξ to 0.3. All effect sizes were set to be moderate. For

both schemes 1 and 3, β∗ = (0.4, −0.4,−0.4, 0.4, 0.5,−0.5, 0.5,−0.6, 0.6,−0.6)T. For

scheme 2, β∗ = (0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2)T. The results are shown in

Tables 2.3 and 2.4.

The d-GWASelect remains to be a robust variable selection method under all three

schemes and indeed appears to have a better performance than the version with a

fixed model size. The Wu et al., the ISIS and the HLASSO now entail extremely high

FDR and poor prediction accuracy. The reason is that cross-validation often favors

a large model size for logistic regression, especially when the signal-noise ratio is low.

The d-GWASelect method, however, has a well-controlled model size because stability

selection sifts away many noise features. In all, the d-GWASelect enjoys low FDR, high

TDR and excellent prediction performance. Replacing the selection threshold with 0.4

yielded highly similar results (data not shown). We also explored the cross-validation

by using the deviance (instead of the 10%-error-rate) as the evaluation criterion, and

the d-GWASelect remains more favorable than the other methods (Tables 2.8 and 2.9

in Supplementary Materials).
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Table 2.3: True and false discovery rates when cross validation is incorporated into
variable selection (except for the ATT method)

ATT Wu et al. ISIS HLASSO d-GWASelect
Scheme 1
Model size 32 102 75 42 20

TPCa 9.95 10.00 10.00 10.00 10.00
FPCb 0.04 63.61 47.24 30.77 0.85

TDRc (%) 99.5 100.0 100.0 100.0 100.0
FDRd (%) 0.4 86.1 82.0 40.8 7.2
Scheme 2
Model size 77 49 50 14 20

TPCa 9.73 9.88 9.40 7.96 9.09
FPCb 1.26 16.95 21.63 5.97 0.21

TDRc (%) 97.3 98.8 94.0 79.6 90.9
FDRd (%) 10.8 54.8 67.7 17.1 2.0
Scheme 3
Model size 39 101 68 59 22

TPCa 7.01 7.13 9.99 9.87 9.85
FPCb 0.04 62.82 39.20 47.41 0.65

TDRc (%) 70.1 71.3 99.9 98.7 98.5
FDRd (%) 0.4 89.6 78.8 57.3 5.7
G4e (%) 0 1 100 89 87

a. Number of true positive clusters

b. Number of false positive clusters

c. True discovery rate

d. False discovery rate

e. The rate of capturing the fourth causal SNP, which is marginally
uncorrelated with the disease outcome under scheme 3.
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Table 2.4: Prediction accuracy of variable selection methods with cross-validation in-
corporated (except for the ATT method)

ATT Wu et al. ISIS HLASSO d-GWASelect
Scheme 1

p-diffa 0.018 0.076 0.073 0.046 0.016
liab-correlb 0.951 0.671 0.702 0.849 0.968

log-likelihood -661.4 -745.9 -739.3 -719.6 -659.7
Scheme 2

p-diffa 0.033 0.046 0.063 0.027 0.027
liab-correlb 0.912 0.873 0.802 0.942 0.946

log-likelihood -754.3 -771.4 -795.4 -756.8 -749.4
Scheme 3

p-diffa 0.039 0.082 0.061 0.062 0.017
liab-correlb 0.786 0.519 0.751 0.787 0.964

log-likelihood -645.1 -725.5 -681.7 -713.7 -624.8

a. The absolute difference between the model-predicted and true disease
probabilities

b. liability correlation
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2.4 Analysis of WTCCC Data

The WTCCC study examined approximately 2,000 subjects for each of seven com-

mon diseases and a shared set of approximately 3,000 controls. Each subject was geno-

typed on the Affymetrix GeneChip 500K Mapping Array Set. We provide detailed anal-

ysis for the data on Type II diabetes (T2D [MIM 125853, http://www.ncbi.nlm.nih.gov/

omim]) and Type I diabetes (T1D [MIM 222100]), and the analysis for some of the other

five diseases is presented in Supplementary Tables 2.10-2.11.

We excluded a small number of subjects according to the sample exclusion lists

provided by the WTCCC. In addition, we excluded a SNP if 1) it is on the SNP

exclusion list provided by the WTCCC; 2) it has a poor cluster plot as defined by the

WTCCC; 3) its MAF<0.01 in both cases and controls; or 4) it has extreme departure

from Hardy-Weinberg equilibrium (p-value< 10−4). Approximately 390,000 SNPs were

used in the analysis, and there were 2,938 controls, 1,924 T2D cases and 1,963 T1D

cases.

Figure 2.2 indicates the SNPs selected by the ATT, Wu et al., HLASSO and GWAS-

elect for T2D; the details are shown in Table 2.5 and Supplementary Table 2.13. Under

the ATT method, 15 SNPs reach the genomewide significance of p-value < 10−7. The

most significant one is rs4506565 (p-value= 7.5 × 10−13), which is located in gene

TCF7L2. The other 14 SNPs are clustered within either TCF7L2 or FTO. These re-

sults are consistent with the WTCCC’s findings. The HLASSO model is essentially

identical to the ATT model, albeit with a smaller model size.

For the Wu et al. and GWASelect methods, we set the model sizes to 20. Both

methods successfully detected TCF7L2 and FTO. They also identified a locus that

spans TSPAN8/LGR5, which was one of the most significant loci reported in a recent

meta-analysis of 10,128 subjects (Zeggini et al., 2008). This finding demonstrates em-

pirically that regression-based variable selection methods can be more powerful than
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Figure 2.2: The T2D models selected by four different methods.

the ATT method.

It is interesting to compare the GWASelect and Wu et al. models. Five SNPs,

rs11688935, rs6846031, rs6872465, rs2389591 and rs10435018, show up only in the

GWASelect model. Among these SNPs, rs6846031 was selected partly due to its con-

ditional correlation with T2D, underscoring the importance of conditional screening in

variable selection. This finding also indicates that genetic factors underlying T2D are

not simply in parallel with each other, but rather form a complex structure that needs

to be carefully dissected.

Several SNPs in our GWASelect model have not been reported in the literature on
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T2D. Some of them are plausibly related to T2D. For example, GULP1 is an adaptor

protein that binds and directs the trafficking of LRP1 (Su et al., 2002), a protein that

has been shown to play a critical role in adipocyte energy homeostasis and insulin

sensitivity (Hofmann et al., 2007). Thus, genetic variants in GULP1 may potentially

influence the amount of LRP1 in adipocyte cells and thereby modulate a person’s risk

to T2D. As another example, the CREB5 was recently found to be down-regulated

along with other members of the insulin signaling cascade when stimulated by a ligand

of PPARγ, which is known to be associated with T2D (Herrmann et al., 2009). This

suggests that CREB5 is closely related to PPARγ and the insulin pathway. The other

SNPs do not have known connections with T2D, but further investigation of those loci

may reveal novel mechanisms or pathways related to T2D.

For prediction of T2D, the δ-error-rates (with δ=0.1) of all four models are over

40%, suggesting that T2D is greatly influenced by other types of genetic variations and

environmental factors. Since it is not very meaningful to compare prediction errors at

such high level, we turned our attention to the T1D data because it is well-known that

T1D is genetically more homogeneous than T2D.

For the T1D data, we used cross-validation to choose the tuning parameter for the

d-GWASelect method and set the selection threshold ξ to 0.20. For the Wu et al.

method, we set the model size to 15. The results are shown in Figure 2.3, Table 2.6

and Supplementary Table 2.12. The d-GWASelect model contains 14 SNPs, among

which ADAM29, SYNGAP1, CUX2 and ALDH2 do not appear in any of the other

three models. The gene SYNGAP1 was observed to have strong conditional correlation

with T1D, demonstrating again that selection solely based on marginal correlation is

insufficient. Searching the T1DBase (http://www.t1dbase.org) revealed that all 4 genes

have expressions in pancreas, although none has been previously considered as strong

candidates for T1D. Interestingly, the CUX2 has been shown to directly regulate the
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Table 2.5: List of SNPs selected by the GWASelect for the WTCCC-T2D

SNPa Chromosome Geneb

rs11688935 2 GULP1
rs903228 2 ASB3/LOC129656
rs6846031 4 VEGFC/NEIL3
rs6872465 5 PRDM6
rs10806665 6 THBS2/SMOC2
rs9465871 6 CDKAL1
rs2389591 7 TMEM195/LOC729920
rs10435018 7 CREB5
rs7917983 10 TCF7L2
rs7901695 10 TCF7L2
rs4506565 10 TCF7L2
rs4132670 10 TCF7L2
rs7077039 10 TCF7L2
rs9326506 10 ZNF239
rs1495377 12 TSPAN8/LGR5
rs7961581 12 TSPAN8/LGR5
rs2930291 15 CCDC33
rs8050136 16 FTO
rs2099106 16 C16orf72/GRIN2A
rs6517434 21 KCNJ6

a. rs number identified from dbSNP

b. Gene symbol from Entrez Gene (http://www.ncbi.nlm.nih.gov/gene/)
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expression of NeuroD (Lulianella et al., 2008), a gene that can cause T1D if mutated.

Finally, we compared the prediction accuracy of the four methods. We randomly

divided the data into three parts, two as the training data and one as the testing data.

Since the training data set contains only 2/3 of the original data, we reduced ξ from

0.20 to 0.10 to ensure that a similar number of loci are included in the d-GWASelect

model. Since the true liability scores and disease probabilities are unknown in real

data, we measured the prediction errors by the δ-error-rates for δ = 0.1, 0.15 and 0.25

(see Methods for detail). Considering that pruning was done before each model was

used for prediction, we report the actual (i.e., effective) number of SNPs used by each

model for prediction. Under default settings, the effective model sizes of the Wu et al.,

the HLASSO and the d-GWASelect are 14, 4 and 21, respectively. Since the former

two models are much smaller, we also evaluated the prediction accuracy of the former

two under 21 effective SNPs. (We were not able to evaluate the ATT under 21 effective

SNPs due to numerical instabilities.) The results are reported in Table 2.7. Clearly, the

d-GWASelect performs the best or nearly the best for all three δ-error-rates. We have

also calculated the area under the ROC curve for the four methods, and GWASelect

achieves the highest value (Supplementary Table 2.15).

2.5 Discussion

We have developed a new tool, GWASelect, for variable selection at the genome-

wide level. This regression-based method has the ability to capture both marginally

correlated and marginally uncorrelated causal SNPs and has low FDR. The advantages

over the existing methods have been demonstrated through simulated and real data.

Our method has two versions. The first version requires the specification of the model

size d, for which we suggest to choose a number that is consistent with the current

biological knowledge of the studied disease. The second version (d-GWASelect) does
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Table 2.6: List of SNPs selected by the d-GWASelect for the WTCCC-T1D

SNPa Chromosome Geneb

rs6679677 1 RSBN1/PTPN22
rs41515647 1 ST6GALNAC5
rs17388568 4 ADAD1
rs330483 4 ADAM29
rs9273363 6 HLA-DQB1
rs9272346 6 HLA-DQA1
rs411136 6 SYNGAP1
rs1265566 12 CUX2
rs7398833 12 CUX2
rs10744777 12 ALDH2
rs17696736 12 C12orf30
rs11171739 12 ERBB3
rs12708716 16 CLEC16A
rs12924729 16 CLEC16A

a. rs number identified from dbSNP

b. Gene symbol from Entrez Gene

Table 2.7: Prediction errors for the WTCCC-T1D

model effective δ-error-rate log-
size 0.1 0.15 0.25 likelihood

ATT 5 0.110 0.139 0.181 -2116.9
Wu et al. 14 0.119 0.139 0.179 -2075.1

21 0.135 0.157 0.196 -2059.8
HLASSO 4 0.116 0.141 0.176 -2113.6

21 0.126 0.151 0.191 -2073.5
d-GWASelect 21 0.107 0.131 0.178 -2058.6

41



60 120

chr1

210

chr2

120 170

chr4

32 34

chr6

200

50

chr12

40

chr5

30

60 110.2 111.0

40

chr10

30

50

chr14

40

40

chr17

30 20

chr18

10

20

chr16

10

d-GWASelect

Wu et al

ATT

chr position

HLASSO

Figure 2.3: The T1D models selected by four different methods.
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not require the specification of the model size, and this is the version we recommend

for general use.

The correlation structures for causal variants used in our simulation studies have

biological relevance. Scheme 2 mimics a scenario in which the causal variants form

a gene cluster that contributes synergistically to the disease outcome, while scheme 3

reflects a scenario in which several biological pathways (or networks) affect the disease

development.

We did not include Least Angle Regression (LARS) in our studies because it has

been shown to have highly similar performance to LASSO (Hastie et al., 2009). Indeed,

LASSO can be implemented by LARS with a small modification. Wu and Lange (2008)

demonstrated that CCD is “considerably faster and more robust than LARS” and is

“more successful than LARS in model selection”.

The HLASSO adopts a concave penalty function, and it has been suggested that the

CCD algorithm may not converge for nonconvex penalty (Wu et al., 2009; Friedman et

al., 2010). A valid algorithm to implement concave penalty functions is the local linear

approximation (Zou and Li, 2008), which amounts to multiple rounds of CCD and

would make the HLASSO computation prohibitively expensive. For the WTCCC T1D

data, running the CCD version of the HLASSO with 10 iterations on an Intel Quadcore

Nehalem processor (2.4Ghz, 16GB memory) require 67.5 to 175 hours, depending on

the value of the tuning parameter. In contrast, we have been running the GWASelect

in a parallel computing environment, and the same analysis can be completed within

several hours on 16 processors.

In an independent effort, Fan et al. (2009) developed an ISIS method for generalized

linear models in the context of microarray data analysis. In their method, the condi-

tional screening procedure requires fitting a separate regression model for each feature,

which would create heavy computational burden for GWAS data. In addition, their
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method tends to have high FDR. They observed that cross-validation tends to yield

large models for logistic regression, resonating our findings in the Simulation Studies.

We can extend our methods to select interactions. Instead of considering all possible

interaction terms, we may incorporate known biological network information (Franke

et al., 2006) into our selection procedure. Another approach is to first extend the

existing genetic network identification tools, such as the liquid association (Li, 2002)

and bounded mode stochastic search (Dobra, 2007), to infer SNP interactions and then

incorporate such information into our GWASelect procedure. In fact, Han et al. (2010)

proposed a Markov blanket-based method to evaluate epistatic interactions for GWAS

data. It will be interesting to compare to that method when we extend our work to

interaction effects.

How to obtain p-values for high-dimensional variable selection is an active research

area. The stochastic error introduced by the selection process makes it very difficult

to assign p-values to the selected features. Meinshausen et al. (2009) offered one

possible solution by “aggregating” p-values from stability selection, but our experiments

indicated that this procedure is too conservative for SNP data, likely due to the ultra-

high dimension and strong LD. We hope future progress will shed light on this important

issue.

The prediction of genetic risk using GWAS data has drawn considerable attention

in recent years. Wray et al. (2007) pioneered this area of research. Their approach

selected genetic predictors by a univariate screening method. As shown in this chapter,

our GWASelect method tends to provide more accurate prediction than univariate

screening when the SNPs are in strong LD. Wei et al. (2009) explored genetic risk

prediction through a Support Vector Machine (SVM) algorithm, but it is difficult to

compare our results directly with theirs because 1) their analysis involved two other

data sets besides the WTCCC-T1D data; 2) our testing samples are far smaller than
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theirs; 3) interaction effects are not considered in our current work.

2.6 Supplementary Materials

2.6.1 Cross-validation using deviance

In the following two tables, we show that if the deviance is used as the evaluation

criterion for cross-validation, the Wu et al. method, the ISIS method and the HLASSO

method entail high FDRs, whereas the d-GWASelect method maintains high power,

low FDR and good predictive capabilities.

2.6.2 Analysis of the WTCCC data

We analyzed the WTCCC data by four different methods, the ATT, the Wu et

al., the HLASSO and the GWASelect. For the HLASSO method, we chose 0.1 as the

shape parameter (as suggested by the User Manual of the HLASSO), and a tuning

parameter that corresponds to 1 × 10−7 for the SNP-wise type-I-error-rate α. For the

other methods, the details have been described in the main text of this paper.

In the following tables (Tables 2.10-2.13), we list SNPs that were identified by dif-

ferent variable selection methods for some of the seven WTCCC diseases (some SNPs

were omitted if their loci have already been represented by other SNPs). We also exam-

ined whether the identified SNPs have been replicated by other GWAS as collected in

the National Human Genome Research Institute’s Catalog of Published Genome-Wide

Association Studies as of September 1, 2010. In Table 2.14, the replication rates (i.e.,

the proportion of distinct loci replicated by other studies) for the four methods were

calculated. However, we suggest caution be exercised when interpreting Table 2.14.

First, although the ATT and the HLASSO have higher replication rates, their model
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Table 2.8: True and false discovery rates when the deviance is used as the evaluation
criterion for cross-validation (except for the ATT method)

ATT Wu et al. ISIS HLASSO d-GWASelect
Scheme 1
Model size 32 100 77 96 21

TPCa 9.95 10.00 10.00 10.00 9.99
FPCb 0.04 63.60 47.20 82.63 0.76

TDRc (%) 99.5 100.0 100.0 100.0 99.9
FDRd (%) 0.4 86.1 81.9 71.5 6.6
Scheme 2
Model size 77 48 52 66 26

TPCa 9.73 9.97 9.73 7.96 9.56
FPCb 1.26 17.27 22.06 55.89 0.32

TDRc (%) 97.3 99.7 97.3 79.6 95.6
FDRd (%) 10.8 55.9 67.2 37.8 2.8
Scheme 3
Model size 39 98 71 107 24

TPCa 7.01 7.13 9.99 9.96 9.88
FPCb 0.04 62.84 39.19 93.66 0.68

TDRc (%) 70.1 71.3 99.9 99.6 98.8
FDRd (%) 0.4 89.6 78.8 79.2 5.9
G4e (%) 0 1 100 97 91

a. Number of true positive clusters

b. Number of false positive clusters

c. True discovery rate

d. False discovery rate

e. The rate of capturing the fourth causal SNP, which is marginally uncorrelated
with the disease outcome under scheme 3.
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Table 2.9: Prediction accuracy when the deviance is used as the evaluation criterion
for cross-validation (except for the ATT method)

ATT Wu et al. ISIS HLASSO d-GWASelect
Scheme 1
p-diffa 0.018 0.076 0.073 0.092 0.016

liability correlation 0.951 0.671 0.701 0.698 0.968
log-likelihood -661.4 -746.1 -739.8 -837.7 -659.6

Scheme 2
p-diffa 0.033 0.047 0.063 0.074 0.027

liability correlation 0.912 0.872 0.803 0.832 0.948
log-likelihood -754.3 -771.7 -795.2 -898.2 -749.0

Scheme 3
p-diffa 0.039 0.082 0.061 0.099 0.017

liability correlation 0.786 0.519 0.751 0.672 0.965
log-likelihood -645.1 -725.7 -682.3 -819.4 -624.7

a. The absolute difference between the model-predicted and true disease probabilities

sizes are small and they essentially only contain loci with strong effects. Second, a num-

ber of SNPs captured by the GWASelect may not be able to be replicated by currently

used methods due to the different selection mechanisms, and hence the replication rate

of the GWASelect may be underestimated. Finally, although the replication provides

a useful measure for the reliability of a variable selection method, it should not be

regarded as the gold standard for making the final judgement. The ultimate criterion

to judge whether a detected locus is a true or false discovery would be functional stud-

ies. Overall, these tables are shown mainly to provide potential candidates for future

research, rather than to compare the performances of the illustrated methods.

We have systematically searched the Online Mendelian Inheritance in Man for func-

tional evidence for the identified loci (http://www.ncbi.nlm.nih.gov/omim), but most

of the evidence is circumstantial or weak, if it exists at all. Taking the T1D as an

example, among all the loci identified by all the studied methods (including the Wu et

al. method), only for the HLA-DQB1 and the HLA-DQA1 loci did we find functional
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Table 2.10: List of SNPs selected by different methods for Bipolar Disorder (BD)

SNP Chr Gene ATT Wu et al. HLASSO d-GWASelect
rs41515647 1 ST6GALNAC5 •
rs7570682 2 MRPS9 •
rs11123306 2 DPP10 •
rs1375144 2 DPP10 •
rs12472797 2 LPIN1 •
rs1133353 2 CAPN10 •
rs514636 3 LAMP3 •
rs4276227 3 CMTM8 •
rs4627791 3 CMTM8 • •
rs715891 5 PPP2R2B •

rs10993706 9 SYK •
rs10982256 9 DFNB31 •
rs11622475 14 TDRD9 • •
rs10134944 14 SLC35F4 •
rs1344484 16 CHD9 •
rs7243929 18 PTPRM • •
rs12980129 19 ZNF99 • •
rs2837588 21 DSCAM • •

Note: No SNPs were found to be replicated by other GWAS as collected in the
National Human Genome Research Institute’s Catalog of Published GWAS.

evidence that would directly link the two loci to the T1D, while for the other loci, we

found them either poorly annotated or lack of direct functional evidence for T1D. More

biochemical/genetics studies are merited.
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Table 2.11: List of SNPs selected by different methods for Coronary artery disease
(CAD)

SNP Chr Gene ATT Wu et al. HLASSO d-GWASelect
rs4846770 1 MIA3 •
rs903228 2 ASB3 •
rs906766 3 MED12L • •
rs2562544 5 SLC1A3 •
rs383830 5 TMEM157 •
rs449650 5 TMEM157 •

rs6922269 6 MTHFD1L •
rs1333049 9 CDKN2A/2B • • • •
rs6490506 13 ZMYM2 •
rs8055236 16 CDH13 •
rs889595 16 FOXF1 •

rs41537748 19 IL28A • •
rs688034 22 SEZ6L •

SNPs in bold were replicated by other studies as collected in the National Human
Genome Research Institute’s Catalog of Published GWAS.
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Table 2.12: List of SNPs selected by different methods for T1D

SNP Chr Gene ATT Wu et al. HLASSO d-GWASelect
rs2269241 1 PGM1 •
rs41515647 1 ST6GALNAC5 • •
rs6679677 1 RSBN1 • • • •
rs3087243 2 CTLA4 •
rs17388568 4 ADAD1 • •
rs330483 4 ADAM29 •
rs1025039 5 SPEF2 •
rs9273363 6 HLA-DQB1 • • • •
rs9272346 6 HLA-DQA1 • • • •
rs411136 6 SYNGAP1 •
rs2666236 10 NRP1 •

rs17696736 12 C12orf30 • • • •
rs1265566 12 CUX2 •
rs7398833 12 CUX2 •
rs10744777 12 ALDH2 •
rs11171739 12 ERBB3 • • • •
rs7157296 14 C14orf138 •

rs12708716 16 CLEC16A • •
rs12924729 16 CLEC16A • • •
rs7221109 17 TNS4 •
rs2542151 18 PTPN2 •

SNPs in bold were replicated by other studies as collected in the National Human
Genome Research Institute’s Catalog of Published GWAS.
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Table 2.13: List of SNPs selected by different methods for T2D

SNP Chr Gene ATT Wu et al. HLASSO d-GWASelect
rs4655595 1 PDE4B •
rs903228 2 ASB3/LOC129656 • •

rs7593730 2 RBMS1 •
rs6718526 2 RBMS1 •
rs11688935 2 GULP1 •
rs17248501 2 PARD3B •
rs6846031 4 VEGFC/NEIL3 •
rs6872465 5 PRDM6 •
rs10806665 6 THBS2/SMOC2 • •
rs1665901 6 KIAA1553/PDSS2 •
rs9465871 6 CDKAL1 • •
rs2389591 7 TMEM195 •
rs10435018 7 CREB5 •
rs9326506 10 ZNF239 • •
rs7917983 10 TCF7L2 • •
rs7901695 10 TCF7L2 • • •
rs4506565 10 TCF7L2 • • • •
rs4132670 10 TCF7L2 • •
rs7077039 10 TCF7L2 • • • •
rs1495377 12 TSPAN8/LGR5 • •
rs7961581 12 TSPAN8/LGR5 • •
rs2930291 15 CCDC33 • •
rs2903265 15 ZFAND6 •
rs2099106 16 C16orf72 • •
rs8050136 16 FTO • • • •
rs543759 18 PTPRM •
rs6517434 21 KCNJ6 • •

SNPs in bold were replicated by other studies as collected by NHGRI.
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Table 2.14: The replication rates for different methods on the WTCCC data

ATT Wu et al. HLASSO d-GWASelect
total # of distinct loci 19 94 18 60

loci replicated by other studies 13 20 11 13
replication rate 68% 21% 61% 22%

Table 2.15: The AUC achieved by different methods for the WTCCC-T1D data on
genetic prediction (two different model sizes were evaluated for the Wu et al. model
and the HLASSO model)

ATT Wu et al. HLASSO d-GWASelect
effective size 5 14 21 4 21 21

AUC 0.7890 0.7869 0.7808 0.7901 0.7829 0.7942

52



Chapter 3

Sparse Meta-Analysis With
High-Dimensional Data

3.1 Introduction

Meta-analysis is commonly used in many scientific areas. By combining multi-

ple data sources, one can achieve higher statistical power, more accurate estimation,

and improved reproducibility (Noble, 2006). Traditional meta-analysis methods were

designed mainly for low-dimensional data sets. When the number of covariates be-

comes very large, as in gene expression studies and genome-wide association studies,

it is desirable to incorporate variable selection into meta-analysis to improve model

interpretation and prediction accuracy.

There exist many variable selection methods, such as LASSO (Tibshirani, 1996),

SCAD (Fan and Li, 2001) and adaptive-LASSO (Zou, 2006). When raw data are

available, these methods can be applied to each study and the selection results can be

combined. However, this strategy fails to borrow the information shared among the

studies and therefore may be inefficient. There are two approaches to better use of

multiple data sets: integrative analysis and meta-analysis. Integrative analysis pools

raw data from multiple studies, while meta-analysis combines summary statistics from



multiple studies. In the context of integrative analysis, Ma et al. (2011) studied variable

selection by employing a penalized likelihood method with the group bridge penalty.

In practice, it is rarely possible to obtain the original data due to high cost, IRB

restrictions, or unwillingness of investigators to share data. A natural question arises

as to whether it is possible to conduct effective variable selection using only summary

statistics. In addition, it is unclear how to extract common information shared by

different studies while allowing heterogeneity among studies. Furthermore, the high-

dimensional nature of -omics studies makes information extraction and model building

difficult.

In this article, we propose a new approach, sparse meta-analysis (SMA), for variable

selection in meta-analysis based solely on summary statistics. To our knowledge, no

such method exists in the literature. We show that the SMA estimator can achieve

selection consistency and can be as efficient as if the raw data were available. A key

feature of the SMA is its flexibility in handling both the homogeneous structure (which

assumes that the effects of each covariate are either all zero or all non-zero across

studies) and the heterogeneous structure (which allows the effects of each covariate

to be partly zero among studies). These two structures are shown in Figure 3.1 in

Supplemental Materials. The heterogeneous structure is useful in many settings. For

example, there is biological evidence that genetic variants may exhibit on/off effects due

to genetic modifiers, environmental exposure or epigenetic mechanisms (Zeisel, 2007).

The rest of the chapter is organized as follows. In Section 3.2, we describe the

SMA methods for various forms of summary statistics. In Section 3.3, we study the

selection consistency and asymptotic normality of the SMA estimators, considering both

the situations that the dimension p is fixed and p is diverging. Section 3.4 contains

numerical results. Section 3.5 provides an application to real GWAS studies.
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3.2 Sparse Meta-analysis

3.2.1 Data and Models

Suppose that there are K independent studies, with nk participants in the kth

study. The raw data consist of (yik,xik), k = 1, . . . , K; i = 1, . . . , nk, where yik is the

response for the ith subject in the kth study, and xik is the corresponding p-vector of

covariates. We assume the following linear models

yik = xT
ikβ

0
k + εik, k = 1, . . . , K; i = 1, . . . , nk,

where β0
k ≡ (β0

1k, . . . , β
0
pk)

T is a p-vector of regression coefficients for the kth study,

E(εik) = 0 and V ar(εik) = σ2
k. We divide the covariates into two disjoint sets: im-

portant set I = {j = 1, . . . , p : β0
jk 6= 0 for some k} and unimportant set U = {j =

1, . . . , p : β0
jk = 0 for all k = 1, . . . , K}. Our goal is to identify the set I correctly and

to estimate the effects of those covariates in I. There are two possible structures of I:

1) Homogeneous structure: for any j ∈ I, β0
jk 6= 0 for all k = 1, . . . , K.

2) Heterogeneous structure: for any j ∈ I, β0
jk 6= 0 for at least one k.

The homogeneous structure requires each covariate in I to be completely active across

all K studies, whereas the heterogeneous structure allows each covariate in I to be

partly active among the K studies. The former structure is a special case of the latter.

If we treat the regression coefficients associated with a covariate in the K studies as

a group, then the homogeneous structure assumes sparsity only at the group level,

whereas the heterogeneous structure assumes additional within-group sparsity.

In meta-analysis, the only information available pertains to the summary statistics,

in the form of the ordinary least-squares (OLS) estimates β̃k(k = 1, . . . , K). Often, the

corresponding variance estimates for individual regression coefficients are also available.

In prospectively designed meta-analysis, it is possible to obtain the estimated covariance
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matrices Ṽ k ≡ Ĉov(β̃k)(k = 1, . . . , K).

3.2.2 SMA Estimators

We now introduce the SMA approach to variable selection and effect estimation.

We first focus on the heterogeneous structure. We propose to minimize the following

objective function with respect to β ≡ (βT
1 , . . . ,β

T
K)T

Qn(β1, ...,βK) ≡
K∑

k=1

(β̃k − βk)
TṼ

−1

k (β̃k − βk) + λ

p∑
j=1

(
K∑

k=1

wjk|βjk|

) 1
2

, (3.1)

where λ is a tuning parameter, and wjk is a user-specified penalty weight for |βjk|.

The penalty term in (3.1) is different from the commonly used group penalty function.

The group lasso penalty (Yuan and Lin, 2006) employs the L2 norm for the coefficients

of each covariate and thus a group is entirely selected or dropped. Our penalty term

adopts the group L1 norm, which allows the selection of individual covariates within

groups. This penalty shares the spirit of the group bridge penalty (Huang et al., 2009)

wherein γ = 1
2
. The main difference is that we assign a weight wjk to each coefficient

whereas Huang et al. (2009) used an un-weighted norm
∑K

k=1 |βjk|. In the next section,

we show that the presence of these weights is crucial to the oracle property of the new

estimators. We suggest to set wjk = |β̃jk|−1. Let β̂ ≡ (β̂
T

1 , ..., β̂
T

K)T be the minimizer

of (3.1).

For the homogeneous structure, we propose to use a common penalty weight for all

the coefficients associated with a given covariate. That is, we minimize

Q∗
n(β1, ...,βK) ≡

K∑
k=1

(β̃k − βk)
TṼ

−1

k (β̃k − βk) + λ

p∑
j=1

(
K∑

k=1

wj|βjk|

) 1
2

, (3.2)

where wj = (
∑K

k=1 |β̃jk|/K)−1 for j = 1, . . . , p. Let β̂
∗

denote the minimizer of (3.2).
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In practice, one may be provided only the diagonal elements of Ṽ
−1

k , i.e., V̂ar(β̃jk) (j =

1, . . . , p), for k = 1, . . . , K. In that case, we construct a working covariance matrix

Ĉk ≡ diag{V̂ar(β̃1k), ..., V̂ar(β̃pk)} and minimize

K∑
k=1

(β̃k − βk)
TĈ−1

k (β̃k − βk) + λ

p∑
j=1

(
K∑

k=1

wjk|βjk|

) 1
2

. (3.3)

We call the solution to (3.3) the SMA-Diag estimator. In some applications, even

V̂ar(β̃jk) may not be available. Then we replace Ṽ k with the identity matrix and

minimize

K∑
k=1

(β̃k − βk)
T(β̃k − βk) + λ

p∑
j=1

(
K∑

k=1

wjk|βjk|

) 1
2

. (3.4)

The solution to (3.4) is called the SMA-Id estimator.

3.2.3 Algorithms

The minimizations of (3.1), (3.3), and (3.4) can be done through similar optimization

algorithms. Thus, we focus on the minimization of (3.1). The objective function in

(3.1) is not convex in β and has a complex nonlinear form. For implementation, we

propose to solve the following equivalent problem

min
β,γ

K∑
k=1

(β̃k − βk)
TṼ

−1

k (β̃k − βk) + λ1

p∑
j=1

γj +

p∑
j=1

γ−1
j

(
K∑

k=1

wjk|βjk|

)
,(3.5)

subject to γ = (γ1, . . . , γp) ≥ 0,

where λ1 > 0 is a tuning parameter. There is one-to-one correspondence between λ and

λ1, and the proof for the equivalence of (3.1) and (3.5) is given in the Supplemental

Materials. Here, we propose an iterative algorithm which alternately minimizes (3.5)
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with respect to β (or γ), with γ (or β) fixed at their current values. When β is

fixed, we can get a closed form solution for γ. When γ is fixed, the minimization can

be transformed into an adaptive-LASSO problem and solved by the cyclic coordinate

descent algorithm (Friedman et al., 2007).

• Step 1: Initialize β̂
(0)

k by the least-squares estimates β̃k for all k. Set m=1.

• Step 2: Fix β̂
(m−1)

k , k = 1, . . . , K, at their current values and minimize (3.5) with

respect to γ. The solution is γ̂
(m)
j ≡

(∑K
k=1wjk|β̂(m−1)

jk |
) 1

2
λ
− 1

2
1 , j = 1, . . . , p.

• Step 3: Fix γ̂
(m)
j , j = 1, . . . , p, at their current values and minimize (3.5) with

respect to β. Denote the solution as β̂
(m)

k , k = 1, . . . , K.

• Step 4: Let m = m+ 1, and go to Step 2 until convergence.

The tuning parameter λ controls the trade-off between model sparsity and model fit.

Motivated by the work of Wang and Leng (2007), we determine the tuning parameter

by a modified BIC criterion. Define SSEλ =
∑K

k=1(β̂k,λ− β̃k)
T(β̂k,λ− β̃k), where β̂k,λ

is the estimate of β0
k under λ. Let qλ,k be the number of nonzero components of β̂k,λ.

Then the modified BIC is defined as:

BICλ = SSEλ +
K∑

k=1

(qλ,k log nk/nk). (3.6)

One may use other tuning criteria, such as the BIC of Wang and Leng (2007) and the

general cross validation (GCV), but criterion (3.6) works well in both simulated and

real data analysis. This newly proposed BIC can be shown to be consistent for model

selection (see Supplemental Materials).
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3.3 Asymptotic Properties

In this section, we study the asymptotic properties of the SMA estimators in terms

of selection and estimation. Since the heterogeneous structure is more general than the

homogeneous structure, we mainly focus on the former and treat the latter as a special

case. Specifically, Theorems 1, 2, 4 and 5 below pertain to the heterogeneous structure

only, while the other results pertain to both structures. The proofs are relegated to

Appendix 1 and the Supplemental Materials.

Without loss of generality, we assume that the first p0 covariates are active or

partly active. That is, I = {1, . . . , p0} and U = {p0 + 1, . . . , p}. For j = 1, . . . , p0,

define Mj = {k : β0
jk 6= 0, k = 1, . . . , K} and Mc

j = {1, . . . , K}\Mj. Also, define

N = {(j, k) : β0
jk = 0, j = 1, . . . , p; k = 1, . . . , K}. For the penalty weights, define

g1n = max1≤j≤p,1≤k≤K wjk, g2n = min{wjk : (j, k) ∈ N}. Let Xk = (x1k, . . . ,xnkk)
T,

n =
∑K

k=1 nk, and β0 be the vector stacked from β0
1, . . . ,β

0
K . For any index set B, we

denote its cardinality by |B|. For any square matrix H = {hij}, denote its smallest

and largest eigenvalues by τmin(H) and τmax(H), respectively.

We study the asymptotic properties of the SMA estimators under two scenarios:

(1) p is fixed; (2) p is diverging. (Hereafter, we use pn instead of p when we wish

to emphasize that the dimension diverges with n.) The theoretical analysis requires

regularity conditions on the covariate design and the data distribution. We state below

the basic assumptions and give additional conditions for the diverging pn in Section

3.3.2:

(A1) nk/n→ νk ∈ (0, 1) as n→∞.

(A2) n−1
k XT

k Xk → {Σ(k)}−1, where Σ(k) is positive definite, for k = 1, . . . , K.

(A3) There exist constants 0 < b < b′ <∞ such that

b ≤ τmin(n
−1
k X ′

kXk) ≤ τmax(n
−1
k X ′

kXk) ≤ b′, for k = 1, . . . , K.

(A4) There exist constants 0 < r1 < r2 <∞ such that
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r1 ≤ min{|β0
jk|, 1 ≤ j ≤ p0, k ∈ Mj} ≤ max{|β0

jk|, 1 ≤ j ≤ p0; k ∈ Mj} ≤

r2.

(A5) For k = 1, . . . , K, σ2
k <∞.

3.3.1 Fixed Dimension

Theorem 1. Consider the SMA estimator under the heterogeneous structure. Sup-

pose that conditions (A1)∼(A5) hold. Let t1n = max{wjk : 1 ≤ j ≤ p0, k ∈ Mj},

and t2n = min{wjk : 1 ≤ j ≤ p0, k ∈ Mj}. Define an = t1nt
− 1

2
2n , and bn = t21nt

− 3
2

2n . If

λn−
1
2an = Op(1), λn−1bn = op(1) and λn−1 = op(1), then β̂ is

√
n-consistent.

Theorem 1 states that if λ and the weights are chosen properly, the SMA estimator

β̂ will converge to the true β0 at the rate of n−
1
2 . It also implies that the penalty weights

for the nonzero coefficients are critical to the consistency. The following corollary gives

examples and theoretical justifications on constructing the weights based on the OLS

estimators.

Corollary 1. For the heterogeneous structure, let wjk = |β̃jk|
−1

for j = 1, . . . , p

and k = 1, . . . , K. For the homogeneous structure, let wj = (
∑K

k=1 |β̃jk|/K)−1 for

j = 1, . . . , p. Suppose that conditions (A1)∼(A5) hold. If λn−
1
2 = Op(1), then both β̂

and β̂∗ are
√
n-consistent.

Theorem 2. Consider the heterogeneous structure, and let β̂jk,λ denote the estimator

of β0
jk under λ. Assume that the conditions of Theorem 1 hold. If n−

1
2λg2ng

− 1
2

1n → ∞,

then P (β̂jk,λ = 0) → 1 for any (j, k) ∈ N .

Theorem 2 shows that the penalty weights for both the nonzero and zero coefficients

contribute to the identification of the zero coefficients. It also says that the proposed

method can asymptotically estimate all zero coefficients exactly at zero.
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Corollary 2. Consider both the heterogenous and homogeneous structures. Let β̂∗jk,λ

be the estimator of β0
jk under λ for the homogeneous structure. Assume that wjk and wj

are chosen as in Corollary 1. If λn−
1
2 = Op(1) and λn−

1
4 →∞, then P (β̂jk,λ = 0) → 1

and P (β̂∗jk,λ = 0) → 1 for all (j, k) ∈ N .

Corollary 2 suggests that λ must be at a rate nδ with 1/4 < δ ≤ 1/2 in order to

achieve the selection consistency. Together with Theorem 1 and Corollary 1, it implies

that the proposed method can effectively distinguish zero coefficients from nonzero

coefficients and estimate the nonzero coefficients consistently.

Define Ak = {j : β0
jk 6= 0} and Ac

k = {j : β0
jk = 0} for k = 1, . . . , K, and

A =
⋃K

k=1Ak. Let β0
Ak

be the subvector of β0
k corresponding to Ak, and Σ

(k)
Ak

be the

submatrix of Σ
(k)
k corresponding to Ak. Let Σ

(k)
AkAc

k
denote the submatrix of Σ(k) with

its row indices corresponding to Ak and column indices corresponding to Ac
k. Define

Σ
(k)
Ac

kAk
={Σ(k)

AkAc
k
}T. Other subvectors and submatrices are to be understood in the same

fashion. The following theorem gives conditions under which the nonzero estimators

behave as a multivariate random normal variable.

Theorem 3. Consider the heterogeneous structure. Suppose that conditions (A1)∼(A5)

hold. If λn−
1
2an = op(1), λn−1bn = op(1), n

− 1
2λg2ng

− 1
2

1n → ∞, and λn−1 = op(1), then

√
nk(β̂Ak

− β0
Ak

) → N
(
0, σ2

k{Σ
(k)
Ak
−Σ

(k)
AkAc

k
[Σ

(k)
Ac

k
]−1Σ

(k)
Ac

kAk
}
)

for k = 1, ..., K. For the

homogeneous structure, a similar result holds.

Remark 1. If the penalty weights are chosen as in Corollary 1, then the conditions

in Theorem 3 can be simplified to n−
1
2λ = op(1) and n−

1
4λ→∞. If we set λ = Op(n

ω)

with 1
4
< ω < 1

2
, then the asymptotic normality (for both structures) is guaranteed.

3.3.2 Diverging Dimension

In modern scientific studies, the dimension can be very large. In this section, we

allow pn →∞ as n→∞. We also alow p0 →∞. Recall that g1n = max1≤j≤p,1≤k≤K wjk,
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g2n = min{wjk : (j, k) ∈ N}, and t1n = max{wjk : 1 ≤ j ≤ p0, k ∈ Mj}. We make the

following assumptions:

(C1) p2
n/n→ 0.

(C2) λ
√
t1n = Op(pn).

(C3) (i) λ/
√
n→ 0; (ii) λ(npn)−1/2g2ng

− 1
2

1n →∞.

(C4) For each k, n
−1/2
k max1≤i≤nk

xT
ikxik → 0.

Condition (C1) specifies the diverging rate of pn. Under this condition, Yohai and

Maronna (1979) established the root-
√
n/pn consistency of the OLS estimators. Con-

dition (C2) is needed for the proof of consistency. Condition (C3) is needed for the

selection consistency and asymptotic normality. Similar conditions were considered by

Huang et al. (2009). Condition (C4) ensures that the predictor matrix has a reason-

ably good behavior and is needed for the proof of the asymptotic normality. Similar

conditions were considered by Yohai and Maronna (1979) and Huang et al. (2009).

Theorem 4. Consider the heterogeneous structure. Assume that conditions (A1)∼(A5)

and (C1) and (C2) hold. Then ‖β̂ − β0|| = Op(
√
pn/n).

Corollary 3. Assume that conditions (C1) and (C2) hold. For the heterogeneous

structure, let wjk = |β̃jk|
−(2+ϑ)

for some ϑ > 0, j = 1, ..., pn and k = 1, ..., K. For the

homogeneous structure, let wj = (
∑K

k=1 |β̃jk|2+ϑ/K)−1 for j = 1, ..., pn and k = 1, ..., K.

Then β̂ and β̂
∗

are
√
n/pn-consistent.

The above corollary shows that it is possible to find proper penalty weights and

tuning parameter λ that satisfy the requirements of Theorem 4. Next, we show that

the SMA is consistent in model selection when pn is diverging.

Theorem 5. Consider the heterogeneous structure. Assume that conditions (A1)∼(A5)

and (C1)∼(C3) hold. Then P (β̂jk,λ = 0) → 1 for any (j, k) ∈ N .
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Corollary 4. Consider both the heterogenous and homogeneous structures. Let β̂∗jk,λ

be as defined in Corollary 2. Assume that wjk and wj are chosen as in Corollary 3.

Then P (β̂jk,λ = 0) → 1 and P (β̂∗jk,λ = 0) → 1 for all (j, k) ∈ N . In the special case of

ϑ = 1, condition (C3)(ii) is simplified to λn
1
4p

− 5
4

n →∞.

The above theorem and corollary indicate that, even if pn grows large, we can still

estimate the zero coefficients exactly at zero. Finally, we investigate the asymptotic

normality of the estimators.

Theorem 6. Assume that conditions (A1)∼(A5) and (C1)∼(C4) hold. Let γn be

a vector of length p0 with norm 1. Define s2
n,k = σ2

kγ
T
n (XT

Ak
XAk

/nk)
−1γn for k =

1, . . . , K. Then

√
nks

−1
n,kγ

T
n (β̂Ak

− β0
Ak

) → N(0, 1).

Remark 2. It can be easily verified that, if the penalty weights are chosen as in

Corollary 3 and λ = Op(pn), then all the conditions in Theorem 6 are satisfied.

3.4 Numerical Studies

We conducted extensive simulation studies to compare the following methods: 1)

the method that utilizes the raw data along with a group penalty, i.e.,

min
β1,...,βK

K∑
k=1

{
nk

−1

nk∑
i=1

(yik − xT
ikβk)

2

}
+ λ

p∑
j=1

(
K∑

k=1

wjk|βjk|

) 1
2

(3.7)

with wjk = |β̃jk|−1, which we call the Gold method; 2) the SMA; 3) the SMA-Diag;

4) the aLASSO-U method, which first applies the adaptive-LASSO to each of the

K studies to obtain K models and then takes the union of the K models as the fi-

nal model; 5) the aLASSO-I method, which is the same as the aLASSO-U except

that it takes the intersection of the K models. Methods 4) and 5) represent two
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natural ways of combining variable selection results obtained from individual stud-

ies. The SMA-Id method was considered only for the p > n case. To measure

the performance of each method, we calculated the estimated model sparsity, de-

fined as
∑K

k=1 |M̂(k)| for the heterogeneous structure and K−1
∑K

k=1 |M̂(k)| for the

homogeneous structure, where M̂(k) denotes the set of selected covariates for the kth

study. We further calculated the correct 0 rate M−1
∑M

m=1 π̂m and the incorrect 0 rate

M−1
∑M

m=1 ζ̂m, where π̂m =
∑K

k=1

∑p
j=1 I(β̂jk = 0)I(β0

jk = 0)/
∑K

k=1

∑p
j=1 I(β

0
jk = 0),

ζ̂m =
∑K

k=1

∑p
j=1 I(β̂jk = 0)I(β0

jk 6= 0)/
∑K

k=1

∑p
j=1 I(β

0
jk 6= 0) for the mth simulation,

I(·) is the indicator function, and M is the total number of simulations. Similar cri-

teria were used by Wang (2009). We set M = 100. To assess the prediction accuracy,

we further simulated K data sets, (ỹik, x̃ik) for k = 1, . . . , K and i = 1, . . . , nk, and

calculated the prediction error K−1
∑K

k=1

{
n−1

k

∑nk

i=1(ỹik − x̃T
ikβ̂k)

2
}

. Our work was

motivated mainly by GWAS, which typically involve thousands of subjects. Thus, we

focused on large simulation studies. Our methods are also applicable to small-scale

datasets and the corresponding results are given in Supplemental Materials 3.8.4.

3.4.1 Small Dimensions

We simulated 5 studies, each with 50 covariates. The sample sizes for the five studies

are 2000, 1800, 1600, 1400 and 1200. The 50 covariates were evenly divided into 10

blocks, and each block followed a multivariate normal distribution with mean being

the unit vector and covariance matrix following either the compound symmetry or the

auto-regressive correlation structure. The variances of the 50 covariates followed a

Uniform(1.0, 2.0) distribution.

We first considered the heterogeneous structure, in which 10 covariates were active

or partly active among the studies. For j = 1, . . . , p, the nonzero coefficients for the jth

covariate were simulated under the random effects model β0
jk = (−1)j×Rj for k ∈Mj,

64



where Rj ∼ N(µj, σ
2
j ), µj ∼ Uniform(0.5, 1.0), and σj = µj/2. The choice of (µj, σj)

essentially allows β0
jk (k = 1, ..., K) to have the same sign for a given j, and this is a

reasonable assumption. The results are shown in Table 3.1.

The results suggest that the performance of the SMA is comparable to that of the

Gold method. This is consistent with our theoretical results that the two methods are

asymptotically equivalent. The SMA-Diag appears to have good performance, although

it is less efficient than the SMA because the SMA-Diag omits part of the information

in the estimated covariance matrix. The aLASSO-U clearly over-selects models, and

its parameter estimation error is almost always higher than those of the SMA and

SMA-Diag. The prediction errors for the first 4 methods are close, although the SMA

tends to be slightly better than the aLASSO-U. The aLASSO-I method always under-

selects models, resulting in grossly inflated estimation errors and prediction errors.

Indeed, under the heterogeneous structure, the aLASSO-I is bound to fail by its design.

The results for the homogeneous structure (Table 3.6 in Supplemental Materials) show

similar patterns.

3.4.2 Large Dimensions

We increased the dimension to 200 but kept the other conditions the same as before.

For the SMA and SMA-Diag, we let wjk = |β̃jk|
−3

for the heterogeneous structure

and wj = (
∑K

k=1 |β̃jk|3/K)−1 for the homogeneous structure (j = 1, . . . , p and k =

1, . . . , K). The results are shown in Table 3.2 and Table 3.7. The SMA method

continues to perform similarly to the Gold method. The SMA-Diag is less efficient

than the SMA but still possesses the desirable model sparsity. The aLASSO-U model

includes a large number of noise covariates, while the aLASSO-I tends to miss important

covariates. We further tested the five methods under smaller effect sizes with µj ∼

Uniform(0.2, 0.5) for all j, and the SMA and SMA-Diag still perform well (see Tables
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Table 3.1: Comparison of the SMA and other methods under the heterogeneous struc-
ture for p = 50

Method
∑5

k=1 |M̂(k)| Correct 0(%) Incorrect 0(%) ||β̂ − β0||2/5 Pred err
Correlation structure: Auto-regressive (ρ = 0.3)

Gold 40.61 99.9 1.44 0.004 1.003
SMA 40.74 99.8 1.51 0.004 1.003

SMA-Diag 41.09 99.7 1.39 0.005 1.004
aLASSO-U 115.65 64.3 0 0.006 1.006
aLASSO-I 32.60 100.0 20.54 1.169 2.793

Correlation structure: Auto-regressive (ρ = 0.6)
Gold 40.66 99.9 1.59 0.004 1.003
SMA 42.65 98.9 1.34 0.005 1.003

SMA-Diag 46.23 97.3 1.20 0.009 1.009
aLASSO-U 130.05 57.4 0 0.008 1.006
aLASSO-I 32.85 100.0 20.00 1.145 2.756

Correlation structure: Compound symmetry (ρ = 0.3)
Gold 40.66 99.9 1.46 0.004 1.003
SMA 41.02 99.7 1.44 0.004 1.003

SMA-Diag 41.37 99.6 1.37 0.005 1.004
aLASSO-U 126.50 59.1 0 0.007 1.006
aLASSO-I 32.75 100.0 20.17 1.120 2.728

Correlation structure: Compound symmetry (ρ = 0.5)
Gold 40.72 99.8 1.66 0.005 1.003
SMA 42.33 99.1 1.32 0.006 1.003

SMA-Diag 43.46 98.6 1.39 0.008 1.007
aLASSO-U 140.85 52.2 0 0.010 1.007
aLASSO-I 32.80 99.9 20.32 1.136 2.742
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Table 3.2: Comparison of the SMA and other methods under the heterogeneous struc-
ture for p = 200

Method
∑5

k=1 |M̂(k)| Correct 0(%) Incorrect 0(%) ||β̂ − β0||2/5 Pred err
Correlation structure: Auto-regressive(ρ = 0.3)

Gold 41.01 99.9 1.59 0.004 1.009
SMA 41.26 99.9 2.32 0.005 1.010

SMA-Diag 42.37 99.8 2.44 0.007 1.013
aLASSO-U 436.80 58.7 0 0.014 1.022
aLASSO-I 32.85 100.0 20.07 1.097 2.640

Correlation structure: Auto-regressive (ρ = 0.6)
Gold 40.91 99.9 1.56 0.004 1.009
SMA 43.13 99.7 2.51 0.007 1.012

SMA-Diag 48.05 99.1 3.12 0.018 1.027
aLASSO-U 442.05 58.2 0 0.016 1.022
aLASSO-I 32.70 100.0 20.24 1.123 2.668

Correlation structure: Compound symmetry (ρ = 0.3)
Gold 40.83 100.0 1.54 0.005 1.010
SMA 41.22 99.9 2.46 0.006 1.012

SMA-Diag 42.43 99.7 2.54 0.009 1.015
aLASSO-U 474.30 54.8 0 0.016 1.025
aLASSO-I 32.85 100.0 19.98 1.086 2.625

Correlation structure: Compound symmetry (ρ = 0.5)
Gold 40.71 100.0 1.63 0.005 1.009
SMA 42.58 99.7 2.63 0.007 1.011

SMA-Diag 46.79 99.3 2.78 0.012 1.019
aLASSO-U 477.85 54.4 0 0.018 1.024
aLASSO-I 32.85 100.0 20.17 1.094 2.633
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3.9 and 3.10 in Supplemental Materials).

3.4.3 p > n

When p is greater than n, variable selection in meta-analysis becomes extremely

challenging because the OLS estimators cannot be obtained. The LASSO estimators

may sometimes be available for each study because the LASSO can handle ‘p > n’ via

the coordinate descent algorithm (Friedman et al., 2007). Although our theory does

not cover the p > n situation, we evaluated the empirical performance of our SMA-Id

method in this challenging case.

We set the sample sizes of the 5 studies to 600, 500, 600, 500 and 400. The dimension

p is set to 1000. To create high variability, we let the variances of the p covariates follow

the Uniform(1.0, 3.0) distribution. We first ran the LASSO for each study to obtain

the estimates for all β0
jk. Since the corresponding variance estimates are usually not

provided, we applied the SMA-Id to the LASSO estimates to conduct variable selection.

We compared the SMA-Id to the LASSO-U and LASSO-I, which are the same as the

aLASSO-U and aLASSO-I except for the use of the LASSO instead of the aLASSO. The

results are shown in Table 3.3 and Table 3.8. The LASSO-U and LASSO-I yield either

extremely large models or highly skewed parameter estimates. The SMA-Id tends to

select a model that is quite close to the true model and improve parameter estimation

and prediction accuracy. These results suggest that, even though the ‘feed-in’ summary

statistics are biased, the SMA-Id can transform them into a more informative model

for both variable selection and prediction.

3.4.4 Sub-group Structures

In the above studies, we considered both the homogeneous and heterogeneous struc-

tures. Sometimes, one may encounter a structure that is a hybrid of the two, which
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Table 3.3: Comparison under the heterogeneous structure for p > n

Method
∑5

k=1 |M̂(k)| Correct 0(%) Incorrect 0(%) ||β̂ − β0||2/5 Pred err
Correlation structure: Auto-regressive (ρ = 0.3)

SMA-Id 38.81 100.0 5.34 0.060 1.109
LASSO-U 963.9 81.4 0.07 0.066 1.120
LASSO-I 30.85 100.0 24.76 1.360 3.794

Correlation structure: Auto-regressive (ρ = 0.6)
SMA-Id 38.65 100.0 5.80 0.077 1.124

LASSO-U 1058.20 79.5 0.10 0.083 1.135
LASSO-I 30.9 100.0 24.63 1.399 3.832

Correlation structure: Compound symmetry (ρ = 0.3)
SMA-Id 38.50 100.0 6.10 0.086 1.127

LASSO-U 1134.50 77.9 0.10 0.093 1.142
LASSO-I 30.60 100.0 25.37 1.400 3.795

Correlation structure: Compound symmetry (ρ = 0.5)
SMA-Id 38.34 100.0 6.59 0.131 1.144

LASSO-U 1272.70 75.2 0.10 0.139 1.166
LASSO-I 29.40 100.0 28.29 1.532 3.912

NOTE: p = 1000 and the sample sizes range from 400–600.

we call the sub-group structure. More detail on this structure can be found in Section

3.8.3 of the Supplemental Materials. It is shown in Tables 3.11-3.13 that with a proper

choice of the penalty weight wjk our methods are applicable to this structure.

3.4.5 Small Sample Sizes

We further tested our methods under smaller sample sizes, such as nk = 100 for

k = 1, ..., 5. We varied the heterogeneous structure to make it more challenging for

variable selection (see Figure 3.2 in Supplemental Materials). Our methods continue

to perform better than the methods based on the LASSO or the adaptive-LASSO (see

Tables 3.14 and 3.15 in Supplemental Materials).
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3.5 Real Data Analysis

We consider the Multi-Ethnic Study of Atherosclerosis (MESA) study (Bild et al.,

2002) and the Coronary Artery Risk Development in Young Adults (CARDIA) study

(Friedman et al., 1988). A major goal of these two studies is to investigate genetic

factors that influence the development of cardiovascular diseases.

The MESA study contains 1568 whites and 2249 blacks, and the CARDIA study

contains 1261 whites and 1422 blacks. The phenotype of interest is lipidpc1, a con-

tinuous variable that was derived from the principal component analysis of several

lipid-related measurements and represents a summary of lipid traits in a person. A

previous study revealed a number of single nucleotide polymorphisms (SNPs) that are

associated with lipidpc1 (Avery et al., 2011). Since a genetic study rarely reports more

than 100 SNPs with summary statistics, we focus on the top 100 SNPs to conduct

variable selection. We include environmental covariates, i.e., center, age, gender and

the top 10 principle components for ancestry, in all of our analysis.

We analyze the data of black and white samples separately, which amounts to 4

studies, i.e., MESA-Black, MESA-White, CARDIA-Black and CARDIA-White. We

adopt the heterogeneous structure. We compare the SMA to the Gold method, the

SMA-Diag and the aLASSO-U method. The aLASSO-I method is omitted because of

its inherent incompatibility with the heterogeneous structure. The results are shown

in Tables 3.4 and 3.5. (Information on the Gold model can be found in Table 3.16 in

Supplemental Materials.) As expected, both the SMA and the SMA-Diag yield sparse

models that are largely consistent with the Gold model, and many of the selected

covariates overlap in these three models. In contrast, the aLASSO-U selects a much

larger model which is difficult to interpret. The estimated regression coefficients vary

across different studies and sometimes shrink to zero among the 4 studies. This is

consistent with the heterogeneous structure.
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Table 3.4: Variable selection in the CARDIA and MESA followed by prediction in the
ARIC study

Model sizes
Method CARDIA-Blk. MESA-Blk. CARDIA-Whi. MESA-Whi. Pred err
Gold 11 5 13 5 2.75
SMA 10 9 17 14 3.06

SMA-Diag 11 8 16 12 3.04
aLASSO-U 70 70 70 70 3.41

To investigate the prediction performance of these methods, we consider prediction

in the Atherosclerosis Risk in Communities (ARIC) study (The ARIC Investigators,

1989). This study includes 8907 white and 2532 black participants. Since the ARIC

cohort is demographically similar to the MESA cohort, we apply the regression coef-

ficient estimates obtained from the MESA-Black to predict the ARIC-Black, and the

MESA-White to predict the ARIC-White. The prediction errors are shown in Table

3.4. The Gold method achieves the highest prediction accuracy, and the SMA and

SMA-Diag both beat the aLASSO-U method. The observed difference between the

Gold method and the SMA can be explained by the extremely small effects of some of

the selected SNPs and the relatively insufficient sample sizes of our training data sets

compared to many existing GWAS. The prediction error of the SMA-Diag is slightly

lower than that of the SMA, and this is likely due to two reasons: first, the correlations

among the 100 SNPs are quite mild and thus the two methods should perform quite

similarly; second, the underlying distribution of the ARIC data is somewhat different

from that of the MESA data and thus some stochastic deviation is expected. The

larger prediction error of the aLASSO-U method is likely due to its large model size,

demonstrating the importance of variable selection for predicting genetic risks.

The above prediction uses external data sets as the testing data, which may not have

the same distributions as the training data sets. To further investigate the prediction

power, we divide the ARIC-white data into 3 subsets according to the 3 centers from
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Table 3.5: The SMA model based on the CARDIA and MESA studies

Estimates of regression coefficients
SNP CARDIA-Black MESA-Black CARDIA-White MESA-White

rs4420638 0.102 0.029 -0.352 -0.088
rs660240 0.221 0.333 0.107
rs445925 -0.191 -0.364 -0.293
rs6511720 0.259 0.187 0.248 0.212
rs1713222 -0.155 -0.162 -0.142
rs1168132 0.095
rs2954021 0.174 0.035
rs9302635 -0.128 -0.121 -0.033
rs9534262 -0.067 -0.107 0.018
rs2307039 0.059
rs1203576 -0.065 -0.103
rs5752792 0.041 0.123
rs3916027 -0.015 -0.075
rs9348432 0.098
rs7552841 -0.040
rs12401642 0.326 0.208
rs873870 -0.017 -0.031
rs816060 0.212 0.056 0.085
rs2479409 -0.178 -0.093
rs4689667 0.095
rs2760537 0.068
rs7493705 0.062 -0.260
rs10445281 0.163
rs10743370 0.042

NOTE: Zero estimates are left blank.
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which the data were collected and treat each subset as a separate study. We then

conduct variable selection on the three studies. Each study is randomly divided into 10

folds, with one fold as the testing data and the remaining 9 folds as the training data.

The resulting prediction error is commonly called the 10-fold cross-validation prediction

error. We find that the 10-fold cross-validation prediction errors for the Gold, SMA,

SMA-Diag and aLASSO-U are 2.57, 2.77, 2.78, 2.89, respectively. Overall, the SMA

and SMA-Diag are preferable to the aLASSO-U method in genetic risk prediction.

3.6 Discussion

Variable selection in meta-analysis is important in improving model interpretability

and prediction accuracy. We have developed a class of variable selection methods that

can make use of either the raw data or the summary statistics and thus have greatly

broadened the applicability of variable selection in meta-analysis. When all the raw

data are available, the Gold method should be the first choice. When only summary

statistics are available, either the SMA or the SMA-Diag is recommended, depending

on whether the estimated covariance matrix is provided or not. The SMA-Id is most

useful in the ‘p > n’ case.

Our theoretical work and simulation studies demonstrate that, under proper con-

ditions, summary statistics can almost replace raw data for variable selection in meta-

analysis, at least in the asymptotic sense. In a similar spirit (although not in the

context of variable selection), Lin and Zeng (2010) showed that summary statistics are

asymptotically equivalent to the original data for meta-analysis under the fixed-effects

model. We conjecture that if the first part of equation (3.1) is replaced by other suit-

able risk functions, the asymptotic equivalence between summary statistics and raw

data will continue to hold. If the penalty term in equation (3.1) is replaced by other

reasonable penalties, the asymptotic equivalence may hold as well. Which risk function
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or penalty term to use should depend on the scientific nature of the problem and the

modelling aims of the investigators.

We have focused on the continuous outcome. We are currently extending our meth-

ods to discrete and censored data. The results will be communicated in separate reports.

3.7 Supplemental Materials

3.7.1 Performance under the homogeneous structure

We investigated the performance of the SMA and other methods under the homo-

geneous structure. Data were simulated in a similar manner as described in Section

3.4.1-3.4.3 of the main text, except that we replaced the heterogeneous structure with

the homogeneous structure. Specifically, we let all the five studies share 10 common

active covariates, as shown in the upper panel of Figure 3.1 in Supplemental Materials.

To accommodate the homogeneous structure, we adjusted the Gold method by solving

the following problem:

min
β1,...,βK

K∑
k=1

{
nk

−1

nk∑
i=1

(yik − xT
ikβk)

2

}
+ λ

p∑
j=1

(
K∑

k=1

wj|βjk|

) 1
2

(3.8)

with wj = (
∑K

k=1 |β̃jk|/K)−1. The results in Tables S1a-S1c show that the SMA has a

similar performance as the Gold method and performs better than the other methods.

3.7.2 Performance of the SMA under small effect sizes

We assessed the performance of the SMA and other methods under relatively small

effect sizes. The true model is as described in Section 3.4.2 of the main text, but we

let µj ∼Uniform(0.2, 0.5). The results in Tables 3.9 and 3.10 show that the SMA and

the SMA-Diag methods still perform well under small effect sizes.
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Figure 3.1: True models under homogeneous and heterogeneous structures. Only blocks
harboring important covariates are shown.
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Table 3.6: Comparisons of the SMA and other methods under the homogeneous struc-
ture for p = 50

Method
∑5

k=1 |M̂(k)|/5 Correct 0(%) Incorrect 0(%) ||β̂ − β0||2/5 Pred err
Correlation structure: Auto-regressive (ρ = 0.3)

Gold 9.96 100.0 0.40 0.005 1.005
SMA 10.01 99.9 0.42 0.005 1.005

SMA-Diag 10.04 99.8 0.36 0.005 1.006
aLASSO-U 24.45 63.9 0 0.008 1.009
aLASSO-I 9.26 100.0 7.40 0.438 1.647

Correlation structure: Auto-regressive (ρ = 0.6)
Gold 9.97 100.0 0.40 0.005 1.005
SMA 10.17 99.5 0.28 0.005 1.005

SMA-Diag 10.41 98.9 0.18 0.008 1.010
aLASSO-U 26.05 59.9 0 0.009 1.010
aLASSO-I 9.24 100.0 7.60 0.455 1.674

Correlation structure: Compound symmetry (ρ = 0.3)
Gold 9.98 100.0 0.24 0.005 1.006
SMA 10.02 99.9 0.20 0.005 1.006

SMA-Diag 10.04 99.8 0.22 0.006 1.007
aLASSO-U 25.65 60.9 0 0.008 1.010
aLASSO-I 9.38 100.0 6.20 0.371 1.531

Correlation structure: Compound symmetry (ρ = 0.5)
Gold 9.98 100.0 0.20 0.005 1.006
SMA 10.11 99.7 0.18 0.006 1.006

SMA-Diag 10.23 99.4 0.26 0.008 1.010
aLASSO-U 27.96 55.1 0 0.010 1.010
aLASSO-I 9.27 100.0 7.30 0.414 1.588
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Table 3.7: Comparisons of the SMA and other methods under the homogeneous struc-
ture for p = 200

Method
∑5

k=1 |M̂(k)|/5 Correct 0(%) Incorrect 0(%) ||β̂ − β0||2/5 Pred err
Correlation structure: Auto-regressive (ρ = 0.3)

Gold 10.01 100.0 0.28 0.005 1.011
SMA 10.03 100.0 0.28 0.005 1.011

SMA-Diag 10.25 99.9 0.24 0.006 1.013
aLASSO-U 90.13 57.83 0 0.016 1.026
aLASSO-I 9.34 100.0 6.60 0.330 1.486

Correlation structure: Auto-regressive (ρ = 0.6)
Gold 10.01 100.0 0.28 0.005 1.011
SMA 10.11 99.9 0.26 0.005 1.011

SMA-Diag 12.74 98.6 0.04 0.015 1.024
aLASSO-U 86.65 59.7 0 0.017 1.024
aLASSO-I 9.34 100.0 6.60 0.350 1.504

Correlation structure: Compound symmetry (ρ = 0.3)
Gold 10.02 100.0 0.30 0.005 1.011
SMA 10.04 100.0 0.26 0.005 1.011

SMA-Diag 10.36 99.8 0.16 0.007 1.014
aLASSO-U 93.93 55.8 0 0.017 1.026
aLASSO-I 9.39 100.0 6.20 0.329 1.474

Correlation structure: Compound symmetry (ρ = 0.5)
Gold 10.00 100.0 0.30 0.006 1.011
SMA 10.06 100.0 0.22 0.006 1.011

SMA-Diag 11.32 99.3 0 0.011 1.019
aLASSO-U 97.19 54.1 0 0.020 1.027
aLASSO-I 9.35 100.0 6.60 0.359 1.532
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Table 3.8: Comparisons of the SMA-Id and other methods under the homogeneous
structure for p > n

Method
∑5

k=1 |M̂(k)|/5 Correct 0(%) Incorrect 0(%) ||β̂ − β0||2/5 Pred err
Correlation structure: Auto-regressive (ρ = 0.3)

SMA-Id 9.66 100.0 3.42 0.078 1.140
LASSO-U 226.09 78.2 0 0.080 1.141
LASSO-I 8.73 100.0 12.70 0.762 2.400

Correlation structure: Auto-regressive (ρ = 0.6)
SMA-Id 9.65 100.0 3.54 0.094 1.148

LASSO-U 236.10 77.2 0 0.096 1.150
LASSO-I 8.66 100.0 13.40 0.832 2.489

Correlation structure: Compound symmetry (ρ = 0.3)
SMA-Id 9.63 100.0 3.72 0.105 1.153

LASSO-U 253.00 75.5 0 0.107 1.161
LASSO-I 8.69 100.0 13.10 0.827 2.439

Correlation structure: Compound symmetry (ρ = 0.5)
SMA-Id 9.56 100.0 4.40 0.152 1.173

LASSO-U 280.65 72.7 0 0.153 1.185
LASSO-I 8.48 100.0 15.30 0.972 2.603

NOTE: p = 1000 and the sample sizes range from 400–600.
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Table 3.9: Comparisons under the homogeneous structure with small effect sizes

Method
∑5

k=1 |M̂(k)|/5 Correct 0(%) Incorre 0(%) ||β0 − β̂||2/5 Pred err
Correlation structure: Auto-regressive (ρ = 0.3)

Gold 9.96 100.0 0.84 0.005 1.011
SMA 9.99 100.0 0.66 0.005 1.011

SMA-Diag 10.23 99.9 0.54 0.006 1.013
aLASSO-U 106.60 49.2 0 0.018 1.029
aLASSO-I 8.78 100.0 12.20 0.147 1.217

Correlation structure: Auto-regressive (ρ = 0.6)
Gold 9.98 100.0 0.60 0.005 1.011
SMA 10.15 99.9 0.52 0.005 1.011

SMA-Diag 12.62 98.6 0.22 0.014 1.023
aLASSO-U 101.17 52.0 0 0.020 1.027
aLASSO-I 8.64 100.0 13.60 0.162 1.240

Correlation structure: Compound symmetry (ρ = 0.3)
Gold 9.97 100.0 0.74 0.005 1.011
SMA 10.07 99.9 0.54 0.005 1.011

SMA-Diag 10.28 99.8 0.54 0.007 1.014
aLASSO-U 106.48 49.2 0 0.019 1.029
aLASSO-I 8.78 100.0 12.30 0.142 1.210

Correlation structure: Compound symmetry (ρ = 0.5)
Gold 9.95 100.0 0.92 0.006 1.011
SMA 10.07 99.9 0.66 0.006 1.011

SMA-Diag 11.27 99.3 0.26 0.011 1.019
aLASSO-U 105.50 49.7 0 0.023 1.029
aLASSO-I 8.52 100.0 14.90 0.176 1.258

NOTE: p = 200 and the sample sizes range from 1200–2000.
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Table 3.10: Comparisons under the heterogeneous structure with small effect sizes

Method
∑5

k=1 |M̂(k)| Correct 0(%) Incorrect 0(%) ||β0 − β̂||2/5 Pred err
Correlation structure: Auto-regressive (ρ = 0.3)

Gold 40.40 99.9 3.31 0.005 1.010
SMA 40.05 99.9 5.63 0.006 1.012

SMA-Diag 40.88 99.8 6.10 0.009 1.016
aLASSO-U 530.30 49.0 0 0.017 1.026
aLASSO-I 31.15 100.0 24.22 0.289 1.433

Correlation structure: Auto-regressive (ρ = 0.6)
Gold 40.61 99.9 3.66 0.005 1.010
SMA 42.94 99.5 5.90 0.011 1.017

SMA-Diag 46.41 99.1 7.59 0.022 1.032
aLASSO-U 504.1 51.7 0.02 0.019 1.025
aLASSO-I 30.1 100.0 26.66 0.305 1.447

Correlation structure: Compound symmetry (ρ = 0.3)
Gold 40.62 99.9 3.32 0.005 1.011
SMA 39.73 99.8 7.00 0.011 1.018

SMA-Diag 40.66 99.7 7.39 0.014 1.022
aLASSO-U 526.70 49.4 0 0.018 1.027
aLASSO-I 31.35 100.0 23.63 0.277 1.413

Correlation structure: Compound symmetry (ρ = 0.5)
Gold 40.49 99.9 3.61 0.006 1.010
SMA 42.98 99.5 5.83 0.009 1.013

SMA-Diag 45.31 99.3 6.61 0.015 1.022
aLASSO-U 518.05 50.3 0 0.020 1.026
aLASSO-I 30.35 100.0 26.44 0.304 1.447

NOTE: p = 200 and the sample sizes range from 1200–2000.
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3.7.3 Performance of the SMA under the sub-group structure

We first provide a motivating example for the sub-group structure. Suppose that we

are analyzing 5 studies for a certain disease and two of them belong to a sub-category

of the disease while the other three studies belong to another sub-category of the

disease. This is particularly common in psychiatric diseases, where one major disease

may include many sub-categories. Thus, the 5 studies can be treated as two subgroups

based on their clinical information. For this situation, it is reasonable to assume that,

in addition to the active covariates shared by all subgroups, each subgroup has its own

set of active covariates.

Next, we describe simulation studies for the sub-group structure. Assume that

there are H subgroups in the K studies, and let Sh denote the set of studies in the

hth subgroup. In our simulation studies, we let K = 5, H = 2, S1 = {1, 2} and S2 =

{3, 4, 5}. That is, we let the 5 studies contain 2 subgroups, where subgroup 1 consists of

studies 1 and 2, and subgroup 2 consists of studies 3, 4 and 5. The set of covariates with

nonzero coefficients in subgroup 1 was set to {1, 4, 6, 9, 11, 14, 16, 21, 26, 31}, and the set

of covariates with nonzero coefficients in subgroup 2 was set to {1, 4, 6, 9, 11, 14, 16, 21}.

In other words, covariates 1, 4, 6, 9, 11, 14, 16 and 21 are active in both subgroups,

while covariates 26 and 31 are active only in subgroup 1. We consider p = 50, 200, and

1000. The objective function for the subgroup structure was the same as equation (3.1)

in the main text, except that the penalty weights were chosen as following:

wjk =

{
H∑

h=1

[
I(k ∈ Sh)|Sh|−1

∑
l∈Sh

|β̃jl|α
]}−1

, j = 1, ..., p, and k = 1, ..., K,

where |Sh| is the cardinality of Sh. The α is chosen to be 3 for p = 200, and 1 otherwise.

The results are shown in Tables 3.11-3.13. It can be seen that our methods have a

good chance of identifying the true model and tend to outperform the aLASSO-U and

81



Table 3.11: Comparisons under the subgroup structure for p = 50

Method
∑5

k=1 |M̂(k)| Correct 0(%) Incorrect 0(%) ||β0 − β̂||2/5 Pred err
Correlation structure: Auto-regressive (ρ = 0.3)

Gold 43.83 100.0 0.50 0.004 1.002
SMA 44.03 99.9 0.45 0.004 1.002

SMA-Diag 44.13 99.9 0.39 0.005 1.003
aLASSO-U 119.95 63.1 0 0.007 1.006
aLASSO-I 36.85 100.0 16.25 0.944 2.401

Correlation structure: Auto-regressive (ρ = 0.6)
Gold 43.91 100.0 0.32 0.004 1.002
SMA 44.62 99.6 0.41 0.004 1.002

SMA-Diag 46.43 98.8 0.30 0.008 1.007
aLASSO-U 127.35 59.5 0 0.008 1.006
aLASSO-I 37.35 100.0 15.11 0.906 2.345

Correlation structure: Compound symmetry (ρ = 0.3)
Gold 43.87 100.0 0.50 0.004 1.002
SMA 44.22 99.8 0.41 0.004 1.003

SMA-Diag 44.14 99.8 0.52 0.005 1.004
aLASSO-U 127.40 59.5 0 0.008 1.006
aLASSO-I 36.90 100.0 16.20 0.932 2.372

Correlation structure: Compound symmetry (ρ = 0.5)
Gold 43.83 100.0 0.48 0.005 1.002
SMA 44.70 99.6 0.36 0.005 1.002

SMA-Diag 45.26 99.3 0.50 0.007 1.006
aLASSO-U 136.75 55.0 0 0.010 1.006
aLASSO-I 36.85 100.0 16.32 0.935 2.375

NOTE: The sample sizes range from 1200–2000.

aLASSO-I (or LASSO-U and LASSO-I).

3.7.4 Performance of the SMA under smaller sample sizes

We assessed the performance of our methods when the sample sizes are relatively

small. We considered two situations, ‘p < n’ and ‘p > n’.

We let nk = 100 for k = 1, ..., 5, and p = 50. The true model followed the heteroge-

neous structure II, as shown in Figure 3.2 (upper panel). The nonzero coefficients were

simulated under a Uniform(0, 3.0). The results are shown in Table 3.14.
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Table 3.12: Comparisons under the subgroup structure for p = 200

Method
∑5

k=1 |M̂(k)| Correct 0(%) Incorrect 0(%) ||β0 − β̂||2/5 Pred err
Correlation structure: Auto-regressive (ρ = 0.3)

Gold 44.02 100.0 0.43 0.004 1.010
SMA 44.47 99.9 0.36 0.004 1.010

SMA-Diag 45.97 99.8 0.27 0.006 1.012
aLASSO-U 457.15 56.8 0 0.015 1.025
aLASSO-I 36.95 100.0 16.14 0.934 2.414

Correlation structure: Auto-regressive (ρ = 0.6)
Gold 43.90 100.0 0.52 0.004 1.010
SMA 45.67 99.8 0.43 0.005 1.010

SMA-Diag 65.25 97.8 0.05 0.017 1.026
aLASSO-U 453.05 57.2 0 0.017 1.024
aLASSO-I 36.85 100.0 16.25 0.952 2.439

Correlation structure: Compound symmetry (ρ = 0.3)
Gold 44.04 100.0 0.52 0.004 1.009
SMA 44.37 99.9 0.36 0.004 1.009

SMA-Diag 46.74 99.7 0.39 0.006 1.013
aLASSO-U 501.95 52.1 0 0.017 1.026
aLASSO-I 36.80 100.0 16.43 0.960 2.444

Correlation structure: Compound symmetry (ρ = 0.5)
Gold 43.92 100.0 0.59 0.005 1.009
SMA 45.29 99.9 0.25 0.005 1.010

SMA-Diag 53.36 99.0 0.14 0.011 1.018
aLASSO-U 494.95 52.8 0 0.019 1.026
aLASSO-I 36.90 100.0 16.14 0.937 2.407

NOTE: The sample sizes range from 1200–2000.
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Table 3.13: Comparisons under the subgroup structure for p > n

Method
∑5

k=1 |M̂(k)| Correct 0(%) Incorrect 0(%) ||β0 − β̂||2/5 Pred err
Correlation structure: Auto-regressive (ρ = 0.3)

SMA-Id 42.57 100.0 3.25 0.070 1.133
LASSO-U 1037.10 80.0 0 0.071 1.132
LASSO-I 35.6 100.0 19.1 1.121 3.236

Correlation structure: Auto-regressive (ρ = 0.6)
SMA-Id 42.38 100.0 3.68 0.087 1.142

LASSO-U 1092.90 78.8 0 0.086 1.142
LASSO-I 35.2 100.0 20.00 1.219 3.383

Correlation structure: Compound symmetry (ρ = 0.3)
SMA-Id 42.44 100.0 3.55 0.097 1.147

LASSO-U 1174.50 77.2 0 0.096 1.151
LASSO-I 35.15 100.0 20.2 1.227 3.364

Correlation structure: Compound symmetry (ρ = 0.5)
SMA-Id 42.12 100.0 4.27 0.141 1.162

LASSO-U 1320.80 74.2 0 0.141 1.174
LASSO-I 33.65 100.0 23.6 1.418 3.575

NOTE: p = 1000 and the sample sizes range from 400–600.

We also let nk = 100 for k = 1, ..., 5, and p = 1000. The true model followed

the heterogeneous structure III, as shown in Figure 3.2 (lower panel) in Supplemental

Materials. The nonzero coefficients were simulated under a Uniform(1.0, 3.0). The

results are shown in Table 3.15.

3.7.5 Supplementary Table for real data analysis

In Table 3.16, we show the models selected by the Gold method for the CARDIA

and the MESA.

3.7.6 Supplementary Proofs

Proof for the equivalence of equations (3.1) and (3.5)
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Figure 3.2: True models under heterogeneous structures II and III. Only blocks that
harbor important covariates are shown.
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Table 3.14: Comparisons of the SMA and other methods under small sample sizes and
the heterogeneous structure II

Method
∑5

k=1 |M̂(k)| Correct 0(%) Incorrect 0(%) ||β0 − β̂||2/5 Pred err
Correlation structure: Auto-regressive (ρ = 0.6)

Gold 41.63 98.6 5.59 0.099 1.132
SMA 60.22 89.5 6.61 0.229 1.238

aLASSO-U 183.90 31.6 0.37 0.255 1.266
aLASSO-I 27.25 100.0 33.63 7.281 11.983

Correlation structure: Compound symmetry (ρ = 0.5)
Gold 40.84 98.8 6.32 0.112 1.132
SMA 57.13 90.8 7.49 0.224 1.234

aLASSO-U 187.05 30.1 0.20 0.269 1.284
aLASSO-I 26.00 100.0 36.83 7.855 13.156

NOTE: p = 50 and sample sizes are equal to 100.

Table 3.15: Comparisons of the SMA-Id and other methods under small sample sizes
and the heterogeneous structure III

Method
∑5

k=1 |M̂(k)| Correct 0(%) Incorrect 0(%) ||β0 − β̂||2/5 Pred err
Correlation structure: Auto-regressive (ρ = 0.6)

SMA-Id 37.79 100.0 0 0.396 1.774
LASSO-U 980.45 81.0 0 0.498 1.870
LASSO-I 20.25 100.0 45.51 14.550 32.234

Correlation structure: Compound symmetry (ρ = 0.5)
SMA-Id 37.50 100.0 0 0.333 1.675

LASSO-U 898.70 82.6 0 0.419 1.756
LASSO-I 20.15 100.0 45.62 14.555 35.111

NOTE: p = 1000 and sample sizes are equal to 100.
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Table 3.16: Variable selection for the CARDIA and MESA by the Gold method

Study Model size Selected SNPs
CARDIA-Black 11 rs4420638, rs445925, rs6511720, rs1713222

rs9302635, rs9534262, rs5752792, rs9348432
rs12401642, rs2479409, rs2760537

MESA-Black 5 rs660240, rs6511720, rs1713222
rs920184, rs9534262

CARDIA-White 13 rs4420638, rs660240, rs445925, rs6511720
rs1713222, rs2954021, rs9302635, rs920184

rs1203576, rs5752792, rs12401642, rs2479409
rs10445281

MESA-White 5 rs4420638, rs660240, rs445925, rs6511720
rs1713222

By the Cauchy-Schwartz inequality,

K∑
k=1

(β̃k − βk)
TṼ

−1

k (β̃k − βk) + λ1

p∑
j=1

γj +

p∑
j=1

γ−1
j

(
K∑

k=1

wjk|βjk|

)

≥
K∑

k=1

(β̃k − βk)
TṼ

−1

k (β̃k − βk) +

p∑
j=1

2

√√√√λ1

K∑
k=1

wjk|βjk|

 ,

where the equality holds if and only if γj = (1/λ1)
1
2

(∑K
k=1wjk|βjk|

) 1
2

for all j. Now,

let λ1 = (λ/2)2. Then the proof is completed.

Proof for the consistency of the proposed BIC criterion

Let M denote an arbitrary model, Mλ denote the model under λ, and MT denote

the true model. We say that M is an under-fitted model if M 6⊃ MT , and over-fitted

if M⊃MT and M 6= MT . Further define

β̂k,M ≡ argmin{βk∈Rp:βk,j=0,∀j 6∈M}(βk − β̃k)
T (βk − β̃k). (3.9)

Note, in general, β̂k,M 6= β̃k because of the constraint that βk,j = 0,∀j 6∈ M.
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Suppose that λ0 yields the true model, λL yields an under-fitted model, and λH

yields an over-fitted model. We wish to prove that with high probability, BICλL
>

BICλ0 , and BICλH
> BICλ0 . We first prove the former.

Because (I) both β̂k,λ0
and β̃k are consistent for β0

k and (II) qλ0,k log(nk)/nk → 0,

it is easy to verify that BICλ0 = op(1). Next, for λL,

BICλL
=

K∑
k=1

(β̂k,λL
− β̃k)

T (β̂k,λL
− β̃k) +

K∑
k=1

qλL,k × log(nk)/nk

≥
K∑

k=1

(β̂k,λL
− β̃k)

T (β̂k,λL
− β̃k)

≥
K∑

k=1

(β̂k,MλL
− β̃k)

T (β̂k,MλL
− β̃k)

≥ min
M6⊃MT

K∑
k=1

(β̂k,M − β̃k)
T (β̂k,M − β̃k)

→
K∑

k=1

(β0
k,M − β0

k)
T (β0

k,M − β0
k) > 0.

The first inequality holds trivially. The second inequality holds because of the definition

of β̂k,MλL
(see (3.9) for detail). The third inequality also holds trivially. The remaining

part holds because I) β̂k,M → β0
k,M II) β̃k → β0

k and III) M represents an underfitted

model.

Next, we prove that BICλH
> BICλ0 . Note that

n(BICλH
−BICλ0) ≥ v−1

max

K∑
k=1

nk(β̂k,λH
− β̃k)

T (β̂k,λH
− β̃k)−

v−1
min

K∑
k=1

nk(β̂k,λ0
− β̃k)

T (β̂k,λ0
− β̃k) +

v−1
max

K∑
k=1

(qλH ,k − qλ0,k) log(nk)
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≥ v−1
max

K∑
k=1

nk(β̂k,MλH
− β̃k)

T (β̂k,MλH
− β̃k)−

v−1
min

K∑
k=1

nk(β̂k,λ0
− β̃k)

T (β̂k,λ0
− β̃k) +

v−1
max

K∑
k=1

(qλH ,k − qλ0,k) log(nk)

≥ v−1
max

K∑
k=1

nk(β̂k,MλH
− β̃k)

T (β̂k,MλH
− β̃k)−

v−1
min

K∑
k=1

nk(β̂k,λ0
− β̃k)

T (β̂k,λ0
− β̃k) + v−1

max

K∑
k=1

log(nk)

≥ v−1
max inf

M⊃MT

K∑
k=1

nk(β̂k,M − β̃k)
T (β̂k,M − β̃k)−

v−1
min

K∑
k=1

nk(β̂k,λ0
− β̃k)

T (β̂k,λ0
− β̃k) +

v−1
max

K∑
k=1

log(nk) (3.10)

The second inequality holds because of the definition of β̂k,MλH
. The third inequality

holds because the considered model is an overfitted model. In (3.10), the first term is

Op(1) because for anyM⊃MT , β̂k,M is
√
nk consistent; the second term is also Op(1);

the third term goes to infinity. Hence, BICλH
> BICλ0 with probability tending to 1.

Proof of Theorem 1

By Fan and Li (2001), the existence of a
√
n-consistent local minimizer can be

verified if, for an arbitrarily small ε > 0, there exists a sufficiently large constant C

such that

lim inf
n

P

{
inf

‖u‖=C
Qn(β0 + n−

1
2 u) > Qn(β0)

}
> 1− ε, (3.11)

where u = (uT
1 , . . . ,u

T
K)T.
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By the definition of Qn,

{
Qn(β0 + n−

1
2 u)−Qn(β0)

}
=

K∑
k=1

{
uk

T(nṼ k)
−1uk + 2uk

T(nṼ k)
−1[
√
n(β0

k − β̃k)]
}

+λ

p∑
j=1

[
K∑

k=1

wjk|β0
jk + n−

1
2ujk|

] 1
2

− λ

p0∑
j=1

∑
k∈Mj

wjk|β0
jk|

 1
2

≥
K∑

k=1

{
uk

T(nṼ k)
−1uk + 2uk

T(nṼ k)
−1[
√
n(β0

k − β̃k)]
}

+λ

p0∑
j=1

∑
k∈Mj

wjk|β0
jk + n−

1
2ujk|

 1
2

− λ

p0∑
j=1

∑
k∈Mj

wjk|β0
jk|

 1
2

=
K∑

k=1

{
uk

T(nṼ k)
−1uk + 2uk

T(nṼ k)
−1[
√
n(β0

k − β̃k)]
}

+λ

p0∑
j=1


∑

k∈Mj

wjk|β0
jk + n−

1
2ujk|

 1
2

−

∑
k∈Mj

wjk|β0
jk|

 1
2


≡ A+B,

where the first equality holds because β0
jk = 0 if (j, k) belongs to the set {j > p0, k =

1, . . . , K} or the set {j = 1, . . . , p0, k ∈ Mc
j}. We decompose A and B, respectively,

90



as A = A1 + A2 and B = B1 +B2 +B3, where

A1 =
K∑

k=1

uk
T(nṼ k)

−1uk, A2 = 2uk
T(nṼ k)

−1[
√
n(β0

k − β̃k)],

B1 = λ

p0∑
j=1

∑
k∈Mj

1

2

∑
l∈Mj

wjl|β0
jl|


− 1

2

wjksgn(β0
jk)n

− 1
2ujk,

B2 = λ

p0∑
j=1

∑
k∈Mj

∑
k′∈Mj

1

2
(−1

4
)

∑
l∈Mj

wjl|β0
jl|


− 3

2

wjkwjk′sgn(β0
jk)sgn(β0

jk′)n
−1ujkujk′ ,

B3 = λ

p0∑
j=1

op

n−1
∑

k∈Mj

u2
jk

 .

When p is fixed, the OLS estimators are root-n consistent and asymptotically nor-

mal, i.e., ||β̃k − β0
k|| = Op(n

− 1
2

k ) and
√
nk(β̃k − β0

k) →d N
(
0, σ2

kΣ
(k)
)

as n → ∞. For

each k, we have nkṼ k →p σ
2
kΣ

(k) and nk/n → νk as n → ∞, so nṼ k →p σ
2
kΣ

(k)/νk

and (nṼ k)
−1 →p νkσ

−2
k {Σ(k)}−1. Hence,

A1 ≥ 0.5
K∑

k=1

νkσ
−2
k uT

k {Σ(k)}−1uk ≥ 0.5τminσ
−2
max

K∑
k=1

νk‖uk‖2 ≥ 0.5τminνminσ
−2
maxC

2,

where σmax = maxk=1,...,K{σk}, and

|A2| ≤ 2
K∑

k=1

|uT
k (nṼ k)

−1[
√
n(β0

k − β̃k)]| ≤ 2
K∑

k=1

‖uk‖ · ‖(nṼ k)
−1[
√
n(β0

k − β̃k)]‖

≤ 2C
K∑

k=1

‖(nṼ k)
−1[
√
n(β0

k − β̃k)]‖ = Op(1)C.

Therefore, A1 is bounded below by a term quadratic in C, and A2 is uniformly bounded

above by a term linear in C.

For each j = 1, . . . , p0, we have
∑

l∈Mj
wjl|β0

jl| ≥ t2n

∑
l∈Mj

|β0
jl| ≥ t2nr1. This
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implies that {
∑

l∈Mj
wjl|β0

jl|}−1 ≤ (t2nr1)
−1 for any 1 ≤ j ≤ p0. Then

|B1| ≤ λ

p0∑
j=1

∑
k∈Mj

1

2

∑
l∈Mj

wjl|β0
jl|


− 1

2

wjkn
− 1

2 |ujk| ≤
1

2
n−

1
2λ(t2nr1)

− 1
2

p0∑
j=1

∑
k∈Mj

wjk|ujk|

≤ 1

2
λn−

1
2 (t2nr1)

− 1
2K

1
2 t1n

p0∑
j=1

‖uj‖ ≤
1

2
p0K

1
2 r

− 1
2

1 λn−
1
2 (t1nt

− 1
2

2n )C,

and

|B2| = λ

p0∑
j=1

∑
k∈Mj

∑
k′∈Mj

1

8

∑
l∈Mj

wjl|β0
jl|


− 3

2

wjkwjk′n
−1|ujk||ujk′|

≤ 1

8
λn−1(t2nr1)

− 3
2

p0∑
j=1

∑
k∈Mj

∑
k′∈Mj

wjkwjk′|ujk||ujk′| ≤
1

8
λ(t2nr1)

− 3
2Kt21n

(
p0∑

j=1

‖uj‖

)2

≤ 1

8
p2

0Kr
− 3

2
1 λn−1t21nt

− 3
2

2n C
2.

Note that B3 = C2λn−1op(1). Note also that B1 is bounded above by a term linear in C.

Define an = t1nt
− 1

2
2n and bn = t21nt

− 3
2

2n . Then A1 is asymptotically positive and dominates

A2, A3, B1, B2 and B3, as long as λn−
1
2an = Op(1), λn

−1bn = op(1) and λn−1 = op(1).

Therefore, as long as the constant C is sufficiently large, A1 will always dominate the

others with an arbitrarily large probability. This implies inequality (3.11), and the

proof is completed.

Proof of Corollary 1

For the heterogeneous structure, we only need to show that the conditions in The-

orem 1 are satisfied. Note that the OLS estimator is consistent with β̃jk − β0
jk =

Op(n
−1/2) for any j = 1, . . . , p and k = 1, . . . , K. This implies that the weight

wjk = |β0
jk|−1 + Op(n

−1/2) for any (j, k) satisfying 1 ≤ j ≤ p0 and k ∈ Mj. Then,

by definition, an = Op(1) and bn = Op(1). Therefore, as long as λ/
√
n = Op(1), the

conditions in Theorem 1 are satisfied.
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For the homogeneous structure, we have thatMj = {1, . . . , K} for any j = 1, . . . , p0.

Let s1n = max{wj : j = 1, ..., p0} and s2n = min{wj : j = 1, ..., p0}. Following the

proof of Theorem 1, we can show that, if λn−
1
2 s1ns

− 1
2

2n = Op(1), λn
−1s2

1ns
− 3

2
2n = op(1)

and λn−1 = op(1), then β̂
∗

is consistent. Next, we can show that s1n = Op(1) and

s2n = Op(1). Then Corollary 1 follows.

Proof of Theorem 2

Let β̂k,λ = (β̂1k,λ, . . . , β̂pk,λ)
T for k = 1, . . . , K and β̂λ = (β̂

T

1,λ, . . . , β̂
T

K,λ)
T. For any

(j, k) ∈ N , if β̂jk,λ 6= 0, then by the KKT conditions, it must be true that

0 = n−
1
2
∂Qn

∂βjk

∣∣∣
β̂λ

= 2(n−1Ṽ
−1

k )j.

√
n(β̂k,λ−β̃k)+n

− 1
2λ

1

2

{
K∑

k′=1

wjk′|β̂jk′,λ|

}− 1
2

wjksgn(β̂jk,λ),

where (Ṽ
−1

k )j. represents the jth row of Ṽ
−1

k . Because (nṼ k)
−1 →p νk(σ

2
kΣ

(k))−1 and,

under the conditions in Theorem 1,
√
n(β̃ − β̂λ) = Op(1), the first term on the right

side of the above equation is Op(1). Since β̂λ is a root-n consistent estimator of β0, we

have |β̂jk,λ| ≤ r2 + 1 for all (j, k) with probability tending to 1. Thus,

n−
1
2λ

1

2

{
K∑

k′=1

wjk′|β̂jk′,λ|

}− 1
2

wjk ≥ λn−
1
2
1

2
[Kg1n(1 + r2)]

− 1
2 g2n

=
1

2
[K(1 + r2)]

− 1
2λn−

1
2 g2ng

− 1
2

1n . (3.12)

Given that λn−
1
2 g2ng

− 1
2

1n → ∞, the right side of (3.12) → ∞. Therefore, with

probability tending to one, either β̂jk = 0 for (j, k) ∈ N or the sign of (3.12) is equal

to the sign of β̂jk. The latter contradicts with the fact that β̂λ is a minimizer of Qn.

Thus, we must have P (β̂jk = 0) → 1 for any (j, k) ∈ N . This completes the proof.

Proof of Corollary 2

We first consider the heterogeneous structure. Note that
√
n(β̂−β0) = Op(1). This
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implies that, for any (j, k) ∈ {j = 1, . . . , p0; k ∈Mj},

wjk = |β̃jk|
−1

=
1

|β0
jk|

+Op(n
− 1

2 ).

For any (j, k) ∈ N , we have
√
n(β̃jk − 0) = Op(1), which implies that wjk = |β̃jk|

−1
=

Op(n
1
2 ). Thus, g1n = Op(n

1
2 ) and g2n = Op(n

1
2 ). It follows that g2ng

− 1
2

1n = Op(n
1
4 ).

Therefore, the last condition in Theorem 2 can be simplified to that λn−
1
4 →∞.

Next, we consider the homogeneous structure. Let h1n = max{wj : j = p0 +1, ..., p}

and h2n = min{wj : j = p0 + 1, . . . , p}. Following the proof of Theorem 2, we can show

that, if λn−
1
2h2nh

1
2
1n → ∞, then P (β̂∗jk,λ = 0) → 1 for any (j, k) ∈ N . In addition, we

can show that h1n = Op(n
1
2 ) and h2n = Op(n

1
2 ). Then Corollary 2 follows.

Proof of Theorem 3

Consider the heterogeneous structure. Let mk be the cardinality of Ak. Since

we have shown that, with an arbitrarily large probability, the estimator of {β0
jk : k =

1, . . . , K; j ∈ Ac
k}must be 0, we can decompose β̂ into {β̂A,0}. By the KKT conditions,

it must be true that

∂Qn(β)

∂βA

∣∣∣
β=β̂

= 0. (3.13)

This implies that, for k = 1, ..., K, we have

0 = {(nkṼ k)
−1}AkAk

(β̂Ak
− β̃Ak

)− {(nkṼ k)
−1}AkAc

k
β̃Ac

k
+ n−1

k ek, (3.14)

where ek is a vector of length mk, with its sth component being 1
2
λ
{∑

j∈Ak
wsk|β̂sj|

}− 1
2

wsksgn(β̂sk). Since λn−
1
2an = op(1), each element of

√
nk(n

−1
k ek) is bounded by op(1).

Define F̃
(k)

= (nkṼ k)
−1, F̃

(k)

AkAk
= {(nkṼ k)

−1}AkAk
and F̃

(k)

AkAc
k

= {(nkṼ k)
−1}AkAc

k
.
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Then, (3.14) implies that

√
nk(β̂Ak

− β0
Ak

) =
√
nk(β̃Ak

− β0
Ak

) + {F̃
(k)

AkAk
}−1F̃

(k)

AkAc
k
(
√
nkβ̃Ac

k
) + op(1).

Note that
√
nkβ̃Ac

k
= Op(1), Cov(

√
nkβ̃Ak

) →p σ
2
kΣ

(k)
AkAk

,Cov(
√
nkβ̃Ac

k
) →p σ

2
kΣ

(k)
Ac

kA
c
k

and Cov(
√
nkβ̃Ak

,
√
nβ̃Ac

k
) →p σ

2
kΣ

(k)
AkAc

k
. Therefore, we have the following results:

(1) In general, if Ṽ k is an arbitrary symmetric matrix specified by the user, then it

is straightforward to show that

√
nk(β̂Ak

− β0
Ak

) → N(0, σ2
kSk),

where Sk = Σ
(k)
Ak

+ 2{F̃
(k)

Ak
}−1F̃

(k)

AkAc
k
Σ

(k)
AkAc

k
+ {F̃

(k)

Ak
}−1F̃

(k)

AkAc
k
Σ

(k)
Ac

k
F̃

(k)

Ac
kAk
{F̃

(k)

Ak
}−1.

(2) If nkṼ k → σ2
kΣ

(k), then {F̃
(k)

Ak
}−1F̃

(k)

AkAc
k
→p −Σ

(k)
AkAc

k
{Σ(k)

Ac
k
}−1. Consequently,

the asymptotic covariance matrix can be simplified into Σ
(k)
Ak
−Σ

(k)
AkAc

k
{Σ(k)

Ac
k
}−1Σ

(k)
Ac

kAk
,

which is the oracle asymptotic covariance matrix for those nonzero coefficients.

The proof for the homogeneous structure is similar and thus is omitted.
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Chapter 4

Genetic risk prediction by Iterative
SCAD-SVM (ISS)

4.1 Introduction

Genome-wide association studies provide a powerful platform for genetic risk pre-

diction of human diseases (Kraft and Hunter, 2009). By harnessing the prediction

power of single nucleotide polymorphisms (SNPs), it is anticipated that genetics risk

prediction will have a profound impact on disease prevention and clinical practice in

the foreseeable future (Collins, 2010).

Genetic risk prediction is a highly challenging task, as many complex human diseases

are contributed by a large number of genetic variants, many of which with relatively

small effects (Barret et al., 2008; Barret et al., 2009). The task is further complicated

by the high correlations among SNPs (commonly referred to as the linkage disequi-

librium (LD)), low penetrance of the causal variants, and unknown genetic models of

the underlying risk loci. Indeed, the genetic risk prediction in the current literature

is far from satisfactory and has triggered a debate on where to look for the “missing

heritability” of complex diseases (Manolio et al., 2009).



For genetic risk prediction, using only those SNPs that reach the stringent genome-

wide significance level is neither sufficient nor powerful, because other less significant

SNPs may still carry nonnegligible predictive power. To improve the prediction power

of GWAS, it is natural to consider as many SNPs as possible in the prediction model.

One popular strategy is to reap all the SNPs that pass a pre-specified threshold in the

univariate screening stage, and then build a prediction model based on the estimated

marginal effects of those selected SNPs (Wray et al., 2007). Another common strategy

is to simply count how many risk alleles each person carries, and then construct the

prediction model by treating the counts of the risk alleles as the single covariate (James

et al., 2008; Kang et al., 2010). We call the former as the Marginal method, and the

latter as the Count method.

While these methods incorporate potentially many SNPs in the prediction model,

they are associated with several problems. First, it is not clear what threshold should

be specified during the screening stage, which hinders their practical use in analyzing

real data; second, the Count method relies on the assumption that all the risk alleles

in the prediction model bear the same effect sizes, which rarely holds in genetic studies

(Evangelou et al., 2007); third, the Marginal method is built upon the marginal regres-

sion coefficients, but it is well-known that the marginal effects of covariates can deviate

substantially from their joint effects. A better strategy is to consider a relatively large

number of SNPs, and then conduct variable selection on those SNPs so that a smaller

set of SNPs can be prioritized and the joint effects can be estimated.

Many variable selection methods have been developed in the last two decades,

such as the smoothly clipped absolute deviation (SCAD) (Fan and Li, 2001) and the

adaptive-LASSO (Zou, 2006), mainly for analyzing data with continuous outcomes. For

data with binary outcomes, Zhang et al. (2006) proposed the SCAD support vector

machine (SCAD-SVM) that imposes the SCAD penalty on the SVM. It is demonstrated
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that the SCAD-SVM outperforms the SVM in both variable selection and prediction.

The SCAD-SVM was designed for the microarray data analysis, whose dimension

is much lower than GWAS. To accommodate the extremely large dimension of GWAS,

we adopt the Iterative Sure Independence Screening (ISIS) strategy by Fan and Lv

(2008). This strategy is composed of two principles: 1) it reduces dimensions by a

pre-screening utility before conducting variable selection; 2) it conducts a conditional

screening procedure in order to capture important covariates that are marginally uncor-

related with the outcome. In addition to adopting the ISIS strategy, we design a new

algorithm for implementing the SCAD-SVM. The original algorithm for the SCAD-

SVM (Zhang et al., 2006) requires inversion of a large matrix, which may encounter

numerical difficulties when the matrix is ill-conditioned. We adopt the recently devel-

oped local-linear approximation algorithm (Zou and Li, 2008) to tackle this issue. Our

iterative SCAD-SVM (ISS) provides a novel tool for the task of genetic risk prediction

with high dimensions.

The rest of the Chapter is organized as follows. In Section 4.2, we describe our

method in detail. In Section 4.3, we conduct a wide array of simulation studies to

examine the performance of our method and compare it to other methods. In Section

4.4, we show the performance of our method by applying it to real GWAS studies.

4.2 Methods

The data contain n subjects and p SNPs. For i = 1, . . . , n, let yi denote the disease

outcome (1 for cases, -1 for controls), and xij denote the genotype of the jth SNP for

the ith subject. The genotype of each SNP is represented by the number of minor

alleles. We standardize the genotypes of each SNP by its sample standard derivation.

The Iterative SCAD-SVM method mainly consists of three steps: 1) marginal hinge loss

screening, 2) the SCAD-SVM, 3) conditional hinge loss screening and the SCAD-SVM.
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4.2.1 Marginal Hinge Loss Screening

We first conduct the Hinge Loss Screening over all the SNPs. This step aims to

prioritize a small set of SNPs based on their marginal significance in predicting the

outcome. The hinge loss for the jth SNP is defined as

Lj ≡ n−1

n∑
i=1

[1− yi(bj + wj × xij)]+,

where bj and wj are unknown parameters, and g+ represents the nonnegative part of g.

For each SNP, we minimize Lj with respect to bj and wj to obtain L̂j. The minimization

can be conducted by linear programming.

The ISIS theory suggests to pick a subset of covariates whose cardinality t0 is at

the order of O(n/ log n). We choose t0 to be the integer part of n/(8 log n). We select

the t0 SNPs with the smallest L̂j to form a set S1. Next, we apply the SCAD-SVM to

S1 to select important variables.

4.2.2 SCAD-SVM

For the ith subject, let zi denote the t0-vector consisting of the genotypes of the t0

SNPs in S1. Let β0 and β = (β1, ..., βt0)
T be the parameters for the directional vector,

and λ be a tuning parameter. We aim to solve

min
β0,β

{
n−1

n∑
i=1

[
1− yi

(
β0 + βTzi

)]
+

+

t0∑
j=1

pλ(|βj|)

}
,

where

pλ(|βj|) =


λ|βj| if 0 ≤ |βj| < λ

(a2−1)λ2−(|βj |−aλ)2

2(a−1)
, i.e.,− (|βj |2−2aλ|βj |+λ2)

2(a−1)
if λ ≤ |βj| < aλ

(a+1)λ2

2
if aλ ≤ |βj| ,
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and a = 3.7 (Fan and Li, 2001).

Zhang et al. (2006) introduced the Successive quadratic algorithm (SQA) to im-

plement SCAD-SVM. The SQA algorithm involves an intermediate step that requires

inversion of a square matrix, which may not be stable when the dimension of the square

matrix is high. Instead, we develop a new algorithm, Successive local algorithm (SLA),

which works as follows.

As in Zhang et al. (2006), we first approximate the hinge loss by

−
n∑

i=1

yi(β0 + βTzi)

2n
− 1

2n

n∑
i=1

yi(β0 + βTzi)

|yi − (β̃0 + β̃Tzi)|
+

1

4n

n∑
i=1

(β0 + βTzi)
2

|yi − (β̃0 + β̃Tzi)|

up to a constant, where β̃0 and β̃ are some arbitrarily chosen initial values. Next, we

approximate the SCAD penalty by the local linear approximation (Zou and Li, 2008)

pλ(|βj|) ≈ pλ(|β̃j|) + p′λ(|β̃j|)(|βj| − |β̃j|).

Removing the constant terms, we notice that minimizing the above formation is equiv-

alent to minimizing

−
n∑

i=1

yi(β0 + βTzi)

2n
− 1

2n

n∑
i=1

yi(β0 + βTzi)

|yi − (β̃0 + β̃Tzi)|
+

1

4n

n∑
i=1

(β0 + βTzi)
2

|yi − (β̃0 + β̃Tzi)|
+

t0∑
j=1

p′λ(|β̃j|)|βj|.

We then solve this approximated objective function by the cyclic coordinate descent

(CCD) algorithm (Friedman et al., 2010). The process is iterated until convergence.

The detail is shown in the Appendix 2.

The tuning parameter is determined by a 5-fold cross-validation using the area under

the ROC curve (AUC) as the evaluation criterion. The final estimators are β̂0 and β̂.

Excluding covariates with zero estimates, the resulting model is named as M1.

For each subject, we calculate the liability score pertaining to M1 (i.e., the inner
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product of SNPs in M1 and their estimated effect sizes), and denote the liability score

for the ith subject as ξ̂i. We then use these ξ̂i’s in the following conditional screening.

4.2.3 Conditional Hinge Loss Screening and SCAD-SVM

Assuming that M1 contains t1 SNPs, we label the set of the remaining (p − t1)

SNPs as M1. The first step is to screen all the SNPs in M1 to identify a small set of

candidate SNPs that are correlated with the outcome Y conditional on M1. To achieve

this, we develop a Conditional Hinge Loss Screening procedure as follows. For j ∈M1,

the conditional hinge loss for the jth SNP can be written as

Lc
j ≡ n−1

n∑
i=1

[1− yi(ξ̂i + b∗j + w∗
j × xij)]+,

where b∗j and w∗
j are unknown parameters.

For each SNP in M1, we minimize Lc
j with respect to b∗j and w∗

j by linear program-

ming to obtain L̂c
j. Let t2 be the integer part of n/(8 log n). We select the t2 SNPs that

have the smallest L̂c
j to form a set S2. In other words, S2 harbors important SNPs that

are marginally uncorrelated (but conditionally correlated) with the disease.

Let ` be an integer ≤ 1000 (we choose the upper bound of model sizes to be 1000

because most of the joint prediction models have covariates less than 1000). Denote

the set of SNPs with the smallest ` HLj as T . That is, T consists of the top ` SNPs

from the marginal screening. We lump T and S2 together as a set S3, and then run

the SCAD-SVM on S3 to obtain a model M2. M2 is anticipated to capture both

marginally important SNPs and conditionally important SNPs.
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4.3 Simulations

4.3.1 A motivating example

We first show a hypothetical example that, even if we know the true model be-

forehand and all the SNPs in the true model are independent, marginal regression

estimators can be highly biased. Assume that the true model includes 100 independent

SNPs, with effect sizes βj = 0.2×(−1)j for j = 1, ..., 100. Further assume that all SNPs

have minor allele frequency (MAF) of 0.3. Under the logistic regression model, 4000

cases and 4000 controls were simulated. We first fitted a multivariate logistic regression

model for all the 100 SNPs to obtain the joint estimates for the regression coefficients,

and then applied the marginal logistic regression for each SNP to obtain the marginal

estimates. We conducted 100 simulations, and the averages of the estimates are plotted

in Figure 4.1. Clearly, the marginal estimates are highly biased toward the null, while

the joint estimates are much closer to the true parameters. This motivating example

emphasizes the importance of estimating the true parameters under the joint model.

In Appendix 2, we examine the asymptotic property of the marginal estimators and

show that they are inconsistent estimators.

4.3.2 Data simulation and competing methods

In real GWAS data, SNPs tend to be correlated with each other and the number

of noise SNPs far exceeds the number of causal SNPs (or disease loci (DL)). Our

simulation studies have taken these issues into account. We simulated many more noise

SNPs than the causal SNPs (to be described later), and the linkage disequilibrium was

introduced into the SNPs according to a procedure described by He and Lin (2011).

The causal SNPs were simulated under the logistic regression model. Given that there

are numerous methods for risk prediction in the literature, it is not possible for us to
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Figure 4.1: Comparison of the marginal regression and the joint regression estimates
under the logistic model

103



survey all of them. Instead, we focused on the ones that are either currently being

widely used or have the potential to be widely used for genetic risk prediction. First,

the Armitage trend test (ATT) was conducted for all p SNPs and, unless otherwise

stated, the top 1000 SNPs were collected as a set denoted by G. We choose 1000

because most joint models contain no more than 1000 covariates (we also explored the

top 500 in the latter part of this Chapter). Next, the following methods are applied to

the SNPs in G to obtain the prediction model:

1) The Oracle method– Among the SNPs in G, we identified the causal SNPs using

our a priori information and then fit a joint logistic regression model to them. The

joint coefficient estimates were used for the risk prediction. Note that this method is

available only for simulation studies, but not for real data analysis. 2) The Marginal

method– For each of the SNPs in G, a logistic regression model was fitted. The obtained

marginal estimates were used for prediction. 3) The Count method– Let gj denote the

jth SNP in G, and γ̂j denote the marginal estimate for gj. The ‘risk allele count’

was calculated as
∑

j∈G gjsgn(γ̂j). Then, a logistic regression model was fitted for the

‘risk allele count’. 4) The Logistic-SCAD method– The hinge loss within the SCAD-

SVM was replaced by the logistic regression likelihood to yield the Logistic-SCAD. The

Logistic-SCAD was implemented via the local linear approximation algorithm, similar

to the implementation of the SCAD-SVM as described in the Appendix 2.

We calculated the True Positive Cluster (TPC) (He and Lin, 2011) to gauge how

many causal SNPs were captured. To evaluate the prediction accuracy of the compared

methods, we further simulated an independent testing data set under the same logistic

model as the data set used for the model building. This independent testing data set

also contains 4000 subjects (2000 cases and 2000 controls). We calculated the AUC,

the 10%-extreme-err (He and Lin, 2011), the difference between the predicted and the

true liability (excluding the intercept), the correlation between the predicted and the
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Table 4.1: Prediction accuracy under a moderate number of noise features

Oracle ISS Logistic-SCAD Marginal Count
Model size 10.0 12.2 11.8 50 50

TPC - 10.0 10.0 10.0 10.0
10%-extreme-err 0.131 0.133 0.132 0.192 0.222

AUC 0.760 0.759 0.759 0.710 0.687
liab-dif 0.175 0.258 0.283 2.247 1.021
liab-corr 0.996 0.990 0.991 0.809 0.721

true liability (excluding the intercept). The latter two quantities are named as liab-diff

and liab-corr. For each of the following experiments, 100 simulation were conducted.

4.3.3 Models with a moderate number of noise SNPs

We first test these methods under a moderate number of noise SNPs to gain some

insight into their performance. We let the total number of SNPs be 600, among which

there are 10 causal SNPs. The causal SNPs are independent, and their effects are set to

be (0.5,−0.5, 0.5,−0.5, 0.5,−0.5, 0.5,−0.5, 0.5,−0.5). The MAFs for the causal SNPs

follow a Uniform(0.25, 0.5) distribution. To ensure a good coverage of the causal SNPs,

we let G be the set of the top 50 SNPs in the ATT. The results are shown in Table

4.1. It can be seen that the Oracle method performs the best in prediction, followed

by Logistic-SCAD and ISS. The Marginal and Count methods are not based on joint

estimates and, as expected, have the lowest prediction accuracy. We also carried an

experiment where the testing samples were simulated under the prospective sampling,

and a similar trend was observed (Table 4.10). Thus, in the following experiments, we

only use retrospective samples for the testing data.
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4.3.4 Models with a large number of noise SNPs

Next, we incorporated nearly 60,000 noise SNPs into the model to make it more

challenging for risk prediction. We first studied the situation where the number of

causal SNPs is 100, and their effects are moderate (with the effect sizes equal to 0.5

or -0.5). The results are shown in Table 4.2. It can be seen that, the model sizes

of the ISS and the Logistic-SCAD are much smaller than those of the Marginal and

the Count methods, indicating that the former two were able to remove many noise

SNPs from their models. At the same time, it appears that the former two methods

captured a large proportion of the causal SNPs as indicated by their TPCs. This

explains why they have better prediction performance than the Marginal and the Count

methods. The Logistic-SCAD has a high AUC but an extremely high core-liab-dif,

suggesting that although this method preserves the rank of the risk liabilities quite well,

it tends to generate biased estimates by shifting the regression coefficients in the same

direction. Thus, our results suggest that when the number of noise features is high, the

Logistic-SCAD is less ideal than the ISS. The Marginal and the Count methods have the

lowest prediction accuracy among all the compared methods, verifying that marginal

estimates are inferior to joint estimates for prediction. To allow for heterogeneous effect

sizes of the 100 causal SNPs, we further simulated those nonzero regression coefficients

under the Uniform(0.1, 0.5) with alternate signs (Table 4.3). Under this situation, the

performance of the Logistic-SCAD further deteriorated, while the ISS is second only to

the Oracle method in prediction accuracy.

4.3.5 Models with marginally uncorrelated SNPs

One of the main advantages of the ISIS strategy is to capture causal SNPs that

are marginally uncorrelated (but conditionally correlated) with the outcome. To test

the effectiveness of our ISS in capturing conditionally correlated SNPs, we let three of
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Table 4.2: Prediction accuracy of moderate predictors under a large number of noise
features (p=60000, DL=100)

Oracle ISS Logistic-SCAD Marginal Count
Model size 99.5 241.1 290.2 1000 1000

TPC - 99.6 99.4 99.7 99.7
10%-extreme-err 0.005 0.010 0.025 0.058 0.073

AUC 0.944 0.924 0.891 0.834 0.816
liab-dif 1.147 2.136 9.536 7.102 2.671
liab-corr 0.988 0.946 0.878 0.759 0.721

Table 4.3: Prediction accuracy of weak to moderate predictors under a large number
of noise features (p=60000, DL=100)

Oracle ISS Logistic-SCAD Marginal Count
Model size 77.5 374.6 479.6 1000 1000

TPC - 80.8 80.1 80.8 80.8
10%-extreme-err 0.032 0.064 0.137 0.117 0.143

AUC 0.874 0.828 0.754 0.772 0.748
liab-dif 1.063 1.614 10.003 6.891 2.631
liab-corr 0.959 0.848 0.665 0.710 0.649
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Table 4.4: Prediction accuracy when some causal SNPs are uncorrelated with the
outcome (p=60000, DL=100)

Oracle ISS Logistic-SCAD Marginal Count
Model size 77.4 332.6 464.8 1000 1000

TPC - 81.8 79.6 80.5 80.5
Conditional - 78% 6% 8% 8%

10%-extreme-err 0.029 0.048 0.128 0.098 0.125
AUC 0.882 0.852 0.764 0.791 0.765

liab-dif 1.081 1.542 9.735 7.374 2.250
liab-corr 0.949 0.877 0.670 0.733 0.670

the 100 causal SNPs to be marginally uncorrelated with the outcome. The details on

simulating such a correlation structure have been described by He and Lin (2011). The

total number of SNPs was kept at 60000, and the effects sizes of the causal SNPs still

followed Uniform(0.1, 0.5) with alternate signs. Table 4.4 shows that the ISS has a

probability of 78% to capture the conditionally correlated causal SNPs, while the other

methods have little chance to capture those SNPs. Furthermore, the difference in AUC

appears to be widened between the ISS method and the other three methods, i.e., the

Logistic-SCAD, the Marginal and the Count methods.

4.3.6 Models that deviate from the logistic model

In reality, the underlying genetic model may not be the logistic model. To test the

robustness of our method, we perturbed the logistic model with a random intercept for

each subject. The results are shown in Table 4.5. The introduced random intercept

apparently has a negative impact on all the methods, but the ISS remains to achieve

the highest AUC (excluding the Oracle method). We also simulated the data under the

probit model and observed a similar pattern of performance for the compared methods

(Table 4.11 in Supplemental Materials).

108



Table 4.5: Prediction accuracy in the presence of random effects (p=60000)

Oracle ISS Logistic-SCAD Marginal Count
Model size 74.0 423.5 512.6 1000 1000

TPC - 78.9 77.8 78.8 78.8
10%-extreme-err 0.047 0.102 0.182 0.148 0.176

AUC 0.849 0.785 0.716 0.743 0.721
liab-dif 1.110 1.718 10.984 6.468 2.387
liab-corr 0.948 0.785 0.606 0.677 0.618

4.3.7 Other considerations

In most of the above experiments, we chose the top 1000 candidate SNPs as the

starting set of SNPs. We also explored using the top 500 candidates as the starting

set of SNPs, and the results are consistent with what we have observed above (Tables

4.12-4.13 in Supplemental Materials).

4.4 Real Data Analysis

We applied our method to the Wellcome Trust Case-Control Consortium (WTCCC)

(2007) data. The WTCCC data include 2000 cases for each of seven diseases, the type

1 diabetes (T1D), the type 2 diabetes (T2D), coronary heart disease, hypertension,

bipolar disorder, rheumatoid arthritis (RA) and Crohn’s diseases. The WTCCC data

also include 3000 controls shared by all the 7 diseases. We focus on the T1D and

the RA, which are known to have strong genetic components. The other 5 diseases

have weaker genetic effects and their genetic risk prediction in general is poor; current

literature suggests that other factors, such as environmental factors, need to be taken

into account for better risk prediction (Janssens and van Duijn, 2008; Collins et al.,

2011).

For the T1D data, we split the data into three parts, and used two parts as the
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Table 4.6: Prediction accuracy for the WTCCC-T1D data

ISS Logistic-SCAD Marginal Count
stringent SNP exclusion criteria

10%-extreme-err 0.081 0.116 0.268 0.258
AUC 0.852 0.813 0.705 0.675

less-stringent SNP exclusion criteria
10%-extreme-err 0.056 0.082 0.254 0.239

AUC 0.867 0.839 0.721 0.681

training data and one part as the testing data. We excluded SNPs with low MAF

(< 0.05) as well as SNPs in departure from the Hardy-Weinberg equilibrium (p < 10−3).

We first applied the ISS, the Logistic-SCAD, the Marginal method and the Count

method to the training data to obtain the prediction models, and then calculated the

the prediction error for the testing data. Because the true model is unknown for real

data, it is not possible for us to calculate the liab-diff and liab-corr. Instead, we report

the AUC and 10%-extreme-err in Table 4.6 (upper panel). It can be seen that the ISS

method outperforms all other methods in both AUC and 10%-extreme-err. To test the

robustness of our method, we divided the data into 5 parts (4 parts as training data and

1 part as testing data), and excluded SNPs with less stringent criteria (MAF< 0.01,

or p < 10−5 for HWE). Again, the ISS method appears to be more accurate than the

other methods (Table 4.6, lower panel).

It is well known that the HLA region on Chromosome (Chr) 6 contains strong ge-

netic variants contributing to T1D, and many SNPs in this region are in high LD. It is

also well known that excluding highly correlated predictors from the prediction models

can lead to enhanced stability of the models. Hence, we decided to prune the SNPs on

Chr6 and examine how the pruning affects the prediction accuracy. We implemented
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Table 4.7: Prediction accuracy for the WTCCC-T1D data with the HLA pruned

ISS Logistic-SCAD Marginal Count
pruning at r2 = 0.64

10%-extreme-err 0.081 0.144 0.203 0.250
AUC 0.854 0.769 0.728 0.689

pruning at r2 = 0.5
10%-extreme-err 0.079 0.147 0.195 0.245

AUC 0.854 0.766 0.735 0.687

the pruning mechanism in the PLINK (i.e., the sliding window mechanism), and con-

ducted the pruning at different threshold levels: r2 = 0.64, r2 = 0.5, and r2 = 0.05. The

value 0.5 is the default pruning-threshold used by PLINK, while the other two values

have been used in the literature (Hoggart et al., 2008; He and Lin, 2011). The results

in Table 4.7 show that under mild and moderate pruning (r2 = 0.64 and r2 = 0.5),

the performance of the ISS, the Marginal and the Count methods is slightly improved

(compared to the upper panel of Table 4.6). Under heavy pruning (r2 = 0.05), all meth-

ods yielded AUC under 0.7 (data not shown), indicating that inappropriate pruning

can lead to severe loss of information for prediction.

Next, we analyzed the RA data in a similar manner, and the results are shown in

Table 4.8. Again, regardless of the stringency of the SNP exclusion criteria, the ISS is

leading all other compared methods in prediction accuracy. Since RA is also believed

to be influenced by the HLA region (though to a less extent compared to the T1D),

we also tested the effect of the pruning on the prediction performance of the compared

methods (Table 4.9). Again, it appears that slight to moderate pruning can sometimes

improve the prediction accuracy, but heavy pruning results in a considerable loss of

prediction power. It is to be noted that our results for the Marginal method and the

Count method agree well with those by Evans et al. (2009), reassuring that these two
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Table 4.8: Prediction accuracy for the WTCCC-RA data

ISS Logistic-SCAD Marginal Count
stringent SNP exclusion criteria

10%-extreme-err 0.222 0.316 0.330 0.267
AUC 0.701 0.615 0.678 0.660

less-stringent SNP exclusion criteria
10%-extreme-err 0.245 0.310 0.327 0.265

AUC 0.690 0.625 0.681 0.662

Table 4.9: Prediction accuracy for the WTCCC-RA data with the HLA pruned

ISS Logistic-SCAD Marginal Count
pruning at r2 = 0.64

10%-extreme-err 0.238 0.335 0.259 0.281
AUC 0.702 0.625 0.681 0.655

pruning at r2 = 0.5
10%-extreme-err 0.244 0.322 0.251 0.276

AUC 0.694 0.627 0.679 0.649

pruning at r2 = 0.05
10%-extreme-err 0.303 0.336 0.365 0.394

AUC 0.633 0.608 0.586 0.567

methods may not be ideal in real practice.

4.5 Discussion

We previously developed a method, GWASelect, for variable selection in GWAS (He

and Lin, 2011). GWASelect was mainly designed for disease gene hunting, where false

discovery rate is a major concern. The ISS developed herein is for the task of prediction,

where prediction power is our primary interest. Our simulation studies clearly show

that some noise SNPs can be tolerated in the prediction model as long as 1) a large
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number of causal SNPs are captured and 2) the number of noise SNPs is not too high.

Our experiments suggest that the task of disease gene hunting may be quite different

from the task of disease prediction, and different strategies may need to be considered

for the two tasks.

We have shown both analytically and numerically that marginal estimates are sub-

optimal for risk prediction. Marginal estimation provides a quick way to reduce the

high dimensions of GWAS, and hence can still be helpful in certain circumstances to

get some preliminary idea of the prediction power of SNPs. We highly recommend that

joint estimation be performed to potentially harvest more prediction power.

GWAS offer a useful platform for genetic risk prediction, but there are many other

types of data that may need to be considered for improving the prediction accuracy.

For example, family structures, environmental factors, rare genetic variants, copy num-

ber variation and epigenetic elements may play important roles in the development

of diseases (Jirtle and Skinner, 2007; Ruderfer et al., 2010). While these data may

potentially help to retrieve part of the “missing inheritability”, how to integrate them

together under high dimensions poses a tremendous challenge for model building. Fur-

thermore, current prediction models may need to be revised as the underlying biology

of many SNPs are unveiled. Therefore, the task of constructing statistically more pow-

erful and biologically more informative prediction models will require a joint effort from

multiple disciplines.

Genetic risk prediction is a highly complicated topic, and we have not attempted

to provide a panacea. We have mainly focused on the issue of joint effects estimation.

Other issues, such as genetic heterogeneity, secondary outcomes and the time of disease-

onset, also need to be taken into account for better prediction (Webb et al., 2011). In

addition, biological pathway analysis may also help to predict genetic risks (Hu et al.,

2011). These issues are beyond the range of this work, but merit further investigations.
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Table 4.10: Prediction accuracy under prospective sampling with a moderate number
of noise features (p=600, DL=10)

Oracle ISS Logistic-SCAD Marginal Count
Model size 10.0 12.2 11.8 50 50

TPC 10.0 10.0 10.0 10.0 10.0
10%-extreme-err 0.291 0.293 0.293 0.337 0.357

AUC 0.759 0.758 0.758 0.708 0.684
liab-dif 0.173 0.254 0.280 2.437 0.895
liab-corr 0.995 0.989 0.990 0.797 0.707

4.6 Supplemental Materials

4.6.1 Prediction under the prospective sampling

In parallel with the experiment whose results are shown in Table 4.1, we conducted

a similar experiment in which the testing samples were simulated under the prospective

sampling instead of the retrospective sampling. The results are shown in Table 4.10.

It can be seen that the performance of the compared methods has a similar trend as

that when the testing samples were simulated under the retrospective sampling.

4.6.2 Prediction when the true model is the probit model

We simulated the data under the probit model and then tested the performance of

the compared methods. The effect sizes of the causal SNPs follow the Uniform(0.1,

0.5) with alternate signs. The results are shown in Table 4.11. The Oracle method

still achieves the highest AUC, but its liab-dif is elevated, indicating some estimation

bias generated by the Oracle method. This is not surprising because the underlying

true model is the probit model, while the Oracle method adopted the joint logistic

regression model. The ISS method appears to be quite robust to the altered underlying

true model, as its liab-dif is quite low. In terms of prediction accuracy, the ISS method
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Table 4.11: Prediction accuracy under the probit model (p=60000, DL=100)

Oracle ISS Logistic-SCAD Marginal Count
Model size 84.7 138.4 216.8 1000 1000

TPC - 84.7 84.1 87.1 87.1
10%-extreme-err 0.003 0.005 0.011 0.041 0.063

AUC 0.956 0.947 0.922 0.857 0.825
liab-dif 2.835 1.289 10.325 8.003 2.775
liab-corr 0.980 0.962 0.912 0.783 0.718

Table 4.12: Prediction by starting with the top 500 SNPs under a large number of noise
features (p=60000, DL=100)

Oracle ISS Logistic-SCAD Marginal Count
Model size 70.9 193.7 255.7 500 500

TPC - 75.4 73.7 73.8 73.8
10%-extreme-err 0.036 0.061 0.081 0.105 0.116

AUC 0.869 0.833 0.808 0.783 0.773
liab-dif 1.166 1.663 3.961 5.704 2.203
liab-corr 0.946 0.860 0.801 0.741 0.715

still achieves the second highest AUC among all the methods.

4.6.3 Prediction by starting with the top 500 candidate SNPs

In Table 4.3, the top 1000 candidate SNPs were considered as the starting set of

SNPs for the compared methods. Here, we conducted an experiment in which the

top 500 candidate SNPs were set as the starting set. Briefly, we simulated 60000

SNPs, among which 100 are causal SNPs. The effect sizes of the 100 SNPs follow the

Uniform(0.1, 0.5) with alternate signs. The results in Table 4.12 demonstrate that

the performance of the compared methods is largely consistent with that in Table 4.3.

Hence, regardless whether the number of starting SNPs is 1000 or 500, our ISS method

competes favorably with the other compared methods (except the Oracle method).
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Table 4.13: Prediction by starting with the top 500 candidates in the presence of
random effects

Oracle ISS Logistic-SCAD Marginal Count
Model size 67.3 223.9 280.5 500 500

TPC - 72.8 71.0 71.1 71.1
10%-extreme-err 0.051 0.097 0.117 0.132 0.145

AUC 0.843 0.791 0.769 0.756 0.746
liab-dif 1.170 1.598 4.121 5.223 2.090
liab-corr 0.932 0.801 0.744 0.711 0.686

In Table 4.13, we conducted an experiment in which the true underlying model is

the logistic model but with the perturbation of a random intercept. This experiment

is in parallel with the experiment whose results are shown in Table 4.5 except that

we started with the top 500 candidate SNPs instead of the top 1000 candidate SNPs.

Again, our ISS method is only second to the Oracle method in terms of the prediction

accuracy.
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Chapter 5

Future Research

5.1 Variable Selection for Multivariate-outcome Data

Multivariate-outcome data are often encountered in genome-wide association studies.

The outcomes collected for each subject usually include both binary traits (such as

disease status) and a series of quantitative traits. One can, of course, analyze each

trait separately, but there are at least two advantages to analyze all the traits jointly.

First, multiple traits tend to capture the etiological characteristics of a disease better

than a single trait; second, by harnessing the correlations among the outcomes, one

usually achieves higher statistical power to detect genetic associations. A number of

methods have been proposed for the analysis of multivariate-outcome for GWAS, such

as the one by Ferreira and Purcell (2009) and the one by Avery et al. (2011).

While these methods are useful, they were designed to analyze each SNP individu-

ally. To better estimate the joint effects of multiple SNPs, a variable selection method

for multivariate regression is needed. However, existing variable selection methods for

multivariate-outcome data are quite limited. Recently, Peng et al. (2010) proposed a

variable selection method for the analysis of microarray data, and named their method

as remMAP. This approach imposes two types of penalties on the objective function

to achieve sparsity on the regression coefficient matrix, but its theoretical properties,



such as the parameter estimation consistency and the model selection consistency, are

entirely unclear.

There are at least two reasons to explain why few variable selection methods have

been developed for multivariate-outcome data: first, it is often difficult to specify the

joint distribution of the multiple outcomes, and hence the joint likelihood is hard to be

constructed; second, computation is much more challenging than univariate-outcome

data due to the enlarged dimension of the outcomes. Motivated by Johnson et al.

(2008), Wang et al. (2011) proposed to use the penalized generalized estimating equa-

tion plus the SCAD penalty for longitudinal data with high dimensions, where they

allow the dimension pn to grow with the sample size n at the order of O(n) (referred to

as GEE-SCAD hereafter). While GEE-SCAD can be potentially borrowed to analyze

multivariate-outcome data, it has some limitations. First, it is not straightforward to

apply GEE-SCAD to data with both binary and continuous outcomes, because GEE-

SCAD implicitly assumes that the regression parameters for all outcomes are at the

same scale. Second, it remains challenging to establish model selection criteria, such as

BIC, in the high-dimensional GEE setting. Third, it can be awkward to impose more

complicated penalty terms, such as the group penalty, to GEE. Fourth, when n is large,

say at thousands, GEE-SCAD may become infeasible in computation.

Another strategy to deal with multivariate-outcome data is to model each trait by

its marginal distribution, and then estimate the covariances of the regression coefficients

from the data (Wei et al., 1989). We will propose a variable selection method based

on this strategy. We will 1) allow the outcomes to be a mixture of both binary and

continuous outcomes, and the regression parameters for different outcomes to be at

different scales; 2) impose a group penalty on the regression coefficients to borrow

strengths in the shared information of multiple outcomes. In addition, we will allow pn

to be at the order of O(n).
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Appendix 1: Chapter 3 Proofs

We provide the proofs of Theorems 4∼6 and Corollaries 3 and 4 in this appendix.

The proofs for Theorems 1∼3 and Corollaries 1 and 2 are relegated to Section 3.8.6 in

the Supplemental Materials of Chapter 3.

Proof of Theorem 4

By the definition of β̂k,

K∑
k=1

(β̂k − β̃k)
TṼ

−1

k (β̂k − β̃k) + λ

pn∑
j=1

(
K∑

k=1

wjk|β̂jk|

) 1
2

≤
K∑

k=1

(β0
k − β̃k)

TṼ
−1

k (β0
k − β̃k) + λ

pn∑
j=1

(
K∑

k=1

wjk|β0
jk|

) 1
2

.

Write (β̂k − β̃k) = (β̂k − β0
k)− (β̃k − β0

k). Then simple calculations yield that

K∑
k=1

{
(β̂k − β0

k)
TṼ

−1

k (β̂k − β0
k) + 2(β0

k − β̂k)
TṼ
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}
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jk|

) 1
2

.

Note that Ṽ
−1

k = σ̂−2
k XT

k Xk, where σ̂k is the OLS estimator of σk. For each k, define

h1k ≡ (β̂k − β0
k)

T(XT
k Xk)(β̂k − β0

k) =

nk∑
i=1

[xT
ik(β̂k − β0

k)]
2,

h2k ≡ 2(β0
k − β̂k)

T(XT
k Xk)(β̃k − β0

k) = 2(β0
k − β̂k)

TXT
k εk = 2

nk∑
i=1

εikx
T
ik(β̂k − β0

k),
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where εk = (ε1k, . . . , εnkk)
T. Also, define ψn = λ

∑pn

j=1

(∑K
k=1wjk|β0

jk|
) 1

2
. Then

K∑
k=1

σ̂−2
k (h1k + h2k) ≤ ψn. (5.1)

We now generalize the proof of Theorem 1 in Huang et al. (2009) to multiple studies.

For each k, define δk = (XT
k Xk)

1/2(β̂k −β0
k) and Dk = (XT

k Xk)
−1/2XT

k . It is easy to

verify that

h1k + h2k = ‖δk‖2 − 2(Dkεk)
Tδk = ‖δk −Dkεk‖2 − ‖Dkεk‖2.

Combining the above equation with (5.1), we have that

K∑
k=1

σ̂−2
k ‖δk −Dkεk‖2 ≤

K∑
k=1

σ̂−2
k ‖Dkεk‖2 + ψn. (5.2)

Using the inequality ‖δk‖2 ≤ 2‖δk −Dkεk‖2 + 2‖Dkεk‖2 and (5.2), we have

K∑
k=1

σ̂−2
k ‖δk‖2 ≤ 2

K∑
k=1

σ̂−2
k ‖δk −Dkεk‖2 + 2

K∑
k=1

σ̂−2
k ‖Dkεk‖2

= 4
K∑

k=1

σ̂−2
k

σ−2
k

σ−2
k ‖Dkεk‖2 + 2ψn ≤ 4

K∑
k=1

(1 + 1)σ−2
k ‖Dkεk‖2 + 2ψn.

Let di be the ith column of Dk. Since E‖Dkεk‖2 =
∑n

i=1 ‖di‖2Eε2ik = σ2
ktr(DkD

T
k ) =
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σ2
kpn, we have E(

∑K
k=1 σ̂

−2
k ‖δk‖2) ≤ 8Kpn + 2ψn. On the other hand,

‖β̂ − β0‖2 =
K∑

k=1

(β̂k − β0
k)

T(β̂k − β0
k) ≤

K∑
k=1

(β̂k − β0
k)

T(XT
k Xk/(bnk))(β̂k − β0

k)

= n−1b−1

K∑
k=1

n

nk

(β̂k − β0
k)

T(XT
k Xk)(β̂k − β0

k)

≤ n−1b−1ν−1
min

K∑
k=1

(β̂k − β0
k)

T(XT
k Xk)(β̂k − β0

k)

≤ σ2
max

nbνmin

K∑
k=1

σ̂−2
k (β̂k − β0

k)
T(XT

k Xk)(β̂k − β0
k) =

σ2
max

nbνmin

K∑
k=1

σ̂−2
k ‖δk‖2.

Therefore,

E‖β̂ − β0‖2 ≤ n−1b−1ν−1
minσ

2
max(8Kpn + 2ψn).

Note that 0 < ψn ≤ λp0

√
Kt1nr2, where t1n = max{wjk : 1 ≤ j ≤ p0, k ∈Mj}. Thus,

‖β̂ − β0‖ = Op

({
pn + λ

√
t1n

n

}1/2
)
.

Consequently, if λ
√
t1n = Op(pn), then β̂ is root-(n/pn) consistent. The proof is com-

pleted.

Proof of Corollary 3

For the heterogeneous structure, we only need to show that the conditions in The-

orem 4 are satisfied. Note that the OLS estimator is consistent with β̃jk − β0
jk =

Op(
√
pn/n) for any j = 1, . . . , p and k = 1, . . . , K. This implies that the weight

wjk ≡ (β̃jk)
−(2+ν) = |β0

jk|−(2+ν) + Op(
√
pn/n) for any (j, k) satisfying 1 ≤ j ≤ p0 and

k ∈ Mj. Then, by definition, t1n = Op(1). Therefore, as long as λ = Op(pn), the

conditions in Theorem 4 are satisfied.

For the homogeneous structure, let s1n = max{wj : j = 1, ..., p0}. Following the

proof of Theorem 4, we can show that, if λ
√
s1n = Op(pn), then β̂

∗
is consistent.
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Likewise, we can show that s1n = Op(1), which implies λ = Op(pn).

Proof of Theorem 5

For any (j, k) ∈ N , if β̂jk,λ 6= 0, then by the Karush-Kuhn-Tucker (KKT) conditions,

it must be true that

0 =
∂Qn(β)

∂βjk

∣∣∣
β=β̂λ

= 2nk

[
(nkṼ k)

−1
]

j.
(β̂k,λ − β̃k) + λ

1

2

{
K∑

k′=1

wjk′|β̂jk′,λ|

}− 1
2

wjksgn(β̂jk,λ)

= 2nk

[
XT

k Xk/nk

]
j.

(β̂k,λ − β̃k) + λ
1

2

{
K∑

k′=1

wjk′|β̂jk′,λ|

}− 1
2

wjksgn(β̂jk,λ)

≡ E1 + E2,

where [H ]j. represents the jth row of H . Since ||β̂k,λ − β0
k|| = Op(

√
pn/n) and ||β̃k −

β0
k|| = Op(

√
pn/n), we have that ||β̂k,λ − β̃k|| = Op(

√
pn/n). Define T = XT

k Xk/nk.

Then

|E1| ≤ 2nOp(
√
pn/n)

{
pn∑
i=1

T 2
ij

}1/2

= Op(
√
npn)

because the eigenvalues of T are bounded.

Since β̂λ is a
√
n/pn consistent estimator of β0, we have that |β̂jk,λ| ≤ r2 + 1 for all

(j, k) with probability tending to 1. Then

|E2| ≥ λ
1

2
[Kg1n(1 + r2)]

− 1
2 g2n =

1

2
[K(1 + r2)]

− 1
2λg2ng

− 1
2

1n . (5.3)

By condition C3(ii), the right side of (5.3)→ ∞. Therefore, with probability tending

to one, either β̂jk = 0 for (j, k) ∈ N or the sign of (5.3) is equal to the sign of β̂jk. The

latter contradicts with the fact that β̂λ is a minimizer of Qn. Thus, P (β̂jk = 0) → 1
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for any (j, k) ∈ N .

Proof of Corollary 4

We first consider the heterogeneous structure. Under condition (C1), Yohai and

Maronna (1979) showed that
√
n/pn||β̃k − β0

k|| = Op(1) for k = 1, . . . , K. Hence, for

any (j, k) ∈ N , we have
√
n/pn(β̃jk − 0) = Op(1), implying that wjk = |β̃jk|

−(2+ϑ)
=

Op((n/pn)
2+ϑ

2 ). Thus, g1n = Op((n/pn)
2+ϑ

2 ) and g2n = Op((n/pn)
2+ϑ

2 ). This implies that

g2ng
− 1

2
1n = Op((n/pn)

2+ϑ
4 ). If ϑ = 1, the last condition in Theorem 5 can be simplified

to that λn−
1
4p−

5
4 →∞.

Next, we consider the homogeneous structure. Let h1n = max{wj : j = p0 +1, ..., p}

and h2n = min{wj : j = p0 + 1, . . . , p}. Following the proof of Theorem 5, we can show

that, if λ(npn)−
1
2h2nh

1
2
1n → ∞, then P (β̂∗jk,λ = 0) → 1 for any (j, k) ∈ N . In addition,

we can show that h1n = Op((n/pn)
1
2 ) and h2n = Op((n/pn)

1
2 ). Then Corollary 4 follows.

Proof of Theorem 6

Consider the heterogeneous structure. Since we have shown that, with an arbitrarily

large probability, the estimator of {β0
jk : (j, k) ∈ N} must be 0, we can decompose β̂

into {β̂A,0}. By the KKT conditions, β̂ should satisfy

∂Qn(β)

∂βAk

∣∣∣
β=β̂

= 0.

By the definition of Qn and the fact that Ṽ
−1

k = σ̂−2
k XT

k Xk, we have

Qn(β) =
K∑

k=1

[(βAk
− β̃Ak

)T(XT
Ak

XAk
)(βAk

− β̃Ak
)

+2(βAk
− β̃Ac

k
)T(XT

Ak
XAc

k
)(βAc

k
− β̃Ac

k
)

+(βAc
k
− β̃Ac

k
)T(XT

Ac
k
XAc

k
)(βAc

k
− β̃Ac

k
)]/σ̂2

k + λ

p∑
j=1

(
K∑

k=1

wjk|βjk|

) 1
2

.
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Define yk = (y1k, . . . , ynkk)
T. Then for each k = 1, . . . , K, we have

0 =
σ̂2

k

2

∂Qn(β)

∂βAk

∣∣∣
(β̂Ak

,0)
= (XT

Ak
XAk

)(β̂Ak
− β̃Ak

) + (XT
Ak

XAc
k
)(β̂Ac

k
− β̃Ac

k
) + êk,

= (XT
Ak

XAk
)β̂Ak

+ (XT
Ak

XAc
k
)β̂Ac

k
−XT

Ak
Xkβ̃k + êk,

= (XT
Ak

XAk
)β̂Ak

+ (XT
Ak

XAc
k
)β̂Ac

k

−XT
Ak

Xk(X
T
k Xk)

−1XT
k yk + êk,

= (XT
Ak

XAk
)β̂Ak

+ (XT
Ak

XAc
k
)β̂Ac

k

−XT
Ak

yk + êk, (5.4)

where êk is a vector of length |Ak| with its sth component being λσ̂2
k{
∑K

l=1wsl|β̂sl|}−
1
2

wsksgn(β̂sk)/4. In the last equation, we use the fact that XT
Ak

Xk(X
T
k Xk)

−1XT
k =

XT
Ak

. Since βAc
k

= 0 for each k = 1, . . . , K, we have yk = εk + XAk
β0
Ak

. Then (5.4)

implies that

0 = (XT
Ak

XAk
)(β̂Ak

− β0
Ak

) + XT
Ak

XAc
k
β̂Ac

k
−XT

Ak
εk + êk. (5.5)

It follows from Theorem 5 that P (β̂Ac
k

= 0) → 1. Therefore, the second term on the

right side of (5.5) equals to zero with probability tending to one. Consequently,

(XT
Ak

XAk
)(β̂Ak

− β0
Ak

) =
n∑

i=1

xiAk
εik − êk, (5.6)

where xiAk
represents the subvector corresponding to the Ak part of xik. Thus,

√
nkγ

T
n (β̂Ak

− β0
Ak

) =
1√
nk

n∑
i=1

εikγ
T
n

(
XT

Ak
XAk

nk

)−1

xiAk
− 1√

nk

γT
n

(
XT

Ak
XAk

nk

)−1

êk.
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Note that ∣∣∣∣∣∣ 1√
nk

γT
n

(
XT

Ak
XAk

nk

)−1

êk

∣∣∣∣∣∣
≤ 1√

nk

||γn|| × b−1 × ||êk||

= Op(n
−1/2
k λ).

The equality holds because ||γn|| = 1, ||êk|| = Op(λ). Under condition (C3)(i),

n
−1/2
k λ = op(1), so it follows that

1√
nk

γT
n

(
XT

Ak
XAk

nk

)−1

êk = op(1).

Therefore,

√
nks

−1
n,kγ

T
n (β̂Ak

− β0
Ak

) =
s−1

n,k√
nk

n∑
i=1

εikγ
T
n

(
XT

Ak
XAk

nk

)−1

xiAk
+ op(1).

This equation is equivalent to equation (14) in the proof of Theorem 2 in Huang et al.

(2008). Following their arguments, we can show that, under conditions (C3) and (C4),

√
nks

−1
n,kγ

T(β̂Ak
− β0

Ak
) → N(0, 1).
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Appendix 2: Chapter 4 Proofs

Implementation of the SCAD-SVM

Suppose that the data consist of n subjects, each with d covariates. Let xi ≡

(xi1, . . . , xid)
T denote the covariate-vector for the ith person. Let b and w ≡ (w1, . . . , wd)

T,

respectively, represent the intercept and the coefficient-vector. The objective function

for the SCAD-SVM is

minb,w
1

n

n∑
i=1

[1− yi(b+ wTxi)]+ +
d∑

j=1

pλ(|wj|),

where pλ(|wj|) is the SCAD penalty for wj.

Outer loop:

At a given point (b̂, ŵ), we approximate the hinge loss by a local quadratic term

and approximate the SCAD penalty by a local linear term (as shown in Section 4.2.2

in the main text). After removing those constant terms, the objective function for the

SCAD-SVM becomes

Ã(b, w) = −
n∑

i=1

yi(b+ wTxi)

2n
− 1

2n

n∑
i=1

yi(b+ wTxi)

|yi − (b̂+ ŵTxi)|
+

1

4n

n∑
i=1

(b+ wTxi)
2

|yi − (b̂+ ŵTxi)|

+
d∑

j=1

p′λ(|ŵj|)|wj|.

Inner loop:

Plugging in ŵ, we obtain p′λ(|ŵj|). Then, we fix b̂, ŵ and p′λ(|ŵj|) throughout the

inner loop. The CCD algorithm is applied to solve the optimization problem. For
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j = 1, . . . , d, the partial derivative with respect to wj is

∂Ã

∂wj

= −
n∑

i=1

yixij

2n
− 1

2n

n∑
i=1

yixij

|yi − (b̂+ ŵTxi)|

+
1

2n

n∑
i=1

(b+ wTxi)xij

|yi − (b̂+ ŵTxi)|
+p′λ(|ŵj|)sgn(wj).

With a little algebra, it can be shown that wj can be updated by

S

{
1
2n

∑n
i=1 yixij + 1

2n

∑n
i=1

(yi−b−w(j)Tx
(j)
i )xij

|yi−(b̂+ŵTxi)|
, p′λ(|ŵj|)

}
1
2n

∑n
i=1

x2
ij

|yi−(b̂+ŵTxi)|

,

where S(·, ·) is the soft-thresholding operator (Friedman et al., 2010), and w(j) is the

vector w by excluding wj. Similarly, the b can be updated by

∑n
i=1 yi +

∑n
i=1

yi−wTxi

|yi−(b̂+ŵTxi)|∑n
i=1

1

|yi−(b̂+ŵTxi)|

.

We keep updating the wj’s and b until the inner loop reaches convergence.

Back to Outer loop: We re-approximate the objective function by the newly

obtained (b̂, ŵ). Then, the whole algorithm is iterated until the outer loop reaches

convergence.

The Asymptotic Property of the Marginal Estimators

Suppose that we observe a random sample (x1, y1), ..., (xn, yn) from the distribution

of a vector (X, Y ), which follows the logit model:

P (Y = 1|X) =
exp(α0 + XTβ0)

exp(α0 + XTβ0) + 1
,
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where X = (X1, ..., Xp)
T and β0 = (β0

1 , ..., β
0
p)

T. Here, α0 represents the true intercept

and β0 represents the vector of the true regression-coefficients. It is well-known that

if one fits a joint logistic regression model for all the p covariates (SNPs), then the

estimator for β0 is consistent. Now, suppose that one fits the marginal logistic regres-

sion model, i.e., the model with only one SNP.(Not to lose generality, assume that the

first SNP is included in the model). Under this mis-specified model, we show in the

sequel that, even if all the p SNPs are independent, the marginal estimator of β0
1 is not

consistent. For simplicity, we first consider the situation where α0 = 0.

Situation I: α0 = 0

Assume that we include only X1 in the model (without intercept). Under this situation,

we maximize the ‘mis-specified’ log-likelihood

n∑
i=1

[xi1β1yi − log(1 + exi1β1)]

with respect to β1, and name the maximizer as β̂1.

To derive the limiting quantity of β̂1, define mβ1 ≡ [X1β1Y − log(1 + eX1β1)]. Then

E(mβ1 |X) = E[(X1β1Y − log(1 + eX1β1)|X],

which, evaluated at Y = 1 and Y = 0, equals to

[
(X1β1 × 1− log(1 + eX1β1)

]
× P (Y = 1) + [(X1β1 × 0− log(1 + eX1β1)]× P (Y = 0).

Now, plugging P (Y = 1) = exp(XTβ0)

exp(XTβ0)+1
and P (Y = 0) = 1

exp(XTβ0)+1
into the above
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equation, we have

E(mβ1|X) = X1β1
exp(XTβ0)

exp(XTβ0) + 1
− log(1 + eX1β1).

Then, E(mβ1) = E(E(mβ1|X)) = E
[
X1β1

exp(XTβ0)

exp(XTβ0)+1
− log(1 + eX1β1)

]
. Next, we need

to find the maximizer of E(mβ1).

0 =
∂E(mβ1)

∂β1

= E[X1
exp(XTβ0)

exp(XTβ0) + 1
− eX1β1

1 + eX1β1
X1]

Therefore,

E[X1
eX1β1

1 + eX1β1
] = E[X1

exp(XTβ0)

exp(XTβ0) + 1
],

which, after a little algebra, is equivalent to

E[X1
1

1 + eX1β1
] = E[X1

1

exp(XTβ0) + 1
]. (5.7)

Name the solution to the above equation as β∗1 . By the Theorem 5.23 of Van Der Vaart

(1998), β∗1 is the limiting quantity of β̂1.

In general, there is no closed form for β∗1 . In the context of SNP study, it is common

to assume that Xj follows a multinomial distribution with the outcome being (0,1,2),

and the associated probabilities being (q2
j , 2qj(1 − qj), (1 − qj)

2). Then, the LHS of

equation (5.7) is equal to

0× q2
1 +

1

1 + eβ1
× 2q1(1− q1) +

1

1 + e2β1
× (1− q1)

2. (5.8)

Now, we evaluate the RHS of (5.7). For j = 2, . . . , p, let kj ∈ {0, 1, 2}. Let

Pkj
= q2

j I(kj = 0) + 2qj(1− qj)I(kj = 1) + (1− qj)
2I(kj = 2). Then, if all the p SNPs
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are independent, the RHS of (5.7)

E[
X1

exp(XTβ0) + 1
] = 2q1(1− q1)

2∑
k2=0

...

2∑
kp=0

{
1

1 + eβ0
1+k2β0

2+...+kpβ0
p

p∏
j=2

Pkj

}
+

(1− q1)
2

2∑
k2=0

...

2∑
kp=0

{
2

1 + e2β0
1+k2β0

2+...+kpβ0
p

p∏
j=2

Pkj

}
. (5.9)

Relating (5.8) to (5.9), it is clear that β∗1 is not equal to β0
1 . This implies that β∗1 is

not a consistent estimator for β0
1 . It is not difficult to show that, β∗1 is monotone with

respect to β0
1 . While there is no closed form solution for β∗1 , we give an approximate

solution here. Approximating both eβ1 and e2β1 by e1.5β1 in (5.8), we get the solution

β∗1 ≈
2

3
log

{
(1− q2

1)

E[ X1

exp(XTβ0)+1
]
− 1

}
.

This suggests that the limiting quantity for the marginal estimator β̂1 is related not

only to SNP X1 and β0
1 , but also to all the other SNPs in the true model as well as

their effect sizes.

Situation II: α0 6= 0

Now, assume that the true intercept α0 6= 0. Suppose that we fit the marginal model

with the first SNP and an intercept α, and let β̂1 and α̂ denote the corresponding co-

efficients estimators. Under this situation, it can be shown that the limiting equations

contain two parts,

E[
1

1 + eX1β1+α
] = E[

1

exp(XTβ0 + α0) + 1
] (5.10)
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and

E[
X1

1 + eX1β1+α
] = E[

X1

exp(XTβ0 + α0) + 1
]. (5.11)

The joint solution to the above two limiting equations, α† and β†1, would be the limiting

quantity for α̂ and β̂1. Under the assumption thatXj follows a multinomial distribution,

one can expand the above two equations in a similar manner as that for equation (5.7),

which results in

1

1 + eα
q2
1 +

1

1 + eβ1+α
2q1(1− q1) +

1

1 + e2β1+α
(1− q1)

2 = E[
1

exp(XTβ0 + α0) + 1
]

and

0 +
1

1 + eβ1+α
2q1(1− q1) +

2

1 + e2β1+α
(1− q1)

2 = E[
X1

exp(XTβ0 + α0) + 1
].

With a similar argument as that in Situation I, we can show that

(1) in general, α̂ is not a consistent estimator for α0, nor is β̂1 consistent for β0
1 ;

(2) because α† and β†1 are intertwined, β†1 is not necessarily monotone with β0
1 .
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