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ABSTRACT 

 

JANET DOOLITTLE: Prediction of host-virus interaction networks 

(Under the direction of Shawn Gomez) 

 

As with other viral pathogens, HIV-1 and dengue virus (DENV) are dependent on 

their hosts for the bulk of the functions necessary for viral survival and replication. Thus, 

successful infection depends on the pathogen's ability to manipulate the biological 

pathways and processes of the organism it infects, while avoiding elimination by the 

immune system. Protein-protein interactions are one avenue through which viruses can 

connect with and exploit these host cellular pathways and processes. 

We developed a computational approach to predict interactions between HIV and 

human proteins based on structural similarity of 9 HIV-1 proteins to human proteins 

having known interactions. Using functional data from RNAi studies as a filter, we 

generated over 2,000 interaction predictions between HIV proteins and 406 unique 

human proteins. Additional filtering based on Gene Ontology cellular component 

annotation reduced the number of predictions to 502 interactions involving 137 human 

proteins. We find numerous known interactions as well as novel interactions showing 

significant functional relevance based on supporting Gene Ontology and literature 

evidence. 

We then applied this approach to predict interactions between (DENV) and both 

of its hosts, Homo sapiens and the insect vector Aedes aegypti. We predict over 4,000 

interactions between DENV and humans, as well as 176 interactions between DENV and 
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A. aegypti. Additional filtering based on shared Gene Ontology cellular component 

annotation reduced the number of predictions to approximately 2,000 for humans and 18 

for A. aegypti. Of 19 experimentally validated interactions between DENV and humans 

extracted from the literature, this method was able to predict nearly half. Our results 

suggest specific interactions between virus and host proteins relevant to interferon 

signaling, transcriptional regulation, stress, and the unfolded protein response. 

Viruses manipulate cellular processes to their advantage through specific 

interactions with the host's protein interaction network. The interaction networks 

presented here provide a set of hypothesis for further experimental investigation into viral 

life cycles and potential therapeutic targets. 
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CHAPTER ONE 

  

INTRODUCTION 

 

 

 

IMPORTANCE OF HOST-VIRUS INTERACTIONS 

The viral lifecycle cannot be completed without extensive aid from a host cell. 

Viruses encode very few proteins and must subvert the biological machinery and 

processes of their hosts to replicate. The strikingly few proteins encoded by viruses and 

their heavy dependence on their hosts raise the questions: How can a pathogen encoding 

so few proteins evade the sophisticated and multi-pronged human immune system and 

how can we stop it?  

Identifying the ways in which a virus manipulates a human cell will lead to the 

development of novel anti-viral drugs. Many antiviral drugs target viral enzymes. For 

example, successful anti-HIV drugs include inhibitors of the viral protease and reverse 

transcriptase enzymes, which are often used in combination therapy due to the fast 

mutation rate of the viral genome and rapid development of resistance. Many clinically 

relevant viruses encode very few enzymes; most targets that are considered “druggable” 

are enzymes. However, the viral lifecycle could also be disrupted by targeting the host 

pathways required for replication, a strategy that has been successful for cellular kinases 

(Schang, 2006). In addition, despite the challenges, several small molecules blocking 

protein interactions, rather than enzyme activity, have been developed in recent years 
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(Arkin & Wells, 2004). The entry inhibitor class of anti-HIV drugs prevents interactions 

between HIV and cell surface receptors. One example is maraviroc (Selzentry, Pfizer), an 

FDA approved drug that blocks viral entry by preventing the HIV gp120 protein from 

binding to human CCR5 (Dorr et al., 2005). Further understanding of protein interactions 

that mediate essential steps of the viral lifecycle will yield novel drug targets.   

Understanding the interface through which the pathogen connects with and 

manipulates its host requires knowledge of the molecular points of interaction between 

them. Specifically, knowledge of the protein interactions between pathogen and host is of 

particular value. While the prediction of protein interactions within species such as S. 

cerevisiae and H. sapiens has been pursued for some time (Jansen et al., 2003; Qi, Klein-

Seetharaman, & Bar-Joseph, 2007; Yamanishi, Vert, & Kanehisa, 2004; L. V. Zhang, 

Wong, King, & Roth, 2004), it is only recently that host-pathogen interactions have come 

under greater scrutiny. Computational approaches are of significant value in the host-

pathogen context as large-scale experimental characterization of these interactions is non-

trivial (Calderwood et al., 2007; De Chassey et al., 2008; Tan, Ganji, Paeper, Proll, & 

Katze, 2007; Uetz et al., 2006).  

 

EXPERIMENTAL HOST-VIRUS INTERACTOMES 

 Little is known about the network of protein interactions between pathogens and 

their hosts. Most protein interaction studies are small scale, determining only one or a 

few interactions at once. However, large-scale screens, mostly using yeast 2-hybrid 

(Y2H), have been conducted for several viruses, providing large datasets of protein-
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protein interactions that are valuable for constructing the host-pathogen network despite 

the high rate of false positives and false negatives in Y2H studies. 

 A combination of Y2H screening and literature mining were used to construct an 

hepatitis C virus (HCV)-human interactome involving 481 interactions between 11 HCV 

proteins and 421 human proteins (De Chassey et al., 2008). Both direct and functional 

interactions were found for an H1N1 strain of influenza virus by Y2H and microarray 

analysis, with the functional importance of human proteins validated by siRNA (Shapira 

et al., 2009). For vaccinia virus, the virus used as a vaccine for smallpox, a Y2H screen 

found 109 interactions between viral and human proteins, with 63% of selected 

interactions confirmed by GST-tagged pulldown (L. Zhang et al., 2009).  

 In addition, several studies have been conducted on herpesviruses. Y2H screens 

were conducted to test for interactions between Epstein-Barr Virus (EBV) proteins and 

for interactions between EBV and human proteins. Fifty-two EBV proteins were shown 

to participate in 60 interactions, either with other EBV proteins or with themselves 

(homodimerization). In addition, 40 EBV proteins interacted with 112 human proteins in 

the screen, with some human proteins interacting with multiple viral proteins 

(Calderwood et al., 2007). The network of interactions between Kaposi Sarcoma-

associated herpesvirus (KSHV) proteins was determined by Y2H and merged into the 

human interactome based on predicted interactions. The intraviral network was highly 

interconnected and exhibited properties differing from that of the human interactome. 

However, the merged host-pathogen network recovered many properties of the human 

network, suggesting that the viral network is incomplete without considering interactions 

with the host (Uetz et al., 2006).  
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 Several general principals emerge from these large-scale studies.  First, networks 

of interactions between viral proteins are very highly interconnected, whereas most 

cellular proteins have few interaction partners (Shapira et al., 2009; Uetz et al., 2006). In 

addition, a number of viral proteins were found to interact with multiple human proteins, 

suggesting that one viral protein may have many functions in hijacking the cell 

(Calderwood et al., 2007; De Chassey et al., 2008).  A common finding in several screens 

is that viruses tend to interact with human proteins that are highly connected in the 

human interactome.  Two ways to measure connectivity in a network are degree, or the 

number of edges that directly connect the node to other nodes, and betweenness, or the 

number of shortest paths between any two nodes that pass through a particular node. 

Viral proteins have a tendency to interact with human proteins that have a significantly 

higher degree (hubs) and betweenness than other human proteins (Calderwood et al., 

2007; De Chassey et al., 2008). 

 

PREVIOUS METHODS TO PREDICT HOST-PATHOGEN INTERACTIONS 

Even large scale experimental methods, such as Y2H, do not provide full 

coverage of the host-pathogen network. Therefore, several recent computational methods 

have been developed and applied to host-pathogen interactions, suggesting additional 

potential interactions in different host-pathogen systems. For instance, Dyer et al. used 

Bayesian statistics to first calculate the probability of protein interactions between 

proteins from the same species based on their domain composition. Then they predicted 

interactions between the eukaryotic parasite Plasmodium falciparum and human proteins 

by the presence of domains with a high probability of interacting (Dyer, Murali, & 
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Sobral, 2007). Also focusing on malaria, Lee and colleagues generated predictions based 

on interactions between orthologous proteins from eukaryotes (Lee et al., 2008). 

However, these methods are difficult to apply to viruses. Especially for viruses with 

small genomes, viral proteomes have few domains, with even fewer shared between the 

host and virus, and few orthologs in mammalian species. 

In the context of HIV-human interactions, two previous computational methods 

were applied. In the first study, Tastan et al. used a computational approach based on the 

random forest method to predict protein interactions using features taken from human 

proteins and the human interactome (Tastan, Qi, Carbonell, & Klein-Seetharaman, 2009). 

This approach requires a large training set of already known interactions, and can only be 

applied to well-studied viruses, like HIV. In the second study, Evans et al. predicted 

possible interactions using short sequence motifs found in both HIV-1 and human 

proteins and the human domains that bind these motifs (Evans, Dampier, Ungar, & 

Tozeren, 2009). However, not all interactions are mediated by short linear motifs and it is 

unclear whether the same relationships between domains and motifs that are found in 

human interactions are relevant to host-virus interactions.   

Most approaches have not utilized the significant amount of protein structure 

information that is increasingly available. Specifically, rapid progress in structure 

determination technologies has led to the establishment and deposition of massive 

numbers of protein structures into the Protein Data Bank, with over 60,000 protein 

structures currently deposited (Berman, Henrick, & Nakamura, 2003). In combination 

with documented protein-protein interactions, the use of protein structure information 

provides another means for the prediction of possible protein interactions (Aloy & 
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Russell, 2003; Davis et al., 2006; Lu, Lu, & Skolnick, 2002). The central premise in such 

approaches is that, given a set of proteins with defined structures and associated 

interactions, proteins with similar structures or substructures will tend to share interaction 

partners. In the context of host-pathogen interactions, Davis et al. used sequence and 

structural comparisons to known complexes to predict potential protein interactions for 

non-viral pathogens responsible for several neglected diseases (Davis, Barkan, Eswar, 

McKerrow, & Sali, 2007). Many of the pathogen proteins had no known crystal structure 

and were predicted by homology modeling. 

Here, we present a novel method for predicting host-pathogen interactions using 

similarities between protein structures. Our approach is broadly applicable to any virus 

for which crystal structures exist or reliable structural models can be made. A large set of 

previously known interactions is not required to train the classifier, which is important 

when studying neglected viruses such as dengue virus.  Furthermore, sequences or 

domain classifications do not need to be conserved between the virus and its host. 

Predictions were made for HIV-1, a well-studied virus, and dengue virus, a poorly 

understood virus for which there is no vaccine or specific treatment.  No previous large 

scale interaction networks have been created for dengue virus and humans, and few small 

scale protein interaction studies have been performed.  Knowledge of virus-host protein 

interactions will lead to new drug targets for treatment of human disease. In addition, 

interactions were predicted for the mosquito vector of dengue virus, providing insights 

into this phase of the viral lifecycle that may aid vector control efforts.  

   



CHAPTER TWO 

 

STRUCTURAL SIMILARITY-BASED PREDICTIONS OF PROTEIN 

INTERACTIONS BETWEEN HIV-1 AND HOMO SAPIENS  

 

 

 

INTRODUCTION 

 

Pathogen invasion and survival requires that the pathogen interact with and 

manipulate its host. Human immunodeficiency virus type 1 (HIV-1) encodes only 15 

proteins and must therefore rely on the host cell's machinery to accomplish vital tasks 

such as the transport of viral components through the cell and the transcription of viral 

genes (Frankel & Young, 1998; Goff, 2007). HIV-1 infects human cells by binding to 

CD4 and a co-receptor, fusing with the cell membrane and uncoating the virion core in 

the cytoplasm (Frankel & Young, 1998). The genomic RNA is then reverse transcribed 

and the DNA enters the nucleus as part of a viral pre-integration complex, containing 

both viral and host proteins. Afterwards, the viral DNA is inserted into the genome by 

viral integrase (IN) (Goff, 2007). The integrated provirus is transcribed by host RNA 

polymerase II from a promoter located in the provirus long terminal repeat, and the RNA 

is exported to the cytoplasm (Frankel & Young, 1998; Goff, 2007). Host machinery 

translates HIV-1 mRNA, and several of the resulting proteins are transported to the cell 

membrane to be packaged into the virion along with the genomic RNA and multiple host 

proteins. The virus then buds from the cell and undergoes a maturation process, which 
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enables it to infect other cells (Frankel & Young, 1998). Throughout this process, host 

proteins play an indispensable role.     

Here, we develop a map of interactions between HIV-1 and human proteins based 

on protein structural similarity. In this approach, we first retrieve structural similarity 

between host and pathogen proteins identified by an established method that compares 

known crystal structures. Human proteins identified as having a region of high structural 

similarity to an HIV protein are referred to as "HIV-similar." Next, we identify known 

interactions for these HIV-similar proteins, with the one or more human proteins that they 

interact with referred to as "targets." We then assume that HIV proteins have the same 

interactions as their human, HIV-similar counterparts, allowing HIV to plug into the host 

cell protein network at these points (Figure 2.1). Using data from recent RNAi screens 

and cellular co-localization information, we refine this interaction map to enrich for those 

interactions having the greatest potential to be correct based on the available information. 

Evaluation of these predictions shows a statistically significant enrichment of known 

interactions and numerous novel interactions with potential functional relevance. These 

predictions provide an additional tool for further investigations into the lifecycle of HIV-

1 and identification of potential clinical targets.  
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RESULTS AND DISCUSSION 

Identification of HIV-similar human proteins 

To construct a map of interactions between HIV-1 and human proteins, we 

established a multi-step protocol that begins with the identification of human proteins 

having significant structural similarity to HIV-1 proteins (Figure 2.2). We used the Dali 

Database (Holm, Kääriäinen, Rosenström, & Schenkel, 2008; Holm & Sander, 1993), 

which contains 3D structure comparisons for all protein structures in the Protein Data 

Bank (PDB); all publicly available crystal structures for HIV-1 and H. sapiens are 

contained within PDB. While the crystal structure for many human proteins is unknown, 

most HIV-1 proteins have been at least partially resolved. Specifically, crystal structures 

exist for PR, RT, IN, CA, MA, NC, Gag p2, gp120, gp41, Nef, Tat, Vpr, and Vpu (Table 

2.1). The three enzymes encoded by HIV-1, protease (PR), reverse transcriptase (RT), 

and integrase (IN) are the best characterized structurally, having at least 25 structures 

each in the PDB, with PR having over 300. CA, gp41, and gp120 are also well studied. 

We note, however, that many of these structures represent only part of the full-length 

protein. HIV-1 proteins having regions of high similarity to at least one human protein 

include: gp41, gp120, CA, MA, Gag p2, PR, IN, RT, and Vpr (selected similarities to IN 

are given in Appendix 1). Therefore, predictions were made for nearly every HIV-1 

protein that has a published structure.  

Selected examples of structural similarities between the HIV-1 proteins IN, RT, 

and gp41 and human proteins determined by Dali are shown in Figure 2.3. The structural 

similarities frequently involve only part of each protein. However, because in most cases 
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the precise location of protein interaction sites is not known, we used the entire structure 

in our investigation.  

Protein interaction prediction 

After identifying which specific HIV-1 and human proteins have high structural 

similarity, we extract all known interactions for human proteins from the Human Protein 

Reference Database, which contains over 37,000 documented protein interactions 

(Mishra et al., 2006). Again, the central premise is that given a network of protein 

interactions, proteins with similar structures or substructures will tend to have similar 

interaction partners. Thus, our hypothesis is that HIV-1 proteins having similar structure 

to one or more human proteins are also likely to participate in the same set of protein 

interactions (Figure 2.1). Under these assumptions, we directly mapped HIV-1 proteins to 

their high-similarity matches within this network.  

To reduce the number of predictions and provide an additional line of functional 

evidence for interactions and their possible biological relevance, we filtered these results 

using two types of datasets on host proteins involved in HIV-1 infection, collectively 

referred to as "Literature Filters" hereon. The first filter type represents host proteins that 

have been shown to impair HIV-1 infection or replication when knocked down by siRNA 

or shRNA. Three genome-scale siRNA screens have been conducted in HeLa or 293T 

cells (Brass et al., 2008; König et al., 2008; Zhou et al., 2008). A fourth study with a 

similar goal was conducted using shRNA in Jurkat T-cells, a more realistic model of 

HIV-1 infection (Yeung, Houzet, Yedavalli, & Jeang, 2009). Each of the four screens 

found over 250 host proteins involved in HIV-1 infection. Remarkably, very little overlap 

exists between these studies, perhaps due to differences in methods, including the cell 
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lines and stages of the HIV-1 life cycle investigated. The second type of data used to 

filter predictions identifies human proteins present in the HIV-1 virion. During budding, 

host proteins from both the cell surface and the cytoplasm, including some involved in 

the cytoskeleton, signal transduction, metabolism, and chaperone functions, may be 

incorporated into the virion (Chertova et al., 2006). While some of these proteins may be 

taken up by the budding virus simply by chance, others are known to be specifically 

incorporated into the virion and may play key roles in viral life cycle or pathogenesis. For 

example, TSG101 may be incorporated due to its interaction with Gag and facilitates 

budding (Cantin, Méthot, & Tremblay, 2005; Chertova et al., 2006).  

We considered only predicted interactions where the target protein was observed 

in at least one of the previously described Literature Filters. The resulting predicted HIV-

human interaction network consists of 2,143 interactions, considering all unique 

combinations of Uniprot accessions for an HIV-1 protein and a predicted human 

interactor (Figure 2.2). Of the predictions that were made, 62 were verified as true 

interactions based on data from two databases of known host-pathogen interactions, 

HHPID and PIG (Appendices 2 and 3). There were 347 human proteins predicted to have 

structural similarities with an HIV-1 protein, and the predictions implicate a total of 406 

unique human proteins as potentially interacting with HIV-1 (Table 2.2).  

We visually examined some of the structural similarities that led to predictions 

that were already known. SMN2 is structurally similar to IN (Figure 2.3A, Appendix 1) 

and both SMN2 and IN are known to interact with SIP1 (Gemin2) (Fu et al., 2009; 

Mishra et al., 2006). SIP1, part of the large SMN complex involved in the assembly of 

snRNPs, may also be part of the pre-integration complex during HIV-1 infection and may 
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aid viral reverse transcription (Hamamoto, Nishitsuji, Amagasa, Kannagi, & Masuda, 

2006). There are also several predicted interactions between IN and host proteins that 

interact with SMN2 that have not yet been tested (Appendix 1). The structural similarities 

shown in Figure 2.3B-D also led to predictions of known interactions, even though only 

parts of the proteins are structurally similar.  

Protein co-localization 

To further narrow the list of likely interactions, we refined these results by 

requiring both the HIV-1 protein and the target human protein to be present in the same 

location within the cell, based on GO cellular component (CC) annotation. The refined 

set of predictions is shown in Figure 2.4. Including this filtering step reduced the number 

of interaction predictions to 502, involving 189 HIV-similar proteins having 137 known 

different binding partners. There are 31 predictions corresponding to already known HIV-

human interactions (Table 2.2, Appendix 4). Using the criterion that interacting proteins 

must have some evidence of co-localization not only reduced the size of the predicted 

interactome, but also increased the percentage of true positive predictions from ~3% true 

positives before filtering to over 6% after filtering (Table 2.2).  

Taking localization into account, gp41 has many more predicted interactors than 

any other HIV-1 protein. This is most likely due to the relatively large number of GO 

cellular component terms that were annotated to gp41 and also relevant to the host cell. 

Since gp41 is found in more parts of the cell than other HIV-1 proteins, a larger number 

of human proteins were able to meet the co-localization criterion.  

The interaction predictions made by this method are specific for structures, and 

we note that different structures for a single protein may lead to different predictions 
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about its interactions. Therefore, some information is lost if predictions are described at a 

gene level. Nevertheless, it may be of interest to consider interactions on a gene basis 

(See Appendix 5 for the mapping of HIV-1 IDs). When counted according to the HIV-1 

protein names and human target Entrez Gene IDs, we made 883 interaction predictions, 

56 of which were true positives according to HHPID and PIG. Following CC filtering, we 

had 22 true positive predictions among 265 total predictions (~10% of known true 

positives). While these results tend to suggest higher rates of predictive accuracy when 

using our method, we report our more conservative Uniprot-based accuracy values as our 

best estimates.  

Properties of human proteins predicted to interact with HIV-1 

Using the CC-filtered predictions, we next examined the function of human 

proteins predicted to interact with HIV-1 during infection. In this instance, we sought 

biological process and molecular function GO terms that were enriched among these 

target proteins. Examining the functions of the human proteins found in our filtered list of 

interactions, significant enrichment is observed in the processes of protein transport, 

nucleic acid transport, signaling, cell death, and post-translational modifications (Figure 

2.5A); all of these processes are known to be manipulated or altered by HIV-1 during 

infection. During the course of the HIV-1 lifecycle, viral protein and nucleic acids must 

be transported from one part of the cell to another to ensure viral replication. The Pre-

Initiation Complex, consisting of a number of viral and host proteins and the viral 

genome, must be transported from the site of viral entry to the nucleus for integration of 

the provirus. In addition, Env and Vpr are known to play both pro- and anti-apoptotic 

roles by manipulating host signaling. For instance, there is evidence that HIV-1 may 
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inhibit apoptosis in infected cells to prevent the cell from dying before the virus can 

replicate and assemble. On the other hand, HIV-1 can also promote apoptosis of immune 

cells using several pathways; the progressive destruction of CD4+ T cells is a well-

known indication of AIDS (Gougeon, 2003).  

Interestingly, all of the significantly enriched molecular function GO terms relate 

to GTP binding or hydrolysis (Figure 2.5B). GTPases are involved in a number of host 

processes that HIV-1 may take advantage of, including nuclear transport and cytoskeletal 

rearrangements that facilitate viral entry and cellular motility. Statins, a class of drugs 

that lowers cholesterol levels in the blood, have also been shown to inhibit HIV-1 

infection by preventing viral fusion with the cell membrane through a mechanism that 

involves inhibition of Rho GTPases (Del Real et al., 2004). In addition, p115-RhoGEF 

inhibits HIV-1 gene expression through the activation of RhoA (L. Wang et al., 2000). 

Furthermore, both Rho and ROCK play a role in the cellular motility that allows HIV-1 

infected monocytes to cross the blood-brain barrier, leading to HIV-1 encephalitis 

(Persidsky et al., 2006).  

Actin microfilaments of the cytoskeleton are regulated by actin-binding proteins 

as well as Rho family small GTPases including Rho, Rac, and Cdc42 (Matarrese & 

Malorni, 2005). IN, RT, and gp41 were all predicted to interact with RhoA, Rac1, and 

Cdc42 (Figure 2.4). We found that gp41 has regions of structural similarity with many 

cytoskeleton related proteins, including erythrocytic spectrin alpha (SPTA1), erythrocytic 

spectrin beta (SPTB), alpha actinin 4 (ACTN4), alpha actinin 2 (ACTN2), moesin 

(MSN), Rho-associated protein kinase 1 (ROCK1), and arfaptin 2 (ARFIP2). IN 

resembles NCK adaptor proteins 1 and 2 (NCK1/2), dynactin 1 (DCTN1), and RAS 



 15 

GTPase activating protein 1 (RASA1), among others. The cytoskeleton is manipulated by 

HIV-1 during virion fusion, assembly, and budding (Matarrese & Malorni, 2005). Drugs 

that cause depolymerization of microtubules and actin filaments can block HIV-1 

movement through the cell. Actin has also been found within HIV-1 virions, and is 

incorporated through binding with NC (Wilk, Gowen, & Fuller, 1999). Thus, our 

predictions may aid further investigation into the ways in which HIV-1 manipulates the 

cytoskeleton.  

By integrating a variety of high-quality functional data sets in the Literature 

Filter, we created a smaller interaction map that has the potential to provide a physical 

interaction context for a number of experimental findings. As an example, retroviral 

budding is known to involve members of the endosomal sorting complexes (ESCRTs). 

The ESCRT complexes normally induce the formation of multivesicular bodies in the 

endosome, but can be recruited to the plasma membrane by Gag to aid in viral budding. 

Many members of the ESCRT machinery appear in our results, including VPS4A, 

STAM2, EEA1, RAB5A, and TSG101 (Goff, 2007). Early endosomal autoantigen 1 

(EEA1) is recruited to early endosomes by Rab5 and phosphatidylinositol 3-phosphate 

(Raiborg et al., 2001). Our results show that gp41 and Gag p2 may interact with RAB5A 

because they are structurally similar to EEA1 (Figure 2.4). EEA1 contains a FYVE 

domain and colocalizes with human hepatocyte growth factor regulated tyrosine kinase 

substrate (Hrs) protein (Deretic et al., 2004; Raiborg et al., 2001). Gp41 is also known to 

interact with AP1G2, an important component of clathrin-coated vesicles. AP1G2 

interacts with RAB5A and provides further support for the possibility that gp41 interacts 

physically with RAB5A, but through a potentially different structural motif (Mattera, 
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Ritter, Sidhu, McPherson, & Bonifacino, 2004). The Gag p6 protein is a known mimic of 

Hrs, and like Hrs can recruit TSG101, which is required for the formation multivesicular 

bodies and viral budding (Pornillos et al., 2003). Gag p2 and a model of gp41 show 

structural similarity to the human protein CEP55, which acts during cytokinesis to recruit 

TSG101 to the thin membrane between the daughter cells, where it is needed for the final 

separation of two cells (Carlton & Martin-Serrano, 2007). Our results suggest that gp41, 

IN, and the p2 region of Gag may all be able to interact with TSG101 (Figure 2.4). 

Overall, interaction predictions are supported by a variety of studies implicating host 

mechanisms of vesicle formation in HIV-1 infection.  

Additional method assessment 

To further assess our predictions, we determined how many known interactions, 

curated within either HHPID or PIG, could have possibly been predicted using our 

method and the available data. First, in order for our approach to suggest a possible HIV-

human interaction, the HIV protein must be represented among the crystal structures 

from PDB that are included in the Dali Database. In addition, any host factors predicted 

to interact with HIV-1 must have at least 1 known interaction with another human 

protein, and to be considered further, each of these must also have representative 

structures within PDB and Dali. Finally, in this work we included only those proteins that 

have been implicated in HIV-1 infection through RNAi studies or studies of the protein 

composition of the virion. Because we removed any human target proteins that did not 

pass the Literature Filter, we did not make predictions for human proteins not mentioned 

in previous studies.  
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A total of 319 known host-pathogen interactions satisfied these criteria. Sixty-two 

of these interactions (~19%) were predicted by our methodology, and are the set of 

predictions considered to be true positives (shown in Table 2.3). We also investigated 

how many of these possible interactions could have been found after using the cellular 

component filter, and determined that only 166 known interactions met the additional 

criterion of being annotated to the same cellular component. Within this set, our method 

found 31 of these (~19%). This result suggests that while considering cellular localization 

decreased the number of interactions considered, the number of true positive predictions 

did not improve. Obviously, without experimental validation we cannot determine 

whether the CC filter led to better prediction accuracy within the set of predictions not 

previously described in the literature or elsewhere. It is clear, however, that GO cellular 

component annotation is incomplete and the lack of shared annotation does not 

completely exclude the possibility that two proteins may interact; inclusion of the CC 

filter did double the percentage of true positives predicted when considering unknown 

potential interactions as well as those previously known.  

As an additional form of assessment, we investigated how often we could expect 

to find previously known interactions by chance alone. Starting from proteins in HPRD, 

we found that ~0.17% of the known interactions could be found at random (see 

Methods). CC filtering of these random predictions gave a slight improvement with an 

average of 0.29% true positives (Table 2.4). Using only HPRD human target proteins that 

pass the Literature Filter increased the true positive accuracy of random predictions to 

0.57%. This value can be compared to the 2.89% accuracy of our method, indicated in 

Table 2.2. When these random predictions were also run through the CC Filter, an 
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average of 1.03% true positives were found (Table 2.4) versus 6.18% when using our 

method (Table 2.2). Thus the Literature Filter and the CC Filter improved the accuracy of 

the true positive predictions individually, and to an even greater extent when combined. 

However, even with both filters, at best ~1% of the random predictions were found to be 

true positives, further indicating that incorporating structural information generates 

predictions with enhanced accuracy and biological validity.  

Overlap with other studies 

We also compared our predictions to those made by two previous computational 

studies predicting protein-protein interactions between HIV-1 and humans, namely the 

studies by Evans et al. and Tastan et al. (Evans et al., 2009; Tastan et al., 2009). Since 

these investigations reported their results in terms of genes, we compared them to our 

predictions as counted by gene, to find interactions predicted by multiple methods 

(Figure 2.6). We did not find a high degree of overlap between the predictions made by 

the various studies. This was not surprising, as even large-scale experimental protein 

interaction studies typically show little overlap in their results. Furthermore, the 

methodology used to generate the predictions differed significantly between studies. Our 

method used structural similarity to predict interactions, whereas Evans et al. looked for 

the presence of sequence motifs and counter domains and Tastan et al. integrated a 

variety of information, including information from GO, properties of the human 

interactome, and sequence motifs (Evans et al., 2009; Tastan et al., 2009). There are a 

greater total number of shared predictions between Evans et al. and Tastan et al. than 

between our results and either one of the others. This may be due to the fact that Tastan et 

al. incorporated Eukaryotic Linear Motifs and binding domains, the key predictor used in 
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the work of Evans et al., as one of the features used in their prediction method. In 

addition, the other two studies had a larger number of predictions overall. Approximately 

7% of the predictions by Tastan et al. were found in the study by Evans et al. 

Approximately 5% of our predictions (Literature and CC filtered) were found by Evans et 

al. and 10% were shared with Tastan et al.  

There were a few predictions that were shared between all methods. For our 

results before CC filtering, we found that there were 9 interactions predicted by all three 

methods (Figure 2.6A). Of these, four were determined to be true positives in our results: 

RT and MAPK1, gp41 and LCK, gp41 and PTPRC, and IN and PRKCH. The other five 

interactions (RT and PIN1, p2 and MAPK1, p2 and YWHAZ, gp41 and PLK1, gp41 and 

MAPK1, gp41 and CLTC, IN and XPO1, and IN and YWHAZ) are not known to occur, 

and may be good candidates for further investigation since they were predicted by three 

diverse methods. After we filtered our predictions by shared cellular components, three 

predictions were still common between all three studies, gp41 and LCK, gp41 and PLK1, 

IN and XPO1, one of which is a known interaction (Figure 2.6B). In summary, although 

few predictions were shared by all three studies, a large proportion of them are already 

known to occur, suggesting that the others may be worthy of high priority in future 

experimental efforts.  
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CONCLUSIONS 

We have generated a map of potential protein-protein interactions between HIV-1 

and its human host. The computational methodology used to create this map is based on 

the assumption that proteins with similar structures will share similar interaction partners. 

Thus HIV-1 proteins having a structure similar to one or more human proteins may 

potentially "plug in" to the host protein interactome at these points, providing the 

interface through which manipulation of downstream host processes can occur. From 

previous literature, many human proteins are known to play some role in HIV-1 

infection. However, in most cases the nature of this role is unknown. Here, we provide 

specific predictions of how these human proteins may influence viral infection, namely 

by interacting with certain HIV-1 proteins.  

In principle, our approach is applicable to any host-pathogen system with known 

protein structures. HIV-1 has a small proteome, with most of its protein structures at least 

partially determined. In addition, HIV-1 also has a large set of identified interactions that 

can be used for model validation. While few pathogens currently have such rich data sets, 

continued progress will help to remedy such deficiencies.  

Identification of points of modulation between a host and pathogen requires 

multiple lines of evidence. Computational methods can help integrate these data, 

providing a promising avenue for the discovery of novel host pathogen interactions 

mediated by structural similarities and enhancing our understanding of functional 

relationships characterized through modern screening methods such as siRNA. 

Knowledge of the protein interaction network between the pathogen and human will not 
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only further our basic understanding of pathogen survival mechanisms, but may also 

provide clinical targets to combat infectious disease.  
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METHODS 

Data Sources 

We used the Dali Database for structure comparisons (downloaded in January 

2009), and the Human Protein Reference Database (HPRD), HHPID, and PIG for protein 

interactions (downloaded February, July and June 2009, respectively) (Driscoll, Dyer, 

Murali, & Sobral, 2009; Fu et al., 2009; Holm et al., 2008; Holm & Sander, 1993; Mishra 

et al., 2006). The literature sources and various databases each have their own system of 

identifiers. PDB codes obtained from Dali were mapped to their corresponding taxonomy 

and Uniprot accessions using data from the SIFTS initiative (Berman et al., 2003; Tagari 

et al., 2006; Velankar et al., 2005). Other identifier mappings were carried out using 

DAVID Gene ID Conversion or Uniprot ID mapping (Bairoch et al., 2005; Dennis et al., 

2003; Huang, Sherman, & Lempicki, 2009). Network diagrams were created in 

Cytoscape (Shannon et al., 2003). Images of protein structures were created in 

MacPyMol (DeLano, 2002).  

Determination of structural similarity between HIV-1 and host proteins 

We used the Dali database to ascertain structural similarity. Dali compares the 3D 

structural coordinates of two PDB entries by alignment of alpha carbon distance matrices, 

allowing for differences in domain order, and produces a structural similarity score 

(Berman et al., 2003; Holm et al., 2008; Holm & Sander, 1993). The Dali Database 

includes structural comparisons of proteins from PDB90, a subset of the PDB where no 

two proteins share more than 90% sequence similarity, were used as queries against the 

full PDB (Holm & Sander, 1998). For this study, we took into consideration all human 

proteins that were listed in the Dali database as being similar to an HIV-1 protein (NCBI 
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Taxonomy ID: 11676) and having a z score above 2.0, with the HIV-1 protein being 

either the query or the hit. We refer to these human proteins as "HIV-similar" proteins. 

No proteins of unknown structure were considered.  

Interaction Prediction 

We found known interactions between HIV-similar proteins and target human 

proteins, using data from the HPRD database, which contains literature curated 

interactions between pairs of human proteins (Mishra et al., 2006). For each HIV-similar 

protein, we predict that the target proteins, which are known to both interact with the 

HIV-similar protein and pass the Literature Filter, might also interact with the 

corresponding HIV-1 protein. Therefore, interactions between the HIV-similar and the 

human target proteins were mapped directly to the corresponding HIV protein.  

Filtering 

To reduce the number of predictions and add information from functional studies, 

predictions were filtered based on previous implication of the human protein in the HIV-

1 infection process. One criterion was presence of the host protein in the HIV-1 virion. 

Host proteins known to be incorporated into or onto HIV-1 during budding were taken 

from several literature sources (Cantin et al., 2005; Chertova et al., 2006; Saphire, Gallay, 

& Bark, 2006). The presence of host proteins in or on HIV-1 may be a result of specific 

recruitment and serve a functional role, may result from localization of the protein near 

the site of budding, or may simply occur by chance. Predicted interactions between HIV-

1 proteins and human proteins that are incorporated into the HIV-1 virion were retained. 

In addition, any human protein that is incorporated into the virion and is itself structurally 

similar to an HIV-1 protein was also included as a possible interaction.  
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Another filtering criterion was the host protein's essentiality for HIV-1 infection. 

Recently, several large-scale experiments using siRNA or shRNA knockdowns to 

identify host proteins involved in the HIV-1 life cycle have been published (Brass et al., 

2008; König et al., 2008; Yeung et al., 2009; Zhou et al., 2008). The probe ids of the 

genes implicated by Yeung et al. were mapped to their Entrez Gene IDs using the 

appropriate Affymetrix annotation file (http://www.affymetrix.com/products_services/ 

arrays/specific/hgu133plus.affx#1_4) (Yeung et al., 2009). This filter is referred to as the 

"Literature Filter." Host proteins that were implicated in at least one of these studies as 

having a possible role in HIV-1 infection or replication and are also known to interact 

with an HIV-similar protein were predicted to interact with an HIV-1 protein in the final 

predicted network.  

To create a smaller and potentially more reliable list for further experimental 

validation, we filtered the predictions based on shared sub-cellular localization. The CC 

Filtered dataset contains interaction predictions where the two proteins share Gene 

Ontology (GO) cellular component annotation. Pairs of HIV-1 and human proteins 

predicted to interact were only included in this dataset if both proteins were annotated by 

DAVID as being present in the same cellular compartment (Dennis et al., 2003; Huang et 

al., 2009). Pairs with only the terms "cell" and "cell part" in common were excluded due 

to a large number of such pairs and the relative lack of specificity of these high level 

terms.  

Validation of Predictions 

Because within Dali there may be multiple PDB structures representing the same 

protein, there is some redundancy in the interaction predictions. In certain cases, multiple 
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PDB structures for the same HIV-1 protein were found to be similar to multiple PDB 

structures for an HIV-similar protein, leading to the same interaction predictions. 

Therefore, the predictions were counted as unique pairs of Uniprot accessions. In 

addition, for ease of viewing the predicted interactome, each node representing an HIV-1 

protein is labeled with the protein name while each human protein is represented by 

Entrez Gene ID. To determine the correct mapping of PBD codes to HIV-1 proteins, the 

molecule name associated with each PDB chain was searched for keywords indicating the 

protein, with ambiguous cases treated on an individual basis. For example, PDB molecule 

names containing the word "capsid" but not "nucleocapsid" were assigned to the node 

"capsid." Furthermore, molecule names indicating polyproteins, such as those containing 

the phrase "gag-pol", were checked individually to determine which specific part of the 

polyprotein was represented by the entry. Two PDB structures were found to represent 

more than one mature HIV-1 protein: 1l6nA contains both capsid and matrix, while 

1bajA contains capsid and p2 (Tang, Ndassa, & Summers, 2002; Worthylake, Wang, 

Yoo, Sundquist, & Hill, 1999); these structures are represented as "capsid, matrix" and 

"capsid, p2" respectively. When counting predictions at the gene level, we considered 

pairs of HIV-1 node names and human target Entrez Gene IDs.  

To determine which predictions are true positives, PIG and HHPID entries for the 

predicted human interactors were examined to see if they contained the HIV-1 protein 

they were predicted to interact with (Driscoll et al., 2009; Fu et al., 2009). These 

interaction databases consist of PPIs curated from the literature. HHPID uses keywords to 

characterize the different types of interactions listed in this database. Since this work 

attempts to predict physical interactions, only entries with keywords representing direct 
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interactions were included (Tastan et al., 2009). The Uniprot accessions associated with 

the HIV-1 protein PDB entry, in the case of PIG, or the Entrez Gene ID mapped to that 

Uniprot accession, in the case of HHPID, were checked to see if it was present as an 

already known interaction of the human protein.  

GO Term Enrichment 

The Gene Ontology (GO) provides a system of terms to consistently describe and 

annotate gene products (Ashburner et al., 2000). GO term enrichment was performed 

using the DAVID Functional Annotation Chart tool. The GO is organized as a tree 

structure, with terms becoming more specific as distance from the root increases. 

Therefore, to avoid very general and uninformative GO terms, only those that are found 

at least 5 steps removed from the overall root of GO were considered. The p-values were 

corrected for multiple testing using the Bonferroni procedure and transformed by taking 

the -log10 for easier visualization.  

Computational evaluation 

Two forms of computational validation of the method were conducted. As it is not 

possible to predict all known interactions due to lack of protein structures and other 

factors, we first determined the largest set of known interactions that it is theoretically 

possible to predict using our approach. To do this, we first determined the sets of all 

proteins that could be considered. This includes the set of all HIV-1 proteins in Dali (HIV 

set), the set of all human proteins that are represented in both Dali and HPRD (possible 

HIV-similar set), and the set of all human proteins in HPRD that are known to interact 

with at least one protein in the possible HIV-similar set as well as pass the literature filter 

(possible target set). Next, every pairwise combination of proteins in the HIV set and the 
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possible target set was checked to see if it represented a known interaction curated in 

HHPID or PIG. The resulting number of true interactions that could have been found by 

the method was compared to the number of true positives that were actually found, both 

before and after filtering by cellular components.  

In the second approach, actual prediction results were compared to predictions 

based on randomly selected HIV-human protein pairs. The HIV-1 proteins were chosen 

from the 69 Uniprot accessions represented at least once by structures in the Dali 

Database. For human proteins, two different sets of human Uniprot proteins were created, 

one containing all the proteins in HPRD, and the other containing the subset of these 

human proteins that also passed the Literature Filter. The set of all human proteins in 

HPRD consisted of 8,582 proteins and was used to assess the accuracy of purely random 

predictions, while the second set of 830 proteins was used to observe the effect of the 

Literature Filter.  

Since the structural similarity step was omitted, the predictions based on a human 

protein being similar to an HIV-1 protein and incorporated into the virion could not be 

simulated with the random selection procedure. We found that if we excluded this class 

of predictions from our real results, the number of unique predictions made was reduced 

to 2,139, but all 62 true positives were still included. Therefore, we randomly selected 

2,139 pairs of HIV-1 proteins and human proteins from the entire HPRD, and a second 

set of 2,139 pairs of HIV-1 proteins and Literature Filtered human proteins for 

evaluation. Next, any known interactions between the randomly chosen pairs were found 

using HHPID and PIG. Additionally, both the unfiltered and Literature Filtered random 

predictions were then subjected to the CC Filter to gauge the improvement due to this 
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step of the method. The CC Filter reduced the number of predictions to a variable degree, 

depending on how many of the random predictions were annotated with the same GO 

cellular component term. The entire procedure was repeated 1,000 times. The mean and 

standard error of the mean for each of the four variously filtered random prediction sets 

was calculated using R. The distributions of random predictions after Literature Filtering 

were approximately normal, so one-sided single sample t-tests were performed to 

determine if the method performed significantly better than random. In addition, we 

performed Wilcoxon signed-rank tests that do not make assumptions about normality. 

When comparing our results to random predictions that had undergone the same filtering 

steps, either the Literature Filter or both the Literature and CC Filters, the p-values were 

less than 2.2e-16 for all statistical tests. In addition, even when performing the 

randomization procedure 10,000 times, none of the randomly selected interaction sets had 

a true positive rate higher than that observed in our results, suggesting a p-value of no 

greater than 0.0001.  

To compare our predictions to those made by Evans et al. and Tastan et al., we 

found the intersection of the prediction sets, counted by HIV-1 protein name and human 

Entrez Gene ID (Evans et al., 2009; Tastan et al., 2009). Because each study used 

different names for the HIV-1 proteins, we had to map the naming schemes to each other 

to find common predictions. For example, Evans et al.'s "CA" and "GAG" and Tastan et 

al.'s "gag_capsid" and "gag_pr55" were mapped to our "capsid." Proteins for which we 

made no predictions, such as Rev, were not mapped to anything in our results, but were 

converted between Evans et al. and Tastan et al. to find overlap between these two 

studies.   
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FIGURES AND TABLES 

 

 

  

 
 

Figure 2.1. Diagram of approach. HIV-1 proteins showing structural similarity to one 

or more human proteins are first identified. Interactions for these “HIV-similar” 

proteins with other human proteins are then identified. Following appropriate filtering, 

this methodology predicts the existence of a physical interaction between the HIV 

protein and the human “target” protein(s). 
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Figure 2.2. Structural prediction workflow. Structural similarities from Dali and 

known interactions between human proteins from HPRD are used to predict 

interactions between HIV-1 and human proteins. These predictions are filtered based 

on functional information from previous studies to make a first set of predictions. This 

set is further filtered using GO cellular component terms to yield a final prediction set 

including fewer predictions with higher confidence. Numbers represent the number of 

interactions, or structural similarities in the case of Dali, at each stage in the process. 
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Table 2.1. Coverage of HIV-1 proteins. 
 

HIV-1 protein PDB chains in Dali PDB structures in Dali 

Capsid 52 25 

gp120 24 20 

gp41 24 17 

Integrase 51 26 

Matrix 17 12 

Nef 5 3 

Nucleocapsid 3 3 

p2 1 1 

Protease 604 304 

Reverse Transcriptase 176 85 

Tat 3 3 

Vpr 1 1 

Vpu 1 1 

The number of structures representing each HIV-1 protein in Dali. 
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Figure 2.3. Selected structural similarities. Structures of HV-1 and human proteins 

aligned using Dali. (A) IN (1ex4A) aligned with SMN2 (1g5vA) (J. C. Chen et al., 

2000; Selenko et al., 2001). (B) NXF1 (1ft8E) aligned with RT (1tl3A) (Hopkins et 

al., 2004; Liker, Fernandez, Izaurralde, & Conti, 2000) . (C) gp41 (2cmrA) aligned 

with PTK2 (1k04A) (Arold, Hoellerer, & Noble, 2002; Luftig et al., 2006). (D) RT 

(1lwcA) aligned with PLEC1 (1mb8A) (Chamberlain et al., 2002; Garcia-Alvarez, 

Bobkov, Sonnenberg, & de Pereda, 2003). HIV-1 proteins are in blue, human proteins 

are in yellow. 
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Table 2.2. Summary of predicted interactions. 

 

 Before CC Filter After CC filter 

Structure Nodes 11 10 
HIV-1 Uniprot 49 33 
Similar Human Proteins 347 189 
Predicted Human Binding Partners 406 137 
True Positives 62 31 
Total Predictions 2143 502 
Percent True Positive 2.89% 6.18% 

The number of proteins found and interactions predicted are shown. HIV-1 Structure 

Nodes refers to the number of HIV-1 proteins represented in Dali, while HIV-1 

Uniprot refers to the number of HIV-1 Uniprot accessions present in the predictions. 

Human proteins and predicted interactions are counted by unique Uniprot accessions. 
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Figure 2.4. Predicted interaction network after cellular component filtering. 

Predictions were filtered to contain only those pairs of proteins that share at least one 

Gene Ontology cellular component term. In addition to the prediction of a physical 

interaction, the human proteins included in this prediction set are known to have a role 

in HIV-1 infection or replication as supported by 1) evidence of incorporation into the 

HIV-1 virion or 2) their reduced expression is known to prevent HIV-1 infection (node 

outline color corresponds to source). Red lines represent predicted interactions that are 

already known to occur. 
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Figure 2.5. Significantly enriched Gene Ontology terms in the human-HIV-1 

interaction network. GO terms removed at least 5 levels from the root for (A) 

Biological process and (B) Molecular function. Bonferroni corrected p-values ( = 

0.01) were –log10 transformed. “nucleo- and nucleic acid transport” is an abbreviation 

for “nucleobase, nucleoside, nucleotide and nucleic acid transport.” 
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Table 2.3. Method evaluation. 

 

 Before CC After CC 

Predicted True Positives 62 31 
Possible True Interactions 319 166 
Percent Found 19.44% 18.67% 

Comparison of the number of known interactions predicted with the number of known 

interactions that could have theoretically been found using the available data. 
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Table 2.4. Accuracy of random predictions. 

 

Filtering Method Mean Accuracy Standard Error 

None 0.166% 2.79e-3% 
CC 0.286% 6.09e-3% 
Lit 0.567% 4.84e-3% 
Lit and CC 1.030% 1.07e-2% 

The mean percent of true positives and standard error of the mean for 1000 random 

predictions without any filtering (None), CC filtering alone (CC), Literature Filtering 

alone (Lit), and both Literature and CC Filtering (Lit and CC) are shown. 
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Figure 2.6. Overlap with previous studies. Venn diagrams of the overlap between our 

results those of previous computational studies by Evans et al. and Tastan et al. (A) 

with Literature Filter and (B) with Literature and CC Filters (Evans et al., 2009; 

Tastan et al., 2009). 



CHAPTER THREE 

 

MAPPING PROTEIN INTERACTIONS BETWEEN DENGUE VIRUS AND ITS 

HUMAN AND INSECT HOSTS  

 

 

 

INTRODUCTION 

 

With over 50 million cases per year, dengue virus (DENV) is a significant and 

growing threat to worldwide human health. Widespread among tropical and sub-tropical 

regions, this NIAID Category A pathogen consists of four serotypes, DENV1 to DENV4, 

and is a member of the family Flaviviridae (NIAID, 2012). DENV causes a range of 

diseases in humans, from the mild Dengue Fever (DF) to the more deadly Dengue 

Hemorrhagic Fever (DHF) and Dengue Shock Syndrome (DSS). While the average 

number of cases reported to the WHO and the number of countries reporting cases of 

DENV have increased dramatically in the past five decades, relatively little is known 

about this important tropical pathogen that still lacks a vaccine, specific drug treatment, 

and relevant animal model (Kroeger & Nathan, 2006). 

DENV is and arbovirus, carried and spread to humans primarily by the mosquito 

vector Aedes aegypti and to a lesser extent Aedes albopictus. Thus, DENV displays the 

remarkable capability to survive and replicate in two very different host organisms, 

accomplished by a genome encoding a mere 10 proteins (Perera & Kuhn, 2008). To be 

successful, DENV must be able to manipulate each of its hosts at a molecular level. This 

manipulation must be accomplished, in part, through specific protein-protein interactions 
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that allow the virus to bend existing host cellular systems to the purpose of furthering the 

viral lifecycle. However, understanding this host-pathogen system is particularly difficult 

given the complexities of host-virus dynamics as well as the lack of a useful animal 

model system. In light of these challenges, computational approaches provide an 

important tool in studies of host-pathogen systems. In particular, computational 

approaches for predicting host-pathogen protein interactions provide opportunities for 

identifying specific targets for further experimental work, understanding system 

behavior, and determining plausible therapeutic candidates. Despite their potential value, 

such computational approaches have not been widely applied to the problem of predicting 

host-pathogen interactions. In particular, we are not aware of any studies focused on 

computational large-scale prediction of protein-protein interactions between DENV and 

humans and know of only one recent study on Aedes (Guo et al., 2010).  

Here, we establish a network of predicted interactions between DENV proteins 

and proteins from its human and insect hosts. These predictions are based on protein 

structural similarity, where we first determine structural similarities between pathogen 

and host proteins using an established method for comparing 3D structures. We refer to 

host proteins having a region of high structural similarity to a DENV protein as “DENV-

similar.” Next, we identify known intra-species interactions for these DENV-similar 

proteins, and refer to the one or more host proteins that they interact with as “targets.” 

We then assume that the similar structural features seen between DENV proteins and 

their host DENV-similar counterparts allow the DENV protein to participate in the same 

interactions as DENV-similar proteins; joining the host protein network at these points 

(Figure 3.1). We prioritize the interaction map using data from recent RNAi screens, to 
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create a smaller network of interactions having the greatest potential to be correct. These 

predictions include numerous novel interactions with potential functional relevance and 

we highlight predictions relevant to stress, the Unfolded Protein Response (UPR), and the 

interferon pathway. This computational network approach provides an additional tool for 

the investigation of poorly-characterized host-pathogen systems such as DENV, as well 

as helping to identify potential targets in both hosts that may be used in future DENV 

vaccination, treatment, and control efforts.  
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RESULTS AND DISCUSSION 

Identification of Dengue-Similar Host Proteins 

To develop a network of interactions between DENV and its hosts, H. sapiens and 

A. aegypti, we employed a method we developed previously in the prediction of protein 

interactions between HIV and human (Doolittle & Gomez, 2010) (see Methods for 

further details). First, we obtained 3D structures for the DENV proteins, from two 

sources. Experimentally determined structures were taken from the PDB and consist of 

31 PDB entries representing the DENV2 proteins E, pr peptide, prM, C, NS2B, NS3, and 

NS5 (Berman et al., 2003). Because there are no experimentally determined structures for 

NS1, NS2A, NS4A, and NS4B, we used the I-TASSER server to predict the structure of 

these proteins (Y. Zhang, 2008). In this way, we investigated possible interactions for 

every DENV protein.  

To determine structurally similar host proteins, we used DaliLite to compare 

DENV structures against every other structure in the PDB (Berman et al., 2003; Holm et 

al., 2008; Holm & Sander, 1993). We considered only significant structural matches with 

proteins from DENV’s hosts. We found 300 human proteins with similarity to a DENV 

protein (hDENV-similar). However, we found no similarities between DENV proteins 

and A. aegypti proteins. This is not surprising, given that there are currently only 17 

structures from A. aegypti in the PDB. Therefore, we looked for similarities between 

DENV proteins and the fly, Drosophila melanogaster, and found 15 proteins with 

structural similarity to DENV, which were then used as dDENV-similar proteins in 

downstream analyses.  

 



 43 

Known DENV-Host Interactions 

A particular challenge in host-pathogen studies is the general lack of interaction 

data. HIV is perhaps the most well characterized virus in this regard, with over 800 direct 

interactions documented in NCBI’s HIV-Human protein interaction database (over 2,500 

interactions if indirect interactions are included) (Fu et al., 2009). In contrast, a recent 

compilation of host-pathogen interactions from public databases describes a total of 3 

DENV-human interactions (Dyer, Murali, & Sobral, 2008).  

Through a more comprehensive search of the literature, we have found 20 

documented interactions between DENV and human proteins (Table 3.1). Almost half of 

the documented protein interactions involve E protein and a receptor on the cell surface. 

Two of these, CD14 and HSPA5, have been shown to function as DENV receptors, 

although their binary interaction with E protein was not explicitly demonstrated; it may 

be that some other protein in complex with these receptors is the direct interaction partner 

of E protein (Y.-C. Chen, Wang, & King, 1999; Jindadamrongwech, Thepparit, & Smith, 

2004). Furthermore, there is evidence that DENV receptor usage may be virus strain and 

cell type specific (Bielefeldt-Ohmann, Meyer, Fitzpatrick, & Mackenzie, 2001). Indeed, 

RPSA has been shown to be a DENV receptor, suggesting an interaction with E, but only 

for DENV1 (Thepparit & Smith, 2004). Because our predictions were focused on 

DENV2, this interaction was not considered for our predictions, but was included in 

Table 3.1 for completeness. Interactions not shown to be specific for a different serotype 

were included in our list of true positive interactions. Therefore, a total of 19 protein 

interactions were considered as known host-pathogen interactions between DENV2 and 

human.  
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There are no well-characterized protein-protein interactions between DENV and 

A. aegypti. However, in the C6/36 cell line from A. albopictus, tubulin is believed to 

interact with DENV2 E protein (Chee & AbuBakar, 2004). In addition, one protein, 

likely to be HSP90, has been put forward as a putative receptor for DENV2 in A. aegypti, 

having been shown to bind to the E protein (Salas-Benito et al., 2007). However, its 

identity has not been conclusively demonstrated. In addition, mosquito La auto-antigen is 

known to interact with the 3’ end of DENV RNA and may play some role in RNA 

synthesis (Yocupicio-Monroy, Padmanabhan, Medina, & del Angel, 2007). Human La 

auto-antigen (SSB) is also known to interact with the ends of the viral RNA, as well as 

NS3 and NS5 (García-Montalvo, Medina, & del Angel, 2004). If the functions of the 

mosquito and human La proteins in DENV infection are similarly conserved, mosquito 

La may interact with NS3 and NS5 as well, although this has not been shown. It is likely 

that some of the protein interactions that enable DENV to manipulate the cellular 

pathways of two hosts are conserved between the species.  

Prediction of Protein Interactions 

After determining which host proteins are structurally similar to DENV proteins, 

we inquired into the known protein-protein interactions that each DENV-similar protein 

participates in. For the hDENV-similar set, we obtained known human protein 

interactions from the Human Protein Reference Database (HPRD), which consists of over 

37,000 interactions found in the literature (Mishra et al., 2006). We predicted that DENV 

proteins could interact with the partners of their corresponding hDENV-similar proteins, 

under the hypothesis that proteins with highly similar structures are likely to be involved 

in similar protein interactions (Figure 3.1A). We predicted 4,273 potential host-pathogen 
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interactions, involving 2,321 different human proteins (Table 3.2). Of the 19 known 

protein-protein interactions between DENV and human, 9 are present among our 

predictions (Chang et al., 2001; Y.-C. Chen et al., 1999; Chiu, Shih, Yang, & Yang, 

2007; J. J. E. Chua, Ng, & Chow, 2004; J. J.-E. Chua, Bhuvanakantham, Chow, & Ng, 

2005; Ellencrona, Syed, & Johansson, 2009; García-Montalvo et al., 2004; Jiang, Yao, 

Duan, Lu, & Liu, 2009; Jindadamrongwech et al., 2004; Kurosu, Chaichana, Yamate, 

Anantapreecha, & Ikuta, 2007; Limjindaporn et al., 2007, 2009; Lozach et al., 2005; 

Noisakran et al., 2008; Reyes-Del Valle, Chávez-Salinas, Medina, & Del Angel, 2005). 

This method may not predict all interactions, for example those mediated by sequence 

motifs rather than structural features. A table of some DENV-human protein interaction 

predictions is provided in Appendix 6.  

For the dDENV-similar proteins, we used the interactions curated in IntAct for D. 

melanogaster and potential D. melanogaster interactions suggested by the yeast-2-hybrid 

data sets in DroID (Aranda et al., 2010; J. Yu, Pacifico, Liu, & Finley, 2008). However, 

rather than making direct predictions using these interactions, as we did for human 

proteins, we determined orthologs of the D. melanogaster proteins in A. aegypti, since 

this is the true host of DENV. We then predict that the A. aegypti ortholog of a D. 

melanogaster protein that interacts with a dDENV-similar protein may also interact with 

the corresponding DENV protein (Figure 3.1B). As a result of this procedure, we predict 

that 158 A. aegypti proteins participate in 176 interactions with DENV proteins (Table 

3.2). We note that this method did not predict interactions between E and mosquito 

tubulin, HSP90, or La, which have been suggested as possible interactions (Chee & 

AbuBakar, 2004; García-Montalvo et al., 2004; Yocupicio-Monroy et al., 2007). 
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However, 12 of the proteins predicted to interact with DENV were orthologs of proteins 

involved in DENV2 infection in humans or fly. A table of some DENV-Aedes protein 

interaction predictions is provided in Appendix 7.  

GO term enrichment  

Due to the sparseness of known interactions to which we can compare and 

evaluate our predictions, we examined the functional roles of host proteins for patterns 

relevant to DENV infection. To this end, we determined the GO term enrichment among 

the DENV-similar and target proteins for each host. We find that many of the most 

significantly enriched terms among these sets of proteins are for processes or functions 

known to be important for DENV infection (Figures 3.2 and 3.3). Our results are also 

consistent with a study of altered protein expression during DENV infection in which 

several of the proteins identified have functions related to the GO terms RNA processing, 

transcription, or regulation of stress response, which were enriched in our predictions 

(Pattanakitsakul et al., 2007).  

For human target proteins (dark blue bars in Figure 3.2), processes involving 

signaling, cell death and apoptosis, and positive or negative regulation terms are much 

more frequent than would be expected if chosen at random. These processes are in 

agreement with processes and pathways that are altered during the course of infection. 

Human proteins with structural similarities to DENV (red bars) are enriched for terms 

describing blood coagulation and hemostasis, indicating that DENV proteins appear to 

have structural similarities that mimic human proteins involved in the pathways 

controlling the cessation of bleeding. One of the defining symptoms of DHF is 

hemorrhage, the pathogenesis of which has been shown to include abnormalities in levels 



 47 

of cytokines, complement components, and coagulation factors (Srichaikul & 

Nimmannitya, 2000; Van Gorp et al., 2001). DENV proteins show structural similarity 

with proteins from all three of these categories. In fact, DENV mimicry of clotting factors 

has already been observed: antibodies against the DENV2 protein NS1 have been shown 

to cross-react with clotting factors and integrins on thrombocytes and endothelial cells 

(Falconar, 1997). Kinase, cytokine, phosphotransferase, and peptidase functional roles 

are also enriched in hDENV-similar and human target proteins.  

The most enriched biological processes for DENV-A. aegypti within our 

interaction predictions appear to revolve around RNA processing and transcription-

related processes. This is observed in enriched functions, which include 

“nucleotidyltransferase activity” and “sequence-specific DNA binding” GO terms (Figure 

3.3). Gene expression analyses within A. aegypti in response to DENV infection have 

shown changes in several hundred genes across a range of functions, with immune and 

transcriptional processes being highly represented (Xi, Ramirez, & Dimopoulos, 2008). 

We note that one protein with mRNA processing activity, AAEL013723-PA or 

polypyrimidine tract binding protein, is an ortholog of human PTBP1, which is known to 

interact with NS4A (Jiang et al., 2009). However, we predict AAEL013723-PA interacts 

with NS2A in A. aegypti and make no predictions about PTBP1 interacting with DENV 

in humans (Appendix 7). In addition, there are several lines of evidence suggesting that 

A. aegypti may use the RNAi pathway as a defense against infection by DENV, and 

variations in the RNAi pathway in both the host and viral strains may contribute to 

differences in the efficiency of infection (Sanchez-Vargas et al., 2004).  
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Literature filtering  

Our prediction of host-DENV interactions using protein structural similarity 

allows us to generate a list of candidate interactions with potentially significant functional 

relevance, forming a possible basis for further experimental and computational studies of 

this system. Given the large number of predictions and the scarcity of known interaction 

information, we wished to incorporate additional data to help refine these predictions into 

an “increased-confidence” set of interactions. To do this, we incorporated functional 

information from recent literature. Specifically, two siRNA screens have recently 

examined the roles of host proteins in DENV infection (Krishnan et al., 2008; Sessions et 

al., 2009). Sessions et al. performed a genome-wide siRNA screen for D. melanogaster 

proteins whose depletion affected the ability of DENV2 to infect the host cells. For those 

insect host factors with human homologues, they verified 55 as human host factors, also 

using siRNA (Sessions et al., 2009). In addition, Krishnan et al. identified 123 human 

host factors for DENV in a study primarily searching for West Nile Virus host factors, 

but also testing these proteins in DENV infection (Krishnan et al., 2008). In total, these 

two studies implicated 173 human proteins and 116 D. melanogaster proteins as playing 

a role in DENV infection. We note that similar studies in HIV together have revealed 

nearly 1,000 such human host factors, and thus it is unlikely that these studies have 

identified all such factors in DENV hosts.  

While host factors may act through mechanisms other than direct protein 

interactions, their functional involvement in DENV infection makes them more likely to 

participate in host-pathogen protein interactions. Comparing the identified host factors 

against our predictions, we found that 48 of the human target proteins were also 
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identified as host factors in the siRNA screens, as well as 3 of the D. melanogaster 

targets (Figure 3.4 and Table 2).  

Many host proteins are predicted to interact with both NS2A and NS4B. This is 

due to apparent structural similarities between these two DENV proteins; several of the 

hDENV-similar proteins for NS2A and NS4B are the same. In particular, many 

predictions for both proteins are based on regions of structural similarity to members of 

the 14-3-3 family, protein phosphatase 2 regulatory subunits, and beta-catenin. These 

hDENV-similar proteins are key signaling proteins, with many known interactions. 14-3-

3 proteins have been found to interact with over 200 polypeptides involved in highly 

diverse cellular functions (Mhawech, 2005) and PP2 is a serine-threonine phosphatase 

and tumor suppressor (Janssens, Goris, & Van Hoof, 2005). Beta-catenin is a well-known 

member of the Wnt signaling pathway. The other two DENV proteins with no known 

structure, and hence have predictions based on modeled structures, do not show structural 

similarity to 14-3-3 or protein phosphatase proteins. The combination of a predicted 

interaction along with siRNA functional relevance suggests that these host-DENV 

relationships would form the basis of a high-priority candidate list for future 

investigation.  

Subcellular co-localization 

As an additional method of identifying the most highly supported predictions, we 

filtered predictions based on subcellular co-localization. The obvious assumption here is 

that for two proteins to directly interact, they must be physically present together within 

the same cellular compartment. Therefore, we used shared GO cellular component (CC) 

annotation to filter our predicted interactions. While this filtering should highlight a 
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smaller set of proteins having additional evidence of interaction, we note that CC 

annotation is very noisy, with the localization of proteins within a cell being often poorly 

characterized for even well-studied model organisms, let alone species such as DENV or 

A. aegypti.  

As GO annotations taken from DAVID for DENV are linked to entries for the 

DENV polyprotein rather than the individual proteins, all DENV proteins receive the 

same annotations. To ameliorate this problem and to include proteins with modeled 

structures, we assigned GO terms to the sequence corresponding to each DENV protein 

structure using a different tool, GOanna, which finds possible annotations based on the 

annotations of highly significant BLAST hits (McCarthy et al., 2006). By assigning GO 

terms in this way, we were able to find CC terms for all of the DENV proteins.  

We used this information to create a smaller list of predicted interactions, 

containing only those predictions where the DENV protein and the host target share at 

least one GO CC term. After CC filtering, there were 2,073 predicted interactions 

between DENV and 1,099 human proteins. Seven of the 19 known DENV-human 

interactions remained after filtering (reduced from 9 of 19), as well as 20 interactions 

involving host factors (Table 3.2). The two known interactions that were removed during 

CC filtering were UBE2I and HSP90AA1 interacting with E. The CC filter reduced both 

the total number of predictions and the ones containing host factors by about half, leaving 

many fewer predictions with only a small decrease in predictions already having known 

functional support. For the predicted interactions in A. aegypti, the reduction in 

predictions was more pronounced, with only 17 predictions and 12 targets passing the CC 

filter (Figure 3.5). One of these predictions involves a host factor, as compared to 12 of 
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the 176 predictions before filtering. While GO compartment information is incomplete, 

CC filtering does provide a smaller list of predictions, and in the case of human-DENV 

interactions, with only a slight decrease in the ability to predict known interactions. Full 

tables of interactions incorporating CC filtering are provided in Appendices 8 (human) 

and 9 (A. aegypti).  

Prediction accuracy 

 It is difficult to judge the accuracy of predictions for protein interactions in host-

pathogen systems, especially for those pathogens such as DENV that have received less 

attention than their worldwide burden deserves. However, our results include essentially 

half (47%) of the known interactions between DENV and human proteins, as well as a 

significant number of proteins from both human and fly that have been suggested to play 

a functional role in DENV infection (Chang et al., 2001; Chiu et al., 2007; J. J. E. Chua et 

al., 2004; Krishnan et al., 2008; Reyes-Del Valle et al., 2005; Sessions et al., 2009). 

Protein interaction prediction is a difficult problem, with even a slight improvement over 

random guessing considered a success. In a recent attempt to predict protein interactions 

in yeast, the organism with the most complete known interactome, the best method tested 

was able to predict 60% of the known interactions, outperforming several previous 

methods having accuracies as low as 38% (J. Wang, Li, Wang, & Wang, 2009). Another 

study evaluating the performance of three prediction methods based on protein domains 

showed that all three performed only slightly better than random guessing on benchmark 

datasets (Ta & Holm, 2009). A large set of known interactions that could serve as a gold 

standard for humans and DENV is lacking, but based on the small number of DENV2-

human interactions that are known, we estimate that the accuracy of our method is 
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comparable to that of other methods applied to better-characterized systems such as 

yeast. Certainly there are many protein-protein interactions and host factors that remain 

to be discovered. As previously mentioned, HIV, another virus which encodes only a 

handful of proteins, is known to participate in over 800 direct interactions with human 

proteins, with over 2,500 interactions if ones that may be indirect are included (Fu et al., 

2009). It seems reasonable to assume that DENV2 also participates in a large number of 

host-pathogen interactions, most of which are currently unknown.  

We have also applied this methodology to the prediction of protein interactions 

between HIV and human, a host-pathogen system for which much is known, although the 

same problems still exist to some extent (See Chapter 2) (Doolittle & Gomez, 2010). In 

that work, we found that when we consolidate proteins to single genes, at least 10% of 

our predictions were estimated to be correct when comparing predictions involving HIV 

host factors that passed CC filtering to known HIV-human protein interactions. This 

represented a significant improvement over random predictions (1% of random 

predictions were correct). For the DENV-host systems described in this work, we 

similarly estimate that, at a minimum, approximately 10% of predictions provided here 

are correct. It is encouraging that, comparable to yeast studies, we were able to find 

approximately 50% of the currently known interactions between DENV and human.  

Comparison to another dataset  

As discussed earlier, the major challenge in predicting protein interactions for 

pathogens is the lack of interaction data. A further complication in this case is that little is 

known about protein interactions within the mosquito vector itself. Very recently, a draft 

of the A. aegypti interactome was predicted by assuming that the mosquito orthologs of 
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interacting proteins in C. elegans, D. melanogaster, and S. cerevisiae would also interact 

(Guo et al., 2010). Because so little is known about the insect vector, we felt it would be 

valuable to compare our results to another set of predictions made using our general 

method, but based on this predicted mosquito interactome. To do this, we found structural 

similarity between DENV2 proteins and fly, worm, or yeast proteins, mapped these 

similar proteins to their orthologs in mosquito, and then used the mosquito interactome to 

predict host-pathogen interactions. In comparison, we previously used only fly proteins 

that were similar to DENV2 proteins, linked them to interacting proteins from 

experimentally determined fly interactions, then found the mosquito orthologs to map our 

predictions.  

When we expanded our search for DENV-similar proteins to include all three 

model organisms, we found 45 proteins (vs. 15 in our original set) that showed structural 

similarities to DENV2 proteins. We then mapped these proteins to orthologs in A. 

aegypti. Any A. aegypti proteins predicted to interact with these orthologs, according to 

the recently published mosquito interactome, were predicted to interact with DENV2. As 

a result, we found 263 mosquito targets participating in 351 interactions with DENV2 

proteins (Appendix 10). This can be compared to the 158 targets and 176 interaction 

predictions generated by considering Drosophila interactions alone (Table 3.2). The 

larger number of interactions predicted is a result of including more protein structures 

from additional species. Overall, the predictions based on the new data showed similar 

GO term enrichment as compared to our original results (Figure 3.6).  

It is difficult to directly assess prediction quality due to the absence of known 

interactions between DENV2 and mosquito. However, we note that despite the larger 
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number of predictions, fewer involved proteins that were suggested to be host factors (10 

compared to 12 in the original predictions). This suggests that the larger number of 

predictions may represent an increase in the number of false positive predictions. Indeed, 

some of the within mosquito interactions used to produce this larger set of interactions 

may also be false positives, as the interactions of (Guo et al., 2010) are predicted from 

interactions in other species. The evolutionary distances between A. aegypti, worm and 

yeast may be too great to provide accurate predictions of protein interactions using 

orthologs. A network of the fourteen predictions made using both datasets is given in 

Figure 3.7.  

In addition, Guo et al. predicted 22 interactions between DENV2 and A. aegypti 

by finding orthologs of proteins from any host species shown to interact with proteins 

from any flavivirus (Guo et al., 2010). Only 3 of the A. aegypti proteins they predict to 

interact with DENV2 (AAEL012515, AAEL014959, and AAEL013600) are present 

among the predictions made with our method using Drosophila experimental interactions 

alone. In addition, we predict them to interact with different DENV2 proteins than what 

is predicted in (Guo et al., 2010).  

Stress and Apoptosis in DENV Pathogenesis 

We note several links between DENV pathogenesis, stress responses, and 

apoptosis among our predictions and in the literature. The GO term “regulation of stress 

response” is enriched among hDENV-similar proteins, as well as several terms related to 

apoptosis among the human target proteins. Several potential DENV receptors are 

involved in stress responses, such as HSP90, HSPA4, and HSPA5 (Jindadamrongwech et 

al., 2004; Reyes-Del Valle et al., 2005). In particular, flaviviruses assemble within and 
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bud from the ER, and are known to induce the Unfolded Protein Response (UPR), which 

reacts to stressors of ER function. As the UPR is necessary for cell survival during 

infection, but also has a negative impact on viral replication, modulation of this response 

by DENV may be advantageous. The UPR can induce either survival or apoptosis signals 

depending on the strength and duration of the ER stressor (Liu & Kaufman, 2003). Three 

major branches, running through PERK, ATF6 and IRE1, regulate the UPR and ER 

homeostasis, and all three have been shown to be induced by DENV infection (Figure 

3.8) (Umareddy et al., 2007).  

Activation of PKR-like ER kinase (PERK), leads to phosphorylation of the 

eukaryotic initiation factor 2a (eIF2a). This phosphorylation inhibits the formation of 

translation initiation complexes, leading to translation inhibition and a reduction in the 

number of unfolded proteins within the ER (Liu & Kaufman, 2003). Production of ATF4 

is also enhanced as a result of eIF2a phosphorylation, eventually leading to GADD34 

production. GADD34 acts within a negative feedback loop, recruiting protein 

phosphatase 1, leading to dephosphorylation eIF2a and the restoration of normal 

translation efficiency. Persistent ER stress leads to CHOP expression and promotion of 

apoptosis. It has been suggested that DENV may be able to compensate the UPR 

response by inducing dephosphorylation of eIF2a to restore translation (Umareddy et al., 

2007). We predict interactions between NS4B and GADD34 (PPP1R15A) (Figure 3.8). A 

listing of all predictions, with or without filtering, is provided in Appendices 6, 7, 8, and 

9.  

ATF6 is a bZIP family transcription factor that transits from the ER to the Golgi 

in response to ER stress. It undergoes processing in the Golgi and transits to the nucleus, 



 56 

leading to upregulation of multiple apoptosis-relevant genes and eventual apoptosis. 

While we do not predict any direct interactions with ATF6, we do predict interactions 

between NS2A, NS4B, and C with associated pathway member NFYA, which forms a 

complex with ATF6 in response to ER stress (Yoshida et al., 2001) (Figure 3.8).  

In the third branch of the UPR, the ER transmembrane protein IRE1, containing 

both kinase and RNase activities, becomes autophosphorylated and activated in response 

to ER stress, leading to XBP-1 splicing and translation of UPR relevant genes. Both 

DENV2 and Japanese Encephalitis Virus infection have been shown to activate XBP1 

and its downstream genes in N18 mouse neuroblastoma cells, reducing the cytopathic 

effect of the virus (C.-Y. Yu, Hsu, Liao, & Lin, 2006). Knockdown of XBP1 expression 

by siRNA has also been shown to lead to greater cytotoxicity in response to infection (C.-

Y. Yu et al., 2006). Persistent stress leads to apoptosis through an IRE-JNK-BCL2 

pathway. Our predictions suggest potential interactions between E and BCL2. In addition, 

other BCL family members are also predicted to interact with DENV proteins including 

BCL2ll (BIM; a facilitator of apoptosis) with NS4B, BCL2L1 (BCLX; both pro- and 

anti-apoptotic splice variants) with E and NS3, and BCL2L10 (Boo; suppression of 

apoptosis induced by BAX but not BAK) with NS3 (Figure 3.8).  

A recent study investigating protein interactions between DENV E protein and 

host proteins described direct interactions between E and BiP (HSPA5), Calnexin 

(CANX) and Calreticulin (CALR) (Limjindaporn et al., 2009). All three major ER stress 

transducers interact with BiP, which serves as a negative UPR regulator, and along with 

other ER chaperones, facilitates proper folding of proteins. Similarly, Calnexin and 

calreticulin are chaperones that bind to glycosylated proteins. Our methodology predicts 
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each of these interactions with the E protein. In addition, we also predict that CALR is 

likely to interact with NS1 as well as NS3. Overall, these results suggest multiple sites 

within the host network at which DENV proteins can potentially manipulate the UPR.  

In addition, several studies have implicated NS3 in DENV-induced apoptosis. The 

ability of DENV1 to cause apoptosis in HepG2 cells differs across strains. The mouse 

neurovirulent strain FGA/NA d1d differs from its parental strain, FGA/89 by 4 mutations, 

one of which leads to a non-conservative substitution in NS3. FGA/NA d1d was shown 

to have a reduced capacity to induce apoptosis, although whether this was mediated by 

the mutation in NS3 or by one of the other mutations, which were all in the E protein, is 

unclear (Duarte dos Santos et al., 2000). However, Vero cells expressing DENV2 NS3 

undergo apoptosis by a mechanism that is dependent on NS3 protease activity and 

enhanced by the presence of NS2B (Shafee, 2003). In addition, West Nile Virus NS3 is 

sufficient to induce caspase-8-depedent apoptosis, and is suggested to directly interact 

with, cleave, and activate caspase-8 in NIH 3T3 cells (Ramanathan et al., 2006). We 

predicted a number of interactions between NS3 and members of apoptotic pathways. A 

few examples of the structural similarities that led to these predictions are shown in 

Figure 3.9. NS3 was predicted to interact with p53 based on structural similarities with 

RAD51, TK1, and DDX5. Similarities with RAD51 also led to predicted interactions 

with ABL1, BRCA1/2, CASP3, and CASP7. Furthermore, NS3 has regions of similarity 

to APAF1, and is therefore predicted to interact with BCL2L1, BCL2L10, Fas, and the 

caspases -3, -4, -8, and -9. These results suggest that NS3 may play a role in DENV 

pathogenesis by influencing apoptosis in host cells, mediated by specific interactions 

between NS3 and host proteins.  
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DENV and the Interferon Response 

Humans and A. aegypti are known to use conserved defenses against DENV 

infection, involving several signaling pathways of the innate immune system, which is 

consistent with our finding of enriched GO terms related to the immune system among 

the target proteins of both humans and A. aegypti. In particular, the JAK-STAT signaling 

pathway has been shown to modulate susceptibility to DENV infection, in both 

mosquitoes and humans (Ho et al., 2005; Souza-Neto, Sim, & Dimopoulos, 2009). In 

humans, the JAK-STAT pathway can be activated by the interferons (IFN), IFN- IFN-

, and IFN-, and mediates the antiviral response (Figure 3.10A). When IFN- or IFN- 

bind their receptor, IFNAR, the tyrosine kinases JAK1 and TYK2 are activated. This 

results in the phosphorylation and activation of STAT2 and STAT1, which then recruit 

IRF9 to form a transcription factor complex that transcribes IRF-7 and then the set of 

genes that are induced by IFN-. The interferon response is induced upon DENV 

infection and high levels of IFN- are normally present in the sera of DENV patients 

(Kurane et al., 1993). Furthermore, pretreatment of cells with IFN has been shown to 

block negative strand accumulation of DENV RNA, but this inhibition was strongly 

attenuated if treatment occurred even 4 hours after initial infection (Diamond & Harris, 

2001).  

In fact, while infection induces an interferon response, several studies have shown 

that DENV interferes with the signaling pathway downstream of IFN-. In dendritic 

cells, DENV is known to protect itself from the antiviral effects of IFN- by reducing the 

phosphorylation of TYK2 and preventing the activation of STAT1 and STAT3, although 

the effects of IFN- are not averted (Ho et al., 2005). In addition, IFN--, but not IFN--, 
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dependent phosphorylation of STAT1 and STAT2 was found to be inhibited in A529 and 

HepG2 cells by the NGC strain of DENV2, but not by the strain TSV01, suggesting 

strain-dependent rather than serotype specific differences in response (Umareddy et al., 

2008). Such strain-dependent differences also highlight the possibility of viral RNA 

sequence variations that potentially lead to changes in interaction specificity or the 

strength of interaction with host proteins.  

A few specific proteins have been identified as modulators of the IFN response. 

For instance, IFN- signaling was prevented by the viral protein NS4B, and to a lesser 

degree by NS4A and NS2A (Muñoz-Jordan, Sánchez-Burgos, Laurent-Rolle, & García-

Sastre, 2003). Inhibition of signaling by NS4B was thought to occur through an observed 

reduction in the level of phosphorylated STAT1. Expression of STAT2 was also 

repressed following infection (Jones et al., 2005). Recently, NS5 has also been shown to 

bind to STAT2, resulting in reduced IFN signaling (Ashour, Laurent-Rolle, Shi, & 

García-Sastre, 2009). In this same study, when expressed as a proteolytically processed 

precursor, NS5 was also found to target STAT2 for proteasome-mediated degradation. 

However, while it is clear that DENV is actively involved in modulating the host 

interferon response, there likely remain many specific interactions by which DENV 

proteins inhibit IFN signaling that are not known.  

Our predictions suggest many potential interactions between DENV and multiple 

human proteins involved in the JAK-STAT pathway (Figure 3.10B). In particular, for 

NS4B, we have predicted possible interactions with IFNAR2, IFNGR1, JAK1, JAK2, 

TYK2, PTPN11, PTPN2, PTPN6, PKR (EIF2AK2), STAT1, STAT2, and STAT3. Thus, 

NS4B may reduce the observed phosphorylation of STAT1 through direct interactions 
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with the host STAT1 protein, through interactions that affect the activities of proteins 

upstream of STAT1 (e.g. JAK1 or TYK2), or through interactions with at least one PTP 

protein, which are negative regulators of STAT activity. In addition, NS4B is predicted to 

interact with PKR, a key component of the IFN response in blocking virus replication. A 

close relative of DENV, hepatitis C virus, has been shown to inhibit interferon signaling 

through inhibition of PKR and by competing with eukaryotic translation initiation factor 

2a as a PKR substrate (Gale et al., 1998; Taylor, 1999). NS2A is also predicted to interact 

with the same members of this signaling pathway as NS4B. However, NS4A is predicted 

to interact with IFNAR1, IFNAR2, IFNB1, JAK2, TYK2, PTPN11, and SOCS1. In 

summary, we have predicted specific host-pathogen protein interactions that may enable 

DENV to escape the antiviral response induced by IFN and which can be tested in the 

future to determine the precise mechanism by which DENV manipulates this host system.  

Orthologous Human and A. aegypti Targets 

To complete its lifecycle, DENV must survive in two very different hosts and 

must perform many of the same basic processes in each, such as transcription and 

translation. Since some proteins and essential processes are conserved between 

mosquitoes and humans, it is possible that some of the proteins that are manipulated by 

DENV in one host are orthologous to the proteins used in the other host. To identify 

potential interactions of this type, we compared our interaction network predictions 

before CC filtering for human and A. aegypti to find proteins which are orthologous 

between the two hosts, as well as predicted to interact with the same DENV protein in 

each. We found 47 pairs of orthologs that were predicted to interact with the same DENV 

protein (Figure 3.11, Appendix 11). Four of these predicted interactions represent host 
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factor targets for A. aegypti. We note that our method depends on known interactions 

within species, and may miss some orthologous host-pathogen interactions if the within 

species interactions are not known.  

To examine the functional role of these conserved interactions, we performed GO 

term enrichment for biological process and molecular function. No molecular function 

terms were significantly enriched (Bonferroni corrected p-value, 0.01). Most of the 

biological processes represented by orthologous interactions in both hosts were also 

found enriched in the predictions for a single host. For example, at least 17 of the human 

proteins and their orthologs in A. aegypti are involved in mRNA processing or 

metabolism (ASCC3L1, DCP1B, DCP2, HNRPA1, HNRPD, HNRPF, HNRPM, UPF3B, 

WDR77, MAGOH, NCBP2, PABPN1, PAPOLA, PRMT5, SNRPA1, SF3B3, SMN1). 

Five of the interactions known to occur between DENV and human proteins involve the 

mRNA processing proteins HNRNPK, HNRNPC, PTBP1, and SSB (Chang et al., 2001; 

García-Montalvo et al., 2004; Jiang et al., 2009; Noisakran et al., 2008). “RNA 

processing” and “RNA metabolic process” were highly enriched in the mosquito 

predictions and in the orthologous predictions.  

In addition, we found a number of enriched GO terms relating to the regulation or 

formation of synapses among the predictions conserved in both species. Previously, the 

term “brain development” was enriched in the set of dDENV-similar proteins. DENV2 

virus particles have been found in vesicles near the presynaptic membrane in spinal cords 

of SCID mice, and it was suggested that fusion of these vesicles at the synapse might aid 

the spread of DENV2 from neuron to neuron (An, Zhou, Kawasaki, & Yasui, 2003). In 

Culex pipiens quinquefasciatus mosquitoes, West Nile Virus, another flavivirus, was also 
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found near synapses and in synaptic vesicles (Girard, Popov, Wen, Han, & Higgs, 2005). 

Furthermore, DENV3 is known to infect the nervous system of A. aegypti, altering the 

mosquito’s feeding behavior by prolonging feeding, possibly enhancing the spread of 

DENV3 by making it more likely that feeding will be interrupted, and the mosquito will 

have to feed on additional humans (Platt et al., 1997).  

The processes enriched in the predicted interactions conserved between the two 

hosts are consistent with the effects of DENV infection in each host. In particular, many 

of the terms enriched among the orthologous predictions are similar to terms enriched for 

mosquito predictions. This is not necessarily surprising, given that the mosquito 

prediction set is much smaller than the human one, but indicates that orthologous 

predictions in humans were made corresponding to many of the mosquito predictions. 

However, we found terms involving cell morphogenesis enriched among the orthologous 

predictions, but not within the predictions specific to either host. Therefore, the 

mosquito-specific predictions do not completely overlap with the human predictions, and 

new processes key to DENV infection in both hosts can be revealed.  
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CONCLUSIONS 

We have created a map of potential protein-protein interactions between the host-

pathogen triad DENV2, H. sapiens, and A. aegypti. The computational methodology 

employed to generate this map assumes that proteins with comparable structures will 

share interaction partners. Therefore, we predict that DENV2 proteins may merge into the 

host protein interactome at the points normally occupied by structurally similar host 

proteins, creating an interface for the manipulation of downstream host processes. From 

previous studies, a number of human and fly proteins have been suggested to play some 

role in DENV2 infection, although the nature of this role is unknown in most cases. 

Using this methodology, we are able to make predictions regarding which host proteins 

may impact viral infection through interactions with specific DENV2 proteins. We note 

that the structural-based methodology here provides a larger picture of the interaction 

network, while more subtle changes at the sequence level are likely to explain 

experimentally observed differences in strain effects. Given the paucity of both structural 

and interaction data for this system, we cannot determine fine differences between 

strains, but this may be elucidated by further study. The networks presented here may 

provide a set of hypotheses for further investigation, potential therapeutic intervention, as 

well as help in improving our understanding of the DENV life cycle.  
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METHODS 

Data Sources 

Structures of DENV2 proteins were taken from the PDB (downloaded on Dec. 9, 

2009), and any DENV2 protein without a known structure was modeled using I-TASSER 

(Berman et al., 2003; Y. Zhang, 2008). The protein sequences used to create I-TASSER 

models were Entrez Protein 159024813, 159024814, 159024817, and 159024819. 

Default settings were used, with no restraints or selection/exclusion of any templates. 

Each of the structures for DENV proteins was run on the DaliLite v. 3 webserver (Holm 

et al., 2008; Holm & Sander, 1993). HPRD Release 7 was used to obtain known human 

protein-protein interactions, while known D. melanogaster interactions were taken from 

DroID v5.0 and IntAct (Aranda et al., 2010; Mishra et al., 2006; J. Yu et al., 2008). The 

A. aegypti orthologs of D. melanogaster proteins were determined using the Inparanoid 

ortholog annotation for the D. melanogaster genes in FlyBase v. FB2009 10 (Berglund, 

Sjölund, Ostlund, & Sonnhammer, 2008; Crosby, Goodman, Strelets, Zhang, & Gelbart, 

2007). The literature sources and various databases used each have their own system of 

identifiers. PDB codes obtained from Dali were mapped to their corresponding taxonomy 

and Uniprot accessions using data from the SIFTS initiative, which aims to ease the 

integration of data from multiple databases (http://www.ebi.ac.uk/msd/sifts/) (Berman et 

al., 2003; Tagari et al., 2006). Other identifier mappings were carried out using DAVID 

Gene ID Conversion or Uniprot ID mapping (DAVID 6.7, Uniprot Release 15.14) 

(Bairoch et al., 2005; Dennis et al., 2003; Huang et al., 2009). Network diagrams were 

created in Cytoscape (Shannon et al., 2003). Images of protein structures were created in 

MacPyMol (DeLano, 2002).  
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Determination of Structural Similarity between DENV and Host Proteins 

We investigated protein mimicry using structural similarities from Dali. Dali 

compares the 3D structural coordinates of two PDB entries by alignment of alpha carbon 

distance matrices, allowing for differences in domain order, and produces a structural 

similarity score (Berman et al., 2003; Holm et al., 2008; Holm & Sander, 1993). For this 

study, we ran each of the DENV2 protein structures, both known and predicted, through 

the DaliLite webserver, which searched against the entire PDB for structurally similar 

proteins, with a z score above 2.0. Default settings of a score cutoff of 40 bits and 

sequence overlap cutoff of 50% were used. We then took from these results only those 

structures that were from the species H. sapiens and D. melanogaster. We refer to these 

human proteins as hDENV-similar proteins and the fly proteins as dDENV-similar 

proteins.  

Interaction Prediction 

To predict which human proteins may interact with DENV2 proteins, we sought 

those target human proteins that interact with the hDENV-similar proteins during cellular 

processes. To this end, we determined known interactions between hDENV-similar 

proteins and target human proteins, using data from the Human Protein Reference 

Database (HPRD) database, which contains literature curated interactions between pairs 

of human proteins (Mishra et al., 2006). For each hDENV-similar protein, we predicted 

that the target proteins known to interact with the hDENV-similar protein might also 

interact with that DENV protein.  

A similar process was used to predict interactions between DENV2 proteins and 

A. aegypti proteins, but with the added step of finding orthologs between A. aegypti and 
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D. melanogaster proteins. Known interactions between the dDENV-similar proteins and 

other D. melanogaster proteins were taken from DroID, using a cutoff confidence value 

of 0.4, and IntAct (Aranda et al., 2010; J. Yu et al., 2008). Then, orthologs of the D. 

melanogaster proteins were found for A. aegypti using FlyBase (Crosby et al., 2007). We 

made the prediction that the A. aegypti target protein interacts with the DENV protein.  

GO Term Enrichment 

The Gene Ontology (GO) provides a system of terms to consistently describe and 

annotate gene products (Ashburner et al., 2000). GO term enrichment was performed 

using the DAVID Functional Annotation Chart tool (Dennis et al., 2003; Huang et al., 

2009). The GO is organized as a tree structure, with terms becoming more specific as 

distance from the root increases. Therefore, to avoid very general and uninformative GO 

terms, we used only GO level 4 terms. The p-values were corrected for multiple testing 

using the Bonferroni procedure and -log10 transformed.  

Validation of Predictions 

Since there may be multiple PDB structures present in Dali to represent the same 

protein, there was some redundancy in the interaction predictions. In some cases, 

multiple PDB structures for the same DENV protein were found to be similar to multiple 

PDB structures for a DENV-similar protein, leading to the same interaction predictions. 

Therefore, the predictions were counted as unique pairs of human Uniprot accessions and 

DENV protein names. In addition, for ease of viewing the predicted interactome, each 

node representing a DENV protein is labeled with the protein name while each human 

protein is represented by its Entrez GeneID.  
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Support for the predicted interactions was obtained from literature. As few 

interactions between DENV and humans are known, we looked within the literature to 

see if any of them were predicted by our method (Chang et al., 2001; Chiu et al., 2007; J. 

J. E. Chua et al., 2004; Reyes-Del Valle et al., 2005). In addition, recent studies using 

siRNA screens have found proteins that may play some role, either facilitating or 

inhibiting in DENV infection, in both humans and D. melanogaster (Krishnan et al., 

2008; Sessions et al., 2009). A. aegypti orthologs of these host factors were recently 

curated by Guo et al. (Guo et al., 2010). We checked for the presence of these human 

host factors or mosquito orthologs among our predictions. Although it is not known if 

these proteins act through direct protein-protein interactions with DENV or indirect 

mechanisms, their involvement in DENV infection provides functional support for a 

possible interaction and gives them higher priority for further testing.  

GO Cellular Components Filter 

GO annotations for the human and A. aegypti target proteins were obtained 

through DAVID 6.7 (Dennis et al., 2003; Huang et al., 2009). However, since DAVID 

assigns all DENV proteins the same GO terms, GO annotation for the DENV proteins 

was obtained using the GOanna webserver, provided through AgBase v. 2.00 (McCarthy 

et al., 2006). This tool assigns GO terms to the input sequences by transitively assigning 

the GO terms of similar, already annotated sequences identified by BLAST. The most 

significant BLAST hits for the DENV protein sequences were DENV polyprotein 

sequences. However, there were multiple polyprotein sequences, each with their own 

annotations. The input sequences matched more significantly to some polyproteins than 

to others, and were therefore assigned different GO terms based on sequence similarity. 
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The predicted interactions were filtered so that only those predictions for which the 

DENV protein and host protein shared at least one GO cellular component term were 

retained.  

Predictions Using Mosquito Interactome 

Guo et al. recently generated a first draft of the mosquito interactome (Guo et al., 

2010). Because their interactome was based on the three model organisms A. aegypti, C. 

elegans, and S. cerevisiae, we found proteins from all three of these species that show 

structural similarity with DENV2 using the Dali server (Berman et al., 2003; Holm & 

Sander, 1993). The A. aegypti orthologs of C. elegans and S. cerevisiae proteins were 

determined using InParanoid, and the D. melanogaster orthologs were taken from the 

InParanoid ortholog annotation for the D. melanogaster genes in FlyBase v. FB2009 10 

(Berglund et al., 2008; Crosby et al., 2007). Then, the interactions with these orthologs 

taken from the mosquito interactome were used to map predicted interactions between 

DENV2 and mosquito target proteins. For the GO term enrichment, we used only GO 

terms from DAVID’s GO fat set, to eliminate non-specific terms with many children.  

Determining Orthologous Targets 

The genome-wide set of orthologs between human and A. aegypti was 

downloaded from InParanoid 7.0 (Berglund et al., 2008). Because InParanoid lists human 

proteins by their Ensembl Protein IDs, mappings to Uniprot accessions were downloaded 

from Ensembl 57 using BioMart (Flicek et al., 2010). Orthologous human and A. aegypti 

targets that were predicted to interact with the same DENV2 protein were identified.  
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FIGURES AND TABLES 

 

  

 
 

Figure 3.1. Diagram of approach. (A) Predictions for the human host. Interactions 

between DENV proteins and human targets are predicted on the basis of structural 

similarity between the DENV protein and an hDENV-similar protein and the hDENV-

similar protein’s known interaction with the human target. (B) Predictions for the 

insect host are made in a similar manner as (A), except for the additional step of 

finding orthologs of the D. melanogaster target proteins in the real host of interest, A. 

aegypti. 
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Table 3.1. Known interactions between H. sapiens and DENV. 

 

Human DENV Serotype System Reference 

UBE2I E 2 In vitro† (Chiu et al., 2007) 
HSP90AA1 E 2 U937, SK-SY5Y, 

monocyte 
(Reyes-Del Valle et al., 2005) 

HSPA4 E 2 U937, SK-SY5Y, 
monocyte 

(Reyes-Del Valle et al., 2005) 

HSPA5 E 2 HepG2, Vero (Jindadamrongwech et al., 
2004; Limjindaporn et al., 
2009) 

CANX E 2 Vero (Limjindaporn et al., 2009) 
CALR E 2 Vero (Limjindaporn et al., 2009) 
CD14 E 2 Primary monocytes/ 

macrophages 
(Y.-C. Chen et al., 1999) 

CD209 E 1‡ BHK† (Lozach et al., 2005) 
RPSA E 1* HepG2 (Thepparit & Smith, 2004) 
DAXX C 2 HepG2 (Limjindaporn et al., 2007) 
HNRNPK C 2 293T† (Chang et al., 2001) 
HNRNPC NS1 2 293T (Noisakran et al., 2008) 
CLU NS1 2 Plasma, 293T, Vero (Kurosu et al., 2007) 
STAT3 NS1 2 BHK (J. J.-E. Chua et al., 2005) 
NRBP1 NS3 2 BHK† (J. J. E. Chua et al., 2004) 
SSB NS3 4 U937 (García-Montalvo et al., 2004) 
SSB NS5 4 U937 (García-Montalvo et al., 2004) 
TJP1 NS5 2 Epithelial cells (Ellencrona et al., 2009) 
STAT2 NS5 2 293T (Ashour et al., 2009) 
PTBP1 NS4A 2 Huh-7 (Jiang et al., 2009) 

Experimentally determined interactions are listed, with the serotype and system that 

the interaction was demonstrated in. 

†Interaction suggested in additional cell lines by functional assay. 

‡Interaction suggested for other serotypes by functional assay. 

*Interaction shown to be specific for this serotype. 
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Table 3.2. Summary of interaction predictions.  

 

 Human Human CC Insect Insect CC 

DENV-similar 300 254 15 6 
Targets 2,321 1,099 158 12 
Known Predictions 9 7 0 0 
Host Factor Predictions 48 20 12 1 
Total Predictions 4,273 2,073 176 17 

Counts are given for the predictions made between DENV and both the human and A. 

aegypti hosts, both before and after CC filtering. 
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Figure 3.2. GO Biological Process term enrichment of host proteins. Blue bars 

represent terms enriched among human target proteins, red is terms enriched among 

hDENV-similar proteins, light blue is terms for A. aegypti targets, and pink is for 

terms from dDENV-similar proteins. When more than ten terms were enriched for a 

set of proteins, only the ten most significant terms are shown. Bonferroni corrected p-

values were transformed by -log10. The following abbreviations are used: “reg” is 

“regulation of,” “pos” is “positive,” “neg” is “negative,” and “proc” is “process.” 

Brackets delineate the two host species. 
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Figure 3.3. GO Molecular Function term enrichment of host proteins. Blue bars 

represent terms enriched among human target proteins, red is terms enriched among 

hDENV-similar proteins, light blue is terms for A. aegypti targets, and pink is for 

terms from dDENV-similar proteins. When more than ten terms were enriched for a 

set of proteins, only the ten most significant terms are shown. Bonferroni corrected p-

values were transformed by -log10. The following abbreviations are used: “peptidase 

activity L-aa peptides” is “peptidase activity acting on L-amino acid peptides,” and 

“phosphotrans alcohol group” is “phosphotransferase activity alcohol group as 

acceptor.” Brackets delineate the two host species. 
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Figure 3.4. Predicted interactions with literature support. Predicted interactions 

between DENV and its hosts that were already known or involve host factors are 

shown. Solid lines represent interactions for which the host protein was found by an 

siRNA screen to be involved in DENV infection, while dashed lines indicate that it is 

not a known host factor. Red lines represent interactions already known from the 

literature. 
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Figure 3.5. Predicted interactions in A. aegypti after CC filtering. Predicted 

interactions between DENV and A. aegypti where the DENV protein and its target 

share at least one GO CC term. Solid lines represent interactions for which the A. 

aegypti protein is a host factor. 



 76 

  

 
 

Figure 3.6. GO term enrichment of A. aegypti proteins based on data from Guo et al. (Guo et 

al., 2010). (A) Enriched GO biological process terms. (B) Enriched GO molecular function 

terms. Light blue bars represent terms for A. aegypti targets, and pink is for terms from 

DENV-similar proteins. When more than ten terms were enriched for a set of proteins, only 

the ten most significant terms are shown. Bonferroni corrected p-values were transformed by 

–log10. The following abbreviations are used: “translation factor nucleic acid bind” is 

“translation factor activity nucleic acid binding,” and “macromolecular subunit organiz” is 

“macromolecular complex subunit organization.” 
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Figure 3.7. Interactions predicted using both the original fly data and the mosquito 

interactome.  
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Figure 3.8. DENV and ER Stress. Potential interactions between DENV proteins and 

key components of the Unfolded Protein Response (UPR) and ER stress. See text for 

additional details.  
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Figure 3.9. Structural similarities between NS3 and human proteins involved in 

apoptosis. (A) Structural similarity between NS3 and RAD51 (1n0wA) (Pellegrini et 

al., 2002). (B) Structural similarity between NS3 and TK1 (1w4rA) (Birringer et al., 

2005). (C) Structural similarity between NS3 and APAF1 (1z6tC) (Riedl, Li, Chao, 

Schwarzenbacher, & Shi, 2005). (D) Structural similarity between NS3 and DDX5 

(3fe2A) (Schütz et al., 2010). NS3 (2bhrA) (Xu et al., 2005) is shown in red.  
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Figure 3.10. DENV influences IFN signaling. (A) Interferon signaling pathway. IFNA 

and IFNG bind to their respective receptors and cause the activation of Jak family 

tyrosine kinases. This activates STAT proteins, which form hetero- or homodimers 

and induce the expression of IFN response gene. SOCS proteins negatively regulate 

JAK1, and PTP proteins negatively regulate JAK1 and STAT1. NS4B can reduce the 

phosphorylation of STAT1. (B) Predicted interactions between DENV proteins and 

members of the IFN-induced JAK-STAT pathway. 



 81 

 

 
 

Figure 3.11. Predicted orthologous interactions. (A) Predicted interactions between 

DENV and orthologous pairs of A. aegypti and human proteins. The human protein is 

listed first, followed by its ortholog in A. aegypti, which is also predicted to interact 

with the DENV protein. (B) GO biological process terms enriched among the 

interactions predicted to be conserved between human and A. aegypti. The following 

abbreviations are used: “reg synaptic growth at junction” is an abbreviation for 

“regulation of synaptic growth at neuromuscular junction,” and “cell morph in 

differentiation” stands for “cell morphogenesis involved in differentiation.”  

 



CHAPTER FOUR 

 

CONCLUSION 

 

 

SUMMARY OF FINDINGS 

 A novel method of predicting host-pathogen interactions based on structural 

similarities between proteins was developed and applied to HIV-1 and DENV2. For each 

virus, the predictions were filtered using GO CC terms and functional evidence from the 

literature to give sets of high confidence predictions. The two viruses studied had very 

different signatures of GO term enrichment among the target human proteins they were 

predicted to interact with. A significant number of HIV-1 targets were involved in 

signaling, transport, and GTP binding or hydrolysis, while the predictions for DENV2 

centered on RNA processing, stress responses, and interferon signaling. Part of the 

DENV2 lifecycle occurs in mosquito vectors that spread the disease, and predictions 

were also made for interactions with this host, showing similar target functions to those 

in the human host. We estimate that 10% of predictions are accurate based on the known 

interactions for HIV-1 using gene identifiers.  

 

CHALLENGES 

 Lack of known host-pathogen interactions remains a major hurdle in determining 

interspecies interactomes. Recent advances using large-scale Y2H or proteomic 

approaches have greatly expanded the host-pathogen interaction networks for many 
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pathogens. However, these approaches have high rates of false positives, making the 

quality of the data uncertain, and false negatives, leaving interactomes incomplete. 

Furthermore, many human proteins are involved in viral pathogenesis, suggesting some 

form of interaction with the virus, but have not been shown to directly interact with a 

viral protein. For pathogens that can be transmitted to humans from animals or are borne 

by vectors, such as mosquitoes, knowledge of the non-human host(s) can also prove 

limiting. Technological developments have recently lead to great advances, but studies of 

mosquitoes are still far behind studies on humans and model organisms (reviewed in 

(Severson & Behura, 2012)). Therefore, computational methods are necessary to augment 

experimental approaches, especially in cases where a pathogen can infect multiple 

diverse hosts.  

 Most protein interaction prediction methods are forms of supervised learning and 

rely on prior information about known interactions to make predictions about unknown 

ones. The lack of this information prohibits the use of many machine-learning algorithms 

for many viruses. Furthermore, because negative results are rarely reported, there are no 

sets of host proteins known not to interact with pathogen proteins to provide negative sets 

for classification methods. Random protein pairs can be chosen with the assumption that 

it is unlikely they will interact, but it cannot be determined if these represent true negative 

cases.  

 Even if experimental data exists for the pathogen, an additional challenge lies in 

collecting a comprehensive list of previously known interactions. Although several 

databases exist to curate protein interaction information, these databases are incomplete, 

lacking many known interactions that can be found in the literature and making the 
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determination of a gold-standard set of interactions difficult. For example, only 3 DENV-

human interactions were found in databases in 2008 (Dyer et al., 2008), while we found 

16 more by literature search. A recent compilation of Salmonella-host interactions found 

only 6 of 62 known interactions in automatically retrievable databases (Schleker et al., 

2011). Even HHPID, a database specifically for HIV-human protein interactions, has 

missing data, redundant data, and data of varying quality, including interactions that may 

be indirect (MacPherson, Dickerson, Pinney, & Robertson, 2010). Various methods to 

automate literature mining specifically tailored to host-pathogen interactions are 

discussed in (Korkin, Thieu, Joshi, & Warren, 2011). 

 This work has focused on interactions between host and viral proteins. However, 

protein-protein interactions are only one way in which the virus can manipulate the host. 

For example, the La autoantigen in both humans and mosquitoes interacts with the 3’-

UTR of viral RNA, in a protein-RNA interaction that may regulate viral replication (De 

Nova-Ocampo, Villegas-Sepúlveda, & del Angel, 2002; Yocupicio-Monroy et al., 2007). 

In addition, RNA-RNA interactions play an important role in viral infection; host cells 

can defend themselves from viruses using RNAi and several viruses have been shown to 

encode microRNAs that may regulate host transcripts (reviewed in (Scaria, Hariharan, 

Maiti, Pillai, & Brahmachari, 2006)). Maulik et al. recently predicted the possible role of 

microRNAs regulated by human proteins that are known or predicted to be highly 

connected to HIV proteins in the HIV-human protein interactome (Maulik, 

Bhattacharyya, Mukhopadhyay, & Bandyopadhyay, 2011). To understand fully how a 

pathogen hijacks its host, these and other types of interactions will need to be examined. 
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CONTINUING PROGRESS IN THE FIELD 

 Despite the challenges in determining host-pathogen protein interactomes, recent 

progress has been made for both HIV and DENV. A recent study used biclustering to 

create association rules used to predict HIV-human interactions (Mukhopadhyay, Maulik, 

& Bandyopadhyay, 2012). Of the 180 predictions made, 5 overlap with our study, and 4 

of these also overlap with predictions from Tastan et al. (Tastan et al., 2009). In addition, 

Qi et al. used multi-tasked learning, taking advantage of the many HIV-human 

interactions that are suggested but not proven as a “weakly labeled” set to augment a 

gold-standard set of 158 interactions validated by experts (Qi, Tastan, Carbonell, Klein-

Seetharaman, & Weston, 2010). Dyer et al. used Support Vector Machines to classify 

HIV-human protein pairs as interacting or not based on domain composition, protein 

sequence, and properties of the human protein interaction network (Dyer, Murali, & 

Sobral, 2011). Nouretdinov et al. predicted HIV-human protein interactions using the 

conformal method to assign p-values and confidence levels to predicted interactions. 

Confidence levels can be valuable to experimentalists when deciding how much risk of 

the failure is acceptable for their purposes (Nouretdinov, Gammerman, & Qi, 2012). 

These supervised learning approaches by Mukhopadhyay et al, Qi et al, Dyer et al., and 

Nouretdinov et al. require a large set of already known interactions, although the methods 

by Mukhopadhyay et al. and Nouretdinov et al. do not use negative sets. Therefore, they 

cannot be trained accurately for the many viruses about which little is known, and it is 

unlikely that the rules or criteria learned for HIV will apply to unrelated viruses. 

 Most computational methods to determine the host-pathogen interactome still 

focus on HIV due to the relatively vast amount known about this virus, but experimental 
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progress has been made for DENV in recent years. Since our predictions for the DENV 

interactome, three screens have been conducted, vastly increasing the size of the known 

DENV-human interactome. In the first study, 31 human proteins were found to interact 

with the DENV structural proteins, E, C, and prM, in a bacterial 2-hybrid screen, with a 

few proteins interacting with more than one of these viral proteins (Folly, Weffort-

Santos, Fathman, & Soares, 2011). Interestingly, they found enrichment in the stress 

response, wound healing, and the complement and coagulation cascade, correlating very 

well with our predictions. Of the 31 human proteins they found to interact with DENV, 6 

were among our predictions with 1 associated with the same DENV protein. Four of the 

31 proteins were predicted to interact with non-structural proteins, which were not 

examined in the screen, rather than structural proteins (APOA2 with NS4B, ARHGEF11 

with NS4A, CLU with NS1, and F8 with NS3). In addition, we predicted IPO13 interacts 

with C, whereas they found it to interact with E. One of our predictions was shown to be 

correct in the screen: PLG interacting with E. Folly et al. found PLG also interacts with 

prM, while we predict it additionally interacts with NS1, NS3, and NS4B (Folly et al., 

2011).  

 In the second study, a Y2H screen found 139 unique interactions between DENV 

and human proteins, most of which were previously unknown (Khadka et al., 2011). Six 

of the interactions found were correctly predicted by our study. A third Y2H screen 

focused only on the NS3 and NS5 proteins of flaviviruses, including DENV1, finding 186 

interactions with human proteins in their screen or in the literature (Le Breton et al., 

2011). Three of these were predicted by our study: AMBP, CASP8, and ENO1 
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interacting with NS3. Despite this recent progress, it is likely that many more DENV-

human interactions remain undiscovered. 

 In addition, several recent smaller scale experiments on DENV-human protein 

interactions have come to our attention. Johansson et al. found that NS5 localizes to the 

nucleus in DENV infected cells by interacting with the nuclear import receptor importin-

, and NS3 competes with importin- for the same binding site on NS5 (Johansson, 

Brooks, Jans, & Vasudevan, 2001). NS5 shuttles out of the nucleus by interacting with 

the nuclear export factor CRM1 (Rawlinson, Pryor, Wright, & Jans, 2009). We predict 

importin- (KPNB1) interacts with NS2A, NS4B, C, and E and that CRM1 (XPO1) 

interacts with NS1, NS2A, NS4B, E, C, and NS3, but not NS5. In addition, Sec3 

(EXOC1) was shown to interact with DENV C protein, but was not among our 

predictions (Bhuvanakantham, Li, Tan, & Ng, 2010). Another study found that vacuolar 

ATPase interacts with DENV prM and this interaction mediates viral entry and egress 

(Duan, Lu, Li, & Liu, 2008). Heaton et al. found that XBP-1 and ATF6, two players in 

ER stress, are necessary for completion of the DENV lifecycle and uncovered an 

interaction between NS3 and fatty acid synthase (FASN) (Heaton et al., 2010). None of 

our predictions involve Sec3, vacuolar ATPase, or FASN. There has been much progress 

in recent years on the DENV-human interactome, but very little is yet known about the 

interactions between DENV and mosquitoes.  

 A larger base of knowledge about host-virus interactomes will aid further 

discovery by computational methods. Large-scale screens have been conducted for 

several other virus-host interactomes in recent years, including Chikungunya virus, 
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influenza polymerase subunits, and variola virus (Bouraï et al., 2012; Mohamed et al., 

2009; Tafforeau et al., 2011). 

  

FUTURE DIRECTIONS 

 

 Ongoing work concerns mechanisms of reactivation of latent KSHV.  Two 

chemicals are known to induce KSHV replication, sodium butyrate (n-butyrate) and 12-

O-tetradecanoylphorbol-13-acetate (TPA). A third viral replication inducer is spent media 

from a common oral gram-negative bacterium, Porphyromonas gingivalis, which 

contains short-chain fatty acids and lipopolysaccharide. Spent media from P. gingivalis 

has been shown to induce KSHV reactivation by a mechanism that differs, at least 

partially, from that of TPA- or n-butyrate- induced reactivation in the latently infected 

BCBL-1 cell line (Morris, Arnold, & Webster-Cyriaque, 2007; Y. Yu et al., 1999).  A 

PKC inhibitor prevented KSVH reactivation in TPA treated cells, but not in cells treated 

with n-butyrate or spent media from P. gingivalis. In addition, treatment of n-butyrate 

and spent media from P. gingivalis caused hyperacetylation of histones 3 and 4, whereas 

TPA did not (Morris et al., 2007).  Viral reactivation by n-butyrate led to higher levels of 

viral gene expression than TPA treatment, and unlike TPA, n-butyrate induces apoptosis 

in BCBL-1 cells (Y. Yu et al., 1999). Gene expression changes that may underlay these 

mechanisms and observed differences are being explored.  

To investigate gene expression changes during KSHV reactivation, differential 

gene expression was measured by former members of the Webster-Cyriaque lab in 

untreated BCBL-1 cells and BCBL-1 cells treated with TPA, n-butyrate, or spent media 

from P. gingivalis using custom two-color microarrays. Three replicates were performed 
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for each of the three conditions. Using the Bioconductor package limma, I background 

subtracted the red and green channels, and the data were normalized within each array 

using the print tip loess method and between arrays by quantile normalization of the 

green channel, which represented the untreated reference on all arrays (Ritchie et al., 

2007; G. Smyth, 2005; G. K. Smyth & Speed, 2003). M values for multiple spots 

representing the same gene were averaged. 

Preliminary pathway analysis was performed using Gene Set Enrichment 

Analysis (GSEA). Gene expression from cells treated with P. gingivalis spent media was 

compared to gene expression from untreated, n-butyrate, or TPA treated cells and genes 

were ranked by correlation with treatment condition. One interesting gene set, up 

regulated in BCBL-1 cells treated with P. gingivalis spent media but not with either TPA 

or n-butyrate, consists of genes containing the motif KTGGYRSGAA in their promoter 

region.  However, the function of this motif is currently unknown.   

Future work will continue to take a systems approach to the interactions between 

viruses and their hosts. Direct protein-protein interactions are only one means by which a 

virus can manipulate its host, and other microbes present in the human body can also 

influence host-virus interactions, as illustrated by the reactivation of KSHV by P. 

gingivalis end products.  High throughput methods targeting different physical and 

functional interactions, such as Y2H or TAP-MS, microarray or RNA-seq, and ChIP-seq 

or FAIRE-seq, are needed to characterize the global cellular response to clinically 

relevant viruses.  My interests lay in using systems approaches to determine the 

mechanisms by which microbes interact with and cause disease in humans. 

  



 90 

CONCLUDING REMARKS 

 Characterization of host-pathogen interactions is far from complete. This work 

has led to predictions of the protein interactions underlying the mechanisms that allow 

two diverse viruses to subvert host cell processes. The higher confidence predictions 

supported by several lines of evidence provide hypotheses that can be tested 

experimentally in the future. This method can be applied to any pathogen for which there 

is adequate structural information. Understanding the mechanisms by which viruses 

manipulate host cell proteins to complete the viral lifecycle will lead to novel drug targets 

and pharmacological approaches. In addition, knowledge of viral interactions with non-

human hosts will aid vector control strategies. Novel treatment and control measures are 

needed to reduce the global health burden of infectious disease. 
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APPENDIX 1: Twenty-five selected structural similarities between HIV-1 and 

human proteins from the Dali Database 

 

HIV 
PDB 
code 

HIV 
Molecule 
Name 

HIV 
GeneID 

HIV 
Uniprot 

Human 
PDB 
code 

Human 
Gene 
Symbol 

Human 
GeneID 

Human 
Uniprot 

Structural 
Similarity 
Score 

         

1ex4A integrase 155348 P04585 2ysqA ARHGEF9 23229 O43307 3.6 

1ex4A integrase 155348 P04585 3dkmA NA 25831 Q9ULT8 2.9 

1ex4A integrase 155348 P04585 3dtpB MYH7 4625 P12883 3.9 

1ex4A integrase 155348 P04585 1g83A FYN 2534 P06241 3.5 

1ex4A integrase 155348 P04585 1zbuB THEX1 90459 Q8IV48 2 

1ex4A integrase 155348 P04585 2creA C20ORF32 57091 Q9NQ75 4.2 

1ex4A integrase 155348 P04585 2diqA TDRKH 11022 Q9Y2W6 2.5 

1ex4A integrase 155348 P04585 2dlmA SORBS3 10174 O60504 3.2 

1ex4A integrase 155348 P04585 2egeA RIMBP3 --- Q9UFD9 3.2 

1ex4A integrase 155348 P04585 2ew3A SH3GL3 6457 Q99963 4.1 

1ex4A integrase 155348 P04585 2qkkA RNASEH1 246243 O60930 4 

1ex4A integrase 155348 P04585 3eo3A GNE 10020 Q9Y223 3.5 

1ex4A integrase 155348 P04585 1ark NEB --- P20929 3.7 

1ex4A integrase 155348 P04585 1aww BTK 695 Q06187 4 

1ex4A integrase 155348 P04585 1hsq PLCG1 5335 P19174 3.4 

1ex4A integrase 155348 P04585 1j3tA ITSN2 50618 Q9NZM3 4.4 

1ex4A integrase 155348 P04585 1mhnA SMN2 6607 Q16637 4.2 

1ex4A integrase 155348 P04585 1udlA ITSN2 50618 Q9NZM3 3.7 

1ex4A integrase 155348 P04585 1ue9A ITSN2 50618 Q9NZM3 3.9 

1ex4A integrase 155348 P04585 1uffA ITSN2 50618 Q9NZM3 2.9 

1ex4A integrase 155348 P04585 1ugvA ARHGAP26 23092 Q9UNA1 4.2 

1ex4A integrase 155348 P04585 1wx6A NCK2 8440 O43639 4.1 

1ex4A integrase 155348 P04585 2bz8B SH3KBP1 30011 Q96B97 4.4 

1ex4A integrase 155348 P04585 2cowA KIF13B 23303 Q9NQT8 2.8 

1ex4A integrase 155348 P04585 2dl3A SORBS1 10580 Q9BX66 4.8 
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APPENDIX 2: Twenty-five selected interaction predictions between HIV-1 and 

human 

 

HIV 
PDB 
code 

HIV protein 
name 

HIV-
similar 
Human 
PDB code 

HIV-similar 
Human 
Gene 
Symbol 

Human 
interactor 
Gene 
Symbol 

Source 
Datasets 

True 
Positive 

1hniA reverse 
transcriptase 

2rd7A C8A CD59 Cantin et al. no 

1ikyB reverse 
transcriptase 

1j4wA FUBP1 VIM Chertova et al. no 

1t03A reverse 
transcriptase 

1khmA HNRPK KHDRBS1 Konig et al. no 

1dmpA protease 1lyaA CTSD FN1 Chertova et al. yes 

2vg6A reverse 
transcriptase 

1jfiC TBP GTF2A1 Zhou et al. no 

1ce0B gp41 1junA JUN BRCA1 Zhou et al. no 

1f23C gp41 1w0bA ERAF HBA2 Chertova et al. no 

1proA protease 2yujA UFD1L VCP Chertova et al. no 

1ihwA integrase 1zsgA ARHGEF7 CDC42 Chertova et al. no 

1rtjA reverse 
transcriptase 

1qu6A EIF2AK2 HSP90AA1 Chertova et al. no 

1ihvA integrase 2jxbA NCK2 EGFR Brass et al. no 

1rpiA protease 2qp8B BACE1 PDIA3 Zhou et al., 
Chertova et al. 

no 

1sv5A reverse 
transcriptase 

1tceA SHC1 PTPN6 Chertova et al. no 

3aidB protease 1lyaA CTSD FN1 Chertova et al. no 

1ikwA reverse 
transcriptase 

1tceA SHC1 MAPK1 Cantin et al. no 

1hihB protease 1lyaB CTSD CD4 Brass et al., 
Zhou et al. 

yes 

1c1cA reverse 
transcriptase 

1qu6A EIF2AK2 RAC1 Chertova et al. no 

1bdqA protease 1lyaA CTSD FN1 Chertova et al. no 

1ex4A integrase 1ycsB TP53BP2 RELA Brass et al., 
Konig et al., 
Zhou et al. 

no 

1ce0A gp41 2rmzA ITGB3 ITGA5 Chertova et al. no 

1rtiA reverse 
transcriptase 

1tceA SHC1 MAPK1 Cantin et al. yes 

2cmrA gp41 1qjbA YWHAZ BCR Zhou et al. no 

3cyoA gp41 3brtD IKBKG HSP90AB1 Chertova et al. no 

4hvpA protease 3braA BACE1 PDIA3 Zhou et al., 
Chertova et al. 

no 

2fnsB protease 2ikoA REN ATP6AP2 Chertova et al. no 
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APPENDIX 3: Full prediction network 

 

 

  

 
 

HIV-1 proteins that resemble human proteins are predicted to interact with the known 

interactors of the mimicked protein. The human proteins included in the prediction set 

have a supported role in HIV-1 infection or replication, either because they are 

incorporated into the HIV-1 virion or their reduced expression is known to prevent 

HIV-1 infection (node line color corresponds to source). Red lines represent predicted 

interactions that are already known to occur. 
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APPENDIX 4: Twenty-five selected interactions after the CC filter 

 

HIV 
PDB 
code 

HIV protein 
name 

HIV-similar 
Human 
PDB code 

HIV-similar 
Human 
Gene 
Symbol 

Human 
interactor 
Gene 
Symbol 

Source 
Datasets 

True 
Positive 

1ihwA integrase 1zsgA ARHGEF7 CDC42 Chertova et al. no 

1ihvA integrase 2jxbA NCK2 EGFR Brass et al. no 

1sv5A reverse 
transcriptase 

1tceA SHC1 PTPN6 Chertova et al. no 

1hihB protease 1lyaB CTSD CD4 Brass et al., 
Zhou et al. 

yes 

1c1cA reverse 
transcriptase 

1qu6A EIF2AK2 RAC1 Chertova et al. no 

1u57A p2 1gk7A VIM DSP Chertova et al. no 

2cmrA gp41 2c1jA YWHAZ EGFR Brass et al. no 

1suqA reverse 
transcriptase 

1ft8E NXF1 NUP98 Konig et al., 
Yeung et al. 

yes 

1htfB protease 1lyaB CTSD CD4 Brass et al., 
Zhou et al. 

yes 

1f23A gp41 1usdA VASP ACTG1 Chertova et al. no 

1a8o capsid 1r8qF PSCD2 ITGB2 Chertova et al. no 

1f23C gp41 1urfA PKN1 CD44 Chertova et al. no 

3cp1A gp41 3e1rA CEP55 TSG101 Chertova et al., 
Cantin et al. 

no 

1qbtA protease 1lyaA CTSD CD4 Brass et al., 
Zhou et al. 

yes 

1ihwA integrase 1zsgA ARHGEF7 RAC1 Chertova et al. no 

1rt1A reverse 
transcriptase 

1mb8A PLEC1 SPTAN1 Brass et al. yes 

1dlbA gp41 1hynQ SLC4A1 SLC4A1 Yeung et al. no 

1qmc
A 

integrase 2jw4A NCK1 RAC1 Chertova et al. no 

1a8o capsid 1grnB ARHGAP1 ARHGAP1 Chertova et al. no 

2vg5A reverse 
transcriptase 

1qu6A EIF2AK2 RAC1 Chertova et al. no 

2b6aA reverse 
transcriptase 

1pbuA EEF1G ARF1 Brass et al., 
Chertova et al. 

no 

1a94B protease 1lyaB CTSD CD4 Brass et al., 
Zhou et al. 

yes 

1u57A p2 2q13A APPL1 AKT1 Brass et al., 
Zhou et al. 

no 

1f23A gp41 3brtD IKBKG TNFAIP3 Chertova et al. no 

2i5jA reverse 
transcriptase 

1ft8E NXF1 NUP214 Konig et al. yes 
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APPENDIX 5: HIV-1 protein identifiers 

HIV protein 
name 

HIV PDB code HIV Uniprot 

reverse 
transcriptase 

1uwbB, 1ep4B, 1s6pB, 1s6pA, 1uwbA, 3hvtA, 1hniA, 1hvuJ, 
1rt2A, 1hqeA, 1hysB, 1t03A, 1t03B, 1bqnB, 1lw2A, 1lw2B, 
1c1bB, 1hnvA, 1har, 1c1bA, 1s1vB, 1s1vA, 1tkxA, 1s9eA, 1hnvB, 
1tkxB, 1rt2B, 1n6qB, 2hmiA, 1rthA, 1tl3A, 2be2B, 2vg7B, 2be2A, 
1dttA, 2i5jA, 1hvuD, 1hvuG, 1hniB, 2vg5A, 1ikyB, 1ikyA, 2vg5B, 
1revA, 2vg6B, 1revB, 1hpzB, 1hvuK, 1hpzA, 1c0uB, 1c0uA, 1rtiA, 
1rtiB, 1bqmB, 1vruA, 1lw0A, 1lw0B, 1s1tA, 1s1tB, 1dloA, 1dloB, 
1s6qA, 1s6qB, 1sv5A, 1klmB, 1klmA, 1fk9B, 1fk9A, 1lweA, 
1lweB, 1c0tA, 1c0tB, 1fkpA, 1rthB, 1ep4A, 1fkpB, 1rtjA, 1rtjB, 
1r0aA, 1tktA, 1hquB, 1n6qA, 2hmiB, 1rt1A, 2b6aA, 1rt1B, 
1vruB, 2vg7A, 1hquA, 1ikwA, 1ikwB, 2b5jA, 2banA, 1rtdB, 
1bqnA, 1fkoA, 1fkoB, 1rtdC, 1ikxA, 1ikxB, 1dttB, 1lwcB, 1lwcA, 
2zd1A, 1c1cA, 1c1cB, 1s1wB, 1vrtA, 1vrtB, 2hnzA, 1hysA, 
1hmvB, 1hmvA, 1eetB, 1bqmA, 1rt3A, 1eetA, 1t05B, 1t05A, 
1lwfA, 1lwfB, 2rkiA, 2rkiB, 2ze2B, 2ze2A, 1n5yA, 1n5yB, 1s9gA, 
1dtqB, 1dtqA, 1s9gB, 1s9eB, 3bgrA, 3bgrB, 1j5oB, 1hvuA, 1j5oA, 
1rtdD, 1tkzA, 1s1xA, 1rtdA, 1ikvB, 2vg6A, 1suqA, 1ikvA, 1tl1A 

P03366, 
Q8UTX6, 
P04585, 
P03367 

p2 1u57A Q70622 

gp41 3cp1A, 1ce0A, 1ce0B, 1qr9A, 1favA, 1k33A, 2cmrA, 1dlbA, 
1df5A, 3cyoA, 1szt, 1i5xA, 1ce0C, 1qr8A, 1f23A, 1f23C, 1f23B, 
1f23E, 1f23D, 1f23F, 1i5yA, 1k34A, 1df4A, 2ot5A 

P03377, 
Q7SIH0, 
Q70626, 
Q89797, 
Q53I19, 
P04578, 
P04582, 
Q76270 

protease 1aidB, 1aidA, 2fxdA, 2bpvB, 2bpvA, 2f81A, 1a9mA, 1hihB, 
2qi3A, 2qi3B, 2pk5B, 2pk5A, 1hshC, 7hvpA, 1kjfA, 1hshA, 1hvjA, 
1hvjB, 1upj, 2avvB, 2avvD, 2b7zA, 2r43B, 2pwcA, 2pwcB, 
1dw6D, 1c6zB, 1bvgA, 1bvgB, 1ebwA, 1m0bA, 1a8gB, 1a8gA, 
1b6kA, 1b6kB, 1mesB, 1hefE, 1hpsA, 1hpsB, 1hihA, 1c6xA, 
2qi4A, 2qi4B, 1metB, 1a9mB, 1ytgB, 1ytgA, 2qnnA, 2qnnB, 
1hosA, 1mt9A, 1mt9B, 1ztzB, 1d4yB, 1d4yA, 1hvkB, 1hpxA, 
1hpxB, 1htgA, 1qbrA, 1htgB, 2i4uA, 1t3rA, 1t3rB, 1vijA, 1vijB, 
2bpyB, 2bpyA, 1gnnB, 1fb7A, 1odwA, 1odwB, 5hvpB, 5hvpA, 
1ythB, 1ythA, 3aidA, 3aidB, 2fgvA, 1k1uA, 1k6vA, 1k6vB, 1t7iA, 
1t7iB, 1n49D, 1n49A, 1n49C, 1n49B, 1fgcD, 3bgcB, 1fgcC, 2qi0A, 
1a94D, 1a94E, 1a94B, 1a94A, 1izhA, 1odxA, 1hvc, 1hvsB, 1hvsA, 
1odxB, 1kj7B, 1kj7A, 1mtrB, 2fgvB, 1t7jA, 2qhzB, 1t7jB, 1d4sA, 
1d4sB, 1b6jB, 1merA, 1merB, 1b6jA, 1hegE, 4phvA, 2qhzA, 
2uy0A, 2qi5B, 1c6yA, 1kjfB, 2uy0B, 2fddA, 7upjB, 7upjA, 
1meuA, 1meuB, 1ffiD, 1kjhB, 1kjhA, 1a30A, 1a30B, 2bpwA, 
2bpwB, 2qnqA, 2qnqB, 1difB, 1difA, 1mtrA, 2fntB, 2qi7B, 

Q9QM22, 
P35963, 
Q9Q288, 
Q903J0, 
O92103, 
Q6Q004, 
Q5RZ09, 
Q9WFL7, 
Q7SRY5, 
Q9Q2G8, 
Q90EB9, 
P04587, 
P04585, 
P04584, 
O38716, 
P12497, 
Q75002, 
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2bqvA, 2p3aA, 1fffD, 1vikB, 1vikA, 2bpzB, 1xl2A, 2pqzA, 2pqzB, 
2qmpA, 2qmpB, 2fguA, 1ohrB, 1ohrA, 2fguB, 2qi0B, 2cemA, 
1hpvB, 1hpvA, 1fg6C, 1bdlA, 1bwaB, 2j9kB, 2qi1B, 2qi1A, 
1qbtA, 1qbtB, 1iziA, 1bdrA, 1bdrB, 1wbkB, 1wbkA, 3hvp, 4hvpB, 
4hvpA, 1qbsA, 1qbsB, 1htfB, 1htfA, 1hshD, 1bv7A, 1hshB, 
7hvpB, 1kj4C, 1kj4B, 1kj4A, 1kj4D, 1tcxB, 1tcxA, 1gnmA, 1gnmB, 
2a4fB, 1b6mB, 1b6mA, 2fnsB, 2fnsA, 2q63B, 2q63A, 1npvA, 
1hviA, 1hviB, 1k1tA, 1hivB, 1hivA, 1axaA, 1axaB, 1c70B, 2avsA, 
9hvpB, 9hvpA, 2qnpB, 2qnpA, 1k6pB, 1k6pA, 2i4wA, 2i4wB, 
1mesA, 1hvrA, 1hvrB, 1bdqA, 1ec3A, 1bdqB, 1proB, 1proA, 
1ec3B, 1c6xB, 2qhcA, 1bveB, 1bveA, 2qhcB, 1a8kD, 1a8kE, 
1a8kB, 1a8kA, 1ebyB, 1hvlA, 1lv1A, 1t7kA, 2cenB, 1ec1B, 
1ec1A, 1ajxA, 2qi6B, 2qi6A, 1ajxB, 1kjgB, 1kjgA, 1rq9A, 2fdeB, 
1hosB, 1metA, 1ztzA, 1ebkF, 1ebkC, 1g2kB, 1g2kA, 1hteB, 
1hxwA, 2j9kA, 1hxwB, 2aidA, 2aidB, 1bwaA, 1b6pA, 1b6pB, 
1gnnA, 1sduA, 1hvkA, 1nh0B, 1nh0A, 1muiA, 1muiB, 1b6lA, 
1b6lB, 1fqxB, 1fqxA, 1g35B, 2upjB, 2upjA, 1hvhB, 1mt8B, 
1mt8A, 1hvhA, 2r43A, 2cejB, 1k6tB, 1k6tA, 1qbuB, 1bwbB, 
1bwbA, 1qbuA, 2pk6B, 2pk6A, 1dmpA, 1dmpB, 1mrwA, 1mrwB, 
1f7aB, 1f7aA, 2p3cA, 1msmB, 1msmA, 1hsgA, 1lzqA, 1k6cB, 
1k6cA, 2bpxA, 2bpxB, 1rpiA, 1aaqA, 1aaqB, 1k2bA, 1ajvB, 1ajvA, 
2p3dA, 1g6lA, 1hvlB, 1fejC, 1mt7B, 1mt7A, 1ec0A, 3bgbA, 
3bgbB, 1hbvA, 1hbvB, 2qi7A, 2fntA, 8hvpB, 8hvpA, 2i4dA, 
2i4dB, 2r3tB, 2r3tA, 2bbbA, 1mtbA, 1mtbB, 4phvB, 2pwrB, 
1yt9A, 2pwrA, 1bv9B, 1bv9A, 2qhyB, 2qhyA, 2uxzB, 2uxzA, 
1sguA, 1gnoB, 1gnoA, 1hpoA, 1hpoB, 1hsgB, 1hwrA, 1hwrB, 
1iiqA, 2pynA, 1ebzA, 2qi5A, 2r5pA 

O92139, 
Q8Q3J5, 
P12499, 
Q7SPG9, 
Q72874, 
P03369, 
P03366, 
P03367, 
Q5RTL1, 
O38907, 
O09893, 
Q6BB74, 
Q90HG9, 
Q8Q3H0 

vpr 1vpc Q73369 

gp120 1g9nG, 2nxzA, 1rzkG P35961, 
Q8QDX5 

capsid, p2 1baj P12497 

capsid, matrix 1l6nA Q72497 

capsid 1aum, 1a8o, 2jygA, 2jylA, 3dphB, 1a43, 3dphA, 2k1cA, 2buoA Q72497, 
P12497, 
P35963 

integrase 1bi4C, 1bi4A, 1wjbB, 1bisB, 1bisA, 1wjbA, 1biuA, 1biuB, 1biuC, 
1wjfA, 1wjfB, 1wjdB, 1wjdA, 1ihvA, 1ihvB, 1bl3C, 1bl3A, 2b4jB, 
2b4jA, 1bizB, 1qmcB, 1qmcA, 1b9dA, 1wjcB, 1wjcA, 1wjaA, 
1wjaB, 1wjeA, 1wjeB, 1qs4A, 1qs4B, 1qs4C, 1ihwB, 1ex4B, 
1ex4A, 1ihwA, 1k6yA, 1k6yB, 1k6yC, 1k6yD, 1exqA, 1exqB 

P35963, 
Q72498, 
P03366, 
Q76353, 
P12497, 
P04587, 
P04586, 
P04585 

matrix 2jmgA, 2h3vA, 2h3zA, 1hiwQ, 1hiwR, 1hiwS, 2golA, 1uphA, 
2h3iA, 2h3fA, 2hmx, 1hiwA, 1hiwB, 1hiwC, 2h3qA, 2nv3A 

Q72497, 
P12493, 
P12497 
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APPENDIX 6: Twenty-five selected interaction predictions between DENV2 and 

human 

 

Dengue 
Structure 

Dengue 
protein 

Similar 
Human PDB 

Similar Human 
Gene Symbol 

Interactor 
Gene Symbol 

Host 
Factor 

True 
Positive 

1df9B NS3 1danH F7 F10 no no 

1df9B NS3 1md7A C1R C1S no no 

1df9B NS3 1md7A C1R C1R no no 

1df9B NS3 1md7A C1R C1QB no no 

1df9B NS3 1md7A C1R C1QA no no 

1df9B NS3 1md7A C1R SERPING1 no no 

1df9B NS3 1md7A C1R CSNK2A1 yes no 

1df9B NS3 1c5mD F10 MGST3 no no 

1df9B NS3 1c5mD F10 PLG no no 

1df9B NS3 1c5mD F10 F3 no no 

1df9B NS3 1c5mD F10 F7 no no 

1df9B NS3 1c5mD F10 PROS1 no no 

1df9B NS3 1c5mD F10 APOH no no 

1df9B NS3 1c5mD F10 PRKAB1 no no 

1df9B NS3 1c5mD F10 GAD2 no no 

1df9B NS3 1c5mD F10 SERPINB6 no no 

1df9B NS3 1c5mD F10 PLAT no no 

1df9B NS3 1c5mD F10 HIST1H1C no no 

1df9B NS3 1c5mD F10 F8 no no 

1df9B NS3 1c5mD F10 TFPI no no 

1df9B NS3 1c5mD F10 GGCX no no 

1df9B NS3 1c5mD F10 F5 no no 

1df9B NS3 1c5mD F10 EPR1 no no 

1df9B NS3 1c5mD F10 SERPINA10 no no 

1df9B NS3 1c5mD F10 F10 no no 
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APPENDIX 7: Twenty-five selected interaction predictions between DENV2 and A. 

aegypti 

 

Dengue 
Structure 

Dengue 
protein 

Similar 
fly PDB 

Interactor 
Gene Symbol 

Aedes Ortholog 
VectorBase 

Host 
Factor 

Predicted by 
Guo et al. 

159024814 NS2A 1oxjA YPS AAEL001375-PA no no 

159024814 NS2A 1oxjA STC AAEL001636-PA no no 

159024814 NS2A 1oxjA CG2807 AAEL003605-PA no no 

159024814 NS2A 1oxjA HEPH AAEL013723-PA no no 

159024814 NS2A 1oxjA SC35 AAEL010340-PA no no 

159024814 NS2A 1oxjA CG10375 AAEL005070-PA no no 

159024814 NS2A 1oxjA CG4896 AAEL004989-PA yes no 

159024814 NS2A 1oxjA U2AF38 AAEL006713-PA no no 

159024814 NS2A 1hx8A EYA AAEL005166-PA no no 

159024814 NS2A 1hx8A CHC AAEL013614-PA no no 

159024814 NS2A 1hx8A CG3259 AAEL002173-PA no no 

159024814 NS2A 1hx8A CG5608 AAEL011389-PA no no 

159024814 NS2A 1hx8A SEC5 AAEL009926-PA no no 

159024814 NS2A 1hx8A SL AAEL004431-PA no no 

159024814 NS2A 1hx8A BX42 AAEL014528-PA no no 

159024814 NS2A 1hx8A -ADAPTIN AAEL004469-PA yes no 

159024814 NS2A 1hx8A TOMOSYN AAEL006948-PA no no 

159024814 NS2A 1hx8A CG33298 AAEL007689-PB no no 

159024819 NS4B 2vxgA DCP2 AAEL000783-PA 
AAEL015607-PA 

no no 

159024819 NS4B 2vxgA DCP1 AAEL001187-PA no no 

159024819 NS4B 2vxgA CG16728 AAEL009958-PA no no 

159024819 NS4B 2vxgA EDC3 AAEL008375-PA no no 

159024819 NS4B 2vxgA SUCB AAEL005552-PA no no 

159024819 NS4B 2vxgA NMO AAEL004797-PA no no 

159024819 NS4B 2qvaC IK2 AAEL005359-PA no no 
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APPENDIX 8: Twenty-five selected interaction predictions between DENV2 and 

human after the CC Filter 

Dengue 
Structure 

Dengue 
Protein 

Similar 
Human PDB 

Similar Human 
Gene Symbol 

Interactor 
Gene Symbol 

Host 
Factor 

True 
Positive 

159024813 NS1 1s1dB CANT1 CANT1 no no 

159024813 NS1 2h2nB CANT1 CANT1 no no 

159024813 NS1 1s1dA CANT1 CANT1 no no 

159024813 NS1 1s18B CANT1 CANT1 no no 

159024813 NS1 1v04A PON1 CLU no yes 

159024813 NS1 1v04A PON1 APOA1 no no 

159024813 NS1 1v04A PON1 ALB no no 

159024813 NS1 2h2nA CANT1 CANT1 no no 

159024813 NS1 2h2uA CANT1 CANT1 no no 

159024813 NS1 1s18A CANT1 CANT1 no no 

159024813 NS1 2h2uB CANT1 CANT1 no no 

159024813 NS1 1ijqB LDLR LDLR no no 

159024813 NS1 1ijqB LDLR APOB no no 

159024813 NS1 1ijqB LDLR LRPAP1 no no 

159024813 NS1 1ijqB LDLR PF4 no no 

159024813 NS1 1ijqB LDLR AP1M2 no no 

159024813 NS1 1ijqB LDLR SNX17 no no 

159024813 NS1 1ijqB LDLR HSPA5 no no 

159024813 NS1 1ijqB LDLR LDLRAP1 no no 

159024813 NS1 2vdoA ITGA2B CIB1 no no 

159024813 NS1 2vdoA ITGA2B CALR no no 

159024813 NS1 2vdoA ITGA2B FGA no no 

159024813 NS1 1u6dX KEAP1 MYO7A no no 

159024813 NS1 2qnsA GNB1 KCNJ3 no no 

159024813 NS1 2qnsA GNB1 GNG3 no no 

 



 100 

APPENDIX 9: Twenty-five selected interaction predictions between DENV2 and A. 

aegypti after the CC Filter 

 

Dengue 
Structure 

Dengue 
Protein 

Similar 
fly PDB 

Similar 
fly 
Gene 
Symbol 

Interactor 
Gene 
Symbol 

Aedes Ortholog 
VectorBase 

Host 
Factor 

Predicted 
by Guo 

159024814 NS2A 1dvpA HRS  EGFR AAEL004319-PA no no 

159024814 NS2A 1dvpA HRS  CHC AAEL013614-PA no no 

159024814 NS2A 1dvpA HRS  GGA AAEL001525-PA no no 

159024814 NS2A 1dvpA HRS  MER AAEL006018-PB no no 

159024814 NS2A 1hx8A LAP CHC AAEL013614-PA no no 

159024814 NS2A 1hx8A LAP -
ADAPTIN 

AAEL004469-PA yes no 

159024814 NS2A 1hx8A LAP TOMOSYN AAEL006948-PA no no 

159024814 NS2A 1hx8A LAP CG33298 AAEL007689-PB no no 

159024819 NS4B 1dvpA HRS  EGFR AAEL004319-PA no no 

159024819 NS4B 1dvpA HRS  CHC AAEL013614-PA no no 

159024819 NS4B 1dvpA HRS  GGA AAEL001525-PA no no 

159024819 NS4B 1dvpA HRS  MER AAEL006018-PB no no 

1oanA E 1cfbA NRG ED AAEL004133-PA no no 

1oanA E 1cfbA NRG MOE AAEL007915-PA no no 

1oanA E 1cfbA NRG IF AAEL013600-PA no no 

1oanB E 1cfbA NRG ED AAEL004133-PA no no 

1oanB E 1cfbA NRG MOE AAEL007915-PA no no 

1oanB E 1cfbA NRG IF AAEL013600-PA no no 

1okeA E 1cfbA NRG ED AAEL004133-PA no no 

1okeA E 1cfbA NRG MOE AAEL007915-PA no no 

1okeA E 1cfbA NRG IF AAEL013600-PA no no 

1okeB E 1cfbA NRG ED AAEL004133-PA no no 

1okeB E 1cfbA NRG MOE AAEL007915-PA no no 

1okeB E 1cfbA NRG IF AAEL013600-PA no no 

1r6rA C 1fjlA PRD MER AAEL006018-PB no no 
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APPENDIX 10: Twenty-five selected interaction predictions between DENV2 and A. 

aegypti made using yeast orthologs 

 

Dengue 
Structure 

Dengue 
Protein 

Similar 
PDB 

Similar 
host 

Aedes 
Ortholog 
Gene 

Interactor 
Gene 

Host 
Factor 

Predicted 
by Guo 

159024813 NS1 2hesX yeast  AAEL002912 AAEL000270 no no 

159024813 NS1 2hesX yeast  AAEL002912 AAEL006731 no no 

159024813 NS1 2hesX yeast  AAEL002912 AAEL000440 no no 

159024813 NS1 2pm7D yeast  AAEL012240 AAEL001516 no no 

159024813 NS1 2pm7D yeast  AAEL012240 AAEL008391 no no 

159024813 NS1 2pm7D yeast  AAEL012240 AAEL006311 no no 

159024813 NS1 2pm7D yeast  AAEL012240 AAEL014534 no no 

159024813 NS1 2pm7D yeast  AAEL012240 AAEL004394 no no 

159024813 NS1 2pm7D yeast  AAEL012240 AAEL007484 no no 

159024813 NS1 2pm7D yeast  AAEL012240 AAEL003908 no no 

159024813 NS1 2pm7D yeast  AAEL012240 AAEL013464 no no 

159024813 NS1 2pm7D yeast  AAEL012240 AAEL002102 no no 

159024813 NS1 2pm7D yeast  AAEL012240 AAEL007586 no no 

159024813 NS1 2pm6B yeast  AAEL012240 AAEL001516 no no 

159024813 NS1 2pm6B yeast  AAEL012240 AAEL008391 no no 

159024813 NS1 2pm6B yeast  AAEL012240 AAEL006311 no no 

159024813 NS1 2pm6B yeast  AAEL012240 AAEL014534 no no 

159024813 NS1 2pm6B yeast  AAEL012240 AAEL004394 no no 

159024813 NS1 2pm6B yeast  AAEL012240 AAEL007484 no no 

159024813 NS1 2pm6B yeast  AAEL012240 AAEL003908 no no 

159024813 NS1 2pm6B yeast  AAEL012240 AAEL013464 no no 

159024813 NS1 2pm6B yeast  AAEL012240 AAEL002102 no no 

159024813 NS1 2pm6B yeast  AAEL012240 AAEL007586 no no 

159024813 NS1 2pm6D yeast  AAEL012240 AAEL001516 no no 

159024813 NS1 2pm6D yeast  AAEL012240 AAEL008391 no no 
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APPENDIX 11: Predictions involving orthologous human and A. aegypti target 

proteins 

 

Dengue 
Structure 

Dengue 
Protein 

Aedes Ortholog 
VectorBase 

Fly 
Host 
Factor 

Predicted 
by Guo 

Human 
Gene 
Symbol 

Human 
Host 
Factor 

Human 
True 
Positive 

159024814 NS2A AAEL012515-PA no no TSG101 no no 

159024814 NS2A AAEL013614-PA no no CLTC no no 

159024814 NS2A AAEL001525-PA no no GGA3 no no 

159024814 NS2A AAEL001525-PA no no GGA2 no no 

159024814 NS2A AAEL003877-PA no no UBC no no 

159024814 NS2A AAEL006018-PB no no NF2 no no 

159024814 NS2A AAEL005356-PA no no PAPOLA no no 

159024814 NS2A AAEL005515-PF no no HNRPAB no no 

159024814 NS2A AAEL005515-PF no no HNRPD no no 

159024814 NS2A AAEL012656-PD no no SNRPA1 no no 

159024814 NS2A AAEL007554-PA yes no WDR77 no no 

159024814 NS2A AAEL003670-PA no no HNRPM no no 

159024814 NS2A AAEL010453-PA no no MAGOH no no 

159024814 NS2A AAEL011544-PA no no MAGOH no no 

159024814 NS2A AAEL002709-PA no no SF3B3 no no 

159024814 NS2A AAEL005947-PB no no HNRPF no no 

159024814 NS2A AAEL008700-PA no no SMN1 no no 

159024814 NS2A AAEL003735-PA no no UPF3B no no 

159024814 NS2A AAEL007578-PA no no PRMT5 no no 

159024814 NS2A AAEL015143-PB no no PABPN1 no no 

159024814 NS2A AAEL006135-PA no no NCBP2 no no 

159024814 NS2A AAEL010467-PA no no HNRPA1 no no 

159024814 NS2A AAEL011187-PA no no ASCC3L
1 

no no 

159024819 NS4B AAEL000783-PA no no DCP2 no no 

159024819 NS4B AAEL015607-PA no no DCP2 no no 

159024819 NS4B AAEL001187-PA no no DCP1B no no 

159024819 NS4B AAEL009958-PA no no GIT2 no no 

159024819 NS4B AAEL008375-PA no no EDC3 no no 

159024819 NS4B AAEL005655-PA no no SNX1 no no 

159024819 NS4B AAEL003957-PA no no CFL1 no no 

159024819 NS4B AAEL010419-PA no no TSNAX no no 

159024819 NS4B AAEL012515-PA no no TSG101 no no 

159024819 NS4B AAEL013614-PA no no CLTC no no 

159024819 NS4B AAEL001525-PA no no GGA3 no no 

159024819 NS4B AAEL001525-PA no no GGA2 no no 

159024819 NS4B AAEL003877-PA no no UBC no no 
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159024819 NS4B AAEL006018-PB no no NF2 no no 

1oanA E AAEL002829-PA no no MACF1 no no 

1oanB E AAEL002829-PA no no MACF1 no no 

1okeA E AAEL002829-PA no no MACF1 no no 

1okeB E AAEL002829-PA no no MACF1 no no 

1tg8A E AAEL002829-PA no no MACF1 no no 

2jsfA E AAEL002829-PA no no MACF1 no no 

2r29A E AAEL002829-PA no no MACF1 no no 

2r69A E AAEL002829-PA no no MACF1 no no 

3c5xA E AAEL002829-PA no no MACF1 no no 

3c6eA E AAEL002829-PA no no MACF1 no no 

1oanA E AAEL012083-PA no no PTPRB no no 

1oanB E AAEL012083-PA no no PTPRB no no 

1ok8A E AAEL012083-PA no no PTPRB no no 

1okeA E AAEL012083-PA no no PTPRB no no 

1okeB E AAEL012083-PA no no PTPRB no no 

1tg8A E AAEL012083-PA no no PTPRB no no 

2jsfA E AAEL012083-PA no no PTPRB no no 

2r29A E AAEL012083-PA no no PTPRB no no 

2r69A E AAEL012083-PA no no PTPRB no no 

3c5xA E AAEL012083-PA no no PTPRB no no 

3c6eA E AAEL012083-PA no no PTPRB no no 

1oanA E AAEL010443-PA no no MAGI2 no no 

1oanB E AAEL010443-PA no no MAGI2 no no 

1okeA E AAEL010443-PA no no MAGI2 no no 

1okeB E AAEL010443-PA no no MAGI2 no no 

1tg8A E AAEL010443-PA no no MAGI2 no no 

2r29A E AAEL010443-PA no no MAGI2 no no 

3c5xA E AAEL010443-PA no no MAGI2 no no 

3c6eA E AAEL010443-PA no no MAGI2 no no 

1tg8A E AAEL001476-PA yes no NUMB no no 

3c5xA E AAEL001476-PA yes no NUMB no no 

1oanA E AAEL006958-PA yes no CNTN2 no no 

1oanB E AAEL006958-PA yes no CNTN2 no no 

1okeA E AAEL006958-PA yes no CNTN2 no no 

1okeB E AAEL006958-PA yes no CNTN2 no no 

1tg8A E AAEL006958-PA yes no CNTN2 no no 

2jsfA E AAEL006958-PA yes no CNTN2 no no 

2r29A E AAEL006958-PA yes no CNTN2 no no 

2r69A E AAEL006958-PA yes no CNTN2 no no 

3c5xA E AAEL006958-PA yes no CNTN2 no no 

3c6eA E AAEL006958-PA yes no CNTN2 no no 

1oanA E AAEL006958-PA yes no CNTN1 no no 
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1oanB E AAEL006958-PA yes no CNTN1 no no 

1ok8A E AAEL006958-PA yes no CNTN1 no no 

1okeA E AAEL006958-PA yes no CNTN1 no no 

1okeB E AAEL006958-PA yes no CNTN1 no no 

1tg8A E AAEL006958-PA yes no CNTN1 no no 

2jsfA E AAEL006958-PA yes no CNTN1 no no 

2r29A E AAEL006958-PA yes no CNTN1 no no 

2r69A E AAEL006958-PA yes no CNTN1 no no 

3c5xA E AAEL006958-PA yes no CNTN1 no no 

3c6eA E AAEL006958-PA yes no CNTN1 no no 

1oanA E AAEL007915-PA no no MSN no no 

1oanB E AAEL007915-PA no no MSN no no 

1ok8A E AAEL007915-PA no no MSN no no 

1okeA E AAEL007915-PA no no MSN no no 

1okeB E AAEL007915-PA no no MSN no no 

1tg8A E AAEL007915-PA no no MSN no no 

2jsfA E AAEL007915-PA no no MSN no no 

2r29A E AAEL007915-PA no no MSN no no 

2r69A E AAEL007915-PA no no MSN no no 

3c5xA E AAEL007915-PA no no MSN no no 

3c6eA E AAEL007915-PA no no MSN no no 

1oanA E AAEL007915-PA no no RDX no no 

1ok8A E AAEL007915-PA no no RDX no no 

1tg8A E AAEL007915-PA no no RDX no no 

2jsfA E AAEL007915-PA no no RDX no no 

2r29A E AAEL007915-PA no no RDX no no 

2r69A E AAEL007915-PA no no RDX no no 

3c5xA E AAEL007915-PA no no RDX no no 

3c6eA E AAEL007915-PA no no RDX no no 

1oanA E AAEL013600-PA no no ITGA8 no no 

1oanB E AAEL013600-PA no no ITGA8 no no 

1ok8A E AAEL013600-PA no no ITGA8 no no 

1okeA E AAEL013600-PA no no ITGA8 no no 

1okeB E AAEL013600-PA no no ITGA8 no no 

1tg8A E AAEL013600-PA no no ITGA8 no no 

2jsfA E AAEL013600-PA no no ITGA8 no no 

2r29A E AAEL013600-PA no no ITGA8 no no 

2r69A E AAEL013600-PA no no ITGA8 no no 

3c5xA E AAEL013600-PA no no ITGA8 no no 

3c6eA E AAEL013600-PA no no ITGA8 no no 

1oanA E AAEL013600-PA no no ITGA5 no no 

1oanB E AAEL013600-PA no no ITGA5 no no 

1ok8A E AAEL013600-PA no no ITGA5 no no 
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1okeA E AAEL013600-PA no no ITGA5 no no 

1okeB E AAEL013600-PA no no ITGA5 no no 

1tg8A E AAEL013600-PA no no ITGA5 no no 

2jsfA E AAEL013600-PA no no ITGA5 no no 

2r29A E AAEL013600-PA no no ITGA5 no no 

2r69A E AAEL013600-PA no no ITGA5 no no 

3c5xA E AAEL013600-PA no no ITGA5 no no 

3c6eA E AAEL013600-PA no no ITGA5 no no 
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