
FUNCTIONAL IMPACT OF OBESITY OR INTERMITTENT FEEDING ON INTESTINAL STEM CELLS 

Amanda Taren Mah 

 
A dissertation submitted to the faculty at the University of North Carolina at Chapel Hill in partial fulfillment of the 
requirements for the degree of Doctor of Philosophy in the Department of Nutrition in the Gillings School of Global 

Public Health. 

Chapel Hill 
2015 

           Approved by: 

           P. Kay Lund 

           Scott Magness 

           Liza Makowski 

           Daniel Pomp 

           Praveen Sethupathy 

 



	
   ii 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

© 2015 
Amanda Taren Mah 

ALL RIGHTS RESERVED  



	
   iii 

ABSTRACT 

Amanda Taren Mah: Functional impact of obesity or intermittent feeding on intestinal stem cells 
(Under the direction of P. Kay Lund) 

Intestinal stem cells (ISCs) and progenitors constantly renew the intestinal epithelium. Effects of obesity or 

intermittent feeding specifically on ISCs versus progenitors are not defined. This dissertation used Sox9-EGFP 

reporter mice to test the hypothesis that obesity or intermittent feeding affects proliferation, numbers or intrinsic 

function of ISCs.  Sox9-EGFP mice permit specific evaluation of ISCs or progenitors by histology or flow 

cytometry and intrinsic function in culture. High fat diet feeding induced obesity and hyperinsulinemia. ISC 

numbers and proliferation were selectively increased in obese mice. However, ISCs from obese mice exhibited 

impaired intrinsic function based on reduced ability to survive and generate enteroids in vitro.  Excess insulin or 

IGF1 corrected this in vitro defect indicating that ISCs from obese mice develop acquired dependence on elevated 

insulin or IGF1 for survival or proliferation.  

Sox9-EGFP mice were subjected to 20 weeks of an intermittent fasting regimen involving alternating days 

of ad libitum access to food or fasting (ADF). ADF reportedly produces similar benefits to metabolism or health as 

calorie restriction. Total food intake and activity did not differ between ADF and ad libitum fed controls. Despite 

this, ADF mice did not gain body weight and displayed significantly lower fat mass and fasting plasma triglycerides. 

ADF did not alter ISC number, but affected numbers of intestinal progenitors. After a fast cycle, ADF animals 

displayed increased progenitors but decreased proliferation, relative to short-term fasted controls. This effect was 

reversed in ADF animals following a feed cycle suggesting that ADF leads to fasting-induced increases in 

progenitors that can be rapidly mobilized during feeding. After a fast cycle, ADF animals displayed decreased 

colonic epithelial cell proliferation associated with increased expression of an anti-proliferative insulin receptor 

isoform B implicated in protection against colon tumorigenesis. 

In summary, obesity and hyperinsulinemia promote ISC expansion and hyperproliferation but impaired ISC 

function, effects that may be relevant to obesity-associated intestinal dysfunction or tumorigenesis.  ADF selectively 

affects small intestinal progenitors and not ISCs, leads to reduced proliferation of colonic epithelium, and promotes 

an insulin receptor isoform that may decrease cancer risk.  
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CHAPTER 1: AN INTRODUCTION TO THE INTESTINE, INTESTINAL STEM CELLS, OBESITY, 
HYPERINSULINEMIA, INTERMITTENT FEEDING, AND NUTRIENT DIGESTION AND 

ABSORPTION 
 

Structure and function of the intestine 

The gastrointestinal tract functions to digest and absorb incoming nutrients and to act as a barrier blocking 

harmful toxins, commensal bacteria or pathogens present in the lumen from entering the bloodstream. Anatomically, 

the gastrointestinal tract is divided into the esophagus, stomach, small intestine and colon. This dissertation focuses 

on the small intestine and colon, as these are the major sites of nutrient and fluid absorption. Figure 1.1 shows 

histology of the intestine to illustrate the mucosa (epithelium, lamina propria and muscularis mucosa) and 

underlying submucosa and muscle layers (circular and longitudinal muscle). Neuronal plexi lie between the 

submucosal and muscle layer (Meissner’s plexus) or between the inner circular and outer longitudinal muscle layers 

(Myenteric plexus). This dissertation focuses on the intestinal epithelium, the innermost lumenal monolayer of 

epithelial cells lining both the small intestine and colon, responsible for mediating nutrient and fluid absorption and 

barrier function.  

The intestinal epithelium 

The small intestine comprises three regions, from proximal to distal, the duodenum, the jejunum and the 

ileum. The jejunum makes up 50% of the small intestine and is the main site for nutrient absorption. The intestinal 

epithelium lines the innermost surface of the intestine facing the lumen and is the most rapidly renewing tissue in the 

body, renewing itself every 3-7 days depending on region and species (1). The epithelium is organized into two 

zones: crypts of Lieberkühn, which house the proliferative cells and a small number of differentiated cells and villi, 

which contain differentiated cell types (Figure 1.2). Crypts are invaginations into the lamina propria that contain the 

proliferative stem and progenitors cells. Intestinal stem cells (ISCs) divide to renew themselves and give rise to 

more rapidly dividing progenitors, or transit-amplifying cells. Progenitors undergo additional divisions while 

migrating out of the crypt before they differentiate into one of four specialized cell types. Multiple crypts feed onto a 

villus, which is a finger-like projection that protrudes into the lumen and dramatically increases the surface area of 

the epithelium. Villi contain three of the four differentiated cell lineages, the absorptive enterocyte and secretory 
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goblet and enteroendocrine cells (EECs). Once on the villus, the differentiated cells continue towards the villus tip 

where they are sloughed off in a process called anoikis. A fourth differentiated cell type, the Paneth cell, migrates 

down to the base of the crypt where they are intercalated between ISCs. (Figure 1.2b) 

The colonic epithelium has crypts but no villi (Figure 1.2). Proliferative cells reside in the colon crypt, 

close to the crypt base, but not quite as uniform in location as in small intestine. As cells migrate up the colon crypt, 

they differentiate into colonocytes, goblet or EEC within the crypt and at the crypt surface so that surface epithelium 

at the crypt opening contains only differentiated cells (Figure 1.2b). 

Cell types of the intestinal epithelium can be distinguished by their enrichment of specific mRNAs or 

encoded proteins, which is summarized in Table 1.1. The cell types and markers are discussed in further detail 

below. 

Intestinal stem cells (ISCs) 

In the small intestine, ISCs reside at or near the base of the crypt, self-renew and give rise to progenitors 

capable of producing all intestinal epithelial cell lineages. ISCs are responsible for continuous renewal of the 

epithelium. Historically, the location of ISCs in the small intestine has been debated between two schools of 

thought: the classic model and the stem cell zone model. The classic model proposed that ISCs reside at the +4 

position of the crypt (counting up from the crypt base), identified by Potten and colleagues based on the ability of 

cells at this position to retain DNA label, which indicated they were slowly cycling (2), while Paneth cells and 

Paneth cell progenitors were thought to occupy positions 1-3 below them. The stem cell zone model states that ISCs 

reside at the crypt base sandwiched between Paneth cells, and are distinctly slender in shape, often referred to as 

crypt base columnar (CBC) cells (1).  Current views on the location of ISCs have evolved since then to propose that 

two ISC populations exist based on location and cycling kinetics; 1) the actively cycling CBC ISCs located at the 

base of the crypt in between Paneth cells and 2) reserve ISCs located at the +4 position.  

Until recently it was difficult to study ISCs in vivo or directly study ISCs due to a lack of ISC biomarkers. 

However in the past decade, landmark studies have identified and validated biomarkers of actively cycling ISCs and 

slowly cycling reserve ISCs. Lgr5 was first identified as a marker of actively cycling ISCs equivalent to CBC cells 

by Barker et al. in 2007 (3). This landmark paper used a method termed lineage tracing to validate Lgr5 as an ISC 

biomarker. Lineage tracing involves using inducible Cre to irreversibly mark all cells that express a putative ISC 

marker (described in later sections). Since then, other ISC biomarkers have been identified by the same method such 
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as Olfm4 (4). Lineage tracing has also identified biomarkers of the +4 reserve ISC. These biomarkers, which lineage 

traced, include Bmi1 (5), Hopx (6), mTert (7) and Lrig1 (8). Studies in markers of the reserve ISC population appear 

to mark different cells by position, indicating there are different types of reserve ISC enriched for specific markers. 

There still exists debate as to whether the expression of identified markers of reserve ISC is restricted to those cells. 

Transcriptomic and proteomic profiling of Lgr5+ cells by Munoz et al. revealed expression of markers of +4 reserve 

ISCs in the Lgr5+ population, causing them to conclude that markers of the +4 reserve ISC population are not 

exclusively expressed in those cells (9). However recent studies have shown that both populations are distinctly 

different in function.  Studies ablating Lgr5+ cells through genetic disruption or radiation showed that Bmi1+ cells 

gave rise to Lgr5+ cells to maintain intestinal homeostasis under these conditions (10,11), which indicated for the 

first time that the two populations are interchangeable when necessary. While the ISC field is still changing, one 

current view is that the actively cycling CBC ISCs are responsible for normal epithelial renewal while the more 

slowly cycling reserve ISCs are activated during injury to generate CBC ISC and renew crypts (10-13). 

Currently, there is less known about colon stem cells (CSCs), as they have not been as extensively 

characterized compared to ISCs of the small intestine. Similar to that in the small intestine, Lgr5 and Lrig1 have 

been shown to be markers of CSCs residing at the crypt base (3,8). However there is some debate about whether 

CSCs differ or differ in location in proximal versus distal colon. 

The advancements in ISC biomarker discovery have now provided tools and techniques to study ISC 

biology during homeostasis as well as during adaptive responses to obesity or intermittent feeding. This dissertation 

explores the effect of obesity or intermittent feeding directly on ISC, which was not possible before. 

Signaling networks required for ISC maintenance comprise the ISC niche and control cell fate specification 

 In 1978, Ray Schofield first described the concept of the “stem cell niche” as an environment where stem 

cells and other cells interact to regulate stem cell behavior (14). In the intestine, the ISC niche is composed of cells 

surrounding the ISCs at the crypt base, including neighboring Paneth cells and underlying mesenchymal cells 

termed subepithelial myofibroblasts. Factors secreted from these cells act on ISCs to maintain ISC behavior through 

a variety of signaling pathways. Key signaling pathways present or inhibited at the crypt base (Notch, Wnt and 

Bmp) comprise the ISC niche and are responsible for ISC maintenance and proliferation (Figure 1.3). The Wnt and 

Notch pathway also dictate lineage allocation of intestinal progenitors where the Notch pathway promotes the 

absorptive lineage while the Wnt pathway promotes the secretory lineage (Figure 1.4). 
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Notch pathway 

The Notch pathway consists of five Notch ligands (Dll1, 3, 4, Jagged-1, 2) and four Notch receptors 

(Notch1-4). In the intestine, Notch1, Notch2, Dll1, Dll4 and Jagged-1 are expressed in epithelial cells of the crypt, 

while Notch3 and Notch4 are expressed in the surrounding endothelial and mesenchymal cells (15-17). Notch 

signaling occurs between adjacent interacting cells so that membrane bound ligands of one cell bind to membrane 

bound receptors on a neighboring cell (Figure 1.5a). Interaction between ligand and receptor results in cleavage 

within the transmembrane domain of the receptor by γ-secretase enzymes releasing the Notch intracellular 

cytoplasmic domain (NICD). NICD translocates to the nucleus and binds to and activates the DNA-binding 

transcription factor CSL (CBF-1/RBP-Jκ, Su(H), Lag-1). Binding of the NICD-CSL complex and recruited 

transcriptional co-activators promotes transcription of Notch target genes (Figure 1.5a).  

In the intestine, the Notch pathway plays roles in ISC maintenance, proliferation and cell fate 

determination. Disruption of Notch signaling through genetic ablation or pharmacological inhibitors led to the loss 

of proliferative cells in the crypts, which illustrated the role of Notch in maintaining ISCs and proliferative crypt 

compartments in the intestine (18,19). Conversely Notch signaling is implicated in colorectal cancer (CRC) as 

expression of Notch ligands, receptors and downstream targets are oftentimes up-regulated in tumors (20). 

In addition with loss of ISC maintenance and proliferation, disruption of the Notch pathway resulted in 

conversion of epithelial cells into goblet and EECs (18,19,21-23) indicating a role for Notch in regulating lineage 

specification (Figure 1.4). A key transcriptional target of Notch signaling is Hes1. Embryos lacking Hes1 developed 

excessive secretory cells at the expense of the absorptive cell lineage (24,25). It has been shown recently that other 

isoforms of Hes, including Hes3 and Hes5 are able to compensate for loss of Hes1 and loss of all three isoforms lead 

to forced differentiation to a secretory cell fate (26). Conversely, gain of function experiments showed that ectopic 

expression of Notch favors the absorptive cell lineage (27). Along with promoting the absorptive lineage, Hes1 

simultaneously represses the secretory lineages by repressing the transcriptional activator Atoh1.  

Wnt pathway 

The Wnt pathway is one of the more commonly discussed and well-studied pathways in the intestinal 

epithelium. The canonical Wnt pathway requires interaction between multiple Wnt ligands and their receptors. Wnt 

ligands include mesenchyme derived Wnt2b and 5a and Paneth cell derived Wnt3b, 6 and 9b (Figure 1.3). Receptors 

include Frizzled (Fzd5-7) or low-density lipoprotein receptor-related protein (LRP5-6) receptors and are expressed 
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on crypt epithelial cells (28,29). Activation of Wnt signaling leads to a block on β-catenin degradation by a complex 

consisting of axin, adenomatous polyposis coli (APC), casein kinase I (CKI) and glycogen synthase kinase 3β 

(GSK3β), known as a destruction complex. Stabilized β-catenin then travels to the nucleus where it can act with the 

T-cell factor (TCF) family of transcription factors to turn on expression of Wnt target genes (Figure 1.5b). The Wnt 

pathway is involved in cell proliferation, cell differentiation and maintenance of ISCs.  

Wnt signals occur in a gradient with the most concentrated area found at the crypt base where Wnt 

producing mesenchymal and Paneth cells reside (30) (Figure 1.3). Wnt signaling is essential for the maintenance of 

ISCs. Deletion of Tcf7l2 gene (encodes TCF4 protein) resulted in the loss of ISCs with an epithelium consisting of 

differentiated villus cells (31) and genetic deletion of β-catenin led in crypt ablation (32). Inhibition and 

overexpression studies have shown the Wnt pathway in regulating proliferation. Overexpression of Wnt inhibitor 

Dickkopf-1 blocked cell proliferation (33,34) while overexpression of Wnt agonist R-spondin1 lead to 

hyperproliferation (35). Wnts regulate maintenance and proliferation of CBC ISC but have also been shown to act 

on Paneth cells to promote maturation (29).  Due to its role in cell proliferation, Wnt signaling is implicated in a 

wide range of cancers, especially sporadic CRC (36). Inactivating mutations in APC account for 85% of sporadic 

CRC cases and leads to stabilization and nuclear translocation of β-catenin, which results in constitutively active 

Wnt signaling (36,37). 

Similar to the Notch pathway, in addition to ISC maintenance, Wnt signaling also plays a role in cell 

differentiation. Wnt target gene Atoh1 (also referred to as Math1) is a transcription factor that directs intestinal 

progenitors to the secretory lineage (Figure 1.4). Impaired Wnt signaling decreased Atoh1+ progenitors and resulted 

in intestines containing predominantly absorptive enterocytes (31,32,34). Animals with intestine specific deletion of 

Atoh1 displayed increased absorptive enterocytes at the expense of secretory cell lineages (38,39) while intestine 

specific Atoh1 overexpression promoted secretory cell fate (40). Transcription factors regulated by Atoh1 further 

direct cells toward a specific secretory cell type. Gfi1 is downstream Atoh1 as Atoh1-/- intestines lacked of Gfi1 

expression. Gfi1 controls Paneth and goblet cell fate as Gfi1-/- animals do not contain Paneth cells, reduced goblet 

cell number, but enhanced number of EECs (41). Ngn3, another transcription factor downstream Atoh1, is required 

for EEC specification as Ngn3-/- animals did not develop EEC (42) (Figure 1.4). 
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Bmp pathway 

Bone morphogenetic protein (BMP) signaling negatively regulates the pro-proliferative actions of Wnt 

signaling (43). BMPs are members of the transforming growth factor beta (TGF-β) superfamily that act via BMP 

receptors. Bmp2 and Bmp4 ligands are expressed in a gradient along the crypt/villus axis with high levels at the 

villus tips in the intervillus mesenchyme and decreasing levels traveling to the crypt base. Other members of the 

Bmp pathway like Bmp receptors Bmpr1a and Bmpr2 and phosphorylated SMAD proteins are found in the villus 

compartment (43). Noggin and Gremlin-1, inhibitors of Bmp signaling, are expressed at the crypt base in order to 

keep Bmp signaling low and maintain high levels of Wnt signaling (Figure 1.3).  Bmp signaling leads to 

phosphorylation and activation of the Smad family of transcription factors (Figure 1.5c). Bmp pathway inhibition by 

overexpression of Noggin (44) or deletion of Bmpr1a (43) lead to ectopic crypt or polyp formation, respectively, 

indicating blocking the negatively regulating Bmp pathway promotes intestinal proliferation, presumably due to 

uncontrolled Wnt activation.  

Differentiated cells of the intestinal epithelium 

Absorptive enterocytes 

Absorptive enterocytes comprise over 90% of the intestinal epithelial cell population. They are highly 

specialized, polarized cells with an apical side in contact with the lumen and a basolateral side in contact with the 

bloodstream. The apical membrane contains a brush border enriched with specific brush border enzymes that are 

responsible for the final steps of digestion of some nutrients (i.e. disaccharides and peptides) and for absorption of 

nutrients and transport through the enterocyte into the circulation (blood/lymphatics). For this reason, brush border 

enzymes such as alkaline phosphatase (Alpi), sucrose isomaltase (Sim) and lactase (Lct) are useful markers of 

enterocytes (Table 1.1). 

Goblet cells 

Goblet cells, one type of secretory cell, secrete mucins and trefoil factors that act to protect the intestinal 

epithelium from physical and chemical stress caused by contents moving through the intestinal lumen. Goblet cells 

are present in both the crypt and villus compartments and the number of goblet cells increases in a proximal to distal 

gradient so that the smallest and largest percentage of goblet cells is found in the duodenum and distal colon, 

respectively. The most commonly secreted mucin in the intestine is mucin-2 (Muc2) and is often used as a marker of 

goblet cells (Table 1.1). Mucins and other secretory products of goblet cells form a layer of mucous that coats the 
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intestinal epithelium. Genetic deletion of mucins or genes involved in producing mucins resulted in increased 

bacterial adhesion, inflammatory cytokines and colitis (45,46). This suggested a role for goblet cells in protecting 

the host against lumenal contents such as microbes.  

Paneth cells 

Paneth cells, named after Josef Paneth, are situated in between CBC ISCs. Paneth cells contain large 

granules making them histologically distinct cells. They secrete many peptides that are vital to intestinal epithelial 

homeostasis including antimicrobial peptides and proteins that comprise the ISC niche. Their secreted antimicrobial 

peptides such as lysozyme and defensins (termed cryptidins in mice) mediate two main functions: innate immunity 

to protect the host from pathogens and to modulate or shape the intestinal microbiota (47). Mice with compromised 

Paneth cell function or genetic deletion of Paneth cells experienced bacterial translocation (48,49) and altered 

microbial communities (50). Paneth cells can be readily visualized by hematoxylin and eosin (H&E) staining, but its 

secretions such as lysozyme (Lyz) and defensins/cryptidins (such as Defa1) are used as markers for identification 

(Table 1.1). 

Enteroendocrine cells (EECs) 

EECs are hormone-secreting cells present in both the crypt and villus of the small intestinal epithelium and 

colonic crypts. In the small intestine, EECs comprise ~1% of the total epithelial population. Although small in 

number, there are up to 15 different types of EECs that differ in location and hormone(s) secreted (51). Hormones 

secreted by EECs regulate intestinal motility, bicarbonate release, enzyme secretion, appetite, insulin release and 

nutrient uptake (52).   

Defining ISC biomarkers: in vivo and in vitro methods to evaluate stemness 

Label retention 

 Label retention is used to identify slowly cycling cells and was used by Potten and colleagues to identify 

the +4 reserve ISC (2). DNA analogues such as 5-bromo-2’-deoxyuridine (BrdU) or tritiated thymidine are 

administered to animals and incorporate into the DNA of cells undergoing the S-phase of the cell cycle thereby 

marking all proliferating cells. Following administration, a washout period starts where the actively proliferating 

cells will divide and dilute out the label. Cells that do not actively divide or are slowly dividing will retain the label 

and referred to as label retaining cells (LRCs) (Figure 1.6a). 
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In vivo lineage tracing 

Lineage tracing is a method to identify progeny of single cells and is now considered a gold standard for 

defining ISC biomarkers. Lineage tracing requires a conditional knock-in mouse in order to control and visualize 

progeny of putative ISCs. Using the Cre-lox system, a CreERT2 element is inserted downstream the promoter of the 

gene of interest and crossed with a reporter mouse containing a transcriptional stop sequence flanked by loxP sites 

upstream the reporter. Upon tamoxifen administration, Cre recombinase will remove the transcriptional stop and 

turn on the reporter gene in cells expressing Cre, permanently marking cells expressing the gene of interest. Progeny 

will inherit the reporter expression and can be visualized at different time points. Since ISCs give rise to all cells of 

the intestinal epithelium, lineage tracing of true ISC biomarkers result in all cells expressing the reporter and is 

characteristically seen as ribbons of positive cells (Figure 1.6b). 

In vitro enteroid formation 

Until recently, studying the intestinal epithelium, including ISCs, ex vivo proved difficult due to the lack of 

survival in traditional in vitro culture methods. ISC function is assessed by stemness assays. Stemness is defined as 

the ability of a cell to self-renew and can give rise to all cell populations within that particular tissue (multipotency). 

The Clevers group used the knowledge of the signaling pathways enriched in the ISC niche to develop a novel and 

elegant in vitro culture system that promotes ISC survival and tests ISC intrinsic function in the absence of niche 

cells (53). In this model, ISCs are grown in a three-dimensional Matrigel system where the Matrigel acts as the 

extracellular matrix and is supplemented with niche factors identified to promote and maintain ISC survival and 

function including EGF, Noggin, and Wnt agonist R-spondin1. This system allows ISCs to survive and grow into 

structures termed enterospheres and then enteroids that contain a lumen and crypt buds containing ISCs and all 

differentiated lineages (54) (Figure 1.7). The ability to use this system to culture ISCs in vitro has allowed 

researchers to better understand regulation of ISC function through genetic manipulation or pharmacological 

treatment, that may otherwise be complicated or confounded by other factors in vivo. It is noted that although 

individual ISCs can survive and yield enteroids in this system, the efficiency is low such that typically 10,000 cells 

yield on average 15-20 enteroids for an efficiency of 0.15-0.2%. This efficiency has been used by us and others to 

quantify the impact of physiological perturbations on stemness or intrinsic function of ISCs. 
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Generating ISC reporter mouse models to study ISC in vivo 

 Putative ISC biomarkers were validated using methods described above to demonstrate stemness and 

multipotency, through the use of genetically engineered mouse models expressing reporter genes driven by the 

promoter for the gene of interest. There are different ways to engineer mice expressing a fluorescent marker or other 

reporters that mark gene expression; these include transgenic or a knock-in mouse models.  

 Transgenic mice have a segment of DNA introduced into the genome that is normally not present. For 

larger segments, DNA must be packaged into a vector such as a bacterial artificial chromosome (BAC). Large DNA 

sequences (up to 300kb) can be inserted into a BAC vector. This is then injected into oocytes, where it randomly 

integrates into the genome, resulting in embryos that carry the recombinant gene. Since the DNA integrates 

randomly, the transgene may or may not fully recapitulate the endogenous protein of interest.  

 Knock-in mice avoid the problem of random integration that occurs in transgenic mouse models. To 

generate knock-in mice, cells expressing a targeting vector containing the transgene are introduced into a mouse 

embryo and implanted into a surrogate female mouse. Knock-in reporter models are targeted downstream of the 

promoter for the gene of interest, therefore reporter expression is found in cells expressing that gene. For example, 

in Bmi1-EGFP reporter mice, the Bmi1 promoter is driving EGFP expression, therefore only cells expressing Bmi1 

will express EGFP. In conditional knock-in animals, permanently turning on expression of the transgene can be 

controlled and therefore used to perform lineage tracing experiments as described above.  

ISC reporter mouse models 

 The majority of ISC reporter mice are knock-in animals and some contain a conditional CreERT2 element 

required to perform lineage-tracing experiments. Table 1.2 summarizes key ISC biomarkers and reporter animals 

generated to study ISC. The different reporter models have gained more attention recently due to single-cell analyses 

in various reporter models assessing the heterogeneity in the cell populations being marked. Briefly, Li et al 

compared different knock-in reporter animals and found that reporter or inducible reporter animals of the same gene 

(i.e. Bmi1-EGFP and Bmi1-CreERT2) marked different cells, indicating the reporter animal used is an important 

factor when pursuing ISC studies (55). 

The Sox9-EGFP mouse model is a BAC transgenic model that is described in more detail below. In the 

intestine, Sox9-EGFP follows endogenous Sox9 protein expression, except that Sox9-positive Paneth cells are Sox9-

EGFP Negative (56). 
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Sox9-EGFP mouse model 

Currently no single ISC reporter is ideal as none of the models described above is validated as marking 

both CBC ISCs and +4 reserve ISCs, and there is evidence for interconversion between the two ISC subtypes 

(10,11). The Sox9-EGFP model has some potential advantages in this regard. In the Sox9-EGFP mouse model, a 

BAC transgene containing a large amount of flanking gene regulatory elements of the Sox9 gene drives expression 

of EGFP. In the intestines of Sox9-EGFP mice, distinct levels of Sox9-EGFP mark different intestinal epithelial cell 

types (56,57). Figure 1.8a depicts the cell types corresponding to Sox9-EGFP expression levels in the small 

intestine. High level expression (Sox9-EGFP High) mark cells dramatically enriched for expression of all known 

gastrointestinal hormones and known markers of EECs and these same cells are enriched for markers of the +4 

reserve ISCs (13,56,57). This suggests that this population of cells contain both EECs and +4 reserve ISCs. Direct 

evidence that Sox9-EGFP High cells contain +4 reserve ISCs stems from findings that they exhibit functional 

characteristics of ISC in vitro but only after activation by radiation induced epithelial damage (13). Low Sox9-EGFP 

levels (Sox9-EGFP Low) correspond to the actively cycling CBC ISC. The evidence for this was high-level 

expression of Lgr5, the first validated ISC biomarker, observed in this population and the ability of Sox9-EGFP 

Low cells (and no other Sox9-EGFP population) from “normal” small intestine to generate enteroids containing all 

differentiated lineages in vitro (56,57). Sox9-EGFP Sublow cells mark the rapidly dividing progenitor population 

while cells negative for Sox9-EGFP correspond to Paneth cells, goblet cells and enterocytes (13,56,57).  

Our group performed transcriptomic analyses of each of these populations by gene microarray, which 

provided strong evidence that different Sox9-EGFP levels mark different intestinal epithelial cells. Sox9-EGFP Low 

cells were enriched for many genes enriched in Lgr5 expressing ISC (58). Sox9-EGFP Sublow cells were enriched 

for genes involved in cell cycle progression and Sox9-EGFP Negative cells were enriched for genes encoding 

mucins (goblet cells), antimicrobial peptides (Paneth cells) and brush border enzymes (enterocytes). Sox9-EGFP 

High cells were enriched for EEC hormones and markers. However it revealed Sox9-EGFP High cells were also 

enriched for markers of reserve ISC such as Bmi1 and Hopx (13). In vitro culture of Sox9-EGFP High cells during 

peak regeneration following abdominal radiation revealed Sox9-EGFP High cells can form enteroids which 

indicated a subset of Sox9-EGFP High cells were radiation activatable to acquire ISC-like functions (13). These 

findings were highlighted in a subsequent paper from Buczacki et al where they used a complex genetic mouse 

model capable of marking LRCs without the use of a thymidine analog thereby marking the slowly cycling reserve 
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ISC population. The LRCs in this model expressed transcripts associated with Paneth cells, EECs and ISCs and were 

able to form enteroids following radiation. They concluded secretory precursors are able to acquire ISC-like 

characteristics when activated by radiation (12).  

ISC mouse models using fluorescent reporter expression such as EGFP are valuable tools to assess and use 

ISC for downstream applications. In the Sox9-EGFP reporter mouse, we are able to use EGFP intensity to visualize 

Sox9-EGFP Low and High cells by immunofluorescence, quantify all four populations of cells, including ISC, by 

flow cytometry and isolate all populations by fluorescence activated cell sorting (FACS) (Figure 1.8b-c). Isolated 

cells can then be used to assess gene expression changes or cultured in vitro to study intrinsic function. One 

limitation of the Sox9-EGFP model is the inability to perform lineage tracing because Sox9 is expressed in other 

cells at different levels. Despite this, we are able to use the Sox9-EGFP reporter mouse to evaluate the effects of 

obesity and intermittent feeding directly on ISC and other intestinal epithelial cell populations.  

Obesity, hyperinsulinemia and insulin resistance 

Obesity is defined as a body mass index (BMI) > 30kg/m2. Although rates of obesity have started to level 

off in the United States, prevalence remains high with about 35% of the adult population considered obese (59). 

Causes of obesity are highly complex, involving interactions between genetics, environment and multiple organs. 

Evolutionarily, humans store nutrients as fat and utilize their fat stores for energy production in times of nutrient 

restriction. However, in the past decades, the increase in calorie-dense foods combined with decreased physical 

activity has lead to increased obesity rates. Obesity is associated with increased fat accumulation and enlargement of 

multiple fat depots and results in or increases risk of a host of metabolic disorders. Increased prevalence of obesity 

has been associated with increases in insulin resistance and type 2 diabetes (59,60). Insulin resistance is marked by 

high levels of insulin (hyperinsulinemia) relative to glucose levels and is due to reduced ability of insulin-sensitive 

tissues to respond to insulin. Pancreatic β cells therefore produce more insulin to maintain normal blood glucose 

levels. However if insulin resistance is not remedied, over time, β cells start to fail leading to the inability to produce 

insulin and subsequent inability to control plasma glucose and the development of type 2 diabetes occurs.  

Insulin is an anabolic hormone that is released in response to food intake to lower blood glucose and 

promote glycogen, TG and protein synthesis. Insulin can also promote cell growth. The metabolic and growth 

effects of insulin are mediated by insulin binding to insulin receptor (IR). Insulin binds to and activates IR leading to 

phosphorylation of insulin receptor substrates (IRS; most common are IRS-1 and IRS-2). Tyrosine phosphorylation 
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of IRS proteins promotes downstream activation of phosphoinositide-3-kinase (PI3K) or mitogen-activated protein 

kinase (MAPK) pathways. Signaling through PI3K activates AKT/PKB to regulate the metabolic effects of insulin 

signaling such as promoting glucose uptake by GLUT4 translocation to the plasma membrane, glycogen and protein 

synthesis and suppressing gluconeogenesis. Signaling through MAPK is involved in transcriptional regulation of 

genes involved in promoting cell growth (Figure 1.9). 

There are a number of mechanisms linking obesity and hyperinsulinemia to insulin resistance and type 2 

diabetes, many involving disruptions in the insulin-signaling pathway (Figure 1.9). Inflammatory cytokines and 

factors that promote inflammatory cytokine production are implicated in impaired insulin signaling (61-63). 

During obesity, there is increased macrophage infiltration in adipose tissue, increased plasma endotoxins 

such as lipopolysaccharides (LPS) and increased FFA and FFA metabolites such as diacylglycerol (DAG), and all 

increase production of pro-inflammatory cytokines (62). Inflammatory pathways activated by pro-inflammatory 

cytokines promote serine phosphorylation of IRS-1 rendering it inactive. Pro-inflammatory cytokines can also 

induce expression of suppressors of cytokine signaling (SOCS) proteins. SOCS3 can interfere with insulin signaling 

by binding to and preventing IRS-1 from docking onto IR (64) (Figure 1.9). Interestingly, the lipogenic functions of 

insulin are preserved despite defective insulin-stimulated glucose clearance, so that hepatic and muscle lipogenesis 

increases leading to increased ectopic TG storage. 

Obesity and the intestine 

 The effect of obesity has been commonly studied in metabolic and insulin-sensitive tissues such as liver, 

adipose tissue and skeletal muscle. There is increasing attention on the role of the intestine in obesity due to its role 

in nutrient absorption and barrier function, as well as increased interest in the intestinal microbiome. 

Obesity and nutrient absorption 

The intestine functions to digest and absorb ingested food. More detailed descriptions of macronutrient 

digestion and absorption can be found in later sections. Despite its functions, not much is known about the effect of 

obesity on nutrient absorption.  Transcriptomic analysis on different regions of the small intestine revealed 

differential effects of high fat diet (HFD) on gene expression in different regions. Compared to the duodenum and 

ileum, the jejunum exhibited the highest number of differentially regulated genes, which is expected, as it is the 

major site of lipid absorption (65). Gene networks reported to be regulated by HFD in the small intestine included 

lipid metabolism, cell cycle and inflammation (65). Gene expression analysis of transcription factors involved in cell 
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fate determination revealed obesity modulates expression of transcription factors associated with decreased 

secretory lineage allocation and increased absorptive cells (66). A limitation of these studies was that gene 

expression was analyzed in the total epithelium, which is composed of >90% absorptive enterocytes. Thus genes or 

transcription factors expressed in enterocytes could be over-represented and any diet-associated change in relative 

enterocyte mass could indirectly impact levels of mRNAs expressed in enterocytes or less abundant cell types. This 

dissertation addresses this limitation by using the Sox9-EGFP mouse model to more directly evaluate the effect of 

HFD-induced obesity on specific cell types. 

Obesity and intestinal hormones 

EECs secrete hormones that regulate appetite and satiety and are a heterogeneous population, meaning 

different cells secrete different hormones. Up to 15 hormones exist and act to increase insulin production and 

regulate appetite and intestinal growth. Their complexity is too great to give a comprehensive overview of each 

hormone however key hormones are addressed. Glucagon like peptide 1 (GLP-1) and glucose-dependent 

insulinotropic peptide (GIP) are incretins that promote insulin synthesis and secretion by pancreatic β-cells. 

Cholecystokinin (CCK) is a hormone released in response to food intake that mediates digestion and satiation. 

Glucagon like peptide 2 (GLP-2) is another EEC hormone generated from the same mRNA as GLP-1, however 

GLP-2 functions in intestinal growth via insulin-like growth factor 1 (IGF1). Studies in animals have shown that 

obesity decreased plasma levels of GLP-1 and CCK (67-69) and increased plasma levels of GLP-2 (70). Changes in 

EEC hormones during obesity is further highlighted in studies that have shown hormonal levels can change 

following gastric bypass surgery or weight loss (71,72). Modulating intestinal hormone levels through exogenous 

administration is currently being tested as potential treatments for obesity.  

Obesity and intestinal permeability 

Obese mice display increased intestinal permeability as measured by the ability of non-digestable 

fluorescent probes administered orally to appear in the bloodstream (73) and decreased intestinal expression of tight 

junction proteins (74). Increased permeability permits entry of toxins or bacterial products such as LPS, a structural 

component of gram-negative bacteria, into the bloodstream. Animals fed HFD for 4 weeks displayed elevated 

plasma LPS, prior to the onset of frank obesity (61), which indicated that increased intestinal permeability preceded 

HFD induced body weight gain. Elevated levels of LPS in the bloodstream due to HFD have been termed metabolic 

endotoxemia (61). The consequences of metabolic endotoxemia include increased inflammation in adipose tissue, 
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increased liver TG and hepatic insulin resistance (61). Some studies suggest however that LPS is not required for 

development of HFD-induced glucose intolerance (75). It is unknown whether the loss of barrier function in obesity 

is due to improper intestinal epithelial renewal carried out by ISC. Exploring the effects of obesity directly on ISC 

will to link obesity to ISC function, renewal and intestinal permeability.  

Obesity and intestinal inflammation 

Obesity is characterized by a state of low-grade inflammation. Our lab demonstrated that intestinal 

inflammation occurs prior to HFD induced increases in body weight or plasma insulin levels. In the intestine, 

mRNA levels of the pro-inflammatory cytokine Tnfα was up-regulated in the ileum of animals fed HFD for 6 weeks, 

preceding significant changes in body weight. The degree of TNFα mRNA increase was positively correlated with 

weight gain, fat mass, plasma insulin and plasma glucose levels (76). Furthermore, HFD-induced intestinal 

inflammation, measured by NFkB activation, was detected in a variety of cell types in the intestine, including 

intestinal epithelial cells, immune cells and endothelial cells, indicating that multiple cell types are able to contribute 

to HFD-induced inflammation (76). Additionally, mesenteric fat surrounding the intestine of obese animals 

displayed increased expression of inflammatory cytokines and macrophage infiltration (77). Studies in humans have 

been less conclusive with contradicting reports of differences in fecal inflammatory markers between lean and obese 

patients (78-81). Increased inflammation can be linked to changes in intestinal function including altered or reduced 

barrier integrity and may modulate the intestinal microbiota. 

Obesity and intestinal microbiota 

The intestinal microbiota consists of trillions of microorganisms that interact collectively to impact host 

health by regulating various functions including immunity/host defense and harvesting energy from ingested food. 

The genome of these organisms is termed the microbiome. Microbiota and their associated microbiome can change 

in response to a number of factors including environment (i.e. antibiotics) or nutrition (i.e. obesity) and in 

pathophysiological states (i.e. inflammatory bowel disease (IBD)). It is now widely accepted that the intestinal 

microbiota is altered in obesity. However the extent to which the altered microbiota is the cause or consequence of 

obesity is yet to be fully elucidated. In both genetic and diet-induced mouse models of obesity (82-85) and in obese 

and lean humans (85), the microbial communities shift to favor increased abundance of Firmicutes while decreasing 

Bacteroidetes. This effect can be reversed after weight loss or surgical treatment of obesity (86,87). It has also been 

shown that HFD alone, in the absence of obesity can alter microbial composition (88). Germ free mice, mice devoid 
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of any microbes and maintained in a sterile environment, are protected from diet-induced obesity (DIO) (76,89), 

providing evidence that microbes are required for HFD-induced increases in fat mass at least in mouse models 

tested. Current research is now focusing on understanding how specific bacterial subtypes or species contribute to 

obesity and associated metabolic consequences. Akkermansia mucinphilia, a mucin degrading bacteria, has gained 

increased attention in the past few years and is inversely correlated to body weight in mice and humans (90,91). A. 

mucinphilia increases with metformin treatment (92), a drug used to improve insulin sensitivity in type 2 diabetes. 

Everard et al demonstrated that A. mucinphilia administration via prebiotics or oral gavage reversed obesity 

associated increases in fat mass, adipose tissue inflammation and fasting hyperglycemia (90). Together, these studies 

provide evidence for the role of the intestinal microbiota or specific bacterial species in obesity associated 

pathologies. One potential confounder in studies of DIO is a potential influence of low fiber intake or levels in 

obesogenic diets. Fiber is a non-digestable carbohydrate that is metabolized to short chain fatty acids (SFCA) such 

as butyrate by the microbiota. Butyrate has been shown to be anti-tumorigenic in the colon (93,94). Current views 

are that fiber is protective, particularly in the pathogenesis of intestinal inflammation and CRC (94,95). Our studies 

of mice with DIO aimed to test if existing obesity and hyperinsulinemia, indicative of insulin resistance, affected 

ISCs. Our studies did not address the impact of microbiota or fiber, but these are interesting future directions.  

Obesity and changes in intestinal epithelial morphology 

Surprisingly, there are a limited number of studies exploring the effect of obesity on intestinal epithelial 

morphology. In animal models, obesity increased villus height associated with increased villus cell number and 

crypt cell proliferation (70,96,97), presumably as an adaptation to increase intestinal absorptive capacity. However 

there is no direct evidence on the effect of obesity on ISCs, the cells responsible for repopulating the epithelium, 

which is important since improper epithelial renewal may lead to intestinal dysfunction. The Sox9-EGFP reporter 

model allows for interrogation of the effects of DIO on ISCs to provide direct evidence for the role of ISCs in DIO 

associated increases in villus height observed in previous studies. 

Alternate day fasting and intermittent feeding diets 

Alternate day fasting (ADF), a type of intermittent feeding diet, involves alternating days of food restriction 

and free access to food. ADF is being studied as an alternative to daily calorie restriction (CR). Another intermittent 

feeding diet called modified ADF or intermittent CR involves a reduction in calorie intake rather than 100% food 

restriction on alternating or a subset of days. A similar diet called the 5:2 diet, because it involves two non-
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consecutive days of CR and five days of ad libitum eating a week, is gaining popularity among humans. The overall 

principle of these diets is complete (true ADF) or partial CR (modified ADF) on a subset of days during the week, 

rather than consistent restriction of calorie intake everyday. The popularity of this type of diet stems from the 

difficulty to adhere to constant CR (98,99), which is defined as 20-40% restriction of calories without malnutrition 

every day (100,101). The reported beneficial effects of CR require sustained and long-term adherence to the diet, 

which many humans cannot achieve. Rodent and human studies of ADF or intermittent feeding have increased in 

the past few years and indicate benefits in weight loss, improved metabolism, and factors involved in cardiovascular 

disease and cancer risk, although with some variability across studies or between rodents and humans. Table 1.3 and 

Table 1.4 summarize findings from select ADF studies in animals (Table 1.3) and humans (Table 1.4) on body 

weight and fasting glucose, insulin and insulin-like growth factor 1 (IGF1) levels. Studies in animals have yielded 

mixed results regarding the effect of ADF to reduce body weight, but metabolic benefits of ADF occur in the 

absence of weight loss (102-107). Several human trials in ADF or intermittent feeding have shown reductions in 

body weight in overweight/obese subjects. Overweight subjects that completed a 3-week ADF intervention 

decreased their body weight by 3% (108), while an 8-week study of modified ADF where subjects were 80% CR 

every other day lost 8% of their body weight (109). ADF has been shown to decrease fasting glucose and insulin 

levels in animals, similar to that seen in CR (Table 1.3) (102,107). Human studies have produced mixed results on 

improving fasting glucose and insulin in normal weight subjects however ADF appears to be more effective at 

lowering fasting plasma glucose and insulin levels in overweight and obese subjects (Table 1.4) (103,108,110-114).  

Along with its effects on body weight and metabolic parameters, there is evidence that ADF potentially has 

anti-tumorigenic effects. Animal studies coupling dietary restriction and a carcinogen/mutagen or tumor cell 

xenografts revealed that intermittent feeding (including ADF) increased survival and decreased tumor number and 

size (115,116). It has been speculated that the beneficial effects of intermittent feeding on tumorigenesis is due to 

decreased proliferation. Varady et al. reported that ADF decreased proliferation of T-cells and prostate cells and this 

was associated with decreased levels of circulating IGF1 (105). ADF has also been shown to decrease proliferation 

rates of mammary epithelial cells and keratinocytes (117). Taken together, these findings suggest that ADF may 

confer a protective effect on tumorigenesis by decreasing cell proliferation  

Recent publications on time restricted feeding (TRF) in mice have shown similar outcomes on body weight 

and metabolic parameters as described above (118-120). Similar to ADF, TRF is limiting access to food to a specific 
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time each day. In these studies, mice were allowed access to food only for 8-hours during the dark cycle, which is 

the normal nocturnal feeding period for a mouse. TRF using HFD produces similar outcomes as standard chow 

when measuring metabolic parameters such as body weight, body composition, insulin, leptin and cholesterol 

indicating the diet timing may be more important than diet composition. Mice subjected to longer term TRF 

displayed similar benefits (119). The effects of TRF were associated with changes in the intestinal microbiota 

including decreases in Lactobacillus and Lactococcus, both of which have been associated with increased body fat 

and obesity associated metabolic disruptions (120). 

Although more research needs to be completed in this area, it appears that ADF or other intermittent or 

restricting feeding regimens may be beneficial in promoting weight loss and reduced fat, improved glucose and 

insulin homeostasis and reduced cell proliferation associated with changes in the gut microbiome. Although ADF 

alters the intestinal microbiota, its impact on the intestinal epithelium or ISCs has not been addressed. A recent study 

by Yilmaz et al. reported long-term CR increases ISC number, ISC proliferation and decreased progenitor 

proliferation (121). Based on these findings and the similarities between CR and ADF, our current study tested the 

hypothesis that ADF and associated changes in insulin levels will impact ISC and progenitors associated with 

changes in intestinal growth using the Sox9-EGFP reporter mouse model.  

Overview of the insulin and IGF system 

 The insulin/IGF system is composed of multiple signaling ligands and receptors that mediate different 

actions including growth, apoptosis and metabolism in various tissues throughout the body. This section will 

describe the ligands and receptors that make up the insulin/IGF system and their effects on the body, including 

known effects on the intestine. 

Ligands and receptors of the insulin/IGF system 

The insulin/IGF system is composed of three ligands (insulin, IGF1 and IGF2) with differing affinities to 

bind two receptors (IR or IGF1 receptor (IGF1R)). IGF1 and IGF2 are produced at very high levels in the liver but 

both are produced in other, if not all non-hepatic tissues. In the liver, IGFs are expressed at high levels in 

hepatocytes, while IGFs are produced by mesenchymal cells in other tissues, including the intestine (122-128). 

Insulin is produced by the β-cells of the pancreas. Insulin and IGFs bind their own receptors preferentially, however 

at high levels insulin and IGFs can bind to either IR or IGF1R to initiate downstream signaling pathways. 
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Both IR and IGF1R consist of an extracellular ligand binding α-subunit and a transmembrane tyrosine 

kinase β-subunit joined by disulfide bonds (Figure 1.10a). IR and IGF1R are highly homologous and differences are 

mainly located in their extracellular domain indicating functional differences lie in their ligand binding affinities. 

IGF1R is expressed in a wide variety of tissues to mediate the growth and anti-apoptotic effects of IGFs (129). IR 

exists in two functionally distinct isoforms, IR isoform A (IR-A) and IR isoform B (IR-B). Production of the two IR 

isoforms occurs through alternative splicing of IR pre-mRNA to promote the exclusion (IR-A) or inclusion (IR-B) 

of exon 11. Current views are that classical metabolic effects of insulin occur through IR-B signaling while IR-A 

mediates the growth effects of insulin (Figure 1.10b). IR is expressed in metabolically active, insulin-target tissues at 

high levels such as adipose tissue, liver and skeletal muscle and expression ratio favors IR-B. Lower, but detectable 

expression of IR exists in many tissues that are not considered targets of insulin action such as the brain and 

pancreas (130).  

Insulin and IGFs bind their own receptors preferentially but do cross-react with each other’s receptors at 

differing affinities. Insulin can bind both IR-A and IR-B. IGF1 and IGF2 can bind the IGF1R, however IGF2 can 

bind IR-A, providing dual sources for growth signaling through IR-A (Figure 1.10b).  

Metabolic actions of insulin 

 The common actions associated with insulin are its effects on metabolism and is summarized in Table 1.5.  

Insulin is an anabolic hormone that is produced by β-cells of the pancreas in response to nutrient intake and its 

metabolic activities include regulation of glucose, lipid and protein metabolism. 

Following ingestion of a meal, insulin levels increase and act to lower blood glucose by promoting glucose 

uptake and glycolysis in adipose tissue and skeletal muscle, hepatic glycogen synthesis and inhibiting hepatic 

glycogenolysis and gluconeogenesis. Inhibition of glycogen breakdown and gluconeogenesis occurs directly by 

inhibition of key regulatory enzymes in both processes as well as indirectly by decreasing gluconeogenic precursors. 

Insulin mediated glucose uptake occurs through translocation of glucose transporter GLUT4 to the plasma 

membrane of insulin-responsive tissues. GLUT4 facilitates glucose entry into adipose tissue and skeletal muscle 

where glucose can undergo glycolysis to produce ATP or glycogen synthesis. Insulin also positively regulates 

activity of key glycolytic and glycogen synthesis enzymes. 

 In addition to glucose metabolism, insulin also regulates lipid and protein metabolism. Insulin promotes TG 

synthesis and storage in adipose tissue during the fed state by generating of FFA and glycerol 3-phosphate. Glucose 
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that is transported into fat cells by GLUT4 undergoes glycolysis to generate glycerol-3-phosphate, the glycerol 

backbone required to produce TG. Insulin mediated stimulation of lipoprotein lipase in adipose tissue allows for the 

breakdown of TG from circulating chylomicrons into FFA. TG are formed through a series of enzymatic reactions 

between FFA and glycerol-3-phosphate and stored in adipose tissue. Along with promoting TG synthesis, insulin 

inhibits lipid breakdown by inhibiting hormone sensitive lipase, the enzyme required for lipolysis. Insulin increases 

protein synthesis and inhibits proteolysis by promoting transport of amino acids into tissue such as hepatocytes and 

skeletal muscle. Because of decreased gluconeogenesis, amino acids can be used to synthesize protein. 

Insulin and IR in intestinal growth and cancer 

 In addition to its effects on metabolism, insulin can also regulate growth, including intestinal growth. 

Studies in intestinal resection, where 75% of the small intestine is removed, animals that received oral insulin after 

surgery demonstrated increased intestinal regeneration as measured by increased villus height and proliferation and 

decreased apoptosis associated with increased expression of IR (131-133). In vitro studies have shown that insulin 

treatment increases proliferation of Caco2 cells (133).  

Due to its role in cell proliferation, there is increasing evidence for the role insulin and IR in cancer. Many 

epidemiological studies linking IR to intestinal cancers stem from the relationship that type 2 diabetics are at an 

elevated risk for developing CRC (134,135). In normal mucosa of humans, elevated plasma insulin and decreased 

apoptosis are associated with increased adenoma risk (136). Animals injected with azoxymethane (AOM), a 

carcinogen known to initiate colon tumors, and later given insulin injections developed a greater number of and 

larger tumors (137).  

IR-A has been implicated as the IR isoform associated with cancer because of its role in growth and ability 

to bind insulin and IGF2. IR-A expression is dominant in a number of cancers including breast, lung and colon 

(138). Aberrant IR-A expression is observed in thyroid and breast cancer cells (130). Our lab has explored IR 

isoform expression in intestinal cancers. Andres et al. showed that in a panel of CRC cell lines, IR isoform 

expression in Caco2 cells was about equal, with similar levels of both IR-A and IR-B. In more aggressively growing 

CRC cell lines, IR-B was very low or absent and IR-A expression predominated (139). Forced IR-B expression in 

Caco2 cells and SW480 cells, a more aggressive CRC cell line, was able to decrease cell proliferation (139). 

Additionally, we have shown that jejunal and colonic tumors from ApcMin/+ mice expressed predominantly IR-A, 

consistent with elevated IR-A expression in tumors of other tissues (139). Our group has recently shown that 
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increased IR-A:IR-B ratios in the normal human rectal mucosa of patients with elevated plasma insulin predicted 

intestinal adenoma risk, which indicated levels of IR-A in normal tissue may also be important in assessing cancer 

risk (140). Although insulin does have effects on growth, IR-A also has an affinity for IGF2, which also has 

mitogenic properties (discussed in later sections). Therefore it is likely that insulin and IGF2 may both contribute to 

IR-A signaling in cancer.  

Role of insulin and IR isoforms in the intestine 

 The intestinal epithelium expresses IR and can respond to circulating insulin. Despite this, little attention 

has been given to the effect of insulin and the function of IR on the intestinal epithelium. Using the Sox9-EGFP 

mouse model, our lab has shown that IR-A is expression is greatest in proliferative ISCs (Sox9-EGFP Low) and 

progenitors (Sox9-EGFP Sublow), differentiated cells (Sox9-EGFP Negative) express primarily IR-B and Sox9-

EGFP High cells, which are composed of reserve ISCs and differentiated EECs express equal levels, consistent with 

the functions of the two isoforms (139) (Figure 1.11a). These data suggested IR isoforms are expressed in a gradient 

where IR-A is highest at the crypts where proliferative stem and progenitors reside and expression decreases up the 

crypt/villus axis, while the greatest IR-B expression is observed in differentiated enterocytes on the villi and 

expression decreases down the crypt/villus axis (Figure 1.11c).  

However it is unknown how IR isoforms are altered in specific intestinal epithelial cell types during obesity 

and ADF. Using the Sox9-EGFP reporter mouse, we are able to address this key question by isolating Sox9-EGFP 

populations and assessing IR isoform expression. 

Effect of IGFs on intestinal growth 

IGF1 is an anti-apoptotic, pro-proliferative growth factor in many tissues, including the intestine. Animal 

studies mimicking overproduction of IGF1 have provided evidence for its growth promoting effects on the small 

intestine. IGF1 administration prevented mucosal hypoplasia due to total parenteral nutrition (TPN) and promoted 

epithelial growth in response following intestinal resection by increasing crypt cell proliferation and inhibiting 

apoptosis (141-144). IGF1 pre-treatment of rat intestinal epithelial cells attenuated apoptosis induced by reactive 

oxygen species (145). Studies from our lab have shown that transgene mediated IGF1 overexpression potently 

promoted growth of the intestinal epithelium in both small intestine and colon (146,147). IGF1 increased 

proliferation and reduced apoptosis in crypts following radiation (148). Consistent with its pro-proliferative and anti-

apoptotic functions, data from our lab revealed Igf1r mRNA is expressed in a gradient with highest expression in the 
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proliferative crypt cells. Using the Sox9-EGFP reporter mouse, we show Igf1r expression was highest in Sox9-

EGFP Low ISCs, providing direct evidence that ISCs express Igf1r and indicating ISC may be particularly sensitive 

or responsive to IGFs and insulin (Figure 1.11b). These data also show that Igf1r is expressed in a gradient (similar 

to IR-A) where ISCs express the highest levels of Igf1r and expression decreases up the crypt/villus axis, where 

differentiated cell types express low Igf1r mRNA (Figure 1.11c). Recent studies from our lab using the Sox9-EGFP 

reporter model revealed that IGF1 selectively increased the number of actively cycling Sox9-EGFP Low ISCs in 

uninjured intestine and during crypt regeneration. Expansion of Sox9-EGFP Low ISCs was associated with 

regulation of distinct gene networks by IGF1 in Sox9-EGFP Low ISCs versus Sox9-EGFP High cells (Van 

Landeghem et al, In revision).   

IGF1 can also mediate the effects of growth hormone (GH) and GLP-2, two hormones approved or under 

clinical trial as enterotrophic therapies (122). GH overexpressing transgenic mice display increased circulating 

levels of IGF1, increased small intestinal length and increased mucosal mass, although growth effects are not as 

dramatic as in IGF1 overexpressing transgenic models. GLP-2 induces intestinal growth by promoting local IGF1 

expression (149) in intestinal subepithelial myofibroblasts (125). IGF1R is required for GLP-2 mediated intestinal 

epithelial growth during refeeding after a fast (150). 

IGF2 levels are high during fetal growth and development and IGF2 knockout fetuses are smaller (130). 

Current views are that IGF2 mediates growth during development through interactions with IGF1R and IR-A. 

IGFs and IGF1R in intestinal cancer 

 Elevated levels of IGF1, IGF2 and IGF1R are associated with cancer. Evidence from numerous 

epidemiological studies indicates an association between excessive IGF1 and intestinal cancers. Patients with 

acromegaly, a disorder characterized by overproduction of GH and IGF1, are at increased risk for developing CRC 

(151-153). The Physicians Health Study and the Nurses Health Study both found patients in the top quintile 

(Physicians Health Study) or tertile (Nurses Health Study) of circulating IGF1 levels were at >2 fold increased risk 

for developing CRC compared to those in the lowest group (154,155). IGF1 treatment of CRC cell lines promoted 

proliferation and inhibited apoptosis (129) while reducing IGF1 levels by pharmacological inhibitors blocked 

growth of colon tumors (156). Additionally, loss of heterozygosity for IGF2, which allows both alleles to be 

expressed, thereby increasing IGF2 levels, is linked to CRC (157-159). It is widely known that IGF1R expression is 
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common in cancer cell lines and human cancers (129) therefore IGF1R antagonists are prime targets for cancer 

therapies and are currently being tested (160).  

Nutritional regulation of insulin and IGF1 

 Elevated levels of insulin and IGF1 are seen in obesity while decreased levels are observed during CR, 

indicating both can be regulated by nutritional status (161-164). Hyperinsulinemia also decreases the production of 

IGF binding proteins (IGFBPs) that normally bind and sequester IGFs making them unavailable to signal through 

their receptors. Decreased IGFBPs lead to an increase in bioavailable IGF1, further increasing IGF1 levels. Insulin 

and IGF1 levels are common mechanisms linking obesity associated increased cancer risk (165,166). Animal studies 

have shown that IGF1 administration reverses the anti-tumorigenic effect of diet restriction (167). However the 

effect of obesity and associated hyperinsulinemia and IGF1 on the intestinal epithelium and more directly on ISC 

has largely been ignored. The Sox9-EGFP reporter mouse allows us to explore expression of Igf1r, IR-A and IR-B 

in ISCs and other intestinal epithelial cell types during obesity and ADF to assess whether they can alter the 

expression in these receptors in ISC. 

Nutrition and the intestinal epithelium 

Lipid digestion and absorption 

Lipid digestion begins in the upper small intestine and lipid digestion and absorption are typically 

completed by the time fecal material enters the colon. Pancreatic lipases digest TG to yield two FFA and one sn-2-

monoglyceride (2-MG). Bile is essential for efficient lipid digestion and absorption. Bile emulsifies lipids into small 

droplets to ensure access and efficacy of lipases. Bile salts also ensure solubility of products of lipid digestion by 

forming micelles, which have hydrophilic regions on the outside interfacing with the aqueous portion of lumenal 

contents and inner hydrophobic regions where lipids reside. These structures termed mixed micelles contain FFA, 2-

MG and other components such as bile salts and cholesterol. Mixed micelles then travel through a layer of mucous 

and an unstirred water later in order to reach the apical membrane of absorptive enterocytes on villi of the intestinal 

epithelium. FFA are thought to leave the micelle and enter the enterocyte by passive diffusion or via FFA 

transporters. Short (<6 carbons) and medium (6-12 carbons) chain fatty acids are absorbed by passive diffusion into 

the bloodstream. Longer chain fatty acids (>12 carbons) appear to enter via transporters, such as CD36. Mice with 

deletion of Cd36 still display complete lipid absorption indicating that other transporter(s) likely aid in FFA 

absorption (168) (Figure 1.12a). Following entry into enterocytes, FFA and 2-MG are re-esterified to TG and 
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repackaged with phospholipids, fat soluble vitamins and cholesterol esters (CE) in the endoplasmic reticulum (ER). 

They associate with apolipoproteins and load onto nascent chylomicrons to form mature chylomicrons in the Golgi 

apparatus. CD36 null animals do display lipid accumulation in the intestine, indicating a role for CD36 in 

chylomicron production and secretion (169). Chylomicrons travel to the basolateral membrane of the enterocyte and 

are released into the lymphatics (Figure 1.12b). Chylomicrons interact with lipoprotein lipase that is present on 

endothelial cells that line capillaries to break down TG into glycerol and FFA for entry into adipose tissue and 

skeletal muscle. These lipids can be used for ATP production by the process of β-oxidation or re-esterified into TG 

for storage. In obese states, ectopic fat accumulation can occur in non-adipose tissue such as the liver, thereby 

compromising proper function. Elevated insulin can promote hepatic fat accumulation, which is an unwanted 

consequence of obesity and associated hyperinsulinemia. 

Carbohydrate digestion and absorption 

About 50% of the carbohydrates ingested are in the form a starch. Starch is a polysaccharide that must be 

enzymatically digested prior to absorption by the intestine. Digestion begins in the mouth where salivary amylases 

initiate starch breakdown. This continues as food travels down to the intestine where pancreatic α amylase yields 

oligosaccharides. Brush border oligosaccharidases and disaccharidases further break down oligosaccharaides to 

generate the monosaccharides: glucose, galactose and fructose. Transporters exist on the apical membrane of 

enterocytes to facilitate monosaccharide absorption. The sodium-linked glucose transporter (SGLT1) facilitates 

glucose and galactose uptake while GLUT5 is responsible for fructose entry into the enterocyte. GLUT2, located on 

the basolateral membrane, facilitates transport of all three monosaccharides out of the enterocyte into the interstitial 

space and then the bloodstream (Figure 1.13). Glucose can then be used by peripheral tissues to generate ATP for 

energy or can be stored as glycogen in the liver or other tissues including kidney and skeletal muscle. In the case of 

high carbohydrate intake, excess glucose is converted to acetyl-CoA and used to synthesize lipids and stored as fat.  

Protein digestion and absorption 

Enzymatic digestion of proteins into amino acids begins in the stomach by gastric proteases, particularly 

pepsin, and continues in the small intestine via pancreatic proteases. The brush border of enterocytes contains 

oligopeptidases or dipeptidases, which digest peptides into amino acids. Similar to glucose, amino acids are 

transported into enterocytes by a family of sodium-linked amino acid transporters. Additionally, oligopeptides are 

also capable of being absorbed by enterocytes and moved through the basolateral membrane and enter the 
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bloodstream without further hydrolysis. Transporters located on the basolateral membrane move proteins out of the 

enterocyte and into circulation and transport protein into the enterocyte for cell maintenance.    

Nutrition and intestinal epithelial growth 

Intestinal epithelial growth can be regulated by the presence of absence of lumenal nutrient. During TPN or 

fasting, where the intestinal tract is deprived of nutrient, result in mucosal atrophy associated with decreased mass of 

the small intestinal mucosa and epithelial lining, decreased proliferation and increased apoptosis in the crypts and 

reduced villus height (170-175). The effects of TPN or fasting can be quickly reversed with refeeding, indicating 

that the intestinal epithelium is highly responsive and quick to adapt to changes in lumenal content. The changes in 

mucosal architecture due to fasting or TPN are associated with changes in plasma levels and local expression of 

IGF1 and GLP-2, positive regulators of intestinal growth (170-175). In Drosophila, fasting results in reduced n ISC 

numbers and proliferation and refeeding reverses these effects (176,177). Although some studies have examined 

effects of obesity on mucosal mass and crypt/villus homeostasis, direct effects of obesity on ISCs were not defined 

and are addressed in this work. A second area of study was to examine ADF, a diet similar to CR, that may have 

opposite effects of obesity, on ISCs and overall changes in crypt/villus homeostasis, as this diet is becoming 

increasingly popular and emerging evidence suggest it ADF or other intermittent feeding diets can be a clinically 

relevant alternative to CR. 

Hypotheses and questions addressed 

This work examined the effect of obesity or ADF on ISCs using both in vivo and in vitro approaches. Based 

on previous work, we set forth the following central hypothesis: The intestine will adapt to obesity or ADF and 

associated changes in insulin levels by regulating ISC number, ISC proliferation, intrinsic ability to survive in 

culture or to differentiate (Figure 1.14). 

Specific questions to address this hypothesis include: 

1. Does HFD induce obesity and hyperinsulinemia in Sox9-EGFP animals? 

2. Does DIO increase ISC number, proliferation and change number of Paneth, goblet and EECs?  

3. Is ISC intrinsic function, assessed by survival and enteroid forming efficiency, altered during DIO? 

4. Are effects of DIO linked to the insulin/IGF pathway? 

5. Does ADF decrease body weight and insulin levels similar to animal studies in CR? 

6. Does ADF maintain or decrease ISC number or proliferation? 
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7. Does ADF affect intestinal crypt/villus morphology? 

8. Are changes observed in ADF animals associated with changes in the insulin/IGF pathway? 
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Figures and Tables 

 
 
Figure 1.1:Histological representation of the layers of the mammalian intestine.  
The intestine contains an inner mucosa layer composed of the epithelium (facing the lumen), underlying lamina 
propria and muscularis mucosa, a submucosal layer and muscle layer composed of an inner circular and outer 
longitudinal muscle layer. 
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Figure 1.2: Structure and cell types of the small intestinal and colonic epithelium.  
(A) Histological sections of the small intestinal and colonic epithelium illustrating morphological differences 
between regions. The small intestinal (SI) epithelium is organized into crypts and villi, while the colonic epithelium 
contains crypts and surface epithelium. (B) Schematic of cell types of the small intestinal and colonic epithelium. 
The small intestinal epithelium is organized into crypts and villi. Crypts contain intestinal stem cells (ISCs) and 
progenitors, differentiated Paneth cells and cells with enteroendocrine cell (EEC) phenotype located at the position 
thought to be occupied by activatable/reserve ISC. Villi contain differentiated enterocytes, EEC and goblet cells. 
The colonic epithelium contains only crypts and surface epithelium, containing colon stem cells, progenitors and 
differentiated goblet cells, EEC and colonocytes.   
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Table 1.1: mRNAs or proteins enriched in different small intestinal and colonic epithelial cell types that serve 
as biomarkers 

  

Intestinal epithelial cell type Enriched mRNAs or proteins 

Actively cycling intestinal stem cell Lgr5, Ascl2, Olfm4 

Activatable/Reserve intestinal stem cell Bmi1, Lrig1, Hopx 

Progenitors Atoh1, Hes1, Ngn3 

Paneth cells Lyz, Mmp7, defensins/cryptidins 

Enteroendocrine cells Chga, Tac1, Gcg, Cck 

Goblet cells Muc2, Tff3 

Enterocytes (Small intestine) 
Colonocytes (Colon) 

Small intestine: Sim, Alpi, Lct 
Colon: Car1, Car2 

Table 1.1: mRNAs or proteins enriched in different small 
intestinal and colonic epithelial cell types that serve as 
biomarkers  
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Figure 1.3: Signaling pathways present along crypt/villus axis control ISC maintenance, proliferation and 
differentiation.  
Wnt and Notch activation and Bmp inhibition through Bmp inhibitors such as Noggin are greatest at the crypt base 
and decreases up the crypt/villus axis. Activation of Wnt, Notch and inhibition of Bmp pathways contribute to the 
ISC niche required for ISC maintenance, proliferation and differentiation. ISC niche factors including Wnt and 
Notch ligands are derived from underlying mesenchymal cells and neighboring Paneth cells. Bmp signaling is 
involved in differentiation and is observed at highest levels at the villus and decreases traveling down to the crypt. 
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Figure 1.4: Wnt and Notch pathways control ISC maintenance and cell fate specification.  
In ISC, Wnt and Notch pathways are required for ISC maintenance and proliferation and cell fate specification. 
Notch target gene Hes1 promotes differentiation to enterocyte lineage while suppressing the secretory linage 
through suppression of Atoh1/Math1. Wnt signaling promotes secretory cell fate by increasing transcription of Wnt 
target gene Atoh1/Math1. Lineage specific transcription factors downstream Atoh1/Math1 further control secretory 
cell type. Gfi1 promotes differentiation to Paneth or goblet cell fate while Ngn3 dictates differentiation to 
enteroendocrine cells (EEC).   
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Figure 1.5: Signaling pathways involved in ISC maintenance and cell fate specification.  
Notch, Wnt and Bmp signaling act in concert to control ISC maintenance and specification of differentiated 
lineages. (A) Notch signaling occurs when a Notch ligand binds to a Notch receptor expressed on an adjacent cell. 
Binding results in cleavage of the Notch intracellular cytoplasmic domain (NICD) by γ-secretase. NICD translocates 
to the nucleus and binds to the CSL transcription factor to turn on Notch regulated genes. (B) Wnt signaling 
involves Wnt ligand binding to its receptor consisting of Frizzled (Fzd) and lipoprotein receptor-related protein 
(LRP) receptors resulting in inhibition of β-catenin degradation. Stabilized cytoplasmic β-catenin travels to the 
nucleus and binds with the TCF family of transcription factors to increase transcription of Wnt target genes. (C) 
Bmp ligands bind to membrane bound Bmp receptors leading to phosphorylation of Smad proteins. Phosphorylated 
Smad proteins bind to Smad4 and travel to the nucleus to regulate gene transcription. Noggin and Gremlin-1 inhibit 
Bmp signaling by blocking binding of Bmp ligands to receptors. Adapted from (178)  
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Figure 1.6: Methods for identifying stem cells.  
(A) Label retention methods are used to identify slowly cycling reserve stem cells by administration of a DNA label 
to mark all proliferating cells followed by a washout period. Highly proliferative cells will divide and dilute out the 
label while slowly cycling stem cells will retain the label and can be visualized by histological methods. (B) Lineage 
tracing methods to identify stem cells require a inducible CreERT element downstream the promoter of the gene of 
interest crossed with a reporter mouse. Tamoxifen administration will result in removal of the transcriptional stop 
sites flanked by loxP sites (filled triangles) by Cre recombinase permanently turning on reporter expression in cells 
expressing the gene of interest. All progeny will inherit the reporter mark resulting in ribbons of labeled cells, 
indicating they were originally derived from a stem cell. Adapted from (179)  

Administer DNA label (i.e. 
BrdU) by injection or through 
drinking water to mark 
proliferating cells. Then begin 
washout period 

Harvest tissue at 
different time points 

Uptake of label by 
proliferating cells 

<1 week  

Reserve stem cells 
retain label 
>2 months 

Rapidly proliferating 
cells dilute and lose 

the label 

LacZ 

CreERT 

STOP Rosa26 

ISC gene 

LacZ 

CreERT 

Rosa26 

ISC gene 

Tamoxifen 

STOP 
Cre 

Short time point  
<6 weeks 

Long time point results in all 
cells labeled meaning they 
were all derived from ISC 

Before Tamoxifen 
injection 

A  Label retention 

B  Lineage tracing 



	
   33 

 
 
Figure 1.7: Isolated ISCs form enteroids with time in vitro.  
(A) Schematic showing isolated ISC from reporter models such as the Sox9-EGFP mouse model can be grown in 
vitro using a Matrigel-based culture system supplemented with factors that mimic the ISC niche developed by (53). 
In time, isolated ISC will form enteroids complete with crypt buds and a lumen, and all differentiated cell types. (B) 
Isolated Sox9-EGFP Low ISCs are able to be grown in this culture system (adapted by (57)) to yields enteroids with 
crypt buds, lumen and differentiated cell types, indicating intrinsic function and stemness ability. 
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Table 1.2: Summary of select ISC reporter mouse models 

 
  

Marker ISC population Mouse model  Type of genomic 
integration 

Linage 
tracing 

Sox9 Low: CBC ISC 
High: +4/reserve ISC Sox9-EGFP BAC transgenic 

(random integration) No 

Lgr5 CBC ISC Lgr5-EGFP-IRES-CreERT2 
Lgr5-lacZ 

Knock-in (targeted 
integration) Yes 

Olfm4 CBC ISC Olfm4-IRES-EGFPCreERT2 Knock-in (targeted 
integration) Yes 

Bmi1 +4/reserve ISC Bmi1-IRES-CreERT2 
Bmi1-EGFP 

Knock-in (targeted 
integration) Yes 

Hopx +4/reserve ISC Hopx-IRES-CreERT2 
Hopx-EGFP 

Knock-in (targeted 
integration) Yes 

Lrig1 +4/reserve ISC Lrig1-IRES-CreERT2 Knock-in (targeted 
integration) Yes 

Table 1.2: Summary of select genetically engineered ISC-reporter models 
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Figure 1.8: Sox9-EGFP reporter gene expression marks different intestinal epithelial cell populations.  
Sox9-EGFP reporter mouse is a transgenic mouse model expressing a Sox9-EGFP bacterial artificial chromosome 
(BAC) transgene where large amounts of Sox9 genomic regulatory sequences regulate EGFP expression. A-B: 
Different cell types express High, Low, Sublow or no detectable EGFP levels as indicated in the schematic (A) and 
by immunofluorescence for EGFP (B; Sub: Sublow, Lo: Low, Hi: High). (C) Flow cytometry plot illustrating Sox9-
EGFP cell populations can be distinguished by EGFP intensity and used for quantification or isolation by 
fluorescence activated cell sorting (FACS). Images from (B) and (C) from (13)  
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Figure 1.9: Insulin signaling in normal and obese states.  
Under normal conditions, insulin signaling begins with insulin binding to and activating insulin receptor (IR) 
leading to tyrosine phosphorylation of insulin receptor substrate 1 (IRS-1). IRS-1 mediated PI3K/AKT activation 
results in increased glucose uptake, glycogen, protein and lipid synthesis and decreased gluconeogenesis to lower 
postprandial blood glucose. IRS-1 can also activate the MAP kinase pathway via MAPK to promote cell growth and 
protein synthesis. Obesity has been linked to impaired insulin signaling. Increased inflammatory cytokines, and 
factors promoting increased cytokines such as free fatty acids (FFA) and diacylglycerol (DAG) and 
lipopolysaccharide (LPS) activate inflammatory JNK and NFκB pathways leading to inactivating serine 
phosphorylation of IRS-1. Inflammatory cytokines also increase suppressors of cytokine signaling-3 (SOCS3), 
which binds to IR preventing IRS-1 binding. The lipogenic effects of insulin and preserved during obesity. 
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Table 1.3: Effects of alternate day fasting (ADF) on fasting glucose, insulin and IGF1 levels in animals 

 
  

Fasting levels 

Study Animals 
(Age) 

Duration Weight change Glucose Insulin IGF1 

Anson et al 2003 C57Bl6  
(8 wks) 

20 wks None Decrease* Decrease* Increase* 

Wan et al 2003 Sprague-
Dawley 
rats  
(12 wks) 

24 wks Decrease* Decrease* Decrease* Decrease* 

Varady et al 2007 C57Bl6  
(7 wks) 

4 wks Decrease* - - Decrease* 

Varady et al 2008 C57Bl6  
(7 wks) 

4 wks 
(85% 
ADF) 

None - - Decrease* 

Varady et al 2009 C57Bl6  
(8 wks) 

4 wks None - - Decrease* 

Table 1.3: Effects of ADF on fasting glucose, insulin and IGF levels in animals 

*vs. controls at end of study 
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Table 1.4: Effects of alternate day fasting (ADF) on fasting glucose and insulin in humans 

  

Fasting levels 

Study Subjects Duration Weight change Glucose Insulin 

Heilbronn et al 2005 Both sexes, 
20-55yrs, normal 
weight 

3 weeks Decrease** No change Decrease** 

Halberg et al 2005 Males, 25rs, 
normal weight 

2 weeks No change No change No change 

Varady et al 2009 Both sexes, 45 
yrs, obese 

8 weeks 
(75% ADF) 

Decrease** Decrease** Decrease** 

Klempel et al 2013 Females, 40yrs, 
obese 

8 weeks 
(75% ADF) 

Decrease** No change No change 

Varady et al 2012 Both sexes, 
45yrs, normal and 
overweight 

12 weeks 
(75% ADF) 

Decrease* Decrease* Decrease* 

Table 1.4: Effects of ADF on fasting glucose and insulin in humans 

*vs. controls at end of study; **vs. baseline at end of study 
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Figure 1.10: IR and IGF1R are tyrosine kinase receptors involved in growth and metabolism  
(A) The insulin-like growth factor (IGF1R) and insulin receptor (IR) are highly homologous tyrosine kinase 
receptors that are composed of an extracellular α subunit where ligand binding occurs and a transmembrane β 
subunit with tyrosine kinase activity. (B) The insulin/IGF pathway consists of the ligands IGF1, IGF2 and insulin 
and the receptors IGF1R and two insulin receptor isoforms, IR-A and IR-B. Ligands bind to receptors at differing 
affinities to mediate growth, proliferation and anti-apoptosis (IGF1R, IR-A) or differentiation and metabolism (IR-
B). The proximity of ligands to receptors indicates affinity. Modified from (129)  
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Table 1.5: Tissue specific effects of insulin by macronutrient 

  

Macronutrient Tissue Pathway 

Carbohydrate 
(glucose) 

Liver Promote glycogen synthesis 
Inhibit gluconeogenesis 

Adipose tissue Promote glucose uptake and glycolysis 

Skeletal muscle Promote glucose uptake and glycolysis 

Fat 
(fatty acids) Adipose tissue Promotes triglyceride synthesis and storage 

Inhibits lipolysis 

Protein 
(amino acids) 

Liver Promotes protein synthesis 

Skeletal muscle Promotes protein synthesis 

Table 1.5: Effects of insulin by macronutrient in specific tissues 
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Figure 1.11: Differential expression of the insulin/IGF1 pathway in the intestine.  
Evaluation of IR-A, IR-B and Igf1r mRNA in Sox9-EGFP sorted cell populations reveals distinct expression 
differences in specific intestinal epithelial cell types. (A) RT-PCR for IR isoform expression show proliferative 
progenitors and ISCs (red; Sox9-EGFP Sublow and Sox9-EGFP Low) express predominantly IR-A, while 
differentiated cells (green; Sox9-EGFP Negative) express greater IR-B levels. Total cells are non-sorted intestinal 
epithelial cells, which are >90% differentiated enterocytes and therefore express predominantly IR-B. Sox9-EGFP 
High cells contain both differentiated EEC and slowly cycling reserve ISC and express equal levels of both IR 
isoforms. (B) qRTPCR on Igf1r mRNA in Sox9-EGFP sorted cells reveal enrichment of Igf1r in Sox9-EGFP Low 
ISC and low levels expressed in differentiated Sox9-EGFP Negative cells and total cells. (C) Our data provides a 
model where IR-A, IR-B and Igf1r expression exist in a gradient along the crypt/villus axis. Igf1r and IR-A 
predominate in the proliferative crypts while IR-B is highest in differentiated villi, consistent with known functions 
of all three receptors. IGF1 produced and secreted by surrounding mesenchymal cells while insulin and IGF1 
circulate in the bloodstream (not shown) and can act on the epithelium via its receptors.  
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Figure 1.12: Lipids are absorbed by small intestinal enterocytes and repackaged into chylomicrons for 
distribution to peripheral tissues.  
(A) Lipids are digested into 2-monoacylglycerol (2-MG) and free fatty acids (FFA). FFA and 2-MG combine with 
bile salts and cholesterol to form mixed micelles prior to absorption. Micelles enter enterocytes by diffusion due to 
an acidic environment or via membrane bound transporter CD36. (B) In enterocytes, FFA and 2-MG are re-
esterified to triglycerides (TG) and cholesterol into cholesterol esters (CE) in the endoplasmic reticulum (ER), 
combine with apolipoproteins in the Golgi apparatus to form chylomicrons. Chylomicrons exit into the lymphatic 
system to deliver lipids to the venous circulation and peripheral tissues. Adapted from (180).  
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Figure 1.13: Carbohydrate absorption by enterocytes.  
Carbohydrates are enzymatically digested into galactose, glucose and fructose prior to absorption through 
enterocytes. Glucose and galactose absorption is coupled with sodium via the sodium glucose transporter 1 
(SGLT1). Fructose absorption occurs through GLUT5. Once inside the cell, all three exist via GLUT2 located on the 
basolateral membrane while sodium exits by sodium-potassium pump into the interstitial space and then 
bloodstream. Adapted from (180).  

Glucose 

Galactose 

Na+ 

Fructose 
GLUT5 

SGLT1 

GLUT2 

GLUT2 

K+ 

Lumen Enterocyte Interstitial 
space 



	
   44 

 
 
Figure 1.14: Intestinal adaptation to obesity and alternate day fasting involves changes in ISC number, 
proliferation and function.  
The central hypothesis of the following dissertation is that diet-induced obesity, associated hyperinsulinemia and 
elevated IGF1 levels will increase intestinal stem cell (ISC) number, proliferation and intrinsic function to increase 
intestinal epithelial growth during hypercaloric conditions, while alternate day fasting, a diet producing similar 
benefits as calorie restriction, will lead to decreased insulin and IGF1 levels. We hypothesize alternate day fasting 
will preserve ISC number but decrease ISC or progenitor proliferation and ISC intrinsic function in order to decrease 
or maintain intestinal epithelial growth. 
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CHAPTER 2: IMPACT OF DIET-INDUCED OBESITY ON INTESTINAL STEM CELLS: 
HYPERPROLIFERATION BUT IMPAIRED INTRINSIC FUNCTION THAT REQUIRES INSULIN/IGF11 
 

Introduction 

The functional consequences of obesity have been extensively studied in liver, skeletal muscle and adipose 

tissue, but much less is known about the effect of obesity on the intestinal epithelium, the initial site of nutrient 

absorption. The highly proliferative small intestinal epithelium is composed of crypts, containing proliferating cells, 

terminally differentiated Paneth cells and some goblet and enteroendocrine cells (EEC), and villi composed of 

primarily post-mitotic differentiated enterocytes, but also goblet cells and EEC. The small intestinal epithelium is 

renewed every 3-7 days depending on the species and region. Constant renewal involves proliferation of intestinal 

stem cells (ISC), which reside at the crypt base. ISC give rise to more actively dividing progenitors, also termed 

transit-amplifying cells, which differentiate into post-mitotic lineages as they exit the crypts, or migrate to the crypt 

base (1,181,182). Intestinal epithelial homeostasis is dependent on a tightly regulated balance between ISC and 

progenitor proliferation, differentiation and the constant loss of differentiated cells at the villus tip.  

The small intestinal epithelium is highly responsive to changes in nutrient intake or exposure to luminal 

nutrient. In rodents, fasting or total parenteral nutrition (TPN) leads to rapid reductions in small intestinal epithelial 

mass, associated with reduced proliferation in the crypts and increased apoptosis in crypts and villi (170-175). This 

is a logical physiological adaptation to a reduced need for nutrient absorption. In duodenum and jejunum and to a 

lesser extent ileum, refeeding can rapidly reverse the fasting-induced atrophy of the epithelium. Until recently, it 

was not possible to directly assess impact of nutrient status on ISC. Since landmark studies in 2007, Lgr5 and 

multiple other proteins have been identified as biomarkers of actively cycling ISC (also termed crypt based 

columnar cells, CBC) (3,58). Development of transgenic reporter mice expressing fluorescent proteins downstream 

of the promoters driving ISC biomarker expression has permitted direct evaluation of ISC in vivo (3,56) and 

isolation and assessment of ISC intrinsic function in vitro. In 3D culture systems, ISC develop into spherical 
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  This chapter previously appeared in Endocrinology. The original citation is as follows: Mah AT, Van Landeghem 
L, Gavin HE, Magness ST, Lund PK. (2014) Impact of diet-induced obesity on intestinal stem cells: 
hyperproliferation but impaired intrinsic function that requires insulin/IGF1 Endocrinology.Sep;155(9):3302-14.	
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structures termed enterospheres that are composed of multiple cells, reflecting ISC survival and proliferation. With 

increased time in culture, enterospheres grow and form more complex structures termed enteroids that show a 

lumen, crypt buds and contain ISC and all differentiated lineages (54). Enterosphere and enteroid yield from isolated 

ISC is a useful measure of ISC survival and growth capacity. A recent study using Lgr5 reporter mice demonstrated 

that long-term calorie restriction (CR) reduced villus height and proliferation of progenitors but increased both 

numbers and proliferation of ISC (121). CR also enhanced the ability of isolated ISC to survive, grow and yield 

enteroids (121). The ability of CR to enhance ISC number and function was linked to diminished mTORC signaling 

in Paneth cells, neighboring niche cells that provide trophic support to ISC (54). Other studies performed in 

Drosophila demonstrated that fasting decreased ISC number, which was restored upon refeeding (176,177), 

strengthening the concept that ISC respond and adapt to altered nutrient availability. Compared with fasting, the 

impact of over-nutrition as seen in diet-induced obesity (DIO) has not been as extensively studied. Depending on the 

model and duration of obesogenic diet, DIO has been linked to altered crypt-villus homeostasis, particularly 

increased villus height but variable effects on crypt cell proliferation (70,96,183). Importantly, the impact of DIO 

specifically on ISC is not defined. 

In this study, we sought to define the effects of DIO, specifically on ISC using the Sox9-EGFP reporter 

mouse model. In the intestine of this model, different expression levels of the Sox9-EGFP transgene mark different 

intestinal epithelial cell types (56,57). The highest expression levels of Sox9-EGFP (Sox9-EGFP High) are found in 

cells co-expressing or enriched for EEC markers and Bmi1, Hopx and Dcamkl1, markers linked to a ‘reserve’ 

population of cells that can function as ISC in some situations (5,6,13,184). Lower Sox9-EGFP expression marks 

cells that have been termed Sox9-EGFP Low ISC because they are highly enriched for Lgr5 and other biomarkers of 

actively cycling ISC and are capable of self-renewal and multipotency in vivo and in vitro (13,56,57,185). In 

healthy, ad libitum fed Sox9-EGFP mice, only Sox9-EGFP Low cells can survive and form enteroids in 3D culture. 

Sublow EGFP expression (Sox9-EGFP Sublow) mark progenitors, and cells negative for EGFP (Sox9-EGFP 

Negative) correspond to enterocytes, Paneth and goblet cells based on enrichment of markers of these differentiated 

cells (13,56,57). This model therefore permits us to test the impact of dietary interventions on Sox9-EGFP Low ISC 

and also on the other cell populations expressing different levels of Sox9-EGFP. Our study tested the hypothesis that 

DIO promotes ISC proliferation and expansion to increase small intestinal epithelial mass.  
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It is well established that changes in crypt cell proliferation and intestinal mass induced by fasting and 

refeeding correlate with changes in circulating insulin-like growth factor 1 (IGF1) and local intestinal expression of 

Igf1 that derives from the pericryptal mesenchyme (175). Enterotrophic effects of IGF1 have been demonstrated and 

IGF1 is able to prevent atrophy of the small intestinal epithelium induced by TPN (141). Since DIO due to long-

term high fat diet (HFD) promotes insulin resistance associated with elevated circulating insulin (76) and increased 

free IGF1 in the circulation (166,186), we examined whether DIO-induced changes in ISC correlated with plasma 

insulin or IGF1 and whether ISC from DIO mice showed altered responsiveness to insulin or IGF1 in vitro. 

Results 

Diet-induced obesity in Sox9-EGFP mice 

Sox9-EGFP mice were fed a low fat standard chow or HFD for 20 weeks to induce DIO. Male and female mice 

responded similarly to HFD feeding and were combined in all analyses. Sox9-EGFP mice fed HFD showed 

significantly higher body weight by 7 weeks on diet (+24 ± 5%). This effect was maintained and more dramatic 

(+38 ± 5%) by 20 weeks on diet (Figure 2.1a) and accompanied by an increase in percent fat mass and a decrease in 

percent lean mass (Figure 2.1b). Following 20 weeks on diet, DIO mice exhibited elevated plasma glucose, insulin 

and IGF1 (Figures 2.1c-e). DIO mice also exhibited significantly higher jejunal Igf1 mRNA levels (Figure 2.1f).  

Impact of DIO on small intestine weight, length and jejunal crypt and villus morphometry  

As shown in Table 2.1, DIO resulted in a small but significant decrease in intestinal length and a non-significant 

trend for decreased overall intestinal weight so that weight per unit length did not change significantly. Crypt-villus 

morphometry was measured in jejunum, a major region of nutrient absorption. Villus height was increased in DIO 

mice (+18 ± 7%; Figure 2.2a-b). Crypt depth did not differ between DIO and controls, but crypt density was 

significantly increased in DIO mice (+12 ± 4%; Figure 2.2a, c), indicating an increase in the number of crypts 

feeding onto the heightened villi. Percentage of fissioning crypts was similar in DIO and controls. 

DIO selectively increases number of ISC and ISC in S-phase 

Total number of cells per crypt section and total number of cells labeled with the S-phase marker EdU per crypt 

section did not differ in DIO mice versus controls (Figure 2.2d-e). We used the Sox9-EGFP reporter mouse to assess 

if DIO affected numbers of Sox9-EGFP Low ISC or crypt-based Sox9-EGFP High cells that express the EEC 

marker Chromogranin A (ChgA), but also contain a population of ‘reserve’ ISC-like cells activated to proliferate 

after injury (13). Sox9-EGFP High cells were distinguished from Sox9-EGFP Low cells by both high intensity of 
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EGFP and ChgA expression (Figure 2.2f). As shown in Figures 2F and 2G, there was a small but significant 

increase in the number of Sox9-EGFP Low ISC but not Sox9-EGFP High cells per crypt section. Co-labeling with 

EdU was used to quantify the numbers of Sox9-EGFP Low and Sox9-EGFP High cells in S-phase. DIO resulted in a 

significant increase in the percentage of Sox9-EGFP Low ISC co-labeled with EdU, but no significant change in the 

proportion of Sox9-EGFP High EdU positive cells per crypt section (Figure 2.2h-i). While the total numbers of 

Sox9-EGFP Low cells per crypt section were increased by 25 ± 6.0%, there was a greater increase in the number of 

EdU positive Sox9-EGFP Low cells per crypt section (+48.1 ± 19.3%) indicative of ISC hyperproliferation and/or 

altered cell cycle time. Flow cytometry, performed as an independent measure of the proportion of Sox9-EGFP Low 

ISC in entire jejunum of control and DIO mice, revealed a significant increase in the percentage of Sox9-EGFP Low 

ISC in DIO mice compared to controls (Figure 2.2j). Collectively, the morphometry, histology and flow cytometry 

data demonstrate that DIO results in increased total numbers of Sox9-EGFP Low ISC and percentage of ISC in S-

phase, which may be required to support the increased crypt density and villus height even though total numbers of 

cells per crypt are unchanged.  

DIO mice have decreased numbers of Paneth and goblet cells 

To evaluate if increased villus height and increased ISC proliferation in DIO mice were associated with changes in 

differentiated lineages, we compared numbers of Paneth, goblet and EEC in DIO mice versus controls. 

Quantification of lysozyme positive cells revealed a 25.7 ± 3.1% decrease in the number of Paneth cells per crypt 

section in DIO mice compared to controls (Figure 2.3a-b). Mucin2 staining revealed that numbers of goblet cells 

were significantly decreased in DIO mice in both crypts (-33.6 ± 4.6%) and villi (-24.4 ± 4.6%) compared to 

controls (Figure 2.3c-d). EEC number evaluated by the number of ChgA positive cells revealed no differences 

between control and DIO mice in either crypt or villus (Figure 2.3e-f). Taken together, these data suggest DIO mice 

exhibit significantly reduced numbers of Paneth and goblet cells and no change in EEC, providing indirect evidence 

that the increased villus height likely involves increased number or size of enterocytes, the other major differentiated 

villus lineage.   

Sox9-EGFP Low ISC isolated from DIO mice have reduced ability to form enterospheres and enteroids in 

culture 

ISC were isolated by FACS using dispersed epithelial preparations from control and DIO Sox9-EGFP reporter mice. 

High throughput qRTPCR on isolated Sox9-EGFP cell populations demonstrated an appropriate and similar gradient 
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of EGFP and Sox9 mRNA across the sorted cell populations from control and DIO mice (Figure 2.4a-b). Sox9-

EGFP High cells were enriched for mRNAs encoding EEC marker Chga and ‘reserve’ ISC marker Hopx (Figure 

2.4c-d) and Sox9-EGFP Negative cells were enriched in Lct mRNA, a brush border enzyme expressed by absorptive 

enterocytes (Figure 2.4e). Importantly, Sox9-EGFP Low cells isolated from both control and DIO mice were both 

similarly enriched for the mRNA encoding the ISC marker Lgr5 (Figure 2.4f). Consistent with selective 

hyperproliferation of ISC in DIO mice observed by histology and EdU, Cyclin D1 (Ccnd1) mRNA was increased 

only in Sox9-EGFP Low cells from DIO mice versus control and not in any other cell population (Figure 2.4g). 

To assess whether the in vivo increase in Sox9-EGFP Low ISC proliferation in DIO mice translated to 

increased intrinsic ISC function, we compared the ability of Sox9-EGFP Low cells isolated from DIO and control 

mice to survive, expand and form enterospheres/enteroids in 3D culture. In this in vitro assay, low density ISC are 

plated at day 0 and the number of structures formed are counted every other day for 12 days. Because of low-density 

plating, enterosphere/enteroids derive primarily from single ISC. This assay is a useful in vitro readout for intrinsic 

function of stem cells in terms of survival and growth. In addition to Sox9-EGFP Low cells, we also tested Sox9-

EGFP High, Sox9-EGFP Sublow and Sox9-EGFP Negative cells to establish if DIO altered ‘stemness’ in 

populations other than actively cycling Sox9-EGFP Low ISC. Consistent with previous findings in chow fed mice, 

Sox9-EGFP Negative, Sox9-EGFP Sublow and Sox9-EGFP High cells from control mice did not survive or expand 

to form enterospheres/enteroids, and this was also the case in DIO mice (data not shown). Sox9-EGFP Low ISC 

isolated from both control and DIO mice were able to survive and form enterospheres/enteroids in 3D culture 

(Figure 2.5a). Enterospheres were quantified starting at day 4 when these structures are large enough to count 

reliably. No significant difference was seen in the percentage of enterospheres formed from Sox9-EGFP Low ISC 

isolated from DIO or control mice at day 4-post plating, although there was a trend for lower numbers in DIO mice 

(Figure 2.5b). By day 6 post plating, Sox9-EGFP Low ISC isolated from DIO mice yielded fewer enteroids than 

controls and numbers of enteroids formed from DIO ISC remained significantly lower until the end of the culture at 

day 12 post plating (Figure 2.5b). While sizes of 3D enteroids are difficult to quantify, qualitative evaluation 

indicated a reduced size of enterospheres/enteroids formed from ISC isolated from DIO mice versus controls as 

shown in the examples in Figure 2.5a. These data indicate that despite increased numbers and proliferation of ISC in 

DIO mice in vivo, the intrinsic in vitro survival and growth capabilities of ISC isolated from DIO mice are impaired 

relative to ISC isolated from controls. This provides novel evidence that DIO alters ISC intrinsic function. 
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Insulin and/or IGF1 treatment rescues functional defect of ISC isolated from DIO mice 

DIO mice are hyperinsulinemic, display elevated plasma IGF1 levels (Figures 1D and 1E), and have significantly 

higher local intestinal Igf1 mRNA expression (Figure 2.1f). Additionally, plasma insulin levels were found to be 

positively and significantly correlated with abundance of Sox9-EGFP Low ISC evaluated by flow cytometry in the 

same animals (Figure 2.6a). We therefore hypothesized that the reduced in vitro survival and growth of ISC from 

DIO mice might reflect an acquired dependence on elevated insulin or IGF1. To test whether the decrease in 

enterosphere/enteroid formation seen in ISC from DIO mice could be rescued by supplementation of cultures with 

insulin and/or IGF1, isolated ISC from control and DIO mice were treated with standard growth factor conditions 

(EGF, Noggin and R-Spondin 1) alone or plus insulin, IGF1 or insulin and IGF1 combined. Consistent with prior 

results (Figure 2.5), in this independent series of experiments, Sox9-EGFP Low ISC from DIO mice formed fewer 

enteroids than controls when plated in standard growth factor conditions alone (Figure 2.6b). Neither insulin, IGF1 

nor both affected enteroid yield from ISC isolated from control mice. In contrast, insulin, IGF1 or insulin and IGF1 

combined resulted in a significant >3-fold increase in the number of enteroids formed from Sox9-EGFP Low ISC 

isolated from DIO mice (Figure 2.6b) compared to ISC from DIO mice cultured in standard growth factor 

conditions. In fact, the mean number of enteroids formed from IGF1 treated ISC from DIO mice significantly 

exceeded the number formed from ISC of control mice cultured under standard GF conditions (p<0.05) and a similar 

trend was observed in DIO ISC treated with insulin (p=0.07) or insulin and IGF1 (p=0.17) (Figure 2.6b). Insulin, 

IGF1 or both therefore ‘rescued’ the defect in survival and growth of DIO ISC. qRTPCR on FACS isolated Sox9-

EGFP Low ISC and other populations revealed that IGF1 receptor (Igf1r) mRNA was significantly enriched in 

Sox9-EGFP Low ISC, suggesting that ISC may be particularly responsive to IGF1 (Figure 2.6c). In contrast, Ir 

mRNA was significantly enriched in Sox9-EGFP High cells (Figure 2.6d). However neither levels of Igf1r mRNA 

nor Ir mRNA differed in Sox9-EGFP Low ISC isolated from DIO versus control mice suggesting that receptor 

down-regulation, at least at the mRNA level, did not accompany differences in enteroid forming ability or 

dependence on exogenous insulin/IGF1 in isolated ISC from DIO mice. Our prior studies demonstrated that IR 

isoform A (IR-A), a receptor that can mediate proliferative actions of insulin or IGFs, is the predominant IR isoform 

in Sox9-EGFP Low ISC compared to the metabolic IR-B isoform (139). We performed RT-PCR to evaluate if DIO 

resulted in changes in relative proportions of the two IR isoforms. We found no significant changes in relative 

expression of the two isoforms, with IR-A being expressed at >2 fold the levels of IR-B in ISC from control and 
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DIO mice. (Figure 2.6e-f). Thus, ISC from DIO mice require the presence of elevated insulin and/or IGF1 to 

maintain their intrinsic function in vitro but this does not reflect reduced levels of either Igf1r or Ir at least at the 

level of mRNA expression. Wnt signaling is a key pathway involved in ISC function. We therefore assessed levels 

of two known Wnt targets, Myc and Axin2 in Sox9-EGFP Low ISC isolated from DIO and control mice. Both Myc 

and Axin2 mRNAs were significantly lower in ISC isolated from DIO mice compared to controls (-20.5 ± 8.5% and 

-24.4 ± 9.3%, respectively). Decreased Wnt activation in ISC isolated from DIO mice could therefore contribute to 

their reduced enteroid forming ability.  

Discussion 

In this study, we used the Sox9-EGFP reporter model to directly examine the impact of DIO due to chronic 

HFD exposure on Sox9-EGFP Low ISC, which share a similar gene signature to actively cycling Lgr5+ ISC (13) and 

are able to survive and form enteroids in culture (57). We provide new evidence that DIO leads to increased 

numbers of jejunal Sox9-EGFP Low ISC, increased ISC proliferation as measured by EdU and increased expression 

of Ccnd1 mRNA specifically in Sox9-EGFP Low ISC, but does not affect total crypt cell number, crypt depth or 

total EdU positive cells per crypt. DIO was associated with increased crypt density and villus height, supporting a 

model whereby the increased numbers of ISC and ISC in S-phase support the increased number of crypts which in 

turn feed cells onto longer villi as an adaptation to hypercaloric load (Figure 2.7). 

Our results are consistent with recent findings that report increases in villus height and numbers of Ki67 or 

BrdU positive cells per crypt with long-term HFD feeding (70,96). However our study provides, to our knowledge, 

the first evidence that DIO preferentially expands and promotes proliferation of Sox9-EGFP Low ISC. Our prior 

studies on Sox9-EGFP High cells, which are enriched for EEC markers (13), and evidence from the literature 

indicate that a subpopulation of secretory cells, EEC or Paneth cells or their immediate progenitors can be activated 

to proliferate and adopt a stem cell phenotype upon injury (12,13). Our findings indicate that DIO does not increase 

EdU positive Sox9-EGFP High cells and that Sox9-EGFP High cells from DIO mice do not acquire the ability to 

generate enterospheres/enteroids in culture suggesting that in contrast to injury models, DIO does not activate Sox9-

EGFP High cells to expand, proliferate or adopt functional characteristics of stem cells. Thus DIO selectively 

promotes hyperproliferation of the more actively cycling Sox9-EGFP Low ISC. 

Our findings show that concomitant with increased villus height and ISC hyperproliferation, DIO mice 

have reduced numbers of Paneth cells in crypts, reduced goblet cells on crypts and villi and no change in EEC 
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suggesting that increased villus height likely reflects increased numbers or size of absorptive enterocytes. Other 

studies have reported reduced goblet cells in obese mice (66,92), while some reports have suggested changes in 

numbers of specific EEC (66,187,188). To our knowledge, this is the first report of reduced Paneth cell number in 

DIO mice. This is potentially interesting since Paneth cells are reported to secrete factors such as Wnts, which 

provide trophic support to ISC. However in vivo, despite reduced Paneth cell numbers, DIO ISC still 

hyperproliferate and expand and the ISC expansion correlates with plasma insulin levels.  

We used a 3D Matrigel based culture system to directly test if the in vivo hyperproliferation of Sox9-EGFP 

Low ISC was associated with enhanced ability of these cells to generate enterospheres/enteroids in vitro. 

Surprisingly, the number of enterospheres/enteroids derived from isolated Sox9-EGFP Low ISC was reduced in DIO 

mice versus controls indicating impaired rather than enhanced intrinsic function of DIO ISC when isolated from 

their in vivo environment. This suggested that some extrinsic signal in the in vivo setting that promotes survival or 

proliferation of ISC from DIO mice may be deficient in the in vitro system. In support of this possibility, 

supplementation of culture medium with insulin and/or IGF1, which are increased in plasma of DIO mice, was able 

to rescue the impaired enteroid forming ability of Sox9-EGFP Low ISC from DIO mice to levels equal to or greater 

than that observed in Sox9-EGFP Low ISC from controls. Interestingly, addition of insulin, IGF1 or both factors 

combined did not affect the yield of enteroids from control Sox9-EGFP Low ISC. Since DIO mice exhibited 

elevated circulating levels of insulin and IGF1 and elevated locally expressed Igf1 mRNA in vivo, we interpret these 

findings as novel evidence that ISC from DIO mice develop a ‘dependence’ or responsiveness to exogenous insulin 

or IGF1 for their survival or increased proliferation normally not seen in control ISC. At the mRNA level, we found 

no evidence for reduced levels of Igf1r, Ir or IR-A in Sox9-EGFP Low ISC from DIO mice versus controls 

suggesting that the dependence on exogenous insulin/IGF1 may result from a mechanism other than down-

regulation of receptor expression. We cannot exclude altered expression of Igf1r or Ir at the protein level, but this is 

difficult to quantify considering the small numbers of ISC that can be collected. The significant decrease in Wnt 

targets Myc and Axin2 mRNAs in Sox9-EGFP Low ISC isolated from DIO mice suggest that reduced Wnt activation 

may contribute to impaired enteroid forming ability of Sox9-EGFP Low ISC. This could reflect reduced Wnt ligand 

exposure in vivo due to reduced Paneth cell numbers. Impaired Wnt signaling is also seen in other tissues during 

obesity such as the hypothalamus and bone (189,190). In other systems, insulin and IGFs are known to activate β-

catenin/TCF, known downstream mediators of Wnt activation (191-193). Thus the ability of insulin and IGF1 to 
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promote enteroid forming ability of DIO ISC may reflect their ability to compensate for Wnt down-regulation. 

Additional studies of the Wnt pathway or insulin/IGF/Wnt interactions in ISC of DIO mice represent an interesting 

future direction.  

It is noteworthy that CR reduced progenitor proliferation and led to a reduction in villus height of similar 

magnitude to the increase in villus height observed here with DIO, but similar to DIO, CR resulted in selective ISC 

expansion and hyperproliferation based on numbers of cells labeled with the ISC biomarker Olfm4 and BrdU (121). 

However the mechanisms leading to selective increases in ISC numbers and proliferation appear to differ in CR and 

DIO. In CR, increased ISC number and proliferation in vivo were associated with enhanced enteroid formation in 

vitro, which depended on paracrine interactions with Paneth cells and increased responsiveness of Paneth cells to 

insulin appeared to enhance intrinsic ISC enteroid forming abilities (121). In contrast, our study suggests that despite 

increased ISC numbers and hyperproliferation in DIO in vivo, isolated ISC exhibit impaired intrinsic function that 

can be rescued with insulin or IGF1.  

In summary, our study provides novel evidence in rodents that in vivo DIO increases ISC number and this 

correlates with elevated plasma insulin and is associated with ISC hyperproliferation and decreased Paneth and 

goblet cell number. However in vitro analyses of isolated ISC from DIO mice demonstrate impaired intrinsic 

function that can be reversed by insulin and/or IGF1, indicating that DIO leads to an acquired dependence of ISC on 

insulin or IGF1. 

Materials and Methods 

Animals/Diet 

Sox9-EGFP mice contain a BAC transgene with ~226.5kb of Sox9 genomic regulatory region that drive EGFP 

expression (56,57) and are maintained as heterozygotes on an outbred CD-1 background. Genotyping was 

performed as described in (56). Adult male and female Sox9-EGFP mice (7-10 weeks old) were randomly divided to 

receive either low fat chow (14% kcal from fat; Prolab RMH3000) or HFD (45% kcal from fat; Research Diets 

D12451) ad libitum. Published literature on inbred C57Bl/6J mice demonstrated frank obesity and insulin resistance 

after 16 weeks on the 45% kcal from fat HFD (76). To ensure obesity and hyperinsulinemia, Sox9-EGFP mice were 

maintained on the diet for 20 weeks. Body weight was measured weekly. Body composition was assessed by 

magnetic resonance imaging (EchoMRI, Houston, TX) after 20 weeks on diet. All mice were euthanized between 

09:30-11:00 with a lethal dose of Nembutal (150µg/g/body weight). The Institutional Animal Care and Use 
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Committee (IACUC) of the University of North Carolina at Chapel Hill (Chapel Hill, NC) approved all animal 

studies. 

Plasma hormone measurements 

Animals were not fasted prior to euthanasia; therefore any measured hormone or glucose levels were in mice 

allowed to feed ad libitum. Blood was collected by cardiac puncture. Plasma was obtained by centrifugation at 2500 

rpm for 6 minutes. Plasma for IGF1 assays was processed by acid-ethanol extraction to remove IGF binding proteins 

as described in (194). ELISA kits were used to measure plasma glucose (Cayman Chemical, Ann Arbor, MI), insulin 

(Mercodia, Uppsala, Sweden) and IGF1 (R&D, Minneapolis, MN) levels, according to manufacturer’s instructions.  

Tissue Harvest for Histology  

Entire small intestine was collected, flushed to remove contents and weight and length measured. To mark cells in 

S-phase, 5-ethynyl-2’deoxyuridine (EdU, Sigma, St. Louis, MO) was administered by intraperitoneal injection 

(100µg/25g body weight) to animals 90 minutes prior to euthanasia. For histological analysis, small intestine was 

divided into three segments: the most proximal and distal 10cm were considered duodenum and ileum, respectively. 

The remaining middle segment was considered jejunum and used in all subsequent studies. 

Histological analyses 

All quantitative histological analyses were performed by an investigator blinded to diet groups. Morphometric 

analyses were performed on zinc formalin fixed, paraffin embedded, hematoxylin and eosin stained cross sections as 

described in (195,196). Crypt density was calculated by dividing the number of well-oriented crypts per millimeter 

of submucosal circumference. Immunofluorescence analyses were performed as described in (13). Briefly, jejunum 

was opened longitudinally and fixed in fresh 4% paraformaldehyde followed by 24-hour incubations in 10% and 

30% sucrose. Frozen 5-7µm sections were cut and mounted for staining. To visualize cells in S-phase, sections were 

stained with EdU using the Click-iT EdU AlexaFluor 594 Kit following manufacturer’s instructions (Invitrogen, 

Carlsbad, CA). For other immunofluorescence stains, sections were incubated overnight in the following primary 

antibodies:  chicken α-GFP (1:500; Aves Labs, Tigard, OR), rabbit α-chromogranin-A (1:400; Abcam, Cambridge, 

MA), rabbit α-lysozyme (1:500; Leica Biosystems, Buffalo Grove, IL) and rabbit α-mucin2 (1:200; Santa Cruz 

Biotechnology, Santa Cruz, CA). The following secondary antibodies were used at 1:500: goat α-chicken-

AlexaFluor 488 (Invitrogen, Carlsbad, CA) and goat α-rabbit Cy3 (Jackson ImmunoResearch Laboratories, West 

Grove, PA). DAPI containing mounting medium was used to visualize nuclei (Electron Microscopy Sciences, 
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Hatfield, PA). Images were captured using an inverted fluorescence microscope (Olympus IX83, Tokyo, Japan) 

fitted with a digital camera (ORCA-Flash4.0 C11440, Hamamatsu, Japan). The number of positively stained cells 

per crypt or villus section was counted in at least 20 crypts or villi/animal. Individual positive cells were confirmed 

by DAPI nuclear staining. Confocal images were photographed using the Leica SP2 Laser Scanning Confocal 

Microscope (Leica Microsystems, Wetzlar, Germany). 

Intestinal epithelial cell dissociation for flow cytometry and fluorescence activated cell sorting (FACS) 

Preparation of jejunal epithelial cells for flow cytometry and FACS was carried out as described in (13). For flow 

cytometry studies, dead cells were excluded based on uptake of propidium iodide (Sigma, St. Louis, MO) and 

quantification of Sox9-EGFP Low ISC was performed using a Cyan flow cytometer and Summit v4.3 software 

(Beckman Coulter, Fullerton, CA). Sox9-EGFP cell populations were sorted using the MoFlo XDP cell sorter 

(Beckman Coulter, Fullerton, CA) using gating parameters as described in (13,57). CD45+ (BioLegend, San Diego, 

CA), CD31+ (BioLegend, San Diego, CA), and Annexin-V+ (Life Technologies, Carlsbad, CA) cells were excluded 

prior to sorting. Sort efficiency was assessed by post-sort cell analysis to establish the percentage of populations that 

fall within the previously established gates.  

RNA isolation and high throughput quantitative real-time PCR by Fluidigm 

Total RNA was isolated from whole thickness jejunum or FACS isolated epithelial cells using the RNeasy Mini Kit 

(Qiagen, Venlo, The Netherlands) per manufacturer’s instructions. For high throughput qRTPCR of FACS isolated 

cells, RNA quality was assessed by the 2100 Bioanalyzer (Agilent Technologies, Santa Clara, CA) and high quality 

RNA was included for gene expression studies using the Fluidigm BioMark HD system per manufacturer’s 

instructions (Fluidigm, South San Francisco, CA). Igf1 is expressed in intestinal mesenchyme (128,197) and so Igf1 

mRNA was quantified on total RNA extracted from whole thickness segments of jejunum. Total RNA was reverse 

transcribed using the High Capacity cDNA Reverse Transcription Kit with RNase inhibitor (Applied Biosystems, 

Carlsbad, CA), qRTPCR reactions were performed in duplicate using the Rotor-Gene 3000 and analyzed using 

Rotor-Gene software version 6.0.23 (Qiagen, Venlo, The Netherlands). All qRTPCR data were normalized to the 

invariant control gene ActB. For FACS isolated samples, data were also normalized to non-sorted intestinal 

epithelial samples or Sox9-EGFP Low ISC from control animals sorted on the same day in the same run to control 

for any technical variability across cell preparations and/or sorting procedures. The following TaqMan 

primer/probesets were used ActB: Mm00607939_s1, Igf1: Mm00439560_m1, Sox9: Mm00448840_m1, Chga: 
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Mm00514341_m1, Hopx: Mm00558630_m1, Lct: Mm01285112_m1, Lgr5: Mm00438890_m1, Ccnd1: 

Mm00432359_m1, Igf1r: Mm00802831_m1, Insr: Mm01211875_m1, Myc Mm00487804_m1 and Axin2 

Mm00443610_m1 (Applied Biosystems). EGFP mRNA was assessed as described in (13). 

RT-PCR for insulin receptor (IR) isoform expression 

2µg cDNA was used for RT-PCR using primers that amplify the A and B isoforms of the IR as described in (139). 

Densitometry was performed using ImageJ (http://rsbweb.nih.gov/ij/). 

In vitro culture of FACS-isolated Sox9-EGFP cell populations 

Culture experiments were carried out using methods originally described by Sato et al. for Lgr5+ cells and adapted 

for Sox9-EGFP Low ISC by Gracz et al (53,57). In all studies, ISC were plated at low density and cultured in 

growth factor reduced Matrigel (BD Biosciences, San Jose, CA) with a standard growth factor cocktail (EGF: R&D, 

Minneapolis, MN, Noggin: PeproTech, Rocky Hill, NJ and R-Spondin 1: R&D, Minneapolis, MN). To assess 

responsiveness to insulin or IGF1, ISC from control or DIO mice were cultured plus or minus insulin (Sigma, St. 

Louis, MO), IGF1 (Genentech, San Francisco, CA) or insulin and IGF1, added at a concentration of 50ng/ml every 

other day. Enterospheres are predominantly seen at day 2 –4 post plating and starting at day 6-8, they typically grow 

and develop into enteroids. Number of enterospheres/enteroids formed was counted every other day by an 

investigator blinded to treatment groups until day 12 post plating (end of study). Quantification and photographs 

were taken at 10x objective. 

Statistical Analysis 

Data are expressed as mean ± SEM. For control and DIO groups, n≥20 for entire study. Subsets of animals were 

used for different experiments. All experimental results include ≥3 independent pairs of animals. Body weights were 

compared between diet groups by repeated measures ANOVA. For high throughput qRTPCR experiments, 

differences between Sox9-EGFP populations were compared using one-way ANOVA followed by pairwise 

comparisons using Holm-Sidak post-hoc test. Impact of diet on individual Sox9-EGFP populations was assessed 

using paired t-test on cells isolated from DIO and chow fed control littermate pairs sorted in the same run. ISC 

culture studies were performed on ISC isolated from Sox9-EGFP littermate pairs fed either HFD or chow. ISC were 

isolated from these littermate pairs by FACS and plated on the same day in any given experiment. Paired t test was 

therefore used to assess impact of diet on cultured ISC or their response to insulin, IGF1 or both. All remaining data 
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were compared using Student’s t-test as appropriate.  In all analyses, p<0.05 was considered statistically significant. 

All statistical analyses were performed using SigmaPlot 12.0 
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Figures and Tables 

 

 
Figure 2.1: High fat diet feeding for 20 weeks increases body weight and fat mass leading to diet-induced 
obesity (DIO), elevated plasma glucose, insulin and IGF1 levels.  
(A) Body weight over 20 weeks in mice fed low fat chow (control) or high fat diet to induce DIO. (B) Body 
composition of control versus DIO mice measured by magnetic resonance imaging after 20 weeks on diet. C-E: 
Circulating plasma concentrations of (C) glucose, (D) insulin and (E) insulin-like growth factor 1 (IGF1). F: 
qRTPCR measured Igf1 mRNA from jejunum. Data expressed as mean ± SEM. *p<0.05 DIO versus control, 
repeated measures ANOVA (A) or unpaired t-test (B-F), n≥5 
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Table 2.1: Measures of intestinal morphology and morphometry in diet-induced obesity (DIO) 

 
 

Measure 
Control DIO 

p-value 
mean ± sem mean ± sem 

Small intestine length (cm) 46.7 ± 1.0 43.6 ± 1.3 0.02* 
Small intestine weight (g) 1.9 ± 0.1 1.8 ± 0.1 0.35 

Small intestine weight/length (g/cm) 0.04 ± 0.002 0.04 ± 0.002 0.73 

Jejunal crypt depth (µm) 70.1 ± 2.5 66.1 ± 0.8 0.14 

Jejunal villus height (µm) 282.1 ± 8.0 333.8 ± 18.8 0.02* 
Jejunal crypt density (#/mm submucosal circumference) 18.4 ± 0.6 20.6 ± 0.7 0.04* 
Jejunal crypt fission (% of total cross section) 0.92 ± 0.1 1.15 ± 0.2 0.31 

Table 2.1 : Measures of intestinal morphology and morphometry in control vs. DIO mice 

*p<0.05; unpaired t-test; n≥5 per group 
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Figure 2.2: Increases in villus height, crypt density, ISC number and proportion of ISC in S-phase in DIO 
versus control mice.  
(A) Representative hematoxylin & eosin stained photographs depicting crypt-villus architecture of intestinal 
epithelium from control and DIO mice. Images were taken at 10x magnification. Scale bar = 100µm. (B) Villus 
height in control and DIO mice. (C) Crypt density quantified by number of crypts per mm submucosal 
circumference in control and DIO mice. (D) Number of cells per crypt in control and DIO mice. (E) Number of cells 
in S-phase measured by EdU positive staining per crypt. (F) Representative images of crypt sections stained with 
DAPI (blue), GFP (Sox9-EGFP; green) and Chromogranin-A (ChgA; red). Sox9-EGFP Low ISC (white arrows) and 
Sox9-EGFP High cells (open triangles) were defined by intensity of EGFP staining. (G) Quantification of Sox9-
EGFP Low and Sox9-EGFP High cells. (H) Representative images of crypt sections stained with DAPI, GFP and 
EdU (red). Dual positive Sox9-EGFP Low and EdU cells are denoted by the filled triangles.  EdU: 5-ethynyl-2’-
deoxyuridine. Images were taken at 63x magnification. Scale bar = 20µm. (I) Percentage of Sox9-EGFP Low or 
Sox9-EGFP High cells positive for EdU. (J) Relative abundance of Sox9-EGFP Low cells assayed by flow 
cytometry and expressed as the percentage of total cells that fall in Sox9-EGFP Low gates. Data expressed as mean 
± SEM. *p<0.05 DIO versus control, unpaired t-test, n≥5  
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Figure 2.3: Decreased Paneth and goblet cells but no change in EECs in DIO mice versus controls.  
A, C and E: Representative immunofluorescent images of jejunal sections stained with (A) lysozyme (Lyz), (C) 
mucin2 (Muc2) or (E) Chromogranin-A (ChgA). B, D and F: Quantification of (B) Lyz positive Paneth cells, (D) 
Muc2 positive goblet cells and (F) ChgA positive EECs in DIO versus control mice. All images were taken at 20x 
magnification. Scale bar = 50µm. Data expressed as mean ± SEM. * p<0.05 DIO versus control, unpaired t-test, n≥4 
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Figure 2.4: Sox9-EGFP Low ISCs from DIO mice are enriched for appropriate biomarkers and show 
elevated cyclin D1 mRNA.  
High throughput qRTPCR on FACS isolated Sox9-EGFP cells from control and DIO mice assessed levels of 
mRNAs encoding (A) EGFP, (B) Sox9, (C) Chga, (D) Hopx, (E) Lct, (F) Lgr5 and (G) Ccnd1. Data expressed as 
mean ± SEM. * or ** p<0.05 versus all other Sox9-EGFP populations; # p<0.05 in DIO versus control Sox9-EGFP 
Low ISCs. Differences between Sox9-EGFP populations compared by one-way ANOVA, Holm-Sidak and between 
diets by paired t-test, n≥3 
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Figure 2.5: Sox9-EGFP Low ISCs from DIO mice exhibit reduced enteroid-forming ability.  
(A) Time course of enterosphere/enteroid formation by ISCs isolated from control and DIO mice. Images were taken 
at 10x magnification. Scale bar = 100µm. (B) Quantification of enterosphere/enteroids formed starting at day 4 until 
day 12. Data expressed as mean percentage versus enteroids formed in control at day 4 ± SEM. *p<0.05 DIO versus 
control, paired t-test, n≥6 independent pairs performed in duplicate or triplicate. 
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Figure 2.6: Plasma insulin positively correlates with percentage of Sox9-EGFP Low ISCs and treatment of 
ISC from DIO mice with insulin, IGF1 or both rescues decreased intrinsic in vitro function.  
(A) Linear regression analysis of plasma insulin levels and percentage of Sox9-EGFP Low ISC in individual mice. 
(B) Enteroid formation at day 12 from Sox9-EGFP Low ISC isolated from control or DIO mice cultured with 
standard growth factors (Std. GF) as described in Materials and Methods or Std. GF plus insulin (Ins.), IGF1 or Ins. 
and IGF1. Data expressed as mean ± SEM. * p<0.05 versus control cultured with Std. GF alone; ** p<0.05 versus 
DIO Std. GF alone, paired t-test, n=3 for ISC isolated from 3 independent littermate pairs each cultured in duplicate. 
C-D: High throughput qRTPCR measured (C) Igf1r and (D) total Ir mRNA. (E) RT-PCR on Sox9-EGFP Low ISCs 
measured IR isoform expression. (F) Ratio of IR-A to IR-B expression quantified in control versus DIO Sox9-EGFP 
Low ISC. Data expressed as mean ± SEM. * p<0.05 versus all Sox9-EGFP cell populations, one-way ANOVA, 
Holm-Sidak, n≥3. 
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Figure 2.7: Proposed model of impact of DIO on ISC number, function and crypt-villus homeostasis.  
We provide a model where intestinal adaptation to DIO increases the number of total and proliferating ISC 
associated with elevated plasma insulin and IGF1 and local Igf1 mRNA. The expansion in the ISC pool is associated 
with increases in the number of crypts feeding onto each villus resulting in heightened villi. DIO also decreases 
crypt-based Paneth cells and crypt and villus goblet cells, which may favor a greater mass of villus enterocytes that 
may enhance absorptive capacity during hypercaloric conditions. 
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CHAPTER 3: ALTERNATE DAY FASTING SELECTIVELY ALTERS INTESTINAL PROGENITOR 
POOL ASSOCIATED WITH DECREASED INTESTINAL PROLIFERATION WITHOUT REDUCTION 

IN FOOD INTAKE 
 

Introduction 

Daily calorie restriction (CR), defined as 20-40% reduction in calories without malnutrition, is still one of 

the most common strategies for weight loss (100,101). Until recently, it has been widely accepted that CR results in 

numerous health benefits including increasing lifespan and delaying the onset of chronic diseases (198,199). 

However, those health benefits require strict adherence to long-term CR, which in humans, is difficult to maintain 

(98,99). Recently a new diet regimen has emerged as a potentially more feasible alternative to CR, called 

intermittent feeding. Variations of intermittent feeding include alternate day fasting (ADF) or modified ADF. 

Complete ADF consists of cyclic patterns of unrestricted access to food for 24 hours followed by a 24-hour fasting 

period. Modified ADF regimens allow for CR on “fast” days so that there is no day where 100% fasting occurs. 

Reviews comparing intermittent feeding diets show that ADF is as effective as CR in promoting weight loss and 

reducing markers of chronic disease risk (103,110,200,201). ADF and CR can improve metabolic parameters such 

as lowering plasma insulin and glucose and increasing the ratio of subcutaneous versus visceral adipose tissue 

(103,110). Dietary restriction studies on the intestine are limited, but focused on short-term fasting or longer-term 

CR. However the effect of ADF on the intestinal epithelium, the tissue responsible for nutrient digestion and 

absorption, has not been fully studied.  

The intestine is anatomically divided into two main regions, the small intestine and the colon. Both regions 

are lined with a monolayer of cells called intestinal epithelial cells. The small intestinal epithelium is composed of 

crypts and villi, while the colonic epithelium contains crypts and surface epithelium. The highly adaptive intestinal 

epithelium is renewed every 3-7 days depending on region and species (1). Renewal is accomplished by intestinal 

stem cells (ISCs) at the crypt base. ISCs divide to renew themselves and generate early progenitors, which continue 

to divide before they differentiate into multiple functional lineages. In the small intestine, villus-based terminally 

differentiated enterocytes, responsible for nutrient digestion and absorption, comprise >90% of total the epithelial 

cell population. Other differentiated lineages include goblet cells, enteroendocrine cells (EECs) primarily located on 
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villi but a few cells are located in the crypt, and Paneth cells. In the colon, stem cells are less well-defined but are 

thought to divide slowly to yield more rapidly dividing progenitors, which differentiate into goblet cells, EECs and 

colonocytes with both absorptive and secretory functions. 

The intestinal epithelium can rapidly adapt its growth rate to changes in luminal nutrient. Available data 

indicate that fasting more profoundly affects the mass of duodenal or jejunal epithelium than ileum or colon and that 

upper small intestine restores its normal mass with 24-hours of refeeding after a prolonged fast (175). Decreased 

intestinal mass observed during fasting is associated with decreased mucosal proliferation while increased 

proliferation occurs to restore mucosal mass during refeeding (171,173,175). Recent evidence showed CR decreased 

proliferation in the small intestinal epithelium but enhanced the capacity of ISCs to yield enteroids in vitro 

indicating intestinal adaptation to CR involved changes in ISCs and proliferating progenitors (121). In the colon, CR 

reduced the number of colon tumors in preclinical models of colon tumorigenesis (202-207). These effects were 

associated with decreased colonic epithelial cell proliferation (208). Whether the effect of ADF on the small 

intestinal or colonic epithelium is similar to that observed in CR models is unknown. Based on the recent data 

observed in intestines from CR animals, the present study aimed to assess whether ADF affected growth of the small 

intestinal epithelium, and particularly number or proliferation of ISCs and progenitors. To accomplish this, we used 

the a unique mouse model established to study ISCs and their progenitors based on intensity levels of enhanced 

green fluorescent protein (EGFP). 

The Sox9-EGFP transgenic mouse model allows us to directly assess the effects of ADF on proliferation 

and numbers of ISC and progenitors in the small intestine.  In the Sox9-EGFP mouse, different levels of Sox9-EGFP 

transgene expression mark different cell types in the small intestine. Cells expressing high levels of Sox9-EGFP 

(Sox9-EGFP High) mark EECs and a subset of reserve ISC. Low levels of Sox9-EGFP (Sox9-EGFP Low) mark 

actively cycling ISCs, sublow levels of Sox9-EGFP mark progenitors (Sox9-EGFP Sublow) and cells negative for 

Sox9-EGFP (Sox9-EGFP Negative) correspond primarily to enterocytes, but also contain Paneth and goblet cells 

(13,56,57).  

The insulin/insulin-like growth factor (IGF) system is a well-established pathway regulated by nutrition and 

involved in intestinal proliferation. Enterotrophic effects are mediated by the insulin receptor (IR) and IGF1R. IR 

exists in two functionally distinct isoforms; IR isoform-A (IR-A) mediates the growth promoting actions of insulin 

while IR isoform-B (IR-B) mediates the metabolic actions of insulin. Our lab has demonstrated differential 
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expression of Igf1r, total Insr, IR-A and IR-B in ISCs and progenitors versus differentiated lineages (139,209) and 

that IR-B expression can slow the growth of colorectal cancer cell lines (139). 

We hypothesized that ADF would preserve the ISC pool but would reduce either ISC or progenitor 

proliferation. We also examined the effect of ADF on growth parameters, proliferation and the role of IR and IGF1R 

in colon due to the effect of CR on colon proliferation and tumorigenesis (202-207). Our findings indicate profound 

effects of ADF on metabolism despite identical food intake to ad libitum fed mice. These effects were associated 

with preferential and more dramatic effects on progenitors and not ISC proliferation in the small intestine and 

significant reductions in proliferation in the colon. 

Results 

Decreased body weight, fat mass and fasting circulating triglycerides in ADF mice despite no change in food 

intake 

Mice (7-8 week old) were exposed to constant chow ad libitum (control) or ad libitum feeding or fasting for 

alternating 24-hour periods (ADF) over 20 weeks. During this time, controls steadily gained weight as expected 

while ADF mice maintained body weight At 20 weeks after start of diet, ADF mice gained no weight from baseline 

and weighed 25% less than controls (p<0.05; Figure 3.1a). This difference in weight gain was in the absence of 

decreased food intake in ADF-fed animals. ADF animals ate twice as much as controls on feed days resulting in no 

difference in net food intake compared to controls (Figure 3.1b). Fasting plasma triglycerides were significantly 

lower in ADF animals by 26% (p<0.05; Figure 3.1c). ADF mice had significantly lower fat mass than controls at the 

end of a feed or fast cycle. This was evident by both MRI for percentage of fat mass and by weight of gonadal fat 

(Figure 3.1d-f). Fasting levels of plasma insulin did not differ between control and ADF groups, however ADF 

animals displayed higher levels, although still physiologically low, of glucose and IGF1 compared to controls (Table 

3.1).  

Increased CO2 production, O2 consumption and respiratory exchange ratio (RER) in ADF mice  

To assess whether changes in body composition were due to changes in metabolic activity, mice were placed in 

metabolic chambers and measurements were taken for 24-hours with and without food after acclimating for 2 days. 

RER was significantly higher in ADF mice during a 24-hour feed period compared to all other groups, consistently 

near 1.0, indicating use of solely carbohydrates for ATP production. RER of control fed mice was around 0.85 

indicating that controls use both carbohydrates and fat for energy. RER did not differ between fasted groups (Figure 
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3.2a). The increased RER in ADF mice in the fed state was associated with significant increases in VO2 and VCO2 

compared to controls (Figure 3.2b-c). During feed periods, ADF mice displayed a significant increase in heat 

production compared to controls, potentially due to increased food intake during feed days (Figure 3.2d). Activity 

was measured by beam breaks in multiple dimensions during fed and fast periods. There were no significant 

differences in activity in either fed or fast states between control and ADF mice (Figure 3.2e). 

Impact of ADF on jejunal morphology, ISC and progenitors and proliferation 

Since ADF altered many metabolic parameters, we examined the effect of ADF on the intestine, the tissue 

responsible for nutrient absorption. Small intestinal mass and length were not different between control or ADF 

mice in a fed state or after fasting (Table 3.2).  After a fast cycle, long-term ADF did not affect villus height, 

however crypt depth was modestly but significantly reduced by 11% associated with a significant 11% decrease in 

crypt cell number versus controls (p<0.05; Figure 3.3a-d).  

To directly assess impact of ADF on ISCs or progenitors and proliferation, we performed flow cytometry to 

quantify changes in proportion of Sox9-EGFP Sublow progenitors and Sox9-EGFP Low ISCs. Numbers of Sox9-

EGFP Low ISCs, total cells in S-phase (EdU labeled) or co-labeled Sox9-EGFP Low ISC and EdU cell per crypt 

were evaluated by histology. Note that because we were interested in the effect of ADF on fasting levels of 

circulating hormones, much of our current intestinal data is gathered from ad libitum fed control animals or long-

term ADF animals both after a fast cycle. We observed no change in the number of Sox9-EGFP Low ISCs 

quantified by histology (Figure 3.3e). Flow cytometry confirmed histology results showing no change in the 

percentage of Sox9-EGFP Low ISC between ad libitum fed controls or ADF animals following a fast cycle (Figure 

3.3f) indicating ISC numbers are not affected by ADF after fasting. Flow cytometry, used to quantify Sox9-EGFP 

Sublow progenitors, which are unable to be visualized by histology, revealed that ADF animals following a fast 

cycle had a significantly greater percentage of Sox9-EGFP Sublow progenitors than ad libitum fed controls 

following a fast cycle (Figure 3.3f). To assess proliferation, we quantified the number of EdU positive cells and 

found a significant decrease of number of EdU positive cells per crypt section in fasted ADF animals compared to 

controls (Figure 3.3g-h). The percentage of Sox9-EGFP Low ISCs that were EdU positive was similar between 

groups indicating decreased proliferation was not due to decreased ISC proliferation (Figure 3.3i). Flow cytometry 

data from ad libitum fed controls and ADF animals following a fed cycle demonstrated that the increase in 
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progenitors observed in ADF fasted animals (Figure 3.3e) was reversed in ADF animals following feeding (Figure 

3.3j).  

Effects of ADF on colon morphology and proliferation 

Like in the small intestine, colon mass and length did not differ between control and ADF following a fed or fast 

cycle (Table 1). Growth parameters were assessed in distal colon since it is the site of tumor formation. Unlike the 

jejunum, colon crypt depth was significantly increased by 9% in ADF mice versus controls and this was associated 

with a significant 16% increase in the number of cells per colonic crypt (p<0.05; Figure 3.4a-b). To assess whether 

changes in colon crypt depth were due to changes in proliferation, we quantified EdU positive cells in colon crypts 

of ADF and control mice following a fast cycle. We found that despite increased colonic crypt depth, ADF mice 

displayed a significant decrease in EdU positive cells, as observed in the jejunum, compared to controls (Figure 

3.4c-d). To evaluate whether decreased proliferation is associated with changes in gene expression, we assessed 

mRNA levels of Cyclin D1 (Ccnd1), a gene involved in cell-cycle progression from G1 to S-phase in isolated 

colonic epithelium from fasted ADF and ad libitum fed control animals following a fast cycle. Consistent with 

decreased proliferation, ADF animals displayed significantly decreased Ccnd1 mRNA (Figure 3.4e) confirming 

observed decreased number of EdU+ cells by histology. 

Insulin receptor isoform expression in colon of ADF and controls 

Due to its role in proliferation, we assessed changes in the insulin/IGF1 pathway. There was no significant 

differences in Igf1r and total Insr mRNA in ADF colonic epithelium compared to controls (Figure 3.5a-b). To 

evaluate whether the decreased proliferation observed in ADF animals following a fast cycle compared to ad libitum 

fed controls following a fast cycle was due to changes in IR isoform expression, we measured IR isoform mRNA by 

RT-PCR. Analysis of whole thickness distal colon revealed ADF animals following a fast cycle express a greater 

ratio of IR-B versus IR-A compared to controls fasted during the same period (Figure 3.5c).  

Discussion 

Reported effects of ADF on weight loss have been variable. However, beneficial metabolic effects of ADF occur 

even in the absence of any weight loss or decreased overall food intake (103,110,200). We chose to study 20-week 

ADF to evaluate the long-term impact of ADF on the intestine. After 20 weeks of ADF, despite no change in food 

intake or activity compared to controls, animals weighed significantly less than ad libitum fed controls due to a lack 

of weight gain, rather than weight loss associated with lower fat mass as measured by MRI and decreased gonadal 
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fat weight. Thus ADF, despite equivalent food intake, leads to reduced body fat versus mice allowed to feed ad 

libitum for the same period or those allowed to feed ad libitum and then experience the same fasting period. We did 

not observe decreased insulin in our ADF animals as reported in other rodent models (102,107). Surprisingly, we 

found ADF animals displayed increased relative fasting glucose and IGF1, despite studies reporting glucose and 

IGF1-lowering effects of ADF (104-107). However, it is important to note that levels of glucose and IGF1 in ADF 

animals were still physiologically low. The observed increase in circulating glucose in ADF animals may indicate 

increased hepatic glucose output during fasting periods or may reflect the increased food intake during both light 

and dark cycles in ADF animals. Indirect calorimetry revealed that during feeding, ADF mice have adapted to 

rapidly use primarily carbohydrates from food as an energy source, leaving little to be stored as fat whereas control 

mice use a mixture of fat and carbohydrates for energy, leaving unutilized glucose to be converted to fatty acids and 

stored in adipose tissue. Our data are consistent with a recent study, which demonstrated that restricted feeding 

improved hepatic glucose and lipid metabolism (119). ADF mice however displayed an increase in heat production 

on feed days, presumably due to diet-induced thermogenesis, which is expected due to the significant increase in 

food intake. Importantly, we found no significant differences in activity between control and ADF groups, indicating 

any effects we observe in ADF animals were not due to differences in activity. Taken together, these data confirm 

previous evidence that ADF can improve body composition without changing overall food intake or activity and is 

associated with changes in nutrient metabolism. 

Our primary goal was to evaluate the effect of ADF on the intestinal epithelium, and directly assess 

changes in jejunal ISCs and progenitors because of its role in nutrient absorption. We report new evidence that ADF 

resulted in decreased jejunal crypt depth associated with proportionate decreases in crypt cell number and decreased 

in proliferation or cells in S-phase. We recently reported that diet-induced obesity selectively expands jejunal ISC 

number and increases ISC proliferation (209) and therefore predicted that we would observe maintained ISC 

numbers but decreased ISC and progenitor proliferation in ADF. However ADF did not affect ISC number or ISC 

proliferation after a fast cycle suggesting that ISC are preserved during ADF and indicating that similar food intake 

over a prolonged period of ADF maintains ISC number and proliferation. This is different than what is reported in 

CR, where CR increased ISC number and proliferation (121), indicating that although ADF and CR may produce 

similar results in other factors, the effects of both diets on ISC number and proliferation are distinctly different from 

each other.   
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Despite no changes in ISC number or proliferation, we did find novel evidence that ADF selectively 

expands the percentage of Sox9-EGFP Sublow progenitors after a fast cycle, and this was associated with decreased 

progenitor proliferation, or increased cell-cycle time. This expansion of progenitors is reversed after a fed cycle in 

ADF animals. Taken together, these data are intriguing and suggests that during a fast cycle after prolonged ADF, 

there is an accumulation of progenitors potentially poised to exit the crypts for when food becomes available. After 

feeding, the increase in progenitors in ADF animals is lost suggesting rapid differentiation to adapt to presence of 

lumenal nutrient (Figure 3.6). While we observed changes in proliferation, we have not ruled out changes in 

apoptosis levels between ADF and controls. However, evidence from fasting and refeeding studies suggest limited 

to no effect on apoptosis (210,211).  

While the goal of this study was to investigate the direct effects of ADF on the small intestinal epithelium, 

we observed decreased proliferation in the colonic epithelium associated with increased colon crypt depth and colon 

cell number. This suggests that ADF may be decreasing progenitor proliferation or increasing cell cycle time in the 

colon or increasing differentiated lineages but not at the expense of crypt depth or crypt cell number and is a future 

area for study. There is evidence that fasting increases cell cycle time in the colon, by increasing G1 (212). Our 

observations are consistent with complementary studies that have shown ADF decreases cell proliferation in other 

cell types such as prostate and T-cells (105,117).  

Beneficial effects of dietary restriction on colon carcinogenesis have been documented (202-206). Cell 

proliferation is thought to be one early event that precedes carcinogenesis; therefore we investigated the potential 

role of the insulin/IGF system in mediating the observed decrease in colonic epithelial cell proliferation. Decreased 

proliferation was associated with a trend for decreased Igf1r and total Insr expression in colon epithelium. Insulin or 

IGF signaling via IR-A can mediate changes in proliferation and IR-A expression is up-regulated in numerous types 

of cancer (129,130). Our lab has shown that the balance of IR isoform expression dictates the role of IR in 

proliferation, where forced IR-B expression reduces proliferation in CRC cell lines (139). We show that ADF 

promotes IR-B expression, indicating up-regulation of IR-B may mediate decreased colon proliferation. A limitation 

in these data is that analysis of IR isoform expression was performed on whole thickness colon, rather than isolated 

epithelium. Studies to confirm epithelial specific IR-B up-regulation in ADF animals are currently in progress. Our 

data showing ADF mice displaying decreased colonic cell proliferation in the distal colon, the site of colon 



	
   74 

tumorigenesis, indicates that ADF may be protective against tumorigenesis by slowing colonic epithelial 

proliferation.  

 We reported major effects of ADF on the intestine after a fast cycle. Because of the highly adaptive nature 

of the intestinal epithelium, evaluating the intestinal epithelium following a feed cycle is of great interest. Ongoing 

studies are currently underway to assess jejunal ISC number and proliferation, colon proliferation and differentiated 

lineages after a feed cycle. We predict ADF animals will display longer villi and increased proliferation following a 

feed cycle compared to after a fast cycle as well as controls. 

In our study, we used 100% restriction on fast days, however emerging research is indicating that 100% 

restriction is not necessary to see the beneficial effects of ADF. Modified and complete ADF trials in humans 

demonstrate high adherence rates, indicating feasibility (103,110-114). Additionally, studies using high fat diet on 

alternating days also produce beneficial results similar to ADF using standard chow (104,118-120). This is highly 

translatable to humans as it is probable that humans who restrict their diet might not necessarily have to change their 

diet quality. Longer-term ADF studies need to be performed to gain insight on chronic ADF adherence. However it 

is becoming clear that ADF confers some protective effects as seen in CR studies and may be a more feasible and 

successful alternative to improving metabolic health in humans. ADF may also contribute to decreased chronic 

disease risk, particularly tumorigenesis by decreasing cell proliferation. 

Materials and Methods 

Animals/Diet 

Sox9-EGFP mice express a BAC transgene containing genomic regulatory regions of Sox9 that drive EGFP 

expression (56,57). Mice are maintained on an outbred CD-1 background and bred as heterozygotes. Genotyping 

was performed as described in (56). Adult Sox9-EGFP mice (8 weeks old) were randomly divided into one of two 

groups: control and ADF. Both groups were fed standard rodent chow with control mice receiving food ad libitum 

every day throughout the study and ADF mice receiving alternating 24-hour cycles of ad libitum access to food 

followed by removal of food for 24 hours over a total of 20 weeks. Food was removed or added every day at 17:00. 

Body weight was measured weekly after a 24-hour feed period for ADF mice. Prior to euthanasia, body composition 

was measured by magnetic resonance imaging (MRI; EchoMRI, Houston, TX). Animals were euthanized at 10:00 

following either a fed or fast period. All animal studies were approved by the Institutional Animal Care and Use 

Committee (IACUC) of the University of North Carolina at Chapel Hill (Chapel Hill, NC).  
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Tissue Harvest 

Ninety minutes prior to euthanasia, animals were given an intraperitoneal (IP) injection of 5-ethynyl-2’deoxyuridine 

(EdU, 100µg/25g body weight, Invitrogen, Carlsbad, CA) to mark cells in S-phase. Animals were euthanized with a 

lethal dose of Nembutal (150µg/g body weight) following either a fast or feed period, allowing for comparisons 

between ADF fed and ad libitum fed controls or ADF fasted and ad libitum fed controls following the same fast 

cycle. Gonadal fat was dissected and weighed. Small intestine and colon were removed, cleaned and flushed prior to 

measuring weight and length. Small intestine was divided into three segments, the proximal 10 cm was considered 

duodenum, the distal 10 cm was considered ileum and the remaining segment was considered the jejunum and was 

the focus of studies on small intestine. Colon was divided into proximal and distal regions.  

Blood/plasma hormone measurements 

At time of euthanasia, blood was collected by cardiac puncture. Plasma was separated by centrifugation for 6 

minutes at 2500 rpm. ELISA kits measuring plasma triglycerides (Pointe Scientific, Canton, MI), insulin (Mercodia, 

Uppsala, Sweden), and IGF1 (R&D Systems, Minneapolis, MN) were used following manufacturer’s instructions. 

Following an overnight fast, blood glucose measurements were performed on blood from the tail vain and measured 

using the OneTouch Ultra glucometer (LifeSpan, Milpitas, CA). Values are expressed as an average of duplicate 

readings. 

Metabolic phenotyping 

Food intake, CO2 production, O2 consumption, activity and heat production were measured using an indirect 

calorimetry system (TSE Systems, Chesterfield, MO), Prior to placement in the system, mice were weighed for pre-

chamber body weight. Mice were then individually housed at room temperature under a 12:12-h light-dark cycle and 

allowed to adapt for 48 hours. The following metabolic parameters were measured for the next 48 hours where 

control and ADF groups were ad libitum fed for 24 hours followed by 24 hours without food. Food intake was 

measured in both groups during ad libitum access to food. CO2 production, O2 consumption and heat production 

values were normalized to body weight. Respiratory exchange ratio (RER) was calculated using CO2 production and 

O2 consumption. Activity was measured by infrared beam breaks in multiple dimensions. 

Histological analyses 

All analyses were performed by investigators blinded to diet groups. Jejunal and distal colon cross sections were 

fixed in 10% Zinc formalin and paraffin embedded for morphometric analyses. Hematoxylin and eosin (H&E) 
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stained sections were used to measure crypt depth and villus height by measuring the length from the crypt base to 

the crypt/villus junction (crypt depth) and from the crypt/villus junction to the villus tip (villus height) in well-

oriented crypts and villi. Images and measurements were performed using the Axio Imager.A2 (Zeiss, Thornwood, 

NY), ProgRes CF Scan camera and the ProgRes Capture Pro 2.7 software (Jenoptik, Jena, Thuringia, Germany). For 

immunofluorescence, jejunum and distal colon were opened longitudinally and fixed in 4% paraformaldehyde 

overnight followed by sequential overnight incubations in 10 and 30% sucrose prior to embedding and freezing in 

OCT. Frozen sections (5-7µm) were cut and mounted onto positively-charged slides. Sections were stained for GFP 

using a chicken α-GFP (1:500; Aves Labs, Tigard OR) primary antibody at 4ºC overnight followed by a 2-hour 

incubation in a goat α-chicken-Alexa Fluor 488 (1:500; Invitrogen, Carlsbad, CA) secondary antibody at room 

temperature. To visualize cells in S-phase, slides were stained using the Click-iT EdU Alexa Fluor 594 kit following 

manufacturer’s instructions (Life Technologies, Carlsbad, CA). Nuclei were visualized and using DAPI-containing 

mountain medium (Fluoro-Gel II with DAPI; Electron Microscopy Sciences, Hatfield, PA). Quantification was 

performed by counting the number of positive cells and total cell number in 30 well-oriented crypts/animal. Images 

were captured using the Olympus IX83 inverted fluorescence microscope (Olympus, Tokyo, Japan) fitted with the 

ORCA-Flask4.0 digital camera (Hamamatsu, Hamamatsu City, Japan).  

Jejunal epithelium isolation for flow cytometry studies 

Preparation of jejunal epithelial cells for flow cytometry was carried out as described in (13). Cell debris was 

excluded by forward-scatter/side-scatter gating. Dead cells were assessed by uptake of propidium iodine and 

excluded. Quantification of Sox9-EGFP Sublow and Sox9-EGFP Low cells was performed using the Cyan flow 

cytometer and Summit 4.3 software (Beckman Coulter, Pasadena, CA). Analysis was performed following 

published gating strategies (57) based on gates set for ad libitum fed control animals.  

Jejunal and colonic epithelium isolation for gene expression studies 

Jejunum was flushed with 1X PBS, opened longitudinally and incubated in 30mM EDTA/1.5mM DTT/PBS on ice 

for 15 minutes. Tissue was moved to 30mM EDTA/PBS and incubated at 37ºC for 8 minutes. Tissue was shaken 

vigorously and remnant tissue discarded. Cells were pelleted at 1500rpm for 5 minutes at 4ºC and washed two times 

with 1X PBS. Distal colon was treated as described for jejunum, but was incubated in 30mM EDTA/1.5mM 

DTT/PBS for 20 minutes and 30mM EDTA/PBS for 10 minutes since these longer incubations have proved 

necessary for efficient yield of crypts.  
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RNA isolation, reverse transcription and quantitative real-time PCR (qRTPCR) 

Total RNA was isolated using the RNeasy Mini Kit following manufacturer’s instructions (Qiagen, Valencia, CA). 

0.5µg RNA was reverse transcribed to cDNA by the High Capacity cDNA Reverse Transcription Kit (Applied 

Biosystems, Carlsbad, CA). Quantitative real-time PCR (qRTPCR) was performed using Platinum Quantitative PCR 

SuperMix-UDG (Invitrogen, Carlsbad, CA) and the following TaqMan primer/probe sets (Applied Biosystems, 

Carlsbad, CA): ActB: Mm00607939_s1, Ccnd1: Mm00432359_m1, Igf1r: Mm00802831_m1 and Insr: 

Mm01211881_m1. Samples were run in duplicate and gene expression was calculated using the standard curve 

method and normalized to the invariant control ActB.  

RT-PCR for IR isoform 

RT-PCR on 0.5µg cDNA was performed using primers designed to amplify the IR-A and IR-B isoforms as 

described in (139). Densitometry was performed using ImageJ software. 

Statistical Analysis 

Data are expressed as mean ± SEM. Overall an n≥15 in control and ADF group was used. Subsets of animals were 

used for particular analyses and specific n is stated in the legend. Body weights over the 20 weeks of control ad 

libitum feeding or ADF were compared by repeated measures ANOVA followed by Tukey’s post-hoc comparison 

test. We wanted to test differences between control and ADF groups after a fed or fast period, therefore comparisons 

between control and ADF group after a fed or fast state was assessed by Student’s t-test. All analyses were 

performed using GraphPad Prism 6 software (La Jolla, CA). In all analyses, p<0.05 was considered statistically 

significant. 
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Figures and Tables 

 
 
 
Figure 3.1: ADF prevents weight gain while decreasing fat and plasma triglycerides despite no change in food 
intake.  
(A) Body weight over 20 weeks in mice fed chow ad libitum (Ctl) or every other day (ADF). Weight was measured 
after a 24-hour feed period in ADF group. (B) 24-hour food intake by light/dark cycle between diets measured by 
indirect calorimetry in control and ADF mice during 24-hour feeding cycle and after 16 weeks on ADF. (C) Fasting 
circulating triglycerides between diets. (D) Body composition analysis measured by MRI between diets after 24-
hour fed or fast period in ADF mice or in ad libitum controls after fast cycle. (E) Representative images of gonadal 
fat pads between diets. (F) Gonadal fat mass between diets after a 24-hour fed or fast period. Data expressed as 
mean ± sem. *p<0.05, one-way ANOVA, Tukey post-hoc test (A) or unpaired t-test; n≥5 per group 

  

A  

D  

0.0 
0.5 
1.0 
1.5 
2.0 
2.5 
3.0 
3.5 

Ctl ADF Ctl ADF 

Fed Fast 
G

on
ad

al
 fa

t m
as

s 
(g

ra
m

s)
 * 

0.0 
0.2 
0.4 
0.6 
0.8 
1.0 
1.2 
1.4 
1.6 
1.8 

0 5 10 15 20 

B
od

y 
w

ei
gh

t  
(F

ol
d 

ch
an

ge
 v

s.
 W

ee
k 

0)
 

Weeks on Diet 

Ctl 
ADF 

* * 

Fed 

Fast 

Control ADF E 

0 
10 
20 
30 
40 
50 
60 
70 
80 

Ctl ADF 

Fast 

P
la

sm
a 

tri
gl

yc
er

id
es

  
(m

g/
dL

) 

* 

F 

0 

1 

2 

3 

4 

5 

6 

7 

Light Dark Total 

Fo
od

 in
ta

ke
 (g

/d
ay

) 

Ctl 
ADF 

* * 

* B  C  

*p<0.05  
Unpaired t-test or One-Way ANOVA 
n≥5 per group 

FIGURE 1 final 

0 
10 
20 
30 
40 
50 
60 
70 
80 
90 

% fat mass % lean mass 

B
od

y 
co

m
po

si
tio

n 

* 

* 

* 

* * Ctl 
ADF 

Ctl 
ADF 

Fed      Fast  



	
   79 

Table 3.1: Plasma metabolic parameters in ADF vs. control mice 

	
  
  

Control ADF 

mean ± sem mean ± sem 

Glucose (mg/dL) 45.6 ± 1.2 75.2 ± 6.7* 

Insulin (µg/L) 0.2 ± 0.01 0.4 ± 0.1 
IGF1 (ng/mL) 32.0 ± 3.7 80.0 ± 7.9* 

Table 3.1: Fasting hormone levels in ADF vs. control mice  

*p<0.05; unpaired t-test; n≥4 per group 

TABLE 1 
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Figure 3.2: ADF animals burn more carbohydrates and produce more heat compared to controls despite no 
difference in activity.  
Indirect calorimetry during a 24-hour period with food (fed) or without food (fast) between control and ADF 
animals measured (A) respiratory exchange ratio (RER; white bar: light cycle, black bar: dark cycle), (B) oxygen 
consumption (VO2), (C) carbon dioxide production (VCO2), (D) heat production and (E) activity during light and 
dark cycles. Data expressed as mean ± sem. *p<0.05 vs. control fed, #p<0.05; one-way ANOVA, Tukey post-hoc 
test (A) or unpaired t-test (B-E); n≥4 per group 
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Table 3.2: Intestinal weight and length measurements in ADF vs. control mice 

	
  
 
  

Measure 

Fed Fast 

Control ADF Control ADF 

mean ± sem mean ± sem mean ± sem mean ± sem 

Small intestine length (cm) 49.8 ± 1.4 50.7 ± 2.4 51.5 ± 2.2 52.2 ± 1.3 

Small intestine weight (g) 1.96 ± 0.11 2.04 ± 0.30 1.81 ± 0.16 2.04 ± 0.10 
Colon length (cm) 12.6 ± 0.2 13.1 ± 0.5 13.1 ± 0.4 13.0 ± 0.3 
Colon weight (g) 0.42 ± 0.03 0.45 ± 0.08 0.44 ± 0.03 0.45 ± 0.02 

Table 3.2: Intestinal weight and length measurements in ADF vs. control mice 

TABLE 2 

n≥5 per group 
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Figure 3.3: ADF decreases jejunal crypt depth and increases non-proliferating progenitor pool following a 
fast cycle.  
(A) Representative images of jejunal crypt/villus units between ad libitum fed controls following a fast cycle and 
ADF animals after a fast cycle. B-D. Measurements of jejunal (B) villus height, (C) crypt depth and (D) crypt cell 
number between control and ADF animals (both after fast cycle). (E) Number of Sox9-EGFP Low ISCs per crypt 
section quantified by EGFP intensity in control and ADF (both after fast cycle). (F) Flow cytometry analysis of 
Sox9-EGFP Sublow and Sox9-EGFP Low populations in control and ADF (both after fast cycle). G. Representative 
images of EdU (red) and DAPI (blue; nuclei) staining. (H) Quantification of EdU positive cells per crypt section. (I) 
Number of Sox9-EGFP Low and EdU dual-labeled cells expressed as a percentage of total Sox9-EGFP Low cells. 
(J) Flow cytometry analysis of Sox9-EGFP Sublow and Low populations following fed cycle. Images were taken at 
(A) 10x or (A inset and G) 40x magnification. Scale bar: (A) 100µm or (G) 20µm. Data expressed as mean ± sem. 
*p<0.05, unpaired t-test; n≥3 per group.   
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Figure 3.4: ADF increases colon crypt depth and cell number but decreases proliferation.  
A-B. Morphological measurements of (A) colon crypt depth and (B) colon crypt cell number between ad libitum 
control and ADF groups (both after fast cycle). (C) Representative images of EdU (red) and DAPI (blue; nuclei) 
stained colon crypt sections. (D) Quantification of EdU positive cells per colon crypt section between diets. (E) 
qRTPCR measuring Ccnd1 mRNA. Images were taken at 20x magnification. Scale bar: 100µm. Data expressed as 
mean ± sem. *p<0.05, unpaired t-test; n≥4 per group.  
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Figure 3.5: Decreased proliferation associated with increased IR-B in colon.  
qRTPCR measured (A) Igf1r and (B) Insr mRNA in colon epithelium of ad libitum control and ADF animals both 
following a fast cycle. (C) RT-PCR assessed IR isoform ratio in colon (IR-B: top band, IR-A: bottom band). Data 
expressed as mean ± sem and normalized to invariant control ActB. *p<0.05, unpaired t-test; n≥3 per group. 
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Figure 3.6: Progenitors are highly adaptive to feed and fast cycles in ADF animals to maximize food 
absorption.  
Proposed model of the effect of ADF on progenitors where after a fast cycle, there is an increase in non-proliferating 
progenitors due to decreased proliferation or prolonged cell cycle time leading to an expansion in the pool of 
progenitors to prepare for incoming food. When food is available after a feed cycle, the progenitor pool returns to 
basal levels indicating a rapid mobilization and differentiation of the progenitor pool in order to facilitate absorption 
of food. 
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CHAPTER 4: EFFECTS OF OBESITY AND INTERMITTENT FEEDING ON ISCS AND 
PROGENITORS: SIGNIFICANCE, POTENTIAL MECHANISMS AND FUTURE DIRECTIONS 

 
 

 Obesity and associated hyperinsulinemia are at epidemic proportions and are associated with adverse 

consequences including increased risk of gastrointestinal cancers and chronic inflammation. The latter has been 

linked to impaired barrier function of the intestinal epithelium. Prior to this work, it had been reported that one 

adaptation of the intestinal epithelium in obesity was an increase in villus height, an adaptation that provides more 

mass of digestive and absorptive enterocytes (70,96). It was unknown whether this adaptation, and obesity or 

hyperinsulinemia was associated with altered number or function of ISCs or progenitors, cells that proliferate and 

constantly renew the intestinal epithelium maintaining digestive and absorptive mass and barrier function. Only in 

2007 did the biomarkers and tools to directly study ISCs emerge. This dissertation focused on exploring the effect of 

obesity and hyperinsulinemia on ISC. We show, for the first time that DIO selectively increased ISC number and 

ISC proliferation. This comes at a cost of impaired intrinsic ISC function defined as the ability to yield enteroids in 

vitro, and a dependence on excess insulin or IGF1 for intrinsic function.  

As well as obesity, we were interested in whether a dietary regimen that led to improved metabolism, 

reduced fat and particularly reduced plasma insulin affected the intestinal epithelium and preferentially or 

specifically ISCs or their progenitors. We explored an intermittent feeding model because this was emerging as a 

diet that could limit weight gain or reverse adverse effects of obesity. Using an ADF model, we demonstrated 

remarkable reductions in fat mass despite equivalent food intake and activity. We demonstrated that ADF decreased 

proliferation in the small intestine and colon, but that in the small intestine, it is not due to reductions in ISC 

proliferation, rather proliferation in the progenitor region. This discussion will explore significance of findings, 

additional potential mechanisms to explain them, remaining questions and possible future directions. 

Intestinal epithelium adaptation to obesity and hyperinsulinemia 

Selective expansion and proliferation of ISCs and decreased Paneth and goblet cells in obesity 

 We reported, for the first time, that DIO selectively increased ISC number and proliferation. DIO also 

increased crypt density and villus height. Together, these findings support a model where the intestine adapts to 
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obesity by increasing the ISC pool via selectively increasing ISC proliferation associated with an increased number 

of crypts feeding onto each villus resulting in increased villus height (Figure 4.1). DIO also decreased number of 

secretory Paneth and goblet cells, indicating obesity increases the absorptive enterocyte linage to digest and absorb 

the increased caloric load. Changes in differentiated cell types indicate DIO leads to altered cell fate specification 

and promote the absorptive lineage at the expense of the secretory lineage. The effect of obesity on cell fate 

determination directly in ISCs and progenitors is not known. Sakar et al. reported decreased Atoh1 and increased 

Hes1 expression in mucosal scrapings of obese versus control animals (66). We would propose a model that ISCs or 

progenitors from DIO animals would display increased Notch signaling and Hes1 expression and decreased Wnt and 

Atoh1 expression, resulting in increasing absorptive enterocytes (Figure 4.2). We are able to use the Sox9-EGFP 

mouse model to isolate ISCs and progenitors and assess changes in transcription factors and gene expression 

signatures dictating secretory versus absorptive fate specification. It is noteworthy that emerging literature in other 

organ systems links increased Notch signaling to obesity (213,214). Notch is also linked to cancer growth (20), 

therefore elevated Notch in obesity and especially in ISCs would be relevant to mechanisms driving cancer risk in 

obesity. 

One main limitation of this study was we evaluated the effect of DIO at one time point. The time chosen 

was aimed at evaluating the impact of existing obesity and particularly hyperinsulinemia on ISCs. We recognize that 

performing a time course experiment over the course of development of DIO would reveal at what time intrinsic ISC 

function declines and starts to depend on exogenous insulin or IGF1. Another limitation is that our studies do not 

directly assess the effect of a particular dietary component on ISCs. The ISC enteroid culture system provides a 

useful model system to more directly evaluate the effect of specific dietary components on ISC function or fate 

specification. High throughput systems developed in the Magness lab will be particularly useful for such 

applications (215).  

Paneth cells and ISC function 

 Paneth cells contribute to the ISC niche and changes in Paneth cell function or factors secreted can alter 

ISC number or function. In 2012, Yilmaz et al reported that CR enhanced ISC number and function and promoted 

intestinal regeneration by inhibiting mTORC1 activity specifically in Paneth cells. This led to increased Bst1 mRNA 

and generation of cyclic ADF ribose, which acted on neighboring ISCs to promote proliferation. They concluded 

that CR promoted ISC number by favoring self-renewal, decreasing the number of progenitors and preserving the 
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stem cell pool for when calorie intake increases. (121) This study was the first to couple changes in nutrient intake to 

Paneth cell mediated ISC function.  

Potential impact of reduced Paneth and goblet cells in DIO 

Reduced Paneth and goblet cells during DIO may have important implications for adverse consequences of 

obesity since these cells contribute to host defense against potential pro-inflammatory stimuli in the lumen such as 

microbes. In our recent follow-up study, we found similar reductions in Paneth cells in obese C56Bl6 mice (216). 

Intriguingly, mRNAs encoding Paneth cell anti-microbial peptides were increased indicating functional changes in 

Paneth cells. Such increases in antimicrobial mRNAs were noted in obese humans despite decreased lysozyme 

protein levels (217). Further analyses of Paneth cells in DIO such as RNA or proteomic analyses would be of 

considerable interest. The Sox9-EGFP model permits Paneth cell isolation based on high CD24 expression and 

negative expression of the Sox9-EGFP reporter (215). 

Paneth cells are known to secrete trophic factors and more recently enhance enteroid formation in a contact 

dependent manner. Reduced Paneth cells therefore seem unlikely to account for the ISC hyperproliferation in vivo or 

the defective intrinsic function in isolated cultured ISCs. We cultured isolated crypts, containing both ISCs and 

Paneth cells, from DIO and control animals. Crypt culture experiments revealed similar results as single ISC culture 

experiments; reduced crypt budding (proxy for ISC expansion) in enteroids formed from crypts isolated from DIO 

animals versus controls. These data provide indirect evidence that the decreased intrinsic ISC function cannot be 

rescued by the presence of Paneth cells or their secreted mediators. Since crypt culture is an indirect way to assess 

Paneth cell and ISC interaction, future studies should more directly evaluate the relationship between Paneth cells 

and ISCs during obesity. These would involve culturing control Paneth cells with DIO ISCs or DIO Paneth cells 

with control ISCs and assess enteroid formation. 

Mechanisms underlying obesity associated ISC hyperproliferation 

 We were interested in the potential role of the insulin/IGF system in the observed ISC hyperproliferation in 

DIO animals. We evaluated mRNA levels of Igf1r and Insr (total and IR-A and IR-B) and these were not different in 

ISCs from DIO mice. However, mRNA levels of Igf1r and IR-A remained high in Sox9-EGFP Low ISCs versus all 

other cell populations isolated from DIO animals indicating that DIO-ISCs are still expressing the two receptors at 

high levels compared to other Sox9-EGFP cell populations. Insulin/IGF1 signaling is typically assessed by 

phosphorylation of receptors and downstream signaling molecules such as IRS-1. Numbers of Sox9-EGFP Low 
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cells were not high enough to yield sufficient protein to look at regulation of receptor or IRS phosphorylation. 

Evidence for effect of insulin on ISC stem from significant positive correlations between plasma insulin and ISC 

number. The fact that excess insulin or IGF1 rescued the intrinsic enteroid-forming defect in ISCs from DIO mice 

provides important evidence for altered response to insulin/IGF. We propose that long-term exposure to high insulin 

or IGF1 levels promotes ISC ‘dependence’ on these levels. Future studies to directly examine molecular mediators 

linked to differential response would be of interest. Recent studies from our lab have shown that IGF1 treatment by 

osmotic mini-pump increases the number of Sox9-EGFP Low ISCs, indicating that IGF1 preferentially expands this 

cell population, similar to what we see in DIO (Van Landeghem et al, under review). This same study defines genes 

selectively increased in ISCs by IGF1, which could be explored in ISCs from DIO mice. However, other mediators 

of proliferation that are increased during obesity exist. Figure 4.3 illustrates potential mediators such as pro-

inflammatory cytokines and adipokines and ER stress that can contribute to ISC hyperproliferation and are topics 

that should be explored further.  

Cytokines and adipokines 

 The link between intestinal inflammation and cell proliferation is highlighted by the relationship between 

inflammation and carcinogenesis. Pro-inflammatory signaling pathways are common mediators of CRC and patients 

with IBD are at increased risk for developing CRC (218). Our lab has shown HFD increases intestinal inflammation 

and expression of pro-inflammatory cytokines such as TNFα in the intestine, prior to onset of obesity and 

hyperinsulinemia (76). Inflammation was apparent in multiple cell types including intestinal epithelial cells and 

underlying immune and endothelial cells as assessed by NFkB-GFP reporter mice indicating multiple sources of 

inflammation during obesity (76). Our lab has also shown cytokines can promote proliferation of CRC cell lines 

(219), however we do not know whether inflammatory cytokines can act specifically on ISC to promote 

proliferation. Gene expression data on Sox9-EGFP sorted cell populations from our lab reveals expression of TNFα 

receptors Tnfr1 and Tnfr2 on Sox9-EGFP Low ISC, indicating ISC are capable of signaling through these receptors 

(data not shown). Future studies employing the enteroid culture system can be used to more directly test the effect of 

cytokines on ISC survival or growth by assessing enteroid forming ability, size or proliferation via EdU 

incorporation.  

Leptin, an adipokine that is positively correlated with adipose tissue size, normally functions to suppress 

food intake, however obese individuals are thought to have developed resistance to its anorexigenic cues. Limited 
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studies have looked at the effect of leptin on intestinal epithelial cells. Evidence suggested leptin promotes 

proliferation and inhibits apoptosis of CRC or transformed cell lines but has no mitogenic effect on non-transformed 

colon epithelial cell lines (220-222). The pro-proliferative effect of leptin is reported to be mediated by production 

of pro-inflammatory cytokine interleukin-6 (IL-6) (222). While it is unclear if leptin can promote proliferation in a 

normal setting, future studies can explore the effect of leptin on ISC by treating ISC or enteroids with leptin and 

assessing its effect on enteroid growth and survival. 

ER stress 

Obesity is associated with increased ER stress and chronic inflammation in adipose tissue. Obesity induced 

adipose tissue ER stress is thought to be due to generation of reactive oxygen species due to elevated FFA that lead 

to protein misfolding or unfolding (223). Evidence for the effect of ER stress on ISCs is conflicting. Heijmans et al. 

reported decreased Olfm4+ cells following induction of intestinal epithelial ER stress by conditionally knocking out 

ER chaperone protein Grp78 (224), while Niederreiter et al reported an increased number of Olfm4+ cells in 

intestinal epithelial specific Xbp1-/- animals (225). Despite conflicting evidence, these data indicate ER stress can 

affect ISC. Intestinal ER stress is linked to increased inflammation (226). Therefore, during obesity, ER stress in the 

intestine and surrounding mesenteric fat can contribute to increased inflammation and ISC proliferation.  

It is noteworthy that Xbp1-/- animals do not develop Paneth cells and authors conclude this is due to 

inability of Paneth cells to resolve ER stress, leading them to undergo apoptosis (226). Obese subjects displayed 

elevated levels of ER stress proteins BiP and ATF4 associated with ER stress in Paneth cells (217). These data 

indicate Paneth cells may be particularly sensitive to ER stress providing a potential mechanism to explain our 

observed decreased Paneth cell number in DIO animals. The role of ER stress in both ISCs and Paneth cells during 

obesity and ISC hyperproliferation is something to be explored in the future. 

Obesity, proliferation and cancer risk 

 Many epidemiological studies have linked diet to cancer risk. Obesity increases the risk of developing 

many cancers especially colon, while CR is protective against carcinogenesis (165,227). Carcinogenesis is a 

multistep process involving multiple genetic mutations associated with hyperproliferation. Understanding how 

cellular proliferation is regulated during obesity will help better establish molecular mechanisms underlying tumor 

formation. While the goals of this dissertation were not to directly study obesity and carcinogenesis, our data point 

to some potential mechanisms that may link obesity to tumor formation. 
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Obesity, ISC hyperproliferation and cancer 

 Hyperproliferation of ISCs as occurs in DIO increases the statistical probability of acquiring genetic 

mutations that promote tumor formation. Evidence suggests that mutations in ISCs are an initial event that can lead 

to tumor initiation. Apc deletion in Lgr5+ or Lrig1+ ISCs resulted in adenoma formation suggesting that mutations 

acquired in ISC are the cells of origin in intestinal adenomas (228,229). ISC hyperproliferation as seen in DIO may 

be one mechanism by which obesity is associated with increased risk for tumor formation. Our studies explored the 

effect of DIO on jejunal ISCs because the jejunum is the main site of nutrient absorption and the ISC are best 

characterized in the jejunum, however it is currently not known whether ISC hyperproliferation due to DIO occurs 

in the colon. This would be of great interest as colon tumors are more common than small intestinal tumors. 

Fortunately, the Sox9-EGFP reporter model also marks CSC and can be used to assess effects of obesity on CSC 

(230). To understand the role of DIO induced ISC expansion and hyperproliferation in the setting of carcinogenesis, 

future studies can use the ApcMin+ model or azoxymethane/dextran sodium sulfate (AOM/DSS) model of intestinal 

tumorigenesis in the Sox9-EGFP reporter mouse. The ability to sort Sox9-EGFP Low ISCs from these animals can 

allow for interrogation of frequency of known mutations linked to tumor initiation in ISCs isolated from obese 

animals. High-throughput single cell analysis is currently available (215) to assess the number of ISC with mutations 

in Apc, B-catenin, Kras and p53. We would hypothesize that obese animals acquire a greater number of mutations in 

ISCs or acquire mutations at an earlier time point compared to controls (Figure 4.4). These studies would provide 

novel analysis of obesity induced, ISC specific mutations that can result in tumorigenesis. One limitation of the 

Sox9-EGFP model is that the differential expression profile of Sox9-EGFP in CSC versus progenitors is not as clear 

or well defined as in the small intestine. In fact overall CSC are less well characterized than in the ISC of the small 

intestine. Other models of CSC could be useful (3,8). Our lab also has the Lgr5-EGFP reporter, which is well 

accepted. Another issue is whether the tumor environment affects reporter expression. High-level Sox9-EGFP 

expression has been noted in tumors (230) but could reflect tumor environment activating the Sox9-EGFP reporter 

rather than expanded ISCs. 

Role of the intestinal microbiota in proliferation 

 The intestinal microbiota exists in a symbiotic relationship with the host to aid in host defense, immunity 

and nutrient absorption. It is becoming more apparent that the changes in microbial composition can alter many 

biological processes. Studies in germ free animals and microbiota transfer studies highlight the contribution of the 



	
   92 

microbiota to host health during obesity and provide the potential use of microbes as therapeutic strategies 

(85,89,231-235).  Therefore, it is important to understand potential roles of the microbiota in obesity associated ISC 

expansion.   

Obesity, microbiota and ISC proliferation 

 Seminal studies evaluating the effect of diet on the intestinal microbiota have provided evidence that 

microbiota composition in obesity is significantly altered compared to controls, where obesity decreases the 

abundance of Bacteroidetes while increasing abundance of Firmicutes (83-85). Whether changes in microbiota 

composition during obesity can affect ISC expansion and proliferation is unknown. Host recognition of bacterial 

products occurs through Toll-like receptors (TLRs) and Nod receptors. Although via different pathways, both TLR 

and Nod signaling converge on activation of NFkB and increased production of pro-inflammatory cytokines and 

chemokines, which may affect proliferation. Nigro et al showed that ISCs express high levels of Nod2 mRNA and 

treatment of ISCs with a Nod2 agonist yielded greater enteroid formation compared to Nod2-/- ISCs indicating a role 

for bacterial signaling in ISC function (236). These data begin to define the relationship between microbes and ISC 

function and this is an area that warrants increased attention. In silico analyses of our microarray dataset of Sox9-

EGFP cell populations confirmed prior knowledge that the intestinal epithelium expresses TLRs and Nod receptors 

(237-239). However, with our dataset, we were able to further assess expression in different intestinal epithelial cell 

populations and found that Tlr2, 4 and 5 were enriched in Sox9-EGFP Low and High cells while Tlr3 and 9 were 

enriched in Sox9-EGFP Negative cells. Identifying microbial sub-types that express activators of TLRs enriched in 

Sox9-EGFP Low and High cells to promote cell proliferation can provide novel insights on the relationship between 

the microbiota and ISCs such as LPS, which is elevated during obesity and binds/signals through TLR4. Future 

studies can use the enteroid culture system to treat enteroids with specific bacterial products that activate TLRs or 

Nod receptors to assess effects on ISC proliferation. Additionally, we have derived Sox9-EGFP animals under germ 

free conditions to assess the role of the microbiota in DIO associated ISC expansion and proliferation. If the DIO 

associated effects on ISC are due to the microbiome, colonization of germ-free Sox9-EGFP mice with microbes 

from control and DIO animals should recapitulate our observed results in conventionally raised animals.  

 The intestinal microbiome can also be shaped by antimicrobial secretions derived from Paneth cells (240). 

Therefore changes in Paneth cell number or secretions during obesity may have an effect on microbiome 

composition. Changes in mRNAs encoding Paneth cell secretions are altered in obese mice (216) and humans (217). 



	
   93 

Interestingly, mice deficient for MMP7, an enzyme required for the processing of alpha-defensins – an antimicrobial 

peptide secreted by Paneth cells, display a change in their microbiota composition favoring Firmicutes, similar to 

what is seen in obese humans (50,85). Evaluating Paneth cell secretions, particularly levels of alpha-defensins, from 

obese and lean mice may provide novel evidence linking altered Paneth cells to obese microbiome.  

Intestinal adaptation to intermittent feeding 

Effect of ADF on ISCs, progenitors and intestinal proliferation in jejunum 

Figure 4.5 summarizes the effects of ADF on the intestine. We found no effect of ADF on ISC number or 

ISC proliferation. Evaluating ISC number or proliferation at earlier time points are of interest for future studies as 

changes might occur at earlier time points after start of ADF. These data are different than what was observed 

during CR. CR increased number of Olfm4+ ISCs and CR crypts yielded greater number of enteroids compared to ad 

libitum fed controls (121), indicating that ISC responses to CR and ADF are different. Future studies will test ISC 

function in ADF animals using ISC and crypt culture methods.  

Despite no effect on ISC number or proliferation, ADF significantly increased the pool of non-proliferating 

progenitors after a fast cycle, which is reversed following a feed cycle. These data support a model where 

progenitors are highly responsive to feed and fast cycles of ADF by maintaining a large progenitor pool during 

fasting and rapidly mobilizing the pool to increase differentiated cells during feeding (Figure 4.5). Decreased 

progenitor proliferation can be explained by increased cell-cycle time. Studies using DNA labels to mark 

proliferating cells and monitoring time of label washout can provide evidence for differences in cell-cycle time 

during feed and fast periods. Restoration of progenitor pool following feeding indicates rapid differentiation to 

handle incoming food. Therefore, intestines of ADF animals could be more efficient at digesting and absorbing 

nutrients in the proximal small intestine (Figure 4.6). Radiolabeled or fluorescent-conjugated glucose or fatty acids 

could be administered by oral gavage and radioactivity or fluorescence can be measured in intestinal segments to 

assess changes in absorption rates and location as well as evaluation of nutrient transporters along the length of the 

small intestine. 

Effect of ADF on colonic epithelium 

 We reported a significant decrease in colonic epithelial proliferation in ADF animals following a fast cycle 

compared to ad libitum fed controls after same fast cycle. In the colon, fasting doubled while refeeding shortened 

cell-cycle time (212). Decreased colon proliferation in ADF mice after a fast cycle can be attributed to increased 
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cell-cycle time and can be assessed as described above for the jejunum. Decreased colon cell proliferation is of great 

interest, since intestinal cancers are commonly found in the colon and is discussed more below.  

Mechanisms underlying decreased proliferation in ADF animals 

 Factors that are increased during obesity that underlie increased proliferation may mediate decreased 

proliferation during ADF. Ongoing studies are evaluating potential mechanisms that contribute to changes in 

proliferation in ADF mice including inflammation, insulin/IGF1 pathway and the intestinal microbiome (discussed 

in later sections). 

Inflammation and ADF 

Other diet restriction regimens lowered mRNAs of pro-inflammatory cytokines in white adipose tissue 

(119). As described above, pro-inflammatory cytokines promoted proliferation in CRC cell lines (219). Investigating 

gene expression of pro-inflammatory mediators such as TNFα and IL-6 in the intestine, surrounding mesenteric 

adipose tissue and gonadal adipose tissue will be of interest to test whether ADF animals display decreased 

inflammation compared to controls (Figure 4.7).  

Insulin and IGF1 and ADF 

The insulin/IGF1 pathway is a well-documented pathway that exerts trophic effects on the intestine. There 

is debate as to whether ADF decreases insulin and IGF1 levels as studies have reported conflicting results (103). We 

reported no change in fasting insulin levels in ADF mice compared to controls, however observed increased IGF1 in 

ADF animals. Although relatively greater than controls, absolute IGF1 levels were still lower than traditionally 

reported in mice. Our lab has shown that IR isoform expression can dictate cell proliferation (139). Forced IR-B 

expression decreased proliferation of CRC cell lines, indicating the role of the metabolic IR in limiting proliferation. 

We observed a significant increase in IR-B expression in ADF colons compared to controls. This effect was also 

observed in jejunum (data not shown). One limitation is these data are they were assessed in whole thickness tissue. 

Ongoing studies on isolated epithelium are directly testing whether increased IR-B expression is present in epithelial 

cells. We are also able to directly assess if ADF increases IR-B in specific cell types of the small intestinal 

epithelium, most notably progenitors and ISCs, using the Sox9-EGFP mouse. We would predict Sox9-EGFP 

Sublow progenitors would express higher levels of IR-B in ADF animals compared to controls, linking IR isoform 

switching to ADF effects on intestinal epithelial proliferation (Figure 4.7). If ADF does promote IR isoform 

switching, future studies will look at splicing factors responsible for promoting or inhibiting IR-A versus IR-B 
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production. This would provide novel evidence that diet is able to affect IR isoform expression by regulating IR 

splicing. 

ADF, decreased proliferation and cancer 

 ADF animals displayed decreased intestinal proliferation compared to controls consistent with studies in 

other tissues (104,105,117). There is evidence that ADF is protective against carcinogen/mutagen-induced 

carcinogenesis (115,116). Decreased colon proliferation is of interest because it is the major site of intestinal 

cancers. Ongoing studies in the lab are exploring ADF in the setting of intestinal tumorigenesis using the ApcMin/+ 

mouse model. Tumor number and load will be quantified and we predict that ADF animals will display lower 

numbers of tumors consistent with our decreased proliferation phenotype. This would test primarily the effect of 

ADF on small intestinal tumors, as ApcMin/+ is a model of genetically induced small intestinal tumorigenesis. ADF 

decreases proliferation in both small intestine and colon. Therefore we can also test the impact of ADF on 

inflammation associated colon tumorigenesis using the AOM/DSS model and assess tumor formation between ADF 

and controls. Decreased proliferation due to ADF may be a mechanism by which ADF or other intermittent feeding 

diets can decrease risk of colon tumor formation, which further promotes this diet as clinically relevant. 

Metabolic adaptations to ADF 

There was no difference in net food intake or activity between ADF and control animals. Despite this, ADF 

animals show no increase in body weight over 20 weeks and have reduced body fat relative to ad libitum controls 

(Figure 4.5). During a feed period, ADF mice have a RER near 1.0, indicating animals are using primarily 

carbohydrates for energy compared to controls, which use both carbohydrates and lipids for energy production 

during feeding (RER = 0.85). Chausse et al reported similar RER in ADF mice, however found no difference in 

RER between ADF and controls (241). Differences in results are likely due to the length of intervention. Chausse et 

al. maintained their animals on ADF for 3 weeks (241), while we examined the chronic effects by subjecting 

animals to 20 weeks of ADF. This indicates that animals do not adapt by burning more carbohydrates after 3 weeks 

on ADF and require a longer period. This is a potentially important observation that duration of ADF or other 

intermittent feeding strategies may be critical to maximize benefit and utilization of carbohydrates. Excess 

carbohydrates are typically turned into fat by converting glucose to acetyl CoA, a precursor for TG synthesis. The 

greater efficiency of ADF fed animals to burn carbohydrates provides a mechanism to avoid accumulating excess 

fat. We do not observe differences in gonadal fat mass between ADF animals after a fed and fast period, indicating 
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animals are not storing excess carbohydrates consumed on feed days. Instead, ADF animals can be storing excess 

glucose as glycogen in the liver. Recently published studies show diet restriction alters hepatic glucose metabolism 

(118,119). Ongoing studies are exploring changes in hepatic liver enzymes related to glycolysis, gluconeogenesis, 

lipid synthesis and β-oxidation as well as glycogen content to link ADF in our model to improvements in 

metabolism.  

The intestinal microbiota in ADF: effects on metabolism and proliferation 

 As described earlier, changes in the intestinal microbiota can dictate host health and physiology. The 

intestinal microbiota aids in nutrient metabolism and regulating epithelial proliferation, making it an intriguing link 

between the intestinal and metabolic effects of ADF.  

Microbiota changes in ADF mice that promote carbohydrate digestion 

 ADF animals maintain their body weight while decreasing fat mass, despite similar food intake and activity 

compared to controls. We have shown to our knowledge for the first time that this phenotype is associated with 

animals utilizing carbohydrates for energy production when fed compared to controls. Because a function of the 

microbiome is to extract and harvest nutrients from ingested food, ongoing studies are evaluating changes in 

microbial communities between groups. We predict that the microbiota composition of ADF animals would favor 

carbohydrate digestion and absorption. A microbiome with increased abundance of Bacteroidetes and Actinobacteria 

and decreased abundance of Firmicutes are seen during fasting as well as high polysaccharide diet consumption 

compared to control or Western style diets (242,243) and we predict ADF animals would exhibit similar microbial 

profiles. Table 4.1 lists a small set of bacteria we hypothesize would be changed in ADF animals due to their roles in 

carbohydrate metabolism and intestinal proliferation. 

Although our understanding of the microbiome has increased in the past decade through the development 

of high-throughput genomic approaches, understanding the functions of various microbial communities are not 

advancing at the same pace. Current views are that diet is one major factor that contributes to microbiome 

differences, however there is limited work on specific bacteria and their designated roles in nutrient metabolism. 

Carbohydrates are broken down into fermentable monosaccharides by specific microbial derived enzymes called 

carbohydrate active enzymes (CAZymes) to generate products such as SCFA prior to absorption. Without these 

enzymes, complex carbohydrates are unable to be fully broken down and would be unavailable to be used by the 

host. Characterization and regulation of CAZymes have yet to be fully explored. However metagenomic sequencing 
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of the human microbiota has provided a set of predicted bacteria that potentially contain CAZymes, linking their 

genomes to carbohydrate metabolism (244). There are >3000 bacteria identified so far to encode for CAZymes and 

that number is most likely increasing as sequencing data becomes available. We can utilize these data to interrogate 

our microbiome sequencing obtained from ADF animals. For example, the bacterial genus Bacteroides (from the 

Bacteroidetes phylum) have been shown to be able to degrade polysaccharides and are highly prevalent in the 

human colon. Levels of B. thetaiotaomicron, a member of the Bacteroides genus, were positively associated with 

presence of dietary polysaccharides (245). Bifidobacterium, a genus of the Actinobacteria phylum, contains gene 

sequences linked to carbohydrate metabolism and has been reported to attach and degrade starch particles (246). 

Recently, the role of Firmicutes in carbohydrate metabolism has begun to be explored. For example, R. intestinalis, 

member of the Roseburia genus, has been shown to play roles in carbohydrate degradation and production of the 

SCFA butyrate, propionate and acetate (244). Butyrate is used by colonocytes for energy and has been shown to be 

associated with beneficial effects on the colon including anti-inflammatory properties and CRC prevention (247). 

Propionate has been shown to modulate satiety and glucose homeostasis by promoting EEC hormones peptide YY 

and GLP-1 but also is a gluconeogenic substrate, which would be counterintuitive if it acts to promote glucose 

homeostasis. De Vadder et al report that propionate and butyrate increased intestinal gluconeogenesis (before 

reaching the liver) and activated targets in the brain leading to decreased hepatic gluconeogenesis, improved glucose 

homeostasis and adiposity (248). Intestinal gluconeogenesis occurs during fasting periods (249). Changes in 

intestinal gluconeogenesis can also be measured by intestinal gene expression on key gluconeogenic genes such as 

Pepck and G6pc. We would hypothesize that the microbiota of ADF animals contain more SCFA-producing 

bacteria. These data would provide evidence for ADF induced microbial changes that influence nutrient digestion 

and metabolism. 

Microbiota changes in ADF mice associated with decreased intestinal proliferation 

 In addition to changes in adiposity and carbohydrate metabolism, our data showed significant reductions in 

both small intestine and colonic epithelial proliferation in ADF animals. Microbial communities can also regulate 

proliferation and we predict increases in microbes linked to decreased proliferation in ADF animals. For example, L. 

murinus, a member of the Lactobacillus genus, is decreased during starvation and reappears following refeeding and 

has been shown to promote colonic epithelial proliferation via its production of lactate (250). Therefore we 
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hypothesize that the microbiome of ADF animals will have decreased L. murinus and other lactate-producing 

bacteria, linking altered microbiota to intestinal proliferation. 

 A recent study by Zarrinpar et al. looked at the effect of time restricted feeding on the intestinal 

microbiome (120). The goal of their study was to compare restricted feeding and ad libitum feeding using HFD as a 

potential nutritional intervention. They reported microbial differences between animals that were fed HFD ad 

libitum compared to animals that fed chow ad libitum or were restricted with HFD, indicating that restricted feeding 

with HFD produces a microbiome similar to a chow fed animal (120). However they did not compare the 

microbiome differences between ad libitum versus restricted chow fed animals. Our microbiome data from ADF 

animals will address this gap and based on our data, we predict changes in the microbiome consistent with the 

phenotype observed in our ADF animals.  

Significance and Conclusions 

With the identification and validation of ISC biomarkers and generation of mouse models that mark ISCs in 

vivo, we were able to define the functional effects of obesity and intermittent feeding on ISC. DIO selectively 

expanded the number of ISC associated with increased ISC proliferation, and decreased number of Paneth and 

goblet cells. Surprisingly, intrinsic ISC function was decreased in ISCs isolated from DIO animals, but was rescued 

with the addition of excess insulin or IGF1, indicating DIO-ISCs become dependent on the insulin/IGF-rich 

environment in vivo for intrinsic function. This work has provided the foundation for future studies in identifying the 

clinical implications of ISCs hyperproliferation and decreased Paneth and goblet cells linking obesity to intestinal 

health. We have also defined the effects of ADF, a clinically relevant diet, on the intestine and showed that ADF 

slowed intestinal proliferation, decreased body fat and prevented body weight gain associated with changes in 

carbohydrate utilization and the intestinal microbiota without changes in food intake or activity. Our work adds to 

emerging evidence that ADF produces beneficial effects on metabolic health and proliferative activity. Because of 

the poor adherence rates to CR, there is a need for increased attention to ADF or other intermittent feeding diets as 

an alternative to improving body weight, metabolic health and chronic disease risk in humans. Findings from both 

our DIO and ADF studies have unveiled the importance of understanding how both can affect ISCs, which can have 

downstream effects on intestinal and whole body health. 
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Figures and Tables 

 

Figure 4.1: Diet-induced obesity (DIO) selectively expands number of total and proliferating ISCs.  
Our data provides a model where DIO selectively increases the ISC number and ISC proliferation associated with 
increased number of crypts feeding onto each villus (crypt density) resulting in increased villus height. 
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Figure 4.2: Obesity favors enterocyte lineage by increasing Notch signaling in ISCs and progenitors.  
Proposed model demonstrating that during obesity, Notch signaling is increased and Wnt signaling is decreased in 
ISCs and progenitors leading to an increase in the Hes1:Atoh1 ratio thereby favoring enterocyte differentiation. 
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Figure 4.3: Proposed mediators of ISC hyperproliferation in obesity.  
Increased levels of inflammation, leptin, and ER stress in the intestine or derived from mesenteric fat surrounding 
the intestine or underlying lamina propria can contribute to observed ISC hyperproliferation. 
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Figure 4.4: ISC hyperproliferation can increase risk of tumor formation.  
Increased ISC proliferation can increase the probability of acquiring known genetic mutations linked to intestinal 
tumorigenesis such as Apc, Kras and p53. Mutated ISC can increase risk of tumor formation, providing a novel link 
between obesity and cancer. 
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Figure 4.5: ADF improves body mass and maintains body weight while decreasing intestinal proliferation.  
Our data provides novel evidence that ADF affects the intestinal epithelium by decreasing jejunal and colonic 
epithelial proliferation and preferentially regulating the pool of progenitors during cycles of feed and fast. ADF also 
proves to be a diet strategy that potentially has implications for improving metabolic health by decreasing body 
mass, preventing weight gain and favoring carbohydrate burning, despite no change in food intake or activity. 
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Figure 4.6: Increased absorption efficiency in intestines of ADF animals.  
Proposed mechanism that ADF intestines are more efficient at harvesting nutrients from food leading to greater 
digestion and absorption occurring in the proximal small intestine (duodenum) leaving little food remaining in distal 
regions (ileum).  
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Figure 4.7: Proposed mediators of decreased intestinal proliferation in ADF animals.  
Ongoing studies are evaluating the effects of ADF on intestinal inflammation, insulin/IGF1, IR isoform expression 
and microbiome as potential mechanisms explaining decreased proliferation. 
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Table 4.1: Predicted bacteria changed in microbiome of ADF animals 

 

  

Phylum Genus Species Function 

Bacteroidetes Bacteroides B. thetaiotaomicron Carbohydrate metabolism 

Actinobacteria Bifidobacterium B. adolescentis Carbohydrate metabolism 

Firmicutes 

Roseburia R. intestinalis Carbohydrate metabolism 
SCFA production 

Lactobacillus L. murinus Proliferation 
Lactate production 

Table 4.1: Predicted bacteria changed in microbiome of ADF animals 

Green – predicted to increase in ADF animals;  Red – predicted to decrease in ADF animals  
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