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ABSTRACT 

Brian Paul Molesky:  Elucidation of Chemical Reactions by Two-Dimensional Resonance 

Raman Spectroscopy 

(Under the direction of Andrew Moran) 

It has been shown for many systems, including photosynthetic complexes, molecule-

semiconductor interfaces, and bulk heterojunctions, that interaction between electronic and 

nuclear dynamics may heavily influence chemical mechanisms.  Four-wave-mixing 

spectroscopies (i.e. transient absorption, two-dimensional spectroscopy) provide some insight 

into such non-equilibrium processes but are limited by the single “population time” available in 

these types of experiments.  In this dissertation, two-dimensional resonance Raman spectroscopy 

(2DRR) is developed to obtain new information regarding chemical reactions that possess time 

coincident electronic and nuclear evolution.  These new insights can only be acquired through 

higher-order techniques possessing two “population times”.  Specifically, the coherent reaction 

mechanism in triiodide photodissociation and structural heterogeneity in myoglobin are 

investigated. 

All multidimensional spectroscopies have roots in the off-resonant multidimensional 

Raman techniques developed from the late 1980’s to the early 2000’s.  Throughout their 

development these experiments were plagued with technical challenges that eventually halted 

further use.  In this dissertation it is shown through rigorous experimental tests that the technical 

challenges of the past are obviated for 2DRR, which is done under electronically resonant 

conditions.  The key is that under electronic resonance the harmonic character of vibrational 



iv 

modes contributes to the signal.  Under off-resonant conditions signal generation depends on 

much weaker effects. 

Upon absorption of light ranging from ~250 to ~500 nm triiodide photodissociates into 

diiodide and radical iodine on the same time scale as the period of triiodide’s symmetric stretch, 

impulsively initiating coherence in the stretching coordinate of diiodide.  In this dissertation, the 

sensitivity of 2DRR to coherent reaction mechanisms is shown by directly measuring, for the 

first time, how the nonequilibrium geometry of triiodide at the moment of photodissociation 

determines the stretching frequency of diiodide. 

The functions of heme proteins involve ligand binding and dissociation events, which are 

facilitated by the fast exchange of energy between the heme and aqueous solvent.  It is known 

that the heme’s  propionic acid side chains act as an effective “gateway” for this fast energy 

exchange.  In this dissertation it is shown that the propionic chains within myoglobin posses 

significant structural heterogeneity, suggesting that this may be an important factor in facilitating 

the functions of heme proteins. 

  



v 

 

 

 

To my parents, Phil and Linda Molesky; my grandparents; my great-grandparents; and so on... 

  



vi 

 

 

 

ACKNOWLEDGEMENTS 

 I would like to first thank my advisor, Dr. Andrew Moran, for his guidance and support 

throughout my doctoral studies.  None of the work presented in this dissertation would have been 

possible without him.  I would also like to thank past colleagues in the Moran group, including 

Dr. Brant West, Dr. Jordan Womick, and Dr. Stephen Miller, for training me when I first began 

here at UNC.  Of course I also thank my current colleagues, Zhenkun Guo, Dr. Paul Giokas, 

Thomas Cheshire, Olivia Williams, and Andrew “Android” Ross, for their contributions to the 

work.  I thank my undergraduate academic/research advisor at the University of South Carolina, 

Dr. Donna A. Chen, for initially directing me along the path of physical chemistry and for her 

unwavering dedication to my academic and professional success.  I also thank my high school 

chemistry teacher, Mrs. Mary Jo Laslo, for first opening my eyes to the wonders of chemistry.  

Additionally I express gratitude to Kathy Wood and the rest of the IME for their support over the 

past five years.  Finally, I owe a great deal of thanks to all of my family and friends, without 

whom I would not have made it through this doctoral program or even gotten here in the first 

place.   



vii 

 

 

 

TABLE OF CONTENTS 

LIST OF TABLES .................................................................................................................. xiii 

LIST OF FIGURES .................................................................................................................xiv 

LIST OF ABBREVIATIONS AND SYMBOLS ................................................................... xxxv 

CHAPTER 1:  INTRODUCTION ...............................................................................................1 

1.1. Uncovering Ultrafast Chemistry in Condensed Phases ......................................................1 

1.2. Development of Multidimensional Resonance Raman Spectroscopy .................................2 

1.3. Coherent Photodissociation of Triiodide ...........................................................................5 

1.4. Structural Heterogeneity and Vibrational Energy Exchange in 

Myoglobin ...............................................................................................................................8 

1.5. Dissertation Contents ...................................................................................................... 12 

1.6. References ...................................................................................................................... 14 

CHAPTER 2:  SPECTROSCOPY AND DYNAMICS IN CONDENSED 

PHASES ................................................................................................................................... 24 

2.1. Introduction .................................................................................................................... 24 

2.2. Time Dependent Perturbation Theory for the Density Operator ....................................... 26 

2.3. Obtaining the Line Broadening Function ......................................................................... 30 

2.4. Feynman Diagrams and Response Functions ................................................................... 36 

2.5. Summary ........................................................................................................................ 44 

2.6. References ...................................................................................................................... 46 

CHAPTER 3:  Methods of Femtosecond Pulse Generation and Relevant 

Ultrafast Techniques ................................................................................................................. 48 

3.1. Introduction .................................................................................................................... 48 

3.2. Spectral Broadening of Femtosecond Pulses Using Hollowcore Fibers............................ 49 

3.3. Third Harmonic Generation by Filamentation of Femtosecond Pulses ............................. 54 



viii 

3.4. Transient Absorption Spectroscopy ................................................................................. 58 

3.5. Transient Grating Spectroscopy ...................................................................................... 61 

3.6. Six-Wave Mixing Spectrocopies ..................................................................................... 65 

3.7. Femtosecond Stimulated Raman Spectroscopy by Six-Wave Mixing .............................. 70 

3.8. Summary ........................................................................................................................ 74 

3.9. References ...................................................................................................................... 75 

CHAPTER 4:  MULTIDIMENSIONAL RESONANCE RAMAN 

SPECTROSCOPY BY SIX-WAVE MIXING IN THE DEEP UV ............................................ 80 

4.1. Introduction .................................................................................................................... 80 

4.2. Experimental Methods .................................................................................................... 84 

4.2.1. Third-Harmonic Generation via Filamentation in High-Pressure Ne ......................... 84 

4.2.2 Six-Wave Mixing Interferometer ............................................................................... 87 

4.2.3. Sample Preparation .................................................................................................. 90 

4.3. Model Calculations ......................................................................................................... 91 

4.3.1. Hamiltonian ............................................................................................................. 91 

4.3.2. Nonlinear Response Functions ................................................................................. 92 

4.3.3. Parameterization of Spectroscopic Model for Triiodide ............................................ 98 

4.3.4. Basis for Approximations in Response Function ....................................................... 99 

4.4. Results and Discussion .................................................................................................. 101 

4.4.1. Four-Wave Mixing Spectroscopy ........................................................................... 102 

4.4.2. Two-Dimensional Fourier Transform Resonance Raman Spectra ........................... 104 

4.4.3. Analyzing Wavepacket Dynamics in Three Dimensions ......................................... 110 

4.5. Relative Magnitudes of Cascaded Third-Order and Direct Fifth-Order 

Signals in 2D Resonance Raman Spectroscopies.................................................................. 116 

4.5.1. Background ............................................................................................................ 116 

4.5.2. Model Calculations ................................................................................................ 118 

4.5.3. Signatures of Direct and Cascaded Nonlinearities in Spectroscopic 

Line Shapes ..................................................................................................................... 124 

4.5.4. Distinguishing Direct and Cascaded Nonlinearities Based on Signal 

Phases .............................................................................................................................. 126 

4.5.5 Concentration Dependence of the Six-Wave Mixing Signal Field ............................ 135 



ix 

4.5.6. Comment on the Relative Magnitudes of Third and Fifth-Order 

Signals Fields ................................................................................................................... 138 

4.6. Conclusions .................................................................................................................. 140 

4.7. References .................................................................................................................... 143 

CHAPTER 5:  ELUCIDATION OF REACTIVE WAVEPACKETS BY TWO-

DIMENSIONAL RESONANCE RAMAN SPECTROSCOPY ............................................... 150 

5.1. Introduction .................................................................................................................. 150 

5.2. 2DRR Spectra Simulated for a Reactive Model System................................................. 152 

5.2.1. Model Hamiltonians ............................................................................................... 154 

5.2.2. Response Functions ................................................................................................ 156 

5.2.3 Calculated 2DRR Spectra ........................................................................................ 162 

5.3. Experimental Methods .................................................................................................. 163 

5.3.1. Conducting 2DRR Spectroscopy with a Five-Beam Geometry ............................... 164 

5.3.2. Conducting 2DRR Spectroscopy with a Three-Beam Geometry ............................. 167 

5.3.3. Sample Preparation and Handling ........................................................................... 169 

5.4. Experimental Results .................................................................................................... 169 

5.4.1. Third-Order Stimulated Raman Response ............................................................... 169 

5.4.2. 2DRR Response of the Diiodide Photoproduct ....................................................... 171 

5.4.3. 2DRR Cross Peaks Between Triiodide and Diiodide ............................................... 172 

5.4.4. Summary of 2DRR Signal Components .................................................................. 175 

5.5. Nonequilibrium Correlation Between Reactants and Products ....................................... 177 

5.6. Concluding Remarks ..................................................................................................... 183 

5.7. References .................................................................................................................... 185 

CHAPTER 6:  FEMTOSECOND STIMULATED RAMAN 

SPECTROSCOPY BY SIX-WAVE MIXING ......................................................................... 189 

6.1. Introduction .................................................................................................................. 189 

6.2. Experimental Methods .................................................................................................. 193 

6.2.1. Laser Pulse Generation ........................................................................................... 193 

6.2.2. Laser Beam Geometries.......................................................................................... 195 

6.2.3. Signal Detection ..................................................................................................... 197 



x 

6.2.4. Sample Handling .................................................................................................... 198 

6.3. Signal Processing .......................................................................................................... 199 

6.3.1. Algorithm ............................................................................................................... 199 

6.3.2. Adequate Suppression of the Broadband Response ................................................. 204 

6.3.3. Summary of Technical Issues Involved in Signal Processing .................................. 205 

6.4. Experimental Results .................................................................................................... 207 

6.4.1. Dependence of FSRS Signal on Incident Pulse Energies ......................................... 207 

6.4.2. Dependence of FSRS Signal on Sample Concentration ........................................... 209 

6.4.3. Relative Signs of Third- and Fifth-Order Signals .................................................... 212 

6.4.4. Dynamic Line Shapes of FSRS Signals Obtained by Six-Wave 

Mixing ............................................................................................................................. 215 

6.5. Theoretical Analysis of Relative Magnitudes of Resonant FSRS Signals 

and Cascades ....................................................................................................................... 220 

6.5.1. Background ............................................................................................................ 220 

6.5.2. Response Functions ................................................................................................ 221 

6.5.3. Model Calculations ................................................................................................ 225 

6.6. Concluding Remarks ..................................................................................................... 229 

6.7. References .................................................................................................................... 231 

CHAPTER 7:  TWO-DIMENSIONAL RESONANCE RAMAN 

SPECTROSCOPY OF WATER- AND OXYGEN- LIGATED MYOGLOBIN....................... 236 

7.1. Introduction .................................................................................................................. 236 

7.2. Experimental Methods .................................................................................................. 239 

7.2.1. Sample Preparation ................................................................................................ 239 

7.2.2. Spectroscopic Measurements .................................................................................. 240 

7.3. Simulations of 2DRR Spectra ....................................................................................... 243 

7.3.1 Signatures of Inhomogeneous Broadening in 2DRR Spectra .................................... 244 

7.3.2. Signatures of Anharmonicity in 2DRR Spectra ....................................................... 246 

7.3.3. Predicted 2DRR Spectrum of Myoglobin ............................................................... 250 

7.4. Results and Discussion .................................................................................................. 252 

7.4.1. Isolation of 2DRR Signal Components ................................................................... 252 

7.4.2. Analysis of Spectral Line Shapes ............................................................................ 259 



xi 

7.4.3. Computational Analysis of Line Broadening Mechanism ....................................... 261 

7.4.4. Implications for the Vibrational Cooling Mechanism .............................................. 265 

7.5. Concluding Remarks ..................................................................................................... 266 

7.6. References .................................................................................................................... 268 

CHAPTER 8:  CONCLUDING REMARKS ........................................................................... 274 

8.1. Concluding Remarks ..................................................................................................... 274 

8.2. References .................................................................................................................... 278 

APPENDIX A:  SUPPLEMENT TO “MULTIDIMENSIONAL RESONANCE 

RAMAN SPECTROSCOPY BY SIX-WAVE MIXING IN THE DEEP UV” ......................... 280 

A.1. Auxiliary Response Functions ...................................................................................... 280 

A.2. Anharmonic Excited State Potential Energy Surface .................................................... 282 

A.3. Modeling Concentration Dependence of Direct and Cascaded 

Responses ............................................................................................................................ 283 

A.4. Third-Harmonic Generation via Filamentation in Neon at High Pressure...................... 285 

A.5. Fifth-Order Cumulant Expansion ................................................................................. 289 

A.6. Reproducibility of Real and Imaginary Signal Components .......................................... 294 

A.7. Four-Wave Mixing Response in Region of Pulse Overlap ............................................ 298 

A.8. Derivation of Response Functions Used to Compute Ratio in Cascaded 

Third-Order and Direct Fifth-Order Signal Strengths ........................................................... 300 

A.8.1. Third- and Fifth-Order Response Functions ........................................................... 300 

A.8.2. Third and Fifth-Order Auxiliary Response Functions ............................................. 306 

A.8.3. Computing Relative Cascaded and Direct Signal Magnitudes ................................ 307 

A.8.4. Magnitude of Prefactor .......................................................................................... 313 

A.9. 2D Spectra for Sequential Cascades Simulated Using Measured Third-

Order Signals ....................................................................................................................... 315 

A.10. Tables of Phase-Matching Efficiencies for Three and Four-Beam 

Geometries .......................................................................................................................... 316 

A.11. References ................................................................................................................. 320 

APPENDIX B:  SUPPLEMENT TO “ELUCIDATION OF REACTIVE 

WAVEPACKETS BY TWO-DIMENSIONAL RESONANCE RAMAN 

SPECTROSCOPY” ................................................................................................................ 322 



xii 

B.1. Vibrational Hamiltonian ............................................................................................... 322 

B.2. Two-Dimensional Resonance Raman Signal Components ............................................ 323 

B.3. Derivation of Formula for the Direct Fifth-Order Signal Field ...................................... 328 

B.4. Dominance of the Direct 2DRR Response Over Third-Order Cascades ........................ 333 

B.5. References.................................................................................................................... 336 

APPENDIX C:  SUPPLEMENT TO “FEMTOSECOND STIMULATED 

RAMAN SPECTROSCOPY BY SIX-WAVE MIXING” ........................................................ 338 

C.1. Distinguishing the Broadband and FSRS Responses ..................................................... 338 

C.2. Derivation of Formula for Direct Fifth-Order Signal Field ............................................ 339 

C.3. Derivation of Formula for Third-Order Cascaded Signal Field ..................................... 350 

C.3.1 Direct Coherent Stokes Raman Scattering (CSRS) Signal Field 

Obtained with the Phase Matching Condition k3 - k4 + k5 ................................................. 351 

C.3.2. Cascades with Intermediate Phase-Matching Conditions k1 – k2 + k5 

and k3 - k4 + k5.................................................................................................................. 352 

C.4. References.................................................................................................................... 361 

APPENDIX D:  SUPPLEMENT TO “TWO-DIMENSIONAL RESONANCE 

RAMAN SPECTROSCOPY OF WATER- AND OXYGEN- LIGATED 

MYOGLOBIN” ...................................................................................................................... 362 

D.1. Response Functions...................................................................................................... 362 

D.2. Anharmonic Vibrational Hamiltonian........................................................................... 365 

D.3. Signatures of Anarhmonicity ........................................................................................ 366 

D.4. Fluctuations in the Geometries of the Propionic Acid Side Chains................................ 369 

D.5. References ................................................................................................................... 371 

 



xiii 

LIST OF TABLES 

Table 4.1.  Parameters of Spectroscopic Model Based on Cumulant Expansion ...................... 101 

Table 4.2.  Dynamics in Correlation Spectra ........................................................................... 116 

Table 4.3.  Parameters of Model Used to Compute Magnitudes of Direct Fifth-Order and 
Cascaded Third-Order Signals ................................................................................................. 129 

Table 4.4.  Calculated Wavevector Mismatches for Direct and Cascaded Nonlinearities in 
Geometry Shown in Figure 4.4 ................................................................................................ 139 

Table 5.1.  Parameters of Model Used to Compute 2DRR Spectra .......................................... 161 

Table 7.1.  Parameters of Theoretical Model for System with Two Vibrational Modes ........... 250 

Table 7.2.  Parameters of Model Based on Empirical Fit of Spontaneous Raman Signals ........ 254 

Table A.1.  Calculated Wavevector Mismatches for Direct and Cascaded Nonlinearities in 
Geometry Shown in Figure 4.17a ............................................................................................ 318 

Table A.2.  Calculated Wavevector Mismatches for Direct and Cascaded Nonlinearities in 
Geometry Shown in Figure 4.17b ............................................................................................ 319 

Table A.3.  Calculated Wavevector Mismatches for Direct and Cascaded Nonlinearities in 
Geometry Shown in Figure 4.17c ............................................................................................ 320 

Table A.4.  Calculated Wavevector Mismatches for Direct and Cascaded Nonlinearities in 
the Three-Beam Pump-Repump-Probe Geometry (Data in Figure 4.19) .................................. 321 

Table C.1.  Parameters of Theoretical Model .......................................................................... 357 

Table C.2.  Wavevector Mismatch in the Five-Beam Geometry .............................................. 358 

Table C.3.  Wavevector Mismatch in the Four-Beam Geometry ............................................. 359 

Table C.4.  Wavevector Mismatch in a (Hypothetical) Three-Beam Geometry ....................... 360 

 



xiv 

LIST OF FIGURES 

Figure 1.1.  In a two-dimensional Raman experiment a pair of time-coincident laser pulses 
excites the sample before a delay period, 1τ .  Another pair of time-coincident pulses then 

reexcites the sample.  After a second delay period, 2τ , a final laser pulse induces signal 
emission.  (a) Under off-resonant conditions, where the sample is transparent to the laser 
excitation and is thus promoted to virtual levels, selection rules dictate that harmonic modes 
cannot contribute to the signal intensity.  Generation of the desired signal depends on weak 
effects like anharmonicity or nonlinear coordinate-dependence of the polarizability.  This is 
the origin of the technical challenges experienced in multidimensional coherent Raman 
experiments conducted under off-resonant conditions.  (b) Under resonant conditions, where 
the sample absorbs the laser light and is promoted to real excited states, both harmonic 
modes and anharmonic modes contribute to the signal generation mechanism, obviating the 
aforementioned challenges. .........................................................................................................4 

Figure 1.2. Potential energy surface (PES) for the photodissociation of triiodide. 108,109  Here 
Rab and Rbc are the bond lengths between adjacent iodine atoms.  A ground state wavepacket 
at equilibrium is promoted to the excited electronic state, where force is accumulated due to 
the steep gradient of the PES.  A finite displacement in the asymmetric stretch induces 
photodissociation of triiodide into diiodide ions and iodine radicals.  This entire process 
occurs in approximately 300 fs, the period of triiodide’s symmetric stretch.  As such the 
reaction is impulsive and the wavepacket transitions from reactant to product without loss of 
coherence.  2DRR studies determine how the nonequilibrium geometry of triiodide at the 
time of photodissociation directly determines the distribution of vibrational quanta in 
diiodide. ......................................................................................................................................6 

Figure 1.3.  (a) A single molecule of myoglobin in an aqueous bath.  The heme group, 
colored in green, is tucked in the protein’s hydrophobic pocket except for the propionic acid 
side chains which extend into the surrounding environment and are hydrogen bound to water 
molecules.  (b) The structure of the heme group possessed by myoglobin.  The propionic acid 
side chains are circled in red.  2DRR studies suggest that structural heterogeneity of the 
propionic acid chains may play an important role in the fast rate of energy exchange between 
the heme and aqueous solvent. ....................................................................................................9 

Figure 1.4.  Signatures of homoegeneous and inhomogeneous line broadening in 2DRR.  (b) 
In the limit of pure homogeneous broadening the 2D line shape of a peak associated with 
some vibrational mode will appear entirely circular, indicating that the frequencies detected 
in the experiment’s two time periods of evolution (i.e. the experiment’s two ‘dimensions’) 
are not correlated.  (c) Inhomogeneous broadening will cause elongation of the 2D peak 
about the diagonal revealing correlation between vibrational motions detected in separate 



xv 

dimensions.  Correlated 2DRR line shapes imply that geometric fluctuations are slow 
compared to vibrational dephasing, indicating that the molecular structures involved possess 
geometric sub-ensembles at equilibrium (i.e. structural heterogeneity).  (a) By integrating 
over dimension 1 a spectrum is obtained where the intensity in either (a) or (b), equivalently, 
is plotted against one frequency dimension.  This is the type of spectrum gathered in 1D 
techniques (i.e. pump-probe).  Information regarding inhomogeneous broadening, and thus 
structural heterogeneity, is not obtainable with 1D spectroscopies. ............................................ 11 

Figure 2.1.  The line broadening function, ( )g t , governs the damping of oscillations in the 

dipole operator correlation function due to random thermally driven collisions between the 
system and environment.  After some time the oscillations dephase entirely as the system 
loses memory of the state initially prepared by the perturbative electric field............................. 30 

Figure 2.2.  The energy gap between states of a two level system fluctuates about the mean 
due to random thermal motions of the environment.  The fluctuations are characterized by 
their amplitude, ∆ , and relaxation time, 1−Λ  (see Equation 2.24). ............................................. 31 

Figure 2.3.  In the homogenous limit of line broadening, absorption and fluorescence spectra 
possess Gaussian line shapes as described in Equations 2.28 and 2.29. ...................................... 35 

Figure 2.4.  Feynman diagram for linear absorption of a two level system.  Electric fields are 
denoted by their wavevectors.  1τ  represents the time period of evolution between interaction 
with the incident field and signal emission.  The term in the response function where k1 is 
negative is irrelevant because the signal is measured in the direction of the incident field. ......... 38 

Figure 2.5.  Convolution of a quasi monochromatic electric field with the term in the first 
order response function for linear absorption gives a Lorentzian line shape when a 
homogeneous damping function is employed.  A phase shift of 2

π−  is observed when the 
frequency of the incident field is equivalent to the electronic energy gap of the system.  
Amplitude is quickly eliminated as the field is detuned from resonance..................................... 39 

Figure 2.6.  Experimental geometry for the incident fields in a third order spectroscopy 
known as transient grating.  1k  and 2k  arrive simultaneously, there is a delay, and then 3k  

induces signal emission in the direction 1 2 3sk k k k= − + + .  In a traditional pump-probe 
experiment (transient absorption) the same phase matching condition applies; however the 
first two field matter interactions occur with a single field (the pump) such that 1 2k k= , and 

thus the signal is irradiated in the direction of the probe ( 3sk k= ). ............................................ 40 

Figure 2.7.  Feynman diagrams for third order spectroscopies with the phase matching 
condition 1 2 3sk k k k= − + +  applied to a three level system where a b cE E E< < .  Note that the 



xvi 

system considered here does not undergo population relaxation.  Electric fields are denoted 
by their wavevectors and τ  values represent periods of evolution between field matter 
interactions.  Each diagram represents a term in the response function.  GSB and ESE terms 
have a positive sign and correspond to a decrease in absorption relative to the ground state.  
ESA terms have a negative sign and correspond to an increase in absorption relative to the 
ground state. .............................................................................................................................. 41 

Figure 2.8.  Locations of the resonances measured by each of the six terms in the third order 
polarization given in Equation 2.37.  The terms considered here measure the upper two 
quadrants.  GSB and ESE (ESA) terms are positive (negative) two-dimensional Lorentzians 
that decay to 0 as the pump and/or probe are detuned from resonance.  Terms in the 
polarization possess significant amplitude only when both the pump and probe fields are 
resonant with the corresponding electronic energy gaps of the system. ...................................... 44 

Figure 3.1.  A Gaussian pulse propagating through a hollow-core fiber experiences self-
phase modulation due to the intensity dependent refractive index of the gaseous medium.  
The frequency of the pulse experiences a red shift at the leading edge (i.e. 0t < ) and a blue 
shift at the trailing edge (i.e. 0t > ).  At the peak ( 0t = ), where the intensity possesses no 
slope, the phase shift is 0 and there is no change in frequency. .................................................. 51 

Figure 3.2.  The mounting system and air tight housing for a hollow-core fiber, specially 
designed to ensure perfect alignment to the path of the beam.  The fiber is contained within a 
glass rod positioned within the central part of the housing.  The rod is held in place by 
Swagelok Ultra-Torr fittings located where pairs of vacuum components are clamped 
together.  The entire custom housing is highlighted in yellow, supported by four custom 
mounts.  The image in red shows the fiber inside of the glass rod cradled by an Ultra-Torr 
fitting where the vacuum components have been disjoined to provide a better look.  The gas 
inlet/outlet is circled in magenta. ............................................................................................... 53 

Figure 3.3.  The process of filament generation.  A high-energy laser beam is focused into a 
gas by a lens or mirror until the power density is great enough to cause Kerr effect induced 
self-focusing of the beam.  The gaseous medium is ionized to form a plasma which defocuses 
the light.  These processes iterate, forming a filament, until enough energy is lost through 
ionization of the gas to destabilize the balance between self-focusing from the Kerr-effect 
and defocusing from the plasma.  Depending on the pulse duration and intensity as well as 
the type of gas and pressure, filaments can be as short as a centimeter or as long as meters.  
The filaments generated in this work are on the length scale of centimeters. .............................. 55 

Figure 3.4.  Experimental design of the transient absorption experiments completed in this 
dissertation.  A 400nm pump beam excites the sample from equilibrium.  After a delay, T, 
the probe arrives and passes through the excited volume.  Transmitted probe light is then 
dispersed by frequency on a suitable detector.  A chopper in the path of the pump spinning at 



xvii 

500Hz, half the rep rate of the laser, alternates between pump-on, pump-off conditions with 
each laser shot to measure the signal according to Equation 3.12.   The signal is measured 
over a delay range appropriate for the sample and dynamics of interest. .................................... 59 

Figure 3.5.  (a) The concept of grating formation in transient grating measurements.  Two 
time-coincident noncollinear pump beams overlap in the sample interfering to form a 
population grating.  After a delay the probe arrives and is scattered off the grating in the 
signal direction 1 2 3sk k k k= − + +  where 1k  and 2k  are the pump beams and 3k  is the probe.  
(b) An example population grating produced in a TG measurement viewed along the 
propagation direction.  The parameters used to calculate this grating correspond to 
experimental conditions in Chapter 4.  X and Y are dimensions in the laboratory frame. ........... 62 

Figure 3.6.  The diffractive optic (DO) based interferometer used for TG measurements in 
this dissertation.  Two beams enter the setup with an experimentally controlled delay 
between them.  Both are focused onto the DO splitting each into its +1 and -1 diffraction 
orders.  These four beams are incident on a spherical mirror which focuses them onto the 
sample.  Beams 1-3 induce the polarization response and the signal is emitted collinearly 
with beam 4, an attenuated reference field for interferometric detection.  A typical 
interferogram is shown. ............................................................................................................. 65 

Figure 3.7.  Experimental design of the pump-repump-probe experiments completed in this 
dissertation.  A 400nm pump beam excites the sample from equilibrium.  After a delay, 1τ , 
another identical pump beam reexcites the system from a nonequilibrium state.  There is 
another delay, 2τ , and the probe arrives passing through the excited volume.  Transmitted 
probe light is then dispersed by frequency on a suitable detector.  Choppers in the paths of 
both pump beams spinning at 250Hz, a quarter of the laser’s rep rate, alternate between the 
four conditions needed to measure the signal according to Equation 3.16.  Appropriate delay 
ranges are chosen based on the sample and dynamics of interest. .............................................. 66 

Figure 3.8.  The diffractive optic (DO) based interferometer used for 4-beam six wave 
mixing experiments in Chapter 5.  This setup operates much like the TG interferometer 
shown in Figure 3.6 but with a preliminary pump step (340nm pulse 1) such that there are 
two delay periods and four beams induce the polarization response of the sample.  Again the 
signal is emitted collinearly with an attenuated reference field for interferometric detection. ..... 68 

Figure 3.9.  The diffractive optic (DO) based interferometer used for 5-beam six wave 
mixing experiments in Chapter 4.  Each of the three incoming beams is split into -1, 0, and 
+1 diffraction orders with equal intensities producing the portrayed view on the spherical 
mirror.  Beams represented by open circles are blocked by a mask.  Beams 1 and 2 arrive first 
exciting the sample and producing a population grating.  After a delay beams 3 and 4 arrive 



xviii 

reexciting the sample from a nonequilibrium state.  Beam 5 induces signal emission 
collinearly with an attenuated reference field, beam 6, for interferometric detection. ................. 69 

Figure 3.10.  (a) An example population grating produced by the first pair of time coincident 
noncollinear pump beams in the 5-beam 6WM experiment.  The number of fringes within the 
120 micron FWHM spot size is reduced from 17 to 9 in comparison to TG experiments 
conducted under similar conditions.  This reduction in fringe density originates in the lesser 
angular separation between pump beams.  (b) The final 6WM grating from which the probe 
is scattered.  The pattern is more complicated because two pairs of time coincident 
noncollinear pump beams interfere to generate this grating.  The parameters used to calculate 
both gratings correspond to experimental conditions in Chapter 4.  Both gratings are viewed 
along the propagation direction.  X and Y are dimensions in the laboratory frame. .................... 70 

Figure 3.11.  (a) The interferometer used for FSRS by 6WM experiments in this dissertation.  
This design is much like the interferometer shown in Figure 3.9.  However each of the three 
incoming beams is a different color.  Therefore each exits the DO at a different angle 
preventing collinearity with a reference field.  (b) The five-beam FSRS geometry.  (c) The 
four-beam FSRS geometry.  (d) The pulse arrival scheme.  Actinic pump(s) arrive(s) first 
activating some electronic process.  After a variable delay, 1τ , the first Raman pump (beam 
4) and the Stokes beam (beam 5) arrive.  The window shown in (a) enforces another delay, 

2τ , and the final Raman pump (beam 3) is scattered off the FSRS grating. ................................ 72 

Figure 3.12.  (a) The static grating formed by the time coincident noncollinear actinic pump 
beams in the 5-beam geometry experiment.  In the 4-beam experiment a singular actinic 
pump is used and this grating is not formed  (b) In both the 4 and 5-beam experiments the 
Raman pump and Stokes beams create a dynamic population grating in the sample because 
the beams have different frequencies.  The fringes move down to the right.  (c) In the 5-beam 
experiment the gratings in (a) and (b) interfere forming a more complicated dynamic grating 
whose fringes move down to the left.  In both the 4 and 5-beam experiments the final Raman 
pump is scattered off the respective dynamic grating, experiencing a ‘Doppler’ shift based on 
the fringe velocities.  When that velocity matches a resonance frequency in the sample the 
signal is resonantly enhanced at the corresponding wavelength. ................................................ 73 

Figure 4.1.  (a) The present experiment involves a sequence of five electronically resonant 
pulses and two experimentally controlled delay times.  Coherent wavepacket motions are 
resolved in 1τ  and 2τ , whereas the signal frequency reflects the position and/or phase of the 
wavepacket.  Fifth-order resonance Raman experiments can be used to investigate (b) line 
broadening mechanisms, (c) photochemical dynamics, and (d) shapes of potential energy 
surfaces. .................................................................................................................................... 82 



xix 

Figure 4.2.  Setup used to generate third-harmonic laser pulses.  Spectral widths of the 800-
nm and 400-nm pulses are 350 cm-1 and 200 cm-1, respectively.  Third-harmonic pulses with 
spectral widths greater than 300 cm-1 are obtained at 35 atm in neon gas. .................................. 85 

Figure 4.3.  (a) Pulse energy measured as a function of neon pressure.  (b) Intensity-
normalized spectra of third-harmonic pulses measured as a function of neon pressure.  (c) In 
neon, the spectral width measured for the full beam differs little from that of the central 25% 
(i.e. 25% of the intensity).  Neon is superior to argon as a nonlinear medium in this respect 
(see Appendix A). ..................................................................................................................... 86 

Figure 4.4.  Diffractive optic-based interferometer used for six-wave mixing experiments.  
Each of the three incoming beams is split into 0, -1, and +1 diffraction orders with equal 
intensities (the diffraction orders are vertically displaced).  Beams represented with open 
circles are blocked with a mask before the sample.  The fifth-order signal is radiated in the 
direction 1 2 3 4 5k k k k k− + − + , and is collinear with the reference field (pulse 6) used for 
interferometric signal detection after the sample. ....................................................................... 88 

Figure 4.5.  Double-sided Feynman diagrams for the four dominant terms in the fifth-order 
response function.  The indices g  and e  represent the ground state and the second-to-lowest 
energy excited state in I3

-, respectively.  Contributions from terms that evolve in excited state 
populations in 2t  and 4t  are negligible under our experimental conditions because of 
ultrafast solvation, internal conversion, and photodissociation processes.46,49 ............................ 93 

Figure 4.6.  Measured and calculated absorbance spectra for I3
- in ethanol are overlaid. The 

line shape of the second-to-lowest energy resonance is simulated using Equation 4.18.  
Parameters are given in Table 4.1.  The lower energy resonance is approximated with a 
Gaussian function with a peak of 0.57, center of 27830 cm-1, and standard deviation of 1975 
cm-1 in order to estimate its contribution to the low-energy side of the resonance of interest. ..... 97 

Figure 4.7.  (a) Absolute value of the  transient grating signal field for I3
- in ethanol.  The 

delay, τ , separates photo-excitation and detection.  (b) Fourier transform of oscillations in 
the transient grating signals obtained at various detection wavenumbers.  (c) Absolute value 
of stimulated Raman spectrum found by integrating over the detection wavenumber in panel 
(b).  The symmetric stretch is located at 112 cm-1, whereas the lower energy resonance near 
20 cm-1 corresponds to a (solute-solvent) intermolecular mode. ............................................... 103 

Figure 4.8.  The (a) real and (b) imaginary parts of the six-wave mixing signal field of I3
- in 

ethanol.  Absorptive and dispersive responses dominate the real and imaginary signal 
components, respectively.  Vibrational recurrences with large amplitudes are found in the 
real signal component shown in panel (a).  Absolute values of 2D resonance Raman spectra 
for the (c) real and (d) imaginary signal components are shown below the respective time-



xx 

domain signals.  A higher-quality Raman spectrum is obtained with the real signal 
component.  The non-oscillatory part of the signal has been subtracted from panels (a) and 
(b), so that the Raman response can be more clearly visualized. .............................................. 107 

Figure 4.9.  2D resonance Raman spectra computed with:  (a) terms R1 and R3; (b) terms R2 
and R4; (c) all terms, R1-R4.  As in the experimental measurements, dominant resonances are 
found in the upper-right and lower-left quadrants. ................................................................... 109 

Figure 4.10.  (a) Correlation spectrum, ( )2 , tS ω ω , measured at 1τ =100 fs.  (b) Isosurface of 

signal is drawn at 40% of the maximum intensity.  (c) Mean detection frequency, tω , and 

fit to Equation 4.20.  (d) Mean vibrational frequency, 2ω , and fit to Equation 4.20.  Noise 

associated with tω  and 2ω  increases with 1τ , because the signal magnitude decreases.  

Fitting parameters are given in Table 4.2. ................................................................................ 112 

Figure 4.11.  (a) Correlation spectrum, ( )2 , tS ω ω , calculated at 1τ =100 fs.  (b) Isosurface of 

signal is drawn at 60% of the maximum intensity.  (c) Mean detection frequency, tω , and 

fit to Equation 4.20.  (d) Mean vibrational frequency, 2ω , and fit to Equation 4.20.  Signals 

are calculated using the parameters given in Table 4.1.  Fitting parameters are given in Table 
4.2. .......................................................................................................................................... 114 

Figure 4.12.  Dynamics in mean vibrational and emission frequencies, 2ω  and tω , 

adapted from the fits shown in Figures 4.10 and 4.11.  The average values of the two 
variables are shifted by small amounts between (a) experimental and (b) theory.  The shapes 
of the spirals can still be directly compared because the magnitudes of the ranges are 
identical in the two panels.  It is predicted that anharmonicity, which is absent in the model, 
causes the spiral to expand in the 2ω  dimension. .................................................................. 115 

Figure 4.13.  Examples of Feynman diagrams associated with a direct fifth-order 
nonlinearity, a sequential third-order cascade ( 1 2 3k k k− + ), and a parallel third-order cascade 

( 3 4 5k k k− + ).  The indices, g and e, represent electronic states, whereas dummy indices 
denote the vibrational energy levels of the ground ( m , k , u ) and excited electronic states ( n ,
l , v ).  In the cascaded third-order diagrams, interactions associated with blue arrows 
correspond to emission and/or absorption of the field radiated at the intermediate step in the 
process.  Direct fifth-order nonlinearities and third-order cascades involve three and four 
electronic coherences (shaded blue intervals) between the ground and excited states, 
respectively.  As a consequence, contributions from third-order cascades decrease as the 
electronic dephasing rate increases. ......................................................................................... 117 



xxi 

Figure 4.14.  Absolute values of the (a) direct fifth-order and (b) cascaded third-order signal 
magnitudes at 1ω = 2ω =± 112 cm-1 are shown for a dimensionless potential energy 
displacement of 7.0, where an empirical anharmonic excited state potential energy surface is 
employed (see Appendix A).  The ratio, ( ) ( ) ( )5

1 2 1 2, / ,casE Eω ω ω ω , is computed using 

(blue) an empirical anharmonic model and (green) a harmonic model with equal ground and 
excited state frequencies (112 cm-1).  The calculations suggest that third-order cascades in the 
Raman response are at least three orders-of-magnitude weaker than the direct fifth-order 
signal in I3

- based on previous estimates for the displacement (7.0 and 8.8 for harmonic and 
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Equation B.16, (b) the sum of terms 5-8 in Equation B.17, and (c) the sum of terms 9-12 in 
Equation B.18 (Equations B.16-B18 are in Appendix B).  The frequency dimensions, 1ω  and 

2ω , are conjugate to the delay times, 1τ  and 2τ  (see Figure 5.2).  Signal components of the 
type shown in panel (a) are generally detected in one-color experiments.  Two-color 2DRR 
approaches are used to detect nonlinearities that correspond to panels (b) and (c) in this work.  
The peaks displayed in Figure 5.3c are unique in that resonances of the reactant and product 
are found in 1ω  and 2ω , respectively. ..................................................................................... 163 
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frequency reflects sensitivity to high-energy quantum states in the anharmonic potential of 
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CHAPTER 1:  INTRODUCTION 

1.1. Uncovering Ultrafast Chemistry in Condensed Phases 

Perturbative models that assume an equilibrium initial condition before the nonradiative 

transition of interest (i.e. Marcus equation, Forester energy transfer)
1-3

 are poor when applied to 

photoinduced electronic relaxation mechanisms that occur on the same time scale as nuclear 

motions of the system and surroundings.  It has been shown for many systems, including 

polymer-fullerene blends, photosynthetic complexes, and semiconductor interfaces, that time-

coincident electronic and nuclear evolution may result in non-trivial quantum effects such as 

bursts of population flow in charge transfer processes.
4-8

  These processes can involve coherent 

reaction mechanisms in which nuclear motions of the reactant and product are correlated. 

The interaction between electronic and nuclear dynamics that occurs on fast timescales 

may also play a significant role in important sub-picosecond energy transfer processes.
9-15

  In 

heme proteins fast energy exchange between the heme and the surroundings is vital to functions 

that reorganize the heme, like ligand binding and dissociation.  Heme reorganization translates 

into structural changes of the protein matrix affecting conformation and further activity.
16-21

  

Line broadening mechanisms of the vibrational modes involved in the exchange of energy are of 

particular interest because they reflect fluctuations in the geometry of moieties within the heme 

that are relevant to this process. 

In this dissertation, two-dimensional resonance Raman spectroscopy (2DRR) is 

developed to investigate coherent reaction mechanisms and line broadening mechanisms in 
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ultrafast condensed phase chemistry.  Specifically, the coherence transfer from reactant to 

product in the photodissociation of triiodide and structural heterogeneity in myoglobin are 

studied.  The viability of 2DRR is proven for gaining valuable new insights into important 

chemistry involving time coincident electronic and nuclear evolution.  The work presented 

herein has been featured as Editor’s Choice in the Journal of Chemical Physics for the years 

2014 and 2015.
22,23

 

The key contributions of this dissertation are as follows: 

 Developed 2DRR for studies of fast chemical reactions. 

 Showed that 2DRR reveals correlations between nuclear motions of the reactant 

and product in triiodide photodissociation. 

 Utilized 2DRR to measure structural heterogeneity in vibrational coordinates of 

myoglobin responsible for energy exchange with the surrounding environment. 

 Generated deep UV laser pulses by cofilamentation of near IR and visible pulses 

in high pressure Ne. 

1.2. Development of Multidimensional Resonance Raman Spectroscopy 

Over the past 20 years multidimentional spectroscopies have become fairly widespread 

with applications in physics, chemistry, and biology.
24-33

  The most common multidimensional 

technique, known as ‘2D spectroscopy’, takes advantage of a photon echo-like pulse sequence to 

eliminate the trade-off between time and frequency resolution inherent to traditional one-

dimensional (i.e. pump-probe) experiments.
28-30,34,35

  Currently, 2D spectroscopy is implemented 

throughout the light spectrum and has generated new insights into dynamics ranging from energy 

transfer in photosynthesis to chemical equilibrium exchange in liquids.
36-46
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The development of all multidimensional spectroscopies originated from picosecond 

coherent Raman studies in the late 1970’s and early 1980’s.  At the time researchers claimed it 

was possible to distinguish homogeneous and inhomogeneous line broadening mechanisms using 

one-dimensional coherent Raman techniques.
47-52

  Theory work in 1985 proved this to be 

impossible.
53

  In fact higher-order, multidimensional techniques would be required to gain such 

information.
53-55

  However, implementation of the theorized experiments was met with 

substantial technical challenges.
55-65

  Although success was finally achieved in 2002
62

, further 

development of multidimensional Raman essentially ceased due to the challenges involved. 

It is important to note that the experiments attempted up to that point were done under 

conditions where the sample was transparent to the perturbing laser pulses.  In 2DRR, where all 

laser pulses are electronically resonant with the sample, the difference in selection rules obviates 

the technical challenges of the past.  The key is that Franck-Condon activity promotes signal 

generation from both harmonic and anharmonic modes under conditions of electronic resonance.  

Under off-resonant conditions the signal depends solely on anharmonic modes or other relatively 

weak effects like nonlinear coordinate-dependence of the polarizability.
55,59,65

  The difference is 

illustrated in Figure 1.1.  As evidence of this critical distinction, detailed analyses rooted in both 

theory and experiment are presented in Chapters 4 and 6 for triiodide and myoglobin, 

respectively.  The findings of these analyses are supported by a previous discussion by Hamm 

and coworkers.
66
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Figure 1.1.  In a two-dimensional Raman experiment a pair of time-coincident laser pulses 

excites the sample before a delay period, 1 .  Another pair of time-coincident pulses then 

reexcites the sample.  After a second delay period, 2 , a final laser pulse induces signal 

emission.  (a) Under off-resonant conditions, where the sample is transparent to the laser 

excitation and is thus promoted to virtual levels, selection rules dictate that harmonic modes 

cannot contribute to the signal intensity.  Generation of the desired signal depends on weak 

effects like anharmonicity or nonlinear coordinate-dependence of the polarizability.  This is the 

origin of the technical challenges experienced in multidimensional coherent Raman experiments 

conducted under off-resonant conditions.  (b) Under resonant conditions, where the sample 

absorbs the laser light and is promoted to real excited states, both harmonic modes and 

anharmonic modes contribute to the signal generation mechanism, obviating the aforementioned 

challenges. 

 

The development of 2DRR in this dissertation is motivated by the use of related methods 

for studies of molecular photochemistry
67-78

 and experimental advances that have stimulated 

growth in the field of coherent multi-dimensional spectroscopy.
24,25,36,79-82

  The primary purposes 
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of 2DRR are to understand coherent reaction mechanisms and uncover structural heterogeneity 

that accompanies fast photochemistry. 

1.3. Coherent Photodissociation of Triiodide 

The observation of coherent vibrational motion concomitant with electronic processes has 

been reported for a multitude of interesting systems including proteins, photosynthetic 

complexes, quantum dots, semi-conductor interfaces, aggregates, and photovoltaics.
4-15,40,83-102

  

However, the origin and function of this phenomenon is still under debate.
5,6,13,93,103-106

  To 

discern the role of coherent nuclear motion in important processes like electron transfer and 

energy transfer, a detailed understanding of coherent reaction mechanisms must be obtained.  

Direct measurement of correlations between reactant and product motions are necessary for full 

comprehension of the relationship between structure and function.
107

 

It is impossible to directly measure correlations between a reactant and product with four-

wave-mixing (4WM) spectroscopies, including pump-probe techniques and 2D spectroscopy, 

because there is only one ‘population time’ in which nuclear evolution takes place.  Additionally, 

in 4WM spectroscopies the photochemistry is always initiated from the equilibrium geometry of 

the reactant.  Two population times are necessary to prepare a nonequilibrium reactant state 

before the photochemical reaction is induced.  By measuring the reactant in the first period of 

evolution and the product in the second period, correlations between the nonequilibrium 

geometry of the reactant and the vibrational motion of the product can be determined.  Each 

experimentally controlled period of evolution is a dimension of the experiment. 
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Figure 1.2. Potential energy surface (PES) for the photodissociation of triiodide. 
108,109

  Here Rab 

and Rbc are the bond lengths between adjacent iodine atoms.  A ground state wavepacket at 

equilibrium is promoted to the excited electronic state, where force is accumulated due to the 

steep gradient of the PES.  A finite displacement in the asymmetric stretch induces 

photodissociation of triiodide into diiodide ions and iodine radicals.  This entire process occurs 

in approximately 300 fs, the period of triiodide’s symmetric stretch.  As such the reaction is 

impulsive and the wavepacket transitions from reactant to product without loss of coherence.  

2DRR studies determine how the nonequilibrium geometry of triiodide at the time of 

photodissociation directly determines the distribution of vibrational quanta in diiodide. 

 

In this dissertation the sensitivity of 2DRR to coherent reaction mechanisms is 

demonstrated with measurements of the photodissociation of triiodide in solution.  Triiodide 

photodissociation was studied at length using one-dimensional stimulated and resonance Raman 

spectroscopies in the 1990’s.
109-119

  The investigation in this dissertation is motivated by 
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knowledge of this extraordinary reaction mechanism.  Upon the absorption of light ranging from 

~250 to ~500nm triiodide is electronically excited and motion is activated along the symmetric 

stretch vibrational coordinate.  Due to the steep gradient of the anharmonic potential energy 

surface (PES), illustrated in Figure 1.2, the ensemble ‘wavepacket’ quickly traverses the PES 

along the symmetric stretch until a finite displacement along the asymmetric stretch induces 

dissociation into atomic iodine and vibrationally hot diiodide ions.
114-116,120

  The chemical 

equation is given in Equation 1.1.  The diiodide ions, produced directly in the electronic ground 

state, possess near 20 vibrational quanta of energy and dump most it into the solvent within 3-4 

ps.
110,115,119,120

 

 
3 2I hv I I     (1.1) 

The photodissociation of triiodide occurs on a time scale shorter than
110,120

, or 

comparable to
116,121

, the vibrational period of its symmetric stretch (i.e. ≤ 300fs), such that 

coherence is impulsively initiated in the stretching coordinate of diiodide.  This key feature of 

the chemical reaction allows for a ‘coherence transfer transition’ from reactant to product in 

which the nonequilibrium geometry of triiodide at the time of photodissociation directly 

determines the vibrational frequency of the diiodide symmetric stretch (i.e. the distribution of 

vibrational quanta in diiodide ions).  In other words, the vibrational wavepacket transitions 

between reactant and product states without loss of coherence.  In Chapter 5 2DRR experiments 

selectively detect vibrational motions of the reactant and product in separate periods of nuclear 

evolution (i.e. ‘dimensions’) to directly measure this correlation for the first time.  Along with 

triiodide photodissociation, 2DRR is sensitive to other photochemical processes where the 

chemistry occurs on the same time scale as the system’s vibrational period(s), such as ligand 

dissociation in heme proteins.
122
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1.4. Structural Heterogeneity and Vibrational Energy Exchange in Myoglobin 

The biological functions of many heme proteins, including the transfer and storage of 

molecular oxygen, catalysis, electron transfer, and signaling, intimately involve ligand binding 

and dissociation events.
123

  These events transfer vibrational energy to the heme, initiating 

correlated structural changes with large amplitudes.
19

  Fast exchange of energy with the aqueous 

surroundings is critical for mediating operations of heme proteins because reorganization of the 

heme directly affects the protein’s tertiary and quaternary structure.  The structure of the protein 

backbone then determines its activity.
16-21

  Perhaps the most commonly known example of this is 

the transition of hemoglobin between R (relaxed) and T (tense) states upon binding and 

dissociation of oxygen molecules to and from the Fe atoms within its heme groups.  These 

conformational changes form a feedback loop controlling hemoglobin’s affinity for oxygen.  

Modulation of its oxygen affinity enables the uptake, transport, and delivery of oxygen, as well 

as the disposal of carbon dioxide.
19-21

 

To mediate these processes, vibrational energy is quickly funneled to the solvent through 

the heme’s propionic acid side chains that extend from the protein’s hydrophobic pocket.  The 

propionic acid chains are hydrogen bound to water molecules in the external environment, 

facilitating this fast energy exchange.
124-129

  The protein matrix is less effective than the solvent 

for this purpose despite having approximately 90 van der Waals contacts with the heme.
19

  The 

mechanism of energy transfer from heme to solvent via the propionic acid chains was first 

proposed by Hochstrasser and coworkers in 1994.
124

  Molecular dynamics simulations in 

subsequenct years by Straub and coworkers supported this proposal.
125,126

  Finally in 2006 

experimental work on native and mutant myoglobin variants by Kitagawa and coworkers and 

Mizuntani and coworkers confirmed that indeed the fast exchange of heat between the heme and 
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aqueous solvent was made possible by the ‘funneling’ of vibrational energy through the 

propionic acid chains.
127,128

 

 

Figure 1.3.  (a) A single molecule of myoglobin in an aqueous bath.  The heme group, colored in 

green, is tucked in the protein’s hydrophobic pocket except for the propionic acid side chains 

which extend into the surrounding environment and are hydrogen bound to water molecules.  (b) 

The structure of the heme group possessed by myoglobin.  The propionic acid side chains are 

circled in red.  2DRR studies suggest that structural heterogeneity of the propionic acid chains 

may play an important role in the fast rate of energy exchange between the heme and aqueous 

solvent. 

 

Containing only one active site, myoglobin is an excellent model system for studies of 

vibrational energy exchange in heme proteins.
16,17,21,123

  Figure 1.3(a) shows one molecule of 

myoglobin in aqueous solution.  The heme group and propionic acid side chains are clearly 

marked in Figure 1.3(a) and shown separately in Figure 1.3(b).  Myoglobin’s primary biological 

function is to store and release molecular oxygen in muscle tissue.
21

  Following 

photodissociation of the ligand many vibrational modes of the heme are activated including in-

plane porphyrin modes, out-of-plane modes such as the Fe-His stretch, and bending and wagging 
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of the side chains.
83,84,130

  By concerted action of these modes, vibrational energy is redistributed 

into the surroundings in about 4-6 ps, primarily through the propionic acid side chains.
46,123-

129,131-134
 

In this dissertation 2DRR is used to study structural heterogeneity involved with this 

process.  The ability to distinguish homogeneous and inhomogeneous line broadening 

mechanisms in myoglobin is motivated by the goals of the earliest multidimensional Raman 

experiments,
53,135

 as well as the many experimental and theoretical studies of this system and 

other heme proteins.
16,18,19,46,83,84,98,123-129,131-133

  Figure 1.4 illustrates the spectroscopic signatures 

of these mechanisms, which are much like those established in 2DIR experiments.
24,28,34,38

  

Inhomogeneous broadening indicates correlation between vibrational frequencies in each of the 

two experimental dimensions (i.e. periods of nuclear evolution), revealing structural 

heterogeneity in the system.
136,137

  This information cannot be obtained from one-dimensional 

Raman spectroscopies.
53-55

   

In Chapter 7 it is shown that the greatest amount of structural heterogeneity in the heme 

group of myoglobin is associated with a vibrational mode localized on the propionic acid side 

chains, suggesting that the propionic acid chains posses significant geometric variation at 

equilibrium, which may play an important role in the fast rate of energy exchange between the 

heme and aqueous solvent.  It is also shown that the amount of inhomgeneous broadening in the 

Fe-His stretch reflects variation of the Fe-His bond length, influenced by the geometry of the 

protein around the active site.  The work demonstrates the usefulness of 2DRR for obtaining new 

insights into the role of line broadening mechanisms in important ultrafast chemistry of heme 

proteins and other complex systems with many active vibrational coordinates. 
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Figure 1.4.  Signatures of homoegeneous and inhomogeneous line broadening in 2DRR.  (b) In 

the limit of pure homogeneous broadening the 2D line shape of a peak associated with some 

vibrational mode will appear entirely circular, indicating that the frequencies detected in the 

experiment’s two time periods of evolution (i.e. the experiment’s two ‘dimensions’) are not 

correlated.  (c) Inhomogeneous broadening will cause elongation of the 2D peak about the 

diagonal revealing correlation between vibrational motions detected in separate dimensions.  

Correlated 2DRR line shapes imply that geometric fluctuations are slow compared to vibrational 

dephasing, indicating that the molecular structures involved possess geometric sub-ensembles at 

equilibrium (i.e. structural heterogeneity).  (a) By integrating over dimension 1 a spectrum is 

obtained where the intensity in either (b) or (c), equivalently, is plotted against one frequency 

dimension.  This is the type of spectrum gathered in 1D techniques (i.e. pump-probe).  

Information regarding inhomogeneous broadening, and thus structural heterogeneity, is not 

obtainable with 1D spectroscopies. 
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1.5. Dissertation Contents 

The introductory chapter has provided background and context for the work contained in 

this dissertation.  To aid in navigation, brief descriptions of the content of remaining chapter are 

now presented.  Chapter 2 describes the theoretical framework behind spectroscopic models and 

methods that are commonly employed in condensed phase studies, underpinning the more 

complex developments in later chapters.  Chapter 3 discusses the nontraditional methods of 

femtosecond pulse generation and the four- and six-wave mixing spectroscopies that are 

developed and/or utilized in this work. 

The next two chapters are focused on the photodissociation of triiodide.  Chapter 4 

contains the initial development and implementation of 2DRR.  Ground-state vibrations of 

triiodide are probed with deep UV laser pulses generated by filamentation in high pressure Ne.  

A model is developed to understand the signals, allowing for comparison between experiment 

and theory.  This comparison, along with a battery of rigorous tests, proves that 2DRR 

measurements of triiodide are insusceptible to the technical challenges that had previously 

plagued nonresonant multidimensional Raman experiments. 

In Chapter 5 2DRR is used to expose correlations between coherent nuclear motions of 

the reactant and product in the photodissociation of triiodide.  A theoretical model is developed 

in which the chemical reaction is treated as a ‘coherence transfer transition’ from triiodide to 

diiodide.  Predictions of this model match the experimental results.  It is shown how the 

nonequilibrium geometry of the reactant directly determines the vibrational frequency of the 

product. 
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Chapters 6 and 7 involve studies of myoglobin.  In Chapter 6 versions of 2DRR are 

developed in which the second dimension of the experiment is obtained directly in the frequency 

domain, akin to a femtosecond stimulated Raman spectroscopy (FSRS) experiment but with total 

elimination, or significant reduction, of the unwanted background.  The pronounced 

improvement in sensitivity and data acquisition rate is utilized in a study of water ligated 

myoglobin.  Theoretical modeling and rigorous experimental tests confirm that 2DRR 

measurements of heme proteins are free from the technical challenges of nonresonant 

multidimensional Raman. 

In Chapter 7 the power of 2DRR is leveraged to investigate line broadening mechanisms 

in both oxygen- and water- ligated myoglobin.  Signatures of inhomogeneous broadening are 

established with model calculations, and it is shown that the greatest amount of structural 

heterogeneity is associated with the heme’s propionic acid side chains.  Molecular dynamics 

simulations suggest that this reflects fluctuations in their geometries.  Knowledge of these 

fluctuations may be useful for understanding functional mechanisms of heme proteins because 

the side chains act as a gateway for thermal energy exchange between the heme and aqueous 

solvent.
124-129

 

Finally, Chapter 8 provides some concluding remarks on the prior chapters.  In addition, 

the future direction of this work is discussed by presenting an ongoing investigation of 

deoxygenated myoglobin and carbonmonoxide ligated myoglobin.  It is suggested that the 

structural heterogeneity in the propionic acid side chains of the heme translates into 

heterogeneity in the rate of thermal energy transfer to the solvent. 
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CHAPTER 2:  SPECTROSCOPY AND DYNAMICS IN CONDENSED PHASES 

2.1. Introduction 

Unlike spectroscopic measurements in the gas phase, it is not feasible to describe 

condensed phase spectra in terms of sum over states formulas such as Fermi’s Golden Rule.
1-3

  

Although the interesting part of a condensed phase sample (e.g. some particular solute species) 

may have a relatively small number of degrees of freedom, the number of degrees of freedom in 

the environment (e.g. the solvent) is enormous, preventing such a purely explicit description.  As 

such, a reduced description of spectroscopy is necessary to properly describe condensed phase 

measurements.  In a reduced description only a few interesting states of the system are 

considered explicitly while all other states of the system and environment are relegated to the 

“bath”.
4-7

  These bath states enter the description as collision induced random fluctuations of the 

energy gap(s) between the explicitly treated states.  Since each member of an ensemble exists in 

a slightly different environment, the energy gap(s) for each member is (are) also slightly 

different.  This leads to the appearance of broad features in condensed phase spectra, contrasting 

with the numerous sharp features observed in the gas phase.
5
  Generally, condensed phase 

systems obey the ergodic hypothesis, and thus the time averaged behavior of an ensemble 

member is equivalent to the ensemble average itself.
7,8

  This principal allows consideration of the 

stochastic fluctuation of the bath and its effect on the system in terms of time correlation 

functions.  The cumulant expansion is a powerful tool for solving time correlation functions, 

allowing for the generation of a useful ‘line broadening function’ that accurately captures the 
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time scale and amplitude of the fluctuations induced by the bath.
7,9

  The line broadening function 

makes it possible to model the time trajectory of the dipole operator in order to build 

spectroscopic response functions by describing the dephasing of correlated motions in the system 

that originate from perturbative electric field(s).
4,7

  Convolution of the response function with the 

electric field(s) gives the material polarization; this is the observable measured in optical 

spectroscopies.  This approach applies to response functions of all orders which are most clearly 

represented in a graphical way using Feynman diagrams that map particular paths through the 

density matrix.
10,11

 

The rest of this chapter lays a theoretical foundation that will be used throughout the 

remaining chapters and appendices to build spectroscopic response functions that describe the 

fifth order signals measured via two-dimensional resonance Raman spectroscopy (2DRR) and, 

for comparative purposes, unwanted cascades of third order processes.  The comparison between 

experiment and theory, of which the basis is described in this chapter, will prove that direct fifth 

order resonance Raman signals are measured while contributions from unwanted cascades are 

suppressed. 

In Section 2.2 time dependent perturbation theory for the density operator is used to build 

an expression for the material polarization containing time correlation functions of the dipole 

operator.
2,5,12,13

  The perturbations are field matter interactions between an external electric field 

and the material of interest.  In Section 2.3 a physically appropriate line broadening function is 

obtained using the cumulant expansion and knowledge of Gaussian statistics.
4,5,7,9,14

  This 

function is used to generate absorption and fluorescence spectra.
7,14

  In Section 2.4 Feynman 

diagrams are introduced to construct spectroscopic response functions, clarifying how these 

useful diagrammatic representations translate into rigorous mathematical models.
5,10-12
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2.2. Time Dependent Perturbation Theory for the Density Operator 

In optical spectroscopies it is more convenient to describe the time evolution of quantum 

systems with the density operator than with the wavefunction.  Expectation values are more 

readily calculated using the density operator formalism, and this approach most naturally 

portrays the time-ordering of interactions between a material and an external electric field (the 

perturbation in optical spectroscopies).
5,12

  The definition of the density operator is given in 

Equation 2.1 as the outer product of the wavefunction and its complex conjugate. 

      ˆ t t t    (2.1) 

It can equivalently be thought of as a matrix.  Diagonal elements, called populations, describe the 

probability of occupying a particular state.  Off-diagonal elements, called coherences, give the 

probability that the system is in a superposition of states.  Although there are significant 

advantages to using the density operator, consistency with the Schrodinger equation and 

equivalence to the wavefunction are exemplified in Equation 2.2. 
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t t t t
t t

t t t t

iH iH
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i i
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 (2.2) 

After a simple algebraic reorganization Equation 2.2 becomes Equation 2.3, the quantum 

Liouville equation, analogous to the Schrodinger equation. 

  
ˆ

,i H
t








 (2.3) 
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To consider the time evolution of a weakly perturbed system the Hamiltonian is 

partitioned into a time-independent material related term,
(0)H , and a time-dependent 

perturbative term, '( )H t , where  interpolates between the unperturbed ( 0  ) and fully 

perturbed ( 1  ) system.   

 
   0

'H H H t   (2.4) 

The density operator is expressed as a perturbative expansion to N
th 

order, indicating the number 

of interactions between the material and perturbation. 

                  0 1 22 NNt t t t t            (2.5) 

Substitution of Equations 2.5 and 2.4 into Equation 2.3 gives a differential equation that when 

solved generates the following expression for the density operator at N
th
 order. 

        1
' ,

t
N N

N N

i
t H t dt 





  
   (2.6) 

Here Nt  is the point in time of the N
th
 interaction between the material and perturbation, and t is 

the time of observation.  For convenience the time point arguments in Equation 2.6 are expressed 

in terms of time intervals, N Nt t   .   

        1

0

' ,
N N

N N

i
t H t d   


   

   (2.7) 

Equation 2.7 contains N nested commutators, possessing 2N
terms at N

th 
order.  Only the highest 

order commutator is shown explicitly.  In Equations 2.6 and 2.7 the lower limits of integration, 0 

and  , are used equally to indicate the equilibrium system, which is appropriate because both 
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initial times yield the same result.  The material polarization at N
th
 order is the expectation value 

of the dipole operator or, equivalently, the trace of the dipole operator acting on the N
th

 order 

density matrix.
5,12

 

 
           ˆ ˆN N

P t t Tr t t    
 

 (2.8) 

Equation 2.9 is presented to stress the convenience of this formulation over that of the 

wavefunction approach. 
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(2.9) 

In the wavefunction approach one must solve for every expectation value of the dipole operator 

in which the orders of the bra and ket sum to N.  Clearly the density operator approach is 

superior and more physically motivated.  The perturbative part of the Hamiltonian is defined as 

the dot product of the material dipole operator and the external electric field.  To simplify the 

derivation, the dipole operator and electric field are considered to be scalar quantities. 

      ˆ' N N NH t E t         (2.10) 

Substitution of Equation 2.10 into Equation 2.7 gives Equation 2.11. 

          1

0

ˆ ,
N N

N N N

i
t E t d     


   

   (2.11) 

For simplicity’s sake only the first order polarization is considered explicitly. 
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 (2.12) 

The last line of Equation 2.11 utilizes the identity    , ,Tr A B C Tr A B C        and the previously 

used relationship, N Nt t   .  Finally, Equation 2.12 can be expressed using time correlation 

functions because condensed phase systems obey the ergodic hypothesis.
1,5,7,8,12

 

                 1

1 1 1 1 1

0

ˆ ˆ ˆ ˆ0 0
i

P t E t d         


    (2.13) 

The equilibrium density operator, 
   0

  , is implicit to the time correlation functions in 

Equation 2.13.  The Heaviside step function,    , is introduced to enforce causality.  Time 

correlation functions encode information about how the system loses memory of the initial state 

prepared by the perturbative electric field.
5,12

  This behavior is illustrated in Figure 2.1 where the 

dephasing of correlated motions in the system is governed by the line broadening function 

obtained in the next section.   

In this section an expression has been built for the first order material polarization that is 

based on time correlation functions of the dipole operator.  Time correlation functions 

characterize how the system is affected by thermally induced collisions with the environment.  

These interactions are the origin of the broad spectral features observed in the condensed phase 

(see Figure 2.3). 
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Figure 2.1.  The line broadening function,  g t , governs the damping of oscillations in the 

dipole operator correlation function due to random thermally driven collisions between the 

system and environment.  After some time the oscillations dephase entirely as the system loses 

memory of the state initially prepared by the perturbative electric field. 

 

2.3. Obtaining the Line Broadening Function 

The massive number of degrees of freedom that characterize quantum processes in the 

condensed phase prevents the explicit treatment of the system’s total Hamiltonian; it is generally 

impossible to know all the states.  Instead a reduced description is used where only a few 

‘interesting’ states are considered explicitly.
6
  These states comprise the ‘system’, and all other 

states are assigned to the ‘bath’.
4
  To account for the bath states, the system states are allowed to 

fluctuate.  Generally these bath induced fluctuations are modeled by coupling the system to a 

very large number of harmonic oscillators possessing many, many degrees of freedom.
5,12

  As 

such the central limit theorem indicates that fluctuations due to the bath should behave according 
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to Gaussian statistics.  In this section, knowledge of Gaussian statistics and the power of the 

cumulant expansion are utilized to generate a useful line broadening function parameterized by 

characteristic properties of these fluctuations.
7,9

  The final form of the function is applied to 

generate absorption and fluorescence spectra.
14

  This approach generalizes to all orders of 

perturbation and all processes, obviates explicit knowledge of the bath states, and draws 

connections to the broad Gaussian line shapes observed in the condensed phase. 

Consider a two-state system where the frequency reflecting the energy gap between states 

experiences random fluctuations at equilibrium.
4,5,7,12

 

    ab ab abt t     (2.14) 

 

Figure 2.2.  The energy gap between states of a two level system fluctuates about the mean due 

to random thermal motions of the environment.  The fluctuations are characterized by their 

amplitude,  , and relaxation time, 
1  (see Equation 2.24). 
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Here 
ab  is the mean frequency and  ab t  represents the stochastic fluctuations.  The 

equation of motion for this system is given in Equation 2.15.
5
 

      ˆ ˆ
ba ab ba

d
H t i t H t

dt
    (2.15) 

Integration generates the matrix element of the perturbative Hamiltonian associated with a 

transition from state a to state b.
5
 

    
0

ˆ ˆ exp

t

ba ba abH t H i dt t
 

     
 
  (2.16) 

Now consider the two-point time correlation function 

      
2

0

ˆ ˆ ˆ0 exp

t

ba ab ba abH t H H i dt t
 

      
 
 . (2.17) 

By expanding  'ab t  according to Equation 2.14 and removing the mean frequency from the 

integral, Equation 2.17 becomes Equation 2.18. 

        
2

0

ˆ ˆ ˆ0 exp exp

t

ba ab ba ab abH t H H i t i dt t 
 

       
 
  (2.18) 

A cumulant expansion is conducted on the integrand.
5,7

 

            
2

1 1 1 2 2 1

0 0 0

1ˆ ˆ ˆ0 exp exp
2

t t t

ba ab ba ab ab ab abH t H H i t i dt t dt dt t t   
 

      
 
   (2.19) 

The expansion has been truncated at the second term because Gaussian distributions are fully 

characterized by the first two cumulants.  However, the first order cumulant is equal to zero (i.e. 
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 1 0ab t  ) for equilibrium systems whose fluctuations are normally distributed about the 

mean.
7,9

  The second term in the expansion is the key and is denoted by  g t .  Equation 2.19 

becomes Equation 2.20. 

 
       

 

2

1 2 2 1

0 0

2

1ˆ ˆ ˆ0 exp
2

ˆ exp

t t
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ba ab
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H i t g t

  



 
     

 

    

 
 (2.20) 

For convenience the double integral in  g t  can be converted to a single integral in Equation 

2.22 due to the time symmetry of the correlation function,    2 1ab abt t  , at equilibrium.
5
 

            2 1 2 1 1 20 0ab ab ab ab ab abt t t t t t          (2.21) 
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0 0

2
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t
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dT t T T

   

 

   

 

   



 (2.22) 

Here 1 2T t t  .  Note that this function depends on a time interval rather than points in time.  To 

solve for  g t  a practical form must be chosen for    0T  .  An exponentially decaying 

function, known as Kubo’s function, is useful for this purpose.
5,9

 

      20 expT T      (2.23) 

Through substitution of Equation 2.23 into Equation 2.22 a line broadening function is obtained, 

parameterized by the fluctuation amplitude,  , and the rate at which these fluctuations relax,  . 
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2

2

2

0

exp exp 1

t

g t dT t T T t t


           (2.24) 

For the vast majority of condensed phase systems the fluctuation amplitude is much greater than 

the relaxation rate, such that / 1  .
7
  In this inhomogeneous or slow modulation limit the line 

broadening function takes the form given in Equation 2.25.
5
 

   2 21
, / 1

2
g t t      (2.25) 

Equation 2.25 indicates that condensed phase systems have Gaussian line shapes because they 

are coupled strongly to the bath and possess slowly relaxing fluctuations.  Now the time 

correlation function of the two-level system can be expressed in a physical way where the line 

broadening function encodes the loss of correlation due to fluctuations induced by the bath.
7
 

      
2 2

2 21ˆ ˆ ˆ ˆ0 exp exp
2

ba ab ba ab ba abH t H H i t g t H i t t 
 

             
 

 (2.26) 

To illustrate the Gaussian line shapes seen in condensed phase spectra the perturbative 

Hamiltonian is defined assuming a monochromatic field with an amplitude of 1.  As in Section 

2.2 the dipole operator and electric field are considered to be scalar quantities. 

        ˆ ' exp expH t E t E i t i t           (2.27) 

The absorbance and fluorescence line shapes are then calculated by integration of Equation 2.26 

after defining the reference frequency, eg , as the isobestic point and substitution of Equation 

2.27.
5,7,14

  The indices are expressed as g and e to represent a ground state and an excited state. 
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 (2.29) 

Here   is the nuclear reorganization energy of the system.
15

 

 

Figure 2.3.  In the homogenous limit of line broadening, absorption and fluorescence spectra 

possess Gaussian line shapes as described in Equations 2.28 and 2.29. 
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In this section a physically meaningful line broadening function was obtained that is 

based on characteristic properties of the bath induced energy gap fluctuations.  This function 

governs dephasing of correlated motions that originate from external electric fields (see Figure 

2.1) and accurately accounts for the Gaussian line shapes observed in condensed phase 

measurements (see Figure 2.3).  The approach detailed here was applied to a two-level system at 

first order in perturbation but is applicable to any number of levels and all orders.  It does not 

require knowledge of the bath states. 

2.4. Feynman Diagrams and Response Functions 

The first order polarization in Equation 2.13 can be considered as a response function, 

   1

1S  , convoluted with an external electric field.
5,12

 

 
         1 1

1 1 1

0

P t S E t d  


   (2.30) 

At first order the response function for a two-level system is relatively simple and is the sum of 

only two terms 

 
         

1

1

1 1 1 1 2 1

i
S R R    

 
     
 

 (2.31) 

where    
*

2 1 1 1R R     .  The Heaviside step function,  1   enforces causality.  At N
th 

order 

there are 2N
 terms in the response function, corresponding to the number of terms in the density 

operator.
3,14

  Half of the terms are unique and the other half are their complex conjugates.  Each 

term maps a different path through the density matrix and is related to a sum of wavevectors 
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corresponding to the N perturbative electric fields, which are modeled classically according to 

Equation 2.32. 

  ( , ) ( )exp ( )E r t t i kr t    (2.32) 

Here ( )t  is a slowly varying envelope function,   is the frequency, and k  is the wavevector.  

Dominant terms in the response function are selected experimentally through conservation of 

momentum by controlling the wavevectors of the incident fields.
16

  Regardless, the number of 

relevant terms becomes very large at higher order, and the response function can be difficult to 

consider in an experimental context.
17-19

  Feynman diagrams are used to alleviate this problem by 

graphical representation.
10,11,20

  Listed below are a series of rules that facilitate interpretation of 

Feynman diagrams and their translation into terms of the response function.
5
 

1. Two vertical lines represent the density operator where time runs from bottom to top. 

2. The diagram must start and end in a population. 

3. Arrows on the left (right) of the diagram indicate interactions with the ket (bra). 

4. Incoming (outgoing) arrows change the state of the system as to raise (lower) the energy. 

5. Each diagram possesses N+1 arrows (i.e. interactions) pertaining to N interactions with 

external electric fields followed by a signal emission event.  Signal emission is always 

represented by an outgoing dashed arrow on the side of the ket (i.e. the left).   

6. A transition dipole matrix element is written for each interaction including signal 

emission. 

7. For each period between interactions where the system exists in a coherence a 

propagation function is written containing the frequency associated with the energy gap 
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of the bra and ket states and a damping function.  For the purposes of this chapter 

homogeneous damping functions are used. 

8. Arrows pointing to the right (left) are associated with positive (negative) wavevectors and 

frequencies. 

9. The wavevector (frequency) of the signal is determined by the sum of the incident field 

wavevectors (frequencies) 

10. Diagrams possessing an odd (even) number of interactions with the bra correspond to 

negative (positive) terms in the response function. 

 

Figure 2.4.  Feynman diagram for linear absorption of a two level system.  Electric fields are 

denoted by their wavevectors.  1  represents the time period of evolution between interaction 

with the incident field and signal emission.  The term in the response function where k1 is 

negative is irrelevant because the signal is measured in the direction of the incident field. 

 

As the simplest case consider the Feynman diagram for linear absorption of a two level system 

presented in Figure 2.4.  The electric fields are denoted by their wavevectors to connect the 

diagram to the experiment.  Note that the term in the response function where k1 is negative is not 

represented because the signal is measured in the direction of the incident field.
16

  By employing 

the rules given above, the Feynman diagram translates into Equation 2.33. 
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2

1 1 1expeg eg egR i          (2.33) 

 

Figure 2.5.  Convolution of a quasi monochromatic electric field with the term in the first order 

response function for linear absorption gives a Lorentzian line shape when a homogeneous 

damping function is employed.  A phase shift of 
2
  is observed when the frequency of the 

incident field is equivalent to the electronic energy gap of the system.  Amplitude is quickly 

eliminated as the field is detuned from resonance. 

 

According to Mukamel’s “snapshot limit” a quasi monochromatic electric field is assumed such 

that the duration is long compared to electronic dephasing.
14

  The field is treated as a scalar 

quantity for convenience.  Integration of the response function convolved with the electric field 

gives the term in the first order polarization corresponding to linear absorption.  This term 
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possesses a Lorentzian line shape (see Figure 2.5) because a homogeneous (i.e. exponential) 

damping function, 
eg , is employed. 
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 (2.34) 

The phase of the polarization in Equation 2.34 is given according to Equation 2.35.
5
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 (2.35) 

 

Figure 2.6.  Experimental geometry for the incident fields in a third order spectroscopy known 

as transient grating.  1k  and 2k  arrive simultaneously, there is a delay, and then 3k  induces signal 

emission in the direction 1 2 3sk k k k    .  In a traditional pump-probe experiment (transient 

absorption) the same phase matching condition applies; however the first two field matter 

interactions occur with a single field (the pump) such that 1 2k k , and thus the signal is 

irradiated in the direction of the probe ( 3sk k ). 

 

Now consider the Feynman diagrams given in Figure 2.7 for third order spectroscopies 

with the phase matching condition 1 2 3sk k k k    .  This condition is standard for third order 
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spectroscopies and is enforced by the experimental geometry of the incident fields.
21,22

  In the 

type of experiment considered here the field(s) with wavevectors 
1k  and 

2k arrive 

simultaneously such that either interaction can be considered to occur first.  These interactions 

are ‘pump’ interactions and may occur with one field (transient absorption) or two separate fields 

(transient grating) depending on the experiment.  There is a time delay and the final interaction 

occurs with the ‘probe’ (
3k ).  The signal is emitted in the direction 

1 2 3sk k k k    .
21,22

 

 

Figure 2.7.  Feynman diagrams for third order spectroscopies with the phase matching condition 

1 2 3sk k k k     applied to a three level system where a b cE E E  .  Note that the system 

considered here does not undergo population relaxation.  Electric fields are denoted by their 

wavevectors and   values represent periods of evolution between field matter interactions.  Each 

diagram represents a term in the response function.  GSB and ESE terms have a positive sign and 

correspond to a decrease in absorption relative to the ground state.  ESA terms have a negative 

sign and correspond to an increase in absorption relative to the ground state. 
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There are six terms in the response function relevant to these experimental conditions.  Three 

varieties of terms exist, ground state bleach (GSB) terms, excited state emission (ESE) terms, 

and excited state absorption (ESA) terms.  GSB terms are those where the sample evolves in a 

ground state population during 
2 .  If the sample evolves in an excited state population during 

2  the related term is either an ESE or ESA.  ESE terms are those that end in a ground state 

population.  ESA terms end in an excited state population.  GSB and ESE terms correspond to a 

decrease in absorption relative to the ground state and possess a positive sign.  ESA terms 

possess a negative sign and correspond to an increase in absorption relative to the ground state.  

To illustrate each of these classes of terms a three level system is considered where 

a b cE E E  .  Note that the system considered here does not undergo population relaxation.  By 

application of the rules given earlier, the diagrams in Figure 2.7 are translated into their 

corresponding terms in the response function, shown in Equation 2.36. 
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 (2.36) 

To clarify the location of the resonances related to the terms in Equation 2.36 these terms are 

convolved with the pump ( 1k  and 2k ) and probe ( 3k ) fields and Fourier transformed into the 

frequency domain.  The pump fields are considered to be identical.  The resulting terms in the 

third order polarization are given in Equation 2.37 where N is the number density.
5
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 (2.37) 

The locations of the resonances for each term are illustrated in Figure 2.8.  The terms in Equation 

2.37 measure the upper two quadrants.  Again, GSB and ESE terms have a positive sign while 

ESA terms have a negative sign.  Equation 2.37 describes Lorentzian line shapes because 

homogeneous damping functions are employed.  Terms in the polarization possess significant 

amplitude only when the pump and probe fields are resonant with the corresponding energy gaps 

of the system.
5
 

 In this section the usefulness of Feynman diagrams for representing terms in the response 

function has been exemplified at both first and third order in perturbation.  Connections have 

been drawn between such diagrams and the relevant experimental schemes.  The rules stated in 

this section can be used to accomplish the translation between diagram and function at any order 

and for any experiment.  Terms in the response function can be convolved with electric fields to 

produce terms in the polarization. 
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Figure 2.8.  Locations of the resonances measured by each of the six terms in the third order 

polarization given in Equation 2.37.  The terms considered here measure the upper two 

quadrants.  GSB and ESE (ESA) terms are positive (negative) two-dimensional Lorentzians that 

decay to 0 as the pump and/or probe are detuned from resonance.  Terms in the polarization 

possess significant amplitude only when both the pump and probe fields are resonant with the 

corresponding electronic energy gaps of the system. 

 

2.5. Summary 

In this chapter time dependent perturbation theory was used for the density operator to 

build an expression for the first order polarization containing time correlation functions of the 

dipole operator that decay as the system loses memory of the initial state prepared by the 
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perturbative electric field(s).  A physically relevant line broadening function was obtained by the 

cumulant expansion and knowledge of Gaussian statistics.  It was shown how this line 

broadening function describes the observation of Gaussian line shapes in condensed phases due 

to bath induced fluctuations of the system.   Rules were presented enabling the conversion of 

Feynman diagrams into terms in the response function.  The rules were employed for linear 

absorption and pump-probe spectroscopies but are universal to all orders of perturbation and all 

experiments.  Terms obtained by application of the rules were convolved with electric fields to 

produce terms in the first and third order polarizations.  The theoretical framework laid out in 

this chapter will be applied in future chapters to model the higher order two-dimensional 

resonance Raman signals measured in this dissertation and, for comparative purposes, cascades 

of third order processes.  Comparison between experiment and theory will prove the validity of 

the measured signals and the usefulness of the technique developed herein. 

  



46 

2.6. REFERENCES 

 (1) Yang, M.; Fleming, G. R. Chem. Phys. 2002, 282, 163. 

 (2) Atkins, P.; Friedman, R. Molecular Quantum Mechanics, 4th ed.; Oxford University 

Press: Oxford, 2005. 

 (3) Boyd, R. W. Nonlinear Optics, 3rd ed.; Academic Press: Burlington, 2008. 

 (4) Cho, M. Chem. Rev. 2008, 108, 1331. 

 (5) Moran, A. M. Chemistry 488:  Molecular Spectroscopy; Class Notes, 2013. 

 (6) Valkunas, L.; Abramavicius, D.; Mančal, T. Molecular Excitation Dynamics and 

Relaxation:  Quantum Theory and Spectroscopy; Wiley-VCH: Weinheim, 2013. 

 (7) Nitzan, A. Chemical Dynamics in Condensed Phases:  Relaxation, Transfer, and 

Reactions in Condensed Molecular Systems; Oxford University Press: New York, 2006. 

 (8) Parson, W. W. Modern Optical Spectroscopy with Examples from Biophysics and 

Biochemistry; Springer-Verlag: New York, 2007. 

 (9) Kubo, R. J. Phys. Soc. Jpn. 1962, 17, 1100. 

 (10) Druet, S. A. J.; Taran, J. P. E. Prog. Quant. Electr 1981, 7, 1. 

 (11) Yee, T. K.; Gustafson, T. K. Phys. Rev. A 1978, 18, 1597. 

 (12) Tokmakoff, A. Nonlinear Spectroscopy; MIT Department of Chemistry: Cambridge, 

2009; Vol. 2016. 

 (13) Levine, I. N. Quantum Chemistry, 6th ed.; Pearson Prentice Hall: Upper Saddle River, 

2009. 

 (14) Mukamel, S. Principles of Nonlinear Optical Spectroscopy; Oxford University Press: 

New York, 1995. 



47 

 (15) Memming, R. Semiconductor Electrochemistry; Wiley-VCH: Weinheim, 2001. 

 (16) Abramavicius, D.; Mukamel, S. Chem. Rev. 2004, 104, 2073. 

 (17) Guo, Z.; Molesky, B. P.; Cheshire, T. P.; Moran, A. M. J. Chem. Phys. 2015, 143, 

124202. 

 (18) Molesky, B. P.; Giokas, P. G.; Guo, Z.; Moran, A. M. J. Chem. Phys. 2014, 141, 114202. 

 (19) Molesky, B. P.; Guo, Z.; Moran, A. M. J. Chem. Phys. 2015, 142, 212405. 

 (20) Boyd, R. W.; Mukamel, S. Phys. Rev. A 1984, 29, 1973. 

 (21) Lepetit, L.; Chériaux, G.; Joffre, M. J. Opt. Soc. Am. B. 1995, 12, 2467. 

 (22) Gallagher, S. M.; Albrecht, A. W.; Hybl, J. D.; Landin, B. L.; Rajaram, B.; Jonas, D. M. 

J. Opt. Soc. Am. B. 1998, 15, 2338. 

 

 



 

48 

 

 

 

CHAPTER 3:  METHODS OF FEMTOSECOND PULSE GENERATION AND 

RELEVANT ULTRAFAST TECHNIQUES 

 

3.1. Introduction 

The research contained in this dissertation is motivated by ultrafast chemistry where 

nuclear motions of the system occur on the same time scale as the electronic process.  Primarily 

photodissociation reactions are studied.
1-3

  However, electron transfer and energy transfer 

processes may also involve such dynamics.
4,5

  To enable direct investigation of the correlated 

nuclear motions in these mechanisms, two dimensional resonance Raman spectroscopies (2DRR) 

are developed and implemented.  One-dimensional techniques are also utilized to gain a 

preliminary, broader view of the chemistry before executing the more complicated 2D 

experiments. 

For each and all of the experiments contained in this dissertation, ultrashort laser pulses 

of varying color and bandwidth are required to achieve the necessary temporal resolution for the 

dynamics of each system.  This chapter will review the methods for generating laser pulses 

relevant to this work and will detail the techniques in which they are used.  Section 3.2 will 

discuss spectral broadening in hollow-core fibers.  Section 3.3 reviews third-harmonic generation 

in filaments.  Section 3.4 details transient absorption spectroscopy which also prepares the reader 

for a discussion of pump-repump-probe in section 3.6.  Section 3.5 explains transient grating 

spectrosocopy which frames the discussion of the remaining 2DRR techniques discussed in 

sections 3.6 and 3.7. 
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3.2. Spectral Broadening of Femtosecond Pulses Using Hollowcore Fibers 

In this dissertation hollow core fiber (HCF) waveguides are used to prepare ~25fs visible 

laser pulses for studies of myoglobin and triiodide.
1-3

  The fiber cladding is made of fused silica 

to enclose the incident light, and the interior is pressurized with Ar to provide a transparent 

medium for significant self-phase modulation (SPM).  For transmission of high intensity laser 

pulses HCFs are superior to solid core fibers (SCFs)
6
 because gaseous media have much greater 

breakdown thresholds and weaker optical nonlinearities than solid media.
7-9

  Although as a result 

greater interactions lengths are needed.  Beneficially, however, the strength of these 

nonlinearities is easily tuned by changing the type and/or pressure of the gas.
6
  HCFs support 

hybrid modes which are beyond the scope of this discussion except to say that 11EH  is the lowest 

order mode and has a spatial profile similar to the 00TEM  mode for Gaussian beams.
10

  The 

electric field of a laser pulse coupled to the nmEH  mode, propagating along the fiber axis z , is 

given according to Equation 3.1.  

    
2

0 02
, exp exp

2
nm nm nm

t
E z t E i t z 



 
       

 
 (3.1) 

Here 0nmE  is the maximum amplitude of the field,   is the standard deviation of the temporal 

Gaussian, 0  is the carrier frequency, and nm  is a term known as the ‘propagation constant’. 
11

 

 nm nm nmi     (3.2) 

The real component of the propagation constant, given in Equation 3.3, is called the ‘phase 

constant’.  The imaginary component, shown in Equation 3.4, is the ‘attenuation constant’.
6,9,10,12
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Here   is the wavelength of light, a  is the fiber bore radius, p  is the gas pressure, I  is the 

laser intensity, 0n  is the linear refractive index, 2n  is the nonlinear refractive index, n is the total 

refractive index,   is the ratio between the refractive indices of the external (fused silica) and 

internal (Ar) materials, and nmu  is a modal constant that increases in magnitude with the mode 

order.
6
  Using Equation 3.1 as the definition of the field, the intensity is given in Equation 3.5. 

  
2
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0 2
expnm nm

t
I t E E I



 
   

 
 (3.5) 

As the pulse passes some point in space the intensity rises, peaks, and decays.  This time 

dependent intensity creates a varying index of refraction due to the nonlinear component (see 

Equation 3.3).  As a result there is a phase shift and the pulse spectrum broadens.  This is the 

process of SPM.  The time derivative of the phase constant represents the time dependent 

frequency shift per unit length of the fiber.  The sign is negative according to Equations 3.1 and 

3.2. 
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 (3.6) 

Here  is used to represent the constant factor which is positive when  2 ,n p  is positive (this 

is the case for most materials other than plasmas). 

 

Figure 3.1.  A Gaussian pulse propagating through a hollow-core fiber experiences self-phase 

modulation due to the intensity dependent refractive index of the gaseous medium.  The 

frequency of the pulse experiences a red shift at the leading edge (i.e. 0t  ) and a blue shift at 

the trailing edge (i.e. 0t  ).  At the peak ( 0t  ), where the intensity possesses no slope, the 

phase shift is 0 and there is no change in frequency. 
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Figure 3.1 and Equation 3.6 show that the pulse red shifts at the leading edge (i.e. 0t  ) and blue 

shifts at the trailing edge (i.e. 0t  ).  At the peak, where the intensity possesses no slope ( 0t  ), 

the phase shift is 0 and there is no change in frequency.  Multiplication of Equation 3.6 by the 

length of fiber gives the total effect of SPM. 

Propagation through HCFs can be thought of as a series of grazing angle Fresnel 

reflections off the fiber’s inner surface.
6,10

  Due to partial transmission at the walls of the 

capillary HCFs are very lossy
9,12

 , unlike SCFs which take advantage of total internal 

reflection.
12

  The attenuation constant shows how this loss depends on the fiber mode, the 

wavelength of light  , the bore radius of the fiber a , and the refractive indices of the cladding 

and gas.  Since the magnitude increases with the mode order, HCFs tend to discriminate against 

higher order modes.
6,10

  Attenuation of all modes becomes more significant as the wavelength of 

light increases or the fiber bore radius decreases.  Equation 3.7 gives the transmitted power for 

the nmEH  mode through a fiber of length , where nm  is the coupling efficiency.
13

 

  exp 2nm nm nmP     (3.7) 

The coupling efficiency is unique for each mode but is related to the ratio of the 1/e
2
 beam waist 

radius and the fiber bore radius.  When this ratio is greater than 0.64 essentially no light is 

coupled to modes higher than that of lowest order.
13

  This assumes perfect alignment along the 

path of the fiber.
14

  Of course the beam can be intentionally misaligned to populate higher order 

modes for purposes of cross modal phase matching in third harmonic generation.
15

  As the spot 

size becomes larger than the fiber bore diameter light is clipped on the aperture and the overall 

coupling efficiency is diminished.
13

  The attenuation of all modes increases with the length of the 
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fiber but is more detrimental to higher order modes due to the factor 
nmu  which increases with 

the mode order.
6,9,10,13,14

 

 

Figure 3.2.  The mounting system and air tight housing for a hollow-core fiber, specially 

designed to ensure perfect alignment to the path of the beam.  The fiber is contained within a 

glass rod positioned within the central part of the housing.  The rod is held in place by Swagelok 

Ultra-Torr fittings located where pairs of vacuum components are clamped together.  The entire 

custom housing is highlighted in yellow, supported by four custom mounts.  The image in red 

shows the fiber inside of the glass rod cradled by an Ultra-Torr fitting where the vacuum 

components have been disjoined to provide a better look.  The gas inlet/outlet is circled in 

magenta. 

 

In this work HCFs are pressurized with Ar by mounting of the fiber in an air-tight 

housing specially designed to ensure perfect alignment of the fiber to the direction of the beam.  
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Photos of the setup are shown in Figure 3.2.  Fiber diameters as well as alignment and focusing 

conditions are chosen to prevent significant coupling into higher order modes.  Fiber lengths are 

selected to balance between a sufficient interaction distance and acceptable field attenuation.  

The Ar pressure is set to maximize spectral broadening while ensuring stability of the outgoing 

beam.  Specific parameters can be found in Chapters 5 and #.  The mounting system and fiber 

housing used in this work represent an upgrade to a previous design utilized in the Moran 

group
15-17

 which was in turn based on a system engineered by the Bradforth group.
18

 

3.3. Third Harmonic Generation by Filamentation of Femtosecond Pulses 

Cofilamentation of 800nm and 400nm light in a gaseous medium is an effective way of 

generating pulses at the third and fourth harmonic of a Ti:S laser system via four-wave mixing 

(4WM) processes that take place within the filament.
19,20

  The dominant processes are shown in 

Equation 3.8. 

 
2 2 3

3 2 4

   

   

  

  
 (3.8) 

Here   is the fundamental frequency of the Ti:S laser.  Although both processes occur to a 

significant degree, this section focuses on production of the third harmonic.  Figure 3.3 illustrates 

the mechanism of filament generation.  Laser pulses are focused into the gas such that the power 

density becomes greater than the critical power for self-focusing defined in Equation 3.9.
21-24
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Here   is the wavelength of light, 0n  is the linear refractive index, and 2n  is the nonlinear 

refractive index.  Self-focusing is a result of the optical Kerr effect and further increases the 



 

55 

power density, ionizing the gas to form a plasma.  The negative refractive index of the plasma 

defocuses the beam until the power density is below the threshold for ionization but still greater 

than the critical power for self-focusing.
25,26

  The change in refractive index due to the plasma is 

given in Equation 3.10.
24,27,28
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Here 
p  is the plasma frequency,   is the optical frequency, e  and em  are the charge and mass 

of the electron, and  en I  is the intensity dependent electron concentration. 

 

Figure 3.3.  The process of filament generation.  A high-energy laser beam is focused into a gas 

by a lens or mirror until the power density is great enough to cause Kerr effect induced self-

focusing of the beam.  The gaseous medium is ionized to form a plasma which defocuses the 

light.  These processes iterate, forming a filament, until enough energy is lost through ionization 

of the gas to destabilize the balance between self-focusing from the Kerr-effect and defocusing 

from the plasma.  Depending on the pulse duration and intensity as well as the type of gas and 

pressure, filaments can be as short as a centimeter or as long as meters.  The filaments generated 

in this work are on the length scale of centimeters. 
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The balance between self-focusing and plasma induced defocusing causes the formation of a 

filament in which the beam waist is ‘clamped’ until enough energy is lost through gas ionization 

to disrupt the balance.
22,24,29,30

  To moderate the density of the plasma and maximize the length 

of the filament, noble gases are chosen as the nonlinear media because of their relatively high 

ionization potentials compared to other gases.  This ensures that energy is lost as slowly as 

possible and provides longer interaction lengths
27

 for self-phase modulation and the FWM 

processes that result in UV light. 

Although hollow-core fiber (HCF) waveguides have also been shown to be effective tools 

for the production of ultrashort UV pulses
12,31-33

, filamentation holds many advantages for this 

purpose over HCFs.  In HCFs cross modal phase matching of the incident 400nm and 800nm 

light can product sub-20fs laser pulses at the third harmonic through careful alignment of the 

incoming beams.
15

  In filaments attention to phase matching becomes much less critical because 

‘intensity clamping’ ensures that all fields remain strongly coupled to one another.
20

  Alignment 

is easily achieved because it is only necessary that the 400nm and 800nm beams are collinear in 

free space.  There are no 10’s to 100’s of micron apertures to which the incident light must be 

tediously coupled.
19,20,29

  Additionally filaments are capable of supporting much greater incident 

pulse powers because there is no damageable waveguide.
22

  They are much less lossy because 

there are no Fresnel reflections off a fused silica cladding, and the only major source of loss is 

multiphoton ionization of the gaseous medium.
24

  It is clear that the physics for pulse 

propagation through a filament are significantly different than those for propagation through 

HCFs.  As such the equations given in the previous section do not properly describe the spectral 

broadening and general behavior of the laser pulse in a filament.
20

  For this purpose Equation 
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3.11 shows a description of a Gaussian temporal envelope propagating through a cofilament 

based on the slowly varying wave approximation modified to include ionization effects.
20,27,34
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 (3.11) 

Here  , ,jA z r t  is the envelope,  jk   is the frequency profile of the wavenumber, 
1 jGVM  is 

the group velocity mismatch with the fundamental, 
j  is a phase constant, 

j  is the central 

optical frequency, c is the speed of light,  , ,p z r t  is the plasma frequency, and  NL

jP t  is 

time-domain nonlinear polarization related to the atomic nonlinear susceptibilities of the 

medium.  The subscript j distinguishes between the fundamental, second harmonic, and third 

harmonic beams.  The model includes spatiotemporal Kerr-effect induced self-action of the laser 

pulse, dispersion from the gas and plasma, beam diffraction, and ionization effects including loss 

and related nonlinear phenomenon.  The terms related to conventional SPM can be isolated by 

neglecting those involving the plasma (i.e. 0en  , 0p  , and 
0

1
0

d

dt

  
  

  
).  It is not 

possible to isolate the terms associated with ionization induced spectral broadening without 

losing the balance between self-focusing and defocusing which would negate these factors.
27

 

Traditionally the method of filamentation for UV production is implemented using top of 

the line commercial laser systems that support sub-30fs, >2mJ fundamental pulses enabling the 

generation of a filament under loose focusing conditions to keep the beam divergence low.
19,20,22
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Large beam divergence can destabilize the filament and cause degradation of the output beam’s 

spatiotemporal profile, affecting the compressibility of the pulse.
19,20

  These negative impacts can 

be mediated by careful choice of noble gas and gas pressure.
22

  A technical hallmark of the work 

in Chapter 4 is the use of high pressure Ne to accomplish the generation of third harmonic pulses 

suitable for the triiodide studies in this dissertation using a less advanced, partially homebuilt 

laser system.  The relatively high ionization potential and low nonlinear refractive index in 

comparison to Ar make Ne capable of withstanding the experimental conditions in Chapter 4 

(see the Chapter 4 and Appendix A for the experimental conditions, illustration of the gas cell, 

and details of the Ne/Ar comparison).
35

 

3.4. Transient Absorption Spectroscopy 

Transient absorption (TA) is third order in perturbation and can be considered as 

measuring the dynamic absorption spectrum of a nonequilibrium species as it relaxes.  First, an 

electronically resonant ‘pump’ beam excites a fraction of the system from equilibrium within the 

spot size of the laser.  This fraction depends on the extinction coefficient of the sample at the 

pump wavelength and the intensity of the pump.
36

  It is kept fairly small, typically <10%, to 

ensure perturbative conditions.  The excitation itself can be thought of in either a classical or 

quantum sense.  In a quantum consideration one photon is absorbed by the sample.  In a classical 

consideration there are two interactions with the electric field of the pump beam.  Both of these 

interpretations are equivalent and accurate according to the particle-wave duality of light.  After 

the sample is excited there is a delay period, T, and a probe beam passes through the excited 

volume.  Transmitted probe light is dispersed by frequency on a suitable detector producing a 

spectrum of intensity vs. detection frequency at a particular time along relaxation of the system.  

By varying the delay and acquiring spectra at predetermined intervals between the pump and 
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probe, evolution of the transient species is measured over an amount of time appropriate for the 

dynamics of interest.  If the purpose of the measurement is to record oscillations in the spectrum, 

the step size is carefully chosen to enforce the appropriate Fourier window.  At each delay time 

the probe transmission is measured under both pump-on and pump-off conditions to acquire the 

difference in absorption between the equilibrium and nonequilibrium system.  The transient 

spectrum is then determined as a function of time and frequency, illustrated by Equation 3.12. 

          , , , , ,pump on pump off noneq eqA T A T A T A T A T           (3.12) 

This works because the signal wavevector is equivalent to the probe wavevector according to the 

phase matching condition in TA, 1 2 3sk k k k   
37,38

 where 1 2k k . 

 

Figure 3.4.  Experimental design of the transient absorption experiments completed in this 

dissertation.  A 400nm pump beam excites the sample from equilibrium.  After a delay, T, the 

probe arrives and passes through the excited volume.  Transmitted probe light is then dispersed 

by frequency on a suitable detector.  A chopper in the path of the pump spinning at 500Hz, half 

the rep rate of the laser, alternates between pump-on, pump-off conditions with each laser shot to 

measure the signal according to Equation 3.12.   The signal is measured over a delay range 

appropriate for the sample and dynamics of interest. 
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The experimental conditions for the TA measurements conducted in this dissertation are identical 

to those for the pump-repump-probe experiment detailed in Chapter 5, except that only one 

pump beam is utilized and the chopper wheel is operated at 500Hz to alternate between pump-

on, pump-off with each laser shot.  A diagram depicting this simpler design is given in Figure 

3.4. 

For a two level system TA measures two classes of terms in the response function, 

ground state bleach (GSB) terms and excited state emission (ESE) terms.  As discussed in 

Section 4 of Chapter 2 spectral components originating from either GSB or ESE have a negative 

sign and show a decrease in absorption after the sample is excited.  This decrease in absorption 

corresponds to an increase in probe transmission through the transient species relative to the 

equilibrium system.  For GSB signal contributions this increase in probe transmission is due to 

the decrease in ground state population after a fraction of the sample has been promoted to the 

excited state.  For ESE signal contributions it is due to emission of light from the excited state 

population, stimulated by the probe.  At long delay times GSB and ESE are distinguished by the 

Stokes shift of the ESE due to nuclear relaxation of the system.  At short delay times ESE and 

GSB contributions overlap and are indistinguishable.
39,40

  For systems possessing more than two 

levels, excited state absorption (ESA) terms can also be measured.  As discussed in Section 4 of 

Chapter 2 spectral components originating from ESA have a positive sign and show an increase 

in absorption for the transient species.  This corresponds to a decrease in probe transmission, 

attributable to resonance of the probe light with an energy gap between the excited state prepared 

by the pump and a higher lying excited state. 
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3.5. Transient Grating Spectroscopy 

Like TA, transient grating (TG) is a third order, pump-probe technique utilizing the phase 

matching condition, 
1 2 3sk k k k    .

37,38
  TG measures the same classes of terms in the 

response function as TA, but possesses some key beneficial differences.  Unlike TA which 

employs only one pump beam that interacts with the sample twice, TG utilizes two time 

coincident pump beams in a noncollinear geometry causing emission of the signal in a 

background free direction (see Figure 2.6).  Although now there are two pump beams rather than 

just one, the excitation can still be considered as either a quantum or classical process.  The 

quantum interpretation is analogous to a double-slit experiment.
41

  The material absorbs only one 

photon but in a superposition of the photon originating from either beam.  The classical 

interpretation is identical to that for TA, except that the two pump interactions occur with 

separate, noncollinear fields. 

Since the pump beams do not have identical wavevectors they interfere creating spatially 

periodic areas of constructive and destructive interference.  In areas of constructive interference 

the sample is excited.  In areas of destructive interference the sample is left at equilibrium 

forming a population grating.  The population grating can be thought of as a series of ‘fringes’.
42-

44
  After a delay, T, the probe beam arrives and is scattered off the grating in the signal direction, 

i.e. the sum of the wavevectors of incident fields.  The efficiency of this scattering process 

depends on the number of fringes encountered by the probe and determines the sharpness with 

which the signal direction is defined.  The number of fringes the probe sees is related to the 

fringe density defined by the spot size at the sample and the distance between fringes.  This 

distance, typically on the order of 10 microns, is given according to Bragg’s law (i.e. 
2sin

d
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) and thus depends on the angle between interfering pump beams,  .
42-44

  The time evolution of 

the population grating is determined by the response function of the sample and encodes the 

experimental observable.  Figure 3.5 illustrates the concept of grating formation and shows an 

example population grating produced in a TG measurement.  The parameters used to calculate 

this grating correspond to the experimental conditions in Chapter 4.  The angle between the 

266nm pump beams is 6.1 degrees resulting in the presence of 17 fringes within the 120 micron 

FWHM laser spot. 

 

Figure 3.5.  (a) The concept of grating formation in transient grating measurements.  Two time-

coincident noncollinear pump beams overlap in the sample interfering to form a population 

grating.  After a delay the probe arrives and is scattered off the grating in the signal direction 

1 2 3sk k k k     where 1k  and 2k  are the pump beams and 3k  is the probe.  (b) An example 

population grating produced in a TG measurement viewed along the propagation direction.  The 

parameters used to calculate this grating correspond to experimental conditions in Chapter 4.  X 

and Y are dimensions in the laboratory frame. 

 

Since signal intensities are typically 1000x weaker than the probe, background free 

detection in TG is an enormous advantage regarding signal to noise, allowing for the use of 

lower laser fluences and the measurement of signals much weaker than what is possible in TA.  
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It is only necessary that the signal intensity is greater than the noise of the detector.  Better still 

the background free signal can be detected interferometrically by overlap with a weak reference 

field, further enhancing the signal to noise ratio and enabling resolution of the absorptive and 

dispersive components.
45-50

  The expression for this heterodyne signal is given in Equation 

3.13.
51,52

 

      
2 2

2 cosref S ref S ref SI E E t E E t       (3.13) 

By considering that the reference field is much stronger than the signal field (i.e.  ref SE E t ) 

 
2

SE t  can be eliminated from Equation 3.2.  Also since the reference field is experimentally 

delayed, 
2

refE  can be removed from Equation 3.2 through numerical processing.  The measured 

interferogram is Fourier transformed into the time domain where a Gaussian apodization 

function is applied to isolate the third term.  Inverse Fourier transform yields Equation 3.14.  

    2 cosref S ref SI E E t     (3.14) 

While the homodyne signal intensity depends quadratically on the signal field and contains no 

phase information (i.e.  
2

SI E t ),  the heterodyne signal retains all information necessary for 

obtaining the phase, scales linearly with the signal field, and is in fact amplified by a factor of 

 2 /ref SE E t  in relation to the homodyne signal.
49,51

  The real component corresponds to the 

transient absorption of the sample equivalent to the information given by TA.
53,54

  The imaginary 

component corresponds to transient dispersion which can be sensitive to the solvent and/or a 

thermal grating formed by fast recovery of the ground state.
45-47

  The phase of the signal also 

enables determination of the signs of its components. 
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As evidenced by Equation 3.14 the difficulty in achieving interferometric detection is 

maintaining a constant phase relationship between the reference and signal fields.  Equation 3.15 

illustrates this difficulty in terms of the incident fields.
51

 

    1 2
2

ref S pump pump ref probe


                 (3.15) 

Here 
2


 is the phase shift between the polarization and field emitted by the material, and 

  is 

the phase shift originating from the complex nonlinear susceptibility.  Air currents, humidity 

issues, temperature fluctuations, and vibrations of optics are all factors that easily disrupt this 

delicate relationship by inducing changes in the relative pathlengths of incident beams.  For 

visible laser pulses just a 16nm difference in pathlength induces a 10° phase shift.  One way of 

mediating these disruptive factors is by sheer brute force control over the mechanical stability 

and experimental environment.
55

  Another is by continuous monitoring of phase fluctuations and 

reactive compensation via a feedback loop and piezoelectric transducers.
56-59

  Both are tedious, 

expensive, and extremely complex.  In this dissertation passive phase stabilization is achieved 

through utilizing a diffractive optic (DO) based interferometer.  In such a device one DO splits 

two beams into their +1 and -1 diffraction orders creating two identical pump beams and a probe 

and reference beam that are also identical.  All four beams are incident on common optics 

negating phase fluctuations due to mechanical vibrations.  Furthermore the close proximity of all 

four beams ensures the sampling of identical temperature and humidity conditions resulting in 

self canceling of all other fluctuations.
49-52,60-64

  A schematic of the DO interferometer as it is 

used for TG measurements in Chapter 4 is given in Figure 3.6. 
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Figure 3.6.  The diffractive optic (DO) based interferometer used for TG measurements in this 

dissertation.  Two beams enter the setup with an experimentally controlled delay between them.  

Both are focused onto the DO splitting each into its +1 and -1 diffraction orders.  These four 

beams are incident on a spherical mirror which focuses them onto the sample.  Beams 1-3 induce 

the polarization response and the signal is emitted collinearly with beam 4, an attenuated 

reference field for interferometric detection.  A typical interferogram is shown. 

 

3.6. Six-Wave Mixing Spectrocopies 

Six-wave mixing (6WM) techniques are fifth order in perturbation.  The simplest 6WM 

spectroscopy executed in this dissertation is ‘pump-repump-probe’ (PRP).  The experimental 

conditions and technical details for this experiment are given in Chapter 5.  Figure 3.7 is based 

off Figure 5.5 and depicts the experimental setup for the purpose of local illustration.  PRP can 

be thought of as TA spectroscopy with an additional pump step before the probe step.  Like in 

TA the equilibrium system interacts twice with a pump beam and is promoted to a 

nonequilibrium state.  After a delay a second pump beam interacts twice with the nonequilibrium 
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system at a specific point along the decay defined by the time between pump beams.  After a 

second delay the probe arrives inducing signal emission.  In this way it is possible to measure 

chemical processes beginning from nonequilibrium nuclear geometries.  Lower order 

spectroscopies can only measure chemistry beginning from equilibrium.  This principle of 

inducing chemistry from nonequilibrium reactant states and then probing components of the 

system extends to all six-wave mixing spectroscopies, allowing measurement of nuclear 

coherences between the photochemical reactant and product. 

 

Figure 3.7.  Experimental design of the pump-repump-probe experiments completed in this 

dissertation.  A 400nm pump beam excites the sample from equilibrium.  After a delay, 1 , 

another identical pump beam reexcites the system from a nonequilibrium state.  There is another 

delay, 2 , and the probe arrives passing through the excited volume.  Transmitted probe light is 

then dispersed by frequency on a suitable detector.  Choppers in the paths of both pump beams 

spinning at 250Hz, a quarter of the laser’s rep rate, alternate between the four conditions needed 

to measure the signal according to Equation 3.16.  Appropriate delay ranges are chosen based on 

the sample and dynamics of interest. 
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The PRP spectrum is generated by varying the delay between pump beams as well as the delay 

between the second pump and probe.  For each combination of delays, measurements are taken 

under four conditions:  pumps-on, pump1-on pump2-off, pump1-off pump2-on, and pumps-off.  

As such the PRP spectrum is determined according to Equation 3.16.
65-67
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 (3.16) 

This is necessary because all three signals (i.e. A  terms in Equation 3.#) are collinear with the 

probe ( 5k ) according to the phase matching condition 1 2 3 4 5sk k k k k k       where 1 2k k  

and 3 4k k . 

To increase sensitivity, reduce data acquisition time, and achieve resolution of the 

dispersive and absorptive signal components, a greater number of beams can be used to obtain 

information at the same order in perturbation.  In this dissertation four-beam and five-beam 

geometries are utilized.  The experimental conditions and technical details can be found in 

Chapters 4 and 5.  Figures 3.8 and 3.9 show the DO interferometers used for the four and five-

beam experiments.  These figures are based off Figures 5.4 and 4.4 and are shown here for local 

illustration. Four-beam geometry six-wave mixing experiments can be thought of as an initial TA 

style pump step followed by the steps of a TG measurement.  First, two interactions with a pump 

beam prepare a nonequilibrium system.  After a delay a pair of noncollinear time coincident 

pump beams reexcites the system and creates a population grating in the sample similar to that 

illustrated in Figure 3.5.
42-44

  There is a final delay and the probe arrives scattering off the grating 
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according to the phase matching condition 
1 2 3 4 5sk k k k k k    

61
 where 

1 2k k .  If the 

reactant is resonant with the ‘TG beams’, as is the case for experimental tests in Chapter 6, then 

the fifth-order signal is collinear with a third-order signal and the initial pump beam must be 

chopped to isolate the higher order signal. Spectra are obtained under pump1-on and pump1-off 

conditions.  If the reactant is not resonant with the ‘TG beams’, as is the case in Chapter 5, then 

the higher order signal is background free and can be measured directly without chopping any 

beams.  Interferometric detection is readily achieved because of a reference field that is 

automatically collinear with the signal as in TG. 

 

Figure 3.8.  The diffractive optic (DO) based interferometer used for 4-beam six wave mixing 

experiments in Chapter 5.  This setup operates much like the TG interferometer shown in Figure 

3.6 but with a preliminary pump step (340nm pulse 1) such that there are two delay periods and 

four beams induce the polarization response of the sample.  Again the signal is emitted 

collinearly with an attenuated reference field for interferometric detection. 
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Figure 3.9.  The diffractive optic (DO) based interferometer used for 5-beam six wave mixing 

experiments in Chapter 4.  Each of the three incoming beams is split into -1, 0, and +1 diffraction 

orders with equal intensities producing the portrayed view on the spherical mirror.  Beams 

represented by open circles are blocked by a mask.  Beams 1 and 2 arrive first exciting the 

sample and producing a population grating.  After a delay beams 3 and 4 arrive reexciting the 

sample from a nonequilibrium state.  Beam 5 induces signal emission collinearly with an 

attenuated reference field, beam 6, for interferometric detection. 

 

For five-beam geometries the phase matching condition is the same as for the four-beam 

geometry (i.e. 1 2 3 4 5sk k k k k k    
61

) but 1 2k k  such that the higher order signal is always 

background free.
61

  In this geometry all beams are generated in a DO by splitting three incoming 

beams into their +1, 0, and -1 orders.  Initially a pair of time coincident noncollinear pump 

beams creates a population grating in the sample.  After a delay another pair of pump beams 

interferes with the initial grating creating a more complicated pattern from which the probe is 

scattered after a second delay.  Here the angle between the pump beams in each pair is half of 

what it is in the four-beam geometry and TG experiments (i.e. for 266nm beams the angle is 
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6.1°/2=3.05°).  This reduction in the separation angle increases the spacing between fringes and 

reduces the fringe density
42-44

 such that there are 9 fringes within the 120 micron FWHM laser 

spot rather than 17.  Regardless, when the probe arrives the desired signal is scattered sharply in 

the phase matched direction, collinear with a weak reference field for interferometric detection.  

Examples of the initial grating and the total grating produced in the five-beam 6WM experiments 

detailed in Chapter 4 are illustrated in Figure 3.10. 

 

Figure 3.10.  (a) An example population grating produced by the first pair of time coincident 

noncollinear pump beams in the 5-beam 6WM experiment.  The number of fringes within the 

120 micron FWHM spot size is reduced from 17 to 9 in comparison to TG experiments 

conducted under similar conditions.  This reduction in fringe density originates in the lesser 

angular separation between pump beams.  (b) The final 6WM grating from which the probe is 

scattered.  The pattern is more complicated because two pairs of time coincident noncollinear 

pump beams interfere to generate this grating.  The parameters used to calculate both gratings 

correspond to experimental conditions in Chapter 4.  Both gratings are viewed along the 

propagation direction.  X and Y are dimensions in the laboratory frame. 

 

3.7. Femtosecond Stimulated Raman Spectroscopy by Six-Wave Mixing 

In this dissertation Femtosecond Stimulated Raman Spectroscopy (FSRS) by six-wave 

mixing (6WM) is developed and conducted in both four-beam and five-beam geometries.  The 
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benefits over traditional three-beam FSRS
68

, the experimental conditions, and the technical 

details are given in Chapters 6 and 7.  Figured 3.11 is based off of Figures 6.1 and 6.3 and is 

shown here to illustrate the beam geometries and pulse arrival scheme for the purpose of 

understanding the gratings formed in each experiment.  Figure 3.11d shows the five-beam 

experiment but equally represents the four-beam technique if the number of actinic pump beams 

is reduced to one.  In the five-beam geometry an electronic process is activated by a pair of 

identical actinic pump beams which form a static grating in the sample.
42-44

  They are beams 1 

and 2 in Figure 3.11b.  The pattern of this grating is similar to the initial grating formed in the 

6WM experiments considered in the last section.  An example is shown in Figure 3.12a.  After a 

variable delay, time coincident Raman pump and Stokes beams arrive and stimulate a coherent 

Raman response.  They are beams 4 and 5 in Figure 3.11b.  They also produce a grating however 

it is more complex than those previously considered.  Due to the relative orientation of the 

Stokes beam and Raman pump the resulting grating is tilted diagonally as shown in Figure 3.12b.  

Also since these beams are not the same frequency the grating pattern is mobile and the fringes 

move quickly, diagonally down to the right.  In fact, because of the broadband nature of the 

Stokes beam (i.e. its bandwidth contains many frequencies) the grating consists of different 

components moving at different rates.  The final FSRS grating, shown in Figure 3.12c, is the 

convolution of the coherent Raman grating and the grating formed by the actinic pump beams.  

Its inference pattern moves diagonally down to the left.  After a fixed delay the final Raman 

pump, beam 3 in Figure 3.11b, is scattered off this dynamic grating in the signal direction 

1 2 3 4 5sk k k k k k     61
, experiencing a ‘Doppler’ shift to the red.   The magnitude of the shift 

depends on the frequency differences between bandwidth components of the Stokes beam and 

the Raman pump that created the nonstatic grating.  When a frequency difference matches a 
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vibrational frequency of the sample the signal is resonantly enhanced at the corresponding 

wavelength. 

 

Figure 3.11.  (a) The interferometer used for FSRS by 6WM experiments in this dissertation.  

This design is much like the interferometer shown in Figure 3.9.  However each of the three 

incoming beams is a different color.  Therefore each exits the DO at a different angle preventing 

collinearity with a reference field.  (b) The five-beam FSRS geometry.  (c) The four-beam FSRS 

geometry.  (d) The pulse arrival scheme.  Actinic pump(s) arrive(s) first activating some 

electronic process.  After a variable delay, 1 , the first Raman pump (beam 4) and the Stokes 

beam (beam 5) arrive.  The window shown in (a) enforces another delay, 2 , and the final 

Raman pump (beam 3) is scattered off the FSRS grating. 

 

In the four beam geometry a single actinic pump (beam 1,2 in Figure 3.11c) is used so 

there is no initial static grating.  Additionally the fringe density in the dynamic coherent Raman 

grating is lesser due to the smaller angle between the time coincident Raman pump and Stokes 
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beams (beams 4 and 5 in Figure 3.11c).  The diagonal tilt is less pronounced as well.  In the four 

beam geometry there is a lower order signal collinear with the higher order signal that must be 

eliminated in a manner similar to the method used in the four beam experiment discussed in the 

previous section.  In both the four and five beam geometries a broadband pump-repump-probe 

signal is separated from the fifth order Raman signal by numerical processing for which details 

are given in Chapter 6. 

 

Figure 3.12.  (a) The static grating formed by the time coincident noncollinear actinic pump 

beams in the 5-beam geometry experiment.  In the 4-beam experiment a singular actinic pump is 

used and this grating is not formed  (b) In both the 4 and 5-beam experiments the Raman pump 

and Stokes beams create a dynamic population grating in the sample because the beams have 

different frequencies.  The fringes move down to the right.  (c) In the 5-beam experiment the 

gratings in (a) and (b) interfere forming a more complicated dynamic grating whose fringes 

move down to the left.  In both the 4 and 5-beam experiments the final Raman pump is scattered 

off the respective dynamic grating, experiencing a ‘Doppler’ shift based on the fringe velocities.  

When that velocity matches a resonance frequency in the sample the signal is resonantly 

enhanced at the corresponding wavelength. 
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3.8. Summary 

In Chapter 3 methods of femtosecond pulse generation relevant to this work were 

discussed, specifically spectral broadening in hollow-core fibers and third harmonic generation 

in filaments.  The techniques in which these pulses are applied were also detailed, including 

transient absorption and transient grating spectroscopies, pump-repump-probe, a newly 

developed 2D six-wave mixing form of transient grating, and the newly development FSRS by 

six-wave mixing.  The methods of pulse generation and the experimental techniques, both one-

dimensional and two-dimensional, that were discussed in this chapter will be critical for the 

investigations in the remaining chapters of this dissertation. 
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CHAPTER 4:  MULTIDIMENSIONAL RESONANCE RAMAN SPECTROSCOPY BY 

SIX-WAVE MIXING IN THE DEEP UV
1
 

 

4.1. Introduction 

Recent experimental advances have motivated tremendous growth in the field of coherent 

multi-dimensional spectroscopy.
1-7

  The most widespread technique, two-dimensional (2D) 

spectroscopy, employs a photon echo-like pulse sequence to overcome the tradeoff between time 

and frequency resolution made in traditional transient absorption experiments.
8-12

  The power of 

2D spectroscopy has been leveraged to obtain new insights into dynamics ranging from energy 

transfer in photosynthesis to chemical equilibrium exchange in liquids.
4,13-22

  In contrast, multi-

dimensional Raman techniques are not yet widely applied because of technical challenges 

involved in implementation.
23-25

  Nonetheless, optical pump-Raman probe experiments have 

been used to interrogate the structural dynamics that accompany a variety of photoinduced 

relaxation processes (e.g. internal conversion, electron transfer).  Time and frequency domain 

versions of Femtosecond Stimulated Raman Spectroscopy (FSRS) are capable of probing 

vibrational resonances in solvated chromophores throughout the entire “fingerprint” range.
26-39

  

A second class of techniques developed by the research groups of  Scherer and Blank, referred to 

here as Polarizability Response Spectroscopy (PORS), is designed to detect the low-frequency 

(<300cm
-1

) Raman response of the solvent that surrounds a solute.
40-44

 

                                                             
1
 This chapter previously appeared as an article in the Journal of Chemical Physics.  The original citation is as 

follows:  Molesky, B. P.; Giokas, P. G.; Guo, Z.; Moran, A. M. J. Chem. Phys. 2014, 141, 114202. 
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The basic information conveyed by the technique employed in this work is described in 

Figure 4.1.  A fifth-order polarization is induced with a sequence of five electronically resonant 

laser pulses.  The first pair of time-coincident laser pulses initiates coherent vibrational motions 

in 1  by way of a stimulated Raman process.  Interactions with the second pulse-pair similarly 

induce vibrational coherences in the experimentally controlled delay, 2 .  The experiment is 

motivated by knowledge of correlated nuclear motions in 1  and 2 .  For example, depending on 

the value of 1 , the wavepacket in 2  can be initiated at the equilibrium position or (either) 

turning point in a particular vibrational coordinate.  In addition, the signal field may carry 

signatures of the wavepacket’s location at the time the signal is radiated, because the resonance 

frequency is generally coordinate-dependent for a Franck-Condon active mode.  Figure 4.1 

illustrates three potential applications of the present technique.  Inhomogeneous broadening (i.e. 

structural heterogeneity) can be uncovered as in earlier work on intermoleculear motions in off-

resonant systems.
24,25

  The technique can also be used to study photochemical dynamics if beams 

with different frequencies are incorporated.
26,37,39,45

  Finally, the experiment is sensitive to 

anharmonicity in the potential energy surfaces for Franck-Condon active modes.
45
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Figure 4.1.  (a) The present experiment involves a sequence of five electronically resonant 

pulses and two experimentally controlled delay times.  Coherent wavepacket motions are 

resolved in 1  and 2 , whereas the signal frequency reflects the position and/or phase of the 

wavepacket.  Fifth-order resonance Raman experiments can be used to investigate (b) line 

broadening mechanisms, (c) photochemical dynamics, and (d) shapes of potential energy 

surfaces. 

 

In this article, we implement the six-wave mixing experiment described in Figure 4.1 in 

the deep UV spectral range.  The capabilities of the experimental setup are demonstrated with 

application to a model system, triiodide (I3
-
), which was studied at length using stimulated and 

resonance Raman spectroscopies in the 1990’s.
46-53

  I3
- 
is an ideal model system with which to 

develop the present technique, because ground state wavepacket motion in the symmetric 

stretching coordinate dominates the response in the deep UV.
46,50

  We describe technical aspects 

of the experiment in addition to exploring the information provided by various representations of 
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the signal.  In one representation, correlations between vibrational coherences in the two 

experimentally controlled delay times, 1  and 2 , are exposed through a straightforward Fourier 

transformation of the wavelength-integrated signal (i.e. a 2D Raman spectrum).  We also show 

that additional insights can be derived by dispersing the signal pulse in a spectrometer, because 

the signal spectrum encodes information regarding the wavepacket’s position by way of the 

(time-evolving) emission frequency.  Experimental signals are compared to model calculations in 

which a cumulant expansion is used to avoid a computationally expensive sum-over-states. 

Undesired third-order signal cascades significantly challenge off-resonant Raman 

spectroscopies conducted on pure liquids and concentrated mixtures.
24,25,54-57

  Third-order 

cascades involve a sequence in which the third-order polarization on one molecule radiates a 

field that induces a third-order polarization in a second molecule.  The second molecule may 

then radiate a signal pulse in the same direction as the fifth-order signal of interest.  Such third-

order cascades are negligible in the present experiments because (i) the electronically resonant 

response does not possesses “forbidden” vibronic transitions (i.e. overtones are “allowed”) and 

(ii) I3
-
 exhibits extremely large-amplitude ground state wavepacket motions in the deep UV.

46,50
  

With respect to cascades, our analysis suggests that Franck-Condon activity is the key distinction 

between signal generation mechanisms on and off of electronic resonance.  Franck-Condon 

activity promotes signal intensity for both harmonic and anharmonic modes on resonance, 

whereas the off-resonant signal generation mechanism relies on potentially weak effects such as 

anharmonicty or nonlinear coordinate-dependence of the polarizability.
55,57,58

  

Applications of 2D electronic spectroscopies in the deep UV (2DUV) have progressed 

steadily in recent years.
21,22,59-63

  The development of such experiments is primarily motivated by 

biological systems (e.g. DNA, proteins) and elementary organic photochemistries (e.g. 
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electrocyclic ring-opening).
21,64,65

  Experimental work carried out to date suggests that 2DUV 

experiments must overcome several significant technical challenges including dispersion 

management, suppression of sample photo-ionization, and the large off-resonant response of the 

solvent near time-zero.
60,66-68

  We see the present 2D Raman experiment as an alternate multi-

dimensional spectroscopy that, with further development, can be routinely applied in the deep 

UV.  The key issue is that molecular vibrations typically dephase on a time scale that is much 

longer than the width of the coherence spike that plagues 2DUV methods.  Of course, six-wave 

mixing signal strengths are weaker than those associated with 2DUV measurements because of 

the higher-order of the nonlinearity.  The approach taken here achieves the required sensitivity 

and data acquisition rate by combining a background-free (six-pulse) laser beam geometry with 

interferometric signal detection. 

4.2. Experimental Methods 

4.2.1. Third-Harmonic Generation via Filamentation in High-Pressure Ne 

This study employs a newly-developed source of femtosecond laser pulses at the third- 

and fourth-harmonics of a Ti:Sapphire laser, wherein filamentation in noble gases is used instead 

of nonlinear optical crystals.
21,61,69,70

  Development of this setup was initially motivated by 

applications involving 200-nm laser pulses.  Here, we make use of the 267-nm laser pulses that 

are also produced in the filament.  The bandwidths of these third-harmonic pulses are not as 

large as those generated in hollow-core fibers;
71-73

 however, we find that the present 

filamentation-based approach yields larger pulse energies, requires much less maintenance, and 

does not compromise the stability of the UV beam (<5% root-mean-square fluctuations).  

Moreover, the pulse durations are sufficient for detection of vibrational coherences in I3
-
, 
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because the symmetric stretching mode has a period of 300 fs. Below, we describe the conditions 

under which suitable third-harmonic laser pulses are obtained. 

 

Figure 4.2.  Setup used to generate third-harmonic laser pulses.  Spectral widths of the 800-nm 

and 400-nm pulses are 350 cm
-1

 and 200 cm
-1

, respectively.  Third-harmonic pulses with spectral 

widths greater than 300 cm
-1

 are obtained at 35 atm in neon gas. 

 

The experimental setup used to generate third-harmonic pulses is depicted in Figure 4.2.  

The pulses are generated by overlapping the filaments associated with 800-nm and 400-nm laser 

beams inside a pressurized cell filled with neon gas.  Third-harmonic generation is dominated by 

the nonlinearity, 3 2 12k k k   (subscripts are orders of the harmonics); direct third-harmonic 

generation via the fundamental, 3 13k k , is 50-100 times less efficient because of greater phase 

mismatch.
21,61,69

  The spectral widths of the fundamental and second-harmonic pulses are 350 

cm
-1

 and 200 cm
-1

, respectively.  The spectral width of the second-harmonic is much narrower 

than that of the fundamental, because it is produced using a 0.75-mm-thick BBO crystal; this is 

not problematic as the desired bandwidth (>300 cm
-1

) is still obtained at the third-harmonic.  

This apparatus differs from that used in earlier work in that we have upgraded the cell to 

accommodate higher pressures.
21,61

  The components of the cell are described in Appendix A. 



 

86 

 

Figure 4.3.  (a) Pulse energy measured as a function of neon pressure.  (b) Intensity-normalized 

spectra of third-harmonic pulses measured as a function of neon pressure.  (c) In neon, the 

spectral width measured for the full beam differs little from that of the central 25% (i.e. 25% of 

the intensity).  Neon is superior to argon as a nonlinear medium in this respect (see Appendix A).  

 

In order to conduct the experiments, laser pulses that are short compared to the 300-fs 

vibrational period of the symmetric stretching mode in I3
-
 must be employed.  We generate 

pulses with spectral widths slightly greater than 300 cm
-1

 (i.e. 55 fs at the Fourier transform 

limit).  This amount of bandwidth represents a reasonable compromise between time resolution 

and experimental difficulties (e.g. stability, dispersion management).  Figure 4.3 shows that the 

pulse energy and the spectral width of the third-harmonic increases with pressure up to 35 atm.  

Caution should be taken in using laser pulses with spectra that are broadened by self- and cross-

phase modulation, because the propensity for spectral broadening is largest in the center of the 

Gaussian beam, where the field is most intense.
74

  We find that the spectrum is quite uniform 

across the spatial profile of the third-harmonic when neon gas is used as the nonlinear medium.  

In contrast, a significant amount of spectral heterogeneity in the beam profile is observed when 

argon is substituted for neon (see Appendix A).  

The pulses are compressed to durations of 60-65 fs using a pair of fused silica prisms 

separated by 15 cm.  The prism compressor compensates for the second-order dispersion 
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accumulated in several transmissive optics (e.g. exit window of the pressurized cell, a lens, beam 

splitters, diffractive optic).  Third-order dispersion accumulated in the prism compressor does not 

have a significant impact on the pulse duration because of the modest spectral width.  Thus, we 

do not compensate for residual third-order dispersion using a (lossy) grating compressor.
75

 

4.2.2 Six-Wave Mixing Interferometer 

Fifth-order nonlinear spectroscopies have been conducted using a variety of laser beam 

geometries. For example, PORS employs a four-beam geometry in which a third-order signal is 

radiated in the same direction as the desired nonlinearity.
41,43

  Thus, the signal of interest must be 

isolated through modulation of at least one of the incoming beams.  In contrast, 2D off-resonant 

Raman spectroscopies of pure liquids employed six-pulse, background-free geometries.
24,25

  

Similarly, the key to the success of the present experiment is the ingenious laser beam geometry 

developed by Mark Berg.
76-78

  In Berg’s experiments, standard transmission gratings are used to 

produce a beam pattern in which passive interferometric signal detection is accomplished by way 

of a reference field that is automatically collinear with the signal after the sample.  Here, this 

approach is combined with spectral interferometry to achieve the data acquisition rate and 

sensitivity required for our application.  
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Figure 4.4.  Diffractive optic-based interferometer used for six-wave mixing experiments.  Each 

of the three incoming beams is split into 0, -1, and +1 diffraction orders with equal intensities 

(the diffraction orders are vertically displaced).  Beams represented with open circles are blocked 

with a mask before the sample.  The fifth-order signal is radiated in the direction 

1 2 3 4 5k k k k k    , and is collinear with the reference field (pulse 6) used for interferometric 

signal detection after the sample. 

 

Figure 4.4 depicts the interferometer used in the present experiments. Three non-collinear 

beams are focused onto a diffractive optic (DO, Holoeye) with a 20-cm focal length spherical 

mirror. At 267 nm, the 0 and +/-1 diffraction orders produced by the DO possess equal intensities 

(this DO was originally fabricated for operation near 200 nm).  The angle between the +/-1 

diffraction orders is 6.1º at 267 nm, where the diffraction orders are separated vertically.  The 

desired grid of nine laser beams is generated by aligning the three incoming beams such that the 

outermost beams cross at 6.1º in the DO and are bisected by the third beam.  The beams must be 
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carefully aligned initially; however, the alignment is easy to maintain because the incoming 

beams are never color-tuned.  

Any delay between the 0 and +/-1 diffraction orders originating from a single beam must 

be small compared to the pulse duration.  To minimize such delays, the DO is oriented with the 

grating etched on the side of the optic from which the beams exit.  Thus, to a good 

approximation, the various diffraction orders do not travel different distances through the DO.  

Cross-correlations of the pulses suggest that the +/-1 diffraction orders arrive simultaneously, 

whereas the zeroeth-order pulse is delayed by 5 fs.  This small delay of the zeroeth-order pulse is 

not compensated for with transmissive optics in order to minimize dispersion and keep the setup 

simple to operate.  

The spherical mirror is tilted off-axis by a small amount (approximately 5°) to 

horizontally displace the incoming and reflected beams, and the diffractive optic is oriented such 

that the 0 and +/-1 diffraction orders are separated vertically.  The 1-mm depth of focus of the 

laser beams is large compared to the 0.07 mm difference in focal lengths caused by spherical 

aberration (a comparison of beams 1 and 2 in Figure 4.4).  Several previous diffractive optic-

based four-wave mixing experiments have made use of a similar configuration.
1,5,60

  The 

spherical mirror is positioned 40 cm from the diffractive optic, so that the laser pulses possess 

the same spatiotemporal properties at the sample and diffractive optic.  Spectra of the laser 

pulses transmitted through a 100-μm pinhole at the sample position are insensitive to vertical and 

horizontal displacement of the pinhole.  The signals (both four-wave and six-wave mixing) are 

also insensitive to small adjustments in the alignments of the incoming beams, and we have 

proven that features of the signals can be reproduced with slightly different alignments on 

different days (see Appendix A).  Thus, the influence of spatial chirp of the laser beams before 
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the sample appears to be negligible.  A general concern for diffractive-optic based experiments is 

that both the signal and reference field (pulse 6) possess spatial chirp after the sample.
1
  Such 

spatial chirp after the sample is minimal in the present work because of the fairly narrow spectral 

widths of the UV laser pulses (< 3 nm). 

The FWHM-spot size of each beam at the sample is 120 μm, and each of the incoming 

pulses is 10 nJ.  The peak power of each laser pulse is kept below 5 GW/cm
2
 to suppress 

undesired ionization of the solute and solvent.
68,79,80

  The sample is flowed through a wire-guided 

jet with a thickness of 300 μm, where the volume of the reservoir is 50 mL.
81

  We find that the 

amount of scattered light produced by the jet is significantly smaller that observed with a cuvette.  

Typically, we acquire 60 points (with step sizes of 33-60 fs) in each dimension, 1  and 2 , and 

average the signals over 10-20 scans of the delay lines.  Linear absorbance spectra of the 

solutions are measured before and after the experiments to confirm the absence of degradation. 

Spectral interferometry is used for signal detection in order to boost sensitivity and 

facilitate rapid data acquisition.
82,83

  In all experiments, signals are detected using a back-

illuminated CCD array (Princeton Instruments PIXIS 100B) mounted on a 0.3 meter 

spectrograph with a 3600 g/mm grating.  Under the conditions summarized above, the signal 

generates roughly 300 counts on the detector with an integration time of 150 ms.  The sensitivity 

afforded by interferometic signal detection is essential to the success of the experiment because 

of the small signal intensity and low efficiency of the detector in the deep UV.  

4.2.3. Sample Preparation 

As described in previous literature,
48

 triiodide solutions are prepared by mixing solid I2 

(Aldrich) with 5-fold molar excess of KI (Aldrich) in ethanol (Decon Labs, 200 proof).  The 
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solution was stirred for one hour to fully dissolve the solid.  The absorbance of the solutions is 

equal to 0.4 at 270 nm in 300 μm path length, which corresponds to a concentration of 1 mM. 

4.3. Model Calculations 

4.3.1. Hamiltonian  

The reduced description developed in this section partitions the Hamiltonian into system 

and bath components.
84-86

  The system consists of two electronic energy levels, whereas all 

nuclear coordinates are included in the bath.  Thus, we avoid a costly sum-over-states in optical 

response functions that would be found if the intramolecular modes were treated explicitly as 

part of the system.  The three components of the Hamiltonian, sys bath sys bathH H H H    , are 

given by 

 sys g eH g g e e   , (4.1) 

 
2

2 21

2

i
bath i i i

i i

p
H m q g g e e

m


 
       

 
 , (4.2) 

and 

 , , , ,sys bath g c g ss e c e ssH g Q Q g e Q Q e
          (4.3) 

State g  is the ground state and e  represents the excited state that is in resonance with the laser 

pulse.  The bath consists of displaced harmonic oscillators for which the associated variables are 

written in lower case ( im , i , and iq ).  The primary oscillator coordinates in sys bathH   are related 

to the displaced harmonic modes in bathH  by 
2

, ,c i i i ii ss
Q m d q 


  and 

2

, ,ss ss ss ss ssQ m d q  , 
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where ,id  is the displacement of mode i  in state   (i.e. the coupling strength).  The subscript c  

denotes a collective bath coordinate, and ss  represents the symmetric stretching vibration of I3
-
. 

4.3.2. Nonlinear Response Functions 

Six-wave mixing experiments correspond to fifth-order in time-dependent perturbation 

theory.  A single field-matter interaction occurs with each of the incoming laser beams, and the 

sixth interaction radiates the signal field that is measured.  The fifth-order polarization is given 

by
85

 

 
 (5) (5)

5 4 3 2 1 5 4 3 2 1 5 5 4 5 4

0 0 0 0 0

3 5 4 3 2 5 4 3 2 1 5 4 3 2 1

( ) , , , , ( ) ( )

( ) ( ) ( )

P t N dt dt dt dt dt S t t t t t E t t E t t t

E t t t t E t t t t t E t t t t t t

    

   

           

      (4.4) 

where  (5)

5 4 3 2 1, , , ,S t t t t t  is the material response function, N  is the number density of 

molecules in the sample, and it  are intervals between field-matter interactions.  In our 

calculations, the form of the electric field for laser pulse j  is given by  

    2 2( ) exp / 2 cosj j j jE t t t     (4.5) 

where j  is the electric-field amplitude, j  is the temporal width, and j  is the carrier 

frequency of the laser pulse.  The frequencies, durations, and intensities of all five pulses ( j =1-

5) are identical.  Under perfect phase-matching conditions, the signal field is related to the fifth-

order polarization by 

  
 

 (5) (5)2 t

t

i l
E t P t

n c

 


  (4.6) 
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where  tn   is the sample’s refractive index and c  is the speed of light. 

 

Figure 4.5.  Double-sided Feynman diagrams for the four dominant terms in the fifth-order 

response function.  The indices g  and e  represent the ground state and the second-to-lowest 

energy excited state in I3
-
, respectively.  Contributions from terms that evolve in excited state 

populations in 2t  and 4t  are negligible under our experimental conditions because of ultrafast 

solvation, internal conversion, and photodissociation processes.
46,49

 

 

The second-to-lowest energy excited state of I3
-
 is photoexcited on the higher-energy side 

of the resonance in the present experiments.  As a result, solvation, internal conversion, and 

photodissociation ensure that excited state dynamics contribute to the signal only at delay times 

that are short compared to vibrational dephasing.  Therefore, our model treats only ground state 

wavepacket motions induced by field-matter interactions with a single electronic resonance.  

This aspect of the deep-UV optical response of I3
-
 was recognized in earlier Raman studies (see 

Section 4.3.4).
46,50

  The diagrams shown in Figure 4.5 represent the four dominant terms in the 

response function 
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j
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S t t t t t R t t t t t R t t t t t



 
     

 
  (4.7) 

where each of the time intervals, jt , is greater than or equal to zero.  In each of these terms, 

wavepacket motions in the ground electronic state occur during 2t  and 4t ; to an approximation, 

these intervals correspond to the two experimentally controlled delay times, 1  and 2 .  

Sophisticated nonlinear response functions have been developed for related experiments in 

recent literature.
34-36

  In this work, we utilize a simple and computationally tractable form of the 

response function in order to capture the basic physics.  

The correlation function for the energy gap between electronic states can be viewed as 

the key quantity that governs the optical response.
85

  Dynamics in this gap are often modeled in 

terms of interactions with a bath of harmonic oscillators.
84-86

  If motions of the two primary 

coordinates in sys bathH   are uncorrelated, then the correlation function for the energy gap can be 

written as 

          2

1
0 0c c ss ssC t U t U U t U     (4.8) 

where      , ,c e c g cU t Q t Q t   and      , ,ss e ss g ssU t Q t Q t  .  We employ correlation 

functions corresponding to overdamped and underdamped modes
85

 

        0 2 expc c BU t U k T i t      (4.9) 

and 
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0 coth cos sin
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d
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k T

 
 

  
   

  
 (4.10) 

where   is the reorganization energy for the collective coordinate,   is the rate of relaxation in 

the collective coordinate, and ssd  is the dimensionless displacement for the symmetric stretch of 

I3
-
.  The high-temperature limit, Bk T   , has been assumed in the above correlation function 

for the collective coordinate. 

With the correlation functions in hand, the four dominant terms in the response function 

are readily obtained using a cumulant expansion approach for which details are given in 

Appendix A.  The terms in the response function can be written as 
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and 
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The line shape function is given by  g t =  cg t +  ssg t , where the component associated with 

primary oscillator j  can be obtained from the corresponding correlation functions in the energy 

gap using 

      
2

2 1 12 0 0

1
0 .

t

j j jg t d d U U


      (4.15) 

 

The line shape functions for the two primary coordinates are
85
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and 
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 (4.17) 

Depending on the experimental conditions, twelve additional terms can make significant 

contributions to the fifth-order response function of a two-level system.  Formulas for these 

additional terms are given in Appendix A.  
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Figure 4.6.  Measured and calculated absorbance spectra for I3
-
 in ethanol are overlaid. The line 

shape of the second-to-lowest energy resonance is simulated using Equation 4.18.  Parameters 

are given in Table 4.1.  The lower energy resonance is approximated with a Gaussian function 

with a peak of 0.57, center of 27830 cm
-1

, and standard deviation of 1975 cm
-1

 in order to 

estimate its contribution to the low-energy side of the resonance of interest. 

 

In summary, the above model requires three key parameters to describe nuclear motions 

in the solute-solvent complex.  (i) The dimensionless displacement, ssd , partly governs the 

amplitude of wavepacket motion in the symmetric stretching coordinate.  (ii) The reorganization 

energy,  , induces electronic dephasing in odd-ordered time-intervals ( 1t , 3t , and 5t ) and also 

influences the amplitude of wavepacket motion in even-order time-intervals ( 2t  and 4t ).  That is, 

the amount of force imparted to the wavepacket (in 2t  and 4t ) increases as the electronic 

dephasing rate (in 1t , 3t , and 5t ) decreases, because the ground-state wavepacket is then initiated 

on the ground state potential energy surface with a greater displacement from its equilibrium 

position.  For similar reasons, resonance Raman cross sections generally decrease as the 

homogeneous line width increases.
87,88

  (iii) The effect of the time scale of the bath, 
1 , is not 
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obvious a priori, although a line-narrowing effect should be anticipated if   becomes 

(unreasonably) large.
85

  The high-temperature limit assumed above ( Bk T  ) should apply to 

I3
-
, because the absorbance line shape is essentially Gaussian.  

4.3.3. Parameterization of Spectroscopic Model for Triiodide 

Anharmonic excited state potential energy surfaces were treated in earlier studies of I3
-
 in 

order to obtain insight into the photo-dissociation mechanism.
47-53

  Detailed knowledge of the 

excited state potential energy surface is not required to simulate the present experiments, because 

the ground state wavepacket motions are determined primarily by the gradient on the excited 

state potential energy surface at the Franck-Condon geometry.  The key is that the period of the 

vibration (300 fs) is much longer than the dephasing time (<20 fs).
87

  Moreover, the harmonic 

approximation made for the ground electronic state is justified by the progression of (to a good 

approximation) equally spaced transitions observed in resonance Raman spectra.
48

  In this 

section, we obtain a set of parameters for the present harmonic model that is consistent with the 

more detailed models employed in earlier work.  

The absorbance spectrum imposes valuable constraints on the model parameters.  To 

start, we consider the contribution of all coordinates except the symmetric stretch to the line 

width.  In earlier resonance Raman studies, Johnson and Myers showed that a low-frequency 

intermolecular mode (between the solute and solvent) near 13 cm
-1 

dominates electronic 

dephasing and also broadens resonance Raman transitions through unresolved combination 

bands.
49,50

  The reorganization energy of the intermolecular mode in their model was roughly 

3440 cm
-1

.  Thus, the parameter,  , should be larger than 3440 cm
-1 

because the bath implicitly 

includes additional coordinates.  In Figure 4.6, we compute the absorbance spectrum of  I3
-
 using 
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2

0
expeg egdt i t g t    


   
   (4.18) 

where the parameters are defined in the previous section.  The time scale of the bath 1  is set 

equal to 1 ps to produce a Gaussian line shape (the line shape changes negligibly if 1  

increases further).  We find that the line width is recovered when ssd =7.0 and / hc =4400 cm
-1

. 

Johnson and Myers carried out simulations using a related harmonic model in which the 

dimensionless displacement for the symmetric stretch was set equal to 7.0.
48

  Thus, we consider 

this a reasonable estimate for use in simulations. 

4.3.4. Basis for Approximations in Response Function 

The response function developed above employs equilibrium correlation functions and 

involves only terms that evolve as ground state wavepackets during the two experimentally 

controlled delay times.  This section addresses three points that motivate these approximations: 

(i) Earlier studies of I3
-
 have shown that the UV wavelength range is dominated by 

ground state wavepacket motions.
46,50

  Excited state emission does not contribute significantly 

because excited state solvation, internal conversion to the lower energy excited state, and 

photodissociation are much faster than the 300-fs vibrational period of I3
-
.
46,50

  This separation in 

time scales was the key to the comparison between resonance Raman and resonant impulsive 

stimulated Raman  expermients carried out by Johnson and Myers.
50

  Photodissociation may 

initiate vibrational coherence in the I2 photoproduct, but such nonlinearities are dominant only in 

the visible spectral range.
46,51-53

  

(ii) In a related (fifth-order) optical pump-Raman probe experiment, Vöhringer and co-

workers detected coherent Raman spectra subsequent to photodissociation of I3
-
 in the visible 

spectral range, where the I2
-
 photoproduct dominates the response.

53
  As shown below, the 
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reaction-induced vibrational dynamics of the photoproduct observed in this study are markedly 

different than the signals we observe in the deep UV.  Rapid sub-picosecond evolution in the 

vibrational spectrum was observed in Vöhringer’s study, whereas the Raman spectrum acquired 

in 2  is insensitive to the 1  delay time in our experiments (i.e. intensity oscillates but the 

resonance frequencies do not shift).  Vöhringer also observed an intense transient resonance near 

70 cm
-1

 at delay times less than 1 picosecond, while we observe only the resonance associated 

with the symmetric stretch at all delay times, 1 . 

(iii) The terms in Figure 4.5 are obtained under essentially the same assumptions made by 

Johnson and Myers in their comparison of resonance Raman and RISRS signals for I3
-
 in the 

deep UV (i.e. the optical response is dominated by ground state wavepacket motions in the deep 

UV).
46,50

  In I3
-
, the key issue is that the wavepacket dynamics in 1t , 3t , and 5t  are governed by 

the excited state potential energy gradient at the Franck-Condon geometry, because the 

vibrational period of the symmetric stretch (300 fs) is long compare to electronic dephasing (<20 

fs).
87

  Because of this separation in time scales, a harmonic model may be employed even though 

the excited state is reactive because the wavepacket does not return to the Franck-Condon 

geometry before the coherence between the ground and excited state dephases.  Equilibrium 

(harmonic) correlation functions have similarly been utilized in spontaneous resonance Raman 

studies of systems that undergo photoinduced electron transfer and internal conversion 

processes.
88,89

  

Terms in which I3
- 
evolves in excited state populations during 2t  and/or 4t  will become 

prominent in coherent Raman experiments carried out with visible laser pulses.  We 

acknowledge that such terms should not be modeled with equilibrium correlation functions, 

because they lead to internal conversion and photodissociation processes.  These non-radiative 
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relaxation mechanisms should be explicitly accounted for in experiments that probe the system 

in the visible spectral range where the I2 photoproduct dominates the optical response.
47,51-53,90

  

Of course, the shape of the excited state potential energy surface in regions displaced from the 

Franck-Condon geometry must be accurately described to capture spectroscopic signatures of 

such photodissociation dynamics. 

Table 4.1.  Parameters of Spectroscopic Model Based on Cumulant Expansion 

 

(a)
Parameter Value 

/ 2eg c   34400 cm
-1

 

/ hc  4400 cm
-1

 

1  1 ps 

/ 2ss c   112 cm
-1

 

ssd  7.0 

/ 2L c   37210 cm
-1

 

  32 fs 

(b)
eg  8.8 D 

(a)
Parameters of     in Equation 4.18 and fifth-order response functions in Equations 4.11-

4.14. 

 

4.4. Results and Discussion 

This section investigates the coherent Raman response of I3
-
 from a variety of 

perspectives.  Traditional transient grating spectroscopy is first used to establish basic aspects of 

the Raman response of I3
-
 under our experimental conditions.  Six-wave mixing signals are then 
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examined with two different representations.  In one representation, correlations between the 

vibrational resonances in the two experimentally controlled delay times, 1  and 2 , are exposed 

through a straightforward 2D Fourier transform (2DFT).  Signals are additionally displayed in 

three dimensions ( 1 , 2 , and t ) for a more alternate perspective on the wavepacket 

dynamics. 

4.4.1. Four-Wave Mixing Spectroscopy 

Femtosecond transient absorption spectroscopies were used to probe the coherent Raman 

response of I3
-
 in several earlier works.

46,51-53
  Here, we present stimulated Raman spectra 

obtained under our particular experimental conditions to facilitate discussion of the six-wave 

mixing measurements presented below.  Transient grating signals acquired with laser pulses 

generated in the two-color filament (see Section 4.2.1) are presented in Figure 4.7a.  This four-

wave mixing experiment is conducted with the interferometer shown in Figure 4.4 by (i) entirely 

blocking one of the incoming pump beams and (ii) blocking only the zeroeth-order beam 

associated with the second pump beam (the signal and local oscillator beams are the same).
1,91

  

Oscillations in the signal intensity with a period near 300 fs, which is characteristic of ground 

state wavepacket motion in I3
-
,
46,50

 are clearly evident in the contour plot in Figure 4.7a.  The 

phases of the recurrences are essentially independent of the detection wavenumber.  Of course, 

this behavior is not surprising, because the bandwidth of the laser pulse is narrow compared to 

the absorbance line width. 
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Figure 4.7.  (a) Absolute value of the  transient grating signal field for I3
-
 in ethanol.  The delay, 

 , separates photo-excitation and detection.  (b) Fourier transform of oscillations in the transient 

grating signals obtained at various detection wavenumbers.  (c) Absolute value of stimulated 

Raman spectrum found by integrating over the detection wavenumber in panel (b).  The 

symmetric stretch is located at 112 cm
-1

, whereas the lower energy resonance near 20 cm
-1

 

corresponds to a (solute-solvent) intermolecular mode. 

 

In Figure 4.7b, the oscillatory component of the response at each detection wavenumber 

is isolated by subtracting an exponential function and a constant offset from the absolute value of 

the transient grating signal shown in panel (a).  Parameters of this “baseline” are found (for each 

pixel on CCD array) using a least-squares fitting routine implemented in Matlab.  The analysis is 

carried out from  =0.1 ps to 4.0 ps in order to eliminate contributions from the non-resonant 

“coherence” spike that dominates when all three pulses are overlapped in the sample.
66,67

  The 

contour plot in Figure 4.7b reveals two resonances.  The symmetric stretching resonance is 

located near 112 cm
-1

, whereas the (solute-solvent) intermolecular mode discussed in Section 

4.3.3 contributes near 20 cm
-1

.  The anti-symmetric stretching mode, which is located near 145 

cm
-1

, is known to possess some (broken symmetry-induced) Franck-Condon activity in ethanol.
48

  

It is possible that the anti-symmetric stretch gives rise to a “shoulder” of the intense resonance 

near 145 cm
-1

 in the detection wavenumber-integrated Raman spectrum (see Figure 4.7c).  The 
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symmetric stretch is of primary interest in this work, because this resonance dominates the six-

wave mixing response.  That is, compared to the measurements in Figure 4.7, the relative 

contributions of the intermolecular mode and anti-symmetric stretch will be even smaller in six-

wave mixing because of the higher-order of the nonlinearity. 

4.4.2. Two-Dimensional Fourier Transform Resonance Raman Spectra 

A 2DFT Raman spectrum in which the signal is integrated over the detection 

wavenumber is a convenient representation for analysis of the six-wave mixing data.
92

  Figure 

4.8 displays the oscillatory parts of the real and imaginary components of the complex signal 

field in addition to their respective Fourier transforms.  Fourier transformation is carried out by 

generalizing the algorithm used to process the data in Figure 4.7 to two dimensions; an 

exponential function and a constant are subtracted from each one-dimensional slice of the signal 

(in both 1  and 2 ) to isolate the oscillatory part of the response.  In previous work, we were 

able to separate absorptive and dispersive signal components using the thermal grating produced 

by systems that undergo fast non-radiative relaxation (e.g. DNA nucleobases, ring-opening 

systems).
93

  We do not observe such a thermal grating in I3
-
 when the delay is scanned out to 0.5 

ns and therefore do not yet have a systematic way to set the phase of the six-wave mixing signal.  

Nonetheless, it is still preferable to work with the complex signal rather than the absolute value, 

because the quality of the Raman spectrum is sensitive to the phase angle.  

In Figure 4.8, the two parts of the signal are separated based on (i) dominance of 

vibrational oscillations in the real signal component (consistent with the absorptive response) and 

(ii) dominance of an undesired four-wave mixing signal in the imaginary signal component 

(consistent with the dispersive response).  Notably, the choice of which part of the signal is real 
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and imaginary is somewhat arbitrary without an all-optical phasing method, because the two 

components can be reversed along with their associated information content (i.e. a shift in the 

signal phase of +/-π/2 is arbitrary).  However, the finding of different behaviors at orthogonal 

phase angles is robust using our procedure (additional data are provided in the Appendix A).  As 

shown in Figure 4.8, the real signal component yields higher-quality Raman spectra because of 

prominent vibrational oscillations.  In contrast, the imaginary signal component possesses 

oscillations with smaller amplitudes and also carries small contributions from a direct four-wave 

mixing signal with a wavevector given by 2 3 5k k k   when all laser pulses are overlapped in the 

sample (see Appendix A).  For these reasons, we focus our attention on the real signal 

component and discard data acquired during the region of pulse overlap.  We remark that this 

phasing procedure is implemented only to enhance the signal-to-noise ratio of the 2D Raman 

spectrum (no conclusion reached in this section hinges on precise knowledge of the absolute 

signal phase).  Third-order cascades, which are negligible in the Raman component of the signal 

(see Section 4.5), are 180º out-of-phase with the direct fifth-order resonance Raman response.
94

  

The signal phase was leveraged to suppress third-order cascades in off-resonant experiments 

(where the desired and undesired fields are 90º out-of-phase),
24,25

 but this is not possible under 

resonant conditions. 

The 2D Raman spectrum corresponding to the real signal component is dominated by 

resonances in the upper-right and lower-left quadrants (at 1 = 2 =112 cm
-1

).  This pair of 

quadrants carries redundant information (when pulse-pair 1&2 and pulses 3&4 are time-

coincident), as does the upper-left and lower-right quadrants.  These resonances represent terms 

in the response function that evolve as coherences between vibrational levels that differ by 1 

quantum level in both 1  and 2 .  Coherences involving several pairs of levels may contribute to 
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each peak, because the small anharmonicity of the ground state potential energy surface prevents 

spectral resolution of these nonlinearities. 

Interestingly, resonances are not detected in the upper-left and lower-right quadrants.  

Calculations are useful for confirming that this aspect of the signal is consistent with the 

nonlinear response function described in Section 4.3.  In Figure 4.9, we present signals obtained 

by evaluating  (5)P t  numerically with the parameters given in Table 4.1.  The calculated signal 

field is then fed into the same Matlab software used to process the experimental data to facilitate 

a direct comparison.  Apodization functions are applied before Fourier transformation, because 

vibrational dephasing is not included in the line broadening function for the symmetric stretching 

coordinate.  This does not impact physical insights because the electronic dephasing time is 

dominant in 1t , 3t , and 5t  (i.e. explicit inclusion of damping in  ssg t  would produce 

indistinguishable results).  The calculations capture the essential aspects of the measured signals.  

Resonances in the upper-right and lower-left quadrants dominate the 2DFT spectrum.  In 

addition, the calculations reveal much weaker resonances in the two additional quadrants.  These 

weaker resonances represent nonlinearities in which the vibrational coherences in 1  have 

opposite signs to those in 2 . 
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Figure 4.8.  The (a) real and (b) imaginary parts of the six-wave mixing signal field of I3
-
 in 

ethanol.  Absorptive and dispersive responses dominate the real and imaginary signal 

components, respectively.  Vibrational recurrences with large amplitudes are found in the real 

signal component shown in panel (a).  Absolute values of 2D resonance Raman spectra for the 

(c) real and (d) imaginary signal components are shown below the respective time-domain 

signals.  A higher-quality Raman spectrum is obtained with the real signal component.  The non-

oscillatory part of the signal has been subtracted from panels (a) and (b), so that the Raman 

response can be more clearly visualized. 
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In order to understand the pattern of resonances in the 2DFT spectrum, it is useful to 

consider each term in the response function as possessing two classes of line broadening 

functions,  g t :  (i) functions in which both 2t  and 4t  appear in the argument represent 

correlated dynamics; (ii) functions in which either 2t  or 4t appear in the argument (not both time 

intervals) represent uncorrelated time evolution.  Terms analogous to type (i) notably give rise to 

photon echoes in third-order spectroscopy by imposing correlations between 1t  and 3t .  

Inspection of the response functions shows that 2R  and 4R  must make the dominant 

contributions to the resonances in the upper-left and lower-right quadrants, because the type (ii) 

line broadening functions evolve as complex conjugates in either 2t  or 4t  (but not both).  This 

phase relationship is understood by considering that the first and second pair of field-matter 

interactions do not occur on the same side of the Feynman diagrams in Figure 4.5 for 2R  and 4R .  

For example, in 2R , the complex conjugate is taken for every type (ii) line shape function with 

4t  in the argument (e.g.  *

3 4 5g t t t  ), whereas complex conjugates are not taken for type (ii) 

functions with 2t  in the argument (e.g.  2 3g t t ).  

If the 2R  and 4R  response functions contained only the type (ii) line broadening terms, 

then resonances in the upper-left and lower-right quadrants would dominate.  However, these 

terms must compete with type (i) functions, such as  1 2 3g t t t   in 2R , that give rise to 

resonances in the upper-right and lower-left quadrants.  The type (i) terms outcompete the type 

(ii) terms in 2R  and 4R , because the time intervals 1t , 3t , and 5t  also appear in the arguments of 

these functions.  Mathematically speaking, the phase accumulated in each of these time intervals 

lifts cancellations between the sums of line broadening functions in Equations 4.11-4.14.  From a 
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physical perspective, dephasing of the electronic coherences in 1t , 3t , and 5t  is accompanied by 

relaxation in the symmetric stretching mode; the amount of motion in the symmetric stretch must 

be small, because the electronic dephasing time (<20 fs) is much shorter than the vibrational 

period (<300 fs).  Still, these dynamics are crucial for the stimulated Raman process.  The 

amplitudes of the vibrational coherences in 2t  and 4t  generally decrease as the electronic 

dephasing times become shorter. In 1R - 4R , all line broadening functions involving 2t  and 4t  

will cancel each other if 1t = 3t = 5t =0 (i.e. if electronic dephasing is instantaneous).  This 

understanding of the fifth-order response invokes physical insights that were originally 

recognized at third-order in perturbation theory.
87,88

 

 

Figure 4.9.  2D resonance Raman spectra computed with:  (a) terms R1 and R3; (b) terms R2 and 

R4; (c) all terms, R1-R4.  As in the experimental measurements, dominant resonances are found in 

the upper-right and lower-left quadrants.  
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4.4.3. Analyzing Wavepacket Dynamics in Three Dimensions 

The 2D resonance Raman spectra presented in Section 4.4.2 do not take full advantage of 

the experimental implementation, because the signal is integrated over the detection frequency.  

This third dimension distinguishes the information content of the present experiment from that of 

FSRS, where the vibrational resonances are directly imprinted on the spectrum of the signal 

field.
27,34,35,37,39

  This section explores a representation of the data that takes into account the 

detection frequency, t , in addition to the two experimentally controlled delay times.  It is 

envisioned that this perspective on wavepacket motion will be particularly useful for studies of 

reactive system such as I3
-
 and/or systems with highly anharmonic potentials. 

The present experiment can be viewed as a sequence in which the first pulse-pair initiates 

a wavepacket that is probed with the final three pulses.
40-42

  Knowledge of the maxima and 

minima in the signal intensity shown in Figure 4.7a does not give unambiguous information 

about the wavepacket’s position, because the sign of the gradient on the excited state potential 

energy surface is undetermined.  Dynamics in the signal spectrum must be examined to 

determine the phase of wavepacket motion.  To access this information, we employ a 

representation, where the signal is Fourier transformed with respect to 2  (but not 1 ) in Figure 

4.10a.  As in the data presented above, a baseline is subtracted from the signal in 2  before 

Fourier transformation in order to isolate the oscillatory part of the response.  Therefore, the 

(time-evolving) Raman spectrum of the system appears in the conjugate domain, 2  (i.e. 

incoherent relaxation does not contribute).  In addition to 2 , the signal is displayed with respect 

to the detection frequency, t .  This two-dimensional representation of the signal in 2  and t  
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will hereafter be referred to as a “correlation spectrum” and will be denoted as  2 , tS   .  The 

correlation spectra analyzed in this work focus only on the region of the Raman spectrum 

associated with the symmetric stretch, because the low-frequency intermolecular mode (near 20 

cm
-1

) observed in the transient grating signals (see Figure 4.7) is below the detection threshold of 

the six-wave mixing experiment. 

The isosurface in Figure 4.10b displays recurrences in the magnitude of the correlation 

spectrum as a function of 1 .  Mean vibrational and emission frequencies are computed at each 

delay time, 1 , using the formula 
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 (4.19) 

where j  represents either 2  or t  (i.e. motions are characterized in both dimensions). The 

dynamics in the emission and vibrational frequencies are presented in Figure 4.10c and 4.10d, 

respectively.  The data are fit to a damped sinusoidal function 

      0 1 sin expF t A A t t      (4.20) 

for which the parameters are given in Table 4.2.  
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Figure 4.10.  (a) Correlation spectrum,  2 , tS   , measured at 1 =100 fs.  (b) Isosurface of 

signal is drawn at 40% of the maximum intensity.  (c) Mean detection frequency, t , and fit to 

Equation 4.20.  (d) Mean vibrational frequency, 2 , and fit to Equation 4.20.  Noise associated 

with t  and 2  increases with 1 , because the signal magnitude decreases.  Fitting 

parameters are given in Table 4.2. 

 

Recurrences in the mean emission frequency, t , are readily observed in all data sets.  

In analogy with related third-order experiments, we suggest that such oscillations reflect the 

energy gap between electronic states at the position of the wavepacket, which is dynamic in 1 .  

Transient absorption studies of several systems have demonstrated that recurrences with 180º-

phase-shifts may be observed at high and low detection frequencies when the spectral width of a 
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probe pulse is comparable to the total absorbance line width.
90,95

  Under these conditions, high 

and low detection frequencies correspond to opposite turning points on the potential energy 

surface.  Such phase-shifted oscillations in t  are not very pronounced in the current data, 

because the spectral width of the laser pulse is narrower than the total absorption line width.  

Nonetheless, as shown in Figure 4.10c, we detect a beat in t  with an amplitude near 20 cm
-1

.  

Figure 4.11 presents calculated signals, which are treated using the same data-processing 

software used to handle the experimental data shown in Figure 4.10.  The calculations confirm 

that it is indeed reasonable to observe recurrences in t  under our experimental conditions.  

Moreover, the calculated amplitude of the recurrence (15 cm
-1

) is similar to that observed 

experimentally (20 cm
-1

). 

Oscillations in the mean vibrational frequency, 2 , are also observed, although the 

amplitude marginally exceeds the detection threshold.  With inspiration provided by related 

techniques,
45

 we hypothesize that recurrences in 2  with small amplitudes should be 

anticipated in systems, such as I3
-
, with weak ground-state anharmonicities.  That is, the 

amplitude of 2  reflects variation in the curvature of the potential energy surface at 

nonequilibrium geometries traversed by the wavepacket in the delay time, 1 .  For example, the 

second derivative of a one-dimensional potential energy function varies linearly in the mode 

displacement if a cubic expansion is considered.  Consistent with this interpretation, calculations 

based on a purely harmonic model presented in Figure 4.11d predict an oscillation amplitude in 

2  that is roughly two times smaller than that observed experimentally (see Table 4.2).  Key 

differences between the experiment and model are further illustrated in Figure 4.13, where 
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(correlated) dynamics in 2  and t  are plotted in three dimensions.  The “spiral” shape 

associated with the measurement is broader in the 2  dimension than that predicted with the 

harmonic model.  Therefore, we tentatively attribute the larger amplitude of 2  found in the 

experimental data to a small amount of anharmonicity of the ground state potential. 

 

Figure 4.11.  (a) Correlation spectrum,  2 , tS   , calculated at 1 =100 fs.  (b) Isosurface of 

signal is drawn at 60% of the maximum intensity.  (c) Mean detection frequency, t , and fit to 

Equation 4.20.  (d) Mean vibrational frequency, 2 , and fit to Equation 4.20.  Signals are 

calculated using the parameters given in Table 4.1.  Fitting parameters are given in Table 4.2. 
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Correlations in 2  and t  are illustrated using the representation shown in Figure 

4.12.  Anharmonicity contributes in a straightforward way to amplitude in 2 .  However, as in 

traditional third-order experiments,
90,95

 oscillatory amplitude in t  depends on the magnitude 

of the mode displacement, the inhomogeneous line width, and the pulse duration.  The interplay 

between these three factors is fairly well-understood.  Amplitude in t  increases with both the 

mode displacement and heterogeneity in the absorbance line shape.  Short (impulsive) laser 

pulses are required to observe oscillations; however, coherent dynamics must also vanish in the 

impulsive limit, so an intermediate pulse width is most desirable for this type of technique.  

Although the present experiment is not sensitive to such effects, we anticipate that more complex 

(and informative) trajectories in 2  and t  can be derived from two-color measurements 

conducted on reactive systems. 

 

Figure 4.12.  Dynamics in mean vibrational and emission frequencies, 2  and t , adapted 

from the fits shown in Figures 4.10 and 4.11.  The average values of the two variables are shifted 

by small amounts between (a) experimental and (b) theory.  The shapes of the spirals can still be 

directly compared because the magnitudes of the ranges are identical in the two panels.  It is 

predicted that anharmonicity, which is absent in the model, causes the spiral to expand in the 

2  dimension. 
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Table 4.2.  Dynamics in Correlation Spectra 

 

(a)
Parameter 

Measured 

t  

Measured 

2  

Calculated 

t  

Calculated 

2  

(b)
0A  37759±2 cm

-1
 113.3±0.5 37795±1 cm

-1
 113.7±0.3 

(b)
1A  26±7  cm

-1
 2.1±0.3 15±1 cm

-1
 1.2±0.3 

  114±3  cm
-1

 114±5  cm
-1

 113±1 cm
-1

 113±1 cm
-1

 

  1.5±0.3  rad. 0.2±0.4  rad. -3.9±0.1  rad. -4.5±0.1  rad. 

t  4.3±1.0 ps 2.3±1.0 ps ∞ ∞ 

(a)
 Parameters of Equation 4.20. 

(b)
The signal amplitude has arbitrary units. 

 

4.5. Relative Magnitudes of Cascaded Third-Order and Direct Fifth-Order Signals in 2D 

Resonance Raman Spectroscopies 

 

4.5.1. Background 

In this section, we consider a potential experimental complication, third-order cascades, 

that is known to challenge electronically off-resonant 2D Raman spectroscopies.
54-56,96

  Cascaded 

third-order nonlinearities are processes in which light radiated by the third-order polarization of 

one molecule contributes to the third-order polarization of a second molecule (i.e. molecules A 

and B in Figure 4.13).  The second molecule may then radiate a signal field in the same direction 

as the fifth-order nonlinearity of interest.  The signal cascade does not carry information beyond 
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that associated with the third-order response; however, its spectroscopic signatures can be quite 

difficult to distinguish from the desired fifth-order signal.  Cascaded third-order nonlinearities 

exhibit the same intensity dependence as the direct fifth-order signal and may also possess 

vibrational resonances at the same frequencies. 

 

Figure 4.13.  Examples of Feynman diagrams associated with a direct fifth-order nonlinearity, a 

sequential third-order cascade ( 1 2 3k k k  ), and a parallel third-order cascade ( 3 4 5k k k  ).  The 

indices, g and e, represent electronic states, whereas dummy indices denote the vibrational 

energy levels of the ground ( m , k ,u ) and excited electronic states ( n , l , v ).  In the cascaded 

third-order diagrams, interactions associated with blue arrows correspond to emission and/or 

absorption of the field radiated at the intermediate step in the process.  Direct fifth-order 

nonlinearities and third-order cascades involve three and four electronic coherences (shaded blue 

intervals) between the ground and excited states, respectively.  As a consequence, contributions 

from third-order cascades decrease as the electronic dephasing rate increases. 

 

In off-resonant 2D Raman spectroscopies, a key issue is that the direct fifth-order Raman 

response is (weakly) allowed by one of two mechanisms: vibrational anharmonicity and/or 

nonlinear coordinate dependence of the polarizability.
58,97

  This makes the experiment a 

potentially powerful tool for investigating anharmonic couplings in liquids.  Unfortunately, 

cascaded third-order nonlinearities typically outcompete the relatively low intensities of the 
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anharmonicity-induced fifth-order signals under off-resonant conditions.
54,56,96

  Below, we show 

that the dominance of cascaded third-order signal intensities encountered in off-resonant fifth-

order Raman spectroscopies does not generalize to experiments conducted under resonant 

conditions, because electronic dephasing and Franck-Condon activity (for harmonic and/or 

anharmonic modes) suppress contributions from third-order cascades.  

4.5.2. Model Calculations 

We compute the ratio of cascaded third-order and direct fifth-order signals in this section 

using an analytical, sum-over-states description to avoid complications associated with 

comparing the magnitudes of two quantities obtained through numerical integration (e.g. the 

cumulant expansion approach described in Section 4.3).  The model is developed in Appendix A 

using the “snapshot limit”, where it is assumed that the laser pulse durations are long compared 

to electronic dephasing but short compared to the vibrational period.
85

  Both of these 

assumptions are reasonable for the present application to I3
-
.  We also treat the subset of terms 

that evolve in ground state populations (see Section 4.3.4) because ground-state wavepacket 

motions dominate the response in the UV.
46,50

  The model is well-suited for comparing direct and 

cascaded signal strengths, but may miss subtler aspects of the fifth-order line shapes such as the 

relative magnitudes of peaks in different quadrants.  

The key quantity under consideration is the ratio in the cascaded third-order and direct 

fifth-order signal field 
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where the factor of 7/25 represents the isotropic orientational average with all-parallel electric 

field polarizations.
98

  The direct fifth-order signal is denoted 
   5

E t , whereas the cascades are 

divided into parallel and sequential components,  parE t  and  seqE t .  Here, we consider the 

four classes of cascaded nonlinearities (two parallel and two sequential) known to challenge off-

resonant 2D Raman spectroscopies.
24,54

  The intermediate phase-matching conditions 

corresponding to the two sequential cascades are 
1 2 3k k k   and 

1 2 4k k k   , whereas those 

associated with the two parallel cascades are 3 4 5k k k   and 1 2 5k k k  .  For example, Figure 

4.13 displays Feynman diagrams associated with sequential and parallel third-order cascades for 

the intermediate phase-matching conditions, 1 2 3k k k   and 3 4 5k k k  , respectively.  Feynman 

diagrams and response functions associated with all cascaded third-order signal components are 

given in Appendix A.  

The ratio in the cascaded third-order and direct fifth-order signal strengths can be written 

as
98,99
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 (4.22) 

where l  is the path length, N  is the number density, t  is the signal frequency,  tn   is the 

refractive index, and the auxiliary functions are defined in Appendix A.  Equation 4.22 makes 

clear that experiments involving dilute solutions carry advantages compared to those conducted 

on pure liquids because the ratio,      5
/casE t E t , is linear in the number density.  For example, 

the number density employed in the present experiment is roughly 15,000 times lower than that 

associated with pure CS2, which is known to generate intense cascaded third-order signals under 
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off-resonant conditions.
24,54

  Of course, the number density is only one important consideration, 

because the signal generation mechanisms are quite different on and off resonance.  As indicated 

in Figure 4.13, one key difference is that the ratio,      5
/casE t E t , scales as the inverse of the 

absorbance line width, eg , because of the different numbers of electronic coherences associated 

with the cascaded third-order and direct fifth-order signal (
   3

1     3

1  /
   5

1  1

eg

 ).  

Perhaps the most important distinction between resonant and off-resonant conditions is 

that signal generation is allowed for (harmonic and/or anharmonic) Franck-Condon active modes 

on resonance.  From a mathematical perspective, the primary issue is that  casE t  and 
   5

E t  

involve sums of products of 8 and 6 vibrational overlap integrals, respectively.  In order to 

illustrate the effect of Franck-Condon activity, we have evaluated the ratio,  casE t  /
   5

E t , 

with respect to the dimensionless potential energy displacement, d , in Figure 4.14.  This 

calculation employs a harmonic ground state surface (with frequency of 112 cm
-1

) and the 

anharmonic excited state potential energy surface determined by Myers (see Appendix A).
48

  

Here, we have Fourier transformed the signal fields,  casE t  and 
   5

E t , with respect to 1  and 

2  
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 (4.23) 

to obtain the ratios at 1 = 2 = 112 cm
-1

 (i.e. on the diagonal of the 2D spectrum).  Thus, the 

calculation in Figure 4.14 represents the ratio of peak magnitudes measured in the upper-

right/lower-left quadrants in Figure 4.8c (i.e. this analysis does not apply to the vibrationally 



 

121 

incoherent component of the signal).  The key finding is that the ratio, casE /  5
E , is 10

-7
-10

-3
 in 

the range of the dimensionless displacement, d , relevant to I3
-
.  Empirical estimates for d  range 

from 7.0-8.8 (see Appendix A).
48

  The large difference in the order of magnitude is important, 

because it suggests that the prediction is robust.  That is, expressions for the signals can be 

developed in different ways (e.g. Gaussian line shapes instead of Lorentzian), but such details 

are unlikely to account for several orders of magnitude. 

 

Figure 4.14.  Absolute values of the (a) direct fifth-order and (b) cascaded third-order signal 

magnitudes at 1 = 2 = 112 cm
-1 

are shown for a dimensionless potential energy displacement 

of 7.0, where an empirical anharmonic excited state potential energy surface is employed (see 

Appendix A).  The ratio,      5

1 2 1 2, / ,casE E    , is computed using (blue) an empirical 

anharmonic model and (green) a harmonic model with equal ground and excited state 

frequencies (112 cm
-1

).  The calculations suggest that third-order cascades in the Raman 

response are at least three orders-of-magnitude weaker than the direct fifth-order signal in I3
-
 

based on previous estimates for the displacement (7.0 and 8.8 for harmonic and anharmonic 

models, see Appendix A).
48

  The features at 2 =0 cm
-1

 (enclosed in boxes) in the cascaded 

signal spectrum represent imperfect subtraction of the non-oscillatory component of the signal 

(this is not a vibrational resonance). 
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Physical insight in the behavior illustrated in Figure 4.14 is challenged by the numerous 

terms contained in the response functions (i.e. ~6
4
 and ~6

6
 terms at third and fifth-orders).  Thus, 

it is useful to consider the basic aspects of the subset of terms that contribute to the (diagonal) 

resonances at 1 = 2 = 112 cm
-1

.  Because the dominant parallel cascade scales as the product 

of two third-order polarizations,  casE t   
       3 3

1 2 2, ,P t P t   , the key terms in the 

response function involve products of complex exponential functions with the following forms, 

      1 2 2 1 2exp exp expvib vib vib vibia ib ia i a b                   (4.24) 

where a  and b  represent the differences in quantum numbers.  Terms may contribute to the 

peak at 1 = 2 = vib = 112 cm
-1

 if  a 1   and b  =0.  Thus, the third-order polarization of one 

of the molecules involved in the parallel cascade must evolve in a vibrational population (instead 

of a vibrational coherence) during the delay, 2 .  For this reason, significant contribution of the 

parallel cascade at 1 = 2 = 112 cm
-1 requires large overlap integrals for vibrational states that 

possess the same quantum number.  This explains why the ratio, casE /  5
E , in Figure 4.14 is 

largest when the displacement, d , is small (e.g. 0 1 / 0 0  = / 2d ).  

Physical insight into the ratio, casE /  5
E , can also be derived by inspection of the 

(third-order) experimental transient grating signal for I3
-
 shown in Figure 4.7.  The key issue is 

that the vibrational amplitude is roughly 50% of the total signal intensity.  In the context of 

Equation 4.24, this means that signal components in which b =0 have small magnitudes.  The 

incoherent part of the signal is the cascade’s most important ingredient at 1 = 2 = 112 cm
-1

; 

oscillatory behavior feeds both casE  and 
 5

E , whereas contributions of the incoherent signal 
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component are unique to casE .  Thus, it will generally be found that the parallel cascade for the 

diagonal peak at the fundamental frequency is negligible if the incoherent part of the third-order 

response does not dominate the signal (i.e. if the mode displacement is extremely large).  We 

remark that the point illustrated in Figure 4.15 applies only to parallel cascades (not sequential 

cascades) in which the ground state wavepacket motions dominate the response.  As discussed in 

Section 4.3.4, I3
-
 has long been recognized as an excellent model for ground state wavepacket 

motions when photoexcited and probed in the UV.
46,50

 

 

Figure 4.15.    Parallel cascades that produce peaks at 1 = 2 = 112 cm
-1

 combine an 

oscillatory component of the response at one molecule (molecule A) with an incoherent 

component of the response at a second molecule (molecule B).  The vibrational quantum number 

is changed by the first pulse-pair on molecule A, whereas a vibrational coherence is not produced 

in 2  on molecule B (see Equation 4.24).  The 2D line shape becomes asymmetric (i.e. broader 

in 2 ) if the magnitude of the polarization on molecule B relaxes (e.g. due to solvation) on the 

same time scale as vibrational dephasing.  Parallel cascades at 1 = 2 = 112 cm
-1

 are much 

weaker than the direct fifth-order signal in I3
-
, because the oscillatory part of the third-order 

response is near 50% of the total third-order signal magnitude. 
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The insights derived from our model echo the discussion of Hamm and co-workers who 

suggested that the challenges encountered in off-resonant Raman experiments partly originate in 

the forbidden nature of the response for harmonic modes.
94

  Here, we have shown that Franck-

Condon activity under resonant conditions changes the signal generation mechanism entirely.  

The present model calculations suggest that cascades are, at worst, on the same order of 

magnitude as the direct fifth-order signal in electronically resonant experiments carried out with 

similar optical densities.  Importantly, our calculations indicate that a large mode displacement is 

required for the direct fifth-order signal to outcompete the cascade in a system with a single 

mode.  For this reason, it is not clear if the present experimental approach can be successfully 

adapted to molecules with modest mode displacements. 

4.5.3. Signatures of Direct and Cascaded Nonlinearities in Spectroscopic Line Shapes 

 

In some cases, contributions from third-order cascades can be identified by comparing 

their spectroscopic signatures to the measured signals.
54,56,57

  As discussed above, the cascaded 

third-order response should be dominated by a parallel cascade in this laser beam geometry.  

Sequential cascades are predicted to be relatively inefficient and, unlike the measured signals, 

possess essentially identical signal intensities in all four quadrants of the 2D spectrum (see 

Figure A.33 in Appendix A).  For these reasons, we conclude that contributions from sequential 

cascades are negligible and focus on spectroscopic signatures of the parallel cascade in this 

section. 

In Figure 4.16, an experimental 2D spectrum (average of five experiments) is compared 

to a 2D spectrum associated with a parallel cascade that is calculated using an experimental 

transient grating signal field, 
   3

S  .  The 2D spectrum corresponding to the parallel cascade is 
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generated by two-dimensional Fourier transformation of the product, 
   3

2S     3

1 2S   .  As 

in off-resonant 2D Raman spectra,
54

 this calculation reveals that the parallel cascade decays 

faster in 2  than it does in 1 .  This difference in decay times manifests as a 30% broader line 

width in the 2  dimension for the 2D spectrum of the cascade in Figure 4.16.  Figure 4.15 

illustrates how the decay of the incoherent signal component induces asymmetry in the 2D line 

shape of the parallel cascade.  In our experiments, I3
- 
is excited on the high-frequency side of the 

absorbance spectrum, where the incoherent part of the response decays because of solvation of 

the ground-state “hole” wavepacket (see Figure 13.7 in Reference 
85

).  Thus, the key to the 

asymmetry in the line shape is that solvation and vibrational dephasing occur on the same time 

scale (i.e. the cascaded 2D spectrum would appear symmetric if solvation was slow compared to 

vibrational dephasing).  In contrast, the measured 2D spectrum has indistinguishable line widths 

in 1  and 2 .  This symmetric shape is consistent with the theoretical prediction for the direct 

fifth-order process (see Figure 4.9). 
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Figure 4.16.  Absolute values of two-dimensional Raman spectra (a) measured by six-wave 

mixing and (b) the parallel cascade computed using an experimental third-order transient grating 

measurement.  Slices of the two-dimensional Raman spectra are displayed at 1 =112 cm
-1

 (blue) 

and 2 =112 cm
-1

 (green) for the (c) experimental measurement and the (d) simulated parallel 

cascade.  The line width of the parallel cascade is 30% larger in 2  than it is in 1  because of 

incoherent solvation dynamics in the ground electronic state. 

 

4.5.4. Distinguishing Direct and Cascaded Nonlinearities Based on Signal Phases 

Under electronically resonant conditions, 90º phase-shifts are accumulated in each time 

interval shaded in blue in Figure 4.13.  The additional electronic coherence involved in the 
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cascaded nonlinearity imposes a phase-difference of 90º between the two processes.  Phase-shifts 

of 90º and 180º are also accumulated by the direct and cascaded nonlinearities when the numbers 

of emission events are taken into account, respectively.  Thus, the total phase-difference between 

the absorptive components of the direct fifth-order and cascaded third-order signal fields is 180º 

under resonant conditions.
94

  This section presents control experiments based on this difference 

in sign.  

Knowledge of the absolute signal phase requires a well-defined reference.  To this end, 

we establish the phase-angle of the fifth-order signal field by comparing it to the phase-angle of 

the direct third-order signal field, which differs from the fifth-order signal by 180º (i.e. the sign 

of the polarization changes for every two levels in perturbation theory).
85

  It follows that the 

direct third-order signal and cascaded nonlinearity possess the same sign under resonant 

conditions.  Here, we employ four-beam geometries to facilitate comparison of the third and 

fifth-order signal phases.  The key advantage associated with four-beam geometries is that the 

direct third and fifth-order responses possess the same amount of phase-mismatch, thereby 

allowing a direct comparison between these two signal phases.  Cascaded nonlinearities do not 

possess the same amount of phase mismatch as the direct processes, which can be problematic if 

the shift in the cascaded signal phase accumulated in the sample changes the signal sign.
24

  In 

order to rule out such undesired propagation effects, we have compared signals phases in three 

different four-beam geometries and a range of sample thicknesses. 
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Figure 4.17.  (a)-(c) Three laser beam geometries are used to establish the relative phase-angles 

of third and fifth-order signals.  Both signal fields are radiated in the direction, 3 4 5k k k  , 

because the first two field-matter interactions occur with the same beam (beam 1,2) in the fifth-

order experiment.  (d) The homodyne-detected signal intensity is measured with and without 

beam 1,2 using geometry (a).  The reduction in signal intensity caused by beam 1,2 confirms that 

the nonlinearity interferes destructively with the third-order signal.  Portions of interferograms 

are measured for the direct third-order (beam 1,2 blocked) and the direct fifth-order signals 

(obtained as the difference, beam 1,2 on – beam 1,2 off) at 1 =0.3 ps and 2 =0.3 ps.  The 

interference fringes show that the third and fifth-order signal phases differ by approximately 180º 

(this behavior has been confirmed for delay times up to 3 ps).  The measurement in panel (e) 

corresponds to geometry (a); the measurement in panel (f) corresponds to geometry (b); the 

measurement in panel (g) corresponds to geometry (c). 
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Table 4.3.  Parameters of Model Used to Compute Magnitudes of Direct Fifth-Order and 

Cascaded Third-Order Signals 

 

(a)
Parameter Value 

  / 2L eg c    2810 cm
-1

 

d  varied 

/vib c  10 cm
-1

 

eg  2010 cm
-1

 

eg  8.8 D 

N  1.210
24

 m
-3

 

/ 2t c   37200 cm
-1

 

 tn   1.4 

l  0.3 mm 

 (a) 
Calculations employ a harmonic ground-state potential energy surface with a frequency of 112 

cm
-1

 and the anharmonic excited state potential energy surface determined by Myers.
48

  Details 

are given in the Appendix A.  

 

Figure 4.17 presents three four-beam geometries that facilitate analysis of the signal 

phase (i.e. these geometries are obtained by changing the mask in the six-wave mixing 

interferometer).  The indices in this figure carry the same meaning as those in Figure 4.4.  The 

first two field-matter interactions, which are derived from a single laser beam (labeled beam 1,2 

in Figure 4.17), initiate dynamics in 1 , whereas 2  corresponds to the delay between the pulse-

pair 3,4 and pulse 5.  Both the third and fifth-order signals are radiated in the direction 

3 4 5k k k  , because the wavevectors associated with the first two interactions cancel in the fifth-

order process (i.e. 1 2 3 4 5 3 4 5k k k k k k k k       ).  As mentioned above, the direct third and 
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fifth-order processes accumulate identical amounts of phase mismatch in each geometry.  In 

contrast, the amount of phase mismatch associated with each of the four types of cascades may 

vary.  Therefore, the relative signs of the third and fifth-order signals must be independent of the 

geometry and sample thickness if the direct fifth-order response is generally dominant. 

In order to establish the relative phase of the fifth-order signal, we begin with a simple 

and easily interpreted experimental test.  In Figure 4.17d, homodyne-detected signals are 

displayed with and without beam 1,2 in the geometry shown in panel (a).  The decrease in the 

measured signal intensity found with beam 1,2 blocked indicates that the nonlinearity induced by 

beam 1,2 interferes destructively with the third-order signal (the interferograms shown in Figure 

4.17e follow from this result).  These observations can be interpreted by considering the 

components of the total signal intensity under perfect phase-matching conditions 

                
2 2

3 5 3 3 5 3
2 cos 180 2 cos 0cas casE E E E E E E E      (4.25) 

where it is assumed that the direct third order signal field, 
 3

E , is large compared to the direct 

fifth-order and cascaded responses, 
 5

E  and casE .  The second and third terms on the right side 

of Equation 4.25 have negative and positive signs, respectively.  Thus, a beam 1,2-induced 

decrease in signal intensity is predicted if  5

casE E , whereas an increase in signal intensity 

is predicted if  5

casE E .  The sign of the second term is always negative in these four-beam 

geometries, whereas the sign of the third term depends on both the geometry and sample 

thickness.  

We have confirmed that indistinguishable results are obtained in all three geometries 

shown in Figure 4.17 with sample thickness of 200, 300, and 500 μm; beam 1,2 always induces a 
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decrease in the total signal intensity for delay times up to 3 ps (i.e. the delay range relevant to the 

present study).  Reproducibility of the signal sign in various geometries, which are subject to 

different phase-matching conditions, suggests that the direct fifth-order signal is generally larger 

than the cascaded third-order signal under resonant conditions in I3
-
.  These results may also be 

understood in terms of the ground-state depletion induced by beam 1,2 (i.e. as in a pump-

repump-probe experiment).
100

  For example, a 10% reduction in the homodyne-detected signal 

intensity suggests that approximately 5% of the molecules in the focal volume are photoexcited.  

Such an understanding of ground-state depletion is relevant only to the direct fifth-order process, 

because each molecule involved in a third-order cascade possesses independent ground and 

excited state populations. 

The test described in Figure 4.17 establishes that the sign of the measured signal field is 

generally opposite to the four-wave mixing signal.  Slightly more than 50% of signal 

corresponds to the Raman response, whereas the remainder is incoherent (i.e. a pump-repump-

probe signal).  It is therefore desirable to take this test one step further and isolate the Raman 

component of the signal.  In Figure 4.18, we present a more challenging measurement in which 

vibrational coherences in the third and fifth-order signals are compared to establish their phase-

relationship.  The absorptive component of the third-order signal is found using the all-optical 

phasing method demonstrated by Scholes and co-workers.
101

  The same phase setting is then 

applied to the fifth-order signal obtained by measuring differences with beam 1,2 blocked and 

unblocked.
40,43

  

In Figure 4.18b, the vibrational coherence associated with the six-wave mixing response 

is obtained by setting the delay between pulses 1,2 and pulse-pair 3,4, 1 , equal to 350 fs, which 

corresponds to the first maximum in the third-order vibrational coherence.  The delay between 



 

132 

pulse-pair 3,4 and pulse 5 , 2 , is then scanned  to obtain the fifth-order vibrational coherence.  

The delay between pulse-pair 3,4 and pulse 5 is scanned a total of 70 times, where scans with 

beam 1,2 blocked and unblocked are interleaved (i.e. 35 of each).  Attainment of a single 1D 

slice with signal-to-noise comparable to that shown in Figure 4.18b requires approximately 60 

minutes of signal averaging (the intensity of beam 1,2 is not increased above 5GW/cm
2
 because 

of the potential for photoionization-induced artifacts).
60,68

 

 

Figure 4.18.  (a) Absorptive parts of the wavelength-integrated third and fifth-order signal fields 

are measured using the geometry shown in Figure 4.17a.  The delay axis, 2 , corresponds to the 

delay between the pulse-pair 3,4 and pulse 5 ( 1 =350 fs and 2  is scanned).  (b) Absorptive parts 

of vibrational coherences are fit with sinusoidal functions to quantify the phase difference.  (c) 

The delay axis, 1 , is translated in the phase-difference associated with the absorptive 

components of third and (direct) fifth-order vibrational coherences.  The response is measured at 

a delay time predicted to yield an approximate 120° phase difference (at the dashed line).  This 

control experiment suggests that the direct fifth-order Raman response is much larger than the 

cascaded nonlinearity. 

  

Figure 4.18c explains how to convert the delay, 1 , into the predicted phase-difference 

between third and fifth-order signal fields.  A phase-difference of exactly 120º is predicted based 

on the delay, 1 =350 fs, and the 300-fs period of the vibrational mode (i.e. 50 fs is 17% of the 
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300-fs period of the vibration).  The measured phase difference of 145° differs from the value 

predicted for the direct fifth-order signal by 25°.  It should also be noted that the phase of the 

vibrational coherence in the six-wave mixing signal shifts towards negative time (to the left in 

Figure 4.18a), because the value of 1  is not an integer-multiple of the 300-fs vibrational period.  

It may be instructive to consider that the nodes in the wave,  1 2cos vib     , shift toward 

lesser values of 2  as the amount of phase accumulated in 1 ,  1vib  , increases.  

While useful for establishing generality of the signal phase, the interpretation of signals 

acquired in the four-beam geometries is somewhat complicated by variability in the phase-

matching efficiencies for cascaded nonlinearities (e.g. see tables of phase-matching efficiencies 

in Appendix A).  For this reason, we also compare signs of third and fifth-order signal phases 

using a three-beam geometry in which both direct and cascaded nonlinearities are well phase-

matched.  The three laser pulses are derived from the zeroeth-order beams in our experimental 

setup (see Figure 4.4).  In this geometry, the efficiencies of the direct fifth-order and parallel 

cascaded responses are equal, whereas the sequential cascades are roughly 90% less efficient.  

The signals are detected using a CMOS array mounted on a miniature spectrometer.  The 

resolution of the spectrometer is comparable to the width of the laser spectrum, so we simply 

integrate over the few pixels on which the probe light is incident.  The two pump beams are 

chopped at 250 Hz using synchronized chopper wheels.  Thus, pump-probe and pump-repump-

signals are acquired for every four shots of the laser system.  The delay lines are scanned 20 

times over a total of 50 points, and 500 spectra are acquired at each point per scan.  

Pump-probe and pump-repump-probe signals measured in the three-beam gometry are 

displayed in Figure 4.19.  As in Figure 4.18, the two signals have opposite signs, and the signal 
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magnitudes differ by roughly a factor of 10.  As in the four-beam geometries, the observation of 

signals with opposite signs indicates that the magnitude of the direct fifth-order nonlinearity is 

larger than that of the cascaded response.  The relative magnitudes of the pump-probe and pump-

repump-probe signals are also consistent with dominance of the direct response; cascades would 

interfere destructively with the direct fifth-order response, thereby reducing the overall signal 

magnitude.  The signal-to-noise ratio of the pump-repump-probe signal is not sufficient for 

detecting vibrational coherences (noise level is 0.1 mOD).  Nonetheless, as mentioned above, the 

Raman response is greater than 50% of the total signal magnitude in I3
-
.  It should also be noted 

that the six-wave mixing geometry employed in this work is superior to the three-beam geometry 

in terms of cascade suppression (see Table 4.4) .  

In summary, we have confirmed that the signs of the third and fifth-order signals are 

opposite and that this behavior is independent of the laser beam geometry and sample thickness.  

Tests were conducted in both four-beam geometries and a conventional three-beam (pump-

repump-probe) geometry.  We have also shown that the third and fifth-order vibrational phases 

shown in Figure 4.18 deviate by approximately 25º and 155º from (the simplest) theoretical 

prediction, respectively.  It is not clear if the 25º deviation reflects an experimental issue (e.g. 

uncertainty in phase calibration, uncertainties in time-zeroes) or some aspect of the system that 

has not been accounted for.  For example, higher-energy electronic resonances in I3
- 
may 

influence the dispersive part of the signal even though the laser pulse is resonant with a single 

excited state (i.e. dispersive line shape have long tails).  The blue-shift of the laser from the peak 

of the absorbance spectrum may also be a factor.  In any case, the main conclusion to be drawn 

from the measurements described in this section is that the magnitude of the direct fifth-order 

response of I3
-
 is generally larger than that associated with third-order cascades.  Extraordinary 
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engineering solutions, such as those employed in off-resonance studies,
24

 are therefore not 

required to suppress cascades in I3
-
. 

 

Figure 4.19.  (a) Pump-probe (ΔA) and (b) pump-repump-probe (ΔΔA) signals are measured 

simultaneously in a jet with a 300-μm path length using the three zeroeth-order laser beams in 

interferometer (signals are represented in mOD).  The observation of signals with opposite signs 

in (a) and (b) indicates that the direct fifth-order response is greater than that associated with 

third-order cascades.  The three-beam geometry is useful for establishing the intrinsic relative 

magnitudes of the direct and cascaded responses, because both nonlinearities are well-phase 

matched. 

 

4.5.5 Concentration Dependence of the Six-Wave Mixing Signal Field 

In this section, we present six-wave mixing signal intensities acquired at a series of 

concentrations to distinguish contributions from direct and cascaded nonlinearities.  Recent 3D-

IR studies have similarly ruled out contributions from third-order cascades based on the 

concentration dependence at small optical densities.
94,99

  Attenuation of the incoming beams and 

absorption of the signal must be treated to interpret data acquired at optical densities greater than 
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~0.1, which are typically required in resonance Raman experiments.  As shown in Appendix A, 

such effects are fairly straightforward to account for with a simple model.  Here, signals are 

examined at fixed delay times (rather than obtaining 2D spectra at a series of concentrations), 

because attainment of adequate statistics is not possible with the 2-hour data acquisition time 

required for a 2D spectrum.  Nonetheless, signals obtained at fixed delay times should still be 

sensitive to cascaded nonlinearities in I3
-
, because the Raman response is more than 50% of the 

total signal strength. 

Six-wave mixing signal intensities measured at a series of concentrations are presented in 

Figure 4.20.  The points in these plots represent the wavelength-integrated, homodyne-detected 

signal intensity.  We analyze the homodyne-detected signal intensity (rather than the heterodyne-

detected signal intensity) to simplify the analysis; attenuation of the local oscillator beam would 

have to be measured and incorporated in the model if heterodyne detection was utilized.  The 

sample is contained in a 200-μm path length cuvette that is held in a rotating mount.  The sample 

moves approximately 120 μm/ms (i.e. a point on the circle traced by the laser beam), so each 

shot of the laser is incident on a fresh portion of the solution.  The concentrations are scanned 

two times (with fresh solutions), and a total of 60 spectra are acquired at each point (each point  

in plot represents a total of 6000 laser shots).  Dependences of the direct and cascaded signal 

intensities on the absorbance are also calculated using the model presented in Appendix A.  The 

simulated signal intensities shown in Figure 4.20 are multiplied by constants in order to overlay 

them with the data. 
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Figure 4.20.  Six-wave mixing signal intensities measured at (a) 1 = 2 =300 fs and (b) 1 =300 

fs, 2 =600 fs.  Dependences of the direct (blue) and cascaded (red) signal intensities on the 

absorbance are simulated using the model described in Appendix A (the simulated intensities are 

multiplied by constants in order to overlay them with the data).  The concentration dependences 

of the direct and cascaded processes differ, because the cascade is induced by the primary four-

wave mixing response accumulated in the sample (see Appendix A).  These data are consistent 

with dominance of the direct fifth-order signal field. 

 

The two delay times shown in Figure 4.20 are chosen to test whether or not the 

concentration dependence of the signal differs on or off of the diagonal, 1 = 2 .  Notably, the 

signals plotted in Figures 4.20a and 4.20b correspond to maxima and minima in the vibrational 

amplitude, respectively.  Agreement between the experiments and simulations for the direct 
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response suggests that the signal field is dominated by the direct fifth-order nonlinearity in the 

range of concentrations employed in the experiments.  For reference, the 2D data shown in 

Figure 4.8 were acquired at the concentration that produces an absorbance of 0.3 in the 200-μm 

path length employed in Figure 4.20.  

4.5.6. Comment on the Relative Magnitudes of Third and Fifth-Order Signals Fields 

The relative magnitudes of the third and fifth-order signals shown in Figures 4.17-4.19 

underscore the key distinction between resonant and off-resonant conditions – that all vibronic 

transitions are allowed for Franck-Condon active modes on resonance.  These measurements 

show that the amplitude of the third-order signal field is 10-20 times larger than that of the fifth-

order signal field.  As in a pump-repump-probe experiment,
100

 this difference in signal 

magnitudes should be anticipated under resonant conditions in which 5-10% of the molecules in 

the focal volume are photoexcited.  In contrast, forbidden steps in the fifth-order process under 

off-resonant conditions inflate the ratio between third and fifth-order signal magnitudes 

significantly.  For example, Wright obtained an estimate of    3 5
/E E 18,000 for intramolecular 

vibrations in liquid toluene using the CHORES technique (
 3

/ 50,000casE E  and 

 5
/ 6500casE E  ).

96
 

The large magnitude of    3 5
/E E  associated with off-resonant experiments is 

problematic, because it directly impacts the ratio between the cascaded third-order and direct 

fifth-order signal fields,
 5

/casE E .
99

  The four-wave mixing response must be suppressed by 

roughly three orders of magnitude (without attenuating the direct fifth-order signal) to achieve 

success under off-resonant conditions.  It has been shown that such suppression can be achieved 
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through a combination of heterodyne detection and laser beam geometries that impose large 

phase-mismatch for cascades.
24

  The geometries employed in these earlier works may also be 

useful for cascade suppression under resonant conditions; however, heterodyne detection cannot 

be leveraged for contrast because of the 180° phase-difference between the direct and cascaded 

responses. 

Table 4.4.  Calculated Wavevector Mismatches for Direct and Cascaded Nonlinearities in 

Geometry Shown in Figure 4.4 

 

Wavevector of 

Intermediate 

Nonlinearity 
Ak  (cm

-1
)

 
Bk  (cm

-1
)

 (a),(b)   f j jk l  

1 2 3 4 5k k k k k     

(Direct 5
th
-Order 

Signal) 

-235 ------------------- -0.01 

1 2 3k k k   (Sequential 

Cascade #1) 
-470 -235 7.010

-4
 

2 1 4k k k   (Sequential 

Cascade #2) 
-235 700 -2.710

-3
 

1 2 5k k k   (Parallel 

Cascade #1) 
-470 235 7.010

-4
 

3 4 5k k k   (Parallel 

Cascade #2) 
0 -235 -0.09 

(a)
The path length is 300 μm. 

(b) 
Direct and cascaded signal generation efficiencies are computed using  sinc / 2Ak l  and 

   sinc / 2 sinc / 2A Bk l k l  , respectively. 

 

Contributions from cascades in our data are difficult to quantify based on the above 

experimental tests, because the cascaded nonlinearity is always superposed with an intense direct 
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fifth-order response.  It should be emphasized that the model calculations presented in Figure 

4.14 pertain only to the component of the signal that oscillates at the fundamental frequency in 

1  and 2  (i.e. the signal component of interest).  This argument does not apply to the incoherent 

part of the signal.  It is our understanding that the mode displacement controls the distribution of 

cascaded signal intensity between coherent and incoherent signal components.  Considering the 

signal-to-noise ratios present in our experimental tests, cascaded nonlinearities could easily be 

10% of the total signal magnitude (i.e. slightly above the noise floor).  Of course, such small 

contributions do not preclude analysis of the direct fifth-order signal field, particularly if they are 

concentrated in the (vibrationally) incoherent part of the response. 

4.6. Conclusions 

In summary, we have conducted six-wave mixing experiments with I3
-
 using deep UV 

laser pulses generated in a two-color filament.  The experiments demonstrate that high-quality 

signals are readily obtained with the data acquisition rate and sensitivity afforded by combining a 

background-free laser beam geometry with spectral interferometry.  Signals were examined in 

two different representations.  One representation simply carried out a 2D Fourier transform with 

respect to the two experimentally controlled delay times using the wavelength-integrated signal 

field.  The pattern of resonances in the 2D spectrum is well-described with response functions 

based on a cumulant expansion.  The second representation involves three dimensions: the first 

experimentally controlled delay time, 1 ; the Fourier transform of the second delay time, 2 ; the 

detection frequency, t .  Correlation spectra associated with 2  and t  reveal that both the 

detection frequency and signal magnitude oscillate in 1  due to wavepacket motions in the 

symmetric stretching coordinate.  These oscillations encode information about anharmonic 
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motions in the ground state (which are weak in I3
-
), and the dynamic energy gap between 

electronic states.  It will be interesting to examine systems with multiple Franck-Condon active 

modes using this technique.  Pulses with broader bandwidths may also enhance sensitivity by 

increasing the oscillation amplitude in t . 

The analysis presented in Section 4.5 suggests that cascaded third-order nonlinearities, 

which significantly challenged fifth-order off-resonant Raman spectroscopies,
24,25,54-57

 do not 

dominate the fifth-order resonance Raman response of I3
-
.  This interpretation of the response is 

supported by four aspects of the measured signals: the line shapes, the signal phase, 

concentration dependence, and the relative magnitudes of third and fifth-order signals.  

Consistency between these fairly unrelated aspects of the signals constitutes strong evidence that 

the direct fifth-order signal field is much larger than the cascaded signal field.  The model 

calculations presented in Section 4.5.2 suggest that the cascaded signal contribution to the peak 

at 1 = 2 = 112 cm
-1

 is more than three orders of magnitude smaller than that associated with 

the direct fifth-order response.  It should be emphasized that this analysis pertains only to the 

signal component that oscillates at the fundamental mode frequency in both dimensions.  In other 

words, the mode displacement controls how the cascaded signal intensity is distributed between 

(vibrationally) coherent and incoherent signal components (see Section 4.5.6).  For this reason, it 

is presently unclear if this method can be successfully applied to larger molecules, which 

generally possess smaller mode displacements (i.e. I3
-
 has an extraordinarily large mode 

displacement).  Alternate laser beam geometries may be considered for such cases.
24

 

Applications of 2D electronic spectroscopy in the deep UV are challenged by dispersion 

management and the large off-resonant response of the sample medium near time-zero.
21,22,59-
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63,66-68
  The present work shows that multi-dimensional resonance Raman experiments are largely 

immune to these technical limitations.  Most importantly, vibrational dephasing is much slower 

than electronic dephasing, so the coherence spike associated with the region of laser pulse 

overlap is not as problematic.  Regarding dispersion management, low-frequency (<1000 cm
-1

) 

vibrational resonances are readily probed with manageable laser bandwidths.  For example, the 

(functionally important) modes localized to disulphide bridges in proteins are found below 500 

cm
-1

 and may be excellent targets for six-wave mixing experiments that employ 200-nm laser 

pulses.
102

  Higher-frequency vibrational resonances (>1000 cm
-1

) may be probed without 

extraordinary resources by incorporating pairs of laser pulses with spectra shifted by amounts 

equal to the mode frequencies of interest. Such a two-color approach would circumvent the need 

for sub-20-fs pulses. 
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CHAPTER 5:  ELUCIDATION OF REACTIVE WAVEPACKETS BY TWO-

DIMENSIONAL RESONANCE RAMAN SPECTROSCOPY
1
 

 

5.1. Introduction 

Models used to describe photoinduced electronic relaxation mechanisms in condensed 

phases are often based on perturbative descriptions at the level of Fermi’s Golden Rule (e.g. 

Marcus equation, Forster energy transfer).
1-3

  Such second-order rate theories typically assume 

an equilibrium initial condition in the photoexcited state of the system prior to the non-radiative 

transition of interest.  This assumption is generally poor when applied to processes that occur on 

a time scale faster than solvation and/or vibrational dephasing.  Recent studies show that non-

trivial quantum effects may emerge when electronic and nuclear relaxation processes become 

time-coincident.
4
  For example, in charge transfer processes that are time-coincident with 

vibrational dephasing, bursts of population flow have been observed in polymer-fullerene 

blends,
5
 photosynthetic complexes,

6
 and at interfaces of semiconductors.

7,8
  Transient coupling 

between electronic and vibrational degrees of freedom has also been implicated in sub-

picosecond energy transfer transitions.
9-15

  The two-dimensional resonance Raman (2DRR) 

techniques developed in this work are motivated by new insights into these types of non-

equilibrium dynamics. 

In this paper, the sensitivity of 2DRR spectroscopy to coherent reaction mechanisms is 

demonstrated with measurements conducted on the photodissociation process of triiodide.  Two-

                                                             
1
 This chapter previously appeared as an article in the Journal of Chemical Physics.  The original citation is as 

follows:  Guo, Z.; Molesky, B. M.; Cheshire, T. P.; Moran, A. M. J. Chem. Phys. 2015, 143, 124202. 
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color laser pulse configurations are used to selectively detect vibrational motions of the triiodide 

reactant and/or diiodide photoproduct in the two dimensions of the 2DRR spectrum.  The unique 

power of the technique is ultimately realized using a pulse sequence, where vibrational 

resonances of triiodide and diiodide appear in separate dimensions.  These “cross peaks” 

represent events in which a nuclear wavepacket transitions between reactant and product states 

without loss of coherence.  Below we explore how 2DRR spectroscopy can be used to expose 

non-trivial correlations between the nonequilibrium geometry of the reactant and vibrational 

coherence frequency of the product.  Such information cannot be derived from four-wave mixing 

spectroscopies, which possess only one “population time” in which nuclear wavepacket motions 

take place. 

Ultrafast spectroscopic investigations of the photodissociation process in solvated 

triiodide are motivated by knowledge of the extraordinary reaction mechanism in this well-

defined system.
16-23

  Light absorption by triiodide in the ultraviolet spectral range induces 

photodissociation on a time-scale that is shorter than
16,19

 or comparable to
22,24

 the vibrational 

period of diiodide.  Photodissociation of triiodide acts as an impulse that initiates vibrational 

coherence in the bond stretching coordinate of diiodide.  Information about the geometry 

changes that transform the reactant to the photoproduct can be derived from oscillatory 

components of transient absorption signals.  For example, earlier work has shown that the 

oscillatory amplitude reflects symmetry breaking in the excited state,
20

 whereas the “chirp” in the 

waveform of the vibrational coherence represents time evolution of the bond strength during the 

reaction.
22

  It has also been demonstrated that photodissociation yields distinct populations of 

free solvated diiodide and a contact fragment pair (diiodide and iodine).
25

  Of relevance to the 

present 2DRR study, recent work suggests that the vibrational mode in free solvated diiodide 
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dephases on a time scale that is longer than the 300-fs vibrational period, whereas overdamped 

vibrational motion tends to take place in the contact radical pair.
24

 

We recently measured 2DRR spectra of triiodide using deep UV laser pulses.
26

  This 

approach was sensitive to ground state wavepacket motions in the triiodide molecule, but did not 

convey detailed information about the photodissociation mechanism.  Examination of this simple 

nonlinearity was motivated by the ability to compare experimental 2DRR spectra with those 

simulated using the Hamiltonian of triiodide determined in earlier spontaneous resonance Raman 

studies.
27-29

  Together with a battery of control experiments, these simulations were essential for 

ruling out cascades of four-wave mixing signal fields, which are known to significantly 

challenge 2D Raman experiments conducted under off-resonant conditions.
30-34

  We concluded 

that the desired 2DRR response will generally be dominant in systems with large excited state 

potential energy surface displacements.  In effect, Franck-Condon activity obviates the selection 

rules that favor cascaded signal intensity under off-resonant conditions.  

5.2. 2DRR Spectra Simulated for a Reactive Model System 

As implemented in this work, 2DRR spectroscopy is a fifth-order technique in which 

vibrational coherences are detected in two delay times between laser pulses.  In contrast, 

vibrational coherences may be investigated during only one pulse delay time in a traditional 

third-order pump-probe spectroscopy.  The goal of the model presented in this section is to 

establish spectroscopic signatures corresponding to particular classes of terms in the 2DRR 

response function.  It is important to carry out such an analysis, because the 2DRR nonlinearity 

is more complicated than that associated with a traditional pump-probe experiment.
1
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Vibrational motions in the ground electronic state of triiodide were detected in our earlier 

all-UV 2DRR experiments.
26

  Here, sensitivity to the diiodide photoproduct is derived by 

applying laser pulses in a spectral range that is electronically off-resonant with triiodide at 

equilibrium.
16-23

  The patterns of 2DRR resonances associated with such two-color pulse 

sequences are explored with model calculations below. 

 

Figure 5.1.    Linear absorbance spectra of triiodide and diiodide in ethanol.  The absorbance 

spectrum of triiodide is directly measured, whereas that of diiodide is derived from Reference 
35

 

because it is not stable in solution.  Diiodide is probed on the picosecond time scale in the 

present work.  The electronic resonance frequencies associated with this nonequilibrium state of 

diiodide are likely red-shifted from those displayed above. 
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5.2.1. Model Hamiltonians 

The electronic resonances relevant to the experiments conducted in this work are 

displayed in Figure 5.1.  The resonance of triiodide centered near 27,800 cm
-1

 is excited in all 

experiments.  In a single experiment, either the lower (13,300 cm
-1

) or higher-frequency (25,400 

cm
-1

) electronic resonance of diiodide is probed (i.e. the 2DRR experiments presented below are 

two-color rather than three-color).  Therefore, the nonlinear optical response associated with all 

measurements presented below may be simulated using a Hamiltonian in which each molecule, 

triiodide and diiodide, is treated as an effective two-level electronic system.  Explicit inclusion of 

additional off-resonant electronic states will have a negligible impact on these signals.  The 

effective Hamiltonian for triiodide can be written as 

    *

0 0

* *triiodide r m r n

m n

H r r m m E E r r n n E E
 

 

      (5.1) 

whereas that of diiodide is given by 

 *

0 0

* *diiodide p m p n

m n

H p p m m E E p p n n E E
 

 

           . (5.2) 

Here, r  and p   represent the ground electronic states of triiodide and diiodide, whereas an 

asterisk is used to denote the excited electronic state.  The energies, 
rE  and 

*

rE  ( pE  and *

pE ), 

correspond to the ground and excited states, respectively.  The dummy indices, m  and n , 

represent vibrational levels belonging to the ground and excited electronic states.  

The transition energies of each system, 
*r rE E  and *p pE E , are readily derived from 

the absorbance spectra presented in Figure 5.1.  The two potential energy surfaces that belong to 
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each molecule must also be described in order to generate the vibrational energy levels, 
mE  and 

nE .  The ground state potential energy surfaces must be modeled with a far greater level of detail 

than the excited state potential energy surfaces in order for the model to generate realistic 

spectroscopic signals.  Insensitivity to the global excited state potential energy surfaces is taken 

into account when writing the summations over quantized vibrational levels for the dissociative 

excited states in 
triiodideH  and 

diiodideH .  We next discuss the approximations made in the 

descriptions of the potential energy surfaces in a qualitative way.  Further technical details about 

the parameterization of the potential energy surfaces are given in Appendix B. 

The summations over quantized levels for the ground states in 
triiodideH  and 

diiodideH  are 

clearly motivated.  Previous literature can be used to guide decisions about parameters.
16,19,27

  

The vibrational motions of triiodide and diiodide detected in this work are known to occur in the 

electronic ground states, because the excited states of both systems are dissociative.
16,19

  

Vibrational resonances in the ground electronic state of triiodide have been detected in both 

spontaneous and stimulated Raman experiments carried out with deep and near ultraviolet laser 

beams.
16,27

  In this work, signals will be simulated using a harmonic ground-state potential for 

triiodide, because only the lowest-energy vibrational states contribute to the signals.  Resonance 

Raman experiments suggest that the harmonic approximation is indeed reasonable for these 

energy levels.
27

  In two-color transient absorption experiments (ultraviolet pump with visible and 

near-infrared probes), the relationship between the vibrational phase and detection wavelength 

was used to assign wavepacket motions to the electronic ground state in diiodide.
16,19

  The 

ground state potential energy surface of diiodide is modeled using a cubic potential in this work, 

because higher-energy vibrational levels (near 12 quanta) are known to contribute to the 

response following photodissociation.
19

  Introduction of the cubic potential is required to obtain 
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agreement between theoretical and experimental vibrational frequencies, but does not impact the 

patterns of peaks in the 2DRR spectra.  

The shapes of the excited state potentials require far less detail than those of the ground 

states, because the experiments presented here are sensitive only to the potential energy gradient 

near the Franck-Condon geometry.
36

  This aspect of the response is made clear by the absence of 

vibronic progressions in the absorbance spectra shown in Figure 5.1.  In the semiclassical 

perspective, this means that the wavepacket initiated on the excited state potential energy surface 

does not return to the Franck-Condon geometry before electronic dephasing is complete (i.e. 

electronic dephasing is on the order of 10-20 fs).
37

  The excited state potential energy gradient 

near the Franck-Condon geometry primarily governs the amplitude of the wavepacket stimulated 

in the ground electronic state.  Here, we use the cubic fitting parameters for the London-Eyring-

Polanyi-Sato (LEPS) excited state potential energy surface of triiodide in ethanol.
18,27

  Johnson 

and Myers used a similar displaced oscillator model for triiodide to achieve reasonable 

agreement with spontaneous Raman spectra.
27

  The gradient of the excited state potential energy 

surface of diiodide at the Franck-Condon geometry is approximated by displacing a replica of the 

cubic ground state potential energy surface.  We have chosen a set of parameters that produces a 

gradient which is consistent with models used in other work (see Appendix B).
24,25

  

5.2.2. Response Functions 

We consider three types of 2DRR nonlinearities: (i) both dimensions correspond to the 

triiodide reactant; (ii) both dimensions correspond to the diiodide photoproduct; (iii) the 

vibrational resonances of triiodide and diiodide appear in separate dimensions.  As in Section 

5.2.1, we use a notation where the indices r  and *r  represent the ground and lowest-energy 
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excited electronic states of the triiodide reactant.  Likewise, p  and *p  correspond to the ground 

and lowest-energy excited states of the diiodide photoproduct.  Vibrational levels associated with 

these electronic states are specified by dummy indices ( m , n , j , k , l ,u , v , w ).  The Feynman 

diagrams presented in Figure 5.2 show that the vibrational coherences detected in 2DRR spectra 

evolve in the two time intervals with even indices (
2t  and 

4t ).  Electronic (or vibronic) 

coherences, which dephase in 10’s of fs for solvated triiodide, evolve in the time intervals that 

correspond to odd indices (
1t , 

3t , and 
5t ).  It is useful to consider that the experimentally 

controlled pulse delay times, 
1  and 

2 , are good approximations to the time intervals between 

field-matter interactions, 
2t  and 

4t . 

The first class of nonlinearities shown in Figure 5.2 (i.e. terms 1-4) involves vibrational 

motions of only the triiodide reactant.
26

  In contrast to terms 1-4, the Feynman diagrams 

associated with the other two classes of response functions incorporate the photodissociation 

process as a transfer of vibronic coherence from triiodide to diiodide either before (terms 5-8) or 

after (terms 9-12) evolution of the vibrational coherence in 
2t  (i.e. the delay time, 

1 ).  In the 

present model, we assume that the reaction is faster than the 300-fs period of the symmetric 

stretching coordinate in triiodide.  This separation in time scales is consistent with the finding of 

vibrational coherence in diiodide (i.e. vibrational motions in the ensemble can dephase if the 

reaction is not impulsive).  It was understood in earlier studies that photodissociation is faster 

than the 300-fs vibrational period.
16,19

  However, some later work suggests that the reaction takes 

place on nearly the same time scale as the vibrational period (i.e. a few hundred 

femtoseconds).
22,24

  In any case, we consider the impulsive approximation to be reasonable here, 

because it does not impact the pattern of peaks in the 2DRR spectra. 
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Figure 5.2.  Feynman diagrams associated with dominant 2DRR nonlinearities.  Blue and red 

arrows represent pulses resonant with triiodide and diiodide, respectively.  The indices r  and *r  

represent the ground and excited electronic states of the triiodide reactant, whereas p  and *p  

correspond to the diiodide photoproduct.  Vibrational levels associated with these electronic 

states are specified by dummy indices ( m , n , j , k , l ,u , v , w ).  Each row represents a different 

class of terms: (i) both dimensions correspond to triiodide in terms 1-4; (ii) both dimensions 

correspond to diiodide in terms 5-8; (iii) vibrational resonances of triiodide and diiodide appear 

in separate dimensions in terms 9-12.  The intervals shaded in blue represent a non-radiative 

transfer of vibronic coherence from triiodide to diiodide. 
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As in Reference 
26

, response functions are written in the “snapshot” limit, where the laser 

pulses are short compared to the vibrational period but long compared to electronic dephasing.
1
  

Both approximations are appropriate for the experiments described below.  We additionally take 

the finite bandwidths of the laser pulses into account in the expressions for the nuclear 

wavepackets.  Under these approximations, the polarization components consist of products of 

Lorentzian functions (see Appendix B for derivation).  For example, the first term is given by 
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Here, n m  is a vibrational overlap integral, where the index on the left represents the 

vibrational level of the excited electronic state (i.e. the same notation is used in Reference 
38

). 

The subscript of the electric field, UV, denotes an interaction with the lowest-energy electronic 

resonance of triiodide (VIS denotes an interaction with either electronic resonance of diiodide).  

The remaining 11 response functions are given in Appendix B.  
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The parameters given in Table 5.1 are chosen to approximate the properties of triiodide 

and diiodide.  The electronic and vibrational resonance frequencies of both systems have been 

determined in earlier studies.
16-23,26

  We take the potential energy surface of the ground state of 

triiodide to be harmonic in agreement with spontaneous resonance Raman experiments.
27

  The 

excited state potential energy surface of triiodide and both the ground and excited state potential 

energy surfaces of diiodide are expanded to the cubic term.
26

  Cubic expansion coefficients of -1 

cm
-1

 (see Equation B.2 in Appendix B) approximate the LEPS surface of triiodide
17

 and capture 

the 100-cm
-1

 gap between successive energy levels in diiodide near 20 vibrational quanta.
19

  

Evaluation of the vibrational overlap integrals in the response function is accomplished by 

assuming a dimensionless displacement of 7.0 for both triiodide and diiodide.  This value of the 

displacement is consistent with spontaneous Raman measurements
27

 and our previous 2DRR 

study of triiodide.
26

  A displacement of 7.0 also produces an excited state potential energy 

gradient in diiodide (225 eV/pm) that is identical to that associated with a commonly employed 

exponential surface at a displacement of only 9 pm from the Franck-Condon geometry.
24,25

  As 

discussed in Section 5.2.1, this gradient is the key quantity that must be reproduced by the 

present model, because electronic dephasing is fast compared to the vibrational period. 
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Table 5.1.  Parameters of Model Used to Compute 2DRR Spectra 

 

(a)
Parameter Value 

* / 2r r c   27,800 cm
-1

 

(b)
* / 2p p c   13,300 cm

-1
 & 25,400 cm

-1
 

(c)
, *,/ 2 / 2r vib r vibc c     111 cm

-1
 

(c)
, *,/ 2 / 2p vib p vibc c     114 cm

-1
 

(c)
3, /rU hc  0 cm

-1
 

(c)
3, * 3, 3, */ / /r p pU hc U hc U hc   -1 cm

-1
 

, *, , *,/ / / /r vib r vib p vib p vibc c c c        10 cm
-1

 

* */ /r r p pc c    2000 cm
-1

 

(d)
*r r  2.3 D 

(d)
*p p  1.0 D 

(e)
/ 2UV c   29,400 & 25,000 cm

-1
 

(f)
/ 2VIS c   14,705 & 18,900  cm

-1
 

/ 2t c   / 2VIS c   

/ /UV VISc c    500  cm
-1 

 

(a) 
The indices r  and p  represent triiodide and diiodide, respectively.  Asterisks indicate the 

lowest-energy excited electronic states of the molecules. 
(b) 

The electronic resonance of diiodide that is probed depends on the particular experiment (see 

Section 5.3).  In terms 1-4 and 9-12, the resonance is located at 25,400 cm
-1

, whereas in terms 5-

8 it is equal to 13,300 cm
-1

.  
(c) 

Parameters of Equation B.1 in Appendix B. 
(d) 

Magnitudes of transition dipoles do not impact line shapes of simulated 2DRR spectra. 
(e) 

In Figure 5.3, “pump” wavenumbers are: 25,000 cm
-1 

for terms 1-4; 29,400 cm
-1 

for terms 5-8; 

25,000 cm
-1 

for terms 9-12. 
(f) 

In Figure 5.3, “probe” wavenumbers are 14,705 cm
-1 

in terms 5-8 and 20,000 cm
-1 

in terms 9-

12, respectively. 
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5.2.3 Calculated 2DRR Spectra 

Figure 5.3 presents signals that are simulated for the three types of nonlinearities.  Terms 

1-4 yield resonances in only the upper right and lower left quadrants of Figure 5.3a because of 

interferences between components of the response function.
26

  For terms 5-8 in Figure 5.3b, 

suppression of signal intensity in the upper left and lower right quadrants originates in the same 

types of interferences found in terms 1-4. In terms 1-8, evolution of the system in the time 

intervals, 
2t  and 

4t , is always described by a pair of coherences in which only one of the 

vibrational indices is modified by the third and fourth field-matter interactions (e.g. rj  in terms 2 

and 4 or pl  in terms 5 and 6).  In contrast, calculations based on terms 9-12 yield peaks with 

equal intensities in all four quadrants in Figure 5.3c.  The unique pattern of resonances found in 

terms 9-12 reflects independence of the vibrational coherences that evolve during 
2t  and 

4t .  

The key issue is that the photodissociaton process takes place between the 
2t  and 

4t  time 

intervals in terms 9-12 (see Figure 5.2).  Therefore, the vibrational coherence in the time interval 

4t  involves a sets of indices that are fully independent from those in 
2t .  In contrast, 

photodissociation occurs before vibrational coherences evolve in 
2t  in terms 5-8, thereby placing 

constraints on the vibrational coherences that evolve in 
2t  and 

4t . 

In summary, the model calculations presented in this section demonstrate that cross peaks 

between triiodide and diiodide appear in all four quadrants of the 2DRR spectrum.  These 2DRR 

cross peaks may be induced with a pulse configuration in which UV pulses are employed before 

the 
2  delay time, and a visible pulse is applied afterwards (see terms 9-12).  This particular 

signature of cross peaks will generalize to other systems in which vibrational coherences of the 

reactant and product evolve in the ground electronic states.  For such systems, only cross peaks 
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between the reactant and product will yield resonances in the upper left and lower right 

quadrants.  The key issue is that the third and fourth field-matter interactions must take place 

with either the ket or bra in terms 1-8, thereby allowing a difference in only one of the indices 

that describes the coherences in 
1  and 

2  (see Figure 5.2). 

 

Figure 5.3.  Absolute values of 2DRR spectra computed using (a) the sum of terms 1-4 in 

Equation B.16, (b) the sum of terms 5-8 in Equation B.17, and (c) the sum of terms 9-12 in 

Equation B.18 (Equations B.16-B18 are in Appendix B).  The frequency dimensions, 
1  and 

2 , are conjugate to the delay times, 
1  and 

2  (see Figure 5.2).  Signal components of the type 

shown in panel (a) are generally detected in one-color experiments.  Two-color 2DRR 

approaches are used to detect nonlinearities that correspond to panels (b) and (c) in this work.  

The peaks displayed in Figure 5.3c are unique in that resonances of the reactant and product are 

found in 
1  and 

2 , respectively. 

 

5.3. Experimental Methods 

The 2DRR experiments conducted in this work utilize either five or three laser beams to 

obtain the fifth-order response.  Measurements conducted in these geometries must contend with 

a background of residual laser light and/or lower-order nonlinearities, because fewer than six 

laser beams are employed.
26

  In this section, we describe the two experimental setups and discuss 

how sources of background are dealt with.  
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5.3.1. Conducting 2DRR Spectroscopy with a Five-Beam Geometry 

Detection of signal components described by terms 5-8 in Figure 5.2 is accomplished 

with a geometry of five laser beams.  In Figure 5.4, it is shown that a 340 nm laser beam is 

simply added to an existing diffractive optic-based transient grating setup operational at 680 

nm.
39

  A slightly modified version of this interferometer has been described elsewhere.
40,41

  

Briefly, the 680 nm beams are focused on the diffractive optic with a 20-cm focal length 

spherical mirror and cross at 5.4º.  The angle between the +1 and -1 diffraction orders is also 

5.4º.  Thus, a square pattern of 680 nm beams appears on the 20 cm focal length spherical mirror.  

The spherical mirror is tilted off-axis by approximately 5º (i.e. the minimum amount) in order to 

image the spot from the diffractive optic onto the sample.  Focusing conditions of the 340 nm 

beam are optimized to match the 200 μm FWHM spot sizes of the 680 nm beams. 

The 340 nm and 680 nm laser beams are produced by focusing a 0.8 mJ, 60 fs laser beam 

at 800 nm into a 43 cm long hollow core fiber with a 250 μm inner diameter.  The continuum 

produced in the fiber spans the full visible spectral range. A 4 uJ, 40 nm wide portion of the 

continuum centered at 680 nm is filtered in a fused silica prism compressor.  Most of the 680 nm 

beam (65%) is used to generate 340 nm light in a 100 micron thick, Type I Beta Barium Borate 

(BBO) crystal.  In order to minimize lossy reflections, the 340 nm beam is directly imaged from 

the BBO onto the sample using a 15 cm focal length spherical mirror placed 30 cm from the 

BBO.  Residual 680 nm light is filtered using a 1 mm thick fused silica polarizer.  A lossy 

second compression step is not required for the 340 nm beam because of precompensation for 

dispersion in the aforementioned prism compressor; the polarizer used to filter residual 680 nm 

light compensates for negative chirp in the 340 nm pulse. 



165 

 

Figure 5.4.  (a) Diffractive optic-based interferometer used to detect signal components 

described by terms 5-8 in Figure 5.2.  Each of the two 680 nm beams is split into -1 and +1 

diffraction orders with equal intensities at the diffractive optic.  The signal is collinear with the 

reference field (pulse 5) used for interferometric signal detection.  (b) The 340 nm pulse induces 

photodissociation and vibrational coherence in the diiodide photoproduct during the delay, 
1 .  

The time-coincident 680 nm pulses, 2 and 3, reinitiate the vibrational coherence in diiodide 

during the delay, 
2 . 

 

In this pulse sequence, the 40 fs, 340 nm pulse (pulse 1 in Figure 5.4) induces a 

photodissociation process that leaves the diiodide photoproduct in a vibrational coherence as 

suggested by terms 5-8 in Figure 5.2.  A time-coincident pair of 25 fs, 680 nm laser pulses 

(pulses 2 and 3 in Figure 5.4) reinitiates the vibrational coherence in diiodide during the delay, 

2 .  The fourth pulse (also at 680 nm) induces signal emission.  The fifth pulse, which is 
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attenuated by a factor of 1000 before the sample, is used for heterodyne detection by spectral 

interferometry.
42,43

  The signal phase can be determined using the method devised by Turner and 

Scholes in this beam geometry,
44

 because the 340 nm pulse does not factor into the phase 

calibration.  Scherer and Blank have employed similar laser beam geometries and phasing 

schemes in related fifth-order experiments.
45-47

 

An undesired four-wave mixing response may be radiated by the solvent in the same 

direction as the fifth-order signal in this geometry.  However, because the sample is transparent 

at 680 nm, this four-wave mixing signal is approximately 50 times smaller than that associated 

with the solute at delay times greater than 80 fs.  Moreover, the desired signal radiated by the 

solute exhibits a vibrational coherence with a period of 300 fs.  Insensitivity of this setup to 

intramolecular vibrations of the solvent was confirmed by scanning the delay, 
2 , with the 340 

nm beam blocked.  Thus, the assignment of the experimentally observed 112-cm
-1

 vibrational 

resonance to the solute is unambiguous.
26

  The 2DRR experiment may be conducted without 

chopping the 340 nm beam, because the desired fifth-order nonlinearity dominates the total 

response of the solution.  Conducting the experiment without chopping the 340 nm beam greatly 

speeds up data acquisition and facilitates signal averaging.  

Signals are detected using a back-illuminated CCD array (Princeton Instruments PIXIS 

100B) mounted on a 0.3 meter spectrograph with a 600 g/mm grating.  The signal generates 

roughly 80 counts/ms on the detector with 150 nJ, 340 nm pulses and 200 nJ, 680 nm pulses.  All 

beams possess the same electric field polarization and are focused to 200 μm at the sample 

position.  The two delay lines are scanned 20 times and averaged.  The step sizes are 40 fs in 

both dimensions. 
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5.3.2. Conducting 2DRR Spectroscopy with a Three-Beam Geometry 

Signal components of the type described by terms 9-12 are detected using a three-pulse 

geometry (i.e. a standard pump-repump-probe experiment).
48

  As shown in Figure 5.5, the first 

two pulses that arrive at the sample are 25 fs, 400 nm pulses produced by self-phase modulation 

in a hollow core fiber,
49

 whereas the third pulse is a visible continuum produced in a 3 mm thick 

sapphire plate.  The 400 nm beams are focused onto the sample with a 30 cm focal length 

spherical mirror, whereas the continuum is relayed from the sapphire plate onto the sample using 

a single 5 cm focal length mirror (the continuum focuses 35 cm from the spherical mirror).  The 

FWHM spot sizes of the 400 nm beams are 600 μm, whereas that of the continuum is 400 μm.  

Angles between the adjacent beams are 5°.  Pulse energies of the 400 nm beams range from 150-

300 nJ in various experiments, and we observe no differences in the vibrational lineshapes 

obtained within this range of pulse energies.  The phases of the two chopper wheels, which are 

both operated at 250 Hz, are shifted by 90° to acquire signals under the four conditions needed to 

produce a pump-repump-probe signal ( A ).
48

  Signal detection is accomplished with a CMOS 

array detector that is synchronized to the 1-kHz repetition rate of the laser system.  The noise 

level of a pump-repump-probe signal is approximately 0.1 mOD in this setup.  The delay lines 

are scanned 10 times with step sizes of 40 fs and averaged. 
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Figure 5.5.  (a) Pump-repump-probe beam geometry used to detect signal components described 

by terms 9-12 in Figure 5.2.  (b) The first 400 nm pulse promotes a stimulated Raman response 

in the ground electronic state of the triiodide reactant during the delay, 
1 .  The second pulse 

induces photodissociation of the non-equilibrium reactant, thereby giving rise to vibrational 

coherence in the diiodide photoproduct during the delay, 
2 .  Sensitivity to diiodide is enhanced 

by signal detection in the visible spectral range. 

 

 Two field-matter interactions with triiodide occur with each of the 400 nm pump pulses 

in this experiment.  The first pulse stimulates wavepacket motion in the ground electronic state 

of triiodide as indicated in terms 9-12.  The application of a second 400 nm pulse ensures that the 

signals are primarily sensitive to vibrational coherences of triiodide during 
1  (i.e. signal 

contributions from diiodide are negligible during 
1 ).  The key issue is that the transient 

electronic resonance of triiodide is dominant at 400 nm (i.e. the bleach of the ground state).  The 

second 400 nm pulse induces photodissociation of triiodide and leaves the diiodide photoproduct 
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in a vibrational coherence in 
2 .  Signal detection in the visible spectral range enhances 

sensitivity to the diiodide product in the delay, 
2 .  

5.3.3. Sample Preparation and Handling 

Triiodide solutions are prepared by mixing solid I2 (Aldrich) with 5-fold molar excess of 

KI (Aldrich) in ethanol (Decon Labs, 200 proof).  The solutions are stirred for one hour to fully 

dissolve the solid.  The absorbance of the solutions is equal to 0.5 at 400 nm in a 300 μm path 

length.  The sample is flowed through a wire-guided jet with a thickness of 300 μm, where the 

volume of the reservoir is 50 mL.  

5.4. Experimental Results 

In this section, we present 2DRR signals obtained for triiodide using two-color pulse 

sequences.  We begin by reviewing properties of the third-order pump-probe response to 

facilitate the subsequent discussion of 2DRR spectra.  

5.4.1. Third-Order Stimulated Raman Response 

The pump-probe signals shown in Figure 5.6 illustrate several aspects of the stimulated 

Raman response of triiodide.  Vibrational coherences are observed throughout the visible 

spectral range as in earlier work on this system.
16-23

  The modulation depth of the oscillations is 

greatest in the range, 18,000-21,000 cm
-1

 (475-555 nm).  Coherences at detection wavenumbers 

below 20,000 cm
-1

 (500 nm) are dominated by diiodide, whereas signals acquired at detection 

wavenumbers above 20,000 cm
-1

 possess significant contributions from ground state wavepacket 

motions of triiodide.  The vibrational coherences detected below 20,000 cm
-1

 are similarly 
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assigned to the ground electronic state of diiodide, because the excited state potential energy 

surface is dissociative.
50

  

 

Figure 5.6.  (a) Transient absorption signals (in mOD) obtained for triiodide with a 400 nm 

pump pulse and continuum probe pulse.  (b) The coherent component of the signal is isolated by 

subtracting sums of 2 exponentials from the total signal presented in panel (a).  (c) Fourier 

transformation of the signal between delay times of 0.1 and 2.5 ps shows that the vibrational 

frequency decreases as the detection wavenumber decreases.  Dispersion in the vibrational 

frequency reflects sensitivity to high-energy quantum states in the anharmonic potential of 

diiodide.
19

 

 

The photodissociation process is known to cause the period of vibrational motion to 

evolve as the delay increases.
22

  In Figure 5.6b, such “chirped” wavepacket dynamics are 

evidenced by time evolution in the orientations of the nodal contour lines of the signal.  It has 

been established that the strength of the chemical bond weakens as the symmetry of triiodide 

breaks immediately following light absorption.
16-23

  The reactive wavepacket departs from the 

Franck-Condon geometry as one of the bonds ruptures, thereby giving rise to the time 

dependence of the vibrational frequency observed in Figure 5.6b.  The dependence of the 

vibrational period on the detection wavenumber reflects sensitivity to highly excited states in the 
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anharmonic potential of the diiodide product.  Kühne and Vöhringer determined that experiments 

with visible probe pulses are sensitive to states with 10-30 vibrational quanta.
19

 

5.4.2. 2DRR Response of the Diiodide Photoproduct 

The 2DRR response of the diiodide photoproduct is detected using the two-color 

approach described in Figure 5.4.  The signals shown in Figure 5.7 are Fourier transformed to 

reveal peaks in the upper right and lower left quadrants of the 2DRR spectrum.  The resonances 

appear near 100 cm
-1

 in both dimensions, which indicates that the experiment is sensitive to 

states of diiodide that possess roughly 20 vibrational quanta.
19

  Vibrational resonances are not 

detected in the other two quadrants of the 2DRR spectrum as in our earlier study of ground state 

wavepacket motions in triiodide.
26

  The locations of the peaks in the experimental 2DRR 

spectrum agree with the prediction made for terms 5-8 in Figure 5.3 (i.e. the terms this pulse 

sequence is designed to detect).  

The data shown in Figure 5.7b indicate that the vibrational dephasing rate is slightly 

faster in 
1  than it is in 

2  (i.e. the line width is slightly larger in 
1  than it is in 

2 ).  We 

attribute this difference in line widths to intramolecular relaxation and inertial solvation 

processes that occur following photodissociation in 
1 .  The photoproduct is likely far from 

equilibrium when the vibration fully damps near 2 ps; however, a significant amount of solute-

to-solvent vibrational energy transfer may still take place on this time scale.
17

  This view of the 

information carried by each dimension of the 2DRR signal is consistent with interpretations of 

related optical pump/Raman probe experiments.
45-47,51-53

  That is, the relaxation processes 

detected in the first delay time, 
1 , are related to those investigated with traditional pump-probe 



172 

experiments (e.g. vibrational cooling).
16-23

  Scanning the second delay time, 
2 , essentially yields 

a snapshot of the vibrational spectrum as the system relaxes in 
1 .

18
 

 

Figure 5.7.  2DRR signals associated with terms 5-8 are obtained using the two-color approach 

described in Figure 5.4.  (a) The total signal possesses both coherent and incoherent components.  

(b) The coherent (Raman) component of the signal is isolated by subtracting sums of two 

exponentials from the total signal presented in panel (a).  (c) The two-dimensional Fourier 

transformation of the signal in panel (b) in delay ranges, 
1  and 

2 , between 0.15 and 2.0 ps 

reveals resonances in the upper right and lower left quadrants.  This pattern of 2DRR resonances 

is consistent with calculations based on terms 5-8 (see Figure 5.3), which this experiment is 

designed to detect.  

 

5.4.3. 2DRR Cross Peaks Between Triiodide and Diiodide 

The 2DRR spectra theoretically predicted in Figure 5.3 are consistent with the 

experimental measurements shown in Figure 5.7 (terms 5-8) and our earlier all-UV 2DRR 

spectra (terms 1-4).
26

  In both cases, peaks are found in only the upper right and lower left 

quadrants because of interferences between numerous terms in the response function. In this 

section, we test the prediction that signal components corresponding to terms 9-12 will give rise 

to resonances in all four quadrants of the 2DRR spectrum (see Figure 5.3c).  This unique pattern 
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of resonances signifies a process in which a vibrational wavepacket transitions between reactant 

and product states without loss of coherence. 

The 2DRR data presented in Figure 5.8 are obtained using the experimental setup 

described in Figure 5.5.  The pump-repump-probe signals exhibit oscillations in both 

dimensions, which may be Fourier transformed to produce 2DRR spectra.  Signals acquired at 

several detection wavenumbers are displayed to illustrate a transition between regimes in which 

motions of triiodide or diiodide dominate the second dimension, 
2 .  At a detection wavenumber 

of 22,500 cm
-1

 (444 nm), where absorption of triiodide is dominant, the pattern of resonances is 

consistent with terms 1-4 (see Figure 5.3a).  However, intensities of the vibrational resonances in 

the upper left and lower right quadrants of the 2DRR spectrum increase as the detection 

wavenumber is detuned from the absorption spectrum of triiodide.  At detection wavenumbers 

less than 19,500 cm
-1 

(513 nm), we observe peaks with equal intensities in all four quadrants, 

which is consistent with the prediction made for terms 9-12 in Figure 5.3c.  

The detection of peaks with equal intensities in all four quadrants is consistent with 

nonlinearities of the type shown in terms 9-12.  The peak positions are also consistent with this 

assignment.  The 112-cm
-1

 vibrational resonance in 
1  is notably independent of the detection 

wavenumber (as it should be for the reactant).  In contrast, the frequency of the vibrational 

resonance in 
2  decreases as the detection wavenumber decreases.  For example, we observe 

resonances in 
2  at 110 cm

-1
 and 100 cm

-1
 for detection wavenumbers of 22,500 cm

-1
 (444 nm) 

and 18,000 cm
-1 

(555 nm), respectively.  
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Figure 5.8.  2DRR data are obtained using the two-color approach described in Figure 5.5.  Each 

column corresponds to a different detection wavenumber: 22,500 cm
-1

 (444 nm) in column 1; 

21,000 cm
-1

 (476 nm) in column 2; 19,500 cm
-1

 (513 nm) in column 3; 18,000 cm
-1

 (555 nm) in 

column 4.  (a)-(d) Total pump-repump-probe signal in mOD.  (e)-(h) Coherent parts of the 

pump-repump-probe signals displayed in the first row.  (i)-(l) 2DRR spectra are generated by 

Fourier transforming the signals shown in the second row in delay ranges, 
1  and 

2 , between 

0.15 and 2.0 ps.  The data show that peaks in the upper left and lower right quadrants emerge as 

the detection wavenumber becomes off-resonant with triiodide.  Signals acquired at detection 

wavenumbers above 21,000 cm
-1

 (476 nm) are dominated by stimulated Raman processes in the 

ground electronic state of triiodide (terms 1-4).  In contrast, signals acquired at detection 

wavenumbers below 19,500 cm
-1

 (513 nm) are consistent with terms 9-12, where vibrational 

resonances in 
1  and 

2  correspond to triiodide and diiodide, respectively. 
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As discussed in Section 5.4.1, correlation between the vibrational frequency and 

detection wavenumber is a signature that diiodide contributes to the signal (i.e. the origin of the 

response transitions from terms 1-4 to terms 9-12 as the detection frequency decreases).
50

  At 

present, 2DRR spectra cannot be measured at detection wavenumbers below 18,000 cm
-1

 (555 

nm) in this setup, because of the substantial background that must be removed by chopping the 

pump and repump laser beams.  Nonetheless, the transition between the two aforementioned 

regimes (i.e. terms 1-4 versus terms 9-12) is made sufficiently clear in the range of detection 

frequencies where adequate signal strength is obtained. 

Cascades of four-wave mixing signal fields challenge the application of 2D Raman 

spectroscopy under off-resonant conditions.  Cascades were ruled out in our previous all-UV 

2DRR study of triiodide using control experiments based on the signal phase, concentration 

dependence of the signal intensity, and the relative phases of the vibrations detected in four and 

six-wave mixing signals.
26

  The direct 2DRR response should be even more dominant in the 

present study, because lower-frequency laser beams are employed.  Moreover, the direct 

response is favored in the present experiments for the same reasons discussed at length in 

Reference 
26

.  In Appendix B, we demonstrate that the sign of the 2DRR response is consistent 

with the direct fifth-order nonlinearity rather than a cascade.  

5.4.4. Summary of 2DRR Signal Components  

In this section, we summarize our attainment of 2DRR spectra associated with the three 

types of signal components.  Figure 5.9 displays the present results alongside the 2DRR 

spectrum for ground state wavepacket motions of triiodide obtained in earlier work.
26

  As shown 

in Figure 5.9a, the application of all-UV pulses yields a 2DRR spectrum in which the vibrational 
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resonances of triiodide appear in both dimensions (i.e. terms 1-4 in Figure 5.2).  Similarly, 

vibrational motions of diiodide dominate both dimensions in Figure 5.9b , because only the first 

pulse is resonant with equilibrium triiodide (i.e. terms 5-8 in Figure 5.2).  Finally, vibrational 

motions of triiodide and diiodide are detected in separate dimensions in Figure 5.9c.  Here, only 

the final pulse to arrive at the sample is electronically off-resonant with triiodide (i.e. terms 9-12 

in Figure 5.2).  This type of nonlinearity is unique in that it gives rise to 2DRR spectra in which 

peaks with equal intensities appear in all four quadrants.  The terms in the response function 

responsible for these peaks reflect a sequence in which a wavepacket in the symmetric stretching 

coordinate of triiodide transforms into a wavepacket in the bond stretching mode of diiodide 

without loss of coherence.  2DRR spectroscopy is specially equipped for investigations of such 

coherent dynamics, because it possesses two electronic “population times”.  In contrast, 

traditional third-order pump-probe experiments only have one population time. 

The signature of cross peaks demonstrated in Figure 5.9 will not necessarily generalize to 

all systems.  In the photodissociation process of triiodide, the key is that the wavepacket motions 

take place on the ground state potential energy surfaces of both the reactant and product.  For 

signal components associated with terms 1-8, this means that both the third and fourth field-

matter interactions occur with either the ket or bra (see Figure 5.2).  In contrast, the constraints 

that suppress intensity in the upper left and lower right quadrants in Figures 5.9a and 5.9b may 

be lifted in systems with bound excited states, thereby yielding peaks in all four quadrants.  

Nonetheless, it is likely that strategies such as three-color pulse sequences can be used in systems 

with bound excited states to isolate the desired signal components. 
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Figure 5.9.  Summary of 2DRR experiments conducted on triiodide:  (a) the response of 

triiodide was detected in both dimensions in Reference 
26

; (b) the response of the diiodide 

photoproduct is detected in both dimensions (see Figure 5.7); (c) the response of triiodide and 

diiodide are detected in separate dimensions (see Figure 5.8).  Blue and red laser pulses represent 

wavelengths that are electronically resonant with triiodide and diiodide, respectively. 

 

5.5. Nonequilibrium Correlation Between Reactants and Products 

We have focused to this point on establishing signatures of cross peaks between triiodide 

and diiodide in 2DRR spectra (see Figure 5.9c).  Of course, the vibrational resonance frequencies 

of both species can be determined by lower-order pump-probe experiments.
16,19-21

  The 

information unique to 2DRR spectroscopy pertains to the correlated vibrational motions of the 

reactant and product.  In this section, we explore a time-frequency representation of the signal 

that is well-suited for physical insight into the photodissociation process of triiodide. 
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Figure 5.10.  2DRR response of triiodide in ethanol with a detection wavenumber of 19,500 cm
-1

 

(513 nm).  (a) Resonances in all four quadrants of the 2DRR spectrum signify cross peaks 

between triiodide (in 
1 ) and diiodide (in 

2 ).  (b) Quantum beats in the Raman spectrum of 

diiodide are observed when the 2DRR spectrum in panel (a) is inverse Fourier transformed with 

respect to 
1 .  (c) Oscillations in the mean vibrational frequency are analyzed using Equation 

5.6.  Such oscillatory behavior suggests that the vibrational coherence frequency of diiodide is 

sensitive to vibrational motions of triiodide in the delay time, 
1 . 

 

For the present system, it is our view that the frequency-domain representation of the 

2DRR signal is primarily useful for confirming that the reactant and product dominate separate 

dimensions (see Figure 5.9).  Once this is established, we suggest that the physical insight into 

the dissociation process is most clearly derived by leaving the first dimension in the time domain 

as displayed in Figure 5.10b.  Here, the 
1  dimension represents wavepacket motion of triiodide 

in its ground electronic state, whereas the vibrational spectrum of diiodide is displayed in the 
2  

dimension.  The mean vibrational frequency shown in Figure 5.10c is generated using the 

weighted average 
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where  1 2,S    denotes the signal displayed in Figure 5.10b.  The oscillations in  1vib   

indicate that the vibrational coherence frequency of diiodide depends on the time-evolving 

nonequilibrium geometry of triiodide in the delay time, 
1 .  The fit shown in Figure 5.10c 

reveals extrema in  1vib   of 99 and 111 cm
-1

 near the turning points of the wavepacket at 

delay times of 170 and 325 fs, respectively. 

The LEPS potential energy surface of triiodide in ethanol shown in Figure 5.11 facilitates 

a discussion of the signal generation mechanism in terms of a microscopic picture.
17,27

  As 

suggested by Figure 5.11a, the first pulse induces an electronic coherence and initiates a 

wavepacket in the symmetric stretching mode on the ground state potential (i.e. a stimulated 

Raman process).  The turning points of the wavepacket can be estimated using the 300 fs period 

of the vibration and approximate 0.6 Å bond length displacement between the ground and 

excited state potential energy minima (i.e. 0.6 Å is the projection of the symmetric stretching 

coordinate onto the individual bond lengths).
27

  We estimate that the wavepacket is stimulated in 

the ground state at bond lengths, Rab=Rbc, near 3.06 Å by assuming a 20 fs electronic dephasing 

time.  Here, the turning point is computed by adding 20/75*0.6 Å to the equilibrium bond length 

of 2.9 Å (75 fs is 1/4 of the vibrational period and 20 fs is the electronic dephasing time).
18

  In 

other words, we estimate that the wavepacket moves approximately 0.16 Å from the equilibrium 

position of 2.9 Å during the electronic coherence induced by the first laser pulse before 

undergoing oscillations on the ground state potential energy surface in 
1 .  Notably, small 

changes in the numbers chosen for this analysis do not impact the physical interpretation of the 

experiment. 
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Figure 5.11.  The sequence of events associated with the 2DRR signals shown in Figure 5.10.  

Rab and Rbc denote the two bond lengths in triiodide.  (a) The first pulse initiates a ground state 

wavepacket in the symmetric stretching coordinate.  Force is accumulated when both bond 

lengths increase during the electronic coherence induced by the first laser pulse.  (b) Wavepacket 

motion on the ground state potential energy surface is detected in the delay between the pump 

and repump laser pulses, 
1 .  (c) Photodissociation of triioide is initiated from a nonequilibrium 

geometry by the repump laser pulse.  The Raman spectrum of diiodide may then be detected by 

scanning the delay of a probe pulse, 
2 . 

 

Following ground state wavepacket initiation by the pump pulse, the application of a 

repump laser pulse promotes the vibrational wavepacket in triiodide to the excited state potential 

energy surface, where asymmetric motion induces dissociation of the molecule (see Figures 

5.11b and 5.11c).  The 20 fs pump and repump laser pulses are much shorter than the 300 fs 

vibrational period, and the wavepacket moves very little along the symmetric stretching 

coordinate before photodissociation.
20

  For these reasons, the geometry of triiodide from which 

the reaction commences is sensitive to the delay time, 
1 .  By contrast, in a traditional (third-

order) transient absorption spectroscopy, the reactive wavepacket must always be promoted onto 

the excited state potential energy surface from the equilibrium geometry (i.e. bond lengths of 

approximately 2.9 Å). 
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Correlation between the wavepacket in the symmetric stretching coordinate of triiodide 

and the vibrational coherence frequency of diiodide can be visualized by converting the delay 

time, 
1 , into the position of the wavepacket in the symmetric stretching coordinate (i.e. the 

bond lengths in triiodide, Rab=Rbc).  In Figure 5.12, the inner and outer turning points of the 

wavepacket are taken to correspond to the minima and maxima in  1vib   shown in Figure 

5.10c.  Translation between the delay, 
1 , and the bond lengths is achieved by applying the 

model described above to  1vib  .  That is, we estimate that the wavepacket is located at 2.74 

and 3.06 Å at delay times, 
1 , of 170 and 325 fs, respectively.  Each revolution of the spiral in 

Figure 5.12 represents one period of vibrational motion in 
1 .  The spiral focuses inward towards 

the equilibrium bond length because of damping in  1vib  .  The orientation of the spiral 

during the first cycle of the wavepacket suggests that bond length displacements of 

approximately 0.1 Å in triiodide produce a 6.8-cm
-1

 shift in the vibrational coherence frequency 

of diiodide. 
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Figure 5.12.  Correlation between the vibrational wavenumber of the diiodide photoproduct and 

the pair of bond lengths in the triiodide reactant, Rab=Rbc, is illustrated by analyzing the 

dynamics in the mean vibrational coherence frequency,  1vib  , shown in Figure 5.10c.  The 

delay time, 
1 , is converted into the position of the wavepacket in the symmetric stretching 

coordinate using the model presented in Figure 5.11.  Each revolution of the spiral corresponds 

to 300 fs.  The wavepacket oscillates around the equilibrium bond length until vibrational 

dephasing is complete.  The diagonal slant in the spiral suggests that a bond length displacement 

of 0.1 Å in triiodide induces a shift of 6.8 cm
-1

 in the vibrational coherence frequency of 

diiodide. 

 

The primary goal of the analysis presented in this section is to demonstrate the type of 

information that 2DRR spectroscopy can provide about nonequilibrium dynamics.  Although our 

data suggests correlation between triiodide and diiodide, further theoretical work will be needed 

to draw firm conclusions about the relationship established in Figure 5.12.  We have considered 

two possibilities.  First, the geometry of the triiodide from which the reaction is initiated may 

influence the distribution of vibrational quanta in diiodide through a straightforward Franck-

Condon mechanism as discussed in earlier work on triiodide in the gas phase.
54

  Indeed, a 
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second-order perturbative theory for photodissociation processes suggests that the populations of 

the vibrational states in a product may be weighted by overlap integrals involving the nuclear 

coordinates of the reactant.
55

  Of course, the vibrational coherence frequency of diiodide is 

known to be sensitive to the distribution of vibrational quanta because of anharmonicity.
19

  A 

second possibility is that the correlation displayed in Figure 5.12 reflects interactions between 

dissociated fragments.  Small inter-fragment distances have been suggested to influence 

vibrational coherence frequencies in solution on short time scales (i.e. fragment recoil).
19

  

Ruhman and co-workers have also recently discovered the presence of contact fragment pairs in 

solution (i.e. fragments in close proximity).
25

  It is not yet clear if contributions from distinct 

relaxation channels are relevant to the present observations.  Nishiyama et al. found evidence 

that vibrational dephasing may be faster than or comparable to the vibrational period in contact 

ion pairs, which suggests that 2DRR spectroscopy may be insensitive to these species.
24

 

5.6. Concluding Remarks 

In summary, we have demonstrated that 2DRR spectra carry unique signatures of 

vibronic coherence transfer in triiodide.  The patterns of resonances associated with three 

different types of nonlinearities are summarized in Figure 5.9. The unique pattern of resonances 

associated with cross peaks between triiodide and diiodide facilitates insights into the reaction 

mechanism.  Moreover, cross peaks between triiodide and diiodide provide information about 

nonequilibrium behavior that cannot be derived from traditional pump-probe experiments, where 

reactants are always photo-initiated from the equilibrium geometry of the ground state.  The 

present experiments suggest positive correlation between the bond lengths of the triiodide 

reactant and the vibrational coherence frequency of the diiodide photoproduct (see Figure 5.12).  



184 

We suggest that correlation between these variables can be explained by Franck-Condon activity 

and/or by sensitivity to interfragment interactions.
24,25,55

 

2DRR spectroscopy may reveal coherent reaction dynamics in any system where a light-

activated non-radiative transition is fast compared to the period of vibrational motion.  A non-

radiative transition, rather than the direct action of laser pulses, serves as an impulse that initiates 

vibrational coherence in such systems.  Triiodide has long been recognized as a well-defined 

model system for reaction-induced wavepacket motions; however, these types of dynamics may 

also be detected in larger systems that possess numerous Franck-Condon active coordinates.  For 

example, the photodissociation process of myoglobin is known to exhibit reaction-induced 

vibrational coherences in both the doming and iron-histidine stretching coordinates.
56

  Champion 

and co-workers uncovered these dynamics with a sophisticated modulation scheme in third-order 

stimulated Raman experiments.
57

  New physical insights can be derived at fifth-order, because 

the photodissociation reaction can be initiated from a well-defined nonequilibrium geometry of 

the heme moiety.  Fast non-radiative transitions also initiate vibrational coherences in bulk-

heterojunction systems,
5
 photosynthetic complexes,

9-13,58
 and molecule-semiconductor 

interfaces.
7,8

  These systems may also be well-suited to 2DRR investigations. 
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CHAPTER 6:  FEMTOSECOND STIMULATED RAMAN SPECTROSCOPY BY SIX-

WAVE MIXING
1
 

 

6.1. Introduction 

Femtosecond Stimulated Raman Spectroscopy (FSRS) has emerged as a powerful 

method for investigating ultrafast structural dynamics in condensed phases.
1-12

  Recent 

applications have revealed new insights into systems ranging from proteins
9,10,12

 to organic 

photovoltaic materials.
4,11

  The FSRS technique is essentially a sequence of two events: (i) an 

electronically resonant (actinic) pump pulse initiates a photochemical process; (ii) a stimulated 

Raman spectrum is obtained at various delay times using a combination of narrowband and 

broadband laser pulses.  Simultaneous probing of all vibrational resonances in the fingerprint 

region of the spectrum and sensitivity to dynamics on the 100-fs time scale are the primary 

selling points for the technique.  The key is that the precision in the delay between 

photoexcitation and initiation of the Raman response is determined by the convolution of 

femtosecond laser pulses in FSRS (although the vibrational frequencies can notably evolve 

during the free induction decay).
13-15

  In contrast, precision in the delay time and spectral 

resolution are intrinsically coupled in experiments that employ spontaneous Raman probes, 

because initiation of the Raman response requires a spontaneous fluctuation of the radiation 

field.
16

 

                                                             
1
 This chapter previously appeared as an article in the Journal of Chemical Physics.  The original citation is as 

follows:  Molesky, B. P.; Zuo, G.; Moran, A. M. J. Chem. Phys. 2015, 142, 212405. 
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Foremost among the technical challenges that may be encountered in a three-beam 

implementation of FSRS is a substantial background associated with residual laser light and 

third-order processes that are radiated in the same direction as the signal.  The third-order 

nonlinearities include a broadband pump-probe signal and a stimulated Raman scattering 

response (SRS).  Of course, undesired signal components that are generated by subsets of the 

incoming beams (e.g. pump-probe and SRS) can always be eliminated by chopping the incident 

beams and/or by modulating the frequency of the narrowband pulse.
17-19

  The magnitude of the 

background depends on the particular properties of the sample and the frequencies of the Raman 

pump and Stokes pulses.  The pulses involved in the Raman probe are often tuned into pre-

electronic-resonance with the photoproduct, where the equilibrium system is transparent.
1,17,20

  

The amount of background may be reduced to a non-problematic level under these conditions.  

In contrast, the method presented in this work is motivated by a more general situation, wherein 

all pulses are electronically resonant with the equilibrium system.  Lower-order nonlinearities 

and the pump-repump-probe response may then become dominant, particularly in systems with 

small normal mode displacements.  

In this work, we implement laser beam geometries that either reduce or fully eliminate 

residual laser light and the background of third-order nonlinearities present in traditional FSRS.  

Figure 6.1 explains how a five-beam geometry can be used to spatially separate most of the 

background from the FSRS signal emission.  It should be noted that, while Figure 6.1 assumes 

detection of Stokes shifted emission, the same approach can be employed with anti-Stokes 

detection.  Elimination of these undesired signal components greatly enhances sensitivity and 

reduces data acquisition times compared to a traditional approach in which three incoming 

beams are utilized.  The broadband pump-repump-probe response of the sample is not spatially 
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filtered in the present approach, because this undesired nonlinearity is phase-matched in the same 

direction as the FSRS signal.  Nonetheless, the pump-repump-probe response can be suppressed 

in the five-beam geometry by introducing a delay between the two Raman pump pulses, 
2 .  

This delay enforces the order of field-matter interactions unique to the FSRS response.   

 

Figure 6.1.  (a) A five-beam FSRS geometry is used in this work to eliminate the portion of the 

background associated with residual Stokes light and third-order nonlinearities.  The color code 

is as follows: the actinic pump is green, the Raman pump is blue, and the Stokes pulse is red.  (b) 

Relaxation dynamics are probed in the delay between the actinic pump and Stokes pulses, 1 .  

The fixed time delay, 2 , is used to suppress a broadband pump-repump-probe response. 

 

The present approach to FSRS is demonstrated with metmyoglobin (metMb), which is 

the ferric form (Fe
+3

) of the protein.  Photoexcitation induces ground state recovery within 

several picoseconds (rather than ligand dissociation and recombination) in metMb, because water 

binds to the distal side of the heme group.
21-25

  Upon photoexcitation of the Soret band, the 

ground electronic state of metMb is repopulated through one of two relaxation mechanisms that 
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have been delineated in recent work by Chergui and co-workers.
23

  The most efficient pathway 

(57% efficiency) involves sub-picosecond internal conversion from a high-energy charge-

transfer state formed immediately after photoexcitation.  In the second pathway, the ground state 

is repopulated within 5 picoseconds following a cascade of transitions through iron spin states.  

In both processes, excess vibrational energy is dissipated within several picoseconds following 

ground state recovery.  We employ metMb as a model system here in order to establish the 

validity of the present technique for investigations of heme proteins.  Future studies may then 

focus on understanding photochemical processes in related systems (e.g. photodissociation, 

electron transfer).  

Cascades of third-order signals have been recognized as a serious experimental 

complication in off-resonant fifth-order Raman experiments conducted on pure liquids and 

concentrated mixtures.
26-30

  Cascades involve a sequence in which the third-order polarization 

induced on one molecule radiates a signal field that induces a third-order polarization in a second 

molecule.  The second molecule then radiates a signal field in the same direction as the fifth-

order signal of interest.  The central problem in off-resonant experiments is that direct (desired) 

and cascaded (undesired) signals are respectively forbidden and allowed by the lowest order 

terms in the polarization responses (i.e. harmonic potentials with polarizabilities that depend 

linearly on the vibrational coordinates).
27,31-33

  One key to the success of electronically resonant 

FSRS is that the signal generation mechanism does not rely on such higher-order terms in the 

expansion of the potential energy.
15,34-36

  Unlike off-resonant experiments, resonant FSRS signal 

generation is allowed for all Franck-Condon active modes (whether they are harmonic or not).  

Moreover, the solute concentrations employed in resonant FSRS experiments are typically more 

than 10,000 times smaller than those associated with samples in which cascades are known to 
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dominate the optical response (e.g. pure CS2).  Nonetheless, we have encountered uncertainties 

among specialists regarding the potential for cascades in electronically resonant FSRS, which 

should be dealt with before studies of photochemical mechanisms are pursued.  For this reason, 

significant effort is put forth in this work to rule out contributions from cascades with 

experimental tests and model calculations. 

6.2. Experimental Methods 

6.2.1. Laser Pulse Generation 

Actinic pump, Raman pump, and Stokes pulses resonant with the Soret band of metMb 

are employed in the present study (see Figure 6.2).  All experiments are based on a Titanium 

Sapphire laser system that produces 0.8 mJ, 55 fs pulses at 1 kHz.  The 410 nm actinic pump 

pulses are obtained by second harmonic generation of 50 μJ of the fundamental beam in a 0.25 

mm thick BBO crystal.  Dispersion accumulated in the BBO crystal and several beam splitters, 

which amounts to roughly 500 fs
2
 group delay dispersion (GDD), is pre-compensated for with 

reflections of the 800-nm pulses on mirrors that impart negative GDD before second harmonic 

generation.  Raman pump pulses are produced by second harmonic generation of the 

fundamental laser beam in a 1 mm thick BBO crystal.  The Raman pump is then sent through a 

4F spectral filter consisting of two 2400-g/mm gratings and two 25-cm focal length lenses. 

Pulses with spectral widths of 50 cm
-1

 are obtained by placing a slit with a 890 μm width at the 

2F plane. 

The Stokes pulse is produced by doubling the frequency of the fundamental laser beam in 

a 0.25 mm thick BBO crystal.  The resulting 90 μJ, 410 nm second harmonic beam is then 

focused into a 75 cm long hollow core fiber with a 30 cm focal length lens.  The 100 μm inner 
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diameter of the fiber constitutes a suitable compromise between throughput and spectral 

broadening.  The fiber is housed in a stainless steel cell filled with 1.0 atm of argon gas.  The 

spectrum of the broadened laser pulse that exits the fiber is fairly sensitive to the alignment into 

the fiber.  For this reason, the spectrum of the output is continually monitored with an Ocean 

Optics spectrometer and laptop computer; adjustments are made after the laser is warmed up to 

reproduce the spectrum on a daily basis.  The Stokes spectrum shown in Figure 6.2 is obtained 

by spectral filtering of the laser beam in a fused-silica prism compressor with 70-cm prism 

separation.  The instrument response width, which was determined in a 0.25 mm thick fused 

silica window, is less than 80 fs at Raman shifts ranging from 500-2000 cm
-1

 (i.e. Stokes 

wavelength range of 415-440 nm). 

 

Figure 6.2.  Spectra of the actinic pump (green), Raman pump (blue), and Stokes pulses (red) are 

overlaid on the linear absorbance spectrum of metmyoglobin (black) in aqueous buffer solution 

at pH=7.0. 
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6.2.2. Laser Beam Geometries 

Experiments are conducted with the diffractive optic-based interferometer shown in 

Figure 6.3.  All beams are focused onto the diffractive optic with a 50 cm focal length spherical 

mirror.  The 20 cm focal length imaging mirror is rotated off-axis by approximately 5º (i.e. the 

minimum amount).  The actinic pump and Raman pump beams cross at approximately 6.9º in the 

diffractive optic and are bisected by the Stokes beam.  The angles between the +1 and -1 

diffraction orders of the actinic and Raman pump beams are both 6.9º.  The angle between the +1 

and -1 diffraction orders of the Stokes beam is 7.2º.  Approximately 25% of each incident beam 

is diffracted into each of the three diffraction orders (0 and +/-1).  Subsets of the 9 beams can be 

selected to conduct a variety of four and six-wave mixing experiments.  We utilize the two beam 

patterns shown in Figures 6.3b and 6.3c in this work. 

The laser beam geometry displayed in Figure 6.3b was developed by Mark Berg for 

studies of multidimensional population dynamics.
37,38

  The signal is detected in the direction, 

1 2 3 4 5k k k k k    .  The key advantage of this geometry is that the signal is free from a 

background of direct third-order signal fields when the beam diameters are small compared to 

their separation after the sample.  As discussed in our earlier study of triiodide,
35

 a direct third-

order signal is radiated in the direction 1 4 5k k k   when the actinic pump and Stokes beams 

overlap.  This response vanishes at positive delay times, 1 > 0, because pulses 1 and 5 establish 

the holographic grating in the sample; this can be proven by blocking either beam 2 or 3 at 

positive delay times.  Notably, this undesired signal (near 1 = 0) does not possess narrow 

vibrational resonances due to the 250-cm
-1

 spectral width of the actinic pump pulse.  It is 

therefore removed when the broadband baseline is subtracted in the signal processing algorithm 
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described in Section 6.3.  Beams 2 or 3 may also be chopped if dynamics at sub-100 fs delay 

times are of interest.  

 

Figure 6.3.  (a) Diffractive optic-based interferometer used for FSRS measurements.  The 

transparent fused silica window delays pulse 3 by 290 fs with respect to pulse 4 (delay 2  in 

Figure 6.1).  (b) A five-beam geometry is used to detect the FSRS signal in the background-free 

direction, 1 2 3 4 5k k k k k    .  (c) The FSRS signal is also radiated in the direction, 

1 2 3 4 5k k k k k     in the four-beam geometry; however, the wavevectors 1k  and 2k  cancel each 

other, so the signal is radiated in the same direction as a four-wave mixing signal, 3 4 5k k k  .  In 

the four-beam geometry, the FSRS signal corresponds to the difference between signals 

measured with and without the actinic pump beam (beam 1,2).  Beams represented with solid 

circles reach the sample, whereas those represented with open circles are blocked with a mask.  

The same color code is applied in all panels (Raman pump is blue, actinic pump is green, Stokes 

beam is red). 
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The four-beam geometry shown in Figure 6.3c is obtained simply by changing the mask 

between the diffractive optic and the sample.  The signal is again radiated in the direction, 

1 2 3 4 5k k k k k    ; however, this direction is collinear with the vector 
3 4 5k k k  , because a 

single actinic pump beam is employed.  The actinic pump beam (beam 1,2) must be chopped in 

order to remove contributions of the third-order SRS signal.
39-41

  Chopping the actinic pump 

beam significantly increases the data acquisition time and reduces sensitivity compared to the 

five-beam geometry.  Therefore, we use the four-beam geometry only to determine the relative 

signs of the third- and fifth-order signals in this work. 

In both geometries, the beams are focused onto the diffractive optic with a 50 cm focal 

length spherical mirror.  The depth of focus for each beam is approximately 7 mm given the 

approximate 6 mm beam diameters at the surface of the spherical mirror.  The beams are imaged 

onto the sample with a 20 cm focal length spherical mirror placed 40 cm from the diffractive 

optic.  In the five-beam geometry, beams 1 and 2 are displaced by 2.4 cm and 3.5 cm from the 

center of the mirror, respectively.  The difference in focal lengths induced by spherical aberration 

for this pair of beams is 0.2 mm (beams 1 and 2 respectively focus 40.02 and 40.04 cm from the 

imaging mirror).  The effects of spherical aberration are minimal, because the 7 mm depth of 

focus is large compared to the 0.2 mm displacement in the focal position.  Thus, the beams 

propagate through the 0.22 mm thick sample with a negligible change in diameter.  

6.2.3. Signal Detection 

In all experiments, signals are detected using a back-illuminated CCD array (Princeton 

Instruments PIXIS 100B) mounted on a 0.3 meter spectrograph with a 1200 g/mm grating.  The 

signal beam is focused to a spot size of 100 μm at the entrance to the spectrograph to obtain 
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hardware-limited spectral resolution of approximately 10 cm
-1

.  Ultimately, the resolution of the 

measurement is limited by the 50 cm
-1 

spectral width of the Raman pump beam.  The FWHM 

spot sizes of all laser beams are 200 μm at the sample position.  Pulse energies of the actinic 

pump and Raman pump pulses are 150 nJ and 200 nJ, respectively.  The pulse energy of the 

Stokes beam is 50 nJ.  Under these conditions, the total six-wave mixing signal produces 5000 

counts on the detector with an integration time of 100 ms under our experimental conditions.  

The FSRS response is typically 10-20% of the total signal strength (i.e. the majority of the signal 

field is a broadband pump-repump-probe response).  The noise level in each spectrum is less 

than 20 counts. 

6.2.4. Sample Handling  

Myoglobin from horse skeletal muscle is purchased from Sigma-Aldrich.  The protein is 

dissolved in 0.1 M sodium phosphate buffer at a pH of 7.0.  The solution is centrifuged at 6000 

revolutions per minute for 5 minutes before experiments to optimize the optical quality.  In all 

experiments except for those described in Section 6.4.2, the 0.2 mM sample of metMb is flowed 

through a wire-guided jet with a thickness of 220 μm, where the reservoir volume is 50 mL.  

Absorbance spectra are measured before and after experiments to confirm the absence of sample 

degradation.  We do not observe changes in the absorbance spectrum of the solution during 

experiments that require several hours. 

Investigation of the concentration dependence of the signal intensity in Section 6.4.2 

requires an approach in which the solutions are quickly exchanged without moving the sample 

holder.  To this end, we mounted an aluminum adaptor plate with a slot for a cuvette on a 

spinning rotation mount (spins at a rate of 720º per second).  This setup allows a cuvette with a 
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0.5 mm path length to be removed and put back into the same position when the samples are 

exchanged and/or the cuvette is cleaned.  FSRS signals are readily detected in this setup; 

however, we find that it is more susceptible to scattered light than the jet. 

6.3. Signal Processing 

6.3.1. Algorithm 

Figure 6.4 illustrates the signal processing algorithm used in this work with a six-wave 

mixing signal acquired in the five-beam geometry.  The total signal intensity shown in Figure 

6.4a exhibits dispersive line shapes, which is a signature of interference between broadband 

(pump-repump-probe) and FSRS responses.  The origin of the interference can be understood by 

considering the total signal intensity,  totalI  , as a sum of three terms 

               
2

2Retotal BB FSRS BB FSRS BB FSRSI E E I I E E            (6.1) 

where  BBE   and  FSRSE   represent the broadband and FSRS components of the signal field 

(  BBI   and  FSRSI   are signal intensities).  The third term in Equation 6.1 is responsible for 

the dispersive vibrational line shapes in the signal spectrum.  In Figure 6.4a, the broadband 

baseline,  BBI  , is obtained by Fourier transforming the total signal intensity,  totalI  , into the 

time domain and filtering the peak at 0 fs (see Figure 6.4b).  Subtraction of the baseline isolates 

the third term in Equation 6.1 

            2 costotal BB BB FSRS BB FSRSI I E E             (6.2) 
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where  BB   and  FSRS   are the phases of the broadband and FSRS signal components.  

Here, we have assumed that 
BB FSRSI I , which is a good approximation in systems with modest 

mode displacements such as myoglobin.
42

  Dominance of the term on the right side of Equation 

6.2 is consistent with the dispersive line shapes observed in the measured signals (
FSRSI  does not 

possess a dispersive line shape).  In systems with large mode displacements, the term linear in 

the field component,  FSRSE  , can be obtained using an external local oscillator that is delayed 

with respect to the Stokes pulse.  The fringe spacing associated with  FSRSE   will be unique in 

such an implementation, so it can be isolated with a Fourier filter.  Such an interferometric 

detection scheme has been demonstrated in a previous four-wave mixing experiment.
43

 

Dependence of the signal on the phase difference,    BB FSRS    , can be eliminated 

by applying a second filter function to the inverse Fourier transform of the baseline-subtracted 

signal (see Figure 6.4c).  The filter in Figure 6.4c is displaced from the origin by 60 fs in order to 

eliminate the residual broadband response.  As shown in Figure 6.4d, Fourier transformation of 

the signal back to the frequency domain yields a complex signal field in which phase information 

can be eliminated by taking the absolute value 

            1/ 2 expFSRS BB BB FSRS BB FSRSE I E E i i           . (6.3) 

In Equation 6.3, the magnitude of the FSRS response,  FSRSE  , is obtained by multiplication 

of    BB FSRSE E   and 1/ 2

BBI  .  Equation 6.3 also makes clear one of the tradeoffs associated 

with the present technique.  The phase of the FSRS response,  FSRS  , cannot be obtained 

without knowledge of  BB  , which is a 1 -dependent quantity.  Traditional FSRS is not 
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subject to this limitation, because the signal is heterodyne-detected with the residual Stokes 

pulse.
17

 

 

Figure 6.4.  (a) This six-wave mixing signal for metMb is obtained in the five-beam FSRS 

geometry with 2 = 290 fs.  The broadband baseline is subtracted to isolate the vibrational 

component of the response.  (b) The baseline in panel (a) is obtained by inverse Fourier 

transforming the measured signal into the time domain, then filtering the broadband part of the 

response at 0 fs.  (c) The baseline-subtracted signal is filtered at positive times after inverse 

Fourier transformation of the difference between the measured signal and the baseline shown in 

panel (a).  The filter is displaced from the origin by 60 fs to eliminate the residual broadband 

response, which is dominant at earlier times.  (d) The absolute value of the FSRS spectrum is 

obtained by Fourier transformation of the filtered signal in panel (c).  

 



202 

The Raman spectrum obtained in Figure 6.4d exhibits several known vibrational 

resonances of metMb.
44

  The 670 and 1370-cm
-1

 modes correspond to deformation and bond-

stretching motions localized on the tetrapyrrole moiety, respectively.  The remaining resonances 

are primarily localized on the vinyl substituents of the tetrapyrrole group shown in Figure 6.5.  

Intensities of the resonances in the 1000-1300 cm
-1

 range are enhanced in the present technique, 

because they coincide with the peak of the Stokes spectrum.  In contrast, the peak intensities 

observed in traditional FSRS are independent of the Stokes intensity.
17

 

 

Figure 6.5.  Molecular structure of iron protoporphyrin-IX. 

 

In principle, an external (i.e. 1 -independent) reference field may be used to eliminate 

 BB   from consideration.
45

  Such an approach is challenged by several technical issues.  One 

problem particular to the present five-beam geometry is that no beam produced by the diffractive 

optic is perfectly collinear with the signal (there is at least a 0.5º deviation for the beam whose 

wavevector is most closely matched to that of the signal).  Additional cross terms will also 

appear in Equation 6.1 if an external reference field is introduced, so a different baseline 
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subtraction algorithm would need to be devised.  We are presently working on solutions to these 

challenges.  One key to success may be reduction of the ratio,  FSRSE  /  BBE  , perhaps by 

using shaped Raman pump pulses.
46

 

 

Figure 6.6.  This six-wave mixing signal for metMb is obtained in the five-beam FSRS 

geometry with 2 =420 fs.  The panels (a)-(d) are defined in the same way as those in Figure 6.4.  

The vibrational frequencies obtained in this measurement differ by less than 10 cm
-1

 from those 

found in Figure 6.4.  This difference is 5 times less than the bandwidth of the Raman pump pulse 

(i.e. intrinsic frequency resolution).  The vibrational line widths are roughly 25% less than those 

shown in Figure 6.4.  This decrease in the line width with increasing delay, 2 , is consistent with 

the theory outlined in Section 6.5. 
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6.3.2. Adequate Suppression of the Broadband Response  

The key to success of the baseline subtraction method is adequate suppression of the 

broadband pump-repump-probe response.  This undesired nonlinearity can be suppressed by 

increasing the delay between Raman pump pulses, 
2 .  An increase in this delay increases the 

probability that the final field-matter interaction occurs with the final Raman pump pulse to 

arrive at the sample (see Figure 6.1).  This order of field-matter interactions is unique to the 

FSRS response (see Section 6.5); the last field-matter interaction occurs with the Stokes pulse in 

the undesired pump-repump-probe response.  However, a compromise must be made between 

signal intensity and background suppression, because the amplitude of the FSRS response 

increases as 2  decreases (the FSRS signal vanishes when 2  is longer than the inverse of the 

vibrational line width).  

In Figure 6.6, a FSRS signal acquired with 2 = 420 fs is presented.  The integration time 

has been doubled to 200 ms and the signal count rate is roughly 4 times lower than that 

associated with the measurement in Figure 6.4.  The contribution of the FSRS response relative 

to the total signal is approximately 3-5 times larger than that found with the delay, 2 = 290 fs, in 

Figure 6.4.  As such the magnitude of the broadband response near 60 fs in Figure 6.6c is 

reduced, and there is no need to displace the apodization window from time-zero.  The 

vibrational resonance frequencies displayed in Figures 6.4c and 6.6c are indistinguishable, 

thereby confirming the theoretically predicted independence of the resonance frequency on the 

delay, 2 .  Small displacements in the apodization window do not alter the frequencies of the 

vibrational resonances, because the information is primarily located at times greater than 60 fs. 
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In the theory outlined in Section 6.5, it is predicted that the line width decreases as the 

delay, 
2 , increases.  Consistent with this prediction, we find that the line widths decrease from 

approximately 60 cm
-1

 to 45 cm
-1

 when the delay, 
2 , increases from 290 fs to 420 fs.  Related 

line-narrowing effects have been discussed in the context of sum-frequency generation 

techniques that combine broadband and narrowband laser pulses.
47

  We have also examined this 

issue numerically in a study of short-lived electronic coherences in molecular aggregates.
48

  

Essentially, the temporal decay of the polarization is determined by the product of the vibrational 

coherence, which is initiated when the Stokes pulse arrives at the sample, and the envelope of the 

final Raman pump pulse to arrive at the sample (see Figure 6.1b).  Both quantities decay 

simultaneously when 2 = 0 fs, and the measured line width is generally broader than the 

bandwidth of the Raman pump.  However, the envelope of the Raman pump rises as the 

vibrational coherence decays when 2 > 0 fs.  This convolution artificially inflates the duration of 

the polarization, thereby reducing the vibrational line widths. 

It is worth noting that suppression of the broadband response in the present 

implementation is limited by the time-symmetric envelopes of the Raman pump pulses.  Overlap 

between the two Raman pump pulses can be further reduced using etalons.  Such an approach 

has already been successfully demonstrated in the traditional three-beam FSRS geometry.
46

  

6.3.3. Summary of Technical Issues Involved in Signal Processing 

In summary, FSRS spectra are obtained using the data processing algorithm described 

above.  Key points made in Sections 6.3.1 and 6.3.2 are summarized below. 
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(i) Success of the approach requires suppression of the broadband pump-repump-probe 

response using a delay between the two Raman pump pulses.  The ratio of the FSRS response to 

broadband response increases as the delay, 
2 , increases (see Figures 6.4 and 6.6); however, the 

overall magnitude of the signal intensity decreases as well.  Thus, a compromise between signal 

strength and background suppression must be made. 

(ii) The same apodization functions are applied to every spectrum acquired in a particular 

experiment (all delay times, 1 ).  The same apodization functions can be used on different days 

(and with different samples) provided that the spectra of the laser pulses are maintained. 

(iii) An increase in the delay, 2 ,  induces a line-narrowing effect.  This observation is 

consistent with theory presented in Section 6.5. 

(iv) The vibrational resonance frequencies are unaffected by the delay, 2  because 

vibrational coherences are induced before the final Raman pump pulse arrives at the sample.  

(v) In principle, the relative magnitudes of the vibrational resonances may depend on 2 .  

The amplitudes of vibrational resonances with the broadest line widths (fastest dephasing times) 

should decrease the most as 2  increases.  Notably, the amplitudes of the vibrational resonances 

reflect the particular spectrum of the Stokes pulse in the four- and five-beam geometries.  In 

contrast, the relative magnitudes of the vibrational resonances are independent of the Stokes 

spectrum in traditional three-beam FSRS, where the Stokes pulse is used for heterodyne 

detection.  

(vi) Further suppression of the broadband pump-repump-probe response can likely be 

achieved by reducing the overlap of the Raman pump pulses using etalons.  Attenuation of the 
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broadband response will enable interferometric detection with an external local oscillator.
43

  

Signs of the vibrational resonances would then be determined.  

6.4. Experimental Results 

6.4.1. Dependence of FSRS Signal on Incident Pulse Energies 

In this section, we examine the dependence of the signal strength on the intensities of the 

incident laser beams.  As in traditional FSRS, the Raman response,  FSRSE  , must scale 

linearly with both 
API  and 

RPI , where 
API  and 

RPI  are the intensities of the actinic and Raman 

pump beams (these intensities represent sums for pulse-pairs 1,2 and 3,4).  The broadband 

response,  BBE  , must also scale linearly in both 
API  and 

RPI , because it represents a fifth-

order nonlinearity (i.e. a pump-repump-probe signal).  Unlike traditional FSRS,  FSRSE   and 

 BBE   scale as the square root of the Stokes intensity, 1/ 2

StI , because the signal is not obtained 

by differential transmission of the Stokes beam.
17

 

Figure 6.7 displays both    FSRS BBE E   and  FSRSE   obtained for the 1370-cm
-1

 

mode, which represents in-plane stretching of the tetrapyrrole moiety,
44

 with respect to API , RPI , 

and StI .  The pulse energies are cycled within the respective ranges three times and 30 spectra 

are accumulated at each pulse energy within each cycle (i.e. each point in Figure 6.7 represents a 

total of 90 spectra or 9000 laser shots).  The error bars are determined by computing standard 

deviations in the signal intensities for the 30 spectra acquired at each pulse energy then 

propagating the error for each of the three cycles.  Experiments conducted on different days yield 

indistinguishable results.  As expected, the measurements in Figure 6.7 suggest that 
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   FSRS BBE E   and  FSRSE  , scale as 2 2

AP RP StI I I  and 1/ 2

AP RP StI I I , respectively.  The form of 

the function used to fit the data is indicated in each panel of Figure 6.7.  In all cases, fits 

conducted with the assumed functions are within the uncertainty ranges of the data.  Examination 

of a larger range of pulse energies could not be accomplished without introducing artifacts 

caused by sample degradation.  We find that the sample degrades during the experiment if the 

upper limit of each of the pulse energies in Figure 6.7 is doubled. 

 

Figure 6.7.  Signal intensities corresponding to the vibrational resonance at 1370 cm
-1

 are plotted 

versus incident pulse energies.  In the first row, the signal,    FSRS BBE E  , is plotted versus 

energies of the (a) actinic pump, (b) Raman pump, and (c) Stokes beams.  In the second row, the 

signal,  FSRSE  , is plotted versus energies of the (d) actinic pump, (e) Raman pump, and (f) 

Stokes beams.  Pulse energies associated with the actinic pump and Raman pump represent sums 

for the respective pairs of beams at the sample position (i.e. beams 1 and 2 or beams 3 and 4).  

The functional forms used to fit the data (red lines) are indicated in the respective panels.  These 

data validate the signal processing algorithm described in Section 6.3 and confirm that saturation 

of the optical response is negligible in these ranges of the pulse energies. 
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6.4.2. Dependence of FSRS Signal on Sample Concentration 

Determination of the dependence of the FSRS signal on solute concentration is one way 

to rule out contributions from third-order cascades.
49,50

  At extremely low optical densities (less 

than 0.1), the direct (fifth-order) FSRS signal intensity scales as the square of concentration, 

whereas third-order cascades scale as the fourth power of the concentration.  However, saturation 

effects related to absorption of the incident beams and signal take hold at the optical densities 

where the experiments are usually conducted (0.7-1.0).  Therefore, as in our recent study of 

triiodide,
35

 we develop a simple model in this section to capture the dependence of the signal 

intensity on concentration.  Predictions of the model are then compared to experimental data. 

The direct fifth-order signal intensity at position x  in the sample is subject to the relation 

 
           

2
5 52 2 2, , , ,direct AP RP StI x C C I x C I x C I x C  (6.4) 

where C  is concentration and 
 5

  is the fifth-order susceptibility.  The laser intensity is given 

by 

    , expj jI x C Cx   (6.5) 

where j  is an absorption coefficient (product of  ln 10  and the molar extinction coefficient), 

and j  denotes the type of laser pulse (RP, AP, or St).  The signal intensity accumulated at the 

exit of the sample is obtained by integrating over x  

            5 2 2 2 2

0

, , , exp

a

direct AP RP St StI C C dxI x C I x C I x C C x a     (6.6) 



210 

where a  is the path length and the exponential function represents attenuation of the signal beam 

as it exits the sample.  The susceptibility can be removed from the proportionality in Equation 

6.6 because it is independent of x . 

Treatment of the cascaded signal field must take into account accumulation of both the 

primary and secondary third-order signal intensities.  For the cascaded process that the five-beam 

geometry is most susceptible to, the primary four-wave mixing signal intensity scales according 

to    2 , ,AP StI x C I x C .  The intensity of the secondary four-wave mixing process depends on the 

product of  2 ,RPI x C , which decreases exponentially with x , and the intensity of the primary 

four-wave mixing signal (denoted as 
   3

,primaryI x C ), which increases in a (slightly) sub-quadratic 

fashion with x  at the optical densities of interest.  With consideration of these factors, the 

cascaded signal intensity may be written as 

          32 2

0

, exp ,

a

cas RP St primaryI C C dxI x C C x a I x C     (6.7) 

where the primary four-wave mixing signal intensity at position x  is proportional to 

          3 2 2

0

, , , exp

x

primary AP St StI C x C dx I x C I x C C x a       . (6.8) 
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Figure 6.8.  (a) FSRS signal intensities associated with the vibrational resonance at 1370 cm
-1

 

are plotted versus the optical density of the solution in a 0.5 mm path length.  The functions, 
   5

directI C  and  cascadeI C , illustrate how the data compare to the concentration dependence 

predicted for (red) the direct fifth-order signal and (blue) third-order cascades.  The functions, 
   5

directI C  and  cascadeI C , are multiplied by constants to overlay them with the measured signal 

intensities.  (b) Dynamics in the peak intensity at 1370 cm
-1

 are experimentally indistinguishable 

at various sample concentrations.  (c) Signal intensities are overlaid at the highest and lowest 

concentrations to illustrate the range in the data quality. 

 

The signal intensity at 1 =1 ps is plotted versus the optical density of the solution at 410 

nm in Figure 6.8.  Saturation of the measured signal intensity with increasing optical density is 

caused by absorption of the incident laser beams.  
   5

directI C  and  cascadeI C  are overlaid on the 

experimental data to illustrate how these functional forms compare to the measurements.  The 

data are more consistent with the model based on the direct fifth-order signal.  Figure 6.8b 

additionally shows that the dynamics are insensitive to the concentration.  The features of the 

signal observed at an optical density of 0.37, which deviate from an exponential decay, are due 

to noise (not a vibrational coherence).  It should also be noted that if the direct and cascaded 

signals are comparable in magnitude, then signatures of destructive interference between these 

nonlinearities should be found in the concentration dependence, because direct and cascaded 

signals have opposite signs.
35

  The data show no signs of such interference.  FSRS spectra 
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overlaid at the highest and lowest concentrations demonstrate the range in signal quality in 

Figure 6.8c.  The best signal quality is generally obtained at optical densities near 1.0.  In Figure 

6.8c the narrow spectral features observed at an optical density of 0.37 are caused by noise.  

These features are not caused by the shape of the Fourier filter, which is the same for all values 

of the optical density. 

6.4.3. Relative Signs of Third- and Fifth-Order Signals 

In this section, we present an experimental test for third-order cascades that takes into 

account the approximate 180º phase-difference between the direct third- and fifth-order signal 

fields under resonant conditions.
35,50

  This phase-relationship can be understood with simple 

bookkeeping on the numbers of field-matter interactions and light emission events.  Under 

resonant conditions, a 90º phase-shift is accumulated in each time-interval between field-matter 

interactions.  In a background-free experiment, the number of incoming beams is simply 

multiplied by 90º (270º and 450º at third- and fifth-order, respectively).  Signal field emission 

adds another 90º such that total phase-shifts of 360º and 540º are, respectively, accumulated in 

direct third- and fifth-order processes when the signal field emission events are accounted for.  

Thus, direct third- and fifth-order nonlinearities have opposite signs, because their phases differ 

by 180º.  It is useful to consider that essentially the same idea applies to traditional experiments 

such as pump probe spectroscopy.  For a two-level system, the sign of light transmission changes 

when a sample is exposed to a pump beam due to ground-state depletion (i.e. a comparison of 

first and third-order responses).  The sign of the signal again changes if a second pump beam is 

introduced in a pump-repump-probe experiment (i.e. pump-repump-probe signals are absorptive 

in two-level systems).
51
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Figure 6.9.  (a) Signals acquired in the four-beam geometry at various delay times between the 

actinic pump and Stokes pulses, 1 .  The signal at 1 =-0.5 ps is indistinguishable from the four-

wave mixing signal measured with the actinic pump pulse blocked.  (b) The fifth-order signal is 

obtained by computing differences between signals acquired with the actinic pump unblocked 

and blocked (i.e. pump on – pump off).  Depletion of the ground state population with the actinic 

pump pulse is a signature that the direct fifth-order FSRS signal field is measured.  In contrast, 

third-order cascades would induce an increase in the total signal intensity, because such 

nonlinearities are in-phase with the third-order response.  (c) Oscillatory features associated with 

the vibrational resonances are phase-shifted by approximately 180º in third- and fifth-order 

measurements (these are magnified views of the data in panels (a) and (b)). 

 

In a cascaded nonlinearity, a phase-shift of approximately 540º is accumulated through 

the total of 6 (perturbation-theoretic) time-evolution intervals involved in the process.  An 

additional phase-shift of 180º degrees must be added for the two emission events, which results 

in a total of 720º.  Thus, the phase of the absorptive component of the cascaded nonlinearity 

differs from those associated with the direct third- and fifth-order signals by approximately 0º 

and 180º, respectively.  This is a convenient relationship, because the third-order signal can serve 

as an “internal standard” for the signal phase.
39-41

  The key is to employ a geometry in which the 

third- and fifth-order signals are equally phase-matched, so that significant phase-shifts are not 

accumulated through propagation in the medium.  The four-beam geometry shown in Figure 6.3b 

satisfies this criterion, because both interactions with the actinic pump take place with a single 
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beam.  Previous experiments have similarly made use of four-beam geometries in which the 

signal phase is referenced to that of a background-free third-order signal.
39-41

 

Figure 6.9a presents the total signal intensity measured at various delays between the 

actinic pump and the Stokes pulses, 
1 , in the four-beam geometry.  The four-wave mixing 

signal obtained with the actinic pump beam blocked is also presented as a reference.  The four-

beam signal is indistinguishable from the four-wave mixing signal at negative delay times, but a 

decrease in the total signal intensity is observed at positive delay times.  Observation of a 

decrease in signal intensity is expected because of the sign reversal that takes place in the direct 

third- and fifth-order signals.  That is, Figure 6.9a indicates that the direct third- and fifth-order 

signals interfere destructively.  The difference, actinic-pump-on/actinic-pump-off, shown in 

Figure 6.9b represents the direct fifth-order signal (i.e. the third-order contribution has been 

removed in the difference).  The third- and fifth-order line shapes are additionally overlaid in 

Figure 6.9c to illustrate the reversal in the signal sign. 

We interpret the data shown in Figure 6.9 by considering the following components of 

the total signal intensity 

 
               

2 2
3 5 3 3 5 3

2 cos 180 2 cos 0cas casE E E E E E E E      (6.9) 

where it is assumed that the direct third-order signal field, 
 3

E , is large compared to the direct 

fifth-order and cascaded responses, 
 5

E  and casE .  The second and third terms on the right side 

of Equation 6.9 have negative and positive signs, respectively.  An actinic pump-induced 

decrease in signal intensity is predicted if  5

casE E , whereas an increase in signal intensity 
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is predicted if  5

casE E .  The 180º phase-shift associated with the second term on the right 

side of Equation 6.9 is generally valid, because the direct third- and fifth-order signals have the 

same amounts of phase mismatch in the four-beam geometry.  However, the 0º phase-shift in 

term 3 is dependent on the sample thickness and amount of phase mismatch for particular 

cascades.  Therefore, we have also confirmed that the same signal sign is measured at path 

lengths of 0.2, 0.3, and 0.5 mm. 

6.4.4. Dynamic Line Shapes of FSRS Signals Obtained by Six-Wave Mixing 

In this section, the sensitivity and data acquisition rate of our method are demonstrated by 

measuring decay profiles of vibrational resonances in metMb.  We also compare FSRS signals 

acquired in the five-beam geometry with cascaded responses simulated using experimental four-

wave mixing signals.  Simulations of this type were instrumental in identifying signatures of 

cascades in off-resonant experiments conducted on pure liquids.  We also employed a similar 

approach in a recent multidimensional resonance Raman study of triiodide.
35

 

FSRS signals acquired for metMb in the five-beam geometry are presented in Figure 

6.10.  These data represent the average of two different data sets.  In each data set, the 1  delay is 

scanned 30 times in 15 minutes, and 200 points are acquired in each scan.  Inspection of the 

contour plot makes clear that all vibrational resonances fully decay within 10 ps.  Figure 6.10b 

overlays distributions of relaxation times obtained for modes at 670, 1120, 1370, and 1600 cm
-1

 

using the maximum entropy method (MEM).
52

  Analysis by the MEM is motivated by avoidance 

of assumptions about the shapes of decay profiles.  Although powerful, the MEM is not often 

used in analysis of femtosecond transients, because it requires exceptionally high signal-to-noise 

ratios.  The 670 and 1370-cm
-1

 resonances represent in-plane modes that are located on the 
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tetrapyrrole moiety, whereas many of the weaker resonances in the 1000-1300 cm
-1

 and 1400-

1650 cm
-1

 wavenumber ranges are localized on the vinyl substituents.
44

  Intensities of the 

resonances in the 1000-1300 cm
-1

 range are enhanced in the present experiments (compared to 

spontaneous Raman or traditional FSRS), because the intensity of the Stokes pulse maximizes in 

this range (see Figure 6.2). 

 

Figure 6.10.  (a) Contour plot of the signal field magnitude, FSRSE , obtained for metMb in the 

five-beam geometry.  (b) Temporal decay profiles for vibrational resonances detected in the 

FSRS response.  (c) Distributions of relaxation times for various resonances are obtained using 

the maximum entropy method.  (d)-(f) FSRS signal field magnitudes are overlaid with fits 

conducted using the maximum entropy method. 

 

Chergui and co-workers have recently identified two relaxation pathways in metMb that 

possess nearly equal efficiencies.
23

  One pathway repopulates the ground state by way of sub-ps 

internal conversion from a high-energy charge transfer state, whereas the second pathway 



217 

proceeds through a number of intermediate iron spin states.  Importantly, transient electronic 

resonances associated with both pathways overlap with the frequencies of the laser pulses 

employed in this work (see Figure 6.2).  The FSRS experiments described in this section should 

therefore be sensitive to excited state relaxation even though the nonlinear response near 430 nm 

possesses significant contributions from the bleach of the Soret band. 

The MEM analysis displayed in Figure 6.10c reveals peaks in the kinetic distributions 

near 0.22 ps and 1.4 ps for all vibrational modes.  The peaks in the distributions centered near 

0.22 ps encompass the time scales associated with two processes: (i) back-electron transfer 

between Fe
2+

 and the porphyrin; (ii) ground state recovery via a high-energy charge-separated 

excited state.
23

  The peaks in the MEM distributions centered near 1.4 ps may reflect 

contributions from the second relaxation pathway, wherein an intermediate iron spin state (with 

S=1/2) is depopulated with a time constant of 1.1 ps.  It is also possible that vibrational cooling 

dynamics contribute to this second peak in the MEM distribution.
53

  

The relative amplitudes of the two peaks in the MEM distributions are fairly similar for 

the resonances associated with the vinyl substituents (1120 and 1560 cm
-1

).  However, the 

vibrational modes located on the tetrapyrrole (670 and 1370 cm
-1

) differ markedly in the relative 

amplitudes of the two peaks, with the 670 cm
-1

 mode possessing a dominant 0.22-ps component.  

The signal intensity observed for a particular mode in FSRS reflects the dynamic resonance 

Raman cross section, which is governed by the difference in nuclear geometries associated with 

the pair of electronic states that comprise the resonance (i.e. difference in potential energy 

gradients).  It is possible that differences in the relaxation rates observed for various resonances 

reflect mode-specific details regarding the internal conversion mechanisms in metMb.  That is, at 

short delay times, before a significant amount of vibrational cooling has occurred, the non-
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equilibrium distributions of vibrational quanta found in metMb may reflect the propensities for 

particular coordinates to act as “promoting modes” in the internal conversion processes. 

 

Figure 6.11.  Laser beam geometries used to acquire (a) stimulated Raman and (b) transient 

grating signals shown in (c) and (d), respectively.  Beams represented with solid circles reach the 

sample, whereas those represented with open circles are blocked with a mask.  (e) The two four-

wave mixing signals are combined to simulate the cascaded response.  (f) Unlike the FSRS 

signals plotted in Figure 6.10, all vibrational resonances decay with indistinguishable temporal 

profiles in the simulated cascade.  Signal magnitudes for the 670 and 1370-cm
-1

 vibrational 

resonances are shown as examples. 

 

Cascaded signals computed using experimental four-wave mixing responses are 

displayed in Figure 6.11.  This empirical approach does not require knowledge of the form of the 

optical response function or associated parameters.  We assume only that the cascaded process 

combines a transient grating response (involving the actinic pump and Stokes) with a stimulated 

Raman response (involving the Raman pump and Stokes).  This assumption is consistent with 
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the phase mismatch factors calculated for the experimental geometry (see below).  Both of these 

four-wave mixing responses, which are denoted here as  1,TG tS    and  SRS tS  , are readily 

measured by blocking the appropriate beams in the interferometer (see Figures 6.11a and 6.11b).  

The cascaded signal field is then computed by the product,      1 1, ,CAS t TG t SRS tS S S     .  

The two four-wave mixing responses,  1,TG tS    and  SRS tS  , and the cascade, 

 1,CAS tS   , are shown in Figure 6.11.  The four-wave mixing Raman spectrum,  SRS tS  , 

appears similar to the six-wave mixing FSRS spectrum (at a fixed delay time), which is to be 

expected because the same Franck-Condon active modes contribute to both nonlinearities.  In 

agreement with recent work on metMb,
23

 the signal,  1,TG tS   , decays within a few 

picoseconds.  The simulated cascade,  1,CAS tS   , obtained by combining  1,TG tS    and 

 SRS tS  , exhibits negligible changes in the Raman spectrum during the relaxation process (i.e. 

the overall amplitude changes but the spectrum does not).  Such delay time-invariant Raman 

spectra are inconsistent with the mode-specific transients displayed in Figure 6.10.  

In summary, the present analysis suggests that cascades radiated in the 600-1700-cm
-1

 

range in metMb will possess Raman spectra that are insensitive to the delay time.  In other 

words, the relative amplitudes of the various peaks will be insensitive to the delay time.  Such 

delay-independent Raman spectra are inconsistent with the measured FSRS signals shown in 

Figure 6.10.  More generally, we anticipate that cascades will be distinguishable from direct 

processes in related heme proteins, where the relative magnitudes and frequencies of the peaks 

are known to evolve during the vibrational cooling process.
16
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6.5. Theoretical Analysis of Relative Magnitudes of Resonant FSRS Signals and Cascades  

In this section, we use model calculations to compare direct fifth-order and cascaded 

third-order signal strengths for a model system that approximates metMb.  All experimental tests 

conducted above are consistent with dominance of the direct fifth-order signal.  The calculations 

presented here address the likelihood that this result will generalize to a wider variety of systems 

and experimental conditions. 

6.5.1. Background 

Cascades of third-order nonlinearities are generated in all spectroscopies that are fifth-

order in the nonlinear polarization (e.g. 2D Raman, pump-repump-probe, visible pump-2DIR 

probe, etc).  Third-order cascades are not unique to experiments that employ five incoming laser 

beams.  In fact, phase-matching conditions for cascades are generally enhanced relative to the 

direct fifth-order response in geometries that employ few laser beams with small crossing 

angles.
54

  Phase-matching efficiencies become essential design criteria when the intrinsic 

magnitudes of direct fifth-order signals are small compared to those associated with cascaded 

third-order processes.
55

  Of course, laser beam geometries can be chosen purely as a matter of 

convenience if the direct signal is known to dominate the response.  For example, the proven 

negligibility of third-order cascades has motivated simplified three-beam approaches in 3D-IR 

experiments.
56,57

 

Cascades are known to significantly challenge off-resonant fifth-order Raman 

spectroscopies conducted on pure liquids and concentrated mixtures.
30,55,58

  High sample 

concentrations are one reason why cascades are so dominant in these systems.  Another reason is 

that the direct fifth-order signal is forbidden for harmonic systems in which the polarizability 
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depends linearly on the vibrational coordinate (i.e. lowest-order approximations).
31,33,59

  Reliance 

on higher-order effects for signal generation is particularly problematic, because the cascades are 

not subject to such restrictions.  We have recently discussed why electronically resonant 

conditions generally make the direct fifth-order response dominant in systems with Franck-

Condon active modes.
35

  The key is that all displaced modes (harmonic and anharmonic) may 

contribute to the signal without non-Condon effects in resonant FSRS.
36

  

 

Figure 6.12.  Double-sided Feynman diagrams associated with four classes of terms in the FSRS 

response function.  The terms are classified according to whether or not they evolve in ground or 

excited state populations during the delay times, 1  and 2 .  The laser pulses associated with 

each field-matter interaction are indicated in the figure in the same color-code employed in 

Figure 6.2. 

 

6.5.2. Response Functions 

The FSRS response for a system in which resonance enhancement is dominated by a 

single pair of electronic states possesses 16 response functions (see Section C.2 in Appendix C).  
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The response functions can be divided into four classes based on whether or not the system is in 

the ground or excited state during the two population times (see Figure 6.12 for one member of 

each class).  An earlier theoretical description of FSRS has grouped terms in a related way.
60

  In 

metMb, excited state populations may contribute at sub-picosecond delay times (i.e. before 

internal conversion is complete), whereas dynamics on the picosecond time scale primarily 

reflect vibrational cooling in the electronic ground state.
21-25

  We consider all terms here as the 

goal is simply to estimate relative signal strengths for direct and cascaded responses.  

It is instructive to consider one of the polarization components in the FSRS response.  

The polarization component associated with the 
 5

1R diagram in Figure 6.12 is given by 
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  (6.10) 

where j  are the electric field amplitudes associated with the three types of laser pulses (actinic 

pump, Raman pump, Stokes), N  is the number density, eg  is the electronic transition dipole for 

the Soret band, mB  is the Boltzmann population of level m , n m  is a vibrational overlap 

integral (with excited state index in the bra),
61

 and the summation is carried out with respect to 

dummy indices for vibrational energy levels.  The functions,  ,en gmL  , are Lorentzian line 

shapes associated with resonances between vibronic levels in electronic states g  and e , whereas 

 , 1gk gmD   describes vibrational wavepacket motion induced by the actinic pump in the delay 

time, 1  (see Section C.2 in Appendix C).  The function 
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provides insight into aspects of the signal that are unique to the present approach.  The 

denominator suggests that the line width of the resonance is reduced by introducing a time delay 

between Raman pump pulses (i.e. 
vib  and 

RP  have opposite signs). However, the numerator 

makes clear that such enhancement in spectral resolution comes at the expense of signal 

intensity; the magnitude of the polarization decreases exponentially with 
2 .  These aspects of 

the model are consistent with the experimental data presented in Section 6.3. 

 

Figure 6.13.  Feynman diagrams associated with the nonlinearities on the two molecules 

involved in third-order cascades with intermediate phase-matching conditions (a) 1 2 5k k k   and 

(b) 3 4 5k k k  .  Field-matter interactions are color-coded as follows: actinic pump is green; 

Raman pump is blue; Stokes is red; cascaded signal field is red; the field radiated at the 

intermediate step in the cascade is purple. 
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In the present laser beam geometries, we consider third-order cascades with intermediate 

phase-matching conditions, 
1 2 5k k k   and 

3 4 5k k k  .  Additional cascades are possible (e.g. 

2 1 4k k k  ) but possess much smaller phase-matching efficiencies.  The polarization 

components related to the cascaded nonlinearities are summarized in Section C.3 in Appendix C.  

The two types of cascades essentially permute coherent Stokes Raman scattering (CSRS) and 

pump-probe (PP) responses on the two molecules involved in the process (see Figure 6.13).  For 

example, third-order polarization components associated with these two types of responses are 

given by 
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and 

 
 

     

4
2

3

1, 3

, , ,

( )
RP St eg

CSRS t m

mnkl

en gm t en ek t RP en gl t

N
P B n m k m k l n l

L J L

  


   

 

 

  (6.13) 

where we have derived these expressions under the same assumptions used to describe the direct 

fifth-order response (see Section C.2 Appendix C).  The cascaded signal field is proportional to 

the product of 
 3

1, ( )PP tP   and 
 3

1, ( )CSRS tP  .  

The above formulas highlight three key issues that govern relative magnitudes of direct 

and cascaded responses: 



225 

(i) The cascaded signal field scales as the square of the concentration, whereas the field 

radiated by the fifth-order polarization is linear in concentration.  This is one reason why 

cascades are generally negligible at optical densities employed under resonant conditions in 

transmissive geometries.  For example, the concentration of CS2, in which cascades are 

dominant, is roughly 80,000 times larger than the concentration employed here. 

(ii) The direct and cascaded responses respectively include 3 and 4 resonant electronic 

line shape functions,  ,en gmL  .  The direct fifth-order signal field therefore becomes more 

dominant as the electronic dephasing rate increases.
35

  This aspect of the nonlinear response 

favors the direct fifth-order signal in condensed phases at ambient temperatures, where line 

widths are generally greater than 1000 cm
-1

. 

(iii) The direct and cascaded polarization components involve sums of products of 8 and 

6 vibrational overlap integrals, respectively.  The direct fifth-order signal field becomes more 

dominant as the mode displacement increases because the integrals are all less than 1 and the 

products of integrals generally decrease as the mode displacement increases.  In related work, we 

found that this effect becomes quite pronounced in systems with extremely large displacements 

(displacements greater than 3).
35

 

6.5.3. Model Calculations 

In this section, we evaluate the ratio between the cascaded third-order and direct fifth-

order signal magnitudes, 
 5

( ) / ( )cas t direct tE E  , which are defined in Sections C.3 and C.2, 

respectively, in Appendix C.  These model calculations are motivated by knowledge of how the 

relative signal strengths depend on properties of the model system and the frequencies of the 
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incident pulses.  Insights derived from these calculations are not dependent on an optimal 

parameterization for metMb.  Rather, parameters are scanned over wide ranges to explore 

general effects that apply not only to metMB but also to other heme proteins with similar optical 

properties.  Figure 6.14 presents spectra computed with a displaced 1370-cm
-1

 mode, where the 

actinic and Raman pump frequencies, 
AP  and 

RP , are taken to be equal to the electronic 

resonance frequency, 
eg .  The vibrational resonances appear on a frequency-dependent 

baseline, which is consistent with the model developed by Ernsting and co-workers.
3
  We 

consider a system with a single harmonic mode to keep the number of parameters manageable.  

For fundamental transitions, we find that the ratio,  5
( ) / ( )cas t direct tE E  , is insensitive to the 

number of vibrational modes in the system. 

 

Figure 6.14.  Absolute values of signal spectra computed using the models presented in Sections 

C.2 and C.3 in Appendix C and the parameters in Tables C.1 and C.2.  The system possesses a 

single 1370-cm
-1

 harmonic mode with a displacement of 0.35 (a reasonable estimate for 

metMb).
42

  The frequency of the actinic pump pulse is set equal to the electronic resonance 

frequency, AP eg  .  This calculation assumes that the five-beam geometry is employed 

(cascades are 4 times weaker in the four-beam geometry). 
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We begin by exploring the parameter space of the mode frequency and displacement in 

Figure 6.15a.  The ratios between  5
( )cas tE   and ( )direct tE   are computed at values of the 

Raman shift, 
RP t  , equal to the mode frequency (i.e. at the peak of the fundamental 

transition).  The calculations predict extremely small ratios (<0.01) at frequencies near the 1370 

cm
-1

 mode.  The ratio,  5
( ) / ( )cas t direct tE E  , increases as the vibrational frequency decreases, 

but  5
( )direct tE   remains dominant down to the lowest frequency probed in this work (i.e. the 670-

cm
-1

 mode).  The calculation is carried out over a wide range of mode displacements in order to 

establish behaviors that will generalize to other systems.  Displacements of the 670-cm
-1

 and 

1370-cm
-1

 modes are near 0.25 and 0.35, respectively.
53

 

 

Figure 6.15.  (a) The ratio,  5
( ) / ( )cas t direct tE E  , is computed for a system with a single 

harmonic mode under electronically resonant conditions, AP eg  . The ratio is computed at the 

value of the Raman Shift equal to the mode frequency (i.e. at the peak of the vibrational 

resonance).  (b) The ratio,  5
( ) / ( )cas t direct tE E  , is computed for a 670- cm

-1
mode at various 

dimensionless displacements and detuning factors, AP eg  .  (c) The ratio, 

 5
( ) / ( )cas t direct tE E  , is computed for a 1370-cm

-1
 mode at various dimensionless mode 

displacements and detuning factors, AP eg  .  Boxes are drawn in the regions of the plots 

relevant to myoglobin in panels (b) and (c).  
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The laser detuning and mode displacement are varied for the 670 cm
-1

 and 1370-cm
-1

 

modes in Figures 6.15b and 6.15c.  The calculations suggest greater dominance of  5
( )direct tE   

when the actinic and Raman pump beams are tuned to the low-frequency side of the electronic 

resonance (i.e. AP eg   and RP eg  ).  Notably, the ratio remains small when the beams are 

within the approximate 1500-cm
-1

 linewidth of the electronic transition ( 2 eg ).  Regions of the 

plots most relevant to the present application to metMb are indicated with boxes.  The 

calculations predict that  5
( )direct tE   remains dominant for displacements between 0 and 1.  

The present model system approximates the response of metMb when photoexcited in the 

region of the Soret band.  Inclusion of additional excited states in the model (e.g. higher-energy 

spin states of iron) is unlikely to affect the ratio because of their relatively small contributions.  

Increases in ( )cas tE   and  5
( )direct tE   are largely offset when new classes of signal components 

are introduced (e.g. resonances between excited states), because terms with nearly equal weights 

must then be added to both types of fields.  Perhaps the most important issue is that  5
( )direct tE   

and ( )cas tE   always consist of sums of products of 6 and 8 vibrational overlap integrals, 

respectively.  The terms in ( )cas tE   will generally be smaller than those in  5
( )direct tE  , because 

each of the overlap integrals in the product is less than 1.  The direct response,  5
( )direct tE  , can 

become many orders of magnitude larger than ( )cas tE   in systems with extremely large mode 

displacements.
35

  This, together with the low sample concentrations typically employed in 

transmissive laser beam geometries, suggests that third-order cascades are unlikely to 
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outcompete the resonant FSRS response in related systems under similar experimental 

conditions. 

6.6. Concluding Remarks 

Four and five-beam implementations of FSRS have been used in this work to 

significantly reduce the background of residual laser light and lower-order nonlinearities that 

would be present in the three-beam geometry carried out with the same electronically resonant 

laser pulses.  The background-free nature of the five-beam geometry supports excellent signal-

to-noise ratios and short data acquisition times.  As with any experimental technique, the present 

method possesses strengths and limitations that are important to take into account when deciding 

on an approach.  The fast data acquisition rate and sensitivity achieved by the present method 

come at the expense of nonlinearities that are more complicated than those associated with 

spontaneous Raman probes.  This is one reason why time-resolved spontaneous Raman 

spectroscopy may be preferred for studies of relaxation dynamics in heme proteins that are 

slower than 0.7 ps.
16

  We envision that the power of the present method may be fully exploited in 

studies of low-frequency vibrational coherences in 1 , and their anharmonic couplings to 

vibrational resonances in 2  (i.e. multidimensional analogues of third-order vibrational 

coherence studies).
53

  It may also be possible to implement hybrid FSRS/2D photon echo pulse 

sequences in a five-beam geometry.  

Significant contributions from cascaded nonlinearities have been ruled out with control 

experiments based on the signal phase, concentration dependence, and spectroscopic line shapes.  

In addition, we have developed a model to explore how the susceptibility to cascades depends on 

parameters of the system, the frequencies of the incoming beams, and the laser beam geometry.  
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Our calculations suggest that third-order cascades are less than 5% of the signal in the entire 

vibrational frequency range examined in this study.  The present work (and our related study of 

triiodide)
35

 suggests that cascades are unlikely to be problematic at the optical densities typically 

employed in transmissive beam geometries.  In such experiments, concentrations are typically 

tens of thousands of times lower than those associated with the pure liquids and concentrated 

mixtures in which cascades are known to dominate.
30,55,58

  Moreover, Franck-Condon active 

modes will always dominate the direct fifth-order response under electronically resonant 

conditions (i.e. the direct response is “allowed” under resonant conditions).  Together, the 

control experiments and model calculations presented here suggest promise for multidimensional 

resonance Raman investigations of heme proteins. 
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CHAPTER 7:  TWO-DIMENSIONAL RESONANCE RAMAN SPECTROSCOPY OF 

WATER- AND OXYGEN- LIGATED MYOGLOBIN 

 

7.1. Introduction 

Once the specialization of a small number of experimental groups, multidimensional laser 

spectroscopies have become fairly widespread in the past 20 years with applications spanning the 

traditional disciplines of chemistry, biology, and physics.
1-10

  The development of multi-

dimensional techniques is rooted in the picosecond coherent Raman spectroscopies of the late 

1970’s and early 1980’s.
11-14

  At the time, it was unclear whether or not traditional (one-

dimensional) coherent Raman measurements could distinguish between homogeneous and 

inhomogeneous line broadening mechanisms.
15-17

  Theoretical work showed that higher-order 

(multidimensional) methods were indeed required to obtain such information,
18-20

 and early 

success was achieved in Raman echo experiments (i.e. eight-wave mixing).
21

  Several 

experimental groups took up the challenge of conducting six-wave mixing experiments in the 

mid-1990’s but met substantial technical challenges.
22-27

  Success in six-wave mixing 

measurements was achieved after years of exhaustive efforts.
27,28

  Difficulties encountered in 

these pioneering works significantly slowed further development of multidimensional Raman 

techniques.  However, interest in this class of experiments has been reinitiated by related 

methods that are used to study molecular photochemistries.
29-40

  

In this paper, we present two-dimensional resonance Raman (2DRR) measurements that 

blend different types of higher-order Raman spectroscopies.  The multi-beam aspect of the 
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experiment illustrated in Figure 7.1 is similar in nature to earlier off-resonant 2D Raman 

work,
27,28

 whereas the combination of narrowband and broadband pulses is inspired by 

Femtosecond Stimulated Raman Spectroscopy (FSRS).
30,32

  As depicted in Figure 7.1, the 

experiment begins when an actinic pump pulse initiates vibrational motion of the system in the 

variable delay, 
1 .  Fourier transformation with respect to 

1  constitutes the first dimension of 

the 2DRR spectrum.  Vibrational motion is re-initiated by time-coincident Raman pump and 

Stokes pulses before a second Raman pump pulse induces signal emission.  The second 

dimension of the 2DRR spectrum is obtained by dispersing the signal pulse on an array detector. 

 

Figure 7.1.  (a) A four-beam FSRS geometry is used in this work to eliminate the portion of the 

background associated with residual Stokes light and a pump-probe response.  The color code is 

as follows: the actinic pump is green, the Raman pump is blue, and the Stokes pulse is red.  (b) 

Vibrational coherences in 1  are resolved by numerically Fourier transforming the signal with 

respect to the delay time.  Time-coincident Raman pump and Stokes pulses then initiate a second 

set of vibrational coherences, which are resolved by dispersing the signal pulse on an array 

detector.  The fixed time delay, 2 , is used to suppress the broadband pump-repump-probe 

response of the solution.  
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The approach is distinct from traditional three-pulse FSRS in that (i) residual laser light 

does not travel in the same direction as the signal beam and (ii) a fixed delay, 
2 , is used to 

suppress the intense broadband pump-repump-probe response.
41

  The data acquisition rate and 

sensitivity of our method facilitate detection of the 2DRR response, which is generally less than 

5% of the total fifth-order signal.  Traditional three-beam FSRS offers other advantages such as 

automatic heterodyne detection and straightforward implementation of two-color experiments.
30

  

Measurements and model calculations are conducted for both metmyoglobin (metMb) 

and oxymyoglobin (MbO2) in order to establish signatures of inhomogeneous line broadening 

and anharmonic coupling in 2DRR spectra.  The charge of the iron atom is +3 (ferric) and +2 

(ferrous) in metMb and MbO2, respectively.  Of course, the two systems also differ in whether 

water (metMb) or oxygen (MbO2) is coordinated on the distal side of the heme group.  Sub-100 

fs photodissociation of oxygen is induced following photoexcitation in the visible spectral range 

in MbO2, whereas metMb relaxes to the ground electronic state by way of non-radiative 

processes on the picosecond time scale.
42-47

  In analogy with other 2D methods, the present 

2DRR measurements reveal heterogeneity within the ensembles for the two systems.  The 220-

cm
-1

 iron-histidine stretching mode is of particular interest because of its prominence in MbO2, 

where the heme moiety transitions from a planar to non-planar geometry following 

photodissociation.
48

  In addition, vibrational modes associated with the propionic acid side 

chains may provide insight into energy exchange between the heme and aqueous solvent.
49-52

  

Line broadening mechanisms of these modes are intimately connected to such vibrational energy 

exchange, because they reflect fluctuations in the geometries. 

The present work builds upon a variety of experimental approaches that we have 

developed for conducting 2DRR experiments in recent years.
41,53,54

  An earlier report of the 
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technique employed in this work focused primarily on experimental issues.
41

  Control 

experiments were used to show that the response of metMb exhibits the anticipated (correct) 

dependence on sample concentration and on the intensities of the incoming beams.  The 

susceptibility of the experiment to cascaded four-wave mixing responses was an issue of primary 

concern, because these undesired nonlinearities present significant challenges in off-resonant 2D 

Raman experiments.
26-28,55,56

  It was also shown that cascades of four-wave mixing signals are 

negligible under our experimental conditions.  Calculations suggest the selection rules that 

enhance cascaded signal intensity under electronically off-resonant conditions are obviated when 

all pulses are electronically resonant with the system.  In effect, the direct and cascaded signals 

compete on the same footing when all laser beams are tuned into electronic resonance.  The 

cascaded signal is weaker than the direct response with optical densities of metMb less than 1.0, 

because it involves two more field-matter interactions (i.e. it is a higher-order process in this 

respect).  Our analysis suggests that the direct response of myoglobin will also dominate in a 

conventional three-beam FSRS geometry.  That is, it may generally be possible to conduct 2DRR 

spectroscopy without beam geometries cleverly designed to induce phase mismatch in third-

order nonlinearities. 

7.2. Experimental Methods 

7.2.1. Sample Preparation 

Myoglobin from horse skeletal muscle (Sigma-Aldrich) is dissolved in 0.1 M sodium 

phosphate buffer at a pH of 7.0.  The metMb solutions are centrifuged at 6000 revolutions per 

minute for 15 minutes before each experiment to optimize the optical quality.  To convert metMb 

to MbO2, 10-fold molar excess of sodium hydrosulfite is added to reduce metMb.  Air is then 
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bubbled through the solution for 15 minutes until it is bright red in color.  Attainment of a high 

quality MbO2 sample is confirmed by comparison of the sample’s linear absorption to the known 

spectrum of MbO2.  The primary metric is the peak position of the Soret band, which is located 

at 409 and 418 nm for metMb and MbO2, respectively.
57

  Spontaneous Raman spectra are also 

used to confirm the position of the most intense in-plane bond stretching vibration (i.e. an 

oxidation state marker band).  The vibrational frequencies of this mode are close to 1373 and 

1356 cm
-1

 for metMb and MbO2 , respectively.
58,59

  In all experiments, the 0.2 mM sample of 

myoglobin is flowed through a wire-guided jet with a thickness of 220 μm, where the reservoir 

volume is 50 mL.
60

  Absorbance spectra are measured before and after experiments to confirm 

the absence of sample degradation.  

7.2.2. Spectroscopic Measurements 

In this section, we summarize key aspects of the experimental approach, which is 

described at length in Reference 
41

.  As in earlier work, we employ laser pulses which are all 

resonant with the Soret bands of metMb and MbO2 (see Figure 7.2).  The narrowband Raman 

pump pulses are generated by sending 70 fs, 410 nm second harmonic pulses through a 4F 

spectral filter consisting of two 2400 g/mm gratings and two 25 cm focal length lenses.  Pulses 

with spectral widths of 50 cm
-1

 are obtained by placing a slit with a 890 μm width at the 2F 

plane.  Broadband actinic pump and Stokes pulses are produced by focusing a 90 μJ, 410 nm 

second harmonic beam into a 75 cm long hollow core fiber filled with 1.0 atm of argon gas.  The 

spectrally broadened output of the fiber is compressed using fused-silica prisms separated by 50 

cm to achieve an instrument response of 20 fs over the spectral range corresponding to Raman 

shifts of 200-1500 cm
-1

 (413-437 nm). 
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Figure 7.2.  Laser spectra are overlaid on the linear absorbance spectra of (a) metMb and (b) 

MbO2 in aqueous buffer solution at pH=7.0. 

 

Experiments are conducted with the diffractive optic-based interferometer shown in 

Figure 7.3.  All beams are focused onto the diffractive optic with a 50 cm focal length spherical 

mirror.  Approximately 25% of each incident beam is diffracted into each of the three diffraction 

orders (0 and +/-1).  The 20 cm focal length imaging mirror is rotated off-axis by approximately 

5º (i.e. the minimum amount).  The actinic pump and Raman pump beams cross at approximately 

6.9º in the diffractive optic and are bisected by the Stokes beam.  The angle between the +1 and -

1 diffraction orders of the Raman pump beams is 6.9º.  The angle between +1 and -1 diffraction 

orders of the actinic pump and Stokes beams is 7.2º; the actinic pump and Stokes pulses have the 

same spectrum (see Figure 7.2).  Pulse energies of the actinic pump and Stokes pulses are 100 nJ 

each.  The pulse energy of each Raman pump pulse is 150 nJ.  The FWHM spot sizes of all laser 

beams are 200 μm at the sample position. 
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Figure 7.3.  Diffractive optic-based interferometer used for 2DRR measurements.  The 

transparent fused silica window delays pulse 3 by 290 fs with respect to pulse 4 (delay 2  in 

Figure 7.1).  A four-beam geometry is used to detect the signal radiated in the direction, 

1 2 3 4 5k k k k k    ; the wavevectors 1k  and 2k  cancel each other.  The 2DRR signal is obtained 

by measuring differences with and without the actinic pump (beam 1,2).  Beams represented with 

solid circles reach the sample, whereas those represented with open circles are blocked with a 

mask.  

 

We employ a four-beam geometry in which the signal is associated with the difference 

produced by the actinic pump beam.
41

  The four-wave mixing "background" generated by the 

Raman pump and Stokes pulses is not difficult to subtract, because it is only 10-20 times larger 

than the desired fifth-order response.  We find that the background is most effectively removed 

by subtracting spectra acquired at negative delay times (far from the rise of the FSRS signal near 

1 = -10 ps).  An alternate approach in which the actinic pump beam is chopped at every delay 

point results in poor signal quality because of the longer data acquisition time.  Despite its 

smaller background, we opt not to use the five-beam geometry described in Reference 
41

, 

because it is more difficult to maintain alignment day-to-day.  In addition, color tunable actinic 
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pump beams may be employed in the four-beam geometry, and such experiments are presently 

being pursued with the same experimental setup.
54

 

Signals are detected using a back-illuminated CCD array (Princeton Instruments PIXIS 

100B) mounted on a 0.3 meter spectrograph with a 1200 g/mm grating.  The signal beam is 

focused to a spot size of 100 μm at the entrance to the spectrograph to obtain hardware-limited 

spectral resolution of approximately 10 cm
-1

.  Ultimately, the resolution of the measurement is 

limited by the 50 cm
-1 

spectral width of the Raman pump beam.  The total FSRS response 

produces roughly 1000 counts on the detector at each delay point with an integration time of 100 

ms.  The vibrational coherences associated with the 2DRR component of the response are all less 

than 5% of the total signal.  The delay, 1 , of the actinic pump is scanned 100 times, and the 

signal is averaged to optimize the data quality. 

7.3. Simulations of 2DRR Spectra 

The development of 2DRR spectroscopy is still at an early stage despite a long history of 

off-resonant 2D Raman work.  As mentioned above, signal generation is allowed and forbidden 

for harmonic systems in resonant and off-resonant experiments, respectively.  The implications 

of this difference in selection rules have not yet been established for information content of the 

signals.  To this end, we begin this section by examining signatures of inhomogeneous 

broadening and anharmonicity in 2DRR spectra for a pair of vibrational modes.  The 2DRR 

spectrum of myoglobin is then simulated using parameters derived from earlier spontaneous 

resonance Raman experiments.  Insights gained from these calculations will be used to interpret 

experimental signals in Section 6.4.  
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7.3.1 Signatures of Inhomogeneous Broadening in 2DRR Spectra 

The ability to distinguish inhomogeneous and homogeneous line broadening mechanisms 

motivated the first multidimensional Raman experiments conducted in the late 1980’s and early 

1990’s.
18,21

  The spectroscopic signatures are much like those associated with 2D photon echo 

experiments, where heterogeneity gives rise to a difference between the diagonal and anti-

diagonal widths.
1,8,61,62

  Inhomogeneous line broadening is a signature of correlation between the 

resonance frequencies detected in the two frequency dimensions.
63,64

  Unlike Raman echo 

experiments,
21

 the present (fifth-order) 2DRR experiments do not yield the time scale at which 

correlation decays, because an intermediate "waiting time" cannot be scanned.
18

  Rather, we are 

able to detect the amount of correlation present in the system on the time-scale of the inverse of 

the vibrational line width.  

Spectroscopic signatures are most easily established with calculations based on two 

vibrational modes and a single electronic resonance.  The model developed in Reference 
41

 can 

be adapted for this purpose (see Appendix D).  We take the mode frequencies to be 400 cm
-1

 and 

1100 cm
-1

 in order to produce well-resolved vibrational resonances.  Resolution of the various 

2DRR peaks also requires that the two mode frequencies and their overtones are well-separated.  

For example, the overtone of the 400-cm
-1

 mode at 800 cm
-1

 must be well-separated from the 

fundamental mode frequency at 1100 cm
-1

.  The dimensionless displacement of each mode is set 

equal to 0.75 so that all key resonances can be observed on the same linear scale for the signal 

magnitude.  

Heterogeneity is introduced by convoluting the signal field defined in Appendix D with a 

Gaussian function 
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Here, 
a  is the deviation of the harmonic mode frequency, a  ,from its mean value, 

a  (in cm
-1

), 

whereas a  is the width of the inhomogeneous distribution.  The inter-mode correlation 

parameter,  , ranges from the fully anti-correlated (-1) to fully correlated (+1) limits.
63,64

  The 

signal field depends on a  and b  through the vibrational Hamiltonian of the system (see 

Appendix D).  

The calculations in Figure 7.4 are conducted in the anti-correlated (  =-0.75), 

uncorrelated (  =0), and correlated (  =+0.75) regimes.  Of course, the diagonal peaks exhibit 

correlated line shapes for all cases, because the inhomogeneous widths, a  and b , are nonzero.  

Notably, this signature of inhomogeneous line broadening cannot be derived from one-

dimensional Raman spectroscopy (e.g. third-order stimulated Raman and spontaneous Raman 

measurements).  For diagonal 2DRR peaks, the anti-diagonal width is related to homogeneous 

broadening, whereas the diagonal width represents the combination of homogeneous and 

inhomogeneous broadening.  Unlike the diagonal peaks, the orientations and relative intensities 

of the cross peaks depend on the correlation parameter,  ; the cross peaks possess an anti-

diagonal and diagonal slant when the correlation parameter is negative and positive, respectively.  
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The cross peaks exhibit a fairly “round” line shape for the uncorrelated limit in Figure 7.4b.  

These spectroscopic signatures are much like those established in 2D infrared experiments.
1,8,61,62

  

The relative intensities of the cross peaks are largest when   is positive because of cancellations 

between terms with opposite signs in  ,a bG   . 

 

Figure 7.4.  2DRR spectra computed for a pair of harmonic oscillators with inhomogeneous line 

broadening.  The spectra are computed by combining Equations 7.1 and D.20 in Appendix D 

with the parameters given in Table 7.1.  The correlation parameter,  , is set equal to (a) -0.75, 

(b) 0.0, and (c) 0.75.  The diagonal peaks always exhibit correlated line shapes, whereas the 

orientations and intensities of the off-diagonal peaks depend on the correlation parameter,  . 

 

7.3.2. Signatures of Anharmonicity in 2DRR Spectra 

Signal generation is allowed in off-resonant 2D Raman experiments only if the modes are 

anharmonic or the polarizability scales nonlinearly with the vibrational coordinates.
19,20

  Thus, 

success in detecting the signal constitutes unambiguous evidence of a non-trivial behavior.  Of 

course, this aspect of the off-resonant nonlinearity also means that the signal will generally be 

small and that artifacts such as cascades can readily contaminate the signals.
27,28

  As noted in our 
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previous work, 2DRR spectroscopy is "easier" to conduct than off-resonant 2D Raman 

experiments, because signal generation is allowed for harmonic modes.  Unfortunately, this also 

means that any pair of harmonic Franck-Condon active modes will generate a 2DRR cross peak, 

thereby complicating signal interpretation.  We investigate signatures of anharmonicity in 2DRR 

spectra in this section.  As in Section 6.3.1, calculations are conducted for a pair of vibrational 

modes and a single electronic resonance.  However, we treat only homogeneous line broadening 

here in order to focus on the effects of anharmonicity.  Cubic force constants are added to a 

harmonic vibrational Hamiltonian as described in Appendix D.  The two normal modes mix 

through cubic force constants that depend on two coordinates.  These "off-diagonal" cubic 

expansion coefficients are denoted as 122U , 212U , 221U , 211U , 121U , and 112U .  In contrast, the 

"diagonal" cubic expansion coefficients, 111U  and 222U , primarily shift the resonances to lower 

frequencies.  

In Figure 7.5, the off-diagonal expansion coefficients are all set equal to three values (-5, 

0, and 5 cm
-1

) to illustrate the effects that these terms have on 2DRR spectra.  New resonances 

are not generated; however, the peak intensities are affected by an intensity borrowing effect that 

originates in the transformation of Franck-Condon overlap integrals from the harmonic to 

anharmonic basis sets (see Equation D.23 in Appendix D).  Calculations are also carried out for 

three values of the diagonal expansion coefficients (-5, 0, and 5 cm
-1

).  In general, the cross peak 

intensities above the diagonal increase relative to those below the diagonal for the anharmonic 

systems (see Figures 7.5a, 7.5d, 7.5g, and 7.5i).  In general, differences between 2DRR spectra 

for the anharmonic and harmonic (see Figure 7.5e) systems are fairly subtle, which suggests 

limited potential of the 2DRR technique to reveal anharmonic couplings in the present quasi-

degenerate (one-color) configuration. 
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Figure 7.5.  2DRR spectra computed with the anharmonic vibrational Hamiltonian described in 

Appendix D and the parameters in Table 7.1.  The diagonal cubic expansion coefficients are set 

equal to -5 (first row), 0 (second row), and 5 cm
-1

 (third row).  The off-diagonal expansion 

coefficients are set equal to -5 (first column), 0 (second column), and 5 cm
-1

 (third column).  The 

response of a harmonic system is shown in panel (e).  These calculations suggest that 

anharmonic coupling promotes intensity borrowing effects via the transformation of Franck-

Condon overlap integrals from the harmonic to anharmonic basis set (see Equation D.23 in 

Appendix D).  For many of the parameter sets, anharmonicity causes the intensity of the cross 

peak above the diagonal to increase relative to that of the cross peak below the diagonal.  This 

effect is most pronounced in the left column. 
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Table 7.1.  Parameters of Theoretical Model for System with Two Vibrational Modes 

 

(a)
Parameter Value 

/ 2eg c   23250 cm
-1

 

AP   & 
RP  set equal to eg  

(b)
a  400 cm

-1
 

(b)
b  1100 cm

-1
 

(c)
ad  0.75 

(c)
bd  0.75 

/vib c  10 cm
-1

 

/eg c  750 cm
-1

 

eg  8.8 D 

(d)
a  & b  35 cm

-1
 

 

(a)
 The number density ( N ), refractive index (  tn  ), and path length ( l ) do not affect these 

results because normalized intensities are displayed (see Equation D.20 in Appendix D). 
(b)

 The parameter, j , is the wavenumber for mode j , j = / 2j c  . 
(c)

 The parameter, jd , is the dimensionless potential energy minimum displacement for mode j . 
(d)

 Inhomogeneous line broadening is included only for the calculations shown in Figure 7.5 (see 

Equations 7.1 and 7.2). 

 

For FSRS signals represented in the traditional way ( 1  and 2  in our notation), it has 

been shown that anharmonic coupling between modes may cause the vibrational resonance 

frequencies in 2  to oscillate with respect to 1  in ring-opening
65

 and proton photodissociation
66

 

reactions.  The present model does not predict such dynamics, because the non-oscillatory 

component of the signal dominates the response under one-color conditions.  In previous 2DRR 



250 

studies of the photodissociation reaction of triiodide, we observed anharmonicity-induced 

oscillations in the vibrational resonance frequencies under two-color conditions.
53,54

  Although 

signatures of anharmonicity are more readily derived from two-color 2DRR experiments, it will 

still be true that cross peaks are generated for all pairs of Franck-Condon active modes (whether 

they are harmonic or not).  Simulated 2DRR spectra will be useful for identifying genuine 

evidence of anharmonicity. 

7.3.3. Predicted 2DRR Spectrum of Myoglobin 

Calculations presented in Sections 6.3.1 and 6.3.2 provide basic insights into 2DRR 

signal interpretation.  The simulations suggest that signatures of inhomogeneous line broadening 

will be fairly obvious, whereas unambiguous evidence of anharmonicity will be difficult to 

derive from experimental data (particularly in one-color experiments).  It will be useful to 

"estimate" how the 2DRR spectrum of myoglobin should be expected to appear based on earlier 

work.  To this end, the parameters needed to simulate the 2DRR spectrum for a one-color 

experiment can be obtained from earlier fits to the spontaneous Raman excitation profiles for the 

Soret band.
67

  Notably, these fits are carried out in a basis of harmonic modes. 

In Figure 7.6, we present a 2DRR spectrum computed in the homogeneous limit of line 

broadening using the parameters given in Table 7.2.  The four most dominant vibrational modes 

are included in the model.  A peak associated with each mode appears on the diagonal.  The most 

intense cross peak is found at 1 / 2 c  =220 cm
-1

 (iron-histidine stretch) and 2 / 2 c  =1356 cm
-

1
 (in-plane stretch of heme); the cross peak intensity above the diagonal is greater than that found 

for the corresponding cross peak below the diagonal.  The model additionally suggests that the 

intensity of the cross peak above the diagonal increases with respect to the peak below the 
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diagonal as the dimensionless displacements increase.  The spectrum in Figure 7.6 exhibits weak 

off-diagonal peaks that are shifted down the 
2  axis from the 674-cm

-1
 and 1356-cm

-1
 diagonal 

peaks by 220 cm
-1

.  These off-diagonal peaks represent sequences in which the system evolves in 

a coherence at the fundamental 674 cm
-1

 or 1356 cm
-1

 frequency in 
1  and an inter-mode 

coherence in 
2 .  Finally, we remark that the calculations presented in Figure 7.6, which employ 

large mode displacements, exhibit a peak associated with an inter-mode vibrational coherence on 

the diagonal (at 
1 / 2 c  =

2 / 2 c  =454 cm
-1

).  Detection of this type of resonance requires two 

modes with significant displacements. 

Overall, the calculations presented in Figures 7.4-7.6 suggest that line broadening 

mechanisms will be the primary information to be derived from 2DRR spectra for myoglobin.  

Signatures of anharmonicity are likely to be ambiguous in the present quasi-degenerate (one-

color) experiments, because the response is allowed for harmonic modes.  Moreover, the fairly 

small potential energy surface displacements found in myoglobin should make most cross peaks 

difficult to detect.
67
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Figure 7.6.  2DRR spectrum of myoglobin computed using parameters obtained by fitting 

spontaneous resonance Raman excitation profiles.
67

  The spectrum is dominated by resonances 

on the diagonal.  The most dominant cross peak is associated with the iron-histidine stretch 

( 1 / 2 c  =220 cm
-1

) and in-plane stretching mode ( 2 / 2 c  =1356 cm
-1

).  The spectra are 

computed by combining Equation D.20 in Appendix D with the parameters in Table 7.2. 

 

7.4. Results and Discussion 

7.4.1. Isolation of 2DRR Signal Components 

In this section, we show how the 2DRR response is extracted from the total signal.  To 

begin, the procedure used to obtain the FSRS-like representation of the signal at various delay 

times, 1 , was described at length in earlier work.
41

  Examples of such FSRS-like signals are 

shown in Figures 7.7a and 7.7d.  The novel aspect of this study is that we carry out a Fourier 

transformation with respect to 1  to generate a 2DRR spectrum.  The main challenge in doing so 

is that the coherent signal component, the component of interest, must be separated from the 
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much larger incoherent fifth-order response.  Below, we discuss issues particular to this aspect of 

the data analysis. 

Table 7.2.  Parameters of Model Based on Empirical Fit of Spontaneous Raman Signals 

 

(a)
Parameter Value 

/ 2eg c   23250 cm
-1

 

AP   & RP  set equal to eg  

(b)
1  220 cm

-1
 

(b)
2  370 cm

-1
 

(b)
3  674 cm

-1
 

(b)
4  1356 cm

-1
 

(c)
1d  0.47 

(c)
2d  0.20 

(c)
3d  0.26 

(c)
4d  0.34 

/vib c  10 cm
-1

 

/eg c  750 cm
-1

 

eg  8.8 D 

 

(a)
 The number density ( N ), refractive index (  tn  ), and path length ( l ) do not affect these 

results because normalized intensities are displayed (see Equation D.20 in Appendix D). 
(b)

 The parameter, j , is the wavenumber for mode j , j = / 2j c  . 
(c)

 The parameter, jd , is the dimensionless potential energy minimum displacement for mode j . 
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Figure 7.7.  Signals obtained for (a) metMb and (d) MbO2 in a FSRS-like representation.  At 

each point in 2 , the incoherent baseline is generated using the maximum entropy method.  

Shown here are slices of the signals for (b) the 670-cm
-1

 mode of metMb and (e) the 370-cm
-1

 

mode of MbO2.  Coherent residuals are obtained by subtracting incoherent MEM baselines from 

the total signals for (b) metMb and (e) MbO2.  The coherent residuals are presented for (c) 

metMb and (f) MbO2. 

 

To illustrate the method of data analysis, we begin by examining time-dependent Raman 

spectra obtained for both metMb and MbO2 in Figure 7.7.  In both cases, peaks are observed near 

220 cm
-1

, 370 cm
-1

, 675 cm
-1

, and 1356 cm
-1

.  The in-plane bond stretching mode is a 

particularly useful marker for the oxidation state of the heme.  The vibrational wavenumber is 

1356 cm
-1

 in MbO2 and 1373 cm
-1

 in metMB.
59

  The 220 cm
-1

 resonance corresponds to the iron-

histidine stretch on the proximal side of the heme group.  The 370 cm
-1

 mode represents a 
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bending motion between the porphyrin and propionic substituents originating from double bond 

(methylene) stretching (deformation) near the propionic acid side chains (see Figure 7.8).  

Finally, the 670 and 1356 cm
-1

 (or 1373 cm
-1

) modes correspond to deformation and bond-

stretching motions localized on the tetrapyrrole moiety, respectively.  The intensity of the 220 

cm
-1

 mode varies significantly between systems, because photodissociation is initiated only in 

MbO2.  That is, there is a significant excited state potential energy gradient for the iron-histidine 

stretch in MbO2, because the iron moves out of plane following photodissociation. 

 

Figure 7.8.  Molecular structure of iron protoporphyrin-IX. 

 

Oscillatory signal components in 1  are isolated by subtracting incoherent baselines 

generated using the maximum entropy method (MEM), which suppresses low-frequency artifacts 

that may arise when baselines are produced using a small number of exponential functions.
68

  In 

Figures 7.7b and 7.7e, we overlay example MEM fits with signals obtained for both metMb and 

MbO2; residuals are plotted in Figures 7.7c and 7.7f.  The analysis is carried out beginning at a 

delay time of 0.1 ps in 1   to remove contributions from the region of pulse overlap.  The 2DRR 
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spectra shown in Figure 7.9 are obtained by repeating this procedure at every point in 
2  (i.e. 

every pixel on the CCD array), then carrying out a Fourier transformation with respect to
1  

      1 2 1 2 1 1 1 1, , expS S i d         (7.3) 

where  1 2,S    is the baseline-subtracted signal,  1 2,S    is the 2DRR spectrum, and   is a 

rate constant used to suppress contributions from delay times at which the oscillations have 

decayed below the noise level.  In the present work we set   equal to 1.4 ps
-1

. 

The 2DRR spectra of both systems shown in Figure 7.9 exhibit diagonal peaks near 220 

cm
-1

, 370 cm
-1

, 674 cm
-1

, and 1356 cm
-1

 (close to 1373 cm
-1

 in metMb).
59,67

  The peaks near 

1356 cm
-1

 are relatively weak, because the 24 fs period of this mode is only slightly larger than 

the 19 fs instrument response width at this particular value of the Raman shift.  Two cross peaks 

are located above the diagonal.  The cross peaks at 1 / 2 c  =50 cm
-1

 and 2 / 2 c  =674 cm
-1

 

reflect motion along the doming coordinate in 1 .  Cross peaks are also located near 

1 / 2 c  =370 cm
-1

 and 2 / 2 c  =1356 cm
-1

.  It is interesting that only one cross peak is found in 

the slices of the 2D spectra near 2 / 2 c  =1356 cm
-1

; cross peaks near 1 / 2 c  =674 cm
-1

 and 

2 / 2 c  =1356 cm
-1

 are below the detection threshold despite the significant intensity of the 

diagonal peak at 674 cm
-1

.  This aspect of the spectra is consistent with the simulation in Figure 

7.6.  In this calculation, an intense cross peak is generated above the diagonal near 1 / 2 c  =220 

cm
-1

 and 2 / 2 c  =1356 cm
-1

, but not at 1 / 2 c  =674 cm
-1

 and 2 / 2 c  =1356 cm
-1

.  The 

measurement in Figure 7.9 differs from Figure 7.6 in that off-diagonal peaks are not detected 

below diagonal peaks in 2  (e.g. at 1 / 2 c  =674 cm
-1

 and 2 / 2 c  =454 cm
-1

).  The key issue is 
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that the iron-histidine stretch is less intense than the prediction based on a fit to the spontaneous 

Raman excitation profile.
67

 

Cross peaks are detected below the diagonal near 
1 / 2 c  =990 cm

-1
 and 

2 / 2 c  =674 

cm
-1

.  We tentatively suggest that a Franck-Condon active vinyl wagging mode is responsible for 

the 990 cm
-1

location of this peak in the first dimension.
59

  The absence of a diagonal peak at 

1 / 2 c  = 2 / 2 c  =990 cm
-1

 could be explained by the weaker Franck-Condon activity of this 

mode.  It is unclear why a cross peak is not also detected at 
1 / 2 c  =674 cm

-1
 and 

2 / 2 c  =990 

cm
-1

.  One possibility is that anharmonicity redistributes intensities among cross peaks as 

demonstrated in Figure 7.5.  The calculation presented in Figure 7.6 captures many aspects of the 

measured 2DRR spectra in Figure 7.9; however, knowledge of the anharmonic couplings may be 

the key to precisely reproducing peak intensities.  The calculations presented in Figure 7.5 

suggest that intensity borrowing effects may be observed with relatively modest anharmonic 

couplings.  
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Figure 7.9.  Experimental 2DRR spectra for (a) metMb and (b) MbO2 are generated by Fourier 

transforming the coherent residuals with respect to 1  at each point in 2  (i.e. at each pixel on 

the CCD detector).  For both systems, diagonal peaks are detected near 220, 370, 674, and 1356 

cm
-1

 (close to 1373 cm
-1

 in metMb).  Arrows are used to identify cross peaks. 
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7.4.2. Analysis of Spectral Line Shapes 

The ability to distinguish inhomogeneous and homogeneous line broadening mechanisms 

motivated the first multidimensional Raman experiments.
18,21

  As in 2D infrared spectroscopy, 

information about the line broadening mechanism can be read directly from the line shape.  

Inhomogenous broadening will cause peaks to elongate on the diagonal of the 2DRR spectrum; 

the diagonal width will then be greater than the anti-diagonal width.  Correlated line shapes may 

be observed when spectral diffusion of a vibrational resonance frequency is much slower than 

the time-scale of the inverse line width (roughly 1 ps).  In this section, we characterize the 2DRR 

line shapes shown in Figure 7.9.  The present analysis is limited to the region of the spectrum 

between 200 and 800 cm
-1

 in both dimensions, because we find no evidence of inhomogeneous 

line broadening elsewhere. 

In Figure 7.10, all peaks are fit to two-dimensional Gaussian line shapes of the form 

given in Equation 7.2.  The correlation parameter,  , generally ranges from the fully anti-

correlated (  =-1) to fully correlated (  =+1) limits.  However,   should not be less than zero 

for diagonal peaks.  This form of the 2D Gaussian function takes into account the difference in 

frequency resolution associated with the two dimensions.  The correlation parameters must be 

equal to zero if the line broadening mechanisms are fully homogeneous.  With inspiration from 

2D infrared spectroscopy, slopes obtained with a linear regression analysis are overlaid on 

various peaks in Figures 7.10c and 7.10f.  The slopes are useful for inspection of the data but are 

less rigorous than the 2D Gaussian fits, because they are affected by frequency resolution. 
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Figure 7.10.  Line shapes of diagonal peaks are examined in lower-frequency regions of 2DRR 

spectra obtained for (a) metMb and (b) MbO2.  Peaks are fit to two-dimensional Gaussians with 

correlation parameters in panels (c) and (d) (see Equation 7.2).  The parameter,  , ranges 

between the uncorrelated (  =0) and fully correlated (  =1) limits for diagonal peaks.  A 

correlation parameter greater than 0 is a signature of inhomogeneous line broadening.  In panels 

(e) and (f), the slope consistent with each correlation parameter is overlaid on the experimental 

data to offer an additional perspective.  For both systems, the 370-cm
-1

 methylene deformation 

mode local to the propionic acid side chains exhibits the greatest amount of heterogeneity 

(wavenumber near 370 cm
-1

). 

 

The iron-histidine stretching mode near 220-cm
-1

 exhibits a smaller amount of 

heterogeneity; the correlation parameter is 0.14 in metMb and 0.09 in MbO2.  For both systems, 

the greatest amount of heterogeneity is associated with the 370-cm
-1 

methylene deformation 

mode local to the propionic acid groups.  The correlation parameter for this mode is 0.43 in 

metMb and 0.54 in MbO2.  We hypothesize that this heterogeneity originates in fluctuations of 
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the “floppy” propionic acid side chains.  That is, the 2DRR data suggest that rigidity of the 

macrocycle suppresses heterogeneity in higher frequency modes such as the in-plane 

deformation mode near 674 cm
-1

.  

7.4.3. Computational Analysis of Line Broadening Mechanism 

In this section, computational models are used to explore the effects that motions of the 

propionic acid side chains have on the vibrational frequency of the 370-cm
-1

 methylene 

deformation mode.  In particular, we are interested in how the magnitudes of the fluctuations 

compare to the characteristic frequencies in the spectral densities (i.e. spectra of vibrational 

freqeuncy fluctuations).  These comparisons will provide further insights into the line broadening 

mechanisms.  It is relatively straightforward to model fluctuations in the geometries of the 

proteins with classical molecular dynamics (MD) simulations; however, the vibrational 

frequencies should be calculated at a higher level of theory.  Therefore, we use ab initio maps to 

parameterize the vibrational frequencies associated with geometries extracted from classical 

molecular dynamics simulations.  Similar approaches have been used to interpret 2D infrared 

experiments conducted on proteins and pure liquids.
69-72

 

Fluctuations in the geometries of the proteins are modeled with MD simulations as 

implemented in the GROMACS96 force field
73-75

  To prepare the systems, heavy atoms in the 

proteins were restrained and an energy minimization (steepest descent method) was implemented 

to relax the solvent around the protein.  This was followed by two equilibration steps in the 

isothermal-isochoric and isothermal-isobaric ensembles for a total of 400 ps.  Simulations were 

run for 1 ns with 2 fs steps.  The ab initio maps are constructed by first optimizing the 

geometries of the isolated hemes at the B3LYP/6-311G(2d,3p) level.
76

  The equilibrium dihedral 
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angles associated with the propionic acid side chains (see Figure 7.11) are 
L =81.3° and 

R =81.1° for metMb and 
L =94.4° and 

R =109° for MbO2.  The ab initio maps are produced 

by varying these dihedral angles (in steps of 5°) over the ranges covered by the MD simulations 

while holding all other coordinates fixed at the values corresponding to the equilibrium 

geometries (it is assumed that the frequency of the methylene deformation mode local to the 

propionic acid side chains is primarily affected by these "floppy" coordinates).  The vibrational 

modes are computed at each geometry, and the methylene deformation mode is identified by (i) 

large-amplitude motion of the methylene bonds near the propionic acid side chains and (ii) the 

scalar product with the normal mode calculated at the equilibrium geometry.  The resulting maps 

of vibrational frequencies are presented in Figures 7.11b and 7.11d.  With these maps, the 

vibrational frequencies are readily generated at each step in the MD trajectory by extracting the 

two dihedral angles.  Segments of the trajectories are presented in Figures 7.11c and 7.11f.  

Scatter plots of the dihedral angles suggest that the fluctuations in these coordinates are fairly 

evenly distributed about the equilibrium geometry (see Appendix D).  

MD trajectories of vibrational frequencies for metMb and MbO2 yield standard deviations 

of 5.9 and 7.0 cm
-1

, respectively.  These standard deviations correspond to FWHM line widths of 

13.9 and 16.5 cm
-1

 under the assumption of Gaussian line shapes.  These line widths are smaller 

than those found in the 2DRR measurements shown in Figure 7.9 because of finite spectral 

resolution.  In order to obtain further insight into the line broadening mechanism, time-

correlation functions associated with the MD trajectories are Fourier transformed to produce the 

spectral densities shown in Figure 7.12.
77,78

  The spectral densities show how the fluctuation 

amplitudes are distributed in the frequency domain.  The simulations suggest that the fluctuations 
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are dominated by thermal motion below 10 cm
-1

; however, broad components with magnitudes 

up to 10% of the maximum value are found in both systems. 

 

Figure 7.11.  Dihedral angles associated with the propionic acid chains are defined for the heme 

in (a) metMb and (d) MbO2.  The vibrational frequency of the methylene deformation mode local 

to the propionic acid side chains is computed as a function of the two dihedral angles for (b) 

metMb and (e) MbO2.  These ab initio maps are used to parameterize the vibrational frequencies 

in a molecular dynamics simulation.  Segments of the trajectories of vibrational frequencies are 

shown for (c) metMb and (f) MbO2.  

 

The line broadening mechanism can be interpreted by comparing the fluctuation 

amplitudes (5.9 cm
-1

 in metMb and 7.0 cm
-1

 in MbO2) to the characteristic frequencies of 

thermal motion (i.e. dominant part of spectral density).  In the homogeneous limit, the fluctuation 

amplitude must be small compared to the characteristic frequency, whereas the opposite applies 
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in the inhomogeneous limit.  The spectral densities computed with MD simulations are roughly 

50% of their maximum values at frequencies corresponding to the 5.9 and 7.0-cm
-1

 fluctuation 

amplitudes computed for metMb and MbO2, respectively.  Thus, the calculations suggest that line 

broadening in both systems resides in the intermediate regime.  The correlation parameters of 

0.43 and 0.54 determined from experimental data for metMb and MbO2 (see Figure 7.10) are 

consistent with the line broadening regime predicted by the MD simulations. 

 

Figure 7.12.  Spectral densities of the methylene deformation modes obtained from molecular 

dynamics simulations.  The spectral densities decay to less than 50% of the maximum amplitude 

at frequencies corresponding to the fluctuation amplitudes (5.9 and 7.0 cm
-1

 for metMb and 

MbO2).  These calculations are consistent with an intermediate line broadening regime.  The line 

broadening mechanism would become more homogeneous as the spectral density shifts to higher 

frequencies. 
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7.4.4. Implications for the Vibrational Cooling Mechanism 

The propionic acid groups are known to dominate vibrational energy exchange of the 

heme with its surrounding environment.  Hochstrasser first proposed this mechanism in 1994, 

and MD simulations contributed further support for this idea several years later.
49-51

  In 2006, the 

role of the propionic acid groups was finally confirmed by a direct experimental test in which 

vibrational cooling rates were compared for the native protein and a mutant.
52

  These earlier 

works suggest that the propionic acid side chains are an effective gateway for vibrational energy 

transfer, because they hydrogen bond with the aqueous solvent.  In contrast, the porphyrin is 

enclosed in a hydrophobic pocket devoid of solvent.  The surrounding protein matrix is less 

effective than the solvent in exchanging vibrational energy with the porphyrin despite close to 90 

van der Waals contacts.
79

  This behavior underscores the important role of hydrogen bonds in 

accelerating solute-to-solvent vibrational energy transfer.
80

 

The experimental data and computational simulations presented in Figures 7.10-7.12 

suggest that the 2DRR line shapes of the methylene deformation modes reflect heterogeneity in 

the geometries of the side chains.  It is interesting to consider whether or not heterogeneity in the 

structure translates into heterogeneity in the vibrational cooling rate.  This issue cannot be 

directly addressed with 2DRR spectroscopy.  However, Berg and co-workers have shown that 

such information about incoherent dynamics can be derived from six-wave mixing 

experiments.
81,82

  We are presently using a related approach to examine heterogeneity in 

vibrational cooling rates in heme proteins. 
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7.5. Concluding Remarks 

In summary, we have conducted quasi-degenerate (one-color) 2DRR spectroscopy 

experiments on oxygen- and water-ligated myoglobin.  The experimental technique developed in 

Reference 
41

 has been leveraged to produce 2D resonance Raman spectra.  For both systems, we 

find that the greatest amount of heterogeneity is associated with the methylene deformation 

mode local to the propionic acid side chains.  The computational model presented in Section 

6.4.3 yields distributions with standard deviations of 5.9 and 7.0 cm
-1

 for metMb and MbO2, 

respectively.  The model suggests that the dihedral angles associated with the side chains vary 

over roughly a 60° range (see Appendix D).  It is interesting to consider whether or not the 

vibrational cooling rate of the heme varies as a consequence of heterogeneity in the propionic 

acid groups.  This issue will be addressed in future work using pump-repump-probe 

spectroscopy.  

Model calculations suggest that two key points must be considered when interpreting 

2DRR signals.  First, 2DRR experiments do not necessarily yield information about anharmonic 

mode couplings, because the signal is allowed for harmonic systems.  The absence of a signal for 

harmonic systems is one of the primary motivations for conducting electronically off-resonant 

2D Raman experiments.
19,27,28,55,56

  Thus, a tradeoff between information content and 

susceptibility to experimental artifacts is made in 2DRR spectroscopy.  A two-color 

implementation of 2DRR spectroscopy may expand the range of scientific questions that can be 

addressed, but does not change this essential aspect of the signal generation mechanism.
54

  

Second, 2DRR experiments can be used to characterize vibrational line broadening mechanisms 

in a straightforward way.  As in 2D infrared experiments, inhomogeneous line broadening is 

made clear by inspection of the 2DRR signal.  Notably, the line broadening mechanism cannot 
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be directly determined from traditional (third-order) coherent Raman or spontaneous Raman 

spectroscopies.
18
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CHAPTER 8:  CONCLUDING REMARKS 

8.1. Concluding Remarks 

The work in this dissertation has developed two-dimensional resonance Raman (2DRR) 

spectroscopy as a powerful tool for providing new insights into fast chemical reactions of both 

simple and complex molecules in condensed phases.  Specifically, this work has investigated 

reactant to product vibrational coherence transfer and heterogeneity in molecular structures 

responsible for energy transfer with the surroundings.  In addition, rigorous tests have been 

conducted to ensure that 2DRR is not susceptible to the technical challenges that plagued off-

resonant multidimensional Raman techniques.  Chapter 1 introduced the scientific background 

and context motivating the experimental studies in this dissertation.  Chapter 2 laid out the basic 

theoretical framework that underpins the more complex descriptions in later chapters.  Chapter 3 

detailed the nonlinear spectroscopic techniques and unconventional pulse generation 

mechanisms developed and/or utilized in the rest of the work.   

The initial development and implementation of 2DRR was contained in Chapter 4.  

Ground state vibrations of triiodide were probed using femtosecond UV laser pulses generated 

by filamentation in high pressure Ne gas.  The findings of this study were shown to match the 

predictions of a theoretical model constructed from parameters in the literature.
1,2

  A battery of 

scrupulous experimental tests was performed verifying that the desired 2DRR response 

dominates the signal.  A publication containing the work in Chapter 4 was an Editor’s Choice in 

the Journal of Chemical Physics for the year 2014.
3
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After proving the viability of 2DRR in Chapter 4, Chapter 5 set out to measure 

correlations between nuclear motions of the reactant and product in the photodissociation 

reaction of triiodide.  2DRR experiments showed, for the first time, exactly how displacements 

in the nonequilibrium bond length of triiodide determine the vibrational coherence frequency of 

diiodide.  A theoretical model treating the reaction as a ‘coherence transfer transition’ made 

predictions matching the experimentally measured signals.   

In Chapter 6, focus was shifted to myoglobin in order to move toward more complex 

systems possessing many active vibrational coordinates.  A second variant of 2DRR was 

developed where one dimension is gathered in the time domain and one in the frequency domain 

(rather than both in the time domain), drastically reducing data acquisition times and improving 

sensitivity.  The evolution of vibrations of the heme, occurring simultaneously with electronic 

processes, was detected throughout the fingerprint region.  The time scales of vibrational 

relaxation were in agreement with the electronic relaxation time scales measured by Chergui and 

coworkers.
4
  Similar to the triiodide studies, rigorous tests based on experiment and theory 

indicated that the 2DRR signal from myoglobin was not contaminated by technical issues that 

had affected off-resonant multidimensional Raman spectroscopies.  A publication containing the 

work in Chapter 6 was an Editor’s Choice in the Journal of Chemistry Physics for the year 

2015.
5
 

The next step in the myoglobin study was completed in Chapter 7.  Signatures of 

inhomogeneous line broadening and anharmonicity in 2DRR spectra were illustrated through 

model calculations, and it was shown that the primary information to be had corresponds to line 

broadening mechanisms.  2DRR data and computational simulations suggested that the greatest 

amount of inhomogeneous line broadening is found for a vibrational mode local to the heme 
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group’s propionic acid chains, reflecting significant heterogeneity in their equilibrium 

geometries.  Since the propionic acid side chains are known to act as a gateway for the fast 

exchange of thermal energy between the heme and solvent
6-10

, it was suggested that structural 

heterogeneity may play a critical role in this process.   

In the next step of this work, the connection between structural heterogeneity in the heme 

group’s propionic acid chains and the rate of heme-to-solvent energy transfer is being 

investigated.  2DRR experiments have been conducted on both deoxygenated myoglobin 

(deoxyMb) and carbonmonoxide-ligated mylogbin (MbCO) in order to characterize 

heterogeneity in the rates of vibrational energy exchange between the heme and solvent.  Both 

systems are well suited for comparison because they both undergo ground state recovery on the 

100 fs time scale.  However, upon excitation, MbCO experiences ligand dissociation, causing a 

transition from a planar to a nonplanar geometry, whereas deoxyMb does not relax by way of 

out-of-plane distortions.  These properties provide a distinct difference between the two 

species.
11-16

 

At the current stage in analysis it appears that deoxyMb exhibits a greater amount of 

heterogeneity in its vibrational energy transfer dynamics than does MbCO.  Since the propionic 

acid chains (which extend into the solvent) are common to both systems, this difference most 

likely involves nuclear motions within the hydrophobic pocket that encloses the porphyrin.  It is 

hypothesized that the large out-of-plane reorganization of the heme that follows ligand 

dissociation in MbCO limits heterogeneity in the rates of energy exchange with the solvent, 

while the amount of heterogeneity for deoxyMb is greater in relation because its geometry 

remains much more constant throughout the relaxation process.  Further analysis is still 

underway. 
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In addition to photodissociation in triiodide and myoglobin, 2DRR should be sensitive to 

other interesting mechanisms in important systems where a non-radiative transition impulsively 

initiates vibrational coherence.  New insights could be generated for processes such as energy 

transfer in photosynthetic complexes
17-22

, charge transfer at molecular-semiconductor 

interfaces
23,24

 and bulk heterojunctions
25

, and even the chemistry comprising the initial steps of 

vision!
26-28

  The primary information content of these insights should relate to correlations 

between reactant and product nuclear motions and structural/dynamic heterogeneity involved 

with the process of interest. 

It has been suggested that 2DRR spectra should also provide clear information regarding 

anharmonic couplings between nuclear modes.
29

  Rigorous modeling and experimental work 

conducted in this dissertation suggests that it is actually quite difficult, or impossible, to tease 

knowledge of anharmonic couplings out of a 2DRR spectrum.  It is important to note that both 

the harmonic and anharmonic character of vibrational modes contribute to the signal under 

resonant conditions (i.e. when the sample absorbs the perturbative laser light).  Of course, the 

contribution from harmonic character is much stronger than the contribution from anharmonicity, 

complicating acquisition of information about anharmonic couplings. 
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APPENDIX A:  SUPPLEMENT TO “MULTIDIMENSIONAL RESONANCE RAMAN 

SPECTROSCOPY BY SIX-WAVE MIXING IN THE DEEP UV” 

 

A.1. Auxiliary Response Functions  

This section summarizes the auxiliary response functions used to compute the relative 

magnitudes of cascaded third-order and direct fifth-order nonlinearities in Section 4.5.2.  The full 

derivation of these formulas are presented in Section A.8.  The present analytical approach is 

motivated by two key issues: (i) its manageable computational expense facilitates the “bird’s eye 

view” of the dependence of the ratio on the displacement parameter in Figure 4.14; (ii) it avoids 

errors in precision that may be introduced through numerical integration.  With respect to point 

(ii), we remark that confidence in the relative precisions of  casE t  and    5
E t  is essential, 

because the magnitudes of two signal fields must be compared on the same footing. 

In Equation 4.22, the ratio between the cascaded third-order and direct fifth-order signal 

fields is expressed in terms of the following products of auxiliary response functions, 
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Auxiliary response functions associated with the third-order polarization are 
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          3

1 , , ,m en gm L gk gm el gm L

mnkl

i B n m n k l k l m I I I       (A.4) 

and 

          3

2 , , ,m gm en L gm gk el gk L

mnkl

i B n m n k l m l k I I I      . (A.5) 

Each auxiliary response function involves a sum over dummy indices associated with vibrational 

energy levels of the ground ( m , k ,u ) and excited electronic states ( n , l , v ).  Each term is also 

weighted by a Boltzmann population, mB , and a product of vibrational overlap integrals, n m .  

The (frequency-domain) line shapes associated with electronic coherences are written as 

  ,

1
en gm L

L eg nm eg

I
i


  


   

 (A.6) 

whereas the (time-domain) vibrational coherence is given by 

      , expgk gm km vibI i         (A.7) 

The auxiliary response functions associated with the fifth-order polarization are 
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and 
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A.2. Anharmonic Excited State Potential Energy Surface  

The auxiliary response functions summarized in Section A.1 are parameterized using the 

empirical excited state potential energy surface developed by Ruhman
1
 (with  parameters for I3

-
 

in ethanol determined by Myers).
2
  The excited state potential energy surface is generated using 

surface C and Equation (5) in Reference
2
.  Anharmonic vibrational wavefunctions for the 

symmetric stretching coordinate are generated by computing derivatives of the excited state 

potential energy surface (along the slice with equal bond lengths) up to fourth-order and 

substituting them into the following vibrational Hamiltonian
3
 

 
 † † † † † † † †

3

† † † † † † † † † † † † †

4

2 1 3 3 3 3
2

4 6 4 6 12 6 3

H a a U a a a a a a a aa aaa a a

U a a a a a a a a a a aa a aaa aaaa a a a a aa


         

          

 (A.12) 

where 

 

0

1

! 2

j

j jj j j j

d V
U

dqj m  

 
  

 
. (A.13) 

We find that the excited state potential energy surface possesses lower curvature than the ground 

state ( =95 cm
-1

) and is also modestly anharmonic ( 3U =-1.5 cm
-1

 and 4U =0.1 cm
-1

).  

Anharmonic vibrational wavefunctions are obtained by diagonalizing the Hamiltonian in a basis 

of harmonic oscillators (up to the 20 vibrational quanta).
4
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The vibrational overlap integrals needed to evaluate the response functions are obtained 

using 

 nk

k

n m k m  (A.14) 

where nk  is the expansion coefficient for basis vector k  and excited state vibrational 

wavefunction, n .  The ground state potential energy surface is taken to be harmonic with a 

fundamental frequency of 112 cm
-1

.  We obtain a dimensionless potential energy displacement of 

8.8 based on the 63.5-amu reduced mass
5
 and 0.66-angstrom increase in each I-I bond length in 

the excited state.
1
  Myers found that a dimensionless displacement near 7.0 produces a best-fit to 

the total emission spectrum using a modified harmonic model.
2
  These estimations define the 

region of parameter space relevant to the present model. 

A.3. Modeling Concentration Dependence of Direct and Cascaded Responses 

In the present experiments, attenuation of the incoming laser beams and absorption of the 

signal field must be accounted for in order to establish how the direct fifth-order and cascaded 

signal intensities vary with concentration.  In this section, we obtain formulas that describe 

general behaviors in order to interpret the measured signals.  The direct fifth-order signal 

intensity at position x  in the sample is subject to the relation, 

 
       

2
5 52 5, ,LI x C C I x C  (A.15) 

where C  is concentration, 
 5

  is the susceptibility, and  ,LI x C  is the laser intensity.  The 

direct fifth-order signal intensity accumulated at the exit of the sample is obtained by integrating 

over x  
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       5 2

0

exp 5 exp

a

I C C dx Cx C x a       (A.16) 

where a  is the path length,   is the linear absorption coefficient (product of  ln 10  and the 

molar extinction coefficient), and the first and second exponentials respectively represent 

attenuation of the incident laser beams and (exiting) signal beam.  The susceptibility can be 

removed from the proportionality in Equation A.16 because it is independent of x . 

Treatment of the cascaded signal field must take into account accumulation of both the 

primary and secondary third-order signal intensities.  The primary four-wave mixing signal 

intensity scales according to  3 ,LI x C .  However, the intensity of the secondary four-wave 

mixing process depends on the product of  2 ,LI x C , which decreases exponential with x , and 

the intensity of the primary four-wave mixing signal (denoted as    3
,primaryI x C ), which increases 

in a (slightly) sub-quadratic fashion with x  at modest optical densities.  With consideration of 

these factors, the cascaded signal intensity is written as 

          32

0

exp 2 exp ,

a

cas primaryI C C dx Cx C x a I x C       (A.17) 

where the primary four-wave mixing signal intensity at position x  is given by 

 
       3 2

0

,   'exp 3 ' exp '

x

primaryI x C C dx Cx C x a      . (A.18) 
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A.4. Third-Harmonic Generation via Filamentation in Neon at High Pressures 

The cell used for third-harmonic generation is constructed from stainless steel 2.75” 

ConFlat (CF) and ¼” Swagelok components, chosen for their abilities to sustain high pressure 

differentials and the secure nature of the seals between parts.  A 5” long CF full nipple (Kurt J. 

Lesker:  FN-0275) is affixed to one end of a 5” long CF tee (Kurt J. Lesker:  T-0275).  CF 

viewport flanges containing 5-mm thick, uncoated fused silica windows (Thorlabs: VPCH412) 

are installed in the ends of the nipples and tees to allow passage of the laser beam through the 

cell.  The nipples provide distance for the laser beams to focus and defocus inside the cell, 

thereby avoiding damage of the entrance and exit windows.  A 2.75” CF to ¼” Swagelok tube 

fitting adaptor (Kurt J. Lesker:  F0275X4SWG) is attached to the third port of the CF tee for gas 

to enter and exit the cell via ¼” nylon hose (McMaster Carr:  9685T3) secured to the Swagelok 

tube fitting.  Nylon hose is used because of its relatively high pressure rating (54.5 atm at 24°C).  

CF components are joined with high-purity, oxygen free Cu gaskets (Kurt J. Lesker:  GA-0275) 

and stainless steel ¼”-28, 12-point socket cap screws bolted into nuts and washers (Kurt J. 

Lesker:  TBS25028212).  The cell has a small leak rate (<0.1 atm/hour at 35 atm) despite 

employing parts that are not specified for operation at positive pressures. 

Pulses generated in filaments may exhibit undesired temporal structure, particularly at 

higher plasma densities.  In earlier work, we found that suitable pulses can be obtained in argon 

only at fairly low pressures (below 2 atm).
6,7

  Higher neon pressures may be employed because 

the ionization potential of neon (21.6 eV) is lower than that of argon (15.8 eV).  Therefore, 

multi-photon ionization processes associated with plasma formation are less problematic in neon. 

The pulse generation mechanism is quite complicated.
8
  We developed a procedure to 
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characterize the third-harmonic pulses inside the high-pressure cell in order to better understand 

the capabilities of the setup. 

 

Figure A.1.  Cell used for third-harmonic generation via filamentation in neon. 

 

Third-harmonic pulses generated in the cell were directed into a transient grating 

frequency resolved optical gating (TG-FROG) apparatus without compression; bypassing a 

compressor makes it more straightforward to compare measurements conducted at a wide variety 

of pressures (and bandwidths).  TG-FROG measurements were conducted using a 0.25-mm-thick 

fused silica window as a nonlinear medium, and the spectrograms were analyzed with 

commercial software (Femtosoft FROG 3.2).  The software yielded the intensity and spectral 

phase of the laser pulse at the sample position.  The spectral phase of the pulse before it exits the 
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cell (i.e. inside the filament) was obtained by subtracting the second and third-order dispersion 

coefficients associated with all transmissive optics encountered after the filament. 

 

Figure A.2.  (a) Spectrum of third-harmonic measured as a function of neon pressure.  (b) 

Intensity of third-harmonic field inside the high-pressure cell determined using the TG-FROG 

measurements described in the text. 

 

The results presented in Figure A.2 demonstrate that the temporal profile of the third-

harmonic varies little as the neon pressure (and plasma density) increases.  Notably, the spectral 

width of the laser pulse expands as the pressure increases, whereas the temporal width remains 

fairly constant.  Of course, the temporal width should decrease as the bandwidth increases if the 

pulses are transform-limited.  Thus, our data indicate that dispersion is accumulated as the 

pressure increases.  Figure A.2b is understood by considering that the growth in the spectral 

width originates in the nonlinearity of the refractive index, which modulates the phase of the 

electric field.  The bandwidth expands because of both self-phase modulation (a single-beam 

effect) and cross-phase modulation (effect related to a pair of beams) due to the multi-color 

nature of the filament.
8
  Such phase modulation of the electric field is accompanied by positive 
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group delay dispersion (GDD) in which the lower-frequency portion of the pulse precedes the 

higher-frequency portion.  Such an increase in the GDD at higher pressures is consistent with the 

insensitivity of the temporal profile to pressure observed in Figure A.2b. 

 

Figure A.3.  (a) Spectrum of third-harmonic measured as a function of argon pressure.  

Compared to pulses generated in neon, the spectrum of the third-harmonic varies significantly 

between the full beam and the central 25%. Examples are shown for (b) 3 atm and (c) 5 atm. 

 

In Figure A.3, we present data acquired for third-harmonic pulses produced in argon gas.  

The spectral width increases more steeply with pressure in argon than it does in neon because of 

the larger nonlinearity in the refractive index.  However, the third-harmonic pulses produced in 

argon are not suitable for experiments because the spectrum of the laser pulse is far from 

spatially uniform, particularly at higher pressures.  Figures A.3b and A.3c show spectra 

measured for the full beam and central 25% (defined as 25% of the intensity).  This spatial 

heterogeneity in the beam makes it impossible to compress the pulses to short durations.  

Attempts were made to conduct experiments by filtering the central portion of the beam at 5 atm.  

This approach was ineffective because of instability in the spatio-temporal properties of the laser 

beam (e.g. the bandwidth and spatial profile fluctuated significantly). 
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A.5. Fifth-Order Cumulant Expansion  

We begin by considering the general six-point correlation function for the dipole 

operator, 
geV  

              1 2 3 4 5 6 1 2 3 4 5 6
ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ, , , , , ge eg ge eg ge egF V V V V V V            . (A.19) 

Response functions are obtained by carrying out a cumulant expansion on the six-point 

correlation function    
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where eg  is the mean energy gap at the equilibrium geometry of the ground state.  Here, the 

points in time at which field-matter interactions occur are denoted as ˆ
j  ; this notation is used to 

distinguish these times from experimentally controlled delays, 
1  and 

2 .  For a harmonic bath, 

cumulants higher than second order vanish and the correlation function is given by 
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Each of the Feynman diagrams in Figure A.4 correspond to different time-ordering of the field-

matter interactions.  Written in terms of the time intervals, 
it , we have the following terms. 
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Figure A.4.  Double-sided Feynman diagrams for all 16 terms in the fifth-order response 

function for a two-level system. Terms R1-R4 dominate the response in the present application to 

I3
-
. 
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A.6. Reproducibility of Real and Imaginary Signal Components 

As discussed in Section 4.4.2, the real and imaginary parts of the signal are separated 

based on (i) dominance of vibrational oscillations in the real signal component and (ii) 

dominance of an undesired four-wave mixing signal at 
1 >0.1 ps in the imaginary signal 

component.  Notably, the choice of which part of the signal is real and imaginary is arbitrary, 

because the two components can be reversed along with their associated information content (i.e. 

a shift in the signal phase of +/-π/2 is arbitrary).  This section presents additional data sets (in 

addition to Figure 4.8) to demonstrate that the procedure used to separate the signal components 

is robust. 

Figure A.5 compares the real and imaginary signal components for a different set of data 

than that shown in Chapter 4.  A coherence spike dominates the imaginary part of the signal 

when all pulses are overlapped in the sample, whereas the vibrational recurrences are readily 

apparent in the real component.  Two-dimensional Fourier transformation of the imaginary part 

of the signal yields a low-quality Raman spectrum, because the amplitudes of the vibrational 

recurrences are so small in this signal component.  In all cases, Fourier transforms are carried out 

on the data at 
1 >0.1 ps to eliminate undesired effects associated with pulse overlap.  Figures 

A.6 and A.7 present additional data sets in which these aspects of the signal persist. 

Vibrational amplitude must dominate the absorptive signal component because the mode 

frequency is much smaller than the absorbance line width.  Figure A.8 shows that this general 

insight is consistent with our model.  For this reason, we suggest that the real signal component 

is primarily absorptive.  The dominance of the coherence spike in the imaginary signal 

component is also consistent with this interpretation.  Notably, this phasing procedure is 
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implemented only to reduce noise in the 2D spectrum.  This phasing is not implemented with the 

goal of suppressing third-order cascades.  Third-order cascades are 180º out-of-phase with the 

direct fifth-order signal under resonant conditions (not 90º as in off-resonant 2D Raman 

spectroscopy). 

 

Figure A.5.  (a) Real and (b) imaginary parts of signal field.  Absorptive and dispersive 

responses dominate the real and imaginary signal components, respectively.  Vibrational 

recurrences with large amplitudes are found in the real signal component shown in panel (a).  

Absolute values of Fourier transforms for (c) real and (d) imaginary signal components are 

shown below the respective time-domain data.  The non-oscillatory part of the signal has been 

subtracted from panels (a) and (b), so that the Raman response can be more clearly visualized. 
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Figure A.6.  Same as Figure A.5 for an experiment conducted on a different day. 
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Figure A.7.  Same as Figure A.5 for an experiment conducted on a different day. 
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Figure A.8.  Absolute values of 2D Raman spectra computed for (a) absorptive and (b) 

dispersive signal components using the parameters in Table 4.1 and the model described in 

Section 4.3 of Chapter 4.  Vibrational amplitude is dominant in the absorptive signal component 

because the 112-cm
-1

 mode frequency is small compared to the 4000-cm
-1

 absorbance line width.  

These calculations suggest that the real signal component defined in Figures A.5-A.7 is primarily 

absorptive.  The large (non-resonant) coherence spike observed in the imaginary signal 

component is also consistent with this interpretation of the signal phase. 

 

A.7. Four-Wave Mixing Response in Region of Pulse Overlap 

A four-wave mixing signal is radiated in the direction of the fifth-order signal when 
1  < 

100 fs and 
2  < 100 fs (i.e. when the laser pulses are overlapped in the sample).  This section 

discusses why these nonlinearities do not contribute at greater delay times.  Figure A.9 defines 

the relevant BOXCARS geometry and presents diagrams associated with four sequences of field-

matter interactions.  Of course, additional diagrams that evolve in excited state populations in the 

interval between the second and third field-matter interactions may contribute at short delay 

times because it cannot be assumed that solvation, internal conversion, and/or photodissociation 
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shift the response to lower frequencies on this time scale.  Such nonlinearities will also vanish 

when 
1  > 100 fs and 

2  > 100 fs, so this is not relevant to the present discussion. 

The undesired four-wave mixing responses vanish at 
1  < 100 fs and 

2  < 100 fs because 

the pulses that induce the transient grating (first two field-matter interactions) are not members 

of the same pulse pair.  The four-wave mixing signal contributes only when either pulse 2 or 

pulse 3 is overlapped with pulse 5 because electronic dephasing in the first time interval between 

field-matter interactions is much shorter than the pulse duration (the response of the medium can 

be regarded as quasi-instantaneous because of the broad absorbance line width).  Straightforward 

experimental tests can be used to confirm this understanding of the four-wave mixing response.  

At 
1 =0 fs and 

2  = 0 fs, we observe less than 5% change in the overall signal strength when 

pulses 1 and/or 4 are blocked.  At 
1 >100 fs and 

2  >100 fs, the signal completely vanishes 

when pulses 1 and/or 4 are blocked. 

Contributions from the four-wave mixing response at 
1 <100 fs and 

2  <100 fs can be 

eliminated by chopping either pulse 1 or pulse 4.  Notably, several other successful fifth-order 

spectroscopies modulate incoming beams to remove direct third-order contributions (e.g. FSRS, 

RAPTORS, PORS).
9-12

  An elegant aspect of Berg’s laser beam geometry
13

 is that the undesired 

four-wave mixing response contributes only in an uninteresting delay range, which is dominated 

by a “coherence spike”.
14-16

  We do not modulate the beams because we are not interested in the 

response during the region of pulse overlap. 
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Figure A.9.  Feynman diagrams associated with four field-matter interaction sequences that 

contribute to the four-wave mixing response when 
1  < 100 fs and 

2  < 100 fs.  For each of the 

four Feynman diagrams, the transient grating induced by the first two field-matter interactions 

does not involve members of the same pulse pair. 

 

A.8. Derivation of Response Functions Used to Compute Ratio in Cascaded Third-Order 

and Direct Fifth-Order Signal Strengths 

 

A.8.1. Third- and Fifth-Order Response Functions 

In this section, we present third and fifth order response functions that support an 

analytical approach to computing cascaded third-order and direct fifth-order signal fields.  The 

Feynman diagrams in Figure A.10 include dummy indices for vibrational levels ( m , n , k , l ,u , 

and v ) in addition to indices for the ground and excited electronic states ( g  and e ).  The 

indices ( m , k , u ) belong to the ground state, whereas ( n , l , v ) are associated with the excited 
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state.  As explained in Section 4.3.4, it is assumed that ground state wavepacket motions 

dominate the response of I3
-
 in the deep UV.

1,2
  Response functions are written in the Condon 

approximation, where the integral over electronic and nuclear degrees of freedom in the 

transition dipole is separated into a product.  For example, an interaction that couples vibrational 

level m  on the ground electronic state and vibrational level n  on the excited electronic state 

contributes the product 
eg n m  to the response function, where 

eg  is the electronic transition 

dipole and n m  is a vibrational overlap integral.  With Lorentzian line shapes, the response 

functions corresponding to the fifth-order diagrams in the first row of Figure A.10 are written 

below. 
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The propagation functions corresponding to vibronic (in 
1t , 

3t , or 
5t ) and purely vibrational 

coherences (in 
2t  or 

4t ) are respectively given by
17
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    , expem gn eg mn egI t t i t i t t         (A.42) 

and 

      , expgm gn mn vibI t t i t t     (A.43) 

where  t  is a Heaviside step function. Equation A.42 assumes that electronic dephasing is fast 

compared to vibrational dephasing (i.e. 
eg >>

vib ). 

 

Figure A.10.  Feynman diagrams associated with response functions written in a sum-over-states 

representation.  The indices g and e refer to the ground and excited electronic states.  Each term 

involves a sum over dummy indices associated with vibrational energy levels of the ground ( m ,

k ,u ) and excited electronic states ( n , l , v ).  Diagrams in the first and second rows correspond to 

ground state wavepacket motions at fifth and third-order in perturbation theory, respectively. 
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We convolute the response functions and electric fields to obtain the four components of 

the fifth-order polarization. For the 
1R  term, the dominant component of the fifth-order 

polarization is given by 
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5 (5) *
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      (A.44) 

where N  is the number density.  Integral evaluation is facilitated by recognizing that our 

experimental conditions are consistent with Mukamel’s “snapshot limit” in which the pulse 

durations are long compared to electronic dephasing but short compared to the vibrational 

period.  Under these conditions we write the electric field function as 

  ( ) expj L LE t i t    (A.45) 

where it is assumed that all five pulses ( j =1-5) have the same (real) electric field amplitude, 
L , 

and carrier frequency, 
L .  The polarization component, 

 5

1 ( )P t , can now be rewritten as 

 

     

 

5

5 (5)

1 5 4 3 2 1 1 5 4 3 2 1

0 0 0 0 0

1 3 5

( ) exp , , , ,

exp

L
L

L L L

i
P t N i t dt dt dt dt dt R t t t t t

i t i t i t




  

    
 

  
 

  

     . (A.46) 

The time intervals, 
2t  and 

4t , can be replaced with the experimentally controlled delay times, 
1  

and 
2 , when the pulse duration is short compared to the vibrational period.

17
  We then have 
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Evaluation of the three remaining integrals yields 
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where the frequency domain line shape corresponding to the vibronic coherences is given by
17
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Under the same approximations, expressions for the three remaining fifth-order polarization 

components are written as 
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and 
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The third-order response functions needed to compute the cascaded nonlinearities can be 

obtained in a similar way.  Third-order diagrams associated with ground state wavepacket 

motions are presented in the second row of Figure A.10.  Response functions corresponding to 

these diagrams can be written as 

        
4

1 3 2 1 , 1 , 2 , 3, , eg m en gm gk gm el gm

mnkl

F t t t B n m n k l k l m I t I t I t   (A.53) 

and 

        
4

2 3 2 1 , 1 , 2 , 3, , eg m gm en gm gk el gk

mnkl

F t t t B n m n k l m l k I t I t I t  . (A.54) 

The polarization component associated with term,  1 3 2 1, ,F t t t , is given by 
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   . (A.55) 

Substitution of Equations A.45 and A.53 in Equation A.55 yields 
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 (A.56) 

where (as above) the integral over 
2t  has been eliminated under the approximation that the pulse 

duration is short compared to the vibrational period.
17

  Equation A.56 can be rewritten as 
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Using the same procedure, the polarization component associated with  2 3 2 1, ,F t t t  is given by  
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Note that the factor of i  appears in 
 3

1 1( , )P t  and  
 3

2 1( , )P t  because 

      , ,

0

expen gm L en gmI i dtI t i t 


   . (A.59) 

A.8.2. Third and Fifth-Order Auxiliary Response Functions 

Formulas for the signal strengths can be made more transparent if auxiliary response 

functions are employed.  The general auxiliary response function for the j -th fifth-order 

polarization component is written as 
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For completeness, we write the four auxiliary response functions explicitly. 
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Similarly, the auxiliary response functions associated with the third-order polarization 

components are given by 
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For completeness, we write the third-order auxiliary response functions explicitly as 

          3

1 , , ,m en gm L gk gm el gm L

mnkl

i B n m n k l k l m I I I       (A.66) 

and 

          3

2 , , ,m gm en L gm gk el gk L

mnkl

i B n m n k l m l k I I I      . (A.67) 

A.8.3. Computing Relative Cascaded and Direct Signal Magnitudes 

In this section we derive Equation 4.22 in Chapter 4.  The fifth-order signal field is given 

by 
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   (A.68) 

which simply adds the phase mismatch function,    f sinc / 2j j jk l k l   , to Equation 4.6 in 

Chapter 4.  We consider only the phase matching efficiency in this work and do not treat the 

phase accumulated in the medium because phase is not leveraged to achieve contrast between the 

direct fifth-order signal and the third-order cascade.  We next consider fields radiated by the two 

types of cascades.  Figures A.11 and A.12 present Feynman diagrams for the two classes of 

sequential cascades (i.e. total of 4 types of diagrams in each class).  The field radiated by the 

sequential cascades can be written as 
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where the prefactor is squared to account for the fields radiated by molecules A and B (see 

Figures A.11 and A.12).  Complex exponential functions,  exp Li t , appear in Equation A.69, 

because the field is radiated near 
L  (not at the second harmonic).  Similarly, Figures A.13 and 

A14 present Feynman diagrams for the two classes of parallel cascades (i.e. total of 4 types of 

diagrams for each class).  The total field radiated by parallel cascades can be written as 

  
     

   

2
2 2

3 3

1 2 1 2 2

1 1

1 1 2 2

2
( , , ) exp ( , ) ( , )

f f

t
par L

t

par par par par

i l
E t i t P t P t

n c

k l k l

 
 

 
     

  

 
   
 

    
 


 (A.70) 
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where the prefactor is again squared to account for the fields radiated by molecules A and B (see 

Figures A.13 and A.14).  Finally, the total field radiated by cascaded nonlinearities is given by 

the sum 

      cas seq parE t E t E t  . (A.71) 

The ratio between  casE t  and    5
E t  is the key quantity governing the feasibility of the 

present experiment. 
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 (A.72) 

Here the factor of 7/25 comes from the orientational average for isotropic systems with all-

parallel electric field polarizations.
18

  Substitution of the auxiliary response functions into 

Equation A.72 yields 
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As in the work of Zanni and co-workers,
18

 multiplication of Equation A.73 by Coulomb’s 

constant produces the unitless ratio 
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where 
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and 
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Figure A.11.  Summary of four sequential cascades with the intermediate phase matching 

condition 
1 2 3k k k   on molecule A.  The field radiated by molecule A (blue arrow) induces one 

of the first two field-matter interactions on molecule B (blue arrow).  Feynman diagrams for 

molecules A and B involve sums over independent dummy indices for vibrational levels (m, n, k, 

l). 
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Figure A.12.  Summary of four sequential cascades with the intermediate phase matching 

condition, 
1 2 4k k k   .  The field radiated by molecule A (blue arrow) induces one of the first 

two field-matter interactions on molecule B (blue arrow).  Changing the signs of the wavevectors 

for pulses 1, 2, and 4 translates into complex conjugation of the term in the response function 

associated with molecule A.  Feynman diagrams for molecules A and B involve sums over 

independent dummy indices for vibrational levels (m, n, k, l). 
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Figure A.13.  Summary of parallel cascades with the intermediate phase matching condition 

1 2 5k k k   on molecule A.  The field radiated by molecule A (blue arrow) induces the third 

field-matter interaction on molecule B (blue arrow).  Feynman diagrams for molecules A and B 

involve sums over independent dummy indices for vibrational levels (m, n, k, l). 
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Figure A.14.  Summary of parallel cascades with the intermediate phase matching condition 

3 4 5k k k   on molecule A.  The field radiated by molecule A (blue arrow) induces the third 

field-matter interaction on molecule B (blue arrow).  Feynman diagrams for molecules A and B 

involve sums over independent dummy indices for vibrational levels (m, n, k, l). 

 

A.8.4. Magnitude of Prefactor 

This section explicitly outlines the calculation of the prefactor for Equation 4.22 in 

Chapter 4.  For clarity, we show all unit conversion explicitly and break the calculation into 

several steps.  First, we compute the product of experimentally controlled parameters in the 

numerator and divide by the speed of light to simplify the units. 
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The product of constants in the denominator is 
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For convenience, we use units of Debye for the transition dipole 
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where the 8.8-D magnitude of the transition dipole is taken from the fit of Johnson and Myers.
19

  

Finally, we combine all parts of the prefactor to obtain 
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A.9. 2D Spectra for Sequential Cascades Simulated Using Measured Third-Order Signals 

 

Figure A.15.  Absolute values of two-dimensional Raman spectra (a) measured by six-wave 

mixing and (b) the sequential cascade computed using an experimental third-order transient 

grating measurement.  The 2D spectrum associated with the parallel cascade is generated by two-

dimensional Fourier transformation of the product,    3

1S     3

2S  , where    3
S   is an 

experimental transient grating signal field. 
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A.10. Tables of Phase-Matching Efficiencies for Three and Four-Beam Geometries  

Table A.1.  Calculated Wavevector Mismatches for Direct and Cascaded Nonlinearities in 

Geometry Shown in Figure 4.17a 

 

Wavevector of 

Intermediate 

Nonlinearity 
Ak  (cm

-1
)

 
Bk  (cm

-1
)

 (a),(b)   f j jk l  

1 2 3 4 5k k k k k     

(Direct 5
th
-Order 

Signal) 

-470 ------------------- -0.008 

1 2 3k k k   (Sequential 

Cascade #1) 
-235 -470 0.410

-3
 

2 1 4k k k   (Sequential 

Cascade #2) 
-235 -470 0.710

-3
 

1 2 5k k k   (Parallel 

Cascade #1) 
-470 -470 0.610

-4
 

3 4 5k k k   (Parallel 

Cascade #2) 
-470 -470 0.710

-4
 

 
(a)

The path length is 300 μm. 
(b) 

Direct and cascaded signal generation efficiencies are computed using  sinc / 2Ak l  and 

   sinc / 2 sinc / 2A Bk l k l  , respectively. 
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Table A.2.  Calculated Wavevector Mismatches for Direct and Cascaded Nonlinearities in 

Geometry Shown in Figure 4.17b 

 

Wavevector of 

Intermediate 

Nonlinearity 
Ak  (cm

-1
)

 
Bk  (cm

-1
)

 (a),(b)
   f j jk l  

1 2 3 4 5k k k k k     

(Direct 5
th
-Order 

Signal) 

-245 ------------------- -0.070 

1 2 3k k k   (Sequential 

Cascade #1) 
-470 -245 0.001 

2 1 4k k k   (Sequential 

Cascade #2) 
-695 -245 -0.002 

1 2 5k k k   (Parallel 

Cascade #1) 
-470 -245 0.0006 

3 4 5k k k   (Parallel 

Cascade #2) 
-245 -690 -0.002 

 
(a)

The path length is 300 μm. 
(b) 

Direct and cascaded signal generation efficiencies are computed using  sinc / 2Ak l  and 

   sinc / 2 sinc / 2A Bk l k l  , respectively. 
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Table A.3.  Calculated Wavevector Mismatches for Direct and Cascaded Nonlinearities in 

Geometry Shown in Figure 4.17c 

 

Wavevector of 

Intermediate 

Nonlinearity 
Ak  (cm

-1
)

 
Bk  (cm

-1
)

 (a),(b)
   f j jk l  

1 2 3 4 5k k k k k     

(Direct 5
th
-Order 

Signal) 

-10 ------------------- 0.96 

1 2 3k k k   (Sequential 

Cascade #1) 
-470 -10 -0.007 

2 1 4k k k   (Sequential 

Cascade #2) 
-695 -10 0.029 

1 2 5k k k   (Parallel 

Cascade #1) 
-235 -10 -0.086 

3 4 5k k k   (Parallel 

Cascade #2) 
-10 -270 -0.017 

 
(a)

The path length is 300 μm. 
(b) 

Direct and cascaded signal generation efficiencies are computed using  sinc / 2Ak l  and 

   sinc / 2 sinc / 2A Bk l k l  , respectively. 
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Table A.4.  Calculated Wavevector Mismatches for Direct and Cascaded Nonlinearities in the 

Three-Beam Pump-Repump-Probe Geometry (Data in Figure 4.19) 

 

Wavevector of 

Intermediate 

Nonlinearity 
Ak  (cm

-1
)

 
Bk  (cm

-1
)

 (a),(b)
   f j jk l  

1 2 3 4 5k k k k k     

(Direct 5
th
-Order 

Signal) 

0 ------------------- 1 

1 2 3k k k   (Sequential 

Cascade #1) 
-235 0 -0.090 

2 1 4k k k   (Sequential 

Cascade #2) 
-235 0 -0.090 

1 2 5k k k   (Parallel 

Cascade #1) 
0 0 1 

3 4 5k k k   (Parallel 

Cascade #2) 
0 0 1 

 
(a)

The path length is 300 μm. 
(b) 

Direct and cascaded signal generation efficiencies are computed using  sinc / 2Ak l  and 

   sinc / 2 sinc / 2A Bk l k l  , respectively. 
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APPENDIX B:  SUPPLEMENT TO “ELUCIDATION OF REACTIVE WAVEPACKETS 

BY TWO-DIMENSIONAL RESONANCE RAMAN SPECTROSCOPY” 

 

B.1. Vibrational Hamiltonian  

The present model assumes that both triiodide and diiodide possess two electronic levels 

and one nuclear coordinate whose potential energy minimum is displaced between the ground 

and excited electronic states.  The rationale behind the model is discussed in Section 5.2.1.  The 

anharmonic vibrational wavefunctions for the Franck-Condon active bond stretching mode of 

diiodide and the symmetric stretching coordinate of triiodide are generated using a Hamiltonian 

with the following form
1
 

  , † † † † † † † †

3,2 1 3 3 3 3
2

vib
H a a U a a a a a a a aa aaa a a



 


           (B.1) 

where 

 
3

3, 33 3 3 3
0

1

3! 2

d V
U

dqm


 

 
  

 
. (B.2) 

The wavefunctions are obtained by diagonalizing this Hamiltonian in a basis set of harmonic 

oscillators that includes states with up to the 40 vibrational quanta.  Parameters of the vibrational 

Hamiltonian are given in Table 5.1.  We use a notation in which   represents the molecule ( r  

for triiodide or p  for diiodide) and an asterisk indicates an electronically excited state. 

The vibrational overlap integrals used to evaluate the response functions of diiodide are 

obtained using 

 
nk mj

jk

n m k j   (B.3) 
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where 
nk  is the expansion coefficient for harmonic basis vector, k , and the anharmonic excited 

state vibrational wavefunction, n .  Vibrational overlap integrals of triiodide are given by a 

different formula 

 nk

k

n m k m  (B.4) 

because the ground and excited states are taken to be harmonic and anharmonic, respectively 

(see discussion in Section 5.2).  In order to evaluate the overlap integrals, we assume a 

dimensionless displacement of 7.0 based on spontaneous Raman measurements for triiodide
2
 and 

our earlier 2DRR study.
3
  A displacement of 7.0 also produces an excited state potential energy 

gradient of 225 eV/pm in diiodide which is identical to that associated with a previously 

employed exponential surface at a displacement of only 9 pm from the Franck-Condon 

geometry.
4,5

  As discussed in Section 5.2.1, this gradient is the key quantity that must be 

reproduced by the present model, because electronic dephasing is fast compared to the 

vibrational period.
6
  For this reason, the spectroscopic signals investigated in this work are 

insensitive to features of the excited state potential energy surface that are displaced from the 

Franck-Condon geometry. 

B.2. Two-Dimensional Resonance Raman Signal Components 

The Feynman diagrams presented in Figure 5.2 include dummy indices for vibrational 

levels ( m , n , j , k , l ,u , v , w ) associated with the ground and excited electronic states ( r  and *r  

for triiodide, p  and *p  for diiodide).  Response functions are written in the Condon 

approximation, where the integral over electronic and nuclear degrees of freedom in the 

transition dipole is separated into a product of two integrals.  For example, an interaction that 
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couples vibrational level m  in the ground electronic state of the reactant and vibrational level n  

in the excited electronic state of the reactant contributes the product, 
*r r n m , to the response 

function, where 
*r r  is the electronic transition dipole and n m  is a vibrational overlap 

integral.  We use a notation in which the excited state vibrational energy level is always written 

in the bra.
7
  

The first polarization component is given in Equation 5.3.  The remaining 11 polarization 

components, which are derived in Section B.3, are given by 
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and 
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In the above polarization components, laser pulses with the subscripts UV and VIS are taken to 

interact with triiodide and diiodide, respectively. 
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For convenience, we further group the terms into three classes of signal fields under the 

assumption of perfect phase-matching conditions 
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Here, the two subscripts of the signal fields represent sensitivity to the triiodide reactant 

(subscript r ) and diiodide product (subscript p ) in the two frequency dimensions, 1  and 2 . 
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Figure B.1.    Fenyman diagrams associated with dominant 2DRR nonlinearities.  Blue and red 

arrows represent pulses resonant with triiodide and diiodide, respectively.  The indices r  and *r  

represent the ground and excited electronic states of the triiodide reactant, whereas p  and *p  

correspond to the diiodide photoproduct.  Vibrational levels associated with these electronic 

states are specified by dummy indices ( m , n , j , k , l ,u , v , w ).  Each row represents a different 

class of terms: (i) both dimensions correspond to triiodide in terms 1-4; (ii) both dimensions 

correspond to diiodide in terms 5-8; (iii) vibrational resonances of triiodide and diiodide appear 

in separate dimensions in terms 9-12.  The intervals shaded in blue represent a non-radiative 

transfer of vibronic coherence from triiodide to diiodide. 
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B.3. Derivation of Formula for the Direct Fifth-Order Signal Field 

The Feynman diagrams presented in Figure B.1 include dummy indices for vibrational 

levels ( m , n , j , k , l ,u , v , w ) associated with the ground and excited electronic states of the 

reactant ( r  and *r ) and product ( p  and *p ).  Response functions are written in the Condon 

approximation, where the integral over electronic and nuclear degrees of freedom in the 

transition dipole is separated into a product of integrals.  For example, an interaction that couples 

vibrational level m  in the ground electronic state of the reactant and vibrational level n  in the 

excited electronic state contributes the product, *r r n m , to the response function, where *r r  

is the electronic transition dipole of the reactant and n m  is a vibrational overlap integral.  We 

use a notation in which the index for the excited state vibrational energy level is always written 

in the bra.
7
 

Under the assumption that the photodissociation time scale is short compared to the 

vibrational period, the time interval, PDt , can be eliminated from consideration.  The response 

functions corresponding to the fifth-order diagrams in Figure B.1 can then be written as 
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In the above equations, the propagation functions corresponding to vibronic (in 
1t , 

3t , or 
5t ) and 

purely vibrational (in 
2t  or 

4t ) coherences are respectively given by
8
 

      * , * *expr m rn r r mn r rL t t i t i t t       (B.31) 

and 

      , exprm rn mn vibL t t i t t     (B.32) 

where  t  is a Heaviside step function.  It is assumed in Equation B.31 that electronic 

dephasing is much faster than vibrational dephasing (i.e.  *r r >> vib ). 

We next obtain the 12 components of the fifth-order polarization by convoluting the 

response functions with the external electric fields.  The component of the fifth-order 

polarization corresponding to the 
1R  term is given by 
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where N  is the number density and j  are the pulse delay times defined in Chapter 5.  Pulses 

with the subscripts UV and VIS are taken to interact with triiodide and diiodide, respectively.  

Attainment of analytic expressions is facilitated by use of double-sided exponential electric field 

envelopes 
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  ( ) expj j j jE t i t t     (B.34) 

where 
j  is the (real) electric field amplitude, 

j  is the HWHM spectral width, and 
j  is the 

carrier frequency of the laser pulse (the index, j , signifies either the “pump” or “probe”), which 

we take to be resonant with the triiodide reactant.  The polarization component, 
 5

1 ( )P t , can now 

be rewritten as 
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We use a “doorway wavepacket” to filter vibrational coherences with frequencies that exceed the 

bandwidth of the pump pulse.
8
  To this end, we introduce the change of variables, 1 2t t t     

and 2 4t t t    . The polarization component is then rewritten as 
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Here, we have assumed that (i) 2 1t   in order to carry out the integral over t  and (ii) the pulse 

durations are short compared to the delay times to make the upper limits of the integrals over t  

and t  infinite.  The time intervals, 1t  , 3t , and 5t , have also been removed from the arguments of 
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the laser pulses under the assumption that the pulse durations are long compared to the electronic 

dephasing time.  We next introduce the approximation, 
5t t , 
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and Fourier transform the expression with respect to 1 , 2 , and t .  Evaluation of the seven 

integrals in Equation B.37 yields 
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where the line shape of the electronic resonance is given by 
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The spectroscopic line shape associated with the doorway wavepacket is written as 
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We obtain the remaining 11 polarization components, given in Section B.2, by following the 

same procedure. 
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B.4. Dominance of the Direct 2DRR Response Over Third-Order Cascades 

Fifth-order coherent Raman spectroscopies conducted under off-resonant conditions are 

susceptible to artifacts known as cascades.
9-13

  A cascade is a sequence in which the four-wave 

mixing signal field generated by one molecule induces a four-wave mixing response on a second 

molecule.  The second molecule then radiates a signal field in the same direction as the fifth-

order signal of interest.  Cascades are problematic under off-resonant conditions, because they 

can be many orders of magnitude more intense than the direct fifth-order response.  It is thought 

that selection rules primarily govern this mismatch in signal intensities.
3,13,14

  That is, two-

quantum transitions involved in the direct fifth-order process are forbidden in harmonic systems 

when the polarizability scales linearly in the vibrational coordinate.  In contrast, third-order 

cascades are allowed in harmonic systems, which gives them a significant advantage over the 

fifth-order process.  Cascades require this difference in selection rules to dominate over the 

direct fifth-order response, because they are higher-order in the sense that they involve two more 

field-matter interactions than the direct process (i.e. this extra factor of the polarizability operator 

suppresses the relative intensity of the cascaded response). 

Cascades were ruled out in our previous all-UV 2DRR study of triiodide using control 

experiments based on the signal phase, concentration dependence of the signal intensity, and the 

relative phases of the vibrations detected in four and six-wave mixing signals.
3
  The direct 2DRR 

response should be even more dominant in the present study because lower-frequency laser 

beams are employed.  Moreover, the direct response is favored in the present experiments for the 

same reasons discussed at length in Chapter 4.  In pump-repump-probe experiments, inspection 

of the signal phase is a particularly convenient way to check for cascades, because third and 

fifth-order signals possess a readily detected sign difference (i.e. a 90º phase-shift is found under 



334 

electronically off-resonant conditions).
10,11

  In contrast, cascades have the same sign as the direct 

third-order response.  To illustrate this point, we present (third-order) pump-probe and (fifth-

order) pump-repump-probe signals acquired for triiodide in Figure B.2.  The two signals have 

opposite signs as expected for the direct response.  Compared to the all-UV approach taken in 

Chapter 4, the phase difference for vibrational motion is not straightforward to predict in the 

present two-color experiments because of sensitivity to the complex photodissociation process.  

Nonetheless, in Figure B.2b, we compare the third-order signal to a slice of the fifth-order signal 

in 
2  (at 1 =0) at a signal detection wavenumber of 20,000 cm

-1
.  The analysis carried out in 

Chapter 4 suggests that a phase shift near 180º is expected for the direct fifth-order response 

under these conditions.  This prediction is consistent with the measurement shown in Figure 

B.2b. 

Our work suggests that contributions from cascades will generally be negligible in 

systems such as triiodide, where the potential energy surface displacement is extremely large.
3
  

Franck-Condon activity eliminates the problematic selection rules found under off-resonant 

conditions (see Figure 4.14 in Chapter 4).  We emphasize that the direct response is not 

necessarily predicted to dominate in systems with modest mode displacements (i.e. 

dimensionless displacements below 1), which are typically found in larger molecules.  However, 

in our study of metmyoglobin (see Chapter 6), we still found that the direct fifth-order 

nonlinearity is at least 10 times larger than the cascaded response in dilute solution.
15

  It is worth 

noting that experiments in which the final four field-matter interactions are off-resonant with the 

equilibrium system are much less susceptible to cascades than our earlier all-resonant 

approaches.
3,15

  In such a two-color configuration, the fifth-order response will be fully 

(electronically) resonant, whereas one of the four-wave mixing responses involved in a cascade 
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must be (electronically) off-resonant (cf.,  Figure 5.7 or terms 5-8 in Figure 5.3). Pulse sequences 

in which the final four field-matter interactions are off-resonant with the equilibrium system are 

often used in other types of optical pump-Raman probe experiments.
16-21

 

 

Figure B.2.  Comparison of signal phases obtained for third-order (pump-probe) and fifth-order 

(pump-repump-probe) signals.  (a) Pump-probe (delay of 0.5 ps) and pump-repump-probe ( 1 =

2 =0.5 ps) signals have similar line shapes but opposite signs.  This sign-difference suggests that 

the pump-repump-probe signal is dominated by the desired fifth-order nonlinearity (i.e. not third-

order cascades).  (b) Oscillations in pump-probe and pump-repump-probe signals are compared 

via signal detection at 20,000 cm
-1

.  This is a slice of the pump-repump-probe signal in 2  with 

the delay, 1 , fixed at 0 ps.  A relative phase-shift near 180º suggests that the oscillatory 

component of the pump-repump-probe signal is dominated by the direct fifth order nonlinearity. 
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APPENDIX C:  SUPPLEMENT TO “FEMTOSECOND STIMULATED RAMAN 

SPECTROSCOPY BY SIX-WAVE MIXING” 

 

C.1. Distinguishing the Broadband and FSRS Responses 

The present experiments must contend with an intense broadband (pump-repump-probe) 

response because all laser pulses are electronically resonant with the Soret band.  We suppress 

this broadband response by introducing a delay between the two Raman pump pulses.  This 

enforces the desired order of field-matter interactions; the final interaction occurs with the 

Raman pump and Stokes pulses in the FSRS and pump-repump-probe nonlinearities, 

respectively. 

Figure C.1 compares FSRS signals acquired with 2 = 0 and 290 fs.  The types of terms in 

the response function responsible for both signal components are also presented.  The FSRS 

resonances are not visible when 2 = 0 fs because of the dominant pump-repump-probe response.  

Notably, such a delay between Raman pump interactions cannot be achieved in a traditional 

three-beam geometry.  The measurement obtained with 2 = 0 fs reflects the ratio between the 

FSRS and broadband responses that would be observed in a three-beam geometry with the same 

laser pulses. 
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Figure C.1.  (a) Examples of Feynman diagrams associated with the (desired) FSRS and 

(undesired) broadband responses.  The indices, g  and e , represent the ground and excited 

electronic states, whereas dummy indices ( m , n , k , l , u , and v ) denote vibrational levels.  

Green, blue, and red arrows represent the actinic pump, Raman pump, and Stokes pulses, 

respectively.  (b) The relative contribution from the FSRS signal component increases as the 

delay, 2 , increases (the delay, 1 , is 0.5 ps here).  This effect can be understood by inspection of 

the Feynman diagrams, which suggest that the FSRS response will be preferred over the 

broadband pump-repump-probe response as the delay, 2 , increases. 

 

C.2. Derivation of Formula for Direct Fifth-Order Signal Field 

Here, we obtain formulas that can be used to compute the relative magnitudes of 

cascaded third-order and direct fifth-order signal fields.  The Feynman diagrams presented in 

Figure C.2 include dummy indices for vibrational levels ( m , n , k , l , u , and v ) associated with 

the ground and excited electronic states ( g  and e ).  Response functions are written in the 

Condon approximation, where the integral over electronic and nuclear degrees of freedom in the 

transition dipole is separated into a product of integrals.  For example, an interaction that couples 

vibrational level m  in the ground electronic state and vibrational level n  in the excited 

electronic state contributes the product eg n m  to the response function, where eg  is the 
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electronic transition dipole and n m  is a vibrational overlap integral.  We use a notation in 

which the excited state vibrational energy level is always written in the bra.
1
 

 

Figure C.2.  Feynman diagrams associated with the direct fifth-order response.  The indices, g  

and e , represent the ground and excited electronic states, whereas dummy indices ( m , n , k , l ,u , 

and v ) denote vibrational levels.  Green, blue, and red arrows represent the actinic pump, Raman 

pump, and Stokes pulses, respectively.  We restrict the response function to these 16 terms under 

the assumption that the signal is primarily resonance-enhanced by the Soret band. 

 

The response functions corresponding to the fifth-order diagrams in Figure C.2 can be 

written as 

 

   

         

65

1 1 2 3 4 5

, 1 , 2 , 3 , 4 , 5

, , , , eg m

mnkluv

en gm gk gm el gm gu gm ev gm

R t t t t t B n m n k l k l u v u v m

L t L t L t L t L t






, (C.1) 

 

   

         

65

2 1 2 3 4 5

, 1 , 2 , 3 , 4 , 5

, , , , eg m

mnkluv

en gm gk gm gk el gk gu ev gu

R t t t t t B n m n k l m l u v k v u

L t L t L t L t L t






, (C.2) 



341 

 

   

         

65

3 1 2 3 4 5

, 1 , 2 , 3 , 4 , 5

, , , , eg m

mnkluv

gm en gm gk gm el gm gu ev gu

R t t t t t B n m n k l k l u v m v u

L t L t L t L t L t






, (C.3) 

 

   

         

65

4 1 2 3 4 5

, 1 , 2 , 3 , 4 , 5

, , , , eg m

mnkluv

gm en gm gk el gk gu gk ev gk

R t t t t t B n m n k l m l u v u v k

L t L t L t L t L t






, (C.4) 

 

   

         

65

5 1 2 3 4 5

, 1 , 2 , 3 , 4 , 5

, , , , eg m

mnkluv

en gm en ek gl ek eu ek eu gv

R t t t t t B n m k m n l u l k v u v

L t L t L t L t L t






, (C.5) 

 

   

         

65

6 1 2 3 4 5

, 1 , 2 , 3 , 4 , 5

, , , , eg m

mnkluv

en gm en ek en gl en eu en gv

R t t t t t B n m k m k l u l u v n v

L t L t L t L t L t






, (C.6) 

 

   

         

65

7 1 2 3 4 5

, 1 , 2 , 3 , 4 , 5

, , , , eg m

mnkluv

gm en ek en gl en eu en eu gv

R t t t t t B n m k m k l u l n v u v

L t L t L t L t L t






, (C.7) 

 

   

         

65

8 1 2 3 4 5

, 1 , 2 , 3 , 4 , 5

, , , , eg m

mnkluv

gm en ek en ek gl ek eu ek gv

R t t t t t B n m k m n l u l u v k v

L t L t L t L t L t






, (C.8) 

 

   

         

65

9 1 2 3 4 5

, 1 , 2 , 3 , 4 , 5

, , , , eg m

mnkluv

en gm gk gm el gm el eu el gv

R t t t t t B n m n k l k u m u v l v

L t L t L t L t L t






, (C.9) 

 

   

         

65

10 1 2 3 4 5

, 1 , 2 , 3 , 4 , 5

, , , , eg m

mnkluv

en gm gk gm gk el eu el eu gv

R t t t t t B n m n k l m u k l v u v

L t L t L t L t L t






, (C.10) 



342 

 

   

         

65

11 1 2 3 4 5

, 1 , 2 , 3 , 4 , 5

, , , , eg m

mnkluv

gm en gm gk el gk el eu el gv

R t t t t t B n m n k l m u k u v l v

L t L t L t L t L t






, (C.11) 

 

   

         

65

12 1 2 3 4 5

, 1 , 2 , 3 , 4 , 5

, , , , eg m

mnkluv

gm en gm gk gm el eu el eu gv

R t t t t t B n m n k l k u m l v u v

L t L t L t L t L t






, (C.12) 

 

   

         

65

13 1 2 3 4 5

, 1 , 2 , 3 , 4 , 5

, , , , eg m

mnkluv

en gm en ek gl ek gl gu ev gu

R t t t t t B n m k m n l k u v l v u

L t L t L t L t L t






, (C.13) 

 

   

         

65

14 1 2 3 4 5

, 1 , 2 , 3 , 4 , 5

, , , , eg m

mnkluv

en gm en ek en gl gu gl ev gl

R t t t t t B n m k m k l n u v u v l

L t L t L t L t L t






, (C.14) 

 

   

         

65

15 1 2 3 4 5

, 1 , 2 , 3 , 4 , 5

, , , , eg m

mnkluv

gm en ek en gl en gl gu ev gu

R t t t t t B n m k m k l n u v l v u

L t L t L t L t L t






, (C.15) 

and 

 

   

         

65

16 1 2 3 4 5

, 1 , 2 , 3 , 4 , 5

, , , , eg m

mnkluv

gm en ek en ek gl gu gl ev gl

R t t t t t B n m k m n l k u v u v l

L t L t L t L t L t






. (C.16) 

In the above equations, the propagation functions corresponding to vibronic (in 1t , 3t , or 5t ) and 

purely vibrational (in 2t  or 4t ) coherences are respectively given by
2
 

      , expem gn eg mn egL t t i t i t t       (C.17) 

and 
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      , expgm gn mn vibL t t i t t     (C.18) 

where  t  is a Heaviside step function.  Equation C.17 assumes that electronic dephasing is 

fast compared to vibrational dephasing (i.e. 
eg >>

vib ). 

We next convolute the response functions and electric fields to obtain the 16 components 

of the fifth-order polarization.  The component of the fifth-order polarization corresponding to 

the 
1R  term is given by 
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where N  is the number density, j  are the pulse delay times defined in Chapter 6, and 

subscripts are used to specify the three types of laser pulses (actinic pump, Raman pump, and 

Stokes pulses).  Attainment of analytic expressions is facilitated by use of double-sided 

exponential electric field envelopes 

  ( ) expj j j jE t i t t     (C.20) 

where j  is the (real) electric field amplitude, j  is the HWHM spectral width, and j  is the 

carrier frequency.  The polarization component, 
 5

1 ( )P t , can now be rewritten as 
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The 65 fs actinic pump pulse employed in this work cannot initiate vibrational coherences in the 

high-frequency, bond-stretching modes in the delay, 1 .  Therefore, we use a “doorway 

wavepacket” to filter vibrational coherences with frequencies that exceed the bandwidth of the 

actinic pump pulse (i.e. this assumption is valid in the limit of non-overlapping actinic pump and 

Stokes pulses).
2
  We introduce the change of variables, 2 1t t   , to obtain 
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where we have eliminated 1t  , 3t , and 5t  from the arguments of the pulse envelopes under the 

assumption that the pulse durations are long compared to the electronic dephasing time.  Since 

we must carefully bookkeep on the phase-angle of the polarization, it should be noted that the 

infinite limits of the integral over t  yield a real Lorentzian function.  We next introduce the 

approximation 4 2t t    
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under the assumption that 
eg vib   .  Evaluation of the four integrals in Equation C.23 yields 
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where the line shape of the electronic resonance is given by 
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and the doorway wavepacket induced by the actinic pump pulse is written as 
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The polarization component, 
 5

1 ( )P t , must be Fourier transformed to the frequency domain to 

account for dispersed detection.  To this end, it is useful to consider the following integral 
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 (C.27) 

where t  is the frequency of light emission observed on the array detector.  Evaluation of the 

sum of integrals in Equation C.27 yields 
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where t RP   is the Raman shift.  The first and third terms in Equation C.28 cancel each other 

when 
vib RP    (i.e. a reasonable approximation for the present experimental conditions) and 

we obtain 
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Equation C.29 reveals a desirable line narrowing effect that originates in the difference between 

vib  and RP  in the denominator (i.e. the line widths of the vibrational resonances can be 

narrower than the bandwidth of the Raman pump).  The above equations can be combined to 

obtain 
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where 
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This expression sets 
St  equal to 

t  under the assumption of vibrationally resonant conditions, 

St RP um     and 
t RP um    .  We obtain the following 15 polarization components by 

following the same procedure 
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and 
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The direct fifth-order signal field is expressed in terms of these polarization components as 
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where the factor of 1/7 represents the orientational average for all-parallel electric field 

polarizations
3
; and the wavevector mismatch, 

 5

directk , is given for the five and four beam 

geometries in Tables C.1 and C.2. 
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 C.3. Derivation of Formula for Third-Order Cascaded Signal Field  

The third-order response functions needed to compute cascaded nonlinearities can be 

derived under the same approximations outlined above.  Feynman diagrams for third-order 

nonlinearities are presented in Figure C.3.  Response functions corresponding to these diagrams 

can be written as 
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Figure C.3.  Feynman diagrams associated with the direct third-order CSRS response.  The 

indices, g  and e , represent the ground and excited electronic states whereas dummy indices 
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( m , n , k , and l ) denote vibrational levels.  Blue and red arrows represent the Raman pump and 

Stokes pulses, respectively. 

C.3.1 Direct Coherent Stokes Raman Scattering (CSRS) Signal Field Obtained with the 

Phase Matching Condition k3 - k4 + k5 

 

We first consider the direct third-order CSRS signal field, which is compared to the direct 

fifth-order signal field in the four-beam geometry in Section 6.3.4 of Chapter 6.  The CSRS 

polarization component associated with the term,  1 1 2 3, ,F t t t , is given by 
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Application of the approximations and procedure outlined above yields 
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The polarization components for the three remaining terms are 
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and 



352 

 
 

     

4
2

3

4, 3

, , ,

( )
RP St eg

CSRS t m

mnkl

gm en RP gm gk t RP el gk t

N
P B n m n k l m l k

L J L

  


   

 

  

 . (C.58) 

The third-order CSRS signal field is given by 
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where the factor of 1/5 represents the orientational average for all-parallel electric field 

polarizations at third-order in perturbation theory.
4
 

C.3.2. Cascades with Intermediate Phase-Matching Conditions k1 – k2 + k5 and k3 - k4 + k5 

 

In this section, we obtain an expression for the signal field generated by third-order 

cascades with intermediate phase-matching conditions 1 2 5k k k   and 3 4 5k k k  , which we 

refer to as cascades 1 and 2, respectively.  Figures C.4 and C.5 display all terms in the response 

functions associated with these types of cascades.  The two processes essentially permute the 

type of nonlinearity that occurs on each molecule.  A pump-probe-like response precedes a 

CSRS process in cascade 1, whereas the opposite is true for cascade 2.  The polarization 

components for the CSRS process are given in Equations C.55-C.58.  Therefore, we must first 

derive equations related to the pump-probe response (actinic pump and Stokes probe). 

The pump-probe-like polarization component associated with the term,  1 1 2 3, ,F t t t , is 

given by 
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Application of the procedure used to derive the fifth-order polarization components in Section 

C.2 yields 
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Under the same approximations, the polarization components for the three remaining terms are 
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and 
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The total signal field generated by the two cascades can be written as 
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where the phase matching function is given by 
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where the factor of 1/25 represents the product of orientational averages for all-parallel electric 

field polarizations at third-order in perturbation theory.
4
  Wavevector mismatches, 

jAk  and 

jBk , associated with all direct and cascaded processes are given in Tables C.2-C.4.  In Tables 

C.2 and C.3 we consider the four and five-beam geometries employed in Chapter 6.  In Table 

C.4, calculations are also carried out for a hypothetical three-beam geometry in which the actinic 

and Raman pump pulses cross at 6.9º and are bisected by the Stokes beam (i.e., traditional 

FSRS). 
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Table C.1.  Parameters of Theoretical Model 

 

Parameter Value 

  / 2AP eg c    varied 

RP  
AP  

d  varied 

/vib c  10 cm
-1

 

/eg c  750 cm
-1

 

eg  8.8 D 

N  1.210
23

 m
-3

 

/ 2t c   23250 cm
-1

 

 tn   1.39 

l  0.22 mm 
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Table C.2.  Wavevector Mismatch in the Five-Beam Geometry 

 

Nonlinearity  n

directk  (cm
-1

) Ak   (cm
-1

) 
Bk   (cm

-1
) (a),(b)

Efficiency 

Direct Fifth-Order (FSRS) -215 ------ ------ 0.123 

Direct Third-Order 

(CSRS) 
-430 ------ ------ 0.050 

Cascade #1 (
1 2 5k k k   

intermediate) 
------ -18 -197 0.069 

Cascade #2 (
3 4 5k k k   

intermediate) 
------ -412 196 0.005 

 

(a)
 The efficiency is computed using 

 

sinc
2

n

directk l 
  
 

 and sinc sinc
2 2

A Bk l k l    
   
   

 for direct and  

cascaded processes, respectively.  
 (b)

 Path length, l , is 0.022 cm. 
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Table C.3.  Wavevector Mismatch in the Four-Beam Geometry 

 

Nonlinearity  n

directk  (cm
-1

) Ak   (cm
-1

) 
Bk   (cm

-1
) (a),(b)

Efficiency 

Direct Fifth-Order (FSRS) -198 ---------- ---------- 0.123 

Direct Third-Order 

(CSRS) 
-225 ---------- --------------- 0.128 

Cascade #1 (
1 2 5k k k   

intermediate) 
---------- -215 -215 0.015 

Cascade #2 (
3 4 5k k k   

intermediate) 
---------- -215 -180 -0.002 

 

(a)
 The efficiency is computed using 

 

sinc
2

n

directk l 
  
 

 and sinc sinc
2 2

A Bk l k l    
   
   

 for direct and 

cascaded processes, respectively.  
 (b)

 Path length, l , is 0.022 cm. 
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Table C.4.  Wavevector Mismatch in a (Hypothetical) Three-Beam Geometry 

 

Nonlinearity  n

directk  (cm
-1

) Ak  (cm
-1

) 
Bk  (cm

-1
) (a),(b)

Efficiency 

Direct Fifth-Order (FSRS) 0 ------ ------ 1.000 

Direct Third-Order 

(CSRS) 
0 ------ ------ 1.000 

Cascade #1 (
1 2 5k k k   

intermediate) 
------ 0 0 1.000 

Cascade #2 (
3 4 5k k k   

intermediate) 
------ 0 0 1.000 

 

(a)
 The efficiency is computed using 

 

sinc
2

n

directk l 
  
 

 and sinc sinc
2 2

A Bk l k l    
   
   

 for direct and 

cascaded processes, respectively. 
 (b)

 Path length, l , is 0.022 cm. 
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Figure C.4.  Feynman diagrams associated with third-order cascades with the intermediate 

phase-matching condition 1 2 5k k k   (referred to as cascade #1 in text).  The indices, g  and e , 

represent the ground and excited electronic states, whereas dummy indices ( m , n , k , l ,u , and v ) 

denote vibrational levels.  Field-matter interactions are color-coded as follows: actinic pump is 

green; Raman pump is blue; Stokes is red; radiated signal field is red; the field radiated at the 

intermediate step in the cascade is purple.  We restrict the response function to these terms (total 

of 16 products) under the assumption that the signal is primarily resonance-enhanced by the 

Soret band. 
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Figure C.5.  Feynman diagrams associated with third-order cascades with the intermediate 

phase-matching condition 3 4 5k k k   (referred to as cascade #2 in text).  The indices, g  and e , 

represent the ground and excited electronic states, whereas dummy indices ( m , n , k , l ,u , and v ) 

denote vibrational levels.  Field-matter interactions are color-coded as follows: actinic pump is 

green; Raman pump is blue; Stokes is red; radiated signal field is red; the field radiated at the 

intermediate step in the cascade is purple.  We restrict the response function to these terms (total 

of 16 products) under the assumption that the signal is primarily resonance-enhanced by the 

Soret band. 
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APPENDIX D:  SUPPLEMENT TO “TWO-DIMENSIONAL RESONANCE RAMAN 

SPECTROSCOPY OF WATER- AND OXYGEN- LIGATED MYOGLOBIN” 

 

D.1. Response Functions 

The fifth-order polarization possesses 16 components when a single electronic resonance 

dominates the optical response.
1
  The 2DRR spectra in this work are calculated by Fourier 

transforming the polarization components presented in Reference 
1
 with respect to the delay 

time, 1 .  The frequency dimension, 2 , is equal to the difference between the detection 

frequency, 
t , and the frequency of the narrowband Raman pump, 

RP .  The summations below 

are restricted to eliminate population terms from the dimensions, 1  and 2 .  The 16 

polarization components are 
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and 
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The electronic line shape function,  ,en gmL  , is written as 
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The vibrational line shape functions,  , 1gk gmD   and  , 2gu gmJ  , are given by 
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and 
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The fifth-order 2DRR signal field is expressed in terms of these polarization components as 
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where perfect phase-matching has been assumed and the factor of 1/7 represents the orientational 

average for all-parallel electric field polarizations.
2
  

D.2. Anharmonic Vibrational Hamiltonian 

All calculations conducted in this work are based on the following vibrational 

Hamiltonian
3
 

 
    



† † † † † † †

†

2 1 3 3 3
2

3

j

j j jjj j j jkl j k l j k l

j jkl

j k l j k l

H a a U a a U a a a a a a

a a a a a a
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where the cubic expansion coefficients are given by 
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3

3 3 3 3

0

1

3! 2
jkl

j k l

V
U

q q qm  

 
      

. (D.22) 

The basis set is taken to be uncoupled at second-order for this Hamiltonian.  Therefore, normal 

modes are recovered if the cubic expansion coefficients are set equal to zero.  This is the most 

natural basis set for the present study, because the calculations in Section 6.3 make use of fitting 

parameters obtained in a basis of normal modes.
4
  Vibrational wavefunctions are obtained by 

diagonalizing the Hamiltonian in a basis of harmonic oscillators (up to 20 vibrational quanta in 

each mode results in good convergence). 

The vibrational overlap integrals needed to evaluate the response functions are written as 

 
n mn m  



     D.23 

where n  is the expansion coefficient for harmonic basis function   and the anharmonic 

vibrational wavefunction, n . 

D.3. Signatures of Anarhmonicity 

As discussed in the main text, anharmonic coupling between modes may cause the 

vibrational resonance frequencies in 2  to oscillate with respect to 1  for FSRS signals 

represented in the traditional way ( 1  and 2  in our notation).  Here, we examine this 

representation in our calculated signals.  The first dimension may be expressed in the time 

domain by inverse Fourier transforming 
   5

1 2,E    with respect to 1 .  Analytic expressions 

for this representation, which we denote as 
   5

1 2,E   , were given in Chapter 6.
1
  The mean 

vibrational frequencies in 2  are then Fourier transformed with respect to 1  
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in order to produce a vibrational spectrum associated with the quantum beats in the resonance 

frequencies.  The lower,  , and upper,  , limits of the integral over 
2  are respectively set 

equal to 250 and 550 cm
-1

 for the 400-cm
-1

 mode.  Limits of 950 and 1250 cm
-1

 are used for the 

1100-cm
-1

 resonance in 2 . 

In Figure D.1 we present vibrational spectra associated with quantum beats in the 

resonance frequencies.  The harmonic system in Figure D.1e exhibits the most intense 

oscillations at the frequency corresponding to a coherence between the two modes (i.e. 700 cm
-1

 

is the difference in wavenumbers).  As in Chapter 4
5
, we find that oscillations in the mean 

vibrational resonance frequencies are observed even for a harmonic system (see Figure 4.10 in 

Chapter 4).  Anharmonicity causes the relative amplitude of the quantum beat at 400 cm
-1

 to 

increase; the effect is most pronounced in panels D.1a, D.1c, D.1g, and D.1i (i.e. the parameters 

with the greatest amount of anharmonicity).  These results suggest that the relative amplitudes of 

various spectral components carry the key information about anharmonicity in this 

representation.  Quantum beats at difference frequencies occur even in the harmonic system.  

This conclusion is still valid if the real or imaginary parts of the fifth-order signal field enter 

Equation D.24.  We process the absolute value of the signal field, 
   5

1 2,E   , because the time 

evolution (in 1 ) between absorptive and dispersive line shapes (in 2 ) gives rise to artificially 

large oscillations in the mean resonance frequencies (in 2 ). 
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Figure D.1.  Spectral components associated with oscillations of the mean vibrational resonance 

frequencies computed with an anharmonic vibrational Hamiltonian.  The diagonal expansion 

coefficients are set equal to -5 (first row), 0 (second row), and 5 cm
-1

 (third row).  The off-

diagonal expansion coefficients are set equal to -5 (first row), 0 (second row), and 5 cm
-1

 (third 

row).  All amplitudes are normalized to the maximum found for the 400-cm
-1

 mode in the second 

row and first column.  These calculations show that oscillations in the mean vibrational 

resonance frequencies occur primarily at the difference frequency in the harmonic system (see 

panel (e)).  Anharmonicity increases the amplitude of oscillations at the fundamental frequencies 

of the vibrations. 
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D.4. Fluctuations in the Geometries of the Propionic Acid Side Chains 

In this section, we present scatter plots for 5000 steps in the molecular dynamics 

trajectories of metMb and MbO2, respectively.  The structures fluctuate in a fairly symmetric 

manner with respect to the equilibrium geometries. 

 

Figure D.2.  Distribution of dihedral angles for 5000 steps of the molecular dynamics trajectory 

simulated for metMb.  The equilibrium dihedral angles associated with the propionic acid side 

chains (see Figure 7.11) are L =81.3° and R =81.1°. 
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Figure D.3.  Distribution of dihedral angles for 5000 steps of the molecular dynamics trajectory 

simulated for MbO2.  The equilibrium dihedral angles associated with the propionic acid side 

chains (see Figure 7.11) are L =94.4° and R =109°. 
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