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ABSTRACT 
 

Sarah Emily Tomkovich: The interplay between inflammation and microbial activities 
in colorectal cancer 

(Under the direction of Christian Jobin) 
 

The microbiota affects host immune health by influencing immune system 

development and promoting tolerogenic immune responses, effects that have the 

potential to influence vaccine and cancer immunotherapy efficacy. Disruption of the 

delicate homeostatic balance between the host and microbiota can lead to intestinal 

diseases such as inflammatory bowel diseases (IBD) and colorectal cancer (CRC) 

and also extra-intestinal pathologies such as metabolic syndrome and autoimmune 

diseases. 

This dissertation focuses on the impact of the microbiota on host intestinal 

immune responses in relation to inflammation and carcinogenesis. The aim of the 

first project was to evaluate the role of the microbiota in modulating systemic 

neutrophil numbers and function in the developing zebrafish. Using a gnotobiotic 

approach we demonstrated colonization of germ-free (GF) zebrafish with a 

conventional microbiota increased neutrophil numbers and myeloperoixidase 

expression, altered neutrophil localization and migratory behavior and improved 

neutrophil recruitment to extra-intestinal injury. We showed that neutrophil migratory 

behavior was mediated through the acute phase response protein serum amyloid A 

(SAA), which was also induced by the microbiota. In vitro experiments revealed SAA 
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exposure activated nuclear factor (NF)-κB in zebrafish cells, and NF-κB was 

also required within neutrophils for SAA-dependent migration. 

The goal of the second project was to evaluate the ability of CRC-associated 

microbes to induce inflammation and CRC in genetically susceptible gnotobiotic 

mice. Fusobacterium nucleatum and Escherichia coli that contain the genotoxic 

island, polyketide synthase (pks) are part of the altered microbiota that is associated 

with human CRC. We mono-associated ApcMin/+;Il10-/- mice with either F. nucleatum 

or E. coli and found only pks+ E. coli had the capacity to induce inflammation and 

tumorigenesis. Next, we examined the functional role of human biofilm associated 

microbes in CRC development using ApcMin/+;Il10-/- mice. We found that biofilm 

forming microbes promoted tumorigenesis, suggesting bacterial organization also 

plays a role in CRC pathogenesis. Taken together these studies stress the 

importance of balance in host-microbiota interactions. Elucidating host and microbial 

factors that contribute to disease states has the potential to transform how diseases 

are prevented and treated. 
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CHAPTER 1 : INTRODUCTION 
 
1.1. Microbiota  
 

The human microbiota consists of viruses, archaea, protists, fungi, helminths, 

and bacteria, although the vast majority of microbiota studies focus on the bacterial 

component (Chudnovskiy et al., 2016; Filyk and Osborne, 2016). The relationship 

between humans and the microbiota has evolved over millions of years, with 

evidence that bacteria from the Bacteroidaceae and Bifidobacteriaceae families 

mirror cospeciation between humans and the African Apes (Moeller et al., 2016). 

Given such a long-standing relationship, it is no surprise that the microbiota has 

been implicated in multiple aspects of human health and disease (Hooper et al., 

2012; Rooks and Garrett, 2016). The microbiota impacts components of both innate 

and adaptive immunity, a relationship that begins at birth and continues throughout 

life (Honda and Littman, 2016; Tamburini et al., 2016; Thaiss et al., 2016a). Multiple 

diseases have been associated with the microbiota, including inflammatory bowel 

diseases (IBD), colorectal cancer (CRC), obesity, type 2 diabetes, cardiovascular 

disease, allergic asthma, rheumatoid arthritis, major depression, Parkinson’s 

disease, and autism spectrum disorder (Gilbert et al., 2016; Rooks and Garrett, 

2016; Schroeder and Bäckhed, 2016; Schwabe and Jobin, 2013; de Souza and 
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Fiocchi, 2016). However, the majority of the mechanisms by which members of the 

microbiota mediate this diverse range of effects on their hosts remain unclear. 

 

Profiling the microbiota 
 

The microbiota is found throughout the body, including the skin, nose, mouth, 

gastrointestinal (GI) tract, etc. (Human Microbiome Project Consortium, 2012). 

However, the majority of the microbiota, is concentrated in the gut, with an estimated 

~1013 total bacteria (Sender et al., 2016). The microbiota refers to the collection of 

microbes associated with an organism, while the microbiome refers to the gene 

content within the microbiota (Kuczynski et al., 2011). Two main types of 

technologies have been employed for microbiota characterization: 16S ribosomal 

ribonucleic acid (rRNA) sequencing and shotgun metagenomics (Kuczynski et al., 

2011). 16S rRNA sequencing is a targeted approach that amplifies the variable 

region of the 16S rRNA gene to infer bacteria composition, while metagenomics 

identifies the genes present within the microbiota (Kuczynski et al., 2011). Both 

approaches provide compositional information about the ecosystem, with the 

metagenomics studies adding functional information through pathway organization. 

Other functional approaches profile the metatranscriptome to examine actively 

expressed microbial genes (Franzosa et al., 2015) or characterize the metabolites of 

the microbiota through mass spectrometry (Vernocchi et al., 2016). Microbiota 

characterization studies have revealed an individual’s microbiota is shaped by diet 

(Sonnenburg and Bäckhed, 2016), lifestyle (O’Sullivan et al., 2015), and genetics 
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(Blekhman et al., 2015; Goodrich et al., 2014, 2016). Interestingly, multiple immune 

genes correlate with microbiota composition, including chemokine signaling, barrier 

function and pattern recognition receptors (Blekhman et al., 2015; Goodrich et al., 

2016). 

  

Animal models for microbiota research 
 

Mice and zebrafish are two of the common animal models used in microbiota 

research, and are important tools for establishing the mechanisms behind host-

microbiota interactions. Zebrafish are inexpensive, develop quickly and are 

transparent through the larval stage, facilitating the use of powerful imaging 

techniques (Yang et al., 2014b). These advantages make zebrafish an ideal model 

for genetic and chemical screening experiments (Pham et al., 2008). Similar to 

mammals, the zebrafish intestine is composed of enterocytes, goblet cells, and 

enteroendocrine cells, with monocytes, macrophages and neutrophils in the lamina 

propria (Yang et al., 2014b). However, the zebrafish lacks a separate small and 

large intestine, crypts, Paneth cells, organized lymphoid structures, microfold cells 

(M cells) and adaptive immunity until 4 weeks of age (Brugman, 2016). The mouse 

intestinal tract is more similar to humans, but important differences include a large 

cecum, no appendix, no compartmentalization in the colon and differences in goblet 

and Paneth cells distributions (Nguyen et al., 2015).  

Given the multiple anatomical differences that exist, it is not surprising that 

microbiota composition is species specific, with the zebrafish microbiota dominated 
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by members of the Proteobacteria phylum, while Firmicutes and Bacteroidetes are 

the 2 dominant phyla in mice and humans (Rawls et al., 2006). A meta-analysis of 

several human and mouse fecal 16S rRNA sequencing datasets, suggests only 79 

genera occur in both species and there are also species-specific relative abundance 

differences within these genera (Nguyen et al., 2015). Although there are clear 

microbiota compositional differences between humans and mice, a comparison of 

gut metagenomes suggests there is a high degree of similarity at the functional level, 

with 95.2% of Kyoto Encyclopedia of Genes and Genomes (KEGG) orthologous 

groups shared between the 2 species (Xiao et al., 2015). The majority of shared 

KEGG orthologous groups are related to metabolism, environmental information 

processing, and genetic information processing (Xiao et al., 2015).  

Importantly, techniques have been established to derive both mice and 

zebrafish into germ-free (GF) conditions, facilitating gnotobiotic experiments, where 

a defined microbe or microbiota is introduced (Martín et al., 2016; Pham et al., 

2008). Compared to mice, zebrafish are relatively easy and inexpensive to derive 

GF, only requiring antibiotics, povidone-iodine, bleach and sterile tissue culture 

techniques (Pham et al., 2008). The two main disadvantages of GF zebrafish are 

their slower growth rate and the epidermal tail degeneration that develops from 

feeding the zebrafish sterile food, limiting early experiments to under 8 days post 

fertilization (dpf) (Pham et al., 2008). However, a new feeding technique using GF 

Tetrahymena thermophile (a ciliate) and GF Artemia salina nauplii (brine shrimp) 

suggests GF zebrafish can be maintained for at least a month (Rendueles et al., 

2012).  
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Deriving and maintaining GF mice is more expensive, requiring surgery for the 

initial derivation and then continued maintenance in gnotobiotic isolators that require 

sterilization of all materials, special handling and entry protocols, and frequent 

monitoring for potential contamination (Martín et al., 2016; Packey et al., 2013). 

Studies with GF mice have revealed the microbiota affects the host’s immune 

system, metabolism, behavior and other physiological aspects (Martín et al., 2016). 

For example, immune abnormalities in GF mice include germinal center deficiencies 

in lymphoid tissue, reduced and less diverse antibodies (immunoglobulin A-IgA), and 

decreased expression for a subset of antimicrobial peptides (regenerating islet-

derived protein IIIγ-RegIIIγ, angiogenin 4) (Bevins and Salzman, 2011; Round and 

Mazmanian, 2009). Gnotobiotic models are also a powerful approach for studying 

microbe-microbe interactions, by colonizing GF animals with specific combinations 

of microbes (Pham et al., 2008). Importantly, both zebrafish and mice are capable of 

being colonized by microbiota from multiple animals including humans, although 

community members from a different host species undergo selection over time and 

do not fully recapitulate immune maturation (Chung et al., 2012; Rawls et al., 2006; 

Seedorf et al., 2014; Toh et al., 2013).  

 

Microbiota colonization factors in the intestine 
 

Environmental conditions change over the course of the intestinal tract with 

oxygen and antimicrobial peptides (AMPs) concentrations decreasing along the 

length of the intestinal tract while pH increases along the small and large intestine 
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(Wlodarska et al., 2015). Mucus structure also differs, with a single adherent layer in 

the small intestine and 2 layers, an adherent inner layer and a loose outer layer, in 

the colon (Wlodarska et al., 2015). These environmental conditions influence 

bacterial abundance and composition along the GI tract; from 103-104 bacteria/mL in 

the upper small intestine to 1011 bacteria/mL content in the colon (Sender et al., 

2016; Wlodarska et al., 2015). Compositional differences along the mouse intestinal 

tract include more aerobic bacteria (Lactobacillaceae) in the stomach and small 

intestine and more anaerobes in the colon, there’s also more inter-mouse variation 

in the colon (Gu et al., 2013). An oxygen gradient also exists along the crypt axis, 

due to the secretion of oxygen by the epithelium (Donaldson et al., 2016). Both 

aerobic Acinetobacter spp. and anaerobic Bacteroides fragilis have been found 

residing in the intestinal crypts in mice (Lee et al., 2013; Pédron et al., 2012). There 

are also nutrient distribution differences, with fatty acids and simple carbohydrates 

absorbed and depleted along the small intestine, while complex polysaccharides 

pass through to the colon, where they are broken down by Bacteroides spp. and 

other bacteria (Donaldson et al., 2016).  

Diet, is another factor modulating bacterial colonization by selecting for bacteria 

with the metabolic capacities to utilize the dominant nutrients in its environment as 

well as the host’s diet (e.g. protein-based versus animal-based) (David et al., 2014). 

For example, mucus degrading bacteria such as B. acidifaciens, B. fragilis and 

Akkermansia muciniphila tend to localize to the colonic mucus, indicating a 

microbe’s niche is influenced by it’s metabolic capacities (Donaldson et al., 2016). 
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In addition to differential metabolic capabilities, other microbial factors are also 

involved in modulating intestinal colonization. Bacteria from the Bacteroidetes, 

Firmicutes, and Actinobacteria phylums, which are the most dominant members of 

the mammalian intestine are more resistant to cationic AMPs produced during 

inflammation compared to Proteobacteria like Escherichia coli and Campylobacter 

jejuni (Cullen et al., 2015). Resistance was due to a protein, LpxF, that modulates 

the bacteria’s lipopolysaccharide (LPS) (Cullen et al., 2015). There are also factors 

within bacteria that influence interspecies or interbacterial competition for 

colonization. For example, Bacteroides spp. contain a specific genetic locus, 

commensal colonization factors (ccf), that inhibits colonization by members of the 

same species and also contributes to stable colonization of the colon (Lee et al., 

2013). Similarly, Clostridium scindens can prevent colonization by Clostridium 

difficile in mice, through metabolites such as secondary bile acids, which inhibit C. 

difficile growth in vitro (Buffie et al., 2015). In mice, Lactobacillus adhere to the 

proximal region and form biofilms in the mouse stomach, abilities that are modulated 

by L. reuteri genes (Fap1-like protein, SecA2) involved in adhesion and protein 

secretion (Frese et al., 2013). The composition and location of the microbiota are 

both significant factors in mediating interactions with the immune system. Whether 

microbial localization defines spatial development of intestinal pathologies is unclear. 
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1.2. The relationship between the immune system and the microbiota 
 

Early life 
 

The relationship between the microbiota and the immune system begins at 

birth, and continues as the microbiota assembles into a stable community during the 

first 2 years of life (Jain and Walker, 2015). Factors that modulate the infant 

microbiota include mode of delivery, diet (breast milk vs formula), and antibiotic 

treatment (Tamburini et al., 2016). Secretory, immunoglobulin A (IgA) is one of the 

most important early immune components, shaping the initial microbiota through 

maternal IgA in the breast milk until the baby starts producing their own after several 

months (Pabst et al., 2016). Twin studies that sequenced IgA-coated versus non-

coated bacteria throughout the 2 year developmental period, suggest the proportion 

of IgA-targeted bacteria correlates with age (Planer et al., 2016). These findings 

were recapitulated in gnotobiotic mice fed diets mirroring the transition in foods that 

infants undergo (Planer et al., 2016). Alterations in early microbiota composition 

have so far been associated with Crohn’s disease, asthma, and milk allergy 

persistence; suggesting this early microbiota developmental period has important 

implications for host health (Tamburini et al., 2016). 

  

Innate intestinal immunity 
 

Once the microbiota stabilizes, IgA continues to shape the microbiota in adults 

and conversely the microbiota itself is capable of modulating secretory IgA levels 
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(Fig. 1.4.1) (Macpherson et al., 2015). A study that isolated IgAs from the small 

intestine of wild-type (WT) mice, found IgAs had differential binding abilities (Okai et 

al., 2016). One IgA in particular, W27, bound and suppressed E. coli growth but did 

not affect 2 Lactobacillus spp. (Okai et al., 2016). Epitope mapping revealed W27 

binds to a four amino acid (EEHI) motif in serine hydroxymethyltransferase (SHMT), 

a sequence mostly found in Gamma- and Betaproteobacteria, 2 classes that include 

multiple pathogenic bacteria (Okai et al., 2016). Interestingly, E. coli appears to be 

one of the bacteria capable of inducing an IgA response, as demonstrated with an 

auxotrophic E. coli strain in GF mice (Hapfelmeier et al., 2010). Segmented 

filamentous bacteria (SFB) are also capable of inducing IgA in mice (Macpherson et 

al., 2015), while other bacteria such as Sutterella spp. appear to degrade IgA (Moon 

et al., 2015).   

AMPs are primarily produced by Paneth cells, and include defensins, C-type 

lectins, phospholipases and lysozyme C (Bevins and Salzman, 2011).  Paneth cell 

produced AMPs have key roles in maintaining intestinal homeostasis by preventing 

bacterial translocation and modulating microbiota composition in the small intestine 

of mice (Bevins and Salzman, 2011). Enterocytes produce less AMPs compared to 

Paneth cells, but do produce the C-type lectin, RegIIIγ (Peterson and Artis, 2014). 

RegIIIγ maintains the zone of separation between the microbiota and small intestine 

epithelial cells, in a myeloid differentiation primary response protein 88 (MyD88)-

dependent manner, suggesting AMPs also control bacterial distribution in the 

intestine (Vaishnava et al., 2011). Goblet cells are responsible for maintaining the 

mucus layer along the small and large intestine (Fig. 1.4.1) (Peterson and Artis, 
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2014). Recent work suggests the microbiota, itself, plays a role in modulating the 

initial mucus production and function in the small and large intestine of mice, with 

simultaneous alterations in bacteria distribution and composition occurring until 

stabilization of the mucus layer and microbiota after 8 weeks (Johansson et al., 

2015). 

Macrophages and dendritic cells are found within the intestinal lamina propria 

and play important roles in antigen uptake and presentation (Fig. 1.4.1) (Mowat and 

Agace, 2014). Although the exact mechanisms of antigen uptake are still unclear, M 

cells in lymphoid tissue (Peyer’s patches isolated lymphoid follicles), small intestinal 

goblet cells and transepithelial dendrites extending between epithelial cells appear to 

be involved (Mowat and Agace, 2014; Peterson and Artis, 2014). Eosinophils and 

mast cells are also present in the intestinal mucosa and appear to be important for 

tissue repair and regulation of barrier integrity, respectively (Mowat and Agace, 

2014). Neutrophils are not typically present in the intestine unless recruited by 

chemokines, such as C-X-C motif ligand 1 (CXCL1) and CXCL8 (interleukin (IL)-8) 

(Fig. 1.4.1), which are typically released by epithelial cells in response to pattern 

recognition receptor (PRR) signaling (Szabady and McCormick, 2013). Under 

homeostatic conditions neutrophils prevent bacterial translocation across the 

epithelial barrier (Fournier and Parkos, 2012). However, increased neutrophils are 

also associated with IBD (Fig. 1.4.2), suggesting resolution of inflammation is an 

additional important factor for maintaining homeostasis (Fournier and Parkos, 2012). 

Neutrophils utilize AMPs (α–defensins and lysozyme C), myeloperoxidase, hydrolytic 

enzymes, proteases, and metal chelators as defense mechanisms against microbes, 
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but many of these factors can also cause damage to the host if not appropriately 

controlled (Bevins and Salzman, 2011; Fournier and Parkos, 2012; Kolaczkowska 

and Kubes, 2013) 

PRRs expressed by epithelial and immune cells, play a key role in maintaining 

intestinal homeostasis by controlling the microbiota, as well as sensing and 

mounting an appropriate response to pathogens (Chu and Mazmanian, 2013; Thaiss 

et al., 2016b). There are 6 main families of PRRs: Toll-like receptors (TLRS), C-type 

lectins, nucleotide-binding domain (NOD), leucine-rich-repeat-containing receptors 

(NLRS), retinoic acid-inducible gene I (RIG-I)-like receptors, absent in melanoma 2 

(AIM2)-like receptors, and oligoadenylate synthase (OAS)-like receptors (Thaiss et 

al., 2016b). These PRRs recognize specific microbial-associated molecular patterns 

(MAMPs) from viruses, fungi, and bacteria, as well as host damage-associated 

molecular patterns (DAMPs) (Chu and Mazmanian, 2013; Thaiss et al., 2016b). 

Upon ligand stimulation, the majority of TLRs signal through MyD88 which leads to 

nuclear factor-κB (NF-κB) activation (Tomkovich and Jobin, 2016). Many of the 

inflammatory responses generated by MAMPs, fall into the DAMP category 

(defensins, heat-shock proteins, cytokines and lipoproteins such as serum amyloid 

A-SAA); thus resolution of PRR signaling is key to maintaining homeostasis and 

preventing a chronic feedback cycle of inflammation (de Souza and Fiocchi, 2016).  

PRR signaling often leads to the induction of either anti- or pro-inflammatory 

cytokines (depending on the PRR, the MAMP, and the location). Thymic stromal 

lymphopoietin (TSLP) and transforming growth factor-β (TGFβ), which are produced 

by intestinal epithelial cells (IECs) in response to microbiota signaling, promote 
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tolerogenic dendritic cells and macrophages (Fig. 1.4.1) (Peterson and Artis, 2014). 

The acute-phase response (APR), is a systemic inflammatory reaction, initiated in 

the liver through the production of acute-phase proteins: serum amyloid A (SAA), C-

reactive protein, and complement (Ye and Sun, 2015). However, in vitro studies, 

suggest IECs are also capable of producing SAA in response to a specific 

combination of inflammatory cytokines (tumor-necrosis factor (TNF)-α, IL-6, and IL-

1β) or LPS (Eckhardt et al., 2010; Molmenti et al., 1993; Vreugdenhil et al., 1999). 

Interestingly, studies in zebrafish suggest the microbiota induces saa in the liver, 

swim bladder and intestine (Kanther et al., 2011). SAA has cytokine-like properties, 

can act as a chemoattractant, and interacts with multiple receptors including TLR2 

and TLR4, so it’s unclear whether microbiota-induced SAA is pro- or anti-

inflammatory (Eklund et al., 2012; Ye and Sun, 2015). 

Innate lymphoid cells (ILCs), particularly ILC3s act as mediators by 

coordinating signals between the microbiota and other facets of innate and adaptive 

immunity, while also controlling microbiota composition (Fig. 1.4.1) (Tait Wojno and 

Artis, 2016). ILC2 proliferation and activation is promoted by IL-25, IL-33, and TSLP 

from epithelial cells (Peterson and Artis, 2014). Members of the Alpha- and 

Betaproteobacteria classes were recently found within intestinal lymphoid tissue in 

mice, and shown to modulate DC functions and promote ILC3 and T helper 

lymphocyte type 17 (Th17) responses, although it is still unclear how the bacteria 

are mediating these effects (Fung et al., 2016). IL-22 from ILC3s also enhanced 

colonization of the lymphoid tissue-resident bacteria by inhibiting colonization of 

other intestinal bacteria (Fung et al., 2016). Microbial metabolites may play a role in 
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mediating ILC3 interactions through the aryl hydrocarbon receptor (AHR), as indole-

3-aldehyde, a metabolite produced when Lactobacillus convert tryptophan, is an 

AHR ligand (Zelante et al., 2013). In addition to ILC3s, AHR is also highly expressed 

by the adaptive immune cells (Th17 and Th22) and is required for IL-22 production 

(Zhou, 2016). 

 

Adaptive intestinal immunity 
 

Sensing of microbes by innate immune cells (typically dendritic cells) leads to 

the production of cytokines that are MAMP specific and guide the adaptive immune 

response (Iwasaki and Medzhitov, 2015). Type 1 immunity includes cytotoxic 

lymphocytes (CTLs), Th1 cells and Th17 cells, which mediate defense responses to 

viruses, intracellular bacteria/protozoa, and extracellular bacteria/fungi, respectively 

(Iwasaki and Medzhitov, 2015). Tolerance to the microbiota is mediated by T 

regulatory lymphocytes (Tregs) which produce the anti-inflammatory cytokine, IL-10 

(Fig. 1.4.1) (Maynard et al., 2012). Although, it is unclear whether MAMPs and PRRs 

play a direct role in induction of type 2 immunity to helminths and allergens, dendritic 

cells are still required to promote differentiation of Th2 cells (Iwasaki and Medzhitov, 

2015). T and B cells are found in the lamina propria, and within the intestinal 

epithelium (intraepithelial lymphocytes-IELs), and the concentration of IELs and 

Th17 cells decreases along the intestinal tract while Treg concentrations increase 

(Mowat and Agace, 2014). B cell concentrations are highest in the proximal and 
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distal regions of the intestinal tract, and are primarily devoted to IgA production 

(Mowat and Agace, 2014).  

The microbiota influences multiple aspects of adaptive intestinal immunity. B 

cells are stimulated by a proliferation-inducing ligand (APRIL) and B cell-activating 

factor (BAFF) from IECs after induction of PRR signaling from the microbiota (Fig. 

1.4.1) (Peterson and Artis, 2014). Bacterial adhesion to epithelial cells appears to be 

one of the cues promoting Th17 cell induction in the small intestine and colon by 

SFB and Citrobacter rodentium an enterohemorrhagic E. coli (EHEC), respectively 

(Atarashi et al., 2015). Although SFB have only been isolated from mice, GF mice 

associated with a set of 20 human bacterial strains including Clostridium (Clusters 

IV, XIVa, XVIII), Bifidobacterium, Ruminococcus, and Bacteroides also had Th17 cell 

induction associated with bacterial adherence to colon epithelial cells (Atarashi et al., 

2015). Clostridium IV and XIVa induce colonic Tregs in mice (Atarashi et al., 2011). 

Additional studies revealed that Treg induction was mediated by the bacteria 

metabolites: short chain fatty acids (SCFAs), particularly butyrate, through histone 

deacetylase (HDAC) inhibition (Arpaia et al., 2013; Furusawa et al., 2013; Smith et 

al., 2013). Bacteroides fragilis polysaccharide A (PSA) signals through TLR2 on 

Tregs to suppress Th17 cell responses and facilitate its colonization within the 

colonic crypts (Round et al., 2011).  
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Systemic Immunity 
 

While the microbiota modulates multiple aspects of immunity in the intestine, a 

growing number of studies demonstrate the intestinal microbiota and their 

metabolites also promote systemic immune function. Interestingly, the effects of 

SCFAs on Tregs extend to the periphery where both butyrate and propionate 

promote Treg differentiation (Arpaia et al., 2013). Additionally, B. fragilis PSA also 

promotes the suppressive function of peripheral Tregs (Johnson et al., 2015b; 

Telesford et al., 2015). SCFAs also improve antibody responses by regulating both 

intestinal and systemic B cell metabolism and gene expression (Kim et al., 2016). 

The systemic immunomodulatory effects also extend to innate immune cells, with 

GF mice exhibiting microglial (brain tissue macrophages) defects that were 

ameliorated with a mixture of SCFAs in drinking water (Erny et al., 2015). Another 

bacterial metabolite: trimethylamine-N-oxide (TMAO), produced from a component 

of red meat and associated with luminal Prevotella abundance, modulates 

cholesterol in macrophages, promoting atherosclerosis (Koeth et al., 2013). 

Microbes have also been implicated in allergen-induced Th2 responses, increasing 

the peripheral basophils via MyD88-dependent signaling in B cells (Hill et al., 2012). 

It is unclear whether the gut microbiota modulates extra-intestinal innate immune 

cells in addition to basophils and macrophages. Understanding the factors governing 

interactions between the microbiota and the immune system have important 

implications for vaccines (Oh et al., 2014; Valdez et al., 2014) and anticancer 
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immunotherapies efficacy (Pope et al., 2016), which both rely on a functional 

immune system.  

 
1.3.  The interplay between inflammation, colorectal cancer, and the microbiota   
 

IBD and the microbiota 
 

There are two main forms of inflammatory bowel diseases (IBD): Crohn’s 

disease (CD) and ulcerative colitis (UC) (de Souza and Fiocchi, 2016). Both are 

characterized by intestinal inflammation, however CD typically affects the ileum and 

the colon, but is capable of affecting any region of the GI tract, while UC is restricted 

to the rectum and colon (Abraham and Cho, 2009). IBD is a chronic disease and a 

significant health-care burden with costs likely to grow due to a high prevalence in 

the western world and a rising rate of incidence in newly industrialized countries 

(Kaplan, 2015). The established epidemiological risk factors of IBD include: 

genetics, environmental and lifestyle factors, and the microbiota (Ananthakrishnan, 

2015). Environmental risks have been attributed to smoking, appendectomy, 

infections, antibiotics, medications and diet while lifestyle factors relate to stress, 

sleep, and exercise (Ananthakrishnan, 2015). Dietary risk factors specific for IBD 

include fiber, fat, vitamin D, zinc and iron (Ananthakrishnan, 2015). Almost all IBD 

risk factors are able to directly modulate and interact with the microbiota, making it 

difficult to pinpoint an exact cause of IBD (Ananthakrishnan, 2015; Lozupone et al., 

2012; O’Sullivan et al., 2015). Interestingly, some environmental risk factors such as 

smoking and appendectomy have opposite associations with UC and CD, both being 
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associated with increased risk of CD (Ananthakrishnan, 2015). Insight into the 

genetic components of IBD have been revealed with genome-wide association 

studies (GWAS), which identified 163 loci, 66 of which overlap with loci previously 

implicated in other immune-mediated diseases (Jostins et al., 2012).  

One of the most significantly enriched Gene Ontology categories associated 

with IBD loci was regulation of cytokines, including interferon (IFN)-γ, IL-12, TNF-α, 

and IL-10 (Jostins et al., 2012). Alterations in PRR and autophagy genes are also 

associated with IBD through GWAS, these include the PRR, NOD2, and the 

autophagy gene, autophagy related 16-like 1 (ATG16L1) (de Souza and Fiocchi, 

2016). Changes in intestinal innate immunity associated with IBD, include increased 

chemokine expression, an influx of neutrophils, and more pro-inflammatory cytokine 

production (i.e. IFN-γ, IL-1β, IL-6, IL-18, IL-23, TNF-α, etc.) by macrophages and 

dendritic cells (Fig. 1.4.2) (de Souza and Fiocchi, 2016). Alterations in adaptive 

immunity include increased antibodies (against self or microbial antigens), pro-

inflammatory cytokines from effector T cells (IL-6, IL-17, IL-22, TNF-α,), T cell 

resistance to apoptosis and Tregs with insufficient suppressive capacities (IL-10, 

TGFβ) (Fig. 1.4.2) (Neurath, 2014; de Souza and Fiocchi, 2016). The increased 

inflammation characteristic of IBD is thought to result from miscommunications 

between the host’s immune system and the microbiota (Manichanh et al., 2012).  

Dysbiosis, or an altered microbiota, has been associated with IBD, but the 

exact role of dysbiosis in disease pathogenesis is still unclear, with the stool 

microbiota from CD patients but not UC patients promoting colitis in gnotobiotic IL10-
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/- mice (DeGruttola et al., 2016; Nagao-Kitamoto et al., 2016). General 

characteristics of IBD-associated dysbiosis include decreased overall bacterial 

diversity, an increase in Enterobacteriaceae (e.g. adherent invasive E. coli: AIEC) 

and sulphate-reducing bacteria (Desulfovibrio) and a decrease in Faecalibacterium 

prausnitzii (a butyrate producer) and obligate anaerobes (e.g. Bifidobacterium spp.) 

(Fig. 1.4.2) (DeGruttola et al., 2016; Rowan et al., 2010). An important consideration 

when evaluating dysbiosis is the location chosen for sampling. For example, there 

are clear differences between the luminal and mucosal associated microbiota in 

pediatric CD patients with the majority of the dysbiotic signature only observed in the 

tissue-associated communities from the ileum and rectum (Gevers et al., 2014). The 

fungal and viral microbiota also appear to be altered in IBD patients, with variations 

based on disease type (UC vs CD) as well as age (adult versus pediatric) (Lewis et 

al., 2015; Norman et al., 2015; Sokol et al., 2016). These studies suggest that fungal 

and viral dysbiosis may also accompany the bacterial dysbiosis observed in IBD 

patients. Likely, there exist transkingdom interactions among members of the 

microbiota that could influence the way the microbiota modulates host responses 

and IBD development. 

Functional studies in mice suggest differences in bacterial metabolism may 

partially explain the increase in Enterobacteriaceae associated with dysbiosis in IBD 

patients. For example, Il10-/- mice, with spontaneous colitis exhibit an approximate 

100 fold increase in luminal E. coli compared to WT mice (Arthur et al., 2012). 

Subsequent studies with nitric oxide synthase deficient mice, suggest the increased 

nitrate expressed during inflammation facilitates the growth of luminal E. coli by 
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providing electron acceptors for anaerobic respiration (Winter et al., 2013). 

Additionally, C. rodentium, an Enterobacteriaceae specific to mice, induced colonic 

crypt hyperplasia with its type III secretion system (T3SS), which increased oxygen 

levels at the mucosal surface and facilitated C. rodentium expansion (Lopez et al., 

2016). Increased expression of a bacterial tricarboxylic acid cycle enzyme that is not 

required under anaerobic conditions (sucA) from mucus-associated bacteria 

compared to stool-associated bacteria suggests the mucosally attached C. 

rodentium are the beneficiaries of the increased oxygen levels (Lopez et al., 2016). 

These studies support the idea that oxygen levels altered by inflammation may be 

one of the mechanisms that promote dysbiosis (DeGruttola et al., 2016). 

The spatial organization of the microbiota, in addition to its composition is 

another important consideration when studying the pathogenesis of intestinal 

diseases. A subset of mouse and human studies have examined intestinal biofilms 

with the use of Carnoy’s fixative, which preserves the intestinal mucus layer, and 

fluorescence in situ hybridization (FISH), which identifies bacteria with specific 

fluorescent probes (Macfarlane and Dillon, 2007; Randal Bollinger et al., 2007; 

Swidsinski et al., 2005a, 2005b). These initial studies suggest biofilms are 

concentrated and close to the epithelial layer in the appendix of healthy humans and 

the cecum of WT mice (Palestrant et al., 2004; Swidsinski et al., 2005a, 2005b). 

Biofilms then progressively decrease along the rest of the intestinal tract until 

practically absent in the distal colon (Palestrant et al., 2004; Swidsinski et al., 2005a, 

2005b). One theory suggests the biofilms within the appendix serve as a microbiota 
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reservoir, with both the bacterial organization and anatomical isolation of the 

appendix facilitating resiliency (Randal Bollinger et al., 2007).   

However, microbial biofilms have also been identified in IBD patients (CD and 

UC) at a higher frequency (90-95%) than irritable bowel syndrome (IBS) (65%) or 

control patients (35%) (Swidsinski et al., 2005b). FISH staining, revealed IBD 

patients’ biofilms displayed bacterial adhesion to the epithelial layer, crypt-

associated bacteria, a high bacterial density (>109/ bacteria per mL) and a 

predominance of B. fragilis and Enterobacteriaceae (Fig. 1.4.2) (Swidsinski et al., 

2005b, 2007). Similarly, dextran sulfate sodium (DSS)-treated and colitic Il10-/- mice 

also have more crypt associated bacteria and adhesion to the epithelial layer 

(Swidsinski et al., 2005a). Although, biofilms may be a feature of the healthy 

microbiota in the proximal GI tract, characteristics such as resistance to washing, 

bacterial density, adhesion to the epithelium, and invasion into crypts appear to be 

associated with inflammatory intestinal biofilms (Randal Bollinger et al., 2007).  

While the exact host and bacterial factors driving biofilm formation are 

unknown, in vitro studies suggests an immune component, as both secretory IgA 

and intestinal mucus promote E. coli biofilm formation through interactions with the 

bacteria’s type 1 pili (Bollinger et al., 2003, 2006). The host factor, hydrogen sulfide, 

may also play a role in biofilm formation as bacterial organization was disrupted in 

DNBS treated mice, which was further enhanced by treatment with a hydrogen 

sulfide inhibitor, resulting in a shift from linear biofilms separated from the epithelium 

to patchy biofilms that were in closer proximity to the epithelium (Motta et al., 2015). 
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The functional effects of biofilm organized bacteria on the host remain to be 

evaluated.  

 

Types of CRC 
 

Human colorectal cancer (CRC) can be categorized as either hereditary 

(predisposing mutations, family history, or IBD) or sporadic (Carethers and Jung, 

2015). Tumorigenesis follows a stepwise progression going from an initiating step 

that leads to adenoma formation and typically takes 30-60 years, followed by tumor 

progression, where mutations continue to accrue over the next 1-20 years 

(Carethers and Jung, 2015). The final step is transformation into a malignant 

carcinoma, capable of metastasis, and is typically the fastest, taking between 0 and 

5 years (Carethers and Jung, 2015). Many of the risk factors for IBD apply to CRC; 

these include genetics, diet, lifestyle, and environmental factors (Pope et al., 2016). 

82.9% of the CRC mutation signatures are extrinsic, suggesting genetics and other 

intrinsic factors such as stem cell division rates play a minor role (Wu et al., 2016). 

The microbiota, which is also affected by the IBD and CRC risk factors, may be a 

key contributor to CRC pathogenesis 

Sporadic CRCs account for approximately two-thirds of CRCs and fall into 2 

main categories: hypermutated and nonhypermutated (Carethers and Jung, 2015). 

Hypermutated CRCs are characterized by microsatellite instability (MSI) or CpG 

island methylator phenotype (CIMP), due to defects in DNA mismatch repair (MMR) 

genes (Carethers and Jung, 2015). Epigenetic changes are associated with 
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hypermutated CRCs, with MSI resulting from hypermethylation of the DNA MMR 

gene (Carethers and Jung, 2015). CIMP is the result of excessive methylation of 

CpG islands within genetic loci and can be categorized into either high or low forms 

based on the amount of positive methylation markers and associated mutations 

(Carethers and Jung, 2015). CIMP-high overlaps with MSI CRCs while CIMP-low 

overlaps with the chromosomal instabilities associated with nonhypermutated CRCs 

(Carethers and Jung, 2015). Of note, both MSI and CIMP-high are associated with 

cancers located in the proximal colon (Fig. 1.4.3) (Carethers and Jung, 2015).  

Nonhypermutated CRCs are more likely to have chromosomal and 

subchromosomal changes, originate in the distal part of the colon (Fig. 1.4.3) and 

have mutations in genes classically associated with CRC (TP53, KRAS, PIK3CA, 

SMAD4) (Benedix et al., 2010; Carethers and Jung, 2015; Kloor and Knebel 

Doeberitz, 2016). Although the pattern of gene mutations are drastically different 

between hypermutated and nonhypermutated sporadic CRCs, both share a high 

mutation frequency in the adenomatous polyposis coli (APC) gene (~60 and 81%, 

respectively) and consistent activation of Wnt signaling (Carethers and Jung, 2015). 

Loss of the tumor suppressor, APC, stabilizes β-catenin, resulting in nuclear 

translocation and activation of cellular proliferation genes (Clevers, 2006).  

Approximately one-third of CRCs are hereditary and classified as either non-

polyposis or polyposis, with the latter being less common (~1% of CRCs) (Stoffel 

and Boland, 2015). Polyposis syndromes include familial adenomatous polyposis 

(FAP) and MutYH-associated polyposis (MAP), both of which are characterized by 
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adenomatous polyposis with hundreds to thousands of colonic adenomas in the 

classic cases (Stoffel and Boland, 2015). Mutations in APC represent ~90% of FAP 

cases, while MAP is the result of mutations in a base excision repair gene. (Stoffel 

and Boland, 2015). Serrated polyposis is characterized by proximally located 

serrated polyps (Fig. 1.4.3) and may include CIMP as well as MSI (Stoffel and 

Boland, 2015). Lynch syndrome, a member the non-polyposis category, represents 

~3% of CRCs, displays MSI due to germline mutations in MMR genes, and similar to 

sporadic MSI CRC, is more common in the proximal colon (Fig. 1.4.3) (Kloor and 

Knebel Doeberitz, 2016; Stoffel and Boland, 2015).   

IBD patients have a 5-8 fold increase in risk for developing CRC, or colitis-

associated cancer (CAC), which represents ~2-3% of all CRCs (Grivennikov and 

Cominelli, 2016). A key difference between CAC and other forms of CRC, is the 

mutation signature, with APC and KRAS mutations occurring at significantly lower 

rates in CAC patient tumors (Robles et al., 2016). CACs also have the capacity to 

develop within years or decades of active IBD, which is much quicker than sporadic 

CRCs (Grivennikov and Cominelli, 2016). Multiple aspects of the immune system 

implicated in IBD are also implicated in either CAC or CRC pathogenesis; these 

include PRRs, autophagy, and cytokines (IL-1β, IL-6, IL-17A, IL-23, and TNF) 

(Neurath, 2014; Pope et al., 2016).  

Cancer type or mutation signature also appear to influence the type of cancer-

associated inflammation (Lasry et al., 2016). For example, MSI CRCs and Lynch 

syndrome are characterized by the presence of frameshift peptide (FSP) antigens 
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that induce specific T cell responses within the tumor microenvironment and 

peripheral blood (Kloor and Knebel Doeberitz, 2016). However, this creates 

additional selective pressure on MSI tumors to develop immune evasion mutations, 

supported by the observation that ~30% of MSI CRCs have beta2-microglobulin 

mutations, which disrupts antigen presentation on tumor cells (Kloor and Knebel 

Doeberitz, 2016). Examples of mutation-specific inflammation include the loss of 

barrier function and increased inflammation associated with p53 loss and resistance 

to TGF-β’s tumor-suppressive effects with activating mutations in KRAS. 

Additionally, nonsteroidal anti-inflammatory drugs (NSAIDS), appear to be an 

effective prevention strategy for sporadic and hereditary CRCs (Lasry et al., 2016). 

Although the exact mechanisms for NSAID prevention are still unclear, this further 

supports the theme that inflammation is an enabling characteristic of cancer, 

capable of driving tumor progression (Hanahan and Weinberg, 2011).  

 

Mouse models of colonic adenoma-carcinoma progression  
 

Numerous mouse models have been developed to study CRC either through 

genetic manipulation, chemical treatments, a combination of both, or xenografts 

where cells are transplanted either orthotopically or subcutaneously (Jackstadt and 

Sansom, 2016; Lee et al., 2016; West et al., 2015). The most commonly used model 

is the multiple intestinal neoplasia (Min or ApcMin/+) model, which has a loss of 

function mutation in one of the Apc alleles (Jackstadt and Sansom, 2016). Although 

this is the most common mutation observed in human CRC, the distribution of 
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adenomas in mice differ, with the majority restricted to the small intestine (West et 

al., 2015). Differences in stem cell division rates, which are higher in the mouse 

small intestine, but lower in the colon (which is the opposite trend compared to 

humans), may partially explain the difference in tumor distribution (Tomasetti and 

Vogelstein, 2015a), although this hypothesis is controversial (Ashford et al., 2015; 

Podolskiy and Gladyshev, 2016; Song and Giovannucci, 2015; Tomasetti and 

Vogelstein, 2015b; Wu et al., 2016). Noteworthy, selective deletion of Apc in 

intestinal epithelial cells using Cdx2-cre recombinase transgenic mice showed 

tumorigenesis predominantly in the colon (Hinoi et al., 2007). A popular CAC model, 

where the chemical carcinogen, azoxymethane (AOM), in conjunction with DSS is 

used to induce cancer, has demonstrated multiple components of the immune 

system contribute to tumorigenesis (Pope et al., 2016; Subramaniam et al., 2016). 

Interestingly, some CRC mouse models are able to replicate the associated tumor 

distribution in human CRCs. For example, mice that express the epidermal growth 

factor receptor (EGFR) ligand HB-EGF (HBUS mice) develop serrated polyps in the 

cecum, similar to the proximal distribution observed in human serrated polyposis 

(Bongers et al., 2014). Nevertheless, the relationship between microbial niche and 

spatial distribution of carcinogenic lesions is poorly understood. 

 

The role of the microbiota in CRC 
 

Another feature shared between IBD and CRC, is an association with 

microbiota dysbiosis. Similar, to dysbiosis in IBD there appear to be differences 
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depending on whether the sampled microbiota is from the luminal or mucosa-

associated compartment (Flemer et al., 2016). The majority of studies have used 

stool samples to profile the human CRC microbiota and found consistent increases 

in Alistipes, Anaerococcus, Escherichia, Fusobacterium, Parabacteroides, 

Parvimonas, Peptostreptococcus, Porphyromonas, and Solobacterium and 

decreases in Roseburia (Fig. 1.4.4) (Borges-Canha et al., 2015; Chen et al., 2012; 

Feng et al., 2015; Wang et al., 2012; Wu et al., 2013; Yu et al., 2015a; Zeller et al., 

2014). In the mucosal compartment, F. nucleatum, Enterotoxigenic B. fragilis (ETBF) 

and E. coli (pks+) have increased prevalence in CRC mucosal tissue and F. 

nucleatum is enriched in adenoma and adenocarcinoma tissue (Fig. 1.4.4) (Arthur et 

al., 2012; Boleij et al., 2015; Borges-Canha et al., 2015; Buc et al., 2013; Chen et al., 

2012; Kostic et al., 2012, 2013; Raisch et al., 2014; Shen et al., 2010; Yu et al., 

2016). Few microbiota studies differentiate between the types of CRC when 

describing associated microbiota alterations, which could explain some of the 

variation seen across studies since the microbiota may be affected by CRC type or 

location (Flemer et al., 2016). For example, invasive F. nucleatum is more prevalent 

in proximal hyperplastic and sessile serrated adenomas (2 of the 3 histological 

categories for serrated polyps) and proximal CRCs (Fig. 1.4.3) compared to 

proximal/distal traditional adenomas (Yu et al., 2016). 

The majority of mouse models that have investigated the role of the microbiota 

in CRC either with antibiotics or GF mice, suggest the microbiota promotes 

tumorigenesis (Pope et al., 2016; Schwabe and Jobin, 2013). Other microbiota 

members besides bacteria likely play a role in CRC pathogenesis, as a recent study 
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demonstrated a protozoan found within the mouse microbiota, increased 

tumorigenesis in ApcMin/+ mice (Chudnovskiy et al., 2016). The protist, 

Tritrichomonas musculis (T. mu), induced IL-18 through epithelial inflammasome 

activation to promote Th1 and Th17 immunity, which conferred protection against 

acute enteric pathogens such as Salmonella enterica serovar Typhimurium but 

increased susceptibility to colitis and cancer (Chudnovskiy et al., 2016). Intriguingly, 

protists from the same class (parabasalids) are found in healthy human fecal 

samples with a prevalence ranging from 11.5-31.6%, however their role in human 

health and disease is unknown (Chudnovskiy et al., 2016).  

The human CRC-associated bacteria: pks+ E. coli, ETBF and F. nucleatum 

have been investigated in CRC mouse models, providing insight into how these 

bacteria contribute to tumorigenesis. E. coli that possess a genotoxic island, 

polyketide synthase (pks), produce the genotoxin colibactin which causes DNA 

damage and induces colorectal cancer in an inflammation dependent manner 

(Arthur et al., 2012; Cuevas-Ramos et al., 2010).  Interestingly, recent in vivo studies 

suggest pks expression may be regulated by host inflammation, while in vitro work 

suggests pks expression is dependent on E. coli iron sensors (Fur and RyhB) and 

production requires an E. coli heat shock protein (HtpG or Hsp90Ec) (Arthur et al., 

2014; Garcie et al., 2016; Tronnet et al., 2016). ETBF produce a toxin, B. fragilis 

toxin (Bft), which elicits host inflammation and modulates multiple aspects of the 

host immune response in an IL-17A dependent manner (DeStefano Shields et al., 

2016; Garrett, 2015; Pope et al., 2016; Thiele Orberg et al., 2016). Although, F. 

nucleatum is not considered pro-inflammatory in mice, it is still capable of 
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modulating host immune responses through expansion of myeloid-derived immune 

cells and its adhesive Fap2 surface protein that binds to inhibitory receptor T cell 

immunoglobulin and ITIM domain (TIGIT), potentially promoting immune evasion 

(Gur et al., 2015; Kostic et al., 2013; Mima et al., 2015). Fap2 also appears to play a 

role in F. nucleatum localization and attachment to tumors, through binding of the 

host polysaccharide, Gal-GalNAc, which is highly expressed in human CRC 

adenocarcinomas (Abed et al., 2016). The functional role of dysbiosis in CRC 

development is still unclear as tumorigenesis in GF AOM/DSS mice associated with 

stools from CRC and healthy patients correlated with community composition rather 

than donor health status (Baxter et al., 2014).  

Microbial biofilms have recently been associated with CRC and were more 

prevalent on proximal (right-sided) CRCs (89%) compared to distal (left-sided) CRCs 

(13%) (Fig. 1.4.3) (Dejea et al., 2014). The study defined biofilms as dense bacterial 

(>109 bacteria/mL) invasions of the mucus layer that spanned at least 200 µm of 

epithelial surface (Fig. 1.4.4) (Dejea et al., 2014). Bacteria associated with adenoma 

and CRC biofilms, identified by FISH staining, included Lachnospiraceae, 

Fusobacteria and Enterobacteriaceae (although the latter 2 were only found in a 

subset of tumors) (Dejea et al., 2014). Biofilms were also identified in 13% of healthy 

patients and strikingly, increased epithelial IL-6 and Stat3 activation was observed in 

the biofilm positive normal tissue from both CRC and healthy patients (Dejea et al., 

2014). Biofilm positive CRC tissue also had increased levels of acetylated 

polyamines compared to biofilm negative CRC tissue, suggesting metabolites may 

contribute to the pathogenesis of biofilm associated CRC (Johnson et al., 2015a). 
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Multispecies bacterial biofilms have since been identified on additional types of 

CRC, with a prevalence that was relatively equal for proximal CRCs (52.1%), distal 

CRCs (55.6%), and sessile serrated adenomas (48.5%) compared to normal 

mucosa (20%) (Yu et al., 2016). It is unclear what other bacteria were present in 

these cases, as only universal bacteria and F. nucleatum FISH probes were used 

(Yu et al., 2016). The contrast in biofilm prevalence rates between these studies 

may be due to different definitions of biofilms and divisions of the colon (proximal to 

hepatic flexure vs splenic fixture, respectively) (Fig. 1.4.3) (Yu et al., 2016). 

Interestingly, neither biofilm presence nor F. nucleatum within biofilms correlated 

with F. nucleatum invasion into the epithelial cells, suggesting the bacteria’s invasive 

capacity is independent from its biofilm forming capacity (Yu et al., 2016).  

Given the theory that the appendix is a biofilm repository for replenishing the 

colonic microbiota, it is interesting to note that appendectomy was associated with a 

14% higher incidence of CRC in a cohort of Taiwanese patients, with a higher risk 

for rectal cancer (left-sided) compared to cancer of the cecum-ascending colon 

(right-sided) (Fig. 1.4.3) (Wu et al., 2015). Similarly, there are also correlations 

between appendectomy and increased C. difficile infections and CD (but not UC), 

supporting the idea that the appendix may play a role in microbiota-associated 

disease (Andersson et al., 2003; Im et al., 2011).  

Ultimately, multiple factors including microbiota composition and organization, 

host genetics, age, diet and environmental conditions shape the outcomes of host-

microbiota interactions. Thus, the surrounding context must be accounted for when 

trying to understand the mechanisms of microbiota-associated immune effects and 
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diseases. In Chapter 2, we examined how the microbiota promotes systemic 

neutrophil development and function in the developing zebrafish. We found 

colonization of GF zebrafish with a conventional microbiota increased neutrophil 

numbers and altered neutrophil localization and functions. Additionally, we show that 

the acute phase protein SAA, is also induced upon microbiota colonization and 

mediates neutrophil migratory behaviors. Finally, in vitro experiments revealed NF-

κB is activated upon SAA exposure and is required within neutrophils for SAA-

dependent migration. 

 In Chapter 3, we utilized gnotobiotic ApcMin/+;Il10-/- mice to examine the 

capacity of CRC-associated microbes to induce inflammation and colorectal cancer. 

We also investigated the functional role of human biofilm associated microbes in 

CRC development. We found colon tumorigenesis in SPF ApcMin/+;Il10-/- mice 

correlated with inflammation and was dependent on the microbiota, while small 

intestine tumors correlated with age and were independent from the microbiota. F. 

nucleatum and pks+ E. coli had differential capacities to induce inflammation and 

tumorigenesis, with only the latter promoting colon tumorigenesis in a colibactin 

dependent manner. Finally, we showed that biofilm forming microbes promote 

tumorigenesis, suggesting bacterial organization also contributes to CRC 

pathogenesis. 
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1.4. Figures 

 
Figure 1.4.1. The colon microbiota and immune system under homeostatic 
conditions. The inner mucus layer of the colon is mostly bacteria free and serves as 
a barrier between the microbiota and IECs. IECs secrete mucus and AMPs to 
maintain separation and control microbiota composition. IECs also produce TSLP 
and TGFβ, which promotes tolerogenic macrophages and dendritic cells. 
Macrophages and dendritic cells actively sample antigens from the microbiota. 
Neutrophils prevent bacterial translocation across the epithelial barrier if recruited to 
the colon by chemokines. ILCS coordinate signals between the microbiota and the 
innate and adaptive immune system. Tregs mediate tolerance to the microbiota 
through IL-10 production. B cells are primarily devoted to IgA production and are 
stimulated by BAFF and APRIL from IECs. 
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Figure 1.4.2. Immune and microbiota alterations associated with IBD. Immune 
alterations associated with IBD include an increase in neutrophils, increased pro-
inflammatory cytokine production by macrophages, dendritic cells, and effector T 
cells, and Tregs with insufficient suppressive capacities. Bacterial dysbiosis 
associated with IBD includes increased Enterobacteriaceae (AIEC) and suphate-
reducing bacteria, a decrease in Faecalibacterium prausnitzii and obligate 
anaerobes (Bifidobacterium). High density, bacterial biofilms (>109 bacteria/mL) that 
adhere to the epithelium have been observed at an increased frequency in IBD 
patients compared to controls and were associated with a predominance of B. 
fragilis and Enterobacteriaceae. 
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Figure 1.4.3. Spatial distribution of CRC types and associated microbiota 
changes. The anatomy of the human colon is depicted, along with a listing of the 
proximal versus distal associations observed in human CRCs. The proximal (right-
sided) region is bracketed in red, while the distal (left-sided) region is bracketed in 
blue. The hypermutated forms of sporadic CRC: MSI and CIMP-high are more 
frequently associated with the proximal colon. Serrated polyposis and Lynch 
syndrome are hereditary CRCs and also more frequently associated with the 
proximal region. Microbial biofilms are associated with proximal CRCs according to 
Dejea et al. 2014 but not Yu et al. 2016, which could be due to different colon 
divisions and biofilm definitions. Invasive F. nucleatum has been observed in 
serrated polyposis. Nonhypermutated sporadic CRCs with chromosomal instabilities 
(chromosomal and subchromasomal changes) are more frequently associated with 
the distal colon. Additionally, one study suggests appendectomy is associated with a 
higher risk for rectal cancers. 
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Figure 1.4.4. Microbiota dysbiosis and organizational changes associated with 
CRC. Luminal dysbiosis in CRC patients is associated with increased Alistipes, 
Anaerococcus, Escherichia, Fusobacterium, Parabacteroides, Parvimonas, 
Peptostreptococcus, Porphyromonas, and Solobacterium and decreases in 
Roseburia. Mucosal-associated bacteria in CRC include F. nucleatum, 
Enterotoxigenic B. fragilis, and pks+ E. coli, with F. nucleatum also enriched in 
adenoma and adenocarcionoma tissue. Dense bacterial biofilms of >109 bacteria/ml 
spanning at least 200 µm of epithelial surface have been associated with tumor and 
normal-flanking tissue from right-sided CRCs. 
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CHAPTER 2 : COMMENSAL MICROBIOTA STIMULATE SYSTEMIC 
NEUTROPHIL MIGRATION THROUGH INDUCTION OF SERUM AMYLOID A1 

 

2.1. Overview 
 

Neutrophils serve critical roles in inflammatory responses to infection and 

injury, and mechanisms governing their activity represent attractive targets for 

controlling inflammation. The commensal microbiota is known to regulate the activity 

of neutrophils and other leukocytes in the intestine, but the systemic impact of the 

microbiota on neutrophils remains unknown. Here we utilized in vivo imaging in 

gnotobiotic zebrafish to reveal diverse effects of microbiota colonization on systemic 

neutrophil development and function. The presence of a microbiota resulted in 

increased neutrophil number and myeloperoxidase expression, and altered 

neutrophil localization and migratory behaviors. These effects of the microbiota on 

neutrophil homeostasis were accompanied by an increased recruitment of 

neutrophils to injury. Genetic analysis identified the microbiota-induced acute phase 

                                            
1 Kanther, M*., Tomkovich, S*., Xiaolun, S., Grosser, M.R., Koo, J., Flynn, E.J., 
Jobin, C*., and Rawls*, J.F. (2014). Commensal microbiota stimulate systemic 
neutrophil migration through induction of serum amyloid A. Cell Microbiol 16, 1053–
1067.  
 
I am co-first author on this previously published manuscript. I performed the 
following experiments: validation of morpholino knockdown, in vivo cell tracking 
anaysis of EGFP-expressing neutrophils, and mouse neutrophil isolation and  
migration assay. I generated some of the figures and contributed to the writing of the 
methods, results, discussion and figure legends.  
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protein serum amyloid A (Saa) as a host factor mediating microbial stimulation of 

tissue-specific neutrophil migratory behaviors. In vitro studies revealed that zebrafish 

cells respond to Saa exposure by activating NF-κB, and that Saa-dependent 

neutrophil migration requires NF-κB-dependent gene expression. These results 

implicate the commensal microbiota as an important environmental factor regulating 

diverse aspects of systemic neutrophil development and function, and reveal a 

critical role for a Saa-NF-κB signaling axis in mediating neutrophil migratory 

responses.  

 
2.2. Introduction 
 

Leukocytes such as neutrophils and macrophages are key mediators and 

effectors of inflammatory stimuli and represent attractive therapeutic targets for 

controlling acute and chronic inflammation. The complex community of 

microorganisms residing within the intestine (gut microbiota) has been identified as 

an important environmental factor regulating leukocyte function within the intestinal 

compartment (Abt and Artis, 2009). However, the presence of microbiota appears to 

also have profound systemic effects on leukocytes. Peripheral neutrophils collected 

from germ-free (GF) rodents display reduced phagocytosis, microbicidal activity, and 

production of superoxide anion and nitric oxide compared with ex-GF animals 

colonized with normal microbiota (conventionalized or CONVD) (Clarke et al., 2010; 

Ohkubo et al., 1990). Similarly, macrophages collected from peritoneal exudate in 

GF animals display reduced superoxide anion production and microbicidal activity, 

and impaired chemotaxis compared with CONVD controls (Czuprynski and Brown, 
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1985; Jungi and McGregor, 1978; Mitsuyama et al., 1986; Mørland and Midtvedt, 

1984; Oliveira et al., 2005). The importance of the microbiota on systemic 

inflammation is further underscored by reports that multiple rodent models of 

spondyloarthritis do not develop disease when raised under GF conditions 

(Reháková et al., 2000; Taurog et al., 1994), but disease can be initiated upon gut 

colonization with specific bacteria (Rath et al., 1996; Sinkorová et al., 2008). 

Although recent research has yielded an abundance of new information about 

the impact of gut microbiota on intestinal leukocyte biology and immunity (Abt and 

Artis, 2009), gut microbiota effects on systemic leukocyte biology remain relatively 

unresolved. Our current information of the systemic effects of microbiota on 

neutrophils is largely derived from ex vivo experiments conducted on neutrophils 

collected from peripheral blood or bone marrow from GF and CONVD mammals 

(Clarke et al., 2010; Ohkubo et al., 1990). However, studies generated from ex vivo 

neutrophils may not be representative of the systemic population and do not fully 

recapitulate the native physiologic context of live tissues. Finally, mammals are not 

amenable to the high-resolution in vivo microscopy required to comprehensively 

define the systemic impact of microbiota on neutrophils. As a result, the specific 

aspects of systemic neutrophil activity affected by microbiota are not fully 

understood.  

The zebrafish has several features that make it an attractive model to study the 

roles of commensal microbiota on systemic neutrophil biology. First, zebrafish are 

optically transparent from fertilization through early adulthood, permitting high-

resolution imaging of host–microbe interactions in the intact physiologic context of a 
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living vertebrate (Kanther et al., 2011; Rawls et al., 2007). Second, the zebrafish has 

innate and adaptive immune systems that share extensive homology with those of 

humans and other mammals (Kanther and Rawls, 2010). Likewise, the digestive 

tracts of zebrafish and mammals are similar, including an intestine, pancreas, liver 

and gall bladder (Ng et al., 2005; Wallace et al., 2005). Third, we have developed 

methods for rearing zebrafish under GF conditions and colonizing GF zebrafish with 

members of the commensal microbiota (Pham et al., 2008).  

Previous analyses of gnotobiotic zebrafish and mice have revealed that the 

presence of a microbiota causes extensive alterations in diverse aspects of host 

immunity and physiology. Reciprocally, host-mediated mucosal factors such as 

antimicrobial proteins, IgA, mucins, and inflammation alter microbial community 

composition and function (reviewed in (Abt and Artis, 2009; Hooper et al., 2012; 

Kanther and Rawls, 2010; Tremaroli and Bäckhed, 2012)). This complex interplay 

between host and microbial factors is central to the maintenance of homeostasis. 

However the host signaling pathways that mediate microbial cues to regulate 

systemic leukocyte responses remain unresolved.  

Serum amyloid A (Saa) is a circulating HDL-associated apolipoprotein and 

acute phase protein. The Saa gene family (3 in humans, 4 in mice, 1 in zebrafish) is 

conserved across vertebrates (Fig. S2.1), suggesting important biological roles. Saa 

genes are expressed by multiple tissues including liver, intestinal epithelium 

(Eckhardt et al., 2010), and macrophages (Meek et al., 1992) and are markedly 

induced by diverse inflammatory stimuli (Uhlar and Whitehead, 1999) including gut 

microbiota (Hooper et al., 2001; Ivanov et al., 2009; Kanther et al., 2011; Rawls et 
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al., 2006). Serum Saa protein level is a salient biomarker for inflammatory disorders 

including IBD (Noble et al., 2008; Okahara et al., 2005), necrotizing enterocolitis, 

sepsis (Ng et al., 2010), and chronic obstructive pulmonary disease (Bozinovski et 

al., 2008). The precise roles of Saa in inflammation remain elusive because both 

pro- and anti-inflammatory actions have been reported. Reported pro-inflammatory 

roles for Saa include stimulation of extracellular matrix (ECM)-degrading enzymes 

such as MMP9 (Lee et al., 2005), recruitment of neutrophils and monocytes 

(Badolato et al., 1994; Connolly et al., 2010; Su et al., 1999), suppression of 

neutrophil apoptosis (Christenson et al., 2008), stimulation of granulocytosis (He et 

al., 2009), opsonization of Gram-negative bacteria (Shah et al., 2006), Nlrp3 

inflammasome activation (Ather et al., 2011; Niemi et al., 2011), and stimulation of 

pro-inflammatory cytokines such as IL1β (Cheng et al., 2008; Lee et al., 2005; Niemi 

et al., 2011; Patel et al., 1998). In contrast, numerous reports cite anti-inflammatory 

effects of Saa on neutrophils, including inhibition of MPO production (Renckens et 

al., 2006), oxidative burst (Gatt et al., 1998; Linke et al., 1991), and migration (Gatt 

et al., 1998), and induction of IL10 expression (Cheng et al., 2008; De Santo et al., 

2010; Shah et al., 2006). These diverse effects may be due to Saa’s ability to 

stimulate signaling events through multiple transmembrane receptors, including 

formyl peptide receptor 2 (Fpr2/Fprl1) (Su et al., 1999), receptor for advanced 

glycosylation end-products (RAGE) (Cai et al., 2007), scavenger receptor class B 

type I (Scarb1/CLA-1) (Baranova et al., 2005), and Toll-like receptor 2 (Tlr2) (He et 

al., 2009). The signal transduction pathways that act downstream of Saa to regulate 

gene expression include extracellular signal-regulated kinases 1 and 2 (ERK1/2), 
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p38, c-Jun N-terminal kinase (JNK), Akt and NF-κB (Baranova et al., 2005; He et al., 

2009; Jijon et al., 2005). However, the relationship between these pathways and the 

distinct immune cellular responses evoked by Saa remain unclear. Importantly, in 

vivo genetic analysis of Saa has been complicated by the fact that the human and 

mouse genomes encode 3 and 4 paralogous Saa genes respectively (Fig. S2.1). We 

previously showed that colonization with a normal microbiota in zebrafish results in 

NF-κB-dependent induction of saa expression in the distal intestine, liver and swim 

bladder (Kanther et al., 2011). However, the in vivo roles of Saa in systemic 

neutrophil biology, as well as neutrophil requirements for NF-κB in these responses, 

remain unclear. In this study, we took advantage of the fact that the zebrafish 

genome encodes only a single Saa gene to define the requirement for Saa in 

microbiota-induced neutrophil responses. Our results reveal novel roles for the 

microbiota on systemic neutrophil biology including increased number and migratory 

behavior and suggest that Saa-dependent neutrophil migration requires NF-κB 

signaling. 

 
2.3. Materials and Methods 
 

Animal husbandry. All experiments using zebrafish and mice were performed using 

protocols approved by the Animal Studies Committee of the University of North 

Carolina at Chapel Hill. Conventionally raised wild-type (TL strain) and 

Tg(BACmpx:GFP)i114 [hereafter referred to as Tg(mpx:GFP)] (Renshaw et al., 2006) 

zebrafish were maintained as described (Flynn et al., 2009; Kanther et al., 2011). 

Production using in vitro fertilization methods, colonization, maintenance and sterility 
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testing of GF zebrafish was performed as described (Pham et al., 2008). GF and 

CONVD animals were reared at an average density of 1.3 animals per ml in sterile 

vented tissue culture flasks (Cellstar) housed in an air incubator at 28.5°C on a 14 h 

light cycle. Wild-type 8- to 12-wk-old C57BL/6 mice were maintained under specific 

pathogen free conditions. 

 

In vivo imaging. For time-lapse imaging, zebrafish were anesthetized in 4x Tricaine 

(MS-222; Sigma-Aldrich), and then mounted in 1% low melting point agarose 

containing 1x Tricaine on glass bottom dishes (MatTek Corporation). Solidified 

agarose containing fish was then covered in sterile GZM containing 2x Tricaine. 

Timelapse movies were captured using a Zeiss 510 Meta Laser Scanning Confocal 

Microscope at a rate of 1 frame every 15 s for 5 or 15 min. For live whole animal 

imaging, zebrafish were anesthetized as described above, mounted in 3% 

methylcellulose, and imaged using a Leica M205 FA stereomicroscope.  

 

Tail wounding assay. GF and CONVD 6dpf Tg(mpx:GFP) zebrafish were 

anesthetized as described above. Fish were mounted in 3% methylcellulose on a 35 

mm Petri dish by placing only the anterior part of the fish into the methylcellulose. 

The posterior part of the fish was covered with sterile GZM. Fish were then observed 

under a LeicaS6E StereoZoom stereomicroscope with a Leica L2 cold light 

illuminator. Tail amputations were performed posterior to the end of the notochord 

using a scalpel. GF and CONVD animals were revived in sterile GZM containing 

antibiotics (AB-GZM) (Pham et al., 2008), and kept at 28.5°C. Fish were collected at 
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time points indicated and euthanized in 8 × Tricaine. Larvae were fixed in 4% 

paraformaldehyde overnight at 4°C, and washed 3 times for 10 min and 3 times for 1 

h in PBS + 0.2% Tween. Fish were then mounted in 3% methylcellulose and imaged 

using a Leica M205 FA stereomicroscope. Numbers of GFP(+) neutrophils posterior 

to the notochord were quantified in 8–10 fish for each condition. 

 

Morpholino injections and validation. Zebrafish embryos at the 1–2 cell stage 

were injected with morpholinos (GeneTools LLC) targeting saa (saa.i2e3, 0.9 pmol 

per embryo; GTCCTTTGCACTTCAAAAATAGAGT), or standard control MO (0.9 

pmol per embryo; Gene Tools LLC) using a Drummond Nanoject II microinjector. 

Efficacy of splice-blocking MOs was measured by RT-PCR. cDNA was prepared 

from pools of whole larvae at 6dpf as described (5–15 larvae per pool) (Rawls et al., 

2007), and 10 ng of cDNA was used as a template in  PCR  reactions  using  gene-

specific  primers (forward: CTTGCTGTGCTGGTGATGTT; reverse: 

AGTCTTCTGGGGGT CATCTTC). We resolved PCR amplicons on 2% agarose 

gels to detect morphant transcripts (Fig. S2.2). 

 

Flow cytometry analysis. Tg(mpx:GFP) zebrafish were reared under GF and 

CONVD conditions. GF and CONVD 6dpf larvae were pooled and killed (50 animals 

per condition per experiment). Excess media was removed and animals were finely 

chopped using sterile razor blades in a 10 cm Petri dish, diluted in 1.5 ml 5% fetal 

bovine serum in Hanks’ balanced salt solution (FBS/HBSS), and then transferred to 

sterile Eppendorf tubes. Cells were pelleted at 1000 g for 5 min at 4°C, and cell 
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pellets were washed with 1 ml FBS/HBSS and pelleted again at 1000 g for 5 min at 

4°C. Cell pellets were then treated with 500 µl 10 mg ml−1 collagenase/ dispase 

liberase (Roche) solution in FBSS/HBSS for 35 min at room temperature with 

vigorous shaking. Digestion was stopped using 500 µl stopping solution [100 µl 0.5 

M EDTA (pH 8.0) in 9.9 ml FBS/HBSS]. Cells were pelleted at 1000 g for 5 min at 

4°C. The cell pellets were resuspended in 500 µl FBS/HBSS and passed through 40 

µm mesh filter (BD Falcon), and the mesh was washed twice with 250 µl 

FBSS/HBSS. Cells were then brought to final volume of 1 ml of FBS/HBSS prior to 

sorting using a MoFlo sorting flow cytometer (Beckman Coulter). Conventionally 

raised non-transgenic and transgenic controls (pools of 50 fish per genotype) were 

prepared as above and used to define fluorescence and cell size gates. Single cell 

suspensions from GF and CONVD zebrafish were sorted for GFP fluorescence 

using Summit software. For RNA analysis GFP(+) neutrophils were collected in 1 ml 

cold FBSS/HBSS and stored at 4°C. These cells were then pelleted at 1000 g for 5 

min at 4°C. The supernatant was then removed and replaced with 1 ml Trizol 

(Invitrogen). Cells were then prepared as described below for quantitative RT-PCR 

analysis.  

 

Cell tracking analysis. Tracking analysis of EGFP-expressing neutrophils was 

performed in Volocity (Improvision, Perkin Elmer). The locations of individual cells 

were tracked in each frame of time-lapse images (5 or 15 min) captured as 

described above using Volocity’s ‘track objects manually’ tool. Tracking was 

performed as described in the Volocity User Guide. 3–5 time-lapse movies per 
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experimental condition were analyzed. For tissue-specific analyses, tracked cells 

were categorized as either caudal hematopoietic tissue (CHT), intestine, or fin cells 

based on their location for the duration of the movie.  

 

Zebrafish cell culture and stimulation. PAC-2 zebrafish embryonic fibroblast cells 

were grown at 28°C in Leibowitz L-15 medium supplemented with 10% fetal bovine 

serum (FBS; Atlanta Biologicals) and penicillin G (50 U ml−1; Life Technologies) in 

0.5% CO2. Cell lines were used between passages 15 and 35. Cells were grown to 

near confluency (90%) in 6-well plates (Costar), and were stimulated with LPS (10 

µg ml−1; from Escherichia coli 0111:B4; Sigma) or SAA (1, 4 µM; PeproTech) for the 

specified amount of time in media containing 1% FBS. Immunofluorescence assays 

for RelA/p65 were performed as described (Kanther et al., 2011). 

 

Western immunoblot analysis. PAC-2 cells were stimulated with LPS (10 µg ml− 1) 

or SAA (4 µM) at specified time points. Cells were harvested and lysed in 1x 

Laemmli buffer, and the protein concentration was measured using a Bio-Rad 

quantification assay (Bio-Rad Laboratories). Western blot for IκB α (S32; Cell 

Signaling) and actin (MP Biomedicals) was performed as described previously 

(Kanther et al., 2011).  

 

Transfection and luciferase activity assays. For transfections, PAC-2 cells were 

seeded into 12-well tissue culture plates (~ 5 × 105 cells per well) and grown in 1 ml 
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medium with 1% FBS at 28°C to ~70% confluency. Transfections with 0.2 µg ml−1 of 

the previously described pikbaa:Luc were performed using Lipofectamine 2000 

(Invitrogen) as described by the manufacturer (Kanther et al., 2011). After 24 h 

transfection, fresh medium was supplied and cells were stimulated with LPS (10 µg 

ml−1) or SAA (4 µM) for 24 h. Cells were then lysed and luciferase activity was 

determined using an LMax luminometer microplate reader (Molecular Devices, 

Sunnyvale, CA, USA). Results were normalized for extract protein concentrations 

measured with the Bio-Rad protein assay kit (Bio-Rad, Hercules, CA, USA).  

 

Quantitative RT-PCR analysis. To isolate RNA from whole zebrafish larvae, 6dpf 

larvae (5–30 larvae per group) were anesthetized in 4x Tricaine (SigmaAldrich), 

placed in 1 ml Trizol (Invitrogen) taking care to remove any excess media, and then 

repeatedly passed through a 25-gauge needle (BD Syringe) until homogenized. 

Samples were vortexed for 30 s, incubated at room temperature for 5 min, 

supplemented with 0.2 ml chloroform per sample, vortexed for 30 sec, and incubated 

at room temperature for 2 min. The samples were then centrifuged at 12 000 g for 

15 minutes at 4°C, and then the colorless upper phase containing the RNA was 

transferred to a new RNAse-free tube. An equal volume of 70% RNAse-free ethanol 

was added to each tube containing the upper phase, and then RNA was isolated 

using PureLinkTMRNA Mini Kit (Ambion) following the manufacturer’s specifications. 

To isolate RNA from primary sorted zebrafish neutrophils or cultured zebrafish PAC2 

fibroblasts, we used Trizol (Invitrogen) following manufacturer’s specifications. Total 

RNA was used in reverse transcription and quantitative PCR assays using gene-
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specific primers for 18S (forward: CACTTGTCCCTCTAAGAAGTTGCA; reverse: 

GGTT GATTCCGATAACGAACGA), mpx (forward: TCCAAAGCTATG 

TGGGATGTGA; reverse: GTCGTCCGGCAAAACTGAA), ncf1 (forward: 

TTCATCTCGCCGTCAGACTCGTTT; reverse: TGTAC 

ACATAGTGCTGGCTGGGAA), il1b (forward:  TGGACTTCG CAGCACAAAATG; 

reverse: GTTCACTTCACGCTCTTGGATG), ikbaa (forward: 

GCCGTGCAGATCATCAAAC; reverse: CCGC 

TGTAGTTAGGGAAGGT), and mmp9 (forward: CATCACTG 

AAATCCAGAAGGAGCTT; reverse:  GTTCACCATTGCCTGA GATCTTC) as 

described (Kanther et al., 2011).  

 

Neutrophil isolation and migration assay. Mice were injected intraperitoneally 

with 2.5 ml of 3% Fluid Thioglycollate Medium (Difco Laboratories) previously 

autoclaved for 15 min under 15 psi. Mice were euthanized with CO2 intoxication and 

neutrophils in the peritoneal cavity were retrieved by lavage with 10 ml of ice-cold 

HBSS supplemented with 1.5 mM ethylene diamine-tetraacetic acid (EDTA). 

Neutrophils were resuspended in 0.5% FBS RPMI 1640 medium and pretreated for 

1 h with the NF-κB inhibitor BAY-11–7082 (25 µM; Calbiochem), or cycloheximide 

(50 µg ml−1; Sigma). Cells were plated at ~2 × 106 per insert in 6-well Transwells 

(Corning) with 3 µm pore in the presence of SAA (25 µg ml−1) and incubated at 37°C 

and 5% CO2 for 2.5 h. Neutrophils were imaged and counted as previously 

described (Sun et al., 2012).  
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Phylogenetic analysis. Protein sequences were exported from GenBank into the 

Cipres Science Gateway v3.2 (Miller et al., 2010) and aligned using Muscle. 

Phylogenetic trees were inferred using maximum likelihood in RAxML HPC2 7.3.1 

on XSEDE using a GAMMA model and a BLOSUM62 protein substitution matrix. 

The best-scoring ML tree was identified and prepared using Dendroscope v1.4. 

Rapid bootstrap resampling (1000 replicates) was used to test the robustness of 

inferred topologies. Multiple sequence alignments were prepared using Boxshade.  

 

Statistical methods. Statistical analysis was performed using unpaired two-tailed 

Student’s t-test, or one-way analysis of variance (ANOVA) followed by Tukey’s post-

test. Values were calculated using GraphPad Prism software, and P < 0.05 was 

considered significant. 

 
2.4. Results 
 

Microbiota promotes increased neutrophil number and pro-inflammatory gene 
expression  
 

To investigate the impact of the commensal microbiota on zebrafish myeloid 

lineages, we queried results from a microarray-based functional genomic 

comparison of gene expression in whole zebrafish at 6 days post fertilization (dpf) 

that had been raised GF or conventionalized since 3dpf (CONVD). Functional 

categorization of the resulting list of microbiota-regulated transcripts revealed 

enrichment for genes involved in leukocyte development and function (Kanther et al., 

2011). CONVD zebrafish displayed relative increases in transcript levels for 17 
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genes known to be specifically expressed by myeloid leukocytes, including the 

zebrafish homologue of mammalian myeloperoxidase mpx (also called mpo; Table 

1) (Kanther et al., 2011; Rawls et al., 2004, 2006). Our previous whole-mount in situ 

hybridization analysis of mpx mRNA in GF and CONVD zebrafish suggested that 

this increase in mpx transcript level could be due to increased neutrophil number or 

increased mpx mRNA levels in individual neutrophils (Kanther et al., 2011). To test if 

these transcript differences were associated with alterations in neutrophil number, 

we used transgenic Tg(mpx:GFP) zebrafish that robustly express GFP specifically in 

neutrophils (Renshaw et al ., 2006). Stereomicroscopic evaluation of GFP(+) 

neutrophil number and localization in whole 6dpf GF and CONVD zebrafish revealed 

a qualitative increase in neutrophil number throughout the animal (Fig. 2.6.1A). Flow 

cytometry of GFP(+) neutrophils from dissociated 6dpf Tg(mpx:GFP) fish confirmed 

a significant increase in total steady-state number of neutrophils per animal in 

CONVD compared with GF animals (Fig. 2.6.1B). Quantitative RT-PCR in flow-

sorted neutrophils from GF and CONVD larvae revealed significant increases in mpx 

mRNA in sorted neutrophils from CONVD animals (Fig. 2.6.1C). Colonization with a 

commensal microbiota therefore results in significant increases in neutrophil mpx 

expression together with increases in steady-state neutrophil number.  

 

Microbiota regulates tissue distribution and migration of neutrophils  
 

We imaged whole 6dpf GF and CONVD Tg(mpx:GFP) zebrafish to evaluate the 

effect of microbiota on neutrophil localization and migration. Consistent with our 
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previous mpx RNA whole-mount in situ hybridization results (Kanther et al., 2011), 

CONVD zebrafish  displayed increased GFP expression in the kidney, a site of 

definitive hematopoiesis (Fig. 2.6.1A). Since the intestine harbors microbial 

communities that are markedly denser than that of the surrounding water, we 

analyzed the frequency and distribution of GFP(+) neutrophils associated with 

intestines dissected from Tg(mpx:GFP) GF and CONVD larvae. We observed 

increased numbers of GFP(+) neutrophils in the intestines of CONVD Tg(mpx:GFP) 

zebrafish compared with GF controls, most significantly in the proximal region 

(segment 1) of the intestine (Fig. 2.6.1D). To determine if these changes in 

localization were associated with altered neutrophil migratory behaviors, we used 

confocal microscopy to quantify migration of individual neutrophils in live 6dpf GF 

and CONVD Tg(mpx:GFP) fish. Compared with GF controls, neutrophils in CONVD 

animals displayed significantly elevated migration velocity and decreased 

meandering (i.e. increased directional migration) compared with GF controls (Fig. 

2.6.2, Movies S1 and S2). These results indicate that the microbiota regulates 

systemic neutrophil localization and migratory activity.  

 

Microbiota promotes neutrophil recruitment to extra-intestinal injury  
 

To determine if the observed effects of microbiota on neutrophil number, 

localization, and migration have functional consequences, we used a well-

established injury model in which a portion of the tail fin in larval zebrafish is 

resected and the recruitment of leukocytes to the wound is quantified over time 
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(Renshaw et al., 2006; Yoo and Huttenlocher, 2011). Although early (1 h) GFP(+) 

neutrophil recruitment to the wound was slightly higher in GF animals compared with 

CONVD controls, later evaluation at 3, 6 and 15 h after injury revealed significantly 

more neutrophils recruited to the wound in CONVD animals (Fig. 2.6.3). These 

results confirm that colonization with a microbiota augments the host’s capacity for 

recruiting neutrophils to extra-intestinal injury. 

 

Saa is required for increases in neutrophil migration and suppression of 
inflammatory biomarkers following colonization with a microbiota  
 

We next sought to define the role of zebrafish saa on neutrophil responses to 

the microbiota. Injection of zebrafish embryos with morpholino antisense 

oligonucleotides (MO) targeting saa resulted in partial knockdown of saa transcript 

through 6dpf (Fig. S2.2A). By comparing 6dpf GF and CONVD Tg(mpx:GFP) 

zebrafish injected with a MO targeting saa (saa-MO) or a standard negative control 

MO (ctrl-MO), we found that saa knockdown did not qualitatively alter the effects of 

the microbiota on neutrophil tissue distribution (Fig. 2.6.4A). Using a computational 

approach to quantify GFP(+) neutrophil number in whole live zebrafish (Ellett and 

Lieschke, 2012), we observed that the microbiota-induced increases in neutrophil 

number (Fig. 2.6.4B) and mpx mRNA levels (Fig. 2.6.4C) were also not affected by 

saa knockdown. In contrast, in vivo imaging of 6dpf GF and CONVD Tg(mpx:GFP) 

fish revealed striking tissue-specific saa-dependent alterations in microbiota-induced 

neutrophil migration behavior (Movies S3–5 and S6). In ctrl-MO animals, neutrophils 

associated with the CHT, intestine, and fin displayed significantly increased 
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migration velocity in the presence of a microbiota. In saa-MO animals, the microbiota 

caused a similar increase in fin neutrophils but failed to increase neutrophil migration 

velocity in the CHT and intestine (Fig. 2.6.4F). The presence of a microbiota in ctrl-

MO animals caused a significant reduction in the meandering index of neutrophils 

associated with the CHT but not those in the intestine or fin. In saa-MO animals, the 

effect of the microbiota on CHT neutrophil meandering was significantly attenuated 

(Fig. 2.6.4G). Strikingly, neutrophils associated with the intestine in saa-MO animals 

displayed a microbiota-dependent decrease in meandering that was not observed in 

ctrl-MO controls (Fig. 2.6.4G). These results suggest multiple novel in vivo roles for 

Saa in regulating tissue-specific neutrophil migratory behaviors. These alterations in 

microbiota-induced neutrophil migration in saa-MO fish were accompanied with 

significant increases in microbiota-dependent induction of inflammatory biomarkers 

ncf1 and il1b (Fig. 2.6.4D and E). These results reveal a potential anti-inflammatory 

role for saa in suppressing inflammatory gene expression and complex tissue-

specific roles in neutrophil migration responses to commensal microbiota.  

 

Saa-dependent induction of neutrophil migration requires NF-κB activity 
 

Saa has been shown to promote neutrophil migration in mammals (Connolly et 

al., 2010; He et al., 2009) and we have shown that SAA activates NF-κB signaling in 

mammalian cells (Jijon et al., 2005). Because the NF-κB transcription factor has 

been linked to neutrophil migration (Penzo et al., 2010), we hypothesized that 

increased Saa levels in response to microbiota might activate NF-κB and NF-κB-
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dependent immune cell migration. To test this, we turned to cell culture where the 

cell autonomous roles of SAA and NF-κB could be readily evaluated. Culture 

methods for purified zebrafish neutrophils have not been established, therefore we 

first tested the effects of SAA on the PAC2 zebrafish fibroblast cell line. Western blot 

analysis showed that SAA induced phosphorylation of the NF-κB protein inhibitor 

IκBα, a key process for canonical NF-κB activity (Fig. 2.6.5A). Immunofluorescence 

analysis showed that SAA promoted nuclear translocation of the NF-κB 

transcriptional subunit RelA/p65 (data not shown). To confirm that SAA functionally 

impacts NF-κB signaling, we investigated transcriptional activity using pikbaa:Luc 

gene reporter system (Kanther et al., 2011). Luciferase activity increased ~3-fold in 

pikbaa:Luc-transfected PAC2 cells following SAA stimulation, a level similar to LPS 

stimulation (Fig. 2.6.5B). Importantly, increased NF-κB activity was associated with 

SAA-induced accumulation of NF-κB target genes mmp9 and ikbaa mRNA (Fig. 

2.6.5C and D). These findings demonstrate that SAA induces NF-κB signaling and 

expression of NF-κB target genes in zebrafish cells. We next sought to directly test 

the functional impact of NF-κB signaling in Saa-induced neutrophil migration using 

mouse peritoneal neutrophils.  Using a transwell migration assay, we observed that 

peritoneal neutrophil motility in response to SAA increased by ∼2-fold (Fig. 2.6.6A 

and B). Neutrophil migration was reduced by 82% when the NF-κB inhibitor Bay 11–

7082 (BAY) was co-incubated with SAA (Fig. 2.6.6A and B). Treatment with the 

protein synthesis inhibitor cycloheximide (CHX) strongly attenuated SAA-induced 

neutrophil transmigration (73%), suggesting that NF-κB-mediated gene expression is 
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necessary for neutrophil movement (Fig. 2.6.6A and B). These findings implicate 

microbiota-induced SAA expression as an important host response regulating 

neutrophil behavior. 

 
2.5. Discussion 
 

The majority of microbes on the human body reside in the intestine, where they 

are known to contribute significantly to intestinal physiology and mucosal immunity. 

There is, however, increasing evidence that the influence of the microbiota extends 

beyond the confines of the intestine to other tissues and their pathologies (McFall-

Ngai et al., 2013). Therefore, the identification of the cellular and molecular 

mechanisms by which the microbiota shapes the systemic physiology of animal 

hosts is an important research objective. An improved understanding of the 

microbiota’s impact on systemic leukocyte function is particularly needed due to the 

implication of the microbiota in the etiology of inflammatory diseases in intestinal and 

extra-intestinal compartments. Previous analysis of the microbiota’s impact on 

neutrophil biology in mammals has been limited to ex vivo comparisons of 

neutrophils collected from peripheral blood or bone marrow (Clarke et al., 2010; 

Ferencík et al., 1985; Ohkubo et al., 1990, 1999). Here we have utilized the 

transparency of the zebrafish to provide the first comprehensive view of the 

microbiota’s systemic impact on in vivo neutrophil function. Our results reveal 

diverse consequences of microbiota colonization on neutrophil homeostasis and 

behavior, as well as recruitment of neutrophils to injury. We also show a mechanistic 

role for a SAA-NF-κB signaling axis in microbiota-dependent neutrophil migration. 
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These findings underscore the potential of the microbiota to influence the systemic 

physiology of animal hosts and provide an important new conceptual framework for 

understanding the microbiota’s roles in inflammatory diseases.  

Our observations of increased systemic neutrophil number in CONVD 

compared with GF zebrafish larvae reveal a novel role for the microbiota in defining 

the steady state neutrophil population. Systemic neutrophil number might be 

influenced by differences in microbiota composition or husbandry practices, because 

a recent comparison of starved GF and conventionally raised zebrafish larvae in a 

different zebrafish facility did not reveal differences in neutrophil number (Galindo-

Villegas et al., 2012). Inflammatory stimuli can regulate the hematopoietic 

compartment in zebrafish, as injection with LPS induces myelopoiesis (Liongue et 

al., 2009) and bacterial infection or tail wounding induces mobilization of neutrophils 

from the CHT (Deng et al., 2013; Yoo and Huttenlocher, 2011). Our study using 

commensal microbial colonization adds a novel aspect to bacteria–host interaction 

by showing that microbial cues regulate myelopoietic programs.  

In vivo imaging of GFP(+) neutrophils in gnotobiotic zebrafish revealed 

significant influences of microbiota on neutrophil localization and migratory behavior. 

We detected a quantitative increase in neutrophil localization in the intestines of 

CONVD versus GF zebrafish, with the most marked increases in the proximal 

intestine. This is consistent with a previous study by Bates and colleagues that 

reported an increase in MPO(+) cell number in the distal intestine of CONVD versus 

GF zebrafish (Bates et al., 2007). These microbiota-associated increases in 

intestinal neutrophil number may be due to tissue-specific alterations in neutrophil 
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recruitment or retention, or may simply reflect the observed overall increase in 

systemic neutrophil number. Sites of hematopoiesis are dynamic during zebrafish 

development, and occur in the CHT and kidney at the larval stages under study here 

(for review see (Kanther and Rawls, 2010). We observed salient qualitative 

increases in GFP(+) neutrophil localization to the kidney region in CONVD zebrafish. 

The significance of this microbiota-induced neutrophil localization remains unknown, 

and could be indicative of altered granulopoiesis in the kidney hematopoietic tissue 

or linked to microbiota-induced NF-κB activation in the adjacent swim bladder 

(Kanther et al., 2011). Time-lapse in vivo microscopy revealed that microbiota-

induced alterations in neutrophil localization were accompanied by significantly 

increased neutrophil migration velocity in all evaluated tissues and decreased 

neutrophil meandering in the CHT region. These observed tissue-specific influences 

of the microbiota on neutrophil behavior underscore the utility of in vivo imaging in 

the zebrafish for defining the regional impact of microbial colonization status.  

These systemic impacts of the microbiota on neutrophil development are 

predicted to have diverse functional consequences on host immunity and 

inflammation. In support, we found that the presence of a microbiota is associated 

with significant alterations in inflammatory gene expression in neutrophils. Our 

previous genomic comparison of whole GF and CONVD zebrafish larvae revealed 

that transcripts encoding multiple myeloid markers including neutrophil-specific mpx 

were increased in the presence of the microbiota (Kanther et al., 2011). Moreover, 

we previously identified individual bacterial species sufficient to induce mpx in 

gnotobiotic zebrafish (Kanther et al., 2011; Rawls et al., 2004, 2006) and showed 
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that this response requires functional bacterial flagella (Rawls et al., 2007). Here we 

found that mpx mRNA levels were increased in sorted neutrophils from CONVD 

compared with GF zebrafish larvae. This is consistent with previous analysis of MPO 

levels in neutrophils from gnotobiotic mammals (Ferencík et al., 1985), suggesting 

an evolutionarily conserved role for microbiota in controlling neutrophil gene 

expression programs. The breadth and impact of microbiota-induced alterations in 

neutrophil transcription remain to be defined. However, a recent genetic analysis in 

zebrafish revealed that mpx functions to downregulate H2O2 gradients established at 

sites of injury and thereby contributes to the resolution of inflammation (Pase et al., 

2012). This data suggests that increased mpx expression in neutrophils in the 

presence of the microbiota might serve as an anti-inflammatory response to 

commensal microbial colonization. Consistent with a previous study (Galindo-

Villegas et al., 2012), we also found that the presence of a microbiota significantly 

increased the number of neutrophils recruited to a fin injury. This could be due to 

increased recruitment or retention of neutrophils in the wound in the presence of a 

microbiota, or could reflect the observed overall increase in systemic neutrophil 

number in those animals. Although GF neutrophils express less mpx transcript, other 

microbiota-induced responses must cause this wound recruitment phenotype 

because mpx-deficient neutrophils develop normally and migrate normally to a fin 

wound (Pase et al., 2012). Notably, GF fish recruited more neutrophils exclusively at 

an early time point (1 h) after injury, suggesting neutrophils might be slower to arrive 

but accumulate in greater numbers in the wound of colonized animals.  Together, 

these results establish that the microbiota regulates neutrophil function as well as 
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development, and suggest that identification of the underlying molecular 

mechanisms could provide potential therapeutic targets for controlling inflammation. 

Our results identify a novel role for Saa in regulating neutrophil migratory 

behavior in response to microbiota colonization. SAA proteins are known to be 

produced by multiple vertebrate tissues and cell types in response to various stimuli 

including gut microbiota. Indeed, we showed that zebrafish saa transcript levels in 

distal intestine, liver, and swim bladder are elevated upon colonization with a 

microbiota via myd88-dependent and NF-κB-dependent mechanisms (Kanther et al., 

2011). However the functional consequence of commensal microbiota-induced SAA 

on neutrophil activity remained unknown. The existence of a single Saa orthologue 

in zebrafish allowed us to test the requirement of saa function on neutrophil 

responses to the microbiota using MO knockdown. Microbiota-induced alterations in 

neutrophil number, localization and mpx levels were unaffected by saa knockdown, 

suggesting that these host responses do not require saa. In contrast, neutrophil 

migratory responses to the microbiota were strongly affected by saa knockdown. 

Microbiota-induced increases in neutrophil velocity were attenuated in the CHT and 

intestines of saa-MO fish but not in the fin. This reveals novel tissue-specific roles for 

saa in neutrophil migration, and suggests that neutrophils located in these tissue 

compartments might have different sensitivities or accessibility to Saa protein. The 

ability of the microbiota to induce a lower meandering index in the CHT was also 

attenuated following saa knockdown, suggesting that this host response also 

requires Saa. Knockdown of saa additionally caused an unexpected reduction in 

meandering index in the intestine, consistent with an increased inflammatory tone in 
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that tissue. In support of this notion, saa knockdown was associated with increased 

expression of inflammatory biomarkers il1b and ncf1, reminiscent of increased 

susceptibility to DSS colitis in mice deficient for Saa1 and Saa2 (Eckhardt et al., 

2010). Importantly, MO injection resulted in only a partial knockdown of wild-type 

saa transcript. Therefore saa may have additional functions that could be revealed 

by stronger loss of function approaches.  

Saa induces neutrophil migration in mammals as well as zebrafish. Saa is 

known to activate NF-κB signaling in mammalian cells, and NF-κB has also been 

linked to mammalian neutrophil migration. To test whether Saa induces neutrophil 

migration by activating NF-κB, we turned to cell culture platforms where the cell 

autonomous effects of Saa can be readily evaluated. We find that zebrafish 

fibroblasts, like mammalian cells, respond to Saa exposure by inducing the NF-κB 

signaling pathway and downstream transcriptional targets. Transwell migration 

assays using murine peritoneal neutrophils revealed that Saa-dependent induction 

of neutrophil migration requires NF-κB-dependent gene expression. We previously 

found that the ability of the microbiota to induce zebrafish saa required NF-κB 

(Kanther et al., 2011), indicating that the NF-κB pathway is involved at multiple steps 

in this process. Together, our data support a model in which the presence of a 

microbiota results in NF-κB-dependent induction of saa in multiple tissues, which 

leads to systemic NF-κB dependent increases in neutrophil migration. In parallel, the 

microbiota causes altered neutrophil number, localization, and mpx expression using 

saa-independent mechanisms. Since the NF-κB pathway regulates gene 

transcription in multiple tissues and cell types (Kanther et al., 2011), in vivo analysis 
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of the cell-autonomous roles of NF-κB in neutrophil behavior will require new 

approaches for controlling the NF-κB pathway specifically in the neutrophil lineage. 

Although this study focused exclusively on neutrophils, we anticipate that the 

microbiota might have similar effects on other leukocyte lineages. Additional studies 

are needed to determine the similarities and differences between leukocyte 

responses to colonization by commensal microbiota and infection with pathogenic 

microbes. Of particular interest are the mechanisms by which gut microbes might 

regulate aspects of hematopoiesis and mobilization of immune cells to distinct target 

tissues such as the gut. An improved understanding of how commensal and 

pathogenic microbes control systemic neutrophil function could lead to the 

development of new probiotic, antibiotic and pharmacologic approaches for 

controlling neutrophil activity and inflammation to reduce incidence and severity of 

human IBD and other inflammatory diseases.   
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2.6. Figures and Tables 

 
Figure 2.6.1. Microbiota regulates neutrophil localization, number and 
stimulates inflammatory biomarkers. A. Live 6dpf Tg(mpx:GFP) zebrafish show 
GFP(+) neutrophil localization as a function of microbial status. Note the increased 
neutrophil localization in the kidney (white arrow) in CONVD animals. B. Flow 
cytometry analysis reveals that the percent frequency of GFP(+) neutrophils in 
dissociated 6dpf Tg(mpx:GFP) zebrafish is higher in CONVD compared with GF 
animals. C. qRT-PCR for mpx mRNA levels in sorted neutrophils. D. Quantification 
of mean total number of GFP(+) neutrophils associated with dissected intestines by 
segment. Data are representative of 8–10 guts per microbial condition from two 
biological replicates. Significant Student’s t-test P-values are shown.  
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Figure 2.6.2. Microbiota induces systemic neutrophil migration. Neutrophil 
tracking analysis of the CHT from 15-min movies of live 6dpf GF (A) and CONVD (B) 
Tg(mpx:GFP) zebrafish reveals increased migratory activity in CONVD. C. 
Quantification of neutrophil migration velocity and meandering index in 6dpf GF and 
CONVD zebrafish (calculated from 29 neutrophils per condition). Significant 
Student’s t-test P-values are shown. See also Movies S1 and S2.   
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Figure 2.6.3. Microbiota promotes neutrophil recruitment to tail wounds in GF 
and CONVD Tg(mpx:GFP) zebrafish. A. Brightfield and GFP fluorescence images 
of 6dpf GF and CONVD zebrafish tails 3 h post injury. B. Mean numbers of 
neutrophils recruited to wound site (posterior to the end of the notochord marked by 
white dashed line) at time points post injury as indicated. Data represents 8–10 fish 
per condition per time point. Significant Student’s t-test P-values are shown: *P < 
0.05 and **P < 0.005 vs GF.  
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Figure 2.6.4. saa mediates systemic neutrophil migration in response to the 
microbiota. Comparisons of 6dpf GF and CONVD Tg(mpx:GFP) zebrafish injected 
with either standard control (Ctrl MO) or a morpholino targeting saa (saa MO). A. 
Images of whole live 6dpf Tg(mpx:GFP) zebrafish show GFP(+) neutrophil 
localization including increased concentration of neutrophils in the kidney (white 
arrow) and intestine (white arrow head) in CONVD Ctrl MO and saa MO zebrafish. 
B. Neutrophil units quantified by GFP densitometry from whole animal images 
similar to those shown in A. C. qRT-PCR for mpx mRNA in sorted neutrophils. qRT-
PCR for ncf1 (D) and il1b (E) mRNA in whole 6dpf zebrafish. Quantification of 
neutrophil velocity (F) and meandering index (G) in the CHT, intestine (Int), and fin 
(calculated from 7–29 neutrophils per tissue per condition). Student’s t-test P-values 
are indicated: a, P < 0.05 compared with GF condition in same genotype; b, P < 0.05 
compared with Ctrl MO in same microbial condition. See also Movies S3–S6.   
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Figure 2.6.5. SAA stimulation of a zebrafish cell line results in activation of the 
canonical NF-κB pathway and induces expression of NF-κB target genes. A. 
Western blot of zebrafish PAC-2 cells shows rapid phosphorylation of IκBα proteins 
after LPS (10 µg ml− 1) or SAA (4 µM) stimulation. B. Zebrafish PAC-2 cells 
transfected with ikbaa-luciferase gene reporter (pikbaa:Luc) show increased 
luciferase activity upon stimulation with LPS (10 µg ml−1) or SAA (1, 4 µM). C and D. 
qRT-PCR using primers for mmp9 and ikbaa, predicted NF-κB target genes, 
demonstrate induction upon stimulation of PAC-2 cells with LPS (10 µg ml−1) or SAA 
(1, 4 µM) normalized to 18S ribosomal RNA [rRNA]). Data are expressed as mean ± 
SEM. *P < 0.05, **P < 0.01, ***P < 0.001.  
  



 

 

 65 

 
Figure 2.6.6. SAA promotes neutrophil migration and requires NF-κB and 
protein synthesis. A. Peritoneal isolated murine neutrophils were pretreated for 1 h 
with BAY 11–7082 (BAY, 25 µM) or cycloheximide (CHX, 50 µg ml−1) and then 
plated into the top well of a Transwell system. The cells’ migration in response to 
SAA (2.08 µM, 25 µg ml−1) in the bottom well was enumerated after 2.5 h. 
Representative light images of neutrophils migrated into bottom wells. Magnification 
200x. B. Quantitative measurements of migrated neutrophils. Data are expressed as 
mean ± SEM. *P < 0.05. Results are representative of two independent experiments. 
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Gene name FCa Referenceb 
myeloid-specific peroxidase (mpx) 8.0 (Bennett et al., 2001; 

Lieschke et al., 2001) 
matrix metalloproteinase 9 (mmp9) 7.2 (Yoong et al., 2007) 
microfibrillar-associated protein 4 (mfap4) 6.4 (Zakrzewska et al., 2010) 
matrix metalloproteinase 13a (mmp13a) 5.1 (Qian et al., 2005; Yoong et 

al., 2007) 
neutrophil cytosolic factor 1 (ncf1) 3.0 (Qian et al., 2005) 
lymphocyte cytosolic plastin 1 (lcp1) 2.2 (Bennett et al., 2001) 
CCAAT/enhancer binding protein, beta 
(cebpb) 

2.1 (Thisse et al., 2001) 

coronin, actin binding protein, 1A (coro1a) 2.0 (Song et al., 2004) 
Table 2.1. Elevated transcript levels for myeloid lineage genes in CONVD 
compared with GF zebrafish larvae. 
a. Transcript fold change (FC) in 6dpf CONVD compared to GF zebrafish larvae from 
(Kanther et al., 2011).  
b. Reference establishing myeloid lineage expression for the respective zebrafish gene. 
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Supplemental Figure 2.1. Phylogenetic analysis of Saa protein sequences. A. 
Maximum likelihood phylogenetic tree of human (Homo sapiens, Hs) SAA1 
(NP_000322), SAA2 (NP_110381) and SAA4 (NP_006503); mouse (Mus musculus, 
Mm) Saa1 (NP_033143), Saa2 (NP_035444), Saa3 (NP_035445) and Saa4 
(NP_035446); chicken (Gallus gallus, Gg) Saa (ADF56353); rainbow trout 
(Oncorhynchus mykiss, Om) Saa (NP_001117908); Tetraodon (Tetraodon  
nigroviridis,  Tn)  Saa  (CAF99678);  amphioxus (Branchiostoma belcheri, Bb) Saa 
(BAB97379); and zebrafish (Danio rerio, Dr) Saa (NP_001005599) and SaaL1 
(NP_956429). Zebrafish SaaL1 is included as an outgroup. Bootstrap support ( ≥ 
50%) is shown as results from 1000 bootstrap replicates.  B. Multiple sequence 
alignment of Saa proteins. Identical residues are highlighted in black, and similar 
residues are highlighted in grey.  
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Supplemental Figure 2.2. PCR validation of saa MO knockdown. Injection of 1-
cell stage embryos with 9 pmol saa.i2e3 morpholino (saa MO) results in ∼ 150 bp 
reduction in a subset of saa transcripts in both GF and CONVD larvae at 6dpf. This 
is consistent with saa.i2e3 MO causing exclusion of exon 3 (154 bp) from saa 
transcripts. These saa MO-induced splicing defects were not observed following 
injection of a standard control morpholino (Ctrl MO). Data from two biological 
replicate pools (#1 and #2; 5–15 larvae per pool) are shown. Note that the total saa 
transcript levels are increased in CONVD compared with GF controls, but that the 
magnitude of saa transcript increase varies between replicates.  
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Supplemental movies available online: 
http://onlinelibrary.wiley.com/doi/10.1111/cmi.12257/full 
 
Movie S1. Neutrophil migration in GF zebrafish larvae. Live 6dpf Tg(mpx:GFP) GF 
zebrafish imaged at a rate of one frame every 15 s for 15 min reveals decreased 
neutrophil migration compared with CONVD controls (compared with Movie S2). 
 
 
Movie S2. Neutrophil migration in CONVD zebrafish larvae. Live 6dpf Tg(mpx:GFP) 
CONVD zebrafish imaged at a rate of one frame every 15 s for 15 min reveals 
increased neutrophil migration compared with GF controls (compared with Movie 
S1). 
 
 
Movie S3. Neutrophil migration in GF Ctrl-MO zebrafish larvae. Live 6dpf 
Tg(mpx:GFP) GF zebrafish injected with standard control MO (Ctrl MO) were 
imaged at a rate of one frame every 15 s for 5 min (compared with Movies S4–S6).  
 
 
Movie S4. Neutrophil migration in CONVD Ctrl-MO zebrafish larvae. Live 6dpf 
Tg(mpx:GFP) CONVD zebrafish injected with standard control MO (Ctrl MO) were 
imaged at a rate of one frame every 15 s for 5 min (compared with Movies S3, S5 
and S6).  
 
 
Movie S5. Neutrophil migration in GF saa-MO zebrafish larvae. Live 6dpf 
Tg(mpx:GFP) GF zebrafish injected with saa MO were imaged at a rate of one frame 
every 15 s for 5 min (compared with Movies S3, S4 and S6). 
 
 
Movie S6. Neutrophil migration in CONVD saa-MO zebrafish larvae. Live 6dpf 
Tg(mpx:GFP) CONVD zebrafish injected with saa MO were imaged at a rate of one 
frame every 15 s for 5 min (compared with Movies S3–S5). 
 
 
 
 
 

http://onlinelibrary.wiley.com/doi/10.1111/cmi.12257/full
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CHAPTER 3 : GNOTOBIOTIC ApcMin/+;Il10-/- MICE SHOW THE LOCATION 
SPECIFIC ROLE OF BACTERIA IN CARCINOGENESIS2 

 

3.1. Overview 
 

Inflammation and microbiota are critical components of intestinal tumorigenesis. 

In this study, we investigated the impact of inflammation and microbes on the 

development of carcinogenesis using a spontaneous model of colon cancer. We 

generated germ free ApcMin/+;Il10-/- mice and exposed them to various microbial 

conditions. Spearman analysis showed colon tumorigenesis significantly correlated 

with inflammation in ApcMin/+;Il10-/- mice, while small intestine tumors significantly 

correlated with age in specific-pathogen-free (SPF) housed ApcMin/+;Il10-/- and 

ApcMin/+ mice. Germ-free (GF) ApcMin/+;Il10-/- mice that are conventionalized by either 

natural SPF microbiota acquisition or via SPF microbiota gavage have significantly 

more colon tumors compared to GF mice, suggesting bacteria promote 

tumorigenesis primarily in the colon. While Fusobacterium nucleatum failed to 

                                            
2Tomkovich, S., Yang, Y., Winglee, K., Dejea, C.M., Gauthier, J., Pope, J.L., 
Ferraguti, D., Mühlbauer, M., Sun, X., Perez-Chanona, E., Liu, X., Martin, P., 
Oswald, E., Sears, C., Fodor, A. and Jobin, C. Gnotobiotic ApcMin/+;Il10-/- mice show 
the location specific role of bacteria in carcinogenesis. (Manuscript in final phase of 
submission). 
 
I performed or helped with all experiments except for the F. nucleatum associations, 
generated the figures and contributed to the writing of the methods, results and 
discussion sections.  
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induce inflammation and tumorigenesis in ApcMin/+;Il10-/- and ApcMin/+ mice, pks+ 

Escherichia coli promote tumorigenesis in the ApcMin/+;Il10-/- model in a colibactin 

dependent manner. Finally, human intestinal biofilm forming microbes promote 

intestinal tumorigenesis in ApcMin/+;Il10-/- mice. In conclusion, colon tumorigenesis is 

influenced by both inflammation and presence of a specific set of bacteria in 

ApcMin/+;Il10-/- mice.  

 
3.2. Introduction 
 

Colorectal cancer (CRC), the third most common type of malignancy and the 

third leading cause of cancer-related deaths in the United States (Siegel et al., 

2016), involves both genetic and environmental factors. Among the genomic 

changes associated with CRCs, loss-of-function mutations in the Apc (adenomatous 

polyposis coli) gene, a regulator of the WNT signaling pathway, are the most 

prevalent (~80% of CRCs) (Cancer Genome Atlas Network, 2012; Fearon, 2011) 

and are considered the initiating event in ~80% of CRCs (Fearon, 2011). Of the 

environmental factors, the gut microbiota is increasingly appreciated as a key player 

in CRC pathogenesis. CRC patients often carry a microbiota distinctive from the 

healthy population (Vogtmann and Goedert, 2016). Microbes can modulate CRC 

development by generating genotoxins, or indirectly and more commonly by 

mediating inflammatory and immune responses (Brennan and Garrett, 2016; Lasry 

et al., 2016). Inflammation is not only a hallmark of CRC (Lasry et al., 2016), but also 

an established risk factor for CRC as supported by epidemiological data from 

individuals with inflammatory bowel diseases (IBD) (Beaugerie and Itzkowitz, 2015).  
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While human studies provide valuable correlation data on CRC, much of the 

mechanistic insight into the disease etiology is obtained from mouse models. Mouse 

CRC models can be categorized into two classes: spontaneous and chemical-

induced (Jackstadt and Sansom, 2016). Spontaneous CRC mice carry mutations in 

genes frequently mutated in human CRCs. The multiple intestinal neoplasia (Min) 

mouse (referred to as ApcMin/+ hereafter), a commonly used animal model of 

intestinal carcinogenesis, carries a point mutation in one allele of the Apc 

(adenomatous polyposis coli) gene and is susceptible to spontaneous intestinal 

adenoma formation, although predominantly in the small bowel without exhibiting 

chronic intestinal inflammation (Moser et al., 1990; Su et al., 1992). Noticeably, 

inflammation enhances development of colon cancer in this model as seen with the 

use of dextran sulfate sodium (DSS) (Cooper et al., 2001; Tanaka et al., 2006), by 

specifically deleting Apc gene in epithelial cells (Grivennikov et al., 2012), and by 

genetically introducing defective IL-10 signaling (Dennis et al., 2013, 2015; Huang et 

al., 2006).  

Mouse models have been an unparalleled tool for understanding the roles of 

microbes and inflammation in CRC pathogenesis. A general pro-tumorigenic role for 

the microbiota was demonstrated in the ApcMin/+ model, as the mice display reduced 

tumor load in the small and/or large intestine when derived into germ-free (GF) 

conditions (Dove et al., 1997; Li et al., 2012). The mechanisms by which microbes 

promote development of CRC are diverse and somewhat specific to each 

microorganism. For example, enterotoxigenic Bacteroides fragilis promotes CRC 

through induction of Th17 response in ApcMin/+ mice (Wu et al., 2009), polyketide 
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synthase (pks)+ E. coli via production of colibactin in azoxymethane (AOM)/Il10-/- 

mice (Arthur et al., 2012), and Fusobacterium nucleatum by fostering a carcinogenic 

immune microenvironment (expansion of tumor-permissive myeloid-derived 

suppressor cells, upregulation of Ptgs2 (Cox-2), Il1β, Il6, Il8, Tnfα, etc) in ApcMin/+ 

mice (Kostic et al., 2013). Importantly, inflammation and colonic polyposis in mice 

with Apc deficiency and T cell-specific deletion of Il10, ApcΔ468;CD4CreIl10f/f mice, can 

be attenuated by antibiotic treatment (Dennis et al., 2013), suggesting that 

microbiota-driven inflammation underlies colitis-associated CRC. However, the 

relationship between genetic susceptibility, microbial status and development of 

CRC is unclear.   

Here we report the impact of microbial manipulation using mouse and human 

biota on the development of intestinal neoplasia in GF ApcMin/+ and ApcMin/+;Il10-/- 

mice. We found that inflammation status correlates with tumorigenesis and the 

microbiota is essential for colorectal but not small intestinal neoplasia. Finally, we 

showed differential ability of human tissue-associated bacteria to promote CRC in 

genetically susceptible mice. 

 
3.3. Materials and Methods 
 

Animals. The University of Florida Institutional Animal Care and Use Committee 

approved all animal experiments. 129/SvEv ApcMin/+ mice were derived GF and 

crossed to GF 129/SVEv Il10-/- mice to generate GF ApcMin/+;Il10-/- mice. GF 

ApcMin/+;Il10-/- and ApcMin/+ mice were transferred to the SPF breeding suite and bred 
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for 2-3 generations. SPF ApcMin/+;Il10-/- and ApcMin/+ mice were either transferred to 

an SPF housing suite after weaning or remained in the breeding suite, mice 

transferred to the SPF housing suite were sacrificed at 12, 16 and 20 weeks of age. 

SPF ApcMin/+;Il10-/- and ApcMin/+ mice older than 20 weeks were retired breeders from 

the SPF breeding suite.  

 

Bacterial strains and culture conditions. F. nucleatum strains were provided by 

Dr. Emma Allen-Vercoe (University of Guelph), including the IBD clinical isolate 

EAVG_016, and CRC isolates CC53, CC7/3JVN3C1, CC7/5JVN1A4, CC2/3Fmu1, 

CC2/3FmuA and CC7/4Fmu3 (used for the 20-week colonization experiment in 

ApcMin/+ mice). E. coli NC101 or NC101 ΔclbP were cultured from glycerol stocks in 

LB broth, then diluted 1:10 in fresh LB medium and cultured at 37°C before 

harvesting for gavage. F. nucleatum strains were cultured in Brain Heart Infusion 

Broth (BHI) (AS-872, Anaerobe Systems) statically at 37°C in an anaerobic chamber 

(type B Vinyl, Coy Laboratory). Enumeration of F. nucleatum was done by 

anaerobically plating serial dilutions of culture or fecal materials on fastidious 

anaerobic agar supplemented with 5% sheep blood.  

 

E.coli NC01 clbP mutation. Inactivation of gene clbP was performed by using the 

lambda Red recombinase method (Datsenko and Wanner, 2000) using primers 

clbP-P1 

(TTCCGCTATGTGCGCTTTGGCGCAAGAACATGAGCCTATCGGGGCGCAAgtgta

ggctggagctgcttc) and clbP-P2 
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(GTATACCCGGTGCGACATAGAGCATGGCGGCCACGAGCCCAGGAACCGCCcat

atgaatatcctccttag). The allelic exchange was confirmed by PCR using primers 

IHAPJPN29 and IHAPJPN30 (Nougayrède et al., 2006). 

 

SPF microbiota preparation. Cecal and fecal contents were collected from wild 

type 129/SvEv mice that were housed under SPF conditions in the animal facility at 

the University of Florida. 1 gram of the contents was suspended in 10 ml sterile 

PBS, broken down using pipette tips, and vortexed. After settling for 2 min, the 

supernatant was transferred to a new tube, mixed with equal volume of sterile 20% 

glycerol, and frozen at –80°C.  

 

Mouse colonization. 7-12 week GF ApcMin/+ and ApcMin/+;Il10-/- were transferred to 

SPF conditions or gnotobiotic isolators as described above. SPF stock microbiota 

was diluted 1:106 and 200 ul of this mixture was gavaged to each mouse. E. coli 

NC101 or NC101 ΔclbP was gavaged at 108 colony-forming units (CFU)/mouse. F. 

nucleatum was gavaged at 108 CFU/mouse when a single strain was used, or 108 

CFU per strain per mouse when a mixture of strains were used. BHI medium weekly 

gavaged mice were used as control for F. nucleatum experiments.  

Mice were euthanized at indicated time points. The small intestine, cecum and colon 

were cut open longitudinally and macroscopic tumors were counted. About 1 X 0.5 

cm snips were taken from the proximal and distal colon, flash frozen in liquid 

nitrogen and stored at -80°C until analysis. The rest of the colon was Swiss rolled 

and fixed in 10% neutral buffered formalin solution. Swiss rolls were processed, 
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paraffin-embedded, sectioned and H&E stained by the Molecular Pathology Core at 

the University of Florida. Histological scoring of inflammation was performed blindly 

as described previously (Arthur et al., 2012) and calculated as the average between 

the proximal and distal colon region scores. 

 

Extraction of human tissue-associated bacteria. Patient tissues were collected 

and screened for biofilms as described previously (Dejea et al., 2014). In brief, CRC 

patient tumor (T) and normal flanking (NF) tissues were collected via surgical 

resection and healthy control patient tissues were collected from the right and left 

colon by colonoscopy biopsy (bx). Part of the patient tissues were fixed in Carnoy’s 

solution and biofilm status was assessed by fluorescence in situ hybridization (FISH) 

with a universal bacterial probe and bacterial density was quantified with ImageJ. 

Bacterial biofilms were defined as biofilm positive if there were >109 bacteria/mL for 

CRC patients or 108 bacteria/mL for colonoscopy biopsies that were within the 

mucus layer and spanned at least 200 µm of the epithelial surface. Biofilm negative 

(BF-) and positive (BF+) inoculums were prepared from 3mm diameter tissue pieces 

that were collected from healthy or CRC patients and stored at -80°C. Each 

inoculum was composed of tissue from 5 different patients. The BF-bx and BF+ bx 

were pooled from separate groups of healthy patients while the BF+NF and BF+T 

were from the same set of CRC patients. All inoculums were prepared anaerobically 

by mincing and homogenizing tissue pieces in PBS. GF mice were transferred to a 

gnotobiotic isolator and gavaged with 100-200 microliters of inoculum. 
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Immunohistochemistry (IHC). IHC was performed as described previously (Arthur 

et al., 2012). Briefly, Swiss roll sections were deparaffinized, rehydrated, and boiled 

in 10mM citrate buffer for antigen retrieval. For CTNBB1, the mouse anti-CTNNB1 

antibody (1:300 overnight) (6101503, BD Transduction Laboratories) and mouse on 

mouse (M.O.M.) peroxidase kit (PK-2200, Vector Labs) were used. For PCNA, 

sections were blocked with 1% BSA, incubated with anti-PCNA clone PC10 

(M087901-2, Dako) mouse monoclonal antibody (1:300, 30 minutes), followed by 

1:1000 goat anti-mouse biotin secondary antibody (31800 Fisher), and then 

incubated with streptavidin-horseradish peroxidase (18-152, Millipore). Liquid DAB+ 

(K3467, Dako) was used according to manufacturer instructions for development.  

 

Fecal DNA extraction and 16S qPCR. DNA was extracted using phenol:chloroform 

separation followed by DNeasy Blood & Tissue Kit (69506, Qiagen). qPCR was 

performed on CFX384 Touch Real-Time PCR Detection System (1855485, Bio-rad) 

using the SsoAdvanced™ Universal SYBR Green Supermix (1725274, Bio-rad). The 

following primers were used: Fuso_F GGATTTATTGGGCGTAAAGC, Fuso_R 

GGCATTCCTACAAATATCTACGAA; and Eubacteria_F GGTGAATACGTTCCCGG, 

Eubacteria_R TACGGCTACCTTGTTACGACTT. 

 

16S rRNA sequencing. The V1-V3 region hypervariable region of the 16S rRNA 

gene was amplified using primer pair 27F (5’-AGAGTTTGATCCTGGCTCAG-3’) and 

534R (5’-ATTACCGCGGCTGCTGG-3’). Both the forward and the reverse primers 

contained universal Illumina paired-end adapter sequences, as well as unique 
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individual 4-6 nucleotide barcodes between PCR primer sequence and the Illumina 

adapter sequence to allow multiplex sequencing (Supplemental Table 3.1). PCR 

products were visualized on an agarose gel, before samples were purified using the 

Agencourt AMPure XP kit (A63881, Beckman Coulter) and quantified by qPCR with 

the KAPA Library Quantification Kit (KK4824, KAPA Biosystems). Equimolar amount 

of samples were then pooled and sequenced with an Illumina MiSeq. 

 

16s rRNA sequencing analysis. Taxonomic ranks were assigned for the forward 

reads using the RDP (ribosomal database project) classifier (Wang et al., 2007) 

version 2.2 with confidence set to 80%. Reads were grouped by genera and the 

counts were normalized and log10 transformed (McCafferty et al., 2013) using the 

following formula: 

𝑙𝑜𝑔!" 
𝑅𝐶
𝑛  x 

𝑥
𝑁 + 1  

where RC is the read count for a particular OTU in a particular sample, n is the total 

number of reads in that sample, the sum of x is the total number of reads in all 

samples and N is the total number of samples. The Principle Coordinate Analysis 

(PCoA) was generated from the Bray-Curtis distance of the normalized and log10 

transformed counts using the capscale function in the vegan R package (Oksanen et 

al., 2015; R Core Team, 2015). 

 Genera significant for biofilm group (BF-bx, BF+bx, BF+NF or BF+T) were 

detected using the lme function in the R nlme package, with the REML 

method(Pinheiro et al., 2016) to fit a generalized mixed linear model of the form: 
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genera ~ group + 1|cage + ɛ 

where genera indicates the log10 normalized abundance of a particular genera, 

group indicates the biofilm group and 1|cage indicates that we used the cage as a 

random effect. We then ran an ANOVA analysis on the above model to generate p-

values for biofilm group. We filtered genera absent in more than a quarter of the 

samples. The p-values for cage were calculated using an ANOVA of this model and 

a model with the cage removed (genera ~ group + ɛ). The p-values were then 

adjusted for multiple hypothesis testing using the method of Benjamini & Hochberg 

(Benjamini and Hochberg, 1995). The heatmap was generated using the R function 

ggplot2 (Wickham, 2009). The code and tables used to generate the 16S rRNA 

sequencing figures can be found at: https://github.com/afodor/biofilm. 

 

qPCR examination of inflammatory cytokines. RNA was extracted from frozen 

tissue snips using Trizol reagent followed by phenol:chloroform separation. After 

DNA removal using the Turbo DNA-free Kit (AM1907, Ambion), 1 ug of RNA was 

used for cDNA synthesis using iScript cDNA Synthesis Kit (1708891, Bio-rad).  

qPCR was performed on CFX384 Touch Real-Time PCR Detection System 

(1855485, Bio-rad) using the SsoAdvanced™ Universal SYBR Green Supermix 

(1725274, Bio-rad). The following primers were used: IL6_F 

CGGAGGCTTGGTTACACATGTT, IL6_R CTGGCTTTGTCTTTCTTGTTATC; 

TNFα_F ATGAGCACAGAAAGCATGATC, TNFα_R 

TACAGGCTTGTCACTCGAATT; IFNγ_F ACGCTTATGTTGTTGCTGATGG, IFNγ_R 
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CTTCCTCATGGCTGTTTCTGG; IL-1β_F GCCCATCCTCTGTGACTCAT, IL-1β_R 

AGGCCACGGTATTTTGTCG; IL17A_F GCCCTCAGACTACCTCAACC, IL17A_R 

ACACCCACCAGCATCTTCTC; IL-22_F CATGCAGGAGGTGGTGCCTT, IL-22_R 

CAGACGCAAGCATTTCTCAG; 36B4_F TCCAGGCTTTGGGCATCA, 36B4_R 

CTTTATTCAGCTGCACATCACTCAGA; and GUSB_F 

CCGATTATCCAGAGCGAGTATG, GUSB_R CTCAGCGGTGACTGGTTCG. 36B4 

and Gusb were used as references. Relative fold gene expression was calculated 

using the delta delta Ct method. 

 

Statistical analysis. Statistics were calculated with Graphpad Prism using the 

Mann-Whitney nonparametric test or with the Spearman nonparametric correlation 

analysis. 

 

3.4. Results 
 

Inflammation promotes development of CRC in ApcMin/+;Il10-/- mice 
 

To investigate the interaction between microbial status, inflammation and CRC 

development, we interbred Il10-/- mice to ApcMin/+ mice (129SvEV background) to 

generate ApcMin/+;Il10-/- mice. Colon and cecal tumors increased dramatically in 

ApcMin/+;Il10-/- compared to ApcMin/+ mice (colon tumor mean= 5.03 vs 0.73, 

respectively p< 0.0001; cecal tumor mean= 0.51 vs 0, respectively p< 0.0005) (Fig. 

3.6.1A and C) whereas small bowel lesions remained similar between the two 

genotypes (mean= 0.84 vs 2.23 p= 0.2914) (Fig. 3.6.1D). Histological assessment 
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showed presence of colonic neoplastic lesions in ApcMin/+;Il10-/- mice (Fig. 3.6.1E) 

and as expected, increased inflammation in ApcMin/+;Il10-/- mice compared to ApcMin/+ 

mice (combined score mean = 1.32 vs 0.23, respectively p< 0.0001) (Fig. 3.6.1B). 

Moreover, Spearman analysis showed a significant correlation between 

development of CRC and extent of inflammation in ApcMin/+;Il10-/- mice (r= 0.7441 p< 

0.0001) whereas no such correlation is observed in ApcMin/+ mice (r= -0.0968 p= 

0.6135) (Fig. 3.6.1F). Furthermore, development of small intestinal neoplasia did not 

correlate with the state of colitis (ApcMin/+;Il10-/- r= 0.2364; ApcMin/+ r= 0.2526; p> 

0.05) (Fig. 3.6.1F). Interestingly, endpoint age was a significant contributor to 

tumorigenesis in the small bowel of both ApcMin/+;Il10-/- and ApcMin/+ mice (r= 0.6548, 

0.8208, respectively p< 0.0001) but only weakly contributed to neoplasia in the large 

bowel of ApcMin/+;Il10-/- mice (r= 0.2561 p= 0.0256) (Fig. 3.6.1G). 

Due to its role in promoting cellular proliferation, we evaluated the distribution of 

nuclear Catenin Beta 1 (CTNNB1) and proliferating cell nuclear antigen (PCNA) in 

actively inflamed and neoplastic regions of ApcMin/+;Il10-/- and ApcMin/+ colons. 

Nuclear CTNNB1 and PCNA staining was mostly restricted to the crypt bases in 

ApcMin/+ mice (Fig. 3.6.2B and D). In contrast, the colonic mucosa from ApcMin/+;Il10-/- 

mice showed areas of CTNNB1 and PCNA staining extending the full crypt length in 

some cases (Fig. 3.6.2A and C). In addition, expression of proliferative IL-6, TNFα, 

IFNγ, IL-1β, IL-22 and IL-17a mRNA increased in ApcMin/+;Il10-/- compared to ApcMin/+ 

mice (Fig. 3.6.2E). Furthermore, ApcMin/+;Il10-/- mice with a high number of tumors 

(>2) had significantly increased TNFα, IFNγ and IL-1β mRNA compared to low tumor 
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number (<2) ApcMin/+;Il10-/- mice (Fig. 3.6.2F). Taken together, these data suggest 

that the heightened inflammatory and proliferative state observed in ApcMin/+;Il10-/- 

compared to ApcMin/+ mice increased propensity for colorectal tumor formation and 

progression. 

 

Bacteria are essential for development of colon tumorigenesis in ApcMin/+;Il10-/- mice. 

 

To stringently evaluate the impact of bacteria on CRC development, we derived 

ApcMin/+;Il10-/- and ApcMin/+ mice in GF conditions and then performed microbial 

manipulation by either gavaging the mice with specific-pathogen-free (SPF) biota or 

transferring them into SPF conditions.  Importantly, colon tumorigenesis was 

practically abolished in GF ApcMin/+;Il10-/- mice (mean= 0) compared to SPF 

conditions (Fig. 3.6.3A,D).  Interestingly, SPF gavage enhanced colon tumor loads 

compared to passive SPF colonization of ApcMin/+;Il10-/- mice (mean= 3.86 vs 1 

respectively p= 0.0126) (Fig. 3.6.3A,D), although colitis scores and most 

inflammatory cytokine expression (IL-6, TNFα, IFNγ, IL-22 and IL-17a) were not 

significantly different (colitis score means = 1.86 vs 2.36 respectively p=0.46) (Fig. 

3.6.3B, 3.6.4D). Colon inflammation and tumors were practically absent in GF and 

SPF gavaged ApcMin/+ mice (data not shown), suggesting inflammation is a key 

component of bacteria-mediated tumorigenesis. Development of small bowel 

neoplasia in ApcMin/+;Il10-/- and ApcMin/+ mice (Fig. 3.6.3C, data not shown) was not 

significantly impacted by microbial colonization, suggesting a stronger genetic 
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contribution to cancer in the small intestine compared to the colon in this model. GF 

ApcMin/+;Il10-/- colons had reduced nuclear CTNNB1 and PCNA (Fig. 3.6.4A-C) and 

decreased inflammatory cytokine expression (Fig. 3.6.4D) compared to SPF mice, 

indicating bacteria play a significant role in the increased inflammatory and 

proliferative state in SPF ApcMin/+;Il10-/- mice. 

 

Gnotobiotic experiments reveal specific microbial requirements for CRC 
development in ApcMin/+;Il10-/- mice.  
 

Fusobacterium spp. have been linked to the development of CRC (Brennan 

and Garrett, 2016) and recent studies showed increased carcinogenesis in F. 

nucleatum-colonized ApcMin/+ mice (Kostic et al., 2013; Yu et al., 2015b). To 

investigate the interplay between microbiota and F. nucleatum in CRC, we 

transferred GF ApcMin/+ to SPF conditions and gavaged them with SPF microbiota 

followed by weekly gavage with a F. nucleatum CRC clinical isolate for 20 weeks. 

Interestingly, presence of F. nucleatum failed to enhance carcinogenesis in these 

mice (Fig. 3.6.5A,C). Daily gavage of an F. nucleatum isolate from patients with 

inflammatory bowel diseases did not show tumorigenic or inflammatory activity in 

these mice either (data not shown). We next transferred GF ApcMin/+;Il10-/- mice to 

SPF conditions, gavaged them with SPF microbiota and then introduced a mixture of 

6 F. nucleatum strains obtained from CRC patients by weekly gavage for 16 weeks. 

Although ApcMin/+;Il10-/- mice developed more inflammation and tumors than ApcMin/+ 

mice, presence of F. nucleatum species did not influence carcinogenesis nor 

inflammation (Fig. 3.6.5B,C). To rule out the possibility that the SPF biota down-
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modulate F. nucleatum carcinogenic properties, we transferred GF ApcMin/+ mice to a 

gnotobiotic isolator and associated these mice with a mixture of 6 F. nucleatum CRC 

clinical isolates (single gavage). Surprisingly, presence of F. nucleatum isolates 

failed to enhance carcinogenesis in ApcMin/+ mice (Fig. 3.6.5D) despite the presence 

of high CFU counts (mean= 107 CFU/g of stool). A similar lack of colitis and 

carcinogenesis development was observed in F. nucleatum colonized ApcMin/+;Il10-/- 

mice (data not shown).  

To further study the relationship between microbial status and carcinogenesis 

in gnotobiotic ApcMin/+;Il10-/- mice, we colonized these mice with E. coli NC101, a 

strain carrying the genotoxic island pks.  We previously showed that removing pks 

from E. coli NC101 decreased development of CRC in the AOM/Il10-/- mouse model 

(Arthur et al., 2012). We next mono-associated ApcMin/+;Il10-/- mice by oral gavage 

(108 CFU/mouse) with an E. coli NC101 mutant deficient for ClbP, the pks gene 

necessary for colibactin activation (ΔclbP). We found that wild type NC101-colonized 

mice developed significantly more colon tumors than E. coli NC101 ΔclbP 

associated mice (mean= 1.71 vs 0.17 respectively p= 0.0023) (Fig. 3.6.6A). The 

finding that NC101 ΔclbP has diminished carcinogenic capacity compared to NC101 

was confirmed in another model of colitis-associated colorectal, the AOM/Il10-/- 

model (Arthur et al., 2014) (mean= 2 vs 5 tumors respectively p= 0.039, data not 

shown). Importantly, deletion of clbP did not compromise the ability of E. coli NC101 

to induce inflammation (colitis score mean= 2.5, 2.675 respectively p= 0.76) (Fig. 

3.6.6B, D). Presence of a functional pks did not influence development of small 

intestinal tumors in ApcMin/+;Il10-/- mice (mean= 0.29, 0.8 respectively p= 0.22) (Fig. 
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3.6.6C). Overall, these findings show that ApcMin/+;Il10-/- mice are sensitive to 

microbial status and develop site specific tumors. 

Multispecies bacterial biofilms (BF) were recently associated with right-sided 

CRCs and were also found in a subset (13%) of healthy patients (Dejea et al., 2014). 

To evaluate the carcinogenic potential of human biofilm-forming bacteria, we 

gavaged GF ApcMin/+;Il10-/- mice with 4 different inoculums pooled from healthy 

patient colonoscopy biopsies (BF- or BF+ bx) or CRC patient surgical resections 

(BF+ normal flanking tissue: NF and BF+ tumor tissue: T). Each group of mice were 

maintained in separate gnotobiotic isolators for the duration of the experiment (12 

weeks). Surprisingly, all 3 groups of mice that were associated with BF+ inoculums 

developed significantly more colon and small intestine tumors (Fig. 3.6.7A, B) 

compared to BF-bx associated mice. Moreover, the pro-tumorigenic effect of biofilm 

forming bacteria is independent of inflammation, as colitis (Fig. 3.6.7C) and the 

majority of inflammatory cytokines (Fig. 3.6.7D) were not significantly different 

between BF- and BF+ associated ApcMin/+;Il10-/- mice.  

To gain insight into the microbial communities associated with biofilms and 

carcinogenesis, we used 16S rRNA sequencing to determine the bacterial 

composition in the human inoculums, as well as the stool (1 and 12 week) and distal 

colon (DC) tissues collected from transplanted mice after 12 weeks. ANOSIM 

analysis reported striking differences between BF- and BF+ groups (Fig. 3.6.7E) in 

both the stool and DC tissue compartments. At the genus level, there were 24 OTUs 

in ApcMin/+;Il10-/- mice that were significantly different between the BF- and BF+ 

associated groups after transplantation into mice (Fig. 3.6.7F). Six of the 24 genera 
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were significantly increased in both the stool and distal colon tissue compartments of 

BF+ associated mice (Clostridium XVIII, Erysipelotrichaceae incertae sedis, 

Escherichia Shigella, Eubacterium, Parabacteroides, and Robinsoniella). These 

findings suggest biofilm forming bacteria are pro-carcinogenic and are associated 

with a specific microbiota composition. 

 
3.5. Discussion 
 

Genetics and environmental factors play an important role in CRC 

development, with increasing attention directed toward the intestinal microbiota as a 

key environmental component (Pope et al., 2016). In general, the microbiota is 

thought to play a pro-carcinogenic role in CRC with numerous CRC mouse models 

demonstrating tumor reduction in antibiotic treated or germ-free mice (Schwabe and 

Jobin, 2013). Here we utilized gnotobiotic ApcMin/+ and ApcMin/+;Il10-/- mice to define 

the relationship between inflammation, microbial status and tumorigenesis.  We 

observed that despite genetic susceptibility in both ApcMin/+ and ApcMin/+;Il10-/- mice, 

colonic inflammation in the latter mice foster development of tumors.  Gnotobiotic 

experiments revealed that E. coli colibactin but not F. nucleatum promote 

tumorigenesis, suggesting an intricate interaction between host genetics and 

bacteria. Importantly, microbial organization is important for development of CRC as 

bacteria obtained from biofilm positive human but not biofilm negative tissues 

promote carcinogenesis in gnotobiotic ApcMin/+;Il10-/- mice.  

We observed an inflammation dependent increase in colon tumorigenesis in 

129 SvEv ApcMin/+;Il10-/- mice, which is in line with previous reports on Il10 deficient 
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C57BL/6 ApcMin/+ and ApcΔ468 mice (Dennis et al., 2013; Huang et al., 2006). 

However, in the small intestine compartment, tumors developed at a comparable 

rate regardless of Il10 status in ApcMin/+ mice, which is in contrast to previous 

findings showing a delay in small intestinal polyp formation in Il10 deficient Apc Δ468 

mice (Dennis et al., 2015). Possible explanations for the differences in small 

intestine tumor formation may be due to genetic background differences which have 

been shown to strongly modulate tumor multiplicity, particularly in the small intestine 

of ApcMin/+ mice (Dietrich et al., 1993; Kwong and Dove, 2009). 

The interaction between bacteria and the host in the context of intestinal 

carcinogenesis is complex. One study, using the chemical AOM/DSS regimen, 

reported that GF mice developed more colonic tumors than mice colonized with a 

complex biota, suggesting certain bacteria can have a beneficial role in CRC (Zhan 

et al., 2013). Since microbial composition is a key determinant of colon tumor burden 

in AOM/DSS mice (Zackular et al., 2013, 2016), this chemical model may better 

capture the protective functions of bacteria than the genetic ApcMin/+ mouse model. 

Nevertheless, the role of bacteria in ApcMin/+ intestinal tumorigenesis is also 

complicated with a report showing fewer tumors in the middle region of the small 

intestine in GF ApcMin/+ mice (Dove et al., 1997) while another report showed 

reduced tumors throughout the intestine in GF ApcMin/+ mice (Li et al., 2012). The 

difference in tumor distribution is not clear.  Our finding that bacteria promote colon 

tumors in ApcMin/+;Il10-/- mice is in line with a study showing reduced colon polyp 

numbers in ApcΔ468;CD4CreIl10f/f mice following broad-spectrum antibiotic treatment 

(Dennis et al., 2013).  



 

 

 88 

Numerous studies have implicated Fusobacterium spp., in particular F. 

nucleatum, as carcinogenic based on associative studies showing the presence of 

the bacterium in the luminal and mucosal compartment of human CRC patients 

using genomic analyses (Ahn et al., 2013; Castellarin et al., 2012; Feng et al., 2015; 

Flanagan et al., 2014; Kostic et al., 2012; McCoy et al., 2013; Wu et al., 2013; Yu et 

al., 2015a, 2015b; Zackular et al., 2014; Zeller et al., 2014). In addition, daily gavage 

of F. nucleatum (strain EAVG_002; 7/1 or ATCC 25586) for 8 weeks was shown to 

promote intestinal tumorigenesis in C57BL/6 ApcMin/+ mice (Kostic et al., 2013; Yu et 

al., 2015b). Subsequent studies using tumor cell transplantation models showed 

FadA binds E-cadherin to promote tumor growth and Fap2 mediates F. nucleatum 

colonization via an affinity for the polysachharide Gal-GalNAc, which is 

overexpressed in tumors (Abed et al., 2016; Rubinstein et al., 2013). Surprisingly, 

ApcMin/+ and ApcMin/+;Il10-/- mice colonized with various F. nucleatum isolates from 

CRC patients failed to promote intestinal tumorigenesis, in the presence (SPF) or 

absence of complex biota (gnotobiotic). The absence of tumorigenesis in mono-

associated ApcMin/+ mice was not due to poor colonization since a high load of F. 

nucleatum (107 CFU/g) was recovered from these mice.  The discrepancy between 

our study and the one from Kostic et al. is unclear but could be the result of strain 

specific properties (EAVG_002 vs other strains tested here), mouse genetic 

background differences and different microbial environments, as microbial 

communities are notoriously different between institutions. Nevertheless, our 

gnotobiotic approach clearly showed that F. nucleatum failed to induced either 

inflammation or cancer, as opposed to E. coli pks+ mono-associated ApcMin/+;Il10-/- 
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mice. Thus, it is possible that only a select group of F. nucleatum strains possesses 

carcinogenic abilities, which require interaction with other specific members of the 

microbial community. It would be important to define these interactions and test a 

larger set of F. nucleatum strains to determine the role of these bactera in CRC 

pathogenesis. 

Several studies have found an association between pks+ E. coli and human 

CRC patients (Arthur et al., 2012; Bonnet et al., 2014; Buc et al., 2013). 

Furthermore, pks+ E. coli isolates from mice or human CRC patients have a pro-

tumorigenic effect in GF AOM/Il10-/-, SPF ApcMin/+, and SPF AOM/DSS mice (Arthur 

et al., 2012; Bonnet et al., 2014; Cougnoux et al., 2014). However, because the pks-

associated clbA gene is implicated in the production of siderophores located in the 

enterobactin (ent) and yersiniabactin (HPI) loci (Martin et al., 2013), and our 

previous observation was based on removal of the entire pks island, it is unclear 

whether the decreased tumorigenesis observed in AOM/Il10-/- mice was the 

consequence of dual siderophore/colibactin impairment, or solely due to abolished 

pks activity. Using a mutant with defective ClbP, the key enzyme implicated in pre-

colibactin cleavage and generation of the active form (Dubois et al., 2011), we 

demonstrate the colibactin-producing E. coli murine isolate NC101 is responsible for 

the pro-tumorigenic effect of the bacterium in ApcMin/+;Il10-/- mice. Whether clbA 

contributes to colibactin-mediated tumorigenesis is still unclear and would need to 

be investigated, especially since a recent in vitro study showed that iron levels and 

E. coli iron sensors regulate clbA transcription and colibactin production (Tronnet et 

al., 2016).  Since our studies were performed using a mono-association approach, 
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and therefore without competitive pressure from other microorganisms, the full 

extent of iron acquisition on E.coli pks+ induced carcinogenesis remains unclear.  

Multiple studies have demonstrated an association between bacterial dysbiosis 

and human CRC (Borges-Canha et al., 2015), but the role of dysbiosis in cancer is 

still unclear. Furthermore, recent work suggests that bacteria organization may also 

contribute to CRC (Dejea et al., 2014; Johnson et al., 2015a). Interestingly, 

tumorigenesis was enhanced in all BF+ associated ApcMin/+;Il10-/- mice including 

those associated with BF+ bacteria from healthy patients, suggesting a functional 

effect of biofilm derived bacteria in carcinogenesis. Erysipelotrichaceae, Escherichia, 

Eubacterium, Holdemania, Oscillibacter, and Parabacteroides were increased in 

BF+ associated mice, and have all been previously associated with CRC (Chen et 

al., 2012; Feng et al., 2015; Wu et al., 2013). Similarly, Bifidobacterium and 

Streptococcus were decreased in our BF+ associated mice and are also decreased 

in human CRC patients (Feng et al., 2015; Wu et al., 2013). Our ability to 

recapitulate some of the same dysbiotic signatures seen in human CRC, suggests a 

gnotobiotic approach with CRC mouse models will be a powerful tool for further 

elucidating the functional role of dysbiosis in CRC development.  

It is interesting to note that inflammation developed in both BF- and BF+ 

bacteria-colonized ApcMin/+;Il10-/- mice, while only the latter group displayed 

carcinogenesis.  Therefore, although inflammation is a key component of 

tumorigenesis, the microbial environment (e.g. BF- and BF+ community) exposed to 

this inflammatory milieu is equally important for the pathogenesis.  
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The mechanisms by which the BF+ consortium promotes carcinogenesis in 

ApcMin/+;Il10-/- mice are unclear. Interestingly, polyamine levels increased in BF+ 

cancer patient tissue, although the exact polyamine source (human, microbial or a 

combination) is still unclear (Johnson et al., 2015a). Whether BF+ consortium 

generate specific metabolites with pro-carcinogenic properties remains to be 

investigated. Similarly important is the identification of the mechanisms contributing 

to biofilm formation and promotion of CRC. Some of these mechanisms may relate 

to fostering a niche that helps the bacteria cope with nutritional limitations in the 

host, promoting survival of the biofilm associated bacteria. For example, in vitro 

experiments along with a mouse model of chronic wound infection showed 

Enterococcus faecalis produces an amino acid metabolite that modulates 

siderophore production in a uropathogenic E. coli clinical isolate, fostering growth 

and colonization in low iron conditions (Keogh et al., 2016). Similar regulation may 

occur between different species of bacteria in intestinal biofilms.  

Recent studies have attempted to dissect the contributions of intrinsic (organ 

specific stem cell division rates, aging) and extrinsic factors (hereditary mutations, 

lifestyle, environmental exposure, etc.), to overall cancer risk in humans (Podolskiy 

and Gladyshev, 2016; Tomasetti and Vogelstein, 2015a; Wu et al., 2016). However, 

the interplay between all these factors makes it difficult to tease out the various 

contributions using epidemiological data. Nevertheless, these studies suggest that 

small intestine cancers with a relatively low lifetime risk are driven by intrinsic risk 

factors, while 82.9% of the mutation signatures in CRCs are from extrinsic factors, 

correlating with a much higher lifetime risk (Wu et al., 2016). We postulate that one 
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of the extrinsic factors contributing to CRC risk is the microbiota, which not 

coincidentally is also affected by lifestyle and environmental factors (Conlon and 

Bird, 2015; O’Sullivan et al., 2015). Interestingly, the concentration of bacteria 

increases along the gastrointestinal tract with 103-104 bacteria/mL in the small 

intestine to 1011 bacteria/mL in the colon, mirroring the distribution of cancer risk 

along the human intestinal tract (Sender et al., 2016).  Similarly, in the ApcMin/+;Il10-/- 

model, age strongly correlates with small intestine tumor numbers while 

inflammation and bacteria composition play a strong role in colon tumorigenesis. 

Elucidating the mechanisms by which specific bacteria and bacterial organization 

promote carcinogenesis will generate important insight into the pathophysiology of 

CRC. 
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3.6. Figures and Tables 
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Figure 3.6.1. Inflammation fosters CRC development in genetically engineered 
mice. A) Macroscopic colon tumor counts from 12-51 week old SPF ApcMin/+;Il10-/- 

and ApcMin/+ mice. B) Colon combined histological inflammation scores (the average 
of the proximal and distal inflammation scores) from SPF ApcMin/+;Il10-/- and ApcMin/+ 

mice. C-D) Cecum and small intestine macroscopic tumor counts from SPF 
ApcMin/+;Il10-/- and ApcMin/+ mice. E) Colon H&Es from 30-40 week old SPF 
ApcMin/+;Il10-/- and ApcMin/+ mice (5X, 40X magnification). F) Relationship between 
colon inflammation score and macroscopic colon or small intestine tumors in SPF 
ApcMin/+;Il10-/- and ApcMin/+ mice. G) Relationship between mouse endpoint age and 
macroscopic tumors in SPF ApcMin/+;Il10-/- and ApcMin/+ mice. Spearman correlation r 
values and corresponding p values are noted in each panel. Statistics: ****p< 
0.0001, ***p< 0.001, **p< 0.01, *p< 0.05, NS: not significant.  
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Figure 3.6.2. ApcMin/+;Il10-/- mice have increased colon inflammation and 
proliferation. A-B) CTNNB1 immunohistochemistry (IHC) from ~16 week old SPF 
ApcMin/+;Il10-/- (A) and ApcMin/+ (B) colons. C-D) PCNA IHC from SPF ApcMin/+;Il10-/- 

(C) and ApcMin/+ (D) colons. E) IL-6, TNFα, IFNγ, IL-1β, IL-22 and IL-17a mRNA 
expression in 16-48 week old SPF ApcMin/+;Il10-/- and ApcMin/+ proximal colon tissue 
snips with relative fold expression compared to ApcMin/+ mice. F) IL-6, TNFα, IFNγ, 
IL-1β, IL-22 and IL-17a mRNA expression in 16-48 week old SPF ApcMin/+;Il10-/- 
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stratified by tumor number (high: > 2 tumors or low: < 2 tumors) with relative fold 
expression compared to ApcMin/+ mice. 
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Figure 3.6.3. Bacteria promote colon inflammation and tumorigenesis in 
ApcMin/+;Il10-/- mice. A-C) Colon macroscopic tumor counts (A), colitis scores (B), 
and small intestine tumor counts (C) from GF (n=7), SPF transferred (n=5) and SPF 
gavaged (n=7) ApcMin/+;Il10-/- mice. SPF transfer (transferred to SPF and allowed to 
naturally acquire their microbiota) and gavage (transferred to SPF and gavaged with 
the cecal and fecal contents from a wild type 129SvEv mouse) mice were sacrificed 
16 weeks after transfer from GF. D) Colon H&Es from GF, SPF transferred, and SPF 
gavaged ApcMin/+;Il10-/- mice.  
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Figure 3.6.4. Microbiota promote colon inflammation and proliferation in 
ApcMin/+;Il10-/- mice. A-C) β-catenin and PCNA IHC from GF (A), SPF transferred 
(B), and SPF gavaged (C) ApcMin/+;Il10-/- colons. D) IL-6, TNFα, IFNγ, IL-1β, IL-22 
and IL-17a mRNA expression in GF (n=5), SPF transfer (n=4), and SPF gavaged 
(n=4) ApcMin/+;Il10-/- proximal colon tissue snips with relative fold expression 
compared to GF. 
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Figure 3.6.5. F. nucleatum (Fn) does not exhibit pro-inflammatory and pro-
tumorigenic activities. A) GF ApcMin/+ mice were transferred to SPF conditions and 
immediately gavaged with SPF microbiota. SPF+Fn mice received Fn (a single 
strain human CRC isolate) via weekly gavage. SPF (control) mice received weekly 
gavage of BHI medium. Tumorigenesis and inflammation were examined 20 weeks 
later. B) GF ApcMin/+;Il10-/-  mice were transferred to SPF conditions and immediately 
gavaged with SPF microbiota. SPF+Fn mice received Fn (a mixture of 6 human 
CRC isolates) via weekly gavage. SPF (control) mice received weekly gavage of BHI 
medium. Tumorigenesis and inflammation were examined 16 weeks later (top 
panel). IL-6, TNFα, IFNγ, IL-1β, IL-22 and IL-17a mRNA expression in SPF and 
SPF+Fn ApcMin/+;Il10-/- distal colon snips (bottom panel). C) qPCR examination of 
fecal Fn levels in SPF+Fn ApcMin/+ and ApcMin/+;Il10-/-- mice. D) GF ApcMin/+ mice were 
transferred to a gnotobiotic isolator and gavaged with Fn (a mixture of 6 human CRC 
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isolates). Tumorigenesis was examined 16 weeks later (GF n= 5 and Fn colonized 
n=9). In panels A-B, D, representative histology images of the colon are shown on 
the left. Macroscopic tumor counts are shown on the right.   
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Figure 3.6.6. Colibactin promotes CRC development in ApcMin/+;Il10-/- mice. A-C) 
Colon tumor counts (A), colitis scores (B), and small intestine tumor counts (C) from 
GF ApcMin/+;Il10-/-  (n=6) and 16 week E. coli NC101 (n=7) or ΔclbP (n=6) mono-
associated ApcMin/+;Il10-/- mice. D) IL-6, TNFα, IFNγ, IL-1β, IL-22 and IL-17a mRNA 
expression in NC101 (n=5) or ΔclbP (n=5) mono-associated ApcMin/+;Il10-/- distal 
colon snips with relative fold expression compared to ΔclbP mono-associated 
ApcMin/+;Il10-/- mice. 
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Figure 3.6.7. Human biofilm-associated bacteria promote tumorigenesis in 
gnotobiotic ApcMin/+;Il10-/- mice. A-B) Colon (A) and small intestine (B) tumor 
counts in GF ApcMin/+;Il10-/- mice associated with BF- (n=8) or BF+ (n=6) inoculums 
pooled from colonoscopy biopsies (bx) from healthy patients and BF+ inoculums 
pooled from the normal flanking (NF) (n=5) and tumor tissue (T) (n=11) from CRC 
patient resections. C) Colon inflammation scores in GF, BF-, and BF+ (all 3 BF+ 
groups combined) associated ApcMin/+;Il10-/- mice. D) IL-6, TNFα, IFNγ, IL-1β, IL-22 
and IL-17a mRNA expression in proximal colon tissue snips from GF (n=5), BF- 
(n=10), and BF+T (n=11) associated mice with relative fold expression compared to 
GF ApcMin/+;Il10-/- mice. E) Genus level PCoAs of BF- and BF+ associated 
ApcMin/+;Il10-/- stool (1 and 12 week time points) and distal colon (DC) tissue 
microbiota (12 week time point). ANOSIM R and corresponding p value are noted for 
each compartment. F) Heatmap depicting mean log10 normalized relative 
abundances of genera that were significantly different between biofilm groups in the 
stool (red font), DC tissue (blue font), or both compartments (black font). 
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Name  Sequence 
PE1_27F-
1 

AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCGA
TCTAGTAAGAGTTTGATCCTGGCTCAG 

PE1_27F-
2 

AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCGA
TCTTCATAGAGTTTGATCCTGGCTCAG 

PE1_27F-
3 

AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCGA
TCTGTCTAGAGTTTGATCCTGGCTCAG 

PE1_27F-
4 

AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCGA
TCTTCAAGAGAGTTTGATCCTGGCTCAG 

PE1_27F-
5 

AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCGA
TCTCTGATAGAGTTTGATCCTGGCTCAG 

PE1_27F-
6 

AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCGA
TCTGTACGAGAGTTTGATCCTGGCTCAG 

PE1_27F-
7 

AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCGA
TCTATTGGCAGAGTTTGATCCTGGCTCAG 

PE1_27F-
8 

AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCGA
TCTGATCTGAGAGTTTGATCCTGGCTCAG 

PE1_27F-
9 

AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCGA
TCTCGACAAAGAGTTTGATCCTGGCTCAG 

PE1_27F-
10 

AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCGA
TCTTCGATAAGAGTTTGATCCTGGCTCAG 

PE1_27F-
11 

AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCGA
TCTCTAGCTAAGAGTTTGATCCTGGCTCAG 

PE2_534R
-1 

CAAGCAGAAGACGGCATACGAGATCGGCATTCCTGCTGAACCGCTCTTCCGATCT
AAGCATTACCGCGGCTGCTGG 

PE2_534R
-2 

CAAGCAGAAGACGGCATACGAGATCGGCATTCCTGCTGAACCGCTCTTCCGATCT
TACCATTACCGCGGCTGCTGG 

PE2_534R
-3 

CAAGCAGAAGACGGCATACGAGATCGGCATTCCTGCTGAACCGCTCTTCCGATCT
CTACATTACCGCGGCTGCTGG 

PE2_534R
-4 

CAAGCAGAAGACGGCATACGAGATCGGCATTCCTGCTGAACCGCTCTTCCGATCT
GCAGTATTACCGCGGCTGCTGG 

PE2_534R
-5 

CAAGCAGAAGACGGCATACGAGATCGGCATTCCTGCTGAACCGCTCTTCCGATCT
TAGCTATTACCGCGGCTGCTGG 

PE2_534R
-6 

CAAGCAGAAGACGGCATACGAGATCGGCATTCCTGCTGAACCGCTCTTCCGATCT
AGTGAATTACCGCGGCTGCTGG 

PE2_534R
-7 

CAAGCAGAAGACGGCATACGAGATCGGCATTCCTGCTGAACCGCTCTTCCGATCT
GTAGTGATTACCGCGGCTGCTGG 

PE2_534R
-8 

CAAGCAGAAGACGGCATACGAGATCGGCATTCCTGCTGAACCGCTCTTCCGATCT
CATGCGATTACCGCGGCTGCTGG 

PE2_534R
-9 

CAAGCAGAAGACGGCATACGAGATCGGCATTCCTGCTGAACCGCTCTTCCGATCT
GACTGTATTACCGCGGCTGCTGG 

PE2_534R
-10 

CAAGCAGAAGACGGCATACGAGATCGGCATTCCTGCTGAACCGCTCTTCCGATCT
CACTGTATTACCGCGGCTGCTGG 

PE2_534R
-11 

CAAGCAGAAGACGGCATACGAGATCGGCATTCCTGCTGAACCGCTCTTCCGATCT
CAGAGCTATTACCGCGGCTGCTGG 

PE2_534R
-12 

CAAGCAGAAGACGGCATACGAGATCGGCATTCCTGCTGAACCGCTCTTCCGATCT
AGCATGTATTACCGCGGCTGCTGG 

PE2_534R
-13 

CAAGCAGAAGACGGCATACGAGATCGGCATTCCTGCTGAACCGCTCTTCCGATCT
TATCGTGATTACCGCGGCTGCTGG 

PE2_534R
-14 

CAAGCAGAAGACGGCATACGAGATCGGCATTCCTGCTGAACCGCTCTTCCGATCT
GTACATCATTACCGCGGCTGCTGG 
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PE2_534R
-15 

CAAGCAGAAGACGGCATACGAGATCGGCATTCCTGCTGAACCGCTCTTCCGATCT
GTCAGCATATTACCGCGGCTGCTGG 

PE2_534R
-16 

CAAGCAGAAGACGGCATACGAGATCGGCATTCCTGCTGAACCGCTCTTCCGATCT
TAGTCACGATTACCGCGGCTGCTGG 

PE2_534R
-17 

CAAGCAGAAGACGGCATACGAGATCGGCATTCCTGCTGAACCGCTCTTCCGATCT
ACGAGTGCATTACCGCGGCTGCTGG 

PE2_534R
-18 

CAAGCAGAAGACGGCATACGAGATCGGCATTCCTGCTGAACCGCTCTTCCGATCT
GACCACTTATTACCGCGGCTGCTGG 

Supplemental Table 3.1. V1-V3 16S rRNA MiSeq primer sequences. Unique 
barcode in red. 
 



 

 

 106 

CHAPTER 4 : CONCLUSIONS AND FUTURE DIRECTIONS 
 

4.1. The microbiota promotes systemic neutrophil function through SAA. 
 

We demonstrated that microbes promote systemic immune function using 

gnotobiotic zebrafish. Specifically, we showed that colonizing germ-free (GF) 

zebrafish with a conventional microbiota increased neutrophil numbers and 

myeloperoxidase expression, altered neutrophil localization and migratory behaviors 

and facilitated neutrophil recruitment to sites of injury. We showed that the acute 

phase protein serum amyloid A (SAA) was also induced by the microbiota (Fig. 

4.6.1). In vitro experiments revealed zebrafish cells respond to SAA exposure by 

activating nuclear factor (NF)-κB and neutrophils depend on NF-κB for SAA-

dependent migration (Fig. 4.6.1). These findings contribute to the growing body of 

evidence that the microbiota affects both innate and systemic immunity. However, 

the mechanism(s) by which the microbiota mediates such a wide range of effects are 

still unclear. Our work suggests that the acute phase protein, SAA has the potential 

to mediate at least some of these effects.  
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4.2. Future directions regarding the roles of the microbiota and SAA in 
modulating systemic and intestinal immunity 

 

What are the specific bacteria, bacterial components and metabolites that modulate 
systemic immunity and SAA induction? 

 

Additional studies with gnotobiotic zebrafish, demonstrated members of the 

zebrafish microbiota have differential capacities to induce neutrophils in the intestine 

(Rolig et al., 2015). For example, Vibrio and Aeromonas induced neutrophil influx 

while Shewanella suppressed it, and Shewanella’s suppressive effect was dominant 

when associated with the other 2 strains (Rolig et al., 2015). Although, the authors 

only examined neutrophil response in the intestine, it is possible these bacterial 

specific effects extend to the periphery as well. Additionally, the authors show 

Shewanella’s suppressive effect is mediated through a secreted factor, as 

supernatant was also capable of suppressing neutrophil influx (Rolig et al., 2015). 

Although, it is unclear whether SAA had a role in modulating these bacterial specific 

effects our study showing SAA modulates migratory behaviors suggests it may. 

Other bacteria that may modulate SAA expression include the polyketide synthase 

(pks+) Escherichia coli Nissle, which decreased colitis and serum SAA 

concentrations in Il10-/- mice (Kamada et al., 2005; Olier et al., 2012; Sonnenborn 

and Schulze, 2009) and segmented filamentous bacteria (SFB), which induced SAA 

through adherence to epithelial cells (Atarashi et al., 2015; Sano et al., 2015). 

Microbiota colonization was previously shown to induce saa in the zebrafish 

intestine in a myeloid differentiation primary response protein 88 (MyD88) dependent 

manner, so one possible mechanism modulating systemic neutrophil function may 
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be related to Toll-like receptor (TLR) recognition of microbial secreted factors 

(Kanther et al., 2011). Further supporting this notion, administering microbial-

associated molecular patterns (MAMPs) (heat-killed E. coli Nissle or autoclaved 

cecal contents) to GF mice is able to restore most aspects of myelopoiesis 

(neutrophils and monocytes) in a TLR dependent manner (Balmer et al., 2014; 

Khosravi et al., 2014). Neutrophil development, homeostasis, and function have 

been shown to be microbiota-dependent in neonatal mice, but it is not known 

whether SAA also plays a role in mediating neutrophil function in that context 

(Deshmukh et al., 2014). 

 

What cell types interact with the microbiota and produce SAA?  
 

While our study did not examine the cellular source of SAA upon microbiota 

colonization, in vitro work by other groups demonstrated LPS stimulation of mouse 

CMT93 cells induced SAA3 (Eckhardt et al., 2010), while SFB adherence and 

growth on a mouse intestinal epithelial cell (IEC) cell line (mICcl2) induced SAA 

(SAA1-3) (Schnupf et al., 2015). While zebrafish have only 1 SAA, humans and mice 

have 3 and 4 forms, respectively (Kanther et al., 2014) and these could be induced 

by different microbes or microbial components. SFB mono-colonization of GF mice, 

revealed adherence of SFB primarily within the terminal ileum, which induced 

SAA1/2 expression from small intestinal epithelial cells and lead to T helper 

lymphocyte type 17 (Th17) cell induction (Atarashi et al., 2015; Sano et al., 2015). 

Additionally, SAA expression by small intestine IECs was further enhanced by IL-22 
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from group 3 innate lymphoid cells (ILC3s, cells that also respond to the microbiota) 

(Honda and Littman, 2016; Sano et al., 2015). It is unclear whether an SFB-like 

bacteria equivalent induces SAA in humans, although adherence to colon IECs does 

seem to play a role in Th17 cell induction in mice associated with human clinical 

isolates from Crohn’s disease (CD) patients (Atarashi et al., 2015). Additionally, SFB 

has been implicated in regulation of pulmonary defense against Staphylococcus 

aureus and Aspergillus fumigatus lung infection by modulating the Th17 response in 

mice (Gauguet et al., 2015; McAleer et al., 2016), but it is unknown whether SAA 

plays a role in this extra-intestinal effect. 

 

What other aspects of immunity or disease are impacted by the microbiota’s effects 
on neutrophils or SAA? 
 

Our studies focused on the developing zebrafish, but subsequent studies 

suggest the microbiota and SAA continues to impact host health. For example, 

neutrophil turnover is an important aspect of immune homeostasis, however a recent 

study suggests the microbiota can inhibit this process by promoting neutrophil 

ageing, which results in neutrophils that are more pro-inflammatory, exhibit impaired 

migration and contribute to diseases such as sickle-cell disease or septic shock 

(Zhang et al., 2015). Interestingly, neutrophil aging in mice was promoted by MAMPs 

in the blood that signal through neutrophil TLRs that are MyD88 dependent (Zhang 

et al., 2015). Thus, the systemic impact of microbiota on neutrophil function may 

extend to extra-intestinal diseases as well. Furthermore, the mechanisms by which 

the microbiota modulates local and systemic immunity has important implications for 
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acute infections and vaccine and cancer immunotherapy efficacy (Gorjifard and 

Goldszmid, 2016). 

The microbiota and SAA may also impact the pathogenesis of intestinal 

diseases. For example, studies have shown an association between inflammatory 

bowel diseases (IBD) and SAA levels, but the role of the microbiota in this 

observation is unclear. Recent work suggests the microbiota may be mediating this 

response, as colonizing gnotobiotic Il10-/- mice with stool from healthy, CD or 

ulcerative colitis (UC) patients, revealed induction of Saa3 in all 3 association types 

but Saa3 was further enhanced in mice associated with microbes from CD and UC 

patients compared to controls (Nagao-Kitamoto et al., 2016). Interestingly, SAA may 

also play a role in colitis-associated cancer (CAC) in specific-pathogen-free (SPF) 

Il10-/- mice, as serum neutrophils and SAA concentrations increased progressively 

over time, mirroring the induction of colitis and colorectal adenocarcinoma (Berg et 

al., 1996). Additionally, the role of SFB as an inducer of Th17 cells via IEC 

production of SAA1/2 is intriguing given the potential tumorigenic role of Th17 cells 

and their associated cytokines in cancer, particularly as IL-17 has been implicated in 

the pathogenesis of ETBF induced colorectal cancer (CRC) in adenomatous 

polyposis coli deficient (ApcΔ468) mice (Gagliani et al., 2014; Wu et al., 2009). 

Together, these studies suggest that members of the intestinal microbiota modulate 

SAA to affect both innate and adaptive immune functions, which impact local as well 

as systemic immunity. 
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4.3.  CRC-associated bacteria have differential abilities to promote 
tumorigenesis in ApcMin/+;Il10-/- mice. 

 

We evaluated the interplay between inflammation, microbes and CRC using 

ApcMin/+;Il10-/- mice, a spontaneous model of colon cancer. SPF ApcMin/+;Il10-/- mice 

developed more colon tumors than ApcMin/+ mice and colon tumor numbers 

significantly correlated with colitis scores, suggesting inflammation promotes colon 

tumorigenesis. Utilizing gnotobiotic ApcMin/+;Il10-/- mice we showed that GF 

ApcMin/+;Il10-/- mice developed almost no colon tumors, suggesting bacteria are 

essential for colon tumorigenesis.  

We next evaluated whether specific human CRC-associated microbes promote 

CRC development in ApcMin/+;Il10-/- mice. We found that F. nucleatum mono-

associated ApcMin/+;Il10-/- and ApcMin/+ mice did not develop colon tumors or colitis 

despite high colonization. In contrast, E. coli NC101 mono-associated mice 

developed colon tumors in a colibactin dependent manner. Finally, we evaluated 

whether bacterial organization contributes to CRC development by associating 

gnotobiotic ApcMin/+;Il10-/- mice with either biofilm negative or biofilm positive 

microbes from healthy or CRC patient tissue. We found colon tumors developed in 

biofilm positive associated ApcMin/+;Il10-/- mice, regardless of donor health status 

(Fig. 4.6.2). Additionally, inflammation developed in both biofilm negative and 

positive associated mice, suggesting microbial organization and composition has a 

greater impact on tumorigenesis than inflammation.  

 



 

 

 112 

4.4. Future directions for evaluating how human CRC-associated bacteria and 
microbial biofilms promote carcinogenesis 

 

Does inflammation alter microbial activities during CRC progression?  
 

One important next step will be to examine how host inflammation modulates 

the microbiota and what role this plays in cancer progression. Studies profiling the 

fecal microbiota in C57BL/6 ApcMin/+; mice demonstrated dysbiosis (increased 

Bacteroides spp.) preceded neoplasia, suggesting dysbiosis may contribute to 

initiation of tumorigenesis (Son et al., 2015). Furthermore, two different E. coli 

NC101 heat shock proteins (ibpB and ibpA) have previously been shown to be 

upregulated in inflamed mono-associated Il10-/- mice (Patwa et al., 2011). 

Interestingly, in vitro experiments demonstrated E. coli pks requires the heat shock 

protein HtpG (Hsp90Ec), a molecular chaperone for colibactin production (Garcie et 

al., 2016) suggesting there could be interplay between the heat shock response 

during inflammation and colibactin production. Additionally, work from our lab 

demonstrated 5 pks island genes were increased at 12 weeks in azoxymethane 

(AOM)/Il10-/- compared to Il10-/- mice suggesting inflammation and cancer alters E. 

coli gene expression (Arthur et al., 2014). Together, these 2 studies suggest 

inflammation and/or cancer has the capacity to alter E. coli microbial activities. Both 

of these 2 previous studies examined expression of E. coli in the luminal (cecal 

contents vs stool, respectively) compartment, so an important next step will be to 

examine gene expression in mucosal tissue-associated E. coli.  
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We showed that inflammation was not sufficient to promote CRC in 

ApcMin/+;Il10-/- mice associated with either E.coli ΔclbP or biofilm negative microbes 

from human tissue. It would be interesting to see whether NC101 and biofilm 

positive microbes could promote CRC in a model without genetic predisposition to 

inflammation, such as the ApcMin/+ mouse. Alternatively, another approach would be 

to treat ApcMin/+;Il10-/- mice with an nonsteroidal anti-inflammatory drug (NSAID) such 

as mesalamine (5-aminosalicylic acid), which was previously implicated in reducing 

IBD patient biofilms (Swidsinski et al., 2005b, 2007) and study microbial gene 

expression, especially pks genes. 

 

Are there colonization advantages for Enterobacteriaceae to maintain pks? 
 

Another area of interest is whether acquiring pks confers colonization 

advantages to E. coli. Before the microbiota stabilizes around 2 years, E. coli is a 

relatively dominant member of the infant microbiota, but eventually settles to 107-108 

CFU/gram in the colon (Secher et al., 2016). Approximately 30% of phylogenetic 

group B2 E. coli are pks+, and their prevalence is increasing among infants (Secher 

et al., 2016). Experiments with neonatal mice suggests early colonization with pks+ 

E. coli altered barrier function and increased immune activation (Secher et al., 

2015). Of note, pks has been found within other Enterobacteriaceae, including 

Klebsiella pneumonia and may be highly prevalent in lab mice, with one university 

finding an 88% prevalence rate out of 51 tested E. coli isolates (García et al., 2016). 

Interestingly, group B2 E. coli appear to be a feature of Westernization as 0/24 E. 
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coli strains from an isolated group of Amerindians belonged to this phylogenetic 

group (Clemente et al., 2015). Could there be a colonization advantage to pks that is 

promoting its prevalence in Western countries? Intriguingly, a recent in vitro study 

showed pks+ E. coli inhibited the growth of multiple strains of S. aureus but no other 

tested bacteria including Streptococcus, Enterococcus, Acinetobacter, Bacillus, 

Clostridium difficile, Pseudomonas aeruginosa, and other Enterobacteriaceae (Faïs 

et al., 2016). It is unclear whether pks has a direct role in modulating colonization 

competition with other microbiota members in vivo.  

Of note, E. coli Nissle contains pks but was originally isolated because of its 

ability to protect against the acute enteric pathogen, Shigella, and has been used 

clinically as a probiotic to treat IBD (Sassone-Corsi and Raffatellu, 2015; Schultz, 

2008). E. coli Nissle has the ability to modulate multiple aspects of host immunity, 

including expansion of peripheral blood CD4+T cells, promotion of tight junctions, 

induction of immunoglobulin A (IgA) and IgM in infants, induction of antimicrobial 

peptides (AMPs such as β-defensin 2), and modulation of anti- and pro-inflammatory 

cytokines (Behnsen et al., 2013). Previous work suggests siderophores, which are 

involved in iron acquisition, contribute to Nissle’s ability to reduce Salmonella 

enterica serovar Typhimurium colonization (Sassone-Corsi and Raffatellu, 2015). 

Strikingly, E. coli Nissle’s probiotic ability to reduce inflammation in dextran sulfate 

sodium (DSS) and T cell transfer models of colitis was dependent on the pks gene 

clbA, a phosphopantetheinyl transferase capable of contributing to siderophore 

production (Martin et al., 2013; Olier et al., 2012). It is unclear whether pks plays a 

role in other aspects of Nissle’s probiotic immunomodulatory effects besides 
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contributing to colonization resistance through siderophore modulation. It will also be 

important to directly assess the contribution of colibactin to E. coli Nissle’s beneficial 

effects by deleting the peptidase ClbP, which would not affect siderophore 

production. Also, worthy of further investigation is what accounts for the striking 

contrast between E. coli Nissle’s beneficial effects and the carcinogenic abilities of 

other pks+ E. coli strains. 

 

Which biofilm associated bacteria promote tumorigenesis in ApcMin/+;Il10-/- mice? 

 

Our 16S sequencing results identified a set of core bacteria (Clostridium 

XVIII, Erysipelotrichaceae incertae sedis, Escherichia Shigella, Eubacterium, 

Parabacteroides, and Robinsoniella) that are increased in the stool and distal colon 

tissue of biofilm positive associated mice, however their functional role is still 

unknown. An important question to address is whether microbes organized as 

biofilms in ApcMin/+;Il10-/- mice colonized with human-derived biofilm positive bacteria. 

A new set of biofilm association experiments will be needed address this question 

since biofilm assessment requires Carnoy’s fixation, bacterial counts and 

fluorescence in situ hybridization (FISH) assay. We are currently performing 

metatranscriptomics on the tissue-associated bacteria to examine bacterial 

expression patterns that are associated with biofilm forming bacteria and 

tumorigenesis. Based off of our 16S sequencing results and observations of 

Enterobacteriaceae within IBD and CRC patients’ biofilms, E. coli is a strong 

candidate bacteria (Dejea et al., 2014; Swidsinski et al., 2005b). Additionally, AIEC 
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are capable of producing biofilms in vitro and the E. coli type 1 pili, FimH has 

previously been associated with intestinal epithelial cell adherence (Dreux et al., 

2013; Martinez-Medina et al., 2009).  

A new strategy for isolating bacterial strains from the human microbiota was 

recently described that selects for spore-forming bacteria by treating fecal samples 

with ethanol to kill non-spore-forming vegetative cells (Browne et al., 2016). Spores 

are a feature of C. difficile biofilms in vitro and may also promote antibiotic 

resistance (Semenyuk et al., 2014). Screening fecal metagenomic datasets from 

healthy individuals for the spore-forming genomic signature revealed spore-forming 

bacteria are found in ~60% of bacterial genera and represent ~30% of the total 

intestinal microbiota (Browne et al., 2016). Exposing spore-forming isolates to 

environmental stressors such as oxygen exposure and disinfectants showed the 

microbiota spores’ resilience was similar to C. difficile spores (Browne et al., 2016). 

Although, it is unknown whether spore-forming bacterial prevalence changes during 

IBD or CRC, strikingly 5 out of 10 genera that were significantly increased in biofilm 

positive associated mice are associated with spore-forming genera isolated in this 

study (Browne et al., 2016). Using the same approach as Browne et al. may facilitate 

isolation of these strains and would subsequently allow us to test their biofilm-

forming capacities in vitro. 

Both diet and obesity are risk factors for CRC and a recent study showed 

administering a high-fat diet (HFD) to mice altered the spatial distribution of the 

bacteria within the small intestine (Tomas et al., 2016). The HFD was 40% fat by 

weight and increased the amount of bacteria in the ileum intervillous zones as well 
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as altered bacterial composition through down-regulation of peroxisome proliferator-

activated receptor-γ, which altered mucosal defenses (AMPs mucus secretion, 

barrier permeability) (Tomas et al., 2016). Similarly, administering dietary 

emulsifiers, common food additives, to mice altered microbial localization in the 

colon, increased the amount of adherent bacteria, altered composition, induced 

colitis in Il10-/- mice and was associated with obesity/metabolic syndrome 

(Chassaing et al., 2015). Thus, in addition to altering composition and being a risk 

factor for CRC, diet may also have the capacity to alter bacterial organization. 

Further investigations are needed to determine whether diet plays a role in the 

pathogenesis of biofilm associated colorectal cancer. 

 

What are the mechanisms that promote formation of adherent biofilms associated 
with CRC? 

 

One possible theory of how pathogenic intestinal biofilms form, arises from the 

observation that some of the anaerobic bacteria increased in CRC patient stool 

samples (Fusobacterium, Parvimonas, Gemella and Peptostreptococcus) are also 

found within the mouth (Feng et al., 2015; Flemer et al., 2016). Some of these 

bacteria form dental plaques or biofilms in the mouth, which can contribute to 

periodontal infections (Bao et al., 2015; Flynn et al., 2016). This is unlikely to be a 

driving mechanism based on our results though, as these genera were not 

significantly increased in our biofilm positive associated ApcMin/+;Il10-/- mice. Another 

mechanism contributing to biofilm formation could be related to quorum sensing and 
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bacterial second messengers which have both been shown to regulate biofilm 

formation in enteric pathogens (Flemming et al., 2016; Tamayo et al., 2007). 

An in vitro approach will facilitate the identification of mechanisms that 

contribute to biofilm formation, provided we are able to isolate candidate biofilm 

associated cancer-promoting bacteria from either human tissue or biofilm positive 

associated mice. In vitro approaches would include using the Calgary biofilm device 

system under anaerobic conditions (Sproule-Willoughby et al., 2010). Additionally, 

since host mucus may be an important contributing factor, growing the bacteria in 

dissolved mucus or coating the pegs of the Calgary biofilm device with intestinal 

mucus may facilitate growth under in vitro conditions (Bollinger et al., 2003, 2006; 

Reisner et al., 2006).  

Future studies should also address the possibility that other microbiota 

members besides bacteria may contribute to biofilm associated pathogenesis. 

Human stool is comprised of 109 virus-like particles per gram and a metagenomic 

survey of DNA viruses from a single individual’s stool over time indicates the 

majority of these are bacteriophages, which infect bacteria (Minot et al., 2013). Initial 

studies suggest bacteriophage composition shifts depending on age and health 

status (Lim et al., 2015; Manrique et al., 2016; Norman et al., 2015). Although the 

role of bacteriophages in microbiota associated intestinal diseases is unclear, 

transfer of bacteriophages has been demonstrated in fecal microbiota 

transplantation (FMT), a treatment used for refractory Clostridium difficile infections 

(Chehoud et al., 2016). Thus it is possible that gnotobiotic experiments, which 

transplant microbes from human stools or tissues into mice, may also be 
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transplanting bacteriophages. This could be a potential confounding factor to our 

biofilm findings if intestinal bacteriophages are able to facilitate biofilm formation. 

There is precedence for this in the context of cystic fibrosis airway secretions, where 

filamentous bacteriophage within P. aeruginosa boost biofilm viscosity through 

interaction with host (hyaluronan) and microbial polymers (Secor et al., 2015). 

Interestingly, a filamentous phage that infects E. coli was also able to interact with 

hyaluronan, a polysaccharide that’s been shown to accumulate in the connective 

tissue of colon adenocarcinomas (Secor et al., 2015; Wang et al., 1996). Further 

investigations are needed to determine whether bacteriophages are a part of human 

mucosal-associated intestinal biofilms, and what role they may play. Metagenomic or 

metatranscriptomic sequencing could also be used to characterize potential viral or 

fungal members, and FISH probes could then be designed to evaluate presence 

within intestinal biofilms, although there may be resolution difficulties with visualizing 

viruses (Scupham et al., 2006; Vilas Boas et al., 2016).  

 

What aspects of microbiota composition and organization contribute to left-sided vs 
right-sided CRCs? 

 

The noted differences by Dejea et al. between tumor location and biofilm 

(Dejea et al., 2014) deserve further investigation because of the mutational and 

environmental differences between proximal (right-sided) and distal (left-sided) CRC 

(Shen et al 2015). However, biofilm positive associated ApcMin/+;Il10-/- mice primarily 

developed CRC in the distal colon, indicating this model may not recapitulate all the 

underlying nuances of proximal CRCs associated with biofilms. Examining the role 
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of biofilm forming microbes in mice that express the epidermal growth factor ligand, 

HB-EGF (HBUS) mice (Bongers et al., 2014), a model of proximal CRC, may reveal 

additional insights into how biofilm-forming microbes promote proximal CRC.  

Intriguingly, specific mouse microbes were already shown to mediate serrated 

polyp formation in HBUS mice, as CRC could be ameliorated via antibiotic treatment 

or rederivation (Bongers et al., 2014). The specific microbes associated with cecal 

serrated polyps included Bilophila and Desulfovibrio (Hydrogen sulphate/sulphite 

reducing bacteria) and Eubacterium rectale (Clostridium XIVA and XIVb), which was 

shown to invade the lamina propria within serrated polyps via FISH staining 

(Bongers et al., 2014). Both the host and sulphate-reducing bacteria produce 

hydrogen sulfide (H2S) and some studies have characterized host H2S as beneficial, 

promoting inflammation resolution and healing (Motta et al., 2015; Wallace and 

Wang, 2015), In contrast, there’s also evidence that H2S from Bilophila wadsworthia 

may promote colitis in Il10-/- mice in conjunction with a high saturated fat diet 

(Devkota et al., 2012). We recently observed that abundance of H2S producing 

bacteria including Atopobium parvulum on intestinal mucosal interface correlates 

with severity of pediatric CD (Mottawea et al. in press). In addition, A. parvulum 

enhanced development of colitis in Il10-/- mice, a phenomenon associated with H2S 

production (Mottawea et al. in press). Nevertheless, the role of hydrogen 

sulphate/sulphite reducing or H2S producing bacteria in promotion of CRC is 

unclear. Bilophila, Atopobium and Fusobacterium were observed in all 5 of our initial 

biofilm positive inoculums, but were not consistently transplanted into the biofilm 

positive associated mice (found in 2, 0, or 1 out of 5 biofilm positive associations, 
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respectively). Given that Fusobacterium may also associate with proximally located 

CRCs (Yu et al., 2016), perhaps a mouse model prone to developing proximal 

tumors would facilitate the study of proximal-colonizing genera, which did not 

consistently colonize our ApcMin/+;Il10-/- mice. 

Another area of interest is what drives tumorigenesis in human distal (left-

sided) CRCs that are mostly biofilm negative (Dejea et al., 2014). One possibility, 

suggested by the association between appendectomies and distal CRC risk could be 

a deficiency in proximal beneficial biofilms (Wu et al., 2015). For example, a recent 

study used an in vitro approach that measured the expressional response of 

preformed commensal E. coli (K12 MG1655) biofilms upon introduction of 

pathogenic enteric bacteria (Enteroaggregative E. coli and Klebsiella pneumonia) to 

identify genes involved in biofilm resistance to pathogen colonization (Da Re et al., 

2013). One of the genes identified yceP (bssS) had previously been associated with 

biofilm formation, and mice precolonized with a yceP deficient mutant were more 

susceptible to enteric pathogen colonization (Da Re et al., 2013). Although only one 

type of commensal bacteria was examined and it is unclear whether this related to 

biofilm formation in vivo (Da Re et al., 2013), these findings do suggest some 

microbiota biofilms could have beneficial properties. Similarly, oral gavage of purified 

curli fibers, components of E. coli Nissle biofilms, ameliorated 2,4,6-trinitrobenzene 

sulfonic acid (TNBS) colitis in mice and in vitro induced anti-inflammatory IL-10 

expression in macrophages though TLR2 (Oppong et al., 2015). Whether a biofilm 

protects or promotes disease, likely depends on a combination of factors, the vast 

majority of which are still unknown but likely relate to the overall microbial 
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composition, location, density, proximity to the epithelium, and host health and 

genetics. 

 

4.5. Conclusion 
 

The microbiota affects multiple aspects of innate and adaptive immunity. 

Understanding the mechanisms governing these interactions has the possibility to 

improve the efficacies of vaccines and cancer immunotherapies. Our studies with 

biofilm associated microbes from human patients suggest organization of the 

microbiota within the intestine may serve as another measure of host health in 

addition to composition. Microbial richness has been proposed as a measure of host 

health, with microbiota-associated diseases such as obesity, IBD, and CRC being 

associated with reduced diversity. However, given the impact that sampling location 

has on microbiota profiling, it may be better to evaluate both the organization and 

composition of the microbiota in both the luminal and mucosal-associated 

compartments along multiple sites of the gastrointestinal tract. Of even greater 

importance are functional studies aimed at identifying how microbial gene 

expression or metabolites change depending on microbial location and structure, 

during different health or disease states. We’ve demonstrated and discussed the 

wide range of factors that can impact host-microbiota interactions. Elucidating the 

exact mechanisms of a microbe’s immunomodulatory or carcinogenic effects may 

allow a more targeted therapeutic approach that will also minimize the chances of 

having unintended consequences on other microbiota members.  
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4.6.  Figures 

 
Figure 4.6.1. The microbiota promotes systemic neutrophil development and 
mediates neutrophil migration in an Saa-NF-κB dependent manner. 
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Figure 4.6.2. Microbial biofilms foster bacterial activities that promote 
colorectal cancer. 
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APPENDIX 1: MICROBIOTA AND HOST IMMUNE RESPONSES: A LOVE-HATE 
RELATIONSHIP3 

 

Overview 
 

A complex relationship between the microbiota and the host emerges early at 

birth and continues throughout life. The microbiota includes the prokaryotes, viruses 

and eukaryotes living among us, all of which interact to different extents with various 

organs and tissues in the body, including the immune system. Although the 

microbiota is most dense in the lower intestine, its influence on host immunity 

extends beyond the gastrointestinal tract. These interactions with the immune 

system operate through the actions of various microbial structures and metabolites, 

with outcomes ranging from beneficial to deleterious for the host. These differential 

outcomes are dictated by host factors, environment, and the type of microbes or 

products present in a specific ecosystem. It is also becoming clear that the microbes 

are in turn affected and respond to the host immune system. Disruption of this 

complex dialogue between host and microbiota can lead to immune pathologies 

such as inflammatory bowel diseases, diabetes and obesity. This review will discuss 

recent advances regarding the ways in which the host immune system and 

microbiota interact and communicate with one another.  

 
                                            
3Tomkovich, S. and Jobin, C. 2016. Microbiota and host immune responses: a love-
hate relationship. Immunology 147(1), pp. 1–10. 
 

I chose the majority of the papers we covered, did the majority of the writing and 
created the figures and tables. 
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Introduction  
 

The microbiota refers to the population of microbes (prokaryotes, viruses and 

eukaryotes) living among us, outnumbering host cells by a factor of 10 (Belkaid and 

Hand, 2014; Mukherjee et al., 2015). The host immune system encompasses both 

the innate and adaptive immune systems, which work together to determine the 

class of microbial threat and direct the type and degree of immune response to the 

exposure (Iwasaki and Medzhitov, 2015). The immune system and microbiota 

develop and mature together, beginning at birth, or even potentially in the womb 

(Aagaard et al., 2014). This early coexistence is likely essential in shaping the 

immune system response to avoid unwanted immune reactions to intestinal 

microbial components.  An inappropriate response to indigenous bacteria could have 

deleterious consequences for the host as seen with inflammatory bowel diseases 

(IBD).  

The importance of the microbiota in shaping host immunity is best appreciated 

in germ-free (GF) models. GF housing conditions maintain a microorganism free 

environment and are a powerful system to dissect various aspects of host-microbe 

interactions. GF mice display an “underdeveloped” innate and adaptive immune 

system: reduced expression of antimicrobial peptides, reduced immunoglobulin A 

(IgA) production, fewer numbers of T cells types and increased susceptibility to 

microbial infections (Jain and Walker, 2015). The deficits of GF mice highlight the 

key role of microbes in bringing the immune system into a “combat ready” mode. 

Studies comparing monozygotic and dizygotic twins suggest that non-heritable 
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influences from the environment, including the microbiota, determine much of the 

immune variation seen in humans (Brodin et al., 2015). Alterations in the microbiota, 

referred to as dysbiosis, have been implicated as risk factors for IBD, cancers, 

multiple sclerosis, asthma, and type I diabetes; reinforcing the impact of the 

microbiota on host health. Diet also has profound effects on microbiota composition 

and metabolite production, both of which influence host immunity but this element 

will not be discussed here (for reviews, see (Jain and Walker, 2015; Tilg and 

Moschen, 2015)). This review will focus on recent advances in understanding how 

microbes and microbial components interact with host immunity and how these 

interactions influence host health. 

 

Broad influence of microbiota on host immunity  
 

Microbiota: intestinal effects 
 

The establishment of a mature microbiota is a dynamic process during the first 

2 years of life (Jain and Walker, 2015) and coincides with the development of the 

immune system. Throughout the early developmental period innate immune 

components play key roles in protecting the infant from pathogens and shaping 

microbiota assembly. IgA is found in breast milk and can prevent immune activation 

in infants by binding microbial antigens. Similarly, secretory IgA produced along the 

intestinal tract continues to be important for maintaining mucosal homeostasis 

through adulthood (Belkaid and Naik, 2013). The development of the mature 

microbiota is regulated by host immune system components, which can also be 
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influenced by microbiota members. Recent work with gnotobiotic mice suggests that 

Proteobacteria, the dominant phylum in newborns, triggers a Proteobacteria-specific 

IgA response in mice which plays a key role in controlling Proteobacteria levels in 

the adult microbiota (Mirpuri et al., 2014). Fecal IgA levels (low versus high) are 

partly controlled by members of the microbiota; a phenotype that is vertically 

transmissible and independent of host genetic factors (Moon et al., 2015). 16S rRNA 

sequencing revealed that Sutterella species are partly responsible for variable IgA 

levels, most likely by degrading IgA secretory component (Moon et al., 2015) (Figure 

A1.1). Noteworthy, expansion of Proteobacteria/Enterobacteriaceae abundance is 

observed in IBD patients and in preclinical models (Winter and Bäumler, 2014). 

Whether this bloom of microorganisms is related to microbe-mediated fecal IgA 

levels is unknown.  

The microbiota continues to affect immune function well after development. 

Studies of Paneth cells using organoids generated from mice reveal that 

degranulation (release of antimicrobial products) is controlled by immune cell-

derived interferon-γ, which may be induced in vivo during viral or bacterial challenge 

(Farin et al., 2014). Thymic and induced T regulatory lymphocytes (Treg) prevent 

autoimmunity and maintain tolerance to the microbiota, and a recent study suggests 

most colonic Tregs are thymic Tregs that recognize bacterial antigens, including 

antigens from Clostridiales, Bacteroides, and Lactobacillus. Importantly, antibiotic-

induced alterations in microbiota, which decrease Clostridiales members among 

others, reduce intestinal Tregs and alter colonic thymic Tregs TCR repertoire, 
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suggesting that microbial composition influences the dynamic response of Tregs 

(Cebula et al., 2013). 

One of the most studied immunomodulatory microbes are segmented 

filamentous bacteria (SFB), which colonize the terminal ileum in mice, induce IgA 

production and increase effector T cells, particularly T helper (Th) 17 cells (Belkaid 

and Hand, 2014). Work from several groups suggest that SFB-induction of Th17 

cells occurs in the intestinal lamina propria rather than Peyer’s patches or the 

mesenteric lymph nodes (Geem et al., 2014; Goto et al., 2014a; Lécuyer et al., 

2014). Further studies revealed that major histocompatibility complex class II 

(MHCII)-dependent antigen presentation by intestinal dendritic cells is essential for 

SFB-induced Th17 cells (Geem et al., 2014; Goto et al., 2014a). Additionally, Goto 

et al. provide evidence that MHCII presentation by innate lymphoid cells (ILCs) may 

constrain Th17 cell differentiation (Goto et al., 2014a). SFB also stimulate expansion 

of germinal centers and induce IgA-secreting cells in Peyer’s patches, isolated 

lymphoid follicles, and tertiary lymphoid tissue (Lécuyer et al., 2014). Recently, 

Schnupf et al. cultured SFB in vitro and provided evidence that SFB attachment in 

vivo is required to elicit ileal epithelial responses (Schnupf et al., 2015). Future 

studies examining the specific structural component(s) of SFB responsible for 

stimulating IgA production and inducing Th17 cells could be aided by the in vitro 

culture system. Although SFB have not yet been isolated from the human 

gastrointestinal tract, human cell lines support SFB growth (Schnupf et al., 2015) 

and SFB specific 16S rRNA has been detected within human stool samples (Yin et 

al., 2013). Gram-stained human ileal-cecal biopsies from a small set of IBD and non-
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inflamed patients suggest SFB is present in ulcerative colitis patients but absent in 

Crohn’s disease patients (Caselli et al., 2013). Thus, future studies may reveal a role 

for SFB or SFB-related bacteria in human immune development and IBD.  

In addition to interactions with the immune system, microbes interact with other 

microorganisms. While many symbionts have beneficial immune properties, some 

bacteria facilitate host infection by viruses. For example, human norovirus likely 

binds to histo-blood group antigen-expressing bacteria such as Enterobacter 

cloacae, which promotes attachment and infection of B cells (Jones et al., 2014). 

Conversely, treating mice with the bacterial product, flagellin, prevents rotavirus 

infection by modulating host innate immune signaling (Zhang et al., 2014). Thus, 

microbiota composition can promote or inhibit viral infection depending on the type 

of virus. 

 

Microbiota effects on extraintestinal immunity 
 

The effects of the microbiota on host immunity extend beyond the intestine. GF 

zebrafish have fewer and less active neutrophils compared to zebrafish colonized 

with a normal microbiota, as well as impaired neutrophil recruitment in a tail fin injury 

model; a phenomenon linked to microbial induction of serum amyloid A (Kanther et 

al., 2014). Neonatal mice that are GF or born from antibiotic-treated dams have 

fewer circulating and bone marrow neutrophils and are more susceptible to E. coli 

K1 and Klebsiella pneumoniae sepsis, likely through microbiota induction of 

granulocytosis (Deshmukh et al., 2014). Thus, the microbiota contributes to 
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neutrophil development, homeostasis, and function in both mice and zebrafish 

(Deshmukh et al., 2014; Kanther et al., 2014). GF mice have increased invariant 

natural killer T (iNKT) cells in the lung and colon due to enhanced CXCL16 

expression, making them more susceptible to an ovalbumin-driven model of allergic 

asthma (Olszak et al., 2012). These studies also suggest that early exposure to 

microbes is important, as the iNKT cell levels returned to low levels when GF mice 

were exposed to specific-pathogen-free (SPF) conditions upon birth but not as 

adults (Olszak et al., 2012). Consequently, the intestinal microbiota has both local 

and systemic effects on innate and adaptive immunity (Figure A1.1).  

Although the majority of the microbiota resides within the intestine, the 

microbial communities located in extraintestinal regions also influence local host 

immunity (Surana and Kasper, 2014). Studies comparing GF mice to conventionally 

raised mice suggest that the skin microbiota regulates expression of complement 

component C5a receptor (C5aR), which regulates innate immune defense genes, 

thereby impacting microbiota diversity and composition (Chehoud et al., 2013). 

Certain skin microbiota community members, particularly Staphylococcus 

epidermidis interactions with CD103+ dendritic cells, can induce CD8+ T cell 

migration to the epidermis, which enhances barrier function and limits epicutaneous 

Candida albicans infection via induction of IL-17 (Naik et al., 2015). In a skin wound 

healing model, wound closure rate was restored in GF mice conventionalized with 

microbiota, a phenomenon associated with increased neutrophil accumulation and 

lower macrophage infiltration into the injured region (Canesso et al., 2014). Microbial 

dysbiosis has also been implicated in extraintestinal diseases, such as increased 
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Staphylococcus aureus which is associated with inflammatory skin conditions 

(Kobayashi et al., 2015). Thus, microbes occupying extraintestinal niches also 

influence host immunity, although the specific organisms and mechanisms 

responsible for these responses (Table A1.1) can differ between regions. 

 

Bacterial components that effect innate and adaptive immunity  
 

Structures detected by pattern recognition receptors 
 

The innate immune system detects microbial components or products through 

several different families of pattern recognition receptors (PRRs), found on 

numerous cell types including macrophages, dendritic cells and epithelial cells 

(Iwasaki and Medzhitov, 2015). Toll-like receptors (TLRs) are a class of 

transmembrane PRRs located on either the cell surface or in endosomes (Maynard 

et al., 2012). One of the most characterized bacterial immunomodulators is 

Bacteroides fragilis polysaccharide A (PSA), which is recognized by TLR2 and 

capable of influencing T cell development and homeostasis (Troy and Kasper, 

2010). Recent studies reveal that PSA activates TLR2 on plasmacytoid dendritic 

cells (pDCs) rather than conventional dendritic cells, leading to the induction of IL-10 

secretion by CD4+ T cells and mucosal protection during a 2,4,6-trinitrobenzene 

sulfonic acid (TNBS) model of colitis (Dasgupta et al., 2014). PSA-TLR2 activation of 

pDCs and Treg induction can also mediate protection in extraintestinal inflammatory 

diseases such as experimental autoimmune encephalomyelitis, a multiple sclerosis 

animal model (Dasgupta et al., 2014; Wang et al., 2014). Additional work 
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characterizing PSA-induced Treg activation via MHCII mediated antigen 

presentation suggests that the interaction depends on the zwitterionic (carries 

positive and negative charges) properties of PSA and induces a specific clonal 

expansion of Tregs (Johnson et al., 2015b). Lactobacillus plantarum teichoic acid D-

alanylation (component of Gram-positive bacterial envelope) also signals through 

TLR2 and promotes a pro-inflammatory cytokine response in dendritic cells, which 

modulates effector and regulatory T cell populations (Smelt et al., 2013) (Figure 

A1.2). 

Bacteria flagellin is recognized by TLR5 expressed on various cells including 

intestinal epithelial cells (IECs) and dendritic cells. IEC-derived TLR5 signaling 

appears to influence microbiota composition and host response because TLR5ΔIEC 

mice have an altered microbiota compared to cohoused sibling wild-type controls, 

develop low grade inflammation and metabolic syndrome, and have delayed 

clearance of adherent invasive Escherichia coli (AIEC) (Chassaing et al., 2014). 

How TLR5 activation controls microbiota composition is unclear but could involve 

immune cell recruitment to clear pathogens in close proximity to the epithelium, 

stimulation of epithelial antimicrobial peptide production, or induction of flagellin-

specific IgA (Chassaing et al., 2014). The microbiota also impacts vaccine immunity 

through TLR5 signaling in B cells and macrophages, which is critical for mounting an 

antibody response to trivalent inactivated influenza vaccine and the inactivated polio 

vaccine (Oh et al., 2014). 

Most of the downstream signaling from TLRs occurs through either myeloid 

differentiation primary response protein 88 (MyD88) or Toll-interleukin receptor 
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domain-containing adaptor protein inducing interferon-β (TRIF) adaptor proteins, 

resulting in activation of NF-κB or interferon regulatory factors, respectively (Gay et 

al., 2014). Luminal bacteria promote mucus secretion and movement of monocytes 

closer to epithelial stem cells through an epithelial MyD88-signaling pathway. 

Increased proximity of monocytes to epithelial stem cells results in increased crypt 

cell proliferation and intestinal stem cell numbers (Skoczek et al., 2014), which could 

be beneficial during intestinal injury response. Studies comparing GF mice to mice 

colonized with 3 strains of bacteria (E. coli K-12, Staphylococcus xylosus, and 

Enterococcus faecalis) reveal that GF mice have delayed microbial clearance, 

reduced inflammatory responses to intravenous E. coli K12 infection and a 

decreased myeloid cell pool size (Balmer et al., 2014). Heat-stable microbial 

antigens in the serum are able to restore bone marrow myeloid cell numbers through 

MyD88/TICAM-dependent TLR signaling (Balmer et al., 2014). MyD88-dependent 

TLR signaling also plays a role in microbiota-mediated tolerance to a non invasive 

strain of Salmonella enterica serovar Typhimurium by preventing CX3CR1hi 

mononuclear phagocytes-mediated transport of luminal bacteria to the mesenteric 

lymph nodes (Diehl et al., 2013). Furthermore, tumor necrosis factor receptor 

associated factor 6 (TRAF6), a component of TLR signal transduction, has MyD88-

independent effects on immune and microbiota homeostasis. Mice with TRAF6-

deficient dendritic cells develop Th2-driven small intestine inflammation and have 

decreased Treg cells, both of which are microbiota-dependent (Han et al., 2013). 
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Nod-like receptors (NLRs) are a class of cytosolic PRRs that act as intracellular 

sensors (Iwasaki and Medzhitov, 2015). Nod2 recognizes bacterial peptidoglycan 

through muramyl dipeptide (MDP).  Studies using Nod2-/- mice reveal reduced 

intraepithelial lymphocytes (IELS) and administering MDP to antibiotic-treated mice 

restored IEL numbers through upregulation of IL-15, suggesting Nod2-mediated 

recognition of the microbiota affects IEL homeostasis (Jiang et al., 2013). Nod2 has 

also been implicated in preventing goblet cell dysfunction and restricting expansion 

of Bacteroides vulgatus in the small intestine, which prevents piroxicam-induced 

intestinal inflammation in mice (Ramanan et al., 2014). NLRs also have 

extraintestinal effects, as NLR ligands have been implicated in innate immunity in 

the lung, which is important for K. pneumonia clearance (Clarke, 2014). 

Inflammation or injury can cause members of the microbiota to become 

pathogenic and stimulate the immune system to induce inflammation. In the context 

of a dextran sulfate sodium (DSS) mouse model, Proteus mirabilis can induce IL-1β 

production via NLRP3 inflammasome activation in recruited inflammatory 

monocytes, promoting intestinal inflammation (Seo et al., 2015). After comparing 

different strains, the authors determined that P. mirabilis HpmA hemolysin induces 

K+ efflux, which is required for NLRP3-induced inflammasome activation (Muñoz-

Planillo et al., 2013; Seo et al., 2015). In vitro studies show AIEC isolated from IBD 

patients are also able to induce IL-1β through NLRP3 activation in macrophages (la 

Fuente et al., 2014).  
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Outer membrane vesicles  
 

Outer membrane vesicles (OMVs) are produced by Gram-negative bacteria 

and contain various bacterial components, many of which activate PRRs (Kaparakis-

Liaskos and Ferrero, 2015). OMVs can promote immune homeostasis or enhance 

bacterial pathogenesis; effects that likely depend on the type of bacteria, OMV 

content and the host environment (Kaparakis-Liaskos and Ferrero, 2015). For 

example, Bacteroides thetaiotaomicron (B. theta) OMVs containing homologs of 

mammalian inositol phosphatase interact with IECs in vitro to promote intracellular 

calcium signaling (Stentz et al., 2014). This signaling confers nutritional benefits and 

potentially anticarcinogenic properties, as dietary inositol hexaphosphate 

administration reduces tumorigenesis in carcinogen (1,2-dimethylhydrazine or 

azoxymethane)–induced cancers in rats and mice (Stentz et al., 2014). On the other 

hand, spontaneous colitis prone CD4-dnTgfb2;IL10rb-/- mice exposed to B. theta 

develop inflammation due to OMVs containing sulfatase activity, which degrades 

mucin glycans and allows B. theta to interact with host macrophages (Hickey et al., 

2015). B. fragilis PSA is also released in OMVs which can be detected by TLR2 

(Deng et al., 2015; Shen et al., 2012). Some bacteria produce OMVs that have 

adverse effects on host immunity. For example, enterotoxigenic B. fragilis (ETBF) 

secrete B. fragilis toxin-dependent particles that can induce host IECs to secrete 

sphingolipids (specifically, sphingosine-1-phosphate) in exosome-like particles which 

induce Th17 cells and enhance tumorigenesis in multiple colon cancer mouse 

models (Deng et al., 2015). 
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Metabolites  
 

Besides structural components, bacteria also generate a wide spectrum of 

metabolites that have the capacity to engage and trigger numerous host responses 

(Figure A1.2).  Multiple intestinal Bacteroides species are able to synthesize 

sphingolipids, which are structurally similar to host lipid agonists of iNKTs. B. fragilis 

sphingolipids have been shown to modulate cellular homeostasis by both promoting 

iNKT activation (Wieland Brown et al., 2013) and inhibiting activation and expansion 

of iNKT cells during mouse neonatal development, which protects against 

oxazolone-induced colitis in adulthood (An et al., 2014).  

Short chain fatty acids (SCFAs) are bacterial metabolites generated as 

byproducts of dietary fiber fermentation. Butyrate, propionate, and acetate are the 

most common intestinal SCFAs and are normally present in the millimolar range in 

the gut. The mechanisms by which SCFAs impact immunity include activation of G 

protein-coupled receptors (GPRs), inhibition of histone deacetylases, and regulation 

of autophagy (Brestoff and Artis, 2013). Levels of SCFAs depend on two 

interdependent factors: dietary fiber and microbiota composition. SCFAs may 

modulate protection against chemically induced DSS colitis through GPR43 and 

GPR109A receptor interactions that are dependent on the NLRP3 inflammasome in 

non-hematopoietic cells (Macia et al., 2015). Butyrate exerts anti-inflammatory 

effects on bone marrow derived and colonic macrophages via histone deacetylase 

inhibition. However, gavaging mice with butyrate does not impact the outcome of 

DSS colitis, suggesting butyrate promotes bacterial tolerance rather than tissue 
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repair (Chang et al., 2014). Additionally, butyrate has been shown to increase barrier 

function by stimulating epithelial metabolism in the colon to promote oxygen 

depletion, stabilizing hypoxia-inducible factor (HIF) and inducing HIF-dependent 

target genes that promote barrier function (Kelly et al., 2015). SCFAs from the 

microbiota can also have systemic effects. In a mouse model of allergic inflammation 

in the lung, high levels of propionate are protective, likely through GPR41 signaling 

which results in dendritic cells with high phagocytic capability and an impaired 

capacity to induce Th2 differentiation (Trompette et al., 2014). 

In addition, microbial metabolites can influence host immune response through 

an indirect route.  For example, SCFAs augment 5-hydroxytryptamine (serotonin) 

production from intestinal enterochromaffin cells through upregulation of the rate-

limiting biosynthetic enzyme tryptophan hydroxylase (Yano et al., 2015). The wide 

impact of serotonin on host biological response including immunity (Baganz and 

Blakely, 2013) suggests that microbes could shape immune responses through 

complex mechanisms. SCFAs also directly impact innate immune cells in the brain 

and central nervous system. GF mice have defects in microglial (tissue 

macrophages of the brain) maturation, differentiation and function with a diminished 

response to LPS and viral challenges, while administering a mixture of propionate, 

butyrate and acetate to the drinking water restores microglial maturation (Erny et al., 

2015). Indigenous bacteria metabolites may have key roles in inhibiting colonization 

of specific pathogens. For instance, Clostridium scindens inhibition of Clostridium 

difficile is associated with secondary bile acid synthesis (Buffie et al., 2015). 
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Tryptophan catabolites from the microbiota expand lactobacilli that produce an 

aryl hydrocarbon receptor (AHR) ligand, indole-3-aldehyde. AHR activation results in 

IL-22 transcription that promotes antimicrobial peptide expression and mucosal 

homeostasis, providing colonization resistance against gastrointestinal or vaginal 

Candida albicans infection and DSS colitis models (Zelante et al., 2013). Group 3 

ILCs also rely on AHR signaling to inhibit Th17 cell expansion and regulate SFB 

levels, which could play a role in IBD because ~40% of mice that lack AHR signaling 

abilities in ILCs develop spontaneous colitis between 12 and 20 weeks of age and 

have exacerbated inflammation in a CD45RBhi T-cell transfer model of colitis (Qiu et 

al., 2013). In summary, bacterial components and metabolites affect both innate and 

adaptive immunity in the intestine (Figure A1.2). 

 

Viral, archaeal, and eukaryotic microbiota members that influence immunity  
 

Part of how the microbiota impacts host immunity is by limiting pathogen 

colonization through niche occupation and resource utilization. These indirect 

protective effects may extend to the viral members of the microbiota, of which there 

are an estimated 109 viruses per gram feces. Some of these viruses target 

mammalian cells but bacteriophages, which exclusively infect bacteria, make up the 

majority of the viral community (Cadwell, 2015). Bacteriophages displaying Ig-like 

domains on phage capsid proteins adhere to host intestinal mucus and are able 

reduce microbial colonization in the mucosal niche by infecting and lysing bacteria 

(Barr et al., 2013). Recently, metagenomic sequencing of the human fecal virome 



 

 

 140 

from healthy and IBD patients revealed an expansion of Caudovirales 

bacteriophages associated with IBD (Norman et al., 2015). Thus, microbiota-

associated bacteriophages may impact the pathogenesis of IBD by targeting 

microbial members with protective or deleterious function. 

When it comes to immune system development and function, viral members of 

the microbiota may be able to confer some of the same immune benefits as bacteria. 

Murine norovirus infection of GF or antibiotic-treated mice restores intestinal 

morphology, lymphocyte function, and suppresses ILC2 expansion; additionally 

RNA-seq revealed transcriptional changes in the intestine associated with immune 

development and type I interferon signaling (Kernbauer et al., 2014). Whether 

viruses contribute to human immune system development and homeostasis remains 

to be determined. 

Archaeal members of the microbiota can also activate host immune cells. 

Specifically Methanosphaera and Methanorevibacter have differential capacities to 

induce pro-inflammatory cytokine release from human dendritic cells. Activation 

requires phagocytosis of the archaea, but whether induction involves PRRs that 

recognizes components of the archaeal cell envelope is still unknown (Bang et al., 

2014). 

Studies examining the immunomodulatory effects of the fungal microbiota have 

mostly focused on one of the most abundant members, Candida albicans, which can 

cause severe infections in immunocompromised people (Mukherjee et al., 2015). 

The host uses TLRs as well as C-type lectins, a class of PRRs, to recognize fungal 

cell wall components such as mannans, β-glucans and chitin (Mukherjee et al., 
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2015; Wagener et al., 2012). C. albicans cell wall components are 

immunomodulators, with cell wall glycosylation playing a key role in inducing pro-

inflammatory cytokine expression, proliferation and apoptosis in epithelial cells 

(Wagener et al., 2012). Chitin induces secretion of the anti-inflammatory cytokine IL-

10 that is dependent on NOD2, TLR9, and mannose receptors. Anti-inflammatory 

cytokines induced by chitin may play a role in resolving immune homeostasis after 

pathogen clearance and eosinophilia, which is a feature of asthma (Wagener et al., 

2014).  

Helminths are parasitic worms that modulate host immunity by inducing a 

strong Th2 immune response, Tregs and regulatory cytokines such as IL-10 and 

transforming growth factor-β (Yang et al., 2014a). Epidemiological evidence and 

experimental studies suggest the helminth-induced immune response may be 

therapeutic for treating allergies and autoimmune diseases (Girgis et al., 2013). 

Recent research focused on identifying the helminth immunomodulatory products 

has revealed that administering excretory/secretory products from Trichinella spiralis 

adult worms protects mice from DSS-induced colitis through upregulation of Tregs 

and reduction of pro-inflammatory cytokines (Yang et al., 2014a). The 

Acanthocheilonema viteae product (AvCystatin) modulates MAPK, p38, and ERK 

pathways in macrophages to induce IL-10 secretion. Administration of AvCystatin-

treated macrophages to mice with OVA-induced airway inflammation or DSS-

induced colitis ameliorates disease by suppressing inflammation (Ziegler et al., 

2015). However, in the context of viral infection, the helminth immune response may 
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be detrimental. T. spiralis infected mice induce alternative activation of 

macrophages, which upregulates genes that impair the T cell response to murine 

norovirus (Osborne et al., 2014). 

 

Bacterial adaptations to host immune mechanisms 
 

Previous sections have examined how microbes direct immune development 

and function. However, the immune system also impacts microbes, which includes 

influencing microbiota composition as well as virulence capacities. Mechanisms by 

which specific microbes have adapted to coexist with the host immune system have 

begun to emerge (Table A1.2). For example, B. theta utilizes lipid A 

dephosphorylation to resist host antimicrobial peptides that target the 

lipopolysaccharide portion of the bacterial outer membrane (Cullen et al., 2015). 

Part of the immune response to infection can promote indigenous microbiota 

colonization through release of nutrients. TLR agonists induce dendritic cell IL-23 

production in a MyD88-dependent manner which stimulates ILCs to produce IL-22, 

resulting in rapid fucosylation of small intestine epithelial cells (Pickard et al., 2014). 

Work by Goto et al. demonstrated that bacteria such as SFB, stimulate IL-22 

production by ILC3s which mediates epithelial fucosylation in the ileum and protects 

the host from Salmonella typhimurium infection (Goto et al., 2014b). Resident 

bacteria, such as Bacteroides acidifaciens, have the capacity to cleave fucose, 

which can subsequently be used by other members of the microbiota; a process that 

may promote tolerance to intestinal pathogens (Pickard et al., 2014). Host IL-22RA1 
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signaling promotes intestinal fucosylation in colonic organoids and the mouse 

cecum, restoring anaerobic bacterial diversity in the colon to protect against 

opportunistic pathogens such as E. faecalis and Citrobacter rodentium (Pham et al., 

2014). Thus, fucosylation seems to be a host response to specific members of the 

microbiota or infectious challenge, which bolsters the microbiota and protects the 

host from multiple enteric pathogens. Reinforcing the importance of IL-22 production 

in maintaining colonization resistance against enteric pathogens, ID2 (a 

transcriptional regulator of ILCs) promotes colonization resistance against 

Citrobacter rodentium by mediating IL-22 production by ILC3s through an AHR and 

IL-23 receptor pathway (Guo et al., 2015). 

Some pathogenic bacteria have evolved virulence factors that allow them to 

better cope with host immune defense mechanisms compared to indigenous 

bacteria. IL-22 is part of the immune response to infection and leads to induction of 

lipocalin-2 and calprotectin, which sequester iron, zinc and manganese ions.  

Salmonella enterica serovar Typhimurium overcomes host iron sequestration with 

the siderophore salmochelin and zinc sequestration through a zinc transporter, 

giving Salmonella a colonization advantage over resident Enterobacteriaceae that 

lack additional siderophores (Behnsen et al., 2014). Fusobacterium nucleatum, 

which has previously been linked to colon cancer (Allen-Vercoe and Jobin, 2014) is 

able to bind to an inhibitory receptor (TIGIT) on NK and T cells, leading to inhibition 

of NK cell mediated cytotoxicity/T cell activities (Gur et al., 2015). Additionally, the 

authors demonstrate F. nucleatum OMVs bind TIGIT suggesting a pro-carcinogenic 

role for F. nucleatum OMVs by inhibiting host immune function (Gur et al., 2015). 
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This bilateral communication between microbes and the host clearly highlights the 

intricate and complex nature of microbe-host interactions. 

 

Conclusions/Perspective  
 

The impact of the microbiota on myriad components of innate and adaptive 

immunity has been well established, especially in the intestine. Recent studies have 

moved on to characterizing how members of the microbiota and the host immune 

system communicate with one another. It is likely that the dialogue between 

microbes and host is a dynamic phenomenon, taking place from birth and evolving 

over time, even though the phylogenic microbial composition is quite stable for the 

majority of life. Therefore, microbial bioactivities rather than composition may 

account for most of the host response, including immunity. Clearly, more information 

is needed on the specific nature of this dialogue and how communication 

breakdowns result in disrupted host immune homeostasis. It will be important to 

continue detailing the relationship between microbial-derived metabolites and host 

immune homeostasis. These studies should include transcriptomic and 

metabolomics approaches to better understand the impact of microbial activities on 

the host immune response. The continuous characterization of microbial 

communities at the genomic and proteomic level, in conjunction with specific culture 

methods, will contribute to understanding how specific microbes shape the immune 

response. Ahern et al. offer a possible approach for identifying members of the 

human microbiota that impact the immune system using gnotobiotic mice (Ahern et 
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al., 2014). The persistent mapping and annotation of microbial genes in conjunction 

with the establishment of tools to genetically modify these genes will enable 

molecular dissection of the contributions of bacteria to host immunity. Additionally, it 

is likely that more interactions occur between members of the microbiota (viruses, 

prokaryotes, and eukaryotes) that influence host immune health than are currently 

known. Continued research focused on the signaling that occurs between microbiota 

components and the immune system may lead to the development of new or 

improved strategies to restore or reset altered communication networks between the 

host and microbes.  
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Figures and Tables 

 
Figure A1.1. The microbiota affects local and systemic immunity. The intestine 
(1) contains the greatest number and diversity of microbiota members. 
Proteobacteria, specifically Sutterella, alter fecal IgA levels, likely through 
degradation of SIgA. SFB also alter IgA levels by promoting expansion of germinal 
centers and inducing IgA-secreting cells in Peyer’s patches, isolated lymphoid 
follicles, and tertiary lymphoid tissue. MHCII-dependent SFB antigen presentation on 
intestinal dendritic cells induces Th17 cell differentiation, while MHCII-dependent 
SFB antigen presentation by ILCs constrains Th17 cell differentiation. The intestinal 
microbiota also influences systemic immunity, including the number and function of 
circulating neutrophils (2) as well as constraining iNKT levels in the lung (3) and 
colon (1). ILCs, innate lymphoid cells; iNKT, invariant natural killer T cell; SFB, 
segmented filamentous bacteria; SIgA, secretory immunoglobulin A; Th17, T helper 
17 lymphocyte; Treg, T regulatory lymphocyte. 
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Figure A1.2: Bacterial components that affect innate and adaptive immunity in 
the intestine. Bacterial MAMPS signal through host PRRs. PSA (A) from 
Bacteroides fragilis interacts with TLR2 on pDCs to induce IL-10 production from 
CD4+ T cells and Treg clonal expansion. Lactobacillus plantarum D-alanylated 
teichoic acid (D) also signals through TLR2 on dendritic cells to modulate effector 
and regulatory T cell populations. Flagellin activation of TLR5 on epithelial cells 
alters microbiota composition. Luminal bacteria promote mucus secretion and 
movement of monocytes closer to epithelial stem cells through a MyD88-dependent 
signaling pathway. Sphingolipid metabolites from B. fragilis promote iNKT activation 
in adults. SCFA metabolites from bacteria impact immunity through multiple 
mechanisms: activation of GPRs, inhibition of HDACs, and regulation of autophagy. 
Butyrate exerts anti-inflammatory effects on macrophages through HDAC inhibition 
and promotes barrier function in IECs through stabilization of HIF. Lactobacilli 
produce an AHR ligand, indole-3-aldehyde, which induces IL-22, promoting AMP 
expression and mucosal homeostasis. AHR signaling on ILC3s has also inhibits 
Th17 cell expansion. AHR, aryl hydrocarbon receptor; AMPs, antimicrobial peptides; 
GPRs, G protein-coupled receptors; HIF, hypoxia-inducible factor; I, indole-3-
aldehyde, an AHR ligand; IECs, intestinal epithelial cells, ILC3, group 3 innate 
lymphoid cell; MAMPS, microbe-associated molecular patterns; MyD88, myeloid 
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differentiation primary response protein 88; PRRs, pattern recognition receptors; 
pDCs, plasmacytoid dendritic cells; PSA, polysaccharide A from B. fragilis; SCFAs, 
short chain fatty acids; TLRs, toll-like receptors. 
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Bacteria Immunomodulatory 

effect 

Mechanism References 

AIEC Induce inflammatory 
cytokines in vitro 

Activation of 
NLRP3 in 
macrophages, 
inducing IL-1β 
production 

(la Fuente 
et al., 2014) 
 

Bacteroides 
fragilis  
 

Influence Treg cell 
development and 
homeostasis 
 
 
 
 
 
 
 
Influence iNKT cell 
homeostasis 

Bacterial 
PSA/OMVs 
containing PSA 
interactions with 
TLR2 on pDCs 
 
 
 
 
 
Bacterial 
sphingolipids 
modulate iNKT 
development and 
activation 

(Dasgupta 
et al., 2014; 
Johnson et 
al., 2015b; 
Shen et al., 
2012; Troy 
and Kasper, 
2010; Wang 
et al., 2014) 
 
(An et al., 
2014; 
Wieland 
Brown et 
al., 2013) 

Bacteroides 
thetaiotaomicron 
 

Promote intracellular 
calcium signaling, 
nutritional benefits in 
IECs 
 
 
Promote colitis in 
CD4-
dnTgfb2;IL10rb-/- 
mice  

Bacterial OMVs 
containing inositol 
phosphatase 
 

 
Bacterial OMVs 
containing 
sulfatase, 
degrade mucin 
glycans 

(Stentz et 
al., 2014) 
 

 
 
(Hickey et 
al., 2015)   

Clostridium 
scindens  

Inhibit Clostridium 
difficile infection 

Bacterial 
secondary bile 
acid synthesis 

(Buffie et 
al., 2015)  

ETBF Induce Th17 cells, 
enhance 
tumorigenesis in 
mouse models of 
CRC 

Bacterial toxin-
dependent OMVs 
induce host IECs 
to secrete 
sphingolipids 

(Deng et al., 
2015) 
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Table A1.1. Examples of specific bacteria that modulate the host immune 
system. AIEC, adherent invasive Escherichia coli; ETBF, enterotoxigenic B. fragilis; 
IECs, intestinal epithelial cells; IgA, immunoglobulin A; ILCs, innate lymphoid cells; 
iNKT, invariant natural killer T cell; OMVs, outer membrane vesicles; pDCs, 
plasmacytoid dendritic cells; PSA, polysaccharide A; SFB, segmented filamentous 
bacteria; Th17, T helper 17 
 
  

Lactobacillus 
plantarum  

Alter distribution of 
pro- and anti-
inflammatory T cell & 
dendritic cell 
populations 

Bacterial teichoic 
acid D-alanylation 
signaling through 
TLR2 

(Smelt et 
al., 2013) 
 

Proteus mirabilis  
 

Induce intestinal 
inflammation in DSS 
model 

Dependent on 
bacterial 
hemolysin; 
activation of 
NLRP3 
inflammasome, 
inducing IL-1β 
production 

(Muñoz-
Planillo et 
al., 2013; 
Seo et al., 
2015) 

SFB Induce IgA & Th17 
 

Stimulation of 
germinal centers 
& induction of 
IgA-secreting 
cells; MHCII 
presentation by 
dendritic cells & 
ILCs 

(Geem et 
al., 2014; 
Goto et al., 
2014a; 
Lécuyer et 
al., 2014)  

Staphylococcus 
epidermidis  

Induce CD8+ T cells 
to the epidermis, 
enhance barrier 
function 

Interactions with 
CD103+ dendritic 
cells 

(Naik et al., 
2015) 
 

Sutterella 
species 

Alter fecal IgA levels Degradation of 
the secretory 
component of IgA 

(Moon et 
al., 2015)  
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Bacteria Host Immune 
component 

 

Bacterial response 
 

References 
 

Bacteroides 
thetaiotaomicron 

Antimicrobial 
peptides 
 

Resistance through 
outer membrane lipid 
A dephosphorylation 

(Cullen et 
al., 2015)  

Indigenous 
bacteria 

Fucosylation of 
IECs triggered 
by SFB or 
enteric infection 

Metabolic capacity to 
cleave fucose, utilize 
fucose 

(Goto et al., 
2014b; Guo 
et al., 2015; 
Pham et al., 
2014; 
Pickard et 
al., 2014)  

Salmonella 
enterica serovar 
Typhimurium  

Induction of 
lipocalin-2 & 
calprotectin 
 

Additional 
siderophores & zinc 
transporters to 
overcome host metal 
ion sequestration 

(Behnsen et 
al., 2014)  

Fusobacterium 
nucleatum 

NK cytotoxicity 
& T cell effector 
functions 

Binds host inhibitory 
receptor (TIGIT) on NK 
& T cells 

(Gur et al., 
2015)  

Table A1.2. Examples of bacterial adaptations to host immune mechanisms. 
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APPENDIX 2: CO-AUTHOR PUBLICATIONS RELATED TO DISSERTATION 
 

Pope, J.L., Tomkovich, S., Yang, Y., and Jobin, C. (2016). Microbiota as a mediator 
of cancer progression and therapy. Transl Res. Aug 3. pii: S1931-5244(16)30155-4 
 

Goldsmith, J.R., Tomkovich, S., and Jobin, C. (2016). A Rapid Screenable Assay 
for Compounds That Protect Against Intestinal Injury in Zebrafish Larva. Methods 
Mol Biol 1422, 281–293. 
 

Mousa, J.J., Yang, Y., Tomkovich, S., Shima, A., Newsome, R.C., Tripathi, P., 
Oswald, E., Bruner, S.D., and Jobin, C. (2016). MATE transport of the E. coli-derived 
genotoxin colibactin. Nature Microbiology 1, 15009. 
 

Yang, Y., Tomkovich, S., and Jobin, C. (2014). Could a swimming creature inform 
us on intestinal diseases? Lessons from zebrafish. Inflamm Bowel Dis 20, 956–966. 
 

Arthur, J.C., Gharaibeh, R.Z., Uronis, J.M., Perez-Chanona, E., Sha, W., 
Tomkovich, S., Mühlbauer, M., Fodor, A.A., and Jobin, C. (2013). VSL#3 probiotic 
modifies mucosal microbial composition but does not reduce colitis-associated 
colorectal cancer. Sci Rep 3, 2868. 
 

Crooke, A.K., Fuller, J.R., Obrist, M.W., Tomkovich, S.E., Vitko, N.P., and 
Richardson, A.R. (2013). CcpA-independent glucose regulation of lactate 
dehydrogenase 1 in Staphylococcus aureus. PLoS ONE 8, e54293. 
 

Arthur, J.C., Perez-Chanona, E., Mühlbauer, M., Tomkovich, S., Uronis, J.M., Fan, 
T.-J., Campbell, B.J., Abujamel, T., Dogan, B., Rogers, A.B., et al. (2012). Intestinal 
inflammation targets cancer-inducing activity of the microbiota. Science 338, 120–
123. 
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