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ABSTRACT
FANGFANG WANG: Statistical analysis of some financial time series models

(Under the direction of Professor Eric Ghysels)

The aim of this dissertation is to study the dynamics of asset returns under both the physical

measure and the risk neutral measure. It consists of two different research topics.

The first topic is primarily concerned with a specific class of volatility component models.

This family of models have received much attention recently, not only because of their ability

to capture complex dynamics via a parsimonious parameter structure, but also because it is

believed that they can handle well structural breaks or non-stationarity in asset price volatility.

The first part of the dissertation focuses on their probabilistic properties and statistical inference

on these models is discussed as well.

The second topic pertains to the distributional approximations of risk neutral distribution

of asset returns for the purpose of option pricing. Risk neutral measures are a key ingredient of

financial derivative pricing. Much effort has been devoted to characterizing the risk neutral dis-

tribution pertaining to the underlying asset. The rest of the dissertation studies the Generalized

Hyperbolic family of distributions and examines their applications in option pricing.
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PREFACE

The aim of this dissertation is to study the dynamics of asset returns under both the physical

measure and the risk neutral measure. It consists of two independent research topics. The

first analyzes a specific class of recently introduced volatility component models. The second

pertains to distributional approximations of risk neutral densities for the purpose of derivative

pricing. The dissertation is made up of three chapters, which are three self-contained essays.

The technical details are provided in the Appendix.

Chapter 1 is concerned with the statistical analysis of various volatility component models.

This family of models have received much attention recently, not only because of their ability

to capture complex dynamics via a parsimonious parameter structure, but also because it is

believed that they can handle well structural breaks or non-stationarity in asset price volatility.

This chapter focuses on studying the distributional properties of recently proposed volatility

component models. Sufficient conditions for the existence or/and uniqueness of weakly/strictly

stationary (ergodic) solutions with mixing property to the volatility component models are

derived. There is a clear need for such an analysis, since any discussion about non-stationarity

presumes we know when component models are stationary. As it turns out, this is not the case

and the purpose of the study is to rectify this. The necessary conditions under which these

models could structure non-stationarity are presented. This chapter also includes the sampling

behavior of the maximum likelihood estimates of the volatility component models and their

local consistency and asymptotic normality are establishes as well.

Chapter 2 and Chapter 3 pertain to derivative pricing and the characterization of the risk

neutral distribution of underlying asset. Chapter 2 focuses on the class of normal inverse

Gaussian (NIG) distributions and study its performance in approximating risk neutral density.

The appeal of the NIG class of distributions is that they are skewed and leptokurtic which meet

the stylized feature of asset returns, and it is analytically tractable in terms of the moment

estimation. The reason to consider the method of moments estimation in this study is that
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the first four moments are what we care about in many risk management applications and the

risk neutral moments could be formulated by a portfolio of European options. One strength

of this approach is that we link the pricing of individual derivatives to the moments of the

risk neutral distribution, which has an intuitive appeal in terms of how volatility, skewness

and kurtosis of the risk neutral distribution can explain the behavior of derivative prices. It is

shown, through numerical and empirical evidence, that the NIG distribution outperforms other

existing methods in approximating the risk neutral distribution. Chapter 3 extends the work in

Chapter 2. In Chapter 3, a more general class of distributions, the generalized hyperbolic (GH)

family of distributions, are introduced in the context of risk management and various subclasses

of the GH distribution which possess four-parameter characterization are investigated, including

the NIG distribution, the variance gamma (VG) distribution, the generalized skewed t (GST)

distribution. By analyzing their skewness, kurtosis and tail behavior, the NIG distribution and

the VG distribution stand out of the others. In the numerical calibration, we follow the approach

described in Chapter 2 to estimate parameters. Once again, the numerical results indicate that

the NIG distribution outperforms all the other distributions studied in this chapter.
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CHAPTER 1

Statistical Analysis for Volatility Component Models

1.1 Introduction

Asset price volatility is persistent and several models have been proposed to capture this

salient stylized fact. The ARCH class models originated by Engle (1982) is the most popular.

The basic structure of ARCH is very much similar to ARMA, the appearance is deceiving.

Indeed, there is a considerable literature on the stationarity, mixing and moment properties of

various ARCH-type models, see e.g. Carrasco and Chen (2002), He and Teräsvirta (1999).

The prime focus has been on the GARCH(p,q) model - in particular GARCH(1,1) - origi-

nated by Bollerslev (1986). Yet, empirical evidence suggests that volatility dynamics is better

described by component models. Engle and Lee (1999) introduced a GARCH model with a

long and short run component, and several others have proposed related two-factor volatil-

ity models, see e.g. Ding and Granger (1996), Alizadeh et al. (2002), Chernov et al. (2003)

and Adrian and Rosenberg (2008) among many others. The volatility component model of

Engle and Lee (1999) decomposed the equity conditional variance as the sum of the short-run

(transitory) and long-run (trend) components.

The appeal of component models is their ability to capture complex dynamics via a par-

simonious parameter structure. Yet, there is also another reason why component models are

becoming more popular, and this is again motivated by empirical evidence. Several studies

have reported evidence of so called structural breaks in asset price volatility, see for example

Inclan and Tiao (1994), Chen and Gupta (1997), Kokoszka and Leipus (2000), Horvath et al.

(2001), Andreou and Ghysels (2002), Berkes et al. (2004), Kulperger and Yu (2005), Horvath et al.

(2006), and among others.



To address the non-stationarity in the data, it has been suggested that such breaks should

be captured by the long run component. Alternatively, locally stable GARCH models have been

considered to handle non-stationarity - see e.g. Dahlhaus and Rao (2006). This chapter focuses

exclusively on component models. For some component models, like the restricted GARCH(2,2)

model of Engle and Lee (1999) which consist of two GARCH(1,1) components, the literature

has not well covered the conditions that characterize non-stationarity issues of the components.

Moreover, the component models that have been suggested recently are not of the additive

ARCH-type, but instead consist of a multiplicative structure. The first to suggest a component

structure that accommodates non-stationarity of volatility is Engle and Rangel (2008), later

extended by Engle et al. (2008). These component models, also known as Spline-GARCH

and GARCH-MIDAS respectively, feature a multiplicative decomposition of the conditional

variance into a short-run (high-frequency) and long-run (low-frequency) components. The high-

frequency volatility component in both models is driven by a GARCH(1,1) process which mean-

reverts to one. The low-frequency component picks up the non-stationarity. The difference

between the two models is the specification of the low-frequency volatility. The Spline-GARCH

model formulates the low-frequency volatility in a non-parametric framework. Exponential

quadratic Spline is used to estimate the long memory structure of low-frequency volatility so

that the unconditional variance is time varying. This makes the model much more flexible but

at the cost of losing the mean-reverting property.

The economic implications of component models and their empirical application have been

studied intensively in Engle and Lee (1999), Engle and Rangel (2008), Engle et al. (2008). This

chapter revisits the component models from a statistical perspective and attempts to explore

the stationarity and mixing properties of the underlying processes. There is a clear need for such

an analysis, since any discussion about non-stationarity presumes we know when component

models are stationary. As it turns out, this is not the case and the purpose of the chapter is to

rectify this.

Although most of our focus is on the aforementioned multiplicative models, we start with

filling a gap in the literature pertaining to additive component models, that is the original Engle

and Lee model. The dynamic structure of the conditional variance in their model can be reduced

to a restricted GARCH(2,2) model with certain coefficients negative, which, to some extent,
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distinguishes itself from the classic GARCH model. Hence, the existing regularity conditions

for GARCH models need to be extended to handle the constrained additive component models.

Under certain regularity conditions on the parameters, the transitory component mean-reverts

to zero and the trend converges to the unconditional variance but at a much slower rate.

While, the resulting volatility process is covariance stationary, as pointed out by Engle and Lee

(1999), the mapping from component models to GARCH involves nonlinear transformations of

the parameter space.

The GARCH-MIDAS model of Engle et al. (2008) modified the dynamics of low-frequency

volatility as a stochastic component “by smoothing realized volatility in the spirit of MIDAS

(mixed data sampling, see e.g. Ghysels et al. (2004)) regression and MIDAS filtering” so that

it can incorporate directly data sampled at lower frequency (say, monthly or quarterly) than

the asset returns (sampled at a daily basis). The GARCH-MIDAS model has two basic spec-

ifications. In terms of the structure of low-frequency volatility, they are classified as: (1)

GARCH-MIDAS model with fixed time span realized volatility (RV) where the low-frequency

component is constant within a fixed time span, say a month or a quarter but the high-frequency

component is varying from day to day; (2) GARCH-MIDAS model with rolling window real-

ized volatility (RV) where both low-frequency and high-frequency components change at a daily

basis.

In particular, we are looking for regularity conditions under which the models could admit

covariance stationary or strictly stationary ergodic solutions with/without β-mixing property.

By linking the models with multivariate stochastic difference equations, we study the covariance

stationary property through a reversed martingale argument and the strict stationarity property

in terms of the top Lyapounov exponent. The dilemma is how to evaluate theoretically the

top Lyapounov exponents which are defined on (i) a sequence of i.i.d. matrices with certain

negative entries and (ii) a sequence of strictly stationary ergodic matrices with positive entries.

In addition, we derive the locally consistent estimates of the GARCH-MIDAS model with

rolling window realized volatility specification and study their asymptotic behaviors by means

of Cramér-Wold device.

The rest of this chapter is organized as follows: we revisit the volatility component model

of Engle and Lee in section 1.2, and present the conditions under which it is strictly stationary

3



ergodic and β-mixing. Section 1.3 focuses on the stationarity properties of the two GARCH-

MIDAS specifications. The consistent estimates with asymptotic behaviors of GARCH-MIDAS

model with rolling window RV are studied in section 1.4. Section 1.5 gives the concluding

remarks. In Appendix A.1, we list the theorems and lemmas cited from others’ work for easy

reference.

1.2 Volatility component model of Engle and Lee

The volatility component model of Engle and Lee (1999) structures the daily return rt as

rt =
√

htεt

ht = τt + gt

gt = α(r2
t−1 − τt−1) + βgt−1

τt = ω + ρτt−1 + φ(r2
t−1 − ht−1)

(1.1)

where εt
iid∼ N(0, 1) and the parameter space is

P = {(α, β, ω, ρ, φ) ∈ (R5+)◦ : α + β < ρ < 1, φ < β}

which ensures the conditional variance h is nonnegative (see Engle and Lee (1999) for the proof

of nonnegativity of h).

According to the model, the conditional variance is the sum of long-run (trend) variance τ

and the short-run (transitory) variance g. The condition 0 < α + β < ρ < 1 guarantees that

the short-run volatility mean-reverts to zero at a geometric rate of α+β and long-run volatility

converges to ω/(1− ρ) with a much slower rate.

Engle and Lee (1999) provided sufficient conditions for the covariance stationarity of {rt}
with parameter space P by linking it to an ARMA(2,2) process, i.e.

r2
t = ω(1− α− β) + (α + β + ρ)r2

t−1 − (ρα + ρβ)r2
t−2

+ ηt − (ρ + β − φ)ηt−1 − [(φ(α + β)− βρ)]ηt−2

4



where ηt = r2
t − ht (see Engle and Lee (1999)). Here we shall present conditions for strict

stationarity and β-mixing. For the time being, we assume the process to extend infinitely into

the past. Later, we will consider the scenario of closing the system by assigning an initial

distribution at time point 0.

The volatility component model of Engle and lee is also referred to as the restricted GARCH(2,2)

model because the dynamics of conditional variance h can be cast into the framework of a

GARCH(2,2) process as

rt =
√

htεt

ht = α0 + α1r
2
t−1 + α2r

2
t−2 + β1ht−1 + β2ht−2

(1.2)

where α0 = ω(1−α− β) > 0, α1 = φ + α > 0, α2 = −(φ(α + β) + αρ) < 0, β1 = ρ + β − φ > 0,

and β2 = φ(α + β) − ρβ < 0. The distinct feature of this ‘new’ model is its similarity to a

GARCH(2,2) setting but of having negative coefficients (α2 and β2 are negative). So the existing

results about classic GARCH(2,2) model Bougerol and Picard (1992) can not be applied to the

volatility component model of Engle and Lee.

Introducing Yt = (ht+1, ht, r
2
t )
′
, B = (α0, 0, 0)

′
, and

A(εt) =




β1 + α1ε
2
t β2 α2

1 0 0

ε2
t 0 0




the restricted GARCH(2,2) process (1.2) of Engle and Lee is equivalent to the solution to a

stochastic difference equation defined through

Yt = A(εt)Yt−1 + B. (1.3)

with iid coefficients.

There is a vast literature on the existence/uniqueness of the strictly stationary solution to

the stochastic difference equation of the form

Yt = AtYt−1 + Bt, t ∈ Z (1.4)

5



where Yt and Bt are Rn-valued random vectors, At is a Rn×n-valued random matrix, and

{(At, Bt), t ∈ Z} is a strictly stationary ergodic sequence. Vervaat (1979) and Brandt (1986)

analyzed the stochastic difference equation for the scaler case, i.e. n = 1 with assumption that

the coefficients are iid and strictly stationary ergodic respectively. Bougerol and Picard (1992)

studied the problem with At and Bt being iid. Glasserman and Yao (1995) extended the results

for the general strictly stationary ergodic sequence. For the vector case, the problem of strictly

stationary ergodic solution to (1.4) is closely related to the associated top Lyapounov exponent

which is defined as

Definition 1.1. Let {At, t ∈ Z} be a strictly stationary and ergodic sequence of Rn×n-valued

random matrices, such that E log+ ‖A0‖ < ∞. Then the top Lyapounov exponent associated

with {At, t ∈ Z} is defined as

γ = inf
t∈N

E(
1

t + 1
log ‖AtAt−1 . . . A0‖).

Combining subadditive ergodic theory of Kingman (1973) due to the sub-multiplicativity

of matrix norm and the work of Furstenberg and Kesten (1960), we could derive a well-known

property of the top Lyapounov exponent which is stated as

Theorem 1.1 (Furstenberg and Kesten (1960), Kingman (1973)). If {At, t ∈ Z} is a strictly

stationary ergodic sequence of Rn×n-valued random matrices, such that E log+ ‖A0‖ < ∞, then

−∞ ≤ γ < ∞

lim
t→∞

1
t + 1

log ‖AtAt−1 . . . A0‖ = γ almost surely

and

lim
t→∞

1
t + 1

E log ‖AtAt−1 . . . A0‖ = γ

The top Lyapounov exponent is independent of the choice of underlying matrix norm ‖.‖
since all the norms on the finite norm space are equivalent. For ease of analysis, we consider

the Frobenius norm in particular throughout this chapter. Next proposition gives a sufficient

condition for the strict stationarity of the restricted GARCH(2,2) model of Engle and Lee when

6



we assume the whole system starts from the negative infinity.

Proposition 1.1. For the volatility component model of Engle and Lee with the parameter space

P, {rt, ht} is strictly stationary ergodic if α < φ, 2α + β + φ < ρ < 5α + β and α + β + ρ < 1.

The proof of Proposition 1.1 needs the following lemmas.

Lemma 1.1. Let {Ft, t ∈ Z} be a sequence of iid random matrices such that P (FtFt−1 . . . F0 ≥
0) = 1 for any t. Suppose that E(log+ ‖F0‖) < ∞ and ρ(E(F0)) < 1. Then the top Lyapounov

exponent associated with this sequence is strictly negative.

Proof of Lemma 1.1. Define Mk = F−1 . . . F−k, then E(Mk) = F k where F = E(F0). Under

the assumption that ρ(F ) < 1,
∑

k F k < ∞. Since Fj is iid and P (FtFt−1 . . . F0 ≥ 0) = 1, by

Fubini’s theorem, we have
∑

k Mk < ∞ almost surely. Therefore, almost surely limk→∞Mk = 0,

or limk→∞ ‖Mk‖ = 0. Let F̃k be the transpose of F−k. Since ‖F̃k . . . F̃1‖ = ‖F−1 . . . F−k‖, the

top Lyapounov exponent associated with {Ft, t ∈ Z} is strictly negative, following from Lemma

3.4 of Bougerol and Picard (1992) (See Lemma A.2 in Appendix).

Next we establish, through the following lemma, the conditions under which the product of

matrices A(εt)A(εt−1) . . . A(ε0) is nonnegative almost surely for any t.

Lemma 1.2. Suppose that α < φ, and 2α + β + φ < ρ < 5α + β. If further express ht in model

(1.2) with parameter space P as an infinite distributed lag of r2
t , then all the coefficients are

positive, i.e.

ht = ω∗ +
∞∑

k=0

φkr
2
t−k−1

with ω∗ ≥ 0, φk ≥ 0 ∀k.

Proof of Lemma 1.2. Let Z1 and Z2 be the roots of Z2−β1Z−β2. WLOG, assume |Z1| ≥ |Z2|.
By theorem 2 of Nelson and Cao Nelson and Cao (1992) (see Appendix), to show ω∗ ≥ 0, φk ≥ 0

it is equivalent to prove that

(1) Z1, Z2 are real, and |Z1| < 1 |Z2| < 1;

(2) α0/(1− Z1 − Z2 + Z1Z2) ≥ 0;

(3) α1Z1 + α2 > 0 and α1Z2 + α2 6= 0;

7



(4) φk ≥ 0 for k = 0, 1, 2.

Conditions (1) & (2) have been checked by Engle and Lee (see Appendix of Engle and Lee

(1999)). We only need to justify conditions (3) & (4) under the restrictions specified. Since

α1Z1 + α2 = φ+α
2 [ρ + β − φ +

√
(ρ− β − φ)2 + 4αφ− 2αφ+αρ+φβ

φ+α ]

= φ+α
2 [ρ− (β + 2α + φ) +

√
(ρ− β − φ)2 + 4αφ

− 2α
φ+α(ρ− α− β)]

Note that under the restrictions, ρ − (β + 2α + φ) > 0, 2α
φ+α < 1, and the polynomial g(φ) =

(ρ−β−φ)2 +4αφ− (ρ−α−β)2 = φ2−2φ(ρ−β−2α)+2α(ρ−β)−α2 > 0 due to the fact that

∆ = (ρ− β − 2α)2 − 2α(ρ− β)− α2 = (ρ− β − 5α)(ρ− β − α) < 0. Therefore, α1Z1 + α2 > 0.

Meanwhile,

α1β1/2 + α2 = (φ + α)(ρ + β − φ)/2− (φα + φβ + αρ)

= −1
2
[φ(φ− α) + φ(5α + β − ρ) + α(ρ− β − φ)] < 0

thus α1Z2 + α2 6= 0.

Next to check condition (4). Since

φ0 = α1 > 0

φ1 = β1α1 + α2

= (φ + α)(ρ + β − φ)− (φα + φβ + αρ)

= φ(ρ− φ− α) + α(β − φ) > 0

φ2 = β1φ1 + β2φ0

= (ρ + β − φ)φ1 + [φ(α + β)− ρβ](φ + α)

= (β − φ)φ1 + φ(φ + α)(α + β) + ρφ(ρ− 2α− β − φ) > 0

Condition (4) is also satisfied. Therefore ω∗ ≥ 0 and φk ≥ 0 ∀k.

Proof of Proposition 1.1. According to Theorem 3.1 of Glasserman and Yao (see Appendix),
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the statement is true if

E(log ‖A(ε0)‖)+ < ∞ and γ < 0.

Under Frobenius norm,

‖A(ε0)‖2 = (β1 + α1ε
2
t )

2 + (β2)2 + (α2)2 + 1 + (ε2
t )

2 > 1

so E(log ‖A(ε0)‖)+ < ∞.

Define Mt,k = A(εt)A(εt−1) . . . A(εt−k), then E(Mt,k) = Mk where

M =




β1 + α1 β2 α2

1 0 0

1 0 0




.

The eigenvalues of M is 0, α + β and ρ, from where we know ρ(M) < 1 by assumption. Using

Lemma 1.2, it could be derived that each component of Mt,k is nonnegative. Further applying

Lemma 1.1, the top Lyapounov exponent γ associated with {A(εt), t ∈ Z} is strictly negative.

In Proposition 1.1, the model is assumed to extend infinitely into the past. Next we consider

the system (1.2) starting from time 0 with initial values g0 and τ0 defined on the probability

space {Ω,F ,P} such that P (0 < τ0 < ∞) = P (0 < τ0 + g0 < ∞) = 1. Now the process

(1.3) can be viewed as a time-homogeneous Markov process, which puts us in the setting of the

polynomial random coefficient autoregressive model mentioned in Carrasco and Chen (2002).

Starting from there, we could derive the mixing property of volatility component model.

Based on the work of Mokkadem (1990), Carrasco and Chen (2002) studied the conditions

for the stationarity, mixing and moment properties of various ARCH-type models. Again, we

consider Theorem 4.3 of Mokkadem (1990) or Theorem 1 of Carrasco and Chen (2002) (see

Appendix), and we have the following,

Proposition 1.2. Consider the volatility component model of Engle and Lee with the parameter

space P, with α < φ, 2α + β + φ < ρ < 5α + β, α + β + ρ < 1 and the distribution induced by

τ0 + g0 invariant, then E[ht] < ∞, E[r2
t ] < ∞, {rt, ht} is strictly stationary and β-mixing with

exponential decay.
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Proof of Proposition 1.2. By Theorem 4.3 of Mokkadem (1990) or Theorem 1 of Carrasco and Chen

(2002) (see Appendix), as long as assumptions (A.1-A.5) are verified, the statement is true.

(A.1) and (A.2) are satisfied straightforwardly. Hence, we need to check (A.3), (A.4) and (A.5).

� Assumption (A.3): Note

A(0) =




β1 β2 α2

1 0 0

0 0 0




,

and its characteristic function is det(λI3 − A(0)) = λ(λ2 − β1λ − β2). Let f(λ) = λ2 −
β1λ− β2. Since

β2
1 + 4β2 = (ρ− φ− β)2 + 4αφ > 0,

f(β1/2) = −(β2
1/4 + β2) < 0,

f(0) = −β2 > 0,

f(1) = (1− β)(1 + φ− ρ)− φα > 0,

hence ρ[A(0)] < 1.

� Assumption (A.4): From the proofs of Lemma 1.1 and Proposition 1.1,

∞∑

k=1

A(εt)A(εt−1) . . . A(εt−k)B < ∞

almost surely and

A(εt)A(εt−1) . . . A(εt−k)

converges almost surely to the 0 matrix.

� Assumption (A.5): Define V (y) = |y1| + a|y2| + a|y3| for y = (y1, y2, y3)
′ ∈ R3, where

a = 1−(α1+β1)
4 > 0 (since α1 + β1 = α + β + ρ < 1 by assumption). Let π = 1+α1+β1

2 < 1

and B > 0 be such that α0+1
B < 1− π. Note

E[V (Yt)|Yt−1] = E[ht+1 + aht + ar2
t |Yt−1]
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= E[α0 + (β1 + a)ht + (α1 + a)r2
t + β2ht−1 + α2r

2
t−1|Yt−1]

= α0 + (β1 + α1 + 2a)h2
t + β2ht−1 + α2r

2
t−1

≤ α0 + πV (Yt−1)

Define K = {k ∈ R3 : V (k) ≤ B}, then E[V (Yt)|Yt−1 = y] is bounded for y ∈ K. On Kc,

E[V (Yt)|Yt−1 = y] ≤ α0 + πV (y) ≤ (
α0 + 1

B
+ π)V (y)− 1

Assumption (A.5) is also satisfied.

1.3 Stationarity of GARCH-MIDAS process

The spline-GARCH model of Engle and Rangel (2008) and the GARCH-MIDAS model of

Engle et al. (2008) assume the conditional volatility to be the product of long-run and short-

run volatility. To be specific, the spline-GARCH model is defined through the following three

equations

rt = µ +
√

τtgtεt

gt = (1− α− β) + α (rt−1−µ)2

τt−1
+ βgt−1

τt = c exp(w0t +
∑k

i=1 wi(t− ti−1)21{t>ti−1})

where

� εt
iid∼ N(0, 1)

� {0 = t0 < t1 < t2 < . . . < tk = T} is a partition of the time horizon T in k equally spaced

intervals.

The high-frequency component g follows a mean-reverting unit GARCH(1,1) process. The

low-frequency component τ is deterministic, and it equals the unconditional variance, ie E(rt−
µ)2 = τt from where we could see the conditional volatility process is not mean-reverting and

is not stationary as well.

GARCH-MIDAS model, as an extension of spline-GARCH model, keeps the structure of

short-run component g but modifies the long-run component τ as stochastic. According to the
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way the low-frequency component is structured, GARCH-MIDAS model has two basic specifi-

cations: GARCH-MIDAS model with fixed time span realized volatilities (RV) and GARCH-

MIDAS model with rolling window realized volatility (RV).

For the fixed time span RV setting, the dynamics of long-run and short-run components are

specified as

ri,t = µ +√
τtgi,tεi,t, 2 ≤ i ≤ Nt, t ∈ Z

gi,t = (1− α− β) + α
(ri−1,t−µ)2

τt
+ βgi−1,t

τt = m + θ
∑K

k=1 ϕk(ω)RVt−k, RVt =
∑Nt

i=1 r2
i,t

(1.5)

where

� rit is the log return on day i of period (say month, quarter, etc.) t.

� Nt is the number of days in period t, but in this chapter we assume Nt = N(a predeter-

mined number) for any t.

� εi,t
iid∼ N(0, 1) ∀i, t.

� E(g1,t|Ft−1) = 1, which is equivalent to E(gi,t|Ft−1) = 1 (1 ≤ i ≤ Nt), an assumption

used in Engle et al. (2008).

� ϕk(ω) are nonnegative functions of ω such that
∑N

k=1 ϕk(ω) = 1.

� α > 0,β > 0, α + β < 1, θ > 0 m > 0.

For the rolling window RV setting, the long-run component dynamics is simplified,

rt = µ +
√

τtgtεt, t ∈ Z
gt = (1− α− β) + α (rt−1−µ)2

τt−1
+ βgt−1

τt = m + θ
∑K

k=1 ϕk(ω)RVt−k, RVt =
∑N−1

j=0 r2
t−j

(1.6)

where

� rt is the log return on day t,
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� εt
iid∼ N(0, 1),

� N is the length of a certain period of interest with value predetermined,

� ϕk(ω) are nonnegative functions of ω such that
∑N

k=1 ϕk(ω) = 1,

� α > 0,β > 0, α + β < 1, θ > 0, m > 0.

The appeal of GARCH-MIDAS model is that the structure of long-run component is stochas-

tic which makes it possible to study the statistical property of the conditional volatility process.

1.3.1 GARCH-MIDAS model with fixed time span RV

In our analysis, we assume that µ = 0. Hence Model (1.5) becomes

ri,t = √
τtgi,tεi,t, 1 ≤ i ≤ N, t ∈ Z

gi,t = (1− α− β) + α
(ri−1,t)

2

τt
+ βgi−1,t

τt = m + θ
∑K

k=1 ϕk(ω)RVt−k, RVt =
∑N

i=1 r2
i,t

(1.7)

Proposition 1.3. Suppose that α > 0, β > 0, α + β < 1, θ > 0 and m > 0, {ri,t} defined in

(1.7) is a White Noise if 0 < θ < 1/N .

Proof of Proposition 1.3. To show that {ri,t} is a White Noise, we need to verify the following

three conditions:

(i) E(ri,t) = 0

(ii) Cov(ri,t, rj,s) = 0 for j 6= i or t 6= s

(iii) V ar(ri,t) is a finite constant.

(i) is true since E(ri,t) = E(√τtgi,tεi,t) = 0 and (ii) also holds due to the property of εi,t. Now

we need to check the third condition.

For ease of reference, let η ≡ α + β, Ψi−1,t ≡ αε2
i−1,t + β. Then gi,t = 1 − η + Ψi−1,tgi−1,t

13



and

Et−1[τtgi,t] = τt[(1− η) + ηEt−1gi−1,t]

...

= τt[(1− ηi−1) + ηi−1Et−1g1,t]

= τt

where Et−1[.] is equivalent to E[.|FN,t−1].

It follows that Et−s[τtgi,t] = Et−s[τt] for s ≥ 1, and

V art−s[ri,t] = Et−s[τtgi,tε
2
i,t] = Et−s[τtgi,t] = Et−s[τt]

therefore,

V ar[ri,t] = V ar[Et−s(ri,t)] + E[V art−s(ri,t)] = E[τt]

Next we need to show that E[τt] exists and is finite. Notice that

Et−K−1[τt] = m + θ
∑K

k=1 ϕk(ω)Et−K−1[RVt−k]

= m + θ
∑K

k=1 ϕk(ω)Et−K−1[
∑N

i=1 r2
i,t−k]

= m + θN
∑K

k=1 ϕk(ω)Et−K−1(τt−k)

(1.8)

Introduce Yt = (τt, τt−1, . . . , τt−K+1)T . (1.8) is equivalent to

Et−K−1(Yt) = AEt−K−1(Yt−1) + B (1.9)

where

A =




Nθϕ1 Nθϕ2 . . . NθϕK−1 NθϕK

1 0 . . . 0 0

0 1 . . . 0 0
...

0 0 . . . 1 0




, B =




m

0

0
...

0
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Moreover, we have

Et−s(Yt) = AEt−s(Yt−1) + B,∀s ≥ K + 1 (1.10)

by iteration,

Et−s(Yt) = As−KEt−s(Yt−s+K) + (I + A + . . . + As−K−1)B (1.11)

Set t = s, equ(1.11) becomes

E0(Ys) = As−KE0(YK) + (I + A + . . . + As−K−1)B

Since if 0 < θ < 1/N, lims→∞As = 0(∗), then lims→∞E0(Ys) = (I − A)−1B. It follows that

E(Ys) is finite (elementary-wise) when s is sufficiently large. Together with equ(1.10), we know

E(Ys) is finite for every s. Fix t, and let s go to infinity in (1.11). By the property of reversed

martingale, we have

E(Yt) = lim
s→∞Et−s(Yt) = (I −A)−1B =

m

1−Nθ
ι

where ι is a vector of 1’s, and V ar[rit] = E[τt] = m
1−Nθ .

Now we need to verify (∗): lims→∞As = 0 if 0 < θ < 1/N . Note

f(λ) = det(λIK −A) = λK −Nθϕ1λ
K−1 −Nθϕ2λ

K−2 − . . .−NθϕK

Since

|f(λ)| ≥ 1−Nθϕ1 − . . .−NθϕK = 1−Nθ > 0 if |λ| ≥ 1,

ρ(A) = maxj |λj | should be strictly less than 1 which implies that lims→∞As = 0.
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1.3.2 GARCH-MIDAS model with rolling window RV

For the rolling window RV setting, again, we consider the model without drift, i.e., µ = 0.

Model (1.6) becomes

rt =
√

τtgtεt, t ∈ Z
gt = (1− α− β) + α (rt−1)2

τt−1
+ βgt−1

τt = m + θ
∑K

k=1 ϕk(ω)RVt−k, RVt =
∑N−1

j=0 r2
t−j

(1.12)

Further, the dynamics of r2
t could be reduced to

r2
t = mgtε

2
t + θgtε

2
t

∑N+K−1
l=1 clr

2
t−l

(1.13)

where cl’s are certain combinations of ϕk’s and they satisfy

N+K−1∑

l=1

cl = N
K∑

k=1

ϕk(ω) = N.

Under the assumptions α > 0, β > 0 and α + β < 1, model (1.13) can be linked to a

multivariate stochastic difference equation with strictly stationary ergodic coefficients through

Markovian representation (Akaike (1974), Vervaat (1979)). In other words, the stationarity

property of the process {r2
t , t ∈ Z} is equivalent to the existence of stationary solution to the

following stochastic difference equation

Yt = At(c̃)Yt−1 + Bt. (1.14)

where

Yt = (r2
t , r

2
t−1, . . . , r

2
t−N−K+2)

′,

16



At(c̃) =




θgtε
2
t c1 . . . θgtε

2
t cN+K−2 θgtε

2
t cN+K−1

1 . . . 0 0

0 . . . 0 0
...

0 . . . 1 0,




(1.15)

Bt = (mgtε
2
t , 0, . . . , 0)′,

c̃ = (c1, c2, . . . , cN+K−1)′.

Again, we are put in the setting of model (1.4) with strictly stationary ergodic coefficients.

If we could find conditions to meet the assumptions in Theorem 3.1 of Glasserman and Yao

Glasserman and Yao (1995), then model (1.15) will have a unique strictly stationary solution.

But the problem is how to evaluate the top Lyapounov exponent associated with the stationary

ergodic matrices. We approach this problem in three steps: (1) K = 1, N = 1 (2) K = 1, N > 1

(3) K > 1 and N ≥ 1 due to the complicated structure of At(c̃).

When KN = 1, At(c̃) is just a scaler and the top Lyapounov exponent is easy to compute.

The sufficient condition of stationary solution comes directly from Theorem 1 of Brandt (1986)

or Theorem 3.1 of Glasserman and Yao (1995) (see Appendix).

Proposition 1.4. When KN = 1, under the assumptions that α > 0,β > 0, α + β < 1, θ > 0

and m > 0, model (1.12) has a unique strictly stationary ergodic solution if θ < 1.

Proof of Proposition 1.4. When KN = 1, r2
t defined in model (1.12) is reduced to r2

t =

mgtε
2
t + θgtε

2
t r

2
t−1. Notice that when α > 0, β > 0, α + β < 1, {gtε

2
t , t ∈ Z} is strictly stationary

ergodic. If 0 < θ < 1,

E log(θg0ε
2
0) ≤ log E(θg0ε

2
0) = log θ < 0,

E log(mg0ε
2
0) ≤ log E(mg0ε

2
0) = log m < ∞

the conclusion follows from Theorem 1 of Brandt (1986) or Theorem 3.1 of Glasserman and Yao

(1995) (see Appendix) directly.

When K = 1 and N > 1, the weight function vanishes and At(c̃) is simplified as
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At(1̃) =




θgtε
2
t θgtε

2
t . . . θgtε

2
t θgtε

2
t

1 0 . . . 0 0

0 1 . . . 0 0
...

0 0 . . . 1 0




.= At. (1.16)

Introduce

H =




1 1 . . . 1 1

0 0 . . . 0 0

0 0 . . . 0 0
...

0 0 . . . 0 0




, G =




0 0 . . . 0 0

1 0 . . . 0 0

0 1 . . . 0 0
...

0 0 . . . 1 0




and define M(a) = aH + G, then

At = M(θgtε
2
t ).

Matrix of this type is encountered a lot when one expresses an autoregressive model using a

Markovian representation. The next lemma gives the basic properties of matrix M(a) with a

positive.

Lemma 1.3. For matrix M(a) with a > 0, we have the following properties:

1. Let f(λ) be the characteristic function of M(a). For any positive number k, ρ(M(a)) < k

if f(k) > 0;

2. ρ(M(a)) is increasing in a and it is a concave function of a.

Proof of Lemma 1.3. 1. If |λ| ≥ k,

|f(λ)| = |λN − aλN−1 − aλN−2 − . . .− aλ2 − aλ− a|

≥ |λN |(1− a

|λ| −
a

|λ2| − . . .− a

|λN |)

≥ kN (1− a

k
− a

k2
− . . .− a

kN
)

= f(k) > 0
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therefore, ρ(M(a)) < k.

2. Note A is nonnegative and irreducible. By Perron-Frobenius theory, ρ(A) is the maximal

positive root of f(λ) = det(λI−A). It is simple and ρ(A) ≥ |λ| for each root λ of f(λ) = 0

For ease of reference, we use λ(a) or λ for ρ(A). Since f(λ) = λN − aλN−1 − aλN−2 −
. . .− aλ2 − aλ− a = 0,

a =
λN

λN−1 + λN−2 + . . . + λ2 + λ + 1
= λ− 1 + g(λ) (1.17)

where g(λ) = 1
h(λ) and h(λ) = λN−1 + λN−2 + . . . + λ2 + λ + 1

Since λ is a smooth function of a, to prove λ is a concave function of a is equivalent to

show that d2λ(a)
da2 < 0. Taking derivative on both sides of (1.17) with respect to a, we could

have

1 = (1 + g
′
)λ

′
(1.18)

where g
′
= dg(λ)

dλ and λ
′
= dλ(a)

da

Furthermore

0 = (1 + g
′
)λ

′′
+ g

′′
(λ

′
)2 (1.19)

On the other hand, put f(λ) = 0 as F (λ, a) = 0. By implicit function theorem,

λ
′
= −Fa

Fλ

where Fa = ∂F
∂a = −h(λ) < 0 and Fλ > 0 (since λ is the largest root of f and f goes to

∞ as λ goes to ∞ for fixed a). Hence λ
′
> 0 and 1 + g

′
> 0.

To show λ
′′

< 0, it is sufficient to show that g
′′

= 2(h
′
(λ))2−h(λ)h

′′
(λ)

h3(λ)
> 0 or ∆ = 2(h

′
(λ))2−

h(λ)h
′′
(λ) > 0.

Note

h(λ) =
λN − 1
λ− 1

h
′
(λ) =

NλN−1

λ− 1
− λN − 1

(λ− 1)2
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h
′′
(λ) =

N(N − 1)λN−2

λ− 1
− 2NλN−1

(λ− 1)2
+

2(λN − 1)
(λ− 1)3

therefore,

∆ =
NλN−2[(N − 1)λN+1 − (N + 1)λN + (N + 1)λ− (N − 1)]

(λ− 1)3
(1.20)

Define

D(λ) = (N − 1)λN+1 − (N + 1)λN + (N + 1)λ− (N − 1),

then

D
′
(λ) = (N − 1)(N + 1)λN − (N + 1)NλN−1 + (N + 1)

and

D
′′
(λ) = (N − 1)N(N + 1)λN−2(λ− 1).

Note D(1) = D
′
(1) = D

′′
(1) = 0 and D

′′
< 0 for 0 < λ < 1, while on λ > 1, D

′′
> 0,

which implies that D
′

> 0 except λ = 1. Going one step further, we have D > 0 on

λ > 1 and D < 0 on 0 < λ < 1, which means ∆ > 0 on both λ > 1 and 0 < λ < 1. By

continuity, ∆ > 0 for λ > 0. It finishes the proof.

Proposition 1.5. For K = 1 and N > 1, if β2 + 2αβ + 3α2 < 1 and θ < ηN−1

1+η+...+ηN−1 where

η = α + β, the top Lyapounov exponent γ associated with At (defined in (1.16)) is negative.

Proof of Proposition 1.5. Note when β2 + 2αβ + 3α2 < 1, under Frobenius norm

‖A0‖ =
√

tr(A∗0A0)

=
√

Nθ2g2
0ε

4
0 + N − 1 ≥ 1

E(log ‖A0‖)+ = E log
√

Nθ2g2
0ε

4
0 + N − 1

≤ 1
2

log[Nθ2E(g2
0ε

4
0) + N − 1] < ∞
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Furthermore,

At = gt(θε2
t H +

1
gt

G) ≤ gt(θε2
t H +

1
η
G).

Let Ãt
.= θε2

t H + 1
ηG, we have

‖AtAt−1 . . . A0‖ ≤ gtgt−1 . . . g0‖ÃtÃt−1 . . . Ã0‖.

It follows that

γ ≤ E log g0 + lim
t

1
1 + t

E log ‖ÃtÃt−1 . . . Ã0‖.

Let γ̃ be the top Lyapounov exponent associated with sequence {Ãt, t ∈ Z}, then γ ≤ γ̃.

Since Ãt’s are iid and nonnegative, according to Lemma 1.1, if ρ[E(Ã0)] < 1, then γ ≤ γ̃ <

0.

Note E(Ã0) = 1
ηM(θη) and ρ[E(Ã0)] < 1 is equivalent to ρ(M(θη)) < η. Its sufficient

condition is

f(η) = det(ηIN −M(θη)) > 0,

by Lemma 1.3 which is satisfied if θ < ηN−1

1+η+...+ηN−1 .

Proposition 1.6. When K > 1 and N ≥ 1, the top Lyapounov exponent associated with At(c̃)

defined in (1.15) is negative if β2 + 2αβ + 3α2 < 1 and θ < ηK+N−2

1+η+...+ηK+N−2 where η = α + β.

Proof of Proposition 1.6. Under the Frobenius norm,

‖A0‖ =
√

tr(A∗0A0)

=
√

θ2g2
0ε

4
0(c

2
1 + . . . + c2

N+K−1) + N + K − 2 ≥ 1.

And when β2 + 2αβ + 3α2 < 1,

E(log ‖A0(c̃)‖)+ = E log
√

θ2g2
0ε

4
0(c

2
1 + . . . + c2

N+K−1) + N + K − 2

≤ 1
2

log[θ2(c2
1 + . . . + c2

N+K−1)E(g2
0ε

4
0) + N + K − 2] < ∞
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The top Lyapounov exponent associated with At(c̃) is

γ(c̃) = lim
t→∞

1
t + 1

E log ‖At(c̃)At−1((c̃)) . . . A0(c̃)‖

Define

gn(c̃) = ‖At(c̃)At−1(c̃) . . . A0(c̃)‖2

Since gn is a polynomial in c̃ and all the entries in the matrices are nonnegative, the coefficients

of cj (1 ≤ j ≤ K + N − 1) are positive which implies that, for every n, gn(c̃) is nondecreasing

in each cj. In other words, g(c̃) ≤ g(1̃). It follows from Proposition 1.5 that

γ(c̃) ≤ γ(1̃) < 0 if θ <
ηK+N−2

1 + η + . . . + ηK+N−2
.

Combining the above results, we have

Proposition 1.7. Suppose that α > 0,β > 0, α + β < 1, θ > 0, m > 0, and KN > 1. The

sufficient condition for the existence and uniqueness of a strictly stationary ergodic solution to

model (1.12) is β2 + 2αβ + 3α2 < 1 and θ < ηK+N−2

1+η+...+ηK+N−2 where η = α + β.

Proof of Proposition 1.7. Under the assumption β2 + 2αβ + 3α2 < 1,

E(log ‖A0‖)+ = E log
√

θ2g2
0ε

4
0(c

2
1 + . . . + c2

N+K−1) + N + K − 2

≤ 1
2

log[θ2(c2
1 + . . . + c2

N+K−1)E(g2
0ε

4
0) + N + K − 2] < ∞

E(log ‖B0‖)+ = E(log m + log g0 + log ε2
0)

+ < ∞

Further γ < 0 is derived from Proposition 1.5 and 1.6 if θ < ηK+N−2

1+η+...+ηK+N−2 . Applying Theorem

3.1 of Glasserman and Yao (1995) (see Appendix), there exists a unique strictly stationary

ergodic solution to model (1.12).

Corollary 1.1. The GARCH-MIDAS model with rolling window RV (with µ = 0) has a unique

strictly stationary ergodic solution if

1. θ < 1 when KN = 1

2. or θ < ηK+N−2

1+η+...+ηK+N−2 and β2 + 2αβ + 3α2 < 1 when KN > 1.
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The resulting process is nonanticipative (or causal). In addition, the low-frequency volatility

component τ is strictly stationary ergodic as well.

1.4 Asymptotic properties of GARCH-MIDAS model

The last property in section 1.3 tells us that GARCH-MIDAS model with rolling-window

RV (1.12) has a unique strictly stationary ergodic solution under certain regularity conditions.

In this section, we will follow this line and study the consistency and asymptotic behavior of

maximum likelihood estimates (MLE) of this model.

The parameter space we will consider in this section is

U ={Φ = (α, β,m, θ, ω)′ ∈ R5 : α > 0, β > 0,m > 0

(α + β)2 + 2α2 < 1, 0 < θ <
ηK+N−2

1 + η + . . . + ηK+N−2
}

Suppose that Φ0 = (α0, β0,m0, θ0, ω0) is the true parameter such that Φ0 ∈ U . Given a sequence

of {rt, 1 ≤ t ≤ T} where T À N + K which are generated by the following dynamics

rt =
√

gt(Φ0)τt(Φ0)εt, t ∈ Z
gt(Φ0) = (1− α0 − β0) + α0

r2
t−1

τt−1(Φ0) + β0gt−1(Φ0)

τt(Φ0) = m0 + θ0
∑K

k=1 ϕk(ω0)RVt−k, RVt =
∑N−1

j=0 r2
t−j

(1.21)

the MLE of Φ0 (denoted as Φ̂T ) is the minimizer of

LT (Φ) =
1
T

T∑

t=N+K

[log gt(Φ) + log τt(Φ) +
r2
t

gt(Φ)τt(Φ)
]

For ease of reference, we use {φi, 1 ≤ i ≤ 5} to refer to the parameter set {α, β,m, θ, ω}
when there is no confusion. Introduce

lt(Φ) ≡ log gt(Φ) + log τt(Φ) +
r2
t

gt(Φ)τt(Φ)
.
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The gradient of LT (Φ) is

∇LT (Φ) =
1
T

T∑

t=N+K

∇lt(Φ) =
1
T

T∑

t=N+K

(sα
t , sβ

t , sm
t , sθ

t , s
ω
t )
′
(Φ)

with sφi
t (Φ) = ∂lt(Φ)

∂φi
, i = 1, . . . , 5. The hessian matrix of LT (Φ) is

H(LT )(Φ) = (
∂2LT (Φ)
∂φi∂φj

)1≤i,j≤5 =
1
T

T∑

t=N+K

H(lt)(Φ) (1.22)

As a convention, if a function is expressed without specifying Φ, we assume that it is evaluated

at the true parameter Φ0.

The following main result establishes the existence and uniqueness of the consistent and

asymptotically normal estimator Φ̂T .

Proposition 1.8. Assume {rt, 1 ≤ t ≤ T} is generated from model (1.21) with Φ0 ∈ U . Then

there exists a fixed open neighborhood N(Φ0) ⊂ N(Φ0) ⊂ U of Φ0 such that with probability

tending to 1 as T goes to ∞, LT (Φ) has a unique minimum Φ̂T in N(Φ0) such that

Φ̂T
P→ Φ0

and
√

T (Φ̂T − Φ0) ⇒ N(0,Σ−1
I ΣSΣ−1

I )

where ΣI = E(H(l1)),ΣS = E(∇l1∇l
′
1).

The next proposition gives the consistent estimate of the asymptotic covariance matrix

Σ−1
I ΣSΣ−1

I .

Proposition 1.9. With the same regularity conditions as Proposition 1.8, we have

Σ̂−1
I(T )Σ̂S(T )Σ̂

−1
I(T )

P→ Σ−1
I ΣSΣ−1

I

where Σ̂I(T ) = 1
T

∑T
t=N+K H(lt)(Φ̂T ) and Σ̂S(T ) = 1

T

∑T
t=N+K ∇lt∇l

′
t(Φ̂T ).
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1.4.1 Proofs of Proposition 1.8 and Proposition 1.9

To establish the consistency and asymptotic normality of Φ̂T , we need the following helpful

lemmas.

Lemma 1.4. Let {Xn,Fn : n ≥ 1} be a strictly stationary ergodic martingale difference se-

quence such that σ2 = E(X2
1 ) < ∞. Then

1√
n

n∑

j=1

Xj ⇒ N(0, σ2).

Proof of Lemma 1.4. Define Xnj = Xj

σ
√

n
, 1 ≤ j ≤ n. Note for any ε,

P (max
j≤n

|Xnj | > ε) ≤ P (
∑

j≤n

X2
njI(|Xnj | > ε) > ε2) ≤ 1

ε2
E(

∑

j≤n

X2
njI(|Xnj | > ε))

max
j≤n

X2
nj ≤ ε2 +

∑

j≤n

X2
njI(|Xnj | > ε)

Since

E(
∑

j≤n

X2
njI(|Xnj | > ε)) =

1
σ2n

∑

j≤n

E(X2
j I(|Xj | > εσ

√
n))

=
1
σ2

E(X2
1I(|X1| > εσ

√
n)) → 0 as n →∞

due to the fact that P{|X1| > εσ
√

n} → 0 as n → ∞. Therefore {maxj≤n |Xnj |} is uniformly

bounded in L2 norm and maxj≤n |Xnj | P→ 0.

Note also that

∑

j

X2
nj =

1
σ2n

∑

j

X2
j → 0 almost surely, as n →∞

by Birkhoff’s Ergodic Theorem. It follows from martingale central limit theorem of McLeish

(1974) that 1√
n

∑n
j=1 Xj ⇒ N(0, σ2).

Lemma 1.4 presents a fact for a one-dimensional situation. To extend it to higher dimen-

sions, we need to use Cramér-Wold Device of Bilingsley (1995). Moreover, we could derive the

following result.
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Lemma 1.5. Under the assumptions in Proposition 1.8,

√
T∇LT (Φ0) ⇒ N(0,ΣS)

where

ΣS = E(∇l1∇l
′
1) =




E(sα2
1 ) E(sα

1 sβ
1 ) E(sα

1 sm
1 ) E(sα

1 sθ
1) E(sα

1 sω
1 )

∗ E(sβ2
1 ) E(sβ

1sm
1 ) E(sβ

1sθ
1) E(sβ

1sω
1 )

∗ ∗ E(sm2
1 ) E(sm

1 sθ
1) E(sm

1 sω
1 )

∗ ∗ ∗ E(sθ2
1 ) E(sθ

1s
ω
1 )

∗ ∗ ∗ ∗ E(sω2
1 )




(1.23)

Remark 1.1. ΣS is symmetric. We only display its upper triangular part here for brevity. In

the rest of chapter, we will express a symmetric matrix this way.

Proof of Lemma 1.5. According to Cramér-Wold Device, it is sufficient to show that for any

t = (t1, t2, t3, t4, t5)
′ ∈ R5,

√
Tt

′∇LT (Φ0) ⇒ t
′
Z

where Z ∼ N(0,ΣS).

Notice that

√
Tt

′∇LT (Φ0) =
1√
T

T∑

t=N+K

t1s
α
t + t2s

β
t + t3s

m
t + t4s

θ
t + t5s

ω
t .

Let

st = t1s
α
t + t2s

β
t + t3s

m
t + t4s

θ
t + t5s

ω
t .

The strictly stationary ergodic solutions gt and rt are measurable functions of {εj : 1 ≤ j ≤ t},
so is τt. It follows that sα

t ,sβ
t ,sm

t ,sθ
t ,s

ω
t are also measurable functions of {εj : 1 ≤ j ≤ t}.
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Therefore {st} is a strictly stationary and ergodic process (due to Stout (1974)).

E(st|Ft−1) = t1E(sα
t |Ft−1) + t2E(sβ

t |Ft−1) + t3E(sm
t |Ft−1)

+E(sθ
t |Ft−1) + E(sω

t |Ft−1)

= 0

E(s2
t ) ≤ t21E(sα2

t ) + t22E(sβ2
t ) + t23E(sm2

t ) + t24E(sθ2
t ) + t25E(sω2

t )

(1.24)

Now we need to show that E(s2
t ) < ∞. Since

∂lt(Φ)
∂φi

= (1− r2
t

gt(Φ)τt(Φ)
)(

∂τt/∂φi

τt
(Φ) +

∂gt/∂φi

gt
(Φ)),

evaluated at the true parameters

sφi
t =

∂lt
∂φi

= (1− ε2
t )(

∂τt/∂φi

τt
+

∂gt/∂φi

gt
), i = 1, . . . , 5.

Note also

sφi2
t ≤ 2(1− ε2

t )
2[(

∂τt/∂φi

τt
)2 + (

∂gt/∂φi

gt
)2].

For i = 1, ie φ1 = α, ∂τt
∂α = 0, and ∂gt

∂α =
∑∞

j=1 βj−1gt−jε
2
t−j − 1

1−β , we have

E(sα2
t ) ≤ 2E(1− ε2

t )
2

(1− α0 − β0)2
[(

1
(1− β0)2

) +
∞∑

j=1

β2j−2
0 Eg2

1Eε4
1] < ∞.

For i = 2, ie φ2 = β, ∂τt
∂β = 0, and ∂gt

∂β =
∑∞

j=1 βj−1gt−j − 1
1−β , we have

E(sβ2
t ) ≤ 2E(1− ε2

t )
2

(1− α0 − β0)2
[(

1
(1− β0)2

) +
∞∑

j=1

β2j−2
0 Eg2

1Eε4
1] < ∞.

For i = 3, ie φ3 = m, ∂τt/∂m
τt

= 1
τt

, ∂gt

∂m = −α0gt−1ε
2
t−1(

∂τt−1/∂m
τt−1

) = −α0gt−1ε
2
t−1(

1
τt−1

), we

have

E(sm2
t ) ≤ 2E(1− ε2

t )
2[

1
m2

0

+
E(g2

1)E(ε4
1)

(1− α0 − β0)2m2
] < ∞.
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For i = 4, ie φ4 = θ, ∂τt/∂θ
τt

= 1
θ0

(1− m0
τt

), ∂gt

∂θ = −α0gt−1ε
2
t−1(

∂τt−1/∂θ
τt−1

), we have

E(sθ2
t ) ≤ 2E(1− ε2

t )
2[

1
θ2
0

+
E(g2

1)E(ε4
1)

(1− α0 − β0)2θ2
0

] < ∞.

For i = 5, ie φ5 = ω, ∂τt/∂ω
τt

=
P

ϕ
′
kRVt−k

τt
≤ maxk ϕ

′
k(ω0)

mink ϕk(ω0) (without loss of generality, we could

assume {ϕk, 1 ≤ k ≤ K} are all positive) and ∂gt

∂ω = −α0gt−1ε
2
t−1(

∂τt−1/∂ω
τt−1

). We have

E(sω2
t ) ≤ 2E(1− ε2

t )
2[1 +

E(g2
1)E(ε4

1)
(1− α0 − β0)2

](
maxk ϕ

′
k(ω0)

mink ϕk(ω0)
)2 < ∞.

Therefore E(s2
1) < ∞. Applying Lemma 1.4, we get

√
Tt

′ ∂

∂φ
LT (Φ0) ⇒ N(0, t

′
Ωt) ∀t ∈ R5.

The following lemma evaluates the probabilistic property of the Hessian matrix of LT with

value taken at Φ = Φ0.

Lemma 1.6. Under the assumptions in Proposition 1.8

H(LT )(Φ0)
P→ ΣI

where

ΣI = E(H(l1)) =




E(∂2l1(Φ0)
∂α2 ) E(∂2l1(Φ0)

∂α∂β ) E(∂2l1(Φ0)
∂α∂m ) E(∂2l1(Φ0)

∂α∂θ ) E(∂2l1(Φ0)
∂α∂ω )

∗ E(∂2l1(Φ0)
∂β2 ) E(∂2l1(Φ0)

∂β∂m ) E(∂2l1(Φ0)
∂β∂θ ) E(∂2l1(Φ0)

∂β∂ω )

∗ ∗ E(∂2l1(Φ0)
∂m2 ) E(∂2l1(Φ0)

∂m∂θ ) E(∂2l1(Φ0)
∂m∂ω )

∗ ∗ ∗ E(∂2l1(Φ0)
∂θ2 ) E(∂2l1(Φ0)

∂θ∂ω )

∗ ∗ ∗ ∗ E(∂2l1(Φ0)
∂ω2 )




(1.25)

Proof of Lemma 1.6. Introduce DT = (dT
i,j)1≤i,j≤5 = H(LT )(Φ0) and each element in ΣI is

denoted by σ2
ij . We need to show that

lim
T→∞

P (‖DT − ΣI‖ > ε) = 0 ∀ε > 0
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where ‖.‖ is an arbitrary matrix norm.

All norms on the finite dimensional norm space are equivalent, which implies that all the

matrix norms on Cn×n should be equivalent. Thus, we only need to show the result is true for

Frobenious norm. Under Frobenious norm,

‖DT − ΣI‖2 = trace[(DT − ΣI)∗(DT − ΣI)] =
5∑

i,j=1

(dT
i,j − σ2

i,j)
2

Note

dT
i,j =

1
T

T∑

t=N+K

∂2lt(Φ0)
∂φi∂φj

,

and ∂2lt(Φ0)
∂φi∂φj

is a measurable function of {εs, s ≤ t}, hence is strictly stationary ergodic. By

Birkhoff’s ergodic theorem,

dT
i,j

P→ σ2
i,j

ie.

P (‖DT − ΣI‖ > ε) ≤
5∑

i,j=1

P (|dT
i,j − σ2

i,j | >
ε√
5
) → 0.

Therefore,

DT
P→ ΣI .

Next, we want to show the third derivatives of LT is locally bounded in a ‘weak’ sense, i.e.,

Lemma 1.7. Let N(Φ0) be an arbitrary open set of Φ0 such that N(Φ0) ⊂ N(Φ0) ⊂ U . Then

there exists a random variable cT which satisfies

max
i,j,k=1,...,5

sup
Φ∈N(Φ0)

| ∂3LT (Φ)
∂φi∂φj∂φk

| ≤ cT

and

cT
P→ c for some constant c.

Proof of Lemma 1.7.
∂3LT (Φ)

∂φi∂φj∂φk
=

1
T

T∑

t=N+K

∂3lt(Φ)
∂φi∂φj∂φk
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Note | ∂3lt(Φ)
∂φi∂φj∂φk

| is continuous in Φ, there exists an open neighborhood N(Φ0) of Φ0 such that

N(Φ0) ⊂ U and further, there exists a point Φ̃i,j,k
t ∈ N(Φ0) such that

| ∂3LT (Φ)
∂φi∂φj∂φk

| ≤ 1
T

T∑

t=N+K

wi,j,k
t

where

wi,j,k
t = | ∂

3lt(Φ̃
i,j,k
t )

∂φi∂φj∂φk
|.

Therefore

max
i,j,k=1,...,5

sup
φ∈N(φ0)

| ∂3LT (Φ0)
∂φi∂φj∂φk

| ≤ 1
T

T∑

t=N+K

(
5∑

i,j,k=1

wi,j,k
t ).

Further, let wt =
∑5

i,j,k=1 wi,j,k
t . Since {wt} is a strictly stationary ergodic sequence, by Birkhoff’s

ergodic theorem,
1
T

T∑

t=N+K

wt
P→ E(w1).

With the above established results, we can complete the proof of Proposition 1.8.

Proof of Proposition 1.8. Combine the lemmas 1.5, 1.6, and 1.7, and apply Lemma 1 of

Jensen and Rahbek (2004) (see Appendix). The existence and uniqueness of the consistent and

asymptotic normal estimator Φ̂T are ensured.

The proof of Proposition 1.9 needs one more lemma.

Lemma 1.8. Let {xn(θ), n = 1, 2, . . .} be a sequence of random variables defined on probability

space {Ω,F , P} such that xn is uniformly continuous in θ and for each fixed θ, xn(θ) P→ x(θ).

Suppose that θ̂n
P→ θ0, then

xn(θ̂n) P→ x(θ0).

Proof of Lemma 1.8. For any ε > 0,

P (|xn(θ̂n)− x(θ0)| > ε) ≤P (|xn(θ0)− x(θ0)| > ε) + P (|θ̂n − θ0| > ε)

+ P (|xn(θ̂n)− xn(θ0)| > ε, |θ̂n − θ0| < ε)

The conclusion follows from the inequality immediately.
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Proof of Proposition 1.9. For each Φ ∈ N(Φ0), H(lt)(Φ),∇lt∇l
′
t(Φ) are strictly stationary

ergodic,
1
T

∑
H(lt)(Φ) P→ E(H(l1)(Φ)),

and
1
T

∑
∇lt∇l

′
t(Φ) P→ E(∇l1∇l

′
1(Φ))

due to Birkhoff’s ergodic theorem. Also consider the fact that Φ̂T
P→ Φ, and H(lt)(Φ),∇lt∇l

′
t(Φ)

are uniformly continuous in Φ ∈ N(Φ0). Therefore,

1
T

∑
H(lt)(Φ̂T ) P→ E(H(l1))

and
1
T

∑
∇lt∇l

′
t(Φ̂T ) P→ E(∇l1∇l

′
1).

Applying continuous mapping theorem,

Σ̂−1
I(T )Σ̂S(T )Σ̂

−1
I(T )

P→ Σ−1
I ΣSΣ−1

I .

1.5 Conclusion

This chapter focused on the distributional properties of two volatility component models:

the restricted GARCH(2,2) model of Engle and Lee, the GARCH-MIDAS model of Engle,

Ghysels and Sohn. We presented necessary conditions under which these models were able to

characterize the nonstationarity of the financial returns. The restricted GARCH(2,2) model

structured the conditional variance as the sum of low-frequency and high-frequency stochastic

components. It was shown that, under certain regularity conditions on the parameter space, it

was strictly stationary ergodic and β-mixing. In the GARCH-MIDAS model, the conditional

volatility was characterized as the multiplicative effects of low-frequency and high-frequency

stochastic components. It was an extension of Spline-GARCH model of Engle and Rangel

where the low-frequency volatility was fitted by an exponential quadratic spline, a deterministic

structure. For GARCH-MIDAS model with fixed time span realized volatility, we showed that
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it could admit a covariance stationary solution in a specific parameter space. We also derived

sufficient conditions for the existence and uniqueness of strictly stationary ergodic solution to

the GARCH-MIDAS model with rolling window realized volatility. Further, this chapter showed

that its maximum likelihood estimates were locally consistent and asymptotically normal. Its

asymptotic variance-covariance matrix and associated consistent estimate were also specified.
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CHAPTER 2

The Normal Inverse Gaussian Distribution and the

Pricing of Derivatives

2.1 Introduction

In an arbitrage-free world the price of a derivative contract is the discounted expectation

of the future payoff under a so-called risk neutral measure. Hence, the pricing formula has

three key ingredients: the risk free rate, the contract specification - i.e. payoff function, and the

data generating process of the underlying asset. This chapter pertains to the latter, namely

the specification of the risk neutral distribution (henceforth RND) of the future prices of an

underlying asset.

Several approaches have been developed to characterize or estimate the risk neutral prob-

ability measure in literature. Broadly speaking they can be characterized as: (1) modelling

the shape of the RND directly [See Jackwerth and Rubinstein (1996), Melick and Thomas

(1997), Rubinstein (1994), Figlewski and Gao (1999), among others], (2) differentiating the

pricing function twice with respect to strike price to arrive at the RND of the underlying [see

Breeden and Litzenberger (1978), Aı̈t-Sahalia and Lo (1998), Longstaff (1995), among others],

or (3) specifying a parametric stochastic process driving the price of the underlying asset and

the change of probability measure [see Bates (1991), Bates (1996), Chernov and Ghysels (2000),

among others]. These approaches range from purely nonparametric (e.g. Rubinstein (1994),

Aı̈t-Sahalia and Lo (1998)) to parametric (all papers cited above in (3)). For a more recent

comprehensive literature review, see e.g. Figlewski (2007).

We suggest a flexible class of densities combined with data-driven moment estimators, i.e.



option-based estimators for variance, skewness and kurtosis. Our approach has several ad-

vantages. Purely nonparametric techniques are flexible and robust, yet they typically are ex-

tremely data intensive as they try to capture the entire shape of an unknown density [See

Aı̈t-Sahalia and Lo (1998), Pagan (1999), Broadie et al. (2000), Ghysels et al. (1997)]. We

only need good estimates of the variance, skewness and kurtosis - which can be obtained from

options data as suggested by Bakshi et al. (2003). With the first four moments (the mean is de-

termined by the risk free rate) available we propose a method to obtain directly the risk neutral

probability measure. Our approach is most directly related to some existing approaches. One

consists of modelling the shape of the risk neutral density directly via Gram-Charlier series ex-

pansions (henceforth GCSE). There are two types of Gram-Charlier series expansion discussed

in literature: A-type GCSE, applied in the context of derivative pricing by Madan and Milne

(1994) and C-type GCSE applied to option pricing by Rompolis and Tzavalis (2007). Also

related to GCSE is the Edgeworth expansion1 - applied to reconstruct risk neutral densities by

Rubinstein (1998).

We adopt an approach, suggested in a different context by Eriksson et al. (2004), and use

the class of Normal Inverse Gaussian (henceforth NIG) densities to approximate an unknown

RND. The appeal of NIG distributions is that they are characterized by the first four moments:

mean, variance, skewness and kurtosis. These are the moments we care about in many risk

management applications - including derivative pricing. Hence, once the four moments are

given, we can fill in the blanks with the NIG and obtain the entire distribution.2

The use of the NIG family has several advantages over A-GCSE and C-GCSE. A-type Gram-

Charlier expansion can result in negative probabilities with unsuitable - or as it is often called

infeasible outside the domain of positive definiteness - combinations of skewness and kurtosis.

Using recent empirical evidence from Conrad et al. (2007a) we find that for most traded options

in the US feature skewness and kurtosis outside the admissible region for A-GCSE. We show

this translates into serious errors for pricing derivatives. The C-GCSE approximation - on the

other hand - yields nonnegative probabilities, yet is very cumbersome in terms of computations.

The NIG class is - in comparison - easy to compute and is a proper density. Moreover, the NIG
1See Appendix A.2 for more details on the Gram-Charlier expansion and the Edgeworth expansion.
2The NIG family of distribution has recently also been suggested to price synthetic CDO contracts, see

Kalemanova et al. (2007) and further references therein.
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family has the nice properties that it is flexible and the parameters can be solved in a closed

form by means of cumulants of the distribution, which facilitates parameter estimation.

The rest of this chapter is structured as follows. In section 2.2 we briefly review the NIG class

of densities, and present the main results obtained by using a method of moments estimation

approach. Section 2.3 describes the NIG approximation errors by comparing them with other

approximation methods focusing on regions of unimodality and positive definiteness. Section

2.4 appraises via a calibration exercise the NIG density when used for pricing derivatives. We

also provide an empirical illustration in section 2.5, while section 2.6 concludes this chapter.

2.2 The NIG class of distributions: Properties and option-

based estimation

The Normal Inverse Gaussian (henceforth NIG) distribution is characterized via a normal

inverse Gaussian mixing distribution. Formally stated, let Y be a random variable that follows

an inverse Gaussian probability law (IG) discussed in Seshadri (1993):

L(Y ) = IG(δ,
√

α2 − β2)

Furthermore, if X conditional on Y is normally distributed with mean µ + βY and variance Y ,

namely L(X|Y ) = N(µ + βY, Y ), then the unconditional density X is NIG:

L(X) = NIG(α, β, µ, δ).

The density function for the NIG family is defined as follows:

fNIG(x;α, β, µ, δ) =
α

π
exp(δ

√
α2 − β2 − βµ)

K1(αδ
√

1 + (x−µ
δ )2)

√
1 + (x−µ

δ )2
exp(βx) (2.1)

where x ∈ R, α > 0, δ > 0, µ ∈ R, 0 < |β| < α and K1(.) is the modified Bessel function of the

third kind with index 1 (see Abramowitz (1974)). The Gaussian distribution is obtained as a

limiting case, namely when α → ∞.
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The NIG class of densities has the following two properties, namely (1) a scaling property:

LNIG(X) = NIG(α, β, µ, δ) ⇔ LNIG(cX) = NIG(α/c, β/c, cµ, cδ),

and (2) a closure under convolution property:

NIG(α, β, µ1, δ1) ∗NIG(α, β, µ2, δ2) = NIG(α, β, µ1 + µ2, δ1 + δ2).

Another parameterization used in this chapter is obtained by setting ᾱ = δα and β̄ = δβ. This

representation is a scale-invariant parameterization denoted as NIG(ᾱ, β̄, µ, δ) with density:

fNIG(x; ᾱ, β̄, µ, δ) =
ᾱ

πδ
exp(

√
ᾱ2 − β̄2 − β̄µ

δ
)
K1(ᾱ

√
1 + (x−µ

δ )2)
√

1 + (x−µ
δ )2

exp(
β̄

δ
x) (2.2)

2.2.1 Moment estimators for the NIG class of densities

The method of moments estimation applied to the NIG class consists of constructing a non-

linear system of equations for the four parameters in the NIG distribution. In particular, one

sets the first and second cumulant, the skewness and the excess kurtosis equal to their empirical

counterparts.

The following two theorems, taken from Eriksson et al. (2004), yield the expression for the

parameters in the class of NIG probability distributions in terms of its mean, variance, skewness

and excess kurtosis.

Theorem 2.1. Suppose that random variable X is NIG(ᾱ, β̄, µ, δ) distributed and its mean,

variance, skewness and excess kurtosis are denoted as M, V, S and K, respectively. Then the

parameters are related to the moments by

ᾱ = 3(4ρ−1 + 1)(1− ρ−1)−1/2K−1 (2.3)

β̄ = sgn(S)
{

3(4ρ−1 + 1)(ρ− 1)−1/2K−1
}

(2.4)

µ = M− sgn(S)
{
3ρ−1(4ρ−1 + 1)(K−1V)

}1/2 (2.5)

δ =
{
3(4ρ−1 + 1)(1− ρ−1)K−1V}1/2 (2.6)
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where ρ = 3KS−2 − 4 > 1 and sgn(·) is the sign function.

Theorem 2.2. Given a NIG(α, β, µ, δ) distributed random variable. If its sample mean, sample

variance, sample skewness and sample excess kurtosis are M̂, V̂, Ŝ and K̂ respectively, and

3K̂ > 5Ŝ2 > 0, then the method of moments estimators for the parameters are

α̂MM = 3ρ̂1/2(ρ̂− 1)−1V̂−1/2|Ŝ|−1 (2.7)

β̂MM = 3(ρ̂− 1)−1V̂−1/2Ŝ−1 (2.8)

µ̂MM = M̂ − 3ρ̂−1V̂1/2Ŝ−1 (2.9)

δ̂MM = 3ρ̂−1(ρ̂− 1)1/2V̂1/2|Ŝ|−1 (2.10)

where ρ̂ = 3K̂Ŝ−2 − 4 > 1.

2.2.2 Moments of Risk Neutral Distribution

Bakshi et al. (2003) show that the risk neutral moments of τ−period return Rt(τ) =

ln(St+τ ) − ln(St) evaluated at time t can be written in terms of these payoffs. We use their

methodology and a sample of out-of-the-money (OTM) calls and puts to estimate the higher

moments of the risk neutral density function of log-price. Specifically, Bakshi et al. (2003) show

that the price of contracts at time t on variance V AR(t, τ), skewness SKEW (t, τ) and kurtosis

KURT (t, τ) of Rt(τ) can be calculated as

V AR(t, τ) = erτV (t, τ)− µ2(t, τ) (2.11)

SKEW (t, τ) =
erτW (t, τ)− 3µ(t, τ)erτV (t, τ) + 2µ(t, τ)3

[erτV (t, τ)− µ(t, τ)2]3/2
(2.12)

KURT (t, τ) =
erτX(t, τ)− 4µ(t, τ)erτW (t, τ) + 6erτµ(t, τ)2V (t, τ)− 3µ(t, τ)4

[erτV (t, τ)− µ(t, τ)2]2
(2.13)

where V (t, τ), W (t, τ), X(t, τ), and µ(t, τ) are given by

V (t, τ) =
∫ ∞

St

2(1− ln(K/St))
K2

C(t, τ ;K)dK (2.14)

+
∫ St

0

2(1− ln(K/St))
K2

P (t, τ ;K)dK
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W (t, τ) =
∫ ∞

St

6 ln(K/St)− 3(ln(K/St))2)
K2

C(t, τ ;K)dK (2.15)

+
∫ St

0

6 ln(K/St)− 3(ln(K/St))2

K2
P (t, τ ;K)dK

X(t, τ) =
∫ ∞

St

12(ln(K/St))2 − 4(ln(K/St))3)
K2

C(t, τ ;K)dK (2.16)

+
∫ St

0

12(ln(K/St))2 − 4(ln(K/St))3

K2
P (t, τ ;K)dK

µ(t, τ) = erτ − 1− erτV (t, τ)/2− erτW (t, τ)/6− erτX(t, τ)/24 (2.17)

while C(t, τ ;K) and P (t, τ ;K) are the prices of European calls and puts written on the under-

lying stock with strike price K and expiration τ periods from time t. Bakshi et al. (2003) call

V (t, τ) the price of the volatility contract on the underlying security, while W (t, τ) and X(t, τ)

are the prices of the cubic contract and quartic contract respectively.

Thus, the risk neutral mean of ln(St+τ ) conditional at time t is

M(t, τ) = µ(t, τ) + ln(St) (2.18)

while the conditional variance, skewness and kurtosis of ln(St+τ ) under risk neutral measure

are exactly V AR(t, τ), SKEW (t, τ) and KURT (t, τ). As equations (3.28), (3.29) and (3.30)

show, the procedure involves using a weighted sum of (out-of-the-money) options across varying

strike prices to construct the prices of payoffs related to the second, third and fourth moments

of returns. These prices are then used to construct estimates of the mean, variance, skewness

and kurtosis of the risk neutral density function.

2.3 The NIG approximation and its relation to A-type Gram-

Charlier expansions

In this section we discuss the NIG approximation and how well it approximates a function

of random variables compared to the A-type Gram-Charlier and Edgeworth expansions. We
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do this by considering the region for which A-type Gram-Charlier expansion produces positive

definite distribution and compare this region with the similar region produced by the nor-

mal inverse Gaussian distribution, since it has been shown in Barton and Dennis (1952) that

the region, in terms of skewness/kurtosis combinations, covered by positive definite of A-type

Gram-Charlier expansion is larger than the region of unimodality and also that of Edgeworth

expansion. Hence, the A-type Gram-Charlier and Edgeworth expansions may easily lead to

negative probabilities - a common problem encountered in practice.

Figure 1 has six panels, three pairs - with each pair representing data points superimposed

on two regions. The data points are skewness and kurtosis daily estimates extracted from

S & P 500 index options. These estimates are obtained by applying the formulas appearing

in subsection 2.2.2, using the method of Bakshi et al. (2003). The details are discussed in

Conrad et al. (2007a) who use data on out of the money (OTM) puts and calls, with at least

two OTM puts and two OTM calls to calculate the moments on daily basis. The time to

maturity is kept roughly constant at one month (see also later, section 2.5). The three pairs

represent data for three different years: 1999, 2000 and 2003. The plots on the left in Figure 1

are the data and the NIG admissible region. All data points below the line are admissible, all

those above are not. We note that the majority of data points yield proper NIG densities. The

plots on the right in Figure 1 provide a close-up (note the scale ends at 8) in order to display the

admissible region for Gram-Charlier expansion. The region is obtained via the dialytic method

of Sylvester [see, for instance Wang (2001)] for finding the common zeros for A-type Gram-

Charlier expansion.3 Similar computations are reported in Shenton (1951), Barton and Dennis

(1952) and Draper and Tierney (1972).

It is clear from Figure 1 that Gram-Charlier expansion almost never works. Only perhaps

one data point - one day that is - falls below the curve. All other data points, as we can see

from the left plots fall far beyond the region. As we will be discussed later this will seriously

affect option pricing, favoring the use of NIG density approximation.
3The computations and plots were generated with Maple software.
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2.4 Numerical Calibration

In this section we appraise via a calibration exercise the NIG density when used for pricing

derivatives. The data generating process is the Heston model. We compare the risk neutral den-

sity estimation using the NIG distribution, Edgeworth and Gram-Charlier expansions with the

true risk neutral density.4 We find that the NIG approximation outperforms the Edgeworth and

A-type Gram-Charlier expansions and achieves accuracy similar to the C-type Gram-Charlier

expansion. Then we give a toy example which illustrates the pricing of European calls and a

butterfly trading strategy. We find that the NIG approximation is closer to the pricing under

true risk neutral measure than Edgeworth expansion and A-type Gram-Charlier expansion.

2.4.1 Density Approximations

We generate the stock price St and its volatility Vt using Heston model under risk-neutralized

pricing probability (see Heston (1993)):

dSt = St(rdt +
√

VtdW 1
t )

dVt = κ(θ − Vt)dt + σ
√

VtdW 2
t

(2.19)

where W 1
t and W 2

t are two correlated Brownian motions with correlation coefficient ρ. The

conditional characteristic function of Xt+τ = ln(St+τ ) (τ > 0) under the risk neutral measure

conditional at time t with St = s and Vt = v is given by Heston (1993) as

Φt(u; τ) = exp(C(u; τ) + D(u; τ)v + iu ln(s)) (2.20)

with

C(u; τ) = ruτi +
κθ

σ2
[(κ− ρσui + d)τ − 2 ln(

1− gedτ

1− g
)] (2.21)

D(u; τ) =
κ− ρσui + d

σ2

1− edτ

1− gedτ
(2.22)

4Edgeworth expansions are a special case of Gram-Charlier and included here as well.
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where g = (κ − ρσui + d)/(κ − ρσui − d) and d =
√

(ρσui− κ)2 + σ2(u2 + ui) if σ > 0. In

particular, when σ = 0, C(u; τ) and D(u; τ) become

C(u; τ) = ruτi +
θ(u2 + ui)

2
(
1− e−κτ

κ
− τ) (2.23)

D(u; τ) =
u2 + ui

2κ
(e−κτ − 1) (2.24)

The true conditional density function ft(x; τ) can be derived from Φt(u; τ) through the inverse

Fourier transform, ie

ft(x; τ) =
1
2π

∫

R
e−iuxΦt(u; τ)du. (2.25)

The European call prices are explicitly calculated using the formula from Heston (1993)

Call(t, s, v,K) = sP1 − e−rτKP2 (2.26)

where P1, P2 are respectively given in Appendix A.2.2.

To numerically evaluate the NIG performance , we use the same parameter settings as

as Rompolis and Tzavalis (2007) who study Gram-Charlier approximations. Namely, we let

r = 0.05, κ = 1.62, θ = 0.04, σ = 0.44 and ρ = −0.76. Starting from an arbitrary time t0,

without loss of generality, we assume t0 = 0 with S0 = 1080 and V0 = 0.026, we can generate a

cross-section set of European call options with time to maturity τ = 0.21 (in year) and strike

prices spanning the interval [820, 1260] at every 20 points. Further, the put prices are calculated

using call-put parity.

Note that the estimation of mean, variance, skewness and kurtosis involves the evaluation

of integrals (3.28), (3.29) and (3.30). To increase the accuracy of moments estimation, we

interpolate the call/put prices within [820, 1260] using a cubic spline and beyond this range,

we perform the linear extrapolation (for reference, see Shimko (1993), Campa et al. (1998),

Dennis and Mayhew (2002), Jiang and Tian (2005), Rompolis and Tzavalis (2007)). Note that

this is not exactly what is done with real data, where typically only discrete sums are taken.5

Once we have estimated the conditional moments of log-price, we are able to compute the
5See Conrad et al. (2007a) for further discussion and also Dennis and Mayhew (2002) who study the effect of

discretization bias and show that its magnitude is typically not important.
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RND approximation by the NIG distribution, Edgeworth expansion and A-type Gram-Charlier

expansion. The true risk neutral density function ft(x; τ) are evaluated by truncating the

integral (2.25) at ±100 and we also truncate the integration (A.3) at 100.

Figure 2 plots the true density curve and the curves generated by the NIG distribution,

Edgeworth and A-type Gram-Charlier expansions, where one can see that the NIG density curve

is very close to the true density curve especially at the two tails while Edgeworth and A-type

Gram-Charlier expansions produce negative densities. We see that the NIG and true density

are almost identical. In contrast, the other two approximations produce negative probabilities

and feature humps that are not present in the true density. These phenomena are due to the

fact that this realistic parameter setting for the Heston model is outside the feasible range for

the Edgeworth and A-type Gram-Charlier expansions.

We also calibrate numerically the performance of various density estimations via the mean

absolute error L1(f) =
∫ |f(x)−f̂(x)|dx and the mean squared error L2(f) =

∫
(f(x)−f̂(x))2dx,

where f is the true density and f̂ is its estimate. Panel A of Table 1 reports the value of

measurements L1 and L2 for NIG, Edgeworth, A-type Gram-Charlier and C-type Gram-Charlier

expansions, respectively.6 Again, we can see that the NIG approximation outperforms the

Edgeworth and A-type Gram-Charlier expansions, while it achieves accuracy similar to the

C-type Gram-Charlier expansion. The appeal of the NIG approximation, however, compared

to C-type Gram-Charlier expansion is that it is easy to implement and it requires very little

computational work.

2.4.2 Derivative pricing

Given that one has estimated the risk neutral density, we can proceed and price derivatives.

We first consider the pricing of European call options through the true risk neutral density, NIG

approximation, Edgeworth and A-type Gram-Charlier expansions. In Figure 3 and Figure 4,

we plot the pricing of in-the-money (ITM), at-the-money (ATM) and out-of-the-money (OTM)

call options with associated relative pricing errors which are defined as

(p̂− p)/p

6The values with respect to C-type Gram-Charlier expansion are taken from Rompolis and Tzavalis (2007)
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where p is the price under the true risk neutral measure and p̂ is the price using the approx-

imation. The ATM & ITM calls are not very much mispriced (see Panel c and d of Figure 3

and Figure 4) even though the risk neutral densities are severely misspecified (see Figure 2).

However, for the deep OTM calls, Egdeworth and A-type Gram-Charlier expansions perform

poorly. When we compare the scale of the various graphs we observe that relative pricing er-

rors in the latter case exceed 10000. Obviously, these are relatively cheap options, with large

pricing errors. What is important, however, is that the NIG approximation does not feature

such pricing errors.

Next, we look at the butterfly trading strategy with payoff function

g(ST ;K, a) = (ST −K + a)1(K−a≤ST≤K) + (K + a− ST )1(K<ST≤K+a)

In our numerical analysis, we take K such that log(K) = 6.60, 6.70, 6.80, 6.90 (< log(S0))

and a = 50. Panel B of Table 1 reports the pricing using the true risk neutral density and

the approximations where one could see that NIG pricing is closer to the true RND pricing

than the other two approximations. The appeal of a butterfly strategy is that it singles out a

particular area of the payoff space. Whenever the probability of that area is misspecified, we

should expect serious mispricing. This is indeed what happens.

Figure 5 plots the pricing of butterfly strategy using various pricing tools and the relative

pricing errors. Again one notes that the NIG approximation outperforms Edgeworth and A-

type Gram-Charlier expansions. In comparison, the NIG density has mild pricing errors since

its density approximation is more accurate.

2.5 Empirical illustration

The data used in this chapter is the same as in Conrad et al. (2007a) and similar to that

used in Figlewski (2007). Our data on option prices is provided (through Wharton Research

Data Services) from Optionmetrics. We use S&P 500 index option price data for all out-of-the-

money calls and puts. In estimating the moments, we use equal numbers of out-of-the-money

(OTM) calls and puts for each stock for each day. Thus, if there are n OTM puts with closing
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prices available on day t we require n OTM call prices. If there are N (> n) OTM call prices

available on day t, we use the n OTM calls which have the most similar distance from stock to

strike as the OTM puts for which we have data.

In the empirical illustration we average the daily moment estimates on a monthly basis,

instead of plotting densities for specific days - since we do not really attempt to model the

daily variation of the moments.7 Figure 6 provides a time series plot of the S&P 500 as well

as the risk neutral densities estimated with our NIG approximation for two dates, using three

month contracts in March 2000 and August 2003. In both cases we superimpose the Gaussian

distribution obtained with the same mean and variance. In both cases, the Normal is very

different from the NIG, as expected. In the March 2000 case, we note a skewed distribution,

while it is centered in the 2003 case.

2.6 Concluding remarks

In this chapter, we introduce the Normal Inverse Gaussian family to approximate the risk

neutral distribution. Computational results indicate that NIG approximation is more efficient

than Gram-Charlier series expansions by providing smaller approximation errors in compari-

son with the A-type Gram-Charlier expansion and by being less computationally burdensome

than the C-type Gram-Charlier expansion. There are various expansions possible, notably

the use of NIG approximations to compute stochastic discount factors, as further discussed in

Conrad et al. (2007a). It should also be noted that the NIG density is not the only one with

a four parameter characterization. In the future work we plan to explore alternative densities.

In particular, the generalized hyperbolic distribution (GH) is a more general class of continu-

ous probability distributions also defined as a normal variance-mean mixture where the mixing

distribution is the generalized inverse Gaussian distribution.

7 The next step is to model the dynamics of α̂MM , β̂MM , µ̂MM and δ̂MM through time. We leave this as a
topic for future research.
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CHAPTER 3

Some Useful Densities for Risk Management and

their Properties

3.1 Introduction

How to characterize the conditional distribution of asset returns is an important issue in

risk management. This is because it is a key ingredient of option pricing, while in portfolio

management the choice of equity distribution is more important than the quantification of

risk level (see Embrechts et al. (2002) for more details). In the Black-Scholes option pricing

model, the conditional distribution of asset returns is assumed to be normal, which is solely

determined by the first two moments. Hence, it fails to account for the skewness and kurtosis of

the financial time series which turn out to be very informative factors in modeling returns. The

generalized hyperbolic (GH) distribution is derived from the normal distribution. It is a normal

variance-mean mixture where the mixture is a generalized inverse Gaussian (GIG) distribution,

so that it admits more degrees of freedom than the normal distribution and it could provide

more realistic description of real data. It is therefore of interest to explore the GH family of

distributions in the context of risk management.

The GH distribution was introduced by Barndorff-Nielsen (1977) for studying the aeolian

sand deposits. It was first applied to a financial context by Eberlein and Keller (1995). This

family of distributions are closed under linear transformations, which is a desirable property in

portfolio management. Hence, they are infinitely divisible as well, which yield lévy processes by

subordinating to Brownian Motions. They are not closed under convolution in general however,

except for the normal inverse Gaussian (NIG) distribution which forms a subclass of the GH



family of distributions. In addition, the GH distribution is skewed and leptokurtic, which meets

the stylized feature of most financial returns.

The GH distribution considered in this chapter is characterized by five parameters. We will

be talking in detail about their tail behavior and moments of higher order, which are the prop-

erties relevant to financial modeling. We further narrow down to a subclass of four-parameter

distributions, so that there exists a one-to-one mapping from the parameter space to the space

spanned by mean, variance, skewness and (excess) kurtosis. We only focus on the first four

moments in that they contain most of the information we need and the analysis is less tedious

than when considering even higher moments. The idea of keeping the number of moments small

and building densities on this has been suggested in various papers, see Madan et al. (1998),

Theodossiou (1998), Aas and Haff (2006), Eriksson et al. (2009), and among others.

The subclasses of four-parameter distributions we are interested in are the normal inverse

Gaussian (NIG) distribution, the variance gamma (VG) distribution, and the generalized skewed

t (GST) distribution. We consider these distributions because of their desirable tail behavior

and analytical tractability in terms of moment estimation. The NIG distribution first ap-

peared in the work of Barndorff-Nielsen (1997). Eriksson et al. (2009) recently studied this

class of distributions in option pricing. They argue that, compared with the Edgeworth ex-

pansion and the Gram-Charlier expansion which are common approaches to approximate an

unknown distribution, the NIG distribution is superior to aforementioned expansions when ap-

proximating the risk neutral distribution of asset returns, and provides less pricing error as well

when it comes to derivative pricing. We revisit the class of NIG distributions in this chapter,

and explore their properties as a subclass of the GH distribution. The VG distribution was

introduced by Madan and Seneta (1990) for studying the dynamics of market returns. How-

ever, the distribution considered in the work of Madan and Seneta (1990) is a normal variance

mixture with a three-parameter characterization, which is slightly different from our setting.

This distribution was further studied in the context of option pricing by Madan et al. (1998)

where it was extended to a three-parameter stochastic process by subordinating to a Brown-

ian motion. We are among the few papers discussing the VG distribution as a limiting case

of the GH distribution and formulating it with four parameters. There exists much litera-

ture on the GST distribution as well, see McDonald and Newey (1988), Theodossiou (1998),
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Prause (1999), Barndorff-Nielsen and Shephard (2001), Jones and Faddy (2003), Aas and Haff

(2006), and among others. Nevertheless, the definitions are not consistent and slightly dif-

ferent from paper to paper. The GST distribution considered in this chapter is derived from

the GH distribution, which is the same as the one studied in Aas and Haff (2006). The GST

distribution is the only member in the GH family that possesses exponential/polynomial tails.

Several other competing definitions of the (generalized) skewed t distribution could be found in

McDonald and Newey (1988), Theodossiou (1998) but they fail to handle well the substantial

skewness.

In this chapter, we systematically analyze the class of NIG distributions, the class of VG

distributions, and the class of GST distributions. We focus on their tail behavior and the range

of skewness and kurtosis for the purpose of risk management. We further use these distributions

to model the risk neutral density of asset returns. The A-type Gram-Charlier expansion and

the Edgeworth expansion1 are considered as alternative approximating densities in this study as

well. As in Eriksson et al. (2009), the parameters are estimated via the method of moments and

the risk neutral moments of asset returns are evaluated based on option prices. To be specific,

the risk neutral moments are formulated by a portfolio of the out-of-money(OTM) European

Call/Put options indexed by their strikes (Bakshi et al. (2003)). The characterization of risk

neutral distribution of asset returns is then directly linked to the options written upon it.

However, we are unable to tell which approximating density is best in that the risk neutral

distribution is unknown to us and it is then infeasible to calibrate how close the approximating

density is to the true risk neutral distribution. In order to judge the performance of various

approximating densities, we consider a heuristic option pricing model, affine jump-diffusion

model, which could yield a closed form expression for density function. We further look into

the issue of option pricing under the true density and approximating ones as well so as to

compare the pricing errors numerically.

The rest of this chapter is outlined as follows: we start with a review on the GH family

of distributions in section 3.2, and then introduce various subclasses of the GH family and

talk about their properties. In section 3.3, parameter estimation via the method of moments

is presented and the ranges of skewness and kurtosis for various distributions are derived as
1See Appendix A.2 for more details on the Gram-Charlier expansion and the Edgeworth expansion.
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well. We illustrate the option-based moment estimation in section 3.4. Section 3.5 focuses on

evaluating the performance of the GH family of distributions in option pricing. And we give

the concluding remarks in section 3.6.

3.2 The Generalized Hyperbolic Distribution

The generalized hyperbolic (GH) distribution can be considered as a normal variance-mean

mixture where the mixture is a generalized inverse Gaussian (GIG) distribution.

Suppose that Y is a GIG-distributed random variable, or Y ∼ GIG(a, b, p). Namely, its

density function is

f(y; a, b, p) =
(a/b)p/2

2Kp(
√

ab)
yp−1 exp[−1

2
(ay + b/y)], y > 0

where

Kp(z) =
1
2

∫ ∞

0
yp−1 exp[−1

2
z(y + 1/y)]dy, z > 0 (3.1)

is a modified Bessel function of the third kind with index p. The parameter space of the GIG

distribution is

{a > 0, b > 0, p = 0}
⋃
{a > 0, b ≥ 0, p > 0}

⋃
{a ≥ 0, b > 0, p < 0}

The GIG distribution can be reduced to a gamma distribution if a > 0, b = 0, p > 0, while it

becomes an inverse gamma distribution if a = 0, b > 0, p < 0.

A GH random variable is constructed by allowing for the mean and the variance of a normal

random variable GIG distributed. Namely,

Definition 3.1. A random variable X is generalized hyperbolic (GH) distributed, or X ∼
GH(α, β, µ, b, p) if it has the same law as

X
L= µ + βY +

√
Y Z (3.2)
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where Y ∼ GIG(α2 − β2, b2, p), Z ∼ N(0, 1), and Y is independent of Z. The parameter space

for a GH distribution is

{(α, β, b, p, µ) : α > |β|, b > 0, p ∈ R, µ ∈ R}.

In particular, its density function is

fGH(x;α, β, µ, b, p) =
α1/2−p(α2 − β2)p/2e(x−µ)β

√
2πbKp(b

√
α2 − β2)

Kp−1/2

(
αb

√
1 +

(x− µ)2

b2

)(
1 +

(x− µ)2

b2

)p/2−1/4

(3.3)

Or,

fGH(x;α, β, µ, b, p) =
γ̄pᾱ1/2−pe(x−µ)β

√
2πbKp(γ̄)

Kp−1/2

(
ᾱ

√
1 +

(x− µ)2

b2

)(
1 +

(x− µ)2

b2

)p/2−1/4

where ᾱ = bα, β̄ = bβ, γ =
√

α2 − β2 and γ̄ = bγ =
√

ᾱ2 − β̄2.

The GH distribution is characterized through five parameters. Among them, β controls

skewness. We will say the GH distribution is non-skewed if β = 0. µ is a location parameter,

and p pertains to how fat the tails are.

Due to the scaling property of the GIG distribution ( ie., if Y ∼ GIG(a, b, p), then tY ∼
GIG(a/|t|, |t|b, p) for t 6= 0 ), the GH distribution is closed under linear transformations. Sup-

pose that X is GH(α, β, µ, b, p) distributed. tX + l belongs to the GH family as well with

parameters (α/|t|, β/|t|, |t|µ + l, tb, p) for any t 6= 0. Therefore, the set

{µ + βY + σ
√

Y Z : Y ∼ GIG(α2 − β2, b2, p), Z ∼ N(0, 1), Y ⊥ Z,α > |β|, b > 0, p ∈ R, µ ∈ R, σ > 0}

and the set

{µ + βY +
√

Y Z : Y ∼ GIG(α2 − β2, b2, p), Z ∼ N(0, 1), Y ⊥ Z, α > |β|, b > 0, p ∈ R, µ ∈ R}

are equivalent under the linear transform, which implies that it is sufficient to model the GH

distribution with five parameters. It also follows that the GH distribution is infinitely divisible,

a property that results in the existence of GH Lévy processes by subordinating to Brownian

motions. However, the GH family is not closed under convolution in general except when
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p = −1/2, which is what is called the normal inverse Gaussian (NIG) distribution.

Various subclasses of the GH family could be derived by allowing the parameter(s) to

assume special values within the parameter space. The most commonly used distributions

which form subclasses of the GH distribution are: (1) the symmetric GH distribution, which

is related to the GH distribution by SGH(α, µ, b, p) .= GH(α, 0, µ, b, p); (2) the hyperbolic

distribution, H(α, β, µ, b) .= GH(α, β, µ, b, 1); (3) the normal inverse Gaussian distribution,

NIG(α, β, µ, b) .= GH(α, β, µ, b,−1/2).

Notice that the parameter space of the GH distribution excludes the sets {α > |β|, b = 0, p >

0} and {α = |β|, b > 0, p < 0} which, however, are permitted to the GIG distribution. If we

take values on the boundary of parameter space, we would be deriving various limiting cases of

the GH distribution. To be specific, we would arrive at the variance gamma (VG) distribution

by taking b to 0 in equation (3.3). That α approaches to β produces the generalized skewed

t (GST) distribution. In particular, by allowing p = −b2/2 in the GST distribution, we have

the skewed t distribution. If further assume β = 0 it is reduced to the noncentral student t

distribution with b2 degrees of freedom. It becomes the central student t distribution if both

β = 0 and µ = 0. The Cauchy distribution could also be regarded as a limiting case of the

GH distribution in that it could be derived from the GH distribution by α → |β| = 0 and

p = −1/2. In addition, if we send some of parameters in the GH distribution to infinity, we will

end up with the normal distribution, the gamma distribution, the inverse gamma distribution,

etc. (see Eberlein and von Hammerstein (2002) for more details).

3.2.1 Tail Behavior

It is well known that the returns of most financial assets exhibit semi-heavy tails. We

will look into the tail properties of the GH family of distributions and argue that the NIG

distribution, the VG distribution and the GST distribution provide a good fit to the financial

time series in terms of the tail behavior.

Based on the fact that Kp(z) ∼ √
π
2 z−1/2e−z as z → ∞ (Jorgensen (1982)), we have the

following statement regarding the tails of the GH distribution. A similar result could be found

in Aas and Haff (2006).
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Theorem 3.1 (Tails of the GH distribution). Given a GH(α, β, µ, b, p) distribution with α >

|β|, b > 0, p ∈ R, µ ∈ R, when |x| gets larger, its density function is of the form

fGH(x;α, β, µ, b, p) ∼ c|x|p−1 exp(−α|x|+ βx)

where c is a constant.

The two tails of the GH distribution are asymmetric in that the right tail behaves like

cxp−1 exp(−αx + βx) while the left tail is c|x|p−1 exp(αx + βx). Right tail is heavier if β > 0

but left tail is heavier if β < 0. Hence, the GH distribution is semi-heavy tailed and it has

moments of any order.

Corollary 3.1. As special cases of the GH distribution, the symmetric GH distribution, the

hyperbolic distribution and the NIG distribution have the following tail behavior: for sufficiently

large x,

(i) fSGH(x;α, µ, b, p) .= fGH(x;α, 0, µ, b, p) ∼ c|x|p−1 exp(−α|x|)

(ii) fH(x;α, β, µ, b) .= fGH(x;α, β, µ, b, 1) ∼ c exp(−α|x|+ βx)

(iii) fNIG(x;α, β, µ, b) .= fGH(x;α, β, µ, b,−1/2) ∼ c|x|−3/2 exp(−α|x|+ βx)

The tails of the GH limiting distributions are derived by taking limits in the density function

(3.3).

Theorem 3.2 (Tails of the VG distribution). Suppose that α > |β|, p > 0, µ ∈ R. The GH

distribution is reduced to the VG distribution if b → 0, and the tails become

fV G(x;α, β, µ, p) .= fGH(x;α, β, µ, 0, p) ∼ c|x|p−1 exp(−α|x|+ βx).

In particular, the VG distribution possesses moments of arbitrary order.

Fix β 6= 0, µ ∈ R, b > 0, p < 0 and take α to |β| in (3.3), we have

Theorem 3.3 (Tails of the GST distribution). Suppose that |β| > 0, µ ∈ R, b > 0, p < 0. The

GST distribution is derived from the GH distribution by α → |β|. It has tails

fGST (x;β, µ, b, p) .= fGH(x; |β|, β, µ, b, p) ∼ c|x|p−1 exp(−|βx|+ βx).
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The GST law is not semi-heavy tailed, because one tail is polynomial while the other is

exponential. Namely,

1. when β > 0, right tail ∼ cxp−1, left tail ∼ c|x|p−1e2βx.

2. when β < 0, right tail ∼ cxp−1e2βx, left tail ∼ c|x|p−1.

Therefore it could not have moments of arbitrary order. The rth moment exists if and only if

r < −p. Particularly, when p = −b2/2, it is the skewed t distribution with tails

fGST (x; |β|, β, µ, b,−b2/2) ∼ c|x|−b2/2−1 exp(−|βx|+ βx).

Let both α and β go to 0 while freeze the other parameters (i.e., keep µ ∈ R, b > 0, p < 0

fixed), we have

Theorem 3.4 (Tails of the noncentral student t distribution). When α = β = 0, µ ∈ R, b >

0, p < 0, we have a noncentral student t distribution with −2p degrees of freedom. Its tails

behave like

fGH(x; 0, 0, µ, b, p) ∼ c|x|2p−1.

The rth moment exists if and only if r < −2p.

Therefore, the Cauchy distribution, as a special case of the noncentral student t distribution

(i.e. when p = −1
2), has tails

fGST (x; 0, 0, µ, b,−1
2
) ∼ c|x|−2.

The normal distribution can be regarded as a limiting case of the GH law as well if we assume

b > 0, α →∞ and limα→∞ b
α = σ2 for some σ, under which circumstances, the GH distribution

is reduced to the normal distribution with mean µ + βσ2 and variance σ2. The tails of the

normal law are proportional to e−x2/2.

Remark 3.1. Among all the limiting distributions, only the VG distribution is semi-heavy tailed

and possesses moments of arbitrary order, which are desirable properties in modeling financial

returns. Although the GST distribution does not have moments of any order, its tails are a
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mixture of polynomial and exponential, which distinguishes the GST law from the others and

makes it special.

Since the main task of this chapter is to model financial returns and build density upon

skewness and (excess) kurtosis, we focus on a subclass of the GH family which have a four-

parameter characterization, so that there exists a bijection from the parameter space to the

space spanned by the first four moments. Besides, we require the distributions to be skewed

(i.e., β 6= 0) and semi-heavy tailed. The subclasses of the GH family which could serve this

purpose are the NIG distribution, the VG distribution, and the GST distribution.

3.3 Parameter Estimation via the Method of Moments

This section is primarily concerned with parameter estimation of the NIG distribution, the

VG distribution, and the GST distribution via the method of moments. First, we will present

some general results regarding the GH family of distributions.

3.3.1 A General Case

For a centered GH distribution (i.e., µ = 0), its moments of arbitrary order could be

expanded as an infinitely series of Bessel functions of third kind with gamma weights (see

Barndorff-Nielsen and Stelzer (2005) for more details).

Lemma 3.1 (Moments of GH law). For a GH(α, β, 0, b, p) distributed random variable X, its

nth moment, denoted by mn, equals

mn
.= EXn =

2d
n
2
eγ̄pb2dn

2
eβm

√
πKp(γ̄)ᾱp+dn

2
e

∞∑

k=0

2kβ̄2kΓ(k + dn
2 e+ 1

2)
ᾱk(2k + m)!

Kp+k+dn
2
e(ᾱ) (3.4)

where m ≡ n(mod 2).

Equation (3.4) could be further simplified for the first four moments.

Theorem 3.5. The first four moments of a GH(α, β, 0, b, p) random variable can be explicitly

expressed as
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m1 =
bβKp+1(γ̄)

γKp(γ̄)
(3.5)

m2 =
bKp+1(γ̄)
γKp(γ̄)

+
β2b2Kp+2(γ̄)

γ2Kp(γ̄)
(3.6)

m3 =
3βb2Kp+2(γ̄)

γ2Kp(γ̄)
+

β3b3Kp+3(γ̄)
γ3Kp(γ̄)

(3.7)

m4 =
β4b4Kp+4(γ̄)

γ4Kp(γ̄)
+

6β2b3Kp+3(γ̄)
γ3Kp(γ̄)

+
3b2Kp+2(γ̄)

γ2Kp(γ̄)
(3.8)

Proof : It follows from the fact that

Kv(z) =
zv

xv

∞∑

k=0

1
2kk!

y2k

xk
Kv+k(x)

Note that given a GH(α, β, µ, b, p) random variable X, X−µ is GH(α, β, 0, b, p) distributed.

Therefore, the mean, variance, skewness and excess kurtosis of X could be derived from Theorem

3.5 directly.

Theorem 3.6 (Mean, Variance, Skewness and Excess Kurtosis of the GH law).

Suppose that X is GH(α, β, µ, b, p) distributed. Then its mean M , variance V , skewness S

and excess kurtosis K can be put as

M =µ +
βbKp+1(γ̄)

γKp(γ̄)
(3.9)

V =
bKp+1(γ̄)
γKp(γ̄)

+
b2β2Kp+2(γ̄)

γ2Kp(γ̄)
− b2β2K2

p+1(γ̄)
γ2K2

p(γ̄)
(3.10)

S =
m3 − 3m1m2 + 2m3

1

V ar(X)3/2
(3.11)

K =
m4 − 4m1m3 + 12m2

1m2 − 6m4
1 − 3m2

2

V ar(X)2
(3.12)

with mi, i = 1, 2, 3, 4 defined in Theorem 3.5.

For a general GH distribution, it is hard to extract the parameters from equations (3.9),

(3.10), (3.11) and (3.12) in terms of the moments. However, it is easy for the NIG distribution,

the VG distribution and the GST distribution.
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3.3.2 The Normal Inverse Gaussian Distribution

The GH distribution is reduced to a NIG distribution when p = −1/2. The mixture of

the NIG distribution is inverse Gaussian or IG(b,
√

α2 − β2)2. Replacing p by −1/2, and

considering the facts that K1/2(z) =
√

π
2 z−1/2e−z and Kp(z) = K−p(z), we could derive the

density function for the NIG law, which is

fNIG(x;α, β, µ, b) =
α

π

eγb+β(x−µ)

√
1 + (x−µ

b )2
K1

(
αb

√
1 + (

x− µ

b
)2

)

Next, we restate Theorem 3.6 for the NIG distribution.

Corollary 3.2 (Mean, Variance, Skewness and Excess Kurtosis of the NIG law).

Given a NIG(α, β, µ, b) distributed random variable, its mean M , variance V , skewness S

and excess kurtosis K can be related to the parameters in the following way:

M =µ +
βb

γ

V =
bα2

γ3

S =
3β

α
√

bγ

K =
3(4β2 + α2)

bα2γ

Particularly, we have 3K > 5S2.

Proof : Consider

Kn+1/2(z) = K1/2(z)

(
1 +

n∑

i=1

(n + i)!
i!(n− i)!

2−iz−i

)

From Corollary 3.2, one could know that the range of skewness and excess kurtosis implied

by the NIG distribution is {(K, S2) : 3K > 5S2}. We call it feasible domain of the NIG

distribution. Next, we will give the method of moments estimation for the NIG distribution

analytically.

2 Y ∼ IG(δ, γ) if its density function is f(y; δ, γ) = ( δ2

2πy3 )1/2 exp(δγ) exp[− 1
2
(γ2y + δ2/y)]
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Theorem 3.7. Suppose that for a given NIG(α, β, µ, b) random variable, its sample mean,

sample variance, sample skewness and sample excess kurtosis are M̂ , V̂ , Ŝ, K̂ and 3K̂ > 5Ŝ2.

The method of moments estimation for the parameters are

α̂ = 3

√
D + Ŝ2

D
V̂ −1/2 (3.13)

β̂ =
3Ŝ

D
V̂ −1/2 (3.14)

µ̂ = M̂ − 3Ŝ

D + Ŝ2
V̂ 1/2 (3.15)

b̂ =
3
√

D

D + Ŝ2
V̂ 1/2 (3.16)

where D = 3K̂ − 5Ŝ2 > 0.

Proof : See Eriksson et al. (2004).

3.3.3 The Variance Gamma Distribution

Keep α > 0, µ ∈ R, p > 0 fixed and take b to 0. We will arrive at the VG distribution with

the mixture Gamma(p, 2
α2−β2 )3. The density function of V G(α, β, µ, p) is

fV G(x;α, β, µ, p) =
(α2 − β2)p

√
πΓ(p)(2α)p−1/2

e(x−µ)β |x− µ|p−1/2Kp−1/2(|x− µ|α)

which is obtained by using the fact that Kp(z) ∼ 2p−1Γ(p)z−p as z → 0 if p > 0 (Jorgensen

(1982)).

Next lemma presents some useful properties regarding the Bessel function of third kind,

which could be helpful in deriving the method of moments estimation for the VG distribution

and the GST distribution.

Lemma 3.2. The Bessel function of third kind defined in (3.1) has the following properties:

3X ∼ Gamma(k, θ) if the density function is f(x; k, θ) = xk−1 e−x/θ

θkΓ(k)
where x > 0, k > 0, θ > 0
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for any k ∈ Z+,

lim
b→0

bkKp+k(γ̄)
Kp(γ̄)

=
2kΓ(p + k)

γkΓ(p)
if p > 0 (3.17)

lim
γ→0

Kp+k(γ̄)
γkKp(γ̄)

=
bkΓ(−p− k)

2kΓ(−p)
if p < 0 (3.18)

where γ̄ = bγ.

Let b approach 0 in Theorem 3.6. We have the following statement:

Corollary 3.3 (Mean, Variance, Skewness and Excess Kurtosis of the VG law). The mean M ,

variance V , skewness S and excess kurtosis K of a V G(α, β, µ, p) random variable are

M = µ +
βp

η

V =
p

η2
(η + β2)

S =
β(3η + 2β2)

(η + β2)3/2p1/2

K =
3(η2 + 4ηβ2 + 2β4)

p(η + β2)2

where η = α2−β2

2 > 0, α > 0, p > 0, µ ∈ R and 2K > 3S2.

Proof : It follows from equation (3.17) of Lemma 3.2 and the dominant convergence theorem.

Therefore, the feasible domain of the VG distribution is {(K, S2) : 2K > 3S2}. Next

theorem presents the method of moments estimation for the VG distribution.

Theorem 3.8 (Method of moments estimation for the VG law). Suppose that, for a given

V G(α, β, µ, p) distribution, the sample mean, sample variance, sample skewness and sample

excess kurtosis are M̂ , V̂ , Ŝ and K̂ such that 2K̂ > 3Ŝ2. If further we assume Ŝ 6= 0, the

method of moments estimation for the VG parameters are

α̂ =
2
√

R(3 + R)√
V̂ |Ŝ|(1−R2)

(3.19)

β̂ =
2R(3 + R)√
V̂ Ŝ(1−R2)

(3.20)
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p̂ =
2R(3 + R)2

Ŝ2(1 + R)3
(3.21)

µ̂ = M̂ − 2
√

V̂ R(3 + R)
Ŝ(1 + R)2

(3.22)

where, letting C = 3Ŝ2/2K̂, R is the unique solution to the following equation:

(C − 1)R3 + (7C − 6)R2 + (7C − 9)R + C = 0

and 0 < R < 1. If Ŝ = 0, we have

α = 6/(V̂ K̂), β = 0, p = 3/K̂, µ = M̂

Proof : See Appendix A.3.1.

3.3.4 The Generalized Skewed T Distribution

The GST distribution is derived by allowing α → |β|. Therefore, it has density function as

fGST (x;β, µ, b, p) =
2p+1/2b−2p

√
πΓ(−p)

e(x−µ)β

(
|β|√

(x− µ)2 + b2

)−p+1/2

K−p+1/2(|β|
√

(x− µ)2 + b2)

where β ∈ R, µ ∈ R, b > 0, and p < −4 so that the 4th moment exists. The mixing distribution

of the GST law is inverse gamma or InvGamma(−p, b2/2)4. Its mean, variance, skewness and

excess kurtosis are derived by sending γ to 0 in Theorem 3.6 and using (3.18) of Lemma 3.2.

Corollary 3.4 (Mean, Variance, Skewness and Excess Kurtosis of the GST law). The mean M ,

variance V , skewness S and excess kurtosis K of a GST distribution can be explicitly expressed

as follows

M = µ +
b2β

v − 2

V =
b2

v − 2
+

2b4β2

(v − 2)2(v − 4)

S =
[
6(v − 2) +

16b2β2

v − 6

]
bβ(v − 4)1/2

[(v − 2)(v − 4) + 2b2β2]3/2

4Y ∼ InvGamma(k, θ) (k > 0, θ > 0) if the density function is f(y; k, θ) = θk(1/y)k+1 e−θ/y

Γ(k)
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K =
[
8b4β4(5v − 22)
(v − 6)(v − 8)

+
16b2β2(v − 2)(v − 4)

v − 6
+ (v − 2)2(v − 4)

]
6

[(v − 2)(v − 4) + 2b2β2]2

where v = −2p > 0.

Theorem 3.9 (Method of moments estimation for the GST law). Given the sample mean M̂ ,

sample variance V̂ , sample skewness Ŝ and sample excess kurtosis K̂, the method of moments

estimation for a GST (β, µ, b, p) distribution is

β̂ = sig(Ŝ)

√
ρ(1 + ρ)(v − 4)

2V̂
(3.23)

µ̂ = M̂ − sig(Ŝ)

√
ρ(v − 4)V̂
2(1 + ρ)

(3.24)

b̂ =

√
V̂ (v − 2)

1 + ρ
(3.25)

p̂ = −v/2 (3.26)

where ρ(≥ 0) and v(> 8) are solutions to the following system of equations:

2ρ[3(v − 6) + 4(v − 4)ρ]2 − Ŝ2(v − 4)(v − 6)2(1 + ρ)3 = 0

12(v − 4)(5v − 22)ρ2 + 48(v − 4)(v − 8)ρ + 6(v − 6)(v − 8)− K̂(v − 4)(v − 6)(v − 8)(1 + ρ)2 = 0
(3.27)

A sufficient condition under which (3.27) could have solutions is Ŝ2 < min(3/2, K̂/3), while

the necessary condition is Ŝ2 < min(3/2, K̂).

Particularly, when Ŝ = 0, the estimates are reduced to

β = 0, µ = M̂, b =
√

V̂ (2 + 6/K̂), p = −(2 + 3/K̂).

Proof : See Appendix A.3.2.

Although we do not give an explicit expression for the feasible domain of the GST distri-

bution, it is clear, from Theorem 3.9, that this region is enclosed in the set {(K,S2) : S2 <

min(3/2,K)} and it contains {(K, S2) : S2 < min(3/2,K/3)}. Moreover, from Figure 7 and

Figure 8, one could see that these two regions are sufficient to characterize the feasible domain

of the GST distribution. We will talk about Figure 7 and Figure 8 in more details in the next

section.
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Remark 3.2. From the discussions above, one could see that among the three distributions,

the VG distribution admits the largest possible combinations of skewness and (excess) kurtosis.

The NIG law comes next but it is still far bigger than that of the GST distribution (see Figure

7 panel (a) and Figure 8).

3.4 Moments of risk neutral distribution

Since we are interested in modeling the asset returns with the NIG distribution, the VG

distribution and the GST distribution, it is natural to think about the risk neutral distribution

of asset returns which plays an important role in derivative pricing.

Suppose that {St} is a given price process. Bakshi et al. (2003) point out that the risk

neutral moments of τ−period return Rt(τ) = ln(St+τ ) − ln(St) evaluated at time t can be

written in terms of a sample of out-of-the-money (OTM) call and put options. Specifically,

Bakshi et al. (2003) show that the arbitrage-free prices of volatility contract, cubic contract

and quartic contract at time t can be formulated as

V (t, τ) = EQ
t (e−rτRt(τ)2) =

∫ ∞

St

2(1− ln(K/St))
K2

C(t, τ ;K)dK (3.28)

+
∫ St

0

2(1− ln(K/St))
K2

P (t, τ ;K)dK

W (t, τ) = EQ
t (e−rτRt(τ)3) =

∫ ∞

St

6 ln(K/St)− 3(ln(K/St))2)
K2

C(t, τ ;K)dK (3.29)

+
∫ St

0

6 ln(K/St)− 3(ln(K/St))2

K2
P (t, τ ;K)dK

X(t, τ) = EQ
t (e−rτRt(τ)4) =

∫ ∞

St

12(ln(K/St))2 − 4(ln(K/St))3)
K2

C(t, τ ;K)dK (3.30)

+
∫ St

0

12(ln(K/St))2 − 4(ln(K/St))3

K2
P (t, τ ;K)dK

where Q denotes risk neutral measure, r is risk-free rate, while C(t, τ ;K) and P (t, τ ;K) are

the prices of European calls and puts written on the underlying asset with strike price K
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and expiration τ periods from time t. Therefore, the risk neutral moments (mean, variance,

skewness, and excess kurtosis) of ln(St+τ ) conditional on the information up to time t are

constructed as

Mean(t, τ) = µ(t, τ) + ln(St) (3.31)

V ar(t, τ) = erτV (t, τ)− µ2(t, τ) (3.32)

Skew(t, τ) =
erτW (t, τ)− 3µ(t, τ)erτV (t, τ) + 2µ(t, τ)3

[erτV (t, τ)− µ(t, τ)2]3/2
(3.33)

EKurt(t, τ) =
erτX(t, τ)− 4µ(t, τ)erτW (t, τ) + 6erτµ(t, τ)2V (t, τ)− 3µ(t, τ)4

[erτV (t, τ)− µ(t, τ)2]2
− 3 (3.34)

where

µ(t, τ) = erτ − 1− erτV (t, τ)/2− erτW (t, τ)/6− erτX(t, τ)/24

As equations (3.28), (3.29) and (3.30) indicate, the procedure involves using a weighted

sum of (out-of-the-money) options across varying strike prices to construct the prices of payoffs

related to the second, third and fourth moments of returns. These prices are then used to

construct estimates of the mean, variance, skewness and excess kurtosis of the risk neutral

density function. We plot the daily skewness and kurtosis extracted from the daily S&P 500

index options from January 1996 to December 2005 in Figure 7, where each dot represents a

combination of squared skewness and kurtosis on each day and the integrals in equations (3.28),

(3.29) and (3.30) are evaluated by trapezoid approximation (see Conrad et al. (2007b) for more

details).

In Figure 7 we also plot, on top of the dots, the feasible domains of the NIG distribution

and the VG distribution and the regions implied by the sufficient and necessary conditions

of the GST distribution. Also available is the feasible domain of the A-type Gram-Charlier

expansion. Eriksson et al. (2009) studied the A-type Gram-Charlier expansion and the Edge-

worth expansion as alternative approximating densities to the NIG distribution. Since the

Edgeworth expansion admits a smaller feasible region than the A-type Gram-Charlier expan-

sion (see Barton and Dennis (1952) for more detail), we only draw the feasible domain of the

A-type Gram-Charlier expansion in Figure 7. However, we could barely see the regions concern-

ing the GST distribution and the feasible domain of the A-type Gram-Charlier expansion from
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plots in the left column of Figure 7, which illustrate the whole time series from 1996 through

2005. By zooming in the lower left corner of each plot, we obtain the associated plots in the

right column, which give us a clear idea of the region concerning the GST distribution and the

feasible domain of the A-type Gram-Charlier expansion.

It is striking to see that most of the options traded in the US produce a combination of

skewness and kurtosis outside the feasible regions of the GST distribution and the A-type

Gram-Charlier expansion (outside the feasible region of the Edgeworth expansion as well). The

GST distribution admits a larger region than the two expansions though. The feasible domains

of the NIG distribution and the VG distribution could cover half of the data points, and hence

they are superior to the GST law, the Edgeworth expansion and the A-type Gram-Charlier

expansion in terms of the feasible region. Although the VG distribution produces a larger

region than the NIG distribution, the difference is not significant as shown in Figure 7.

We further look into the risk neutral skewness and kurtosis for 1999, 2000, 2003 in particular

and provide the information together with the feasible domains of the NIG distribution, the

VG distribution and the GST distribution in Figure 8, where one could clearly see that most of

the data points are within the feasible regions of the NIG distribution and the VG distribution

and that of the GST distribution is too tight.

3.5 Density Approximation and Option Pricing

That the NIG distribution and the VG distribution produce larger feasible domains than the

GST distribution, the A-type Gram-Charlier expansion and the Edgeworth expansion makes the

NIG distribution and the VG distribution more flexible in modeling the risk neutral distribution.

However, we are unable to numerically assess how good they are and how close they are to the

true risk neutral distribution in that the latter is unknown to us. In this section, we will consider

a heuristic option pricing model – affine jump-diffusion model – under the risk neutral measure.

Assuming that the underlying asset is generated from the affine model, we could obtain a closed-

form expression for the true risk neutral distribution as well as the approximating densities

whose parameters are estimated using the algorithm described in the previous section. We

could further investigate option pricing under the true density and the approximating densities
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as well in order to compare their pricing errors.

3.5.1 The model

let S be the price process and Y = ln(S). We assume that Y is generated from the following

affine model under risk neutral measure:

dYt = (r − λJ µ̄− 1
2Vt)dt +

√
VtdW 1

t + JtdNt

dVt = κ(θ − Vt)dt + σρ
√

VtdW 1
t + σ

√
1− ρ2

√
VtdW 2

t

Nt ∼ Poisson(λJ)

Jt ∼ N(µJ , σ2
J)

(3.35)

where µ̄ = exp(µJ + 1
2σ2

J)− 1 is the mean jump size of the price process and W 1,W 2 are two

independent standard Brownian motions.

For u ∈ C, the conditional characteristic function of log price, E(euYT |Ft), is equal to,

according to Duffie et al. (2000),

Ψ(u; t, T, xt)
.= exp(α(u, T − t) + β(u, T − t)vt + uyt) (3.36)

where

β(u, τ) =− a(1− e−γτ )
2γ − (γ + b)(1− e−γτ )

α(u, τ) =ruτ − κθ

(
γ + b

σ2
τ +

2
σ2

ln
[
1− γ + b

2γ
(1− e−γτ )

])

− λJτ(1 + µ̄u) + λJτ exp(µJu +
1
2
σ2

Ju2)

and b = σρu− κ, a = u(1− u), γ =
√

b2 + aσ2, and xt
.= (yt, vt).

Therefore, the density function of YT conditional on the information up to time t is

f(y; t, T, xt) =
1
2π

∫

R
e−iuyΨ(iu; t, T, xt)du

Moreover, the arbitrage-free price of a plain vanilla European call option with expiration time
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T and strike price K at time t can be explicitly expressed as

Ct = E(e−r(T−t)(ST −K)+|Ft)

= P1(K, t, T, xt)−KP2(K, t, T, xt)

with

P1(K, t, T, xt) =
1
2
st − e−r(T−t)

π

∫ ∞

0
Im

[
eiv ln(K)Ψ(1− iv; t, T, xt)

v

]
dv

P2(K, t, T, xt) =
1
2
e−r(T−t) − e−r(T−t)

π

∫ ∞

0
Im

[
eiv ln(K)Ψ(−iv; t, T, xt)

v

]
dv

where Im denotes the imaginary part of a complex number.

3.5.2 Numerical Analysis

To numerically evaluate how close the approximating densities to the true density, we will

consider the affine model with structural parameters estimated from three different data sets.

We start with the parameters estimated by Bakshi et al. (1997). Namely, r = 5%, κ = 1.62,

θ = 0.04, σ = 0.44, ρ = −0.76 and λJ = µJ = σJ = 0 where the jump component is suppressed

to zero5. These values are obtained based on the S&P 500 index call option from June 1988

through May 1991. The starting values of state variables are S0 = 1080 and V0 = 0.026, based

on which we can generate a set of European calls with time to maturity τ = 0.21 (in years)

and strike prices spanning the interval [820, 1260] at every 20 points. Further, the put prices

are calculated using put-call parity.

The second set of parameters we will use is r = 5.814%, κ = 0.6901, θ = 0.0096, σ = 0.0615,

ρ = −0.0183 and λJ = µJ = σJ = 0. They are estimated by Chernov and Ghysels (2000)

using the S&P 500 index and the SPX European options traded on the index from November

1985 to October 1994. Again, the model is evaluated by assuming that no jump occurs. In our

numerical analysis, the starting values of the state variables are s0 = 1.1804, v0 = 0.0102, based
5Rompolis and Tzavalis (2007) and Eriksson et al. (2009) considered these values as well.
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on which we generate a portfolio of calls and puts with moneyness ranging from 0.87 to 1.13 at

every 0.001 points and time to maturity varying from 10 days, 22 days to 44 days.

The last set of parameters are r = 3.19%, ρ = −0.79, θ = 0.014, κ = 3.99, σ = 0.27,

λJ = 0.11, µJ = −0.14, and σJ = 0.15. They are estimated by Duffie et al. (2000) based on the

S&P 500 index option of Nov 2, 1993. The estimated volatility on that day is v0 = 0.0089. We

then derive the value s0 = 0.6453 by simulating a sample path of 1500 observations from model

(3.35)6. After dropping the first 1000 observations, we look for a pair of (st, vt) with vt closest

to 0.0088. The moneyness ranges from 0.74 to 1.17 at every 0.01 points. We also consider three

different time-to-maturities, i.e., 17 days, 45 days, 80 days in the numerical analysis.

The values of structural parameters (annualized) are summarized in the following table:

Parameter r κ θ σ ρ λJ µJ σJ

I 5% 1.62 0.04 0.44 -0.76 0 0 0

II 5.814% 0.6901 0.0096 0.0615 -0.0183 0 0 0

III 3.19% 3.99 0.014 0.27 -0.79 0.11 -0.14 0.15

We evaluate the accuracy of various approximating densities through L1 and L2 norms

which are defined as

L1(f) =
∫
|f(x)− f̂(x)|dx

and

L2(f) =
∫

(f(x)− f̂(x))2dx

where f is the true density and f̂ is its estimator. These two norms measure the average

distance between the true density and the estimated one. L2 norm is more sensitive than L1

norm if f̂ deviates from f dramatically.

We report the mean, variance, skewness and excess kurtosis across different time to matu-

rities estimated from the three sets of parameters in Table 2, Table 3 and Table 4 respectively.

The values of L1 and L2 norms are available in the three tables as well. Besides, in Table 2,

we also list the estimated L1 and L2 norms for the C-type Gram-Charlier expansion which are
6To simulate the jump, we follow the algorithm described in Chapter 6 of Cont and Tankov (2004). Namely,

we first generate the number of jumps, N , which is Poisson distributed with parameter λJ ∗ 1500, then simulate
the jump times – {Ui, i = 1, 2, . . . , N} independently and uniformly distributed along [0, T ] – and jump sizes –
N i.i.d. normal variables with mean µJ and variance σ2

J .
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taken from Rompolis and Tzavalis (2007).

From Table 2, one could see that when the underlying asset is generated by a diffusion

model (no jump included), the NIG distribution, the VG distribution and the GST distribution

could achieve a similar accuracy to the C-type Gram-Charlier expansion and they are better

than the Edgeworth expansion and the A-type Gram-Charlier expansion. The reason behind

this is, as shown in Panel (a) of Figure 9, the Edgeworth expansion and the A-type Gram-

Charlier expansion produce negative values, which is caused by the fact that the skewness and

kurtosis are outside the feasible domains of the two expansions. Panel (b) of Figure 9 gives

the information regarding the true risk neutral density based on the given starting values of

state variables and the NIG approximation, the VG approximation, the GST approximation.

They all perform pretty well overall. But still we have an impression that the VG distribution

and the NIG distribution are a little bit better than the GST distribution. In addition, the

VG distribution overestimates the density while NIG underestimates the true density. The

deviation is not at all dramatic though.

Table 3 is produced based on Parameter II, where the estimated skewness and excess kurtosis

reported in the first four columns are pretty mild and they fall into the feasible domain of

the Edgeworth expansion. All the approximating densities provide very good fits to the true

risk neutral density. As time to maturity gets longer, the approximations become even more

accurate.

However, things get different in Table 4 where the underlying model includes a jump com-

ponent. The reported skewness and excess kurtosis based on Parameter III are significantly

bigger than what are in Table 2 and Table 3 and they are outside the feasible domain of the

GST distribution. The Edgeworth expansion and the A-type Gram-Charlier expansion are not

valid density functions at all provided the skewness and excess kurtosis. The true risk neutral

density in this scenario is more skewed and leptokurtic. Only the NIG distribution and the VG

distribution are capable of matching the risk neutral moments. The VG distribution, however,

fails to provide a satisfactory approximation compared with the NIG distribution, as read from

the L1 and L2 norms. Table 4 gives us a clear idea that the NIG distribution outperforms

all the other approximating densities and it increases the accuracy as time-to-maturity grows.

Figure 10 is based on Parameter III as well, where one could see the true density curve together
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with its approximations using the NIG distribution, the VG distribution and the Edgeworth

expansion. Consistent with the findings in Table 4, the NIG approximation is superior to all

the others and it gets better when time to maturity gets longer.

We further look into the issue of option pricing. Figure 11 is concerned with the pricing of

the at-the-money (ATM) and out-of-the-money (OTM) European calls. The underlying asset

is generated from model (3.35) with Parameter III and 17 days to maturity where the most

serious mispricing of the true risk neutral density is observed. Clearly, the NIG distribution

provides mcuh less approximation error than the VG distribution and the Edgeworth expansion.

However, it is worth noting that the NIG distribution underprices the ATM calls and overprices

the contracts when the moneyness is bigger than 1.03, although the mispricing is not significant.

To make more apparent the difference between the NIG pricing and the VG pricing, we

consider a (balanced) butterfly trading strategy based on the European call options discussed

in Figure 11. The payoff function of the butterfly trading strategy is

g(ST ;K) = (ST −K + a)1(K−a≤ST≤K) + (K + a− ST )1(K<ST≤K+a).

In the numerical analysis, we allow the strike price, K, to range from 0.6 through 0.8 (or from

-0.511 to -0.223 for log(strike)), and a to take values .05, .02, and .005 respectively. Although

the payoff approaches 0 as a tends to 0, still one could see from Figure 12 that the NIG pricing is

closer to the pricing under the true density than the VG pricing, in particular when log(strike)

is around -0.45 and -0.4 where the VG approximation deviates severely from the true density.

3.6 Conclusion

This chapter is concerned with the problem of modeling asset returns with a density function

built upon mean, variance, skewness and kurtosis. We explore the GH family of distributions in

the financial context and in particular we focus on the NIG distribution, the VG distribution and

the GST distribution. We provide numerical evidence that the NIG distribution outperforms all

the other candidate approximating densities discussed in this chapter. In terms of the feasible

region spanned by skewness and kurtosis, the NIG distribution and the VG distribution are
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superior to the GST distribution, the Edgeworth expansion and the A-type Gram-Charlier

expansion. But when the risk neutral density of asset returns comes from an affine jump-

diffusion model, the NIG distribution provides a much better fit than the VG distribution.

However, the feasible region of the NIG distribution is still not large enough. In Figure 7,

half of the data points are above the solid line, and in particular the points along the upper

boundary form a straight line. This fact prompts us to think about a new family of distributions

which could accommodate a wider range of skewness and kurtosis and we leave this as a topic

for future research.
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Appendix

A.1 Appendix to Chapter 1

In this appendix, we present the cited theorems and lemmas throughout Chapter 1 for

readers’ quick reference.

Theorem A.1 (Theorem 3.1 of Glasserman and Yao (1995)). Suppose {(At, Bt), t ∈ Z} is a

strictly stationary ergodic process and one of the conditions

E(log ‖A0‖)+ < ∞, γ < 0, E(log ‖B0‖)+ < ∞

or

P (At . . . A0 = 0) > 0 for some n ≥ 0

is satisfied, then

yt =
∞∑

j=1

[At . . . At−j+1]Bt−j , t ∈ Z (A.1)

converges almost surely. It is the only strictly stationary ergodic solution of Yt = AtYt−1 + Bt.

Theorem A.2 (Lemma 3.4 of Bougerol and Picard (1992)). Let {Ft, t ∈ Z} be a strictly sta-

tionary ergodic sequence of Rn×n-valued random matrices and suppose that E(log+ ‖F0‖) < ∞
and that

lim
t→∞ ‖FtFt−1 . . . F1‖ = 0.

Then the top Lyapounov exponent associated with this sequence is strictly negative.

Theorem A.3. (Theorem 4.3 of Mokkadem (1990); Theorem 1 of Carrasco and Chen (2002))

Given a polynomial random coefficient vector autoregressive model defined as

Yt = A(εt)Yt−1 + B(εt) (A.2)
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where {Yt, t ∈ Z+} is a sequence of Rm-valued random process, {εt} is a Rp−valued iid sequence,

A(.) is a m×m matrix-valued polynomial function and B(.) is a m×1 vector-valued polynomial

function. If further it satisfies the following assumptions:

(A.1) The marginal probability distribution of εt is absolutely continuous with respect to Lebesgue

measure on Rp and zero is in the interior of its support.

(A.2) A(.) and B(.) are measurable with respect to the sigma-field generated by εt.

(A.3) The spectral radius of A(0), denoted by ρ[A(0)], is less than 1.

(A.4) The series
∑∞

k=1[A(εt)A(εt−1) . . . A(εt−k)]B(εt−k−1) converges almost surely. The se-

quence A(εt)A(εt−1) . . . A(εt−k) converges (as k →∞) to the 0 matrix almost surely.

(A.5) There exists a positive function V on Rm, a compact set K of Rm with nonempty interior,

and some positive numbers δ > 0, ν > 0, and 0 < λ < 1 such that

(i) E[V (Yt)|Yt−1 = y] ≤ λV (y)− ν if x /∈ K

(ii) E[V (Yt)|Yt−1 = y] ≤ δ if x ∈ K

Then {Yt} is Markov geometrically ergodic and E[V (Yt)] < ∞. Moreover, if Y0 is initialized

from an invariant distribution, {Yt} is strictly stationary and β-mixing with exponential decay.

Theorem A.4. (Theorem 2 of Nelson and Cao (1992) ) For a GARCH(2,q) as below

rt = σtεt

σ2
t = ω +

2∑

i=1

βiσ
2
t−i +

q∑

j=1

αjr
2
t−j

where εt’s are iid and E(εt) = 0, var(εt) = 1. Let z1 and z2 be the roots of 1−∑2
i=1 βiz

−i such

that |z2| ≤ |z1| ≤ 1 and if z1 = −z2, we take z1 > 0. Suppose further that 1 −∑2
i=1 βiz

i and
∑q

j=1 αjz
j−1 have no common roots. If we write σ2

t in ARCH(∞) form:

σ2
t = ω? +

∞∑

k=0

φkr
2
t−k−1,
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then ω? ≥ 0 and φk ≥ 0(∀k) if and only if

(B.1) ω? = ω/(1− z1 − z2 + z1z2) ≥ 0

(B.2) z1 and z2 are real

(B.3) z1 > 0

(B.4)
∑q−1

j=0 z−j
1 αj+1 > 0

(B.5) φk ≥ 0 for k = 0 to q.

Theorem A.5. (Lemma 1 of Jensen and Rahbek (2004)) Consider LT (Φ), which is a function

of the observations {Xt}1≤t≤T and the parameter Φ ∈ O ⊆ Rk. Let Φ0 be is an interior point

of O. Assume that LT (.) : Rk → R is three times continuously differentiable in Φ and that

(A.1) As T →∞,
√

T∇LT (Φ0) ⇒ N(0,ΣS), ΣS > 0.

(A.2) As T →∞, H(LT )(Φ0)
P→ ΣI > 0.

(A.3) maxi,j,h=1,...,k supΦ∈N(Φ0) | ∂3LT (Φ)
∂φi∂φj∂φk

| ≤ cT

where N(Φ0) is a neighborhood of Φ0 and 0 ≤ cT
P→ c, 0 < c < ∞. Then there exists a fixed

open neighborhood U(Φ0) ⊆ N(Φ0) of Φ0 such that

(B.1) With probability tending to one as T →∞, there exists a minimum point Φ̂T of LT (Φ) in

U(Φ0). In particular, Φ̂T is unique and solves ∇LT (Φ̂T ) = 0

(B.2) As T →∞, Φ̂T
P→ Φ0.

(B.3) As T →∞,
√

T (Φ̂T − Φ0) ⇒ N(0,Σ−1
I ΣSΣ−1

I )
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A.2 Appendix to Chapter 2

A.2.1 Edgeworth and Gram-Charlier series expansions

The central idea of the Edgeworth expansion and the A-type Gram-Charlier expansion is

to expand the risk-neutral density around the normal distribution using Hermite polynomials.

Consider a random variable X with mean µ, standard deviation σ, skewness S and excess

kurtosis K and let Z = X−µ
σ , the true density function f(x) of X can be expanded as

f(x) = g(x)

[
1 +

∞∑

m=3

1
m!

EX,mHm(z)

]

where g(x) = 1
σ
√

2π
exp(−1

2z2), Hm(.) are the Hermite polynomials and EX,m is the series

expansion coefficient defined as EX,m = E(Hm(Z)). If truncate the infinite series at some finite

order, we will have the Edgeworth expansion and the A-type Gram-Charlier expansion. In

particular, in term of the Edgeworth expansion, the true density f(x) of X can be expressed as

f(x) = g(x)
[
1 +

1
6
S(z3 − 3z) +

1
24

K(z4 − 6z2 + 3) +
1
72

S2(z6 − 15z4 + 45z2 − 15)
]

If drop the last term within the bracket, it yields the A-type Gram-Charlier expansion. Namely,

f(x) = g(x)
[
1 +

1
6
S(z3 − 3z) +

1
24

K(z4 − 6z2 + 3)
]

The C-type Gram-Charlier expansion is an improvement over the A-type Gram-Charlier

expansion. It relaxes the dependence on the Gaussian density and produces positive estimate

of density function. The C-type Gram-Charlier expansion implies that the true density of X is

expanded as

f(x) =
exp[

∑∞
m=1

1
mδmHm(z)]∫

exp[
∑∞

m=1
1
mδmHm(z)]dx

where δm is the mth order series coefficient of the C-type Gram-Charlier expansion. 1

1See Rompolis and Tzavalis (2005) and Rompolis and Tzavalis (2007) for more technical details
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A.2.2 Call option pricing using Heston model

For European option written on the asset prices generated from model (2.19), Heston (1993)

gave an explicit formula to calculate the call prices:

Call(t, s, v,K) = sP1 − e−rτKP2

where for j = 1, 2,

Pj =
1
2

+
1
π

∫ ∞

0
Re[e−iu log(K)Φ

(j)
t (u;τ)/(iu)]du (A.3)

and Φ(j)
t (u; τ) is defined as

Φ(j)
t (u; τ) = exp(C(j)(u; τ) + D(j)(u; τ)v + iu ln(s)) (A.4)

with

(i) when σ > 0,

C(j)(u; τ) = ruτi +
κθ

σ2
[(bj − ρσui + d)τ − 2 ln(

1− gedτ

1− g
)]

D(j)(u; τ) =
bj − ρσui + d

σ2

1− edτ

1− gedτ

g =
bj − ρσui + d

bj − ρσui− d

d =
√

(ρσui− bj)2 + σ2(u2 − 2ujui)

(ii) when σ = 0,

C(j)(u; τ) = ruτi +
κθ(u2 − 2ujui)

2bj
(
1− e−bjτ

bj
− τ)

D(j)(u; τ) =
u2 − 2ujui

2bj
(e−bjτ − 1)

and

b1 = κ− ρσ, u1 = 1/2; b2 = κ, u2 = −1/2 (A.5)

Remark A.1. One could see that the characteristic function (2.20) is Φ(2)
t (u; τ) of (A.4).
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Table 1: Option pricing: Comparison of NIG with Gram-Charlier and Edgeworth

Panel A reports the values of L1 and L2 which measure how close the approximations by NIG, Gram-Charlier
and Edgeworth expansions are to the true density function on average. The mean absolute error L1 and the
mean percentage error L2 are defined as

L1(f) =

Z
|f(x)− f̂(x)|dx and L2(f) =

Z
(f(x)− f̂(x))2dx

where f is the true density and f̂ is its estimate. And they are derived based on Heston model (2.19).
Panel B illustrates the pricing of Butterfly trading strategy with payoff function

g(ST ; K) = (ST −K + 50)1(K−50≤ST≤K) + (K + 50− ST )1(K<ST≤K+50)

using the true risk neutral density, NIG law, Edgeworth and A-type Gram-Charlier expansions when K takes

values at e6.60, e6.70, e6.80 and e6.90. The underlying stock prices are generated using Heston model (2.19) with

parameters given in section 2.4.1.

Panel A: Density comparisons

NIG Edgeworth A-type GCSE C-type GCSE
L1 Norm 0.0690 0.1620 0.2818 0.0781
L2 Norm 0.0244 0.0660 0.2794 0.0153

Panel B: Butterfly Trading Strategy

ln(K) True RND NIG Edgeworth A-type GCSE
6.60 0.0238 0.0298 0.0148 0.0064
6.70 0.1723 0.1824 0.3654 0.3150
6.80 0.9367 0.9022 0.8019 1.4414
6.90 4.3490 4.3874 4.0484 1.9144
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Figure 1: Admissible regions for 1 month TTM S&P 500 index options

The figure shows the feasible region of NIG distribution and the region of positive definiteness for A-type Gram-

Charlier in terms of the kurtosis and the squared skewness. The areas below the curves are admissible regions.

The region of positive definiteness is obtained via the dialytic method of Sylvester(see, for instance Shenton

(1951), Barton and Dennis (1952)). Superimposed are the kurtosis/squared skewness from 1 month time to

maturity S&P 500 index options (daily data) for 1999 (top), 2000 (middle) and 2003 (lower).
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Figure 2: Risk Neutral Density of Heston Model

The figure plots the true probability density curve of the log price ln(Sτ+t0) (with τ = 0.21 in year) conditional
at time t0 = 0 together with its approximations by the NIG distribution, Edgeworth and A-type Gram-Charlier
expansions. The stock price St and its volatility Vt are generated using Heston model (2.19) under risk-neutralized
pricing probability, namely:

dSt = St(rdt +
√

VtdW 1
t )

dVt = κ(θ − Vt)dt + σ
√

VtdW 2
t

where W 1
t and W 2

t are two correlated Brownian motions with correlation coefficient ρ. In our numerical eval-

uation, we set up the parameters the same as Rompolis and Tzavalis (2007), ie r = 0.05, κ = 1.62, θ = 0.04,

σ = 0.44 and ρ = −0.76. Starting from time 0 with S0 = 1080, V0 = 0.026, we generate a cross-section set of

European calls with time to maturity τ and strike prices spanning the interval [820, 1260] at every 20 points.

The put prices are calculated using call-put parity. And the risk neutral moments are computed using the

methodology of Bakshi et al. (2003).
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Figure 3: Pricing of European calls: OTM & ATM

The figure displays the pricing of the European calls under the true risk neutral measure, NIG approximation,

Edgeworth and A-type Gram-Charlier expansions, and the associated relative pricing errors which are defined

as (p̂− p)/p where p is the price under the true risk neutral measure and p̂ is the price using the approximation.

The strike prices range from 1080/0.970− 1080/0.750 in Panel (a,b) and from 1080/1.030− 1080/0.970 in Panel

(c,d). The underlying stock prices are generated using Heston model (2.19) with parameters specified in section

2.4.1.

(a) OTM (b) Relative Pricing Error: OTM

(c) ATM (d) Relative Pricing Error: ATM
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Figure 4: Pricing of European calls: ITM

The figure displays the pricing of the European calls under the true risk neutral measure, NIG approximation,

Edgeworth and A-type Gram-Charlier expansions, and the associated relative pricing errors which are defined

as (p̂− p)/p where p is the price under the true risk neutral measure and p̂ is the price using the approximation.

The strike prices range from 1080/1.105− 1080/1.030 in Panel (a,b) and from 1080/1.205− 1080/1.105 in Panel

(c,d). The underlying stock prices are generated using Heston model (2.19) with parameters specified in section

2.4.1.

(a) ITM (b) Relative Pricing Error: ITM

(c) ITM (d) Relative Pricing Error: ITM

78



Figure 5: Pricing of Butterfly Trading Strategy

Panel (a) plots the pricing of Butterfly trading strategy with payoff function

g(ST ; K) = (ST −K + 50)1(K−50≤ST≤K) + (K + 50− ST )1(K<ST≤K+50)

using the true risk neutral density, NIG law, Edgeworth and A-type Gram-Charlier expansions when K takes

values from e6.6 to e6.9. The underlying stock prices are generated using Heston model (2.19) with parameters

given in section 2.4.1. The associated relative pricing errors are provided in Panel (b).

(a) Pricing

(b) Relative Pricing Error
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Figure 6: Risk neutral densities for S&P 500 Index using SPX Option contracts and the NIG
Approximation

The figure provides a time series plot of S&P 500 and the risk neutral densities approximated by the NIG law,

using three month contracts in March 2000 and August 2003. We use daily option price data extracted from

Optionmetrics through WRDS for all OTM calls and puts for all stocks from 1996-2005. Closing prices are

constructed as midpoint averages of the closing bid and ask prices. We eliminate option prices below 50 cents.

In estimating the moments, we use equal numbers of OTM calls and puts for each stock for each day.

(a) S&P 500 time series of returns (b) 3/2000

(c) 8/2003
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A.3 Appendix to Chapter 3

A.3.1 Proof of Theorem 3.8

First, we need to show that, given 0 < C < 1, there exists a unique 0 < R < 1 satisfying

(C − 1)R3 + (7C − 6)R2 + (7C − 9)R + C = 0

Note that for 0 < R < 1,

f(R) =
R(3 + R)2

(1 + 6R + R2)(1 + R)
(A.6)

is continuous and strictly increasing in R with range (0, 1). This is because

f ′(R) =
(R− 1)(R + 3)(R2 − 6R− 3)

(1 + 6R + R2)2(1 + R)2
> 0

for 0 < R < 1.

Next from corollary 3.3, we have

M = µ +
βp

η
(A.7)

V =
p

η2
(η + β2) (A.8)

S =
β(3η + 2β2)

(η + β2)3/2p1/2
(A.9)

K =
3(η2 + 4ηβ2 + 2β4)

p(η + β2)2
(A.10)

where η = α2−β2

2 > 0, α > 0, p > 0, µ ∈ R.

(i) If β = 0, the above equations are simplified as

M = µ

V = p/η

S = 0

K = 3/p
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hence α =
√

6/(KV ), µ = M, p = 3/K.

(ii) If β 6= 0, from (A.8)

p1/2 = η
√

V/(η + β2)

Combined with (A.9), we have

S =
β(3η + 2β2)

(η + β2)3/2η
√

V/(η + β2)
=

β(3η + 2β2)
(η + β2)η

√
V

(A.11)

Introduce ρ = β
α (|ρ| < 1). β = αρ, η = α2(1− ρ2)/2. From (A.11), we have

S =
αρ(3α2(1− ρ2)/2 + 2(αρ)2)

(α2(1− ρ2)/2 + (αρ)2)(α2(1− ρ2)/2)
√

V
=

2ρ(3 + ρ2)√
V α(1− ρ4)

α =
2ρ(3 + ρ2)√
V S(1− ρ4)

It follows from (A.8) and (A.10) that

K =
3(η2 + 4ηβ2 + 2β4)

V η2(η + β2)
(A.12)

Considering β2 = α2R, η = α2(1−R)/2 and α2 = 4R(3+R)2

V S2(1−R2)2
where R = ρ2 < 1 in (A.12), we

have

3S2

2K
=

R(3 + R)2

(1 + 6R + R2)(1 + R)
(A.13)

Further define C = 3S2

2K where 0 < C < 1. There exists a unique 0 < R < 1 satisfying

(A.13). It follows immediately that

ρ = sig(S)
√

R

α =
2ρ(3 + ρ2)√
V S(1− ρ4)

=
2
√

R(3 + R)√
V |S|(1−R2)

β = ρα =
2R(3 + R)√
V S(1−R2)
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p =
V (1−R)2α2

2(1 + R)
=

2R(3 + R)2

S2(1 + R)3

µ = M − 2βp

α2 − β2
= M − 2

√
V R(3 + R)

S(1 + R)2

Therefore, given sample mean M̂ , sample variance V̂ , sample skewness Ŝ and sample excess

kurtosis K̂ such that 2K̂ > 3Ŝ2 > 0, then the method of moments estimation of the VG

parameters are

α̂ =
2
√

R(3 + R)√
V̂ |Ŝ|(1−R2)

β̂ =
2R(3 + R)√
V̂ Ŝ(1−R2)

p̂ =
2R(3 + R)2

Ŝ2(1 + R)3

µ̂ = M̂ − 2
√

V̂ R(3 + R)
Ŝ(1 + R)2

A.3.2 Proof of Theorem 3.9

Note that

M = µ +
b2β

v − 2
(A.14)

V =
b2

v − 2
+

2b4β2

(v − 2)2(v − 4)
(A.15)

S =
[
6(v − 2) +

16b2β2

(v − 6)

]
bβ(v − 4)1/2

[(v − 2)(v − 4) + 2b2β2]3/2
(A.16)

K =
[
8b4β4(5v − 22)
(v − 6)(v − 8)

+
16b2β2(v − 2)(v − 4)

(v − 6)
+ (v − 2)2(v − 4)

]
6

[(v − 2)(v − 4) + 2b2β2]2

(A.17)

where v = −2p > 0.

(i) if β = 0 (iff S = 0),

M = µ

V = b2/(v − 2)
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S = 0

K = 6/(v − 4)

hence

µ = M, b =
√

V (2 + 6/K), p = −(2 + 3/K).

(ii) if β 6= 0 (iff S 6= 0). Introduce ρ = 2b2β2

(v−2)(v−4) . So 0 < ρ < b2β2/12. Meanwhile (A.15),

(A.16) and (A.17) become

V =
(1 + ρ)b2

v − 2

S2 =
(

3 +
4(v − 4)ρ

v − 6

)2 2ρ

(v − 4)(1 + ρ)3

K =
[
2(5v − 22)(v − 4)ρ2

(v − 6)(v − 8)
+

8(v − 4)ρ
v − 6

+ 1
]

6
(1 + ρ)2(v − 4)

therefore

b2 =
V (v − 2)

1 + ρ

β2 =
ρ(1 + ρ)(v − 4)

2V

where ρ, v are solved from

S2 =
(
3 + 4(v−4)ρ

v−6

)2
2ρ

(v−4)(1+ρ)3

K =
[

2(5v−22)(v−4)ρ2

(v−6)(v−8) + 8(v−4)ρ
v−6 + 1

]
6

(1+ρ)2(v−4)

(A.18)

or

2ρ[3(v − 6) + 4(v − 4)ρ]2 − S2(v − 4)(v − 6)2(1 + ρ)3 = 0

12(v − 4)(5v − 22)ρ2 + 48(v − 4)(v − 8)ρ + 6(v − 6)(v − 8)−K(v − 4)(v − 6)(v − 8)(1 + ρ)2 = 0
(A.19)

Further, we have

b =

√
V (v − 2)

1 + ρ
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β = sig(S)

√
ρ(1 + ρ)(v − 4)

2V

µ = M − b2β

v − 2

p = −v/2

Replace M, V, S, K by their empirical counterparts. We have the method of moments estimation

for the GST parameters.

Next, we need to verify the conditions under which (A.19) have solutions. Introduce x =

ρ(> 0) and y = v − 8(> 0). Thus (A.18) becomes

x3

[
32(y + 4)
(y + 2)2

− S2

]
+ 3x2

[
16

y + 2
− S2

]
+ 3x

[
6

y + 4
− S2

]
− S2 = 0 (A.20)

x2

[
12(5y + 18)

(y + 2)y
−K

]
+ 2x

[
24

y + 2
−K

]
+

[
6

y + 4
−K

]
= 0 (A.21)

Notice that
12(5y + 18)

(y + 2)y
>

32(y + 4)
(y + 2)2

>
24

y + 2
>

16
y + 2

>
6

y + 4
> 0

To solve a unique x > 0 from (A.21), one should have

12(5y + 18)
(y + 2)y

> K >
6

y + 4
> 0 (A.22)

and

x1(y;K) ≡
√

B2 −AC −B

A
> 0

where A = 12(5y+18)
(y+2)y −K > 0, B = 24

y+2 −K and C = 6
y+4 −K < 0. To solve a unique x > 0

from (A.20) (denoted by x2(y;S)), the necessary and sufficient condition is

6
y + 4

≥ S2 (A.23)

Together with (A.22) and (A.23), we know that y should be within the following set

D = {y :
(

6
K
− 4

)
∨ 0 < y <

(
30
K
− 1 +

√
1 +

156
K

+
900
K2

)
∧

(
6
S2

− 4
)
}
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with S2 < min(3/2,K).

Next we need to show that x1 and x2 cross in D. Define

f(x; y, K) ≡x2

[
12(5y + 18)

(y + 2)y
−K

]
+ 2x

[
24

y + 2
−K

]
+

6
y + 4

−K

=Ax2 + 2Bx + C

g(x; y, S) ≡x3

[
32(y + 4)
(y + 2)2

− S2

]
+ 3x2

[
16

y + 2
− S2

]
+ 3x

[
6

y + 4
− S2

]
− S2

=Dx3 + 3Ex2 + 3Fx− S2

where

D =
32(y + 4)
(y + 2)2

− S2 > 0, E =
16

y + 2
− S2 > 0, F =

6
y + 4

− S2 > 0.

Since limy→0 x1(y;K) = 0 if K ≥ 3/2, and limy→6/K−4 x1(y;K) = 0 if K < 3/2, we have

g(x1(y;K); y, S) < 0.

Note also that

S2 < K − 6
y + 4

⇔ 6
y + 4

< K − S2 (A.24)

And

g
′
(x)− f

′
(x) = 3Dx2 + 2(3E −A)x + 3F − 2B

where

3F − 2B = 3
(

6
y + 4

− S2

)
− 2

(
24

y + 2
−K

)

= 2K − 3S2 −
(

48
y + 2

− 18
y + 4

)

3E −A = 3
(

16
y + 2

− S2

)
−

(
12(5y + 18)

(y + 2)y
−K

)

= K − 3S2 −
(

12(5y + 18)
(y + 2)y

− 48
y + 2

)

Since the condition 12(5y+18)
(y+2)y − 48

y+2 < K − 3S2 implies both (A.24) and 48
y+2 − 18

y+4 < 2K − 3S2,
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it follows that g
′
> f

′
if K > 3S2, and y satisfies (A.22), (A.23) and

0 <
12(5y + 18)

(y + 2)y
− 48

y + 2
< K − 3S2. (A.25)

Further we have g(x1(y;K); y, S) > 0, which implies that x1 and x2 cross in D. Therefore the

necessary condition that we can solve x, y from (A.20) and (A.21) is S2 < min(3/2,K/3). A

sufficient condition is S2 < min(3/2,K).
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Table 2: Comparison of various approximating densities: I

We compare the performance of various approximating densities by assuming that the underlying asset is gener-
ated from the affine jump-diffusion model (3.35) under the risk neutral measure, namely,

dYt = (r − λJ µ̄− 1
2
Vt)dt +

√
VtdW 1

t + JtdNt

dVt = κ(θ − Vt)dt + σρ
√

VtdW 1
t + σ

p
1− ρ2

√
VtdW 2

t

Nt ∼ Poisson(λJ)
Jt ∼ N(µJ , σ2

J)

with µ̄ = exp(µJ + 1
2
σ2

J) − 1 and W 1, W 2 are two independent Brownian motions. The values of structural

parameters are taken from Bakshi et al. (1997) (Parameter I), ie., r = 5%, κ = 1.62, θ = 0.04, σ = 0.44 ρ = −0.76

and λJ = µJ = σJ = 0. The starting values of state variables are S0 = 1080 and V0 = 0.026. The strike prices

span the interval [820, 1260] at every 20 points and the time to maturity is τ = 0.21 (in year). The estimated

mean, variance, skewness and excess kurtosis are 6.9921, 0.0064, -1.2193 and 3.1090, respectively. The values of

L1 and L2 norms are reported in the following table where the values regarding the C-type Gram-Charlier series

expansion (C-type GCSE) are taken from Rompolis and Tzavalis (2007).

VG GST NIG Edgeworth A-type GCSE C-type GCSE

L1 0.0659 0.0836 0.0690 0.1620 0.2818 0.0781
L2 0.0257 0.0395 0.0244 0.0660 0.2794 0.0153
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Table 3: Comparison of various approximating densities: II

We compare the performance of various approximating densities by assuming that the underlying asset is gener-
ated from the affine jump-diffusion model (3.35) under the risk neutral measure, namely,

dYt = (r − λJ µ̄− 1
2
Vt)dt +

√
VtdW 1

t + JtdNt

dVt = κ(θ − Vt)dt + σρ
√

VtdW 1
t + σ

p
1− ρ2

√
VtdW 2

t

Nt ∼ Poisson(λJ)
Jt ∼ N(µJ , σ2

J)

with µ̄ = exp(µJ + 1
2
σ2

J)− 1 and W 1, W 2 are two independent Brownian motions. Here we consider the values

of parameters from Chernov and Ghysels (2000) (Parameter II): r = 5.814%, κ = 0.6901, θ = 0.0096, σ = 0.0615

ρ = −0.0183 and λJ = µJ = σJ = 0. The starting values of the state variables are s0 = 1.1804, v0 = 0.0102 and

the moneyness ranges from 0.87 to 1.13 at every 0.001 points.

Mean Var Skew ExKurt NIG Edgeworth A-GCSE VG GST

Time to maturity: 0.039683 years (10 days)

L1 0.1680 0.0004 0.0081 0.2655 0.0423 0.0443 0.0443 0.0435 0.0411
L2 0.0240 0.0259 0.0259 0.0258 0.0223

Time to maturity: 0.087302 years (22 days)
L1 0.1705 0.0009 0.0062 0.1978 0.0287 0.0298 0.0298 0.0294 0.0280
L2 0.0074 0.0078 0.0078 0.0078 0.0069

Time to maturity: 0.1746 years (44 days)
L1 0.1751 0.0017 -0.0022 0.1381 0.0168 0.0172 0.0172 0.0171 0.0164
L2 0.0018 0.0019 0.0019 0.0019 0.0017
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Table 4: Comparison of various approximating densities: III

We compare the performance of various approximating densities by assuming that the underlying asset is gener-
ated from the affine jump-diffusion model (3.35) under the risk neutral measure, namely,

dYt = (r − λJ µ̄− 1
2
Vt)dt +

√
VtdW 1

t + JtdNt

dVt = κ(θ − Vt)dt + σρ
√

VtdW 1
t + σ

p
1− ρ2

√
VtdW 2

t

Nt ∼ Poisson(λJ)
Jt ∼ N(µJ , σ2

J)

with µ̄ = exp(µJ + 1
2
σ2

J)− 1 and W 1, W 2 are two independent Brownian motions.

The structural parameters are taken from Duffie et al. (2000) (Parameter III), ie r = 3.19%, ρ = −0.79, θ =

0.014, κ = 3.99, σ = 0.27, λJ = 0.11, µJ = −0.14, σJ = 0.15 and the starting values of the state variables are

s0 = 0.6453, v0 = 0.0089. The moneyness spans from 0.74 to 1.17 at every 0.01 points.

Mean Var Skew ExKurt NIG Edgeworth A-GCSE VG GST

Time to maturity: 0.06746 years (17 days)
L1 -0.4363 0.0009 -3.1160 27.4994 0.4286 1.8116 3.0822 0.7800 NA
L2 2.7125 19.9109 72.9905 29.1625 NA

Time to maturity: 0.17857 years (45 days)
L1 -0.4336 0.0026 -2.1075 9.5410 0.1417 0.4827 0.9717 0.4072 NA
L2 0.1508 0.7848 4.4325 3.0147 NA

Time to maturity: 0.31746 years (80 days)
L1 -0.4303 0.0049 -1.6960 5.0476 0.0718 0.2408 0.4602 0.1558 NA
L2 0.0244 0.1887 0.7646 0.2086 NA
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Figure 7: The feasible domains of various approximating densities: 1996-2005

The areas under the curves are feasible domains of the NIG distribution, the VG distribution and the A-type

Gram-Charlier expansion. For the GST distribution, its feasible domain is bounded by the areas associated with

the ‘sufficient condition’ and the ‘necessary condition’. Each dot represents a combination of squared skewness

and kurtosis extracted from daily S&P 500 index options from 1996 to 2005.
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Figure 8: The feasible domains of various approximating densities: 1999, 2000, 2003

The areas under the curves are feasible domains of the NIG distribution and the VG distribution. For the

GST distribution, its feasible domain is bounded by the areas associated with the ‘sufficient condition’ and the

‘necessary condition’. Each dot represents a combination of squared skewness and kurtosis extracted from daily

S&P 500 index options for 1999, 2000 and 2003, respectively.

0 100 200 300 400
0

50

100

150

200

250

300

Kurtosis
0 20 40 60 80

0

5

10

15

20

25

30

35

Kurtosis

Sq
ua

red
 S

ke
wn

es
s

 

 
NIG
VG
GST(s)
GST(n)

(a) 1999

0 50 100 150 200 250
0

20

40

60

80

100

120

140

160

180

Kurtosis
0 20 40 60 80

0

5

10

15

20

25

30

35

Kurtosis

Sq
ua

red
 S

ke
wn

es
s

 

 
NIG
VG
GST(s)
GST(n)

(b) 2000

0 100 200 300 400
0

50

100

150

200

250

300

350

400

450

Kurtosis

Sq
ua

red
 Sk

ew
ne

ss

0 20 40 60 80 100 120 140
0

5

10

15

20

25

30

35

Kurtosis

Sq
ua

red
 Sk

ew
ne

ss

 

 
NIG
VG
GST(s)
GST(n)

(c) 2003
92



Figure 9: Risk Neutral Density approximations: I

The plots below show the true risk neutral density curve together with its approximations by the NIG, VG, and
GST distributions, the Edgeworth expansion and the A-type Gram-Charlier expansion. The underlying asset is
generated from model (3.35) with parameters taken from Bakshi et al. (1997) (Parameter I) where there is no
jump assumed. The parameter estimation via the method of moments for the NIG, VG and GST laws are:

1. NIG: (α̂, β̂, µ̂, b̂) = (36.32,−24.09, 7.08, 0.10)

2. VG: (α̂, β̂, µ̂, p̂) = (27.78,−11.54, 7.04, 1.45)

3. GST: (β̂, µ̂, b̂, p̂) = (−504.49, 7.25, 0.11,−13.32)
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Figure 10: Risk Neutral Density approximations: III

The plots below show the true risk neutral density curves together with their approximations by the NIG, VG

distributions and the Edgeworth expansion considering different time to maturities. The underlying asset is

generated from model (3.35) with parameters taken from Duffie et al. (2000) (Parameter III) where jump is

assumed.
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Figure 11: Pricing of European call options: III

The figure displays the pricing of the European calls under the risk neutral measure, and using the NIG law,

the VG law and the Edgeworth expansion. The underlying stock prices are generated from option pricing model

(3.35) with parameters taken from Duffie et al. (2000) (Parameter III) and the time to maturity is 17 days.
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Figure 12: Pricing of Butterfly trading strategy: III

The figure plots the pricing of balanced Butterfly trading strategy with payoff function

g(ST ; K) = (ST −K + a)1(K−a≤ST≤K) + (K + a− ST )1(K<ST≤K+a)

using the true risk neutral density, the NIG law, the VG law, and the Edgeworth expansion. The underlying

stock prices are generated from affine model (3.35) with parameters taken from Duffie et al. (2000) (Parameter

III). And T is equal to 17 days.
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