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ABSTRACT 
 

Dayle Valenté Houston 
Agonist-Promoted Regulation of the P2Y1 Receptor: Quantification of Native and 

Recombinant Receptors with the Novel Radioligand [32P]MRS2500 
 (Under the direction of Dr. T. Kendall Harden) 

 
    The P2Y family of G-protein coupled receptors are activated by adenine and uridine 

di- and triphosphate nucleotides and nucleotide sugars and are implicated in a wide range of 

important human physiologies.  Difficulty studying these receptors and in their successful 

manipulation as therapeutic targets has historically derived from a lack of available 

pharmacological tools that discriminate among members of the P2Y receptor family.  The 

studies described here focus on the P2Y1 receptor, a key mediator of ADP-induced platelet 

aggregation.  Based on the structure of the recently synthesized, high-affinity P2Y1 receptor-

selective antagonist, 2-iodo-N6-methyl-(N)-methanocarba-2′-deoxyadenosine-3´,5´-

bisphosphate (MRS2500), we undertook the development of a high-specific radioactivity 

radioligand for the P2Y1 receptor, suitable for the study of endogenous receptors in 

mammalian tissues and cell lines.  Using an enzymatic phosphorylation reaction, we 

successfully generated [32P]MRS2500 with a specific activity of 9120 Ci/mmol.  The 

selectivity and affinity of [32P]MRS2500  for the P2Y1 receptor were confirmed in 

radioligand binding assays with Sf9 insect cell membranes overexpressing recombinant P2Y1 

receptors.  The utility of [32P]MRS2500 for the study of endogenous P2Y1 receptors was 

examined using washed human platelets and membranes prepared from various tissues of the 

adult rat.   
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 We applied this high-specific radioactivity radioligand to observe surface expression 

of P2Y1 receptor binding sites in human platelets and MDCK(II) epithelial cells following 

incubation with P2Y1 receptor agonists.  In human platelets, the rapid, agonist-promoted 

desensitization of the P2Y1 receptor observed after incubation with the selective agonist (N)-

methanocarba-2-methylthioadenosine-diphosphate (MRS2365) also occurs for the Gq-

coupled 5-HT2A receptor after incubation of platelets with 5-hydroxytryptamine (5-HT).  The 

rapid, agonist-promoted desensitization of the P2Y1 receptor of platelets was accompanied by 

a modest decrease (< 20%) in the number of surface [32P]MRS2500 binding sites and only a 

partial recovery of  P2Y1 receptor responsiveness after removal of the selective agonist 

MRS2365.   Platelets, therefore, appear to employ a unique mechanism for prolonged 

termination of P2Y1 receptor signaling in which desensitized receptors are maintained at the 

cell surface, unable to respond to subsequent agonist stimulation.  In intact MDCK(II) cells 

overexpressing recombinant P2Y1 receptors, incubation with 2MeSADP was followed by a 

50% loss of surface [32P]MRS2500 binding sites that was agonist-concentration dependent 

and required the formation of clathrin-coated pits.  Mutagenesis studies indicated that this 

rapid, agonist-promoted loss of surface binding sites requires two serine residues, Ser352 and 

Ser354, in the receptor carboxyl terminus.  The findings presented here indicate that P2Y1 

receptor cell surface expression is regulated in an agonist-dependent manner that differs in at 

least two cell types and suggests an important role for phosphorylation in agonist-dependent 

desensitization and internalization of the P2Y1 receptor.     
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CHAPTER 1 
 

INTRODUCTION 

1.1  G-Protein Coupled Receptor Signaling 

G-protein coupled receptors (GPCRs) are heptahelical transmembrane proteins that 

transmit signals from extracellular hormones, peptides, neurotransmitters and other ligands to 

the intracellular environment, serving as primary responders for innumerable cellular events.  

An overwhelming majority of compounds that alter human biology, both therapeutic and 

illicit, target G-protein coupled receptor signaling pathways; as such, ligand development, 

second messenger signaling and regulation of GPCRs are topics of extensive research.  P2Y 

receptors are a unique class of ubiquitously expressed GPCRs that perpetuate signaling 

initiated by extracellular nucleotides.  The studies described herein address the development 

of a novel pharmacological tool and its application to the study of the P2Y1 receptor, a drug 

target for human cardiovascular disease.   

 

1.1.1  Second Messenger Signaling 

GPCRs transduce signals initiated by various extracellular components through their 

interaction with guanine-nucleotide binding proteins (G-proteins).  In an unstimulated 

system, the receptor is associated with a heterotrimer consisting of a guanosine diphosphate 

(GDP)-bound Gα subunit and associated β and γ subunits. Upon activation, the receptor acts 

as a guanine-nucleotide exchange factor (GEF) for the Gα subunit, causing the Gα subunit to 

exchange GDP for guanosine triphosphate (GTP), and subsequent dissociation of the 



  

 

heterotrimer from the receptor.  The Gα and Gβγ subunits are each able to signal to 

downstream effectors thereby regulating the levels of second messengers responsible for 

various cellular outcomes (Figure 1.1).   

Sixteen genes encoding 23 expressed gene products for Gα subunits have been 

cloned and identified to associate with GPCRs, and these can be divided into four major 

subfamilies based on sequence homology (McCudden et al., 2005).   The first Gα subunit to 

be identified was Gαs (hereafter Gs), which stimulates adenylyl cyclase, leading to increased 

levels of the first recognized second messenger, cyclic adenosine 5′-monophosphate (cAMP) 

(Berthet et al., 1957; Sutherland et al., 1958).  Related to Gαs is the primary Gα subunit of 

the olfactory system Gαolf (Buck, 2000).   Subsequently, a Gα subunit responsible for 

decreasing intracellular cAMP by inhibiting adenylyl cyclase was identified, Gαi.  Three Gi 

isoforms exist, Gi1-3 and are subclassified along with cyclase-inhibitory Gαo, Gαz and related 

Gα subunits of the gustatory and visual systems, Gαgust and Gαt (Arshavsky et al., 2002; 

Margolskee, 2002).  A third class of Gα subunits including Gαq, Gα11, Gα14 and Gα16 

activates phospholipase C β (PLCβ), an enzyme that cleaves the minor membrane 

phospholipid phosphatidylinositol, 4,5-bisphosphate (PIP2) to generate the second 

messengers inositol trisphosphate (IP3) and diacylglycerol (DAG) (Rhee, 2001).  The fourth 

class of Gα subunits consists of Gα12 and Gα13 which activate guanine-nucleotide exchange 

factors for the small G-protein RhoA, eliciting downstream signaling through RhoA-

mediated pathways (Fukuhara et al., 1999; Longenecker et al., 2001).   

Signaling can also occur through βγ dimers.  Five Gβ and twelve Gγ subunits have 

been identified and these can pair almost indiscriminately (Clapham et al., 1997; Ray et al., 

1995).  Exceptions include the inability of Gβ2 to associate with Gγ1 and obligate association 
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of Gβ5 with G-gamma-like domains of GTPase-accelerating regulators of G-protein signaling 

(RGS) (Jones et al., 2004; Schmidt et al., 1992).  Though originally considered to have 

limited function, dimers of Gβγ subunits have been shown to activate several signaling 

pathways, including G-protein-regulated inward-rectifier K+ channels, neuronal N- and P/Q-

type Ca2+ channels, mitogen-activated protein kinases, and phosphoinositide-3′ kinase-γ 

(PI3Kγ), in addition to Gα-independent activation of PLCβ and inhibition of specific 

isoforms of adenylyl cyclase (Boyer et al., 1992; Crespo et al., 1994; Delmas et al., 2000; 

Kammermeier et al., 2000; Logothetis et al., 1987; Lu et al., 2001; Maier et al., 2000; Tang 

et al., 1991; Yamauchi et al., 1997).   

GPCRs interact with a number of other proteins and these interactions help facilitate 

G-protein signaling as well as promote certain types of G-protein-independent signaling.  

The AKAP family of proteins, or A-kinase anchoring proteins, are a large group of over 50 

proteins that act as scaffolds, linking GPCRs to other components of the G-protein signaling 

pathway.  AKAPs have been identified to promote MAPK signaling, phosphorylation and 

desensitization of the β2 adrenergic receptor, and a unique AKAP has been identified that 

links G12 to RhoA and acts as a RhoGEF upon stimulation with the GPCR agonist 

lysophosphatidic acid (Diviani et al., 2001; Dodge et al., 2000; Fraser et al., 2000; Shih et 

al., 1999).  GPCRs may also interact with PDZ-domain-containing proteins such as NHERF-

2, a Na+/H+ exchanger regulatory protein and PICK, PDZ-containing protein that interacts 

with C Kinase, through a PDZ-binding motif found in the C-terminus of several GPCRs 

(Hall et al., 1998a; Hall et al., 1998b; Sheng et al., 2001). The significance of these PDZ 

interactions is still under investigation. 
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Though GPCRs are typically considered to evoke signaling through the binding of 

one molecule of ligand to one receptor, evidence for receptor dimerization is growing.  

Atomic force microscopy studies revealed that rhodopsin exists in dimeric form in native 

tissues (Liang et al., 2003).  Based on predicted contacts between paired receptors, the 

structure of GPCR binding proteins including arrestins and the Gαβγ heterotrimer, impaired 

expression of GPCR truncation mutants and splice variants, and resolution of some higher 

order GPCR oligomers by SDS-PAGE electrophoresis, homoligomerization is predicted to 

occur for many, if not all, GPCRs (Coge et al., 1999; Karpa et al., 2000; Lee et al., 2000b; 

Lee et al., 2003; Nimchinsky et al., 1997).  Taste receptors are known to require 

heterodimerization to respond to certain stimuli (Nelson et al., 2002; Nelson et al., 2001).  In 

the case of κ and δ opioid receptors, heterodimerization has significant effects on 

pharmacology and downstream signaling, and coexpression of GABA receptor GABAB-R1 

and GABAB-R2 subtypes is required for surface expression and receptor function (Devi, 

2001; Galvez et al., 2001; Heldin, 1995; Jordan et al., 1999; Salahpour et al., 2000).  

 
1.1.2  Signal Termination 

Following agonist activation, many GPCRs undergo a series of processes designed to 

terminate agonist-promoted signaling and protect the cell from overstimulation.   The 

primary events responsible for GPCR signal termination are desensitization, internalization 

and downregulation, and while some mechanisms are common among GPCRs for each of 

these processes, the diversity of receptors and functions lend to a similarly diverse array of 

mechanisms for discontinuing downstream signaling. 
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a. Desensitization 

The most widely accepted model for GPCR signal termination is based on studies 

with the β2 adrenergic receptor and begins with a process called desensitization.   The model 

is depicted in Figure 1.2.  Agonist binding to the β2 adrenergic receptor results in increased 

levels of intracellular cAMP through activation of Gs proteins.  Increased cAMP leads to 

rapid activation of the second messenger-activated kinase protein kinase A (PKA) which 

phosphorylates the receptor and directly uncouples it from G-protein. As a result of this 

process, the continued presence of agonist is ineffectual to promote downstream signaling 

(reviewed in Pierce et al., 2002).  Other second messenger-activated kinases are also capable 

of participating in desensitization.  Protein kinase C (PKC) is activated by DAG generated 

from PLC-mediated lipid hydrolysis and has been shown to play a role in desensitizing 

GPCRs (Bhattacharyya et al., 2002; Hardy et al., 2005; Waugh et al., 1999).   

Desensitization of the activated receptor is referred to as homologous desensitization.  

Activation of another receptor resulting in second-messenger kinase-mediated 

phosphorylation and desensitization is referred to as heterologous desensitization.   

Homologous desensitization may also be achieved through a more common 

mechanism involving a class of proteins known as G-protein receptor kinases (GRKs).   

GRKs phosphorylate the intracellular domains of activated GPCRs, causing the translocation 

of adaptor proteins called arrestins to the plasma membrane.  Arrestins bind with high 

affinity to phosphorylated receptors and sterically inhibit further association with G-protein 

(reviewed in Pierce et al., 2002).  Seven GRKs have been identified, including two specific 

for the visual system, GRK1 and GRK7.  The remaining five GRKs are widely distributed 

and have broad specificity for GPCRs (Pitcher et al., 1998).   Four arrestin molecules have 

5



  

 

been cloned; two are specific for the visual system and the remaining two are ubiquitously 

expressed and show distinct specificity for GPCRs (Krupnick et al., 1998).  

b. Internalization 

 GPCRs may also undergo a process called internalization (also called sequestration, 

endocytosis), in which they are removed from the plasma membrane in an agonist-dependent 

manner, thereby terminating further exposure to agonist and subsequent signaling.  

Internalized receptors may be targeted to early endosomes from which they recycle rapidly to 

the cell surface or to lysosomes for degradation.  A loss in total receptor protein as a result of 

degradation after agonist treatment is referred to as downregulation.  Internalization may 

accompany or be independent of desensitization and modes of internalization are typically 

characterized as either clathrin-dependent or clathrin-independent, based on whether 

receptors utilize clathrin-coated pits for endocytosis.   

Clathrin-coated pits are a polymeric network of clathrin heavy- and light-chain 

molecules that use adaptor proteins to recruit specific cargo. The clathrin-coated pit then 

forms a vesicle by pinching off from the plasma membrane, a process facilitated by the 

GTPase dynamin.  The most abundant adaptor protein in clathrin-coated pits is the AP2 

complex, which recognizes tyrosine and dileucine motifs on proteins and targets them for 

internalization via clathrin-coated pits (Hinrichsen et al., 2006; Robinson, 2004).  Other 

monomeric adaptor proteins interact with subunits of the AP2 complex to target proteins for 

internalization in clathrin-coated pits.  Arrestin, in addition to regulating GPCR 

desensitization, interacts with clathrin heavy-chain and the β2 subunit of AP2 to recruit 

transmembrane receptors into clathrin-coated pits for internalization.  Arrestin exists in a 
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basally phosphorylated state, and dephosphorylation is required for arrestin-mediated 

internalization of the β2 adrenergic receptor (Moore et al., 2007; Shenoy et al., 2001). 

Additionally, arrestin is modified by the addition of ubiquitin, a 76-amino acid 

protein typically required to target proteins for degradation in the 26S proteasome.  

Ubiquitination of arrestin is also required for internalization of the β2 adrenergic receptor.  

Other adaptor proteins such as epsin, that interact with AP2, contain ubiquitin-binding 

domains which specify ubiquitinated cargo for recruitment to clathrin-coated pits (Shih et al., 

2002).   

Though many cell surface proteins utilize clathrin-coated pits for internalization, 

mechanisms not requiring the formation of clathrin-coated pits have been elucidated for 

internalization of cell surface proteins.  Clathrin-independent endocytosis often involves 

special membrane microdomains called lipid rafts, which are enriched in cholesterol and 

sphingolipids (Brown et al., 1998; Simons et al., 2000).  Lipid raft-mediated endocytosis is 

generally characterized as sensitive to cholesterol depletion and may or may not involve the 

action of dynamin (Sauvonnet et al., 2005); lipid-raft mediated endocytosis can also 

converge with clathrin-mediated endocytosis by the delivery of cargo to early endosomes 

(Llorente et al., 2000).   A specialized form of lipid-raft mediated endocytosis may involve 

specialized substructures called caveolae.  Caveolae are flask-shaped invaginations that cover 

the plasma membrane of some animal cells and contain proteins called caveolins (Drab et al., 

2001; Fra et al., 1994).  Internalization via caveolae is typically dynamin-dependent and 

cargo can be delivered to early endosomes as with clathrin-mediated endocytosis (Damm et 

al., 2005; Oh et al., 1998).  Another method of clathrin-independent endocytosis is 

macropinocytosis, a process in which membrane ruffling causes the protrusion and fusion of 
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vesicles containing large areas of plasma membrane including specific lipid rafts and 

phosphoinositides and large amounts of fluid (Grimmer et al., 2002; Manes et al., 2003).   

The mechanisms of each of these non-clathrin forms of endocytosis are still controversial but 

evidence suggests many of the same adaptor proteins and targeting signals specify proteins 

for endocytosis via these structures. 

 

1.2  Purinergic Signaling 

1.2.1  Historical Perspective of Purinergic Signaling 

Physiological responses induced by extracellular nucleosides and nucleotides were 

first observed in cardiac tissue in 1929, but the mechanism of action of extracellular 

nucleotides was unclear until the description of purinergic receptors almost fifty years later 

(Drury et al., 1929).  Several studies indicated a role for ATP and its metabolites in 

cardiovascular physiology, and pharmacological studies suggested differences in the activity 

of nucleotides based on the extent of phosphorylation.  Nonetheless, ATP maintained a 

singular identity as an intracellular energy source until the pioneering work of Geoffrey 

Burnstock provided tangible evidence and a solid framework within which to establish a role 

for ATP as an extracellular signaling molecule.  In the 1960’s Burnstock observed non-

adrenergic, non-cholinergic excitatory responses in the guinea pig taenia coli, and in 1972 

proposed a controversial model to describe the role of ATP as a neurotransmitter (Burnstock, 

1972; Burnstock et al., 1964).  The model suggested that ATP, like other transmitters, must 

be released from nerve terminals, act through cell surface receptors, and have a mechanism 

for uptake or depletion from the synapse.  Holton and Holton had first observed ATP release 

from rabbit ear sensory nerves in 1953, and in 1978, based on pharmacological and second 
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messenger signaling data for adenosine, ADP and ATP, Burnstock first described two classes 

of purinergic receptors, P1 receptors responsible for the actions of adenosine and P2 

receptors responsible for adenine nucleotides (Holton et al., 1953).   With the aid of advances 

in pharmacology, cell signaling and molecular biology, these ideas eventually evolved into 

the current understanding that ATP is stored as a cotransmitter at nerve terminals and acts 

through distinct receptors, ionotropic P2X and metabotropic P2Y receptors, to mediate its 

effects, and that plasma-membrane-bound nucleotide-hydrolyzing enzymes rapidly degrade 

extracellular nucleotides.  ATP was thus confirmed as a neurotransmitter and the ubiquitous 

effects of ATP and its metabolites as extracellular signaling molecules began to surface 

(reviewed inRalevic et al., 1998).  A model illustrating our current knowledge of the 

complexities of nucleotide receptor signaling is presented in Figure 1.3. 

 

1.2.2  Receptors for Extracellular Purines and Pyrimidines 

a. Adenosine (P1) Receptors 

 Extracellular adenosine is important for a number of cellular and physiological 

processes including cytoprotective regulation of oxygen consumption, angiogenesis, anti-

inflammatory responses and myocardial preconditioning during ischemia (Shneyvays et al., 

2004; Tracey et al., 1998).  Extracellular adenosine is accumulated by release through an 

equilibrative transporter, cell damage, or extracellular nucleotide hydrolysis (Fredholm et al., 

2001; Linden, 2005; McGaraughty et al., 2005).  Four subtypes of G-protein coupled 

receptors activated by extracellular adenosine have been cloned and characterized: A1, A2A, 

A2B, and A3 (Ralevic et al., 1998).  Adenosine receptors primarily couple to the modulation 

of adenylyl cyclase, negatively by A1 and A3 through Gi proteins and positively by A2A and 
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A2B through Gs proteins, though alternate signaling pathways have been observed 

(Mamedova et al., 2006).  Adenosine-induced bradycardia occurs through A1 receptor 

pertussis-toxin sensitive activation of K+ channels (Belardinelli et al., 1995).  A2A receptor 

density is highest in striatum where the receptor largely couples through Golf , a Gs-related G-

protein (Kull et al., 2000).  The A2B receptor can also couple to Gq to stimulate inositol 

phosphate formation and the A3 receptor is also positively coupled to inositol phosphate 

formation and calcium mobilization which appears to be the mechanism of action for A3-

mediated neurodegeneration in brain ischemia (Abbracchio et al., 1995; Brackett et al., 1994; 

Daly et al., 1983; Englert et al., 2002; Feoktistov et al., 1995; Fossetta et al., 2003; Peakman 

et al., 1994; Shneyvays et al., 2005; Shneyvays et al., 2004; Zhou et al., 1992).   

 Caffeine, the most widely used drug in the world, is a potent antagonist at A1, A2A 

and A2B adenosine receptors.  Adenosine receptors are additionally potential therapeutic 

targets for a number of conditions including neurodegenerative, cardiovascular, immune, and 

sleep disorders, inflammation, and cancer.  Unfortunately, the ubiquitous expression of 

adenosine receptors and species differences in ligand selectivity make the development of 

useful, selective drugs for adenosine receptors difficult.  Ligand development has proceeded 

with the aid of homology modeling based on the structure of bovine rhodopsin and structure-

activity relationships for nucleosides and non-nucleoside derivatives.  Agonists for adenosine 

receptors have been designed using adenosine as a template.  Antagonists are largely based 

on the structure of methylxanthines.  Successful agonists of the A1 receptor are based on N6-

substitutions of adenosine and several have shown clinical promise for the treatment of 

tachycardia, pain and migraine, and obesity-induced insulin resistance (Bayes et al., 2003; 

Dong et al., 2001; Ellenbogen et al., 2005; Gao et al., 2003; Giffin et al., 2003; Sawynok, 
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1998; Zablocki et al., 2004; Zambrowicz et al., 2003).  Potent antagonists of the A1 receptor, 

including 8-aryl and 8-cycloalkyl derivatives of the xanthines and select non-xanthine 

compounds, are effective at treating dementia and anxiety, and through diuretic effects can 

be used to treat fluid retention disorders including congestive heart failure (Auchampach et 

al., 2004; Gottlieb et al., 2002; Maemoto et al., 2004; Martin et al., 1996; Moro et al., 2006; 

Wilcox et al., 1999).  Adenosine derivatives selective for the A2A receptor are useful tools for 

cardiac imaging and potent anti-inflammatory agents and have been indicated for the 

treatment of asthma and arthritis while antagonists may provide a neuroprotective effect 

beneficial in the treatment of Parkinson’s disease (Aoyama et al., 2000; Ascherio et al., 

2001; Fozard et al., 2002; Hendel et al., 2005; Matasi et al., 2005; Ohta et al., 2001; Peng et 

al., 2004; Ross et al., 2000; Weiss et al., 2003; Xu et al., 2005).  The A2B receptor is the least 

studied subtype of the family; however, activation of the A2B receptor has been shown to 

promote angiogenesis and vasodilation and selective agonists, antagonists and radioligands 

have been developed (Beukers et al., 2004; Feoktistov et al., 1995; Gessi et al., 2005; Ji et 

al., 2001; Linden, 2005; Stewart et al., 2004; Szentmiklosi et al., 1995; Volpini et al., 2003).  

Several selective ligands for the A3 receptor have been developed through 4-thio substitution 

of adenosine for agonists and screening of diverse compound libraries for antagonists, since 

caffeine and xanthines bind the A3 receptor with very low affinity (Jeong et al., 2003; Moro 

et al., 2005; Moro et al., 2006).  A3 receptor agonists may be effective in cancer treatment 

since A3 receptor activation is linked to apoptosis at very high agonist concentrations and A3 

receptors are highly expressed in tumor cells (Fishman et al., 2002; Lu et al., 2003; Madi et 

al., 2004).  Species differences in A3 receptor pharmacological profiles have presented a 

hurdle in further evaluations.   
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b. P2X Receptors 

P2X receptors are ATP-activated cation channels that exist as homomeric or 

heteromeric assemblies of three subunits and primarily mediate fast excitatory 

neurotransmission and inflammation in central and peripheral tissues.  Seven P2X subunits 

have been cloned, denoted P2X1-7 and each subunit is comprised of two transmembrane 

domains connected by a large extracellular loop and generally short intracellular amino- and 

carboxyl-termini.  Functional homomers of all subunits except P2X6 have been characterized 

by heterologous expression or studies of native tissues (Burnstock, 2006).  Functional 

heteromers of P2X2/3, P2X2/6, P2X4/6 and P2X1/5 subunits have been detected by co-

immunoprecipitation from native tissues and overexpression in mammalian cell lines and 

Xenopus oocytes [reviewed in (Ralevic et al., 1998)].  The P2X7 subunit does not form 

heteromers and is otherwise unique in its relatively low affinity for ATP and its ability to act 

as a nonselective pore for molecules up to 1000 daltons in size (Nuttle et al., 1994; 

Rassendren et al., 1997).  

P2X receptors are widely expressed with many tissues expressing multiple P2X 

subunits.  Exceptions include restriction of P2X3 expression to sensory ganglia and near-

exclusive expression of P2X1 in smooth muscle (Chen et al., 1995; Lewis et al., 1995; Valera 

et al., 1994).  Identification of the role of P2X receptors and the subunits involved is based 

on pharmacological data with a limited set of largely non-selective agonists and antagonists; 

however, clear roles for P2X receptors have been established in several important human 

physiologies including neuropathic pain, inflammation, incontinence and hypertension with 

the help of genetically-engineered animal models.  α,β-meATP is a non-selective P2X 

receptor agonist with activity at P2X1 and P2X2 homomers and heteromers containing either 
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of these subunits.  L-β,γ-meATP is uniquely selective for the P2X1 receptor and along with 

synthetic nucleotide antagonists NF029 and NF279 has helped to define a role for the P2X1 

receptor in vasoconstriction, suggesting the usefulness of P2X1 antagonists in the treatment 

of hypertension (Evans et al., 1995; Haines et al., 1999; Horiuchi et al., 1999; Le et al., 

1998).  A heteromeric P2X2/3 channel is expressed on a subset of primary afferents 

responsible for nociception, and a battery of non-selective antagonists including suramin and 

PPADS have exhibited anti-nociceptive effects in behavioral and electrophysiological 

experiments (Dowd et al., 1999; Driessen et al., 1998; Driessen et al., 1994; Sawynok et al., 

1997; Tsuda et al., 1999; Zheng et al., 2000). Although P2X3-deficient mice did not display 

impaired acute pain responses, a nucleotide-based P2X3-selective antagonist, A-317491, 

reduced chronic inflammatory and neuropathic pain in the rat, giving strong evidence for 

P2X3 or P2X2/3 receptors as targets in chronic pain therapy (Chen et al., 1995; Cockayne et 

al., 2000; Khakh et al., 1995; Lewis et al., 1995; McGaraughty et al., 2005; Souslova et al., 

2000).  BzATP is the most potent known agonist of the P2X7 receptor, although it acts at 

several other P2X receptor subtypes (Bianchi et al., 1999).  Activation of P2X7 receptors 

causes the release of pro-inflammatory cytokines and apoptosis of macrophages resulting in 

the killing of the enclosed mycobacterium, suggesting a role for the P2X7 receptor in the 

treatment of chronic inflammation (Lammas et al., 1997; Solle et al., 2001).    

c. P2Y Receptors 

The first cloned GPCRs activated by extracellular nucleotides were the chick P2Y 

receptor activated by ATP (later P2Y1) and the mouse P2U receptor activated by UTP (later 

P2Y2) (Lustig et al., 1993; Webb et al., 1993).  Subsequently, several nucleotide-activated 

GPCRs were cloned and ascribed to the P2Y family.  A number of these were later found to 
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be species orthologs of previously identified P2Y receptors or were not activated by 

nucleotides, resulting in discontinuous numbering of members of the P2Y receptor family.  

P2Y receptors are activated by a diverse set of endogenous and synthetic nucleotide 

di- and triphosphates and nucleotide sugars (Table 1.1).  The cognate agonist for the P2Y1 

receptor is ADP and ATP is a partial agonist.  2-Methylthio derivatives of ATP and ADP are 

potent P2Y1 receptor agonists.  The P2Y2 receptor is activated by endogenous ATP and UTP 

and by dinucleotide tetraphosphates.  The endogenous agonist for the human P2Y4 receptor is 

UTP; ATP is a cognate antagonist.  Interestingly, ATP and UTP are both agonists at the rat 

P2Y4 receptor.  Synthetic P2Y4 receptor agonists include UTPγS and 5-BrUTP.  The P2Y6 

receptor is the only UDP-activated receptor; with the exception of UDPβS, other nucleotides 

are significantly less potent.  The P2Y11 receptor is the only receptor activated solely by 

ATP.  ATPγS, BzATP and dATP are also agonists, though pharmacological selectivity 

differs based on G-protein coupling.  ADP is the cognate agonist for the P2Y12 and P2Y13 

receptors, although ADPβS is a full agonist only at P2Y13.  2MeSADP and 2MeSATP also 

activate each of these receptors.  The P2Y14 receptor is the only P2Y receptor activated by 

nucleotide sugars.  UDP-glucose is the most potent agonist and other agonists include UDP-

galactose and UDP-N-acetylglucosamine.   

P2Y receptors are intronless genes, with the exception of P2Y11, with human 

receptors ranging in length from 328 to 377 amino acids.  The eight currently recognized 

family members fit into two evolutionarily distinct classes: the P2Y1 subfamily and the 

P2Y12 subfamily (Costanzi et al., 2004).  P2Y1, P2Y2, P2Y4, P2Y6, and P2Y11 are Gq-coupled 

receptors bearing roughly 35-52% sequence identity (Ralevic et al., 1998).  The P2Y11 

receptor is unique in that it is only 28-30% identical to other P2Y1 subfamily members, and it 
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is capable of coupling to the stimulation of adenylyl cylase through Gs (Communi et al., 

1997; Qi et al., 2001)  Members of the P2Y12 subfamily – P2Y12, P2Y13 and P2Y14 – couple 

to adenylyl cyclase inhibition through Gi, and are 45-55% identical among themselves but 

only 20-25% identical to members of the P2Y1 subfamily (Abbracchio et al., 2003).  P2Y 

receptors are found in most tissues of the body and physiological responses mediated by P2Y 

receptors range from anxiety to tear formation (Abbracchio et al., 2006a). Tissue distribution 

data for each of the P2Y family members are listed in Table 1.1.  Indeed, several P2Y 

receptors have been studied as targets for disease, including the P2Y12 receptor, antagonists 

of which were successful antiplatelet drugs even before the receptor was cloned.     

As with other classes of purinergic receptors, our knowledge of precise signaling and 

physiology associated with P2Y receptor activation relies on the development of selective, 

high-affinity ligands.  Further complexity is added to the pursuit of ligand development by 

the fact that interconversion of nucleotides can alter receptor activation profiles in tissues 

expressing multiple receptor subtypes and that some P2Y receptors are antagonized by 

agonists of other P2Y receptors (Kennedy et al., 2000).  Ligand development for P2Y 

receptors has proceeded using homology modeling based on the structure of bovine 

rhodopsin and structure-activity relationships for nucleotide derivatives based on the cognate 

nucleotide agonist for each receptor as a template.  For agonists, efforts are aimed at 

increasing affinity while retaining activity, and antagonists are developed by attempting to 

modify nucleotide structures to the minimal components for binding while eliminating 

receptor activation.   Ribose replacement and conformational constraint  of nucleotide 

analogues revealed that P2Y1, P2Y2 and P2Y11 receptors bind nucleotide agonists with the 

ribose or a substituted methanocarba ring constrained in the Northern conformation while the 
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P2Y6 receptor is activated exclusively by the Southern conformation of UDP and its 

analogues (Costanzi et al., 2005; Kim et al., 2002).  These studies have led to the successful 

development of a selective agonist, and selective antagonists and radioligands for the P2Y1 

receptor, which are discussed later in this chapter, and a potent, selective agonist for the P2Y6 

receptor.   With the exception of P2Y12 receptor, few selective ligands are available for the 

P2Y12 subfamily.  Recent studies with UDP-glucose analogues have identified a 2-thio 

derivative that has potent agonist, activity and a screen of non-sugar nucleotides suggests that 

nucleotide diphosphates, particularly UDP, may act as competitive antagonists at the P2Y14 

receptor (Ko et al., 2007; Fricks, manuscript in preparation). 

The P2Y1 and P2Y12 receptors are essential for platelet aggregation; therapeutic 

application and potential of each of these subtypes is discussed in section 1.4 of this chapter.  

The P2Y2 receptor, which can be activated by dinucleotides such as Up4U, is expressed in 

airway epithelium and conjunctival epithelium and positively regulates chloride and water 

secretion in these cells.  As a result, in airway epithelium, the P2Y2 receptor is currently 

under investigation as a clinical target for the treatment of disorders involving accumulation 

of mucus in the airway, including cystic fibrosis, chronic bronchitis and chronic obstructive 

pulmonary disease (Olivier et al., 1996; Rogers et al., 2006).  Dinucleotide agonists of the 

P2Y2 receptor were effective in Phase III clinical trials for the treatment of dry eye and are 

being pursued for FDA approval (Nichols et al., 2004).  The P2Y6 receptor is overexpressed 

in T cells of bowel of individuals with irritable bowel disease (IBD) and is involved in the 

release of pro-inflammatory cytokines from monocytes, suggesting a potential use for a P2Y6 

antagonist in the treatment of IBD (Somers et al., 1998).  Several P2Y receptor subtypes are 

expressed on osteoblasts and osteoclasts and on astrocytes, oligodendrocytes and glia and are 
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being studied for bone resorption or neurological diseases (Abbracchio et al., 2006b; 

Brambilla et al., 2001; Brambilla et al., 1999; Brambilla et al., 2000; Brambilla et al., 2002; 

Chorna et al., 2004; Gallagher et al., 2003; Gallagher, 2004; Gartland et al., 2003).  

 Studies regarding agonist-promoted regulation of P2Y receptors have been limited 

but suggest that these receptors desensitize and internalize by both canonical and non-

canonical pathways.  An HA-tagged P2Y2 receptor expressed in human astrocytoma cells 

desensitized rapidly in response to agonist as measured by a loss of responsiveness to ATPγS 

after pretreatment with the agonist.  This desensitization appeared to be homologous, since 

pretreatment with an agonist of the Gq-coupled muscarinic receptor agonist did not have a 

similar effect. A loss of cell surface immunoreactivity was also observed after agonist 

treatment, although with slower kinetics than desensitization, and this loss of cell surface 

immunoreactivity was completely reversible within 1 hour after agonist removal (Sromek et 

al., 1998).  Another report indicated that the P2Y2 receptor desensitizes rapidly in U973 

promonocytic cells as measured by calcium mobilization and that desensitization for more 

than 30 minutes is accompanied by a decrease in P2Y2 receptor mRNA.  Incubation with 

activators or inhibitors of PKC did not reveal a direct role for this enzyme in P2Y2 receptor 

desensitization (Santiago-Perez et al., 2001).   Additionally, β-arrestin translocation was not 

observed upon activation of the endogenous P2Y2 receptor in HEK293 cells nor was P2Y2 

receptor desensitization affected by antisense depletion of arrestin expression (Mundell et al., 

2000).  Expression of HA-tagged P2Y4 or P2Y6 receptors in 1321N1 cells revealed 

interesting differences in agonist-promoted regulation of these two uridine-nucleotide 

activated receptors.  Similar to P2Y2, the P2Y4 receptor desensitized rapidly and was 

reversibly translocated to an intracellular compartment upon agonist treatment.  
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Phosphorylation sites in the carboxyl terminus of the receptor were identified that were 

necessary for desensitization and internalization.  In contrast, the P2Y6 receptor did not 

desensitize in response to agonist, and irreversible loss of cell surface immunoreactivity was 

observed only after prolonged treatment with agonist (Brinson et al., 2001).   

 

1.2.3  Mechanisms of Nucleotide Release 

 Consistent with the Burnstock hypothesis that ATP functions as a neurotransmitter, 

ATP can be released from excitatory cells into the extracellular space where ATP and its 

metabolites activate purinergic receptors.  However, further investigation has revealed that 

nucleotide release is not limited to excitatory cells nor is it limited to adenine nucleotides and 

that many resting cells release ATP to maintain an equilibrium between ATP accumulation 

and ATP hydrolysis (Donaldson et al., 2000; Lazarowski et al., 2000).  While  mechanisms 

of nucleotide release are still largely unclear, several potential pathways have been proposed.   

a. Exocytotic Release 

 In certain cell types, such as neurons, platelets, chromaffin cells, mast cells and 

pancreatic acinar cells, ATP is packaged in granular compartments from which it is released 

in a regulated manner (Burnstock, 1997; Evans et al., 1992; Sorensen et al., 2001).  For 

neurons, ATP release occurs similarly to or in combination with the release of 

neurotransmitter by a well-studied process involving vesicle fusion and release known as 

regulated exocytosis.  A complex called the SNARE complex [soluble N-ethyl maleimide 

sensitive factor attachment protein (SNAP) receptor] is involved in which members of the 

SNARE family on the initiating cell, v-SNARE proteins, pair with proteins on the target cell, 
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t-SNARE proteins, to regulate specificity, docking and fusion of vesicles (Chapman et al., 

1994; Li et al., 1996; Rettig et al., 2002; Rickman et al., 2003).  

b. Mechanical Stimulation 

 Nucleotide release induced by mechanical stimulation was first reported during 

sustained exercise of the human forearm muscle and has also been observed as a result of 

hypotonic cell swelling, hydrostatic pressure, mechanical loading, and medium disturbance.  

Increased ATP release has been documented from perfused endothelial cells, epithelial cells 

of the distended murine bladder or human airway, and in immortalized cell lines, and the 

increased production of inositol phosphates after mechanical stimulation of P2Y-receptor 

expressing cells has been demonstrated (Cockayne et al., 2000; Ferguson et al., 1997; Filtz et 

al., 1994; Parr et al., 1994).  Mechanical stimulation of 1321N1 astrocytoma cells results in 

the release of UTP and UDP-glucose in addition to ATP (Lazarowski et al., 1997a; 

Lazarowski et al., 2003). The mechanisms for release of nucleotides from nonexcitatory cells 

by mechanical stimulation or agonist induction, discussed below, are as yet unclear but may 

involve ATP-binding-cassette transporters, connexin hemichannels and plasmalemmal 

voltage-dependent ion channels (Bodin et al., 2001).   

c. Agonist-Dependent Nucleotide Release 

A host of agonists for GPCRs including thrombin, ADP, UTP, serotonin, 

acetylcholine, and bradykinin have been shown to increase concentrations of extracellular 

ATP in endothelial cells.   While in the case of exogenously applied nucleotides, increased 

extracellular ATP results from phosphorylation of ADP by NDPK (see below) or competition 

for ATP hydrolysis, the cause of increased extracellular ATP in response to other agonists is 
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unclear, though calcium mobilization does not appear to be involved (Buxton et al., 2001; 

Cotrina et al., 1998; Ostrom et al., 2000).     

 

1.2.4 Extracellular Nucleotide Metabolism 

As with other transmembrane receptors, purinergic receptor signal termination is not 

limited to intracellular pathways, but also results from mechanisms evolved to remove 

agonist from the extracellular space.  In the case of purinergic receptors, ectoenzymes 

capable of hydrolyzing or interconverting nucleotides are expressed on the cell surface and 

rapidly metabolize micromolar concentrations of extracellular nucleotides.  These 

ectoenzymes vary in their enzymatic activity and nucleotide preference and are capable not 

only of protecting cells from prolonged stimulation but also of regulating the levels of 

nucleotide available to activate or inhibit specific P2 receptor subtypes.   

Ectoenzymes can be divided into four major classes: ecto-nucleotide triphosphate 

diphosphohydrolase (E-NTPDase), ecto-nucleotide pyrophosphatase/phosphodiesterase (E-

NPP), alkaline phosphatases, and ecto-5′-nucleotidase.  Additionally, ecto-nucleoside 

diphosphokinase (E-NDPK) interconverts adenine and uridine nucleotide di- and 

triphosphates (Zimmermann, 2000).  Membrane bound ectoenzymes have catalytic regions 

facing the extracellular environment and rely on divalent cations for maximal activity.  Some 

isoforms are also cleavable and soluble and may be referred to as exonucleotidases.  The 

primary characteristics including membrane topology and nucleotide preference of each 

major family are discussed below.   
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a.  Ecto-Nucleoside Triphosphate Diphosphohydrolases 

Previously referred to as ecto-apyrase, ecto-NTPase and ecto-ATPase, members of 

the E-NTPDase family can hydrolyze nucleoside 5′-triphosphates and nucleoside 5′-

diphosphates.  Isoforms are found in both vertebrate and invertebrate species and all 

members of the family contain five apyrase-conserved regions in their extracellular domains 

responsible for catalytic activity (Handa et al., 1996; Schulte am Esch et al., 1999; 

Vasconcelos et al., 1996; Zimmermann et al., 1999).  E-NTPDases also bear the actin-HSP 

70 hexokinase β- and γ-phosphate binding motif and appear to share molecular ancestry with 

members of the actin/HSP70/sugar kinase family (Asai et al., 1995; Kegel et al., 1997).    

NTPDases 1-3 and NTPDase8 are plasma membrane-bound.  Based on heterologous 

expression studies, NTPDase1 converts nucleoside 5′-triphosphates and diphosphates to 

monophosphates with near equal preference, while NTPDase2 preferentially breaks down 

nucleoside 5′-triphosphates to the diphosphate product (Kaczmarek et al., 1996; Kegel et al., 

1997; Kirley, 1997; Mateo et al., 1999). NTPDase3 and NTPDase8 exhibit strong preference 

for nucleoside 5′-triphosphates, though both are active on diphosphates as well (Smith et al., 

1998; Smith et al., 1999; Bigonnesse et al., 2004; Mulero et al., 1999). Thus, NTPDase2, 

NTPDase3, and NTPDase8 are uniquely capable of depleting the agonist for triphosphate-

activated P2 receptors and causing transient accumulation of agonist for diphosphate 

activated-nucleotide receptors. NTPDase4 and NTPDase6 are expressed on the Golgi; 

NTPDase4 hydrolyzes nucleoside 5′-di- and triphosphates with the greatest preference for 

UDP and no activity for ATP or ADP, while NTPDase6 activity is primarily limited to 

nucleoside 5′-diphosphates (Braun et al., 2000; Wang et al., 1998). NTPDase5 is a soluble, 

secreted enzyme that exhibits preference for UDP and other nucleoside 5′-diphosphates. 
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  1)  NTPDase1:  NTP → NMP + 2Pi; NDP → NMP + Pi 

  2)  NTPDase2: NTP → NDP + Pi 

3) NTPDase3, NTPDase8: NTP → NMP + 2Pi; NDP → NMP + Pi     

    (NTP:NDP 1:0.3) 

  4)  NTPDase4: NTP → NMP + 2Pi; NDP → NMP + Pi (except ATP,ADP) 

  5)  NTPDase5, NTPDase6: NDP → NMP + Pi   

b. Ecto-Nucleoside Pyrophosphatases 

The three members of the E-NPP family, NPP1, NPP2 and NPP3, also known as 

ecto-phosphodiesterase/pyrophosphatase are phylogenetically unrelated to the E-NTPDases 

and are predicted to bear a single transmembrane domain with an intracellular N-terminus 

and large extracellular C-terminus where catalytic activity is located.  NPP2 exists as two 

splice variants, otherwise known as autotaxin and PD-1α.  Soluble forms of NPP1 and 

autotaxin have been identified, presumably due to proteolytic cleavage N-terminal to a 

cysteine-rich stalk near the transmembrane domain (Belli et al., 1993; Clair et al., 1997b).  

Members of the E-NPP family also contain the somatomedin B-like domain of vitronectin 

and an extracellular EF-hand domain.  NPP2 and NPP3 but not NPP1 contain an RGD 

integrin recognition motif (Belli et al., 1994; Belli et al., 1993; Clair et al., 1997a; Goding et 

al., 1998; Kawagoe et al., 1995; Zimmermann, 2000). The function of these motifs is largely 

unknown, although the EF-hand domain is suggested to mediate binding of divalent cations 

and is required for enzymatic activity in NPP1.  

 E-NPPs have diverse enzymatic activities and broad substrate specificity.  They 

hydrolyze not only nucleoside 5′-tri- and diphosphates, but are also capable of hydrolyzing 

dinucleotide polyphosphates to the separate nucleoside monophosphate and polyphosphate  
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forms (see equation below).  E-NPPs also hydrolyze phosphodiester bonds of nucleic acids 

and pyrophosphate linkages of nucleotide sugars, with activity for both purine and 

pyrimidines (Goding et al., 1998; Zimmermann, 2000).  E-NPPs are thus capable of 

generating AMP from cAMP and NAD+ and, in the case of NPP2, adenosine from AMP.  

1) E-NPP:   ATP → AMP + PPi; cAMP → AMP 

2) E-NPP: ApnA → Ap(n-1) + AMP 

  3)  NPP2 (autotaxin): ATP → ADP + Pi; ADP → AMP + Pi; AMP →  

       Adenosine + Pi;    PPi → Pi 

c. Alkaline Phosphatase  

Not much is known about alkaline phosphatases; however, these enzymes are known 

to have catalytic activity for mono-, di-, and triphosphonucleosides, and are thus capable of 

hydrolyzing nucleoside triphosphates to their corresponding nucleosides as well as 

degradation of inorganic pyrophosphate to inorganic phosphate (Coleman, 1992).  Alkaline 

phosphatases additionally require much higher nucleotide concentrations for activity with Km 

values in the millimolar range.   

NTP → NDP + Pi; NDP → NMP + Pi; NMP → Nucleoside + Pi; PPi → 2Pi 

d. Ecto-5′-Nucleotidase 

Ecto-5′-nucleotidase is the primary enzyme responsible for generating extracellular 

adenosine from AMP.  A single gene, corresponding to the metalloenzyme CD73 has been 

found in vertebrates, though studies in invertebrates have been more numerous and include 

the 3-dimensional structure of E. coli ecto-5′-nucleotidase (Knofel et al., 1999).  The enzyme 

is expressed as a dimer and contains regulatory elements within the promoter region that 

control tissue distribution (Spychala et al., 1999). 
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NMP → Nucleoside + Pi 

e.  Ecto-Nucleotide Diphosphokinase  

E-NDPK is a unique enzyme capable of interconverting nucleoside 5′di- and triphosphates 

such as ATP and UDP into ADP and UTP, respectively.  E-NDPK activity has been found on 

astrocytoma and airway epithelial cells and is of critical consideration when interpreting 

activities of various P2Y receptors in such systems, especially since Km values for E-NDPK 

fall in the range of 20-100 µM, concentrations at which agonists fully activate various P2Y 

receptors (Harden et al., 1997; Lazarowski et al., 1997b). 

 

1.3  The P2Y1 Receptor 

1.3.1  General Features 

 A GPCR activated by ATP when expressed in Xenopus oocytes was first cloned from 

chick brain in 1993 and named P2Y1 (Webb et al., 1993).  In 1994, the turkey homologue 

was cloned and identified to couple to activation of phospholipase C in turkey erythrocyte 

membranes (Filtz et al., 1994).  In 1996, the human receptor, a 373-amino acid polypeptide 

was cloned and second messenger activity and pharmacological selectivity were defined 

(Janssens et al., 1996; Schachter et al., 1996; Leon et al., 1996).  The endogenous agonist for 

the P2Y1 receptor is ADP; 2MeSADP and 2MeSATP are also potent agonists and ATP is a 

low-potency partial agonist.  Northern blot analysis and immunohistochemistry revealed 

almost ubiquitous tissue distribution for the P2Y1 receptor with prominent expression in 

brain on neurons and astrocytes where it is coexpressed with the P2Y2 and β2 adrenergic 

receptors (Janssens et al., 1996; Leon et al., 1996; Moore et al., 2000; Zhu et al., 2004; Zhu 

et al., 2001).   
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 The amino acid sequence of the P2Y1 receptor is shown in Figure 1.4 with functional 

domains and residues reported to be involved in ligand binding and G-protein coupling 

highlighted.  The P2Y1 receptor contains a short extracellular amino terminus with multiple 

sites for N-linked glycosylation; treatment of detergent solubilized receptors with N 

glycosidase F resulted in a faster electrophoretically-migrating species, suggesting the 

presence of oligosaccharides in the untreated receptor (Waldo et al., 2004).  Extracellular 

loops 2 and 3 are connected by a disulfide bridge between two cysteine residues.  The second 

intracellular loop contains an His-Arg-Tyr (HRY) motif, similar to the highly conserved Asp-

Arg-Tyr (DRY) motif found in many G-protein coupled receptors that mediates G-protein 

coupling and receptor activation, though a significant role has not been found for this motif 

in the P2Y1 receptor (Rovati et al., 2006).   Mutation of arginine residues 333 and 334 in the 

C-terminus to alanine did, however, result in a receptor incapable of activating Gq in CHO-

K1 cells.  The C-terminal tail also contains a four amino-acid PKC consensus sequence 

starting at Ser-336, SRAT, the terminal threonine of which appears to be required for 

desensitization (Fam et al., 2003).   A calmodulin binding motif is found between residues 

332-343, and calmodulin-dependent protein kinase II was shown to be involved in receptor 

internalization but not desensitization (Arthur et al., 2006; Tulapurkar et al., 2006).   The last 

four amino acids of the receptor are Asp-Thr-Ser-Lys (DTSL) and these were found to act as 

a PDZ ligand for the Na+/H+ exchanger NHERF-2.  NHERF-2 was coimmunoprecipitated 

with the receptor C-tail and PLCβ1 from HEK293 cells and was found coexpressed with the 

P2Y1 receptor in perivascular glial cells of the central nervous system.  Coexpression of 

NHERF-2 with the P2Y1 receptor resulted in increased latency of the Ca2+ response 
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compared to the P2Y1 receptor alone, suggesting that NHERF-2 may act as a scaffold to 

stabilize the receptor signaling complex (Fam et al., 2005).  

 Genetic deletion of the P2Y1 receptor in mice results in significant hemostatic 

abnormalities (see section 1.4).  Interestingly, although P2Y1 knockout mice do not display 

renal abnormalities, a recent study reports that mice lacking global P2Y1 expression were 

protected from renal disease progression in a model of crescentic nephrotoxic 

glomerulonephritis (Bailey et al., 2004; Hohenstein et al., 2007).  Studies measuring receptor 

expression in the glomerulus of mice and rats were carried out on mRNA or using polyclonal 

antibodies to the receptor protein which exhibit very questionable selectivity; thus, results 

regarding the function of P2Y1 in renal disease may reflect indirect changes in phenotype and 

will require investigation with more precise tools.  Other effects of altering P2Y1 function in 

animals include increased open arm exploration and increased food intake after 

cerebroventricular infusion of the P2Y1 agonist ADPβS that was reversed by the selective 

antagonist MRS2179 (Kittner et al., 2003; Kittner et al., 2006).  In each of these studies, 

effects of the P2Y1 receptor were correlated to changes in the nitric oxide synthase pathway, 

suggesting a role for this intermediary.  Taken together, these results indicate clear roles for 

the P2Y1 receptor in mammalian physiology, in addition to its pronounced role in 

hemostasis, and underscore the need for broadly applicable, selective pharmacological 

reagents.  
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1.3.2  Ligand Development for the P2Y1 Receptor 

a.  Adenosine Bisphosphates as Competitive Antagonists 

Blockade of nucleotide receptor signaling was accomplished previously by the use of 

nonselective molecules such as reactive blue-2, suramin and PPADS which antagonized P1 

and P2 receptors with different pharmacological selectivity but low to moderate potency, 

making them less than ideal for selectively identifying and blocking specific purinergic 

receptor subtypes.  The identification of selective antagonists for P2 receptors began with the 

discovery of naturally occurring adenosine bisphosphates as competitive antagonists of the 

P2Y receptor of turkey erythrocyte membranes (tP2Y), a species ortholog of the human P2Y1 

receptor.  Boyer, et al determined that adenosine bisphosphates bearing phosphate groups at 

the 5′ and 2′ or 3′ positions were selective partial agonists and competitive antagonists of the 

tP2Y receptor (Fig. 1.5).  Moreover, at the human P2Y1 receptor stably expressed in 1321N1 

human astrocytoma cells, these compounds were simple competitive antagonists exhibiting 

no agonist activity with a pKb value for A3P5P of 6.05 ± 0.01 (Boyer et al., 1996).   

b. Synthetic Nucleotide Analogues as Competitive Antagonists 

The development of synthetic selective antagonists was pursued using structure-

activity relationships for a series of adenine nucleotide derivatives to determine the minimal 

requirements for affinity and activity.  Requisites for a biologically useful antagonist 

included higher potency and increased resistance to metabolic degradation by 

ectonucleotidases.  Accordingly, substitutions on various positions of the adenine ring of 

adenosine bisphosphates were explored, followed by modifications and replacement of the 

ribose ring with various cyclic and acyclic structures and substitutions of the 3′ and 5′ 

phosphates with uncharged functional groups.  These studies were complemented with 
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molecular modeling of the receptor to predict the energy and space determinants governing 

recognition of the various nucleotide analogues in the putative receptor binding site.    

Substitutions at the 2, 6, and 8 positions of the adenine ring indicated that 2-

substitutions were well tolerated at the tP2Y receptor as previously described, with 

preference for chloro and methylthio substitutions that conferred up to a 3-fold increase in 

antagonist potency while retaining partial agonist activity (Fischer et al., 1993). In later 

studies, the successful substitution of halogens at the 2-position in combination with other 

structural modifications resulted in much greater increases in potency and several high 

affinity, pharmacologically useful compounds (Houston et al., 2006; Kim et al., 2003; 

Nandanan et al., 1999; Nandanan et al., 2000; Waldo et al., 2002). Substitutions at the 8-

position were largely disadvantageous, resulting in molecules that interacted poorly with the 

receptor.   

Of particular importance was the finding that addition of a methyl group at the N6 

position eliminated partial agonist activity at the tP2Y receptor and increased the potency of 

adenosine bisphosphates as antagonists.  The N6-methyl substitution was sufficient to 

eliminate the partial agonist activity of a broad range of modified adenine nucleotide 

derivatives, generating a template on which to design pure competitive antagonists.  Other 

substitutions at this position, including alkyl groups of longer chain length, a benzoyl group, 

or chloro or hydroxyl groups resulted in either decreased potency or complete loss of 

activity.  Modification of the ribose ring indicated that the unphosphorylated hydroxyl group 

of A3P5P was not required for recognition at the tP2Y receptor and eliminated activity at A1 

adenosine receptors.  The N6 methyl addition on the deoxyribose template of A3P5P resulted 

in a highly selective, competitive antagonist of high nanomolar apparent affinity. 
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c. MRS2179 

N6-methyl-2′deoxyadenosine-3′,5′-bisphosphate (MRS2179, Fig. 1.5) was the first 

widely used synthetic purinergic receptor antagonist of high potency and selectivity.  Schild 

analysis of the ability of MRS2179 to inhibit 2MeSATP-promoted inositol phosphate 

accumulation in turkey erythrocyte membranes revealed pure competitive antagonist activity, 

as indicated by a parallel rightward shift of the 2MeSATP dose response curve.  A pKB of 

6.99 ± 0.13 was calculated from these data (Boyer et al., 1998).   Similar results were 

obtained with the corresponding 2′,5′ bisphosphate.  MRS2179 was used to inhibit the P2Y1 

receptor of human and rat platelets.  MRS2179 inhibited ADP-mediated shape change, 

aggregation and Ca2+ release with a pKB for the inhibition of the aggregation response of 6.55 

± 0.05 and with no effect on the ADP-mediated inhibition of adenylyl cyclase, indicating its 

use as a selective, potent, efficacious inhibitor of platelet aggregation via the P2Y1 receptor 

(Baurand et al., 2001).  Intravenous infusion of MRS2179 in adult rats and mice resulted in 

decreased aggregation and increased bleeding time, consistent with blockade of ADP-

mediated aggregation.  MRS2179 was radiolabeled with 33P and used to quantify P2Y1 

receptor binding sites in washed human platelets, indicating a density of 134 ± 8 binding sites 

per platelet (Baurand et al., 2001).  These results were encouraging for the development of 

P2Y1-selective antithrombotic drugs.  

The demonstration of MRS2179 as a highly selective competitive antagonist and 

subsequent commercial availability made possible the use of this molecule to identify or 

exclude a role for P2Y1 receptor function in other tissues and physiological systems.  A role 

for P2Y1 receptor activity was indicated in several cellular processes most notably astrocyte 
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survival and slow excitatory neurotransmission in the central and peripheral nervous systems  

(Fang et al., 2006; Gallego et al., 2006; Kittner et al., 2006; Mamedova et al., 2006).  

d. Acyclic Derivatives and Conformationally Constrained Nucleotide Analogues as 

Competitve P2Y1 Receptor Antagonists 

Fundamental to generating an even more useful selective antagonist was 

circumvention of the problem of metabolism by ectonucleotidases which primarily hydrolyze 

phosphates of the ribose ring of nucleotide substrates.  Toward this end, several replacements 

of the ribose entity were explored, with heavy consideration of acyclic nucleotide analogues 

bearing symmetrically branched phosphorylated aliphatic chains or constrained carbocyclic 

rings (Kim et al., 2000; Nandanan et al., 2000).  Of these modifications, two types emerged 

as having significant impacts on affinity while resisting nucleotide hydrolysis.  Studies with 

acyclic bisphosphate nucleotides indicated that the ribose ring was not necessary for 

recognition by the tP2Y1 receptor binding site, though it appeared necessary for receptor 

activation.  Symmetrically branched, phosphorylated isopentyl, isobutyl, and isopropyl 

groups attached at the 9-position of the adenine ring  were all recognized at the tP2Y receptor 

and bore no agonist activity with the isobutyl group retaining antagonist potency compared to 

its N6-methyl precursor.  Isopropyl and isopentyl groups were less potent (Fraser et al., 2000; 

Kim et al., 2002).  Replacement of one of the phosphate groups with an uncharged ester 

greatly decreased potency in turkey erythrocytes and washed human platelets while 

replacement of both phosphate groups with uncharged esters greatly decreased potency at the 

tP2Y receptor while retaining inhibitory activity in washed human platelets.  Interestingly, 

the uncharged bisphosphonates were capable of blocking ADP-mediated cAMP inhibition in 

platelets but not the Ca2+ increase, suggesting that these compounds were recognized by the 
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P2Y12 but not the P2Y1 receptor.  Additionally, a bisphosphorylated cyclopropyl group 

attached at the 9-position of the N6-methlyadenine ring was recognized by the tP2Y receptor 

albeit with lower potency than the riboside.  These results taken together indicated that the 

bisphosphate nature of 9-substituted structures, and not the ribose ring, in addition to the N6-

methyl susbstitution, were the necessary requirements for P2Y1 receptor antagonism, making 

a hydrolysis-resistant antagonist feasible.   

Based on the dispensible nature of the ribose ring, further deviation from the 

nucleotide structure was pursued using phosphorylated carbocyclic rings.  The importance of 

ring puckering was determined, based on previous observations by Marquez and colleagues 

suggesting a role for conformational preference in nucleotides as antiviral agents (Marquez et 

al., 1996).  Phosphorylated carbocyclic rings on adenine nucleotides constrained in either the 

Northern or the Southern conformation by a fused cyclopropane ring were examined for 

recognition at the P2Y1 receptor.  In the case of the weak agonist ATP, the Northern 

constrained derivative was 200-fold more potent than the unconstrained molecule and 250-

fold more potent than the S-isomer, indicating a substantial role for sugar puckering in 

recognition at the P2Y1 receptor.  Using a molecular homology model of the P2Y1 receptor 

based on the structure of bovine rhodopsin, ATP and MRS2179 were docked in the putative 

binding site and found to reside in the binding pocket preferably in the Northern 

conformation which was energetically favored by 20 kcal/mol over the Southern 

conformation.  These results translated well to several nucleotide derivatives, with enhanced 

potency for N-constrained agonists and antagonists at the P2Y1 receptor (Kim et al., 2002; 

Nandanan et al., 2000).  This conformational preference applied to some, but not all of the 

Gq-coupled P2Y receptor subtypes, indicating similarities in the binding pockets of 
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nucleotide receptors that would later be further analyzed through a series of molecular 

modeling studies.  

e. An Energetically Favorable Model for the P2Y1 Receptor Binding Site 

The molecular model of the P2Y1 receptor was constructed using the electron density 

map of bovine rhodopsin as a template.   Using molecular dynamics simulations, an 

energetically sound conformational hypothesis was generated identifying transmembrane 

domains, extracellular loops and a short amino terminus.  Various ligands were docked into 

the model to establish a putative binding site and these studies were complemented with site-

directed mutagenesis to confirm the requirement of specific residues for the coordination of 

agonists and antagonists in the binding site.  A principle binding domain was established 

identifying residues necessary for coordinating various atoms of the nucleotide (Fig. 1.4).  In 

this model, Gln307 and Ser314 of TM7 are in contact with the adenine ring while the 

phosphate groups of both polyphosphate agonists and bisphosphate antagonists reside in a 

positively charged pocket formed by Arg128 (TM3), Lys280(TM6), and Arg310(TM7).  

Based on site-directed mutagenesis studies, the physical properties of these residues appeared 

to be more important than their absolute conservation, since agonist activation was restored 

in S314T and R310K mutant receptors (Costanzi et al., 2004). 

In addition to the principle binding domain, two additional binding sites comprised by 

extracellular loops 2 and 3 (EL2, EL3), termed meta-binding sites, were identified and a 

three-step model for ligand binding was proposed, with association at the meta-binding sites 

necessarily preceding binding at the principle site.  In meta-binding site I, Glu209 and 

Arg287 help coordinate the ribose ring and α and β phosphates of ATP, respectively.  Meta-

binding site II exists just beneath EL2 and shares amino acids Arg128, Lys280 and Gln307 
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with the principle binding site.  Residues determined to be essential for ligand recognition are 

likely necessary for the formation of stable intermediates during the multistep ligand binding 

process (Moro et al., 1998). 

f. [3H]MRS2279 

The remarkable effect of conformational constraint coupled with the previously 

identified modifications that improved antagonist activity led to the development of 2-chloro-

N6-methyl-(N)-methanocarba-2′-deoxyadenosine-3′,5′-bisphosphate (MRS2279), a P2Y1 

antagonist with KB value of 8 nM for the human P2Y1 receptor stably expressed in 

astrocytoma cells.  This molecule was the first non-nucleotide antagonist of a P2Y receptor, 

and based on its high affinity and stability was used to develop a high affinity radioligand, 

[3H]MRS2279 (Fig. 1.5).  Attaching [3H]methylamine at the 6-position of the adenine ring 

yielded a radioligand of specific activity 89 Ci/mmol (Fig. 1.5).   [3H]MRS2279 bound to the 

human P2Y1 receptor overexpressed in Sf9 insect cell membranes with a KD of 7.05 nM, and 

various nucleotide antagonists inhibited [3H]MRS2279 binding with pharmacological 

selectivity predicted from previous studies.  [3H]MRS2279 also bound specifically to the 

endogenous P2Y1 receptor of rat brain and human platelets with affinity and selectivity 

similar to that of the recombinant receptor.  Due to extensive metabolism of nucleotide 

agonists, agonist affinities were not determined in these systems, but were determined using 

[3H]MRS2279 at the purified, recombinant P2Y1 receptor, establishing direct agonist 

affinities for nucleotides at the P2Y1 receptor for the first time.  [3H]MRS2279 also proved 

useful in developing the first radioligand binding assay suitable for screening P2Y1 

antagonists using Sf9 insect cell membranes as a model system.  The development of a 

binding assay complemented previous and subsequent SAR and molecular modeling studies 
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well, making the predictions of activities of newly synthesized nucleotide analogues highly 

reliable (Kim et al., 2003; Waldo et al., 2002; Waldo et al., 2004). 

g. MRS2500 

Substitutions at the 2-position of adenine had been previously successful, and were 

revisited on the (N)-methanocarba template.  In competition binding assays, a 2-iodo 

derivative exhibited 10-fold higher affinity than MRS2279 for the P2Y1 receptor 

overexpressed in Sf9 insect cell membranes (Fig. 1.5).  The presence of an iodine and revised 

synthetic studies indicated that this molecule was a suitable template for developing a high 

specific radioactivity radioligand for the P2Y1 receptor, and its subnanomolar affinity and 

non-nucleotide structure made it suitable for in vivo testing as an antithrombotic agent (Kim 

et al., 2003).   

Though MRS2179 effectively inhibited platelet aggregation through blockade of 

P2Y1 receptors in vivo, MRS2500 proved more stable in vivo and its much higher affinity 

made it a much more attractive candidate for antiplatelet testing.  In mice, MRS2500 potently 

inhibited collagen and epinephrine-induced thrombus formation and thrombus formation in 

response to laser-induced vascular injury.  Additionally, the combination of MRS2500 and 

the irreversible P2Y12 antagonist clopidogrel was more effective than either drug alone in a 

mouse model of arterial thrombosis, suggesting benefits of combination antiplatelet therapy 

targeting P2Y1 and P2Y12 receptors.  MRS2500 alone also caused only a modest increase in 

bleeding time, suggesting advantages of reversible, competitive P2Y1 antagonists with regard 

to safety (Hechler et al., 2006).   
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h.  (N)-Methanocarba-2MeSADP, A P2Y1 Receptor-Selective Agonist 

Selective activation of P2Y1 receptors was an elusive goal, particularly in platelets 

where P2Y1 and P2Y12 are activated by the endogenous agonist ADP.  However, the 

selective preference of the P2Y1 receptor for Northern-constrained nucleotide analogues led 

to the finding that the nonselective platelet agonist 2MeSADP could be converted to a P2Y1-

selective agonist by replacement of the ribose ring with a cyclopentane ring locked in the 

Northern conformation, similar to MRS2279 and MRS2500 (Chhatriwala et al., 2004).  The 

resulting compound (N)-methanocarba-2-methylthioadenosine-5′-diphosphate (MRS2365) 

activated P2Y1 but not P2Y12 and P2Y13 receptors transiently expressed in Cos-7 cells and 

induced shape change without sustained aggregation in washed human platelets, indicative of 

a P2Y1 receptor-specific response.  MRS2365 was also used to show that the refractoriness 

of platelets to ADP after initial exposure is a result of rapid, selective desensitization of the 

P2Y1 receptor (Bourdon et al., 2006).  

 

1.3.3  Agonist-Promoted Regulation of the P2Y1 Receptor 

a.  Homologous Desensitization and Regulation by Second Messenger Kinases 

Desensitization of GPCRs by GRK phosphorylation and subsequent arrestin binding 

followed by internalization into clathrin-coated pits was established using the β2 adrenergic 

receptor as a model and is a well-characterized system for the regulation of GPCR signaling 

(Pierce et al., 2002).   Data regarding desensitization of Gq-coupled GPCRs is limited, 

primarily due to lack of a reliable assay.  However, the unique combination of platelet 

physiology and a selective P2Y1 agonist allowed for a recent detailed study of P2Y1 receptor 

desensitization (Bourdon et al., 2006).  Refractoriness of platelets to ADP after initial 
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exposure has been established; however, whether this lack of responsiveness was due to 

desensitization of the P2Y1 receptor, the P2Y12 receptor or both remained largely unresolved.  

Using the selective P2Y1 agonist MRS2365, Bourdon and coworkers showed that the P2Y1 

receptor was fully desensitized in response to agonist with a t½ of 18 seconds, resulting in 

the inability of ADP to promote full platelet aggregation.  Induction of Gq signaling through 

the 5-HT2A receptor fully restored ADP-induced platelet activation, suggesting that 

desensitization is receptor-specific and not due to agonist-induced changes in downstream 

signaling.  These studies clearly indicate that the P2Y1 receptor in platelets undergoes 

homologous desensitization in response to agonist treatment.  The rate of desensitization of 

the P2Y1 receptor in human platelets was remarkably rapid, and these studies did not address 

whether this effect was specific to platelets or whether other Gq-coupled receptors in platelets 

desensitized with similar kinetics.   

Toward understanding the mechanisms involved in desensitization of the P2Y1 

receptor, Mundell and Benovic investigated the effect of inhibiting arrestin expression on 

desensitization of the endogenous P2Y1 receptor in HEK293 cells.  Interestingly, they found 

that a decrease in the expression of either arrestin 2, arrestin 3 or both had no effect on the 

rate or magnitude of desensitization of P2Y1 receptor signaling.  Additionally, while 

activation of other GPCRs caused a recruitment of arrestin-2-GFP to the plasma membrane, 

selective activation of the P2Y1 receptor with ADP did not result in a redistribution of 

arrestin-2-GFP.  In another more recent study, Hardy and colleagues showed that expression 

of GRK-dominant negative mutants co-expressed with the P2Y1 receptor in 1321N1 human 

astrocytoma cells had no effect on P2Y1 receptor desensitization while selective inhibitors of 

PKC attenuated the loss of P2Y1 receptor responsiveness that followed pretreatment of cells 
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with a P2Y1 receptor agonist (Hardy et al., 2005; Mundell et al., 2000).  Additionally, Fam 

and colleagues reported the role of PKC in a negative feedback loop responsible for 

regulating P2Y1 calcium oscillation frequency in 1321N1 cells.  They also reported the 

necessity of a threonine residue, T339, in a C-terminal PKC consensus sequence for this 

effect (Fam et al., 2003). These data suggest that desensitization of the P2Y1 receptor does 

not occur by the canonical GRK and arrestin-mediated pathway and that conventional and 

novel isoforms of the second messenger-activated kinase PKC may play an important role. 

b.  Agonist-Induced Internalization 

 Understanding the mechanisms of internalization of the P2Y1 receptor has been 

difficult due to a lack of tools available to selectively label endogenously expressed cell 

surface receptors.  A lack of reliable antibodies and high specific activity radioligands has 

limited our knowledge of P2Y1 receptor endocytosis primarily to studies involving 

overexpressed, epitope-tagged or fluorescently tagged receptors.  However, in 2004, Baurand 

and colleagues published a study examining internalization of P2Y1 receptors in platelets 

using a polyclonal antibody to the endogenous P2Y1 receptor.  They observed a notably rapid 

rate of P2Y1 receptor cycling with immunoreactivity appearing in intracellular compartments 

within 15 seconds and beginning to recycle back to the plasma membrane within 4 minutes.  

In the same study, they investigated the rate of internalization of GFP-tagged P2Y1 receptors 

in 1321N1 human astrocytoma cells and found 50% of the total fluorescence in intracellular 

compartments after 15 minutes and 75% of the total fluorescence inside the cell after two 

hours (Baurand et al., 2005).  A more recent report by Mundell and coworkers utilized 

[3H]2MeSADP, a nonspecific radioligand, to examine changes in surface levels of P2Y1 and 

P2Y12 receptors on fixed platelets.  This study indicated that internalization of P2Y1 receptor 
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occurs with slower kinetics and to a greater extent than the previous report, and that 

internalization, like desensitization, required the activity of novel and conventional isoforms 

of PKC (Mundell et al., 2006a).  Mundell et al. also reported PKC-dependent internalization 

of HA-tagged P2Y1 receptors stably expressed in 1321N1 cells.  A role for clathrin-coated 

pits has been described, and recent data suggests that subpopulations of clathrin-coated pits 

may exist, and receptor targeting to specific subsets of clathrin-coated pits may be dictated 

by the kinases and adaptor proteins involved in internalization, since the P2Y1 receptor, 

which does not require arrestins or GRKs for internalization, sorts differently than the P2Y12 

or β2-adrenergic receptors which have been shown to require GRKs and arrestins for 

internalization (Mundell et al., 2006b). These differences in rates of P2Y1 receptor 

internalization in the two cell types are not surprising, since cell-type-specific trafficking 

mechanisms have been observed for other GPCRs including the m3 muscarinic receptor 

(Koenig et al., 1996).   Additionally, differences in methodology are likely to contribute to 

inconsistent observations.  Such discrepancies underscore the need for selective, sensititve 

tools for quantification of native receptor binding sites as part of a comprehensive study of 

the mechanisms involved in the internalization of endogenous P2Y1 receptors. 

 

1.4 Nucleotide Receptors and Platelet Biology 

The P2Y1 receptor exhibits a broad tissue distribution, but its most notable role in human 

physiology comes from its localization on the surface of platelets - discoid, anucleated cells 

of the vasculature that play a primary role in the formation of blood clots.   
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1.4.1  Platelet Activation and Thrombus Formation 

Upon entering a site of vascular injury, circulating platelets become activated in 

response to collagen and von Willebrand factor present in the subendothelial extracellular 

matrix.  The interaction of these molecules with the platelet vWF and collagen receptors 

results in the inside-out activation of integrins, which mediate the adhesion of a platelet 

monolayer to the wall of the injured vessel (Jackson et al., 2003; Nieswandt et al., 2003; 

Ruggeri, 2002; Ruggeri, 2003).  Activation of platelets results in the release of platelet dense 

granule contents and the localized formation of other potent mediators of platelet 

aggregation.  These molecules include thromboxane A2  (TxA2), ADP, and thrombin, all of 

which act through G-protein coupled receptors to promote cytoskeletal rearrangement 

resulting in the transformation of the platelet from a discoid shape with a smooth outer 

surface to a spherical shape with protruding pseudopods.  Shape change is accompanied by 

an increase in cytosolic calcium, the subsequent activation of αIIbβ3 integrin, and continued 

calcium-dependent granule secretion, forming a positive feedback loop that promotes 

successive platelet aggregation and the formation of a hemostatic plug (Offermanns, 2006). 

 

1.4.2  Platelet Receptors for Adenine Nucleotides 

ADP secreted from platelet dense granules acts through two G-protein coupled 

purinergic receptors, the P2Y1 and P2Y12 receptors, to mediate platelet aggregation.  ATP is 

also released from activated platelets and acts through the P2X1 receptor to induce a transient 

shape change from discoid to spherical shape without the formation of pseudopods (Rolf et 

al., 2001; Rolf et al., 2002).  Both the P2Y1 and P2Y12 receptors are absolutely necessary for 

proper platelet aggregation and mice and humans lacking either receptor exhibit hemostatic 
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abnormalities including increased bleeding time, defective thrombus formation, and 

decreased sensitivity to other platelet agonists (Cattaneo, 2005; Fabre et al., 1999; Foster et 

al., 2001; Leon et al., 1999a).  

a. P2Y1 

In platelets, activation of the P2Y1 receptor by ADP results in Gq-mediated 

stimulation of PLCβ and the subsequent production of the second messengers IP3 and DAG.  

IP3 binds to its receptor on the endoplasmic reticulum (ER), causing an increase in 

intracellular calcium while DAG activates PKC.  Elevated cytosolic calcium is responsible 

for the activation of phospholipase A2 and subsequent generation of the potent platelet 

agonist thromboxane, granule mobilization and secretion, and transient αIIbβ3 activation.  

Studies using P2Y1-deficient mice indicate that the P2Y1 receptor is necessary for ADP-

promoted shape change and aggregation, since these animals demonstrate prolonged bleeding 

and decreased thrombus size, formation and stability compared to wild-type animals.  

Furthermore, platelets from these animals fail to undergo shape change, exhibit reduced 

calcium mobilization, and display impaired aggregation in response to collagen, thrombin 

and TxA2  (Fabre et al., 1999; Leon et al., 1999a). 

Gq is a necessary component of ADP-mediated platelet aggregation.  In the absence 

of P2Y1 activity, stimulation of Gq through the 5-HT2A serotonin receptor is sufficient to 

restore ADP-mediated platelet shape change and activation (Bourdon et al., 2006; Fabre et 

al., 1999; Jin et al., 1998).  Additionally, the P2Y1 receptor is selectively coupled to Gq in 

platelets since agonists of the TxA2 and PAR receptors which couple to Gq and G12/13  can 

promote shape change in platelets from Gq-deficient mice while ADP cannot (Offermanns, 

2006).  
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The predominant isoform of PLCβ downstream of P2Y1 activation in platelets 

appears to be PLCβ2 as evidenced by impairment of ADP-induced IP3 formation and platelet 

aggregation in patients with decreased PLCβ2 expression and in PLCβ2/3-deficient mice 

(Lee et al., 1995; Rhee et al., 1992).  IP3 generated from the activation of PLCβ2 binds to IP3 

receptors on the ER, resulting in release of calcium from the ER. Diacylglycerol activates 

PKC which is required for platelet secretion, and independent of PKC, DAG can promote the 

exchange activity of CalDAG-GEF1 on Rap1, an intermediate step in the activation of αIIb/β3 

(Bertoni et al., 2002; Eto et al., 2002).  Until recently, the PKC isoforms involved in ADP-

mediated signaling in platelets were unknown, but studies by Mundell et al suggest that novel 

and classical PKC isoforms regulate P2Y1 signaling in platelets, potentially by a negative 

feedback mechanism resulting in rapid P2Y1 receptor desensitization (Mundell et al., 2006a).  

b. P2Y12 

The P2Y12 receptor signals through Gi to promote sustained platelet aggregation 

independent of shape change and to enhance dense granule secretion and other effects of 

more potent platelet agonists.  The presence of a distinct receptor negatively coupled to 

adenylyl cyclase in platelets was controversial until the development of selective P2Y1 

antagonists (Boyer et al., 1996).  Subsequently, the P2Y12 receptor was cloned and identified 

to be the target of thienopyridine compounds capable of inhibiting platelet aggregation and 

thrombus formation in vivo (Hollopeter et al., 2001). In the absence of P2Y12 receptor 

activity, agonists of other Gi-coupled receptors including adrenaline can rescue ADP-induced 

platelet aggregation (Bourdon et al., 2006; Leon et al., 1999b).  Similarly, impaired ADP-

induced aggregation due to loss of P2Y1 activity can be rescued with 5-HT which activates 

the Gq-coupled 5-HT2A receptor of platelets.   
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The P2Y12 receptor couples selectively to Gαi2 to promote a decrease in intracellular 

cAMP and activation of the PI3K pathway via βγ subunits. Signaling through PI3K is 

essential for potentiation of dense granule secretion and partial platelet aggregation induced 

by activation of the P2Y12 receptor as evidenced by the use of nonselective PI3K inhibitors, 

wortmannin and LY 294002 (Kauffenstein et al., 2001).   Although there are multiple PI3K 

isoforms expressed in platelets, PI3K γ and PI3K β appear to be selectively activated 

downstream of the P2Y12 receptor (Abrams et al., 1996; Hirsch et al., 2001; Jackson et al., 

2005; Lian et al., 2005).  PI3K γ-deficient mice display a defect in fibrinogen receptor 

activation and ADP-induced aggregation; these defects are similarly observed in the presence 

of selective P2Y12 receptor antagonists and in Gi2-deficient mice (Hirsch et al., 2001; 

Hollopeter et al., 2001; Kim et al., 2004).  Selective inhibitors of PI3K β indicate that this 

isoform is specifically responsible for sustained aggregation in response to submaximal 

concentrations of thrombin and thromboxane receptor agonists (Jackson et al., 2005). 

A congenital defect in the P2Y12 receptor has been observed in four human patients. 

In two patients, premature termination of translation is caused by a homozygous frameshift, 

while in another, a frameshift in a single allele results in deletion of two nucleotides.  In the 

fourth, substitution of two amino acids in regulatory domains of the receptor gene yields a 

normal coding sequence and gene product of decreased expression but normal binding of the 

endogenous agonist (Cattaneo et al., 2003; Hollopeter et al., 2001).  Platelets from these 

patients exhibit normal shape change but weak and rapidly reversible aggregation in response 

to ADP, and defects are observed in platelet aggregation induced by collagen, arachidonic 

acid and thromboxane A2 but not thrombin; also, these patients have a history of mucosal 
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bleeding, increased bleeding time, easy bruising and/or excessive post-operative bleeding 

(Cattaneo et al., 2000; Cattaneo et al., 1992; Cattaneo et al., 2003; Nurden et al., 1995).  

c. P2X1 

Activation of the ionotropic P2X1 receptor primarily serves to induce platelet shape 

change and amplify platelet responses induced by low concentrations of other platelet 

agonists.  ATP stored in dense granules is co-released with ADP and binds to the P2X1 ion 

channel, causing the nonselective permeation of cations, followed by rapid desensitization of 

the channel.  An increase in intracellular calcium is necessary for platelet shape change; 

however, activation of the P2X1 receptor results in the transformation of platelets from 

discoid to spherical shape but does not cause the formation of filopodial extensions (Rolf et 

al., 2001; Rolf et al., 2002).  Increased calcium concentration is known to activate myosin 

light-chain kinase which promotes cytoskeletal rearrangement.  Additionally, depolarization 

of the platelet membrane is capable of enhancing calcium-dependent signaling downstream 

of GPCRs suggesting that P2X1 receptor-dependent depolarization of the platelet membrane 

may also play a role in calcium-dependent signaling processes in response to P2X1 activation 

(Mahaut-Smith et al., 1999; Mason et al., 2001).  The P2X1 channel is also permeant to 

sodium.  No physiological role for increased intracellular sodium has been established; 

replacement of extracellular sodium with impermeant ions had no effect of the ability of the 

P2X1 receptor to induce shape change (Clifford et al., 1998).  

Genetic deletion of P2X1 in mice results in enhanced resistance to laser-induced or 

ferric-chloride induced thrombosis with no change in bleeding time, while overexpression of 

the P2X1 receptor in mice causes an increase in collagen and epinephrine-induced thrombus 

formation, suggesting a significant physiological role for the P2X1 receptor in potentiating 
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thrombotic events initiated by potent platelet agonists (Hechler et al., 2003; Oury et al., 

2003). 

 

1.4.3  P2Y Receptors as Current and Potential Therapeutic Targets in Thrombosis 

Effective antiplatelet agents currently in clinical use target the P2Y12 receptor; 

however, the essential role for the P2Y1 receptor and the P2X1 receptor in platelet function 

render these receptors powerful potential targets for antiplatelet therapy as well.   

 Ticlopidine (Ticlid®) and clopidogrel (Plavix ®) are clinically efficacious and widely 

prescribed thienopyridine compounds that selectively inhibit the P2Y12 receptor.  Both of 

these compounds are prodrugs, metabolized to their active forms by cytochrome P450 1a.   

The active metabolites selectively and irreversibly inhibit platelet aggregation by 

modification of two extracellular cysteine residues on the P2Y12 receptor.   The need for 

metabolism of these compounds results in a delayed onset of action, with maximum 

inhibition of ADP-induced platelet aggregation occurring after 4-5 days.  Because inhibition 

is irreversible, the effect is observed for approximately ten days, corresponding to the 

lifespan of a circulating platelet (Cattaneo, 2007).   

 Consistent with their effects on the P2Y12 receptor, ticlopidine and clopidogrel are 

effective at inhibiting platelet aggregation by potent platelet agonists through their ability to 

suppress the amplification of response generated by ADP released from platelet dense 

granules.  Clopidogrel is more potent and well-tolerated than ticlopidine and the delayed 

onset of action of clopidogrel can be obviated by increasing the loading dose by 4-8-fold.  

Side effects with both compounds include prolonged bleeding and rare cases of cytopenia, 

each of which is more pronounced with ticlopidine than clopidogrel.  Other, more general, 
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drawbacks to these compounds include high interindividual variability and decreased activity 

when co-administered with statins, which appear to interfere from inhibition of cytochrome 

p450 activity (Cattaneo, 2007).   

 Prasugrel is a recently developed thienopyridine compound with the same mode of 

action as ticlopidine and clopidogrel, but with increased potency and lower interindividual 

variability.  It is currently in Phase III clinical trials for patients with acute coronary 

syndromes undergoing percutaneous coronary intervention (Niitsu et al., 2005).  

 Hydrolysis-resistant ATP analogues are under investigation as direct, reversible 

P2Y12 antagonists.  Intravenous infusion of cangrelor, a high affinity P2Y12 antagonist, 

reversibly inhibits ADP-induced platelet aggregation in men and women without increased 

bleeding time (van Giezen et al., 2005).  AZD6140 is an orally available non-phosphate 

competitive P2Y12 antagonist (Husted et al., 2006; van Giezen et al., 2005).  In a single 

clinical trial with atherosclerotic outpatients currently receiving aspirin, addition of 

AZD6140 to therapy resulted in superior antiplatelet effects to the combination of 

clopidogrel and aspirin, with a rapid onset of action and only a moderate increase in bleeding 

time. 

 Several selective, high affinity P2Y1 receptor antagonists have been developed as 

discussed previously.  While MRS2179 yielded promising results in rodents in vivo and ex 

vivo, MRS2500 proved more stable in vivo and potently inhibited collagen and epinephrine 

induced thrombus formation and thrombus formation in response to laser-induced arterial 

injury in mice (Baurand et al., 2001; Hechler et al., 2006).  Intravenous infusion of 

MRS2500 in mice caused only a modest increase in bleeding time, suggesting that P2Y1 

receptor antagonists may be advantageous in terms of safety.  Additionally, the treatment of 
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P2Y1-deficient animals with clopidogrel or of wild type animals with clopidogrel and 

MRS2500 resulted in increased efficacy compared to either drug alone, indicating that 

combination therapy targeting the P2Y1 and P2Y12 receptors may be a powerful antiplatelet 

strategy.   

 Few selective antagonists have been developed for the P2X1 receptor, and whether or 

not it is a potential target in thrombosis has been controversial.  However, the unique role of 

P2X1 in inhibiting thrombus formation at sites of high shear rate suggest that, under certain 

circumstances, antagonists of the P2X1 receptor may prove useful (Cattaneo, 2007).  NF449, 

a suramin analogue, is a recently developed P2X1 antagonist that is selective for P2X1 over 

several P2X and P2Y receptors including P2Y1.  Selective inhibition of P2X1 was observed 

in vivo with decreased platelet aggregation in a mouse model of systemic thromboembolism.   

 

1.5  Specific Aims of the Current Research 

 Based on recent advances in ligand development for the P2Y1 receptor and gaps in 

our knowledge regarding agonist-promoted regulation of this important biological sensor, the 

current research is designed to generate a high specific radioactivity radioligand for the P2Y1 

receptor, to apply this ligand to study agonist-promoted regulation of the P2Y1 receptor in 

human platelets, and to identify the molecular determinants of agonist-dependent regulation 

of P2Y1 receptors in mammalian epithelial cells.   

 The recently developed antagonist MRS2500 is the highest affinity P2Y1 receptor 

antagonist available with a Ki value of 0.79 nM for inhibition of [3H]MRS2279 binding in 

Sf9 insect cell membranes overexpressing the human P2Y1 receptor (Kim et al., 2003).   The 

structure of this molecule, depicted in Figure 1.5, indicates the possibility of radiolabeling 
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this molecule to high specific radioactivity by placement of the radioisotope 125I at the 2-

position of the adenine ring or incorporation of the radioisotope 32P in the 5′-phosphate group 

of the methanocarba ring.   Preliminary data from our lab indicates that radiolabeling with 

125I requires a three-step synthesis reaction of prohibitively low percent yield to facilitate the 

routine synthesis of a radioligand with the short half life of 125I (~60 days).  Therefore, we 

have elected to use a single-step enzymatic synthesis reaction catalyzed by polynucleotide 

kinase to transfer the γ-phosphate of [γ32P]ATP to a 3′-monophosphate precursor to generate 

[32P]MRS2500.  The synthesis of this radioligand and the development of a binding assay for 

[32P]MRS2500 binding to the P2Y1 receptor overexpressed in Sf9 insect cell membranes is 

described in Chapter 2.  We have demonstrated the utlitity of this ligand for studying 

endogenous P2Y1 receptors by applying it to assess the relative tissue distribution of P2Y1 

receptors in various peripheral tissues and brain regions of the adult male rat. 

 The role of the P2Y1 receptor in platelet aggregation suggests that it is a powerful 

potential therapeutic target for conditions involving abnormal platelet function; however, 

information is limited regarding agonist-promoted regulation of P2Y1 receptors in platelets.   

Previous studies from our lab have demonstrated that remarkably rapid desensitization of the 

P2Y1 receptor occurs after treatment of platelets with the P2Y1 receptor-selective agonist 

MRS2365 (Bourdon et al., 2006).  In Chapter 3, we apply a combination of the P2Y1 

receptor-selective ligands MRS2365 and [32P]MRS2500 to further explore agonist-promoted 

regulation of the P2Y1 receptor of human platelets.  By examining the desensitization of the 

Gq-coupled 5-HT2A receptor of platelets, we determine whether the remarkably rapid rate of 

desensitization observed for the platelet P2Y1 receptor is unique to this receptor.  

Furthermore, we assess the rate of recovery of P2Y1 receptor responsiveness after 
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desensitization followed by apyrase-catalyzed removal of MRS2365.  Additionally, we 

develop a radioligand binding assay for [32P]MRS2500 binding to the P2Y1 receptor of 

washed human platelets and apply this binding assay to measure the agonist-promoted loss of 

surface P2Y1 receptors in human platelets.   

 Phosphorylation and internalization of the P2Y1 receptor have been reported in 

platelets and 1321N1 human astrocytoma cells (Mundell et al., 2006a).   However, whether 

or not phosphorylation is required for internalization has not been determined and the 

molecular determinants of P2Y1 receptor internalization have yet to be identified.   In 

Chapter 4, we establish an intact cell binding assay for [32P]MRS2500 binding to endogenous 

and recombinant P2Y1 receptors in MDCK(II) epithelial cells to assess agonist-dependent 

internalization of the P2Y1 receptor.  Using this system, we express various mutant 

constructs of the P2Y1 receptor lacking putative phosphorylation sites in the C-terminus to 

determine if phosphorylation in this region is required for agonist-induced internalization.   

 The findings presented in this work indicate that we have generated a novel, useful 

tool for studying P2Y1 receptors in a variety of model systems.  Furthermore, we use this 

ligand to address agonist-promoted regulation of P2Y1 receptors in two very different cell 

types.  In Chapter 5, we present a model of cell-type specific agonist-promoted regulation of 

P2Y1 receptors and describe potential future directions that will more clearly define the 

mechanisms involved in each cell type. 
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Name Tissue Distribution# G-protein Coupling Agonists* Antagonists* 
P2Y1 
 

Platelets, brain, 
placenta, prostate, 
heart, skeletal 
muscle 

Gαq, Gα11 MRS2365 > 2MeSADP > 
ADP >  2MeSATP; ATP 
and ADPβS are partial 
agonists 

MRS2500 > MRS2279 
> MRS2179 > A3P5P 
> suramin > PPADS 

P2Y2 Lung, skeletal 
muscle, heart, brain, 
liver, stomach, 
pancreas, vascular 
smooth muscle, 
endothelial cells 

Gαq, Gα11; rat can 
also couple to Gαi/o 

UTP > ATP > Ap4A > 
ATPγS > 5BrUTP 

Suramin 

P2Y4 Intestine, pituitary 
gland, brain, 
monocytes and 
lymphocytes 

Gαq, Gα11 Human:UTP, UTPγS, 
5BrUTP, UDP is a partial 
agonist; Rat: UTP = ATP 

Human: PPADS, ATP; 
Rat: reactive blue 2 

P2Y6 Bone, spleen, 
placenta, kidney, 
lung, intestine, bone 
heart, brain, adipose 
tissue 

Gαq, Gα11 UDP, UDPβS >> 
5BrUTP > UTP > ADP 
>> 2MeSATP 

Reactive blue 2 > 
PPADS > suramin 

P2Y11 Ubiquitous with 
highest levels in 
brain, spleen, 
lymphocytes and 
intestines and 
lowest levels in 
liver, cartilage and 
bone  

Gαq, Gα11; Gαs PI hydrolysis: BzATP > 
ATPγS >  dATP > ATP > 
ADPβS; cAMP 
formation: ATPγS > 
BzATP > dATP > ATP > 
ADPβS > 2MeSATP 

PI hydrolysis: suramin 
> reactive blue 2; 
cAMP formation: 
suramin 

P2Y12 Platelets, spinal 
cord, brain 

Gαi2, >> Gαi1, Gαi3 2MeSADP = 2MeSATP 
> ADP; ATP is a partial 
agonist 

Thienopyridines (see 
Section 1.5.3), 
Reactive blue 2, 
suramin, ARC66096, 
ARC69931MX 

P2Y13 Spleen, brain, liver, 
pancreas, bone 
marrow, heart, 
peripheral 
leukocytes 

Gαi, Gα16 2MeSADP = ADPβS = 
2MeSATP > ADP > 
Ap3A > ATP 

AR-C69931MX > 
PPADS > suramin 

P2Y14 Placenta, stomach, 
intestine, brain, 
spleen, lung, heart, 
bone marrow, 
immune cells 

Gαi, Gαo, Gα16 UDP-glucose > UDP-
galactose > UDP-
glucuronic acid > UDP-
N-acetylglucosamine 

 

 
#Tissue distribution refers to mRNA expression pattern. 
*Agonists and antagonists are listed in order of decreasing potency. 
Table adapted from Abbracchio et al., 2006. 

 
 
Table 1.1 Summary of P2Y receptor pharmacology and tissue distribution. 
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Agonist Ki (µM) Reference  Reference 
2MeSADP 0.10 ± 0 0.015 (5) Waldo, et al., 2004   
ADP 0.92 ± 0.23 (5) Waldo, et al., 2004   
ATPγS 1.33 ± 0.42 (5) Waldo, et al., 2004   
2MeSATP 1.87 ± 0.48 (5) Waldo, et al., 2004   
ADPβS 2.42 ± 0.44 (5) Waldo, et al., 2004   
ATP 17.7 ± 2.39 (5) Waldo, et al., 2004   
     
Antagonist Ki (nM)  KB (nM)  
MRS2500 0.79 Kim, et al., 2003 1.6 Kim, et al., 2003 

MRS2279 11 ± 3.0 (3) Waldo, et al., 2004 8.0 Boyer, et al., 2002 
MRS2179 15 ± 2.5 (3)  Waldo, et al., 2004 100 Boyer, et al., 1998 
A3P5P 754 ± 100 (3)  

 
Waldo, et al., 2004 900 Boyer, et al., 1996 

PPADS 6200 ± 2600 (3-5) Waldo, et al., 2002 1200 Boyer, et al., 1994 

Suramin 4900 ± 1600 (3-5) Waldo, et al., 2002   

     

 
Values reported are the average of 3 or more experiments ± S.E.M.  
 
 
 
 
 
Table 1.2. Affinity constants for agonists and antagonists of the human P2Y1 receptor. 
Values were determined in competition binding assays with [3H]MRS2279.  Values of n for 
each determination are noted in parentheses.   
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Figure 1.1.  GPCR signal propagation.  Agonist binding to GPCRs initiates the exchange 
of GDP for GTP on the Gα subunit and subsequent release of the G-protein heterotrimer 
from the receptor.  GTP-bound Gα subunits of four different classes – Gs, Gi, Gq, and G12/13 – 
and Gβγ subunits signal to various effector proteins (select effectors are depicted) to regulate 
levels of second messengers and thereby modify downstream signaling.   
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Figure 1.2. Agonist-promoted regulation of GPCR signaling.  The canonical model of 
GPCR desensitization and internalization is based on studies of the β2 adrenergic receptor.  
Upon agonist binding, G-protein signaling results in the activation of second messenger 
kinases which can phosphorylate the receptor and prevent further-G protein coupling.  GRKs 
can also phosphorylate the activated receptor.  The phosphorylated receptor is a substrate for 
arrestin (ARR) which facilitates internalization into clathrin-coated pits.  The internalized 
receptor may be targeted for degradation or recycled to the plasma membrane for subsequent 
rounds of stimulation. 
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Figure 1.3.  Purinergic signaling.  Nucleotides are released from intracellular compartments 
into the extracellular milieu by as yet largely unknown mechanisms where they are capable 
of activating P1 adenosine receptors, P2X cation channels, or P2Y receptors.  Nucleotides 
may also undergo nucleotide metabolism and interconversion (dashed lines) by a diverse 
group of ectoenzymes which alters ligand availability for the various nucleotide-activated 
receptors.  
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Figure 1.4.  Bubble diagram of the amino acid sequence of the P2Y1 receptor.   
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Figure 1.5.  Selective, high-affinity antagonists of the P2Y1 receptor. 
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CHAPTER 2 
 

[32P]2-IODO-N6-METHYL-(N)-METHANOCARBA-2´-DEOXYADENOSINE-3´,5´-
BISPHOSPHATE ([32P]MRS2500),  A NOVEL RADIOLIGAND FOR 

QUANTIFICATION OF P2Y1 RECEPTORS 
 
2.1  Introduction 

 Extracellular nucleotides signal through two classes of membrane-bound 

receptors to mediate a multiplicity of intracellular responses.  The P2X receptors are ligand-

gated ion channels and are primarily activated by ATP.  The P2Y receptors are seven-

transmembrane spanning G-protein coupled receptors and are activated by adenine and 

uridine nucleotides.   The P2Y receptor family consists of eight members which can be 

subclassified based on selectivity of G protein coupling and sequence homology.  P2Y1, 

P2Y2, P2Y4, P2Y6, and P2Y11 receptors couple to the Gαq class of guanine nucleotide-

binding proteins, which signal downstream to trigger inositol lipid hydrolysis and subsequent 

mobilization of intracellular calcium.  The P2Y11 receptor also couples to the Gαs family of 

G proteins to stimulate adenylyl cyclase.  The P2Y12, P2Y13, and P2Y14 receptors exhibit 

high sequence homology and couple to the Gαi family of G proteins resulting in inhibition of 

adenylyl cyclase activity (Burnstock, 2004; Burnstock, 1996).    

The P2Y1 receptor is preferentially activated by ADP, while ATP is a weak partial 

agonist, and UTP and UDP are inactive (Leon et al., 1996; Palmer et al., 1998; Schachter et 

al., 1996).   This receptor plays an essential role in ADP-promoted platelet aggregation by 

triggering shape change and an initial, reversible phase of aggregation (Jantzen et al., 1999). 

P2Y1 receptor mRNA has been detected in numerous tissues (Janssens et al., 1996; Leon et 



  

 

al., 1996); however, direct study of this receptor and its related physiology historically has 

been difficult due to the lack of a reliable radioligand binding assay. 

We have developed a series of competitive antagonists that selectively inhibit P2Y1 

receptor-promoted signaling.  Adenosine derivatives with phosphate groups at the 5´ and 2´ 

or 3´ position of the ribose ring were initially identified as selective, competitive antagonists 

(Boyer et al., 1996).  Structure-activity studies for adenosine bisphosphate derivatives 

substituted at various positions of the adenine and ribose rings along with molecular 

modeling and site-directed mutagenesis have led to the development of non-nucleotide 

antagonists that are highly selective for the P2Y1 receptor, exhibit low nanomolar potency for 

inhibiting downstream receptor signaling, and display limited susceptibility to metabolism by 

surface-localized nucleotide hydrolyzing enzymes (Jiang et al., 1997; Boyer et al., 1998; 

Camaioni et al., 1998; Moro et al., 1998; Nandanan et al., 1999; Kim et al., 2000; Nandanan 

et al., 2000; Kim et al., 2001; Boyer et al., 2002; Kim et al., 2002). One of these molecules, 

2-chloro -N6-methyl-(N)-methanocarba -2´-deoxyadenosine-3´,5´-bisphosphate 

([3H]MRS2279), was developed into an antagonist radioligand for the P2Y1 receptor by a 

multi-step radiosynthetic scheme (Waldo et al., 2002).  While the development of a 

radioligand binding assay using this molecule provides a reliable tool for quantification of 

recombinant P2Y1 receptors and screening of new P2Y1 receptor ligands, its low specific 

activity (89 Ci mmol-1) and intermediate affinity for the P2Y1 receptor (KD: 8 nM) limit its 

general application for broadly quantifying P2Y1 receptors in native mammalian tissues.   

Recently, 2-iodo -N6-methyl-(N)-methanocarba-2´deoxyadenosine-3´5´-bisphosphate 

(MRS2500) was synthesized as a competitive P2Y1 receptor antagonist that inhibited 

[3H]MRS2279 binding to the P2Y1 receptor with a Ki value (0.79 nM), ten times greater than 
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MRS2279 (Kim et al., 2003).  We have chosen this molecule as a template to develop a 

higher-affinity, high-specific-radioactivity antagonist radioligand for the P2Y1 receptor.  

MRS2500 was synthesized in radioactive form by the facile, single-step kinase-catalyzed 

phosphorylation of a precursor molecule to yield [32P]MRS2500 with a theoretical specific 

activity of 9120 Ci mmol-1.  In this study, we describe the synthesis of this novel radioligand, 

the development of a high-specific-activity radioligand binding assay for the P2Y1 receptor, 

and the quantification of P2Y1 receptors in various tissues of the adult rat.   

 

2.2  Materials and Methods 

Animals 

Adult male Harlan Sprague-Dawley rats weighing 300-400 g were group housed and 

maintained on a 12:12 h light:dark cycle with access to food and water ad libitum.  Animals 

were sacrificed by decapitation by a trained laboratory animal technician.  All procedures 

were carried out in accordance with the guidelines of the University of North Carolina 

Institutional Animal Care and Use Committee.   

Precursor for synthesis of MRS2500 

The general synthetic approach for 2-iodo-N6-methyl-(N)-methanocarba-2´-

deoxyadenosine-3´-monophosphate, MRS2608, a precursor of MRS2500 was described 

(Kim et al., 2003).  The detailed synthesis will be published separately. 

Enzymatic Synthesis of [32P]MRS2500 from MRS2608 

MRS2608 (50 nmol, 5 µl of a 10 mM solution in Tris pH 7.5) was combined with 1.5 

µl of 10x reaction buffer (500 mM Tris HCl, 100 mM MgCl2, 50 mM dithiothreitol, 1 mM 

spermidine, and 1 mM EDTA, pH 7.5), 1 mCi of [γ32P]ATP (7 ul, 0.16 nmol, 150 mCi ml-1) 
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and 2 µl (20 U) of 3´-phosphatase-free polynucleotide kinase.  The sample was mixed by 

pipetting and the kinase-catalyzed reaction was incubated at 37ْ C for 1 h. The entire reaction 

volume was then injected onto a Luna 5µ C18(2) column (4.6 x 250 mm) at a flow rate of 1 

ml min-1 in a mobile phase of 5% acetonitrile/95% 0.1 M triethylammonium acetate (5% 

A/95% B).  The column was washed for 30  min in 5% A/95% B to remove free [γ32P]ATP, 

and [32P]MRS2500 was eluted using a linear gradient of 5%A/95%B to 60%A/40%B over 50 

min.  [32P]MRS2500 eluted at 48 min, i.e. 18 min after the start of the gradient 

(approximately 75%A/25%B).  The precursor molecule, MRS2608, which was detected by 

UV (275 nM) eluted at 50 min.  One ml fractions were collected during purification, and 

radioactivity in each fraction was quantified by liquid scintillation counting of a 5 µl aliquot 

of each fraction.  [32P]MRS2500 has been purified by this procedure approximately 10 times 

with a typical yield of approximately 20%.  [32P]MRS2500 was stored at -20 C until use.   

P2Y1 receptor expression in Sf9 insect cells 

Sf9 insect cell membranes expressing recombinant P2Y receptors were prepared as 

described in detail previously (Waldo et al., 2002).   Briefly, recombinant baculoviruses 

encoding epitope-tagged constructs of the human P2Y1, P2Y2, or P2Y12 receptors, or an 

avian P2Y receptor (Boyer et al., 1997) were constructed using established protocols.  

Suspension cultures of Sf9 cells were infected with recombinant baculoviruses, and plasma 

membranes were prepared from uninfected (wild type) or infected cells after cell lysis and 

high speed centrifugation. The membranes were frozen in aliquots at 80°C. 

Preparation of membranes from rat tissues 

Adult male Harlan Sprague Dawley rats were sacrificed and organs were harvested 

and placed in 5 ml homogenization buffer (20 mM Hepes, pH 7.5, 145 mM NaCl, 5 mM 

59



  

 

MgCl2) per gram wet weight tissue.  Whole organs or combined brain regions from groups of 

2-6 rats were homogenized with a Polytron tissue disrupter for 45-60 sec.  Homogenized 

samples were centrifuged at 35,000g for 10 min.  The resulting pellets were resuspended in 3 

ml homogenization buffer per gram wet weight tissue and centrifugation was repeated 2 

times.  Final resuspensions were in homogenization buffer plus 5% glycerol and the samples 

were stored at -80ْ C.  Protein concentrations were determined using the BCA protein assay.   

Radioligand binding assay 

Membranes were typically incubated with 0.1-0.25 nM [32P]MRS2500 in assay buffer 

(20 mM Hepes, 145 mM NaCl, 5 mM MgCl2, pH 7.5) in a 25 µl reaction volume in 12x75 

mm conical polypropylene tubes.  Saturation binding isotherms were performed at 

concentrations of [32P]MRS2500 ranging from 0.01 nM to 6 nM in a total volume of 20 µl.  

Incubations were from 15 to 45 min in an ice-water bath and were terminated by the addition 

of 3.5 ml of ice cold assay buffer followed by vacuum filtration over Whatman GF/A glass 

microfiber filters.  The filters were washed with 7 ml ice cold assay buffer and radioactivity 

on each filter was quantified by liquid scintillation counting.  Specific binding was defined as 

total [32P]MRS2500 bound minus binding occurring in the presence of 10 or 100 µM 

MRS2179.   

Materials 

3´-phosphatase free polynucleotide kinase was from Roche Diagnostics Corp., 

Indianapolis, IN.  MRS2179 was from Tocris-Cookson, Inc., Ellisville, MO.  [γ32P]ATP was 

from PerkinElmer, Inc., Boston, MA.  All other drugs were from Sigma-Aldrich Corp., St. 

Louis, MO.  The Luna 5µ C18(2) HPLC column was from Phenomenex, Inc., Torrence, CA. 

Data analysis 
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All experiments were carried out in duplicate or triplicate assays and were carried out 

at least three times or on samples from three individual animals.  Data were analyzed using 

GraphPad Prism (GraphPad Software, San Diego, CA).  Data are presented as the mean ± 

S.E.M. from combined multiple experiments or in some cases as a data set from a typical 

experiment.   

 

2.3  Results 

Structure-activity relationships for a series of synthetic adenine nucleotide analogues 

have led to the development of a class of non-nucleotide adenosine bisphosphate derivatives 

that selectively inhibit the P2Y1 receptor (Boyer et al., 1998; Moro et al., 1998; Nandanan et 

al., 1999; Kim et al., 2002; Kim et al., 2003).  The replacement of the ribose ring of 

adenosine 3′,5′-bisphosphate with a Northern-constrained cyclopentane structure and other 

modifications of the adenine base, including an N6-methyl addition, have yielded molecules 

that are highly selective for P2Y1 over other P2Y, P2X, and adenosine receptors.  These non-

nucleotide molecules are also presumed to circumvent the problem of nonspecific binding to 

the large number of other nucleotide-binding proteins present in mammalian cells.  Recently, 

one of these molecules, 2-iodo-N6-methyl-(N)-methanocarba-2′-deoxyadenosine-3′,5′-

bisphosphate (MRS2500), was found to interact with the P2Y1 receptor with subnanomolar 

affinity.  This molecule was selected as the template for development of a high-specific-

activity, 32P-labeled radioligand to quantify endogenous P2Y1 receptors in mammalian 

tissues.  

Synthesis of [32P]MRS2500 
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   MRS2500 inhibited binding of the P2Y1 receptor radioligand [3H]MRS2279 with a  

Ki value of 0.79 nM and inhibited 2MeSADP-promoted inositol phosphate accumulation 

with a calculated KB value of 1.74 nM (Kim et al., 2003).  A precursor to MRS2500 was 

generated with the goal of synthesizing a high-specific-activity radioligand.  The precursor 

molecule, MRS2608, contains a phosphate group at the 3′-position and a hydroxyl group at 

the 5′-position, which potentially allows phosphorylation by polynucleotide kinase using 

[γ32P]ATP as the 5´-phosphate donor.    

Reaction conditions for polynucleotide kinase-catalyzed radiophosphorylation were 

optimized using unlabeled ATP and adenosine-3′-monophosphate (A3′MP) as the phosphate 

acceptor.  The extent of phosphorylation was quantified using ion exchange chromatography.  

Since polynucleotide kinase is known to exhibit small amounts of 3′-phosphatase activity, 

reactions were carried out with a mutant form of the enzyme containing a C-terminal deletion 

that results in ablation of its 3′-phosphatase activity (Wang et al., 2002).  Lack of 3´-

phosphatase activity was confirmed using A3′MP as substrate (data not shown). A3′MP was 

stable in the presence of 3′-phosphatase free polynucleotide kinase in the absence of ATP at 

37ºC for up to 24 h; incubation of A3´MP with unmodified polynucleotide kinase under 

identical conditions resulted in the appearance of a small amount of adenosine (data not 

shown).  

 Reaction conditions that resulted in optimal phosphorylation of A3´MP were applied 

to 32P-phosphorylate MRS2608 to generate [32P]MRS2500 (Fig. 2.1).  Approximately twenty 

percent of the added [32P] radioactivity was routinely recovered in a single peak that eluted 

from the reversed-phase column with a retention time of 48 min.  The retention time of the 

radioactive product corresponded to the retention time of purified, unlabeled MRS2500 (Kim 
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et al., 2003) under the same mobile phase conditions. Contamination of purified 

[32P]MRS2500 with the precursor molecule MRS2608 was less than 1% in multiple 

purification procedures.    

Selectivity of [32P]MR2500 for the P2Y1 receptor 

To determine selectivity of the novel radioligand for the P2Y1 receptor, 

[32P]MRS2500 binding was evaluated in membranes from wild type Sf9 (Sf9-wt) insect cells 

or Sf9 insect cells expressing human P2Y1 (Sf9-P2Y1), P2Y2 (Sf9-P2Y2), or P2Y12 (Sf9-

P2Y12) receptors or the avian P2Y receptor (Sf9-P2Ya) (Boyer et al., 1997).  As shown in 

Fig. 2.2, [32P]MRS2500 binding in Sf9-P2Y1 membranes was 15-fold higher than binding 

observed in Sf9-wt membranes and was inhibited by 90% in the presence of the P2Y1-

selective antagonist MRS2179 (10 µM).  In contrast, [32P]MRS2500 binding in Sf9-P2Y2, 

Sf9-P2Y12 and Sf9-P2Ya membranes was essentially identical to that observed Sf9-wt 

membranes and was not affected by MRS2179.  These results indicate that [32P]MRS2500 

binds specifically to P2Y1 receptors but not to other P2Y receptors in Sf9 membranes.  

High affinity binding of [32P]MRS2500 to the P2Y1 receptor 

  Optimal conditions for radioligand binding were determined in preliminary 

experiments. Specific binding occurring at 4º C was at least as great as that observed at room 

temperature (data not shown), and therefore all subsequent binding analyses were carried out 

at 4º C.  Time course experiments revealed rapid association of [32P]MRS2500 such that 

steady state binding occurred within two min at 4º C.  Moreover, prebound radioligand 

dissociated rapidly upon addition of a saturating concentration  of MRS2179 (10 µM), with 

half of bound radioligand dissociating within approximately 90 sec.  
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Saturation binding analysis was performed to determine the affinity of [32P]MRS2500 

for the recombinant human P2Y1 receptor expressed in Sf9 membranes (Fig. 2.3).   

Saturation binding isotherms exhibited one-site binding kinetics with a KD of 1.1 ± 0.35 nM 

(n=3) and an average Bmax of 4.8 ± 2.2 pmol receptor mg-1 protein in three experiments from 

a single membrane preparation.  

Pharmacological selectivity of [32P]MRS2500 binding 

The capacity of several agonists and antagonists of the P2Y1 receptor and other P2Y 

receptors to compete with [32P]MRS2500 for binding was investigated in Sf9-P2Y1 

membranes.  Because of the high specific activity of [32P]MRS2500, competition curves 

could be generated with minimal amounts of protein (250-500 ng), limiting the alteration of 

added nucleotides by membrane-bound nucleotide-metabolizing enzymes.  Agonists known 

to bind to the P2Y1 receptor inhibited binding of [32P]MRS2500 in a concentration-dependent 

manner (Fig. 2.4a).   The rank order of potency observed was 2MeSADP > 2MeSATP > 

ADP > ATPγS > ADPβS > ATP.  This order was in agreement with the predicted potencies 

for the P2Y1 receptor based on previous observations of agonist-promoted P2Y1 receptor 

second messenger signaling in cells continuously superfused with drug-containing medium 

(Palmer et al., 1998). Moreover, Ki values (Table 2.1) were in excellent agreement with 

values determined in competition assays with [3H]MRS2279 and the human P2Y1 receptor 

purified to homogeneity (Waldo et al., 2004). The P2Y1 receptor is known to bind adenine 

nucleotides specifically and is not activated by UTP or UDP; accordingly, uridine 

nucleotides did not compete with [32P]MRS2500 for binding to the P2Y1 receptor.   

P2Y1 receptor antagonists were also investigated for their capacity to compete with 

[32P]MRS2500 for binding to the P2Y1 receptor.  MRS2179, MRS2279 and MRS2500 
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inhibited [32P]MRS2500 binding with Ki values in good agreement with KB values 

determined for these same antagonists for inhibition of P2Y1 receptor-promoted second 

messenger signaling (Fig. 4b, Table 2.1). 

[32P]MRS2500 binding in rat brain 

One of the potential advantages of a high-specific-activity radioligand is high 

sensitivity for detection of receptors in native tissues.  To determine the utility of 

[32P]MRS2500 for detection of P2Y1 receptors in native tissues, membranes were prepared 

from brains of adult male Sprague Dawley rats.  As shown in Fig. 2.5a, saturation binding 

analysis revealed binding of [32P]MRS2500 to a homogenous population of binding sites in 

rat brain with high affinity (KD: 0.33 ± 0.02 nM).  An average Bmax value of 48.9 ± 8.7 fmol 

receptor mg-1 protein was determined (n=3).  To confirm the identity of this high affinity 

binding site as the rat P2Y1 receptor, pharmacological selectivity of P2Y1 receptor 

antagonists was examined.  The P2Y1 selective antagonists, MRS2179, MRS2279 and 

MRS2500 competed for binding of [32P]MRS2500 in rat brain membranes with Ki values of 

1.97 ± 0.74, 27.4 ± 8.4, and 267 ± 72, respectively (n=3).  These values were in agreement 

with values obtained at the recombinant human P2Y1 receptor.  Taken together, these data 

demonstrate that [32P]MRS2500 is useful for quantification of  P2Y1 receptors in adult rat 

brains. Preliminary studies revealed a large amount of breakdown of nucleotides by brain 

homogenates; therefore we have not pursued agonist competition binding further in these 

studies of native P2Y1 receptors.   

Tissue distribution of the rat P2Y1 receptor 

Having confirmed the utility of [32P]MRS2500 for labeling P2Y1 receptors in rat 

brain, we determined relative density of P2Y1 receptors in a variety of rat tissues (Fig. 2.6).  
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Among tissues examined with a submaximal concentration of [32P]MRS2500 (4 nM), lung, 

liver, and brain exhibited the highest relative amounts of specific binding, with 55 ± 10, 31 ± 

3, and 31 ± 5 fmol [32P]MRS2500 bound mg-1 protein, respectively.   Heart, abdominal 

muscle, spleen and stomach exhibited moderate receptor levels.  Testes and kidney bound the 

least amount of radioligand, 6.5 ± 2.4 and 2.7 ± 1.7 fmol [32P]MRS2500 bound mg-1 protein, 

respectively, and in some cases, specific binding in these tissues was undetectable.   

P2Y1 receptor distribution in rat brain 

P2Y1 receptor mRNA is abundantly expressed in brain, and this receptor has been 

implicated in a number of neuronal physiologies including regulation of neurotransmission, 

anxiolysis, and protection of astrocytes from oxidative stress-induced damage (Kittner et al., 

2003; Luthardt et al., 2003; Shinozaki et al., 2005).  Saturation binding analyses were 

performed in five major brain regions – cerebellum, cortex, midbrain, hypothalamus, and 

hippocampus.  Among the brain regions examined, cerebellum exhibited the highest number 

of binding sites with a Bmax value of 112 ± 17 fmol [32P]MRS2500 bound per mg protein 

(Table 2.2).  Midbrain, hypothalamus, and hippocampus displayed intermediate densities of 

binding sites, and cortex displayed the lowest number of binding sites with a Bmax value of 

21.7 ± 2.4 fmol [32P]MRS2500 bound per mg protein.  Thus, P2Y1 receptor expression varies 

by approximately six-fold among the major brain regions examined.   

 

2.4  Discussion 

Study of the P2Y1 receptor has been significantly advanced by the development of 

selective pharmacological tools that directly target this signaling protein.  In this report, we 

describe the synthesis and confirm the utility of [32P]MRS2500 as a novel high-affinity, high-
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specific-radioactivity antagonist radioligand for the P2Y1 receptor.  [32P]MRS2500 binds 

selectively to the human P2Y1 receptor with a KD of 1.2 nM.  We have used this high-affinity 

radioligand to quantify P2Y1 receptors in a variety of rat tissues, and among the tissues 

examined, relative receptor levels were highest in lung, liver, and brain.  We also examined 

receptor levels in several major brain regions and found a six-fold range of expression, with 

the highest and lowest densities of receptors found in the cerebellum and cortex, respectively.  

To our knowledge, this is the first unambiguous demonstration of a broadly useful high-

specific-activity radioligand for a P2Y receptor natively expressed in mammalian tissues.  

Given the availability of the precursor, MRS2608, the preparative method is sufficiently 

simple to allow its convenient synthesis.   

Development of selective P2Y1 receptor antagonists began with the identification of 

adenosine bisphosphate molecules as competitive antagonists.  The presence of a 5´ 

phosphate group and an accompanying 2´ or 3´ phosphate group on the ribose moiety 

allowed recognition of these molecules by the P2Y1 receptor without receptor activation 

(Boyer et al., 1996).  Removal of the 2´-hydroxyl group of the ribose entity eliminated 

interactions of adenosine 3´,5´ bisphosphate analogues with adenosine receptors, and 

addition of a methyl group at the N6 position conferred an increase in P2Y1 receptor binding 

affinity (Boyer et al., 1998).  The discovery that interaction with the P2Y1 receptor was 

retained in bisphosphate analogues in which the ribose was replaced by acylic or heterocyclic 

moieties (Kim et al., 2000; Kim et al., 2001) was extended to the use of carbocyclic ribose-

substituted heterocyclic bisphosphate analogues constrained in either the Northern or 

Southern conformation by fusion of cyclopropane to a pseudosugar cyclopentane ring 

(Marquez et al., 1996).  These bisphosphate methanocarba analogues retained affinity for the 
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P2Y1 receptor, and N-methanocarba derivatives of P2Y1 receptor agonists and antagonists 

were more than 100-fold more potent than their corresponding S-isomers (Nandanan et al., 

2000; Kim et al., 2002).  Molecular modeling studies of the P2Y1 receptor based on the 

structure of rhodopsin confirmed that the Northern conformation was energetically favored 

by ligands docked in the putative P2Y1 receptor ligand recognition site (Nandanan et al., 

2000).    

One goal of the development of non-nucleotide P2Y1 receptor antagonists was to 

reduce interaction of these molecules with other nucleotide binding proteins, which 

hypothetically should be of value in our secondary goal of developing a useful radioligand 

for the P2Y1 receptor.  Indeed, our studies of methanocarba analogues led to the synthesis of 

[3H]2-chloro-N6-methyl-(N)-methanocarba-2´-deoxyadenosine-3´,5´-bisphosphate 

([3H]MRS2279), and the binding of [3H]MRS2279 to membranes prepared from Sf9 insect 

cells expressing recombinant human P2Y1 receptors fit the pharmacological properties of the 

P2Y1 receptor (Waldo et al., 2002).  The [3H]MRS2279 radioligand binding assay has 

allowed efficient screening of novel ligands for the P2Y1 receptor (Waldo et al., 2002; Kim 

et al., 2002) and has been applied to quantify the P2Y1 receptor during purification to 

homogeneity (Waldo & Harden, 2004).   Although [3H]MRS2279 proved useful for 

quantification of P2Y1 receptors in human platelets (Waldo et al., 2002), its relatively low 

specific activity (89 Ci mmol-1) has limited its use in other tissues in which the receptor is 

endogenously expressed.  Thus, development of [32P]MRS2500, which exhibits 10-fold 

higher affinity and 100-fold higher specific radioactivity than [3H]MRS2279, represents an 

important step in ligand development for unambiguous study of P2Y1 receptor binding sites 

in mammalian tissues.   
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Previous work has investigated the tissue distribution of the rodent P2Y1 receptor 

using in situ hybridization techniques (Janssens et al., 1996; Leon et al., 1996; Moran-

Jimenez et al., 2000; Tokuyama et al., 1995). These studies suggest a broad expression 

pattern for the P2Y1 receptor among peripheral tissues and in rodent brain.  Although in situ 

hybridization studies provide important insight into the relative distribution of this signaling 

protein, the relationship of mRNA to expressed functional receptors is unknown and is not 

likely to be constant.  Antibodies that specifically recognize P2Y receptors would allow 

direct immunocytochemical quantification of receptor protein but these tools also do not 

necessarily identify functional receptor binding sites.  Moreover, although antibodies against 

the P2Y1 receptor have been reported (Fong et al., 2002; Franke et al., 2005; Scheibler et al., 

2004; Yoshioka et al., 2002), no unequivocal demonstration of their selectivity has been 

published, and their application to study P2Y1 receptor distribution is therefore suspect.   

The results described here illustrate that [32P]MRS2500 is a useful radioligand for 

quantification of functional P2Y1 receptor binding sites across a wide range of mammalian 

tissues, and the remarkably high ratio of specific to nonspecific binding of this high-affinity, 

high-specific-activity radioligand allows reliable detection of binding sites to at least 1 fmol 

mg-1 protein.  Application of [32P]MRS2500 revealed a broad expression pattern for the 

functional receptor protein among peripheral tissues and rodent brain.  Interestingly, this 

pattern is similar to that previously reported for messenger RNA (Tokuyama et al., 1995; 

Janssens et al., 1996; Leon et al., 1996; Moran-Jimenez et al., 2000).    

Tissue distribution data from our studies and other studies suggests potentially 

important physiological consequences of P2Y1 receptor signaling.  The role of the P2Y1 

receptor in ADP-promoted platelet aggregation is now well-established (Gachet, 2001).  
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However, its function remains largely undefined in the majority of tissues.  Several studies 

have investigated the importance of P2Y1 receptor signaling in the central nervous system.   

ATP released from nerve terminals acts as an excitatory neurotransmitter through ionotropic 

P2X receptors (Cunha et al., 2000).  Roles for adenine nucleotides in other neural processes 

have been proposed, and potentially important consequences of signaling involving the P2Y1 

receptor have been suggested.   For example, activation of the P2Y1 receptor inhibits 

glutamate release, and P2Y1 receptor mediated inhibition of NMDA receptor-promoted 

signaling occurs in prefrontal and parietal cortex (Luthardt et al., 2003; Rodrigues et al., 

2005).  Activation of the P2Y1 receptor also has been associated with anxiolysis, astrocyte 

protection, and oligodendrocyte proliferation and migration in rats (Agresti et al., 2005; 

Kittner et al., 2003; Shinozaki et al., 2005).  

Our work illustrates that [32P]MRS2500 can be utilized to quantify P2Y1 receptors in 

very small tissue samples, and the relatively high affinity and high specific radioactivity of 

this radioligand also make it a good candidate for detection of these receptors using 

autoradiographic techniques.  Previous studies have claimed autoradiographic detection of 

the rat P2Y1 receptor using [α33P]dATP or [35S]dATPαS as radioligands (Fong et al., 2002; 

Simon et al., 1995), but we previously have shown that the enormous amount of binding (10-

50 pmol mg-1 protein) observed with these radioligands is nonspecific (Schachter et al., 

1997).   A 33P-labeled radioligand, [33P]MRS2179, was used previously to quantify P2Y1 

receptors in human platelets (Baurand et al., 2001). We suspect that [33P]MRS2179 may not 

be a generally applicable radioligand since its affinity for the P2Y1 receptor is 100-fold lower 

affinity than the affinity of MRS2500.  We have demonstrated here the high selectivity of 
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[32P]MRS2500 for the P2Y1 receptor, and we predict that this selectivity will allow for a 

more accurate analysis of brain P2Y1 receptor binding sites.   

 The work described here demonstrates development of a new molecular tool for 

quantification of the P2Y1 receptor with high sensitivity and illustrates that active P2Y1 

receptor binding sites are broadly distributed across rat tissues and brain.  A reliable means 

for quantification of the P2Y1 receptor should lead to better understanding of the complex 

signaling and physiology associated with this important signaling protein.  
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Agonist n  Ki (µM)  
2MeSADP 5 0.05 ± 0.01  
2MeSATP 5 0.49 ± 0.10  
ADP 4 0.56 ± 0.09  
ATPγS 3 1.07 ± 0.11  
ADPβS 3 2.30 ± 0.60  
ATP 3 14.0 ± 6.0  
UTP 3 >1000  
UDP 
 

3 >1000  
 

    

Antagonist n  Ki (nM) KB (nM) 

MRS2500 3 2.35 ± 0.48 1.74 (Kim et al., 2003) 
MRS2279 5 46.5 ± 7.9 8.91 (Boyer et al., 2002) 
MRS2179 3 117 ± 9 102  (Boyer et al., 1998) 

 
Values reported are the average of 3 or more experiments ± S.E.M.  
 

 
 
 
Table 2.1.  Ki values for P2Y1 receptor agonists and antagonists in P2Y1 receptor-
expressing Sf9 membranes. 
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Region KD (nM) Bmax, fmol mg-1 protein 

whole brain 0.33 ± 0.02 48.9 ± 8.7 

cerebellum 0.55 ± 0.07 112 ± 17 

cortex 0.47 ± 0.06 21.7 ± 2.4 

hippocampus 0.44 ± 0.09 32.2 ± 7.8 

hypothalamus 0.43 ± 0.09 55.8 ± 11.0 

midbrain 0.38 ± 0.01 74.8 ± 9.4 

 
Values reported are the average of 3 experiments ± S.E.M.  
 
 

 
 
 
 
 
Table 2.2. KD and Bmax values for [32P]MRS2500 binding in rat brain regions. 
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Figure 2.1. Synthesis of [32P]MRS2500. MRS2608 (5 µl of a 10 mM solution) was 
combined with 1.5 µl of 10x reaction buffer,  1 mCi of [γ32P]ATP (7 ul, 0.16 nmol, 150 mCi 
ml-1) and 2 µl (20 U) of 3´-phosphatase-free polynucleotide kinase.  The sample was mixed 
by pipetting and incubated at 37ْ C for 1 h. The entire reaction volume was then injected onto 
a Luna 5µ C18(2) column for purification under mobile phase conditions as described in 
Methods 
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Figure 2.2. [32P]MRS2500 binding in Sf9 membranes expressing P2Y receptors.  Wild 
type Sf9 membranes or membranes expressing the human P2Y1, P2Y2, or P2Y12 receptors or 
the avian P2Y receptor, P2Ya, (10 µg each) were incubated with 220 pM [32P]MRS2500 in 
the presence or absence of 10 µM MRS2179 to determine nonspecific binding. Values are 
reported as total fmol [32P]MRS2500 bound ± S.E.M. from a representative experiment 
(n=3). 
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Figure 2.3. Saturation binding isotherm for [32P]MRS2500 binding to the human P2Y1 
receptor.  Sf9-P2Y1 membranes (10 µg per assay) were incubated for 45 minutes with the 
indicated concentrations of [32P]MRS2500 without or with the P2Y1R selective antagonist 
MRS2179 (10 µM).  Values are reported as total fmol [32P]MRS2500 bound ± S.E.M. from a 
representative experiment (n=3). Inset, Scatchard transformation of the data.  
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Figure 2.4. Competition of P2Y1 receptor agonists and antagonists with [32P]MRS2500 
for binding to P2Y1 receptor-expressing Sf9 membranes. a, Sf9-P2Y1 membranes (250 ng 
per assay) were incubated with 100 pM [32P]MRS2500 and the indicated concentrations of 
P2Y1 receptor agonists. b, Sf9-P2Y1 membranes (500 ng per assay) were incubated with 200 
pM [32P]MRS2500 and the indicated concentrations of the P2Y1 receptor selective 
antagonists. Values are reported as % binding observed in the absence of competing ligand.  
Data shown are averages of triplicate samples ± S.E.M. from a representative experiment.   
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Figure 2.5. [32P]MRS2500 binding in adult male rat brain. a, Membranes prepared from 
adult male rat brain (30 µg per assay) were incubated for 45 min with the indicated 
concentrations of [32P]MRS2500 without or with the P2Y1R selective antagonist MRS2179 
(100 µM).  Inset, Scatchard transformation of the data.  b, Membranes from adult male rat 
brains (50 µg per assay) were incubated with 200 pM [32P]MRS2500 and the indicated 
concentrations of the indicated P2Y1 receptor antagonists. Values are reported as % binding 
observed in the absence of competing ligand.  Data shown are averages of triplicate samples 
(a) or averages of triplicate samples ± S.E.M. (b) from a representative experiment (n=3).  
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Figure 2.6.  [32]MRS2500 binding in adult rat tissues. Membranes prepared from various 
tissues of adult male Sprague Dawley rats were incubated with 4 nM [32P]MRS2500 in the 
presence or absence of MRS2179.  Specific binding was normalized to protein amounts.   
Values are reported as fmol [32P]MRS2500 bound per mg protein.  Data shown are averages 
of triplicate samples ± S.E.M. from a representative experiment (n=3). 
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CHAPTER 3 
 

HUMAN PLATELET P2Y1 RECEPTOR: QUANTIFICATION DURING 
DESENSITIZATION INDUCED BY A RECEPTOR SELECTIVE AGONIST 

 
3.1  Introduction 
 

Platelet aggregation is a complex physiological process that underlies many major 

physiological and pathological events including thrombosis, stroke, wound healing, 

hemostasis, and atherosclerosis.  Consequently, understanding of the molecular mechanisms 

underlying platelet aggregation is of significant interest for the development of  therapeutic 

interventions.  Vascular injury results in platelet activation and, among other events, the 

subsequent release of platelet dense granule contents (Offermanns, 2006).  Adenosine 

diphosphate (ADP), stored in platelet dense granules, activates the P2Y1 and P2Y12 G-protein 

coupled receptors, which act synergistically to promote platelet aggregation.  Activation of 

the Gαq-coupled (Gq) P2Y1 receptor results in platelet shape change and the initiation of a 

transient wave of aggregation (Hechler et al., 1998).  Activation of the Gαi-coupled (Gi) 

P2Y12 receptor results in activation of the receptor for fibrinogen and sustained aggregation 

(Yang et al., 2002).  Activation of both of these receptors is necessary for complete platelet 

aggregation, and each is an important potential target for treatment of disorders involving 

dysregulated platelet function.   

The P2Y1 and P2Y12 receptors are members of the P2Y family of nucleotide-activated 

G-protein coupled receptors. Currently, there are eight recognized P2Y receptors, and these 

are activated by adenine and uridine nucleotide di- and triphosphates and nucleotide sugars 



  

 

(Burnstock, 2004).   Clear description of the signaling properties of P2Y receptors has 

historically been difficult due to extracellular nucleotide metabolism and a lack of selective 

ligands.  In the case of the P2Y1 and P2Y12 receptors, the distinction between individual 

receptors mediating Gq and Gi signaling pathways in platelets was made possible by the 

cloning of a Gq-coupled ADP receptor on platelets and identification of a P2Y1-receptor 

selective antagonist, adenosine 3′, 5′ bisphosphate (Boyer et al., 1996; Janssens et al., 1996; 

Jantzen et al., 1999; Leon et al., 1996; Schachter et al., 1996).  Subsequently, the P2Y12 

receptor was cloned and identified to be the target of thienopyridine compounds, such as 

clopidogrel, successful at inhibiting platelet aggregation in vivo (Hollopeter et al., 2001).   

 Molecular modeling, site-directed mutagenesis, and structure activity relationships for 

adenosine bisphosphate analogues have led to the development of several selective P2Y1 

receptor antagonists (Boyer et al., 2002; Boyer et al., 1998; Camaioni et al., 1998; Hoffmann 

et al., 1999; Jacobson et al., 1999; Jacobson et al., 2001; Jiang et al., 1997; Kim et al., 2001; 

Kim et al., 2003; Kim et al., 2002; Kim et al., 2000; Moro et al., 1998; Nandanan et al., 

1999; Nandanan et al., 2000; Ravi et al., 2002).  Of these, two have been synthesized as 

radiolabeled ligands: [3H]MRS2279, with a specific radioactivity of 89 Ci/mmol (Waldo et 

al., 2002) and [32P]MRS2500, with a specific radioactivity of 9000 Ci/mmol (Houston et al., 

2006; Waldo et al., 2002).  Recently, we demonstrated the utility of [32P]MRS2500 for 

labeling endogenous P2Y1 receptors in a variety of mammalian tissues.  Its high specific 

radioactivity, high affinity and high selectivity for the P2Y1 receptor make it a useful tool for 

studying P2Y1 receptors in systems expressing multiple nucleotide receptors, such as 

platelets.  
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Recently, we reported the identification of a high affinity, P2Y1 receptor-selective 

agonist, (N)-methanocarba-2-methylthioadenosine diphosphate (MRS2365) (Bourdon et al., 

2006; Chhatriwala et al., 2004).   Activated platelets are known to become refractory to 

further stimulation with ADP.  Selective activation of P2Y1 receptors in washed human 

platelets by MRS2365 revealed that loss of platelet responsiveness to ADP occurs as a result 

of rapid desensitization of the P2Y1 receptor.  Studies by Baurand et al have also 

demonstrated that a rapid loss of surface P2Y1 receptor immunoreactivity also occurs after 

treatment with a nonselective agonist (Baurand et al., 2005).  While the refractoriness of 

platelets to ADP can be reversed by removal of extracellular ADP with apyrase, the time 

course for this recovery is still undefined.  Additionally, whether desensitization and 

resensitization of the ADP response of human platelets is temporally associated with changes 

in surface P2Y1 receptor expression is as yet undetermined.      

In the current study, we explored the phenomenon of agonist-induced desensitization 

and sequestration of the P2Y1 receptor using the combination of a P2Y1 receptor-selective 

agonist and a high affinity, high-specific radioactivity P2Y1 receptor radioligand.  We 

illustrate that rapid desensitization occurs with the Gq-coupled 5-HT2A receptor in platelets 

and that receptor desensitization is not paralleled by a significant loss of surface P2Y1 

receptor binding sites, suggesting that platelets have devised unique mechanisms for 

desensitizing components of the platelet aggregation pathway while preserving platelet 

responsiveness overall.  
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3.2  Materials and Methods 

Materials 

ADP, 2MeSADP, prostacyclin, fibrinogen, apyrase, bovine serum albumin and other 

reagents were purchased from Sigma Chemical Company, St. Louis, MO, USA. MRS2179 

was from Tocris-Cookson, Inc., Ellisville, MO, USA.  Heparin (1000 U ml-1, Baxter 

Healthcare, Deerfield, IL, USA) was obtained from the University of North Carolina 

Hospital.   

Synthesis of MRS2365 and [32P]MRS2500  

Synthesis and purification of the P2Y1-selective ligands (N)-methanocarba-

2MeSADP (MRS2365) (Ravi et al., 2002) and [32P]2-iodo-N6-methyl-(N)-methanocarba-2′-

deoxyadenosine-3′,5′-bisphosphate ([32P]MRS2500) were as described previously (Chapter 

2).   

Preparation and assay of washed human platelets 

 Suspensions of washed human platelets were prepared using a modification of the 

method described by Cazenave, et al (Cazenave et al., 2004).  Briefly, 150 ml of blood was 

drawn from healthy volunteers into 60 ml syringes containing one-sixth final blood volume 

of 65 mM citric acid, 85 mM sodium citrate, 110 mM dextrose and aliquoted into sterile 50 

ml conical tubes.  After a 30 minute incubation at 37ºC, tubes were centrifuged at 275 x g for 

16 minutes.  Supernatants from the first centrifugation (platelet-rich plasma) were pooled and 

centrifuged for 13 minutes at 2200 x g.  The resulting pellet containing platelets was 

resuspended in modified Tyrode’s buffer (137 mM NaCl, 2.7 mM CaCl2, 1 mM MgCl2, 3 

mM NaH2PO4, 5 mM glucose, 10 mM HEPES, and 0.36 % bovine serum albumin, pH 7.35) 
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containing an additional 10 U ml-1 heparin and 5 µM prostacyclin (PGI2).  Following a 10 

min incubation at 37ºC, prostacyclin was replenished to 5 µM.  Platelets were centrifuged for 

8 min at 1900 x g and washed as before except without heparin.  After the second wash, 

platelets were resuspended in modified Tyrode’s solution containing 0.05 U ml -1 apyrase to 

a final density of 5 x 108 platelets ml-1.  Platelets were maintained at 37ºC for 90 minutes 

prior to experiments. 

 Platelet aggregation was quantified using a two-channel Chrono-Log aggregometer 

(Model 560-VS; Chrono-Log Corporation, Havertown, PA, USA) in optical mode.  For each 

measurement, 425-450 µl washed platelets were stirred at 1000 rpm at 37ºC and light 

transmission was recorded relative to platelet resuspension buffer for 6-8 minutes. For all 

measurements, 25 µl of 20 mg ml-1 fibrinogen was added to the cuvette prior to recording 

and test compounds were added at least 1 minute after commencement of recording.  

Radioligand binding assay 

Washed platelets were typically incubated for 20 minutes in an ice water bath with 

0.1 -0.25 nM [32P]MRS2500 in radioligand binding assay buffer (20 mM Hepes, 145 mM 

NaCl, 5 mM MgCl2, pH 7.4) in a 25 µl reaction volume in 12x75 mm conical polypropylene 

test tubes.  Saturation binding isotherms were performed at concentrations of [32P]MRS2500 

from 0.01 nM to 6 nM in a 25 µl reaction volume.  Specific binding was defined as total 

[32P]MRS2500 bound minus binding occurring in the presence of  100 µM MRS2179.  

Reactions were terminated by the addition of 3.5 ml of ice cold assay buffer followed by 

vacuum filtration over Whatman GF/A glass microfiber filters.  The filters were washed 

twice with 3.5 ml ice cold assay buffer and radioactivity on each filter was quantified by 

liquid scintillation counting.  

84



  

 

Measurement of surface binding sites with [32P]MRS2500 

For the detection of changes in surface P2Y1 receptor binding sites on washed 

platelets, 200 µl aliquots of a washed human platelet suspension (5 x 108 ml-1) were 

incubated at 37ºC for ten minutes, followed by the addition of 100 µM ADP or 10 µM 

MRS2365 for various times.  Reactions were stopped by the addition of 1 ml of ice cold 

modified Tyrode’s solution and immediate centrifugation for ten minutes at 3000 x g at 4ºC. 

Samples were maintained at 4ºC for all subsequent procedures.  Centrifuged platelets were 

washed once with Tyrode’s solution and again with radioligand binding buffer and 

resuspended after the final wash in 250 µl of radioligand binding buffer.  Total and 

nonspecific binding of [32P]MRS2500 was determined in triplicate for each sample as 

described above.   

Data Analysis 

All binding assays were conducted in triplicate and were carried out at least three 

times or on samples from three individual donors. Aggregometer traces are presented as 

representative results from a typical experiment. Data were analyzed using GraphPad Prism 

(GraphPad Software, San Diego, CA).  Binding data are presented as the mean ± S.E.M. 

from combined multiple experiments or in some cases as a data set from a typical 

experiment.  

 

3.3  Results 

Desensitization of the P2Y1 receptor in human platelets is rapid and reversible 

 Platelet aggregation requires the synergistic activation of the P2Y1 and P2Y12 

receptors by ADP released from platelet dense granules. After stimulation with ADP, 
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platelets become refractory to further ADP stimulation.  We recently reported the rapid 

desensitization of the P2Y1 receptor using the selective agonist (N)-methanocarba-2-

MeSADP (MRS2365) (Bourdon et al., 2006).  We have extended our studies of agonist-

induced desensitization of the P2Y1 receptor of human platelets with the goals of 1) 

determining if the remarkably rapid desensitization of the P2Y1 receptor in platelets is unique 

to the P2Y1 receptor by examining the desensitization of another platelet Gq-coupled 

receptor, the 5-HT2A receptor; 2) defining the time course of resensitization of the platelet 

response to ADP following removal of a P2Y1 selective agonist; 3) establishing a radioligand 

binding assay in washed human platelets using the high specific radioactivity radioligand 

[32P]MRS2500; and 4) applying this radioligand binding assay to examine agonist-induced 

changes in surface P2Y1 receptor expression. 

Quantification of desensitization and resensitization of P2Y1 receptors in washed 

human platelets was carried out by measuring light transmission in cuvettes containing 

stirred washed platelets to which various agonists were added.  Experiments examining the 

rate of recovery of platelet responsiveness to ADP required removal of the P2Y1 receptor 

selective agonist, MRS2365 with apyrase, followed by induction of the aggregation response 

using the non-hydrolyzable ADP analogue ADPβS.  Consequently, all experiments 

measuring platelet aggregation were carried out using ADPβS as the agonist for activation of 

the P2Y1 and P2Y12 receptors.   To assess the efficacy of ADPβS to promote platelet 

aggregation, we compared aggregation induced by ADPβS to that of the endogenous agonist, 

ADP, in washed human platelets.  ADPβS was previously shown to induce submaximal 

platelet aggregation in washed human platelets and was identified as a partial agonist of the 

purified recombinant P2Y1 and P2Y12 receptors (Bodor et al., 2003; Park et al., 1999; Waldo 
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et al., 2004).  In platelet aggregation dose-response curves generated to ADP and ADPβS,  

partial agonist activity of ADPβS was observed with a maximal concentration of ADPβS 

producing 52% of the aggregation observed in the presence of a similar dose of ADP (Fig. 

3.1 a and b). ADPβS was approximately three-fold less potent than ADP for inducing 

aggregation.    

 Agonist-induced desensitization of the P2Y1 receptor of human platelets was shown 

to occur with remarkably rapid kinetics, with full desensitization observed in less than two 

minutes (Bourdon et al., 2006).  To determine if agonist-induced desensitization is unique to 

the P2Y1 receptor, we compared the rate of desensitization of the P2Y1 receptor to the rate of 

desensitization of another Gq-coupled receptor expressed in platelets, the 5-HT2A receptor.  

As shown in Fig. 3.2, pretreatment of platelets with the selective P2Y1 receptor agonist 

MRS2365 for two minutes resulted in almost complete loss of responsiveness to a further 

challenge with the ADP analogue ADPβS.  This desensitization was P2Y1 receptor-specific 

since the platelet aggregation response to ADPβS still occurred in the presence of 5-HT, 

which activates the Gq signaling pathway necessary for aggregation independent of the P2Y1 

receptor.  Desensitization of the 5-HT2A receptor was assessed by pretreatment of platelets 

with 5-HT followed by induction of aggregation by the combination of 5-HT and the Gi-

coupled α2A receptor agonist epinephrine.  While the combination of 5-HT and epinephrine 

induced platelet aggregation independent of the addition of adenine nucleotides, pretreatment 

of platelets for two minutes with 5-HT resulted in a loss of the ability of 5-HT and 

epinephrine to produce platelet aggregation.  Partial desensitization of the 5-HT2A receptor 

was observed within 15 seconds and full loss of responsiveness occurred within one minute 

(data not shown) similar to the kinetics observed with the P2Y1 receptor.  Activation of the 
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P2Y1 receptor with MRS2365 produced robust platelet aggregation in combination with 

epinephrine after desensitization of the Gq-coupled 5-HT2A receptor (Fig 3.3).    These data 

indicate that both the Gq-coupled P2Y1 and 5-HT2A receptors are rapidly desensitized after 

activation by their cognate agonists.   

To determine if the rapidly occurring desensitization of the P2Y1 receptor is reversed 

with similarly rapid kinetics, we examined the recovery of responsiveness after removal of 

the agonist with apyrase.  In preliminary experiments, we determined that 1 µM MRS2365 is 

completely hydrolyzed by 2 U ml-1 apyrase within 2 minutes (data not shown). ADPβS-

induced aggregation was abolished after two minutes of pretreatment with MRS2365.  

Recovery of ADPβS-induced platelet aggregation was then measured at time points 

following the addition of apyrase.  As illustrated in Figure 3.4, removal of agonist with 

apyrase resulted in recovery of approximately half of the control ADPβS-induced platelet 

aggregation that was maximal in 10 minutes.  The t½ for recovery under these experimental 

conditions was approximately 5 min (Fig. 3.4).  These data indicate that after rapid 

desensitization of the P2Y1 receptor with MRS2365, removal of the selective agonist results 

in a slow, partial recovery of ADPβS-induced platelet aggregation.  Whether this partial 

recovery reflects partial resensitization of the P2Y1 receptor is unclear.   

[32P]MRS2500 selectively labels P2Y1 receptors in human platelets 

We recently reported the synthesis of [32P]MRS2500 and described its utility for 

labeling P2Y1 receptors in native rat tissues (Houston et al., 2006).  To confirm the suitability 

of [32P]MRS2500 for measuring changes in surface P2Y1 receptors in washed platelets, we 

first established the affinity and pharmacological selectivity for [32P]MRS2500 binding to the 

P2Y1 receptor of washed platelets through a series of saturation binding and competition 
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binding analyses.  In saturation binding experiments, [32P]MRS2500 bound to the P2Y1 

receptor of human platelets with a KD of 0.33 ± 0.08 nM and a Bmax of 45 ± 2.2 binding sites 

per platelet (Fig 3.5).   

 The pharmacological selectivity of a series of selective P2Y1 receptor agonists and 

antagonists was established in competition binding assays with [32P]MRS2500 in washed 

platelets (Fig 3.6, Table 3.1).  MRS2179, MRS2279 and MRS2500 inhibited [32P]MRS2500 

binding with Ki values of 47.1, 19.0 and 4.2 nM, respectively.  These values are in agreement 

with the apparent affinities of these compounds for inhibiting second messenger signaling 

and platelet aggregation (Baurand et al., 2001; Boyer et al., 2002; Boyer et al., 1998; Hechler 

et al., 2006).   

 Ki values were also determined for the P2Y1 agonists 2MeSADP, ADP, ADPβS and 

MRS2365 in human platelets.  ADP and ADPβS inhibited [32P]MRS2500 binding in platelets 

with Ki values of 1.6 and 2.8 µM, respectively, while 2MeSADP and MRS2365 exhibited 5-

fold and 50-fold greater affinities than ADP, respectively (Fig. 3.6b, Table 3.1).  The Ki value 

for ADP was in excellent agreement with that observed in competition binding assays with 

[3H]MRS2279 at the purified human P2Y1 receptor. Collectively, these data indicate that 

[32P]MRS2500 selectively labels P2Y1 receptors in human platelets.   

P2Y1 receptor binding sites are minimally diminished during agonist treatment in human 

platelets.   

Agonist-induced internalization has been reported to accompany agonist-induced 

desensitization.  Previous reports suggest that, upon agonist treatment, P2Y1 receptors are 

removed from the surface of platelets in a clathrin- and PKC-dependent manner (Baurand et 

al., 2005) .  Using the nonselective agonist, ADP, we measured agonist-promoted changes in 
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the number of surface binding sites for the selective radioligand, [32P]MRS2500.  Within one 

minute of agonist treatment, a 20% decrease in the number of surface [32P]MRS2500 binding 

sites was observed that was maintained for at least five minutes (Fig. 3.5).  For technical 

reasons, resolution of the time course of loss of surface P2Y1 receptors was not possible.  

Treatment with the selective agonist, MRS2365, yielded similar results.  Removal of either 

ADP or MRS2365 with apyrase resulted in recovery of surface binding sites to near control 

values within fifteen minutes.  Thus, the change in surface P2Y1 receptor expression 

correlated with the reappearance of functional response (Fig. 3.5b).  These results suggest 

that internalization is not a major mechanism of signal termination for the P2Y1 receptor of 

human platelets.     

 

3.4  Discussion 

 The results presented here demonstrate the use of novel, highly selective 

pharmacological tools to study agonist-promoted regulation of P2Y1 receptor function and 

surface expression in washed human platelets.  We have demonstrated that rapid 

desensitization of the P2Y1 receptor in platelets also occurs with another Gq-coupled receptor 

in platelets, the 5-HT2A receptor, and that removal of a P2Y1-selective agonist with apyrase 

results in only a partial recovery of the observed aggregation response to ADPβS.  

Additionally, we illustrated that cell surface binding sites for the P2Y1-selective radioligand, 

[32P]MRS2500 are minimally diminished during treatment of human platelets with a P2Y1 

receptor agonist.  Taken together, these data provide new insight into the regulatory 

responses employed by platelets to control platelet function in a dynamic signaling 

environment.  
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 Previously, we reported the uniquely rapid desensitization of the P2Y1 receptor of 

human platelets after incubation with the P2Y1-selective, high-affinity agonist, MRS2365 

(Bourdon et al., 2006).  This compound does not interact with the P2Y12 receptor and induces 

shape change that is selectively inhibited by antagonists of the P2Y1 receptor, suggesting that 

the P2X1 receptor is not involved.   Desensitization of the P2Y1 receptor was remarkably fast, 

occurring with a t1/2 of  18 seconds.  The loss of platelet ADP-induced platelet aggregation 

was due to homologous P2Y1 receptor desensitization since activation of another Gq-coupled 

receptor, the 5-HT2A receptor, restored ADP-induced platelet aggregation.  These data are 

consistent with the conclusion that desensitization of the P2Y1 receptor-promoted response 

occurred at the level of the receptor rather than at the level of the G-protein or other 

downstream signaling machinery.   

Having determined that agonist-induced desensitization of the P2Y1 receptor is 

homologous and that platelets retain the capacity to aggregate through the Gq pathway, we 

examined the time course of desensitization of the Gq-coupled 5-HT2A receptor to determine 

if the rapid kinetics of desensitization were indeed unique to the P2Y1 receptor.  We showed 

that platelet aggregation promoted by the 5-HT2A receptor was completely abolished after a 2 

minute pretreatment with 5-HT.  As with the homologous desensitization of the P2Y1 

receptor, this loss of responsiveness was receptor-specific since induction of Gq-signaling 

through the P2Y1 receptor was sufficient to produce robust platelet aggregation after 

pretreatment of platelets with 5-HT.     

Our data suggest two important notions about platelet signaling.  First, desensitization 

of receptor-promoted Gq responses is remarkably rapid and is not unique to a single platelet 

Gq-coupled receptor.  Studies on agonist-induced desensitization of Gq–coupled receptors 
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have been limited, and the rapid and complete desensitization observed after less than two 

minutes of agonist treatment suggests that platelets have devised a mechanism to rapidly 

terminate responsiveness to Gq agonists after initial exposure.   Whether this response occurs 

with all platelet Gq-coupled receptors obviously requires further study.  Secondly, 

desensitization of the platelet Gq-linked receptor does not appear to be heterologous and does 

not permanently affect pathways downstream of the Gq response.  Second-messenger kinases 

are implicated in rapid, negative feedback of agonist-promoted signals through G-protein 

coupled receptors and protein kinase C has been implicated in the desensitization of both the 

5-HT2A and P2Y1 receptors.  However, if activation of PKC is involved in negative feedback, 

its action occurs in a receptor-specific manner.  How this receptor specificity is achieved is 

unclear. 

 The time course of recovery of P2Y1 receptor responsiveness was also investigated in 

these studies, taking advantage of the hydrolyzable, P2Y1-selective agonist MRS2365 and 

the non-hydrolyzable, non-selective agonist of platelet aggregation, ADPβS.  The 

aggregation response to ADPβS was only partially recovered following desensitization of the 

P2Y1 receptor. Partial recovery of ADPβS-induced platelet aggregation after P2Y1-receptor 

desensitization could reflect another unique mechanism devised by platelets to prevent 

repetitive stimulation in the presence of ADP.  Results using the selective radioligand 

[32P]MRS2500 indicate that the number of cell surface P2Y1 receptors is not greatly reduced 

after agonist treatment, leaving the possibility that receptors retained on the cell surface exist 

in a prolonged desensitized state.  For many GPCRs, internalization serves as a means to 

restore the ability of the receptor to respond to agonist, by dephosphorylation of the receptor 

and recycling to the cell surface, or to permanently terminate receptor signaling by receptor 
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degradation.  The platelet is a small, anucleated cell with a singular function – to form 

aggregates in response to vascular injury – and a short lifespan of only 10 days.  A system in 

which the majority of P2Y1 receptors are not internalized but remain desensitized on the cell 

surface possibly reflects the design for the platelet to respond once and only once to vascular 

injury and  reduces the amount of trafficking machinery necessary for this small cell to carry 

out its function for its short lifespan.  The observed rapid loss of a small number of surface 

P2Y1 receptors during agonist treatment and the partial recovery of the ADPβS-induced 

aggregation response may reflect constitutive cycling of unactivated, unphosphorylated P2Y1 

receptors. 

Binding data presented here clearly indicate that [32P]MRS2500 is a selective 

radioligand for the P2Y1 receptor of human platelets.  This work provides the first 

determination of agonist affinities in human platelets and was made possible by the high 

specific radioactivity of [32P]MRS2500.  Nucleotides are not significantly degraded under the 

conditions of our binding assays which were carried out at 4º C with small amounts of 

protein from the low number of platelets used for each sample.  The accuracy of these values 

for agonist binding is underscored by the fact that Ki  values determined for agonists in these 

studies mirror those obtained with the purified, recombinant human P2Y1 receptor (Waldo et 

al., 2004).  One future direction of this work will be to determine whether GTP-sensitive 

agonist binding is observed in competition binding assays with [32P]MRS2500 using 

membranes from washed platelets.  GTP-sensitive agonist binding has been historically 

difficult to demonstrate for Gq-coupled receptors, but the high affinity of [32P]MRS2500 and 

MRS2365 along with preliminary data from our lab suggest that a shift to a low-affinity 

binding state for MRS2365 can be observed in the presence of GTP in platelet membranes.  
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One possible advantage of the demonstration of GTP-sensitive agonist binding will be to use 

this methodology to examine the state of receptor-G-protein coupling in membranes from 

agonist-treated platelets.  Such studies should reveal whether the receptor is uncoupled from 

G protein in the agonist-desensitized state and may help resolve the question of whether the 

relatively small changes in surface [32P]MRS2500 binding sites observed during conditions 

of almost complete loss of P2Y1 receptor signaling reflect the maintenance of desensitized 

receptors at the cell surface.   

 In these studies, we demonstrate the first use of a selective radioligand [32P]MRS2500 

to quantify surface binding sites before and after agonist treatment in human platelets. This 

technique has an advantage over antibody labeling since platelets were not fixed during 

preparation and receptors likely retained their normal binding characteristics; additionally, 

the use of a selective radioligand obviates ambiguous labeling of P2Y12 receptors which are 

regulated distinctly from P2Y1 receptors in response to agonist.  While previous studies 

suggest a rapid and significant loss of P2Y1 receptors from the plasma membrane upon 

agonist treatment, our results suggest that receptor internalization is indeed rapid, but does 

not occur to a significant extent (Baurand et al., 2005).  Discrepancies between these studies 

and previous reports most likely result from differences in technical approach and each leave 

room for further investigation.  Interestingly, treatment with the selective agonist MRS2365 

and the non-selective agonist ADP resulted in similar results for receptor internalization, 

suggesting that trafficking of P2Y1 receptors is independent of activation and trafficking of 

P2Y12 receptors.   

 Taken together, these data demonstrate the usefulness of selective pharmacological 

tools for studying P2Y1 receptor signaling and trafficking in human platelets and lend to our 
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understanding of the regulatory mechanisms employed by platelets to adjust to a dynamic 

signaling environment. Based on our results, we propose a model in which ADP activates the 

P2Y1 and P2Y12 receptors to promote platelet aggregation leading to rapid phosphorylation 

and desensitization but not internalization of the P2Y1 receptor, and that the majority of P2Y1 

receptors remain in a permanently desensitized state on the cell surface for the short lifespan 

of the platelet. These and future studies will yield important information about platelet P2Y1 

receptor signaling and potentially aid in the development of novel anti-platelet therapeutics.   
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Agonist n Ki (µM) 
MRS2365 3 0.037 ± 0.01 
2MeSADP 3 0.41 ± 0.11 
ADP 4 1.8 ± 0.53 
ADPβS 4 2.6 ± 0.76 
   
Antagonist n Ki (nM) 
MRS2500 3 4.2 ± 1.7 
MRS2279 5 19 ± 6.7 
MRS2179 3 47.1 ± 11 

 
Values reported are the average of 3 or more experiments ± S.E.M.  
 
 

Table 3.1. Ki values for P2Y1 receptor agonists and antagonists in washed human 
platelets. 
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Figure 3.1.  Partial agonist activity of ADPβS in platelet aggregation.  a) Suspensions of 
washed human platelets were treated with 100 µM ADP or ADPβS and platelet aggregation 
was recorded.  b) Maximal aggregation was measured in response to the indicated 
concentrations of ADP () or ADPβS ().  Maximal aggregation and EC50 values were 
determined using nonlinear regression.  Data are from a single experiment and are 
representative of at least three experiments.   
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Figure 3.2.  Rapid desensitization of the P2Y1 receptor in washed human platelets.  
Suspensions of washed human platelets were pretreated with PBS (blue and black traces) or 1 
µM MRS2365 (red and green traces) for two minutes.  The black arrow indicates the time of 
addition of reagents following the arrow in each label: 10 µM  5-HT (blue trace), 100 µM 
ADPβS (black and red traces) or 10 µM 5-HT + 100 µM ADPβS (green trace).   Aggregation 
traces presented are from a single experiment representative of at least three experiments. 
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Figure 3.3.  Rapid desensitization of the 5-HT2A receptor in washed human platelets. 
Suspensions of washed human platelets were pretreated with PBS (blue and black traces) or 
10 µM 5-HT (red and green traces) for two minutes. The black arrow indicates the time of 
addition of reagents following the arrow in each label: 1 µM epinephrine (blue trace), 10 µM 
5-HT + 1 µM epinephrine (black and red traces) or 10 µM 5-HT + 1 µM epinephrine + 1 µM 
MRS2365 (green trace).  Aggregation traces presented are from a single experiment 
representative of at least three experiments. 
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Figure 3.4.  Recovery of functional response after removal of a P2Y1 receptor-selective 
agonist in human platelets.  Suspensions of washed human platelets were treated with 
MRS2365 for two minutes followed by the addition of 2 U/ml apyrase.  100 µM ADPβS was 
added at the indicated times after apyrase.  Control, Aggregation in response to 100 µM 
ADPβS was measured after treatment with apyrase for the longest indicated time point.  Data 
are from a single experiment and are representative of three separate experiments.   
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Figure 3.5.  Saturation binding isotherm for [32P]MRS2500 binding to P2Y1 receptors in 
washed human platelets.  Washed human platelets (5x106/assay) were incubated with the 
indicated concentrations of [32P]MRS2500 without ()or with () the P2Y1R selective 
antagonist MRS2179 (100 µM). Values are reported as fmol [32P]MRS2500 bound observed 
in the absence of competing ligand.  Data shown are averages of triplicate samples ± S.E.M. 
from a representative experiment. 
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Figure 3.6. Pharmacological selectivity of [32P]MRS2500 binding to the P2Y1 receptor 
of washed human platelets. a, Washed human platelets (5x106  washed platelets per assay) 
were incubated with 200 pM [32P]MRS2500 and increasing concentrations of the P2Y1 
receptor antagonists MRS2179 (), MRS2279 () and MRS2500 (). b, Washed human 
platelets (5x106  washed platelets per assay) were incubated with 200 pM [32P]MRS2500 and 
increasing concentrations of the P2Y1 receptor agonists ADPβS (), ADP (), 2MeSADP 
() and MRS2365 (). Values are reported as % binding observed in the absence of 
competing ligand.  Data shown are averages of triplicate samples ± S.E.M. from a 
representative experiment. 
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Figure 3.7. Changes in surface [32P]MRS2500 binding in washed human platelets after 
treatment with P2Y1 receptor agonists.  a, Suspensions of washed human platelets were 
incubated with 100 µM ADP for the indicated times.  Cells were chilled to 4ºC and washed 
with repeated centrifugation, and surface binding sites were quantified with [32P]MRS2500. 
Data shown are averages of triplicate samples ± S.E.M. from a representative experiment. b, 
Washed human platelets treated with 10 µM MRS2365 at 37ºC for the indicated times after 
which agonist was removed with 0.2 U/ml apyrase and cells were placed at 37ºC for an 
additional 5 or 15 minutes.  Cell surface receptors were quantified as described in a. All 
values are normalized to the total amount of [32P]MRS2500 binding in the absence of agonist 
treatment. Data shown are average values ± S.E.M. pooled from three experiments.  
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CHAPTER 4 
 

SER-352 AND SER-354 IN THE CARBOXYL TERMINUS OF THE HUMAN P2Y1 
RECEPTOR ARE REQUIRED FOR AGONIST-DEPENDENT INTERNALIZATION 
 
4.1  Introduction 

A clear understanding of the mechanisms governing agonist-promoted regulation of 

G-protein coupled receptors is critical to the complete evaluation of the actions of current and 

potential therapeutics. Cells have evolved a number of ways to terminate the agonist-

promoted signaling of G-protein coupled receptors, including a system of desensitization and 

internalization, preventing further coupling to and activation of G-proteins.  The current 

model for GPCR desensitization and internalization, which involves phosphorylation by G-

protein-coupled receptor kinases, arrestin binding, and internalization into clathrin-coated 

pits, is based on studies of the β2-adrenergic receptor, although many other GPCRs have 

been shown to desensitize and internalize by this and alternative mechanisms (Bhattacharyya 

et al., 2002; Paing et al., 2002; Pierce et al., 2002; Waugh et al., 1999).  

The P2Y family of G-protein coupled receptors are activated by extracellular adenine 

and uridine nucleotide di- and triphosphates and nucleotide sugars.  The eight recognized 

mammalian P2Y receptors can be subclassified based on sequence homology and G-protein 

coupling.  The P2Y1, P2Y2, P2Y4, P2Y6, and P2Y11 receptors couple to the Gq class of Gα 

subunits to activate phospholipase C beta. P2Y11 is also capable of stimulating adenlylyl 

cyclase activity through coupling to Gs.  The P2Y12, P2Y13 and P2Y14 receptors couple to the 

Gi family of Gα subunits to inhibit adenylyl cyclase activity (Abbracchio et al., 2006a; 



  

 

Costanzi et al., 2004; Qi et al., 2001).  Historically, investigation of the signaling and 

physiology of P2Y receptors has been impeded by a lack of selective, metabolically stable 

pharmacological and other biochemical agents.  As a result, information regarding the 

agonist-promoted regulation of these receptors is limited.    

The P2Y1 receptor is activated by ADP and, in platelets, responds simultaneously 

with the ADP-activated P2Y12 receptor to initiate platelet aggregation (Hechler et al., 1998; 

Hollopeter et al., 2001; Jantzen et al., 1999; Jin et al., 1998).  Like other P2Y receptors, few 

studies exist that address the mechanisms of desensitization and internalization of the P2Y1 

receptor.   We showed recently that the P2Y1 receptor in platelets desensitizes rapidly in 

response to the selective agonist (N)-methanocarba-2-methylthioadenosine-diphosphate 

(MRS2365) (Bourdon et al., 2006). Recent reports by others also have indicated that the 

P2Y1 receptor is phosphorylated and undergoes rapid, reversible internalization in human 

platelets and astrocytoma cells and that this activity requires the activation of conventional 

and novel protein kinase C isoforms but not G-protein coupled receptor kinases (Baurand et 

al., 2000; Hardy et al., 2005; Mundell et al., 2006a).  However, the domains and specific 

residues of the receptor responsible for facilitation of these activities have not been 

determined.  

In Chapter 2, synthesis of the selective, high-affinity, high-specific radioactivity 

radioligand [32P]MRS2500 is described, and its utility is demonstrated for studying 

endogenous P2Y1 receptor binding sites in mammalian tissues.  Here, we apply this novel 

molecule to quantify P2Y1 receptors in studies designed to determine the molecular 

determinants of agonist-induced internalization of this signaling protein.  the molecular 

determinants of P2Y1 receptor internalization.  In Madin-Darby canine kidney (MDCK) 
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cells, we have taken advantage of the high specific radioactivity of [32P]MRS2500 to 

quantify the agonist-promoted loss of surface binding sites of endogenous and stably 

expressed receptors.  We have used a series of mutant P2Y1 receptors with putative 

phosphorylation sites mutated to alanine or lacking regions of the carboxyl terminus to 

identify the regions necessary for agonist-promoted internalization.  These studies indicate a 

clear role for serine residues in the carboxyl terminus of the receptor in agonist-promoted 

internalization.  

 

4.2  Materials and Methods 

Construction of Mutant P2Y1 Receptor cDNAs 

 The human P2Y1 receptor was cloned into the pLXSN retroviral expression vector 

with an amino-terminal HA epitope tag, YPYDVPDYA, following the initiating methionine 

residue as described previously (Wolff et al., 2005).  Previous studies have demonstrated that 

incorporation of an amino-terminal HA-tag does not interfere with P2Y receptor function 

(Sromek et al., 1998). Truncation mutants and a C-tail serine/threonine to alanine mutant 

(P2Y1-340/0P) were constructed by PCR amplification with Pfu polymerase (Stratagene, La 

Jolla, CA) followed by restriction digest and ligation into pLXSN vector.  Truncation 

mutants were constructed using PCR amplification with 5′ primers containing an EcoRI 

restriction site and 3′ primers containing a stop codon after Thr-339 (Δ339), Asn-349 (Δ349), 

Asn-359 (Δ359) or Gly-369 (Δ369) and a XhoI restriction site to enable cloning into similarly 

digested pLXSN. The P2Y1-340/0P mutant was constructed using long overlapping primers 

up to 60 bases in length overlapping by approximately 18 bases containing the indicated 

mutations.  The sense primer contained a XhoI restriction site and the antisense primer 
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contained a BamHI restriction site.  The primers were annealed and filled in with the Klenow 

fragment of DNA polymerase followed by digestion and ligation into a P2Y1-∆339 

truncation mutant containing silent mutations to incorporate the necessary restriction sites.  

Individual point mutants S343A, S346A, S352A, S354A, T354A, and the S336/T339A 

(ARAA) and S352/354A mutants were constructed using the Stratagene QuikChange 

Mutagenesis Kit (Stratagene, La Jolla, CA) with HA-P2Y1 in pLXSN as the template and 

reverse complementary primers between 30 and 45 bases in length with alanine substitutions 

at the indicated sites.   Constructs were confirmed by DNA sequencing at the UNC DNA 

Sequencing facility and purified using the Qiagen maxiprep kit (Qiagen, Valencia, CA).   

Cell Culture and Expression of Receptor Constructs 

 MDCK(II) epithelial cells were maintained in 50/50 DMEM/F12 medium 

(Invitrogen, Grand Island, NY) supplemented with 10% fetal bovine serum (Sigma, St. 

Louis, MO).  PA317 retroviral packaging cells were maintained in DMEM supplemented 

with 10% fetal bovine serum.  Purified cDNAs of each construct were stably expressed in 

MDCK(II) cells by retroviral infection of target cells using the method of Comstock et al., 

(Comstock et al., 1997).  Briefly, PA317 retroviral packaging cells were plated at a density 

of 1x106 cells per well in 25 cm2 tissue culture dishes and transfected 24 h later.  Using 

calcium phosphate transfection, each flask was transfected with 20 µg of purified cDNA 

construct for the HA-P2Y1 receptor or mutant receptors or mock-transfected with buffer 

alone.  Transfected cells were incubated overnight at 37º C, and the medium was replaced 

with tissue culture medium containing 5 mM sodium butyrate (Sigma, St. Louis, MO).  Cells 

were incubated for an additional 48 h at 30º C.  Medium containing virus was harvested and 

added to MDCK(II) cells at 70% confluence along with 2 µl of 4 mg ml-1 polybrene (Sigma, 
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St. Louis, MO). The infection reaction was incubated for 2.5 h at 37º C.  Viral medium was 

replaced with culture medium and cells were incubated at 37º C for 48 hours.  Following the 

initial 48 hours, cells were maintained in culture medium supplemented with 1 mg ml-1 G418 

antibiotic (Invitrogen, Grand Island, NY) with medium changes every other day.  After 

approximately seven days and death of mock-infected control cells, antibiotic concentration 

was reduced to 0.2 mg ml-1, and cells were cultured as normal and used for experiments.   

Synthesis of [32P]MRS2500   

The enzymatic synthesis and purification of [32P]2-iodo-N6-methyl-(N)-

methanocarba-2′-deoxyadenosine-3′,5′-bisphosphate ([32P]MRS2500) is described in Chapter 

2.  

Intact Cell Radioligand Binding Assay.   

For assay of endogenous P2Y1 receptors in MDCK(II) cells, MDCK(II) cells were 

plated at 5 x 105 cells per well in 6-well plates (Corning/Costar) and assayed 24 hours later at 

approximately 80-90% confluence. On the day of assay, tissue culture medium was replaced 

with 1 ml assay buffer (DMEM/F12 medium supplemented with 20 mM Hepes, pH 7.4) and 

cell culture plates were placed in a 37º C water bath for 15 minutes for temperature and pH 

equilibration prior to the assay.  The assay was started with the addition of 250 µl of  50 µM 

2MeSADP to a final assay concentration of 10 µM and cells were incubated at 37º C for 

various times. The reaction was stopped by placing cells on an ice-water slurry and adding 8 

ml ice cold wash buffer (1% BSA in PBS, pH 7.4) to each well to rapidly cool cells to 

approximately 4º C. Cells were washed two additional times with 8 ml wash buffer to 

thoroughly remove agonist from the medium.  To quantify cell surface receptors, cells were 

incubated for 10 minutes on an ice-water slurry with 0.1-0.5 nM of [32P]MRS2500 in 500 µl 
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assay buffer without or with 100 µM MRS2179 (Tocris-Cookson, Ellisville, MO) to 

determine nonspecific binding.  Cells were then washed once with 8 ml per well wash buffer 

and lysed in a solution of 1% SDS in PBS.  Radioactivity in each lysate was quantified by 

scintillation counting.  For assay of MDCK(II) cells expressing recombinant P2Y1 receptors, 

a similar procedure was used except cells stably expressing various P2Y1 receptor constructs 

were plated at a density of 1.5 x 105 cells per well in 24-well plates and assayed in 250 µl 

assay volume for incubation with agonist, 100 µl volume incubation with radioligand on ice, 

and 2 ml volume of wash buffer.  

In vivo labeling and immunoprecitipation of HA-P2Y1 receptors 

 Phosphorylation of P2Y1 receptors in MDCK(II) cells was detected as previously 

described (Brinson et al., 2001). 

Data analysis 

 All measurements were carried out in triplicate and each experiment was carried out 

at least three times.  Data were analyzed using GraphPad Prism (GraphPad Software, San 

Diego, CA).  Data are presented as the mean ± S.E.M. from a data set from a typical 

experiment. 

 

4.3  Results 

The P2Y1 receptor was reported previously to undergo agonist-dependent 

phosphorylation and internalization in platelets and 1321N1 human astrocytoma cells 

(Mundell et al., 2006a).  However, the domains of the receptor required for agonist-promoted 

trafficking are unknown.  Recently, we synthesized the high-affinity, high-specific 

radioactivity radioligand [32P]MRS2500 and demonstrated its use as a selective tool for 
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quantifying P2Y1 receptors in a variety of mammalian tissues.  In the current study, we apply 

this radioligand to quantify loss of surface P2Y1 receptor binding sites in MDCK(II) 

epithelial cells.  MDCK(II) epithelial cells express endogenous P2Y1 receptors at a density of 

approximately 8 fmol mg-1 protein (Wolff et al., 2005).  Here, we use non-polarized 

MDCK(II) cells as a model system because the native P2Y1 receptor expression in these cells 

suggests that they employ the proper machinery for trafficking of P2Y1 receptors.   

 We developed an intact cell binding assay to measure agonist-promoted loss of 

[32P]MRS2500 binding sites on MDCK(II) cells.  Cells were treated with agonist at 37º C 

permitting receptor activation and internalization.  After agonist incubation, cells were 

transferred to an ice water bathto prevent receptor trafficking.  Agonist was removed by 

washing and remaining receptors were quantified by surface radioligand binding   As shown 

in Fig. 4.1a, treatment of wild type MDCK(II) cells with the P2Y receptor agonist 2MeSADP 

resulted in a 56% decrease in the number of surface P2Y1 receptor binding sites labeled by 

the selective radioligand [32P]MRS2500.  The loss of surface receptors reached an apparent 

steady state with a t½ of 7.8 min and remained diminished for up to one hour.  Because a 

major goal of this research was to examine changes in cell surface expression of 

overexpressed P2Y1 receptor mutants in response to agonist, we compared the internalization 

of a stably expressed human HA-tagged P2Y1 (HA-P2Y1) receptor to that of the endogenous 

receptor in MDCK(II) cells.  The method of retroviral infection used to introduce the HA-

P2Y1 receptor into MDCK(II) cells has been shown to generate approximately 20-fold 

overexpression of recombinant receptors relative to endogenous receptor expression levels 

(Wolff et al., 2005).  As shown in Fig. 4.1b, surface levels of recombinant P2Y1 receptor 

decreased to similar extent and with similar kinetics as the endogenous receptor in response 
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to agonist treatment, with a t½ of 10.4 min and a 54% maximal loss of surface 

[32P]MRS2500 binding sites.  HA-P2Y1 receptor-expressing cells treated with agonist on ice 

did not show a reduction in surface [32P]MRS2500 binding sites, indicating that the loss of 

receptor binding sites was not due to competition of 2MeSADP for radioligand binding.  

These results suggest that native and overexpressed P2Y1 receptors in MDCK(II) cells 

undergo agonist-dependent relocalization to an intracellular compartment with similar 

kinetics.  Recombinantly expressed P2Y1 receptors in MDCK(II) cells appear to undergo 

similar trafficking to the endogenous P2Y1 receptor and are an appropriate system for 

evaluation of receptor mutants.   

 To further explore the characteristics of P2Y1 receptor internalization in MDCK(II) 

cells, we determined if agonist-dependent loss of [32P]MRS2500 binding sites in HA-P2Y1 

receptor-expressing MDCK(II) cells is concentration-dependent.  The 2-MeSADP-promoted 

loss of surface [32P]MRS2500 binding sites observed after 15 minutes of agonist treatment 

was agonist concentration-dependent.   The potency for inducing diminution of surface 

receptors (EC50: 46 nM) corresponded to the established potency of 2MeSADP at the P2Y1 

receptor, suggesting that P2Y1 receptors undergo internalization as a direct consequence of 

agonist activation (Fig. 4.2a).   

 Clathrin-mediated endocytosis has been suggested to occur for many GPCRs 

including P2Y1 receptors in human platelets (Baurand et al., 2005).  To determine if 

internalization of the P2Y1 receptor in MDCK(II) cells occurs through a clathrin-dependent 

mechanism, we investigated the effect of sucrose, which inhibits the formation of clathrin-

coated pits, on the agonist-promoted loss of [32P]MRS2500 binding sites in HA-P2Y1 

receptor-expressing MDCK(II) cells.  In cells pretreated with 450 mM sucrose, 
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[32P]MRS2500 surface binding sites were unchanged over 60 minutes of agonist treatment, 

compared to a 56% decrease in binding sites in untreated cells (Fig. 4.2b).  Total radioligand 

binding was similar in sucrose-treated and untreated cells.  These data indicate a role for 

clathrin-coated pit formation in the internalization of P2Y1 receptors in MDCK(II) cells. 

 Agonist-dependent phosphorylation and internalization of the P2Y1 receptor was 

reported to require the activation of conventional and novel PKC isoforms in human platelets 

and astrocytoma cells (Mundell et al., 2006a), although the domains of the receptor necessary 

for these processes have not been identified.  To identify critical residues and regions of the 

P2Y1 receptor required for internalization, we first determined whether the P2Y1 receptor is 

phosphorylated in an agonist-dependent manner in MDCK(II) cells in order to implicate or 

exclude a role for intracellular serines and/or threonines in agonist-dependent regulation.  

Cells were prelabeled with [32P]Pi followed by incubation with agonist for 5 minutes.  

Agonist-treated HA-P2Y1-expressing MDCK(II) cells displayed a marked increase in the 

amount of observed P2Y1 receptor 32P-phosphorylation, indicating that the P2Y1 receptor is 

phosphorylated in response to agonist-treatment (Fig. 4.3).   

 Two putative phosphorylation sites are located within a PKC consensus sequence, 

Ser-Arg-Ala-Thr (SRAT) in the P2Y1 receptor C-terminus (Fig. 4.4).  S336 and T339 of this 

sequence were mutated to alanine (P2Y1-ARAA) to determine if phosphorylation of residues 

in this motif is required for agonist-promoted internalization.  Expression levels and agonist-

promoted inositol phosphate accumulation for the P2Y1-ARAA mutants and the other 

mutants described in Figure 4.4 were similar to that of the wild-type receptor (data not 

shown).   Agonist-dependent loss of [32P]MRS2500 binding sites was observed in P2Y1-

ARAA-expressing MDCK(II) cells (Fig. 4.5).  Indeed, mutation of S336 and T339 to alanine 
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appeared to increase the rate of agonist-promoted internalization of the P2Y1 receptor by 

approximately 3-fold (Fig. 4.5).  The maximal loss of [32P]MRS2500 binding sites was 

similar for both receptors. Thus, residues S336 and T339 do not appear to be required for 

agonist-promoted internalization of the P2Y1 receptor.   

 The C-terminus of the P2Y1 receptor contains seven serine and threonine residues 

carboxyl to T339 (Fig. 4.4) and the possibility that one or more of these residues plays a role 

in agonist-promoted internalization was examined.  To determine if regions of the C-

terminus are required for agonist-promoted internalization, truncation mutants of the P2Y1 

receptor were generated and expressed in MDCK(II) cells.  One of these mutants, P2Y1-

∆369, primarily lacks the PDZ binding motif, Asp-Thr-Ser-Leu (DTSL), located at the 

extreme C-terminus of the receptor.  The Na+/H+ exchanger regulatory protein NHERF was 

shown to bind to this region and act as a scaffold for the receptor and its downstream effector 

PLCβ1 (Fam et al., 2005).  Additionally, PDZ ligands in GPCRs have been suggested to play 

a role in surface retention time and targeting to subsets of clathrin-coated pits (Puthenveedu 

et al., 2006).  Truncation of the PDZ binding domain of the P2Y1 receptor had no effect on 

its ability to undergo agonist-promoted internalization (Fig. 4.6a).  Further truncation of the 

C-terminus  however, did reveal a role for the region between residues 349 and 359, since 

truncation at residue 349 resulted in a marked reduction in the loss of [32P]MRS2500 binding 

sites observed after 30 minutes of agonist treatment (Fig. 4.6a).  To determine the 

contribution of serines and threonines of P2Y1 receptor C-terminus to agonist-promoted 

internalization, agonist-induced loss of [32P]MRS2500 binding sites was compared for the 

wild type receptor, the P2Y1-Δ349 truncation mutant, and a mutant lacking the last seven 

serine and threonine residues in the receptor C-terminus (P2Y1-340/0P, see Fig. 4.4). As 
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shown in Fig. 4.6b, the agonist-promoted loss of surface [32P]MRS2500 binding sites in the 

P2Y1-Δ349 mutant occurred with much slower kinetics and to a lesser extent than that of the 

wild-type receptor.  The loss of rapid, agonist-promoted internalization observed in the Δ349 

truncation mutant was mimicked almost identically by the P2Y1-340/0P mutant, indicating a 

clear role for serines and threonines in the receptor C-terminus in agonist-promoted 

internalization. 

 Two serines and one threonine residue are located between residues 349 and 359 of 

the P2Y1 receptor C-terminus, and each of these residues was mutated individually to alanine 

to identify putative phosphorylation sites involved in receptor internalization.  Mutation of 

residues S352, S354, or T358 to alanine had minimal effect on the agonist-promoted loss of 

[32P]MRS2500 binding sites (Fig. 4.7a).  Since serine clusters in the C-terminus of several 

GPCRs, including the P2Y4 receptor (Brinson et al., 2001; Oakley et al., 2001), have been 

shown to mediate internalization, we generated a double mutant, P2Y1-S352/354A, and 

measured the rate and extent of agonist-induced loss of surface [32P]MRS2500 binding sites.  

Similar to P2Y1-∆349 and P2Y1-340/0P mutants, the S352/354A mutant showed a significant 

impairment in its ability to undergo rapid agonist-induced internalization compared to the 

wild-type receptor (Fig. 4.7b).  These results, taken together, indicate that residues Ser352 

and Ser354 in the C-terminus of the P2Y1 receptor are required for agonist-promoted 

internalization and suggest a role for receptor phosphorylation in trafficking.   

 

4.4  Discussion 

 A fundamental understanding of the mechanisms governing agonist-promoted 

regulation of the P2Y family of G-protein coupled receptors is critical to the further 
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evaluation of these receptors as biological intermediates and therapeutic targets.  Though 

historically impeded by a lack of selective, high-affinity pharmacological reagents to 

discriminate among receptor subtypes in a broad range of physiological systems, recent 

developments have expanded the pharmacological toolkit for studying P2Y receptors, and 

made possible further investigation of P2Y receptor signaling and physiology.  In the studies 

presented here, we describe the use of a selective, high-affinity radioligand, [32P]MRS2500, 

to examine changes in surface P2Y1 receptor expression in response to agonist treatment.  

We have illustrated that the endogenous P2Y1 receptor in MDCK(II) cells undergoes rapid, 

agonist-induced internalization and that overexpressed receptors are similarly sequestered 

away from the cell surface in response to agonist treatment.  This internalization appears to 

be correlated to agonist activation and dependent on the formation of clathrin-coated pits.  

Furthermore, we have demonstrated agonist-dependent phosphorylation of the P2Y1 receptor 

and identified two serine residues in the C-terminus of the P2Y1 receptor, Ser352 and Ser354, 

that are required for rapid, agonist-promoted internalization. These studies represent the first 

identification of the regions and residues of the P2Y1 receptor necessary for agonist-

promoted internalization and suggest an important role for phosphorylation of the receptor C-

terminus in agonist-dependent regulation. 

 The development of the selective radioligand [32P]MRS2500 is the result of a series 

of structure-activity relationships and molecular modeling studies for the P2Y1 receptor that 

have yielded a number of high-affinity antagonists and radioligands, including MRS2500, a 

potent in vivo antiplatelet agent, and [3H]MRS2279, the first non-nucleotide antagonist 

radioligand for a P2Y receptor, with specific radioactivity of 89 Ci mmol-1 (Hechler et al., 

2006; Waldo et al., 2002). These reagents have proved indispensable for studying the activity 
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of P2Y1 receptors in various physiological systems and mammalian cell lines.  However, the 

development of the high specific radioactivity radioligand [32P]MRS2500 provides the 

requisite sensitivity to quantify P2Y1 receptors in an almost limitless diversity of tissues, as 

evidenced by data in Chapter 2 illustrating the detection of P2Y1 receptors in rat tissues of 

receptor density less than 10 fmol mg-1 of protein.  As a result, we have utilized this ligand to 

compare agonist-promoted internalization of endogenous receptors in MDCK(II) cells to 

overexpressed wild type and mutant receptors.  The observation of agonist-induced 

internalization of the endogenous receptor indicates that this cell lines expresses the proper 

machinery for agonist-induced trafficking of P2Y1 receptors, and the similarities in the 

kinetic profiles of internalization for the endogenous receptor versus the recombinant 

receptor suggest that this system is appropriate for the evaluation of the behavior of 

overexpressed mutant receptors.  

A role for PKC in P2Y1 receptor desensitization, phosphorylation and internalization 

in platelets and 1321N1 human astrocytoma cells has been reported.  Thr339 in the C-

terminus of the P2Y1 receptor is located within a PKC consensus motif and was reported to 

be required for desensitization (Fam et al., 2003; Hardy et al., 2005; Mundell et al., 2006a).  

Our data indicate that Thr339 is not required for P2Y1 receptor internalization and 

preliminary data using inhibitors of various PKC isoforms suggests that PKC is not required 

for agonist-promoted internalization of P2Y1 receptor in MDCK(II) cells, although 

simultaneous inhibition of multiple classes of PKCs has not been attempted (Aidong Qi, 

personal communication).  The observation of agonist-promoted phosphorylation of the P2Y1 

receptor and the requirement of serine residues in the receptor C-terminus for agonist-

promoted internalization strongly suggest that phosphorylation is involved in agonist-
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promoted P2Y1 receptor trafficking.  However, the direct requirement of Ser352 and Ser354 

in receptor phosphorylation must be demonstrated followed by identification of the kinase 

involved. 

The increased rate of internalization of the P2Y1-ARAA mutant should be noted, and 

the possibility exists that this sequence plays a role in cell surface retention of the receptor.  

The ARAA sequence is located in the middle of a purported calmodulin binding motif 

(Arthur et al., 2006), and a P2Y1-Δ334 truncation mutant, which lacks all but the two amino-

terminal residues of the calmodulin binding motif internalized similarly to the ARAA 

mutant.  These findings indicate that alternate mechanisms of receptor internalization that do 

not require serines in the receptor C-terminus are possible.  Binding of calmodulin or another 

adaptor protein in the region of the receptor containing residues 336-339 may play a role in 

the association of the receptor with the plasma membrane, such that disrupting this 

interaction has a positive effect on P2Y1 receptor internalization.  Also, many GPCRs are 

phosphorylated at sites in the third intracellular loop, an activity that is required for agonist-

promoted internalization (Lee et al., 2000a; Tran et al., 2004).  The third intracellular loop of 

the P2Y1 receptor is relatively short and contains two serines, separated by six amino acids.  

Mutation of each or both of those serines to alanine had no effect on the agonist-dependent 

loss of [32P]MRS2500 binding sites. 

The data presented in these studies delineate the molecular determinants of rapid, 

agonist-promoted internalization of the P2Y1 receptor but also raise additional questions 

about the mechanisms involved.  We propose that agonist-promoted internalization is 

mediated by S352 and S354 in the C-terminus of the receptor and is likely to require direct 

phosphorylation at these residues, potentially by a G-protein receptor kinase or second 
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messenger kinase other than PKC.   Cell surface P2Y1 receptor expression is positively 

modulated by S336 and T339 in a membrane proximal region of the C-terminus, potentially 

by a protein-protein interaction that requires basal phosphorylation at these residues; 

however, each of these possibilities requires further investigation.  A direct requirement for 

phosphorylation at residues 352 and 354 in agonist-promoted internalization of the P2Y1 

receptor and identification of the kinase involved are immediate future directions of this 

work.    
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Figure 4.1.  Agonist-dependent loss of surface [32P]MRS2500 binding sites in wild type 
and HA-P2Y1-expressing MDCK cells. MDCK cells expressing endogenous (a) or 
recombinant (b) P2Y1 receptors were treated with 10 µM 2MeSADP for the indicated times.  
Cells were chilled to 4º C and washed thoroughly, and surface binding sites were quantified 
with [32P]MRS2500 as described in Methods. All values are normalized to the total amount 
of [32P]MRS2500 binding in the absence of agonist treatment. Data shown are averages of 
triplicate samples ± S.E.M. from a representative experiment (n=3). 
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Figure 4.2. Internalization of HA-P2Y1 receptors in MDCK cells. (a) MDCK cells stably 
expressing recombinant P2Y1 receptors were incubated with increasing amounts of 
2MeSADP for 15 minutes at 37º C and [32P]MRS2500 binding sites were measured as 
described in Methods.  (b) HA-P2Y1 MDCK cells were incubated with 10 µM 2MeSADP for 
the indicated times in the absence () or presence () of 450 mM sucrose. [32P]MRS2500 
binding sites were quantified as described in Methods. All values are normalized to the total 
amount of [32P]MRS2500 binding in the absence of agonist treatment. Data shown are 
averages of triplicate samples ± S.E.M. from a representative experiment (n=3). 
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Figure 4.3. Agonist-dependent phosphorylation of the HA-P2Y1 receptor in MDCK(II) 
cells. MDCK(II) cells stably expressing recombinant HA-tagged P2Y1 receptors were 
prelabeled with 500 µCi [32P]Pi followed by treatment with 100 µM ADP for 5 min.  P2Y1- 
receptors were immunoprecipitated, resolved by SDS-PAGE, and transferred to 
nitrocellulose.  A PhosphorImager was used to detect radioactivity. Data shown is from a 
typical experiment (n=3). 
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Figure 4.4.  P2Y1 mutant constructs expressed in MDCK cells.  Mutants of the P2Y1 
receptor were generated in pLXSN with an N-terminal HA tag and stably expressed in 
MDCK cells.  Serines and threonines in the C-tail of the wild type receptor are highlighted in 
red.  Serines and threonines mutated to alanine are highlighted in red for point mutants.  
Numbered residues indicate the last residue before insertion of a stop codon in truncation 
mutants.   
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Figure 4.5. Ser-336 and Thr-339 of the P2Y1 C-tail are not required for agonist-
dependent internalization.  MDCK cells stably expressing HA-P2Y1 () or HA-P2Y1-
ARAA () receptors were treated with 10 µM 2MeSADP for the indicated times.  Surface 
[32P]MRS2500 binding sites were quantified as described in Methods.  Values are reported as 
% binding ± S.E.M. observed in the absence of agonist treatment. Data are from a single 
representative experiment (n=3).  
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Figure 4.6. Serines and threonines in the C-terminus of the P2Y1 receptor are required 
for agonist-dependent internalization. (a) MDCK cells stably expressing the indicated 
P2Y1 receptor truncation mutants were treated with 10 µM 2MeSADP for 0 or 30 minutes 
and cell surface [32P]MRS2500 binding sites were quantified as described in Methods. (b) 
MDCK cells stably expressing HA-P2Y1 (), HA-P2Y1-Δ349 (), or HA-P2Y1-340/0P () 
receptors were treated with 10 µM 2MeSADP for the indicated times.  Surface 
[32P]MRS2500 binding sites were quantified as described in Methods.  Values are reported as 
% binding ± S.E.M. observed in the absence of agonist treatment. Data are from a single 
representative experiment (n=3).  
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Figure 4.7. Ser-352 and Ser 354 in the C-terminus of the P2Y1 receptor are required for 
agonist-dependent internalization. (a) MDCK cells stably expressing the indicated P2Y1 
receptor single point mutants were treated with 10 µM 2MeSADP for 0 or 30 minutes and 
cell surface [32P]MRS2500 binding sites were quantified as described in Methods. (b) MDCK 
cells stably expressing HA-P2Y1 () or HA-P2Y1-S352/354A () receptors were treated 
with 10 µM 2MeSADP for the indicated times.  Surface [32P]MRS2500 binding sites were 
quantified as described in Methods.  Values are reported as % binding ± S.E.M. observed in 
the absence of agonist treatment. Data are from a single representative experiment (n=3).  
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CHAPTER 5 
 

CONCLUSIONS AND FUTURE DIRECTIONS 

 Signaling through nucleotide-activated G-protein coupled receptors is involved in 

myriad physiological responses; however, without the aid of selective pharmacological tools, 

further study and successful manipulation of individual members of this important class of 

drug targets will be difficult.  The work presented here describes the synthesis of a novel 

pharmacological tool, [32P]MRS2500, which selectively labels P2Y1 receptors in a variety of 

tissues with very high sensitivity.  We have demonstrated that this radioligand can be 

synthesized and purified in a single-step, enzymatic reaction using a 3′-monophosphate 

precursor, MRS2608, commercially available [γ32P]ATP, and polynucleotide kinase, and can 

be purified using reversed-phase HPLC for routine production with high yield.  

[32P]MRS2500 bound selectively to the human P2Y1 receptor overexpressed in Sf9 insect 

cell membranes with a KD of 1.1 nM and the predicted pharmacological selectivity in 

competition binding assays with a series of P2Y1 receptor agonists and antagonists.  

Additionally, [32P]MRS2500 was used to determine the tissue distribution of functional P2Y1 

receptor binding sites in a panel of rat tissues and in regions of the adult rat brain, identifying 

regions of highest relative expression as lung, liver, and cerebellum.   

A primary goal of the synthesis of [32P]MRS2500 was its use as a tool to study the 

cellular redistribution of P2Y1 receptors in response to agonist treatment as a part of a study 

to further define the mechanisms of agonist-promoted regulation of P2Y1 receptors.  We 

developed a binding assay with [32P]MRS2500 for the P2Y1 receptor in intact, washed 



  

 

human platelets and used this assay to show that agonist treatment of platelets results in a 

loss of less than 20% of surface P2Y1 receptors.  Interestingly, P2Y1 receptors are 

desensitized rapidly in human platelets and this rapid desensitization also occurs for another 

Gq-coupled GPCR, the 5-HT2A receptor, pointing to unique regulation of Gq-signaling by 

human platelets.  In contrast, in intact MDCK(II) cells, we showed rapid agonist-induced 

internalization of the P2Y1 receptor, with a t ½ of approximately 10 minutes and a 50% 

decrease in surface [32P]MRS2500 binding sites at steady state.  This internalization required 

two serine residues, Ser352 and Ser354, in the carboxyl terminus of the P2Y1 receptor.   

 

5.1  Ligand Development and Applications 

 Further applications of [32P]MRS2500 include receptor autoradiography to determine 

the cellular localization of the P2Y1 receptor in brain.  Expression of the P2Y1 receptor on 

neurons and astrocytes has been demonstrated by mRNA expression and functional studies, 

and the P2Y1 receptor is linked to a number of neurophysiological events including 

glutamate release, feeding behavior, and anxiety (Jourdain et al., 2007; Kittner et al., 2003; 

Kittner et al., 2006).  Autoradiographic analysis will define the cellular distribution of P2Y1 

receptors in brain and begin to answer questions about neurotransmitters and 

neurotransmitter receptors with which the P2Y1 receptor is colocalized, possibly leading to 

conclusions about the mechanisms by which it exerts neurophysiological effects.  

[32P]MRS2500 has the advantages over previous radioligands of high selectivity, solving 

problems of nonspecific labeling of other nucleotide receptors, and high affinity and high 

specific radioactivity, which will permit ease of use and high sensitivity for autoradiographic 

studies.  
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 Since ADP-mediated platelet aggregation through the P2Y1 and P2Y12 receptors is a 

well-established physiological phenomenon, ideally, a P2Y1 antagonist will broaden 

therapeutic choices for antiplatelet clinical use and will be advantageous in situations in 

which P2Y12 blockade is insufficient or undesirable.  While we have successfully developed 

P2Y1 receptor antagonists for use in a variety of model systems, the effective blockade of 

P2Y1 receptors in human subjects to inhibit platelet aggregation has not yet reached clinical 

practice.   Due to concerns regarding increased bleeding observed with some P2Y12 

antagonists and in P2Y1 knockout mice, and the broad tissue distribution of the P2Y1 

receptor, safety must be established and care taken to identify and address potential side 

effects.   Additionally, a variety of cardiovascular conditions require antiplatelet therapy, 

including long-term treatment for coronary artery disease during and after percutaneous 

coronary intervention, and temporary platelet inhibition during surgery.  Therefore, the 

suitability and efficacy of a reversible, competitive P2Y1 antagonist for each of these 

outcomes must be established and compared to existing treatments and combination therapy.   

The methodology applied to developing high affinity, selective compounds for the 

P2Y1 receptor can be expanded for other P2Y receptors in order to obtain useful drugs.  

Structure-activity studies have been promising but as yet have not yielded high-affinity 

ligands for the majority of P2Y receptors.  The P2Y14 receptor is the only P2Y family 

member activated by uridine nucleotide sugars including UDP-glucose.  As such, ligand 

development has relied on UDP-sugar derivatives and has yielded a high-affinity agonist, 2-

thio-UDP-glucose (Ko et al., 2007).  The P2Y12 receptor is also unique in its blockade by 

thienopyridine compounds and several available antagonists are currently in use or under 

clinical investigation.  However, ligand development for the P2Y1 subfamily, e.g. the P2Y2, 
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P2Y4, P2Y6, and P2Y11 receptors and for the P2Y13 receptor have been less successful, 

yielding few selective ligands of typically moderate potency and no successful radioligands 

to date.  Molecular modeling studies for all of the P2Y receptors have identified 

commonalities in the putative ligand binding pockets for P2Y1 subfamily members and 

P2Y12 subfamily members with residues critical for coordinating features of the nucleotide 

ligands (Costanzi et al., 2004).  These molecular modeling studies are encouraging and form 

a platform to increase the affinity and potency of existing ligands and potentially circumvent 

the disadvantage of nucleotide metabolism, steps that will be essential to creating 

biologically useful agonists, antagonists, and radioligands.   

 

5.2  Agonist-Dependent Regulation 

Agonist-promoted regulation of G-protein coupled receptors is a complex process, 

and while the existing model is useful for the β2 adrenergic receptor and other Gs-coupled 

receptors, considerably more study is necessary to elucidate the mechanisms at work for 

phosphorylation, desensitization, and internalization of the P2Y1 receptor.  The P2Y1 

receptor mutants introduced in these studies will help determine whether direct 

phosphorylation is  necessary for desensitization and/or internalization of the receptor and 

will demonstrate whether the same or distinct regions or residues of the receptor modulate 

each of these processes.   

The findings presented here suggest interesting differences in agonist-promoted 

regulation of the P2Y1 receptor in platelets and MDCK(II) epithelial cells, and 

phosphorylation may play an important role in each cell type.  A model is illustrated in 

Figure 5.1 that describes potential pathways for P2Y1 receptor agonist-dependent regulation 
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in each of these cell types.  In platelets, our data suggests that desensitization of the P2Y1 

receptor occurs rapidly as a result of agonist activation and that the receptor may remain 

desensitized at the cell surface, unable to respond to further stimulation by agonist.  Previous 

data implicating PKC in phosphorylation and desensitization of the P2Y1 receptor in platelets 

suggests that PKC-mediated receptor phosphorylation is a rapid negative feedback 

mechanism designed to rapidly terminate P2Y1 receptor signaling in platelets.  While some 

recovery of P2Y1 receptor activity was observed, this recovery may result from the insertion 

of naive receptors into the plasma membrane due to some constitutive receptor cycling.   

If phosphorylation by PKC causes prolonged desensitization of surface-retained P2Y1 

receptors in platelets, our radioligand binding studies suggesting a lack of internalization 

coupled with a measurement of GTP-sensitive agonist competition binding will possibly 

reveal whether receptors remaining on the cell surface exist in a permanently desensitized 

state.  One future direction of this work will be to assess whether GTP-sensitive binding for 

P2Y1 receptor agonists in competition with [32P]MRS2500 can be observed in platelet 

membranes.   If so, a loss of GTP-sensitive agonist competition binding in membranes from 

platelets treated with the P2Y1-receptor selective agonist MRS2365 will suggest that surface-

localized receptors from membranes prepared from agonist-treated platelets exist in a 

permanently desensitized stated.  Another future direction of this work will be to confirm that 

the loss of full recovery of P2Y1 receptor responsiveness following desensitization and 

agonist removal is not the result of long term changes in downstream signaling pathways.  To 

do this, we will assess whether the use of 5-HT, an agonist of another Gq-coupled receptor in 

platelets can promote full platelet aggregation when combined with ADP at longer time 

points after desensitization of the P2Y1 receptor.   
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In contrast to platelets, P2Y1 receptors in MDCK(II) cells internalize in an agonist-

dependent manner and we have shown that this activity requires two serine residues in the C-

terminus of the receptor.  Additionally, experiments from our lab indicate that PKC is not 

required for agonist-induced internalization of the P2Y1 receptor in MDCK(II) cells.  This 

information, coupled with existing dogma regarding agonist-promoted trafficking of GPCRs, 

suggests that in epithelial cells, the P2Y1 receptor may undergo a process similar to the 

canonical process of phosphorylation by a G-protein receptor kinase, association with 

adaptor proteins, and internalization into clathrin-coated pits from which it is recycled (Fig. 

5.1).  Many GPCRs bearing serine clusters in the third intracellular loop or C-terminus 

require arrestin association and GRKs for internalization, and a role for acidic amino acids 

flanking these serine clusters has been shown (Lee et al., 2000a; Oakley et al., 2001).  

Ser352 and S354 in the C-terminus of the P2Y1 receptor are followed by the two acidic 

residues, Glu355 and Asp356 and studies from our lab in mouse fibroblast cells lacking β-

arrestin expression suggest that arrestins are required for P2Y1 receptor internalization.   This 

model does not completely exclude a role for PKC in phosphorylation and internalization of 

the P2Y1 receptor in epithelial cells; in the case of the β2 adrenergic receptor, PKA and 

GRKs phosphorylate distinct sites on the receptor and kinase specificity can be determined 

by receptor occupancy, such that PKA phosphorylation is observed at low agonist 

concentrations (Tran et al., 2004).  In order to confirm this model, experiments are required 

that show the necessity of GRK and arrestin expression for agonist-promoted internalization 

in MDCK(II) cells.  Other adaptor proteins such as AP2 that regulate clathrin-dependent 

endocytosis are also possible candidates, since AP2 binds proteins through a dileucine-based 

motif and the P2Y1 receptor contains an Ile361-Leu362 pair in its C-terminus.   
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Preliminary data from our lab also suggests that, while phosphorylation sites in the C-

terminus of the P2Y1 receptor are necessary for internalization, there may be alternate 

molecular determinants capable of allowing the receptor to internalize or, alternately 

interpreted, regions of the receptor that promote retention at the cell surface.  Truncation of 

the P2Y1 receptor at residue 334, paradoxically results in a receptor capable of agonist-

promoted internalization, unlike the Δ349 truncation mutant.  The rate and extent of 

internalization are mimicked by the ARAA mutant presented in Chapter 4.  These data 

strongly suggest a role for sequence between residues 334 and 339 in regulating cell surface 

expression of the P2Y1 receptor.  Amino acids in this region may play a role in constitutive 

internalization, phosphorylation, association with scaffolding proteins that help localize the 

receptor to the cell surface, or a combination of these possibilities, and each requires further 

investigation. 

Nucleotide-activated G-protein coupled receptors are an important class of potential 

therapeutic targets.  Consequently, thorough investigation of the signaling and physiology of 

these receptors, requiring high-affinity, selective pharmacological tools, is essential.  The 

studies presented here describe the development of a novel tool for the study of the P2Y1 

receptor and add to our increasing body of knowledge regarding agonist-promoted regulation 

of nucleotide-receptor signaling.   
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Figure 5.1.  Model of cell-type specific agonist-promoted regulation of the P2Y1 
receptor.  In platelets, irreversible termination of P2Y1 receptor signaling may occur by 
agonist-dependent phosphorylation of the receptor by PKC, after which desensitized 
receptors remain on the cell surface unable to respond to further agonist stimulation. A small 
number of naive receptors are inserted into the plasma membrane through constitutive 
receptor cycling.  In epithelial cells, such as MDCK(II) cells, agonist activation of P2Y 
receptors results in the canonical pathway of C-terminal phosphorylation by GRK followed 
by internalization into clathrin-coated pits, facilitated by an as yet unidentified adaptor 
protein. Cell surface receptor expression may be controlled by a protein-protein interaction 
requiring S336 and T339 of the receptor C-terminus.   
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