
Flexible Margin-Based Classification Techniques

Seo Young Park

A dissertation submitted to the faculty of the University of North Carolina at Chapel Hill
in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the
Department of Statistics and Operations Research.

Chapel Hill
2010

Approved by

Advisor: Dr. Yufeng Liu

Reader: Dr. Douglas G. Kelly

Reader: Dr. J. S. Marron

Reader: Dr. Wei Sun

Reader: Dr. Hao Helen Zhang

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Carolina Digital Repository

https://core.ac.uk/display/210599236?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


c⃝ 2010

Seo Young Park

ALL RIGHTS RESERVED

ii



ABSTRACT

SEO YOUNG PARK: Flexible Margin-Based Classification Techniques

(Under the direction of Dr. Yufeng Liu)

Classification is a very useful statistical tool for information extraction. Among numerous

classification methods, margin-based classification techniques have attracted a lot of attention.

It can be typically expressed as a general minimization problem in the form of loss + penalty,

where the loss function controls goodness of fit of the training data and the penalty term enforces

smoothness of the model. Since the loss function decides how functional margins affect the

resulting margin-based classifier, one can modify the existing loss functions to obtain classifiers

with desirable properties.

In this research, we design several new margin-based classifiers, via modifying loss func-

tions of two well-known classifiers, Penalized Logistic Regression (PLR) and the Support Vector

Machine (SVM). In particular, we propose three new binary classification techniques, Robust

Penalized Logistic Regression (RPLR), Bounded Constraint Machine (BCM), and the Balanc-

ing Support Vector Machine (BSVM). For multicategory case, we propose the multicagegory

Composite Least Squares (CLS) classifier, a new multicategory classifier based on the squared

loss function. We study properties of the new methods and provide efficient computational al-

gorithms. Simulated and microarray gene expression data analysis examples are used to demon-

strate competitive performance of the proposed methods.

iii



ACKNOWLEDGEMENTS

I owe my deepest gratitude to my advisor, Professor Yufeng Liu, whose guidance, encouragement,

and support enabled me to enjoy my research and complete my dissertation work successfully.

He helped me explore the subject with his keen insight and immense knowledge, and provided

many opportunities for various kinds of collaborative research. Beyond and above his obligations

as a thesis advisor, he has been an integral if not essential advocate to any and all of my potential

future pursuits. I could not imagine having a better advisor for my Ph.D. study.

I wish to express my sincere appreciation to committee members, Douglas G. Kelly, J.

Steve Marron, Wei Sun, Hao Helen Zhang for their valuable comments and suggestions on this

dissertation.

Finally, I would like to thank my husband Sungkyu Jung for everything he has done for me

as a family, a friend and a fellow statistician. This thesis would not have been possible without

his love, patience, and understanding.

iv



Contents

ABSTRACT iii

ACKNOWLEDGEMENTS iv

List of Figures viii

List of Tables x

1 Introduction 1

1.1 Background on Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Several Existing Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.1 Penalized Logistic Regression . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.2 Support Vector Machine . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.3 Boosting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Truncation for robustness 8

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Penalized Logistic Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3 Literature on Robust Logistic Regression . . . . . . . . . . . . . . . . . . . . . . . 11

2.4 Robust Penalized Logistic Regression . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.4.1 Truncated Loss for Robustness . . . . . . . . . . . . . . . . . . . . . . . . 15

2.4.2 Fisher Consistency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.4.3 Probability Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.5 Computational Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.6 Tuning Parameter Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

v



2.7 Numerical Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.7.1 Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.7.2 Real Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.8 Possible Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.9 Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.9.1 Proof of Theorem 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.9.2 Proof of Theorem 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.9.3 Proof of Lemma 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3 Bounded Constraint Machine 40

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.2 The SVM and the BCM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.2.1 The Standard SVM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.2.2 The BCM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.3 The BSVM: A Bridge Between the SVM and the BCM . . . . . . . . . . . . . . . 44

3.3.1 Interpretation of the BSVM . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.3.2 Effect of v . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.4 Properties of the BSVM and the BCM . . . . . . . . . . . . . . . . . . . . . . . . 50

3.4.1 Fisher Consistency of the BSVM and the BCM . . . . . . . . . . . . . . . 50

3.4.2 Asymptotic Property of the BSVM . . . . . . . . . . . . . . . . . . . . . . 50

3.5 Regularized Solution Path of the BSVM with respect to v . . . . . . . . . . . . . 54

3.6 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.6.1 Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.6.2 Real Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.7 Remark and Possible Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.8 Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.8.1 Proof of Theorem 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.8.2 Proof of Theorem 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.8.3 Proof of Theorem 5 and Theorem 6 . . . . . . . . . . . . . . . . . . . . . 65

vi



4 Multicategory Classification 77

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.2 Background on Multicategory Classification . . . . . . . . . . . . . . . . . . . . . 79

4.2.1 Sequence of Binary Classifiers . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.2.2 Simultaneous methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.2.3 Existing Multicategory SVMs . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.3 Multicategory Composite Least Squares Classifier . . . . . . . . . . . . . . . . . . 82

4.3.1 Properties of the multicategory CLS classifier . . . . . . . . . . . . . . . . 84

4.3.2 Probability Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.4 Computational Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.5 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.5.1 Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.5.2 Real Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.6 Summary and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.7 Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

Bibliography 100

vii



List of Figures

1.1 Plot of different loss functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1 Left: Plot of the functionsH1(u),Hs(u), and Ts(u) withHs(u) = [H1(u)−H1(s)]+
and Ts(u) = H1(u) −Hs(u); Middle: Plot of the functions l(u), ls(u), and gs(u)
with ls(u) = [l(u) − l(s)]+ and gs(u) = l(u) − ls(u) ; Right: Plot of the loss
functions of the original logistic regression, Pregibon’s resistant fitting model,
Copas’ misclassification model, and the RPLR. . . . . . . . . . . . . . . . . . . . 10

2.2 Illustration plot of the effect of outliers with an outlier far away from its own
class. The RPLR boundary is much robust than that of the original PLR. . . . . 11

2.3 Plot of H1 and H2 for Theorem 2 in Section 2.4.3. The condition t > H1(¼, p)
and t > H2(¼, p) hold only when p ∈ [p1, p2]. . . . . . . . . . . . . . . . . . . . . . 18

2.4 Left: An illustration plot of CKL(¸) and EGACV (¸) from the example in Section
2.6; Right: Average curves of CKL(¸) and EGACV (¸) based on 100 replications. 28

2.5 Plot of typical training sets for Example 2.7.1.1 (the left panel) and Example
2.7.2.2 (the right panel) as well as the corresponding decision boundaries. . . . . 31

2.6 Heat maps of the Leukaemia data in Section 2.7.2.1. The left panel is for the
training set and the right panel is for the testing set. The red and green colors
represent high and low expression values respectively. . . . . . . . . . . . . . . . . 33

2.7 Plot of the estimated class probabilities against the estimated values of the linear
predictor f(x) = wTx + b for the PLR and the RPLR with t = 2 log 2. The
solid and the dashed lines are the estimated density curves of the values of linear
predictor for ALL and AML class, respectively. . . . . . . . . . . . . . . . . . . . 34

2.8 Biplot on PCA of the lung cancer data in Section 2.7.2.2. . . . . . . . . . . . . . 36

3.1 Plot of loss function g(u) with different values of v . . . . . . . . . . . . . . . . . 43

3.2 Illustration of the effect of ®iyi in the standard SVM. The left and right panel
illustrates that a positive and negative ®iyi tends to push the boundary towards
to the left and right side, respectively. . . . . . . . . . . . . . . . . . . . . . . . . 46

3.3 Plots of the effect of different values of v on the BSVM. . . . . . . . . . . . . . . 47

3.4 A graphical illustration of the robustness of the BSVM: the decision boundary of
the BSVM stays stable when there is an extreme outlier, while that of the SVM
moves dramatically towards the outlier. . . . . . . . . . . . . . . . . . . . . . . . 48

3.5 A graphical comparison of the SVM vs. BSVM: the decision boundary of the
SVM reflects the wavy shaped structure of the data near the border, while that
of the BSVM is flatten by the observations far from the border. . . . . . . . . . . 49

viii



3.6 Plots of the asymptotic variances in (3.15). . . . . . . . . . . . . . . . . . . . . . 54

3.7 Left: Illustration of the data set in Example 3.6.1.1. Right: Illustration of the
path of w with respect to v in Example 3.6.1.1. . . . . . . . . . . . . . . . . . . . 60

3.8 Plot of several BCM loss functions indexed by a. . . . . . . . . . . . . . . . . . . 64

4.1 Plot of the 0 − 1 loss function and the composite squared loss functions with
° = 0, 0.5, 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.2 Scatter plots of typical datasets of Example 4.5.1, 4.5.2, and 4.5.3. . . . . . . . . 88

4.3 Left: Plot of the average test errors of the multicategory CLS classifier based on
100 replications with ° = 0.0, 0.1, 0.2, ⋅ ⋅ ⋅ , 1.0 for Example 4.5.1.1. Right: Plot
of the average probability estimation errors of the multicategory CLS classifier
based on 100 replications with ° = 0.0, 0.5, and 1.0 for Example 4.5.1.1. . . . . . 90

4.4 Left: Plot of the average test errors of the multicategory CLS classifier based
on 100 replications with ° = 0.0, 0.1, 0.2, ⋅ ⋅ ⋅ , 1.0 for Example 4.5.1.2. Here, the
results with ’tuned °’ are the results when ° is tuned among {0, 0.5, 1} along with
¸. Right: Plot of the average probability estimation errors of the multicategory
CLS classifier based on 100 replications with ° = 0.0, 0.5, and 1.0 for Example
4.5.1.2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.5 Left: Plot of the average test errors of the multicategory CLS classifier based on
100 replications with ° = 0.0, 0.1, 0.2, ⋅ ⋅ ⋅ , 1.0 for Example 4.5.1.3. Right: Plot
of the average probability estimation errors of the multicategory CLS classifier
based on 100 replications with ° = 0.0, 0.5, and 1.0 for Example 4.5.1.3. . . . . . 94

4.6 Plot of the estimated class probabilities for subjects in the testing set of the
Leukemia data. The heights of cyan, bright yellow, and dark green bars stand for
the estimated probability of ALLB, ALLT, and AML, respectively. . . . . . . . . 96

4.7 Heat maps of the Leukemia data. The left panel is for the training set and the
right panel is for the testing set. The red and green colors represent high and low
expression values respectively. The subjects are displayed in the same order as
the Figure 4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

ix



List of Tables

2.1 Testing errors of the simulated linear example (Example 2.7.1.1) . . . . . . . . . 32

2.2 Class probability estimation errors of the simulated linear example (Example
2.7.1.1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.3 Testing errors of the simulated nonlinear example (Example 2.7.1.2) . . . . . . . 36

2.4 Class probability estimation errors of the simulated nonlinear example (Example
2.7.1.2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.5 Testing errors of the Lung Cancer Data example in Section 7.2.2. . . . . . . . . . 37

3.1 Testing errors of the simulated linear example (Example 3.6.1.1) . . . . . . . . . 61

3.2 Testing errors of the simulated nonlinear example (Example 3.6.1.2) . . . . . . . 62

3.3 Testing errors of the lung cancer data example in Section 3.6.2. . . . . . . . . . . 62

4.1 Estimated Test errors based on 100 replications for Example 4.5.1.1. The rows
with tuned 1 and tuned 2 show the results when ¸ is tuned at the same time with °
among {0, 0.1, 0.2, ⋅ ⋅ ⋅ , 1.0}, and among {0, 0.5, 1}, respectively. The Bayes error
is 0.2043. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.2 Estimated Test errors based on 100 replications for Example 4.5.1.2. The rows
with tuned 1 and tuned 2 show the results when ¸ is tuned at the same time with °
among {0, 0.1, 0.2, ⋅ ⋅ ⋅ , 1.0}, and among {0, 0.5, 1}, respectively. The Bayes error
is 0.0459 and 0.1538 when ¾ = 0.5 and ¾ = 0.7, respectively. . . . . . . . . . . . . 91

4.3 Estimated Test errors based on 100 replications for Example 4.5.1.3. The rows
with tuned 1 and tuned 2 show the results when ¸ is tuned at the same time with °
among {0, 0.1, 0.2, ⋅ ⋅ ⋅ , 1.0}, and among {0, 0.5, 1}, respectively. The Bayes error
is 0.0434 and 0.1450 when ¾ = 0.5 and ¾ = 0.7, respectively. . . . . . . . . . . . . 93

x



Chapter 1

Introduction

1.1 Background on Classification

Classification, as an example of supervised learning, is a procedure that builds a model based

on a training dataset to predict the class memberships for new examples with only covariates

available. It can be understood as a special form of regression with the response variable being

categorical. If the response variable is binary, that is, there are only two classes, it is known as

binary classification. If there are more than two classes, we have multicategory classification.

For simplicity, we first focus on binary classification, and multicategory classification will

be discussed in Chapter 4. In binary classification, we want to build a classifier based on a

training sample {(xi, yi)}i=1,⋅⋅⋅ ,n, where xi ∈ Rd is a d-dimensional vector of predictors, and

yi ∈ {+1,−1} is its class label. Typically it is assumed that the training data are distributed

according to an unknown probability distribution P (x, y). Binary classification is to find a

decision rule Á(⋅) and predict the class membership as ŷ = Á(x) for any future observation x.

One important goal is to minimize the misclassification rate P (Y ∕= Á(X)).

Our focus in this thesis is on margin-based classifiers. In that case, we want to find a decision

function f(x) and its associated classifier Á(x) = sign[f(x)] which minimizes the misclassification

rate. That is, once the classification function f is obtained, we use sign(f(x)) to estimate the

label of x, i.e. ŷ = +1 if f(x) ⩾ 0, and ŷ = −1 otherwise. Thus, the quantity yf(x), which

is called functional margin, is positive when the estimated class membership agrees with the

true class membership, and negative when the observation x is misclassified. Moreover, we can

think of the absolute value of yf(x) as our ‘confidence’ in class label prediction, considering



the value of f(x) close to zero indicates that x is near the decision boundary. Thus, high

value of yf(x) implies the classification for x is correct with much confidence, and as the value

of yf(x) goes to negative infinity, it means the classification was wrong with high confidence,

which is not desirable. Hence, we can say that functional margin yf(x) shows ‘correctness’ of

the classification, and we generally want values of functional margin to be high.

To make use of the functional margin, one can think of finding the decision function f(x)

by minimizing the sum of values of a certain loss function in yf(x). That is, minimizing

∑n
i=1 L(yif(xi)), where L(u) is a loss function, can be a criterion to find a decision function

f(x). One of the natural loss functions is the 0−1 loss function, L(yf(x)) = I(yf(x) ⩽ 0), which

is hard to implement computationally. Hence, it is often to use convex surrogate loss functions

in practice. However, this formulation often provides poor classification rules of f(x), because

of potential overfitting. A common solution to this is to add a constraint on the parameters to

stabilize or to shrink the estimates. Then margin-based classifiers can be summarized using the

regularization framework in the following form

min
f∈ℱ

n∑

i=1

L(yif(xi)) + ¸J(f), (1.1)

where ℱ is the decision function class of interest, and L(u) is the loss function which is a function

of the margin yf(x), J(f) is the penalty term that controls the smoothness of the model, and ¸

is a tuning parameter which balances the tradeoff between those two. In some practice, one may

also use minf∈ℱ C
∑n

i=1 L(yif(xi))+J(f) instead, but it is equivalent to (1.1) since ¸ plays the

same role as 1/C. The loss function controls goodness of fit of the model, and the penalization

term helps avoid overfitting so that good generalization can be obtained.

In the literature, there exist a number of margin-based classifiers. Using different loss func-

tions, we can formulate different classifiers such as the Support Vector Machine (SVM) (Vapnik,

1998; Cristianini and Shawe-Taylor, 2000), the Penalized Logistic Regression (PLR) (Wahba,

1999; Lin et al., 2000), Distance-Weighted Discrimination (DWD) (Marron et al., 2007) and so

on. Due to the definition of the functional margin, many well-known margin-based methods use

nonincreasing loss functions on yf(x) which encourages large functional margin.

The loss function in (1.1) plays an important role for the corresponding classifier, and we can

2



u

l(u
)

−2 −1 0 1 2 3 4

0
1

2
3

0−1 loss
Hinge loss (SVM)
Logistic loss
Exponential loss (AdaBoost)

Figure 1.1: Plot of different loss functions.

modify the loss function to obtain different classifiers with desirable properties. One important

contribution of this research is to study various modifications of the loss function to derive

several classifiers with different properties.

Next we briefly overview several commonly used margin-based classifiers including the PLR,

the SVM, and Boosting. Each of them can be understood as a special form of (1.1) with a

different loss function L(u). The loss functions of these classifiers are plotted in Figure 1.1 for

graphical comparison.

1.2 Several Existing Methods

1.2.1 Penalized Logistic Regression

In the standard logistic regression model for binary classification, one assumes the logit, the log

odds ratio, can be modeled as a linear function in covariates. Specifically, the model can be

written as follows:

log
P (Y = +1∣X)

P (Y = −1∣X)
= wTX + b, (1.2)

3



where X and Y denote the vector of explanatory variables and the class label, respectively. The

coefficients of logistic regression (w, b) can be estimated by the method of Maximum Likelihood

(ML) (McCullagh and Nelder, 1989). Once the ML estimators for (1.2) are obtained, the sign

of f(x), where f(x) = wTx+ b can be used as the class membership estimates. This is because

the model (1.2) implies that P (Y = +1∣X = x) > 0.5 if f(x) > 0, and P (Y = +1∣X = x) ⩽ 0.5

otherwise.

The linear logistic regression can be generalized to the PLR by adding a constraint on

the parameters. In particular, le Cessie and van Houwelingen (1992) proposed PLR, which

maximizes the log-likelihood subject to a constraint on the L2 norm of the coefficients. Wahba

(1999) showed the linear PLR is equivalent to finding b and w which solves (1.1) where ℱ = {f :

f(x) = wTx+ b}, L(u) = l(u) = log (1 + e−u), J(f) = 1
2∥w∥22, and ¸ > 0 is a tuning parameter.

For a nonlinear problem, theory of reproducing kernel Hilbert spaces can be applied and then

the kernel PLR has ℱ = {f : f(x) = r(x) + b, r(x) ∈ ℋK} and J(f) = ∥r∥ℋK
, where r(x) =

∑n
i=1 viK(xi,x) and K is the kernel function (Wahba, 1999). Properties of the reproducing

kernel and the representative theorem imply that ∥r∥2ℋK
= vTKv where v = (v1, . . . , vn)

T and

K is an n×n positive definite matrix with its i1i2-th elementK(xi1 ,xi2) (Kimeldorf and Wahba,

1971).

1.2.2 Support Vector Machine

The Support Vector Machine (SVM) can be viewed as a member of the regularization framework

(1.1). It employs the hinge loss function L(yf(x)) = [1− yf(x)]+. (See Figure 1.1.) The value

of L(yf(x)) increases as yf(x) becomes smaller and it stays at zero when yf(x) ⩾ 1. That is,

the SVM puts positive loss on the misclassified data points but 0 loss on the correctly classified

observations once yf(x) becomes greater than 1. Hence the data points with yf(x) ⩾ 1 have

no influence on the SVM solution. To explain further, we rewrite the SVM optimization in the

following primal problem with the penalty term J(f) = 1
2∥w∥2 for the standard SVM,

min
(b,w)

1

2
∥w∥2 + C

n∑

i=1

[1− yf(x)]+. (1.3)

4



To handle the hinge loss, we introduce n nonnegative slack variables, »i, i = 1, ⋅ ⋅ ⋅ , n. Then (1.3)

is equivalent to

min
(b,w)

1

2
∥w∥2 + C

n∑

i=1

»i

subject to »i ⩾ 1− yif(xi); »i ⩾ 0,∀i = 1, ⋅ ⋅ ⋅ , n.

We can transform this problem into its corresponding dual problem with the Lagrange mul-

tipliers °i and ®i, i = 1, ⋅ ⋅ ⋅ , n, for contraints. The Lagrange primal function is

L(w, b,®) =
1

2
∥w∥2 + C

n∑

i=1

»i +
n∑

i=1

®i[1− yif(xi)− »i]−
n∑

i=1

°i»i (1.4)

where C = 1/¸, and ®i ⩾ 0 and °i ⩾ 0 are the Lagrange multipliers. Setting derivatives to zero,

we have

∂L

∂w
= w −

n∑

i=1

yi®ixi = 0 (1.5)

∂L

∂b
= −

n∑

i=1

yi®i = 0 (1.6)

∂L

∂»i
= C − ®i − °i = 0, (1.7)

with Karush-Kuhn-Tucker (KKT) conditions of the convex optimization theory

®i(1− yif(xi)− »i) = 0 (1.8)

°i»i = 0. (1.9)

Substituting (1.5)-(1.9) into (1.4) gives the dual problem of the SVM

min
®

1

2

n∑

i,j=1

yiyj®i®j⟨xi,xj⟩ −
n∑

i=1

®i

subject to

n∑

i=1

yi®i = 0; 0 ⩽ ®i ⩽ C,∀i = 1, ⋅ ⋅ ⋅ , n. (1.10)

Using the ®i obtained from (1.10), w can be calculated as
∑n

i=1 ®iyixi, and b can be obtained

5



by (1.7). Thus the decision boundary becomes f(x) =
∑n

i=1 ®iyi⟨xi,x⟩ + b. Because of (1.8),

we can see that ®i > 0 implies yif(xi) ⩽ 1 and actually that is the only case that (xi, yi) affects

the solution. On the other hand, when ®i = 0, the observation (xi, yi) has no impact on the

solution. We call xi with ®i > 0 a Support Vector (SV), which is the observation misclassified

or correctly classified but with less confidence, satisfying yif(xi) ⩽ 1.

1.2.3 Boosting

Boosting has been a very important machine learning method in the past 20 years. The original

boosting algorithm, AdaBoost (Freund and Schapire, 1997), is an iterative procedure that com-

bines many weak classifiers updating weights of training observations. In particular, initially a

weak classifier is trained on the training data with all equal weights. Then, for each iteration,

the weights of the misclassified observations are increased and the weak classifier is recalculated

based on the newly weighted data. Then a score is assigned to the classifier based on the mis-

classification rate. After repeating this procedure for sufficiently many times, the final classifier

is defined as weighted sum of all the classifiers from the iterations with the scores as weights.

Friedman et al. (2000) showed that the AdaBoost is approximating to fitting additive model

using the exponential loss function. Thus, we can view the AdaBoost as a special member of

regularization problem in (1.1) with loss L(yf(x)) = exp(−yf(x)). (See Figure 1.1.)

1.3 Outline

In the following chapters, we propose several new margin-based classifiers with various loss

functions.

∙ In Chapter 2, we introduce the Robust Penalized Logistic Regression (RPLR) and study

its properties. Moreover, we derive a computational algorithm as well as methods for class

probability estimation and tuning parameter selection. Numerical demonstration includes

simulated examples and the application on Lung Cancer Dataset.

∙ Chapter 3 proposes the Bounded Constraint Machine (BCM), and the Balancing Support

Vector Machine (BSVM) as a bridge between the BCM and the standard SVM. We show

6



their properties, asymptotic behaviors, and the entire solution path for efficient computa-

tion. Numerical results include the simulated example and the Lung Cancer Data.

∙ In Chapter 4, we discuss multicategory classifiers and propose the multicategory Composite

Least Squares (CLS) classifier. In addition, its properties, procedure for class probability

estimation, and a computational algorithm are derived. Numerical results are included.

Proposed future work of each part and the proofs of our theorems are included at the end

of each chapter.

7



Chapter 2

Truncation for robustness

2.1 Introduction

The PLR is a commonly used classification method in practice. It is a generalization of the

standard logistic regression with a penalty term on the coefficients. Similar to the SVM, the

PLR can be fit in the regularization framework with loss + penalty (Wahba, 1999; Lin et al.,

2000). The loss function controls goodness of fit of the model, and the penalization term helps

avoid overfitting so that good generalization can be obtained.

For the standard SVM, its hinge loss function is unbounded, as a result, the SVM classifier

can be sensitive to outliers (Shen et al., 2003; Liu and Shen, 2006). Wu and Liu (2007) proposed

the Robust SVM (RSVM) as a modification of the original SVM by truncating the hinge loss

function. They showed that through the operation of truncation, the impact of outliers can be

reduced, consequently, the resulting classifier may be more robust.

Comparing to the SVM, the PLR uses the logistic loss which is also unbounded. Therefore,

similar to the SVM, the PLR can be sensitive to extreme outliers as well. In this chapter, we

propose the Robust Penalized Logistic Regression (RPLR), which uses truncated logistic loss

function. Because truncation reduces the impact of misclassified outliers, the RPLR is more

robust and accurate than the standard PLR. Comparisons of the proposed RPLR with the

existing robust logistic regression methods are discussed as well.

One important aspect of classification is class probability estimation. A good estimated

class probability can not only give the class prediction, it should also reflect the strength of

classification. Therefore, class probability estimation is desirable in many applications. In



the PLR, one can use the estimated classification function, i.e. the estimated logit function,

to derive the corresponding probability estimate. When we replace the logisitic loss by its

truncated version, properties of the corresponding classification function may not preserve all

class probability information any more. To solve this problem, we propose three different schemes

for class probability estimation. Properties and performance of these three schemes are explored

as well.

Although the original logistic loss function is convex, its truncated version becomes non-

convex. Consequently, the corresponding minimization problem involves difficult non-convex

optimization. To implement the RPLR, we decompose the non-convex truncated logistic loss

function into the difference of two convex functions. Then, using this decomposition, we apply

the difference convex (d.c.) algorithm to obtain the solution of the RPLR through iterative

convex minimization.

The tuning parameter plays an important role in the RPLR implementation. To select a

good tuning parameter, we develop the Estimated Generalized Approximate Cross Validation

(EGACV) procedure and compare its performance with the cross validation method.

In the following sections, we describe the new proposed method in more details with theo-

retical justification and numerical examples. Section 2.2 reviews the PLR and gives a maximum

likelihood interpretation. In Section 2.3 we review some related robust logistic regression meth-

ods in the literature. In Section 2.4 we describe the RPLR and explore its theoretical properties.

The methods for class probability estimation are also introduced. Section 2.5 develops the d.c.

algorithm to solve the nonconvex minimization problem for the RPLR. In Section 2.6 we explore

various ways to select the tuning parameter. Numerical results are presented in Section 2.7 and

Section 2.8 provides some discussions. The proofs of theorems are included in Section 2.9.

2.2 Penalized Logistic Regression

As mentioned in Section 1.2.1, the PLR solves (1.1) with the logistic loss function l(u) =

log(1 + e−u). Here, we briefly review the PLR and its likelihood interpretation.

Notice that the loss function l(u) = log(1 + e−u) is a smooth decreasing function as shown

in the middle panel of Figure 2.1 and in particular, its value grows rapidly as u goes to negative

9



u

L(
u)

−3 s 0 3

0
1

t
2

3

H1(u)
Hs(u)
Ts(u)

u

L(
u)

−3 s 0 3
0

1
t

2
3

l(u)
ls(u)
gs(u)

u

L(
u)

−10 0 10

0
5

10 Original LR
Pregibon
Copas
Bianco and Yohai
Croux and Haesbroeck
RPLR

Figure 2.1: Left: Plot of the functions H1(u), Hs(u), and Ts(u) with Hs(u) = [H1(u)−H1(s)]+
and Ts(u) = H1(u) − Hs(u); Middle: Plot of the functions l(u), ls(u), and gs(u) with ls(u) =
[l(u)− l(s)]+ and gs(u) = l(u)− ls(u) ; Right: Plot of the loss functions of the original logistic
regression, Pregibon’s resistant fitting model, Copas’ misclassification model, and the RPLR.

infinity. This causes high impact of outliers with very small (negative) value of yif(xi). As a

result, the coefficient estimates of the PLR can be affected by outliers far from their own classes.

To further illustrate the effect of outliers on the PLR, we randomly generate 2-dimensional

separable data and apply the PLR to obtain a classification boundary. As shown in the left

panel of Figure 2.2, the PLR works very well without outliers. However, if we randomly select

one of the observations and move it away from its own class, then the classification boundary of

the PLR is pulled towards to that outlier, as shown in the right panel of Figure 2.2. As a result,

the corresponding misclassification rate will become higher. In contrast, our new proposed

method is much more robust to the outlier so that its classification boundary is more accurate.

The effect of outliers on the PLR can also be interpreted using maximum likelihood. The

likelihood function of unpenalized logistic regression can be written as

ℒ(b,w) =

n∏

i=1

P (xi)
1+yi

2 (1− P (xi))
1−yi

2 , (2.1)

where P (x) = P (Y = +1∣X = x). Then, we can plug in the logit function (1.2) into (2.1), and

the corresponding maximizer of ℒ(b,w) is the solution of the logistic regression. Note that the

i-th term of the product in the likelihood is P (xi) when yi = +1, and 1 − P (xi), otherwise.

10



−4 −3 −2 −1 0 1 2

−
2

−
1

0
1

2
3

4

x1

x 2

Bayes
PLR
RPLR

−4 −3 −2 −1 0 1 2

−
2

−
1

0
1

2
3

4

x1
x 2

Bayes
PLR
RPLR

Figure 2.2: Illustration plot of the effect of outliers with an outlier far away from its own class.
The RPLR boundary is much robust than that of the original PLR.

Therefore to maximize the likelihood, one needs to find (w, b) to make P (xi) big when yi = 1

and small when yi = −1. However, this could be sensitive to outliers. To illustrate this further,

assume there is one data point xi with yi = +1 which locates far from the other data points

of class +1 but closer to data of class −1 as illustrated in the right panel of Figure 2.2. Using

the solution (w, b) without the outlier, the corresponding P (xi) for the outlier will be very

small because xi is closer to the data of class −1. Consequently, the ML method would select

(w, b) which will make P (xi) larger to obtain bigger likelihood at the expense of other entries’

classification accuracy. This results in the boundary moving towards to the outlier. In the next

section, we discuss some literature on robust logistic regression.

2.3 Literature on Robust Logistic Regression

There is a large literature on the robustness issue of the Logistic Regression. Most of the existing

methods attempt to achieve robustness by downweighting observations which are far from the

majority of the data, i.e. outliers (Copas, 1988; Carroll and Pederson, 1993; Pregibon, 1982;

Bianco and Yohai, 1996; Bondell, 2005; Stefanski et al., 1986; Künsch et al., 1989; Krasker and

11



Welsch, 1982; Morgenthaler, 1992). Stefanski et al. (1986) and Künsch et al. (1989) modified

original score function of the logistic regression to obtain bounded sensitivity, which is a concept

introduced by Krasker and Welsch (1982). Morgenthaler (1992) used L1-norm instead of L2-

norm in the likelihood, resulting in a weighted score function of the original score function.

Cantoni and Ronchetti (2001) focused on robustness of inference rather than the model.

Pregibon (1982) suggested resistant fitting methods which taper the standard likelihood to

reduce the influence of extreme observations. In particular, he proposed to estimate (w, b) by

solving

min
f∈ℱ

n∑

i=1

ℎ(xi)½

(
di

ℎ(xi)

)
, (2.2)

where ½(u) is a tapering function, ℎ(x) is a factor which controls leverage of each observation,

and di is negative log likelihood, that is, di = −
[
1+Yi
2 logP (xi) +

1−Yi
2 log(1− P (xi))

]
. Note

that this reduces to standard maximum likelihood estimation of the logistic regression when

ℎ(x) ≡ 1 and ½(u) = u. The particular tapering function Pregibon (1982) proposed to use is

the Huber’s loss function

½(u) =

⎧
⎨
⎩

u if u ⩽ H,

2(uH)1/2 −H otherwise,
(2.3)

where H is a prespecified constant. In order to compare with our new method, we provide a

new view of the method by Pregibon (1982) in the loss function framework. In particular, with

½ in (2.3) and ℎ(x) ≡ 1, we can reduce (2.2) to

min
f∈ℱ

n∑

i=1

lPregibon(yif(xi)),

where

lPregibon(u) = ½(l(u)) =

⎧
⎨
⎩

log (1 + e−u) if u ⩾ − log (eH − 1)

2(H log (1 + e−u))1/2 −H otherwise.
(2.4)

The estimate in (2.4) was shown to have approximately 95% asymptotic relative efficiency

when H = 1.3452. The loss function in (2.4) with H = 1.3452 is plotted in the right panel of

12



Figure 2.1 for comparison. As shown in the plot, lPregibon(u) grows as u goes to negative infinity,

but less rapidly than the loss function of the original logistic regression l(u). Consequently, the

resulting coefficient estimates become less sensitive to extreme observations. However, the value

of lPregibon(u) remains to be unbounded, hence the impact of outliers can still be large.

Bianco and Yohai (1996) proposed a consistent and more robust version of Pregibon’s esti-

mator, by adding a bias correction term. More specifically, they suggested to solve

min
f∈ℱ

n∑

i=1

½(di) + Ci, (2.5)

with the di previously defined and the bias correction term Ci, where Ci = G(P (xi)) + G(1 −
P (xi))−G(1), G(t) =

∫ t
0 ½

′(− log u)du, and

½(t) =

⎧
⎨
⎩

t− t2

2c if t ⩽ c

c
2 otherwise,

(2.6)

where c is a constant. Croux and Haesbroeck (2003) pointed out that the minimizer of (2.5)

with ½(t) in (2.6) does not exist quite often, in particular, the minimizer tends to be infinity. To

overcome this problem, they suggested to use

½(t) =

⎧
⎨
⎩

te−
√
d if t ⩽ d

−2e−
√
t(1 +

√
t) + e−

√
d(2(1 +

√
d) + d) otherwise,

(2.7)

and

G(t) =

⎧
⎨
⎩

te−
√− log t + e1/4

√
¼Φ(

√
2(12 +

√− log t))− e1/4
√
¼ if t ⩽ d

e−
√
dt− e−1/4√¼ + e1/4

√
¼Φ(

√
2(12 +

√
d)) otherwise,

(2.8)

where d is a constant and Φ is the normal cumulative distribution function. To view the method

by Croux and Haesbroeck (2003) in the loss function framework, we show that the problem (2.5)

with ½(t) in (2.7) is equivalent to solving

min
f∈ℱ

n∑

i=1

lCH(yif(xi)), (2.9)

13



where

lCH(u) = I{u⩾− log(ed−1)}
[
log(1 + e−u)e−

√
d + e−

√
d 1
1+e−u − e−1/4√¼ + e1/4

√
¼Φ(

√
2(12 +

√
d))

]

+I{u<− log(ed−1)}
[
−2e−

√
log(1+e−u)(1 +

√
log(1 + e−u)) + e−

√
d(2(1 +

√
d) + d)

1
1+e−u e

−
√

log(1+e−u) + e1/4
√
¼Φ(

√
2(12 +

√
log(1 + e−u)))− e−1/4√¼

]

+I{u⩾log(ed−1)}
[

1
1+eu e

−
√

log(1+eu) + e1/4
√
¼Φ(

√
2(12 +

√
log(1 + eu)))− e−1/4√¼

]

+I{u<log(ed−1)}
[
e−

√
d 1
1+eu − e−1/4√¼ + e1/4

√
¼Φ(

√
2(12 +

√
d))

]
.

(2.10)

The loss function (2.10) is plotted in the right panel of Figure 2.1.

Another attempt to achieve robustness was made by Copas (1988), who modeled contamina-

tion of class labels in the training data. Specifically, it is assumed that the class label y ∈ {1,−1}
was transposed with a small probability °. As a result, the response y can be 1 with probability

P ∗(x), where

P ∗(x) = (1− °)P (x) + °(1− P (x)). (2.11)

Using (1.2) and (2.11), the log-likelihood with P ∗(x) becomes

n∑

i=1

[
1 + Yi

2
logP ∗(xi) +

1− Yi
2

log(1− P ∗(xi))

]

=
n∑

i=1

[
1 + Yi

2
log

1 + °(e−f(xi) − 1)

1 + e−f(xi)
+

1− Yi
2

log
1 + °(ef(xi) − 1)

1 + ef(xi)

]

=
n∑

i=1

[
I(Yi=1) log

1 + °(e−Yif(xi) − 1)

1 + e−Yif(xi)
+ I(Yi=−1) log

1 + °(e−Yif(xi) − 1)

1 + e−Yif(xi)

]

=
n∑

i=1

log
1 + °(e−Yif(xi) − 1)

1 + e−Yif(xi)
.

(2.12)

To view this in the loss framework, we get the equivalent problem of log likelihood maximization

in (2.12) as follows

min
f∈ℱ

n∑

i=1

lCopas(yif(xi)), (2.13)

where lCopas(u) = log 1+e−u

1+°(e−u−1)
, which is plotted with ° = 0.02 in the right panel of Figure

2.1. With any ° smaller than 0.5, lCopas(u) is decreasing in u, and bounded by − log °. Though

it reduces the impact of outliers, it heavily depends on the misclassification rate °, which is

unknown and needs to be tuned. In the next section, we propose a new classifier which effectively

14



reduces the influence of outliers by truncating the logistic loss function.

2.4 Robust Penalized Logistic Regression

2.4.1 Truncated Loss for Robustness

Although most of the previous methods done on robust logistic regression takes the likelihood

point of view, it can be transformed into the loss function framework as shown in the previous

section. In this thesis, we take a different approach to achieve robustness for the logistic regres-

sion. In particular, we develop a new classifier by truncating the loss function directly rather

than modifying the log likelihood function.

Due to the unboundedness of the logistic loss function, it assigns large loss values for points far

from their own classes. Consequently, the resulting classifiers will be affected by those outliers.

To reduce the effect of outliers, we propose a novel Robust version of the PLR (RPLR), which

truncates the loss function of the PLR. Specifically, we propose to use the truncated logistic loss

function gs(u) = min(l(u), l(s)) instead of l(u). Here s ⩽ 0 represents the location of truncation.

As illustrated in the middle panel of Figure 2.1, gs(yf(x)) increases as yf(x) decreases, but once

yf(x) becomes less than s, gs(yf(x)) becomes a constant. This implies that gs becomes bigger

as an observation gets further away from the classification boundary up to an upperbound. For

outliers located further away from the boundary satisfying yf(x) ⩽ s, the loss stays at a constant

l(s) so that the outliers cannot further influence the classification boundary. This is in contrast

to the untruncated version whose impact grows to infinity. Also, it differs from the other existing

methods we covered in the previous section in the sense that the effect of extreme observations

stays the same once yf(x) becomes less than s, while that of others keeps increasing. Note

that s determines the level of truncation. When s = −∞, no truncation occurs, thus the loss

is the same as the original logistic loss. As s gets closer to 0, we have more truncation on the

loss which may reduce the effect of outliers further. Therefore, gs(u) contains a group of loss

functions indexed by s.

Similar idea of truncation has been applied to the SVM to derive the RSVM in Wu and

Liu (2007). They truncated the original hinge loss of the SVM H1(u) at s, resulting in the

truncated hinge loss function Ts(u) = min(H1(u),H1(s)) = H1(u) − Hs(u), where Hs(u) =

15



[H1(u)−H1(s)]+. As shown in the left panel of the Figure 2.1, the truncated hinge loss function

Ts(yf(x)) stays the same once yf(x) becomes less than s, similarly to gs(yf(x)). But once

yf(x) becomes greater than 1, the loss function of the RSVM Ts(yf(x)) becomes 0. In contrast,

the loss function of the RPLR gs(yf(x)) remains small but positive. That is, the RSVM does

not use the information about data points with yf(x) > 1, while the RPLR uses all the data

points to build a classification boundary. This can be beneficial for the RPLR as reflected in

the simulation results in Section 2.7 .

From the likelihood point of view, minimizing
∑n

i=1 gs(yif(xi)) is equivalent to maximizing

n∏

i=1

Q+(xi)
1+yi

2 (1−Q−(xi))
1−yi

2 , (2.14)

where Q+(x) = max(P (x), 1
1+e−s ) and Q−(x) = min(P (x), 1

1+es ). Interestingly, (2.14) has a

similar form as that of the logistic regression in (2.1). The difference is that the i-th factor is

Q+(xi) or 1 − Q−(xi), instead of P (xi) and 1 − P (xi), depending on yi. Hence, maximizing

(2.14) is equivalent to finding (w, b) which gives big Q+(x) when y = +1 and small Q−(x)

when y = −1. By definition, Q+(x) can not get extremely small because it is lower bounded by

(1 + e−s)
−1

. Similarly, Q−(x) can not get extremely big. Therefore outliers may not influence

(2.14) as much comparing to (2.1). As a result, the maximizer of (2.14) can be less sensitive to

outliers. For the toy example illustrated in Figure 2.2, the classification boundary of the original

PLR deteriorates dramatically when there exists an extreme outlier in the dataset. In contrast,

the RPLR boundary is very stable whether there is an outlier or not.

2.4.2 Fisher Consistency

In this section, we study Fisher consistency of robust logistic regression and its weighted ver-

sion. Fisher consistency, also known as classification-calibration (Bartlett et al., 2006), requires

that the population minimizer of a binary loss function has the same sign as P (x) − 1/2 (Lin,

2004). Wu and Liu (2007) established the conditions of a truncated loss for Fisher consis-

tency. In particular, the binary truncated logistic loss function gs(u) = min(l(u), l(s)) is Fisher-

consistent for any s ⩽ 0. For the multicategory case with k classes, gs(u) is Fisher consistent

for s ∈ [− log(2k/(k−1) − 1), 0], which reduces to s ∈ [− log 3, 0] when k = 2. In this paper,

16



we consider three different truncation locations s = 0, − log 3, and − log 7 for the RPLR. The

corresponding values of the logistic loss are l(0), 2l(0), and 3l(0), respectively. Our numerical

results suggest that s = − log 3 with l(s) = 2l(0) gives the best performance. This matches the

Fisher consistency results for multicategory classification.

So far, we have focused on the standard case, i.e., treating different types of misclassification

equally. Sometimes, it can be natural to impose different costs for different types of misclassifi-

cation. For example, it can be more severe to misclassify an observation of class +1 to class −1

than that of class −1 to +1. Then it is sensible to put a bigger cost for the first kind of mis-

classification than the second type. Lin et al. (2002) discussed the weighted SVM to deal with

nonstandard situations such as different misclassification costs for different classes. Recently,

Wang et al. (2007) applied weighted learning to large margin classifiers for probability estima-

tion. In addition to Fisher consistency of non-weighted robust logistic regression, we investigate

similar properties of the weighted robust logistic regression.

Let (1−¼, ¼) with 0 < ¼ < 1 be the weights for class +1 and class −1 respectively, then the

weighted version of the RPLR becomes

min
f∈ℱ

(1− ¼)
∑

yi=1

gs(yif(xi)) + ¼
∑

yi=−1

gs(yif(xi)) +
¸

2
J(f), (2.15)

where ¸ > 0 balances the goodness of fit, measured by the loss function, and the smoothness of f .

If ¸ = 0, the objective function in (2.15) reduces to the unpenalized robust logistic regression.

Note that the expectation of the weighted loss part in (2.15) is E[ℎ¼(Y )gs(Y f(X))], where

ℎ¼(1) = 1− ¼ and ℎ¼(−1) = ¼.

To understand the RPLR further, we need to explore the property of weighted robust logistic

regression. The following theorem discusses the theoretical minimizer of the truncated logistic

loss.

Theorem 1. The minimizer f∗
¼ of E[ℎ¼(Y )gs(Y f(X))] has the same sign as P (x)− ¼.

Theorem 1 indicates that the sign of f∗
¼ is the same as sign(P (x) − ¼). Thus, sign(f∗

¼)

provides a natural estimate of sign(P (x)−¼). In particular, if f∗
¼ > 0, then P (x) > ¼, otherwise

P (x) ⩽ ¼. This offers a natural procedure for class probability estimation. In particular, one

can estimate f∗
¼ for many different ¼’s ∈ (0, 1) to obtain further information about P (⋅). Thus,

17



p

 

0 p1 p2 1

0
2l

og
2

t
 

H1

H2

Figure 2.3: Plot of H1 and H2 for Theorem 2 in Section 2.4.3. The condition t > H1(¼, p) and
t > H2(¼, p) hold only when p ∈ [p1, p2].

it can be used for class probability estimation, as discussed further in Section 2.4.3.

2.4.3 Probability Estimation

Lin (2002) showed that under certain conditions the solution f̂¼ of (2.15) approaches f∗
¼ =

argminE[ℎ¼(Y )gs(Y f(X))]. Therefore, we can use the property of f∗
¼ to design estimators of

class probabilities P̂ (x). In the simplest scenario where ¼ = 1/2 and s = −∞, we use the

regular logistic loss and (2.15) reduces to the ordinary PLR. In that case, it is well known that

the minimizer of E[l(Y f(X))] is f = log [p(X)/(1− p(X))]. Then a natural estimator of P (x)

is ef̂/(1 + ef̂ ).

When we use the truncated loss function, the minimizer of E[ℎ¼(Y )gs(Y f(X))] does not al-

ways maintain enough information to obtain class probability estimation. The following theorem

establishes the minimizer of E[ℎ¼(Y )gs(Y f(X))].

Theorem 2. Define H1(¼, P (x)) = log [1 + 1/¿(P (x), ¼)] + [1/¿(P (x), ¼)] log [1 + ¿(P (x), ¼)],

H2(¼, P (x)) = ¿(P (x), ¼) log [1 + 1/¿(P (x), ¼)]+log [1 + ¿(P (x), ¼)], and ¿(P (x), ¼) = (1−¼)P (x)
¼(1−P (x)) .

18



Then, for t = gs(s),

f∗
¼ =

⎧
⎨
⎩

log ¿(P (x), ¼) if t > H1(¼, P (x)) and t > H2(¼, P (x))

−∞ if t < H1(¼, P (x)) and H1(¼, P (x)) > H2(¼, P (x))

∞ if t < H2(¼, P (x)) and H1(¼, P (x)) < H2(¼, P (x))

−∞,∞ if t < H1(¼, P (x)) = H2(¼, P (x)).

Theorem 2 implies that we can use f∗
¼ to express class probability only when f∗

¼ = log ¿(P (x), ¼) =

log (1−¼)P (x)
¼(1−P (x)) . Otherwise we cannot reconstruct P (x) using f∗

¼ . To further illustrate the relation-

ship between f∗
¼ and P (x), we consider H1 and H2 in the case that ¼ = 1/2, which is plotted in

Figure 2.3. When P (x) ∈ [p1, p2] with t = H1(¼, p1) and t = H2(¼, p2), then f∗
¼ = log (1−¼)P (x)

¼(1−P (x)) .

However, when P (x) /∈ [p1, p2], f
∗
¼ is either ∞ or −∞, which does not have enough information

to recover P (x). For this reason, we need to explore other schemes to estimate P (x).

To estimate the class probability, we propose the following three schemes.

Scheme 1 Since the RPLR works only for estimation of P (x) ∈ [p1, p2], we can consider

utilizing it for those p, and using the ordinary PLR for P (x) /∈ [p1, p2]. Notice that this scheme

is valid only for t > 2 log 2, because if t ⩽ 2 log 2, p1 = p2 and t is smaller than H1 and H2 for

any P (x) as shown in Figure 2.3. Thus by Theorem 2, the RPLR does not work for estimation

of any P (x) when t ⩽ 2 log 2.

This scheme is a valid approach in the sense that estimation of P (x) ∈ [p1, p2] is more critical

than that of P (x) /∈ [p1, p2]. Usually the data points with very small P (x) or very big P (x) are

easier to classify and we are more certain about the class membership of those points. However,

class membership prediction for data points with P (x) near 1/2 is not only difficult, but also

highly affected by outliers. Thus estimation of the class probability becomes more important

for those points. Therefore, we use the RPLR for estimation of P (x) ∈ [p1, p2], and use the

ordinary PLR for P (x) /∈ [p1, p2].

Scheme 2 The second scheme is motivated by the idea that we can shift p1 and p2 by changing

¼. Because H1 and H2 in Theorem 2 depend on ¼, different ¼’s bring different estimable

region [p1, p2]. Hence, we can cover most of P (x) ∈ [0, 1] using many different ¼’s. Note

19



that this method is applicable only when t > 2 log 2, and here we illustrate the case with

t = 3 log 2. More specifically, we use seven different ¼’s such as ¼1 = 1/2, ¼2 = 1/5, ¼3 =

4/5, ¼4 = 1/20, ¼5 = 19/20, ¼6 = 1/91, ¼7 = 90/91, which give different estimable regions

for P (x), [0.310, 0.690], [0.105, 0.358], [0.642, 0.899], [0.024, 0.101], [0.895, 0.976], [0.005, 0.024],

[0.976, 0.995]. Using f̂j which denotes the solution from the RPLR with ¼j , we can construct

the estimator P̂ j(x) = ef̂j/(1+ ef̂j ); j = 1, ⋅ ⋅ ⋅ , 7, to estimate P (x) in the corresponding region.

There are some drawbacks of the second scheme. First, there are overlaps between the

estimable regions. Moreover, the RPLR with different ¼’s can give contradictory inference

about P (x). To solve this, for given P̂ j(x), we consider P̂ 1(x) first. If P̂ 1(x) ∈ [0.310, 0.690],

then take P̂ 1(x) as P̂ (x). Otherwise, we consider P̂ 2(x) or P̂ 3(x) depending on whether P̂ 1(x)

is less than 0.310 or greater than 0.690. Then take P̂ 2(x) or P̂ 3(x) as P̂ (x) if it falls in the

estimable region, otherwise, take P̂ 4(x) or P̂ 5(x) in the same manner as P̂ (x) or use P̂ 6(x) or

P̂ 7(x) likewise. If the RPLR with P̂ j(x) gives contradictory inference about P (x) or none of

them gives the estimate of P (x) in the estimable region, then we use the PLR to estimate P (x).

Scheme 3 Wang et al. (2007) suggested to estimate the class probability for large margin

classifiers via bracketing the probability using multiple weighted classifiers. We consider to

apply the same idea to the RPLR. First, we make equally spaced partitions of [0, 1], that is,

0 = ¼0 < ¼1 < ⋅ ⋅ ⋅ < ¼m < ¼m+1 = 1 such that ¼j+1 − ¼j is constant for any i = 0, ⋅ ⋅ ⋅ ,m.

Then we can obtain f̂j , j = 1, ⋅ ⋅ ⋅ ,m from the RPLR with ¼j , j = 1, ⋅ ⋅ ⋅ ,m. By Theorem

1, f̂j estimates whether the class probability is greater than ¼ or not. Therefore, if we make

the partition fine enough, then we can achieve probability estimation with the desired level of

accuracy. To be more specific, we define ¼∗ = argmax¼j
{f̂j > 0} and ¼∗ = argmin¼j

{f̂j < 0},
then p̂ is obtained by 1

2(¼
∗ + ¼∗).

This method is not restricted by the truncation location, that is, we can use this method

for any t > log 2, corresponding to s ⩽ 0. The larger m we use, the finer estimate we can get.

However, larger m’s require higher computational costs.

20



2.5 Computational Algorithms

Since the loss function gs is not convex, the RPLR requires non-convex minimization. Note

that gs can be written as the difference of two convex functions as gs(u) = l(u) − ls(u) as

shown in the middle panel of Figure 2.1. With this decomposition, we can solve the non-convex

minimization via the d.c. algorithm (An and Tao, 1997; Horst and Thoai, 1999; Liu et al., 2005).

The d.c. algorithm solves the problem by sequential convex minimization. For each iteration, ls

is replaced by its linear approximation using the current solution. Then the problem becomes

convex minimization. We iterate this until the objective function converges. In this section, we

discuss the d.c. algorithm for the RPLR.

In the literature, Fan and Li (2001) introduced Local Quadratic Approximation (LQA) to

solve penalized likelihood optimization problems. Hunter and Li (2005) studied convergence of

LQA as an instance of minorize-maximize or majorize-minimize (MM) algorithm. Considering

a linear approximation of ls as the affine minorization, the d.c. algorithm for RPLR is also a

special case of the MM algorithm. Since the objective function in (2.15) is positive, our d.c.

algorithm converges to an ²-local minimizer in finite iterations (An and Tao, 1997; Liu et al.,

2005).

In linear learning with f(x) = wTx+ b, (2.15) can be reduced to

min
b,w

n∑

i=1

ℎ¼(yi)gs(yif(xi)) +
¸

2
∥w∥22 . (2.16)

Using the fact that gs(u) = l(u) − ls(u) with l(u) = log(1 + e−u) and ls(u) = [log(1 + e−u) −
log(1 + e−s)]+, (2.16) can be written as

min
Θ

Q(Θ) = min
Θ

Qvex(Θ) +Qcav(Θ), (2.17)

where Θ = (b,w), Qvex(Θ)s = ¸
2 ∥w∥22+

∑n
i=1 ℎ(yi)l(yif(xi)) andQcav(Θ)s = −∑n

i=1 ℎ(yi)ls(yif(xi)).

Then, at the (m+ 1)-th iteration, the d.c. algorithm minimizes

Qvex(Θm)s + ⟨ ∂
∂wQs

cav(Θm),w⟩+ b ∂
∂bQ

s
cav(Θm)

= ¸
2∥w∥22 +

∑n
i=1 ℎ(yi) log(1 + e−yif(xi)) +

∑n
i=1 ℎ(yi)¯i

e−yifm(xi)

1+e−yifm(xi)
(wTxi + b), (2.18)

21



where fm(x) = wT
mx+bm and ¯i = 1 if yi = 1 and f(xi) < s, −1 if yi = −1 and f(xi) > −s, and

0 otherwise. Problem (2.18) can then be solved using nonlinear convex minimization techniques.

The algorithm can be extended to nonlinear learning directly. Specifically, for kernel learning,

(2.15) becomes

min
b,v

n∑

i=1

ℎ¼(yi)gs(yif(xi)) +
¸

2
∥f∥2ℋK

(2.19)

where f(x) =
∑n

i=1 viK(xi,x) + b and v = (v1, ⋅ ⋅ ⋅ , vn). Notice that
∑n

i=1 viK(xi,x) ∈ HK

and ∥f∥2ℋK
= ⟨v,Kv⟩. Using Θ = (b,v) in (2.17) leads to a similar algorithm for the nonlinear

kernel learning case.

2.6 Tuning Parameter Selection

The tuning parameter ¸ in (2.16) and (2.19) plays an important role for the RPLR. In this

section, we explore various ways to tune ¸. We use penalty term which measures smoothness

of the model to avoid overfitting the data, and the tuning parameter ¸ decides how smooth our

model will be. Thus, the choice of ¸ has a big impact on the resulting model.

There are numerous ways proposed to tune ¸ in the penalized likelihood literature and we

employ some of those here for the RPLR. Some well known ones include the cross validation,

AIC, and BIC. Among them, cross validation is probably one of the most commonly used

method. Since cross validation requires intensive computation, Generalized Approximate Cross

Validation (GACV) can be a good approximation. In this section, we explore how to generalize

these existing methods such as AIC, BIC, and GACV to the RPLR problem.

The term AIC and BIC are defined as deviance + cp × df , with cp = 2 and cp = log n,

respectively. deviance measures goodness of fit of the model, and df measures amount of over-

fitting. More specifically, deviance = −2 log likeliℎood, hence better fitting on the training data

gives the smaller deviance. By minimizing the sum of deviance and cp× df , we can balance the

tradeoff between goodness of fit and generalization.

For a linear smoother in the form of ŷ = Sy, a popular definition of df is tr(S) (Hastie

and Tibshirani, 1990). However, this definition is not applicable for the RPLR problem directly

since the RPLR is not such a linear smoother. Park and Hastie (2007) generalized definition of

df to cℎange in deviance of null data, i.e. deviance of null model − deviance of current model.

22



The idea is that the difference of deviance between null model and current model would be due

to overfitting if we use pure noise as data. Hence we can use cℎange in deviance to measure

the amount of overfitting. In Park and Hastie (2007), they simulated many samples of null data

to estimate df . Their approach can be used for the RPLR problem as well in the same manner.

However, this method can be computationally expensive in practice.

Xiang and Wahba (1996) proposed GACV, which estimates comparative Kullback-Leibler

distance between the true linear predictor f(x) and the estimated one for a particular ¸. It

starts with a leaving-out-one version, then uses Taylor expansion to get an estimate. This idea

can be generalized here to get GACV of the RPLR. The details are as follows.

Let f¸(x) be the solution of the RPLR for a particular value of ¸. The Kullback-Leibler

distance KL(f, f¸) is

KL(f, f¸) =
1

n

n∑

i=1

E log
ℒ̃(yi, f(xi))

ℒ̃(yi, f¸(xi))
,

where ℒ̃(yi, f(xi)) = P (xi)
1+yi

2 (1− P (xi))
1−yi

2 for the PLR and ℒ̃(yi, f(xi)) = Q+(xi)
1+yi

2 (1−
Q−(xi))

1−yi
2 for the RPLR. Since the true f(x) is unknown and does not depend on ¸, we define

the Comparative KL loss,

CKL(¸) = KL(f, f¸)− 1

n

n∑

i=1

E log ℒ̃(yi, f(xi))

to compare models with different ¸. It can be shown that CKL(¸) = 1
n

∑n
i=1E[−zif¸(xi) +

log(1 + ef¸(xi))] for the PLR, and CKL(¸) = 1
n

∑n
i=1E[min{t,−zif¸(xi) + log(1 + ef¸(xi))}] for

the RPLR, with zi =
1
2(1 + yi). Then the remaining issue is how to estimate the CKL.

First, let f
(−i)
¸ (⋅) is the solution of the RPLR with the i-th data point omitted. Adopting

the leaving-out-cone cross validation function CV (¸) = 1
n

∑n
i=1[−zif

(−i)
¸ (xi) + log(1 + ef¸(xi))]

for data from general exponential family in Xiang and Wahba (1996), we define CV (¸) for the

RPLR,

CV (¸) =
1

n

n∑

i=1

min
{
t,−zif

(−i)
¸ (xi) + log(1 + ef¸(xi))

}
. (2.20)

Since it is computationally expensive to calculate f
(−i)
¸ (xi), we approximate CV (¸) using for-

mulae introduced in Xiang and Wahba (1996) and Liu (1995). Specifically, from (2.20), we

23



have

CV (¸) = 1
n

∑n
i=1min

{
t,−zif¸(xi) + log(1 + ef¸(xi)) + zi(f¸(xi)− f

(−i)
¸ (xi))

}

= 1
n

∑n
i=1min{t, ai + bi},

(2.21)

where ai = −zif¸(xi) + log(1 + ef¸(xi)) and bi = zi(f¸(xi)− f
(−i)
¸ (xi)). Define

di =

⎧
⎨
⎩

1 if t > max(ai + bi, ai)

0 if t < min(ai + bi, ai)

t−(ai+bi)
−bi

if ai + bi < t < ai

t−ai
bi

if ai < t < ai + bi.

(2.22)

Note that 0 < di < 1. Now (2.21) becomes

CV (¸) = 1
n

∑n
i=1

[
min

{
t,−zif¸(xi) + log(1 + ef¸(xi))

}
+ dizi(f¸(xi)− f

(−i)
¸ (xi))

]

= 1
n

∑n
i=1min

{
t,−zif¸(xi) + log(1 + ef¸(xi))

}
+ 1

n

∑n
i=1 dizi

f¸(xi)−f
(−i)
¸ (xi)

zi−P
(−i)
¸ (xi)

zi−P¸(xi)

1−P¸(xi)−P
(−i)
¸

(xi)

zi−P
(−i)
¸

(xi)

(2.23)

where P¸(xi) = 1/(1 + e−f¸(xi)) and P
(−i)
¸ (xi) = 1/(1 + e−f

(−i)
¸ (xi)). Let b(f¸(xi)) = log(1 +

ef¸(xi)). Since b′(f¸(xi)) = P¸(xi) and b′′(f¸(xi)) = P¸(xi)(1− P¸(xi)),

P¸(xi)− P
(−i)
¸ (xi)

zi − P
(−i)
¸ (xi)

=
b′(f¸(xi))− b′(f (−i)

¸ (xi))

zi − P
(−i)
¸ (xi)

≈ b′′(f¸(xi))
f¸(xi)− f

(−i)
¸ (xi)

zi − P
(−i)
¸ (xi)

, (2.24)

and (2.23) becomes

CV (¸) =
1

n

n∑

i=1

min
{
t,−zif¸(xi) + log(1 + ef¸(xi))

}
+
1

n

n∑

i=1

di
zi(zi − P¸(xi))

zi−P
(−i)
¸ (xi)

f¸(xi)−f
(−i)
¸ (xi)

− P¸(xi)(1− P¸(xi))

.

(2.25)

Now what is left is the calculation of
zi−P

(−i)
¸ (xi)

f¸(xi)−f
(−i)
¸ (xi)

. We modify the leaving-out-one lemma of

Xiang and Wahba (1996), which is a generalized version of the leaving-out-one lemma of Craven

and Wahba (1979).

Lemma 1. (Leaving-out-one lemma) Let −l̃(zi, f(xi)) = min{t,−zif(xi)+ log(1+ ef(xi))} and

I¸(f,z) = −∑n
i=1 l̃(zi, f(xi)) + n¸J(f). Suppose f∗(i, z∗, ⋅) is the minimizer in ℱ of I¸(f, z

∗),

24



where z∗ = (z1, ⋅ ⋅ ⋅ , zi−1, z
∗, zi+1, ⋅ ⋅ ⋅ , zn). Then,

f∗(i, P (−i)
¸ (xi), ⋅) = f

(−i)
¸ (⋅),

where f
(−i)
¸ (⋅) is the minimizer of −∑

j ∕=i l̃(zj , f(xj))+n¸J(f), and P
(−i)
¸ (x) = 1/(1+e−f

(−i)
¸ (x)).

Now let f¸ = (f¸(x1), ⋅ ⋅ ⋅ , f¸(xn))
T , f

(−i)
¸ = (f

(−i)
¸ (x1), ⋅ ⋅ ⋅ , f (−i)

¸ (xn))
T , z = (z1, ⋅ ⋅ ⋅ , zn)T ,

and z(−i) = (z1, ⋅ ⋅ ⋅ , zi−1, P
(−i)
¸ (xi), zi+1, ⋅ ⋅ ⋅ , zn)T . By the definition of f¸, (f¸, z) is a lo-

cal minimizer of I¸(f, z
∗). Also, (f

(−i)
¸ , z(−i)) is a local minimizer of I¸(f, z

∗) by Lemma 1.

Therefore, ∂I¸(f,z
∗)

∂f (f¸, z) = 0 and ∂I¸(f,z
∗)

∂f (f
(−i)
¸ , z(−i)) = 0. Writing J(f) = fTΣf gives

I¸ = min{t,−zif(xi) + log(1+ ef(xi))}+ n¸fTΣf(See Section 3.1. of Xiang and Wahba (1996)

for computation of Σ.). Since I¸ is not differentiable, we approximate it with a differentiable

function

I∗¸ =
n∑

i=1

g∗(fi, zi,xi) + n¸fTΣf , (2.26)

with

g∗(f, z,x) =

⎧
⎨
⎩

t if yf < − log(et − 1)− ²

g∗∗(f, z,x) if − log(et − 1)− ² ⩽ yf ⩽ − log(et − 1) + ±

−zf + log(1 + ef ) if yf > − log(et − 1) + ±(²)

(2.27)

where g∗∗ is a quadratic function of f which makes g∗ differentiable in f . Note that I∗¸ −→ I¸

as ² → 0. Let ¾ij be the ij-th element of Σ. Then,

∂I∗¸
∂f(xi)

²→0−→

⎧
⎨
⎩

−zi + 1/(1 + e−f(xi)) + n¸
∑

j ¾ijf(xi) if zif(xi) ⩾ − log(et − 1)

n¸
∑

j ¾ijf(xi) otherwise,
(2.28)

and

∂2I∗¸
∂f(xi)∂f(xj)

²→0−→

⎧
⎨
⎩

n¸
∑

j ¾ii + I{zif(xi)⩾− log(et−1)} ef(xi)

(1+ef(xi))2
if i = j

n¸
∑

j ¾ij if i ∕= j.
(2.29)

Therefore, definingW (f) = diag(I{z1f(x1)⩾− log(et−1)} ef(x1)

(1+ef(x1))2
, ⋅ ⋅ ⋅ , I{znf(xn)⩾− log(et−1)} ef(xn)

(1+ef(xn))2
),

25



we have
∂2I∗¸

∂f∂fT

²→0−→ W + n¸Σ, and
∂2I∗¸

∂z∂fT

²→0−→ −I. Using Taylor expansion,

0 =
∂I∗¸
∂f (f

(−i)
¸ , z(−i))

=
∂I∗¸
∂f (f¸,z) +

∂2I∗¸
∂f∂fT (f

∗∗
¸ , z∗∗)(f (−i)

¸ − f¸) +
∂2I∗¸

∂z∂fT (f
∗∗
¸ , z∗∗)(z − z(−i))

²→0−→ 0 + {W (f∗∗) + n¸Σ}(f (−i)
¸ − f¸)− (z − z(−i)),

(2.30)

where (f∗∗
¸ , z∗∗) is a point somewhere between (f¸,z) and (f

(−i)
¸ ,z(−i)). ApproximatingW (f∗∗

¸ )

by W (f¸) and letting ² → 0 gives f¸ − f
(−i)
¸ = {W (f∗∗

¸ ) + n¸Σ}−1(z − z(−i)), i.e.

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

f¸(x1)− f
(−i)
¸ (x1)

...

f¸(xi)− f
(−i)
¸ (xi)

...

f¸(xn)− f
(−i)
¸ (xn)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

≃ {W (f∗∗
¸ ) + n¸Σ}−1

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

...

zi − P
(−i)
¸ (xi)

...

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (2.31)

Let H = {W (f¸) + n¸Σ}−1 and ℎii be the i-th diagonal entry of H. Then (2.31) implies

f¸(xi)− f
(−i)
¸ (xi)

zi − P
(−i)
¸ (xi)

≃ ℎii (2.32)

Using (2.32), (2.25) becomes

1

n

n∑

i=1

min
{
t,−zif¸(xi) + log(1 + ef¸(xi))

}
+

1

n

n∑

i=1

di
ℎiizi(zi − P¸(xi))

1− ℎiiP¸(xi)(1− P¸(xi))
. (2.33)

Replacing ℎii by tr(H)/n and replacing ℎiiP¸(xi)(1 − P¸(xi)) by tr(W ∗1/2HW ∗1/2)/n with

W ∗ = diag( ef(x1)

(1+ef(x1))2
, ⋅ ⋅ ⋅ , ef(xn)

(1+ef(xn))2
), we define

GACV (¸) =
1

n

n∑

i=1

min
{
t,−zif¸(xi) + log(1 + ef¸(xi))

}
+

tr(H)

n

n∑

i=1

di
ℎiizi(zi − P¸(xi))

n− tr(W ∗1/2HW ∗1/2)
,

(2.34)

where H = {W (f¸) + n¸Σ}−1 with Σ such that fTΣf , ℎii is the i-th diagonal entry of H,

26



P¸(x) = 1/(1 + e−f¸(x)), and

di =

⎧
⎨
⎩

1 if t > max(ai + bi, ai)

0 if t < min(ai + bi, ai)

t−(ai+bi)
−bi

if ai + bi < t < ai

t−ai
bi

if ai < t < ai + bi.

with ai = −zif¸(xi)+log(1+ef¸(xi)) and bi = zi(f¸(xi)−f
(−i)
¸ (xi)) where f

(−i)
¸ (⋅) is the solution

of the RPLR with the i-th data point omitted. Using the fact that 0 < di < 1, we can bound

GACV (¸). We use the average of the upper and lower bound of GACV , that is, we define

Estimated GACV (EGACV)

EGACV (¸) =
1

n

n∑

i=1

min
{
t,−zif¸(xi) + log(1 + ef¸(xi))

}
+

tr(H)

2n

n∑

i=1

ℎiizi(zi − P¸(xi))

n− tr(W ∗1/2HW ∗1/2)
.

We use simulated data to illustrate the performance of EGACV (¸). The training set consists

of 50 data points sampled from the uniform distribution over a unit disk {(x1, x2) : x21+x22 ⩽ 1}
and labeled as y = 1 if x1 ⩾ x2, y = −1 otherwise. The testing set has 105 data points which

are sampled and labeled in the same manner as the training set. Using these datasets, we build

a model using the RPLR with t = 2 log 2 based on the training set and calculate CKL(¸) of the

testing set for each ¸ such that log10 ¸ ∈ {−3.0,−2.9, ⋅ ⋅ ⋅ , 2.0}. Then we calculate EGACV (¸)

using the training set only and plot it with CKL(¸) to see how close they are. We repeat this

100 times with a different training set each time and take average of EGACV (¸) and CKL(¸)

and plot them. The left panel of Figure 2.4 illustrates typical curves of EGACV (¸) and CKL(¸)

from one example, and the average curves of the 100 repetitions are plotted in the right panel.

The solid line shows CKL(¸), the dashed line shows EGACV (¸), and the dotted lines show

the upper and lower bounds of GACV (¸). As shown in the Figure 2.4, EGACV (¸) reflects the

variation of CKL(¸) quite well, thus EGACV (¸) can be a useful tool for tuning ¸.

27



−3 −2 −1 0 1 2

0.
0

0.
5

1.
0

1.
5

2.
0

log10λ

C
K

L 
an

d 
E

G
A

C
V

CKL(λ)
EGACV(λ)

−3 −2 −1 0 1 2

0.
0

0.
5

1.
0

1.
5

2.
0

log10λ
C

K
L 

an
d 

E
G

A
C

V

CKL(λ)
EGACV(λ)

Figure 2.4: Left: An illustration plot of CKL(¸) and EGACV (¸) from the example in Section
2.6; Right: Average curves of CKL(¸) and EGACV (¸) based on 100 replications.

2.7 Numerical Examples

In this section, we examine the performance of the RPLR and compare it with some other

classification methods. On two simulated examples, we compute the SVM, RSVM, PLR, and

RPLR to compare their classification errors as well as accuracy of class probability estimation.

On two real data examples, we compare the performance of class probability estimation of the

PLR and RPLR. Note that the RSVM is a modified version of the SVM, which uses the truncated

hinge loss instead of the standard hinge loss (Wu and Liu, 2007).

2.7.1 Simulation

In the two simulated examples, data are generated with the sample sizes of training, tuning and

testing sets 100, 100, and 106, respectively. The training data sets are used to build classifiers,

and ¸ is chosen by two different ways: by a grid search based on the tuning sets, and by a grid

search based on the GACV calculated from the training set. The testing errors and probability

estimation errors are evaluated using the testing sets.

28



Example 2.7.1.1 The data are generated as follows. First, (x1, x2) is sampled from the

uniform distribution over a unit disk {(x1, x2) : x21 + x22 ⩽ 1}. Then, set y = 1 if x1 ⩾ x2,

y = −1 otherwise. To demonstrate robustness of the RPLR, we randomly select v percent

of the observations and change their class labels to the other classes, where v = 0, 5, 10 and

20. For each value of v, we repeat the classification procedure 100 times to capture variation

of the results. Since the true boundary is linear, we focus on linear learning in this example.

For the RSVM, we consider two different truncation locations s = −1 and 0, corresponding to

t = 2, and 1. For the RPLR, we use s = 0, − log 3, and − log 5 which correspond to t = log 2,

2 log 2, and 3 log 2, respectively. We also report misclassification rate of the RPLR when we tune

s along with ¸, as well as results of another version of logistic regression proposed by Croux

and Haesbroeck (2003) for comparison. For class probability estimation, We apply scheme 3 to

each t, but scheme 1 and scheme 2 are used only for t = 3 log 2 because they are valid only if

t > 2 log 2. To evaluate accuracy of probability estimation, we use 1
n

∑n
i=1 ∣P̂ (xi) − P (xi)∣ to

measure the probability estimation error.

Results are summarized in Tables 2.1 and 2.2. As shown in Table 2.1, the RPLR outperforms

other classifiers in terms of classification accuracy. With no contamination, the performances

of the RPLR and the PLR are very similar. As we increase the percent of contaimnation, the

RPLR performs better than the PLR because the truncated loss is more robust against outliers.

Similar conclusions can be drawn for the SVM and the RSVM, because the RPLR and the

RSVM are the truncated versions of the original PLR and the SVM, respectively. The results

of the RPLR using separate tuning sets are better than that of the RSVM. This may due to the

difference of their loss functions as discussed in Section 2.4.1.

The location of truncation is an important issue. If the loss function is not truncated, it

can be sensitive to outliers. If the loss function is truncated too much, we may underuse the

information of those data points close to the decision boundary. The performance of the RPLR

with t = log 2 corresponding to the most truncation, is indeed suboptimal as shown in Tables

2.1 and 2.2. The RPLR with t = 3 log 2 works the best for the cases v = 0 and 5, but as the

proportion of contamination grows, performance of the RPLR with t = 2 log 2 becomes the best.

This is reasonable because more truncation helps for data with more outliers. In general, we

recommend to use t = 2 log 2 for the truncation location for binary problems. This choice also

29



has good theoretical justification as mentioned in Section 2.4.2 in terms of Fisher consistency.

Regarding to the choice of ¸, the one chosen based on the tuning set performed better than

the one by the GACV. This may not be surprising because the first approach uses information

from both the training set and the tuning set to choose ¸, while the GACV approach uses the

training set only. Hence a direct comparison may not be fair considering the difference in the

amount of information used between the two approaches. Nevertheless we can see that the

GACV approach works fairly well in this example.

As to the issue of class probability estimation, the RPLR with t = 3 log 2 works the best for

non-contaminated data, but t = 2 log 2 becomes better as the rate of contamination increases.

This agrees with the results of classification error. In general, better classification performance

can be translated into better class probability estimation. Thus, the RPLR yields more accurate

class probability estimation than that of the PLR. Among three different schemes, scheme 3

seems to perform the best overall.

To visualize the classification boundaries, we select a typical dataset and plot the corre-

sponding boundaries yielded by the PLR and the RPLR on the left panel of Figure 2.5. Clearly,

the RPLR is much less sensitive to outliers and deliver more accurate classification boundary

than that of the PLR.

Example 2.7.1.2 We generate (x1, x2) uniformly from the unit disk {(x1, x2) : x21 + x22 ⩽ 1}
with y being 1 if (x1−x2)(x1+x2) < 0, and −1 otherwise. Then we flip the class labels using the

same strategy as in Example 2.7.1.1. Linear learning does not work here due to its generation.

We use nonlinear learning with Gaussian kernel K(x1,x2) = exp(−∥x1−x2∥2/(2¾2)). We tune

¾ among the first quartile, the median, and the third quartile of the between-class pairwise Eu-

clidean distances of training inputs (Wu and Liu, 2007). We use the same truncation location,

class probability estimation schemes, and measure of probability estimation error as in Example

2.7.1.1. Results are reported in Table 2.3 and Table 2.4. Similarly, the RPLR with t = 2 log 2

works the best overall. When outliers exist in the data, truncation indeed improves both clas-

sification accuracy as well as class probability estimation. Similar to Example 2.7.1.1, we plot

the results of one typical example on the right panel of Figure 2.5. Again, the RPLR is more

robust and consequently its classification boundary is closer to the Bayes decision boundary.

30



−1.0 −0.5 0.0 0.5 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

Example 1

 

 

Bayes
PLR
RPLR

class −1

class +1

−1.0 −0.5 0.0 0.5 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

Example 2

 

 

Bayes
PLR
RPLR

class +1

class −1

class +1

class −1

Figure 2.5: Plot of typical training sets for Example 2.7.1.1 (the left panel) and Example 2.7.2.2
(the right panel) as well as the corresponding decision boundaries.

2.7.2 Real Data

2.7.2.1 Leukaemia Data Here, we apply the PLR and the RPLR to the Leukaemia dataset

described in Golub et al. (1999). This dataset is publicly available at http://www.broad.mit.edu/cgi-

bin/cancer/datasets.cgi. It contains 72 samples with 7129 gene expression values. The goal is

to classify the patients into two types of leukaemia: acute myeloid leukaemia (AML) and acute

lymphoblastic leukaemia (ALL). Since the number of genes is much higher than the sample size,

we performed prescreening to choose a subset of genes. In particular, we used the ratios of

between-groups to within-groups sum of squares of the genes to sort them and chose the top 40

genes. Similar procedure was done in Dudoit et al. (2002).

This dataset includes a training set with 38 instances and a testing set with 34 instances.

Heatmaps in Figure 2.6 are drawn for good visualization of the datasets. From the heatmap

of the testing set, we can identify some observations are difficult to classify. Indeed, there are

two subjects that the PLR and the RPLR fail to classify to the correct classes. The training

set is used for model building, then performance of the model is evaluated on the testing set.

More specifically, the tuning parameter ¸ is chosen by 5-fold cross validation on the training set.

We also used EGACV and it gives very similar results. Using the RPLR coefficients estimated

31



Table 2.1: Testing errors of the simulated linear example (Example 2.7.1.1)

Method v = 0 v = 5 v = 10 v = 20

SVM 0.0121(0.0077) 0.0728(0.0145) 0.1319(0.0207) 0.2326(0.0205)

RSVM t = 2 0.0122(0.0085) 0.0642(0.0096) 0.1182(0.0136) 0.2233(0.0173)
t = 1 0.0149(0.0112) 0.0697(0.0138) 0.1205(0.0141) 0.2231(0.0164)

PLR 0.0090(0.0064) 0.0726(0.0143) 0.1348(0.0210) 0.2371(0.0220)

RPLR t = 3 log 2 0.0061(0.0053) 0.0606(0.0087) 0.1172(0.0147) 0.2271(0.0221)
(with validation t = 2 log 2 0.0090(0.0064) 0.0613(0.0081) 0.1161(0.0123) 0.2198(0.0173)
on tuning set) t = log 2 0.0120(0.0084) 0.0663(0.0110) 0.1215(0.0145) 0.2248(0.0179)

tuned 0.0097(0.0007) 0.0612(0.0008) 0.1150(0.0011) 0.2205(0.0016)

RPLR t = 3 log 2 0.0187(0.0109) 0.0714(0.0123) 0.1280(0.0175) 0.2447(0.0674)
(with GACV) t = 2 log 2 0.0188(0.0117) 0.0688(0.0126) 0.1222(0.0148) 0.2288(0.0335)

t = log 2 0.0306(0.0192) 0.0782(0.0463) 0.1301(0.0418) 0.2378(0.0325)

Croux and Haesbroeck 0.0104(0.0009) 0.0658(0.0010) 0.1286(0.0019) 0.2335(0.0021)

Bayes Error 0.00 0.05 0.10 0.20

from the training set with the selected ¸, class probability of each instance in the testing set is

estimated. Both linear and nonlinear learning with Gaussian kernel have been performed. The

results show that linear learning works better for this problem.

Figure 2.7 shows the results of the PLR and the RPLR with t = 2 log 2. The results when

t = log 2 and t = 3 log 2 are not reported because they are barely different from the case when

t = 2 log 2. The horizontal axis stands for the estimated value of linear predictor f(x) = wTx+b,

and the vertical axis stands for the estimated probability. The observations of the classes ALL

and AML are plotted as circles and squares respectively, with a color scheme of blue for the

training set and red for the testing set. The solid and dashed lines are the estimated density

curves of the values of linear predictors for the ALL and AML classes, respectively. Here, the

class probabilities for the PLR were estimated by P̂ (x) = ef̂/(1 + ef̂ ). For the RPLR, we

use scheme 3 to estimate the class probabilities. In both procedures of probability estimation,

f̂(x) > 0 implies P̂ (x) > 0.5, hence the sign(f̂(x)) gives class prediction. As shown in Figure 2.7,

there are two common misclassified observations by the PLR and RPLR. This is not surprising

considering the nature of the data revealed by the heatmaps. Besides the two misclassified

observations, the PLR and the RPLR show different patterns in class probability estimation.

The estimated class probabilities by the RPLR are either very close to 1 or 0, while estimated

probabilities by the PLR have more variability. This is because that these two classifiers have

32



Training set

   ALL AML

Testing set

TOP2B Topoisomerase (DNA) II beta (180kD)
C−myb gene extracted from Human (c−myb) gene, complete primary cds, and five complete alternatively spliced cds
PROTEASOME IOTA CHAIN
CCND3 Cyclin D3
Macmarcks
LPAP gene
TCF3 Transcription factor 3 (E2A immunoglobulin enhancer binding factors E12/E47)
CD19 gene
Terminal transferase mRNA
MB−1 gene
MYL1 Myosin light chain (alkali)
SPTAN1 Spectrin, alpha, non−erythrocytic 1 (alpha−fodrin)
Inducible protein mRNA
GB DEF = (lambda) DNA for immunoglobin light chain
IGB Immunoglobulin−associated beta (B29)
Azurocidin gene
CTSD Cathepsin D (lysosomal aspartyl protease)
PRG1 Proteoglycan 1, secretory granule
NF−IL6−beta protein mRNA
CYSTATIN A
Fc−epsilon−receptor gamma−chain mRNA
MANB Mannosidase alpha−B (lysosomal)
Uridine phosphorylase
PFC Properdin P factor, complement
GLUTATHIONE S−TRANSFERASE, MICROSOMAL
SPI1 Spleen focus forming virus (SFFV) proviral integration oncogene spi1
RNS2 Ribonuclease 2 (eosinophil−derived neurotoxin; EDN)
CD33 CD33 antigen (differentiation antigen)
PLECKSTRIN
DF D component of complement (adipsin)
CST3 Cystatin C (amyloid angiopathy and cerebral hemorrhage)
MPO Myeloperoxidase
CLU Clusterin (complement lysis inhibitor; testosterone−repressed prostate message 2; apolipoprotein J)
LYN V−yes−1 Yamaguchi sarcoma viral related oncogene homolog
PPGB Protective protein for beta−galactosidase (galactosialidosis)
APLP2 Amyloid beta (A4) precursor−like protein 2
GRN Granulin
ME491  gene extracted from H.sapiens gene for Me491/CD63 antigen
Zyxin
ARHG Ras homolog gene family, member G (rho G)

   ALL AML

  misclassified

Figure 2.6: Heat maps of the Leukaemia data in Section 2.7.2.1. The left panel is for the training
set and the right panel is for the testing set. The red and green colors represent high and low
expression values respectively.

33



−15 −10 −5 0 5 10 15

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

f̂(x)

P̂
(x

)

PLR

−15 −10 −5 0 5 10 15

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

f̂(x)

P̂
(x

)

RPLR with t=2log2

Figure 2.7: Plot of the estimated class probabilities against the estimated values of the linear
predictor f(x) = wTx+b for the PLR and the RPLR with t = 2 log 2. The solid and the dashed
lines are the estimated density curves of the values of linear predictor for ALL and AML class,
respectively.

34



Table 2.2: Class probability estimation errors of the simulated linear example (Example 2.7.1.1)

Method Scheme v = 0 v = 5 v = 10 v = 20

PLR 0.0464(0.0599) 0.1342(0.0619) 0.1487(0.0461) 0.1350(0.0351)

RPLR t = 3 log 2 1 0.0207(0.0489) 0.1101(0.0290) 0.1350(0.0290) 0.1289(0.0303)
(with 2 0.0173(0.0394) 0.0994(0.0266) 0.1236(0.0327) 0.1270(0.0318)

validation 3 0.0438(0.0367) 0.0686(0.0339) 0.1022(0.0405) 0.1184(0.0412)
on t = 2 log 2 3 0.0614(0.0499) 0.0676(0.0321) 0.0934(0.0350) 0.1053(0.0409)

tuning set t = log 2 3 0.0758(0.0729) 0.0887(0.0793) 0.1057(0.0592) 0.1185(0.0403)

RPLR t = 3 log 2 1 0.1152(0.0084) 0.1248(0.0155) 0.1323(0.0147) 0.1279(0.0262)
(with 2 0.0861(0.0072) 0.1034(0.0172) 0.1208(0.0211) 0.1254(0.0275)

GACV) 3 0.1053(0.0097) 0.0975(0.0192) 0.1084(0.0284) 0.1230(0.0403)
t = 2 log 2 3 0.1193(0.0109) 0.0982(0.0279) 0.1054(0.0260) 0.1053(0.0337)
t = log 2 3 0.1707(0.0280) 0.1127(0.0648) 0.1096(0.0460) 0.1251(0.0560)

Croux and Haesbroeck 0.0104(0.0009) 0.0865(0.0015) 0.1208(0.0012) 0.1238(0.0015)

different sensitivity to outliers: since the PLR is sensitive to those two misclassified observations,

the estimated probabilities of other observations are affected so that we lose some certainty about

the class memberships for some of the other observations despite the clear pattern of the data.

On the other hand, those two misclassified observations do not influence the RPLR as much,

hence all the other class probabilities remain close to 0 or 1, which reflect the nature of the data

better.

2.7.2.2 Lung Cancer Data In this section, we apply the RPLR to the Lung Cancer Dataset

described in Liu et al. (2008). The dataset we use here has 12,625 genes of 188 lung cancer pa-

tients with 5 categories. There are five different categories: Adeno, Carcinoid, Colon, SmallCell,

and Squamous with 128, 20, 13, 6, 21 patients, respectively. Except Colon, the other four are

lung cancer subtypes. First, we calculate the ratio of the standard deviation and the sample

mean of each gene, and choose 316 genes with the highest ratios. Then we standardize the genes

so that each gene has sample mean 0 and sample standard deviation 1. Figure 2.8 is the biplot

of the data after filtering and standardization on Principal Component Analysis (PCA). Out of

all five types of cancer, the Adeno group has the most broad spectrum and overlaps much with

other types. This matches the biological knowledge that Adeno is a very heterogeneous lung

cancer subtype (Bhattacharjee et al., 2001). For that reason, we perform the RPLR to classify

Adeno patients versus all other cancer patients.

35



Table 2.3: Testing errors of the simulated nonlinear example (Example 2.7.1.2)

Method v = 0 v = 5 v = 10 v = 20

SVM 0.0416(0.0126) 0.1120(0.0203) 0.1728(0.0226) 0.2825(0.0307)

RSVM s = −1 0.0420(0.0128) 0.0986(0.0169) 0.1577(0.0225) 0.2722(0.0293)
s = 0 0.0484(0.0178) 0.1092(0.0220) 0.1677(0.0245) 0.2784(0.0295)

PLR 0.0396(0.0121) 0.1103(0.0206) 0.1695(0.0217) 0.2832(0.0309)

RPLR t = 3 log 2 0.0396(0.0121) 0.1009(0.0204) 0.1611(0.0247) 0.2799(0.0321)
t = 2 log 2 0.0396(0.0121) 0.0996(0.0196) 0.1594(0.0269) 0.2814(0.0372)
t = log 2 0.0464(0.0161) 0.1135(0.0230) 0.1667(0.0238) 0.2776(0.0301)

Bayes Error 0.00 0.05 0.10 0.20

Table 2.4: Class probability estimation errors of the simulated nonlinear example (Example
2.7.1.2)

Method Scheme v = 0 v = 5 v = 10 v = 20

PLR 0.4997(0.0010) 0.4496(0.0011) 0.3998(0.0008) 0.2999(0.0006)

RPLR t = 3 log 2 1 0.4997(0.0010) 0.4496(0.0013) 0.3998(0.0008) 0.2999(0.0006)
2 0.0721(0.0319) 0.1422(0.0369) 0.1736(0.0426) 0.1650(0.0341)
3 0.0910(0.0323) 0.1415(0.0434) 0.1791(0.0475) 0.1764(0.0309)

t = 2 log 2 3 0.0974(0.0373) 0.1581(0.0600) 0.1910(0.0559) 0.1984(0.0390)
t = log 2 3 0.1136(0.0329) 0.1409(0.0486) 0.1637(0.0405) 0.1693(0.0318)

−10 0 10 20 30

−2
0

−1
5

−1
0

−5
0

5
10

15

PC1

PC
2

Adeno
Carcinoid
Colon
SmallCell
Squamous

Figure 2.8: Biplot on PCA of the lung cancer data in Section 2.7.2.2.

36



Since there are 188 cancer patients in total, we randomly divide patients into training, tuning,

and testing sets with sample sizes 63, 63, 62, respectively. Then we build a model for each value

of ¸ and choose the ¸ that gives the smallest misclassification rate on the tuning set. Using the

model with the selected ¸, the misclassification rate on the testing set is calculated. This whole

procedure is repeated for 10 times.

Table 2.5: Testing errors of the Lung Cancer Data example in Section 7.2.2.
Method Testing Error

PLR 0.1274(0.0052)

RPLR t = 3 log 2 0.1242(0.0051)
t = 2 log 2 0.1210(0.0046)
t = log 2 0.1226(0.0054)

The results are reported in Table 2.5. We can see that although the difference is not very big,

truncation indeed improves performance, and the truncation location that we suggest, t = 2 log 2,

gives the best result.

2.8 Possible Future Work

We have used the L2 penalty for the regularization term J(f). It is now well known that one

can use some other penalty functions to achieve variable selection. Examples of such penalty

functions include the L1 penalty (Tibshirani, 1996; Zhu et al., 2004), the adaptive L1 penalty

(Zou, 2006; Zhang and Lu, 2007), the SCAD penalty (Fan and Li, 2001; Zhang et al., 2006),

the COSSO penalty (Lin and Zhang, 2006; Zhang, 2006; Yuan and Lin, 2006), etc. A natural

extension of the RPLR is to use different penalty functions to achieve simultaneous variable

selection and robust classification. Moreover, although we have focused on the binary case so

far, the truncated logistic loss is applicable for multicategory classification problems as well.

The work of Zhu and Hastie (2005) can be useful here. Further development is needed.

37



2.9 Proofs

2.9.1 Proof of Theorem 1

SinceE[ℎ¼(Y )gs(Y f(X))] = E[E[ℎ¼(Y )gs(Y f(X))∣X = x]], we can minimizeE[ℎ¼(Y )gs(Y f(X))]

by minimizing E[ℎ¼(Y )gs(Y f(X))∣X = x] for every x. Note that E[ℎ¼(Y )gs(Y f(X))∣X =

x] = P (x)(1 − ¼)gs(f(x)) + (1 − P (x))¼gs(−f(x)). Because gs is a nonincreasing function,

the minimizer f∗
¼ should satisfy that f∗

¼ ⩾ 0 if P (x)(1 − ¼) > (1 − P (x))¼, f∗
¼ ⩽ 0 other-

wise. Note that P (x)(1 − ¼) > (1 − P (x))¼ is equivalent to P (x) > ¼. Hence, it is suf-

ficient to show that f = 0 is not a minimizer. We can assume P (x) > ¼ without loss of

generality. For s = 0, E[ℎ¼(Y )gs(0)∣X = x] = P (x)(1 − ¼)gs(0) + (1 − P (x))¼gs(0), and

E[ℎ¼(Y )gs(1)∣X = x] = P (x)(1−¼)gs(1)+ (1−P (x))¼gs(−1). Hence E[ℎ¼(Y )gs(0)∣X = x] >

E[ℎ¼(Y )gs(1)∣X = x] because gs(0) > gs(1) and gs(0) = gs(−1). Thus f = 0 is not a minimizer

in this case. For s < 0, d
df(x)E[ℎ¼(Y )gs(Y f(X))∣X = x]∣f(x)=0 = d

df(x) [P (x)(1 − ¼)gs(f(x)) +

(1−P (x))¼gs(−f(x))]∣f(x)=0 = P (x)(1−¼)g′s(0)+ (1−P (x))¼g′s(0) = (P (x)−¼)g′s(0) < 0 be-

cause g′s(0) < 0. Thus f = 0 is not a minimizer. Hence, f∗
pi(x) has the same sign as P (x)−¼.

2.9.2 Proof of Theorem 2

Define A(f) = E[ℎ¼(Y )gs(Y f(X))∣X = x]. Observe that A(f) = P (x)(1 − ¼)min(t, log(1 +

e−f(x))) + (1 − P (x))¼min(t, log(1 + ef(x))), where t = log(1 + e−s). We consider three cases,

s ⩽ f ⩽ −s, f < s, and f > −s.

First, when s ⩽ f ⩽ −s, A′(f) = d
df(x) [P (x)(1−¼) log(1+ e−f )+ (1−P (x))¼ log(1+ ef )] =

1
1+ef

[−P (x)(1 − ¼) + (1 − P (x))¼ef ], and A′′(f) = (P (x)(1 − ¼) + (1 − P (x))¼)ef/(1 + ef )2.

Note that A′′(f) > 0 for any f ∈ [s,−s], and A′(f̃) = 0 when f̃ = log (1−¼)P (x)
¼(1−P (x)) = log ¿(P (x), ¼).

Hence, f̃ is the minimizer of A(f) for f ∈ [s,−s]. Note that A(f̃) = (P (x)(1 − ¼) + (1 −
P (x))¼) log(P (x)(1− ¼) + (1−P (x))¼)−P (x)(1− ¼) log(P (x)(1− ¼))− (1−P (x))¼ log((1−
P (x))¼).

Second, when f < s, note that A(f) = P (x)(1 − ¼)t + (1 − P (x))¼ log(1 + ef(x)) and it

is an increasing function in f . Thus, the minimum of A(f) in this case is limf→−∞A(f) =

P (x)(1− ¼)t.

Similarly, when f > −s, A(f) = P (x)(1 − ¼) log(1 + e−f(x)) + (1 − P (x))¼t and it is

38



a decreasing function in f . Likewise, the minimum of A(f) in this case is limf→∞A(f) =

(1− P (x))¼t.

Hence, f̃ is the minimizer of A(f) if A(f̃) < limf→−∞A(f) = P (x)(1 − ¼)t and A(f̃) <

limf→∞A(f) = (1 − P (x))¼t. If A(f̃) > limf→−∞A(f) = P (x)(1 − ¼)t and limf→∞A(f) =

(1 − P (x))¼t > limf→−∞A(f) = P (x)(1 − ¼)t, f = −∞ is the minimizer of A(f). Similarly,

f = ∞ is the minimizer of A(f) if A(f̃) > limf→∞A(f) = P (x)(1 − ¼)t and limf→∞A(f) =

(1 − P (x))¼t < limf→−∞A(f) = P (x)(1 − ¼)t. Finally, if A(f̃) > limf→∞A(f) = P (x)(1 −
¼)t = limf→−∞A(f) = P (x)(1 − ¼)t, then f = −∞,∞ is the minimizer of A(f). The de-

sired results can follow with that H1(¼, P (x)) = tA(f̃)/ limf→−∞A(f) and H2(¼, P (x)) =

tA(f̃)/ limf→∞A(f).

2.9.3 Proof of Lemma 1

Let z(−i) = (z1, ⋅ ⋅ ⋅ , zi−1, P
(−i)
¸ (xi), zi+1, ⋅ ⋅ ⋅ , zn)T , and −l̃∗(z, ¿) = −z¿ + log(1 + e¿ ). Since

−∂l̃∗(z,¿)
∂¿ = −z+1/(1+ e−¿ ) and −∂2 l̃∗(z,¿)

∂¿2
= e¿/(1+ e¿ )2 ⩾ 0, for any fixed z, the minimizer of

−l̃∗(z, ¿) is ¿ which satisfies z = 1/(1 + e−¿ ). Therefore, using P
(−i)
¸ (xi) = 1/(1 + e−f

(−i)
¸ (xi)),

we have −l̃∗(P (−i)
¸ (xi), f

(−i)
¸ (xi)) ⩽ −l̃∗(P (−i)

¸ (xi), f¸(xi)). This implies

−l̃(P
(−i)
¸ (xi), f

(−i)
¸ (xi)) ⩽ −l̃(P

(−i)
¸ (xi), f¸(xi)) (2.35)

since −l̃(zi, f(xi)) = min{t,−l̃∗(zi, f(xi))}. Hence, for any f , we have

I¸(f , z
(−i)) = −l̃(P

(−i)
¸ (xi), f(xi))−

∑
j ∕=i l̃(zj , f(xj)) + n¸J(f)

⩾ −l̃(P
(−i)
¸ (xi), f

(−i)(xi))−
∑

j ∕=i l̃(zj , f(xj)) + n¸J(f)

⩾ −l̃(P
(−i)
¸ (xi), f

(−i)(xi))−
∑

j ∕=i l̃(zj , f
(−i)
¸ (xj)) + n¸J(f

(−i)
¸ )

(2.36)

using (2.35) and the definition of f
(−i)
¸ . Therefore, we have f∗(i, P (−i)

¸ (xi), ⋅) = f
(−i)
¸ (⋅).

39



Chapter 3

Bounded Constraint Machine

3.1 Introduction

The Support Vector Machine (SVM) has been very popular due to its success in many appli-

cations (Vapnik, 1998; Cristianini and Shawe-Taylor, 2000). It was originally proposed using

the idea of maximal separation. It is well known that the SVM can be fit in loss + penalty

framework using the hinge loss. In this regularization framework, loss measures goodness of fit

on the training data, and penalty reflects smoothness of the resulting model. Viewing the SVM

in the regularization framework with the hinge loss helps us understand how the SVM uses the

training data to build a classifier.

Despite its success, the SVM has some drawbacks. One known drawback is that the SVM

classifier only depends on the set of SVs, which include training data points that are correctly

classified but relatively close to the boundary as well as those misclassified training points. As

a result, extreme outliers can have relatively big impact on the resulting classifier. In the liter-

ature, there have been some attempts to modify the SVM to gain robustness to outliers (Shen

et al., 2003; Liu and Shen, 2006; Collobert et al., 2006; Wu and Liu, 2007). The idea is to trun-

cate the unbounded hinge loss function so that the effect of extreme outliers can be bounded.

The corresponding optimization, however, involves challenging nonconvex minimization. An-

other drawback is that the standard SVM was originally designed for binary classification. Its

extension to multicategory classification is nontrivial. Previous attempts include Vapnik (1998);

Weston and Watkins (1999); Crammer and Singer (2001); Lee et al. (2004). Despite these

extensions seem natural and reasonable, not all of them are Fisher consistent (Liu, 2007).



Our motivation here is to modify the criterion of the SVM. Instead of the maximum separa-

tion criterion whose solution only depends on a subset of the training data, we propose to use an

alternative criterion so that all data points can influence the solution. One main advantage of

using all data points for the classifier is that the resulting classifier may depend less heavily on

a smaller subset and consequently can be more robust to outliers. More specifically, we propose

the Bounded Constraint Machine (BCM), which minimizes the sum of the signed distance to the

classification boundary subject to some constraints on the solution. Our focus in this chapter

is on binary classification. However, the BCM can be extended for multicategory classification

directly with Fisher consistency.

To further study the relationship between the SVM and the BCM, we investigate another

method, the Balancing Support Vector Machine (BSVM). The BSVM can be viewed as a mod-

ification of the SVM with all training points influencing the resulting classifier. The BSVM is

characterized using the parameter v with v = 0 corresponding to the SVM and v = ∞ corre-

sponding to the BCM. As a result, the BSVM helps to build a continuous path from the SVM

to the BCM by changing the value of v. Along with the effect of v, the properties of the BSVM

including Fisher consistency and asymptotic behaviors of the coefficients are investigated.

In practice, the performance of these methods may vary from problem to problem. Therefore,

it may be desirable to treat v data dependent. To improve the computational efficiency, we

establish the entire solution path with respect to the value of v, so that we can get the solution

of the BSVM for every value of v efficiently.

The rest of this chapter is organized as follows. Section 3.2 briefly reviews the standard

SVM and proposes the BCM. In Section 3.3, we investigate the BSVM and describe its behavior

using the Lagrange dual problem. The effect of v is explored and we show how the BSVM builds

connection from the SVM to the BCM. Section 3.4 shows Fisher consistency of the BSVM and

the BCM, as well as some asymptotic properties. Section 3.5 develops the regularized solution

path with respect to v. Numerical results are reported in Section 3.6 and Section 3.7 gives some

discussion. The proofs of our theorems are included in Section 3.8.

41



3.2 The SVM and the BCM

3.2.1 The Standard SVM

The SVM is a typical method of form (1.1). In particular, it employs the hinge loss function

L(yf(x)) = [1−yf(x)]+, and the penalty term J(f) = 1
2∥w∥2. Note that the value of the hinge

loss L(yf(x)) increases as yf(x) becomes smaller and it stays at zero when yf(x) ⩾ 1. That

is, the SVM puts loss on the misclassified data points but nothing on the correctly classified

observations once yf(x) becomes greater than 1. Hence the data points with yf(x) ⩾ 1 have

no influence on the SVM solution. To further explain, we express the dual problem

min
®

1

2

n∑

i,j=1

yiyj®i®j⟨xi,xj⟩ −
n∑

i=1

®i

subject to
n∑

i=1

yi®i = 0; 0 ⩽ ®i ⩽ C,∀i = 1, ⋅ ⋅ ⋅ , n. (3.1)

Using the ®i obtained from (3.1), w can be calculated as
∑n

i=1 ®iyixi, and b can be obtained by

the KKT conditions. Thus the classification function can be written as f(x) =
∑n

i=1 ®iyi⟨xi,x⟩+
b. Furthermore, ®i > 0 implies yif(xi) ⩽ 1 and actually that is the only case that (xi, yi) can

affect the solution. On the other hand, when ®i = 0, the observation (xi, yi) has no impact on

the solution. A point xi with ®i > 0 is a SV, which is the observation satisfying yif(xi) ⩽ 1.

3.2.2 The BCM

Due to the design of the SVM, its solution only depends on the set of SVs. This helps to

simplify the solution. However, if the training dataset is noisy with outliers, the solution can be

deteriorated. To solve the problem, we propose a different optimization criterion. In particular,

we propose to minimize the sum of signed distances to the boundary and solve the following

problem

minf J(f)− C
∑n

i=1 yif(xi)

subject to − 1 ⩽ f(xi) ⩽ 1,∀i = 1, ⋅ ⋅ ⋅ , n.
(3.2)

That is, we try to maximize
∑n

i=1 yif(xi), while forcing all the training data to stay between

the hyperplanes f(x) = ±1. One can view that the BCM uses the hinge loss of the SVM with

yif(xi) ∈ [−1, 1]. With the constraints, the BCM makes use of all training points to obtain the

42



u

l(u
)

−2 −1 0 1 2 3 4

0
1

2
3

v=0
v=0.5
v=1
v=10
v=100

Figure 3.1: Plot of loss function g(u) with different values of v

resulting classifier.

One advantage of the BCM is that it can be extended to the multicategory case directly.

Assume that we have a k-class problem with y ∈ {1, ⋅ ⋅ ⋅ , k}. Let f = (f1, ⋅ ⋅ ⋅ , fk) be the decision
function vector with

∑k
j=1 fj = 0. Then the multicategory BCM solves the following problem

minf
∑k

j=1 ∥fj∥2 − C
∑n

i=1 fyi(xi)

subject to
∑k

j=1 fj(xi) = 0; fl(xi) ⩾ −1;∀i = 1, ⋅ ⋅ ⋅ , n, l = 1, ⋅ ⋅ ⋅ , k.
(3.3)

It can be shown that the multicategory BCM is Fisher consistent, as discussed in Section 3.4.1.

To further understand the connection between the SVM and the BCM, we discuss the BSVM

in Section 3.3 and use the BSVM as a bridge to connect the SVM and the BCM.

43



3.3 The BSVM: A Bridge Between the SVM and the BCM

The SVM only uses the SV set to calculate its solution, while the BCM utilizes all training

points. To connect these two, we study the BSVM using the following loss function

g(u) =

⎧
⎨
⎩

1− u if u ⩽ 1,

v(u− 1) otherwise,
(3.4)

where v is the slope of the loss function when u ∈ (1,∞), as shown in Figure 3.1. Note that v

determines how much the solution will rely on the data points with yf(x) ⩾ 1, and the problem

becomes equivalent to the SVM when v = 0. Here, we would like to acknowledge that the loss

g(u) was previously presented by Ming Yuan in the Statistical Learning Conference at Snowbird,

UT in 2007. We use the BSVM as a bridge to connect the SVM with the proposed BCM.

Note that when v = ∞, the BSVM becomes equivalent to solving

min(b,w) J(f)− C
∑n

i=1 yif(xi)

subject to f(xi) ⩽ 1,∀i = 1, ⋅ ⋅ ⋅ , n.
(3.5)

Comparing to the BCM in (3.2), the only difference is that the BCM has the constraint f(xi) ⩾

−1 but the BSVM with v = ∞ does not. Typically this difference does not matter since the

solution of (3.5) usually induces f(xi) ⩾ −1. The only case that the BCM actually works

differently from the BSVM with v = ∞ is when a data point moves far away from its own class,

even further than the other class. This rarely happens in practice. Thus, the BSVM with v = ∞
can be viewed as a good approximation of the BCM. Overall, the BSVM builds a continuum

from the standard SVM (v = 0) to the BCM (v = ∞).

3.3.1 Interpretation of the BSVM

Since the loss g(u) for the BSVM is not a decreasing function and it imposes big loss values

even on the correctly classified data points as well as misclassified observations, it might seem

counterintuitive. However, the increasing part with yif(xi) > 1 may help to bring the decision

boundary towards the correctly classified points, which can be desirable in some situations. To

44



understand the behavior of the BSVM further, we rewrite its primal problem as follows

min
(b,w)

1

2
∥w∥2 + C

n∑

i=1

»i

subject to »i ⩾ 1− yif(xi); »i ⩾ v(yif(xi)− 1),∀i = 1, ⋅ ⋅ ⋅ , n.

The corresponding Lagrange primal can be written as

L(w, b,®) =
1

2
∥w∥2 + C

n∑

i=1

»i +
n∑

i=1

°i[1− yif(xi)− »i] +
n∑

i=1

±i[vyif(xi)− v − »i]. (3.6)

Setting derivatives to zero gives

∂L

∂w
= w −

n∑

i=1

yi°ixi +
n∑

i=1

vyi±ixi = 0 (3.7)

∂L

∂b
= −

n∑

i=1

yi°i + v
n∑

i=1

yi±i = 0 (3.8)

∂L

∂»i
= C − °i − ±i = 0, (3.9)

and KKT conditions are

°i(1− yif(xi)− »i) = 0 (3.10)

±i(vyif(xi)− v − »i) = 0. (3.11)

Then, writing ®i = °i − v±i, the corresponding dual problem becomes

min
®

1

2

n∑

i,j=1

yiyj®i®j⟨xi,xj⟩ −
n∑

i=1

®i

subject to
n∑

i=1

yi®i = 0;−Cv ⩽ ®i ⩽ C,∀i = 1, ⋅ ⋅ ⋅ , n. (3.12)

Once the solution of (3.12) is obtained, w can be calculated as
∑n

i=1 ®iyixi and b can

be determined by KKT conditions. This problem is very similar to the SVM problem. The

difference is on the constraint. In particular, we have 0 ⩽ ®i ⩽ C for the SVM, but −Cv ⩽ ®i ⩽

C for the BSVM. This helps to explain the difference in behaviors between the SVM and the

45



 

 

class +1

class −1

f(x)=0

f(x)= +1

f(x)= −1

αiyi > 0

 
 

class +1

class −1

f(x)=0

f(x)= +1

f(x)= −1

αiyi < 0

Figure 3.2: Illustration of the effect of ®iyi in the standard SVM. The left and right panel
illustrates that a positive and negative ®iyi tends to push the boundary towards to the left and
right side, respectively.

BSVM. In contrast to the SVM, the BSVM with v > 0 makes use of all data points to determine

the solution. Points with yifi ⩽ 1 may help to reduce the effect of outliers and consequently the

BSVM classifier can be more robust against outliers.

In order to further explain the BSVM, we first give some geometric interpretation of the SVM.

In the SVM, the support vectors have ®i > 0 and yifi ⩽ 1, and these are the only observations

that affect the resulting decision boundary. They are either of these two cases: when ®iyi > 0

or when ®iyi < 0. First, when ®iyi > 0, yi = 1 because ®i is positive. This implies fi ⩽ 1, which

means the observation xi belongs to class +1 but lies close to observations of class −1, like the

red point in the left panel of Figure 3.2. In this figure, the triangles and the dots represents the

data points which belong to class +1 and −1, respectively. The solid line and the dashed lines

are the decision boundary (f(x) = 0) and the soft margins (f(x) = ±1) based on the black data

points. Adding the red point, the decision boundary f(x) =
∑n

i=1 ®iyi⟨xi,x⟩ + b increases by

®iyi⟨xi,x⟩. If we assume ⟨xi,x⟩ ⩾ 0 (it is often true when we use kernel representation), then

we can see that the SV with ®iyi > 0 increases the value of the decision boundary, which causes

the decision boundary to move towards the class −1 side. Similarly, when ®iyi < 0, we can see

46



v=0

class +1

class −1

f(x)=0

f(x)= +1

f(x)= −1

v=1

class +1

class −1

f(x)=0

f(x)= +1

f(x)= −1

v=100

class +1

class −1

f(x)=0

f(x)= +1

f(x)= −1

Figure 3.3: Plots of the effect of different values of v on the BSVM.

that yi = −1 and fi ⩾ −1, like the red point in the right panel of Figure 3.2, and this induces

decrease in the value of the decision boundary. Thus the decision boundary moves towards the

observations of class +1. Hence, we can say that misclassified data or data inside of the soft

margins pulls the decision boundary to themselves.

Comparing to the SVM, the BSVM uses the data points’ information differently because ®i

can take negative values as opposed to the SVM case. Note that ®i > 0 implies yifi ⩽ 1, and

®i < 0 implies yifi ⩾ 1 by KKT conditions. When ®iyi > 0, not like in the SVM, yi can be

either +1 or −1. If yi = 1, things are the same with the SVM case, that is, xi is a member of

the class +1 but located close to the class −1, resulting the decision boundary pulled towards

the class −1. But if yi = −1, then ®i < 0 and fi ⩽ −1, which implies that xi is correctly

classified as class −1. But the effect on decision boundary is the same: it increases the value of

the decision boundary by ®iyi⟨xi,x⟩. Hence, not only the class +1 members close to class −1

but also the correctly classified class −1 entries pull the decision boundary to the side of class

−1. Likewise, when ®iyi < 0, we can show that the correctly classified class 1 observations as

well as class −1 members located close to class +1 pull the decision boundary towards the class

+1. This unique feature of the BSVM may help to bring robustness against outliers. We discuss

further about the effect of v in Section 3.3.2.

47



 

 

v=0
v=0.5
v=1
v=10

 
 

v=0
v=0.5
v=1
v=10

Figure 3.4: A graphical illustration of the robustness of the BSVM: the decision boundary of the
BSVM stays stable when there is an extreme outlier, while that of the SVM moves dramatically
towards the outlier.

3.3.2 Effect of v

In the separable case, the standard SVM, i.e. the BSVM with v = 0, finds the decision boundary

which maximizes the distance from the decision boundary to the nearest data point, that is,

the distance between f(x) = ±1 is maximized. Here, the soft margins f(x) = ±1 are the

hyperplanes that bound the data points of each class, so that the observations are forced to lie

outside of the soft margins. The BSVM with v > 0 maximizes the distance between f(x) = ±1

as well, but the observations are clustered around the hyperplanes f(x) = ±1 without being

forced to be outside of the margin lines. When v = 1, the BSVM minimizes
∑

i ∣1 − yif(xi)∣,
resulting data points laid inside and outside of f(x) = ±1 evenly as shown in the middle panel

of the Figure 3.3. As the value of v becomes high, the value of v[yif(xi) − 1]+, which is the

distance between the hyperplanes f(x) = ±1 and the observations outside of them, becomes

larger. Thus the hyperplanes f(x) = ±1 move towards outside to reduce it. As v goes to infinity,

the BSVM reduces to the BCM and the hyperplanes f(x) = ±1 go far enough to bound all data

points. The right panel of the Figure 3.3 illustrates the behavior of the BCM with large v.

48



−4 −2 0 2 4

−
2

−
1

0
1

2

 

 

v=0
v=1
v=10

Figure 3.5: A graphical comparison of the SVM vs. BSVM: the decision boundary of the SVM
reflects the wavy shaped structure of the data near the border, while that of the BSVM is flatten
by the observations far from the border.

Since v decides how much the decision boundary depends on the correctly classified obser-

vations, performance of the BSVM is affected by the value of v. The BSVM with big value of v

tends to depend on the correctly classified data, which makes it less sensitive against outliers.

The BCM can be viewed as the most extreme case with v = ∞. The toy example in Figure 3.4

illustrates this behavior. When there is no outlier as shown on the left panel, the SVM and the

BSVM with different values of v perform similarly. However, when an observation moves far

away from its own class, the decision boundary of the SVM moves towards the outlier, resulting

a data point misclassified. In contrast, the BSVM with large v is more stable because the effect

of the outlier is greatly reduced by the correctly classified data. Therefore, correctly classified

data in the BSVM help to robustify the decision boundary so that a small number of outliers

will not cause a drastic change on the decision boundary.

The BSVMmay not always produce better results than that of the SVM. It can be suboptimal

in a situation as the toy example shown in Figure 3.5. The true boundary is wavy shaped, but

49



the observations far away from the boundary are aligned in parallel. The SVM works fairly well,

but the decision boundary of the BSVM becomes flat as the value of the v goes large due to the

influences of the data points far from the boundary. Hence, choice of v should be made carefully

based on the characteristic of the problem.

3.4 Properties of the BSVM and the BCM

3.4.1 Fisher Consistency of the BSVM and the BCM

In this section, we discuss Fisher consistency of the BSVM and the BCM. Fisher consistency, also

known as classification-calibration (Bartlett et al., 2006), requires that the population minimizer

of a loss function has the same sign as P (x)−1/2 in the binary case (Lin, 2004). This is a desirable

property for a loss function. The following theorem establishes Fisher consistency of the loss

function of the BSVM.

Theorem 3. The minimizer f∗ of E[g(Y f(X))∣X = x] is sign[P (x)− 1/2].

Theorem 3 shows that if P (x) > 1/2, we have the theoretical minimizer f∗ = 1, and

otherwise, f∗ = −1. This matches the fact that the observations are clustered around the

hyperplanes f(x) = ±1.

For the BCM, we consider multicategory case due to its simple extension. In multicategory

case, Fisher consistency requires that argmaxjf
∗
j = argmaxjPj , where f

∗(x) = (f∗
1 (x), . . . , f

∗
k (x))

denotes the minimizer of expected value of the loss function. The following theorem shows Fisher

consistency of the loss function of the multicategory BCM.

Theorem 4. The minimizer f∗ of E[−fY (X)], subject to
∑k

j fj(x) = 0 and fl(x) ⩾ −1 for ∀l,
satisfies the following: f∗

j (x) = k − 1 if j = argmaxjPj(x) and −1 otherwise.

3.4.2 Asymptotic Property of the BSVM

In this section, we study asymptotic distributions of the coefficients in the BSVM. Koo et al.

(2008) established Bahadur type representation (Bahadur, 1966; Chaudhuri, 1991) of the clas-

sical SVM coefficients to study their asymptotic behavior. This representation allows us to see

how the margin lines of the SVM and the underlying probability distribution of observations

50



affects asymptotic behavior of the coefficients of large samples. This idea can be generalized to

the BSVM with some changes on the Bahadur representation of the coefficients and regularity

conditions to adopt the loss function of the BSVM. We show that the coefficients of the BSVM

have asymptotic normality, as that of the standard SVM.

First, we introduce new notations for convenience. Let ¯ = (¯0,¯+) denote (b,w) which

is the coefficients in the BSVM. Let x̃ = (1,xT )T = (1, x1, ⋅ ⋅ ⋅ , xd)T = (x̃0, x̃1, ⋅ ⋅ ⋅ , x̃d)T and

denote the linear decision function for given X = x as f(x;¯) = xT¯ = ¯0 + xT¯+. Let

¼+ = P (Y = 1) > 0 and ¼− = P (Y = −1) > 0, with ¼+ + ¼− = 1. Let ℎ+ and ℎ− be the

density functions of X given Y = 1 and −1, respectively. Denote the objective function of the

BSVM

q¸,n(¯) =
1

n

n∑

i=1

g(yif(xi;¯)) +
¸

2
∥¯+∥. (3.13)

The population version of (3.13) without the penalty term is denoted by

Q(¯) = E[g(Y f(X;¯))] (3.14)

and the minimizers of (3.13) and (3.14) are denoted by ˆ̄
¸,n and ¯∗. Defining the indicator

function ½(z) = I{z⩾0} for z ∈ ℝ, we denote the (d+1)-dimensional vector S(¯) = E[−½(1 −
Y f(X;¯))Y X̃+v½(Y f(X;¯)−1)Y X̃] and the (d+1)× (d+1) matrix H(¯) = (1+v)E[±(1−
Y f(X;¯))X̃X̃

T
], where ± is the Dirac delta function. It is proved in the Appendix that S(¯)

and H(¯) are the gradient and Hessian matrix of Q(¯), respectively.

Now we state the regularity conditions for the asymptotic results. Here, C1, C2, ⋅ ⋅ ⋅ are

positive constants which do not depend on n.

A1 The densities ℎ+ and ℎ− are continuous and have finite second moments.

A2 There exists B(x0, r0), a ball centered at x0 with radius r0 > 0 such that ¼+ℎ+(x) +

¼−ℎ−(x) > C1 for every x ∈ B(x0, r0)

A3 For some 1 ⩽ i∗ ⩽ d,

¼+

{∫

X
(I{xi∗⩽F+

i∗} − vI{xi∗>F+
i∗})xi∗ℎ+(x)dx

}
> ¼−

{∫

X
(I{xi∗⩾G−

i∗} − vI{xi∗<G−
i∗})xi∗ℎ−(x)dx

}

51



or

¼+

{∫

X
(I{xi∗⩾F−

i∗} − vI{xi∗<F−
i∗})xi∗ℎ+(x)dx

}
< ¼−

{∫

X
(I{xi∗⩽G+

i∗} − vI{xi∗>G+
i∗})xi∗ℎ−(x)dx

}

for F+
i∗ , G

+
i∗ , F

−
i∗ , G

−
i∗ ∈ [−∞,∞] such that

∫
X I{xi∗⩽F+

i∗}ℎ+(x)dx = min

{
1,

¼−
¼+

+v

1+v

}
,

∫
X I{xi∗⩽G+

i∗}ℎ−(x)dx = min

{
1,

¼+
¼−+v

1+v

}
,

∫
X I{xi∗⩾F−

i∗}ℎ+(x)dx = min

{
1,

¼−
¼+

+v

1+v

}
,

∫
X I{xi∗⩾G−

i∗}ℎ−(x)dx = min

{
1,

¼+
¼−+v

1+v

}
.

A4 For an orthogonal transformation Aj∗ that maps ¯∗
+/∥¯∗

+∥ to the j∗-th unit vector ej∗ for

some 1 ⩽ j∗ ⩽ d, there exist rectangles

D+ = {x ∈ M+ : li ⩽ (Aj∗x)i ⩽ vi with li < vi for i ∕= j∗}

and

D− = {x ∈ M− : li ⩽ (Aj∗x)i ⩽ vi with li < vi for i ∕= j∗}

such that ℎ+(x) ⩾ C2 > 0 on D+, and ℎ−(x) ⩾ C3 > 0 on D−, where M+ = {x ∈
X ∣¯∗

0 + xT¯∗
+ = 1} and M− = {x ∈ X ∣¯∗

0 + xT¯∗
+ = −1}

Note that A1 is needed to guarantee that S(¯) and H(¯) are well-defined and continuous

in ¯. If A1 is met, the condition that ℎ+(bx0) > 0 or ℎ−(bx0) > 0 for some x0 implies A2. A3

is the condition to ensure that ¯∗
+ ∕= 0, and if ¼+ = ¼−, then it simply means that the mean

vectors of conditional class distribution are different. A4 ensures the positive-definiteness of

H(¯) around ¯∗. This condition is easily satisfied when the supports of ℎ+ and ℎ− are convex.

Assuming these regularity conditions, we have a Bahadur-type representation of ˆ̄¸,n as shown

in Theorem 5. This induces the asymptotic normality of ˆ̄¸,n (Theorem 6).

Theorem 5. Suppose A1-A4 are satisfied. Then, for ¸ = o(n−1/2),

√
n( ˆ̄¸,n − ¯∗) = − 1√

n
H(¯∗)−1

n∑

i=1

(I{yif(Xi;¯
∗)⩽1} − vI{yif(Xi;¯

∗)>1})yiX̃i + oℙ(1).

52



Theorem 6. Suppose A1-A4 are satisfied. Then, for ¸ = o(n−1/2),

√
n( ˆ̄¸,n − ¯∗) → N(0,H(¯∗)−1G(¯∗)H(¯∗)−1)

in distribution as n → ∞, where

G(¯) = E[(I{yif(Xi;¯
∗)⩽1} + v2I{yif(Xi;¯

∗)>1})X̃X̃
T
].

This result can be used for building a confidence bound for ¯ or f(x;¯) for a specific x.

The proofs are in Section 3.8.

To illustrate the result on asymptotics, we introduce a simple toy example as follows. Let

the one-dimensional explanatory variable x has normal distribution with mean 1 and variance 1

if it belongs to class 1, and otherwise normal distribution with mean −1 and variance 1. Then

it can be easily shown that ¯∗
0 = 0 and ¯∗

+ = 1, which gives

H(¯∗) = (1 + v)

⎛
⎜⎝

(2¼)−1/2 0

0 (2¼)−1/2

⎞
⎟⎠ ,

and

G(¯∗) =

⎛
⎜⎝

1
2(1 + v2) 0

0 (1 + v2) +
√

2
¼ (v

2 − 1)

⎞
⎟⎠ .

Thus, by Theorem 6, we have

√
n

⎛
⎜⎝

ˆ̄
0

ˆ̄
+

⎞
⎟⎠ → N

⎛
⎜⎝

⎛
⎜⎝

0

1

⎞
⎟⎠ ,

1

(1 + v)2

⎛
⎜⎝

¼(1 + v2) 0

0 2¼(1 + v2) + 2
√
2¼(v2 − 1)

⎞
⎟⎠

⎞
⎟⎠ .

(3.15)

The asymptotic variances of coefficients shown in (3.15) depends on v. As shown in Figure

3.6, the variances of both coefficients decrease as v increases for a while, then increase in v.

Thus in this example the middle range values of v give smaller asymptotic variances.

53



0 2 4 6 8 10

2.
0

2.
5

3.
0

v

π(
1

+
v2 )

(1
+

v)
2

0 2 4 6 8 10

2
4

6
8

v
(2

π(
1

+
v2 )+

2
2π

(v
2

−
1)

)
(1

+
v)

2

Figure 3.6: Plots of the asymptotic variances in (3.15).

3.5 Regularized Solution Path of the BSVM with respect to v

In this section, we discuss how to obtain the entire solution path efficiently with respect to v.

Using this path, we can compare the performances of the BSVM with different values of v without

additional computational burden. Hastie et al. (2004) established the entire regularization path

for the SVM for every value of ¸. In the BSVM procedure, we have two parameters to choose,

¸ and v, and here we derive an algorithm that fits the BSVM with respect to v for a fixed ¸.

We first categorize the observations according to their relative positions to the hyperplane

f(x) = ±1. In particular, let ℰ = {i : yif(xi) = 1}, ℒ = {i : yif(xi) < 1}, and ℛ = {i :

yif(xi) > 1}. From (3.9) -(3.11), notice that

For any i ∈ ℒ, °i = C, ±i = 0, thus ®i = C (3.16)

For any i ∈ ℛ, °i = 0, ±i = C, thus ®i = −Cv (3.17)

For any i ∈ ℰ , ®i can be any number in [−Cv,C]. (3.18)

For a fixed C, we start with a sufficiently large v which induces yif(xi) ⩽ 1, ∀i = 1, ⋅ ⋅ ⋅ , n,

54



and go down to a smaller v. As the value of v decreases, the memberships of ℰ ,ℒ, and ℛ change.

We say that an event occurred when any point changes its membership. There are three kinds

of events:

E1. A point from ℒ has just entered ℰ .

E2. A point from ℛ has just entered ℰ .

E3. One or more points from ℰ has entered either ℒ or ℛ.

Once an event occurs, the sets ℰ , ℒ, and ℛ will stay stable for a while until the next event

occurs. This is because, for an observation to pass through ℰ , its ®i must change from C to

−Cv or vice versa. Therefore, we denote by v1 our starting point, and let v2 > v3 > ⋅ ⋅ ⋅ be the

values of v at which each of the events occurs.

Given vl, we next study how to obtain vl+1, and establish paths of ®i for v ∈ [vl, vl+1]. Let

¿i = ®i/v = (°i − v±i)/v for i = 1, ⋅ ⋅ ⋅ , n and ¿0 = b/v. We use superscript or subscript l to

denote anything given v = vl. For now, we assume ℰ l ∕= ∅. For vl > v > vl+1, we have

f(x) = f(x)− v

vl
f l(x) +

v

vl
f l(x)

= v

[ n∑

j=1

¿jyjx
T
j x+ ¿0 − ¿ ljyjx

T
j x− ¿ l0 +

1

vl
f l(x)

]

= v

[ n∑

j=1

(¿j − ¿ lj)yjx
T
j x+ (¿0 − ¿ l0) +

1

vl
f l(x)

]

= v

[
C

(
1

v
− 1

vl

) ∑

j∈ℒl

yjx
T
j x+

∑

j∈ℰl

(¿j − ¿ lj)yjx
T
j x+ (¿0 − ¿ l0) +

1

vl
f l(x)

]
. (3.19)

The last equality in (3.19) follows from the fact that ¿j−¿ lj = C( 1v − 1
vl
) for j ∈ ℒl and ¿j−¿ lj = 0

for j ∈ ℛl. Thus, for i ∈ ℰ l,

1

v
=

1

v
yif(xi) = C

(
1

v
− 1

vl

) ∑

j∈ℒl

yiyjx
T
j xi +

∑

j∈ℰl

(¿j − ¿ lj)yiyjx
T
j xi + yi(¿0 − ¿ l0) +

1

vl
.

Writing ·j = ¿j − ¿ lj for j ∈ {0} ∪ ℰ l, we have

∑

j∈ℰl

·jyiyjx
T
j xi + yi·0 =

(
1

v
− 1

vl

)[
1− C

∑

j∈ℒl

yiyjx
T
j xi

]
. (3.20)

55



Let m be the number of points in ℰ l. We can rewrite (3.20) in a matrix form

K l·+ ·0yl =

(
1

v
− 1

vl

)
dl,

where Kl is the m×m matrix with ij-th entry yiyjx
T
j xi for i, j ∈ ℰ l, and ·, yl, and dl are the

m× 1 matrices with i-th entry ·i, yi, and 1− C
∑

j∈ℒl yiyjx
T
j xi for i ∈ ℰ l, repectively.

From (3.8), we have
∑n

j=1 ¿iyi = 0. Thus,

0 =
n∑

j=1

(¿j − ¿ lj)yj =
∑

j∈ℰl

·jyj + C

(
1

v
− 1

vl

) ∑

j∈ℒl

yj . (3.21)

Using the matrix form, we have

yT
l · = −C

(
1

v
− 1

vl

) ∑

j∈ℒl

yj . (3.22)

Combining (3.21) and (3.22), we have the linear equations

Al·
∗ =

(
1

v
− 1

vl

)
d∗
l ,

where

Al =

⎛
⎜⎝

0 yT
l

yl Kl

⎞
⎟⎠ , ·∗ =

⎛
⎜⎝

·0

·

⎞
⎟⎠ , d∗

l =

⎛
⎜⎝

−C
∑

j∈ℒl yj

dl

⎞
⎟⎠ .

Define sl = A−1
l d∗

l , and denote its entries by sj for j ∈ ℰ l, then we have

·∗ =
(
1

v
− 1

vl

)
sl for j ∈ {0} ∪ ℰ l, (3.23)

which implies

®j =

Ã
®l
j − slj
vl

)
v + slj for j ∈ ℰ l (3.24)

b =

(
bl − sl0

vl

)
v + sl0. (3.25)

Hence, ®j and b are piecewise linear in v.

56



Combining (3.19) and (3.23) gives

f(x) =
v

vl
f l(x) + vC

(
1

v
− 1

vl

) ∑

j∈ℒl

yjx
T
j x+

∑

j∈ℰl

sljyjx
T
j x+ bl0 −

v

vl

[∑

j∈ℰl

sljyjx
T
j x+ bl0

]
. (3.26)

Writing ℎl(x) =
∑

j∈ℰl sljyjx
T
j x+ bl0, we have

f(x) =
v

vl

[
f l(x)− ℎl(x)

]
+ ℎl(x) + vC

(
1

v
− 1

vl

) ∑

j∈ℒl

yjx
T
j x. (3.27)

The path (3.24)-(3.27) continues until one of the following occurs.

P1. One of the observations in ℒl or ℛl attains yif(xi) = 1.

P2. One of the ®i for i ∈ ℰ l reaches a boundary (−Cv or C).

Note that P1 implies the event E1 or E2, and P2 precedes E3 or they coincide. Hence, we

can obtain vl+1 by choosing the largest v < vl which incudes for which any of P1 or P2 occurs.

Since f(xi) = 1/yi = yi when P1 happens, from (3.27), we have

vlyi = v[f l(x)− ℎl(x)] + vlℎ
l(x) + vlC

∑

j∈ℒl

yjx
T
j x− vC

∑

j∈ℒl

yjx
T
j x.

Thus, v for which P1 happens is

v =
vlyi − vlℎ

l(x)− vlC
∑

j∈ℒl yjx
T
j x

f l(x)− ℎl(x)− C
∑

j∈ℒl yjxT
j x

. (3.28)

Furthermore, for P2 to happens, either ®i = −Cv or ®i = C should happen. From (3.24),

this implies

v =
vls

l
i

sli − Cvl − ®l
i

(3.29)

or

v =
vl(C − sli)

ali − sli
. (3.30)

Hence, given vl, we compute (3.28), (3.29), and (3.30), then set the largest v among the ones

smaller than vl as vl+1. For v ∈ (vl+1, vl), the solutions are calculated by (3.24), (3.25), and

(3.27). We repeat this procedure until v runs all the way down to zero to obtain the whole

57



solution path for every value of v.

So far we assume ℰ is nonempty. It is a reasonable assumption since we can force ℰ to be

nonempty, by selecting a good b. This is possible because b is not uniquely determined when ℰ
is empty. More specifically, suppose ℰ = ∅ for v ∈ [v0 − ², v0], with ² > 0. By (3.8), (3.16), and

(3.17), we have

0 =
n∑

i=1

(°i − v±i)yi = c
∑

i∈ℒ
yi − Cv

∑

i∈ℛ
yi,

for v ∈ [v0 − ², v0]. Thus, we have

∑

i∈ℒ
yi =

∑

i∈ℛ
yi = 0.

Now consider the objective function. Solving (1.1) with g(u) in (3.4) is equivalent to minimizing

1

2
∥w∥2 + C[

∑

i∈ℒ
(1− yif(xi)) +

∑

i∈ℛ
v(yif(xi)− 1)]

=
1

2
∥w∥2 + C[cL − vcR −

∑

i∈ℒ
yix

T
i w + v

∑

i∈ℛ
yix

T
i w + (−

∑

i∈ℒ
yi + v

∑

i∈ℛ
yi)b], (3.31)

where cL and cR are the number of entries in ℒ and ℛ, respectively. Note that b in (3.31)

vanishes because −∑
i∈ℒ yi + v

∑
i∈ℛ yi = 0. Hence, given w, minimizer b could be any value

in the set B, where

B =

{
b ∈ ℝ :

1

2
∥w∥2 + C

n∑

i=1

g(yif(xi)) =
1

2
∥w∥2 +

[∑

i∈ℒ
(1− yif(xi)) +

∑

i∈ℛ
v(yif(xi)− 1)

]}
,

that is, b can take any value unless it moves any points from ℒ to ℛ, or vice versa. Hence, we

can take any b satisfying

yif(xi) ⩽ 1 for i ∈ ℒ
yif(xi) ⩾ 1 for i ∈ ℛ,

which is equivalent to

b ⩽ 1− xT
i w for i ∈ ℒ+

b ⩾ −1− xT
i w for i ∈ ℒ−

b ⩾ 1− xT
i w for i ∈ ℛ+

b ⩽ −1− xT
i w for i ∈ ℛ−,

58



where ℒ+ = ℒ ∩ {i : yi = 1}, ℒ− = ℒ ∩ {i : yi = −1}, ℛ+ = ℛ ∩ {i : yi = 1}, and

ℛ− = ℛ∩ {i : yi = −1}. Letting

iL+ = argmaxi∈ℒ+ xT
i w

iL− = argmini∈ℒ− xT
i w

iR+ = argmini∈ℛ+ xT
i w

iR− = argmaxi∈ℛ− xT
i w,

we have

max{−1− xT
iL−w, 1− xT

iR+
w} ⩽ b ⩽ min{1− xT

iL+
w,−1− xT

iR−w}.

Without loss of generality, we can assume 1−xT
iL+

w ⩽ −1−xT
iR−w. Then take b = 1−xT

iL+
w.

This b belongs to B and we have iL+ ∈ ℰ . Consequently, we choose b that induces ℰ ∕= ∅. Hence
the case of empty ℰ is resolved.

In summary, one can get the entire solution path for the BSVM with respect to v as follows:

Step 1. Start with a sufficiently large v0 and let vl = v0.

Step 2. For vl, obtain the solution of the BSVM. If ℰ l is empty, choose b as either upper or

lower bound of (3.32) so that ℰ l becomes nonempty.

Step 3. Calculate (3.28), (3.29), and (3.30), then set the minimum of them as vl+1, at which

the next event happens.

Step 4. For v ∈ (vl+1, vl), compute the path using (3.27).

Step 5. If vl+1 ⩽ 0, then set vl+1 = 0 and obtain the solution of the BSVM for vl+1 = 0 and

stop. Otherwise, then set vl = vl+1 and go to Step 2.

3.6 Numerical Results

In this section, numerical studies are carried out to examine the performance of the BSVM, the

BCM, and the RSVM (Wu and Liu, 2007). We note that the RSVM with truncation location

at 0 is equivalent to Psi-learning (Liu et al., 2005).

59



 

 

v=0
v=1
v=10
Bayes

0 5 10 15 20 25 30

0.
5

1.
0

1.
5

2.
0

2.
5

v
w

w1

w2

Figure 3.7: Left: Illustration of the data set in Example 3.6.1.1. Right: Illustration of the path
of w with respect to v in Example 3.6.1.1.

3.6.1 Simulation

In two simulated data sets, we generate training sets, tuning sets, and testing sets with sample

sizes 100, 100, and 106, respectively. For each value of v = 0, 0.1, 0.2, 0.5, 1, 2, 5, 10, 50, the tuning

parameter ¸ is chosen by a grid search based on the tuning error. The misclassification rate is

calculated based on the testing set to evaluate the performance. Each procedure is repeated for

100 times on 100 different training and tuning sets and the corresponding mean performance is

reported.

Example 3.6.1.1 The data are generated as follows. First, (x1, x2) is sampled from a square

{(x1, x2) : −
√
2 < x1 + x2 <

√
2,−√

2 < x1 − x2 <
√
2}. Then, set y = 1 if x1 + x2 > 0 and

y = −1 otherwise. To illustrate the effect of outliers, we randomly flip the class membership

of 0%, 5%, and 10% of data. A typical example of training data set and the resulting BSVM

boundaries are plotted in the left panel of Figure 3.7. The corresponding solution path of w

is provided in the right panel of Figure 3.7. Interestingly, the solution doesn’t change once

the value v gets sufficiently large. Note that performance of the RSVM is pretty good as well

60



especially when there are outliers, but the BSVM with larger v works better.

Table 3.1: Testing errors of the simulated linear example (Example 3.6.1.1)

Data contamination rates

Method 0% 5% 10%

BSVM v = 0 0.0150(0.0101) 0.0730(0.0156) 0.1289(0.0212)
(with v = 0.1 0.0239(0.0165) 0.0747(0.0169) 0.1295(0.0191)

tuning set) v = 0.2 0.0247(0.0162) 0.0753(0.0163) 0.1283(0.0183)
v = 0.5 0.0243(0.0147) 0.0729(0.0138) 0.1254(0.0161)
v = 1 0.0222(0.0128) 0.0707(0.0130) 0.1224(0.0148)
v = 2 0.0186(0.0113) 0.0673(0.0107) 0.1176(0.0107)
v = 5 0.0137(0.0080) 0.0620(0.0087) 0.1112(0.0072)
v = 10 0.0107(0.0069) 0.0593(0.0066) 0.1091(0.0069)
v = 50 0.0100(0.0073) 0.0586(0.0059) 0.1080(0.0062)

BCM 0.0095(0.0066) 0.0576(0.0053) 0.1079(0.0062)

RSVM s = −1 0.0150(0.0103) 0.0649(0.0099) 0.1169(0.0136)
s = 0 0.0161(0.0110) 0.0700(0.0136) 0.1225(0.0154)

Bayes Error 0.00 0.05 0.10

Test error results are summarized in Table 3.1. Regarding to the effect of v, the higher

v produces the better result. This is not surprising because of the structure of this data set.

Because the data points are aligned quite parallel to the true boundary, the observations far

from the boundary reflects the overall structure of the data set, resulting in favor to the BSVM

with high v which uses a lot of information from those data far from the boundary. As the limit

of the BSVM, the BCM gives the best performance in this example. Notice that the RSVM

works reasonably well for this example.

Example 3.6.1.2 We generate equal numbers of data points for class 1 and class -1. For class 1,

40%, 40%, and 20% of the observations are generated from N((1, 0.5)T , ¾2I), N((−3, 0.5)T , ¾2I),

and N((0, 1)T ,Σ), respectively, where I is 2 × 2 identity matrix and Σ = diag((4¾)2, (¾/3)2).

For class 2, 40%, 40%, and 20% of the observations are generated from N((3,−0.5)T , ¾2I),

N((−1,−0.5)T , ¾2I), and N((0,−1)T ,Σ). We use two different values of ¾, 0.3 and 0.5, and a

typical example of data sets when ¾ = 0.3 is plotted in Figure 3.5. As shown in Table 3.2, the

result seems the opposite to the Example 3.6.1.1: the smaller v gives the better result. This is

not surprising considering the nature of this data set. Since the information about observations

near the boundary is critical for classification in this data set, it is better to use more information

61



Table 3.2: Testing errors of the simulated nonlinear example (Example 3.6.1.2)

Standard deviation

Method ¾ = 0.3 ¾ = 0.5

BSVM v = 0 0.0052(0.0046) 0.0574(0.0177)
(with v = 0.1 0.0055(0.0048) 0.0695(0.0212)

tuning set) v = 0.2 0.0060(0.0054) 0.0749(0.0197)
v = 0.5 0.0083(0.0059) 0.0857(0.0176)
v = 1 0.0107(0.0060) 0.0954(0.0148)
v = 2 0.0150(0.0075) 0.1073(0.0163)
v = 5 0.0233(0.0100) 0.1164(0.0128)
v = 10 0.0265(0.0108) 0.1212(0.0131)
v = 50 0.0288(0.0097) 0.1231(0.0139)

BCM 0.0267(0.0114) 0.1214(0.0174)

RSVM s = −1 0.0052(0.0045) 0.0528(0.0126)
s = 0 0.0039(0.0018) 0.0517(0.0121)

Bayes Error 0.000159 0.022104

about those observations. If we use higher v, the data far from the boundary pull the decision

boundary resulting in a flat decision boundary which does not reflect well the data structure

around the boundary.

3.6.2 Real Data

Table 3.3: Testing errors of the lung cancer data example in Section 3.6.2.

Method Testing errors

BSVM v = 0 0.0203(0.0170)
v = 0.1 0.0174(0.0178)
v = 0.2 0.0145(0.0181)
v = 0.5 0.0145(0.0181)
v = 1 0.0145(0.0181)
v = 2 0.0145(0.0181)
v = 5 0.0145(0.0181)
v = 10 0.0145(0.0181)
v = 50 0.0145(0.0181)

BCM 0.0145(0.0181)

RSVM s = −1 0.0203(0.0170)
s = 0 0.0203(0.0170)

In this section, we apply the BSVM and the BCM to the lung cancer data described in Liu

62



et al. (2008). In this data set, there are 12,625 genes’ expression of 17 normal tissues and 188

lung cancer tissues. We first filter the genes using the ratio of the sample standard deviation and

sample mean of each gene and obtain 316 genes. Then, we standardize gene expression so that

each gene has sample mean 0 and sample standard deviation 1. We randomly divide subjects

into three groups of training, tuning, and testing sets with sample size 68, 68, and 69, and we

build a model for each value of ¸ using the data in training set. Then ¸ is selected based on it’s

performance on tuning set by grid search. Using the model with the selected ¸, misclassification

rate on testing set is calculated. This whole procedure is repeated for 10 times.

The results are reported in Table 3.3. As shown in the table, the BSVM indeed performs

better than the standard SVM, while the RSVM does not really improve the performance com-

paring to the SVM. Hence, we can conclude that, by using information of correctly classified

data, the BSVM does obtain robustness which could not be achieved by bounding the effect of

extreme outliers in this situation. This may be due to the nature of this data.

3.7 Remark and Possible Future Work

Our results indicate that the choice of v is indeed important for the performance of the BSVM.

Although one may treat v as a tuning parameter, it will be more desirable to have a more

efficient approach to select v. One possibility is to derive the GACV curve with respect to v

and choose the value of v which minimizes the GACV.

The BCM has a nice interpretation and performs well in many situations. However, its

linear loss function may emphasize too much on the correctly classified observations comparing

to wrongly classified observations. Hence, one can consider to modify the loss function form of

the BCM to reduce the loss imposed on correctly classified data. In particular, we consider a

fimily of the BCM loss function

L(u) = 2[(1− u)/2]a.

As shown in Figure 3.8, this loss function becomes equivalent to the original BCM loss function

when a = 1, and as the value of a increases, the difference in loss between the correctly classified

and wrongly classified observations becomes large. It will be interesting to investigate the

following issues:

63



−1.0 −0.5 0.0 0.5 1.0

0.
0

0.
5

1.
0

1.
5

2.
0

A family of BCM loss functions

u

l(u
)

a=1
a=2
a=5
a=10

Figure 3.8: Plot of several BCM loss functions indexed by a.

64



∙ The effect of a on the classification performance;

∙ The choice of constraints;

∙ Fisher consistency behaviors.

3.8 Proofs

3.8.1 Proof of Theorem 3

Let f = f(x), p = P (x), and A(f) = E[g(Y f(X)∣X = x]. First, we show that the minimizer

f∗ of A(f) is on [−1, 1]. When f > 1, A(f) = pv(f − 1) + (1 − p)(1 + f) > 2(1 − p) = A(1).

Similarly, when f < −1, A(f) = p(1− f) + (1− p)v(−f − 1) > 2p = A(−1). Thus, f∗ ∈ [−1, 1].

For f ∈ [−1, 1], A(f) = p(1− f) + (1− p)(1 + f) = (1− 2p)f + 1. Hence f = 1 minimizes A(f)

if p > 1/2, and otherwise, f = −1 minimizes A(f). Therefore, argminf A(f) = sign[p − 1/2].

This completes the proof.

3.8.2 Proof of Theorem 4

It is easy to see that fl ⩽ k − 1 for l = 1, ⋅ ⋅ ⋅ , k. Thus, one can show that the problem reduces

to

max
f

k∑

l=1

Pl(x)fl(x) (3.32)

s.t.
k∑

l=1

fl(x) = 0;−1 ⩽ fl(x) ⩽ k − 1, ∀l.

Thus, the solution satisfies f∗
j (x) = k − 1 if j = argmaxjPj(x) and −1 otherwise.

3.8.3 Proof of Theorem 5 and Theorem 6

First we go over lemmas we need to prove the theorems. Lemma 2 guarantees that there is a

finite minimizer of Q(¯).

Lemma 2. Suppose that A1 and A2 are satisfied. Then Q(¯) → ∞ as ∥¯∥ → ∞ and the

minimizer ¯∗ exists.

65



Proof. Without loss of generality, we can assume that x0 = 0 and B(x0, r0) ⊂ X . Then, for any

² > 0, we have

Q(¯) = E[∣g(Y f(X;¯))∣]
⩾

∫

X
min{v, 1}∣Y f(x;¯)− 1∣(¼+ℎ+(x) + ¼−ℎ−(x))dx

⩾ min{v, 1}
∫

X
[∣f(x;¯)∣ − 1](¼+ℎ+(x) + ¼−ℎ−(x))dx

= min{v, 1}
[∫

X
∣f(x;¯)∣(¼+ℎ+(x) + ¼−ℎ−(x))dx− 1

]

= min{v, 1}∥¯∥
∫

X
∣f(x;¯)∣(¼+ℎ+(x) + ¼−ℎ−(x))dx−min{v, 1}

= C1min{v, 1}∥¯∥
∫

B
∣f(x;¯)∣dx−min{v, 1}

= C1min{v, 1}∥¯∥vol({∣w0 + xTw+∣ ⩾ ²} ∩ {B(0, r0)})²−min{v, 1},

where w = (w0,w+)
T = ¯/∥¯∥ and vol(A) denotes the volume of a set A. Observe that

−1 ⩽ w0 ⩽ 1. For 0 ⩽ w0 < 1, if we take ² ∈ (0, 1),

vol({x ∈ X : ∣w0 + xTw+∣ ⩾ ²} ∩ {B(0, r0)})
⩾ vol({x ∈ X : w0 + xTw+ ⩾ ²} ∩ {B(0, r0)})
= vol

({
x ∈ X : xTw+√

1−w2
0

⩾ ²−w0√
1−w2

0

}
∩B(0, r0)

)

⩾ vol

({
x ∈ X : xTw+√

1−w2
0

⩾ ²

}
∩B(0, r0)

)

≡ V (r0, ²).

Similarly, we can show that vol({x ∈ X : ∣w0 + xTw+∣ ⩾ ²} ∩ {B(0, r0)}) ⩾ V (r0, ²) when

−1 < w0 < 0. Since V (r0, ²) is independent of ¯ and V (r0, ²) > 0 for some ² < r0, we can

conclude that Q(¯) → ∞ as ∥¯∥ → ∞

Furthermore, Q(¯) is convex because the loss function g(yf(x;¯)) is convex in ¯. Using the

fact that Q(¯) → ∞ as ∥¯∥ → ∞, the set of minimizers of Q(¯) is a bounded connected set.

Thus, the minimizer ¯∗ exists.

Lemma 3 and 4 establishes s(¯) and H(¯), which are considered first and second derivatives

of Q(¯), repectively.

66



Lemma 3. Suppose that A1 is satisfied. If ¯+ ∕= 0, then

∂Q(¯)

∂¯j
= S(¯)j

for j = 0, ⋅ ⋅ ⋅ , d.

Proof. Define Δ(t) = g(f(x;¯) + tx̃j)− g(f(x;¯)) for t > 0. When x̃j > 0, we have

Δ(t) =

⎧
⎨
⎩

vtx̃j if f(x;¯) > 1

(1 + v)(f(x;¯)− 1) + vtx̃j if 1− tx̃j < f(x;¯) ⩽ 1

−tx̃j otherwise.

Thus,

1

t

∫

X
Δ(t)I{x̃j>0}ℎ+(x)dx = v

∫

X
I{f(x;¯)>1,x̃j>0}x̃jℎ+(x)dx

+
(
1+v
t

) ∫

X
I{1−tx̃j<f(x;¯)⩽1,x̃j>0}(f(x;¯)− 1)ℎ+(x)dx

+v

∫

X
I{1−tx̃j<f(x;¯)⩽1,x̃j>0}x̃jℎ+(x)dx

+

∫

X
I{f(x;¯)⩽1−tx̃j ,x̃j>0}(−x̃j)ℎ+(x)dx

Here, consider the second term of the right hand side of the equation. Since 1−tx̃j < f(x;¯) ⩽ 1

implies ∣f(x;¯)− 1∣ ⩽ tx̃j , we have

(1+v
t )

∫

X
I{1−tx̃j<f(x;¯)⩽1,x̃j>0}(f(x;¯)− 1)ℎ+(x)dx

⩽ (1+v
t )

∫

X
I{1−tx̃j<f(x;¯)⩽1,x̃j>0}∣f(x;¯)− 1∣ℎ+(x)dx

⩽ (1 + v)

∫

X
I{1−tx̃j<f(x;¯)⩽1,x̃j>0}x̃jℎ+(x)dx

→ (1 + v)

∫

X
I{f(x;¯)=1,x̃j>0}x̃jℎ+(x)dx = 0 as t ↓ 0

by Dominated Convergence Theorem. This gives,

lim
t↓0

1

t

∫

X
Δ(t)I{x̃j>0}ℎ+(x)dx

= v

∫

X
I{f(x;¯)⩾1,x̃j>0}x̃jℎ+(x)dx+

∫

X
I{f(x;¯)<1,x̃j>0}(−x̃j)ℎ+(x)dx,

67



resulting
∂

∂¯j

∫

X
g(f(x;¯))ℎ+(x)dx

= v

∫

X
I{f(x;¯)⩾1}x̃jℎ+(x)dx+

∫

X
I{f(x;¯)<1}(−x̃j)ℎ+(x)dx.

Now we consider the case when x̃j < 0. Define

Δ(t) =

⎧
⎨
⎩

vtx̃j if f(x;¯) > 1− tx̃j

(1 + v)(1− f(x;¯))− tx̃j if 1 < f(x;¯) ⩽ 1− tx̃j

−tx̃j otherwise.

In a similar manner, we can show that

lim
t↓0

1

t

∫

X
Δ(t)I{x̃j<0}ℎ−(x)dx

= v

∫

X
I{f(x;¯)⩾1,x̃j<0}x̃jℎ−(x)dx+

∫

X
I{f(x;¯)<1,x̃j<0}(−x̃j)ℎ−(x)dx.

Consequently, we have

lim
t↓0

1

t

∫

X
Δ(t)ℎ+(x)dx

= v

∫

X
I{f(x;¯)⩾1}x̃jℎ+(x)dx+

∫

X
I{f(x;¯)<1}(−x̃j)ℎ+(x)dx.

Thus, we may write

∂

∂¯j

∫

X
g(−f(x;¯))ℎ−(x)dx

= v

∫

X
I{f(x;¯)⩽−1}(−x̃j)ℎ−(x)dx+

∫

X
I{f(x;¯)>−1}x̃jℎ−(x)dx,

finally, giving

∂Q(¯)

∂¯j

= E[−½(1− Y f(X;¯))Y X̃j + v½(Y f(X;¯)− 1)Y X̃j ]

Lemma 4. Suppose that A1 is satisfied. If ¯+ ∕= 0, then

∂2Q(¯)

∂¯j∂¯k

= H(¯)jk

68



for j, k = 0, ⋅ ⋅ ⋅ , d.

Proof. Let

Φ(¯) = v

∫

X
I{f(x;¯)⩾1}s(x)dx−

∫

X
I{f(x;¯)<1}s(x)dx.

Then it suffices to show that

∂Φ(¯)

∂¯0
= (1 + v)

∫

X
±(1− f(x;¯))s(x)dx

∂Φ(¯)

∂¯j

= (1 + v)

∫

X
±(1− f(x;¯))x̃js(x)dx.

Define

Ψ(¯) =

∫

X
I{f(x;¯)<1}s(x)dx.

Note that

Φ(¯) = v

∫

X
s(x)dx− (1 + v)Ψ(¯).

Since the term v
∫
X s(x)dx is independent of ¯, we have

∂Φ(¯)

∂¯j
= −(1 + v)

∂Ψ(¯)

∂¯j
.

From the Lemma 3 in Koo et al. (2008),

∂Ψ(¯)

∂¯0
= −

∫

X
±(1− f(x;¯))s(x)dx

and

∂Ψ(¯)

∂¯j
= −

∫

X
±(1− f(x;¯))x̃js(x)dx

for j = 1, ⋅ ⋅ ⋅ , d. This completes the proof.

Lemma 5. Suppose that A1 and A3 are satisfied. Then ¯∗
+ ∕= 0.

Proof. Assume the first case of A3

¼+

{∫

X
(I{xi∗⩽F+

i∗} − vI{xi∗>F+
i∗})xi∗ℎ+(x)dx

}
> ¼−

{∫

X
(I{xi∗⩾G−

i∗} − vI{xi∗<G−
i∗})xi∗ℎ−(x)dx

}
.

69



It is sufficient to show that

min
¯0

Q(¯0, 0, ⋅ ⋅ ⋅ , 0) > min
¯0,¯i∗

Q(¯0, 0, ⋅ ⋅ ⋅ , 0, ¯i∗ , 0, ⋅ ⋅ ⋅ , 0). (3.33)

We may write

Q(¯0, ¯i∗) = ¼+

∫

X
g(¯0 + ¯i∗xi∗)ℎ+(x)dx+ ¼−

∫

X
g(−¯0 − ¯i∗xi∗)ℎ−(x)dx

First, consider the case that ¯i∗ = 0. We can show that

Q(¯0) =

⎧
⎨
⎩

(¼− − v¼+) + ¯0(v¼+ + ¼−) if ¯0 > 1

1 + ¯0(¼− − ¼+) if − 1 ⩽ ¯0 ⩽ 1

(¼+ − v¼−)− ¯0(v¼− + ¼+) otherwise,

resulting

min
¯0

Q(¯0) = 2min{¼+, ¼−}

.

Now, consider the case that ¯i∗ > 0. Then we have

Q(¯0, ¯i∗) = ¼+

∫

X
I{

xi∗<
1−¯0
¯i∗

}(1− ¯0 − ¯i∗xi∗)ℎ+(x)dx

+¼+

∫

X
I{

xi∗>
1−¯0
¯i∗

}v(¯0 + ¯i∗xi∗ − 1)ℎ+(x)dx

+¼−
∫

X
I{

xi∗>
−1−¯0
¯i∗

}(1 + ¯0 + ¯i∗xi∗)ℎ−(x)dx

+¼−
∫

X
I{

xi∗<
−1−¯0
¯i∗

}v(−¯0 − ¯i∗xi∗ − 1)ℎ−(x)dx,

which gives,

∂Q(¯0, ¯i∗)

∂¯0
= −¼+

∫

X
I{

xi∗<
1−¯0
¯i∗

}ℎ+(x)dx+ v¼+

∫

X
I{

xi∗>
1−¯0
¯i∗

}ℎ+(x)dx

+¼−
∫

X
I{

xi∗>
−1−¯0
¯i∗

}ℎ−(x)dx− v¼−
∫

X
I{

xi∗<
−1−¯0
¯i∗

}ℎ−(x)dx

= −¼+

[
(1 + v)

∫

X
I{

xi∗<
1−¯0
¯i∗

}ℎ+(x)dx− v

]

+¼−

[
(1 + v)

∫

X
I{

xi∗>
−1−¯0
¯i∗

}ℎ−(x)dx− v

]
.

70



Note that ∂Q(¯0,¯i∗ )
∂¯0

increases in ¯0,
∂Q(¯0,¯i∗ )

∂¯0
→ −¼+− v¼− < 0 as ¯0 → −∞, and ∂Q(¯0,¯i∗ )

∂¯0
→

v¼+¼− > 0 as ¯0 → ∞. Therefore the minimizer ˜̄
0 of Q(¯0, ¯i∗) for a given ¯i∗ exists. Using

∂Q(¯0,¯i∗ )
∂¯0

∣¯0=˜̄
0
= 0, we have

Q( ˜̄0, ¯
∗
i ) = 2¼−

∫

X
I{

xi∗>
−1− ˜̄

0
¯i∗

}ℎ−(x)dx− 2¼−v
∫

X
I{

xi∗<
−1− ˜̄

0
¯i∗

}ℎ−(x)dx

+¯i∗

[
¼−

∫

X
I{

xi∗>
−1− ˜̄

0
¯i∗

}xi∗ℎ−(x)dx− v¼−
∫

X
I{

xi∗<
−1− ˜̄

0
¯i∗

}xi∗ℎ−(x)dx

−¼+
∫
X I{

xi∗<
1− ˜̄

0
¯i∗

}xi∗ℎ+(x)dx+ v¼+
∫
X I{

xi∗>
1− ˜̄

0
¯i∗

}xi∗ℎ+(x)dx
]
.

(3.34)

Now assume ¼+ > ¼−. Then F+
i∗ < ∞ and G−

i∗ = −∞. These may not be uniquely

determined if there are intervals with probability zero, but the proof is essentially the same even

if we assume uniqueness of those. Since ∂Q(¯0,¯i∗ )
∂¯0

has zero at ¯0 = ˜̄
0, we have

(1 + v)

∫

X
I{

xi∗<
1− ˜̄

0
¯i∗

}ℎ+(x)dx− v =
¼−
¼+

[
(1 + v)

∫

X
I{

xi∗>
−1− ˜̄

0
¯i∗

}ℎ−(x)dx− v

]

<
¼−
¼+

[(1 + v) ⋅ 1− v],

resulting ∫

X
I{

xi∗<
1− ˜̄

0
¯i∗

}ℎ+(x)dx <

¼−
¼+

+ v

1 + v
.

Hence, we have
1− ˜̄

0

¯i∗
< F+

i∗ < ∞
⇒ −1− ˜̄

0

¯i∗
< F+

i∗ − 2
¯i∗

→ −∞ as ¯i∗ → 0

⇒ ∫
X I{

xi∗>
−1− ˜̄

0
¯i∗

}ℎ−(x)dx → 1

⇒ ∫
X I{

xi∗<
1− ˜̄

0
¯i∗

}ℎ+(x)dx →
¼−
¼+

+v

1+v

⇒ 1− ˜̄
0

¯i∗
→ F+

i∗ as ¯i∗ → 0

Since
∫
X I{

xi∗>
−1− ˜̄

0
¯i∗

}ℎ−(x)dx → 1 and v
∫
X I{

xi∗<
−1− ˜̄

0
¯i∗

}ℎ−(x)dx → 0, from (3.34) we obtain

Q( ˜̄0, ¯
∗
i ) < 2¼− = min

¯0

Q(¯0) for some ¯i∗ > 0

Hence, we proved that ¯∗
i ∕= 0 for the case when ¼+ > ¼−. We can show the same result for the

71



case when ¼+ < ¼− in the similar fashion. When ¼+ = ¼−, we can easily check that

1− ˜̄
0

¯i∗
→ ∞ as ¯i∗ → 0,

and

−1− ˜̄
0

¯i∗
→ −∞ as ¯i∗ → 0.

Using these and (3.34), we have

Q( ˜̄0, ¯
∗
i ) < 1 = min

¯0

Q(¯0) for some ¯i∗ > 0

Hence, we have shown that Q( ˜̄0, ¯
∗
i ) < min¯0 Q(¯0) for some ¯i∗ > 0 under the first condi-

tion of A3. In the similar manner, it can be shown that Q( ˜̄0, ¯
∗
i ) < min¯0 Q(¯0) for some ¯i∗ <

0 under the second condtion of A3. Therefore, we have shown (3.33).

The following lemma establishes the lower bound of H(¯∗).

Lemma 6. Suppose A1, A3, and A4 are met. Then,

¯TH(¯∗)¯ ⩾ (1 + v)C4∥¯∥2,

where C4 may depend on ¯∗.

Proof. Using Lemma 5 in Koo et al. (2008),

¯TH(¯∗)¯ = (1 + v)¯TE[±(1− Y f(X;¯))X̃X̃
T
]¯

⩾ (1 + v)C4∥¯∥2

Lemma 7. Assume A1-A4 are satisfied. Then Q(¯) has a unique minimizer.

Proof. By Lemma 2, we may choose any minimizer ¯∗ from a bounded connected set of min-

imizers of Q(¯). Lemma 5 and 6 guarantees that H(¯) is positive definite at ¯∗. Then Q(¯)

is locally strictly convex at ¯∗, implying that Q(¯) has a local minimum at ¯∗. Therefore the

minimizer of Q(¯) is unique.

72



Now we prove Theorem 5 and 6. For µ = (µ0,µ+)
T ∈ ℝd+1, define

Λn(µ) = n

(
q¸,n(¯

∗ +
µ√
n
)− q¸,n(¯

∗)
)

and

Γn(µ) = EΛn(µ).

By Taylor series expansion,

Γn(µ) = n
(
Q(¯∗ + µ√

n
)−Q(¯∗)

)
+ ¸

2

(
∥µ+∥2 + 2

√
n¯∗

+
Tµ+

)

= 1
2µ

TH( ˜̄)µ + ¸
2

(
∥µ+∥2 + 2

√
n¯∗

+
Tµ+

)
,

where ˜̄ = ¯∗ + (t/
√
n)µ for some 0 < t < 1. Define Djk(®) = H(¯∗ + ®)jk + H(¯∗)jk

for 0 ⩽ j, k ⩽ d. Because H(¯) is continuous in ¯, there exists ±1 > 0 such that ∥®∥ < ±1

implies ∣Djk(®)∣ < ²1 for any ²1 > 0 and 0 ⩽ j, k ⩽ d. Then, for sufficiently large n such that

∥(t/√n)µ∥ < ±1, we have

∣∣∣µT
(
H( ˜̄)−H(¯∗)

)
µ
∣∣∣ ⩽

∑
j,k ∣µj ∣∣µk∣

∣∣∣Dj,k

(
t√
n
µ
)∣∣∣

⩽ ²1
∑

j,k ∣µj ∣∣µk∣
⩽ 2²1∥µ∥2,

resulting

1

2
µTH( ˜̄)µ =

1

2
µTH(¯∗)µ + o(1).

Considering ¸ = o(n−1/2), we have

Γn(µ) =
1

2
µTH(¯∗)µ + o(1).

Now, let W n =
∑n

i=1

(
−½(1− Yif(Xi;¯

∗))YiX̃i + v½(Y f(X;¯)− 1)YiX̃i

)
. Observe that

E(W n) = S(¯∗) = 0 and E(W nW
T
n ) =

∑n
i=1E[(½(1 − Yif(Xi;¯

∗)) + v2½(Yif(Xi;¯
∗) −

1))X̃iX̃
T
i ]. Hence, by central limit theorem, we have

1√
n
W n → N(0, nG(¯∗))

73



in distribution.

Now, we define

Ri,n(µ) = g(Yif(Xi;¯
∗ + µ/

√
n))− g(Yif(Xi;¯

∗))

+½(1− Yif(Xi;¯
∗))Yif(Xi;µ/

√
n)− v½(Yif(Xi;¯

∗)− 1)Yif(Xi;µ/
√
n),

which gives

Λn(µ) = Γn(µ) +W T
nµ/

√
n+

n∑

i=1

(Ri,n(µ)−ERi,n(µ)).

If we let z = Yif(Xi;¯
∗ + µ/

√
n) and a = Yif(Xi;¯

∗), we can write

Ri,n(µ) = g(z)− g(a) + I{a ⩽ 1}(z − a)− vI{a > 1}(z − a)

= I{z ⩽ 1}(1− z) + I{z > 1}v(z − 1)

−I{a ⩽ 1}(1− a)− I{a > 1}v(a− 1) + I{a ⩽ 1}(z − a)− I{a > 1}v(z − a)

= I{z ⩽ 1}(1− z) + I{z > 1}v(z − 1)

+I{a ⩽ 1}(z − 1)− I{a > 1}v(z − 1)

= [I{z ⩽ 1} − I{a ⩽ 1}](1− z) + [I{z > 1} − I{a > 1}]v(z − 1)

⩽ (a− z)I{z ⩽ 1, a > 1}+ v(z − a)I{z > 1, a ⩽ 1}
⩽ max{1, v}∣z − a∣I{∣1− a∣ ⩽ ∣z − a∣}.

Thus, we have

∣Ri,n(µ)∣ ⩽ max{1, v}(∣f(Xi;µ)∣/
√
n)I{∣1−Yif(Xi;¯

∗)∣⩽∣f(X;µ)∣/√n},

resulting

n∑

i=1

E∣Ri,n(µ)− ERi,n(µ)∣2 =
n∑

i=1

[E(Ri,n(µ))
2 − (ERi,n(µ))

2]

⩽
n∑

i=1

E(Ri,n(µ))
2

⩽
n∑

i=1

E

[
max{1, v2}

∣∣∣∣
f(Xi;µ)√

n

∣∣∣∣
2

I{∣1−Yif(Xi;¯
∗)∣⩽∣f(X;µ)∣/√n}

]

⩽ max{1, v2}∥µ∥2E
[
(1 + ∥X∥2)I{∣1−Yif(Xi;¯

∗)∣⩽
√

1+∥X∥2∥µ∥/√n}

]
.

Note that A1 implies that E(∥X∥2) < ∞. Thus, for any ² > 0, there exists C5 such that

74



E[(1 + ∥X∥2)I{∥X∥>C5}] < ²/2. Observe

E

[
(1 + ∥X∥2)I{∣1−Yif(Xi;¯

∗)∣⩽
√

1+∥X∥2∥µ∥/√n}

]

⩽ E

[
(1 + ∥X∥2)I{∥X∥>C5}

]
+ (1 + c25)P

(
∣1− Yif(Xi;¯

∗)∣ ⩽
√

1 + C2
5∥µ∥/

√
n

)
.

The second term (1 + c25)P
(
∣1− Yif(Xi;¯

∗)∣ ⩽
√

1 + C2
5∥µ∥/

√
n
)

goes to zero as n → ∞
because of A1. Thus, we have

∑n
i=1E∣Ri,n(µ) − ERi,n(µ)∣2 → 0 as n → ∞. Hence, we can

write

Λn(µ) = Γn(µ) +W T
nµ/

√
n+ oP (1).

Now, we define ´n(µ) = −H(¯∗)−1W n/
√
n. Using Convexity Lemma in Pollard (1991), we

have

Λn(µ) =
1

2
(µ − ´n)

TH(¯∗)(µ − ´n)−
1

2
´TH(¯∗)´ + rn(µ),

where, for each compact set K ∈ ℝ,

sup
µ∈K

∣rn(µ)∣ → 0

in probability. Since ´n converges in distribution, there exists a compact set K which contains

B², where B² is a closed ball with center ´n and radius ² with probability arbitrarily close to

one. This gives

Δn = sup
µ∈B²

∣rn(µ)∣ → 0 (3.35)

in probability. Now consider the outside of the ball B². Writing µ = ´n + °u and µ∗ = ´n + ²u

with ° > ² and a unit vector u, Lemma 6 and convexity of Λn gives

²
°Λn(µ) +

(
1− ²

°

)
Λn(´n) ⩾ Λn(µ

∗)

⩾ 1
2(µ

∗ − ´n)
TH(¯∗)(µ∗ − ´n)− 1

2´
TH(¯∗)´ −Δn

⩾ C4
2 ²2 + Λn(´n)− 2Δn.

Thus, we have

²

°
(Λn(µ)− Λn(´n)) ⩾

C4

2
²2 − 2Δn,

75



finally giving

inf
∥µ−´n∥>²

Λn(µ) ⩾ Λn(´n) +

(
C4

2
²2 − 2Δn

)
.

By (3.35), we can take Δn so that C4
2 ²2 − 2Δn > 0 with probability tending to one. Therefore,

the minimum of Λn cannot occur at any µ with ∥µ− ´n∥ > ². Note that the minimizer of Λn is

√
n( ˆ̄¸,n − ¯∗). Hence we have

P (∥√n( ˆ̄¸,n − ¯∗)− ´n∥ > ²) → 0

resulting
√
n( ˆ̄¸,n − ¯∗) → ´n

in probability. This completes the proof.

76



Chapter 4

Multicategory Classification

4.1 Introduction

Binary classification problems are heavily studied, while in contrast, the attentions on multicat-

egory problems are much less so. To solve a multicategory problem, there are two major groups

of approaches. One is to employ multiple binary classifiers and then combine the results. The

one-versus-rest and one-versus-one approaches are common examples of this type. Although the

extension is simple to implement, there are drawbacks with these approaches. The one-versus-

one approach may not work well when the numbers of observations in some classes are small.

For the one-versus-rest approach, a serious drawback is that the approach may not be consistent

when there is no dominating class, i.e., when the maximum class conditional probability is less

than 0.5. The other group of multicategory approaches is to use simultaneous multicategory

formulations. For example, Vapnik (1998); Crammer and Singer (2001); Lee et al. (2004) pro-

posed various SVM techniques for simultaneous multicategory classification. One difficulty of

these approaches is that the corresponding computational complexity grows very rapidly when

the number of classes gets large.

Despite progress in multicategory classification, many challenges are yet to be solved. In

particular, with the abundance of complex data with large volume, it is desirable to have mul-

ticategory classification techniques that are

∙ based on simultaneous formulation with sound theoretical properties;

∙ able to handle high dimensional data;

∙ efficient to compute even when the class number is large;



∙ able to estimate conditional class probabilities.

In this chapter, we propose a novel simultaneous multicategory technique, namely the Multicat-

egory Composite Least Squares (CLS) Classifier. The proposed CLS classifier possesses all four

aforementioned properties. Motivated from multicategory SVMs, the CLS classifier is based on

a simultaneous formulation by using all data at once to produce a multicategory classifier. It

has the desirable consistency. Similar to the SVM, it has the ability to handle high dimensional

data. In contrast to the challenging optimization of multicategory SVM, the CLS classifier is

very efficient to compute. Surprisingly, although it makes use of a simultaneous formulation, its

computation can be decoupled as multiple smaller optimization problems as in the one-versus-

rest approach. Consequently, computation complexity of the CLS classifier grows with the class

number linearly, thus it is feasible even for problems with very large number of classes.

The CLS classifier is closely related to the SVM. Instead of using the multicategory hinge loss

function as in the SVM, it makes use of the proposed composite squared loss which yields very

efficient computation. More specifically, the CLS classifier uses a nontrivial convex combination

of two different types of squared loss functions, with one of the two being the loss of the Proximal

SVM (PSVM) (Suykens and Vandewalle, 1999; Fung and Mangasarian, 2001; Tang and Zhang,

2006). The combination is shown to be necessary as the performance of the combined loss is

much better than the uncombined ones. Another important advantage of the CLS classifier is

its ability to produce class probability estimation, while in contrast, the SVM cannot. Due to

the special form of the loss function for the CLS classifier, we are able to derive closed-form

solutions and the formulae to predict class probability.

The rest of this chapter is organized as follows. In Section 4.2, we give a brief background on

multicategory classification and review some existing multicategory SVM techniques. In Section

4.3, we propose the multicagegory CLS classifier, study its property, and provide probability

estimation. Section 4.4 discusses the computational algorithm. Numerical results through simu-

lated examples and real data applications are presented in Section 4.5. Some discussion is given

in Section 4.6. Proofs of theoretical results are included in Section 4.7.

78



4.2 Background on Multicategory Classification

Suppose our training dataset is {xi, yi}i=1,⋅⋅⋅ ,n. Here, similar as before, xi is the d-dimensional

covariate, and yi ∈ {1, ⋅ ⋅ ⋅ , k} represents a k-class label with k > 2. Our goal is to build

a classifier based on the training data so that we can predict the class membership of new

observations.

4.2.1 Sequence of Binary Classifiers

To solve a multicategory problem, a natural and direct way is to implement multiple binary

classifiers. For example, one can use the one-versus-rest or one-versus-one approach. The one-

versus-rest approach relabels the training data in the class j as the positive class and data

which are not in the class j as the negative class, for each j = 1, ⋅ ⋅ ⋅ , k. Then, one can employ

a sequence of k binary classifiers for the membership of each data point, which can possibly

give contradictory results among the k binary classifiers. The one-versus-one approach applies a

given binary classifier to a binary problem of the class j1 and the class j2 for each of all possible

pairs j1, j2 ∈ {1, ⋅ ⋅ ⋅ , k}. Overall,
(
k
2

)
binary classifications are performed. For each binary

problem, the dataset can be very small.

When there is no dominating class, in the SVM context, the one-versus-rest approach can be

self-contradicted (Lee et al., 2004) and Fisher consistency is not guaranteed (Liu, 2007). Thus, it

is necessary to generalize binary classification methods to multicategory versions which consider

all classes simultaneously and retain good properties of the original methods.

4.2.2 Simultaneous methods

In contrast to the approach using a sequence of binary classifiers, one can obtain the decision

functions for all classes simultaneously and compare them all at once to predict class member-

ship. More specifically, let f(x) = (f1(x), f2(x), ⋅ ⋅ ⋅ , fk(x)) ∈
∏k

j=1({1}+ℋK) be the decision

function vector, whereℋK denotes a reproducing kernel Hilbert space generated by the kernelK.

Once the value of f is obtained, the class membership of any new data point x is estimated by

ŷ = argmaxj=1,2,⋅⋅⋅ ,k fj(x). To remove redundancy in solutions, we use the zero-sum constraint,

∑k
j=1 fi(x) = 0. This formulation becomes equivalent to the binary problem when k = 2. When

79



k = 2, we have f(x) = (f1(x), f2(x)) as the decision function vector with f1(x) = −f2(x)

because of the zero-sum constraint. Note that sign[f1(x) − f2(x)] > 0 if f1(x) > f2(x) and

sign[f1(x) − f2(x)] ⩽ 0 otherwise. Thus, having f = f1 − f2 and using the class label y = −1

instead of y = 2 makes sign(f(x)) and argmaxj=1,⋅⋅⋅ ,k fj(x) with k = 2 equivalent estimators for

the class membership of the entry x.

With a sensible loss function L given, the multicategory large margin classifier solves

min
f∈ℱ

n∑

i=1

L(f(xi), yi) + ¸
k∑

j=1

J(fj),

subject to
k∑

j=1

fi(x) = 0 for i = 1, ⋅ ⋅ ⋅ , n. (4.1)

Since a point x is misclassified when y ∕= argmaxj fj(x), a good loss function L should force fk

to be the maximum among f1, ⋅ ⋅ ⋅ , fk.
Fisher consistency is an important issue for the classification. It requires that a classifier

approximates the Bayes rule when the sample size is sufficiently large. Thus in our formulation,

Fisher consistency requires that argmaxj f
∗
j = argmaxj Pj , where Pj(x) = P (Y = j∣x), and

f∗(x) = (f∗
1 (x), . . . , f

∗
k (x)) denotes the minimizer of E[L(f(x), y)∣X = x]. When we select a

loss function L, it is necessary to study its Fisher consistency.

4.2.3 Existing Multicategory SVMs

In this section, we focus on different versions of simultaneous multicategory SVMs. In the

literature, there are several different ways to extend the binary hinge loss to the multicategory

versions. Here we list several commonly used versions:

1. (Naive hinge loss) [1− fy(x)]+;

2. (Vapnik, 1998; Weston and Watkins, 1999; Bredensteiner and Bennett, 1999)
∑

j ∕=y[1 −
(fy(x)− fj(x))]+;

3. (Crammer and Singer, 2001; Liu and Shen, 2006)
∑

j ∕=y[1−minj(fy(x)− fj(x))]+;

4. (Lee et al., 2004)
∑

j ∕=y[1 + fj(x)]+.

80



Loss 1 is a simple extension of the binary hinge loss. We call this loss function as the

naive hinge loss. Liu (2007) showed that the minimizer f∗ of E[[1 − fy(x)]+∣X = x] subject

to
∑k

j=1 fj(x) = 0 is f∗
j (x) = −(k − 1) if j = argminj Pj(x) and 1 otherwise, which implies

the naive hinge loss function is not Fisher consistent. He also showed the cases when Loss 2

and Loss 3 are not Fisher consistent. In contrast to these three loss functions, Loss 4 is Fisher

consistent as the minimizer of f∗ of E[
∑

j ∕=y[1 + fj(x)]+∣X = x] subject to
∑k

j=1 fj(x) = 0 is

f∗
j (x) = k − 1 if j = argmaxj Pj(x) and −1 otherwise.

Liu and Yuan proposed a new group of the multicategory SVM loss functions called the

reinforced hinge loss,

L(f(x), y) = °[(k − 1)− fy(x)]+ + (1− °)
∑

j ∕=y

[1 + fj(x)]+. (4.2)

It is the convex combination of the naive hinge loss and the Loss 4 by Lee et al. (2004) with

weights (°, 1 − °). When ° = 1/2, if we replace k − 1 in (4.2) by 1, it becomes
∑k

j=1[1 −
cyjfj(x)]+, where cyj = 1 if j = y and −1 otherwise. Minimizing this loss function is equivalent

to the one-versus-rest method (Weston, 1999), except the one-versus-rest approach does not

enforce the zero-sum constraint. Thus, we can conclude that the reinforced hinge loss builds a

connection between the one-versus-rest approach and the simultaneous classification approach.

Interestingly, even though the naive hinge loss function is not Fisher consistent, the reinforced

hinge loss function is Fisher consistent when 0 ⩽ ° ⩽ 1/2. Liu and Yuan showed that the loss

function (4.2) with ° = 1/2 gives the best classification performance.

One computational difficulty of the hinge loss is that it is not differentiable. This causes the

minimizer of the hinge loss not to attain all information of the class probability. To improve this,

the squared loss function can be employed instead of the hinge loss. Because the squared loss

function is differentiable, the computation is easier and its minimizer yields the class probability,

which enables us to estimate the class probability. Tang and Zhang (2006) proposed the mul-

ticlass proximal SVM, which employs the squared loss function for simultaneous multicategory

classification frame work. More specifically, they used the loss function

L(f(x), y) =
∑

j ∕=y

(
1 + fj(x)

)2
. (4.3)

81



Note that this loss function is essentially the same extension with Loss 4, except it uses the

squared loss instead of the hinge loss. Tang and Zhang (2006) showed the loss function of

the multiclass proximal SVM is always Fisher consistent. Moreover, the minimizer f(x) of

E[
∑

j ∕=y(1 + fj(x))
2∣X = x] satisfies

fj(x) =
k

1− Pj(x)
/

Ã
k∑

l=1

1

1− Pj(x)

)
− 1,

hence one can estimate the class probability Pj(x) for j = 1, ⋅ ⋅ ⋅ , k using f̂j(x).

4.3 Multicategory Composite Least Squares Classifier

The reinforced multicategory SVM establishes a bridge between two different versions of hinge

loss functions with different values of weight ° and it shows the best choice of ° is around 0.5.

This indicates the combination of those loss functions works better than the uncombined ones.

This motivates us to combine two different versions of squared loss functions in the similar

manner. More specifically, we propose to use the following family of composite squared loss

functions

L(f(x), y) = °[(k − 1)− fy(x)]
2 + (1− °)

∑

j ∕=y

[1 + fj(x)]
2, (4.4)

subject to
∑k

j=1 fj(x) = 0, where ° ∈ [0, 1]. We call problem (4.1) with the composite squared

loss as the Multicategory Composite Least Squares (CLS) Classifier. It can be easily shown that

the multicategory CLS classifier with ° = 0 is equivalent to the multiclass proximal SVM of

Tang and Zhang (2006) with all misclassification costs equal.

To further understand the proposed loss family (4.4), we express the composite squared loss

function using the multiple comparison vector representation proposed by Liu and Shen (2006).

In particular, they defined the comparison vector g(f(x), y) = (fy(x) − f1(x), ⋅ ⋅ ⋅ , fy(x) −
fy−1(x), fy(x) − fy+1(x), ⋅ ⋅ ⋅ , fy(x) − fk(x)). Then, min(g(f(x)), y) ⩽ 0 if and only if an

observation (x, y) is misclassified. Let u = g(f(x), y). Using this notation, the 0 − 1 loss

82



u1

−4
−2

0

2

4
u2

−4
−2

0
2

4

Loss

0.0
0.2

0.4
0.6

0.8

1.0

0 − 1 Loss

u1

−4
−2

0

2

4
u2

−4
−2

0
2

4

Loss

0
10

20
30

40

50

Composite Squared Loss with γ = 0

u1

−4
−2

0

2

4
u2

−4
−2

0
2

4

Loss

0
10

20
30

40

50

Composite Squared Loss with γ = 0.5

u1

−4
−2

0

2

4
u2

−4
−2

0
2

4

Loss

0
10

20
30

40

50

Composite Squared Loss with γ = 1

Figure 4.1: Plot of the 0 − 1 loss function and the composite squared loss functions with ° =
0, 0.5, 1.

function becomes I{minj uj ⩽ 0}. The composite squared loss function can be written as

°[(k − 1)−
k−1∑

l=1

ul/k]
2 + (1− °)

k−1∑

j=1

[1 +
k−1∑

l=1

ul/k − uj ]
2, (4.5)

and we plot (4.5) in Figure 4.1 with ° = 0, 0.5, 1, as well as 0− 1 loss function. We can see that

as ° increases, the value of the loss function increases when both u1 and u2 are negative, while

the loss decreases when only one of ul’s is negative.

The behavior of ° in the multicategory CLS classifier is very different from that of the

RMSVM as shown in the numerical examples in Section 4.5. In particular, ° = 0.5 does not

always show the best performance, thus the choice of ° should depend on the data. However,

unlike the RMSVM, the multicategory CLS classifier offers class probability estimation which

83



enables one to better understand the nature of the data.

4.3.1 Properties of the multicategory CLS classifier

The following theorem establishes Fisher consistency of the composite loss function in a general

form which includes the composite squared loss function as a special case.

Theorem 7. Suppose a function g(u) is twice differentiable, g′(u) < 0, and g′′(0) > 0. Let

L(f(x), y) = °g(fy(x)) + (1− °)
∑

j ∕=y

g(−fj(x)).

Then, the minimizer f∗ of E[L(f(x), y)], subject to
∑k

j fj(x) = 0, satisfies the following:

argmaxj Pj(x) = argmaxj fj(x).

Remark 1 The conclusion of the Theorem 7 holds if the assumption on g(u) is reduced to

that g′(u) < 0 and g′(u) is strictly increasing.

Remark 2 The reinforced hinge loss function is Fisher consistent only when 0 ⩽ ° ⩽ 1/2.

However, the composite squared loss function is always Fisher consistent for all values of ° ∈
[0, 1].

4.3.2 Probability Estimation

It can be shown that the theoretical minimizer f∗(x) of E[L(f(X), Y )∣X = x] is a function of

the conditional class probabilities. Hence, we can use f̂
∗
(x) to predict class probabilities. The

following theorem shows the exact form of f∗(x).

Theorem 8. The minimizer f∗(x) of E[L(f(X), Y )∣X = x] with L in (4.4), subject to

∑k
j fj(x) = 0, is (f∗

1 (x), ⋅ ⋅ ⋅ , f∗
k (x)), with

f∗
j (x) = (

∑k
l=1 albl∑k
l=1 al

+ bj)aj

where

al = 1/[2°Pl(x) + 2(1− °)(1− Pl(x))]

84



and

bl = 2°(k − 1)Pl(x)− 2(1− °)(1− Pl(x))

for l = 1, ⋅ ⋅ ⋅ , k.

Due to the complicated structure of f∗
j (x), it is difficult to recover (P1(x), ⋅ ⋅ ⋅ , Pk(x)) from

(f1(x), ⋅ ⋅ ⋅ , fk(x)) for a general °. However, for ° = 0, 0.5, and 1, we are able to make albl

simple to recover conditional class probabilities (P1(x), ⋅ ⋅ ⋅ , Pk(x)) from (f1(x), ⋅ ⋅ ⋅ , fk(x)). The
formulae to estimate class probabilities using (f1(x), ⋅ ⋅ ⋅ , fk(x)) for ° = 0, 0.5, and 1 are given

as follows:

For ° = 0, P̂j(x) = 1− (k − 1)
1/[1 + f̂j(x)]∑k
l=1 1/[1 + f̂l(x)]

; (4.6)

For ° = 0.5, P̂j(x) =
1

k
(1 + f̂j(x)); (4.7)

For ° = 1, P̂j(x) =
1/[f̂j(x)− (k − 1)]∑k
l=1 1/[f̂l(x)− (k − 1)]

. (4.8)

Notice that the proposed estimators of class probabilities P̂j(x) sum up to 1, that is,
∑k

j=1 P̂j(x) =

1. However, individual estimator P̂j(x) in (4.6)-(4.8) may be outside of [0, 1]. To ensure the

estimiated probabilities are proper, we propose to rescale the probability estimates using the

following formulae,

P̂ scaled
j (x) =

P̂j(x)−minl=1,⋅⋅⋅ ,k P̂l(x)∑k
l=1[P̂l(x)−minm=1,⋅⋅⋅ ,k P̂m(x)]

.

4.4 Computational Algorithm

Since fj ∈ ({1} + ℋK), we can write fj(x) = ¯j0 +
∑n

i=1 ¯jiK(xi,x) using the representative

theorem (Kimeldorf and Wahba, 1971). The L2 penalty commonly used is J(f j) = ∥fj∥2ℋK
=

¯T
j K¯j , where ¯j = (¯j1, ⋅ ⋅ ⋅ , ¯jn)T and K is the n×n matrix with ij-th entry K(xi,xj). For

simplicity of calculation, we use the penalty term J(f j) = ∥fj∥2ℋK
+ ¯2

j0 = ¯T
j K¯j + ¯2

j0 as in

Tang and Zhang (2006), which results in a closed form solution. This makes computation simpler

and gives similar results with the same problem using the original L2 penalty. In addition, we

85



use a new coding to replace y with z defined as

zij =

⎧
⎨
⎩

1 if yi = j

− 1
k−1 if yi ∕= j.

(4.9)

Let wij = ° if yi = j and 1 − ° otherwise. Then minimizing
∑n

i=1 L(f(xi), yi) with L in (4.4)

becomes equivalent to minimizing

n∑

i=1

⎡
⎣° (1− fyi(xi))

2 + (1− °)
∑

j ∕=yi

(
− 1

k − 1
− fj(xi)

)2
⎤
⎦

=
n∑

i=1

k∑

j=1

wij(zij − fj(xi))
2

=

k∑

j=1

[zj − X̃ ˜̄
j ]
TW j [zj − X̃ ˜̄

j ], (4.10)

where zj = (z1j , ⋅ ⋅ ⋅ , znj)T , 1n = (1, ⋅ ⋅ ⋅ , 1)T , X̃ = [1n,K], ˜̄
j = (¯j0,¯

T
j )

T and W j =

diag{w1j , ⋅ ⋅ ⋅ , wnj}. Let 0n = (0, ⋅ ⋅ ⋅ , 0)T ,

G =

⎛
⎜⎝

1 0Tn

0n K

⎞
⎟⎠ ,

X̃
∗
j = W

1/2
j X̃G−1/2, z∗

j = W
1/2
j zj , and ¯∗

j = G1/2 ˜̄
j . Then, (4.10) can be written as

∑k
j=1[z

∗
j − X̃

∗
¯∗
j ]
T [z∗

j − X̃
∗
¯∗
j ]. Hence, solving (4.1) with the loss function L in (4.4) and

the penalty term J(f j) = ¯T
j K¯j + ¯2

j0 is equivalent to minimizing

k∑

j=1

[z∗
j − X̃

∗
j¯

∗
j ]
T [z∗

j − X̃
∗
j¯

∗
j ] + ¸¯∗

j
T¯∗

j

subject to
∑k

j=1 ¯
∗
j = 0n+1. To solve this, we consider its dual problem with the Lagrange

multiplier vector 2u ∈ Rn+1,

L(¯,u) =
k∑

j=1

[
(z∗

j − X̃
∗
j¯

∗
j )

T (z∗
j − X̃

∗
j¯

∗
j ) + ¸¯∗

j
T¯∗

j

]
− 2uT

k∑

j=1

¯∗
j . (4.11)

86



Setting derivatives of (4.11) to zero gives

∂L

∂¯∗
j

= 2
[
X̃

∗T
j (X̃

∗
j¯

∗
j − z∗

j ) + ¸¯∗
j − u

]
= 0n+1, (4.12)

∂L

∂u
=

k∑

j=1

¯∗
j = 0n+1. (4.13)

From (4.12), we have ¯∗
j = (X̃

∗T
j X̃

∗
j + ¸I)−1(X̃

∗T
j z∗

j + u). Combining with (4.13), we have

u = −[
∑k

j=1Bj ]
−1[

∑k
j=1BjX̃

∗
jz

∗
j ], where Bj = (X̃

∗T
j X̃

∗
j + ¸I)−1. Plugging this into (4.12),

together with the definition of ¯∗
j , gives

¯j = Aj

⎡
⎣X̃T

W jzj −
⎛
⎝

k∑

j=1

Aj

⎞
⎠

−1⎛
⎝

k∑

j=1

AjX̃
T
W jzj

⎞
⎠
⎤
⎦ , (4.14)

where Aj = (X̃
T
W jX̃ + ¸G)−1.

So far, we have focused on the standard case which treats all samples with equal weight.

However, there could be situations that we want to give different weights on different subjects.

For example, it could be more severe to misclassify an observation to a certain class than to

other classes. Then it is natural to put a higher cost for that certain type of misclassification.

This can be achieved by putting different weights on observations in different classes.

The multicategory weighted CLS classifier can be directly implemented with a simple modi-

fication. Let ¼i be the weight we want to impose on the i-th observation. Then the loss function

in (4.10) remains the same, except wij is replaced by w∗
ij = ¼iwij . The rest of the algorithm

remains the same.

4.5 Numerical Results

4.5.1 Simulation

To explore the performance of our proposed multicategory CLS classifier, we carry out some

numerical analysis on the following multi-class examples. For Example 4.5.1.1, which is a 3-

class problem used in Liu and Yuan, we generate 50 observations for training, 50 observations

for tuning, and 106 observations for testing. For Examples 4.5.1.2 and 4.5.1.3, which have 6 and

87



−6 −4 −2 0 2 4 6

−
6

−
4

−
2

0
2

4
6

Example 1

Bayes
γ = 0
γ = 0.5
γ = 1

−6 −4 −2 0 2 4 6

−
6

−
4

−
2

0
2

4
6

Example 2

Bayes
γ = 0
γ = 0.5
γ = 1

−6 −4 −2 0 2 4 6

−
6

−
4

−
2

0
2

4
6

Example 3

Bayes
γ = 0
γ = 0.5
γ = 1

Figure 4.2: Scatter plots of typical datasets of Example 4.5.1, 4.5.2, and 4.5.3.

4 classes respectively, we generate 100 observations for each of training and tuning sets to ensure

each training set has reasonable number of observations for every class. For testing, we generate

106 observations similarly to Example 4.5.1.1. A model is developed based on the training set,

then the tuning set is used to choose ¸ among the set {2−16, 2−15, ⋅ ⋅ ⋅ , 215}. With the selected

model and ¸, the misclassification rate is calculated based on the testing set. We repeat this

procedure 100 times with ° = 0.0, 0.1, 0.2, ⋅ ⋅ ⋅ , 1.0 to examine the effect of °.

We also included the results of the case when ° is tuned among {0, 0.5, 1} together with ¸.

For probability estimation, we train and tune the model in the same manner for ° = 0, 0.5, 1,

then use the formulae (4.6)-(4.8) to estimate class probability. The probability estimation error,

1
nk

∑n
i=1

∑k
j=1 ∣P̂j(x)− Pj(x)∣, is calculated based on the testing set.

Example 4.5.1.1 We generate three-class data with

P (Y = j) = 1/3, for j = 1, ⋅ ⋅ ⋅ , 3,
P (X∣Y = j) ∼ N(¹j , 1.5

2I2), for j = 1, ⋅ ⋅ ⋅ , 3,

¹j =

⎛
⎜⎝

0

2

⎞
⎟⎠ ,

⎛
⎜⎝

−√
3

−1

⎞
⎟⎠ ,

⎛
⎜⎝

√
3

−1

⎞
⎟⎠ , for j = 1, ⋅ ⋅ ⋅ , 3, respectively.

(4.15)

Since the Bayes boundary of this example is piecewise linear, linear learning can be sufficient.

However, we added the results using the polynomial kernel of order 2 as well to further illustrate

88



the behavior of the multicategory CLS classifier. Moreover, we also report the performance of

the RMSVM with the linear kernel for comparison.

Table 4.1: Estimated Test errors based on 100 replications for Example 4.5.1.1. The rows
with tuned 1 and tuned 2 show the results when ¸ is tuned at the same time with ° among
{0, 0.1, 0.2, ⋅ ⋅ ⋅ , 1.0}, and among {0, 0.5, 1}, respectively. The Bayes error is 0.2043.

Multicategory CLS RMSVM

° Linear Poly Linear Poly

0.0 0.2275(0.0019) 0.2218(0.0016) 0.2821(0.0094) 0.2273 (0.0023)
0.1 0.2268(0.0017) 0.2226(0.0019) 0.2672(0.0080) 0.2286 (0.0024)
0.2 0.2248(0.0015) 0.2227(0.0018) 0.2527(0.0062) 0.2291 (0.0024)
0.3 0.2234(0.0015) 0.2230(0.0019) 0.2425(0.0051) 0.2315 (0.0028)
0.4 0.2211(0.0013) 0.2237(0.0019) 0.2370(0.0043) 0.2323 (0.0029)
0.5 0.2196(0.0012) 0.2248(0.0020) 0.2312(0.0036) 0.2337 (0.0031)
0.6 0.2182(0.0011) 0.2261(0.0021) 0.2282(0.0031) 0.2363 (0.0034)
0.7 0.2171(0.0013) 0.2270(0.0021) 0.2282(0.0032) 0.2390 (0.0034)
0.8 0.2162(0.0010) 0.2269(0.0018) 0.2285(0.0032) 0.2426 (0.0035)
0.9 0.2169(0.0011) 0.2296(0.0019) 0.2307(0.0037) 0.2546 (0.0051)
1.0 0.2180(0.0014) 0.2399(0.0033) 0.2493(0.0061) 0.3101 (0.0066)
tuned 1 0.2204(0.0013) 0.2255(0.0022) 0.2288(0.0029) 0.2344 (0.0032)
tuned 2 0.2215(0.0015) 0.2252(0.0022) 0.2340(0.0036) 0.2331 (0.0035)

The results are summarized in Table 4.1 and Figure 4.3. When the linear kernel is used, the

test error decreases as ° increases. On the other hand, the polynomial kernel of order 2 gives

the similar results except the test error becomes very high when ° = 1.0. Overall, the results

are consistently good when ° is around 0.5. The probability estimation error has a similar

pattern: it becomes the smallest when ° = 0.5. These results indicate that the multicategory

CLS classifier gives the best result when ° is near 0.5, and the combination of two different

versions of the squared loss functions is indeed better than both uncombined loss functions.

The performance of the RMSVM has a similar pattern to that of the multicategory CLS

classifier in the sense that the classification error decreases as the value of ° goes bigger, but

after some point it increases a bit so that ° in the middle works the best overall. Furthermore,

the multicategory CLS classifier outperforms the RMSVM on this example.

89



0.0 0.2 0.4 0.6 0.8 1.0

0.
20

0.
24

0.
28

0.
32

Test Error (Linear)

γ

Te
st

 E
rr

or

MCLS Linear
RMSVM Linear
MCLS Linear with tuned γ
RMSVM Linear with tuned γ
Bayes

0.0 0.2 0.4 0.6 0.8 1.0
0.

20
0.

24
0.

28
0.

32

Test Error (Poly2)

γ

Te
st

 E
rr

or

MCLS Poly2
RMSVM Poly2
MCLS Poly2 with tuned γ
RMSVM Poly2 with tuned γ
Bayes

0.0 0.2 0.4 0.6 0.8 1.0

0.
10

0.
15

0.
20

0.
25

0.
30

Probability Estimation Error of MCLS (Linear)

γ

P
ro

ba
bi

lit
y 

E
st

im
at

io
n 

E
rr

or

Linear (L1)
Linear (L2)
Linear tuned (L1)
Linear tuned (L2)

0.0 0.2 0.4 0.6 0.8 1.0

0.
10

0.
15

0.
20

0.
25

0.
30

Probability Estimation Error of MCLS (Poly2)

γ

P
ro

ba
bi

lit
y 

E
st

im
at

io
n 

E
rr

or

Poly2 (L1)
Poly2 (L2)
Poly2 tuned (L1)
Poly2 tuned (L2)

Figure 4.3: Left: Plot of the average test errors of the multicategory CLS classifier based on
100 replications with ° = 0.0, 0.1, 0.2, ⋅ ⋅ ⋅ , 1.0 for Example 4.5.1.1. Right: Plot of the average
probability estimation errors of the multicategory CLS classifier based on 100 replications with
° = 0.0, 0.5, and 1.0 for Example 4.5.1.1.

90



Table 4.2: Estimated Test errors based on 100 replications for Example 4.5.1.2. The rows
with tuned 1 and tuned 2 show the results when ¸ is tuned at the same time with ° among
{0, 0.1, 0.2, ⋅ ⋅ ⋅ , 1.0}, and among {0, 0.5, 1}, respectively. The Bayes error is 0.0459 and 0.1538
when ¾ = 0.5 and ¾ = 0.7, respectively.

¾ = 0.5 ¾ = 0.7

° Linear Poly Linear Poly

0.0 0.2280 (0.0078) 0.1137 (0.0046) 0.3074 (0.0062) 0.2304 (0.0045)
0.1 0.2276 (0.0078) 0.1035 (0.0043) 0.3072 (0.0063) 0.2229 (0.0041)
0.2 0.2274 (0.0078) 0.0927 (0.0038) 0.3078 (0.0063) 0.2139 (0.0036)
0.3 0.2269 (0.0079) 0.0848 (0.0034) 0.3075 (0.0063) 0.2046 (0.0033)
0.4 0.2244 (0.0079) 0.0772 (0.0029) 0.3061 (0.0063) 0.1961 (0.0029)
0.5 0.2177 (0.0078) 0.0712 (0.0025) 0.3009 (0.0062) 0.1898 (0.0027)
0.6 0.1984 (0.0075) 0.0668 (0.0020) 0.2873 (0.0059) 0.1841 (0.0022)
0.7 0.1595 (0.0064) 0.0633 (0.0015) 0.2594 (0.0051) 0.1793 (0.0018)
0.8 0.1172 (0.0050) 0.0612 (0.0012) 0.2255 (0.0041) 0.1761 (0.0015)
0.9 0.0822 (0.0034) 0.0604 (0.0010) 0.1957 (0.0030) 0.1743 (0.0014)
1.0 0.0660 (0.0012) 0.0590 (0.0011) 0.1839 (0.0018) 0.1737 (0.0014)
tuned 1 0.0670 (0.0012) 0.0626 (0.0010) 0.1871 (0.0020) 0.1775 (0.0016)
tuned 2 0.0660 (0.0012) 0.0619 (0.0011) 0.1849 (0.0019) 0.1775 (0.0016)

Example 4.5.1.2 In this example, we generate six-class data with

P (Y = j) = 1/6, for j = 1, ⋅ ⋅ ⋅ , 6,
P (X∣Y = j) ∼ N(¹j , ¾

2I2), for j = 1, ⋅ ⋅ ⋅ , 6,

¹j =

⎛
⎜⎝

1
√
3

⎞
⎟⎠ ,

⎛
⎜⎝

2

0

⎞
⎟⎠ ,

⎛
⎜⎝

1

−√
3

⎞
⎟⎠ ,

⎛
⎜⎝

−1

−√
3

⎞
⎟⎠ ,

⎛
⎜⎝

−2

0

⎞
⎟⎠ ,

⎛
⎜⎝

−1
√
3

⎞
⎟⎠ , for j = 1, ⋅ ⋅ ⋅ , 6, respectively,

(4.16)

for ¾ = 0.5 and ¾ = 0.7. Similar to Example 4.5.1.1, the Bayes boundary is piecewise linear,

but we report the results of the multicategory CLS classifier with both of linear and polynomial

kernel of order 2 in Table 4.2 and Figure 4.4. Since the RMSVM runs into numerical problems

on this example due to too high number of classes, we do not report the results of the RMSVM

and the Two-step MCLS classifier.

Clearly, higher ° works better in this example regardless of the kernel choice. This indicates

that the multicategory CLS classifier indeed improves the existing multi-class proximal SVM.

The tuned methods give very reasonable performance.

91



0.0 0.2 0.4 0.6 0.8 1.0

0.
05

0.
10

0.
15

0.
20

Test Error (σ=0.5)

γ

Te
st

 E
rr

or

Linear
Poly2
Linear with tuned γ
Poly2 with tuned γ
Bayes

0.0 0.2 0.4 0.6 0.8 1.0
0.

15
0.

25
0.

35
0.

45

Probability Estimation Error (σ=0.5)

γ

P
ro

ba
bi

lit
y 

E
st

im
at

io
n 

E
rr

or

Linear (L1)
Poly2 (L1)
Linear (L2)
Poly2 (L2)

Linear with tuned γ (L1)
Poly2 with tuned γ (L1)
Linear with tuned γ (L2)
Poly2 with tuned γ (L2)

0.0 0.2 0.4 0.6 0.8 1.0

0.
15

0.
20

0.
25

0.
30

Test Error (σ=0.7)

γ

Te
st

 E
rr

or

Linear
Poly2
Linear with tuned γ
Poly2 with tuned γ
Bayes

0.0 0.2 0.4 0.6 0.8 1.0

0.
15

0.
20

0.
25

0.
30

0.
35

0.
40

Probability Estimation Error (σ=0.7)

γ

P
ro

ba
bi

lit
y 

E
st

im
at

io
n 

E
rr

or

Linear (L1)
Poly2 (L1)
Linear (L2)
Poly2 (L2)

Linear with tuned γ (L1)
Poly2 with tuned γ (L1)
Linear with tuned γ (L2)
Poly2 with tuned γ (L2)

Figure 4.4: Left: Plot of the average test errors of the multicategory CLS classifier based on
100 replications with ° = 0.0, 0.1, 0.2, ⋅ ⋅ ⋅ , 1.0 for Example 4.5.1.2. Here, the results with ’tuned
°’ are the results when ° is tuned among {0, 0.5, 1} along with ¸. Right: Plot of the average
probability estimation errors of the multicategory CLS classifier based on 100 replications with
° = 0.0, 0.5, and 1.0 for Example 4.5.1.2.

92



Table 4.3: Estimated Test errors based on 100 replications for Example 4.5.1.3. The rows
with tuned 1 and tuned 2 show the results when ¸ is tuned at the same time with ° among
{0, 0.1, 0.2, ⋅ ⋅ ⋅ , 1.0}, and among {0, 0.5, 1}, respectively. The Bayes error is 0.0434 and 0.1450
when ¾ = 0.5 and ¾ = 0.7, respectively.

¾ = 0.5 ¾ = 0.7

° Linear Poly Linear Poly

0.0 0.2056 (0.0029) 0.2065 (0.0038) 0.0916 (0.0031) 0.0963 (0.0038)
0.1 0.2011 (0.0028) 0.2010 (0.0035) 0.0839 (0.0027) 0.0882 (0.0032)
0.2 0.1951 (0.0027) 0.1955 (0.0032) 0.0779 (0.0023) 0.0821 (0.0027)
0.3 0.1899 (0.0024) 0.1891 (0.0028) 0.0732 (0.0020) 0.0771 (0.0023)
0.4 0.1855 (0.0022) 0.1850 (0.0025) 0.0700 (0.0018) 0.0724 (0.0020)
0.5 0.1822 (0.0021) 0.1793 (0.0021) 0.0673 (0.0016) 0.0686 (0.0016)
0.6 0.1788 (0.0020) 0.1761 (0.0019) 0.0655 (0.0015) 0.0656 (0.0015)
0.7 0.1763 (0.0016) 0.1721 (0.0016) 0.0628 (0.0013) 0.0633 (0.0013)
0.8 0.1742 (0.0016) 0.1695 (0.0014) 0.0614 (0.0012) 0.0611 (0.0012)
0.9 0.1772 (0.0016) 0.1689 (0.0015) 0.0606 (0.0012) 0.0597 (0.0010)
1.0 0.2571 (0.0035) 0.1662 (0.0013) 0.1476 (0.0031) 0.0599 (0.0010)
tuned 1 0.1795 (0.0022) 0.1715 (0.0015) 0.0634 (0.0014) 0.0619 (0.0012)
tuned 2 0.1851 (0.0021) 0.1714 (0.0014) 0.0699 (0.0017) 0.0615 (0.0011)

Example 4.5.1.3 we generate four-class data with

P (Y = j) = 1/4, for j = 1, ⋅ ⋅ ⋅ , 4,
P (X∣Y = 1) ∼ 0.5N((1,

√
3)T , ¾2I2) + 0.5N((−1,−√

3)T , ¾2I2)

P (X∣Y = 2) ∼ 0.5N((2, 0)T , ¾2I2) + 0.5N((−2, 0)T , ¾2I2)

P (X∣Y = j) ∼ N(¹j , ¾
2I2), for j = 3, 4,

¹3 =

⎛
⎜⎝

1

−√
3

⎞
⎟⎠ ,¹4 =

⎛
⎜⎝

−1
√
3

⎞
⎟⎠ ,

(4.17)

for ¾ = 0.5 and ¾ = 0.7. Due to the structure of this dataset, linear learning will not be suitable,

thus we consider the Gaussian kernel and the polynomial kernel of order 2.

The results are summarized in Table 4.3 and Figure 4.6. For each kernel, higher ° generally

works better, but the highest ° = 1 gives the worst performance. Hence, we can conclude that

it is safe to use ° that is somewhere in the middle. Furthermore, tuning ° can be a reasonable

way to choose °.

93



0.0 0.2 0.4 0.6 0.8 1.0

0.
04

0.
06

0.
08

0.
10

0.
12

0.
14

Test Error (σ=0.5)

γ

Te
st

 E
rr

or

Gaussian
Poly2
Gaussian with tuned γ
Poly2 with tuned γ
Bayes

0.0 0.2 0.4 0.6 0.8 1.0
0.

15
0.

25
0.

35
0.

45

Probability Estimation Error (σ=0.5)

γ

P
ro

ba
bi

lit
y 

E
st

im
at

io
n 

E
rr

or

Gaussian (L1)
Poly2 (L1)
Gaussian (L2)
Poly2 (L2)

Gaussian with tuned γ (L1)
Poly2 with tuned γ (L1)
Gaussian with tuned γ (L2)
Poly2 with tuned γ (L2)

0.0 0.2 0.4 0.6 0.8 1.0

0.
14

0.
18

0.
22

0.
26

Test Error (σ=0.7)

γ

Te
st

 E
rr

or

Gaussian
Poly2
Gaussian with tuned γ
Poly2 with tuned γ
Bayes

0.0 0.2 0.4 0.6 0.8 1.0

0.
15

0.
20

0.
25

0.
30

0.
35

Probability Estimation Error (σ=0.7)

γ

P
ro

ba
bi

lit
y 

E
st

im
at

io
n 

E
rr

or

Gaussian (L1)
Poly2 (L1)
Gaussian (L2)
Poly2 (L2)

Gaussian with tuned γ (L1)
Poly2 with tuned γ (L1)
Gaussian with tuned γ (L2)
Poly2 with tuned γ (L2)

Figure 4.5: Left: Plot of the average test errors of the multicategory CLS classifier based on
100 replications with ° = 0.0, 0.1, 0.2, ⋅ ⋅ ⋅ , 1.0 for Example 4.5.1.3. Right: Plot of the average
probability estimation errors of the multicategory CLS classifier based on 100 replications with
° = 0.0, 0.5, and 1.0 for Example 4.5.1.3.

94



4.5.2 Real Application

To further demonstrate the performance of the multicategory CLS classifiers, we use the Leukemia

data set described in Golub et al. (1999). The Leukemia data set consists of 7129 gene expres-

sion values of 38 examples in the training set and 34 examples in the testing set. In the original

paper, they use gene expression data to classify subjects into two types of leukemias, ALL (acute

lymphoblastic leukemia) and AML (acute myeloid leukemia). Since ALL type can be further

divided into B-cell and T-cell ALLs (ALLB and ALLT), we can perform three-category clas-

sification on this data set. The training set contains 19, 8, 11 subjects of ALLB, ALLT, and

AML types, and the testing set has 19, 1, 14 subjects of ALLB, ALLT, and AML types. Out of

7129 genes, we choose 40 genes by prescreening procedure using the ratios of between-groups to

within-groups sum of squares of the genes. We choose the tuning parameter ¸ by 5-fold cross

validation on the training set.

Similar to the results of the original binary problem, only one or no observation is misclassified

for any value of °. Hence rather than looking at the misclassification rate, it might be more

interesting to look at the performance of the class probability estimation. As shown in Figure 4.7,

the estimated class probabilities agree with the true memberships of the observations, except

when ° = 1, two patients are misclassified (ALLT patient and the first AML patient in the

graph). According to heatmap of this data set with selected 40 genes in Figure 4.6, these are

the ones that are hard to classify and the estimated probability reflects the ambiguity of the

gene expressions of those two patients. In real application, estimated class probabilities such as

the one shown here could be more helpful than just class membership prediction.

4.6 Summary and Discussion

In this section, we propose the multicategory CLS classifier which makes use of a convex com-

bination of two square loss functions. The CLS classifier is shown to have Fisher consistency,

conditional probability estimation, efficient computation, ability to handle data with high di-

mension and large number of classes. Through simulated examples, the CLS classifier is shown

to outperform proximal SVMs and multicategory SVMs.

The current CLS classifier makes use of the L2 penalty as in the ridge regression. Although L2

95



A
LL

B

A
LL

B

A
LL

B

A
LL

B

A
LL

B

A
LL

B

A
LL

B

A
LL

B

A
LL

B

A
LL

B

A
LL

B

A
LL

B

A
LL

B

A
LL

B

A
LL

B

A
LL

B

A
LL

B

A
LL

B

A
LL

B

A
LL

T

A
M

L

A
M

L

A
M

L

A
M

L

A
M

L

A
M

L

A
M

L

A
M

L

A
M

L

A
M

L

A
M

L

A
M

L

A
M

L

A
M

L

γ = 0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ALLB
ALLT
AML

A
LL

B

A
LL

B

A
LL

B

A
LL

B

A
LL

B

A
LL

B

A
LL

B

A
LL

B

A
LL

B

A
LL

B

A
LL

B

A
LL

B

A
LL

B

A
LL

B

A
LL

B

A
LL

B

A
LL

B

A
LL

B

A
LL

B

A
LL

T

A
M

L

A
M

L

A
M

L

A
M

L

A
M

L

A
M

L

A
M

L

A
M

L

A
M

L

A
M

L

A
M

L

A
M

L

A
M

L

A
M

L

γ = 0.5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

A
LL

B

A
LL

B

A
LL

B

A
LL

B

A
LL

B

A
LL

B

A
LL

B

A
LL

B

A
LL

B

A
LL

B

A
LL

B

A
LL

B

A
LL

B

A
LL

B

A
LL

B

A
LL

B

A
LL

B

A
LL

B

A
LL

B

A
LL

T

A
M

L

A
M

L

A
M

L

A
M

L

A
M

L

A
M

L

A
M

L

A
M

L

A
M

L

A
M

L

A
M

L

A
M

L

A
M

L

A
M

L

γ = 1

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Figure 4.6: Plot of the estimated class probabilities for subjects in the testing set of the Leukemia
data. The heights of cyan, bright yellow, and dark green bars stand for the estimated probability
of ALLB, ALLT, and AML, respectively.

96



Training set

    ALLB ALLT AML

Testing set

PROBABLE PR
HLA CLASS II HIST
T−CELL ANTIGEN CD7 PRECURSOR
CTSD Cathepsin D (lysosomal aspar
Terminal transf
MB−1 gene
IGHM Immunoglob
SEF2−1A protein (SEF2−1A) mRNA, 5’ end
TCF3 Transcription f
CD19 gene
MEF2C MADS bo
GB DEF = (lambda) DNA f
TCL1 gene (T cell leuk
IGB Immunoglob
CD24 signal tr
MPO Myelopero
Azurocidin gene
CST3 Cystatin C (am
DF D component of complement (adipsin)
CYSTATIN A
Zyxin
APLP2 Amyloid beta (A4) precursor−lik
ANX1 Annexin I (lipocor
GLUTATHIONE S−TRANSFERASE, MICR
CD33 CD33 antigen (diff
PFC Properdin P f
SPTAN1 Spectr
Inducible protein mRNA
Protein tyrosine kinase related mRNA sequence
GB DEF = T−cell antigen receptor gene T3−delta
GB DEF = T−lymphocyte specific protein tyrosine kinase p56lck (lck) ab
TCF7 Transcription f
TCRB T−cell receptor
GB DEF = MAL gene e
CD1B CD1b antigen (th
PTPN7 Protein tyrosine phosphatase
CD3G CD3G antigen, gamma polypeptide (TiT3 comple
GB DEF = Lymphocyte−specific protein tyrosine kinase (LCK) gene
CD3Z CD3Z antigen, z
(AF1q) mRNA

   ALLB ALLT AML

Figure 4.7: Heat maps of the Leukemia data. The left panel is for the training set and the right
panel is for the testing set. The red and green colors represent high and low expression values
respectively. The subjects are displayed in the same order as the Figure 4.

97



penalty works well overall, it does not perform automatic variable selection. For high dimensional

data with many noise variables, other penalties such as L1 penalty (Zhu et al., 2004; Wang and

Shen, 2007) can be more useful to deliver sparse models. It will be interesting to explore sparse

CLS classifiers for high dimensional data analysis.

4.7 Proofs

Proof of Theorem 7

First, observe that

E[L(f(x), y)∣X = x] = °
∑k

j=1 g(fj(x))Pj(x) + (1− °)
∑k

l=1[(
∑k

j=1 g(−fj(x)))− g(−fl(x))]Pl(x)

= °
∑k

j=1 g(fj(x))Pj(x) + (1− °)
∑k

j=1 g(−fj(x))− (1− °)
∑k

l=1 g(−fl(x))Pl(x)

= °
∑k

j=1 g(fj(x))Pj(x) + (1− °)
∑k

j=1(1− Pj(x))g(−fj(x)).

(4.18)

To obtain the minimizer of (4.18) subject to
∑k

j fj(x) = 0, we use the Lagrange multiplier

method. For convenience, let fj = fj(x). The corresponding Lagrange primal is

L(f , ®) = °
k∑

j=1

g(fj)Pj(x) + (1− °)
k∑

j=1

(1− Pj(x))g(−fj)− ®
k∑

j=1

fj .

Setting the first derivatives to zero gives,

∂L
∂f1

= °P1(x)g
′(f1)− (1− °)(1− P1(x))g

′(−f1)− ® = 0

...

∂L
∂fk

= °Pk(x)g
′(fk)− (1− °)(1− Pk(x))g

′(−fk)− ® = 0

∂L
∂® =

∑k
j=1 = 0.

Therefore, we have

−°Pj(x)g
′(fj)+(1−°)(1−Pj(x))g

′(−fj) = −°Pl(x)g
′(fl)+(1−°)(1−Pl(x))g

′(−fl) for any j ∕= l

(4.19)

Without loss of generality, we can assume that argmaxj Pj(x) = 1. Suppose fj ⩾ f1 for some

j ∕= 1. Since g′(u) < 0 and g′′(u) > 0, we have g′(f1) ⩽ g′(fj) < 0 and 0 > g′(−f1) ⩾

98



g′(−fj). This implies °P1(x)g
′(f1) < °Pj(x)g

′(fj) and (1− °)(1−P1(x))g
′(−f1) > (1− °)(1−

Pj(x))g
′(−fj), which gives −°P1(x)g

′(f1) + (1− °)(1− P1(x))g
′(−f1) > −°Pj(x)g

′(fj) + (1−
°)(1− Pj(x))g

′(−fj). This contradicts to (4.19). Thus we conclude f1 > fj for any j ∕= 1 when

argmaxj Pj(x) = 1. This completes the proof.

99



Bibliography

L. T. H. An and P. D. Tao. Solving a class of linearly constrained indefinite quadratic problems
by d.c. algorithms. Journal of Global Optimization, 11:253–285, 1997.

R. Bahadur. A note on quantiles in large samples. Annals of Mathematical Statistics, 37:577–580,
1966.

P. Bartlett, M. Jordan, and J. McAuliffe. Convexity, classification, and risk bounds. Journal of
the American Statistical Association, 101:138–156, 2006.

A. Bhattacharjee, W. G. Richards, J. Staunton, C. Li, S. Monti, P. Vasa, C. Ladd, J. Beheshti,
R. Bueno, M. Gillette, M. Loda, G. Weber, E. J. Mark, E. S. Lander, W. Wong, B. E. Johnson,
T. R. Golub, D. J. Sugarbaker, and M. Meyerson. Classification of human lung carcinomas
by mrna expression profiling reveals distinct adenocarcinoma subclasses. Proceedings of the
National Academy of Sciences of the United States of America, 98(24):13790–13795, 2001.

A. M. Bianco and V. J. Yohai. Robust estimation in the logistic regression model. In H Rieder,
editor, Robust Statistics, Data Analysis, and Computer Intensive Methods, volume 109 of
Lecture Notes in Statistics. Springer-Verlag, New York, 1996.

H. Bondell. Minimum distance estimation for the logistic regression model. Biometrika, 92:
724–731, 2005.

E. Bredensteiner and K. Bennett. Multicategory classification by support vector machines.
Computational Optimizations and Applications, 12:53–79, 1999.

E. Cantoni and E. Ronchetti. Robust inference for generalized linear models. Journal of the
American Statistical Association, 96(455):1022–1030, 2001.

R. J. Carroll and S. Pederson. On robustness in the logistic regression model. Journal of the
Royal Statistical Society. Series B (Methodological), 55:693–706, 1993.

P. Chaudhuri. Nonparametric estimates of regression quantiles and their local bahadur repre-
sentation. The Annals of Statistics, 19:760–777, 1991.

R. Collobert, F. Sinz, J. Weston, and L. Bottou. Large scale transductive svms. Journal of
Machine Learning Research, 7:1687–1712, September 2006.

J. B. Copas. Binary regression models for contaminated data (with discussion). Journal of the
Royal Statistical Society. Series B (Methodological), 50:225–265, 1988.

K. Crammer and Y. Singer. On the algorithmic implementation of multiclass kernel-based vector
machines. Journal of Machine Learning Research, 2:265–292, 2001.

P. Craven and G. Wahba. Smoothing noisy data with spline functions: estimating the correct
degree of smoothing by the method of generalized cross-validation. Numerische Mathematik,
31(4):377–403, 1979.

N. Cristianini and J. Shawe-Taylor. An Introduction to Support Vector Machines. Cambridge
University Press, 2000.

100



C. Croux and G. Haesbroeck. Implementing the bianco and yohai estimator for logistic regres-
sion. Computational Statistics and Data Analysis, 44:273–295, 2003.

S. Dudoit, J. Fridly, and T. P. Speed. Comparison of discrimination methods for the classification
of tumors using gene expression data. Journal of the American Statistical Association, 97:
77–87, 2002.

J. Fan and R. Li. Variable selection via nonconcave penalized likelihood and it oracle properties.
Journal of American Statistical Association, 96:1348–1360, 2001.

Y. Freund and R. E. Schapire. A decision-theoretic generalization of on-line learning and an
application to boosting. Journal of Computer and System Sciences, 55(1):119–139, 1997.

J. Friedman, T. Hastie, and R. Tibshirani. Additive logistic regression: A statistical view of
boosting. The Annals of Statistics, 28:337–407, 2000.

G. Fung and O. L. Mangasarian. Proximal support vector machine classifiers. In Proceedings
KDD-2001: Knowledge Discovery and Data Mining, pages 77–86, 2001.

T. Golub, D. Slonim, P. Tamayo, C. Huard, M. Gaasenbeek, J. Mesirov, H. Coller, M. Loh,
J. Downing, and M. Caligiuri. Molecular classification of cancer: class discovery and class
prediction by gene expression monitoring. Science, 286:531–537, 1999.

T. Hastie, S. Rosset, R. Tibshirani, and J. Zhu. The entire regularization path for the support
vector machine. Journal of Machine Learning Research, 5(Oct):1391–1415, 2004.

T. J. Hastie and R. J. Tibshirani. Generalized Additive Models. Chapman and Hall, 1990.

R. Horst and N. V. Thoai. Dc programming: overview. Journal of Optimization Theory and
Applications, 103:1–41, 1999.

D. Hunter and R. Li. Variable selection using mm algorithms. The Annals of Statistics, 33:
1617–1642, 2005.

G. Kimeldorf and G. Wahba. Some results on Tchebycheffian spline functions. Journal of
Mathematical Analysis and Applications, 33:82–95, 1971.

J.-Y. Koo, Y. Lee, Y. Kim, and C. Park. A bahadur representation of the linear support vector
machine. Journal of Machine Learning Research, 9:1343–1368, 2008.

W. S. Krasker and R. E. Welsch. Efficient bounded-influence regression estimation. Journal of
the American Statistical Association, 77(379):595–604, 1982.

H. R. Künsch, L. A. Stefanski, and R. J. Carroll. Conditionally unbiased bounded-influence es-
timation in general regression models, with applications to generalized linear models. Journal
of the American Statistical Association, 84(406):460–466, 1989.

le Cessie and van Houwelingen. Ridge estimators in logistic regression. Applied Statistics, 41:
191–201, 1992.

Y. Lee, Y. Lin, and G. Wahba. Multicategory support vector machines, theory, and application
to the classification of microarray data and satellite radiance data. Journal of the American
Statistical Association, 99:67–81, 2004.

101



X. Lin, G. Wahba, D. Xiang, F. Gao, R. Klein, and B. Klein. Smoothing spline ANOVA models
for large data sets with Bernoulli observations and the randomized GACV. The Annals of
Statistics, 28(6):1570–1600, 2000.

Y. Lin. Support vector machines and the bayes rule in classification. Data Mining and Knowledge
Discovery, 6:259–275, 2002.

Y. Lin. A note on margin-based loss functions in classification. Stat. and Prob. Letters, 68:
73–82, 2004.

Y. Lin and H. H. Zhang. Component selection and smoothing in smoothing spline analysis of
variance models – cosso. Annals of Statistics, 34:2272–2297, 2006.

Y. Lin, Y. Lee, and G. Wahba. Support vector machines for classification in nonstandard
situations. Machine Learning, 46:191–202, 2002.

Y. Liu. Unbiased estimate of generalization error and model selection in neural network. Neural
Networks, 8:215–219(5), 1995.

Y. Liu. Fisher consistency of multicategory support vector machines. Eleventh International
Conference on Artificial Intelligence and Statistics, pages 289–296, 2007.

Y. Liu and X. Shen. Multicategory psi-learning. Journal of the American Statistical Association,
101:500–509, 2006.

Y. Liu and M Yuan. Reinforced multicategory support vector machines. Under review.

Y. Liu, X. Shen, and H. Doss. Multicategory psi-learning and support vector machine: compu-
tational tools. Journal of Comput. and Graphical Statistics, 14:219–236, 2005.

Y. Liu, D. N. Hayes, A. Nobel, and J. S. Marron. Statistical significance of clustering for
high dimension low sample size data. Journal of the American Statistical Association, 103:
1281–1293, 2008.

J. S. Marron, M. Todd, and J. Ahn. Distance-weighted discrimination. Journal of the American
Statistical Association, 102(480):1267–1271, 2007.

P. McCullagh and J. Nelder. Generalized Linear Models. CAHPMAN & HALL/CRC, 1989.

S. Morgenthaler. Least-absolute-deviations fits for generalized linear models. Biometrika, 79(4):
747–754, 1992.

M. Y. Park and T. J. Hastie. Penalized logistic regression for detecting gene interac-
tions. Biostatistics, page kxm010, 2007. doi: 10.1093/biostatistics/kxm010. URL
http://biostatistics.oxfordjournals.org/cgi/content/abstract/kxm010v1.

D. Pollard. Asymptotics for least absolute deviation regression estimators. Econometric Theory,
7(2):186–199, 1991.

D. Pregibon. Resistant fits for some commonly used logistic models with medical applications.
Biometrics, 38(2):485–498, 1982.

X. Shen, G.C. Tseng, X. Zhang, and W.H. Wong. On psi-learning. Journal of the American
Statistical Association, 98:724–734, 2003.

102



L. A. Stefanski, R. J. Carroll, and D. Ruppert. Optimally hounded score functions for generalized
linear models with applications to logistic regression. Biometrika, 73(2):413–424, 1986.

J. A. K. Suykens and J. Vandewalle. Least squares support vector machine classifiers. Neural
Process. Lett., 9(3):293–300, 1999.

Y. Tang and H. H. Zhang. Multiclass proximal support vector machines. Journal of Computa-
tional and Graphical Statistics, 15:339–355(17), 2006.

R. Tibshirani. Regression shrinkage and selection via the lasso. Journal of the Royal Statistical
Society, Series B, 58:267–288, 1996.

V. Vapnik. Statistical Learning Theory. Wiley, 1998.

G. Wahba. Support vector machines, reproducing kernel hilbert spaces and the randomized
GACV. In Advances in Kernel Methods Support Vector Learning, pages 69–88. MIT Press,
1999.

J. Wang, X. Shen, and Y. Liu. Probability estimation for large margin classifiers. Biometrika,
95(1):149–167, 2007.

L. Wang and X. Shen. On L1-norm multiclass support vector machines. Journal of the American
Statistical Association, 102(478):583–594, 2007.

J. Weston. Extensions to the support vector method. Technical report, Royal Holloway, Uni-
versity of London, 1999.

J. Weston and C. Watkins. Support vector machines for multi-class pattern recognition. In
M. Verleysen, editor, Proceedings of the 7th European Symposium on Artificial Neural Net-
works (ESANN-99), pages 219–224. Bruges, Belgium, 1999.

Y. Wu and Y. Liu. Robust truncated hinge loss support vector machines. Journal of the
American Statistical Association, 102:974–983, 2007.

D. Xiang and G. Wahba. A generalized approximate cross validation for smoothing splines with
non-gaussian data. Statistica Sinica, 6:675–692, 1996.

M. Yuan and Y. Lin. Model selection and estimation in regression with grouped variables.
Journal of the Royal Statistical Society, Series B, 68:49–67, 2006.

H. H. Zhang. Variable selection for support vector machines via smoothing spline ANOVA.
Statistica Sinica, 16:659–674, 2006.

H. H. Zhang and W. Lu. Adaptive lasso for cox’s proportional hazards model. Biometrika, 94:
691–703, 2007.

H. H. Zhang, J. Ahn, X. Lin, and C. Park. Gene selection using support vector machines with
nonconvex penalty. Bioinformatics, 22:88–95, 2006.

J. Zhu and T. Hastie. Kernel logistic regression and the import vector machine. Journal of
Computational and Graphical Statistics, 14:185–205, 2005.

J. Zhu, S. Rosset, T. Hastie, and R. Tibshirani. 1-norm support vector machines. Neural
Information Processing Systems, 16, 2004.

H. Zou. The adaptive lasso and its oracle properties. Journal of the American Statistical
Association, 101:1418–1429, 2006.

103


