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ABSTRACT  

 

Yolanda Y. Huang 

Regulation of Apoptosis at the Point of Cytochrome c in Disease Models 

(Under the direction of Dr. Mohanish Deshmukh) 

 

Apoptosis is a tightly regulated genetic process which governs the ability of a cell to 

undergo death under various developmental and pathological stimuli.  The apoptotic pathway is 

essential not only for the development of organisms but also for maintaining homeostasis.  

However, in pathological conditions, aberrant regulation of apoptosis can cause disarray of 

normal cell physiology. 

In the mitochondrial-dependent, intrinsic apoptotic pathway, death signals converge to 

the mitochondria where Bcl-2 family members regulate the release of cytochrome c from the 

mitochondria.  Cytosolic cytochrome c binds to Apaf-1 and induces the formation of the 

apoptosome complex, which in turn activates caspases that are responsible for the execution of 

cell death.  

Despite having similar core apoptotic components, postmitotic neurons are found to have 

a more stringent regulation on apoptosis as compared to mitotic cells.  It is beneficial for 

postmitotic neurons to evolve mechanisms that restrict apoptosis because of their limited 

regenerative potential and their need to last the lifetime of the organism.  Here, I demonstrate the 

differential sensitivity of mitotic primary brain tumors and post-mitotic non-malignant neural 
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tissues to the activation of apoptosis at the point of cytochrome c.  Cytochrome c induces rapid 

caspase activation in brain tumor tissue but not the surrounding normal neural tissues.  This 

difference in response to cytochrome c-mediated death is attributed to differential expression of 

Apaf-1.  In addition, this work suggests that direct activation of apoptosis at the point of 

cytochrome c can be utilized as an adjuvant treatment for various brain tumors. 

In this work, I also show that the lack of XIAP in postmitotic neurons make them more 

vulnerable to a mitochondrial damaging stimulus in an animal model of ALS (amyotrophic 

lateral sclerosis).  This result strengthens and validates the role of endogenous XIAP as a safety 

brake in postmitotic neurons that prevent unwanted caspase activation and induction of cell death 

in situations of accidental cytochrome c release secondary to mitochondrial damage.  Moreover, 

this study suggests that mutations in XIAP that reduce its caspase inhibition function can be a 

risk factor to the development of neurodegenerative diseases in humans. 
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A. Overview of Apoptosis 

Apoptosis, a term coined by Drs. Kerr, Wyllie and Currie in 1972 in their seminal article 

published in British Journal of Cancer, describes a form of cell death that occurs normally within 

organisms and is distinct from that seen during traumatic acute injury (Kerr, Wyllie et al. 1972).  

The phenomenon of apoptosis was discovered well before the given nomenclature, as Dr. Carl 

Vogt documented its existence in 1842 while studying the development of the tadpole of 

midwife toads (Clarke and Clarke 1996).  Histological characterization of apoptosis shows cell 

shrinkage, nuclear fragmentation and chromatin condensation.  But one of the distinguishing and 

important features of apoptosis is the clearing of cellular debris, also known as apoptotic bodies, 

through the engulfment by macrophages.  As a result, this type of cell death does not elicit an 

immune response or effect the neighboring cellular environment (Danial and Korsmeyer 2004).    

This regulated process of death is essential for an organism’s development and 

homeostasis.  During the developmental period of an organism, apoptosis is implicated in the 

elimination of vestigial organs, organogenesis and remodeling of tissues.  For instance, the 

disappearance of the interdigital webbing during embryogenesis is important for the separation 

of digits for mammals.  Also, it is understood that during early development, the nervous system 

produces an excess number of neurons, eighty percent of which undergo apoptosis prior to 

adulthood (Davies 2003).  In the immune system, negative selection of non-functional and 

autoreactive B and T lymphocytes results in the apoptotic death and removal of these cells 

(Marsden and Strasser 2003).  In addition to the examples of developmental apoptosis, this 

pathway is also critical for the maintenance of homeostasis in an adult organism.  The number of 

cells is kept within certain limits through both division and death.  Daily mitotic activity is offset 

by apoptosis such that proliferation and death is in balance (Vaux and Korsmeyer 1999).   



3 

 

While apoptosis is important in normal physiology for development and homeostasis, it 

also plays a role in variety of diseases.  Pathological stimuli can induce aberrant regulation of 

apoptosis that contributes to the development of disease.  For example, increased apoptosis can 

cause excessive loss of cells and lead to a decrease in the functionality of organs, such as in cases 

of stroke, spinal cord injury and many neurodegenerative diseases (Vila and Przedborski 2003).  

On the other hand, the evasion of apoptosis by cancerous cells, along with unregulated 

proliferation, can facilitate tumorigenesis (Hanahan and Weinberg 2000; Green and Evan 2002).    

While apoptosis was first described more than a hundred years ago and was appreciated 

for its vital role in development and diseases, the biochemical pathway that governs this process 

was discovered only decades ago.  In the 1980s and 1990s, the core molecular components of 

apoptosis were revealed and showed that a highly conserved pathway exists from nematodes to 

mammals, with higher organisms developing a more diversified regulation.  The original work 

which demonstrated apoptosis in the nematode Caenorhabditis elegans led to the 2002 Nobel 

Prize for Drs. Brenner, Sulston and Horvitz.   

 

1. Core apoptotic machinery  

Dr. Sulston’s work of tracing cells during the development of an adult C. elegans 

hermaphrodite showed that exactly 131 out of the total 1090 cells undergo programmed cell 

death (Sulston, Schierenberg et al. 1983).  This death is lineage-specific and reproducible.  

Mutagenesis screens in C. elegans carried on in Dr. Horvitz’s lab demonstrated that a deficiency 

in either ced-3 (cell death abnormal) or ced-4 genes would rescue the 131 cells that normally die 

during development (Ellis and Horvitz 1986; Yuan and Horvitz 1990), suggesting that both Ced-
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3 and Ced-4 are required for programmed cell death to occur.  The anti-apoptotic gene ced-9 was 

discovered first through a gain-of-function mutagenesis screen that prevented all somatic cell 

death, while a loss of function mutation of this gene later was shown to cause excessive cell 

death which leads to embryonic lethality (Hengartner and Horvitz 1994).  Under normal 

conditions in C. elegans, Ced-9 sequesters Ced-4 at the mitochondria and prevents the 

interaction between Ced-4 and Ced-3.  Without the activity of Ced-9, Ced-4 is capable of 

activating Ced-3 to subsequently induce death.  In conditions where cells are destined to die, 

Egl-1(Egg-laying defect) is transcriptionally upregulated.  Increased Egl-1 expression 

antagonizes Ced-9 anti-apoptotic activity, as Egl-1 binds to Ced-9 and induces a conformational 

change in Ced-9 making it no longer able to bind Ced-4.  The release of Ced-4 from Ced-9 

sequestration activates programmed cell death through the activity of Ced-3 (Vaux, Haecker et al. 

1994; Danial and Korsmeyer 2004) (see Figure 1.1). 

The discovery of the core apoptotic players in C. elegans led researchers in search of 

mammalian homologues of these proteins.  A family of cysteine proteases, termed caspases, was 

discovered through gene sequence homology to ced-3.  The first caspase identified, termed 

interleukin-1β-converting enzyme (ICE), also known as caspase-1, was capable of inducing 

death in mammalian cells when overexpressed, as was the ced-3 gene (Yuan, Shaham et al. 

1993).  The closest mammalian homologue of Ced-3 is CPP32, also known as caspase-3 

(Fernandes-Alnemri, Litwack et al. 1994).   

As the activation of Ced-3 requires interaction with Ced-4, Dr. Xiaodong Wang and his 

group developed a biochemical assay to identify proteins that are able to cleave and activate 

caspase-3.  From this assay, a protein termed apoptotic protease activating factor-1 (Apaf-1) was 

discovered as the mammalian homologue of Ced-4 (Zou, Henzel et al. 1997).  Interestingly, 
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Apaf-1 has evolved to be more complex than Ced-4, as this protein contains Ced-3 homologous 

domain at the N-terminus followed by Ced-4 homologous domain, and ending with multiple 

WD40 repeats at the C-terminus.  In addition to Apaf-1, in the mammalian system there are two 

other proteins that are required in conjunction with Apaf-1 to activate caspase-3, one of which is 

caspase-9 (Liu, Kim et al. 1996; Li, Nijhawan et al. 1997), suggesting an amplification loop of 

caspase cleavage is needed to induce apoptosis.   

However, the most surprising finding from these series of experiments was the 

identification of cytochrome c as one of the death promoting proteins.  This result was 

unexpected as cytochrome c was a well studied mitochondrial protein known for its role in the 

electron transport chain for ATP generation and thus, this protein is essential for life (Reed 1997; 

Ow, Green et al. 2008).  The finding that the cytosolic localization of cytochrome c promotes the 

death of a cell was groundbreaking.  Despite the fact that the apoptotic pathway is conserved 

from nematodes to mammals, the mammalian apoptotic pathway has evolved to be more 

complex and regulated.  The multimeric structure formed by cytochrome c, Apaf-1 and caspase-

9 to activate caspase-3 will be discussed later.   

 

2. Intrinsic apoptotic pathway: Bcl-2 family proteins 

In C. elegans, the anti-apoptotic Ced-9 and pro-apoptotic Egl-1 are the brake and gas for 

the initiation of apoptosis, respectively.  From sequence homology, it was deduced that the 

previously known Bcl-2 (B cell lymphoma-2) tumor suppressor gene was the mammalian 

counterpart of Ced-9 (Hengartner and Horvitz 1994).  Bcl-2 belongs to a family of proteins that 

contain the Bcl-2 homology (BH) domain and is crucial for the regulation of the intrinsic 
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mammalian apoptotic pathway (Chao and Korsmeyer 1998).  Apoptotic signals, such as growth 

factor withdrawal, DNA damage and endoplasmic reticulum stress, all converge to the 

mitochondria and regulate the activity of anti- and pro-apoptotic proteins in the Bcl-2 family 

resulting in the release of cytochrome c from the mitochondria (Bratton and Cohen 2001; 

Talapatra and Thompson 2001; Breckenridge, Germain et al. 2003; Hammerman, Fox et al. 2004) 

(Figure 1.2). 

Proteins of the Bcl-2 family can be categorized to three groups.  First, there are the anti-

apoptotic family members, which include Bcl-2, Bcl-xL, Bcl-w, and Mcl-1.  These proteins 

contain four BH domains, in the order BH4, BH3, BH1 and BH2 from N- to C-terminus.  These 

proteins function to sequester the pro-apoptotic members of the Bcl-2 family such that apoptosis 

is prevented (Chao and Korsmeyer 1998; Adams 2001).    

The other two groups in the Bcl-2 family proteins are both pro-apoptotic, but subdivided 

due to differences in their structure and function.  The multidomain members of the pro-

apoptotic Bcl-2 family members are Bax and Bak, which have conserved BH3, BH1, and BH2 

domains.  Normally, Bax is found in the cytosol whereas Bak is at the mitochondria and held 

inactive by Bcl-xL and Mcl-1 (Suzuki, Youle et al. 2000; Willis, Chen et al. 2005).  Activation 

of Bax/Bak induces a conformational change and promotes its homo-oligomerization and 

insertion into the mitochondrial outer membrane.  Although the exact mechanisms of Bax/Bak 

activation and pore-forming membrane insertion are still under intense investigation, the 

consequences of these actions are the permeabilization of the mitochondria and the release of 

cytochrome c along with other proteins that reside in the mitochondrial intermembrane space 

(Scorrano and Korsmeyer 2003).  The unique role of Bax and Bak as the only proteins capable of 

releasing cytochrome c was demonstrated in cells doubly deficient of Bax and Bak.  In such cells 
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apoptotic stimuli were incapable of inducing death, as cytochrome c was never translocated to 

the cytosol to initiate the process of caspase-3 activation (Wei, Zong et al. 2001).   

The last group of proteins in the Bcl-2 family contains only a BH3 domain, and therefore 

is known as the BH3-only family.  Members of this family include Bid, Bad, Bim, Blk, Bmf, 

DP5/Hrk, PUMA, and Noxa amongst others (Chao and Korsmeyer 1998).  Like Egl-1 in C. 

elegans, the activities of these proteins are induced in response to apoptotic signals by various 

mechanisms, such as transcriptional upregulation or posttranslational modification.  Interestingly, 

different apoptotic signals use a combination of specific molecules in this family to deliver the 

death message.  For instance, upon DNA damage, PUMA and Noxa levels are upregulated 

through increased transcriptional activity (Oda, Ohki et al. 2000; Nakano and Vousden 2001).  

With growth factor deprivation, the induction of Bim and DP5 is seen (Imaizumi, Tsuda et al. 

1997; Putcha, Moulder et al. 2001; Whitfield, Neame et al. 2001; Gilley, Coffer et al. 2003).  

Nevertheless, there remains a great deal of controversy as for the exact actions of these BH3-

only proteins in activating Bax/Bak upon a death stimulus.  The prevailing and more dominate 

view is that BH3-only proteins can act through two ways.  First, certain “sensitizer” BH3-only 

proteins can indirectly activate Bax and Bak by binding to anti-apoptotic Bcl-2 family members 

and sequestering them from their interaction with Bax and Bak.  Without anti-apoptotic 

molecules holding Bax and Bak in the inactive form, the multidomain Bax/Bak can be activated 

to cause cytochrome c release.  Second, BH3-only proteins such as Bid, Bim and PUMA are 

known as “activators” since they can directly interact with and activate Bax/Bak.  A recent 

structural study demonstrated a new interacting site on Bax, which is distinct from the canonical 

binding groove for anti-apoptotic Bcl-2 molecules, where Bim is able to bind directly and induce 

a conformational change in Bax (Gavathiotis, Suzuki et al. 2008) (Figure 1.2). 
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3. Intrinsic apoptotic pathway: apoptosome formation and caspase activation 

The main function of the anti-apoptotic and pro-apoptotic Bcl-2 family member protein 

ensemble is to regulate the translocation of cytochrome c.   In the mitochondria of healthy cells, 

cytochrome c is vital to life as it is involved in energy production.  However, in response to an 

apoptotic signal, the release of cytochrome c to the cytosol is also crucial since it initiates 

apoptosome formation and caspase activation (Ow, Green et al. 2008).    

As mentioned previously, in vitro studies showed that cytochrome c, Apaf-1, and 

caspase-9, the main components of the apoptosome complex, work in concert to activate 

caspase-3 in the mammalian system.  In C. elegans, the only trigger needed to activate Ced-3 and 

initiate cell death is the loss of binding between Ced-4 and Ced-9.  However, the mammalian 

homologue of Ced-4, Apaf-1, has developed additional regulatory mechanisms that must be 

overcome before Apaf-1 is competent to interact with caspase-9 to activate caspase-3 (Figure 

1.3). 

Apaf-1 is a 130kDa protein that contains a N-terminal caspase activation and recruitment 

domain (CARD), followed by a nucleotide binding domain (NBD) and an oligomerization 

domain, and ending with 12 repeats of the WD40 domain at the C-terminus (Li, Nijhawan et al. 

1997; Shi 2002).  Under normal conditions in healthy cells, Apaf-1 is in an auto-inhibited 

confirmation, as Apaf-1 folds over on itself such that the accessibility of the N-terminal CARD 

and NBD is blocked by the C-terminal WD40 domains.  When cytochrome c translocates to the 

cytosol, it can bind to the WD40 domains of Apaf-1 and expose the CARD and NBD, thereby 

releasing the auto-inhibition (Li, Nijhawan et al. 1997; Hu, Ding et al. 1998).  In addition to 

cytochrome c binding, a round of dATP hydrolysis and an exchange of dADP to dATP are 
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required for Apaf-1 to acquire a conformation which allows monomeric Apaf-1 to oligomerize 

and form an active apoptosome structure (Kim, Du et al. 2005; Riedl, Li et al. 2005).  The 

apoptosome is composed of seven subunits of Apaf-1 arranged in a wheel-like structure where 

the CARD domains form the central hub of the wheel and cytochrome c is at the outer edge of 

the wheel bound to the WD40 repeats of Apaf-1 (Acehan, Jiang et al. 2002; Yu, Acehan et al. 

2005).  At the center site of the apoptosome the CARD domains of Apaf-1 cluster, providing a 

docking site for interaction with the CARD domains of procaspase-9.  In effect, the assembly of 

the apoptosome functions to recruit and activate procaspase-9. 

 Although the exact mechanism of caspase-9 activation remains elusive, based on 

structural and biochemical studies, it is generally believed that cleavage of the pro-domain of 

procaspase-9 is not the method of activation (Bao and Shi 2007).  In fact, non-cleavable caspase-

9 mutants retain their catalytic activity (Stennicke, Deveraux et al. 1999).  Since apoptosome-

associated caspase-9 demonstrates a 1000-fold increase in its ability to cleave and activate 

caspase-3 versus monomeric capsase-9 (Rodriguez and Lazebnik 1999), the recruitment of 

caspase-9 to the apoptosome is crucial for its activation.  A model of “induced proximity” was 

introduced, which stated that the  recruitment of procaspase-9 to the apoptosome induces its 

dimerization and leads to its activation (Renatus, Stennicke et al. 2001; Boatright, Renatus et al. 

2003; Boatright and Salvesen 2003).  However, a later study showed that while forced 

dimerization of caspase-9 leads to increased activity compared to monomeric caspase-9, the 

constitutively dimeric caspase-9 still had considerably far less catalytic activity when compared 

to apoptosome-associated caspase-9 (Chao, Shiozaki et al. 2005).  A revised “induced 

conformation” model builds on the “induced proximity” model but adds a clause that in addition 
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to dimerization, a conformational change of caspase-9 which occurs when associated with the 

apoptosome is required for its full catalytic activity (Chao, Shiozaki et al. 2005).  

 While there still remains much to learn about the exact mechanism of procaspase-9 

activation, the mechanism by which procaspase-3 is activated is generally agreed upon.  

Catalytically inactive zymogens of caspase-3 are present as homodimers with the active site 

buried within the dimer.  The activation of procasapse-3 by caspase-9 cleavage results in a 

rearrangement of the structure such that the catalytic site is exposed (Shi 2002).  Once caspase-3 

is activated, it cleaves various substrates leading to hallmark events of apoptosis and eventual 

cell demise (Fischer, Janicke et al. 2003).  For example, caspase-3 can cleave ICAD (inhibitor of 

caspase-activated deoxyribonuclease) and release its inhibition on CAD.  Once free from 

inhibition, CAD can translocate to the nucleus and cleave DNA between nucleosomes, resulting 

in the classic DNA laddering seen in apoptotic cells (Enari, Sakahira et al. 1998; Sakahira, Enari 

et al. 1998).    

 As activation of caspases leads to rapid cell death, there are regulatory mechanisms in 

place to ensure that the caspase activation cascade occurs only under appropriate conditions.  

Caspase-9, which is categorized as an initiator caspase, along with caspases-1, -2, -8, -10, 

requires recruitment to multimeric complexes for activation.  Once activated, the initiator 

caspase-9 cleaves downstream caspase-3, which belongs to the executioner caspases along with 

caspases-6, -7.  The mechanisms to regulate caspase activity are discussed below.  

 

4. Regulation of apoptosis: focus on apoptosome and caspase activation 

a. Apoptosome regulation 
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The assembly and activity of the apoptosome can be regulated in several ways.  First, 

assembly of the apoptosome can be inhibited through modification of its main components, such 

as altered function of cytochrome c or Apaf-1.  Other possibilities include modulation by 

proteins and molecules that are not core components of the apoptosome complex.  

The initial step in apoptosome formation is the binding of cytosolic cytochrome c to 

Apaf-1.  Cytochrome c protein is initially synthesized in the cytosol and then is imported in the 

mitochondria where the presence of the enzyme heme lyase catalyzes the attachment of a heme 

group to the protein.  The heme-attached cytochrome c, also known as holocytochrome c, resides 

in the intermembrane space of the mitochondria and functions to transfer electrons between 

integral protein complexes during oxidative phosphorylation (Ow, Green et al. 2008).  Upon an 

apoptotic stimulus, the release of holocytochrome c to the cytosol initiates apoptosome formation.  

Interestingly, the apo form of cytochrome c that lacks the heme does not have the ability to 

induce apoptosis as it is not able to induce Apaf-1 oligomerization.  Moreover, overexpression of 

apocytochrome c can act as a dominant negative and prevent Bax-mediated apoptosis (Martin 

and Fearnhead 2002; Martin, Nguyen et al. 2004).  Modifications on the heme group in 

cytochrome c are also capable of affecting its pro-apoptotic function, as reduced cytochrome c is 

inefficient as compared to oxidized cytochrome c at activating caspases (Hancock, Desikan et al. 

2001; Suto, Sato et al. 2005).   

Posttranslational modification on cytochrome c can also influence its ability to promote 

apoptosome assembly.  Despite high conservation between yeast and mammalian cytochrome c, 

yeast cytochrome c is incapable of substituting for mammalian cytochrome c to induce the 

activation of caspases.  This inability of yeast cytochrome c to promote apoptosis is due in part to 

the tri-methylation of lysine 72 residue, as methylation of mammalian cytochrome c on this 
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residue abolished its apoptotic activity (Kluck, Ellerby et al. 2000).  However, it is unclear 

whether mammalian cells utilize methylation of this residue to regulate the apoptotic function of 

cytochrome c in vivo.  Potentially, there could be other posttranslational modifications on 

cytochrome c that modulate apoptosome function.  In Appendix B, I discuss preliminary studies 

examining the ubiquitylation of cytochrome c, which might affect the binding of cytochrome c to 

Apaf-1 thereby preventing apoptosome assembly. 

 Regulation of Apaf-1 expression can also modulate apoptosome activity.  For example, 

epigenetic silencing of Apaf-1 by methylation of its promoter region is seen in leukemia to 

prevent the activation of apoptosis and facilitate cancerous growth (Fu, Bertoni et al. 2003).  In 

healthy postmitotic cells, such neurons, cardiomyocytes and skeletal muscle, a transcriptional 

downregulation of Apaf-1 increases the effectiveness of XIAP (X-linked inhibitor of apoptosis; 

which will be discussed later) to render these terminally differentiated cells refractory to 

cytochrome c-mediated caspase activation and cell death (Potts, Singh et al. 2003; Wright, 

Linhoff et al. 2004; Potts, Vaughn et al. 2005; Smith, Huang et al. 2009).  In addition to the 

expression of Apaf-1, the localization of Apaf-1 can also influence the sensitivity to apoptosis.  

In Burkitt lymphoma cell lines, most Apaf-1 is found to be localized to the plasma membrane 

associated potentially with lipid rafts.  This sequestration of Apaf-1 results in decreased levels of 

Apaf-1 in the cytosolic fraction and causes these cells to be resistant to cytochrome c-induce 

apoptosis (Sun, Orrenius et al. 2005).   

 In addition to modulating the components of the apoptosome, other proteins and 

compounds can influence the formation and activity of the apoptosome.  For example, heat shock 

protein 27 (HSP 27) can bind and sequester cytochrome c and thereby negatively affect 

apoptosome formation (Bruey, Ducasse et al. 2000).  HSP70 and HSP90 can also regulate the 
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apoptosome by binding to Apaf-1.  The former prevents the processing of caspase-9 on the 

apoptosome while the latter potentially block the binding of cytochrome c to Apaf-1 (Beere, 

Wolf et al. 2000; Pandey, Saleh et al. 2000; Saleh, Srinivasula et al. 2000).  Other aspects of 

apoptosome formation and activity can be inhibited, such as the binding of Aven to Apaf-1 to 

prevent Apaf-1 oligomerization or the binding of TUCAN to procaspase-9 to block caspase-9 

activation (Chau, Cheng et al. 2000; Pathan, Marusawa et al. 2001).    

The law of ying-yang dictates if there are protein inhibitors of apoptosome assembly and 

activity, then protein activators are likely to exist as well.  Indeed, hepatocellular carcinoma 

antigen 66 (HCA66) binds to Apaf-1 directly and increases the recruitment of caspase-9 

(Piddubnyak, Rigou et al. 2007).  NAC, comprised of domains of CARD and NBD similar to 

Apaf-1, can form a large complex with Apaf-1 through CARD domain interactions and enhances 

caspase-9 recruitment and activation (Chu, Pio et al. 2001).  Although the mechanism is not 

entirely clear, putative HLA-DR-associated protein (PHAPI) can also enhance caspase-9 

activation at the apoptosome (Jiang, Kim et al. 2003).  PHAPI with the assistance of CAS 

(cellular apoptosis susceptibility protein) and HSP70 accelerates nucleotide exchange on Apaf-1 

and prevents inactive Apaf-1/cytochrome c aggregation (Kim, Jiang et al. 2008).  Moreover, the 

increased expression of PHAPI in breast cancers sensitized these tumors to cytochrome c-

mediated apoptosis (Schafer, Parrish et al. 2006). 

 

b. IAPs and IAP inhibitors 

As the activation of caspases, the main executioners in the apoptotic process, leads 

eventually to cell death, it is therefore crucial for a cell to develop mechanisms to regulate the 
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activity of these enzymes.  One family of proteins, termed inhibitor of apoptosis proteins (IAPs), 

functions as endogenous inhibitors of caspases.  The identification of the IAP family of proteins 

initially came from studying the interaction between viruses and their host cells.  A viral IAP 

protein was discovered in baculovirus to have the capability of preventing the host insect cells 

from undergoing apoptotic death (Crook, Clem et al. 1993).  This allows for viral replication to 

proceed safely in the host cell environment.  This discovery led to the uncovering of similar 

mammalian proteins which all contain the baculovirus IAP repeat (BIR) domain.  Mammalian 

IAPs include XIAP, cIAP1, cIAP2, ML-IAP, NAIP, and the more distant members of Survivin, 

and Bruce (Salvesen and Duckett 2002).   

While overexpression studies showed that many proteins of the IAP family were able 

to bind to caspases and inhibit apoptosis, recently these results, mostly obtained from in vitro 

studies with overexpressed and tagged protein, have been challenged.  It is believed that XIAP is 

the most potent direct inhibitor of caspases while other family members may inhibit apoptosis 

through other mechanisms (Eckelman, Salvesen et al. 2006).  XIAP consists of three N-terminal 

BIR domains followed by a ubiquitin-associated (UBA) domain and a C-terminal RING (really 

interesting new gene) domain (Gyrd-Hansen, Darding et al. 2008) (Figure 1.4).  The RING 

domain provides XIAP with E3 ubiquitin ligase activity and allows XIAP to degrade target 

proteins (Yang, Fang et al. 2000; Suzuki, Nakabayashi et al. 2001; Morizane, Honda et al. 2005).  

While it has been shown that XIAP can ubiquinate itself and caspases in vitro, it is less 

understood whether this ubiquitin ligase activity of XIAP is essential in regulating apoptosis in 

living cells.  The primary method by which XIAP prevents caspase activation is through direct 

binding to caspases, blocking their catalytic site.  XIAP can bind to and inhibit initiator caspase-

9 as well as executioner caspase-3, -7 (Figure 1.4).  Structural data reveal the binding of XIAP to 
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caspases occurs at two interaction sites (Scott, Denault et al. 2005; Eckelman, Salvesen et al. 

2006), one for inhibiting the activity of caspases and another for stabilization, which involves the 

IAP-binding motif (IBM) of caspases to be situated into a negatively charged groove formed by 

the BIR domain of XIAP. 

The binding of XIAP to caspase-9 relies on the BIR3 domain of XIAP to interact with 

the N-terminal exposed IBM on cleaved caspase-9 for stabilization.  In addition, the flanking 

region following the BIR3 domain of XIAP forms a helical structure that packs against the 

dimerization interface of caspase-9, therefore, forcing caspase-9 to become monomers and 

causes its inactivation (Sun, Cai et al. 2000; Shiozaki, Chai et al. 2003).  Inactivation of caspase-

3 and caspase-7 by XIAP utilizes a different method, in which the N-terminal linker region of 

XIAP BIR2 domain stretches across and occludes the active site of caspase-3.  The stabilization 

of the structure is maintained by BIR2 domain of XIAP and the IBM of capases-3, -7 (Chai, 

Shiozaki et al. 2001; Huang, Park et al. 2001; Riedl, Renatus et al. 2001).  These structural data 

showed that XIAP blocks caspase activation not only through an IBM-interacting groove but 

also with another inhibitory element.  Based on these requirements, it is implied that other IAP 

family members cannot directly inhibit caspases.  The IAPs that are most structurally similar to 

XIAP are cIAP1 and cIAP2.  Despite having BIR domains that are capable of stabilizing the 

interaction with caspases, cIAP1 and cIAP2 lack the crucial residues found in the secondary 

inhibitory element of XIAP which are responsible for inactivating caspases.  These results 

suggest that physiologically, cIAP1 and cIAP2 may not inhibit caspases through direct binding 

(Eckelman and Salvesen 2006). 

Interestingly, two endogenous mammalian IAPs inhibitors, Smac/DIABLO and 

Omi/HtrA2, have been identified (Du, Fang et al. 2000; Verhagen, Ekert et al. 2000; Suzuki, 
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Imai et al. 2001; Hegde, Srinivasula et al. 2002; Martins, Iaccarino et al. 2002; van Loo, van 

Gurp et al. 2002).  Both proteins are located in the intermembrane space of the mitochondria.  

Once targeted to the mitochondria, the N-terminus of these proteins which specifies 

mitochondrial localization are cleaved off , exposing a new N-terminus sequence that contains an 

IAP-binding motif (IBM) as seen in caspases (Vaux and Silke 2003).  Smac monomers can 

directly bind to XIAP BIR3 domain and disrupt the interaction of XIAP with caspase-9 through 

direct competition, while Smac dimers can bind to XIAP BIR2 domain and destabilize caspases-

3, -7 and XIAP interaction (Liu, Sun et al. 2000; Wu, Chai et al. 2000; Srinivasula, Hegde et al. 

2001).  While the ability of Smac to sensitize cells to apoptosis is dependent on its IAP-binding 

activity, structural and biochemical data reveal that HtrA2 may promote death through its serine 

protease activity (Li, Srinivasula et al. 2002).  Therefore, it is still debated as to whether HtrA2 is 

a bona fide IAP inhibitor.   

In addition to in vitro work which has demonstrated the capability of Smac to inhibit 

XIAP, overexpression of exogenous Smac is capable of relieving the inhibition of endogenous 

IAPs in sympathetic neurons, cardiomyocytes and myotubes to induce death (Potts, Singh et al. 

2003; Potts, Vaughn et al. 2005; Smith, Huang et al. 2009).  However, it is less clear whether 

endogenous Smac plays a role in living cells.  A previous study showed that in sympathetic 

neurons, endogenous Smac released by hydrogen peroxide did not sensitize these cells to death 

(Potts, Singh et al. 2003).  In contrast, in terminally differentiated myotubes, endogenous Smac 

release from the mitochondria by truncated Bid (tBid) can induce death (Smith, Huang et al. 

2009).  One possibility is that the role of endogenous Smac is cell type dependent.  In Appendix 

A, I will describe the results I have obtained regarding the function of endogenous Smac in 

cardiomyocytes.   
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B. Physiologic and Pathologic Apoptosis 

1. Apoptosis in development 

a. Apoptosis in neural development 

The intrinsic pathway of apoptosis is involved in the development of the organism, and 

its crucial role in the morphogenesis of the nervous system is unequivocally demonstrated by 

mouse genetic knockout studies.  Mice deficient in caspase-3, caspase-9 and Apaf-1 individually 

all display severe brain malformations and perinatal lethality (Kuida, Zheng et al. 1996; Cecconi, 

Alvarez et al. 1998; Kuida, Haydar et al. 1998; Yoshida, Kong et al. 1998).  Massive defects in 

the central nervous system (CNS) development, such as protrusion of brain masses, of these 

embryonic mice is attributed to a reduction of apoptosis in the neuroepithelial progenitor cells 

situated at the ventricular zone.  These data strongly suggest that the apoptosome pathway is 

crucial in the regulation of neural precursor numbers and a disruption can cause gross 

morphological defects.  Moreover, to date, only caspase-3 and caspase-9 null mutants, amongst 

the caspase proteases, showed severe defects of programmed cell death in the nervous system, 

signifying the importance of the mitochondrial-dependent, apoptosome-mediated pathway of 

apoptosis in the developing nervous system, as well as placing a more prominent role of caspase-

3 as the main executioner caspase.   

In addition to organ development, apoptosis can occur during tissue remodeling, as is 

seen in the peripheral nervous system (PNS).  Dated to experiments in the 50s and 60s, Dr. Rita 

Levi-Montalcini and Dr. Viktor Hamburger demonstrated that sensory and sympathetic nerve 

outgrowth is strongly dependent on a secreting factor by tumors (Levi-Montalcini 1987).  This 

molecule was later isolated and coined as NGF – nerve growth factor.  NGF promotes survival 
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by binding to cell surface TrkA receptors, causing TrkA dimerization and transphosphorylation 

of its intracellular catalytic domain.  The phosphorylation of the TrkA receptor in turn activates 

the downstream PI-3-kinase survival pathway (Crowder and Freeman 1998).  The necessity of 

NGF for the growth and survival of these peripheral neurons was illustrated by experiments 

showing that blocking the accessibility to NGF with antiserum was sufficient to cause death 

(Levi-Montalcini and Booker 1960; Levi-Montalcini 1964).  Therefore, the target field theory 

postulates that neurons which do not successfully compete for trophic factors secreted by organs 

which they innervate would undergo apoptosis whereas neurons that receive trophic factors 

would survive.  Indeed, during the first postnatal week of rodents, the number of sympathetic 

neurons in the superior cervical ganglion declined significantly (Oppenheim 1991).  This 

decreased in neuronal number is thought to be a result of developmental apoptosis that takes 

place to eliminate excess neurons produced during embryogenesis and to eventually match the 

population size of the neurons to their innervating targets.   

The nervous system is an extremely complex tissue that is comprised of various neuronal 

cell types along with supporting cells.  Primary sympathetic neurons have been used extensively 

as a model system to study neuronal development and apoptosis in culture and therefore are 

well characterized.  The molecular events causing NGF deprivation-induced apoptosis in 

sympathetic neurons have been studied, as well as those in response to other various apoptotic 

stimuli such as DNA damage, ER stress and others (Eilers, Whitfield et al. 1998; Park, Morris et 

al. 1998; Rideout, Zang et al. 2001; Besirli and Johnson 2003; Besirli, Wagner et al. 2005; 

Wyttenbach and Tolkovsky 2006; Smith and Deshmukh 2007; Vaughn and Deshmukh 2007).  

Only in the past decade, the use of primary neuronal cultures has advanced our knowledge of 

neuronal apoptosis and clearly showed a distinction as how these cells regulate their apoptotic 
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pathway as compared to mitotic cell lines.  Multiple restrictions in the apoptotic pathway are 

developed in neurons to ensure their long term survival.  A review of these findings is described 

in the next section.   

 

b. Regulation of neuronal apoptosis 

The function of pro-apoptotic Bax and Bak are deemed redundant, as both molecules 

control the release of cytochrome c by oligomerization and forming membrane pores in the 

mitochondria.  Moreover, the activation of either Bax or Bak in response to an apoptotic signal 

is sufficient to induce cell death in mitotic cells (Wei, Zong et al. 2001).  However, in various 

neuronal cell types, sympathetic neurons included, the sole deletion of Bax is sufficient and 

capable of preventing the release of cytochrome c and the activation of caspases under various 

apoptotic stimuli (Deckwerth, Elliott et al. 1996; Miller, Moulder et al. 1997; Johnson, Xiang et 

al. 1998; Cregan, MacLaurin et al. 1999; Besirli, Deckwerth et al. 2003; Smith and Deshmukh 

2007).  These results suggest that Bak does not seem to play a role in neuronal apoptosis, which 

is consistent with the fact that Bak deficiency in neurons does not offer any additional 

protection to apoptosis.  This elimination of Bax/Bak redundancy in neurons was later found out 

to be caused by an insertion of 20 base pairs in a coding region of neuronal Bak.  This insertion 

causes a translation frameshift giving a premature stop codon and results in a truncated protein 

(Sun, Yu et al. 2001).  This isoform, N-Bak (neuron-specific isoform of Bak), is a BH-3 only 

protein due to the loss of BH1 and BH2 domains found normally at the C-terminus of Bak and 

therefore, unlike normal Bak, N-Bak does not cause apoptosis when overexpressed in NGF-

maintained sympathetic neurons (Sun, Yu et al. 2001; Sun, Yu et al. 2003; Uo, Kinoshita et al. 
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2005).  Therefore, the elimination of Bax/Bak redundancy and thereby the sole dependence on 

Bax for causing cytochrome c release in neurons is seen as a mechanism for restricting 

apoptosis.   

In addition to examining restrictions upstream of cytochrome c release, several studies 

have examined apoptotic regulation after the point of cytochrome c in neurons.  Some have 

argued that cells become irreversibly committed to die upon the release of cytochrome c as it is 

accompanied by the loss of mitochondrial membrane potential (McCarthy, Rubin et al. 1997; 

Brunet, Gunby et al. 1998); therefore, questioning the importance of regulating apoptosis after 

cytochrome c release.  It may be true for many cell types that the release of cytochrome c 

signifies a point of no return, where the cells are committed to death even in the absence of 

caspase activation.  However, interestingly, sympathetic neurons retain mitochondrial 

membrane potential for a period of time after cytochrome c release.  In the case of NGF 

deprivation, if NGF is restored after the release of cytochrome c but prior to the loss of 

mitochondrial membrane potential in the presence of a caspase inhibitor, sympathetic neurons 

are able to recover and remain alive (Martinou, Desagher et al. 1999; Deshmukh, Kuida et al. 

2000).  Therefore, I argue that the regulation of apoptosis even after the point of cytochrome c 

remains an interesting topic to examine.  Below, I will introduce two known mechanisms and a 

third potential mechanism for restricting apoptosis at or after the point of cytochrome c release 

in neurons.   

During the examination of NGF deprivation-induced apoptosis in sympathetic neurons, it 

was found that two separate steps are required to induce death in neurons.  One requirement is 

the release of cytochrome c as it is the trigger to initiate the intrinsic, mitochondrial-dependent 

apoptotic pathway.  By inhibiting cytochrome c release, either through Bax deletion or by 
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addition of a protein translation inhibitor cycloheximide, in part to prevent induction of BH3-

only Bim expression, apoptosis can be prevented under NGF withdrawal.  Another required step 

was a “competence” pathway induced by NGF deprivation as introduction of cytosolic 

cytochrome c alone directly did not induce death in sympathetic neurons (Deshmukh and 

Johnson 1998; Deshmukh, Du et al. 2002).  Later, it was found that NGF withdrawal induces 

competence through relieving XIAP’s inhibitory effects on caspases by degrading XIAP protein 

levels in neurons (Potts, Singh et al. 2003).  While in vitro studies showed that XIAP can 

readily inhibit caspases, these studies in postmitotic neurons were the first to demonstrate a role 

for endogenous XIAP.  In addition, other terminally differentiated cells such as cardiomyocytes 

and skeletal myotubes use endogenous XIAP to actively block caspase activation in the 

presence of cytosolic cytochrome c (Potts, Vaughn et al. 2005; Smith, Huang et al. 2009).  The 

increased effectiveness of XIAP in sympathetic neurons as compared to other mitotic cells is 

not due to an increase in XIAP protein as initially expected, but rather due to a decrease in the 

ratio of Apaf-1 to XIAP.  It is the Apaf-1 expression and apoptosome activity that mediates 

XIAP’s ability to inhibit caspases (Wright, Linhoff et al. 2004).  In mitotic cells, high Apaf-1 

levels induce efficient apoptosome formation and the resulting massive caspase activation 

cannot be inhibited by XIAP.  However in neurons, as well as other postmitotic cells such as 

cardiomyocytes and myotubes, decreased Apaf-1 levels render endogenous XIAP to be more 

proficient at blocking caspase activation (Figure 1.5).  This regulation of apoptosis by XIAP is 

developed as sympathetic neurons mature.  Sympathetic neurons from embryo day 16 (E16) 

mice have high levels of Apaf-1 and remain sensitive to cytochrome c-mediated death while 

those from postnatal day 3 (P3) animals exhibit low Apaf-1 levels and thus, engage the XIAP 

regulation (Wright, Linhoff et al. 2004) (Figure 1.5).  In Chapter 2, I will describe that other 



22 

 

neuronal types, including those in the CNS, also display differential levels of Apaf-1 during 

early and late stages of development.  This stringent regulation of apoptosis imposed by XIAP 

led to the examination, discussed in Chapter 3, of whether XIAP-deficient neurons will become 

more vulnerable to mitochondrial damaging insults that result in cytochrome c release, as the 

XIAP brake that prevents unwanted caspase activation is no longer there.   

Recently, our lab demonstrated a mechanism of restricting apoptosis in neurons directly 

at the point of cytochrome c.  It was shown that the direct release of endogenous cytochrome c 

using an activated BH3-only protein, tBid, was insufficient to induce apoptosis even in the 

absence of XIAP inhibition (Vaughn and Deshmukh 2008).  It was later found that the redox 

environment in neurons restricts apoptosis by regulating the ability of cytochrome c to activate 

the apoptosome-mediated pathway.  Neurons heavily utilize glucose and increase flux through 

the pentose phosphate pathway (PPP) resulting in a reduced cellular environment.  This reduced 

environment is thought to prohibit cytochrome c-mediated caspase activation as the reduced 

form of cytochrome c, unlike the oxidized form, has diminished ability of inducing apoptosis 

(Pan, Voehringer et al. 1999; Hancock, Desikan et al. 2001; Suto, Sato et al. 2005).  In the 

situation of NGF deprivation, the cellular environment of these neurons switched from a 

reduced state to an oxidized state, thus allowing cytochrome c-mediate death.  These results link 

the metabolic state of sympathetic neurons to regulation of apoptosis at the point of cytochrome 

c. 

Another potential mechanism in regulating apoptosis at the point of cytochrome c would 

be strictly monitoring the level of this pro-apoptotic molecule in the cytosol.  Upon an apoptotic 

stimulus, the translocation of cytochrome c from the mitochondria to the cytosol has been 

reported in most cell lines.  However, reported over a decade ago, accumulation of cytosolic 
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cytochrome c was not observed after an apoptotic signal in sympathetic neurons if caspase 

activation was blocked, and instead there was a complete loss of mitochondrial cytochrome c 

immunostaining pattern (Deshmukh and Johnson 1998).  Other reports showed that cytochrome 

c can be degraded via the ubiquitin-proteasome pathway in Apaf-1 deficient neural precursor 

cells, also known as ETNA (embryonic telencephalic naïve Apaf-1) cells (Cozzolino, Ferraro et 

al. 2004; Ferraro, Pulicati et al. 2008).  Together, these reports along with the observation that 

postmitotic cardiomyocytes also do not show cytosolic cytochrome c accumulation led to the 

preliminary experiments detailed in Appendix B which aim to dissect the molecular machinery 

involved in cytochrome c degradation and its physiological relevance.     

 

2. Apoptosis in diseases 

The dysregulation of apoptosis is implicated in various disease states.  Abnormal 

increases in apoptosis are seen in neurological diseases and cardiomyopathies whereas too little 

apoptosis are observed in cancers and autoimmune diseases (Stefanis, Burke et al. 1997; 

Hanahan and Weinberg 2000; Honig and Rosenberg 2000; Siegel, Chan et al. 2000; Fadeel and 

Orrenius 2005; Foo, Mani et al. 2005; Kitsis and Mann 2005).  As projects in this dissertation 

examine apoptotic regulation in the models of CNS neoplasm, neurodegenerative diseases, and 

in cardiomyocytes, I will review apoptosis in these systems in particular.    

a. Apoptosis in cancers 

Cancer involves an abnormal growth of cells that proliferate in an uncontrollable fashion 

and impinge on normal tissue function, either initially at the site of growth or eventually at 

secondary sites in the body through metastases.  Accumulated mutations enable cancer cells to 
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acquire intrinsic replicative potential and self-sufficient growth signal while disregarding 

environmental anti-growth signals.  In addition, evasion of apoptosis in part contributes to 

tumorigenesis (Hanahan and Weinberg 2000; Green and Evan 2002).  Without blocking the 

apoptotic pathway, cancer cells are likely to undergo cell death due to genome instability or 

detachment from extracellular matrix during metastasis, as these events trigger activation of 

apoptosis in normal cells (Griffiths, Clarke et al. 1997; Funk 1999; Bertram 2000; Hood and 

Cheresh 2002; Nojima 2004; Valentijn, Zouq et al. 2004).  To prevent apoptosis, cancer cells can 

adopt mechanisms that inactivate pro-apoptotic genes or enhance anti-apoptotic gene function.  

For example, to inhibit cytochrome c release, the manipulation of Bcl-2 family members is 

observed in various cancers (Reed 1996).  The classical anti-apoptotic Bcl-2 was discovered in 

follicular lymphoma where its expression is highly upregulated (Tsujimoto, Cossman et al. 1985; 

Tsujimoto, Jaffe et al. 1985) while the loss of function of pro-apoptotic Bcl-2 family members 

such as Bax and Bak are detected in hematopoietic malignancies and colon cancers to prevent 

apoptosis (Meijerink, Mensink et al. 1998; Caligo, Ghimenti et al. 2000; Rashmi, Kumar et al. 

2005).  In addition, defective apoptotic machinery in cancers can arise downstream of 

cytochrome c release to inhibit apoptosome function and caspase activation.  Apoptosome 

formation can be affected by a decrease in or an absence of Apaf-1 activity as seen in ovarian 

cancer, leukemia and melanoma (Jia, Srinivasula et al. 2001; Soengas, Capodieci et al. 2001; 

Wolf, Schuler et al. 2001; Furukawa, Sutheesophon et al. 2005).  Also, caspase activation can be 

inhibited by IAP overexpression.  Increased expression of XIAP and ML-IAP are observed in 

acute myelogenous leukemia and melanoma, respectively (Tamm, Kornblau et al. 2000; Vucic, 

Stennicke et al. 2000). 
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Different cancers utilize different mechanisms for inhibiting the apoptotic pathway to 

facilitate tumorigenesis.  In addition, a defective apoptotic pathway in cancers renders them 

resistant to chemo and radiation therapies, as both of these treatment modalities rely on 

activating the intrinsic apoptotic pathway in cells (Fulda and Debatin 2006).  Therefore, several 

therapeutic strategies that attempt to reactivate apoptosis are in clinical trials for the treatment of 

cancers; these include small molecule antagonists of anti-apoptotic Bcl-2 family proteins, as well 

as small molecule Smac mimetics that would relieve IAP inhibition on caspases (Zheng 2001; 

Beauparlant and Shore 2003; Sun, Nikolovska-Coleska et al. 2004; van Delft, Wei et al. 2006; 

Zobel, Wang et al. 2006; Deng, Carlson et al. 2007; Sun, Nikolovska-Coleska et al. 2008).  

However, these specialized treatments would only be beneficial when we understand the 

apoptotic regulation in various cancer cells.  In Chapter 2, I will examine the sensitivity of 

different CNS neoplasms, mainly medulloblastoma and high-grade astrocytoma, to apoptosis 

when activated at the point of cytochrome c.  Tumors that are resistant to chemo and radiation 

therapy due to a blockage of cytochrome c release could benefit from direct apoptosome 

activation via cytosolic cytochrome c delivery given that the apoptosome machinery is intact and 

functional.  Also, in Chapter 2, I will explore whether the surrounding brain parenchyma of CNS 

tumors is resistant to cytochrome c-mediated death as implied by previous work from the lab 

showing that PNS sympathetic neurons are insensitive to cytosolic cytochrome c (Potts, Singh et 

al. 2003).  This would make the delivery of cytosolic cytochrome c to be an attractive strategy as 

it may potentially target the CNS tumors and spare the surrounding normal brain tissues.   

 

b. Apoptosis in acute neurological disorders 
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In general, after ischemic and traumatic injury to the brain and spinal cord, the pattern of 

cell death is a combination of necrosis and apoptosis (Choi 1996; Linnik 1996; Snider, Gottron et 

al. 1999; Back and Schuler 2004).  In ischemia, necrotic cell death is seen at the core of the 

infarction due to the abrupt biochemical collapse.  The histological features of necrosis are 

mitochondrial and nuclear swelling, dissolution of organelles, as well as rupture of nuclear and 

cytoplasmic membranes.  Due to the spillage of cytosolic contents into the extracellular space, 

necrotic cell death is accompanied by inflammatory responses.  In contrast, the cell death 

associated with the penumbra of the infarction or injury site is apoptotic in nature as the degree 

of ischemic deprivation is not as severe due to collateral blood supply.  

Bcl-2 family members are implicated in acute ischemic injury.  Mice deficient in pro-

apoptotic BH3-only proteins (e.g. Bad or Bim) or multidomain Bax all show decreased loss of 

hippocampal brain parenchyma versus wildtype control mice in the neonatal hypoxia-ischemia 

model (Gibson, Han et al. 2001; Ness, Harvey et al. 2006). Similarly, transgenic mouse with Bcl-

2 overexpression is able to rescue brain infarction volume from middle cerebral artery occlusion 

as compared to wildtype (Martinou, Dubois-Dauphin et al. 1994).  

In addition to the involvement of Bcl-2 family proteins, cytochrome c translocation and 

activation of several different caspases are observed in animal models of cerebral ischemia, thus 

providing further evidences for the occurrence of apoptosis in acute neurological injury (Namura, 

Zhu et al. 1998; Antonawich 1999; Ouyang, Tan et al. 1999; Velier, Ellison et al. 1999).  

Administration of a synthetic pan caspase inhibitor z-VAD-fmk was capable of reducing the 

infarct volume in focal hypoxia-ischemia model (Hara, Friedlander et al. 1997).  Minocycline, a 

tetracycline that crosses the blood-brain barrier and inhibits the activity of capases-1, -3,  also 

show neuroprotective effect in models of neonatal hypoxia-ischemia injury, adult global and 
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focal ischemia injury (Yrjanheikki, Keinanen et al. 1998; Yrjanheikki, Tikka et al. 1999; Arvin, 

Han et al. 2002).  Together, these studies demonstrate a clear role of apoptosis in acute 

neurological disorders. 

 

c. Apoptosis in chronic neurodegenerative diseases 

The role of apoptosis remains controversial in various neurodegenerative diseases, as it is 

difficult to detect apoptotic cells in chronic pathological situations for several reasons.  First, 

apoptosis is a relatively rapid occurring process that results in the clearing of apoptotic cells by 

macrophages, or microglia in the brain.  Hence, post-mortem studies of neurodegenerative 

diseases in humans only allows for the examination at the end point of the disorders, which 

probably do not show a significant level of apoptosis unless the clearance by microglia is 

somehow inhibited, resulting in the accumulation of apoptotic cells.  Also, studies from these 

terminal stages yield little information about the signals that might initiate cell death in these 

pathological conditions.  Second, as most of these chronic neurodegenerative diseases are 

progressive in nature, the amount of cell death at a given time may be low thus giving only few 

morphologically identifiable apoptotic cells.  Therefore, what we know about the potential 

mechanisms of cell death is obtained from studies using cultured neuronal cells and animal 

models that mimic the human disease.  In this section, I will briefly review the link between 

apoptosis and several neurodegenerative diseases with a special emphasis on amyotrophic lateral 

sclerosis (ALS).   

i. Alzheimer’s Disease 
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Mild cognitive impairment is an initial symptom in Alzheimer’s disease (AD) patients 

which later progresses to a loss of higher cognitive functions with severe dementia.  The 

symptoms of AD are correlated to the death of neurons in the hippocampus, amygdala and 

entorhinal cortex, which are involved in learning and memory.  Histopathological studies show 

amyloid β peptides in the extracellular senile plaques and aggregation of hyperphosphorylated 

tau in intracellular cytoplasmic neurofibrillary tangles of AD brains (Burns and Iliffe 2009).  

These pathologies seen in human AD brains led to several different hypotheses indicating that 

the precipitating factor of the disease may be due to the accumulation of either Aβ peptides that 

are generated from amyloid precursor protein (APP) metabolism or the microtubule-associated 

protein tau.   

Detection of caspases and increased expression of pro-apoptotic Bcl-2 family proteins, 

such as Bak and Bad in human brains of Alzheimer’s disease patients are evidences suggesting 

that apoptosis occurs in AD (Desjardins and Ledoux 1998; Kitamura, Shimohama et al. 1998).  

Furthermore, cultured cortical neurons exhibit apoptotic cell death upon Aβ peptide treatment 

and the deletion of Bax, caspase-2, or caspase-12 in neuronal cells is capable of protecting cells 

from Aβ-induced death (Nakagawa, Zhu et al. 2000; Selznick, Zheng et al. 2000; Troy, Rabacchi 

et al. 2000).  In a transgenic mouse model, APP23, where an APP mutation found in a Swedish 

family is expressed under the mouse Thy1 promoter, selective neuronal loss is detected in CA1 

hippocampal region, but not in the neocortex, as compared to wildtype animals (Calhoun, 

Wiederhold et al. 1998).  In 22-month-old double transgenic mice of presenilin (PS) and APP23, 

CA1 hippocampal neurons degenerate more significantly in comparison to non-transgenic mice 

(Sadowski, Pankiewicz et al. 2004), and it is further demonstrated that morphological apoptotic 



29 

 

nuclei and activated caspase-3 staining are present in aging PS/APP mice indicating that 

apoptosis is in part responsible for the neuronal loss (Yang, Kumar et al. 2008). 

ii. Huntington’s  Disease 

 Huntington’s disease (HD) is a genetically inherited disease that is caused by the unstable 

expansion of CAG repeats in exon 1 of the IT15 gene that encodes for the protein huntingtin 

(Rubinsztein, Barton et al. 1993).  It is a fatal disorder characterized by motor dysfunction with 

hyperkinetic involuntary movements, cognitive decline and psychiatric disturbance.  These 

symptoms arise mainly due to a selective degeneration of the medium spiny GABAergic 

projection neurons in the striatum.  The age of onset of symptoms is inversely proportional to the 

number of CAG repeats in the IT15 gene, which corresponds to the number of glutamine in the 

huntingtin protein (Berman and Greenamyre 2006; Walker 2007).  In normal population, the 

number of CAG repeats is in the range of 6 to 35.  An increased risk of the disease is seen in 

people with 36 to 41 CAG repeats and those with 42 or above would unquestionably display 

disease symptoms.  To date, there is no cure to completely cease or reverse the disease 

progression (Berman and Greenamyre 2006; Walker 2007).   

 In cultured cells, mutant huntingtin can induce characteristic features of apoptosis such as 

cytochrome c release and caspase activation, eventually leading to cell death (Li, Lam et al. 2000; 

Jana, Zemskov et al. 2001).  Interestingly, the amount of cell death induced is proportional to the 

number of the CAG repeats (Wang, Mitsui et al. 1999).  This link between polyglutamine repeats 

and apoptosis is strengthened by the fact that viral introduction of long CAG repeats in adult rat 

brain induces apoptosis and leads to cell death in vivo (Senut, Suhr et al. 2000; de Almeida, Ross 

et al. 2002).   
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Mouse models of HD have also been used to determine the role of apoptosis in disease 

progression.  One of the most well known transgenic mouse models of HD is the R6/2 line, 

where these mice express only exon 1 of the IT15 gene with >100 CAG repeats (Mangiarini, 

Sathasivam et al. 1996).  These mice recapitulate the human HD disease courses with loss of 

body weight, as well as progressive decline in motor and cognitive functions, such that they die 

before reaching 4 months of age (Mangiarini, Sathasivam et al. 1996; Carter, Lione et al. 1999; 

Murphy, Carter et al. 2000).  In brain regions of these mice as well as in human HD patients, 

cytochrome c immunostaining show cytosolic localization and activated caspase-9 is detected 

(Kiechle, Dedeoglu et al. 2002), suggesting the engagement of the apoptosome-mediated 

apoptotic pathway.  Moreover, functional assays depict a more significant activation of various 

caspases during the late-stages of R6/2 mice while compared to age-matched wildtype controls 

(Kiechle, Dedeoglu et al. 2002).  Upregulation of several BH3 family members are seen and a 

small, but significant rescue in survival is detected when R6/2 mice are crossed with Bcl-2 

overexpressing mice (Zhang, Ona et al. 2003).  Despite these studies that strongly suggest the 

involvement of apoptosis in HD animal models, ultrastructural analysis of neurons in affected 

brain region does not show characteristic apoptotic morphology in R6/2 mice at various time 

points.  Therefore, there is some uncertainty with regards to the role of apoptosis in HD 

pathogenesis.  

Additionally, a knock-in mouse model exists where a pathological number of 

polyglutamine repeats is targeted to replace the wildtype murine huntingtin homologue.  This 

knock-in mouse model is potentially a more faithful representation of the genetic background of 

HD patients.  Surprisingly, these mice show no neuronal cell loss via stereology counts, however 

there is a loss of striatal volume (Lin, Tallaksen-Greene et al. 2001).  Conflicting results in 
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various genetic mouse models illustrate the difficulty to determine the extent of apoptosis in the 

pathogenesis of HD.   

iii.  Parkinson’s Disease 

As the 2nd most common neurodegenerative disease worldwide after AD, Parkinson’s 

disease (PD) patients exhibit symptoms of resting tremor, slowness of movement, postural 

instability and rigidity.  These symptoms are mostly due to the loss of dopaminergic neurons in 

the substantia nigra.  Treatment with levodopa and dopamine agonists can only relieve symptoms 

but do not slow or cease the progression of the disease (Temlett 1996).  A neuropathological 

hallmark of the disease is the presence of intracellular inclusions, also known as Lewy bodies.  

One of the important components in Lewy bodies is α-synuclein, which either by point mutation 

or multiplication can cause an autosomal dominant, familial form of PD (Spillantini, Schmidt et 

al. 1997).  However, the more frequent cause of autosomal dominant PD is mutations in leucine-

rich repeat kinase 2 (LRRK2).  Loss of function in other genes, such as Parkin (an E3 ligase), 

PINK1 (PTEN-induced putative kinase 1) and DJ-1 cause autosomal recessive Parkinsonism.  

While familial forms of PD constitute only 5-10% of all cases, studying the pathogenesis as a 

result of monogenic mutations nevertheless provides an understanding of the etiology of PD 

(Yao and Wood 2009).   

One fascinating discovery led to the use of systematic administration of low dose of 

MPTP (1-methyl-4-phenyl-1,2,3,6-tetahydropyridine) in mice as a model to study PD.  It was 

found that contaminating MPTP caused acute PD in a group of illicit drug users who were 

injecting synthetic opioid drugs.  MPTP itself is not toxic; but it readily crosses the blood brain 

barrier and is metabolized to the active toxic compound that is selectively taken up by 
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dopaminergic neurons, thus causing rapid onset of PD symptoms (Vila and Przedborski 2003).  

In the MPTP mouse model of PD, morphologically apoptotic dopaminergic neurons are observed 

(Tatton and Kish 1997).  In addition, Bax is significantly upregulated in dopamine-containing 

neurons of the substantia nigra in these MPTP-infused mice (Vila, Jackson-Lewis et al. 2001).  

This result correlates with the finding in brain tissues of human PD patients where 

immunostaining of Bax is positive as compared to controls (Hartmann, Michel et al. 2001).  

However, the key role of Bax in MPTP-induced neurotoxicity is most strongly illustrated with 

the result that Bax-deficient mice are resistant to the toxicity of MPTP.  Involvement of other 

molecules in the intrinsic apoptotic pathway are demonstrated in the MPTP model of PD, as 

overexpression of Bcl-2 or expression of dominant negative Apaf-1 protect dopaminergic 

neurons against MPTP-induced cell death (Offen, Beart et al. 1998; Yang, Matthews et al. 1998; 

Mochizuki, Hayakawa et al. 2001).  Furthermore, increased activity of executioner caspase-3 is 

found in the substantia nigra of people with PD as compared to controls (Hartmann, Hunot et al. 

2000).  Consistent with notion that caspase activation is important in PD, transgenic mice 

overexpressing a general caspase inhibitor p35 in neurons show decreased amount of MPTP-

induced dopaminergic cell death and lesser extent of striatal dopaminergic nerve fiber depletion 

(Viswanath, Wu et al. 2001). 

iv. Amyotrophic Lateral Sclerosis 

Amyotrophic lateral sclerosis (ALS), or Lou Gehrig’s disease, is characterized by a rapid 

and progressive loss of motor neurons in the cortex, brainstem and spinal cord.   Patients with the 

disease initially exhibit symptoms related to muscle weakness and atrophy, showing problems 

with moving, chewing, swallowing and speaking.  Three to five years after the onset of 

symptoms, patients usually die of respiratory failure.  It is estimated that 5,000 people in the 
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United States are diagnosed with ALS each year (Wong, Rothstein et al. 1998; Cluskey and 

Ramsden 2001).  Most ALS cases are sporadic with no clear genetic causes or associated risk 

factors, however about 10% of all ALS cases are inherited in an autosomal dominant pattern.  

Twenty percent of these familial ALS cases are found to result from genetic mutations in the 

enzyme Cu/Zn superoxide dismutase (SOD1) (Rosen 1993).  SOD1 neutralizes superoxide 

radicals, byproducts of normal cellular processes, by converting them to oxygen and hydrogen 

peroxide.  Nevertheless, the disease etiology of ALS is not believed to be caused by the absence 

of SOD1 enzymatic activity (Reaume, Elliott et al. 1996), but rather from a gain-of-function 

activity associated with mutations in SOD1.  Transgenic mouse models that overexpress mutant 

forms of SOD1 recapitulate clinical symptoms in ALS patients, thus establishing mutant SOD1 

expression as a valid model for the study of ALS (Boillee, Vande Velde et al. 2006).  However, 

the specific mechanism as to how mutant SOD1 can cause death in motor neurons remains 

unknown.  To date, the selective vulnerability of motor neurons is thought to arise from a 

combination of abnormalities including mitochondrial dysfunction, oxidative damage, protein 

misfolding, excitotoxicity, defective axonal transport, inflammation, and insufficient growth 

factor signaling (Cluskey and Ramsden 2001; Boillee, Vande Velde et al. 2006).  Importantly, 

increasing studies are examining the non-cell autonomous effect of mutant SOD1 toxicity on 

motor neurons (Clement, Nguyen et al. 2003; Boillee, Yamanaka et al. 2006; Di Giorgio, 

Carrasco et al. 2007; Nagai, Re et al. 2007).  

Research from many laboratories has established an involvement of apoptosis in ALS 

progression, especially during the final stages.  Reports show caspase-3 activation in motor 

neurons concurrent with neuronal death (Li, Ona et al. 2000; Pasinelli, Houseweart et al. 2000) 

and blockage of the cascade of caspase activation with pharmacological or genetic means 
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demonstrate beneficial effects.  Specifically, long-term delivery of zVAD-fmk, a synthetic pan-

caspase inhibitor, by intrathecal administration prolongs the lifespan of human G93A SOD1 

transgenic (SOD1G93A-Tg) mice (Li, Ona et al. 2000).  Likewise, minocycline, which inhibits 

caspase activity, shows neuroprotection in SOD1G93A-Tg mice by delaying onset and extending 

survival (Zhu, Stavrovskaya et al. 2002).   Moreover, increasing expression of the anti-apoptotic 

factor Bcl-2 slows disease onset and increases survival of SOD1G93A-Tg mice by several weeks 

(Kostic, Jackson-Lewis et al. 1997).  A detailed study, by Guegan et al., on the involvement of 

the mitochondrial-dependent apoptotic pathway in SOD1G93A-Tg mice (Guegan, Vila et al. 2001) 

reveal a release of mitochondrial cytochrome c in the spinal cords of SOD1G93A -Tg mice as 

early as the asymptomatic stage (1-2 month old) and increasingly in the early symptomatic phase 

(approximately 3 months).  Activation of procaspase-9, and -7, as well as cleavage of XIAP are 

reported at the end stage of disease (approximately 5 months).    

Interestingly, there is a significant lag between the time of cytochrome c release and 

activation of caspases (Guegan, Vila et al. 2001), suggesting a potential blockage in this cascade.  

In addition, vacuolated mitochondrial remnants are seen in spinal motor neurons of both patients 

and transgenic mouse lines (SOD1G93A and SOD1G37R ) well before the development of any 

disease symptoms and degeneration of neurons (Dal Canto and Gurney 1994; Wong, Pardo et al. 

1995; Kong and Xu 1998).  Taken together, these results suggest that early insults to the 

mitochondria cause cytochrome c release but that this event does not immediately activate the 

apoptotic pathway.  One reason for this could be that endogenous XIAP effectively inhibits 

caspase activation in these neurons.  In Chapter 3, I will use the hSOD1G93A mouse model of 

ALS as a means of inducing mitochondrial stress to examine whether XIAP-deficient neurons 

are more vulnerable to mitochondrial insults as compared to WT neurons.   
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v. Caspase catalytic activity is important in neurodegenerative diseases 

As with most neurodegenerative diseases, the role of key apoptotic molecules has been 

demonstrated despite the presence or absence of morphological apoptotic features.  However, it 

is unclear whether apoptosis accompanies the neuronal dysfunction or is likely one of the end 

results to accumulative stresses on these selected neuronal populations.  Thus, it is conceivable 

that apoptosis is not the primary abnormality in these neurodegenerative disease, but rather a 

secondary effect.   

Despite being highly debatable whether apoptosis is the main pathway of neuronal cell 

loss in these neurodegenerative diseases, an interesting trend that emerges from these studies is 

the possibility that players in the apoptotic pathway, rather than apoptosis per se, may perhaps be 

important for the pathogenesis of these diseases.  For example, in Huntington’s Disease, the 

protein huntingtin is shown to be cleaved by caspases and the smaller cleaved fragments may be 

responsible for the toxicity (Wellington, Ellerby et al. 1998; Kim, Yi et al. 2001).  Either a pan 

caspase inhibitor or the generation of caspase cleavage resistant huntingtin can relieve such 

cellular toxicity (Wellington, Singaraja et al. 2000).  Furthermore, not only observed in vitro, 

tissues from animal models of HD and post mortem brain of human HD patients also showed 

caspase cleaved huntingtin products, which precedes the onset of neurodegeneration in animal 

models (Wellington, Ellerby et al. 2002).  However, wildtype huntingtin is also cleaved by 

caspases and observed in vitro and normal human brain tissue (Kim, Yi et al. 2001; Wellington, 

Ellerby et al. 2002), suggesting that the pathogenesis is not due to the presence of the cleavage 

event itself, but rather the resulting fragments of the mutant huntingtin polyglutamine repeats.   
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Another example of apoptotic players potentially involved in pathogenesis but not 

through apoptosis is reported in Alzheimer’s disease (AD).  As mentioned before, 

hyperphosphorylaton of tau and its aggregation in intracellular cytoplasmic neurofibrillary tangle 

is one of the hypotheses of the causation of AD.  Tau is reported to be cleaved by caspases-1, -3, 

-6 and -7 (Canu, Dus et al. 1998; LeBlanc, Liu et al. 1999; Gamblin, Chen et al. 2003).  Caspase-

3 cleaved tau facilitates nucleation-dependent filament formation and therefore more rapidly 

assembles into tau filament than wildtype tau (Gamblin, Chen et al. 2003; Rissman, Poon et al. 

2004).  Moreover, caspase-3 cleaved tau induces cell death in neuroblastoma cells (Chung, Song 

et al. 2001).  In addition to tau, the amyloid precursor protein (APP) is also a substrate for 

caspases (Barnes, Li et al. 1998; Gervais, Xu et al. 1999; Pellegrini, Passer et al. 1999; 

Weidemann, Paliga et al. 1999).  As with caspase-3 cleaved tau, both the N-terminus APP∆C31 

and the ∆C31 peptide are toxic to neuronal cell lines (Dumanchin-Njock, Alves da Costa et al. 

2001; Galvan, Chen et al. 2002; Nishimura, Uetsuki et al. 2002).  Interestingly, apoptotic 

conditions elevate the β-amyloid (Aβ) peptide production in cells and this phenomenon is not 

related to caspase cleavage of APP despite Aβ being derived from APP (Tesco, Koh et al. 2003).  

It is shown later that caspase-3 cleaves a substrate related to the degradation of β-secretase (also 

known as β-site APP-cleaving enzyme, BACE), which is responsible along with γ-secretase for 

the production of Aβ.  The stabilization of BACE indirectly by capsase-3 activity resulted in the 

elevated Aβ generation (Tesco, Koh et al. 2007).  Together, these data allude to the possibility 

that low level of caspase activity that does not result in apoptosis may perhaps result in chronic 

cytotoxicity by amplifying toxic products that are already implicated in disease progression.  

 

d. Apoptosis in cardiac pathology 
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The mature mammalian heart is comprised of supportive fibrovascular connective tissues 

and terminally differentiated cardiomyocytes, which are a population of cells that remain 

constant throughout the life of the organism.  Only during fetal and early perinatal period, where 

myocardial morphogenesis growth is taking place, do differentiated, primitive cardiomyocytes 

remain in a mitotically active state.  Shortly after birth, cell division of cardiomyocytes stops as 

these cells exit the cell cycle and become terminally differentiated (Zak 1974; Rumyantsev 1977).  

Despite intense research, it is still unclear what genetic mechanisms regulate the exit of 

cardiomyocytes from the cell cycle.  It is thought that the myocardium have relatively limited 

regenerative ability as cardiomyocytes have arrested in the G0/G1 phase, though recent 

identification of cardiac stem cells in specialized niches sparks debate and future investigation 

for the potential of myocardium renewal after injury (Anversa, Kajstura et al. 2006; Urbanek, 

Cesselli et al. 2006).  

As acute myocardial infarction (AMI) is a major cause of morbidity and mortality 

worldwide, major research efforts are devoted in understanding the mechanisms governing the 

dysfunction and loss of cardiomyocytes during AMI in the hopes of preventing such events from 

happening.  AMI occurs due to the thrombosis of an atherosclerotic coronary artery that supplies 

the heart.  Similar to ischemic brain injury, the presence of apoptotic nuclei and DNA 

fragmentation are found in the myocardium bordering the infarct core of human patients with 

cardiomyopathy (Olivetti, Quaini et al. 1996; Abbate, Biondi-Zoccai et al. 2002; Baldi, Abbate et 

al. 2002).  In addition, the presence of apoptosis is seen in cultured cardiac myocytes, isolated 

perfused hearts or in animal models of ischemia-reperfusion injury (Gottlieb, Burleson et al. 

1994; Cheng, Li et al. 1995; Teiger, Than et al. 1996; Long, Boluyt et al. 1997).    
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Complementary to these observational studies, manipulation of the key apoptotic players 

in animal models of ischemia solidify the involvement of apoptosis in these conditions.  

Transgenic mouse with overexpression of anti-apoptotic Bcl-2 in heart tissue are protected from 

ischemia-reperfusion injury as reduced infarct size and functional improvement are reported 

(Brocheriou, Hagege et al. 2000; Chen, Chua et al. 2001).  Moreover, administration of various 

caspase inhibitors were capable of attenuating injury caused by ischemia and functional recovery 

of the myocardium is observed (Holly, Drincic et al. 1999; Zhao, Morris et al. 2003; 

Chandrashekhar, Sen et al. 2004).   

Knowing the fact that apoptosis occurs in cardiac pathologies, it is therefore important to 

understand the mechanisms in governing cardiomyocytes apoptosis, which may differ than those 

regulating other tissue types.  As cardiomyocytes are terminally differentiated, the loss of 

cardiomyocytes cannot be compensated from cell proliferation.  Since these cells need to remain 

functional during the life of the organism, it is reasonable to expect that cardiomyocytes are more 

resistant to apoptosis than mitotic cells.  Indeed, increased restriction on apoptosis in 

cardiomyocytes are observed though various mechanisms.  First, a change in the level of Apaf-1, 

a core component in the apoptosome machinery, is reported in cardiomyocytes, thus rendering 

these cells insensitive to cytochrome c-mediated death.  One report attributes to the complete 

absence of Apaf-1 in cardiomyocytes, while another study states a low level of Apaf-1 is present 

(Sanchis, Mayorga et al. 2003; Potts, Vaughn et al. 2005).  It is believed that Apaf-1 is still 

present at a low level in cardiomyocytes as these cells are capable of undergoing death induced 

by cytochrome c when the XIAP inhibition is relieved (Potts, Vaughn et al. 2005).  Therefore, 

similar to postmitotic neurons as well as skeletal muscles, cardiomyocytes has a low ratio of 

Apaf-1 to XIAP, yielding them an innate environment to restrict caspase activation.   
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Besides alternation in key components of the apoptotic pathway, another possible way of 

increased resistance could be due to the presence of inhibitors of the apoptotic pathway 

selectively seen in heart tissues.  This idea is supported by the identification and characterization 

of ARC, apoptosis repressor with caspase recruitment domain (Koseki, Inohara et al. 1998).  

Human ARC is selectively expression in cardiac tissue and skeletal muscle.  The N-terminus 

CARD domain of ARC can interact with caspases-2, -8, and C. elegans Ced-3 and functionally it 

is capable of inhibiting apoptosis induced by those caspases.  The role of ARC with the 

mitochondrial death pathway is also demonstrated since ARC can prevent Bax activation and 

cytochrome c release in hydrogen peroxide-treated H9c2 cells (Gustafsson, Tsai et al. 2004) and 

that loss of endogenous ARC can cause cytochrome c release in H9c2 cells (Ekhterae, Lin et al. 

1999).  It is therefore not surprising that transduction of ARC has a cardioprotective effect to 

subsequent global ischemia and reperfusion (Gustafsson, Sayen et al. 2002).  Moreover, the heart 

from cardiac-specific ARC transgenic mouse showed better functional recovery of contractile 

performance during reperfusion after ischemic damage as compared to wildtype (Pyo, Nah et al. 

2008).  The physiological importance of ARC is demonstrated because levels of ARC decrease 

when cardiomyocytes undergo apoptosis.  For example, stimulated with hydrogen peroxide or 

anoxia in H9c2 cells, the increased level of p53 was capable of initiating apoptosis by 

transcriptionally downregulating ARC (Li, Lu et al. 2008).  Also, in doxorubicin-induced 

cardiotoxicity, ARC mRNA and protein levels are declined and inhibition of ARC protein 

degradation in doxorubicin-treated condition enhances cellular survival (An, Li et al. 2009).   

Other regulators exist in cardiomyocytes as heart lysates activate caspases less efficiently 

in an in vitro assay compared to liver lysates (Samali, O'Mahoney et al. 2007).  Subsequent 

complementation analysis suggests a presence of an inhibitor as the mixture of heart and liver 
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lysates together diminished the capable of liver lysates itself alone in activating caspases.  In the 

process of identifying the inhibitor, it is found that the physiological level of ATP is maintained 

at 5-10mM in heart tissues as compared to approximately 1mM in liver tissue.  Consistent with a 

previous report, this high concentration of ATP in heart restricts apoptosome assembly and 

subsequent caspase activation (Chandra, Bratton et al. 2006), suggesting this mechanism can 

render cardiac tissue more resistant to apoptosis.  However, the study fails to identify a particular 

molecule that inhibits caspases activity in heart lysates (Samali, O'Mahoney et al. 2007).  All 

these evidences imply that apoptosis in cardiomyocyte may be unique and there remains much to 

be uncovered about the apoptotic pathway in cardiomyocytes and its regulation.   

As mentioned before, these terminally differentiate cardiomyocytes adopt a similar 

mechanism as neurons and myotubes in having the XIAP brake to inhibit cytochrome c-mediated 

death.  Smith et al. was the first to demonstrate a role of endogenous Smac in overcoming the 

XIAP inhibition in myotubes (Smith, Huang et al. 2009).  In Appendix A, I will examine the role 

of endogenous Smac in cardiomyocytes to determine whether it has the same capability of 

relieving the XIAP brake as seen in myotubes.   
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C. Figures and Legends 

Figure 1.1 The apoptotic pathway in C. elegans and its mammalian homolog 

Developmental apoptotic signals induce the transcriptional upregulation of Egl-1, which can bind 

to Ced-9.  The interaction between Egl-1 and Ced-9 displaces Ced-4 from Ced-9 sequestration.  

Free Ced-4 can then translocation from the mitochondria to the perinuclear region and induce the 

activation of Ced-3 that is responsible for cell death.  Mammalian homologues of Egl-1, Ced-9, 

Ced-4 and Ced-3 are pro-apoptotic BH3-only proteins, anti-apoptotic Bcl-2, Apaf-1 and caspase-

3, respectively. 
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Figure 1.1 
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Figure 1.2 Bcl-2 family of proteins regulate the release of cytochrome c from the 

mitochondria 

Apoptotic stimuli can induce the activity of pro-apoptotic BH3-only proteins and lead to the 

activation and oligomerization of the multidomain pro-apoptotic molecules Bax and Bak.  Bax 

and Bak form pores in the mitochondria outer membrane and cause the release of cytochrome c.  

Pro-apoptotic BH3-only proteins can function through two ways.  One method is to directly 

activate Bax and Bak.  Alternatively, pro-apoptotic BH3-only “sensitizer” proteins can bind to 

and sequester away the anti-apoptotic members such as Bcl-2, Bcl-xL and Mcl-1 which are 

normally bound to Bax and Bak. 
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Figure 1.2 
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Figure 1.3 The intrinsic pathway of apoptosis  

A, Once cytochrome c is released from the mitochondria, it binds to the adaptor protein Apaf-1 

and causes Apaf-1 to unfold and expose the caspase activation and recruitment domain (CARD) 

and the nucleotide binding domain (NBD).  A conformational change dependent on dATP 

hydrolysis and exchange on Apaf-1 induce the oligomerization of Apaf-1 to from a heptamer 

complex termed the apoptosome.  The apoptosome, a wheel-like structure, with the CARD 

domains of Apaf-1 at the center recruits procaspase-9 and induces its autoactivation.  Activated 

caspase-9 can proceed to cleave and activate executioner caspase-3 and caspase-7.  The activity 

of caspases can be inhibited by the inhibitor of apoptosis protein XIAP.    



46 

 

Figure 1.3 

Adapted from Cain et. al. Biochime 2002
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Figure 1.4 The structure of X-linked inhibitor of apoptosis protein (XIAP) 

XIAP consists of three baculovirus IAP repeat (BIR) domain at the N-terminus followed by a 

newly identified ubiquitin-associated (UBA) domain and a C-terminal really interesting new 

gene (RING) domain.  The BIR2 and BIR3 domains and their linker regions of XIAP are 

responsible for the binding to caspase-3 and caspase-9 respectively.  The RING domain of XIAP 

gives the protein the activity of a E3 ubiquitin ligase.   
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Figure 1.4 
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Figure 1.5 Coupling of increased effectiveness of XIAP and reduced Apaf-1 levels in 

postmitotic cell types restricts apoptosis 

In comparison to mitotic cells, post-mitotic cell types such as neurons, cardiomyocytes and 

myotubes are resistant to cytochrome c-mediated death.  The low levels of Apaf-1 present in 

these terminally differentiated cells result in reduced apoptosome formation and caspase 

activation.  Hence, endogenous XIAP levels are sufficient to effectively block this low level of 

caspase activity.  In contrast, mitotic cells which have high levels of Apaf-1 result in robust 

apoptosome formation and increased caspase activation.  Similar levels of endogenous XIAP 

cannot successfully inhibit caspase activity; therefore, mitotic cells readily undergo apoptosis 

with cytosolic cytochrome c. 
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Figure 1.5 

 

 

 

 

 

 

 



CHAPTER TWO: 

Differential Apaf-1 Levels Allow Cytochrome c to Induce Apoptosis in Brain 

Tumors but not in Normal Neural Tissues 
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A. Abstract 

Brain tumors are typically resistant to conventional chemotherapeutics, most of which 

initiate apoptosis upstream of mitochondrial cytochrome c release.  In this study, we demonstrate 

that directly activating apoptosis downstream of the mitochondria, with cytosolic cytochrome c, 

kills brain tumor cells but not normal brain tissue.  Specifically, cytosolic cytochrome c is 

sufficient to induce apoptosis in glioblastoma and medulloblastoma cell lines.  In contrast, 

primary neurons from the cerebellum and cortex are remarkably resistant to cytosolic 

cytochrome c.  Importantly, tumor tissue from mouse models of both high-grade astrocytoma 

and medulloblastoma display hypersensitivity to cytochrome c when compared to surrounding 

brain tissue.  This differential sensitivity to cytochrome c is attributed to high Apaf-1 levels in 

the tumor tissue as compared to low Apaf-1 levels in the adjacent brain tissue. These differences 

in Apaf-1 abundance correlate with differences in the levels of E2F1, a previously identified 

activator of Apaf-1 transcription. Chromatin immunoprecipitation assays reveal that E2F1 binds 

the Apaf-1 promoter specifically in tumor tissue, suggesting that E2F1 contributes to the 

expression of Apaf-1 in brain tumors. Together, these results demonstrate an unexpected 

sensitivity of brain tumors to post-mitochondrial induction of apoptosis.  Moreover, they raise 

the possibility that this phenomenon could be exploited therapeutically to selectively kill brain 

cancer cells while sparing the surrounding brain parenchyma.  

 

B. Introduction 

Primary brain tumors arise from cells intrinsic to the brain and intracranial cavity.  While 

these tumors account for only 2% of cancers, they cause a disproportionate share of cancer-
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related morbidity and mortality (Ries, Eisner et al. 2004).  Despite resection in conjunction with 

chemoradiation, the five-year survival rate for glioblastoma, the most common histologic 

subtype, remains only 3% (CBTRUS 2004).  Although survival rates for childhood 

medulloblastoma are better, long-term neurological deficits secondary to radiation therapy 

remains a significant problem (Rutkowski and Kaufman 2004).  Therefore, therapeutic strategies 

that selectively induce apoptosis in brain tumors while sparing surrounding neural tissue could 

offer significant clinical promise. 

 Apoptosis is a form of programmed cell death required for proper embryonic 

development and tissue homeostasis.  Aberrant signaling allows malignant cells to evade 

apoptosis, thus fostering tumor progression (Hanahan and Weinberg 2000).  In the intrinsic 

pathway of apoptosis, death-inducing signals converge upon the mitochondria, causing release of 

cytochrome c.  Cytosolic cytochrome c binds to Apaf-1, leading to recruitment of procaspase-9 

and formation of the apoptosome.  Apoptosome-mediated activation of caspase-9 activates 

executioner caspases-3 and -7, which promote cell death (Danial and Korsmeyer 2004). 

Cytosolic cytochrome c is sufficient to induce apoptosis in many dividing cells including 

fibroblasts, HEK293, and HeLa (Liu, Kim et al. 1996; Li, Srinivasan et al. 1997).  In contrast, 

differentiated sympathetic neurons are highly resistant to apoptosis induced by cytochrome c 

(Wright, Linhoff et al. 2004).  This differential susceptibility to cytochrome c-induced death in 

cycling cells and neurons led us to hypothesize that activating apoptosis with cytochrome c 

might selectively induce death in dividing brain tumor cells while sparing neurons in the brain 

parenchyma.  However, this idea was tempered by the fact that various tumors have been shown 

to differ markedly in their sensitivity to cytochrome c.  While ovarian cancers and melanomas 

appear resistant to cytochrome c-induced apoptosis (Soengas, Capodieci et al. 2001; Wolf, 
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Schuler et al. 2001), breast cancers are hypersensitive to cytochrome c (Schafer, Parrish et al. 

2006). 

We show here that despite the remarkable resistance of mature neurons and brain tissues 

to cytochrome c, both high-grade astrocytoma and medulloblastoma are susceptible to 

cytochrome c-mediated apoptosis.  Importantly, although normal brain exhibits nearly 

undetectable levels of Apaf-1, we demonstrate that brain tumors express high levels of Apaf-1 

through transcriptional induction of Apaf-1 mRNA.  These results identify direct activation of 

the apoptosome as a potential chemotherapeutic strategy for brain tumors that would eliminate 

cancer cells while sparing surrounding neural tissue. 

 

C. Results 

Multiple types of neurons become resistant to cytochrome c upon maturation 

We recently reported that decreased Apaf-1-dependent apoptosome activity, which 

accompanies neuronal differentiation, renders sympathetic neurons resistant to cytochrome c-

mediated apoptosis (Wright, Linhoff et al. 2004).  To determine whether the development of 

cytochrome c resistance is seen in other neurons, including those in the CNS, we examined 

neurons from the dorsal root ganglion (DRG), cerebellum and cortex.  Since these neurons 

mature at different times, we chose two time points for each neuronal type, corresponding to 

early and late stages of differentiation.  Sensory neurons from the DRG were isolated from 

embryonic day 15 (E15) and postnatal day 2 (P2) mice.  Microinjection of cytochrome c into 

E15 DRG neurons after 1 day in culture (E16 equivalent) induced extensive death within 3 hours.  
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In contrast, P2 DRG neurons injected after 1 day in culture (P3 equivalent) were remarkably 

resistant to cytochrome c (Figure 2.1A). 

To examine the sensitivity of cerebellar granule neurons (CGN) and cortical neurons to 

cytochrome c, we utilized a cell-free assay, as the small size of these neurons is unsuitable for 

microinjection.  In this assay, addition of cytochrome c to cytosolic lysates (extracts) prepared 

from either primary tissue or cultured cells can recapitulate caspase-dependent apoptosis (Liu, 

Kim et al. 1996).  Although cytochrome c induced robust caspase activation in extracts of P5 

CGN maintained one day in culture (P6 equivalent), no significant caspase activation was 

detected in extracts of P5 CGN maintained 14 days in culture (P19 equivalent) (Figure 2.1B).  

Next, we examined whether cortical extracts exhibited a similar resistance to cytochrome c with 

maturation.  Addition of cytochrome c was sufficient to activate caspases in cortical extracts 

from E16 but not P12 mice (Figure 2.1C).  Together, these results show that our previous 

observations in sympathetic neurons, in which cytochrome c sensitivity is dramatically decreased 

upon maturation, can be generalized to multiple neuronal cell types, including those of the CNS.   

To determine whether the resistance to cytochrome c upon neuronal maturation 

correlated with Apaf-1 downregulation, we examined components of the apoptotic machinery in 

early and late stages of neuronal differentiation.  Immunoblot analysis confirmed that in all 

neuronal cell types examined, Apaf-1 levels were high in early-stage neurons but markedly 

decreased with maturation (Figure 2.1D).  
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Cytochrome c induces robust caspase activation in brain tumor cells 

Unlike in neurons, in many dividing cells the introduction of cytosolic cytochrome c 

induces apoptosis.  This difference prompted us to investigate whether brain tumors would be 

sensitive to cytochrome c while surrounding neural tissue would be resistant.  We first confirmed 

that components of the apoptotic machinery were present in extracts from neuroblastoma (SH-

SY5Y), medulloblastoma (UW228, D341MED, MCD1), and glioblastoma (MGR3, MGR1, 

D54MG, D247MG, H392) cell lines (Figure 2.2A).  Next, we found that cytochrome c elicited 

robust caspase activation in all of the brain tumor cell line-derived extracts, but not in extracts of 

mouse cortex or cerebellum (Figure 2.2B).  

As an alternative to working with cultured cells, we examined whether human brain 

tumor cells grown subcutaneously in immunocompromised mice also exhibited cytochrome c 

sensitivity.  Xenograft extracts were prepared from human medulloblastoma (D341MED), 

human glioma from adults (D54MG, U87MG) and children (H2159MG, D456MG), as well as 

from ependymomas (EP528, EP612).  Consistent with the cultured cell data, addition of 

cytochrome c to the xenograft extracts elicited marked caspase activation.  In contrast, extract 

from adult human cortex did not induce caspase activation upon cytochrome c addition (Figure 

2.2C).   

 

Endogenous mouse models of high-grade astrocytoma and medulloblastoma demonstrate 

selective cytochrome c-induced caspase activation in tumor tissue 

To extend relevance of these results to brain tumor models where spontaneously-forming 

lesions within the brain more accurately mimic human disease, we examined whether 
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cytochrome c could induce caspase activation in tumors from both high-grade astrocytoma and 

medulloblastoma mouse models.  These models enabled us to compare tumor tissue with 

surrounding neural tissue from the same animal.  In the high-grade astrocytoma model, mice 

have been engineered to achieve somatic pRb inactivation and constitutive K-rasG12D activation 

with or without PTEN deletion, specifically in adult astrocytes.  Tumors from these mice have 

been histopathologically characterized as predominantly anaplastic astrocytoma (WHO grade III) 

or glioblastoma (WHO grade IV) (Q. Zhang et. al., unpublished data).  Extracts from these 

tumors exhibited strong caspase activation upon addition of cytochrome c, while extracts 

prepared from adjacent neural tissue did not (Figure 2.3A).  Next, we examined the ability of 

cytochrome c to activate caspases in tumors from patched heterozygous mice that develop 

medulloblastoma (Goodrich, Milenkovic et al. 1997; Oliver, Read et al. 2005).  Caspases were 

activated in medulloblastoma extracts following cytochrome c addition, while no caspase 

activation was detected in extracts of adjacent cerebellar tissue (Figure 2.3B).  Consistent with 

apoptosome-mediated apoptosis, caspase-9 processing was observed in both high-grade 

astrocytoma and medulloblastoma extracts supplemented with cytochrome c, but not in extracts 

prepared from adjacent neural tissue (Figure 2.3C).  These data illustrate the potential of 

cytochrome c to activate caspases selectively in brain tumors in vivo. 

 

Apaf-1 expression levels determine the differential sensitivity to cytochrome c in normal 

and malignant brain tissue 

In considering the molecular basis for the differential cytochrome c sensitivity of brain 

tumor and normal brain tissue, we reflected on our earlier observations that cytochrome c 
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resistance in differentiated sympathetic neurons was due to low Apaf-1 levels (Wright, Linhoff et 

al. 2004).  Low Apaf-1 expression was also observed in mature cerebellar and cortical neurons 

(Figure 2.1D) (Yakovlev, Ota et al. 2001).  In contrast, Apaf-1 expression was clearly evident in 

the brain cancer cell lines (Figure 2.2B).  Importantly, Apaf-1 immunoblotting revealed 

markedly higher Apaf-1 protein levels in both high-grade astrocytoma and medulloblastoma 

tumors as compared to adjacent neural tissues (Figure 2.4A).  A similar difference was observed 

in human high-grade gliomas as compared to normal human cortex (Figure 2.4D). 

To investigate whether differences in Apaf-1 expression were responsible for the 

differential sensitivity to cytochrome c, we added recombinant Apaf-1 protein to extracts 

prepared from late-stage CGNs, mouse cortex and cerebellum.  While no caspase activation was 

observed with cytochrome c alone, the addition of Apaf-1 and cytochrome c was sufficient to 

induce caspase activation (Figure 2.4B).  Likewise, human cortical extracts showed caspase 

activation with cytochrome c and Apaf-1 but not with cytochrome c alone (Figure 2.4E). 

We wished to determine whether the low levels of Apaf-1 were sufficient to activate 

caspases in the mature brain if caspase inhibition by the inhibitor of apoptosis proteins (IAPs) 

was relieved.   Addition of Smac, an IAP inhibitor, to extract from wild-type (WT) adult mouse 

cortex did not promote increased caspase activation (Figure 2.4C). Additionally, extracts of 

XIAP-/- and WT adult mouse cortex displayed similar resistance to cytochrome c (and similar 

sensitivity upon Apaf-1 addition) (Figure 2.4C).  These data illustrate that the low levels of 

Apaf-1 in adult mouse cortex (Figure 2.4C) and cerebellum (data not shown) could not induce 

caspase activation even upon inactivation or removal of IAPs. 
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Levels of Apaf-1 in normal and malignant brain tissue are transcriptionally regulated 

Having found that levels of Apaf-1 protein underlie the observed sensitivity to 

cytochrome c, we examined whether this difference could be traced back to transcriptional 

regulation.  Quantitative reverse transcriptase polymerase chain reaction (RT-PCR) revealed that 

Apaf-1 mRNA was significantly more abundant in medulloblastoma than in adjacent cerebellum 

(Figure 2.5A).  Importantly, Apaf-1 mRNA levels in isolated medulloblastoma cells were 

comparable to developing P7 cerebellum, which is comprised of granule cell precursors; levels in 

both being significantly higher than in mature cerebellum (Figure 2.5A).  

We then investigated Apaf-1 mRNA abundance in human astrocytomas by analyzing 

data from published gene profiling studies available in the Oncomine Gene Profiling Database.  

Analysis of data from Sun et al. (Sun, Hui et al. 2006) demonstrated a statistically significant 

increase in Apaf-1 mRNA levels in glioblastoma as compared with brain from epilepsy patients 

(Figure 2.5B).  From two additional studies (Freije, Castro-Vargas et al. 2004; Phillips, 

Kharbanda et al. 2006), relative Apaf-1 mRNA expression was increased in glioblastoma (grade 

IV astrocytoma) compared with grade III astrocytoma (Figure 2.5B).  Similarly, a human tissue 

dot blot revealed a marked increase in Apaf-1 protein expression from a low-grade astrocytoma 

to a glioblastoma (Figure 2.5C).  These data suggest not only that Apaf-1 expression is 

differentially regulated in normal versus tumor cells, but also that Apaf-1 expression increases 

with increasing tumor grade.  

To elucidate the mechanism of Apaf-1 mRNA upregulation in brain tumors, we 

examined the levels of E2F1 and p53, two previously identified transcriptional activators of 

Apaf-1 (Fortin, Cregan et al. 2001; Moroni, Hickman et al. 2001; Furukawa, Nishimura et al. 
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2002).  Levels of E2F1, but not p53, were consistently upregulated in tumor tissues and low in 

adjacent brain tissues (Figure 2.5D).   Additionally, many tumors, including two of the brain 

tumor lines we analyzed (MGR1 and MCD1), have mutations in p53 (Moore, Dillon-Carter et al. 

1996).  We therefore focused on determining whether E2F1 was associated with the Apaf-1 

promoter in brain tumors.  Indeed, chromatin immunoprecipitation (ChIP) assays demonstrated 

that E2F1 specifically associates with the Apaf-1 promoter in mouse medulloblastoma tissue and 

in the human glioblastoma cell line MGR3 (Figure 2.5E).  In aggregate, the coordinated 

upregulation of E2F1 and Apaf-1 in brain tumor cells, the previously reported ability of E2F1 to 

drive Apaf-1 transcription, and the ability of E2F1 to bind Apaf-1 promoter in brain tumors, all 

suggest that E2F1 contributes to Apaf-1 expression in brain tumors. 

 

D. Discussion 

Low Apaf-1 levels offer protection from cytochrome c-dependent apoptosis in 

differentiated neurons and neural tissue 

Resistance to cytochrome c-induced apoptosis in neuronally-differentiated rat 

pheochromocytoma PC12 cells and in differentiated sympathetic neurons has been reported 

(Wright, Linhoff et al. 2004).  In this study we show that this striking development of resistance 

to cytochrome c during maturation is seen in multiple types of neurons, including those of the 

CNS.  Specifically, we demonstrate this resistance in isolated late-stage neurons (Figure 2.1) and 

in extracts from adult mouse cortex, cerebellum (Figure 2.2B) and human cortex (Figure 2.2C). 

We have examined the mechanistic basis for this neuronal resistance to cytochrome c-

mediated apoptosis and identified a link between Apaf-1 expression levels and the 
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developmental state of a neuron.  As neurons mature they dramatically decrease their levels of 

Apaf-1.  Reconstitution with recombinant Apaf-1 protein in late-stage neurons and mature neural 

tissue (Figure 2.4B,E) restores sensitivity to cytochrome c-induced apoptosis, thus providing 

strong evidence that downregulation of Apaf-1 is the critical factor underlying the observed 

apoptotic resistance. 

Similarly, other studies in rodent brain (Yakovlev, Ota et al. 2001; Madden, Donovan et 

al. 2007) and mouse retina (Donovan and Cotter 2002) have reported that neuronal maturation 

leads to inhibition of apoptosis and that this parallels a decrease in Apaf-1 expression.  We 

theorize that the reduction in Apaf-1 levels accompanying neuronal maturation may be a way of 

restricting unwanted apoptosis in differentiated neurons, in which long-term survival is necessary.  

Thus, upregulation of Apaf-1 is predicted to be necessary and sufficient for these neurons to 

undergo cytochrome c-mediated apoptosis under pathological conditions.  Indeed, during DNA 

damage-induced neuronal death (Fortin, Cregan et al. 2001; Vaughn and Deshmukh 2007) and 

after fluid percussion-induced traumatic brain injury, Apaf-1 levels were markedly increased 

(Yakovlev, Ota et al. 2001).  

 

Brain tumor susceptibility to cytochrome c-induced apoptosis 

 Although inhibition of apoptosis is a hallmark of cancer, different cancers employ 

distinct mechanisms to serve this purpose.  In some instances, cancer cells evade apoptosis by 

preventing mitochondrial cytochrome c release in response to apoptotic stimuli.  Other tumors 

display resistance to cytoplasmic cytochrome c due to defective apoptosome formation 

(Johnstone, Ruefli et al. 2002; Schafer and Kornbluth 2006).  In contrast, we have previously 
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shown that breast cancers are actually hypersensitive to cytochrome c-induced apoptosis relative 

to normal mammary epithelial cells (Schafer, Parrish et al. 2006). 

Given this unexpected phenomenon in breast cancer cells, we decided to investigate the 

sensitivity of primary brain tumors to cytochrome c-induced apoptosis. Using cultured human 

brain tumor cells (Figure 2.2B), human brain cancer-derived xenograft tumors (Figure 2.2C), and 

in vivo mouse models of high-grade astrocytoma and medulloblastoma (Figure 2.3), we found 

that, unlike their normal counterparts, brain tumors are susceptible to cytochrome c-induced 

apoptosis.  Our mouse model data confirm this differential sensitivity between tumor tissue and 

adjacent neural tissue despite common genetic alterations in both tissues in the engineered mice.   

Although the sensitivity of breast and brain cancers to cytochrome c is superficially similar, the 

underlying mechanisms governing this sensitivity appear to be entirely distinct.  Specifically, 

breast cancer cytochrome c hypersensitivity reflects overexpression of the apoptosome activator 

PHAPI, without alterations in levels of core apoptosome components (Schafer, Parrish et al. 

2006).  However, we report here that brain tumor sensitivity to cytochrome c is controlled 

through elevation of Apaf-1 expression relative to the extremely low levels present in mature 

neurons and neural tissue (Figure 2.4).  

Moreover, this difference in Apaf-1 is transcriptionally regulated (Figure 2.5A). Of note, 

Oncomine analysis of publicly available microarray data suggests that Apaf-1 mRNA levels are 

not only higher in glioblastoma relative to normal brain, but also that Apaf-1 mRNA levels 

increase with increasing tumor grade (Figure 2.5B).  It may be that since Apaf-1 transcription 

can be regulated by E2F1, increased Apaf-1 levels are an inexorable consequence of the 

increased E2F1 levels associated with (and in part responsible for) increased proliferation in 

tumor cells.  According to this model, we would expect elevated Apaf-1 levels in poorly-
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differentiated, highly proliferative brain tumors, which we did indeed observe in comparing 

glioblastoma (grade IV astrocytoma) with well-differentiated grade II astrocytoma (Figure 2.5C).  

Furthermore, expression of E2F1 has recently been shown to be sufficient to cause brain tumors 

in mice (Olson, Johnson et al. 2007).  Here we show that brain tumors harbor high levels of 

E2F1 while levels in normal brain are quite low (Figure 2.5D).  Furthermore, our ChIP studies 

suggest a physiological role for E2F1 in promoting Apaf-1 transcription in brain tumors (Figure 

2.5E). 

Although Apaf-1 can be regulated at the transcriptional level, it has been reported 

previously that Apaf-1 translation initiates via an internal ribosomal entry segment (IRES) 

(Coldwell, Mitchell et al. 2000).  One known factor in IRES-mediated Apaf-1 translation, nPTB, 

is expressed in neuronal cell lines (Mitchell, Spriggs et al. 2003; Boutz, Stoilov et al. 2007).  

Therefore, keeping Apaf-1 protein levels low in mature neurons may critically depend on 

keeping Apaf-1 mRNA levels low.  It is attractive to speculate that neurons are poised to 

translate Apaf-1 should the message be produced, for example, under conditions of neuronal 

damage where reinstatement of Apaf-1-dependent apoptosis might be desirable. 

 

Apoptosome activation as a therapeutic strategy 

In aggregate, our data show that activating apoptosis with cytochrome c induces caspase 

activation in brain tumors but not in mature neural tissue.  We have demonstrated that this 

differential sensitivity to cytochrome c is due to a transcriptionally regulated difference in Apaf-

1 levels.  While apoptotic resistance upstream of mitochondrial cytochrome c release likely 
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renders brain tumors refractory to standard chemotherapeutics, our results show that they remain 

sensitive to apoptosis induced by cytochrome c.  

Exploiting this vulnerability by directly activating the apoptosome with peptides or small 

molecules that mimic cytochrome c is therefore an attractive therapeutic approach for cancer 

cells that maintain functionally active apoptosome components.  Importantly, our results from 

extracts of neural tissue, which are comprised of both neurons and glia, suggest that like mature 

neurons, glia are also likely to be resistant to cytochrome c.  Therefore we believe that the 

development of a cytochrome c mimetic would be particularly beneficial in the context of brain 

tumors where it would selectively induce apoptosis in tumor cells while sparing adjacent brain 

tissue. 

Because local delivery of a cytochrome c mimetic would be necessary to avoid potential 

systemic side effects, wafer implant technology would be one feasible approach.  During brain 

tumor excision, gel wafers embedded with chemotherapeutics are inserted into the space 

previously occupied by tumor, resulting in slow release of drug precisely in the region of 

persisting malignant cells (Fleming and Saltzman 2002).  Ongoing studies are focused on the 

development of a cytochrome c mimetic that could be delivered in such a manner to eliminate 

brain tumor cells without harming surrounding neural tissue. 

 

E. Material and Methods 

Cell culture and microinjection 
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Primary neurons from the dorsal root ganglion and the cerebellum were cultured as 

described (Miller and Johnson 1996; Molliver, Wright et al. 1997).  SH-SY5Y neuroblastoma 

cells (gift from Dr. Daniel Sanchis, Universitat de Lleida, Spain) were maintained in a 1:1 

mixture of DMEM and Ham’s F12 supplemented with 10% FBS.  Glioblastoma lines, MGR1and 

MGR3 (gifts from Dr. Francis Ali-Osman, Duke University), were maintained in low glucose 

DMEM supplemented with 10% FBS.  Medulloblastoma lines UW228 (gift from Dr. John Silber, 

University of Washington) and MCD1 (gift from Dr. William Freed, NIH) were maintained in 

DMEM supplemented with non-essential amino acids, L-glutamine, and 10% FBS.  Remaining 

glioblastoma and medulloblastoma lines were obtained from the Duke University Preston Robert 

Tisch Brain Tumor Center and maintained in RPMI 1640 supplemented with 10% FBS.  Sensory 

neurons from the dorsal root ganglion were microinjected using 10µg/µl cytochrome c as 

described (Wright, Linhoff et al. 2004).  The microinjection solution contained 100mM KCl, 

10mM KPi, pH 7.4, and 4mg/ml rhodamine dextran to mark injected cells.  Cell viability was 

determined by counting rhodamine-positive cells with intact, phase-bright cell bodies.   

Extract preparation 

Cytosolic extracts from cultured neurons were prepared as previously described (Wright, 

Linhoff et al. 2004).  Brain tumor cell lines, xenograft tumors and human cortical tissues were 

harvested, washed with cold PBS, and pelleted. Pellets were resuspended in hypotonic lysis 

buffer (20 mM HEPES [pH 7.5], 10 mM KCl, 1.5 mM MgCl2, 1 mM EDTA, 1 mM EGTA, 1 

mM dithiothreitol [DTT], 1 mM phenylmethylsulfonyl fluoride [PMSF], 5 µg/mL leupeptin, 5 

µg/mL aprotinin) with 250mM sucrose, and incubated for 15 minutes on ice.  Tissues were 

homogenized using a 0.5mL Bellco glass homogenizer, centrifuged for 30 min at 14,000 rpm 

(Eppendorf 5415C) at 4°C and the supernatant preserved as extract. Extracts were quantitated 
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using the Bradford method.  Xenograft tumors, human cortical tissue, and high grade gliomas 

were a gift of the Tisch Brain Tumor Center at Duke University.  Tissues were diced on ice into 

1mm3 pieces and extracts were prepared as above.  Medulloblastoma tumor cells were isolated 

for RT-PCR as described (Oliver, Read et al. 2005). 

Caspase assays 

Assays were performed as described (Wright, Linhoff et al. 2004; Schafer, Parrish et al. 

2006).  In brief, extracts were incubated with 10µM of either mammalian or yeast cytochrome c  

and 1mM dATP at 37°C for 30min before addition of the fluorogenic substrate, Ac-DEVD-afc 

(Biomol).  Alternatively, extracts alone or with 8µM cytochrome c were incubated as above 

before addition of the colorimetric substrate Ac-DEVD-pNA (Biomol).   

Immunoblotting  

Antibodies used include: anti-caspase-9 (M0543; MBL International Corporation and 

9504; Cell Signaling), anti-procaspase 3 (9665; Cell Signaling), anti-Apaf-1(13F11 and 2E12; 

Alexis), anti-p53 (DO1, Santa Cruz), anti-E2F1 (C-20, Santa Cruz), anti-α-tubulin (T9026; 

Sigma), anti-β-actin (A5316; Sigma).  Either Alexa Flour secondary antibodies were used with 

the LI-Cor Odyssey IR Imaging System or HRP-conjugated secondary antibodies (Pierce 

Chemical Co.) along with ECL-Plus detection system (Amersham Biosciences).  Protein array of 

human astrocytomas was from BioChain Institute (A1235713-1). 

Real Time RT-PCR 

RNA was isolated using the small scale RNAqueous Kit and treated with DNAse I 

(Ambion). For RT-PCR, first-strand cDNA was synthesized with an oligo-dT primer by adding 
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~300�g RNA with SuperScript III Reverse Transciptase (Invitrogen).  Real-time PCR was 

performed using iQ SYBR Green Supermix (BioRad), 10�M forward and reverse primers 

(sequences available upon request), and 5ng of cDNA.  Real-time quantitation was performed 

using a BioRad iCycler iQ System (BioRad).  Data was normalized to β 2-microglobulin, and 

fold change was determined using the 2-��CT method (Livak and Schmittgen 2001).  For RT-

PCR agarose gel analysis, reactions performed as above except with iQ Supermix.  

Oncomine microarray data analysis 

Three independent gene profiling studies (Freije, Castro-Vargas et al. 2004; Phillips, 

Kharbanda et al. 2006; Sun, Hui et al. 2006) publicly available on the Oncomine Cancer 

Profiling Database (www.oncomine.org) were used to investigate Apaf-1 mRNA levels.  The 

resulting data were analyzed as described by Turley et al. (Turley, Finger et al. 2007).  Briefly, 

the mean Apaf-1 expression and the SD were calculated for each study.  Differences in Apaf-1 

expression between epileptic patient brain and glioblastoma were displayed using a standard box 

and whisker plot.  For data from the other two studies (Freije, Castro-Vargas et al. 2004; Phillips, 

Kharbanda et al. 2006), we calculated the standard difference in means of Apaf-1 mRNA 

expression between grade III and grade IV astrocytomas using the statistical program, 

Comprehensive Meta-analysis (Biostat, Inc.).  

Chromatin Immunoprecipitation Assay 

ChIP was performed using the EpiQuik Tissue Chromatin Immunoprecipitation Kit 

(Epigentek, P-2003).  DNA was purified using QIAquick PCR purification kit (Qiagen), and 

PCR was performed using iQ Supermix (BioRad).  Approximately 2% of the input chromatin 
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and 7% of the ChIP samples were used as template in each case (primer sequences available 

upon request).  Amplicons were visualized with ethidium bromide in 2.5% agarose gels.  
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Figure 2.1 Cytochrome c is incapable of activating caspases and inducing apoptosis in 

mature neurons.  A, E16 and P3 neurons from dorsal root ganglia (DRG) were microinjected 

with 10 µg/µL cytochrome c and rhodamine dextran (for visualization).  Data shown are 

neuronal survival at times after injection and are mean ± SEM of three independent experiments.  

In corresponding images, arrows indicate microinjected cells.  Cytosolic lysates from cerebellar 

granule neurons (CGN) (B) and whole cortex (CTX) (C), at early and late stages of neuronal 

maturation were assessed for caspase activation after the addition of 10µM cytochrome c.  

Caspase activation was monitored via cleavage of DEVD-afc.  Yeast cytochrome c, which 

cannot bind Apaf-1 (8), was added to extracts as a negative control.  D, Immunoblotting shows 

protein levels of Apaf-1, caspase-9 and caspase-3 in DRG, CGN and whole cortex at early and 

late stages of neuronal differentiation.  
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Figure 2.1 
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Figure 2.2 Brain cancer cells are hypersensitive to cytochrome c-induced apoptosis. A, 

Protein levels of Apaf-1, caspase-9 and caspase-3 were examined in human brain tumor cell lines 

by immunoblotting.  SY5Y: neuroblastoma; UW228, D341MED and MCD1: medulloblastoma; 

MGR3, MGR1, D54MG, D247MG and H392: glioblastoma,  B, Extracts from human brain 

tumor cell lines or mouse neural tissue were supplemented with 8µM cytochrome c.  Caspase 

activation was monitored via cleavage of Ac-DEVD-pNA.  Data shown are mean ± SEM of 

three independent experiments.  mCtx: mouse cortex; mCer: mouse cerebellum.  C, Extracts 

from human non-neoplastic temporal cortex and xenograft tumors were assessed for their ability 

to activate caspases as in (A).  U87MG and D54MG: adult glioma; H2159MG and D456MG: 

pediatric glioma; D341MED: medulloblastoma; EP528 and EP612: ependymoma.  
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Figure 2.2 
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Figure 2.3: Brain tumors from mouse models of high-grade astrocytoma and 

medulloblastoma display sensitivity to cytochrome c-mediated apoptosis.  A and B, Extracts, 

prepared from tumor tissues and adjacent neural tissues of two brain tumor mouse models, high-

grade astrocytoma (A) and medulloblastoma (B), were supplemented with cytochrome c and 

caspase activation was monitored.  C, Immunoblotting shows caspase-9 cleavage in extracts 

treated in (A) and (B). Astro.: Astrocytoma; Adj. Cer.: adjacent cerebellum.  
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Figure 2.3 
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Figure 2.4: A marked increase in Apaf-1 causes the increased sensitivity of brain tumor 

tissues to cytochrome c-mediated apoptosis.  A, Immunoblots demonstrating Apaf-1 protein 

levels in high-grade astrocytoma (Astro.) and medulloblastoma (Med.) relative to their respective 

adjacent neural tissue (Cer.: cerebellum).  Quantitation of Apaf-1 (mean ± SEM of three 

independent experiments) is shown.  B, Caspase activation in extracts from mouse cortex, 

cerebellum and P19 CGNs were assessed in the presence of no cytochrome c, 8µM cytochrome c, 

or 8µM cytochrome c along with 1µg of recombinant Apaf-1.  C,   In vitro assay assessing 

caspase activation in mouse cortical extracts when IAPs were inactivated (by Smac addition) or 

when XIAP was genetically removed (XIAP-/-).  D, Immunoblots showing relative Apaf-1 levels 

in human cortex (Ctx) versus four samples of high-grade gliomas, as well as E, caspase 

activation assay on human cortical extracts in the presence of no cytochrome c, 8µM cytochrome 

c, or 8µM cytochrome c along with 1µg of recombinant, Apaf-1.  
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Figure 2.4 
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Figure 2.5 Transcriptional regulation of Apaf-1 mRNA levels contributed by E2F1  

A, Quantitative analysis from RT-PCR shows the fold changes of Apaf-1 mRNA from dissected 

medulloblastoma and adjacent cerebellar tissues.  Cells isolated from medulloblastoma tumor 

(Med.) were compared with normal P7 and adult cerebellar tissue.  Data display the fold changes 

of Apaf-1 mRNA relative to normal P7 cerebellum, which is arbitrarily set as 1, and a 

corresponding agarose gel is shown for the PCR. B, Oncomine analysis of three independent 

gene profiling studies, with data from Sun et al. (Sun, Hui et al. 2006) used to compare Apaf-1 

mRNA expression levels in brain from epilepsy patients and in glioblastoma (*, p < 0.0001, 

independent two-tailed t test), and with data from Phillips et al. (Phillips, Kharbanda et al. 2006) 

and Freije et al. (Freije, Castro-Vargas et al. 2004) analyzed using the Comprehensive Meta-

analysis software to plot the standard difference in means along with the 95% confidence 

intervals for Apaf-1 mRNA in Grade III Astrocytoma (corresponds to 0 on the X-axis) compared 

with Glioblastoma (positive values indicate an increase in Apaf-1 expression in glioblastoma 

versus grade III astrocytoma). C, A human tissue dot blot with duplicated samples demonstrates 

Apaf-1 levels in grade II astrocytoma and glioblastoma.  Areas within the white circles represent 

sample location.  D, Immunoblotting shows levels of E2F1 and p53 in brain tumor tissues versus 

adjacent brain tissue from mouse models of medulloblastoma and high-grade astrocytoma.  E, 

Chromatin immunoprecipitation (ChIP) assay demonstrates E2F1 asssociation with Apaf-1 

promoter in human glioblastoma cell line, MGR3, and in mouse medulloblastoma tissue. 
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Figure 2.5 

 



CHAPTER THREE: 

Lack of XIAP Confers Vulnerability to Neurons 
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A. Introduction 

Most studies on the regulation of apoptosis have been explored in mitotic cell lines.  Only 

recently has there been an appreciation to utilize primary cells to discover how this intricate 

apoptotic pathway can be modulated in different cell types (Deckwerth and Johnson 1993; 

Deshmukh and Johnson 1997; Tanabe, Eguchi et al. 1998; Contestabile 2002; Kitsis and Mann 

2005).  In particular, neurons, cardiomyocytes and myotubes – cells of postmitotic nature – are 

more accurately depicted by primary cell cultures, rather than immortalized cell lines that remain 

in the cell cycle and continue to proliferate.  Recent studies with primary cultures have pointed to 

differences in apoptosis regulation between postmitotic and mitotic cells (Koseki, Inohara et al. 

1998; Deshmukh, Kuida et al. 2000; Wright, Linhoff et al. 2004).  For example, a more stringent 

regulation of apoptosis is imposed in developed postmitotic neurons as compared to immature 

neurons.  This increased restriction observed in mature, terminally differentiated neurons is 

beneficial as these cells have limited regenerative capacity and need to last a lifetime of an 

organism.   

In all cells, the crucial mediators of apoptosis are caspases, a family of cysteine aspartate 

proteases (Cohen 1997; Degterev, Boyce et al. 2003).  When a mammalian cell receives an 

apoptotic signal and is committed to die, the integrity of mitochondria is lost and cytochrome c, a 

protein that resides in the mitochondrial intermembrane space, is released into the cytosol to 

trigger a downstream cascade that leads to caspase activation.  Cytochrome c once in the cytosol 

binds to its adaptor protein, Apaf-1 and forms a multimeric complex termed the apoptosome.  

Procaspase-9 is then recruited to the apoptosome and thus facilitates its autoactivation.  

Activated caspase-9 in turn can cleave and activate procaspase-3 and procaspase-7, which cleave 

various cellular proteins that ultimately lead to cell demise (Danial and Korsmeyer 2004).   
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Mitotic cells, such as fibroblasts, HEK293 and HeLa, die rapidly when cytochrome c is 

introduced in the cytosol, as cytochrome c serves as an initiating factor to induce the 

apoptosome-mediated apoptotic pathway (Liu, Kim et al. 1996; Li, Srinivasan et al. 1997).  

Surprisingly however, postmitotic sympathetic neurons in culture are remarkably resistant to 

microinjected cytosolic cytochrome c (Wright, Linhoff et al. 2004).  This differential sensitivity 

to cytochrome c-mediated death between mitotic cells and postmitotic neurons is attributed to the 

increased effectiveness of endogenous X-linked inhibitor of apoptosis protein (XIAP) in 

postmitotic neurons (Potts, Singh et al. 2003).  Therefore, to induce death in primary cultures of 

neurons, not only is the release of cytochrome c required, but the XIAP inhibition on caspases 

also needs to be overcome.    

XIAP belongs to the IAP family, which also includes cIAP-1, cIAP-2, and more distant 

members of NAIP, ILP2, ML-IAP, Survivin and Bruce (Salvesen and Duckett 2002).  Despite 

being ubiquitously expressed in all tissue, the importance of endogenous XIAP in restricting 

cytochrome c-dependent apoptosis has been demonstrated only in cultures of postmitotic cell 

types, such as sympathetic neurons, cardiomyocytes and myotubes (Potts, Singh et al. 2003; 

Potts, Vaughn et al. 2005; Smith, Huang et al. 2009).  While enthusiasm of endogenous XIAP 

playing a crucial role in vivo is challenged by the fact that XIAP knockout mice display no 

apparent phenotype (Harlin, Reffey et al. 2001),this is not unexpected based on our hypothesis 

that XIAP functions as a safety break that prevents caspases from being activated if accidental 

mitochondrial damage results in the release of cytochrome c.  Thus, the genetic deletion of XIAP 

alone is indeed not anticipated to exhibit a phenotype.  A prediction of our hypothesis is that 

XIAP deficiency would make neurons more vulnerable to mitochondrial insults that 

inadvertently causes release of cytochrome c.   
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To test our hypothesis, we examine the survival and functionality of postmitotic neurons 

in the presence and absence of XIAP under a mitochondrial damaging insult of mutant Cu/Zn 

superoxide dismutase (SOD1) expression in vitro and in vivo.  Mutations in SOD1 are associated 

with familial amyotrophic lateral sclerosis (fALS), a fatal paralytic condition due to a 

progressive loss of spinal cord motor neurons (Rosen 1993).  The exact mechanism of how 

mutant SOD1 causes the disease remains elusive; though it is proposed that mutant SOD1 has a 

gain-of-function property (Cluskey and Ramsden 2001; Boillee, Vande Velde et al. 2006).  Our 

rationale for using the SOD1 G93A transgenic mice as an animal model in this study was based on 

the fact that mitochondrial damage and cytochrome c release are observed in this model of 

neurodegeneration  (Dal Canto and Gurney 1994; Wong, Pardo et al. 1995; Kong and Xu 1998; 

Guegan, Vila et al. 2001; Xu, Jung et al. 2004).  In addition, cytochrome c translocation from the 

mitochondria to the cytosol of spinal cord is reported to occur well before any detection of 

activated caspases and development of symptoms.  These results suggest that XIAP may play a 

critical role in restricting activation of apoptosis in young, asymptomatic SOD1 G93A transgenic 

(Tg) mice.  Furthermore, the relative ease of examining symptoms of hindlimb paralysis in 

SOD1 G93A-Tg mice using simple, straightforward behavioral tests facilitates our analysis of 

results.   

Consistent with the results that XIAP serves as a safety brake in cultured sympathetic 

neurons, we find that XIAP-deficient neurons are indeed more vulnerable than wildtype neurons 

to mutant SOD1-induced death in cell culture, and, most importantly in the animal model.  

Behavioral studies showed that XIAP-deficient, SOD1 G93A mice developed symptoms earlier, 

and with more severity than in the SOD1 G93A transgenic mice alone.  These findings are the first 

to show an important role of XIAP in vivo and identify its function as a safety brake in the 
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apoptotic pathway that becomes engaged under stress condition when there is accidental 

cytochrome c release to prevent unwanted caspase activation.  Together, these results show that 

the loss of XIAP can be a risk factor that would increase susceptibility to neurodegenerative 

diseases that exhibit mitochondria disruption and cytochrome c release.  

 

B. Result 

XIAP-deficient sympathetic neurons undergo normal development apoptosis 

Mice deficient in XIAP are born with no gross phenotypic abnormalities and live a 

normal lifespan (Harlin, Reffey et al. 2001).  However, XIAP-deficient sympathetic neurons in 

culture (equivalent of postnatal day 5-7; P5-7) are reported to be more susceptible to cytochrome 

c-induced cell death compared to their wildtype (WT) counterpart (Wright, Linhoff et al. 2004).  

To examine more closely whether a lack of XIAP influences the normal developmental 

programmed cell death (PCD) of sympathetic neurons in vivo, we evaluated neuronal counts of 

the superior cervical ganglia (SCG) from either WT or XIAP knockout mice at P6-7.  

Developmental PCD occurs at different time points for different subpopulations of neurons, 

therefore, it is important to evaluate neuronal numbers at a time when the normal PCD is near 

completion to accurately assess the process.  In rodents, sympathetic neurons in the SCG, 

undergo significant decline in neuronal numbers during the first postnatal week (Oppenheim 

1991). We found that SCG neuronal counts in WT and XIAP-deficient mice were not 

significantly different (Figure 3.1), suggesting that XIAP deficiency does not affect the extent of 

PCD during sympathetic neuronal development.  This finding is consistent with our previous 
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report that WT and XIAP-deficient sympathetic neurons in culture show no difference in the 

extent or kinetics of death after trophic factor withdrawal (Potts, Singh et al. 2003).  

 

XIAP-deficient neurons are more vulnerable to mutant SOD1-induced death 

Unlike mitotic cells, sympathetic neurons are remarkably resistant to microinjection of 

cytosolic cytochrome c due to the strict inhibition of caspases by XIAP in neurons.  In contrast to 

wildtype neurons, the XIAP-deficient neurons are sensitive to cytosolic cytochrome c 

microinjection (Potts, Singh et al. 2003).  To test whether XIAP deficiency also confers 

vulnerability to neurons that encounter a mitochondrial damaging insult, we microinjected a 

plasmid containing a human mutation of G93A SOD1 (SOD1G93A) along with a GFP plasmid 

into WT and XIAP-deficient P4-5 sympathetic neurons.  Mutant SOD1G93A was chosen for the 

initial evaluation in vitro, as these data would complement the later animal studies with 

SOD1G93A transgenic mice.  Whereas 60% of WT neurons survive from the expression of 

SOD1G93A, the XIAP-deficient neurons showed only approximately 36% survival rate at 72 

hours after microinjection (Figure 3.2A).  Likewise, A4V mutant SOD1, a fALS-associated 

mutation that causes the most aggressive clinical progression in human patients, was also seen to 

induce a more significant death in XIAP-deficient neurons than in WT neurons (Figure 3.2B).    

To validate that the mutant SOD1-induced death is mediated through the apoptotic 

pathway, we further examine the immunostaining pattern of cytochrome c in sympathetic 

neurons injected with SOD1G93A in the presence of a caspase-inhibitor, Q-VD-OPH.  We find 

that cytochrome c staining is absence in sympathetic neurons expressing SOD1G93A while normal 

neurons exhibit the distinct mitochondrial pattern of cytochrome c staining with high intensity 
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(Figure 3.2C).  These results indicate that, as anticipated, SOD1G93A expression caused the 

translocation of cytochrome c from the mitochondria to the cytosol in sympathetic neurons.  

Together, these results show that an absence of the XIAP safety brake through genetic deletion 

indeed renders neurons more susceptible to mutant SOD1-induced apoptotic death.   

 

XIAP deficiency alone does not affect developmental apoptosis of lumbar motor neurons 

and its functionality at older age 

Our results show that XIAP-deficient neurons in culture are more sensitive to mutant 

SOD1-induced death.  To examine whether XIAP deficiency also makes neurons more 

vulnerable to neurodegeneration in vivo, we crossed the SOD1G93A transgenic mice with the 

XIAP-deficient mice and examined the outcome of SOD1G93A expression in WT or XIAP 

deficient background.  Transgenic mice expressing SOD1G93A has been widely studied and 

characterized as a mouse model of ALS.  These mice progressively show motor deficit of 

hindlimb paralysis (Weydt, Hong et al. 2003).  In order to eliminate potential cofounding factor 

of XIAP deficiency alone having an effect on the development of lumbar motor neuron (MN), 

which innervates the hind limbs, we first investigated lumbar MN counts after developmental 

PCD in WT and XIAP-deficient mice.  Nissl-stained lumbar MNs from WT and XIAP-deficient 

mice at P6-7, a time well after the normal developmental PCD in lumbar MNs, which occurs 

during late embryonic period (Oppenheim 1986), did not show a difference in cell numbers 

(Figure 3.3A).  This result indicate that the lack of XIAP alone does not affect lumbar motor 

neuron developmental PCD, as in the case of sympathetic neurons.  
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Despite the fact that no behavioral phenotype was noted in the initial characterization of 

XIAP-deficient mice (Harlin, Reffey et al. 2001), we wanted to confirm that the absence of 

XIAP alone, without any additional stress stimulus, would also not cause any motor deficits at an 

older age when SOD1G93A transgenic mice demonstrated motor symptoms.  Indeed, XIAP-

deficient mice around 20 weeks of age show no difference in their ability of motor coordination 

compared to the WT mice as the time for the two genotypes of mice to remain on the 

accelerating rotarod were similar (Figure 3.3B).  Furthermore, in assessing for paw grip strength, 

both WT and XIAP-deficient mice were capable of holding onto the metal cage bar against 

gravity, as the measurement of latency to fall in the 60-second-trial show similar result with no 

statistical difference (Figure 3.3C).  Together, these data illustrated that XIAP deficiency alone 

did not induce any changes in the developmental PCD of lumbar MNs and no deficits in motor 

functions were observed.  

 

XIAP-deficiency confers an early onset and more severe neurodegenerative symptoms in 

SOD1G93A transgenic mice  

To test the hypothesis that XIAP deficiency would make neurons more vulnerable to a 

mitochondrial damaging insult in an animal model, we generated SOD1G93A transgenic animals 

in WT and XIAP-deficient genetic background.  With XIAP being on the X chromosome, we 

crossed female XIAP heterozygous (XIAP+/-) with male SOD1G93A transgenic (Tg) mice to 

obtain offspring with the desirable phenotypes of SOD1G93A-Tg and XIAP-deficient/ SOD1G93A-

Tg.  Wildtype animals were used as internal controls.  There was no difference between the 

survival of XIAP-deficient/ SOD1G93A-Tg and SOD1G93A-Tg mice (Supplemental Figure 3.1).  
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 To gain a comprehensive view of the disease progression, mice of the three genotypes 

were assessed weekly starting at 10 weeks of age for their motor function.  In the accelerating 

rotarod test, XIAP-deficient/ SOD1G93A-Tg mice displayed a significant, earlier onset of motor 

coordination deficit starting at 17 weeks of age, a time when the SOD1G93A-Tg or WT mice 

exhibited no phenotype (Figure 3.4A).  Moreover, between 17-19 weeks, XIAP-deficient/ 

SOD1G93A-Tg mice showed a more severe phenotype than SOD1G93A-Tg mice.  The rate of 

disease progression was however similar between the two groups.  Beyond 20 weeks of age, 

there was no significant difference in rotarod performance between SOD1G93A-Tg mice in either 

WT or XIAP-deficient background.  This lack of difference in the performance between XIAP-

deficient/ SOD1G93A-Tg mice and SOD1G93A-Tg mice beyond 20 weeks of age could be due to 

the decreased XIAP level in the spinal cord of SOD1G93A-Tg mice (Supplemental Figure 3.2), 

thus allowing motor neuron death.   

A similar trend was observed in the wire hang test when assessing the paw grip strength 

of these animals (Figure 3.4B).  At 17 weeks of age, XIAP-deficient/SOD1G93A-Tg mice showed 

an early decline in their ability to grip onto the metal bar to prevent themselves from falling from 

the grid.  During 18-19 weeks, XIAP-deficient/SOD1G93A-Tg mice continued to demonstrate a 

significant incapability in the wire hang test compared to the SOD1G93A-Tg mice.  However, 

measurements past 20 weeks of age showed comparable impairment in both groups.  Together, 

these behavioral experiments demonstrated that a XIAP deficient background indeed renders 

SOD1G93A-Tg mice more susceptible to the development of disease symptoms, as XIAP-

deficient/ SOD1G93A-Tg mice exhibited motor defects that was more severe and appeared earlier 

than seen in the SOD1G93A-Tg mice.  
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A polymorphism of XIAP found in humans exhibits differential ability to inhibit 

cytochrome c-mediated death 

 A prediction based on our animal studies, is that any polymorphisms in XIAP that 

reduces its ability to inhibit caspases could be a potential risk factor that increases sensitivity to 

neurodegenerative diseases.  In searching through the Single Nucleotide Polymorphism (SNP) 

database, we found that a glutamine to proline change at the amino acid residue 423 (listed in 

dbSNP as rs5956583) of XIAP has been reported in humans to occur at a high frequency (40%).  

To test whether this particular amino acid change has an effect on the anti-apoptotic function of 

XIAP, we generated the XIAP variants of 423Q and 423P, introduced these into XIAP-deficient 

neurons, and assessed for the sensitivity of these neurons to undergo cytochrome c -mediated 

death.   

Previous data showed that restoring wild type XIAP is capable of rescuing XIAP-

deficient sympathetic neurons from cytochrome c-mediated death.  However, these experiments 

were conducted with relatively high levels of XIAP expressing plasmid (200 ng/µl) (Potts, Singh 

et al. 2003).  To allow for the detection of any subtle differences between these two XIAP 

variants in their ability to inhibit caspases, we injected the XIAP expressing plasmids into 

neurons at low concentration (2 ng/µl).  Our results show that the 423Q variant of XIAP was 

able to protect XIAP-deficient neurons to cytosolic microinjection of cytochrome c when 

compared to GFP expressing plasmid as a control (Figure 3.5A).  40.3% of cells survived after 3 

hours of cytochrome c injection in the 423Q variant of XIAP expressed condition as compared to 

a 13.3% of cell survival in GFP expressed condition.  In contrast, the 423P variant of XIAP, was 

incapable of rescuing XIAP-deficient sympathetic neurons from cytochrome c-mediated death at 

these concentrations, as only a 13.1% of cell survival was observed (Figure 3.5A).  
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Correspondingly, XIAP-deficient neurons expressing the 423Q variant of XIAP exhibit phase-

bright, intact cell membrane 3 hours after cytochrome c injection while those with 423P XIAP 

expression displayed a distended cellular membrane and loss of contrast in the phase photo 

(Figure 3.5B).  Together, these results show that the naturally occurring polymorphism at amino 

acid 423 in XIAP exhibits a differential capability of regulating cytochrome c-mediated 

apoptosis, and thus has the potential to be a risk factor for increased susceptibility to 

neurodegenerative diseases in humans. 

 

C. Discussion 

Our lab had previously shown that sympathetic neurons are remarkably resistant to 

cytosolic cytochrome c microinjection, and only upon the removal of XIAP through either 

genetic deletion or addition of exogenous Smac protein (an inhibitor of IAPs) can cytosolic 

cytochrome c then be capable of inducing cell death in these neurons (Potts, Singh et al. 2003).  

This established the importance of endogenous XIAP in providing a stringent regulation of 

apoptosis in neurons, a feature that is arguably beneficial to these postmitotic cells as they have 

limited proliferative potential and are needed to last for a lifetime of an organism.  Therefore, in 

mammalian neurons, caspase activation requires not only the induction of cytochrome c release 

but also the relief of XIAP inhibition; having either one alone being insufficient to cause 

apoptosis.  XIAP is therefore anticipated to be engaged as a safety brake in neurons to protect 

against any accidental caspase activation if cytochrome c is unexpectedly released into the 

cytosol from any mitochondrial damage.  
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In this study, we showed that neurons lacking the XIAP brake indeed become more 

vulnerable to the toxic stimulus of mutant SOD1 expression that causes mitochondrial damage 

and cytochrome c release (Figure 3.2).  Importantly, our in vivo studies of WT and XIAP-

deficient mice stressed by SOD1G93A-Tg expression also showed that a lack of XIAP confers 

vulnerability to the pathological insult (Figure 3.4).  The SOD1G93A-Tg mouse model of ALS has 

been extensively characterized and studies have shown that the neuronal dysfunction and death 

observed in the SOD1G93A-Tg mouse model are in part due to the activation of the intrinsic 

apoptotic pathway.  Interestingly, early vacuolization and mitochondrial damage in motor 

neurons of SOD1G93A-Tg mice are observed well before the onset of disease and any activation 

of apoptosis (Dal Canto and Gurney 1994; Wong, Pardo et al. 1995; Kong and Xu 1998; Guegan, 

Vila et al. 2001; Xu, Jung et al. 2004).  Corresponding to the early observation of mitochondrial 

alteration, cytochrome c was also shown to be released from the mitochondria into the cytosol.  

Activation of caspases and features of apoptosis, however, were observed only during the late 

stage of the disease (Guegan, Vila et al. 2001; Tun, Guo et al. 2007).  This discrepancy between 

early mitochondrial dysfunction with the release of cytochrome c and late involvement of 

caspase activation made the SOD1G93A-Tg mice an excellent model to test the role of 

endogenous XIAP in vivo.  Here we found that SOD1G93A-Tg mice in a XIAP-deficient 

background exhibited an early decline in motor function and continued to show a more severe 

phenotype as compared to SOD1G93A-Tg mice in a WT background (Figure 3.4A, B).   

Despite the strict inhibition of caspases by XIAP, apoptosis does occur in neurons during 

developmental periods and under pathological insults. Under these conditions when neurons 

become committed to die, the function of XIAP appears to be inhibited to allow for an apoptotic 

death.  There are several ways by which the effectiveness of XIAP inhibition on caspases can be 
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diminished.  First, the levels of functional XIAP can be decreased through its transcriptional 

downregulation and/or degradation (Perrelet, Perrin et al. 2004; Tun, Guo et al. 2007).  In a 

physiological setting, the withdrawal of tropic factor can cause a decrease in XIAP mRNA level 

to allow for apoptosome-mediated caspase activation as seen in the development of sympathetic 

neurons (Potts, Singh et al. 2003).  Recently, S-nitrosylation of XIAP was shown to be another 

way by which XIAP activity could be inhibited  (Tsang, Lee et al. 2009).  Lastly, a high ratio of 

Apaf-1 to XIAP can also overcome the XIAP brake, as high levels of Apaf-1 result in robust 

apoptosome formation and increase caspase activation that cannot be successfully inhibited by 

XIAP (Wright, Linhoff et al. 2004).  In the case of fALS-associated SOD1G93A-Tg mice, XIAP is 

reported to be cleaved or reduced in levels at the end stage of disease when caspase activation is 

seen concomitantly (Ishigaki, Liang et al. 2002; Tokuda, Ono et al. 2007). In this study, we 

showed that, at the end stage of disease, the level of XIAP protein in the spinal cord is indeed 

decreased (Supplemental Figure 3.2).  Intriguingly, we also found Apaf-1 protein levels to be 

elevated in spinal cord at the late stage of SOD1G93A-Tg mice compared to age-matched WT 

mice (Supplemental Figure 3.2).  The increase in Apaf-1 and the decrease in XIAP together 

would tilt the Apaf-1: XIAP ratio more significantly favoring apoptosis to occur in these mice.  

Additionally, the reactivation of Apaf-1 in SOD1G93A-Tg mice during the late stage suggests that 

there is indeed sufficient Apaf-1 for these mature neurons to undergo apoptosis as mature 

neurons otherwise have been shown to be incapable of activating caspases even with the removal 

of XIAP because of restricted Apaf-1 expression (Wright, Smith et al. 2007).  

Although we used the ALS mouse model here to demonstrate an important function of 

XIAP for neuroprotection, XIAP deficiency could be a risk factor of other neurological 

pathologies as well.  For example, in human patients with Parkinson’s disease (PD), XIAP is 
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shown to be S-nitrosylated, which affects its ability to inhibit caspases (Tsang, Lee et al. 2009).  

Nitrosative stress that impairs the function of the prosurvival XIAP protein partly contributes to 

PD pathogenesis, implicating that XIAP deficiency may be a risk factor that may accelerate the 

disease course of PD.  In addition to neurodegenerative diseases, a lack of XIAP has also been 

recently shown to increase apoptosis and tissue loss following neonatal brain injury of hypoxic 

ischemia.  Together, these studies and ours highlight the importance of XIAP in regulating 

activation of caspases in neurons in vivo. 

Our functional studies of an XIAP polymorphism at amino acid 423 showed that the 

423Q variant of XIAP is more capable of inhibiting cytochrome c-mediated death than the 423P 

variant (Figure 3.5).  One prediction of these results is that individuals more prone to 

neurodegenerative diseases may have a higher allelic frequency of 423P than 423Q in XIAP, 

because of the reduced capability of 423P to inhibit apoptosis.  Maintaining a delicate balance of 

XIAP’s effectiveness could be critical, as a decreased in XIAP activity can be a risk factor to 

neurodegenerative diseases.  However, excessive XIAP activity is also not favorable, as 

increased XIAP can inhibit apoptosis and facilitate tumorigenesis.  Therefore, we speculate that 

the polymorphism of XIAP at amino acid 423 may exist because of the evolutional pressure to 

strike a balance between increased or reduced XIAP activity to maintain homeostasis for 

optimum organismal survival.  

 

D. Material and Methods 

Immunoblotting  
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Western blots were performed as previously described (Potts, Singh et al. 2003).  Primary 

antibodies used include: anti-Apaf1 (Alexis); anti-XIAP (R&D); anti-α-tubulin (T9026; Sigma); 

anti-β-actin (A5316; Sigma).  HRP-conjugated secondary antibodies purchased from Pierce 

Chemical Co. were used along with ECL-Plus detection system (GE Healthcare).  Densitometry 

was performed using NIH ImageJ software and normalized to the levels of a loading control 

protein on the representative Western blot. 

Primary sympathetic neuron cultures  

Primary sympathetic neurons from the superior cervical ganglia were dissected out from P0-1 

neonatal XIAP-deficient mice and WT littermates.  Ganglia were treated with 1mg/ml 

collagenase and 2.5mg/ml trypsin for 30 minutes respectively at37°C.  Afterwards, dissociation 

of cells was accomplished by passing superior cervical ganglia through a fire-polished glass 

pipet and the cells were then plated on rat tail collagen-coated 35mm culture dishes.  Cells were 

maintained in MEM with Earle’s alts supplemented with 50ng/ml NGF, 10% FBS, 2mM 

glutamine, 100U/ml penicillin, 100µg/ml streptomycin, 20µM flourodeoxyuridine, 20µM uridine 

and 3.3µg/ml aphidicolin. 

Microinjection and Quantitation of Cell Survival 

Microinjection of cells was done using a Narashigi micromanipulator mounted on a Leica 

inverted florescent microscope.  For DNA microinjection, twenty to fifty cells were injected in 

each experiment with 200ng/µl of the indicated plasmid and 50ng/µl enhanced GFP (Clontech).  

Only in situation specifically listed, the low concentration (2ng/µl) of plasmid was used.  The 

microinjection buffer contains 100mM KCL, 10mM KPi, pH 7.4.   Cells were injected and 

allowed to express the plasmid DNA for 12 hours prior to experimentation.  Cell survival was 
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evaluated by counting clearly identifiable cells with intact morphology.  Surviving cells in 

culture were counted at the indicated times and expressed as a percentage of the number of cells 

assessed at the designated 0 hr, which would be 12 hours after DNA microinjection and 

immediately after protein injection.  This method of assessing survival correlates well with other 

cell survival assays such as trypan blue exclusion and staining with calcein AM (Potts, Singh et 

al. 2003). 

Animals 

 SOD1G93A-Tg mice were obtained from the Jackson Laboratory (Bar Harbor, ME) and XIAP 

knockout mice were a gift from Dr. Craig Thompson (University of Pennsylvania).   Because 

XIAP is a X chromosome-linked gene, to generate littermates of WT, SOD1G93A-Tg and XIAP-

deficient/ SOD1G93A-Tg animals, XIAP+/- females were crossed with SOD1G93A-Tg males.  

Genotypes of all animals were confirmed with PCR.  All procedures for generating the tissues 

used in this study were approved by the Animal Care and Use Committees at UNC-CH and 

compiled with the National Institutes of Health Guidelines for the Care and Use of Laboratory 

Animals.  

Histology and neuron quantification  

P6-7 animals were anesthetized by hypothermia followed by perfusion with Bouin’s solution.  

The body without internal organs were immersed in Bouin’s solution for several days and 

processed for paraffin sectioning.  Procedures were similar for adult mice but anesthesia was 

performed using Avertin at 250mg/g body weight of the mice.   Serial transverse sections (6-8um) 

were obtained from postnatal and adult mice, stained with either hematoxylin-eosin H&E) or 

thionin.  Neurons were counted blind in every 10th section for both lumbar spinal cord and 
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superior cervical ganglia using a method previously validated against a stereological optical 

dissector method (Clarke and Oppenheim 1995). 

Mice Behavioral Testing 

Mice were tested on an accelerating rotarod (Ugo Basile, Stoelting Co., Wood Dale, IL) to assess 

for motor coordination.  Revolutions per minute (Rpm) was initially set at 3 and progressively 

increased to a maximum of 30rpm at the end of a 5-min-trial.  Mice were first given 3 training 

trials with 45 seconds between each trial at the age of 5-6 weeks and then were tested weekly.  

Latency to fall or invert off from the top of the rotating barrel were recorded.  Those mice that 

were unable to stay on the rotarod for at least 120 second during the test trial were given a 

second trial and the longest latency from two trials per test session was taken.  To assess for paw 

grip strength, mice were placed on a large metal cage lid and the lid was gently shaken before a 

180-degree-inversion.  Latency for mice to lose the grip of the hindlimbs and to fall from the lid 

was measured.  A maximum trial length of 90 seconds was given to each mouse.  
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Figure 3.1 Developmental apoptosis occurs normally in sympathetic neurons of XIAP-

deficient mice 

Counts of Nissl-stained sympathetic neurons of the superior cervical ganglia (SCG) were 

obtained from P6-7 XIAP-deficient and wildtype (WT) mice.  Data shown are mean ± SD from 

animals of n≥4.   
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Figure 3.1 
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Figure 3.2 XIAP-deficient neurons are more vulnerable to SOD1-induced apoptosis  

XIAP-deficient and wildtype (WT) postnatal day 4 (P4) sympathetic neurons were injected with 

a plasmid expressing either G93A (A) or A4V (B) mutant form of SOD1 (200ng/µl) along with a 

plasmid expressing GFP (50ng/µl).  Twelve hours after injection, GFP expressing neurons were 

counted and the number was set as a hundred percent.  Cell survival was assessed seventy-two 

hours after injection.  Data plotted are means ± SD of three or more experiments.  C, The levels 

and localization of cytochrome c in G93A SOD1 expressing neuron were examined via 

immunofluorescence.  Arrow points to a G93A SOD1 expressing neuron that has no cytochrome 

c staining pattern while the arrowhead points to a GFP-expressing healthy, normal neuron which 

exhibits a typical mitochondrial staining pattern. 
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Figure 3.2 
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Figure 3.3 XIAP-deficient mice have normal developmental apoptosis in lumbar motor 

neurons and exhibit no motor symptoms 

A, Counts of Nissl-stained lumbar motor neurons (MNs) were obtained from P6-7 XIAP-

deficient and wildtype (WT) mice.  Data shown are mean ± SD from animals of n≥4.   Motor 

coordination (B) and paw grip strength (C) of XIAP-deficient and wildtype (WT) mice beyond 

20 weeks of age were assessed on an accelerating rotarod and a wire hang test, respectively.  B, 

Latency to fall or invert off from the top of the rotating barrel was recorded.  Mice which were 

unable to stay on the rotarod for at least 120 seconds were given a second trial and the longest 

latency from the two trials was taken.  C, Latency to fall from the inverted wire grid was 

recorded and the maximum trial length was 60 seconds.  Data shown are means (±SEM) for each 

group.   
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Figure 3.3 
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Figure 3.4 XIAP-deficiency confers an early onset and more severe neurodegenerative 

symptoms in SOD1G93A transgenic mice 

Motor coordination (A) and paw grip strength (B) of SOD1G93A transgenic mice in XIAP-

deficient and wildtype (WT) background from 10 weeks of age were assessed every week on an 

accelerating rotarod and a wire hang test, respectively.  Wildtype mice were also assessed as an 

internal control.  A, Latency to fall or invert off from the top of the rotating barrel was recorded.  

Mice which were unable to stay on the rotarod for at least 120 seconds were given a second trial 

and the longest latency from the two trials was taken.   B, Latency to fall from the inverted wire 

grid was recorded and the maximum trial length was 90 seconds.  Data shown are means (±SEM) 

for each group.  *p<0.05, comparison to wildtype group, **p<0.05, comparison to both other 

groups. 
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Figure 3.4 
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 Figure 3.5 A polymorphism of human XIAP at amino acid 423 has differential ability to 

inhibit cytochrome c-mediated death 

A, XIAP-deficient postnatal day 4 (P4) sympathetic neurons were injected with a plasmid 

expressing either 423Q XIAP or 423P XIAP (2ng/µl) along with a GFP plasmid (50ng/µl), or 

with a GFP plasmid alone.  Twenty-four hours after plasmid injection, 10mg/ml cytochrome c 

protein was injected into GFP expressing neurons.  Cell survival of GFP expressing neurons was 

assessed 3 hours after cytosolic cytochrome c injection.  Data shown are mean ± SD of three or 

more experiments.  Unpaired student t-test reported p<0.05 when comparing 423Q XIAP 

expressing neurons to either GFP expressing or 423P XIAP expressing neurons.  B, Arrow points 

to neurons expressing either 423Q or 423P XIAP and injected with cytochrome c.  Photographs 

were taken 3 hours after cytosolic cytochrome c microinjection. 
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Figure 3.5 
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Supplemental Figure 3.1 SOD1G93A transgenic mice in XIAP-deficient background show no 

difference in survival compared to SOD1G93A transgenic mice 

Kaplan-Meier survival curves of XIAP-deficient/SOD1G93A transgenic mice, SOD1G93A 

transgenic mice, and WT mice.   
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Supplement Figure 3.1 
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Supplemental Figure 3.2 A decrease of XIAP and an increase of Apaf-1 in spinal cord of 5-

month-old SOD1G93A transgenic mice 

Spinal cords from SOD1G93A transgenic mice and its wildtype littermate were collected at 1 or 5 

month of age.  Levels of XIAP and Apaf-1 proteins in spinal cord lysates were assessed via 

Western analysis.  β-actin serves as a loading control.   
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Supplement Figure 3.2 

 

 

   



IV. APPENDICES 

 

Appendix A: The Role of Endogenous Smac in Cardiomyocyte Apoptosis 

 

In this dissertation, I have examined the importance of XIAP in regulating neuronal 

apoptosis after the point of cytochrome c release.  In Chapter 3 in particular, I described and 

validated that XIAP acts as a safety mechanism to protect neurons from accidental cytochrome c 

release and unwanted caspase activation.  The effectiveness of endogenous XIAP in postmitotic 

neurons to stringently regulate their death is beneficial as these terminally differentiated cells 

cannot further proliferate in stressful situations and need to last for the lifetime of an organism.  

This idea of postmitotic neurons restricting their apoptotic pathway to ensure for long term 

survival led to the examination of whether other postmitotic cell types, such as cardiomyocytes 

and myotubes, also exhibit similar restriction to apoptosis.  Indeed, published work from our 

laboratory showed that despite the differences in morphology and functionality amongst neurons, 

cardiomyocytes and myotubes, these postmitotic cells all engage the XIAP safety brake and are 

resistant to cytochrome c-mediated death (Potts, Singh et al. 2003; Smith, Huang et al. 2009).  In 

this section, I describe experiments in which I examined whether endogenous Smac, shown to 

bind and inhibit IAPs in vitro, can overcome the XIAP-mediated postcytochrome c inhibition in 

cardiomyocytes.  

Smac was initially identified in mammalian cells as a protein that enhanced caspase 

activation in a biochemical assay (Du, Fang et al. 2000; Srinivasula, Datta et al. 2000), and was 

subsequently found to be a XIAP binding protein (Verhagen, Ekert et al. 2000).  The immature 

form of Smac protein is synthesized in the cytosol but then relocates to the mitochondria of 
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healthy cells via an N-terminal mitochondrial targeting sequence.  Processing of Smac protein 

occurs in the mitochondria, where the mitochondrial localizing sequence is cleaved off, exposing 

a new N-terminus with the first four amino acids being AVPI.  During an apoptotic insult, this 

mature form of Smac can be released from the mitochondria, along with other mitochondrial 

intermembrane proteins such as cytochrome c, and interact with XIAP in the cytosol.  In vitro 

studies have shown that the N-terminal AVPI can bind to XIAP and abrogate its ability to inhibit 

caspases (Liu, Sun et al. 2000).   

Although Smac is a potent inhibitor of XIAP in vitro, the role of endogenous Smac 

remains elusive.  In the three postmitotic cell types examined (neurons, cardiomyocytes, and 

myotubes), ectopic injection of AVPI-Smac but not the mutant form of MVPI-Smac, is capable 

of overcoming the XIAP inhibition on caspases to allow cytochrome c to induce apoptosis.  

However, the release of endogenous Smac from the mitochondria, interestingly, has different 

effects in neurons and myotubes.  Using hydrogen peroxide to induce release of endogenous 

cytochrome c and Smac from the mitochondria, NGF-maintained wildtype sympathetic neurons 

are still incapable of undergoing cell death, as determined by low active capsase-3 staining (Potts, 

Singh et al. 2003).  In contrast, using truncated Bid (tBid), a pro-apoptotic BH3-only protein, to 

release endogenous cytochrome c, Smac and other mitochondrial factors, wildtype myotubes 

undergo a rapid caspase-mediated cell death.  The importance of endogenous Smac for relieving 

XIAP in myocytes is unquestionably demonstrated as Smac-deficient myotubes are completely 

resistant to tBid-mediated death (Smith, Huang et al. 2009).  Thus, despite having XIAP as a 

common mechanism for inhibiting caspase activation in these postmitotic cells, the ability of 

endogenous Smac to overcome the XIAP inhibitory effect differs between neurons and myotubes.  
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Therefore, I conducted experiments to examine whether endogenous Smac plays a role in 

cardiomyocyte apoptosis.  

To examine whether the release of endogenous mitochondrial factors, including Smac 

and cytochrome c, overcome XIAP inhibition and allow cardiomyocytes to die, rat 

cardiomyocytes were transfected with tBid-GFP plasmid or GFP plasmid alone and examined six 

hours after transfection.  By immunohistochemistry, 70% of tBid-transfected rat cardiomyocytes 

showed active caspase-3 staining while only 15% exhibited active caspase-3 staining in the GFP-

tranfected cardiomyocytes (Figure A.1A).  In addition, as illustrated in Figure A.1B, tBid-

transfected rat cardiomyocytes became rounded and die whereas those in the presence of the pan 

caspase inhibitor z-VAD-fmk remained alive.  Together, these data suggest that the release of 

endogenous mitochondrial factors in cardiomyocytes, including Smac and cytochrome c, is 

capable of inducing an apoptotic cell death similar to myotubes. 

If Smac is responsible for overcoming XIAP inhibition upon tBid-mediated 

cardiomyocyte death, then one would predict that cardiomyocytes isolated from Smac-deficient 

mice would be resistant to cell death while wildtype cardiomyocytes would die.  Mouse 

cardiomyocytes, unlike those from rats, are not transfectable and are also sensitive to the act of 

microinjection.  Therefore, to express tBid in mouse cardiomyocytes, I generated an adenovirus 

expressing tBid-GFP.  Due to the inherent toxicity of tBid expression, I designed a recombinant 

virus of Ad-tBid-GFP that is responsive to TetR regulation and can be amplified in 293TREx 

cells without cytotoxicity (Figure A.2).  The MluI-XbaI fragment of pcDNA4/TO (Invitrogen) 

containing a CMV promoter with TetO2 was ligated into a MluI-NheI-digested pShuttle2 (BD 

Bioscience) to create pShuttle2/TO.  tBid-EGFP was PCR amplified with DraI-XbaI ends from a 

plasmid obtained from Dr. Doug Green and cloned into pShuttle2/TO.  Subsequent steps in 
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generating the recombinant virus were according to manufacturer's instructions of BD 

Bioscience Adeno-X Expression System.   

Surprisingly, Smac-deficient mouse cardiomyocytes infected with tBid-GFP adenovirus 

died in a similar fashion as wildtype cardiomyocytes when examined by time-lapse microscopy 

over a 12-hour-period (Figure A.3).  Truncated Bid-infected wildtype mouse cardiomyocytes, as 

expected, showed only 20% survival and could be rescued by a pan caspase inhibitor z-VAD-

fmk.  Interestingly, Smac-deficient mouse cardiomyocytes also showed a similar survival rate to 

wildtype cardiomyocytes at 23% when infected with tBid-GFP adenovirus.  The death of Smac-

deficient cardiomyocytes upon tBid expression is apoptotic as it can be blocked by the addition 

of z-VAD-fmk (Figure A.3).  Therefore, unlike myotubes, endogenous Smac is not essential for 

overcoming XIAP inhibition in cardiomyocytes.  Western analysis of Smac protein levels 

showed that myotubes and cardiomyocytes expressed comparable levels of Smac (Figure A.4) 

despite differences in the capability of endogenous Smac to relieve XIAP function in these two 

cell types.   

Intriguingly, the fact that Smac-deficient cardiomyocytes undergo an apoptotic tBid-

mediated death is indicative of a potential mitochondrial factor in cardiomyocytes that is able to 

relieve XIAP inhibition.  One possibility is that another endogenous mitochondrial XIAP 

inhibitor, HtrA2, could be the protein in question (Suzuki, Imai et al. 2001; Hegde, Srinivasula et 

al. 2002).  However, some have questioned whether the main function of HtrA2 is to inhibit 

IAPs, which thereby lessens the possibility that endogenous HtrA2 is the mechanism by which 

XIAP is inhibited in cardiomyocytes (Li, Srinivasula et al. 2002).  An interesting future direction 

would be to identify the mitochondrial factor(s) responsible for overcoming XIAP and allowing 

tBid-dependent apoptosis in neonatal mouse cardiomyocytes.  To address this in an unbiased 
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approach, one can isolate purified mitochondria from heart and skeletal muscle tissues of 

neonatal mice.  Recombinant tBid protein can be added to the mitochondria to release all 

mitochondrial proteins from these two tissue types.  Then using 2D gel electrophoresis along 

with mass spectrometer analysis, mitochondrial factors that are differentially expressed between 

the two tissues can then be identified.  These factors can then be tested in cell culture assays for 

their ability to inhibit XIAP.  
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Figure A.1 Truncated Bid (tBid) induced caspase-mediated cell death in rat 

cardiomyocytes  

A, Rat cardiomyocytes were transfected with tBid-GFP or GFP alone.  The percentage of 

transfected cells expressing active caspase 3 was determined 6 hours after transfection by 

immunohistochemistry.  B, Photographs of rat cardiomyocytes 6 hours after transfection with 

tBid-GFP in the presence or absence of the caspase inhibitor z-VAD-fmk (zVAD).   
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Figure A.1 
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Figure A.2 Generation of pShuttle 2/TO plasmid vector for tBid-GFP adenovirus 

production 

The promoter of pShuttle 2 (BD Bioscience) is replaced by the promoter of pcDNA4/TO 

(Invitrogen) to create the vector pShuttle 2/TO.  The newly synthesized pShuttle 2/TO has two 

tetracycline operator sequences (TetO2) between the TATA box of the CMV promoter and the 

transcriptional start site. The TetO2 sequence itself has no effect on expression. However, when 

the tetracycline repressor protein is present in 293TREx cells, it effectively binds the TetO2 sites 

and blocks transcription initiation.  Reminding steps of adenovirus generation is outlined in 

manufacturer’s manual (http://www.clontech.com/images/pt/PT3414-1.pdf).  
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Figure A.2 
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Figure A.3 Truncated Bid (tBid) induced apoptosis is not dependent on Smac 

Wild type (wt) or Smac-deficient (Smac-/-) cardiomyocytes were infected with a tBid-GFP 

adenovirus in the presence or absence of z-VAD-fmk (zVAD).  Cell survival was determined by 

morphology over a 12 hour period using time-lapse microscopy.   
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Figure A.3 
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Figure A.4 Endogenous Smac levels are similar in myotubes and cardiomyocytes 

 Protein levels of Smac were examined by Western blot of whole cell lysates from Smac-

deficient dermal fibroblasts (Smac-/- DF), myotubes, cardiomyocytes and sympathetic neurons 

(neurons).  Tubulin serves as a loading control.  Densitometry of Smac protein levels are 

normalized to tubulin levels of the representative blot.   
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Figure A.4 
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Appendix B – Mechanisms Involved in Cytochrome c Degradation 

 

The key components of the apoptosome pathway have been discovered through 

biochemical studies done mostly using mitotic cell lines.  Only recently there has been an 

appreciation of how primary cell types may have additional regulatory mechanisms to control the 

apoptotic pathway.  Previous work from our laboratory has shown that various postmitotic cells, 

such as sympathetic neurons, cardiomyocytes and myotubes all engage a XIAP regulatory brake 

to inhibit cytochrome c-mediated caspase activation while mitotic cell lines die rapidly in 

response to cytosolic cytochrome c (Potts, Singh et al. 2003; Potts, Vaughn et al. 2005; Smith, 

Huang et al. 2009).  In addition, several additional mechanisms for restricting apoptosome-

mediated cell death are found in the sympathetic neuron model system.  First, mature 

sympathetic neurons are found to silence the expression of Apaf-1 through chromatin 

modification.  Thus, only upon chromatin de-repression and E2F1-dependent transcriptional 

upregulation of Apaf-1 can these mature neurons undergo apoptosis (Wright, Smith et al. 2007).  

Second, direct release of endogenous cytochrome c from sympathetic neurons is found to be 

incapable of inducing cell death even with the relief of the XIAP brake (Vaughn and Deshmukh 

2008).  NGF-maintained sympathetic neurons maintain a reducing environment such that it is not 

conducive for the endogenously released cytochrome c to activate the apoptotic pathway as the 

reduced form of cytochrome c is less efficient than the oxidized form to induce apoptosis.  In this 

section, I describe experiments that myself and others in the lab have conducted to investigate a 

novel mechanism of regulating the apoptotic pathway at the point of cytochrome c. 

During apoptosis, cytochrome c translocates from the mitochondria to the cytosol, where 

it accumulates and binds to the adaptor protein Apaf-1 to form the apoptosome.  The assembly of 
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the apoptosome leads to downstream activation of caspase zymogens and subsequently causes 

the demise of the cell (Danial and Korsmeyer 2004).  The event of cytochrome c translocation 

can be visualized by immunofluorescence.  Under normal conditions in healthy cells, 

cytochrome c is localized to mitochondria displaying a punctate pattern of staining.  In most cells 

after an apoptotic treatment, the normal mitochondrial pattern of cytochrome c staining is loss 

and cytochrome c is seen to be distributed diffusely within the cytosol.  Interestingly, our lab has 

reported that sympathetic neurons upon exposure to various apoptotic stimuli, such as NGF 

withdrawal or etoposide, have no apparent cytosolic accumulation of cytochrome c (Potts, Singh 

et al. 2003; Vaughn and Deshmukh 2007).  The absence of cytochrome c staining in sympathetic 

neurons after an apoptotic stimulus is due to proteasome-mediated degradation of cytochrome c 

as the addition of proteasome inhibitors such as lactacystin or MG132 results in the accumulation 

of cytosolic cytochrome c (data not shown).  This efficient process of cytochrome c clearance in 

postmitotic neurons could be a potential mechanism of inhibiting apoptosis in situations of 

mitochondrial damage when cytochrome c may be released accidentally into the cytosol.   

Interestingly, while assessing cardiomyocyte apoptosis following tBid-GFP adenovirus 

infection as described in Appendix A, I found that the pattern of cytochrome c release in mouse 

cardiomyocytes was similar to that of sympathetic neurons (Figure B.1).  After 24 hours 

infection with adenovirus expressing tBid-GFP, in the presence of a caspase inhibitor z-VAD-

fmk, GFP-expressing cardiomyocytes exhibits no apparent cytochrome c staining, whereas 

neighboring cells not infected with Ad-tBid-GFP have punctate, mitochondrial cytochrome c 

staining.  This suggests that both neurons and cardiomyocytes utilize a similar mechanism of 

degrading cytochrome c to restrict apoptosis.    
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The phenomenon of cytochrome c degradation has also been described by others.  In an 

Apaf-deprived neural precursor cell line, ETNA-/-, treatment with either tunicamycin or 

actinomycin D caused release of cytochrome c from the mitochondria, but no accumulation of 

cytochrome c was detected by immunofluorescence and Western analysis.  However, with the 

addition of proteasome inhibitor MG132, levels of cytosolic cytochrome c were restored 

(Cozzolino, Ferraro et al. 2004; Ferraro, Pulicati et al. 2008).  Furthermore, the involvement of 

the ubiquitin-proteasome system was confirmed by the ubiquitylation of cytochrome c, but the 

study failed to identify the lysine residue on which cytochrome c is ubiquitinated, as it was not 

Lys 6, 8 or 9 tested in the study (Ferraro, Pulicati et al. 2008).   

As primary neurons and cardiomyocytes are limited in quantity and not conducive to 

biochemical studies, I wanted to find a cell line that would exhibit the same phenomenon of 

cytochrome c degradation in the cytosol upon an apoptotic stimulus.  It was unclear whether such 

a cell line existed besides the neural precursor cells ETNA-/-, since most cells such as HeLa and 

HEK293 show the typical cytosolic accumulation of cytochrome c.  However, I was able to find 

that Apaf-1 knockout mouse embryonic fibroblasts (MEFs) fit the criteria.  After 16 hours of 

treatment with a pan kinase inhibitor staurosporine, cytochrome c staining of Apaf-1 knockout 

MEFs showed cells with three distinct staining patterns (Figure B.2A).  First, cells that have not 

yet released cytochrome c displayed mitochondrial pattern as seen in untreated cells.  Second, 

some cells released the protein and demonstrated a diffuse, bright, cytosolic staining of 

cytochrome c.  The last pattern showed a complete lack of cytochrome c staining, but the 

presence of living cells was detected by the Hoechst nuclear staining.  To complement 

immunofluorescence, Western analysis of Apaf-1 knockout MEF treated for 22 hours with 

staurosporine showed a decrease in cytochrome c levels as compared to untreated cells.  In 
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addition, the proteasome inhibitor MG132 was capable of blocking the degradation of 

cytochrome c and restoring the level in staurosporine-treated cells (Figure B.2B).   

To illustrate that Apaf-1 knockout MEFs indeed release cytochrome c from the 

mitochondria to the cytosol upon multiple apoptotic stimuli, cells were treated with either 

staurosporine or etoposide (a topoisomerase II inhibitor) to induce death and after 18 hours of 

treatment, the heavy membrane and the cytosolic fraction of proteins in the cells were examine 

by Western analysis (Figure B.3).  Untreated Apaf-1 knockout MEFs retained all cytochrome c 

in the heavy membrane fraction which contains mitochondria, while staurosporine- or etoposide-

treated cells displayed no cytochrome c in either fractions suggesting that cytochrome c is 

released from the mitochondria and degraded in the cytosol.  Moreover, addition of proteasome 

inhibitors, MG132 or lactacystin, blocked the degradation of cytochrome c in staurosporine- or 

etoposide-treated Apaf-1 knockout MEFs and restored the level of cytochrome c in the cytosolic 

fraction.  Together, these data showed that Apaf-1 knockout MEFs provide a valuable system to 

study proteasome-mediated degradation of cytochrome c. 

In our lab, we are interested in identifying the responsible E2 ubiquitin conjugating 

enzyme, as well as the E3 ubiquitin ligase that recognizes cytochrome c as a target for 

proteasome-mediated degradation.   To address which E3 ubiquitin ligase binds to cytochrome c, 

I took a non-biased approach to find cytochrome c binding partners using a yeast two hybrid 

system.  A schematic of the process is outlined in Figure B.4.  Briefly, a bait vector was 

constructed by cloning human cytochrome c cDNA into EcoRI-BamHI-digested pGBKT7 vector 

(BD Clontech MATCHMAKER) with Trp as the selection marker.  No toxicity was seen when 

the bait vector was transformed into the AH109 yeast strain (provided by Dr. A. Paul Barns) as 

the growth of yeast colonies on SD/-Trp plate was comparable to that of yeast transformed with a 
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control vector (data not shown).  In addition, there was no auto-activation with the bait vector 

alone as colonies seen on SD/-Trp/X-gal plate did not show blue coloration (data not shown).  

The screen for cytochrome c-interacting proteins is currently in progress and is carried out by the 

company Creative BioLab using a human fetal brain cDNA library (Cat. No: 638804).   

The 76-residue ubiquitin protein can exist as either a monomer or polymer through 

isopeptide-chain linkages on the seven different lysine residues present in the protein (Fang and 

Weissman 2004).  The post-translational modification of a protein by either monoubiquitin or 

structurally distinct polyubiquitin chains dictates the intracellular signals (Sun and Chen 2004).  

In fact, the covalent conjugation of ubiquitin (Ub) to a protein can govern various biological 

processes, such as DNA damage tolerance, trafficking and is not limited to a fate of proteolysis.  

For example, modification of a protein by polyubiquitin containing Lys 48 linkages is the 

principle signal for proteasomal delivery while other lysine linkages of ubiquitin may mediate 

other responses.  Therefore I was interested in determining which lysine linkage is present within 

ubiquitin and was responsible for the degradation of cytochrome c.  To address this, I injected 

sympathetic neurons with various HA-Ub plasmids, provided by Dr. Cam Patterson’s lab, which 

have either one or more lysine resides mutated to arginine to abolish the particular lysine linkage 

capability.  Afterwards, I assessed for cytochrome c status after 48 hours of nerve growth factor 

(NGF) withdrawal in the presence of a pan caspase inhibitor z-VAD-fmk.   As expected, 

expression of HA-Ub WT did not affect the degradation of cytochrome c, as there was no 

apparent cytochrome c staining in these neurons (Figure B.5).  I predicted that blocking the 

canonical Lys 48 linkage by expression of HA-Ub K48R mutants would block the degradation of 

cytochrome c in NGF-deprived neurons.  Surprisingly, there was little or close to no cytochrome 

c remaining in neurons injected with HA-Ub K48R (Figure B.5), suggesting that another lysine 
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chain linkage is responsible for the proteasome delivery signal.  Similarly, with HA-Ub K63R 

expression and NGF deprivation, neurons did not show any cytochrome c staining (data not 

shown), suggesting that the Lys 63 linkage is not the primary signal for degradation.  Since it is 

not believed that Lys 63-linked ubiquitin targets proteins for degradation, this result was 

expected.  Interestingly, neurons expressing HA-Ub K29R exhibited an intense cytochrome c 

staining after NGF withdrawal, as did neurons expressing either HA-Ub K29R-K48R double 

mutant or HA-Ub K29R-K48R-K63R triple mutant (Figure B.5).  Together, these preliminary 

data suggest that Lys29 linkage on Ub, and not the Lys48 linkage, may be the primary 

polyubiquitin chain important for targeting cytochrome c for proteasome-mediated degradation.   

Besides examining the type of polyubiquitin chain involved in the ubiquitin-proteasome 

pathway, there is an interest in finding which lysine residue on cytochrome c contributes to the 

isopeptide covalent conjugation to ubiquitin.  We expect the ubiquitylation and subsequent 

degradation of cytochrome c to be a mechanism for preventing apoptosome-mediated cell death.  

But in addition to this degradation, one attractive hypothesis is that ubiquitylation of cytochrome 

c may occur on a residue which is important for the binding to Apaf-1.  Therefore once ubiquitin 

is bound to cytochrome c, its binding to Apaf-1 could be eliminated, thereby preventing 

apoptosome formation while simultaneously inducing cytochrome c degradation.  To test this 

hypothesis, I made constructs of FLAG-Cyt-c with mutations in key lysine residues that are 

known to be involved in the interaction between cytochrome c and Apaf-1.  Future experiments 

could use these mutant cytochrome c constructs and test whether ubiquitylation occurs on 

cytochrome c in an in-vitro ubiquitin assay system where Apaf-1 knockout MEFs are transfected 

with FLAG-Cyt-c constructs and HA-Ub WT.   
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These preliminary experiments start to address an interesting phenomenon of cytochrome 

c degradation and examine the machinery involved.  However, more extensive work would be 

carried on beyond these initial observations by the lab to elucidate the exact mechanism.   
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Figure B.1 Loss of cytochrome c staining in cardiomyocytes expressing tBid-GFP 

Mouse cardiomyocytes were infected with adenovirus expressing tBid-EFP in the presence of a 

caspase inhibitor, zVAD-fmk.  After 24 hours, cytochrome c and GFP were examined by 

immunofluorescence.  Arrow points to the location of a cardiomyocyte expressing GFP. 
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Figure B.1 

tBid-GFP Cytochrome c Nucleus
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Figure B.2 Degradation of cytochrome c in Apaf-1 knockout mouse embryonic fibroblasts 

(MEF) 

A, Apaf-1 deficient MEF was treated with 1µM staurosporine (STS) in the presence of a pan 

caspase inhibitor zVAD-fmk.  After 16 hours of treatment, the levels of cytochrome c, as well as 

its localization, were determined by immunofluorescence.  A yellow arrow points to a cell that 

has no cytochrome c staining, while a green arrow illustrates a cell that has intense, diffuse 

staining of cytochrome c.  B, Western analysis of cytochrome c levels from whole lysates of 

Apaf-1 knockout MEF untreated or treated with 1µM staurosporine (STS).  Cells were treated 

with STS for 22 hours in the presence or absence of a proteasome inhibitor, MG132.  Tubulin 

serves as a loading control. 
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Figure B.2 
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Figure B.3 Cytochrome c is degraded by the proteasome upon release into the cytosol  

Apaf-1 deficient MEFs were treated with either 1µM staurosporine (STS) or 20 µM etoposide 

(Etop) for 18 hours in the presence or the absence of proteasome inhibitors, MG132 or 

lactacystin (Lact).  Cellular fractionation was performed on Apaf-1 knockout MEFs and 

cytochrome c level was examined in the heavy membrane fraction (m) and the cytosolic fraction 

(c) via Western analysis.   
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Figure B.3 
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Figure B.4 The construction and testing of yeast two hybrid bait vector  

Human cytochrome c cDNA was cloned into the empty bait vector pGBKT7 via the EcoRI and 

BamHI restriction enzyme sites.  Prior to yeast two hybrid library screening for cytochrome c 

binding partner, the constructed bait vector containing cytochrome c was tested for potential 

toxicity and auto-activation that would invalid the approach 
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Figure B.4 
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Figure B.5 Lysine 29 linkage of ubiquitin targets cytochrome c for degradation in 

sympathetic neurons 

Postnatal day 4-5 sympathetic neurons were microinjected with HA tagged wildtype ubiquitin 

(Ub-WT) or mutant ubiquitin with one or more lysine residue(s) that was/were converted to 

arginine.  A plasmid expressing GFP was also injected into sympathetic neurons to mark cells 

expressing the plasmids.  Twenty four hours after injection, sympathetic neurons were deprived 

of NGF in the presence of a pan caspase inhibitor zVAD-fmk.  Cytochrome c levels were 

determined by immunofluorescence 48 hours after NGF withdrawal.  Arrows point to neurons 

that lost cytochrome c staining.  In contrast, arrowheads illustrate neurons that retained intense, 

diffuse, cytosolic staining of cytochrome c. 
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Figure B.5 
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