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ABSTRACT 
 

DAVID JOSEPH MIHALCIK: Porous Hybrid Materials for Heterogeneous Catalysis and 
Gas Storage 

(Under the direction of Wenbin Lin) 
 

A series of new Ru(diphosphine)(diamine)Cl2 complexes with siloxy pendant groups 

was synthesized and immobilized on mesoporous silica nanoparticles (MSNs) with the hope 

of generating highly active heterogeneous catalysts by taking advantage of the very large 

channel diameters (~2-5 nm) and short diffusion lengths for the substrates as a result of 

nanoparticle sizes of ~300-1000 nm.  Upon activation with base co-catalysts, these new Ru 

complexes were highly active for homogeneous asymmetric hydrogenation of ketones and 

racemic α-branched arylaldehydes with enantiomeric excess (ee) up to 94 and 99%, 

respectively.  These Ru complexes were readily immobilized onto several types of MSNs via 

the siloxy functionalities and the immobilized Ru precatalysts were highly active for the 

asymmetric hydrogenation of ketones with up to 82% ee and α-branched arylaldehydes with 

ee’s of up to 97%.   

 Highly porous and robust metal organic frameworks (MOFs) were also synthesized 

for hydrogen storage and for potential use as asymmetric catalysts.  4,8-connected MOFs of 

the scu topology based on copper paddlewheels and aromatic-rich octa-carboxylic acid 

bridging ligands were synthesized in order to overcome the tendency of MOFs to undergo 

framework distortion upon solvent removal.  The rigidified MOFs are capable of storing up 

to 2.5 wt% of H2 at 1 bar (77 K), and 5.5 wt% of H2 at 30 bar (77 K).  A series of homochiral 

porous MOFs were synthesized using bridging ligands containing the chiral BINAP oxide 
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functionalities.  The easily accessible catalytic sites make these MOFs interesting candidates 

for applications in heterogeneous asymmetric catalysis. 
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CHAPTER 1 

SUPPORTED ASYMMETRIC CATALYSTS: 
FUNDAMENTALS, STRATEGIES, AND HISTORICAL OVERVIEW 

 
 
 
1.1 Introduction 
 

Asymmetric catalysis provides a powerful method for the synthesis of chiral 

molecules that are important ingredients for the pharmaceutical, agrochemical, and fragrance 

industries.1  Numerous highly selective chiral catalysts have been developed in the recent 

decades, and as such, three pioneers in the field of homogeneous asymmetric catalysis were 

awarded the Nobel Prize in Chemistry in 2001.2  The practical applications of many 

homogeneous asymmetric catalysts in industrial processes are however hindered by their 

high costs as well as difficulties in removing trace amounts of toxic metals from the organic 

products.3  Heterogenization of homogeneous asymmetric catalysts represents a logical 

approach to overcoming these problems.4  The heterogenized catalysts can potentially 

provide easily recyclable and reusable solid catalysts that have uniform and precisely 

engineered active sites similar to those of their homogeneous counterparts, and therefore 

combine the advantages of both homogeneous and heterogeneous systems.  Many 

heterogenization approaches have been explored, including attaching the chiral catalysts to 

organic polymers, dendrimers, membrane supports, and porous inorganic oxides and 

immobilization via biphasic systems.5  This chapter provides an overview of recent 

developments in the design of heterogenized asymmetric catalysts based on two distinct 
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strategies, namely, self-supported asymmetric catalysts that have the potential to provide the 

highest possible catalyst loading and also the most uniform catalytic sites and more 

traditional heterogeneous catalysts supported on highly porous silica materials.6  

  
1.2 Self-supported asymmetric catalysts 

Self-supported asymmetric catalysts can in principle be prepared by incorporating 

catalytic sites as pendants on a linear organic polymer7 or in the backbone of an organic 

polymer.8  Many of these polymers have low molecular weights and tend to behave as 

homogeneous catalysts due to their high solubility.  As a result, their recovery during 

catalytic reactions typically requires large amounts of solvents of different polarity.  Such 

polymer-immobilized asymmetric catalysts also tend to have diluted catalytic sites and are 

not very efficient.  On the other hand, heterogeneous catalyst systems have recently been 

prepared by three distinct strategies that do not rely on any support material (Scheme 1.1).  In 

the first approach, catalytically active subunits are linked by secondary metal centers to form 

solid catalysts.  In the second approach, multitopic ligands containing orthogonal secondary 

functional groups can be linked by metal centers to form porous solids which are then treated 

with secondary metal centers to form solid catalysts.  In the third approach, multitopic chiral 

ligands are linked with metal centers to form catalytically active polymeric solids.  This 

section surveys recent advances in the synthesis and catalytic applications of self-supported 

asymmetric catalysts using these approaches.  The advantages and disadvantages of each 

strategy are also discussed in this section. 
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Scheme 1.1 Three distinct strategies for the synthesis of self-supported asymmetric catalysts. 
 
 
1.2.1 Self-supported asymmetric catalysts formed by linking catalytically active 
subunits via metal-ligand coordination  
 

Lin et al. prepared a series of chiral, porous, hybrid solids based on zirconium 

phosphonates for highly enantioselective hydrogenation of β-keto esters.  These hybrid 

materials were prepared based on Approach 1 and designed to combine the robust framework 

structure of metal phosphonates9 and enantioselectivity of metal complexes of the chiral 

bisphosphines.10  Enantiopure 2,2’-bis-(diphenylphosphino)-1,1’-binaphthyl-6,6’-

bis(phosphonic acid), L1-H4, was synthesized in three steps starting from the known 2,2’-

dihydroxy-1,1’-binaphthyl-6,6’-bis(diethylphosphonate) in 47% overall yield.11 Treatment 

[Ru(benzene)Cl2]2 with 1 equiv of L1-H4 in DMF at 100 °C led to the complex [Ru(L1-

H4)(DMF)2Cl2] which was reacted with Zr(OtBu)4 in reluxing methanol to afford the 

zirconium phosphonate Zr-Ru-L1.  The analogous solid Zr-Ru-L2 with the 2,2’-bis-

(diphenylphosphino)-1,1’-binapthyl-4,4’-bis(phosphonic acid) ligand, L2-H4 was similarly 

prepared.  The chiral porous phosphonates were characterized by thermogravimetric analysis 

(TGA), nitrogen adsorption isotherms, X-ray diffraction, SEM, IR spectroscopy, and 

microanalysis.  
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The compositions of Zr-Ru-L1 and Zr-Ru-L2 were determined by TGA and 

microanalysis while the IR spectra suggested the formation of zirconium phosphonate bonds.  

Zr-Ru-L1 exhibits a total BET surface area of 475 m2/g and a pore volume of 1.02 cm3/g, 

whereas Zr-Ru-L2 has a total BET surface area of 387 m2/g and a pore volume of 0.53 cm3/g.  

SEM images showed the presence of sub-micrometer particles in the solids while powder X-

ray diffraction (PXRD) studies indicated the amorphous nature of the solids.   

  

 

 

 

 

 

 

 

 

 

 

Scheme 1.2 Synthesis of Ru(BINAP)-containing zirconium phosphonates for asymmetric 
hydrogenation of ß-ketoesters. 
 
 

The Zr-Ru-L1 and Zr-Ru-L2 solids were utilized for heterogeneous asymmetric 

hydrogenation of β-keto esters (Scheme 1.2).  Zr-Ru-L1 catalyzed the hydrogenation of a 

wide range of β-alkyl-substituted β-keto esters with complete conversion and ee values 

ranging from 91.7% to 95.0%.  Zr-Ru-L1 gave a turnover frequency (TOF) of 364 h-1 with 
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0.1% solid loading compared to a TOF of 810 h-1 for the homogeneous BINAP-Ru catalyst.  

In contrast, Zr-Ru-L2 catalyzed the hydrogenation of β-keto esters with only modest ee 

values.   

 The supernatants of Zr-Ru-L1 and Zr-Ru-L2 in MeOH did not catalyze the 

hydrogenation of β-keto esters, indicating the heterogeneity of the solid catalysts. In addition, 

analysis of the supernatants by direct current plasma spectroscopy (DCP) indicated that less 

than 0.01% of the ruthenium leached into the organic solution during hydrogenations.  The 

Lin group was able to reuse the Zr-Ru-L1 system for asymmetric hydrogenation of methyl 

acetoacetate without significant deterioration on enantioselectivity.  The Zr-Ru-L1 system 

was used for five cycles of hydrogenation with complete conversion and ee values of 93.5, 

94.2, 94.0, 92.4, and 88.5 %, respectively. 

This synthetic strategy was modified by the Lin group to prepare zirconium 

phosphonates containing the Ru-BINAP-DPEN species that were shown by Noyori et al to 

be highly active homogeneous catalyst for enantioselective hydrogenation of aromatic 

ketones.12  Reaction of L1-H4 with [Ru(benzene)Cl2]2 followed by (R,R)-DPEN afforded the 

phosphonic acid-substituted Ru-BINAP-DPEN intermediate which was treated with 

Zr(OtBu)4 under reflux conditions to give chiral porous Zr phosphonate of the approximate 

formula Zr[Ru(L1)(DPEN)Cl2]⋅4H2O (Zr-Ru-L1-DPEN) (Scheme 1.3).  The solid precatalyst 

Zr-Ru-L2–DPEN with a 4,4’-disubstituted BINAP was similarly prepared and also has an 

approximate formula of Zr[Ru(L2)(DPEN)Cl2]⋅4H2O.  The solid catalysts were characterized 

by a variety of techniques including TGA, adsorption isotherms, PXRD, SEM, IR, and 

microanalysis. 
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Scheme 1.3 Synthesis of Ru(BINAP)(DPEN)-containing zirconium phosphonates.  
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catalyst which typically gives ~80% ee for the hydrogenation of acetophenone under similar 

conditions.12a,12b  In comparison, the Zr-Ru-L1-DPEN solid gives 79.0% ee for the 

hydrogenation of acetophenone under the same conditions. The Zr-Ru-L2-DPEN solid has 

been used to catalyze a series of aromatic ketones with remarkably high ee’s of 90.6-99.2% 

and complete conversions.  In contrast, the ee for the hydrogenation of aromatic ketones is 

modest and similar to that of the parent Ru-BINAP-DPEN homogeneous catalyst.  The Lin 

group later demonstrated that the enhanced ee’s exhibited by the Zr-Ru-L2-DPEN solid is 

due to the beneficial steric influence of the bulky substituents in the 4,4’-positions of 

BINAP.13   

 The solid zirconium phosphonate catalysts were also extremely active for the 

hydrogenation of other aromatic ketones.  For example, with only 0.02 mol % solid loading 

of Zr-Ru-L2-DPEN, 1-acetonaphthone was hydrogenated with complete conversion and 

98.9% ee in 20 h.  When the solid loading was decreased to 0.005 mol %, it took longer 

reaction time (40 h) for the hydrogenation of 1-acetonaphthone to complete (98.6% ee).  The 

TOF was calculated to be ~500 h-1 at complete conversion and ~700 h-1 at 70% conversion. 

 The solid catalysts were successfully reused for the asymmetric hydrogenation of 1-

acetonaphthone without the deterioration of enantioselectivity.  The Zr-Ru-L2-DPEN system 

was used for eight cycles of hydrogenation without any loss of enantioselectivity.  The 

catalyst recycling and reuse experiments were conducted without rigorous exclusion of air, 

and the oxygen sensitivity of the ruthenium hydride complexes may have contributed to the 

loss of activity after multiple runs.  Therefore, the loss of activity may not reflect the intrinsic 

instability of the Zr-Ru-L2-DPEN solid catalyst.  DCP studies of the solution indicated less 

than 0.2% of Ru leached into the organic product during each round of hydrogenation.  
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Nguyen, Hupp, and co-workers recently used a similar strategy to prepare self-

supported catalysts for asymmetric epoxidation reactions.14  The [bis(catechol)-salen]Mn 

compound, L3, was designed to have catechol groups for crosslinking with metal centers to 

afford a series of coordination polymers (Scheme 1.4).  Poly(Cu-L3) was prepared by 

treating L3 with CuII in the presence of triethylamine in DMF.  After stirring, poly(Cu-L3) 

precipitated as brown solid and was thoroughly washed with DMF.  Inductively coupled 

plasma-mass spectrometric (ICP-MS) studies indicated that poly(Cu-L3) had a Mn/Cu ratio 

of ~1:1.1, suggesting the formation of a quasi-one-dimensional structure where L3 is 

connected by bis(catecholate)copper linkages.  The poly(Cu-L3) solid has a modest surface 

area of 72 m2/g and is amorphous as judged by SEM and PXRD. 

 

 
 

 
 
 
 
 
 
Scheme 1.4 Structure of the crosslinkable [bis(catechol)-salen]Mn compound (L3). 
 
 

2,2-Dimethyl-2H-chromene was used as a model substrate for epoxidation reactions 

using 2-(tert-butylsulfonyl)iodosylbenzene as the oxidant.  A slightly lower ee of 76% was 

observed for the heterogeneous poly(Cu-L3) as compared to an ee of 86% for the 

homogeneous counterpart [bis(dimethoxyphenyl)salen]MnIIICl.  The poly(Cu-L3) catalyst 

was readily recovered by centrifugation and was reused up to 10 times with little loss in 

activity (from 79% to 70% yield) and no loss in enantioselectivity (75-76% ee).  After the 

first two cycles where 3.1% Mn and 4.7% Cu were determined to have leached from the 
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sample, the metal loss slowed over the next four cycles and no metals were leached from the 

solid by the 10th run.  The initial leaching of metal ions could come from weakly bound or 

entrapped species in poly(Cu-L3). 

The catalytic lifetime of the supported catalyst poly(Cu-L3) was also studied under 

high oxidant concentrations (e.g., 0.17 M) which are known to rapidly degrade homogeneous 

epoxidation catalysts.  Poly(Cu-L3) was found to exhibit a lifetime of >3 h and a total 

turnover number (TON) of >2000 in that period.  In comparison, the homogeneous 

counterpart had a lifetime of <0.5 h and a total TON of <600 in the same 3 h period.  The 

supported catalyst poly(Cu-L3) thus exhibited an enhanced catalytic activity over the 

homogeneous system.   

The same strategy was also used to formulate a series of supported catalysts poly(M-

L3) with different metal nodes (M=CrIII, MnII, FeIII, CoII, NiII, ZnII, CdII, and MgII. The 

catalytic activities of poly(M-L3) for the asymmetric epoxidation of 2,2-dimethyl-2H-

chromene with 2-(tert-butylsulfonyl)iodosylbenzene as the oxidant were explored.  The 

polymers assembled with the CrIII, MnII, CdII, and  MgII metal centers showed highest yields 

(>70 %).  The polymers assembled with the CrIII, CdII, MgII , and ZnII metal centers gave the 

highest ee’s as the CuII analog (76 %).  1-3% Mn loss was observed for most of the supported 

catalysts during the catalysis run; this level of leaching is similar to the poly(Cu-L3) system. 

The metal-ligand coordination approach can not only afford solid catalysts with 

unprecedentedly high catalyst loading and uniform catalytic sites, but also allow the 

synthesis of single-crystalline materials which greatly facilitates their characterization by 

single crystal X-ray diffraction studies.  For example, Hupp and coworkers have combined 

L4 and H2bpdc with Zn(NO3)2 under solvothermal conditions and obtained twofold 
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interpenetrating 3D networks [Zn2(bpdc)2L4]·10DMF·8H2O (1) (Scheme 1.5).15  The L4 

ligands of the paired networks are parallel to each other with cyclohexyl and t-butyl groups 

protruding along the [100] direction.  As a result, the channel in the crystallographic b 

direction is essentially blocked, leaving distorted-rectangular and rhombic channels in the c 

and a directions with dimensions of 6.2 Å × 15.7 Å and 6.2 Å × 6.2 Å, respectively. Such a 

diagonal displacement of the networks leaves all MnIII sites accessible through the channels. 
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Scheme 1.5 Synthesis and framework structure of [Zn2(bpdc)2L4]•10DMF•8H2O (1.1). 
 
 

The resulting open frameworks with built-in (salen)Mn complexes showed catalytic 

activity towards asymmetric olefin epoxidation reactions.  In the asymmetric epoxidation of 

2,2-dimethyl-2H-chromene catalyzed by 1.1, 71% yield and 82% ee were obtained.  This 

level of ee is superior to those observed for the poly(M-L3) system, demonstrating the impact 

of structure and catalytic site uniformity on the enantioselectivity of self-supported catalysts.  

No significant decrease of catalyst activity was observed during the reaction and the catalyst 

1.1 



 11 

could be recycled and reused several times.  The heterogeneous catalyst 1.1 has shown higher 

activity than the homogeneous counterpart (Figure 1.1), albeit with slightly lower ee. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1.1 Plots of total turnover number versus time for the epoxidation of 2,2-dimethyl-
2H-chromene catalyzed by 1.1 (blue squares) and L4 (magenta circles). 
 
 
1.2.2 Self-supported asymmetric catalysts formed by post-synthetic modifications of 
coordination polymers 
 

The coordination polymer approach described above provides a versatile method for 

synthesizing a wide range of supported asymmetric catalysts, but it is not compatible with 

some of the less stable Lewis acid and late transition metal catalysts.  Lin et al. developed an 

alternative strategy for building chiral porous solids using bridging ligands containing 

functional groups that can be treated with secondary metal centers to generate active 

asymmetric catalysts.  A series of chiral bis(phosphonic acids) of varied length, L5-L7, were 

synthesized, which contain chiral dihydroxy functionalities.  Chiral porous zirconium 

bis(phosphonates), Zr-L5 to Zr-L7, were obtained by refluxing BINOL-derived 

bis(phosphonic acids) with Zr(OnBu)4 in n-BuOH (Scheme 1.6).  After refluxing overnight, 

the resulting suspension was centrifuged and thoroughly washed with MeOH.  Regardless of 
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the bis(phosphonic acid) used, amorphous solids based on zirconium phosphonates were 

obtained in higher than 95% yield.  The solids were characterized by PXRD, solid-state CP-

MAS 31P NMR, IR, TGA, BET, and circular dichroism spectroscopy. 

 

Scheme 1.6 Synthesis of BINOL-containing chiral zirconium phosphonates. 
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The solids Zr-L5 to Zr-L7 were treated with excess Ti(OiPr)4 to generate the Ti-

BINOLate species which are known to homogeneously catalyze the additions of diethylzinc 

to aromatic aldehydes to afford chiral secondary alcohols (upon acidic work-up). A 

comparison of the solid catalysts showed that the Zr-L7-Ti catalyst gave the highest ee for 

the addition of diethylzinc to 1-naphthadehyde.  The Zr-L7-Ti system was thus further 

examined for diethylzinc additions to other aromatic aldehydes.  The Zr-L7-Ti system 

efficiently catalyzed the addition of ZnEt2 to a wide range of aromatic aldehydes with high 

conversions and in e.e. values up to 72%.  This level of enantioselectivity exceeds that of 

other heterogeneous asymmetric catalysts made by immobilization of homogeneous catalysts 

on mesoporous inorganic supports,16 but is still inferior to those of homogeneous Ti-BINOL 

catalytic systems.17  A control experiment using the solid derived from 2,2'-ethoxy-1,1’-

binaphthyl-6,6'-bis(styrylphosphonic acid) suggested that residual phosphonic acid protons in 

the solids can activate Ti(OiPr)4 for non-enantioselective ZnEt2 addition.  This type of 

background reaction is probably responsible for modest e.e. values observed for the solid 

catalysts.  

In an effort to improve the enantioselectivity and also to obtain single-crystalline 

solids, Lin et al. designed BINOL-derived ligand (R)-6,6’-dichloro-2,2’-dihydroxyl-1,1’-

binaphtyl-bipyridine (L8).  The 3D homochiral MOF [Cd3(L8)3Cl6]·4DMF·6MeOH·3H2O 

(1.2) was prepared by slow vapor diffusion of diethyl ether into the mixture of (R)-L8 and 

CdCl2 in DMF/MeOH.  1.2 is built from linking 1D zigzag [Cd(µ-Cl)2]n SBUs by the L8 

ligands via pyridine coordination, and has a highly porous structure with the largest channel 

opening of 1.6×1.8 nm running along the a axis (Figure 1.2).  One third of the chiral 
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dihydroxy groups in 1.2 are facing the open channels and are accessible to secondary metal 

centers to generate active catalytic sites. 

 

Figure 1.2 (a) Schematic representation of the 3D framework of 1.2 showing the zigzag 
chains of [Cd(µ-Cl)2]n along a axis. (b) space-filling model of 1.2 as viewed down the a axis, 
showing large 1D chiral channel (1.6×1.8 nm). (c) Schematic representation of the active 
(BINOLate)Ti(OiPr)2 catalytic sites in the open channels of 1.2. 
 
 

1.2 was pretreated by Ti(OiPr)4 to generate the grafted Ti-BINOLate species that 

efficiently catalyzed the diethylzinc addiction reactions in up to 93% ee.  This level of ee is 

comparable to the homogeneous analogue (94% ee) (Table 1.1).   Heterogeneous nature of 

this solid catalyst was indicated by the nonreactive supernatant from a mixture of 1.2 and 

Ti(OiPr)4.  Moreover, Lin et al. carried out a set of control experiments using aldehydes with 

different size from 0.8 nm to 2.0 nm to show that the aldehydes are accessing the Ti active 

sites in the interior of crystals of 1.2.  They observed decreased conversion when larger 

aldehyde was used.  No conversion was observed for aldehyde G2’with size of 2.0 nm which 

is larger than the open channels of framework 1.2. 

 While using the same ligand L8, Lin et al. obtained two different homochiral MOFs 

[Cd3(L3)4(NO3)6]•7MeOH•5H2O (1.3) and [Cd(L3)5(ClO4)2]•DMF•4MeOH•3H2O (1.4) when 

Cd(NO3)2 and Cd(ClO4)2 were used as the metal sources, respectively.  Compound 1.3 adopts 

2-fold interpenetrating framework structure with each of the 3D frameworks constructed 
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from linking 2D grids with 1D zigzag polymeric chains.  Large channels with dimension of 

13.5 × 13.5 Å are present along the c axis (Figure 1.3c).  Compound 1.4 adopts a 3D network 

resulted from two interpenetrating 2D grids, leading to 1D channels with size of 1.2 × 1.5 nm 

(Figure 1.3e). 

 
Table 1.1 Ti(IV)-catalyzed ZnEt2 additions to aromatic aldehydes.a 

Ar

O

H

+ ZnEt2
(R)-1.2

Ti(OiPr)4

Ar

OH

H

Et

 

BINOL/Ti(OiPr)4 1.2 • Ti 
Ar 

Conversion % e.e. % Conversion % e.e % 

1-Naph >99 94 >99 93 

Ph >99 88 >99 83 

4-C1-Ph >99 86 >99 80 

3-Br-Ph >99 84 >99 80 

4’-G0OPh >99 80 >99 88 

4’-G1’OPh >99 75 73 77 

4’-G1OPh >99 78 63 81 

4’-G2’OPh 95b 67b 0 — 

 

 

 

 

 

 

 

 

 

aAll the reactions were conducted with 13 mol % of 1.2 or 20 mol % BINOL and excess 
amounts of Ti(OiPr)4 at RT for 12 h.  Conv % were determined by GC or NMR, while ee % 
values were determined on chiral GC or HPLC for all the secondary alcohols except for 4’-
G2’OPh whose ee % was determined by NMR spectrum of its Mosher’s ester.  bWith 40 mol 
% BINOL. 

O H

O

O O
RR

R: CH3

Dendritic aldehydes

Dendron:

Est. size:

G0 G1' G1 G2'

0.8 nm 1.45 nm 1.55 nm 2.0 nm

O

O

O

O
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Compound 1.3 was treated with Ti(OiPr)4 to lead to an active heterogeneous 

asymmetric catalyst for the diethylzinc addition to aromatic aldehydes with up to 90% ee.  

However, under the same conditions, a mixture of 1.4 and Ti(OiPr)4 was inactive in 

catalyzing the diethylzinc addition to aromatic aldehydes.  Careful investigation of the 

structure of 1.3 revealed the close proximity of the Cd(py)2(H2O)2 moiety in one 2D grid 

with the dihydroxyl groups of the other 2D grid.  The dihydroxyl groups in 1.4 are thus 

inaccessible to Ti(OiPr)4.  When treated with Ti(OiPr)4, compounds 1.3 and 1.4 had entirely 

different catalytic activities due to the subtle structure differences.  The finding of such a 

drastic difference in catalytic activity is remarkable since 1.3 and 1.4 were built from exactly 

the same building blocks.  This result points to the importance of the framework structure in 

determining the performance of self-supported asymmetric catalysts. 

 

 

Figure 1.3 (a) The 2D square grid in 1.3. (b) Schematic representation of the 3D framework 
of 1.3. (c) Space-filling model of 1.3 as viewed down the c axis, the 2-fold interpenetrating 
networks are shown with blue and violet colors. (d) Schematic representation of the 
interpenetration of mutually perpendicular 2D grids in 1.4. (e) Space-filling model of 1.4 as 
viewed down the c axis. (f) Schematic representation of steric congestion around the chiral 
dihydroxyl group of L8 (orange sphere) arising from the interpenetration of mutually 
perpendicular 2D grids in 1.4. 
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1.2.3 Self-supported asymmetric catalysts formed by linking multitopic chiral ligands 
with catalytic metal centers 
 

The third approach to self-supported asymmetric catalysts relies on directly linking 

multitopic chiral ligands with metal centers.  Ding et al.18 and Sasai et al.19 independently 

demonstrated this concept by linking multitopic BINOL ligands with Al(III) and Ti(IV) 

centers to generate chiral Lewis acid catalysts.  The bis(BINOL) derivatives L9a-d were 

synthesized by linking the BINOL units at the 6-position.20  Treatment of L9a-d with equal 

molar LiAlH4 in THF at 0 °C resulted in spontaneous formation of a white precipitate which 

was reacted with 0.5 equivalents of BuLi to afford heterogeneous versions of the Al-Li-

bis(binaphthoxide) (ALB) catalyst that was reported earlier (Scheme 1.7).21 

HO

HO OH

OH

L9a: 1,2-disubstituted; L9b: 1,3-disubstituted
L9c: 1,4-disubstituted; L9d: no benzene ring

O

O
Al

O

O

Li

n
1.5a-d

O

+ CH2(CO2Bn)2
1.5a-d

O

H

CO2Bn

CO2Bn  

Scheme 1.7 Synthesis of self-supported Al-Li-bis(binaphthoxide) (ALB) catalysts for 
asymmetric Michael reactions. 
 

With an equivalent of 20 mol% ALB catalyst loading, the self-supported catalysts 

1.5a-d effectively catalyzed Michael reaction of 2-cyclohexanenone and dibenzyl malonate.  

While 1.5a and 1.5b gave very low ee’s (6% and 17%, respectively), 1.5c and 1.5d gave the 
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Michael product in 88% ee and 96% ee, respectively.  Sasai et al. attributed this drastic 

increase in ee over the bent derivatives (1.5a and 1.5b) to the positioning of the dihydroxy 

groups at the opposite sides of the multitopic ligands.  The enantioselectivity afforded by this 

immobilization technique is significant because previous attempts of immobilizing the ALB 

type catalyst onto polystyrene resin were unsuccessful and gave no enantioselectivity.22  The 

heterogeneity of catalyst 1.5d was confirmed by testing the clear supernatant solution which 

exhibited no catalytic activity.  Sasai et al. also demonstrated the reusability of the self-

supported catalysts.  After removal of the supernatant and recharging of substrate under 

Argon, it was determined that 1.5d could be reused three times with gradual deterioration of 

enantioselectivity (96% → 85% ee).   

 By linking L9d with Ti(IV) centers, Sasai et al. also demonstrated the synthesis of 

self-supported catalysts for carbonyl-ene reactions.23  Two equivalents of Ti(OiPr)4 in toluene 

and four equivalents of H2O were added to a solution of L9d in CH2Cl2 to generate a 

precipitate which was inferred to have an idealized structure of 1.6 (Scheme 1.8) by 

elemental analysis and IR spectra.  1.6 catalyzed the carbonyl-ene reaction of ethyl 

glyoxylate and α-methylstyrene to give the product 1.7 in 81% yield and 90% ee.  Catalyst 

1.6 was readily recovered in air and used for up to 4 times without loss of activity or 

enantioselectivity (88% yield, 88% ee).   
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Ti
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O

O

Ti

O

O

Ti

O

O

EtO2C

O

H

+

Ph

20 mol % 1.6

81%, 90% ee
EtO2C

OH

Ph

1.7  

Scheme 1.8 Synthesis of the Ti/L9d self-supported catalyst for carbonyl-ene reactions. 

 
Ding et al. independently carried out the carbonyl-ene reaction with self-supported 

catalyst 1.6, and observed a similar level of enantioselectivity as Sasai et al.  Ding et al. 

further showed that a variation of the self-supported catalyst 1.6 (i.e., Kagan-Uemura type 

catalysts24) was able to catalyze the asymmetric sulfoxidation of sulfides.25  In the presence 

of these self-supported catalysts, aryl methyl sulfides were oxidized by cumene 

hydroperoxide to chiral sulfoxides with excellent ee’s (99.9-96.4%).  This catalyst system 

was also very stable and reused for up to eight times without loss of enantioselectivity or 

activity. 

 Ding et al. used a similar strategy to prepare self-supported Shibasaki’s BINOL/LaIII 

catalyst for enantioselective epoxidation of α,β-unsaturated ketones (Scheme 1.9).26  

Catalytically active precipitates were obtained by treating multitopic BINOL ligands L10a-i 

with La(OiPr)3 and triphenylphosphine oxide in THF.27  The La/L10a system, for example, 

catalyzed the epoxidation of α,β-unsaturated ketone 1.8a by cumene oxide at >91% yield and 
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up to 97.9% ee.  The enantioselectivity of the La/L10 system seems to be sensitive to the 

spacer geometry and length.  When a linear spacer was used, the ee increased as the length of 

the spacer increases.  The ee dropped as that the extension angle of the spacers was reduced 

(e.g., L10e and L10g).  Ding et al. further showed that the La/L10a system was able to catalyze 

the epoxidation of a variety of α,β-unsaturated ketones with high ee’s.  The La/L10 system is 

also readily recoverable and reusable.  For example, the La/L10a system was reusable for the 

epoxidation of 1.8a for six times to afford 1.9a in 99-83% yield and 96.5-93.2% ee.  

Furthermore, leaching of lanthanum was minimal and determined by ICP to be <0.4 ppm and 

the supernatant from the La/L10a system did not possess any catalytic activity under the same 

conditions. 

 

 

 

 

 

R R'

O

R R'

O

O

1.8a-h 1.9a-h

La/L10a-i (5.0 mol%)
Ph3PO (15 mol%)

MS 4A, THF, RT
CMHP (1.5 equiv)

!
"

 
R = Ph, R’ = Ph (a) R = 4-NO2-Ph, R’ = Ph (e) 

R = 4-F-Ph, R’ = Ph (b) R = 4-NC-Ph, R’ = (f) 
R = 4-Cl-Ph, R’ = Ph (c) R = Ph, R’ = 4-MeO-Ph (g) 
R = 4-Br-Ph, R’ = Ph (d) R = i-Pr, R’ = Ph (h) 

 
Scheme 1.9 List of bis(BINOL) ligands for the synthesis of self-supported Shibasaki’s 
catalysts. 
 
 

Ding et al. also elegantly demonstrated the synthesis of self-supported catalysts by 

linking multitopic chiral ligands with group 8 metal centers which are highly active for 

OH

OH

HO

HO

spacer

L10a-i

a:

b: single bond

c:

d:

e:

f:

g:

h:

i:
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hydrogenation reactions.  Although originally proposed in 1968,28 monodentate phosphorus 

ligands have received attention only recently, after pioneering work by Ferringa, de Vries, 

Reetz, and Pringle.29  MonoPhos, a class of ligands consisting of a monodentate phosphorus 

donor atom bound to a BINOL backbone through two oxygens, is the most widely studied 

monodentate phosphorus ligand because of its ease of preparation, stability, and usefulness in 

the asymmetric catalysis of a variety of substrates.29 Ding et al prepared multitopic 

MonoPhos ligands L11a-c by bridging through the 6-position of the binapthyl ring system.30  

Treatment of linked MonoPhos ligands L11a-c with [Rh(cod)]BF4 (cod = cyclooctadiene) in a 

solvent mixture of dichloromethane/toluene resulted in the immediate precipitation of the 

Rh/L11a-c polymers (Scheme 1.10).   

 

O

O
PN

O

O
P N

spacer

L11a-c

[Rh(cod)2]BF4

O

O
P

N
[Rh]

O

O
P

N
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n
Rh/L11a-c

a: single bond b: c:

R

NHAc

OCH3

O

Ph NHAc Ph NHAc

R
CO2CH3

NHAc

Rh/L11a-c  (1 mol%)

H2, 40 atm, 
toluene, RT
>99% conv.1.10a-c 1.11a-c

R = H (a), CH3 (b), Ph (c)

1.10d 1.11d

Rh/L11a-c  (1 mol%)

H2, 40 atm, 
toluene, RT
>99% conv.

 

Scheme 1.10 Self-supported Rh/MonoPhos catalysts for asymmetric hydrogenation of ß-
substituted dehydro-a-amino acid 1.10a-c and enamide 1.10d. 
 

The Rh/L11a-c polymers were explored for asymmetric hydrogenation of both ß-

substituted dehydro-α-amino acid 1.10a-c and enamide 1.10d to give a variety of amino acid 

1.11a-c and secondary amines 1.11d with good yields and high enantioselectivities.  At a 1 
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mol% catalyst loading, similar activity and enantioselectivity were observed for the Rh/L11a-c 

polymers and their homogeneous counterparts.  Notably, the Rh/L11a-c polymers gave 

improved enantioselectivity (95-97% ee) in the hydrogenation of 1.10d over the 

MonoPhos/Rh homogeneous catalyst (~88% ee).  The heterogeneous nature of the Rh/L11a-c 

system was supported by the lack of catalytic activity by the supernatant, low Rh leaching 

(<3 ppm), and the reusability of the self-supported catalysts.   

Ding et al. recently further extended this strategy to synthesize self-supported 

Noyori’s [RuCl2(BINAP)(DPEN)] catalysts for heterogeneous asymmetric hydrogenation of 

aromatic ketones.31  The need of both chiral diphosphines and chiral diamines on the Ru 

center requires the design of two different multitopic chiral ligands.  The bis(BINAP) and 

bis(DPEN) ligands used for this work are shown in Scheme 1.11. 

 

Ar2P

Ar2P

PAr2

PAr2

L12a Ar = C6H5

L12b Ar = 3,5-(CH3)2C6H3

H2N

H2N

OMe
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[{Ru(C6H6Cl2]2

DMF

1.12a Ar = C6H5

1.12b Ar = 3,5-(CH3)2C6H3

P
Ar2

P
Ar2

Ru

Cl

Cl

N

N

OMe

H2

H2

O

n

+

+

L13  

Scheme 1.11 Self-supported Noyori-type Ru(BINAP)(DPEN) catalysts. 
 

The self-supported catalysts 1.12a-b were prepared by reacting the bridged BINAP 

ligands L12a-b with [Ru(benzene)Cl2]2 in DMF at 100°C, followed by the addition of bridged 

DPEN L13 at room temperature.  The self-supported catalysts 1.12a-b were tested for 

asymmetric hydrogenation of aromatic ketones in the presence of base (KOtBu) in 

isopropanol.  At 0.1% loading, a variety of aromatic ketones were completely hydrogenated 
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with 78.2-98.1% ee.  For the asymmetric hydrogenation of acetophenone, self-supported 

catalyst 1.12b gave an ee of 97.4% which was in fact higher than its homogeneous 

counterpart (95.5-96.4% ee).  Furthermore, the self-supported catalysts were capable of 

catalyzing the hydrogenation reactions at 0.01 mol% catalyst loading, and gave a TOF of 

~500/h.  The heterogeneous catalyst can be recovered and reused for up to 7 times without 

significant loss of activity or enantioselectivity.  

 
1.3 Mesoporous silica supported asymmetric catalysts 

Since their discovery in the early 1990’s, well-ordered mesoporous materials have 

been examined for a number of applications.32 Immobilization of homogeneous asymmetric 

catalysts on the inner walls of such mesoporous solids offers several advantages (including 

higher surface areas and larger open channels) over other less defined supports such as 

organic polymers.  Mesoporous siliceous materials such as MCM-41 and SBA-15 have 

indeed been used as supports for the immobilization of several asymmetric catalysts.33 

Lin et al. prepared a series of immobilized Ru complexes of 4,4’-substituted BINAPs 

on well-ordered mesoporous silica SBA-15 for highly enantioselective hydrogenation of ß-

ketoesters.34 SBA-15 was used as the supports due to their ease of synthesis and very large 

pore size to allow facile diffusion of substrates and products.35   

Lithiation of 4,4’-bis(cylcopentanol)-2,2’-bis(diphenylphosphino)-1,1’-binapthyl and 

4-(cylcopentanol)-2,2’-bis(diphenylphosphino)-1,1’-binaphthyl36 followed by treatment with 

3-iodopropyltrimethoxysilane afforded the modified BINAPs L14 and L15 (Scheme 1.12).  

Ligands L14 and L15 were characterized by 1H{31P} and 31P{1H} NMR spectroscopy.  

RuL14(DMF)2Cl2 and RuL15(DMF)2Cl2 were synthesized by heating [RuCl2(p-cymene)]2 and 

L14 or L15 in DMF at 100 °C, respectively. A suspension of SBA-15 and RuL14(DMF)2Cl2 or 
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RuL15(DMF)2Cl2 in toluene was refluxed overnight to give the heterogenized precatalysts 

1.14 and 1.15.37 

The Ru precatalyst loadings were determined by direct current plasma (DCP) analysis 

of the Ru content in the modified SBA-15.38  The pristine SBA-15 has a BJH surface area of 

724 m2/g and a BJH average pore size of 113 Å.  Upon the immobilization of the Ru 

complexes, the solid catalysts 1.14 and 1.15 exhibited expected diminished surface areas and 

pore sizes (Table 1.2).  1.15 has slightly larger surface area, pore volume, and pore size than 

1.14, consistent with the presence of the bulky 1-cyclopentanol group in 1.14. 
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Cl

Cl

L14: X = 1-cyclopentanol

L15: X = H

1.14: X = 1-cyclopentanol
1.15: X = H  

 
Scheme 1.12: Reagents and conditions: (1) a) nBuLi; b) 3-iodopropyltrimethoxysilane; (2) a) 
[Ru(p-cymene)Cl2]2, DMF, 100 °C; b) SBA-15, toluene, reflux. 
 
 
Table 1.2 Surface area, pore volume, and pore size of SBA-15, 1.14, and 1.15. 
 

 SBA-15 1.14 1.15 
BJH surface area (m2/g) 724 487 529 

BJH pore volume (mL/g) 1.98 1.38 1.52 
BJH pore size (Å) 113 96 101 
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 Catalytic asymmetric hydrogenation of both ß-alkyl and ß-aryl ß-ketoesters was 

carried out under a hydrogen pressure of 1400 psi in the presence of 1.14 or 1.15 in methanol 

at r.t. for 20 h.  As shown in Table 1.9 (entries 1-4), ß-alkyl ß-ketoesters were hydrogenated 

with complete conversion and e.e. values in the 96.3 to 98.6% range in the presence of 1 

mol% of 1.14.  These ß-alkyl ß-ketoesters were hydrogenated over solid catalyst 1.15 (2 

mol%) with similar e.e. values to 1.14 and complete conversions.39  The e.e values exhibited 

by 1.14 and 1.15 are comparable to those of the parent Ru(BINAP) homogeneous catalyst40 

and 4-5% higher than those of zirconium phosphonate-derived heterogeneous catalysts.41  In 

addition, the level of e.e.’s exhibited by 1.14 and 1.15 is also comparable to the best 

polymer-anchored Ru catalysts for the hydrogenation of ß-alkyl ß-ketoesters.42 

The hydrogenation of a variety of ß-aryl ß-ketoesters was carried out in the presence 

of 2 mol% of solid catalyst 1.14 or 4 mol% of solid catalyst 1.15.  E.e. values in the range of 

81.7-95.2% were obtained for 1.14, while e.e. values in the range of 71.9-93.5% were 

obtained for 1.15. The e.e. values are much higher than those afforded by the homogeneous 

Ru(BINAP)(DMF)2Cl2 catalyst.  The 4,4’-substituent effects of BINAP are operative in the 

hydrogenation of ß-aryl ß-ketoesters. 1.15 gave lower e.e’s than 1.14 for all the substrates 

tested due to the lack of a bulky substituent in the 4’-position of the modified BINAP L15. 

 The Lin group was able to recycle and reuse 1.14 in the asymmetric hydrogenation of 

methyl acetoacetate for 5 consecutive runs.  Complete conversions were obtained for the first 

three runs, and the conversion started to drop in the fourth and fifth run.  The e.e. value also 

deteriorated as the conversion dropped.  The loss of activity and deterioration of 

enantioselectivity is believed to be due to the air-sensitivity of the catalytically active Ru-

hydride species.  Control experiments showed that the supernatant did not catalyze the 
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hydrogenation of methyl acetoacetate.  Furthermore, DCP spectroscopy showed that less than 

0.12% of Ru-containing complexes leached into the organic phase during each run of 

asymmetric hydrogenation.   

The reactions of diethylzinc with benzaldehyde using ephedrine immobilized onto 

amorphous silica gel43 and mesoporous silica44 have been investigated, but the degree of 

enantioselectivity is very low.  Kim and co-workers developed a new heterogeneous catalyst 

system by employing a proline-derived ligand developed by Soai et al,45 immobilized on 

MCM-41 and SBA-15 mesoporous silicas.33a Furthermore, since the free SiOH moietites on 

the silica surface could catalyze the background reaction,45 thus lowering the reaction 

enantioselectivity, mesoporous silicas containing the chiral ligand having its surface capped 

with trimethylsiliyl groups have been prepared.46 The group performed asymmetric 

diethylzinc addition to benzaldehyde using the catalyst systems.  The enantioselectivity was 

found to be largely dependent upon the pore size of the mesoporous silicas, capping of free 

silanol moieties with trimethylsilyl group, and the employment of BunLi.  

 To study the effect of pore size on the enantioselectivity, Kim et al. used both MCM-

41 and SBA-15 as catalyst supports. While MCM-41 and SBA-15 share similar hexagonal 

pore arrays, their pore dimensions are very different.  The synthetic procedure including 

preparation of the ligand, immobilization onto silicas, and capping with trimethylsilyl 

moieties, is shown in Scheme 1.13.  The amine group of 1.16 was protected using ethyl 

chloroformate and the acid was converted to a methyl ester to give 1.17.  Treatment of 1.17 

using phenylmagnesium chloride yielded a tertiary alcohol, and the carbamate group was 

converted to the corresponding methylamine through treatment with LAH to give 1.18.  

Chloropropyl linkers were grafted on the walls of mesoporous silicas by treating with 
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(CH3CH2O)3SiCH2CH2CH2Cl in refluxing toluene to give 1.20a-c, followed by treatment 

with 1.18 to give 1.21a-c.  Free SiOH groups were capped with HMDS to give 1.22a-c and 

subsequent workup gives 1.23a-c.  PXRD results indicate the mesoporous structure of SBA-

15 remained unaltered during preparation of the catalyst. Surface area decreased substantially 

during the chloropropyl-grafting step, although the pore dimensions remain relatively 

unchanged.33a   
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Scheme 1.13 The synthetic routes used in the preparation of various catalysts.  Reagents and 
conditions:  a: (i) ethyl chloroformate, NaHCO3, H2O, r.t., 16h; (ii) SOCl2, MeOH, r.t., 12h; 
b: (i) PhMgCl, THF, 0 °C, 5h; (ii) LiAlH4, THF, reflux, 3h; c: NaH, BnBr, THF, r.t., 16h; d: 
Chloropropyltriethoxysilane, toluene, reflux, 12h; e: 1.18, xylene, reflux, 12h; f: HMDS, 
reflux 12h. 
 

The silica-based catalysts were investigated for the asymmetric addition of 

diethylzinc to benzaldehydes.  For each silica catalyst, two different sets of reactions were 
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run with 6 mol% of catalyst and either 3 eq. of diethylzinc to benzaldehyde (method A) or 

7.2 mol% of BunLi followed by 3 eq. of diethylzinc (method B).  The parent homogeneous 

catalyst, 1.19, provided products with 90 and 93% ee, respectively, via methods A and B.  

However, when the chiral catalysts anchored on amorphous silica were tested using method 

A, 1.21a and 1.23a gave only 16 and 37% ee, respectively.  When the reactions were carried 

out using method B, slight improvements in the enantioselectivities were observed.  A 

noticeably higher enantioselectivity was observed in the reactions employing MCM-41 based 

catalyst and consistently higher results were obtained with the catalysts based upon SBA-15.  

In both systems, TMS-capping as well as the employment of BunLi improved the 

enantioselectivity significantly.  The catalytic activity of TMS-capped SBA-15, 1.22c, 

without a chiral ligand, was tested and shown to exhibit a 15% yield of the product.  This 

indicates that even with TMS-capping, there remains some residual activity of the silica, 

resulting in a reduction of the enantioselectivity. 

Chiral MnIII(salen) complexes are excellent catalysts for enantioselective epoxidation 

of unfunctionalized olefins47 and the immobilization of the complexes has received much 

attention.48  A chiral Cr(salen) complex was immobilized on modified MCM-41 through the 

axial complexation of Cr by NH2 groups grafted onto the surface of MCM-41.19e The salen 

complexes were immobilized by one coordinative bond. Li et al anchored a chiral 

MnIII(salen) complex onto siliceous MCM-41 by a new strategy (Scheme 1.14).49  The 

Mn(salen)/MCM-41 catalyst demonstrates excellent enantioselectivity for the asymmetric 

epoxidation of unfunctionalized olefins. 

The Mn(salen) complex was prepared according to literature procedure.  The MCM-

41-anchored Mn(salen) complex was prepared as shown in Scheme 1.15. 4-
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trimethoxysilylphenoxy-trimethylsilane 1.25 was obtained from 4-bromophenoxy-

trimethylsilane 1.2450 as confirmed the by FT-IR spectrum.  1.25 was then anchored onto 

MCM-4151 to form 1.26 and IR was used again to confirm the successful grafting.  Modified 

MCM-41 1.27, was obtained from acidic hydrolysis of 1.26 and was confirmed by IR, EA, 

and NMR studies.  The chiral Mn(salen) complex was then anchored onto 1.27 though the 

complexation of manganese by oxygen atoms of the phenoxyl groups.  After stirring 1.27 in 

NaOH(aq), the solid was recovered by filtration and refluxed in EtOH in the presence of the 

Mn(salen) complex.  The resulting solid catalyst 1.28 was characterized by IR, EPR, and 

UV-Vis. 

 
  
Scheme 1.14 Heterogeneous chiral catalyst, prepared by anchoring of the Mn(salen) complex 
onto the MCM-41 support. 
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Scheme 1.15 The anchoring of the Mn(salen) complex on the MCM-41 support. 
 
 

The solid catalyst was tested for the asymmetric epoxidation of simple olefins. The 

homogeneous Mn(salen) complex is active but has low enantioselectivity (56% ee) for the 

epoxidation of a-methylstyrene in CH2Cl2 with NaOCl as oxidant.  After immobilization, the 

activity of the heterogeneous catalyst decreases but enantioselectivity increases significantly 

to 76%.  The increase in enantiomeric excess is mainly attributed to the unique spatial 

environment constituted by the axial bulky group and the mesopores of the MCM-41 support.  

The decrease in conversion is obviously due to the slow diffusion of the reactant and the 

oxidant into the mesopores of the MCM-41 in the multiphase reaction system.  Acetone may 

be used in place of CH2Cl2 to increase conversion (99%) with slight loss of 

enantioselectivity.   
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The catalyst could be re-used for the epoxidation of a-methylstyrene in EtOH.  The 

activity and enantioselectivity did not decrease during the re-use experiments for up to 3 

runs. This indicates the Mn(salen) catalyst is strongly bound to the MCM-41 through axial 

complexation of the manganese by oxygen atoms of the phenoxyl group. Furthermore, it was 

demonstrated that although the homogeneous complex is active and enantioselective for the 

epoxidation of 1-phenylcyclohexene, the anchored Mn(salen) catalyst is inactive.  1-

phenylcyclohexene is too large to enter the pores of MCM-41, indicating the Mn(salen) 

species are mainly anchored in the mesopores of MCM-41. 

 
1.4 Conclusions  

This chapter provides an overview of recent developments in the design of self-

supported asymmetric catalysts and mesoporous silica-supported asymmetric catalysts.  

Three distinct approaches have been used prepare self-supported asymmetric catalysts based 

on early and late transition metals as well as lanthanides.  The first two approaches have the 

propensity to lead to highly porous and crystalline solid catalysts so that more catalytic sites 

are accessible to the prochiral substrates, but they require the use of two different metal 

centers in most cases.  The third approach only uses the catalytically metal centers to link the 

multitopic chiral ligands and is in principle more straightforward.  However, there is no 

information on the porosity of the solid catalysts, and there is concern that the catalytic 

centers in the third approach might not be as accessible to the prochiral substrates as those in 

the first two approaches.  The three approaches are entirely complementary and together they 

show remarkable versatility in designing a wide range of heterogeneous asymmetric 

catalysts.  The efficiency of these catalysts has been demonstrated for a range of asymmetric 

catalytic reactions. 
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Mesoporous silicas have been successfully employed as supports for various chiral 

catalysts.  Immobilization of homogeneous asymmetric catalysts on the inner walls of 

mesoporous silicas offers inherent advantages over less-ordered supports.  The recyclability, 

reusability, and ability to prevent leaching of toxic metals make silica-based catalysts very 

intriguing.  The next couple of chapters will cover several novel self-supported catalyst 

systems based on MOFs as well as mesoporous silica nanosphere (MSN)-supported catalyst 

systems, including synthesis, characterization, and catalytic reactions.    
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CHAPTER 2 
 

HOMOCHIRAL METAL-ORGANIC FRAMEWORKS FOR POTENTIAL 
HETEROGENEOUS CATALYSIS 

 
 
2.1 Introduction  
 

Asymmetric reduction of prochiral olefins, ketones, and imines is one of the most 

powerful methods for the production of optically active compounds.1  Among these 

methodologies, Ru and Rh complexes of chiral chelating bisphosphines, particularly 2,2’-bis-

diphenylphosphino)-1,1’-binaphthyl (BINAP) and its derivatives, were widely used for the 

hydrogenation of a wide range of substrates with high chemo-and enantioselectivity.2  

Asymmetric organocatalysis methods3 utilizing neutral Lewis bases have recently 

attracted considerable attention, leading to the emergence of new types of chiral ligands 

based on phosphoramides4, N-oxides5, and sulfoxides6.  Since phosphine oxide is highly 

polar and has a relatively low Brönsted basicity7, its reactivity would be expected to be 

similar to those of Lewis bases.  In addition to their favorable reactivity, chiral phosphine 

oxides can be readily prepared by simple oxidation of commercially available chiral 

phosphines.   

There still remain relatively few examples of the application of chiral phosphine 

oxides to asymmetric organocatalysis.  Once such example was demonstrated by Kobayashi, 

who used 2,2’-bis(diphenylphosphoryl)-1,1’-binaphthyl, BINAPO, as a promoter the 

allylation of α-hydrazono esters, although more than stoichiometric amounts of BINAPO 

were required for the reaction to proceed.8  Nakajima et al recently reported the first 
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examples of a chiral phosphine oxide as a catalyst in the enantioselective allylation of 

aldehydes, the ring opening of meso-epoxides, and enantioselective aldol reactions of 

trichlorosilyl enol ethers to afford aldol adducts in high diastereo- and enantioselectivites.9 

The practical application of homogeneous asymmetric catalysts in industrial 

processes were often hindered due to high costs of both noble metals and chiral ligands as 

well as difficulties in removing trace amounts of toxic metals from the organic products. 

Heterogenization of these highly enantioselective catalysts, in some cases, has proven 

effective in overcoming these problems.  The heterogenized catalysts can potentially 

combine the advantages of both homogeneous and heterogeneous systems and therefore 

provide easily recyclable and reusable solid catalysts that have uniform and precisely 

engineered active sites similar to those of their homogeneous counterparts.  Many 

heterogenization approaches have been explored, including attaching the chiral catalysts to 

organic polymers, dendrimers, membrane supports, and porous inorganic oxides and 

immobilization via biphasic systems.10  The heterogenized catalysts afforded by these 

methods are, however, typically less effective that their homogenous counterparts.  This 

chapter describes our efforts in generating homochiral metal-organic frameworks containing 

BINAP oxide for potential heterogeneous asymmetric catalysis. 

 
2.2 Results and Discussion 
 
2.2.1 Synthesis and characterization of BINAP derived ligands 
 
 The new (R)-1,1’-binaphthyl-derived ligand L16-H2 was synthesized in 6 steps 

starting from commercially available 2,2’dihydroxy 1,1’binaphthyl (BINOL) (Scheme 2.1).  

BINOL was treated with triflic anhydride and pyridine to give the 2,2’-triflate-protected 

binaphthyl.11  The protected 2,2’-trifilic-BINOL was then treated with diphenylphosphine in 
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the presence of NiCl2(dppe) and 1,4-diazabicyclo[2.2.2]octane (DABCO) to form 2,2’-

bis(diphenylphosphino)-1,1’binaphthyl (BINAP)12.  The diphenylphosphine moieties were 

then oxidized following treatment with H2O2 in acetone to form BINAPO.  The prepared 

BINAPO was then subjected to bromination conditions to selectively brominate at the 4,4’ 

positions of the binaphthyl ring.  The L16-Me2 ligand was synthesized by a Pd-catalyzed 

Suzuki coupling between 4,4’-Br-BINAPO and commercially available 4’-

(methoxycarbonyl)phenyl boronic acid.  The L16-Me2 ligand could then be directly 

hydrolyzed by refluxing in NaOH in THF/MeOH to form the dicarboxylic acid L16-H2.  The 

L16-Me2 may also be subjected to reduction conditions in Si(OEt)3H and Ti(OiPr)4 to obtain 

the 2,2’-bis-(diphenylphosphino)-1,1’-binaphthyl derivative, L17-Me2.  All the intermediates 

and ligands were characterized by 1H NMR and 31P{1H} NMR spectroscopy (Figure 2.1). 

 Attempts to hydrolyze L17-Me2 using basic reaction conditions followed by acidic 

workup resulted in what is thought to be the HCl salt of the 2,2’-bis-(diphenylphosphino)-

1,1’-binaphthyl derivative (Scheme 2.2).  31P{1H} NMR showed a single peak at ~28.7 ppm 

indicating the signal was not from the P=O moiety of BINAPO (~26.7 ppm).  L17-Me2 was 

also used in the attempted synthesis of a RuCl2(diphosphine)(diamine) complex.  However, 

the ruthenium complex decomposed during the hydrolysis process and acidic workup 

(Scheme 2.3).  As a result, efforts were focused on the synthesis of metal-organic 

frameworks based on the BINAPO derivative L16-H2.   
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Scheme 2.1 Reagents and conditions: (i) Tf2O, pyridine, O°C to RT; (ii) Ph2PH, 
NiCl2(dppe), DABCO, DMF, 100°C; (iii) 30% H2O2, acetone, RT, 20h; (iv) Br2, pyridine, 
CH2Cl2, RT, 3d (v) Pd(PPh3)4, CsF, DME, 95ºC, 3d; (vi) 2M NaOH, THF, MeOH, 70 ºC, 
24h; (vii) Si(OEt)3H, Ti(OiPr)4, toluene, reflux, 1h. 
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Figure 2.1 1H NMR of L16-H2.  
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Scheme 2.2 Attempted synthesis of hydrolyzed 4,4’-benzoic acid 2,2’diphenylphosphino 
complex.  
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Scheme 2.3 Attempted synthesis of RuCl2(diphosphine)(diamine) complex. 
 

2.2.2 Synthesis and characterization of BINAPO crystals  
 
 When treated with Cu(II), Zn(II), Cd(II), or Mn(II) salts in DMF at 80 °C, single 

crystals of [Cu(L16)(DMF)]·3DMF·4H2O (2.1), [Zn(L16)]·8DMF·6H2O (2.2), 

[Cd(L16)]·9DMF·H2O (2.3), and [Mn(L16)(H2O)]·5DMF·5H2O (2.4) were obtained (Scheme 

2.4).  The formulae for 2.1-2.4 were established by single crystal X-ray structure 

determination, 1H NMR spectroscopy, and TGA analyses.   

 

PPh2

PPh2

O

O

O

O

HO

OH

Cu(ClO4)2   6H2O

Cd(ClO4)2   6H2O

Zn(ClO4)2   6H2O

Mn(ClO4)2   6H2O

[Cu(L16)(DMF)]   3DMF   4H2O

[Zn(L16)]   8DMF   6H2O

[Cd(L16)]   9DMF   H2O

[Mn(L16)(H2O)]   5DMF   5H2O

2.1

2.2

2.3

2.4

 
 

Scheme 2.4 Crystal growth and formulas of 2.1-2.4. 
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To ensure consistent results, each sample was treated in exactly the same way for 

both TGA and 1H NMR experiments (Figures 2.2 and 2.3-2.7), respectively).  Fresh crystals 

were harvested by quick filtration, and briefly dried on filter paper under air.  The sample 

was then divided and loaded into screw-capped vial with CD3OD or the sample tray in TGA. 

The organic solvent inside the crystals is either DEF or DMF which has been exchanged by 

CD3OD, and its exact amount was determined by calibrating against the internal standard, 

mesitylene.  The total amounts of the solvents were obtained by TGA, the amount of water 

molecules was calculated by subtracting DEF/DMF from the total solvent amount.  The 

framework structures of 4.1 to 4.6 were unambiguously determined by single-crystal X-ray 

diffraction studies.  

 

 

Figure 2.2 Thermogravimetric analyses of 2.1-2.4.  The samples were heated at 5 ºC/min to 
600 ºC and the temperature was held for 1 h. 
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Figure 2.3 1H NMR spectroscopic determination of solvent content in 2.1, mesitylene (Mes) 
was added as an internal standard 
 

 
Figure 2.4 1H NMR spectroscopic determination of solvent content in 2.2, mesitylene (Mes) 
was added as an internal standard 

Wcrystal(mg) 11.17 
WMes(mg) 8.6 
WDMF (mg)  
(From NMR) 2.48 

WDMF % 22.2% 
W(DMF+H2O)%  
(From TGA) 27.7% 

WH2O% 5.4% 
Formula (2.1) 

[Cu(L16)(DMF)]·3DMF·4H2O 
 

Wcrystal(mg) 11.97 
WMes(mg) 8.6 
WDMF (mg)  
(From NMR) 4.29 

WDMF % 35.8% 
W(DMF+H2O)%  
(From TGA) 42.4% 

WH2O% 6.5% 
Formula (2.2) 

[Zn(L16)]·8DMF·6H2O 
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Figure 2.5 1H NMR spectroscopic determination of solvent content in 2.3, mesitylene (Mes) 
was added as an internal standard 
 

 
 

Figure 2.6 1H NMR spectroscopic determination of solvent content in 2.4, mesitylene (Mes) 
was added as an internal standard 

Wcrystal(mg) 10.7 
WMes(mg) 8.6 
WDMF (mg)  
(From NMR) 4.16 

WDMF % 38.9% 
W(DMF+H2O)%  
(From TGA) 40.0% 

WH2O% 1.1% 
Formula (2.3) 

[Cd(L16)]·9DMF·H2O 
 

Wcrystal(mg) 13.31 
WMes(mg) 8.6 
WDMF (mg)  
(From NMR) 2.73 

WDMF % 27.3% 
W(DMF+H2O)%  
(From TGA) 35.2% 

WH2O% 7.8% 
Formula (2.4) 

[Mn(L16)(H2O)]·5DMF·5H2O 
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The molecular structures of Cu(II), Zn(II), Cd(II), and Mn(II) with L16 were 

established by X-ray crystallography. Compound 2.1 crystallizes in the triclinic P1 space 

group with a two-dimensional grid structure (Figure 2.7).  The individual layers pack along 

the 111 direction with a very close interlayer distance of ~3.2 Å.  The asymmetric unit 

consists of two ligands, two CuII centers, and two DMF molecules.  The Cu atoms coordinate 

to four carboxylate oxygen atoms of four different L16 ligands to form [Cu2(O2CR)4] paddle-

wheels.  Each Cu atom also coordinates to a terminal DMF molecule in the axial position.  

The L16 ligand is linked to two copper paddle-wheels via the bridging carboxylate groups in 

a square layered fashion.  This coordination environment leaves the BINAPO sites accessible 

to incoming substrate molecules (Figure 2.8).  The size of the pores is ~1.7 x 1.7 nm leaving 

adequate space for substrates to enter and diffuse through the pores.   

 

Figure 2.7 View of the layers composing the 2-D grid of 2.1. 
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Figure 2.8 View down the x-axis showing the open BINAPO sites available for catalysis. 
 
 

Compound 2.2 crystallizes in the orthorhombic C2221 space group. The asymmetric 

unit consists of two ligands and two ZnII centers.   The 3-D structure is composed of two 

types of Zn coordination sites, one of which displays a Zn paddle-wheel structure that is 

bound to two carboxylic acids and one BINAPO site similar to that of the Cu analog (Figure 

2.9).  The second coordination environment consists of two carboxylic acids and two 

BINAPO sites (Figure 2.10a). A space filling view down the z-axis shows pores with 

dimensions of ~4 x 6.2 Å and 2.7 x 5.4 Å (Figure 2.10b). Because the phosphine oxide sites 

of the crystal are bound to Zn, the crystal will unlikely be useful for heterogeneous catalysis 

experiments. 
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Figure 2.9 Zn paddle-wheel site where each Zn coordinates to two carboxylic acids and a 
single BINAPO. 

 

 

Figure 2.10 (a) The second type of Zn coordination sphere where two carboxylic acids and 
two BINAPOs are bound. A 3-D view along the c-axis; (b) Space-filling view down z-axis.  

a b 
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 The Cd crystal 2.3 crystallizes in the monoclinic C2 space group.  The asymmetric 

unit consists of two ligands and two CdII centers.  The crystal features Cd as a six-coordinate 

distorted octahedral environment that forms 2-D layered network packing along the 1 0 -1 

direction.  The distance between the layers ranges from ~1.3 to 12.3 Å.  The Cd is bound to 

two carboxylic acids and two BINAPO sites (Figure 2.12).   

 

 

 

 

 

 

 

Figure 2.11 Layers of Cd crystal 2.3 packed along the 1 0 -1 direction.  

 

 

 

 

 

 

 

 

Figure 2.12 Distorted octahedral Cd coordination environment. 
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 The Mn derivative 2.4 crystallizes in the trigonal P32 space group.  The 2-D layers 

consist of a distorted octahedral Mn coordination environment with two carboxylic acids, 

two BINAPO, and one water molecule (Figure 2.13).  The asymmetric unit consists of two 

ligands, two MnII, one DMF, and one H2O.  The layers stack along the -1 0 2 direction with 

an average distance of ~3.7 to 7.5 Å.     

 

 

 

Figure 2.13 Distorted octahedral coordination environment of Mn in 2.4. 
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Table 2.1 Crystal data and structure refinement for 2.1-2.4.  

Compound 2.1 2.2 2.3 2.4 

Empirical formula       C61H45CuNO7P2 C116H76O12P4Zn2 C116H77Cd2O12P4 
C119H72Mn2N 

O14P4 
Formula weight 1029.46 1916.39 2011.46 1973.54 
Temperature (K) 293 293 173 293 
Wavelength (Å) 0.71073 0.71073 0.71073 1.54178 
Crystal system Triclinic Orthorhombic Monoclinic Trigonal 
Space group P1 C2221 C2 P32 

a = 10.3003(19) a = 32.7288(13) a = 33.0369(10) a = 17.8486(4) 
b = 19.506(3) b = 34.8494(12) b = 16.6775(6) b = 17.8486(4) 
c = 19.977(4) c = 24.8904(8) c = 31.6082(10) c = 38.5564(11) 
α = 101.665 α = 90 α = 90 α = 90 
β = 98.514 β = 90 β = 91.781 β = 90 

Unit cell dimensions 

γ =102.606 γ = 90 γ = 90 γ = 120 
Volume (Å3) 3757.8(12) 28389.5(17) 17406.8(10) 10637.4(5) 

Z 2 8 4 3 
Density (calcd. g/cm3) 0.910 0.897 0.768 0.924 
Absorption coeff. (mm-

1) 0.371 0.426 0.316 2.253 

F(000) 1066 7904 4100 3045 
Crystal size (mm) 0.30×0.20 ×0.20 0.60×0.40×0.40 0.4×0.4×0.10 0.5×0.4×0.40 

Crystal color & shape Blue thin plate Colorless thin 
plate 

Colorless thin 
plate 

Colorless thin 
plate 

θ range data collection 1.06 – 22.00 0.85 – 24.00  1.23 – 25.00 2.86 – 50.49 
-10< h <10 -37< h <28 -39< h <39 -17< h <11 
-20< k <20 -38< k < 39 -19< k <19 -17< k <17 Limiting indices 
-19< l <21 -28< l < 28 -32< l <37 -23< l <38 

Reflections collected 25821 76676 64886 24818 
Independent reflections 15545 20548 29372 9791 
Refinement method Full-matrix least-square on F2 
Data/restraints/paramet
ers 15545/521/1066 20548/377/1016 3150/242/391 9791/420/1005 

Goodness-of-fit on F2 
0.817 

(0.817, 
restrained) 

0.850 
 (0.850, 

restrained) 

0.813 
(0.813,restraine

d) 

1.519 (1.5, 
restrained) 

R1 = 0.0563 R1 = 0.0440 R1 = 0.0593 R1 = 0.1519 Final R indices 
[I>2σ(I)]a,b wR2 = 0.1046 wR2 = 0.0864 wR2 = 0.1211 wR2 = 0.3489 

R1 = 0.1083 R1 = 0.0826 R1 = 0.1274 R1 = 0.1913 
R indices (all data) 

wR2 = 0.1174 wR2 = 0.0947 wR2 = 0.1358 wR2 = 0.3719 
Flack 0.040(13) 0.025(6) 0.027(18) 0.249(15) 
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2.2.3 Catalysis attempts using 2.1 
 
 Initial attempts towards catalysis were aimed at the in situ reduction of the phosphine 

oxide moieties within crystal 2.1.  The crystal (2.1) was subjected to reductive conditions 

using Si(OEt)3H and Ti(iOPr)4 in anhydrous toluene (Scheme 2.5).  The reaction did not 

proceed probably due to the water contained within the framework of 2.1.  After attempts at 

removing excess solvent from the crystal by evacuation, the reaction again failed, 

presumably due to the collapse of the framework upon removal of solvate molecules, which 

is common for such non-robust MOFs.   

[Cu(L16)(DMF)]   3DMF   4H2O

2.1

6 eq. Si(OEt)3H

3 eq. Ti(iOPr)4

toluene, reflux
 

Scheme 2.5 Attempted in situ reduction of P=O moieties within 2.1. 

 
 Attempts were also made towards catalysis using the BINAPO moiety within crystal 

2.1.  A phosphine oxide-catalyzed allylation was attempted using a 10 mol% loading of 2.1 

in the presence of allyltrichlorosilane, benzaldehyde, N,N- diisopropylamine, and 

tetrabutylammonium iodide in dicloromethane at RT (Scheme 2.6).  After quenching in 

NaOH(aq) and extraction with EA/NaHCO3/brine the reaction mixture was dried over MgSO4.  

The HPLC analysis however showed no desirable products from this reaction.  

2.1 (10 mol%)

SiCl3 +

O iPr2NEt (5.0 eq.)

CH2Cl2, RT

Bu4N+I- (1.2 eq)

OH

*

 

Scheme 2.6 Attempted phosphine oxide-catalyzed allylation using 2.1. 
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2.3 Summary 

 In conclusion, a series of BINAPO based MOFs was prepared and characterized.  

Crystallographic studies show the formation of highly porous 2D Cu paddle-wheel structure 

with readily accessible catalytic phosphine oxide sites.  Initial attempts at heterogeneous 

asymmetric catalysis using these MOFs have not yielded desirable products.  More efforts 

are needed to either use the BINAPO sites directly for asymmetric catalysis or prepare other 

catalytically active species via post-synthetic modifications. 

 
2.4 Experimental Section 

2.4.1 Preparation and characterization of ligands 

2.4.1.1 Synthesis of (R)-2,2'-bis(diphenylphosphoryl)-1,1'-binaphthyl 

 A mixture of 2,2'-bis(diphenylphosphino)-1,1'-binaphthyl (4.0 g, 6.4 mmol) in 

acetone (150 mL) was treated with 30% H2O2 (14 mL) and stirred at RT.  After 1 h the 

mixture was in solution and let to stir at RT overnight. MnO2 (100 mg, 1.13 mmol) was 

added to the solution and stirred for 10 m.  The mixture was filtered and the solution was 

concentrated to dryness.  The solid was then dissolved in CH2Cl2 and extracted with a 

saturated solution of NaHCO3.  The organic layer was collected and dried over MgSO4 and 

then filtered and concentrated to dryness.  Yield: (3.9 g, 95%).  1H NMR (CDCl3): δ 6.79 (d, 

4H, (d, 3JH-H = 3.9 Hz, 2H), 7.22-7.44 (m, 20H), 7.66-7.71 (m, 4H), 7.79-7.85 (m, 4H). 

31P{1H} NMR (CDCl3): 28.2. 

  
2.4.1.2 Synthesis of (R)-(4,4'-dibromo-1,1'-binaphthyl-2,2' diyl)bis(diphenylphosphine) 
  
 A solution of  (R)-2,2'-bis(diphenylphosphoryl)-1,1'-binaphthyl (6.0 g, 9.16 mmol), in 

dichloromethane (130 mL) was degassed for 10 min.   Br2 (1.4 mL, 27.4 mmol), and pyridine 
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(0.75 mL, 9.16 mmol) were added to the colorless solution forming a dark brown solution.  

The solution was stirred at RT for 24 h.  The resulting reaction mixture was extracted with 

sodium bisulfite, brine, and sodium bicarbonate (x 3).  The resulting solution was dried over 

MgSO4 (anhydrous) and returned to reaction flask.  The above procedure was repeated twice 

more to obtain product mixture.  The desired product (R)-(4,4'-dibromo-1,1'-binaphthyl-2,2' 

diyl)bis(diphenylphosphine) was obtained by Sohxlet extraction by refluxing in ethanol for 

1.5 d @ 100 ºC.  Yield: (2.0g, 27%).  1H NMR (CDCl3): δ 8.19 (d, 3JH-H = 8.0 Hz, 2H), 7.69 

(d, 3JH-H = 8.0 Hz, 2H), 7.66-7.61 (m, 4H), 7.49-7.36 (m, 10H), 7.25-7.22 (m, 8H), 6.86-6.82 

(m, 2H), 6.77 (d, 3JH-H = 8.0 Hz, 2H). 31P{1H} NMR (CDCl3): 27.2. 

 
2.4.1.3 Synthesis of (R)-dimethyl 4,4'-(2,2'-bis(diphenylphosphoryl)-1,1'-binaphthyl-
4,4'-diyl)dibenzoate, L16-Me2  
 

A solution of (R)-4,4'-dibromo-2,2'-bis(diphenylphosphoryl)-1,1' binaphthyl (3 g, 

3.69 mmol) and 4-(methoxycarbonyl)phenylboronic acid (1.35 g, 7.5 mmol) in dimethyl 

ethylene glycol (100 mL) was degassed for 30 min.  CsF (2.55 g, 16.7 mmol) and Pd(PPh3)4 

(369 mg, 319 µmol) were added to the solution.  The reaction vessel was sealed and the 

reaction mixture was stirred at 100 °C for 3 days.  Upon cooling to r.t., the mixture was 

extracted with CH2Cl2/H2O.  The yellow solution was dried over MgSO4 and the solvent 

removed under reduced pressure.  The yellow solid was purified by silica gel column 

chromatography with CH2Cl2 /ethyl acetate (1:1 v/v) as the eluent to afford (R)-dimethyl 

4,4'-(2,2'-bis(diphenylphosphoryl)-1,1'-binaphthyl-4,4'-diyl)dibenzoate Yield: (2.3g, 66%). 

1H NMR (CDCl3): δ 8.13 (d, 3JH-H = 8.0 Hz, 4H), 7.84 (d, 3JH-H = 8.4 Hz, 2H), 7.66 (m, 6H), 

7.57 (d, 3JH-H = 8.0 Hz, 4H), 7.42 (m, 6H), 7.26-7.41 (m, 10H), 7.18-7.24 (m, 10H), 7.03 (d, 

3JH-H = 8.4 Hz, 2H), 6.90 (m, 2H), 3.92 (s, 6H), 3.91 (s, 12H). 31P{1H} NMR (CDCl3): 28.59. 
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2.4.1.4 Synthesis of (R)-4,4'-(2,2'-bis(diphenylphosphoryl)-1,1'-binaphthyl-4,4'-
diyl)dibenzoic acid, L16-H2   
 

A solution of (R)-dimethyl 4,4'-(2,2'-bis(diphenylphosphoryl)-1,1'-binaphthyl-4,4'-

diyl)dibenzoate (1 g, 1.08 mmol) in THF (125 mL), MeOH (50 mL), and 2M aqueous NaOH 

(50 mL) was heated at 70 °C for 18 h.  The solution was cooled to r.t. and acidified to a pH 

of ~1 and extracted with ethyl acetate/H2O.  The organic layer was dried over MgSO4 and the 

solvent was evaporated under reduced pressure to give a white solid of L1-H2.  Yield: (940 

mg, 97%). 1H NMR (DMSO-d6): δ 13.07 (bs, 2H), 8.62 (d, 3JH-H = 8.8 Hz, 4H), 7.85 (d, 3JH-H 

= 8.4 Hz, 2H), 7.59 (d, 3JH-H = 8.4 Hz, 4H), 7.44 (m, 4H), 7.24 (m, 16H), 7.05 (m, 12H), 6.89 

(d, 3JH-H = 8.8 Hz, 2H). 31P{1H} NMR (DMSO): 26.82.   

 
2.4.1.5 Synthesis of (R)- dimethyl 4,4'-(2,2'-bis(diphenylphosphino)-1,1'-binaphthyl-4,4'-
diyl)dibenzoate, L17-Me2   
 

A solution of (R)-dimethyl 4,4'-(2,2'-bis(diphenylphosphoryl)-1,1'-binaphthyl-4,4'-

diyl)dibenzoate (0.1 g, 108 µmol) in anhydrous toluene (3 mL) was stirred at RT.  Si(OEt)3H 

(122 µL, 648 µmol) and Ti(OiPr)4 (32 µL, 324 µmol) were added to the pale yellow solution 

quickly turning it grey and then black. The mixture was stirred at 100 °C for 1 h.  The 

solution was cooled to r.t. and excess solvent was removed under reduced pressure.  The 

product was obtained by silica gel chromatography using CH2Cl2 as the eluent to give a 

white solid of L2-Me2.  Yield: (32 mg, 33%). 1H NMR (DMSO-d6): δ 13.07 (bs, 2H), 8.62 (d, 

3JH-H = 8.8 Hz, 4H), 7.85 (d, 3JH-H = 8.4 Hz, 2H), 7.59 (d, 3JH-H = 8.4 Hz, 4H), 7.44 (m, 4H), 

7.24 (m, 16H), 7.05 (m, 12H), 6.89 (d, 3JH-H = 8.8 Hz, 2H). 31P{1H} NMR (DMSO): 26.82.   



 59 

 
2.4.2 Preparation and characterization of crystals 

2.4.2.1 [Cu(L16)(DMF)]·3DMF·4H2O, 2.1 

A mixture of L16-H2 (1.0 mg, 1.11 µmol) and Cu(ClO4)2·6H2O (0.83 mg, 2.23 µmol) 

was dissolved in a solvent mixture of MeOH/DMF/H2O (0.1 mL / 0.4 mL / 0.1 mL) with 1 M 

HCl (10µL) in a screw-capped vial.  The resulting solution was placed in an oven at 80 oC for 

4 days. Small, clustered blue crystals (0.91 mg, 62%) were obtained after filtration.  Solvent 

content calc. from the proposed formula: DMF, 22.1%; H2O, 5.5%; determined by 

1HNMR/TGA: DEF, 22.2%; H2O, 5.5%. 

 
2.4.2.2 [Zn(L16)]·8DMF·6H2O, 2.2 
 

A mixture of L16-H2 (1.0 mg, 1.11 µmol) and Zn(ClO4)2·6H2O (0.83 mg, 2.22 µmol) 

was dissolved in a solvent mixture of MeOH/DMF/H2O (0.05 mL / 0.4 mL / 0.05 mL) with 

2,6-lutidine (2µL) in a screw-capped vial.  The resulting solution was placed in an oven at 80 

oC for 2 days. Colorless crystals (1.2 mg, 65%) with very small, thin plate-shape were 

obtained after filtration.  Solvent content calc. from the proposed formula: DMF, 35.4%; 

H2O, 6.5%; determined by 1HNMR/TGA: DEF, 35.8%; H2O, 6.5%. 

 
2.4.2.3 [Cd(L16)]·9DMF·H2O, 2.3 
 

A mixture of L16-H2 (1.0 mg, 1.11 µmol) and Cd(ClO4)2·6H2O (0.69 mg, 2.22 µmol) 

was dissolved in a solvent mixture of DMF/H2O (0.4 mL / 0.05 mL) with 2,6-lutidine (2µL) 

in a screw-capped vial.  The resulting solution was placed in an oven at 80 oC for 1 day. 

Colorless crystals (1.3 mg, 72%) with relatively large, thin plate-shape, were obtained after 

filtration.  Solvent content calc. from the proposed formula: DMF, 39.1%; H2O, 1.1%; 

determined by 1HNMR/TGA: DEF, 38.9%; H2O, 1.1%. 
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2.4.2.4 [Mn(L16)(H2O)]·5DMF·5H2O, 2.4 

 A mixture of L16-H2 (1.0 mg, 1.11 µmol) and Mn(ClO4)2·6H2O (0.81 mg, 2.22 

µmol) was dissolved in a solvent mixture of DMF/H2O (0.4 mL / 0.05 mLin a screw-capped 

vial.  The resulting solution was placed in an oven at 80 oC for 2 weeks. Colorless crystals 

(0.82 mg, 52%) with clustered, thin plate-shape, were obtained after filtration.  Solvent 

content calc. from the proposed formula: DMF, 25.6%; H2O, 7.6%; determined by 

1HNMR/TGA: DEF, 27.3%; H2O, 7.6%. 
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CHAPTER 3 

MESOPOROUS SILICA NANOSPHERE-SUPPORTED RUTHENIUM CATALYSTS 
FOR ASYMMETRIC HYDROGENATION 

 
 
 

3.1 Introduction  
 
 Recent studies have shown that mesoporous silica materials could be obtained as 

uniform nanospheres under appropriate synthetic conditions.1  Mesoporous silica 

nanospheres (MSNs) were further shown to be excellent supports for bifunctional catalysts 

that exhibit interesting cooperative catalytic activities.2  An increase in enantioselectivity has 

been observed when the supported catalyst is located within the pore of the mesoporous 

silica.  This enhancement is due to the substrate’s interaction with both the pore wall and the 

chiral directing group.  The confinement of the substrate within the mesoporous channel can 

lead to a larger influence of the chiral directing group on the orientation of the substrate 

relative to the reactive catalytic center when compared to the situation in solution.3  

 Several types of mesoporous silica have been used for immobilization.  Mesoporous 

silicas are characterized as having very high surface areas (> 1000 m2/g), an ordered pore 

structure with a narrow pore size distribution.  Pore sizes tend to be in the 2-15 nm range and 

have pore volumes of about 1 mL/g.   As shown in Figure 3.1, the mesoporous silicas may be 

characterized by their pore structure.  MCM-48 is characterized as having a three-

dimensional interconnected cubic pore system.  MCM-41 has a two-dimensional hexagonal 

array of unidirectional pores.    
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Figure 3.1 (a) MCM-48 interconnected cubic pore structure; (b) MCM-41 two-dimensional 
pore structure. 
 
 

In this work, we have demonstrated the utility of MSNs as supports for Ru catalysts 

for asymmetric hydrogenation of aromatic ketones to afford chiral secondary alcohols and 

racemic arylaldehydes to give chiral primary alcohols.  We envisage the generation of highly 

active heterogeneous catalysts by taking advantage of both the large channel diameters (>2 

nm) of MSNs and short diffusion lengths for the organic substrates as a result of small 

nanoparticle sizes of <1 mm.  The short diffusion length is of practical importance owing to 

the typically large size (and hence hindered diffusion rate) of organic substrates used in 

asymmetric catalytic processes. 

 These chiral Ru(diphosphine)(diamine)Cl2 complexes were chosen to be supported on 

the MSNs due to their robust nature and the ability to purify the complexes by silica-gel 

chromatography.4  Noyori and others have demonstrated that upon activation the 

Ru(diphosphine)(diamine)Cl2 complexes gave highly active and enantioselective catalysts for 

asymmetric hydrogenation of prochiral ketones.5  In addition, the 

a b 
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Ru(diphosphine)(diamine)Cl2 complexes have been shown to be useful for the asymmetric 

hydrogenation of racemic arylaldehydes for the synthesis of chiral primary alcohols via  a 

dynamic kinetic resolution process. 

 
3.2 Results and discussion 
 
3.2.1 Synthesis and characterization of Ru(diphosphine)(diamine)Cl2 Complexes 
 
 As shown in Scheme 3.1, chiral Ru(diphosphine)(diamine)Cl2 with pendant siloxy 

groups 3.1-3.10 were prepared by heating a mixture of [RuCl2(p-cymene)]2 and chiral 

diphosphine in 1,2-dicloroethane/DMF at 80°C followed by treatment with siloxy-derived 

ethylenediamine (siloxy-ED) or 1,2-cyclohexanediamine (siloxy-DACH).  In all, five chiral 

diphosphines were used: 2,2'-bis(diphenylphosphino)-1,1'-binaphthyl (BINAP), 2,2’-

bis(diphenylphosphino)-4,4’-bis(trimethylsilyl)-1,1’binaphthyl (TMS-BINAP), 2,2’-bis(di-

3,5-xylylphosphino)-1,1’-binaphthyl (Xyl-BINAP), (4,4’-bi-1,3-benzodioxole)-5,5’-diyl-

bis(diarylphosphine) (SEGPHOS), and (7,7’-tert-butyl-4,4’-bi-1,3-benzodioxole)-5,5’-diyl-

bis(diarylphosphine) (tBu-SEGPHOS).  Complexes 3.1-3.10 are air- and moisture-stable and 

were purified by silica gel chromotagraphy and characterized by 1H and 31P{1H} NMR 

(Figure 3.2) spectroscopy as well as ESI-MS.  

The Ru(II) pre-catalysts 3.1-3.10 are readily characterized by 1H and 31P{1H} NMR 

spectroscopy due their diamagnetic nature.  The complexes display a characteristic pair of 

doublets in the 37-49 ppm range in the 31P{1H} NMR spectra due to the unsymmetrical 

nature of the monosubstituted diamine.  ESI-MS spectra show the presence of peaks 

corresponding to the loss of a chloride ligand from the molecular ion, thus confirming the 

synthesis of Ru(II) pre-catalysts 3.1-3.10.   
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Scheme 3.1 Synthesis of Ru complexes 3.1-3.10.  
 

 

Figure 3.2 1H and 31P{1H} (inset) NMR spectra of 3.1. 
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3.2.2 Synthesis and characterization of mesoporous silica nanospheres (MSNs) 
 
 Mesoporous silica nanospheres with both cubic three-dimensional channels MSN-48 

(a) and hexagonal two-dimensional channels MSN-41 (b) were prepared according to 

literature procedures (Scheme 3.2).6  a was prepared by hydrolysis and condensation of 

tetraethoxysilane (TEOS) in a water/ethanol solution of cetyltrimethylammonium bromide 

(CTAB) and ammonia.  b was prepared by hydrolysis and condensation of TEOS in a basic 

aqueous solution of CTAB.  Large pore MSN-41 (c) was prepared according to literature 

procedure which incorporates mesitylene into the solvent system to produce pore sizes >4 

nm.7  The particles were isolated by centrifugation, washed, and then calcined at 600 °C to 

remove the surfactant template.  Spherical morphology of a is clearly visible in the SEM 

image (Figure 3.3a).  The diameters of a particles are tunable from 75 nm to 1 µm, 

depending on the reagent concentrations used.  TEM image of c shows the hexagonal array 

of the large and ordered unidirectional pores (Figure 3.3b). 

 

Large Pore MSN-41 (c)
CTAB

H2O / EtOH

NH3

TEOS

stir @ RT, 2h

N
+

Br
- NaOH (aq)

NaOH (aq)

mesitylene

TEOS

stir @ RT, 2h

TEOS

stir @ 80  C, 2h

Si

O

O
O

O

TEOS

MSN-48 (a)

MSN-41 (b)

 

Scheme 3.2 Preparation of mesoporous nanospheres (MSNs) a-c. 
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Figure 3.3 (a) Representative SEM image of a showing the particles range from 300 µm to 1 
µm in diameter in this batch; (b) TEM image of c showing the unidirectional array of two-
dimensional channels. 
 
 

Ru(diphosphine)(siloxy-diamine)Cl2 complexes 3.1-3.3 and 3.6-3.10 were grafted 

onto a, b, and c by refluxing their mixtures in toluene for 24 hours (Scheme 3.3). The 

morphology of the MSNs remains unchanged upon immoblization of catalysts onto the 

surface (Figure 3.4). BET nitrogen adsorption isotherms of bare a and 3.6 on a, or 3.6-a, 

show distinct differences in surface area, pore volume, and pore diameter (Table 3.1).  The 

calcined MSN-48 has a BJH surface area of 1737 m2/g while upon grafting 3.6 to a, the 

surface area of 3.6-a was reduced to 1131 m2/g (Figure 3.5).  The prepared MSN-48 has a 

pore diameter of 2.2 nm and the pores of 3.6-a were reduced to 1.7 nm. The reduced surface 

area and pore diameter of 3.6-a suggest the attachment of the Ru complex 3.6 via the siloxy 

linkage to the surface of MSN-48.  Consistent with this, the pore volume decreases from 1.07 

cm3/g for a to 0.61 cm3/g for 3.6-a (Figure 3.6).  
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Scheme 3.3 Immobilization of 3.1-3.10 onto various mesoporous silicas. 

 

 

 

 

 

 

 

 
Figure 3.4 (a) SEM image of 3.6-a, where morphology remains unchanged post-
modification; (b) TEM image of a magnified view of 3.6-a.  
 
 
Table 3.1 BET data comparison for mesoporous silica nanosphere before and after loading of 
catalyst. 

 MSN-48 (a) 
 

3.6-a 
 

Surface area (m2/g) 1737 1131 

Pore volume (cm3/g) 1.1 0.61 

Pore diameter (nm) 2.2 1.7 

 

 

a b 
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Figure 3.5 Nitrogen adsorption/desorption isotherms of bare MSN-48 (a) and 3.6-a.  
 
 

 

 

 

 

 
 

 

 

 

 
Figure 3.6 Pore size distribution of bare MSN-48 (a) and 3.6-a.   
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Powder X-ray diffraction patterns were obtained for a and 3.6-a (Figure 3.7).  The 2θ 

values are 2.91° for a and 2.99° for 3.6-a.  The peaks correspond to the (211) reflection of 

the Ia3d space group. The PXRD patterns suggest both a and the MSN-48 solid catalysts 

have ordered pore structures, indicating no loss of the structural integrity upon 

immobilization of the catalyst. 

 
 
Figure 3.7 PXRD patterns of MSN-48 (a) and 3.6-a. 
 
 

The Ru precatalyst loadings on the mesoporous silicas were estimated by 

thermogravimetric analysis (TGA) which gives percent weight loss due to the organic 

moieties and the Ru content determined by direct current plasma (DCP) spectroscopy.  The 

MSN-supported materials a and b of 3.6'-3.10' prepared in this fashion have a consistent 

Ru(II) pre-catalyst loading of 5-7 wt% as determined by TGA and DCP (Figure 3.8).   
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Figure 3.8 TGA curve of MSN-48 particles loading with Ru precatalyst 3.6.  The weight loss 
in the 200 – 400 °C range is due to the organic moieties of 3.6, from which the Ru precatalyst 
loading can be estimated. 

 

The comparison of BET data for MSN-48 (a), MSN-41 (b), and large pore MSN-41 

(c) are shown in Table 3.2.  The BET isotherms indicate that the large pore silica (c) has 

roughly one-half the surface area of a and b but has a pore size that is doubled (Table 3.2). 

The MSN-41 (b) nanoparticles have a surface area of 1548 m2/g which is slightly lower than 

that of a and a pore diameter of 1.9 nm.  The large pore MSN-41 particles have a surface area 

of 928 m2/g and an average pore diameter of 4.3 nm.   

 
Table 3.2 BET data comparison for mesoporous silica nanospheres 

  
MSN-48 (a) 

 

 
MSN-41 (b) 

 

 
Large Pore MSN-41 

(c) 
 

Surface Area (m2/g) 1737 1548 928 

Pore Volume (cc/g) 1.1 2.1 1.8 

Pore Diameter (nm) 2.2 1.9 4.3 
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3.6 was grafted onto b and c to form MSN-supported catalysts. TGA indicated an 

11.8 wt% loading of 3.6 onto the surface of the large pore MSN-41 nanospheres which is 

roughly twice the loading observed for both the MSN-48 and MSN-41 nanospheres (Table 

3.3).  There was a decrease in surface area from 928 m2/g for bare large pore MSN-41 (c) to 

477 m2/g for the corresponding catalyst loaded MSN-41 particles 3.6-c (Figure 3.9).  Also 

observed was a decrease in pore volume from 1.3 to 0.65 cc/g once 3.6 was immobilized.  

The catalyst immobilization did not seem to affect the pore volume. 

 
Table 3.3 Comparison of large pore MSN-41 before and after catalyst loading. 

 Large Pore MSN-41 (c) 3.6-c 
% Loading (TGA) — 11.8 
Surface Area (m2/g) 928 477 
Pore Volume (cc/g) 1.3 0.65 
Pore Diameter (nm) 4.3 4.3 
 

 
 

Figure 3.9 Nitrogen adsorption/ desorption isotherms depicting the larger pore size of MSN-
41 large pore and decreased surface area once 3.6 is immobilized.  
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3.2.3 Asymmetric homogeneous and heterogeneous catalysis of aromatic ketones  
 

Upon activation with base co-catalysts, the new Ru(diphosphine)(diamine)Cl2 

complexes 3.1-3.5 were shown to be highly active for the homogeneous asymmetric 

hydrogenation of aromatic ketones with enantiomeric excess (ee) up to 88% (Table 3.4).  

Due to the commercial availability of the achiral diamine 1,2-ethylenediamine, a series of 

chiral binaphthyl diphosphine ligands were prepared with the achiral diamine.  

Enantioselectivity was similar between BINAP and TMS-BINAP while yields slightly 

decrease when using the latter.  The bulky TMS groups at the 4,4’ positions of 3.2 seem to 

hinder the activity and also lead to a decrease in the overall enantioselectivity.  The highly 

active 3.1 gives full conversions and increased enantioselectivity over 4,4’ substituted 3.2.  

3.3, with the 3,5-diphenylphosphine moieties, gives full conversion and e.e.’s as high as 

88%.  The SEGPHOS derivatives 3.4 and 3.5 were less active than the BINAP derivatives 

and gave modest e.e. values.  There was a general trend of increase in enantioselectivity 

associated with tBuSEGPHOS (3.5) when compared to the less bulky SEGPHOS derivative 

(3.4).  Overall, the xylyl-BINAP ethylenediamine catalyst 3.3 gave the highest overall 

enantioselectivity and full conversion in nearly every case.   
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Table 3.4 Homogeneous enantioselectivities of aromatic ketones using 3.1-3.5.a 

Ar

O

CH3 Ar

OH

CH3
*

RuCl2(diphosphine)(siloxy-ED)

KOtBu, iPrOH, H2

1 % catalyst loading

 

 Homogeneous catalysts 3.1-3.5 
 

Ar 3.1 3.2 3.3 3.4 3.5 

Ph 39 27(97) 76 33 52(97) 

1-naphthyl 31 17(97) 75 16(97) 21(97) 

2-naphthyl 36 43(97) 86 23(97) 50(95) 

4-MePh 32 21(97) 65 35(95) 49(96) 

4-ClPh 29 29(96) 88 16(97) 37(94) 

4-MeOPh 48 28(96) 68 42 52(91) 

4-tBuPh 45 43(96) 56 57(88) 80(95) 
a Full conversions unless noted in (  ).b Conversion % and e.e.%  
were determined by GC on a Supelco ß-Dex column for all the 
secondary alcohols.  
 
 

To gain an increase in enantioselectivity, the use of a chiral amine was explored.  

Control experiments with Ru(BINAP)(1,2-cyclohexanediamine)Cl2 (3.11) indicated that the 

propyl(triethoxy)silane pendant in 3.6 significantly enhanced the enantioselectivity (Table 

3.5).  It is established that homogenous Ru(diphosphine)(diamine)Cl2 complexes with two 

primary amine groups (such as 1,2-diphenylethylenediamine and 1,1-Bis(4-methoxyphenyl)-

3-methyl-1,2-butanediamine) enjoy significant ee enhancement with either bulky substituents 

on the 4,4’-positions of the binaphthyl framework or the bulkier 3,5-dimethylphenyl group 

on the phosphino moieties.  Such a beneficial substituent effect is absent in the 

Ru(diphosphine)(siloxy-DACH)Cl2 complexes 3.6-3.10 with an alkylated 1,2-

cyclohexanediamine.  The Ru(II) complex with a BINAP ligand, 3.6, gives higher ee values 

R

3.1: X = H, Ar = Ph

3.2: X = TMS, Ar = Ph 

3.3: X = H, Ar = C6H3-3,5-Me2

X
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than those with TMS-BINAP, 3.7, or Xyl-BINAP, 3.8.  In contrast, the tBu groups on the 

7,7’-position of SEGPHOS (in 3.10) significantly enhance the enantioselectivity, presumably 

as a result of the difference in dihedral angles between the binaphthyl system and the 

SEGPHOS system.  

 
Table 3.5 Homogeneous enantioselectivities of aromatic ketones using 3.6-3.11.a 

Ar

O

CH3 Ar

OH

CH3
*

RuCl2(diphosphine)(siloxy-DACH)

KOtBu, iPrOH, H2

1 % catalyst loading

 

 Homogeneous catalysts 3.6-3.11 

 
Ar 

 
3.6 3.7 3.8 3.9 3.10 3.11 

Ph 82 77(86) 79 67(95) 80 62(93) 

1-naphthyl 94 80(83) 78 79(97) 92 73(94) 

2-naphthyl 83 80(97) 90 61(96) 82 72(94) 
 

4-MePh 83 64(84) 76 67(95) 81(94) 62(94) 

 
4-ClPh 71 64(86) 86 56(95) 76 61(91) 

 
4-MeOPh 80 47(80) 68 70(96) 85 63(95) 

4-tBuPh 89 76 84 74(93) 77 78(94) 
a Full conversions unless noted in (  ). b Conversion % and e.e.%  
were determined by GC on a Supelco ß-Dex column for all the 
secondary alcohols.  
 
 

Upon activation with KOtBu, the MSN-48 immobilized Ru complexes 3.6-a through 

3.10-a are also very active catalysts for asymmetric hydrogenation of aromatic ketones.  As 

shown in Table 3.6, no decrease of catalytic activities was observed for the immobilized 

catalysts, but 3.6-a through 3.10-a exhibit lower enantioselectivities than their parent 
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homogeneous catalysts.  The highest ee value of 82% was obtained for the hydrogenation of 

2-acetonaphthone using 3.7-a.  The deterioration of enantioselectivities was observed for 

many asymmetric catalysts immobilized on bulk mesoporous silicas.12   

 
Table 3.6 Heterogeneous enantioselectivities for aromatic ketones using catalysts 3.6-a 
through 3.10-a.a 
 
 
 
 
 

 MSN-supported catalyst (mol% loading) 

Ar 3.6’(0.8) 3.7’(0.7) 3.8’(1.0) 3.9’(1.1) 3.10’(0.9) 

Ph 61(94)a 71 59 58(97) 73 

1-naphthyl 67(96) 76(87) 52 76 72 

2-naphthyl 68 82 66 58(97) 69 

4-MePh 47 66 60 60 61 

4-ClPh 57 72 62 51 57 

4-MeOPh 68 64(48) 49 53 56(97) 

4-tBuPh 77 69 53 69(94) 49 
a Full conversions unless noted in (  ). b Conversion % and e.e.% were  
determined by GC on a Supelco ß-Dex column for all the secondary alcohols.  

 

These highly active MSN-48 supported catalysts were readily recovered by 

centrifugation and were shown to be reusable for the asymmetric hydrogenation of aromatic 

ketones.  For example, for the hydrogenation of acetophenone, 3.6-a was recovered and 

reused for at least 5 times, with a conversion of >99%, >99%, 89%, >99%, and 65% and an 

ee value of 61%, 58%, 70%, 68%, and 65% for the five consecutive runs.   

 
3.2.4 Asymmetric hydrogenation of arylaldehydes 
 

Intrigued by recent elegant work of homogeneous asymmetric hydrogenation of 

Ar

O

CH3 Ar

OH

CH3
*

RuCl2(diphosphine)(siloxy-DACH)

KOtBu, iPrOH, H2
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racemic α-branched arylaldehydes by Ru(diphosphine)(diamine)Cl2 complexes for the 

synthesis of chiral primary alcohols,10 we have also examined the utility of MSN-48 (a) 

immobilized Ru complexes on such a dynamic kinetic resolution process (Table 3.7).  At a 

0.1 mol% catalyst loading, homogeneous catalysts 3.6-3.8 all gave complete conversion of 

arylaldehydes to their hydrogenated products, with ee values as high as 99% (for 3-methyl-2- 

phenylbutanal with a iPr group at the a-position).  This level of enantioselectivity is slightly 

better than that obtained with the homogenous Ru(diphosphine)(1,2-cyclohexanediamine)Cl2 

complexes examined by Zhou et al,8 suggesting the positive influence of the 

propyl(triethoxy)silane pendant on the enantioselectivity of the dynamic kinetic resolution 

process.  It is of interest to note that there is significant enantioselectivity enhancement with 

either bulky substituents on the 4,4’-positions of the binaphthyl framework (for 3.7) or the 

bulkier 3,5-dimethylphenyl groups on the phosphino moieties (for 3.8). 

The MSN-48 supported Ru complexes 3.6a thru 3.8-a are also highly active catalysts 

for asymmetric hydrogenation of racemic α-branched arylaldehydes.  Interestingly, unlike 

asymmetric hydrogenation of aromatic ketones, the immobilized catalysts 3.6-a through 3.8-

a gave higher enantioselectivity for most of arylaldehydes we have examined (with as much 

as 24% ee increase for hydrogenation of a-2-naphthylpropionaldehyde using 3.6 vs. 3.6-a).  

The highest ee value for the heterogeneously catalyzed reaction is 97% for 3-methyl-2-

phenylbutanal with 3.7-a.  The different effects of immobilization on the enantioselectivity of 

two asymmetric hydrogenation reactions highlight the subtlety of catalyst immobilization and 

the need to examine other reaction types and immobilization strategies.   
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Table 3.7 Homogeneous vs. Heterogeneous enantioselectivities for arylaldehydes using 
catalysts 3.6-3.8 and 3.6-a thru 3.8-a.a 

 
RuCl2(diphosphine)(siloxy-DACH)

KOtBu, iPrOH, H2
Ar

R

O

H
Ar

R

OH

0.1% loading

 
 

  
Homogeneous MSN-48 (a) 

 
Ar 

 
R 3.6 3.7 3.8 3.6-a 3.7-a 3.8-a 

Ph Me 42 70 72 52 76 84 

Ph iPr 35 97 99 52 97 86 

Ph nBu 40 80 84 55 84 49 

4-ClPh Me 47 69 74 52 78 85 

4-MeOPh Me 53 76 83 63 78 88 

2-Naphthyl Me 44 72 72 68 83 86 
a Full conversion.  b Conversion % and e.e.% were determined by 
1H NMR and HPLC on a Chiralcel AD column for all the arylaldehydes. 

 

MSN-41 supported catalysts 3.6-b, 3.7-b, and 3.8-b and MSN-41 LP supported 

catalysts 3.6-c, 3.7-c, and 3.8-c were prepared to study the potential effects of channel walls 

on the enantioselectivities of these heterogeneous catalysts.  Complete conversion was 

achieved for all runs (Table 3.8).  The BINAP catalysts, 3.6-a, 3.6-b, and 3.6-c gave modest 

e.e.’s with a trend towards substrate dependence determining the enantioselectivity.  The 

BINAP 3.6-a seemed to give higher e.e’s for substrates having an electron donating or 

withdrawing group on the phenyl ring while the Xyl-BINAP 3.6-c seemed to give higher 

e.e’s for substrates having a bulky R-group.  The TMS- BINAP catalyst 3.7-a outperformed 

the TMS-BINAP MSN-41 catalysts in every case giving e.e.’s as high as 97%.  This increase 

may be due to the confinement effect of the interpenetrated channels of the MSN-48 
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nanoparticles forcing an even tighter chiral pocket formed from the 4,4’-substituted bulky 

TMS groups.  These bulky groups were however, not sufficiently bulky so as to clog the 

pores and hinder the substrates from accessing the catalytic sites via diffusion through the 

channels.  The Xyl-BINAP catalyst 3.8-a again seemed to induce higher enantioselectivity on 

the substrates with substituted phenyl rings while 3.8-c attained the highest enantioselectivity 

when the substrates with bulky R-groups were used. 

 
Table 3.8 Heterogeneous enantioselectivity comparison for arylaldehydes using catalysts 
3.6-3.8 on a, b, and c.a 

 
RuCl2(diphosphine)(siloxy-DACH)

KOtBu, iPrOH, H2
Ar

R

O

H
Ar

R

OH

0.1% loading

 
  

MSN-48 (a) 
 

MSN-41 (b) 
 

 
MSN-41 Large Pore 

(c) 
 

 
Ar 

 

 
R 3.6-a 3.7-a 3.8-a 

 
3.6-b 

 
3.7-b 

 
3.8-b 

 
3.6-c 

 
3.7-c 

 
3.8-c 

Ph Me 52 76 84 55 54 75 45 53 75 

Ph iPr 52 97 86 59 84 86 73 86 92 

Ph nBu 55 84 49 56 68 85 76 71 67 

4-ClPh Me 52 78 85 42 71 87 44 75 85 

4-MeOPh Me 63 78 88 61 60 81 55 65 86 

2-Naphthyl Me 68 83 86 65 68 80 53 57 82 
a Full conversion.  b Conversion % and e.e.% were determined by 1H NMR and HPLC on a 
Chiralcel AD column for all the arylaldehydes. 
 
 

Because of the large excess of base required for the heterogeneous catalytic reactions, 

protection of the silynol groups was achieved using hexamethyldisilazane.9  This protection 

allowed for the use of equimolar concentrations of base for the heterogeneous catalysis as 



 82 

was used for the homogeneous (10 mol%) (Table 3.9).  BET data indicated that the 

protection of the silynol groups did not significantly affect the pore size or pore volume of 

the mesoporous silica once the catalyst was immobilized on the surface (Table 3.10).  

 
Table 3.9 Comparison of amounts of base required for enantioselective catalysis of 4-tBuPh 
ketone. 
 

RuCl2(BINAP)(siloxy-ED)

KOtBu, iPrOH, H2

1% loading

O

tBu

OH

tBu

*

 
 

Catalyst mol catalyst mol base x base e.e. 

Homogeneous 3.1 0.38 µmol 3.8 µmol x 10 78 

MSN-48 3.1-a 0.58 µmol 294 µmol x 500 42 

Protected MSN-48 3.1-d 0.67µmol 6.7 µmol x 10 38 

  
 
Table 3.10 BET comparison of Large Pore MSN-41 materials. 
 

 Large pore protected 
MSN-41 (c) 

3.7 on large pore, 
3.7-c 

3.7 on large pore 
protected, 3.7-e 

% loading — 10.4 10.4 

Surface Area (m2/g) 928 464 465 

Pore Volume (cc/g) 1.3 0.64 0.71 

 
 

As is shown in Table 3.11, when solid catalyst 3.7’ large pore MSN-41 is protected 

(e), 3.7-e, there is a significant decrease in enantioselectivity. The loss in enantioselectivity 

may be due to the bulky trimethylsilyl groups associated with the protection that inhibit 

proper interaction of substrate with the active catalytic site of the diphosphine catalysts.  
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Table 3.11 Comparison of enantioselectivity of arylaldehydes using 3.7’ on several different 
MSNs.a 

 
 
 
 
 
 

 
Ar 

 
R 

 
3.7 

 
MSN-48 

3.7-a  
 

 
MSN-41 

3.7-b  
 

MSN-41 
Large 
Pore 
3.7-c  

MSN-41 
Large Pore 
Protected 

3.7’e  
Ph Me 70 76 54 53 46 

Ph iPr 97 97 84 86 52 

Ph nBu 80 84 68 71 50 

4-ClPh Me 69 78 71 75 44 

4-MeOPh Me 76 78 60 65 49 

2-Naphthyl Me 72 83 68 57 40 
a Full conversion.  b Conversion % and e.e.% were determined by 1H NMR and  
HPLC on a Chiralcel AD column for all the arylaldehydes. 

 
 

To verify the immobilization of the Ru(II) catalysts on the inner surface of the pores 

of the mesoporous silica, a control experiment comparing solid silica to mesoporous silica 

was performed.  Shown in Table 3.12, 3.1 was used in the asymmetric hydrogenation of 

aryladehydes.  A decrease of enantioselectivity was observed for all the substrates when solid 

silica was used.  This decrease in enantioselectivity is presumably due to the fact that the 

convex outer surface of the solid silica did not have a beneficial effect on the e.e’s.  In 

contrast, the mesoporous silica offers the concave environment that reinforces the chiral 

induction by the immobilized catalysts.   

 
 
 
 
 
 

RuCl2(TMS-BINAP)(siloxy-DACH)

KOtBu, iPrOH, H2
Ar

R

O

H
Ar

R

OH

0.1% loading
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Table 3.12 Comparison of the enantioselectivity for asymmetric hydrogenation of 
arylaldehydes catalyzed by 3.6 supported on MSN-48 (a) and solid silica (f). 
 

RuCl2(BINAP)(siloxy-DACH)

KOtBu, iPrOH, H2
Ar

R

O

H
Ar

R

OH

0.1% loading

 
 

 

Ar 

 

R 

 

MSN-48, 3.6-a 

 

Silica Gel 

Ph Me 52 33 

Ph iPr 52 36 

Ph nBu 55 45 

4-ClPh Me 52 47 

4-MeOPh Me 63 33 

2-Naphthyl Me 68 52 

        a Full conversion.  b Conversion % and e.e.% were determined by  
       1H NMR HPLC on a Chiralcel AD column for all the arylaldehydes. 

 

3.3 Summary 

In conclusion, we have prepared chiral Ru(diphosphine)(diamine)Cl2 complexes with 

siloxy functionalities that can be readily attached to the silica surface.  We have successfully 

immobilized these Ru complexes onto mesoporous silica nanospheres with both two and 

three-dimensional channels, and demonstrated for the first time the utility of MSNs as 

supports for Ru catalysts in asymmetric hydrogenation of aromatic ketones to afford chiral 

secondary alcohols and racemic arylaldehydes to give chiral primary alcohols.  The 

generality of this catalyst immobilization strategy should allow the design of many highly 

active and enantioselective heterogeneous asymmetric catalysts. 

 
3.4 Experimental Section 
 
3.4.1 General Information 
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 All of the chemicals were obtained from commercial sources and used without further 

purification, unless otherwise noted.  All of the reactions and manipulations were carried out 

under Argon with the use of standard inert atmosphere and Schlenk techniques.  Solvents 

used in all the reactions were dried by standard procedures.  NMR spectra were recorded on a 

Bruker NMR 400 DRX spectrometer.  1H NMR spectra were recorded at 400 MHz and 

referenced to the proton resonance resulting from incomplete deuteration of the deuterated 

chloroform (δ 7.24). 31P{1H} NMR spectra were recorded at 161 MHz and all the chemical 

shifts are reported in ppm relative to the phosphorous resonance of 85% phosphonic acid 

(external standard).  Scanning Electron Microscopy (SEM) images taken with Hitachi 4700 

field emission microscope.  Transmission Electron Microscopy (TEM) images were taken 

with a Philips CM 12 electron microscope at 100 KV. Thermogravimetric analysis (TGA) 

was performed using a Shimadzu TGA-50 analyzer.  Ru contents were measured on an 

Applied Research Laboratories (ARL) SpectraSpan7 Direct Current Plasma (DCP) 

Spectrometer.  BET measurements were taken on a Quantachrome Autosorb-1.  Siloxy-

(R,R)1,2-diaminocyclohexane (siloxy-DACH) was prepared according to a literature 

procedure.10 Arylaldehyde substrates were prepared according to literature procedures.8 

 
3.4.1.1  A typical procedure for Immobilization onto MSN-48 using grafting method 

 A 10% w/w loading mixture of (R,RR)-(xylyl-BINAP)RuCl2(siloxy-DACH) (11mg, 

8.9µmol) and MCM-48 (110mg) in toluene (3ml) was heated @113°C under Argon for 24h.  

Upon cooling to RT, the mixture was washed with toluene (10ml X 3) and dichloromethane 

(10ml X 2).  The loaded silica was dried under reduced pressure for 18 h.  TGA indicated 

6.3% loading by weight. 
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3.4.1.2 A typical procedure for the homogeneous asymmetric hydrogenation of 
aromatic ketones 
 
 Stock solutions of Ru(diphosphine)(diamine)Cl2 precatalyst (2.0mg, 1.5µmol) and 

KOtBu (1.8mg, 15µmol) were each prepared in anhydrous isopropanol (0.7ml X 2) under 

Argon.  Aliquots of (0.1ml) were then individually transferred from each of the stock 

solutions to seven septum-sealed ½ dram vials containing substrate (18µmol).  Each reaction 

vessel was to contain: stir bar, 0.18µmol precatalyst, 1.8µmol base, 18µmol substrate, and 

0.2ml isopropanol.  A needle was added to each vial through the septum before quickly 

transferring the vials into a stainless steel autoclave and sealed.  After purging with H2 six 

times, the final H2 pressure was adjusted to 700psi.  After 24 hours the autoclave was 

depressurized and the reaction mixture was washed with diethyl ether and water twice.  The 

diethyl ether layer was then passed through a mini silica gel column.  The resulting solution 

was concentrated and an aliquot was analyzed on GC to give conversion and ee values. 

 
3.4.1.3 A typical procedure for the heterogeneous asymmetric hydrogenation of 
aromatic ketones 
 
 KOtBu (33mg, 20mmol) and precatalyst supported on MCM-48 (10mg silica 

/0.50µmol precatalyst ) were added to a 1 dram vial containing substrate (50µmol) and stir 

bar.  Under Argon, isopropanol (1ml) was added and a septum with needle was added and the 

reaction vessel was quickly transferred to a stainless steel autoclave and sealed. After purging 

with H2 six times, the final H2 pressure was adjusted to 700psi.  After 24 hours the autoclave 

was depressurized and the reaction mixture was removed and centrifuged (3200rpm X 5min).  

The supernatant was collected and the remaining silica was washed with ether and once again 

centrifuged.  This process was performed a total of 3 times.  The collected ether fractions 
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were washed with water (5mL X 3).  The ether layer was then collected and passed through a 

mini silica gel column.  The resulting solution was concentrated and an aliquot was analyzed 

on GC to give conversion and ee values. 

 
3.4.2 Preparation and characterization of Ru(diphosphine)(siloxy-ED)Cl2 precatalysts 
 
3.4.2.1 [(R,RR)-Ru(BINAP)(siloxy-ED)Cl2], 3.1  
 

(R)-BINAP (25mg, 40.1 µmol) and [Ru(p-cymene)Cl]2Cl2 (12.5mg, 20.5 µmol) were 

added to a Schlenk flask.  Dichloromethane (2mL) and DMF (0.5mL) were added to form an 

orange solution while stirring at RT for 15 min.  The solution was heated at 50°C with 

stirring, for 24 hours, and then cooled to RT.  Following addition of ethylenediamine 

(10.6µL, 40.1µmol), the reaction was stirred at 50°C for 36h.  The excess solvent was pulled 

off under reduced pressure yielding a dark red solid.  The resulting solid was purified on 

silica gel (H:EA/2:1) to give a pure product.  Following concentration, the yellow product 

was collected (36mg, 85% yield). 1H NMR in CDCl3: δ 8.36 (t, 3JH-H = 8.0 Hz, 1H), 8.02 (bs, 

2H), 7.92 (m, 3H), 7.72 (m, 2H), 7.65 (d, 3JH-H =  8.4 Hz, 2H), 7.55 (m, 2H), 7.48 (m, 2H), 

7.32 (m, 6H), 7.11 (m, 2H), 6.76 (t, 3JH-H =  8.0 Hz, 1H), 6.63 (t, 3JH-H =  8.0 Hz, 1H), 6.54 

(m, 3H), 6.45 (d, 3JH-H =  8.4 Hz, 1H), 6.38 (m, 3H),  6.19 (d, 3JH-H =  8.4 Hz, 1H), 3.66 (q, 

3JH-H =  7.1 Hz, 6H), 2.9 (bs, 4H), 2.72 (m, 2H), 2.52 (bs, 1H), 2.32 (bs, 2H), 1.56 (m, 1H), 

1.31 (m, 1H), 1.13 (t, 3JH-H =  6.0 Hz, 6H) 0.45 (bs, 1H). 31P{1H} NMR in CDCl3: δ 46.7 (d, 

5JP-P = 37 Hz), 42.6 ppm (d, 5JP-P = 35 Hz). MS m/z 1058.23 (observed m/z 1023.3 for [M-

Cl]+). 

 
 3.4.2.2 [(R,RR)-Ru(4,4’-TMS-BINAP)(siloxy-ED)Cl2], 3.2 
 
 (R)-4,4’-TMS-BINAP (120mg, 0.16mmol) and [Ru(p-cymene)Cl]2Cl2 (49mg, 
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0.08mmol) were added to a Schlenk flask under Argon.  Following addition of 

dichloromethane (4mL) and DMF (1mL), a dark orange solution formed and was stirred at 

RT for 15min.  The reaction was heated at 50°C for 24 hours and then was cooled to RT.  

Triethoxysilane-ethylenediamine (43µL, 0.16mmol) was added to the solution and stirred at 

RT for 15 min.  The solution was then heated at 50°C for an additional 48 hours.  The 

resulting solution was concentrated under reduced pressure and the resulting red solid was 

purified on silica gel (H:EA/3:1).  The dark yellow product was collected (41mg, 21% yield). 

1H NMR in CDCl3: δ 8.54 (d, 3JH-H = 7.6 Hz, 1H), 8.17 (d, 3JH-H = 8.0 Hz, 1H), 7.99 (m, 2H), 

7.94 (m, 2H), 7.71 (d, 3JH-H =  8.4 Hz, 2H), 7.64 (m, 2H), 7.57 (m, 2H), 7.31 (m, 6H), 7.11 

(m, 2H), 6.67 (m, 2H), 6.46 (m, 4H), 6.36 (bs, 4H), 3.71 (q, 3JH-H =  7.1 Hz, 6H), 2.87 (bs, 

4H), 2.76 (m, 2H), 2.47 (bs, 1H), 2.38 (bs, 2H), 1.56 (m, 1H), 1.31 (m, 1H), 1.15 (t, 3JH-H =  

6.0 Hz, 6H), 0.50 (s, 9H), 0.45 (s, 9H), 0.40 (bs, 1H). 31P{1H} NMR in CDCl3: δ 47.1 (d, 5JP-

P = 34 Hz), 42.6 ppm (d, 5JP-P = 35 Hz).  MS m/z 1202.31 (observed m/z 1167.4 for [M-Cl]+). 

 
3.4.2.3 [(R,RR)-Ru(xylyl-BINAP)(siloxy-ED)Cl2], 3.3 
 
 (R)-xylyl-BINAP (50mg, 0.068mmol) and [Ru(p-cymene)Cl]2Cl2 (20.8mg, 

0.034mmol) were added to a Schlenk flask under Argon and dichloromethane (2mL) and 

DMF (0.5mL) were added to form a dark orange solution.  After stirring at RT for 15 min, 

the solution was heated at 50°C for 18h.  After cooling to RT, triethoxysilane-

ethylenediamine (siloxy-ED) (18.1µL, 0.068mmol) was added under Argon and the solution 

was stirred at RT for 15min.  The reaction was then heated to 50°C for 24h.  After cooling to 

RT the solvent was removed under reduced pressure to give a dark red solid.  The solid was 

purified on silica gel (H:EA/3:1) to give an orange product (18mg, 23% yield).  1H NMR in 

CDCl3: δ 8.40 (t, 3JH-H = 8.0, 1H), 8.09 (t, 3JH-H = 8.4, 1H), 7.78 (bs, 2H), 7.68 (m, 2H), 7.60 
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(d, 3JH-H = 8.8, 2H), 7.54 (m, 2H), 7.36 (d, 3JH-H = 8.0Hz, 1H), 7.27 (bs, 2H), 7.05-7.13 (m, 

3H), 6.98 (s, 1H), 6.94 (s, 1H), 6.74 (t, 3JH-H = 7.8Hz, 1H), 6.65 (t, 3JH-H = 7.6Hz, 1H), 6.23 

(d, 3JH-H = 8.8Hz, 1H), 6.08 (d, 3JH-H = 8.8Hz, 1H), 5.92 (s, 1H), 5.79 (s, 1H), 3.67 (q, 3JH-H =  

6.9 Hz, 6H), 2.83 (m, 4H), 2.70 (m, 2H), 2.47 (bs, 1H), 2.32 (m, 12H), 2.18 (bs, 2H), 1.75 

(m, 12H), 1.56 (m, 1H), 1.31 (m, 1H), 1.14 (t, 3JH-H =  3.6 Hz, 6H) 0.85 (bs, 1H), 0.45 (bs, 

1H). 31P{1H} NMR in CDCl3: δ 45.5 (d, 5JP-P = 34 Hz), 40.4 ppm (d, 5JP-P = 32 Hz).  MS m/z 

1170.25 (observed m/z 1135.5 for [M-Cl]+). 

 
3.4.2.4 [(S,SS)-Ru(SEGPHOS)(siloxy-ED)Cl2], 3.4 
 
 (S)-SEPGHOS (25mg, 41µmol) and [Ru(p-cymene)Cl]2Cl2 (12.5mg, 20.5µmol) were 

added under Argon to a schlenk flask.  Dichloromethane (2ml) and anhydrous DMF (0.5ml) 

were added to the flask under Argon.  The dark orange solution was stirred at RT for 10 m.  

The solution was heated at 50°C for 36h and then cooled to RT to allow for the addition of 

siloxy-ED (10.9µL, 41µmol) and stirred at that temperature for 5 m.  The solution was then 

heated to 50°C for 24h.  Upon completion, the solvent was removed under reduced pressure 

with gentle heating.  The solid product was purified on a silica gel column using hexane/EA 

(2:1) as the eluent.  The yellow product was isolated and characterized (7mg, 16% yield).  1H 

NMR in CDCl3: δ 7.85 (bs, 2H), 7.78 (m, 2H), 7.18-7.40 (m, 8H), 7.10 (t, 3JH-H = 6.2 Hz, 

4H), 7.01 (t, 3JH-H = 7.0 Hz, 4H), 6.85 (m, 2H), 6.47 (d, 3JH-H = 8.0 Hz, 1H), 6.40 (d, 3JH-H = 

8.4 Hz, 1H), 5.77 (s, 1H), 5.69 (d, 3JH-H = 1.6 Hz, 1H), 5.34 (s, 1H), 5.18 (d, 3JH-H = 1.6 Hz, 

1H), 3.65 (q, 3JH-H = 6.9 Hz, 6H), 3.01 (m, 4H), 2.72 (m, 1H), 2.64 (m, 1H), 2.56 (m, 1H), 

2.46 (m, 2H), 1.13 (t, 3JH-H =  7.0 Hz, 9H), 0.51 (m, 2H). 31P{1H} NMR in CDCl3: δ 45.3 (d, 

5JP-P = 34 Hz), 41.5 (d, 5JP-P = 34 Hz).  MS m/z 1046.18 (observed m/z 1011.2 for [M-Cl]+). 
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3.4.2.5 [(S,SS)-Ru(4,4’-tBuSEGPHOS)(siloxy-ED)Cl2], 3.5 
  
 (S)-(4,4’-tBuSEPGHOS) (25mg, 35µmol) and [Ru(p-cymene)Cl]2Cl2 (10.5mg, 

18µmol) were added under Argon to a schlenk flask.  1,2-Dichloroethane (2ml) and 

anhydrous DMF (0.5ml) were added to the flask under Argon.  The dark orange solution was 

stirred at RT for 5 m.  The solution was heated at 50°C for 24h and then cooled to RT to 

allow for the addition of siloxy-ED (10.9µL, 41µmol) and stirred at that temperature for 5 m.  

The solution was then heated to 50°C for 24h.  Upon completion, the solvent was removed 

under reduced pressure with gentle heating.  The solid product was purified on a silica gel 

column using hexane/EA (2:1) as the eluent.  The yellow product was isolated and 

characterized (7mg, 17% yield).  1H NMR in CDCl3: δ 7.86 (bs, 2H), 7.78 (bs, 2H), 7.10-

7.45 (m, 8H), 7.10 (t, 3JH-H = 7.4 Hz, 4H), 7.01 (t, 3JH-H = 7.6 Hz, 4H), 5.72 (d, 3JH-H = 1.6 Hz, 

1H), 5.69 (d, 3JH-H = 1.6 Hz, 1H), 5.30 (d, 3JH-H = 1.6 Hz, 1H), 5.16 (d, 3JH-H = 1.6 Hz, 1H), 

3.67 (q, 3JH-H = 7.1 Hz, 6H), 2.89 (m, 2H), 2.75 (m, 1H), 2.41 (m, 2H), 1.35 (m, 2H), 1.22 (s, 

9H), 1.18 (s, 9H), 1.13 (t, 3JH-H =  7.0 Hz, 9H), 0.85 (m, 1H), 0.49 (m, 1H). 31P{1H} NMR in 

CDCl3: δ 46.1 (d, 5JP-P = 41 Hz), 41.5 (d, 5JP-P = 35 Hz).  MS m/z 1158.3 (observed m/z 

1123.4 for [M-Cl]+). 

 
3.4.3 Preparation and characterization of Ru(diphosphine)(siloxy-DACH)Cl2 
precatalysts 
 
3.4.3.1 [(R,RR)-Ru(BINAP)(siloxy-DACH)Cl2], 3.6   
 
A mixture of R-BINAP (25 mg, 0.04 mmol) and [Ru(p-cymene)Cl]2Cl2 (12.5 mg, 0.0205 

mmol) was added under Argon to a 2-neck Schlenk flask and stirred in dry 

dichloromethane(2 mL) and anhydrous DMF (0.5 mL).  The dark orange solution was heated 

at 50 °C for 18 h and then cooled to room temperature with continued stirring.  Siloxy-1,2-
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diaminocyclohexane (siloxy-DACH) (10.6 µL, 0.033 mmol) was added to the solution and 

the mixture was stirred at room temperature for an additional 15 min.  The solution was then 

heated to 50 °C and stirred for 36 h.  After completion of the reaction, the solvents were 

under removed under reduced pressure.  The resulting red/orange solid was collected and 

purified on silica gel using eluent of hexanes/ethyl acetate (2:1 v/v).  The yellow bands were 

collected and the solvent was removed to afford pure 1 (Yield: 8 mg, 18%).  1H NMR 

CDCl3: 8.36 (t, 3JH-H = 7.6 Hz, 1H), 7.91 (m, 2H), 7.74 (m, 2H), 7.64 (m, 3H), 7.53 (m, 2H), 

7.50 (m, 2H), 7.44 (d, 3JH-H =  8.4 Hz, 2H), 7.34 (bs, 3H), 7.29 (bs, 3H), 7.12 (m, 2H), 6.74 

(t, 3JH-H =  7.6 Hz, 1H),  6.62 (t, 3JH-H =  7.6 Hz, 1H) 6.54 (m, 3H), 6.47 (d, 3JH-H =  8.8 Hz, 

1H), 6.37 (m, 3H), 6.17 (d, 3JH-H =  8.8 Hz, 1H), 3.62 (m, 6H) 2.94 (m, 1H), 2.65 (m, 2H), 

2.25 (s, 12H), 2.21 (s, 2H), 2.12 (m, 1H), 1.74 (s, 12H), 1.13 (t, 3JH-H =  6.0 Hz, 6H), 1.10 (m, 

1H), 0.95 (m, 1H), 0.80 (m, 2H). 31P{1H} NMR in CDCl3: δ 47.2 (d, 5JP-P = 42 Hz), 37.3 (d, 

5JP-P = 39 Hz).  MS m/z 1112.27 for M+ (observed m/z 1077.3 for [M-Cl]+) 

 
3.4.3.2 [(R,RR)-Ru(4,4’-TMS-BINAP)(siloxy-DACH)Cl2], 3.7  

 
(R)-4,4’-TMS-BINAP (25 mg, 0.033 mmol) was added to a Schlenk flask containing 

[Ru(p-cymene)Cl]2Cl2 (10.1 mg, 0.016 mmol).  Dry 1,2-dichloroethane (2 mL) and 

anhydrous DMF (0.5 mL) were added to the mixture to give a dark orange solution.  After 

stirring at r.t. for 15 min, the mixture was heated at 80 °C for 6 hours.  The dark orange 

solution was cooled to r.t. and siloxy-DACH (10.6 µL, 0.033 mmol) was added.  After 

stirring at r.t. for 15 min, the solution was heated at 80 °C for 18 hours.  The solvents were 

removed under reduced pressure and the dark red solid was purified on silica gel column 

(hexanes/ethyl acetate: 4:1 v/v).  Yield: 20 mg (48% yield). 1H NMR CDCl3: δ 8.54 (d, 3JH-H 

= 7.6 Hz, 1H), 8.14 (d, 3JH-H = 8.0 Hz, 2H), 8.05 (m, 2H), 7.94 (m, 4H), 7.64 (m, 2H), 7.57 
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(m, 2H), 7.31 (m, 6H), 7.11 (m, 2H), 6.67 (m, 2H), 6.46 (m, 4H), 6.36 (bs, 4H), 3.62 (q, 3JH-H 

= 6.9 Hz, 6H) 2.94 (m, 1H), 2.65 (m, 2H), , 2.21 (s, 2H), 2.12 (m, 1H), 1.13 (t, 3JH-H =  6.0 

Hz, 6H), 1.10 (m, 1H), 0.95 (m, 1H), 0.80 (m, 2H) 0.55 (s, 9H), 0.45 (s, 9H). 31P{1H} NMR 

in CDCl3: δ 49.1 (d, 5JP-P = 37 Hz), 39.6 ppm (d, 5JP-P = 35 Hz).  MS m/z 1256.35 for M+ 

(observed m/z 1221.5 for [M-Cl]+). 

 
3.4.3.3 [(R,RR)-Ru(xylyl-BINAP)(siloxy-DACH)Cl2], 3.8  

 
A mixture of (R)-xylyl-BINAP (25 mg, 0.034 mmol) and [Ru(p-cymene)Cl]2Cl2 (10.5 

mg, 0.017 mmol) was added to a Schlenk flask.  Dry 1,2-dichloroethane (2 mL) and 

anhydrous DMF (0.5 mL) were added to the mixture to form a dark orange solution.  After 

stirring at r.t. for 15 min, the solution was heated to 80 °C for 6 hours.  Upon cooling the 

mixture to r.t., siloxy-DACH (10.6 µL, 0.033 mmol) was added and the solution was stirred 

at r.t. for 15 min.  The mixture was then heated at 80 °C for 18 hours.  The solvents were 

removed under reduced pressure and the resulting solid was purified on silica gel 

(hexanes/ethyl acetate: 3:1 v/v).  Yield: 18mg (43%). 1H NMR in CDCl3: δ 8.39 (t, 3JH-H = 

8.0 Hz, 1H), 8.12 (t, 3JH-H = 8.0 Hz, 1H), 7.71 (d, 3JH-H =  8.4 Hz, 2H), 7.60 (m, 4H), 7.32 (bs, 

2H), 7.09 (m, 2H), 6.95 (d, 3JH-H =  8.4 Hz, 2H), 6.70 (m, 2H), 6.25 (d, 3JH-H =  8.4 Hz, 1H), 

6.11 (d, 3JH-H =  8.4 Hz, 1H), 5.95 (s, 3H), 3.62 (m, 6H) 2.94 (m, 1H), 2.65 (m, 2H), 2.25 (s, 

12H), 2.21 (s, 2H), 2.12 (m, 1H), 1.74 (s, 12H), 1.13 (t, 3JH-H =  6.0 Hz, 6H), 1.10 (m, 1H), 

0.95 (m, 1H), 0.80 (m, 2H). 31P{1H} NMR in CDCl3: δ 47.2 (d, 5JP-P = 42 Hz), 37.3 (d, 5JP-P = 

39 Hz).  MS m/z 1224.40 for M+ (observed m/z 1189.4 for [M-Cl]+). 

 
3.4.3.4 [(S,SS)-Ru(SEGPHOS)(siloxy-DACH)Cl2], 3.9  

 
(S)-SegPhos (25 mg, 41 µmol) and [Ru(p-cymene)Cl]2Cl2 (12.5 mg, 20.5 µmol) were 
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added under Argon to a schlenk flask.  1,2-Dicloroethane (2 mL) and anhydrous DMF (0.5 

mL) were added to the flask under Argon.  The dark orange solution was stirred at r.t. for 10 

min, and then heated at 80°C for 6 h.  Upon cooling to r.t., siloxy-DACH (13 µL, 41 µmol) 

was added and the mixture was stirred at r.t. for 5 min and then at 80°C for 18 h.  The 

solvents were removed under reduced pressure, and the the solid product was purified on a 

silica gel column using hexane/ethyl acetate (2:1 v/v).  Yield: 11mg (24% yield).  1H NMR in 

CDCl3: δ 7.95 (m, 2H), 7.77 (m, 2H), 7.41 (m, 2H), 7.20 -7.29 (m, 6H), 7.10 (t, 3JH-H = 8.0 

Hz, 4H), 7.01 (t, 3JH-H = 7.2 Hz, 4H), 6.85 (m, 2H), 6.48 (d, 3JH-H = 7.6 Hz, 1H), 6.40 (d, 3JH-H 

= 7.6 Hz, 1H), 5.75 (d, 3JH-H = 1.2 Hz, 1H), 5.69 (d, 3JH-H = 1.2 Hz, 1H), 5.34 (d, 3JH-H = 1.6 

Hz, 1H), 5.18 (d, 3JH-H = 1.6 Hz, 1H), 3.65 (q, 3JH-H = 6.9 Hz, 6H), 3.20 (m, 1H), 2.78 (m, 

2H), 2.59 (m, 1H), 2.48 (m, 1H), 2.24 (m, 2H), 1.55 (m, 2H), 1.23 (m, 4H), 1.13 (t, 3JH-H =  

7.0 Hz, 9H), 1.05 (m, 2H), 0.80 (m, 2H). 31P{1H} NMR in CDCl3: δ 46.5 (d, 5JP-P = 35 Hz), 

38.5 (d, 5JP-P = 32 Hz).  MS m/z 1100.22 for M+ (observed m/z 1065.3 for [M-Cl]+). 

 
 3.4.3.5 [(S,SS)-Ru(tBuSEGPHOS)(siloxy-DACH)Cl2], 3.10  

 
(S)-(4,4’-tBuSegPhos) (25 mg, 35 µmol) and [Ru(p-cymene)Cl]2Cl2 (10.5 mg, 18 

µmol) were added under Argon to a schlenk flask.  1,2-Dicloroethane (2 mL) and anhydrous 

DMF (0.5 mL) were added to the flask under Argon.  The dark orange solution was stirred at 

r.t. for 15 m and then at 80°C for 7 h.  Upon cooling to r.t., siloxy-DACH (11.1 µL, 35 µmol) 

was added and the mixture was stirred at r.t. for 5 min and then at 80 °C for 12 h.  The 

solvents were under reduced pressure, and the resulting solid was purified on a silica gel 

column using hexane/ethyl acetate (4:1 v/v) as the eluent.  Yield: 10 mg (24%).  1H NMR in 

CDCl3: δ 7.89 (bs, 2H), 7.76 (m, 2H), 7.44 (s, 1H), 7.41 (s, 1H), 7.15 -7.31 (m, 6H), 7.10 (t, 

3JH-H = 8.0 Hz, 4H), 7.05 (t, 3JH-H = 7.2 Hz, 4H), 6.99 (m, 2H), 6.48 (d, 3JH-H = 7.6 Hz, 1H), 
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6.40 (d, 3JH-H = 7.6 Hz, 1H), 5.72 (d, 3JH-H = 1.6 Hz, 1H), 5.69 (d, 3JH-H = 1.6 Hz, 1H), 5.29 

(d, 3JH-H = 1.6 Hz, 1H), 5.16 (d, 3JH-H = 1.6 Hz, 1H), 3.65 (q, 3JH-H = 7.1 Hz, 6H), 3.15 (m, 

1H), 2.73 (m, 2H), 2.41 (m, 1H), 2.23 (m, 1H), 1.59 (m, 2H), 1.54 (m, 2H), 1.23 (s, 9H), 1.15 

(s, 9H), 1.13 (t, 3JH-H =  7.0 Hz, 9H), 0.80-1.05 (m, 4H). 31P{1H} NMR in CDCl3: δ 47.6 (d, 

5JP-P = 34 Hz), 38.5 (d, 5JP-P = 35 Hz).  MS m/z 1212.35 for M+ (observed m/z 1177.4 for [M-

Cl]+). 
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CHAPTER 4 
 

HYDROGEN STORAGE IN METAL-ORGANIC FRAMEWORKS 
 
 
 

4.1 Introduction 
 
 With the dwindling fossil fuel reserve and escalating environmental impact from the 

current energy technologies, the world economy is in desperate need of alternative forms of 

energy.  Generating energy from hydrogen- and oxygen-based fuel cells would relieve the 

world’s, and more specifically, the US’s demand on fossil fuels for transportation.  Such a 

“hydrogen economy” would make the US less dependent on foreign oil and curb its world-

leading output of CO2 emissions.  

 The United States Department of Energy has set several goals for the hydrogen 

research community.  On-board hydrogen storage systems for vehicles must be capable of 

powering an average sized car for a distance of 300 miles, a distance requiring 5 kg of 

onboard hydrogen storage.1  The DOE set its numbers at 6.0 wt% and 45 g/L by the year 

2010 and 9.0 wt% and 81 g/L by 2015.2  More recently, the 2010 goal has been revised to 4.5 

wt%.  These numbers are calculated at near-ambient temperatures and applicable pressures 

(less than 100 bar).   

 Several methods are being studied to facilitate hydrogen storage for transportation 

requirements.  One method relies on liquefaction of hydrogen gas which requires cryogenic 

temperatures and/or extremely high pressures.  Compressed H2 technologies have addressed 

storage of hydrogen at pressures of up to 700 bar.  Another storage method receiving notable 
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consideration is storage of hydrogen by way of chemisorption.  Such storage techniques often 

suffer from binding hydrogen too tightly.  For example, metal hydrides such as LaNi5H6.5 

must be at temperatures above 400 K to release hydrogen.1   Physisorption techniques on 

carbon nanotubes and other porous materials often require very low temperatures to 

adequately store hydrogen.  

 Various metal-organic frameworks (MOFs) have been shown to successfully store 

hydrogen via physisorption.  Metal-organic frameworks benefit from being highly porous, 

and having uniform and tunable pore sizes in addition to their well defined hydrogen 

occupation sites.  The pores are often filled with various solvents used in preparations of the 

MOFs.  Upon evacuation of the solvent from the pores of the MOFs, framework integrity can 

remain intact to allow guest molecules (H2) to be readily adsorbed onto the porous structure.3  

H2 is known to interact with both the secondary building unit (SBU) and the organic linkers 

of the MOF. 

 
4.1.1 Effects of pore volume and surface area  
 
 Several factors affect the hydrogen storage abilities of a MOF.  Much attention has 

been focused on preparing highly porous frameworks. The series of “MIL” MOFs have been 

reported by Ferey et al., including MOFs with pore sizes greater than 25 Å,4 and the 

isostructural “IRMOF” series with progressively larger pores were reported by Yaghi et al.5  

Both systems are based on non-interpenetrated networks of carboxylate ligands with pore 

volumes greater than 1.5 cm3/g, and in turn, absorb a large amount of hydrogen at high 

pressures: 6.01 wt% for MIL-1014 and 6.7 wt% for IRMOF-206 at 77K.  As highlighted by 

Zhou et al., large pore volumes and surface areas are necessary for high hydrogen saturation 

uptakes at 77 K.7 
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 Yaghi et al prepared seven MOF materials and studied their sorption behavior at 77 K 

which leads to saturation at pressures between 25 and 80 bar with uptakes from 2.0 to 7.5 wt 

%8.  The chosen MOFs represent a subset of well-characterized materials that exhibit some 

of the highest surface areas experimentally determined to date.  Figure 4.1 shows the metal 

oxide secondary building units (SBUs) and the carboxylate links of the MOFs that were 

investigated.  The isoreticular (IRMOF) series, IRMOF-1,-6,-11, and -20 are derived from 

linking the basic zinc acetate unit, Zn4O(CO2)6, with linear ditopic carboxylates.5a,9  MOF-

177 uses the same SBU and instead uses a tritopic link BTB.10  MOF-74 is constructed from 

infinite 31 (or 32) helical rods of composition Zn[(O)3(CO2)3], and HKUST-111 is composed 

of the Cu2(CO2)4 paddlewheel SBU linked by benzene-1,3,5-tricarboxylate.12 

 
 
Figure 4.1 (a) Zn4O(CO2)6-based MOFs in italics derived from the link in parentheses: 
IRMOF-1 (BDC), IRMOF-6 (CBBDC), IRMOF-11 (HPDC), IRMOF-20 (TTDC), and MOF-
177 (BTB). (b) MOF-74, based on [Zn3[(O)3(CO2)3]}∞ 31 helices and DHBDC. (c) HKUST-
1, based on Cu2(CO2)4 paddlewheels and BTC.  Langmuir surface areas (m2/g) are given 
below each link for the corresponding MOF. 
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 Figure 4.2 shows gravimetric H2 adsorption studies performed on the above MOFs at 

77 K and pressures of up to 90 bar.  Saturation uptake in these MOFs correlates well with 

surface area.  MOF-74 which has a Langmuir surface area of 1,070 m2/g is capable of H2 

saturation (26 bar) of 2.3 wt %.  For IRMOF-20 (SA: 4,590 m2/g) and MOF-177 (SA: 5,640 

m2/g), saturation is reached between 70-80 bar, giving H2 uptakes of 6.7 and 7.5 wt %, 

respectively (Figure 4.3).  It is believed that this trend demonstrates the critical role of the 

organic linker and cannot be applied to MOFs mostly composed of metal oxide sorption 

sites.    

 
 
Figure 4.2 High-pressure H2 isotherms for activated materials at 77 K in gravimetric units 
(mg/g) representing surface excess adsorption, that is, the amount of H2 in excess of what 
would occupy the same free volume if the adsorbent was absent.  Filled markers represent 
adsorption, open markers denote desorption.  
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Figure 4.3 Saturation H2 uptake plotted against Langmuir surface area. 
 
 
 When looking at the volumetric uptake of H2 for these MOFs, an interesting trend 

was observed.  At low pressures (Figure 4.4), Yaghi et al observed the three lowest surface 

area materials, MOF-74, HKUST-1, and IRMOF-11, displayed maximal uptake.8b  When 

accounting for the density of the materials, the MOF materials are much more similar in their 

sorption capacities due to canceling effect of the different densities of the MOFs.  IRMOF-20 

and MOF-177 show the best uptake on volumetric basis (at high pressures) due to a 

combination of substantial H2 uptake and moderate densities.  Yaghi concluded that even 

with materials with extremely high porosity, volumetric storage density could be excellent 

because even highly porous materials can have small pores.  
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Figure 4.4 High-pressure H2 isotherms for activated materials measured at 77 K in 
volumetric untis (g/L). 
 
 
4.1.2 Effects of pore size and interpenetration 
 
 Pore size and interpenetration also play an integral part in the hydrogen uptake ability 

of a MOF.  Studies indicate that smaller pores tend to take up hydrogen more effectively than 

MOFs with larger pores.13  The ideal pore size seems to be on average, 4.5-5 Å or 2.8-3.3 Å 

when van der Waals radii of the atoms composing the pore walls are excluded; this size is 

comparable to the kinetic diameter of H2 (~2.8Å).7  Pores of this size maximize the 

interaction energy between H2 and the multiple interaction sites within the MOF. 

Interpenetrated MOFs are described as those with two or more networks physically 

entangling in the structure to subdivide larger pores of the MOFs into several smaller ones.14  

Since many MOFs are composed of aromatic organic linkers, interpenetration acts as an 

entrapment mechanism in which a hydrogen molecule is in close proximity with several 
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aromatic rings from the interpenetrating networks.15   Interpenetrated MOFs are much less 

common than non-penetrated frameworks.8,16   

 Lin et al prepared two novel fourfold interpenetrated MOFs of cubic topology using 

new aromatic-rich dicarboxylic acids 6,6’-dichloro-2,2’-diethoxy-1,1’-binaphthyl-4,4’-

dibenzoic acid (L1-H2) and 6,6’-dichloro-2,2’-dibenzyloxy-1,1’-binaphthyl-4,4’-dibenzoic 

acid (L2-H2).  Single crystals of [Zn4(µ4-O)(L18)3(dmf)2]•4DMF•3CH3OH•2H2O (1a) and 

[Zn4(µ4-O)(L2)3]•5DMF•5C2H5OH•H2O (2a) were obtained by treating Zn(ClO4)2 with L1-

H2 in DMF and MeOH or ZnI2 with L19-H2 in DMF and EtOH in the presence of 

dimethylaniline at 50 ºC for two days (Scheme 4.1).   
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Scheme 4.1 Synthesis of 4.1a and 4.2a. 
 
 
 Compound 4.1a adopts a 3D interpenetrating network structure that is built from two 

distinct [Zn4(µ-O)(L18)3(dmf)2] clusters (Figure 4.5a).13a  Each type of  [Zn4(µ-

O)(L18)3(dmf)2] cluster in 4.1a is interlinked by the carboxylate groups of L18 ligands to 
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generate an extended neutral 3D network of a cubic topology that is built upon six-connected 

nodes.  The 3D network of 4.1a thus possesses very large cubic cavities of approximately 19 

x 19 x 19 Å (Figure 4.5b).  However, 4.1a avoids extremely large void space by forming a 

fourfold interpenetrated structure (Figure 1c).  Even after fourfold interpenetration, 4.1a still 

possesses significant void space that is occupied by disordered DMF, MeOH, and H2O guest 

molecules.  

 Compound 4.2a adopts a similar fourfold 3D interpenetrating network structure that 

is built from C3-symmetric [Zn4(µ4-O)(L19)3] clusters.  Just like 4.1a, the [Zn4(µ4-O)(L19)3] 

clusters in 4.2a are linked by L19 ligands to form extended 3D network structure of cubic 

topology also similar to that of 4.1a. 

 Powder X-ray diffraction studies indicate the long-range order of the framework for 

structures 4.1a and 4.2a was retained upon complete removal of the guest molecules.  CO2 

uptake studies of 4.1a and 4.2a indicate a Type 1 behavior, which is indicative of 

microporous solids.  Compounds 4.1a and 4.2a possess BET surface area of 502 and 396 

m2/g, respectively.  The micropore volume for 4.1a is 0.20 mL/g and for 4.2a is 0.13mL/g.  

All above characteristics make compounds 4.1a and 4.2a feasible hosts for gas uptake.  

Hydrogen adsorption isotherms were taken in the 0.9-48 bar pressure range on 4.1a and 4.2a 

after excess solvent was removed from the frameworks by heating at 150 ºC for 1 h.  The 

room temperature H2 uptakes were calculated to be 1.12 wt % for 4.1a and 0.98 wt % for 

4.2a at 48 bar which is comparable to MOFs with surface areas 5-10 times greater.17  This 

finding indicates H2 storage materials with lower surface areas such as these MOFs can 

efficiently store H2 because the interpenetration strengthens the interaction between H2 
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molecules and the framework by multiple contacts with several aromatic rings from the 

interpenetrating networks.   

 
 
Figure 4.5 (a) A view of one of the [Zn4(µ-O)(L1)3(dmf)2] clusters of 1; (b) A view of the 
cubic cavity formed by the 3D network (ethoxy groups omitted for clarity; the purple and 
green polyhedra represent the cluster building unit; (c) A schematic presentation of the 
fourfold interpenetration in 1; (d) A space-filling model of 1 as viewed down the b axis 
(solvent molecules have been omitted); gray C, red O, blue N, green Cl, turquoise Zn. 

 
 
Thermal activation of MOFs prior to gas uptake experiments has proven to increase 

the amount of hydrogen able to be adsorbed.18  Activation of the MOF removes both free 

solvent from the within the channels as well the solvent molecules coordinatively bound to 

the metal centers or the metals contained within the SBUs.  Removal of solvent ligands from 

the metals with a MOF leaves the unsaturated metal center (UMC) exposed on the interior 
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surfaces and open to hydrogen interaction.  Incorporation of UMCs into a MOF offers a 

viable method to increase hydrogen uptake. 

Chen et al. prepared MOF-505 by way of solvothermal reaction of 3,3’,5,5’-

buphenyltetracarboxylic acid (H4bptc) and Cu(NO3)2•2.5H2O and DMF/EtOH/H2O.  The 

compound was formulated to be [Cu2(bptc)(H2O)2(dmf)3(H2O)].18a  To determine whether 

the framework structure is maintained upon evacuation of the pores, gas sorption isotherms 

were obtained using an instrument capable of measuring the change in mass of samples.  

MOF-505 was activated by washing in acetone to exchange DMF guest molecules.  The 

resulting blue-green solid was loaded onto the instrument and was evacuated in three stages 

(I-III), with both weight loss, color change, and gas uptake being recorded.  Stage I consists 

of evacuation (<10-3 Torr) and 42% weight loss, change in color to light blue.  Stage 2 

consisted of heating the sample to 70 °C for 15 h under vacuum to give 5.3% weight loss and 

produced a dark blue colored material.  Stage III heated sample to 120 °C for 12h decreasing 

the weight 4.7%, turning the material a purple color.   

Nitrogen and hydrogen isotherms were obtained at each of the activation stages (I-III) 

(Table 4.1).  The nitrogen isotherms demonstrate reversible type-1 behavior indicative of 

permanent porosity.  Each stage represents removal of non-coordinated guests which has two 

positive effects on adsorption capacity: a decrease in sample mass and an increase in 

available micropore volume and specific surface area.    

Removal of the water ligands axially bound to the copper centers also increases 

micropore volume and specific surface area and in addition, introduces open metal sites that 

enhance hydrogen-framework interaction. Stage I yields an initial hydrogen uptake of 14.1 

mg/g (1.41 wt % H2).  The second activation step removes an additional 5.3 wt % (partial 
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dehydration) and increases the H2 uptake by 5.6 mg/g (19.7 mg/g, 1.97 wt % H2).  Further 

removal of 4.7 wt % at Stage III (complete dehydration) increases the hydrogen uptake 

capacity by an additional 5.0 mg/g tp 24.7 mg/g or 2.47 wt %.  Stage I yields an initial 

increase in H2 uptake of 0.34 mg/g per percent mass loss whereas the last two activation 

steps (Stages II and III, dehydration with loss of six water molecules per Cu2bptc formula 

unit) show a corresponding increase of 1.06 mg/g per percent mass loss.  At stage I, the H2 

uptake is 14.1 mg/g while the fully activated material at Stage III containing open metal sites 

displays an uptake nearly twice as high (24.7 mg/g) despite only a 10 % mass loss.  

 
4.1.3 Effects of bridging ligands  

Consideration must also be given to the structure and functionalization of the ligands 

contained within a MOF.  Roswell et al. shows that an increase in the aromaticity of the 

organic linkers may lead to a dramatic increase in hydrogen uptake.5  This study includes 

measurements performed on a set of MOF materials in which the Zn4O(CO2)6 cluster is 

linked by chemically diverse organic units.  The internal surface area and the number of rings 

in the organic linker are thought to increase the ability of the MOFs to store hydrogen. 

Five materials were prepared from the caboxylate links shown in Figure 4.6.   The 

IRMOFs studied include IRMOFs-1, -8, -119, and more recent compounds MOF-17710 and 

IRMOF-18.5  These materials in particular were chosen for their large surface areas and 

subtle chemical diversity.  Each framework is constructed by octahedrally linking 

Zn4O(CO2)6 clusters with organic units.  As a result, the surface sites on the inorganic 

component should be identical in each case, and any difference in hydrogen capacity can be 

attributed to differences in the organic units.    
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Figure 4.6 (a) Isoreticular metal organic frameworks, Zn4O(L)3, are constructed by linking 
zinc oxide clusters with linear carboxylates L such as those shown.  (b) The structure of 
MOF-177, Zn4O(BTB)2, is formed by linking the same clusters with a trigonal carboxylate.  
The large void regions are illustrated by yellow spheres with diameters equal to the distance 
of separation between the frameworks’ van der Waals surfaces.   
 
 

The materials were activated by exchanging the guest solvent molecules with 

chloroform followed by evacuation and then subjected to N2 and H2 adsorption experiments.  

At the highest pressure achieved in these experiments (~750 Torr), the maximum uptake 

varies significantly ranging from 4.2 H2 molecules for IRMOF-18 to 9.3 molecules for 

IRMOF-11 (Table 4.1).  Quantitatively, the maximum uptake scales with the number of 

organic rings per unit formula.  In addition, when comparing IRMOFs-1 and -18 whose 

organic linkers differ only by the pendant methyl groups on the phenylene spacer, similar 

adorption results are obtained.  The slight difference in gravimetric capacity of H2 is mainly 

due to their difference in density. 
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Table 4.1 Sorption Data for MOFs measured Gravimetrically at 77 K. 
Material N2 (mg/g) SAa (m2/g) H2

b (mg/g) H2 per f.u.b 
IRMOF-1 965 3362 13.2 5.0 
IRMOF-8 421 1466 15.0 6.9 
IRMOF-11 548 1911 16.2 9.3 
IRMOF-18 431 1501 8.9 4.2 
MOF-177 1300 4526 12.5 7.1 

aCalculated assuming a monolayer coverage of close-packed N2 with a cross-sectional area of 
16.2 Å2/molecule.  bAt 1 atm, f.u. = Zn4OLx formula unit.  
  

Hydrogen isotherms for the activated materials were measured gravimetrically at 77 

K. (Figure 4.7).  The isotherms do not exhibit hysteresis which confirms the hydrogen 

interaction with the MOFs is a physisorption.  The large initial slopes for IRMOFs-11, and -8 

indicate a higher affinity for hydrogen when compared to the other MOFs tested.  As shown 

in Figure 4.7 inset, complete uptake and desorption can be achieved in a matter of minutes at 

77 K and can be repeated for a number of runs.  This behavior is expected for such weak 

hydrogen-framework interaction.             

 

Figure 4.7 Hydrogen isotherms for the activated materials measured gravimetrically at 77 
K(adsorption, filled circles; desorption, empty circles).  The inset shows the time-dependent 
cycling of IRMOF-11 between 0 and 1 atm of H2. 
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4.2 4,8-connected metal-organic frameworks  

Metal-organic frameworks (MOFs) have emerged as a class of very promising hybrid 

functional materials due to the ability to tune their properties in a modular fashion.19 As 

described earlier, a family of MOFs of the primitive cubic network (pcu) topology was 

systematically constructed from 6-connected [Zn4(µ4-O)(O2CR)6] secondary building units 

(SBUs) and 2-connected linear dicarboxylate bridging ligands of varied lengths to afford 

isoreticular porous materials with tunable pore/channel sizes, shapes, and functionalities.20 

Carboxylate-bridged copper paddle-wheels represent another interesting SBU for the 

isoreticular synthesis of MOFs because of their enhanced stability over the [Zn4(µ4-

O)(O2CR)6] SBUs.  Indeed, the HKUST-1 with the framework formula of 

[Cu3(BTC)2(H2O)3] that is built from copper paddle-wheel SBUs still serves as a benchmark 

material in both stability and gas uptake capacity.12  However, the lower connectivity (4) of 

the paddle-wheel SBU makes it difficult to implement the isoreticular synthesis.  For 

example, when copper paddle-wheels are combined with readily available linear 

dicarboxylate bridging ligands, 2-D networks are expected based on topological 

considerations.   

We and others have recently demonstrated the ability to construct 4,4-connected 

MOFs of the PtS and related topology based on copper paddle-wheels and tetracarboxylate 

bridging ligands.21,22 We are particularly interested in designing robust MOFs based on 

aromatics-rich bridging ligands for gas storage applications.13a The use of elongated aromatic 

tetracarboxylate bridging ligands has however led to severe framework distortion (breathing) 

of these MOFs upon solvent removal which significantly reduces the porosity and negatively 

impacts the gas uptake capacity.4  This chapter describes a new strategy to rigidify the 
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frameworks by constructing 4,8-connected MOFs of the scu topology based on copper 

paddle-wheels and aromatics-rich octa-carboxylic acid bridging ligands. 

 
 

Figure 4.8 Representative structures of the rare scu topology. 

 
4.3 Results and discussion 

4.3.1 Synthesis and characterization of L48 and La48 ligands  

The new 1,1’-binaphthyl-derived ligand L20-H8 of the L48 series was synthesized by 

a Pd-catalyzed Suzuki coupling between 4,4’,6,6’-tetrabromo-2,2’-diethoxy-1,1’-binaphthyl 

and dimethyl-5-(pinacolboryl)isophthalate followed by base-catalyzed hydrolysis (Scheme 

4.2).  L21-H8 was obtained by deprotecting the ethoxy groups of the methyl ester of L20-H8.  

L22-H8 was prepared in a similar manner, starting with the 2,2’-benzyl protected tetra-bromo 

compound in place of the 2,2’-ethoxy protected compound (Scheme 4.3). 

The new 1,1’-binaphthyl-derived ligand L24-H8 of the La48 series was synthesized by 

starting from a Pd-catalyzed Sonogashira coupling between 4,4’,6,6’-tetrabromo-2,2’-

diethoxy-1,1’-binaphthyl and trimethylsilylacetylene followed by base-catalyzed 

deprotection (Scheme 4.4).  The deprotected 4,4’6,6’-tetraacetylene intermediate was then 
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reacted with dimethyl 5-bromoisophtalate under Sonogashira coupling conditions.  The 

resulting methyl ester was then either directly hydrolyzed to give the 2,2’-ethoxy-protected 

octa-acid compound (L23-H8) or subjected to a series of deprotection and hydrolysis steps to 

give 2,2’-hydroxy compound (L24-H8). L6-H8 was prepared in a similar manner, starting with 

the 2,2’-benzyl protected tetra-bromo compound in place of the 2,2’-ethoxy protected 

compound (Scheme 4.5).  All the intermediates and ligands were characterized by NMR 

spectroscopy and high resolution mass spectrometry.  Representative 1H NMR spectra of the 

methyl ester of L22-Me8 and L22-H8 are shown in Figure 4.9 and Figure 4.10, respectively.  
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Scheme 4.2 Reagents and conditions: (i) Pd(PPh3)4, CsF, DME, 95ºC, 3d; (ii) 2M NaOH, 
THF, MeOH, 70 ºC, 24h; (iii) BBr3, CH2Cl2, 0 ºC to RT, 24h; (iv) cat. H2SO4, MeOH, 70 ºC, 
4h; (v) 2M NaOH, THF, MeOH, 70 ºC, 24h. 
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Scheme 4.3 Reagents and conditions: (i) BBr3, CH2Cl2, 0 °C to RT (ii) KOH, acetone, reflux, 
2h; (iii) Pd(PPh3)4, CsF, DME, 95ºC, 3d; (iv) 2M NaOH, THF, MeOH, 70 ºC, 24h. 
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Scheme 4.4 Reagents and conditions: (i) Pd(PPh3)2Cl2, CuI, NEt3, toluene, 100 ºC, 3d; (ii) 
K2CO3, THF, MeOH, RT. 1.5 h; (iii) Pd(PPh3)2Cl2, CuI, NEt3, THF, 70 ºC, 3d (iv) 2M 
NaOH, THF, MeOH, 70 ºC, 24h; (v) BBr3, CH2Cl2, 0 ºC to RT, 24h; (vi) cat. H2SO4, MeOH, 
70 ºC, 4h; (vii) 2M NaOH, THF, MeOH, 70 ºC, 24h. 
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Figure 4.9 1H NMR of L22-Me8. 
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Figure 4.10 1H NMR of L22-H8. 

 
4.3.2 Synthesis and characterization of 4,8-connected MOFs  

When treated with Cu(II) salts in DEF or DMF at 80 ºC, single crystals of 

[Cu4(L20)(H2O)4]·12DEF·2H2O (4.1), [Cu4(L21)(H2O)4]·14DMF·2H2O (4.2), and 

[Cu4(L22)(H2O)4]·8DMF·13H2O (4.3), [Cu4(L23)(H2O)4]·20DEF (4.4), 

[Cu4(L24)(H2O)4]·16DMF·H2O (4.5), and [Cu4(L25)(H2O)4]·14DMF (4.6) were obtained 

(Scheme 4.6).  The formulae for 4.1-4.6 were established by TGA analyses, 1H NMR 

spectroscopy, and single crystal X-ray structure determination. To ensure consistent results, 

each sample was treated in exactly the same way for both TGA and 1H NMR experiments 

(Figures 4.11-4.12 and 4.13-4.19, respectively).  Fresh crystals were harvested by quick 

filtration, and briefly dried on filter paper under air.  The sample was then divided and loaded 

into screw-capped vial with CD3OD or the sample tray in TGA. The organic solvent inside 

the crystals is either DEF or DMF which has been exchanged by CD3OD, and its exact 

amount was determined by calibrating against the internal standard, mesitylene.  The total 

amounts of the solvents were obtained by TGA, the amount of water molecules was 

calculated by subtracting DEF/DMF from the total solvent amount.  The framework 
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structures of 4.1 to 4.6 were unambiguously determined by single-crystal X-ray diffraction 

studies.  
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Scheme 4.6 Crystal growth of 4.1-4.6. 
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Figure 4.11 Thermogravimetric analyses for 4.1-4.3. 
 

 
 
Figure 4.12 Thermogravimetric analyses (TGA) measurements for 4.4-4.6. 
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Figure 4.13 1H NMR spectroscopic determination of solvent content in 4.1, mesitylene 
(Mes) was added as an internal standard. 
 
 

 
 

Figure 4.14 1H NMR spectroscopic determination of solvent content in 4.1’, mesitylene 
(Mes) was added as an internal standard. 

Wcrystal(mg) 17.4 
WMes(mg) 8.6 
WDEF (mg)  
(From NMR) 8.3 

WDEF % 48.2% 
W(DEF+H2O)%  
(From TGA) 52.2% 

WH2O% 4.0% 
Formula (4.1) 

[Cu4(R-L20)(H2O)4]·12DEF·2H2O 

 

Wcrystal(mg) 15.3 
WMes(mg) 8.6 
WDEF (mg)  
(From NMR) 7.1 

WDEF % 46% 
W(DEF+H2O)%  
(From TGA) 50.9% 

WH2O% 4.3% 
Formula (4.1’) 

[Cu4(rac-L20)(H2O)4]·12DEF·2H2O 
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Figure 4.15 1H NMR spectroscopic determination of solvent content in 4.2, mesitylene 
(Mes) was added as an internal standard. 

 
Figure 4.16 1H NMR spectroscopic determination of solvent content in 4.3, mesitylene was 
added as an internal standard.  
 

Wcrystal(mg) 11.9 
WMes(mg) 8.6 
WDEF (mg)  
(From NMR) 5.3 

WDEF % 44.6% 
W(DEF+H2O)%  
(From TGA) 49.1% 

WH2O% 4.4% 
Formula (4.2) 

[Cu4(R-L21)(H2O)4]·14DMF·2H2O 
 

Wcrystal(mg) 20.14 
WMes(mg) 8.6 
WDEF (mg)  
(From NMR) 5.22 

WDEF % 25.4 
W(DEF+H2O)%  
(From TGA) 39.0% 

WH2O% 13.6% 
Formula (4.3) 

[Cu4(R-L22)(H2O)4]·8DMF·13H2O 
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Figure 4.17 1H NMR spectroscopic determination of solvent content in 4.4, mesitylene was 
added as an internal standard.  

 
Figure 4.18 1H NMR spectroscopic determination of solvent content in 4.5, mesitylene was 
added as an internal standard.  
 

Wcrystal(mg) 14.2 
WMes(mg) 8.6 
WDMF (mg)  
(From NMR) 6.26 

WDMF % 44.1% 
W(DMF+H2O)%  
(From TGA) 50.4% 

WH2O% 6.3% 
Formula (4.5) 

[Cu4(R-L24)(H2O)4]·16DMF·5H2O 
 

Wcrystal(mg) 8.32 
WMes(mg) 8.6 
WDEF (mg)  
(From NMR) 4.88 

WDEF % 58.7% 
W(DEF+H2O)%  
(From TGA) 60.6% 

WH2O% 1.9% 
Formula (4.4) 

[Cu4(R-L23)(H2O)4]·20DEF 
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Figure 4.19 1H NMR spectroscopic determination of solvent content in 4.6, mesitylene was 
added as an internal standard.  
 
 

Compound 4.1 crystallizes in the tetragonal P4 space group with two copper atoms, 

one half L20 ligand, and two water molecules for the framework in the asymmetric unit 

(Table 4.2). We obtained a similar crystalline MOF 4.1' when racemic L20-H8 was used in 

place of (R)-L20-H8. Interestingly, single crystal X-ray structure determination showed that 

the racemic L20-H8 self-resolved during the MOF growth to give single crystals of 4.1' that 

contained racemically twinned domains.  The structure of 4.1' is thus the same as that of 4.1 

with the exception of racemic twinning. 

 

 

 

 

Wcrystal(mg) 9.55 
WMes(mg) 8.6 
WDMF (mg)  
(From NMR) 3.87 

WDMF % 40.5% 
W(DMF+H2O)%  
(From TGA) 43.2% 

WH2O% 2.6% 
Formula (4.6) 

[Cu4(R-L25)(H2O)4]·14DMF 
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Table 4.2 Crystal data and structure refinement for 4.1, 4.1’, 4.2 and 4.3. 

Compound 4.1 4.1’ 4.2 4.3 
Empirical formula C28H15O11Cu2 C28H15O11Cu2 C26H11O11Cu2 C33H6O11Cu2 
Formula weight 645.41 645.41 621.39 705.48 
Temperature (K) 143 200 200 200 
Wavelength (Å) 1.54178 1.54178 1.54178 1.54178 
Crystal system Tetragonal Tetragonal Tetragonal Tetragonal 
Space group P4 P4 P4 P4 

a = 18.2715(3) a = 18.2959(3) a = 18.0725(9) a = 18.0648(12) 
b = 18.2715(3) b = 18.2959(3) b = 18.0725(9) b = 18.0648(12) 
c = 17.0912(3) c = 17.1099(3) c = 17.1854(11) c = 17.1132(12) 

α = 90 α = 90 α = 90 α = 90 
β = 90 β = 90 β = 90 β = 90 

Unit cell dimensions 

γ = 90 γ = 90 γ = 90 γ = 90 
Volume (Å3) 5705.86(17) 5727.37(17) 5613.0(5) 5584.7(5) 
Z 4 4 4 4 
Density (calcd. g/cm3) 0.751 0.748 0.735 0.839 
Absorption coeff. (mm-

1) 1.178 1.174 1.185 1.236 

F(000) 1280 1280 1232 1400 
Crystal size (mm) 0.5×0.4 ×0.05 0.4×0.4×0.05 0.4×0.4×0.05 0.4×0.2×0.05 
Crystal color & shape Blue thin plate Blue thin plate Blue thin plate Blue thin plate 
θ range data collection 2.59 – 59.04 2.41 – 66.07 2.44-39.90 2.58-44.47 

-20< h <12 -21< h <19 -15< h <10 -16< h <16 
-19< k <19 -21< k < 21 -9< k <14 -16< k <16 Limiting indices 
-16< l <18 -20< l < 19 -12< l <13 -15< l <15 

Reflections collected 15723 28709 5220 10516 
Independent reflections 7236 9676 3150 4016 
Refinement method Full-matrix least-square on F2 
Data/restraints/paramet
ers 7236/239/401 9676/239/403 3150/242/391 4016/251/314 

Goodness-of-fit on F2 
0.936  

(0.938, 
restrained) 

1.02 
 (1.03, 

restrained) 

0.842 
(0.850,restraine

d) 

1.046 
(1.012, 

restrained) 
R1 = 0.0563 R1 = 0.0546 R1 = 0.0644 R1 = 0.0774 Final R indices 

[I>2σ(I)]a,b wR2 = 0.1473 wR2 = 0.1519 wR2 = 0.1424 wR2 = 0.1899 
R1 = 0.0697 R1 = 0.0650 R1 = 0.1262 R1 = 0.1295 

R indices (all data) 
wR2 = 0.1564 wR2 = 0.1606 wR2 = 0.1614 wR2 = 0.2113 

Flack 0.10(5) 0.47(6) 0.01(1) 0.27(14) 
a R(F) =Σ||Fo| - |Fc||/Σ|Fo|.  b RW(F2) = [Σ{w(Fo

2 - Fc
2)2}/Σ{w(Fo

2)2}]0.5; w-1 = σ2(Fo
2) + (aP)2 + bP, 

where P= [Fo
2 + 2Fc

2]/3 and a and b are constants adjusted by the program. 
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The Cu atoms coordinate to four carboxylate oxygen atoms of four different L20 

ligands to form [Cu2(O2CR)4] paddle-wheels that are shown as red rectangles in Figure 4.20.  

Each Cu atom also coordinates to a terminal water molecule in the axial position.  The L20 

ligand is linked to eight copper paddle-wheels via the bridging carboxylate groups in a 

rectangular prismatic fashion.  The copper paddle-wheels thus serve as 4-connected nodes 

whereas the L20 ligands act as 8-connected nodes, and as a result, 4.1 adopts the known but 

very rare (4,8)-connected scu topology with the Schlafli symbol {44·62}2{416·612} (Figure 

4.21). Compound 4.1 represents only the third MOF with the scu topology and the first one 

that is built from an 8-connected bridging ligand.  

 

Figure 4.20 (a) A view of [Cu2(O2CR)4] paddle-wheels (represented as red rectangles) and 
their connectivity with the L20 ligand (represented as blue rectangular prism) in 4.1. 
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Figure 4.21 A simplified connectivity scheme of 4.1 showing the scu topology. 

 
Compounds 4.2, 4.3, 4.4, and 4.6 are isostructural to compound 4.1 with the same 

space group and connectivity (Table 4.3). Compound 4.5 crystallizes in the orthorhombic 

C222 space group and has very similar structural characteristics to the other compounds.  

Because of the elongated L20- L22 ligands, 4.1, 4.2, and 4.3 possess very large solvent 

accessible volume of 61.0%, 64.7%, and 52.7% of the unit cell volume as calculated by 

PLATON,23 respectively.  Consistent with this, 4.1, 4.2, and 4.3 exhibited significant TGA 

solvent weight loss of 51%, 49%, and 39% in the 25-280 oC temperature range, respectively. 

As expected, the larger pore compounds 4.4-4.6, show even greater solvent accessible 

volumes of 67.9%, 70.3%, and 62.6%, respectively.  Experimental weight losses of 61%, 

50%, and 41%, respectively, were obtained by TGA for 4.4-4.6. These numbers show 

significant increase in solvent capacity when compared to the shorter L48 system.  

Comparisons between calculated and experimental values are in Table 4.4.   
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Table 4.3 Crystal data and structure refinement for 4.4, 4.5, and 4.6. 

Compound 4.4 4.5 4.6 
Empirical formula C32H6O11Cu2 C30H6O11Cu2 C77H12O22Cu4 
Formula weight 693.45 669.45 1543.03 
Temperature (K) 200 200 296 
Wavelength (Å) 1.54178 1.54178 1.54178 
Crystal system Tetragonal Orthorhombic Tetragonal 
Space group P4 C222 P4 

a = 18.8423(19)  a = 24.495(8) a = 19.02890(10) 
b = 18.8423(19) b = 27.929(10) b = 19.02890(10) 
c = 21.921(3) c = 22.130(11) c = 21.9107(3) 
α = 90 α = 90 α = 90 
β = 90 β = 90 β = 90 

Unit cell dimensions 

γ = 90 γ = 90 γ = 90 
Volume (Å3) 7782.7(14) 15140(11) 7933.84(12) 
Z 4 8 2 
Density (calcd. g/cm3) 0.592 0.587 0.646 
Absorption coeff. (mm-

1) 0.882 0.897 0.895 

F(000) 1376 2656 1532 
Crystal size (mm) 0.4×0.2 ×0.03 0.3×0.3×0.02 0.4×0.4×0.03 
Crystal color & shape Blue thin plate Blue thin plate Blue thin plate 
θ range data collection 2.02 – 40.18º 2.00 – 33.48º 2.02-50.45º 

-14< h <15 0< h <17 -19< h <19 
-15< k <15 0< k < 19 -16< k <16 Limiting indices 
-17< l <18 0< l < 15 -20< l <21 

Reflections collected 10165 1616 16071 
Independent reflections 4193 1616 7594 
Refinement method Full-matrix least-square on F2 
Data/restraints/paramet
ers 4193/458/427 1616/169/179 7594/227/458 

Goodness-of-fit on F2 0.883  
(0.883, restrained) 

0.849 
 (0.849, restrained) 

0.808 
(0.850,restrained) 

R1 = 0.0635 R1 = 0.0856 R1 = 0.0495 Final R indices 
[I>2σ(I)]a,b wR2 = 0.1265 wR2 = 0.1804 wR2 = 0.1026 

R1 = 0.1046 R1 = 0.1010 R1 = 0.0688 
R indices (all data) 

wR2 = 0.1402 wR2 = 0.1841 wR2 = 0.1108 
Flack 0.36(11) -0.3(2) 0.17(6) 

a R(F) =Σ||Fo| - |Fc||/Σ|Fo|.  b RW(F2) = [Σ{w(Fo
2 - Fc

2)2}/Σ{w(Fo
2)2}]0.5; w-1 = σ2(Fo

2) + (aP)2 
+ bP, where P= [Fo

2 + 2Fc
2]/3 and a and b are constants adjusted by the program. 
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Table 4.4: Comparison of theoretical solvent accessible pore volume and experiemtnal 
solvent weight loss. 

Crystal Theoretical 
void space 

Experimental 
weight loss 

4.1 61.0 51 

4.2 64.7 49 

4.3 52.7 39 

4.4 67.9 61 

4.5 70.3 50 

4.6 62.6 41 

 

As shown in Figures 4.22c and 4.22d, compound 4.2 possess square channels of ~7×7 

Å along the c axis and rectangular channels of ~5.3×10.6 Å along the (110) direction.  The 

ethoxy groups of the L20 ligands protrude into the open channels that run along the c axis and 

the (110) direction in 4.1, thus reducing the open channel sizes.  As expected, the bulkier 

benzyloxy groups in 4.3 reduce the open channel sizes even further, with the open channel of 

~7×4 Å along the c axis (Figure 4.22e) and the open channels of ~5.3×4.4 Å and 4.0×2.4 Å 

along the (110) direction due to the protruding benzyloxy groups (Figure 4.22f). 

 As shown in Figures 4.23c and 4.23d, compound 4.5 possess channels of ~7×10.3 Å 

along the c axis and rectangular channels of ~9.2×16 Å along the (110) direction compared to 

10.6 Å diameter in the shorter octa-acid system.    The ethoxy groups of the L23 ligands 

protrude into the open channels that run along the c axis and the (110) direction in 4.4, thus 

reducing the open square channel sizes to ~9.5×9.5 Å along the c axis and rectangular 

channels of ~9.2×16 Å along the (110) direction. As expected, the bulkier benzyloxy groups 

in 4.6 reduce the open channel sizes even further, with the open channel of ~7.2×7.2 Å along 

the c axis (Figure 4.23e) and the open channels of ~6.0×6.7 Å and 6.7×7.8 Å along the (110) 

direction due to the protruding benzyloxy groups (Figure 4.23f). 
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Figure 4.22 (a) Space-filling model of 4.1 as viewed down the c axis, showing irregular open 
channels with the largest dimension of ~7 Å.  (b) Space-filling model of 4.1 as viewed along 
the (110) direction, showing irregular channels with the largest dimension of 10.6 Å.  (c) 
Space-filling model of 4.2 as viewed down the b axis, showing square open channels of ~7 Å 
in each side.  (d) Space-filling model of 4.2 as viewed along the (110) direction, showing 
rectangular channels of ~5.3×10.6 Å.  (e) Space-filling model of 4.3 as viewed down the c 
axis, showing open channels of ~7 × 4 Å.  (f) Space-filling model of 4.3 as viewed along the 
(110) direction, showing two different open channels of ~5.3×4.4 Å and 4.0×2.4 Å. 

b 

d 

e f 

a 

c 



 128 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4.23 (a) Space-filling model of 4.4 as viewed down the c axis, showing open square 
channels with the largest dimension of ~9.5×9.5 Å.  (b) Space-filling model of 4.4 as viewed 
along the (110) direction, showing channels with the largest dimension of 16 Å.  (c) Space-
filling model of 4.5 as viewed down the c axis, showing open channels with dimensions of 
~7×10.3 Å.  (d) Space-filling model of 4.5 as viewed along the (110) direction, showing 
rectangular channels of ~9.2×16 Å.  (e) Space-filling model of 4.6 as viewed down the c axis, 
showing open channels of ~7.2×7.2 Å.  (f) Space-filling model of 4.6 as viewed along the 
(110) direction, showing two different open channels of ~6.0×6.7 Å and 6.7×7.8 Å. 

a b 
 

d c 

e f 
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4.3.3 Nitrogen adsorption characterization studies  

The permanent porosity of 4.1, 4.2, and 4.3 was established by nitrogen adsorption at 

77 K. After activation at 60 oC under vacuum, 4.1 exhibited a Langmuir surface area of 2486 

m2/g (Figure 4.24) whereas 4.2 exhibited a Langmuir surface area of 2650 m2/g.  Compound 

4.3 exhibited a significantly lower Langmuir surface area of 1841 m2/g.  BET surface areas 

are 2149, 2285, and 1605 m2/g for 4.1, 4.2 and 4.3, respectively.24 This porosity trend is 

entirely consistent with the increasing steric bulk of hydroxy, ethoxy, and benzyloxy groups 

on the 2,2’-position of the binaphthyl moieties of the octa-carboxylic acid bridging ligands.   

 

Figure 4.24 Experimental and calculated N2 adsorption isotherms for 4.1 (black), 4.2 (red), 
and 4.3 (blue).  Solid triangles (adsorption), open triangles (desorption), and solid lines 
(GCMC simulation results). 

 

Notably, the experimental surface areas of 4.1 and 4.2 perfectly agree with those 

calculated using the simulated N2 adsorption isotherms; grand canonical Monte Carlo 

(GCMC) simulations25 gave calculated Langmuir surface areas of 2502 and 2592 m2/g for 
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4.1 and 4.2, respectively.  The GCMC simulation of 4.3 gave slightly higher Langmuir 

surface area of 2134 m2/g than the experimental result (1841 m2/g).  This discrepancy could 

be caused by the flexible (and disordered) nature of the bulky benzyloxy groups.  Upon 

desolvation, the benzyloxy group can move around to generate a portion of pores that are 

smaller than the dynamic diameter of adsorbate molecules (N2).  The GCMC simulation, on 

the other hand, assumes rigid orientation of the protruding benzyloxy groups and gives the 

idealized surface area.  The N2-inaccessible pores can account for the discrepancy between 

the experimental and GCMC simulated surface areas for 4.3. 

The BET and Langmuir surface areas were calculated from the pressure range of 

P/P0=0.01-0.10 and 0.001-0.30, respectively (Figure 4.25).  All of the BET plots have large 

negative BET constants, indicating no multilayer adsorption (Table 4.5).  The Langmuir 

model is thus more appropriate for 4.1-4.3 (Figure 4.26).  

 
Table 4.5 BET and Langmuir surface areas obtained by N2 adsorption isotherms. 
 

Crystal 
BET Surface Area 

(m2/g) 
P/Po= 0.01-0.10 

BET Constant Value 
Langmuir Surface 

Area (m2/g) 
P/Po = 0.001-0.30 

4.1 2149 -680 2486 
4.2 2285 -770 2650 
4.3 1605 -1065 1841 
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4.25 BET plots of 4.1-4.3 and their linear fit lines. Selected range of P/Po from 0.02 to 0.10.  
 

 

4.26 Langmuir plots of 4.1-4.3 and their linear fit lines.  Selected range of P/Po from 0.001 to 
0.30. 
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The pore sizes of 4.2 have also slightly increased compared to those of 4.1 (Figure 

4.27). This trend is consistent with the slightly less porous structure of 4.1 due to the steric 

bulk of the ethoxy groups.  The pore sizes of 4.3 are however very similar to those of 4.1, 

which is inconsistent with the steric difference between the ethoxy and benzyloxy groups.  In 

fact, the pore sizes derived from GCMC simulated adsorption isotherm for 4.3 are smaller 

than those for 4.1 (Figure 4.28).  This discrepancy between experimental and calculated pore 

sizes for 4.3 is presumably a result of the disordered nature of the bulky benzyloxy groups.  

Consistent with the porosity trend, the HK method cumulative pore volume is 0.92, 0.86, and 

0.64 cc/g for 4.2, 4.1 and 4.3, respectively.  

 

 

Figure 4.27 Pore size distributions (HK method) for 4.1 (black), 4.2 (red), and 4.3 (blue) 
with the x axis showing pore diameter in Å and the y axis showing Dv(w) in cm3/Å/g. 
 



 133 

 

Figure 4.28 GCMC simulation of pore size distributions (HK method) for 4.1 (black), 4.2 
(red), and 4.3 (blue) with the x axis showing pore diameter in Å and the y axis showing 
Dv(w) in cm3/Å/g. 
 

The surface areas of 4.4 and 4.5 were also very high.  After activation at 60 oC under 

vacuum the permanent porosity of 4.4 and 4.5 was established by nitrogen adsorption at 77 K 

(Figure 4.29). Unlike 4.1-4.3, the surface areas do not necessarily agree with the simulated 

N2 adsorption isotherms calculated by GCMC method which gave calculated Langmuir 

surface areas of 3947, 4027, and 3450 m2/g for 4.4-4.6, respectively.  The experimental 

Lanmuir surface areas obtained for 4.4 and 4.5 were 2245 and 2819 m2/g, respectively (N2 

adsorption data for 4.6 not yet obtained).  This porosity trend is consistent with the increasing  

steric bulk of hydroxy and ethoxy groups on the 2,2’-position of the binaphthyl moieties of 

the octa-carboxylic acid bridging ligands in 4.4 and 4.5.  However, the calculated and 

experimental surface area values are not similar.  It is thought that due to the extended nature 

of the octa-carboxylic acid bridging ligands in 4.4 and 4.5, slightly different activation 

(solvent removal) techniques must be employed.   



 134 

 
Figure 4.29 Experimental and calculated N2 adsorption isotherms for 4.4 (red), 4.5 (blue), 
and calculated N2 adsorption isotherm for 4.6 (black).  Solid lines (GCMC simulation 
results). 

 
Figure 4.30 BET plots of 4.4 and 4.5 and their linear fit lines. Selected range of P/Po from 
0.01 to 0.10.  
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Figure 4.31 Langmuir plots of 4.4 and 4.5 and their linear fit lines.  Selected range of P/Po 
from 0.001 to 0.30. 
 
 

An HK cumulative pore size comparison shows that on average, 4.5 has slightly 

smaller pores that 4.4 (Figure 4.32). This porosity trend is consistent with the increasing 

steric bulk of hydroxy and ethoxy groups on the 2,2’-position of the binaphthyl moieties of 

the octa-carboxylic acid bridging ligands.  The HK cumulative pore volumes for 4.4 and 4.5 

were 0.77 and 0.96 cc/g, respectively (Table 4.6).  The theoretical pore size comparison 

indicates a slightly larger pore size is to be expected from the La48 series (Figure 4.33). 
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Figure 4.32 Pore size distributions (HK method) for 4.4 and 4.5 with the x axis showing pore 
diameter in Å and the y axis showing Dv(w) in cm3/Å/g. 
 
 

 
 

Figure 4.33 Calculated pore size distributions (HK method) for 4.4-4.6 with the x axis 
showing pore diameter in Å and the y axis showing Dv(w) in cm3/Å/g. 
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Table 4.5: Summary of surface areas and pore volumes for 4.1-4.5. 

 GCMC 
Simulated 

Surface Area 
(m2/g) 

Experimental 
Langmuir 

Surface Area 
(m2/g) 

4.4 3947 2245 

4.5 4027 2819 

4.6 3450 — 

 

4.3.4 Powder X-ray diffraction studies 

As expected, the powder X-ray diffraction (PXRD) patterns of 4.1, 4.2, and 4.3 are 

very similar to each other, consistent with their isostructural nature (Figure 4.34). 

Furthermore, the PXRD patterns of the evacuated samples of 4.1, 4.2, and 4.3 are essentially 

the same as those of pristine 4.1, 4.2, and 4.3, further demonstrating the maintenance of the 

framework structure upon solvent removal (Figure 4.35).  This is in stark contrast with our 

earlier results which showed that the frameworks of 4,4-connected MOFs based on copper 

paddle-wheel SBUs and elongated tetracarboxylate bridging ligands severely distorted (as 

evidenced by the loss of PXRD peaks) to give experimental surface areas only a very small 

fraction of those calculated by GCMC simulations.23  The higher connectivity of the L20 – 

L22 ligands has apparently stabilized the frameworks of 4.1 – 4.3 against distortion (also 

called breathing in recent literatures).34  The use of bridging ligands of high connectivity thus 

presents an alternative strategy to the reliance on high-nuclearity metal clusters for building 

highly stable and porous MOFs.26  
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Figure 4.34 Powder X-ray diffraction patterns of fresh crystals 4.1 (green), 4.2 (blue), 4.3 
(red). 
 

 

Figure 4.35 PXRD of pristine (green) and evacuated (blue) samples of 4.1 along with 
calculated PXRD pattern (red). 
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4.3.4 Hydrogen adsorption studies 

Hydrogen adsorption experiments show 4.1 is capable of 2.5 wt% H2 at 77 K and 1 

atm (Figure 4.36), which is among the highest for MOFs at 1 atm.27  In the volumetric sense, 

4.1 has a H2 uptake of 17.4 g/L, superior to other aromatics-rich MOFs (e.g., 5.34 g/L for 

MOF-177).36  Despite having a higher surface area, 4.2 exhibits a lower hydrogen uptake of 

2.1 wt%. This result is not entirely surprising as earlier work has shown that MOFs with 

smaller pore sizes tend to have higher hydrogen uptake capacities.36  However, our intent to 

further reduce the pore size by using the bulkier benzyloxy groups did not yield the expected 

results.  As mentioned earlier, the pore size distribution for 4.3 is essentially the same as that 

of 4.1.  Compound 4.3 exhibited an even lower hydrogen uptake of 1.8 wt%, probably as a 

result of its smallest surface area and pore volume.  This demonstrates the ability to tune the 

surface area, pore size, and gas uptake by systematically changing the alkoxy groups of the 

octa-carboxylic acid bridging ligands in 4.1-4.3.  

 

Figure 4.36 Experimental hydrogen adsorption isotherms of 4.1 (black), 4.2 (red), and 4.3 
(blue).  Solid triangles and circles (adsorption) and open triangles and circles (desorption). 
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Saturation hydrogen uptake capacity of 4.1 and 4.2 was analyzed (Figures 4.37 and 

4.38).  At 30 bar pressure and 77 K, 4.1 demonstrates a hydrogen uptake capacity of 4.6%. 

4.2 shows an uptake capacity of 5.5 wt% at 30 bar and 77 K.  The uptake is highly dependent 

upon temperature of the sample; when the temperature is raised to 87 K, H2 adsoprtion at 30 

bar drops nearly 1 wt %.  Conversely, when the temperature is dropped to 30 K, a saturation 

uptake of 8.2% is achieved at just 5 bar.   

 

 

Figure 4.37 Saturation hydrogen uptake of 4.1 temperatures ranging from 30 K to 200 K. 
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Figure 4.38 Saturation hydrogen uptake of 4.2 temperatures ranging from 30K to 87K. 

 
 Compounds 4.4 and 4.5 also exhibit significant H2 storage capacities.  4.4 has a 

hydrogen uptake of 1.7 wt% while 4.5 is capable of adsorbing 1.8% at 1 atm and 77 K 

(Figure 4.39).  Saturation studies are currently underway.   
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Figure 4.39 N2 adsorption/desorption isotherms for 4.5 indicate 1.8 % H2 uptake at 1 atm. 
 

4.4 Conclusion 

In summary, we have constructed highly porous and robust (4,8)-connected MOFs 

based on new octa-carboxylate ligands and copper paddle-wheel SBUs.  The new MOFs 

exhibit remarkable framework stability as a result of high connectivity of the bridging 

ligands and show significant hydrogen uptake.  This work thus represents a new approach 

toward designing highly porous, robust, tunable, and functional MOFs using multidentate 

bridging ligands of high connectivity.  

 
4.5 Experimental 
 
4.5.1 General information 

All solvents were purchased from Fisher and used without further purification.  

Thermogravimetric analysis (TGA) was performed in air using a Shimadzu TGA-50 
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equipped with a platinum pan and heated at a rate of 5 °C per minute.  Single-crystal X-ray 

diffraction and Powder X-ray diffraction (PXRD) patterns were collected on a Bruker 

SMART APEX II diffractometer using Cu radiation.  The PXRD patterns were processed 

with the APEX 2 package using PILOT plug-in.   Nitrogen and hydrogen adsorption 

experiments were performed with Autosorb-1C from Quantachrome, Inc. 

All crystallographic measurements were made on a Bruker SMART Apex II CCD-

based X-ray diffractometer system equipped with Cu –target X-ray tube and operated at 1600 

watts.  The frames were integrated with the Bruker SAINT© build in APEX II software 

package using a narrow-frame integration algorithm, which also corrects for the Lorentz and 

polarization effects.  Absorption corrections were applied using SADABS.  All of the 

structures were solved by direct methods and refined to convergence by least squares method 

on F2 using the SHELXTL software suit.  All non-hydrogen atoms are refined 

anisotropically, except the ethoxyl groups. 

Adsorption isotherm simulations were performed under the ‘Sorption’ module of 

Materials Studio.  The Metropolis Monte Carlo method was chosen for the calculation of the 

nitrogen loading in the frameworks under a given fugacity.  Universal forcefield was selected 

for the energy calculation.  For the simulation of each framework, forty (40) fugacity steps in 

logarithmic scale (10-5 ~ 100 kPa) were calculated to give the isotherm.  Simulation 

temperature: 77.35K; equilibrium steps: 500000; Production steps: 100000.  These steps are 

chosen to assure the creation/destruction steps ratio about 1.00. 

 
4.5.2. Preparation and characterization of ligands 

4.5.2.1 (R)-octamethyl-5,5',5'',5'''-(2,2'-diethoxy-1,1'-binaphthyl-4,4',6,6' 
tetrayl)tetraisophthalate (L20-Me8 )  
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A solution of (R)-4,4’,6,6’-tetrabromo-2,2’-ethoxy-1,1’-binaphthalene (500 mg, 0.76 

mmol) and dimethyl-5-(pinacolboryl)isophthalate (979 mg, 3.06 mmol) in dimethyl ethylene 

glycol (20 mL) was degassed for 15 min.  CsF (929 mg, 6.1 mmol) and Pd(PPh3)4 (135 mg, 

0.12 mmol) were added to the solution.  The reaction vessel was sealed and the reaction 

mixture was stirred at 110 °C for 3 days.  Upon cooling to r.t., the mixture was extracted with 

CH2Cl2/H2O.  The yellow solution was dried over MgSO4 and the solvent removed under 

reduced pressure.  The yellow solid was purified by silica gel column chromatography with 

hexanes/ethyl acetate (1:1 v/v) as the eluent to afford (R)-5,5',5'',5'''-(2,2'-diethoxy-1,1'-

binaphthyl-4,4',6,6'-tetrayl)tetraisophthalate.  Yield: (460 mg, 54%). 1H NMR (CDCl3): δ 

8.83 (s, 2H), 8.58 (s, 2H), 8.57 (s, 4H), 8.36 (s, 4H), 7.97 (s, 2H), 7.53 (d, 3JH-H = 7.2 Hz, 

2H), 7.44 (s, 2H), 7.39 (d, 3JH-H = 8.8 Hz, 2H), 4.15 (m, 4H), 4.00 (s, 12H), 3.91 (s, 12H), 

1.15 (m, 6H). (Rac)-5,5',5'',5'''-(2,2'-diethoxy-1,1'-binaphthyl-4,4',6,6'-

tetrayl)tetraisophthalate was prepared in the same fashion except (Rac)-4,4’,6,6’-tetrabromo-

2,2’-ethoxy-1,1’-binaphthalene was used.  

 
 4.5.2.2 (R)-5,5',5'',5'''-(2,2'-diethoxy-1,1'-binaphthyl-4,4',6,6'-tetrayl)tetraisophthalic 
acid (L20-H8)   
 

A solution of octamethyl 5,5',5'',5'''-(2,2'-diethoxy-1,1'-binaphthyl-4,4',6,6'-

tetrayl)tetraisophthalate (180 mg, 0.16 mmol) in THF (10 mL), MeOH (5mL), and 2M 

aqueous NaOH (5 mL) was heated at 70 °C for 18 h.  The solution was cooled to r.t. and 

acidified to a pH of ~1 and extracted with ethyl acetate/H2O.  The organic layer was dried 

over MgSO4 and the solvent was evaporated under reduced pressure to give a white solid of 

L20-H8.  Yield: (135 mg, 83%). 1H NMR (CD3)2CO): δ 13.5 (bs, 8H), 8.62 (s, 2H), 8.43 (s, 

4H), 8.38 (s, 2H), 8.26 (s, 4H), 7.97 (s, 2H), 7.73 (m, 2H), 7.69 (s, 2H), 7.33 (d, 3JH-H = 8.8 
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Hz, 2H), 4.24 (m, 4H), 1.04 (m, 6H). IR data: 2918vb, 1681vs, 1598w, 1446w, 1259s, 

1207vs,  1107w, 1037w, 800w, 790 w, 758vs, 665s, 640s. rac- IR data: 2978w, 1635s, 

1558s, 1417s, 1367vs, 1265w, 1215w, 1112w, 1016m, 773s, 732vs, 700s. 

 
4.5.2.3 (R)-5,5',5'',5'''-(1,1'-bi-2-naphthol-4,4',6,6'-tetrayl)tetraisophthalic acid (L21-H8)   

A solution of (R)-octamethyl 5,5',5'',5'''-(2,2'-diethoxy-1,1'-binaphthyl-4,4',6,6'-

tetrayl)tetraisophthalate (388 mg, 0.35 mmol) in anhydrous CH2Cl2 (20 mL) was degassed 

for 15 minutes.  BBr3 (1 mL, 10.4 mmol) was added under Argon at 0 °C.  The dark brown 

solution was allowed to warm to r.t. and stirred at r.t. for 18 h.  The solution was poured into 

iced water and then extracted with CH2Cl2/H2O.  The organic layer was dried over MgSO4 

and the solvent was removed under reduced pressure.  The crude reaction mixture was then 

refluxed in MeOH (20 mL) with a catalytic amount of H2SO4 for 4 h.  The solution was 

extracted with ethyl acetate/H2O and the organic layer dried over MgSO4.  Upon evaporating 

the solvent, the crude product was dissolved in a solution of THF (20 mL), MeOH (10 mL), 

and 2M NaOH (10 mL) which was heated at 70 °C for 18 h.  The solution was acidified to a 

pH of ~1 using 4M HCl.  The solution was extracted with ethyl acetate/H2O and the organic 

layer briefly dried over MgSO4.  The remaining solvent was removed under reduced pressure 

to give a white solid of L21-H8.  Yield: (200 mg, 61%). 1H NMR (DMSO-d6): δ 13.50 (bs, 

8H), 9.80 (s, 2H), 8.62 (s, 2H), 8.39 (s, 2H), 8.38 (s, 4H), 8.26 (s, 4H), 7.94 (s, 2H), 7.70 (d, 

3JH-H = 8.8 Hz, 2H), 7.41 (s, 2H), 7.36 (d, 3JH-H = 8.8 Hz, 2H).  IR data: 2922vb, 2536b, 1681 

vs, 1597m, 1373m, 1238vs, 1205vs, 1190vs, 1149s, 1112m, 1041m, 877s, 821s, 802s, 706vs, 

686vs, 657vs. 

 
4.5.2.4 (R)-4,4’,6,6’-tetrabromo-1,1’-binaphthyl-2,2’-diol 
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A solution of (R)-4,4’,6,6’-tetrabromo-2,2’-ethoxy-1,1’-binaphthalene (5.0 g, 7.6 

mmol) in CH2Cl2 (75 mL) was cooled to 0 oC in an ice/water bath, and 21.9 mL of BBr3 (57 

g, 228 mmol) was added via a syringe slowly.  The reaction mixture was allowed to warm to 

r.t. and stirred at r.t. for 18 hrs.  The solution was poured into iced water and then extracted 

with CH2Cl2 and washed with H2O.  The organic layer was dried over MgSO4 and the 

solvent was removed under reduced pressure.  1H NMR spectrum of the resulting solid (3.8 

g, 84% yield) indicated good purity of the desired product.  The product was used for 

subsequent synthesis without further purification. 1HNMR (CDCl3, 400 MHz), 8.43 (d, 4JH-H 

= 2 Hz, 2H), 7.21 (s, 2H), 7.39 (dd, 4JH-H = 2 Hz, 3JH-H = 9 Hz, 6.93(d, 3JH-H = 9 Hz, 2H), 

5.09 (s, 2H). 

 
4.5.2.5 (R)-2,2'-bis(benzyloxy)-4,4',6,6'-tetrabromo-1,1'-binaphthyl 

A solution of (R)- 4,4',6,6'-tetrabromo-1,1'-binaphthyl-2,2'-diol (2 g, 3.32 mmol), 

(bromomethyl)benzene (3.94 mL, 33.2 mmol), and KOH (1.9g, 34 mmol) in acetone (100 

mL) was refluxed under Argon for 2 h.  Upon cooling to RT, acetone was removed under 

reduced pressure and the remaining mixture was extracted with ethyl acetate/H2O.  The white 

solid was purified by silica gel chromatography with hexanes/ethyl acetate (8:1 v/v) as the 

eluent to afford the desired product (R)-2,2'-bis(benzyloxy)-4,4',6,6'-tetrabromo-1,1'-

binaphthyl as a white solid.  Yield: (1.8g, 70%).  1H NMR (CDCl3): δ 8.39 (s, 2H), 7.72 (s, 

2H), 7.29 (d, 3JH-H = 8.8 Hz, 2H), 7.10-7.17 (m, 6H), 6.91-6.96 (m, 6H), 5.01 (s, 4H). 

 
4.5.2.6 (R)-octamethyl-5,5',5'',5'''-(2,2'-bis(benzyloxy)-1,1'-binaphthyl-4,4',6,6'-
tetrayl)tetraisophthalate (L22-Me8) 
 
 A solution of (R)-2,2'-bis(benzyloxy)-4,4',6,6'-tetrabromo-1,1'-binaphthyl (300 mg, 

0.384 mmol) and dimethyl-5-(pinacolboryl)isophthalate (736 mg, 2.29 mmol) in dimethyl 
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ethylene glycol (25 mL) was degassed for 10 min.  CsF (466 mg, 3.07 mmol) and Pd(PPh3)4 

(53 mg, 0.046 mmol) were added to the solution.  The reaction vessel was sealed and the 

reaction mixture was stirred at 95 °C for 4 days.  Upon cooling to r.t., the mixture was 

extracted with CH2Cl2/H2O.  The yellow solution was dried over MgSO4 and the solvent 

removed under reduced pressure.  The yellow solid was purified by silica gel column 

chromatography with hexanes/ethyl acetate (1:1 v/v) as the eluent to afford (R)-octamethyl 

5,5',5'',5'''-(2,2'-bis(benzyloxy)-1,1'-binaphthyl-4,4',6,6'-tetrayl)tetraisophthalate.  Yield: (250 

mg, 53%). 1H NMR (CDCl3): δ 8.84 (s, 2H), 8.59 (s, 2H), 8.54 (s, 4H), 8.39 (s, 4H), 8.03 (s, 

2H), 7.59 (d, 3JH-H = 8.8 Hz, 2H), 7.50 (d, 3JH-H = 8.4 Hz, 4H), 7.15 (d, 3JH-H = 6.8 Hz, 6H), 

7.03 (d, 3JH-H = 6.8 Hz, 4H), 5.17 (s, 4H), 4.02 (s, 12H), 3.92 (s, 12H).  

 
4.5.2.7 (R)-5,5',5'',5'''-(2,2'-bis(benzyloxy)-1,1'-binaphthyl-4,4',6,6'-
tetrayl)tetraisophthalic acid (L22-H8) 
 
 A solution of (R)-octamethyl 5,5',5'',5'''-(2,2'-bis(benzyloxy)-1,1'-binaphthyl-4,4',6,6'-

tetrayl)tetraisophthalate (200 mg, 0.162 mmol) in THF (10 mL), MeOH (5mL), and 2M 

aqueous NaOH (5 mL) was heated at 70 °C for 18 h.  The solution was cooled to r.t. and 

acidified to a pH of ~1 and extracted with ethyl acetate/H2O.  The organic layer was dried 

over MgSO4 and the solvent was evaporated under reduced pressure to give a white solid of 

L22-H8.  Yield: (150 mg, 82%). 1H NMR (DMSO-d6): δ 13.21 (bs, 8H), 8.64 (s, 2H), 8.41 (s, 

6H), 8.30 (s, 4H), 8.02 (s, 2H), 7.80 (s, 4H), 7.46 (d, 3JH-H = 8.8 Hz, 2H), 7.16 (s, 6H), 7.07 

(s, 4H), 5.32 (s, 4H).  IR data: 2926w, 2534w, 2160w, 2027w, 1977w, 1681vs, 1598m, 

1579m, 1450m, 1259vs, 1195vs, 1105s, 1041m, 1010m, 918w, 867m, 819m, 800m, 758vs, 

734m, 696vs, 661vs. 
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4.5.2.8 (R)-(2,2'-diethoxy-1,1'-binaphthyl-4,4',6,6'-tetrayl)tetrakis(ethyne-2,1-
diyl)tetrakis(trimethylsilane)  
 

A solution of (R)-4,4’,6,6’-tetrabromo-2,2’-ethoxy-1,1’-binaphthalene (6.5 g, 9.88 

mmol) and ethynyltrimethylsilane (17.5 ml, 125 mmol) in toluene (50 ml) and triethylamine 

(60 ml) was degassed for 10 min.  CuI (380 mg, 2 mmol) and Pd(PPh3)2Cl2 (710 mg, 1mmol) 

were added to the solution.  The reaction flask was fitted with a reflux condenser and the 

mixture was stirred under argon at 100 °C for 2 days.  Upon cooling to r.t., the mixture was 

extracted with CH2Cl2/H2O.  The orange solution was dried over MgSO4 and the solvent 

removed under reduced pressure.  The orange solid was purified by silica gel column 

chromatography with CH2Cl2 as the eluent to afford (R)-(2,2'-diethoxy-1,1'-binaphthyl-

4,4',6,6'-tetrayl)tetrakis(ethyne-2,1-diyl)tetrakis(trimethylsilane).  Yield: (7.0 g, 97%). 1H 

NMR (CDCl3): δ 8.44 (s, 2H), 7.56 (s, 2H), 7.22 (m, 2H), 6.95 (d, 3JH-H = 11.6 Hz, 2H), 4.00 

(m, 4H), 1.00 (t, 3JH-H = 6.1 Hz, 6H), 0.37 (s, 9H), 0.25 (s, 9H). 

   
4.5.2.9 (R)-2,2'-diethoxy-4,4',6,6'-tetraethynyl-1,1'-binaphthyl   

A mixture of  (R)-(2,2'-diethoxy-1,1'-binaphthyl-4,4',6,6'-tetrayl)tetrakis(ethyne-2,1-

diyl)tetrakis(trimethylsilane) (7.0 g, 9.62 mmol) and K2CO3 (7.9 g, 57.6 mmol) in THF (100 

mL) and MeOH (100 mL) was stirred at r.t. under N2 for 1.5 h.  The dark brown mixture was 

extracted with CH2Cl2/H2O and dried over MgSO4 and the solvent removed under reduced 

pressure.  The dark brown solid was purified by silica gel column chromatography with 

CH2Cl2 as the eluent to afford (R)-2,2'-diethoxy-4,4',6,6'-tetraethynyl-1,1'-binaphthyl as an 

dark orange solid.  Yield: (3.5 g, 83%).  1H NMR (CDCl3): δ 8.53 (s, 2H), 7.63 (s, 2H), 7.25 

(m, 2H), 7.02 (d, 3JH-H = 11.6 Hz, 2H), 4.03 (m, 4H), 3.56 (s, 2H), 3.12 (s, 2H), 1.05 (t, 3JH-H 

= 9.2 Hz, 6H). 
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4.5.2.10 (R)-octamethyl-5,5',5'',5'''-(2,2'-diethoxy-1,1'-binaphthyl-4,4',6,6'-
tetrayl)tetrakis(ethyne-2,1-diyl)tetraisophthalate (L23-Me8)  
 

A solution of (R)-2,2'-diethoxy-4,4',6,6'-tetraethynyl-1,1'-binaphthyl (2.0 g, 4.56 

mmol) and dimethyl 5-bromoisophthalate (12.45 g, 45.6 mmol) in toluene (150 mL) and 

triethylamine (6.27 mL, 45.6 mmol) was degassed for 10 min.  CuI (34.7 mg, 0.18 mmol) 

and Pd(PPh3)2Cl2 (640 mg, 0.91 mmol) were added to the brown solution.  The reaction 

vessel was fitted with a reflux condenser and the mixture was stirred under argon at 110 °C 

for 3 days.  Upon cooling to r.t., the dark brown reaction mixture was extracted with 

CH2Cl2/H2O.  The dark orange solution was dried over MgSO4 and the solvent removed 

under reduced pressure.  The dark orange solid was purified by silica gel chromatography 

with hexanes/ethyl acetate as the eluent to afford (R)-octamethyl 5,5',5'',5'''-(2,2'-diethoxy-

1,1'-binaphthyl-4,4',6,6'-tetrayl)tetrakis(ethyne-2,1-diyl)tetraisophthalate.  Yield: (1.7g, 

31%). 1H NMR (CDCl3): δ 8.69 (s, 2H), 8.59 (m, 4H), 8.55 (s, 4H), 8.39 (s, 4H), 7.73 (s, 

2H), 7.39 (d, 3JH-H = 8.8 Hz, 2H), 7.16 (d, 3JH-H = 9.2 Hz, 2H), 4.12 (m, 4H), 3.99 (s, 12H), 

3.94 (s, 12H), 1.13 (t, 3JH-H = 6.8 Hz, 6H). 

 
4.5.2.11 (R)-5,5',5'',5'''-(2,2'-diethoxy-1,1'-binaphthyl-4,4',6,6'-tetrayl)tetrakis(ethyne-
2,1-diyl)tetraisophthalic acid (L23-H8) 
 

A solution of (R)-octamethyl 5,5',5'',5'''-(2,2'-diethoxy-1,1'-binaphthyl-4,4',6,6'-

tetrayl)tetrakis(ethyne-2,1-diyl)tetraisophthalate (268 mg, 0.22 mmol) in THF (10 mL), 

MeOH (5 mL), and 2M NaOH (5 mL) was stirred at 70 °C for 18 h.  Upon cooling to r.t., the 

dark brown solution was acidified to pH ~2 using 4M HCl.  The pale orange solution was 

worked up in EA/H2O and the organic layer was dried over MgSO4.  The solvent was 

removed under reduced pressure to give L23-H8 as a yellow solid. Yield: (240 mg, >99%).  
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1H NMR (DMSO): δ 13.51 (bs, 8H), 8.65 (s, 2H), 8.51 (m, 6H), 8.42 (s, 2H), 8.30 (s, 4H), 

8.09 (s, 2H), 7.54 (d, 3JH-H = 8.8 Hz), 7.10 (d, 3JH-H = 8.8 Hz), 4.19 (m, 4H), 1.04 (t, 3JH-H = 

7.0 Hz).  

 
4.5.2.12 (R)-5,5',5'',5'''-(2,2'-dihydroxy-1,1'-binaphthyl-4,4',6,6'-tetrayl)tetrakis(ethyne-
2,1-diyl)tetraisophthalic acid (L24-H8) 
 

A solution of (R)-octamethyl 5,5',5'',5'''-(2,2'-diethoxy-1,1'-binaphthyl-4,4',6,6'-

tetrayl)tetrakis(ethyne-2,1-diyl)tetraisophthalate (330 mg, 0.273 mmol) in dry CH2Cl2 (25 

mL).  The yellow solution was cooled to 0 °C and BBr3 (790 µL, 8.19 mmol) was added 

turning the solution a dark brown color.  After several minutes, precipitate formed.  The 

mixture was allowed to warm to r.t. overnight (18 h). The solution was poured into iced 

water and then extracted with CH2Cl2/H2O.  The organic layer was dried over MgSO4 and the 

solvent was removed under reduced pressure.  The crude reaction mixture was then refluxed 

in MeOH (20 mL) with a catalytic amount of H2SO4 for 4 h.  The solution was extracted with 

ethyl acetate/H2O and the organic layer dried over MgSO4.  Upon evaporating the solvent, 

the crude product was dissolved in a solution of THF (20 mL), MeOH (10 mL), and 2M 

NaOH (10 mL) which was heated at 70 °C for 18 h.  The solution was acidified to a pH of ~1 

using 4M HCl.  The solution was extracted with ethyl acetate/H2O and the organic layer 

briefly dried over MgSO4.  The remaining solvent was removed under reduced pressure to 

give a yellow solid of L24-H8. Yield: (180 mg, 64%).  1H NMR (DMSO): δ 13.45 (bs, 8H), 

10.08 (s, 2H), 8.56 (s, 2H), 8.50 (s, 2H), 8.47 (s, 4H), 8.42 (s, 2H), 8.28 (s, 4H), 7.73 (s, 2H), 

7.53 (d, 3JH-H = 8.8 Hz), 7.11 (d, 3JH-H = 8.8 Hz).  

 
4.5.2.13 (R)-(2,2'-bis(benzyloxy)-1,1'-binaphthyl-4,4',6,6'-tetrayl)tetrakis(ethyne-2,1-
diyl)tetrakis(trimethylsilane) 
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A solution of (R)-2,2'-bis(benzyloxy)-4,4',6,6'-tetrabromo-1,1'-binaphthyl (1.0 g, 1.27 

mmol) and ethynyltrimethylsilane (2.2 ml, 16 mmol) in toluene (10 ml) and triethylamine (15 

ml) was degassed for 10 min.  CuI (48 mg, 0.254 mmol) and Pd(PPh3)2Cl2 (89 mg, 0.127 

mmol) were added to the solution.  The reaction flask was fitted with a reflux condenser and 

the mixture was stirred under argon at 100 °C for 2 days.  Upon cooling to r.t., the mixture 

was extracted with CH2Cl2/H2O.  The orange solution was dried over MgSO4 and the solvent 

removed under reduced pressure.  The orange solid was purified by silica gel column 

chromatography with CH2Cl2 as the eluent to afford (R)-(2,2'-bis(benzyloxy)-1,1'-binaphthyl-

4,4',6,6'-tetrayl)tetrakis(ethyne-2,1-diyl)tetrakis(trimethylsilane).  Yield: (1.0 g, 92%). 1H 

NMR (CDCl3): δ 8.55 (s, 2H), 7.68 (s, 2H), 7.32 (d, 3JH-H = 8.8 Hz, 2H), 7.17 (m, 6H), 7.08 

(d, 3JH-H = 8.4 Hz, 2H), 6.95 (d, 3JH-H = 6.4 Hz, 4H), 5.05 (s, 4H), 0.44 (s, 18H), 0.33 (s, 

18H).   

 
4.5.2.14 (R)-2,2'-bis(benzyloxy)-4,4',6,6'-tetraethynyl-1,1'-binaphthyl  

A mixture of  (R)-(2,2'-bis(benzyloxy)-1,1'-binaphthyl-4,4',6,6'-

tetrayl)tetrakis(ethyne-2,1-diyl)tetrakis(trimethylsilane) (1.0 g, 1.17 mmol) and K2CO3 (1.0 

g, 7.02 mmol) in THF (25 mL) and MeOH (25 mL) was stirred at r.t. under N2 for 1.5 h.  The 

dark brown mixture was extracted with CH2Cl2/H2O and dried over MgSO4 and the solvent 

removed under reduced pressure.  The dark brown solid was purified by silica gel column 

chromatography with CH2Cl2 as the eluent to afford (R)-2,2'-diethoxy-4,4',6,6'-tetraethynyl-

1,1'-binaphthyl as an dark orange solid.  Yield: (0.5 g, 76%).  1H NMR (CDCl3): δ 8.58 (s, 

2H), 7.68 (s, 2H), 7.33 (d, 3JH-H = 8.4 Hz, 2H), 7.13 (d, 3JH-H = 6.8 Hz, 10H), 5.05 (s, 4H), 

3.57 (s, 2H), 3.15 (s, 2H).  
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4.5.2.15 (R)-octamethyl-5,5',5'',5'''-(2,2'-bis(benzyloxy)-1,1'-binaphthyl-4,4',6,6'-
tetrayl)tetrakis(ethyne-2,1-diyl)tetraisophthalate (L25-Me8)  
 

A solution of (R)-2,2'-diethoxy-4,4',6,6'-tetraethynyl-1,1'-binaphthyl (486 mg, 0.863 

mmol) and dimethyl 5-bromoisophthalate (2.3 g, 8.63 mmol) in toluene (25 mL) and 

triethylamine (1.2 mL, 8.63 mmol) was degassed for 10 min.  CuI (6.6 mg, 0.0345 mmol) 

and Pd(PPh3)2Cl2 (121 mg, 0.173 mmol) were added to the brown solution.  The reaction 

vessel was fitted with a reflux condenser and the mixture was stirred under argon at 110 °C 

for 3 days.  Upon cooling to r.t., the dark brown reaction mixture was extracted with 

CH2Cl2/H2O.  The dark orange solution was dried over MgSO4 and the solvent removed 

under reduced pressure.  The dark orange solid was purified by silica gel chromatography 

with hexanes/ethyl acetate (1:1 v/v) as the eluent to afford (R)-octamethyl 5,5',5'',5'''-(2,2'-

bis(benzyloxy)-1,1'-binaphthyl-4,4',6,6'-tetrayl)tetrakis(ethyne-2,1-diyl)tetraisophthalate L25-

Me8 .  Yield: (392 mg, 34%). 1H NMR (CDCl3): δ 8.70 (s, 2H), 8.61 (s, 4H), 8.55 (s, 4H), 

8.40 (s, 4H), 7.76 (s, 2H), 7.41 (d, 3JH-H = 8.4 Hz, 2H), 7.14-7.22 (m, 8H), 6.98 (m, 4H), 5.12 

(s, 4H), 3.99 (s, 12H), 3.92 (s, 12H). 

 
4.5.2.16 (R)- 5,5',5'',5'''-(2,2'-bis(benzyloxy)-1,1'-binaphthyl-4,4',6,6'-
tetrayl)tetrakis(ethyne-2,1-diyl)tetraisophthalic acid (L25-H8)   
 

A solution of (R)-octamethyl 5,5',5'',5'''-(2,2'-bis(benzyloxy)-1,1'-binaphthyl-4,4',6,6'-

tetrayl)tetrakis(ethyne-2,1-diyl)tetraisophthalate (130 mg, 0.097 mmol) in THF (10 mL), 

MeOH (5 mL), and 2M NaOH (5 mL) was stirred at 70 °C for 18 h.  Upon cooling to r.t., the 

dark brown solution was acidified to pH ~2 using 4M HCl.  The pale yellow solution was 

worked up in EA/H2O and the organic layer was dried over MgSO4.  The solvent was 

removed under reduced pressure to give L25-H8 as a yellow solid which was recrystallized 

from acetone. Yield: (52 mg, 42%).  1H NMR (DMSO): δ 13.59 (bs, 8H), 8.68 (s, 2H), 8.51 
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(m, 6H), 8.44 (s, 2H), 8.30 (s, 4H), 8.17 (s, 2H), 7.58 (d, 3JH-H = 8.8 Hz, 2H), 7.16 (s, 8H), 

7.02 (s, 4H), 5.30 (s, 4H).  

 
4.5.3 Preparation and characterization of crystals 

4.5.3.1 [Cu4(R-L20)(H2O)4]·12DEF·2H2O (4.1)  

A mixture of L20-H8 (10 mg, 0.01 mmol) and Cu(NO3)2·2.5H2O (10 mg, 0.043 mmol) 

was dissolved in a solvent mixture of DEF/H2O (1.5 mL/0.5 mL) with several drops of HCl 

(3M, aq.) in a screw-capped vial.  The resulting mixture was placed in an oven at 80 oC for 

2days. Green-blue crystals (17 mg, 67%) with very thin plate-shape were obtained after 

filtration.  Solvent content calc. from the proposed formula: DEF, 47.2%; H2O, 4.2%; 

determined by 1H NMR/TGA: DEF, 48.2%; H2O, 3.9%.  IR data: 2980w, 1705m, 1570m, 

1435s, 1369vs, 1213s, 1112m, 1043m, 775vs, 732vs, 694s. 

 
4.5.3.2 [Cu4(rac-L20)(H2O)4]·12DEF·2H2O (4.1’)  

The same procedure as 1, except rac-L-H8 was used.  Green-blue crystals (15 mg, 

59%) with very thin plate-shape were obtained after filtration.  Solvent content calc. from the 

proposed formula: DEF, 47.2%; H2O, 4.2%; determined by 1H NMR/TGA: DEF, 46.6%; 

H2O, 4.3%.  IR data: 2978w, 1635m, 1558s, 1417s, 1367vs, 1265m, 1215m, 1112m, 1016m, 

773s, 732vs, 700s. 

 
4.5.3.3 [Cu4(L21)(H2O)4]·14DMF·2H2O (4.2)  

 A mixture of L21-H8 (11 mg, 0.012 mmol) and Cu(ClO4)2 • 6H2O (17.3 mg, 0.0465 

mmol) was dissolved in a solvent mixture of DMF/H2O (1.1 mL/0.55 mL) with 110 µL  of 

HCl (1M, aq.) in a screw-capped vial.  The resulting mixture was placed in an oven at 80 oC 

for 18 h. Green-blue crystals (16 mg, 60 %) with very thin plate-shape were obtained after 
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filtration.  Solvent content calc. from the proposed formula: DMF, 44.0 %; H2O, 4.6 %; 

determined by 1H NMR/TGA: DMF, 44.6 %; H2O, 4.4 %.  IR data: 2943w, 1635s, 1564m, 

1436s, 1369vs, 1018w, 775s, 732vs, 694s. 

 
4.5.3.4 [Cu4(L22)(H2O)4]·8DMF·13H2O (4.3) 

A mixture of L22-H8 (1 mg, 0.89  µmol) and Cu(ClO4)2·6H2O (1.31 mg, 3.53 µmol) 

was dissolved in a solvent mixture of DMF/H2O (0.1 mL/0.05 mL) with HCl (2.0 M, 10µL) 

in a screw-capped vial.  The resulting mixture was placed in an oven at 80 ºC for 1 day. 

Green-blue crystals (1.87 mg, 64%) with very thin octagonal plate-shape were obtained after 

filtration.  Solvent content calc. from the proposed formula: DMF, 26.0%; H2O, 12.9%; 

determined by 1H NMR/TGA: DMF, 25.4%; H2O, 13.6%.  IR data: 2160w, 1699w, 1633s, 

1579m, 1417s, 1367vs, 1327m, 1263m, 1234m, 1205m, 1107w, 1028w, 879w, 819w, 773s, 

731vs, 696s. 

 
 4.5.3.5 [Cu4(L23)(H2O)4]·20DEF (4.4)  

A mixture of L23-H8 (1 mg, 0.91 µmol) and Cu(ClO4)2·6H2O (1.35 mg, 3.65 µmol) 

was dissolved in a solvent mixture of DEF/H2O (0.3 mL/0.025 mL) with 1M HCl (10 µL) in 

a screw-capped vial.  The resulting solution was placed in an oven at 80 oC for 2 days. Blue-

green crystals (2.2 mg, 69%) with very thin plate-shape were obtained after filtration.  

Solvent content calc. from the proposed formula: DEF, 58.8%; H2O, 2.0%; determined by 1H 

NMR/TGA: DEF, 58.7%; H2O, 1.9%. 

 
4.5.3.6 [Cu4(L24)(H2O)4]·16DMF·5H2O (4.5)  

A mixture of L24-H8 (1 mg, 0.96 µmol) and Cu(ClO4)2·6H2O (1.42 mg, 3.85 µmol) 

was dissolved in a solvent mixture of DMF/H2O (0.1 mL/0.050 mL) with 10 µL of 1M HCl 
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(10 µL) in a screw-capped vial.  The resulting solution was placed in an oven at 80 oC for 4 

h.  Dark green crystals (1.8 mg, 75%) with very thin plate-shape were obtained after 

filtration.  Solvent content calc. from the proposed formula: DMF, 44.6%; H2O, 6.1%; 

determined by 1H NMR/TGA: DMF, 44.1%; H2O, 6.3%. 

 
4.5.3.7 [Cu4(L25)(H2O)4]·14DMF (4.6)  

A mixture of L25-H8 (1 mg, 0.82 µmol) and Cu(ClO4)2·6H2O (1.21 mg, 3.26 µmol) 

was dissolved in a solvent mixture of DMF/H2O (0.1 mL/0.025 mL) with 10 µL of 2M HCl 

(10 µL) in a screw-capped vial.  The resulting solution was placed in an oven at 80 oC for 18 

h.  Green crystals (1.42 mg, 68%) with very thin plate-shape were obtained after filtration.  

Solvent content calc. from the proposed formula: DMF, 40.0%; H2O, 2.8%; determined by 

1H NMR/TGA: DMF, 40.5%; H2O, 2.7%. 
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