
TREE-BASED METHODS FOR SURVIVAL ANALYSIS AND
HIGH-DIMENSIONAL DATA

Ruoqing Zhu

A dissertation submitted to the faculty of the University of North Carolina at Chapel
Hill in partial fulfillment of the requirements for the degree of Doctor of Philosophy in
the Department of Biostatistics.

Chapel Hill
2013

Approved by:

Dr. Michael R. Kosorok
Dr. Jianwen Cai
Dr. Jason P. Fine
Dr. Donglin Zeng
Dr. Stephen R. Cole
Dr. Yufeng Liu

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Carolina Digital Repository

https://core.ac.uk/display/210599033?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

c⃝ 2013

Ruoqing Zhu

ALL RIGHTS RESERVED

ii

Abstract

RUOQING ZHU: Tree-based methods for survival analysis and
high-dimensional data

(Under the direction of Dr. Michael R. Kosorok)

Machine learning techniques have garnered significant popularity due to their capac-

ity to handle high dimensional data. Tree-based methods are among the most popular

machine learning approaches. My dissertation aims on improving existing tree-based

methods and developing statistical framework for understanding the proposed meth-

ods. It contains three topics: recursively imputed survival tree, reinforcement learning

trees and reinforcement learning trees for right censored survival data. A central idea

of my dissertation is focused on increasing the chance of using signaled variables as

splitting rule during the tree construction while not loosing the randomness/diversity,

hence a more accurate model can be built. However, different methods achieve this by

using different approaches. Recursively imputed survival tree recursively impute cen-

sored observations and refit the survival tree model. This approach allows better use

of the censored observations during the tree construction, it also changes the dynamic

of splitting rule selections during the tree construction so that signaled variables can

be emphasized more in the refitted model. Reinforcement learning trees takes a direct

approach to emphasize signaled variables in the tree construction. An embedded model

is fitted at each internal node while searching for splitting rules. The variable with the

largest variable importance measure is used as the splitting variable. A new theoretical

framework is proposed to show consistency and convergence rate of this new approach.

In the third topic, we further extend reinforcement learning trees to right censored

survival data. Brier score is utilized to calculate the variable importance measures. We

iii

also show a desirable property of the proposed method that can help correct the bias

of variable importance measures when correlated variables are present in the model.

iv

I dedicate this dissertation work to my parents,

Dr. Lixing Zhu and Qiushi Tian,

who have loved and supported me throughout my life,

and to my beloved wife,

Xian Cao,

who stood by me through the good times and bad.

v

Acknowledgments

My graduate experience at University of North Carolina at Chapel Hill has been an

amazing journey. I am grateful to a number of people who have guided and supported

me throughout the research process, and cheered me during my venture.

My deepest gratitude is to my advisor, Dr. Michael R. Kosorok, for his guidance,

support, patience, and also the freedom he gave me to explore on my own. I have been

very fortunate to have an advisor like him. And I would not have been able to achieve

this accomplishment without him.

I gratefully thank Dr. Donglin Zeng for his tremendous help in my dissertation. His

patience and experience helped me overcome many difficult problems.

I would also like to thank my committee members Dr. Jianwen Cai, Dr. Jason

P. Fine, Dr. Stephen R. Cole and Dr. Yufeng Liu for their insightful comments and

constructive criticisms at different stages of my research. These comments motivated

many of my thinking.

I am grateful to Dr. Haibo Zhou who supported me in my first year. The experience

of collaboration under his guidance was invaluable.

I would like to thank Dr. Kristen Hassmiller Lich and Elizabeth Holdsworth La.

My collaboration with them has been a very enjoyable part of my graduate study.

I am also thankful to Dr. Hongtu Zhu, Dr. Wei Sun, Dr. Fei Zou, Dr. Michael

Wu, and all other faulty members, students and staff in the department of biostatistics.

vi

This department provides the ideal environment for learning and doing research, it is

the best in the world!

Finally, my family has supported and helped me along the course of this dissertation

by giving encouragement and providing emotional support I needed. To them, I am

eternally grateful.

vii

Table of Contents

List of Tables . xii

List of Figures . xiii

1 Literature Review . 1

1.1 Introduction . 1

1.2 Tree-based methods . 2

1.2.1 Single tree model . 2

1.2.2 Ensemble methods . 4

1.3 Theoretical justification . 8

1.4 Extending tree-based methods to censored survival data 10

2 Recursively imputed survival trees . 11

2.1 Introduction . 11

2.2 Data set-up and model . 13

2.3 Proposed Method and Algorithm . 14

2.3.1 Motivation and Algorithm outline 14

2.3.2 Survival tree model fitting . 15

2.3.3 Conditional survival distribution 17

2.3.4 One-step imputation for censored observations 17

2.3.5 Refit imputed dataset . 18

viii

2.3.6 Final prediction . 19

2.4 Simulation Studies . 19

2.4.1 Simulation settings . 20

2.4.2 Tuning parameter settings . 22

2.4.3 Prediction Error . 22

2.4.4 Simulation results . 24

2.5 Data Analysis . 28

2.5.1 Breast Cancer Data . 28

2.5.2 PBC Data . 30

2.6 Discussion . 33

2.6.1 Why RIST works . 33

2.6.2 Other Issues . 36

3 Reinforcement learning trees . 38

3.1 Introduction . 38

3.2 Statistical model . 40

3.3 Reinforcement learning trees . 41

3.3.1 Reinforcement learning trees . 42

3.3.2 Embedded model . 44

3.3.3 Variable importance . 44

3.3.4 Variable muting . 46

3.3.5 High-dimensional cuts . 48

3.4 Theoretical results . 50

3.5 Numerical studies . 56

3.5.1 Competing methods and parameter settings 56

3.5.2 Simulation scenarios . 57

3.5.3 Simulation results . 58

ix

3.5.4 Data analysis example . 59

3.5.5 Numerical study conclusion . 64

3.6 Discussion . 64

3.6.1 Choosing the tuning parameters 65

3.6.2 Computational intensity and R package “RLT” 65

4 Reinforcement learning trees for survival data 67

4.1 Introduction . 67

4.2 Notation and the survival model . 68

4.3 Proposed Method and Algorithm . 69

4.3.1 Reinforcement learning trees for right censored survival data . . 69

4.3.2 Embedded survival model . 70

4.3.3 Variable importance for survival tree model 72

4.3.4 Variable muting . 74

4.4 Simulation Studies . 76

4.4.1 Data generator . 77

4.4.2 Tuning parameters . 78

4.4.3 Prediction error . 79

4.4.4 Simulation results . 79

4.5 Discussion . 81

4.5.1 linear combination split . 81

4.5.2 Variable importance measures of correlated variables 82

4.5.3 Computational issues . 83

5 Conclusion and future research plan . 84

Appendix : Asymptotic Results . 86

x

Bibliography . 105

xi

List of Tables

2.1 Algorithm for tree fitting . 16

2.2 Integrated absolute error for survival function † 26

2.3 Supremum absolute error for survival function ‡ 26

2.4 C-index error . 27

2.5 Integrated Brier score . 27

3.1 Algorithm for reinforcement learning trees 43

3.2 Variable Importance . 46

3.3 Parameter settings . 56

3.4 Prediction Mean Squared Error . 61

3.5 Diagnostic Wisconsin Breast Cancer Dataset misclassification rate . . . 63

3.6 Computational time of RLT (in seconds) 66

4.1 Reinforcement learning trees for right censored survival data 70

4.2 Embedded survival model . 72

4.3 Variable importance . 74

4.4 Prediction Errors: Scenario 1 (Cox model) 80

4.5 Prediction Errors: Scenario 2 (symmetric and checker-board effects) . 80

xii

List of Figures

2.1 A Graphical demonstration of RIST . 15

2.2 Proportional Hazards Model . 28

2.3 Non-Proportional Hazards . 28

2.4 Relative Brier score . 30

2.5 Integrated Brier score . 30

2.6 Relative Brier score . 33

2.7 Integrated Brier score . 33

2.8 Diversity and forest averaging . 35

3.1 Box plot of prediction Mean Squared Error 60

3.2 Misclassification rate by increasing dimension 63

4.1 Comparing variable importance . 82

xiii

Chapter 1

Literature Review

1.1 Introduction

The decision tree is a predictive model in machine learning. In 1984, Breiman et al.

published the classic book “Classification and Regression Trees”(CART) which intro-

duced this idea to the statistics and data mining communities. This nonparametric

model recursively partitions the training dataset and builds an accurate, flexible and

easy-to-interpret model. Through the work of many researchers, tree-based methods

have progressed significantly. During the last decade, after the “bagging” idea was in-

troduced by Breiman (1996), ensemble tree methods have provided much more accurate

models. And random forests (Breiman, 2001) has become a state-of-the-art method in

machine learning. However, the asymptotic behavior of tree-based methods is still

puzzling, resulting in many difficulties in deriving consistency results and prediction

error calculations. Meanwhile, adaption of tree-based methods for survival analysis has

drawn a lot interests. Much research has focused on tree building and dealing with cen-

soring. In this dissertation, I attempt to answer these previously raised questions and

challenges and improve upon existing methods. We will briefly review related works in

the following sections. Some details are deferred to later sections when we presenting

each specific method.

1.2 Tree-based methods

Tree-based methods originate from decision trees, which are commonly used tools

in operation research. Based on initial work by Hunt et al. (1966) and many others,

Quinlan (1983) invented the Iterative Dichotomiser 3 (ID3) algorithm to generate deci-

sion trees. This method utilizes a binary splitting mechanism and the idea of entropy,

or information gain. This algorithm later on led to the trade mark algorithm C4.5,

which is one the most famous decision tree learners. An independent work by Breiman

et al. (1984) introduced Classification and Regression Trees (CART) to the statistics

community. This method immediately drew a lot of interests in the statistics research

community because this tree-based method is fully non-parametric, highly predictive,

and easy to interpret. There are many versions of tree based methods, their differ-

ences primarily lie on splitting rule, pruning mechanism, and the use of ensembles and

randomization.

1.2.1 Single tree model

1.2.1.1 Building a tree model

The ideas of the two classic tree-building algorithms, CART and C4.5, are very

similar. Suppose we want to predict a class or continuous response Y from input

features (X1, X2, ..., Xp)
⊤ where p can be large but finite, we grow a binary tree by

recursively splitting the training data. At a root node of the tree, which contains all

training samples, a splitting variable X and a splitting value c are created to split

all samples into two disjoint subsets by identifying the indicator function I(X < c)

for each sample. The two resultant subsets are called daughter nodes of the current

node. This process is recursively applied to each of the two daughter nodes and their

subsequent nodes until the sample size of a node is sufficiently small. This method

2

eventually creates disjoint subsets (terminal nodes) in the predictor feature space X ,

and predictions can be uniquely determined by identifying which terminal node the test

sample belongs to. The prediction for regression modeling is obtained by averaging the

training samples in that terminal node. In classification, however, the most prevalent

class label is used. A graphic demonstration of the fitted model looks like an upside-

down growing tree, by which the method was named. From a practical prospective, this

type of model is easy to interpret because of its categorizing nature that each terminal

node assigns a single prediction value to a subspace of the feature space. Moreover,

since it is fully non-parametric, trees generally require fewer assumptions than classical

methods and handle a wide variety of data structures.

1.2.1.2 Tree pruning

However, problems also arise even as the method looks appealing. When noise is

large comparing to the true signal, or when there are unmeasured factors (Mingers,

1989), the simple tree method is likely to produce false splitting rules near the terminal

node, and the entire tree tends to be large and complicated. Hence over-fitting often

occurs and leads to large prediction errors. A natural solution to this is to delete

all subsequent nodes from an internal node, and use all data within that branch as a

single terminal node. Tree pruning procedures were thus introduced (Quinlan, 1993;

Breiman et al., 1984) to reduce the size of the tree, diminish over-fitting and reduce

prediction error. There are two ways to serve the purpose of pruning, one is a stopping

criteria which prevents some nodes from being split further, and the other one removes

nodes after the decision tree is produced. Most authors prefer the latter since it allows

potential interaction structures being built before deciding whether a branch of the tree

is worth keeping (Kohavi and Quinlan, 2002).

3

There are several pruning methods in the literature, including cost-complexity prun-

ing, critical value pruning, pessimistic pruning, MDL pruning and many others. Most

of the pruning algorithms aim at reducing the misclassification error in a classification

problem. Breiman et al. (1984) proposed cost-complexity pruning, which, as its name

suggested, takes both the cost (prediction error) and the complexity (size) of the tree

into consideration and gives an overall score for further selection; Critical value pruning

(Mingers, 1987) calculates a goodness-of-split measure, where the value of the measure

reflects how well the chosen attribute splits the data. By setting a critical value on

this measurement, any branch in the tree that does not reach the critical value will be

pruned and become a terminal node. Pessimistic error pruning proposed by Quinlan

(1986) is a different type of pruning procedure that does not require a test data-set.

It utilizes a binomial distribution to obtain an estimate of the misclassification rate.

Although the statistical justification of this method is dubious, it does have some ad-

vantages over other methods in the early history of the development of tree methods.

Minimum Description Length (MDL) pruning was proposed by Mehta et al. (1995).

They define a measurement which involves the code length, or the stochastic complex-

ity, which has specific optimality properties (Rissanen, 1996). LeBlanc and Tibshirani

(1998) also suggested to use lasso on CART which leads to both shrinking of the n-

ode estimates and pruning of branches in the tree. This method performs better than

cost-complexity pruning in some problems. For a comparison of many different tree

punning methods and also many other issues on this topic, please refer to Mingers

(1989); Niblett (1987); Quinlan (1987).

1.2.2 Ensemble methods

A single tree-model can be easily interpreted, however, it suffers in terms of accura-

cy. It can be viewed as a histogram estimator where the variables and their bandwidth

4

are locally and adaptively chosen. In early 1990’s, the research community found that

learning and combining multiple versions of the model can substantially improve classi-

fication error rate as compared to the error rate obtained by learning a single model of

the data (Ali and Pazzani, 1996; Kwok and Carter, 1990). Breiman (1996) proposed a

bootstrap aggregating procedure called “bagging”. This bagging predictor takes mul-

tiple versions of the bootstrap sample (Efron and Tibshirani, 1993) from the training

dataset and fits an unpruned single tree model to each bootstrap sample. The final

predictor is obtained by averaging over different versions of the model. This procedure

works surprisingly well and out performs its competitors in most situations. Some in-

tuitive explanations of how and why this works were given in Breiman (1998): “Some

classification and regression methods are unstable in the sense that small perturbations

in their training sets or in construction may result in large changes in the constructed

predictor ... ,” however, “unstable methods can have their accuracy improved by per-

turbing and combining, that is, generating multiple versions of the predictor” This

idea has motivated much subsequent work including random forests (Breiman, 2001),

a general framework for tree ensembles.

1.2.2.1 Splitting rules and variant of random forests

In the original CART or bagging approach, the splitting point is searched through-

out the entire possible range of all variables to produce the most distinct daughter

nodes. However, this may lead to a model that strongly leans to the training data

set and the prediction error could be large due to overfitting. Pruning is one way

to solve this, however, introducing randomization into the splitting criteria can solve

the problem from another angle (see Bauer and Kohavi (1999) for a survey). Ali and

Pazzani (1996) replaced using the best split by randomly selecting from the best ones

with probability proportional to the test scores. Another similar idea was proposed

5

by Dietterich (2000), which randomly selects from K best splits. Ho (1998) proposed

a random subspace method which selects a random subspace of the feature space to

grow the tree. Amit and Geman (1997) search over a random selection of features for

the best split at each node. Breiman’s random forests was largely influenced by these

works, especially Amit and Geman (1997). In random forests, a random subset (mtry)

of features is selected at each internal node, then the best split, which produces the

best score, is selected as the splitting rule. In regression modeling, variance reduction

is used to calculate the score, while in classification modeling, Gini index is commonly

used.

Variants of random forests differ in their choices of splitting rules. Geurts et al.

(2006) proposed to use a different cutting point generating method which leads to

computational advantages. In their proposed extremely randomized trees, a random

cutting point is generated for each selected feature, and the splitting rule is decided by

choosing the best among them. Comparing to searching the best cutting point for each

feature, this method substantially reduces computational intensity. Recent methods

(Ishwaran et al., 2008) further extended this idea by generating multiple cutting points

(nsplit) for each feature and comparing different splits. In our proposed methods,

randomized splitting rule is implemented due to its computational advantages.

When sample size in an internal node is sufficiently small (less than a pre-specific

number nmin), splitting will stop and conclude the current node as a terminal node.

An interesting idea was proposed by Cutler and Zhao (2001). In their paper, each

individual tree classifier is a perfectly-fit with only one sample in each terminal node.

Although each tree apparently overfits the training data, forest averaging diminishes

this drawback. From this point of view, tree pruning procedure becomes less important,

however, some forest pruning methods such as Mart́ınez-Muñoz and Suárez (2006) and

Caruana et al. (2004) can save computational cost. An other variant of random forests

6

proposed by Chipman et al. (2010) select prior information to optimize the tree fitting

result. A sequence of MCMC draws of single trees is averaged to obtain the posterior

inference.

1.2.2.2 On randomization

It is now generally acknowledged by the research community that a certain level

of randomization along with constructing ensembles in tree-based methods can sub-

stantially improve performance. A concern addressed by many researchers was the

instability of each unpruned tree (Hothorn et al., 2004). However, the idea of random-

ization relieves this concern: As enlighten by Breiman (1998), perturbing single trees

and taking averages over forests can substantially increase performance. It is actually

the independence between each tree that helps diminish the over all averaged instabil-

ity. Simulation results from Cutler and Zhao (2001) reveal that one reason why their

proposed method, PERT, works well although individual tree classifiers are extremely

weak. The reasoning behind the extremely randomized trees (ERT) method is almost

the same: although the entire sample is used to fit each tree, the dependence between

any two individual trees are very weak since the splitting value is drawn at random.

Randomization can be achieved by different manners in a tree fitting procedure.

Bootstrap aggregation, random selection of features and random cutting point genera-

tion all increase the randomness or reduce the dependence of fitted trees. On the other

hand, greediness (pursuing signal) is equally important since over-randomized trees

(such as purely random forests proposed by Breiman (2004)) is inefficient in detecting

signals. Hence an accurate ensemble tree model has a good blend of randomness and

greediness.

7

1.2.2.3 Tuning parameters

The aforementioned tuning parameters such as mtry, nmin and nsplit play an

important role in the performance of tree-based models. mtry largely controls the di-

versity of trees. A large mtry compares almost all features and, with a high probability,

uses the same variable to construct splitting rules in the early stage of a tree. nmin

controls the depth of each tree. Selecting a small nmin is oftentimes beneficial, how-

ever, theoretical results show that nmin should also grow with sample size n. nsplit

is also related to diversity since a large nsplit is equivalent to an exhaustive search for

cutting points. In our simulation studies, we always use the same parameter tuning so

that the results are comparable. However, we also demonstrate that the advantage of

reinforcement learning trees is beyond the reach of parameter tuning.

1.3 Theoretical justification

One of the major challenges of tree-based methods is analyzing its asymptotic prop-

erty, especially for the original random forests proposed by Breiman (2001). The greedy

splitting rule selection (due to the exhaustive search of cutting point) causes trouble in

formalizing the constructed trees. A much simpler model called purely random forests

(Breiman, 2004) is widely considered for analyzing the asymptotic behavior of ensemble

tree-based models. Basing on this simple model, Lin and Jeon (2006) established the

connection between random forests and nearest neighborhood estimation. They also

established a lower bound on the convergence rate of random forests under a special

type of tree construction mechanism. Biau et al. (2008) showed consistency of ensemble

tree-based methods and some variants of random forests. However, they also gave an

interesting counterexample, under which random forests may not be consistent. This

counterexample is based on a checkerboard model (also considered by Kim and Loh

(2001)), which blinds the marginal signal search in a tree construction.

8

Following the discussions by Lin and Jeon (2006) and Breiman (2004) on a special

type of purely random forest, Biau (2012) proved consistency and showed that the

convergence rate only depends on the number of strong variables which, collectively

and completely define the true model structure. The proof for the convergence rate

result in his paper can serve as a guideline for future analysis of random forests under

more general structures. However, behind this celebrated result, two key components

require a careful further investigation. First, the probability of using a strong variable

to split at an internal node depends on the within-node data (which possibly depends

on an independent sample as suggested in Biau (2012)). With rapidly reduced sample

sizes toward terminal nodes, this probability is unlikely to behave well for the entire

tree. However, a large terminal node size is likely to introduce increased bias which

may also harm the error rate. Second, identifying strong variables in a high dimensional

surface can still be very tricky. The counterexample of consistency given by Biau et al.

(2008) can potentially lead to blinding of the selection criteria so that strong variables

may not be chosen. The rationale behind the above argument is that one cannot fully

explore a high dimensional surface from a viewpoint which only assesses the marginal

effect of each variable. Hence if the marginal effect of a strong variable is behaving like

a noise variable, then the selection process may fail.

Our proposed reinforcement learning trees (RLT) takes a step forward toward un-

derstanding the asymptotic behavior of tree-based methods and building more accurate

models, especially in high-dimensional settings. By fitting an embedded model at each

internal node, the variable(s) with the largest variable importance (carries the most

signal) will be used to split. This creates an advantage in formalizing the splitting pass

from the root node to a terminal node. The simulation studies also show that RLT

and its extension to survival data can easily detect an interaction model such as the

checkerboard structure.

9

1.4 Extending tree-based methods to censored survival data

Tree-based survival models offer a more flexible model structure comparing to rela-

tively restricted parametric models such as the popular Cox model or Accelerate failure

time model. Ciampi et al. (1988), Segal (1988), and LeBlanc and Crowley (1992) pro-

vided early efforts to adapt tree-based methods to right censored survival data. Logrank

test statistic is a natural choice for evaluating and comparing possible splitting rules

in many of these early methods, although others used criteria such as distance mea-

sures between Kaplan-Meier curves or model based statistics. Tree pruning procedure

is also a necessary and beneficial procedure to prevent overfitting. However, the perfor-

mance of these methods are limited by their single tree structure. Ensemble methods

significantly improve the prediction accuracy in survival tree modeling. Recent devel-

opments in this line including Hothorn et al. (2006) who utilize inverse probability of

censoring weights (Van der Laan and Robins, 2003) to avoid censored observations,

and Ishwaran et al. (2008) who employ random splitting rules and predict cumulative

hazard functions. Our proposed recursively imputed survival trees (Zhu and Kosorok,

2012) updates censored observations to a model-based conditional failure time and refit

the model. These extra failure observations help to build deeper trees and also modify

the probability of using a strong variable as splitting rule. However, when the model

structure is complicated and the dimension is large, the imputation may not always

benefit. On the other hand, the proposed reinforcement learning trees survival model

suits better in these scenarios.

10

Chapter 2

Recursively imputed survival trees

2.1 Introduction

My first dissertation topic is recursively imputed survival tree (RIST) regression

for right-censored data. This new nonparametric regression procedure uses a novel im-

putation approach combined with extremely randomized trees that allows significantly

better use of censored data then previous tree based methods, yielding improved model

fit and reduced prediction error. The proposed method can also be viewed as a type

of Monte Carlo EM algorithm which generates extra diversity in the tree-based fitting

process. Simulation studies and data analyses demonstrate the superior performance of

RIST compared to previous methods. This work is published in Journal of the Amer-

ican Statistical Association, 2012. The content of this part remains mostly unchanged

from the published version, although some new findings and interpretations are added

in the discussion section.

After reviewing some existing methods, an important question we could ask our-

selves at this point is: what is the maximum information that can be extracted from

censored survival data? We could also ask: is it possible to obtain as much information

as is contained in non-censored survival data? And if not, what is the best we can do?

These questions motivated us to develop an updating procedure that could extrapo-

late the information contained in a censored observation so that it could effectively be

treated as uncensored. This basic idea is also motivated by the nature of tree model

fitting which requires a minimum number of observed failure events in each terminal

node. Consequently, censored data is in general hard to utilize, and information carried

by censored observations is typically only used to calibrate the risk sets of the log-rank

statistics during the splitting process. Motivated by this issue, we have endeavored to

develop a method that incorporates the conditional failure times for censored obser-

vations into the model fitting procedure to improve accuracy of the model and reduce

prediction error. The main difficulty in doing this is that calculation and generation

of the conditional failure times requires knowledge of model structure. To address this

problem, we propose an imputation procedure that recursively updates the censored

observations to the current model-based conditional failure times and refits the model

to the updated dataset. The process is repeated several times as needed to arrive at a

final model. We refer to the resulting model predictions as recursively imputed survival

trees (RIST).

Although imputation for censored data has been mentioned in the non-statistical

literature (as, for example, in Hsieh (2007); and Tong et al. (2006), the proposed use of

censored observations in RIST to improve tree-based survival prediction is novel. The

primary benefits of RIST are three-fold. First, since the censored data is modified to

become effectively observed failure time data, more terminal nodes can be produced and

more complicated tree-based models can be built. Second, the recursive form can be

viewed as a Monte Carlo EM algorithm Wei and Tanner (1990) which allows the model

structure and imputed values to be informed by each other. Third, the randomness

in the imputation process generates another level of diversity which contribute to the

accuracy of the tree-based model. All of these attributes lead to a better model fit and

reduced prediction error.

To evaluate the performance of RIST and compare with other popular survival

12

methods, we utilize four forms of prediction error: Integrated absolute difference and

supremum absolute difference of the survival functions, integrated Brier score (Graf

et al., 1999; Hothorn et al., 2004) and the concordance index (used in Ishwaran et al.

(2008)). The first two prediction errors for survival functions can be viewed as L1

and L∞ measures of the functional estimation bias. Note that the Cox model uses the

hazard function as a link to the effect of covariates, so one can use the hazard function

to compare two different subjects. Tree-based survival methods, in contrast, do not

enjoy this benefit. To compare the survival of two different subjects and also calculate

the concordance index error, we propose to use the area under the survival curve which

can be handy in a study that runs for a limited time. Note that this would also

be particularly useful for Q-learning applications when calculating the overall reward

function based on average survival (Zhao et al., 2009).

The remainder of this part of the dissertation is organized as follows: In Section 2.2,

we introduce the data set-up, notation, and model. In Section 2.3, we give the detailed

proposed algorithm and some additional rationale behind it. Section 2.4 uses simula-

tion studies to compare our proposed method with existing methods such as Random

Survival Forests (Ishwaran et al., 2008), conditional inference Random Forest (Hothorn

et al., 2006), and the Cox model with regularization (Friedman et al., 2010), and

discusses pros and cons of our method. Section 2.5 applies our method to two cancer

datasets and analyzes the performance. The paper ends with a discussion in Section 2.6

of related work, including conclusions and suggestions for future research directions.

2.2 Data set-up and model

The proposed recursively imputed survival tree (RIST) regression applies to right

censored survival data. To facilitate exposition, we first introduce the data set-up and

notation. Let X = (X1, ..., Xp) denote a set of p covariates from a feature space X .

13

The failure time T given X = x is generated from the distribution function Fx(·).

For convenience, we denote the survival function as Sx(·) = 1 − Fx(·). The censoring

time C given X = x has conditional distribution function Gx(·). The observed data

are (Y, δ,X), where Y = min(T,C) and δ = I{T ≤ C}. Throughout this article we

assume a conditionally independent censoring mechanism which posits that T and C

are independent given covariates X. We also assume that there is a maximum length of

follow-up time τ . A typical setting where this arises is under progressive type I censoring

where survival is measured from study entry, and one observes the true survival times

of those patients who fail by the time of analysis and censored times for those who

do not. In this case, the censoring time Ci can be viewed as the maximum possible

duration in the study for subject i, i = 1, . . . , n. The survival time Ti for this subject

follows survival distribution Sxi which is fully determined by Xi = (Xi1, ..., Xip). If Ti

is less than Ci, then Yi = Ti and δi = 1 is observed; otherwise, Yi = Ci and δi = 0 is

observed. Using a random sample of size n, RIST can estimate the effects of covariate

X on both the survival function and expectation of T (truncated at τ).

2.3 Proposed Method and Algorithm

2.3.1 Motivation and Algorithm outline

In this section we give a detailed description of our proposed recursively imputed

survival tree (RIST) algorithm and demonstrate the unique and important features.

One of the important ideas behind this method is an imputation procedure applied to

censored observations that more fully utilizes all observations. This extra utilization

helps improve the tree structures through a recursive form of model fitting, and it also

enables better estimates of survival time and survival function.

The imputation procedure is motivated by a fact about censored data. Specifically,

a censored observation will always fall into one of the following categories: The true

14

survival time T is larger than study time τ so that we would not observe it even if

the subject started at time 0 and was followed to the end of study; Alternatively, the

true survival time T is less than τ so that we would observe the failure if the subject

started at time 0 and there was no censoring prior to end of study. However, such a

fact is masked whenever a subject is censored. Hence, the key questions are how to

classify censored observations and how to impute values for them if they fall into either

category.

Figure 2.1: A Graphical demonstration of RIST

We will begin our algorithm with a graphical view (Figure ??) followed by a high-

level illustration of the framework (Table 2.1), then a detailed description of each step

will be given in subsequent sections: Survival tree model fitting (Section 2.3.2), Con-

ditional survival distribution (Section 2.3.3), One-step imputation for censored obser-

vations (Section 2.3.4), Refit imputed dataset and further calculation (Section 2.3.5),

and Final prediction (Section 2.3.6).

2.3.2 Survival tree model fitting

The extremely randomized tree (ERT) model is fitted to the initial training set

to assess the model structure. The substantial differences between ERT and Breiman

15

Table 2.1: Algorithm for tree fitting

1. Survival tree model fitting: Generate M extremely randomized survival trees
for the raw training data set under the following settings:

a) For each split, K candidate covariates are randomly selected from p covariates,
along with random split points. The best split, which provides the most distinct
daughter nodes, is chosen.

b) Any terminal node should have no less than nmin > 0 observed events.

2. Conditional survival distribution: A conditional survival distribution is calcu-
lated for each censored observation.

3. One-step imputation for censored observations: All censored data in the
raw training data set will be replaced (with correctly estimated probability) by one
of two types of observations: either an observed failure event with Y < τ , or, a
censored observation with Y = τ .

4. Refit imputed dataset and further calculation: M independent imputed
datasets are generated according to 3, and one survival tree is fitted for each of
them using 1.a) and 1.b).

5. Final prediction: Step 2–4 are recursively repeated a specified number of times
before final predictions are calculated.

(2001)’s Random Forests approach are that, first, the splitting value is chosen fully at

random; second, the whole training set is used instead of only bootstrap replicates. M

independent trees are fit to the entire training dataset as follows. For each tree, when

reaching a node to split, K covariates along with one random split point per covariate

are chosen from all non-constant covariates (splitting will stop if all covariates are

constant). In our model fitting, the log-rank test statistic is used to determine the best

split among the K covariates which provides the most distinct daughter nodes. Once

a split has been selected, each terminal node is split again using the same procedure

until no further splitting can be done without causing a terminal node to have fewer

than nmin events (i.e. observations with δ = 1). We will treat each terminal node as a

group of homogeneous subjects for purposes of estimation and inference.

16

2.3.3 Conditional survival distribution

Calculations of conditional survival functions will be made first on the node level,

then averaged over all M trees. For the lth terminal node in the mth tree, since there

are at least nmin failure events, a Kaplan-Meier estimate of the survival function can be

calculated within the node, which we denote by Ŝlm(t), where t ∈ [0, τ]. Noticing that

for any particular subject, that subject eventually falls into only one terminal node for

each fitted tree model, we can drop the index “l”. Hence we denote the single-tree

survival function by Ŝim for the ith subject. Averaging over M trees, we have the forest

level survival function Ŝi =
1
M

∑M
m=1 Ŝ

i
m. Now, given a subject i that is censored at

time c, i.e., Yi = c and δi = 0, one can approximate the conditional probability of

survival, P (Ti > t|Ti > c), by

s∗i =

 1 if t ∈ [0, c]

Ŝi(t)/Ŝi(c) if t ∈ (c, τ]
(2.1)

Furthermore, we force s∗i (τ+) = 0 by imposing a point mass at time τ . This point mass

will represent the probability that the conditional failure time is larger than τ .

2.3.4 One-step imputation for censored observations

When subject i is censored, the true survival time Ti is larger than Ci. However, if

the subject is followed from the beginning of study (time 0), one and only one of the

following two situations can happen: this subject could survive longer than the study

length τ and we would not observe the failure time even if uncensored; or the subject

could actually fail before the end of study. We now propose a one-step imputation

procedure for these censored observations. The purpose of this one-step imputation is

to unmask the above difference by utilizing the conditional survival function calculated

17

in Section 2.3.3. To do so, we generate a new observation Y ∗
i from this distribution

function and treat it as the observed value if the subject were followed from time 0. Due

to the construction of s∗i , Y
∗
i must be between Yi and τ . If Y ∗

i < τ , then we assume

that Ti is less than τ , and we replace Yi by this new observation Y ∗
i with censoring

indicator δ∗i = 1. If Y ∗
i = τ , then we assume that the subject has Ti greater than τ ,

and we replace Yi by τ with censoring indicator δ∗i = 0. This updating procedure is

independently applied to all censored observations. This gives us a one-step imputed

dataset. Note that the observed failure events in the dataset are not modified by this

procedure.

2.3.5 Refit imputed dataset

Using the imputation procedure that we introduced in section 2.3.4, we indepen-

dently generate M imputed datasets, and fit a single extremely randomized tree to

each of them. We pool the M trees to assess the new model structure and survival

function estimations. Subsequently, the new conditional censoring distribution can be

calculated for each censored observation in the original dataset conditional on their

corresponding original censoring value. The original censored observations can thus be

again imputed. A new set of imputed datasets can be then generated to assess the next

cycle model structure. Hence, a recursive form is established by repeating the model

fitting procedure and imputation procedure. Note the term “original” here refers to

the raw dataset before imputation. In other words the “conditional survival function”

is always conditional on the original censoring time Yi.

Interestingly, at this stage, all observations are either observed failure events or

effectively censored at τ . The traditional Kaplan-Meier estimator will reduce to a

simple empirical distribution function estimator. Details of this empirical distribution

function estimator will be given in the following section.

18

This recursive approach can be repeated multiple times prior to the final step. Each

time, the imputation is obtained by applying the current conditional survival function

estimate to the original censored observations. We denote the process involving q

imputations as q-fold RIST, or simply RIST q.

2.3.6 Final prediction

The final prediction can be obtained by calculating node level estimation and then

averaging over all trees in the final model fitting step. For a given new subject with

covariates Xnew = (Xnew
1 , ..., Xnew

p), denote Snew(·) to be the true survival function

for this subject. Dropping this subject down the mth tree, it eventually falls into a

terminal node (which we label as node l). Note that all the observations in this node

are either observed events before τ , or censored at τ , and we will treat all observations

in a terminal node as i.i.d. samples from the same distribution. To estimate Snew(t),

we employ an empirical type estimator which can be expressed, in the mth tree, as

Ŝnewm (t) =
∑

i∈ node l

I{Yi>t}
φm(l)

where φm(l) denotes the size of node l in the mth tree. Then

the final prediction can be calculated as follows:

and Ŝnew(t) =
1

M

M∑
m=1

Ŝnewm (t). (2.2)

2.4 Simulation Studies

In this section, we use simulation studies to compare the prediction accuracy of RIST

with three existing methods, including two popular tree-based models and the Cox mod-

el with regularization. Random Survival Forests (Ishwaran et al., 2008) and conditional

inference Random Forest (Hothorn et al., 2006) are both constructed based on Breiman

(2001)’s Random Forests algorithm. The Random Survival Forests (RSF) constructs

an ensemble of cumulative hazard functions. The conditional inference Random Forest

19

(RF) approach utilizes inverse probability of censoring (IPC) weights (Van der Laan

and Robins, 2003) and analyzes right censored survival data using log-transformed

survival time. The above two methods are implemented through R-packages “random-

SurvivalForest” and ”party”. It also interesting to compare our method to the Cox

model with regularization. Although the Cox model has significant advantages over

tree-based models when the proportional hazards model is the true data generator, it

is still important to see the relative performance of tree-based models under such cir-

cumstances. The Cox model fittings are implemented through the R-package “glmnet”

(Friedman et al., 2010; Simon et al., 2011).

2.4.1 Simulation settings

To fully demonstrate the performance of RIST, we construct the following five

scenarios to cover a variety of aspects that usually arise in survival analysis. The

first scenario is an example of the proportional hazards model where the Cox model is

expected to perform best. The second and third scenarios represent mild and severe

violations of the proportional hazards assumption. The censoring mechanism is another

important feature that we want to investigate. In Scenario 4, both survival times and

censoring times depend on covariate X, however, they are conditionally independent.

Scenario 5 is an example of dependent censoring where censoring time not only depends

on X but is also a function of survival time T . Although this is a violation of our

assumption, we want to demonstrate the robustness of RIST. Now we describe each of

our simulation settings in detail:

Scenario 1: A proportional hazards model adapted from Section 4 of Ishwaran

et al. (2008), we let p = 25 and X = (X1, ..., X25) be drawn from a multivariate

normal distribution with covariance matrix V , where Vij = ρ|i−j| and ρ is set to 0.9.

Survival times are drawn independently from an exponential distribution with mean

20

µ = b0×
∑20

i=11 xi, where b0 is set to 0.1. Censoring times are drawn independently from

an exponential distribution with mean set to half of the average of µ. Study length τ

is set to 4. Sample size is 200 and the censoring rate is approximately 30%.

Scenario 2: We draw 10 i.i.d. uniform distributed covariates and use link function

µ = sin(x1 × π) + 2× |x2 − 0.5| + x33 to create a violation of the proportional hazards

assumption. Survival times follow an exponential distribution with mean µ. Censoring

times are drawn uniformly from (0, τ) where τ = 6. Sample size is 200 and the censoring

rate is approximately 24%.

Scenario 3: Let p = 25 and X = (X1, ..., X25) be drawn from a multivariate normal

distribution with covariance matrix V , where Vij = ρ|i−j| and ρ is set to 0.75. Survival

times are drawn independently from a gamma distribution with shape parameter µ =

0.5+0.3×|
∑15

i=11 xi| and scale parameter 2. Censoring times are drawn uniformly from

(0, 1.5 × τ) and the study length τ is set to 10. Sample size is 300 and the censoring

rate is approximately 20%.

Scenario 4: We generate a conditionally independent censoring setting where p =

25 and X = (X1, ..., X25) are drawn from a multivariate normal distribution with

covariance matrix V , where Vij = ρ|i−j| and ρ is set to 0.75. Survival times are drawn

independently from a log-normal distribution with mean set to µ = 0.1 × |
∑5

i=1 xi| +

0.1× |
∑25

i=21 xi|. Censoring times follow the same distribution with parameter µ+0.5.

Study length τ is set to 4. Sample size is 300 and the censoring rate is approximately

32%.

Scenario 5: This is a dependent censoring example. We let p = 10 and X =

(X1, ..., X10) be drawn from a multivariate normal distribution with covariance matrix

V , where Vij = ρ|i−j| and ρ is set to 0.2. Survival times T are drawn independently from

an exponential distribution with mean µ = ex1+x2+x3

(1+ex1+x2+x3)
. A subject will be censored at

one third of the survival time with probability µ/2. The study length τ = 2, sample

21

size is 300 and the censoring rate is approximately 27%.

2.4.2 Tuning parameter settings

All three tree-based methods offer a variety of tuning parameter selections. To

make our comparisons fair, we will equalize the common tuning parameters shared by

all methods and set the other parameters to the default. According to Geurts et al.

(2006); Ishwaran et al. (2008) the number of covariates considered at each splitting,

K, is set to the integer part of
√
p where p is the number of covariates. For RIST and

RSF, the minimal number of observed failures in each terminal node, nmin, is set to 6.

The counterpart of this quantity in the RF, minimal weight for terminal nodes is set to

the default. For RSF and RF, 1000 trees were grown. Two different splitting rules are

considered for RSF: the log-rank splitting rule and the random log-rank splitting rule

(see Section 6 in Ishwaran et al. (2008)). In the RF, a Kaplan-Meier estimate of the

censoring distribution is used to assign weights to the observed events. The imputation

process in RIST can be done multiple times before reaching a final model. Here we

consider 1, 3, and 5 imputation cycles with M = 50 trees in each cycle (namely 1-fold,

3-fold, and 5-fold RIST).

The Cox models are fit with penalty term λPα(β) = λ[(1− α)/2||β||22 + α||β||]. We

use the lasso penalty by setting α = 1. The best choice for λ is selected using the

default 10-fold cross-validation.

2.4.3 Prediction Error

The survival function is the major estimation target in all tree-based methods and

can be easily calculated for the Cox model. We first define 3 prediction errors for sur-

vival function estimations as follows: Integrated absolute error and supremum absolute

error can be viewed as L1 and L∞ measures of the survival function estimation error.

22

To be more specific, let S(t) denote the true survival function and let Ŝ(t) denote its

estimate. Integrated absolute error is defined as
∫ τ
0
|S(t)− Ŝ(t)|dt and Supremum ab-

solute error is defined as sup
0≤t≤τ

|S(t)− Ŝ(t)|. Noticing that both measurements require

knowledge of the true data generator, which is typically not known in practice, we

also utilize the widely adopted integrated Brier score (Graf et al., 1999; Hothorn et al.,

2006) as a measure of performance since it can be calculated from observed data only.

The Brier score for censored data at a given time t > 0 is defined as

BS(t) =
1

N

N∑
i=1

{ (Ŝ(t|Xi))
2I(Yi ≤ t ∧ δi = 1)Ĝ(Yi)

−1

+(1− Ŝ(t|Xi))
2I(Yi > t)Ĝ(Yi)

−1 }, (2.3)

where Ĝ(·) denotes the Kaplan-Meier estimate of the censoring distribution. The inte-

grated Brier score is further given by

IBS = max(Yi)
−1

∫ max(Yi)

0

BS(t)dt. (2.4)

In the simulation study validation set, where the failure times are fully observed, Ĝ(t)

reduces to 1 and δ = 1. The integrated Brier score can then be viewed as a degenerate

version of an L2 measure of the survival function estimation error. In our simulations,

the Brier score is only calculated up to the maximum study length τ since there is no

information available beyond τ in the training dataset. Hence the integrated Brier score

in our simulation study is defined by IBS = τ−1
∫ τ
0
BS(t)dt. Note that this definition

will also prevent errors at large t from dominating the results.

The fourth prediction error that we utilize is Harrell’s concordance index (C-index)

(Harrell Jr et al., 1982; Ishwaran et al., 2008) which can also be used with observed data

only. The C-index provides a nonparametric estimate of the correlation between the

estimated and true observed values based on the survival risks of a pair of randomly

23

selected subjects. To compare the risks of two subjects, RIST uses area under the

predicted survival curve; RSF uses cumulative survival function; the RF uses predicted

survival time; and the Cox model uses the link function. A detailed calculation of the

C-index algorithm is given in Ishwaran et al. (2008), and the prediction error is defined

as 1 minus the C-index.

2.4.4 Simulation results

Each simulation setting is replicated 500 times and results are presented in the

following tables. For convenience, within each scenario, we use the best method in

terms of performance as the reference group which we rescale to 1. Prediction errors

for all other methods are scaled and presented as a ratio to the reference group, i.e.

prediction errors larger than 1 will indicate a worse performance. The last column is

the original scale multiplier. Major findings are summarized below:

1. In all simulation settings with survival function prediction error, RIST performs

better than the other two tree-based methods and the improvements are sig-

nificant. For example, under the proportional hazards model (Scenario 1) with

integrated absolute error of the survival function (Table 2), RSF0 and RF perfor-

m 37.7% and 68.9% worse than RIST respectively. In all other scenarios, RIST

performs at least 19% better than RSF and the improvements can be up to 31.4%

better in terms of this error measurement. For supremum error, RIST performs

21.6 ∼ 55.5% better than RF and improvements over RSF generally lie between

10 ∼ 20%. Improvements in terms of integrated Brier score are less impressive

due to the large variability when generating the survival times, however, perfor-

mances of RIST are uniformly better than RSF and RF.

2. Results for comparing RIST with the Cox model can vary from situation to situa-

tion. In Scenarios 3 and 4 where the proportional hazards assumption is severely

24

violated, performance of the Cox model can be over 40% worse than RIST in

terms of both integrated and supremum survival error. On the other hand, un-

der the proportional hazards model, the Cox model performs 26.4% better than

RIST. However, when compared to RSF0 and RF (which 74.1% and 113.5% worse

than the Cox model), RIST still shows a much stronger performance relative to

the other tree-based methods.

3. If we focus on the worst performing scenario for each method, we can see that

the robustness of RIST is superior to any competing methods. In fact, RIST is

the most robust in terms of all three survival function estimation errors. And

RIST never falls into the “worst two” category in any situation using any error

measurement, whereas all other methods always, at some point, fail to compete

with the others (i.e., has largest prediction error).

4. 3-fold and 5-fold RIST generally perform better than 1-fold RIST, however,

higher-fold imputation does not always further improve the performance. The

reason is that after several cycles of imputation, the model structure tends to

have stabilized. This might also possibly be due to overfitting in certain settings.

Scenario 5 represents a dependent censoring case which violates our model as-

sumptions, and slight overfitting can be seen. This phenomenon indicates that

our imputation procedure is somewhat sensitive to the information carried by

censored observations, but not excessively so. Nevertheless, severe violation of

the independent censoring assumption could further downgrade the performance

of RIST.

5. For many simulation settings, the C-index errors are very close for all the methods.

Simulations show that the C-index is not as sensitive as other measurements. For

example, in Scenario 1 (the proportional hazards model) where the Cox model is

25

clearly superior to any tree-based models, RSF1 still shows an even lower C-index

error than the Cox model. Hence interpretability of the C-index is sometimes

unclear.

6. Performance of the RF method is generally not as strong as the other approaches.

The likely reason is that this method utilizes inverse probability of censoring (IPC)

which relies heavily on the assumption that G(T |X) = P (C > T |X) is strictly

greater than zero almost everywhere. However, in real life study designs, such

as in clinical trials running for a predefined period, this assumption is violated

(Hothorn et al., 2006). Under such circumstances, the estimation of mean survival

time would be expected to be biased.

Table 2.2: Integrated absolute error for survival function †

Prediction error based on 500 simulations
Settings Cox RSF0 RSF1 RF RIST1 RIST3 RIST5 Original Scale

1 1 1.741 1.753 2.135 1.281 1.268 1.264 0.172
2 1.047 1.253 1.217 1.153 1.022 1.009 1 0.378
3 1.464 1.190 1.314 1.358 1.006 1.000 1 0.791
4 1.201 1.195 1.281 1.270 1.016 1.005 1 0.320
5 1.081 1.316 1.243 1.213 1 1.006 1.008 0.118

Table 2.3: Supremum absolute error for survival function ‡

Prediction error based on 500 simulations
Settings Cox RSF0 RSF1 RF RIST1 RIST3 RIST5 Original Scale

1 1 1.364 1.361 1.788 1.151 1.150 1.151 0.073
2 1.075 1.120 1.014 1.216 1.002 1.003 1 0.112
3 1.438 1.113 1.157 1.375 1.001 1 1.001 0.139
4 1.250 1.134 1.103 1.340 1.002 1.000 1 0.142
5 1 1.323 1.238 1.399 1.198 1.204 1.206 0.082

†: Integrated absolute error for survival function is defined as
∫ τ

0
|S(t)− Ŝ(t)|dt.

‡: Supremum absolute error for survival function is defined as sup
0≤t≤τ

|S(t)− Ŝ(t)|.

RSF0 and RSF1 are Random Survival Forests using logrank and random logrank splitting rules
respectively. RIST1, RIST3, and RIST5 are 1-fold, 3-fold, and 5-fold RIST respectively.

As suggested by one of the reviewers, in addition to presenting mean prediction

errors, we also want to further analyze where the differences occur in time over the

26

Table 2.4: C-index error

Prediction error based on 500 simulations
Settings Cox RSF0 RSF1 RF RIST1 RIST3 RIST5 Original Scale

1 1.002 1.015 1 1.030 1.008 1.007 1.007 0.305
2 1.079 1 1.007 1.056 1.017 1.017 1.018 0.439
3 1.405 1.010 1.006 1.124 1.001 1.000 1 0.356
4 1.273 1 1.000 1.041 1.006 1.004 1.005 0.393
5 1 1.059 1.027 1.074 1.037 1.036 1.037 0.291

Table 2.5: Integrated Brier score

Prediction error based on 500 simulations
Settings Cox RSF0 RSF1 RF RIST1 RIST3 RIST5 Original Scale

1 1 1.038 1.037 1.135 1.018 1.017 1.017 0.125
2 1.009 1.008 1.007 1.020 1.000 1.000 1 0.130
3 1.101 1.022 1.041 1.094 1.000 1.000 1 0.128
4 1.044 1.018 1.032 1.063 1.001 1.000 1 0.124
5 1.059 1.021 1.014 1.028 1.000 1 1.001 0.116

RSF0 and RSF1 are Random Survival Forests using logrank and random logrank splitting rules
respectively. RIST1, RIST3, and RIST5 are 1-fold, 3-fold, and 5-fold RIST respectively.

study duration. Hence we plot the mean survival errors over time for two somewhat

typical settings: Scenario 1, the proportional hazards model; and Scenario 3, in which

the proportional hazards assumption is violated. The mean survival error over time

is calculated by averaging |S(t)− Ŝ(t)| over all subjects in the validation set, and the

plot is the average over 500 simulation runs. As presented in Figure 2 (Scenario 1), the

Cox model performs uniformly best. Comparison among tree-based methods show that

RIST5 remains relative strong in performance under the proportional hazards model.

In Figure 3 (Scenario 3), RIST has a significant improvement over all other competing

methods, and the improvements occur over the entire range of t. Due to violation

of the proportional hazards assumption, the Cox model has the worst performance in

this setting. One interesting fact that we observed is that, in many circumstances,

RSF estimations of the survival functions seem be unstable towards the end of study

duration and the prediction error is increased while all other methods tend to have

their prediction errors decreasing towards the end.

27

Figure 2.2: Proportional Hazards Model

0 1 2 3 4

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

Time

A
bs

ol
ut

e
su

rv
iv

al
 e

rr
or

RF

RSF1

RSF0

RIST5

Cox Model

Figure 2.3: Non-Proportional Hazards

0 2 4 6 8 10

0.
00

0.
05

0.
10

0.
15

0.
20

Time

A
bs

ol
ut

e
su

rv
iv

al
 e

rr
or

Cox Model

RF

RSF1

RSF0

RIST5

2.5 Data Analysis

In this section we compare RIST with RSF, RF, and the Cox model on two datasets:

the German Breast Cancer Study Group (GBSG) data and the Primary Biliary Cir-

rhosis (PBC) data. We use Brier score and integrated Brier score as the criteria for

comparison. The integrated Brier score, as we observed in the simulation studies, pro-

vides a slightly more sensitive measurement than the C-index. A random assignment

algorithm (a slight modification from Ishwaran et al. (2008)) is also being introduced

to handle missing covariate data in the PBC data section.

2.5.1 Breast Cancer Data

In 1984, the German Breast Cancer Study Group (GBSG) started a multi-center

randomized clinical trial to compare recurrence-free and overall survival between dif-

ferent treatment modalities (Schumacher et al., 1994). In this section we utilize this

dataset to compare RIST with other methods.

28

2.5.1.1 Data description

By March 31, 1992, median follow-up time was 56 months with 197 events for

disease-free survival and 116 deaths observed. The recurrence-free survival times of

the 686 patients (with 299 events) who had complete data were analyzed in Sauerbrei

and Royston (1999). The p = 8 observed factors are age, tumor size, tumor grade,

number of positive lymph nodes, menopausal status, progesterone receptor, estrogen

receptor, and whether or not hormonal therapy was administered. There is no missing

data. This data-set has been studied by both Ishwaran et al. (2008) and Hothorn et al.

(2006) for tree types of model fitting, hence we also utilize this dataset in our paper.

We randomly divide the dataset into two equal sized subsets, and then use one as

a training set and the other as a validation set. 500 independent training datasets

were thus generated and prediction error calculated according to the corresponding

validation sets. All parameter settings are identical to those given in Section2.4.2.

2.5.1.2 Results

We present the relative over-time Brier scores in Figure 4 (using 5-fold RIST as the

reference group, and subtracted from each method accordingly). The plot is constructed

so that worse performance compared to 5-fold RIST is above 0. The Brier score for

RF is significantly distinct from other methods and its relative Brier score is over 0.15

more than RIST towards the end of study. Among all other methods, RIST and RSF0

performs similar, while RIST has lower Brier score at a majority of time points across

the entire range. The Cox model and RSF1 perform worse than the above two; however,

they both perform significantly better than RF.

The boxplot for integrated Brier scores are shown in Figure 5. The boxplot for RF is

above the upper bound (with mean 0.2535 and 1st, 2nd, and 3rd quartiles 0.2438, 0.2529,

and 0.2623 respectively) and will not be presented in this plot. RIST performs best in

29

terms of both mean and median integrated Brier score. The improvement compared to

the Cox model, RSF1 and RF, is significant. RSF0 performs close to RIST, however

RIST5 has lower integrated Brier score than RF0 in 62.2% of the simulations, and out-

performs the Cox model and RSF1 in 78.8% and 93.8% of the simulations respectively.

A variable importance (Breiman, 2001; Ishwaran, 2007) analysis is done by using

the validation set to assess the variable importance measure. However, similar results

were found among all tree-based methods.

Figure 2.4: Relative Brier score

0 500 1000 1500 2000 2500

−
0.

01
5

−
0.

00
5

0.
00

5
0.

01
5

Time

R
el

at
iv

e
B

rie
r

S
co

re
 D

iff
er

en
ce

RIST5 as reference method

RF
Cox Model
RSF0
RSF1

Breast Cancer Data

Figure 2.5: Integrated Brier score

In
te

gr
at

ed
 B

rie
r

sc
or

e

0.
16

0.
17

0.
18

0.
19

C
ox

R
SF

0
R

SF
1

R
F

R
IS

T1
R

IS
T3

R
IS

T5

Breast Cancer Data

2.5.2 PBC Data

The Mayo clinical trial of primary biliary cirrhosis (PBC) of the liver (Fleming

and Harrington, 2011) has long been famous and considered a benchmark dataset in

survival analysis. We compare the performance of RIST with other methods on this

dataset. A method for handling missing covariates is also introduced.

30

2.5.2.1 Data description

This Mayo clinical trial study was conducted between 1974 and 1984 and the study

analysis time was in July, 1986. A total of 424 PBC patients, referred to the Mayo

clinic during that ten-year interval, met the eligibility criteria for the randomized tri-

al. 312 cases in the dataset participated in the randomized trial and contain largely

complete data and hence will be used in our analysis. The additional 112 cases did not

participate in the clinical trial and these data will not be used. The data contains 17 co-

variates including treatment, age, sex, ascites, hepatomegaly, spiders, edema, bilirubin,

cholesterol, albumin, urine copper, alkaline phosphatase, SGOT, triglicerides, platelets,

prothrombin time, and histologic stage of disease.

As with the breast cancer example, we randomly divide the PBC data set into a

training dataset and a validation set with equal sample size and independently repeat

this 500 times. Model parameter settings here are also the same as in the breast cancer

example.

2.5.2.2 Missing covariate method

Missing data is an issue in the PBC dataset. Among the 312 subjects, there are

28 subjects with missing cholesterol measurements, 30 with missing triglicerides mea-

surements, 2 with missing urine copper measurements and 4 with missing platelet mea-

surements. There are 276 subjects with complete measurements for all covariates. Our

algorithm for handling missing data is very similar to Ishwaran et al. (2008), where the

missing X values are randomly generated from the empirical distribution of the in-bag

observations in a node. Ishwaran et al. (2008)’s method will be implemented in both

RSF0 and RSF1.

Now We describe our missing data algorithm as follows: To find the best splitting

variable from the K randomly chosen covariates, the test statistic for any variable Xp

31

is calculated by omitting the subjects that have missing Xp value. When the splitting

variable is chosen and daughter nodes are built, those subjects with missing splitting

variable are randomly assigned to either daughter node with probabilities proportional

to the sizes of the daughter nodes. This random assignment algorithm is also applied

during the prediction process. Suppose we drop a subject with missing covariate Xp

down a single tree. Whenever Xp is required to determine which further node it falls

into, we randomly throw this subject into either node with probability proportional to

node size as described above.

2.5.2.3 Results

Similar to the Breast Cancer data analysis, we present the relative over-time Brier

scores in Figure 6 using 5-fold RIST as the reference group. The Brier score of RF

increases dramatically as time increases. We restrict our plotting frame so that we

can focus more on the differences between the other methods. The Brier score of the

Cox model and RSF1 is higher than RIST5 at almost every time over the entire study

duration. RSF0 has higher prediction error than RIST5 at most time points, however,

it out-performs RIST5 towards the end of study.

The boxplot for integrated Brier scores are shown in Figure 7. We again restrict the

plotting frame so that for the majority of time RF will be above the upper bound and

differences between other methods can be easily seen. RIST5 performs best, followed

by RIST3, RIST1, RSF0, the Cox model and RSF1. A t-test comparing RSF0 and

RIST5 shows that RIST5 is significantly better with P-value < 0.001. In fact, in 65.2%

simulations, RIST5 has lower integrated Brier score than RSF0. Moreover, RIST5 out-

performs the Cox model and RSF1 in 87.8% and 99.6% simulation runs respectively.

32

Figure 2.6: Relative Brier score

0 1000 2000 3000 4000

−
0.

02
0.

00
0.

01
0.

02
0.

03
0.

04
0.

05

Time

R
el

at
iv

e
B

rie
r

S
co

re
 D

iff
er

en
ce

RIST5 as baseline

Cox Model
RSF1

RF

RSF0

PBC Data

Figure 2.7: Integrated Brier score

0.
11

0.
12

0.
13

0.
14

0.
15

0.
16

0.
17

In
te

gr
at

ed
 B

rie
r

sc
or

e

C
ox

R
SF

0
R

SF
1

R
F

R
IS

T1
R

IS
T3

R
IS

T5

PBC Data

2.6 Discussion

In this paper, we introduced recursively imputed survival trees (RIST), a novel cen-

soring imputation approach integrated with a tree-based regression method for right-

censored survival data. While preserving information carried by the censored observa-

tions (by calculating conditional survival distribution), the imputation method extends

the utility of censored observations and uses the updated conditional failure information

to improve model prediction. The regression procedure is built on the newly developed

tree method, extremely randomized trees (Geurts et al., 2006), which is an alternative

to Breiman’s popular random forests method. Through a recursive algorithm, both

the model fitting processes and the imputation processes affect each other, and the

performances of both improve simultaneously.

2.6.1 Why RIST works

Up to this point, we have only used simulations to demonstrate the performance

of RIST. It is important and interesting to discuss the motivation and driving force

behind our proposed method. Here we provide several explanations that will help

33

further understand this new approach.

One potential advantages of RIST comes from the tree-based modeling point of view.

Since the entire training set is used to build each single tree, extremely randomized trees

can build larger models (i.e with more terminal nodes) compared to Random Forests

which use bootstrap samples. Furthermore, after the first imputation cycle, additional

observed events are created which allow each tree to grow even deeper. One may wonder

whether this could cause over-fitting; however, the random generation of the imputed

values provides sufficient diversity which will help eliminate over-fitting.

Moreover, we found that the Monte Carlo EM (MCEM) algorithm (Wei and Tanner,

1990; McLachlan and Krishnan, 2007) is the best way to explain our proposed procedure

theoretically. The random generation of imputed values can be viewed as the Monte

Carlo E-step without taking the average of all randomly generated sample points, while

the survival tree fitting procedure is explicitly an M-step to maximize the nonparametric

model structure. The “random E-step” imputation procedure does not only preserve

the information carried by censored observations, but it also introduces an extra level

of diversity into the next-level of model fitting. As is well known, diversity is one of the

driving forces behind the success of ensemble methods as has been addressed by many

researchers, including Breiman (2001); Dietterich (2000). An interesting phenomenon

of diversity can be seen when averaging the terminal node survival function estimation

over the forest. Figure 8 (of a subject from Scenario 2) shows that even though an

individual terminal node estimation (using nmin observed events) could have a high

variance or be largely biased, the overall forest estimation will still be very accurate.

In the most common ensemble tree methods, diversity can be created through taking

bootstrap samples and random selections of variables and their splitting values. With

independently imputed datasets, the patterns being recognized by each tree in a forest

will present an even greater level of diversity. The accuracy of survival function and

34

conditional survival function estimations can therefore be even further improved.

Figure 2.8: Diversity and forest averaging

0 1 2 3 4 5 6

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Time

S
(t

)

True S(t)
Terminal node
Forest averaged

Single subject survival estimation

The effect that we have seen over the imputation cycle can also be visually explained

as a “blurring effect” in optics: While each model fitting step sums up all information

from adjacent observations of the target point in the feature space, similar effects also

happen to other adjacent observations simultaneously. The next imputation step allows

information from remote observations to be carried into adjacent censored observations

which can be used in calculating the target survival function estimation. Hence, over

several imputation cycles, the overall information that defines the target prediction

does not come solely from the partitioned neighborhood of the target point, it comes

instead from a “blurred” neighborhood that reaches out to a much wilder range.

Another reason that we realized later on is that by imputing the censored obser-

vations, the chance of using a signaled variable as splitting rule in the refitted model

is slightly increased, since the imputation is based on the signals that are found in

the initial model fitting. When the initial model is reliable, the imputation enhances

the influence of the signaled variables. However, this might run into trouble when the

35

initial model is not detecting the true signal correctly, such as in a high-dimensional

setting or when the model structure is too complicated. My third topic, reinforcement

learning trees for survival data, is proposed to solve this problem.

2.6.2 Other Issues

In multi-fold RIST, most of the improvement is gained during the first several

imputation cycles. Additional recursive steps of RIST can help adjust the imputed

value and the fitted model structure; however, the increments of improvement tend

to be small since the model structure stabilizes fairly quickly. Unfortunately, we do

not yet have explicit convergence criteria for RIST. However, based on our simulation

experience, it appears that 3-fold to 5-fold RIST generally performs best. Although

higher fold imputations perform reasonably well and may even be optimal in some

settings, over-fitting also appears to be a possibility. In addition, as fold level increasing,

the computational intensity also increases. Hence, we do not recommend going beyond

5-fold RIST.

Another issue that has been addressed frequently in tree-based model fitting is

the choice of splitting statistics. During our research, we examined the performance of

several alternatives to the log-rank statistic, including the supremum log-rank (Kosorok

and Lin, 1999) statistics. However, no significant differences in performance of RIST

were detected under the simulation settings that we presented.

Although it is not the focus of our paper, the missing data issue often occurs. Our

missing data algorithm is very similar to the approach given in Ishwaran et al. (2008).

However, the way we handle missing subjects can ensure that there are a sufficient

number of non-missing subjects in each node. This is because we randomly categorize

the missing subjects into daughter nodes after the splitting has been done. For our

current method, we suggest removing any subject with missing Y value or missing

36

censoring indicator. Although these data can be easily handled with the same logic

based on missing covariate classification, we feel that our censoring imputation method

relies somewhat on the accuracy of outcome variables, so that imputing subjects with

incomplete outcomes may eventually increase prediction error.

37

Chapter 3

Reinforcement learning trees

3.1 Introduction

My second dissertation topic is a new type of tree-based regression method, re-

inforcement learning trees (RLT), which exhibits significantly improved performance

over traditional methods such as random forests (Breiman, 2001). The innovations

are three-fold. First, the new method implements reinforcement learning at each se-

lection of a splitting variable during the tree construction processes. By splitting on

the variable that brings the greatest future improvement in later splits, rather than

choosing the one with largest marginal effect from the immediate split, the constructed

tree utilizes the available samples in a more efficient way. Moreover, such an approach

can be adapted to make high-dimensional cuts available at a relatively small computa-

tional cost. Second, we propose a variable screening method that progressively mutes

noise variables during the construction of each individual tree. The muting procedure

also takes advantage of reinforcement learning and prevents noise variables from being

considered in the search for splitting rules, so that towards a terminal node when the

sample size is small, the splitting rules are still constructed from only strong variables.

Last, we investigate asymptotic properties of the proposed method. We can show that

under the proposed splitting variable selection procedure, the constructed trees are con-

sistent. The error bounds for the proposed RLT are shown to depend on a pre-selected

number p0, where p0 is an educated guess of the number of strong variables which is

usually much smaller than the total number of variables p but at least as large as the

true number of strong variables p1. Hence when p0 is properly chosen, the error bounds

can be significantly improved.

We introduce a new philosophy—reinforcement learning—into the tree-based model

framework. For a comprehensive review of reinforcement learning within the artificial

intelligence field in computer science and statistical learning, we refer to Sutton and

Barto (1998). An important characteristic of reinforcement learning is the “peek-at-

the-future” notion which benefits the long-term performance rather than short-term

performance. The main features we will employ in the proposed method are: first,

to choose variable(s) for each split which will bring the largest return from future

branching splits rather than only focusing on the immediate consequences of the split.

Such a splitting mechanism can break any hidden structure and avoid inconsistency by

forcing splits on strong variables even if they do not show any marginal effect; second,

progressively muting noise variables as we go deeper down a tree so that even as the

sample size decreases rapidly towards a terminal node, the strong variable(s) can still

be properly identified from the reduced space. One consequence of the new approach,

which we call reinforcement learning trees (RLT), as we will show later, is that the

convergence rate should not depend on p, but instead, it depends on a pre-specified

value p0 which is much smaller than p and larger than p1. Hence, when p0 is properly

chosen, the convergence rate can be greatly improved.

Another extension we bring with the proposed RLT is a high-dimensional cut which

uses a linear combination of variables to create a splitting rule. In traditional tree-

based methods, searching for a high-dimensional cut will dramatically increase the

computational intensity. However, with the pre-identification of important variables,

the cutting surface can be reasonably formed without exhaustive searching. In the

39

simulation studies and data analyses presented later, we will examine the performance

of the newly proposed RLT with both one-dimensional and high-dimensional cuts and

show that the benefit can be profound in some situations.

The part of the dissertation is organized as follows. In Section 3.2, we introduce

the underlying model and notation to facilitate the formulation of our method. In

Section 3.3, we give details of the methodology for the proposed approach. Theoretical

results and their interpretation are given in Section 3.4. Most of the details of the proofs

will be deferred to the last section. In Sections 3.5 we compare RLT with popular

statistical learning tools, such as random forests (Breiman, 2001), BART (Chipman

et al., 2010), gradient boosting (Friedman, 2001) and GLM with LASSO (Friedman

et al., 2010), using simulation studies and real datasets. Section 3.6 contains some

discussion and gives rationale for both the method and asymptotic behaviors. Future

research directions are also discussed. The paper concludes with the proofs.

3.2 Statistical model

We consider a regression or classification problem from which we observe a sam-

ple of i.i.d. training observations Dn = {(X1, Y1), (X2, Y2), ..., (Xn, Yn)}, where each

Xi = (X
(1)
i , ..., X

(p)
i)T denotes a set of p variables from a feature space X . For the

regression problem, Y is a real valued outcome with E(Y 2) < ∞; and for the classifi-

cation problem, Y is binary outcome that takes values of 0 or 1. We also assume that

the expected value E(Y |X) is completely determined by a set of p1 < p variables. We

refer to these p1 variable as “strong variables”, and refer to the remaining p2 = p− p1

variables as “noise variables”. Without loss of generality, we assume that the strong

variables are the first p1 variables, which means E(Y |X) = E(Y |X(1), X(2), ..., X(p1)).

The goal is to consistently estimate the function f(x) = E(Y |X = x) and derive asymp-

totic properties for the estimator. To facilitate later arguments, we use P to denote

40

the set {1, 2, ..., p}.

3.3 Reinforcement learning trees

In short, the proposed reinforcement learning trees are traditional random forests

with a special type of splitting variable selection and noise variable muting at each

internal node. These features are made available by implementing a reinforcement

learning mechanism. Let us first consider an example which demonstrates the impact

of reinforcement learning: Assume that E(Y |X) = I(X(1) > 0.5)I(X(2) > 0.5), so that

p1 = 2 and p2 = p − 2. The difficulty in estimating this structure with conventional

random forests is that neither of the two strong variables show marginal effects. The

immediate reward, i.e. reduction in prediction errors, from splitting on these two

variables is identical to the reward obtained by splitting on one of the noise variables.

Hence, it unlikely that, when p is relatively large, either X(1) or X(2) would be chosen as

the splitting variable. However, if we know in advance that splitting on either X(1) or

X(2) would yield significant rewards down the road for later splits, we could confidently

force a split on either variable regardless of the immediate rewards.

How we identify the most important variable at any internal node is to first fit at

that node an embedded random forest and acquire the associated variable importance

measures for all the covariates. Then we proceed to split the node using the most

important variable(s). When doing this recursively for each daughter node, we can

focus the splits on the variables which will be very likely to lead to a tree yielding the

smallest prediction error in the long run.

Unfortunately, since the sample size shrinks as we move towards a terminal node,

it becomes increasingly difficult to identify the important variables regardless of what

embedded model we are using. On the other hand, since we have variable importance

information in all the splits from the root node down to a terminal node, we should

41

have a good idea about which variables are strong and which are not. Therefore,

we will utilize this information to progressively mute noise variables during the tree

construction process and to gradually restrict the search for splitting variables within

a subspace of the entire feature space as the internal node sample sizes get smaller.

The remainder of this section is structured as follows: We first give a higher level

algorithm outlining the main features of the RLT method in Section 3.3.1 without

specifying the definitions of the subcomponents: embedded model, variable importance,

variable deletion, and high-dimensional split. Detailed definitions of these components

are given in subsequent subsections. In Sections 3.3.2 and 3.3.3 we give details of how

to fit the embedded model and calculate variable importance at each internal node. In

Section 3.3.4, we introduce a variable screening method that progressively mutes noise

variables at each internal node. In Section 3.3.5, we extend one dimensional splits to

high-dimensional splits by utilizing the available variable importance information at

each internal node.

3.3.1 Reinforcement learning trees

RLT construction still follows the general pattern for an ensemble of binary trees: we

first draw bootstrap samples to fit trees and then average. To construct a binary tree, a

splitting variable and a splitting value is determined at each internal node, starting from

the root node. This internal node is then split into two daughter nodes by grouping the

observations using the selected variable and splitting value. The algorithm stops when

the node sample size is sufficiently small. The key ingredient of RLT is the selection of

splitting variable and also the method of constructing daughter nodes. These special

features are carried out using the embedded model and variable importance measures.

Table 3.1 summarizes the RLT algorithm.

42

Table 3.1: Algorithm for reinforcement learning trees

1. Draw M bootstrap samples from D.

2. For the m-th bootstrap sample, where m ∈ {1, ...,M}, fit one RLT model f̂m, using
the following rules:

a) At an internal node A, fit an embedded model f̂∗
A to the data in A, restricted to

the set of variables {1, 2, ..., p}\Pd
A, i.e. P\Pd

A, where where Pd
A is the set of muted

variables at the current node A. Details are given in Section 3.3.2.

b) Using f̂∗
A, calculate the variable importance measure V̂ IA(j) for each variable X(j),

where j ∈ P. Details are given in Section 3.3.3.
c) Split node A into two daughter nodes using either i) or ii).
i) For a one-dimensional split, use the variable with the largest variable importance

measure, namely argmaxj V̂ IA(j), as the splitting variable. The cut point c is
chosen randomly and uniformly. We call this method RLT1.

ii) For a high-dimensional split, a linear combination of variables is used. Details are
given in Section 3.3.5. We call this method RLTk, where k is the number of variables
used in the linear combination.

d) Update the set of muted variable set Pd for the two daughter nodes by adding the
variables with the lowest variable importance measures at the current node. Details
are given in Section 3.3.4.

e) Apply a)–d) on each daughter nodes until node sample size is smaller than a pre-
specified value nmin.

3. Average M trees to get a final model f̂ = M−1
∑M

m=1 f̂m. For classification, f̂ =

I
(
0.5 < M−1

∑M
m=1 f̂m

)
.

43

3.3.2 Embedded model

To assess the variable importance V̂ IA(j) for each variable j at any internal node A,

we must first fit an embedded model to the internal node data. Note that at the root

node, where the set of muted variables Pm = ∅, all variables in the set P = {1, 2, ..., p}

are considered in the embedded model and their variable importance measures will be

assessed. However, as we move further down the tree, some variables will be muted

and Pm ̸= ∅, then the embedded model will be fit using only the non-muted variable

set P\Pd
A. For the choice of the embedded model, we use random forests (Breiman,

2001). It is not necessary that random forests be used here. Alternatively, any learning

method which is verified to be consistent with a certain convergence rate, for example,

purely random forests, can be used to estimate the embedded model.

Suppose we are at an internal node A in the tree building process. To be specific,

when a one-dimensional split is used, any internal node A can be expressed as a hyper-

cube in the feature space, i.e. A = {(X(1), ..., X(p)) : X(j) ∈ (aj, bj] ⊆ [0, 1], for j ∈ P}.

Denote the samples at this internal node as DA = {(Xi, Yi) : Xi ∈ A}. We fit a random

forests model, denoted by f̂ ∗
A, to the internal node data DA with only variables that

are in the set P \ Pd
A. For convenience, we use all the default settings in Breiman

(2001) for the embedded random forests. To facilitate our later arguments, we denote

the number of trees in the embedded model as M∗ and denote each tree as f̂ ∗
A,m, for

m ∈ (1, 2, ...,M∗).

3.3.3 Variable importance

Since the purpose of fitting the embedded random forests is to determine the most

important variable, we need to properly define a variable importance measure V IA(j)

for each variable j ∈ P at an internal node A and use the embedded model to calculate

44

the estimate V̂ IA(j). The variable importance calculation in Breiman (2001) seems

to be a natural choice here since we use random forests as the embedded model. We

give the formal definition of the variable importance measure in the following. In

Section 3.4 and Appendix section, we will carefully investigate the properties of V IA

and the asymptotic properties of its estimate V̂ IA.

Definition 3.3.1. At any internal node A, denote X̃(j) as an independent copy gen-

erated from the marginal distribution of X(j) within A, the variable importance of the

j-th variable within A, namely V IA(j), is defined by:

E
[(
f(X(1), ..., X̃(j), ..., X(p))− f(X(1), ..., X(j), ..., X(p))

)2|A]
E
[(
Y − f(X(1), ..., X(j), ..., X(p))

)2|A] ,

where the E[·|A] is a conditional expectation defined byE[g(Y,X)|A] = E[g(Y,X)|I(X ∈

A)], for any function g.

In practice, following Breiman (2001)’s procedure, to calculate V̂ IA(j) for each

fitted embedded tree, we randomly permute the values of variable j in the out-of-bag

(OOB) data (to mimic the independent and identical copy X̃(j)), drop these permuted

observations down the fitted tree and then calculate the resulting mean squared error

(MSE) increase. Intuitively, when j is a strong variable, randomly permuting the values

of X(j) will result in a large V̂ IA(j), while randomly permuting the values of a noise

variable should result in little or no increase in MSE, so V̂ IA(j) should be small. Hence

V̂ IA(j) calculated from the embedded model can identify the variable with greatest

need-to-be-split in the sense that it explains the most variation in the outcome variable

Y in the current node (see Section 3.4). Another important property that we observe

is that for all the variables in the muted set Pd
A, since they are not involved in the

embedded model f̂ ∗
A, randomly permuting their values will not increase MSE. Hence,

45

Table 3.2: Variable Importance

1. For the m-th tree f̂∗
A,m, m ∈ (1, 2, ...,M∗), in the embedded model, do steps a)–c).

a. Select the corresponding m-th OOB (out-of-bag) data which consists of the data
not selected in the m-th bootstrap sample.

b. Drop OOB data down the fitted tree f̂∗
A,m and calculate mean squared error,

MSEA,m.
c. For each variable j ∈ P \ Pd

A, do the following:
i) Randomly permute the values of the jth variable X(j) in the OOB data.

ii) Drop permuted OOB data down the fitted tree f̂∗
A,m, and calculate the permuted

mean squared error, PMSEj
A,m.

2. Average over M∗ measurements to get the variable importance measure for variable
j:

V IA(j) =

∑M∗

m=1 PMSEj
A,m∑M∗

m=1 MSEA,m

− 1.

for j ∈ Pd
A, we must have V̂ IA(j) = 0. Table 3.2 gives details on how to assess the

variable importance measure based on the embedded random forest estimator f̂ ∗
A.

3.3.4 Variable muting

As we discussed previously, with sample size reducing rapidly towards a terminal

node during the tree construction, searching for a strong variable becomes increasingly

difficult. The lack of signal from strong variables can eventually cause the splitting

variable selection to behave completely randomly, and then the constructed model is

similar to purely random forests. Hence, the muting procedure we introduce here is

to prevent some noise variables from being considered as the splitting variable. We

call this set of variables the muted set. At each internal node, we force pd variables

into the muted set, and we remove them from consideration as splitting variable at any

branch of this internal node. On the other hand, to prevent strong variables from being

removed from the model, we set a minimal number of p0 variables that we always keep.

This set of variables are called the protected set. We give the details of their definitions

in the following. Note that both the muted set and protected set will be updated for

46

each daughter nodes after a split is done. We first take a loot at the root node, then

generalize the procedure to any internal node.

At the root node: At the root node we have A = [0, 1]p. After selecting the

splitting variable, assume that the two resulted daughter nodes are AL and AR. Then

we sort the variable importance measures V̂ IA(j) calculated from the embedded model

f̂ ∗
A and find the pd-th smallest value within the variable set P denoted by V̂ I

pd

A and the

p0-th largest value denoted by V̂ I
p0

A . Then we define:

• The muted set for the two daughter nodes: Pd
AL

= Pd
AR

= {j : V̂ IA(j) ≤ V̂ I
pd

A },

i.e. the set of variables with the smallest pd variable importance measures.

• The protected set P0
A = P0

AL
= P0

AR
= {j : V̂ IA(j) ≥ V̂ I

p0

A }, i.e. the set of

variables with largest p0 variable importance measures. Note that the variables

in the protected set will not be muted in any of the subsequent internal nodes.

At internal nodes: After the muted set and protected set have been initialized

at the root split, we update the two sets in subsequent splits. Suppose at an internal

node A, the muted set is Pd
A, the protected set is P0

A and the two daughter nodes are

AL and AR. We first update the protected set for the two daughter nodes by adding

the splitting variable(s) into the set:

P0
AL

= P0
AR

= P0
A ∪ {splitting variable(s) at nodeA}.

Note that when a one-dimensional split is used, the splitting variable is simply argmaxj V̂ IA(j),

and when a high-dimensional split is used, multiple variables could be involved.

To update the muted set, after sorting the variable importance measures V̂ IA(j),

we find the pd-th smallest value within the restricted variable set P \ Pd
A \ P0

A, which

47

value is denoted V̂ I
pd

A . Then we define the muted set for the two daughter nodes as

Pd
AL

= Pd
AR

= Pd
A ∪ {j : V̂ IA(j) ≤ V̂ I

pd

A } \ P0
A.

Remark 3.3.2. There are two tuning parameters in the muting procedure, the number

of protected variables p0 and the number of extra muted variables at each split pd.

Ideally, we want to choose p0 = p1, which is the number of strong variable, hence the

strong variables can always be protected. pd can be any positive value less than p2, and

the noise variables will all be muted after finitely many splits. In practice, since we

have little information about how large p1 is, we want to set p0 to be a reasonable large

number, say
√
p for a high-dimensional situation. Our updating procedure will add a

strong variable into the protected set when it is used as a splitting variable. pd dose

not need to be a fixed number. It can vary depending on |P \ Pd
A|, which is the number

of nonmuted variables at each internal node. In Section 3.5 we will evaluate different

choices for pd such as 0 (no muting), 20% · |P \Pd
A| (moderate muting, which is suitable

for most situations), and 50% · |P \ Pd
A| (very aggressive muting).

3.3.5 High-dimensional cuts

Using a linear combination of several variables to construct a splitting rule was

considered in Breiman (2001). However, the idea never achieved much popularity.

The major difficulty is computational intensity. Exhaustively searching for a linear

combination of k < p variables means computing and comparing approximately nk

48

different splitting possibilities (any k dimensional cut can be defined by k points in the

feature space, and there can be as many as n(n− 1) · · · (n− k) possible ways to select

these k points: when n is large, this is approximately nk). By further considering the

possibility of drawing k from p total variables, it seems that the computational burden

overshadows the benefit.

However, the proposed reinforcement learning splitting variable selection approach

reopens the possibility of a high-dimensional split. We develop our proposed high-

dimensional cut based on the following two facts. First, the splitting rule should only

involve important variables. Second, the magnitude of coefficients in the linear com-

bination should be positively related to the variable importance measure. This means

that if we view the linear combination as an axis in a high-dimensional space, the axis

should lean more towards the strong variables (with large variable importance) and be

almost orthogonal to the noise variables (with zero variable importance).

Before presenting the algorithm for the high-dimensional cut, we define two param-

eters that we use to control the complexity of a high-dimensional cut:

• k: The maximum number of variables considered in the linear combination. Note

that when k = 1, this simplifies to the usual one dimensional cut.

• α: The minimal variable importance, taking values in (0, 1), of each variable in

this linear combination in terms of the percentage of maximum V̂ I at the current

node. For example, if α = 0.5 and maxj(V̂ I(j)) = 10 at the current node, then

any variable with V̂ I less than 5 will not be considered for the linear combination.

The purpose of this parameter is to ensure that the high-dimensional cut does

not involve noise variables.

The high-dimensional split focuses on creating a linear combination of the form

XTβ, which can be viewed as a high-dimensional axis, where β is a coefficient vector

49

with dimension p× 1. We can then project each observation onto this axis to provide

a scalar ranking for splitting. We first give the definition of β̂j(A) for each j ∈ {1, ...p}

at node A:

β̂j(A) = V̂ IA(j) · I[V̂ IA(j) > 0] · I[V̂ IA(j) ≥ V̂ I
(k)

A]

·I[V̂ IA(j) ≥ α ·maxjV̂ IA(j)] · sign(ρX(j),Y (A)),

where ρX(j),Y (A) is the Pearson’s correlation coefficient between X(j) and Y within

node A.

Now we give the details of each component in β̂j(A). The first component is simply

the variable importance measure of X(j). The second to the fourth component set

restrictions based on the value of V̂ IA(j), so that β̂j(A) is non-zero only if: V̂ IA(j)

is positive, larger or equal to the k-th largest V̂ I in the current node, and larger than

α · 100% of the largest V̂ I in the current node. These restrictions will eliminate all

muted variables and the variables with small V̂ I. The last component sets the sign of

β̂j(A) so that variables with the same trend have the same sign.

After having each β̂j(A), we can calculate XT
i β̂(A) for each observation Xi in the

current node. This is precisely the scalar projection of each observation for ranking

mentioned above. We then select a random uniform splitting value c for this projection

to separate the current node into two daughter nodes: {i : XT
i β̂(A) ≤ c,Xi ∈ A} and

{i : XT
i β̂(A) > c,Xi ∈ A}.

3.4 Theoretical results

In this section, we develop large sample theory for the proposed RLT method. We

only focus on the proof for one-dimensional splits (RLT1) in a regression problem with

fixed muting parameters pd, and we assume that the number of protected variable p0

50

is larger than p1, the number of strong variables. The main results are Theorem 3.4.7

which bounds below the probability of using strong variables as the splitting rule, and

Theorem 3.4.8 which established consistency and derives an error bound for RLT1. We

assume, for convenience in the proofs, that the covariates X are generated uniformly

from the feature space X = [0, 1]p. First, we need several other key assumptions.

Assumption 3.4.1. There exist a set of strong variables S = (1, ..., p1) such that

f(X) = E[Y |X] = E[Y |X(j), j ∈ S] and P
(

∂f
∂X(j) = 0

)
= 0 for j ∈ S. The set of noise

variables is then Sc = (p1 + 1, ..., p). The true function f is Lipschitz continuous with

Lipschitz constant cf .

Remark 3.4.2. The requirements for the distribution of X and the feature space seem

restrictive, however, for any distribution with independent marginals, we can transform

the distribution into the required multivariate uniform distribution. A direct conse-

quence of this assumption is that, due to the construction of the splitting rules, any

internal node can be now viewed as a hypercube in the feature space X , i.e. any inter-

nal node A ⊆ [0, 1]p has the form

{(X(1), ..., X(p)) : X(j) ∈ (aj, bj] ⊂ [0, 1], for j ∈ 1, ..., p}. (3.1)

Through out the rest of this paper, we will use the terms “internal node” and “hyper-

cube” interchangeably provided that the context is clear.

We need to precisely define how “strong” a strong variable is, not only globally, as

we did in Definition 3.4.1, but also locally at any internal node A. Thus we have the

51

following assumption for the lower bound of variable importance:

Assumption 3.4.3. For any hypercube A defined in the form of Equation 3.1 with

the property that, for any strong variable j, min
i∈{S\j}

(bi− ai) ≥ δ > 0, there exist positive

valued monotone functions ψ1(δ) and ψ2(bj − aj), such that the variable importance of

any strong variable j is bounded below by

V IA(j)

ψ2(bj − aj)
≥ ψ1(δ), (3.2)

where V IA(j) is as defined in Definition 3.3.1.

Remark 3.4.4. This assumption basically requires that the surface of f can not be

extremely flat, however, this does not require a lower bound on
∣∣∂f/∂X(j)

∣∣. It is easy

to verify Assumption 3.4.3 for a linear model, since the variable importance of a strong

variable j does not depend on the interval length of other variables. In this case, we

have ψ1(δ) ≡ 1 and ψ2(bj − aj) = (bj − aj)
2. If f is a polynomial function with any

kind of interaction, for small values of δ and bj − aj, ψ1(δ) and ψ2(bj − aj) can be

approximated by polynomial functions δζ1 and (bj − aj)
ζ2, where ζ2 is the lowest order

of X(j) in f , and ζ1 is the lowest order of all other variables in the interaction.

Assumption 3.4.5. With f(X) being the true underlying function, the observed value

are Yi = f(Xi) + ϵi, where the ϵis are i.i.d. with mean 0 and variance σ2. Moreover,

the following Bernstein condition on the moments of ϵ is satisfied:

E(|ϵ|m) ≤ m!

2
Km−2, m = 2, 3, ..., (3.3)

52

for some constant 1 ≤ K <∞.

Another assumption is on the embedded model. Although we use random forests

as the embedded model in practice, we do not want to rule out the possibility of using

any other kinds of embedded models. Hence we make the following assumption for the

embedded model, which is at least satisfied for purely random forests:

Assumption 3.4.6. The embedded model f̂ ∗ fitted at any internal node A with internal

sample size nA is uniformly consistent with an error bound: there exist some fixed

constant 0 < K <∞ so that for any δ > 0, P
(
|f̂ ∗ − f | > δ

∣∣∣A) ≤ C · e−δ·n
η(p)
A ·K, where

0 < η(p) ≤ 1 is a function of the dimension p, and the conditional probability on A

means that the expectation is taken within the internal node A. Note that it is reasonable

to assume that η(p) is a non-increasing function of p since larger dimensions should

result in poorer fitting. Furthermore, we assume that the embedded model f̂ ∗ lies in a

class of functions F with finite entropy integral under the L2(P) norm (Van Der Vaart

and Wellner, 1996).

Now we present two key results, Theorem 3.4.7 and Theorem 3.4.8. Theorem 3.4.7

analyzes the asymptotic behavior of the variable importance measure and establisheds

the probability for selecting the true strong variables and muting the noise variables.

For simplicity, we only consider the case that one RLT1 tree is fitted to the entire

dataset, i.e M = 1 and the bootstrap ratio is 100%. For the embedded model, we fit

only one tree using half of the data and calculate the variable importance using the

other half. We set the minimum sample size for each terminal node in RLT1 to be

nγ where 0 < γ < 1. At each internal node, the splitting point c is chosen uniformly

between the q-th and (1−q)-th quintile of each variable, where q ∈ (0, 0.5]. The smaller

53

q is, the more diversity it induces. When q = 0.5, this degenerates into a model where

each internal node is always split into two equally sized daughter nodes.

Theorem 3.4.7. For any internal node A ∈ An with sample size nA, where An is the

set of all internal nodes in the constructed RLT, define ĵA to be the selected splitting

variable at A and let pA denote the number of non-muted variables at A. Then, under

Assumptions 3.4.1, 3.4.3, 3.4.5, 3.4.6, we have,

a. P
(
ĵA ∈ S

)
≥ 1 − C1e

−ψ1(
nA
n

)·ψ2(
nA
n

)·nη(pA)

A /K1, i.e. with probability close to 1, we

always select a strong variable as the splitting variable.

b. P
(
V IA(ĵA) > 2 ·maxj V IA(j)

)
≥ 1 − C2e

−ψ1(
nA
n

)·ψ2(
nA
n

)·nη(pA)

A /K2, i.e. for any

internal node in the constructed RLT model, the true variable importance measure

for the selected splitting variable is at least half of the true maximum variable

importance with probability close to 1.

c. The protected set P0
A contains all strong variables, i.e. P (S ∈ P0

A) > 1−C3e
nη(p)/K3.

Note that in the above three results, ψ1, ψ2, and the constants Ck and Kk, k = 1, . . . , 3,

do not depend on pA or the particular choice of A.

As we discussed in Remark 3.4.4, for any polynomial function, ψ1(δ) and ψ2(bj−aj)

can be approximately represented by δζ1 and (bj − aj)
ζ2 . Since nA > nγ, we have

nA
/
n > nγ−1. Hence, to have the probability in Theorem 3.4.7 converging to 1, since

our model eventually only involves p0 variables, we need to tune the terminal node

size parameter γ such that n(γ−1)ζ1 · n(γ−1)ζ2 · nγη(p0) → ∞, which requires that γ >

ζ1+ζ2
ζ1+ζ2+η(p0)/2

. For a linear model, we only need γ > 2/(2 + η(p0)). However, in some

worst case scenarios where f is relatively flat, γ has to be close to 1. This is in fact a

54

very intuitive result because if, for example, f = (X(j))100, then we need a much longer

interval over X(j) to detect a positive variable importance measure.

To show consistency and an error bound for RLT, we verify that the entire RLT

is constructed using only strong variables provided γ is properly chosen, and that the

total variation can be bounded by the variable importance measures at each terminal

node, which converges to zero eventually. The most important result at this juncture is

to show that the splitting variable selection process shrinks the strong variable interval

length to zero at all terminal nodes. On the other hand, the variable muting mechanism

relaxes the choice of γ so that it only depends on p0 rather than p, hence the error bound

for RLT only depends on p0. To show this property, we separate the constructed RLT

into two parts: the first (upper) part of the tree consists of all internal nodes with

sample size larger than nγ
∗
, where γ∗ is a value between 0 and 1 such that ψ1(n

γ∗−1) ·

ψ2(n
γ∗−1) · nγ∗η(p) → ∞. Within this part of the tree, all noise variables are gradually

muted so that only p0 protected variables, which include all strong variables, remain

active in each node. Note that γ∗, unlike the terminal node size parameter γ, is not

a tuning parameter, but is an endogenous value determined by the true function f ,

the embedded model convergence rate η, and p. By the properties of ψ1, ψ2 and

η, γ∗ must be larger than γ. The second (lower) part part of the tree consists of

all subsequent nodes with sample size smaller than nγ
∗
. Since in these nodes, the

embedded model only involves the p0 protected variables, we only need to tune γ such

that ψ1(n
γ−1) ·ψ2(n

γ−1) ·nγη(p0) → ∞, implying that γ depends only on η(p0), and thus

the convergence rate for RLT only depends on p0 and not p.

Theorem 3.4.8. Under Assumptions 3.4.1, 3.4.3, 3.4.5, and 3.4.6, E
[
(f̂ − f)2

]
=

Op(n
−C), where C is a constant that depends only on γ, q, and p1. Moreover, C is a

strictly monotone decreasing function in p1.

55

Table 3.3: Parameter settings

Lasso 10-fold cross-validation is used with α = 1 for lasso and λ is set to minimize cross-
validation error.

Boosting 10-fold cross-validation is used. Number of trees = 3000. Optimal number of
boosting iterations is determined by cross-validation.

BART All settings are default except, when p ≥ n, the naive estimator σ̂ is used (as
implemented in Chipman et al. 2008).

RF All settings are default.
RF2 Select the top

√
p important variables from a single random forests model and refit.

RLTk M = 50 trees are fit to each RLT model. We consider k = 1, 2, 5, namely RLT1,
RLT2 and RLT5. For each of these models, as mentioned in Remark 3.3.2, we
consider no muting (pd = 0), moderate muting (pd = 20% · |P \ Pd

A| at any node
A), and aggressive muting (pd = 50% · |P \ Pd

A| at any node A). To be on par with
RF2, we set the number of protected variables p0 to be

√
p. We also set terminal

node size nmin = n
1
3 .

3.5 Numerical studies

3.5.1 Competing methods and parameter settings

We compare our method with several major competitors, including the linear model

with lasso, as implemented in the R package “glmnet” (Friedman et al. 2008); random

forests (Breiman 2001), as implemented in the R package “randomforest”; gradient

Boosting (Friedman 2001), as implemented in the R package “gbm”; and Bayesian

Additive Regression Trees (Chipman et al. 2008), as implemented in the R package

“BayesTree”. We also include another interesting version of random forests (RF2),

which fits the model, selects a set of most important variables, and refits using only

these variables. For our proposed reinforcement learning trees (RLT), we include nine

different versions, consisting of combinations of different tuning parameter values. The

details for all simulation settings are given in the following Table 3.3:

56

3.5.2 Simulation scenarios

We create four simulation scenarios that represent different aspects which usually

arise in machine learning. Such aspects include size of dimension, correlation between

variables, and non-linear structure. For each scenario, we generate 200 training samples

to fit the model and 1000 test samples to calculate the prediction mean squared error

(MSE). Each simulation is repeated 200 times, and the averaged MSE is presented. We

now describe each of our simulation settings in the following:

Scenario 1: Classification with small p. Set p = 10, and draw Xi independent

uniforms from [0, 1]p. Set µi = Φ(10× (Xi,1 − 1) + 20× |Xi,2 − 0.5|), where Φ denotes

the standard normal c.d.f . Draw Yi independently from binomial(µi).

Scenario 2: Non-linear model with correlated covariance. Set p = 100. To

impose correlation, draw Zi and Ri as independent uniforms from [0, 0.8]p and [0, 0.2],

respectively. Set the covariate vector Xi = (Zi,1 + Ri, Zi,2 + Ri, ..., Zi,p + Ri) and

Yi = 10sin(πXi,1Xi,2) + 20(Xi,3 − 0.5)2 + ϵi, where the ϵi are i.i.d N(0, 1).

Scenario 3: Strong correlation and no marginal effect. Set p = 100, and

draw Xi independently from N(0p×1,Σp×p), where Σi,j = ρ|i−j| and ρ = 0.5, and

Yi = 5(Xi,10Xi,30) + ϵi, where the ϵi are i.i.d N(0, 1).

Scenario 4: linear structure with strong correlation and large p. Set p =

300, and draw Xi independently from N(0p×1,Σp×p). To increase correlation, we set

Σi,j = ρ|i−j| + 0.2 · I(i ̸=j) and ρ = 0.5, and Yi = 5(Xi,10 +Xi,20 +Xi,30) + ϵi, where the

ϵi are i.i.d N(0, 1).

The first three scenarios all contain some non-linear effects which would not be

captured by the Lasso. Hence we expect the Lasso to perform worse compared to

other tree-based methods. However in Scenario 4, we expect the lasso to perform best

due to the underlying linear model. Also, under such a linear structure, RLT2 and

RLT5 should perform better than RLT1 since the linear combination split can utilize

57

the samples in a much more efficient way. In all scenarios, we expect RF2 to perform

better than RF since the number of strong variables is always less than
√
p, and thus

the variable selection done in RF2 should be beneficial.

3.5.3 Simulation results

Table 3.4 summarizes testing sample MSE for each simulation setting. In Figure

3.1, we choose three RLT methods, RLT1 with no muting, RLT2 with moderate muting

and RLT5 with aggressive muting, to plot against competing methods. There is clear

evidence that under almost all settings, the proposed splitting variable selection, high-

dimensional cut, and variable muting procedures all work individually and also work in

combination. In general, the results show preference towards RLTk methods in general,

although the method falls behind the Lasso for the linear model, which is expected.

RLTk methods show advantages over all competing methods on capturing the non-

linear effects in scenarios 1, 2 and 3. Scenario 3 provides an interesting illustration

of how the splitting variable selection works, as is shown by RLT1 under no muting,

where the MSE is reduced by up to 60.0%. When there are no marginal effects, and

when the dimension is reasonably high, none of the competing methods seem to be able

to capture a clear pattern. Even by reducing the dimension from 100 to
√
100 = 10,

as is done in RF2, random forests produce large MSEs. However, a slight signal in the

variable importance measure from the embedded random forests can push the splits

onto strong variables and improve the performance.

The improvement obtained from high-dimensional splits is also profound. In linear

models, utilizing high-dimensional splits can yield huge improvements over RLT1 es-

pecially when no muting is implemented. The MSE reduction obtained by going from

RLT1 to RLT5 is 39.0% (under no muting) in scenario 4. The reason is that under

such a structure, linear combination splits cut the feature space more efficiently. When

58

there is no linear combination structure, a high-dimensional split may not always be

beneficial. As can be seen in scenario 3, although RLT’s are significantly better than

competing methods, both RLT2 and RLT5 perform slightly worse than RLT1. Howev-

er, the decrease in performance is slight because of the “α” parameter enforced in the

splitting process. The resulting threshold on variable importance prevents too many

noise variables from being employed in the linear combination split.

When comparing different muting procedures, we also see interesting results. In

scenarios 1, 2 and 4, more aggressive muting procedures improve the performance of

RLT regardless of whether high-dimensional splits are implemented. In scenario 4,

the MSE is reduced by 38.9%, when going from no muting to aggressive muting for

RLT1, and by 29.9%, when going from no muting to moderate muting for RLT1.

An interesting case is scenarios 3, where the muting procedure harms the performance,

although the performance is still better than competing methods. Note that in scenario

3, a setting with no marginal effect and only two strong variables, a very aggressive

muting procedure appears to mute the strong variables early on so that they are ruled

out from the model. Considering that the embedded model (RF) is not especially

accurate in this situation, aggressive muting may not be a good choice for scenarios 3.

3.5.4 Data analysis example

The diagnostic Wisconsin breast cancer database (Mangasarian et al. 1995) has

been a popular dataset for evaluating machine learning. We obtained the data from the

UC Irvine Machine Learning Repository (http://archive.ics.uci.edu/ml/). The dataset

contains diagnostic results from 569 subjects, classed as either “benign” or “malignant”.

A total of 30 features are computed from a digitized image of a fine needle aspirate

(FNA) of a breast mass. The features describe characteristics of the cell nuclei present

in the image, such as radius, texture, perimeter, area, etc. In our analysis of this data,

59

Figure 3.1: Box plot of prediction Mean Squared Error

0.
10

0.
15

0.
20

0.
25

Scenario 1

R
F

R
F

2

gl
m

ne
t

B
A

R
T

bo
os

tin
g

R
LT

1

R
LT

2

R
LT

5

N
o

m
ut

in
g

M
od

er
at

e

A
gg

re
ss

iv
e

2.
0

2.
5

3.
0

3.
5

4.
0

4.
5

Scenario 2

R
F

R
F

2

gl
m

ne
t

B
A

R
T

bo
os

tin
g

R
LT

1

R
LT

2

R
LT

5

N
o

m
ut

in
g

M
od

er
at

e

A
gg

re
ss

iv
e

5
10

15
20

25
30

Scenario 3

R
F

R
F

2

gl
m

ne
t

B
A

R
T

bo
os

tin
g

R
LT

1

R
LT

2

R
LT

5

N
o

m
ut

in
g

M
od

er
at

e

A
gg

re
ss

iv
e

0
5

10
15

20
25

30

Scenario 4

R
F

R
F

2

gl
m

ne
t

B
A

R
T

bo
os

tin
g

R
LT

1

R
LT

2

R
LT

5

N
o

m
ut

in
g

M
od

er
at

e

A
gg

re
ss

iv
e

60

Table 3.4: Prediction Mean Squared Error

Scenario 1 Scenario 2 Scenario 3 Scenario 4

RF 0.142 4.005 25.811 24.658
RF2 0.118 3.217 24.449 15.962

glmnet 0.257 4.191 26.100 1.099
BART 0.137 2.963 26.358 22.611
boosting 0.167 3.876 25.927 24.306

Muting RLTk

RLT1 0.106 2.831 9.774 14.271
No RLT2 0.100 2.698 10.209 9.103

RLT5 0.101 2.706 10.421 8.709

RLT1 0.098 2.658 11.644 10.009
Moderate RLT2 0.096 2.593 11.938 8.682

RLT5 0.096 2.597 11.917 8.525

RLT1 0.093 2.468 13.568 8.726
Aggressive RLT2 0.093 2.415 14.020 7.618

RLT5 0.093 2.408 14.045 7.556

we want to compare the performance of different methods and also demonstrate the

impact of increased dimension on prediction error.

The original data is standardized to let each covariate have mean zero and variance

one. We keep the exact same parameter settings given in section 4.1 and create an

independent set of new covariates to increase the total number of covariates p by 100,

200, 300, 400 and 500. These extra covariates are independent standard normal random

deviates. We then randomly sample 300 observations without replacement from the

total of 569 as the training dataset, and use the remaining observations as a testing

sample to compute the misclassification rate. Due to the high dimension, this procedure

is repeated 500 times and averaged to stabilize the results.

The misclassification rates are summarized in Table 3.5. We picked three RLT

method: RLT1 with no muting (the overall worst RLT method), RLT2 with moderate

muting and RLT5 with aggressive muting, and plotted them against competing methods

in Figure ??. When only the original 30 covariates are used, glmnet performs best with

a misclassification rate of 3.1%, followed by RLT5 with no muting (3.3%), all moderate

61

muting RLT’s (3.3 ∼ 3.4%), BART (3.8%) and RLT2 with no muting (3.8%). As the

dimension reaches 530, RLT become the dominant methods with misclassification rates

in the range of 3.5 ∼ 3.8%, except RLT1 with no muting and RLT2 with no muting.

glmnet (4.1%) and RF2 (4.4%) are the best two among the competing methods.

It is interesting to observe two sets of comparisons here: RLT1 with no muting vs.

RF; and aggressive RLT’s vs. RF2. RLT1 with no muting and RF start off with simi-

lar performance when p = 30. However, as the dimension increases, the reinforcement

learning variable selection starts to show its benefit and eventually reduces the misclas-

sification rate by 10.79% from RF. On the other hand, the misclassification rates for

both RF2 and aggressive RLT methods decrease in this simulation. Keeping in mind

that both methods will exclude a large proportion of variables, it is not surprising to

see this pattern. With only 30 covariates in the initial model, RF2 will only consider

the best 5 variables, and aggressive RLT’s will mute, on average, 22.5 (75%) variables

in the first two splits and only 5 variables are protected against muting. This causes

both of them to very likely miss some true strong variables. As p increases, the meth-

ods will eventually be able to fit the model with the most strong variables included.

However, aggressive RLT’s are uniformly better in this comparison regardless of the

implementation of high dimensional splits.

The plot also shows an important advantage of RLT: it performs consistently across

changing dimension, which means that it has good immunity to dimension. While being

the second best method at p = 30, RLT5 with moderate muting has its misclassification

rate increase by only 10.35% when p is increased to 530. This is quite impressive

compared to glmnet’s increase of 33.64%, RF’s of 24.33% and BART’s of 50.58%.

62

Figure 3.2: Misclassification rate by increasing dimension

P

M
is

cl
as

si
fic

at
io

n
R

at
e

3%
4%

5%
6%

30 130 230 330 430 530

 RF

 RF2

 glmnet

 BART

 Boosting

RLT1, No muting

RLT2, Moderate
RLT5, Aggressive

Wisconsin breast cancer data

Table 3.5: Diagnostic Wisconsin Breast Cancer Dataset misclassification rate

p=30 p=130 p=230 p=330 p=430 p=530

RF 0.044 0.051 0.052 0.053 0.055 0.055
RF2 0.059 0.055 0.050 0.045 0.044 0.044

glmnet 0.031 0.039 0.040 0.039 0.041 0.041
BART 0.038 0.049 0.052 0.054 0.055 0.056

Boosting 0.059 0.059 0.060 0.060 0.060 0.060

Muting RLTk

RLT1 0.044 0.046 0.048 0.049 0.049 0.049
No RLT2 0.038 0.040 0.041 0.042 0.043 0.043

RLT5 0.033 0.036 0.037 0.038 0.039 0.038

RLT1 0.034 0.035 0.036 0.037 0.038 0.038
Moderate RLT2 0.034 0.035 0.035 0.036 0.037 0.037

RLT5 0.033 0.034 0.035 0.036 0.037 0.037

RLT1 0.051 0.036 0.035 0.035 0.036 0.036
Aggressive RLT2 0.051 0.035 0.034 0.035 0.036 0.036

RLT5 0.050 0.035 0.034 0.035 0.035 0.035

63

3.5.5 Numerical study conclusion

In this numerical study section, we compared the performance of the proposed

RLT method with several popular learning tools. Under both simulated scenarios

and the Wisconsin Breast Cancer Dataset, the results favor RLT methods. There is

a significant improvement over competing methods in most situations, however, the

results vary some depending on the choice of tuning parameters. RLT methods with

moderate muting generally perform the best and most stably across different settings,

and incorporating high dimensional splits seems almost always beneficial. On the other

hand, when the dimension is relatively low, aggressive muting can sometimes cause

strong variables to be muted and harm the performance; when the dimension is high,

aggressive muting starts to show a noticeable benefit. The behavior of different muting

procedures needs further analysis, and we do not suggest using aggressive muting, unless

the dimension is very high, due to its apparent instability in low-dimensional situation.

3.6 Discussion

We proposed reinforcement learning trees in this paper. By fitting an embedded

random forest model at each internal node, and calculating the variable importance

measures, we can increase the chance of selecting the most important variables to cut

and thus utilize the available training samples in an efficient way. The proposed high-

dimensional splitting strategy extends the use of variable importance measures and

creates splitting rules based on a linear combination of variables. The variable muting

procedures further concentrates the splits on the strong variables at deep nodes in

the tree where the node sample size is small. All of these procedures take advantage

of Reinforcement Learning and yield significant improvement over existing methods

especially when the dimensional is high and the true model structure is sparse. There

64

are several remaining issues we want to discuss in this section including the choice of

tuning parameters, computational issue, and future research directions.

3.6.1 Choosing the tuning parameters

The number of trees M in RLT does not need to be very large to achieve good

performance. In all simulations, we used M = 50. The use of high-dimensional splits

(RLT2 and RLT5) seems beneficial in most situations, and the drawbacks are negligible

even when there is no linear effect. Hence we recommend choosing k = 2 to 5 and using

α = 0.5. In all simulations, we use terminal node size equal to n1/3 which seems to

perform reasonably well. However, the optimal choice of γ needs further theoretical

analysis. The choice for muting parameters seems tricky. Ideally, the choice of p0

and pd should depend on sample size n, dimension p, and even the performance of the

embedded model, which can be hard to evaluate. In general, we recommend using a

moderate muting procedure, i.e., pd = 20% · |P \ Pd
A| at each internal node, and using

p0 =
√
p. However, the choice of these parameters is flexible and should depend on the

setting. For example, when p is extremely large, a more aggressive muting procedure

should probably be used to force a sparse structure. These adjustments require testing

on a massive number of datasets and will be a focus area for our future research.

3.6.2 Computational intensity and R package “RLT”

The computational cost of RLT is higher than the original random forests, which is

expected since more computations need to be done at each internal node to search for

the optimal splitting variable. In a worst case scenario, RLT will fit as many as n1−γ,

0 < γ < 1 embedded models if we require the terminal sample size to be at least nγ.

However, this is not entirely necessary because as splitting moves towards a terminal

65

Table 3.6: Computational time of RLT (in seconds)

p=100 p=200 p=300 p=400 p=500

n=100 2.8 5.0 7.2 8.9 11.0
n=200 8.8 15.8 21.3 27.8 35.4
n=300 15.7 28.9 39.7 51.9 68.9
n=400 23.4 42.2 60.4 77.6 105.2
n=500 30.5 56.7 80.2 105.9 140.1

node, the sample size shrinks rapidly and will not require as much computation as

needed at root nodes. Hence, the number of trees in the embedded model can decrease

as the internal node sample size decreases. Moreover, the muting procedure eliminates

a large proportion of variables so that the embedded model takes less time to fit. On

the other hand, RLT carries out high-dimensional splitting at little extra computational

cost, which compared to exhaustive searching, is much less computationally intensive.

The proposed methods is implemented in the R package “RLT” based on R3.0.1. The

current version of “RLT” is available at author’s personal website http://www.bios.

unc.edu/~rzhu. Parallel computing and extremely randomized trees are implemented

to reduce the computational burden. The following table summarizes the computation

time in seconds for Scenario 3 with aggressive muting and no linear combination split

on a 4 core CPU.

66

Chapter 4

Reinforcement learning trees for survival data

4.1 Introduction

In this third part of my dissertation, we extend reinforcement learning trees (Zhu

et al., 2012) to right censored survival data. Reinforcement learning trees demonstrates

significantly improved accuracy especially under high-dimensional sparse settings. The

new proposed method translates the advantages of reinforcement learning trees into

the high-dimensional survival data setting and forces the constructed trees to focus

their splits on strong variables via two key components. First, at each internal node,

an embedded survival model is fit to evaluate the overall variable importance using

integrated Brier score. The most important variable is used as the split, this contrasts

with traditional tree models where the variable with the largest marginal effect is used.

The proposed implementation significantly increases the chance of a strong variable

being used as the splitting rule and hence results in improved accuracy. The second key

component is a muting process during the construction of each tree. The variables with

the smallest variable importance measures are gradually muted (not being considered

in daughter nodes) to prevent too many noise variables from entering the model and

resulting in improved model fitting.

The framework of the survival model proposed in this paper is based on reinforce-

ment learning trees (RLT). In regression modeling, under mild conditions, RLT is shown

to have a convergence rate that does not depend on the original number of variables p

but instead on a pre-selected number of protected variables p0 (Zhu et al., 2012) that

can be significantly smaller than p. Under high-dimensional sparse settings, this is a

very desirable property. We would like to believe that the proposed model should also

enjoy similar properties, however, the asymptotic behavior of the variable importance

measure requires further investigation and is beyond the scope of this paper. The ad-

vantage of using reinforcement learning is that it can break down potential interactions

in the true model structure (The checker-board model in Biau et al. (2008) and Zhu

et al. (2012) is a notorious such example), which is not always detectable using tradi-

tional tree-based models. We shall see from the simulation section that through the

embedded model and proper variable importance measure, the proposed method can

achieve a similar goal for right censored survival data.

4.2 Notation and the survival model

Let X = (X(1), ..., X(p)) denote a set of p covariates from a feature space X , and we

use P to denote the set {1, 2, ..., p}. The failure time T given X = x is generated from

the distribution function Fx(·), and we let the survival function Sx(·) = 1−Fx(·). The

censoring time C given X = x follows a conditional distribution function Gx(·). Each

observation is a triplet (Y, δ,X), where Y = (T ∧C), and δ = I(T ≤ C). We observe a

sample of n i.i.d. training observations Dn = {(Y1, δ1,X1), ..., (Yn, δn,Xn)}. We further

assume a conditionally independent censoring mechanism which posits that T and C

are independent given covariates X. This assumption guarantees that the logrank test

statistics used in splitting criteria are asymptotically normally distributed, hence the

comparison between different splitting rules is appropriate. Another typical assumption

68

in high-dimensional data is sparsity, which assumes that the survival function Sx(·),

or equivalently the distribution function Fx(·), is completely determined by a set of

P1 ∈ P variables, i.e. Sx(·) = S(·|X(j) = x(j), j ∈ P1). We denote the set P1 as the set

of strong variables and denote the set P2 = P \ P1 as the set of noise variables.

4.3 Proposed Method and Algorithm

Follows the idea of reinforcement learning trees (Zhu et al., 2012), the proposed

method fits an embedded model at each internal node when searching for splitting

variable and associated cutting value. The embedded model should return the variable

importance measure for each variable and the one with the largest variable importance

is chosen for the split. Simultaneously, variable muting and protection processes are

also implemented based on these variable importance measures and the resulting muted

and protected set information is updated and passed along to the resulted two daughter

nodes. Each daughter nodes repeat the same process until the number of observed

failures is less than a pre-specified value. We begin this section by giving a pseudocode

of the proposed method (Section 4.3.1). The details of each component are given in

later subsections.

4.3.1 Reinforcement learning trees for right censored survival data

A high-level pseudocode is given in Table 4.1. We defer details of the embedded sur-

vival model (Section 4.3.2), variable importance measures (Section 4.3.3), and variable

muting (Section 4.3.4) to later subsections.

Remark 4.3.1. Bootstrapping plays an important role in random forests especially

when calculating the variable importance. For the single tree fitted by a bootstrap sample,

the corresponding out-of-bag data (those observations not sampled by bootstrapping) are

69

Table 4.1: Reinforcement learning trees for right censored survival data

Step 1 Draw ntrees bootstrap samples from Dn.
Step 2 For the m-th bootstrap sample, where m ∈ {1, ..., ntrees}, fit one RLT

survival model, using the following rules:
a. At the root node, set both the muted set Pd = ∅ and the protected set

P0 = ∅, where ∅ denotes the empty set.
b. At each internal node A, including the root node, fit an embedded survival

model (Section 4.3.2) using only the set of unmuted variables at the current

node A, P \Pd
A, and return variable importance measures V̂ IA(j) (Section

4.3.3), for each variable j ∈ P \ Pd
A.

c. Split the current node using variable label argmaxj V̂ IA(j), with the one
with the largest variable importance. The splitting value c is generated
uniformly from the current range of the splitting variable, however, with
a restriction that each resulted daughter nodes contains at least nmin/2
observed failures.

d. Update the muted set and the protected set (Section 4.3.4) and pass along
to both daughter nodes.

c. Stop a node when it contains no more than nmin number of observed
failures, and calculate the terminal node Kaplan-Meier survival function
estimator.

Step 3 Average ntrees single tree RLT survival models to obtain the ensemble
model fit.

independent from the fitted tree, hence the estimated prediction error is more reliable.

However, bootstrapping is not a must-have for ensemble methods. Fitting each tree with

the entire training data (Geurts et al., 2006) allows deeper and larger trees to be grown

and can sometimes lead to better model fitting.

4.3.2 Embedded survival model

Why do we need an embedded model? In a traditional tree-based model,

when searching for the splitting variable, only a marginal effect is evaluated in the form

of an binary split I(X < c). In the regression setting, weighted variance reduction is

used, while in the classification setting, the Gini index is widely used (Breiman et al.,

1984). However, evaluating the marginal effect using these criteria can sometimes be

70

problematic. The checkerboard structure described in Biau et al. (2008) and Zhu et al.

(2012) is one of these examples. Suppose in a regression mode, X(1) and X(2) are

independent uniform random variables and the mean of response E(Y) = I(I(X(1) <

0.5) = I(X(2) < 0.5)). It is easy to verify that the variance reduction for splitting

either X(1) or X(2) is always 0 regardless of the choice of the splitting point. Hence in a

high-dimensional setting, it is less likely that either of them will be used as the splitting

rule. In tree-based survival models, the same hidden structure can also jeopardize the

accuracy of the fitted model. The commonly used logrank test statistics as used in

Ishwaran et al. (2008) and Zhu and Kosorok (2012) can only assess marginal effects.

In a Cox model, if the hazard ratio contains the aforementioned structure, none of the

existing methods can efficiently detect it. An embedded model can be beneficial since

the variable importance measure gives an overall evaluation of the contribution rather

than only the marginal effect. Although the signal of X(1) and X(2) detected by the

embedded model might be very weak, it is enough to push the entire model to further

concentrate on these variables (for more intuition regarding the embedded model in the

regression setting, please see Zhu et al. (2012)).

Now we introduce the embedded survival model in Table 4.2 , which is a simple

extension of extremely randomized trees to right censored survival data. However,

we defer the variable importance measure to Section 4.3.3. This model has much in

common with Ishwaran et al. (2008), and can be viewed as a non-imputed version of

Zhu and Kosorok (2012).

Remark 4.3.2. Some tuning parameters are involved in both the embedded model, such

as the terminal node size nmin, the number of variable sampled at each split, mtry,

and the number of randomly generated splitting values, nsplit. Turning parameters can

play a important role in the accuracy of tree-based methods, hence, in the simulation

71

Table 4.2: Embedded survival model

Step 1 Draw ntrees bootstrap samples from Dn.
Step 2 For each bootstrap sample, fit a survival tree model using the following

rules:
a. At each node, randomly select mtry variables from the set P = {1, 2, ...p}
b. For each randomly selected variableX(j), randomly generate nsplit random

splitting value c within the range of X(j) in the current node. Calculate a
logrank test statistic using the group label I(X(j) > c). Note that if there
are less than nmin/2 observed failures in either group, that splitting rule
is discarded.

c. Compare the logrank statistics of all mtry×nsplit combinations of splitting
variable and splitting value, and choose the one with the smallest p-value
as the splitting rule in the current node.

d. Split the current node into two daughter nodes according to the best s-
plitting rule and repeat a) - d) for each daughter node until there are no
more than nmin number of observed failures. At a terminal node, the
Kaplan-Meier survival function estimator is recorded.

e. Use corresponding out-of-bag data to calculate perdition error, and the
perturbed prediction error for each variable (Section 4.3.3).

Step 3 Average all single tree survival models to obtain the ensemble model fit.
Average all single tree prediction errors to obtain the variable importance
measure (Section 4.3.3).

study, we try to compare different methods in several different tuning parameter settings.

However, our proposed RLT survival model is less sensitive to these mentioned tuning

parameters since the only information we obtain from an embedded model is the ranks

of variable importance, which are not largely affected by the tuning parameters.

4.3.3 Variable importance for survival tree model

The variable importance measure is an important component of reinforcement learn-

ing trees because a within-node variable importance evaluation is the key reason why

RLT performs better than random forests in the high-dimensional setting. Hence a

counterpart for the variable importance measure in the survival setting must be care-

fully defined. In the regression model, one can simply use the increment of mean

72

squared error caused by perturbing a variable as the variable importance. However, it

is not possible to do the same in the survival setting due to censoring. Noticing that we

try to obtain the prediction error by comparing a single observation (either observed

or censored) with a survival function estimation, a natural choice here is the commonly

used integrated Brier score (Graf et al., 1999; Hothorn et al., 2006; Zhu and Kosorok,

2012). Some other types of prediction errors are discussed in Remark 4.3.3 below.

The Brier score for censored data at a given time t > 0 is defined as

BS(t) =
1

N

N∑
i=1

{(Ŝ(t|Xi))
2I(Yi ≤ t, δi = 1)Ĝ(Yi)

−1

+(1− Ŝ(t|Xi))
2I(Yi > t)Ĝ(Yi)

−1 }, (4.1)

where Ĝ(·) denotes the Kaplan-Meier estimate of the censoring distribution. The inte-

grated Brier score is further given by

IBS = max(Yi)
−1

∫ max(Yi)

0

BS(t)dt. (4.2)

It is easy to see that when there is no censoring, the Brier score at time t measures the

squared probabilistic error between a probabilistic prediction S(t|Xi) and an observed

event I(Ti ≤ t). When censoring is present, the inverse probability weight G(Yi)
−1

is introduced to compensate for the loss of information. New we define the variable

importance based on Brier score for the tree survival model. Note that this definition

applies to both the RLT survival model and its embedded model. For an embedded

model, if a variable is muted at an internal node, automatically set its variable impor-

tance to 0 since that variable is not participated in the embedded model fitting.

73

Table 4.3: Variable importance

Step 1 For the m-th tree survival model and it’s corresponding out-of-bag data,
calculate the Brier score prediction errors:

a. Brier score: Drop each out-of-bag data down the fitted tree and obtain
the survival function estimate. Use Equation 4.2 to calculate integrated
Brier score (IBSm).

b. Permuted Brier score: For each variable j, do the following:
i) Randomly permute the values of the jth variable X(j) in the out-of-bag

data.
ii) Drop permuted out-of-bag data down the fitted tree, and calculate the

permuted integrated Brier score, PIBSj
m.

Step 2 Average over all trees, and obtain the variable importance measure for
variable j:

V I(j) =
∑

m PIBSj
m∑

m IBSm
− 1.

Remark 4.3.3. Ishwaran et al. (2008) uses the concordance index (C-index, Harrel-

l Jr et al. (1982)) as the prediction error to evaluate the overall fitting. The C-index

measures the probability of concordance between predicted and observed responses, but

will require a single prediction value such as the ensemble mortality used in their paper.

However, this could resulting lost information since the survival function estimate is

available. In Zhu and Kosorok (2012) the simulation study seems to prefer the Brier

score as it is slightly more sensitive than the C-index. Other types of prediction errors

such as the L1 and L∞ measures of the differences between the predicted and the true

survival function are only available when the true data generator is know. We will give

more details about these measurements (Section 4.4.3) and use them in the simulation

study to compare different methods.

4.3.4 Variable muting

Motivation: As a tree grows deeper, the sample size in the internal nodes decreases

74

rapidly (at a rate of log2, if we naively always split at a middle point). The search for

a strong variable, with or without the embedded model, becomes increasingly difficult.

The consequence is that when an internal node sample size is sufficiently small, the

splitting rule behaves like a purely random search, which involves mostly noise variables.

A muting procedure handles this situation nicely by preventing some variables from

entering the model at deep internal nodes. We call this set of variables the muted

set. At each internal node, we force pd variables into the muted set, and we remove

them from consideration as a splitting variable at any branch of the internal node. On

the other hand, to prevent strong variables from being removed from the model, we

set a maximum number of p0 protected variables that we always keep in the model.

Following Zhu et al. (2012), with some slight modifications, we introduce the muting

process. Note that muting and protecting are only available after an embedded model

is fit and the variable importance measure is returned, however, they are not available

for the embedded model itself.

At an internal node A, suppose the current muted set is Pd
A, the protected set is P0

A

(note that if A is the root node, we set both sets to the empty set ∅). After the splitting

rule has been found through the embedded model, we denote the two daughter nodes

as AL and AR. We first update the protected set for the two daughter nodes by adding

the splitting variable(s) into the set (if the size of the current protected set is less than

p0):

P0
AL

= P0
AR

= P0
A ∪ {splitting variable at nodeA}, if |P0

A| < p0.

We then update the muted set for both daughter nodes. After sorting the variable

importance measures V̂ IA(j) returned from the embedded model, we find the pd-th

smallest value within the restricted variable set P \Pd
A \P0

A, i.e., in the set of variables

that have not yet been muted nor protected. We denote this value as V̂ I
pd

A . Then we

75

define the muted set for the two daughter nodes as

Pd
AL

= Pd
AR

= Pd
A ∪ {j : V̂ IA(j) ≤ V̂ I

pd

A } \ P0
A.

We then pass the updated muted and protected set to each daughter nodes and repeat

the process for each of them.

Remark 4.3.4. The number of muted variables at each split, pd, can be set to a fixed

number or it could vary depending on |P\Pd
A|, which is the number of unmuted variables

at the current internal node A. In Section 4.4 we will evaluate different choices for pd

such as 0 (no muting), 20% · |P \Pd
A| (moderate muting), and 50% · |P \Pd

A| (aggressive

muting).

Remark 4.3.5. The protected set updating process is slightly different from Zhu et al.

(2012). In their paper, the protected set is updated to full size of p0 when the first split

is done. However, in this paper, the protected set is progressively grown to p0 by only

adding the splitting variable to the protected set. This new approach makes the tuning

of p0 to have less of an impact on the model fitting. The large sample behavior under

the regression setting should not be affected by this change since the protected set should

contain all strong variables after finitely many splits (Theorem3.4.7).

4.4 Simulation Studies

In this section, we use simulated data to demonstrate the performance of the pro-

posed method and compare to competing methods such as random survival forests

(Ishwaran et al., 2008) though the R package “randomForestSRC”, and the LASSO

76

for the cox model through the R package “glmnet” (Friedman et al., 2010). We also

include the embedded model (the simple extension from extremely randomized trees

to survival data presented Section 4.3.2, which is in fact a survival tree model without

reinforcement learning) into the comparison and observe the solo effect of reinforcement

learning. Note that some early single tree models are omitted in this comparison due

to poor accuracy, and the survival ensembles method (Hothorn et al., 2006) is also

omitted due to the fact that a key assumption, P (T > C|X) > 0, is oftentimes violated

or nearly violated.

It is known that tree-based models can be sometimes sensitive to the choice of

tuning parameters. Hence in our simulation study, we compare different tree-based

methods under a variety of tuning parameter settings, including mtry, nmin, boot-

strapping percentage, and the splitting value generating methods. However, for the

proposed method, only the default setting is used because these turning parameters do

not seem to impact the variable importance measure of the embedded model, hence are

meaningless to tune. The only turning parameter that we are experimenting with is

the muting parameter pd. Details of parameter settings are described in Section 4.4.2.

4.4.1 Data generator

In this simulation study, we include two typical scenarios and their variations on

sample size and total dimension p. Let X = (X(1), ..., X(p)) be drawn from a multi-

variate normal distribution with covariance matrix V , where Vij = ρ|i−j|, where ρ and

p will be specified in the following. The first scenario is a proportional hazard model

with linear link function, which will clearly favor the LASSO. The second scenario has

no linear effect and will favor tree-based methods. For each setting, we use 500 test

observations to calculate prediction error. Each simulation is run 100 times.

Scenario 1: A proportional hazard model with conditional independent censoring.

77

Let ρ = 0.75 and p = 200. The failure time T follows an exponential distribution

with mean exp(X(10) + X(30) + X(50)). The censoring time C follows an exponential

distribution with mean 5 × exp(X(20) + X(40)). Observations exceeding 4 are forced

to be censored to prevent the tail region from dominating the prediction error. The

censoring rate is approximately 33%.

Scenario 1: A weibull distribution with symmetric link function. Let ρ = 0.5 and

P = 100. The failure time T follows an Weibull distribution with shape parameter 2

and scale parameter 2×Φ(X(10)×X(30)+(X(50))2−1), where Φ is the standard normal

c.d.f function. The censoring time C has probability 1/3 to be 2 and probability 2/3

to be uniform (0, 2). The Censoring rate is approximately 28%.

4.4.2 Tuning parameters

For all tree-based models, we only consider bootstrapped version (Breiman, 2001) of

ensembles, although a non-bootstrapped version (Geurts et al., 2006) can also be used

in practice. The bootstrap sample size is set to 67% of the training sample size. We set

the number of trees to be 200 for random survival forests (RSF) and the simple survival

model. For the proposed RLT survival model, number of trees is set to 50. For RSF and

simple survival tree, we consider all combinations of the following parameter settings:

mtry =
√
p or p/3; nmin = 4 or 10; the splitting value is searched to find the best or

by comparing 10 random splits. In the proposed method, we only use a default setting

of nmin = 4 and splitting value is chosen by comparing 10 random splits. Note that

mtry is no longer a tuning parameter in RLT since we always select the variable with

the largest variable importance to split, however it can be a tuning parameter for the

embedded model. We consider three muting procedures for the proposed method: no

muting (pd = 0), moderate muting (pd = 20% · |P \Pd
A| at any node A), and aggressive

muting (pd = 50% · |P \ Pd
A| at any node A). In glmnet, a simple lasso penalty is used,

78

and λ is set to “lambda.min” or “lambda.1se” from 10 fold cross validation.

4.4.3 Prediction error

To compare with the true survival function, we use the integrated absolute error and

supremum absolute error which can be viewed as the L1 and L∞ norm of the survival

function error. To be more specific, let S(t) denote the true survival function and let

Ŝ(t) denote its estimate. Integrated absolute error is defined as 1
max(Yi)

∫ max(Yi)
0

|S(t)−

Ŝ(t)|dt and supremum absolute error is defined as sup
0<t≤max(Yi)

|S(t)− Ŝ(t)|. We also use

the integrated Brier score (Equation 4.2) and C-index (Remark 4.3.3) in the comparison.

4.4.4 Simulation results

Among all tree-based methods, RLT survival model performs best in terms of almost

all prediction errors. glmnet outperforms all tree-based method in Scenario 1, however,

performs the worst in Scenario 1 when no monotone effect is involved in the true model

structure. We summarize some of the key finding in the following:

• Different error measurements give almost the same conclusion when comparing

RLT survival model with competing methods. L1 error seems to be more sensitive

then other types of error measurements. In Scenario 1, all measurements favors

glmnet as expected since cox model is the true model. Among tree-based models,

RLT with aggressive muting performs best. It reduces L1 error by 13.9% from

RSF and by 10.4% from simple survival tree model whenN = 200. The differences

in terms of other measurements are less significant. RLT shows greater advantage

under complicated model structure. In Scenario 2, RLT with aggressive muting

reduces prediction errors by 28.6%, 17.8%, 19.9% and 41.4% for L1, L∞, IBS

and C-index respectively.

79

Table 4.4: Prediction Errors: Scenario 1 (Cox model)

N = 200 N = 300

L1 L∞ IBS C-index L1 L∞ IBS C-index
RLT survival
no muting 0.161 0.311 0.162 0.248 0.147 0.292 0.158 0.240
20% muting 0.159 0.308 0.161 0.247 0.143 0.286 0.156 0.235
50% muting 0.155 0.304 0.159 0.242 0.137 0.279 0.154 0.231

Competing methods
simple survival trees 0.173 0.315 0.165 0.251 0.158 0.294 0.159 0.237
RSF 0.180 0.321 0.168 0.250 0.166 0.301 0.162 0.236
glmnet - cox 0.059 0.149 0.119 0.186 0.049 0.127 0.118 0.185

Table 4.5: Prediction Errors: Scenario 2 (symmetric and checker-board effects)

N = 300 N = 400

L1 L∞ IBS C-index L1 L∞ IBS C-index
RLT survival
no muting 0.233 0.456 0.187 0.332 0.209 0.434 0.172 0.280
20% muting 0.225 0.446 0.182 0.305 0.194 0.411 0.163 0.245
50% muting 0.216 0.432 0.176 0.279 0.182 0.393 0.157 0.228

Competing methods
simple survival trees 0.262 0.480 0.202 0.410 0.255 0.478 0.196 0.389
RSF 0.266 0.483 0.204 0.418 0.258 0.480 0.197 0.390
glmnet - cox 0.279 0.485 0.212 0.500 0.278 0.489 0.209 0.500

• Muting improves performance of RLT survival model. The L1 error reduction

from no muting to aggressive muting ranges within 3.7% to 12.9%. In Scenario

2, aggressive muting reduces C-index error by 16.0% and 18.6%.

• RLT survival model benefits from increased sample size better than competing

methods. In Scenario 2, L1 error of RLT model decreased from 0.233, 0.225

and 0.216 to 0.209, 0.194 and 0.182 (corresponding to 10.3%, 13.8% and 15.7%

reduction) when sample size is increased from 300 to 400. As contrast, the best

improvement for competing methods is 3.0% (from 0.266 to 0.258).

80

4.5 Discussion

In this paper, we proposed a new tree-based survival model to extend the rein-

forcement learning trees to right censored survival data. The proposed method takes

advantages of two key components in reinforcement learning trees and results in im-

proved accuracy especially in high-dimensional sparse settings. The embedded model

evaluates the contribution of each variable at the current internal node and forces splits

on the most “need-to-be-split” variable. This procedure can clearly tackle down some

difficult model structures such as the checker-board model (Biau et al., 2008) as we

have seen in the simulation study. The variable muting process further improves the

model by gradually removing noise variables from the model. In this section, we discuss

some issues that we have not previously addressed in this paper.

4.5.1 linear combination split

A linear combination split was proposed in Zhu et al. (2012), however, it is not

implemented in our survival model. The linear combination split creates a splitting

rule such as I(β′X < c) at each internal node, where β is a vector of p components

that defines a projection line in p−dimensional space. The absolute values of β can be

practically determined using the variable importance measures to emphasize on strong

variables. However, the sign of each component of β can be difficult to identify. Ideally,

we want the variables with similar influence on the hazard function to be given the

same sign, however, this can be hard to evaluate since the hazard function is changing

over time. In a situation where the survival functions of two groups cross each other,

creating a linear combination split might lead to a poor splitting rule. Hence, this

linear combination split is not used in our model.

81

4.5.2 Variable importance measures of correlated variables

Correlated variables, especially those who are highly correlated with strong vari-

ables, always cause trouble in a statistical model. In tree-based models, due to the

random feature selection (the tuning parameter mtry), some correlated variables rather

than the true strong variable are often used in the splitting rule. This leads to a situa-

tion where these correlated variables may have an over-estimated variable importance

measure. Some efforts have been made to correct this bias such as the conditional

variable importance proposed by Strobl et al. (2008). Here, we reveal some facts that

suggests reinforcement learning trees may help to reduce the bias. Consider Scenario

1 of the simulation study with p = 100, ρ = 0.9, and the mean of failure time T equals

exp(X(10) + 1.5 ×X(30) +X(50)). With highly correlated covariances, X(29) and X(31)

usually has larger variable importance measure than X(10) and X(50), especially when

mtry is small. In Figure 4.1, we plot the probability of being the top three largest

variable importance measures for three different measures: RSF with mtry = P or

mtry = P/3, and the proposed RLT survival model.

Figure 4.1: Comparing variable importance

pr
ob

ab
ili

ty
 o

f b
ei

ng
 to

p
th

re
e

0
0.

2
0.

4
0.

6
0.

8
1

X30 X50 X10 X31 X29

pr
ob

ab
ili

ty
 o

f b
ei

ng
 to

p
th

re
e

0
0.

2
0.

4
0.

6
0.

8
1

X30 X50 X10 X29 X31

pr
ob

ab
ili

ty
 o

f b
ei

ng
 to

p
th

re
e

0
0.

2
0.

4
0.

6
0.

8
1

X30 X50 X10 X29 X31

RSF mtry = p/3 RSF mtry = p RLT survival

Black: Strong variables; Gray: Noise variables

The reason behind this apparent effect for using reinforcement learning trees can

82

be explained by the reduced chance of using correlated variables as splitting rules,

which is driven by two facts. First, a strong variable has an overall larger variable

importance measure than variables correlated with it. Hence, when RLT selects a

splitting variable, it will most likely be a strong variable. Second, conditional on a

sub-interval of a strong variable, its variable importance should still be larger than the

correlated variables. Then during the entire tree construction, the RLT will tend to

avoid using these correlated variables as splitting rules, and their variable importance

measures will therefore tend to be small.

4.5.3 Computational issues

A R (version 3.0.1) implementation of the proposed method (including reinforce-

ment learning trees for classification and regression) is available through author’s per-

sonal website: http://www.bios.unc.edu/~rzhu. The algorithm is written in C, and

also incorporated parallel computing using OpenMP. The computation time of a sim-

ple survival tree model is in par with existing R packages such as “randomForest” and

“randomForestSRC”. The proposed method (which will run simple survival tree model

at each node as the embedded model) usually takes within 100 times computational

time of a simple model.

83

Chapter 5

Conclusion and future research plan

Three methods are proposed in my dissertation: recursively imputed survival trees,

reinforcement learning trees and its extension to survival data. A theoretical framework

is proposed for reinforcement learning trees and showed consistency and convergence

rate. This new framework is the first in its kind and can be applied to any extension

of reinforcement learning trees. There are some subsequent works that I would like to

explore/finish in the near future:

• The R package for reinforcement learning trees is available to public and the com-

putational speed seems to be competitive to existing popular tree-based method

packages. Some extra features need to be completed such as missing data impu-

tation and tree plots.

• A common data structure for survival analysis contains time-varying explanatory

variables, such as transplant status, or smoking status. None of the existing tree-

based ensemble methods can handle this type of data. It is interesting to extend

reinforcement learning trees to this data structure.

• Reinforcement learning trees can also be applied to single tree model, which is

easier to interpret and visualize, and still enjoy many advantages of reinforcement

learning.

• A promising application of reinforcement learning trees is on personalized medicine

where high-dimensional genetic data are involved and complicated interaction

model structure is needed.

85

Appendix

Asymptotic Results

Proof of Theorem 3.4.7.

Step 1: We first establish the asymptotic results for the variable importance mea-

sure. Without further specification, the proof of Step 1 is conditional on an internal

node A with sample size nA and number of non-muted variables equal to pA. We denote

the internal node dataset by DA = {(Xi, Yi), i ∈ A}. Let P be the probability measure

of ((X), Y) and let P be the corresponding empirical measure.

First, we observe that, V IA(j) is bounded. By Assumption 3.4.1, f is Lipschitz

continuous with Lipschitz constant cf ,

V IA(j)

=
E[E[(f(X

(1)
i , ..., X̃

(j)
i , ..., X

(p)
i)− f(X

(1)
i , ..., X

(j)
i , ..., X

(p)
i))2|X(j)

i]|A]
σ2

≤ E[E[(cf · (bj − aj))
2|X(j)

i]|A]
σ2

=
c2f · (bj − aj)

2

σ2
.

(5.1)

Hence V IA(j) is also bounded above by the interval length of X(j), i.e. (bj − aj), in A.

It can be further bounded above by
c2f
σ2 since (bj − aj) < 1 for any internal node A.

Now we show that V̂ IA(j) converges to V IA(j) at an exponential rate. For simplic-

ity, assume that the embedded model f̂ ∗
A randomly selects half of DA to fit the model,

86

denoted by DA1 , and the variable importance is calculated using the other half of the

data, denoted by DA2 . Noticing that this is exactly (except for the proportion of each

subset) what we do for each tree in a standard random forests model. However, with

the potential use of other models, this simplifies the formulation. Further, since the j-

th variable importance measure is calculated by randomly permuting the values of X
(j)
i

in DA2 , which we denote by X̃
(j)
i , we assume that this permutation is done infinitely

many times. Then, for the i-th observation in DA2 , the squared error after permutation

is E
X̃

(j)
i

(
f̂ ∗
A(X

(1)
i , ..., X̃

(j)
i , ..., X

(p)
i) − Yi

)2
. Hence the j-th variable importance can be

formulated as:

V̂ IA(j)

=

1
nA/2

∑
Xi∈DA2

EX̃(j)

(
f̂ ∗
A(X

(1)
i , ..., X̃(j), ..., X

(p)
i)− Yi

)2
1

nA/2

∑
Xi∈DA2

EX̃(j)

(
f̂ ∗
A(X

(1)
i , ..., X

(j)
i , ..., X

(p)
i)− Yi

)2 − 1

=

1
n

∑
Xi∈D EX̃(j)

(
f̂ ∗
A(X

(1)
i , ..., X̃(j), ..., X

(p)
i)− Yi

)2
I[Xi∈A2]

1
n

∑
Xi∈D EX̃(j)

(
f̂ ∗
A(X

(1)
i , ..., X

(j)
i , ..., X

(p)
i)− Yi

)2
I[Xi∈A2]

− 1,

(5.2)

where I[Xi ∈ A2] is the indicator function denoting that Xi falls into the internal node

A, and is randomized with probability 1
2
to DA2 for calculating variable importance.

Let the set (X
(1)
i , ..., X

(j−1)
i , X

(j+1)
i ..., X

(p)
i) be X

(−j)
i . Then the numerator of the first

term of (5.2) can be broken down into:

1

n

∑
Xi∈D

EX̃(j)

(
f̂ ∗
A(X

(1)
i , ..., X̃(j), ..., X

(p)
i)− Yi

)2
I[Xi∈A2]

87

= Pn
(
EX̃(j)

(
f̂ ∗
A(X

(−j), X̃(j))− Y
)2
I[X∈A2]

)
= (Pn − P)

(
EX̃(j)(f̂ ∗

A(X
(−j), X̃(j))− Y)2I[X∈A2]

)
+P
(
EX̃(j)

(
f̂ ∗
A(X

(−j), X̃(j))− fA(X
(−j), X̃(j))

)2
I[X∈A2]

)
+P
(
EX̃(j)

(
fA(X

(−j), X̃(j))− fA(X
(−j), X(j))

)2
I[X∈A2]

)
+P
(
EX̃(j)

(
fA(X

(−j), X(j))− Y
)2
I[X∈A2]

)
=: T̃1 + T̃2 + T̃3 + T̃4. (5.3)

Now we bound each of the four terms in Equation 5.3. We will first show the bound

for T̃1 and then for T̃ ∗
2 , following the same idea. We use Theorem 8 in van de Geer and

Lederer (2012) to establish the bound for T̃1. The Theorem states that for any function

g(X) that lives in a collection of functions G, if the Bernstein condition

sup
g∈G

E|g|m ≤ m!

2
Km−2, m = 2, 3, ... (5.4)

is satisfied for some constant K ≥ 1, then
√
n(Pn − P)g has exponential tail.

By Assumption 3.4.6, f̂ ∗ has exponential tail. On the other hand, Y = f(X) + ϵ,

and f(X) are bounded, and hence Y also satisfies the moment condition by Assumption

3.4.5. Hence, we can fine some constant K such that the following Bernstein condition

is satisfied:

sup
f̂∗

E
∣∣∣f ∗
A(X

(−j), X̃(j))− Y
∣∣∣m ≤ m!

2
Km−2, m = 2, 3, (5.5)

88

Furthermore, since f̂ ∗ has finite entropy integral by Assumption 3.4.6, we can use

Theorem 8 in van de Geer and Lederer (2012) and reorganize the terms to can find a

constant K∗
1 > 0 such that:

P

(
sup

∣∣∣√nT̃1∣∣∣ ≥ t

)
≤ e−t/K

∗
1 . (5.6)

For T̃2, we first write it into a conditional probability PA2 such that

T̃2 = PA2

(
EX̃(j)

(
f̂ ∗
A(X

(−j), X̃(j))− fA(X
(−j), X̃(j))

)2)
P (A2)

= T̃ ∗
2P (A2). (5.7)

For T̃ ∗
2 , noting Assumption 3.4.6 for the error bound of f ∗

A, and following similar

arguments as applied to T̃1, we have for some constant K∗
2 > 0:

P

(
sup

∣∣∣√n
η(pA)
A T̃ ∗

2

∣∣∣ ≥ t

)
≤ e−t/K

∗
2 . (5.8)

For the other two terms, it is easy to see by Definition 3.3.1 that T̃3 = V IA(j)

σ2P (A2), and T̃4 = σ2P (A2) by Assumption 3.4.5.

Note that the denominator of the first term in (5.2) can be decomposed into four

terms: T1, T2, T
∗
3 and T4, similar to (5.3) but with X

(j)
i in the lieu of X̃

(j)
i . The first

two terms can be bounded in the same way as the above. The third term equals 0 since

X̃
(j)
i is replaced by X

(j)
i . And the fourth term T4 = σ2P (A2).

89

Hence, together with (5.6), (5.8) for the numerator, and the above arguments for

the denominator, we can derive that

P
(∣∣∣V̂ IA(j)− V IA(j)

∣∣∣ > C
)

= P
(∣∣∣ T̃1 + T̃ ∗

2P (A2) + σ2P (A2)V IA(j) + σ2P (A2)

T1 + T ∗
2P (A2) + 0 + σ2P (A2)

− 1− V IA(j)
∣∣∣ > C

)
≤ P

(∣∣∣ T̃1
T1 + T ∗

2P (A2) + σ2P (A2)

∣∣∣ > C/3
)

+P
(∣∣∣ T̃ ∗

2P (A2)

T1 + T ∗
2P (A2) + σ2P (A2)

∣∣∣ > C/3
)

+P
(∣∣∣ σ2P (A2)(V IA(j) + 1)

T1 + T ∗
2P (A2) + σ2P (A2)

− 1− V IA(j)
∣∣∣ > C/3

)
= P

(∣∣∣ T̃1
T1 + T ∗

2P (A2) + σ2P (A2)

∣∣∣ > C/3
)

+P
(∣∣∣ T̃ ∗

2P (A2)

T1 + T ∗
2P (A2) + σ2P (A2)

∣∣∣ > C/3
)

+P
(∣∣∣(T1 + T ∗

2P (A2))(1 + V IA(j))

T1 + T ∗
2P (A2) + σ2P (A2)

∣∣∣ > C/3
)
. (5.9)

Noticing that all the T terms are positive, and V IA(j) is also positive and bounded

above, we have:

P
(∣∣∣V̂ IA(j)− V IA(j)

∣∣∣ > C
)

≤ P
(∣∣∣ T̃1
σ2P (A2)

∣∣∣ > C/3
)
+ P

(∣∣∣ T̃ ∗
2P (A2)

σ2P (A2)

∣∣∣ > C/3
)
+

P
(∣∣∣T1(1 + V IA(j))

σ2P (A2)

∣∣∣ > C/6
)
+ P

(∣∣∣T ∗
2P (A2)(1 + V IA(j))

σ2P (A2)

∣∣∣ > C/6
)

≤ e−C·P (A2)·n/3K1 + e−C·nη(pA)

A /3K2 + e−C·P (A2)·n/3K3 + e−C·nη(pA)

A /3K4

≤ e−C·nη(pA)

A /K5 .

(5.10)

90

Noting that this is the tail probability for V̂ IA(j) when pA variables are considered

in the embedded model, we can easily generalize it to the situation at an internal node

where only p0 variables are considered. In this case, we replace η(p) by η(p0), yielding a

faster convergence rate. In the derivation, the constant K5 can possibly depend on pA,

however, since pA < p, which is finite, we can always choose a larger K5 such that the

equation holds for all values of pA. Consequently, K5 does not depend on the choice of

internal node A.

Now, two situations can arise for V IA(j):

Situation 1: X(j) is a noise variable. Since changing the value of X(j) will not change

f(X), f(X(1), ..., X̃(j), ..., X(p)) ≡ f(X(1), ..., X(j), ..., X(p)), and thus V IA(j) ≡ 0.

Situation 2: X(j) is a strong variable. According to Assumption 3.4.3, V IA(j) is

bounded below by ψ1(δ) · ψ2(bj − aj), where δ = min
i∈{S\j}

(bi − ai). We further note that

since the internal node size is nA, the interval length of any variable is at least nA

n
even

if all splits are made on that variable. Hence both δ and bj − aj are larger than nA

n
.

Hence V IA(j) ≥ ψ1(
nA

n
) · ψ2(

nA

n
) for any strong variable.

Hence, to sum up situations (1) and (2), we have

V IA(j)


≥ ψ1(

nA

n
) · ψ2(

nA

n
), if j ∈ S.

= 0, if j ∈ Sc.
(5.11)

Step 2: Now we prove a) of this Theorem. Let ĵA be the selected splitting variable

at internal node A, i.e. ĵA = argmax
j
V IA(j). Without loss of generality, we assume

that at this internal node A, the true variable importance measures are in the order

91

V IA(1) ≥ V IA(2) ≥ · · · ≥ V IA(p1) > V IA(p1 + 1) = · · · = V IA(p) = 0. Then the

probability that the selected splitting variable ĵ∗A belongs to the set of strong variables

satisfies the following inequality:

P (ĵA ∈ S)

= 1− P (ĵA ∈ Sc)

= 1−
∑
i∈Sc

P (ĵA = i)

≥ 1−
∑
i∈Sc

P
(
V̂ IA(i) > V̂ IA(j), for all j ∈ S

)
≥ 1− p1

∑
i∈Sc

P (V̂ IA(i) > V̂ IA(p1)). (5.12)

Let ∆̂j = V̂ IA(j)− V IA(j). Using equation (5.10) and noting that V IA(i) = 0 for

all i ∈ Sc, the above probability can be bounded below by

P (ĵA ∈ S)

≥ 1− p1
∑
i∈Sc

P
(
∆̂j + 0 > ∆̂p1 + V IA(p1)

)
≥ 1− p1

∑
i∈Sc

[
P
(
|∆̂p1 | >

V IA(p1)

2

)
+ P (∆̂j >

V IA(p1)

2
)

]
= 1− p1

∑
i∈Sc

4 · e−
V IA(p1)

2
·nη

A/K5

= 1− 4p1p2 · e−
V IA(p1)

2
·nη

A/K5 . (5.13)

Using Equation 5.11, we have, for any internal node A with sample size nA, and

92

with pA nonmuted variables,

P (ĵA ∈ S) ≥ 1− 4p1p2 · e−ψ1(
nA
n

)·ψ2(
nA
n

)·nη(pA)

A /(K5·2). (5.14)

Since p1, p2 and K5 are all constant, the proof for a) is concluded.

Step 3: We show b) using a similar structure as the proof of a). Note that at any

internal node A, the probability that the maximum true variable importance is larger

than twice that of the selected splitting variable is

P
(
max
j
V IA(j) > 2V IA

(
ĵA
))
.

By defining the variable with the true maximum variable importance at node A as

jmA = argmax
j
V IA(j), the above equation can be bounded by

P
(
V IA(j

m
A) > 2V IA(ĵA)

)
≤ P

(
V IA(j

m
A) > V IA(ĵA) + ψ1(

nA
n
) · ψ2(

nA
n
)
)

= P
(
V IA(j

m
A)− V̂ IA(j

m
A) > V IA(ĵA)− V̂ IA(j

m
A) + ψ1(

nA
n
) · ψ2(

nA
n
)
)

= P
(
V IA(j

m
A)− V̂ IA(j

m
A) > V IA(ĵA)− V̂ IA(ĵA)

+V̂ IA(ĵA)− V̂ IA(j
m
A) + ψ1(

nA
n
) · ψ2(

nA
n
)
)
.

Note that V̂ IA(ĵA) − V̂ IA(j
m
A) ≥ 0 since ĵA is the selected variable. Adapting the

93

notation of ∆̂ used in Step 2, we now have

P
(
V IA(j

m
A) > 2V IA

(
ĵA
))

≤ P
(
∆̂jmA

> ∆̂ĵA
+ 0 + ψ1(

nA
n
) · ψ2(

nA
n
)
)

≤ P
(
|∆̂jmA

| >
ψ1(

nA

n
) · ψ2(

nA

n
)

2

)
+P
(
|∆̂ĵA

| >
ψ1(

nA

n
) · ψ2(

nA

n
)

2

)
≤ 4e−ψ1(

nA
n

)·ψ2(
nA
n

)·nη(pA)

A /(K5·2). (5.15)

Thus the proof for b) is concluded.

Step 4: We now show c), that the protected set P0
A for the entire tree contains all

strong variables with probability close to 1, provided the number of protect variables

p0 is greater than p1. It is sufficient to show this property at the root node, where

A = [0, 1]p, since the protected set will only increase after a split. Note that when

p0 > p1, if a strong variable is not in the protected set, there must be at least one noise

variable with larger V̂ I. Hence we have:

P (S ∈ P0
A)

≥ 1− P (∃j ∈ S and i ∈ Sc, s.t. V̂ IA(j) < V̂ IA(i))

≥ 1−
∑

j∈S,i∈Sc

P (V̂ IA(j) < V̂ IA(i))

≥ 1− p1p2P (V̂ IA(p1) < V̂ IA(p1 + 1)).

By similar arguments to those used in Steps 2), and noting that nA = n at the root

94

node, we can bound the above probability by:

P (S ∈ P0
A)

≥ 1− p1p2e
V IA(p1)·nη(p)/(K5·2).

(5.16)

Since at the root node, all the variable importance measures, including V IA(p1), are

fixed constants, The proof for c) is concluded.

Proof of Theorem 3.4.8. We prove this theorem in two steps. First, we show that for

the entire constructed RLT, with exponential rate, only strong variables are used as

splitting variables. Second, we derive consistency and error bounds by bounding the

total variation using the terminal node size variable importance which converges to

zero.

Step 1: In this step, we show that for the entire tree, only strong variables are

used as the splitting variable, and furthermore, the variable importance measure for

the splitting variable is at least half of the maximum variable importance at each

split. First, it is easy to verify that, both a) and b) in Theorem3.4.7 can be satisfied

simultaneously with probability bounded below by

1− C · e−ψ1(
nA
n

)·ψ2(
nA
n

)·nη(p)
A /K . (5.17)

95

Define A as the set of all internal nodes. Recall that ψ1(δ) and ψ2(bj − aj) can be

approximated by δζ1 and (bj − aj)
ζ2 , respectively. Thus we can always find a γ∗ < 1

such that when nA > nγ
∗
, ψ1(

nA

n
) ·ψ2(

nA

n
) ·nη(p)A → ∞. We define two groups of internal

nodes A1 = {Ai, s.t. Ai ∈ A, nAi
≥ nγ

∗} and A2 = {Ai, s.t. Ai ∈ A, nAi
< nγ

∗}, where

nAi
is the sample size at node Ai. Then we bound the probability:

P

({
ĵA ∈ S and max

j
V IA(j) > 2V IA

(
ĵA
)
, for all Ai ∈ A

}c)
≤

∑
Ai∈A1

P

({
ĵAi

∈ S and max
j
V IAi

(j) > 2V IAi

(
ĵAi

)}c)
+
∑
Ai∈A2

P

({
ĵAi

∈ S and max
j
V IAi

(j) > 2V IAi

(
ĵAi

)}c)
. (5.18)

For all internal nodes in A1, the number of nonmuted variables is less than or equal to

p. Hence, by the monotonicity of η(·) in Assumption 3.4.6 and Equation 5.17, the first

term in Equation 5.18 can be bounded above by

∑
Ai∈A1

C · e−ψ1(nγ∗−1)·ψ2(nγ∗−1)·nγ∗η(p)/K . (5.19)

Note that in A2, the node sample size is less than nγ
∗
. Since we choose the splitting

point uniformly between the q-th and (1 − q)-th quintile, to reach a node in A2, we

need to go through a minimal of −γ∗ logq(n) splits. Noticing that this number goes to

infinity, and that we mute pd variables after each split, all variables except the ones in

the protected set should be muted in A2. Hence, the second term in Equation 5.18 can

96

be bounded above by

∑
Ai∈A2

C · e−ψ1(nγ−1)·ψ2(nγ−1)·nγη(p0)/K . (5.20)

Noting that A1

∪
A1 = A, and that they contain at most n1−γ elements, and combining

Equations 5.19 and 5.20, we obtain:

P

({
ĵA ∈ S and max

j
V IA(j) > 2V IA

(
ĵA
)
, for all Ai ∈ A

}c)
≤ C · n1−γe−{ψ1(nγ∗−1)·ψ2(nγ∗−1)·nγ∗η(p)+ψ1(nγ−1)·ψ2(nγ−1)·nγη(p0)}/K ,

which goes to zero at an exponential rate. Thus the desired result in this step is

established.

Step 2: Now we start by decomposing the total variation and bounding it by the

variable importance:

E[(f̂ − f)2] =

∫
(f̂ − f)2dP

=
∑
t

∫
At

(f̂ − f̄At)
2dP+

∑
t

∫
At

(f̄At − f)2dP, (5.21)

where f̄At is the conditional mean of f within terminal node At, and where t indexes the

terminal node. Noting that each terminal node At in f̂ contains nAt ≥ nγ observations,

and that the value of f̂ at each terminal node is the average of the Y s, it must therefore

97

have an exponential tail. Hence the first term in Equation (5.21) can be bounded by:

∑
t

∫
At

(f̂ − f̄At)
2dP ≤

∑
t

P (At) · (PnAt
− PAt)f

=
∑
t

P (At) ·Op(n
1
2
At
)

≤ Op(n
−γ/2). (5.22)

The second sum in Equation (5.21) can be further expanded as

∑
t

∫
At

(f̄At − f)2dP

=
∑
t

∫
X∈At

(f̄At − f(X))2dX

=
∑
t

∫
X∈At

(∫
Z∈At

f(Z)
dZ

P (At)
− f(X)

)2

dX

=
∑
t

∫
X∈At

(∫
Z∈At

(
f(Z)− f(X)

) dZ

P (At)

)2

dX. (5.23)

The Cauchy-Schwartz inequality now implies that

∑
t

∫
At

(f̄At − f)2dP

≤
∑
t

∫
X∈At

∫
Z∈At

(
f(Z)− f(X)

)2 dZ

P (At)
dX

=
∑
t

∫
X∈At

E
[(
f(Z)− f(X)

)2|Z ∈ At
]
dX

=
∑
t

P (At) · E
[(
f(Z)− f(X)

)2|Z ∈ At, X ∈ At
]
. (5.24)

For each given At, due to the independence of Z and X, the expectation in every

98

summand can be decomposed as

E
[(
f(Z)− f(X)

)2|Z ∈ At, X ∈ At
]

= E
[(
f(Z(1), ..., Z(p))− f(X(1), ..., X(p))

)2|Z ∈ At, X ∈ At
]

= E

[(
f(Z(1), Z(2), ..., Z(p))− f(X(1), Z(2), ..., Z(p))

)2
+
(
f(X(1), Z(2), Z(2), ..., Z(p))− f(X(1), X(2), Z(3), ..., Z(p))

)2
+ · · ·

+
(
f(X(1), ..., X(p1−1), Z(p1), ..., Z(p))− f(X(1), ..., X(p))

)2|Z ∈ At, X ∈ At

]
.

(5.25)

Note that the variables with the labels p1 + 1, ..., p are in the set Sc of noise variables.

Changing the values of these components will not change the value of f . Hence the

last term in the expectation of (5.25) is equal to

(
f(X(1), ..., X(p1−1), Z(p1), X(P1+1)..., X(p))− f(X(1), ..., X(p))

)2
.

Again, since all the components of X and Z are independent, the jth term in the

expectation of (5.25) corresponds to the variable importance of the jth variable. Thus

we have:

E
[(
f(Z)− f(X)

)2|Z ∈ At, X ∈ At
]

= E

[(
f(Z(1), Z(2), ..., Z(p))− f(X(1), Z(2), ..., Z(p))

)2|Z ∈ At, X ∈ At

]

99

+E

[(
f(X(1), Z(2), Z(2), ..., Z(p))− f(X(1), X(2), Z(3), ..., Z(p))

)2∣∣∣∣Z ∈ At, X ∈ At

]
+ · · ·

+E

[(
f(X(1), ..., X(p1−1), Z(p1), ..., Z(p))− f(X(1), ..., X(p))

)2|Z ∈ At, X ∈ At

]
=

p1∑
j=1

V IAt(j)

≤ p1max
j
V IAt(j).

(5.26)

It remains to show that max
j
V IAt(j) → 0 as n → ∞. Using Lemma 5.0.1, we

have maxj V IAt(j) = o(n−C1) where C1 depends only on γ, p1, and q. Moreover, the

definition of C1 shows that it is a strictly decreasing function of p1. Hence

E
[(
f(Z)− f(X)

)2|Z ∈ At, X ∈ At
]

≤ C2 ×Op(n
−C1). (5.27)

Combining equations (5.21), (5.22) and (5.27), we have

E[(f̂ − f)2] = Op(n
−C3), (5.28)

where C3 = (min(C1, γ/2)). Due to the monotonicity of C1, C3 is also monotone

decreasing in p1. Noticing that C3 does not depend on p, the convergence rate of

RLT only depends on the choice of γ, q, and the number of strong variables p1. This

concludes the proof.

100

Lemma 5.0.1. Let AnT denote the set of the terminal hypercubes. Then it holds

max
A∈AnT ,j∈S

V IA(j) = Op(n
−C),

where C is a constant depending only on γ, p1, and q.

Proof of Lemma 5.0.1. For any terminal hypercube A ∈ AnT , let A1 → A2 → . . . →

AN = A be the constructed chain of the nodes leading to A, where Ak+1 is the daughter

node of Ak. Since at each node, the splitting point is chosen uniformly between the

100q and 100(1 − q) quantiles of the current range of the splitting variable for some

q ∈ (0, 1
2
), and since the terminal node is the last node having ≥ nγ observations, it

is easy to see that −γ logq(n) ≤ N ≤ −γ log(1−q)(n). Let jk = argmaxj∈S V̂ IAk
(j)

be the index of the variable selected for splitting at node Ak and, moreover, define

mj =
∑N

k=1 I(jk = j), the number of times the jth variable is used for splitting. Let

Nj = max{k :, k = 1, ..., N, jk = j}, the index of the last node split with the jth

variable.

Before presenting the main proof, we state two simple properties:

Property 1. For j ∈ S, V IANj
(j) ≤ c1(1 − q)mj . This is because after node ANj

, the

interval of the jth variable has been split mj times so its length is at most (1− q)mj−1.

Therefore, according to the proof of Theorem 3.4.7, V IANj
(j) ≤ c1(1− q)2mj .

Property 2. For k = 1, ..., N − 1 and any j ∈ S, VAk+1
(j) ≤ 2V IAk

(jk)/q
2. That is,

the importance of any variable in the daughter node is no larger than the importance

of the selected variable at the current node by a factor of 2/q2. This follows from

101

Theorem 3.4.7 (b): 2V IAk
(jk) ≥ maxj V IAk

(j). On other hand, for any j ∈ S, since

Ak+1 ⊂ Ak and |Ak+1| ≥ |Ak|/q, we have

V IAk
(j) =

E

[(
f(X(−j), X(j))− f(X(−j), X̃(j))

)2
I(X ∈ Ak, X̃ ∈ Ak)

]
σ2P (X ∈ Ak)

≥
E

[(
f(X(−j), X(j))− f(X(−j), X̃(j))

)2
I(X ∈ Ak+1, X̃ ∈ Ak+1)

]
/q

σ2P (X ∈ Ak+1)q

= V IAk+1
(j)/q2.

Thus, VAk+1
(j) ≤ V IAk

(j)/q2 ≤ 2V IAk
(jk)/q

2. With these two properties, we now

proceed to prove the lemma. First, we define the following sequence:

N >
N

(rp1)1
> · · · > N

(rp1)p1
> 0, (5.29)

where r is a constant satisfying r > 1 and 2(1 − q)2r/q2 = c ≤ 1. Since 0 <

q < 1/2, r can always be properly chosen. Correspondingly, we obtain interval-

s Wk = [N/(rp1)
k, N/(rp1)

k−1) for k = 1, ..., p1 and Wp1+1 = [0, N/(rp1)
p1). Recall

the definition of mj, the number of times the jth variable is selected for splitting. Since∑p1
k=1mj = N , there must be at least one j such that mj ≥ N/(rp1) and mj ∈ W1.

Furthermore, since there are (p1 + 1) intervals, there exists an integer p1 + 1 ≥ k0 ≥ 2

such that mj /∈ Wk0 for any j = 1, ..., p1. Hence, we can define two sets:

S1 = {j : mj ≥ N/(rp1)
k0−1},

102

and

S2 = {j : mj < N/(rp1)
k0},

so that S1 ̸= ∅ and S1 ∪ S2 = {1, ..., p1}.

Let j∗ be the variable in S1 and split last among all the variables in S1 and let

N∗ be the node index where this variable is split last. In other words, the variables

selected in the nodes Ak for k > N∗ are all from S2. Then using Property 1, we have

V IAN∗ (j
∗) ≤ c1(1− q)2mj∗ . Using the fact that j∗ ∈ S1, we obtain

VAN∗ (j
∗) ≤ c2(1− q)2N/(rp1)

k0−1

.

Since all splitting variables after node AN∗ are from S2, and the number of the distinct

variables is at most (p1 − 1), and the number of possible splits after AN∗ = N −N∗, is

no larger than (p1 − 1)N/(rp1)
k0 . Hence we conclude: (a) if N∗ = N , then

V IA(j) = V IAN
(j) ≤ 2V IAN

(jN) = 2V IAN∗ (j
∗)

≤ 2c1(1− q)2N/(rp1)
k0−1

2c1 ≤ (1− q)2N/(rp1)
p1 .

(b) if N∗ < N , then according to Property 2,

V IA(j) = V IAN
(j) ≤ (

2

q2
)N−N∗

V IA∗
N
(j∗) ≤ (

2

q2
)(p1−1)N/(rp1)k0V IA∗

N
(j∗).

103

Thus,

V IA(j) ≤ 2c3
(1− q)2q2

(
2(1− q)2r

q2

)(p1−1)N/(rp1)k0

(1− q)2rN/(rp1)
k0

≤ c4(1− q)2rN/(rp1)
k0

≤ c4(1− q)2rN/(rp1)
p1+1

, (5.30)

where c4 is a constant depending on p1 and q, and where we used the fact that 2(1 −

q)2r/q2 < 1.

Finally, since −γ logq(n) ≤ N ≤ −γ log(1−q)(n), we obtain

max
j∈S

V IA(j) ≤ c5(1− q)−2rγ logq(n)/(rp1)
p1+1

,

where c5 is a constant depending only on p1, q and R. The lemma holds.

104

Bibliography

Ali, K. M., and Pazzani, M. J. (1996), “Error reduction through learning multiple
descriptions,” Machine Learning, 24(3), 173–202.

Amit, Y., and Geman, D. (1997), “Shape quantization and recognition with randomized
trees,” Neural computation, 9(7), 1545–1588.

Bauer, E., and Kohavi, R. (1999), “An empirical comparison of voting classification
algorithms: Bagging, boosting, and variants,” Machine learning, 36(1-2), 105–139.

Biau, G. (2012), “Analysis of a random forests model,” The Journal of Machine Learn-
ing Research, 98888, 1063–1095.

Biau, G., Devroye, L., and Lugosi, G. (2008), “Consistency of random forests and other
averaging classifiers,” The Journal of Machine Learning Research, 9, 2015–2033.

Breiman, L. (1996), “Bagging predictors,” Machine learning, 24(2), 123–140.

Breiman, L. (1998), “Arcing classifier (with discussion and a rejoinder by the author),”
The annals of statistics, 26(3), 801–849.

Breiman, L. (2001), “Random forests,” Machine learning, 45(1), 5–32.

Breiman, L. (2004), “Consistency for a simple model of random forests,” Technical
Report 670, .

Breiman, L., Friedman, J., Ohlsen, R., and Stone, C. (1984), “Classification and re-
gression trees,” , .

Caruana, R., Niculescu-Mizil, A., Crew, G., and Ksikes, A. (2004), Ensemble selection
from libraries of models,, in Proceedings of the twenty-first international conference
on Machine learning, ACM, p. 18.

Chipman, H. A., George, E. I., and McCulloch, R. E. (2010), “BART: Bayesian additive
regression trees,” The Annals of Applied Statistics, 4(1), 266–298.

Ciampi, A., Hogg, S. A., McKinney, S., and Thiffault, J. (1988), “RECPAM: a com-
puter program for recursive partition and amalgamation for censored survival data
and other situations frequently occurring in biostatistics. I. Methods and program
features,” Computer Methods and Programs in Biomedicine, 26(3), 239–256.

Cutler, A., and Zhao, G. (2001), “PERT-perfect random tree ensembles,” Computing
Science and Statistics, 33, 490–497.

105

Dietterich, T. G. (2000), “An experimental comparison of three methods for construct-
ing ensembles of decision trees: Bagging, boosting, and randomization,” Machine
learning, 40(2), 139–157.

Efron, B., and Tibshirani, R. (1993), An introduction to the bootstrap, Vol. 57 CRC
press.

Fleming, T. R., and Harrington, D. P. (2011), Counting processes and survival analysis,
Vol. 169 Wiley. com.

Friedman, J. H. (2001), “Greedy function approximation: a gradient boosting ma-
chine,” Annals of Statistics, pp. 1189–1232.

Friedman, J., Hastie, T., and Tibshirani, R. (2010), “Regularization paths for general-
ized linear models via coordinate descent,” Journal of statistical software, 33(1), 1.

Geurts, P., Ernst, D., andWehenkel, L. (2006), “Extremely randomized trees,”Machine
learning, 63(1), 3–42.

Graf, E., Schmoor, C., Sauerbrei, W., and Schumacher, M. (1999), “Assessment
and comparison of prognostic classification schemes for survival data,” Statistics in
medicine, 18(17-18), 2529–2545.

Harrell Jr, F. E., Califf, R. M., Pryor, D. B., Lee, K. L., and Rosati, R. A. (1982),
“Evaluating the yield of medical tests,” JAMA: the journal of the American Medical
Association, 247(18), 2543–2546.

Ho, T. K. (1998), “The random subspace method for constructing decision forests,”
Pattern Analysis and Machine Intelligence, IEEE Transactions on, 20(8), 832–844.

Hothorn, T., Bühlmann, P., Dudoit, S., Molinaro, A., and Van Der Laan, M. J. (2006),
“Survival ensembles,” Biostatistics, 7(3), 355–373.

Hothorn, T., Lausen, B., Benner, A., and Radespiel-Tröger, M. (2004), “Bagging sur-
vival trees,” Statistics in medicine, 23(1), 77–91.

Hsieh, K.-L. (2007), “Applying neural networks approach to achieve the parameter
optimization for censored data.,” WSEAS Transactions on Computers, 6(5), 858–
863.

Hunt, E. B., Marin, J., and Stone, P. J. (1966), “Experiments in induction.,” , .

Ishwaran, H. (2007), “Variable importance in binary regression trees and forests,” Elec-
tronic Journal of Statistics, 1, 519–537.

Ishwaran, H., Kogalur, U. B., Blackstone, E. H., and Lauer, M. S. (2008), “Random
survival forests,” The Annals of Applied Statistics, pp. 841–860.

106

Kim, H., and Loh, W.-Y. (2001), “Classification trees with unbiased multiway splits,”
Journal of the American Statistical Association, 96(454).

Kohavi, R., and Quinlan, J. R. (2002), Data mining tasks and methods: Classification:
decision-tree discovery,, in Handbook of data mining and knowledge discovery, Oxford
University Press, Inc., pp. 267–276.

Kosorok, M. R., and Lin, C.-Y. (1999), “The versatility of function-indexed weighted
log-rank statistics,” Journal of the American Statistical Association, 94(445), 320–
332.

Kwok, S. W., and Carter, C. (1990), Multiple decision trees,, in Proceedings of the
Fourth Annual Conference on Uncertainty in Artificial Intelligence, North-Holland
Publishing Co., pp. 327–338.

LeBlanc, M., and Crowley, J. (1992), “Relative risk trees for censored survival data,”
Biometrics, pp. 411–425.

LeBlanc, M., and Tibshirani, R. (1998), “Monotone shrinkage of trees,” Journal of
Computational and Graphical Statistics, 7(4), 417–433.

Lin, Y., and Jeon, Y. (2006), “Random forests and adaptive nearest neighbors,” Journal
of the American Statistical Association, 101(474), 578–590.

Mart́ınez-Muñoz, G., and Suárez, A. (2006), Pruning in ordered bagging ensembles,, in
Proceedings of the 23rd international conference on Machine learning, ACM, pp. 609–
616.

McLachlan, G., and Krishnan, T. (2007), The EM algorithm and extensions, Vol. 382
John Wiley & Sons.

Mehta, M., Rissanen, J., Agrawal, R. et al. (1995), MDL-Based Decision Tree Pruning.,,
in KDD, Vol. 95, pp. 216–221.

Mingers, J. (1987), “Expert systems-rule induction with statistical data,” Journal of
the operational research society, pp. 39–47.

Mingers, J. (1989), “An empirical comparison of pruning methods for decision tree
induction,” Machine learning, 4(2), 227–243.

Niblett, T. (1987), “Constructing decision trees in noisy domains,” , .

Quinlan, J. R. (1983), “Learning efficient classification procedures and their application
to chess end games,” in Machine learning Springer, pp. 463–482.

Quinlan, J. R. (1986), “Induction of decision trees,” Machine learning, 1(1), 81–106.

Quinlan, J. R. (1987), “Simplifying decision trees,” International journal of man-
machine studies, 27(3), 221–234.

107

Quinlan, J. R. (1993), C4. 5: programs for machine learning, Vol. 1 Morgan kaufmann.

Rissanen, J. J. (1996), “Fisher information and stochastic complexity,” Information
Theory, IEEE Transactions on, 42(1), 40–47.

Sauerbrei, W., and Royston, P. (1999), “Building multivariable prognostic and diag-
nostic models: transformation of the predictors by using fractional polynomials,”
Journal of the Royal Statistical Society: Series A (Statistics in Society), 162(1), 71–
94.

Schumacher, M., Bastert, G., Bojar, H., Huebner, K., Olschewski, M., Sauerbrei, W.,
Schmoor, C., Beyerle, C., Neumann, R., and Rauschecker, H. (1994), “Randomized
2 x 2 trial evaluating hormonal treatment and the duration of chemotherapy in node-
positive breast cancer patients. German Breast Cancer Study Group.,” Journal of
Clinical Oncology, 12(10), 2086–2093.

Segal, M. R. (1988), “Regression trees for censored data,” Biometrics, pp. 35–47.

Simon, N., Friedman, J., Hastie, T., and Tibshirani, R. (2011), “Regularization paths
for Coxs proportional hazards model via coordinate descent,” Journal of Statistical
Software, 39(5), 1–13.

Strobl, C., Boulesteix, A.-L., Kneib, T., Augustin, T., and Zeileis, A. (2008), “Condi-
tional variable importance for random forests,” BMC bioinformatics, 9(1), 307.

Sutton, R. S., and Barto, A. G. (1998), Reinforcement learning: An introduction, Vol. 1
Cambridge Univ Press.

Tong, L.-I., Wang, C.-H., and Hsiao, L.-C. (2006), “Optimizing processes based on
censored data obtained in repetitious experiments using grey prediction,” The Inter-
national Journal of Advanced Manufacturing Technology, 27(9-10), 990–998.

van de Geer, S., and Lederer, J. (2012), “The Bernstein–Orlicz norm and deviation
inequalities,” Probability Theory and Related Fields, pp. 1–26.

Van der Laan, M. J., and Robins, J. M. (2003), Unified methods for censored longitu-
dinal data and causality Springer.

Van Der Vaart, A. W., and Wellner, J. A. (1996), Weak Convergence Springer.

Wei, G. C., and Tanner, M. A. (1990), “A Monte Carlo implementation of the EM algo-
rithm and the poor man’s data augmentation algorithms,” Journal of the American
Statistical Association, 85(411), 699–704.

Zhao, Y., Kosorok, M. R., and Zeng, D. (2009), “Reinforcement learning design for
cancer clinical trials,” , .

108

Zhu, R., and Kosorok, M. R. (2012), “Recursively imputed survival trees,” Journal of
the American Statistical Association, 107(497), 331–340.

Zhu, R., Zeng, D., and Kosorok, M. R. (2012), Reinforcement Learning Trees,, Tech-
nical Report 33, The University of North Carolina at Chapel Hill Department of
Biostatistics Technical Report Series.

109

