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ABSTRACT
JOHN B. HANSEN: Concurrency-Enhancing Transformations for Asynchronous

Behavioral Specifications
(Under the direction of Montek Singh)

State-of-the-art synthesis tools for the design of asynchronous systems rely on

syntax-driven translation of behavioral specifications. While these tools provide the

benefit of rapid design, they are severely limited in the performance of their result-

ing implementations (e.g., 10-100 MHz). This research proposes a synthesis approach

that builds upon the existing state-of-the-art tools, preserving rapid design times and

allowing for an order of magnitude increase in performance.

In particular, this thesis proposes a powerful approach to enhance the concurrency

of the original behavioral specifications. The proposed approach is a “source-to-source”

transformation of the original behavioral specification into a new behavioral specifica-

tion using two specific optimizations: automatic parallelization and automatic pipelin-

ing.

The approach has been implemented in an automated design tool and applied to a

suite of examples for validation. All examples were synthesized to the gate level after

optimization and compared with the original, non-optimized versions. Results indicate

improvement in throughput by a factor of up to 23X and a reduction in latency by up

to 72%.
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CHAPTER 1

Introduction

There is a resurgence of interest in asynchronous or “clockless” design due to its po-

tential to mitigate some of the imminent challenges to synchronous design, including

difficulties in high-speed clock distribution, management of power consumption, and

increasing demands of design modularity and reusability [1, 3, 5]. This thesis focuses on

the automated design of high-speed asynchronous systems from high-level behavioral

specifications.

Existing state-of-the-art asynchronous synthesis tools are limited in their ability

to automatically generate high-speed implementations. The best-known industrial-

strength tools (e.g., Haste from Philips / Handshake Solutions [7]) use syntax-directed

translation to compile high-level behavioral specifications directly to low or medium-

speed implementations. In many cases, control overhead limits performance; this is due

to the large control trees generated by many syntax-directed translation tools. Little

is done by these tools to remedy performance loss; at most, they perform peephole

optimizations at the circuit level.

These existing tools provide little or no support for higher-level concurrency-oriented

optimizations such as instruction parallelization of the specification. As a result, while

design times are shortened, the performance of automatically synthesized implementa-

tions has thus far generally been limited to 10-100 MHz. For asynchronous design to

be a viable alternative to clocked design, the critical challenge of providing design tools

for high-performance implementations must be addressed.

A further drawback of popular existing tools such as [7], which use syntax-directed

translation, is that design-space exploration is quite difficult. Optimizations to the

implementation must typically be performed at the source level by modifying the be-

havioral specification. Therefore, the burden of optimizing a design falls squarely on the

designer, who must rewrite the behavioral description. Such source-level optimizations

by hand are time-consuming, and can greatly hinder productivity by reducing read-

ability, modularity, and reusability, and can increase the possibility of design errors.
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Figure 1.1: Design Flow: (a) existing flow, and (b) proposed source-to-source transfor-
mations

This thesis presents an alternative to manual optimization: an automated “source-

to-source” compiler that transforms one behavioral specification into another behavioral

specification with significantly higher concurrency. The proposed approach enhances

performance in three ways: (i) increasing instruction-level concurrency through paral-

lelization, (ii) increasing instruction group level concurrency through pipelining, and

(iii) reducing control overhead by making the specification data-driven.

The resulting implementations are high-throughput, low-latency, data-driven pipe-

lined systems in which individual datapath operations, or small groups of such opera-

tions, become concurrent processes. Synchronization between the processes (e.g., due

to data dependencies) is achieved via point-to-point communication, instead of by the

rather complex control trees that are generated by syntax-driven translation tools.

A key contribution of this work is to handle communication (via point-to-point

channels), in addition to computation. In particular, the concurrency-enhancing trans-

formations of parallelization and pipelining account for, and correctly address, conflicts
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and dependencies via channel communication. In particular, the transformations are

constrained in order to guarantee safety, i.e, no data or control hazards, or deadlocks,

are introduced as a result of the transformations. In addition, the approach guarantees

that the order of communication with the environment is preserved.

The proposed approach has been implemented in an automated tool, and evaluated

on a suite of stream-processing examples specifications. The resulting concurrency-

enhanced specifications were run through the commercial Haste tools from Philips /

Handshake Solutions [7], synthesized to gate-level netlists, and simulated. The simu-

lation results show the resulting implementations to have throughputs that are higher

by a factor of up to 23x when compared to the original behavioral specifications.

The remainder of the thesis is organized as follows. Chapter 2 provides background

on the Haste flow, asynchronous pipelining, and reviews related previous work. Then,

Chapter 3 presents the basic concurrency-enhancing transformations. Chapter 4 dis-

cusses some of the advanced topics, including the handling of conditionals and com-

munication actions. Chapter 5 presents results, and finally Chapter 6 gives conclusions

and future work directions.
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CHAPTER 2

Background and Previous Work

This chapter first introduces the Haste design flow, a commonly-used syntax-driven

translation approach for the design and simulation of asynchronous systems, and dis-

cusses its limitations. Asynchronous pipelines are briefly reviewed, along with a dis-

cussion of the distinctions between control-driven, data-driven, and data-flow design

paradigms. Finally, prior related work is presented.

2.1 The Haste Design Flow

2.1.1 Representation and Compilation

The examples discussed in this thesis have been synthesized and simulated using the

Haste design flow (formerly “Tangram”), a product of Philips / Handshake Solutions [7].

Haste is one of a few mature asynchronous design flows currently available; the toolset

focuses on rapid design of custom asynchronous hardware. It targets low- to medium-

speed low-power implementations running in the 10-100 MHz range (in 0.13µm tech-

nology).

The Haste toolset is a silicon compiler. It accepts specifications written in a high-

level hardware description language, and compiles them, via syntax-driven translation,

into a gate-level circuit. The high-level language is a close variant of the CSP behavioral

modeling language [8], which allows complex behaviors to be easily specified in a few

lines of code.

The Haste language is robust; if offers many constructs to control the flow and

operation of a program. The proposed compiler accepts specifications that use any of

the constructs in the full language; however only a subset of them are described in this

thesis. The main Haste language constructs that are used in the presentation of this

thesis are:

• channel reads ( IN?x )



&fifo=proc(IN?chan byte &

OUT!chan byte).

begin

& x: var byte

| forever do

IN?x;

OUT!x

od

end

Figure 2.1: Haste Example: Source and Handshake Graph

• channel writes ( OUT!x+y )

• assignments ( a:=b+c )

• sequential composition ( b:=a+x ; c:=b+y )

• parallel composition ( a:=b+x || c:=d+y )

• conditional expressions (if boolean then expression 1 else expression 2)

• conditional statements (if boolean then statement 1 else statement 2)

Figure 2.1 shows the Haste specification of a simple program. The program has

an input channel IN, through which it receives data items from the environment, and

an output channel OUT, through which it transmits results to the environment. Each

channel consists of a pair of request-acknowledge wires along with the data wires. In the

specification, x is a storage variable. The main construct in the body of the specification

is a forever do loop that performs the following actions: (i) read a stimulus from

channel IN and store it into variable x; then (ii) write the value stored in x to the

output channel OUT; and (iii) perform this sequence of actions repeatedly, forever.

Given a specification, the Haste compiler performs parsing, then syntactically maps

each construct onto a predefined library component to generate a hardware implemen-

tation, as shown in Figure 2.1. For example, there is a predefined component that

implements the forever do construct: it repeatedly initiates handshakes with its tar-

get. Similarly, there is a predefined component that implements sequencing, denoted by

“;”. The sequencer, upon receiving a handshake from its parent, performs a handshake

with its left child followed by a handshake with its right child. The compiler maps the

variable x to a storage element. Finally, the read and write operations, (e.g., read from
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channel IN and write to x) map to redefined components called transferrers, denoted

in the Figure by “−→”.

In summary, the compilation approach is quite simple but very powerful: fairly

complex algorithms can be easily mapped to hardware. Gate-level implementations for

complex designs, such as complete microcontroller, can be generated from a few hundred

lines of high-level code. Specifications of large systems are naturally decomposed into

subsystems or smaller components (i.e., individual procedures).

2.1.2 Performance Limitations

As the number of statements increase in the code snippet in Figure 2.1, the size of

the control cycle increases (Figure 2.2), resulting in a higher latency block. Several

handshakes in the control tree may be required before an action can occur. As a

result, the performance of the system suffers. This situation is referred to as “control-

dominated.”

2.2 Asynchronous Pipelines

To overcome the performance limitation of large control cycles, a designer can pipeline

to reduce the control overhead of a block. Rather than a single large control tree,

consider a forest of smaller trees governing the actions in the system. These actions

are now initiated by channel communications directly, as opposed to sequenced by

a complex controller. Figure 2.2 illustrates how control overhead is reduced in this

situation. Small control cycles occur at the computation blocks rather than larger cycles

in the initial tree. This transformation is performed using asynchronous pipelines.

Asynchronous pipelines consist of several pipeline stages that communicate via

request-acknowledge handshaking signals (Figure 2.3). A stage initiates computation

only when it receives new data and a request from its left neighbor. Once data has

been accepted (latched), the left neighbor is acknowledged. The stage may then per-

form operations on the data and forward the results along with a new request to its

right neighbor. This behavior is unlike a synchronous pipeline (Figure 2.4), in which

signals are received from a global clock to latch data.

Unlike a control-driven approach in which control pushes and pulls data between

nodes, the source-to-source compiler produces a data-driven pipeline. In data-driven

pipelines, data initiates computation through channel actions. Several datasets can

concurrently push through the pipeline, each at a different stage of computation.

6



forever do

IN?a;

b:=f1(a);

c:=f2(b);

d:=f3(c);

OUT!f4(d)

od

Figure 2.2: Control Dominated vs. Data-Driven Handshake Graphs

In this data-driven implementation, the context of the program is communicated

between stages. The context consists of all the variables that will be accessed or mod-

ified in the remainder of the pipeline. With some exceptions, the data-driven pipelines

are linear in nature. The throughput will therefore be limited by the slowest stage in

this implementation.

A data-flow architecture, used by Budiu [4] and others, can further increase con-

currency by allowing data to propagate only to stages in which it is used. The pipeline

is forked off into many different branches in a data-flow architecture. However, perfor-

mance can suffer if branches are not properly balanced (i.e., not “slack-matched” [2]),

resulting in a throughput that may be worse than that of the slowest stage.

7



Figure 2.3: Simple Asynchronous Pipeline

clock

handshaking
interface

Figure 2.4: Synchronous vs. Asynchronous Module Communication

2.3 Related Work

Budiu et al. [4] introduced the approach of spatial computation, which compiles ANSI

C specifications directly into hardware. Their approach includes a number of optimiza-

tions that aim to enhance concurrency. However, their approach fundamentally belongs

to a different domain—ANSI C software specifications—which is less general than the

behavioral specifications targeted in this work. In particular, C specifications, unlike

Haste, do not allow explicit communication via channels between processes to be mod-

eled, whereas such communication is key to modeling complex asynchronous systems.

In addition, fork-join style of concurrency cannot be explicitly specified by a designer

in C; such concurrency again is central to many asynchronous system specifications.

Teifel et al. [10] and Wong et al. [11] have introduced approaches that translate

specifications written in CHP [9] (a variant of CSP [8]) into pipelined implementations.

While these approaches allow channel communication, their communication models can

be restrictive: for example, channel actions must be unconditional in [11]. In contrast,

this thesis allows a more general communication model, where channel actions are

allowed to be conditional as well.
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CHAPTER 3

Basic Optimizations

This chapter describes how the proposed compiler optimizes code through paralleliza-

tion and pipelining. Section 3.1 discusses how performance optimizations change the

hardware structure of the system and gives an overview of the optimizations that are

performed at a source level. Sections 3.2 and 3.3 then discuss how parallelization and

pipelining are performed within the source-to-source compiler.

3.1 Method Overview

3.1.1 Hardware-Level Overview

Figure 3.1 shows an example of what synthesized code may look like in hardware.

Each small block in the figure represents a basic datapath operation. Similar to the

case in Figure 2.2, control delays dominate, and the throughput obtained is rather low.

The only channel communications that occur are with the environment. In essence,

the original code is synthesized into a single, unpipelined, high latency block. The

throughput of the system is solely determined by the latency of this unpipelined block.

Consider the case where operations in the original code could have been parallelized,

but these optimizations were not performed by the designer. By parallelizing these

operations, the circuit in Figure 3.2 is produced. The resulting circuit is still control

driven, and again channel communication is only performed with the environment. The

control tree is the same size, however some parallel blocks replace sequential blocks in

the tree. As a result, the latency of the full system is reduced, but the throughput is

still determined by the latency of the whole system. The system acts as a single stage,

with lower latency and higher throughput than that of the previous implementation.

The result of pipelining the original implementation is shown in Figure 3.3. Each

operation has its own individual latch to store data and channels to connect it with

other stages. Note that the control cycle at each stage is minimized. This data-driven

pipeline has multiple, low latency stages, yielding an increase in system throughput. In



proc(IN?chan byte & OUT!chan byte).

forever do

IN?a;

1: b:=a*2;

2: c:=b+5;

3: d:=a+b;

4: e:=c+d:

5: f:=d*3;

6: g:=f+6;

OUT!g

od

Figure 3.1: Original Implementation:
Hardware and Source

proc(IN?chan byte & OUT!chan byte).

forever do

IN?a;

b:=a*2;

(c:=b+5 ||

d:=a+b);

(e:=c+d ||

f:=d*3);

g:=f+6;

OUT!g

od

Figure 3.2: Parallel Implementation:
Hardware and Source

this case the throughput is limited by the cycle time of the slowest stage, rather than

the cycle time of the whole system. Therefore, the throughput is increased, but the

latency is likely equal to or greater than that of the original implementation.

By performing both optimizations, parallelizing then pipelining, the circuit shown in

Figure 3.4 is produced. This circuit benefits from the reduced latency of parallelization,

as well as the increased throughput of pipelining. Conversion to this design is the goal

of the compiler’s source transformations.

3.1.2 Source-Level Overview

Figure 3.5 is a high-level description of the compiler algorithm. Starting with a

piece of straight-line, sequenced code, Figure 3.1, the compiler transforms it into the

highly concurrent code of Figure 3.4.

The first step in the algorithm is to group the statements in a block of code that

can be performed in parallel. In the code fragment in Figure 3.1, the assignments to

variables c and d can be performed in parallel, and e and f can be performed in parallel.

After grouping the parallel blocks, the compiler can place a sequencer between stages

10



stage1(IN?chan byte & OUT!chan byte).

forever do

IN?a;

OUT!<<a,a*2>>

od

stage2(IN?chan byte & OUT!chan byte).

forever do

IN?<<a,b>>;

OUT!<<a,b,b+5>>

od

...

Figure 3.3: Pipelined Implementation:
Hardware and Source

stage1(IN?chan byte & OUT!chan byte).

forever do

IN?a;

OUT!<<a,a*2>>

od

stage2(IN?chan byte & OUT!chan byte).

forever do

IN?<<a,b>>;

OUT!<<b+5,a+b>>

od

...

Figure 3.4: Parallelized and Pipelined Im-
plementation: Hardware and Source

(Figure 3.2). This action performs simple instruction-level parallelization, reducing

latency. However, performance can be further increased by pipelining.

To pipeline, the compiler places a channel channel communication between every

parallel grouping. This channel communicates the context for this dataset. A sample

of the pipeline stages for the assignments to b, c, and d are shown in Figure 3.4.

3.2 Parallelizing Transformation

At the core of the parallelization process is dependence analysis. This section briefly

describes how dependence analysis is performed using the AST, then shows how the

results allow the compiler to modify the program’s AST to increase concurrency.

The first step of the process is to traverse the program’s AST, maintaining a list of

variables within the scope of the current node. At each access to a variable, the compiler

creates a link between it and the declaration of the variable. When a statement block

is encountered, the compiler generates an array containing all the variables read and

written in the statement, as well as a flag that indicates whether the access is a read

11



Source to Source Optimize(Program P){
Parallelize(P)

Pipeline(P)

}

Parallelize (Program P){
for all Statement Blocks in P:

create a dependence graph of each statement

perform a topological sort on the dependence graph

combine grouped statements into a parallel process

combine statement groupings using a sequencer

}

Pipeline(Program P){
for all Statement Groups (SG) in P:

generate IN and OUT sets for the group

create a module containing the statements in SG

create channel connectors for the module

}

Figure 3.5: Compiler: Optimization Pseudocode

or write. The process is recursive, entering both nested blocks and loops.

Next, the compiler performs dependence analysis on the statements within a block.

The compiler first generates a directed graph of the statements. In the graph, edges

denote data or control dependencies. Figure 3.6 shows a sample precedence graph.

After the graph is generated, a topological sort of the graph is performed. Each state-

ment that has no input edges (dependencies) is placed into the first grouping of parallel

statements. These statements are then removed from graph, along with any edges they

produce. Next, all statements that have no input edges are placed into the second

grouping, then their edges are removed. The process repeats iteratively until all the

statements are placed into a grouping.

The compiler then generates a new subtree in which parallel groupings are children of

a parallel (||) construct. Each parallel grouping then becomes a child of the sequencer

(;) construct.

Greater concurrency can be achieved if the compiler employs variable renaming.

If a second assignment to a variable occurs within a block of code, the location to

which the assignment writes is renamed, along with any future accesses. As a result,

write-after-read and write-after-write dependencies are removed from the graph.

12



expl=proc(IN?chan byte &

OUT!chan byte).

begin

& a,b,c,d,

e,f,g: var byte

| forever do

IN?a;

1: b:=a*2;

2: c:=b+5;

3: d:=a+b;

4: e:=c+d:

5: f:=d*3;

6: g:=f+6;

OUT!g

od

end

Figure 3.6: Precedence Graph with Parallel Groupings

3.3 Pipelining Transformation

Pipelining is an orthogonal process to parallelization; it can be performed on code that

is sequential or has already been parallelized. This thesis only considers feed-forward

specifications for the pipelining optimization, i.e. specifications that lack feedback

between datasets. The approach assumes these specifications read from a set of input

channels, perform a computation, and write to a set of output channels. This section

discusses how pipelining is achieved for such a specification, in particular, the process

of generating channel communications between stages using IN and OUT sets.

To begin the pipelining process, the compiler first breaks every group of statements

delimited by a sequencer (;) into its own stage. In source code, each stage will be

represented by a procedure definition in which the initial statement is a channel read

and the final statement is a channel write. The channel read accepts the context from

a prior stage; the channel write transmits the updated context to a subsequent stage.

To complete the transformation, the correct context for each stage must be deter-

mined. First, the compiler visits each stage, building a list of the variables accessed

(VARx) by the stage’s statement groupings. Next, the compiler generates the IN set

13



for each stage, which consists of all the variables in use prior to or within the stage.

IN sets are determined using the following productions, where x indicates the stage

number:

IN1 = V ARx

INx = INx−1 ∪ V ARx (3.1)

The compiler then determines the OUT set for the stage: the set of all variables accessed

in subsequent stages. A similar production is used (n indicates the final stage in the

pipeline):

OUTn = ∅

OUTx = OUTx+1 ∪ V ARx+1 (3.2)

Two important observations can be made by comparing the IN and OUT sets for

each stage. First, if a variable is contained in a stage’s IN set but not contained in its

OUT set, that variable will be accessed in this stage, but will not be accessed in any

future stages. Therefore, the variable does not need to propagate beyond this stage.

Second, a variable that exists in the OUT set of a stage but not in its IN set is being

used for the first time in the next stage. If the variable is read in the next stage, the

read can be replaced with the variable’s initialization. In this case, the current stage

sends the initial value of the variable, or zero if the variable is declared without an

initialization. If the variable is only written in the next stage, the current stage does

not need to communicate a value for the variable, since it will merely be overwritten.

Using the IN and OUT sets for each stage, the context for each stage can be deter-

mined. For a stage x, the set of variables in the stage’s context is the following:

contextx = OUTx−1 ∩ INx (3.3)

The variables that must be communicated on its output channel are:

contextx+1 = OUTx ∩ INx+1 (3.4)

In the AST for a specification, channel reads for the context are inserted for each

stage after the first. Likewise, a channel write is inserted for all stages except the last.

In operation, each stage will read in the values of each variable needed in this stage

or a future stage. The stage will then perform operations on these variables using the

concurrent statement grouping associated with the stage. If a variable is modified, the

14



output channel will transmit an expression containing the updated value. If unmodified,

the output channel will merely transmit the original value of the variable. The channel

read, variable modification, and channel write are then nested within a forever do

loop, creating a pipeline stage. This process is followed for each stage to create a

complete data-driven pipeline.
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CHAPTER 4

Advanced Optimizations

In this chapter, several advanced optimizations are discussed. Section 4.1 describes

optimization to conditional constructs. Section 4.2 addresses communication optimiza-

tion and correctness. Finally, Section 4.3 describes optimizations that can be performed

on loops.

4.1 Handling Conditional Communication

Not all code the user wishes to synthesize is linear in nature; conditionals (if-then-else)

will frequently exist in the original code. There are many options to handle these breaks

in linearity.

4.1.1 Conditional Assignment

If both branches consist solely of variable assignments, i.e., no channel communications

or loops exist in either branch, conditional assignment of variables is the preferred

method. To perform a conditional assignment, the assignments in either branch are

removed and replaced with a tertiary assignment outside of the conditional. The form

is as follows:

var:=if bool then expthen else expelse

Consider the code in Figure 4.1. In the else branch, the variable x is assigned x+1.

In the then branch, no assignment is made. The assignment can be removed from the

loop and replaced with a conditional assignment:

x:=if a>b then x else x+1

If assignments are made in both branches, such as for variable y, the same procedure

applies:



proc(IN?chan byte

& OUT!chan byte).

begin

& a,b,x,y

| forever do

IN?a;

IN?b;

if a>b

y:=y-1

else

x:=x+1;

y:=y+1;

fi;

OUT!x+y

od

end

proc(IN?chan byte

& OUT!chan byte).

begin

& a,b,x,y

| forever do

IN?a;

IN?b;

x:=if a>b then x

else x+1 ||

y:= if a>b then y-1

else y+1;

OUT!x+y

od

end

Figure 4.1: Replacing Conditionals with Conditional Assignments

y:= if a>b then y-1 else y+1

If the boolean condition is a function of variables modified in either branch, a

temporary copy of the boolean must be used to preserve correct operation. Variable

renaming may be applied if several writes to the same variable occur in both branches.

4.1.2 Early Decision

Early decision (Figure 4.2) is used when either branch contains a channel communi-

cation or internal loop. It is necessary that the pipeline be split into two branches to

handle this situation: one containing the then branch, the other containing the else

branch. Two additional stages are introduced: one that forks the branches prior to

execution, and one that merges them after execution.

In early decision, the value of the conditional’s boolean is computed prior to entering

either branch, just as it would in a normal system. After the computation, the fork stage

decides the path to which the context should be sent. The context is then operated on

by the proper branch, and then accepted by the merge stage to be sent out.

If the two paths are poorly matched in terms of slack and forward latency, early

decision may result in out-of-order execution of consecutive datasets. If out-of-order

execution is allowable, then no further modifications are needed. However, in many

cases a third boolean branch must be introduced between the fork and join stages to

indicate which branch the join stage should read from to preserve execution order.
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split merge
…
then

else
…

… fork
boolean

fork join
…
then

else

boolean

…

…

Figure 4.2: Early and Late Decision in Conditionals

4.1.3 Late Decision

Late decision (Figure 4.2) can be applied in the case where either branch contains an

internal loop, but cannot be applied when channel communication is performed by the

branches. In late decision, the pipeline must be split into three branches, two for then

and else and one for the boolean value. Again, a fork and a join stage must be included

in the pipeline.

In late decision, the value of a conditional’s boolean is computed in parallel to

execution of both branches. For this reason, channel communication is disallowed –

channel communications would be initiated regardless of the value of the boolean. At

the join stage, all three branches have completed computation. The join stage selects

the context from the correct branch using the boolean value and forwards it, discarding

the context from the incorrect branch.

Late decision suffers from poor energy consumption and can also limit throughput

if the branches are not slack-matched. However, the latency of the conditional can be

reduced if the boolean takes a significant amount of time to compute. Early decision,

in comparison, has the advantage of high throughput even if the paths are not slack

matched.

4.2 Preserving Communication Correctness

Maintaining correctness in a specification is a priority over performance enhancement.

The existence of channel communication is a difficulty in optimization, because re-

ordering sequential communications is generally unsafe in the broadest case. This

section enumerates the situations in which channel communications cause difficulty in

optimization, and the cases in which performance can be optimized. For these examples,

the compiler is presented with a basic module and a black-box with which the module

communicates. The compiler is unaware of the statements within the black box.
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4.2.1 Correctness Challenges

The first example illustrates the effects of re-ordering a pair of channel communications.

For this example, consider a known module that consists of two sequential channel

reads: C?a; D?b. Its black box counterpart is a module that performs channel writes

in the same order C!x; D!y. By swapping the channel reads in the known module,

a deadlock is introduced: the known module attempts to read from channel D while

the black-box module attempts to write to C. Neither channel communication will

terminate.

Instead, the compiler can parallelize the channel reads in the known module. Dead-

lock is avoided in this scenario. However, no gains in throughput are achieved since the

module must wait for both communications to terminate, and these communications

are sequenced in the black-box.

The benefit of parallelizing communications occurs when the communications are

parallelized either in the black box, or the communications are performed with disjoint

modules. If these modules have no channels between them (disjoint), then the two

channel actions cannot be externally sequenced. In such a case, it is generally safe to

both parallelize and re-order the communications.

One exception occurs when the initial communication blocks indefinitely. If the

known module parallelizes its two channel actions, the second channel communication

occurs, even though it should not have occurred in the original specification. Deter-

mining whether a communication will block indefinitely is not computable, so the user

must help indicate whether parallelization is possible.

Another assumption that must be made for parallelization to occur is that the black-

box does not probe its input channels to determine operation. If so, parallelizing two

statements can create non-determinism in output.

4.2.2 Solution Overview

The safest solution is to maintain the original ordering of channel operation. Should

the compiler have knowledge of the black-box code, or indications from the user, the

compiler can perform parallelization on two channels if the following restrictions hold:

(i) no data-dependencies between the two channels, (ii) no probes occur causing a selec-

tion between the channels, and (iii) both communications will terminate. Furthermore,

if the modules to which the channels are connected do not communicate, these channel

actions can have their order swapped (this is a loose restriction).

One final example is illustrated in Figure 4.3. In the known module, two parallel
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Known

(A?a ; B?b )||

(C?c ; D?d )

Black-box

A!w; B!x;

C!y; D!z

Figure 4.3: Parallel Sequences of Channel Communications

communication sequences occur. Pipelining the sequence of communications is per-

formed by forking the two parallel streams into separate pipeline branches and merging

any changes at their join stage. Had these operations been completely parallelized,

the cycle time of the stage would be high due to external sequencing. By performing

pipelining on these channel actions, high throughput can be maintained, assuming the

black-box is a sequenced pipeline.

4.3 Handling Iterative Computation

The loop pipelining work of [6] discusses how throughput can be conserved in for

and while loops. Loop pipelining can allow several distinct datasets to enter a loop

concurrently, increasing throughput in comparison to a single dataset. The optimization

is performed using self-timed pipeline rings with a few specialized stages to perform

control.

The loop pipelining optimization can be performed at the source level, and can

handle arbitrary numbers of nested loops. The examples performed in [6] report a

speedup of over 4x when combining loop pipelining with loop unrolling.

In for loops when the iteration count is known at compile-time, the compiler can

fully unroll the loop to maintain maximum throughput. This optimization comes at

a cost of area, and may be a poor choice if the iteration count is high or the internal

code is bulky.
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CHAPTER 5

Results

This chapter explains how the proposed compiler was tested using the Haste design

flow and describes the examples used as benchmarks. Three results tables are included,

containing cycle times, latencies, and throughputs of the specifications when simulated

at the gate level.

5.1 Experimental Setup

Each example was designed and simulated using the Haste/TiDE toolflow (formerly

“Tangram”) from Philips/Handshake Solutions [7], described earlier in Chapter 2.

Eight different benchmarks were chosen to illustrate the effects of the proposed ap-

proach:

(i) SIMPLE: the example of 3.6, consists of straightline code with mixed operators

and dependences

(ii) ADD: performs a non-parallelizable sequence of additions

(iii) MULT: performs a highly parallelizable sequence of multiplications

(iv) COND1: performs arithmetic operations using a balanced conditional block

(v) COND2: performs arithmetic operations using a non-balanced conditional block

(vi) TEA: encrypts a binary string given an input key using the Tiny Encryption

Algorithm

(vii) ROOT: performs a square root using an iterative loop

(viii) TRIANGLE: computes the area of several triangles using two ROOT loops

The compiler transformed the original specification into three new specifications:

parallelized, pipelined, and both parallized and pipelined.



Throughput (Normalized)
Specification Original Parallel Pipelined Parallel+Pipelined
SIMPLE 1.0 1.1 1.3 1.3
ADD 1.0 1.0 7.8 8.0
MULT 1.0 3.4 4.6 4.6
COND1 1.0 1.0 2.9 2.9
COND2 1.0 1.0 1.5 1.5
TEA 1.0 1.0 23.2 23.2
ROOT 1.0 1.0 0.97 1.1
TRIANGLE 1.0 1.0 6.6 6.6

Table 5.1: Simulation Results: Throughput

Latency(ns)
Specification Original Parallel Pipelined Parallel+Pipelined
SIMPLE 71.7 64.9 122.8 118.2
ADD 36.8 36.8 43.0 43.0
MULT 2235.5 654.3 4907.0 1481.3
COND1 23.5 23.5 28.8 29.0
COND2 12.2 12.2 28.8 29.0
TEA 341.3 341.3 349.8 349.1
ROOT 138.7 123.3 571.1 260.0
TRIANGLE 1226.2 510.8 1446.3 709.2

Table 5.2: Simulation Results: Latency

5.2 Results and Discussion

The results in Table 5.1-5.3 demonstrate the benefit of the proposed transformation

approach. When automatic parallelization of the specification is performed, the per-

formance improves in those examples where individual statements can be parallelized

(e.g., MULT and TRIANGLE). If pipelining transformation were performed, there is

a quite substantial improvement in the overall throughput for all examples except for

ROOT, which has a data-dependent loop that prevents benefits of pipelining from be-

ing realized. Finally, the last column shows results of applying both parallelization and

pipelining, resulting in even higher performance gains: from factor of 1.1x to 23x higher

throughput.

Furthermore, latency reduction of up to factor of 72% was observed (TRIANGLE);

this example has two loop constructs which are parallelized, thereby obtaining signifi-

cant latency reduction.
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Cycle Time(ns)
Specification Original Parallel Pipelined Parallel+Pipelined
SIMPLE 71.7 64.9 53.9 53.8
ADD 36.8 36.8 4.7 4.6
MULT 2235.5 654.3 490.8 490.8
COND1 23.5 23.5 8.0 8.0
COND2 12.2 12.2 8.0 8.0
TEA 341.3 341.3 14.7 14.7
ROOT 138.7 123.3 143.3 130.2
TRIANGLE 1226.2 510.8 186.9 186.9

Table 5.3: Simulation Results: Cycle Times
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CHAPTER 6

Conclusions and Future Work

This thesis proposed the use of a source-to-source compiler to increase the performance

of a specification while maintaining ease of design . The results show improved through-

put for all pipelined specifications (up to 23x) and latency improvement for parallelized

specifications (a 2.4x decrease).

In ongoing work, I will evaluate the compiler’s performance by using it on more

complex systems, such as multimedia streaming processors. I aim to implement a

wider variety of conditionals: including variants on early and late evaluation. I also

plan to provide more robust communication support by allowing more communications

to be parallelized and re-ordered.

In addition, I plan to leverage the loop pipelining approach of [6] in order to pro-

vide better optimizations for both while and for loops. Finally, I plan to perform a

full data-flow implementation as an alternative to the data-driven approach. With a

high-quality slack-matching heuristic, a dataflow architecture may be able to enhance

performance even further.
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