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ABSTRACT 
 

SAMUEL CAREY WOLFF: Identification of Targeting Signals in Human P2Y Receptors in 
Polarized MDCK(II) Epithelial Cells 

(Under the direction of Robert A. Nicholas, Ph.D.) 
 

P2Y receptors, which belong to the G-protein coupled receptor superfamily, play 

prominent roles in epithelial cell physiology, such as regulated ion transport and response to 

stress. Published studies utilizing indirect, pharmacology assays suggested a polarized 

distribution of P2Y receptors in a variety of epithelial cells. Therefore, we examined directly 

the distribution pattern of the entire P2Y receptor family in MDCK(II) epithelial cells by 

confocal microscopy as well as the localization of the Gq-coupled P2Y receptors (P2Y1, 

P2Y2, P2Y4, P2Y6, and P2Y11) in epithelial cells from lung and colon. Our results showed 

that seven of the eight receptor subtypes are localized to either the apical or basolateral 

membrane surface of MDCK(II) cells. Moreover, a nearly identical pattern of distribution 

was observed in the other epithelial cell types (Wolff et al., 2005). The polarized targeting of 

cell-surface proteins is mediated by the protein-sorting machinery of the cell, which reads 

and interprets targeting signals contained within the primary sequence of polarized proteins 

and ensures delivery to the correct subcellular location. We postulated that P2Y receptors 

contain targeting signals that direct their polarized sorting in epithelial cells. To test this 

hypothesis, we analyzed a series of P2Y receptor mutants and chimeras, which allowed us to 

locate the targeting signals for all of the polarized P2Y receptor subtypes. Once the locations 

of the apical or basolateral targeting signals were determined, we fully characterized the 
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basolateral targeting signal of the P2Y1 receptor and the apical targeting signal of the P2Y4 

receptor, both of which are located in the C-terminal tail. The results of these studies 

demonstrated that the basolateral signal of the P2Y1 receptor is 25 amino acids in length and 

functions in a sequence-independent manner, with charged residues playing a key role in 

targeting, while the apical signal of the P2Y4 receptor is 23 amino acids long with no 

remarkable features or key amino acids identified as of yet. In this dissertation, we describe a 

series of experiments that completely characterized the apical and basolateral signals of these 

two purinergic receptors. 
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CHAPTER I: General Introduction 

1. P2 Receptor Background 

 The effects of extracellular nucleotides were first described nearly 80 years ago when 

Drury and Szent-Gyorgyi demonstrated that extracellularly applied adenine nucleotides 

induced coronary vasodilation (Drury and Szent-Györgyi, 1929). Several decades later a 

second physiological role for extracellular nucleotides was demonstrated by showing that 

ADP promoted platelet aggregation (Born, 1962; Gaarder et al., 1961). The concept of 

nucleotides as signaling molecules activating their cognate receptor(s) was not established 

and accepted until many years later. In fact, this rich field now known as ‘purines’ research 

would probably not have been established, at least in its current form, had it not been for the 

persistent work of Geoff Burnstock throughout the 1970s and 1980s (Burnstock, 1972; 

Burnstock and Kennedy, 1985). Because of the work of Burnstock and many others, we now 

know that extracellular nucleotides promote a myriad of physiological responses in most 

cells and tissues, including ion transport, platelet aggregation, contraction of smooth muscle 

and depolarization of neurons (Harden et al., 1995; Ralevic and Burnstock, 1998). 

 By the mid-1990s numerous published reports demonstrated that extracellular 

nucleotides activated membrane-bound P2 receptors with two distinct signal transduction 

mechanisms, leading to the proposal that two separate receptor families, named P2X and 

P2Y, be established to reflect these differences (Abbracchio and Burnstock, 1994). 

Subsequent cloning of both types of P2 receptors confirmed the existence of these two 
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protein families, with P2X receptors as fast-acting ionotropic cation channels and the slower-

acting metabotropic P2Y receptors that belong to the G-protein coupled receptor (GPCR) 

superfamily. To date, seven P2X receptors (P2X1-7) have been characterized, while eight P2Y 

receptors (P2Y1,2,4,6,11,12,13 and 14) have been cloned, with a closely related orphan receptor 

(GPR87) thought to be the ninth and most likely final member.  

 

1.1 Cloned P2X Receptors 

 As described above, P2X receptors are fast-acting ionotropic cation channels with 

seven members (P2X1-7) cloned to date. Moreover, there are no reports of additional 

homologous P2X sequences, strongly suggesting that seven is the total number of members 

for this receptor family. These receptors are multimeric structures that are assembled with the 

same (homo-oligomers) or different (hetero-oligomers) subunits, with the most convincing 

evidence suggesting that the subunits form trimers (Khakh and North, 2006; Nicke et al., 

1998). The proposed membrane topology of these receptors is one with a large extracellular 

region flanked by two transmembrane domains and with both the N- and C-terminus within 

the cytoplasmic space (Brake et al., 1994; Valera et al., 1994). Unlike P2Y receptors, P2X 

receptors are activated exclusively by ATP (as well as numerous ATP analogues) and upon 

activation mediate the influx of divalent ions such as Ca2+ and Mg2+. P2X receptors are 

widely expressed and include tissues such as smooth and skeletal muscle, leukocytes, 

lymphocytes, as well as the central and peripheral nervous systems. Given the nearly 

ubiquitous expression of these receptors throughout the body, P2X receptors have been 

implicated in a variety of physiological functions including contraction of smooth muscle and 
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the bladder, modulation of pain sensation/nociception (Fukui et al., 2006; Krishtal et al., 

2006) and regulation of inflammation (Lister et al., 2007).  

 

1.2 G protein-coupled receptors (GPCRs) 

Heterotrimeric guanine nucleotide-binding proteins (G proteins) are signal 

transducers that connect cell-surface receptors to effectors and their intracellular signaling 

pathways. The three subunits that comprise a functional G-protein are α, β and γ, with the α 

subunit containing the guanine nucleotide-binding site. Receptors that couple to these signal 

transducers are known as G protein-coupled receptors (GPCRs) and they constitute the 

largest and most diverse type of membrane-bound proteins. Genes encoding members of the 

GPCR superfamily, with their trademark seven-transmembrane helical domains, represents 

approximately 5% of the mammalian genome, making it one of the largest gene families. 

These receptors are activated by an extremely diverse set of ligands/stimuli (photons, 

hormones, neurotransmitters, nucleotides, Ca2+, amino acids, peptides, proteins and 

chemokines) but couple to a limited number of heterotrimeric G proteins (Gαβγ). There are 

20 Gα subunits that are grouped into four families: Gαs, Gαi/o, Gαq/11 and Gα12/13. In 

contrast, 5 Gβ and 11 Gγ subunits form an obligate βγ dimer (Neves et al., 2002).  

Upon activation by their cognate ligands, GPCRs undergo a conformational change 

that promotes the exchange of GDP for GTP at the Gα subunit, which moves the G protein 

from the inactive to the active state. Once activated, Gα subunits dissociate away from both 

the receptor and Gβγ complex to initiate a variety of signaling pathways that regulate 

numerous physiological processes, including chemotaxis, gene transcription, enzymatic 
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activity and activation of ion channels and transporters. Moreover, the switching of GPCRs 

between the activated (on) and deactivated (off) state is exquisitely modulated by a host of 

proteins (e.g. GRK, spinophilin, calmodulin and arrestins) making this receptor system one 

of the most tightly regulated biological systems (Bockaert et al., 2004). 

 

1.21 G proteins  

The cyclic AMP signaling pathway was the first cell signaling pathway described 

many decades ago (Sutherland and Wosilait, 1955), which we now know is mediated by the 

Gαs protein. Activation of this G protein leads to the activation of adenylate cyclase (AC) 

and the production of the second messenger 3’,5’-adenosine monophosphate (cAMP), which 

stimulates other down-stream effectors including protein kinase A (PKA). In contrast to the 

stimulatory nature of the Gs pathway, the Gi/o pathway serves to inhibit adenylate cyclase 

activity and, therefore, suppress the production of cAMP second messenger. In addition, Gβγ 

subunits released from Gi/o can also signal through activation of PLC-β isozymes 

(particularly PLC-β3 and –β2) and G protein-regulated inwardly rectifying K+ (GIRK) 

channels. Activation of Gαq leads to stimulation of phospholipase C (PLC) activity that 

hydrolyzes phosphotidyl inositol-3,4-bisphosphate (PIP2) into two second messengers, 

diacylglycerol and IP3, which subsequently activate protein kinase C isozymes and promote 

mobilization of intracellular calcium. The signaling pathways for Gα12 and Gα13 is less 

clear considering most experiments have taken place transfected cell lines (Neves et al., 

2002). In spite of these experimental limitations, it is generally thought that in native systems 

Gα12 stimulates phospholipase D, c-Src and PKC (Jiang et al., 1998), while Gα13 has been 

shown to directly activate the guanine nucleotide exchange factor for the GTPase Rho, thus 
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leading to a variety of effects including regulation of the Na+-H+ exchanger (Shi and Kehrl, 

2001). Taken together, these distinct G proteins and their unique signaling pathways serve to 

modulate many physiological processes as described above. 

 

1.3 Cloned P2Y Receptors 

 The cloning and characterization of P2Y receptors began in earnest in the early 1990s 

with the advent of molecular biology. Once the first P2Y receptor subtype (P2Y1) was 

identified, subsequent searches and cloning of additional members was facilitated by 

sequence homology searches and northern blot analyses. Gaps in the P2Y receptor 

nomenclature are the consequence of misidentifying orphan receptors as P2Y receptors and 

having to withdraw the designations later. The molecular identification, pharmacological 

profiles and physiological consequences following receptor activation of the eight P2Y 

receptor subtypes are described below. 

Eight functional G protein-coupled P2Y receptor subtypes (P2Y1,2,4,6,11,12,13,14) exist 

and these receptors fall into two sub-families on the basis of their signaling properties and 

sequence identities. The P2Y1 receptor family, comprising of P2Y1, P2Y2, P2Y4, P2Y6, and 

P2Y11 receptors, activates heterotrimeric G proteins of the Gq family, thereby activating 

phospholipase C, causing generation of inositol phosphates and mobilization of intracellular 

Ca2+ stores (Harden, 1998; Ralevic and Burnstock, 1998). In addition to coupling to 

activation of phospholipase C, the hP2Y11 receptor is also coupled to Gs and activation of 

adenylyl cyclase (Communi et al., 1997; Qi et al., 2001a; Torres et al., 2002). In contrast, the 

P2Y12 receptor family, comprising P2Y12, P2Y13, and P2Y14 receptors, activates Gi/o, 
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thereby promoting the inhibition of adenylyl cyclase activity (Fig. 1) (Chambers et al., 2000; 

Communi et al., 2001; Hollopeter et al., 2001; Zhang et al., 2002). 

 

1.3A P2Y1 receptor  

The first P2Y receptor identified was the P2Y1 receptor, which was originally cloned 

from chicken (Webb et al., 1993), and subsequently homologues were identified in human 

(Ayyanathan et al., 1996; Schachter et al., 1996), rodent (Tokuyama et al., 1995), cow 

(Henderson et al., 1995), turkey (Filtz et al., 1994) and skate (Dranoff et al., 2000). Tissue 

distribution for this receptor is wide and includes platelets, brain tissue, skeletal muscle and 

the digestive tract. The P2Y1 receptor is activated potently by adenine dinucleotides (most 

notably 2MeSADP) and to a much lesser extent by adenine trinucleotides, leading to 

activation of the Gq signaling pathway (described above). One of the primary physiological 

roles for the P2Y1 receptor is aggregation of platelets. This was demonstrated by the distinct 

phenotype found in the P2Y1 knock-out mouse, which displayed decreased platelet 

aggregation, increased bleeding time and resistance to thromboembolism (Fabre et al., 1999; 

Leon et al., 1999). Other physiological roles for this receptor includes the regulation of 

voltage-gated ion channels (Lee et al., 2003b), vasodilation via stimulation of nitric oxide 

(Guns et al., 2005) and potentially the modulation of pain pathways (Yajima et al., 2005). 

 

1.3B P2Y2 receptor 

The P2Y2 receptor was the second P2Y receptor cloned, but was the first uracil 

nucleotide-activated member of this receptor family identified. The P2Y2 receptor was  
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Figure 1. Cloned P2Y receptor family agonists, signaling and topology. 
A) The agonist profile for all the human P2Y receptors cloned to date along with the 
signaling pathway(s) for each receptor subtype is shown. These properties are discussed in 
detail in the text. B) The topology of this seven transmembrane protein is shown as well as a 
dendrogram for the receptor family, which is divided into two sub-families: P2Y1 and P2Y12. 
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originally cloned from the mouse in 1993 (Lustig et al., 1993) followed by the human 

homologue in 1994 (Parr et al., 1994a). The P2Y2 receptor has a wide tissue distribution with 

prominent expression in the lung, heart, skeletal muscle, spleen and kidney. Early pre-

cloning functional studies suggested the existence of this class of receptors (O'Connor et al., 

1991), and the name ‘P2U’ was coined based on the pharmacological profile as P2 receptors 

that are potently activated by uracil nucleotides, e.g. UTP (this name was kept until the 

formal P2Y nomenclature was introduced). In addition to potent activation by UTP, this 

receptor is equally activated by ATP lending it a unique pharmacological profile that is often 

utilized as a signature for identification (McAlroy et al., 2000; Nicholas et al., 1996). 

Even before this receptor was cloned and formally recognized, published experiments 

by Boucher and colleagues demonstrated a physiological role for this receptor as a regulator 

of Cl- secretion in airway epithelia (Boucher et al., 1989; Mason et al., 1991). In addition to 

airway epithelia, P2Y2 receptors carry out a similar physiological role in nasal epithelia 

(Gayle and Burnstock, 2005) as well as in cells found in the lacrimal gland and the 

gastrointestinal tract (Cowlen et al., 2003; Matos et al., 2005). Most importantly, it was 

quickly recognized that the physiological role of P2Y2 receptors as a regulator of Cl- 

secretion in airway epithelia could be used as a therapeutic target in the treatment of cystic 

fibrosis (CF) (Donaldson and Boucher, 1997; Parr et al., 1994b). It was hypothesized that 

activation of the P2Y2 receptor and its downstream Cl- channel could serve to restore the 

aqueous layer in the lumen of airway cells, a role normally carried out by the cystic fibrosis 

transmembrane regulator (CFTR) but which is defective in CF patients. Indeed, this idea has 

come to fruition as a P2Y2 receptor agonist has been developed and currently is in phase III 

testing for the treatment of CF (Kellerman et al., 2002).  
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1.3C P2Y4 receptor 

The P2Y4 receptor was identified independently by two different groups in 1995 

(Communi et al., 1995; Nguyen et al., 1995) and shown to be a second Gq-coupled P2Y 

receptor activated by uracil nucleotides. Initially, the tissue distribution of this receptor was 

shown to be restricted to the placenta and pancreas. However, subsequent reports 

demonstrated expression of either P2Y4 receptor mRNA or protein in the human lung 

(Communi et al., 1999), murine stomach, intestine and liver (Suarez-Huerta et al., 2001), and 

in the epithelium of the gerbil inner ear (Marcus and Scofield, 2001; Sage and Marcus, 

2002). The P2Y4 receptor has a particularly interesting pharmacological profile that is 

species-dependent. The human orthologue of this receptor is selectively activated by UTP 

and fully antagonized by ATP, whereas the rodent (rat and mouse) orthologues are activated 

equipotently by both ATP and UTP (Herold et al., 2004; Kennedy et al., 2000). One of the 

physiological roles for this receptor is regulation of epithelial ion transport (Matos et al., 

2005; McAlroy et al., 2000; Robaye et al., 2003). For example, Robaye and colleagues 

demonstrated that the P2Y4 receptor is a dominant regulator of salt and fluid transport in the 

jejunum of the small intestine (Robaye et al., 2003). This homeostatic regulation of ions and 

fluid by epithelium in the small intestine is key to the normal functioning of this tissue and 

serves to underscore the important role nucleotide receptors, in this case the P2Y4 receptor, 

play in this process (Leipziger, 2003). 

 

1.3D P2Y6 receptor 

A third uridine-selective receptor, the P2Y6 receptor, was cloned in 1995 from rodent 

and in 1996 from humans (Chang et al., 1995; Communi et al., 1996). This receptor is 
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activated potently by UDP but weakly if at all by ADP, ATP and UTP (Nicholas et al., 

1996). This receptor is widely distributed, including the heart, spleen, placenta, aorta, brain 

and intestine, and is thought to be involved in several important immune-related functions 

(Communi et al., 1996; Somers et al., 1998). More specifically, this receptor is expressed in 

T-cells and has been implicated as a mediator for the infiltration of these cells into the colon, 

which can damage the vital epithelium lining this organ and leading to inflammatory bowel 

disease (Somers et al., 1998). In addition, the P2Y6 receptor has been shown to regulate the 

secretion of NaCl in colonic epithelium, which helps to maintain an ion gradient that is key 

to the normal functioning of this tissue (Kottgen et al., 2003). Most recently, it has been 

demonstrated that damage to neurons and microglia causes the upregulation of P2Y6 

receptors in neighboring microglia, which are thought to help regulate the critical 

housekeeping function of microglia phagocytosis (Koizumi et al., 2007).  

 

1.3E P2Y11 receptor 

The human P2Y11 receptor was first identified by Communi et al. in 1997 and was 

reported to couple to both phospholipase C and adenylyl cyclase signaling pathways 

(Communi et al., 1997). Additional work confirmed that this receptor coupled to both the Gq 

and Gs signaling pathways, but demonstrated that the receptor coupled to activation of 

phospholipase C at much lower levels of agonist than to activation of adenylyl cyclase (Qi et 

al., 2001a; Torres et al., 2002). Surprisingly, rodents do not contain sequences similar to the 

P2Y11 receptor; however, in 2001 a canine P2Y11 receptor homologue was cloned and, 

similar to the human receptor, was shown to couple to both phospholipase C and adenylyl 

cyclase. The canine orthologue of the P2Y11 receptor is only 70% identical to its human 



 

  11

counterpart and displays interesting differences in its pharmacological properties. The human 

P2Y11 receptor is activated more potently by adenosine triphosphates than by adenosine 

diphosphates and is insensitive to 2-thioether substitutions in the adenine ring, whereas the 

canine receptor is activated more potently by nucleoside diphosphates than by adenosine 

triphosphates and is highly sensitive to 2-thioether substitution (Qi et al., 2001b; Zambon et 

al., 2001). Evidence for the physiological role for this receptor suggests it may be involved in 

the modulation of dendritic cell differentiation as well as mediating the stress response in 

epithelial cells (Insel et al., 2001; Wilkin et al., 2001; Zambon et al., 2001). 

 

1.3F P2Y12 receptor 

The existence of this receptor was suspected for many years before its cloning and 

formal designation as a P2Y receptor due to its prominent role in platelet aggregation. 

Starting in the early 1960s, application of ADP to platelets was shown to induce aggregation 

through an unidentified receptor, named the P2T receptor. In the ensuing years, it was 

demonstrated that ADP promoted both inhibition of adenylate cyclase as well as release of 

intracellular calcium in platelets, which led to the idea that there was one receptor (P2T) that 

coupled to two signaling pathways or that there were two receptors with similar agonist 

profiles that coupled separately to the different pathways. The receptor coupled to 

phospholipase C and intracellular Ca2+ mobilization was eventually identified as the P2Y1 

receptor (Gachet et al., 1995; Hechler et al., 1998a; Hechler et al., 1998b; Leon et al., 1999), 

thus supporting the idea that ADP activated two distinct receptors in platelets, but the 

receptor coupled to inhibition of adenylyl cyclase remained elusive. 
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Given its central role in platelet aggregation, the receptor coupled to adenylyl cyclase 

was a target for antithrombotic drugs such as clopidogrel even before its molecular identity 

was uncovered. Eventually, in 2001, three groups independently identified a Gi-coupled 

receptor that was expressed in platelets and was involved in platelet aggregation. The P2Y12 

receptor, which was also named P2YADP, P2YAC, P2YCYC and P2TAC, together with the P2Y1 

receptor, was shown to be necessary for ADP-promoted platelet aggregation (Hollopeter et 

al., 2001; Takasaki et al., 2001; Zhang et al., 2001). The tissue expression of the P2Y12 

receptor was shown to be limited to platelets and neuronal tissue. The P2Y12 receptor is 

activated by adenosine diphosphates such as 2MeSADP and antagonized by adenosine 

monophosphates such as 2MeSAMP. The agonist profiles for P2Y1 and P2Y12 receptors are 

sufficiently similar that for many years it was thought these two receptors were a single 

receptor; however, the two receptors are most dissimilar in their antagonist profiles with very 

little overlap in activity. 

 

1.3G P2Y13 receptor 

Since its identification in 2001 as a Gi coupled-receptor activated by ADP (Communi 

et al., 2001; Zhang et al., 2002), this member of the human P2Y receptor family has the 

distinction of being the least well studied. To date, no physiological and/or therapeutic role 

has been assigned unequivocally to this receptor, although its prominent expression in the 

brain, lymph nodes, bone marrow, spleen and liver suggests a role in the immune response 

and/or hematopoiesis. For example, a recent study has suggested that the P2Y13 receptor may 

play a role in the regulation of cholesterol homeostasis and is potentially a therapeutic target 

in the treatment of atherosclerosis (Jacquet et al., 2005). Finally, a mouse orthologue was 
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cloned as well, demonstrating the existence of this receptor in at least two different 

mammalian species (Fumagalli et al., 2004).  

 

1.3H P2Y14 receptor 

The P2Y14 receptor is the most recent addition to the P2Y receptor family. The 

receptor is unique in that it is activated by UDP-sugars such as UDP-glucose, UDP-

galactose, and UDP-N-acetylglucosamine (Chambers et al., 2000). Originally, this receptor 

was not deemed a bona fide P2Y receptor, but given its relatively high sequence homology to 

the P2Y12 receptor (44% identity) and the fact that it is activated by a nucleotide (although of 

a different flavor), this receptor was brought into the P2Y receptor family three years after its 

identification (Abbracchio et al., 2003). The P2Y14 receptor is found in a cluster of P2Y 

receptor genes encoding P2Y12, P2Y13, and a related receptor, GPR87, in a small region of 

chromosome 3 (q24-q25)(Fig. 1B). These genes share ~50% sequence identity and are just 

downstream of another P2Y receptor, the P2Y1 receptor. As with the other two receptors in 

this cluster (P2Y12 and P2Y13), the P2Y14 receptor is coupled to Gi, thereby resulting in 

inhibition of adenylate cyclase and potentially phospholipase C and GIRK channel 

activation. The mRNA for this receptor is widely expressed in humans with high levels found 

in neuronal tissue, placenta, adipose tissue, intestine, stomach and skeletal muscle, and lower 

levels in the lung, heart, spleen and pituitary tissues. Recently, activation of P2Y14 receptors 

has been shown to mediate chemotaxis of bone-marrow hematopoietic stem cells, 

demonstrating a potential role in the immunomodulatory response (Lee et al., 2003a).  
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1.3I Misidentified ‘P2Y’ Receptors 

 In the race to identify novel P2Y receptors, several GPCRs were misidentified as 

purinergic receptors either by not realizing that a receptor was a homologue of an existing 

mammalian receptor or based on equivocal data/poor scientific method. One of the first 

examples of this misidentification was in the cloning of a receptor that was preferentially 

activated by nucleotide disphosphates and consequently identified as the novel ‘P2Y3’ 

receptor (Li et al., 1998; Webb et al., 1996). However, careful genetic and pharmacological 

analyses two years later accurately identified the P2Y3 receptor as the avian homologue of 

the mammalian P2Y6 receptor (Li et al., 1998). A more recent example includes a receptor 

that utilizes α-ketoglutarate as an agonist that was originally identified as the 

adenosine/AMP-activated P2Y15 receptor (He et al., 2004; Inbe et al., 2004). This 

unfortunate misidentification occurred because the cells utilized in the study expressed 

endogenous receptors for adenosine as well as endogenous P2Y receptors (Qi et al., 2004). 

Other misidentified proteins include the lysophosphatidic acid (LPA) 4 receptor that was 

originally thought to be the P2Y9 receptor as well as the P2Y7 receptor, which is now known 

to be activated by leukotrienes and not nucleotides (Noguchi et al., 2003; Yokomizo et al., 

1997). In addition, some orphan receptors that were identified as P2 receptors (P2Y5, P2Y8 

and P2Y10) have regained their orphan status upon further scientific investigation (Adrian et 

al., 2000; Li et al., 1997). Taken together, these ‘missteps’ by numerous investigators have 

left the P2Y receptor nomenclature with gaps that confound scientists to this day. 
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2. Regulation of P2 Receptor Signaling by Nucleotidases 

 Termination of nucleotide signaling is mediated by a large family of cell-surface 

nucleotide ectoenzymes, known as nucleotidases, that are as widely expressed as P2 

receptors. More specifically, these enzymes regulate purinergic signaling by catalyzing the 

breakdown and interconversion of nucleotides at the cell-surface, thus modulating the 

concentration and species of nucleotide available in the extra-cellular space for P2 receptor 

activation. In 2000, a unifying nomenclature for a subset of these ectoenzymes was 

established that described members of the family as enzymes that can hydrolyze a single 

phosphate group from nucleoside 5’triphosphates and nucleoside 5’diphosphates with 

varying preference, thus, representing ecto-nucleoside 5’-triphosphate diphosphohydrolases 

(E-NTPDases) (Zimmermann, 2000). In addition, all members of the family harbor five 

conserved sequence domains known as the ‘apyrase conserved regions’. Currently six 

members of the NTPDase family (NTPD1-6) have been identified and characterized, with 

individual members being divided into two subgroups based on predicted membrane 

topology. The first subgroup (NTPDase1-4) contains a large extracellular loop flanked by 

two transmembrane domains followed by either the intracellularly located N- or C-termini, 

while the second subgroup (NTPD5 and 6) is predicted to have an intracellular N-terminus 

followed by a single transmembrane domain and large extracellular domain that ends with 

the C-terminus. In both cases, the conserved ‘apyrase regions’ are located in the large 

extracellular domains. There are numerous published reports demonstrating the role 

NTPDases play in the regulation of P2 receptor signaling. In one example, expression of both 

NTPDase1 and 2 along with the P2Y1 receptor resulted in an increased EC50 for varying 



 

  16

nucleotides at the receptor, thus, suggesting that pharmacological responses by P2YRs are 

dependent upon the subtypes of NTPDases present (Alvarado-Castillo et al., 2005). 

 Another family of nucleotidases that catalyzes alkaline phosphodiesterase and 

nucleotide pyrophosphatase activity is known as ecto-nucleotide 

pyrophosphatase/phosphodiesterase (E-NPP) enzymes. Members of this family include E-

NPP 1-3 with their primary sequence predicting a membrane-bound structure with an 

intracellular amino terminus followed by a single transmembrane domain and a large 

extracellular domain. These enzymes are capable of hydrolyzing cAMP to AMP, ATP to 

AMP and PPi, and ADP to AMP and Pi (Zimmermann, 2000). Furthermore, they are capable 

of hydrolyzing the pyrophosphate linkages of nucleotide sugars. 

 Other nucleotidases of note include the alkaline phosphatases, which are located on 

the extracellular leaflet of the plasma membrane and are fixed to the cell through a GPI-

anchor. These are ecto-phosphomonoesterases with a broad substrate specificity that degrade 

nucleoside 5’-tri-, di- and –monophosphates. In addition, the ecto-5’-nucleotidase, which is 

attached to the the plasma membrane by a glycerolphosphatidylinositol (GPI) anchor, 

catalyzes the hydrolysis of nucleoside 5’-monophosphates to their respective nucleosides and 

Pi.  

 

3. Role of P2Y Receptors in Epithelial Cells 

Although P2Y receptors regulate multiple physiological processes in a variety of cells 

and tissues, one of their major roles is in the regulation of ion transport and stress response in 

epithelial cells (Insel et al., 2001; Leipziger, 2003). Epithelial cells line the interstitial 

surfaces in the lung, kidney, and intestine and create a barrier between the external 
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environment and the underlying cells and tissue. This paracellular barrier is created by a 

complex of proteins known as the tight junction, which forms an intercellular connection that 

creates a monolayer impermeable to water and ions. Tight junctions also serve to demarcate 

two distinct membrane surfaces in polarized epithelial cells: the apical surface, which lies 

above the tight junction and faces the lumen, and the basolateral surface, which lies below 

the tight junction and contacts underlying cells (Fig. 2). The differential expression of 

membrane proteins, including P2Y receptors, at one of these two surfaces allows these cells 

to regulate a broad range of homeostatic functions, including the movement of water, ions, 

and nutrients between the lumen and underlying tissue (Yeaman et al., 1999).  

G protein-coupled P2Y receptors serve an important role in autocrine and paracrine 

regulation of ion and nutrient transport in epithelial cells. The first indication that P2Y 

receptors served in this capacity was the observation that ATP and UTP, when added to the 

apical surface of airway cells, promoted a Ca2+-activated Cl- current (Mason et al., 1991). 

Multiple subsequent studies showed that all five subtypes in the P2Y1 receptor family are 

expressed in epithelial cells from various tissues (Cressman et al., 1999; Homolya et al., 

1999; Leipziger, 2003; Marcus and Scofield, 2001; Post et al., 1998; Robaye et al., 2003; 

Wong and Ko, 2002; Zambon et al., 2001; Zambon et al., 2000). Moreover, many of these 

epithelial cells express multiple subtypes of P2Y receptors (Post et al., 1996). These studies 

demonstrate that all five Gq-coupled subtypes of P2Y receptors (and potentially the Gi-

coupled subtypes) are expressed in epithelial cells and highlight the prominent role of 

extracellular nucleotides in regulation of epithelial cell function. In contrast, the P2Y13 

receptor does not appear to be expressed in epithelial cells, and although mRNAs encoding  
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Figure 2. Topology of a Polarized Epithelial Cell Monolayer. 
The key features of a polarized epithelial monolayer include two distinct membrane surfaces: 
the apical membrane which faces the lumenal space and the basolateral membrane which 
faces other cells and the underlying connective tissue. These two domains are separated by a 
protein complex known as the tight junction, which plays a critical role in establishing and 
maintaining cell polarity. One of the hallmarks of cell polarization is the delivery of proteins 
to either the apical or basolateral membrane domain. It is this segregation of proteins that 
allow epithelial cells to carry out a variety of specialized functions. 
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P2Y12 and P2Y14 receptors have been observed in tissues containing epithelial cells, direct 

demonstration of receptor expression in epithelial cells has not been reported. 

Many of the aforementioned studies suggested that P2Y receptors are localized to 

distinct membrane surfaces in polarized epithelial cells. However, with the exception of the 

canine P2Y11 receptor, in which a receptor-GFP fusion protein was shown to be targeted to 

the basolateral membrane of MDCK cells (Zambon et al., 2001), most of these studies have 

addressed the question of P2Y receptor polarization in an indirect manner or with potentially 

non-specific antibodies that lend uncertainty to the conclusions regarding polarized targeting. 

 In order to fully appreciate targeting studies and the cellular context in which they 

take place, a basic understanding of how epithelial cells establish and maintain polarity is 

required. In the next few sections of this introduction, the process of epithelial polarization 

(i.e. proteins involved, required physical and spatial cues) will be described in some detail 

and should aid the reader in their understanding of this most elegant and complex process. 

 

4. Physical, Spatial and Molecular Cues for Epithelial Cell Polarity 

 The complexity of multicellular tissues that contain more than one membrane domain 

requires numerous mechanisms to distinguish these domains as well as target and organize 

different proteins in each domain, and ultimately to keep the identities of the domains 

separate. It has taken the effort of numerous laboratories over a period of several decades to 

characterize this well-orchestrated and incredibly complex process (Nelson, 2003); thus, any 

attempt to describe this elegant process in great detail is beyond the scope of this chapter. 

Therefore, only the most important proteins and biochemical events required for establishing 

apical-basolateral polarity in epithelia will be presented. 
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The establishment and maintenance of cell polarity is a fundamental process 

controlling the behavior of all eukaryotic cells. Much has been learned about how epithelial 

cells utilize physical, spatial and molecular cues in order to generate the crucial apicobasal 

axis that is key to its specialized functions. Single epithelial cells in suspension culture 

exhibit non-polarized distributions of marker proteins that are differentially expressed at 

either the apical and basolateral membrane in monolayers. In order for these single epithelial 

cells to generate polarity, physical cues in the form of cell-cell and/or cell-substratum contact 

must occur. Once these extracellular contacts are made proteins are segregated into one of 

two distinct membrane surfaces: those in contact with cells/substratum or non-contacting 

(free) membrane surfaces facing the extracellular space. These contacting and non-contacting 

membrane surfaces (along with their unique proteins) are the respective precursors to the 

basolateral and apical membrane domains. In addition, the contact or lack thereof between 

these membrane surfaces puts into motion unique signaling cascades and mechanisms that 

begin to organize the cells into a polarized monolayer (Yeaman et al., 1999). 

Initial cell-cell and/or cell-substratum contact commences the genesis of a crucial 

protein structure known as the apical junction complex (AJC), which is a multifunctional, 

modular structure containing several protein sub-complexes. Furthermore, each protein sub-

complex comprises an integral membrane protein bound to scaffold proteins that are 

anchored in place through linkage to the actin cytoskeleton. Moreover, these protein sub-

complexes typically contain many protein-protein interaction domains that facilitates their 

binding to other sub-complexes, all of which serves to put in motion the many signaling 

cascades required to establish a polarized epithelium (Fig 3A). The importance of the AJC is  
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Figure 3. Organization of polarized epithelial cells and the apical junctional complex. 
A) Polarized epithelial cells form a monolayer in which the apical membrane is separated at 
the boundary with the basal and lateral membranes by the apical junctional complex (AJC). 
The AJC is separated into structurally and functionally different sub-domains comprising 
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membrane proteins (Crumbs, JAM (junctional adhesion molecule) occluding/claudin and 
cadherin) linked to modular protein scaffolds, which in turn bind to the actin cytoskeleton. B) 
This is a simplified scheme for how different protein complexes in the apical junctional 
complex regulate cell-cell adhesion (cadherin complex) as well as apical membrane 
(Bazooka and Crumbs complex) and lateral membrane (Lethal giant larvae complex) 
formation. See text for details. This figure is loosely based upon a review by W.J. Nelson 
(Nelson, 2003). 
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reflected by the fact that it is highly conserved from C. elegans to mammals, with mutations 

to any one of its protein constituents usually causing an aberration in the establishment of the 

apicobasal axis and/or protein targeting. Finally, polarized epithelial cells form a monolayer 

in which the apical (free) surface is separated by the AJC at the boundary with the basal and 

lateral (bound) surfaces.  

Genetic experiments carried out in both C. elegans and Drosophila models have 

identified key genes in the generation of epithelial cell polarity. For example, the genetic 

analysis of asymmetric cell division in C. elegans development led to the identification of 

seven proteins (partitioning-defective protein [PAR]1-6 and atypical protein kinase C 

[aPKC]) as key components of the molecular machinery required to generate cell polarity. 

More specifically, it was shown that Par3 (Bazooka), Par6 and aPKC proteins form a highly 

regulated sub-complex that is key to the formation of epithelial polarization (Etienne-

Manneville and Hall, 2003). This is just one of the many major sub-protein complexes that 

comprises the AJC. Other sub-complexes include cadherin/catenin (α and β) proteins that 

constitute the adhesion complex, Crumbs (Crb)/PATJ/Stardust, Scribble (Scrib)/Discs Large 

(Dlg)/Lethal Giant Larvae (Lgl) proteins, and the zona occludens (ZO-1, ZO-2 and ZO-3), 

claudins and occludin subunits, which comprise the tight junction complex. Studies have 

shown that each of the protein complexes described above function in a regulated, common 

pathway that instructs the formation of the apical and lateral membranes. 

The initial contact between cells leads to the formation of the adhesion complex, 

which acts a recruiter for several other protein complexes that instruct the formation of the 

apical and (baso-) lateral membrane domains. Upon recruitment to the adhesion complex, the 

Bazooka (Par6-aPKC-Par3) complex plays a key role in establishing polarity. The formation 
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and activation of this complex requires phosphorylation of Par6. Once activated, the Bazooka 

complex facilitates the formation of tight junctions, which are absolutely essential for the 

establishment and maintenance of epithelial cell polarity. More specifically, studies have 

demonstrated that the Par3 subunit of Bazooka interacts with the ZO-1 protein of tight 

junctions through an intermediary known as the junctional adhesion molecule (JAM) (Itoh et 

al., 2001) (Fig. 3A). These data suggest that movement of the activated Bazooka to the 

adhesion complex co-recruits components of the tight junction to the AJC by association 

with JAM. In addition to this co-recruiting activity, Bazooka seems to initiate the formation 

of the apical membrane. The Scrib/Dlg/Lgl complex, which is located below Bazooka, 

inhibits the spread of the apical membrane and maintains the lateral membrane identity by 

antagonizing both the Bazooka and Crb (Crumb/PATJ/Stardust) complexes. For its part, Crb 

is recruited apically to the Bazooka complex where it serves to maintain the identity of the 

apical membrane by antagonizing the activity the Scrib/Dlg/Lgl complex, which is to 

promote the spread of the lateral membrane (Fig 3B). In conclusion, these three complexes 

work in concert to establish and maintain the unique apical and lateral domain surfaces that 

are key to epithelial cell polarity.  

 

4.1 Role of the cytoskeleton in epithelial cell polarity 

 The organization of the cell cytoskeleton (composed of actin and microtubles) plays a 

major role in the establishment and regulation of epithelial cell polarity. The actin 

cytoskeleton localizes to the cell cortex of each membrane domain with actin re-organization 

occurring in a bundle circumscribing the cell at the AJC where it attaches to the cadherin 

subunit of this large complex. In addition, the actin-based cytoskeleton forms the core of long 
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membrane protrusions, called microvilli, at the apical membrane of epithelial cells. 

Microtubles in polarized epithelial cells, such as MDCK cells, are organized in an apical web 

and in longitudinal bundles that run along the apical-basal axis of the columnar cell with their 

minus and plus ends located at the apical and baslateral membranes, respectively (Bacallao et 

al., 1989). Motor proteins specific to either the actin or microtuble cytoskeleton have been 

implicated in vesicle transport (discussed in more detail in Section 5.5 of this chapter). 

Generally, it is thought that the actin cytoskeleton is important for the local delivery of 

vesicles to a specific membrane domain, while microtubles seem to provide long-range 

transport for vesicles along the apicobasal axis.  

 

5. Protein Sorting in Epithelial Cells 

 Once the polarity of epithelial cells is established, this critical property must be 

maintained in order to carry out many specialized functions including vectorial movement of 

ions and solutes. The cell employs an elaborate sorting process that utilizes complex 

machinery comprised of numerous molecules and utilizes several layers of regulation to 

create a high-fidelity system that ensures accurate delivery of biosynthetic cargo to either the 

apical or basolateral membrane domain. In fact, the mis-sorting of proteins in epithelia leads 

to certain pathologies that have been labeled as ‘sorting’ diseases. An example of this type of 

disease is cystic fibrosis, a condition caused by the failure to deliver the CFTR, an important 

ion channel, to the apical membrane of airway epithelia. This non-delivery of the CFTR to 

the luminal domain leads to improper hydration of lung epithelia, subsequent thickening of 

the mucous, and ultimately to chronic infections that eventually prove fatal. 
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 Newly synthesized proteins that are destined for various compartments of the cell 

emerge from the trans-golgi network (TGN) and are delivered to their intended location. 

There are three routes of delivery for newly-synthesized proteins emerging from the 

Golgi/TGN that are destined to be delivered to a specific plasma membrane domain: direct 

delivery, transcytosis, and general delivery with selective retention (Fig. 4). Examples for all 

three routes of delivery have been described in numerous epithelial cell lines including 

MDCK(II) cells. In the simplest description, direct delivery of membrane-bound proteins 

involves the insertion of these nascent proteins into vesicles bound specifically for either the 

apical or basolateral membrane domain. Once loaded with a variety of proteins bound for the 

plasma membrane (PM), these vesicles are transported along the cell’s cytoskeleton, utilizing 

a process dependent on small GTPases, protein complexes such as the exocyst and other 

chaperons. Upon reaching their intended location, the vesicles fuse with the plasma 

membrane and its cargo (membrane-bound proteins) are successfully delivered. However, 

much evidence has been presented that suggests the process may be more complex and 

convoluted. For example, vesicles bound for the basolateral membrane may first be delivered 

to the recycling endosome before reaching their final destination of the PM. In addition, 

recent work by Polishcuck et al (Polishchuk et al., 2004) suggests that the proteins destined 

for both the apical and basolateral are deposited in the same protein trafficking vesicles upon 

exiting the TGN and are later segregated at the level of the endosomes. Ongoing work by 

several laboratories will hopefully elucidate the exact path taken by proteins in order to 

establish and maintain the signature asymmetrical polarity of epithelia. 
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Figure 4. Protein Targeting in Polarized Epithelial Cells. 
Newly synthesized proteins that are destined for various compartments of the cell emerge 
from the trans-golgi network (TGN) and are delivered to their intended location. There are 
three routes of delivery for newly-synthesized proteins emerging from the Golgi/TGN that 
are destined to be delivered to a specific plasma membrane domain: direct delivery, 
transcytosis, and general delivery with selective retention. Furthermore, the tight junction 
serves as a protein fence that prevents the mixing of apical and/or basolateral bound proteins. 
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The second mechanism employed by epithelial cells to ensure proper delivery of a 

subset of proteins is transcytosis. This mechanism of delivery involves sending a protein to 

either the apical or basolateral domain via vesicle trafficking and fusion with the plasma 

membrane, followed by the repackaging of the protein into a new vesicle that is then 

delivered to its final destination at the opposite membrane domain. An example of this 

mechanism of protein delivery is utilized by the apically expressed polymeric 

immunoglobulin (pIgR) receptor (Rojas and Apodaca, 2002). The pIgR is first delivered to 

the basolateral membrane, endocytosed and passes through a series endosomes before being 

delivered to the apical membrane. This type of transport is not often observed in MDCK(II) 

epithelial cells, but is more commonplace in hepatocytes and intestinal cells (Mostov et al., 

2000). 

Delivery of a protein to both the apical and basolateral membrane domain with its 

subsequent retention at only one of the membrane surfaces is the third mechanism utilized by 

epithelial cells to ensure polarized targeting. This mechanism is utilized by the cell in the 

case of the CFTR (Swiatecka-Urban et al., 2002), which contains a PDZ-binding motif that 

acts to stabilize the protein at the PM by interacting with a scaffolding protein. Typically, 

scaffold proteins contain several PDZ domains and proteins requiring anchoring and/or 

stability interacts with these scaffolds through their PDZ-binding motifs. 

 

5.1 Protein kinase D (PKD) Regulates Protein Sorting 

Protein kinase D (PKD) is a cytosolic serine-threonine kinase that binds to the TGN 

in a diacylglycerol-dependent manner and provides important regulation in the fission of 

transport vesicles destined for the cell surface (Baron and Malhotra, 2002). Experiments 



 

  29

carried out by Malhotra and colleagues have demonstrated that the active conformations of 

different PKD isoforms regulate the formation of transport vesicles within the TGN as well 

as their delivery to the basolateral membrane of MDCK(II) epithelial cells (Yeaman et al., 

2004). In particular, they show that MDCK(II) epithelial cells endogenously express all three 

isoforms of PKD (1, 2, and 3), with each isoform promoting distinct effects on cargo 

transport from the TGN. Specifically, PKD1 and PKD2 are involved in the transport of 

basolateral, but not apical, cargo, while it is speculated that in polarized cells PKD3 regulates 

the exit of cargo from the TGN. The regulation of transport vesicle fission from the TGN by 

PKD lends fidelity to a very critical step in the biogenesis and maintenance of the basolateral 

membrane domain. 

 

5.2 Involvement of the Exocyst in Protein Targeting 

 Once transport vesicles bound for the basolateral membrane leave the TGN, they 

transition to a new set of molecular machinery that ensures correct delivery to this specific 

membrane domain. One such machinery set is the exocyst, a well-studied and characterized 

protein complex that is localized to the lateral membrane just below the tight junction. This is 

a large multi-protein complex that includes Sec3, Sec6, Sec8, Sec10, Sec15, Exo70 and 

Exo84 and is conserved from yeast to mammals, demonstrating the importance of this 

complex to cell function. In mammals, the exocyst (also known as the Sec6-Sec8 complex) is 

responsible for the delivery of a subset of proteins to the basolateral membrane in a highly 

regulated manner to maintain the fidelity of the cell’s protein-sorting system. For example, 

this protein complex was demonstrated to be important for the basolateral targeting of LDL 

receptors (Grindstaff et al., 1998). Interestingly, the recruitment of the exocyst to the 
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basolateral membrane is enhanced by the expression of AP-1B, with co-localization data 

linking these two proteins in a transport complex (Folsch et al., 2003). These data suggest 

that basolateral targeting of membrane proteins (e.g. LDL and Tfn receptors) that interact 

with AP-1B may also depend on the exocyst as well. 

Several small GTPases, including the Ral proteins, have been shown to be critical 

regulators of the exocyst. In a study published by Moskalenko et al, it was demonstrated that 

Ral proteins interact directly with the Sec5 subunit of the exocyst and promote its assembly. 

Moreover, perturbation of Ral expression caused disruption of basolateral, but not apical, 

targeting of plasma membrane proteins in polarized epithelial cells. (Moskalenko et al., 

2002). In addition, Rab8 and Rab10 have also been shown to regulate the targeting of 

proteins to the basolateral membrane. In the case of Rab8, published experiments 

demonstrated that this small GTPase regulates basolateral targeting in an AP-1B-dependent 

manner (Ang et al., 2003). It was observed that expression of a mutant Rab8 protein 

disrupted the delivery of AP-1B dependent basolateral cargo and not basolateral proteins 

containing di-leucine-targeting motifs, which are known not to interact with AP-1B. Finally, 

it was demonstrated recently that both Rab8 and Rab10 most likely work in concert to 

regulate basolateral targeting (Schuck et al., 2007). 

 

5.3 The Role of Cdc42 in Protein Sorting 

 Cdc42 is a Rho-family GTPase that regulates the transport of proteins to the 

basolateral membrane of epithelial cells (e.g. MDCK). In a landmark study by Mellman and 

colleagues, deletion of Cdc42 from MDCK cells resulted in the selective depolarization of 

basolateral proteins, while the polarity of apical proteins remained unaffected (Kroschewski 
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et al., 1999). Subsequent studies demonstrated that Cdc42 regulates the delivery of 

membrane-bound, but not soluble, proteins to the basolateral domain through modulation of 

the actin cytoskeleton by an as-yet unidentified mechanism (Cohen et al., 2001; Musch et al., 

2001). Interestingly, the expression of a dominant-negative Cdc42 protein in MDCK cells 

caused disruption in targeting of basolateral proteins that depend on AP-1B for their delivery, 

thus implicating Cdc42 as one of many modulators of the exocyst (Ang et al., 2003). 

 

5.4 SNAP/Syntaxin role in targeting 

 A set of machinery utilized by virtually all cells to ensure vesicles dock and fuse with 

the correct membrane domain is the conserved SNARE (soluble N-ethylmaleimide-sensitive 

factor [NSF] attachment protein [SNAP] receptor) machinery. The SNARE hypothesis 

describes a universal model for the fusion of vesicles with intracellular membranes, such as 

the plasma membrane, and has been the focus of numerous laboratories. This fusion 

machinery consists of integral membrane proteins on the vesicle (v-SNAREs) and on the 

target membrane (t-SNAREs) that interact during the process of vesicle docking. In 

mammalian cells, t-SNAREs include members of the syntaxin and SNAP-25 families while 

v-SNAREs include members of the VAMP/synaptobrevin family. Moreover, there are 

several soluble proteins such as NSF and α-SNAP that interact with the v- and t-SNAREs, 

which are thought to be critical for the overall membrane traffic process. The SNARE 

hypothesis originally postulated that this machinery plays a major role in the specificity of 

membrane fusion by correctly pairing members of the large v-SNARE family with 

corresponding members of the large t-SNARE family. Indeed, it has been shown that 

different isoforms of v-SNAREs and t-SNAREs interact in different membrane traffic 
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pathways in order to achieve distinct subcellular localizations of the vesicular protein cargo 

(Low et al., 1998a). 

 Recognizing that subcellular localization of SNARE isoforms could provide 

additional fidelity to the protein sorting machinery in MDCK(II) epithelial cells, Mostov and 

co-workers investigated the role of the SNARE machinery in polarized membrane trafficking 

(Low et al., 1996). Their initial studies in MDCK(II) cells demonstrated that members of the 

t-SNARE family, syntaxins 2, 3 and 4, were endogenously expressed in this cell line with a 

polarized distribution for two of them. Syntaxins 3 and 4 were respectively localized to the 

apical and basolateral membrane domains, while syntaxin 2 was present at both membrane 

domains. Follow up studies concluded that TGN-to-apical transport does indeed utilize the 

apical-specific syntaxin 3 as well as α-SNAP and SNAP-23, while TGN-to-basolateral 

transport likely utilizes the basolateral-specific syntaxin 4 along with synaptobrevin/VAMP-

2, NSF, α-SNAP and SNAP-23 (Low et al., 1998b). The authors speculated that in addition 

to MDCK(II) epithelial cells, all other epithelial cell lines utilize specific members of the 

SNARE machinery for membrane fusion, although to what degree is unknown.  

 

5.5 Role of Cytoskeletal Motors in Targeting 

 The internal cytoskeleton of the cell provides an important structure that is absolutely 

required in establishing and maintaining epithelial cell polarity. This critical structure is 

composed of microtubules organized into bundles aligned along the apicobasal axis with the 

plus end at the basal pole and the minus end at the apical pole. In addition, actin 

microfilaments form the core of long membrane protrusions at the apical membrane, known 

as microvilli, as well as forming a ring around the apex of the lateral membrane (Yeaman et 
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al., 1999). Motor proteins specific for both microtubles and actin microfilaments have been 

characterized and shown to be involved in the transport of proteins to the plasma membrane. 

More specifically, these motors interact with transport vesicles in an ATP-dependent manner, 

allowing them to ferry proteins along the cytoskeleton to a specific plasma membrane 

domain.  

Transport of vesicles along microtubules is mediated by dyneins for movement 

toward the minus end of the microtubules, while kinesins mediate movement toward the plus 

end of microtubules. A very large and diverse family myosin motor proteins mediate 

transport along the actin cytoskeleton (Berg et al., 2001). Both families of motor proteins 

have been implicated as mediators of polarized protein targeting. In the case of microtubule 

motor proteins, dynein was shown to interact with the C-tail of the rhodopsin GPCR in order 

to ferry the receptor along microtubules to the apical membrane of MDCK epithelial cells 

(Tai et al., 1999). The perturbation of the delivery of numerous proteins in polarized 

epithelial cells by colchicine treatment, which disrupts microtubules, underscores the role of 

microtubules and their cognate motor proteins in the delivery of transport vesicles to specific 

membrane domains. For example, colchicine treatment disrupts apical targeting of aquaporin 

protein 2 (AQP2) (Brown, 2003; Sabolic et al., 1995). Myosin-based delivery of membrane 

proteins has also been demonstrated to play a major role in protein targeting, with class V 

myosins mediating transport in epithelial cells (Rodriguez and Cheney, 2000). For example, 

myosin-Vc was shown to be involved in the membrane trafficking of the transferrin receptor. 

Finally, Rab proteins of the small GTPase family have been recognized as important 

modulators of motor-mediated protein delivery, with over 60 different mammalian members 
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each regulating a distinct intracellular transport step of this important process (Bock et al., 

2001; Jordens et al., 2005). 

5.6 Targeting Signals in Polarized Proteins 

Proteins with a polarized distribution contain a targeting signal that is read by the 

sorting machinery of the cell to ensure proper delivery to either the apical or basolateral 

membrane domain. Targeting signals are usually part of a protein’s primary sequence and 

vary in length from only a few amino acids to more than 20 residues. In addition to short 

motifs, post-translational modifications including N- and O-linked glycosylation and GPI 

anchors have been shown to act as apical targeting signals, while secondary protein structure 

such as the β-turn can act as both an apical (Sun et al., 2003) and basolateral targeting signal 

(Reich et al., 1996). Apical and basolateral targeting signals are discussed in more detail 

below. 

 

6. Apical Targeting Signals 

In contrast to BL targeting signals (see below), identification of sorting signals for 

apically bound proteins has proven to be more elusive. One reason for the difficulty in 

identifying apical targeting signals may be that these signals can be located in any of the 

different domains of membrane proteins. For example, protein-based apical targeting 

sequences are located in extracellular domains, as is the case for P2Y2 (Qi et al., 2005) and 

P2Y6 receptors (A.-D. Qi et al., unpublished results), transmembrane (TM) domains, e.g. the 

4th transmembrane domain of the gastric H+-ATPase (Dunbar et al., 2000), and intracellular 

domains, e.g. the Bile Acid Transporter and Vitamin C transporter (Subramanian et al., 2004; 

Sun et al., 2001). Proteins containing a covalently linked GPI modification are sorted to the 
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apical membrane of many (but not all) polarized epithelial cell types (Brown et al., 1989; 

Lisanti et al., 1989). This lipid modification is thought to associate with membrane structures 

called lipid rafts, which are composed of clustered glycosphingolipids, cholesterol, and 

certain other proteins (Mostov et al., 2000). In addition, both N- and O-linked 

oligosaccharides have been suggested to act as apical sorting signals (Scheiffele et al., 1995; 

Yeaman et al., 1997), but there are many exceptions and thus the role of glycosylation as a 

sorting signal is unclear. Finally, a role of C-terminal PDZ-binding domains in localization of 

proteins to the apical surface is emerging. For example, the PDZ-binding domain of the 

CFTR is critical for its apical localization and its interaction with the PDZ domain-containing 

protein, EBP50 (Moyer et al., 1999; Moyer et al., 2000). 

 

6.1 GPI Anchor and N- and O-linked glycosylation 

 Post-translational modifications of proteins play a role in their targeting to the apical 

membrane domain. For example, the addition of a GPI anchor to nascent proteins has been 

shown to promote their insertion into apically-bound lipid rafts in MDCK(II) epithelial cells 

(detailed in the next section) (Polishchuk et al., 2004), while the role of other modifications 

such as N or O-linked glycosylation is less clear. The role of carbohydrate moieties, such as 

glycosylation, as a targeting determinant was first identified in experiments that showed 

apically secreted proteins lacking their endogenous N-glycans were released in a non-

polarized fashion in MDCK(II) cells. In addition, a role for N-glycans in apical targeting of 

membrane-bound proteins was clearly demonstrated for three different proteins in the context 

of polarized MDCK(II) epithelial cells (Gut et al., 1998). This evidence, as well as others, 

helped to establish a N-glycan sorting hypothesis that described an apical-targeting pathway 



 

  36

based upon an interaction between N-or O-glycans and specific TGN lectin-sorting proteins 

that promote incorporation of glycosylated proteins into vesicles bound for the apical 

membrane. However, evidence against the direct role of N-glycans as an apical targeting 

determinant also began to emerge, including studies showing that removal of N-linked 

glycosylation had no effect on polarized sorting (Marzolo et al., 1997; Yeaman et al., 1997). 

In light of the conflicting evidence regarding N-glycans as an apical sorting 

determinant, an alternative model has been put forth in which this moiety has been assigned a 

more indirect role in apical targeting (Rodriguez-Boulan and Gonzalez, 1999). More 

specifically, the authors suggest that N-glycans facilitate apical targeting by stabilizing the 

targeting signal, thus allowing the modified protein to exit the TGN and be inserted into 

appropriate vesicles bound for the apical membrane. Evidence consistent with this hypothesis 

include the demonstration that N-glycosylation increases resistance to thermal denaturation 

and/or stabilizes a folded conformation (Wang et al., 1996). However, it should be noted that 

to date no unequivocal demonstration of an apical pathway based upon lectins interacting 

with N- or O-glycans has been reported. 

 

6.2 Lipid rafts and apical targeting 

 The apical membrane mediates many of the specialized functions that are key to 

epithelial cells. Furthermore, this membrane faces a dynamic and hostile environment, which 

requires it to be quite durable. This durability is a function of the composition of the lipid 

membrane, which is a unique mixture of different lipids enriched in sphingolipids and 

cholesterol (Simons and van Meer, 1988). Because of the presence of these lipids, the apical 

membrane has a strong propensity to form tightly packed membrane microdomains called 
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lipid rafts (Schuck and Simons, 2004; Simons and Ikonen, 1997). The lipid raft hypothesis 

posits that rafts exist in the plasma membrane of most cells as small, highly dynamic, liquid-

ordered assemblies that are embedded in a surrounding liquid-disordered membrane (Simons 

and Vaz, 2004). Moreover, it was discovered that these rafts are resistant to solubilization 

with mild detergents such as Triton X-100 and therefore are sometimes referred to as 

detergent-resistant membranes (DRMs) or detergent-insoluble glycosphingolipid-enriched 

membrane domains (DIGs). Once formed, lipid rafts serve as islands that bring together a 

variety of proteins that are important for cellular functions such as signal transduction 

(Simons and Toomre, 2000). Moreover, these rafts are very dynamic structures that are 

constantly being turned over and are regulated by a variety of proteins. 

 The apical membrane of epithelial cells, particularly in the kidney and intestine, has a 

large capacity for secretion and absorption and therefore requires tight control over the 

insertion of proteins in order to maintain these critical processes. For example, insertion of 

the wrong transport protein could potentially lead to the aberration of a steep ion gradient 

across the epithelial monolayer that is required for proper kidney function. This requirement 

for a high-fidelity sorting system relies on a variety of apical-targeting determinants (i.e. 

linear signals, glycosylation) including association with lipid rafts. The enrichment of 

sphingolipids and cholesterol at the apical membrane of epithelia make it an ideal place for 

the formation of lipid rafts and it has been hypothesized that rafts preferentially traffic to this 

particular membrane after intracellular assembly (Simons and Ikonen, 1997). More 

specifically, it is thought that the entire raft, with all of the associated proteins, are assembled 

at the level of TGN and delivered ‘wholesale’ to the apical membrane. The insertion of a 

subset of proteins into apically-bound lipid rafts has been shown to be regulated by a post-
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translation modification known as a glycosylphophatidylinositol (GPI) anchor. For example, 

the addition of this anchor to the placental alkaline phosphatase (PLAP) acts as an apical 

determinant by allowing it to associate with lipid rafts (Brown and Rose, 1992). More 

recently, Polishchuck and colleagues applied a combination of live-cell imaging and 

fluorescent labeling technologies to provide further evidence that the GPI-proteins are 

delivered to the apical membrane of MDCK(II) cells by association with lipid rafts 

(Polishchuk et al., 2004).  

 

6.3 Linear Sequences direct Apical Targeting 

One of the first insights into the nature of apical targeting came from studies that 

demonstrated certain post-translational modifications, such as GPI moieties, acted as signals 

that ensured delivery of proteins to the apical membrane (Fiedler et al., 1993; Le Gall et al., 

1995). However, subsequent published studies demonstrated that distinct, linear sequences 

located in the extracellular, transmembrane and intracellular domains of proteins are 

necessary and sufficient to confer apical targeting (Cheng et al., 2002; Chuang and Sung, 

1998; Hodson et al., 2006; Qi et al., 2005; Takeda et al., 2003). Moreover, these targeting 

signals vary in length from a short peptide of a few amino acids (P2Y2 receptor) to an almost 

entire C-terminus of 39 amino acids (rhodopsin receptor). Upon inspection of this collection 

of apical targeting signals, one notices it is quite diverse with seemingly little in common. In 

fact, some of these published apical targeting signals were analyzed for shared motifs in 

order to establish an apical targeting motif (Cheng et al., 2002), but did not yield any results. 

Unfortunately, the elucidation of linear apical targeting signals is several years behind the 

basolateral counterpart and requires further investigation to advance this particular subfield 
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of protein targeting research. A recent spate of apical targeting studies is encouraging and 

should begin to elucidate common apical targeting motifs. 

 

7. Basolateral Targeting Signals  

Sorting signals for basolaterally targeted proteins are usually short, cytoplasmic 

sequences that can be grouped into one of three classes. The first class is characterized by a 

short motif containing an essential tyrosine residue either as a part of an NPXY motif (where 

X is any amino acid) or a YXXΦ motif (where Φ is a bulky hydrophobic residue), while the 

second class can be defined by two amino acids, i.e. a di-hydrophobic (typically di-leucine) 

motif. The third class is composed of a heterologous mixture of motifs that vary in length and 

demonstrates no similarities to well-characterized basolateral-targeting signals. 

Originally, the targeting of molecules to the apical membrane was thought to occur by 

an active process comprised of protein-based signals that ensured entry into the apical sorting 

machinery, while proteins lacking such signals were by default delivered to the basolateral 

membrane (Mostov et al., 1986). However, descriptions of short amino-acid motifs that were 

necessary and sufficient to confer basolateral targeting onto unsorted proteins (Aroeti et al., 

1993; Hermosilla and Schulein, 2001; Mostov et al., 2000) demonstrated that targeting 

machinery for the basolateral membrane exists as well. Basolateral targeting signals are 

typically short amino-acid motifs located within the cytoplasmic domain of the targeted 

protein. The best-characterized signal is the four amino acid tyrosine-based motif that not 

only is sufficient to direct targeting to the basolateral membrane, but has been shown to 

interact with adaptor proteins (AP) to mediate endocytosis (Mostov et al., 1999). The duality 

of this signal suggests an alternative pathway for protein trafficking exists wherein proteins 
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move from the TGN to a common/sorting endosome first and then are delivered to a specific 

membrane compartment. Another well-characterized sorting signal is the di-leucine motif, 

which has been shown to deliver a number of proteins to the basolateral membrane 

(Rodriguez-Boulan et al., 2005). Finally, secondary protein structure has been proposed to be 

important in the function of basolateral targeting signals. For example, the NPXY motif 

found in the pIgG receptor protein has been shown to adopt a beta-turn structure that is 

thought to be critical for its polarized targeting (Aroeti et al., 1993).  

 

7.1 AP proteins (1-4) involvement with BL sorting 

 Typically, linear sorting signals are recognized by cytosolic protein complexes that 

regulate delivery to a specific membrane domain. The adaptor protein (AP) family is one 

such complex. These are hetero-tetrameric complexes composed of two large subunits 

(γ, α, δ or ε and β1-β4), one medium subunit (µ1-µ4) and one small subunit (σ1-σ4). There 

are four major species of AP complexes: AP-1 (γ, β1, µ1, σ1), AP-2 (γ, β2, µ2, σ2), AP-3 (δ, 

β3, µ3, σ3), and AP-4 (ε, β4, µ4, σ4). Furthermore, there are two sub-species of the AP1 

protein, AP-1A (γ, β1, µ1A, σ1) and AP-1B (γ, β1, µ1B, σ1), with the former being 

ubiquitiously expressed and the later being expressed only in a subset of epithelial cells 

(MDCK, Caco-2, HT-29, Hec-1-A and RL-95-2). AP-1, AP-3 and AP-4 facilitate sorting at 

the TGN or endosomes, while AP-2 acts at the plasma membrane to facilitate internalization 

(Folsch, 2005). Whereas the large subunits (γ, α, δ, ε and β1-β4) interact with a variety of 

accessory proteins, the medium subunits (µ1-µ4) interact directly with tyrosine-based 

targeting signals and therefore are responsible for cargo recognition. 
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 In most cases, tyrosine-based basolateral targeting signals are recognized by the 

epithelial-specific variant of AP-1, AP-1B, which to date is the best-characterized protein 

complex for basolateral targeting. The role of AP-1B in targeting proteins to the basolateral 

membrane of epithelial cells was elucidated by Mellman and colleagues in their studies with 

LLC-PK1 epithelial cells, which are deficient for the µ1B subunit (Folsch et al., 1999). In 

these studies, LDL and transferrin receptors, which are normally targeted to the basolateral 

membrane of MDCK(II) cells, are mis-sorted to the apical membrane of LLC-PK1 cells. 

Furthermore, exogenous expression of µ1B in LLC-PK1 epithelia ‘rescued’ basolateral 

targeting of both receptor proteins, demonstrating that the tyrosine-based signals contained 

within these proteins interact with µ1B in order to achieve a polarized distribution. 

More recently, AP-4 has been implicated in the basolateral targeting of several 

membrane proteins in MDCK(II) epithelial cells (Simmen et al., 2002). Hunziker and co-

workers first established that all four AP species (1-4) are endogenously expressed in 

MDCK(II) epithelia and then specifically tested whether AP-4 binds different types of 

cytosolic signals known to mediate basolateral targeting. They demonstrated that AP-4 binds 

the di-hydrophobic signal in the furin protein, the tyrosine-based motif in the LDLR protein 

(but not the tyrosine-based motif in the transferrin receptor), and the unconventional signal in 

the MPR 46 protein. Furthermore, they show significant disruption in basolateral sorting of 

LDLR and MPR 46 proteins in µ4-depleted MDCK(II) cells. Taken together, these results 

strongly suggest that the medium-sized µ4 subunit of the AP-4 complex interacts with a 

subset of proteins through their cytosolic signals in order to promote basolateral targeting, 

which is similar to how the AP-1B complex functions as well. Since both adaptor complexes 

function in a similar manner, it is tempting to speculate that AP-4 is also regulated by small 
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GTPases and probably interacts with the same cell machinery such as the exocyst. Moreover, 

these two adaptor protein complexes may act in concert to generate and maintain polarity in 

epithelial cells. 

 

8. Sorting signals in G protein-coupled receptors 

Until recently, distinct sorting signals in G protein-coupled receptors (GPCRs) had 

not been identified. Much of the early work on identifying trafficking itineraries and 

targeting signals in GPCRs was carried out by Limbird and coworkers with α2-adrenergic 

receptors (Keefer and Limbird, 1993; Wozniak et al., 1997; Wozniak and Limbird, 1996; 

Wozniak and Limbird, 1998). These studies showed that three subtypes of α2-adrenergic 

receptors are delivered to the basolateral membrane by distinct targeting mechanisms that 

utilize multiple, non-contiguous targeting signals. In contrast to these results, more recent 

studies have identified linear targeting sequences in three different GPCRs. The cytoplasmic 

tail of rhodopsin was shown to act as a novel apical sorting signal in polarized MDCK cells 

(Chuang and Sung, 1998), while a 14 amino acid basolateral targeting sequence was 

identified in the C-terminal tail of the follicle stimulating (FSH) receptor (Beau et al., 1998). 

The 39 amino acid targeting signal for rhodopsin was shown to interact with dynein as the 

mechanism for apical targeting (Tai et al., 1999), while Tyr-684 and Leu-689 were found to 

be most important in determining basolateral targeting for the FSH receptor. Finally, a 21-

amino acid sequence in the 3rd intracellular loop of the M3-muscarinic receptor was shown to 

confer basolateral targeting (Nadler et al., 2001).  
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9. Hierarchy of Sorting Signals 

 The discovery of targeting signals and the related cellular machinery as the 

mechanism driving polarized delivery of proteins in epithelial cells did begin in earnest until 

the early 1980’s. It was during this early period that several ‘laws’ of targeting were 

established based upon a few scientific studies, only to be discounted by contradictory 

follow-up studies. One such early ‘law’ was the notion that basolateral targeting was the 

default pathway for proteins lacking a targeting signal, while apically bound proteins were 

actively delivered via a sorting signal. This early law was debunked by studies demonstrating 

the existence of short peptide sequences that were necessary and sufficient to drive 

basolateral targeting (Mostov et al., 1986). More recently, it was suggested that the default 

pathway is the delivery of cell-surface proteins to both the apical and basolateral membrane 

domains, while polarized delivery is an active process requiring specific targeting signals and 

an elaborate set of machinery (Muth and Caplan, 2003). 

 During the course of scientific studies designed to elucidate targeting signals it was 

discovered that the removal of a primary sorting determinant resulted in the exposure or 

activation of a previously cryptic/secondary sorting determinant. For example, removal of the 

basolateral targeting signal from the follicle-stimulating hormone (FSH) receptor revealed a 

secondary apical targeting signal (Beau et al., 1998). Such results have led to the idea that 

there exists a hierarchy of sorting signals within polarized proteins for reasons unknown. 

Moreover, this led to another dogmatic rule that basolateral targeting signals always override 

apical targeting signals when located in the same protein. However, evidence to the contrary 

challenges this idea, including results reported in Chapter V of this dissertation. In the end, 
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the mechanisms that determine the hierarchy of multiple sorting signals in a single protein 

remain unclear. 

 

10. Stability of proteins upon successful delivery 

 Actin-based scaffolding systems reside at both the apical and basolateral membrane 

domains of epithelial cells and provide an essential ‘anchoring’ platform for newly delivered 

membrane-bound proteins that lends them stability. Membrane-bound proteins interact with 

scaffolding complexes through a multitude of interacting proteins and domains that provides 

stability and co-localization with other proteins necessary for proper signal transduction. For 

example, the Na+-K+-ATPase binds both ankyrin and fodrin, which in turn interact with 

scaffolding complex located at the basolateral membrane of MDCK epithelial cells (Nelson 

and Hammerton, 1989). In another example, syntrophin interacts with utrophin at the 

basolateral membrane of epithelial cells in order to recruit and assemble a complex of 

proteins required at this membrane domain (Kachinsky et al., 1999). 

 One of the most common and well-characterized modular protein-interaction domains 

is the PDZ domain. First identified and described in the early 1990’s, the name PDZ is 

derived from the proteins in which these domains were identified: PSD-95, DLG and ZO-1 

(Cho et al., 1992; Kim et al., 1995; Woods and Bryant, 1993). Well over 75 proteins have 

been identified as ‘PDZ-domain’ proteins (Fanning and Anderson, 1999), which provide an 

essential organizational role for protein complexes at the plasma membrane. PDZ-domains 

form a binding pocket for proteins containing PDZ-binding motifs, which are usually quite 

short and found at the extreme C-terminus of a protein. Moreover, PDZ proteins often have 

multiple PDZ domains, allowing these proteins to have multiple binding partners, and 



 

  45

contain additional domains that allow them to interact with the actin cytoskeleton. Utilizing 

these multiple binding domains, PDZ-proteins serve as an organizational bridge between 

cell-surface proteins and the cytoskeleton. This bridging lends cell-surface proteins a great 

deal of stability and increased retention at both the apical and basolateral membrane. In 

addition to establishing and maintaining stability, PDZ-proteins serve to organize specific 

sets of proteins at the plasma membrane that in turn carry out important physiological 

functions. For example, the Na exchanger regulatory factor (NHERF) family has been shown 

to coordinate the formation of multiprotein complexes that modulate trafficking, transport 

and signaling in polarized epithelial cells (Thelin et al., 2005). 

 

11. Rationale for Dissertation Research 

Prior to the commencement of my dissertation research, numerous investigators had 

examined the role of P2Y receptors in regulation of epithelial cell physiology. These studies 

revealed that P2Y receptors show prominent and ubiquitous expression in many epithelial-

containing tissues and mediate multiple physiological functions in epithelia, including the 

regulation of ion channels and the response to stress (Insel et al., 2001; Leipziger, 2003). In 

addition, results from many of these investigators suggested that several of the P2Y receptor 

responses were polarized (i.e. observed at either the apical or basolateral membrane, but not 

both). However, with the exception of a single study by Insel and colleagues (Zambon et al., 

2001), none of these published reports demonstrated polarized expression patterns directly 

using methods such as immunofluorescence. 

The possibility that multiple P2Y receptors were expressed in polarized manner in 

epithelial cells motivated us to examine the distribution of all the P2Y receptors in epithelial 
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cells in a direct manner. Indeed, our experiments revealed an interesting expression pattern 

for the P2Y receptor family in that seven of the eight members were targeted in a polarized 

manner (described in Chapter II). We hypothesized that P2Y receptors contained sorting 

signals that mediated targeting of these proteins to either the apical or basolateral membrane. 

In order to test this hypothesis, we constructed a series of chimeric P2Y receptors to localize 

potential targeting signals, and examined their localization in MDCK(II) epithelial cells by 

confocal microscopy. These experiments allowed us to identify and locate multiple targeting 

signals within the P2Y receptor family (described in Chapter III). Once the general location 

of all the P2Y receptor targeting signals had been elucidated, we delimited and characterized 

two of these signals: a basolateral targeting signal located in the P2Y1 receptor and an apical 

targeting signal located in the P2Y4 receptor (described in Chapters IV and V respectively).  

 



 

  

 

 

 

CHAPTER II: Polarized expression of human P2Y receptors in epithelial cells from 

kidney, lung, and colon 

1. Introduction 

Extracellular nucleotides such as ATP and UTP are released from essentially all cells 

and interact with cell surface P2 receptors to produce a broad range of physiological 

responses. P2 receptors are divided into two major classes: P2X receptors, which are non-

selective cation channels, and P2Y receptors, which are members of the G protein-coupled 

receptor (GPCR) superfamily (Harden, 1998; Ralevic and Burnstock, 1998). Molecular 

cloning and characterization studies have identified eight functional human G protein-

coupled P2Y receptor subtypes (P2Y1, P2Y2, P2Y4, P2Y6, P2Y11, P2Y12, P2Y13, and P2Y14), 

which fall into two subfamilies based on their signaling properties and sequence identities. 

The P2Y1 receptor family, comprising P2Y1, P2Y2, P2Y4, P2Y6, and P2Y11 receptors, 

activates heterotrimeric G proteins of the Gq family, thereby activating phospholipase C and 

promoting inositol lipid-dependent signaling (Harden, 1998; Ralevic and Burnstock, 1998). 

In addition to activating Gq, the P2Y11 receptor also activates Gs and therefore stimulates 

adenylyl cyclase activity (Communi et al., 1997; Qi et al., 2001a; Torres et al., 2002). The 

P2Y12 receptor subfamily, comprising P2Y12, P2Y13, and P2Y14 receptors, activates Gi/o 

thereby promoting inhibition of adenylyl cyclase activity (Chambers et al., 2000; Communi 

et al., 2001; Hollopeter et al., 2001; Zhang et al., 2002). 
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Although P2Y receptors regulate multiple physiological processes in a variety of cells 

and tissues, one of their major roles is in the regulation of ion transport and stress responses 

in epithelial cells (Insel et al., 2001; Leipziger, 2003).  Epithelial cells line the interstitial 

surfaces in the lung, kidney, and intestine and create a barrier between the external 

environment and the underlying cells and tissue. This paracellular barrier is created by a 

complex of proteins known as the tight junction, which forms an intercellular connection that 

creates a monolayer impermeable to water and ions. Tight junctions also serve to demarcate 

two distinct membrane surfaces in polarized epithelial cells: the apical surface, which lies 

above the tight junction and faces the lumen, and the basolateral surface, which lies below 

the tight junction and contacts underlying cells. The differential expression of membrane 

proteins, including P2Y receptors, at one of these two surfaces allows these cells to regulate a 

broad range of homeostatic functions, including the movement of water, ions, and nutrients 

between the lumen and underlying tissue (Yeaman et al., 1999).  

G protein-coupled P2Y receptors serve an important role in autocrine and paracrine 

regulation of ion and nutrient transport in epithelial cells. The first indication that P2Y 

receptors served in this capacity was the observation that ATP and UTP, when added to the 

apical surface of airway cells, promoted a Ca2+-activated Cl- current (Mason et al., 1991). 

Multiple subsequent studies showed that all five of the subtypes in the P2Y1 receptor family 

are expressed in epithelial cells from various tissues (Cressman et al., 1999; Homolya et al., 

1999; Leipziger, 2003; Marcus and Scofield, 2001; Post et al., 1998; Robaye et al., 2003; 

Wong and Ko, 2002; Zambon et al., 2001; Zambon et al., 2000). Moreover, many of these 

epithelial cells express multiple subtypes of P2Y receptors (Post et al., 1996). Although 

mRNAs encoding P2Y12 and P2Y14 receptors have been observed in tissues containing 
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epithelial cells, direct demonstration of receptor expression in epithelial cells has not been 

reported. These studies demonstrate that all five Gq-coupled subtypes of P2Y receptors (and 

potentially the Gi-coupled subtypes) are expressed in epithelial cells and highlight the 

prominent role of extracellular nucleotides in regulation of epithelial cell function. 

Many of the aforementioned studies suggested that P2Y receptors are localized to 

distinct membrane surfaces in polarized epithelial cells. However, with the exception of the 

canine P2Y11 receptor, in which a receptor-GFP fusion protein was shown to be targeted to 

the basolateral membrane of MDCK cells (Zambon et al., 2001), most of these studies have 

addressed the question of P2Y receptor polarization in an indirect manner or with potentially 

non-specific antibodies that lend uncertainty to the conclusions regarding polarized targeting. 

To avoid these mitigating factors and to define the targeting properties of the entire family of 

P2Y receptors in epithelial cells, we determined the steady-state localization of P2Y 

receptors by visualizing HA-tagged receptors expressed in MDCK(II) cells by confocal 

microscopy. These studies were further supplemented by quantification of receptor 

distribution by biotinylation and measurement of agonist-induced changes in short-circuit 

current. Remarkably, our data indicate that all but one of the eight P2Y receptors are 

localized exclusively to either the apical or basolateral membrane surfaces of MDCK(II) 

cells. Moreover, a nearly identical targeting profile of the Gq-coupled P2Y receptor family 

was obtained in lung 16HBE14o- and colonic CaCo-2 cells, suggesting that targeting of P2Y 

receptors is not a function of the cell line in which they are expressed. This is the first study 

to define the targeting properties of the entire family of P2Y receptors in polarized epithelial 

cells. 
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2. Materials and methods 

2.1 Construction of HA-tagged receptor constructs 

 Human P2Y receptor cDNA constructs were amplified by PCR with Pfu polymerase 

(Stratagene, La Jolla, CA) from Hela cell genomic DNA. The upstream primers were 

complementary to codons 2-8 of each individual P2Y receptor, while the downstream 

primers were reverse complementary to the last 6 codons and the stop codon of each coding 

sequence. To aid in subcloning, the 5’ primers contained an MluI site immediately preceding 

the second codon of the individual receptor, while the 3’ primers contained an XhoI site 

following the stop codon. The 5’ primer for the P2Y11 receptor, which is the only P2Y 

receptor whose coding sequence is interrupted by an intron, comprised an MluI site, codons 

2-4 from the first exon and codons 5-11 of the second exon (Communi et al., 1997). The 

amplified cDNAs were digested with MluI and XhoI and ligated in-frame into a similarly 

digested pLXSN retroviral expression vector containing a Kozak initiation sequence 

(ACCATGG), initiating methionine residue, and the hemagglutinin (HA) epitope tag 

(YPYDVPDYA). 

 

2.2 Cell culture and expression of receptor constructs 

Madin-Darby canine kidney type II cells (MDCK(II); ATCC, Rockville, Maryland) 

were subcultured in DMEM/F12 (1:1) medium (Invitrogen, Carlsbad, CA) supplemented 

with 5% fetal bovine serum (FBS; Hyclone, Gaithersburg, MD) and 1X pen/strep in a 

humidified incubator at 37oC with 5% CO2 and 95% air. 16HBE14o- cells, an immortalized 

human bronchial epithelial cell line, were grown (Cozens et al., 1994) on collagen-coated 
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plates in MEM medium (Invitrogen) supplemented with 10% FBS, 1% sodium pyruvate, 1% 

non-essential amino acids and 1X penicillin/streptomycin. CaCo-2 cells (Fogh et al., 1977), 

an immortalized human colonic epithelial cell line, were grown in the same medium as 

16HBE14o- cells, except that the FBS concentration was increased to 20%. 

 Recombinant retroviral particles were produced by calcium phosphate-mediated 

transfection of PA317 cells with pLXSN vectors containing HA-tagged hP2Y receptor 

constructs as previously described (Comstock et al., 1997) and used to infect the cell lines 

listed above. Geneticin-resistant cells were selected after 7-10 days with 1 mg/ml G418 and 

maintained in medium containing 0.4 mg/ml G418. 

 

2.3 Confocal microscopy 

MDCK(II), 16HBE14o- and CaCo-2 cells stably expressing HA-tagged hP2Y 

receptor constructs were seeded at a density of 6 x 105 cells/well in 12 mm polyester 

Transwell inserts (0.4 mM; Corning Life Sciences, Acton, MA). All cells were allowed to 

polarize for 7 days with daily medium changes. Cell monolayers were washed with cold 

PBS++ (phosphate-buffered saline containing 10 mM Ca2+ and Mg2+), fixed and 

permeabilized with –20o C methanol for 4 min, and blocked with PBS containing 1% non-fat 

dry milk for 30 min at room temperature. Receptors were labeled with anti-HA mouse 

monoclonal antibody HA.11 (Covance, Berkeley, CA) and tight junctions were labeled with 

a rabbit polyclonal antibody to ZO-1 (Zymed, South San Francisco, CA). Cells were washed 

3 times with cold PBS++ and labeled with goat anti-mouse A-488 (for P2Y receptors) and 

goat anti-rabbit A-594 (for ZO-1) secondary antibodies (Molecular Probes, Eugene, OR). 

The fixed and stained monolayers were washed several times with cold PBS++, excised from 
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the Transwell inserts, and mounted on glass microscope slides with Slowfade mounting 

media (Molecular Probes). 

Confocal microscopy was performed on an Olympus Fluoview 300 laser scanning 

confocal imaging system (Melville, NY) configured with an IX70 fluorescence microscope 

fitted with a PlanApo 60X oil objective. Multiple XY (horizontal to the monolayer) and XZ 

(vertical to the monolayer) scans were acquired for each monolayer.  

 

2.4 Quantification of cell-surface HA-tagged P2Y receptors.  

MDCK(II) cells stably expressing HA-tagged hP2Y receptors were seeded in 

duplicate in 24 mm Transwell inserts and allowed to polarize as described above. 

Monolayers were placed on ice and kept at 4oC for the duration of the experiment. Cells were 

washed with cold PBS++ three times for five min each, and then labeled with 1 mg/ml Sulfo-

NHS-SS-Biotin (Pierce, Rockford, IL) in cold PBS++ buffer, pH 8, for 40 min. The biotin 

solution was removed and the reaction quenched with 100 mM glycine in PBS++ for 10 min. 

The cells were washed and then incubated for 5 min with 0.7 ml Tris-Triton buffer (50 mM 

Tris•HCl, pH 7.4, 100 mM NaCl, 5 mM EDTA, 1% Triton X-100) containing a protease 

inhibitor cocktail. The cells were passed 7-10 times through a 25-gauge needle and then 

incubated for 1.5 h with rocking. The cell lysate was centrifuged at 20,000 x g for 30 min and 

the supernatant incubated with 50 ml of immobilized Neutravidin (Pierce) for 1.5 h. The 

resin was washed twice with Tris-Triton buffer, and biotin-labeled proteins were eluted from 

the Neutravidin resin by incubating with 35 ml of SDS-PAGE sample buffer containing 100 

mM dithiothreitol for 10 min at 37oC. The dithiothreitol cleaves the disulfide within the 

biotin spacer and releases the proteins from Neutravidin under mild conditions. 
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Eluted proteins were separated by SDS-PAGE on a 10% gel and transferred overnight 

to nitrocellulose membranes. Membranes were blotted via a standard western blotting 

protocol with the anti-HA mAb conjugated to HRP (3F10; Roche Biochemicals, 

Indianapolis, IN). The blots were developed with SuperSignal West Pico chemiluminescent 

substrate (Pierce) and the resulting bands were imaged on a BioRad Flour-S system and 

quantitated with BioRad QuantityOne software (BioRad, Hercules, CA). 

 

2.5 Radioligand Binding Assay 

A binding assay for membranes was performed as previously described (Waldo et al., 

2002). Briefly, various concentrations of MDCK(II) membranes were incubated with an 

approximate Ki concentration (8 nM) of [3H]MRS2279 for 30 minutes at 4oC. Binding 

reactions were terminated by the addition of 4 mL cold assay buffer (20 mM Tris•HCl, pH 

7.5, 145 mM NaCl, 5 mM MgCl2) and filtered through GF/A filters to retain membrane-

bound [3H]MRS2279. Filters were washed once with cold assay buffer and placed in 

scintillation fluid for measurement of radioactivity. Specific binding of 8 nM [3H]MRS2279 

to MDCK membranes was defined as total radioligand bound minus the radioligand bound in 

the presence of 30 mM MRS2179, a P2Y1 receptor-selective antagonist (Jacobson et al., 

1998).  

 

2.6 Ussing chamber measurement of short circuit current 

MDCK(II) cells stably expressing HA-tagged hP2Y receptors were seeded in 12 mm 

polyester Snapwell inserts (Corning Life Sciences, Acton, MA) and allowed to polarize for 

5-7 days as described above. The inserts were placed in Ussing chambers and monitored for 
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changes in short circuit currents (ISC) in response to cumulative concentrations of the 

appropriate nucleotides added to either the mucosal (apical) or serosal (basolateral) surface. 

The maximal response at each concentration was plotted as a cumulative increase in ISC 

versus nucleotide concentration. 

 

3. Results 

3.1 Localization of HA-tagged P2Y receptors in MDCK(II) cells  

To determine the membrane targeting properties of the entire family of P2Y receptors 

in epithelial cells, we individually expressed HA-tagged constructs of P2Y1, P2Y2, P2Y4, 

P2Y6, P2Y11, P2Y12, P2Y13, and P2Y14 receptors in MDCK(II) cells by retroviral infection 

and determined the steady-state localization of each receptor in polarized monolayers by 

confocal microscopy. MDCK(II) cells have been used extensively as a model cell line to 

define the targeting properties of a broad range of membrane proteins (Keefer and Limbird, 

1993; Mostov et al., 2000; Nadler et al., 2001). MDCK(II) cells expressing each P2Y 

receptor were cultured in transwells and allowed to polarize for 7 days. The cells were then 

fixed and labeled with antibodies directed against either the HA epitope or ZO-1 (a marker of 

the epithelial tight junction) as described in Materials and Methods.  

Figure 5 shows XY and XZ cross-sections of wild-type MDCK(II) cells and 

MDCK(II) cells expressing each of the eight P2Y receptor subtypes. Wild-type MDCK(II)  
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Figure 5. Confocal microscopy of wild-type MDCK(II) cells and MDCK(II) cells 
expressing HA-tagged hP2Y receptors.  
MDCK(II) epithelial cells expressing each of the HA-tagged P2Y receptor subtypes and wild 
type MDCK(II) cells (WT) were examined by confocal microscopy. For each cell line, the 
top panel is a confocal image in which the focus plane was parallel to the monolayer (XY 
scan), while in the bottom panel the focus plane was a vertical cross-section of the monolayer 
(XZ scan). The white line in the XY scan indicates the path of the XZ scan. Green 
fluorescence represents HA-tagged P2Y receptor and red fluorescence represents the ZO-1 
subunit of the tight-junction protein complex. The lack of green fluorescence in WT 
MDCK(II) cells demonstrates the specificity of the anti-HA antibody. 
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cells showed staining of the tight-junctions but no staining with the anti-HA antibody, 

demonstrating the specificity of both antibodies in MDCK(II) cells. Confocal micrographs of 

MDCK(II) cells expressing each P2Y receptor revealed that seven of the eight receptor 

subtypes were localized at steady-state to either the apical or basolateral membrane surface. 

P2Y1, P2Y11, P2Y12, and P2Y14 receptors were expressed heavily along the lateral regions of 

the cell below the tight junction with a low level of expression at the basal membrane. 

Essentially no visible staining for these receptors was observed in the apical membrane. In 

contrast, P2Y2, P2Y4, and P2Y6 receptors were expressed exclusively at the apical 

membrane, with little to no staining below the tight junction (Fig. 5). The only receptor that 

was not localized was the P2Y13 receptor. Thus, the family of P2Y receptors shows a distinct 

pattern of polarized expression in MDCK(II) cells.  

 

3.2 Biotinylation of P2Y receptors in MDCK(II) cells 

To provide a more quantitative measure of receptor polarization, we utilized a 

biotinylation assay to determine the levels of receptor expression at either the apical or 

basolateral membrane. MDCK(II) cells expressing each P2Y receptor were biotinylated from 

either the apical or basolateral surface, and biotinylated receptors were quantified as 

described in Materials and Methods. Representative blots are shown in Figure 6 and the 

percentages of biotinylated receptors at each membrane surface are presented in Table 1. 

Consistent with the confocal images, all of the receptor subtypes except the P2Y13 receptor 

showed a strongly polarized steady-state localization, with ≥ 96% of P2Y1, P2Y11, P2Y12, 

and P2Y14 receptors expressed on the basolateral surface and ≥ 97% of the P2Y2, P2Y4, and  
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Figure 6. Representative western blots of biotinylation studies on HA-tagged P2Y 
receptors expressed in MDCK(II) epithelial cells.  
The apical or basolateral membrane surfaces of MDCK(II) cells expressing each of the HA-
tagged P2Y receptors were biotinylated, the biotinylated proteins were bound to neutravidin 
resin, and the percentage of biotin-labeled receptors at each membrane surface was 
quantified by Western blotting with anti-HA antibody. Western blots for each of the eight 
P2Y receptor subtypes are representative of at least three independent experiments. The 
results for the quantification of the western blots are shown in Table 1. 
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Receptor 

% Expression 

 Apical Basolateral 

P2Y1  1 ± 0.3  99 ± 0.1 

P2Y2  97 ± 2  3 ± 2 

P2Y4  98 ± 1  2 ± 1 

P2Y6  100  0 

P2Y11  4 ± 2  96 ± 2 

P2Y12  2 ± 2  98 ± 2 

P2Y13  54 ± 1  46 ± 1 

P2Y14  1 ± 0.3  99 ± 0.3 

 

Table 1. Quantification of cell-surface expression of P2Y receptors. 
Cell-surface expression of P2Y receptors at the apical and basolateral membrane surfaces 
was quantified by a polarized biotinylation assay. P2Y receptor-expressing MDCK(II) cells 
were labeled with biotin from either the apical or basolateral surface, and labeled receptors 
were quantitated as described in Materials and Methods. Values ± standard errors were 
averaged over three experiments 
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P2Y6 receptors expressed on the apical surface. The P2Y13 receptor was expressed at similar 

levels at both membrane surfaces. 

 

3.3 Localization of the P2Y1 receptor subfamily in 16HBE14o- and CaCo-2 cells 

To confirm that polarized expression of P2Y receptors in MDCK(II) cells is not a 

cell-specific phenomenon, we also expressed HA-tagged P2Y1, P2Y2, P2Y4, P2Y6, and P2Y11 

receptors in two immortalized human epithelial cell lines, 16HBE14o- bronchial epithelial 

cells (Abraham et al., 2004; Cozens et al., 1994; Forbes, 2000) and CaCo-2 colonic 

adenocarcinoma cells. As in MDCK(II) cells, P2Y1 and P2Y11 receptors were expressed at 

the basolateral surface in 16HBE14o- and CaCo-2 cells, while P2Y4 and P2Y6 receptors were 

expressed at the apical membrane (Fig. 7). The P2Y2 receptor was expressed at the apical 

membrane in both 16HBE14o- and CaCo-2 cells, but in 16HBE14o- cells the receptor also 

was expressed at lower levels in the lateral membrane below the tight junctions (Fig. 7). 

These data demonstrate that the Gq-coupled P2Y receptors are targeted in an essentially 

identical manner in epithelial cells derived from three distinct tissues, suggesting that 

targeting of the Gq-coupled P2Y receptor subtypes is not dependent on the type of epithelial 

cell in which they are expressed. 

 

3.4 Functional expression of P2Y receptors in MDCK(II) cells  

Progress in molecular and physiological studies of the P2Y receptors has been 

hampered by the lack of reliable radioligands for their quantification. However, Harden and  
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Figure 7. Confocal microscopy of HA-tagged Gq-coupled hP2Y receptors in 16HBE14o- 
and CaCo-2 epithelial cell lines. 
HA-tagged P2Y1, P2Y2, P2Y4, P2Y6, and P2Y11 receptors were expressed individually in 
bronchial 16HBE14o- and colonic CaCo-2 epithelial cell lines and the targeting of each 
receptor was determined by confocal microscopy as described in the legend to Figure 5. 
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co-workers (Waldo et al., 2002) recently developed [3H]MRS2279 as a radioligand that is 

effective for quantification of natively and exogenously expressed P2Y1 receptors. This 

radioligand was utilized to quantify P2Y1 receptors in wild type MDCK(II) cells and after 

stable expression of the human P2Y1 receptor. P2Y1 receptor levels increased from 8 ± 1 

fmol/mg protein for the endogenous canine P2Y1 receptor of wild type MDCK(II) cells to 

185 ± 5 fmol/mg protein after selection of a population of MDCK cells stably expressing the 

exogenous human P2Y1 receptor. 

The functional activity of the exogenous P2Y1 receptor also was examined in 

polarized MDCK(II) cells by measuring ISC in Ussing chambers across monolayers of wild 

type cells or cells expressing the P2Y1 receptor (Fig. 8). ISC is the summation of the flow of 

both cations and anions through multiple channels across a monolayer of cells. Increasing 

concentrations of 2MeSADP were added cumulatively to either the apical or basolateral 

compartments and ISC was measured. Interpretation of these experiments was complicated by 

the endogenous expression in MDCK cells of the canine homologues of P2Y1, P2Y2 and 

P2Y11 receptors (Post et al., 1998; Zambon et al., 2001), which give rise to increases in ISC in 

the absence of exogenous expression of human P2Y receptors. Thus, we relied on the 

observation that concentration-response curves for agonists shift to the left as a function of 

increases in GPCR expression (Kenakin, 1997). This procedure has been utilized previously 

by Zambon et al. in their studies with the canine P2Y11 receptor (Zambon et al., 2001). 

Consistent with our confocal and biotinylation experiments, overexpression of the P2Y1 

receptor in MDCK(II) cells promoted a 12-fold leftward shift in the concentration-response 

curve for 2MeSADP at the basolateral membrane (Fig 8, Table 2). Interestingly, this shift to  
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Figure 8. Measurement of Isc in wild-type and P2Y receptor-expressing MDCK(II) cells.  
Wild type and P2Y receptor-expressing MDCK(II) monolayers were challenged with 
cumulative doses of the appropriate nucleotides in Ussing chambers and the resulting Isc was 
measured. Short-circuit currents in response to increasing concentrations of the indicated 
nucleotide are plotted for both wild-type and P2Y receptor-expressing MDCK(II) cells and 
are representative traces for three independent experiments. The EC50 values (µM) of the 
indicated nucleotides are shown in Table 2.  
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  EC50 Wild-type cells EC50 P2Y-expressing cells 

Receptor Nucleotide APa BLb AP BL 

P2Y1 2MeSADP NRc 1.6 ± 0.1 1.9 ± 0.3e 0.1 ± 0.1 

P2Y2 UTP 6.2 ± 0.1 NDd 0.4 ± 0.1 24 ± 0.2f 

P2Y4 UTP 6.2 ± 0.1 ND 1.0 ± 0.1 ND 

P2Y6 UDP ND NR 0.2 ± 0.1 0.4 ± 0.2g 

P2Y11 ATP 3.3 ± 0.1 ND ND 0.8 ± 0.1 

 

Table 2. EC50 values for P2Y regulation of ISC.  
Wild type and P2Y receptor-expressing MDCK(II) monolayers were challenged with 
increasing cumulative doses of the appropriate nucleotides. EC50 values (µM) are shown. 
aAP, apical; bBL, basolateral; cNR, no response; dND, not determined (the curve did not reach 
a maximum); erelative efficacy of 0.2 compared to P2Y1-BL; frelative efficacy of 0.5 
compared to P2Y2-AP; grelative efficacy of 0.2 compared to P2Y6-AP. 
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the left in the concentration-response curve for 2MeSADP was similar to the approximately 

20-fold increase in P2Y1 receptor density quantified by [3H]MRS2279 binding. Moreover, 

both the magnitude and potency of the 2MeSADP-promoted apical currents were 

considerably lower than those promoted by basolaterally applied 2MeSADP. The increase in 

ISC following apical application of 2MeSADP in MDCK(II) cells expressing the human P2Y1 

receptor likely represents a small amount of expression of the receptor at the apical surface, 

again consistent with our confocal and biotinylation studies. 

Similar results were obtained with the other Gq-coupled receptor-expressing cells. 

That is, overexpression of the P2Y receptor in MDCK(II) cells resulted in a leftward shift in 

the concentration-response curves for the appropriate agonists (UTP for P2Y2- and P2Y4-

expressing cells, UDP for P2Y6-expressing cells, and ATP for P2Y11-expressing cells) at the 

membrane surface to which the receptor was primarily targeted (Fig. 8, Table 2). Unusual 

results were observed with the P2Y11 receptor since the ATP response at the apical 

membrane of wild type MDCK(II) cells decreased significantly following expression of the 

P2Y11 receptor. However, the basolateral ATP responses (where the P2Y11 receptor is 

exclusively expressed; Fig. 5) were entirely consistent with those obtained with the other 

receptors. In contrast to the five Gq-coupled subtypes, we did not observe changes in ISC in 

cells expressing Gi-coupled P2Y12, P2Y13, or P2Y14 receptors, suggesting that Gi-mediated 

pathways are not involved in regulating epithelial ISC under our experimental conditions. 

 

4. Discussion 

Although much work has been carried out on membrane protein localization in 

polarized epithelial cells, a relative paucity of data exists documenting the polarization of G 
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protein-coupled receptors. In the current study, we examined the polarization of the entire 

family of P2Y receptors, many of which are known to play important roles in the function 

and regulation of epithelial cells. Our data demonstrated that seven of the eight members of 

the family of P2Y receptors are expressed in a highly polarized manner in MDCK(II) 

epithelial cells, and these results were verified both in biotinylation studies and Isc 

measurements in live cells. This is the first study to visualize directly the steady-state 

localization of the entire P2Y receptor family with confocal microscopy. 

The marked polarized distribution of seven of the eight P2Y receptor subtypes was 

striking. In contrast, only two of the five muscarinic receptor subtypes, M2 and M3, are 

targeted to distinct membrane domains in MDCK(II) epithelial cells (Nadler et al., 2001). 

Polarization of P2Y receptors may result from the fact that all five of the Gq-coupled 

receptors (Homolya et al., 1999; Lazarowski et al., 1997b; Wong and Ko, 2002; Zambon et 

al., 2001) (and potentially two of the three Gi-coupled receptors (Chambers et al., 2000; 

Hollopeter et al., 2001)) are natively expressed in polarized cell types, i.e. epithelial and 

endothelial cells, where targeting of receptors to distinct membrane surfaces is critical for 

proper function. These data suggest that the seven polarized receptors contain targeting 

signals that direct the protein to either the apical or basolateral surface. Therefore, receptors 

not known to be expressed endogenously in epithelial cells, such as the P2Y13 receptor, might 

lack the proper targeting information to ensure a polarized distribution and by default have an 

unsorted phenotype. Our data are consistent with this idea. 

The targeting profile of the family of P2Y receptors revealed an unexpected pattern. 

P2Y receptors activated solely by adenine nucleotides, i.e. the P2Y1, P2Y11, and P2Y12 

receptors, are localized to the basolateral membrane of MDCK(II) epithelia, whereas those 
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P2Y receptors activated by uridine nucleotides, i.e. P2Y2, P2Y4, and P2Y6 receptors, are 

localized to the apical membrane (Fig. 9). The P2Y14 receptor, which is activated by UDP-

sugars such as UDP-glucose, is also localized to the basolateral membrane. However, the 

targeting of this receptor may be more a function of its high homology to the adenine 

nucleotide-selective Gi-coupled P2Y12 receptor than to its ligand. The significance of this 

unusual localization pattern is unclear, but one intriguing possibility may be that the 

distribution of P2Y receptors has evolved to compliment the preferential release of adenine 

nucleotides at the basolateral membrane and uridine nucleotides at the apical membrane. 

However, it is well documented that both ATP and UTP are released from the apical surface 

of epithelial cells in response to mechanical stimulation and hypotonic challenge (Homolya 

et al., 2000; Lazarowski et al., 1997a). In addition, Lazarowski and Harden have 

demonstrated a general release of UTP from primary epithelial cells (Lazarowski and 

Harden, 1999), although the relative amounts released from the two membrane surfaces is 

unknown and difficult to measure due to the complex nature of nucleotide metabolism and 

conversion that occurs within the interstitial space. Thus, the significance, if any, of this 

differential targeting of P2Y receptors remains unclear. 

An important question in these studies was whether our targeting data with P2Y 

receptors in MDCK cells could be extrapolated to epithelial cells from other tissues. For 

example, it has been shown that the transferrin receptor, which is expressed on the 

basolateral surface in MDCK(II) cells, is expressed at the apical surface in porcine kidney 

LLC-PK1 cells (Folsch et al., 1999). This difference in targeting was subsequently attributed 

to the absence of a protein (the µ1B subunit of the adaptor protein AP1) in LLC-PK1 cells  
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Figure 9. The P2Y receptor family and their polarized distribution in MDCK(II) 
epithelial cells. 
The family of P2Y receptors and their cognate agonists are shown with their localization in 
polarized MDCK(II) cells. Receptors expressed at the apical surface (P2Y2, P2Y4, and P2Y6) 
are shaded red, while those expressed at the basolateral surface (P2Y1, P2Y11, P2Y12, and 
P2Y14) are shaded blue, and the unsorted receptor (P2Y13) is gray. The dashed line 
demarcates the division between the apical and basolateral membrane domains. Receptors 
that are adenine nucleotide-selective are expressed at the basolateral surface, whereas 
receptors that are activated by uridine nucleotides are expressed at the apical surface. 
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(Folsch et al., 1999). To address this concern, we examined the targeting profiles of the Gq-

coupled P2Y1, P2Y2, P2Y4, P2Y6, and P2Y11 receptors in two other epithelial cell lines: 

16HBE14o-, which is derived from bronchial epithelial cells transformed with the SV40 

virus (Cozens et al., 1994), and CaCo-2, which is derived from a colonic adenocarcinoma 

(Fogh et al., 1977). Our data demonstrated that the polarized expression of the Gq-coupled 

P2Y receptor subtypes does not depend on the type of epithelial cell in which they are 

expressed (Fig. 7). 

The only receptor that deviated somewhat from its targeting profile obtained in 

MDCK(II) cells was the P2Y2 receptor, which in addition to its primarily apical localization 

was also expressed at lower levels along the lateral membranes of 16HBE14o- cells. 

Interestingly, this low level of lateral staining was also observed in another human epithelial 

cell line derived from lung, BEAS-2B (Reddel et al., 1988) (data not shown), but not in 

CaCo-2 cells (Fig. 7), suggesting that the small amount of lateral staining of the P2Y2 

receptor may be a property of airway cells in particular. Consistent with this observation, 

Boucher and co-workers (Homolya et al., 2000; Paradiso et al., 2001) demonstrated that UTP 

promoted intracellular Ca2+ mobilization when added to the basolateral surface of nasal 

epithelium derived from wild type mice. These responses were not observed in nasal 

epithelium derived from P2Y2 receptor (-/-) mice, demonstrating that the responses are due to 

activation of basolateral P2Y2 receptors. The physiological relevance of this observation is 

not clear, but our results suggest that the mechanisms utilized by epithelial cells to target the 

P2Y2 receptor to the apical membrane are not as stringent in epithelial cells from lung 

compared to those from other tissues. 
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Although the polarized targeting of the Gq-coupled P2Y receptors is consistent with 

the majority of results based on functional activity (Dubyak, 2003; Leipziger, 2003; McAlroy 

et al., 2000; Zambon et al., 2001), our results conflict with several reports on the polarized 

expression of P2Y receptors in epithelial cells. For example, Sage and Marcus (Sage and 

Marcus, 2002) suggested a basolateral localization for P2Y2 in vestibular dark epithelia based 

on immunostaining with a commercial antibody.  However, results based on commercial 

P2Y2 receptor antibody staining alone should be viewed with caution, since these antibodies 

exhibit questionable specificity for P2Y2 receptors. A study by Nathanson and colleagues 

(Dranoff et al., 2001) utilized indirect pharmacological assays to suggest polarization of 

P2Y1, P2Y2, P2Y4, and P2Y6 receptors at the apical membrane of rat bile duct epithelia. 

While demonstrating that these cells express multiple P2Y receptors, it is difficult to 

determine unequivocally which P2Y receptor subtypes are present at the apical membrane 

due to the complexities of tissues with unknown metabolizing and interconverting enzyme 

activities (Joseph et al., 2004; Lazarowski et al., 2003). Thus, without better reagents, 

including subtype-selective agonists and antagonists and antibodies with rigorously 

demonstrated receptor specificity, it is extremely difficult to show polarized targeting of P2Y 

receptors in complex tissues. 

In conclusion, we have utilized three different approaches, including the direct 

method of confocal microscopy, to show the highly polarized expression pattern of the entire 

family of P2Y receptors. These data are for the most part consistent with previous reports and 

extend our knowledge of the localization of P2Y receptors in epithelial cells. Because the 

polarization of cell-surface proteins to either the apical or basolateral membrane of epithelial 

cells is achieved by the presence of targeting signals within the primary protein sequence, our 
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data suggest that seven of the eight hP2Y receptors contain targeting signals that direct their 

expression to one of the two membrane surfaces of MDCK cells. Studies to identify these 

targeting signals in P2Y receptors and to understand how these signals function are described 

in the next three chapters.  



 

  

 

 

 

 
CHAPTER III: Localization of the targeting signals in P2Y1, P2Y2, P2Y4, P2Y6, P2Y11, 

P2Y12 and P2Y14 receptors 

1. Introduction 

Although P2Y receptors regulate multiple physiological processes in a variety of cells 

and tissues, one of their main roles is the regulation of ion transport and stress responses in 

epithelial cells (Insel et al., 2001). Epithelial cells line organs and cavities and provide an 

interstitial barrier between the internal environment of the body and the external world that 

surround all organisms. In addition, epithelia mediate numerous physiological functions at 

the interstitial interface, including regulated transport of ions, fluids, nutrients, and proteins, 

host defense, signal transduction, cell-cell interactions and cell-matrix adhesion (Brown, 

2000). The structural and functional polarization of epithelia allows these cells to create a 

barrier and to carry out multiple physiological processes. The epithelial plasma membrane is 

divided into two distinct domains: the apical surface, which faces the lumenal space of an 

organ or external environment, and the basolateral surface, which is in contact with 

underlying cells and tissues. Each of these membrane domains has its own set of unique 

proteins and lipids. These membrane domains are separated by a protein-barrier complex 

known as the tight-junction, which forms a water- and ion-tight barrier between the two sides 

of the epithelial monolayer. The tight-junction is a complex of proteins anchored between the 

apical and basolateral domains by the cell’s cytoskeleton and is a required component for 

epithelial function (Yeaman et al., 1999).  
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A large array of membrane-bound proteins unique to either the apical or basolateral 

membrane domains confers functional polarity to epithelial cells and allows processes 

specialized to the lumenal or internal space to occur. Furthermore, there is a high level of 

turnover for these plasma membrane (PM) bound proteins within epithelia, therefore 

requiring a high fidelity protein delivery system to maintain functional polarity (Brown and 

Breton, 2000). It has long been recognized that specific sorting information is located within 

the primary sequence of both transmembrane and cytosolic proteins that determines their 

locations in polarized cells, although the mechanisms by which they work has remained 

elusive. The elucidation of these sorting/targeting signals has been the focus of numerous 

laboratories (Brown and Breton, 2000; Folsch et al., 1999; Mostov et al., 2003). 

Until recently, distinct sorting signals in G protein-coupled receptors (GPCRs) had 

not been identified. Much of the early work on identifying trafficking itineraries and 

targeting signals in GPCRs was carried out by Limbird and coworkers with α2-adrenergic 

receptors (Keefer and Limbird, 1993; Wozniak et al., 1997; Wozniak and Limbird, 1996; 

Wozniak and Limbird, 1998). These studies showed that three subtypes of α2-adrenergic 

receptors are delivered to the basolateral membrane by distinct targeting mechanisms that 

utilized multiple, non-contiguous targeting signals. In contrast to these results, more recent 

studies have identified linear targeting sequences in three different GPCRs. The cytoplasmic 

tail of rhodopsin was shown to act as a novel apical sorting signal in polarized MDCK cells 

(Chuang and Sung, 1998) through an interaction with the microtuble motor, dynein (Tai et 

al., 1999). In contrast, the C-terminal tail of the follicle stimulating (FSH) receptor contains a 

14 amino acid basolateral targeting sequence (Beau et al., 1998) in which two amino acids, 

Tyr-684 and Leu-689, were found to be most important in determining basolateral targeting. 
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The M3-muscarinic receptor contains a 21-amino acid sequence in its 3rd intracellular loop 

that functions as a basolateral targeting signal (Nadler et al., 2001).  

These results suggest that linear targeting signals are likely to exist in GPCRs and are 

amendable to identification and characterization. However, given the small number of 

targeting sequences identified thus far for GPCRs, no consensus sequences have emerged. 

The paucity of studies on the targeting of GPCRs in general and more specifically for the 

P2Y receptor family led us to initiate a series of studies utilizing confocal microscopy and 

biotinylation assays to elucidate potential targeting signals within the seven P2Y receptors 

(P2Y1, P2Y2, P2Y4, P2Y6, P2Y11, P2Y12 and P2Y14) that were identified in the previous 

chapter as showing polarized expression.  

 

2. Materials and methods 

2.1 Approach/Rationale 

In order to identify potential targeting signals in each of the polarized P2Y receptors, 

we utilized an approach wherein the localization of a series of chimeric and truncated 

constructs for each receptor subtype was examined by both confocal microscopy and 

biotinylation assays. This approach allowed us to identify the region of each receptor 

mediating either apical or basolateral targeting, as well as to test the ability of the newly 

identified signal to impart a specific trafficking itinerary onto receptors that were either 

unsorted and/or normally targeted to the opposite membrane. Once a region of the receptor 

harboring a targeting signal was identified it was deleted or disrupted to reveal if any 

additional targeting signals exist in the receptor. This search for additional signals was 
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conducted due to the fact that multiple targeting signals have been found in other receptor 

proteins, such as the follicle-stimulating hormone (FSH) receptor (Beau et al., 1998).  

 

2.2 Construction of HA-tagged P2Y receptor chimeras and truncations 

Two general methods were used to generate the HA-tagged P2Y receptor chimeras 

and truncation constructs utilized in this study. To construct chimeras, overlap extension 

PCR (Ho et al., 1989) using Pfu polymerase (Stratagene, La Jolla, CA) was employed. The 

outside primers contained an EcoRI restriction site at the 5’-end and a XhoI site at the 3’-end 

of the coding sequence. The full-length PCR products after the second round of amplification 

were digested with EcoRI and XhoI and ligated into similarly digested pLXSN retroviral 

expression vectors. To construct C-tail truncation mutants, PCR amplification was performed 

with 3’-primers containing a stop codon at the appropriate position and a XhoI site to 

facilitate cloning. In addition, each of the cloned receptors harbored an HA epitope tag 

(YPYDVPDY) following the initiating methionine residue. Previous studies have shown that 

the presence of an HA epitope at the N-terminus of a P2Y receptor has no effect of its 

function (Sromek and Harden, 1998). 

 

2.3 Cell culture and expression of receptor constructs 

Madin-Darby canine kidney type II cells (MDCK(II); ATCC, Rockville, Maryland) 

were subcultured in DMEM/F12 (1:1) medium (Invitrogen, Carlsbad, CA) supplemented 

with 5% fetal bovine serum (FBS; Hyclone, Gaithersburg, MD) and 1X pen/strep in a 

humidified incubator at 37oC with 5% CO2 and 95% air.  
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Recombinant retroviral particles were produced by calcium phosphate-mediated 

transfection of PA317 cells with pLXSN vectors containing HA-tagged hP2Y receptor 

constructs as previously described (Comstock et al., 1997) and used to infect the cell line 

listed above. Geneticin-resistant cells were selected after 7-10 days with 1 mg/ml G418 and 

maintained in medium containing 0.4 mg/ml G418. 

 

2.4 Confocal Microscopy 

 This assay was performed as described in Chapter II section 2.3 under the same 

heading. 

 

2.5 Quantification of cell surface HA-tagged P2Y receptor constructs  

 This assay was performed as described in Chapter II section 2.4 under the same 

heading. 

 

3. Results 

3.1 Localization of the P2Y1 and P2Y2 receptor targeting signals  

In order to determine the location of the basolateral targeting signal in the P2Y1 

receptor, we constructed a series of chimeras between the basolaterally targeted P2Y1 

receptor and the apically targeted P2Y2 receptor and examined their steady-state localization 

in MDCK(II) cells by confocal microscopy. Of the chimeras tested, those in which only the 

C-terminal tails were swapped were most revealing. As shown in Figure 10, when the C-

terminal tail of the P2Y1 receptor was replaced with the C-terminal tail of the P2Y2 receptor,  
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Figure 10. Localization of a targeting signal(s) in the P2Y1 and P2Y2 receptors.  
A) The C-terminal tails of P2Y1 and P2Y2 receptors were swapped to investigate the 
possibility that this region of the protein contained basolateral and apical targeting signals, 
respectively. Confocal microscopy was utilized to determine the steady-state localization of 
these chimeras in polarized MDCK cells. Exchanging the C-tails of these two receptors 
switched their polarized localization, suggesting that the P2Y1 C-tail contains a basolateral 
targeting signal and the P2Y2 C-tail contains an apical targeting signal. Additional 
experiments (shown below) were carried out to confirm the possibility that these C-tails 
contain targeting signals. B) Cell surface biotinylation assays were carried out as described in 
Section 2.4 of Chapter II. The numbers below each lane represent the average percent 
distribution of the indicated receptor at each membrane domain (n=3). 
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the chimeric receptor was redirected to the apical membrane of MDCK(II) cells. Conversely, 

the P2Y2 receptor containing the C-terminal tail of the P2Y1 receptor was redirected to the 

basolateral membrane.  

At first glance, the results of these experiments appeared to indicate that the C-

terminal tail of the P2Y1 receptor contains a basolateral targeting signal, while the C-terminal 

tail of the P2Y2 receptor harbors an apical targeting signal. However, in order to further 

characterize the targeting signals in these proteins, we examined the localization of P2Y1 and 

P2Y2 receptors missing their C-terminal tails, as well as the normally unsorted B2-bradykinin 

receptor in which its C-terminal tail was replaced by the C-terminal tail from either the P2Y1 

or P2Y2 receptor. All four receptor constructs were expressed in MDCK(II) epithelial cells 

and analyzed by confocal microscopy and biotinylation assays (Fig. 11). The truncated P2Y2 

receptor (P2Y2-∆CT) was expressed at the apical membrane, but unexpectedly, the truncated 

P2Y1 receptor (P2Y1-∆CT) was also expressed exclusively at the apical membrane. 

Moreover, confocal microscopy revealed that the BK2/P2Y1 C-tail receptor was expressed 

entirely at the basolateral surface, while the BK2-P2Y2 C-tail receptor was unsorted. These 

results are consistent with the idea that the P2Y1 receptor contains two signals: an apical 

signal located somewhere between the N-terminus and TM7, and a basolateral signal in the 

C-terminal tail that is dominant over the apical signal. Thus, redirection of the P2Y1 receptor 

containing the P2Y2 C-terminal tail to the apical membrane was not due to the addition of the 

P2Y2 C-terminal tail but to uncovering the secondary apical signal upon removal of the 

dominant basolateral signal in the C-terminal tail. In addition, these results demonstrate that 

the apical targeting signal in the P2Y2 receptor is located between its N-terminus and TM7 

(the main body of the protein). 



 

  78

Figure 11. Additional localization experiments elucidating the targeting signals in the 
P2Y1 and P2Y2 receptors. 
A) To determine the location of a targeting signal(s) in the P2Y1 receptor we deleted the C-
tail of the receptor (P2Y1 ∆ 334) as well as replaced the C-tail of the normally unsorted 
bradykinin-2 receptor (BK2) with the C-tail of the P2Y1 receptor (BK2/Y1 CT), expressed 
these receptors in MDCK(II) cells, and determined their steady-state distribution in polarized 
monolayers by confocal microscopy. The same approach was taken for the localization of 
targeting signals in the P2Y2 receptor. B) Cell surface biotinylation assays were carried out 
as described in Section 2.4 of Chapter II. The numbers below each lane represent the average 
percent distribution of the indicated receptor at each membrane domain (n=3). 
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3.2 Identification of the P2Y4 Receptor Apical Targeting signal 

Based on previous experiments with the P2Y1 receptor, which demonstrated a 

targeting signal present in the C-tail, we replaced the endogenous C-tail of the unsorted BK2 

receptor with the C-tail of the P2Y4 receptor, resulting in a BK2/P2Y4 C-tail chimera. In 

addition, we truncated the P2Y4 receptor just after TM7 thereby removing its C-tail (P2Y4 ∆ 

C-tail). Both of these receptor constructs were expressed in MDCK(II) cells and their steady-

state localization was determined by confocal microscopy and surface biotinylation. Whereas 

the BK2 receptor is normally unsorted, the BK2/P2Y4 C-tail chimera was redirected to the 

apical membrane. Likewise, the P2Y4 receptor is expressed exclusively at the apical 

membrane, while the P2Y4 ∆ C-tail receptor was unsorted (i.e. it localized equally to both the 

apical and basolateral membranes)(Fig. 12). Taken together, these results demonstrate that 

the P2Y4 receptor contains an apical targeting signal in its C-tail. 

 

3.3 Localization of the apical targeting signals in the P2Y1, P2Y2 and P2Y6 receptors (in 

collaboration with Aidong Qi) 

Our previous studies demonstrated that three out of eight P2Y receptor subtypes 

(P2Y2, P2Y4, and P2Y6) are targeted to the apical membrane of MDCK(II), 16HBE14o- and 

CaCo-2 epithelial cells (Wolff et al., 2005). In experiments described above, the targeting 

signal responsible for apical localization of the P2Y4 receptor is located in its C-tail, while 

the apical signal for the P2Y2 receptor is located between the N-terminus and TM7 (the main 

body) of the protein. Because these two apically-targeted receptor subtypes share high 

sequence identity (52%) and have distinctly different locations of their targeting signals, we 
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Figure 12. Localization of the P2Y4 receptor apical targeting signal. 
A) In order to localize the apical targeting signal of the P2Y4 receptor two types of constructs 
were generated: 1) a truncated form of the P2Y4 receptor wherein the C-tail is removed and 
2) a chimera of the unsorted human Bradykinin-2 (BK2) receptor in which its C-tail was 
replaced by the P2Y4 C-tail. These receptor constructs were expressed in MDCK(II) cells for 
confocal analysis. B) Cell surface biotinylation assays were carried out as described in 
Section 2.4 of Chapter II. The numbers below each lane represent the average percent 
distribution of the indicated receptor at each membrane domain (n=3). 
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 were able to localize the targeting signal in the P2Y2 receptor. We constructed a series of 

chimeric receptors by progressively substituting regions of the P2Y2 receptor with the 

corresponding regions of the P2Y4 receptor lacking its targeting signal, and confocal analysis 

of these chimeras revealed that the targeting signal is located in the first extracellular loop 

(EL1) of the P2Y2 receptor (data not shown). Subsequent mutational analysis of EL1 

demonstrated that four amino acids (R95, G96, D97, and L108) play a major role in apical 

targeting of the P2Y2 receptor (Qi et al., 2005). 

In experiments described in section 3.1, we localized a secondary apical targeting 

signal for the P2Y1 receptor to its main body. In addition, our previous study on P2Y receptor 

localization in epithelial cells demonstrated that the P2Y6 receptor subtype has an apical 

targeting profile (Wolff et al., 2005). In light of these data, we aligned the primary sequences 

of EL1 in these two receptor subtypes with the corresponding sequence in the P2Y2 receptor 

to uncover any conserved amino acid motifs that potentially may be involved in receptor 

targeting. Indeed, this alignment showed that R95, G96, D97, and L108 of the P2Y2 receptor are 

largely conserved in the P2Y6 (Q88G89D90 and L101) and P2Y1 (N113K114T115D116 and L126) 

receptors (Fig. 13). Mutagenesis of each of these conserved amino acids (with the exception 

of D90 in the P2Y6 receptor, which resulted in the intracellular accumulation of the mutant 

receptor) in both the P2Y6 and P2Y1 receptors caused a dramatic impairment in apical 

targeting (data not shown). These data reveal that EL1 of P2Y1, P2Y2 and P2Y6 receptors 

contains a conserved apical targeting signal. 
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Figure 13. Sequence Alignment of P2Y2, P2Y6, and P2Y1 receptor EL1. 
The primary sequence of the first extracellular loop (EL1) for the P2Y6 and P2Y1 receptors 
are aligned with the region (EL1) of the P2Y2 receptor that contains its apical targeting signal 
with key targeting residues highlighted in red. This alignment was performed in order to 
uncover any conserved motifs that may be potentially involved in the apical targeting of the 
P2Y6 and P2Y1 receptors. This alignment shows that key amino acids (red) involved in the 
targeting of the P2Y2 receptor are conserved in both the P2Y6 and P2Y1 receptors, which are 
highlighted in blue. Based upon this analysis, mutagenesis studies were carried out on the 
amino acids identified as potential mediators of targeting for the P2Y6 and P2Y1 receptors. 

hP2Y2  94 ARGDHWPFSTVLCKLVR 110
hP2Y6  87 AQGDHWPFGDFACRLVR 103
hP2Y1 112 FNKTDWIFGDAMCKLQR 128
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3.4 Localization of the basolateral targeting signals in the P2Y11, P2Y12 and P2Y14 

receptors 

P2Y11, P2Y12 and P2Y14 receptors are localized at steady-state to the basolateral 

membrane of MDCK(II) cells (Wolff et al., 2005). Because the basolateral and apical 

targeting signals of P2Y1 and P2Y4 receptors, respectively, are located in their C-tails, we 

hypothesized that the basolateral sorting signals for P2Y11, P2Y12 and P2Y14 receptors also 

might be located in their C-tails. In order to test this hypothesis, we replaced the C-tails of 

the unsorted BK2 receptor or the apically-targeted P2Y2 receptor with the C-tails from the 

P2Y11, P2Y12 or P2Y14 receptor. These chimeras were expressed in MDCK(II) cells and the 

steady-state localization of each receptor chimera was determined by confocal microscopy. 

Confocal analysis demonstrated that all three receptor chimeras were redirected to the 

basolateral membrane of MDCK(II) cells, suggesting that the C-tails of these receptors 

contain a sorting signal that is both necessary and sufficient to direct a protein to the 

basolateral membrane (Fig. 14).  

We also examined the main body of the three receptors for the presence of secondary 

sorting signals. The C-tails of the P2Y11, P2Y12 and P2Y14 receptors were removed by 

putting in a stop codon just past TM7 and expressing the truncated receptors in MDCK(II) 

cells. Unfortunately, expression of the truncated P2Y11 and P2Y14 receptors resulted in 

unstable receptors that did not reside on the plasma membrane. In contrast, confocal 

microscopy of the truncated P2Y12 receptor showed that the receptor was localized to the 

basolateral membrane, suggesting the existence of a redundant BL sorting signal located 

between the N-terminus and TM7 (Fig. 15). 
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Figure 14. Localization of targeting signals for P2Y11, P2Y12 and P2Y14 receptors. 
Targeting signals for the P2Y1 and P2Y4 receptors are located in the C-tail, therefore, we 
hypothesized that this intracellular region of the receptor may contain sorting information for 
the P2Y11, P2Y12 and P2Y14 receptors as well. This hypothesis was investigated by 
constructing three chimeras in which we replaced the C-tail of the normally unsorted BK2 
receptor with the P2Y11 receptor C-tail (A) and replacing the C-tail of the normally apical 
P2Y2 receptor with the P2Y12 or P2Y14 receptor C-tails (B). These chimeric receptors were 
expressed in MDCK(II) epithelial cells and examined for changes in steady-state localization 
by confocal microscopy.  
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Figure 15. Identification of secondary targeting signals for the P2Y11, P2Y12 and P2Y14 
receptors. 
Secondary targeting signals have been shown to exist in GPCR’s including the P2Y1 
receptor. Therefore, we examined the P2Y11, P2Y12 and P2Y14 receptors for such signals in a 
truncation experiment. All three receptors are normally localized to the basolateral surface 
(A), which is due to the existence of targeting signals in their C-tails. In order to uncover any 
secondary signals, the locus of the primary signals (the C-tail) was removed by inserting a 
stop codon just after TM7 thereby creating a truncated receptor. These truncated receptors 
(P2Y11 ∆ C-tail, P2Y12 ∆ C-tail and P2Y14 ∆ C-tail) were expressed in MDCK(II) epithelial 
cells and examined with confocal microscopy for steady-state localization (B).  
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4. Discussion 

In this series of experiments we localized both the primary and secondary targeting 

signals in all of the polarized P2Y receptors, which include the P2Y1, P2Y2, P2Y4, P2Y6, 

P2Y11, P2Y12 and P2Y14 subtypes. The majority of these receptors (P2Y2, P2Y4, P2Y6, 

P2Y11, and P2Y14) contain a single apical- or basolateral-targeting signal that constitutes the 

primary sorting information for the receptor. In contrast, P2Y1 and P2Y12 receptors contain 

more than one signal. In the case of the P2Y1 receptor, the C-tail harbors a primary 

basolateral-targeting signal that overrides a secondary apical signal located in the first 

extracellular loop. The P2Y12 receptor was unusual in that it contains two basolateral 

targeting signals: one located in the C-tail and another located somewhere in the main body. 

Furthermore, we described the identification of the apical targeting signal located in the first 

extracellular loop of the P2Y1, P2Y2 and P2Y6 receptors. The number and location of the 

targeting signals in the P2YR family is summarized in Table 3.  

The experiments described in this chapter were conducted because they were the next 

logical step in the progressive characterization of P2Y receptor targeting properties. In the 

previous chapter (Chapter II), we demonstrated the polarized distribution of seven of the 

eight human P2Y receptors in a variety of epithelial cell lines. Based upon the well-

established principles of protein targeting described in the literature (Brown and Breton, 

2000; Mostov et al., 2003; Mostov et al., 2000), we hypothesized that sorting signals 

contained in the primary sequence of P2Y receptors are responsible for the targeting of these 

proteins to either the apical or basolateral membrane of epithelial cells. As shown in this 

chapter a series of experimental results does indeed confirm this hypothesis.  
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Table 3. Location of sorting signals in P2Y receptors. 
All of the delimited targeting signals in the P2Y receptor family are shown along with their 
locations within each receptor. Please note that receptors can harbor multiple sorting signals. 
AP, apical; BL, basolateral; ?, unknown.  



 

  88

Once this hypothesis was confirmed the next logical step in our investigation was to 

fully characterize each of the P2Y receptor targeting signals. In approaching these 

experiments, we took advantage of the fact that basolateral targeting signals are typically 

short amino-acid motifs located within the cytoplasmic domain of the targeted protein. The 

best-characterized signal is the 4-amino acid tyrosine-based motif (YxxF) that not only is 

sufficient to direct targeting to the basolateral membrane, but has been shown to interact with 

adaptor proteins (AP) to mediate endocytosis (Mostov et al., 1999). The duality of this signal 

suggests an alternative pathway for protein trafficking exists wherein proteins move from the 

TGN to a common/sorting endosome first and then are delivered to a specific membrane 

compartment. Another well-characterized sorting signal is the di-leucine motif, which has 

been shown to deliver a number of proteins to the basolateral membrane (Rodriguez-Boulan 

et al., 2005). This sequence is also thought to interact with adaptor proteins during transport 

to the basolateral surface. Finally, the importance of secondary protein structure in 

basolateral targeting signals has been suggested. For example, the 17-amino acid sorting 

signal found in the polymeric immunoglobulin receptor (pIgR) has been shown to adopt a 

beta-turn structure that is critical for its polarized targeting (Reich et al., 1996).  

In contrast to BL targeting signals, identification of sorting signals for apically-bound 

proteins have proven to be more elusive. Such signals have been found in the extracellular, 

transmembrane and intracellular domain of proteins. Proteins containing a covalently linked 

glycerophosphatidyl-inositol modification are sorted to the apical membrane of many (but 

not all) polarized epithelial cell types (Brown et al., 1989; Lisanti et al., 1989). This lipid 

modification is thought to associate with membrane structures called rafts, which are 

composed of clustered glycosphingolipids, cholesterol, and certain other proteins (Mostov et 
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al., 2000). In addition, both N- and O-linked oligosaccharides have been suggested to act as 

apical sorting signals (Scheiffele et al., 1995; Yeaman et al., 1997), but the role of 

glycosylation as a sorting signal is unclear. Furthermore, we have identified and described 

the first protein-based apical signal, which is located in the 1st extracellular loop of the P2Y1, 

P2Y2 and P2Y6 receptors. Apical targeting sequences also are located within transmembrane 

(TM) domains. For example, the fourth TM domain of the gastric H+-ATPase directs apical 

expression (Dunbar et al., 2000). Finally, a role of C-terminal PDZ-binding domains in 

localization of proteins to the apical surface is emerging. For example, the PDZ-binding 

domain of the CFTR is critical for its apical localization and its interaction with the PDZ 

domain-containing protein, EBP50 (Moyer et al., 1999; Moyer et al., 2000). 

 In the elucidation of targeting signals investigators typically utilize a mutagenesis 

approach to identify key amino acids involved in protein targeting. Some of the key studies 

described above have successfully utilized this approach and have been essential in the 

illumination of common motifs (such as they are) to both basolateral and apical targeting 

signals. In order to extend our knowledge on P2Y receptor targeting signals and to make 

similar contributions to the protein targeting knowledge base, we carried out similar 

experiments on the P2Y1 and P2Y4 receptors, which are described in the next two chapters 

(Chapters IV and V).  



 

  

 

 

 

 

CHAPTER IV: The C-terminal tail of the P2Y1 receptor contains a novel basolateral 

sorting signal: Importance of charged residues and lack of sequence specificity in signal 

function 

1. Introduction 

Molecular cloning and functional characterization has identified eight P2Y receptor 

subtypes (P2Y1,2,4,6,11,12,13,14). P2Y1, P2Y2, P2Y4, P2Y6, and P2Y11 receptors are members of 

the P2Y1 receptor subfamily and are coupled to activation of phospholipase C, generation of 

inositol phosphates and mobilization of intracellular Ca2+ stores (Harden, 1998; Ralevic and 

Burnstock, 1998). In addition to coupling to activation of phospholipase C, the hP2Y11 

receptor also couples to Gs and activation of adenylyl cyclase (Communi et al., 1997; Qi et 

al., 2001a; Torres et al., 2002). In contrast, the three most recently identified P2Y receptors, 

P2Y12, P2Y13, and P2Y14, are members of the P2Y12 receptor subfamily and couple solely to 

Gi/o and inhibition of adenylyl cyclase (Chambers et al., 2000; Communi et al., 2001; 

Hollopeter et al., 2001; Zhang et al., 2002). 

Although P2Y receptors regulate multiple physiological processes in a variety of cells 

and tissues, one of their main roles is the regulation of ion transport and stress response in 

epithelial cells (Bucheimer and Linden, 2004; Leipziger, 2003; Nishiyama et al., 2004; 

Schwiebert and Zsembery, 2003). Epithelial cells form an interstitial barrier between the 

external environment and internal cells and tissue, and thereby mediate numerous 

physiological functions at the interstitial interface, including regulated transport of ions, 
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fluids, nutrients, and proteins, host defense, signal transduction, cell-cell interactions and 

cell-matrix adhesion (Brown, 2000). The structural and functional polarization of epithelia 

allows these cells to create a water- and ion-tight barrier that provides exquisite regulation of 

ion and liquid fluxes across the epithelial monolayer. The plasma membranes of these cells 

are divided into two distinct domains, apical and basolateral, each with its own unique set of 

proteins and lipids. The apical membrane faces the lumen, whereas the basolateral membrane 

contacts other cells of the monolayer and the underlying cells and connective tissue.  

Many of the membrane-bound proteins expressed in polarized epithelial cells are 

localized to either the apical or basolateral domain, which confers functional polarity to 

epithelial cells and allows processes specialized to the lumenal or basolateral spaces to occur. 

It has long been recognized that specific sorting information is located within the primary 

sequences of these proteins that determines their locations in polarized cells, although the 

mechanisms by which they work has remained elusive. Elucidation of these sorting/targeting 

signals has been the focus of numerous laboratories.  

Recent work from our laboratory has demonstrated that seven of the eight P2Y 

receptors are expressed in a polarized manner in epithelial cells from kidney, lung, and colon 

(summarized in Chapter II) (Wolff et al., 2005). Of these seven receptors, four (P2Y1, P2Y11, 

P2Y12, and P2Y14) are localized to the basolateral membrane. The conserved polarized 

targeting of the Gq-coupled receptors led us to investigate whether the polarized expression 

of the P2Y1 receptor was due to the presence of a basolateral targeting signal. To begin to 

understand how receptors are localized to the basolateral membrane, we constructed a series 

of P2Y chimera and mutant receptors in order to delimit the targeting signal. Our experiments 

demonstrate that this sorting signal is a 25-amino acid cassette located in the C-terminus tail 
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(C-tail) of the receptor and is dependent on charged amino acids (both negative and positive) 

but not sequence specificity in order to function. Furthermore, the existence of a secondary 

apical targeting signal in the 1st extracellular loop of the P2Y1 receptor was uncovered and is 

described in Chapter III. This is a first report of a basolateral-targeting signal that functions 

solely by containing a critical mass of charged amino acids located in close proximity to the 

plasma membrane.  

 

2. Materials and Methods 

2.1 Construction of HA-tagged P2Y1 and P2Y2 receptor chimeras, mutants and 

truncations 

Three general methods were used to generate the HA-tagged P2Y receptor chimeras, 

truncations, and mutant constructs utilized in this study. To construct chimeras and simple 

mutants, overlap extension PCR (Ho et al., 1989) using Pfu polymerase (Stratagene, La Jolla, 

CA) was employed. The outside primers contained an EcoRI restriction site at the 5’-end and 

a XhoI site at the 3’-end of the coding sequence. The resulting PCR products were digested 

with EcoRI and XhoI and ligated into similarly digested pLXSN retroviral expression 

vectors. To construct truncation mutants, PCR amplification was performed with 3’-primers 

containing a stop codon at the appropriate position and a XhoI site to facilitate cloning. 

To construct receptors containing multiple point mutations, long overlapping primers 

(~ 60 bases) encoding various mutations within the C-tail of the P2Y1-364Z receptor were 

utilized. The sense primer contained a XhoI restriction site and the antisense primer 

contained a BamHI site, respectively, at the 5’ end. The primers overlapped by 

approximately 18 bases in the middle of the target sequence. The primers were annealed, 
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filled-in with the Klenow fragment of DNA polymerase I (New England BioLabs, Beverly, 

MA), digested with XhoI and BamHI, and the small double-stranded fragment was ligated 

into a similarly digested pLXSN-HA-P2Y1-339Z plasmid in which a XhoI site was created 

by silent mutation of codon-336 and a BamHI site was incorporated at the end of the coding 

sequence. Similar methods were used to make P2Y2- and BK2-P2Y1 C-tail mutants, with the 

fusion sites at P2Y2-R315 and BK2-R313, respectively. In addition, each of the cloned 

receptors harbored an HA epitope tag (YPYDVPDY) following the initiating methionine 

residue. Previous studies have shown that the presence of an HA epitope at the N-terminus of 

a P2Y receptor has no effect of its function (Sromek and Harden, 1998). 

 

2.2 Cell culture and expression of receptor constructs 

Madin-Darby canine kidney type II cells (MDCK(II); ATCC, Rockville, Maryland) 

were subcultured in DMEM/F12 (1:1) medium (Invitrogen, Carlsbad, CA) supplemented 

with 5% fetal bovine serum (FBS; Hyclone, Gaithersburg, MD) and 1X pen/strep in a 

humidified incubator at 37oC with 5% CO2 and 95% air. LLC-PK1 cells were subcultured in 

alpha medium supplemented with 10% fetal bovine serum (FBS; Hyclone) and 1X pen/strep 

in a humidified incubator at 37oC with 5% CO2 and 95% air. 

Recombinant retroviral particles were produced by calcium phosphate-mediated 

transfection of PA317 cells with pLXSN vectors containing HA-tagged hP2Y receptor 

constructs as previously described (Comstock et al., 1997) and used to infect the cell lines 

listed above. Geneticin-resistant cells were selected after 7-10 days with 1 mg/ml G418 and 

maintained in medium containing 0.4 mg/ml G418. 
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2.3 Confocal Microscopy 

 This assay was performed as described in Chapter II section 2.3 under the same 

heading. 

 

2.4 Quantification of cell surface HA-tagged P2Y receptor constructs  

 This assay was performed as described in Chapter II section 2.4 under the same 

heading. 

 

3. Results 

3.1 Delimitation of the basolateral targeting signal in the P2Y1 receptor 

As shown in section 3.1 of Chapter III, the P2Y1 receptor C-tail contains a basolateral 

targeting signal that is dominant over a secondary apical targeting signal located in its main 

body. In order to delimit the basolateral targeting signal of the P2Y1 receptor, we constructed 

a series of C-tail truncations. These experiments took advantage of the cryptic apical signal 

in the main body of the receptor, which redirects the receptor to the apical membrane upon 

disruption of the dominant basolateral targeting signal. Given the role of PDZ-binding motifs 

in protein targeting (Altschuler et al., 2003), we first examined the localization of the P2Y1-

369Z receptor, which was missing the last four amino acids (DTSL) that fit a classic type I 

PDZ-binding motif (Fam et al., 2005). Confocal analysis of this receptor demonstrated that 

there was no change in basolateral targeting, eliminating the PDZ-binding motif as a 

targeting signal (Fig. 16). Deletion of the next five amino acids of the C-terminal tail (P2Y1- 
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Figure 16. Localization of P2Y1 ∆ C-tail receptors. 

A) A series of truncations in the C-tail of the P2Y1 receptor was constructed and the resulting 
receptors were stably expressed in polarized MDCK cells. The localization of these truncated 
receptors was analyzed by confocal microscopy in order to delimit the basolateral targeting 
signal. The basolateral targeting signal is contained within a stretch of 25 amino acids 
between amino acids Thr339 and Glu364. B) Cell surface biotinylation assays were carried out 
as described in Section 2.4 of Chapter II. The numbers below each lane represent the average 
percent distribution of the indicated receptor at each membrane domain (n=3). 
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364Z) also had no effect on basolateral targeting (Fig. 16). In contrast, further removal of 5, 

15, or 25 amino acids (P2Y1-359Z, P2Y1-349Z and P2Y1-339Z, respectively) of the C-

terminal tail resulted in the gradual redistribution of the receptor from the basolateral to the 

apical surface. Truncation of 34 amino acids of the P2Y1 receptor C-tail (P2Y1-339Z) 

resulted in the complete redistribution of the receptor to the apical membrane. These data 

suggested that the basolateral-targeting signal (referred to hereafter as the basolateral-

targeting cassette or BLC) in the P2Y1 receptor is 25 amino acids in length and is located 

between Arg340 and Glu364 (Fig. 16). As above, biotinylation experiments were in complete 

agreement with the distributions determined by confocal microscopy (Fig. 16B). 

To verify that no other amino acids were necessary for directing basolateral targeting, 

we fused the 25-amino-acid BLC to R315 of the P2Y2 receptor (P2Y2-315/BLC), which is just 

four amino acids beyond the predicted end of TM7. Whereas the truncated P2Y2–315Z 

receptor was expressed at the apical membrane, the P2Y2 receptor containing the P2Y1 BLC 

was expressed exclusively at the basolateral membrane (Fig. 17). Thus, the 25-amino-acid 

BLC acts as an autonomous signal capable of directing different receptors to the basolateral 

membrane.We next examined the importance of the location of the BLC relative to TM7 in 

its ability to direct basolateral targeting. For these experiments, we fused the BLC at different 

points along the primary sequence of the C-terminal tail of the P2Y2 receptor. As described 

above, fusion of the BLC to R315 of the P2Y2 receptor targets the receptor completely to the 

basolateral membrane (Fig. 17). In contrast, the BLC began to lose its ability to direct 

basolateral targeting when fused following G337 of the P2Y2 receptor (82% basolateral), 

which was 26 amino acids removed from TM7, and almost completely lost its ability to  
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Figure 17. Distance from the membrane is important for the functioning of the 
basolateral cassette (BLC). 
A) Previous experiments show that the replacement of the endogenous P2Y2 C-tail with the 
BLC redirected this apically targeted receptor to the basolateral membrane. In order to test 
the effect of distance on BLC function, the BLC was placed further and further away from 
the plasma membrane surface along the P2Y2 C-tail. These P2Y2 C-tail/BLC chimeras were 
expressed in polarized MDCK(II) cells and examined by confocal microscopy and 
quantitative biotinylation assays in order to determine receptor localization. B) Cell surface 
biotinylation assays were carried out as described in Section 2.4 of Chapter II. The numbers 
below each lane represent the average percent distribution of the indicated receptor at each 
membrane domain (n=3). 
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direct basolateral targeting (22% basolateral) when fused 46 amino acids from TM7 

(following E357). P2Y2 receptors truncated after G337 and E357 but lacking the P2Y1 BLC were 

targeted to the apical membrane, demonstrating that the observed basolateral targeting was 

due to the action of the BLC (data not shown). These data suggest that the location of the 

BLC relative to TM7 is critical in its ability to confer basolateral targeting. 

Based on these results, we also tested whether the BLC was capable of mediating 

membrane binding by examining its ability to confer basolateral targeting to a normally 

soluble, cytoplasmic protein such as green fluorescent protein (GFP). We expressed wild-

type GFP and GFP containing the BLC sequence at its C-terminus (GFP/BLC) in MDCK(II) 

cells and analyzed the localization of these proteins by confocal microscopy. A diffuse 

distribution pattern throughout the cytoplasm was observed for both GFP and GFP/BLC (Fig. 

18), demonstrating that the BLC does not promote membrane association and that it must be 

part of a membrane-bound protein in order to function. 

 

3.2 Role of µ1B in basolateral targeting of the P2Y1 receptor 

Previous studies have demonstrated that the µ1B subunit of the adaptor protein complex AP1 

plays an important role in the basolateral targeting of certain receptors such as the transferrin 

receptor (Folsch et al., 1999). The porcine epithelial cell line LLC-PK1 lacks µ1B and 

therefore mistargets transferrin receptors to the apical membrane. To determine whether µ1B 

is involved in basolateral targeting of the P2Y1 receptor, we expressed the receptor in LLC-

PK1 cells and determined its localization by confocal microscopy. Just as in MDCK,  
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Figure 18. The basolateral cassette (BLC) must be connected to a membrane protein to 
promote targeting.  
The BLC was placed on the C-terminus of green fluorescent protein (GFP) in order to test the 
ability of the BLC to target a soluble, cytoplasmic protein to the basolateral membrane. GFP 
with and without the BLC was stably expressed in polarized MDCK(II) epithelia cells and 
confocal images were collected. Addition of the basolateral cassette to the C-terminus end of 
GFP did not redirect this soluble protein to the BL membrane surface. This result 
demonstrated that the BLC must be tethered to the plasma membrane in order to function. 
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Figure 19. Localization of P2Y1 receptors in LLC-PK1 epithelial cells. 

The µ1B subunit of adaptor protein 1 (AP1) has been shown to be involved in the targeting 
of proteins to the basolateral membrane of polarized epithelial cells. To test the involvement 
of µ1B in the targeting of P2Y1 to the BL membrane we expressed this receptor in LLC-PK1 
epithelial cells, a cell line known to be deficient in µ1B protein, and examined these cells 
with confocal microscopy. 
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16HBe14o- and Caco-2 cells, the P2Y1 receptor was expressed exclusively at the basolateral 

membrane of LLC-PK1 cells (Fig. 19). Thus, µ1B is not involved in basolateral targeting of 

the P2Y1 receptor. 

Several short sequences, such as the tyrosine- and di-hydrophobic-based motifs 

(Brown and Breton, 2000), have been suggested to act as basolateral targeting motifs. The C-

terminal tail of the P2Y1 receptor does not contain a Tyr residue, but there are three potential 

di-hydrophobic sequences: L350Q351, L359N360, and I361L362. To examine whether di-leucine 

motifs play any role in targeting, we mutated all of the leucine and isoleucine residues to 

alanine in the P2Y1-364Z receptor. When expressed in MDCK(II) cells, the mutant receptor 

was completely basolateral, indicating that di-hydrophobic motifs are not involved in the 

targeting of P2Y1 receptors (Fig. 20).  

 

3.3 Charged amino acids in the BLC are critical for basolateral targeting 

Mutagenesis of the BLC was carried out to identify key amino acids involved in 

basolateral targeting. Given the length of the signal and the gradual loss of basolateral 

targeting upon truncation, mutating one or two residues at a time to alanine was likely to be 

not very informative; therefore, we utilized a more global approach in which we mutated 

entire functional classes of amino acids to alanine. For example, to determine the role of 

hydroxylated amino acids (and the potential role of phosphorylation) in targeting, we 

mutated all five Ser/Thr residues within the BLC and expressed the receptor in MDCK(II) 

cells. Confocal microscopy revealed no change in basolateral localization, indicating that 

these amino acids (and by inference, phosphorylation) were not important for targeting of  
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Figure 20. Sorting of the P2Y1 receptor does not utilize a Di-leucine motif. 
Di-leucine motifs have been shown to be involved in the targeting of proteins to the 
basolateral membrane in polarized epithelia. We tested the possibility that the basolateral 
cassette of P2Y1 may utilize leucine residues in order to function by mutating all four of 
these amino acids to alanine.  This mutant receptor was expressed in polarized MDCK(II) 
cells and analyzed by confocal microscopy in order to see if mutating leucine residues to 
alanine disrupted basolateral targeting. The basolateral localization for the P2Y1 BLC (L A) 
mutant receptor in MDCK(II) cells indicates that the targeting of P2Y1 to the BL surface 
does not involve a Di-leucine motif. 
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Figure 21. Localization of P2Y1 C-tail mutant receptors. 
Receptors containing mutations of the four different classes of amino acids to alanine 
residues (mutations highlighted in red within primary sequences above) were constructed and 
stably expressed in polarized MDCK cells. The localization of these mutated receptors was 
analyzed by confocal microscopy in order to discern which amino acids mediate the 
basolateral targeting of the P2Y1 receptor.  
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the P2Y1 receptor (Fig. 21). Mutation of the four amidated amino acids resulted in only a 

small disruption in basolateral targeting. In contrast, mutation of either all five basic residues 

or all four acidic residues had much more marked effects on basolateral targeting. For 

example, mutation of the acidic residues resulted in redirection of nearly 70% of the 

receptors to the apical membrane, while mutation of the basic residues caused nearly 90% of 

receptors to be localized to the apical membrane. These data indicated a major role for 

charged amino acids in basolateral targeting of the P2Y1 receptor. Because the mutations 

were carried out with full-length protein, one concern was that residues flanking the BLC 

(especially the charged residues) might influence targeting of the receptor once residues in 

the BLC were mutated. However, when we repeated these experiments in the context of the 

P2Y2-315/BLC receptor, which minimizes the concern of flanking amino acids, essentially 

identical results were obtained (data not shown). 

We also examined the targeting properties of the skate P2Y1 (sP2Y1) receptor, which 

is ~60% identical to its human homologue, to determine whether basolateral targeting was 

conserved across species, and by extension, whether conserved amino acid residues and/or 

motifs within its C-terminal tail might mediate such targeting. Comparison of the C-terminal 

tail sequences for human and skate P2Y1 receptors showed that most of the charged (both 

basic and acidic) and polar amino acids are conserved (Fig 22). When expressed in 

MDCK(II) cells, the sP2Y1 receptor was targeted exclusively to the basolateral membrane 

(Fig. 22). These data are consistent with the conclusion that charged amino acids are critical 

mediators of basolateral targeting of the P2Y1 receptor. 

 

 



 

  105

Figure 22. Localization of P2Y1 receptor homologues. 
The wild-type human (hum) and skate (ska) P2Y1 receptor homologues were stably 
expressed in polarized MDCK(II) cells and localization of these tagged receptors was 
examined by confocal microscopy. These two homologues have very high protein sequence 
identity except in the C-tail (the location of the BL targeting signal). The skate P2Y1 receptor 
homologue is clearly localized to the basolateral membrane of MDCK(II) cells as is its 
human counterpart. This result further emphasizes the critical role of acidic and basic 
residues in mediating the polarized localization of the P2Y1 receptor (see Figure 21). 
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3.4 The BLC functions in a sequence-independent manner 

The existence of tyrosine- and di-hydrophobic-based basolateral sorting signals in 

other proteins suggests that at least some basolateral signals have sequence specificity. 

However, there are many examples of sorted proteins that lack these signals, and within this 

class of proteins no consensus sequence has been identified to date (Beau et al., 2004; Hobert 

et al., 1997; Le Gall et al., 1997). To determine the sequence specificity of the BLC, we 

inverted the BLC (from RKAS…ILPE to EPLI…SAKR) in the context of the full-length 

P2Y1 receptor and expressed the mutant receptor in MDCK(II) cells. Confocal microscopy 

and biotinylation revealed that the mutant receptor, like the native P2Y1 receptor, localized 

almost exclusively at the basolateral membrane (Fig. 23, left panel). These data demonstrate 

that the BLC is functional, no matter its direction within the C-terminal tail. 

One potential explanation for these results is that the BLC forms an amphipathic 

helix, such that inverting the sequence does not change the character of the BLC. Indeed, 

examination of the sequence of the BLC by a variety of secondary sequence prediction 

programs suggested the sequence forms a helix with most of the charged amino acids on one 

side of the helix and the uncharged amino acids on the other. We tested this hypothesis by 

scrambling the sequence of the BLC, making sure that the scrambled sequences destroyed 

any potential amphipathicity of the cassette. As shown in Fig. 23 (middle and right panels), 

P2Y1 receptors bearing the scrambled BLC sequences were still sorted largely to the 

basolateral surface. Since disruption of the targeting signal should redirect the protein to the 

apical membrane by virtue of the apical targeting signal in the main body of the receptor,  

 

 



 

  107

Figure 23. Localization of P2Y1 C-tail inversion and scramble mutant receptors. 
A) The role of charged amino acid position in its relation to BLC function was tested by 
inverting or randomly scrambling (2 versions) the primary sequence of the P2Y1 receptor 
BLC, expressing these mutants in MDCK(II) cells and analyzing them with confocal 
microscopy. B) Cell surface biotinylation assays were carried out as described in Section 2.4 
of Chapter II. The numbers below each lane represent the average percent distribution of the 
indicated receptor at each membrane domain (n=3). 



 

  108

these data demonstrate that the scrambled sequences were still capable of directing a majority 

of the protein to the basolateral surface and suggest that the BLC operates largely in a 

sequence-independent manner.  

 

3.5 The role of charge number and charge balance in basolateral targeting 

The data presented thus far suggest that charged amino acids are critical for proper 

targeting. To investigate the role of charged residues in basolateral targeting in more depth, 

we made a series of mutations in the BLC of the P2Y1-364Z receptor. This truncated 

construct was chosen as a template to minimize any problems of charged residues following 

the BLC substituting for those mutated within the cassette. There are 4 acidic and 5 basic 

residues within the 25 amino acid BLC, resulting in an overall charge of +1. In the first series 

of constructs, we progressively mutated pairs of basic and acidic amino acids to alanine, 

starting from the ends of the cassette and moving towards the middle, while keeping the 

overall charge of the BLC at +1 (Fig. 24). These receptors were expressed in MDCK(II) cells 

and their localization was determined by confocal microscopy. Mutation of one or two pairs 

of charged amino acids (maintaining the overall charge at +1) had a small effect on 

basolateral targeting (Fig. 24). In contrast, mutation of three pairs of charged amino acids 

resulted in a severe disruption of targeting, while mutation of four pairs of charged residues 

resulted in the complete loss of basolateral targeting. These data support a model in which 

overall charge is critical in maintaining the ability of the BLC to target the P2Y1 receptor to 

the basolateral membrane. When either the overall charge is altered or the total number of 

charged amino acids is reduced below a certain threshold, the BLC no longer functions to  
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Figure 24. The role of charge number in BLC function. 
The number of charged (positive and negative) amino acids in the BLC were reduced by 
mutating them to alanine (mutant BLC sequences listed above), while maintaining the overall 
charge of +1. Mutant receptors were expressed in MDCK(II) cells with their targeting profile 
analyzed by confocal microscopy. These mutant receptors take advantage of the fact that as 
the targeting function of the BLC is disrupted the receptor moves to the apical membrane, 
which is easily discerned by confocal analysis. 
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direct targeting.  

In the previous experiment, we examined the role of charge number in BLC function 

by progressively reducing the number of basic and acidic residues while maintaining an 

overall balance of +1. The role of charge balance was addressed by maintaining the number 

of charged amino acids at nine, but shifting the balance to either all negative (i.e. by mutating 

the basic residues to Asp or Glu) or all positive (i.e. by mutating the acidic residues to Lys or 

Arg). As shown in Fig. 25, both mutant receptors were localized to the basolateral membrane 

when expressed in MDCK(II) cells, indicating that a specific balance of charged (positive 

and negative) amino acids is not required for the proper functioning of the BLC. To be sure 

that charged residues upstream of the BLC in the P2Y1 receptor were not influencing our 

results, we also repeated these experiments in the P2Y2-315/BLC construct. The all acidic 

and all basic BLC constructs behaved identically to their counterparts in the P2Y1 receptor 

backbone (data not shown), again indicating that the BLC functions as an autonomous signal 

and does not depend on additional sequences from the rest of the receptor to function. 

Finally, we addressed whether the charged and amidated amino acids of the BLC by 

themselves were necessary and sufficient to direct basolateral targeting. This was tested by 

mutating all of the uncharged amino acids (Ser, Thr, Leu, Ile, Pro, and Met) to alanine within 

the BLC of the P2Y1 ∆ 364 receptor. As shown in Fig. 26, the mutant receptor was localized 

to both the apical and basolateral membranes of MDCK(II) cells, demonstrating that the 

targeting function of the BLC was partially disrupted. These results suggest that the function 

of the BLC targeting signal is not dependent solely on the amount of charged amino acids  
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Figure 25. The role of charge balance in BLC function.  
The role of overall charge balance in the functioning of the BLC was tested by shifting the 
wild-type balance from +1 to +9 or -9. This was accomplished by mutating all the basic 
amino acids within the BLC to acidic residues resulting in the -9 mutant or vice-versa 
resulting in the +9 mutant (primary sequences listed above). The resulting mutant receptors 
were expressed in MDCK(II) epithelial cells for confocal analysis and once again took 
advantage of the fact that disruption in BLC function results in apical targeting, which is 
easily seen. 
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Figure 26. The role of charged/amidated amino acids in BLC function. 
A) The role of just the charged and amidated amino acids to direct BL targeting was tested 
by mutating all other residues (Ser, Thr, Leu, Ile, Met, and Pro) to alanine resulting in the 
P2Y1 BLC (Unch->Ala) mutant receptor. This mutant receptor was expressed in MDCK(II) 
B) Cell surface biotinylation assays were carried out as described in Section 2.4 of Chapter 
II. The numbers below each lane represent the average percent distribution of the indicated 
receptor at each membrane domain (n=3). 
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present, but has additional requirement(s) as well. One potential interpretation of these results 

is that mutagenesis of all uncharged amino acids in the BLC to alanine disrupted the 

secondary structure of the cassette that is critical for a fully functional targeting signal. 

 

4. Discussion 

In this study, we have defined several unusual features of the basolateral sorting 

signal in the C-terminal tail of the P2Y1 receptor. This signal is relatively large (25 amino 

acids) compared to other basolateral signals, is markedly hydrophilic (9 charged residues), 

and lacks all previously identified basolateral targeting motifs. Importantly, the signal 

functions autonomously, as it is capable of redirecting several different receptors to the 

basolateral membrane provided that it is located close to the end of TM7. Total charge, but 

not charge balance, within the signal is critical for proper basolateral targeting. Finally, our 

results indicate that although the signal functions irrespective of the order of the amino acids 

within the sequence, there likely are structural constraints that are important for proper 

targeting. These properties have not been recognized for any functional basolateral signal 

sequence to date. 

Basolateral sorting signals characterized to date are usually short, cytoplasmic 

sequences that can be classified into one of three groups. The first group is characterized by 

an essential tyrosine that is often part of an NPXY (where X is any amino acid) or YXXΦ 

motif (where Φ is a bulky hydrophobic residue), the second group by a di-hydrophobic 

(typically dileucine) sequence, while the third group is comprised of a diverse collection of 

sequences that vary in length and have no similarities to the targeting signals of the first two 

groups. The BLC in the P2Y1 receptor, which does not contain a tyrosine-based or di-
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hydrophobic motif, is a representative member of the third group of basolateral targeting 

signals.  

Although it is targeted exclusively to the basolateral surface of polarized epithelial 

cells, the P2Y1 receptor actually contains two targeting signals: an apical signal in the main 

body of the receptor and the dominant basolateral targeting signal in the C-tail that we have 

characterized in this study. The presence of two targeting signals in a 7TM receptor has been 

observed previously. For example, the follicle-stimulating hormone receptor (FSH receptor), 

which is normally located on the basolateral surface of polarized epithelial cells, is redirected 

to the apical membrane upon removal of its C-tail (Beau et al., 1998). Thus, there is 

precedent that a receptor contains two independent targeting signals. In both the P2Y1 and 

FSH receptor, the basolateral signal is dominant over the apical signal, which is usually but 

not always observed in other sorted proteins (Mostov et al., 2000). One possibility for the 

presence of two different signals is that alternative splicing could remove the signal in the C-

tail of the receptor, thus allowing the apical signal to act unimpeded. Indeed, the FSH 

receptor has two alternatively spliced forms in addition to the primary transcript, one of 

which results in a different C-terminal tail lacking the basolateral targeting signal identified 

by Beau et al. (Beau et al., 1998; Touyz et al., 2000). Although the targeting of this 

alternatively spliced receptor has not been examined, it remains feasible that splicing may 

generate forms that target to two different membrane surfaces in Sertoli cells. In contrast, the 

gene encoding the P2Y1 receptor appears to lack introns, suggesting that this receptor does 

not undergo alternative splicing. Another possibility is that a primordial receptor was 

originally targeted to the apical membrane, but during evolution to the current receptor the 

basolateral signal was created to divert it to the basolateral membrane. 
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Our investigation into the targeting properties that underpin this unusual basolateral 

signal yielded some surprising results. First, we investigated the possibility that the BLC 

operates in a similar fashion to known basolateral sorting signals (i.e. tyrosine or di-leucine 

based motifs) but found this not to be the case. Once it was established that the basolateral 

delivery of the P2Y1 receptor was not dependent on previously characterized sorting signals 

and/or mechanisms we proceeded to determine the properties of this novel signal. Several 

different experiments were carried out showing that the signal is a 25 amino acid cassette in 

which the cluster of charged residues are most critical for proper function. Furthermore, the 

signal requires that it be tethered to a membrane-bound protein and be in close proximity to 

TM7 in order to function effectively. Moreover, the BLC is not dependent on a specific 

sequence nor does it require a certain balance of positively and negatively charged amino 

acids but seems to rely solely on charge number.  

Surprisingly, we showed that sequence specificity of the BLC is not required for its 

function. Thus, the function of the BLC is almost entirely retained when the sequence was 

inverted C→N, scrambled (two different scrambled sequences were tested), or when the 

charged residues were changed to either all positive or all negative. These results strongly 

suggest that the signal functions on the basis of a physiochemical interaction (i.e. general 

hydrophilicity) and not by a specific protein:protein binding scheme or salt-bridge 

interactions. One of our initial hypotheses on the mechanism of the basolateral sorting 

function of the BLC was that the positive charges (perhaps localized to one side of a helix) 

interact with the negatively charged phospholipid surface to promote the association of the 

receptor with a particular lipid microenvironment found only in the basolateral membrane. 

This hypothesis was similar to the mechanism described for the MacMARCKS protein, a 
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myristoylated PKC substrate and peripheral membrane protein (Myat et al., 1998). Aderem 

and colleagues have shown that a cluster of positively charged amino acids in MacMARCKS 

promotes association to the basolateral membrane of MDCK(II) epithelial cells, presumably 

through an electrostatic interaction with negatively-charged phospholipids located in the 

inner leaflet of the lateral plasma membrane. Lateral localization is then lost when the protein 

is phosphorylated by PKC, which neutralizes the positively charged signal and disrupts the 

electrostatic interaction between MacMARCKS and the plasma membrane. However, our 

data clearly show that the BLC of the P2Y1 receptor functions normally even when all of the 

basic residues are mutated to acidic residues, which would likely rule out any interaction 

with negatively charged phospholipids. Thus, the P2Y1 receptor BLC peptide must direct 

basolateral targeting by a different mechanism.  

We hypothesized that the P2Y1 basolateral targeting signal and the way it functions is 

not an isolated example in nature but characterizes a new type or class of sorting signal that 

heretofore has not been described. We explored this hypothesis by searching for any 

published reports describing an autonomous basolateral signal that did not operate according 

to any known motifs/mechanisms and could not be fully explained by the primary 

investigators. Several examples were found scattered throughout the literature and include 

two members of the epidermal growth factor receptor family (EGFR/ErbB1 and ErbB2), the 

neural cell adhesion molecule (N-CAM), and thyrotropin stimulating hormone receptor 

(TSHR) and are listed (including the P2Y1 receptor) in table 4. With the exception of the 

ErbB2 receptor, these targeting signals are approximately 20 amino acids in length and 

contain a cluster of both negatively and positively charged residues that comprise at least  
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Receptor Primary Sequence Chrg/Tot Reference 
ErbB2        LQETELVEPLT 3/11 (27%) (Dillon et al., 2002) 
EGF KRTLRRLLQERELVEPLTPSGEA 9/23 (39%) (Hobert et al., 1997) 

N-CAM PNHDGGKHTEPNETTPLTE 7/19 (37%) (Le Gall et al., 1997) 
TSHR RQGLHNMEDVYELIENSH 7/18 (39%) (Beau et al., 2004) 
P2Y1 RKASRRSEANLQSKSEDMTLNILPE 9/25 (36%)  

 
Table 4. Basolateral targeting signals with unidentified sorting motifs. 
A search of the literature reveals several basolateral targeting signals that were successfully 
identified and delimited, but do not contain any previously characterized motifs. The primary 
sequence for each of these signals is listed with the charged amino acids in bold. In addition, 
the number of charged residues over the total number of amino acids is provided, which is 
utilized to calculate the charge percentage for each signal.  
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35% of the signal. In addition, all of these targeting signals are located in close proximity to 

the plasma membrane.  

Interestingly, the EGF (ErbB1) and ErbB2 receptors belong to the same family but 

utilize different portions of the same basolateral targeting signal in order to achieve a 

polarized distribution. In the case of the EGFR, a long version that is 23 amino acids confers 

basolateral targeting, while a shorter portion (11 amino acids) of the same exact signal is all 

that is required for the basolateral targeting of the ErbB2 receptor (see alignment in Table 4). 

The authors of the ErbB2 study suggest that these overlapping findings provide strong 

evidence that this juxtamembrane region of the receptor contains critical targeting 

information.  

Published reports on the ErbB2, N-CAM, and EGFR basolateral targeting signals 

identified key amino acids that mediated signal function to varying degrees. In the case of the 

EGF receptor, the investigators demonstrated that a polyproline core as well as an arginine 

residue play a role in basolateral targeting, while proline and glumatic acid residues seem to 

play a role in directing basolateral targeting in the N-CAM sorting signal. However, in both 

cases the mutagenesis of these key amino acids only caused partial disruption to the 

basolateral targeting signal. In all four examples (ErbB2, N-CAM, TSHR and EGFR) the 

investigators were able to delimit the targeting signals but were unable to identify all of the 

key amino acids involved in the functioning of these signals suggesting that other residue(s) 

are involved. One interpretation of these results is that a critical mass of charged amino acids 

is required for proper receptor targeting to the basolateral membrane. 

Although total charge is the predominant feature directing basolateral targeting of the 

P2Y1 receptor, our data and analyses also indicate that is not the only requirement. For 
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example, the C-tail of the apically targeted P2Y6 receptor is 23 amino acids long and contains 

11 charged residues in close proximity to the plasma membrane 

(KKFRRRPHELLQKLTAKWQRQGR). If total charge was all that was important, the 

P2Y6 receptor might be expected to be basolaterally localized, but this is clearly not the case. 

This observation strongly suggests that other features in addition to a cluster of charged 

amino acids exist for these peptide sequences to act as targeting signals. One possibility is 

that there exists a conformational requirement (i.e. secondary structure) for these peptides to 

confer targeting information. Consistent with this possibility, when we mutated all of the 

uncharged and non-amidated amino acids within the BLC to alanine while keeping the 

charged and amidated amino acids intact, basolateral targeting was markedly disrupted. This 

suggests that in addition to total charge, some structural information is also important for 

proper targeting. The predominantly basolateral location of the P2Y1 receptor containing a 

scrambled BLC may reflect the fact that this structural information is mostly retained when 

the amino acids were scrambled. Indeed, several studies have suggested that a beta-turn or 

other secondary structural motif is required for proper targeting by cytoplasmic signals 

(Aroeti et al., 1993; Beau et al., 2004; Choowongkomon et al., 2005). 

So how does this sequence direct basolateral targeting? Our data discount a protein 

that binds in a sequence-specific manner, but perhaps there are sorting proteins that recognize 

structural features such as a critical mass of charged residues. These proteins might bind to 

these sorting signals in a charge-dependent, sequence-independent manner and direct sorting 

to the proper membrane surface. In this manner, these proteins would act in a similar fashion 

as β-arrestins, which bind to the C-terminal tails of multiple GPCRs in a phosphorylation-

dependent, sequence-independent manner, and promote endocytosis through clathrin-coated 
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pits (Lefkowitz and Whalen, 2004). One such protein could be VPS26, a protein component 

of the retromer involved in vacuole sorting in yeast, that has a structure highly reminiscent of 

β-arrestin, including a polar core that is a critical structural feature of arrestins (Shi et al., 

2006). Moreover, VPS26 was reported to be involved in transcytosis of the polymeric 

immunoglobin receptor (pIgR) in polarized epithelial cells (Verges et al., 2004). One 

intriguing feature of this scenario is that proteins would not have to rely on a specific 

sequence motif, freeing the sorting signal to interact with other proteins important for the 

function of the specific receptor after the signal directed transport of the protein to the 

basolateral surface. Consistent with this idea, calmodulin has been reported to interact with 

the C-terminus of the P2Y1 receptor, in a region that overlaps with the BLC sequence 

reported here (Arthur et al., 2006). 

In conclusion, we have described a unique basolateral targeting signal that may help 

to define a new class of sorting signal. Our extensive mutagenesis studies determined that the 

P2Y1 receptor is targeted to the basolateral membrane domain by a 25 amino acid cassette 

that relies on charged residues in order to function, must be in close proximity to the PM and 

operates in an autonomous fashion. The results of this study in combination with the findings 

of other investigations on autonomous basolateral targeting signals (i.e. EGFR, TSHR and N-

CAM) suggest that these signals may be operating under the same principles. Furthermore, 

our results suggest that this targeting signal must adopt an as-yet unknown secondary 

structure (e.g. α-helix) in order to function. Indeed, more studies are required in order to 

substantiate our hypothesis that the P2Y1 receptor basolateral targeting signal defines a new 

class of sorting signal. 

 



 

  

 

 

 

CHAPTER V: The C-terminal tail of the P2Y4 receptor contains an apical targeting 

signal 

1. Introduction 

 The human P2Y4 receptor is a uracil nucleotide-activated member of the P2Y 

receptor family that was cloned in 1995 by multiple labs (Communi et al., 1995; Nguyen et 

al., 1995; Stam et al., 1996) and followed by the cloning of the rat (Bogdanov et al., 1998; 

Webb et al., 1998) and mouse (Lazarowski et al., 2001; Suarez-Huerta et al., 2001) 

orthologues. The human orthologue of this receptor is selectively activated by UTP and 

completely antagonized by ATP, whereas the rodent orthologues are activated equipotently 

by both ATP and UTP (Herold et al., 2004; Kennedy et al., 2000). The original cloning 

reports found message for this receptor in human placenta and pancreas tissues, while 

subsequent publications have reported expression of either mRNA or protein for the P2Y4 

receptor in the human lung (Communi et al., 1999), murine stomach, intestine and liver 

(Suarez-Huerta et al., 2001), and in the epithelium of the gerbil inner ear (Marcus and 

Scofield, 2001; Sage and Marcus, 2002).  

 It took several years after the cloning of the P2Y4 receptor before a physiological role 

could be established. One of the first studies to examine the physiological role of the P2Y4 

receptor was by Ko and colleagues, who examined the nucleotide regulation of ion transport 

in equine epithelial cells (Ko et al., 1997). They observed an increase in Isc when UTP or 

ATP was applied to the apical surface of these cells, suggesting that P2Y receptors regulated 

ion transport. Further studies utilizing a cross-desensitization approach revealed the presence 
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of two distinct P2Y receptor populations, one activated by ATP and UTP (and subsequently 

identified as the P2Y2 receptor) and a UTP-selective receptor that later was shown to be the 

P2Y4 receptor. Subsequent studies by this laboratory (McAlroy et al., 2000; Wilson et al., 

1998; Wong and Ko, 2002) demonstrated that activation of apically bound P2Y2, P2Y4 or 

P2Y6 receptors along with the downstream release of intracellular calcium regulates ion 

transport in equine epithelial cells through a calcium-activated chloride channel (CaCC).  

The regulation of epithelial ion transport by P2Y4 receptors was further examined in a 

number of published reports. One group showed a loss of nucleotide regulation of chloride 

transport in the jejunum of P2Y4 receptor knock-out mice (Robaye et al., 2003), while others 

demonstrated that the P2Y4 receptor is involved in the regulation of epithelial potassium 

current in the mouse colon (Matos et al., 2005) and the gerbil vestibulum (Marcus and 

Scofield, 2001). Taken together, these studies define the physiological role of the P2Y4 

receptor, at least in epithelial cells, as a regulator of ion transport, one of the most important 

functions of this cell type (Leipziger, 2003). 

 The studies described above not only helped to establish a physiological role for the 

P2Y4 receptor but they also strongly suggested a polarized distribution of this receptor to the 

apical membrane domain of epithelial cells. While the pharmacological and physiological 

evidence was convincing, no one had published any studies showing an apical targeting 

pattern with a direct method such as immunofluorescence, nor had any targeting signal been 

identified. Thus, we utilized confocal microscopy to directly visualize and confirm the apical 

localization of P2Y4 receptors in a variety of epithelial cells (described in Chapter II) (Wolff 

et al., 2005). Once the steady-state localization pattern of all the P2Y receptors was 

established, we determined the location of the targeting signals for all the receptors 
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displaying a polarized (i.e. apical or basolateral) distribution pattern (described in Chapter 

III), including the P2Y4 receptor. The focus of this chapter is characterization of a novel 

apical targeting signal located in the C-tail of the P2Y4 receptor. 

 

2. Materials and methods 

2.1 Construction of HA-tagged P2Y4 and BK2 receptor chimeras, mutants and 

truncations 

Three general methods were used to generate the HA-tagged P2Y receptor chimeras, 

truncations, and mutant constructs utilized in this study. These methods are described in 

Chapter IV section 2.1 and were utilized to construct HA-tagged P2Y4 and BK2 receptor 

chimeras, mutants and truncations, which are described in this chapter.  

 

2.2 Cell culture and expression of receptor constructs 

Madin-Darby canine kidney type II cells (MDCK(II); ATCC, Rockville, Maryland) 

were subcultured in DMEM/F12 (1:1) medium (Invitrogen, Carlsbad, CA) supplemented 

with 5% fetal bovine serum (FBS; Hyclone, Gaithersburg, MD) and 1X pen/strep in a 

humidified incubator at 37oC with 5% CO2 and 95% air.  

Recombinant retroviral particles were produced by calcium phosphate-mediated 

transfection of PA317 cells with pLXSN vectors containing HA-tagged hP2Y receptor 

constructs as previously described (Comstock et al., 1997) and used to infect the cell lines 

listed above. Geneticin-resistant cells were selected after 7-10 days with 1 mg/ml G418 and 

maintained in medium containing 0.4 mg/ml G418. 
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2.3 Confocal Microscopy 

This assay was performed as described in Chapter II section 2.3 under the same 

heading. 

 

2.4 Quantification of cell surface HA-tagged P2Y receptor constructs  

This assay was performed as described in Chapter II section 2.4 under the same 

heading. 

 

3. Results 

3.1 Delimiting the apical targeting signal in the P2Y4 receptor C-tail 

As shown in section 3.2 of Chapter III, the P2Y4 receptor contains a single targeting 

signal within its C-tail that directs the receptor to the apical membrane of MDCK(II) cells 

(Fig. 12 in Chapter III). In order to delimit this signal, we constructed two series of 

truncations/deletions in its C-tail to delimit the N-terminal and C-terminal ends of the signal. 

These experiments took advantage of the fact that once the apical targeting signal is 

removed, the receptor becomes unsorted. We defined the C-terminal end of the apical sorting 

signal by truncating the last 9 (P2Y4-355Z), 21 (P2Y4-343Z) or 32 (P2Y4-332Z) amino acids 

from the C-terminal end of the full length P2Y4 receptor, and expressing these truncated 

receptors in MDCK(II) for confocal analysis. As seen in Figure 27, the first two truncated 

receptors (P2Y4 ∆355 and P2Y4 ∆343) were targeted exclusively to the apical membrane, 

while the third truncated receptor (P2Y4 ∆332) was unsorted. These results demarcate the C- 
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Figure 27. Defining the C-terminal end of the P2Y4 receptor apical signal. 
The C-terminal end of the P2Y4 receptor apical targeting signal was defined through a series 
of truncation experiments. These experiments took advantage of the fact that once the apical 
targeting signal is removed, the receptor becomes unsorted. We removed the last 9 (P2Y4 ∆ 
332), 21 (P2Y4 ∆ 343), or 32 (P2Y4 ∆ 355) amino acids starting from the C-terminal end of 
the full length P2Y4 receptor. Confocal analysis of these truncated receptors demonstrate that 
the C-terminal end of this apical signal is located at Asp343. 
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terminal end of the P2Y4 apical signal as Asp343. To determine the N-terminal end of the 

apical sorting signal, we replaced the endogenous C-tail of the unsorted BK2 receptor with 

progressively shorter versions of the P2Y4 C-tail with all them ending at Asp343, resulting in 

the construction of BK2/P2Y4 C-tail @(311DKYR…PED343), BK2/P2Y4 C-

tail@(316QLRQ…PED343), BK2/P2Y4 C-tail@(321CGGG…PED343), or BK2/P2Y4 C-

tail@(326KPQP…PED343) chimeric receptors. Confocal analysis of this series showed that the 

first three receptors (311DKYR…PED343, 316QLRQ…PED343, and 321CGGG…PED343) were 

localized to the apical membrane, whereas the 326KPQP…PED343 receptor was unsorted, 

demonstrating that the N-terminal end of the P2Y4 apical signal is located at Cys321 (Fig. 28). 

Taken together, these series of experiments define the apical targeting signal as a 23-amino 

acid cassette with the following primary sequence: 

321CGGGKPQPRTAASSLALVSLPED343. 

3.2 The apical targeting cassette (APC) confers targeting on a basolateral receptor 

 One of the hallmarks of a strong sorting signal is its ability to impart a specific 

targeting itinerary to either an unsorted protein or a protein with a different localization 

pattern. Therefore, we tested whether the APC of the P2Y4 receptor C-tail was capable of 

imparting apical localization to the P2Y12 receptor, which is expressed at the basolateral 

surface even when its C-tail is removed. For these studies, the P2Y4 receptor C-tail from 

311DKYR…PED343 was fused to the truncated P2Y12 receptor just past TM7 to create the 

P2Y12/P2Y4 C-tail chimera. Confocal analysis showed an almost completed redirection of the 

P2Y12 receptor to the apical domain, demonstrating that the APC is both necessary and  
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Figure 28. Defining the N-terminal end of the apical targeting signal. 
The N-terminal end of the apical targeting cassette (APC) was defined by replacing the 
endogenous C-tail of the unsorted BK2 receptor with progressively shorter versions of the 
P2Y4 receptor C-tail with all of them ending at Asp343. The primary sequence of each mutant 
is listed above. Confocal analysis of this series of mutants defined the APC as a 23 amino-
acid cassette with the following sequence: CGGGKPQPRTAASSLALVSLPED. 
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Figure 29. The apical targeting cassette (APC) confers targeting on a basolaterally-
sorted P2Y12 receptor. 

A) The truncated form of the P2Y12 receptor missing its C-tail (P2Y12 ∆ C-tail) is targeted to 
the basolateral membrane of MDCK(II) cells (as shown above) as is its wild-type 
counterpart, making it an ideal backbone to test the strength of apical targeting signals. The 
strength of the APC was tested by constructing a P2Y12/P2Y4 C-tail chimera (primary 
sequence of C-tail region shown above), expressing it in MDCK(II) epithelial cells and 
examining the localization of the receptor with confocal microscopy. B) Cell surface 
biotinylation assays were carried out as described in Section 2.4 of Chapter II. The numbers 
below each lane represent the average percent distribution of the indicated receptor at each 
membrane domain (n=3). 
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sufficient to confer apical targeting (Fig. 29) and that it is dominant over a basolateral signal. 

These results are in contrast to the dogma in the targeting field that basolateral signals always 

override apical signals.  

 

3.3 Inversion of the APC does not disrupt apical targeting 

 In Chapter IV, we demonstrated that the P2Y1 receptor basolateral targeting signal 

functions whether it is in its normal N C orientation or when inverted in the C N 

orientation. This result led us to address whether orientation of the P2Y4 receptor APC is 

crucial to its function. The 23 amino acid APC was inverted from a N C to C N 

orientation within the context of the BK2/P2Y4 C-tail chimera, and the resulting receptor was 

examined by confocal microscopy for alterations in its targeting properties. As seen in Figure 

30, the BK2/P2Y4 C-tail (Inv) receptor remains mostly at the apical surface with some 

cytoplasmic staining seen below the plasma membrane, perhaps suggesting that the receptor 

is not as stable as other chimeras. Overall, we concluded that inversion of the APC had little 

to no effect on its ability to target receptors to the apical membrane but probably decreases 

the stability of the receptor at the plasma membrane. 

 

3.4 The potential role of palmitoylation and phosphorylation in APC function 

 Palmitoylation or acylation of proteins can be crucial for their trafficking to and 

stability at the plasma membrane (Linder and Deschenes, 2007), while phosphorylation also 

has been shown to regulate the cell surface expression of proteins (Mandela and Ordway, 

2006; Myat et al., 1998). We constructed two mutant receptors to test the potential role for  
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Figure 30. Inversion of the APC has a minor effect on its functioning. 
Previous experiments on the P2Y1 receptor targeting signal addressed whether inverting this 
signal would have any effect on its function. We carried out the same experiment on the APC 
of the P2Y4 receptor to test whether orientation of the signal’s primary sequence played a 
role in its function. The BK2/P2Y4 C-tail chimera is localized to the apical membrane of 
MDCK(II) cells demonstrating the proper functioning of the APC, thus, making it an ideal 
chimera to carry out these experiments. The 23 amino acid APC was inverted from its normal 
N C to a C N orientation (inverted sequence is underlined) within the context of the 
BK2/P2Y4 C-tail receptor, expressed in MDCK(II) cells and examined with confocal 
microscopy for any changes in targeting. 
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these protein modifications in the functioning of the APC. In the first mutant receptor, a 

potential palmitylation site in the APC (Cys321) was eliminated by mutating this amino acid 

to Ser (resulting in the hBK2/P2Y4 C-tail C321A mutant), while the second mutant examined 

the role of hydroxylated amino acids (and the potential influence of phosphorylation) by 

mutating all of the Ser and Thr residues within the entire C-tail of the P2Y4 receptor to 

alanine (resulting in the P2Y4 C-tail S/T-A mutant). As shown in Figure 31, both mutant 

receptors were expressed at the apical domain, suggesting that the APC functions 

independently of both these potential modifications.  

 

3.5 Mutagenesis analysis of the apical targeting signal 

The next series of experiments were designed to identify key amino acids involved in 

the functioning of this apical targeting cassette (APC) by utilizing a mutagenesis approach. 

With this approach we constructed four different mutant receptors and expressed them in 

MDCK(II) cells for examination of their targeting properties by confocal microscopy. 

Experiments characterizing the BLC in the P2Y1 receptor demonstrated that charged amino 

acids are critical to signal function; therefore, we tested the role of acidic and basic amino 

acids in the functioning of the APC by mutating relevant residues to alanine. In addition, we 

wanted to test the role of a hydrophobic core located near the C-terminal end of the signal by 

mutating the hydrophobic residues (Leu and Val) to alanine. The final construct tested the 

role of potential secondary protein structure created by the 326PQP328 motif by mutating these 

amino acids to alanine (resulting in the hBK2/P2Y4 Ct PQP AAA mutant). Confocal  
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Figure 31. Potential role for acylation and phosphorylation in APC function. 
Both palmitoylation and phosphorylation of proteins regulate their delivery to the plasma 
membrane and may play a vital role in the targeting of the P2Y4 receptor. We tested this 
hypothesis by mutating the target amino acids for both palmitate and kinases to inert residues 
and looked for disruptions in apical targeting, which would indicate a role for these 
modifications in APC function. In the case of palmitoylation, Cys321 was mutated to serine 
(mutation underlined), while the role of phophorylation was investigated by mutating all of 
the serines and threonines (with exception of a single Thr) to alanine (mutations underlined). 



 

  133

analysis of the targeting profile for these mutant constructs yielded some surprising results. 

In all four mutants, there was no significant disruption in apical targeting of the receptor, 

demonstrating that these different classes of amino acids and potential secondary structure 

are not involved in the functioning of the APC (Fig. 32). However, we did observe 

significant accumulation of receptor in the cytoplasm of the cell especially in the case of the 

mutant hydrophobic receptor (L/V A). This result in particular seems to suggest that the 

APC may do more than act as cellular zip code ensuring proper delivery to the apical 

membrane of epithelial cells. One possibility includes the APC acting as a membrane or 

scaffolding anchor, ensuring stability of the receptor once it is delivered to the apical domain. 

 

4. Discussion 

 In this chapter we have described a series of experiments to delimit and characterize 

the apical targeting signal in the C-tail of the P2Y4 receptor. We determined that the apical 

signal is a 23 amino acid linear cassette (primary sequence: 

321CGGGKPQPRTAASSLALVSLPED343) that is capable of overriding a basolateral sorting 

signal in another P2Y receptor and does not require modifications such as palmitoylation or 

phosphorylation in order to function. In addition, this apical targeting cassette (APC) remains 

capable of operating as a sorting signal upon inversion of its primary sequence or after 

mutation of its charged residues (i.e. K/R A and E/D A). Taken in its entirety, the 

mutagenesis results seem to suggest that the APC does not rely on a few key residues for its 

function as is the case for other signals (Cheng et al., 2002), but requires the entire sequence 

for proper operation. Furthermore, the results also seem to suggest the APC may have a role  
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Figure 32. Mutagenesis analysis of the APC. 
A series of mutagenesis experiments were carried out in order to identify key amino acids, if 
any, that are involved in the functioning of the APC. These mutageneis experiments were 
carried out in the context of the apically targeted BK2/P2Y4 C-tail chimera wherein we tested 
the role of basic (K/R A) and acidic (E/D A) amino acids as well as hydrophobic residues 
(L/V A) by mutating them to alanine as indicated. Finally, we mutated a short proline motif 
(PQP) to alanine to test the potential role a secondary structure may play in APC function 
given the fact that prolines may induce such structure.  
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in protein stability due to the major disruption in expression of cell-surface receptor by the 

L/V A mutant. The elucidation of this new sorting signal adds to the growing list of similar 

signals (discussed below) and may help to uncover a consensus sequence or physical 

properties important for targeting of proteins to the apical membrane. 

 Basolateral targeting signals are usually short peptide sequences located in the 

cytoplasmic region of proteins that have been shown, in some cases, to interact with specific 

sorting machinery (i.e. AP1) to ensure proper delivery with high-fidelity (Mostov et al., 

1999). Furthermore, consensus basolateral targeting sequences have emerged from the last 15 

years of research that include tyrosine- and dileucine-based motifs (Mostov et al., 2003). In 

the case of apical targeting signals and related sorting machinery, the picture is less clear. 

These signals have been found in the extracellular, transmembrane and intracellular 

(cytoplasmic) regions of proteins, and until very recently little progress has been made on 

identifying the machinery involved in apical targeting. The initial work on identifying apical 

targeting signals determined that post-translational modifications such as glycosylation was 

sufficient to confer apical targeting to at least some proteins, presumably by allowing the 

modified protein to associate with lipid rafts at the apical domain (Rodriguez-Boulan and 

Gonzalez, 1999). However, glycosylation does not automatically shuttle a protein to the 

apical membrane and is therefore not considered to be a bona fide sorting signal. 

Our understanding of apical targeting (i.e. the signals and machinery involved) was 

recently expanded when several labs published reports describing novel apical targeting 

signals together with possible mechanisms by which the signals may operate. The first of 

these identified a linear apical targeting signal within the C-tail of the rhodopsin GPCR 

(Chuang and Sung, 1998). More specifically, these investigators delineated a 32 amino acid 
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signal (MLTTICCGKNPLGDDEASATVSKTETSQVAPA) that was necessary and 

sufficient to confer apical targeting to a protein normally targeted to the basolateral 

membrane. Furthermore, they showed that palmitoylation of the signal was not required for 

function. A follow up study by this group in 2001 showed that the rhodopsin apical sorting 

signal interacts with cytoplasmic dynein, a minus-end microtubule motor protein, strongly 

suggesting that movement along the cell’s cytoskeleton via a specific motor protein is the 

mechanism by which rhodopsin achieves apical localization (Tai et al., 2001). Other 

published reports also have contributed valuable information. For example, a report by 

Amara and co-workers elucidated a targeting signal that directs a specific excitatory amino 

acid transporter (EAAT3) to both the apical membrane of MDCK(II) epithelial cells and 

equivalent domain (dendrities) of hippocampal neurons (Cheng et al., 2002). In an elegant 

series of experiments they delimited the signal to an 11 amino acid cassette 

(KSYVNGGFAVD) and identified three key residues (in bold) that mediate its function as a 

targeting signal. Most recently, an 11 amino acid sequence (PTPPTVENQQR) was identified 

as a necessary and sufficient signal to sort guanylyl cyclase C (GCC) to the apical membrane 

of MDCK(II) epithelial cells (Hodson et al., 2006). Unfortunately, key residues involved in 

the functioning of this signal could not be identified.  

In the present study, an apical targeting signal located in C-tail of the P2Y4 receptor 

seemingly shares little similarity with other sorting signals in the same class. What similarity 

that does exist between these signals lies in the topology of their primary sequences in that 

they all contain relatively few charged amino acids and, in 3 out of the 4 sequences, contain 

proline residues that could impart important secondary structural constraints to the signal. 

Finally, both the rhodopsin and P2Y4 receptor targeting signals do not require palmitoylation 
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in order to operate. Other investigators have conducted similar analyses of apical targeting 

signals in hopes of elucidating a common motif but have yielded no consensus (Cheng et al., 

2002). 

In spite of the progress that has been made on the discovery of new apical targeting 

signals, consensus sequences such as those identified for basolateral targeting have yet to 

emerge. Some have speculated that the diversity of these signals reflects the diversity of 

pathways that target proteins to the apical domain (Cheng et al., 2002; Hodson et al., 2006). 

As more of these targeting signals are identified along with possible binding partners, a more 

complete and clear understanding of the apical targeting machinery will certainly follow. 



 

  

 

 

 

CHAPTER VI: General Conclusions and Future Directions 

 The physiological role of P2Y receptors is diverse considering their nearly ubiquitous 

expression throughout the body. One role that has been unequivocally demonstrated for these 

receptors is the regulation of ion transport in epithelial cells. Kohn and co-workers published 

one of the first experiments suggesting purinergic-regulation of ion transport in 1970, where 

they demonstrated ATP stimulation of ion transport in rat small intestine (Kohn et al., 1970). 

Since these first reports, the role of P2Y receptors in epithelial ion transport has been 

extensively studied, which have shown that epithelial cells from a variety tissues express at 

least one or more P2Y receptors (reviewed in (Leipziger, 2003)). Furthermore, it has been 

hypothesized that purinergic receptors mediate numerous physiological processes in epithelia 

due to the fact that release of nucleotides (i.e. ATP and UTP) is metabolically ‘inexpensive’ 

and thus provides a very effective system that responds to cellular events such as stress (Insel 

et al., 2001). 

 In addition to establishing a physiological role for purinergic receptors in epithelia, 

many studies presented evidence suggesting a polarized distribution of these receptors as 

well. For example, a series of studies by Ko and collaborators demonstrated the apical 

localization of the uridine-activated P2Y2, P2Y4 and P2Y6 receptors in polarized equine 

sweat epithelia (Wilson et al., 1998; Wong and Ko, 2002), while Insel’s group has shown the 

polarized distribution of the P2Y1, P2Y2 and P2Y11 receptors in MDCK(II) epithelial cells 

(Insel et al., 2001; Zambon et al., 2001; Zambon et al., 2000). With the exception of a single 
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published report by Zambon et al on the targeting of the canine P2Y11 receptor (Zambon et 

al., 2001), all the studies examining the localization of P2Y receptors in epithelial cells 

utilized indirect methodology such as the measurement of apically- or basolaterally-induced 

Isc.  

 It was this lack of direct evidence demonstrating the steady-state distribution of the 

P2Y receptor family in polarized epithelial cells that served as a starting point for this 

dissertation research. Utilizing direct experimental techniques (confocal microscopy and 

biotinylation assay) we successfully established the distribution pattern of all eight members 

of this receptor family, which is described in Chapter II of this dissertation. Interestingly, we 

determined that seven of the eight members of the P2YR family are localized to either the 

apical or basolateral membrane surface. Once the steady-state distribution of the entire P2YR 

family was established, we next investigated the location of the targeting signal(s) for each 

receptor subtype that drives the protein to either the apical or basolateral membrane. We 

found that all seven polarized receptors contain at least one targeting signal that is necessary 

and sufficient to confer polarized targeting (Chapter III). Finally, the basolateral and apical 

targeting signals located in the respective C-tails of the P2Y1 and P2Y4 receptor were fully 

characterized as described in Chapters IV and V, respectively. We conclude that P2Y 

receptors must play a critical role in the functioning of epithelial cells given 1) the pervasive 

expression of these receptors through out numerous epithelial-rich tissues 2) that all but one 

are distributed in a polarized manner and 3) they utilize a wide range of targeting signals to 

achieve this distribution. 

While the characterization of P2Y receptor targeting signals has been fruitful and 

engaging, we recognize that in order to continue our success we need to elucidate the 
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mechanism(s) by which these receptors achieve a polarized distribution in epithelial cells. In 

order to achieve this goal, several different experimental approaches could be taken. One 

such experiment is pulse-chase studies, which determine the route of delivery a protein 

utilizes to arrive at the apical or basolateral membrane domain. Determining this property can 

potentially provide some important information. For example, the appearance of a receptor at 

the same membrane domain over a long period of time would indicate direct delivery to this 

surface. Follow up studies could include treatment with brefeldin A (blocks vesicle budding 

in the ER) and/or low temperature (prevents vesicles from reaching the PM), which if proven 

effective in terminating protein delivery would point to the use of a classical secretory 

pathway. This pathway utilizes transport vesicles that originate in the TGN and are passed 

along a variety of compartments before reaching a specific membrane domain where protein-

containing vesicles successfully deliver their cargo. This information would prove quite 

valuable because many of these pathways are fairly well characterized in that we know many 

of the proteins that bind to the vesicles and their cargo in order to achieve polarized targeting. 

For example, the exocyst is a protein complex that ferries numerous proteins to the 

basolateral membrane and have a finite amount of binding partners. Ultimately, the goal of 

these experiments would be to find potential binding partners for P2Y receptors and begin to 

unravel the mystery as to how this large family travels to either the apical or basolateral 

membrane. In addition, other methods could be used to find potential binding partners 

including yeast-2-hybridization screens. 

In the case of the P2Y1 BLC, we have characterized a most unusual and unique 

targeting signal in that it operates by having a critical mass of charged amino acids that does 

not require a specific sequence. The non-specificity of the signal is quite intriguing and 
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suggest a couple of potential explanations that might be worthy of investigation. Clearly, our 

data discount a protein that binds in a sequence-specific manner, but perhaps there are sorting 

proteins that recognize structural features such as a critical mass of charged residues. These 

proteins might bind to these sorting signals in a charge-dependent, sequence-independent 

manner and direct sorting to the proper membrane surface. In this manner, these proteins 

would act in a similar fashion as β-arrestins, which bind to the C-terminal tails of multiple 

GPCRs in a phosphorylation-dependent, sequence-independent manner, and promote 

endocytosis through clathrin-coated pits (Lefkowitz and Whalen, 2004). One such protein 

could be VPS26, a protein component of the retromer involved in vacuole sorting in yeast, 

that has a structure highly reminiscent of β-arrestin, including a polar core that is a critical 

structural feature of arrestins (Shi et al., 2006). Moreover, VPS26 was reported to be 

involved in transcytosis of the polymeric immunoglobin receptor (pIgR) in polarized 

epithelial cells (Verges et al., 2004). One intriguing feature of this scenario is that proteins 

would not have to rely on a specific sequence motif, freeing the sorting signal to interact with 

other proteins important for the function of the specific receptor after the signal directed 

transport of the protein to the basolateral surface.  

Another intriguing hypothesis is that the P2Y1 C-tail mediates BL targeting by 

interacting with lipids, which is quite feasible given the prominence of lipid rafts in 

MDCK(II) cells in organizing signaling proteins within the plasma membrane (Scheiffele et 

al., 1998). Furthermore, unpublished results from this laboratory and others demonstrate that 

the P2Y1 receptor floats in the lighter fractions of a sucrose gradient in a caveolin-1 

dependent manner, suggesting that the receptor associates with lipid rafts. Therefore, future 

directions include investigating the potential role of caveolae/lipid rafts in P2YR targeting 
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via several approaches including the use of a caveolin-1 dominant-negative that has been 

shown to ablate the formation of caveolae (Lee et al., 2002; Razani et al., 2002). We are 

curious as to the effect this dominant negative would have on the basolateral or apical 

targeting of the respective P2Y1 and P2Y2 receptors.  

 The most exciting possibility is that through careful analysis of the P2Y1 receptor 

BLC we have uncovered a new class of targeting signal. In the discussion section of Chapter 

IV, we hypothesize that this novel BL targeting signal operates by having a critical mass of 

charged amino acids in close proximity to the plasma membrane. Moreover, we provide 

examples from the literature of targeting signals that seem to fit this mold, which serve to 

bolster our hypothesis. However, only further investigation and a careful eye on the latest 

targeting publications will allow us to determine the validity of our theory. 

 Finally, the secondary structure of proteins has been shown to mediate targeting in 

epithelial cells (Aroeti et al., 1993). Might the P2Y1 BLC form such a structure as part of its 

function? Prelimary circular dichroism and NMR experiments suggest that the BLC does 

indeed form an amphipathic helix in presence of membrane-mimicking conditions. Whether 

this is a naturally occurring phenomena and the impact it may or may not have on the 

functioning of the signal remain to be seen. Experiments are currently underway to begin to 

address these questions. 
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