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ABSTRACT 

ANDREW WALLACE TUCKER: Development of a Stationary  
Digital Breast Tomosynthesis System for Clinical Applications 

(Under the direction of Otto Z. Zhou) 

Digital breast tomosynthesis (DBT) has been shown to be a very beneficial tool in the 

fight against breast cancer.  However, current DBT systems have poor spatial resolution 

compared to full field digital mammography (FFDM), the current gold standard for screening 

mammography.  The poor spatial resolution of DBT systems is a result of the single X-ray 

source design.  In DBT systems a single X-ray source is rotated over an angular span in order 

to acquire the images needed for 3D reconstruction.  The rotation of the X-ray source degrades 

the spatial resolution of the images.  DBT systems which are approved for use in the United 

States for screening mammography are required to also take a full field digital mammogram with 

every DBT acquisition in order to compensate for the poor spatial resolution.  This double 

exposure essentially doubles the radiation dose to patients. 

Over the past few years our research group has developed a carbon nanotube (CNT) 

based X-ray source technology.  The unique nature of CNT X-ray sources allows for multiple X-

ray focal spots in a single X-ray source.  Using this technology we have recently developed a 

stationary DBT system (s-DBT) system which is capable of producing a full tomosynthesis 

image dataset with zero motion of the X-ray source.  This system has been shown to have 

increased spatial resolution over other DBT systems in a laboratory setting.  The goal of this 

thesis work was to optimize the s-DBT system, demonstrate its usefulness over other systems, 

and finally implement it into the clinic for a clinical trial. 

The s-DBT system was optimized using different image quality measurements.  The 

optimized system was then used in a breast specimen imaging trial which compared s-DBT to 
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magnified 2D mammography and a conventional single source DBT system.  Readers preferred 

s-DBT to magnified 2D mammography for specimen margin delineation and mass detection, 

these results were not significant.  Using physical measures for spatial resolution the s-DBT 

system was shown to have improved image quality over conventional single source DBT 

systems in breast tissue.  A separate study showed that s-DBT could be a feasible alternative to 

FFDM for screening patients with breast implants.  Finally, a second s-DBT system was 

constructed and implemented into the Department of Mammography at UNC hospitals.  The first 

patient was imaged on the system in December of 2013. 
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CHAPTER 1: INTRODUCTION 

1.1 Dissertation Overview 

Breast cancer is the most common type of cancer found in women in the United States, 

with more than 200,000 new cases found each year.1  When the cancer is diagnosed at an early 

stage the five-year relative survival rate is between 83.9 and 98.4 percent.  This number drops 

to 23.8 percent when the cancer is diagnosed at a stage at which it has already metastasized.1  

Screening mammography is the current gold standard for early detection of breast cancer.2, 3  

However, 2D mammography imaging lacks depth information, which can cause underlying and 

overlying tissue to obstruct the view of lesions.  This leads to high false positive and false 

negative rates.4, 5  

Digital breast tomosynthesis (DBT) uses multiple low dose projection images distributed 

over an angular span to create a pseudo-3D reconstruction of the breast.  This added depth 

information allows for otherwise obscured lesions to become visible.6-9  The Hologic Selenia 

Dimensions is the only DBT system currently FDA approved for use in the United States. 

Current DBT systems use a single x-ray source which is rotated over a limited angle arc.  

The x-ray source rotates in a continuous motion10, 11 or using a step-and-shoot motion.12  In both 

methods, the motion of the x-ray source can have an adverse effect on tomosynthesis 

reconstruction quality and total imaging time.13, 14  The source motion results in a blurred focal 

spot.  A blurred focal spot decreases the spatial resolution of the projection images which in turn 

reduces the spatial resolution of the reconstructed images.  High spatial resolution is needed in 

mammography in order to resolve microcalcifications (MCs).  MCs are important because the 

size and shape of them can indicate the likelihood that a particular lesion is benign or malignant.  

In both continuous motion and step-and-shoot DBT systems the focal spot blurring effect can be 
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reduced by decreasing the rotation speed and increasing the acquisition time.14, 15  However, a 

long acquisition time leads to patient motion which also degrades image quality.16  

We have developed a stationary digital breast tomosynthesis system by retrofitting a 

linearly distributed carbon nanotube (CNT) x-ray source array onto a Hologic Selenia 

Dimensions DBT system.13, 17-20  The system is capable of creating a full set of tomosynthesis 

projection images with no x-ray source motion and a potential acquisition time of less than 4 

seconds when coupled with a high frame rate detector.  

 Results have shown that the system resolution is increased from less than 3 cycles per 

mm with the Selenia Dimensions DBT system to more than 4 cycles per mm with the s-DBT 

system (1.08x magnification, 15 projection images, 15o angular span, 100 mAs).  Accelerated 

lifetime measurements demonstrate an estimated x-ray tube lifetime of over 3 years in clinical 

service.13  

The goal of this dissertation is to develop an s-DBT system for use in a clinical trial.  

Current clinical DBT systems in the United States require a 2D mammogram with all screening 

DBT exams.  This doubles the radiation dose given to the patient.  A 2D mammogram is 

required due to the low spatial resolution of continuous motion DBT systems.  An s-DBT system 

has shown to have better spatial resolution than a continuous motion DBT system.  Starting a 

clinical trial on human patients takes the project a large step closer to showing if its image 

quality is good enough to remove the requirement for a 2D mammogram thus reducing the 

radiation dose given to each patient. 

The secondary goal of this dissertation is to investigate the usefulness of s-DBT for 

imaging breast specimens and as a screening tool for patients who have undergone 

augmentation mammoplasty.  Breast specimens are imaged in order to determine if the lesion is 

inside the surgical margins.  Currently 2D mammography is used but depth information is lost in 

a 2D image.  Margins can only be assessed perpendicular to the detector.  Using s-DBT to 

image breast specimens will allow for margins to be assessed perpendicular and parallel to the 
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detector.  This would increase the accuracy of surgical margin assessment.  Imaging breast 

specimens will also present the first human tissue imaged on an s-DBT system.  The current 

practice of doing a four view mammogram on patients with implants increases the radiation 

dose to the patient, examination time, and patient discomfort.  Using implant models it will be 

determined if it is possible to reduce the four views used currently to screen implant patients to 

two s-DBT views, one CC view and one MLO view, for each breast or possibly just a single s-

DBT MLO view. This would reduce the amount of radiation to the patient, time of exam, and 

patient discomfort. 

1.2 Specific Aims 

SA 1: Develop a system for clinical use 

In this specific aim (SA) an s-DBT system will be analyzed to determine the optimal 

imaging configuration.  A system will then be built for use in a clinical trial involving human 

patients.  The specific work will include: isolating imaging parameters and determining the effect 

of each one on image quality, comparing the image quality of various configurations using 

quantitative measures, constructing an s-DBT system for use in a clinical environment, and 

characterizing the system. 

SA 1.1: Optimal configuration parameters 

Image datasets of a crosswire phantom and an American College of Radiography (ACR) 

accreditation phantom will be collected on an s-DBT system using various configurations.  The 

configurations will have differing parameters such as: number of projection views, angular 

coverage, entrance dose, mAs distribution, and detector pixel size.  The effect of each 

parameter on image quality factors will be determined.  Factors include: signal difference to 

noise ratio (SdNR), z-axis artifact spread function (ASF), and modulation transfer function (MTF).  

The optimal imaging configuration based on quantitative analysis of these three factors will yield 

the optimal imaging configuration. 
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SA 1.2: System characterization and clinical implementation 

An s-DBT system will be built for use in a clinical environment.  After construction of the 

system, many system values will be characterized and optimized for use on patients.  These 

values include: system geometry, radiation exposure rate based on kVp, X-ray field of view, 

spatial resolution, I-V curves, and transmission rates.  The values will be implemented into the 

operating software and a radiologist technician will be trained to use the system.   

SA 2: Demonstrate the usefulness of s-DBT 

In this SA the usefulness of an s-DBT system for imaging breast specimens and for 

screening patients with augmentation mammoplasty will be determined.  The specific work will 

include: collecting breast specimen images using s-DBT, determining the effectiveness of s-

DBT as an imaging tool for breast specimens, demonstrating the increased spatial resolution of 

s-DBT, collecting phantom implant images with an s-DBT system and a 2D mammography 

system, and using the collected images to determine if s-DBT is a feasible alternative to 2D 

mammography for screening patients with augmentation mammoplasty. 

SA 2.1: Breast specimen study 

A protocol will be submitted to the UNC-CH Institutional Review Board.  Upon 

acceptance, patients scheduled for lumpectomy procedures at UNC hospitals will be recruited 

for use in the study.  Images of the excised specimen are first taken on a 2D mammography 

system in the hospital by trained radiologist technicians.  The specimen will then be transferred 

to our facility to be imaged using an s-DBT system and a clinical DBT system.  The 

configuration determined in SA 1.1 will be used for the imaging on the s-DBT system.  Once 

imaging is completed, the specimen will then be transferred to the pathology department in the 

hospital for malignancy analysis.   
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After collection of a sufficient number of specimen images for statistical analysis, four 

trained readers will review the 2D mammography datasets and the s-DBT datasets.  Readers 

will give malignancy scores for the datasets, confidence levels based on the s-DBT dataset, and 

assess the surgical margins.  Statistical analysis will be completed by a trained biostatistician.  

Based on the results of the reader study, the efficacy of s-DBT as a tool for imaging breast 

specimens will be determined. 

A secondary study will be conducted using the data collected on the clinical DBT system.  

The increased microcalcification visibility in s-DBT will be analyzed using human tissue.  

Measurements will be made for the x, y, and z axis resolutions of both the clinical DBT system 

and the s-DBT system.  Finally, a spatial resolution simulation will be used to show further proof 

of increased spatial resolution in s-DBT.  Based on the results of the study, the extent of s-DBT 

image quality improvement will be determined. 

SA 2.2: Feasibility of s-DBT as an implant screening tool 

Augmentation mammoplasty models will be created using a combination of a breast 

tissue phantom with lesions and various sized saline and gel silicone implants.  Each model will 

be imaged on an s-DBT system and a 2D mammography system using the same entrance dose.  

After collection of the data, the reconstructed images will be shown to trained radiologists.  The 

radiologists will report the number of visual lesions for each dataset.  The results will show if s-

DBT is more effective than 2D mammography for an implant in the field of view image.  

Depending on the effectiveness it will be determined if s-DBT is a feasible tool for screening 

patients with augmentation mammoplasty. 

1.3 Dissertation Organization 

This dissertation is separated into three major sections: (1) background information, (2) 

scholarly research completed, (3) clinical trial preparation.  Chapters 2 through 6 give 

background information for the research completed.  Chapter 2 gives background information 
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related to X-ray production and interactions in matter.  Chapter 3 gives an overview of 

mammography fundamentals including, image quality and terminology.  Chapter 4 covers 

mammographic imaging modalities used in the clinic and preclinical systems.  Chapter 5 and 6 

cover carbon nanotube based X-ray sources and their applications.  The completed scholarly 

research is in chapters 7 through 10.  These chapters are written as scholarly journal articles 

with some of the background information removed.  The needed background information can be 

found in chapters 2 through 6.  Chapter 11 overviews the construction of a new s-DBT system 

for use in a clinical trial.  Finally chapter 12 gives a summary of all the research conducted.   
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CHAPTER 2: X-RAY PRODUCTION AND INTERACTIONS IN MATTER 

2.1 Overview 

Since the discovery of X-rays in 1895 by Wilhelm Conrad Röntgen, they have become 

an integral part of the medical field.  X-rays are produced when high energy electrons are 

bombarded onto a high Z material.  Once they strike the material, the electrons impart their 

energy into the high Z target mostly as heat.  A very small portion of the energy is transformed 

into either Bremsstrahlung or characteristic X-rays.  Careful consideration must be used when 

designing a X-ray tube.  The size of the cathode and the tilt of the anode will significantly impact 

the spatial resolution of the X-ray system.  Design of the filtration and collimation of an X-ray 

tube will ensure that the appropriate dose is given to a patient.  Once the X-rays interact with 

the object that is being imaged through the processes of photoelectric absorption, Rayleigh 

scatter, and Compton scatter an image can be created with differing levels of contrast based on 

the attenuation of the materials being imaged.  

2.2 Discovery of X-rays 

Crookes tubes are partially evacuated glass tubes which contain an anode and cathode 

electrode.21  When a high voltage is applied between the two electrodes, a Townsend discharge 

occurs creating positive ions which are then attracted to the negative voltage of the cathode.  

The movement of the electrons are called cathode rays.  Once they strike the cathode, 

electrons are released and accelerated toward the anode.  The electrons strike the glass tube 

and florescence occurs.  On November 8th 1895, Wilhelm Conrad Röntgen, a German physicist, 

was working with a Crookes tube.  He had covered the tube in black cardboard and was using a 

fluorescent screen to investigate cathode rays.  Röntgen noticed that although the tube was 

covered and no visible light could escape,  the fluorescent screen still had a faint glow.  He 



10 

 

realized that some invisible ray was traversing through the cardboard and striking the screen.  

Through a series of experiments he found that these rays could traverse through a variety of 

items.  He called them X-rays, the "X" standing for a mathematical variable that is unknown.22  

Röntgen famously imaged his wife's hand using X-rays.  This image is the very first use of 

medical imaging.  Röntgen received the first Nobel Prize in Physics for his discovery of X-rays in 

1901. 

2.3 X-ray Production 

X-rays are produced when the kinetic energy of electrons is converted into 

electromagnetic radiation.  X-rays are typically created in a X-ray tube, which, unlike the 

Crookes tube used by Röntgen, produces electrons by a process called thermionic emission.  

Thermionic emission is the process of adding enough heat energy to electrons in a metal to 

overcome the work function of the metal.  Once this occurs the electrons are emitted from the 

metal.  In a typical X-ray source, a metal filament is heated (typically thoriated tungsten) in a 

evacuated chamber.  A high voltage is applied between the metal filament and a metal surface 

in the tube.  The filament is at a negative voltage (cathode electrode) while the surface is at a 

positive voltage (anode electrode).  Once the voltage is applied between the cathode and anode, 

the emitted electrons will accelerate toward the anode with a kinetic energy (keV) proportional to 

the potential difference (kVp) between the cathode and anode.  When the electrons strike the 

surface of the anode, their energy is converted into other forms.    Approximately 99.5% of all 

energy is converted into heat through small electron collision exchanges.22  The other energy is 

converted into two types of X-rays: Bremsstrahlung and Characteristic. 

2.3.1Bremsstrahlung X-rays 

Bremmstrahlung radiation occurs when an electron passes near the nucleus (positively 

charged) of an atom.  Coulombic forces cause the electron to lose kinetic energy and change 

direction.  The lost energy becomes a X-ray photon produced by Bremmstrahlung radiation.  
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More energy is lost as the electron's path is closer to the nucleus resulting in higher energy 

photon production.  Figure 1 is a diagram showing several electron interactions and the 

difference in photon energy due to distance differences.  Since the size of an atoms nucleus is 

relatively small compared to the total area the electron shells take up, the probability of 

producing high energy photons is small compared to producing low energy photons.  The total 

photon output, or spectrum, from Bremstrahlung radiation increases linearly with decreased 

photon energy.  However, the low energies of X-ray production are absorbed by the materials in 

the path of the X-ray in a process called filtration. More information on filtration can be found in 

Section 2.4.3.   

 

Figure 1: Diagram of three different electron interactions in an atom where Bremmstrahlung radiation 
would be produced.  The numbers indicate locations of X-ray production in order of increasing energy lost.  

The farther the electron is from the nucleus the less energy is converted to X-rays.  This image is for 
demonstrative purposes and does not represent actual interactions or atoms.  Image is modeled after a 

figure from Bushberg et al..
22
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2.3.2Characteristic X-rays 

Some electrons bombarding the anode will collide with an electron in the shell of an 

atom.  If the energy transferred to the shell electron is higher than the binding energy of the 

electron then the electron could be ejected from the shell.  The difference in the transferred 

energy and the binding energy is the amount of kinetic energy the now free electron will have.  

The atom has now become an ion.  The resultant unstable electron shell will be filled with an 

outer shell electron at a lower binding energy.  When the electron transitions shells, the 

difference in energy between the two shells can be expelled as a characteristic photon.  Since 

the energy of the expelled photon depends on the different shell energies then every material 

produces a unique set of characteristic photons, hence the name characteristic.  Each 

characteristic X-ray is given a name.  The name corresponds to the letter of the vacant shell 

being filled.  A subscript is also added which designates if the electron filling the shell is from 

and adjacent (α) or a non-adjacent shell (β).  For example: an electron coming from the L shell 

to the K shell would be named Kα.  The low energies of non-K shell characteristic X-rays are 

filtered by the tube housing in medical imaging applications.  Together, the characteristic and 

Bremmstrahlung X-rays make the spectrum of a particular X-ray source.  Figure 2 shows a 

simulated spectrum of a X-ray source with a tungsten target and a 1 mm thick tungsten filter.   
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Figure 2: Simulation of an energy spectrum from a X-ray source with a tungsten target and 1 mm of 
tungsten filtration.  The applied potential difference was 120 kVp.  Both the characteristic Kα and Kβ X-ray 
peaks are labeled as well as the Bremmstrahlung curve.  The zoomed in region shows the k edge which 

is the energy at which the attenuation coefficient of tungsten increases due to the photoelectric absorption 
of electrons. 

2.4 X-ray Tube Design 

X-ray tube design has not changed significantly William David Coolidge designed and 

patented the very first modern X-ray tube in 1913.23  These tubes, as stated in Section 2.3, 

utilize thermionic emission to extract electrons from the cathode.  The major components of the 

modern X-ray tube are: the cathode, the anode, and the tube housing.  Figure 3 shows a 

diagram of an X-ray tube with all major components labeled. 
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Figure 3: Diagram of a modern X-ray tube.  The major components of an X-ray tube are the cathode, the 
anode, and the tube housing.  The combination of the anode target angle and the anode viewing angle 

can change the effective focal spot on the detector, thus changing the resolution of the image. 

2.4.1The Cathode 

The cathode is the source of the electrons in an X-ray tube.  A cathode consists of a 

high melting point metal (typically thoriated tungsten).  The metal is shaped into a long thin 

helical spiral called a filament.  The filament is attached to an electric circuit and a small voltage 

(around 10 V) is applied, producing a current up to 7 A.22  Resistance in the filament creates a 

large amount of heat (>1000 K) in a short amount of time.  The heat added to the filament 

increases the kinetic energy of the electrons in the metal.  Once the kinetic energy of the 

electrons is greater than the work function of the metal, then through a process called 

thermionic emission the electrons are emitted into the surrounding vacuum.  If a potential 

difference exists between the anode and the cathode then the electrons will accelerate toward 

the anode.  The current hitting the anode (tube current) is directly related to the amount of 
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electrons emitting from the cathode.  If 1 mA of current is hitting the anode then 6.24 x 1015 

electrons per second are hitting the anode.  Tube currents for radiology X-ray tubes range from 

100 to 1,000 mA with an exposure time as high as 100 ms.  In order to change the tube current, 

the filament current is modulated.  For most diagnostic X-ray energies the higher the filament 

current the higher the tube current.  However, for lower tube potentials (potential difference 

between the anode and cathode) the tube becomes space charge limited.  This most often is a 

problem for mammographic imaging modalities which can have tube potentials as low as 20 

kVp.  Once the tube potential is sufficiently high (> 40 kVp) the space charge is overcome by 

the tube potential. 

The location that the electron beam hits the anode is called the focal spot.  Focal spot 

size is very important in radiographic imaging due to its direct relationship with image spatial 

resolution.  As the focal spot becomes larger the spatial resolution becomes worse.  The 

effective focal spot is the perceived focal spot on the detector and is what determines the spatial 

resolution.  Although a tube could have a poor focal spot, the effective focal spot could be 

substantially smaller.  The effective focal spot is covered in Section 2.4.4.  The actual focal spot 

is directly related to the size of the cathode filament.   Since filaments are long and thin, there is 

a substantial difference in the focal spot size in one direction compared to the other.  To 

compensate for the large focal spot size, the viewing angle of the X-ray detector is changed.  

The effect of the viewing angle can be seen in Figure 3.  In the figure, the red dashed line 

shows a large viewing angle which increases the size of the effective focal spot.  The green 

dashed line shows a small viewing angle which decreases the size of the effective focal spot.  

The thin direction of the cathode filament produces a much smaller focal spot, however in 

radiographic imaging even smaller focal spots are needed.  Most cathode filaments are 

surrounded by a focusing cup which is set to a biased voltage.  The voltage can range between 

the voltage of the filament to a more negative voltage (around 100 V less).22  As the focusing 
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cup voltage becomes more negative, the electrons are repelled from the cup and a thinner focal 

spot is created.   

2.4.2 The Anode 

The anode is the source of the X-ray radiation in an X-ray tube.  The most common 

anode material is tungsten due to its high melting point (3695 K) and high atomic number (74).  

Higher atomic numbers yield a higher X-ray production efficiency.  The high melting point is 

needed because of the approximately 99% inefficiency of X-ray production at radiographic 

energies.  The 99% of energy bombarding the anode that is not converted to X-ray radiation is 

converted into heat energy.  The added heat energy can raise the surface temperature of the 

anode to several thousand Kelvin within a few milliseconds.  For this reason heat dissipation is 

a very important variable that must be accounted for in X-ray tube production.  Typically, an 

alloy of 10% rhenium and 90% tungsten is used as an anode surface material to further prevent 

surface damage.  Some mammography systems utilize molybdenum or rhodium due to their low 

energy characteristic peaks.  High powered X-ray tubes require the use of rotating anodes to 

dissipate heat during X-ray exposures.  A rotating anode consists of the anode disk, the stem, 

and the rotor.  The anode disk contains a circular track where electrons bombard.  The disk is 

constantly spinning during X-ray exposures to ensure that the surface temperature stays below 

the melting point of the target.  The stem is constructed of a poor heat conductor (typically 

molybdenum).  The stems purpose is to prevent excessive heat from the anode disk from 

reaching the heat sensitive components of the rotor.  The rotor is a ball-bearing system that 

uses electromagnetic induction in order to spin the anode disk between 3,000 and 9,000 RPM.  

The rotating anode adds a large amount of expense and complexity to an X-ray tube.  For X-ray 

tubes not requiring a high power rating, a stationary anode is used with a highly conducting 

backing which dissipates residual heat between exposures. 
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A small amount of anode heat dissipation occurs because of the angle of the anode.  

Anode angles help reduce the size of the effective focal spot in the length direction of the 

cathode filament.  The anode angle is the angle at which the anode is placed perpendicular to 

the electron beam.  Different anode angles are used for different applications.  Small anode 

angles produce small effective focal spots but result in an increase in the heel effect.  The heel 

effect is when emitted X-rays travel through the anode on their path to the X-ray detector.  The 

X-rays are attenuated by the anode and thus reduce the X-ray flux on the detector.  Therefore, 

removing the area of X-ray radiation affected by the heel effect is important.  When a small 

anode angle is used the useful area of the beam is reduced and therefore results in a smaller X-

ray field of view (FOV) on the detector.  Figure 4 demonstrates the effect of the anode angle on 

the X-ray FOV. 

 

Figure 4: Diagram depicting the effect of anode angle on X-ray FOV.  In the diagram, the green lines 
represent electron beams and the red lines represent X-ray beams.  The small anode angle on the left 

results in a small FOV on the detector while the large anode angle on the right results in a large FOV on 
the detector.  Anode angles are exaggerated for demonstrative purposes. 

2.4.3 Tube Housing 

In a radiographic X-ray tube, the tube housing is composed of the vacuum housing, X-

ray window, filter, and collimator.  The vacuum housing is important because it separates the 

vacuum inside the tube from the environment.  It also provides support and a primary source of 
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X-ray shielding.  Since X-rays are produced in every direction when the tube is on, it is very 

important to shield patients and operators from unwanted radiation.  Very dense materials are 

used around the vacuum housing to absorb unwanted radiation.  The Food and Drug 

Administration (FDA) limits the amount of radiation that penetrates this shielding to 100 mR/hr at 

a distance of 1 m from the focal spot.22 

The window/filter combination of a X-ray tube determines the beam quality.  Beam 

quality refers to the distribution of X-ray energies in a X-ray beam.  A hardened X-ray beam 

consists of higher energy X-rays.  Depending on the application, a variety of beam qualities 

could be wanted in a radiography system.  For most systems, the X-ray window consists of 

glass or aluminum.  Both materials will attenuate the majority of X-rays that are at 15 keV or 

below.22  In mammography systems, low energy X-rays are essential due to the soft tissue 

being imaged.  Mammography systems typically use beryllium windows which have a much 

lower atomic number than aluminum and therefore attenuate less low energy X-rays.  Further 

filtration beyond the window is useful in some systems to form the beam quality to a particular 

purpose.  Some mammography systems use rhodium and silver filters.24  Some imaging 

examinations utilize contrast agents to increase the contrast of suspicious lesions.25  During 

these examinations two different energies can be used to image the patient.  Both a low energy 

and high energy X-ray exposure is used.  The purpose is to have an image with an average 

energy above and below the K-edge of the contrast agent.  Once the images are taken, 

normalizing and subtracting the images yields an image of only the areas where the contrast 

agent has pooled.  In order to change the average energy of the beam without adding a large 

amount of radiation dose to the patient a filter is used.  Selecting a filter with a K-edge similar to 

the contrast agent being used can allow for a large low energy dose while filtering out the 

unwanted high energy.  A K-edge is an energy above the binding energy of K shell electrons 

which has a sudden increase in the attenuation coefficient due to photoelectric absorption of 

electrons.26  Figure 2 shows an X-ray spectrum with a K-edge effect highlighted.   
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The X-ray collimator limits the FOV of the X-ray beam to the X-ray detector.  FDA 

regulations limit the amount of radiation that can pass outside the FOV of the detector.  A 

collimator consists of four sides of highly attenuating metal.  The four sides can be adjusted in 

order to limit the beam to the appropriate area on the detector.  More advanced collimators are 

used in radiation therapy systems to change the trajectory of the X-ray beams to limit the 

radiation exposure to normal tissue. 

2.4.4 Effective Focal Spot 

The effective focal spot of an imaging system is directly related to the spatial resolution 

of images.  A smaller effective focal spot results in higher resolution images.  The factors 

effecting the effective focal spot are: the actual focal spot size, the anode angle, and the viewing 

angle.  The focal spot size and viewing angle were covered in Section 2.4.1 while the anode 

angle was covered in Section 2.4.2.  All of these factors convolved together will give the 

effective focal spot. 

2.5 X-ray Interactions in Matter 

In order for a X-ray based imaging system to produce usable images, some amount of 

X-ray radiation must be absorbed by the item being imaged.  Variations in the absorption of 

different materials give contrast to X-ray images.  Other forms of X-ray interaction with matter 

include scattering and pair production.  The four major forms of X-ray photon interactions and 

matter are: (1) photoelectric absorption, (2) Rayleigh scatter, (3) Compton scatter, and (4) pair 

production. 

2.5.1 Photoelectric Absorption 

Photoelectric absorption is the major source of contrast in a radiographic image.  The 

process of photoelectric absorption occurs when an incident X-ray photon contains more energy 

than the work function of an electron in the shell of an atom.  All the energy of the photon is 

transferred to the electron which is subsequently ejected from the atom with a kinetic energy 
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equal to the energy of the incident photon minus the binding energy of the electron.  If the 

ejected electron was occupying an inner shell, then the vacancy in the shell will be filled by an 

outer shell electron.  The difference in binding energies of the two electron shells will be 

released as either a characteristic X-ray or as an Auger electron.  An Auger electron occurs 

when the binding energy difference is transferred to an outer shell electron.  If the energy is 

higher than the binding energy of the electron then it will also be ejected with a kinetic energy 

equal to the impending energy (from the first binding energy difference) minus the binding 

energy of the Auger electron.  After production of the Auger electron or characteristic X-ray, 

there is now another open position in an electron shell and the process could happen again.  

This will continue in a cascade from the inner shell to the outer shell.  The probability of 

photoelectric absorption occurring is approximately proportional to the following equation: 

Equation 1: 

     
  

  
 

Where "Ppa" is the probability of photoelectric absorption per unit mass, "Z" is the atomic 

number of the absorbing material, and "E" is the energy of the incident photon.  Analyzing this 

equation shows that higher atomic number elements will have a higher probability of 

photoelectric absorption for a particular photon energy.  This equation also shows why the field 

of mammography utilizes low energy photons for imaging.  The effective atomic number of 

different breast tissues is between 5 and 6.27  which would require a very low photon energy to 

keep the probability of absorption high.     

2.5.2 Rayleigh Scatter 

Scattering in medical imaging produces unwanted image deterioration.  It also requires 

an increase in X-ray dose to compensate for loss of image contrast.  There are two types of X-

ray scatter: Rayleigh and Compton.  In Rayleigh scatter, the incident photon excites the entire 

atom by imparting energy into the electron cloud causing the electrons to oscillate in phase.  As 
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they begin to oscillate another photon of equal energy but in a different direction is ejected from 

the atom.  This particular type of scattering has a very low probability of occurring at most 

diagnostic energy levels.  It accounts for less than 5% of all X-ray interactions above 70 keV.22  

However, Rayleigh scatter becomes more of a problem for mammographic energies.  At 30 keV 

the probability increases to 12%.22   

2.5.3 Compton Scatter 

Unlike Rayleigh scatter, Compton scatter is the dominant form of X-ray interaction in 

matter for the majority of diagnostic X-ray energies.  Above approximately 300 keV, Compton 

scatter is the only attenuation interaction that occurs for soft tissue until pair production begins 

at around 3,000 keV.  For energies above approximately 30 keV, Compton scatter is more 

prevalent than photoelectric absorption for soft tissue.  In Compton scatter, the incident photon 

imparts enough energy to overcome the work function of the atom and ejects the electron with 

some kinetic energy.  The incident photon has not lost all its energy, so it continues on in a 

separate trajectory.  This type of interaction most often occurs for outer shell electrons.  Total 

energy is conserved so the energy of the incident photon is equal to the energy of scattered 

photon plus the energy of the ejected electron plus the binding energy of the electron.  The 

energy of the scattered photon can be calculated from the following equation: 

Equation 2: 

    
  

   
  

       
         

 

Where "Ef" is the final energy of the photon, "Ei" is the initial energy of the photon, and 

"θ" is the angle of the scattered photon with respect to incident trajectory.  From the equation it 

can be seen that higher energy photons will be scattered at a lower angle.  These photons can 

continue on to the X-ray detector but will add scatter to the image which decreases image 

contrast.   
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Scatter on a radiographic image can be significant with respect to the total contrast to 

the image.  The scatter to primary ratio is the amount of detected photons from scattered 

interactions to the amount of unscattered photons.  In radiography, scatter to primary ratios can 

range from 0.4 to 20.28, 29  There has been a lot of research conducted into reducing or 

estimating the scatter in radiographic images.  Many systems implement an anti-scatter grid to 

remove unwanted scattered photons.30  Anti-scatter grids are then sheets of highly attenuating 

metals which have a series of holes or lines which correspond to detector pixels and are aligned 

with the location of the X-ray source.  Since the holes are aligned they will theoretically only 

allow photons which are on a direct path from the X-ray source.  However, they do not remove 

all scatter due to secondary scatter and misalignment.  They also reduce the amount of primary 

X-rays that are reaching the detector.  In order to compensate for the loss in primary X-rays, 

longer exposures are required. 

2.5.4 Pair Production 

Pair production does not occur in the diagnostic energy range.  X-ray energies higher 

than 1.02 MeV are required in order for pair production to take place.22  An electron-positron 

pair is produced when high energy X-rays interact with electric field of an atom's nucleus.  The 

energies of the matter and antimatter pair are both 0.511 MeV, which is the rest mass energy of 

an electron.  The positron will lose energy through excitation and ionization until it comes to rest.  

Once it comes to rest it will interact with an electron and produce an annihilation event will occur 

producing two photons which travel in opposite directions.   

2.5.5 Attenuation Coefficient 

The total attenuation of a photon is a combination of the four aforementioned photon-

matter interactions.  The total attenuation depends on the incident photon energy and the 

material composition.  For a particular material and energy, the attenuation of photons per unit 
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thickness is called the linear attenuation coefficient "µ".  The Beer-Lambert law shows the 

correlation between the linear attenuation coefficient and the number of transmitted photons: 

Equation 3: 

      
    

Where "I" is the number of photons exiting the material, "Io" is the number of photons 

incident on the material, "µ" is the linear attenuation coefficient of the material, and "x" is the 

distance traveled through the material.  The linear attenuation coefficient decreases with 

increased X-ray energies for a given material unless a K-edge is present.  Table 1 shows 

various materials and the relationship between electron density and attenuation coefficient at 50 

keV.  Materials with higher electron densities give higher probabilities that an incident electron 

will interact with the atom.  Thus the likelihood of attenuation and the attenuation coefficient 

increases.   

Table 1:  Linear attenuation coefficient for various materials at an energy of 50 keV.  As the electron 
density increases the probability of photon interaction increases thus the linear attenuation coefficient 
increases.  Table is recreated from data from Bushberg et al.

22
 

Material 
Density 
(g/cm3) 

Electrons per 
Mass (e/g) x 

1023 

Electron 
Density 
(e/cm3) 

µ (cm-1) 

Hydrogen 0.000084 5.97 0.0005 0.000028 
Water vapor 0.000598 3.34 0.002 0.000128 

Air 0.00129 3.006 0.0038 0.000290 
Fat 0.91 3.34 3.04 0.193 
Ice 0.917 3.34 3.06 0.196 

Water 1 3.34 3.34 0.214 
Compact bone 1.85 3.192 5.91 0.573 
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CHAPTER 3: MAMMOGRAPHIC IMAGING FUNDAMENTALS 

3.1 Overview 

In order to completely understand the research and work done in this dissertation, 

background information is needed on mammographic imaging.  The following sections will cover 

anatomy of the breast and associated lesions of the breast, including masses and 

microcalcifications (MCs).  Following the anatomy section, there will be an overview of image 

quality and assesment. 

3.2 The Human Breast 

The human breast is a complex component of the human body.  It is also the source of 

the second leading cause of cancer in women in the United States affecting more than 200,000 

women each year.1  The following section contains information about the structure of the human 

breast and associated lesions.  Although men are also susceptible to breast cancer, this section 

will only cover the female breast. 

3.2.1 Female Breast Anatomy and Positioning 

The human breast is a skin gland which develops from the mammary ridge.  It lies 

between the clavicle bone and the eighth rib on the chest wall.  The breast lies on the pectoralis 

major muscle but frequently wraps around the lateral side of the muscle.   

There are 6 major components to a female breast; (1) the nipple, (2) the areola, (3) the 

ducts, (4) the lobules, (5) fat and connective tissue, and (6) skin.  The lobules are the glands of 

the breast which secret milk.  They are the starting point of the duct system in breast anatomy 

but are referred to as the terminal portion.  Each lobule secretes milk to a terminal duct.  

Clusters of lobules and their associated terminal duct are called the terminal duct lobular unit.  

The ducts traverse the breast and reach the nipple where milk is secreted out of the body.  The 
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structure surrounding the nipple is the areola.  The breast is held together by varying sized 

sheets of connective tissue.  Subcutaneous fat surrounds and is interdispersed within the 

connective tissue.  Skin envelopes the entirety of the breast except the areola and nipple area.31  

Figure 5 shows a schematic of a typical female breast.  In the image the major components and 

the surrounding components of the breast are labeled. 

 

Figure 5: Diagram of the major and surrounding structures of the female breast.  Each structure is 
labeled.  Image has been adapted to point to the structures.  Original image is copyright Patrick J. Lynch, 

medical illustrator; and C. Carl Jaffe, MD, cardiologist.  And is reprinted with permission from the 
copyrighter based on the Creative Commons Attribution from Wikipedia.com.   

Due to the overlapping of tissue in a 2D radiograph, multiple views are required in a 

screening mammogram.  A typical screening mammogram consists of both a craniocaudal (CC) 

view and a mediolateral oblique (MLO) view of each breast.32  The MLO view is useful for an 

alternative view of breast structures and for visibility of the chest wall portion of the breast which 

is not visible in the CC view.31  Patients are positioned in either view and are compressed using 
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a near radiolucent paddle.  The compression is needed to further reduce the amount of tissue 

overlap present in a 2D mammogram.33  Compression leads to severe discomfort for patients.  

The average compression force used in screening mammography is greater than 22 lbs.33  

Even with compression, variations in breast thickness are apparent in mammograms.  

Variations occur specifically at the periphery of the breast where it is not possible to get uniform 

breast thickness.  Figure 6 shows a diagram of a compressed breast and the resultant non-

uniform breast thickness.  The air gaps in the image produce differing levels of X-ray intensity 

on the detector.  Periphery equalization is an image processing technique used to reduce the 

effect of air gaps.34 

 

Figure 6:  Diagram showing the non-uniformity of breast thickness that occurs even after compression of 

the breast.  The air gaps in the image produce differing levels of X-ray intensity on the detector. 

3.2.2 Breast Density 

Breast density refers to the amount of fat and fibrous connective tissue that is found in a 

breast.  The Breast Imaging-Reporting and Data System (BI-RADS), is a quality assurance tool 

designed to keep mammographic standards equivalent for all mammography facilities.  BI-
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RADS classifies breast density into four categories based on the amount of fibrous tissue 

present in the breast.  Table 2 shows the BI-RADS classifications for breast density and their 

respective fatty and fibrous tissue percentages.  Figure 7 shows example 2D radiographs with 

each BI-RADS density classification.  From the figure it can be seen as the breast density 

increases the image contrast decreases for 2D imaging modalities. 

Table 2: BI-RADS breast density classifications.  Data taken from Baker et al.
35

 

Classification Description 
Percentage 
Fatty Tissue 

Percentage 
Fibrous Tissue 

BI-RADS 1 Mostly Fat > 75% < 25% 

BI-RADS 2 
Scattered 

Fibroglandular 
51 - 75% 25 - 50% 

BI-RADS 3 
Heterogeneously 

Dense 
25 - 50% 51 - 75% 

BI-RADS 4 
Extremely 

Dense 
< 25% > 75% 

   

Figure 7: Example 2D projection radiographs of breasts with each BI-RADS density classification.  
Moving from left to right the densities become more dense.  This image is reprinted with permission from 

Dr. Cherie Kuzmiak from UNC Hospitals. 
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3.2.3 Masses 

There are two types of breast lesions typically associated with breast cancer, masses 

and MCs.  Masses are abnormal groups of cells which could be benign (non-cancerous) or 

malignant (cancerous).  There are a variety of lesions that can be found in the human breast.  

Table 3 lists a number of common lesions in the breast with their associated locations and 

disease.   

Table 3: Typical lesions with their associated locations and disease.  Data taken from Kopans.
31

 
Benign - non-cancerous 
Atypical - not associated with benign or malignant 
Malignant - cancerous  

Name Location Disease 

Duct ectasia Major ducts Benign 
Large duct papilloma Major ducts Benign 
Intraductal carcinoma 

extending from the terminal 
ducts 

Major ducts Malignant 

Hyperplasia Minor and terminal ducts Atypical 
Peripheral duct papillomas Minor and terminal ducts Benign 

Ductal carcinoma Minor and terminal ducts Malignant 
Cyst Lobule/Major ducts Benign 

Fibroadenoma Lobule Benign 
Adenosis Lobule Benign 

Phylloides tumor Lobule Benign 
Lobular carcinoma Lobule Malignant 

Sarcoma Interlobular connective tissue Malignant 

 

The BI-RADS system also gives classification of disease.  The categorical numbers 

range from 1 to 6 with 1 being negative and 6 being biopsy proven malignancy.  There is also a 

category 0 which is used in situations where additional evaluation is needed such as a lookup of 

previous mammograms.  Table 4 shows the BI-RADS categories and their descriptions. 
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Table 4: BI-RADS classifications of malignancy.  Data taken from Eberl et al.
36

 

BI-RADS Category Description 

0 
Additional evaluation 

needed 

1 Negative 

2 Benign 

3 Probably benign 

4 Suspicious abnormality 

5 
High probability of 

malignancy 

6 
Biopsy proven 

malignancy 

 

3.2.4 Microcalcifications 

The second type of lesion that is commonly found in a mammogram is MCs.  MCs are 

small deposits of calcium in the breast.  Characteristics such as size, distribution, morphology, 

and variability of the MCs help in the assessment.37, 38  MC sizes range from less than 100 µm 

to more than 1 mm.  MCs are present in most post-menopause women.  Although not typically 

associated with cancer, there are some distributions of MCs which can be indicative of cancer.  

Table 5 lists various MC distributions and types along with their associated diagnosis.     

Table 5: MC types and their associated diagnosis.  Data taken from Baker et al.
35

 
Benign - non-cancerous 
Atypical - not associated with benign or malignant 
Malignant - cancerous  

Type of MC 
Typical 

Diagnosis 

Milk of calcium Benign 

Rim Benign 

Skin Benign 

Vascular Benign 

Spherical Benign 

Suture Benign 

Coarse Benign 

Large rod like Benign 

Round Benign 

Dystrophic Benign 

Punctate Benign 

Indistinct Atypical 

Pleomorphic Malignant 

Fine branching Malignant 
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3.3 Image Quality 

Image quality is very important in mammographic imaging.  Without a high standard of 

image quality set by the FDA, different imaging centers could have markedly different diagnoses.  

The quality of an image can be quantitatively described from three different variables; (1) 

contrast resolution, (2) spatial resolution, and (3) noise.   

3.3.1Contrast 

The contrast of an object in an image is the difference in its apparent attenuation from 

the background of the image.  As the contrast between the object and background becomes 

smaller, the ability to discern the two becomes more difficult.  The contrast of an object can be 

calculated using the following equation: 

Equation 4: 

   
     

  
 

Where "CO" is the contrast of the object, "SO" is the signal intensity of the object, and 

"SB" is the signal intensity of the background near the object.  In an X-ray based medical 

imaging system the contrast resolution is affected by 4 major factors; (1) radiation dose, (2) X-

ray attenuation coefficient of the object being imaged, (3) X-ray scatter, (4) and (5) image 

processing. 

Two factors can be adjusted in a X-ray system to change the radiation dose.  

Decreasing the anode potential will decrease the dose and increase the contrast of the image.  

Higher energy X-rays are less likely to be attenuated by soft tissue.  The caveat of decreasing 

the anode potential is that lower energy X-rays will be absorbed more readily and if the object is 

sufficiently dense, no X-rays will reach the X-ray detector.  Increasing the X-ray tube exposure 

(current times pulse width) will increase the contrast of the image, unless the anode potential is 

too low to allow for X-rays to pass through the object.  Increasing the exposure increases the 
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number of photons exiting the X-ray tube thus increasing the number of photons reaching the 

detector.  Looking back at Equation 4 it can be seen that increasing the number of photons 

reaching the detector will increase the signal intensity of the object and the signal intensity of 

the background.  Since the X-ray attenuation coefficient is larger for the object than the 

background, the signal will increase at a faster rate for the background compared to the object 

thus increasing the contrast in a given period of time.  Since increasing the radiation dose to the 

patient could increase the chance of having cancer at a later time, careful consideration must be 

taken into the tradeoff of contrast versus radiation dose. 

  The difference in the attenuation coefficient of an object and its background, along with 

differences in thickness, is the underlying reason why there is contrast in an X-ray based 

imaging system.  If all objects in an image had the same thickness and attenuation coefficient 

then there would be no contrast in the resultant image.  Figure 8 shows the effect of attenuation 

coefficient on image contrast.  In the figure the green attenuating object will attenuate twice the 

amount of X-rays at the given energy than the blue object.  The image on the right shows how 

all contrast is lost when the green object is exactly half the thickness of the blue object.  This is 

due to the apparent equal total attenuation of the two objects. 

 

Figure 8: Demonstration of the effect of the attenuation coefficient on the contrast of an image. The 
green attenuating object will attenuate twice the amount of X-rays at the given energy than the blue object.  
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The image on the Left shows that when the objects have the same thickness contrast between the two 
objects can be seen.  However, the image on the Right shows that if the green object has half the 

thickness of the blue object there is no contrast between the two. This is for demonstrative purposes and 
does not necessarily represent an actual imaging system. 

X-ray scatter is detrimental to image contrast.  Scatter is present in all X-ray based 

imaging.  For absorption based X-ray imaging it causes a decrease in image contrast.  Scatter 

produces a continuous low frequency baseline across the whole image.  When looking at 

Equation 4, scatter would add constant number to the object and background signal.  Since the 

numerator would cancel out the constant number, the number would only be added to the 

denominator.  This effectively reduces contrast.  

Image processing can be used in digital mammography to enhance the contrast of 

lesions.  Pisano et al.  used contrast limited adaptive histogram equalization (CLAHE) on digital 

mammograms in order to increase the contrast of spiculated masses.39  Low contrast spiculated 

masses were simulated in dense mammograms.  A group of readers reviewed the images.  It 

was found that mass visualization was significantly improved for cases where CLAHE had been 

used.39  There are many other image processing techniques which improve contrast.  A simple 

adjustment of the histogram will increase image contrast.  An image histogram is a chart 

displaying all the grayscale levels (typically 0 to 2^16) and their total densities in the image.  

Figure 9 shows an image before adjustment of the histogram (Left) and after adjustment of the 

histogram (Right).  After adjustment of the histogram, the contrast is increased and structures in 

the image become visible.  These methods of contrast adjustment will cause an increase in 

noise in the images.  Noise reduces the visibility of both masses and MCs in mammograms.  

Noise will be covered more in depth in Section 3.3.3. 
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Figure 9: Left - An MLO image of a breast (Above) without adjusting the image (Below).  Right - Same 
image (Above) with adjustment of the histogram (Below).  The red bars on the original histogram show 

the window at which the changed histogram is contained in.  This case is greatly exaggerated. 

3.3.2Spatial Resolution 

The term spatial resolution describes the ability of an imaging system to resolve objects 

in the spatial domain.  A simple explanation is the ability of a system to resolve two objects as 

they become smaller and closer together.  Large objects that are far apart can be visualized as 

two distinct objects.  A system that can resolve smaller objects that are closer together, as 

distinct objects, is said to have better spatial resolution.   In a x-ray based medical imaging 

systems the spatial resolution is affected by 4 major factors; (1) focal spot size and viewing 
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angle, (2) detector pixel size, (3) reconstruction and post-processing algorithms, and (4) 

radiographic magnification factor.   

The focal spot size has a direct effect on the spatial resolution of a system.  A smaller 

focal spot size will result in a higher spatial resolution.  Another factor affecting the spatial 

resolution is the viewing angle of the focal spot on the detector (effective focal spot).  Viewing 

angles that are closer to perpendicular with the anode surface have a smaller effective focal 

spot size thus a higher spatial resolution.  This effect is only applicable in the anode-cathode 

direction of the system.  The focal spot size is constant in the other direction. 

Since medical imaging uses sampled signals even with an ideal system in other aspects 

the spatial resolution of the system is still degraded by the size of the samples, detector pixel 

size.  As a rule of thumb, smaller pixel sizes result in better spatial resolution.  The crystals in 

screen film systems are smaller in size than current digital detector pixel sizes, resulting in a 

higher spatial resolution for screen film systems.  This was a particularly large concern for 

mammography when the change from screen film systems to digital systems was first 

proposed.40  High spatial resolution is needed in mammography in order to visualize MCs which 

depending on size and structure can indicate if a particular lesion is benign or malignant.37   

For tomographic imaging modalities, like digital breast tomosynthesis, the reconstruction 

algorithm can affect the spatial resolution of the system.  Wu et al. compared filtered 

backprojection (FBP) to a maximum likelihood (ML) method.  They reported that FBP had higher 

spatial resolution but higher noise than ML.5  Resolution can also be increased by 

reconstructing pixel sizes which are smaller than the detector pixel size.  Acciavatti and 

Maidment investigated using sub-pixel resolution in a DBT system.41  They found that they could 

reconstruct objects smaller than the detector pixel size without aliasing occurring.   

For systems with small focal spot sizes, radiographic magnification can be used in order 

to increase the size of the objects being imaged.  Since x-rays are divergent, objects closer to 

the x-ray source will appear larger on the detector than the same sized object closer to the 
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detector.  The equation below can be used to determine the magnification factor of the object 

being imaged: 

Equation 5: 

   
   

   
 

Where "M" is the radiographic magnification factor, "SID" is the source to imager 

distance, and "SOD" is the source to object distance.  In practice large magnification factors are 

not useful because of the large detector size needed and the increased penumbra of the focal 

spot.  Figure 10 shows the effect of the magnification on the penumbra of the focal spot.  The 

penumbra can be calculated from the following equation: 

Equation 6: 

      
       

   
         

Where "Pn" is the size of the penumbra on the detector, "M" is the radiographic 

magnification factor, "SID" is the source to imager distance, "SOD" is the source to object 

distance, and "F" is the focal spot size in a plane parallel to the detector.  If small focal spots are 

used then the dominant factor of the spatial resolution is the detector pixel size and not the 

penumbra of the focal spot.   
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Figure 10: Illustration of the effect of radiographic magnification on the penumbra of a non-ideal focal 
spot.  Ideal focal spots are not possible in X-ray tubes so this effect is visible in every radiographic 

imaging system. 

In practice the spatial resolution depends on all four of these factors.  However, another 

factor must be taken into account while imaging live patients, patient motion.  This is a large 

concern for adjunct mammographic imaging modalities such as digital breast tomosynthesis as 

it has been shown that patient motion can have a more adverse effect on spatial resolution than 

the previous mentioned factors.16  Faster acquisition times will result in average decreases in 

patient motion.  All these factors must be taken into account when creating a system with high 

spatial resolution.  However, system cost must be taken into account as well. 

3.3.3 Noise 

Both contrast and spatial resolution allow for visualization of objects in radiographic 

images.  However, noise reduces visualization of objects in images.  Noise is random 

fluctuations in images.  If noise is sufficiently large compared to the contrast or spatial resolution, 

it could completely cover up a lesion in a X-ray image.  The following equation shows the 

relationship between object visibility and noise: 
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Equation 7: 

     
  
 

 

Where "CNR" is the contrast to noise ratio, "CO" is the object contrast as calculated by 

Equation 4, and "σ" is the standard deviation of the region of interest.  Using this equation, a 

large standard deviation would result in reduced visibility of the object.  This equation, although 

commonly used, does not properly quantify the visibility of an object.  For example,  if the signal 

of an object was 20, the background signal was 10, and the standard deviation was 4, then the 

CNR would be 0.25.  If a constant number of 5 was removed from the entire image, the 

standard deviation would stay the same, the object signal would become 15 and the 

background signal would become 5.  Now the CNR is 0.5, but looking at the image there would 

be no visible difference in the image.  A more useful equation is the signal difference to noise 

ratio (SdNR), which removes the denominator in the contrast calculation resulting in the 

following equation: 

Equation 8: 

      
     

 
 

Where the variables are equivalent to the previously described variables of the same 

name.  Using this equation, the removal of the constant number 5 would result in the same 

value as without the removal, 2.5.  Resolution and noise are very important in mammographic 

imaging due to the extremely small size of MCs.  Some MCs can be near the size of a detector 

pixel.37  Small pixel by pixel fluctuations caused by noise could either be mistaken as MCs 

which could lead to false positive diagnosis, or worse, could cover up MCs which could lead to 

false negative diagnosis.  There are many factors in an imaging system that can contribute to 

noise.  However, there are two types of noise that contribute the most; (1) quantum noise and (2) 

electronic noise. 
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Quantum noise comes from the fact that X-ray production is a random process.  If a 

single electron is bombarded onto the anode, the direction, energy, and number of photons 

created will vary from those of different electrons bombarding the anode.  If the number of 

electrons is sufficiently high, then the X-ray source will create its spectrum in every direction.  

Even when sufficiently high, there are random fluctuations in photon counts at the X-ray 

detector.  In most circumstances, quantum noise accounts for the majority of noise in images.  

Increasing the exposure of an image increases the noise as well as the photon count.  However, 

the photon count will increase at a higher rate than the noise will.  If the signal increases by a 

factor of N then the noise will increase by a factor of √N.   

Electronic noise is a problem for digital imaging systems.  It comes from random 

electrical spikes.  In imaging systems, the noise is closer to a constant.  It becomes a non-factor 

at a certain dose.  But if the dose is low, the electronic noise could have similar effects on 

contrast as quantum noise.   

3.4 Image Interpretation 

The interpretation of mammographic images is very important for diagnosis of breast 

cancer.  Even well trained radiologists misdiagnose patients.  The misdiagnosis is not 

necessarily the radiologist's fault, the imaging system also plays an important part in the image 

interpretation.  All of radiology use a set of terms to describe the interpretation of images with 

respect to disease truth.  The following paragraphs will cover the majority of these terms. 

True positive (TP), true negative (TN), false positive (FP), and false negative (FN) relate 

to the ability of a imaging system and image viewer (CAD or human) to accurately determine if a 

patient is positive or negative for the disease being screened.  Table 6 is a chart that will be 

used in order to more easily explain these terms.  In the chart, columns represent the disease 

truth and rows represent the diagnosis of the radiologist based off the acquired images. 
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Table 6: Determination of TP, TN, FP, and FN base off disease truth and diagnosis. 

  
Disease 

Truth 
  Positive Negative 

Diagnosis 
Positive TP FP 

Negative FN TN 

TP is defined as the number of people diagnosed as positive that were actually positive.  

TN is defined as the number of people diagnosed as negative that were actually negative.  FP is 

defined as the number of people that were diagnosed as positive but were later determined to 

be negative.  FN is the number of people that were diagnosed as negative but were later 

determined to be positive.   

Sensitivity and specificity are statistical measures which describe the performance of the 

imaging system and the reader.  Sensitivity is defined as the fraction of people who are 

accurately diagnosed as positive for disease.  It can be calculated using this equation: 

Equation 9: 

            
  

       
 

Specificity is defined as the fraction of people who are accurately diagnosed as negative 

for disease.  It can be calculated using this equation: 

Equation 10: 

            
  

       
 

A receiver operating characteristic (ROC) curve is a visual representation of the 

performance of a imaging system.  It is created by plotting the sensitivity on the y-axis versus 

varying levels of the false positive rate (1-specificity) on the x-axis.  For comparison between 

two systems the area under the ROC curve (AUC) is used.  A larger AUC would indicate that a 

system is more likely to produce TPs and TNs than FPs and FNs.   
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Accuracy is equivalent to the ratio of the number of patients accurately diagnosed to the 

total number of patients.  A system that has a point at the exact upper left corner of the ROC 

curve would be a system that is 100% accurate.  If a system was equivalent to completely 

random guesses then the accuracy of the system would be 50%.  Figure 11 is a ROC curve of 

a system which has an accuracy of 50%.  Such systems do not exist in actual practice but serve 

well as a demonstration of a ROC curve.  A system that has a point anywhere in the bottom 

right of the ROC curve would be a system where you are statistically more likely to get the 

diagnosis wrong than right.  If that is the case just take the opposite of what is diagnosed as the 

actual diagnosis.  This would invert the ROC curve and give you an imaging system which is in 

the upper left portion of the curve.   

 

 

Figure 11: A ROC curve that shows a system that has an accuracy of 50%.  If such a system existed, a 

random guess of diagnosis would give you the same results as diagnosing based off the system. 
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CHAPTER 4: MAMMOGRAPHIC IMAGING MODALITIES 

4.1 Overview 

Due to the unique nature of breast cancer and the complex imaging needed to visualize 

breast masses and MCs, the food and drug administration (FDA) has developed the 

Mammography Quality Standards Act (MQSA) which outlines the requirements for 

mammography accreditation.  The MQSA allows for three modalities to be used in screening 

mammography: (1) screen film mammography (SFM), (2) full field digital mammography 

(FFDM), and (3) digital breast tomosynthesis (DBT).  Some adjunct imaging modalities may be 

used in certain situations to enhance the findings in these three modalities.  The major adjunct 

imaging modalities are ultrasound and magnetic resonance imaging (MRI).  There are also 

many imaging modalities which are under investigation for use in mammography.  The major 

investigative modality is computed tomography (CT).  The following chapter will cover the above 

mentioned modalities and cover some clinical papers involving said modalities.   

4.2Screening Mammography Modalities 

4.2.1 Screen Film Mammography 

SFM utilizes a film to record, display, and storage an image.  The film contains three 

layers: the base, the adhesive layer, and the emulsion layer.  The adhesive layer keeps the 

base and emulsion layers together.  The emulsion layer contains silver halide crystals.  Photons 

are absorbed by the silver halide and electrons are ejected.  These electrons collect on the 

sensitivity center.  The negative charge build up attracts the silver ions and neutralizes them.  

This deposits the black silver particles permanently into the emulsion.  Afterwards, the excess 

granules are washed away.  The contrast in these images exist between areas of silver 

concentration and the areas with less silver concentration.31, 42  Sometimes intensifying screens 
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are used in conjunction with the film.  Intensifying screens are made of fluorescing  materials 

(gadolinium oxysulfide for example) which produce light when they absorb X-ray photons.  

These screens are typically located below the film so that X-rays must pass through the film first 

before reaching the intensifying screen.  Intensifying screens produce exponentially higher 

amounts of light at the entrance of the X-ray photons.  In order to preserve the spatial resolution 

of SFM, the film must be located at the closest location to where the light is emitted which is 

why they are located on top of the intensifying screen.  In the past SFM was the gold standard 

for mammography screening examinations.  In more recent years, although still in use in some 

areas, SFM has become less popular than FFDM 

4.2.2 Full Field Digital Mammography 

In recent years the continued development of digital detectors has allowed for their use 

in mammographic imaging.  The ease of image acquisition, manipulation, and storage has 

made full field digital mammography (FFDM) the gold standard for screening mammography.  

The major differences between SFM and FFDM is the image collection method, storage, and 

display.  This section will cover the major differences between the two modalities and the 

implications of using FFDM in the clinic. 

There are two types of digital detectors that are currently used in FFDM; indirect 

conversion detectors and direct conversion detectors.  Indirect conversion detectors are the 

older of the two detector technologies.  Images are acquired in a two step process, similar to 

SFM.  X-rays are first absorbed by a scintillator (Cesium Iodide doped with Thallium is a 

common scintillator material) which then produces a light scintillation.  The light photons are 

then detected by an array of photodiodes.  These diodes convert the light to electrical signals 

which are then detected by either thin film transistors (TFTs) or charge-coupled devices (CCDs).  

The signals generated by the TFTs or CCDs are then sent to a computer to generate the image.  

Unlike SFM, the scintillator layer is located above the light detection layer since photodiodes are 
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not X-ray transparent as intensifying screens.  This causes spatial resolution degradation which 

can become a problem when imaging MCs.  Each individual photodiode represents a pixel.  

Smaller pixels lead to increased spatial resolution.  Smaller pixels become superfluous at some 

point due to light scatter.  The Cesium Iodide scintillator is commonly used due to the reduction 

in light scatter, this comes at a cost to sensitivity.  Indirect conversion detectors using a Cesium 

Iodide scintillator will have a quantum efficiency between 50 and 70%.  For these reasons, 

careful consideration must be made when determining the scintillator thickness in a indirect 

detector.42 

Direct conversion detectors use a single step process for conversion of X-ray photons to 

electrical signals.  This removes the problems associated with light scatter that hampers indirect 

conversion detectors.  In each pixel in a direct conversion detector, a photoconductor 

transforms a X-ray photon to an electron-hole pair through the photoelectric effect.  When an 

external electric field is applied, these electron-hole pairs drift toward an electrode and are 

collected on a capacitor.  Minimal charge spreading occurs because the electron-hole pairs 

travel along the axis of the electric field, leading to a narrow point spread function.10  The charge 

on the capacitor directly correlates to the amount of absorbed photons and is sent to the 

computer for image creation.  Typical FFDM systems use amorphous selenium as the 

photoconductor.  Amorphous selenium is useful as a photoconductor due to its high efficiency of 

X-ray absorption.  Large thicknesses of selenium can be used to increase stopping power 

without a loss in spatial resolution due to the method of electron-hole pair collection used in 

direct conversion detectors.  With a thickness of 250 µm of selenium, a direct conversion 

detector can stop more than 95% of X-rays in the mammographic range.42 

The direct conversion detector is superior to the indirect conversion detector in terms of 

spatial resolution.  A direct conversion detector will have a higher detective quantum efficiency 

(DQE) compared to an indirect conversion detector with the same pixel size.  DQE is a 

quantitative measure of the efficiency of a detector based on image contrast and resolution.  
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The high resolution needed mammography requires the use of small pixel sizes and therefore 

direct conversion detectors are typically preferred over indirect conversion detectors.42   

When FFDM was first introduced into the screening population, concerns over system 

cost and spatial resolutions came up.43  With screen film systems capable of producing spatial 

resolutions up to 20 lp/mm and at a substantially lower cost, the contrast benefit of digital 

mammography systems was diminished.42  A benefit of FFDM over SFM is the linear nature of 

the intensity profile.  As the X-ray intensity increases on the detector, the image contrast 

increases at the same rate.  This is in contrast to SFM where there is a nonlinear relationship 

between X-ray intensity and film contrast.  For optimal contrast in a SFM system, the exposure 

must be adjusted to account for the nonlinearity.  Another benefit of FFDM is the ability to 

digitally store and post-process images.  This allows for rapid display and transfer of images, 

and for image processing techniques which can increase lesion contrast.34  SFM also has 

reduced visibility in radiographically dense breasts.44   

The diagnostic performance of FFDM and SFM mammography were compared in a 

large multisite clinical trial called the Digital Mammographic Imaging Screening Trial (DMIST).  

DMIST had a total of 49,528 patients at 33 sites in the United States and in Canada.  Patients 

with no previous breast cancers were imaged using both SFM and FFDM.  The images were 

then interpreted by two radiologists.  ROC analysis was used as evaluation.  For all patients, the 

diagnostic accuracy of FFDM was similar to SFM (difference in AUC = 0.03; P = 0.002).  

Comparing the results for patients under the age of 50 showed a significantly higher accuracy in 

FFDM (difference in AUC = 0.15; P = 0.002).  Higher accuracies for FFDM were also recorded 

for heterogeneously and extremely dense breasts (difference in AUC = 0.11; P = 0.003) and pre 

or perimenopausal women (difference in AUC = 0.15; P = 0.002).  The study concluded that 

although the overall accuracy of the two modalities was similar, FFDM is more beneficial than 

SFM in some populations.43     
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4.2.3 Digital Breast Tomosynthesis 

Breast cancer is the most common type of cancer found in women in the United States, 

with more than 200,000 new cases found each year.1  When the cancer is diagnosed at an early 

stage the five-year relative survival rate is between 83.9 and 98.4 percent.  This number drops 

to 23.8 percent when the cancer is diagnosed at a stage at which it has already metastasized.1  

Screening mammography is the current gold standard for early detection of breast cancer.2, 3  

However, 2D mammography imaging lacks depth information, which can cause underlying and 

overlying tissue to obstruct the view of lesions.  This leads to high false positive and false 

negative rates.4, 5  

Digital breast tomosynthesis (DBT) uses multiple low dose projection images distributed 

over an angular span to create a pseudo-3D reconstruction of the breast.  The reconstruction 

method is based on the Fourier Slice Theorem.  This added depth information allows for 

otherwise obscured lesions to become visible.6, 8, 9  Two acquisition methods are used in current 

DBT systems: step-and-shoot, and continuous motion.  In both methods, a single X-ray source 

is rotated about the angular span.  In continuous motion DBT, the X-ray source is rotated 

continuously over the angular span even during image acquisition.10, 11  This leads to short 

acquisition times at the cost of spatial resolution.  In step-and-shoot, the X-ray source is rotated 

and stops at the angle at which the projection will be taken.  It then continues rotating until the 

next angle is reached.12  This method has higher spatial resolution than the continuous motion 

system but has long acquisition times which lead to patient motion which is more detrimental to 

image quality than focal spot blur.16 

The Hologic Selenia Dimensions DBT system was FDA approved for use in screening 

mammography in early 2011.  It is currently the only FDA approved DBT system.  In the system 

the DBT acquisition is followed by a traditional FFDM.  This double acquisition is called 

combination mode (combo mode) and effectively doubles the dose to the patient.  The FFDM is 

used to visualize MCs which the DBT acquisition cannot otherwise visualize.  Many recent 
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clinical trials have shown that the combo mode of the Selenia Dimensions increases in the 

AUC compared to FFDM alone 45, 46.  Recall rates for benign cases significantly 

decrease when using a combination of DBT and FFDM 8, 45-47.  However, for cases with 

microcalcifications (MCs), the use of DBT along with a FFDM image has shown no 

significant improvement in the AUC 46. 

4.3 Adjunct Mammographic Imaging Modalities 

4.3.1 Ultrasound 

Ultrasound imaging uses high frequency sound waves, above the frequency at which 

humans can hear, to image variations in tissue densities.22  It is a useful tool in mammography 

due to its low cost, portability, and use of non-ionizing radiation.  In ultrasound, the sound waves 

are produced by a handheld transducer.  As these waves propagate through tissue they will 

either be reflected, absorbed, refracted, or scattered when tissue boundaries are crossed.  

Waves that are reflected back to the transducer the waves amplitude and delay can be 

measured.  Based on this, a 2D image can be calculated.    

Ultrasound is typically used in mammography as a supplemental view to 2D screening 

mammography.  It is especially useful in breasts with BI-RADS density classifications between 3 

and 4.  A study by Corsetti et al. compared screening mammography for fatty breast versus 

screening mammography and breast ultrasound for dense breasts.48  A total of 8865 women 

were imaged over a six year span.  The cancer rates for women with dense breasts was higher 

(8.3/1000) than women with fatty breasts (6.3/1000).  An average of 4.4/1000 more cancers 

were found in dense breasts using ultrasound and mammography compared to mammography 

alone.  The overall screening sensitivity was 83.5% for mammography in fatty breasts and 86.7% 

for mammography and ultrasound in dense breasts.48 

Ultrasound is useful as an adjunct imaging modality in mammography.  The high 

sensitivity to density changes in tissue allows for visualization of masses that would otherwise 
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have been undetected by 2D mammography.  It is especially useful in women with dense 

breasts, which have severe tissue overlap in images which results in false diagnosis.  It is also 

useful in determining if masses are cysts (non-cancerous) due to the fluid filled nature of such 

lesions.  This helps reduce the number of needle core biopsies.  Even with its low cost, use of 

non-ionizing radiation, and high sensitivity for masses ultrasound cannot be used for screening 

mammography alone.  It has poor depth penetration which becomes a problem for thicker 

breasts.  It also has poor spatial resolution and high levels of noise, both of which are 

detrimental to MC visibility.  Even with these caveats ultrasound serves an important role in 

mammography.42 

4.3.2 Magnetic Resonance Imaging 

MRI is based on the nuclear magnetic resonance of nuclei.  Nuclei with odd atomic 

numbers have spin.  When a large external magnetic field is applied to the nuclei the spins will 

align.  The protons will absorb radiofrequency pulses thus changing the dipole alignment.  The 

absorbed energy is re-emitted after the pulse.  The remitted energy can then be measured 

based on frequency and phase and an image can be created.  MRI produces high contrast 

images of soft tissue, due to the abundance of hydrogen.  The high soft tissue contrast is 

beneficial in mammographic imaging.  MRI is sometimes used for preoperative imaging for 

better visualization of disease extent.22, 42 

Mann et al. studied the impact of preoperative breast MRI on the rate of re-excision in 

invasive lobular carcinomas.  A total of 267 patients were enrolled in the study.  Of the 267 

patients, 99 had preoperative MRIs along with standard clinical care imaging.  The other 168 

patients only had standard clinical care imaging.  A significant decrease in the re-excision rate 

when using preoperative MRI, 9% compared to 27% in the non-MRI group.  There was also a 

decrease in the mastectomy rate, 48 versus 59%.  They concluded that preoperative MRI can 

reduce re-excision rates and mastectomies in patients with invasive lobular carcinomas.49  
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However, another study conducted by Peters et al. was setup similarly but for patients with 

nonpalpable lesions (BI-RADS Classification 3-5).  There were 207 patients in the MRI group 

and 211 patients in the non-MRI group.  The re-excision rate was higher for the MRI group (45%) 

compared to the non-MRI group (28%).50  In general, MRI is not recommended for all patients.  

In some situations the MRI does not change the surgery outcome.  Even worse, in some 

situations the MRI could cause more re-excisions.51 

The high soft tissue contrast of MRI allows for great visualization of some types of 

lesions.  However, due to low spatial resolution and high false positive rates it should not be 

used for screening purposes and is more ideally suited as a complementary modality.    Careful 

consideration should be used when using MRI in preoperative situations. 42, 51  

4.4 Major Investigative Modality 

4.4.1 Computed Tomography 

Breast CT is a 3D imaging system which uses a large number of low dose angular 

projection images to reconstruct the 3D volume.  The 3D representation removes the tissue 

overlap that is found in planar imaging and thus has siginificantly higher lesion contrast 

compared to 2D imaging modalities.  Although not currently used in the clinic, many groups are 

investigating the potential benefits of breast CT. 

The Fourier Slice Theorem is the basis for which CT is able to produce 3D images 

based on 2D projection images.  The Fourier Slice Theorem states that the Fourier transform 

(FFT) of a projection of a 2D object onto a 1D array will produce a slice of the 2D FFT of the 

object at the angle from which the projection is taken.  The Radon transform is an integral of the 

1D projection image.  Thus the FFT of the Radon transform at angle Ø is the slice of the 2D FFT 

in polar coordinates at angle Ø.  If sufficient 1D projections are taken at different angles, then 

enough information can be constructed in the Fourier domain to reconstruct the object by using 

the inverse FFT (iFFT).  As the number of angular projections approaches infinity the Fourier 
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domain will be filled in.  In clinical practice it is unfeasible to approach an infinite number of 

projections.  This leads to under sampling of the Fourier domain especially in the higher 

frequencies.  Interpolation is needed to fill in the information.  Typically, a ramp filter is applied 

to the iFFT in order to compensate for the low signal strength in the high frequency range 

compared to the low frequency range.  The iFFt  gives the estimation of the 2D object.  For a 3D 

object the process must be repeated by stepping in the z-direction or by using a cone beam X-

ray.  When using a cone beam X-ray, further calculations must be made to account for the X-

rays which are not in the perpendicular plane of the X-ray beam. 

The use of CT in medical imaging has increased rapidly since the inception of it in the 

1970s.52  Even compared with the relatively high X-ray dose associated with the soft tissue in 

mammography imaging,  medical CT has more than three times the dose than screening 

mammography.52  The high contrast associated with CT would be extremely beneficial in 

mammographic imaging.  However, reducing the X-ray dose to the patient would be of the 

utmost concern due to the almost yearly screening mammograms.  Breast CT was originally 

developed in the 1970s but to little avail do to long acquisition times and poor image quality.53  

Further research into breast CT was not initiated until flat panel detectors become widely 

available and reliable.  A group out of the University of California, Davis (UC Davis) has recently 

developed a dedicated breast CT system with a lot of promise.54   As with other recent 

dedicated breast CT systems,55, 56 the system is a single breast tabletop design, which is in 

contrast to the early systems which imaged the entire thoracic cavity.  In this design the patient 

lays flat on a table with the breast lowered into a hole in the tabletop.  A single thermionic X-ray 

source is then rotated around the patients breast.  This setup is similar to current dedicated 

stereotactic breast biopsy systems.  A characterization study conducted by Kwan et al. showed 

that with an acquisition time of 17s for 500 projection images, the system was capable of 

producing modulation transfer function values between 1 and 2 cycles/mm with a 10% cutoff.57  

This is significantly lower than the spatial resolution in FFDM which can be higher than 8 
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cycles/mm.58    The system was used in a small clinical trial where 69 patients were imaged.  

Breast CT images were compared to SFM.  It was found that Breast CT performed similar to 

screen film mammography with respect to masses in the breast.  However, MCs were not as 

well visualized on the breast CT system compared to SFM.  The patients reported that breast 

CT was significantly more comfortable than the SFM.59  This is due to the fact that breast CT 

requires no breast compression.  From this early paper it can be seen that the only added 

benefit of breast CT at this time was reduced pain to the patient.  However, the reduction in MC 

visibility could cause a serious problem for screening patients. 
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CHAPTER 5: CARBON NANOTUBE BASED X-RAY SOURCES 

5.1 Overview 

Carbon nanotube (CNT) based X-ray sources utilize field emission instead of thermionic 

emission which is used in most X-ray sources.  The unique design of CNT sources give them 

some advantages over thermionic sources.  There are three main benefits of CNT based X-ray 

sources which give them an advantage over conventional thermionic X-ray sources; (1) near 

instantaneous turn on time, (2) compact design, (3) flexibility in cathode shape.  Current 

applications of CNT based X-ray sources utilize one or more of these advantages in order to 

improve upon current X-ray systems.  Some of the current applications of CNT based X-ray 

sources include: micro-computed tomography (micro-CT), micro-beam radation therapy (MRT), 

chest tomosynthesis, computed tomography (CT), and digital breast tomosythesis (DBT).   

5.2 Field Emission from CNTs Versus Thermionic Emission 

Medical X-ray tubes produce X-ray radiation by extracting electrons from a cathode, 

accelerating the electrons towards an anode and bombarding the anode with electrons.  The 

most common method of electron extraction in current X-ray tubes is thermionic emission.  

Another less used method of electron extraction is field emission.  Thermionic emission is the 

process of heating up a material (a metal cathode in the case of X-ray production) in a vacuum 

(less than 1x10-6 torr) until the kinetic energy of the "free" floating electrons in the metal is 

greater than the work function of the metal.  At this point, electrons will cross the fermi-barrier at 

a current density equivalent to the following equation: 

Equation 11: 
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Where Ao approximately equals 1.2x106 Am-2K-2, k = Boltzmann's constant, Ø equals the 

work function of the cathode, and r is the mean electron reflection coefficient.  Increasing the 

temperature, T, increases the emission current density.  Temperature is increased by increasing 

the kinetic energy of the electrons.  Typical cathode filaments are made of tungsten with a small 

amount of added thorium, and are operated at around 10V.  Thorium is used to increase 

filament lifetime and current density.  For a typical tungsten filament the work function is 

approximately 4.5 eV this decreases to 2.6 eV in a thoriated tungsten filament.  Current 

densities in excess of 1000 mA/cm2 can be obtained using a thoriated tungsten filament.60  

However, actual current densities are space charge limited as defined by Child's Law: 

Equation 12: 

   
  
 
 
  

  
 

Where K is a constant approximately equal to 0.002334 mA/V-3/2 for an electron, Vd is 

the potential difference between the anode and cathode, and d is the distance in cm between 

the anode and cathode.61  For higher potential differences the space charge limitation is 

negligible, but for the lower end of the diagnostic imaging range this can become a problem.  

Using a gap distance of 3.5 cm (design value of the s-DBT tube) and an anode potential of 25 

kV the actual current density cannot exceed 753 mA/cm2.   

Field emission was first derived in 1928 by Fowler and Nordheim.62  Instead of emitting 

electrons by increasing the kinetic energy of the electrons, field emission emits electrons by 

application of an electrostatic field.  Application of a strong electric field lowers the work function 

of the material.  If the work function is sufficiently lowered then the electrons will have enough 

energy to tunnel through the fermi-barrier.  These strong electric fields are only feasible due to 

the field enhancement factor, ϒ.  In a parallel-plate geometry, the electric field between the two 

plates is given as: 
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Equation 13: 

      

Where F is the electric field, V is the applied voltage, and d is the gap distance between 

the two plates.  If there is a high aspect ratio object on one plate then the electric field at that 

point is enhanced by: 

Equation 14: 

       

Where Fe is the enhanced field.  From this it can be seen that objects with high field 

enhancement factors will have higher electric fields at their apex.  As described by Fowler et al. 

the current density produced from field emission is as follows: 

Equation 15: 

  
   

 

 
  

      

   

Where J is the current density in A/cm2, "a" and "b" are constants with values 1.54 x 10-6 

A eV V-2 and 6.83 x 107 eV3/2 V cm-1, respectively, Ø is the work function of the material, and Fe 

is the enhanced field calculated from Equation 14.62 

Carbon nanotubes (CNT) have a very high field enhancement factor due to their large 

aspect ratio.  Due to this and their high mechanical and chemical stability, CNTs are ideal 

candidates for field emitters.63  For operation of a stationary digital breast tomosynthesis (s-DBT) 

system, which utilizes 31 CNT based field emission sources, a cathode current of 43 mA is 

typically used.  The CNT deposition area of these cathodes are 2.5 mm x 13 mm or .325 cm2.  

This gives a current density of 132.3 mA/cm2 for typical operation of the s-DBT system.  This 

should not be taken as an absolute number for current density of a CNT based field emission 

cathode.  A few different variables contribute to the current density of a cathode including: gap 

distance between the cathode and gate electrode (or anode in diode mode), potential voltage 
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between the two electrodes.   Assuming the current density could double if the system was 

pushed to its highest potential, that would give a current density of 264.6 mA/cm2. 

Comparing the two types of emission shows that both require tunneling through the 

fermi-barrier.  In thermionic emission, energy is added to the electrons in the form of heat to 

cross the barrier, while in field emission the energy required to cross the barrier is lowered by an 

electric field.  Thermionic emission yields current densities on the order of 1 A/cm2 while field 

emission from CNTs yields current densities on the order of 100s of mA/cm2.  Thermionic 

emission is affected by space charge but it has negligible effects except at low anode potential.  

Thermionic emission requires temperatures in the 1000 K range while field emission occurs at 

room temperature.  Both techniques require a high vacuum enclosure.   

5.3 CNT Based X-ray Sources 

A carbon nanotube based field emission X-ray source works in a triode design (it will 

also work in diode mode but is not as stable or useful).64  The entire tube is under a steady state 

vacuum around 10-10 Torr.  A schematic of a typical CNT based X-ray source can be found in 

Figure 12. 
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Figure 12: Schematic of a typical CNT based X-ray source. Where "C" is the cathode structure, "G" is the 
gate electrode, "F1" and "F2" are focusing electrodes, "A" is the anode, "Vgc" is applied gate cathode 

voltage, and "Vanode" is the applied anode voltage. 

The main parts of the X-ray tube are the cathode (C), gate electrode (G), and the anode 

(A).  The two focusing electrodes (F1 and F2) are secondary structures that can change the 

shape of the focal spot but are not necessary for operation.  CNTs are deposited on the cathode 

by an electrophoretic deposition method developed in our lab.65  Approximately 275 microns (in 

an s-DBT cathode) above the cathode is the gate electrode.  The gate electrode consists of a 

mesh of tungsten bars 0.05 mm in width separated by a 0.2 mm distance (in this design).  The 

gate is grounded in the s-DBT design.  The first focusing structure (F1) is 0.762 mm above the 

gate and the second focusing structure (F2) is 1.178 mm above that.  The anode is located 35 

mm above the cathode and is made of tungsten attached to a copper backing.  It is at an anode 

angle of 16o.  For operation of the tube, a positive high potential difference near 30 kVp is 

applied between the gate electrode and the anode.  This voltage determines the maximum 

energy of the X-ray spectrum (with the addition of the gate-cathode voltage).  If there are small 
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irregularities on the focusing structure or gate electrode a high anode kVp could produce a dark 

current.  This effect is more noticeable around 80 kVp.  Assuming perfect interior structures in 

this case, the anode voltage produces little to no X-rays.  If in a diode design, the potential 

difference would be applied between cathode and anode and that would produce a current.  In 

the triode case, a smaller negative potential on the order of -1400V must be applied between 

the cathode and gate electrode.  This voltage will start field emission on the cathodes and 

create a tube current on the order of 40mA (for a -1400V potential in the s-DBT design).  As 

electrons are accelerated to the anode, some of these will bombard the gate structure and 

focusing structures.  This produces a smaller current on the anode than was initially produced 

from the cathode.  Typical transmission rates are around 60%.  A diode setup with no focusing 

structures would produce 100% transmission rates but would lose the ability of instantaneous 

on and off (due to ramp up time of anode power supply) and would produce larger focal spots.  

Once the electrons bombard the anode bremsstrahlung and characteristic X-rays are produced 

in all directions.  Of all the electrons bombarding the anode only about 0.5% of them produce X-

ray radiation.  The rest of the energy is converted into heat.  Heating of the anode is a severe 

problem and can cause the anode to melt and then the entire tube to fail.  Careful 

considerations of anode heat load must be taken into account when designing or operating any 

X-ray source.   

Many factors affect the X-ray tube current of a CNT based field emission X-ray source.  

A major factor is the density of CNTs across the cathode.  More densely packed CNTs can 

produce a higher current density.64  The length of the CNTs also have an effect on current.  

Longer CNTs can more easily align with the electric field and thus produce a higher current.  

Beyond the CNTs, another factor affecting tube current is the applied electric field to the 

cathode.  In general a larger electric field will produce a larger tube current.64  The spacing of 

the gate mesh also affects the tube current.  Larger spacing will increase the transmission rate 

but will require a larger applied voltage to get the same electric field, this could add cost to the 
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system or might not be feasible due to arcing distances.  The transmission rate is also affected 

by the focusing voltages.  Simulations and tests must be conducted to find the optimal point for 

transmission rate and focal spot size.20, 66  

The tube lifetime depends mostly on the tube operation.  Overtime, the CNTs will 

vaporize.  As this occurs the current will begin to drop for the same applied voltage and the 

quality of the vacuum will degrade.  If the tube is operated at very high current and anode 

voltage then the inherent degradation of the CNTs will be accelerated.  The quality of the CNT 

cathodes also affects tube lifetime.  If there are large variations in the CNTs distance to the gate 

electrode, then different electric fields will be applied to different CNTs.  The ones closer to the 

gate electrode will degrade faster than the ones farther away.  This will cause a decrease in 

maximum tube current over time.  A poor vacuum will also cause the CNT X-ray source to 

degrade.  Poor vacuums lead to arcing of the cathodes and anodes.  Both can be fatal to the 

tube.  When properly designed, created, and maintained; CNT X-ray sources have shown 

lifetimes of more than three years in a busy hospital.13 

CNT field emission X-ray sources have some shortcomings and some strengths when 

compared to thermionic sources.  If properly designed a CNT X-ray source can overcome its 

shortcomings and be a useful tool in X-ray imaging.   

5.4 Applications of CNT Based X-ray Sources 

There are three main benefits of CNT based X-ray sources which give them an 

advantage over conventional thermionic X-ray sources; (1) near instantaneous turn on time, (2) 

compact design, (3) flexibility in cathode shape.  Current applications of CNT based X-ray 

sources utilize one or more of these advantages in order to improve upon current X-ray systems.  

Some of the current applications of CNT based X-ray sources include: micro-CT, MRT, chest 

tomosynthesis, CT, and DBT.  The following sub-sections will outline these systems and some 

of the results from research conducted using them. 
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5.4.1 Micro-Computed Tomography 

A micro-CT system is useful for imaging of small animals in pre-clinical studies.67, 68   

Imaging of mice is difficult due to their very short respiratory and cardiac cycles.  Gating to the 

periodic cycles is not possible in thermionic X-ray sources due to their slow turn on times.  A 

CNT based X-ray source has extremely fast turn on and off times and is therefore ideally suited 

for use in micro-CT.  An image of the CNT based micro-CT system can be found in Figure 13. 

 

Figure 13: Image of the final design of the CNT based micro-CT system, Charybdis.   

Lee et al. demonstrated respiratory gating of free breathing mice using the CNT micro-

CT system.69  Twelve mice were imaged during peak inspiration and end exhalation.  

Respiration was monitored using a contact sensor pad which was placed under the abdomen of 

the mice.  The near instantaneous turn on time of the CNT source allowed for consistent gating 

to the respiratory cycle.  Figure 14 shows a 3D visualization of the reconstructed lungs from a 

mouse image on the micro-CT.  The average acquisition time for each phase of the respiratory 

cycle was 13.4 minutes with an average respiration rate of 96.2 breaths/min.  It was concluded 



64 

 

that the CNT based micro-CT is capable of producing high resolution images which are 

physiologically gated to the respiratory cycle.69 

 

Figure 14: A 3D visualization of the lungs of a mouse imaged on the CNT based micro-CT system. 

Cao et al.  utilized the CNT micro-CT to image mice using dual gating to the respiratory 

and cardiac cycles.70  Ten free breathing mice were imaged.  The CT datasets were obtained a 

15 ms temporal resolution and a 6.2 cycles/mm spatial resolution.  The average total imaging 

time was 44 minutes with an average respiration rate of 101 breaths/min and an average heart 

rate of 418 beats per minute.  Figure 15 (Left) shows a reconstruction of one of the mice.  In the 

image the four chambers of the heart are visible due to the high gating precision only possible 

with the CNT based micro-CT.  It was concluded that the CNT based system is capable of 

producing high resolution CT datasets of free breathing mice that are gated to both the 

respiratory and cardiac cycle.70 
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Figure 15: Left - Reconstruction of a micro-CT dataset of a mouse which was gated to both the cardiac 
and respiratory cycle.  All four chambers of the heart are visible.  Right - Reconstruction of a micro-CT 

dataset of a mouse pup using the non-contact sensor. 

A physical contact sensor is difficult or impossible to use on mice with severe 

deterioration of rib bones or mouse pups which do not create enough force during respiration to 

trigger the sensor.  For these reasons, Burke et al.  replaced the contact sensor pad used in 

previous studies for a fiber optic contactless sensor.71  Four adult mice were imaged using the 

contact and contactless sensor.  Similar image quality was found for both sensors but the 

contactless sensor created a artifact where the fiber optic cable was located.   Eleven mouse 

pups and four mice with congenital diaphragmatic hernias were imaged with the contactless 

sensor only.  These types of mice cannot be imaged with a contact sensor.  Figure 15 (Right) 

shows a reconstruction of one of the mouse pups.  It was concluded that the contactless sensor 

allowed for gated imaging of certain mice types that would otherwise not have been achievable.  

For cases without a need for a contactless sensor, the contact sensor is more preferred due to 

the artifact created from the fiber optic cable.71 
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5.4.2 Micro-Beam Radiation Therapy 

Traditional radiation therapy (RT) techniques involve the use of ionizing radiation to 

irradiate cancerous lesions in the body.  A large concern of RT is the damage done to the 

normal tissue surrounding the cancer which inevitable will also be irradiate and can therefore be 

damaged.72  Even though new techniques allow for substantial reduction in dose to normal 

tissue, no method exists which results in zero damage to normal tissue while still irradiating the 

cancer.73  Many decades ago a method for tissue sparing RT, MRT, was developed using a 

synchrotron as the source of radiation.  MRT uses alternating "peaks" of high dose radiation 

(approximately 100 µm in diameter) with "valleys" of non-primary low dose radiation.  The 

"peak" to "valley" ratio (PVDR) is kept extremely high at greater than ten.74, 75  This method of 

RT has been shown to spare normal tissue in a variety of animal models.76-78  Large strides in 

the advancement of this technology have not been achieved due to the fact that synchrotron is 

needed for the method to work properly.  Synchrotrons are very large and require a significant 

financial investment which is not feasible for more than a few locations in the world.  A small 

compact system could advance the technology to the clinic one day.  However conventional X-

ray sources are not suited for MRT. Megavoltage tubes used in conventional RT would produce 

scattered radiation and secondary charge particles in tissue which would drop the PVDR too low 

to be beneficial.79  The large dose needed is not feasible using an orthovoltage tube in the time 

scale that RT procedures are performed in.  Micro-focus tubes would produce the correct sized 

focal spot but are not capable of producing the dose rate,80 while a conventional tube with a 

larger focal spot would require a collimation system which would reduce the dose rate to a 

unreasonable level.81  Using a CNT based X-ray source with a long narrow cathode structure 

and a micro-beam collimator Hadsell et al. was able to create the world's first desktop MRT 

system.79  An image of the prototype system can be found in Figure 16.   
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Figure 16: Image of the desktop CNT based MRT system. 

Hadsell et al.  reported that the system could produce a 300 µm wide line of radiation.  

An instantaneous dose rate of 2 Gy/s was measured with a PVDR of more than 17 when a 1.4 

mm distance between microbeams was used.  They demonstrated that it could produce MRT 

dose distribution in phantoms and live mice.  A histological stain of a mouse brain with DNA 

damage produced from the CNT based MRT system can be found in Figure 17. 
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Figure 17: Histological image of microbeam DNA damage in a mouse brain with human brain tumor.  Cell 

staining was done with γ-H2AX labeling four hours after radiation. 

5.4.3 Chest Tomosynthesis 

Lung cancer is the leading cause of cancer related deaths in developed countries with 

more than 1.3 million deaths per year.82  When the disease is diagnosed at an early stage the 5-

year survival rate is greater than 70%.83  However, the overall (for all stages at diagnosis) 5-

year survival rate is approximately 10% for Europeans.84  Early detection is the best way to 

survive the disease.  Chest CT has been shown to be more effective at diagnosing the disease 

at an early stage compared to planar chest imaging.85  However, the high cost and dose from 

CT means it is not feasible for screening purposes on a large scale.  More recently, digital 

tomosynthesis has been used for diagnosing lung cancer.  Digital chest tomosynthesis uses a 

series of projection images distributed over a small angular span to reconstruction a pseudo 3D 

representation of the chest.86, 87  Chest tomosynthesis has been shown to be more effective 

than 2D radiography at identifying nodules but at a significantly lower dose compared to CT.88-90  

Current chest tomosynthesis systems utilize a single thermionic X-ray source which is rotated 

over the angular span.86  This source motion reduces the spatial resolution of the system and 

increases the total acquisition time which can lead to patient motion.91  A stationary approach 

with multiple X-ray sources would allow for fast acquisitions with no lose in spatial resolution.  A 
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conventional thermionic X-ray source is large and cannot be packed closely together to allow for 

a stationary system.  Shan et al.  have developed a stationary chest tomosynthesis system 

using an array of CNT based X-ray sources.91  Figure 18 (Left) shows an image of the 

prototype system.  They reported that the system is capable of producing a full set of 

tomosynthesis images with zero motion blur.  Although the current tube was designed for 

security purposes and therefore is limited on anode voltage and angular span, a future tube 

could be designed and implemented with the correct angular span and anode voltage.91 

 

Figure 18: Left - Image of the prototype stationary chest tomosynthesis system.  Right - Reconstruction 

slice of a chest phantom using the system. 

5.4.4 Computed Tomography 

Computed tomography is useful in many X-ray based imaging applications.92, 93  A 

conventional CT system uses a single thermionic X-ray source which is mounted on a large 

gantry and is rotated around a fixed point.  Not only does this rotation add mechanical instability, 

but it also adds a large amount of size and weight to the system.  Previous research has gone 

into using multiple thermionic X-ray sources to produce the CT dataset.94, 95  These systems 

suffer from under sampling of the Fourier domain due to the large distance between X-ray 

sources.  Conventional thermionic X-ray sources are large and cannot be packed close together.  
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A CNT X-ray source can be manufactured in a compact design which allows for close packing 

between sources.  Gonzalez et al. constructed a rectangular stationary CT for imaging of 

luggage.96  The system utilizes two banks of CNT X-ray sources which produce fan beams.  

Luggage is sent through the system using a conveyor belt.  Reconstructions are completed 

using an iterative algorithm on a graphics processing unit (GPU).  The GPU allows for fast 

iterative reconstruction which is necessary for busy luggage check stations.  They concluded 

that the non-circular setup  could open the door to more efficient task based CT systems which 

could be used in medical imaging as well as security.96 

5.4.5 Digital Breast Tomosynthesis 

Conventional DBT systems utilize a single rotating X-ray source.11, 97, 98  Rotation of the 

source during image acquisition leads to decreased spatial resolution and therefore, decreased 

MC visibility.46, 99  A stationary DBT (s-DBT) system has been created using a linear array of 

CNT based X-ray sources.13  An image of the system  (Left) and a reconstruction slice of a 

breast phantom using the system (Right) can be found in Figure 19.  
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Figure 19: Left - Image of the prototype s-DBT system.  Right - Reconstruction slice of a breast phantom 

using the s-DBT system. 
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CHAPTER 6: STATIONARY DIGITAL BREAST TOMOSYNTHESIS 

6.1 Overview 

Current DBT systems are limited in spatial resolution due to motion of the X-ray source 

during image acquisition which blurs the focal spot of the source.  High spatial resolution is 

needed in mammography imaging in order to visualize MCs which can be less than 100 µm in 

diameter.  We have developed a stationary digital breast tomosynthesis system which is 

capable of producing a full set of tomosynthesis projection images with no focal spot blurring.  

The first prototype system was capable of producing a full DBT dataset but needed revisions in 

order to be ready for human imaging.  The current prototype system has been shown to have 33% 

better spatial resolution than the Selenia Dimensions DBT system (Hologic Inc., Bedford, MA) 

which is the only DBT system currently FDA approved for screening mammography.  The new 

prototype has been designed and is ready for human imaging. 

6.2 Motivation for a Stationary System 

Screening mammography is the current gold standard for early detection of breast 

cancer.2, 3  However, 2D mammography imaging lacks depth information, which can cause 

underlying and overlying tissue to obstruct the view of lesions.  This leads to high false positive 

and false negative rates.4, 5  Digital breast tomosynthesis (DBT) uses multiple low dose 

projection images distributed over an angular span to create a pseudo-3D reconstruction of the 

breast.  This added depth information allows for otherwise obscured lesions to become visible.6, 

8, 9, 100  Currently only one DBT system is FDA approved for use in the United States. 

Current DBT systems use a single x-ray source which is rotated over a limited angle arc.  

The x-ray source rotates in a continuous motion10, 11 or using a step-and-shoot motion.12  In both 

methods, the motion of the x-ray source can have an adverse effect on tomosynthesis 
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reconstruction quality and total imaging time.13, 14  The source motion results in a blurred focal 

spot.  A blurred focal spot decreases the spatial resolution of the projection images which in turn 

reduces the spatial resolution of the reconstructed images.  High spatial resolution is needed in 

mammography in order to resolve microcalcifications (MCs).  MCs are important because the 

size and shape of them can indicate the likelihood that a particular lesion is benign or malignant.  

In both continuous motion and step-and-shoot DBT systems the focal spot blurring effect can be 

reduced by decreasing the rotation speed and increasing the acquisition time.14, 15  However, a 

long acquisition time leads to patient motion which also degrades the image quality.16  We have 

developed a stationary digital breast tomosynthesis (s-DBT) system which gives the acquisition 

speed of a continuous motion system but with no motion blur.  The system utilizes an array of 

CNT based X-ray focal spots.  This chapter outlines the s-DBT system and some of the early 

research completed using it. 

6.3 First Prototype System 

The first prototype s-DBT system consisted of a CNT based X-ray source array, a flat 

panel detector, and a metal–oxide–semiconductor field-effect transistor (MOSFET) based X-ray 

switching system.  Figure 20 shows an image of the bench top prototype system.   

 

Figure 20: First prototype s-DBT system.  



78 

 

6.3.1 CNT Source Array 

The CNT based X-ray source array utilized 25 X-ray generating focal spots in a linear 

design.  The source was kept at an active vacuum of around 1.0e-8 Torr using a turbo pump.  

The tube was not sealed to allow for maintenance on the sources when needed.  The source-to-

imager distance (SID) was approximately 70 cm.  This SID resulted in an angular coverage of 

48 degrees with a 2 degree distance between focal spots.  The molybdenum anode and 30 µm 

window produce the X-ray spectrum found in Figure 21.  The average projection MTF values 

were found to be 2.2 and 2.5 cycles/mm in the horizontal and vertical directions, respectively.17     

 

Figure 21: The X-ray spectrum of the first prototype s-DBT system.  The Mo/Mo anode filter combination 

produces characteristic peaks at 17.48 and 19.61 keV. 

6.3.2 Detector 

The flat panel detector used in the system was a Paxscan 2520 manufactured by Varian 

Medical Systems (Salt Lake City, Utah)  The detector has a 127 µm pixel size with a 0.128 s 

readout time.  The detector MTF was measured to be 3.1 cycles/mm.17 
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6.3.3 Switching System 

Fast acquisition times for the s-DBT system depends on the speed at which the gate-

cathode voltage can be switched between cathodes.  The first prototype system utilized a 

MOFSET based switching system.  Transistor-transistor logic (TTL) signals triggered the 

individual MOFSETs to fire the X-ray beams in sequential order. The delay time from the TTL 

signal arrival to the switching of the voltage was between 35-45 ns, which was sufficiently small 

given the tens of milliseconds of exposure time per beam.   

6.3.4 Images 

Image reconstruction was completed using an iterative ordered-subset convex algorithm 

based on a maximum-likelihood model.101  Figure 22 shows reconstruction slices of a breast 

phantom from the system.  

 

Figure 22: Reconstruction slices of a breast phantom from the first prototype s-DBT system.  The slices 
are at the heights of (a) 6 mm, (b) 11 mm, (c) 16 mm, and (d) 21 mm. 

6.4 Second Prototype System 

The second prototype system consists of a CNT based X-ray source array integrated 

into a Selenia Dimensions DBT system (Hologic Inc., Bedford, MA) and an electronic control 

system (ECS).  Figure 23 shows the constructed prototype system.   
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Figure 23: Image of the second prototype s-DBT system. 

6.4.1 CNT Source Array 

The source contains 31 X-ray generating focal spots in a linear design in a stainless 

steel housing.  The system SID is 70 cm which gives an angular span of 30 degrees with an 

angular distance between focal spots of 1 degree.  The anode is made of tungsten (W) with a 1 

mm thick aluminum (Al) window which produces the spectrum found in Figure 24.  The 

characteristic peaks of the W/Al anode filter combination are at higher energies than 40 keV and 

therefore do not appear in the spectra.  Unlike the original prototype source, the second source 

is vacuum sealed and is kept at a pressure of around 1.0e-10 when not in use by two ion pumps.  

This allows for greater stability and a longer lifetime.   
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Figure 24: X-ray spectra of the second prototype s-DBT system at 40 keV peak energy.  The 
characteristic peaks of the W/Al anode filter combination are at higher energies than 40 keV and therefore 

do not appear in the spectra. 

The tube is designed for operation at up to 45 keV anode potential.  However, typical 

operation does not exceed 40 keV.  The cathodes were conditioned to operate at up to 43 mA 

of current.  The average gate-cathode voltage for the 31 beams at 43 mA cathode current was 

1.4 kV.  The measured gate-cathode voltages for 43 mA cathode current are plotted in Figure 

25 (Above).  Since the triode design of the CNT X-ray sources prevents every electron extracted 

from the cathode from reaching the anode each source has an electron transmission rate.  The 

average measured transmission rate of the prototype system was 61%.  Figure 26 shows the 

transmission rate of every X-ray beam in the array.  The value of the MTF for the system was 

measured to be approximately 4 cycles/mm, which is 33% higher than the value measured on 

the Selenia Dimensions system (3.0 cycles/mm).13 

The entrance dose of the system was measured using a dosimeter (Radcal Accu-Pro 

9096) and ion chamber (Radcal 10x6-6M Mammography Ion Chamber Sensor).  The ion 

chamber was placed 2.8 mm from the chest wall in the center of the detector at height of 

approximately 4 cm.  Each measurement was acquired in accumulated dose mode, meaning 

the dose from all projection views (oblique and perpendicular beams) were accumulated in the 
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same measurement.  For a tube potential of 31.4 kV, the dose rate of the system was found to 

be 6.74 mR/mAs (Even beams only).  Variation of the dose between each measurement was 

found to be less than 1%. 

 

Figure 25: Above - Gate-cathode voltages for the CNT source array at a cathode current of 43mA.  The 
average value was approximately 1.4 kV.  Below - Measured nominal focal spot sizes. The average focal 

spot size was found to be 0.64x0.61 mm. 
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Figure 26: Plot of the transmission rates of each X-ray source in the prototype.  The average 

transmission rate is 61%. 

6.4.2 Selenia Dimensions Components 

The X-ray detector on the Selenia Dimensions gantry has a pixel size of 70 µm in full 

resolution mode.  DBT images are typically acquired in 2x2 binned mode yielding a pixel size of 

140 µm.  Having the source array integrated into the Selenia Dimensions DBT system allows for 

use of the not only the installed flat panel detector but also allows for use of the breast 

compression paddle and gantry rotation.  These extra components are not necessarily useful in 

a lab setting, but they will be a vital part of the system when it is used on human patients.   

6.4.3 Images 

Image reconstruction is completed using a dynamic 3D reconstruction software package 

developed by Real Time Tomography, LLC (Villanova, PA). This software uses a proprietary 

back projection filtering method.102  Typical reconstructions are completed using a 30% 

reduction in reconstruction pixel size from detector pixel size (140 µm to 100 µm) and a distance 

between reconstruction slices of 0.5 mm.   

An American College of Radiology (ACR) mammography accreditation phantom (CIRS 

Model 015) is used in the clinic to assess the image quality of a system.   The ACR phantom 

N15 N13 N11 N09 N07 N05 N03 N01 P01 P03 P05 P07 P09 P11 P13 P15
0

20

40

60

80

100

Beam Number

T
ra

n
s
m

is
s
io

n
 R

a
te

 (
%

)

Transmission Rates



84 

 

contains aluminum oxide (AL2O3) specks ranging from 0.54 mm to 0.16 mm in diameter, 

masses ranging from 2 mm to 0.25 mm in thickness, and nylon fibers that range from 1.56 mm 

to 0.4 mm in diameter.  Figure 27 (Left) shows a schematic of the structures contained in the 

ACR phantom.  Figure 28 shows projection images of the ACR phantom taken on the s-DBT 

system using 30 kVp and 100 mAs total exposure.  In the images you can see the "shifting" 

effect of the structures as the viewing angle changes.  Figure 29 shows a reconstruction slice of 

the dataset.  When using fidelity display all fibers and masses are visible in this dataset and four 

groups of specs. 

 

Figure 27: Left - Schematic of the structures contained in the ACR mammography accreditation phantom.  
Right - Schematic of the target slab in the BR3D tomosynthesis phantom. 
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Figure 28: Projection images from beam N14 (Left), 000 (Middle), and P14 (Right) of the ACR phantom 

from the s-DBT prototype.  Images were taken at 30 kVp and 100 mAs total exposure. 

 

Figure 29: Reconstruction slice of the ACR phantom dataset.  When using fidelity display all fibers and 
masses are visible in this dataset and four groups of specs. 

The ACR phantom does not demonstrate the removal of tissue overlap in DBT 

reconstructions since it has a uniform background.  The BR3D phantom (CIRS Model 020) 

contains similar structures as the ACR phantom but has multiple breast tissue mimicking 
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background slabs which makes it a more ideal phantom for DBT reconstruction demonstrations.  

One slab (target slab) contains various sized fibers (10 mm in length and 0.15 to 0.60 mm in 

diameter), spheroidal masses (1.80 to 6.32 mm in diameter, and microcalcifications (0.13 to 

0.40 mm in diameter).  Figure 27 (Right) shows a schematic of the target slab of the BR3D 

phantom.  Figure 30 shows projection images of the ACR phantom taken on the s-DBT system 

using 30 kVp and 100 mAs total exposure.  Ignoring the dose difference, the projection images 

are similar to an FFDM image and therefore have a large amount of tissue overlap which 

decreases lesion visibility.  Figure 31 shows a reconstruction slice of the dataset.  A majority of 

the tissue overlap that is present in the projection images has been removed in the 

reconstruction image. 

 

Figure 30: Projection images from beam N14 (Left), 000 (Middle), and P14 (Right) of the BR3D 
phantom from the s-DBT prototype.  There is a large amount of tissue overlap present in the images 

which will be removed in the reconstruction slices. 
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Figure 31: Reconstruction slice of the ACR phantom dataset.  Compared to the projection images Figure 
30 most of the underlying and overlying tissue has been removed in the reconstruction. 

6.5 Conclusion 

Two prototype s-DBT systems have been constructed.  The current prototype system is 

capable of producing a full set of projection images with no motion blur in a short acquisition 

time.  The increased spatial resolution of s-DBT over rotating gantry DBT systems could help 

improve the visibility of MCs and thus help in the diagnosis of breast cancer. 
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CHAPTER 7: OPTIMIZATION OF AN S-DBT SYSTEM 

7.1 Overview 

Purpose:  In principle, an s-DBT system has better image quality when compared to 

continuous motion DBT systems due to zero motion blur of the source.  We have developed an 

s-DBT system by using a linear CNT x-ray source array.  The purpose of the current study was 

to quantitatively evaluate the performance of the s-DBT system; and investigate the 

dependence of imaging quality on the system configuration parameters. 

Methods:  Physical phantoms were used to assess the image quality of each 

configuration including in-plane resolution as measured by the modulation transfer function 

(MTF), in-plane contrast as measured by the signal difference to noise ratio (SdNR), and depth 

resolution as measured by the z-axis artifact spread function (ASF).  Five parameters were 

varied to create five groups of configurations: (1) total angular span; (2) total number of 

projection images; (3) distribution of exposure (mAs) across the projection images; (4) entrance 

dose; (5) detector pixel size. 

Results:  It was found that the z-axis depth resolution increased with the total angular 

span but was insensitive to the number of projection images, mAs distribution, entrance dose 

and detector pixel size.  The SdNR was not affected by the angular span or the number of 

projection images.  A decrease in SdNR was observed when the mAs was not evenly 

distributed across the projection images.  As expected, the SdNR increased with entrance dose 

and when larger pixel sizes were used.  For a given detector pixel size the in-plane resolution 

was found to be insensitive to the total angular span, number of projection images, mAs 

distribution, and entrance dose.  A 25% increase in the MTF was observed when the detector 
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was operating in full resolution mode (70 µm pixel size) compared to 2x2 binned mode (140 µm 

pixel size). 

Conclusions:  The results suggest that the optimal imaging configuration for an s-DBT 

system is a large angular span, an intermittent number of projection views, and a uniform mAs 

distribution over all views.  With the detector operating at full resolution, a stationary DBT 

system can achieve an in-plane resolution of 5.1 cycles per mm, which is significantly better 

than continuous motion DBT systems. 

7.2 Motivation for System Optimization 

Many variables must be taken into account when configuring a DBT system for optimal 

image quality.  Factors such as the x-ray source, detector, reconstruction algorithm, image 

processing method, and imaging configuration must be tested and selected in order to realize 

the full potential of a system.  A large number of previous studies have reported on the 

performance of rotating source DBT systems with respect to imaging configurations.14, 15, 103-107  

Shaheen et al.14 conclude that a step-and-shoot system has higher contrast for imaging of MC 

clusters when compared to a continuous motion system.  A number of studies have reported 

that an increase in the angular coverage of the projection images results in an improvement of 

z-axis resolution.15, 103-106, 108  Chawla et al.103 report that increasing the dose level results in 

increased image quality.  It has been reported that there is an optimal number of projection 

images for a fixed angular span, increasing the number of projection images above this number 

can reduce image quality.103, 105-107, 109  

The goal of the current study is to investigate how the reconstructed image quality is 

affected by imaging parameters in an s-DBT system.  The parameters investigated include the 

total angular span, number of projection views, entrance dose, mAs distribution across the 

projection images, and detector pixel size.  Analysis was done on reconstructed images of 

physical phantoms using quantitative measures including SdNR, z-axis ASF and the MTF. 
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7.3 Methods 

Using the s-DBT system, two phantoms were imaged using different configurations with 

different sets of imaging parameters.  The resultant projection images were then reconstructed 

into a pseudo-3D volume and analysis was completed on the reconstructed slices.  

Reconstructed images are created using a back projection filtering method developed by Real 

Time Tomography, LLC (Villanova, PA).102  The value of the MTF was calculated from the 

reconstruction of a 50 µm wire phantom.  The SdNR and ASF were calculated from the 

reconstructed images of a mammography accreditation phantom.  An overall quality factor (QF) 

was determined from the three calculated values.   

7.3.1 Configuration Parameters 

The quality of tomosynthesis reconstruction images can depend on many factors such 

as the total angular span of the projection images, the number of projection images, the 

entrance dose, distribution of the mAs, the detector resolution and sensitivity, and the 

reconstruction algorithm. Here we concentrated on the variation of geometry parameters, 

entrance dose, and detector resolution.  

Five groups of comparison studies were completed: (1) Comparison of 14o versus 28o 

angular span for a fixed total entrance dose uniformly distributed over 15 projection views;  (2) 

Comparison of 15 versus 29 projection views for a fixed total entrance dose uniformly 

distributed over an angular span of 28o;  (3) For a fixed entrance dose, angular span of 28o, and 

29 projection views we compare uniform versus non-uniform distributions of the mAs; (4) For a 

fixed angular span of 28o and 29 projection views, we varied the total entrance dose from 385 

mR to 791 mR; (5) Comparison of image quality for a detector operating in full resolution mode 

versus 2x2 binning mode.  A summary of all configurations studied are listed in Table 7.   
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Table 7: List of configurations and parameters that were analyzed.  Five parameters were changed in 
order to create different configurations; number of projection views, total angular span, entrance dose, 
distribution of the mAs, and detector resolution.  Some configurations are described by multiple groups 
and therefore appear multiple times in the table.  Differences in entrance dose for equal mAs values can 
be attributed to different source to object distances for different x-ray sources.  MMOC stands for more 
mAs on central projections.  LMOC stands for less mAs on central projections. 

Group 
Number of 
Projections 

Total 
Angular 

Span 

Angular 
Spacing 

Entrance 
Dose 
(mR) 

Detector 
Resolution 

(µm) 

Distribution 
of the mAs 

1 15 14
o
 1

o
 727 140 Uniform 

1 15 28
o
 2

o
 682 140 Uniform 

2 15 28
o
 2

o
 682 140 Uniform 

2 29 28
o
 1

o
 656 140 Uniform 

3 29 28
o
 1

o
 656 140 Uniform 

3 29 28
o
 1

o
 665 140 LMOC 

3 29 28
o
 1

o
 675 140 MMOC 

4 29 28
o
 1

o
 385 140 Uniform 

4 29 28
o
 1

o
 523 140 Uniform 

4 29 28
o
 1

o
 656 140 Uniform 

4 29 28
o
 1

o
 791 140 Uniform 

5 15 28
o
 2

o
 682 70 Uniform 

5 15 28
o
 2

o
 682 140 Uniform 

7.3.2 Entrance Dose 

The entrance dose was measured for each configuration using a dosimeter (Radcal 

Accu-Pro 9096) and ion chamber (Radcal 10x6-6M Mammography Ion Chamber Sensor).  The 

ion chamber was placed 2.8 mm from the chest wall in the center of the detector at the same 

height as the top of the phantoms (approximately 4 cm).  A constant tube voltage of 31.4 kV 

was used for all configurations.  The entrance dose for each configuration was measured three 

times.  Each measurement was acquired in accumulated dose mode, meaning the dose from all 

projection views (oblique and perpendicular beams) were accumulated in the same 

measurement.  The average of the three measurements was used as the entrance dose for the 

configuration.  Variation of the dose between the measurements was found to be less than 1%. 
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7.3.3 Phantom Imaging 

Two phantoms were imaged for each configuration.  A 50 µm tungsten wire phantom 

was used to determine the MTF of each configuration.  The phantom was placed in the center of 

the detector near the focal line of the x-ray source.  The wire was fixed to a metal frame and 

positioned parallel to the detector.  A slight angle (approximately 3 degrees) from perpendicular 

to the chest wall was applied to the wire to allow for oversampling of the line spread function 

(LSF).  The same radiographic magnification factor of 1.12 (object-detector distance of 47.5 mm) 

was used for every configuration.  An American College of Radiology (ACR) mammography 

accreditation phantom (CIRS Model 015) was imaged to assess the SdNR of masses and z-axis 

ASF sensitivity of MCs. The ACR phantom contains aluminum oxide (AL2O3) specks ranging 

from 0.54 mm to 0.16 mm in diameter, masses ranging from 2 mm to 0.25 mm in thickness, and 

nylon fibers that range from 1.56 mm to 0.4 mm in diameter.  Figure 32 shows a schematic of 

the structures contained in the ACR phantom (Left) and a reconstructed volume slice of the 

ACR phantom using the s-DBT system (Right). 
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Figure 32: Left: Schematic of simulated masses MCs and fibers located in the ACR phantom.  Analysis 
was conducted on the masses and MCs.  Right: ACR phantom reconstructed slice acquired using the s-

DBT system. 

7.3.4 Image Processing and Reconstruction 

For every projection image a corresponding blank image was acquired.  A blank image 

is an image where there is no object in the field of view of the detector.  A different blank image 

was acquired for each mAs value.  For each detector readout time, fifteen dark images were 

acquired and averaged.  All projection images were processed using Equation 16, which 

corrects for detector and beam non-uniformity as well as gain offsets. 

Equation 16: 

       
               

          
 

Image reconstruction was completed using a dynamic 3D reconstruction software 

package developed by Real Time Tomography, LLC (Villanova, PA). This software uses a back 

projection filtering method.102  The reconstructed images had a pixel size of 100 µm and a 

distance between slices of 0.5 mm, which is smaller than the 1 mm distance used in a typical 

breast tomosynthesis examination.  The smaller slice distance was used in order to get better 

sampling of the z-axis ASF. 
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7.3.5 Modulation Transfer Function Calculation 

The size of the smallest object that a DBT system can detect is dependent on the in-

plane resolution.  The value of the MTF is a good indication of the in-plane resolution.  Using the 

50 µm tungsten wire phantom the system MTF was calculated using a slant angle oversampling 

method.110, 111   Using the reconstructed slice at the focal plane of the wire, multiple LSFs were 

sampled.  The LSFs were then formed into a single oversampled LSF using the calculated 

angle of the wire.  The resultant oversampled LSF was then fitted into a Gaussian function in 

order to remove noise.  The Fourier Transform of the fitted Gaussian function is the MTF. The 

resolution frequency at 10% MTF peak value was used as the quantitative measure of the in-

plane image resolution. 

7.3.6 Signal Difference to Noise Ratio Calculation 

The ability of a DBT system to detect masses in the breast is primarily determined by in-

plane contrast. Signal difference to noise ratio is a measure of the contrast with respect to the 

noise level.  The SdNR was calculated on the largest mass, 2 mm in thickness, which is 

embedded in the ACR phantom.  The largest mass was selected to ensure the object of interest 

was present in every reconstructed dataset.  The foreground was selected to be the central 

region of the mass (approximately 2500 pixels in size) and the background was selected to be a 

ring-like region surrounding the mass (approximately 2700 pixels in size). 

To determine the noise in the foreground and background, a moving average filter was 

applied across the original image and the resultant filtered image was subtracted from the 

original unfiltered image.  This step removes systematic variation of the background image that 

is not due to noise.  The standard deviation was taken of the two regions in the subtracted 

image.  The SdNR was calculated as:  

Equation 17: 

      
  

      
   

   
 

      σ      
   σ   
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where “µsignal” and “µbkg” are the average pixel intensity of the foreground and 

background respectively and “σsignal” and “σbkg” are the corresponding standard deviations.
14  

7.3.7 Artifact Spread Function Analysis 

Due to the limited angle that tomosynthesis projections are taken, reconstructed slices at 

a particular focal plane can have “shadow” artifacts from objects that are at another depth.  The 

ability of a particular DBT system to resolve objects in the z-axis (perpendicular to the detector) 

is a measure of the depth resolution.  This is quantified by the z-axis artifact spread function.14  

In this study, the ASF was calculated for the largest aluminum oxide specks (0.54 mm in 

diameter) in the ACR phantom.  The largest specks were selected to ensure the object of 

interest was present in every reconstructed dataset.  These specks are used to simulate MCs.  

There is a cluster of six 0.54 mm diameter specks in the phantom.  ASF analysis was completed 

on all six specks in the cluster.  Due to the small size of the MC it is difficult to determine the 

average pixel intensity value of the speck.  We calculated the ASF by taking the maximum pixel 

value found in a small region of interest (ROI), where the speck of interest is located, through 

every reconstructed slice of the reconstruction space.14  The reconstructed slices are separated 

by 0.5 mm along the z-axis.  As the distance from a slice to the object of interest's focal plane 

increases, the intensity of the ASF decreases.  We use the full width at half maximum (FWHM) 

of the ASF as a quantitative measure of the z-axis spatial resolution.  The ASF at plane “z” is 

defined as: 

Equation 18: 

       
                   

   
    

 
   

   
 

where “               ” is the maximum pixel value of the ROI for the slice located at “z”, 

and “       ” is the average value of the background pixels of the ROI for the slice.
14  Once the 

ASF was calculated the data was fitted to a Gaussian function plus a smooth background before 

the FWHM was determined. 
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7.3.8 Overall Image Quality Factor 

All three physical measurements: MTF, SdNR, and ASF are important in assessing the 

image quality of a reconstructed image set.  The detection of MCs (high contrast objects) is 

primarily determined by the spatial resolution measured by the ASF and MTF, while the ability to 

detect masses (low contrast objects) is primarily determined by the SdNR.  Sechopoulos and 

Ghetti106  used an overall image QF that took into account the effect of contrast to noise ratio 

and ASF on image quality. Here we define the relative overall image QF as: 

Equation 19: 

    
 

 
 
    

     

 
    
   

 
   

    
  

where “SdNR” is the value determined from the signal difference to noise ratio 

calculation,  and “ASF” is the FWHM of the artifact spread function, and “MTF” is the spatial 

resolution at 10% MTF peak value. MTF0, SdNR0, and ASF0 refer to the corresponding values 

for the reference configuration of 28 degrees, 15 projection views, 682 mR, and 140 µm 

detector pixel. 

7.4 Results 

The SdNR and the FWHM of the ASF were calculated for each configuration from the 

reconstructed images of the ACR phantom.  The value of the MTF at 10% was determined from 

the reconstructed images of the tungsten wire phantom.  The values of the SdNR and MTF are 

averages of five measurements taken from the same datasets.  Errors were not reported for the 

FWHM of the ASF and the QF due to insufficient statistical measurements.  All the results 

acquired are summarized in Table 8. 
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Table 8: Calculated results for SdNR, FHWM of the ASF, and MTF.  Data is separated into the five 
groups of configurations that were outlined in Section 7.3.1.  The configuration with 29 projection views, 
a 28 degree angular span, and an even dose distribution resulted in the highest “QF” value for an 
exposure of 100 mAs.  MMOC stands for more mAs on central projections.  LMOC stands for less mAs 
on central projections. 

Group 
Number 
of Proj. 

Total 
Span 

Entrance 
Dose 
(mR) 

Detector 
Res. (µm) 

mAs 
Dist. 

SdNR 
FWHM 
of ASF 

MTF at 
10% 

QF 

1 15 14
o
 727 140 Uniform 

5.72± 
0.21 

7.80 
4.14± 
0.01 

0.85 

1 15 28
o
 682 140 Uniform 

5.44± 
0.20 

4.08 
4.20± 
0.03 

1.00 

2 15 28
o
 682 140 Uniform 

5.44± 
0.20 

4.08 
4.20± 
0.03 

1.00 

2 29 28
o
 656 140 Uniform 

5.81± 
0.16 

4.10 
4.25± 
0.02 

1.02 

3 29 28
o
 656 140 Uniform 

5.81± 
0.16 

4.10 
4.25± 
0.02 

1.02 

3 29 28
o
 665 140 LMOC 

4.97± 
0.20 

4.03 
4.23± 
0.01 

0.98 

3 29 28
o
 675 140 MMOC 

5.04± 
0.16 

4.05 
4.25± 
0.01 

0.98 

4 29 28
o
 385 140 Uniform 

4.32± 
0.14 

4.14 
4.30± 
0.01 

0.93 

4 29 28
o
 523 140 Uniform 

4.87± 
0.12 

3.93 
4.28± 
0.02 

0.98 

4 29 28
o
 656 140 Uniform 

5.81± 
0.16 

4.10 
4.25± 
0.02 

1.02 

4 29 28
o
 791 140 Uniform 

6.06± 
0.24 

4.04 
4.23± 
0.02 

1.04 

5 15 28
o
 682 70 Uniform 

2.97± 
0.08 

4.30 
5.15± 
0.05 

0.91 

5 15 28
o
 682 140 Uniform 

5.44± 
0.20 

4.08 
4.20± 
0.03 

1.00 

7.4.1 Modulation Transfer Function 

The spatial resolution at 10% MTF was used as a quantitative measure of the in-plane 

resolution.  Figure 33 shows an example of an oversampled LSF with Gaussian fitted data (Left) 

and the corresponding MTF (Right). 
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Figure 33: Left: Plot of an oversampled LSF and the corresponding Gaussian fitted LSF which was used 
for MTF calculations. Right: MTF of the LSF with the value at 10% highlighted.  The MTF was found to be 
around 4.2 cycles per mm for a detector with a 140 µm pixel size (2x2 binning mode). Since there is no x-
ray source motion in an s-DBT system the MTF is found to be primarily dependent on the detector pixel 
size, and independent of other system parameters (see Figure 38). 

As can be seen in Table 8, there was no statistical difference in the value of the MTF at 

10% for the first four groups of configurations.  This is because the in plane resolution is 

predominately determined by the x-ray focal spot size and the detector pixel size.  Since there is 

no focal spot blur in s-DBT for different configurations the MTF does not fluctuate. 

7.4.2 Signal Difference to Noise Ratio 

A magnified image of the 2 mm thick mass from the ACR phantom, which was used in 

the calculation of the SdNR, is shown in Figure 34 (Left).  Looking at Table 8 it can be seen 

that the SdNR did not greatly fluctuate when the angular span was increased (Group 1).  This 

was expected since the only differences in photon counts was the slightly larger source to object 

distance for the wider angular span.  When the number of projection images was increased the 

SdNR did not change (Group 2).  Group 3 had different mAs distributions with the same 

entrance dose.  A lower SdNR was found in the configurations that had non-uniform 

distributions.  This can be attributed to the lower photon counts on some of the projection 

images of the non-uniform mAs distributions.  As expected, when the entrance dose was 

increased (Group 4) there was a corresponding increase in SdNR.  Figure 35 shows a plot of 

the SdNR versus entrance dose.  It can be concluded that in an s-DBT system the SdNR is 

primarily dependent on the entrance dose of the projections, not on other parameters. 
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Figure 34: Left: Magnified view of 2 mm mass found in the ACR phantom.  The SdNR of the mass and 
the surrounding background was calculated for each configuration. Right: Magnified view of the 0.54 mm 
speck cluster found in the ACR phantom.  ASF analysis was completed on all specks in the cluster for 
each configuration. 

 

Figure 35: The plot of the SdNR versus total entrance dose shows a linear increase of the SdNR with 

entrance dose within the dose range examined.  A linear fit was applied to the dataset and plotted.   

7.4.3 Artifact Spread Function Along the Z-Axis 

A magnified image of the cluster of six 0.54 mm specks found in the ACR phantom, 

which was used in the calculation of the artifact spread function along the z-axis, is shown in 

Figure 34 (Right).  All six specks were used for quantitative analysis of the ASF for all 

configurations. As can be seen in Table 8 and Figure 36, there is a dramatic change in ASF 

width going from a 14 degree to a 28 degree angular span while keeping the number of 
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projection views the same (Group 1). In order to further analyze the effect of angular span on 

the ASF, another group of images were used with an angular span ranging from 10 to 28 

degrees.  In this group the entrance dose per projection was kept constant but the number of 

projection views and total entrance dose decreased with the decrease in angular span.  Figure 

37 shows the ASF widths for this group.  From this figure it can be seen that the width of the 

ASF decreases with increasing angular span of the projection images.  The decrease can be 

attributed to the increased information which is collected in the projection space when the 

angular span is increased. Similar results have been found in previous studies.103, 106  For a 

fixed angular span, the ASF is found to be insensitive to the number of projection views, 

entrance dose, and mAs distribution (Group 2 - Group 4).  
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Figure 36: Plot of the ASF of an angular span of 14 degrees versus an angular span of 28 degrees with 
the same number of projection images and total entrance dose.  Both the raw data and the fitted data are 
shown.   The 14 degree span resulted in a much broader ASF due to the lack of information in the 
projection space. 

 

Figure 37: Results comparing the FWHM of the ASF and the total angular span of the projection images.  
A smooth fit was also applied to the data and plotted.  A very noticeable trend can be seen which shows 
that an increased angular span results in a better artifact spread function.    

7.4.4 Detector Pixel Size Comparison 

Decreasing the pixel size from 140 µm to 70 µm resulted in a 25% increase in the value 

of the MTF at 10%.  Figure 38 is a plot of the MTFs for the two pixel sizes.  The slight increase 

in the width of the ASF for the configuration with a 70 µm pixel size when compared to the 140 
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µm pixel size case is within the uncertainty of the calculation.  Since the distance between slices 

is 0.5 mm, the error in calculation will be at least 1 mm. 

 

Figure 38: Plot of the MTFs for the 70 µm pixel size and the 140 µm pixel size.  The value of the MTF at 
10% was found to be approximately 25% better for the 70 µm pixel size (5.1 cycles per mm) when 
compared to the 140 µm case (4.1 cycles per mm).   

The two configurations in group 5 had the same total entrance dose but different 

detector pixel sizes.  A decrease in SdNR was observed for the smaller pixel size configuration.  

Smaller pixels result in more pixels per area.  Thus, the photon count per pixel is decreased 

resulting in the decrease of SdNR. 

7.4.5 Overall Image Quality Factor 

The SdNR, MTF, and ASF are all important for assessing the image quality of a 

configuration.  A composite image QF is used to assess the overall performance of a 

configuration to detect both MCs and masses. The different parameters tested have varying 

effects on the reconstructed image quality.  An increase in entrance dose corresponds to an 

increase in SdNR.  An increase in angular span creates a better artifact spread along the z-axis.  

A decrease in pixel size creates a better MTF and a worse SdNR.  Of all configurations we 

investigated with 100 mAs exposure, it was found that the highest image QF was from the 

configuration with 29 projection images distributed uniformly over a 28 degree span and with 
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binned detector pixels.  However, the same configuration with 15 projections had a very similar 

QF.  Using 29 projections instead of 15 projections will increase the total acquisition time by 

2.52 seconds (due to additional readout time needed for more projection images).  This 

increase in acquisition time could lead to a significant increase in patient motion during the 

acquisition, which will degrade the image quality.16  In clinical practice the image quality may be 

optimal for the configuration with 15 projection views instead of 29. 

7.5 Discussion 

The goal of this research was to determine (i) the effect of configuration parameters on 

image quality, and (ii) the configuration parameters which result in the overall best image quality 

using the s-DBT system.  The in-plane resolution, measured by the MTF, was found to primarily 

depend on the focal spot size of the x-ray source and the detector pixel size.  It is insensitive to 

the number of projection views, projection view angular span, total entrance dose, and mAs 

distribution.  The system in-plane resolution of our s-DBT system is 4.2 cycles per mm for a 

there is no x-ray source motion the system MTF in s-DBT is independent of acquisition time, 

total angular span, and the number of projection views.  In contrast, rotating source DBT 

systems can have significant MTF degradation due to motion blur of the focal spot.13  Different 

configurations in DBT systems result in differing MTFs.  For example, larger angular spans will 

require faster x-ray source motion if the total acquisition time and the number of projection 

images are held constant, resulting in lower MTF values.  

An s-DBT system offers the flexibility of non-uniform distribution of the mAs among 

different projection views. It was found that a uniform distribution resulted in a higher QF than 

the non-uniform distributions that were tested.  We conclude that there is no clear advantage of 

using non-uniform mAs distribution among different projection views.   
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As was expected, a higher entrance dose resulted in better image quality.  However, the 

entrance dose used on a patient should be determined based on the thickness and composition 

of the breast being imaged. In DBT systems the entrance dose is determined by the automatic 

exposure control (AEC) unit.  Based on a low dose scout view the AEC determines both the kVp 

and total mAs. In general, thin and fatty breasts require less dose in order to get similar image 

quality as thick and dense breasts.  If the total dose is too low it may not be advantageous to 

distribute it over too many projection views. 

The number of projection images did not have a large effect on the overall image quality 

in our phantom study. However, in clinical practice this may not be the case due to differing 

acquisition times. The image acquisition time can be calculated from Equation 20.  

Equation 20: 

                       

Where "tacq" is the total acquisition time, "N" is the number of projection images, "texp" is 

the exposure time per projection, and “treadout" is the detector readout time per projection.  

Assuming that the total mAs stays the same for the 15 projection case as for the 29 projection 

case, the number of projection images will double and the exposure time per projection will half.  

Since the readout time of the detector is the same, the total acquisition time will increase by 14 

times "treadout".  Using the detector on the current Selenia Dimensions model ("treadout" of 180 ms 

in 2x2 binned mode) the acquisition time for the 29 projections increases by 2.52 seconds. This 

is not desirable because the increase in acquisition time will lead to more patient motion, 

degrading the image quality. 

Going from an angular span of 14 degrees to 28 degrees the FWHM of the ASF 

decreased approximately 50%.  The increased z-axis resolution could be very beneficial when 

imaging patients by reducing tissue obstruction of the object of interest.  Increased angular span 

becomes a problem for rotating source DBT systems due to the increased focal spot blur and/or 

acquisition time. 
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Changing from 2x2 binning to full resolution, in an s-DBT system, results in a 25% 

increase in the value of the MTF.  This increase in spatial resolution comes at the cost of SdNR.   

The increased resolution could be beneficial when trying to image MCs, but may not be 

desirable for detecting masses due to the loss in SdNR. It may be useful to present two sets of 

tomosynthesis reconstruction data, one optimized for MC detection using the full detector 

resolution projection data, and another for detecting masses using post acquisition binned 

projection data.  

7.6 Conclusions 

The optimal configuration of the CNT based stationary digital breast tomosynthesis 

system has been investigated.  A configuration with a large angular span, an intermittent 

number of projection views, and an even mAs distribution resulted in the best overall image 

quality.  Decreasing the pixel size from 140 µm to 70 µm resulted in an s-DBT system resolution 

of 5.15 cycles per mm, 60% better than continuous motion DBT systems (3 cycles per mm).13 
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CHAPTER 8: BREAST SPECIMEN IMAGING WITH S-DBT 

8.1 Overview 

Objectives: The objective of this study was to compare the stationary digital breast 

tomosynthesis system (s-DBT) to a conventional mammography system in a study of breast 

specimens.  Radiologist evaluation of image quality was assessed in a reader study.  This study 

represents the first human tissue imaging with the novel carbon nanotube-based s-DBT device. 

Materials and Methods: Thirty-nine patients, with known breast lesions (BIRADS 4 or 5) 

by conventional mammography and scheduled for needle localization biopsy were recruited 

under an institutional review board-approved protocol.  Specimen images were obtained using a 

2D mammography system with a 1.8x magnification factor and an s-DBT system without high 

magnification factor.  A reader study was performed with four fellowship-trained breast 

radiologists over two separate sessions.  Malignancy scores were recorded for both masses 

and microcalcifications (MCs).  Reader preference between the two modalities for MCs, masses, 

and surgical margins was recorded.   

Results: The s-DBT system was found to be comparable with magnified 2D 

mammography for malignancy diagnosis.  Readers preferred magnified 2D mammography for 

MC visualization (p-value < 0.05).  However, readers trended toward a preference for s-DBT 

with respect to masses and surgical margin assessment. 

Conclusions:  Here we report on the first human data acquired using a stationary digital 

breast tomosynthesis system.  The novel s-DBT system was found to be comparable to 

magnified 2D mammography imaging for malignancy diagnosis. Given the trend of preference 

for s-DBT over 2D mammography for both mass visibility and margin assessment, s-DBT could 

be a viable alternative to magnified 2D mammography for imaging breast specimens. 
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8.2 Motivation for Specimen Imaging 

For this study, we sought to compare the CNT-based s-DBT system to a FFDM system 

in a study of breast specimens.  Radiologists' evaluation of image quality was assessed through 

a reader study.  This study represents the first human tissue imaging with the novel CNT-based 

device.  We hypothesized that in using the s-DBT system, we will generate clinically useful 

tomographic images of breast specimens that are of comparable quality to conventional high 

magnification 2D specimen radiographs. 

8.3 Methods 

8.3.1 Patient Recruitment 

Thirty-nine patients, with known breast lesions (BIRADS 4 or 5) from conventional 

mammography and scheduled for needle localization biopsy were recruited under an 

institutional review board-approved protocol.  Informed consent was obtained for each patient 

prior to the needle localization.  After excision from the patient, the specimen was placed in a 

standard quasi-radiolucent specimen container, and compressed using the container's own 

compression mechanism with enough pressure to prevent the tissue from sliding in the 

container using a perforated grid.  Figure 39 (Left) shows a 2D radiograph of an empty 

specimen container.  An average specimen thickness of 16 mm after compression was 

observed.  They were then imaged using a GE Senographe FFDM system (General Electric, 

Fairfield, CT USA) using 26 kVp, 1.8x radiographic magnification, and dose proportional to the 

specimen's size.  After standard of care clinical imaging, all specimens were transported to our 

research facility and re-imaged using an s-DBT system.  The specimens were then transported 

to the Department of Pathology in the hospital for standard clinical pathology evaluation.  All 
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specimens were returned to Department of Pathology within one hour after excision (cold 

ischemia time). 

 

Figure 39: Left - Segmented 2D radiograph of container used to hold specimens.  Right - Image of an s-
DBT system with specimen container on the detector housing. 

8.3.2 Imaging on the s-DBT System 

Specimens were imaged on the s-DBT system using 15 projection images distributed 

over 28 degrees, 1.08x radiographic magnification, 26 kVp, 100 mAs, and a detector pixel size 

of 70 µm.  Figure 39 (Right) shows the s-DBT system with a specimen container on the 

detector housing.  Projection images were reconstructed into a 3D volume using a back-

projection filtering method developed by Real Time Tomography, LLC (Villanova, PA USA).102  

Images were reconstructed using a 0.5 mm distance between slices and a pixel size equivalent 

to that of a 1.8x magnified image (the magnification used for the 2D radiograph).   

8.3.3 Reader Study Design 

A reader study was performed with four breast fellowship-trained radiologists over two 

separate sessions; all images were viewed in each session.  During the initial session, half of 
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the specimens were viewed using 2D mammography first, and half using s-DBT first.  For the 

second session, the readers were shown the images in reverse order.  Four weeks wash-out 

time was given between the two reader sessions.  The readers gave a malignancy score 

between 1 and 5 (1 - benign, 3 - 50% chance of malignancy, 5 - highly malignant) for both 

masses and MCs in the specimen, and a confidence score for their malignancy diagnosis (0 - 

100%).  The numeric malignancy score was not based on BIRADS.  Margin assessments were 

only completed for the modality shown first; negative if the lesion was fully contained in the 

margins or positive if the margins extend to the edge of the specimen.  After malignancy and 

confidence scores were recorded, the second modality was shown to the reader to determine 

the readers preference between s-DBT and mammography.  Reader preference was recorded 

between -3 and +3 in increments of one (-3 - 2D preferred, 0 - equally preferred, +3 - s-DBT 

preferred).  Reader preference was recorded for three different categories for each specimen, 

as applicable; (1) shape/morphology of masses, (2) MC assessment, and (3) margin 

assessment.  Statistical analysis was completed by a qualified biostatistician. 

8.4 Results 

Four radiologists evaluated 42 specimens from 39 patients.  Readers 1, 2, 3, and 4 had 

11, 16, 19, and 1 years of practicing radiology respectively.  The sensitivity and specificity of 

each modality was calculated for each reader.  Table 9 shows the calculated values using 3 as 

the threshold for a positive response (interpreted as malignant).  Two of the four readers 

recorded a higher sensitivity using s-DBT than 2D mammography.  Two readers gave higher 

specificity values for 2D mammography, one gave a higher specificity value for s-DBT, and one 

reader (Reader 3) did not diagnose any specimens as benign. 
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Table 9: Calculated sensitivity and specificity values by modality and reader.  Values were calculated 

from malignancy scores.  Malignancy scores from 3 to 5 were considered positive for disease. 

2D = 2D digital mammography modality 
s-DBT = stationary digital breast tomosynthesis modality 

 

 

Reader preference for the shape/morphology of masses is shown in Table 10.  A reader 

preference of 0.07±1.34 was recorded, where a positive value represents a preference for s-

DBT.  The difference in the reader preference between the two modalities for masses was 

insignificant.  

Table 10: Average reader preference for the shape/morphology of masses, MC assessment, and margin 
assessment.  Positive values represent a preference for stationary digital breast tomosynthesis compared 
to 2D mammography. 

 
Masses Microcalcifications Margins 

Reader Mean STD 
p-

value 
Mean STD 

p-
value 

Mean STD 
p-

value 

1 -1.02 1.40 <.05 -1.80 1.01 <.05 -0.44 1.35 <.05 

2 0.18 1.20 0.4094 -0.54 0.70 <.05 0.19 1.14 0.2984 

3 0.75 1.35 <.05 -0.20 0.98 0.259 0.70 1.35 <.05 

4 0.08 0.86 0.5800 -0.62 0.52 <.05 0.21 0.72 0.0743 

Overall 0.07 1.34 -- -0.70 0.95 -- 0.16 1.22 -- 

 

Table 10 also shows the reader preference for MC assessment.  Overall, an average 

preference of -0.70±0.95 was recorded, where a negative value represents a preference for 2D 

mammography.  Figure 40 shows reconstruction slices and the corresponding 2D image of a 

  Sensitivity Specificity 

Reader 2D s-DBT 2D s-DBT 

1 24/24 
(1.00) 

23/25 
(0.92) 

4/14 
(0.29) 

2/13 
(0.15) 

2 21/25 
(0.84) 

19/25 
(0.76) 

5/14 
(0.36) 

7/14 
(0.50) 

3 24/25 
(0.96) 

25/25 
(1.00) 

0/13 
(0.00) 

0/13 
(0.00) 

4 23/25 
(0.92) 

25/25 
(1.00) 

4/14 
(0.29) 

2/14 
(0.14) 
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specimen with a suspicious cluster of MCs.  With the high spatial resolution of s-DBT the MCs 

are visible in the reconstruction. 

 

Figure 40: Left Above - Reconstructed slice of a specimen using an s-DBT system.  Left Below - 
Reconstruction slice located 1.5 mm below the previous slice.  Right - 2D mammography image of the 
same specimen.  The high spatial resolution of the s-DBT system allows for imaging of small 
microcalcifications.  The added z-axis information allows for better visualization of MC clusters.  The blue 
oval envelopes a cluster of large MCs and the white oval envelopes a cluster of small MCs. 

Table 10 also shows the reader preference with respect to surgical margin assessment.  

The average preference for margins was 0.16 with a standard deviation of 1.22, where a 

positive value represents a preference for s-DBT.  Figure 41 shows an s-DBT reconstruction 

slice and a 2D mammography image of a specimen with a suspicious lesion with spiculated 

margins.  Clear margin delineation is present in the s-DBT reconstruction; however, tissue 

overlap in the 2D image reduces margin visibility.  This particular lesion was later diagnosed as 

malignant. 
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Figure 41: Left - Reconstructed slice of a specimen using an s-DBT system.  The spiculated margins and 
architectural distortion are more apparent along all edges compared to the 2D mammography image of 
the same specimen (Right). 

A secondary analysis was completed on the reader preference results by a 

biostatistician.  It was tested whether the mean reader preference was larger than zero using a 

linear mixed model with a random intercept effect and Wald test. It was assumed the correlation 

in reader preference for each specimen between any two readers was the same. The results 

trended toward a preference for the s-DBT system in terms of the shape and morphology of 

masses and margins.  It was found that readers preferred FFDM over s-DBT for MC visibility (p-

value < 0.05).  The results of the secondary analysis can be found in Table 11. 

Table 11: Results of the secondary analysis performed on the preference portion of the reader study.  It 
was tested whether the mean preference was larger than zero using a linear mixed model with a random 
intercept effect and Wald test. 

Item of Interest Grand Mean 
Estimate 

Standard 
Error 

Two-sided p-value 

Shape/morphology 0.0598 0.1416 0.6751 
Microcalcifications -0.6718 0.1030 <0.05 

Margins 0.1586 0.1422 0.2718 

 

8.5 Discussion 

Overall malignancy diagnosis of the two modalities was comparable.  The prevalence of 

malignancy in our specimens was 25 out of 39, due to the fact that recruited patients had a 
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status of BIRADS 4 or higher.  Thus, we would anticipate a bias toward malignant diagnosis 

within our specimens given the initial malignant diagnosis.   

Readers trended toward a preference for s-DBT with respect to masses and surgical 

margins compared to magnified 2D mammography.  However, magnified 2D mammography 

was preferred when viewing MCs.  A large amount of reader fatigue was noted between the first 

and second session.  Specifically looking at reader 1 for surgical margin assessment, it can be 

seen that their average preference decreased from 0.18 to -1.16, a decrease of 1.34, between 

the first and second reading session.  This is in contrast to all other readers which saw an 

average increase of 0.51. 

Specimen radiography is essentially optimized for 2D mammography, placing s-DBT at a 

disadvantage for a number of key reasons.  Large radiographic magnification factors are used 

that cannot be replicated on any DBT system, and the specimen container produces artifacts in 

s-DBT reconstructions.  A typical mammography system utilizes both a large and small focal 

spot.  The small focal spot is designated for magnification views, this reduces the effect of focal 

spot enlargement on image spatial resolution.  Typical DBT systems (including the s-DBT 

system) only use a large focal spot due to power constraints on the anode.  Thus for this study, 

a magnification factor of 1.8 was used for 2D mammography compared to 1.08 for the s-DBT 

images.   

The specimens were held in a conventional specimen container consisting of a 

rectilinear grid with circular holes. The grid coordinates provide a mechanism for the 

communication of findings between the radiologist and the pathologist. However, in 

tomosynthesis, the regularly spaced grids impose additional artifacts within the imaging planes 

of the specimen, causing image degradation. Simply removing the grid would reduce this image 

artifact. This was not done in this study in order to preserve the clinical workflow.  If s-DBT is 

used in the future for specimen radiography, it would be beneficial to design a specimen 

container which reduced artifacts in the reconstruction images.  One example could be a cone-
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shaped design, the specimen could be held stationary by the walls of the cone and the grid 

could be placed at a distance above the tissue, thereby reducing the reconstruction artifact. 

Another disadvantage of s-DBT in this study was the use of biopsy needles to mark 

lesions (later used for localization by the pathologist).  Some specimens were marked with 

biopsy needles after the 2D mammogram was acquired in the hospital.  In some specimens a 

large number of needles were present in the s-DBT reconstruction and not present in the 2D 

mammography image.  Figure 42 shows a reconstruction slice and the corresponding 2D image 

of a specimen which contained a substantial amount of needles.  In the figure, large needle 

artifacts can be seen in the s-DBT reconstruction which can reduce lesion visibility.  In future 

studies, post processing segmentation and interpolation could be used to reduce the artifacts. 

 

Figure 42: Left - Reconstructed slice of a specimen using an s-DBT system.  Right - 2D mammography 
image of the same specimen.  Biopsy needles are present in the s-DBT reconstructions and not in the 2D 
mammography image. 

8.6 Conclusion 

In summary, we reported the first human data acquired using a stationary digital breast 

tomosynthesis system.  Lumpectomy specimen images were acquired using a 2D 

mammography system and an s-DBT system.  Stationary digital breast tomosynthesis was 
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found to be comparable with 2D mammography for malignancy diagnosis but readers were 

significantly more confident in MC visibility when using 2D mammography (p-value < 0.05).  

Readers, with respect to masses and surgical margins, trended toward a preference for s-DBT.  

These results were not significant.  Given the trend of preference for s-DBT over 2D 

mammography for both mass visibility and margin assessment, s-DBT could be a viable 

alternative to 2D mammography for imaging breast specimens.  
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CHAPTER 9: HIGH RESOLUTION MICROCALCIFICATION IMAGING WITH S-DBT 

9.1 Overview 

Objectives: The objective of this study was to compare the visibility of MCs using s-DBT 

reconstruction images versus reconstruction images from a continuous motion DBT system.  

Specimen images were analyzed for x, y, and z MC resolution.  A 3D MTF simulation was used 

to further compare the increased resolution of s-DBT over continuous motion DBT. 

Materials and Methods: Lumpectomy images were acquired using the s-DBT system 

and a continuous motion DBT system.  Further analysis was conducted on images where MCs 

were present.  The size of the MC was determined based on a localized threshold value and an 

artifact spread function (ASF) was calculated.  Three-dimensional MTFs were simulated based 

off various input parameters for each system.   

Results: The s-DBT system was found to superior to the continuous motion DBT system 

for every MC analyzed.  The wider angular coverage of the s-DBT system produced narrower 

ASFs.  The average difference in the FWHM of the ASF was 2.00±0.67 mm.  A narrower ASF 

results in a more accurate representation of the MC.  The smaller effective focal spot of the s-

DBT system, as demonstrated by the 3D simulated MTF, produced more realistic visualizations 

of the analyzed MCs.  For some MCs, the percent decrease in area from DBT to s-DBT was as 

high as 43%. 

Conclusions:  It was found that the s-DBT system gave higher resolution imaging of 

MCs for every MC analyzed.  The stationary design allows for full DBT acquisitions with no 

motion blur and for large angular spans without an increase in total acquisition time.  The high 

resolution of s-DBT could allow for the removal of the 2D acquisition requirement for DBT 

screening examinations. 
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9.2 Motivation 

Current digital breast tomosynthesis (DBT) systems utilize a single X-ray source which is 

rotated over an angular span.  Systems which follow a continuous acquisition protocol acquire 

all images while the tube is in motion.  This motion causes blurring of the focal spot in one 

direction, leading to non-isotropic spatial resolution.  If the tube travels a sufficient distance 

during a single acquisition the spatial resolution in the tube travel direction will be poor  Since 

high resolution is needed in Mammography for visualization of microcalcifications (MCs), 

continuous motion DBT systems use combo mode when screening patients, which acquires 

both a DBT acquisition and a high resolution 2D projection image.  Combo mode doubles the 

radiation dose to the patient, which is a large concern in mammography especially when 

Mammography screening begins at an early age.112-114  Many recent studies have shown that 

the use of DBT along with a 2D projection image significantly increases sensitivity and 

decreases the number of false positives in a screening population compared to the 2D 

projection alone.99, 115-118  For cases with MCs, there is no significant difference between combo 

mode and a single 2D projection image.46 Due to the poor spatial resolution of continuous 

motion DBT systems, the radiation risk to benefit ratio concerning MCs using combo mode is 

much higher than 2D mammography alone.  In order to lower ratio back to 2D mammography 

levels a DBT system with high spatial resolution is needed. 

Utilizing an array of carbon nanotube (CNT) based X-ray sources, we have developed a 

stationary digital breast tomosynthesis (s-DBT) system.13, 20, 119  The s-DBT system is capable of 

collecting a full set of tomosynthesis projection images with zero motion.  The system has been 

shown to have significantly higher spatial resolution than continuous motion DBT systems when 

imaging phantoms.13, 119  Translating the system into the clinic for human use requires a 
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significant amount of data and preparation to demonstrate the usefulness of the system.  

Imaging lumpectomy specimens allows for human tissue imaging and demonstrates the 

usefulness without the added dangers of radiation exposure to patients.   

In the current study, lumpectomy specimens were imaged using our s-DBT system and 

a continuous motion DBT system.  Calculations were also made on MCs within the images to 

determine the effect of the increased spatial resolution.  A simulated 3D modulation transfer 

function (MTF) was created to further show the differences in the spatial resolution of the two 

systems.  Using the results of the MC size comparison, it will be determined if the higher spatial 

resolution of the s-DBT system translates into increased image quality in the clinic. 

9.3 Methods 

Lumpectomy images were acquired using the s-DBT system and a continuous motion 

DBT system.  Further analysis was conducted on images where MCs were present.  The size of 

the MC was determined based off a localized threshold value and an artifact spread function 

(ASF) was calculated.  Three-dimensional MTFs were simulated based off various input 

parameters for each system.   

9.3.1 Stationary digital breast tomosynthesis system 

The s-DBT system consists of a linearly distributed CNT based X-ray source array17-20 

which has been retrofitted onto a Hologic Selenia Dimensions DBT system.11  The linear array, 

manufactured by XinRay Systems, Inc. (Research Triangle Park, NC),  contains 31 X-ray 

generating focal spots distributed over a 30 degree angular span when a 70 cm source to 

imager distance (SID) is used.  Figure 43 contains an image of the s-DBT system.  The system 

is based on CNT X-ray sources, which use field emission to pull electrons from the cathode 

instead of thermionic expansion which is used in typical X-ray sources.  These sources allow for 

electronic control of X-ray exposures with near instantaneous firings from a cold state.  These 

sources, coupled with a fast flat panel detector create high resolution images with fast 
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acquisition times (current acquisition times on the system are limited by the detector readout 

time).  The system is equipped with electrostatic focusing of the electron beam.  When engaged, 

the focusing electrodes are capable of increasing or decreasing the focal size of the system.  

The nominal focal spot size that can be achieved with the focusing engaged is 0.6 mm.  For the 

specimen images in the study the electrodes were grounded, which produces a focal spot size 

of 0.9 mm.  Grounded focusing was used for ease of implementation.   

As previously determined, the optimal configuration of the s-DBT system was used for 

imaging of the breast specimens.  Fifteen projection images covering an angular span of 28 

degrees were used.  The detector was operated using full resolution, with a pixel size of 70 µm.  

This configuration yields a measured spatial resolution of greater than 5 cycles/mm.119 

 

Figure 43: Left - An image of the s-DBT system with a specimen container on the detector housing.  
Right - An image of a Selenia Dimensions. 
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9.3.2Continuous motion digital breast tomosynthesis system 

A Selenia Dimensions, manufactured by Hologic Inc. (Bedford, MA), was used to image 

each breast specimen.11.  The Selenia Dimensions uses a single thermionic X-ray source with is 

in continuous motion during X-ray exposure.  The system acquires fifteen projection images 

evenly spaced over an angular span of 15 degrees.  The detector is operated in binned mode 

yielding a pixel size of 140 µm.  This system has been shown to have a spatial resolution of 

approximately 3 cycles/mm.13 An image of the Selenia Dimensions can be found in Figure 43. 

9.3.3 Imaging protocol 

All patients were recruited under an University of North Carolina at Chapel Hill 

Institutional Review Board approved protocol.  Twenty-three patients with known breast lesions, 

BI-RADS 4 or 5, and scheduled for a lumpectomy procedure were recruited.  Specimens were 

picked up from the operating room and then transferred to the Department of Radiology for 

imaging on a conventional 2D mammography system.  Hospital procedure dictates that all 

breast specimens be imaged using a magnified 2D image for margin delineation.  After imaging 

on the 2D system, specimens were transferred to our lab for imaging on both the s-DBT system 

and the Selenia Dimensions.  Images were acquired using 26 kVp and 100 mAs for both 

systems.  Specimens were then transferred to the Department of Pathology in the hospital for 

malignancy determination.   

9.3.4 Image processing and reconstruction 

All images collected on the s-DBT system were corrected for non-uniformity of the beam 

and detector as well as gain offset using the following equation: 

Equation 21: 

       
               

          
 

where "Image" is the final processed image, "Projection" is the raw projection image, 

"Dark" is an average of 15 images were the detector was fired with no X-ray exposure, and 
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"Blank" is an X-ray exposure with nothing in the field of view of the detector.  Images collected 

on the Selenia Dimensions were processed using the default operation of the system.   

Reconstruction of the images was completed using a dynamic reconstruction software 

package developed by Real Time Tomography (Villanova, PA).  The reconstruction uses a 

proprietary back projection filtering method.102  All datasets were reconstructed using a 1.8x 

magnification (equivalent to the radiographic magnification used for specimen imaging), 

resulting in a nominal reconstruction pixel size of 37µm at the detector.  The distance between 

reconstruction slices was 0.5 mm.  Figure 44 shows a reconstruction slice of a specimen from 

the s-DBT system. 

 

Figure 44: Reconstruction slice of a breast specimen using the s-DBT system. 

9.3.5 Microcalcification analysis 

Specimen images with MCs were analyzed to further demonstrate the increased 

resolution of the s-DBT system over the continuous motion DBT system.  Twelve individual MCs 
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were selected for analysis.  MCs were only selected if they were visible in both imaging 

modalities and were not in close proximity to other structures (MCs, localization wires, etc.).  To 

fully localize a lesion information from every direction (x, y, and z) is needed.  Each MC was 

analyzed for in-plane resolution (x and y directions) and for the artifact (z direction) spread 

function (ASF).   

Analysis of in-plane resolution consisted of a localized thresholding method, which used 

a 50% of the maximum pixel intensity of a small region of interest (ROI) as a cutoff.  Pixels with 

intensity larger than the cutoff were considered as part of the MC.  Multiplying the number of 

pixels in the MC by the reconstruction pixel size yielded an area estimate of the size of the MC. 

The ASF was calculated by taking the maximum pixel value found in the ROI through 

every reconstruction slice of the reconstruction space. As the distance from a slice to the object 

of interest's focal plane increases, the intensity of the ASF decreases.  The full width at half 

maximum (FWHM) of the ASF was used as a quantitative measure of the z-axis spatial 

resolution.  The ASF at plane “z” is defined as: 

Equation 22: 

       
                          

       
 

where “max⁡(signal(z))” is the maximum pixel value of the ROI for the slice located at 

“z”, and “ bkg (z)” is the average value of the background pixels of the ROI for the slice.
14 

9.3.6 Simulated 3D modulation transfer function 

The MTF is a measurement used to quantify the spatial resolution of a system.    A 

larger MTF is indicative of a system having higher spatial resolution.  In this study, the MTF was 

simulated for both systems in the x and y directions and using a detector pixel size of 140 and 

70 µm at a focus height of 40 mm.  The 2D simulated MTFs of the Selenia Dimensions were 

created using a technique described by Marshall et al, where given; the source to imager 

distance (SID), radiographic magnification factor, tube travel distance per projection, actual focal 
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spot size, and detector pixels size an estimate of the projection MTF can be made.120  The tube 

travel distance per projection was calculated using the SID, angular span, total acquisition time, 

mAs per projection, and tube current.  First, the X-ray pulse width was calculated using 100 

mAs, 15 projection images, and 200 mA tube current (as stated in the Selenia Dimensions 

Service Manual).  The tube travel distance per projection was calculated by multiplying the total 

travel distance, calculated from the SID and the angular span, by the pulse width to total 

acquisition time ratio.  The focal spot size of the Selenia Dimensions is 0.46 mm in the tube 

travel direction and 0.53 mm in the direction perpendicular to motion (as stated in the Selenia 

Dimensions Service Manual).  Multiplying the Fourier transform of the focal spot, tube motion, 

and detector pixel results in the MTF of the projection image.  When creating the s-DBT MTF, 

the same procedure was followed except zero tube motion was used and the focal spot was 

modeled as a Gaussian function and not a square function as in thermionic X-ray sources.13  

The electrostatic focusing of the s-DBT system were grounded in this study resulting in a 0.9 

mm focal spot size.  The nominal focal spot size the system is 0.6 mm when the electrostatic 

focusing electrodes are engaged.  Both focal spot sizes were simulated. 

The resolution of a system In order to create a 3D simulation of the MTF for each system 

a weighting function, as described by Konstantinidis et al, was used.  The equation for the 3D 

MTF at phase angle "α" is as follows: 

Equation 23: 

                                

where "MTF3D" is the 3D MTF, "MTFx" is the MTF in the x direction, and "MTFy" is the 

MTF in the y direction.  A phase angle of zero degrees is represents the spatial resolution along 

the acquisition direction of the system while an angle of 90 degrees is perpendicular to the 

acquisition direction.  Visualizing the MTF in this method will show how isotropic the spatial 

resolution of a system is.  The 3D MTF images were created using the simulated 2D MTF 

curves for both systems and detector pixel sizes. 
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9.4Results 

9.4.1 Microcalcification analysis 

A total of 12 MCs were selected for analysis.  Table 12 shows the results of the MC area 

calculations for all 12 MCs.  Since the actual MC size is unknown, a comparison with actual MC 

size is impossible.  However, if it is assumed that a smaller area calculation is equivalent to a 

sharper image, then for every MC analyzed s-DBT had sharper MC localization than continuous 

motion DBT.  For some MCs, the percent decrease in area from DBT to s-DBT was as high as 

43%. 

Table 12: The results of the MC area calculation and ASF for all 12 individual MCs that were analyzed.  

FWHM stands for the full width at half maximum of the ASF. 

MC 
Number 

s-DBT 
Area 

(mm2) 

DBT 
Area 

(mm2) 

Decrease 
in Area 

(%) 

FWHM 
s-DBT 
(mm) 

FWHM 
DBT 
(mm) 

FWHM 
Diff 

(mm) 

1 3.60 4.09 11.98 3.5 5.0 1.5 

2 2.33 3.66 36.34 2.5 4.5 2.0 

3 2.79 3.05 8.52 2.0 4.0 2.0 

4 1.69 2.79 39.43 1.5 5.0 3.5 

5 1.74 3.08 43.51 1.5 4.0 2.5 

6 2.96 3.59 17.55 2.5 4.0 1.5 

7 1.70 2.74 37.96 1.5 3.5 2.0 

8 2.21 3.69 40.11 1.5 4.0 2.5 

9 2.10 3.69 43.09 2.5 4.0 1.5 

10 2.43 3.21 24.30 3.5 4.5 1.0 

11 2.50 3.10 19.35 3.5 5.0 1.5 

12 2.82 3.76 25.00 2.5 5.0 2.5 

Table 12 shows the results of the ASF calculations.  For every MC, s-DBT had a 

narrower ASF than the continuous motion DBT system.  The average difference in the FWHM of 

the ASF was 2.00±0.67 mm.  Figure 45 shows a comparison of the ASFs of the two systems for 

MC number 2. 
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Figure 45: Plot of the ASF for the s-DBT system (solid line) and the Selenia Dimensions system (dashed 

line) from MC number 2.  A line representing the 50% cutoff is shown. 

9.4.2 Simulated 3D modulation transfer function 

Simulated MTF curves for the s-DBT system can be found in Figure 46.  The figure 

shows the effect of the detector pixel size and focal spot size on the MTF curve.  For this study 

a 70 µm pixel size and 0.9 mm focal spot size was used for the s-DBT system.  Since the 

isotropic focal spot of the s-DBT system will produce the same MTF curve in both directions 

only one curve is present for each combination of pixel size and focal spot size.  MTF curves for 

the Selenia Dimensions system in both the x and y direction can be found in Figure 46.  The 

figure shows the MTF curve for the system using a binned and full resolution detector.  

Acquisitions in the Selenia Dimensions system can only be acquired using binned detector 

pixels.  In the figure it can be seen that the non-isotropic effective focal spot from the Selenia 

Dimensions creates large differences in the MTF curves.  When using the smaller pixel size, the 

MTF at 10% is 84% larger in the y direction than the x direction (6.7 to 12.3 cycles/mm). 
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Figure 46: Left - Simulated MTF curves comparing the effect of pixel size and focal spot size in the s-
DBT system.  Simulations for both a binned and full resolution detector are shown.  Right - The same 

curves but for the Selenia Dimensions system.   

The simulated 3D MTF for both systems (and both focal spot sizes in the case of s-DBT) 

and pixel sizes can be found in Figure 47.  The s-DBT system produces symmetric spatial 

frequency in every direction on the detector.  The Selenia Dimensions produces different spatial 

frequencies for every non-orthogonal direction.  This non-uniformity effect is greatly 

exaggerated in the 70 µm detector pixel size case.   
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Figure 47: Above - Simulated 3D MTF for the s-DBT system with a 0.9 mm isotropic focal spot size using 
a 70 µm (Left) and 140 µm (Right) detector pixel size.  Middle -   3D MTF for the s-DBT system with a 
0.6 mm isotropic focal spot size using a 70 µm (Left) and 140 µm (Right) detector pixel size.  Below - 

Simulated 3D MTF for the Selenia Dimensions system using a 70 µm (Left) and 140 µm (Right) detector 

pixel size. 
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9.5 Discussion 

When comparing the measured MC area from the two systems, s-DBT always produced 

smaller values.  Smaller area calculations in-plane translates into sharper images in the x and y 

direction.  As expected, the higher spatial resolution of the s-DBT resulted in increased in-plane 

MC visibility.  The s-DBT system produced better ASFs for every MC that was analyzed 

compared to the Selenia Dimensions.  The s-DBT system is capable of producing larger angular 

spans without an increase in acquisition time or a loss in spatial resolution.119  The larger 

angular span of the s-DBT system reduces the out of plane artifacts produced from Fourier 

domain under sampling in tomosynthesis imaging.   

The simulated 3D MTF images show that while the s-DBT system produces uniform 

spatial resolution, the Selenia Dimensions produces non-uniform spatial resolution.  

Furthermore, using the full resolution detector in the Selenia Dimensions would create an 84% 

difference in the spatial resolution from the y direction to the x direction.  In the y direction, the 

spatial resolution is limited by the effective focal spot size and not the detector pixel size, 

therefore decreasing the pixel size from 140 to 70 µm would do little to increase the spatial 

resolution in that direction. 

When viewing MCs in s-DBT system compared to the Selenia Dimensions the increased 

spatial resolution brought about by the stationary sources is clearly apparent.  Figure 48 shows 

a comparison of MC visiblity in the s-DBT system and the Selenia Dimension system for MCs 

number 7 through 12.  The increased spatial resolution can be easily seen for every MC.  

Aliasing from the large pixel size and effective focal spot size can be seen in the Selenia 

Dimensions images. 
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Figure 48: Comparison of MC sharpness for MCs number 7 through 12 between the s-DBT system 
(Above) and the Selenia Dimension system (Below).  Aliasing from the large pixel size and effective focal 

spot size can be seen in the Selenia Dimensions images.  Specimens were not imaged in the same 
orientation and can therefore have artifacts in different directions. 

9.6 Conclusions 

The stationary digital breast tomosynthesis system was compared to a continuous 

motion DBT system.  It was found that the s-DBT system gave higher resolution imaging of MCs 

for every MC analyzed.  The stationary design allows for full DBT acquisitions with no motion 

blur and for large angular spans without an increase in total acquisition time.  The high 

resolution of s-DBT could allow for the removal of the 2D acquisition requirement for DBT 

screening examinations. 
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CHAPTER 10: FEASIBILITY OF S-DBT AS A SCREENING TOOL FOR PATIENTS 
WITH AUGMENTATION MAMMOPLASTY 

10.1 Overview 

Purpose:  Current practices for mammography screening of patients with augmentation 

mammoplasty results in increased radiation dose, examination time, and discomfort compared 

to patients without implants.  The purpose of this research is to investigate the feasibility of 

using s-DBT as a screening tool for patients who have undergone augmentation mammoplasty.   

Methods:  Six implant models were created using Natrelle brand implants from Allergan, 

Inc. (Irvine, CA) and slabs from a BR3D phantom (CIRS Model 020).  The BR3D phantom 

consists of a target slab which contains specs (0.130 to 0.400 mm in diameter) arranged in 

clusters, fibers (10 mm in length and 0.15 to 0.60 mm in diameter), and spheroidal masses 

(1.80 to 6.32 mm in diameter).  Each model was imaged three times on both the s-DBT system 

and a Hologic Selenia Dimensions (Bedford, MA) in 2D mammography mode.  The same 

entrance dose was used between the two modalities.  After collection of the images, two 

readers viewed the datasets and counted the number of visible lesions. 

Results:  For reader 1, the number of masses, fibers, and spec clusters visible in the s-

DBT reconstructions was significantly more in 5, 6, and 2 of the 6 configurations respectively.  

For reader 2, the number of masses, fibers, and spec clusters visible in the s-DBT 

reconstructions was significantly more in 4, 6, and 3 of the 6 configurations respectively. 

Conclusions:  The preliminary results suggest that s-DBT could be used as an 

alternative to 2D mammography for imaging patients with augmentation mammoplasty.  

However, additional readers are needed to have a definitive result for the study. 
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10.2 Motivation for Implant Imaging 

In recent years, there has been a large increase in the number of women electing to 

undergo augmentation mammoplasty. From 2000 to 2011 the number of women undergoing 

augmentation annually in the USA increased from 212,500 to 307,180.121  As more women 

undergo augmentation, there becomes a greater need to effectively screen and diagnose these 

women for breast cancer. Current screening mammography practices use a four view method 

for screening patients with breast implants. Two Craniocaudal (CC) views and two Mediolateral 

Oblique (MLO) views are taken for each breast. For the two CC and MLO views one contains 

the implant in the Field of View (FOV) of the detector and one contains only breast tissue with 

the implant pushed out of the FOV of the detector. The latter of the two techniques, as first 

described by Eklund et al.,122 displaces the implant posteriorly against the chest wall while 

pulling the breast tissue over and anteriorly to the implant. This technique results in a twofold 

increase in the radiation exposure given to the patient. Eklund et al.122 also reported that in 15-

20% of the women little information is gained from using the technique. In this group of women, 

significant encapsulation of the implant by the surrounding breast tissue had occurred. In severe 

cases the encapsulation led to an increase in pain when the "pushback" technique was 

attempted. A later report by Silverstein et al.,123 using the aforementioned "pushback" technique, 

states that the technique resulted in increased visibility of the breast tissue surrounding implants. 

Encapsulation of the implants again limited the use of the "pushback" technique in some women. 

Another study, performed by Colville et al.,124 reported that using the Eklund122 method results in 

up to a three times increase in the length of time required to complete a screening mammogram 

when compared to a typical two view mammogram. On average, a screening mammogram can 

be completed in 5 minutes while a mammogram performed on a patient with implants requires 

at least 15 minutes. This large increase in time reduces patient throughput significantly in busy 

screening locations.  
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The ability of 2D mammography to be an effective screening tool for patients with 

implants is hindered by the overlapping of the implant with the tissue above and below in the 

images. Digital Breast Tomosynthesis (DBT) is an effective tool for screening patients due to its 

ability to visualize tissue in a particular plane with little to no overlap of tissue from other 

planes.6-9  However, motion of the X-ray source during image acquisition degrades image 

resolution and quality in rotating gantry DBT systems.11, 125 This effect is amplified for 

tomosynthesis imaging of patients with augmentation due to longer X-ray exposure times. We 

have developed a stationary Digital Breast Tomosynthesis (s-DBT) system using a linear 

Carbon Nanotube (CNT) X-ray source array, which allows for acquisition of full tomosynthesis 

datasets without X-ray source motion.13, 119  Zero source motion allows for a substantial increase 

in spatial resolution when compared to continuous motion DBT systems.13  The purpose of this 

research is to investigate the feasibility of using s-DBT as a screening tool for patients who have 

undergone augmentation mammoplasty. We are exploring the feasibility of reducing the four 

views used currently to two s-DBT views, one CC view and one MLO view, for each breast or 

possibly just a single s-DBT MLO view. This would reduce the amount of radiation to the patient, 

time of exam, and patient discomfort. 

10.3 Methods 

Six implant models were created using Natrelle brand implants from Allergan, Inc. (Irvine, 

CA) and slabs from a BR3D phantom (CIRS Model 020).  The BR3D phantom consists of a 

target slab which contains specs (0.130 to 0.400 mm in diameter) arranged in clusters, fibers 

(10 mm in length and 0.15 to 0.60 mm in diameter), and spheroidal masses (1.80 to 6.32 mm in 

diameter).  Each model was imaged three times on both the s-DBT system and a Hologic 

Selenia Dimensions (Bedford, MA) in 2D mammography mode.  The same entrance dose was 

used between the two modalities.  After collection of the images, two readers viewed the 

datasets and counted the number of visible lesions. 
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10.3.1 Augmentation Mammoplasty Models 

In order to simulate breast tissue and lesions a BR3D breast tomosynthesis phantom 

(CIRS Model 020) was used.  The phantom consists of 6 slabs of heterogeneous breast 

equivalent material.  One slab (target slab) contains specs (0.130 to 0.400 mm in diameter) 

arranged in clusters, fibers (10 mm in length and 0.15 to 0.60 mm in diameter), and spheroidal 

masses (1.80 to 6.32 mm in diameter).  Implants were modeled using Natrelle brand implants 

from Allergan, Inc. (Irvine, CA).  Two saline implants (Style 68: Size 200 and 400cc) and one gel 

silicone implant (Style 20: Size 200cc) were used.   

Both the BR3D phantom slabs and the three implants were used to create six different 

models of patients with augmentation mammoplasty.  Each model either utilized two or four 

BR3D phantom slabs, one of which was the target slab.  Table 13 shows each combination of 

implant and number of BR3D slabs used in the study.  The BR3D slabs were put both above 

and below each of the implants.  Figure 49 shows a model with two slabs and the 200cc saline 

implant under compression on the s-DBT system. 

 

Figure 49: Augmentation mammoplasty model under compression.  Two BR3D phantom slabs and the 
200cc saline implant were used in the above model.   



140 

 

10.3.2 Imaging Configuration 

All six augmentation mammoplasty models were imaged on a Hologic Selenia 

Dimensions DBT system using 2D planar imaging and on the s-DBT system using 

tomosynthesis imaging.  Each model was imaged three different times on each system for 

added statistics.  The entrance dose used on each model was determined from the exposure 

index output of the Selenia Dimensions 2D images.  An anode voltage and exposure (kV/mAs) 

combination for an exposure index between -35 and -25 was determined for each model (0.050 

mm thick Rh filter was used for all 2D images).  An entrance dose at 4 cm was determined 

using a dosimeter (Radcal Accu-Pro 9096) and ion chamber (Radcal 10x6-6M Mammography 

Ion Chamber Sensor) for each kV/mAs combination.  Using the same dosimeter and ion 

chamber the exposure values were calculated for the s-DBT system using the same anode 

voltage for each entrance dose value.  Exposure values (mAs) do not correspond directly 

between the two systems due to differences in filtration.  Table 13 shows the kV/mAs 

combinations used for each model.   

Table 13: Imaging configurations for each augmentation mammoplasty model used.  Each configuration 
corresponds to an exposure index between -35 and -25 on the Selenia Dimensions in 2D imaging mode. 

Implant 
Type/Size 

(cc) 

Number of 
BR3D slabs 

Object 
Thickness 

(cm) 

Anode 
Potential 

(kVp) 

Selenia 
Dimensions 
Exposure 

(mAs) 

s-DBT Total 
Exposure 

(mAs) 

Entrance 
Dose at 4 
cm (mR) 

Saline/200 2 4.7 28 120 105 513 
Saline/200 4 6.7 32 160 128 944 
Saline/400 2 5.2 30 120 98 611 
Saline/400 4 7.2 33 160 128 1010 

Silicone/200 2 4.7 35 120 90 855 
Silicone/200 4 6.7 35 180 135 1283 

 

The imaging configuration used on the s-DBT system was 23 projection images with 

evenly distributed mAs over a 28 degree span.  The first four and last four projection images 

had an angular spacing of 2 degrees and the central 15 projections had an angular spacing of 1 

degree.  The higher projection density on the central 15 projections was used in order to reduce 

artifacts from the edge of the implants.  A lower projection density was used on the outside 8 
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projections in order to decrease the z-axis artifact spread and maintain the same entrance dose 

as the 2D planar images. 

10.3.3 Image Processing and Reconstruction 

All images were corrected for beam non-uniformity and gain offset.  Pseudo-3D 

reconstruction volumes were constructed using a dynamic 3D reconstruction software package 

developed by Real Time Tomography, LLC (Villanova, PA) (RTT).  The software package uses 

a back projection filtering method.102  All 3D reconstructions had a pixel size of 100 µm at the 

detector and a distance between slices of 0.5 mm.   

Post processing filtering of the 2D images was completed using the standard proprietary 

filter set on the Selenia Dimensions.  Post processing filtering of the s-DBT reconstructions was 

completed with proprietary filters developed by RTT. 

10.3.4 Image Analysis 

All datasets were reviewed by trained radiologists (minimum of 1 year of residency in a 

radiology field).  The radiologist was asked to record the smallest visible structure of each lesion 

type (specs, fibers, and masses) for both the planar and s-DBT datasets.  The radiologist 

scored the images based on the smallest structure visualized.  A score of 1 was given if only the 

largest structure was visible and a score of 0 was given if no structures were visible.  In all, 

there were 6 masses, 7 fibers, and 6 spec clusters.  In order for a spec cluster to be considered 

visible at least one spec in the cluster must have been visible.  Figure 50 demonstrates an s-

DBT reconstructed slice and a 2D planar image of the model with the 400cc saline implant and 

two BR3D slabs.  Figure 51, Figure 52, Figure 53, and Figure 54  are zoomed in comparison 

images of regions I, II, III, and IV from the two systems respectively. 
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Figure 50: Left - s-DBT reconstructed slice through the lesions of the model with the 400cc saline implant 
and two BR3D slabs.  Right - 2D planar image of the same model.  A large amount of tissue overlap can 

be seen in the 2D planar image.   

* Square regions of interest denote enlarged regions in Figures 4 through 7. 

 

Figure 51: Region I Left - s-DBT reconstruction slice Right - 2D planar image 
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Figure 52: Region II Left - s-DBT reconstruction slice Right - 2D planar image 

 

Figure 53: Region III Left - s-DBT reconstruction slice Right - 2D planar image 
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Figure 54: Region IV Left - s-DBT reconstruction slice Right - 2D planar image 

10.4 Results 

Two readers viewed all 36 datasets.  The results of the reader study can be found in 

Table 14.  The values in the table come from the average of the three instances of each implant 

configuration.  Overall averages could not be used since each implant configuration could have 

significantly different numbers of lesions.  Different data from different readers was not 

averaged due to the small number of readers. 
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Table 14: Average number of lesions counted by reader one and two for both imaging modalities.  The 
configuration number is related to the implant model and will be used in later plots for ease of 
implementation. 

Reader 
Config 

# 

Type 
/Size 
(cc) 

# 
Slabs 

Masses (6 total) Fibers (7 total) 
Spec Clusters 

(6 total) 

s-DBT 2D s-DBT 2D s-DBT 2D 

1 1 
Saline 
/200 

2 
3.00± 
0.00 

2.00± 
1.00 

4.67± 
0.58 

1.33± 
0.58 

4.67± 
0.58 

5.33± 
0.58 

1 2 
Saline 
/200 

4 
3.67± 
0.58 

0.00± 
0.00 

3.67± 
1.15 

0.00± 
0.00 

4.67± 
0.58 

5.00± 
0.00 

1 3 
Saline 
/400 

2 
3.00± 
0.00 

2.00± 
0.00 

4.67± 
0.58 

0.67± 
0.58 

5.00± 
0.00 

5.33± 
0.58 

1 4 
Saline 
/400 

4 
4.00± 
1.00 

0.00± 
0.00 

3.00± 
1.00 

0.00± 
0.00 

4.33± 
0.58 

4.00± 
1.00 

1 5 
Silicone 

/200 
2 

3.00± 
0.00 

0.67± 
1.15 

3.67± 
0.58 

0.67± 
1.15 

4.67± 
0.58 

3.33± 
0.58 

1 6 
Silicone 

/200 
4 

3.33± 
0.58 

0.00± 
0.00 

2.33± 
0.58 

0.00± 
0.00 

4.00± 
0.00 

2.67± 
0.58 

2 1 
Saline 
/200 

2 
3.67± 
0.58 

2.33± 
0.58 

5.00± 
0.00 

2.00± 
0.00 

4.33± 
0.58 

4.00± 
0.00 

2 2 
Saline 
/200 

4 
3.33± 
0.58 

1.67± 
0.58 

4.00± 
0.00 

0.00± 
0.00 

4.33± 
0.58 

3.00± 
0.00 

2 3 
Saline 
/400 

2 
3.33± 
0.58 

2.67± 
1.15 

4.33± 
0.58 

0.67± 
0.58 

5.00± 
0.00 

5.00± 
0.00 

2 4 
Saline 
/400 

4 
3.67± 
0.58 

1.00± 
1.00 

4.67± 
1.53 

0.33± 
0.58 

4.00± 
0.00 

3.00± 
1.00 

2 5 
Silicone 

/200 
2 

3.00± 
0.00 

2.00± 
1.00 

4.00± 
1.00 

1.33± 
0.58 

4.00± 
1.00 

2.33± 
0.58 

2 6 
Silicone 

/200 
4 

3.67± 
0.58 

0.00± 
0.00 

3.00± 
0.00 

0.00± 
0.00 

4.00± 
0.00 

2.00± 
0.00 

10.4.1 Masses 

There was a total of 6 masses embedded in the BR3D phantom.  For reader 1, the 

number of masses visible in the s-DBT reconstructions was significantly more in 5 of the 6 

configurations.  There were 3 configurations that reader 1 was unable to find any masses in the 

2D mammography datasets.  For reader 2, the number of masses visible in the s-DBT 

reconstructions was significantly more in 4 of the 6 configurations.  There was 1 configuration 

that reader 2 was unable to find any masses in the 2D mammography dataset.  Figure 55 

shows a bar chart displaying the average number of masses counted by both readers. 
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Figure 55: Bar chart showing the average number of masses counted for the 6 implant configuration for 
both reader one and two.  The error bars represent one standard deviation.  Missing bars indicate failure 

to find any lesions. 

10.4.2 Fibers 

There was a total of 7 fibers embedded in the BR3D phantom.  For both readers, the 

number of fibers visible in the s-DBT reconstructions was significantly more in all 6 

configurations.  There were 3 configurations that reader 1 was unable to find any fibers in the 

2D mammography datasets.  There were 2 configurations that reader 2 was unable to find any 

fibers in the 2D mammography datasets.  Figure 56 shows a bar chart displaying the average 

number of fibers counted by both readers. 
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Figure 56: Bar chart showing the average number of fibers counted for the 6 implant configuration for 
both reader one and two.  The error bars represent one standard deviation.  Missing bars indicate failure 

to find any lesions. 

10.4.3 Spec Clusters 

There was a total of 6 spec clusters embedded in the BR3D phantom.  For reader 1, the 

number of spec clusters visible in the s-DBT reconstructions was significantly more in 2 of the 6 

configurations.  There were 3 configurations that reader 1 found more spec clusters in the 2D 

mammography datasets, however this was not significant.  For reader 2, the number of spec 

clusters visible in the s-DBT reconstructions was significantly more in 3 of the 6 configurations.  

Figure 57 shows a bar chart displaying the average number of spec clusters counted by both 

readers. 
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Figure 57: Bar chart showing the average number of spec clusters counted for the 6 implant 

configuration for both reader one and two.  The error bars represent one standard deviation. 

10.5 Discussion 

Planar images of patients with augmentation mammoplasty contain large amounts of 

tissue overlap which obscures fibers and masses.  The ability of s-DBT to remove tissue overlap 

in the z-direction resulted in significantly superior visibility of fibers and masses in the 

reconstructed images.  Rotating gantry DBT systems lose spatial resolution from the rotating X-

ray source.  This reduces microcalcification visibility.  An s-DBT system has no motion blurring 

so is still capable of resolving small microcalcifications.  For this reason s-DBT was comparable 

or superior than 2D mammography in imaging of microcalcifications.   

Thinking of the implant as a filter in the datasets means that the datasets are low-dose.  

The improved image quality of s-DBT over 2D mammography in these low-dose images shows 

promise for a low-dose tomosynthesis alternative.  Current DBT screening examinations utilize 

both a DBT acquisition and a 2D mammography acquisition.  This method is needed due to the 

poor spatial resolution of rotating gantry DBT systems.  The adjunct 2D mammography image 

essentially doubles the radiation dose to the patient.  If the s-DBT system could be used in 
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mammography screening without a 2D mammography image there could be a possibility of a 

lower dose than just a 2D mammography image.  Further research needs to be conducted to 

determine the loss in image quality that would occur from a dose reduction.   

10.6 Conclusions 

This study shows promising results for improved lesion visibility, increased patient 

throughput, and reduced discomfort and radiation dose to screening mammography patients 

with augmentation mammoplasty.  Additional readers are needed in order to have a definitive 

conclusion to this study.  However, the overwhelming positive results from the first two readers 

shows great promise that the study will conclude that s-DBT is a feasible alternative to 2D 

mammography for imaging patients with augmentation mammoplasty.  Although the entrance 

dose to the implants was matched between the two modalities, the two modalities differ in 

energy spectrums and therefore differ in absorbed dose.  Further research into the effect of the 

differing absorbed doses is needed. 
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CHAPTER 11: CLINICAL IMPLEMENTATION OF AN S-DBT SYSTEM 

11.1 Overview 

An s-DBT system was constructed for use in a clinical trial.  Initial construction was 

completed in our lab on the campus of UNC-CH.  The system was transferred and installed at 

the North Carolina Cancer Hospital at UNC Hospitals.  Once construction was complete the 

system underwent a series of electrical and radiation safety tests to test if the system was safe 

for human use.  All tests were passed.  A protocol for a 100 patient clinical trial was submitted to 

the Universities IRB and accepted.  The system was characterized for various parameters 

including; geometry, spatial resolution, current versus voltage curves, and radiation dose rates.  

Once the tube was characterized the resultant values were implemented into the imaging 

software.  The first patient was imaged in December of 2013. 

11.2 Motivation for Clinical Implementation 

All previous studies conducted using an s-DBT system have involved either 

computer/physical phantoms or breast specimens.  There has been no data collected on actual 

human patients.  In order to further demonstrate the usefulness of s-DBT for breast cancer 

detection, data must be collected on human patients.  A new system will be constructed and 

installed in the Department of Mammography in the North Carolina Cancer Hospital.  After 

construction of the system, many system values will be characterized and optimized for use on 

patients.  These values include: system geometry, radiation exposure rate based on kVp, spatial 

resolution, I-V curves.  The values will be implemented into the operating software and a 

radiologist technician will be trained to use the system.  Before patients can be recruited and 

imaged the system must undergo electrical and radiation safety tests.  A protocol must also be 

submitted and approved by the UNC-CH IRB.   
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11.3 System Construction and Installation 

A new Selenia Dimensions DBT system, developed by Hologic Inc. (Bedford, MA), was 

delivered in Mid year 2012.  The base of the gantry was fastened to the floor to ensure it did not 

topple over during construction.  The X-ray tube of the Selenia Dimensions was removed, in 

March of 2013, with the help of Hologic Engineers.  The tube is currently in long term storage.  

Soon after tube removal, a new CNT source array was delivered to our facility from Xinray 

Systems, LLC (RTP, NC).  The new source array is identical to the previous which is described 

in full in Chapter 6. The tube was mounted onto the gantry of the Selenia Dimensions where the 

original tube was located.  Figure 58 shows a pictorial time lapse of the Selenia Dimensions 

gantry during s-DBT system construction.   

 

Figure 58: Pictorial time lapse of the Selenia Dimensions gantry (Left), after X-ray tube removal (Center), 
and after CNT source array integration (Right). 

A variety of system components were needed in order for the system to be operational.  

This included an anode power supply, cathode power supply, and cathode switching system.  

Table 15 lists the major power producing components of the system with their specifications.  

Other components were also integrated into the system including two ion pump controllers, a 

control computer, a function generator, and an electrical interface for the computer.  All 

components except for the control computer are located in an electronics rack.  Figure 59 

shows a picture of the electronics rack with all components labeled. 
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Table 15: List of major system components other than the X-ray tube in the s-DBT system.   

Component Manufacturer Model 
Voltage 
Rating 

(kV) 

Current 
Rating 
(mA) 

Power 
Rating 

(W) 

Anode 
Power 
Supply 

Spellman 
SL50P2000/220 

/1PHASE 
50 40 2000 

Cathode 
Power 
Supply 

Heinzinger PNC 3500-200 neg -3.5 200 1050 

Switching 
System 

H&P 
Advanced 

Technologies 
ECS -3 43 129 

 

 

Figure 59: Picture of the electronics rack with all components labeled. 

Once the system was constructed, and all components were checked for proper 

operation, the system was dismantled and transported to the Department of Mammography in 

the North Carolina Cancer Hospital.  The system was put back together in the Cancer Hospital 

and the gantry was attached to the floor.  Figure 60 shows the fully assembled s-DBT system in 

the Cancer Hospital. 
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Figure 60: Picture of the fully assembled s-DBT system in the North Carolina Cancer Hospital at UNC 

Hospitals. 

11.4 Patient and Operator Safety 

The safety of the patient and operator were the highest concerns during system 

construction.  Since the system is an investigational device, it does not fall under the FDA 

guidelines for mammographic devices outlined in the MQSA.  However, it was imperative that 

the MQSA be adhered to as much as possible.  For this reason, both electrical and radiation 

safety tests were conducted on the system before any patient imaging started.  Also, the 

recruitment and imaging protocol for the study had to be approved by the UNC-CH IRB. 
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11.4.1 Electrical Safety 

In order to use the s-DBT system on human patients the system needed to be 

electrically safe.  The electrical grounding scheme and voltage generation isolation were the 

major items that needed to be addressed to pass an electrical safety test conducted by MET 

Laboratories Inc. (Baltimore, MD).   

It is very important for the electrical grounding of the system to be designed so that any 

electrical short will not pass through the patient or (to a lesser extent) the switching electronics.  

High voltage passing through a human can be deadly.  Any excessive voltage or current 

passing through the switching electronics could potentially damage the sensitive electronics 

inside.  The design of the grounding scheme kept these two factors in mind.  The shortest path 

to ground from all the electronics must first pass through the chassis of the anode power supply 

before going to earth ground.  All coaxial cables from the switching system to the X-ray tube 

have the shielding disconnected on the switching system side of the cable.  This prevents any 

arcs in the X-ray tube from passing directly to the switching system through the cables, which 

with the shielding intact would create multiple parallel paths to ground.   Large diameter multi-

core copper cables were used to ground the electronics to ensure short electrical paths to 

ground.  Two cables connect the X-ray tube to the grounding bus in the electronics rack since a 

large physical distance is between the two components.  All grounding cables are coated with a 

green insulator to distinguish the cables from other cables in the system.  Figure 61 shows a 

diagram of the grounding scheme used in the system. 
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Figure 61: Diagram of the grounding scheme used in the s-DBT system. 

In order to use power generating devices on humans they must first be certified for use 

on humans.  None of the power generating devices in the system are certified.  However, the 

system could still pass the electrical safety tests if upstream of the components is an isolation 

transformer and an in-line ground fault circuit interrupter (GFCI) for over current protection.  The 

intent is to protect the primary of the system in fault conditions and eliminate the possibility of 

hazards transmitting to the outputs of the device.  The peak current draw of each component 

was measured and recorded except for the anode power supply. The peak current draw of the 

anode power supply was supplied by the manufacturer of the component and a signed 

document was given certifying the measurement. Table 16 shows the peak current draw and 

electrical ratings for each power generating component.  The total apparent power of the three 

120V (or 110V) input components equals 334 Va.  A medical grade isolation transformer for 

these components was selected with a max apparent power rating of 1000 Va (Toroid ISB-

100W). The transformer was mounted inside the electronics rack.  Appropriately rated in-line 

GFCIs were used for each component. Two other items, the function generator and electrical 
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interface are also connected to the isolation transformer. Their Apparent Power draw is 14 and 

18 Va respectively. They are connected to alleviate the need of foot traffic rated power cords 

from the components (another electrical safety requirement).  A separate isolation transformer 

was used for the anode power supply. The apparent input power of the anode power supply is 

approximately 4 kVa. An isolation transformer was selected with a maximum apparent power 

output of 10 kVa (Sola Hevi-Duty HS14F10BS).. The transformer also steps up the 208 V input 

voltage to 220 V which is what is recommended for input to the Anode Power Supply. An in-line 

GFCI was added to the output of the transformer.  MET Laboratories passed the system for 

human use on November 18, 2013. 

Table 16: Peak current draw and electrical input ratings for power generating components of the system. 

Component 
Input Voltage (V 

AC) 
Peak Current 

Draw (A) 
Peak Apparent 

Power (Va) 

Anode power 
supply 

220 18 3960 

Cathode power 
supply 

110 2.31 254.1 

MicroVac controller 120 0.04 4.8 
Switching system 120 0.41 49.2 

11.4.2 Radiation Safety 

When the s-DBT system is in operation there will be two people present in the room, the 

patient and the operator.  Radiation field survey levels must be below regulatory levels.  With 

the help of the Department of Environmental Health and Safety (EHS), radiation levels were 

measured in five different locations in and around the room the system is located in.  Figure 62 

is the layout of the room in the Cancer Hospital.  The numbers in the figure show the five 

locations that radiation surveys were conducted.  All measurements were completed using a full 

power acquisition on the X-ray tube (39 kVp, 96.75 mAs) with a two slab scatter phantom 

placed on the detector housing.  Location 1 is located one meter in front of the X-ray tube, the 

dose measured at this distance was 0.58 mR.  Location 2 is located where the operator stands 

during X-ray exposure, there was no measurable radiation dose at this location.  Location 3 is 

located in the adjacent hall in front of the door with the door closed,  the measured dose level 
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was less than the FDA limit.  Location 4 and 5 are in the adjacent rooms to the s-DBT system, 

there was no measurable dose in either location.  EHS passed the system for use on humans 

on October 30, 2013.   

 

Figure 62: Room layout for the s-DBT system in the UNC-CH Cancer Hospital.  The numbers represent 
locations for radiation field surveys. 

11.4.3 Institutional Review Board Approval 

A protocol was submitted to the UNC-CH IRB.  The protocol outlined recruitment and 

imaging of 100 patients that had previously been screened at UNC Hospitals and have been 

called back for diagnostic images.  The protocol was approved on January 4, 2013.  The study 

was also registered with the FDA as required by law.   

11.5 System Characterization 

Before the system can be used on patients it must be characterized for various image 

quality standards.  Geometry calibration and spatial resolution measurements were conducted 
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on the imaging configuration that will be used on patients.  The current versus voltage curves 

and dose rate of the tube was also determined. 

11.5.1 Geometry Calibration 

Geometry calibration is needed to determine if the X-ray source is properly aligned to the 

designed location and for proper image reconstruction.  Geometry is conducted using a 

specially designed phantom which contains strategically placed metal beads.  Knowing the 

physical dimensions of the bead locations, from a X-ray projection image the location of the X-

ray source that produced the image can be determined.  Using the described method the 

location of all 15 X-ray sources used for patient imaging was determined.  Three different 

coordinates (x,y,z) were measured for each source with the origin (0,0,0) representing the top 

left pixel of an image (back right of detector if looking at the front of the system.  All 

measurements are in millimeters.  Figure 63 plots the beam locations with respect to the 

detector.  Assuming the measurements have some error and the manufacturing errors are 

smaller than the measured errors, then it is beneficial to interpolate the X-ray source locations 

from the measured locations.  It was found that the measured X-ray locations, within the 

expected error, agreed with the designed values. 
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Figure 63: Plots of the x locations (Above), y locations (Middle), and z locations (Below) of the 15 
sources used in the clinical trial for patient imaging.  Each plot shows the measured beam locations 
indicated by the red stars and the interpolated locations indicated by the blue lines.  All distances are in 
millimeters. 
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11.5.2 Spatial Resolution 

As designated by the MQSA, the spatial resolution of a mammographic system must be 

measured by using a line pair phantom.  Line pair phantoms consist of a series of angled highly 

attenuating lines that converge to a point.  The highest number of line pairs that are visible from 

a radiographic image determines the spatial resolution of the system.  Since the viewing angle 

of the focal spot from the detector has an effect on the spatial resolution of the system, the 

phantom must be placed in a way to so that the same viewing angle is used on the entirety of 

the phantom.  For the measurements on the s-DBT system, the phantom was placed so that the 

line pairs were parallel to the chest wall side of the detector, approximately 20 mm from the 

chest wall.  The images were collected at full power for the clinical trial; 15 beams, 39 kVp, and 

97 total mAs.  Image reconstruction was completed using a back projection filtering method 

developed by Real Time Tomography (Villanove, PA USA).102  No post reconstruction filters 

were utilized.  A reconstruction slice of the phantom with a zoomed in region of interest can be 

found in Figure 64.  Looking at the figure it can be seen that the current s-DBT system 

produces approximately 4 line pairs/mm of spatial resolution, which agrees with previous results 

from the older s-DBT system.13  These images were taken using binned detector pixels, utilizing 

the full-resolution of the detector would allow for a system resolution of more than 5 line 

pairs/mm.119 
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Figure 64: Reconstruction image of the line pair phantom (Left).  Looking at the zoomed in region (Right) 
it can be seen that the s-DBT system using binned detector pixels produces approximately 4 line 
pairs/mm of resolution, which agrees with previous measurements on the other s-DBT system.

13
 

11.5.3 Current Versus Voltage Curve 

The current versus voltage (I-V) curve is a plot of the applied gate-cathode voltage 

versus the resultant cathode current.  It is a good indicator of the performance of a CNT based 

X-ray source.  Since the CNT X-ray sources are setup in a triode design, the gate-cathode 

voltage at a particular current must be accounted for when calculating the total anode-cathode 

potential.  The I-V curves of the s-DBT system were measured using the output of the ECS, 

which sends TTL signals with relative peaks related to the applied voltage and resultant current.  

The ECS is current driven so the wanted current can be input to the system and the voltage will 

automatically be adjusted to reflect that current within a small error.  Currents were selected for 

each beam ranging from 5 mA to 40 mA in increments of 5 mA.  The lowest current achievable 

by the ECS is 2 mA and the highest used for the clinical trial is 43 mA, so both currents were 
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also used.  Once the data was collected it was fit into an exponential function to reduce the 

amount of noise.  Figure 65 shows a plot of the I-V curves for the best (P03) and worst cathode 

(N07).  Also in the figure are average curves for the three configurations used in the clinical trial.  

For a current of 43 mA, the difference in the best and worst cathodes applied voltages is 190 V, 

which is well within the operating limits of the ECS. 

 

Figure 65: Plot of the average I-V curves for the three configurations used in the clinical trial and the plots 

for the best and worst cathodes. 

11.5.4 Dose Rate 

The dose rate for a particular configuration and anode-cathode potential is needed to 

determine the precise dose given to patients.  For the clinical trial, three different configurations 

were used; (1) 15 beams over 30 degrees, (2) 13 beams over 30 degrees, and (3) 9 beams 

over 30 degrees.  The dose rate was measured using the same technique previously described 

in Section 7.3.2, below the compression paddle and at a height of 4 cm.  Table 17 shows the 

measured entrance dose and calculated dose rate for the 3 different configurations over a range 

of anode-cathode potentials.  The dose rate versus kVp for each configuration was fit into a third 
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order polynomial function.  Using the functions, the entrance dose for any anode-cathode 

potential and any configuration can be determined. 

Table 17: Measured entrance dose for all three configurations and various anode-cathode potentials.  
The dose rate was calculated by dividing the entrance dose by the total mAs. 

Configuration 
Number 

of 
Beams 

Anode-
Cathode 
Potential 

(kVp) 

Measured 
Entrance 

Dose 
(mR) 

Dose 
Rate 

(mR/mAs) 

1 15 25 61.79 3.19 

1 15 30 117.90 6.09 

1 15 35 182.40 9.43 

1 15 39 238.60 12.33 

2 13 25 53.16 3.17 

2 13 30 101.90 6.08 

2 13 35 157.70 9.40 

2 13 39 206.50 12.31 

3 9 25 35.73 3.08 

3 9 30 68.54 5.90 

3 9 35 106.20 9.15 

3 9 39 138.90 11.96 

 

11.6 Patient Imaging 

After all safety tests were passed and the system was characterized, it was ready for 

patient imaging.  In December of 2013 the first patient was imaged on the s-DBT system.  Both 

a RCC and a RMLO view were taken.  Figure 66 shows the projection images from three 

beams for the RCC view.  Figure 67 shows the projection images from 3 beams for the RMLO 

view.  Figure 68 shows reconstruction slices from the RCC and RMLO views.   
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Figure 66: RCC projection images from beams N15 (Left), 000 (Center), and P15 (Right). 

 

Figure 67: RMLO projection images from beams N15 (Left), 000 (Center), and P15 (Right). 
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Figure 68: Reconstruction slices from the first patient from the RCC view (Left) and the RMLO view 
(Right).  Images are in the plane of the large MC cluster on the left portion of the images.  The grayscale 
values of these images are inverted compared to their respective projection images to demonstrate what 

is typically seen by radiologists. 

11.7 Conclusion 

A new s-DBT system was constructed and implemented into the Department of 

Mammography at UNC Hospitals.  The system was fully characterized and tested for patient 

and operator safety.  A 100-patient clinical trial is currently underway using the system.  The trial 

will compare the s-DBT reconstruction images with conventional 2D mammography.  Currently, 

two patients have been recruited and imaged.   
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CHAPTER 12: SUMMARY AND IMPLICATIONS 

12.1 Overview 

The original s-DBT system was characterized and optimized using a variety of input 

parameters.  The optimal configuration was found to be one with a large angular span, an 

intermittent number of projection images, and an even dose distribution.  It was also found that 

the s-DBT system had significantly higher spatial resolution (4 compared to 5 cycles/mm)  when 

operated in unbinned detector mode compared to binned detector mode.  After optimization, 

potential clinical applications were investigated.  Specimen images were compared using the s-

DBT system and a FFDM system in a reader preference study.  This also marked the first 

human data acquired using the s-DBT system.  The data trended toward a preference for the s-

DBT system for both masses and surgical margin assessment.  FFDM was preferred to s-DBT 

for imaging of MCs.  Another study compared the visualization of MCs in specimen images 

between the s-DBT system and a continuous motion DBT system.  It was found that s-DBT 

more accurately visualized MCs for every MC analyzed.  Higher resolution imaging in the x,y, 

and z directions is possible with the s-DBT system.  The last clinical application for s-DBT 

investigated was the use for it in screening patients with augmentation mammoplasty.  Implant 

models were created and imaged using the s-DBT system and a FFDM system.  Image quality 

was compared in a two person reader study.  Additional readers are needed in order to have a 

definitive conclusion to this study.  However, the overwhelming positive results from the first two 

readers shows great promise that the study will conclude that s-DBT is a feasible alternative to 

2D mammography for imaging patients with augmentation mammoplasty.  Finally, a new system 

was built for use in a clinical trial.  The system passed all electrical and radiation safety tests 

needed for use on patients.  A protocol was submitted and accepted by the University's IRB for 
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an 100 patient clinical trial.  The system was characterized and the results were implemented 

into the operating software.  The first patient was imaged in December of 2013. 

12.2 Summary of Research 

Stationary digital breast tomosynthesis can provide high resolution DBT datasets with a 

short image acquisition time.  This gives the benefit of both the continuous motion DBT systems 

and the step-and-shoot systems without their inherent disadvantages.  This dissertation covered 

characterization and construction of an s-DBT system as well as potential applications in 

mammography.   

12.2.1Optimization of an s-DBT System 

There has been an exhaustive effort made to characterize and optimize the current DBT 

systems on the market.1-9  Full characterization of medical imaging systems is needed so that 

appropriate image techniques can be used which optimize image quality per patient while 

keeping the radiation dose to the patient at a reasonable level.  The s-DBT system was 

characterized and optimized.   Five groups of comparison studies were completed: (1) 

Comparison of 14o versus 28o angular span for a fixed total entrance dose uniformly distributed 

over 15 projection views;  (2) Comparison of 15 versus 29 projection views for a fixed total 

entrance dose uniformly distributed over an angular span of 28o;  (3) For a fixed entrance dose, 

angular span of 28o, and 29 projection views we compare uniform versus non-uniform 

distributions of the mAs; (4) For a fixed angular span of 28o and 29 projection views, we varied 

the total entrance dose from 385 mR to 791 mR; (5) Comparison of image quality for a detector 

operating in full resolution mode versus 2x2 binning mode.  Two physical phantoms were 

imaged using each configuration.  The first phantom was a metal crosswire phantom used for 

determination of spatial resolution.  The second was a mammography ACR phantom which 

consists of a variety of fibers, masses, and simulated MCs.  The resultant projection images 

were then reconstructed into a pseudo-3D volume and analysis was completed on the 
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reconstructed slices.  The value of the MTF was calculated from the reconstruction of a 50 µm 

wire phantom.  The SdNR and ASF were calculated from the reconstructed images of a 

mammography accreditation phantom.  An overall quality factor (QF) was determined from the 

three calculated values.   

The in-plane resolution, measured by the MTF, was found to primarily depend on the 

focal spot size of the x-ray source and the detector pixel size.  It is insensitive to the number of 

projection views, projection view angular span, total entrance dose, and mAs distribution.  It was 

found that a uniform distribution resulted in a higher QF than the non-uniform distributions that 

were tested.  A higher entrance dose resulted in better image quality.  The number of projection 

images did not have a large effect on the overall image quality in our phantom study.  Increasing 

the angular span decreases the artifact spread function thus resulting in better image quality.  

Changing from 2x2 binning to full resolution, in an s-DBT system, results in a 25% increase in 

the value of the MTF.  This increase in spatial resolution comes at the cost of SdNR.   A 

configuration with a large angular span, an intermittent number of projection views, and an even 

mAs distribution resulted in the best overall image quality and is thus the optimized 

configuration for the s-DBT system. 

12.2.2 Breast Specimen Imaging with s-DBT 

Before imaging human patients,  the quality of the s-DBT images needed to be 

evaluated by trained radiologists.  For this study, we sought to compare the CNT-based s-DBT 

system to a FFDM system in a study of breast specimens.  This study represents the first 

human tissue imaging with the novel CNT-based device.  Thirty-nine patients, with known 

breast lesions (BIRADS 4 or 5) from conventional mammography and scheduled for needle 

localization biopsy were recruited under an institutional review board-approved protocol.  After 

excision from the patient,  the specimens were imaged on a GE Senographe FFDM system 

(General Electric, Fairfield, CT USA) and on the s-DBT system using the optimized imaging 
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configuration.  All specimens were returned to Department of Pathology in the hospital for 

standard clinical pathology evaluation.  A reader study was performed with four breast 

fellowship-trained radiologists over two separate sessions; all images were viewed in each 

session.  Either the FFDM images or the s-DBT images were shown to the radiologists first.  

Based off the original modality shown the readers gave a malignancy score between 1 and 5 (1 

- benign, 3 - 50% chance of malignancy, 5 - highly malignant) for both masses and MCs in the 

specimen, and a confidence score for their malignancy diagnosis (0 - 100%).  The numeric 

malignancy score was not based on BIRADS.  After malignancy and confidence scores were 

recorded, the second modality was shown to the reader to determine the readers preference 

between s-DBT and mammography.  Reader preference was recorded between -3 and +3 in 

increments of one (-3 - 2D preferred, 0 - equally preferred, +3 - s-DBT preferred).  Reader 

preference was recorded for three different categories for each specimen, as applicable; (1) 

shape/morphology of masses, (2) MC assessment, and (3) margin assessment.   

Two of the four readers recorded a higher sensitivity using s-DBT than 2D 

mammography.  Two readers gave higher specificity values for 2D mammography, one gave a 

higher specificity value for s-DBT, and one reader (Reader 3) did not diagnose any specimens 

as benign.  A reader preference, for masses, of 0.07±1.34 was recorded, where a positive value 

represents a preference for s-DBT.  The difference in the reader preference between the two 

modalities for masses was insignificant.  An average preference of -0.70±0.95 was recorded for 

MCs, where a negative value represents a preference for 2D mammography.  The average 

preference for margins was 0.16±1.22, where a positive value represents a preference for s-

DBT.  A secondary analysis was completed on the reader preference results.  It was tested 

whether the mean reader preference was larger than zero using a linear mixed model with a 

random intercept effect and Wald test. It was assumed the correlation in reader preference for 

each specimen between any two readers was the same. The results trended toward a 
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preference for the s-DBT system in terms of the shape and morphology of masses and margins.  

It was found that readers preferred FFDM over s-DBT for MC visibility (p-value < 0.05). 

The first human data was acquired using the s-DBT system.  Stationary digital breast 

tomosynthesis was found to be comparable with 2D mammography for malignancy diagnosis 

but readers were significantly more confident in MC visibility when using 2D mammography (p-

value < 0.05).  Readers, with respect to masses and surgical margins, trended toward a 

preference for s-DBT.  These results were not significant.  Given the trend of preference for s-

DBT over 2D mammography for both mass visibility and margin assessment, s-DBT could be a 

viable alternative to 2D mammography for imaging breast specimens. 

12.2.3 High Resolution Microcalcification Imaging with s-DBT 

Many recent studies have shown that the use of DBT along with a 2D projection image 

significantly increases sensitivity and decreases the number of false positives in a screening 

population compared to the 2D projection alone.10-14  For cases with MCs, there is no significant 

difference between combo mode and a single 2D projection image.15  Due to the poor spatial 

resolution of continuous motion DBT systems, the radiation risk to benefit ratio concerning MCs 

using combo mode is much higher than 2D mammography alone.  In order to lower ratio back to 

2D mammography levels a DBT system with high spatial resolution is needed.  Lumpectomy 

specimens were imaged using our s-DBT system and a continuous motion DBT system.  

Calculations were also made on MCs within the images to determine the effect of the increased 

spatial resolution.  A simulated 3D modulation transfer function (MTF) was created to further 

show the differences in the spatial resolution of the two systems.  Using the results of the MC 

size comparison, it will be determined if the higher spatial resolution of the s-DBT system 

translates into increased image quality in the clinic. 

All patients were recruited under an University of North Carolina at Chapel Hill 

Institutional Review Board approved protocol.  Twenty-three patients with known breast lesions, 



173 

 

BI-RADS 4 or 5, and scheduled for a lumpectomy procedure were recruited.  After excision from 

the patient, specimens were imaged on the s-DBT system using the optimal configuration and 

on a Hologic Selenia Dimensions DBT system (Hologic Inc., Bedford, MA) using the normal 

imaging protocol.  Specimen images with MCs were analyzed to further demonstrate the 

increased resolution of the s-DBT system over the continuous motion DBT system.  Twelve 

individual MCs were selected for analysis.  Each MC was analyzed for in-plane resolution (x and 

y directions) and for the artifact (z direction) spread function (ASF).  The MTF was simulated for 

both systems in the x and y directions and using a detector pixel size of 140 and 70 µm at a 

focus height of 40 mm. 

For every MC analyzed s-DBT had sharper MC localization than continuous motion DBT 

in the x-y directions.  For some MCs, the percent decrease in area from DBT to s-DBT was as 

high as 43%.  For every MC, s-DBT had a narrower ASF than the continuous motion DBT 

system.  The average difference in the FWHM of the ASF was 2.00±0.67 mm.  The s-DBT 

system produces symmetric spatial frequency in every direction on the detector.  The Selenia 

Dimensions produces different spatial frequencies for every non-orthogonal direction.  This non-

uniformity effect is greatly exaggerated in the 70 µm detector pixel size case.  It was found that 

the s-DBT system gave higher resolution imaging of MCs for every MC analyzed.  The 

stationary design allows for full DBT acquisitions with no motion blur and for large angular spans 

without an increase in total acquisition time.  The high resolution of s-DBT could allow for the 

removal of the 2D acquisition requirement for DBT screening examinations. 

12.2.4 Feasibility of s-DBT as a Screening Tool for Patients with Augmentation 
Mammoplasty 

The ability of 2D mammography to be an effective screening tool for patients with 

implants is hindered by the overlapping of the implant with the tissue above and below in the 

images.  DBT is an effective tool for screening patients due to its ability to visualize tissue in a 

particular plane with little to no overlap of tissue from other planes.16-19  However, motion of the 
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x-ray source during image acquisition degrades image resolution and quality in rotating gantry 

DBT systems.20, 21  This effect is amplified for tomosynthesis imaging of patients with 

augmentation due to longer x-ray exposure times.  The purpose of this research is to investigate 

the feasibility of using s-DBT as a screening tool for patients who have undergone augmentation 

mammoplasty. 

Six implant models were created using Natrelle brand implants from Allergan, Inc. (Irvine, 

CA) and slabs from a BR3D phantom (CIRS Model 020).  The BR3D phantom consists of a 

target slab which contains specs (0.130 to 0.400 mm in diameter) arranged in clusters, fibers 

(10 mm in length and 0.15 to 0.60 mm in diameter), and spheroidal masses (1.80 to 6.32 mm in 

diameter).  Each model was imaged three times on both the s-DBT system and a Hologic 

Selenia Dimensions (Bedford, MA) in 2D mammography mode.  The same entrance dose was 

used between the two modalities.  After collection of the images, two readers viewed the 

datasets and counted the number of visible lesions.  The radiologist scored the images based 

on the smallest structure visualized.  A score of 1 was given if only the largest structure was 

visible and a score of 0 was given if no structures were visible.  In all, there were 6 masses, 7 

fibers, and 6 spec clusters. 

There was a total of 6 masses embedded in the BR3D phantom.  For reader 1, the 

number of masses visible in the s-DBT reconstructions was significantly more in 5 of the 6 

configurations.  There were 3 configurations that reader 1 was unable to find any masses in the 

2D mammography datasets.  For reader 2, the number of masses visible in the s-DBT 

reconstructions was significantly more in 4 of the 6 configurations.  There was 1 configuration 

that reader 2 was unable to find any masses in the 2D mammography dataset.  There was a 

total of 7 fibers embedded in the BR3D phantom.  For both readers, the number of fibers visible 

in the s-DBT reconstructions was significantly more in all 6 configurations.  There were 3 

configurations that reader 1 was unable to find any fibers in the 2D mammography datasets.  

There were 2 configurations that reader 2 was unable to find any fibers in the 2D mammography 
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datasets.  There was a total of 6 spec clusters embedded in the BR3D phantom.  For reader 1, 

the number of spec clusters visible in the s-DBT reconstructions was significantly more in 2 of 

the 6 configurations.  There were 3 configurations that reader 1 found more spec clusters in the 

2D mammography datasets, however this was not significant.  For reader 2, the number of spec 

clusters visible in the s-DBT reconstructions was significantly more in 3 of the 6 configurations.   

This study shows promising results for improved lesion visibility, increased patient 

throughput, and reduced discomfort and radiation dose to screening mammography patients 

with augmentation mammoplasty.  Additional readers are needed in order to have a definitive 

conclusion to this study.  However, the overwhelming positive results from the first two readers 

shows great promise that the study will conclude that s-DBT is a feasible alternative to 2D 

mammography for imaging patients with augmentation mammoplasty. 

12.2.5 Clinical Implementation of an s-DBT System 

All previous studies conducted using an s-DBT system have involved either 

computer/physical phantoms or breast specimens.  There has been no data collected on actual 

human patients.  In order to further demonstrate the usefulness of s-DBT for breast cancer 

detection, data must be collected on human patients.  An s-DBT system was constructed for 

used in a clinical trial.  Initial construction was completed in our lab on the campus of UNC-CH.  

The system was transferred and installed at the North Carolina Cancer Hospital at UNC 

Hospitals.  Once construction was complete the system underwent a series of electrical and 

radiation safety tests to test if the system was safe for human use.  The electrical grounding 

scheme and voltage generation isolation were the major items that needed to be addressed to 

pass an electrical safety test conducted by MET Laboratories Inc. (Baltimore, MD).  With the 

help of the Department of Environmental Health and Safety (EHS), radiation levels were 

measured in five different locations in and around the room the system is located in.  All 

radiation field surveys were passed.  A protocol for a 100 patient clinical trial was submitted to 
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the Universities IRB and accepted.  Before the system could be used on patients it had to be 

characterized for various image quality standards.  Geometry calibration and spatial resolution 

measurements were conducted on the imaging configuration that will be used on patients.  The 

current versus voltage curves and dose rate of the tube was also determined.  Once the tube 

was characterized the resultant values were implemented into the imaging software.  The first 

patient was imaged in December of 2013. 

12.3 Implications 

The work completed here has not only optimized the s-DBT system but has shown that it 

is capable of producing higher quality images than current DBT systems.  Even though the 

system was implemented into the clinic in my research, there still is a great deal of work that 

could be completed on the current system.  The system could be used for other trials designed 

to show the benefits of the system.  Other possible trials include a direct s-DBT to DBT clinical 

trial, a trial which could show the full benefit of s-DBT for patients with augmentation 

mammoplasty, and a large screening trial comparing s-DBT to 2D mammography.  The current 

trial is a comparison of s-DBT and 2D mammography for patients with highly suspicious lesions 

and is not powered toward negative diagnosis.  Having a large screening trial would show the 

benefit not only for diagnosing a positive disease but also for the possible reduction in false-

positives.  Future studies would be able to characterize all the benefits of the system over 

current DBT and 2D mammography systems. 

An s-DBT system in theory would be an ideal system for screening mammography.  

Combining the low-dose and high spatial resolution of 2D mammography with the 3D 

information from tomosynthesis, the system would be able to add a significant amount of 

information with minimal added risk to the patient.  The current iteration of the system improves 

upon rotating source DBT systems which are currently being used in the clinic.  The system not 

only produces higher spatial resolution images but also is capable of acquiring full sets of 
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tomosynthesis images in a shorter amount of time, when coupled with a high speed detector.  

However, the full potential of the technology has not yet been realized.  The current system, 

although fast acquiring and high resolution, could benefit from a redesign of the X-ray source.  

Utilizing a thinner window, a rotating anode, and a smaller focal spot size, the system could 

have the potential to acquire images in less than 3 seconds and could have spatial resolution 

which is extremely close to the levels found in 2D mammography.  Although the research here 

constructed a fully capable system which does improve upon current DBT systems, even more 

improvement could be made to further help women who are afflicted with this terrible disease. 
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