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ABSTRACT

CHRISTINA HAMLET: Mathematical Modeling, Immersed Boundary Simulation, and

Experimental Validation of the Fluid Flow around the Upside-Down Jellyfish Cassiopea

xamachana

(Under the direction of Professor Laura Miller)

The jellyfish has been the subject of extensive research in the areas of ecology, biomechan-

ics, fluid dynamics and engineering. Previous mathematical and experimental studies of

the flows generated by jellyfish focused primarily on swimming mechanisms. Recently,

the fluid dynamics of feeding from currents generated during swimming has been consid-

ered. In this study the benthic lifestyle of the upside- down jellyfish Cassiopea xamachana

was capitalized upon to explore the fluid dynamics of feeding uncoupled from swimming.

A two-dimensional mathematical model was developed to capture the fundamental char-

acteristics of the motion of the unique concave bell shape. Given the prominence of the

oral arm array, this structure was included and modeled as a porous layer that perturbs

the flow generated by bell contractions. The immersed boundary method was used to

solve the fluid-structure interaction problem. Parameter sweeps were used to explore

numerically the effects of changes in pulse dynamics and the properties of the oral arms

independently. Velocity fields obtained from live organisms using digital particle image

velocimetry were used to validate the numerical simulations of the model. Parameter
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sweeps were used to explore the effects of scaling and to compare the model to a more

traditional bell-only model. The effects of low-velocity background flow, neighboring jel-

lyfish, and synchronous and asynchronous pulsing were also examined. The presence of

the prominent porous layer structure in the field of flow increased the flux of new fluid

from along the substrate to the bell. A consistent pattern of flow across the porous layer

across a wide range of background flow patterns. The numerical simulations showed that

pauses between bell expansion and the next contraction altered fluid flow over the bell

and through the oral arms. Studies of the effects of neighboring models showed that spac-

ing and relative size of individuals changed flow rates substantially. These substantial

changes could explain so-called ”hitchhiking” behavior observed in smaller or weakened

jellyfish.
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CHAPTER 1

Introduction



Jellyfish have been the subject of biomechanical and fluid dynamic research aimed at

understanding the nature of unsteady propulsion [15, 17, 20, 68]. These studies have

focused not only on understanding the mechanisms of unsteady propulsion but also for

biologically-inspired design. Recently there has been additional focus on jellyfish feeding

mechanisms. Jellyfish have been categorized into two general groups based on feeding

strategy: 1) ambush predators that rely on short bursts of fast motion to trap prey and

2) foraging predators that sample for prey as they swim[11, 12].

The focus of this study is the feeding mechanism used by a benthic jellyfish Cassiopea

xamachana. Instead of employing ambush or foraging behavior, these organisms remain

inverted on the seafloor, using the pulsing mechanism of their bells to draw fluid toward

their feeding appendages for sampling. While previous research has considered the mech-

anisms of feeding jellyfish, there has been very little study of this unusual mechanism

normally employed for swimming.

In this introductory section, previous work on jellyfish dynamics is reviewed, includ-

ing work that has described, compared and contrasted the feeding strategies of swimming

jellyfish. Next the biology and habitat of C. xamachana are described emphasizing those

aspects of this genus that make it a model organism for this work. Finally the specific

modeling strategies and computational methods used for this study are outlined.

1.1. Previous work on jellyfish dynamics

One of the first studies to mathematically model jellyfish propulsion was by Daniel in

1985 [17]. Daniel compared the cost of locomotion (rate of energy consumption divided

by the product of weight and speed) for unsteady propulsion in hydromedusae to that of

2



vertebrates of similar body mass. He used balsa wood models and live specimens to cal-

culate forces and oxygen consumption associated with jellyfish propulsion. Daniel found

that the cost of the hydromedusae propulsion was nearly an order of magnitude greater

than that of comparable vertebrate swimmers reported in the literature. He attributed

as much as 25 % of the increased cost to accelerating the added mass of the surrounding

fluid. Daniel’s results indicated that formation and shedding of vortices cause the actual

costs to deviate significantly from those predicted by potential flow theory, suggesting

vortex shedding could offset the cost of unsteady propulsion. Unsteady propulsion was

still found to be more costly when compared to undulatory swimming and other forms

of vertebrate locomotion.

Demont and Gosline [20] later modeled the bell of a hydromedusa as a damped har-

monic oscillator. They compared work output predicted by their model with that of

experimentally measured data and found them to be in good agreement [19]. They also

showed that hydromedusae tend to drive their bells at resonant frequencies [20]. Us-

ing their theoretical and experimental results they showed the efficiency of this form of

locomotion is dramatically greater when compared to a single contraction at the same

deformation rate.

Recently there has been research into the physical constraints on morphological char-

acteristics of free-swimming medusae. Dabiri et al. [15] studied the bell morphology of

over 600 extant species of medusae and compared the fineness ratio of their bells (ratio of

bell height to bell diameter). Based on this ratio, organisms were categorized as prolate

(fineness ratio greater than one (1)) or oblate (fineness ratio less than one (1)). Dabiri et
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al. [15] found that physical constraints on swimming mechanisms divide jellyfish loco-

motion into two general categories, small jet propelling organisms and individuals with a

low fineness ratio that use a paddling mechanism. Their survey of jellyfish specimens in-

dicated there is a narrow range of observed fineness ratios as the bell diameter increases,

indicating there are physical constraints on possible bell morphologies.

Colin and Costello [11, 12] studied behaviors and morphological characteristics asso-

ciated with foraging and other types of feeding behavior. Feeding behaviors are generally

categorized as ambush type or foraging type. Ambush predators generally use a pat-

tern of slow cruising until prey is sensed. Then the organism initiates a jet propulsion

mechanism through contraction of its bell to move quickly towards the prey. Ambush

predators tend to feed on larger organisms than foraging predators. Colin and Costello

[11, 12] discovered ambush predatory species have very little overlap among them in

feeding niches. They also found that ambush predators contract their tentacles while

swimming, indicating that swimming and feeding do not generally occur at the same

time. Foraging organisms sample the surrounding fluid for prey as they actively or pas-

sively swim using the paddling mechanism described above. Cruising and foraging types

of feeders experience a great deal of prey overlap and competition among species. In con-

trast to ambush predators, jellyfish that cruise and swim do not exhibit as clear a pattern

of tentacle contraction, indicating that feeding occurs during swimming and cruising.

Recently, numerical simulations of swimming jellyfish have been developed. Lipinski

and Mohseni [47] used finite element methods to solve this fluid-structure interaction

problem and suggested that the vortex patterns generated by the bell motion of Aequora
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victoria, an oblate medusa, draws fluid through its tentacles. They investigated the in-

teraction of the starting and the stopping vortices and how this affected the fluid motion

around the organism. A starting vortex is formed during contraction. The oppositely

spinning vortex that forms as the bell reverses its motion during expansion the stopping

vortex. Lipinski and Mohseni [47] found that in the oblate medusa the starting and stop-

ping vortices interact and partially combine to form a slowly spinning and translating

vortex that lingers in the tentacle region before being shed. They assert that this en-

hances the opportunity for nutrient sampling. In the prolate Sarsia tubulosa the starting

and stopping vortices form at the tips of the bell and inside of the body cavity, respec-

tively, interacting very little. Sarsia tubulosa ejects vortex rings far from the bell with

little opportunity for localized foraging. Lipinski and Mohseni suggest the difference in

the prominence and positioning of tentacles and oral arms in each organism is influenced

by the swimming mechanisms employed to enhance foraging success.

There have also been a number of studies focusing on the efficiency of unsteady

propulsion and bio-inspired design. Dabiri and his group have used digitial particle

image velocimetry (dPIV) and Lagrangian coherent structures (LCS) to characterize

the vortex shedding, mixing, and particle capture associated with jellyfish locomotion

[14, 16, 59, 60, 61]. Lagrangian coherent structure analysis uses finite time Lyapanouv

exponents to characterize particle separation and to to identify boundaries on regions

of mixing in flow. Peng [60] used LCS to study efficiency in jellyfish propulsion. They

found there was a larger region of influence than previously thought, and structures in

the upstream wake have a significant effect on the organism’s downstream wake and

swimming efficiency. Dabiri has also proposed a ”universal” vortex formation number as
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a measure of physical limit on the optimization of propulsion mechanisms [14].

Sahin and Mohseni [67, 68] used moving boundary simulations and flow visualiza-

tion to examine vortex formation patterns in oblate and prolate jellyfish. By examining

the shedding and pairing of starting and stopping vortices as well as swimming velocity,

thrust, and other aspects of efficiency they compared the performance of jetting versus

swimming behavior. They found jetting to be effective for rapid motion, but overall more

costly and less efficient than paddling.

Most of previous work has focused on fluid dynamic mechanisms such as vortex for-

mation and feeding in the context of a swimming organism. This is because the majority

of medusae spend almost all of their time either swimming or cruising. There are some

species, such as members of the genus Cassiopea, that engage in a more sedentary lifestyle.

These animals remain inverted on the bottom and swimming is thus uncoupled from the

pulsing mechanism of the bell, allowing analysis of how the bell motion is used for feeding

and other types of particle transport.

1.2. C. xamachana as a model organism

The genus Cassiopea (Cnidaria, Scyphozoa, Rhizostomae) includes jellyfish found

throughout the world in shallow, low flow velocity marine environments [75, 83]. Al-

though capable of locomotion, the organism spends the majority of its time on the seafloor

with the aboral portion of its bell resting on the substrate (Figure 1.1). Cnidarians such

as C. xamachana that harbor symbiotic zooxanthellae have been shown to be sources

of oxygen and sinks of nitrogen and other inorganic nutrients especially in sunlit areas

[83, 84]. Recent studies have shown that C. xamachana may be used as am indicator of
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ecosystem health and also to detect the presence of certain pollutants due to the incor-

poration of trace elements during particle transfer [75].

The sedentary lifestyle of C. xamachana makes them more dependent than other for-

aging medusae on the nutrient exchange in their immediate environment. Upside-down

jellyfish typically live in areas such as shallow inshore bays, near seagrass beds, and in

mangrove swamps that are characterized by low flow velocities. Maximum flow velocities

through mangrove swamps may reach up to 0.7 m/s, velocities within densely packed

swamps near the sea floor are likely significantly lower, on the order of 1 cm/second

or lower (< O(1) cm/s) [6, 87]. Given their sedentary behavior and low ambient flow

rates, C. xamachana spp. rely heavily on bell pulsations to generate flows necessary food

capture, oxygen exchange, temperature regulation, incorporation of zooxanthallae, waste

elimination, and gamete distribution [5, 83].

The mechanism of the bell contraction and expansion that generates flow appears

relatively simple, but is the result of a coordinated system of muscles, neurons, and vis-

coelastic tissue. Contractions are driven by coronal muscles and pinnate radial muscles

[5]. These muscles are surrounded by an organic matrix called the mesoglea that stores

elastic energy generated during contraction. Once the bell musculature relaxes, energy

stored in the mesoglea drives expansion.

Like other members of the order Rhizostomae, C. xamachana lack tentacles and the

four oral lobes are fused over the central mouth of the organism, forming a canal-like

system of tiny suctioning mouth-like structures opening along eight branching oral arms

as seen in Figure 1.1 [10, 36]. Unlike many other medusae that serve as models for

locomotion studies, the oral arm structure constitutes a large part of the overall body
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of the organism [5, 16, 17, 18, 20, 47, 66, 68]. Sampling and capture of zooplankton

prey occurs when water is driven over and across the oral arms.

Figure 1.1. A diagram showing the main structures of Cassiopea xam-
achana (after Hyman [36]). The most salient features for the study are
the bell and the oral arm appendages.

1.3. Modeling

The work in this chapter capitalizes upon the unique properties of Cassiopea in order

to examine the pulse-driven flow of water over the oral arms uncoupled from swimming.

Since feeding and other types of particle exchange rely on fluid flow around the promi-

nent oral arms, it is important to include the oral arms in examination of flow around

the bell of C. xamachana. Computational studies allow exploration of how the bulk flows

generated by C. xamachana vary with scale, pulse frequency, and characteristics of the

oral arms within and beyond the normal biological range. For instance the flow struc-

tures can be predicted in the absence of the oral arms. This is useful for understanding

how the oral arms can alter the bulk flow and affect rates of particle transfer between an

organism and its surroundings.

In the second chapter a mathematical model of an idealized C. xamachana bell and

oral arms is constructed and used in immersed boundary simulations to examine the
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effects of bell motion and secondary structures on the bulk flow. This model differs

from those of previous studies the oral arms as a separate and prominent structure of

the organism. The flow fields generated by the model are validated with experimental

measurements of flow fields generated by laboratory specimens.

In the third chapter the model is extended to examine how the feeding currents gen-

erated by C. xamachana change in the presence of a slow current. Is the fluid motion

generated by C. xamachana strong enough to influence the flow in a typical ambient

current? A simplified model of a jellyfish in channel flow suggests how the motion of the

organism influences the ambient flow. The channel is modeled as low velocity Pouiseuille

(parabolic) flow. By varying the maximum mid-channel velocity the effect of the channel

flow on flow rates across a jellyfish with and without oral arms can be predicted.

The fourth chapter includes a computational study of the interaction between neigh-

boring jellyfish and considers a more complex model of the pulsing dynamics based on

video recordings of real organisms. Cassiopea have been observed to be solitary as well as

in close proximity to one another [29, 57, 72, 38]. Based on laboratory data and videos

of in situ footage, the pattern of pulsing of jellyfish bells vary greatly over time. The

contraction and relaxation times are regulated by muscle mechanics and the viscoelas-

tic properties of the bell and are relatively invariant, but the length of time between

contractions varies considerably. Experimental data presented here indicates a bimodal

Gaussian distribution of the time between the expansion of the bell and its subsequent

contraction. For the computational experiments, two models are placed side by side in

a simulated tank. The proximity of the jellyfish is varied along with the pulse patterns

and size of the jellyfish. Varying pulse timing patterns are generated using a discrete
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time Markov process. The choice of a Markov process type model is motivated by the

bimodal distribution of pause times and the appearance of a strong dependence on the

current pause length on the length of the next pause in organisms. Quantitative values

of the flow near the outside edges of the jellyfish as well as the flow between the jellyfish

and across the region where the porous layer is present are calculated and compared to

one another.

1.4. Immersed boundary method

The computational studies are implemented using the immersed boundary (IB) method.

The IB method was originally developed by Peskin in the 1970s to simulate blood flow

through the human heart [62]. Since its construction, the immersed boundary method

and others inspired by it have gained popularity as computational solutions to fluid-

structure interactions problems at low to moderate Reynolds numbers (Re) [54]. The

Reynolds number is the dimensionless scaling parameter that reflects the ratio of the

effect of inertial forces in a flow to the effect of viscous forces defined as Re = ρLU/µ,

where ρ is the density of the fluid, L is a characteristic length of the system, U is a

characteristic velocity of the system, and µ is the viscosity of the fluid. The IB method

has been used to simulate biological systems and materials including, but not limited

to, swimming organisms, insect flight, platelet aggregation, cell motility, biofilms, foams,

and parachuting [23, 30, 40, 53, 73, 76]. For details on the derivation of the immersed

boundary method see Peskin [62].

The IB method involves the definition of the fluid and the structure in separate

frames. A viscous, incompressible fluid is discretized at node points on a fixed Carte-

sian grid (the Eulerian frame) with appropriate boundary conditions. The structure is

10



defined as an immersed boundary and is discretized in a moving Lagrangian framework

with reference to the Cartesian grid, but independent of the node points. Defined this

way, the discretization of the fluid grid can be relatively coarse while still allowing for

complex geometries of the structure. Since the fluid grid does need not be redefined

as the boundary moves through it, computational times for simulations are greatly re-

duced. The governing equations for the fluid are the two-dimensional Navier-Stokes (NS)

equations for viscous, incompressible fluid given by

(1.1) ρ

[
∂u (x, t)

∂t
+ u (x, t) · ∇u (x, t)

]
= −∇p (x, t) + µ∇2u (x, t) + f (x, t)

(1.2) ∇ · u (x, t) = 0

where ρ is the fluid density, p (x, t) is the fluid pressure, µ is the dynamic viscosity of the

fluid, u (x, t) is the fluid velocity, f (x, t) is the force per unit area acting on the fluid, x

is the position of the fluid node point, and t is the time. Note that Equation (1.1) is the

momentum equation and Equation (1.2) gives the incompressibility condition.

To approximate the force that the boundary applies to the fluid, moving tether points

may be employed. This method is commonly used when a desired configuration or pre-

ferred mode of active force must be enforced [56, 76, 77]. Here the preferred configura-

tion Y (s, t) will be defined by the position of the constructed mathematical model of the

bell at time t and position s. The boundary is tethered to the preferred configuration by

a set of elastic springs. The stiffness of the springs, k, is chosen so that as the preferred

boundary is stepped through time, a force required to move the actual boundary close

to the preferred position is generated. Thus the structural equation in the Lagrangian
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framework is the simple Hookean relation assuming zero rest-length springs given by

(1.3) F (X (s, t) , t) = k (X (s, t)−Y (s, t))

where F (s, t) is the force per unit length acting on the fluid, X (s, t) gives the Cartesian

coordinates of the boundary. Here the forces acting on the boundary are assumed to be

elastic forces based on Hookean springs, although more complicated rules and relations

can also be included. The spring force in Equation (1.3) may be thought of as a singular

force density defined along the immersed boundary.

The equations defined in the Lagrangian framework (1.3) and in the Eulerian frame-

work (1.1,1.2) are coupled through the following fluid-structure interaction equations:

(1.4) f (x, t) =

∫
F (X (s, t) , t) δ (x−X (s, t)) ds

(1.5)
∂X

∂t
= U (X (s, t)) =

∫
u (x, t) δ (x−X (s, t)) dx

where ds is the arclength along the boundary, and U (s, t) is the local fluid velocity at the

boundary point s. Equation (1.4) communicates the force exerted by the boundary on

the fluid grid using a smoothed two-dimensional Dirac delta function δ (x). The choice

of the 2-D δ-function used here is given by

(1.6) δh (x) =
1

h2
φ
(x
h

)
φ
(y
h

)
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where

(1.7) φ (r) =


1
4

(
1 + cos

(
πr
2

))
|r| ≤ 2

0 otherwise

and is detailed in [64]. The force that is now defined in the Eulerian framework is added

to the NS equations through the force term f (x, t) in Equation (1.1). The NS equations

are solved using a fluid solver appropriate for the fluid domain and boundary conditions.

For each of the projects described here, the underlying fluid domain is a square N ×N

periodic domain, so that a Fast-Fourier Transform-based fluid solver is appropriate. Once

the NS Equations have updated the fluid information for the time step, Equation (1.5) is

used to interpolate the local fluid velocity at each boundary point and move the boundary

at the calculated velocity. This enforces the no-slip condition associated with a viscous

fluid.

The basic steps of the IB method may be summarized as:

(1) A force is imposed on the immersed boundary.

(2) The force is translated to the fluid grid using a smoothed approximation to the

Dirac δ-function.

(3) The fluid equations are solved using an appropriate numerical solver.

(4) The boundary is moved at the local fluid velocity which is found through inter-

polation using the smoothed δ-function to enforce the no-slip condition.

(5) The simulation advances to the next time step.

At the beginning of each time step, the above list is initiated and performed to update

the fluid velocity and pressure as well as the position of the immersed boundary. The
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procedure is continued at each time step until the final time is reach. The final time

is prescribed so that the organism models complete the desired number of pulses. See

Appendix A for more details on the discretization and implementation of the immersed

boundary method used in this dissertation.
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CHAPTER 2

Fluid Flow around the Bell of the Upside-Down Jellyfish

Cassiopea xamachana



2.1. Introduction

A two-dimensional (2D) model of C. xamachana was developed in order to examine

the flow of fluid around the organism. The model was adapted from previous models of

jellyfish to simulate C. xamachana [17, 20, 15]. In previous work, the cross-sectional

shape of the bell was modeled as a time-varying hemi-ellipsoid. Here the shape was

modified to more closely match that of C. xamachana. In addition a porous layer was

added to represent the region of the oral arms. The timing of the bell pulses was deter-

mined using video recordings of laboratory specimens. The model was used to drive the

boundaries in the immersed boundary method, generating the forces necessary for the

preferred motion of the bell.

Exploration of a wide parameter space was used to test the physical limits of trans-

port mechanisms and to identify cooperative or complementary feeding and exchange

mechanisms. In this chapter, the contraction kinematics, the presence and porosity of

the oral arms, and dynamic scaling were varied across and beyond the normal range of

biologically relevant parameters. Net flow rates around the bell were calculated to exam-

ine fluid movement associated with the feeding mechanisms and the effect of changing

parameters on bulk flow properties.

2.2. Materials and Methods

2.2.1. Measurements. Specimens of C. xamachana were obtained from Carolina Bio-

logical Supply Company (Burlington, NC) and Gulf Specimen Marine Laboratories, Inc.

(Panacea, FL) and maintained in the laboratory in standard 29-gallon aquaria. Video

recordings of the organisms were obtained using a Panasonic Palmcorder (Model No.

PV-GS300, 29.97 fps.) The timing of the pulse cycle was analyzed for 410 seconds of
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movement using iMovie software by Apple, Inc. to obtain a realistic cycle pattern. The

contraction of the bell was defined as the time during which the bell moved toward the

central axis. The first pause was defined as the time during which the bell appears mo-

tionless before beginning its expansion. The expansion was defined as the motion of the

bell out from the central axis of the organism. Finally the second pause was defined as

the time that the bell appears motionless before the next contraction begins. See Figure

2.1 for examples of individual fields from the recordings. This pattern of motion was

used as an input for the mathematical model of the organism.

The times determined from the video recordings were 0.6 ± 0.17 s for expansion,

Figure 2.1. A time series showing the pulse of a C. xamachana bell. Left
to right, top to bottom: a)The bell in a relaxed state. b)During contraction
the bell moves up and toward the center of the organism. c)Once fully
contracted the bell pauses slightly. d)The edges of the bell then begin to
move down and away from the center of the organism. a)The relaxed bell
pauses before the next contraction.

0.13 ± 0.06 s for the first pause, 0.7 ± 0.13 s for expansion, and 2.0 ± 1.30 s for the

second pause with a sample size of 150 cycles from a single organism. The behavior of

the organism was variable. These parameters were used as biologically reasonable but in

no way a comprehensive description of the motion of the organism.
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2.2.2. Construction of the model. An approximate model of the primary bell shape

was developed for use as an input into the simulations. Extending previous models

[17, 47, 86, 66] that describe jellyfish using hemiellipsoids or functions fit to digitized

bell shapes, a simple mathematical model was constructed that captures the fundamental

features of the organism. The models also included a representation of the oral arms as

a separate structure. This addition is novel since previous studies typically ignore the

oral arms since the focus organisms in these studies have reduced oral arms structures.

A simplified two-dimensional model of the bell of C. xamachana was constructed to

make multiple parameter sweeps feasible. The aboral region resting against the substrate

was defined as a line of length L. The choice of a line was justified by the fact that there

is no flow under the aboral side of the jellyfish bell and in fact this area of the jellyfish is

often lightly attached to the seafloor by suction[5]. This attached portion only slightly

dilated during pulsation so this section was assumed to be of constant length throughout

the motion. Two reference configurations were defined as a completely contracted state

and a completely expanded state. The curve of each of these configurations was defined

by Equation (2.1)

(2.1) (x, y) (θ) =

(
L

A

)(
cos
( π
B

)
+ 2πθ, C sin

( π
B

)
+ 2πθ

)

where A = 16, B = 2, and C = 1 for the expanded sides of the bell and A = 4,

B = −1, C = 2, and θ is equal to the angle between the major axis of the ellipse

parallel to the Cartesian y-axis and the line drawn from the center of the ellipse to the

corresponding point on the boundary for the contracted sides of the bell. A, B, and

C were chosen such that the conformations have relatively simple geometries while also
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giving a reasonable approximation of the morphology of the organism. To determine

intermediate conformations between fully expanded and fully contracted configurations,

the position was linearly interpolated using the calculated motion times from the video

recordings. To interpolate, Equation 2.1 becomes

(2.2) (x, y) (θ) =

(
L

A (t)

)(
cos

(
π

B (t)

)
+ 2πθ, C (t) sin

(
π

B (t)

)
+ 2πθ

)

where A (t) , B (t) , and C (t) change in time in order to contract and expand the bell

margins. Let the contraction start at t = 0. Let the time t1 be the time when the first

contraction ends, t2 the time when the first pause ends, t3 the time when the relaxation

ends, and t4 the time when the second pause ends. A (t) , B (t) , and C (t) were then

given as

(2.3)

A (t) = 16− 12
(
t
t1

)
B (t) = 2− 3

(
t
t1

)
C (t) = 1 +

(
t
t1

)
0 ≤ t < t1

A (t) = 4 B (t) = −1 C (t) = 2 t1 ≤ t < t2

A (t) = 4 + 12
(
t−t2
t3−t2

)
B (t) = −1 + 3

(
t−t2
t3−t2

)
C (t) = 2−

(
t−t2
t3−t2

)
t2 ≤ t < t3

A (t) = 16 B (t) = 2 C (t) = 1 t3 ≤ t ≤ t4

Recall the Reynolds number (Re) is the dimensionless scaling parameter that reflects

the ratio of the effect of inertial forces in a flow to the effect of viscous forces. For Re� 1,

viscous forces are dominant in the system. ForRe�1, inertial forces are significant while

viscous forces are often negligible. Here Re was defined using the Equation Re = ρLU/µ,

where ρ was the density of the fluid, L was the length of the aboral region of the bell, U

was the average velocity of the tip of the bell during contraction, and µ was the viscosity
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of the fluid. The Re for adult C. xamachana is generally in the hundreds. In this chapter

the parameters were computationally explored at Re 450, which was within the normal

range of the adult organism. Also considered were parameters at Re 45, appropriate for

the juvenile ephyra that do not remain on the ocean floor. This parameter choice was

included to examine the size limits of pulse-driven fluid transport.

The effect of pauses between pulses (the so-defined second pause) on the resulting fluid

motion were also explored. From the analysis of video recordings, the organism exhibit

two types of pauses. The representative organism displayed a second pause between

1.0-3.5 seconds, while the remainder of the time a slight delay between 0.13 − 0.4s was

observed. It is important to note that there was noticeable variation in the pulsing

frequencies of C. xamachana and other jellyfish [11], and the values used here were

selected from a representative organism. The nature of the pauses was explored in more

detail in Chapter 4. In the numerical simulations of the current chapter, the pause time

was varied to test the effect of the length of the pause on the bulk flow around the bell.

The computational model thus allowed one parameter to be varied in a controlled and

specified manner.

To examine the effect of the oral arms on the bulk flow, a simple model of the oral arms

was constructed as a porous barrier placed just above the top of the bell (Figure 2.2.) This

model was used to provide an obstruction to flow while still allowing some fluid transport

through the layer. The flow through the elaborate oral arms is obviously more complex,

but modeling it represents a challenging multiscale problem. It is currently not feasible

to accurately capture both the large-scale flow patterns generated by the bell while also

resolving the fine details of the flow through the branches of the oral arms. Some of the
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Figure 2.2. A diagram showing the jellyfish model. The porous layer is
shown in yellow. The seafloor and main part of the jellyfish bell are shown
in green and black.

challenges of even relatively simple fluid-structure interaction problems were discussed

in [7] and [35]. The model presented here represents a first step in understanding the

effect of the oral arms on the bulk flow generated by the jellyfish. The porosity of the

oral arm model allows water to flow through this layer, and this was one of the most

obvious features that should be included in this study on fluid transport. For a first

approximation of porosity, a homogeneous material was assumed. The computational

methods used to describe the porous layer are given below.

The complex structure of the eight oral arms was modeled as a porous layer using the

method derived by [41, 73]. Permeability was incorporated into the immersed boundary

method using Darcy’s law which states that the relative velocity of a fluid through a

porous medium is proportional to the pressure difference across the boundary:

(2.4) q =
−κ
µ

[P ]

where q is the Darcy flux (discharge per unit area), κ is the permeability of the layer,

and [P ] is the pressure drop across the layer.

Equating the flux to the difference between the local fluid velocity and the boundary
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velocity results in an expression for the slip between the boundary and fluid that is

proportional to the permeability and the pressure drop. This was incorporated into the

immersed boundary method by modifying the velocity of the boundary. Rather than

moving the boundary at the local fluid velocity, a slip was used that was proportional to

the force per unit area acting normal to the boundary (which is equivalent to the pressure

drop) and the porosity. Equation (6) was modified as follows:

(2.5)
∂X

∂t
= U (s, t) + λ (F (s, t) · n) n

where λ was a proportionality constant termed the porosity by Kim and Peskin [41].

Note that this was equivalent to reducing the drag force applied to the fluid by the

boundary. The physical interpretation of the porosity coefficient, λ, is that it is equal to

the number of pores in an interval multiplied by the conductance of the material per unit

arc length. The relationship between the porosity, λ, and the permeability, κ, was given

by λ = κ/ (Aµ), where A was the area of the porous material. Kim and Peskin (2006)

used the porosity coefficient in the slip term while Stockie (2009) used the permeability,

a value that can be readily found in the literature for a variety of materials. The effective

porosity or permeability of jellyfish oral arms are not known. For these simulations

several orders of magnitude of values for the porosity were considered. For the remaining

simulations a value was selected that produced flow profiles similar to those observed

experimentally. This value was chosen so that there was substantial flow through the

porous layer but the layer clearly altered the resulting flow patterns.

To model the oral arms in the simulations that follow, a line was defined of length L

(the same length as the aboral region of the bell) as a reasonable approximation of length
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based on qualitative observations. The line was positioned just above the opening of the

bell and was tethered in place using stiff Hookean springs that resisted deformations in

this part of the boundary. As a first approximation, the oral arms model was held in

place and maintained a constant porosity.

Simulations were performed on a 512 × 512 periodic grid. The size of the domain

was 4L × 4L the length of the jellyfish body. A box connected to tether points and

stiff springs was added L/8 inside the edges of the domain to simulate the conditions in

the laboratory tanks used for dPIV. The parameters used in the numerical simulation

are given in Tables 2.1 and 2.2 Times for the contraction, pauses, and relaxation were

Table 2.1. Values of all parameters in the simulations unless otherwise noted

Parameter Value
Density [ρ] (kg/m3) 998
Body Length [L] (m) 0.0508
Porosity coefficient [λ] (m2/ (N · s)) 0.0000072
Cycle period [t1 + t3 − t2] (s) 1.3
Duty cycle [t1/t4] 0.4615
1st pause [t2 − t1] (s) 0.13
2nd pause [t4 − t3] (s) 2.0
Total period [t4] 3.43

Table 2.2. Default values of all parameters in the simulations unless oth-
erwise noted

Numerical Parameter Value
timestep [dt] (s) 0.00006096
Cartesian grid spatial step [h] (m) 0.000396875
Lagrangian spatial step [ds] 0.000198438
Domain size (m) 0.2032
Stiffness coefficient, bell and box [k] (N/m) 13987028
Stiffness coefficient, porous layer [kp] (N/m) 139870.28
Fluid grid size 512 x 512

taken from video recordings as described previously. The mathematical model without

the addition of the oral arms structure was referred to as the bell-only model. The
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models incorporating a porous layer and an impermeable layer will be referred to as the

porous model and the impermeable model, respectively. Re was varied by changing the

dynamic viscosity of the system. This method of changing Re has been used previously

as an efficient means of exploring a large parameter space without requiring changes in

multiple parameters (velocities, length scales) [4, 81].

2.3. Results

2.3.1. Changes in Reynolds number. Vorticity plots with velocity vectors are shown

for Re = 45 and Re = 450 in Figure 2.3. Frames a-d show Re = 45 and frames e-h show

!

Figure 2.3. Vorticity plots from numerical simulations with overlain ve-
locity vector fields. Warm colors show regions of positive vorticity while
cool colors are areas of negative vorticity. Panels (a) through (d) show vor-
ticity plots for the porous model at Re 45 after (a) the second contraction,
(b) the second full cycle, (c) the fourth contraction, and (d) the fourth full
cycle. Panels (e) through (h) show corresponding plots at Re 450.

Re = 450. Snapshots were taken during the second pulse cycle at the end of contraction
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(a,e) and at the end of expansion (b,f). Snapshots are also shown during the fourth cycle

at the end of contraction (c,g) and at the end of expansion (d,h). Warm colors represented

regions of positive vorticity and cool colors represent regions of negative vorticity. The

target boundary (purple) and the actual boundary (black) remain indistinguishable to

the naked eye. For Re = 45, starting vortices formed at the tip of the bell margin

during the beginning of contraction, and oppositely signed stopping vortices formed at

the beginning of expansion. At the end of each phase vorticity quickly dissipates, and the

vortices did not appear to separate from the tip of the bell. For Re = 450 starting and

stopping vortices formed at the beginning of contraction and expansion, respectively. In

contrast to the low Re case the vortices did separate from the tips of the bell margins

and were advected with the fluid along the porous layer. The fluid along the floor was

pulled towards the bell on average during the cycle.

To quantify the bulk flow near and across the bell in the simulations the volumetric

flow rate through a region was calculated. To calculate the VFR a ’flow’ line was drawn

in a region so that the line was normal to the flow in the direction of interest (Figure

2.4.) The instantaneous velocity in the normal direction was integrated along the flow

line and was normalized against the length of the line to obtain the volume flux per unit

length as

(2.1)
V

l
=

∫
S

u · ndS

where S was the flow line, u was the velocity along the line, n was the unit vector normal

to the flow line, V was the volume flux, and l was the length of the flow line. In this

chapter, two flow lines were defined. The first flow line was drawn vertically near the
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bottom of the tank to give a measurement of horizontal flow toward the bell (Figure 2.4).

This flow line was referred to as the horizontal flow line (HFL), and its length was set

Figure 2.4. The fully expanded model of the bell with the oral arms
modeled as a porous line. The substrate has been added to the model as
a straight line one spatial gridpoint away from the model. The green line
shows the positioning of the horizontal flow line (HFL) and the yellow line
shows the position of the vertical flow line (VFL) where volume fluxes are
calculated.

equal to the height of the bell at a distance 0.4L away from the outer edge of the relaxed

bell. The second line, the vertical flow line (VFL), was drawn horizontally and overlaid

on the center of the porous structure. The VFL’s length was set to be L− 3 ∗ ds. where

ds was the spatial step size on the Lagrangian grid, to ensure the flow line was in the

region of the porous structure throughout the simulations.Typically ds was set to 1
2

of

the spatial step size on the Cartesian grid, h.

The flow rate along the HFL (HFR) was normalized by dividing by the length of the

HFL. Positive values of the HFR always corresponded to flow toward the bell while neg-

ative values corresponded to flow away from the bell on both sides of the model. In the

case of the vertical flow line (VFL), the flow rate across the line (VFR) was normalized

by dividing by the length of the VFL. Positive values corresponded to flow away from the

bell while negative values corresponded to flow toward the bell. For the HFRs the large

increase in flow toward the bell corresponded to the beginning of the bell contraction.
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The decrease in the flow toward the bell occurred during the first pause and the expan-

sion phase. During the second pause (if it was present), the flow toward the bell slowed

and in some cases reversed. For the longer pauses a gradual increase in flow toward the

bell and a plateauing of the flow rate was observed before the next contraction began.

For the VFRs, a similar pattern was observed for flow away from and toward the porous

layer. Examples of the general pattern of flow rates corresponding to each phase of the

pulse cycle are given in Figure 2.5.

The HFR at Re = 45 and Re = 450 for models both with and without the porous
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Figure 2.5. A diagram of the pattern of the model organism’s pulse cycle
for the HFR(left) and VFR(right). The cycle starts at the beginning of
the domain at t = 0 s. The region between the beginning of the diagram
and green line corresponded to the contraction of the model. The region
between the green and white lines corresponded to the short pause between
contracting and relaxing. The region between the white line and the blue
line corresponded to the relaxation of the bell. The region between the
blue line and the red line corresponded to the second longer pause at the
end of the cycle.

structures are shown in Figure 2.6 over four contraction cycles. Positive flow rates rep-

resent fluid motion towards the bell. For each simulation, the maximum HFR occurred

during the contraction period of the cycle. During bell expansion, the HFR quickly de-

creased and became negative (flow moves away from the bell). After the end of the bell

expansion, the HFR quickly approached zero. The minimum HFR (greatest flow rate
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Figure 2.6. Volumetric flow rates along the HFL describing horizon-
tal flow moving towards the bell are compared among simulations of four
different models. The bell-only model at Re 45 is shown in pink, almost
completely overlapped by the porous model (blue). A bell-only model
(green) and a porous model (black) are also shown. These plots indicate
the normalized horizontal flow from the left of the domain toward the model
organism. Positive flow indicates fluid moving toward the structure, while
negative flow indicates flow moving away from the structure.

away from the bell) decreased after each pulse in the Re = 450 simulations with the

added porous layer. In the other cases, substantial amounts of backflow away from the

bell during expansion persisted for all cycles. The VFR is shown in Figure 2.7. The

maxima and minima of the flow rates occur during the contraction and expansion, re-

spectively. The magnitude of the VFR quickly dropped to zero for Re = 45 when the

jellyfish is at rest. For Re = 450 the more substantial flow persisted through the porous

layer during relaxation.

2.3.2. The effect of porosity. The effect of the oral arms on the flow was examined

by comparing the bell-only model to a model incorporating a permeable structure as well

as to a model incorporating an impermeable structure. Representative vorticity plots

with velocity vectors of the impermeable layer are shown in Figure 2.8 during the second

cycle (a,b) and the fourth cycle (c,d). Note that the way in which the starting and

28



No arms Re 45
Porous Re 45
No Arms Re 450
Arms Re 450

0 1 2 3 4 5 6 7 8 9 10 11 12 13

10 -3

-8

-6

-4

-2

0

2

4

6

time (seconds)

v
o
lu
m
e
 (
m
2
/s
)

Figure 2.7. Volumetric flow rates along the VFL describing vertical flow
moving through the porous layer region are compared among simulations
of four different models. The bell-only model at Re 45 is shown in pink,
almost completely overlapped by the porous model (blue). A bell-only
model (green) and a porous model (black) are also shown. These plots
indicate the normalized vertical flow from through the region where the
porous structure (if present) is defined. Positive flow indicates fluid moving
up away from the structure, while negative flow indicates flow moving down
into the cavity of the structure.

stopping vortices were advected in the fluid was dramatically altered by the layer. In

the case of the porous layer in Figure 2.3(e-h), the vortices swirl around the outer edges

of the simplified oral arms. For the case of the impermeable layer, a pair of oppositely

spinning vortices was formed at each bell margin during the initial stages of contraction

(in contrast to the formation of one starting vortex formed at each bell margin). This pair

of vortices was quickly advected away from the bell. During expansion, another pair of

oppositely signed vortices formed at each bell margin that remains trapped between the

bell and oral arms. In the absence of the oral arm layer (not shown in figures), starting

and stopping vortices formed during each cycle and swirl around the bell margins.

Plots of the HFRs vs. time for a porous layer model, an impermeable layer model

and the bell-only model at Re = 450 are shown in Figure 2.9. The maximum flow was

achieved during the contraction for the bell-only model and the porous model, while
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the maximum HFR for the impermeable model occurred during the contraction in some

pulses and the relaxation during others. The minimum HFR for the impermeable model

decreased after each successive pulse cycle. The VFR is shown in Figure 2.10. The

impermeable model showed much less flow than the porous and the bell-only models,

and the flow that was present was due to small deformations of the layer. The porous

model and the bell-only model showed similar flow patterns throughout all four pulse

cycles.

Different values of the porosity parameter λ were compared for the porous model at

Re = 450. Figure 2.11 shows the HFR. The HFR pattern was similar among them, but

different in magnitude along the HFL throughout the pulse cycle. As the porosity of the

porous layer increases, the maximum flow rate increases. As the porosity decreases, the

flow rates approached the impermeable case as expected. The VFR is shown in Figure

2.12. The pattern of exchange was similar across the VFL for each value of the porosity

with an increase in the maxima and minima similar to those of the HFR.

To test the choice of the porosity coefficient used in this in this chapter, λ was varied

over 4 orders of magnitude. The VFRs describing vertical flow moving through the porous

layers are shown in Figure 2.13. The dashed blue line denotes the value of the porosity

chosen for the bell-only cases. Notice that when λ = 7.2× 10−10 the VFR at the porous

layer was similar to the case of the solid layer. For values of λ between 7.2 × 10−7 and

7.2× 10−6 the difference in the volumetric flow rates was negligible despite the order of

magnitude difference in λ. These results suggest that very small values of porosity would

yield results similar to a solid layer while large values of the porosity would have little
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effect on the flow. Intermediate values of λ altered the bulk flow while allowing some

flow through the layer. The result was similar for a large range of intermediate λ.

2.3.3. The effect of pauses. Vorticity plots with velocity vectors of the flow generated

by a contracting and expanding bell without pauses are shown in Figure 2.14. The vortic-

ity during the second cycle is shown immediately after contraction (a) and immediately

after expansion (b). The vorticity during the fourth cycle is also shown after contraction

(c) and expansion (d). Continuous pulsing resulted in a train of vortices being advected

vertically up and away from the model. In comparison, when pauses were included (Fig-

ure 2.3 e-h) the vortices moved around the porous layer and mostly dissipated before the

next cycle.

The HFRs were compared for a porous model with different pause times between

complete expansion and the next contraction as shown in Figure 2.15(a-c). The maximum

and minimum HFRs occur during contraction and expansion, respectively. In general,

the shorter the pause time the greater the magnitude and duration of backflow during

expansion. A net flow towards the bell was also generated during the relaxation that

decreased for pause times greater than 2 seconds.

2.3.4. Comparison of Simulations to DPIV data. The vorticity plots from the

simulation with porous arms in Figure 2.3 were compared to data obtained using digital

particle image velocimetry (PIV) in Figure 2.16 from Santhanakrishnan et al. (submit-

ted). Particle image velocimetry was used to obtain instantaneous information on the

flow field surrounding a live C. xamachana by recording and processing single or multiple

exposed images of tracer particles suspended in the fluid. The particle images were then

processed using correlation-based techniques to construct the velocity vector field of the
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fluid flow [1, 85]. Figure 2.16 shows the velocity vector fields generated by the pulse

cycle near the end of contraction (a) and near the end of expansion (b). Comparing

Figure 2.16(a) to 2.3(g), the presence of a clear starting vortex was seen at the end of

contraction with strong flow moving along the floor towards the bell. Flow fields at the

end of expansion in Figure 2.16(b) and 2.3(h) show continued flow towards the bell, the

strongest flow upward near the edge of the orals arms, as well as flow across the top of

the oral arms. Both the bell-only model and the impermeable model did not exhibit this

flow structure. This indicates that both the presence of an obstruction (such as the oral

arms) and its porosity strongly influenced the dynamics of the bulk fluid flow.

The velocity fields to the left of the bell in both the PIV and the porous model show a

constant flow toward the bell. Given the position of the HFL, a positive HFR represents

net flow toward the bell in that region, while a negative value indicated flow away from

the bell. In the PIV data, constant flow toward the bell from the area near the floor

was seen in the vector field plots. In Figure 2.7, after the third pulse almost all of the

flow along the substrate moves toward the bell. This was not the case in the bell-only

model and the impermeable model simulations (see Figures 2.7 and 2.9), and these results

suggest that the oral arms play a role in directing the flow toward the bell.

2.4. Discussion

The results presented here suggest that 1) feeding from flows driven by bell contrac-

tions in a benthic jellyfish may only be effective for Re on the order of 100 or higher, 2)

the porous structure of the jellyfish oral arms substantially altered bulk flow properties

around the organism, and 3) changes in the duration of the pause between bell contrac-

tions dramatically altered the resulting flow fields. Furthermore, the results suggest that
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the role of secondary structures such as the oral arms should be taken into account when

designing models of some organisms, particularly oblate jellyfish with prominent feeding

structures. In many oblate jellyfish, the oral arms comprise a substantial portion of the

body mass of the organism and often extend past the edges of the bell into the region

of vortex formation [8, 36]. Previous models of jellyfish have focused on how flow was

driven to these structures, but results here indicate that these structures may also alter

the larger scale flow field. The results support the hypothesis that jellyfish use bell pulsa-

tions not only for locomotion but also to move water and food particles to the secondary

mouths. C. xamachana in particular rely on the ability to drive fluid for sampling, but

other jellyfish that slowly cruise may be capitalizing upon this mechanism to compensate

for the high cost of locomotion.

For Re = 45 which was below the normal biologically relevant adult range, little net

flow was brought to the oral arms via the bell pulsations (see Figure 2.7). A careful ex-

amination of the flow fields also indicates that little mixing occurred around the region of

the oral arms. This suggests that there was a limit to the utility of pulsation as a particle

transfer mechanism in the intermediate Re range. It is not surprising that juvenile C.

xamachana do not and rest inverted on the ocean floor until they reach a bell diameter

of about 2 cm or more [8]. Figure 2.3 shows that at higher Re fluid moves across the

oral arms, indicating that the pulsatile motion promotes water sampling in this range.

Added together, this suggests that the motion toward the bell and the increased sampling

enhances the ability of the bell to bring draw in materials from the water adjacent to

the substrate as well as the ability to sample the incoming fluid. Enhancement was not

observed at lower Re.
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Figures 2.9 and 2.10 indicate that the presence of an impermeable obstruction in the

path of the flow not only prevents exchange across the secondary structure where feeding

would occur, but it also directs flow from the substrate away from the bell, reducing the

likelihood of particle sampling from the floor. A solid obstruction would thus be less

useful in enhancing feeding through pulsation. The flow pattern in Figure 2.10 shows

that without the secondary structure present, the fluid moved back and forth as it moves

toward the bell. This suggests that the porous layer plays an important role in augment-

ing fluid flow to the bell.

Laboratory observations show that C. xamachana exhibit different pause durations

between pulses. As shown in Figure 2.14(a), without a pause the flow does not move

increasingly towards the bell with each cycle. This indicates a reduction in the amount

of new fluid brought to the bell along the floor with each pulse. When the pause is

included in the simulation, the flow immediately above the oral arms moves across the

layer with net flow at the oral arms moving downwards and potentially bringing food to

the secondary mouths. Both types of cycles were observed in C. xamachana, and these

results suggest that slight modifications in the pulsing dynamics could significantly alter

the resulting flow fields. For example, pauses might allow for the water that was brought

into the bell to be sampled for a longer period of time. Pulsing cycles without pauses

might be used for swimming and to move fluid up and away from the animal.
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Figure 2.8. Vorticity plots for the impermeable model from numerical
simulations with overlain velocity vectors. Warm colors show regions of
positive vorticity while cool colors are areas of negative vorticity. Panels
(a) through (d) show vorticity plots for the impermeable model at Re 450
after (a) the second contraction, (b) the second full cycle, (c) the fourth
contraction, and (d) the fourth full cycle.
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Figure 2.9. Volumetric flow rates along the HFL describing horizontal
flow moving towards the bell were compared among simulations of three
different models. The bell-only model at Re 450 is shown in blue. The
porous model (green) and the impermeable model (pink) are also shown at
the same Reynolds number. These plots indicate the normalized horizontal
flow from the left of the domain toward the model organism. Positive flow
indicates fluid moving toward the structure, while negative flow indicates
flow moving away from the structure.
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Figure 2.10. Volumetric flow rates along the VFL describing vertical
flow moving through the porous layer (if present) were compared among
simulations of three different models. The bell-only model at Re 450 is
shown in blue. The porous model (green) and the impermeable model
(pink) are also shown at the same Reynolds number. These plots indicate
the normalized vertical flow from through the region where the porous
structure (if present) is defined. Positive flow indicates fluid moving up
away from the structure, while negative flow indicates flow moving down
into the cavity of the structure.
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Figure 2.11. Volumetric flow rates along the HFL describing horizontal
flow moving towards the bell were compared among simulations of three
different models. The porous model at Re 450 is shown in black. Models
with a porosity coefficient that is 20% of the porous model (pink) and
with a porosity coefficient that is 320% of the porous model (blue) are also
shown at the same Reynolds number. These plots indicate the normalized
horizontal flow from the left of the domain toward the model organism.
Positive flow indicates fluid moving toward the structure, while negative
flow indicates flow moving away from the structure.
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Figure 2.12. Volumetric flow rates along the VFL showing vertical flow
through the porous layer were compared among simulations of three differ-
ent models. The porous model at Re 450 is shown in black. Models with
a porosity coefficient that is 20% of the porous model (pink) and with a
porosity coefficient that is 320% of the porous model (blue) are also shown
at the same Reynolds number. These plots indicate the normalized verti-
cal flow from through the region where the porous structure (if present) is
defined. Positive flow indicates fluid moving up away from the structure,
while negative flow indicates flow moving down into the cavity of the struc-
ture.
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Figure 2.13. Volumetric flow rates along the VFL describing vertical
flow moving through the porous layer for values of the porosity, λ, ranging
over 4 orders of magnitude. The dashed blue line denotes the value of the
porosity chosen for the bell-only cases. Notices that when λ = 7.2× 10−10

that the volumetric flow rate at the porous layer was similar to the case
of the solid layer. For values of λ between 7.2 × 10−7 and 7.2 × 10−6 the
volumetric flow rates at the layer were very similar.

a b

c d

Figure 2.14. Vorticity plots from numerical simulations with overlain
velocity vector fields for the porous model without a pause. Warm colors
show regions of positive vorticity while cool colors are areas of negative
vorticity. Vorticity fields are after (a) the second contraction, (b) the second
full cycle, (c) the fourth contraction, and (d) the fourth full cycle.
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Figure 2.15. Volumetric flow rates were compared among simulations of
three different porous models. Top: A model with no pauses is shown.
Middle: The standard porous model with a pause of 2 seconds between ex-
pansion and the following contraction is shown. Bottom: A model with a
pause of 3.5 seconds is shown. These plots indicate the normalized horizon-
tal flow from the left of the domain toward the model organism. Positive
flow indicates fluid moving toward the structure, while negative flow indi-
cates flow moving away from the structure.
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a

b

Figure 2.16. Phase-locked velocity vector fields of the flow generated by
a C. xamachana medusa of 6 cm maximum bell diameter using particle
image velocimetry. The results shown were obtained by averaging over 10
pulsing cycles, where the positions of the bell and oral arms were identical
across all the individual realizations used toward the averaging process. (a)
shows the pulsing phase corresponding to full contraction of the bell and
(b) shows the phase corresponding to full relaxation of the bell.
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CHAPTER 3

A Numerical Study of the Effects of Bell pulsation of the

Upside-down Jellyfish Cassiopea xamachana on the Currents

in Channel Flow



3.1. Introduction

In this section, the jellyfish model developed in the previous chapter was implemented

while immersed in a channel flow. Since C. xamachana naturally inhabits shallow, low-

flow environments it is important to examine the interaction between the pulse of the

organism and a low-velocity ambient flow. The goals in this chapter were 1) to continue

to investigate whether the addition of a porous secondary structure influences the flow

field compared to a more commonly assumed bell-only model; 2) to examine whether

relevant ambient flow conditions dominate the effects of the pulsing bell; and 3) examine

the effects of pause length on the bulk flow structure. Flow environments in typical

C. xamachana habitats measured approximately 10 m below the surface of the water

have an average maximum velocity on the order of 10 cm/s with lower velocities on the

order of 0.1-1 cm/s likely closer to the seafloor [72, 38, 57, 42, 52, 79]. Although

actual flow experienced by C. xamachana is variable in both direction and speed, in this

simplified model a constant direction of flow was initially assumed. The constant flows

in each simulation were varied from 0.0 to 3.0 cm/s, which was taken as a reasonable

approximation of the ambient velocity experienced by the organism. In addition, variable

flow simulations were performed with a maximum mid-channel flow velocity of 1.0 cm/s.

3.2. Materials and Methods

3.2.1. Immersed Boundary Method with Channel Flow. A rigid wall on the top

and the bottom of the domain was used to simulate the sides of the channel as shown in

Figure 3.1. The inflow from the left side to the right side of the domain was simulated

using a ramping method described below. The top and bottom of the channel were

approximated by target points and boundary points tethered together by stiff springs in
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Figure 3.1. A cartoon of the channel flow simulation set-up. The top
of the fluid domain extends throughout the green area. The channel flow
region was between the two horizontal magenta lines. The jellyfish model
and porous layer are shown in magenta and black, respectively. The bound-
aries on the fluid domain were periodic on all sides. Flow was driven from
left to right.

the same manner as the box in Chapter 1. The jellyfish model was placed on the bottom

wall of the channel (Figure 3.1) and was pulsed using the same linear interpolation

described in Chapter 1.The actual fluid domain had periodic boundary conditions along

each border. Fluid re-entering the periodic domain from the other side was accounted for

by the methods described below. By defining the channel in this way, the fluid equations

were solved using Fast-Fourier Transform methods, allowing more rapid computation.

To drive flow in the channel, an external force was applied to the fluid through a

term in the Navier Stokes equations, fext. The force was applied along the height of the

channel on a strip 0.33 cm in width and 6.3 cm upstream from the body of the jellyfish.

A preferred parabolic profile was defined for flow through the channel. The external force
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was determined by

(3.1) fext = −kR (ut (x, t)− u (x, t))

where ut (x, t) was the desired flow velocity, u (x, t) was the actual fluid velocity, and kR

was a proportionality constant chosen so that the difference between ut (x, t) and u (x, t)

was less than 0.1%. Equation 1.1 now becomes

(3.2) ρ

[
∂u (x, t)

∂t
+ u (x, t) · ∇u (x, t)

]
= −∇p (x, t) + µ∇2u (x, t) + f (x, t) + fext

To determine the preferred velocity along the strip, let y1,y2 be the y-coordinate of

the bottom and of the top of the channel, respectively. Let Umax (t) be the target mid-

stream velocity in the x-directon at y3 = y1+y2
2

and time t. The profile along the height

of the channel was then determined by

(3.3) ut (x, y, t) =


a (t) (y2 + by + c) inside channel

0 outside channel

where

(3.4)

a (t) = Umax(t)
(y1−y3)(y2−y3)

b = − (y1 + y2)

c = y1y2

The target velocity in the y-direction was set to zero (vt (x, y) = 0) along the forced

strip region. To avoid shocks and instability from the initialization of channel flow, the

mid-channel velocity was linearly ramped from zero to the final desired velocity over 10
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seconds. If Ufinal was the final desired mid-channel velocity then at time t during the

ramping Umax (t) =
Ufinal
r

t. Once the final profile was reached, it was maintained for the

remainder of the simulation. As the channel flow exited the periodic domain on the right

and re-entered from the left, the forcing strip acted as a virtual ”flow straightener” to

prevent the periodicity from disrupting the inflow of the channel. This method has been

used previously to simulate channel and pipe structures such as arterial walls and the

embryonic heart using the IB method [31, 69].

3.2.2. Variable flow environments. In addition to the constant velocity flows de-

scribed above, variable flow environments were examined as well. To vary the flow,

instead of increasing the maximum mid-channel velocity in a linear fashion, the mid-

channel velocity was determined by changing a (t) in Equation 3.4 so that

(3.5) a (t) =



Ufinal

(
1+sin(γt−π

2 )
2

)
single direction

Ufinal
(
sin
(
γt− π

2

))
bi-directional

where γ = 2πf for a given frequency f . In the case of the sinusoidal pulse no ramp was

used. Two types of pulse-driven flow were considered. The first type used was single

direction flow in which the velocity was allowed to vary from 0 m/s to Ufinal m/s with

the fluid traveling from left to right. The second type used was bi-directional flow in

which the mid-channel velocity was varied from −Ufinal m/s to Ufinal m/s so that the

mid-channel flow direction was sometimes reversed. The frequencies used in both cases

were the same.
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3.3. Results

The effect of the pulsing kinematics and the presence of porous layer were investi-

gated in channel flow. The parameters used in the simulations were the same as those

summarized in Tables 2.1 and 2.2 except that the porosity was set to λ = 0.00000072.

The cases are summarized in Table 3.1.

In this chapter, the flow lines were defined in the same manner and in the same po-

Table 3.1. Values of all parameters in the simulations unless otherwise noted

Arms Arms No Arms No Arms
No Pause Pause Pause No Pause

5 mm/s 16A 1A 12A 2A
1 cm/s 13A 3A 5A 4A
2 cm/s 14A 8A 9A 10A
3 cm/s 11A 15A 7A 6A

sition as in the previous chapter (see Figure 2.4.) The flow rates were displayed for time

ranges after the 10 second ramp period. When compared to the sinusoidal cases without

a ramp, the values for the variable flow were shifted 10 seconds to the right so that the

pulse timings overlap exactly in each case. Examples of the general pattern of flow rates

corresponding to each phase of the pulse cycle are given in Figure 3.2. In addition to

the HFL on the left (now termed LHFL) a corresponding line on the right termed the

RHFL was also defined the same distance from the bell (see Figure 3.3.) The left hori-

zontal flow rate (LHFR) was normalized by dividing by the length of the LHFL while the

right horizontal flow rate (RHFR) was normalized by dividing by −Lr where Lr was the

length of the RHFL. By normalizing in this manner, positive values always corresponded

to flow toward the bell while negative values corresponded to flow away from the bell on

either side of the model. In the case of the vertical flow line (VFL), the flow rate was

normalized by dividing by the length of the VFL. Positive values corresponded to flow
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away from the bell while negative values corresponded to flow toward the bell. For the

HFRs the large increased flow toward the bell corresponded to the beginning of the bell

contraction. The decrease of the flow toward the bell occurred during the first pause

and the expansion phase. During the second pause (if present), the flow toward the bell

slowed and in some cases reversed. During the pauses a gradual increase in flow toward

the bell and a plateauing of the flow rate was observed before the next contraction begins.

For the VFRs, a similar pattern was observed for flow away from and toward the porous

layer.
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Figure 3.2. A diagram of the pattern of the model organism’s pulse cycle
for the HFR(left) and VFR(right). The cycle starts at the beginning of the
domain at 10 seconds. The region between the beginning of the diagram
and green line corresponds to the contraction of the model. The region
between the green and white lines corresponds to the short pause between
contracting and relaxing. The region between the white line and the blue
line corresponds to the relaxation of the bell. The region between the blue
line and the red line corresponds to the second longer pause at the end of
the cycle.

3.3.1. The effect of oral arms. Vorticity plots for cases 1A (porous layer model at

0.5 cm/s) and 12A (bell-only model at 0.5 cm/s) and cases 8A (porous layer model

at 2.0 cm/s) and 9A (bell-only model at 2.0 cm/s) are shown in Figures 3.4 and 3.5,
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Figure 3.3. Positions of the flow lines used to measure the volumetric
flow rates around the bell. From left to right the yellow lines are 1) the
left horizontal flow line (LHFL) which was 0.4 L to the left of the outside
of the bell; 2) the vertical flow line (VFL) which was drawn on top of the
porous layer of the left model; 3) the right horizontal flow line (RHFL)
which was 0.4 L to the right of the outside of the bell.

respectively, as representative of the various flow profiles. Flow in the channel for each

case was from left to right. For all simulations the initial vortex forming at the tip of the

bell was slightly larger on the downstream (right) side of the bell. In the porous layer

model the vortices were trapped and directed along the top of the layer. In the bell-only

model the vortices generated on the right side were quickly advected away from the bell.

On the upstream (left) side of the bell, the vortices directed the flow upward and away

from the arm region.

Figure 3.6 shows the LHFR for cases with pauses (Cases 2A, 10A, 14A and

16A) at flow speeds of 0.5 cm/s and 2.0 cm/s. Notice the increase in the peak values

and the total LHFR as the maximum mid-channel velocity increased for each case. The

VFR for the same cases is shown in Figure 3.7. There was little change in the exchange

across the oral arm region in the cases with oral arms and slightly more variation in

the amount of flow toward the bell and the amount of backflow away from the bell in

the cases without arms. In the latter cases, as the velocity increased the flow toward

the bell increased during the contraction and relaxations while the amount of backflow

decreased with increasing velocity. The HFR on the right of the bell is shown in Figure
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Figure 3.4. Vorticity plots at 0.5 cm/s with pauses from numerical sim-
ulations with overlain velocity vector fields. Warm colors show regions of
positive vorticity while cool colors are areas of negative vorticity. Top, left
to right: vorticity plots for the porous model at the first contraction, the
first full cycle, the fourth contraction, and the fourth full cycle. Bottom,
left to right: Vorticity plots for the armless model at the corresponding
stages of pulsing.

3.8. The cases with arms (Cases 1A and 8A shown) converged quickly to a similar flow

pattern. In the cases without arms (Cases 2A and 10A shown.) the flow toward the bell

during contraction increased and the backflow during the pauses continued to decrease

with increasing channel velocity. From the vorticity plots in Figures 3.4 and 3.5 the flow

Figure 3.5. Vorticity plots at 2.0 cm/s with pauses from numerical sim-
ulations with overlain velocity vector fields. Warm colors show regions of
positive vorticity while cool colors are areas of negative vorticity. Top, left
to right: vorticity plots for the porous model at the first contraction, the
first full cycle, the fourth contraction, and the fourth full cycle. Bottom,
left to right: Vorticity plots for the armless model at the corresponding
stages of pulsing.
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in the porous layer model trapped within the vortex attached to the layer and directed

across it. In the bell-only model, the vortices were advected away from the structure,

driving the flow in different directions. The particles advected to the right side of the bell

and those located in the sheltered region downstream of the bell would be less likely to

be advected toward the bell for sampling. On the left of the bell, the HFR for the porous

layer models and the bell-only models each converged to a similar pattern. There was

little qualitative difference in the flow rates in each of the cases in low flow conditions.

The velocity of the fluid being driven across the region was lower in the porous case

versus the bell-only case based on the vector field plots in Figures 3.4 - 3.10.

3.3.2. The effect of pauses. Vorticity plots for cases 2A (no arms and no pauses)

and 16A (arms and no pauses) at 0.5 cm/s and cases 10A (no arms and no pauses) and

14A (arms and no pauses) at 2.0 cm/s are shown in Figures 3.9 and 3.10. Flow in the

channel for each case was from left to right. For 0.5 cm/s background flow without arms,

the vortices are advected toward the center of the bell and upwards on the downstream

end. For the same case with the porous layer, the vortices move across the oral arms

and are not transported away from the organism as quickly. For 2.0 cm/s background

flow without arms, starting and stopping vortices are quickly advected downstream. The

addition of the oral arms slows the downstream transport of the vortices, allowing longer

sampling times.

The RHFR and VFR for the cases with no pauses at each flow speed (Cases 9, 12,

14, and 16) are given in Figures 3.11,and 3.12, respectively. In the bell-only cases

(Cases 2A and 10A) the RHFR in Figure 3.11 changes dramatically in both magnitude

and pattern as channel speed increased. The magnitude of the exchange across the oral
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arm region given by the VFR in Figure 3.12 was larger in the case of the bell-only model.

The exchange pattern remained the same across channel flows for both the porous model

case and the bell-ony case.

The flow on the right (Figure 3.11) in the case of both the porous layer and bell-

only simulations shows flow rates for both the porous models and the bell-only models

increasing as the mid-channel velocity increased. The pattern of the pulse was similar

between the 0.5 cm/s case and the 2.0 cm/s case in the porous layer models. The pattern

in the bell-only cases changes considerably as the mid-channel velocity increased from 0.5

cm/s to 2.0 cm/s. The vorticity plots (Figures 3.9 and 3.10) showed the vortices formed

at the tip of the bell on the right side were advected strongly upward outside of the the

porous layer region before being transported away from the bell by the channel flow.

This trend increased as the mid-channel velocity increased. In the case of the porous

layer models, the vortices were trapped in the oral arm region by the porous layer for a

period of time before being advected away.

Examining the left flows in Figures 3.9 and 3.10 the vortices persisted in the region

of the porous layer in the bell-only case. The vortices drove the fluid approaching from

the left upward away from the oral arm region, decreasing the amount of flow from

the substrate that actually reached the presumed exchange region. In the case of the

porous models, the vortices were again trapped around the edge of the bell and drove

the fluid toward and across the oral arm region. The VFRs shown in Figure 11 showed

the exchange across the porous layer was similar in pattern and magnitude in both the

porous layer model and the bell-only model.
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3.3.3. The effect of variable flow. A frequency of f = 3/ttot (∼ 0.22 Hz), where ttot

was the total time of the simulations, was chosen for the sinusoidal pulsing simulations.

This was within the range of observed frequencies for some low velocity flows in Cas-

siopea habitats (∼ 0.05 to 0.3 Hz) [34, 45].The LHFR and RHFR for the pulsed cases

with a maximum mid-channel velocity of 1.0 cm/s are given in Figures 3.13 and 3.14,

respectively. There are four pulses with the same cycle timing as the other simulations

with pauses and constant flow although the pattern was less clear in these figures. The

VFR for the pulsed cases is given in Figure 3.15. The HFRs in Figures 3.13 and 3.14

showed a very irregular pattern, while the VFRs in Figure 3.15 showed a regular ex-

change rate pattern similar to those seen in the constant channel flow cases. Vorticity

plots for bi-directional flow for porous layer models and bell-only models are shown in

Figure 3.19. The vortices were directed toward the porous layer while in the bell-only

model the vortices were advected back and forth above the bell. In the bell-only model,

the vortices were also advected upward and away from the bell as they move back and

forth. In the porous layer model, the vortices linger longer in the oral arm region.

The flow rates in the variable mid-channel velocity cases deviated noticeably from

the flow rates in the constant mid-channel case with the same maximum channel velocity

of 1.0 cm/s as seen in Figures 3.16, 3.17, and 3.18. The pattern of the horizontal flow

rates for the variable flows was very similar in porous layer and bell-only models, al-

though the flow toward the bell was greater in the case without arms. The vorticity plots

in Figure 3.19 showed the porous layer serves to trap vortices which directed flow across

the porous layer. Without the porous layer the vortices circulated around the inside of

the bell, upwards away from the bell, and back and forth on the inside of the bell. As in
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the constant flow cases the oral arm structure did not enhance transport in the porous

layer region as seen in Figure 3.18, but the porous layer did serve to trap the vortices so

that the flow was directed more smoothly across the porous layer with less recirculation

of the same fluid.

3.4. Discussion

The results presented in this chapter indicate 1) the porous structure alters the flow

around the bell compared with bell-only models in such a way that fluid was continually

driven across and through the porous layer for sampling; 2) the porous structure traps

the vortices as they form on either side of the bell tips and directed the flow more gently

across and through the porous layer compared to bell-only models which showed large

swirling vortices which were more quickly advected away as the flow speeds in the channel

increase; and 3) in variable flow the porous layer again traps the forming vortices so that

fluid is directed toward the arm region instead of being advected upward as in seen in

the bell-only model. The addition of the porous structure to the bell-only jellyfish model

thus dramatically changes the character of the flow patterns in most cases.

The key feature observed in each of these cases was that the vortex formation and

shedding was highly variable in the bell-only models, while the pattern of flow across

and through the porous layer was more similar across a range of simulations. Assuming

that the organism requires some time for particle transfer and sampling for food to be

effective, the lower vorticity and more diffuse spreading of the vortices across the oral arm

region would be advantegeous for feeding. Although there may be some cases in which

a morphology corresponding to the bell-only model (i.e. a large prominent bell with

relatively negligible tentacles or oral arms) may promote more efficient flow patterns for
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feeding, morphologies simulated by the porous layer model (in which the oral arms were

a prominent feature of the organism) appear to offer a similar pattern for feeding across

a wider range of flow profiles which may be advantageous for sampling in a variable flow

environment.

As seen in Figure 3.7 the VFRs were greater in the bell-only simulation in the region

where the oral arms would be present. Examining the vorticity plots in Figures 3.4 and

3.5, the VFR was largely accounted for by the noticeable vorticity on the left side of

the bell. This suggests that the exchange was occurring on one side of the bell resulting

in sampling only from the upstream area of the bell. This suggests the presence of the

porous structure was important not only in directing flow toward the bell in low flow

conditions but also in directing it across the porous layer for sampling. This type of

flow trapping may increase the amount of time the organism would have to sample for

particles before being removed from the reach of the organism. Since particle capture

is not an instantaneous process, the lower flow rates in the arm area may allow more

efficient sampling of fluid.

The HFR on the right of the bell shown in Figure 3.8 exhibits a similar pattern, with

the porous layer case exhibiting a lower flow rate than the bell-only model. Examining

the vorticity plots in Figures 3.4 and 3.5 again, it was seen in the bell-only case that

as the channel speed increases more of the fluid is advected away from the bell as soon

as it leaves the region sheltered by the structure. Fluid advected away in the porous

layer model, but the trapped vortex along the tip of the porous layer drives some of the

fluid across the oral arm region. As flow speed increases, the presence of a prominent

structure helps to trap some fluid around the oral arms for sampling. This suggests that
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the presence of the porous layer tends to keep the flow adjacent to the bell in about the

same range compared to the bell-only model as the channel flow increases.

The porous layer does not affect the horizontal flow rate on the left of the bell sub-

stantially in channel flow both with and without pauses as seen in Figures ?? and 3.6. In

the absence of pauses there was more fluid driven toward the bell overall in the bell-only

model. The porous layer traps the vortices in a pattern that directs a more gentle flow

toward the feeding region in a way that could promote better sampling. Combining this

with the observations that more flow from the substrate was directed toward the arm

region suggests that particle sampling was more effective in the porous layer model.
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Figure 3.6. Volumetric flow rates along the LHFL describing horizontal
flow moving towards the bell from the left were compared among sim-
ulations of four different models with 2.0s pauses between pulse cycles.
The porous model with a mid-channel velocity of 0.5 cm/s is shown in
red while the porous model with a mid-channel velocity of 2.0cm/s are
shown in black. Models without porous layers at 0.5 cm/s and 2.0cm/s are
shown in blue and purple, respectively. These plots indicate the normal-
ized horizontal flow from the left of the domain toward the model organism.
Positive flow indicates fluid moving toward the structure, while negative
flow indicates flow moving away from the structure.
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Figure 3.7. VFR across oral arms Volumetric flow rates along the VFL
describing vertical flow moving across the region of the porous layer loca-
tion were compared among simulations of four different models with 2.0s
pauses between pulse cycles. The porous model with a mid-channel veloc-
ity of 0.5 cm/s is shown in red while the porous model with a mid-channel
velocity of 2.0cm/s are shown in black. Models without porous layers at
0.5 cm/s and 2.0cm/s are shown in blue and purple, respectively. These
plots indicate the normalized vertical flow across the porous layer region
toward the model organism. The flows have been normalized in such a way
so that positive flow indicates fluid moving away from the structure, while
negative flow indicates flow moving toward the structure.
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Figure 3.8. Volumetric flow rates along the RHFL describing horizon-
tal flow moving towards the bell from the right were compared among
simulations of four different models with 2.0 pauses between pulse cycles.
The porous model with a mid-channel velocity of 0.5 cm/s is shown in
red while the porous model with a mid-channel velocity of 2.0cm/s are
shown in black. Models without porous layers at 0.5 cm/s and 2.0cm/s are
shown in blue and purple, respectively. These plots indicate the normalized
horizontal flow from the right of the domain toward the model organism.
The flows have been normalized in such a way so that positive flow indi-
cates fluid moving toward the structure, while negative flow indicates flow
moving away from the structure.

Figure 3.9. Vorticity plots at 0.5 cm/s with no pauses from numerical
simulations with overlain velocity vector fields. Warm colors show regions
of positive vorticity while cool colors were areas of negative vorticity. Top,
left to right: vorticity plots for the porous model at the first contraction, the
first full cycle, the fourth contraction, and the fourth full cycle. Bottom,
left to right: Vorticity plots for the armless model at the corresponding
stages of pulsing.
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Figure 3.10. Vorticity plots at 2.0 cm/s with no pauses from numerical
simulations with overlain velocity vector fields. Warm colors show regions
of positive vorticity while cool colors were areas of negative vorticity. Top,
left to right: vorticity plots for the porous model at the first contraction, the
first full cycle, the fourth contraction, and the fourth full cycle. Bottom,
left to right: Vorticity plots for the armless model at the corresponding
stages of pulsing.
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Figure 3.11. Volumetric flow rates along the RHFL describing horizon-
tal flow moving towards the bell from the right were compared among
simulations of four different models with no pauses between pulse cycles.
The porous model with a mid-channel velocity of 0.5 cm/s is shown in
red while the porous model with a mid-channel velocity of 2.0cm/s are
shown in black. Models without porous layers at 0.5 cm/s and 2.0cm/s are
shown in blue and purple, respectively. These plots indicate the normalized
horizontal flow from the right of the domain toward the model organism.
The flows have been normalized in such a way so that positive flow indi-
cates fluid moving toward the structure, while negative flow indicates flow
moving away from the structure.
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Figure 3.12. VFR across porous layer Volumetric flow rates along the
VFL describing vertical flow moving across the region of the porous layer
location were compared among simulations of four different models with
no pauses between pulse cycles. The porous model with a mid-channel
velocity of 0.5 cm/s is shown in red while the porous model with a mid-
channel velocity of 2.0cm/s are shown in black. Models without porous
layers at 0.5 cm/s and 2.0cm/s are shown in blue and purple, respectively.
These plots indicate the normalized vertical flow across the porous layer
region toward the model organism. The flows have been normalized in such
a way so that positive flow indicates fluid moving away from the structure,
while negative flow indicates flow moving toward the structure.
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Figure 3.13. Volumetric flow rates along the LHFL describing horizontal
flow moving towards the bell from the left were compared among simula-
tions of three different models at a maximum mid-channel velocity of 1.0
cm/s with a sinusoidal pulse frequency of f=3.0/(total time of simulation).
The porous model with bi-directional flow is shown in black while the
porous model with a one-directional flow is shown in green. The bell-only
model in a bi-directional flow is shown in red. These plots indicate the
normalized horizontal flow from the left of the domain toward the model
organism. The flows have been normalized in such a way so that posi-
tive flow indicates fluid moving toward the structure, while negative flow
indicates flow moving away from the structure.
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Figure 3.14. Volumetric flow rates along the RHFL describing horizontal
flow moving towards the bell from the right were compared among simu-
lations of three different models at a maximum mid-channel velocity of
1.0 cm/s with a sinusoidal pulse frequency of f=3.0/(total time of simula-
tion). The porous model with bi-directional flow is shown in black while
the porous model with a one-directional flow is shown in green. The bell-
only model in a bi-directional flow is shown in red. These plots indicate
the normalized horizontal flow from the right of the domain toward the
model organism. The flows have been normalized in such a way so that
positive flow indicates fluid moving toward the structure, while negative
flow indicates flow moving away from the structure.
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Figure 3.15. Volumetric flow rates along the VFL describing vertical flow
moving across the porous layer region were compared among simulations
of three different models at a maximum mid-channel velocity of 1.0 cm/s
with a sinusoidal pulse frequency of f=3.0/(total time of simulation). The
porous model with bi-directional flow is shown in black while the porous
model with a one-directional flow is shown in green. The bell-only model
in a bi-directional flow is shown in red. These plots indicate the normalized
vertical flow across the porous layer region toward the model organism. The
flows have been normalized in such a way so that positive flow indicates
fluid moving away from the structure, while negative flow indicates flow
moving toward the structure.
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Figure 3.16. Volumetric flow rates along the LHFL describing horizontal
flow moving towards the bell from the left were compared among simula-
tions of three different models at a maximum mid-channel velocity of 1.0
cm/s with a sinusoidal pulse frequency of f=3.0/(total time of simulation).
The porous model with bi-directional flow is shown in black while the
porous model with a constant flow is shown in blue. The bell-only model
in a bi-directional flow is shown in red. These plots indicate the normal-
ized horizontal flow from the left of the domain toward the model organism.
The flows have been normalized in such a way so that positive flow indi-
cates fluid moving toward the structure, while negative flow indicates flow
moving away from the structure.

64



arms, f=3 w/reversal
no arms f=3 w/reversal
arms constant

10 12 14 16 18 20 22

10-3

-6
-4
-2
0
2
4
6
8

time (seconds)

vo
lu

m
e 

(m
2 /s

)

Figure 3.17. Volumetric flow rates along the RHFL describing horizontal
flow moving towards the bell from the right were compared among simu-
lations of three different models at a maximum mid-channel velocity of
1.0 cm/s with a sinusoidal pulse frequency of f=3.0/(total time of simula-
tion). The porous model with bi-directional flow is shown in black while
the porous model with a constant flow is shown in blue. The bell-only
model in a bi-directional flow is shown in red. These plots indicate the
normalized horizontal flow from the right of the domain toward the model
organism. The flows have been normalized in such a way so that posi-
tive flow indicates fluid moving toward the structure, while negative flow
indicates flow moving away from the structure.
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Figure 3.18. Volumetric flow rates along the VFL describing vertical flow
moving across the porous layer region were compared among simulations
of three different models at a maximum mid-channel velocity of 1.0 cm/s
with a sinusoidal pulse frequency of f=3.0/(total time of simulation). The
porous model with bi-directional flow is shown in black while the porous
model with a constant flow is shown in blue. The bell-only model in a
bi-directional flow is shown in red. These plots indicate the normalized
vertical flow across the porous layer region toward the model organism.
The flows have been normalized in such a way so that positive flow indicates
fluid moving away from the structure, while negative flow indicates flow
moving toward the structure.

Figure 3.19. Vorticity plots at 1.0 cm/s with a sinusoidal pulse frequency
of f=3.0/(total time of simulation) from numerical simulations with over-
lain velocity vector fields. Warm colors show regions of positive vorticity
while cool colors are areas of negative vorticity. Top, left to right: vortic-
ity plots for the porous model at the first contraction, the first full cycle,
the fourth contraction, and the fourth full cycle. Bottom, left to right:
Vorticity plots for the armless model at the corresponding stages of pulsing.
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CHAPTER 4

A Study of the Effects of Random Pulses and Multiple Jellyfish

Models on Flow around and through the Porous Structures



4.1. Introduction

In the previous chapters models of individual jellyfish with constant cycle periods

were examined. In this chapter the effects of variable cycle periods and neighboring in-

dividuals on the flow of fluid around the bell are examined. This work was motivated by

field and laboratory observations of grouping behavior. While some prefer to remain soli-

tary, some individuals in laboratory aquaria were often observed to reposition themselves

into groups, particularly those individuals that appeared weakened or unhealthy. In the

field, such as in Grassy Key, Florida, Cassiopea have been observed in both solitary and

grouped configurations (personal observations, also [75, 57, 83]). In order to examine

the effect of neighboring individuals, it was necessary to consider the timing of the pulses

and to construct more realistic models of organisms in close proximity.

The contraction and expansion times are regulated by muscle mechanics and material

properties of the bell which are relatively invariant, but the length of time between the

end of expansion and the beginning of the next contraction can vary dramatically. As

a result, the laboratory specimens in close proximity to one another were observed to

pulse in synchronous, asynchronous, and antisynchronous patterns at various times. To

understand the effect of pulse timing for multiple organisms, models of randomly pulsed

jellyfish were simulated using the IB method.

The types of pauses between relaxation and subsequent contraction were loosely cat-

egorized as ”long” pauses and ”short” pauses. Analysis of video recordings suggested

that short term transitions between the two types of pauses was dependent primarily on

the current state. Making the assumption that the length of the next pause is entirely

dependent on the length of the current pause allowed the second pause to be modeled
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as a discrete time Markov (DTM) process, that is as a chain of random processes which

follow the Markov property. Developed in 1907 by A. A. Markov, Markov processes are

stochastic processes in which the outcome probability is determined only by the current

state of the system and is independent of past states [32].

Using the probabilities based on experimental data, a series of pulses were generated

using a Markov matrix. These pulse times can be used to simulate the stochastic be-

havior observed in natural jellyfish. This type of Markov modeling allowed the study of

the effect of variable pulses on the flow field around the jellyfish using a pulse pattern

that approximated live jellyfish without enforcing a regular pattern over a long period of

time. This was a simplifying assumption in that the lengths of the pauses were likely to

be affected by environmental factors such as light, nutrients, and temperature. This was

a reasonable first approximation to capture the general effects of variable pauses on flow

fields around the bell.

4.2. Materials and Methods

4.2.1. Measurements. Five (5) individuals were filmed for a combined total of 1080

cycles that were used to determine the length of each phase of the jellyfish pulse. During

the observations, individuals arranged themselves in different grouping patterns. Lab

specimens were observed in a range from isolated(> 20 cm away from other individuals)

to adjacent with parts of their oral arms or bells overlapping. While grouped closely

together (< 5cm), the individuals were sometimes observed to pulse in unison. The

means and standard deviations of the contraction, first pause, and expansion times were

0.62± 0.052s, 0.13± 0.04s, and 0.69± 0.12s, respectively. A single individual was used

to generate the Markov matrices used here. The pause between the end of perceivable
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motion after relaxation and the next bell contraction varied considerably. The pauses

were distributed in a bimodal distribution pattern as seen in Figure 4.1. A threshold

!" #"

$" %"

Figure 4.1. Experimentally observed and simulated times for the lengths
of the pauses between bell expansion and the subsequent bell contraction.
The experimental data is shown in A) and C) while simulated data is dis-
played in B) and D). A histogram showing the frequency of the total cycle
lengths A) recorded over 150 cycles for a single medusa and B) simulated
using the Markov model. Sequences of pause times C) observed from the
same specimen and D) simulated over the course of 150 pulse cycles

was chosen by identifying the pause time between the two largest peaks with the lowest

frequency was used to partition the data into short and long pause times.

Table 4.1. Pause times for recordings of jellyfish. Note that Individuals
2,3, and 4 were filmed as a group.

Individual # of cycles Long Pause (s) Short Pause (s) Psl Pls
1 146 2.59± 0.79 0.20± 0.11 0.55 0.62
2 247 1.56± 0.88 0.20± 0.17 0.17 0.82
3 240 2.17± 1.12 0.16± 0.16 0.20 0.90
4 359 2.17± 1.29 0.15± 0.13 0.13 0.60
5 88 2.59± 0.62 0.46± 0.14 0.35 0.70
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4.3. Construction of the model

4.3.1. Markov model. The cycle lengths and pause times for an example of pulse

cycles generated via a discrete time Markov process are shown in Figure 4.1 with the cor-

responding data taken from actual medusae. Basing the probabilities on video recordings

taken concurrently over a short time minimized the effect in environmental conditions.

The distribution of pause times in each partition was approximated as Gaussian and

the means and standard deviations were then calculated. The probability of transitioning

from one state to another was determined by summing the number of pairwise transitions

observed and dividing by the total number of cases. The probabilities for five individuals

are given in Table 4.1. The four transition probabilities were termed Pss (short to short),

Psl (short to long) , Pls (long to short), and Pll (long to long). The means, standard

deviations and transition probabilities for each partition for five (5) individuals are sum-

marized in Table 4.1. Each simulation began with the jellyfish in the relaxed state. A

random starting pulse state was chosen for the first cycle with a randomly chosen time

from the range in the current pause state. The Markov matrix was used to determine

if a long or short pause occurs in the next cycle. Pulsing dynamics of subsequent cycles

were simulated by iteratively applying the Markov matrix to determine the state and

randomly selecting a pause time from the appropriate distribution assuming a Gaussian

distribution across the range of the partition, forming a chain of pause times.

4.3.2. Multiple jellyfish model. To examine the effect of neighboring organisms, two

jellyfish models were placed side by side in the fluid domain. The size of the domain

was increased to eight (8) times the length L of the jellyfish bottom. In the first set

of simulations two jellyfish models were each placed symmetrically spaced L/8 from the
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center of the box floor (L/4 apart, see Figure 4.5). Simulations were performed to test

the effect of pause times, pause synchronization, model organism spacing and model

organism size on the flow rates and structures around each bell. To test spacing effects,

the pair of jellyfish models were also placed L/8 apart and L/2 apart. To test the effect

of pulse timing a combination of constant and random pauses was used. Finally to test

the effect of relative size a smaller jellyfish was placed next to a standard sized one.

4.4. Results

The parameters for these simulations are given in Tables 4.2 and 4.3. The most no-

table difference from the simulations discussed previously was the increase in the domain

size for the multiple jellyfish. The size of the fluid domain was increased from 4L to 8L

in order to minimize wall effects in the simulations while the number of grid points was

kept at 512x512.

Table 4.2. Values of all parameters in the simulations for the individual
Markov simulations and the multiple jellyfish simulations unless otherwise
noted.

Parameter Value
Density [ρ] (kg/m3) 998
Body Length [L] (m) 0.0508
Porosity coefficient [λ] 0.00000072
Cycle period [t1 + t3 − t2] (s) 1.3
Duty cycle [t1/t4] 0.4615
1st pause [t2 − t1] (s) 0.13
2nd pause* [t4 − t3] (s) 2.0
Total period [t4] 3.43

4.4.1. Individual Markov process model. Pause times for the second pause for three

different jellyfish simulations were generated using the probabilities from Individual 1

given in Table 4.1. The pause times for each simulation are given in Table 4.4. Passive
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Table 4.3. Default values of all parameters in the simulations unless oth-
erwise noted. Most notably the 2nd pause varies according to times in
Table 4.4, Case 3, in the cases where random pauses were used.

Numerical Parameter Value
timestep [dt] (s) 0.00006096
Cartesian grid spatial step [h] (m) 0.00079375
Lagrangian spatial step [ds] 0.000396876
Domain size (m) 0.4064
Stiffness coefficient, bell and box [k] (N/m) 13987028
Stiffness coefficient, porous layer [kp] (N/m) 139870.28
Fluid grid size 512 x 512

tracers allowed to move at the local fluid velocity were added as vertical lines of points

at the beginning of the simulation.

Each simulation was allowed to run for a total of 12 pulse cycles. The flow rates for

the simulations are given in Figures 4.2 and 4.3. A representative vorticity plot of the
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Figure 4.2. VFR across oral arms Volumetric flow rates along the VFL
describing vertical flow moving across the region of the porous layer loca-
tion were compared among simulations of the three cases given in Table 4.4.
These plots indicate the normalized vertical flow across the porous layer
region toward the model organism. The flows have been normalized in such
a way that positive flow indicates fluid moving away from the structure,
while negative flow indicates flow moving toward the structure.

flow fields at the end of the expansion phase after one pulse cycle and four pulse cycles

generated using is shown in Figure 4.4.
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Figure 4.3. HFR from the left side of the bell. Volumetric flow rates
along the LHFL describing vertical flow moving toward the bell from the
left were compared among simulations of the three cases given in Table 4.4.
These plots indicate the normalized horizontal flow from the left toward
the model organism. The flows have been normalized in such a way so that
positive flow indicates fluid moving toward the structure, while negative
flow indicates flow moving away from structure.

The HFR and VFR were calculated in the same way as in previous chapters (see

Figure 3.2 for the general structure of the flow during a cycle.) For the HFRs the large

increase in flow toward the bell corresponded to the beginning of the bell contraction.

The decrease of the flow toward the bell occurred during the first pause and the expan-

sion phase. During the second pause (if present), the flow toward the bell continued to

decrease and in some cases reversed. For the longer pauses a gradual increase in flow

toward the bell and a plateauing of the flow rate was observed before the next contrac-

tion begins. For the VFRs, a similar pattern was observed for flow away from the porous

layer, a gradual slowing in flow rate and an eventual flow back toward the porous layer,

and a gradual slowing in flow toward the porous layer. Fluid was driven through the

permeable layer by the motion of the bell. In the absence of a second pause the fluid was

advected upwards and away from the jellyfish, as seen by the mixing of the passive tracers.
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Table 4.4. Sequences of pause times generated using the probabilities
associated with Individual 1 from Table 4.1

Pause (s) # Case 1 Case 2 Case 3

1 0.2568 3.2710 2.4114
2 0.4000 2.9198 1.2101
3 2.5763 2.0553 0.3601
4 1.9789 0.3268 1.2626
5 3.4006 0.2500 0.0169
6 0.0529 4.2077 0.2433
7 2.0444 0.1999 0.1250
8 0.2353 0.1921 2.6353
9 2.4276 0.3854 0.0320
10 2.1426 0.1411 0.0974
11 2.3736 0.1971 0.1527
12 0.5328 0.2990 3.2157

For a constant two (2) second pause, mixing occurred around the porous layer. In the

case of the DTM process, the pattern alternated between advection up and away from

the bell and mixing over the porous layer as seen in Figure 4.4.

Figure 4.4. Vorticity plots for a model following the sequence of pause
times shown in Case 1 from Table 4.4 from numerical simulations. Warm
colors show regions of positive vorticity while cool colors are areas of neg-
ative vorticity. Top, left to right: vorticity plots for the model at the first
contraction, the first full cycle, the fourth contraction, and the fourth full
cycle with overlain velocity vector fields. The vortices advected upward
were shed after two cycles with short pauses. Bottom, left to right: vor-
ticity plots for the model at the first contraction, the first full cycle, the
fourth contraction, and the fourth full cycle with tracer particles that move
with the local fluid velocity.
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Table 4.5. Conditions for the two-jellyfish models. Random timing used
was Case 3 from Table 4.4

Additional Parameters Case #

Both with 2.0 s pauses 1B
Left with 2.0 s pauses 2B
Right with random timing
Both with same random 3B
timing
Both with no pauses 4B
Spaced L/2 apart 5B
Spaced L/8 apart 6B
Left bell half the size of 7B
the right bell

4.4.2. Multiple jellyfish. A summary for the simulations run with the multiple jelly-

fish models is given in Table 4.5. Flow lines are shown in Figure 4.5. Horizontal flow lines

were vertical lines of length 0.07 m. Vertical flow lines were horizontal lines of length

0.0615 m. The left horizontal flow line (LHFL) was 0.4L to the left of the outside surface

of the bell. The left vertical flow line (LVFL) was drawn on top of the porous layer

of the left model. The interior flow line (IFL) was drawn horizontally between the two

bells 3 grid cells away from either side of the bells. The right vertical flow line (RVFL)

was drawn on top of the porous layer of the right model. The right horizontal flow line

(RHFL) was 0.4L to the right of the outside surface of the bell. In cases 5B-7B where

the position of the bell edges changed, the position of the flow lines was moved in order

to maintain the same absolute distance from the bell, but the general area in which each

of the flow lines was defined did not change.

4.4.2.1. Effect of pulse timing. Vorticity plots for Case 1B (the ”basic model” with two

identical jellyfish spaced L/4 apart and with synchronized 2.0 s pauses) are shown in

Figure 4.6. The stronger vorticity structure on the sides of the bell adjacent to one

another created an asymmetry in the flow around each porous layer. The stronger vortices
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Figure 4.5. Positions of the flow lines used to measure the volumetric
flow rates around the bell. From left to right the yellow lines are 1) the
left horizontal flow line (LHFL) which was 0.4L to the left of the outside
of the bell; 2) the left vertical flow line (LVFL) which was drawn on top
of the porous layer of the left model; 3) the interior flow line (IFL) which
was drawn between the two bells 3 grid cells away from either side of the
bells; 4) the right vertical flow line (RVFL) which was drawn on top of the
porous layer of the right model; 5) the right horizontal flow line (RHFL)
which was 0.4L to the right of the outside of the bell.

Figure 4.6. Vorticity plots for a model following the sequence of pause
times shown in Case 1B (two jellyfish spaced L/4 apart and with syn-
chronized 2.0 s pauses) from Table 4.5 from numerical simulations. Warm
colors show regions of positive vorticity while cool colors are areas of neg-
ative vorticity. Top to bottom: vorticity plots for the model at the first
contraction, the first full cycle, the fourth contraction, and the fourth full
cycle with overlain velocity vector fields.
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near the inside bell margins were trapped around their respective porous layers, resulting

in an increased area of affected fluid when compared with the vortices of individual

organisms.

4.4.2.2. Effect of pulse timings. In order to examine the effect of differences in pulse

dynamics, simulations for models with synchronized constant pulses (Case 1B), with

asynchronous pulses (Case 2B) and with synchronized random pulses (Case 3B) were

compared. Comparisons of flow rates in the randomly pulse models in Cases 2B, 3B,

and Case 3 (the corresponding individual Markov jellyfish) are given in Figure 4.7. The
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Figure 4.7. Volumetric flow rates for Cases 2B, 3B, and 3. The flow
rates for two jellyfish with different pauses in Case 2B is shown in black,
while the two jellyfish with the same random pauses in Case 3B is shown
in purple and the single randomly pulsing jellyfish is shown in bright green.
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RHFR and the RVFR for the multiple jellyfish was slightly increased in magnitude com-

pared to the single pulsing jellyfish in Case 3. The RHFR for the model in Case 2B with

the asynchronous pulses showed slight fluctuations corresponding to the pulse pattern of

the model on the left. A corresponding pattern was seen in the LHFR for Case 2B when

compared to a single individual with constant pauses.

4.4.2.3. Effect of relative spacing. The LHFR, RHFR, IFR, LVFR, and RVFR are given

for cases 1B (basic model with L/4 spacing), 5B (spaced L/2 apart), and 6B (spaced L/8

apart) in Figure 4.8. Vorticity plots at the end of the first contraction are shown in Fig-

ure 4.10 to compare the difference in the strength of the interior vortices (the vortices of

the individual specimens adjacent to one another.) Vorticity plots for the closest spaced

models (Case 6B) are shown in Figure 4.9. The strength of the vortices did not change

much between the basic model (Case 1B) and Case 5B (increased spacing), but changed

dramatically between the basic model (Case 1B) and Case 6B (decreased spacing). The

spacing of the models slightly changed the HFRs on either side of the bells, while it makes

virtually no difference to the VFR across each porous layer. The increased spacing of the

bells noticeably decreased the IFR, while the close spacing dramatically increased the

exchange across the interior flow line (IFL).

4.4.2.4. Effect of relative size. To examine the effects of the size of the neighboring model,

simulations were performed for a normal model and a small model(half the length and

width of the right model) spaced 3L/8 apart (the same distance from the center of the

domain relative to body size for each model.) The vortices (Figure 4.11) from the left
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Figure 4.8. Volumetric flow rates for Cases 1B, 5B, and 6B. The flow
rates for two jellyfish spaced L/4 apart are shown in black in each subfigure,
while the flow rates for jellyfish spaced L/2 apart are shown in blue and
the jellyfish spaced L/8 apart is shown in green.
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Figure 4.9. Vorticity plots for a model following the sequence of pause
times shown in Case 6B from Table 4.5 from numerical simulations. Warm
colors show regions of positive vorticity while cool colors are areas of neg-
ative vorticity. Top to bottom: vorticity plots for the model at the first
contraction, the first full cycle, the fourth contraction, and the fourth full
cycle with overlain velocity vector fields.

Figure 4.10. Vorticity plots for three models simulating the interaction
of multiple jellyfish spaced different distances apart. Top: spacing was L/4,
Middle: spacing was L/2, Bottom: spacing was L/8.
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margin of the larger bell draws fluid strongly back and forth across the region above

the porous layer of the smaller bell on the left. The comparative flow rates are shown

in Figure 4.12. The LVFR for the smaller jellyfish is not substantially affected by

Figure 4.11. Vorticity plots for a model following the sequence of pause
times shown in Case 7B from Table 4.5 from numerical simulations. Warm
colors show regions of positive vorticity while cool colors are areas of neg-
ative vorticity. Top to bottom: vorticity plots for the model at the first
contraction, the first full cycle, the fourth contraction, and the fourth full
cycle with overlain velocity vector fields.

the presence of the larger jellyfish on the right. The LHFR is increased when the large

jellyfish is present on the right. Also the IFR is tripled when the larger jellyfish is present.

The flow rates for the larger jellyfish are not noticeably affected by the presence of the

smaller jellyfish.

82



Two Jellies
Small only

0 2 4 6 8 10 12

10-3

-2

-1

0

1

2

3

time (seconds)

vo
lu

m
e 

(m
2 /s

)

Left
Left small only

0 2 4 6 8 10 12

10-4

-5

0

5

10

time (seconds)

vo
lu

m
e 

(m
2 /s

)

Two Jellies
One jelly

0 2 4 6 8 10 12

-0.015

-0.010

-0.005

0

0.005

0.010

0.015

0.020

time (seconds)

vo
lu

m
e 

(m
2 /s

)

Figure 4.12. Volumetric flow rates for a smaller individual jellyfish and
a smaller and larger jellyfish side by side. Top: The VFR across the oral
arms of the smaller jellyfish on the left is shown. Middle: The LHFR of
fluid coming toward the left of the smaller jellyfish is shown. Bottom: The
IFR in the area that would be between the two jellyfish is shown for the
case of two jellyfish present and the case in which there was only one
jellyfish.
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4.5. Discussion

This study has shown that both the pulsing patterns of single jellyfish models and

the fluid dynamics of groups of jellyfish models have significant consequences for feeding

and mixing. Results from the individual Markov chain models of jellyfish suggest that

for promoting mixing and transport the actual pattern of the pulse matters less than the

fact that both long and short pauses were present. This suggests a fairly robust pattern

of mixing and advection that is not sensitive to carefully coordinated patterns. In the

case of multiple jellyfish more closely spaced models appear to generate stronger vortices

in the region between the bells than models spaced further apart. Such a phenomenon

could be advantageous in cases where a number of organisms have grouped together in

an effort to sample a region of sparsely distributed resources. Finally it was seen that the

flow rates of smaller jellyfish were affected by the pulsing larger jellyfish in a way that

draws more fluid across the bell of the smaller organism. This could be advantageous

to weakened jellyfish whose bells have shrunk by allowing the small organism to sample

the region of flow near a larger organism without disturbing the flow around the larger

organism substantially.

In the single Markov model in each of the cases, the jellyfish mix fluid during the long

pauses and then advect the fluid upward during the short pauses as seen in Figure 4.4.

This could be beneficial for particle exchange and also for ejecting fluid once it has been

filtered. This could also aid in the distribution of gametes if there is a low current just

above the boundary layer. From the flow rates in Figures 4.2 and 4.3 it was apparent

that the change in pauses does not dramatically affect the HFRs or the VFRs in each

case.
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The LHFR and the RHFR in each of the multiple jellyfish cases except in Case 7B

(the different sized jellyfish) does not change appreciably among the simulations tested.

It should be noted that other parameter not explored here will be part of future work

and will be discussed in the following chapter. In comparing the horizontal and vertical

flow rates of two synchronized jellyfish (Case 2B) and two asynchronous jellyfish (Case

3B) with those of Case 3 from the individual Markov jellyfish (see Figure 4.7), it appears

that each of the flow rates was slightly enhanced by the presence of the second jellyfish.

The flow in Case 6B (the models spaced L/8 apart) shows more backflow during the

relaxation than either Case 1B or Case 5B (spacing L/4 and L/2, respectively), so it

appears that closer jellyfish benefit from fluid being pulled toward the bell region. Small

fluctuations occur in each flow rate in Case 2B (in which the right model pulses ran-

domly). This suggests that the flow fields were affected by both bells during pulse cycles

and indicates that there is synergy if jellyfish are close to one another. The IFR between

the bells in the case of the close jellyfish was much more pronounced. This was also

apparent from the much stronger vorticity illustrated in Figure 4.9. This phenomenon

shows that closer spacing has the potential to draw more particles up from the substrate

for sampling. This suggests that in regions where nutrients are scarce it may be beneficial

for jellyfish to group together.

The VFR do not change appreciably among the cases except when one of the models

was smaller (Case 7B.) In this case, it was likely that most of the change on the left was

due to the size of the jellyfish and not as much the presence of the other larger jellyfish.

The IFRs (figure 4.18) show that pause timing and even size have little effect on the flow

rate in the region between the two bells. The direction of the flow in Case 7B was altered
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however (Figure 4.11.) This change in flow direction shows the motion of the right bell

drawing fluid down and to the right across the porous layer of the smaller jellyfish during

contraction and ejecting fluid up and to the left across the porous layer of the smaller

jellyfish during relaxation. The smaller model experiences a larger flow on the right side

than the left based on Figure 4.11. In the laboratory injured or sick jellyfish whose bells

have shrunk considerably are observed to situate themselves near larger jellyfish. The

flow rates and vortices observed in Figures 4.11 and 4.12 indicate that by placing them-

selves near larger specimens, the smaller specimens may reduce the energy that must be

expended to sample a given amount of fluid. This would be beneficial to the smaller

organism.
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CHAPTER 5

Conclusions, Limitations and Future Directions



5.1. Conclusions

A model of Cassiopea has been developed and implemented in computational ex-

periments in an immersed boundary framework. The objectives of these computational

studies were to examine the effect of secondary structures on the bulk transport of fluid

around the model organism and also to use the developed model to perform experiments

across and beyond the limits of the biology of the organism. This type of parameter

testing and model manipulation is useful not only in testing the physical constraints on

biological systems but also for bio-inspired for engineering design. [21, 39]

In Chapter 2, it was shown that the presence of secondary structures with proper-

ties such as permeability significantly alter the fluid flow around the main body of the

model organism. These results were compared to PIV data from laboratory specimens.

The computational simulations containing the porous layer simulating the oral arms and

laboratory experiments from the specimens qualitatively agree, suggesting that the flow

patterns generated by Cassiopea are closely tied to the presence of its oral arm structures.

The flow structures from the models without a porous layer or with a nonporous layer

did not agree as well with observed flow patterns, indicating also that the consideration

of the effect of the oral arms is important to more accurately simulate fluid flow around

the organism. In contrast to the impermeable model the porous layer model promotes

mixing in and around the feeding region rather than ejecting the fluid up and outward

from the bell. The porous layer also induces a continuous flow from the substrate to the

bell in contrast to the erratic pattern in the impermeable model.

In Chapter 3, computational experiments were performed to examine the effects of

environmental factors such as ambient flow. Unidirectional constant flow, unidirectional
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variable flow and bi-directional variable flow through a channel were considered. It was

found that the porous layer structure tended to maintain a constant pattern of flow

across and through the oral arm region, promoting a consistent pattern of sampling in

a wide range of flow regimes. The flows in the cases of models with no oral arms varied

significantly. These results suggest that although there may be instances in which the

lack of a prominent secondary structure may promote more flow toward the oral arms,

the presence of a large oral arm mass helps to maintain feeding and sampling rates even

as the ambient flow changes. These results also show that adding secondary structures

into the numerical models in many cases significantly changes the character of the fluid

flow.

In Chapter 4 the effect of other model organisms in close proximity is examined. Ran-

dom lengths of pauses in individual model organisms did not affect the flow toward the

bell of the model, but they did affect whether the fluid was advected upward, downward,

or across the oral arm region. This indicates that changes in pause patterns affect how

the fluid moves through the oral arms even through fluid movement along the substrate

and toward the bell is unaffected. In the case of neighboring jellyfish models it was shown

that having more than one jellyfish side by side enhances the flow rates toward the bell.

Closer spacing resulted in a stronger flow between the model organisms, indicating that

grouping of organisms might serve to draw more particles up from the substrate, so that

the interaction of the bell motions may outweigh competition from surrounding organ-

isms for food. Smaller models in close proximity to larger models benefit from the pulse

of the larger model by the increased flow back and forth across the smaller bell’s porous

layer. This benefit occurs without a significant effect on the flow rates around the larger
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bell. This could explain why smaller or shrinking laboratory specimens are observed to

nestle close to larger organisms inside the aquaria.

5.2. Limitations and future directions

A model that captures some of the fundamental qualitative patterns in the bulk

flow of fluid and immersed particles across the bell of the upside-down jellyfish has

been developed. By comparing the modeled flow patterns to experimental PIV data

it is shown that the flow field generated by the organism is similar in character to the

results from numerical computations. Rather than attempting to match the morphology

of the organism exactly, important aspects of each structure have been represented by

simple mathematical models that capture fundamental aspects of the structure. This

simplification allows for larger parameter sweeps to explore the effects of morphology,

scale, and kinematics on bulk fluid flow. It is important to note, however, that these

simplified models are not intended to replace detailed three-dimensional simulations that

provide valuable insight into the physics of specific cases. A three-dimensional model

incorporating more detail associated with the secondary structures would be desirable.

in order to more accurately capture the effect of the porous structure. In addition more

complex ambient flow patterns and arrangement of neighboring model organisms would

further enhance our understanding of the system.

In many cases analysis of the vorticity plots combined with the volumetric flow rates

around the bell revealed patterns in the bulk flow of fluid. This technique however

was not always able to capture some of the mixing observed in the simulations in a

precise way. The introduction of particles as in Chapter 2 facilitated the tracking of

mixing patterns. The method used in Chapter 2 is difficult to implement in channel
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flow simulations due to the strong advection of particles in the middle of the channel.

In the future, implementation of finite time Lyaponouv exponents and the analysis of

Lagrangian coherent structures similar to the work found in [59, 61] will provide a more

accurate picture of the mixing behavior.

The preferred motion of the target points is a step away from fully prescribed motion

in that the interactions between the generated forces along the boundary and the fluid

determine the actual motion of the structure. However target point-driven motion still

falls short of the more desirable goal to couple the fluid motion to deformation due to

muscle contraction driving the viscoelastic bell. In particular instead of modeling the

motion from the perspective of a muscle contraction generating forces stored as elastic

energy inside the mesoglea and a subsequent release of that energy during the relaxation

of the material, this model relies on timing the bell from observations of video footage.

In order to develop a fully coupled system, the next steps would be to develop models of

muscle driven forces and to couple these forces to the viscoelastic material that constitutes

most of the organism.

In summary a computational model of a sessile jellyfish was developed to examine

the effect of bell pulses on the surrounding fluid. A porous boundary was used to study

how incorporating secondary structures affects the performance of the bell motion in

terms of the resulting flow patterns that promote fluid sampling and feeding. The results

here indicate some of the roles prominent secondary structures might play in enhancing

feeding from the surrounding fluid in a relatively sessile organism and offer insights

for designs that could be incorporated into engineering designs for vehicles for particle

sampling for filtration or generation of bio-energy. While three dimensional models and
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more accurate structural properties would be required to fully capture the behavior of

the entire system, the work presented here provides information about the importance

of incorporating additional structures into simplified systems in order to describe the

complex mechanisms at work in biological systems.
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APPENDIX A

Discretization of equations in the Immersed Boundary Method

Discretization details of the version of the immersed boundary method used in this

work are given here. For a more complete treatment of the methods used here, see [41],

[64] and [62]. The system of immersed boundary equations are given in the main text,

but are repeated here for convenience and clarity.

to discretize the Navier-Stokes equations for incompressible fluids given by

(A.1) ρ

[
∂u (x, t)

∂t
+ u (x, t) · ∇u (x, t)

]
= −∇p (x, t) + µ∇2u (x, t) + f (x, t) + fext

(A.2) ∇ · u (x, t) = 0

(A.3) F (X (s, t) , t) = k (X (s, t)−Y (s, t))

(A.4) f (x, t) =

∫
F (X (s, t) , t) δ (x−X (s, t)) ds

(A.5) fext = −kR (ut (x, t)− u (x, t))



(A.6)
∂X

∂t
= U (X (s, t)) =

∫
u (x, t) δ (x−X (s, t)) dx

(A.7) δh (x) =
1

h2
φ
(x
h

)
φ
(y
h

)

where

(A.8) φ (r) =


1
4

(
1 + cos

(
πr
2

))
|r| ≤ 2

0 otherwise

let ∆t be the time step, ∆s be the boundary step at the beginning of the simulation,

s be the index of the boundary points, and h be the spatial step on the Cartesian

grid. The system given above was solved on a fixed 512x512 square Cartesian grid

with periodic boundary conditions. The ∇ operator is discretized in two dimensions by(
D0φ

)
= (D0

1, D
0
2) where

(A.9)
(
D0
α

)
(x) =

φ (x + heα)− φ (x− heα)

2h
.

The partial derivative ∂/∂xα is discretized by

(A.10)
(
D+
αφ
)

(x) =
φ (x + heα)− φ (x)

h

(A.11)
(
D−αφ

)
(x) =

φ (x)− φ (x− heα)

h

where D+
α and D−α are forward and backward differencing schemes, respectively. The

Laplacian operator ∆ is discretized by
2∑

α=1

D+
αD

−
α .
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To treat the nonlinear term in the Navier-Stokes equations, a skew symmetric differ-

ence operator is defined by

(A.12) Sh (u)φ =
1

2
u ·D0

hφ+
1

2
D0
h · (uφ) .

Using these schemes and an implicit-explicit time discretization, the full discretization of

the Navier-Stokes equations become

(A.13) ρ

(
un+1 − un+1

∆t
+ Sh (un) un

)
+ D0

hp
n+1 = µ

2∑
α=1

D+
αD

−
αun+1 + fn + fnext.

The interaction equations (Equations A.4 and A.6 ) are discretized as sums indexed over

the set of boundary points denoted by s and over the set of Cartesian points denoted by

x, respectively.

(A.14) fn (x) =
∑
s

Fn ((s) , t) δh (x−Xn (s)) ∆s

(A.15) Un+1 (s) =
∑
x

un+1 (x) δh (x−Xn (s))h2

The boundary points are then moved at the local fluid velocity by

(A.16) Xn+1 (s) = Un+1 + ∆tXn (s)

and the porosity of the permeable layer is incorporated using the equation

(A.17) Xn+1
2 (s) = Un+1

2 + ∆tXn
2 (s) + λFn

2
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where the index 2 denotes the second component (the y-direction) of the respective

vectors.

The resulting fluid equations are linear in the unknowns un+1 and pn+1. Because of

the linearity of the unknowns and the periodicity of the boundary conditions, the Fast

Fourier transform technique was chosen as an appropriate solution method with relatively

low computational cost. See [63] for details of the Fast Fourier Transform method. The

software package FFTW (Massachusetts Institute of Technology, Cambridge, MA) was

used to execute the transforms in the simulations.
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