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ABSTRACT 
 

Melissa Ellermann: Iron and the intestinal microbiota in inflammatory bowel diseases 
(Under the direction of R. Balfour Sartor) 

 
Inflammatory bowel diseases (IBD) are chronic, immune-mediated disorders that are the 

result of inappropriate immune responses towards a subset of resident intestinal microbes in 

genetically susceptible individuals. Epidemiological studies have correlated dietary factors with 

increased risk for disease development, exacerbation and relapse in IBD patients. Iron is of 

particular interest because of the clinical concern of disease exacerbation upon oral iron 

supplementation in anemic IBD patients. Moreover, iron can selectively modulate the growth, 

physiology and function of numerous bacterial taxa, although the precise impact on specific 

resident intestinal bacteria remains largely unexplored. We therefore hypothesized that intestinal 

iron availability modulates the ecological structure and proinflammatory potential of the 

intestinal microbiota. To explore this hypothesis, we investigated how iron availability alters the 

composition of the intestinal microbiota and impacts the physiology and proinflammatory 

potential of adherent invasive Escherichia coli (AIEC), a distinct pathotype of enteric resident E. 

coli associated with IBD. In inflammation-resistant wild type mice, decreasing luminal iron 

concentrations during community assembly resulted in compositional changes consistent with a 

dysbiotic state, including a bloom in endogenous E. coli. Aggregation of the resident AIEC strain 

NC101, which is dependent on both cellulose production and iron availability, influenced 

subsequent interactions with macrophages. When monoassociated in germ free, inflammation-
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susceptible interleukin-10-deficient (Il10-/-) mice, abrogation of cellulose production in NC101 

delayed onset of colitis, suggesting that cellulose may be a novel factor that enhances the 

proinflammatory potential of AIEC. Consistent with our in vivo observations, NC101 cellulose 

production corresponded with increased resistance against macrophage phagocytosis and 

enhanced macrophage proinflammatory responses when bacterial iron availability was restricted. 

When colonized with a complex microbiota, dietary iron supplementation also limited colitis 

development in Il10-/- mice. Taken together, these studies suggest that decreasing iron 

availability enhances the proinflammatory potential of the intestinal microbiota and highlight the 

complex interplay between host, microbial and environmental factors in the development of IBD.  
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CHAPTER 1 

INTRODUCTION 

1.1 Inflammatory bowel diseases 

Inflammatory bowel diseases (IBD), including Crohn’s disease (CD) and ulcerative 

colitis (UC), are characterized by chronic and relapsing intestinal inflammation that are the result 

of inappropriate immune responses to a subset of luminal bacteria and their products (Sartor, 

2008). The development of IBD is complex, involving incompletely understood interactions 

between host genetics, the mucosal immune system, the intestinal microbiota and environmental 

factors. Approximately 1.2 million individuals in the United States have IBD (Kappelman et al., 

2012), which corresponds with a heavy economic burden estimated at $6.3 billion annually 

(Kappelman et al., 2008). Current IBD therapies include immune suppression and surgical 

resections of inflamed tissues designed to induce remission. Nonetheless, many patients 

experience incomplete remission, reactivation of disease following initial response and adverse 

side effects from immunosuppressive drugs, thus necessitating the development of safer, more 

efficacious and longer lasting treatments.  

 

1.1.1 Iron and IBD 

Epidemiological studies have introduced the potential role of several dietary 

macronutrients as protective or risk factors in the development of IBD (Ananthakrishnan, 2015). 
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However, as these epidemiological studies have mainly focused on identifying links between 

dietary macromolecules and IBD, the potential role of dietary micronutrients in the pathogenesis 

of IBD remains poorly understood. Dietary iron is of particular clinical interest, given that iron 

homeostasis is often dysregulated in IBD patients and host iron status can impact immune 

function. Indeed, anemia is the most common extraintestinal complication within the IBD 

population that further reduces overall quality of life for many patients (Wells et al., 2006) 

(Gisbert et al., 2009). Iron deficiency is the most frequent cause of anemia and is estimated to 

affect 36-90% of IBD patients (Kulnigg and Gasche, 2006). Decreased dietary iron intake as a 

result of overall reduced appetite and exclusion of iron-rich foods as well as intestinal bleeding 

during periods of active disease and iron malabsorption in patients with proximal small bowel 

disease are all likely factors that contribute to iron deficiency anemia (IDA) in IBD (Hwang et 

al., 2012).  

IDA is treated through oral or intravenous (IV) iron supplementation in order to replenish 

depleted iron stores and increase blood hemoglobin levels. Although both routes of iron 

administration are effective in increasing hemoglobin levels, oral iron supplementation is less 

expensive (Rizvi and Schoen, 2011) and can be administered at home and, as a result, is often the 

first choice of treatment (Hwang et al., 2012). However, oral iron supplementation is not as well 

tolerated; 5-25% of IBD patients receiving oral iron supplements report adverse side effects such 

as abdominal pain, diarrhea and constipation, resulting in discontinuation of treatment (de Silva 

et al., 2005) (Gisbert et al., 2009) (Lee et al., 2012) (Goodhand et al., 2011). Moreover, 

exacerbation of intestinal inflammation and disease activity have been observed with increased 

dietary iron consumption in numerous rodent models of experimental colitis (Kulnigg and 

Gasche, 2006) (Werner et al., 2011) (Chua et al., 2013), further raising concerns regarding the 
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safety of oral iron supplementation in IBD patients. Interestingly, in some non-IBD infant 

populations, dietary iron fortification increases diarrhea, intestinal pathogen burden and fecal 

calprotectin, a biomarker of intestinal inflammation (Zimmermann et al., 2010) (Jaeggi et al., 

2014). However in an older population of children (6-11 years) with low initial enteropathogen 

burden, treatment of iron deficiency through oral iron supplementation was effective and was not 

associated with increased fecal calprotectin or diarrhea (Dostal et al., 2014a). These contrasting 

results suggest that other factors such as age, environment or the intestinal microbiota may 

influence the risk of adverse side effects such as enhanced intestinal inflammation in response to 

oral iron supplementation. Identifying host and microbial factors that promote iron-induced 

exacerbation of intestinal inflammation could enable the development of prognostic tools that 

predict which IBD patient subsets are at risk for disease relapse in response to oral iron 

supplementation. Ultimately, establishing more definitive and mechanistic links between dietary 

factors and intestinal inflammation that transcends correlative, epidemiological studies could 

enable the incorporation of dietary interventions as part of safe, efficacious and long-lasting 

treatment regimens for IBD. 

 

1.2 Host iron homeostasis 

1.2.1 Host iron requirements 

 Iron is an essential micronutrient for nearly all life forms, serving as a cofactor for 

numerous cellular proteins involved in diverse processes including DNA synthesis and repair, 

cellular respiration, biodegradation and biosynthetic pathways and transcriptional regulation 

(Evstatiev and Gasche, 2012). However, free iron can also participate in Fenton chemistry, a 

redox reaction that generates toxic reactive oxygen species (ROS) that can damage cellular 
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lipids, proteins and DNA. As a result, free intracellular iron is tightly regulated through various 

complex mechanisms both at a systemic and cellular level. 

 The human body contains about 3.5 g of stored iron, the majority of which is collectively 

located within erythrocytes (2.5 g), macrophages and monocytes (0.5 g) and hepatocytes (0.2 g) 

(Stein et al., 2010). Approximately 1-2 mg of iron is lost daily through sloughed off intestinal 

epithelial cells (IEC), hair loss and perspiration and is replenished through absorption of heme 

and non-heme iron from the diet (Stein et al., 2010). The remaining daily requirements for iron 

are met through the recycling of heme from senescent erythrocytes phagocytosed by 

macrophages of the reticuloendothelial system (Stein et al., 2010).   

 

1.2.2 Regulation of host iron homeostasis 

 Dietary non-heme iron, either in the form of ferric or ferrous iron, is absorbed by 

enterocytes in the duodenum. Approximately 5-15% of dietary non-heme iron is absorbed, the 

bioavailability of which depends on numerous factors including other interacting dietary 

components, pharmaceuticals, inflammation and host iron status (Hurrell and Egli, 2010). 

Luminal ferric iron is reduced to ferrous iron by either gastric acid from the stomach or by the 

apically localized enzyme duodenal cytochrome B (DCYTB) and is subsequently transported 

into enterocytes via DMT1 (Stein et al., 2010). If systemic iron demands are low, iron binds to 

the intracellular protein ferritin and is eventually excreted when the enterocyte is sloughed off 

into the lumen. However, when systemic iron stores are depleted, ferrous iron is exported from 

the enterocyte via the basally located transporter ferroportin. Ferrous iron is then released into 

the bloodstream and oxidized by hephaestin before binding to the plasma iron binding protein 

transferrin (Anderson et al., 2009) (Stein et al., 2010). Once bound to transferrin, iron can be 
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transported throughout the body, where it can enter cells by binding to the ubiquitiously 

expressed transferrin receptor 1 (TFR1) (Stein et al., 2010). 

The liver peptide hormone hepcidin plays a central role in regulating systemic iron 

homeostasis. When systemic iron stores are replete, iron-bound transferrin binds TFR1 on 

hepatocytes (Cherayil et al., 2011). This liberates high-Fe hemochromatosis protein (HFE), 

which then complexes with transferrin receptor 2 (TFR2) and stimulates an intracellular 

signaling cascade that results in enhanced transcription of HAMP encoding hepcidin (Knutson, 

2010). The hormone hepcidin then binds ferroportin on enterocytes and induces its endocytosis 

(Nemeth et al., 2004b), thus preventing additional duodenal absorption of dietary iron. Hepcidin 

also regulates systemic iron levels by preventing export of ferrous iron from reticuloendothelial 

macrophages through a similar mechanism (Theurl et al., 2008). In contrast, when iron is 

limiting, production of hepcidin is reduced, enabling enhanced membrane localization of 

ferroportin in both enterocytes and macrophages and increased release of iron into systemic 

circulation (Cherayil et al., 2011).   

 

1.2.3 Host iron homeostasis and inflammation 

Infection and inflammatory processes are intricately linked with host iron homeostasis. 

Inflammatory mediators such as the proinflammatory cytokine IL-6 can stimulate hepatocyte 

production of hepcidin, thus perturbing host iron homeostasis by limiting dietary iron absorption 

and increasing intracellular retention of iron within the reticuloendothelial system (Nemeth et al., 

2004a). Chronic production of hepcidin as a result of inflammation or infection can lead to a type 

of anemia known as anemia of inflammation, which is a frequent cause of anemia within the IBD 

population (Stein et al., 2010) (Bager et al., 2013). Other proinflammatory processes including 
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activation of Toll-like receptors (TLRs) by microbial ligands and endoplasmic reticulum (ER) 

stress have also been linked with increased hepcidin production (Drakesmith and Prentice, 2012). 

Interestingly, the intestinal microbiota also influences cellular iron homeostasis within 

enterocytes. In contrast to conventionally housed animals, germ free (GF) mice exhibit an altered 

profile of proteins involved in intestinal iron absorption and storage that is consistent with an 

iron deficient state (Deschemin et al., 2015).   

Dysregulated iron homeostasis has been observed clinically in IBD patients and in 

numerous experimental models of colitis and ileitis. Development of intestinal inflammation is 

associated with increased liver hepcidin expression and decreased systemic iron stores in the 

TNFΔARE mouse model of ileitis and with Salmonella-induced colitis (Wang et al., 2009) 

(Schümann et al., 2010). Increased hepcidin has also been reported in a T-cell transfer model of 

colitis and in several chemically-induced models of colitis (Wang et al., 2009) (Wang et al., 

2012) (Shanmugam et al., 2014). Reduction of liver hepcidin expression through 

pharmacological inhibition of BMP signaling results in decreased colonic expression of 

proinflammatory cytokines and less severe histopathology (Wang et al., 2009) (Wang et al., 

2012). Moreover, proinflammatory cytokine production is decreased in iron-depleted 

macrophages cultured with Salmonella enterica serovar Typhimurium or challenged with 

lipopolysaccharide (LPS) (Wang et al., 2008) (Wang et al., 2009). Interestingly, clinical studies 

have also demonstrated a positive correlation between serum hepcidin levels and both serum 

markers of inflammation including IL-6 and C-reactive protein (CRP) and disease activity in 

IBD patients (Oustamanolakis et al., 2011) (Basseri et al., 2013) (Bergamaschi et al., 2013), 

although this has not been consistently observed (Mecklenburg et al., 2014). Taken together, 

intestinal inflammation can perturb host iron homeostasis through modulation of hepcidin 
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expression. Enhanced hepcidin production in turn promotes iron retention within 

reticuloendothelial cells such as macrophages and thus can modulate innate immune responses 

that may further impact the development of inflammation. 

 

1.2.4. Dietary iron and inflammation 

 The impact of dietary iron supplementation on intestinal inflammation remains 

controversial, especially considering the inconsistent effects observed in animal models of 

experimental colitis. As only 5-15% of dietary non-heme iron is absorbed, it is no surprise that 

consumption of an iron-fortified diet increases total and free non-heme iron concentrations in the 

feces in a dose dependent manner (Lund et al., 1999) (Carrier et al., 2001). Increased dietary iron 

intake is also associated with enhanced fecal ROS production (Lund et al., 1999), likely through 

the participation of free iron in Fenton chemistry. Increased dietary iron and fecal ROS also 

promotes lipid peroxidation within colonic tissues, indicating a shift towards a more pro-oxidant 

environment within the colonic mucosa (Lund et al., 1999) (Lund et al., 2001). In models of 

chemically-induced colitis, increased dietary iron consumption results in more severe 

histopathology, proinflammatory cytokine production and disease activity that is also associated 

with increased oxidative stress within colonic tissues (Kulnigg and Gasche, 2006) (Chua et al., 

2013). Consistent with these findings, administration of an oral iron chelator in rats fed a control 

diet ameliorates chemically-induced colitis and reduces colonic markers of oxidative stress 

(Ablin et al., 1999). Dietary iron restriction also limits the development of ileitis in the 

TNFΔARE mouse model and is associated with decreased ileal TNF-α production and reduced 

ER stress (Werner et al., 2011). Taken together, these studies support the hypothesis that 

increased luminal iron as a result of oral iron supplementation can exacerbate intestinal 
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inflammation, potentially by enhancing ROS production and consequent oxidative stress within 

the mucosal environment.   

 However, more recent studies have demonstrated that oral iron supplementation may also 

protect against the development of colitis. In one study, mice and rats that received daily oral 

boluses of ferric or ferrous iron for 6 weeks developed less severe inflammation and exhibited 

reduced colonic myeloperoxidase (MPO) activity when administered 2,4,6-

trinitrobenzenesulfonic acid (TNBS) to induce colitis (Ettreiki, 2012). Dostal and colleagues also 

demonstrated a similar protective effect with dietary iron supplementation in GF rats colonized 

with a human microbiota in the absence of any chemical treatment to induce colitis (Dostal et al., 

2014b). Interestingly, dietary iron restriction in these rats also resulted in reduced colonic and 

ileal histopathology. These findings suggest that iron may have a bimodal effect in modulating 

intestinal inflammation, thus potentially explaining the inconsistent findings observed in animal 

studies to date. Moreover, the impact of oral iron supplementation on intestinal inflammation 

may depend on dose, length and frequency of iron supplementation and the colitis model 

utilized, all of which vary between these different studies.     

 

1.3 Intestinal microbiota  

 The gastrointestinal (GI) tract is home to a collection of microbial communities 

collectively known as the intestinal microbiota. At birth, the GI tract becomes rapidly colonized 

with microbes. Over the first two years of life, the intestinal microbiota increases in complexity 

and stability through ecological succession before maturation into an adult state (Koenig et al., 

2011) (Subramanian et al., 2014). The bacterial phyla Firmicutes and Bacteroidetes comprise the 

majority of the normal adult enteric microbiota, with Actinobacteria, Proteobacteria and 
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Verrucomicrobia present in lesser abundance (Eckburg et al., 2005). At lower taxonomical 

levels, the composition of the intestinal microbiota exhibits high interindividual variability 

(Costello et al., 2009). Temporal variations in community composition also occur within an 

individual as a result of dietary changes and other environmental exposures (David et al., 2013) 

(Carmody et al., 2015). Finally, the biogeography of the intestines further influences community 

composition, where distinct microbial niches can be found at mucosal surfaces versus the lumen 

or proximally versus distally along the GI tract (Zoetendal et al., 2002) (Eckburg et al., 2005) 

(Zhang et al., 2014).  

The intestinal microbiota, in symbiosis with the host, is integral to numerous host 

processes including immune system development and nutrient metabolism (Cummings and 

Macfarlane, 1997) (Chow et al., 2010). The intestinal microbiota is physically separated from the 

underlying mucosal immune system by a single layer of epithelial cells, a thick layer of mucus 

and host secretions including antimicrobial peptides and soluble IgA antibodies that collectively 

make up the intestinal barrier. The mucosal immune system is tasked with remaining tolerant of 

endogenous microbes while selectively responding to pathogens and other microbes that breach 

the intestinal barrier (Manichanh et al., 2012). Interestingly, select members of the intestinal 

microbiota promote tolerogenic responses by the mucosal immune system, including the 

production of anti-inflammatory cytokines and the induction of T-regulatory cells that dampen 

effector T-cell responses (Sokol et al., 2008) (Llopis et al., 2009) (Atarashi et al., 2011). 

Conversely, other resident intestinal bacteria promote the establishment of a more 

proinflammatory intestinal microenvironment (Llopis et al., 2009) (Eun et al., 2014). A bloom of 

resident bacteria that harbor greater proinflammatory capabilities can potentially promote 

dysfunctional immune responses and compromise the symbiotic relationship between the 
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intestinal microbiota and the host. Indeed, numerous chronic diseases including malnutrition, 

obesity and IBD correlate with such unfavorable compositional and functional changes to the 

intestinal microbiota (Turnbaugh et al., 2006) (Turnbaugh et al., 2008) (Morgan et al., 2012) 

(Subramanian et al., 2014) (Gevers et al., 2014), a state known as dysbiosis.  

 

1.3.1 The intestinal microbiota in IBD 

 Dysregulated mucosal immune responses to luminal resident bacteria and their products 

are central to IBD pathogenesis. Indeed, several clinical studies have provided evidence for the 

involvement of resident intestinal microbes in either instigating or perpetuating intestinal 

inflammation in IBD patients. For example, diversion of the fecal stream in CD patients can 

promote mucosal healing and remission (D'Haens et al., 1998). Moreover, when exposed to 

microbial antigens, mucosal T-cells isolated from inflamed tissue segments in CD patients 

become activated, whereas mucosal T-cells from non-inflamed tissue segments from the same 

patient remain unresponsive (Pirzer et al., 1991).  

 The intestinal microbiome, which encompasses all resident microbes and their genes, is 

significantly altered in IBD patients relative to healthy controls. Community-wide ecological 

changes frequently observed in IBD patients include decreased microbial biodiversity and 

richness, decreased compositional stability and a bloom of Enterobacteriaceae family members 

such as Escherichia coli within the mucosa (Martinez et al., 2008) (Morgan et al., 2012) (Gevers 

et al., 2014). Even within the same individual, reduced microbial biodiversity was observed in 

inflamed regions of the intestines compared to uninvolved regions (Kostic et al., 2014), 

suggesting that active inflammatory processes may help drive these compositional changes. In 

contrast, increased Enterobactericeae abundance and decreased abundance of several families 
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within the Firmicutes was observed within the uninflamed ileum of colonic CD patients, 

suggesting that some compositional shifts to the microbiota occurring independently of local 

inflammation severity (Haberman et al., 2014). An expansion of E. coli has also been observed 

during the onset of intestinal inflammation in several experimental models of colitis (Lupp et al., 

2007) (Winter et al., 2013) including the interleukin-10-deficient (Il10-/-) mouse model (Arthur et 

al., 2012) and is dependent on the capability of E. coli to acquire and utilize nutrients uniquely 

available within the inflamed environment (Winter et al., 2013). However, as compositional 

changes to the intestinal microbiota are simply correlated with IBD status, it has been difficult to 

discern whether compositional changes observed in IBD patients precede or occur as a result of 

intestinal inflammation, and consequently, whether more abundant microbes in the inflamed 

environment instigate or perpetuate disease activity or serve as opportunistic bystanders.  

 

1.3.2 The Il10-/- mouse model of chronic, immune-mediated colitis 

IL-10 is a potent anti-inflammatory cytokine that limits both innate and adaptive immune 

responses and is therefore a key player in maintaining mucosal homeostasis. Mice deficient in 

IL-10 develop chronic intestinal inflammation characterized by mucosal and submucosal 

infiltration of immune cells and distortion of crypt architecture (Kühn et al., 1993) and is driven 

by effector T-helper-(Th)-1 and Th-17 immune responses (Davidson et al., 1996) (Yen et al., 

2006). The central role of resident intestinal microbes in driving pathology in this animal model 

was demonstrated through the use of GF mice that are completely devoid of microbes (Sellon et 

al., 1998). In contrast to conventionally housed animals, Il10-/- mice raised in GF isolators 

remain free of inflammation as assessed by histology and subclinical markers, thus 

demonstrating the necessity of endogenous microbes in initiating and perpetuating disease in this 
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model (Sellon et al., 1998). Selective colonization of defined bacterial strains, known as 

gnotobiotics, has demonstrated that specific resident microbes uniquely exhibit the capacity to 

induce proinflammatory mucosal immune responses. For example, GF Il10-/- mice develop 

colitis when colonized with E. coli isolates belonging to a specific functional subset known as 

adherent invasive E. coli (AIEC) (Kim et al., 2005). In contrast, GF Il10-/- mice colonized with 

nonpathogenic intestinal E. coli strains do not exhibit pathology (Kim et al., 2008) (Schumann et 

al., 2013). GF Il10-/- mice also develop colitis when colonized with a defined consortium of 

seven bacterial species that include representatives from predominant phyla present within the 

human intestinal microbiota (Eun et al., 2014). Interestingly, unfractionated mesenteric lymph 

node (MLN) cells differentially secrete proinflammatory cytokines when restimulated ex vivo 

with cellular lysates from one of these seven bacteria (Eun et al., 2014). The highest production 

of the Th-1-associated cytokine interferon gamma (IFN-γ) was observed in response to E. coli 

lysates, whereas Ruminococcus gnavus lysates induced the greatest production of the Th-17-

associated cytokine IL-17 (Eun et al., 2014). Importantly, GF WT mice do not develop 

histopathology or exhibit subclinical markers of colitis when colonized with AIEC or this 

defined consortium of bacteria (Kim et al., 2005) (Eun et al., 2014). Taken together, these studies 

highlight the differential capacity exhibited by resident intestinal bacterial strains in promoting 

proinflammatory mucosal immune responses within genetically susceptible hosts. Identifying the 

environmental and host factors that modulate the proinflammatory potential of specific resident 

bacteria could provide further mechanistic insight into how a state of dysbiosis is established and 

maintained. This could ultimately lead to the identification of novel anti-microbial targets that 

can be utilized to restore the symbiotic relationship between the intestinal microbiota and the 

host during disease states such as IBD. 
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1.3.3 Dietary iron and the intestinal microbiota 

 Both short- and long-term dietary patterns heavily influence the composition of the 

intestinal microbiota, likely by modulating nutrient availability, microbial metabolic activity and 

consequent microbial growth (Wu et al., 2011) (Muegge et al., 2011) (David et al., 2013) 

(Carmody et al., 2015). Iron is an important co-factor for numerous enzymes involved in 

microbial metabolism and biosynthetic pathways and thus serves as a growth limiting nutrient 

for many bacterial taxa (Andrews et al., 2003). In the intestinal environment, dietary iron likely 

serves as a predominant source of iron for resident bacteria, as only a fraction of dietary iron is 

absorbed in the duodenum. Host processes such as the cyclic shedding of ferritin-laden 

enterocytes during steady-state conditions and processes associated with inflammation may also 

modulate iron availability for the microbiota. For example, in chemically-induced models of 

colitis, luminal heme iron concentrations increase with inflammation, likely as a result of 

intestinal bleeding (Carrier et al., 2001) (Carrier et al., 2002). Moreover, in the inflamed 

intestinal environment, acceleration of epithelial cell turnover and decreased absorption of 

dietary iron as a result of inflammation-mediated upregulation of hepcidin may also increase 

luminal iron concentrations (Nemeth et al., 2004a). Conversely, host secretion of antimicrobial 

peptides such as lactoferrin and lipocalin-2 limit bacterial iron availability as part of the innate 

immune response (Flo et al., 2004) (Raffatellu et al., 2009) (Yen et al., 2011). Indeed, 

inflammation confers a fitness advantage to Salmonella and the probiotic strain E. coli Nissle 

that is in part due to their enhanced ability to scavenge iron from the host, an advantage that is 

lost in lipocalin-2-deficient (Lcn2-/-) mice (Raffatellu et al., 2009) (Deriu et al., 2013). More 

broadly, resident bacteria within the intestinal community harbor differential capacities for 
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acquiring iron, which may consequently play a role in bacterial niche selection within the 

intestines. Taken together, although the precise bioavailability of iron for specific resident 

bacteria remains unclear, it is likely that dietary and host factors as well as the functional 

capacity of the microbiome collectively modulate microbial iron availability throughout the 

intestines. 

Total non-heme iron in the feces can be dramatically reduced through dietary iron 

restriction and enhanced with dietary iron supplementation (Lund et al., 1999) (Carrier et al., 

2001), which likely modulates luminal iron availability for resident bacteria. Indeed, numerous 

studies have demonstrated that altering dietary iron consumption results in compositional 

changes to the luminal microbiota in humans (Zimmermann et al., 2010) (Krebs et al., 2013) 

(Jaeggi et al., 2014) and in rodent models (Werner et al., 2011) (Dostal et al., 2012a) (Dostal et 

al., 2014b). Interestingly, dietary iron restriction results in similar compositional changes to the 

luminal microbiota observed with intestinal inflammation. Dietary iron restriction reduces the 

biodiversity and microbial richness of the fecal community (Dostal et al., 2012a) (Pereira et al., 

2014), which was not fully recovered with subsequent dietary iron repletion (Pereira et al., 

2014). Dietary iron restriction has also been associated with a bloom of Enterobacteriaceae in 

rodents (Dostal et al., 2012a) and in an in vitro colonic fermentation model in the absence of 

host-specific factors (Dostal et al., 2012b). Intriguingly, dietary iron repletion following a period 

of restriction reversed the bloom of Enterobacteriaceae (Dostal et al., 2012a), suggesting that 

dietary iron modulates the abundance of Enterobacteriaceae within the intestinal lumen. 

Similarly, decreased relative abundances of Enterobacteriaceae were observed in infants with 

low initial pathogen burden following administration of iron-fortified foods (Krebs et al., 2013). 

In contrast, iron supplementation in infants with high initial pathogen burden including 
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Salmonella and pathogenic E. coli resulted in an expansion of Enterobacteriaceae that correlated 

with increased fecal markers of intestinal inflammation (Jaeggi et al., 2014), suggesting that the 

compositional features of the existing microbiota influences the impact dietary iron has on 

microbial ecology within the intestines.  

 

1.4 Adherent invasive E. coli  

 Adherent invasive E. coli (AIEC) are a functionally distinct group of resident intestinal E. 

coli clinically associated with CD. AIEC are recovered more frequently and in higher abundance 

from ileal and colonic biopsies from CD patients compared to non-CD controls (Darfeuille-

Michaud et al., 2004) (Martin et al., 2004) (Sasaki et al., 2007) (Martinez-Medina et al., 2009a). 

Phylogenetic analyses have demonstrated that AIEC strains do not cluster within a unique clade, 

but rather cluster separately with other extraintestinal pathogenic E. coli (ExPEC) strains 

(Sepehri et al., 2009) (Dogan et al., 2014). Thus, in the absence of common identifying genetic 

markers or established invasive determinants, AIEC are currently distinguished through in vitro 

functional assays that demonstrate an enhanced ability to adhere to and invade intestinal 

epithelial cells and to survive and replicate within macrophages (Boudeau et al., 1999) (Glasser 

et al., 2001) (Darfeuille-Michaud et al., 2004) (Sasaki et al., 2007). Nonetheless, certain putative 

virulence genes and specific alleles of genes ubiquitously present in E. coli are over-represented 

in mucosally-associated E. coli strains recovered from IBD patients (Sepehri et al., 2009) (Iebba 

et al., 2012). Indeed, a recent report demonstrated that genes involved in propanediol utilization, 

iron acquisition and adhesion to host cells are over-represented in AIEC strains (Dogan et al., 

2014). Interestingly, some of these genes and genetic polymorphisms in AIEC have been linked 

to the enhanced epithelial invasive capabilities and intramacrophagic survival characteristic of 
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these strains (Dreux et al., 2013) (Dogan et al., 2014). Thus, the identification of a common 

genetic signature shared by most AIEC strains may be forthcoming and could provide further 

insight into the molecular mechanisms that underlie the defining functional features of AIEC.   

 

1.4.1 Interactions with IECs 

The intestinal epithelium provides a physical barrier between luminal bacteria and the 

underlying mucosa immune system, thus limiting inappropriate immune stimulation. However, 

AIEC strains exhibit enhanced epithelial invasive capabilities that are comparable to 

enteroinvasive E. coli (EIEC) and enteropathogenic E. coli (EPEC) and that exceed those of 

other pathogenic and nonpathogenic E. coli strains (Boudeau et al., 1999). AIEC invasion of 

IECs occurs through macropinocytosis (Boudeau et al., 1999) and requires the expression of the 

type I pilus FimA and the associated FimH adhesin for maximal adherence and invasion 

(Boudeau et al., 2001). Interactions between type 1 pili and host-derived glycosylated receptor 

carcinoembryonic antigen-related cell adhesion molecule 6 (CEACAM6) mediate AIEC 

adhesion and invasion of IECs and its enhanced mucosal association (Barnich et al., 2007) 

(Denizot et al., 2011). CEACAM6 is also upregulated on the intestinal epithelium of CD patients 

(Barnich et al., 2007) (Denizot et al., 2011), which may further perpetuate unfavorable 

interactions between AIEC and the host. Interestingly, FimH alleles more frequently harbored by 

AIEC strains (Iebba et al., 2012) (Dreux et al., 2013) promote increased intestinal colonization 

and proinflammatory cytokine production in transgenic CEABAC10 mice expressing human 

CEACAMs (Dreux et al., 2013). Other AIEC factors have also been linked to enhanced adhesion 

or invasion of IECs, including flagella (Boudeau et al., 2001), several outer membrane proteins 

(Rolhion et al., 2007) (Rolhion et al., 2010), the chitinase ChiA (Low et al., 2013) and the 
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lipoprotein YfgL (Rolhion et al., 2005). Finally, expression of long polar fimbriae (Lpf) enable 

increased AIEC translocation across M-cells, a specialized IEC located adjacent to immune cell 

aggregates known as Peyer’s patches, and consequently promote enhanced AIEC mucosal 

association (Chassaing et al., 2011).  

 

1.4.2 Interactions with macrophages 

Macrophages are central components of host immune defense in the intestines. Resident 

macrophages limit microbial stimulation of the mucosal immune system and systemic 

dissemination of intestinal microbes by phagocytosing and destroying bacterial invaders and 

their products that breach the epithelial barrier (Steinbach and Plevy, 2014). AIEC strains exhibit 

an enhanced ability to survive within the phagolysosomes of macrophages relative to 

nonpathogenic E. coli strains without inducing host cell death (Glasser et al., 2001) (Bringer et 

al., 2006). Indeed, intracellular bacteria within macrophages are evident when AIEC are co-

cultured ex vivo with human colonic tissues (Jarry et al., 2015). Moreover, increased intracellular 

E. coli are recovered from mucosal biopsies from CD patients versus non-CD controls (Martin et 

al., 2004) and are present within mucosal macrophages in granulomatous colitis (Simpson et al., 

2006). Several genes linked to bacterial resistance against stressors likely present within the 

phagolysomal environmental, including peroxide and acid stress and nutrient starvation, 

contribute to the enhanced ability of AIEC to survive within macrophages (Bringer et al., 2005) 

(Bringer et al., 2007). In contrast, deletion of the heat shock proteins IbpA and IbpB in an AIEC 

strain enhances intramacrophagic survival (Patwa et al., 2011), which corresponds with increased 

proinflammatory cytokine production and more severe colitis when monoassociated in GF Il10-/- 

mice. Thus the precise mechanisms that enable enhanced AIEC survival within macrophages 
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remain incompletely understood. Moreover, little is known about the AIEC factors that 

potentially modulate initial interactions with macrophages and consequent proinflammatory 

responses.  

  

1.4.3 Biofilm formation 

In addition to their distinct interactions with host cells, AIEC strains also form more 

robust in vitro biofilms in comparison to other non-AIEC strains (Martinez-Medina et al., 

2009b). Strong biofilm formation in AIEC strains positively correlates with an enhanced ability 

to adhere to and invade IECs (Martinez-Medina et al., 2009b), suggesting that extracellular 

structures and matrix components synthesized within AIEC biofilms may also serve as important 

adhesion and invasion determinants. Indeed, disruption of biofilm formation in an AIEC strain 

reduced its competitive advantage at the mucosa relative to the parental strain in a murine ileal 

loop model (Chassaing and Darfeuille-Michaud, 2012). However, the extracellular matrix 

components present within AIEC biofilms have not been identified, although there is some 

evidence for the involvement of type 1 pili (Chassaing and Darfeuille-Michaud, 2012).  

Numerous factors including nutrient availability and environmental stressors induce 

biofilm formation and other multicellular behaviors by E. coli strains (Gerstel and Römling, 

2001) (Yoo and Chen, 2009) (Rowe et al., 2010) (Medeiros et al., 2014) (Depas et al., 2013). In 

AIEC, increased osmolarity and contact with IECs enhance the expression of factors required for 

biofilm formation (Chassaing and Darfeuille-Michaud, 2012). However, additional 

environmental factors including iron availability that modulate biofilm formation in other E. coli 

strains may also promote AIEC biofilm formation.  
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1.4.4 Induction of colitis in rodent models 

AIEC strains are capable of inducing and perpetuating intestinal inflammation in various 

rodent models of experimental colitis. In the presence or absence of an established complex 

microbial community, colonization of WT mice with AIEC does not induce colitis (Kim et al., 

2005) (Carvalho et al., 2009) (Denizot et al., 2011) (Chassaing et al., 2014), therefore 

highlighting the opportunistic nature of these strains. Indeed, perturbations to the intestinal 

microbiota through antibiotic treatment or through diet-induced dysbiosis prior to AIEC 

colonization results in the development of mild histopathology in the colon and increased 

production of proinflammatory cytokines in WT and CEABAC10 mice (Martinez-Medina et al., 

2013) (Small et al., 2013). AIEC colonization in chemically-induced models of colitis also 

exacerbates clinical disease activity, histopathology and proinflammatory cytokine production in 

comparison to vehicle controls or colonization with E. coli K12 strains or AIEC strains lacking 

established invasive determinants (Carvalho et al., 2008) (Drouet et al., 2012) (Low et al., 2013). 

In the absence of an intestinal microbiota, colonization of AIEC in genetically susceptible GF 

hosts including Toll-like receptor 5-deficient (Tlr5-/-) mice and Il10-/- mice results in the 

development of immune-mediated colitis (Kim et al., 2005) (Carvalho et al., 2012). Interestingly, 

initial colonization of GF Tlr5-/- mice with AIEC prior to establishment of a complex microbiota 

also results in the development of colitis. In contrast, GF Tlr5-/- mice colonized with a flagella-

deficient AIEC mutant and subsequently with a complex microbiota do not develop colitis, 

which coincided with enhanced clearance of the mutant (Carvalho et al., 2012). Taken together, 

in conjunction with increased epithelial invasive capabilities, environmental factors that alter the 

intestinal microbiota or that compromise host barrier or immune function also influences the 

proinflammatory potential of AIEC strains.  
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Although the precise contribution of AIEC to CD pathology remains unclear, the 

enhanced mucosal presence of AIEC likely provides the physically opportunity for continual 

stimulation of the mucosal immune system, thus perpetuating a state of chronic inflammation. 

The invasive capabilities of AIEC and their resistance to microbial killing by macrophages, in 

conjunction with host genetic factors including reduced function polymorphisms in genetic loci 

involved in microbial clearance, potentially enable enhanced mucosal association by AIEC 

(Lapaquette et al., 2010) (Sadaghian Sadabad et al., 2014). However, little is known about the 

putative environmental factors such as iron availability encountered by AIEC within the 

intestines that potentially facilitate these more unfavorable interactions with the host. 

Interestingly, exposure to bile salts has been recently shown to increase AIEC expression of Lpf 

and promote enhanced translocation across M-cells (Chassaing et al., 2012). Thus, identifying 

the environmental factors that promote enhanced mucosal association of AIEC and consequent 

inappropriate immune stimulation is clearly warranted. 

 

1.5 Iron homeostasis in E. coli 

1.5.1 Sensing of iron availability 

Iron is an essential micronutrient for most bacteria including E. coli. However, as excess 

free iron can be highly toxic, acquisition and intracellular utilization of iron must be tightly 

regulated. In E. coli, the ferric uptake regulator (Fur) senses changes in free intracellular iron 

concentrations by its ability to bind ferrous iron and consequently regulates the expression of 

genes involved in maintaining iron homeostasis (Andrews et al., 2003). When intracellular iron 

is replete, the Fur-Fe2+ complex inhibits the transcription of genes involved in iron acquisition, 

thus preventing excess iron import into the cell (McHugh et al., 2003) (Seo et al., 2014). Holo-
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Fur also mediates the incorporation of free iron into iron binding proteins by directly activating 

the transcription of genes involved in intracellular iron storage (Seo et al., 2014). Through 

transcriptional repression of the small RNA (sRNA) ryhB, Fur-Fe2+ indirectly regulates 

additional iron storage proteins and iron-dependent enzymes such as superoxide dismutase and 

enzymes involved in cellular respiration (Massé and Gottesman, 2002). Under iron limiting 

conditions, apo-Fur predominates in the cell, resulting in the derepression of iron acquisition 

genes and consequent iron transport into the cell (McHugh et al., 2003) (Seo et al., 2014).  

 

1.5.2 Iron acquisition 

In E. coli, iron import into the cell occurs either through siderophore-mediated transport 

or directly through divalent metal and heme iron transporters. Siderophores are small molecules 

with a high affinity for ferric iron that are synthesized and secreted by bacteria in order to 

scavenge iron when availability is limited. Siderophore-bound iron is transported through 

cognate outer membrane receptors that require energy transduction by the TonB-ExbB-ExbD 

complex (Letain and Postle, 1997) (Andrews et al., 2003). In the periplasm, a chaperone protein 

binds the iron-chelate and delivers the complex to cognate ABC permeases on the inner 

membrane (Köster, 2001). Finally, once in the cell, iron is released from the siderophore and 

reduced to its ferrous form for cellular use (Andrews et al., 2003). Ferrous iron on the other hand 

is directly transported into E. coli cells through inner membrane permeases such as FeoB or 

through inner membrane ABC transporters such as SitABCD (Kammler et al., 1993) (Sabri et al., 

2006). Some E. coli strains are also capable of directly importing heme iron through the TonB-

dependent hemin transporter ChuA (Nagy et al., 2001).  
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In the E. coli genome, diverse siderophore-mediated iron acquisition systems are 

encoded. Although laboratory E. coli K12 strains harbor at least six outer membrane receptors 

that recognize at least eight different iron-siderophore complexes, only the siderophore 

enterobactin is endogenously produced in these strains (Andrews et al., 2003). Enterobactin is a 

catecholate siderophore that is ubiquitously present among Entorobacteriaceae family members 

including E. coli. With its extremely high affinity for ferric iron, enterobactin can outcompete 

host iron binding proteins such as transferrin for iron, thus enabling the potential for E. coli to 

effectively scavenge iron within the host (Fischbach et al., 2006a). However, as part of the innate 

immune response, the host produces the antimicrobial peptide lipocalin-2 that can sequester 

enterobactin (Goetz et al., 2002) and limit E. coli growth and in vivo virulence (Flo et al., 2004).  

To counteract this host immune response, some pathogenic and resident intestinal E. coli 

produce additional siderophores such as salmochelin and yersiniabactin that are resistant to 

lipocalin-2 binding. Glycosylation of enterobactin by enzymes encoded by the iro gene cluster 

results in the production of salmochelin (Fischbach et al., 2006b). E. coli strains that harbor the 

iro gene cluster are more virulent in an I.P. infection mouse model, an enhanced virulence that is 

lost in Lcn2-/- mice (Fischbach et al., 2006b). Because of its phenolate structure, yersiniabactin is 

also not recognized by lipocalin-2 (Bachman et al., 2011). Intact biosynthesis and import of 

yersiniabactin is required for virulence in numerous Enterobacteriaceae pathogens including 

Yersinia pestis (Perry and Fetherston, 2011) and Klebsiella pneuomoneae (Bachman et al., 

2011). Moreover, in contrast to catecholate siderophores, yersiniabactin uniquely confers a 

fitness advantage for uropathogeneic E. coli strains in the urinary tract (Garcia et al., 2011).  

The contribution of this heavy genomic investment in iron acquisition systems to E. coli 

fitness in the intestinal environment has not been fully studied. Ferrous iron import through the 
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permease FeoB, and not ferric iron scavenging by enterobactin, is essential for intestinal 

colonization of an E. coli K12 strain (Stojiljkovic et al., 1993), suggesting that in the non-

inflamed and anaerobic intestinal environment, ferrous iron may be the predominant form of 

available iron. However, inactivation of TonB-dependent iron transport decreases the 

competitive advantage of the intestinal E. coli strain Nissle over S. Typhimurium in the inflamed 

intestinal environment, a growth advantage that is dependent on host secretion of lipocalin-2 

(Deriu et al., 2013). Similarly, the creation of a quadruple mutant unable to import salmochelin, 

yersiniabactin, the siderophore aerobactin and heme also produced similar results (Deriu et al., 

2013), suggesting that ferric and heme iron may be the predominant form of available iron in the 

inflamed intestines. Interestingly, distinct in vitro growth conditions promote maximal 

expression of different iron uptake genes (Valdebenito et al., 2006), suggesting that encoding 

seemingly redundant iron uptake systems may actually enable effective colonization and 

adaptability within diverse niches throughout the intestines. Although the precise contribution of 

each of these iron acquisition systems to E. coli fitness throughout the GI tract has not been 

explored, it is interesting to note that the yersiniabactin biosynthetic and transport genes are 

overrepresented in fecal versus environmental E. coli isolates and in AIEC versus other E. coli 

pathotypes (Dogan et al., 2014) (Searle et al., 2015). Similarly, the heme acquisition and 

utilization genes chu and the ferrous iron and manganese permease sitABCD are also 

overrepresented in AIEC strains (Dogan et al., 2014) and may therefore contribute to AIEC 

fitness within the intestines. Finally, when a K-12-like E. coli strain was monoassociated in a 

WT mouse, transcriptional expression of genes involved in enterobactin biosynthesis were 

upregulated in the mucus relative to the lumen (Li et al., 2015). This suggests that redundant iron 

acquisition systems in E. coli, particularly those that are able to evade innate immune responses, 
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may be important for mucosal colonization. Indeed, total iron concentrations in the absence of 

inflammation was approximately 5-6 fold lower in the mucus versus the lumen (Li et al., 2015).   

 

1.5.3 Functional responses to iron availability 

 In addition to regulating the expression of iron metabolism genes, Fur-Fe2+ and apo-Fur 

also regulate genes involved in other cellular processes including metabolism, stress response, 

motility and biofilm formation (McHugh et al., 2003) (Seo et al., 2014). Microbial iron exposure 

can also alter the intracellular redox state of the cell that is sensed by iron-sulfur cluster 

transcription factors including IscR and Fnr (Kiley and Beinert, 2003), which further modulates 

the global transcriptome and consequent bacterial physiology and function (Giel et al., 2006) 

(Fink et al., 2007) (Wu and Outten, 2009). Moreover, the generation of intracellular ROS as a 

result of the Fenton reaction is sensed by additional transcription factors including OxyR, further 

impacting microbial function including phase variable colony morphology and aggregation and 

peroxide stress responses (Kullik et al., 1995) (Henderson and Owen, 1999) (Zheng et al., 1999). 

Finally, the basRS two-component system in E. coli senses extracellular ferric iron, which can 

result in the altered expression of genes involved in shaping the outer membrane landscape of the 

cell (Hagiwara et al., 2004) (Ogasawara et al., 2012).  

In response to various environmental stimuli including iron availability, E. coli forms 

multicellular sessile communities such as biofilms and cellular aggregates. When iron 

availability is decreased, some E. coli strains respond by reducing biofilm (Wu and Outten, 

2009) (Alves et al., 2010) and rugose colony formation (Depas et al., 2013), a colony 

morphotype associated with several multicellular behaviors (Römling et al., 1998) (Zogaj et al., 

2001). In contrast, under iron replete conditions, biofilm and aggregate formation by other E. coli 
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strains is limited (Alves et al., 2010) (Rowe et al., 2010), demonstrating the heterogeneity of 

responses to iron availability exhibited by distinct E. coli strains. Iron also modulates E. coli 

interactions with host cells. For example, iron enhances the susceptibility of a bovine E. coli 

strain to phagocytosis by neutrophils (Wise et al., 2002) and adherence of enteric pathogenic E. 

coli to IECs (Alves et al., 2010) (Kortman et al., 2012). Similarly, the host antimicrobial and iron 

binding protein lactoferrin limits the epithelial invasiveness of AIEC (Bertuccini et al., 2014). 

The formation of multicellular communities and interactions with host cells are dependent on E. 

coli production of extracellular structures including flagella, fimbriae, and the exopolysaccharide 

cellulose. Interestingly, iron can directly and indirectly modulate the expression of some of these 

extracellular structures in certain E. coli strains (Guzzo et al., 1991) (Brombacher et al., 2006) 

(Wu and Outten, 2009) (Wu et al., 2013), therefore providing a putative mechanism by which 

iron may influence E. coli physiology and subsequent host-bacterial interactions. However, 

although there is evidence that iron availability influences E. coli multicellular behaviors and 

interactions with distinct host cell types in vitro, the precise impact of iron on AIEC-host 

interactions remains unclear.  

 

1.6 Bacterial cellulose  

Cellulose is a polysaccharide consisting of β(1→4)-linked D-glucose monomers. Bacteria 

including some Salmonella and E. coli strains synthesize cellulose as part of the ECM within 

biofilms and other multicellular structures (Zogaj et al., 2001) (Da Re and Ghigo, 2006) (Gualdi 

et al., 2008) (Ma and Wood, 2009) (Serra et al., 2013). In Salmonella and E. coli, genes involved 

in cellulose biosynthesis are divergently encoded by the bcsQABZD and bcsEFG gene clusters 

(Zogaj et al., 2001) (Solano et al., 2002) (Le Quéré and Ghigo, 2009). The catalytic subunit of 
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cellulose synthase, BcsA, is located on the inner membrane and polymerizes UDP-glucose onto 

the growing cellulose chain (Römling, 2002) (Omadjela et al., 2013). The bacterial second 

messenger cyclic-di-guanosine monophosphate (c-di-GMP) is required for cellulose synthase 

activity (Omadjela et al., 2013). Intracellular c-di-GMP levels are modulated by the biosynthetic 

and degradative activity of two opposing enzymes, diguanylate cyclase (DGC) and 

phosphodiesterase (PDE). Within the E. coli genome, there is an estimated 20 to 30 enzymes 

with predicted DGC and/or PDE activity (Weber et al., 2006) (Spurbeck et al., 2012) that can 

potentially modulate intracellular c-di-GMP concentrations, several of which have been 

implicated in regulating cellulose production in Salmonella and E. coli (Zogaj et al., 2001) 

(García et al., 2004) (Da Re and Ghigo, 2006) (Monteiro et al., 2009) (Spurbeck et al., 2012). 

The presence of numerous putative DGCs and PDEs in E. coli provides the potential for distinct 

environmental stimuli to modulate cellulose production and cellulose-dependent multicellular 

behaviors through transcriptional regulation of these enzymes.  

 

1.6.1 Fitness, virulence and interactions with host cells 

The impact of bacterial cellulose on E. coli interactions with host cells has largely been 

investigated with IECs in vitro. Cellulose production by the intestinal E. coli strain Nissle and by 

EPEC and enterohemorrhagic E. coli (EHEC) strains was associated with enhanced adherence to 

IECs (Monteiro et al., 2009) (Saldaña et al., 2009) and promoted increased epithelial production 

of the proinflammatory cytokine IL-8 (Monteiro et al., 2009). In contrast, abrogation of cellulose 

production in a different resident intestinal E. coli isolate reduced adhesion and invasion of IECs 

and subsequent IL-8 production (Wang et al., 2006). In an AIEC strain, cellulose production had 
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no impact on epithelial adhesion and invasion (Claret et al., 2007). Thus the influence of 

cellulose on E. coli interactions with IECs is complex and varies depending on the E. coli strain.   

The impact of cellulose production on E. coli interactions with macrophages to our 

knowledge has not been previously studied. In a recent study by Pontes and colleagues, 

intracellular production of cellulose by Salmonella was demonstrated within the phagolysosome 

of macrophages (Pontes et al., 2015). Intriguingly, inactivation of cellulose production in 

Salmonella enhanced intramacrophagic survival and in vivo pathogenicity in an I.P. murine 

infection model (Pontes et al., 2015), suggesting that cellulose production may limit the 

virulence potential of Salmonella at extraintestinal sites. Similarly, deletion of the DGC regulator 

YfiR in an UPEC strain increased production of cellulose and curli fimbriae and corresponded 

with reduced fitness in the urinary tract (Raterman et al., 2013). Abrogation of both curli and 

cellulose biosynthesis in the YfiR-deficient mutant restored its in vivo fitness (Raterman et al., 

2013), suggesting that production of both extracellular structures may limit the growth advantage 

of UPEC strains in the urinary tract.  

In contrast, another group demonstrated that cellulose-deficient UPEC mutants were 

more readily cleared from the kidneys in a urinary tract infection (UTI) mouse model in a 

neutrophil-dependent manner (Kai-Larsen et al., 2010). Moreover, production of cellulose or 

cellulose-dependent multicellular structures is triggered or enhanced by stressors likely present 

within the host, including iron deprivation, iron exposure, peroxide stress and soluble IgA (Rowe 

et al., 2010) (Depas et al., 2013) (Amarasinghe et al., 2013). Therefore, cellulose may serve as a 

bacterial resistance factor against environmental stressors and has indeed been shown to enhance 

bacterial survival with chlorine exposure and ethanol stress (Solano et al., 2002) (Yoo and Chen, 

2009). However, the precise mechanisms by which these environmental factors such as iron 
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availability modulate cellulose production and cellulose-dependent behaviors are not well 

understood and likely vary by E. coli strain, especially considering that different stimuli induce 

cellulose production and cellulose-dependent behaviors in different strains. Taken together, the 

contribution of cellulose production to the fitness and virulence potential of E. coli remains 

unclear and likely depends on the genetic background of the strain and environmental factors. 

Interestingly, when screening for cellulose-positive intestinal and UPEC isolates, Bokranz and 

colleagues demonstrated that more intestinal E. coli isolates produce cellulose at the 

physiological temperature of 37°C compared to UPEC isolates that only produced cellulose at 

28°C (Bokranz, 2005). Thus, it is tempting to speculate that resident intestinal E. coli may have 

retained the ability produce cellulose at physiological temperatures as a potential fitness 

advantage within the intestinal environment.  

 

1.7 Iron and the proinflammatory potential of the intestinal microbiota  

The prevailing hypothesis explaining how oral iron supplementation may exacerbate 

intestinal inflammation is through the increased production of oxygen radicals as a byproduct of 

the Fenton reaction. However, it has been well documented that some members of the intestinal 

microbiota, such as AIEC, can drive and perpetuate intestinal inflammation in genetically 

susceptible hosts. Given that iron selectively modulates bacterial growth, physiology and 

function, another conceivable and largely unexplored mechanism explaining the link between 

increased oral iron intake and intestinal inflammation is the iron-mediated induction of a more 

proinflammatory intestinal microbiota. However, studies investigating the impact of iron on 

host-microbial interactions have primarily focused on pathogens, and thus, little is known about 
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the functional impact of iron on resident intestinal bacteria such as AIEC and subsequent host 

responses.  

We first investigated how intestinal iron availability shapes the ecological structure of the 

microbial community. In inflammation-resistant WT mice, decreasing luminal iron 

concentrations through dietary manipulations resulted in compositional changes consistent with a 

dysbiotic state. This included the relative expansion of Enterobacteriaceae family members 

including the siderophilic resident bacterium E. coli and an increase in the predicted abundance 

of iron acquisition genes. When iron availability was restricted, inactivation of TonB-dependent 

iron transport in E. coli reduced its relative abundance when grown in competition with a non-

siderophilic intestinal bacterium, suggesting that harboring numerous iron acquisition systems 

may confer a fitness advantage for E. coli in the intestines under iron limiting conditions.  

To investigate the impact of iron availability on the proinflammatory potential of the 

intestinal microbiota, we utilized the AIEC strain NC101 as a model organism to assess how iron 

influences bacterial physiology and subsequent host-microbial interactions. The physiological 

state of NC101 (i.e. aggregate versus non-aggregate) is dependent on both cellulose production 

and iron availability and influenced subsequent interactions with macrophages. Specifically, 

under iron limiting conditions, cellulose production by NC101 was associated with enhanced 

resistance against macrophage clearance and macrophage production of cytokines that promote 

Th-1/Th-17 immune responses. Abrogation of cellulose production in NC101 also delayed onset 

of chronic, immune-mediated colitis when monoassociated in germ free Il10-/- mice, further 

demonstrating the contribution of cellulose to the proinflammatory potential of NC101.  

Finally, dietary iron supplementation limited colitis development in Il10-/- mice when 

colonized with a complex microbiota. However, this was not associated with distinct 
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compositional changes to the luminal microbial community in comparison to the control diet, 

where colitis development was most severe. Nonetheless, these results do not exclude the 

possibility that iron supplementation functionally alters the intestinal microbiome in a manner 

that limits colitis development. Moreover, differences in inflammation severity between the two 

diet groups were associated with minor compositional changes to the mucosal microbiota, which 

may also contribute to the protective effect of dietary iron supplementation. Taken together, our 

results suggest that decreasing microbial iron availability may enhance the proinflammatory 

potential of the intestinal microbiota and highlight the complex interplay between host, microbial 

and environmental factors in the development of IBD.  
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CHAPTER 2 

ALTERED ENTERIC MICROBIOTA ECOLOGY IN INTERLEUKIN-10-DEFICIENT 
MICE DURING DEVELOPMENT AND PROGRESSION OF INTESTINAL 

INFLAMMATION 1 

2.1 Personal contributions to manuscript 

 I am a co-author on the manuscript entitled “Altered enteric microbiota ecology in 

interleukin-10-deficient mice during development and progression of intestinal inflammation,” 

published in Gut Microbes in 2013. I contributed to the manuscript by running the animal 

experiments in which we colonized ex-germ free (GF) mice with a complex microbial 

community and harvested all necessary samples required for assessment of histopathology, 

cytokine production and microbiota analysis. I also scored histology sections to assess the 

severity of inflammation and processed tissue samples to quantify cytokine production, which 

significantly contributed to the data presented in Figure 1. Additionally, I isolated DNA from 

fecal samples for 16S rRNA sequencing and subsequent microbiota analysis, the results of which 

are presented in Figures 2 – 5. Finally, I also assisted in editing the manuscript prior to 

submission to Gut Microbes.     

 

2.2 Overview 

                                                
1Nitsan Maharsak, Christopher D. Packey, Melissa Ellermann, Sayeed Manick, Jennica P. 
Siddle, Eun Young Huh, Scott Plevy, R. Balfour Sartor and Ian M. Carroll. 2013. Altered enteric 
microbiota ecology in interleukin-10-deficient mice during development and progression of 
intestinal inflammation. Gut Microbes 4(4):316-324. 
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Inflammatory bowel diseases (IBD) result from dysregulated immune responses toward 

microbial and perhaps other luminal antigens in a genetically susceptible host, and are associated 

with altered composition and diversity of the intestinal microbiota. The interleukin-10-deficient 

(Il10-/-) mouse has been widely used to model human IBD; however the specific alterations that 

occur in the intestinal microbiota of this mouse model during the onset of colonic inflammation 

have not yet been defined. The aim of our study was to define the changes in diversity and 

composition that occur in the intestinal microbiota of Il10-/- mice during the onset and 

progression of colonic inflammation. We used high throughput sequencing of the 16S rRNA 

gene to characterize the diversity and composition of formerly germ-free (GF) wild type (WT) 

and Il10-/- mice associated with the same intestinal microbiota over time. Following two weeks 

of colonization with a specific pathogen-free (SPF) microbiota, we observed a significant 

increase in the diversity and richness of the intestinal microbiota of WT mice. In contrast, a 

progressive decrease in diversity and richness was observed at three and four weeks in Il10-/- 

mice. This decrease in diversity and richness was mirrored by an increase in Proteobacteria and 

Escherichia coli in Il10-/- mice. An increase in E. coli was also observed in conventionally raised 

Il10-/- mice at the point of colonic inflammation. Our data report the sequential changes in 

diversity and composition of the intestinal microbiota in an immune-mediated mouse model that 

may help provide insights into the primary vs. secondary role of dysbiosis in human IBD 

patients. 

 

2.3 Introduction 

Ulcerative colitis (UC) and Crohn disease (CD), collectively known as inflammatory 

bowel diseases (IBD), are prevalent in the United States (US) affecting 1.4 million individuals 
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(Xavier and Podolsky, 2007), are associated with reduced quality of life (Cohen, 2002) and a 

heavy economic burden that is estimated to be $6.3 billion annually in the US (Kappelman et al., 

2008). The chronic nature, high rate of recurrence and lack of safe and curative medical 

treatments for IBD underscore the need for alternate therapeutic approaches for these complex 

diseases. Although, the precise pathophysiology of IBD remains unclear, it is widely accepted 

that the pathogenesis of IBD involves dysregulated immune responses toward microbial and 

other luminal antigens in a genetically susceptible host (Packey and Sartor, 2008) (Packey and 

Sartor, 2009) (Albenberg et al., 2012) (Shanahan, 2012). Environmental factors also play an 

important role in the initiation and reactivation of inflammation in IBD (Packey and Sartor, 

2008) (Sartor, 2008). An altered composition of the intestinal microbiota (dysbiosis) has been 

reported for both UC and CD (Frank et al., 2007) (Willing et al., 2010) (Gophna et al., 2006), 

however this association is not as profound in recent pediatric studies (Kellermayer et al., 2012) 

(Hansen et al., 2012). Moreover, the primary vs. secondary nature of an intestinal microbial 

dysbiosis in IBD remains unknown. Thus, more in depth characterization of sequential enteric 

microbial changes during early and later phases of the inflammatory process may enable the 

development of better therapeutic strategies for these diseases. 

Among the various rodent models for IBD, interleukin-10-deficient (Il10-/-) mice are 

widely used for mechanistic studies investigating the pathogenesis of spontaneous, immune-

mediated, chronic intestinal inflammation (Büchler et al., 2012) (Barnett et al., 2010) (Hansen et 

al., 2009). Il10-/- mice maintained in germ-free (GF) conditions do not develop intestinal 

inflammation. However, once colonized with conventional or specific pathogen free (SPF) 

microbiota, Il10-/- mice develop intestinal inflammation as early as one week following 

colonization with an SPF microbiota (Sellon et al., 1998). Although alterations in the intestinal 
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microbiota in subsets of IBD patients with established disease compared with healthy controls 

have been reported (Frank et al., 2007) (Willing et al., 2010) (Sokol et al., 2008), early changes 

in the composition and diversity of this complex microbial community at the onset of disease 

cannot be studied in the human intestinal tract, as it is impossible to predict who will develop 

disease (Sartor, 2008) (Garrett et al., 2010). Currently, little is known about the changes in 

composition and diversity of the enteric microbiota of Il10-/- mice during the onset of intestinal 

inflammation. Molecular methods are effectively used to characterize the intestinal microbiota 

due to the limitations of culture-based methods. A study using 16S rRNA-based fingerprinting 

techniques (denaturing gradient gel electrophoresis [DGGE] and repetitive DNA element-based 

PCR) reported compositional changes in the intestinal microbiota in Il10-/- mice over time 

(Bibiloni et al., 2005) (Pena et al., 2004); however due to the limitations in technology used for 

microbiota analysis, these studies provided limited data regarding the abundances of specific 

taxa and the diversity of the microbiota. Thus, we conducted the current study to characterize the 

intestinal microbiota of Il10-/- mice during the progression of colitis in comparison with wild 

type (WT) mice. We controlled for variations in the composition of the microbiota using 

previously GF Il10-/- and WT mice colonized with a microbiota from the same donor. We also 

characterized changes in diversity and composition of the intestinal microbiota in mice from two 

genetic backgrounds. 

 

2.4 Results 

2.4.1 16S rRNA gene sequences 

The V1–3 regions of the 16S rRNA gene were amplified from all fecal DNA samples (n 

= 30). Following high throughput sequencing, four samples (three from week two of the Il10-/- 
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group and one from week one of the WT group) yielded sequence numbers that were too low (< 

350 16S rRNA sequences per sample) to be included in our analyses. An average of 8012 16S 

rRNA sequences per sample were obtained from the remaining 26 samples with the following 

ranges: WT week one (n = 4) 5647–10502 sequences; WT week two (n = 5) 6927–11490 

sequences; Il10-/- week one (n = 5) 1115–8116 sequences; Il10-/- week two (n = 2) 9666–12789 

sequences; Il10-/- week three (n = 5) 6162–8467 sequences; Il10-/- week four (n = 5) 1340–23189 

sequences. To determine the numbers and abundances of different bacterial groups in each 

sample we used 97% similarity between 16S rRNA gene sequences as an indicator of a “species 

level” operational taxonomic unit (OTU). Using this procedure we found a total of 479 OTUs in 

our data set. 

 

2.4.2 Intestinal microbial diversity decreases over time in formerly GF Il10-/- mice 

In our initial investigation we sought to characterize changes in diversity in the intestinal 

microbiota that arise over time in formerly GF WT and Il10-/- mice. The microbiota was 

characterized in fecal samples collected weekly for two weeks in WT mice and for four weeks in 

Il10-/- mice following association with an SPF microbiota. Based on IL-12 p40 secretion from 

colonic tissue and composite histology scores, we found that WT mice did not develop 

significant inflammation whereas Il10-/- mice developed moderate intestinal inflammation four 

weeks following association with an SPF microbiota (Figure 1A and B).  

We calculated UniFrac distances for all time points for each group. We found that 

average weighted and un-weighted UniFrac distances significantly increased (p = 0.003 and p = 

8.5 x 10-5, respectively) over the two-week observation period in the WT group (Figure 2C). We 

investigated the weighted and un-weighted UniFrac distances of the microbiota in fecal samples 
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obtained one, two, three and four weeks from formerly GF Il10-/- mice following association 

with an SPF microbiota. We found a significant decrease in average weighted UniFrac distances 

at the three-week (p = 0.005) and four-week (p = 0.005) time points compared with the 1-week 

time point (Figure 2A and B). 

 

2.4.3 Intestinal microbial richness decreases over time in formerly GF Il10-/- mice 

We determined the richness of the intestinal microbiota in all groups using rarefaction 

analysis. A significant increase (p = 0.004) in the number of observed microbial species was 

found in WT mice two weeks following association with an SPF microbiota when compared 

with the one-week time point (Figure 3B). In contrast, a significant decrease in the number of 

observed microbial species was found in Il10-/- mice three (p = 0.02) and four (p = 0.009) weeks 

following association with an SPF microbiota when compared with the one-week time point 

(Figure 3A). 

 

2.4.4 Ecological succession of bacterial taxa in formerly GF Il10-/- mice over time  

In order to determine the dominant bacterial groups that are altered over time in WT and 

Il10-/- mice following colonization with an SPF intestinal microbiota, we summarized the 

bacterial taxa identified by our 16S rRNA sequences at the phylum level (Figure 4). In WT mice, 

we found no significant changes in bacterial phyla between one and two weeks post association 

with an SPF microbiota. In the Il10-/- group, we observed a significant decrease in the levels of 

Bacteroidetes (20.06%–6.30%, false discovery rate [FDR] = 0.01) and Verrucomicrobia (0.74%–

0.17%, FDR = 0.02) at three weeks compared with the one-week time point. These changes were 

further reduced by four weeks: Bacteroidetes (20.06–9.5%, FDR = 0.003) and Verrucomicrobia 
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(0.74%–0.09%, FDR = 0.02). At four weeks, we observed a significant increase in the levels of 

Proteobacteria (0.17%–7.71%, FDR = 1.5 Å~ 10−5) and Tenericutes (39.21%–70.66%, FDR = 

0.07) compared with the one-week time point. In tandem, at four weeks we observed a decrease 

in the levels of Actinobacteria (1.27%–0.53%, FDR = 0.07) and Firmicutes (38.48%–11.46%, 

FDR = 0.03) compared with the one week time point. Additionally, we observed significant 

changes in the abundances of genus level taxa over time in Il10-/- mice (Table 1) and no 

significant changes in bacterial genera in WT mice over time. 

 

2.4.5 Escherichia coli concentrations increase in formerly GF Il10-/- mice over time  

Given that E. coli is a member of the Proteobacteria phylum and has been established as a 

proinflammatory microbe in the context of IBD (Darfeuille-Michaud et al., 2004), we used 

species-specific qPCR to determine the levels of this bacterial species in fecal samples from the 

Il10-/- group of mice. We found that the levels of E. coli in the intestinal microbiota of Il10-/- 

mice increased over time and became significantly higher at the four-week time point when 

compared with the week-one time point (Figure 5). The stepwise increase of E. coli over time in 

the Il10-/- group closely paralleled the increase in Proteobacteria in the same mice, confirming 

results by two different molecular methods (Figure 5). 

 

2.4.6 Alterations in the abundance of E. coli in formerly GF Il10-/- mice over time are mirrored 
in SPF Il10-/- mice 

In order to determine whether inflammation associated alterations of specific taxa in 

formerly GF Il10-/- mice are also altered in a gut that has developed naturally, we investigated the 

levels of E. coli, Lactobacillus species and Akkermansia muciniphila in WT and Il10-/- mice 
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raised in an SPF environment. This group of Il10-/- mice developed significant intestinal 

inflammation at 10 weeks of age compared with WT controls that did not develop inflammation 

(Figure 1C and D). Similarly to formerly GF mice, the abundance of E. coli was significantly 

higher in Il10-/- mice at week ten compared with WT mice (Figure 6A). Akkermansia 

muciniphila was significantly higher in Il10-/- mice compared with WT mice at both eight and ten 

weeks (Figure 6B). We did not observe any significant differences in the abundance of 

Lactobacillus species in Il10-/- mice compared with WT mice at either time point (Figure 6C). 

 

2.5 Discussion 

Based on the established association of the intestinal microbiota with IBD and the 

frequent use of the Il10-/- mouse as a model of spontaneous, immune-mediated colonic 

inflammation, we characterized the diversity and composition of the intestinal microbiota in this 

mouse model during the progression of experimental colitis. Previous studies characterizing the 

intestinal microbiota of Il10-/- mice focused on viable bacteria or used molecular techniques that 

characterize a limited number of bacterial taxa (Bibiloni et al., 2005) (Pena et al., 2004). Our 

study used a current molecular technique that provided a comprehensive characterization of the 

changes in microbial composition and diversity in WT and Il10-/- mice over time. Additionally, 

the use of formerly GF WT and Il10-/- mice colonized with the same fecal microbiota provided a 

highly controlled environment to study these changes.  

In our investigations we observed an increase in microbial richness (as determined by 

rarefaction of bacterial species) and diversity (as determined by UniFrac distances) in formerly 

GF WT mice two weeks following association with an SPF microbiota. This finding suggests 

that the intestinal microbiota in formerly GF WT mice may still be establishing a homeostatic 
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balance two weeks after colonization. UniFrac distances can be calculated in a weighted (relative 

abundance of taxa) or un-weighted (presence or absence of taxa) manner. Low average UniFrac 

distances indicate higher similarity in the composition of the microbiota within a group of 

samples, whereas high average UniFrac distances indicate more dissimilarity within a group of 

samples. We observed an increase in both weighted and un-weighted UniFrac distances two 

weeks post colonization in WT mice, suggesting that the rise in diversity values at this time point 

is due to an increase in both high and low abundance bacterial species. A limitation of our study 

is that we did not investigate the microbial composition and diversity of fecal samples in 

formerly GF WT mice at three and four weeks following conventionalization with an intestinal 

microbiota. Thus we cannot conclude whether the intestinal microbiota has reached equilibrium 

at this point. Interestingly, it has been reported that the microbial composition and diversity of 

cecal contents in formerly GF WT mice, from a different genetic background (C57BL/6), 

exhibited stability seven days post-inoculation (Gillilland et al., 2012).  

We subsequently characterized the richness and diversity of the intestinal microbiota in 

formerly GF Il10-/- mice up to four weeks following colonization with an SPF microbiota to 

investigate alterations in the intestinal microbiota during the progression of colitis. Indeed, we 

observed moderate inflammation at four weeks post colonization in Il10-/- mice. A progressive 

decrease in weighted UniFrac distances was observed three and four weeks post colonization in 

comparison with one-week values. In addition, the richness of the microbiota was significantly 

decreased in this cohort of mice at these later time points. Interestingly, we did not observe a 

significant decrease in un-weighted UniFrac distances at the three and four week time points 

compared with one week in Il10-/- mice. These data suggest that the composition of newly 

introduced, complex microbial communities in formerly GF Il10-/- mice become more alike 
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during the progression of colonic inflammation and that high abundance taxa are responsible for 

this change. In the absence of an established fecal marker indicative of intestinal inflammation, 

we are unable to conclude whether the alterations in the richness and diversity of the enteric 

microbiota in Il10-/- mice occur before, during or after the onset of colonic inflammation. In 

previous experiments we find that mild inflammation occurs in formerly GF Il10-/- mice on a 129 

SvEv background two weeks following microbial colonization (Sellon et al., 1998). Our current 

study shows that enteric microbial richness and diversity dramatically changes at three weeks 

post association with an SPF microbiota. Thus, we speculate that decreases in enteric microbial 

richness and diversity in Il10-/- mice occur after the onset of colonic inflammation in this mouse 

model. 

In tandem with altered enteric microbial richness and diversity in the intestinal 

microbiota of Il10-/- mice over time, we observed changes in the relative abundances of specific 

bacterial phyla. Most notable was a step-wise increase in the levels of Proteobacteria that 

mirrored a significant increase of E. coli during the onset of colonic inflammation. Elevated 

Proteobacteria levels have been reported in UC and CD patients (Frank et al., 2007). Moreover, 

adherent invasive E. coli strains are associated with ileal CD (Darfeuille-Michaud et al., 2004) 

(Wine et al., 2009). A significant depletion in the concentrations of the Bacteroidetes and 

Firmicutes phyla were observed over time in Il10-/- mice, which also reflect changes reported in 

the intestinal microbiota of human IBD (Frank et al., 2007) (Willing et al., 2010). Thus, our data 

demonstrate that the Il10-/- mouse model of colitis exhibits alterations in specific members of the 

intestinal microbiota that parallel those of human IBD. We also observed significant decreases in 

the levels of Actinobacteria and Verrucomicrobia, which have not been reported for human IBD 

and may be a consequence of enteric inflammation. It is interesting to note that Bifidobacterium 
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species are encompassed within the Actinobacteria phylum and are considered probiotic 

microbes. Alterations in the Verrucomicrobia phylum may be yet unreported components of a 

human IBD dysbiosis, or alternatively, they may be unique to this mouse model. However, it has 

been reported that Akkermansia muciniphila (a member of the Verrucomicrobia phylum) is 

depleted in the mucus of IBD patients (Png et al., 2010). Indeed, in support of this finding, our 

16S rRNA sequence data revealed a significant decrease in the Akkermansia genus in Il10-/- mice 

over time. As bacterial richness and diversity decreased in Il10-/- mice over time, we observed a 

profound increase in the levels of the Tenericutes phylum. This phylum encompasses bacteria 

that lack a cell wall and are thus gram negative. Tenericutes have been reported to be 

significantly elevated in fecal samples from colonic Crohn’s disease patients but decreased in 

fecal samples from ileal Crohn’s disease and ulcerative colitis patients (Willing et al., 2010). 

From our data set, the dominant genus within the Tenericutes phylum is Allobaculum. However, 

although taxonomies were assigned to our 16S rRNA sequences using the Greengenes database 

(DeSantis et al., 2006), it is interesting to note that the RDP database (Cole et al., 2007) classifies 

the Allobaculum genus as belonging to the Firmicutes phylum, which would make the Firmicutes 

the dominant phylum in our data set. Nevertheless, it has been reported that the Greengenes 

database, which contains the largest and most diverse set of 16S rRNA sequences, is superior to 

other databases when classifying sequences at the phylum level, particularly with respect to the 

Tenericutes (Werner et al., 2012). It has been reported that GF mice have abnormal mucosal and 

immunologic maturation resulting in increased morbidity in the oxazolone-induced mouse model 

of colitis when compared with SPF mice (Olszak et al., 2012). Thus, we determined the 

abundances of specific bacterial groups in cohorts of WT and Il10-/- mice that were raised with a 

normal intestinal microbiota. Even though the mice used were of a different genetic background 
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(C57BL/6) to the mice used in our GF experiments, we observed an increase in the abundance of 

E. coli in Il10-/- mice compared with WT mice, suggesting a strong association of this bacterial 

species with the development of intestinal inflammation in this mouse model over time. We also 

found that although abundances of A. muciniphila and Lactobacillus species appeared to 

decrease over time in Il10-/- mice compared with WT mice, these decreases were not significant. 

Thus, it is possible that the alterations in the enteric microbiota during the development of 

intestinal inflammation that we observed in formerly GF Il10-/- mice are influenced by host 

genetics and an abnormal gut physiology associated with GF mice. 

Our data reports the changes in diversity and composition of the intestinal microbiota in 

the Il10-/- mouse model of spontaneous, immune-mediated colitis over time. The reduction in 

diversity and most changes in specific bacterial taxa in the intestinal microbiota of this mouse 

model reflect the changes in this complex microbial community observed in human IBD patients. 

Thus, our study validates the use of this mouse model for studies relating to the intestinal 

microbiota and immune-mediated colonic inflammation. The progressive loss of diversity, of 

dominant commensal microbiota and expansion of Proteobacteria, notably E. coli, with 

increasing experimental inflammation suggests that dysbiosis is secondary to the immune 

response in this model. Despite the postulated secondary nature of the observed changes, the 

altered microbiota profiles may still be responsible for perpetuation and amplification of mucosal 

immune responses and inflammation, since we have documented enteric bacterial specific T-

helper (Th)-1 and Th-17 responses in this model (Kim et al., 2005). 

 

2.6 Materials and methods 

Mice. Adult WT and Il10-/- 129 SvEv mice were maintained in a GF state at the National 
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Gnotobiotic Rodent Resource Center at UNC-Chapel Hill, NC USA. One group of WT (n = 5) 

and one group of Il10-/- (n = 5) mice were used in this study. Formerly GF mice were inoculated 

with fecal slurry obtained from a common SPF WT 129 SvEv donor mouse via oral and rectal 

swabbing (see Figure 7 for a schematic design of the study). Each experimental group (WT and 

Il10-/-) consisted of mice from the same litter that were housed in separate cages. Fresh fecal 

pellets were obtained weekly from all mice. All fecal pellets collected were flash frozen 

immediately in liquid nitrogen to retain the integrity of the fecal microbiota. In order to translate 

our findings from GF animals to mice that were raised from birth with a normal microbiota, we 

investigated WT (n = 8) and Il10-/- (n = 9) C57BL/6 mice housed in a specific pathogen-free 

(SPF) environment. Each experimental group (WT and Il10-/-) consisted of mice from the same 

litter that were housed in separate cages. Fecal samples were collected from all mice at eight and 

10 weeks of age. 

 

Assessment of intestinal inflammation. Sections of fixed (10% neutral buffered formalin) 

colons were embedded in paraffin and stained with hematoxylin and eosin. Using a well-

validated scale (Sellon et al., 1998) (Veltkamp et al., 2001), the severity of inflammation was 

blindly assessed. Histological scores (0 to 4) were based on the degree of lamina propria and 

submucosal mononuclear cellular infiltration, crypt hyperplasia, goblet cell depletion and 

architectural distortion. A composite histology score was generated by the aggregate scores from 

the cecum and proximal and distal colon.  

Colonic explant cultures were prepared as previously described (Sellon et al., 1998). 

Briefly, colonic tissue was thoroughly irrigated with phosphate-buffered saline (PBS), shaken at 

room temperature in Roswell Park Memorial Institute Medium (RPMI) containing 1% penicillin 
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and streptomycin (GIBCO) for 30 min at 280 rpm, cut into 1-mm fragments and weighed. 

Intestinal tissue fragments were then distributed (0.05 g per well) into 24-well plates and 

incubated in 1 mL of RPMI 1640 medium supplemented with 10% fetal bovine serum and 1% 

antibiotic/antimycotic (penicillin/streptomycin; GIBCO) for 22 h at 37 °C. Supernatants were 

collected and stored at −20 °C before use for cytokine quantification. Commercially available 

monoclonal anti-mouse IL-12 p40 capture and detection reagents (BD Biosciences PharMingen) 

in an enzyme-linked immunosorbent assay (ELISA) were used to measure the levels of IL-12 

p40 secreted constitutively in colonic explant cultures (Sellon et al., 1998) (Veltkamp et al., 

2001). IL-12 p40 levels were measured in supernatants and compared with standard curves 

generated by using recombinant murine IL-12 p40. 

 

Isolation of DNA. Bacterial DNA was isolated from all fecal pellets (n = 47) using a 

phenol/chloroform extraction method combined with physical disruption of bacterial cells and a 

DNA clean-up kit (Qiagen DNeasy(R) Blood and Tissue extraction kit) as previously described 

(Gulati et al., 2012). Briefly, 100 mg of frozen feces were suspended in 750 µL of sterile 

bacterial lysis buffer (200 mM NaCl, 100 mM Tris [pH 8.0], 20 mM EDTA, 20 mg/mL 

lysozyme) and incubated at 37 °C for 30 min. Next, 40 µL of proteinase K (20 mg/mL) and 85 

µL of 10% SDS were added to the mixture and incubated at 65 °C for 30 min. 300 mg of 0.1 mm 

zirconium beads (BioSpec Products) were then added and the mixture was homogenized in a 

bead beater (BioSpec Products) for 2 min. The homogenized mixture was cooled on ice and 

centrifuged at 14,000 rpm for 5 min. The supernatant was transferred to a new 1.5 ml microfuge 

tube and fecal DNA was further extracted by phenol/chloroform/iso-amyl alcohol (25:24:1) and 

chloroform/iso-amyl alcohol (24:1). Following extraction the supernatant was precipitated by 
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absolute ethanol at −20 °C for 1 h. The precipitated DNA was suspended in DNase free H2O and 

cleaned using the Qiagen DNeasy(R) Blood and Tissue extraction kit per the manufacturer’s 

instructions. 

 

454 pyro-sequencing of 16S rRNA genes. Bacterial community composition in isolated DNA 

samples was characterized by amplification of the V1–3 (forward, 8f: 5' 

AGAGTTTGATCMTGGCTCAG-3'; reverse 518r: 5'-ATTACCGCGGCTGCTGG-3') variable 

regions of the 16S rRNA gene by polymerase chain reaction (PCR) as previously described 

(Carroll et al., 2012). Forward primers were tagged with 10 bp unique barcode labels at the 5' 

end along with the adaptor sequence (5'-CCATCTCATCCCTGCGTGTC TCCGACTCAG-3') to 

allow multiple samples to be included in a single 454 Genome Sequencer (GS) FLX Titanium 

sequencing plate as previously described (Hamady et al., 2008) (Fierer et al., 2008). 16S rRNA 

PCR products were quantified, pooled and purified for the sequencing reaction. 454 GS FLX 

Titanium sequencing was performed on a 454 Life Sciences GS FLX machine (Roche) at the 

Microbiome Core at UNC-Chapel Hill (http://www.med.unc.edu/microbiome). 

 

Analysis of 16S rRNA sequences using the QIIME pipeline. 16S rRNA sequence data 

generated by the 454 GS FLX Titanium sequencer were processed by the quantitative insights 

into microbial ecology (QIIME) pipeline (Caporaso et al., 2010). Briefly, sequences that were 

less than 200 bp or greater than 1,000 bp in length, contained incorrect primer sequences or 

contained more than 1 ambiguous base were discarded. The remaining sequences were assigned 

to WT and Il10-/- groups based on their unique nucleotide barcodes, including error-correction 

(Hamady et al., 2008). Sequences were clustered into OTUs based on 97% sequence similarity 
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(similar to species level) using BLAST with the Greengenes reference database (McDonald et 

al., 2012). α-diversity (diversity within samples) was determined with ten iterations at a maximal 

sequence depth where all samples could be included. β-diversity (diversity between groups of 

samples) was calculated using weighted and un-weighted UniFrac distances (Lozupone and 

Knight, 2005) (Lozupone et al., 2011) (Lozupone et al., 2007). UniFrac distances are a β-

diversity measure that utilizes phylogenetic information to compare environmental samples 

(Lozupone and Knight, 2005) (Lozupone et al., 2011). 

 

Quantitative real-time PCR (qPCR). qPCR assays were performed using the SYBR(R) Green 

PCR Master Mix (Applied Biosystems) with primers that amplify the genes encoding 16S rRNA 

from E. coli (forward, 5'-GTTAATACCT TTGCTCATTG A-3'; reverse, 5'-ACCAGGGTAT 

CTAATCCTGT T-3'), Lactobacillus species (forward, 5'-AGCAGTAGGG AATCTTCCA-3'; 

reverse, 5'-CACCGCTACA CATGGAG-3'), A. muciniphila (forward, 5'-CAGCACGTGA 

AGGTGGGGAC-3'; reverse, 5'-CCTTGCGGTT GGCTTCAGAT-3') and all bacteria (forward, 

5'-TGSTGCAYGG YTGTCGTCA-3'; reverse, 5'-ACGTCRTCCM CACCTTCCTC-3'). qPCR 

assays were conducted in 96-well plates on an Eppendorf Realplex2 mastercycler thermocycler 

(Eppendorf). Each PCR was performed in a final volume of 25 µL and contained the following: 

1x SYBR Green Master Mix, 0.5 µM of each primer and 10 ng of purified fecal DNA. PCR 

conditions were as follows: 10 min at 95 °C, followed by 40 cycles of 95 °C for 15 sec, 20 sec at 

50 °C and 72 °C for 30 sec. Each plate included duplicate reactions per DNA sample, the 

appropriate set of standards and a “no template” negative control for each primer set. qPCR 

standards were generated by PCR amplification of target sequences from genomic DNA of an 

appropriate positive control strain. Analysis of melting curves confirmed that the fluorescence 
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signal originated from specific PCR products and not from primer-dimers or other artifacts. 

 

Statistical analyses. Bacterial taxon percentages and average UniFrac value data sets were 

assessed for normality using the D’Agostino and Pearson omnibus normality test prior to 

performing statistical analyses. When a data set was identified as not having a normal 

distribution, it was transformed by log10 (Ramette, 2007) and retested for normality. Normally 

distributed data sets were compared using a Student’s t-test. All statistical comparisons were 

performed using GraphPad Prism software (v4.0a; Prism). We used taxon and phylogenetic-

based analyses to compare 16S rRNA gene sequences within WT and Il10-/- groups over time. 

Taxon-based: the means and standard deviations of abundances of bacterial phyla were 

calculated and compared between all time-points for each group using the Benjamini–Hochberg 

procedure (Benjamini et al., 2001) to correct for multiple corrections. A p value of less than 0.05 

and a FDR less than 0.1 was considered significant. Phylogenetic-based: phylogenetic trees for 

WT and Il10-/- groups were generated using the QIIME pipeline (Caporaso et al., 2010). Each 

tree was subjected to un-weighted and weighted UniFrac analyses (Lozupone and Knight, 2005) 

(Lozupone et al., 2011) through the QIIME pipeline. UniFrac distances represent the fraction of 

branch length that is shared by any two samples’ communities in a phylogenetic tree built from 

16S rRNA sequence data from all samples. Average UniFrac distances, which represent the 

similarity or dissimilarity of microbial communities within a group, were compared using a 

Student’s t-test. 

 For qPCR assays, the percentage of E. coli was determined in all fecal samples ([copies 

16S rRNA gene for E. coli/copies of 16S rRNA gene for all bacteria] x 100). The concentration 

of E. coli group was expressed as a “fold change” with respect to the concentration in the control 
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group (WT) at week 1 after colonization. qPCR data were compared between groups using a 

non-parametric Mann-Whitney test. Similarly, the concentrations of IL-12 p40 secreted by 

colonic tissue (pg/mL/mg of tissue) were compared between groups using a non-parametric 

Mann-Whitney test.  
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2.7 Figures 

 
Figure 2.1. Inflammatory changes in the colons of formerly GF mice over time. (A, C) 
Levels of IL-12 p40 secreted by colonic tissues from formerly GF WT and Il10-/- mice (A) and 
SPF-raised WT and Il10-/- mice (C). The levels of IL-12 p40 in Il10-/- mice are significantly 
higher compared with WT mice in both formerly GF (p = 0.008) and SPF (p = 0.0001) 
environments. (B, D) Histological scores for formerly GF WT and Il10-/- mice (B) and SPF WT 
(n = 7, as one tissue sample degraded during processing) and Il10-/- mice (D). The degree of 
histological inflammation is significantly higher in Il10-/- compared with WT mice in formerly 
GF (p = 0.008) and SPF (p = 0.001) environments. 
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Figure 2.2. Changes in weighted and un-weighted average UniFrac distances in formerly 
GF WT and Il10-/- mice over time. (A) Average weighted UniFrac distances of the intestinal 
microbiota significantly decrease in Il10-/- mice three and four weeks following colonization with 
a SPF microbiota. (B) Average un-weighted UniFrac distances of the intestinal microbiota do not 
significantly alter in the Il10-/- mice following colonization with an SPF microbiota. (C) Average 
weighted and un-weighted UniFrac distances significantly increase in WT mice between one and 
two weeks following colonization with an SPF microbiota.
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Figure 2.3. Microbial richness of 16S rRNA data. (A) The number of observed bacterial 
species in formerly GF Il10-/- mice decreases between one and four weeks following colonization 
with an SPF microbiota. (B) The number of observed bacterial species in formerly GF WT mice 
significantly increases between one and two weeks following colonization with an SPF 
microbiota. 
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Figure 2.4. Bacterial taxa alterations over time in formerly GF WT and Il10-/- mice. 
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Figure 2.5. Change in levels of Proteobacteria and E. coli in formerly GF Il10-/- mice over 
time. Proteobacteria are expressed as the percentage of total 16S rRNA sequences. E. coli are 
expressed as fold increase with respect to baseline (WT at week 1). * The levels of 
Proteobacteria and E. coli are significantly higher at week 4 post colonization compared with 
week 1 (E. coli, p = 0.0001; Proteobacteria, FDR = 1.5 x 10-5). 
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Figure 2.6. Change in levels of E. coli (A), A. muciniphila (B) and Lactobacillus species (C) 
in SPF WT and Il10-/- mice over time. 
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Figure 2.7. Schematic outline of experimental design. Adult WT and Il10-/- 129 SvEv GF mice 
were inoculated with an SPF microbiota from a single donor (black arrow). Fresh fecal pellets 
were obtained from the WT group (n = 5) at 1 and 2 weeks following SPF inoculation. Fecal 
pellets were obtained from the Il10-/- group (n = 5) at 1, 2, 3 and 4 weeks following association 
with an SPF intestinal microbiota. 



 72 

 

 
Table 2.1. Changes in the abundances of genus level taxa over time in formerly GF Il10-/- 
mice. 
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CHAPTER 3 

DIETARY IRON ALTERS THE ECOLOGICAL STRUCTURE OF THE DEVELOPING 
INTESTINAL MICROBIOTA2 

3.1 Personal contributions to manuscript 

I am the first author on the manuscript entitled “Dietary iron alters the ecological 

structure of the developing intestinal microbiota” that is in preparation for submission. I 

contributed to the manuscript by helping run the animal experiments in which we colonized ex-

GF mice with a complex microbial community. I helped harvest all necessary samples for 

assessment of histopathology, cytokine production, iron measurement and microbiota analysis. I 

scored histology sections to assess the severity of inflammation and prepared and ran samples for 

measuring iron content by atomic absorption spectophotometry. Additionally, I helped isolate 

DNA from fecal and tissue samples for 16S rRNA sequencing. I also generated the 16S rRNA 

libraries for subsequent microbiota analysis and assisted with the analysis and interpretation of 

the sequencing data. I also conducted all in vitro microbiology and tissue culture experiments, 

conducted and analyzed the bacterial microarrays and constructed the deletion mutants in E. coli. 

Finally, I compiled the figures and wrote the manuscript. 

 

                                                
2 Melissa Ellermann, Raad Z. Gharaibeh, Nitsan Maharshak, Ian M. Carroll, Janelle C. Arthur, 
Ernesto Peréz-Chanona, Christian Jobin, Scott E. Plevy, Anthony A. Fodor, Cory R. Brouwer 
and R. Balfour Sartor. 2015. Dietary iron alters the ecological structure of the developing 
intestinal microbiota. (Manuscript in preparation). 
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3.2 Overview 

Iron deficiency is the most common micronutrient deficiency worldwide. However, the 

ecological impact of dietary iron supplementation on a developing intestinal microbiota is 

unclear. Here we demonstrate that altering intestinal iron availability during community 

assembly impacts the resulting structure of the intestinal microbiota in ex-germ-free WT mice. 

Dietary iron restriction promoted compositional changes to the luminal community frequently 

associated with dysbiotic states, including decreased microbial richness and an expansion of 

Enterobacteriaceae including Escherichia coli. In vitro growth competitions between E. coli and 

a non-siderophilic bacterium revealed that TonB-dependent iron acquisition in E. coli enhanced 

its relative abundance when iron availability was limited. Although dietary iron restriction in 

colitis-susceptible interleukin-10-deficient (Il10-/-) mice resulted in similar ecological changes as 

observed in WT mice, luminal community composition in Il10-/- mice was insensitive to 

additional iron supplementation over the control diet. Dietary iron supplementation also limited 

colitis development in the absence of distinct compositional changes to the fecal microbiota. 

Taken together, iron availability during community assembly influences the ecological structure 

of the intestinal microbiota that may be driven by differential capabilities for scavenging iron 

between distinct bacterial taxa and is dependent on the inflammation status of the host. 

 

3.3 Introduction 

Iron deficiency anemia (IDA) is the most common micronutrient deficiency, affecting 

approximately 1 billion individuals worldwide (Berglund and Domellöf, 2014). Although oral 

iron supplementation regimens can be efficacious in treating IDA (Adu-Afarwuah et al., 2008) 

(Domellöf et al., 2014), the safety and tolerance of oral iron supplementation within specific 
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population subsets such as infants and patients with chronic inflammatory diseases remains 

controversial. Increased diarrhea, enhanced burden of intestinal pathogens and increased fecal 

markers of inflammation have been reported in iron deficient infants with high pathogen burden 

receiving iron-supplemented foods (Gera and Sachdev, 2002) (Zimmermann et al., 2010) (Soofi 

et al., 2013) (Jaeggi et al., 2014) (Abhyankar and Moss, 2015). Increased disease activity and 

functional GI symptoms with oral iron supplementation have also been observed in some 

inflammatory bowel diseases (IBD) patients (Erichsen et al., 2005) (Kulnigg and Gasche, 2006) 

and with increased dietary iron intake in several rodent models of experimental colitis (Werner et 

al., 2011) (Kulnigg and Gasche, 2006) (Chua et al., 2013). Diet-mediated increases in intestinal 

iron concentrations can also enhance the luminal production of reactive oxygen species (Lund et 

al., 1999), a byproduct of the Fenton reaction, which in turn can increase colonic oxidative stress 

(Kulnigg and Gasche, 2006) and potentially exacerbate the development of intestinal 

inflammation.  

The gastrointestinal (GI) tract is home to a complex community of microbes referred to 

as the intestinal microbiota. Dietary factors including macronutrient and micronutrient content 

can alter the composition of the intestinal microbiota (Wu et al., 2011) (Muegge et al., 2011) 

(Werner et al., 2011) (David et al., 2013), which in turn can impact numerous host processes 

including metabolism and immune function (Turnbaugh et al., 2006) (Devkota et al., 2012) 

(Atarashi et al., 2013) (Ojeda et al., 2015). Iron is a necessary cofactor for various bacterial 

enzymes and therefore serves as an important micronutrient for most members of the intestinal 

microbiota (Caldwell and Arcand, 1974) (Marcelis et al., 1978) (Imbert and Blondeau, 1998) 

(Andrews et al., 2003). The iron requirements for different bacterial taxa vary, as does the 

capacity to acquire iron when availability is limited. An estimated 5-15% of dietary nonheme 
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iron is absorbed at the duodenum (Hurrell and Egli, 2010), leaving the remaining unabsorbed 

iron to pass through the GI tract for microbial use. Indeed, changes in luminal iron 

concentrations through dietary manipulations alter the composition of an established intestinal 

microbiota (Werner et al., 2011) (Dostal et al., 2014b) (Pereira et al., 2014). Thus the impact of 

dietary iron on the growth and function of resident intestinal bacteria can conceivably mediate 

the development of unfavorable side effects that occur with oral iron supplementation in addition 

to iron-mediated effects on the host. 

 Studies investigating the impact of dietary iron on the intestinal microbiota have mainly 

focused on rodent models with an established microbial community. However, population 

subsets that are most vulnerable to IDA, including the infant and IBD populations, frequently 

harbor an intestinal microbiota that is either immature or unstable in composition (Martinez et 

al., 2008) (Koenig et al., 2011) (Pantoja-Feliciano et al., 2013). We therefore sought to determine 

how dietary iron restriction and supplementation influences the ecological structure of the 

developing microbiota. Using ex-germ-free (GF) wild type (WT) mice, we show that dietary iron 

restriction during community assembly resulted in compositional changes that are frequently 

associated with a dysbiotic state, including an increased relative abundance of 

Enterobacteriaceae family members including Escherichia coli. Moreover, decreased intestinal 

iron availability corresponded with an enrichment in the presence of genes involved in iron 

scavenging, including siderophore-mediated iron transport that are redundantly present in some 

intestinal Escherichia coli (Andrews et al., 2003) (Dogan et al., 2014). Consistent with our in 

vivo results, dual-culture growth competitions between E. coli and a non-siderophilic bacterium 

revealed that TonB-dependent iron acquisition in E. coli enhanced its relative abundance under 

iron limiting conditions. In contrast to WT mice, the composition of the developing microbiota in 
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inflammation-susceptible interleukin-10-deficient (Il10-/-) mice during the onset of inflammation 

was insensitive to additional iron supplementation despite its protective effect on colitis 

development. Taken together, luminal iron availability during community assembly influences 

the resulting structure of the intestinal microbiota and is dependent on host susceptibility to 

inflammation and differential capacities for scavenging iron between distinct bacterial taxa.  

 

3.4 Results 

3.4.1 Intestinal iron availability during community assembly impacts the resulting structure of 
the intestinal microbiota 

Dietary iron interventions can be administered during infancy when the microbiota is 

undergoing ecological succession (Koenig et al., 2011) (Pantoja-Feliciano et al., 2013) or during 

disease states when the microbiota exhibits transient instability (Martinez et al., 2008) (Carvalho 

et al., 2012). We therefore investigated the impact of dietary iron restriction or supplementation 

on the developing microbiota. GF WT mice were colonized with the fecal microbiota from a WT 

donor and were placed on an iron deficient (hereafter referred to as the low iron diet), control or 

iron supplemented diet (hereafter referred to as the high iron diet). Fecal and cecal tissue samples 

were collected for 16S rRNA sequencing at 4 weeks following colonization, when the microbiota 

exhibits initial compositional stability following conventionalization (McCafferty et al., 2013). 

Because host iron status has been correlated with compositional changes to the intestinal 

microbiota (Balamurugan et al., 2010) (Shanmugam et al., 2014) (Jaeggi et al., 2014) and 

consumption of an iron deficient diet can induce a state of iron deficiency as early as 4 weeks 

(Dostal et al., 2012a) (Pereira et al., 2014), mice maintained on the low iron diet were 

supplemented with weekly intraperitoneal (IP) iron injections in order to prevent systemic iron 
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depletion. Following the 4-week dietary intervention and IP injections, liver iron stores were not 

significantly different between the dietary groups (Fig. S1). Moreover, as described by others 

(Lund et al., 1999) (Carrier et al., 2001), dietary iron restriction and supplementation 

significantly altered fecal iron concentrations (Fig. S2), demonstrating that the dietary treatments 

modulated luminal iron concentrations in the intestines.    

Principal coordinate analysis using Bray-Curtis dissimilarity at the operational taxonomic 

unit (OTU) level revealed compositional differences to the fecal microbiota between the different 

diets (Fig 1A). The fecal communities in mice maintained on the high iron diet significantly 

differed from that in mice administered the low iron diet for PCoA axis 1 (FDR-corrected p 

value = 4.4x10-9) explaining 42.28% of the variance as assessed using a mixed liner model. The 

composition of the fecal microbiota in mice fed the control diet exhibited the most 

interindividual variability as assessed by Bray Curtis distances between samples within each diet 

group (Fig S3), suggesting that supplementation or depletion of dietary iron exerts strong 

selective pressure in shaping the fecal microbiota. Restriction of dietary iron during community 

assembly also resulted in a significant reduction in microbial richness relative to iron 

supplementation as assessed by observed OTUs (Fig 1C) and Shannon diversity (Fig 1E). Taken 

together, manipulation of intestinal iron availability through dietary interventions during 

community assembly impacts the ecological structure of the resulting fecal microbiota. 

We also examined the impact of dietary iron supplementation and depletion on the 

structure of the mucosal microbiota. One sample from the low iron diet group was excluded from 

16S rRNA sequencing because of low DNA yield. Principal coordinate analysis revealed partial 

clustering of the mucosal microbiota by dietary treatment, including significant differences 

between the low and high iron diet groups for PCoA axis 1 (FDR-corrected p value = 0.02) (Fig 
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1B). As in the luminal compartment, dietary iron supplementation increased the microbial 

richness of the mucosal microbiota (Fig 1D and F). Collectively, these results suggest that 

although dietary iron influences the biodiversity of the mucosal microbiota, dietary modulation 

of intestinal iron availability during community assembly has a stronger impact in shaping the 

resulting luminal versus mucosal microbiota.   

 

3.4.2 Dietary iron supplementation alters the fecal abundances of distinct bacterial taxa  

We next evaluated the impact of dietary iron supplementation and depletion on specific 

taxa within the fecal microbiota. A heat map was generated to highlight OTUs that significantly 

differed in relative abundance in the feces between at least two diet groups (Fig 2A) (Table S2). 

Statistical analysis using a mixed linear model revealed that the relative abundances of 59 OTUs 

(4 Actinobacteria, 5 Bacteroidetes, 57 Firmcutes, 2 Proteobacteria, and 1 Verrucomicrobia) 

significantly differed between at least two dietary treatments. Iron supplementation during 

community assembly resulted in the enrichment of 18 OTUs relative to the control diet and 37 

OTUs relative to the low iron diet (Fig 2B). In contrast, dietary iron restriction increased the 

relative abundances of 7 OTUs compared to the control diet and 8 OTUs compared to the high 

iron diet (Fig 2C). Taken together, these data suggest that increased intestinal iron availability 

during community assembly corresponds with the enrichment of a greater number of bacterial 

taxa within the luminal microbial community.  

 

3.4.3 Dietary iron restriction promotes a bloom of Enterobacteriaceae and predicted bacterial 
iron uptake systems 
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The impact of dietary iron on the luminal abundance of Enterobacteriaceae is 

inconsistent, where an enrichment of Enterobacteriaceae with increased dietary iron has been 

observed in infants (Zimmermann et al., 2010) (Jaeggi et al., 2014), while others have reported 

the opposite effect in both mice and infants consuming iron-fortified foods (Dostal et al., 2012a) 

(Krebs et al., 2013). We therefore determined whether the relative abundance of 

Enterobacteriaceae was altered with dietary iron restriction or supplementation during 

community assembly. In the control and low iron diet groups, the relative fecal abundances of 

Proteobacteria and Enterobacteriaceae family members including Escherichia coli were 

significantly increased relative to the high iron diet group (Fig S4, 3A and 3B), suggesting that 

increased intestinal iron availability during community assembly may accelerate negative 

selection against Enterobacteriaceae.  

Because dietary iron restriction significantly decreases total fecal iron concentrations and 

presumably bacterial luminal iron availability, we next investigated whether dietary iron 

restriction also promotes an increase in the presence of genes involved in scavenging iron within 

the fecal microbiota. Using the metagenomic inference tool PICRUSt, we observed a significant 

increase in the predicted presence of tonB (K03832), exbB (K03561) and exbD (K03559) in mice 

maintained on the low iron or control diets (Fig 3C). These three genes are required for bacterial 

import of various substrates including siderophore-bound iron (Noinaj et al., 2010). The relative 

abundance of additional genes involved in siderophore-mediated iron acquisition and utilization, 

including a predicted enterochelin esterase (K07214) required for the hydrolysis of ferric 

enterobactin (Bryce et al., 1971) and a predicted iron complex outer membrane receptor 

(K02014), are also increased with the low iron and control diets. Transcript levels of these and 

other iron acquisition genes in E. coli are increased in vitro under iron limiting conditions 
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(McHugh et al., 2003) (Seo et al., 2014), including in a resident intestinal E. coli strain (Table 

S3). Taken together, these data suggest that decreased intestinal iron availability may select for 

siderophilic bacteria including E. coli with a greater capacity to scavenge iron.      

 

3.4.4 TonB-dependent iron acquisition enhances E. coli relative abundance when iron 
availability is restricted 

TonB is an inner membrane protein required for energy transduction that powers import 

of various nutrients including siderophore-bound iron through cognate receptors in E. coli and 

other siderophilic bacteria (Letain and Postle, 1997) (Noinaj et al., 2010). Because the predicted 

abundance of tonB and other genes involved in siderophore-mediated iron acquisition was 

increased in the low iron and control diet groups, we determined whether TonB-mediated iron 

acquisition provides resident intestinal E. coli a relative growth advantage when iron availability 

is restricted. To address this, we created an isogenic tonB deletion mutant in E. coli to 

simultaneously inactivate all siderophore-mediated iron import (Braun and Hantke, 2011). 

Growth of the tonB mutant was decreased in the presence of an iron chelator relative to the 

parental strain (Fig S5A), demonstrating that siderophore-mediated iron scavenging limits the 

impact of extracellular iron chelation on E. coli growth. We then competed the parental and 

mutant E. coli strains with a non-siderophilic bacterium, Enterococcus faecalis that exhibits 

minimal iron requirements (Fig S5B) (Marcelis et al., 1978). Indeed, the relative fecal abundance 

of Enterococcaceae family members remains unchanged as intestinal iron concentrations are 

altered through the dietary manipulations (Fig 3D). In medium containing the iron chelator, the 

percent abundance of the parental E. coli strain was significantly increased compared to the tonB 

mutant (Fig 4A and 4C), which corresponded with an enrichment of E. faecalis in the presence 

of the tonB mutant (Fig 4B and 4D). Addition of exogenous iron in the presence of the iron 
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chelator restored bacterial growth kinetics observed in the control cultures (Fig 4A-D, Fig S5C-

F). Taken together, these data suggest that TonB-dependent iron acquisition may help promote 

the bloom of E. coli observed in vivo when dietary iron is restricted by enabling more efficient 

scavenging of iron through redundant siderophore-mediated iron acquisition systems. 

 

3.4.5 The luminal microbiota in the inflamed environment is insensitive to additional iron 
supplementation 

We previously observed an expansion in Enterobacteriaceae family members including 

E. coli during the onset of colitis in Il10-/- mice following conventionalization (Maharshak et al., 

2013). Because decreased intestinal iron availability also promotes a bloom of 

Enterobacteriaceae, we investigated whether administration of a low iron or control diet 

exacerbates colitis in ex-GF Il10-/- mice. At 4 weeks following conventionalization, mice on the 

high iron diet developed less severe colitis compared to mice on the control diet as assessed by 

histological inflammation (Fig 5A-D), clinical disease activity (Fig 5E), secretion of the 

proinflammatory cytokine IL-12 p40 by colonic explant cultures (Fig 5F) and serum levels of IL-

12 p40 (Fig 5G). Mice on the low iron diet also developed less severe colitis compared to the 

control diet group, although this did not achieve statistical significance. Thus, dietary iron 

restriction and supplementation appear to limit colitis development in Il10-/- mice after 4 weeks.  

 We next determined whether dietary iron restriction or supplementation promoted similar 

compositional changes to the fecal microbiota in Il10-/- mice as in WT mice. Principal coordinate 

analysis revealed that the composition of the fecal microbiota did not cluster by severity of 

inflammation (Fig 6A). Instead, consistent with the WT cohort, the communities assembled with 

dietary iron supplementation significantly differed from those assembled with dietary iron 

restriction for PCoA axis 1 (FDR-corrected p value = 3.1x10-7). Similarly, microbial richness as 
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assessed by observed OTUs in the fecal microbiota was reduced (Fig 6B) and the relative 

abundance of Enterobacteriaceae was enhanced (Fig 6C) with dietary iron restriction. However, 

in contrast to the WT mice, principal coordinate analysis demonstrated that the fecal 

communities with the control and high iron diets clustered with each other (Fig 6A). Moreover, 

84 bacterial taxa were similarly enriched or depleted in the control and high iron diet groups 

(Fig. 6C and 6D, Table S4), suggesting that in a state of inflammation, additional iron 

supplementation does not further alter the structure of the fecal microbiota.  

 

3.4.6 The protective effect of dietary iron supplementation on colitis development may be 
mediated through host factors  

Because increased severity of colitis in Il10-/- mice on the control diet did not coincide 

with distinct structural changes to the fecal microbiota, we investigated whether inflammation 

corresponded with compositional changes to the mucosal community. One sample from the 

control diet group was excluded because of low DNA yield. Principle coordinate analysis 

revealed distinct clustering of the mucosal microbiota by diet, although this did not achieve 

statistical significance (Fig S6A). In the control group, microbial richness and the relative 

abundances of numerous OTUs were significantly decreased (Fig S6B and S6C), suggesting that 

perturbations to the mucosal community may be associated with more severe colitis 

development. However, this was not associated with an increased relative abundance of mucosal 

Enterobacteriaceae compared to the low and high iron diet groups (Fig S6D), suggesting that 

mucosal Enterobacteriaceae abundance may be only be sensitive to the presence rather than the 

severity of intestinal inflammation. Indeed, the relative abundance of Enterobacteriaceae in the 

mucosa was consistently higher in Il10-/- mice compared to WT mice regardless of diet (Fig S6D 

and S6E).  
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The lack of distinct compositional changes to the fecal microbiota with more severe 

colitis in Il10-/- mice on the control diet also suggests the involvement of host factors in 

mediating the impact of dietary iron on colitis development. Given that iron homeostasis and 

macrophage function are intimately linked, we tested whether iron impacts in vitro macrophage 

production of IL-12 p40, a proinflammatory cytokine that correlates with colitis severity in Il10-/- 

mice (Kim et al., 2005). As iron concentrations were increased, macrophage production of IL-12 

p40 was reduced (Fig 6E) without impacting macrophage viability (Fig 6F). Taken together, 

these results suggest that the protective effect of dietary iron supplementation on colitis 

development may in part be mediated through the impact of iron on immune function in the Il10-

/- mouse model.  

 

3.5 Discussion 

Iron deficiency is often treated through oral iron supplements or consumption of an iron-

fortified diet, which can modulate luminal iron concentrations in the intestines (Lund et al., 

1999) (Carrier et al., 2001) and potentially influence bacterial iron availability and consequent 

bacterial growth and community structure. We therefore investigated the ecological impact of 

dietary iron restriction and supplementation on an establishing intestinal microbiota. Dietary iron 

restriction during community assembly resulted in significant compositional changes frequently 

associated with a dysbiotic state including decreased microbial richness. Complimentary to our 

findings, other studies utilizing 16S rRNA gene sequencing have demonstrated that dietary iron 

restriction also alters the composition of an established intestinal microbiota in rodent models 

(Werner et al., 2011) (Dostal et al., 2014b) (Pereira et al., 2014). In one study, dietary iron 

restriction initiated at weaning resulted in compositional changes to the fecal microbiota that 
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were distinct from the control diet group (Pereira et al., 2014). Consistent with our results, this 

included a decrease in microbial richness with dietary iron restriction relative to both the baseline 

community at weaning and the control diet (Pereira et al., 2014). Interestingly, subsequent 

dietary iron repletion did not fully restore microbial richness or overall community-wide 

compositional changes (Pereira et al., 2014). In contrast, dietary iron restriction in adult mice 

with an established microbiota did not alter microbial richness (Werner et al., 2011). Thus 

limiting intestinal iron availability seems to only impact microbial richness of a developing 

intestinal microbiota.  

Our findings also demonstrate that dietary iron restriction is associated with a reduction 

in the relative abundances of numerous taxa within the Firmicutes that corresponded with an 

increase in Enterobacteriaceae. In other rodent studies that utilized 16S rRNA sequencing to 

characterize the impact of dietary iron restriction on the intestinal microbiota, a change in the 

relative abundance of Enterobacteriaceae was not reported between the iron deficient and control 

diets (Werner et al., 2011) (Pereira et al., 2014). An iron-supplemented diet group was not 

included in these studies. Therefore, our study is the first to our knowledge to assess the impact 

of dietary iron supplementation on community composition through 16S rRNA sequencing and 

demonstrate decreased Enterobacteriaceae abundance with iron supplementation. In another 

rodent study assessing compositional changes by targeted quantitative PCR, dietary iron 

restriction initiated at weaning resulted in a bloom of Enterobacteriaceae that was reversed with 

subsequent dietary iron repletion (Dostal et al., 2012a). Decreased Enterobacteriaceae was also 

observed in infants receiving iron-fortified foods relative to baseline levels (Krebs et al., 2013). 

In contrast, in infants with a high initial pathogen burden, administration of an iron-fortified diet 

resulted in a higher relative abundance of Escherichia species (Zimmermann et al., 2010) (Jaeggi 
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et al., 2014). However, a significant increase in the abundance of pathogenic E. coli was only 

observed in infants that received an intermediate iron dose and not in infants that received the 

highest iron dose (Jaeggi et al., 2014). Increased dietary iron intake in rodents is also associated 

with an increased relative abundance of short chain fatty acid (SCFA) producers within the 

Firmicutes phylum and increased intestinal levels of fermentative metabolites including butyrate 

and proprionate (Dostal et al., 2012a) (Dostal et al., 2014b). Taken together, these findings 

suggest that dietary iron restriction may perturb the ecological structure of the luminal intestinal 

community, promoting compositional and functional changes that have been linked to numerous 

pathological states.  

In response to low iron availability, bacteria upregulate genes involved in iron acquisition 

in order to scavenge iron from the environment. Bacterial taxa such as Enterobacteriaceae 

encode numerous siderophore-mediated iron transport systems that likely enhance their 

competitive advantage when iron availability is restricted. Indeed, the relative abundance of 

endogenous Enterobacteriaceae and predicted genes involved in iron acquisition such as tonB 

were increased with dietary iron restriction in our study. However, the TonB-ExbB-ExbD 

complex is also involved in the import of vitamin B12 in E. coli and other nutrients in other 

bacteria taxa (Noinaj et al., 2010). Therefore, we cannot conclusively determine whether the 

predicted increase in the presence of tonB, exbB and exbD occurs in response to decreased iron 

availability or other environmental factors. To address this, we deleted tonB in a resident 

intestinal E. coli strain and conducted controlled in vitro growth competitions with the non-

siderophilic intestinal bacterium E. faecalis. In contrast to the parental strain, the relative 

abundance of the tonB mutant was decreased when iron availability was restricted, suggesting 

that TonB-mediated iron acquisition enhances the relative fitness of E. coli when iron is limited. 
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Consistent with our findings, in the presence of a complex community, addition of an iron 

chelator to an in vitro colonic fermentator inoculated with a fecal microbiota results in the 

expansion of Enterobacteriaceae that corresponded with a reduction in Lachnospiraceae, 

Ruminococceae and Bacteroidaceae (Dostal et al., 2012b). Similarly, deletion of tonB in a 

probiotic E. coli strain reduces its competitive advantage over Salmonella in the inflamed 

intestines when fecal iron concentrations are decreased (Deriu et al., 2013). Thus, decreasing 

iron availability in the intestines likely provides a fitness advantage for resident bacteria that are 

more effective at scavenging iron. However, as PiCRUST only predicts the functional potential 

of a complex microbial community, future studies using metagenomics, transcriptomics and 

metabolomics are warranted to both confirm the increased presence of iron acquisition genes 

with dietary iron restriction and to determine if transcription of these systems is upregulated.  

One limitation to our study is the exclusion of an experimental group maintained on the 

iron deficient diet without systemic iron repletion. Werner and colleagues demonstrated that 

intraperitoneal administration of iron in mice on an iron deficient diet did not significantly 

impact the composition of the intestinal microbiota (Werner et al., 2011). Moreover, the relative 

abundances of the majority of bacterial taxa were not significantly altered between the two 

groups (Werner et al., 2011). Thus, systemic iron repletion has minimal impact on microbial 

community structure in the intestines and is therefore not a likely significant confounding factor 

in the low iron diet group in our study.  

Intestinal inflammation is associated with compositional changes to the intestinal 

microbiota including an expansion of Enterobacteriaceae (Lupp et al., 2007) (Arthur et al., 2012) 

(Winter et al., 2013). Because we observed similar perturbations to the luminal microbiota with 

dietary iron restriction, we investigated the impact of dietary iron on the development of colitis 
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in ex-GF Il10-/- mice. Interestingly, we observed a bimodal effect of dietary iron on colitis 

severity, where both dietary iron restriction and supplementation protected against the 

development of inflammation. In agreement with our observations, Dostal and colleagues 

reported higher baseline inflammation in the ileum and cecum of rats on a control diet compared 

to rats receiving an iron deficient or supplemented diet (Dostal et al., 2014b). Dietary iron 

restriction also prevented the development of immune-mediated ileitis in TNFΔARE mice 

(Werner et al., 2011). In contrast, increased dietary iron results in exacerbation of chemically 

induced colitis (Kulnigg and Gasche, 2006) (Chua et al., 2013). However, in many of these 

studies, dietary iron was administered in high enough amounts to induce iron overloading and 

therefore may not reflect amounts consumed with iron fortification or oral iron supplements. 

Indeed, lower doses of daily oral iron supplementation protected against TNBS-induced colitis 

(Ettreiki, 2012). Administration of an iron-fortified diet in infants with high pathogen burden 

also resulted in increased fecal markers of inflammation (Jaeggi et al., 2014). However, two 

other studies demonstrated no impact on dietary iron supplementation on inflammation markers 

in infants or children with low pathogen burden (Krebs et al., 2013) (Dostal et al., 2014a), 

suggesting that the initial composition of the microbiota may serve as a prognostic factor for risk 

of intestinal inflammation with oral iron supplementation.  

In Il10-/- mice, fecal communities clustered by diet rather than severity of inflammation, 

suggesting that intestinal iron concentrations had a stronger impact in shaping luminal 

community structure. Consistent with our findings, Werner and colleagues also demonstrated 

that diet had a stronger influence on the composition of the intestinal microbiota compared to 

host genotype (WT versus inflammation-susceptible TNFΔARE) and inflammation severity 

(Werner et al., 2011). Interestingly, dietary iron restriction in Il10-/- mice did not result in the 
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most severe colitis despite compositional changes to the fecal microbiota frequently associated 

with inflammation. Moreover, a higher relative abundance of Enterobacteriaceae was not 

observed in Il10-/- mice on the control diet that developed the most severe colitis, suggesting that 

a more dramatic bloom of Enterobacteriaceae may not correlate with worse inflammation. 

Together, these observations suggest that the impact of dietary iron on the development of colitis 

may not be mediated through compositional changes to the luminal microbiota in our model, at 

least at this time point. However, these findings do not exclude the possibility that dietary iron 

may impact the course of inflammation by modulating the growth of select resident microbes 

once disease is initiated. Changes in intestinal iron availability could also alter the function of 

resident bacteria. Indeed, decreasing iron availability reduces the fermentative activity of the 

intestinal microbiota (Dostal et al., 2012a) (Dostal et al., 2012b) (Dostal et al., 2014b), a 

functional change that has been associated with dysbiosis. Moreover, iron also modulates the 

physiology and proinflammatory potential of adherent-invasive E. coli, a functional subset of E. 

coli associated with Crohn’s disease (Ellermann et al., 2015). Thus, longitudinal studies 

investigating the impact of dietary iron on the composition and function of the intestinal 

microbiota prior to, during, and after the onset of inflammation are warranted to further elucidate 

the contribution of the intestinal microbiota on iron-mediated effects on colitis. Finally, dietary 

iron and host iron status can also influence immune function and consequent development of 

colitis (Werner et al., 2011) (Shanmugam et al., 2014). Indeed, we show that iron can modulate 

macrophage production of the proinflammatory cytokine IL-12 p40, which correlates with 

severity of colitis in the Il10-/- mouse model (Kim et al., 2005). Thus, in addition to iron-

mediated modulation of the intestinal microbiota, the impact of iron on host iron status and 

immune function also likely contributes to colitis development.  
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Throughout the first few years of life, the intestinal microbiota undergoes ecological 

succession and matures to its adult state (Koenig et al., 2011). During this developmental 

window, the intestinal microbiota is highly prone to environmental disturbances such as 

antibiotic exposure and malnutrition that significantly impact the composition of the resulting 

microbial community and can perturb homeostatic physiological processes through adulthood 

(Cox et al., 2014) (Subramanian et al., 2014) (Nobel et al., 2015). Our study suggests that 

intestinal iron availability may be an additional environmental factor that modulates community 

assembly, where decreased intestinal iron availability may delay maturation of the intestinal 

microbiota. This may be mediated through the creation of an intestinal environment that favors 

growth of early colonizers with redundant iron acquisition systems such as E. coli, thus 

inhibiting their negative selection. However, as this was not a longitudinal study, future 

investigations are required to examine the compositional and functional impacts of intestinal iron 

availability on a developing microbiota, especially given the implications for infants that are at-

risk for iron deficiency. Finally, our study demonstrates that colitis severity is reduced with 

dietary iron supplementation in the absence of distinct compositional changes to the intestinal 

microbiota, suggesting that iron modulates colitis development through functional changes to the 

microbiota or direct effects on the host. Given the high prevalence of anemia in individuals with 

chronic inflammatory diseases such as IBD, the precise mechanisms underlying the effect of iron 

on colitis development should be explored in future studies.  

 

3.6 Materials and methods 

Mice and experimental design. Il10-/- and WT 129S6/SvEV mice were maintained in GF 

conditions at the National Gnotobiotic Rodent Resource Center at UNC-Chapel Hill. Three 



 95 

groups of adult GF WT mice (n = 8-9, 3 cages per group) and Il10-/- mice (n = 4-5, 2-3 cages per 

group) were transferred to conventional housing. Each group was placed on either an iron 

deficient diet (<10 ppm iron/kg diet), control diet (35 ppm iron/kg diet) or iron supplemented 

diet (200 ppm iron/kg diet). The following day, all mice were colonized by oral and rectal swab 

with fecal slurry obtained from a WT 129S6/SvEV mouse housed in the same facility. After 4 

weeks of the dietary interventions, mice were sacrificed and fresh fecal pellets and cecal tissue 

were collected and processed for 16S rRNA sequencing as previously described (Arthur et al., 

2012) (Maharshak et al., 2013). The WT and Il10-/- cohorts were run at different times and were 

therefore colonized with a different donor; thus subsequent 16S rRNA sequencing analyses were 

run separately for both cohorts. Mice maintained on the iron deficient diet received IP injections 

of 5 µg/g body weight of dextran iron sulfate (D8517, Sigma). Mice on the control and iron 

supplemented diets received IP injections of sterile PBS as a vehicle control. A separate cohort 

of WT and Il10-/- animals was used to assess iron content in the feces (Fig. S2). All diets were 

produced by Harlan and were based on the TD.99397 iron deficient diet and only differed in iron 

content, which was added in the form of ferrous sulphate and ferric citrate at a 1:1 ratio. All 

animal protocols were approved by the UNC-Chapel Hill Institutional Animal Care and Use 

Committee.  

 

Quantification of iron in fecal and liver samples. Iron contents in the liver and feces were 

measured using atomic absorption spectrophotometry as previously described (Chen et al., 2009) 

with the following modifications. Briefly, samples were weighed, dessicated in an oven 

overnight at 90°C and weighed again to obtain the wet and dry sample weights. The samples 

were digested in 50% HNO3 and the acid was allowed to evaporate for 24 hours at room 
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temperature. Samples were diluted in 2% HNO3 and analyzed by AA spectrophotometry with 

2% HNO3 serving as a blank.  

 

Assessment of colitis and disease activity. At necropsy, cecal, proximal and distal colonic 

segments were fixed in 10% neutral buffered formalin. Histological inflammation scores (0-4) of 

cecal, proximal and distal colonic sections were blindly assessed as previously described (Kim et 

al., 2005). Clinical disease activity (0-4) was assessed at 4 weeks prior to necropsy as previously 

described (Scheinin et al., 2003). Colonic explant cultures were prepared to assess spontaneous 

secretion of colonic cytokine production as previously described (Sellon et al., 1998). 

 

Quantitative PCR. Quantitative PCR were performed on fecal DNA to quantify the abundance 

of 16S rRNA sequences from E. coli and from all bacteria using previously reported primer 

sequences (Maharshak et al., 2013). The Sensifast SYBR No-ROX Kit (Bioline) was utilized 

with the following PCR conditions: a single hold at 95°C for 2 minutes, followed by 40 cycles at 

95°C for 5 seconds, 60°C for 10 seconds and 72°C for 20 seconds. Melting curves were also 

assessed to ensure specificity of the PCR products.  

 

Bacteria strains and growth conditions. Bacteria strains and plasmids used in this study are 

listed in Table S1. Bacteria were grown overnight in brain heart infusion (BHI) medium at 37°C 

without aeration prior to inoculation into experimental conditions: BHI control, BHI with 250 

µM of the iron chelator diethylene triamine pentaacetic acid (DTPA; D6518, Sigma), or BHI 

with 250 µM DTPA and 250 µM ferrous sulfate (I146, Fisher Scientific). Bacterial growth was 

assessed by spectrophotometry (OD600) and quantitative plating. For dual cultures, selective 
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media was utilized to distinguish E. faecalis (BHI agar with 50 µg/mL kanamycin) and E. coli 

(MacConkey agar) colony forming units. Deletion mutants in E. coli were created using the λ-

red recombinase system as previously described (Datsenko and Wanner, 2000).  

 

Bacterial RNA isolation and microarray hybridization. E. coli NC101 was grown in minimal 

M9 medium with the indicated concentrations of ferrous sulfate. After 1 hr, aliquots of the 

culture were collected for RNA isolation. Bacterial RNA was isolated using the RNAeasy 

isolation kit (Qiagen) according to the manufacturer’s instructions. Purified RNA was treated 

with on-column DNase treatment (Qiagen) and DNA-free DNase treatment (Ambion) according 

the manufacturer’s instructions. RNA samples were prepared for microarray hybridizaion using 

the Affymetrix E. coli Genome 2.0 arrays as previously described (Patwa et al., 2011). Statistical 

analysis was performed using GeneSpring 7.2 software.  

 

Bone marrow derived macrophage (BMDM) cultures. Bone marrow cells were isolated as 

previously described (Lutz et al., 1999). Conditioned medium from the murine fibroblast cell line 

L929 served as a source of M-CSF for macrophage differentiation (Stanley and Heard, 1977). 

BMDMs were seeded in 24-well plates and maintained in RPMI 1640 medium (Gibco) with 10% 

heat-inactivated fetal bovine serum (FBS, Gibco) and 1% penicillin/streptomycin/antimycotic 

(Gibco) at 37°C, 5% CO2. To assess the impact of iron on BMDM cytokine production, BMDMs 

were stimulated with heat-killed E. coli (MOI=10) following addition of the indicated amounts 

of ferrous sulphate to the cultures. After 8 hrs, supernatants were collected and stored at -20°C 

for assessment of cytokine production. BMDM viability was assessed via reduction of the 

tetrazolium dye, MTT, using spectrophotometry. 
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Quantification of cytokine production. Commercially available monoclonal anti-mouse IL-12 

p40 and interferon gamma (BD Biosciences) capture and detection reagents were utilized to 

quantify cytokine production by colonic explant cultures, BMDMs and in serum samples by 

enzyme-linked immunosorbent assay (ELISA) according to the manufacturer’s instructions.   

 

Illumina 16S library construction, sequencing and processing. Amplification of the 

hypervariable V6 region of the 16S rRNA gene via a two-step PCR strategy was performed as 

previously described (Arthur et al., 2012). Equal amounts of all samples were pooled together 

and subjected to paired-end Illumina Hi-Seq sequencing. A total of 97,286,872 raw reads were 

generated for a total of 74 samples. Raw reads were preprocessed as described previously 

(McCafferty et al., 2013) (Arthur et al., 2014). Briefly, forward and reverse reads were merged if 

they satisfied having 70 bases overlap with 100% similarity. Reads that were successfully 

merged were subjected to quality trimming at Q Score 20 followed by length check. Reads 

shorter than 50 bases were discarded. This resulted in 45,486,399 high quality reads that were 

incorporated into the subsequent analysis. These reads were then clustered into 1,301 operational 

taxonomic units (OTUs) using AbundantOTU+ v.0.93b 

(http://omics.informatics.indiana.edu/AbundantOTU/) (command option “-abundantonly” was 

used) at 97% similarity incorporating 99.84% of the input sequences. OTUs were checked for 

chimeric sequences using uchime v. 4.2.40 (http://www.drive5.com/uchime/) (Edgar et al., 2011) 

utilizing the GOLD database and uchime identified nine OTUs as chimeras. Those nine OTUs 

were excluded from further analysis. Taxonomy was assigned through the Quantitative Insight 

into Microbial Ecology (QIIME) (v. 1.8.0) (Caporaso et al., 2010) using uclust consensus taxon 
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assigner. Finally, we retained OTUs that have ≥ 0.005% of the total number of sequences 

according to Bokulich and colleauges (Bokulich et al., 2012), resulting in a final dataset that has 

an average of 608,300 reads per sample (median= 490,000; min= 299,100; max= 1,072,000 

reads per sample). 

 

Functional prediction. To predict metagenomic functional content from our 16S rRNA survey, 

the software package Phylogenetic Investigation of Communities by Reconstruction of 

Unobserved States (PiCRUST) was used (Langille et al., 2013). Briefly, the same reads that were 

fed to AbundantOTU+ were used to produce close reference OTUs using QIIME (v. 1.8.0) and 

GreenGenes dataset (gg_13_5). PiCRUST software was then applied on the resulting biom file to 

generate KEGG orthologs metagenomic predictions. 

 

Statistical analysis. OTU, phylum, family or KEGG ortholog raw counts were normalized and 

log10 transformed according to the following formula: 

log10raw countNumber of sequences in sample × Average number of sequences per sample+1 

The normalized and log10 transformed reads were used to produce PCoA plots from Bray-Curtis 

dissimilarity statistic. Alpha diversity measures (Observed OTU estimate and Shannon diversity 

index) were calculated after rarefying the raw counts to an even depth equal to the minimum 

count in all samples examined. We used a mixed linear model utilizing SAS (v. 9.3) software 

(SAS Institute Inc, Cary, NC) to analyze the data and accounting for possible effects that may 

arise from co-housing (McCafferty et al., 2013). 

The mixed linear model, in which dietary iron level (low, control or high) and source 

(mucosal or fecal) are fixed effects and cage is a random effect, is formulated as follows: 
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where Yijkl represents either PCoA axis value, log10 normalized phylum count, log10 normalized 

family count, log10 normalized KEGG ortholog count or richness value for dietary iron level i, 

source j, cage k and replicate l.  Di.is the effect of the ith dietary iron level.  Sj is effect from the jth 

source. (SD)ij is the interaction effect between dietary iron level i and source j.  Ck(i) is the effect 

from the kth cage that is nested within the ith dietary iron level and εijklεijkl denotes the error 

associated with measuring YijklYijkl. We controlled for the false discovery rate (FDR) by 

correcting the P-values using Benjamini and Hochberg (BH) approach (Benjamini and 

Hochberg, 1995). 

 For all in vitro experiments, p-values were calculated using one-way ANOVA with 

Tukey’s multiple comparison post test when 3 or more experimental groups were compared or 

two-way ANOVA with Bonferroni multiple comparison post test when more than two variables 

were compared. For all animal experiments, p-values were determined using a non-parametric 

Kruskal-Wallis test. 
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3.7 Figures 

 
Figure 3.1. Dietary iron alters the structure of the fecal and mucosal microbiota. A+B) 
Principle coordinate analysis based on Bray-Curtis metrics for the A) fecal and B) mucosal 
microbiota in ex-GF WT mice maintained on an iron deficient (low), control or iron 
supplemented (high) diet. Microbial richness as measured by C, D) observed OTUs and E, F) 
Shannon diversity index for the C, E) fecal and D, F) mucosal microbiota. Each symbol 
represents an individual mouse, n = 7-9 mice per group. Box and whisker plots show the 
minimum, first quartile, median, third quartile and maximum values. Comparisons and FDR-
corrected p values were determined using a mixed linear model. * p < 0.05, *** p < 0.001  
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Figure 3.2. Dietary iron enhances the relative fecal abundances of numerous bacterial taxa. 
A) Heat map of OTUs that are significantly different in abundance (FDR-corrected p < 0.05). 
Each column represents an individual WT mouse. Each row represents individual OTUs, color 
coded by phylum, that are significantly between at least 2 diet groups as determined using a 
mixed linear model. The colors of the heat map represent the mean relative abundance 
(normalized and log transformed) of each OTU. B+C) Venn diagrams of OTUs that are 
significantly B) increased or C) decreased in relative abundance (FDR-corrected p < 0.05) in the 
feces as determined using a mixed linear model. 
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Figure 3.3. Dietary iron restriction promotes a bloom of Enterobacteriaceae and predicted 
bacterial iron uptake systems. A) Relative fecal abundance of Enterobacteriaceae. B) 
Abundance of fecal E. coli 16S sequences relative to total bacteria 16S sequences as determined 
by quantitative PCR. Data are presented as the fold change relative to the low iron diet group. 
Lines are at the medians and p values were determined by pairwise comparisons by the Kruskal-
Wallis test. C) Differences in the least square means between diet groups of log10 normalized 
counts of predicted genes involved in iron acquisition as determined by PICRUSt. D) Relative 
fecal abundance of Enterococcaceae. Each symbol represents an individual mouse, n = 8-9 mice 
per group. A, D) Box and whisker plots show the minimum, first quartile, median, third quartile 
and maximum relative abundance. A, C, D) FDR-corrected p values were determined using a 
mixed linear model. * p < 0.05, ** p < 0.01, *** p < 0.001 
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Figure 3.4. TonB-dependent iron acquisition enhances the relative abundance of E. coli 
when iron availability is restricted. E. coli WT or the tonB-deficient mutant were grown in the 
presence of E. faecalis in rich medium (control), in rich medium with an iron chelator (chelator) 
or in rich medium with an iron chelator and additional ferrous iron (chelator + iron). Abundance 
of bacteria was determined by quantitative selective plating. The % abundance of A, C) E. coli 
WT or the tonB mutant in the presence of E. faecalis and B, D) the % abundance of E. faecalis in 
the presence of E. coli WT or the tonB mutant after 120 or 300 min of growth. Data are 
represented as the mean ± SEM of at least three independent experiments. P values were 
determined by two-way ANOVA. ** p < 0.01, *** p < 0.001 
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Figure 3.5. Dietary iron impacts the development of colitis in Il10-/- mice. Ex-GF Il10-/- mice 
were maintained on an iron deficient (low), control or iron supplemented (high) diet. A-C) 
Histology scores (0-4) of the A) cecum, B) proximal colon and C) distal colon. D) 
Representative H&E histology at 200x of the ceca. Scale bar = 20 µm. E) Clinical activity scores 
(0-4) after 4 weeks. F) Spontaneous secretion of IL-12 p40 by colonic explant cultures. G) 
Serum IL-12 p40 levels. Each symbol represents an individual mouse, n = 4-5 mice per group. 
Lines are at the medians. P values were determined by pairwise comparisons by the Kruskal-
Wallis test. * p < 0.05 
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Figure 3.6. Fecal community composition is insensitive to additional dietary iron 
supplementation in Il10-/- mice. A) Principle coordinate analysis based on Bray-Curtis metrics 
for the fecal microbiota in ex-GF Il10-/- mice. B) Microbial richness as measured by observed 
OTUs. C) Relative fecal abundance of Enterobacteriaceae. B, C) Box and whisker plots show the 
minimum, first quartile, median, third quartile and maximum relative abundance. Each symbol 
represents an individual mouse, n = 4-5 mice per group. FDR-corrected p values were 
determined using a mixed linear model. D) Heat map of OTUs that significantly differ in relative 
fecal abundance (FDR-corrected p < 0.05) as determined using a mixed linear model. Each 
column represents an individual Il10-/- mouse. Each row represents individual OTUs, color coded 
by phylum. The colors of the heat map represent the mean relative abundance (normalized and 
log transformed) of each OTU. E) Macrophage production of IL-12 p40 and F) macrophage 
viability as assessed by the MTT assay after 8 hours. Macrophages were stimulated with heat-
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killed E. coli and cultured with the indicated concentrations of iron. Data are represented as the 
mean ± SEM. ** p < 0.01, *** p < 0.001 
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3.8 Supplemental Figures 

 
Supplemental Figure 3.1. Liver iron stores in WT mice. Liver iron concentrations were 
measured in ex-GF WT mice 4 weeks following conventionalization and administration of an 
iron deficient (low), control or iron supplemented (high) diet. Each symbol represents an 
individual mouse, n = 8-9 mice per group. Lines are at the medians. P values were determined by 
pairwise comparisons by the Kruskal-Wallis test. 
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Supplemental Figure 3.2. Dietary iron restriction and supplementation alters fecal iron 
concentrations. Fecal iron concentrations were measured in A) ex-GF WT mice after 14 days 
and B) ex-GF Il10-/- mice after 28 days following conventionalization and administration of an 
iron deficient (low), control or iron supplemented (high) diet. Prior to the dietary interventions, 
mice were maintained on a typical mouse diet. Each symbol represents an individual mouse, n = 
5-6 mice per group. Data are represented as µg Fe per mg dried feces. Lines are at the medians. 
P values were determined by pairwise comparisons by the Kruskal-Wallis test. ** p < 0.01, *** 
p < 0.001 
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Supplemental Figure 3.3. Distances between WT mice within each diet group. Ex-GF WT 
mice were maintained on an iron deficient (low), control or iron supplemented (high) diet. Data 
are represented as pair-wise Bray-Curtis distances between samples within each diet group. Box 
and whisker plots show the minimum, first quartile, median, third quartile and maximum 
distance. P values were determined using a Student’s t-test. *** p < 0.001 relative to the control 
diet group. 



 111 

 

 
Supplemental Figure 3.4. Dietary iron restriction promotes a bloom of Proteobacteria and 
Enterobacterioaceae. Relative fecal abundances of A) Proteobacteria and B) Enterobacteriaceae 
(OTU Consensus 11) in WT mice. Each symbol represents an individual mouse, n = 8-9 mice per 
group. Box and whisker plots show the minimum, first quartile, median, third quartile and 
maximum relative abundance. FDR-corrected p values were determined using a mixed linear 
model. *** p < 0.001 
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Supplemental Figure 3.5. Growth of E. faecalis and the parental and tonB-deficient E. coli 
strains in the presence or absence of an iron chelator. A, B) Representative growth curves of 
A) E. coli WT (circles + black lines) or the tonB-deficient mutant (squares + grey lines) and B) 
E. faecalis grown in rich medium (control), in rich medium with an iron chelator (chelator) or in 
rich medium with an iron chelator and additional ferrous iron (chelator + iron). C-F) E. coli WT 
or the tonB-deficient mutant was grown in the presence of E. faecalis. Abundance of bacteria 
was determined by quantitative selective plating. The abundance of A, C) E. coli WT or the tonB 
mutant in the presence of E. faecalis and B, D) the abundance of E. faecalis in the presence of E. 
coli WT or the tonB mutant after 120 or 300 min of growth. Data are represented as the mean ± 
SEM of at least three independent experiments. 



 113 

 

 
Supplemental Figure 3.6. Compositional changes to the mucosal microbiota in Il10-/- mice. 
A) Principle coordinate analysis based on Bray-Curtis metrics for the mucosal microbiota in ex-
GF Il10-/- mice maintained on an iron deficient (low), control or iron supplemented (high) diet. 
B) Microbial richness as measured by observed OTUs. C) Heat map of OTUs that are 
significantly different in abundance (FDR-corrected p < 0.05) as determined using a mixed linear 
model. Each column represents an individual Il10-/- mouse. Each row represents individual 
OTUs, color coded by phylum. The colors of the heat map represent the mean relative abundance 
(normalized and log transformed) of each OTU. D, E) Relative mucosal abundance of 
Enterobacteriaceae in D) Il10-/- mice and E) WT mice. Each symbol represents an individual 
mouse, n = 4-9 mice per group. Box and whisker plots show the minimum, first quartile, median, 
third quartile and maximum values. Comparisons and FDR-corrected p values were determined 
using a mixed linear model. *** p < 0.001 
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Strains or plasmids Description Reference 

Strains   

E. coli NC101 Murine intestinal E. coli strain with AIEC characteristics. Kim 2005 

E. coli NC101 ΔtonB NC101 isogenic mutant with tonB deleted. This work 

E. faecalis OG1RF Human oral E. faecalis strain Kim 2005 

   

Plasmids   

pKD46 Plasmid encoding lambda red recombinase. Datsenko KA 2000 

pKD13 Template plasmid for gene deletions using the lambda red 
recombinase system. 

Baba T  
2006 

pCP20 Plasmid encoding FLP recombinase. Datsenko KA 2000 

 
Supplemental Table 3.1. Bacterial strains and plasmids used in this study. 
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 Consensus OTU Taxonomy EstimateA FDR p value 

Consensus6 Allobaculum spp -4.44 1.1E-07 
Consensus9 Akkermansia muciniphila -3.56 5.9E-06 
Consensus85 Allobaculum spp -3.31 1.1E-07 
Consensus21 Ruminococcus spp -3.00 9.4E-06 
Consensus24 Bacteroidales -2.41 3.2E-04 
Consensus11 Enterobacteriaceae -2.39 2.6E-06 
Consensus38 Parabacteroides spp -2.00 1.7E-03 
Consensus15 Peptostreptococcaceae -1.44 5.6E-03 
Consensus5 Lactobacillales 0.74 4.6E-03 
Consensus216 Adlercreutzia spp 0.76 3.0E-02 
Consensus53 Ruminococcus spp 0.97 2.4E-02 
Consensus309 Clostridiales 1.07 3.2E-03 
Consensus295 Coriobacteriaceae 1.31 3.3E-05 
Consensus301 Clostridiales 1.34 9.1E-04 
Consensus88 Sutterella spp 1.38 1.0E-03 
Consensus215 Lachnospiraceae 1.43 3.1E-03 
Consensus168 S24-7 1.47 7.9E-08 
Consensus164 Lachnospiraceae 1.48 1.9E-03 
Consensus229 Clostridiaceae 1.52 3.0E-02 
Consensus224 Lactobacillus spp 1.53 2.0E-04 
Consensus186 Proteiniclasticum spp 1.53 8.3E-03 
Consensus192 Lachnospiraceae 1.56 3.7E-02 
Consensus244 Erysipelotrichaceae 1.57 3.5E-03 
Consensus306 Lactobacillus spp 1.58 5.3E-04 
Consensus89 Oscillospira spp 1.63 3.2E-02 
Consensus59 Clostridiaceae 1.66 1.9E-02 
Consensus95 Oscillospira spp 1.68 2.3E-02 
Consensus112 Enterococcus spp 1.79 2.7E-03 
Consensus83 Lachnospiraceae 1.92 8.6E-04 
Consensus13 Clostridium spp 1.96 1.7E-02 
Consensus104 Staphylococcus spp 2.04 2.1E-02 
Consensus52 Clostridiales 2.33 9.7E-04 
Consensus57 Lactobacillus spp 2.47 2.2E-02 
Consensus54 Streptococcus spp 2.48 2.5E-06 
Consensus17 Clostridiales 2.60 2.6E-05 
Consensus44 Lachnospiraceae 2.63 1.5E-03 
Consensus39 Lachnospiraceae 2.71 5.8E-03 
Consensus40 Ruminococcus gnavus 2.72 4.0E-04 
Consensus18 Clostridium spp 2.83 1.1E-02 
Consensus47 Coriobacteriaceae 2.95 1.3E-04 
Consensus31 Clostridiaceae 3.05 1.4E-03 
Consensus35 Clostridiales 3.07 1.2E-04 
Consensus4 Clostridiales 3.36 1.7E-06 
Consensus10 Allobaculum spp 3.93 1.2E-04 

 
HIGH VS 
LOW 
IRON 
DIET 

Consensus8 Allobaculum spp 4.02 1.6E-04 
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Consensus8 Allobaculum spp -3.01 4.0E-03 
Consensus10 Allobaculum spp -2.93 3.4E-03 
Consensus35 Clostridiales -2.54 1.2E-03 
Consensus40 Ruminococcus gnavus -2.28 2.7E-03 
Consensus52 Clostridiales -1.91 6.2E-03 
Consensus83 Lachnospiraceae -1.74 2.5E-03 
Consensus47 Coriobacteriaceae -1.66 2.7E-02 
Consensus44 Lachnospiraceae -1.66 4.5E-02 
Consensus4 Clostridiales -1.64 1.2E-02 
Consensus17 Clostridiales -1.56 8.4E-03 
Consensus54 Streptococcus spp -1.43 3.8E-03 
Consensus168 S24-7 -1.22 2.9E-06 
Consensus293 Lachnospiraceae -1.13 8.9E-03 
Consensus244 Erysipelotrichaceae -1.08 4.3E-02 
Consensus300 Lactococcus spp -1.03 1.2E-02 
Consensus234 Adlercreutzia spp -0.83 2.9E-02 
Consensus295 Coriobacteriaceae -0.73 1.6E-02 
Consensus2 Lactobacillus spp -0.56 2.7E-02 
Consensus7 S24-7 0.97 2.1E-02 
Consensus131 Bacteroides spp 0.99 1.7E-02 
Consensus151 Clostridium bifermentans 1.15 7.5E-03 
Consensus32 Clostridiaceae 1.24 2.7E-02 
Consensus24 Bacteroidales 1.42 3.1E-02 
Consensus85 Allobaculum spp 1.50 7.4E-03 
Consensus25 Clostridiaceae 1.55 8.8E-03 
Consensus21 Ruminococcus spp 1.68 8.7E-03 
Consensus230 Clostridiaceae 1.69 9.4E-05 
Consensus15 Peptostreptococcaceae 1.70 1.2E-03 
Consensus11 Enterobacteriaceae 1.95 7.0E-05 
Consensus236 Streptococcus spp 2.00 7.8E-04 

 

CONTROL 
VS HIGH 
IRON 
DIET 

Consensus6 Allobaculum spp 2.48 1.0E-03 
Consensus20 Lachnospiraceae -2.22 3.2E-02 
Consensus9 Akkermansia muciniphila -2.15 4.3E-03 
Consensus6 Allobaculum spp -1.96 9.7E-03 
Consensus85 Allobaculum spp -1.81 1.4E-03 
Consensus21 Ruminococcus spp -1.31 4.3E-02 
Consensus293 Lachnospiraceae -1.21 6.0E-03 
Consensus2 Lactobacillus spp -0.70 7.0E-03 
Consensus224 Lactobacillus spp 0.84 4.0E-02 
Consensus215 Lachnospiraceae 1.00 4.1E-02 
Consensus164 Lachnospiraceae 1.04 3.2E-02 
Consensus54 Streptococcus spp 1.06 3.7E-02 
Consensus131 Bacteroides spp 1.13 7.7E-03 
Consensus151 Clostridium bifermentans 1.24 5.0E-03 
Consensus306 Lactobacillus spp 1.33 3.6E-03 
Consensus230 Clostridiaceae 1.35 1.9E-03 
Consensus32 Clostridiaceae 1.35 1.8E-02 

 

CONTROL 
VS LOW 
IRON 
DIET 

Consensus25 Clostridiaceae 1.42 1.8E-02 
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Consensus112 Enterococcus spp 1.49 1.3E-02 
Consensus229 Clostridiaceae 1.49 3.5E-02 
Consensus105 Clostridiaceae 1.56 9.4E-03 
Consensus186 Proteiniclasticum spp 1.60 7.1E-03 
Consensus236 Streptococcus spp 1.61 6.8E-03 
Consensus73 Clostridium perfringens 1.70 1.4E-02 
Consensus4 Clostridiales 1.72 9.2E-03 
Consensus59 Clostridiaceae 1.83 1.1E-02 
Consensus18 Clostridium spp 2.39 3.5E-02 

 

Consensus31 Clostridiaceae 2.47 9.5E-03 
 

Supplemental Table 3.2. Changes in relative fecal abundances of bacterial taxa in WT 
mice. This table lists OTUs that are significantly different in abundance (FDR-corrected p < 
0.05) in the fecal microbiota of WT mice between at least 2 of the diet groups as determined 
using a mixed linear model. A = Difference in the least square means of log10 normalized counts 
of OTUs between the high vs low iron diet (negative = OTU decreased in the high iron diet; 
positive = OTU increased in the high iron diet), control vs high iron diet (negative = OTU 
decreased in the control diet; positive = OTU increased in the control diet), or control vs low iron 
diet (negative = OTU decreased in the control diet; positive = OTU increased in control diet).  
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Fold change Gene 
Symbol 0 vs 5 0 vs 50 5 vs 50 

Gene description 

ybdZ 3.63 17.22 4.75 hypothetical protein 
chuT 4.91 11.64 2.37 putative periplasmic binding protein 
cirZ 6.46 11.52 1.78 colicin I receptorr; catecholate siderophore receptor CirA  
fes 3.36 11.28 3.36 enterobactin/ferric enterobactin esterase 

entH 3.35 11.07 3.31 thioesterase required for efficient enterobactin production  
c4310 5.96 11.03 1.85 hypothetical protein 
chuW 5.00 10.63 2.13 coproporphyrinogen III oxidase 
fhuE 7.39 10.46 1.42 ferric-rhodotorulic acid outer membrane transporter 
chuA 6.49 10.45 1.61 Outer membrane heme/hemoglobin receptor 
fhuF 3.52 10.26 2.92 ferric iron reductase involved in ferric hydroximate transport 
entB 3.11 9.85 3.17 2,3-dihydro-2,3-dihydroxybenzoate synthetase; isochorismatase  
entE 3.03 8.69 2.87 enterobactin synthase subunit E 
entA 2.89 8.40 2.91 2,3-dihydroxybenzoate-2,3-dehydrogenase  
sitA 2.85 7.50 2.63 SitA protein 

chuX 3.92 7.40 1.89 hypothetical protein; ShuX-like protein 
ybiL 5.41 7.39 1.37 catecholate siderophore receptor Fiu 

c0670 4.66 7.00 1.50 hypothetical protein 
entF 2.93 6.79 2.32 enterobactin synthase subunit F 
ycdO 1.77 6.75 3.82 hypothetical protein; inactive ferrous ion transporter EfeUOB  
sitC 3.41 6.73 1.97 SitC protein 

chuY 3.95 6.73 1.70 hypothetical protein 
fes 3.23 6.12 1.89 enterobactin/ferric enterobactin esterase 
sitB 2.74 5.45 1.99 SitB protein 

ycdB 1.91 5.23 2.74 hypothetical protein 
yncE 2.22 4.77 2.15 putative receptor; hypothetical protein  

fepB 2.46 4.77 1.93 iron-enterobactin transporter periplasmic binding protein; iron-
enterobactin transporter subunit 

ycdO 1.78 4.61 2.59 hypothetical protein 
c2423 2.85 3.66 1.28 putative AraC type regulator 

tonB 1.78 3.63 2.04 transport protein TonB; membrane spanning protein in TonB-
ExbB-ExbD transport complex 

fhuA 1.49 3.09 2.08 ferrichrome outer membrane transporter 

exbB 1.91 2.91 1.52 biopolymer transport protein ExbB; membrane spanning protein 
in TonB-ExbB-ExbD complex 

yqjH 1.66 2.82 1.70 predicted siderophore interacting protein 
bfd 1.57 2.55 1.63 bacterioferritin-associated ferredoxin  

exbD 1.64 2.53 1.54 biopolymer transport protein ExbD; membrane spanning protein 
in TonB-ExbB-ExbD complex 

pabB 1.11 1.97 1.77 para-aminobenzoate synthase component I;  
aminodeoxychorismate synthase, subunit I 

sufS 1.57 1.90 1.21 bifunctional cysteine desulfurase/selenocysteine lyase; cysteine 
desulfurase, stimulated by SufE 
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sodA 1.16 1.56 1.34 superoxide dismutase, Mn 
pncA 1.09 1.67 1.54 nicotinamidase/pyrazinamidase  
bioB 1.06 1.64 1.55 biotin synthase 

mltA 1.17 1.96 1.67 murein transglycosylase A; membrane-bound lytic murein 
transglycosylase A 

yebU 1.02 1.68 1.64 16S rRNA m(5)C1407 methyltransferase, SAM-dependent; 
rRNA (cytosine-C(5)-)-methyltransferase RsmF 

yebT 1.09 1.59 1.47 hypothetical protein 

yciR 1.06 1.59 1.51 RNase II stability modulator; cyclic-di-GMP phospho-diesterase; 
csgD regulator; modulator of Rnase II stability  

flk 1.07 1.55 1.45 flagella biosynthesis regulator; predicted flagella assembly 
protein 

holE 1.05 1.55 1.47 DNA polymerase III subunit theta  
 

Supplemental Table 3.3. Microarray results for genes in E. coli NC101 upregulated with 
decreased iron availability. E. coli NC101 was cultured in minimal media with 0, 5 or 50 µM 
added iron for 1 hour. The table below lists genes that are significantly upregulated ≥1.5 fold 
with decreased iron (p < 0.1, pairwise comparisons by one-way ANOVA). 
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 Consensus OTU Taxonomy EstimateA FDR p value 

Consensus9 Akkermansia muciniphila 3.64 1.4E-05 
Consensus14 Blautia spp 3.58 3.5E-04 
Consensus30 Lachnospiraceae 3.48 3.9E-04 
Consensus55 Lachnospiraceae 3.00 1.3E-03 
Consensus65 Bacteroides ovatus 2.98 5.2E-04 
Consensus90 Clostridiales 2.92 6.4E-04 
Consensus34 Erysipelotrichaceae 2.91 1.8E-03 
Consensus61 Lachnospiraceae 2.86 3.3E-04 
Consensus72 Lachnospiraceae 2.82 4.7E-04 
Consensus48 Ruminococcaceae  2.79 2.4E-03 
Consensus94 Phascolarctobacterium spp 2.79 4.7E-04 
Consensus109 Coprococcus spp 2.77 1.2E-03 
Consensus79 Lachnospiraceae 2.76 3.2E-03 
Consensus74 Eubacterium dolichum 2.75 1.7E-04 
Consensus49 Bacteroides spp 2.74 3.3E-03 
Consensus99 Eubacterium dolichum 2.70 1.2E-04 
Consensus78 Coprobacillus spp 2.67 4.6E-04 
Consensus80 Lachnospiraceae 2.61 6.8E-03 
Consensus124 Parabacteroides spp 2.58 1.4E-03 
Consensus51 Bacteroides uniformis 2.55 1.4E-03 
Consensus125 Bacteroides spp 2.55 1.1E-03 
Consensus194 Clostridiales 2.55 4.1E-03 
Consensus165 Clostridiales 2.54 2.7E-02 
Consensus169 Ruminococcaceae  2.50 2.8E-03 
Consensus187 Lachnospiraceae 2.48 2.6E-02 
Consensus146 Lachnospiraceae 2.46 7.3E-04 
Consensus160 Ruminococcaceae  2.45 1.4E-03 
Consensus82 Bacteroides fragilis 2.45 8.3E-04 
Consensus144 Acholeplasma spp 2.44 3.2E-04 
Consensus116 Fusobacterium spp 2.43 1.5E-03 
Consensus156 Erysipelotrichaceae 2.42 7.0E-04 
Consensus158 Lachnospiraceae 2.40 1.4E-03 
Consensus221 Ruminococcaceae  2.35 2.3E-03 
Consensus178 Sutterella spp 2.33 8.4E-04 
Consensus143 Bacteroides spp 2.28 1.2E-03 
Consensus184 Barnesiellaceae 2.26 1.0E-03 
Consensus223 Lachnospiraceae 2.26 1.5E-04 
Consensus201 Lachnospiraceae 2.24 7.1E-03 
Consensus33 Bacteroides spp 2.24 1.3E-02 
Consensus200 Lachnospiraceae 2.21 7.3E-04 
Consensus203 Bacteroides ovatus 2.20 9.6E-04 
Consensus96 Blautia spp 2.15 2.5E-03 
Consensus233 Bacteroides spp 2.13 8.3E-04 

 
HIGH VS 
LOW 
IRON 
DIET 

Consensus304 Lachnospiraceae 2.13 2.5E-02 
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Consensus315 Lachnospiraceae 2.11 2.4E-02 
Consensus210 Bacteroides spp 2.08 8.3E-04 
Consensus176 Lachnospiraceae 2.04 4.8E-04 
Consensus285 Dorea spp 2.04 6.1E-03 
Consensus177 Erysipelotrichaceae 2.00 1.6E-02 
Consensus115 Bacteroides spp 1.98 4.6E-03 
Consensus281 Ruminococcaceae  1.98 3.1E-04 
Consensus126 Clostridiales 1.97 9.0E-04 
Consensus198 Lachnospiraceae 1.97 3.7E-03 
Consensus166 Blautia spp 1.96 9.9E-04 
Consensus247 Eggerthella lenta 1.93 2.0E-03 
Consensus41 Lachnospiraceae 1.92 2.0E-03 
Consensus235 Paraprevotellaceae 1.91 8.4E-04 
Consensus365 Ruminococcaceae  1.89 2.8E-03 
Consensus379 Erysipelotrichaceae 1.89 1.1E-02 
Consensus312 Lachnospiraceae 1.88 1.4E-03 
Consensus322 Ruminococcus gnavus 1.87 2.2E-03 
Consensus100 Lachnospiraceae 1.87 1.5E-03 
Consensus296 Blautia spp 1.85 1.3E-03 
Consensus339 Ruminococcaceae  1.80 1.5E-03 
Consensus361 Lachnospiraceae 1.79 1.8E-03 
Consensus325 Coprococcus spp 1.75 2.0E-03 
Consensus337 Lachnospiraceae 1.74 2.0E-04 
Consensus387 Ruminococcaceae  1.73 1.3E-02 
Consensus415 Lachnospiraceae 1.71 2.0E-03 
Consensus341 Ruminococcaceae  1.69 3.1E-03 
Consensus397 Lachnospiraceae 1.66 1.5E-03 
Consensus291 Blautia producta 1.64 2.6E-02 
Consensus334 Lachnospiraceae 1.62 1.2E-03 
Consensus412 Blautia spp 1.61 3.4E-03 
Consensus344 Barnesiellaceae 1.56 1.5E-03 
Consensus441 Lachnospiraceae 1.55 4.8E-03 
Consensus287 Ruminococcaceae  1.54 2.2E-02 
Consensus399 Blautia spp 1.53 3.5E-03 
Consensus420 Bacteroides spp 1.50 2.7E-03 
Consensus378 Ruminococcus gnavus 1.45 7.7E-03 
Consensus101 Oscillospira spp 1.45 3.2E-02 
Consensus218 Dorea spp 1.38 2.1E-03 
Consensus424 Lachnospiraceae 1.37 2.0E-03 
Consensus349 Ruminococcus spp 1.26 2.7E-02 
Consensus278 Enterococcus spp -1.06 4.1E-02 
Consensus66 Clostridiaceae -1.38 4.6E-02 
Consensus263 Peptostreptococcaceae -1.58 2.1E-02 
Consensus18 Clostridium spp -1.64 9.2E-03 
Consensus17 Clostridiales -1.81 1.9E-03 
Consensus12 Bacteroides spp -1.82 2.5E-03 
Consensus105 Clostridiaceae -1.93 2.9E-03 

 

Consensus52 Clostridiales -1.96 1.2E-02 
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Consensus186 Proteiniclasticum spp -2.02 5.6E-03 
Consensus69 S24-7 -2.07 9.9E-03 
Consensus39 Lachnospiraceae -2.13 1.8E-03 
Consensus42 Erysipelotrichaceae -2.16 3.6E-02 
Consensus25 Clostridiaceae -2.16 4.7E-03 
Consensus32 Clostridiaceae -2.28 6.2E-04 
Consensus7 S24-7 -2.29 6.4E-03 
Consensus4 Clostridiales -2.40 2.0E-04 
Consensus15 Peptostreptococcaceae -2.44 5.9E-05 
Consensus26 Erysipelotrichaceae -2.46 5.2E-03 
Consensus2 Lactobacillus spp -2.50 1.7E-03 
Consensus224 Lactobacillus spp -2.52 2.1E-05 
Consensus36 Clostridiaceae -2.57 5.8E-03 
Consensus27 S24-7 -2.68 5.8E-03 
Consensus73 Clostridium perfringens -2.71 1.3E-04 
Consensus10 Allobaculum -2.72 4.4E-02 
Consensus5 Lactobacillales -2.73 7.1E-04 
Consensus13 Clostridium spp -2.88 2.7E-02 
Consensus47 Coriobacteriaceae -3.00 1.6E-06 
Consensus3 Clostridium perfringens -3.29 1.5E-05 

 

Consensus31 Clostridiaceae -3.32 2.8E-04 
Consensus246 Bifidobacterium longum 2.21 1.0E-05 
Consensus102 Lachnospiraceae 2.14 3.2E-02 
Consensus100 Lachnospiraceae 1.89 9.3E-04 
Consensus196 Collinsella spp 1.75 4.6E-03 
Consensus218 Dorea spp 1.62 4.4E-04 
Consensus96 Blautia spp 1.43 2.5E-02 
Consensus126 Clostridiales 1.41 6.6E-03 
Consensus115 Bacteroides spp 1.30 4.0E-02 
Consensus166 Blautia spp 1.28 1.3E-02 
Consensus235 Paraprevotellaceae 0.99 4.0E-02 
Consensus285 Dorea spp -1.36 5.0E-02 

 

CONTROL 
VS HIGH 
IRON 
DIET 

Consensus28 Anaerotruncus spp -2.01 5.2E-03 
Consensus30 Lachnospiraceae 4.10 6.9E-05 
Consensus14 Blautia spp 4.08 7.9E-05 
Consensus48 Ruminococcaceae  3.94 1.2E-04 
Consensus61 Lachnospiraceae 3.81 2.3E-05 
Consensus100 Lachnospiraceae 3.75 4.7E-06 
Consensus72 Lachnospiraceae 3.75 3.7E-05 
Consensus65 Bacteroides ovatus 3.75 5.6E-05 
Consensus34 Erysipelotrichaceae 3.71 2.0E-04 
Consensus51 Bacteroides uniformis 3.71 5.1E-05 
Consensus33 Bacteroides spp 3.70 3.1E-04 
Consensus74 Eubacterium dolichum 3.68 1.3E-05 
Consensus94 Phascolarctobacterium spp 3.62 4.1E-05 
Consensus96 Blautia spp 3.58 3.7E-05 
Consensus80 Lachnospiraceae 3.56 5.5E-04 

 

CONTROL 
VS LOW 
IRON 
DIET 

Consensus99 Eubacterium dolichum 3.55 1.0E-05 
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Consensus49 Bacteroides spp 3.54 3.4E-04 
Consensus82 Bacteroides fragilis 3.51 3.7E-05 
Consensus78 Coprobacillus spp 3.48 4.1E-05 
Consensus79 Lachnospiraceae 3.44 4.6E-04 
Consensus126 Clostridiales 3.38 1.0E-05 
Consensus146 Lachnospiraceae 3.38 4.1E-05 
Consensus125 Bacteroides spp 3.31 9.4E-05 
Consensus156 Erysipelotrichaceae 3.31 4.1E-05 
Consensus115 Bacteroides spp 3.28 6.9E-05 
Consensus143 Bacteroides spp 3.27 4.9E-05 
Consensus116 Fusobacterium spp 3.27 1.0E-04 
Consensus158 Lachnospiraceae 3.25 8.5E-05 
Consensus166 Blautia spp 3.25 1.4E-05 
Consensus144 Acholeplasma spp 3.25 2.3E-05 
Consensus55 Lachnospiraceae 3.22 5.3E-04 
Consensus90 Clostridiales 3.21 2.0E-04 
Consensus160 Ruminococcaceae  3.18 1.2E-04 
Consensus109 Coprococcus spp 3.12 3.2E-04 
Consensus178 Sutterella spp 3.10 5.9E-05 
Consensus200 Lachnospiraceae 3.05 4.1E-05 
Consensus184 Barnesiellaceae 3.03 6.7E-05 
Consensus218 Dorea spp 3.00 3.9E-06 
Consensus124 Parabacteroides spp 2.97 3.3E-04 
Consensus210 Bacteroides spp 2.95 3.8E-05 
Consensus187 Lachnospiraceae 2.92 8.7E-03 
Consensus223 Lachnospiraceae 2.90 1.5E-05 
Consensus235 Paraprevotellaceae 2.89 2.2E-05 
Consensus102 Lachnospiraceae 2.89 3.6E-03 
Consensus9 Akkermansia muciniphila 2.89 4.9E-05 
Consensus176 Lachnospiraceae 2.87 2.2E-05 
Consensus37 Lachnospiraceae 2.84 2.0E-03 
Consensus203 Bacteroides ovatus 2.84 8.5E-05 
Consensus41 Lachnospiraceae 2.83 6.8E-05 
Consensus196 Collinsella spp 2.80 1.4E-04 
Consensus233 Bacteroides spp 2.72 7.8E-05 
Consensus108 Blautia producta 2.71 2.5E-03 
Consensus177 Erysipelotrichaceae 2.63 1.7E-03 
Consensus198 Lachnospiraceae 2.62 3.2E-04 
Consensus145 Blautia spp 2.60 1.4E-03 
Consensus246 Bifidobacterium longum 2.59 3.3E-06 
Consensus140 Lachnospiraceae 2.56 1.8E-03 
Consensus247 Eggerthella lenta 2.45 2.3E-04 
Consensus281 Ruminococcaceae  2.43 4.1E-05 
Consensus296 Blautia spp 2.38 1.2E-04 
Consensus344 Barnesiellaceae 2.36 4.3E-05 
Consensus337 Lachnospiraceae 2.36 1.4E-05 
Consensus221 Ruminococcaceae  2.34 1.7E-03 

 

Consensus334 Lachnospiraceae 2.32 4.9E-05 
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Consensus287 Ruminococcaceae  2.21 1.5E-03 
Consensus169 Ruminococcaceae  2.19 5.0E-03 
Consensus312 Lachnospiraceae 2.19 3.0E-04 
Consensus325 Coprococcus spp 2.18 2.6E-04 
Consensus424 Lachnospiraceae 2.15 4.5E-05 
Consensus349 Ruminococcus spp 2.11 6.0E-04 
Consensus339 Ruminococcaceae  2.05 3.8E-04 
Consensus361 Lachnospiraceae 2.01 5.0E-04 
Consensus399 Blautia spp 2.00 3.4E-04 
Consensus397 Lachnospiraceae 1.99 2.7E-04 
Consensus341 Ruminococcaceae  1.96 7.7E-04 
Consensus420 Bacteroides spp 1.93 2.9E-04 
Consensus378 Ruminococcus gnavus 1.90 8.0E-04 
Consensus322 Ruminococcus gnavus 1.87 1.6E-03 
Consensus412 Blautia spp 1.81 1.1E-03 
Consensus415 Lachnospiraceae 1.80 9.6E-04 
Consensus101 Oscillospira spp 1.69 9.8E-03 
Consensus365 Ruminococcaceae  1.66 4.8E-03 
Consensus354 Clostridiales 1.63 1.1E-02 
Consensus387 Ruminococcaceae  1.62 1.4E-02 
Consensus441 Lachnospiraceae 1.57 3.0E-03 
Consensus131 Bacteroides spp -1.29 1.4E-02 
Consensus230 Clostridiaceae -1.33 4.0E-03 
Consensus66 Clostridiaceae -1.37 4.4E-02 
Consensus75 S24-7 -1.40 4.0E-02 
Consensus159 Coriobacteriaceae -1.47 1.0E-02 
Consensus171 Lactobacillus spp -1.50 1.3E-02 
Consensus278 Enterococcus spp -1.56 2.9E-03 
Consensus263 Peptostreptococcaceae -1.56 1.9E-02 
Consensus17 Clostridiales -1.76 1.9E-03 
Consensus105 Clostridiaceae -1.94 2.0E-03 
Consensus26 Erysipelotrichaceae -2.01 1.5E-02 
Consensus52 Clostridiales -2.02 7.2E-03 
Consensus11 Enterobacteriaceae -2.15 2.5E-03 
Consensus39 Lachnospiraceae -2.17 1.3E-03 
Consensus4 Clostridiales -2.18 3.1E-04 
Consensus186 Proteiniclasticum spp -2.19 2.7E-03 
Consensus111 Proteiniclasticum spp -2.25 2.9E-02 
Consensus12 Bacteroides spp -2.25 3.5E-04 
Consensus69 S24-7 -2.34 3.0E-03 
Consensus54 Streptococcus spp -2.44 3.2E-02 
Consensus224 Lactobacillus spp -2.48 1.8E-05 
Consensus42 Enterobacteriaceae -2.64 8.3E-03 
Consensus7 S24-7 -2.69 1.4E-03 
Consensus73 Clostridium perfringens -2.73 8.0E-05 
Consensus32 Clostridiaceae -2.75 8.7E-05 
Consensus15 Peptostreptococcaceae -2.76 1.7E-05 

 

Consensus27 S24-7 -2.78 3.1E-03 
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Consensus25 Clostridiaceae -2.82 4.7E-04 
Consensus36 Clostridiaceae -2.83 2.0E-03 
Consensus31 Clostridiaceae -2.85 7.7E-04 
Consensus10 Allobaculum -3.01 2.5E-02 
Consensus47 Coriobacteriaceae -3.02 1.1E-06 
Consensus8 Allobaculum -3.06 4.5E-02 
Consensus2 Lactobacillus spp -3.16 2.0E-04 
Consensus3 Clostridium perfringens -3.35 9.3E-06 
Consensus5 Lactobacillales -3.44 7.4E-05 

 

Consensus13 Clostridium spp -3.65 4.7E-03 
 

Supplemental Table 3.4. Changes in relative fecal abundances of bacterial taxa in Il10-/- 
mice. This table lists OTUs that are significantly different in abundance (FDR-corrected p < 
0.05) in the fecal microbiota of Il10-/- mice between at least 2 of the diet groups as determined 
using a mixed linear model. A = Difference in the least square means of log10 normalized counts 
of OTUs between the high vs low iron diet (negative = OTU decreased in the high iron diet; 
positive = OTU increased in the high iron diet), control vs high iron diet (negative = OTU 
decreased in the control diet; positive = OTU increased in the control diet), or control vs low iron 
diet (negative = OTU decreased in the control diet; positive = OTU increased in control diet). 
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CHAPTER 4 

ADHERENT INVASIVE ESCHERICHIA COLI PRODUCTION OF CELLULOSE 
INFLUENCES IRON-INDUCED BACTERIAL AGGREGATION, PHAGOCYTOSIS 

AND INDUCTION OF COLITIS3 

4.1 Personal Contribution to Manuscript 

I am the first author on the manuscript entitled “Adherent-invasive Escherichia coli 

production of cellulose influences iron-induced bacterial aggregation, phagocytosis and 

induction of colitis,” published in Infection and Immunity in 2015. I contributed to the 

manuscript by developing the project based on an initial observation of E. coli aggregation in 

response to iron. I created all the mutants utilized in this study. I also conducted all the 

microbiology, tissue culture, microscopy, animal experiments and data analysis presented in this 

paper. Finally, I compiled all the figures, wrote the manuscript and revised the manuscript in 

response to reviewers.  

 

4.2 Overview 

Adherent-invasive Escherichia coli (AIEC), a functionally distinct subset of resident 

intestinal E. coli associated with Crohn’s disease, are characterized by enhanced epithelial 

adhesion and invasion, survival within macrophages and biofilm formation. Environmental 
                                                
3 Melissa Ellermann, Eun Young Huh, Bo Liu, Ian M. Carroll, Rita Tamayo, R. Balfour Sartor. 
2015. Adherent-invasive Escherichia coli production of cellulose influences iron-induced 
bacterial aggregation, phagocytosis and induction of colitis. Infection and Immunity 83(10):4068-
4080.  
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factors such as iron modulate E. coli production of extracellular structures, which in turn 

influence the formation of multicellular communities such as biofilms and bacterial interactions 

with host cells. However the physiological and functional responses of AIEC to variable iron 

availability have not been thoroughly investigated. We therefore characterized the impact of iron 

on the physiology of the AIEC strain NC101 and subsequent interactions with macrophages. Iron 

promoted cellulose-dependent aggregation of NC101. Bacterial cells recovered from the 

aggregates were more susceptible to phagocytosis compared to planktonic cells, which 

corresponded with decreased macrophage production of the proinflammatory cytokine IL-12 

p40. Prevention of aggregate formation through disruption of cellulose production reduced 

phagocytosis of iron-exposed NC101. In contrast, under iron limiting conditions where NC101 

aggregation is not induced, disruption of cellulose production enhanced NC101 phagocytosis and 

decreased macrophage secretion of IL-12 p40. Finally, abrogation of cellulose production also 

reduced NC101 induction of colitis when monoassociated in inflammation-prone Il10-/- mice. 

Taken together, our results introduce cellulose as a novel physiological factor that impacts host-

bacterial-environmental interactions and alters the proinflammatory potential of AIEC. 

 

4.3 Introduction 

Inflammatory bowel diseases (IBD), including Crohn’s disease (CD) and ulcerative 

colitis (UC), comprise a heterogeneous collection of chronic, relapsing immune-mediated 

disorders. Although the precise etiologies are incompletely understood, accumulating evidence 

suggests that IBD are the result of inappropriate immune responses toward a subset of resident 

intestinal microbes and their products in genetically susceptible individuals (Sartor, 2008) 

(Knights et al., 2013).  
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The gastrointestinal tract is home to a complex community of microbes referred to as the 

intestinal microbiota. The development of intestinal inflammation is associated with community-

wide changes to the intestinal microbiota, including an expansion in the relative abundance of 

endogenous Escherichia coli in IBD patients (Gevers et al., 2014) and in rodent models of 

experimental colitis (Arthur et al., 2012) (Winter et al., 2013) (Maharshak et al., 2013). In CD 

patients, a functionally distinct group of resident enteric E. coli known as adherent-invasive E. 

coli (AIEC) are recovered more frequently and in higher quantity from ileal tissue biopsies in 

comparison to non-CD controls  (Darfeuille-Michaud et al., 2004) (Baumgart et al., 2007). In the 

absence of common identifying genetic determinants (Dogan et al., 2014), AIEC are 

characterized by their ability to adhere and invade intestinal epithelial cells (Boudeau et al., 

1999) and to survive and replicate within macrophages (Glasser et al., 2001). AIEC strains are 

also moderate to strong in vitro biofilm producers (Martinez-Medina et al., 2009). In addition, 

AIEC strains are capable of inducing and perpetuating intestinal inflammation in various rodent 

models of experimental colitis, including streptomycin-treated mice (Sartor, 2008; Small et al., 

2013), dextran sodium sulfate (DSS) treated mice (Carvalho et al., 2008; Knights et al., 2013), 

TLR5-deficient mice (Carvalho et al., 2012; Gevers et al., 2014), transgenic CEABAC10 mice 

(Arthur et al., 2012; Martinez-Medina et al., 2013) and gnotobiotic interleukin-10-deficient (Il10-

/-) mice (Kim et al., 2005; Winter et al., 2013). These functional attributes of AIEC, in 

conjunction with host factors such as genetic polymorphisms linked to aberrant microbial 

sensing and clearance (Hugot et al., 2001; Maharshak et al., 2013) (Darfeuille-Michaud et al., 

2004; Hampe et al., 2006), potentially enable enhanced mucosal association by AIEC strains 

(Baumgart et al., 2007; Lapaquette et al., 2010) (Dogan et al., 2014; Sadaghian Sadabad et al., 

2014). Together, these characteristics provide the physical opportunity for AIEC strains to 
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continuously stimulate the mucosal immune system, thus propagating a state of chronic intestinal 

inflammation. 

Macrophages are a key component of host innate immune defense in the intestines, 

limiting systemic microbial dissemination by destroying potential invaders through phagocytosis, 

while also sensing and responding to microbial stimuli and informing consequent host immune 

responses (Boudeau et al., 1999; Steinbach and Plevy, 2014). Through pattern recognition 

receptors (PRR), macrophages recognize conserved microbial molecular patterns synthesized by 

resident and pathogenic intestinal bacteria, including extracellular structures such as fimbriae, 

flagella, lipopolysaccharides and peptidoglycan. Environmental factors such as iron availability 

influence microbial production of some of these extracellular structures including curli fibrils in 

Salmonella enterica serovar Typhimurium (Glasser et al., 2001; Römling et al., 1998) (Martinez-

Medina et al., 2009; White et al., 2008) and type 1 fimbriae in E. coli (Wu and Outten, 2009), 

providing the opportunity for environmental modulation of microbial interactions with 

macrophages. Indeed, iron impacts E. coli interactions with host cells, albeit in contrasting ways. 

Iron promotes increased internalization of pathogenic E. coli by neutrophils (Wise et al., 2002) 

and intestinal epithelial cells (Alves et al., 2010) (Kortman et al., 2012). In contrast, iron 

limitation promotes phagocytosis of a non-pathogenic E. coli K12 strain by macrophages 

through decreased expression of the outer membrane protein OmpW (Wu et al., 2013). 

Extracellular microbial structures that impact interactions with macrophages are also produced 

within multicellular microbial communities including biofilms and bacterial aggregates. Curli 

and the exopolysaccharide cellulose are common matrix components present within multicellular 

structures produced by S. Typhimurium and E. coli (Römling et al., 2000) (Zogaj et al., 2001) 

(Serra et al., 2013). Cellulose and/or curli production have also been implicated in modulating 
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intestinal E. coli interactions with epithelial cells (Monteiro et al., 2009) (Wang et al., 2006) and 

influencing in vivo host immune responses to uropathogenic E. coli in the urinary tract 

(Raterman et al., 2013).  

Iron is a necessary cofactor for various microbial enzymes and therefore serves as an 

important micronutrient for most bacteria. In E. coli, changes in cytosolic iron concentrations are 

directly sensed by Fur (Hantke, 2001). When bound to Fe2+, Fur acts as a transcription factor, 

regulating genes involved in diverse cellular processes such as metabolism, metal acquisition, 

stress responses, motility and biofilm formation (McHugh et al., 2003) (Seo et al., 2014). 

Changes in extracellular iron concentrations are also sensed by the membrane-associated kinase 

BasS, a member of the BasRS two component system (Nagasawa et al., 1993). In reponse to 

Fe3+, BasRS regulates genes involved in altering the outer membrane landscape of E. coli 

(Wösten et al., 2000) (Ogasawara et al., 2012). Given the importance of iron to microbial growth 

and function, an integral component of the innate immune response is the secretion of iron 

scavenging proteins at mucosal surfaces to limit microbial iron availability, a response that is 

potentiated by inflammation (Raffatellu et al., 2009) (Chassaing et al., 2012).  

Studies investigating the impact of iron on E. coli physiology and interactions with host 

cells have been limited to non-pathogenic K12 or pathogenic E. coli strains. Consequently, little 

is known about the impact of iron on the functional attributes of AIEC. Therefore the goal of this 

study was to characterize how iron impacts the physiology of the AIEC strain NC101 (Patwa et 

al., 2011) (Dogan et al., 2014) and subsequent interactions with macrophages. Here we show that 

iron promotes cellulose-dependent aggregation of NC101. Bacterial cells recovered from the 

aggregates are more susceptible to phagocytosis as prevention of aggregation through disruption 

of cellulose production reduces macrophage uptake of NC101. Conversely, under iron limiting 
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conditions where aggregation is not induced, disruption of cellulose production enhanced NC101 

phagocytosis and decreased macrophage proinflammatory responses. Abrogation of bacterial 

cellulose production also delayed onset of colitis in inflammation-prone Il10-/- mice 

monoassociated with NC101. Taken together, our results introduce cellulose as a novel 

physiological factor that dynamically impacts AIEC-host interactions in the face of changing 

environmental conditions. 

 

4.4 Results 

4.4.1 Iron promotes aggregation of E. coli NC101 

Bacterial iron availability varies within the GI tract, likely decreasing towards the 

mucosal interface with the secretion of host iron-binding proteins, a phenomenon that is 

potentiated with inflammation (Kortman et al., 2014). However, the physiological responses by 

AIEC to changes in iron availability have not been well characterized. We therefore investigated 

the impact of iron on the physiology of E. coli NC101, a murine intestinal isolate that exhibits 

various AIEC characteristics including increased epithelial translocation, enhanced persistence 

within macrophages and the ability to induce colitis in selectively colonized, inflammation-prone 

Il10-/- mice (Liu et al., 2009) (Kim et al., 2005). When cultured in minimal medium with 5, 10 or 

50 µM iron at 37°C, NC101 formed macroscopic aggregates that sediment in culture (Fig. 1A). 

The proportion of bacterial cells associated with the aggregates significantly increased as the iron 

concentration increased as assessed by quantitative plating (Fig. S1) and optical density (Fig. 

1B). Addition of an iron chelator did not impact NC101 aggregation (Fig. 1C), suggesting that 

further iron deprivation had no affect on this phenotype. In contrast, the E. coli K12 substrain 
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MG1655 does not form aggregates in response to iron (Fig. S2), indicating that this phenomenon 

is not universal to all E. coli strains.  

 

4.4.2 Cellulose is required for iron-induced aggregation of NC101 

The extracellular matrix (ECM) of multicellular structures produced by other E. coli 

strains are composed of proteinaceous components such as fimbriae and curli, 

exopolysaccharides such as cellulose and/or extracellular DNA (Saldaña et al., 2009) (Hung et 

al., 2013) (Hadjifrangiskou et al., 2012). The combination of matrix components varies 

depending on environmental conditions and E. coli strain (Hancock et al., 2011). Therefore to 

determine the extracellular composition of the NC101 aggregates, cellulase, DNase or proteinase 

was added to the cultures following 2 hours of growth. Addition of cellulase resulted in dispersal 

of the aggregates (Fig. S3), while DNase and proteinase had no obvious impact (data not shown). 

This suggests that cellulose is a major extracellular component that contributes to iron-induced 

aggregation. 

Cellulose biosynthesis and structural proteins are encoded by bcsQABZC and bcsEFG 

and are required for cellulose production (Zogaj et al., 2001) (Solano et al., 2002) (Serra et al., 

2013). However, the presence of bcs genes does not necessarily correspond with an ability to 

produce cellulose. We first assessed whether NC101 is capable of producing cellulose at 37°C 

utilizing the well-established Calcofluor (CF) binding and red dry and rough (RDAR) colony 

morphotype assays. In contrast to E. coli MG1655 that served as an established negative control 

(Da Re and Ghigo, 2006), NC101 bound CF indicating the presence of cellulose production (Fig. 

2A). Similarly, on Congo red agar, NC101 produced RDAR colonies (Fig. 2B), a colony 

morphotype that is dependent on cellulose and curli production (Römling et al., 1998) (Zogaj et 
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al., 2001). To confirm that NC101 is a cellulose producer, an isogenic mutant lacking the bcsA 

gene that encodes the catalytic subunit of cellulose synthase (Omadjela et al., 2013) was created. 

Deletion of bcsA resulted in the loss of CF binding and the production of smooth colonies on 

Congo red agar (Fig. 2A and 2B). Moreover, the bcsA mutant did not form macroscopic 

aggregates (Fig. 2C and D), confirming that cellulose production is required for iron-induced 

aggregation of NC101.  

Curli are commonly co-expressed with cellulose within RDAR colonies and biofilms 

(Zogaj et al., 2001) (Bokranz, 2005) (Saldaña et al., 2009). To determine whether curli also 

contribute to RDAR colony formation in NC101, the csgA gene encoding the major subunit of 

the curli fibrils was disrupted (Olsen et al., 1993). The csgA mutant produced pink instead of 

brown-red textured colonies (Fig. 2B), a phenotype that has been observed in other csgA-

deficient intestinal E. coli (Bokranz, 2005). We also determined whether curli contribute to 

NC101 aggregation in response to iron. No differences in aggregation were observed between 

the cgsA mutant and NC101, suggesting that curli expression does not significantly contribute to 

iron-induced aggregate formation (Fig. 2D). 

 

4.4.3 Deletion of fur decreases NC101 aggregation 

Given the impact of iron on NC101, we next sought to determine how iron-induced 

aggregation occurs. In E. coli, fluctuations in iron availability can be sensed intracellularly by the 

transcription factor Fur (Hantke, 2001) or extracellularly by the two-component system BasRS 

(Hagiwara et al., 2004). To determine whether NC101 aggregation occurs in response to 

intracellular or extracellular iron, we tested the aggregative abilities of fur and basRS deletion 

mutants. In contrast to the parental strain, the fur mutant did not form visible aggregates after 2 
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hours of growth (Fig. 3A and B). This was not the result of a corresponding growth defect with 

the fur mutant at the same time point (Fig. 3D). The aggregates formed by the fur mutant after 8 

hours were macroscopically smaller compared to the NC101 aggregates (Fig. 3A) with a reduced 

proportion of bacterial cells associated with the aggregates relative to the whole culture (Fig. 

3C). In contrast, deletion of basRS did not impact NC101 aggregate formation (Fig. 3B). Taken 

together, deletion of fur limited NC101 aggregation, suggesting that factors promoting iron-

induced aggregate formation may be under the Fur modulon.   

 

4.4.4 Decreased aggregation by the fur mutant is not the result of an inability to produce 
cellulose  

Given that iron-induced aggregation of NC101 requires the capacity to produce cellulose, 

we determined whether cellulose biosynthesis was disrupted in the fur mutant as an explanation 

for its reduced ability to aggregate. We first tested whether cellulose production was unperturbed 

in the fur mutant. Deletion of fur did not eliminate CF binding, although the distribution of CF 

within the inoculum is altered compared to NC101 (Fig. 4A). As growth conditions impact the 

stimulation of E. coli cellulose production, we next determined whether NC101 and the fur 

mutant bind CF when exposed to iron in minimal medium. NC101 microscopic aggregates 

colocalized with CF (Fig. 4C), confirming that cellulose is a component of the ECM. Although 

not uniformly observed, single NC101 cells not associated with the aggregates bound CF, 

suggesting that some planktonic cells produce cellulose. The fur mutant also colocalized with CF 

in the presence of iron, further demonstrating that cellulose production is not abrogated in the 

mutant strain. Formation of microscopic aggregates by the fur mutant was also observed. 

However, consistent with its decreased ability to form macroscopic aggregates, the microscopic 

aggregates produced by the fur mutant were less frequent and smaller in size compared to 
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NC101 (Fig. S4). Finally, to determine whether cellulose production is decreased in the fur 

mutant, the extent of CF binding was assessed as a proxy for cellulose production. CF binding in 

the presence of iron did not differ between NC101 and the fur mutant (Fig. 4B). CF binding was 

also evident for NC101 and the fur mutant when grown in minimal medium without iron (Fig. 

4B and S5), indicating that cellulose production occurs under iron limiting conditions. Taken 

together, these data demonstrate that decreased aggregate production by the fur mutant is not due 

to an inability to produce cellulose, suggesting the involvement of other factors in addition to 

cellulose that promote maximal NC101 aggregation.  

 

4.4.5 NC101 aggregate cells are more susceptible to phagocytosis by macrophages 

 ECM components produced within microbial multicellular structures potentially alter E. 

coli interactions with macrophages. Given that AIEC are in part characterized by their distinct 

interactions with macrophages (Glasser et al., 2001), we investigated whether the physiology 

associated with an aggregative state alters NC101 susceptibility to phagocytosis by macrophages 

and subsequent intracellular survival. To test this, aggregation of NC101 was induced by growth 

with iron and cultures containing aggregates were physically dispersed into single cell 

suspensions and co-cultured with macrophages. NC101 was exposed to iron prior to co-culture 

with macrophages, as iron availability can also impact macrophage function (Nairz et al., 2010). 

Under aggregate-inducing conditions, NC101 phagocytosis was significantly enhanced (Fig. 

5A). Although the quantity of intracellular NC101 was also increased after 4 and 8 hours, the 

percent intracellular survival of NC101 was not substantially altered (Fig. 5B). These data 

demonstrate an association between iron-induced aggregation and increased bacterial uptake by 

macrophages. 
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To further explore this association, we physically separated the planktonic and aggregate 

phases from the same culture and tested whether NC101 cells recovered from the aggregates 

were more susceptible to phagocytosis. Irrespective of the presence of iron, the extent of 

internalization of planktonic NC101 remained constant (Fig. 5C). In contrast, a significantly 

higher amount of aggregate NC101 cells was phagocytosed by macrophages in comparison to 

planktonic cells from the same culture, suggesting that aggregate NC101 cells are more 

susceptible to phagocytosis. One explanation for increased phagocytosis of aggregate cells is the 

incomplete disruption of the aggregates, which could result in more cells entering the 

macrophage at once. To address this possibility, we investigated whether aggregates of GFP-

labeled NC101 were fully dispersed utilizing microscopy. Before physical disruption, the 

number of aggregates per high-power field was significantly higher when NC101 was cultured 

with iron (Table S3). After physical disruption, NC101 aggregates were rarely visible 

microscopically, and importantly, there was no significant difference in the number of NC101 

aggregates per field with or without iron. These findings indicate that increased susceptibility of 

aggregate cells to phagocytosis is not likely due to more bacteria entering the macrophage at 

once. Instead, these data suggest that the physiology of the individual aggregate cells promotes 

their phagocytosis. 

 

4.4.6 Cellulose modulates NC101 susceptibility to phagocytosis. 

 We next sought to identify the physiological factors that mediate enhanced internalization 

of individual NC101 aggregate cells. Given that cellulose is required for aggregation and 

deletion of fur limits aggregate formation in a cellulose independent manner, we predicted that 

deletion of bcsA or fur would reduce macrophage uptake of iron-exposed NC101. As 
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hypothesized, under aggregate-inducing conditions, macrophage uptake of the bcsA and fur 

mutants was significantly decreased in comparison to NC101 (Figs. 6B and S6). However, 

deletion of bcsA or fur did not reduce NC101 internalization to levels comparable to non-

aggregated NC101, suggesting the involvement of other bacterial factors that contribute to 

phagocytosis susceptibility of aggregate cells. Conversely, under iron limiting conditions where 

NC101 aggregation is not induced, the bcsA mutant was more susceptible to phagocytosis 

compared to NC101 (Fig. 6A and S6). This suggests that cellulose may act as an anti-phagocytic 

factor for non-aggregate NC101 cells. Similar results were also observed with the non-cellulose 

producing strain MG1655 (Fig. S6). Importantly, the bcsA mutant and MG1655 did not form 

microscopic aggregates (Table S3). Moreover, deletion of bcsA did not impact percent survival 

within macrophages (Fig. S7). Taken together, cellulose disparately modulates NC101 

susceptibility to macrophage phagocyotosis by enabling the formation of an aggregative 

physiological state under iron replete conditions and by potentially acting as an anti-phagocytic 

factor under iron limiting conditions.  

 

4.4.7 Cellulose alters the proinflammatory potential of NC101  

It is unclear how differential phagocytosis of AIEC impacts macrophage 

proinflammatory responses. As deletion of bcsA alters macrophage uptake of NC101, we 

investigated whether uptake of the bcsA mutant also alters macrophage production of p40, the 

common subunit of the proinflammatory cytokines IL-12 and IL-23. Under non-aggregating 

conditions (i.e. low iron), production of IL-12 p40 was decreased in macrophages that 

phagocytosed the bcsA mutant (Fig. 6C). Conversely, with increased iron where NC101 

aggregation is induced, macrophages that phagocytosed the bcsA mutant secreted higher amounts 
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of IL-12 p40 (Fig. 6D). Deletion of fur did not alter IL-12 p40 secretion by the mutant-exposed 

macrophages, further demonstrating the importance of cellulose in mediating NC101-

macrophage interactions. Taken together, these results demonstrate that in addition to impacting 

NC101 phagocytosis susceptibility, cellulose modulates macrophage production of the 

proinflammatory cytokine IL-12 p40.  

Given the contrasting effects of cellulose on macrophage proinflammatory responses, we 

next sought to determine how the ability to produce cellulose contributes to the in vivo 

proinflammatory potential of NC101. To investigate this, germ-free Il10-/- mice were 

monoassociated with NC101 or the bcsA mutant. AIEC strains such as NC101 uniquely induce 

colitis when monoassociated in inflammation-susceptible Il10-/- mice (Kim et al., 2005), whereas 

monoassociation of non-AIEC strains including MG1655 (Kim et al., 2008) and Nissle 

(Schumann et al., 2013) does not induce chronic colitis. Severity of inflammation was assessed 

by histology and proinflammatory cytokine expression. Monoassociated wild type (WT) mice 

served as inflammation-resistant controls. After 10 days of colonization, no differences in 

histological inflammation were observed (Fig. 7B). After 21 days, mice colonized with the 

parental strain exhibited significantly worse proximal and distal colonic inflammation 

characterized by increased crypt hyperplasia and leukocytic infiltration into the lamina propria 

(Fig. 7A and B). By 35 days, pathohistological differences were no longer apparent because 

severity of inflammation increased in mice colonized with the bcsA mutant. Importantly, WT 

animals colonized with either strain did not exhibit any pathology (Fig. 7C).  

We next determined whether differences in histological inflammation at 21 days 

corresponded with differential expression of proinflammatory cytokines. Il10-/- mice 

monoassociated with NC101 develop colitis that is driven by T-helper (Th)-1 and Th-17 
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responses, where onset and exacerbation of inflammation is associated with increased production 

of IL-17, IFN-γ and IL-12 (Kim et al., 2005) (Kim et al., 2007). We therefore determined 

whether earlier onset of colitis in NC101 colonized mice corresponded with differential 

expression of Il17a, Ifng and Il12b. Prior to onset of histological inflammation, expression of 

Il12b encoding the p40 subunit was increased in mice colonized with NC101 (Fig. 7D). This was 

consistent with differences in macrophage production of IL-12 p40 observed in vitro in response 

to NC101 or the bcsA mutant under iron limiting conditions. Colonic expression of Il17a or Ifng 

did not differ at 10 days (data not shown). At 21 days, coinciding with more severe 

histopathology, Il17a expression was increased in the proximal colon in mice colonized with 

NC101 (Fig. 7E). In contrast, no significant differences in Ifng transcript levels were observed 

(Fig. S8). Because colitis in NC101 monoassociated Il10-/- mice is driven by antigen-specific 

responses, we also quantified IFN-γ and IL-17 production by unfractionated MLN cells 

restimulated with the respective bacterial lysates. MLN cells recovered from mice colonized with 

NC101 produced higher quantities of IL-17 relative to MLN cells isolated from mice colonized 

with the bcsA mutant (Fig. 7F). IFN-γ production by restimulated MLN cells was not 

significantly different (Fig. S8). Finally, differences in severity of colitis observed at 21 days 

also corresponded with a 2.4 fold decrease in fecal loads of the bcsA mutant (Fig. 8). Cecal 

luminal densities of the bcsA mutant were also consistently decreased relative to NC101, 

although this was not uniformly observed in the feces. Decreased fecal and cecal concentrations 

of the bcsA mutant relative to the parental strain were likewise observed in WT mice. Taken 

together, Il10-/- mice monoassociated with a cellulose-deficient NC101 mutant exhibited delayed 

onset of colitis, suggesting that disrupting cellulose production in NC101 reduced its 

proinflammatory potential in an experimental model of chronic immune-mediated colitis.  
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4.5 Discussion 

Environmental factors such as iron availability that may promote proinflammatory 

interactions between AIEC, microbes clinically relevant to IBD, and the host have not been well 

investigated. Therefore the purpose of this study was to characterize how iron impacts the 

physiology and functional attributes of the AIEC strain NC101. Our findings demonstrate that 

iron promotes cellulose-dependent aggregation of NC101. Moreover, NC101 aggregate cells are 

more susceptible to phagocytosis by macrophages. The contribution of cellulose to NC101 

phagocytosis susceptibility and consequent macrophage proinflammatory responses changes as 

iron availability and the physiological state of NC101 is altered, demonstrating a dynamic role 

for cellulose in modulating host-microbial interactions. Finally, abrogation of cellulose 

production in NC101 reduced its ability to induce colitis in inflammation-prone Il10-/- mice. 

Taken together, our results demonstrate that cellulose production alters the proinflammatory 

potential of NC101. 

Various environmental factors including temperature and nutrient availability impact 

multicellular behaviors such as aggregation in E. coli and related enteric bacteria (Gerstel and 

Römling, 2001) (Spurbeck et al., 2012). Interestingly, iron has divergent effects on multicellular 

behaviors of other E. coli functional subtypes including enteroaggregative (Alves et al., 2010), 

uropathogenic (UPEC) (Hancock et al., 2010) (Rowe et al., 2010) (Depas et al., 2013) and K12 

strains (Wu and Outten, 2009). Therefore, given the varying responses of different E. coli strains 

to alterations in iron availability, it is likely that multiple strain-specific mechanisms regulate 

these responses. Here we show that fur-deficient, but not basRS-deficient, NC101 exhibited a 

reduced ability to form aggregates. This suggests that intracellular, rather than extracellular, iron 
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sensing by NC101 contributes to the induction of this multicellular behavior. This was not the 

result of an inability of the fur mutant to produce cellulose, suggesting that additional factors 

under the Fur modulon promote maximal NC101 aggregation. Cellulose production by the fur 

mutant may enable its ability to form smaller microscopic aggregates that, compared to NC101, 

are not macroscopically visible until later in growth. Additionally, the fur mutant exhibited a 

growth defect when grown in minimal medium with iron, which could contribute to decreased 

aggregate formation. However, this growth defect was only evident during later stages of growth, 

after aggregate formation had already occurred in the parental strain. Fur has been linked to the 

regulation of additional multicellular behaviors in UPEC, E. coli K12 and other Gram negative 

bacteria (Banin et al., 2006) (Depas et al., 2013) (Hancock et al., 2010) (Wu et al., 2012) (Seo et 

al., 2014), demonstrating the importance of iron as an environmental signal in modulating the 

formation of microbial communities across many bacterial species.  

Translocation of microbes and their products across the intestinal epithelial barrier is 

detected by immune cells including macrophages, where engagement of pattern recognition 

receptors by microbial products activates signal transduction pathways that promote 

phagocytosis (Doyle, 2003), microbial killing and production of inflammatory mediators. 

Assumption of an aggregate physiological state promoted NC101 phagocytosis by macrophages, 

where NC101 cells recovered from aggregates were more susceptible to phagocytosis compared 

to planktonic cells. Abrogation of cellulose production prevented aggregation and reduced 

NC101 susceptibility to phagocytosis under aggregate inducing conditions (i.e. iron exposure). 

Coinciding with a reduced ability to aggregate, the fur mutant was also phagocytosed to a lesser 

extent despite producing cellulose. Interestingly, increased phagocytosis of iron-exposed (James 

et al., 1995) (Domingue et al., 1989) or biofilm-associated bacteria has been observed in other 
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bacterial species (Spiliopoulou et al., 2012) (Daw et al., 2012) and with iron-exposed 

extraintestinal E. coli pathogens (Wise et al., 2002). These results suggest that although cellulose 

is required for aggregation and presumably the assumption of an aggregate physiological state, 

other factors contribute to phagocytosis of NC101 aggregate cells.  

Under non-aggregate inducing conditions (i.e. low iron) where NC101 aggregation does 

not occur but cellulose is expressed, deletion of bcsA enhanced NC101 susceptibility to 

phagocytosis. This suggests that in a non-aggregative state, cellulose acts as an antiphagocytic 

factor, potentially masking bacterial factors that interact with macrophage receptors to promote 

phagocytosis. Indeed, as no host receptor for cellulose has been identified, it is unlikely that 

microbial cellulose interacts directly with host cells. This is consistent with the contrasting 

effects of disrupting cellulose production on NC101 phagocytosis as both microbial iron 

exposure and the resulting physiological state of NC101 is altered. Thus our study introduces 

cellulose as a novel factor that modulates interactions between AIEC and macrophages and 

highlights the complex interplay between bacterial and environmental factors in modulating 

host-microbial interactions.  

Although our investigation demonstrates that cellulose is required for in vitro aggregation 

by NC101 and modulates interactions with macrophages, it is unclear whether NC101 cellulose 

production and aggregation occurs in vivo. In a recent study by Arthur and colleagues, the impact 

of the inflamed and non-inflamed colonic environments on the NC101 transcriptome was 

investigated (Arthur et al., 2014). Bcs transcripts were detected at 2, 12 and 20 weeks following 

monoassociation of ex-germ free Il10-/- and inflammation-resistant Il10-/-rag2-/- mice, indicating 

that bcs genes are transcribed in vivo. However, as cellulose biosynthesis is primarily regulated 

through allosteric control of cellulose synthase activity (Römling, 2005), presence of bcs 
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transcripts is not conclusive evidence of NC101 cellulose production in the colon. Moreover, 

current biochemical techniques for assaying the presence of bacterial cellulose in vitro are not 

easily adaptable to the intestinal environment given the presence of plant cellulose and other 

polysaccharides consisting of glucose monomers.   

The contribution of cellulose to the in vivo fitness and virulence potential of E. coli and 

related bacteria has only been investigated in UPEC strains in the urinary tract (Raterman et al., 

2013) (Larsen et al., 2010) and S. Typhimurium when administered intraperitoneally (Pontes et 

al., 2015). Therefore, to establish whether cellulose contributes to the colitogenicity of AIEC in 

the GI tract, the severity of colitis was assessed in Il10-/- mice monoassociated with NC101 or the 

cellulose deficient bcsA mutant. Onset of colitis was delayed in mice colonized with the cellulose 

deficient mutant, which corresponded with decreased Th-17-associated immune responses 

including decreased expression of Il12b. This is consistent with our in vitro observations 

demonstrating decreased IL-12 p40 production by macrophages infected with the bcsA mutant 

following exposure to non-aggregate inducing and iron limiting conditions. Reduced 

macrophage production of IL-12 p40 also corresponded with enhanced phagocytosis of the bcsA 

mutant. Therefore, cellulose may enhance the proinflammatory potential of NC101 by 

preventing mucosal clearance of NC101 and consequently promoting increased proinflammatory 

immune responses. However, as deletion of bcsA did not completely prevent colitis development 

and its effects were lost over time, other microbial factors likely contribute to the ability of 

NC101 to induce colitis. Finally, these results also suggest that iron may be limiting within the 

inflamed intestines, a finding that has been reported by others (Deriu et al., 2013). However, the 

precise bioavailability of iron remains unclear, especially as iron concentrations likely vary 
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throughout the GI tract and depend on other factors including host iron status, inflammation and 

diet.  

Coinciding with decreased inflammation, luminal loads of the bcsA mutant were 

significantly decreased. However, it is unclear whether a 2.4-fold decrease in fecal loads and a 

1.8-fold decrease in cecal luminal loads significantly contribute to decreased immune activation 

in mice colonized with the bcsA mutant. Cecal luminal densities of the bcsA mutant were also 

decreased in Il10-/- mice prior to evidence of histological inflammation and in noninflamed WT 

mice. However, this early difference in luminal bacterial loads was not observed in the feces. 

Therefore, cellulose production may modestly enhance AIEC colonic fitness, which provides a 

possible additional mechanism for augmenting the proinflammatory potential of NC101. 

Cellulose provides microbial resistance against a variety of stressors both in the environment 

(Solano et al., 2002) (Gualdi et al., 2008) (Depas et al., 2013) and within the host (Larsen et al., 

2010). For example, deletion of bcsA in UPEC enhanced bacterial clearance from the kidneys in 

a neutrophil-dependent manner (Larsen et al., 2010). Cellulose-dependent multicellular 

behaviors can also be induced by stressors likely present at mucosal surfaces along the normal 

and inflamed GI tract including fluctuations in iron availability, peroxide stress and microbial 

contact with soluble IgA antibodies (Rowe et al., 2010) (Depas et al., 2013) (Amarasinghe et al., 

2013). Finally, as intestinal E. coli demonstrate a more frequent ability to produce cellulose at 

37°C compared to UPEC clinical isolates (Bokranz, 2005), it is tempting to speculate that 

cellulose may contribute to intestinal fitness of resident intestinal E. coli strains.  

In the colon, under homeostatic conditions, the mucosal surface is home to a distinct 

community of bacteria. The composition of the mucosa-associated microbial community is 

significantly altered in chronic disease states such as CD, which includes an increased abundance 
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of mucosally-associated resident E. coli (Gevers et al., 2014). Host inflammatory responses and 

intrinsic host genetic defects compromise mucosal and epithelial barrier integrity, enabling 

enhanced proximity of mucosally-associated bacteria to host cells. Consistent with this, 

enhanced intestinal tissue AIEC loads, mucosal association and translocation (Martin et al., 

2004) (Baumgart et al., 2007) (Carvalho et al., 2012) are correlated with more severe disease in 

CD and experimental models of colitis. Our study highlights the importance of environmental 

factors in altering AIEC physiology and subsequent host-microbial interactions and impact on 

inflammation. Given the lack of identifying genetic loci within AIEC, it would be interesting to 

investigate whether iron alters the physiological state of other clinical AIEC isolates as a novel 

functional determinant. Finally future studies are warranted confirming in vivo cellulose 

biosynthesis, and more broadly, assessing the in vivo physiological state of AIEC, especially 

within more defined intestinal niches such as the normal and inflamed mucosa using murine 

models and clinical mucosal biopsies. This could enable the identification of novel therapeutics 

that modulate E. coli physiology to limit adverse interactions with the underlying mucosa in CD 

patients and individuals genetically susceptible to CD.  

 

4.6 Materials and methods 

Bacterial strains and growth conditions. The bacterial strains and plasmids used in this study 

are listed in Table S1 in the supplemental material. E. coli NC101 was isolated from feces of a 

wild type mouse as previously described (Kim et al., 2005). Unless otherwise indicated, bacteria 

from an overnight culture were washed prior to inoculation into the M9 minimal medium with 

the indicated concentrations of iron as ferrous sulfate (I146, Fisher Scientific). Bacteria were 
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grown at 250 rpm at 37°C for all experiments. Media was supplemented with 50 µg/mL 

kanamycin or 100 µg/mL carbenicillin as appropriate.  

 

Construction of isogenic mutant, chromosomally complemented and green fluorescent 

protein (GFP)-labeled strains. All deletion mutants were created using the λ-red recombinase 

system as previously described (Datsenko and Wanner, 2000). Deletion mutants were 

chromosomally complemented using the pMCL2868 plasmid (kind gift from M. Chelsea Lane), 

a mini-Tn7 vector, as previously described (Choi et al., 2005). For GFP-labeled strains, the 

pEGFP plasmid was transformed into each strain by electroporation. Transformed strains were 

grown with 100 µg/mL carbenicillin to maintain the plasmid.  

 

Sedimentation assays. Sedimentation assays were performed as previously described (Rowe et 

al., 2010) with the following modifications. Briefly, bacteria were grown in M9 minimal medium 

with the indicated concentrations of iron or the iron chelator 2,2-bipyridyl (366-18-7, Alfa 

Aesar). At the specified time points, cultures were removed from the incubator, and the 

aggregates were allowed to settle to the bottom of 50-mL conical tubes. An aliquot from the top 

of the culture (planktonic phase) was taken for optical density quantification by 

spectrophotometry or quantitative culture. The cultures were then vortexed thoroughly, and the 

cells were pelleted and washed with phosphate buffered saline (PBS) and passed through a 30-

gauge needle to obtain homogenous bacterial suspensions. An aliquot was then taken for 

quantitative culture or spectrophotometry as a measure of bacterial concentration of the whole 

culture. The % aggregation was calculated using [(whole culture OD600 - planktonic OD600) / 

whole culture OD600] x 100. Where indicated, cellulase (from Aspergillus niger, C1184, Sigma) 
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was added to the cultures after 2 hours of growth. The cultures were then vortexed vigorously 

and incubated for 10 minutes at 37°C.  

 

Assessment of aggregation and CF binding by fluorescence microscopy. GFP-labeled 

bacteria were grown in M9 minimal medium with the indicated concentrations of iron. For 

assessing dispersion of the bacterial aggregates prior to the gentamicin protection assays, 

bacteria aggregates were physically disrupted as described above. When staining with CF, 

bacteria were cultured with 1% of the Calcofluor White staining solution (18909; Sigma). The 

cultures were normalized to equivalent optical densities (600 nm). A 5-µL aliquot was spotted 

onto glass microscope slides in duplicate. Slides were visualized using an Olympus IX71 

fluorescence microscope. ImageJ software was utilized to quantify the aggregates, where 

aggregates were defined as objects in the field that had a pixel intensity threshold of 5 to 215 and 

pixel size of 201 to infinity. ImageJ software was also utilized to quantify CF binding per cell 

using the following formula: (mean intensity CF x area CF) / (mean intensity GFP x area GFP). 

At least 15 high-power fields at 200x magnification per slide were analyzed per experiment. 

Representative images were taken to demonstrate colocalization of CF with GFP-expressing 

bacteria at 400x magnification. 

 

Gentamicin protection assays. Bacteria were grown in M9 minimal medium with the indicated 

concentrations of iron for 2 hours. The cultures were vortexed and washed with PBS to disrupt 

the aggregates as described above and normalized to equivalent optical densities (600 nm). For 

experiments using planktonic or aggregate bacterial cells, the aggregates were allowed to settle 

for 5 minutes to the bottom of the 50-mL conical tubes. The broth phase (top) of the culture was 
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then collected and cells recovered from this phase were defined as planktonic. The remaining 

broth phase was removed by aspiration. Aggregates were recovered by resuspension in PBS and 

were physically disrupted as described above. Gentamicin protection assays were then performed 

as previous described (Darfeuille-Michaud et al., 2004). Briefly, bone marrow-derived 

macrophages were seeded in 24-well plates and bacteria were added at a multiplicity of infection 

(MOI) of 10. After centrifugation for 10 minutes at 228 g, the co-cultures were incubated for 30 

minutes in RPMI 1640 medium. Gentamicin-laden medium (RPMI 1640 with 10% FBS and 100 

µg/mL gentamicin) was then added to eliminate any remaining extracellular bacteria. The 

macrophages were lysed with PBS containing 1% Triton X-100 at the indicated time points for 

enumeration of intracellular bacteria. Intracellular bacteria were quantified by serial dilution 

plating.  

 

Mice. Germ free Il10-/- and wild type mice on the 129S6/SvEV background were originally 

derived in sterile conditions by hysterectomy at the Gnotobiotic Laboratory (University of 

Wisconsin, Madison). Mice were maintained in germ free conditions at the National Gnotobiotic 

Rodent Resource Center at UNC-Chapel Hill. An overnight bacterial culture of E. coli NC101 or 

the bcsA mutant was utilized to monoassociate mice via oral and rectal swab as previously 

described (Kim et al., 2007). Absence of isolator contamination was confirmed by Gram stain 

and fecal culture. Once monoassociated, fecal and cecal E. coli loads were quantified by dilution 

plating on LB plates as previously described (Patwa et al., 2011). All animal protocols were 

approved by the UNC-Chapel Hill Institutional Animal Care and Use Committee.  
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Histological scoring. At necropsy, proximal and distal colonic segments were Swiss rolled and 

fixed in 10% neutral buffered formalin. Histological inflammation scores (0-4) of proximal and 

distal colonic sections were blindly assessed as previously described (Kim et al., 2005). Briefly, 

the scoring system is as follows: 0 = no inflammation; 1 = presence of infiltrating cells within the 

lamina propria (LP); 2 = epithelial hyperplasia, mild loss of goblet cells and more extensive 

cellular infiltration within the LP; 3 = marked epithelial hyperplasia, loss of goblet cells, 

pronounced cellular infiltration within the LP and submucosa ; 4 = ulceration and transmural 

inflammation. Data are expressed as the composite histology score (0-8), which was calculated 

by adding the proximal and distal colonic histology scores.  

 

Congo red and Calcofluor (CF) colony morphotypes. A 5-10-µL aliquot of bacteria from an 

overnight culture in LB broth or after two hours of growth in M9 minimal medium with the 

indicated concentrations of iron was inoculated onto YESCA agar (10 g/L casamino acids, 1 g/L 

yeast extract, 20 g/L Bacto agar) with 20 µg/mL Congo red and 10 µg/mL Coommassie blue for 

the Congo red plates (Da Re and Ghigo, 2006) or onto LB agar with 0.02% CF (Zogaj et al., 

2001). CF is a dye that binds cellulose and fluoresces with UV light. Bacteria were grown for 48 

hrs at 37°C prior to assessment of colony morphotypes. 

 

Isolation of bone marrow derived macrophages (BMDM). Bone marrow cells were isolated 

as previously described (Lutz et al., 1999). Conditioned medium from the murine fibroblast cell 

line L929 served as a source of M-CSF for macrophage differentiation (Stanley and Heard, 

1977). During all experiments unless otherwise indicated, bone marrow-derived macrophages 
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were maintained in RPMI 1640 medium (Gibco) with 10% heat-inactivated fetal bovine serum 

(FBS, Gibco) and 1% penicillin/streptomycin/antimycotic (Gibco) at 37°C, 5% CO2.    

 

Mesenteric lymph node (MLN) cultures. MLNs were isolated from Il10-/- mice 

monoassociated with NC101 or the bcsA mutant at 21 and 35 days. MLN cultures were prepared 

as previously described (Patwa et al., 2011). Briefly, MLN cells were plated at a density of 5 x 

105 per well in quadruplicate in 96-well plates. Cells were cultured in RPMI 1640 medium 

containing 10% FBS, 2 mM L-glutamine, 1 mM sodium pyruvate, 0.05 mM 2-mercaptoethanol, 

penicillin (100 U/mL) and streptomycin (100 µg/mL) and were stimulated for 72 hours with 

NC101 or bcsA mutant lysates (10 µg protein/mL) or media control. Culture supernatants were 

collected and stored at -20°C until cytokine quantification. Bacterial lysates were prepared as 

previously described (Kim et al., 2005). 

 

Cytokine quantification by enzyme-linked immunosorbent assays (ELISA). Commercially 

available monoclonal anti-mouse interleukin-17 (IL-17) (R&D Systems), IL-12 p40 (BD 

Biosciences) and interferon-γ (IFN-γ) (BD Biosciences) capture and detection reagents were 

utilized to quantify MLN production of IL-17 and IFN-γ and BMM production of IL-12 p40 by 

ELISA according to the manufacturer’s instructions.   

 

Colonic RNA isolation and real-time reverse-transcriptase PCR (RT-PCR). RNA was 

extracted from proximal colonic tissue using the RNAeasy isolation kit (Qiagen) according to the 

manufacturer’s instructions. Real-time RT-PCR were performed using the Sensifast SYBR No-

ROX Kit (Bioline) using the following PCR conditions: a single hold at 95°C for 2 minutes, 
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followed by 40 cycles at 95°C for 5 seconds, 60°C for 10 seconds and 72°C for 20 seconds. 

Melting curves were also assessed to ensure specificity of the PCR products. Primers utilized are 

listed in Table S2. 

 

Statistical analysis. P-values were calculated using Student’s t-test when 2 experimental groups 

were compared, one-way ANOVA with Tukey’s multiple comparison post test when 3 or more 

experimental groups were compared, or two-way ANOVA with Bonferroni multiple comparison 

post test when more than two variables were compared. All enumeration of bacteria by serial 

dilution and plating was log transformed to normalize the data. For quantification of NC101 

aggregates by microscopy, p-values were calculated using a non-parametric Kruskal-Wallis test 

with the Dunn’s post test. For all animal experiments, p-values were determined using a non-

parametric Mann-Whitney test.  
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4.7 Figures 

 
Figure 4.1. Iron promotes aggregation of E. coli NC101. (A) Representative images of NC101 
aggregates after 2 hours of growth in minimal medium with increasing concentrations of iron. 
(B, C) Sedimentation assays of NC101 after 2 hours of growth in minimal medium with various 
concentrations of (B) iron or (C) the iron chelator BPD. Data represent the percent optical 
density associated with the aggregates relative to the whole culture. All data represent the mean 
± SEM of at least 3 independent experiments. Pairwise comparisons by one-way ANOVA. * p < 
0.05, ** p < 0.01, *** p < 0.001 compared to the 0 µM condition. 
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Figure 4.2. Cellulose is required for iron-induced aggregation of NC101. (A, B) 
Representative colony morphologies of NC101, ΔbcsA, ΔbcsA + bcsA or csgA::kan on (A) 
Calcofluor or (B) Congo red agar. E. coli MG1655 served as a negative control. (C) 
Representative images of NC101 and ΔbcsA after 2 hours of growth in minimal medium with 10 
µM iron. (D) Sedimentation assays of NC101, ΔbcsA, ΔbcsA + bcsA or csgA::kan after 2 hours 
of growth in minimal medium with increasing concentrations of iron. Data represent the percent 
OD600 of the aggregates relative to the whole culture. Data represent the mean ± SEM of three 
independent experiments. Pairwise comparisons by one-way ANOVA. * p < 0.05, *** p < 0.001 



 160 

 

 
Figure 4.3. Deletion of fur in NC101 limits iron-induced aggregation. (A) Representative 
images of NC101 or Δfur after 2 or 8 hours of growth in minimal medium with 10 µM iron. (B) 
Sedimentation assays of NC101, Δfur, Δfur + fur or basRS::kan after 2 hours of growth in 
minimal medium with 0 or 10 µM iron. (C) Time course sedimentation assays and (D) growth 
curves of NC101, Δfur or Δfur + fur in minimal medium with 10 µM iron. Data for all 
sedimentation assays represent the percent OD600 of the aggregates relative to the whole culture. 
All data are represented as the mean ± SEM of three independent experiments. Pairwise 
comparisons by (B) one-way and (C, D) two-way ANOVA. * p < 0.05, *** p < 0.001 
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Figure 4.4. Deletion of fur does not disrupt NC101 cellulose production. (A) Colony 
morphologies of NC101, Δfur or ΔbcsA on Calcofluor plates. (B) GFP-expressing NC101, Δfur 
or ΔbcsA were grown in minimal medium with 0 or 10 µM iron for 1 hour and stained with 
Calcofluor. ImageJ software was utilized to calculate mean Calcofluor binding per cell per 200x 
high-power field. At least 15 fields were analyzed per sample. Data represent the mean ± SEM of 
three independent experiments relative to the NC101, 0 µM condition. Pairwise comparisons by 
Kruskal-Wallis. (C) Representative images at 400x of GFP-expressing NC101, Δfur and ΔbcsA 
stained with Calcofluor. Scale bar = 100 µm. Bacteria were grown in minimal medium with 10 
µM iron for 1 hour. 
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Figure 4.5. NC101 aggregates are more susceptible to phagocytosis. NC101 was grown in 
minimal medium with 0 or 10 µM iron prior to co-culture with bone marrow-derived 
macrophages. Following the addition of gentamicin for 30 minutes, intracellular NC101 was 
quantified after (A) 1 hour as a measure of bacterial uptake and 4 or 8 hours as measures of 
intracellular survival. (B) 4 to 1 hour and 8 to 1 hour ratios of intracellular NC101 as measures of 
percent intracellular survival. (C) Planktonic and aggregate fractions of each culture were 
separated prior to co-culture with macrophages. Intracellular NC101 was quantified after 1 hour. 
Data are shown as the mean ± SEM of a representative experiment of at least 3 independent 
experiments with at least 4 technical replicates. Pairwise comparisons by (A, B) t-test and (C) 
one-way ANOVA. *** p < 0.001 
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Figure 4.6. Deletion of bcsA alters NC101 interactions with macrophages. (A, B) 
Intracellular NC101, ΔbcsA or Δfur after 1 hour co-culture with bone marrow-derived 
macrophages. (C, D) IL-12 p40 cytokine production by bone marrow-derived macrophages 
infected with NC101, ΔbcsA or Δfur for 8 hours. All bacteria were grown in minimal medium 
with (A, C) 0 µM or (B, D) 10 µM iron prior to co-culture with macrophages. Data are shown as 
the mean ± SEM of a representative experiment of 3 independent experiments with at least 4 
technical replicates. Pairwise comparisons by one-way ANOVA. * p < 0.05, *** p < 0.001 



 164 

 

 
Figure 4.7. Deletion of bcsA in NC101 delays onset of colitis in monoassociated Il10-/- mice. 
(A) Representative H&E histology at 200x of the proximal colons of Il10-/- or WT mice 
colonized with NC101 (open circles) or ΔbcsA (closed squares) for 21 days. Scale bar = 50 µm. 
(B, C) Composite proximal and distal colon histology scores (0-8) of B) Il10-/- mice or (C) WT 
mice monoassociated with NC101 or ΔbcsA. (D, E) Proximal colon transcript levels of (D) Il12b 
or (E) Il17a relative to Actb in Il10-/- mice monoassociated with NC101 or ΔbcsA. Data are 
expressed as fold change relative to NC101 colonized mice. (F) IL-17 production by 
unfractionated MLN cells restimulated with the respective bacterial lysates ex vivo. MLNs were 
isolated from Il10-/- mice monoassociated with NC101 or ΔbcsA for 21 or 35 days. Each symbol 
represents an individual mouse, n = 5-8 mice per group. Line at median, pairwise comparisons 
by Mann-Whitney. * p < 0.05, ** p < 0.01 
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Figure 4.8. Luminal densities of NC101 or the bcsA mutant in monoassociated WT or Il10-/- 
mice. Quantitative bacterial culture of feces collected from (A) Il10-/- mice or (B) WT mice 
monoassociated with NC101 (open circles) or ΔbcsA (closed squares). Quantitative bacterial 
culture of cecal content collected from (C) Il10-/- mice or (D) WT mice monoassociated with 
NC101 or ΔbcsA. Each symbol represents an individual mouse, n = 5-8 mice per group. Line at 
median, pairwise comparisons by Mann-Whitney. * p < 0.05, ** p < 0.01 
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4.8 Supplemental Figures 

 
Supplemental Figure 4.1. Iron promotes aggregation of NC101 as assessed by quantitative 
plating. Sedimentation assays of NC101 after 2 hours of growth in minimal medium with 
increasing concentrations of iron. Data represent the percent colony forming units associated 
with the aggregates relative to the whole culture. Data represent the mean ± SEM of at least three 
independent experiments. Pairwise comparisons by one-way ANOVA. * p < 0.05, ** p < 0.01, 
*** p < 0.001 compared to the 0 µM condition. 
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Supplemental Figure 4.2. Iron does not induce aggregation of E. coli K12 substrain 
MG1655. Sedimentation assays of E. coli NC101 or MG1655 after 5 hours of growth in minimal 
medium with 0 or 10 µM iron. Data are represented as the percent OD600 of the aggregates 
relative to the whole culture. Data represent the mean ± SEM of at least three independent 
experiments. Pairwise comparisons by one-way ANOVA. *** p < 0.001. 
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Supplemental Figure 4.3. Addition of cellulase disrupts NC101 aggregates.  
Representative images of NC101 after treatment with 12 U/ml cellulase following 2 hours of 
growth in minimal medium with 0 or 10 µM iron. 
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Supplemental Figure 4.4. Deletion of fur reduces microscopic aggregation of NC101. GFP-
expressing NC101, Δfur or ΔbcsA were grown in minimal medium with 10 µM iron for 1 hour. 
(A) Quantity of microscopic aggregates per 200x high-power field. Data represent the mean ± 
SEM of three independent experiments. (B) Average pixel size of the microscopic aggregates. 
Data are expressed as fold change relative to NC101 of three independent experiments. ImageJ 
software was utilized for these analyses, where at least 15 fields were analyzed per sample per 
experiment.  
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Supplemental Figure 4.5. NC101 produces cellulose under low iron conditions. 
Representative images at 400x of GFP-expressing NC101, Δfur or ΔbcsA stained with 
Calcofluor. Scale bar = 100 µm. Bacteria were grown in minimal medium for 1 hour.  
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Supplemental Figure 4.6. Phagocytosis of NC101 and MG1655 in the presence and absence 
of iron. (A) Intracellular NC101, ΔbcsA or ΔbcsA + bcsA after 1 hour co-culture with bone 
marrow-derived macrophages as a measure of bacterial uptake. (B) Intracellular NC101 or 
MG1655 after 1 hour co-culture with bone marrow-derived macrophages. All bacteria were 
grown in minimal medium with 0 or 10 µM iron prior to co-culture with the macrophages. Data 
are shown as the mean ± SEM of a representative experiment of at least 3 independent 
experiments with at least 4 technical replicates. Pairwise comparisons by one-way ANOVA. ** p 
< 0.01, *** p < 0.001
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Supplemental Figure 4.7. Deletion of bcsA does not impact percent intramacrophagic 
survival. NC101 or ∆bcsA was grown in minimal medium with 0 or 10 µM iron prior to co-
culture with bone marrow-derived macrophages. Following the addition of gentamicin, 
intracellular bacteria were quantified after (A) 4 hours as a measure of intracellular survival. (B) 
Ratio of 4 to 1 hour intracellular bacteria as a measure of percent intracellular survival. Data are 
shown as the mean ± SEM of a representative experiment of at least 3 independent experiments 
with at least 4 technical replicates. Pairwise comparisons by one-way ANOVA. ** p < 0.01 
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Supplemental Figure 4.8. IFN-γ  expression and production did not differ between mice 
monoassociated with NC101 or the bcsA mutant. (A) Proximal colon transcript levels of Ifng 
relative to Actb in Il10-/- mice monoassociated with NC101 or ΔbcsA. Data are expressed as fold 
change relative to NC101 colonized Il10-/- mice at 21 days. (B) IFN-γ production of 
unfractionated MLN cells restimulated with the respective bacterial lysates ex vivo. MLNs were 
isolated from Il10-/- mice monoassociated with NC101 or ΔbcsA. Each symbol represents an 
individual mouse, n = 5-8 mice per group. Line at median, pairwise comparisons by Mann-
Whitney. 
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Supplemental Table 4.1. Bacterial strains and plasmids used in this study. 
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Supplemental Table 4.2. Oligonucleotide primers used in this study.  
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Supplemental Table 4.3. Quantification of microbial aggregates by microscopy. 
Quantification of NC101 WT, ΔbcsA or MG1655 aggregates per 200x high-power field before 
and after physical disruption using ImageJ software. At least 15 fields were analyzed per sample. 
Bacteria were grown in minimal medium with 0 or 10 µM iron for two hours. Data are shown as 
the mean ± SEM of three independent experiments. *** p < 0.001 compared to the NC101, 0 µM 
condition. 
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CHAPTER 5 

CONCLUSIONS AND FUTURE PERSPECTIVES 

5.1 Overview 

IBD are chronic, intestinal, immune-mediated inflammatory disorders that are the result 

of inappropriate immune responses to a subset of resident enteric bacteria and their products 

(Sartor, 2008). Although the etiology is incompletely understood, complex interactions between 

genetics, environmental factors, and the intestinal microbiota are thought to contribute to the 

development and perpetuation of these diseases. Current IBD therapies such as 

immunosuppressive drugs can result in adverse side effects and are ineffective at inducing 

complete remission for many patients. Thus the development of safer and more effective 

treatment options are clearly needed.  

IDA is one of the most common complications experienced by IBD patients (Kulnigg and 

Gasche, 2006). Oral iron supplementation can be effective in treating IDA and is often the first 

choice of treatment because of its convenience and low cost (Rizvi and Schoen, 2011) (Hwang et 

al., 2012). However, disease exacerbation has been reported in some IBD patients receiving oral 

iron supplementation (Erichsen et al., 2005b) (de Silva et al., 2005), although this has not been 

consistently reported in all clinical studies (Schröder et al., 2005) (Erichsen et al., 2005a) (Lee et 

al., 2012). Moreover, increased dietary iron consumption has been correlated with more severe 

histopathology and disease development in some rodent models of experimental colitis (Kulnigg 



 185 

and Gasche, 2006) (Werner et al., 2011) (Chua et al., 2013). One hypothesis to explain how iron 

may exacerbate intestinal inflammation is through the increased production of ROS as a 

byproduct of the Fenton reaction. However, some resident enteric bacteria such as AIEC drive 

and perpetuate intestinal inflammation in genetically susceptible hosts (Kim et al., 2005) 

(Carvalho et al., 2009) (Carvalho et al., 2012). Moreover, iron is a limiting nutrient for the 

growth of many bacterial taxa and can also impact bacterial physiology and function (Andrews et 

al., 2003). Thus changing intestinal iron concentrations through dietary manipulations can 

conceivably modulate the composition and proinflammatory potential of the intestinal microbiota 

as a second putative mechanism for influencing colitis development. We therefore investigated 

how iron modulates the ecological structure of the intestinal microbiota and alters the physiology 

and proinflammatory potential of AIEC, a distinct functional pathotype of enteric resident E. coli 

associated with CD (Darfeuille-Michaud et al., 2004) (Martin et al., 2004) (Sasaki et al., 2007).  

In inflammation-resistant WT mice, decreasing luminal iron concentrations during 

community assembly resulted in compositional changes to the intestinal microbiota consistent 

with a dysbiotic state, including decreased microbial richness and a bloom in the siderophilic 

resident bacterium E. coli. Indeed, we observed similar compositional changes in inflammation-

susceptible Il10-/- mice during the development of intestinal inflammation in the absence of 

dietary iron interventions. When iron availability was restricted in vitro, inactivation of 

siderophore-mediated iron transport in an AIEC strain, E. coli NC101, reduced its relative fitness 

when grown in competition with a non-siderophilic intestinal bacterium. Thus encoding 

numerous iron acquisition systems may provide AIEC and other resident E. coli a competitive 

advantage when iron availability is limiting and may also explain the in vivo enrichment of E. 

coli with dietary iron restriction.  
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Because intestinal inflammation is associated with a relative expansion of E. coli, we also 

investigated the impact of dietary iron on colitis development in inflammation-prone Il10-/- mice. 

Although dietary iron supplementation limited colitis development in Il10-/- mice, this was not 

associated with distinct compositional changes to the luminal microbiota in comparison to mice 

on the control diet that developed the most severe colitis. However, differences in inflammation 

severity between the two diet groups were associated with minor compositional changes to the 

mucosal microbiota. Thus, the impact of iron on the mucosal community may contribute to the 

protective effect of dietary iron supplementation, especially given its closer proximity to the 

intestinal epithelial barrier and underlying mucosal immune system. Finally, our findings do not 

exclude the possibility that iron supplementation functionally alters the intestinal microbiota in a 

manner that limits colitis development. Indeed, utilizing the AIEC strain NC101 as a model 

organism, we demonstrated that iron promoted cellulose-dependent aggregation of NC101, 

which corresponded with an enhanced susceptibility to macrophage phagocytosis and reduced 

induction of macrophage proinflammatory cytokine production. Conversely, when bacterial iron 

availability was restricted, cellulose-positive NC101 exhibited increased resistance against 

phagocytosis while also promoting macrophage production of IL-12 p40. Abrogation of cellulose 

production also delayed NC101 induction of colitis in monoassociated Il10-/- mice and was 

associated with decreased colonic expression of IL-12, therefore suggesting that cellulose 

enhances the proinflammatory potential of NC101 in this model. Taken together, our findings 

suggest that decreasing microbial iron availability may enhance the proinflammatory potential of 

the intestinal microbiota and highlight the complex interplay between host, microbial and 

environmental factors in the development of IBD.  
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5.2 Longitudinal and long-term effects of dietary iron interventions 

 Our results demonstrate that dietary iron restriction and supplementation during 

community assembly alters the composition of the resulting intestinal microbiota. Specifically, 

dietary iron restriction during this developmental window seems to constrain maturation of the 

intestinal microbiota as indicated by decreased microbial richness and increased Proteobacteria 

compared to developing communities exposed to higher amounts of iron. However, the 

compositional impact of dietary iron to the intestinal microbiota was assessed at a single time 

point in adult ex-GF mice. Thus, longitudinal studies characterizing the impact of intestinal iron 

availability during community assembly in young mice following weaning need to be performed. 

Additionally, given that dietary macromolecules can rapidly impact the composition of the 

microbiota (David et al., 2013) (Carmody et al., 2015), it would be interesting to investigate how 

rapidly dietary iron interventions affects both a developing and an established microbiota and 

whether these changes are reproducible with consecutive periods of dietary iron restriction and 

repletion within the same host. Interestingly, Pereira and colleagues demonstrated that following 

a 4-week period of dietary iron restriction that was initiated at weaning, community composition 

was only partially restored through iron repletion after 4 weeks (Pereira et al., 2014). However, 

repletion was accomplished through administration of a diet that contained iron concentrations 

comparable to a control diet (Pereira et al., 2014). Thus it is remains to be determined whether 

repletion with an iron fortified diet can revert the microbial community to its original state 

following a period of dietary iron restriction. 

Recent studies have highlighted the importance of an early microbiota developmental 

window to the health and physiology of the host through adulthood (Cox et al., 2014) 

(Subramanian et al., 2014) (Nobel et al., 2015). For example, early life exposure to antibiotics 
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not only perturbs the establishing community, but also results in negative metabolic 

consequences that are evident through adulthood (Cox et al., 2014). Therefore, because dietary 

iron restriction also appears to be a disruptive selective force for the developing microbiota, it 

would be worth investigating whether such early-life compositional changes result in long-

lasting repercussions for the adult host. Indeed, recent studies have implicated the intestinal 

microbiota in modulating host iron status in colitic Il10-/- mice and IEC iron homeostasis in WT 

mice (Shanmugam et al., 2014) (Deschemin et al., 2015). Moreover, dietary iron restriction 

decreases fermentative metabolites such as butyrate in the intestines that have been shown to 

modulate numerous host processes including immune function (Waldecker et al., 2008) (Dostal 

et al., 2012a) (Berndt et al., 2012) (Smith et al., 2013) (Dostal et al., 2014). Together, this 

supports the possibility that iron-mediated effects on the microbiota may modulate certain 

aspects of host physiology and susceptibility to colitis development, effects that may endure 

through adulthood.   

We also demonstrated that dietary iron supplementation during community assembly 

limits the development of colitis in Il10-/- mice. However, as onset of IBD also occurs in adults 

when the intestinal microbiota has already been established, it would be interesting to assess the 

impact of dietary iron interventions on colitis susceptibility in adult Il10-/- mice with a mature 

microbiota. Moreover, as only one time point was assessed for colitis severity, future studies will 

need to determine whether protection against colitis in mice receiving iron-fortified diets is 

prolonged or whether onset of disease is simply delayed.  

Finally, to our knowledge, the impact of dietary iron interventions initiated after the onset 

of immune-mediated intestinal inflammation has not been assessed in rodent models. This is a 

clinically important avenue to explore given that IBD patients with active disease may also be 
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iron deficient. Moreover, dietary iron restriction seems to have a greater impact on the 

developing microbiota that is both compositionally unstable and more vulnerable to 

environmental disturbances (Koenig et al., 2011) (Cox et al., 2014). Similarly, because the 

inflammation-associated microbiota is also unstable (Martinez et al., 2008) and may be more 

prone to environmental perturbations such as changes in iron availability, assessing the impact of 

dietary iron interventions on the microbiota after inflammation has developed is an important 

future direction. Interestingly, in contrast to our findings, dietary iron supplementation in hosts 

with initial high pathogen burden, including enteric pathogens belonging to the 

Enterobacteriaceae family, was associated with enhanced fecal markers of inflammation and 

further promoted a bloom of both endogenous and pathogenic Enterobacteriaceae in infants 

(Jaeggi et al., 2014). Thus, the impact of dietary iron supplementation on both community 

composition and inflammation susceptibility may also be dependent on the initial state of the 

intestinal microbiota and is worth delineating in future studies. In the context of IBD, this could 

ultimately lead to the identification of prognostic fecal markers that could be utilized in the clinic 

to identify patients who are at risk for disease relapse or exacerbation in response to oral iron 

supplementation.   

  

5.3 The functional impact of iron on the intestinal microbiome 

The composition of the intestinal microbiota exhibits high interindividual variability 

(Costello et al., 2009), which is likely affected by host genetics, long-term dietary patterns, 

environmental factors and stochastic influences. Thus, in addition to differences in experimental 

design, the high interindividual variability of the intestinal microbiota may in part explain the 

lack of consistent compositional changes observed in response to dietary iron restriction or 
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supplementation between different rodent studies. Indeed even within the same housing facility, 

in contrast to WT mice, we show that the composition of the fecal microbiota in Il10-/- mice is 

insensitive to additional dietary iron supplementation, suggesting that host genetics may 

influence the impact of dietary iron supplementation on the microbiota. Consistent with these 

observations, high interindividual variability was also reported in infant studies examining the 

impact of dietary iron supplementation on the fecal microbiota (Krebs et al., 2013) (Jaeggi et al., 

2014). Thus, using metabolomics and meta-transcriptomics to assess community-wide functional 

alterations may identify more conserved changes in response to dietary iron interventions. 

Indeed, when measuring targeted SCFAs, Dostal and colleagues showed that increasing bacterial 

iron availability enhances the production of propionate and butyrate by the intestinal community 

in two different rodent models and when using an in vitro colonic fermentation model (Dostal et 

al., 2012a) (Dostal et al., 2012b) (Dostal et al., 2014). Moreover, shifts in the intestinal 

microbiome have been reported in the absence of significant compositional changes (McNulty et 

al., 2011), further highlighting the importance of conducting metabolomic or transcriptomic 

microbiome studies in response to dietary iron. Community-wide functional changes may also 

explain how dietary iron supplementation limited colitis development in Il10-/- mice in the 

absence of significant compositional changes to the luminal microbiota. Finally, the functional 

profiles of the human intestinal microbiota are more similar between individuals compared to 

compositional profiles (Lozupone et al., 2012) and may therefore be more sensitive in detecting 

consistent alterations in response to specific diets or pathological states. Thus, investigating the 

functional impact of dietary iron interventions could provide a more definitive answer regarding 

the important clinical concern over the safety of oral iron supplementation within specific 

population subsets including IBD patients.  
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5.4 The redundancy of iron acquisition in AIEC 

 AIEC strains encode redundant pathways for acquiring iron including siderophore 

biosynthetic and transport systems, heme iron importers and ferrous iron permeases (Andrews et 

al., 2003) (Dogan et al., 2014). This heavy genomic investment in iron acquisition may confer 

AIEC and other endogenous E. coli a fitness advantage within the intestinal environment. 

Indeed, iron acquisition through the ferrous iron permease FeoB is required for colonization of 

the intestines by an E. coli K12 strain (Stojiljkovic et al., 1993). We and others have also shown 

that decreasing intestinal iron availability promotes a bloom of endogenous Enterobacteriaceae 

including E. coli (Dostal et al., 2012a). Similarly, in the inflamed environment where iron 

availability is likely decreased (Deriu et al., 2013), both probiotic and pathogenic members of the 

Enterobacteriaceae family rely on iron acquisition systems to outcompete other members of the 

community and to thrive within this intestinal environment (Deriu et al., 2013) (Behnsen et al., 

2014). Given that AIEC strains are recovered in higher abundance from CD patients compared to 

non-CD controls (Martin et al., 2004), it is tempting to speculate that encoding numerous iron 

acquisition systems contributes to AIEC fitness within the inflamed environment, a hypothesis 

that warrants further exploration.  

 The GI tract is home to a heterogeneous collection of potential microbial niches, where 

distinct bacterial communities reside within the lumen, the mucosa, and longitudinally along the 

GI tract (Zoetendal et al., 2002) (Eckburg et al., 2005) (Zhang et al., 2014). Availability of 

nutrients such as iron likely varies throughout the intestines (Kortman et al., 2014) and may 

therefore serve as a selective force in shaping community dynamics within each site. Gradients 

of bacterial iron availability likely exist within the intestines, where maximal iron concentrations 
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are likely found in the lumen and decreases towards the mucosa as a result of host iron binding 

proteins present within mucosal secretions (Kortman et al., 2014). Thus encoding numerous 

ways to acquire iron may provide AIEC strains the ability to thrive within distinct intestinal 

microenvironments. Consistent with this idea, in an UPEC strain, maximal production of specific 

siderophores depends on several environmental factors including pH, oxygenation and 

availability of other nutrients (Valdebenito et al., 2006). Each iron acquisition system may 

therefore uniquely maximize AIEC fitness within a specific microenvironment, while also 

providing resilience in the face of changing environmental conditions such as the development of 

inflammation. Thus, it would be interesting to investigate the contribution of each iron 

acquisition system to the fitness of AIEC within specific microenvironments in both the inflamed 

and non-inflamed intestines. More broadly, quantifying the expression of iron acquisition genes 

within specific intestinal niches in conjunction with defining their contribution to E. coli fitness 

may serve as an indicator for the spatial bioavailability of iron for E. coli along the GI tract.  

AIEC strains may also encode diverse iron acquisition systems as a means to sense and 

functionally adapt to their local environment. Genes involved in scavenging iron are 

transcriptionally upregulated when intracellular iron concentrations are decreased, a cellular state 

that is sensed by the transcription factor Fur (Andrews et al., 2003). Given the likely variability 

of bacterial iron availability within the intestines, it is possible that AIEC may utilize Fur to 

sense its location within the intestines (i.e. lumen versus mucosa) and adapt accordingly to its 

microenvironment. Indeed, in addition to iron acquisition genes, Fur regulates the expression of 

genes involved in diverse physiological processes including biofilm formation and motility 

(McHugh et al., 2003) (Seo et al., 2014). This provides a transcriptional mechanism by which 

sensing of the local environment by Fur can lead to the modulation of AIEC physiology, function 
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and subsequent host-microbial interactions. Indeed, we show that Fur is required for maximal 

aggregation of an AIEC strain in response to iron, which in turn impacts AIEC susceptibility to 

phagocytosis. Finally, as each iron acquisition system in E. coli may be preferentially expressed 

under specific environmental conditions (Valdebenito et al., 2006), the regulation of these 

systems is likely complex and involves other factors in addition to Fur. For example, there is 

evidence that in addition to its role in chelating ferric iron from the external environment, the 

yersiniabactin-iron complex may also exhibit signaling capabilities in Yersinia spp. through 

interactions with transcriptional regulators like YbtA (Perry and Fetherston, 2011). These 

additional signaling inputs may further refine the ability of AIEC to sense its local environment 

and enable more finely tuned physiological and functional responses within a specific intestinal 

microenvironment.  

 

5.5 AIEC cellulose production in the intestines 

 Cellulose is an exopolysaccharide produced by some E. coli strains as part of the ECM 

within multicellular communities including biofilms and bacterial aggregates (Bokranz, 2005) 

(Saldaña et al., 2009) (Serra et al., 2013) (Depas et al., 2013). Definitively demonstrating 

cellulose production within the intestines by E. coli or other Enterobacteriaceae family members 

is challenging because of the mechanism by which cellulose production is regulated and because 

of its biochemical structure. Measuring protein or transcript levels of bacterial cellulose synthase 

(BcsA) or other genes within the bcs operon is not meaningful given the post-translational 

regulation of bacterial cellulose production. Biochemical approaches on the other hand rely on 

hydrolysis of cellulose and detection of glucose monomers using mass spectrometry (Zogaj et 

al., 2001) (Bokranz, 2005). Using this same approach to detect bacterial cellulose production in 
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intestinal samples is difficult because of the presence of plant cellulose in the diet, which is 

chemically indistinguishable from bacterial cellulose. Utilizing the Calcofluor fluorochrome to 

detect cellulose-positive bacteria in intestinal samples poses a similar issue as Calcofluor can 

also intercalate plant cellulose and other complex polysaccharides likely present in the lumen. 

Thus, most studies to date have relied on cellulose-deficient mutants to interrogate the 

contribution of cellulose production to in vivo fitness and virulence potential of 

Enterobacteriaceae family members. Nonetheless, using confocal microscopy, Pontes and 

colleagues have recently shown that Salmonella biosynthesis of cellulose occurs within the 

phagolysosome of a macrophage cell line (Pontes et al., 2015). This is the first study to our 

knowledge that has demonstrated cellulose production by Enterobacteriaceae when interacting 

with host cells and provides direct evidence that bacterial cellulose production occurs within host 

environments.  

Our study is the first to our knowledge to investigate the contribution of cellulose 

production to the proinflammatory potential of resident E. coli within the intestinal environment. 

We demonstrate that abrogating cellulose production in the AIEC strain NC101 delays onset of 

colitis when monoassociated in Il10-/- mice. However, the precise mechanism by which NC101 

cellulose production enhances colitis induction in this model remains to be elucidated. Our in 

vitro work suggests that under iron limiting conditions, cellulose may provide NC101 resistance 

against mucosal clearance by macrophages while also promoting enhanced production of the Th-

1/Th-17-associated proinflammatory cytokine IL-12 p40. However, future studies will need to 

confirm this putative mechanism in vivo. Consistent with our findings, in an UTI model of 

infection, abrogation of cellulose production also reduced UPEC resistance against neutrophils in 

vivo (Kai-Larsen et al., 2010). Given that extrusion of neutrophils into the lumen occurs as part 
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of the innate immune response and has been shown to contain resident Enterobacteriaceae within 

the lumen during enteric infection (Molloy et al., 2013), it is tempting to speculate that cellulose 

production may also protect AIEC against the antimicrobial responses of neutrophils. Finally, as 

our in vivo studies were conducted in monoassociated mice, an important future direction will be 

to determine whether AIEC cellulose production impacts the development of colitis in the 

presence of a complex microbial community.     

More broadly, cellulose may also enhance the ability of intestinal E. coli strains to adapt 

to distinct microenvironments by adopting a different physiological state in response to specific 

environmental stimuli. Cellulose production is post-transcriptionally regulated by c-di-GMP and 

intracellular concentrations of this second bacterial messenger in E. coli is modulated through the 

enzymatic activities of numerous putative DGCs and PDEs (Spurbeck et al., 2012). This 

provides the potential for distinct environmental stimuli to modulate cellulose production 

through transcriptional regulation of these enzymes. For example, expression of adrA, which 

encodes a DGC that is required for cellulose production in many Salmonella and E. coli strains, 

is positively regulated by the transcription factor CsgD (Römling et al., 2000) (Zogaj et al., 

2001) (García et al., 2004). The csgD locus is directly downstream of a congested promoter 

region that serves as a signaling node for numerous transcription factors (Prigent-Combaret et 

al., 2001) (Gerstel et al., 2003). Indeed, oxygenation and nutrient availability have been shown to 

modulate the expression of CsgD and consequent cellulose-dependent multicellular behaviors 

(Gerstel and Römling, 2001), therefore demonstrating that distinct environmental stimuli can 

modulate bacterial physiology in a cellulose-dependent manner.  

Interestingly, cellulose production at the physiological temperature of 37°C is more 

common in fecal rather than uropathogenic E. coli isolates (Bokranz, 2005), suggesting that 
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resident intestinal E. coli may synthesize cellulose within the intestinal environment. Moreover, 

environmental stimuli likely present in the intestines, such as peroxide stress and IgA 

monoclonal antibodies, have been shown to stimulate cellulose production and cellulose-

dependent multicellular behaviors in Enterobacteriaceae (Amarasinghe et al., 2013) (Depas et al., 

2013), suggesting that cellulose production may confer a fitness advantage in the gut. Thus, it 

would be interesting to determine whether cellulose production is more common in AIEC versus 

non-AIEC intestinal strains and to identify the environmental factors such as iron availability 

that stimulate cellulose production and cellulose-dependent behaviors such as aggregation in 

other AIEC isolates. Such studies could also provide mechanistic insight for how cellulose may 

modulate host-bacterial interactions and the proinflammatory potential of AIEC strains.  

 

5.6 Conclusion 

Epidemiological studies have correlated dietary factors with increased risk for disease 

development, exacerbation and relapse in IBD patients. Iron is of particular interest because of 

the clinical concern of disease exacerbation with oral iron supplementation. Moreover, iron can 

selectively modulate the growth, physiology and function of numerous bacterial taxa. Our 

findings demonstrate that iron profoundly impacts the ecological structure of the intestinal 

microbiota. Iron also modulates the physiology and proinflammatory potential of AIEC, 

demonstrating the importance of identifying functional alterations to the intestinal microbiota 

that potentially compromise its symbiotic relationship with the host. Taken together, these 

studies contribute towards our understanding of how dietary factors and local bacterial nutrient 

availability modulates host-microbial interactions and could ultimately lead to the identification 

of novel antimicrobial targets for IBD. 
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