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Abstract 
Eric S. Money 

Modern Space/Time Geostatistics Using River Distances:  Theory and Applications 
for Water Quality Mapping 

(Under the direction of Dr. Marc L. Serre) 
 

 The Clean Water Act requires that state and local agencies assess all river 

miles for potential impairments.  However, due to the large number of river miles to 

be assessed, as well as budget and resource limitations, many states cannot 

feasibly meet this requirement.  Therefore, there is a need for a framework that can 

accurately assess water quality at un-monitored locations, using limited data 

resources.  Many researchers employ geostatistical techniques such as kriging and 

Bayesian Maximum Entropy (BME) to interpolate values in areas where no data 

exist.  These techniques rely on the spatial and/or temporal autocorrelation between 

existing data points to estimate at un-monitored locations.  This autocorrelation is 

traditionally a function of the Euclidean distance between those data points; 

however, a Euclidean distance does not take into account that many water quality 

variables may be spatially correlated due to the hydrogeography of the system.       

The focus of this work is the development of a space/time geostatistical 

framework for estimating and mapping water quality along river networks by using 

river distances instead of the traditional Euclidean distance.  The Bayesian 

Maximum Entropy method of modern space/time geostatistics is modified and 

extended to incorporate the use of river distances to improve the estimation of basin-

wide water quality.  This new framework, termed river-BME, uses geostatistical 
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models that integrate the use of permissible covariance functions with secondary 

information along with river distance.  Factors, such as network complexity, are 

explored to determine the efficacy of using river-BME for water quality estimation.   

Additionally, simulation experiments and three real world case studies provide a 

broad application of this framework for a variety of basins and water quality 

parameters, including dissolved oxygen, Escherichia coli, and fish tissue mercury.  

Results show that the use of river-BME produces significantly more accurate 

estimates of water quality at un-monitored locations than traditional Euclidean based 

methods by more than 30%.  Overall, this work provides a new tool for applying 

modern space/time geostatistics using river distances.  It has the potential to aid not 

only future researchers but can ultimately provide environmental managers with the 

information necessary to better allocate resources and protect ecological and human 

health.
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Chapter I:  Introduction 
 
  

The primary focus of this work is the application of river distances to the 

geostatistical estimation of water quality along river networks.  A substantial portion 

of this research consists of the development of a river metric that can be 

incorporated into the Bayesian Maximum Entropy methodology for the 

spatiotemporal estimation and mapping of water quality.  This is the first known 

attempt to fully implement a river metric into the spatiotemporal estimation of water 

quality for a series of parameters and across multiple basins.  The overall hypothesis 

is that by accounting for the river connectedness between data points, the 

space/time estimation and mapping accuracy of basin-wide water quality can be 

improved significantly.   

There have been several studies that attempt to characterize surface water 

quality using geostatistics.  Many of these studies involve traditional kriging 

techniques, or other interpolation and regression based methods with a Euclidean 

distance (Rasmussen et al., 2005; Tortorelli and Pickup, 2006; Cressie et al., 2005; 

Peterson and Urquhart, 2006).  Cressie et al. (2005) and Peterson and Urquhart 

(2006) consider the use of river distance but ultimately perform estimations using a 

Euclidean approach.  These studies raise additional questions about the effect of 

using a river distance for water quality estimation.  Therefore this research extends 



2 
 

previous work to compare geostatistical estimation of water quality using river and 

Euclidean distances in a space/time framework.     

Recent developments in geostatistics have begun to address both the spatial 

and temporal variability as well (Stein 1986, Christakos 1992, Cressie 1993, Bogaert 

1996, Kyriakidis and Journel 1999, Fuentes 2004, Kolovos et al. 2004, Akita et al. 

2007).  In the case of many water quality parameters, temporal variability plays a 

key role in understanding the overall impact on a basin-wide system.  

Spatiotemporal methods aim at rigorously modeling the spatial and temporal 

variability inherent in data so as to produce more accurate estimates and 

significantly reduce overall estimation error for a variety of environmental parameters 

at unmonitored space/time locations using the generally sparse monitoring data 

available.   

One such method is the spatiotemporal Bayesian Maximum Entropy (BME) 

method (Christakos 1990, 2000; Serre et al. 1998, Serre and Christakos, 1999).  

This method has been successfully applied to a variety of environmental issues, 

including air quality (Christakos and Serre, 2000; Christakos et al. 2004; Wilson and 

Serre 2007), and epidemiology (Law et al. 2004, 2006).  There have also been 

several interesting studies that involve the BME estimation of water quality (Serre et 

al. 2004, LoBuglio et al., 2007; Akita et al. 2007, Couillette et al., 2008).  These 

studies have shown that by using space/time BME we can produce more accurate 

maps of water quality than those produced using a purely spatial analysis.  In 

addition, the BME method can rigorously process both actual measurements (hard 

data) and measurements with some associated error (soft data), leading to more 
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accurate estimates than typical kriging methods that do not account for soft 

information, as shown in several studies (Christakos and Serre, 2000; Lee, 2005; 

Savelieva et al., 2005; Serre and Lee, 2006).  These spatiotemporal studies use a 

Euclidean metric because the water quality parameters considered so far had a 

spatial distribution largely driven by processes (overland non point source pollution 

and subsurface contamination, respectively) that are adequately described using 

distances calculated across land.  Akita et al. (2007) suggests, however, that for 

other water quality parameters one should investigate whether a river metric is more 

appropriate than the classical Euclidean measure. 

There have been several recent studies regarding the use of non-Euclidean 

distances and stream flow in water quality estimation, and the development of 

corresponding permissible covariance models (Ver Hoef, 2006; Cressie et al., 2006; 

Peterson and Urquhart, 2006; Curriero, 2006; Bailly et al., 2006; Bernard-Michel and 

Fouquet, 2006; Peterson et al., 2007).  Ver Hoef (2006), Cressie et al. (2006), and 

Peterson et al. (2006) demonstrate the use of flow-weighted covariance models 

using nitrates, change in DO, and dissolved organic carbon (DOC), respectively.  

What these studies share, is their restriction to the spatial domain and absence of 

soft information.  Cressie et al. (2006) and Peterson and Urquhart (2006) also 

compared Euclidean and flow-weighted covariance models, and found that the 

Euclidean model performed better. Ver Hoef et al. (2006) found a flow-weighted 

covariance model was more accurate.   Various types of covariance functions (i.e. 

spherical, Mariah) were examined as well; however, as Cressie et al. (2006) and Ver 

Hoef et al. (2006) point out, only exponential covariance models were assumed 
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permissible when using river distance based on eigenvalue calculations of the 

covariance matrix.  However, an explicit mathematical proof of permissibility using 

river distance for any covariance function is not reflected in these studies.  

Therefore, this research provides a novel computational implementation of a 

space/time estimation framework that uses demonstrably permissible river distance 

and covariance for water quality applications involving both hard and soft 

information.  In addition, three case studies are presented that are the first 

implementations of their kind using a river distance for space/time estimation of 

water quality.    Hence, this research is an examination of modern space/time 

geostatistics using river distances.   

The research is organized around three main themes.  The first is the 

description of the space/time geostatistical framework for estimation of water quality 

parameters using river distances.  The second is the numerical implementation of 

river based functions within this framework.  Third is the application of this 

framework for real world water quality estimation and mapping.  

Theme 1 is addressed in Chapter 2 and describes the Bayesian Maximum 

Entropy framework in detail and the methodology used in this study to conduct a 

comprehensive estimation and mapping of water quality using river distances.  This 

chapter provides a review of potential covariance models that use river distances, 

with details regarding covariance permissibility and the ultimate selection of the river 

covariance models that will be used throughout the remainder of this work.   

Chapter 3 addresses theme 2, and describes the numerical implementation of river 

based functions into the BME framework that will provide a useful geostatistical 
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library for future researchers interested in river based water quality estimations, 

which will be referred to as river-BME throughout this work.  This includes the 

creation of an efficient river distance algorithm, new functions, as well as 

modifications to existing functions which all have an effect on the way geostatistical 

calculations are performed.  In addition the efficacy of using river distances is 

examined by determining the relationship between efficacy and network complexity, 

parameter choice, and data density.  Finally, a series of simulation experiments are 

performed to test the numerical implementation of river-BME.   

Chapters 4, 5, and 6 describe the implementation of this framework for real 

world water quality applications, looking at a wide variety of parameters across 

several types of basins.  Chapter 4 examines dissolved oxygen in the Raritan and 

Lower Delaware basins in New Jersey, where all data are treated as hard data.  

Chapter 5 builds upon the work in Chapter 4, and is a study of fecal contamination in 

the Raritan basin, New Jersey using not only hard data for Eschericia coli (E.coli), 

but also incorporating secondary soft information in the form of turbidity 

measurements.  Chapter 6 uses river-BME for the estimation of fish tissue mercury 

in the Cape Fear and Lumber basins in North Carolina, again looking at a 

combination of hard and soft data and the effect this has on estimation accuracy. 

  This work concludes in Chapter 7, with a major summary of the results of the 

three major application studies and a discussion of how the development and 

implementation of river-BME will provide a new and efficient framework for more 

accurately assessing water quality trends along river networks. 



 
 

Chapter II:  Modern Space/Time Geostatistics Using River 
Distances: The Conceptual Framework  

 

 

2.1.   Introduction 

The field of geostatistics centers on the concept that points that are closer 

together in space (or time) exhibit more similar physical/chemical/biological 

characteristics than points that are farther apart.  This concept, referred to as 

autocorrelation, is a central component to the overall methodology employed in this 

work.   Because these autocorrelation functions are based on distance (both in 

space and time), the choice of distance measure, particularly in a spatial context, 

becomes extremely important.   This chapter will introduce the major methodological 

and conceptual underpinnings of the river-BME framework, including a discussion on 

the traditional BME framework, types of distance metrics, covariance model 

selection and permissibility, and finally the estimation and mapping concepts central 

to working with river networks.  

 

2.2. The Bayesian Maximum Entropy Framework 
 

2.2.1.   The Stages of BME 



7 
 

The BME method provides a rigorous mathematical framework to process a wide 

variety of knowledge bases.  These Knowledge Bases characterize the space/time 

distribution and uncertainty in monitoring data available for various water quality 

parameters, and are used to obtain a complete stochastic description of these 

parameters at any unmonitored space/time point in terms of its posterior Probability 

Density Distribution (PDF).  

The theory of space/time random fields (S/TRF) provides a powerful construct 

to represent the space/time variability and uncertainty associated with a water 

quality parameter.  Let us consider a modeling approach where the water quality 

parameter can be modeled as (or transformed to) a homogeneous/stationary S/TRF 

X(p), where p=(s,t) denote a space/time point at spatial location s=(s1,s2) and time t.  

The BME framework is used to process the general and site-specific knowledge 

bases about the S/TRF X(p) and estimate its value at un-sampled locations.  The 

general knowledge base characterizing the S/TRF X(p) includes its constant mean 

and the homogeneous/stationary covariance between space/time points p and p’ , 

which can be expressed in terms of the spatial distance d(s,s’ ) between spatial 

locations s and s’ , and the time difference τ = |t-t’|.  This dissertation, as a result, 

explores the use of a river metric to obtain the distance d(s,s’ ).  The mean of the 

BME posterior PDF is generally selected as our estimator of water quality at some 

estimation point, with the corresponding posterior variance describing the associated 

estimation uncertainty. 

The framework used throughout this analysis is based on the BME framework 

as implemented in version 2.0b of the BMElib numerical library written using the 
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MATLAB R2000a programming platform and modified for river estimation (see 

Chapter III).  The distribution of water quality across space and time is generally 

modeled as the sum of a non-random function m(p), and a homogeneous/stationary 

residual space/time random field (S/TRF) X(p) modeling the space/time variability 

and uncertainty associated with the difference between water quality parameter and 

the non-random function m(p),. The non-random function m (p) may provide, for 

example, a model for the known spatial and temporal trends often seen in water 

quality variables.   The site-specific knowledge includes both hard data (e.g. 

monitoring data measured without error) and soft data (i.e. data with associated 

measurement error). By way of summary, BME uses the maximization of a Shannon 

measure of information entropy and an operational Bayesian updating rule to 

process the general and site specific knowledge bases, and obtain the posterior 

PDF describing water quality concentration at any un-sampled point of the river 

network.  The BME method for modern space/time geostatistics was introduced by 

Christakos (1990), and a detailed description of the conceptual underpinnings of the 

BME framework follows, while it’s BMElib numerical implementation is described in 

Serre et al. (1998), Serre and Christakos (1999) and Christakos et al (2002).   

In the special case where only hard data are considered (e.g. when 

measurement errors are small enough that they can be neglected), then the BME 

method yields the best estimators of linear geostatistics known as the simple, 

ordinary and universal kriging methods. The BMElib package implements concepts 

of composite space/time analysis (i.e. composite space/time metrics and 

neighborhood search, non separable space/time covariance models, etc.) that result 
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in better geostatistical functions for linear space/time kriging than those provided by 

classical geostatistics software where time is included as merely another spatial 

dimension (Christakos et al., 2002; BMElib, 2008). Figure 2.1 summarizes the 

components of the traditional BME methodology.  A more in depth look at each of 

these steps is presented in the following sections.   

 

 

Fig. 2.1:  The Stages of Bayesian Maximum Entropy f or Space/Time Geostatistics 

 It should be noted that there are criticisms related to the use of BME in 

science applications.  Many of these criticisms stem from the use of Bayes theorem 

in the integration step of the BME methodology.  However, as described in 

Christakos (1990) and Christakos et al. (2002) the integration stage is a generalized 

use of Bayesian conditionalization and when using only hard data, results in kriging 

estimates similar to estimates in non-Bayesian approaches.  The reader is referred 

to Christakos et al. (2002) for further information about these approaches and how 

BME allows for a comparison of these approaches.   

 

2.2.2.  The General Knowledge Base 
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As noted earlier, the BME framework is dependent upon the integration of 

knowledge bases (KB) to develop an accurate representation of the natural system 

under investigation.  The general knowledge base, G-KB, can be expressed in terms 

of general stochastic equations:  

 

∫=

=

)()()(

)()(

mapGmapmapmap

mapmap

fgdxg

xgph

χχχ αα

αα

             (2.1) 

 

where αg  and αh (α = 0,1,….,N) are sets of known functions of χχχχmap (values) and 

pmap (coordinates), and N is the number of moment equations considered.  Gf  refers 

to the pdf associated with the general knowledge with the left side of the equation 

representing the stochastic expectations of the fields involved.  The αg ’s are chosen 

such that the expectations, αh , can be calculated from field data or other types of 

general knowledge (Christakos et al.,  2002).   

 There are a variety of general knowledge bases that can be considered in the 

BME framework.  These include statistical correlation functions (means, 

covariances, variograms, multiple-point moments, non-linear statistics, etc.) as well 

as scientific models (physical laws, biological theories, etc.).  For this work, we 

derive our general knowledge base from statistical correlation functions, including 

the mean trend and covariance, as well as information gained from empirical 

relationships.  These are described in detail in Chapters 4-6.  The stage of the BME 
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analysis concerned with processing the G-KB is known as the prior (structural) 

stage, which will be described later. 

 

2.2.3. The Site-Specific Knowledge Base 
 
Unlike the general KB, the site-specific knowledge base, S-KB, consists of 

values measured at a specific location in space and time, and can be either hard or 

soft data.  Hard data represent measurements obtained using methodologies or 

instrumentation that are considered accurate with an error that is either very small or 

can reasonably be ignored for the mapping analysis.  The hard data available at a 

set of n points can be expressed as follows: 

 

χχχχhard = (χ1,....,χn)                (2.2) 

 

 Soft data, on the other hand, denote data that has been obtained from 

uncertain observations that can be expressed in terms of interval values, 

probabilistic statements, etc.  As will be shown in Chapters 5 and 6, incorporating 

soft data can significantly increase the mapping accuracy of water quality at un-

monitored locations when combined with existing hard data.  Christakos and Serre 

(2000a,b) utilized both types of data when examining mortality and temperature, as 

well as particulate matter and showed improved maps when accounting for hard and 

soft data.  With respect to water quality, LoBuglio et al. (2006) showed that using 

model predictions as soft data can improve the estimation of water quality.   There 

are two types of soft data employed in this work.  The first is interval soft data where 
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a value, xsoft, is known be between some upper and lower bound, ui and li, 

respectively (Eq. 2.3).   

 

Prob ][ isofti uxl ≤≤ =1                          (2.3) 

 

In addition to the interval type, probabilistic soft data can also be used to 

incorporate information provided by secondary variables used as proxies for the 

primary variable of interest (see Chapters 5, 6).  This type of information can be 

expressed in terms of the probability that the random variable xsoft representing 

water quality at some soft data point is less than a cutoff value χχχχsoft.  This results in a 

cumulative distribution function, Fs constructed on the basis of the site-specific 

knowledge (Eq. 2.3).   

 

Fs (χsoft) = Prob ≤softx[ χsoft]               (2.4) 

This stage of the BME analysis concerned with organizing the site-specific 

knowledge into hard and soft data is referred to as the meta-prior (specificatory) 

stage.   

 

2.2.4 Bayesian Conditionalization 
 
The final stage of the BME analysis is referred to as the posterior or 

integration stage.  During this stage of the analysis, given the site-specific 

knowledge available, the general knowledge based pdf, Gf  , is updated by means of 
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a Bayesian conditionalization rule that leads to the BME posterior pdf for any 

mapping location, pk as follows: 

 

Kf ( pk) =  
A

ff mapGsofts )()( χχ
                                    (2.5) 

 

where K is the total knowledge considered (G-KB ∪  S-KB), A = 

)()( dataGsoftsk ffd χχχχχχχχχ∫
∞

∞−
 is the normalization constant, and sf is the pdf of site-

specific data, dependent on the type used (see Eq. 2.2-2.4).  As Christakos et al. 

(2002) notes, the BME approach offers a substantial improvement – compared to 

classical Bayesian conditionalization methods – by making sure that a physical 

connection has been taken into consideration at the G-KB stage.  For a complete 

description of the Bayesian conditionalization approach in light of BME, as well as 

other approaches, the reader is referred to Christakos (2000) and Christakos et al. 

(2002).  Once Kf  is calculated, estimation maps are derived based typically on the 

mode or the mean of the posterior pdf.   

 

2.3. Distance Metrics 
 

As noted earlier, distance calculations are an essential component to a river-

based geostatistical framework used to estimate water quality at un-monitored 

points.  The way we calculate distances affects correlation functions (such as the 

covariance), as well as the selection of an estimation neighborhood.  The term 
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metric is used to describe a distance that meets the following criteria for spatial 

points s, s’ , and s”    

 

d(s, s’ ) ≥ 0   (non-negativity)                         (2.6) 

d(s, s’ ) = 0   if and only if   s = s’   (identity)  

d(s, s’ ) = d(s’ , s)  (symmetry) 

d(s, s’ ) ≤ d(s, s” ) + d(s” , s’ )  (triangle inequality) 

 

Euclidean distance and isotropic river distance (as described below) both meet the 

qualifications of a metric, therefore the term ‘metric’ and ‘distance’ are used 

interchangeably throughout this work. 

 There are a variety of distance measures to consider when dealing with water 

quality parameters along river networks.  Figure 2.2 describes the types examined in 

this work.   

 

Fig. 2.2:  Euclidean Distance (A) and River Distanc e (B) 
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The first to consider is the Euclidean metric (Fig. 2.2a).  This is the traditional 

distance metric used within the BME framework and other common geostatistical 

techniques.  A Euclidean distance is best defined ‘as the crow flies’ or straight-line 

distance in any direction.   The other distance to consider is the river distance (Fig. 

2.2b), which corresponds to the shortest distance along the river between the two 

points of interests. We consider these two distances in the next section and examine 

the impact each may have on the existing space/time framework.  One cannot 

simply substitute a non-Euclidean distance in the calculations of correlation 

functions, as this can lead to non-permissible covariance functions.  Therefore, 

before river-BME can be established and tested, potential covariance models must 

be examined for permissibility using the river distance.  Section 2.4 provides this 

examination as well as the details regarding the ultimate covariance function 

selection used in the application of river-BME to water quality estimation.   

 

2.4.   Covariance Models Using River Distances 

 

2.4.1.  Isotropic River Covariance Models 
 
Consider the case of a river network that can be represented by a directed 

tree of river reaches with zero width. This representation is highly adequate for 

downstream combining stream networks with somewhat narrow reaches; however it 

is not highly adequate for wider water bodies such as connected estuaries or lakes 

(Curriero, 2006). The river network is made up of reaches connected at confluence 

nodes. Each river reach is identified by a unique index i (Fig. 3), and we let V be the 
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set of all river reach indexes; V={1,2,…n}, where n is the total number of individual 

reaches.  An i=1 will denote by convention the downstream-most river reach. The 

downstream end of the downstream-most reach is the outlet of the river network.  

The longitudinal coordinate l of a point on the river network is defined as the length 

of the continuous line connecting the outlet to that point along the river network (by 

convention, negative l values represent fictitious locations downstream of the outlet). 

A point r=(s,l,i) on the river network is uniquely identified by either its spatial 

coordinate s; or its river coordinate (l,i) identifying the longitudinal coordinate l and 

the reach index i where the point is located (see Fig. 2.3).  

  

Fig. 2.3: (Left) Directed tree river network with 5  stream reaches (numbered in circles), and 
showing point ( l,i) on reach 4, and point ( l’,i' ) on reach 3. (Right) Range of the exponential-
power river covariance parameters ( α,βα,βα,βα,β) for which the covariance matrix constructed using  20 
neighboring points in the Raritan river in New Jers ey has a positive lowest eigenvalue, i.e. 
min( λλλλ)>0. 
 

A non-negative real-valued function d(r,r’ ) is a metric if it verifies the 

properties of a metric (Eq. 2.6) for all r, r’ , r” . We denote dE(r,r’ ) and dR(r,r’ ) as the 

Euclidean distance and river distance, respectively, as defined in the previous 

section. It can be easily shown that both the Euclidean and river distances verify the 

properties of a metric.  
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We let X(r) be a random field representing the value taken by a water quality 

parameter X at location r. The covariance between X(r) and X(r’ ) is a real-valued 

function of r and r’ that we denote as cov(r,r’ ).  By isotropic river covariance models 

we refer to the class of permissible models that can be expressed as a function of 

the distance between the points r and r’ , i.e. cov(r,r’ )=c(d(r,r’ )). It is well known 

(Christakos, 1992; Cressie, 1993, Stein, 1999) that permissible covariance functions 

must verify the positive definiteness condition, which for isotropic river covariance 

models can be expressed as  

∑ ∑
= =

≥
n

k

n

k
kkkk dcqq

1 1'
'' 0))(( rr                           (2.7) 

 

for all choices of n river points rk and real numbers qk, k=1,..,n (the above condition 

comes from the fact that ∑ ∑∑
= ==

≥=
n

k

n

k
kkkk

n

k
kk qqXq

1 1'
''

1
0)cov())(var( rrr ).  Some 

covariance functions are known to be permissible when using the Euclidean 

distance, such as the following exponential power model (Stein, 1999; Curriero, 

2006) 

 

cov(r,r’ )=exp(-(dE(r,r’ )/ar
 )β ),   0<β ≤ 2                        (2.8) 

 

where ar is the covariance range. This model corresponds to the usual exponential 

and Gaussian models when β=1 and β=2, respectively.  Other models (spherical, 

etc.) are also permissible using the Euclidean metric. However, as demonstrated in 

Curriero (2006), permissibility of a covariance function with the Euclidean distance 
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does not ensure permissibility with other distances, even if such distances verify the 

properties of a metric, therefore caution should be used when using covariance 

functions with the river distance. 

Ver Hoef et al. (2006) propose an appealing method to construct permissible 

covariance functions for river networks. Using their approach, we define the random 

variable X(l,i) at longitudinal coordinate l along reach i as the moving-average of a 

white noise random process W(u,j) defined at longitudinal coordinate u<l along 

reach j downstream of reach i.  Let Vi(u) be the set of reaches at longitudinal 

coordinate u that are flow-connected to reach i. By convention, if u=+∞ we let Vi(u) 

be the set of leaf reaches upstream of reach i, and if  u=-∞ we let Vi(u) be the outlet 

reach. Note that if u>l where l is the longitudinal coordinate of a point on reach i, 

then Vi(u) may contain more than one reach index. However, if u<l, then Vi(u)={j} is 

a singleton containing the index of the unique reach at longitudinal coordinate u 

downstream of i. Using this notation X(l,i) can be written as 

  

X(l,i) = ∫
∞−

−
l

i uVuWlugdu ))(,()(                         (2.9) 

 

where g(u- l) is a moving average function defined on R1. As indicated in Ver Hoef et 

al. (2006), by choosing a moving average function that is exponentially decaying 

away from 0, i.e. g(h)= 2 exp(-|h|), the moving average construction leads to a valid 

covariance function of exponential type that is a function of the river distance, i.e. 
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cov(r,r’ )=exp(-dR(r,r’ ))                        (2.10) 

  

An overview of how to obtain this result has already been provided by Ver 

Hoef et al. (2006) and Ver Hoef and Peterson (2008), therefore we only provide the 

detailed proof of this result in Appendix A.  We note that while the exponential power 

model is valid for 0<β ≤ 2 for the Euclidean distance, that model has only be shown 

to be valid for the river distance when β=1.  

 The most appropriate distance for a given water quality parameter may be a 

combination of the Euclidean and river distances. We may therefore define a 

composite Euclidean-river distance as 

 

dα(r,r’ )=αdR(r,r’ )+(α-1)dE(r,r’ ) ,   0 ≤ α ≤ 1                      (2.11) 

 

which can easily be shown to verify the properties of a metric. Using dα(r,r’ ), we then 

propose the following isotropic exponential-power river covariance model 

 

cov(r,r’ )=exp(-(dα(r,r’ )/ar
 )β ) ,   0 ≤ α ≤ 1 and 0<β ≤ 2                    (2.12) 

 

which has not been proposed in this form in earlier works. This covariance model is 

permissible for any directed tree river network for (α=0,β ∈]0,2]) and (α=1,β=1).  

Additionally, for a particular river of interest, this covariance model may be valid for 

other values of α∈[0,1] and β∈]0,2], which can be verified numerically by checking 

that the lowest eigenvalue λ of any covariance matrix used in the estimation of water 
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quality is non-negative. Fig. 3 depicts the range of (α,β) values for which the lowest 

eigenvalue is positive, i.e. min(λ)>0, for 20 points randomly selected along an actual 

river network. As can be seen from this figure, there is a large range of permissible 

(α,β) values. 

Hence a composite Euclidean-river distance has been developed that can be 

used for a variety of water quality parameters.  Using an isotropic exponential-power 

river covariance model, it is shown that this model is permissible for any directed 

tree river network for (α=0,β ∈]0,2]) and (α=1,β=1), and provides a river-specific 

numerical test to check whether the model is permissible using other choices of 

α∈[0,1] and β∈]0,2]. 

 

2.4.2.  Flow-weighted River Covariance Models 
 
Another important class of permissible covariance models for directed tree 

river networks are covariance functions that use flow and river distance (Ver Hoef et 

al., 2006; Cressie et al. 2006; Peterson et al., 2006; Peterson et al., 2007; Bernard-

Michel and Fouquet, 2006, see Appendix B for mathematical details of their work 

using a unified mathematical notation), which we refer to as flow-weighted 

covariance models, and which can be written as 

 

cov(r,r’ )= )',( iiΩ c1(dR(r,r’ ))             (2.13)  

 

where the real valued function c1(.) can be any permissible covariance function in R1 

(e.g. such that it is the Fourier transform of a non-negative bounded function in R1, 
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Christakos, 1992), and Ω(i,i’ ) is a real number between 0 and 1 expressing the 

amount of flow connection between reach i and i’  such that Ω(i,i’ )=0 if they are not 

flow-connected, Ω(i,i’ )=1 if they are on the same reach, and ∑
∈

=Ω
)('

1)',(
uVi l

ii  for u>l. 

The above flow-connected covariance model was first derived by Ver Hoef et al. 

(2006).  Cressie et al. (2006) subsequently proposed that the flow connection 

between reach i and an upstream reach i’  can be defined as Ω(i,i’ )= Ω(i’ )/ Ω(i) 

where Ω(i) is a function that increases in the direction of flow. In that case, the 

property ∑
∈

=Ω
)('

1)',(
uVi l

ii   ∀  u>l is verified if and only if Ω(i) is a flow additive function, 

i.e. such that if two reaches i’ and i"  combine into reach i, then Ω(i')+ Ω(i" )= Ω(i).  As 

shown in Appendix C various additive functions can be used to obtain Ω(i), including 

flow discharges if these are available, watershed areas (Ver Hoef et al. 2006; 

Peterson and Urquhart, 2006; Peterson et al., 2007; Bernard-Michel and Fouquet, 

2006), or simply an additive stream-order number (Cressie et al., 2006). 

 

2.4.3.   River Covariance Model Selection 

Flow-weighted covariance models do not belong to the class of isotropic river 

covariance models because the flow connection term cannot be reduced to a 

function of the distance between points. Their obvious advantage is that they 

incorporate flow-connectivity in the model of autocorrelation. However, as noted by 

Peterson and Urquhart (2006), setting the covariance to zero when points are not 

flow-connected may be a hindrance if very few monitoring sites are flow-connected, 

because in that case the number of data points in the estimation neighborhood is 
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drastically reduced, leading to less informed estimation maps than those produced 

using an isotropic river covariance model. In addition, by assuming correlation 

between some points to be zero, the underlying assumption is that there is no 

across-land influence acting on the system.  In the case of water quality, variables 

such as land use and precipitation may act on a river system in a more uniform 

manner, meaning that even though some points may not be connected by flow 

within a river network, they may still be jointly influenced by other basin wide 

variables.  Hence purely flow-connected covariance models may not be appropriate. 

However; these models should be used when a large fraction of the monitoring 

samples are flow-connected, and when other across-land influences can be deemed 

negligible. Recent exciting work by Bailly et al. (2006) may allow us to extend the 

class of flow-connected covariance models to include models allowing some 

autocorrelation between points that are not flow-connected (with conditional 

independence to common downstream points).  Therefore, the river-BME framework 

applied in this work is limited to exponential isotropic covariance models.  This 

provides us with a computationally efficient methodology to compare river-BME with 

existing geostatistical methodologies using Euclidean distance.  Equation 2.14 is an 

example space/time covariance function.   
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where r is chosen to be either the Euclidean or river distance. This model consists of 

3 structures where c1…c3 are calculated portions of the total variance and 

correspond to the coefficients of each structure (i.e. c1 for structure 1, c2 for structure 

2…).  The first term of each structure is the spatial component, while the second 

term relates to the temporal component of the covariance.  The variables ar and at 

are the spatial and temporal ranges for each structure.  Other than the initial nugget, 

the spatial component of the remaining structures is exponential, which as shown 

above is permissible for any directed tree river network for the Euclidean and river 

distances, and therefore the overall model is permissible because it corresponds to 

nested space/time separable permissible covariance functions (Kolovos et al., 

2004).   The final component of the framework to develop consists of the estimation 

and mapping concepts for water quality variables across space and time and along 

river networks.    

 

2.5. River Estimation and Mapping 
 

2.5.1. Estimation Neighborhood Selection 
 
As shown in the previous section, the way distance is measured influences 

the correlation models that serve as the basis for estimation of water quality along 

river networks.  These models provide us with the information to estimate variables 

at un-monitored locations.  In order to estimate at these locations, an estimation 

neighborhood must be established.  It is from this neighborhood that site-specific 

knowledge is integrated with our general knowledge about the correlation between 

data points.  Therefore, the selection of this neighborhood is very important to the 
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accuracy of the estimation at un-monitored locations.  Figure 2.4 depicts the 

differences in neighborhood selection determined by the way distance is calculated.  

The left side of the figure shows how a Euclidean distance establishes the 

estimation neighborhood in Euclidean-BME by searching for data points within a 

specified distance along radii in all directions, with the center (circle) being the 

location where we would like to estimate a value.  This leads to a circular 

neighborhood containing data points 2, 4, and 5.  However, in the river-BME 

framework we use the river distance.  The estimation neighborhood is restricted to 

the river network and the resulting data points used for the estimation at the un-

monitored location are points 1 and 2.  Based on the values of these data points, the 

estimation at the un-monitored location could be very different depending on the 

distance (Euclidean versus river) used.   

 

Fig. 2.4:  Estimation neighborhood (squares) for an  estimation location (circle) using 
Euclidean (left) and isotropic river (right) distan ces.  
 
The estimation locations within the S/TRF are generally established using a square 

grid of estimation points covering the study area of interest (Fig. 2.5 left).  In the 

case of river networks, however, the estimation grid must consist of points that are 

associated with the river network itself (Fig. 2.5 right). 
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Fig. 2.5:  Estimation grid in Euclidean-BME (Left) and river-BME (Right).  
  
2.5.2. Mapping River Estimates 

 
Once the estimates have been calculated, they are mapped to a surface 

depicting the spatial trends.  In Euclidean-BME, this requires establishing a mapping 

grid consisting of equidistant points, generally at a finer resolution than the 

estimation grid and interpolating a colored surface across the spatial dimension (Fig. 

2.6 left).  In river-BME, a mapping grid must be established using points along the 

river network, along with a few outlying points (Fig. 2.6 right).  

 

Fig. 2.6:  Mapping grid in Euclidean-BME (Left) and  river-BME (Right) 



26 
 

 

These outlying grid points are given the same value as the closest point on 

the river network and are used to establish the color gradient.  Since the river 

network is generally represented by a line feature made up of individual points, 

establishing a color gradient is not feasible; however, by creating a small buffer 

around each individual reach, we can then ‘fill in’ this buffer with the appropriate 

value in order to visualize the river-BME estimates in their original context (See 

Chapters 4, 5, and 6 for example figures).    

2.6. Summary 
 

This chapter has been devoted to establishing the geostatistical concepts 

used in the application of river distances for the estimation and mapping of water 

quality.  Figure 2.1 summarizes the components of the Euclidean-BME 

methodology.  With the establishment of river-BME, these components do not 

change; however many of the conceptual underpinnings of this methodology, 

including the covariance modeling, the estimation, and the mapping procedures, 

have been refined to incorporate river distances.  Now that the conceptual 

framework for river-BME has been developed, the next step is to numerically 

integrate these concepts into the existing BME framework, resulting in a new tool for 

researchers to compare traditional geostatistical methods using Euclidean distances, 

with those using a river distance.  Chapter 3 discusses the numerical implementation 

of these river-based functions and how they are integrated into the traditional BME 

framework.



 
 

Chapter III:  Modern Space/Time Geostatistics Using  River 
Distances: Numerical Implementation 

 

 

3.1. Introduction 
 

This chapter describes, in detail, the numerical implementation of river based 

functions to create a new library of geostatistical tools for estimating water quality 

along river networks.  This new library, river-BME, is an extension of the traditional 

BME framework outlined in the previous chapters.  River-BME consists of all of the 

traditional BME methodologies plus new river based functions outlined below. A 

series of simulation tests are performed to examine the functionality and efficacy of 

using river-BME in the geostatistical estimation of water quality.  These results 

provide the basis for using river-BME in the real world applications that follow in 

Chapters 4, 5, and 6.   

  

3.2. The River Algorithm 
 

There are a variety of tools that can calculate the distance between two points 

along a network.   Hydrology tools exist within commercially available geographic 

information systems (GIS) such as ArcGIS and the Geographic Resources Analysis 
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Support System (GRASS).  However, the BME framework is currently implemented 

in the MATLAB programming language, containing specific functions that must work 

seamlessly with any new river based functions; therefore, to increase computational 

efficiency an algorithm was developed to calculate river distances between pairs of 

points within the BME library of functions.  This algorithm, shown in Figure 3.1, relies 

on a measure of river complexity termed the branching level (BL) (see § 3.4) which 

is defined as a number starting at 1 for the most downstream reach of the network, 

and increasing by 1 going upstream each time a reach is divided into two upstream 

reaches.   

 

  

Fig. 3.1:  river-BME algorithm for calculating isot ropic river distances between pairs of points 
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Because we are working with actual networks, obtaining a completely connected 

network of reaches is an important first step.  These files are usually line shapefiles 

created for GIS platforms and can come from a variety of sources, including state 

and local government or the National Hydrography Dataset (NHD, 2008).  The NHD 

can provide the user with a tremendous amount of information related to each river 

reach, including basin contributions, flow characteristics, etc.   Pre-processing of any 

given river network occurs within ArcGIS, where these line shapefiles are converted 

to interchange files (.e00) for input into the BME framework within MATLAB.    

Once in MATLAB, river reach segments are checked for downstream � upstream 

connectivity relative to the basin outlet, which is defined as the most downstream 

point of reach 1.  All lines are re-organized into river reaches, which are defined as 

single continuous polylines connecting river reach segments that approximately 

delineate the centerline of a stream between its upstream and downstream 

confluence nodes.  Each river reach is identified by a unique ID. These re-organized 

sets of unique river reaches are then saved as the “organized” networks to continue 

with the analysis.  

The organized networks are then used to obtain the river topology for each 

basin using the branching level convention defined earlier. The topology file 

describing the reaches making up a river basin consists of four columns, which are 

(1) the unique reach ID; (2) the reach branching level; (3) the downstream reach ID; 

and (4) the reach length (i.e. the linear length of the reach).  

Using this information each hard or soft data point is associated with the underlying 

river network by ‘snapping’ the data’s geographical location to the closest polyline 
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point making up one of the river network reaches. The resulting  ‘river’ space/time 

coordinate of each point is stored in a file consisting of 5 columns, which are (1) the 

x spatial coordinate (e.g. Easting or longitude) of the point; (2) its y spatial 

coordinate (e.g. Northing or latitude); (3) the unique ID of the reach onto which the 

point was snapped; (4) the linear distance from the data point on that reach to its 

downstream node, and; (5) the time of measurement.  Then following the steps of 

the algorithm presented in figure 3.1, a river distance is calculated between any set 

of points.  Many of these steps required the development of new functions within the 

BME framework, as well as the modification of some existing functions to accept 

other types of distance measures.  It is these functions that make up the new river-

BME framework.    

 

3.3. The river-BME Framework 
 

3.3.1. Development of New River based Functions 
 
The traditional BME functions reside in a numerical library referred to as 

BMElib.  A complete description of BMElib and associated space/time functions are 

described in Christakos et al. (2002).  River-BME, as noted, is an extension of this 

library to include a variety of new and modified functions for use with river distances.  

The riverlib directory within BMElib contains all of the new river based functions, 

while existing functions that were modified retain their same name, but include 

additional input parameters to specify the type of distance to be used in the analysis.  

 The first new function introduced takes as input an un-organized river network 

made up of (not necessarily connected) river segments, and re-organizes that 
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network into a set of connected stream reaches with an associated river topology.  

The MATLAB syntax for this function, named ‘getRiverTopology.m’, is as follows: 

 

[riverReaches,riverTopology,infoval,infoMsg]= 

getRiverTopology(riverReachesRaw,sRiverOutlet,dista nceTolerance)  

 

The first input (riverReachesRaw ) consists of a cell array describing the un-organized 

river network, where each cell consists of the geographic coordinates that make up 

an individual river segment.  This input has generally been pre-processed in ArcGIS 

and converted to an interchange file format (.e00); however the river segments may 

not correspond to whole stream reaches defined as the river reach between two 

stream confluence nodes. These are typically recorded in latitude/longitude decimal 

degrees.  Therefore the number of cells is equal to the number of total un-organized 

river segments that make up the un-organized network.   The second input 

(sRiverOutlet ) is the geographic location of the river outlet (i.e. the most 

downstream point of the network).  Finally, an optional distance tolerance 

(distanceTolerance ) can be specified which will search the specified distance 

around reach endpoints to determine any issues with connectivity between reaches.  

If two endpoints are within the specified tolerance, then those points will be matched 

to connect the two reaches.  This parameter is used to capture any small breaks in 

the continuity of the network that typically occurs in digitized line shapefiles.  Caution 

should be used here since a large distance tolerance may connect two distant 

reaches that in reality are not connected.  The output of this function should be 

plotted and matched against the original shapefile to spot any irregularities.  The 
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outputs of this function include the set of organized river reaches (riverReaches ) 

consisting of stream reaches made up of points oriented upstream�downstream, 

and such that river segments consisting of broken fragments between two 

confluence nodes are merged into a single stream reach, and the river topology 

(riverTopology ) described in the previous section.   

 The next riverlib function converts the space/time coordinates of any set of 

points into river coordinates.  The MATLAB syntax for this function, named 

‘cartesian2riverProj.m’, is as follows: 

 

[c1]=cartesian2riverProj(riverReaches,ch,pTolerance ) 

 

It should be noted here, that a space/time coordinate consists of the geographic 

location of a point and its time.  This could be the time of a measurement for 

hard/soft data points, or the time of estimation for the estimation points making up a 

mapping grid.  Points that need to be converted include any hard and soft data 

points, and the estimation points.  The inputs for this function include the organized 

‘riverReaches ’ output from the ‘getRiverTopology.m’ function, the set ‘ch ‘ of 

space/time coordinates for the points to be converted, and a distance tolerance 

‘pTolerance ‘.  The distance specified is the maximum distance between seed 

points along the river network.  Seed points are defined as equidistant points added 

to the organized river reaches in order to ‘snap’ points that might not be directly on 

the network.  Locational mismatch is a common occurrence when trying to align 

points to line features.  Therefore, the geographical location of the points (i.e. their 

longitude/latitude) are modified to equal the geographic location of the closest seed 
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point on the river network, if the original data point does not initially fall on the given 

network and is known to be a part of that network.  The output of this function is a 

set of river coordinates ‘c1 ’ with the same length as the original input set of points.  

As described in the previous section, these river coordinates contain the space/time 

location, reach ID, and length from each point to its respective downstream node.   

 Another function developed for the river-BME framework uses the outputs 

from the previous two functions to calculate the river distance between any pairs of 

points using the algorithm described in figure 3.1.  The MATLAB syntax of this 

function, named  ‘coord2distRiver.m’, is as follows: 

 

[rD]=coord2distRiver(c1,riverTopology) 

 

The specific inputs to this function include the set of river coordinates ‘c1 ‘ from the 

‘cartesian2riverProj.m’ function, and the ‘riverTopology ’  obtained from the 

‘getRiverTopology.m’ function.  The output ‘rD ’ is a river distance matrix with the 

distance calculated for all combinations of points.   

 Another function that uses the outputs from ‘getRiverTopology.m’ is the 

‘getRiverStats.m’ function.  The MATLAB syntax for this function, named 

‘getRiverStats.m’ is as follows: 

 

[rS] = getRiverStats(riverReaches,riverTopology,bas infile) 

 

The inputs includes the organized river reaches (riverReaches ) and river topology 

(riverTopology ) variables generated by the topology function (getRiverTopology.m), 
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as well as a boundary file (basinfile ) for the basin of interest.  The output is a 

vector of five relevant statistics pertaining to the river network under investigation.  

These include the total number of organized reaches, total river network length, 

average meandering ratio (MR), maximum branching level (BL), and river ratio.  MR, 

BL, and river ratio can all be considered measures of network complexity, and these 

concepts are discussed in detail in § 3.4.1.   

 The final group of new functions deals with the visualization aspect of river-

BME.   The ‘plotRiverNetwork.m’ function uses the organized river reaches and river 

topology as input and produces a map of the river network depicting the river 

topology depending on the scheme chosen by the user.  A simple map of the river 

network can be created, or each reach can be labeled with its unique reach ID 

(scheme = 1), length (scheme = 2), downstream reach ID (scheme = 3), or 

branching level (scheme = 4).  The syntax for this function is: 

 

plotRiverNetwork(riverReaches,riverTopology,plotsch eme) 
 

The second visualization function, and final function in the riverlib directory, 

discretizes the river network into equidistant grid points for use as a set of estimation 

points.   The inputs include the organized river reaches from ‘getRiverTopology.m’ 

and a user-specified separation distance which determines the distance between 

each estimation point along the river network.  The result is a river grid which must 

then be inputted into the ‘cartesian2riverProj.m’ function to assign each river 

estimation point an appropriate set of river coordinates for use in the subsequent 
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estimation procedure.  The syntax for this function, named 

‘discretizeRiverNetwork.m’, is as follows: 

[riverGrid]=discretizeRiverNetwork(riverReaches,dis creteDistance)  
  

3.3.2. Modification of Existing BME Functions 
 
In addition to the new riverlib functions, several existing BMElib functions 

were modified to incorporate different types of distance calculations.  Functions that 

calculate the covariance, BME estimates, and neighborhood selection were all 

modified.  They were generalized by adding a single input allowing the user to 

specify different types of distance algorithms.  The current choices include the 

typical Euclidean distance (‘coord2dist’) and the new isotropic river distance 

(‘coord2distRiver’).  A complete description of all existing BMElib functions can be 

found in Christakos et al. (2002).   Table 3.1 summarizes both the new and modified 

functions that are now a part of river-BME.  
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Table 3.1:  Summary of new and modified functions i ntegrated into the river-BME framework  

riverlib  PROCESSING Functions  

getRiverTopology 
Obtains the topology for a given network, this 
includes branching level, reach length, and reach 
IDs 

getRiverStats 
Calculates total # of reaches, total reach length, 
Meandering Ratio, Branching Level, and River 
Ratio 

riverlib  DISTANCE Functions  
coord2distRiver Uses the river algorithm to calculate isotropic 

river distances between pairs of points 
cartesian2riverProj Translates traditional space/time locations into 

river space/time locations 
riverlib  VISUALIZATION Functions  

plotRiverNetwork Produces a picture of a river network including 
the river topology 

discretizeRiverNetwork Produces an equidistant river estimation/mapping 
grid from a set of river reaches 

BMElib  MODIFIED Functions  

pairsindex 
Finds pairs of points separated by a given 
distance interval 

coord2K 
Produces a covariance/variogram matrix from 
coordinates 

coord2Kinterface Interface for calling coord2K 

simuchol Generates simulated values 

stcov 
Calculates the space/time covariance for pairs of 
points 

neighbors Selects the hard data estimation neighborhood 

probaneighbors Selects the soft data estimation neighborhood 

BMEprobaMomentsXvalidation Performs a cross-validation estimation 

BMEprobaMoments 
Calculates BME estimates at a set of space/time 
locations 

  

 

3.4. Efficacy of river-BME  
 

3.4.1. Parameter Choice 
 
There are a variety of factors that can influence whether the use of a river 

distance is appropriate when estimating water quality.  These range from the type of 

water quality variable, the density of data points, to the complexity of the network.  

The first thing to consider when deciding between using a river distance as opposed 
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to more traditional Euclidean distance, is the actual variable under investigation.  

Water quality is inherently influenced by both in-stream processes and overland 

processes that affect the spatial and temporal distribution of these variables on a 

basin-wide scale.  If it is determined through empirical evidence that a particular 

variable is primarily influenced by factors outside the constraints of a river network, 

then using a river distance may not be an accurate representation of the physical 

and chemical processes in the true system.  For example, tetrachloroehtylene (PCE) 

is a widely detected volatile organic compound in water systems.  However, 

according to several studies, PCE contamination in surface waters is heavily 

influenced by leaching from groundwater, storm runoff, and other non-point sources 

(Lopes and Bender, 1998; Moran et al., 2002; Akita et al., 2008).  These 

mechanisms are adequately characterized using Euclidean distances and may 

therefore not be constrained by the river network.  In this case, a river distance may 

not improve the accuracy of water quality estimation and mapping.  On the other 

hand, variables such as mercury in fish tissue are primarily restricted to the water 

column and therefore autocorrelation between fish samples is dependent on the 

network configuration.  In this case, the use of a river distance may significantly 

improve overall estimation and mapping accuracy.   In general, however, the 

physical, chemical, and biological factors that contribute to the true spatiotemporal 

trends of any given water quality parameter are complex.  The system is affected by 

numerous inputs, both in-stream and overland, therefore a generalized framework 

that allows for multiple distance measures is an important contribution of this work.  
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3.4.2. Data Density 
 
Another factor to consider when using river distances is the spatial versus 

temporal density of hard and soft data points available in the study area.  If a 

particular study area has very few data points arranged at large distances from one 

another in space, then the autocorrelation functions and estimation maps may not be 

affected significantly by the choice of a distance measure.  In addition, if those same 

points are temporally abundant (i.e. lots of measurements taken over time at few 

sparse spatial locations), the spatiotemporal estimation neighborhood will be more 

informed by (and therefore be biased towards) temporal neighbors rather than 

spatial neighbors, causing any spatial distance metric to be less influential in the 

BME estimation, and leading to maps that are not significantly different from one 

another.  However, even if the distance measure has little effect in these situations, 

the use of the river-BME framework may still lead to overall better estimates in low 

data density situations.  A study by Chaplot et al. (2005) examined the effects of 

spatial data density on the accuracy of various interpolation techniques on point 

height data for digital elevation model (DEM) generation and found that kriging 

estimates were more accurate for low data density areas.  Other comparison studies 

have shown similar results (Dirks et al., 1998;  Kravchenko, 2003).  Kriging is 

considered a linear limiting case of the more general BME methodology (Christakos 

and Li, 1998).  
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3.4.3. Measures of Network Complexity 
 
In addition to parameter choice and data density, another important 

consideration is the geographical complexity of the river network itself.  There are 

numerous ways to classify basin complexity, including order, meandering ratio, and 

drainage density (Strahler, 1952; Julien, 2002; Gordon et al., 2004; Reis, 2006).  

This section focuses on a modification of order number we term branching level, and 

meandering ratio.  A series of tests were performed examining the relationship 

between these measures of complexity and the efficacy of using the river distance 

developed in this work.  For this purpose, the efficacy, E, is defined as the 

percentage change in mean square error (MSE) between river-BME (MSEr) and 

Euclidean-BME (MSEe).   
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where n is the total number of points, and observeditruei YY ,, −  is the difference between 

estimated values and measured values, or the estimation error.  Therefore a positive 

value for E is equal to the same percentage increase in mapping accuracy.  For 

example, if when comparing river estimates to Euclidean estimates, the MSEr is 1.0 

and the MSEe is 2.0, then the MSE for river-BME is 50% smaller than that of 

Euclidean-BME, which we say is resulting in an increase in efficacy of 50%, or 
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stated another way, the estimation accuracy increased by 50% when using a river 

distance.   

 

3.4.3.1. Branching Level 
 

Branching level (BL) is similar to the ‘order number’ concept, with the 

modification that the most downstream reach is assigned a BL = 1.  Each time a 

reach at a particular branching level divides into two reaches, the branching level 

increases by 1.  Figure 3.2 shows an example branching level classification.  

Generally speaking, the higher the branching level, the more complex the network.   

 

 

Figure 3.2: Example of branching level designation for a river network.   

  

In order to test how branching level affects the efficacy of using a river distance over 

a Euclidean distance, an actual river network was obtained and simulated values 

were re-estimated using either river-BME or traditional BME.  The network 

configuration for the Raritan Basin in New Jersey was obtained from the New Jersey 
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Department of Environmental Protection (NJDEP) to serve as an example (Figure 

3.3).   

 

Figure 3.3:  The Raritan Network in New Jersey.  Th is network is used in the branching level, 
meandering ratio, and simulation tests that follow.    
 

The network was divided into various sub-networks with differing branching 

levels.  There were a total of 32 different sub-networks, with BL = {1, 2, …, 32}.  

Values were simulated using river distances on each sub-network individually and a 

cross-validation performed using a Euclidean distance, to determine a MSE for 

each.  The cross-validation was repeated for the same simulated data using the river 

distance.  In addition each simulation procedure was repeated 14 times, with the 

resulting average efficacy shown as a function of branching level in figure 3.4.   The 

bars represent the standard deviation among the 14 repeated measurements at 

each branching level.  The lower bounds are connected to provide a conservative 

estimate of efficacy.    



42 
 

0

5

10

15

20

25

30

35

40

45

50

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

Branching Level

E
ffi

ca
cy

 (%
)

 

Figure 3.4:  Average Efficacy (Eq. 3.2) as a functi on of branching level in the Raritan basin, 
New Jersey, with positive standard deviations.  Eff icacy is defined as the % change in 
mapping accuracy.   
 
 

Results of this cross-validation analysis suggest that at extremely low 

branching levels, one can expect little change in mapping accuracy when using a 

river metric.   This is understandable since at very low branching levels the river 

network corresponds essentially to a single reach, and as a result there are little 

differences between the Euclidean distance and river distance between points.  

However, as the branching level increases, the efficacy tends to increase until it 

reaches a fairly constant plateau above a branching level of about 5.   This cross 

validation analysis indicates that using river distances should result in estimates that 

are 10 to 45% more accurate than estimates obtained using Euclidean distances for 

water quality parameters dominated by in-river processes on river networks with a 

branching level greater than 5. 
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3.4.3.2. Meandering Ratio 
 

Another way to examine network complexity is to calculate a meandering ratio 

(MR).  MR is defined as the ratio of river length, Rl , to linear length, Sl .    
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This measure can be taken at the individual reach level, but an average MR can also 

be calculated for a basin as an average of all MR’s for individual reaches, i, that 

make up the total network of n reaches (Equation 3.4). 
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An MR = 1 corresponds to a straight reach, with no meander while a ratio greater 

than 1 is considered sinuous or meandering (Gordon et al., 2004).   

As with the branching level test, the Raritan Basin serves as our example 

network.   A meandering ratio was calculated for each individual reach (Eq. 3.3).  

Values were simulated using river distances along the reach and cross-validation 

estimates were calculated.  There were a total of 105 individual stream reaches in 

the Raritan Basin, with MR’s ranging from 1.0 up to 1.8.  Each bar in figure 3.5 

represents one of these reaches sorted by meandering ratio.  As can be seen, a 

clear pattern emerges.  As the meandering ratio increases, the efficacy of using the 

river distance also increases.  Reaches with an MR less than ~ 1.10 show little to no 
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difference in estimation accuracy when using a river distance.  Like with branching 

level, this can be expected because reaches with a low MR are essentially straight 

lines, therefore any distance calculation along the river would be equal to a 

Euclidean distance.  However, as the MR increases, the mapping accuracy 

increases significantly, by as much as 62% in reaches with extremely high MRs.   
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Figure 3.5:  Efficacy (Eq. 3.2) as a function of in dividual reach meandering ratio in the Raritan 
Basin, New Jersey.   
 
 From this analysis it is evident that many factors influence the efficacy of 

using a river metric in the geostatistical estimation of water quality.  Parameter 

choice, data density, and network complexity all play a role in determining how well 

river-BME will perform over the traditional space/time framework.  Each of these 

things should be considered when applying non-traditional distance metrics to 

estimation along river networks.  The last phase of the numerical implementation of 

river-BME is to test its functionality in a series of simulation tests.  The final section 
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in this chapter details the results of these tests and sets the stage for the application 

of river-BME to real world applications.   

 

3.5. Using river-BME in Simulated Case Studies 
 

3.5.1. Case study using data simulated on a synthet ic stream reach 
 
In order to validate the use of a river metric within the river-BME framework, 

several simulation exercises were performed to gauge the effect a river distance 

may have on the estimation and mapping of water quality.  The simulation 

experiments involved two scenarios.  The first scenario involves simulated (i.e. 

geostatistically generated) data on a synthetic stream reach.  The synthetic stream 

reach consists of an idealized sinusoidal curve with a high MR, which maximizes the 

potential effects of river distances.  Given this synthetic reach, the data are then 

simulated using a geostatistical simulation algorithm that generates data having a 

prescribed (known) covariance function using river distances.  This leads to the 

creation of a dataset of simulated (true) values, which can be separated into a 

training set (used as monitoring data) and a validation set (where the estimation will 

be performed using the training set). The monitoring data from the training set can 

be used with river-BME to model the covariance using both distance metrics, as well 

as for estimation at the points corresponding to the validation sets (where re-

estimated values obtained using the training set can be compared with the “true” 

values in the validation set). Finally, cross-validation or validation statistics are 

calculated to compare mean square error results obtained using both river and 

Euclidean distance metrics.   
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Figure 3.6 depicts the estimation maps obtained using this simulation scenario.  Row 

A shows the data that were geostatistically generated and represents the ‘truth’. The 

validation set selected from these simulated data consists of two rows of points, one 

along the top of the reach, the other along the bottom (within the horizontal bars in 

figure 3.6).  The validation set values were then re-estimated using the remaining 

(training set) data points.  The re-estimation obtained using Euclidean distances is 

shown in row B, while the re-estimation obtained using river distances is shown in 

row C. 

 

Figure 3.6:  Simulated data set (row A), estimated using Euclidean-BME (row B) and river-BME 
(row C).  Panel 1 and 2 highlight two areas of dist inction between estimates described in the 
text.  
  

As can be seen in figure 3.6, the Euclidean estimation (row B) creates clouds 

of similar values that do not follow the pattern of the ‘true’ data shown on row A, 
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whereas the river (row C) estimated values follow more closely that pattern for this 

synthetic stream reach.  Panels 1 and 2 in figure 3.6 highlight areas where using the 

river based estimation drastically outperforms the Euclidean-based estimation in 

reproducing the ‘true’ dataset.   

 Figure 3.7 shows a scatter plot of simulated (‘true’) values versus estimated 

values obtained using Euclidean -BME (panel A) or using river-BME (panel B).  An 

apparent reduction in scatter is visible when comparing panel A to panel B, leading 

one to conclude that the river-BME framework produced more accurate estimates.  

This is verified by calculating the MSE using both approaches.  The MSEe 

(Euclidean) = 0.4866 while the MSEr = 0.2334.  One way to quantify the effect of 

using river distances versus Euclidean distances is to calculate the efficacy defined 

in Eq. (3.1). The efficacy calculated here indicates that the use of river-BME resulted 

in a 52% improvement in estimation accuracy over the classical Euclidean-BME 

approach.  
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Figure 3.7:  Simulated ‘True’ values vs. estimated values using Euclidean-BME (A) and river-
BME (B) on a synthetic stream reach.   
 

 

3.5.2.  Case study using data simulated on a real r iver network 
 
The second simulation scenario examines the efficacy of river-BME using a 

simulated dataset generated on a real river network (instead of an idealized stream 

reach).  The real river network used in this case study consists, again, in the New 

Jersey Raritan river network (figure 3.3).   Simulated values were generated with a 

geostatistical simulation method using river distances.  Then these simulated values 

were used in a cross validation analysis to obtain a MSE for both river-BME and 

Euclidean-BME. As explained earlier, the MSE is calculated based on cross 

validation errors consisting in the difference between each true value and the value 

re-estimated based on its neighboring data. Figure 3.8 depicts the relative scatter 

between true values and re-estimated values obtained using Euclidean-BME (panel 

A) and river-BME (panel B).  The MSE obtained using the data simulated on the  

Raritan river basin were similar to those obtained in the previous section, with an 
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MSEe = 0.3030 and MSEr = 0.1624.  This corresponds to a 46% improvement in 

estimation accuracy (Eq. 3.1) when using river distances instead of Euclidean 

distances.   

 

 

 

Figure 3.8:  Simulated ‘true’ values vs. estimated values using Euclidean-BME (A) and river-
BME (B) on a real river network configuration. 
 

 Overall these results suggest that the use of a river distance can markedly 

improve the estimation accuracy of water quality parameters that are governed by 

in-stream processes .  However, there are a number of factors that affect the 

efficacy of using river-BME instead of Euclidean-BME, and simulated data and 

synthetic river networks can only provide a partial examination of the efficacy of 

river-BME.  Therefore the following chapters provide three real world case studies 

that examine the river-BME methodology as it relates to various water quality 

parameters and in several real-world river networks.  These case studies will provide 

a more complete understanding of the differences between river-BME and 
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Euclidean-BME, and will establish the methodology for use in other real world 

situations. 



 
 

Chapter IV:  Modern Space/Time Geostatistics Using River 
Distances:  A Case Study of Dissolved Oxygen 

 

 

4.1. Introduction 
 

Understanding surface water quality is a critical step towards protecting 

human health and ecological stability.  Because of resource deficiencies and the 

large number of river miles needing assessment, there is a need for a methodology 

that can accurately depict river water quality where data do not exist.  The objective 

of this research is to implement such a methodology that incorporates a river metric 

into the space/time analysis of dissolved oxygen data for two impaired river basins 

using the river-BME framework describes in the previous chapters.  We find that 

using a river distance in a space/time context leads to an appreciable 10% reduction 

in the overall estimation error, and results in maps of DO that are more realistic than 

those obtained using an Euclidean distance.  As a result river distance is used in the 

subsequent non-attainment assessment of DO for two impaired river basins in New 

Jersey.  

The identification of impaired river segments is a significant requirement of 

the federally implemented Clean Water Act (CWA) of 1972.  The CWA requires 

states to assess water quality and identify and report those segments that are 

impaired for particular uses.  Dissolved Oxygen (DO) content is one of the easiest 

and most basic water quality parameters to measure and is a good indicator of 
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overall stream health.  Because of resource deficiencies, budget constraints, and the 

sheer number of river miles to be assessed, there is a need for cost efficient and 

effective methods that can estimate DO for a large number of river miles using 

limited monitoring data.  

As mentioned previously, there have been several recent studies regarding 

the use of non-Euclidean distances and stream flow in water quality estimation, and 

the development of corresponding permissible covariance models (Ver Hoef, 2006; 

Cressie et al., 2006; Peterson and Urquhart, 2006; Curriero, 2006; Bailly et al., 2006; 

Bernard-Michel and Fouquet, 2006; Peterson et al., 2007).  Ver Hoef (2006), Cressie 

et al. (2006), and Peterson et al. (2006) demonstrate the use of flow-weighted 

covariance models using nitrates, change in DO, and dissolved organic carbon 

(DOC), respectively.   

A summary of the most recent studies that compare Euclidean and river 

covariance models is presented in Table 4.1.   

Table 4.1:  Water quality estimation studies using river covari ance models   

Study 
Water 

Quality 
Parameter  

Comparison  
% Change in MSE 1

 
Model used in 

Estimation 

Cressie et 
al. (2006) 

Change in 
DO 

Euclidean vs. 
flow-weighted Not Reported Euclidean 

Peterson & 
Urquhart 
(2006) 

DOC 
Euclidean vs. 
flow-weighted 

 Exponential Cov.:  + 31.3% 
Spherical Cov:    - 9.0% 
 Mariah Cov.:         + 32.4%   

Euclidean  

Ver Hoef 
et al. 

(2006) 
Sulfate 

Isotropic river 
vs. flow-
weighted 

Exponential Cov with 
Constant Mean.: 

- 5.5% 
Flow-Weighted  

1 % change in Mean Square Error (MSE). A negative value means that using a flow-weighted covariance model 
reduces prediction error. 
 

The methods proposed in this work are based on geostatistical principle, most 

notably the spatial autocorrelation between data points.  They are not meant to take 
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the place of mechanistic and process-based models such as the traditional Streeter-

Phelps or the Qual2 models developed by EPA.  Geostatistical models can 

complement these existing methods by taking the outputs of these models and using 

them as inputs into a geostatistical framework to create larger spatial and temporal 

coverages of the parameter of interest, possibly leading to more accurate maps 

(LoBuglio et al. 2007).  This study attempts to look at only geostatistical models in 

order to gain an understanding of the influences that distance measures have on our 

ability to assess rivers for DO impairments.  Future work will examine the use of 

these models in combination with other mechanistic modeling approaches.   

While the majority of studies have focused on purely spatial estimation 

methods, this research will examine the use of a river metric in a composite 

space/time analysis.  Since very few studies have used a river metric to examine DO 

in a spatial context, and even fewer have done such analysis in a space/time 

context, the two objectives of this study are (1) to determine whether the use of a 

river metric provides a better model for estimation of DO along a river network in a 

space/time context, and (2) to apply the most appropriate space/time model to 

estimate DO non-attainment for two impaired river basins based.   

 

4.2.   Materials and Methods 

 

4.2.1. Study Area 
 
The two study watersheds are shown in Fig. 4.1 together with the locations of 

stations that monitored DO at least once during the study period.    
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Figure 4.1:  Lower Delaware Basin (left) and Rarita n Basin(right), with corresponding locations 
of monitoring stations with at least one measured D O value (circles).   
 
 
Both areas are high priority basins for the state and have impairments related to 

nutrients, sediments, micro-organisms, and DO.  The state of New Jersey is divided 

into 20 watershed management areas (WMA).  The Raritan consists of three WMAs, 

the North and South Branch, Millstone, and Lower Raritan.  The land uses in both 

basins are primarily urban or agricultural.  Overall, the Raritan is 36% urban, 19% 

agriculture, with the remaining divided between forest, wetland, and water.  The 

Lower Delaware is 46% urban and 21% agricultural. These classifications are based 

on the 1995/97 Land Use/Land Cover designations by the State of New Jersey.  

New Jersey has a generally moderate climate with cold winters and warm, humid 

summers.  These fluctuations in temperature play an important role in determining 

the amount of available DO found in these basins.  Additionally, both the Lower 

Delaware and Raritan basins are geologically structured such that highlands situated 

to the west (Raritan) and east (Lower Delaware) feed into flat, highly developed 
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areas near the basin outlets, where impervious surfaces exceed 50% in many 

places (NJDEP, 2002).  Urban development taking place in both of these basins 

over the last two decades coupled with relatively little change in agricultural uses 

produces a wide array of point and non-point sources in both regions.  This leads to 

increased nutrient levels from waste water discharge, urban runoff, and agricultural 

runoff, and the potential for higher biological oxygen demand (BOD) and reduced 

DO levels.  According to the 2006 integrated water quality report, only 5% of 

statewide impairments were due to dissolved oxygen, however, greater than 30% of 

river miles went un-assessed due to insufficient data (NJDEP, 2006b).  This is where 

methods such as the one employed in this study become increasingly important.  

 

4.2.2. Dissolved Oxygen Data 
 
DO data were obtained from two sources for the period beginning January 1, 

1990 through August 1, 2005.  The first source is the U.S. Geological Survey 

(USGS) National Water Information System (NWIS).  The second source is the 

USEPA storage and retrieval (STORET) database.  Often times these databases 

report values with clarifying symbols accompanying them to signify uncertainty in the 

measurement.  Therefore, in order to use these values in the analysis, any value 

reported as ’less than’ a particular value (i.e. containing a ‘<’ in the database) were 

treated as equal to 50% of that value , and values reported as estimated (i.e. 

containing an ‘E’ in the database) were treated as actual values. A summary of the 

data are given in Table 4.2. 
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Table 4.2:  Basic Statistics for monitored DO data (raw-mg/L) for the period January, 1990 – 
August, 2005 for the Raritan and Lower Delaware riv er basins in New Jersey 

Parameter  Raritan Basin  Lower Delaware Basin  
# of Space/Time Data Points 1755 1855 
# of Monitoring Stations 65 47 
Mean (mg/L) 10.471 7.859 
Variance (mg/L) 7.061 5.359 
Skewness Coefficient -0.006 0.306 
Kurtosis Coefficient 2.462 2.437 

 

4.2.3. Space/Time Covariance Modeling Using River D istance 
 
As noted in § 2.4 the exponential power model for covariances using isotropic 

river distances has been proven permissible.  Therefore, for this study and the 

subsequent case studies, we are restricted to this class of covariance functions.  

The flow-weighted covariance function is not considered here because very few 

points during a given day of the study period are flow-connected, and as Peterson 

and Urquhart (2006) suggest, using a flow-weighted covariance in this situation can 

lead to less informative maps.   This analysis uses a space/time random field 

(S/TRF) X(p), where p=(r,t) is a space/time point, r is the spatial river coordinate and 

t is time.  The covariance cx(p,p’) of X(p) is said to be spatially isotropic/temporally 

homogeneous if it can be expressed in terms of the spatial distance r=d(r,r’ ) and the 

time difference τ=|t-t’|.  Experimental values of the covariance for a spatial distance r 

and temporal lag τ are obtained using a covariance statistical estimator on pairs of X 

measurements approximately separated by the spatial distance r, and temporal lag 

τ.  The parameters of a covariance model are then adjusted until a best fit is found 

between the model and experimental covariance values.  The covariance model 

used in this analysis is given by:   
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where r is chosen to be either the Euclidean or river distance and δ  is the nugget 

coefficient in space or time . This model consists of 4 structures where c1…c4 are 

calculated portions of the total variance and correspond to the coefficients of each 

structure (i.e. c1 for structure 1, c2 for structure 2…).  The first term of each structure 

is the spatial component, while the second term relates to the temporal component 

of the covariance.  The variables ar and at are the spatial and temporal ranges for 

each structure.  Other than the initial nugget, the spatial component of the remaining 

structures is exponential, which as shown above is permissible for any directed tree 

river network for the Euclidean and river distances, and therefore the overall model 

is permissible because it corresponds to nested space/time separable permissible 

covariance functions (Kolovos et al., 2004).  The temporal component is exponential 

for structures 2 and 4, while structure 3 is a cosinusoidal function related to the 

seasonal fluctuations often associated with DO.  Further covariance details are 

found in section 4.3.1.   

 

4.2.4.   Estimation of Dissolved Oxygen 

The river-BME and Euclidean-BME methods were used to estimate DO at un-

sampled river locations. BME provides a rigorous mathematical framework to 
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process a wide variety of knowledge bases characterizing the space/time distribution 

and monitoring data available for DO, and obtain a complete stochastic description 

of DO at any unmonitored space/time point in terms of its posterior Probability 

Distribution Function (PDF), as discussed in Chapter 2.   

The distribution of DO across space and time is modeled as the sum of a 

non-random function mDO(p) and an isotropic/stationary residual S/TRF X(p).  The 

spatial and temporal components of mDO(p) were obtained by exponential smoothing 

of the time-averaged and spatially-averaged data, respectively.  The non-random 

function mDO(p) describes the modeled spatial and temporal trends of DO, while the 

S/TRF X(p) captures the residual  space/time variability and uncertainties.  

The site specific knowledge includes both hard data (e.g. measured value) and soft 

data (i.e. data with associated measurement error). By way of summary, BME uses 

the maximization of a Shannon measure of information entropy and an operational 

Bayesian updating rule to process the general and site specific knowledge bases, 

and obtain the posterior PDF describing the DO concentration at any un-sampled 

point of the river network (Christakos et al.,  2002).   

This research uses the special case where only hard data are considered (i.e. the 

measurement errors are small or unidentified). In this case the BME method yields 

the estimators of linear geostatistics known as the simple, ordinary and universal 

kriging methods. This research, therefore, is based on a form of space/time linear 

kriging.   

In order to determine which of the Euclidean or river metrics was more 

accurate for the assessment of DO in the study basins, a cross-validation procedure 
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was used.  Each data point was removed sequentially and re-estimated using the 

remaining space/time data points.  The Mean Square Error (MSE) is calculated as 

the sum of the squared differences between re-estimated and measured values.  

The method with the lowest MSE is then used in the assessment of DO along 

unmonitored rivers.    

Using the selected distance metric within the river-BME framework we 

estimate DO at equidistant estimation points (i.e. distributed at a fixed interval of 0.1 

miles) along the Raritan and Lower Delaware river networks.  Monitoring data are 

treated as hard data because all measurements met the USGS or EPA data quality 

standards. For each estimation point the hard data situated in its local space/time 

neighborhood is selected, and the corresponding BME posterior PDF is calculated to 

describe DO at that estimation point. The BME posterior PDF obtained at equidistant 

points along the river network are then used to obtain estimated DO values, which 

are used to produce maps of DO concentration, and delineate river miles that may 

be impaired. 

 

4.2.5. Assessment of Impaired River Miles 
 

In order to better understand the seasonal pattern of DO impairment and 

better quantify the probability of these impairments, a criterion-based space/time 

assessment framework is employed to categorize the fraction of river miles meeting 

certain probability thresholds, as discussed in Akita et al. (2007). These thresholds 

give us the ability to classify the probability of violation of a standard for any 

space/time estimation point based on its BME posterior PDF.  The standard for DO 
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concentration was set at 7 mg/L, which is the standard used by NJDEP for FW-TP 

streams (NJDEP, 2006a).  Using this standard, the probability of violation at 

space/time point p is then defined as the probability that the BME mean estimate is 

> 7 mg/L, i.e.   

 

Prob[Violation,p]=Prob[DO(p)>7.0mg/L]                                                                (4.2)  

 

The fraction of river miles impaired during any given time period is calculated using 

the fraction of equidistant estimation points for which the probability of violation is in 

excess of some pre-selected probability threshold.  

 

4.3.   Results & Discussion 

 

4.3.1. Covariance of DO in New Jersey 
 

 Fig. 4.2 shows the experimental covariance values (squares) obtained using 

the mean trend removed DO data for the Raritan and Lower Delaware River Basins.  

These estimates were then used to fit the non separable space/time covariance 

model (Eq. 4.1). The sills c1,…, c4, spatial ranges ar2, ar3, ar4, and temporal ranges 

at2, at3, at4 obtained are listed in Table 4.3, and the resulting model is shown as a 

solid line in Fig. 4.2.   
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Figure 4.2:   Space/time covariance of mean-trend r emoved DO in New Jersey’s Raritan and 
Lower Delaware River Basins shown as a function of distance r along the river network for a 
temporal lag of ττττ=0 (top plot) and as a function of ττττ for r=0 (bottom plot) with squares 
representing experimental covariance values and pla in lines representing the covariance   
 
 

Table 4.3:  Space/time covariance parameters for DO  using a river metric. 
Covariance 
structure 

Sill   
c (mg/L) 2 

Spatial Range  
 ar (km) 

Temporal Range a t (days)  

1 0.4385 n/a n/a 
2 0.8770 5.0 25 
3 0.0877 2.2 365 
4 0.3508 88.9 10,000 

 

The variance of the first structure of the covariance model, or the nugget 

effect, is about 25% of the overall variance. The nugget effect typically consists of 

the variance due to inherent variability of DO over very short distances plus the 

measurement-error variance.  In our case, we assessed that for our dataset, the 

measurement-error variance for DO contributes at most 20% of the total variation in 
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the data, which is within the upper bound indicated by the nugget effect.  The 

second structure of the covariance model contains a short range exponential spatial 

component and a short range exponential temporal component.  Fluctuations of DO 

over this combination of short spatial ranges (5 km) and short temporal ranges (25 

days) may be due to local sources of pollution acting over short spatial distances 

(such as point pollution discharges leading to local increase of BOD and subsequent 

reductions in DO over short distances) that either have intermittent pollution 

discharge loading lasting just a few days, or are persistent but have an effect that is 

altered intermittently by meteorology events lasting from a few days to a month (e.g. 

rainfall events, or changes in temperature which significantly effects the oxygen 

saturation of water).  This accounts for nearly 50% of the overall variation.  The third 

structure of the covariance also contains a very short range exponential spatial 

component but coupled with a medium range cosinusoidal hole temporal component 

with a periodicity corresponding exactly to a calendar year.  This covariance 

structure contributes approximately 5% of the total variation in DO and corresponds 

to processes acting seasonally.  These processes are very localized geographically 

as they act over distances of about 2.2 km, which may again include localized spikes 

in BOD and subsequent DO depletion, as well as the natural variability in river 

morphology and processes acting on DO over distances ranging from of 1 to 3 km. 

The final covariance structure consists of a long range exponential component in 

both space and time.  The long spatial range of 88.9 km can be attributed to 

characteristics and impacts from non-point source pollution from suburban 

development and agricultural runoff that can affect long stretches of rivers at once.  
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What is interesting to note is that these fluctuations have a temporal range of about 

10,000 days or 27.4 calendar years, which captures time scales corresponding to 

long term effects of human activities and impact on the environment, as well as 

climatic changes that may alter the air/water interface and oxygen equilibrium. It 

should be recognized that there is a wider confidence interval for this temporal range 

than for any of the other spatial or temporal ranges of our covariance model because 

this temporal range of 27.4 years exceeds the duration of the time period for which 

data are available (15 years). Nonetheless it is interesting to note that it is a very 

large temporal range, which suggests that non-point source pollution over large 

geographical areas may have an impact on DO that is lasting much longer than the 

impact of point source pollutions. This may have the serious policy implication that, 

while pollution prevention strategies may have quick responses in abating the effect 

of point sources pollution, these strategies may face a much greater challenge in 

abating rapidly the effect of non-point source pollution on the DO in the surface 

waters of New Jersey. 

 

4.3.2.   Euclidean vs. River Estimation 

A cross-validation was performed to examine the differences in estimation of 

DO using a Euclidean versus a river distance.  Table 4.4 summarizes the cross-

validation MSE obtained for each river basin using both distances. 
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Table 4.4:  Change in cross validation mean square error (MSE) for each basin.  A negative 
change indicates a reduction in overall MSE (i.e. i mprovement) when using a river metric. 

Basin Euclidean MSE River MSE % Change in 
MSE 

Raritan 1.7381 1.5416 - 11.3% 

Lower Delaware 1.3193 1.1836 - 10.3% 

 

The use of a river metric resulted in 11.3% (Raritan) and 10.3% (Lower Delaware) 

decrease in MSE. We note that the cross-validation points were at a distance from 

their neighboring training data points corresponding to several times the average 

spatial and temporal ranges.  In this situation there isn’t as much contrast between 

the Euclidean and river metrics as would be the case if the points were closer across 

space. Hence, it is possible that the true gain in mapping accuracy is higher than the 

10%-11% found.  This is supported by other cross-validation analysis we conducted 

using synthetic datasets (results not shown here).  The approximately 10% reduction 

in estimation error is appreciable because previous studies using river distance in an 

estimation context found little difference between a Euclidean and river based model 

and in some cases found a river distance to increase the prediction error (Ver Hoef 

et al., 2006; Cressie et al. 2006; Peterson et al., 2006; Peterson et al., 2007).   

The improvement in mapping accuracy is supported by our covariance 

analysis. The variance weighted average of the Euclidean and river spatial ranges 

were 9.7km and 20.4km, respectively. This means that DO levels are correlated over 

much longer distances along the river network than across land. This is due in part 

to the fact that a river meanders, so that the distance along two points is longer 

along the river reach than across land.  The ratio of river distance to straight-line 

distance between two reach endpoints is known as the meandering ratio (MR).  
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However, even when we account for the meandering of the network, the range of 

correlation between points along a river network is significantly higher than when 

using a Euclidean metric.  For example, the average (MR) for both the Lower 

Delaware and Raritan basins is approximately 1.2.  Factoring out this effect by 

dividing the ratio of river range to Euclidean range (2.1) by the average MR (1.2) 

gives us an adjusted ratio of river vs. Euclidean range of 1.8.  This means that, in 

practice, even after adjusting for meandering, the correlation along the river is still 

1.8 times longer than across land.   

While use of the river metric produces maps of DO that are more accurate 

than those obtained using a Euclidean metric, one might ask whether these maps 

are visually different.  The visual difference can best be shown by comparing the DO 

estimated in two areas of the Raritan Basin, as shown in Fig. 4.3. The maps 

obtained using a Euclidean metric are shown on the left, while the maps obtained 

using the river metric are shown on the right.  The subfigure contains the zoomed in 

portion of the northwestern Raritan basin corresponding to the North and South 

Branch WMA to highlight two major differences when comparing metrics.  Fig. 4.3(a) 

depicts the zonal differences while Fig. 4.3(b) depicts the parallel reach effect. 
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Figure 4.3:  Zonal (a) and Parallel Reach effect (b ) on the BME Estimation of DO Residual in 
the Upper & Lower Branch Raritan Basin on Dec 16, 2 002 using a Euclidean metric (left) or a 
river metric (right). Squares are locations of moni toring stations for this time period and the 
solid lines indicate the WMA boundary.  
 

From Fig. 4.3(a) the differences in zonal influence that points have when using a 

Euclidean vs. a river metric are apparent.  This is directly connected to the 

differences in covariance ranges.  The river covariance has a longer variance 

weighted spatial range, resulting in a larger zone of influence of data points along 

the river.  For the Euclidean metric this zone is circular in nature with a smaller range 

than the zone of influence observed with the river metric, as can be seen by 

comparing the right and left maps of Fig. 4.3(a).  Fig. 4.3(b) depicts another 

phenomenon along parallel reaches.  When estimating the DO level at a point along 

an unmonitored reach, a higher relative weight is assigned to a sample collected at a 

point that is at a short distance along the river network, than at a point that is at a 
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short distance across land. So when considering the case shown in Fig. 4.3(b) 

where two clearly different river branches are running in parallel of one another, we 

see that the Euclidean map on the left tends to propagate information from the 

monitoring data point across land, while the river map on the right constrains the 

propagation of that information to the river branch where the sample was collected, 

leading to a more realistic map where parallel branches have distinct water quality.  

Given the monitoring data available in this study, the results support our hypothesis 

that the river metric provides more accurate and realistic maps of DO across a river 

network than maps obtained using a Euclidean metric. Based on this conclusion, 

river distance was incorporated into the estimation of DO in the Raritan and Lower 

Delaware River Basins for a subset of the study period (2000-2005) to improve our 

assessment of the fraction of river miles not attaining the FW-TP standard for DO in 

New Jersey.   

 

4.3.3.  River-BME Estimation of DO 
 
Using the river metric the BME posterior PDF was calculated describing DO 

at estimation points distributed uniformly along all river miles of in the Raritan and 

Lower Delaware Basins.  Fig. 4.4 depicts the BME mean estimate of DO on June 12, 

2002.  This date is representative of a typical summer month where DO is at its 

lowest in both basins.  The darker areas highlight river miles where DO has fallen 

below the New Jersey FW-TP standard of 7 mg/L.  The inset highlights an area in 

the southeast quadrant of the Raritan Basin, corresponding to the Millstone WMA 

where a majority of river miles are impaired for DO during this time period.  
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Additional movies provided in Appendix D show DO for every 30 days of the 2000 

through August 2005 time period, for both the Lower Delaware and Raritan Basins.  

These maps are used to calculate the fraction of river miles impaired. 

 

Figure 4.4:  river-BME Estimation of dissolved oxyg en on July 12, 2002 in the Lower Delaware 
Basin (left) and Raritan Basin (right).  The circle  indicates the basin outlet, and squares are 
locations of actual monitoring data available on Ju ly 12, 2002.   
 

4.3.4. Impaired River Miles in the Raritan and Lowe r Delaware Basins 
 

 For illustration purpose we use the New Jersey FW-TP standard of 7 mg/L for 

waters designated for freshwater trout-production because the Lower Delaware and 

Raritan Basins contain a significant number of trout producing and trout maintaining 

streams.  The data were examined to see if a temporal or seasonal trend existed as 

the temporal covariance would suggest.   

The average fraction of river miles not meeting the assessment criteria for 

more likely than not (MLTN) in non-attainment (i.e. probability of violation > 50%, 

Akita et al.; 2007) increases from 0.00% to 6.61% between winter and spring of 

2002 in the Raritan Basin, and from 0% to 19.70% of river miles in the Lower 

Delaware Basin (Table 4.5).   
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Table 4.5:  Seasonal Average Variation in Fraction (%) of River Miles More Likely than Not 
(MLTN) in Non-Attainment (probability of Violation > 50%) for 2002 

Season Fraction of Raritan 
Impaired (% river miles)  

Fraction of Lower 
Delaware Impaired (% 

river miles) 
Winter (Jan-Mar) 0.00 0.00 
Spring (Apr-Jun) 6.61 19.70 
Summer (Jul-Sep) 23.47 57.92 
Fall (Oct-Dec) 0.00 0.04 
 

In the summer of 2002, this fraction of impaired river miles increases even further, to 

about 23% in the Raritan and about 58% in the Lower Delaware.  Much of this 

phenomenon can be related to temperature changes depending on season.  In the 

warmer months, water temperature is at its highest and therefore does not hold as 

much oxygen as the colder water in the winter months.  Because New Jersey, and 

particularly the Raritan sit at higher latitudes, the water temperature drops drastically 

in winter, leading to near 0% of river miles being impaired.  Alternatively, the warmer 

waters of the summer and spring can foster biological growth that consumes large 

amounts of DO.  This increase in BOD compounds the effects of higher 

temperatures and leads to more river miles in non-attainment.   

From 2000 to 2005, between about 8% to 58% of river miles were found to be 

MLTN in non-attainment in the warmer summer months (Table 4.6).   

Table 4.6:  Average Summer Fraction (%) of River Mi les More Likely than Not (MLTN) in Non- 
Attainment (probability of Violation > 50%) for the  period 2000-2005 (Summer = Jul- Sep). 

Date 
Fraction of Raritan 

MLTN Impaired (% river 
miles) 

Fraction of Lower 
Delaware MLTN 

Impaired (% river miles) 
Summer 2000 6.86 10.03 
Summer 2001 14.21 57.00 
Summer 2002 23.47 57.92 
Summer 2003 12.68 13.77 
Summer 2004 12.44 34.01 
Summer 2005 19.40 43.87 
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The fraction of impaired river miles was highest in 2002, that fraction decreased in 

2003 and 2004, but it increased again in the last year of our study period, 2005, 

indicating that low DO may be an on-going problem in these basins.  2005 was also 

the warmest summer on record in New Jersey and coupled with a drought, could 

have contributed to the increase in impaired river miles.  An analysis was also 

conducted to determine the fraction of river miles highly likely in non-attainment (i.e. 

probability of violation > 90%, Akita et al.; 2007).  Based on this criterion, we found 

that the Lower Delaware had a much higher fraction of river miles ascertained as 

impaired than can be found in the Raritan.  Over the study period, the Lower 

Delaware had as much as 19% of river miles highly likely in non-attainment, while 

the Raritan remained around 1.8%.  DO itself is affected by a number of 

environmental factors, including temperature, salinity, nutrient levels and biological 

oxygen demand.  One reason for explaining the larger percentage of impaired miles 

in the Lower Delaware is the fact that not only is the percentage of urban area 

larger, but the overall amount of agricultural land is also larger than that in the 

Raritan, possibly contributing non-point source nutrient loading into adjacent 

streams.  Land cover and land use have shown to greatly impact the quality of 

streams and rivers, especially in areas undergoing rapid conversion to more urban 

development patterns (King et al.,  2005; Chang, H.  2008).   

One of the limitations of this approach is the exclusion of other parameters 

that can be used to predict DO levels.   DO is affected by the geochemistry of the 

water, and therefore process-based models may provide additional information to 

refine our geostatistical models.  Additionally, this approach looks at only one class 
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of potential covariance functions, the exponential power model, other functions need 

to be tested for permissibility when using river distance (isotropic or flow-weighted).  

Finally, we use a partial cross-validation procedure to examine the predictive 

capability of our model.  Full model validation using measured DO will be useful for 

further model refinement in future work.   

These results suggest that continued DO monitoring is particularly critical in the 

Lower Delaware basin to evaluate future trends in DO during the summer months.  

There is more work needed, however, to identify the specific causes of low DO.  The 

DO maps generated provide a general basis to help begin the process of identifying 

these causes. 

 Several conclusions can be drawn from the results of this study.  First, our 

implementation of a river distance metric in the BMElib package provides an efficient 

and flexible tool for the space/time analysis of DO along river networks.  Second, 

application of river-BME to analyze DO in two river basins in New Jersey lead to 

maps that are about 10% more accurate and appreciably more realistic than maps 

obtained using the classical Euclidean distance.  In addition it was found that after 

adjusting for river meandering, the correlation of DO along the river is about 1.8 

times longer than across land and DO non-attainment was worse in the Lower 

Delaware, over more river miles and over a longer period of time than in the Raritan.  

Finally, additional parameters, such as BOD, temperature, salinity, and nutrients 

should be factored in to improve estimation accuracy at unmonitored locations.



 
 

Chapter V:  Modern Space/Time Geostatistics Using R iver 
Distances:  A Case Study of Turbidity and Escherichia coli  

 

 

5.1. Introduction 
 
This chapter is again an investigation into the use of river-BME for real world 

water quality applications.  It builds upon the previous case study by incorporating 

soft data into the analysis.  This study will be the first use of river distances along 

with the integration of hard and soft data for water quality estimation.     

 

5.1.1. Fecal Indicator Bacteria in River Systems 
 
Escherichia coli (E.coli) is a widely used indicator of fecal contamination in 

water bodies. External contact and subsequent ingestion of bacteria coming from 

fecal contamination can lead to harmful health effects.  Since E.coli data are 

sometimes limited, the objective of this study is to use secondary information in the 

form of turbidity to improve the assessment of E.coli at un-monitored locations. We 

obtained all E.coli and turbidity monitoring data available from existing monitoring 

networks for the 2000 – 2006 time period for the Raritan River Basin, New Jersey. 

Using collocated measurements we developed a predictive model of E.coli from 

turbidity data. Using this model, soft data are constructed for E.coli given turbidity 

measurements at 739 space/time locations where only turbidity was measured.  

Finally, the Bayesian Maximum Entropy (BME) method of modern space/time 
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geostatistics was used for the data integration of monitored and predicted E.coli data 

to produce maps showing E.coli concentration estimated daily across the river basin.  

The addition of soft data in conjunction with the use of river distances reduced 

estimation error by about 30%.  Furthermore, based on these maps, up to 35% of 

river miles in the Raritan Basin had a probability of E.coli impairment greater than 

90% on the most polluted day of the study period.   

Fecal indicator bacteria (FIB) provide important health and ecological 

information for many river basins.  Although FIB’s themselves are not harmful, their 

presence in streams suggests that pathogenic microorganisms might also be 

present, leading to possible human health risks.   Diseases and illnesses that can be 

contracted in water with high fecal contamination include typhoid fever, hepatitis, 

gastroenteritis, and dysentery (Mallin et al., 2000).  The most commonly tested FIBs 

are total coliforms, fecal coliforms, Escherichia coli (E.coli), and enterococci.   E.coli 

is a species of fecal coliform that is specific to fecal material from humans and other 

warm blooded animals.  Based on studies conducted by the Environmental 

Protection Agency (EPA), E.coli is the best indicator of health risk from water contact 

in recreational waters (USEPA, 2000).  Therefore many states are now measuring 

E.coli instead of total coliforms to assess streams for fecal contamination.  However, 

due to the limited scope of existing monitoring networks, budget limitations, and 

manpower constraints, it is difficult to assess all river miles.  The purpose of this 

study is to examine the use of a modern spatiotemporal geostatistics technique, 

known as Bayesian Maximum Entropy (BME), to statistically assess E.coli’s 

presence in both monitored and un-monitored streams using not only existing E.coli 
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data but also integrating secondary information in the form of turbidity 

measurements to further improve the mapping of basin-scale fecal indicators. 

 

5.1.2.   Autocorrelation in E.coli    

Geostatistical techniques such as kriging rely on the fact that many natural 

phenomenon exhibit spatial autocorrelation.  Monitoring stations along the same 

stream, for example, tend to report similar physical and chemical characteristics.  

Kriging methods construct a regional model of correlation to estimate variables, such 

as E.coli, at un-sampled locations based on data from sampled locations 

(Delhomme, 1978; Cressie, 1990; Stein, 1999).   Cokriging, subsequently, uses not 

only the spatial correlation of a single variable, but also the correlations associated 

with other environmental variables.  There have been numerous examples of 

cokriging for environmental variable estimation ranging from soil salinity, suspended 

sediment, and rainfall, to regional stream quality (Darwish et al., 2007; Li et al., 

2006; Seo et al., 1990; Jager et al., 1990).  It is most beneficial where the primary 

variable is under-sampled with respect to the secondary variable, as is the case for 

this study when examining E.coli and turbidity as secondary information.  Generally 

the inclusion of secondary information results in more accurate local predictions than 

when considering a single variable alone (Darwish et al., 2007; Goovaerts, 1997).   

A more general approach, and the approach used in this study, to estimating at un-

sampled locations is the BME method of modern space/time geostatistics 

(Christakos and Li, 1998).  As described in Chapter 2, this method accounts for both 

spatial and temporal correlations between data points.   The major component of this 
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study is to determine whether the use of river-BME along with turbidity as a 

secondary variable, improves our estimation of E.coli for un-monitored stream 

reaches.   

 

5.1.3.   Turbidity and E.coli    

Turbidity is the measure of light attenuation in a water column.  It is related to 

E.coli concentration in that research has shown that FIBs are oftentimes associated 

with particulate matter in the water column and transport of fecal bacteria via 

suspended sediments is an important aquatic mechanism (Mallin et al., 2000; Sayler 

et al., 1975).  Often-times bacteria will settle out of the water column into the 

sediment.  The sediment can become entrained and allow the release of particulate 

matter and the associated bacteria.  Additionally, as bacteria concentration 

increases, the amount of light absorbance in water also changes.  Numerous studies 

have examined the relationship between turbidity and E.coli and found significant 

correlation between both parameters (Adams et al., 2007; Dorner et al., 2007; Vidon 

et al., 2008; Reeves et al., 2004).    Our study area contained a larger number of 

measured turbidity values relative to E.coli, therefore turbidity was chosen as a 

secondary variable.   

 

5.2. Materials and Methods 
 

5.2.1. Data and Study Area 
 
Like the previous case study, the area under investigation is the Raritan River 

Basin in north-central New Jersey (Figure 5.1).  The basin is 1100 square miles and 
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consists of 36% urban, 19% agriculture, 27% forest, and approximately 17% 

wetland/water land uses.  Approximately 1.2 million people live within this basin and 

both fecal coliforms and turbidity have been cited as major resource concerns 

(NJDEP, 2002).  Water quality data for the Raritan Basin was obtained through the 

National Water Information System (NWIS), maintained by the United States 

Geological Survey (USGS) for the period January 1, 2000 – December 30th, 2007.  A 

total of 44 monitoring stations provided 579 space/time data points for measured 

E.coli while 118 monitoring stations yielded 739 measurements of turbidity for the 

study period.  E.coli data were log-normally distributed with a mean of 5.4 log-colony 

forming units (cfu)/100mL.  Figure 5.1 summarizes the locations of E.coli and 

turbidity measurements during the study period. 

 

Figure 5.1:  Locations of at least one E.coli (larg e circle) and turbidity (small circle) 
measurement between 2000-2007 in the Raritan Basin,  New Jersey.   
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5.2.2. Generation of Soft Data 
 
One of the primary goals of this research is to introduce a secondary variable, 

in the form of turbidity, to predict E.coli concentrations in areas where there are no 

direct E.coli measurements.  These predicted values are referred to as ‘soft’ data 

because of the uncertainty associated with the predicted values.  There are two 

types of soft data employed in this study, probabilistic and interval.   To construct the 

probabilistic soft data, we used a total of 27 locations where both turbidity and E.coli 

were measured.  Using these collocated points a simple linear regression was 

performed using log-transformed data to determine an initial correlation (r-squared = 

0.54) which was consistent with other studies relating turbidity to E.coli or fecal 

coliform concentration (Adams et al., 2007; Dorner et al., 2007; Vidon et al., 2008; 

Reeves et al., 2004).  Because of the limited number of collocated points and 

relatively low values of turbidity represented, the final least squares predictive model 

for E.coli is a continuous piecewise function containing the linear relationship along 

with a polynomial model of order 2 to reduce overestimation of E.coli at extremely 

high turbidity values :  

 

Log-E.coli=




≥+

<+−

6.057.105.2

6.008.202.007.2 2

zz

zzz
              (5.1) 
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 where log-E.coli is expressed in log-cfu/100mL, and log-turbidity (z) is expressed in 

log-NTU.  Using this relationship the log-E.coli prediction error variance was 

calculated using the mean of the squared differences between predicted and 

measured log-E.coli for a series of given windows of log-turbidity values. Finally, for 

every space/time point where log-turbidity (but not necessarily log-E.coli) was 

measured, a Gaussian probability distribution function (PDF) was constructed for 

log-E.coli with a mean given by (1) and a variance corresponding to the prediction 

error variance at the measured log-turbidity. This resulted in soft log-E.coli data of 

Gaussian probabilistic type at 739 space/time points. 

The uncertainty associated with the direct measurements of low levels of 

E.coli was also accounted for.  The data downloaded from the USGS uses the 

membrane filtration (m-Tec) method for bacteria enumeration and several 

intercalibration studies suggest ± 0.5 log as a working point to account for 

measurement error (Noble et al., 2003; Griffith et al., 2003).  Therefore, for any 

measured log-E.coli < 2 log-cfu/100mL in this study, an interval soft datum was 

introduced in the general form of equation (5.2).  This resulted in an additional 15 

soft data points.     

 

Prob[a<log-E.coli<b]=1                    (5.2) 

 

5.2.3. Integrating Hard and Soft Data 
 
To integrate the soft data with the measured log-E.coli values and then 

estimate at un-monitored locations, the BME method of modern space/time 
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geostatistics is used (see Chapter 2).  As described in previous sections, both the 

river-BME and Euclidean-BME procedure consists of defining the general knowledge 

(i.e. covariance), site specific knowledge (i.e. monitoring data), and integrating the 

two to calculate a posterior PDF (Eq. 2.5).  In this case study, site specific 

knowledge includes both hard data (e.g. measured values) and soft data (i.e. log-

E.coli predictions based on turbidity).  

 

5.2.4. Space/Time Covariance Modeling Using River D istance 
 
As with the previous case study, a covariance model is selected that uses 

river distances and we restrict our model choice to the exponential power model 

since it has been shown to be permissible when using river distances (see Chapter 

2, § 2.4, and Appendix A).  In the case of log-E.coli in the Raritan Basin, considering 

a spatial range equal to the area of the basin itself, on average only 1.6 data points 

were flow-connected.  Therefore an isotropic covariance model was chosen to 

estimate log-E.coli in the Raritan Basin.  The final model used in this study for the 

space/time covariance of log-E.coli between space/time points p=(r,t) and p’=(r’,t’) is   

 

cov(p,p’)= 
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where t and t’ are times, and h=dα(r,r’ ) and τ=|t-t’| are the spatial and temporal lags, 

respectively. In this study we used either α=0 (Euclidean distance) or α=1 (river 

distance).  
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5.2.5.   Comparing Euclidean and River Estimations 

A comparison was made between estimations using river distance, as 

described above, and estimation using the typical Euclidean distance, alongside the 

incorporation of soft data from measured turbidity.  Cross-validation tests were 

performed on three different scenarios to determine the best model for estimating 

basin-wide log-E.coli.  Scenario 1 used the measured log-E.coli data (i.e. the 15 

interval soft data points and all the hard data) with the Euclidean distance.  Scenario 

2 contained the same data as scenario 1 except the river distance was used.  

Scenario 3 built upon scenario 2 by adding in the turbidity data (incorporated as the 

soft Gaussian data constructed using Eq. 1).    The method with the lowest MSE was 

then used in the assessment and estimation of E.coli for the entire Raritan Basin.   

 

5.2.6.   Estimation of E.coli  

Using the selected distance metric within the BME framework we estimate 

E.coli at equidistant estimation points (i.e. distributed at a fixed interval of 0.1km) 

along the Raritan River Basin network.  For each estimation point we select the hard 

and soft log-E.coli data situated in its local space/time neighborhood, and calculate 

the corresponding BME posterior PDF describing log-E.coli at that estimation point. 

The variance of the BME posterior PDF provides an assessment of the estimation 

uncertainty, while the back-log transform of the mean of the BME posterior PDF is 

used as an approximation of the median estimator for E.coli concentrations.  This is 
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then used to produce chloropleth maps of estimated E.coli concentration, and 

delineate river miles that are more-likely-than-not impaired. 

 

5.2.7. Assessment of Impaired River Miles 
 
In order to better understand the pattern of fecal contamination impairment 

and better quantify the probability of these impairments, a criterion-based space/time 

assessment framework is used to categorize the fraction of river miles meeting 

certain probability thresholds, as discussed in Akita et al. (2007). These thresholds 

give us the ability to classify the probability of violation of a standard for any 

space/time estimation point based on the BME posterior PDF of log-E.coli.  The 

standard for E.coli concentration was set at 235cfu/100mL, which is the standard set 

by NJDEP for primary contact recreation.  Using this standard, the probability of 

violation at space/time point p is defined as the probability that E.coli>235cfu/100mL, 

i.e.   

 

Prob.[Violation,p]=Prob.[E.coli(p)>235cfu/100mL]  (5.4) 

 

The fraction of river miles impaired on any given day of the study period is then 

obtained by calculating the fraction of equidistant estimation points for which the 

probability of violation (Eq. 5.4) is in excess of some pre-selected probability 

threshold (e.g. 90%).  
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5.3. Results and Discussion 
 

5.3.1. Covariance Analysis 
 
Figure 5.2 shows the covariance cX(h,τ) of log-E.coli obtained for the Raritan 

Basin.  The top panel displays cX(h,τ=0) which shows how the covariance varies as 

a function of spatial lag h for a temporal lag τ  equal to 0, while the bottom panel 

displays cX(h=0,τ) which shows how the covariance varies as a function of temporal 

lag for a zero spatial lag.   

 

Figure 5.2:  Spatial (top) and temporal (bottom) co variance of log-E.coli in the Raritan Basin, 
New Jersey.   
 

Experimental covariance values estimated from data are shown with markers, while 

the covariance models obtained by fitting Eq. 5.3 to the markers are shown with 

lines.  The covariance was calculated and modeled using both a Euclidean distance 
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(dashed line) and river distance (plain line).  The covariance model parameters 

obtained with the Euclidean and river distances are summarized in table 5.1.  

Table 5.1:  E.coli  Space/Time Covariance Model Parameters 

 c1 

(*) 

ar1 

(km) 
at1 

(days) 
c2 

(*) 

ar2 

(km) 
at2 

(days) 
c3 

(*) 

ar3 

(km) 
at3 

(days) 

Euclidean 1.35 30 80 1.08 100 200 0.27 200 500 

River 1.35 40 80 1.08 300 200 0.27 400 500 

(*) c1, c2, c3 are expressed in (log-cfu/100mL)2 

 

The first structure of the covariance model (with parameters c01, ar1 and at1) is 

similar for both Euclidean and river distance-based models, with 50% of the total 

variability of log-E.coli being characterized by a fairly short range of 30-40km in 

space and 80 days in time.  This is not inconsistent with variability we would expect 

from point-like sources of E.coli pollution that are not constant and therefore may 

dissipate over a few months. The second and third structures of both Euclidean and 

river covariance models indicate that the remaining 50% of variability in log-E.coli 

levels is autocorrelated over longer distances and durations. As noted before, E.coli, 

and fecal bacteria in general, is oftentimes associated with suspended sediment in 

the water column.  This sediment can travel longer distances along a river network 

and it is hypothesized that E.coli associated with suspended sediment remains in the 

water at high levels for a longer period of time than free bacteria.  This phenomenon 

is captured in the longer spatial and temporal ranges of the covariance models.  In 

the Euclidean based model, the longer range was between 100-200km in space and 

200-500 days in time.  Interestingly, for the river based-model, the spatial ranges 

were anywhere from 1.5 to 2 times longer (300-400km), suggesting that by 
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accounting for the river connections between points, E.coli concentrations may 

remain correlated over much longer distances than previously considered.   

 

5.3.2. Cross-validation Analysis 
 
The cross-validation analysis outlined above resulted in mean square errors 

of MSE1=2.87(log-cfu/100mL)2 for scenario 1, MSE2=2.57(log-cfu/100mL)2 for 

scenario 2, and MSE3=1.99(log-cfu/100mL)2 for scenario 3. Comparing scenario 1 to 

scenario 2 we see that by using river distances instead of Euclidean distances we 

reduce the estimation error by about 10%, which is similar to the reduction found in a 

previous study examining dissolved oxygen in the Raritan Basin (Money et al., 

2008).  If we then add in soft log-E.coli data derived from measured turbidity 

(scenario 3), there is an additional 24% decrease in estimation error.  Therefore by 

incorporating river distances along with soft data from turbidity, the estimation error 

was reduced by 31% when compared to log-E.coli estimation using the typical 

Euclidean distance and no secondary information.  This is one of the first instances 

in a space/time context that river distances and secondary information have been 

combined to significantly reduce estimation error.  As a result, the river-based 

covariance model was deemed to be the most accurate representation of E.coli in 

the Raritan Basin, and was used in the subsequent basin-wide estimation and 

mapping of fecal contamination. 
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5.3.3. Assessment of Fecal Contamination in the Rar itan Basin 
 
Median estimates of E.coli concentration were calculated for every day of the 

study period between 2000-2007.  A movie showing changes in these estimated 

concentrations over time and space can be viewed in Appendix D.  Figure 5.3 

depicts the E.coli concentration for 4 different days of and is representative of many 

of the days in this study.  The squares indicate locations of monitoring stations with 

measured E.coli values and the chloropleth map shows areas where the 

concentration exceeds the single sample standard of 235cfu/100mL.   

 

Figure 5.3:  river-BME estimation of E.coli  in the Raritan Basin, New Jersey on 8/16/02 (A), 
2/14/03 (B), 5/14/03 (C), and 8/16/05 (D).   
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One can see from these maps and the animation that extremely high E.coli 

concentrations (> 600cfu/100mL) can be found along the eastern side of the basin in 

the North and South Branch and Lower Raritan watershed management areas 

(WMA).  Over the last half of the study period the Lower Raritan WMA remained 

consistently contaminated with E.coli well above the state standard for contact 

recreation.  In addition, several hot spots could be identified in the upper Millstone 

WMA that would appear and then dissipate, suggesting the occurrence of acute 

point source contamination in those areas.  It should also be noted that high E.coli 

concentrations were estimated in many areas where no monitoring stations existed.  

In these areas, additional monitoring strategies may be needed to capture potential 

harmful levels of E.coli.   

It is also important to assess the confidence in these estimations and 

describe the probability that a particular river mile is impaired for E.coli.  This 

information is important for decision-makers and environmental managers when 

deciding how to allocate resources and devise public warnings of fecal 

contamination.  Using the log-E.coli posterior PDF calculated at regularly spaced 

estimation points along the Raritan, we calculated for each day of the study period 

the percentage of river miles with a probability of impairment (Eq. 5.4) greater than 

90%. Figure 5.4 depicts these results for a 300 day window of the study period.   
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Figure 5.4:  Percentage of river miles in the Rarit an Basin that have a 90% probability of 
violating the NJDEP standard for primary contact re creation over a 300 day period.   
 

The x-axis is the day of estimation and the y-axis is the percentage of river 

miles in the Raritan Basin that exceeded the standard with 90% confidence.   The 

fraction of river miles having a >90% probability of being impaired was highly 

variable from one day to another, and reached a maximum of 35% on the most 

polluted day of this time period.   

Overall this study provides a unique spatiotemporal framework for 

incorporating river distances and secondary information into the basin-wide 

assessment of water quality.  Accuracy has been improved by over 30% when 

combining river distances and turbidity as an indicator of E.coli concentration.   By 

constructing our model in this way, we are better able to estimate E.coli along un-

monitored stream segments, thereby increasing the overall number of river miles 

assessed and providing environmental managers with accurate maps that not only 

show the spatial and temporal distribution of E.coli but that can also highlight areas 



88 
 

of concern, which can be useful when evaluating future monitoring strategies and  

allocating resources.
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Chapter VI:  Modern Space/Time Geostatistics Using River 
Distances:  A Case Study on Fish Tissue Mercury 

 

 

6.1. Introduction 
 
This study continues to build on the previous applications of river-BME for 

water quality estimation.  As with the previous case studies, this chapter examines 

the differences in estimation using either river-BME or Euclidean-BME.  It extends 

the analysis presented in Chapter 5 by incorporating multiple sources of soft data 

(pH and surface water mercury) for the estimation and mapping of fish tissue 

mercury in the Cape Fear and Lumber basins in North Carolina. 

 

6.1.1. Mercury in the Environment 
 

           Mercury (Hg) is a naturally occurring substance that is present in air, water, 

and sediments as a result of both anthropogenic and natural sources.  Due to the 

reactive chemical nature of mercury, it can change forms depending on the media it 

comes into contact with.  The mercury cycle has been developed to organize the 

various avenues with which mercury can enter the environment (Morel et al., 1998). 

Mercury is naturally present at ambient levels in the atmosphere.  Additional 

atmospheric mercury is due to emissions from volcanoes and fossil fuel burning.  

This mercury undergoes photochemical oxidation and is deposited through 
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precipitation where it is then allowed to runoff into lakes and streams.  Once in the 

water, inorganic mercury will settle into the sediments, while some mercury remains 

in the water column and is converted to methylmercury by bacteria present in the 

water.  Methylmercury is a highly toxic substance that is readily bioaccumulated by 

aquatic organisms (Porcella, 1995).  It is the bioaccumulated methylmercury that 

poses the most risk to  human health.  The majority of mercury enters the human 

body through fish consumption (USEPA, 1997a; 1997b).  This poses a significant 

risk because methylmercury can penetrate mammalian cells and alter cell division, 

putting children and pregnant women at a much larger risk than the general 

population.  Methylmercury can affect the nervous system and in high doses can 

affect the kidneys and cardiovascular system (Watras et al., 1998; National 

Research Council, 2000).  There have been numerous studies on mercury 

distribution in ecosystems, including air (Mason et al., 1997; Fulkerson and Nnadi, 

2006), surface water (Balogh et al., 1997; Sullivan and Mason, 1998), and fish tissue 

(Kannan et al., 1998; Peterson and Sickle, 2007).   

 Many states and local agencies monitor fish tissue mercury and use this 

information to issue consumption advisories for particular areas and species of fish.  

Assessing the spatiotemporal trends of fish tissue mercury on a larger scale, based 

on monitoring data is a difficult task.  Inter-species variability, such as trophic level, 

and intra-species variability such as size or age have an impact on the amount of 

bioaccumulated mercury present in a system (Huckabee et al., 1979; MacCrimmon 

et al., 1983; Cope et al., 1990; Wiener and Spry, 1996).  In 2006, in the United 
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States alone, 38% of total lake acreage and 26% of all river miles had fish 

consumption advisories (USEPA, 2007).  

 

6.1.2. Autocorrelation of Fish Tissue Mercury 
 

           Geostatistical techniques such as kriging rely on the fact that many natural 

phenomenon exhibit spatial autocorrelation.  Kriging methods construct a regional 

model of correlation to estimate variables at un-sampled locations based on data 

from sampled locations (Delhomme, 1978; Cressie, 1990; Stein, 1999).   Cokriging, 

subsequently, uses not only the spatial correlation of a single variable, but also the 

correlations associated with other environmental variables.  There have been 

numerous examples of cokriging for environmental variable estimation ranging from 

soil salinity, suspended sediment, and rainfall, to regional stream quality (Darwish et 

al., 2007; Li et al., 2006; Seo et al., 1990; Jager et al., 1990).  It is most beneficial 

where the primary variable is under-sampled with respect to the secondary variable.  

Generally speaking, the inclusion of secondary information results in more accurate 

local predictions than when considering a single variable alone (Darwish et al., 2007; 

Goovaerts, 1997). 

           A more general approach, and the approach used in this study, to estimating 

at un-sampled locations is the BME method of modern space/time geostatistics 

(Christakos and Li, 1998).  The BME method provides a rigorous mathematical 

framework to process a wide variety of knowledge bases.  These Knowledge Bases 

characterize the space/time distribution and uncertainty in monitoring data available 

for various water quality parameters, and are used to obtain a complete stochastic 
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description of these parameters at any unmonitored space/time point in terms of its 

posterior Probability Density Distribution (PDF). The major component of this study 

is to determine whether the use of river-BME along with several types of soft data 

can improve our estimation of fish tissue mercury at un-sampled locations.  

          As noted before fish tissue mercury can vary significantly due to inter and 

intra-species variability.  Therefore, distinguishing between the natural 

spatiotemporal trends and species specific trends can be difficult if the monitoring 

data are heterogeneous (i.e. contains many different species).  Wente (2004) 

describes an interesting approach to this problem by developing a statistical model 

for distinguishing trends in fish tissue mercury concentration using a combination of 

covariance and multiple linear regression.  This model serves as the basis for the 

Environmental Mercury Mapping, Modeling, and Analysis (EMMMA) program (Hearn 

et al., 2006).  Although it is not the focus of this work, EMMMA results could be 

integrated into the river-BME analysis, potentially leading to more accurate maps of 

fish tissue mercury distribution.  For our purposes, however, we are focusing on the 

inclusion of river distances for the geostatistical estimation of fish tissue mercury to 

understand its distribution on a basin scale and across several species.   (see § 6.2).   

 

6.1.3. Factors Influencing the Bioaccumulation of M ercury 
 

 A major contribution of this work is the incorporation of secondary variables in 

the form of soft data that effect the concentration of mercury in fish tissue.  A number 

of studies have examined a variety of water quality variables and their relationship to 

fish tissue mercury.  Many found that one of the best predictors of fish tissue 
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mercury is pH (Grieb et al., 1990; Rose et al., 1999; Song et al., 2001; Sackett et al., 

2008).  Low pH values have been shown to increase the amount of methylmercury 

released from sediments, increasing its bioavailability (Ullrich et al., 2001; Miller and 

Akagi, 1979).  Oftentimes measurements such as pH are more readily available than 

fish tissue samples, therefore it is a good candidate for generating soft data for fish 

tissue mercury in areas where fish samples do not exist.   

 The majority of mercury enters from outside the water body, and ultimately a 

large majority becomes associated with sediments; however, some mercury remains 

in its elemental form in the water column, where it is directly transformed into 

methylmercury by bacteria.  Surface water measurements for mercury are typically 

very scarce and difficult to measure, resulting in large datasets with values below the 

detectable limit of the procedure being used.  The USEPA (2001) suggests the use 

of bioaccumulation factors (BAF), or the ratio of fish tissue mercury to water column 

mercury (WCHg), to determine the appropriate levels of aqueous mercury that would 

result in compliant fish tissue mercury concentrations.  Minute concentrations of 

aqueous mercury are capable of generating methylmercury  at rates significant 

enough to warrant consumption advisories (Southworth et al., 2004).   Therefore, 

this study incorporates additional soft data for fish tissue mercury derived directly 

from surface water mercury measurements, rather than a BAF, which are more 

reliable if site-specific.   

 

6.2. Materials and Methods 
 

6.2.1. Data and Study Area 
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 The area under investigation is the Cape Fear and Lumber river basins in 

eastern North Carolina.  Both of these basins have ongoing fish consumption 

advisories, and the entire Lumber Basin was listed as impaired in the state’s 303(d) 

list of impaired waters as required by the Clean Water Act (NCDENR, 2006).  The 

lumber basin is approximately 3300 square miles and is primarily forested (60%) or 

agricultural (30%).  The Cape Fear Basin, on the other hand, is 3 times larger than 

the Lumber.  At 9300 square miles, it is the largest basin in the state and contains 

close to 20% of the total population, or around 2 million people (NCDENR, 2007; 

2004).  Figure 1 shows the study area along with the locations of fish tissue and 

secondary variable measurements. 

 

Figure 6.1:  Lumber (Left) and Cape Fear (Right) ba sins in North Carolina with locations for 
fish tissue mercury (circles), pH (squares), and su rface water mercury (triangles).   
 
 
Fish tissue mercury data were obtained from the North Carolina Department of 

Environment and Natural Resources (NCDENR), through the North Carolina Division 
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of Water Quality (NCDWQ) Fish Tissue Assessment Program.  The database of fish 

tissue mercury and secondary variables was assembled by researchers at North 

Carolina State University, and a complete description of this database can be found 

in Sackett et al. (2008).  Only those data within the Cape Fear and Lumber Basins 

were used.  Collocated pH data and fish tissue mercury were obtained from this 

database and additional pH measurements were downloaded from the National 

Water Information System through the United States Geological Survey (NWIS-

USGS).  Surface water total mercury data included data collected by NCDWQ as 

part of the Eastern Regional Mercury Study (NCDWQ, 2003, 2006), as well as 

additional data from the NWIS.  Any duplicate measurements were averaged to a 

single value.  Table 1 summarizes the data used in this study. 

Table 1:  Data summary for mercury and pH in the Ca pe Fear and Lumber basins, 1990-2004 

Data Type # of Locations  # of space/time data 
points 

# collocated with 
Fish Hg* 

Fish Hg 75 1663 - 
pH 33 356 143 
Surface Water 
Hg** 7 80 35 

*Independent from space/time data locations in column 3; **starts in 1995 

6.2.2. Generation of Soft Data from Multiple Source s 
 

 The availability of secondary variables provides an opportunity to incorporate 

additional soft data points for fish tissue mercury.  Money et al. (2008) described the 

general framework for generating soft data from secondary water quality variables 

by creating E.coli soft data from turbidity measurements.  However; that study 

focused on only one source of soft data.   In this study we incorporate two secondary 

variables, pH and surface water mercury to generate probabilistic soft data and 

combine them into one analysis. 
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 There were a total of 143 points where both fish tissue mercury (FishHg) and 

pH were measured.  Using these collocated points, a simple regression analysis was 

performed using log-transformed data to create a relationship of predicted FishHg 

given pH (Eq. 6.1). 

 

log-FishHg = -3.5 log-pH + 5.7               (6.1) 

 

where log-FishHg is expressed in log-mg/kg (or ppm) and log-pH is in log-standard 

units.  Using this relationship the log-FishHg prediction error variance was calculated 

using the mean of the squared differences between predicted and measured log-

FishHg for a series of given windows of log-pH values. Finally, for every space/time 

point where log-pH (but not necessarily log-FishHg) was measured, a Gaussian 

probability distribution function (PDF) was constructed for log-FishHg with a mean 

given by (1) and a variance corresponding to the prediction error variance at the 

measured log-turbidity. This resulted in soft log-FishHg data of Gaussian 

probabilistic type at 356 space/time points. 

 There were a total of 35 points where both fish tissue Hg and water column 

mercury  (WCHg) were measured during the study period.  Again, using these 

collocated points, we constructed a simple relationship to predict fish tissue Hg using 

log-transformed data.   

 

log-FishHg = 0.25 log-Hgsw – 3.40           (6.2) 
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where log-FishHg is as above expressed in log-mg/kg (or ppm) and log-WCHg is 

expressed in log-ng/L.  For every space/time location where surface water mercury 

was measured, a Gaussian probability distribution function was constructed for log-

FishHg with a mean given by (2) and variance corresponding to the prediction error 

variance at the measured log-WCHg.  This resulted in soft log-FishHg data of 

Gaussian type at an additional 80 space/time locations.  

 The models shown in equations 6.1 and 6.2 are simplified expressions of a 

complex system that has many potential secondary variables.  As discussed earlier, 

a variety of factors effect the concentration of mercury in fish tissue, however the 

intent of this study is to examine how the addition of soft data in conjunction with a 

river distance affects the estimation accuracy of fish tissue mercury, therefore a 

simplified model was most appropriate.   Future research will examine more complex 

models for predicting fish tissue and examine ways to incorporate those model 

predictions as soft information.   

 

6.2.3. Integrating Hard and Soft Data 
 

 The site specific knowledge for log-FishHg comes from direct measurements 

of fish tissue mercury (treated as hard data) and from secondary variables, pH and 

surface water total mercury, which are used to construct soft data. The BME method 

of modern space/time geostatistics (see Chapter 2-5) is used to integrate these hard 

and soft data and obtain statistical estimates of log-FishHg at un-monitored 

locations.  As described in previous sections, both the Euclidean-BME and river-

BME procedures consist in defining the general knowledge (i.e. covariance) and site 
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specific knowledge (i.e. monitoring data), and integrating these two knowledge 

bases to obtain a posterior PDF (Eq. 2.5) characterizing log-FishHg at any point on 

the river.    

 

6.2.4. Space/Time Covariance Models That Use River Distances 
 

 As with previous water quality studies using river-BME (Money et al., 2008a, 

2008b), a covariance model is selected that uses either a Euclidean or river 

distance. We restrict our model choice to the isotropic exponential power covariance 

model since it has been shown to be permissible when using river distances (Ver 

Hoef et al., 2006, Money et al., 2008a).  Using this model, the covariance of log-

FishHg between space/time points p=(r,t) and p’=(r’,t’) is expressed as  

 

cov(p,p’) = 
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where t and t’ are times, h=dα(r,r’ ) and τ=|t-t’| are the spatial and temporal lags, 

respectively , and dα(r,r’ )=αdR(r,r’ )+(α-1)dE(r,r’ ) (Eq. 2.11) is an α-weighted  

average of the Euclidean distance dE(r,r’ ) and the river distance dR(r,r’ ). In this study 

we used either α=0 (Euclidean distance) or α=1 (river distance).  For each value of 

α, the parameters (c1, ar1, at1, c2, ar2, at2) of the covariance model (6.3) are obtained 

using a least square fitting between the covariance function and experimental 

covariance values calculated from the hard log-FishHg data. An interpretation of 

these parameters is provided in § 6.3.     
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6.2.5. Comparing Euclidean and River Estimations 
 

 A comparison was made between estimations using river distance, as 

described above, and estimation using the typical Euclidean distance, alongside the 

incorporation of soft data from measured pH and measured WCHg.  A cross-

validation analysis was performed on five different scenarios to determine the best 

model for estimating basin-wide log-FishHg.  Scenario 1 used the measured log-

FishHg data with Euclidean-BME.  Scenario 2 contained the same data as scenario 

1 except river-BME was used.  Scenario 3 built upon scenario 2 by adding in the pH 

data (incorporated as the soft Gaussian data constructed using Eq. 1).  Scenario 4 

built upon scenario 2 by adding in Gaussian soft data from WCHg using equation 2.  

Finally, scenario 5 combined the soft data from scenarios 3 and 4 into one analysis 

using river-BME.    The method with the lowest MSE was then used in the 

assessment and estimation of FishHg for the Cape Fear and Lumber basins.     

Table 6.2 summarizes each scenario. 

Table 6.2:  Cross-validation scenarios for Fish Tis sue Hg estimates using River-BME and 
Euclidean-BME 

Scenario  Metric Used  Hard Data Used  Soft Data Used  

I Euclidean Measured  
log-FishHg 

- 

II River Measured 
 log-FishHg 

- 

III River Measured  
log-FishHg 

Gaussian from  
log-pH 

IV River 
Measured  
log-FishHg 

Gaussian from  
log-Hgsw 

V River 
Measured  
log-FishHg 

Gaussian from  
log-Hgsw + 

Gaussian from  
log-pH 

  



100 
 

6.2.6. Estimation of Fish Tissue Hg 
 

 Using the selected scenario within the BME framework we estimate log-

FishHg at equidistant estimation points (i.e. distributed at a fixed interval of 0.1km) 

along the combined Cape Fear and Lumber network.  For each estimation point we 

select the hard and soft log-FishHg data situated in its local space/time 

neighborhood, and calculate the corresponding BME posterior PDF describing log-

FishHg at that estimation point. The variance of the BME posterior PDF provides an 

assessment of the estimation uncertainty, while the back-log transform of the mean 

of the BME posterior PDF is used as an approximation of the median estimator for 

FishHg concentrations.  This is then used to produce chloropleth maps of estimated 

FishHg concentration, and calculate the fraction of river miles that exceed specified 

action levels.   

 

6.2.7. Assessment of Impaired River Miles 
 

 The fraction of river miles impaired at any given time is calculated by 

determining the fraction of equidistant estimation points that exceed a given action 

level for fish tissue mercury.  There are currently three different action levels for fish 

tissue mercury.  The Food and Drug Administration (FDA) has determined a 

consumer action level of 1.0 ppm (or mg/kg) (FDA, 2001).  The state of North 

Carolina has declared a more stringent action level of 0.4 ppm (Williams, 2006).  In 

addition, the USEPA has set the most stringent mercury action level at 0.3 ppm 

(USEPA, 2001).   For the Cape Fear and Lumber basins, the fraction of total river 
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miles exceeding each of these threshold concentration values was calculated 

independently.  

 

6.3. Results and Discussion 
 

6.3.1. Covariance Analysis 
 

 Figure 6.2 shows the covariance cX(h,τ) of log-FishHg obtained for the 

Raritan Basin.  The top panel displays cX(h,τ= 0), which shows how the covariance 

varies as a function of the spatial lag h for a temporal lag τ  equal to zero, while the 

bottom panel displays cX(h=0,τ), which shows how the covariance varies as a 

function of temporal lag for a zero spatial lag.  

 

Figure 6.2:  Spatial (top) and temporal (bottom) co variance of log-FishHg in the Cape Fear and 
Lumber Basins, North Carolina.   
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Experimental covariance values estimated from data are shown with markers, while 

the covariance models obtained by fitting Eq. 6.3 to the markers are shown with 

lines.  The covariance was calculated and modeled using both a Euclidean distance 

(dashed line) and river distance (plain line).  The covariance model parameters 

obtained with the Euclidean and river distances are summarized in table 6.3.  

 

   Table 6.3:  FishHg Space/Time Covariance Model P arameters  
 c1 

(*)  

ar1 

(km) 
at1 

(days) 
c2 

(*)  

ar2 

(km) 
at2 

(days) 

Euclidean (α=0) 0.38 58 685 0.0001 0.0001 6.16 

River (α=1) 0.30 111 1070 0.10 114 0.70 

*c1 and c2 are expressed in log-ppm2 

  

 The first structure of the covariance model (with parameters c1, ar1 and at1) 

explains approximately 75% of the overall variability in FishHg using river distance, 

and nearly 100% of the variability when using Euclidean distance.  The 

corresponding spatial range of the first structure using river-BME is nearly double 

the spatial range of the Euclidean-BME model.  This suggests that by accounting for 

river distance, fish tissue mercury is spatially more highly correlated than if the 

constraints of the river network are not taken into account.  Physically this can be 

explained because fish are inherently restricted to following pathways that mimic the 

river network configuration.  As one would expect, if a Euclidean distance is used, 

the correlation between fish can be lost over a short distance because fish do not 

generally travel across land.  Indeed, the spatial covariance range (ar1) indicates that 

95% of the correlation in FishHg is lost after about 58km, compared to 111km when 
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taking river distance into account.  Temporally, fish tissue mercury remains highly 

correlated for a period of about 2-3 years.  This is understandable given that 

bioaccumulated mercury will change gradually over time, depending upon the age 

and size structure of the fish community. 

 

6.3.2. Cross-validation Analysis 
 

 The cross-validation analysis outlined in table 2 resulted in mean square 

errors of MSE1 = 0.3050(log-ppm2) for scenario 1, MSE2 = 0.2556 (log-ppm2) for 

scenario 2, MSE3 = 0.2480 (log-ppm2) for scenario 3, MSE4 = 0.2508 (log-ppm2) for 

scenario 4, and MSE5 = 0.2487 (log-ppm2) for scenario 5.  Using river-BME over 

Euclidean-BME with only hard data  reduced estimation error by (MSE1-

MSE2)/MSE1=16.2%.  This is appreciably higher than what was obtained in previous 

studies that examined river-BME for DO and E.coli.  Those studies resulted in 10%-

11% decrease in error.  Also when accounting for soft data from either pH or WCHg 

independent of one another, an additional 2-3% reduction in estimation error was 

found.  Even though this is appreciably smaller than the reduction seen from soft 

data in the E.coli study by Money et al. (2008), it is significant because relatively few 

soft data points were available in this study.  In the E.coli/turbidity study there were 

over 700 additional soft data points added to the analysis, and covering a much 

smaller land area.  In this study, there were only ~300 additional soft data derived 

from pH and only ~30 additional soft data points derived from WCHg.  The reduction 

in estimation error may be even further reduced if more data points can be included 

for these secondary variables.   The basin under investigation is also very large.  
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The land area of the Cape Fear and Lumber Basins combined is 4 times the size of 

basins used in previous studies.    Overall, when using river-BME with one source of 

soft data (either pH or WCHg), there was an 18.7% reduction in estimation error 

when compared to the Euclidean-BME without secondary data.  This suggests that 

accounting for the hydrogeography of the system as well as variables that affect the 

bioaccumulation of mercury, will result in more accurate estimations of fish tissue 

mercury at un-sampled locations.   

 One interesting finding is that when combining the two sources of soft data 

(pH and WCHg) into a single estimation, there was no significant decrease in error 

when compared to estimations calculated using the sources independently.  Again, 

one reason for this result is the number of soft data relative to the number of hard 

data.  There were over 1600 hard data space/time locations and approximately 400 

soft data points used in the combined analysis, meaning that for any given 

estimation point, the estimation neighborhood is more likely to contain hard data 

points with more weight than any soft data point.  Additionally, with the distribution of 

WCHg measurements concentrated in a small area of the Northeastern Cape Fear 

Basin (see figure 1), the estimation neighborhood will likely contain either soft data 

from pH, or soft data from WCHg, but rarely would it contain both.  This means that 

more often than not, any decrease in estimation error can primarily be attributed to 

the use of river distance, followed by the inclusion of either source of soft data, but 

not both sources of soft data at the same time.  Lange et al. (1993) suggested that 

acidity may increase the methylation process, and generally speaking water column 

total mercury increases the availability of mercury for methylation and subsequent 
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bioaccumulation in fish, which can explain why pH and WCHg, when considered 

separately, lead to more accurate maps of FishHg. But it is also possible that pH and 

surface water mercury may work together in the uptake of mercury into fish tissue.  

 For example, Chen et al. (2001) noted that the bioavailable speciation of Hg 

and factors that bind with Hg depend on pH. Another possibility is that water column 

total mercury is a source of methylmercury in the sediment, and pH may aid the 

methylation of mercury at the sediment-water interface (Winfrey and Rudd, 1990).     

However, the detailed mechanisms of how the combined effect of water column 

mercury and pH affects methylmercury formation and bioaccumulation are still 

largely unknown, and our spatially discontiguous datasets for pH and WCHg may 

not capture their combined effect. This could help explain why the combination of 

soft data from these two sources does not result in any additional decrease in 

estimation error in our study.   

 

6.3.4.  Assessment of Fish Tissue Mercury 
 

 Median estimates of FishHg concentration were calculated every 180 days 

over the study period between 1990-2004.  A movie showing changes in fish tissue 

mercury over space and time can be viewed in supplementary material.  Figure 6.3 

depicts the FishHg concentration for 4 sample days during the study period.  
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Figure 6.3:  river-BME Fish Tissue Mercury estimate s (ppm) in the Cape Fear and Lumber 
Basins on July 23, 1995 (A); July 2, 1999 (B); June  26, 2000 (C); and May 13, 2004 (D).  Squares 
indicate locations of actual fish tissue measuremen ts.   
 

These estimates show that over the course of the study period a large proportion of 

both basins had the potential for fish tissue mercury levels to be above both the EPA 

and North Carolina action levels (0.3 and 0.4 ppm respectively).  Only a small 

fraction exceeded the FDA action level of 1.0ppm.  Generally the Lumber basin 

contained higher potential for contaminate fish over more of the basin and for a 

longer period of time.  This is reflected by the fact that the entire Lumber basin has 

been listed as impaired for fish tissue mercury in the 2006 North Carolina Integrated 

Water Quality report (NCDENR, 2007).  The area of Jordan Lake in the northeastern 
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Cape Fear also contained high estimates of fish tissue mercury during several time 

periods, however, very few actual samples were taken in this area during the study.  

One can combine estimation maps and maps of error variance to provide state and 

local agencies with a tool for designing future monitoring strategies and better 

pinpointing fish consumption advisories in areas like Jordan Lake.   Figure 6.4 

summarizes the fraction of river miles impaired during the study period.  

 

Figure 6.4:  Percentage of river miles with fish ti ssue mercury median estimate exceeding 
Mercury Action Levels set by the FDA (top; 1.0ppm),  North Carolina (middle; 0.4ppm), and the 
EPA (bottom; 0.3ppm).   
 

 The median estimate of fish tissue mercury exceeded the most stringent 

action level of 0.3ppm in more than 90% of river miles for a majority of the study 

period.  There were more fluctuations in the percent of impaired river miles when the 

action level was increased to the current North Carolina level of 0.4ppm; however, 

over 50% of river miles had median estimates of fish tissue mercury exceeding 

0.4ppm for almost the entire study period.  In addition, during the years 1990-1994, 
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between 1-4% of river miles had a median estimate of fish tissue mercury above 

even the most lenient action level of 1.0ppm set by the FDA.  Another small peak is 

seen in 1998; however, at least with respect to the FDA, the majority of waters 

remained below this action level, suggesting that measures to mediate mercury 

inputs into streams and lakes may be taking effect.  No river miles had a median 

estimate of fish tissue mercury exceeding the FDA action level since 1999 according 

to these results. 

 Overall this study examines a combination of knowledge sources that may 

improve the estimation of fish tissue mercury concentrations in two large river basins 

in North Carolina.  Estimation maps were produced that were on average 18% more 

accurate when accounting for river distance and the secondary variables pH and 

water column total mercury.  Both secondary variables contributed to an overall 

decrease in estimation error, albeit small due to the limited amount of data points 

available for these secondary variables.  The use of river-BME in this study 

contributed a majority of the reduction in estimation error and provides a good 

framework for further decreases in estimation error with the addition of other 

secondary factors in future work.   Soft data from pH contributed as much error 

reduction as soft data from surface water mercury.  Generally pH data are much 

more reliable and easier to measure, therefore state and local agencies may 

consider using pH measurements to aid in the assessment of fish tissue mercury in 

areas where samples may be scarce.  However, this work demonstrates that water 

column total mercury data, when available, can provide a valuable alternate source 

of information to estimate fish tissue mercury levels. Overall, the framework 
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developed in this work can aid environmental managers in identifying important 

bioaccumulation factors and areas where sampling and advisory resources can be 

targeted.



 
 

Chapter VII:  Concluding Remarks 
 

The primary goal of this work was to establish a new framework for estimating 

water quality along river networks, using modern space/time geostatistics with a river 

distance.  In order to achieve this goal the existing Bayesian Maximum Entropy 

Framework was extended with new river-based functions and modified functions to 

create the new river-BME framework.  It was determined that there are several 

factors that affect the efficacy of using river-BME for water quality assessments.  

These included parameter choice, data density, and network complexity. Network 

complexity plays a significant role in determining whether or not a river-based 

approach is most appropriate.  Both branching level and meandering ratio were 

shown to impact the efficacy of using river-BME.  Generally speaking, as network 

complexity increases, the efficacy of river-BME increases over that of the classical 

Euclidean-BME approach.  In addition, simulation exercises confirmed that the 

numerical implementation of river-BME was successful and established the 

framework for use in real world applications.    

 The real world case studies provide a broad range of applications for using 

river-BME.  A variety of parameters and network configurations were examined to 

illustrate the potential for river-BME to improve estimation accuracy over the 

Euclidean based approach.  It was hypothesized that by accounting for the 

hydrogeography of a system, a noticeable decrease in estimation error would occur 
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for  water quality parameters that are influenced by in-stream physical, chemical, 

and biological processes.  The results of the three case studies confirm this 

hypothesis, as all three resulted in improvements in estimation accuracy.  Table 7.1 

contains a summary of the simulation and real world case studies using river-BME.   

There was a reduction of estimation error between 10%-31% in the real world 

studies.  The range of improvements is due to a number of factors including data 

density, network complexity, parameter choice, and soft data source and 

abundance.  The highest reduction (31%) was obtained when there was an 

abundance of soft information relative to the primary variable of interest, and both 

were distributed across an entire complex basin.  If we examine just the effect of 

using river distance over Euclidean distance, without soft data, error reduction (or 

efficacy) ranges from 10% - 16% in the real world case studies.  However, the 

simulation studies suggest that under the right conditions (high complexity, large 

dataset) estimation error could by reduced by up to 50%. 

Table 7.1:  Summary of river-BME Estimation Studies  

Experiment Network Parameter River -BME Error 
Reduction 

Simulation I  
 

Simulated Data 52.4% 

Simulation II 

 

Simulated Data 46.7% 

Hard Data 

 

Dissolved Oxygen 11.3% 
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Hard Data 

 

Dissolved Oxygen 10.3% 

Hard & Soft Data 

 

E.coli with soft data 
from Turbidity 31.2% 

Hard & Soft Data 

 

Fish Tissue Mercury 
with soft data from 

pH & WCHg 
18.7% 

Hard & Soft Data 

 

Fish Tissue Mercury 
with soft data from 

pH & WCHg 
18.7% 

 

 Overall river-BME was able to significantly reduce water quality estimation 

error along a variety of river networks and for a variety of parameters.  There are 

limitations, however, to this approach.   First, the algorithm developed for this work 

calculated isotropic river distance and does not take into account flow connectivity 

between data points.  Although the models presented can be generalized to include 

a combination of Euclidean and river distance, and flow-weighted covariance models 

are available and should be incorporated into future work.  Second the covariance 

functions used in the analysis were restricted to the spatial exponential power model 

for α=0 (Euclidean distance) and α=1 (river distance), which has been proven 
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permissible for any river networks (see Appendix B).  There are a variety of other 

possible covariance functions that need to be examined for permissibility before they 

can be used in a river-based geostatistical framework.  In addition, more complex 

models of environmental parameters (i.e. Qual2, EMMMA, CMAQ) can be used to 

generate soft data, which may lead to even further improvements in estimation and 

mapping of water quality.  

 Future research directions should examine the use of other types of models 

to generate soft data in conjunction with river-BME.  Also, more water quality 

variables and additional networks with varying complexity need to be investigated for 

the efficacy of using river-BME.  This will help to establish a general library of 

network and variable types and their associated efficacy, which will be an invaluable 

tool to future researchers.  Other potential extensions for river-BME include areas 

where restricted network distances may play a role in the autocorrelation between 

points (i.e. water distribution systems).  The river-BME framework developed here is 

a general tool that sets the stage for a multitude of research regarding 

spatiotemporal trends in water quality along river networks.  It will provide local, 

state, and federal environmental managers with a framework for better targeting 

resources, advising stake-holders, and informing the public of water quality trends 

and impairments that may affect future ecological and human health.   
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Appendix A:  Proof of Permissibility for Exponentia l Covariance 
Models Using River Distance 

 

 

This appendix contains a proof that the exponential covariance model is permissible 

for river distances on directed trees, using the powerful procedure outlined in the 

works of Ver Hoef et al. (2006) and Ver Hoef and Peterson (2008). We have defined 

X(l,i) at longitudinal coordinate l along reach i as the moving-average of a white 

noise random process W(u,j) downstream of point (l,i) using the following equation 

X(l,i) = ∫
∞−

−
l

i uVuWlugdu ))(,()(  

where g(u- l) is a moving average function defined on R1, Vi(u)={j} designate the 

reach at longitudinal coordinate u downstream of reach i, and W(u,j) is a white noise 

process with mean zero, i.e. E[W(u,j)]=0 where E[.] is the expectation operator, and 

with covariance cov[W(u,j), W(u’,j’)] = δ j, j’ δ(u-u’), where δ j, j’ is the kronecker function 

(δj,j’=1 if  j=j’, and δj,j’=0 otherwise), and δ(u-u’) is the Dirac function (with property 

∫
∞

∞−

=− )()'()'(' ufuuufdu δ  for sufficiently smooth functions f(u) defined on R1).  

 We now restrict ourselves to the case of the exponential moving average 

function g(h)= 2 exp(-|h|). Without loss of generality we assume that l’ ≥  l. The 

covariance between two points r=(s,l,i) and r’=(s’ ,l’,i') is then given by 

 cov(r,r’ ) = cov(X(l,i) , X(l’,i'))  

  = E [ ∫
∞−

−
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−
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' ))'(,'()''('
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i uVuWlugdu ] 
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where l’ ≥  l was used in the last line to obtain the upper bound of the integral.  

First consider the case where i and i’ are flow-connected, i.e. i' is upstream of i, or 

equivalently Vi’(l)={i}. Then )(),( ' uVuV ii
δ =1 for all u ≤  l and therefore in that case 

 cov(r,r’ ) = 2 )'exp()exp( luludu
l

−−∫
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0
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0
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−− = ))'(exp( ll −−  

 = exp(-dR(r,r’)) 

where dR(r,r’)= l’- l was used to obtain the last line since i and i’ are flow-connected.  

Next consider the case where the points r and r’ are not flow-connected, i.e. i and i' 

are on different branches of the river network. In that case the confluence node of 

these two branches is at a longitudinal coordinate l” such that l” ≤  l and l” ≤  l’, and 

the river distance between r and r’ is dR(r,r’)=( l- l”)+( l’- l”). It follows that )(),( ' uVuV ii
δ =1 

for u ≤  l” and )(),( ' uVuV ii
δ =0 for l”<u ≤  l. Therefore in that case we have 

 cov(r,r’ ) = 2 )'exp()exp(
"
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 = exp(-dR(r,r’)) 

Hence we have shown that whether or not two points are flow-connected, their 

covariance is exp(-dR(r,r’)). Since the covariance of the moving-average of a white 

noise random process is a permissible covariance model (Ver Hoef et al., 2006), 

then the exponential covariance is permissible with the river metric. 
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Appendix B: Mathematical Summary of Flow-weighted  
Covariance Models 

 

 

The framework proposed in Ver Hoef et al (2006), and further used by 

Cressie et al. (2006) and Ver Hoef and Peterson (2008) was a break-through to 

obtain a large class of flow-weighted covariance models based on moving average 

constructions. We refer the reader to their papers for an in-depth presentation of the 

framework, but we provide here some mathematical steps using a slightly modified 

notation that can then be compared with the alternate framework proposed by 

Bernard-Michel and Fouquet (2006). Let’s define X(l,i) at longitudinal coordinate l 

along reach i as the moving-average of a white noise random process W(u,j) on the 

reaches upstream of point (l,i) using the following equation 

X(l,i) = ∫ ∑
∞

∈
−Ω

l uVj

juWlugjidu
i

),()(),(
)(

 

where Vi(u) is the set of river reaches at longitudinal coordinate u upstream of reach 

i, g(u- l) is a moving average function defined on R1, W(u,j) is a white noise process 

with mean zero, and Ω(i,j) is real number between 0 and 1 expressing the amount of 

flow connection between reach i and j such that ∑
∈

=Ω
)(

1),(
uVj i

ji  for u>l. The flow 

connection between reach i and an upstream reach i' can be defined as the ratio 

Ω(i,i')= Ω(i')/ Ω(i) where Ω(i) is function that increases in the direction of flow. In that 

case the property ∑
∈

=Ω
)('

1)',(
uVi l

ii   ∀  u>l is verified if and only if Ω(i) is a flow additive 

function, i.e. such that if two reaches i’ and i" combine into reach i, then 
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Ω(i')+ Ω(i")= Ω(i).  Flow discharges or watershed areas are physically meaningful 

variables that can used to obtain Ω(i) (see next section). The covariance between 

two points r=(s,l,i) and r’=(s’ ,l’,i') is then given by 

 cov(r,r’ ) = cov(X(l,i) , X(l’,i'))  

 =E[ ∫ ∑
∞

∈
−Ω

l uVj

juWlugjidu
i

),()(),(
)(

∫ ∑
∞

∈
−Ω

' )'(''

)','()''()','('
l uVj

juWlugjidu
i

] 

 = ])','(),([)','(),()''(')(
' )( )'(' '

∫ ∑ ∑∫
∞

∈ ∈

∞

ΩΩ−−
l uVj uVjl

juWjuWEjijilugdulugdu
i i

 

 = ∫ ∑ ∑∫
∞

∈ ∈

∞

−ΩΩ−−
' )( )'(''

', )'()','(),()''(')(
l uVj uVj

jj
l i i

uujijilugdulugdu δδ  

If r and r’ are not flow-connected, then Φ=∩ )'(')( uVuV ii  lu ≥∀  and '' lu ≥  , as a 

result  ', jjδ =0 )(uVj l∈∀  and )'(' ' uVj l∈ , so that the double summation is zero and 

consequently cov(r,r’ )=0. If r and r’ are flow-connected let us assume without loss of 

generality that r is upstream of r’ , i.e. l ≥  l’. Then using the property of the Dirac 

function ( ∫
∞

∞−

=− )()'()'(' ufuuufdu δ  for sufficiently smooth functions f(u) defined on 

R1) we obtain 

cov(r,r’ ) = ∫ ∑ ∑
∞

∈ ∈
ΩΩ−−

l uVj uVj
jj

i i

jijiluglugdu
)( )(''

',)','(),()'()( δ  

where l ≥  l’ was used in obtaining the lower bound of the integral. Since r and r’ are 

flow-connected with r upstream of r’ , it follows that Φ≠⊂ )(')( uVuV ii  lu ≥∀ , so that 

the double summation reduces to a single summation as follow    
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cov(r,r’ ) = ∫ ∑
∞

∈
ΩΩ−−

l uVj i

jijiluglugdu
)(

),'(),()'()(   

Recall that Ω(i', j)= Ω(j)/ Ω(i'), Ω(i, j)= Ω(j)/ Ω(i) and ∑
∈

=Ω
)(

1),(
uVj i

ji  for u>l, from which 

we also get ∑
∈

Ω=Ω
)(

)()(
uVj i

ij  for u>l. Using these relationships it follows that 

)',()'()(/)()'()(/)(),'(),(
)()(

iiiiiiijjiji
uVjuVj ii

Ω=ΩΩΩ=ΩΩΩ=ΩΩ ∑∑
∈∈

, which 

when substituted in the equation above leads to 

cov(r,r’ ) = ∫
∞

−+Ω
0

)'()()',( llvgvgduii  

where the change of variable v=u-l was used in the integral. Noting that dR(r,r’)=l-l’ 

when r and r’ are flow-connected and l ≥  l’, and noting that Ω(i,i')=0 when r and r’ 

are not flow-connected, then a permissible model for the covariance between r and 

r’ (whether they are flow-connected or not) is given by 

cov(r,r’ ) = )',( iiΩ C1( dR(r,r’ ) )  

where dR(r,r’ )=|l-l’| is the river distance between r and r’ , and C1( . ) is the class of 

permissible covariance functions in R1 defined by C1(h)= ∫
∞

+
0

)()( hvgvgdu for any 

suitable moving average functions g(v). This class of permissible covariance 

functions includes for example the strikingly beautiful Mariah (Ver Hoef, 2006) 

model. 

De Fouquet and Bernard-Michel (2006) proposed a framework that can be 

used to expand the class of permissible flow-weighted covariance models. Along the 
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lines of the framework they proposed, let us here define X(l,i) at longitudinal 

coordinate l along reach i as   

X(l,i) = ∑
∞∈

Ω
)(

)(),(
iVj

j lYji  

where Vi(∞) is the set of flow-connected leaf reaches (i.e. sources) upstream of 

reach i, Ω(i,j)∈ [0,1] quantifies the flow connection between reach i and its source j 

such that ∑
∞∈

=Ω
)(

1),(
iVj

ji , and Yj(l) are independent zero mean random processes on 

R1 with covariance cov(Yi(l),Yi(l’))=c1(h), h=|l-l’|, where c1(h) may be any permissible 

covariance function in R1 (i.e. such that it is the Fourier transform of a non-negative 

bounded function in R1). The covariance between two points r=(s,l,i) and r’=(s’ ,l’,i') 

is then given by 

 cov(r,r’ ) = ∑ ∑
∞∈ ∞∈

ΩΩ
)( )('

)','(),(
'i iVj Vj

jiji cov(Yj(l),Yj’(l’)) 

If r and r’ are not flow-connected, then Φ=∞∩∞ )(')( ii VV , as a result  

cov(Yj(l),Yj’(l’))=0 )(∞∈∀ iVj  and )(' ' ∞∈ iVj , so that cov(r,r’ )=0. If r and r’ are flow-

connected, assuming without loss of generality that r is upstream of r’ , i.e. l ≥  l’, we 

have  

 cov(r,r’ ) = ∑ ∑
∞∈ ∞∈

−ΩΩ
)(

1',
)('

|)'(|)','(),(
'i iVj

jj
Vj

llcjiji δ  

 = ∑
∞∈

−ΩΩ
)(

1 |)'(|),'(),(
iVj

llcjiji  

 = |)'(|)',( 1 llcii −Ω  
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Noting that Ω(i,i')=0 when r and r’ are not flow-connected, we obtain that a 

permissible model for the covariance between r and r’ (whether they are flow-

connected or not) is given by 

cov(r,r’ ) = )',( iiΩ c1( dR(r,r’ ) ) 

where c1( . ) can be any one dimensional permissible covariance function, which 

includes the functions C1( . ) obtained with the moving average construction. 
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Appendix C:  Flow-additive Functions 
 

As described in Appendix B, the flow connection between reach i and an upstream 

reach i’ can be defined as the ratio Ω(i,i’)= Ω(i’)/ Ω(i) where Ω(i) is a flow additive 

function, i.e. such that if two reaches i’ and i" combine into reach i, then 

Ω(i')+ Ω(i")= Ω(i).  We show here that the framework developed by Ver Hoef at al. 

(2006) to quantify flow-connection provides a flexible method to construct the flow 

additive function Ω(i). Using their approach, let’s define the flow weight of a reach i’ 

as ω(i') such that if reaches i' and i" combine at a river junction, then ω(i')+ ω(i")=1. 

Using this variable, Ver Hoef at al. (2006) originally defined the flow connection 

between reach i and an upstream reach i’ as Ω(i,i’)= ∏
∈ ',iiBj

jω , where Bi,i’ is the set of 

reaches in the flow-path Between reaches i and i’, exclusive of the downstream 

reach i and inclusive of the upstream reach i'. This construction is equivalent to 

defining the flow additive function as  

Ω(i)= ∏
∈ iBj

j
,1

ω ,  

where B1,i is the set of reaches in the flow-path between the river outlet (on a river 

reach numbered 1 by convention) and reach i. Then it follows immediately that  

Ω(i,i’)= Ω(i’)/ Ω(i)=
∏

∏

∈

∈

i

i

Bj
j

Bj
j

,1

',1

ω

ω

 =
∏

∏∏

∈

∈∈

i

iii

Bj
j

Bj
j

Bj
j

,1

',,1

ω

ωω

 = ∏
∈ ',iiBj

jω , 

which, after taking its square-root, leads to the multiplier )',( iiΩ = ∏
∈ ',iiBj

jω  defined 

in Ver Hoef et al. (2006) equation for flow-connected covariance models.  
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The weight of each combining reach can be calculated using a physically meaningful 

parameter that increases in the direction of flow. Examples include watershed area, 

discharge, cumulated river length, precipitation, pollution loading, etc. Let us denote 

the value of this parameter at the downstream end of any reach i as Ai, and let ai be 

the contribution within reach i, such that if reaches i’ and i" combine into reach i, 

then Ai=Ai’+Ai”+ai. Using this parameter we can define the weights of combining 

reaches i’ and i" as ωi’=Ai’/(Ai’+Ai”) and ωi"=Ai"/(Ai’+Ai”), respectively, which satisfies 

ωi’+ωi"=1. The resulting flow additive function is then given by 

Ω(i)= ∏
∈ iBj

j
.1

ω  = ∏
∈ +

iBj jCj

j

AA

A

.1 )(

= ∏
∈ −

iBj jDjD

j

aA

A

.1 )()(

 

where C(j) is the reach Combining with reach j, and D(j) is the reach immediately 

Downstream of reaches j and C(j); so that AD(j)=Aj+AC(j)+aD(j). As can be seen in the 

example of Fig. C1, the construction shown allows us to account for the contribution 

of watershed area (or discharge, cumulated river length, etc.) within each reach. 
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Figure C1: Example of a river with 5 reaches, indic ating for each reach i the contributing  
watershed area ai within reach i, the total watershed area Ai at the downstream end of reach i, 
and the corresponding flow additive function ΩΩΩΩ(i).   
 

A simplified construction might consist in setting ai=1 for each leaf reaches, and 

setting the contribution of non-leaf reaches to zero, i.e. aD(i)=0  ∀  i>1. In this case Ai 

corresponds to the additive stream-order number used in Cressie et al. (2006), and 

the flow additive function simplifies to Ω(i)= Ai/A1. For illustration purposes, this 

corresponds to setting a5=a4=a3=1 and a2=a1=0 in the example of Fig. C1, resulting in 

the stream-order numbers A5=A4=A3=1, A2=2 and A1=3, and in the flow additive 

function values Ω(5)=1/3, Ω(4)=1/3, Ω(3)=1/3, Ω(2)=2/3, Ω(1)=1. This construction 

provides a convenient way to obtain flow-connectivity if no information is available 

F
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w
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2
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about the contribution of watershed area (or discharge, cumulated river length, etc.) 

within each reach. 

Another simplification consists in weighting each reach equally, i.e. ω(i)=1/2 ∀  i>1, 

which leads to Ω(i)= ∏
∈ iBj ,1

2
1 .  This would correspond to using Ω(5)=1/4, Ω(4)=1/4, 

Ω(3)=1/2, Ω(2)=1/2, Ω(1)=1 in the example of Fig. C1, which is a slightly different 

representation of flow-connectivity than that of based on stream-order number.  
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Appendix D:  Movies Depicting Water Quality Trends  
Using river-BME 

 

 This appendix contains links to the animations of water quality for the case 

studies in Chapters 4, 5, and 6.  Each link will take you to a webpage where you can 

view the movies in any web browser.   

 

Chapter 4 Animations:  Dissolved Oxygen  

Movie 4.1 depicts monthly space/time trends of Dissolved Oxygen in the  

Lower Delaware Basin, New Jersey:  2000-2005 

http://www.unc.edu/depts/case/BMElab/studies/DO_NJ/RiverEstimate2000-2005_LowDel.gif  

 

Movie 4.2 depicts monthly space/time trends of Dissolved Oxygen in the  

Raritan Basin, New Jersey: 2000-2005 

http://www.unc.edu/depts/case/BMElab/studies/DO_NJ/RiverEstimate2000-2005_Raritan.GIF  

 

 

Chapter 5 Animations:  Escherichia Coli  

Movie 5.1 depicts daily space/time trends of E.coli in the Raritan Basin, New Jersey 

for April and May, 2003.   

 http://www.unc.edu/depts/case/BMElab/studies/EC_NJ/Raritan_Ecoli_AprilMay2003.GIF  
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Chapter 6 Animations:  Fish Tissue Mercury  

Movie 6.1 depicts the biannual concentration of fish tissue mercury in the Cape Fear 

and Lumber river basins, North Carolina:  1990-2004 

http://www.unc.edu/depts/case/BMElab/studies/HgFish_NC/CapefearLumber_HgFish_2months.GIF  
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