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ABSTRACT 

Molly F. Jenkins: The Proportion of Core Species in a Community Varies with Spatial Scale and 

Environmental Heterogeneity   

(Under the direction of Allen Hurlbert)   

Ecologists define a community as the set of species successfully reproducing and using 

resources in a shared space. In lieu of a species list, the subset of temporally persistent core 

species may more appropriately fulfill this definition. Analyses carried out in communities that 

support low proportions of core species may violate assumptions about the definition of a 

community, and so poorly align with ecological predictions. We used bird time series data to 

calculate the proportion of core species across a gradient of scales, to investigate potential 

generalities in this pattern, and to use these generalities to address discrepancies on drivers of 

community assembly. We found that the proportion of core species in an assemblage increased in 

a positive curve with scale and decreased with high environmental heterogeneity (e.g.  

elevation, vegetation coverage). Communities with high heterogeneity and low proportions of 

core species were likely dispersal-driven, not resource-limited.  
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INTRODUCTION  

Species differ in the temporal persistence with which they occur at any given site: while 

some species are reliably observed year in and year out, others appear only occasionally (Ulrich 

and Ollik 2004, Belmaker 2009, Dolan et al. 2009, Gaston et al 2007, Umaña et al. 2017). 

Indeed, recent work has shown that a broad range of ecological communities exhibit a bimodal 

distribution in temporal occupancy, reflecting these two groups which have been referred to as  

“core” and “transient” species (Coyle et al. 2013, Umaña et al. 2017, Snell et al. in review; 

Figure 1). Core species, in persisting at a site over time, are thought to maintain viable 

populations through successful reproduction (MacArthur 1957, Coyle et al. 2013, Snell et al. in 

review). Transients on the other hand do not persist reliably in these locations, and so do not 

maintain viable populations (Magurran and Henderson 2003, Umaña et al. 2017). Ecologists 

have typically ignored this distinction and have assumed that the complete list of species 

observed over some biological survey constitutes a meaningful “community” of interest for 

analysis. However, the relative representation of core and transient species in an assemblage may 

vary from assemblage to assemblage, and may in turn impact a wide range of ecological patterns, 

including species-area relationships, species abundance distributions, temporal turnover, and 

richness patterns (Magurran and Henderson 2003, Ulrich and Ollik 2004, Belmaker 2009, White 

and Hurlbert 2010, Coyle et al. 2013, Umaña et al. 2017, Snell et al. in review).   

For many questions of interest, an ecological community is best defined as the set of 

species with positive growth rates interacting and inhabiting a shared space (Molles 2013), and 

so it is the set of core species rather than the list of all species that may be most relevant 
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(Magurran and Henderson 2003). For example, coexistence theory, niche theory, and other 

related ideas in ecology are largely predicated upon the occurrence of species that are suited to 

and influenced by their environments, inhabiting those environments and utilizing those 

environments for food and reproduction (Umaña et al. 2017). Analyses carried out in 

communities that support low proportions of core species, and high proportions of transient 

species may poorly align with ecological predictions that are less applicable to transient species.  

Distinguishing core from transient species requires detailed knowledge of individual species’ 

niche requirements or long time series that enable the evaluation of temporal occupancy, but 

many ecological studies are limited by time and funding, and such data are often not feasible 

(Magurran and Henderson 2003, Umaña et al. 2017). Developing general principles regarding 

the factors that may influence the proportion of core species in an assemblage would enable 

researchers to more effectively compare results between studies and better assess generalities in 

community ecology.  

The extent to which a species is a core, regularly occurring member of an assemblage will 

certainly depend upon the spatial scale over which that assemblage is sampled (Figure 1, Figure 

2A). Consider two extremes: at the scale of 1 m², no bird species would maintain a viable 

population and be observed in every sampling period. At the scale of the entire North American 

continent, nearly all species would be reliably present at least somewhere within that extent 

every year. Thus, the proportion of core species in an assemblage must increase with scale, but 

the functional form of this relationship is less obvious. We expect the shape of the scaling 

relationship to be a positive decelerating curve (Figure 2C) because the stable proportion of 

species that a region can biologically support increases as the extent of a region is expanded and 

because species that are transient in a local context may be core species in the context of the 
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region; this increase is moderated by the inevitable inclusion of additional transient species over 

area.  

Another factor that likely impacts the proportion of core species in an assemblage is 

environmental heterogeneity, which increases the proportion of transient species likely to occur 

via mass effects (Coyle et al. 2013, Snell et al. in review). Mass effects are more likely in 

heterogeneous landscapes, resulting in poorly adapted species dispersing intermittently from 

adjacent habitats within the region to which they are better suited (Shmida and Wilson 1985). 

The presence of such transient species which do not maintain viable populations effectively 

lowers the proportion of core species in such heterogeneous environments (White and Hurlbert 

2010, Coyle et al. 2013, Snell et al. in review). . However, at larger regional scales these effects 

should be mitigated by the inclusion of sufficient source habitats that allow for the maintenance 

of viable and persistent breeding populations for a majority of species.   

Environmental heterogeneity may also constrain habitat availability via the partitioning of 

space by multiple habitat types and the reduction of area per habitat type relative to 

environmentally homogeneous sites (Allouche et al. 2012). Resources within each habitat may 

occur at levels below the threshold needed to sustain viable populations (Allouche et al. 2012), 

constraining the proportion of core species for that scale compared to a homogeneous habitat of 

the same size. Thus, we expect high environmental heterogeneity to decrease the proportion of 

core species for local assemblages situated in heterogeneous landscapes (Umaña et al. 2017). 

While we expect high heterogeneity to have a negative effect on the proportion of core species in 

the regional assemblage, we predict the negative effect will be larger at the local scales given the 

prevalence of source-sink dynamics and the area-heterogeneity tradeoff (Figure 2C:D). In 

contrast, the proportion of transient species should be determined by regional variability in the 
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number of potential colonists available in the regional pool, which are driven by mass effects and 

regional environmental heterogeneity (Shmida and Wilson 1984, White and Hurlbert 2010, 

White et al. 2010, Coyle et al. 2013). We also predict that this relationship will vary at 

intervening scales such that environmentally heterogeneous sites will be unable to support 

substantial (>50%) proportions of core species relative to the scale at which homogeneous sites 

successfully support substantial proportions of core species. Finally, we expect this scaling 

measurement will contribute to differences in the shape of the overall curve – with large scale 

thresholds corresponding with accelerating curves, and small scale thresholds typifying a positive 

decelerating curve.   

Here, we make use of a large spatiotemporal dataset on bird distribution and community 

size which allows us to investigate temporal occupancy, and hence the proportion of core species 

in an assemblage, over a wide range of spatial scales and environmental contexts. Specifically, 

we seek to 1) describe the distribution of species’ temporal occupancy in ecological assemblages 

across a gradient of spatial scales, 2) describe the relationship between the proportion of core 

species in a community and the spatial scale at which that community is characterized, and 3) 

characterize how environmental heterogeneity influences that scaling relationship.  
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METHODS 

Bird data   

We used data on the distribution of land bird species over time (excluding owls, 

kingfishers, and nightjars) from the North American Breeding Bird Survey (BBS), maintained by 

the United States Geological Survey (Pardieck 2017). Our data encompassed the 968 BBS routes 

across the North American continent that were surveyed continuously over the 15 year period 

from 2000-2014 that had at least 65 neighboring routes within 1,000 km. Each BBS route is a 40 

km roadside transect encompassing fifty 3-minute point count stops, each separated by 0.8 km, in 

which a single observer records all birds detected within 0.4 km. Thus, each point count stop 

surveys an area of 0.5 km2 while an entire BBS route surveys an area of 25.1 km2. BBS routes 

were surveyed each year during the breeding season, typically in June.   

Temporal occupancy, the proportion of years a species was observed over some spatially 

defined area, was calculated for each species at each site at a range of spatial scales (Figure 3). 

We calculated the proportion of core species in each assemblage as the proportion of species 

with temporal occupancy greater than two-thirds (i.e. occurring in at least 11 out of the 15 survey 

years) following Coyle et al. (2013). We also considered two alternative thresholds for defining 

core species that produced qualitatively similar results (Supplemental methods, Appendix).  

Below the scale of a single BBS route, each route was split into non-overlapping segments of 5, 

10 or 25 point count stops, and the proportion of core species was calculated at each spatial 

scale. To examine spatial scales greater than a single BBS route, for each focal route we 
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sequentially aggregated survey data from an increasing number of nearest neighbor routes, up to 

a maximum regional scale of the focal route together with its 65 nearest neighbors (Figure 3).   

Our regional scale of 66 neighboring routes was chosen because it was the largest number 

of neighbors that fell within a radius of 1,000 km of each focal route, even in regions of lower 

route density in the western US (Figure 3). The entire range of spatial scales we investigated 

varied from 2.5 km2 for a set of 5 point count stops up to 1,659 km2 for an area of 66 adjacent 

BBS routes. Because BBS route density varies across the continent, the spatial extent of the 65 

nearest neighbors did vary (Figure 3). However, using a fixed total number of aggregated routes 

allowed us to keep the total surveyed area characterizing an assemblage constant, and this was 

the aspect of scale we viewed as most critical for our comparisons. While regions of the same 

sampled area but spanning larger extents may encompass a greater range of environmental 

variation all else equal, such regions (with lower BBS route density) tend to occur in the western 

US which is more environmentally heterogeneous. If this method did affect the measured 

proportion of core species by introducing extraneous heterogeneity, we would expect the 

measured proportion to be slightly lower than it is in reality for both homogeneous regions and 

heterogeneous regions. If this method substantially affected our measured proportion of core 

species, we would expect to see little to no difference in the proportion of core species at the 

local scales between environmentally homogeneous and heterogeneous sites.    

In addition to spatial scale, we used the total number of individuals observed in the 

assemblage (community size) as an alternative measure of scale. Community size was found by 

Snell et al. (in review) to be a potentially more generalizable measure of scale than area, 

especially for comparing between taxonomic groups with very different area requirements. 
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Scaling metrics   

  We derived a series of metrics characterizing the relationship between the proportion of 

core species present and scale for each focal route (Figure 2C). We identified the proportion of 

core species at the smallest scale (pmin) and the proportion at the largest scale (pmax) for each 

focal route. We also identified the slope of the line linking pmin and pmax for each focal route. We 

identified the scale at which the proportion of core species in the community surpassed the 

threshold of 0.5 for each focal route (scale50). Finally, we characterized the degree of curvature 

in the relationship between the proportion of core species in the community and scale. We 

calculated the area between the curve and a straight line by summing the differences between the 

observed values and the values expected from a linear relationship between pmin and pmax (Figure 

3), where positive values indicate positive decelerating relationships and greater proportions of 

core species. Negative values indicate positive accelerating relationships and lower proportions 

of core species relative to a linear relationship. 

Environmental data   

We acquired raster layers for elevation from Worldclim (Fick & Hijman, 2017), and 

Normalized Difference Vegetation Indices (NDVI) from the NASA GIMMS group, and 

calculated mean NDVI and mean elevation for each focal route within a 40 km buffer. For each 

environmental variable, we defined regional heterogeneity around each focal route as the 

variance in mean values across the set of 65 nearest neighbor BBS routes plus the focal route. In 

order to assess the whether the importance of environmental heterogeneity varied with the spatial 

scale over which heterogeneity was measured, we calculated environmental heterogeneity at 

different scales (from 3 to 66 neighboring routes) and then examined the Pearson’s correlation 
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between heterogeneity and the five scaling metrics describing how the proportion of core species 

varies across the full range of spatial scales.   

  

 

 

 

 

 

 

 

 

 

 

 

  



9  

 

 

RESULTS 

At the scale of a single route (~25 km2), temporal occupancy was bimodal as expected 

(Figure 4, dashed line). At larger spatial scales, assemblages were marked by a greater proportion 

of core species with high temporal occupancy, while at smaller scales, assemblages were 

characterized by a greater number of transient species and very few core species (Figure 4).   

 The proportion of core species in a community increased on average in a positive decelerating 

manner with both measures of spatial scale, although there was substantial variability from route 

to route (Figure 5). At the largest spatial scales, the proportion of core species exhibited reduced 

variation, with a mean of 83% and ranging from 75%-90%, while at the smallest spatial scales 

(2.5 km2) the proportion of core species varied from 11-37%. Using community size in lieu of 

spatial scale greatly reduced this variation in the proportion of core species at the smallest scale 

(Figure 5).   

Heterogeneity in elevation and heterogeneity in NDVI for a region both had similar 

effects on the overall shape of the relationship between core species and spatial scale, although 

the effects of elevation were generally stronger (Figure 6). Environmental heterogeneity in a 

region was associated with communities that were characterized by a low proportion of core 

species at both the smallest and largest scales, and communities that experienced the greatest 

increase in the proportion of core species between the smallest and largest scales.     

The scale at which environmental heterogeneity was measured also affected the strength 

of the correlation between heterogeneity and scaling curve metrics (Figure 7). Specifically, 
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heterogeneity in elevation was most strongly correlated with all five of the scaling metrics when 

measured at the largest spatial scale, whereas heterogeneity in NDVI was most strongly 

correlated with the scaling metrics at scales between 15-25 BBS routes (400-600 km2). Both 

measures of environmental heterogeneity were associated with having a strong negative effect on 

the minimum and a strong positive effect on the slope, but also with having a strong positive 

effect on the scale50 parameter at scales below 500 km2 (Figure 7).   
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DISCUSSION 

Ecologists frequently test hypotheses regarding community assembly and species 

richness using surveys which reflect community snapshots. However, it is increasingly 

recognized that such a snapshot approach fails to differentiate core species from transient 

species, the former maintaining viable populations and interacting more strongly with their biotic 

and abiotic environment, and the latter being irregular visitors that are presumably better adapted 

to other conditions (Magurran and Henderson 2003, White and Hurlbert 2010, Umaña et al 

2017). We used a continent-wide dataset on bird assemblages over time to show how the 

proportion of core species in these assemblages increases with scale and decreases with 

environmental heterogeneity. Consistent with Coyle et al. (2013), the distribution of temporal 

occupancy was strongly bimodal at the scale of a single BBS route, reflecting these two distinct 

groups. However, at scales below the size of a BBS route (25< km2) few species were present 

consistently over time, while at scales larger than two aggregated BBS routes (>50 km2) most 

species occurred regularly. On average, the proportion of core species in a community increased 

in a positive decelerating manner as a function of spatial scale. Species identified as transient at 

small scales became core species at larger scales, as the probability of including suitable habitat 

in sufficient quantities to maintain persistent populations increased. However, for a group like 

birds with such strong dispersal capabilities, there is always a chance that new transient species 

will disperse and be observed each year, and so even at the continental scale the proportion of 

core species never actually reaches 1. The proportion of core species changes in its rate of 

accumulation over area. Small assemblages (<5km2) exhibited a fairly wide range in the 
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proportion of core species present (11-37%), at least in part because different sites differed in the 

overall number of individuals supported. At the largest spatial scales (1,659 km2 of surveyed area 

distributed across a 1,000 km radius region) there was less variation in the proportion of core 

species (75-90%). This suggests that at local scales, some sites may support source populations 

of species that are well-suited to the local site, but these sites may also be sinks for other species 

better suited to adjacent sites. Additionally, sites of the same scale may reflect radically different 

proportions of core species given how many species are well suited or not, creating variability in 

the proportion of core species as a function of the relative proportion of species in the pool that 

relate to the site as a source versus sink site. Viable populations of core species may occur at the 

scale of the region as they exhibit positive population growth rates for an overall region, but 

where specifically those populations occur and how prevalent they are at a given location may 

vary locally with the available resources.   

Much of the variation in the shape of the relationship between the proportion of core 

species in a community and spatial scale can be explained by the regional environmental 

heterogeneity. Specifically, landscapes with high environmental heterogeneity have 

proportionally fewer core species, and this effect is strongest at the smallest spatial scales. 

Consistent with previous findings, we found that environmental heterogeneity was positively 

correlated with the proportion of transient species (Coyle et al. 2013, Stein et al. 2014, Snell et al. 

in review). This was true whether characterizing heterogeneity based on regional variation in 

elevation or NDVI, but the effect of elevation was both stronger and more apparent at the 

regional scales (Figure 7). This is likely because variation in elevation encompasses habitat 

diversity by virtue of elevational zones in addition to differences in slope, hydrology, shelter, and 

other topographic features. Variation in NDVI also reflects these differences, but perhaps less 
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directly as the habitat variation within a given range of NDVI may not be well captured. 

Ultimately, regional heterogeneity introduces greater variability from site to site, increasing the 

relative proportion of transient species at local scales via the increased likelihood that one patch 

differs in structure from a neighbor patch, and may support very different species as a result 

(Ricklefs 1987, Coyle et al. 2013, Stegen 2013, Umaña et al. 2017, Snell et al. in review). 

Landscapes with low environmental heterogeneity should support consistent communities with 

low turnover (Stegen et al. 2013, Gaston et al. 2007), even at smaller spatial scales nested within 

the landscape as these landscapes more closely parallel the resources of the region they occur 

within. This allows competition and resource constraints to be the driving mechanisms to filter 

out species that are less well suited, permitting only those well-suited species to persist and 

support viable populations (Coyle et al. 2013). Landscapes with a high degree of environmental 

heterogeneity are more compartmentalized, effectively decreasing the area and resources 

available per habitat to support a viable species population (Allouche et al 2012), and instead 

increasing the number of species in the regional pool that could potentially immigrate into a local 

habitat via mass effects (Shmida and Wilson 1984, Gaston et al. 2007, White and Hurlbert 2010, 

Coyle et al. 2013, Stegen et al. 2013). However, our estimate of the relative curvature of the 

relationship between the proportion of core species and scale was positively related to 

environmental heterogeneity in the form of NDVI (Figure 6, 7), contrary to our expectations. 

Some environmental variability in NDVI may actually contribute to higher proportions of core 

species, particularly at small scales. However, variability in elevation was weakly and negatively 

related to curvature (Figure 6, 7). More statistically appropriate measures of curvature may yield 

opposing or stronger relationships, and we plan to address this in future research.   

Typically, the scale at which communities surpassed a proportion of 50% core species 

was an area of 2 BBS routes (about 53 km2) or 1,412 individuals, with a range of 50-200 km2 or 
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400-4000 individuals. Because a substantial proportion of core species are supported by an area 

the size of a BBS survey, the scale at which BBS surveys are conducted is a reasonable albeit 

imperfect scale by which to measure a community. The lowest observed proportion of transients 

at the scale of a BBS route is still about 11% of the community, which may be enough to affect 

ecological inferences based on commonly examined community ecology patterns (Snell et al. in 

review). To minimize the influence of transient species, assemblages are best surveyed at larger 

scales (≥1400 individuals), but when this is not feasible smaller and environmentally 

homogeneous sites may be perfectly adequate depending on the ecological question. For 

example, the Breeding Bird Census (Lowe 2006) is characterized by many sites of variable size 

(0.1-1 km2) covering fairly uniform habitats - these sites may potentially support less variation in 

the local-scale proportion of core species when compared to the degree of variation in the 

proportion of core species at the more size-standardized but environmentally heterogeneous BBS 

routes. Small heterogeneous sites may be far more problematic for studies that assume 

communities that are predominantly core species, as these sites are far more subject to both 

inherent variability in the true proportion of biologically core species and mismatches between 

the statistical and biological definitions of core species due to detection errors.   

This new understanding of how the proportion of core species in an assemblage varies 

with scale and environmental heterogeneity may help resolve discrepancies between studies with 

respect to the importance of biotic interactions, resource availability, or mass effects for driving 

community assembly locally and regionally (Henderson and Magurran 2014). Previous attempts 

to synthesize and generalize from ecological studies testing concepts such as these may have 

failed because those studies differed in scale, environmental heterogeneity, or both leading to 

assemblages with very different proportions of core species and subsequently different apparent 
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mechanisms driving community assembly (e.g., Dorazio et al. 2006, Emerson & Gillespie 2008, 

Stein et al. 2015). Such comparisons across scales may pose complications in that certain 

processes are more or less biologically relevant at different and often taxa-specific scales. For 

example, competition and environmental filtering are two processes that have been proposed to 

shape community assembly and result in either phylogenetic overdispersion or clustering 

(Cavender-Bares et al. 2004). However, the signal strength of dispersal or clustering may be 

affected by the proportion of core or transient species in a community. Core species are more 

likely to compete with each other for resources, and are thereby expected to contribute the most 

to overdispersion in competition related traits. In addition, core species are expected to be better 

suited to the local climate or habitat compared to transient species, and so they are expected to 

exhibit a greater degree of clustering of environmental tolerance traits. At small spatial scales, 

the proportion of transient species will be much higher, and the likelihood of discerning a 

nonrandom assembly pattern from such a community is low. The proportion of core species is 

lowest at relatively small scales, and yet processes more likely to drive core species assembly 

like competition exert greater pressure at smaller scales where resources are more constrained by 

space (Allouche et al. 2012).  This may result in seemingly conflicting patterns of community 

assembly in large meta-analyses that include studies from disparate taxonomic groups and 

conducted at a wide range of scales. For example, a meta-analysis on phylogenetic clustering 

versus overdispersion conducted by Emerson and Gillespie (2008) found an assemblage of 

Cuban Anolis lizards to exhibit unstructured or seemingly random patterns of phylogenetic 

assembly while an assemblage of dusky salamanders exhibited strong phylogenetic 

overdispersion. This result may reflect a lack of generality in the degree of overdispersion in 

community assembly. However, these two studies were carried out at very different spatial 

scales. The first study may have found unstructured patterns as a result of the small scale of the 
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study, where we would expect there to be a high relative proportion of transients contributing to 

noise. However, another single island small-scale Anolis clade may contradict this via evident 

phenotypic and phylogenetic overdispersion, due to a strong signal of competition at the small 

spatial scale from the proportion of core species present, given the increased likelihood of 

competitive effects at small scales where resources are constrained. However, at the scale of 

several islands, Anolis communities exhibit phylogenetic clustering and phenotypic 

overdispersion. This may be due to a high proportion of core species but a low relative 

competitive signal compared to that expected at the scale of a single island of constrained 

resources. These potential different outcomes at different scales are still all limited within a 

single taxonomic group; comparisons of assembly patterns between groups may further strain 

effective comparisons, as several dozen studies are compared in the synthesis by Emerson & 

Gillespie (2008). One such study investigated dusky salamanders across the Blue Ridge 

mountain range, from Southern VA to Northern GA. The salamanders exhibited a strong 

environmental filtering effect through a combination of overdispersion and conserved evolution. 

This signal may be due to a combination of the large scale sampled relative to the organism and 

the high number of core species, as at higher scales the signal strength of competition is 

generally lessened, and so the effects of environmental filtering may be more apparent. It is 

possible that within a streambed, while there may be only one or two Desmognathus present, 

those individuals are both reliably persistent in their occupation of the site, as well as the degree 

to which they are affected by the presence of other amphibians competing for resources in the 

same streambed. In any assemblage, the presence of transient species likely contributes to greater 

noise, potentially masking any nonrandomness in assembly patterns. Subsetting for core species 

appropriate to the surveyed scale and taxa would likely reduce noise and allow for more 

consistent trait assembly patterns to be evaluated and compared, potentially improving 
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generality. Additionally, researchers should discern whether one or both measures of scale are 

more appropriate for validating their particular question of interest. Some ecological questions 

may be more appropriately addressed using spatial scale as a measure, particularly those that are 

contained within a single taxonomic group. However, for comparisons across taxonomic groups, 

community size may be a more appropriate metric as it avoids the complicating and spatially 

dependent issue of different territory requirements between species and communities. Because 

different communities have different scale requirements, and because different mechanisms of 

community assembly operate at different scales, ideally communities should be standardized for 

comparison using spatial scale or community size using rarefaction-based methods, and that the 

most ecologically relevant group in the assemblage is analyzed as a subset of the assemblage 

(Hurlbert 2004, Gotelli and Colwell 2011, Snell et al. in review). Comparisons across studies can 

then be more easily rectified, as the prevalent drivers evident in one study may not contradict, but 

instead complement the drivers evident in another study. 

Considerations  

Two types of classification errors are possible when inferring whether species are truly 

biologically core species indirectly from time series data: a species may be inferred to be 

transient when it is in fact core (a false negative), and a species may be inferred to be a core 

species when it is in fact transient (a false positive). False negatives are expected to occur at 

small scales, when the species in question occurs at low densities and is not detected regularly 

(Coyle et al. 2013, Henderson and Magurran 2014, Snell et al. in review). However, it is unlikely 

that such false negatives will occur frequently at large scales, as even persistent species with low 

abundance reliably occur at large scales from year to year. False positives are expected to occur 

at small scales in regions of high environmental heterogeneity. A species that is in reality 
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transient at a local sink site but core in the context of the region may be statistically considered as 

core at that local site because neighboring sites support sufficient viable populations to ensure 

persistent occurrence in spite of the fact that the species may not be successfully breeding.   

Because we expect classification errors to vary as a function of scale, heterogeneity, and 

the abundance and detectability of species, there are a number of ways that these errors may be 

addressed by future research. Future research could make use of simulation models to identify 

false positive and false negative error rates for communities across different scales and relative 

degrees of environmental heterogeneity, evaluating the specific extent to which small scales and 

regions of high heterogeneity contribute to classification errors. Additionally, research 

comparing how temporal occupancy scales for different species with different density and 

detectability issues could also help identify species or guilds in an assemblage that are more or 

less susceptible to being improperly classified. For example, some core species may be easy to 

detect by sight or hearing in spite of their low abundance, while others may be elusive and silent 

in addition to supporting low abundances, decreasing the likelihood that they will be consistently 

taken into account as core species and increasing the likelihood that they will be classified as 

transients. Finally, more strict cutoff thresholds for determining the proportion of core to 

transient species may bear utility in excluding species that contribute to these errors, as the 

likelihood of false positives declines with more strict thresholds for qualifying a species as a core 

species (Appendix B, Figures 8, 9). While a formal investigation into both the likelihood and 

scaling relationship of these potential classification errors is beyond the scope of this paper, it is 

nonetheless essential to the utility of the core-scaling relationship.  
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Conclusions   

Community surveys are the main unit of analysis in community ecology, and yet the 

species lists derived from such surveys generally include a combination of species that are core 

regularly interacting members of the community and transient species that may play little role in 

shaping the biotic environment. Here, we’ve shown that the proportion of core species in an 

assemblage increases as a function of scale, and decreases as a function of environmental 

heterogeneity. Since the proportion of core species may influence a number of essential patterns 

in community ecology, an understanding of the factors that influence the prevalence of core 

species is critical for the proper interpretation of synthetic meta-analyses and the evaluation of 

ecological theory. Our findings also have implications for how best to select ecologically 

relevant scales for improved evaluation of community assemblages.  
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APPENDIX A: FIGURES AND FIGURE CAPTIONS  

  

Figure 1. Probability density estimate of bird species’ temporal occupancy across 968 North 

American Breeding Bird Survey routes at the scale of 25 km2 (black line), and predicted 

probability density estimates at fine (blue dashed) and coarse (yellow dashed) spatial scales. The 

temporal occupancy of a species on a route is the proportion of surveyed years in which the 

species was recorded present. Grey rectangles indicate temporal occupancy levels used to 

classify species as core (>2/3) or transient (≤1/3).  
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Figure 2. The proportion of core species in a community is expected to vary with scale and 

environmental heterogeneity. (A, B) Species (symbols) are distributed across an environmentally 

homogeneous (A) or heterogeneous (B) landscape over three time periods (T1, T2, T3). The 

temporal occupancy of each species as well as the proportion of core species in the assemblage 

that occur in 2/3 or more time periods is assessed at both the local (central black boxes) and 

regional (rectangles) scales. The color of species symbols indicates habitat affinities for 

landscapes of the same color. (C) A generalized scaling relationship for the proportion of core 

species in a community. We consider the following parameters from this curve: 1) pmin, 

proportion of core species at the minimum spatial scale, 2) scale50, the spatial scale at which the 

community first exceeds 50% core species, 3) pmax, proportion of core species at the maximum 

spatial scale, 4) slope, the slope of the line linking the minimum and maximum values, and 5) 

curvature, calculated as the area between the scaling curve and the straight line connecting min 

and max values. Parameters in yellow are expected to be negatively related to environmental 

heterogeneity, while parameters in blue are expected to be positively related to environmental 

heterogeneity. (D) The proportion of core species in (A) and (B) at local versus regional scales 

for landscapes of high and low environmental heterogeneity.  
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Figure 3. Aggregation and partitioning of spatial boundaries of ecological communities for 

calculating temporal occupancy and proportion of core species. On the right - a map of North 

America highlights all of our BBS route sites in grey (n = 968), while also highlighting the 

maximum (66) routes aggregated total to encompass the regional scale. On the left - a breakdown 

of how we segmented routes for the smallest and most local scales, based on the number of point 

counts conducted within each segment.   
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Figure 4. Average probability densities of temporal occupancy for the bird species present at a 

site, calculated over ten spatial scales from small (dark) to large (light). Each curve represents 

the average probability density across 968 BBS routes at a particular scale. BBS route scale 

highlighted with dashed line.   
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Figure 5. Proportion of core species present in assemblages as a function of (a) spatial scale in 

km2 and (b) scale as measured by community size. Each line represents a single focal BBS route; 

we examined 968 routes total. Overall moving window average across all BBS routes indicated 

by the bold black line. Additional highlighted routes exemplify low environmental heterogeneity 

(purple, Illinois) and high environmental heterogeneity (orange, Utah).   
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Figure 6. Relative importance of environmental heterogeneity at the regional scale (66 BBS 

routes) to the occupancy-scale relationship as characterized by five parameters. The strongest 

effects are highlighted by the “minimum” parameter (pmin) and the “slope” parameter, with 

elevation playing the stronger role compared to NDVI.   
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Figure 7. The correlation between environmental heterogeneity (elevational heterogeneity in 

purple, NDVI heterogeneity in green) and five metrics describing the shape of the proportion of 

core species-scale relationship as a function of the scale (i.e., number of nearest neighbor BBS 

routes) over which environmental heterogeneity was measured.   
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APPENDIX B: SUPPLEMENTARY MATERIAL  

  

Figure 8. The variation in parameter estimates for the core abundance relationship across 

different core and transient cutoff thresholds. While there was not an appreciable difference 

between cutoffs, slight differences may indicate the resilience of higher cutoff thresholds against 

classification errors.   
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Figure 9. The variation in parameter estimates for the core abundance relationship across 

different core and transient cutoff thresholds. While there was not an appreciable difference 

between cutoffs, slight differences may indicate the resilience of higher cutoff thresholds against 

classification errors. 
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