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ABSTRACT 

 

Akinyemi Oni-Orisan: Translational Approaches to Understanding the Role of Cytochrome 

P450-Derived Epoxyeicosatrienoic Acids in Coronary Artery Disease 

(Under the direction of Craig R. Lee) 

 

Cardiovascular disease (CVD) remains the leading cause of morbidity and mortality in 

the United States (US). Most notably, coronary artery disease (CAD) including its clinical 

complications (acute myocardial infarction [AMI] and heart failure) is the primary source of this 

public health burden. This burden highlights the need for new therapies that target biological 

pathways integral to the pathophysiology of CAD and its consequences. However, a more 

thorough understanding of the mechanisms underlying the pathophysiology is necessary to 

facilitate the development of new therapeutic strategies. 

Epoxyeicosatrienoic acids (EETs) are cytochrome P450 (CYP)-derived metabolites of 

arachidonic acid that are hydrolyzed by soluble epoxide hydrolase (sEH) into the less 

biologically active dihydroxyeicosatrienoic acids (DHETs). EETs yield potent cardiovascular 

protective effects in preclinical models of atherosclerosis, ischemia reperfusion (IR) injury, and 

post-AMI ventricular remodeling, suggesting that increasing EET levels may be a viable 

therapeutic strategy for CAD, AMI, and post-AMI maladaptive ventricular remodeling. Key 

questions, however, remain to be addressed prior to translation of therapeutic EET-promoting 

strategies into successful clinical trials. 

The overall aim of this dissertation is to advance our understanding of the role of the EET 

metabolic pathway across the full spectrum of CAD and post-AMI consequences as a means to 
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determine the biological and therapeutic importance of EETs in the progression of this disease 

cascade. We used both pre-clinical and human studies to complete the specific aims of this work. 

We found that obstructive CAD is significantly and independently associated with lower 

circulating EET levels. In addition, we observed that a functionally relevant polymorphism 

linked with enhanced EET hydrolysis was potentially associated with mortality in a population 

of AMI patients. Moreover, we showed that mice with cardiomyocyte-specific overexpression of 

human sEH exhibited enhanced IR-induced myocardial collagen deposition. Overall, we 

demonstrated that the EET metabolic pathway may play a role in the pathophysiology of CAD 

and its associated complications including the development of coronary atherosclerosis, post-

AMI early ventricular remodeling, and post-AMI mortality. These findings set the stage for 

future studies that investigate the therapeutic utility of modulating EETs in CAD patients. 
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CHAPTER 1 – INTRODUCTION 

 

The full cascade of coronary artery disease and its public health impact 

 

Health burden of coronary artery disease 

Despite advances in evidence-based medical therapies, cardiovascular disease (CVD) as a 

whole remains the leading cause of mortality in the United States (US). CVD has been the 

leading cause of death for over a century (causing 800 thousand deaths in 2011) and its 

prevalence (at 86 million adults) is expected to continue to rise tremendously. Most notably, 

coronary artery disease (CAD), which includes acute myocardial infarction (AMI) and angina 

pectoris (chest pain), is the primary source of this public health burden causing almost half (375 

thousand) of all CVD deaths in 2011 (1). Of those who have not already developed CAD at the 

early age of 40, about 25% will develop some manifestation of CAD within 6 years (2). AMI 

alone was responsible for 120 thousand deaths in 2011 and it is estimated that death from a 

coronary event occurs every 84 seconds in America. The survival rate of AMI has improved, 

largely due to advances in revascularization and secondary prevention therapies; however, the 

prevalence of heart failure, a key clinical outcome of CAD, is estimated to now be at almost 6 

million (1). Approximately 25% of patients that experience a first AMI develop heart failure 

within 30 days (3). CAD and heart failure together are responsible for 116 billion dollars in 

direct and 99 billion dollars in indirect health care costs annually (1). The extensive health and 

economic burden associated with CAD highlights the need for new therapies that target 
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biological pathways integral to the pathogenesis and progression of CAD. However, a more 

thorough understanding of the mechanisms underlying the pathophysiology of CAD is necessary 

to facilitate the development of new therapeutic strategies that mitigate atherosclerosis, prevent 

AMI events, delay the progression of cardiac remodeling to heart failure, and ultimately improve 

public health outcomes. 

 

Coronary atherosclerosis 

Atherosclerosis is the progressive deposition of plaque along the walls of the arteries 

(Figure 1.1a). When this plaque buildup occurs in the coronary arteries in particular, this is 

termed CAD. Coronary atherosclerosis pathogenesis is a complex inflammatory process that 

develops over decades (4). Briefly, atherosclerosis begins when low-density lipoprotein (LDL) is 

retained in the arterial intima and oxidized causing the activation of endothelial cells. Activated 

endothelial cells then trigger an inflammatory response through the expression of cellular 

adhesion molecules, which promote the accumulation of monocytes and neutrophils into the 

plaque (5). Differentiated monocytes (macrophages) drive the pathogenesis of atherosclerosis by 

producing inflammatory cytokines and chemoattractants such as monocyte chemoattractant 

protein-1 (MCP-1). This leads to the further accumulation of leukocytes into the plaque (6). 

Macrophages accumulate lipids thereby transforming into isolated lipid-laden foam cells which 

eventually come together to form what is known as the ‘fatty streak’ (7, 8). The lesion continues 

to develop with the infiltration of smooth muscle cells and connective tissue. Development of the 

early lesion occurs over decades and is accelerated by the presence of conditions such as 

hypertension, hyperlipidemia, smoking, and diabetes mellitus, which are known as 

cardiovascular (CV) risk factors. When extracellular lipids and cholesterol esters become a major 
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component of the developing lesion, an atheroma develops (8). Symptoms of stable angina occur 

when the atheroma grows to the point that it causes chronic narrowing of the artery (stenosis) 

and blood flow reduction, thereby limiting supply of oxygen to the myocardium (ischemia). 

Symptoms are especially evident in the setting of increased oxygen demand such as exercise and 

emotional stress (9). Thus, for some individuals, this stage of atherosclerosis development is 

when stenosis can first be visualized by coronary angiography and when symptoms first manifest 

(8). The clinical definition of nonobstructive CAD is having one or more lesions that are not 

anatomically (<50% stenosis in the left main and <70% stenosis in all non-left main coronary 

arteries) or functionally (fractional flow reserve [FFR] that reduces blood flow mildly by ≥0.8) 

‘significant’. Revascularization by percutaneous coronary intervention (PCI) or coronary artery 

bypass graft (CABG) in nonobstructive CAD patients to improve symptoms/mortality has been 

found to cause more harm than benefit and is not recommended (10). The risk of developing 

stable angina pectoris increases as the degree of artery stenosis increases in size. When the lesion 

advances to the extent that stenosis is anatomically ‘significant’ (≥50% in the left main coronary 

artery or ≥70% in any of the other major epicardial coronary arteries), patients are said to have 

obstructive CAD. Patients may also have functionally obstructive CAD if the lesion reduces 

blood flow to less than 80% of its original pressure (FFR<0.8). Obstructive CAD patients are 

thought to have lesions that have advanced to the point that blood flow is ‘significantly’ 

obstructed and thus have a highest likelihood of suffering from anginal symptoms. Consequently, 

obstructive CAD patients meet the anatomical and functional criteria for coronary artery 

revascularization by PCI or CABG to improve symptoms (10). 

 

Acute myocardial infarction 
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Atheromatous plaques are protected from the coronary artery lumen by a fibrous cap. A 

thin fibrous cap reduces the stability of the atherosclerotic lesion making it more prone to 

rupture. The thickness of the fibrous cap is correlated with the degree of stenosis where 

obstructive lesions have the thickest fibrous caps. Thus, although obstructive lesions are more 

likely to cause anginal symptoms, as described earlier, nonobstructive lesions are more prone to 

plaque rupture (4). Indeed, obstructive CAD patients have the highest risk of lesion disruption 

only because they usually also have the greatest amount of nonobstructive lesions, which are 

spread throughout the coronary vasculature (4, 11). That being said, it is becoming more 

appreciated that nonobstructive CAD patients are also at increased risk of experiencing plaque 

rupture of a nonobstructive lesion. As a patient’s CAD status progresses from no CAD to 

nonobstructive CAD to obstructive CAD, the risk of rupture and resultant cardiovascular 

onsequences increases in a stepwise fashion (11). 

When a ruptured atheromatous plaque is exposed to the lumen, it activates platelets and 

the coagulation cascade acutely producing an occlusive intracoronary thrombus (Figure 1.1b) 

(4). Often a formed thrombus does not affect blood flow or spontaneously resolves and the 

patient experiences no symptoms (8). When a thrombus causes profound myocardial ischemia, a 

key adverse event of CAD, this is known as an acute coronary syndrome (ACS) (4, 8). 

Consequences of ACS ranging from unstable angina to AMI (including non-ST-segment 

elevation myocardial infarction [NSTEMI] and ST-segment elevation myocardial infarction 

[STEMI]) depend on the degree, location, and duration of the occlusion (8). All ACS patients 

experience chest pain and electrocardiogram (ECG) changes consistent with ischemia (12). 

Unstable angina causes chest pain at rest, often characterized by occlusion by a labile thrombus 

that may only last 15 minutes on average. Infarcted tissue is not a result of unstable angina. A 
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prolonged period of ischemia from a coronary thrombus results in AMI (13). Myocardial cell 

necrosis is exclusive to AMI and typically occurs in myocardial tissue of the left ventricle (LV) 

(12). The presence of cardiac troponin in blood is an indicator of myocardial necrosis and the 

preferred diagnostic biomarker of AMI (14). STEMI patients have a total occlusion of the artery 

from an intracoronary thrombus (15). These patients require immediate PCI to restore blood 

flow, reduce infarct expansion, and prevent death (14). The majority of patients who die from 

sudden ischemic death (death from CAD within 6 hours of symptom onset) have evidence of 

intracoronary thrombus formation based on autopsy reports (16, 17). The development of 

ventricular arrhythmia is also a cause of sudden ischemic death (8, 16). 

 

Consequences following acute myocardial infarction 

The restoration of blood flow by revascularization, termed ischemia-reperfusion (IR), is 

imperative to prevent expansion of the myocardial infarct. Paradoxically, IR also triggers injury 

to the myocardium (18). Injury initially causes cardiomyocyte necrosis (uncontrolled cell death) 

and apoptosis (programmed cell death), each of which independently contribute to the resulting 

infarct (Figure 1.1c) (19). Changes in the myocardial expression of the anti-apoptotic B-cell 

lymphoma (Bcl-2) and the pro-apoptotic B‑cell lymphoma 2‑associated X protein (Bax) 

regulate activation of the caspase family which is primarily pro-apoptotic. An agent is considered 

to be ‘cardioprotective’ if it reduces IR-induced infarct size by preventing myocardial cell death 

(20). Necrosis but not apoptosis is recognized as the primary mediator of the acute inflammatory 

response (Figure 1.1c) (19). 

Inflammatory-mediated induction of a class of chemoattractants called chemokines 

promotes leukocyte recruitment to the site of injury. Notably, MCP-1 and macrophage 
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inflammatory protein-2α (MIP-2α), which are chemotactic for monocytes and neutrophils, 

respectively, are induced by myocardial necrosis (21). Recruited leukocytes subsequently initiate 

the cytokine cascade including the synthesis of interleukin (IL)-6 in leukocytes and 

cardiomyocytes. Cytokines induce the myocardial expression of adhesion molecules such as 

intercellular adhesion molecule-1 (ICAM-1), which specifically aid in the recruitment of further 

neutrophils to the site of infarct and mediate neutrophil-derived cytotoxicity (22). In tandem, IL-

1β inhibits the activation of fibrosis by preventing the expression of α-smooth muscle actin (α-

SMA). It is also becoming recognized that fibroblasts are phenotypically pro-inflammatory 

during this stage (from stimulation by IL-1β) and producing cytokines/chemokines (23). 

This marked inflammatory response is followed by maladaptive ventricular remodeling 

(22). In particular, transforming growth factor-β (TGF-β) and IL-10 are important mediators 

involved in the resolution of the inflamed myocardium. The resolution of inflammation is 

followed by rapid proliferation (mediated by fibroblast growth factor-2 [FGF-2]) and activation 

(largely mediated by TGF-β) of fibroblasts which soon become the predominant cell type in the 

heart (Figure 1.2). Activated myofibroblasts are distinguished from their quiescent precursors via 

the expression of TGF-β/Smad3 pathway-induced α-SMA. Following activation, fibroblasts 

infiltrate the infarct zone of the myocardium where they function to produce extracellular matrix 

(ECM) proteins that ultimately cause scar formation (23). Levels of the structural components of 

ECM including collagens, glycoproteins, proteoglycans, glycosaminoglycans, and matricellular 

proteins are increased post-AMI contributing to dynamic changes in the matrix. The ECM also 

includes proteases that are involved in the degradation of these structural components and are 

also altered post-AMI, contributing to further changes in the matrix. In addition to 

myofibroblasts which are the most abundant source of ECM proteins post-AMI, endothelial 
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cells, neutrophils, mast cells, lymphocytes, and macrophages are other major sources of ECM 

proteins. Collagens are considered the structural backbone of the ECM and are present at low 

levels in the normal, non-infarcted heart. Post-AMI, collagen expression increases in all regions 

of the heart, with the greatest magnitude of expression in the infarct zone (24). Only 

myofibroblasts synthesize collagen. Lysyl oxidase (LOX) mediates the maturation of scar tissue 

by cross-linking collagen fibrils. However, before the maturation of the fibrotic scar, ECM 

remodeling can occur as a consequence of mediators such as osteopontin, fibronectin, tissue 

inhibitor of matrix metalloproteinases (TIMPs), and matrix metalloproteinases (MMPs) that 

regulate ECM turnover (25). Only MMP can degrade collagen (26). Following scar tissue 

maturation, myofibroblasts halt production of further profibrotic mediators and become less 

abundant in the myocardium, potentially through apoptosis (23). 

The development of fibrosis is often accompanied by activation of the fetal gene 

program, which results in the dysregulation of a set of genes associated with maladaptive 

ventricular remodeling. Increased b-type natriuretic peptide (BNP) expression and a “switch” 

from expression of the adult α-myosin heavy chain (MHC) to the fetal β-MHC are biomarkers of 

this process (27). BNP promotes compensatory vasodilator and natriuretic responses that indicate 

that myocardial strain (i.e. an abnormal structural change) is occurring (28). Fetal gene activation 

begins early and is thought to be promoted at least partially by initial mechanical stretch-induced 

activation of early growth response-1 (EGR-1) (29). It is evident that the induction of these 

mediators during the acute phase following IR activates responses that promote ventricular 

remodeling during the chronic stages. Together, myocardial fibrosis and cardiac structural 

changes from fetal gene activation ultimately lead to adverse consequences, notably the first 

signs/symptoms of heart failure (Figure 1.1c) (22).  
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Heart failure is a clinical syndrome that manifests in patients as dyspnea (shortness of 

breath) and/or fluid retention (edema). Symptoms of heart failure result primarily from structural 

or functional deficits from advanced ventricular remodeling that lead to a reduced ability in 

ventricular filling (diastolic dysfunction) or ejection of blood (systolic dysfunction). It is 

important to note that structural abnormalities in heart failure patients range from having no 

changes at all to having marked ventricular dilation. Likewise, functional impairment may or 

may not coexist with structural changes and range from having a normal ability to eject blood 

(commonly measured as ejection fraction [EF]) to having severely reduced EF. Thus there is no 

definitive test to diagnose heart failure. Both the evaluation of signs/symptoms and cardiac 

structure/function testing (most commonly via echocardiography) are necessary to diagnose heart 

failure. Heart failure patients who have reduced EF are categorized as having ‘Heart failure with 

reduced ejection fraction’ (HFrEF). One of the most common causes of HFrEF is AMI. The 

specific definition of HFrEF in terms of EF varies between <35%, <40%, and ≤40%. Heart 

failure patients who have preserved EF have structural and/or functional deficits that 

compromise ventriclular relaxation and are categorized as ‘Heart failure with preserved ejection 

fraction’ (HFpEF) (30). 

In addition to promoting the development of heart failure, early ventricular remodeling 

responses also elevate the risk of a subsequent AMI and myocardial electrical conduction 

abnormalities that promote sudden cardiac death (31). Indeed, the degree of scar tissue formation 

and cardiac dysfunction are each predictors of the risk of cardiac events following AMI (32-34). 

Importantly, progression can occur quickly (35) and clinical trial data show that the development 

of heart failure in first-time AMI patients with no history of heart failure can occur within a week 

(36). Consequently, early treatment post-AMI has been found to reduce the occurrence of heart 
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failure (37, 38), likely due to attenuation of the early maladaptive ventricular remodeling 

response. 

Moreover, established and emerging biomarkers of inflammation and ventricular 

remodeling processes have been found to have prognostic and therapeutic utility in patients (28). 

Circulating biomarkers of inflammation such as MCP-1, myeloperoxidase (MPO), IL-6, C-

reactive protein (CRP) and ICAM-1 are independent predictors of poor prognosis following an 

AMI in humans (39-44). Biomarkers of myocardial remodeling including cardiac β- and α-MHC 

expression as well as circulating BNP levels are associated with the presence and severity of 

heart failure and AMI in humans (45, 46). Novel biomarkers of fibrosis such as circulating ST2 

offer prognostic value in heart failure patients on top of traditional biomarkers and established 

risk factors (47). Consequently, these biomarkers of inflammation and myocardial remodeling 

are valuable phenotypic endpoints in pre-clinical and human studies, and inhibition of these 

responses has enormous potential to improve prognosis in AMI patients. It is clear that early and 

aggressive therapy well before the manifestation of symptomatic heart failure improves 

outcomes. 

 

The need for novel therapeutic strategies and novel drug development approaches 

It is evident that novel therapies which further delay the development of coronary 

atherosclerosis, prevent the expansion of IR-induced infarct (‘cardioprotective’ therapies), slow 

the progression of post-infarct early ventricular remodeling, or facilitate a combination of the 

above will reduce poor complications associated with CAD. These therapeutic strategies for the 

treatment of CAD and its complications have been in development for decades. However, the 

majority of these drug candidates have failed. For example, the cornerstone therapies for AMI 
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have consisted of antiplatelet agents, beta blockers, statins, and renin-angiotensin aldosterone 

system inhibitors post-AMI for decades (48-50), but drug candidates from novel therapeutic 

classes for AMI have not been successfully translated to standard practice guidelines (49). 

Furthermore, in the realm of cardioprotective therapies, no pharmacological therapies and only 

early reperfusion (as a strategy to reduce infarct size) has been successfully translated into 

clinical practice (10). 

One explanation for poor success rates is flawed preclinical research. For example, 

preclinical models of post-AMI myocardial remodeling are critical tools to screen/develop novel 

therapeutic strategies (51). Induction of AMI in rodents in vivo is feasible and produces injury 

comparable to the more established large animal models of AMI. However, full characterization 

of the pathophysiology of the disease in post-AMI models is necessary to determine how 

predictive and translational the model is to humans. Surprisingly, the acute and chronic impact of 

some of the most commonly used AMI models have not been fully characterized in the literature 

and requires further investigation. A more thorough understanding of the pathophysiology of 

myocardial remodeling following AMI in mice will facilitate the design of experimental studies 

that elucidate the role of therapeutic pathways in the disease. 

These failures also suggest that innovative approaches during late drug development 

(clinical trials) are needed to mitigate increasing attrition rates and more successfully translate 

novel therapies into clinical practice (18, 52, 53). Compared to the conventional ‘one-size fits 

all’ methodology to drug development, a precision medicine approach has the potential to 

increase the probability of success for promising therapeutic candidates (54). Although targeted 

therapies are routinely used in oncology, this strategy has not been readily adopted in CVD, but 

opportunities exist to implement precision medicine in heart disease (Appendix A) (55). 
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Biomarkers offer considerable promise to prospectively identify subsets of CAD patients at high 

risk of experiencing a cardiovascular event that exhibit dysfunction in a specific pathway 

(putative responders), consequently enabling novel therapies that target the pathway to maximize 

their therapeutic effect and improve outcomes.  
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The epoxyeicosatrienoic acid metabolic pathway and parallel pathways of eicosanoid 

metabolism 

 

The epoxyeicosatrienoic acid metabolic pathway 

Epoxyeicosatrienoic acids (EETs) are cytochrome P450 (CYP)-derived metabolites of 

arachidonic acid. Specifically, CYP epoxygenases from the CYP2C and CYP2J subfamilies 

metabolize arachidonic acid into four EET regioisomers (5,6-, 8,9-, 11,12- and 14,15-EET). 

EETs have a variery of biological functions, but are rapidly hydrolyzed by soluble epoxide 

hydrolase (sEH, EPHX2) into the less biologically active dihydroxyeicosatrienoic acids (DHETs) 

(56). The CYP epoxygenases known to metabolize arachdidonic acid in humans are CYP2J2, 

CYP2C8, and CYP2C9. These enzymes as well as sEH are expressed in the cardiovascular 

system including the myocardium and blood vessels (57-59). 

 

Epoxyeicosatrienoic acid action in coronary artery disease and acute myocardial infarction 

EETs are endogenous lipid mediators that elicit potent vasodilatory effects by 

hyperpolarizing vascular smooth muscle cells (60, 61), anti-inflammatory effects by attenuating 

nuclear factor-kappaB (NF-κB) signaling (62, 63), fibrinolytic effects by induction of tissue 

plasminogen activator (t-PA) expression (64), antimigratory effects on smooth muscle cells 

through the cAMP-dependent protein kinase (PKA) pathway (65), anti-apoptotic effects by 

promoting phosphoinositide-3-kinase (PI3K)/Akt signaling (66, 67), and pro-survival effects by 

preserving mitochondrial function (68). Concordant with these basic mechanistic effects, 

therapeutically promoting the effects of EETs yields potent cardiovascular protective effects in 

preclinical models of cardiovascular disease (69). For example, inhibition of sEH genetically or 
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pharmacologicallay increased plasma EET levels and prevented femoral artery neointima 

formation in a mouse model of vascular inflammation (70). In addition, pharmacological 

administration of a sEH inhibitor reduced lesion accelerated lesion formation in a mouse model 

of cardiovascular atherosclerosis (71). Moreover, Ephx2−/− mice had improved recovery of left 

ventricular developed pressure (LVDP) and reduced infarct size following IR. This was reversed 

by 14,15-epoxyeicosa-5(Z)-enoic acid (14,15-EEZE), a putative EET receptor antagonist, 

implicating EETs as the mediator of the effect (72). Furthermore, pharmacological sEH 

inhibition attenuated collagen deposition in a preclinical model of post-IR maladaptive 

ventricular remodeling. This effect was found to be independent of infarct size reduction (73). 

Taken together, these data suggest that increasing EET levels may be a viable therapeutic 

strategy for CAD, AMI, and post-AMI ventricular remodeling. However, the direct contribution 

of increased cardiomyocyte sEH expression to the pathogenesis and progression of maladaptive 

ventricular remodeling post-AMI in vivo has not been investigated. 

 

Other pathways of eicosanoid metabolism 

In addition to arachidonic acid, another ω-6 fatty acid (linoleic acid) and ω-3 fatty acids 

(docosahexaenoic acid [DHA] and eicosapentaenoic acid [EPA]) are metabolized by CYP 

epoxygenase enzymes into a variety of epoxy-derivatives (74). These epoxyeicosanoids (Figure 

1.3) are also potent biological mediators in the cardiovascular system and may be subsequently 

metabolized into vicinal diols by epoxide hydrolases (75, 76). Moreover, these fatty acids are 

also metabolized by cyclooxygenase (COX), lipoxygenase (LO), and CYP hydroxylase enzymes 

to produce biologically active metabolites that play a functional role in CVD (Figure 1.4) (77-
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79). The role of EETs in the initiation and progression of CAD relative to other eicosanoids 

remains unknown and requires further investigation. 

 

CYP epoxygenases and soluble epoxide hydrolase in human CAD 

Since pharmacological tools that directly and specifically manipulate sEH to modulate 

EET levels are currently not available for clinical use, investigators have relied on genetic 

observational studies to understand the role of the EET metabolic pathway in human CVD.  

Multiple functionally relevant polymorphisms in genes responsible for EET biosynthesis 

(CYP2C8, CYP2J2) and EET hydrolysis (EPHX2) have been identified and found to alter 

enzyme expression or activity. At the population level, associations between genetic 

polymorphisms in the EET metabolic pathway and the risk of developing CAD have been 

reported in humans (80).  

G-50T is a common functional polymorphism in CYP2J2 within the promoter region that 

leads to decreased expression of the enzyme in vitro (81). It has been found to be associated with 

increased the risk of CAD development as well as the premature onset of AMI (before the age of 

45) (82, 83). The CYP2C8 p.Lys399Arg variant allele reduces CYP-derived EET biosynthesis in 

vitro (84). Subjects carrying CYP2C8 Arg399 had a higher risk of incident CAD in Caucasian 

smokers and a  higher risk of AMI in a Scandinavian cohort compared to wildtype individuals 

(85, 86). 

The two most common non-synonymous single nucleotide polymorphisms (SNPs) in 

EPHX2 have been found to decrease (p.Arg287Gln) or increase (p.Lys55Arg) the activity of sEH 

in vitro (87, 88). Specifically, the Arg287Gln polymorphism is thought to reduce the stability of 

the homodimer (87) which is necessary for hydrolase activity (89). The Lys55Arg polymorphism 
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is located in a domain that allows for increased stabilization of the dimer (90). Lys55Arg and 

Arg287Gln are not in linkage disequilibrium (91). 

The allele frequencies for Arg287Gln are approximately 8% and 10% in African 

American and Caucasian populations respectively (80). Lys55Arg has been studied less 

extensively then Arg287Gln, but it is the most common functional SNP in the population (87, 

91). The allele frequencies for Lys55Arg are approximately 22% and 7% in African Americans 

and Caucasians (80). 

Associations between functional genetic polymorphisms in EPHX2 and the risk of 

developing CVD have been reported in humans (91-96). The Arg287Gln variant has been linked 

to reduced plasma cholesterol and triglyceride concentrations in patients with familial 

hypercholesterolemia (97), reduced risk of coronary artery calcification in African-Americans 

(93, 94), increased ischemic stroke risk in white Europeans (98), carotid artery calcified plaque 

in Europeans  (99), improved vascular dysfunction in African Americans (95), and increased risk 

of atrial fibrillation recurrence after catheter ablation (100). The Lys55Arg polymorphism is 

associated with higher sEH metabolic function in vivo and is linked to development of CAD in 

Caucasian patients (91), ischemic stroke in Swedish men (96), and vascular dysfunction in 

Caucasian volunteers (95). 

Taken together, these data suggest that the EET metabolic pathway may be important in 

the pathogenesis of CAD in humans and that therapeutic interventions that promote the 

cardioprotective effects of EETs by modulation of sEH offer considerable promise as a novel 

therapeutic strategy to reduce sequelae following AMI; however, key questions remain to be 

addressed prior to translation of EET-promoting strategies into successful proof-of-concept 
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phase I and II clinical trials. Evaluation of functional variants in EPHX2 and prognosis in AMI 

patients has not been completed. 

In collaboration with Dr. John Spertus (Mid America Heart Institute) and Dr. Sharon 

Cresci (Washington University School of Medicine), the Craig Lee lab has previously 

investigated the association of CYP2J2 -50G>T, CYP2C8 Lys399Arg, EPHX2 Lys55Arg, and 

EPHX2 Arg287Gln genotype with 5-year survival in a 2-center cohort of CAD patients 

hospitalized for an ACS event (INvestigation oF Outcomes from acute coronary syndRoMes 

study [INFORM]). Consistent with our hypothesis that variants which result in lower EET 

biosynthesis or greater EET hydrolysis would have a deleterious effect on cardiovascular disease 

risk and survival, EPHX2 Arg55 variant allele carriers had a significantly higher risk of death 

following an ACS compared to noncarriers (HR 1.50, 95% CI 1.02-2.22, P=0.042). In contrast to 

our hypothesis, CYP2J2 -50G>T genotype was significantly associated with survival such that 

variant allele carriers had lower 5-year mortality compared to noncarriers (HR 0.51, 95% CI 

0.26-0.99, P=0.049). Furthermore, no association was observed with CYP2C8 Lys399Arg (HR 

0.87, 95% CI 0.55-1.41, P=0.598) or EPHX2 Arg287Gln (HR 0.88, 95% CI 0.55-1.41, P=0.597). 

A race-stratified analysis was conducted to account for the potential confounding effects of 

population stratification. Associations in Caucasians were consistent with the overall cohort, and 

persisted after adjusting for demographic and clinical covariates predictive of prognosis. The 

magnitude of the associations were comparable to established prognostic predictors (e.g., 

diabetes: HR 2.2, 95% CI 1.5-3.2, P<0.01). However, associations were not evaluated in African 

Americans, due to a small sample size (N=124) and suboptimal power (101). Validation of the 

association found with EPHX2 Lys55Arg in an independent population remains necessary to 

substantiate these preliminary observations. 
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Systemic levels of cytochrome P450-derived EETs in humans 

We recently reported that multiple clinical factors were associated with EET levels in 

patients with established CAD (102). Furthermore, it is well-established that inflammatory 

stimuli suppress CYP metabolism through a variety of mechanisms, including cytokine-mediated 

down-regulation of CYP expression (103). Moreover, hepatic and extra-hepatic CYP2C/2J 

expression and EET biosynthesis were suppressed in an endotoxin mouse model of acute 

inflammation (104). Taken together, these data suggest multiple factors (beyond germline 

genetic polymorphisms) regulate EET biosynthesis and hydrolysis and that quantifying EET 

levels may provide important insight into the role of these mediators in the pathogenesis and 

progression of CAD. However, due to the technical complexity of quantifying EETs, which are 

present at low concentrations in blood and tissue, these metabolites are not commonly quantified 

on traditional metabolomic or eicosanoid analytical platforms (105). As a consequence, major 

gaps in knowledge surrounding the biological and therapeutic importance of CYP-derived EETs 

in human CAD exist. 

 

Translational approaches to understanding the role of EETs in CAD 

Therapeutic interventions that promote the cardioprotective effects of EETs offer 

considerable promise as a novel therapeutic strategy to delay the pathogenesis/progression of 

CAD and reduce sequelae following AMI. Importantly, agents that promote the effects of EETs 

have not reached clinical trials for the indication of CAD or AMI, thus an opportunity exists to 

gain a more thorough understanding of the role of the EET metabolic pathway across the full 

course of CAD and post-AMI myocardial remodeling prior to translation of EET-promoting 
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strategies into successful proof-of-concept phase I and II clinical trials. In general addressing 

these aforementioned gaps would lay the foundation for the design of clinical trials that select the 

EET-promonting agent, dosing strategy, and patient population most likely to circumvent clinical 

failure (Appendix B discusses the key questions that remain to be addressed in greater detail) 

(69). Both preclinical and human investigations are necessary to address this gap in knowledge 

and improve the probability of translational success from a rapidly emerging body of evidence 

into a clinically applicable therapeutic strategy for CAD patients.  
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Perspective 

 

Despite advances in its detection and management, CAD remains a major health burden 

in the US (1). Consequently, novel therapeutic strategies are needed to further improve 

outcomes. A more thorough understanding of the mechanisms underlying the pathogenesis of 

CAD, AMI, and its associated sequelae are necessary for the development of new therapeutic 

strategies that mitigate this devastating disease across its full spectrum and ultimately improve 

public health outcomes. Precision medicine is a promising therapeutic approach that may 

increase the probability of success for prospective therapeutic candidates. Thus, the discovery of 

biomarkers involved in the pathogenesis of CAD offers considerable promise to facilitate the 

development of novel therapeutics by identifying subsets of high-risk patients who would derive 

the greatest benefit from therapy. Increasing EET levels has emerged as a viable therapeutic 

strategy for CAD, AMI, and post-AMI ventricular remodeling in preclinical models; however, 

key questions remain to be addressed prior to translation of therapeutic EET-promoting strategies 

into successful proof-of-concept phase I and II clinical trials. We hypothesize that promoting the 

beneficial effects of EETs offers therapeutic potential in CAD patients and that subsets of the 

population predisposed to low EET levels will derive the greatest benefit from this therapeutic 

strategy. 

Thus, the overall aim of this dissertation is to advance our understanding of the role of 

the EET metabolic pathway across the full spectrum of CAD and post-AMI consequences as a 

means to determine the biological and therapeutic importance of EETs in the progression of this 

disease cascade. We seek to accomplish this aim using an integrated combination of targeted 

metabolomics (Aim 1) and candidate gene (Aim 2) approaches in humans, as well as a genetic 
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manipulation (Aim 3) approach in mice. Aim 1 will provide some insight into the role of the 

EET metabolic pathway in the coronary vasculature; Aims 2 and 3 are focused more on the role 

of the pathway in myocardiocytes post-AMI. 

Completion of this dissertation will (1) identify individuals across the full spectrum of 

CAD predisposed to a deficiency in the EET metabolic pathway and poor prognosis, who may 

derive the greatest benefit from EET promoting strategies using a precision medicince approach 

to drug development; (2) determine the role of sEH/EPHX2 in the pathophysiology of post-AMI 

ventricular remodeling as a means to determine the therapeutic potential of promoting EETs 

following AMI; and (3) promote precision medicine and pharmacogenomics as a future avenue 

for cardiovascular drug development by laying the foundation for clinical trials that evaluate the 

therapeutic utility of a novel strategy.  



 

21 

Specific Aims 

 

1) Elucidate the relationship between the extent (stenosis) of CAD and CYP-derived EET 

levels in patients referred for coronary angiography 

Hypotheses: 

a. Increasing CAD extent will be significantly and independently associated with 

lower circulating EET levels. 

b. The association between increasing CAD extent and lower EET levels will 

correlate with both lower CYP-derived EET biosynthesis and higher sEH-derived EET 

hydrolysis. 

c. The association between CAD extent and EET levels will be more pronounced 

than the association between CAD extent and eicosanoids from other metabolism 

pathways. 

 

2) Determine the relationship between the EPHX2 p.Lys55Arg polymorphism and survival 

in AMI patients 

Hypothesis: 

a. Carriers of the EPHX2 Arg55 variant allele will exhibit higher risk of mortality 

following hospitalization for an AMI 
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3) Determine the contribution of cardiac sEH to maladaptive ventricular remodeling in 

mice post-AMI in vivo 

Hypotheses: 

a. The 30-minute left anterior descending (LAD) coronary artery ligation ischemia-

reperfusion model of in vivo AMI in mice will induce ventricular remodeling including 

the induction of fibrosis, structural changes, and cardiac dysfunction. 

b. Mice with transgenic overexpression of sEH in cardiomyocytes and enhanced 

cardiac EET hydrolysis will have worsened ventricular remodeling post-AMI including 

enhanced fibrosis, structural changes, and cardiac dysfunction.  
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Figures 

 

 

 

Figure 1.1 The full cascade of coronary artery disease (CAD) and its associated 

consequences 

 

(a) Atherosclerosis, the progressive buildup of plaque along the walls of the arteries, initiates 

CAD and correlates with the risk of stable angina. (b) Atheromatous lesions with thin fibrous 

caps are more like to rupture and lead to acute myocardial infarction. (c) Infarcted tissue from an 

AMI activates an inflammatory response which promotes the development of maladaptive 

ventricular remodeling. Adapted/modified from Nature. 2002 Dec 19-26;420(6917):868-74 and J 

Am Heart Assoc. 2012 Oct;1(5):e004408.  
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Figure 1.2 Myocardial fibrosis post-acute myocardial infarction (AMI)  

Following AMI, fibroblast proliferation is mediated by fibroblast growth factor (FGF). 

Thereafter, transforming growth factor (TGF)-β mediates the transformation of fibroblasts to 

differentiated myofibroblasts. Profibrotic myofibroblasts synthesize collagen fibers, which are 
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ultimately cross-linked by lysyl oxidase (LOX) into mature scar tissue. Proteases (matrix 

metalloproteinases [MMPs] and tissue inhibitor of matrix metalloproteinases [TIMPs]) can alter 

the extent of collagen deposition before final maturation. Adapted/modified from J Mol Cell 

Cardiol. 2014 May;70C:74-82.  
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Figure 1.3 Cytochrome P450 (CYP)-derived epoxyeicosanoids. 

Bioactive epoxyeicosanoids from arachidonic acid (AA), linoleic acid (LA), docosahexaenoic 

acid (DHA), and eicosapentaenoic acid (EPA) elicit various biological effects in the 

cardiovascular system and are extensively hydrolyzed by soluble epoxide hydrolase. DHEQ, 

dihydroxy-eicosatetraenoic acid; DHOME, dihydroxyoctadecaenoic acid; DiHDPA, dihydroxy-
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docosapentaenoic acid; EDP, epoxydocosapentaenoic acid; EEQ, epoxyeicosatetraenoic acid; 

EpOME, epoxyoctadecaenoic acid. Adapted from J Mol Cell Cardiol. 2014 Sep;74:199-208. 
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Figure 1.4 The eicosanoid metabolism pathway. 

ω-3 and ω-6 fatty acids are metabolized by cyclooxygenase (COX), lipoxygenase (LO), and 

cytochrome P450 (CYP) enzymes to produce biologically active eicosanoids that play a 

functional role in cardiovascular disease (CVD). cPLA2, cytosolic phospholipases A2; DHET, 

dihydroxyeicosatrienoic acid; DHOME, dihydroxyoctadecaenoic acid; DiHDPA, dihydroxy-

docosapentaenoic acid; EET, epoxyeicosatrienoic acid; EpDPE, epoxydocosapentaenoic acid; 

EpOME, epoxyoctadecaenoic acid; HETE, hydroxyeicosatetraenoic acid; HODE, 

hydroxyoctadecadienoic acids; TriHOME, trihydroxyoctadecenoic acid.  
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CHAPTER 2 - CYTOCHROME P450-DERIVED EPOXYEICOSATRIENOIC ACID 

BIOMARKERS ARE ASSOCIATED WITH THE EXTENT OF CORONARY ARTERY 

DISEASE IN HUMANS: A TARGETED METABOLOMICS STUDY 

 

Introduction 

 

Despite significant advances in its treatment, CAD remains the leading cause of 

morbidity and mortality worldwide (1). Consequently, novel therapeutic strategies are needed to 

further improve outcomes. The discovery of biomarkers involved in the pathogenesis of CAD 

offers considerable promise to facilitate the development of novel therapeutics by identifying 

subsets of high-risk patients who would derive the greatest benefit from therapy (2, 3). 

In addition to their well-established role as xenobiotic metabolizing enzymes, CYP also 

metabolize fatty acids to bioactive lipids that regulate numerous cellular and physiologic 

processes relevant to the pathogenesis of CAD (4). Most notably, CYP epoxygenases from the 

CYP2C and CYP2J subfamilies metabolize arachidonic acid (AA) into four epoxyeicosatrienoic 

acid regioisomers (5,6-, 8,9-, 11,12- and 14,15-EET) (5). The EETs elicit potent vasodilatory, 

anti-inflammatory and cellular protective effects in the cardiovascular system, but are rapidly 

hydrolyzed by sEH into less biologically active DHETs (6, 7). 

An accumulating body of preclinical evidence has demonstrated that promoting the 

effects of EETs yield potent cardiovascular protective effects in multiple preclinical models (8) 

including models of vascular inflammation (9), atherosclerosis (10), and myocardial ischemia-

reperfusion injury (11). In epidemiologic studies, associations between functional 
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polymorphisms in genes responsible for EET biosynthesis (CYP2C8, CYP2J2) and EET 

hydrolysis (EPHX2) and the development of CAD have been reported (12-14). Taken together, 

these data suggest that modulation of CYP-derived EET levels may be a viable therapeutic 

strategy for CAD. 

We recently reported that multiple clinical factors were associated with low EET levels in 

patients with established CAD (15), suggesting that quantifying EET metabolite levels may 

provide insight into factors associated with inter-individual variation in EET biosynthesis and 

EET hydrolysis (beyond germline genetic polymorphisms). Unfortunately, due to the technical 

complexity of quantifying EETs, which are present at low concentrations in blood and tissue, 

these metabolites are not commonly quantified on traditional metabolomic or eicosanoid 

analytical platforms (16). As a consequence, major gaps in knowledge surrounding the biological 

and therapeutic importance of CYP-derived EETs in human CAD exist. Thus, a more thorough 

understanding of the relationship between inter-individual variation in EET levels and extent of 

CAD in humans is needed to facilitate the translation of these promising therapies into rationally 

designed clinical trials. 

The primary objective of the current study was two-fold: (1) to elucidate the relationship 

between CYP-derived EET levels and the extent of CAD in patients referred for coronary 

angiography, and (2) to evaluate the strength of this association relative to eicosanoids derived 

from the parallel COX, LO, and CYP4A/4F hydroxylase metabolic pathways. In order to 

accomplish these objectives, a panel of 28 CYP-, COX-, and LO-derived lipid metabolites was 

quantified in 162 patients with suspected or worsening obstructive CAD using a targeted 

metabolomics approach.  
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Materials and Methods 

 

Study population 

A cohort of individuals 18-80 years of age referred for coronary angiography to detect 

new or worsening CAD were identified in the cardiac catheterization laboratories at the 

University of North Carolina-Chapel Hill between September 2012 and February 2014. 

Exclusion criteria included severe concurrent illness (such as active pneumonia and acute 

decompensated heart failure), systemic inflammatory disease, malignancy with active treatment, 

hematologic disorders affecting platelet function, prior heart transplantation, hematocrit <30%, 

STEMI, end-stage liver disease, end-stage renal disease on dialysis, and corticosteroid use. 

Eligible participants provided written informed consent. The study protocol was approved by the 

UNC Biomedical Institutional Review Board and was completed in accordance with the 

Declaration of Helsinki. 

 

Classification of CAD extent 

Obstructive CAD was defined according to anatomical or physiological ‘criteria for 

revascularization’ in recent clinical practice guidelines (17). Briefly, the anatomic criteria for 

revascularization (PCI or CABG) are the presence of ≥50% stenosis in the left main coronary 

artery or ≥70% stenosis in one or more of the non-left main coronary arteries. The classification 

of nonobstructive CAD included those without obstructive CAD that had mild stenosis (10-69% 

in one or more non-left main coronary arteries and/or 10-49% stenosis in the left main coronary 

artery), whereas the classification of no apparent CAD included those with no angiographic 

evidence of CAD (<10% stenosis in all coronary arteries). Coronary stenting impacts the 
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inflammatory state in the index lesion. Indeed, in-stent restenosis is an inflammatory response to 

stent placement which can reocclude the artery and drug-eluting stents reduce the risk of 

restenosis due to their immunosuppressive properties (18). Thus, in order to reflect the extent of 

CAD at the time of blood sampling unrelated to prior revascularization, only unprotected lesions 

(lesions not bypassed by collateral vessels, CABG, or stents) in native coronary arteries were 

considered for classification. 

 

Quantification of eicosanoid metabolite concentrations 

Whole blood was drawn in the catheterization lab from the indwelling arterial sheath that 

had been placed as part of the coronary angiography procedure. Plasma was immediately 

separated by centrifugation and stored at -80°C for future biomarker analysis. Plasma eicosanoid 

metabolite concentrations were quantified by targeted liquid chromatography-tandem mass 

spectrometry (LC-MS/MS) as previously described, with minor modifications (19, 20). Brielfy, 

plasma (0.25 mL) was diluted in 0.1% acetic acid/5% methanol solution (0.25 mL) containing 

0.009 mM butylated hydroxytoluene (BHT), spiked with internal standards (3 ng each of 

prostaglandin E2-d4 [PGE2-d4; Cayman Chemical, Ann Arbor, MI], 10,11- 

dihydroxynondecanoic acid [DiHN] and 10,11- epoxyheptadecanoid acid [EpHep; kindly 

provided by Dr. Bruce Hammock, University of California-Davis (21)]), and processed by 

liquid-liquid extraction (0.1% acetic acid/5% methanol and ethyl acetate) to isolate lipids. 

Extracts in ethyl acetate were then dried by centrifugation under vacuum, covered in argon, and 

stored at -80°C for future processing. Dried extracts were reconstituted in 80% methanol 

(containing 10mg/ml BHT) for elution through phospholipid removal columns (Phree, 

Phenomenex, Torrance, CA), as directed by the manufacturer, for enhanced purification of the 
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extracts. Extracts were then dried a second time by centrifugation under vacuum and stored at -

80°C for future analysis. At the time of analysis, extracts were reconstituted in 50 μL of 30% 

ethanol and a panel of 34 eicosanoid metabolites (Table 2.2) was quantified by targeted LC-

MS/MS as previously described (19, 20). Data was acquired and concentrations were quantified 

with Analyst software, version 1.5 (Applied Biosystems) using analyte and internal standard 

peaks for each sample. Extraction efficiency for each sample was determined based on the 

recovery of the internal standards. Concentration values falling below the lower limit of 

quantitation were imputed as a concentration equal to half of the lowest standard. Analytes with 

more than 50% of the values below or above the lower or upper limit of quantitation, 

respectively, were not included in the analysis (Table 2.2) (19). Among the 28 metabolites that 

met these criteria, 24 of 28 (86%) had <10% values out of the quantitation range. 

 

Longitudinal evaluation of cardiovascular events 

The incidence of cardiovascular events over time was abstracted from the electronic 

medical record from the time of the index angiography through August 2014. Those who did not 

present to a hospital or clinic in the UNC health care system (for routine follow-up or emergent 

care) after the index coronary angiography visit were considered to be lost to follow-up, and 

were excluded from the analysis. The prespecified primary endpoint was the time to the first 

occurrence of death due to a cardiovascular cause, hospitalization for a non-fatal ACS event 

(unstable angina, NSTEMI, STEMI), or hospitalization for a coronary revascularization 

procedure (PCI or CABG). Clinician reported outcomes were verified from the electronic 

medical records by two individuals. 
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Statistical analysis 

Data are presented as mean ± standard deviation, median (interquartile range), or count 

(%) unless otherwise indicated. Study population characteristics were compared across CAD 

extent using one-way ANOVA, chi-squared test, or Fisher’s exact test as appropriate. All 

analyses were performed using SAS 9.3 (SAS Institute, Cary, NC) unless otherwise indicated. 

Metabolite levels and epoxide:diol ratios were not normally distributed and thus log-

transformed prior to statistical analysis. Pearson correlations were conducted to determine the 

correlation between individual metabolites. Established biomarkers of metabolic function within 

the EET metabolic pathway were used as previously described (19, 22). Briefly, the 

concentrations of EET regioisomers (14,15-EET; 11,12-EET; and 8,9-EET) and DHET 

regioisomers (14,15-DHET; 11,12-DHET; 8,9-DHET; and 5,6-DHET) were summed to evaluate 

total plasma concentrations of EETs and DHETs, respectively. 

The primary (sum EETs, sum EETs+DHETs, and 14:15-EET:DHET ratio) and secondary 

biomarkers of EET biosynthesis and hydrolysis (Table 2.3) were compared across CAD extent 

by ANOVA. Post-hoc pairwise comparisons were conducted using Fisher’s LSD test. A 

secondary analysis was conducted using a model that adjusts for demographic factors (age, race, 

sex), clinical factors (diabetes, peripheral artery disease, and prior MI), and medication use (beta 

blocker, angiotensin-converting enzyme inhibitor) that were independently associated with CAD 

extent (P<0.15) in a multivariable model. 

To determine the magnitude of the association between EET levels and CAD extent 

relative to other demographic and clinical factors, multiple regression analysis was performed. 

Potential covariates included demographic factors (age, gender, race), indices of CAD extent 

(index revascularization, index ACS, prior revascularization, presence of collaterals, maximum 
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coronary artery stenosis), cardiovascular risk factors (obesity, hypertension, diabetes, cigarette 

smoking, hyperlipidemia, peripheral artery disease, prior acute myocardial infarction, prior 

transient ischemia attack/stroke), comorbidities (lung disease, heart failure), body mass index, 

and chronic medication use pre-angiography (angiotensin-converting enzyme inhibitor, 

angiotensin receptor blockers, aspirin, beta blockers, statins, calcium channel blockers, P2Y12 

inhibitors, metformin, nitrates, non-statin lipid modifiers, fish oil, proton pump inhibitors). Only 

covariates with P<0.15 in univariate analysis were carried forward into a stepwise multivariate 

analysis. Collinear variables were removed and covariates with P<0.15 were included in the final 

model. 

All metabolomic analyses (global student t-test and FDR analyses, quantitative 

enrichment analysis [QEA], and Pearson correlations) were performed with Metaboanalyst 3.0 

(23). For these analyses where indicated, biomarker comparisons between those with obstructive 

CAD (N=72) and other patients (N=90) were conducted. Global student t-test analyses were 

conducted on each of the 28 metabolites in the full panel. Metabolites with P<0.05 and FDR 

q<0.05 were considered significantly different across obstructive CAD status. Metabolites were 

then assigned to 9 distinct eicosanoid metabolic pathways according to their parent substrate and 

biosynthesis enzyme. QEA was conducted to determine the relative impact of obstructive CAD 

on the 9 eicosanoid metabolic pathways. P-values (Holm’s corrected) were generated from 

estimated Q-statistics, and pathways were considered significantly enriched when P<0.05 and 

corresponding FDR q<0.05.  

Longitudinal analyses were conducted in the cohort of patients with reliable follow-up 

data (N=121). The relationship between baseline CAD extent and time to occurrence of the 

primary endpoint was assessed with Cox proportional hazards regression. Due to the low number 
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of events in those with no apparent (0 events) or nonobstructive (4 events) CAD, we proceeded 

to explore the association between baseline EET levels (tertiles) and risk of future cardiovascular 

events exclusively within the obstructive CAD patients that had reliable follow-up data (N=63). 

Likewise, due to the low number of events, the longitudinal analyses were unadjusted and 

considered exploratory in nature. Kaplan-Meier curves were generated using GraphPad Prism 

6.0.  
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Results 

 

Study population 

The demographic and clinical characteristics of the study population are shown in Table 

2.1. The extent of CAD was classified based on the results of the coronary angiography. 

Seventy-two (44%) patients were diagnosed with obstructive CAD (≥70% stenosis in ≥1 major 

coronary artery), whereas 51 (31%) patients were diagnosed with nonobstructive CAD (10-69% 

stenosis) and 39 (24%) patients exhibited no apparent CAD (<10% stenosis). Several indices of 

CAD burden were significantly more prevalent with increasing CAD extent including history of 

a prior revascularization procedure (P=0.009) and diagnosis of an ACS during the index visit 

(P<0.001). The prevalence of CAD risk factors and medication use were comparable to 

previously reported coronary angiography cohorts and reflected clinical practice guidelines (24, 

25). 

 

Quantification of eicosanoid metabolite biomarkers 

Of the total eicosanoid panel, 28 of the 34 metabolites met the criteria for further analysis 

(Table 2.2). Plasma concentrations ranged from nM to μM. Plasma EET and DHET regioisomers 

were positively correlated with each other (Figure 2.1). To minimize redundancy, the sum of the 

8,9-, 11,12- and 14,15-EET regioisomers (sum EETs) was calculated and used as a single 

biomarker (19). In addition, the sum of the EET and DHET regioisomers (sum EETs+DHETs) 

and the ratio of 14,15-EET to 14,15-DHET (14,15-EET:14,15-DHET ratio) were calculated and 

used as the primary biomarkers of CYP epoxygenase and sEH metabolic function, respectively 

(22). 
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Association of EET metabolic pathway biomarkers and CAD extent 

Sum EET levels (the sum of 8,9-, 11,12- and 14,15-EET regioisomers) were inversely 

associated with CAD extent, such that EET levels in obstructive CAD patients were significantly 

lower than EET levels in patients with either no apparent CAD or nonobstructive CAD (Figure 

2.2a, Table 2.3). After adjusting for covariates (demographic factors, clinical factors, and 

medication use), the difference between no CAD and obstructive CAD remained significant 

whereas the difference between nonobstructive CAD and obstructive CAD was not statistically 

significant (P=0.069). A significant difference in EET levels was not observed between patients 

with no apparent CAD and nonobstructive CAD. Consistent results were observed with the 

individual 8,9-, 11,12- and 14,15-EET regioisomers and the DHET metabolites (Table 2.3). 

Furthermore, higher maximum coronary artery stenosis (the percent narrowing of the most 

obstructed coronary artery and another indicator of CAD extent) was significantly associated 

with lower sum EETs (Pearson’s r=-0.26, P=0.001). 

A similar inverse relationship was observed between CAD extent and sum EETs+DHETs 

(Figure 2.2b, Table 2.3). In contrast, 14,15-EET:DHET ratio (a biomarker of sEH metabolic 

function) was not significantly associated with CAD extent (Figure 2.2c, Table 2.3). Similarly, 

no association was observed between CAD extent and either the sum EET:DHET ratio (Table 

2.3) or the 12,13-epoxyoctadecaenoic acid to dihydroxyoctadecaenoic acid (EpOME:DHOME) 

ratio biomarkers of sEH metabolic function (P=0.992). 

In a multivariate analysis, the strongest predictor of EET levels was CAD extent; there 

was an inverse association (Table 2.4). A similar relationship existed with sum EETs+DHETs 

(r2=0.08, P<0.001). The presence of collaterals, compensatory anastomotic connections between 

the distal portion of an occluded coronary artery and a different coronary artery without an 



 

49 

intervening capillary bed (26), was also associated with lower EET levels. Female sex was 

associated with significantly higher EET levels. Moreover, use of certain medications was 

associated with higher (statins, calcium channel blockers) and lower (beta blockers, angiotensin-

converting enzyme inhibitors) EET levels (Table 2.4). 

 

Identification of altered eicosanoid pathways across obstructive CAD status 

Among all of the individual eicosanoid metabolites quantified, 11 were significantly 

altered across obstructive CAD status (Figure 2.3a and 2.3b; Table 2.5). The three EET (8,9-, 

11,12-, and 14,15-EET) and four DHET (5,6-, 8,9-, 11,12-, and 14,15-DHET) regioisomers were 

among the 11 analytes associated with CAD extent. In order to determine the most enriched 

eicosanoid metabolic pathways across obstructive CAD status, we subsequently grouped the 

metabolites into pathways based on their parent substrate and biosynthesis enzyme. Metabolites 

within the same pathway tended to be positively correlated with each other (Figure 2.1). QEA 

revealed that only the AA-derived CYP epoxide and AA-derived sEH diol pathways were 

significantly associated with the presence of obstructive CAD (Figure 2.3c; Table 2.6). 

 

Risk of Future Cardiovascular Events 

Participants were prospectively followed to determine the relationship between CAD 

extent and risk of subsequent cardiovascular events. Follow-up data was available in 121 (75%) 

of the enrolled participants, and the median length of follow-up was 1.0 years. Cardiovascular 

death, a non-fatal ACS event or a coronary revascularization procedure occurred in 21 

participants (0, 10, and 11 events, respectively). CAD extent at baseline was significantly 



 

50 

associated with incidence of a cardiovascular event, with 17 of the 21 events occurring in those 

with obstructive CAD (Figure 2.4a), similar to previous studies (25). 

Although the presence of obstructive CAD is associated with lower EET levels, 

considerable inter-individual variability in EET levels existed within the obstructive CAD group 

(median [IQR]: 639 [286] pg/mL). Consequently, we explored the relationship between baseline 

EET levels and risk of a future cardiovascular event exclusively within the subset of patients 

with obstructive CAD. A stepwise inverse relationship between EET levels and cardiovascular 

event incidence appeared to exist, such that the highest number of events was observed in those 

in the lowest EET level tertile (Figure 2.4b); however, this relationship was not statistically 

significant.  
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Discussion 

 

This is the first study that reports a relationship between circulating EET metabolite 

levels and the extent of CAD in humans. In a well characterized CAD population, we observed 

that the presence of obstructive CAD is significantly and independently associated with lower 

circulating EET levels. Furthermore, the association between obstructive CAD and lower EET 

levels (a) correlates with lower CYP epoxygenase metabolic function, but not higher sEH 

metabolic function, and (b) is significantly more pronounced than other eicosanoid metabolism 

pathways. Collectively, these findings demonstrate that patients with obstructive CAD are 

predisposed to low EET metabolite levels secondary to suppressed EET biosynthesis, and 

suggest that novel strategies that promote the effects of EETs may have therapeutic promise in 

patients with obstructive CAD. 

It has become increasingly clear that CYPs metabolize AA into bioactive eicosanoids 

with potent cellular and physiologic effects in the cardiovascular system (27). Most notably, 

CYP epoxygenase-derived EETs elicit protective effects in preclinical models (6, 7), including 

vasodilation by hyperpolarizing vascular smooth muscle cells (28, 29), anti-inflammation by 

attenuating NF-κB signaling (30, 31), and anti-apoptosis by promoting PI3K/Akt signaling (32, 

33). Consequently, promoting the effects of EETs, most notably by inhibiting sEH and 

increasing endogenous EET levels, has emerged as a cardiovascular protective therapeutic 

strategy with potential clinical utility (34). Due to the technical complexity of measuring EETs, 

which are not quantified on traditional metabolomic or eicosanoid panels (16), major gaps in 

knowledge surrounding the biological and therapeutic importance of this pathway in human 

cardiovascular disease remain (8). Importantly, characterizing the relationship between EET 
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metabolite levels and CAD extent in humans is central to a better understanding of the functional 

role of this pathway in the initiation and progression of CAD. Through application of a highly 

sensitive and specific targeted LC-MS/MS assay that simultaneously quantifies CYP-, COX-, 

and LO-derived lipid metabolites in human plasma, the current study identified a significant 

inverse relationship between EET levels and angiographic extent of CAD. Moreover, pathway 

analyses revealed that these differences were significantly more pronounced than metabolites 

derived from COX, LO and CYP hydroxylase pathways. Taken together, these findings suggest 

that CYP-derived EETs may play an important role in the pathogenesis and progression of CAD 

in humans. 

In the current study, CAD extent was also associated with lower sum EETs+DHETs, but 

surprisingly not EET:DHET ratios. These data suggest that the inverse association between EET 

levels and CAD extent was mediated by suppression of CYP epoxygenase metabolic function 

(EET biosynthesis), and not an increase in sEH metabolic function (EET hydrolysis). 

Accordingly, it is well-established that inflammatory stimuli suppress CYP-mediated xenobiotic 

metabolism through a variety of mechanisms, including cytokine-mediated transcriptional 

downregulation of CYP expression (35); fittingly, inflammatory stimuli also drive the 

development and progression of CAD (36). We recently demonstrated that hepatic CYP 

epoxygenase expression, hepatic CYP epoxygenase metabolic function, and plasma EET levels 

are suppressed in an atherogenic diet mouse model of inflammatory non-alcoholic fatty liver 

disease (37). In contrast, no changes in sEH expression or EET hydrolysis were observed. 

Although most studies have investigated the impact of inflammation on hepatic CYP expression 

and function, cytokines have also been reported to downregulate CYP epoxygenase expression in 

endothelial cells of the vasculature (38). Moreover, hepatic, renal, pulmonary and myocardial 
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Cyp2c/2j expression and EET biosynthesis were suppressed in an endotoxin mouse model of 

acute inflammation (39). Altogether, these findings suggest that suppression of CYP-mediated 

EET biosynthesis may be a key pathological consequence of the inflammation-mediated 

development and progression of CAD. Future studies are necessary to elucidate the mechanisms 

underlying the association between lower EET levels and advanced CAD in humans. 

A few additional studies have quantified plasma EET levels in patients at risk for or with 

established cardiovascular disease. Ramirez et al. found that presence of the metabolic syndrome 

was associated with lower circulating EET levels (40). Furthermore, Minuz et al. reported that 

patients with renovascular disease had lower circulating EETs compared to both healthy 

volunteer and essential hypertension controls (41). In contrast, we previously reported that 

patients with established stable CAD (≥50% coronary artery stenosis or a prior revascularization 

procedure) had significantly higher plasma EET levels compared to a population of healthy 

volunteer controls at low risk for CAD (15). This observed increase in EET levels was driven by 

suppressed sEH metabolic function, such that the median 14,15-EET:DHET ratio was 

significantly higher in patients with established CAD compared to controls (0.37 versus 0.18, 

respectively). In the present study, no differences in sEH metabolic function were observed 

across CAD extent, and the median 14,15-EET:DHET ratio observed in those with no apparent 

(0.35), nonobstructive (0.33) and obstructive (0.34) CAD was comparable to the CAD 

population of the prior study. It is important to note that the controls in the previous study were 

healthy volunteers that had no risk factors for cardiovascular disease or chronic medication use. 

Consequently, multiple potential confounding factors may have driven the observed suppression 

of sEH metabolic function in CAD cases in the previous study. The present study, however, 

employed a cross-sectional design within a population of patients referred for coronary 
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angiography; thus, the reference population with no apparent angiographic evidence of CAD had 

similar CAD risk factors and medication use compared to those with non-obstructive and 

obstructive CAD. Importantly, the inverse association between EET levels and CAD extent was 

independent of clinical factors and medication use in an adjusted model. Future prospective 

studies will be needed to delineate the direct effects of risk factor control and medications on 

EET biosynthesis and hydrolysis over time in patients at risk for or with established CAD. 

The relationship between metabolite biomarkers of the EET metabolic pathway and 

prognosis in patients with established CAD has not been studied to date. Consequently, in a 

secondary analysis, we explored the relationship between inter-individual variation in EET 

metabolite levels and risk of a future adverse cardiovascular event in patients with obstructive 

CAD at baseline. We observed a stepwise relationship across the EET tertiles where the highest 

event incidence occurred in those with the lowest EET levels at baseline. Although this 

relationship was not statistically significant and should be observed with caution due to the small 

number of events, these findings are biologically plausible considering the anti-inflammatory and 

protective effects of EETs in numerous preclinical models of cardiovascular disease. 

Furthermore, these data are consistent with a previously reported inverse association between 

circulating EET and MCP-1 concentrations (a pro-inflammatory chemokine predictive of poor 

prognosis in CAD (42)), in which patients with stable CAD in the lowest and middle EET tertiles 

had significantly higher MCP-1 levels compared to those in the highest EET tertile (22). These 

preliminary observations underscore the need to rigorously evaluate the relationship between 

EET metabolite levels and the risk of cardiovascular events in a larger population. 

Although the current study is the largest to date evaluating the relationship between CYP-

derived eicosanoid metabolites and CAD in humans, our analysis has limitations that must be 
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acknowledged. The cross-sectional design precludes us from establishing causality between 

increasing CAD extent and lower EET levels because there is no data on which event occurred 

first.  Furthermore, coronary angiography is an inexact method to quantify the burden and extent 

of CAD. Our analysis also included multiple statistical comparisons. To account for the 

possibility of false-positive findings, a false discovery rate (FDR) was calculated for each 

comparison. The association between obstructive CAD and lower EET and DHET levels had a 

FDR of 5% or less, which enhances confidence in our results. Lastly, this was a single-center 

study and our results may not be generalizable to other CAD populations. Validation of the 

observed relationships in an independent cohort will ultimately be necessary. 

Recent failures in CAD drug development suggest that innovative approaches are needed 

to mitigate increasing attrition rates and more successfully translate novel therapies into clinical 

practice (43-45). Compared to the conventional ‘one-size fits all’ methodology to drug 

development, a precision medicine approach has the potential to increase the probability of 

success for promising therapeutic candidates (46). Although targeted therapies are routinely used 

in oncology, this strategy has not been readily adopted in CAD. Biomarkers offer considerable 

promise to prospectively identify subsets of CAD patients at high risk of experiencing a 

cardiovascular event that exhibit dysfunction in a specific pathway (putative responders), thereby 

enabling novel therapies that target the pathway to maximize their therapeutic effect and improve 

outcomes. Our findings collectively demonstrate that obstructive CAD is significantly and 

independently associated with lower circulating EET levels secondary to suppressed EET 

biosynthesis. These results offer important insight into the potential functional role of CYP-

derived EETs in the pathogenesis and progression of CAD in humans, and suggest that 

promoting the effects of EETs may have therapeutic utility in CAD patients predisposed to low 
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EET levels. Importantly, agents that promote the effects of EETs are in development for a 

variety of therapeutic indications (47-49). In parallel, technology for the high-throughput 

quantification of CYP-derived eicosanoids in the clinical setting is advancing (50). 

Consequently, our results set the foundation for future clinical research in this area, including the 

rational design of prospective, biomarker-guided interventional studies in targeted subsets of the 

CAD population (low EET levels) with enriched potential to derive clinical benefit from 

emerging EET-promoting therapies.  
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Figures 

 

 

 

Figure 2.1. Correlation matrix of eicosaniods. Scale above indicates Pearson correlation 

coefficients on log-transformed data. Dark and light indicate positive and negative correlations, 

respectively. All 28 quantafiable metabolites are listed. Analyses revealed that eicosanoids 
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within the same pathway (by class and substrate) tend to be positively correlated (white borders 

indicate strongest clusters). DHET, dihydroxyeicosatrienoic acid; DHOME, 

dihydroxyoctadecaenoic acid; DiHDPA, dihydroxy-docosapentaenoic acid; DiHETE, 

dihydroxytetraenoic acid; EET, epoxyeicosatrienoic acid; EpDPE, epoxydocosapentaenoic acid; 

EpOME, epoxyoctadecaenoic acid; HETE, hydroxyeicosatetraenoic acid; HODE, 

hydroxyoctadecadienoic acids; PGF1α, prostaglandin F1alpha; PGF2α, prostaglandin F2alpha; 

TriHOME, trihydroxyoctadecenoic acid  
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Figure 2.2 Plasma biomarkers of cytochrome P450 (CYP)-mediated epoxyeicosatrienoic 

acids (EETs) biosynthesis and hydrolysis across coronary artery disease (CAD) extent. (a) 

Sum EETs were inversely associated with CAD extent across no apparent CAD (N=39), 

nonobstructive CAD (N=51), and obstructive CAD (N=72) patients (ANOVA: unadjusted 

P=0.003, adjusted P=0.004). (b) A significant inverse association was also observed with sum 

EETs+DHETs (ANOVA: unadjusted P=0.001, adjusted P=0.001). (c) In contrast, the 14,15-

EET:DHET ratio was not associated with CAD extent (ANOVA: unadjusted P=0.693, adjusted 

P=0.859). Untransformed data are presented as median (line), interquartile range (box), and 95% 

confidence intervals (whiskers) on a log scale. *P<0.05 in unadjusted pairwise comparisons. 

†P<0.05 in adjusted pairwise comparisons. DHET, dihydroxyeicosatrienoic acid  
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Figure 2.3 Enrichment of eicosanoid pathways across obstructive coronary artery disease 

(CAD) status. Twenty-eight eicosanoid metabolites were assigned to 9 distinct eicosanoid 

metabolic pathways according to their parent substrate (arachidonic acid [AA], linoleic acid 

[LA], eicosapentaenoic acid [EPA]/docosahexaenoic acid [DHA] fatty acids) and biosynthesis 

enzyme (cytochrome P450 [CYP], lipoxygenase [LO], cyclooxygenase [COX], soluble epoxide 

hydrolase [sEH]), and compared between obstructive CAD patients (N=72) and all other patients 

(N=90). The EPA and DHA derived metabolites (all derived from CYP or sEH biosynthesis) 

were combined into one pathway due to the low number of metabolites in that group. (a) A 

volcano plot shows how each of the 28 individual metabolites within pathways differs between 

obstructive CAD patients and all other patients. Metabolites in the upper left box (fold 
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change>1.2 and P<0.05) were considered to be significantly altered. P-value decreases as Y-axis 

value increases. (b) A list (rank ordered by p-value with accompanying false discovery rate 

[FDR] and fold change) of the top metabolites that significantly differed by obstructive CAD 

status is provided. (c) Quantitative enrichment analysis (QEA) revealed that AA-derived 

epoxides (P=0.01; FDR q=0.01) and AA-derived diols (P=0.049; FDR q=0.03) were enriched 

across obstructive CAD status relative to parallel pathways. *QEA P<0.05 (Holm’s corrected) 

and FDR q<0.05. DHET, dihydroxyeicosatrienoic acid; EET, epoxyeicosatrienoic acid; FC, fold 

change; HETE, hydroxyeicosatetraenoic acid  
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Figure 2.4 Coronary artery disease (CAD) extent, epoxyeicosatrienoic acid (EETs), and 

risk of subsequent cardiovascular events. Kaplan-Meier curves were generated for incidence 

of the primary endpoint (time to the occurrence of death from cardiovascular causes, acute 

coronary syndrome event, or coronary revascularization procedure) according to (a) CAD extent 

at baseline in all patients with reliable follow-up data (N=121) and (b) EET levels at baseline 

(tertiles) exclusively within the subset of patients with obstructive CAD (N=63). The log rank P-

value (unadjusted) for each Kaplan-Meier curve is provided. Below the curves, the number and 

frequency of events within each CAD extent and EET tertile group, along with the unadjusted 

hazard ratio (HR), 95% confidence interval (CI) and P-value, is provided. Due to the lack of 

events in those with no apparent CAD at baseline, the no apparent CAD and nonobstructive 

CAD groups were combined and served as a single referent group.  
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Tables 

 

Table 2.1 Characteristics of the total study population and across the angiographic extent of coronary artery disease (CAD) 

 

Characteristic     Total  No apparent CAD Nonobstructive CAD Obstructive CAD P 

      (N=162) (N=39)   (N=51)   (N=72)  

Demographics 

 Age (years)    61.8 ± 10.3 58.2 ± 10.4  62.1 ± 9.9  63.6 ± 10.2  0.028 

 Female     70 (43.2%) 18 (46.2%)  22 (43.1%)  30 (41.7%)  0.901 

 African American    34 (21.0%) 10 (25.6%)  11 (21.6%)  13 (18.1%)  0.640 

Past medical history 

 Current/recent (<1 year) smoker  46 (28.4%) 11 (28.2%)  15 (29.4%)  20 (27.8%)  0.980 

 Obese (body mass index ≥30 kg/m2) 79 (48.8%) 25 (64.1%)  19 (37.3%)  35 (48.6%)  0.041 

 History of hypertension   130 (80.3%) 28 (71.2%)  41 (80.4%)  61 (84.7%)  0.263 

 History of diabetes   51 (31.5%) 9 (23.1%)  14 (27.5%)  28 (38.9%)  0.174 

 History of hyperlipidemia   111 (68.5%) 23 (59.0%)  34 (66.7%)  54 (75.0%)  0.209 

 History of peripheral artery disease 20 (12.4%) 2 (5.1%)  5 (9.8%)  13 (18.1%)  0.130 

 Prior myocardial infarction  24 (14.8%) 1 (2.6%)  6 (11.8%)  17 (23.6%)  0.006 

 Prior revascularization   56 (34.6%) 6 (15.4%)  18 (35.3%)  32 (44.4%)   0.009 

Medication use 

 ACE inhibitor use    73 (45.1%) 14 (35.9%)  18 (35.3%)  41 (56.9%)  0.025 

 ARB use     33 (20.4%) 10 (25.6%)  13 (25.5%)  10 (13.9%)  0.187 

 Aspirin use    122 (75.3%) 29 (74.4%)  37 (72.6%)  56 (77.8%)  0.793 

 Beta blocker use    99 (61.1%) 16 (41.0%)  32 (62.8%)  51 (70.8%)   0.009 

 Statin use     123 (75.9%) 27 (69.2%)  39 (76.5%)  57 (79.2%)   0.502 

 Calcium channel blocker use  46 (28.4%) 13 (33.3%)  14 (27.5%)  19 (26.4%)   0.729 

Cardiac catheterization laboratory 

 ACS on presentation   29 (17.9%) 3 (7.7%)  3 (5.9%)  23 (31.9%)   <0.001 

 Presence of collateral   20 (12.4%) 5 (12.8%)  4 (7.8%)  11 (15.3%)  <0.001 

 Stenosis in most severe vessel (%)  50 (80)  0 (0)   40 (25)   90 (15)   <0.001 

ACE, angiotensin-converting enzyme; ACS, acute coronary syndrome; ARB, angiotensin receptor blocker. Data presented as mean ± standard deviation, median 

(interquartile range), or count (%). 

One-way ANOVA across CAD extent was performed for continuous variables and Chi-square test or Fisher’s exact test was performed for categorical variables 

as appropriate.  
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Table 2.2 List of all eicosanoid metabolites 

 

Pathway     Analyte  Plasma Concentration (pg/mL) 

AA – CYP epoxides   14,15-EET   299 (139) 

      11,12-EET  163 (86)  

      8,9-EET  197 (94) 

      5,6-EET*  <LLOQ  

AA – sEH diols    14,15-DHET  937 (433) 

      11,12-DHET  594 (322) 

      8,9-DHET   244 (150) 

      5,6-DHET  253 (160)     

AA – CYP hydroxyls   20-HETE  1,188 (762) 

      19-HETE  646 (348) 

AA – LO metabolites   15-HETE  937 (503) 

      12-HETE  63 (42) 

      11-HETE  5,706 (3,600) 

      9,12,13-TriHOME  688 (798) 

      9,10,13-TriHOME  9,150 (12,200) 

      8-HETE  12,628 (6,656) 

      5-HETE  2,243 (1,759) 

AA – COX metabolites   8-iso-PGF2α  29 (12) 

      6-keto-PGF1α  51 (21) 

      PGB2*   <LLOQ 

      PGD2*   <LLOQ 

      PGE2*   <LLOQ 

      PGF2α   238 (712) 

      TXB2*   <LLOQ 

LA – LO metabolites   13-HODE  21,356 (11,200) 

      9-HODE  15,222 (9,844) 

LA – CYP epoxides   12,13-EpOME  1,714 (1,000) 

      9,10-EpOME  4,200 (2,867) 

LA – sEH diols    12,13-DHOME  2,809 (1,881) 

      9,10-DHOME  1,742 (1,274) 

EPA/DHA – CYP/sEH metabolites 19,20-DiHDPA  1,193 (706) 

      17,18-DiHETE  2,794 (1,937) 

      19,20-EpDPE  1,659 (1,019)  

      17,18-EpETE*  <LLOQ 

AA, arachidonic acid; COX, cyclooxygenase; CYP, cytochrome P450; DHA, docosahexaenoic acid; DHET, 

dihydroxyeicosatrienoic acid; DHOME, dihydroxyoctadecaenoic acid; DiHDPA, dihydroxy-docosapentaenoic acid; 

DiHETE, dihydroxytetraenoic acid; EET, epoxyeicosatrienoic acid; EPA; eicosapentaenoic acid; EpDPE, 

epoxydocosapentaenoic acid; EpETE, epoxyeicosatetraenoic acid; EpOME, epoxyoctadecaenoic acid; HETE, 

hydroxyeicosatetraenoic acid; HODE, hydroxyoctadecadienoic acids; LA, linoleic acid; LO, lipoxygenase; PGB2, 

prostaglandin B2; PGD2, prostaglandin D2; PGE2, prostaglandin E2; PGF1α, prostaglandin F1alpha; PGF2α, 

prostaglandin F2alpha; sEH, soluble epoxide hydrolase; TriHOME, trihydroxyoctadecenoic acid; TXB2, 

thromboxane B2.  

Data presented as median (interquartile range). 

*Analyte plasma levels were below lower limit of quantification (LLOQ) and could not be accurately quantified 
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Table 2.3 Comparison of plasma cytochrome P450 (CYP) epoxygenase-derived and soluble epoxide hydrolase (sEH)-derived arachidonic acid 

metabolite biomarkers across coronary artery disease (CAD) extent 

 

Analyte       No apparent CAD  Nonobstructive CAD  Obstructive CAD P a  

                                               (N=39)    (N=51)    (N=72)     

 

AA – CYP epoxides (pg/mL) 

 14,15-EET   368 (170)   295 (170)   286 (117)*†  0.006 

 11,12-EET   192 (89)   171 (99)   152 (85)*†  0.003 

 8,9-EET    235 (125)   205 (112)   189 (87)*†  0.007 

 Sum EETs b   815 (417)   678 (356)   618 (258)*†  0.003 

 

AA – sEH diols (pg/mL) 

 14,15-DHET   1,007 (568)   971 (449)   845 (442)*  0.006 

 11,12-DHET   657 (393)   633 (367)*   563 (257)*  0.005 

 8,9-DHET   300 (193)   229 (206)   217 (110)*  0.039 

 5,6-DHET   290 (145)   244 (198)   229 (122)*  0.028 

 Sum DHETs   2,324 (1305)   2,084 (1605)   1,956 (875)*  0.004 

 

CYP epoxygenase function (pg/mL) 

 Sum EETs + DHETs  3,321 (1,441)   2,737 (1,670)   2,593 (997)*†  0.001 

 

sEH function (ratio) 

 14,15-EET:14,15-DHET  0.35 (0.18)   0.33 (0.22)   0.34 (0.16)  0.693 

 11,12-EET: 11,12-DHET  0.28 (0.19)   0.29 (0.19)   0.27 (0.16)  0.413 

 8,9-EET: 8,9-DHET  0.80 (0.44)   0.81 (0.51)   0.78 (0.31)  0.880 

 Sum EETs: DHETs b  0.37 (0.22)   0.38 (0.22)   0.36 (0.18)  0.649 

DHET, dihydroxyeicosatrienoic acid; EET, epoxyeicosatrienoic acid. Data presented as median (interquartile range) 
aOne-way ANOVA was performed on log-transformed data 
bPlasma concentrations of the 5,6-EET regioisomer were below the limit of quantification and not included in the calculation 

*P<0.05 versus no apparent CAD (Fisher’s LSD). †P<0.05 versus nonobstructive CAD (Fisher’s LSD)
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Table 2.4 Multivariate relationships between clinical factors and plasma epoxyeicosatrienoic acids 

(N=162) 

 

    Parameter SE  Partial R2 P a 

    Estimate 

CAD extent   -0.047   0.017  0.067  0.001 

Female    0.106  0.028  0.049  0.003  

Presence of collaterals  -0.100  0.041  0.032  0.016 

Statin use   0.096  0.033  0.024  0.037 

Beta blocker use  -0.081  0.029  0.036  0.009 

Calcium channel blocker use 0.063  0.030  0.022  0.039 

ACE inhibitor use  -0.050  0.028  0.016  0.077 

 

Full model       0.244  <0.001 

ACE, angiotensin-converting enzyme; CAD, coronary artery disease; SE standard error 
aFactors with P<0.15 in the univariate analysis were included in the multivariate analysis.  
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Table 2.5 Comparison of plasma eicosanoid metabolites across obstructive coronary artery disease 

(CAD) status 

 

Analyte (pg/mL)  No obstructive CAD Obstructive CAD P a  FDR q 

    (n=90)   (n=72) 

AA – CYP epoxides 

 14,15-EET  312 (164)  286 (117)  0.002  0.021 

 11,12-EET  181 (99)  152 (85)  <0.001  0.019 

 8,9-EET   211 (100)  189 (87)  0.002  0.021 

AA – sEH diols 

 14,15-DHET  981 (490)  845 (442)  0.006  0.031 

 11,12-DHET  642 (367)  563 (257)  0.009  0.034 

 8,9-DHET  252 (194)  217 (110)  0.019  0.059 

 5,6-DHET  268 (177)  229 (122)  0.008  0.034 

AA – CYP hydroxyls 

 19-HETE   694 (408)  588 (267)  0.006  0.031 

 20-HETE   1,270 (827)  1,087 (664)  0.076  0.134 

AA – LO metabolites 

 15-HETE   1,021 (620)  847 (382)  0.010  0.036 

 11-HETE   6,361 (3,944)  5,361 (3,222)  0.024  0.066 

 12-HETE   70 (42)   53 (38)   0.047  0.101 

 8-HETE   13,028 (8,100)  12,094 (5,639)  0.068  0.134 

 5-HETE   2,426 (1,707)  2,068 (1,478)  0.076  0.134 

 9,12,13-TriHOME 718 (742)  668 (829)  0.240  0.292 

 9,10,13-TriHOME 9,478 (742)  8,406 (13,552)  0.304  0.340 

LA – CYP epoxides 

 12,13-EpOME  1,786 (918)  1,652 (1,127)  0.083  0.135 

 9,10-EpOME  4,350 (2,562)  3,817 (2,921) *  0.046  0.101 

LA – sEH diols 

 12,13-DHOME  2,911 (1,916)  2,466 (1,929)  0.109  0.170 

 9,10-DHOME  1,961 (1,162)  1,432 (1,158) *  0.046  0.101 

LA – LO metabolites 

 13-HODE  21,839 (10,222)  19,661 (12,561)  0.141  0.208 

 9-HODE   15,489 (8,711)  14,728 (10,611)  0.180  0.230 

EPA/DHA – epoxides/diols 

 19,20-EpDPE  1,666 (1,477)  1,641 (888)  0.253  0.295 

 19,20-DiHDPA  1,206 (741)  1,188 (596)  0.581  0.603 

 17,18-DHET  2,806 (2,184)  2,671 (1,740)  0.181  0.230 

AA – COX metabolites 

 8-iso-PGF2α  29 (11)   28 (12)   0.157  0.220 

 6-keto-PGF1α  51 (20)   50 (21)   0.748  0.748 

 PGF2α   229 (539)  326 (788)  0.379  0.409 

See Table 2.2 for abbreviations. 

Data presented as median (interquartile range) 
aStudent's t-test was performed on log-transformed data followed by FDR calculations for multiple testing 
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Table 2.6 Quantitative enrichment analysis (QEA) results on eicosanoid metabolic pathways 

     Metabolites (N)  Actual Q  Expected Q  P a   FDR q 

AA – CYP epoxides   3   6.14   0.62   0.010   0.010 

AA – sEH diols    4   3.82   0.62   0.050   0.028 

AA – CYP hydroxyls   2   2.87   0.62   0.163   0.070 

AA – LO metabolites   5   2.45   0.62   0.247   0.090 

LA – CYP epoxides   2   2.17   0.62   0.290   0.090 

LA – sEH diols    2   2.14   0.62   0.290   0.090 

LA – LO metabolites   4   0.91   0.62   0.663   0.284 

EPA/DHA – epoxides/diols  3   0.70   0.62   0.663   0.341 

AA – COX metabolites   3   0.51   0.62   0.663   0.374 

AA, arachidonic acid; COX, cyclooxygenase; CYP, cytochrome P450; DHA, docosahexaenoic acid; EPA; eicosapentaenoic acid; FDR, false discovery rate; LA, 

linoleic acid; LO, lipoxygenase; sEH, soluble epoxide hydrolase 
aGlobal test was performed on log-transformed data and p-values (Holm’s corrected) were generated from estimated Q-statistics 
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CHAPTER 3 - THE RELATIONSHIP BETWEEN EPHX2 P.LYS55ARG 

POLYMORPHISM AND SURVIVAL IN PATIENTS FOLLOWING AN ACUTE 

MYOCARDIAL INFARCTION 

 

Introduction 

 

Cardiovascular disease (CVD) has been the leading cause of mortality in the US for over 

a century. Most notably, acute myocardial infarction (AMI) events, complications of CVD, are a 

primary source of the mortality associated with this illness (1). Identification and 

characterization of the key pathways underlying the pathophysiology of post-AMI complications 

will facilitate the development of novel therapeutic strategies that reduce the risk of adverse 

outcomes following AMI. 

Arachidonic acid is metabolized by CYP epoxygenase enzymes to form bioactive EETs 

(2). CYP2J and CYP2C epoxygenases are the primary sources of all four EET regioisomers (5,6-

, 8,9-, 11,12-, and 14,15-EETs) (3). EETs are lipophilic compounds containing highly-reactive 

epoxide functional groups. The predominant fate of EETs is through rapid metabolism by soluble 

epoxide hydrolase (sEH) into diol functional group-containing dihydroxyeicosatrienoic acids 

(DHETs), which generally have less biological activity than their epoxide-containing counterpart 

(4, 5). 

EPHX2 codes for human sEH (6), is located on chromosomal region 8p21-p12 (6), 

contains 19 exons, and has a coding sequence that spans 555 amino acids (7). Furthermore, 

EPHX2 has considerable genetic heterogeneity (8). Many of these SNPs are non-synonymous 
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and alter sEH hydrolysis activity in vitro (8). EPHX2 is also expressed in a multitude of cell 

types and tissues; importantly, it is highly expressed in the cardiovascular system incluing the 

myocardium and blood vessels (9). 

The two most common non-synonymous SNPs in EPHX2 have been found to decrease 

(p.Arg287Gln) or increase (p.Lys55Arg) the activity of sEH in vitro. (8, 10) Specifically, the 

Arg287Gln polymorphism is located at an area of the enzyme responsible for dimerization; its 

presence is thought to reduce the stability of the homodimer (8) which is necessary for hydrolase 

activity (11). The Lys55Arg polymorphism is similarly not located near the catalytic site 

responsible for hydrolase activity (8), but is located in a domain that allows for increased 

stabilization of the dimer (12). Lys55Arg and Arg287Gln are not in linkage disequilibrium (13). 

The allele frequencies for Arg287Gln are approximately 8% and 10% in African 

American and Caucasian populations respectively (14). Lys55Arg has been studied less 

extensively then Arg287Gln, but is the most common functional SNP in the population (15, 16). 

The allele frequencies for Lys55Arg are approximately 22% and 7% in African Americans and 

Caucasians. (14) 

Due to their cardioprotective effects in preclinical models, EETs are a promising 

therapeutic target for AMI. Accumulating preclinical evidence from in vitro, ex vivo, and in vivo 

models of AMI demonstrates that EETs directly protect the myocardium following ischemia via 

a variety of mechanisms (5, 17, 18). Thus, genetic variation in sEH activity may have important 

clinical implications. 

Since pharmacological tools that directly and specifically manipulate sEH to modulate 

EET levels are currently not available for clinical use, investigators have relied on genetic 

observational studies to understand the role of the EET metabolic pathway in human CVD. 
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Associations between functional genetic polymorphisms in EPHX2 and the risk of developing 

CVD have been reported in humans (13, 19-23). The Arg287Gln variant has been linked to 

reduced plasma cholesterol and triglyceride concentrations in patients with familial 

hypercholesterolemia (24), reduced risk of coronary artery calcification in African-Americans 

(20, 21), increased ischemic stroke risk in white Europeans (25), carotid artery calcified plaque 

in Europeans  (26), improved vascular dysfunction in African Americans (27), and increased risk 

of atrial fibrillation recurrence after catheter ablation (28). The Lys55Arg polymorphism is 

associated with higher sEH metabolic function in vivo and is linked to development of CAD in 

Caucasian patients (13), ischemic stroke in Swedish men (23), and vascular dysfunction in 

Caucasian volunteers (22). 

Taken together with the preclinical evidence, these data suggest that the EET metabolic 

pathway may be important in the pathogenesis of CAD in humans and that therapeutic 

interventions that promote the cardioprotective effects of EETs by modulation of sEH offer 

considerable promise as a novel therapeutic strategy to reduce sequelae following AMI; 

however, key questions remain to be addressed prior to translation of EET-promoting strategies 

into successful proof-of-concept phase I and II clinical trials. Evaluation of functional variants in 

EPHX2 and prognosis in AMI patients has not been completed. 

In collaboration with Dr. John Spertus (Mid America Heart Institute) and Dr. Sharon 

Cresci (Washington University School of Medicine), the Craig Lee lab has previously 

investigated the association of both EPHX2 Lys55Arg and EPHX2 Arg287Gln genotype with 5-

year survival in a 2-center cohort of CAD patients hospitalized for an ACS event including 

unstable angina or AMI (INFORM). Compared to noncarriers, EPHX2 Arg55 variant allele 

carriers had a significantly higher risk of death (22.4% vs. 15.3%; HR 1.50, 95% CI 1.02-2.22, 
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P=0.042), however, no association was observed with EPHX2 Arg287Gln (15.2% vs 17.4%; HR 

0.88, 95% CI 0.55-1.41, P=0.597). A race-stratified analysis was conducted to account for the 

potential confounding effects of population stratification. Associations in Caucasians were 

consistent with the overall cohort, and persisted after adjusting for demographic and clinical 

covariates predictive of prognosis. The magnitude of the associations were comparable to 

established prognostic predictors (e.g., diabetes: HR 2.2, 95% CI 1.5-3.2, P<0.01). However, 

associations were not evaluated in African Americans, due to a small sample size (N=124) and 

suboptimal power (29). 

The association between EPHX2 Lys55Arg genotype and survival provide support for 

our hypothesis that CAD patients predisposed to greater EET hydrolysis exhibit poorer prognosis 

post-ACS. However, evaluation of this association specifically in the AMI subpopulation 

remains necessary to determine whether CAD patients predisposed to greater EET hydrolysis 

also exhibit poorer prognosis post-AMI. Furthermore, replication in a larger independent 

population of AMI patients would provide further confirmation to the initial results and facilitate 

race-stratified analyses in African Americans. Finally, elucidation of the underlying mechanisms 

responsible for this association is necessary. Consequently, the objective of the present study was 

to determine the relationship between EPHX2 p.Lys55Arg polymorphism and survival in 

patients recently admitted for an AMI.  
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Materials and methods 

 

Study participants 

INFORM is a prospective, observational study of consecutive ACS patients at 2 US 

hospitals (Kansas City, KS) from March 2001 to October 2002 (30, 31). Only Caucasian and 

African American subjects were included for analyses. Of these subjects, genetic information 

was available in 667 ACS patients including 273 unstable angina patients, 204 NSTEMI patients, 

and 190 STEMI patients. Analyses in the present study were done on the 394 Caucasian and 

African American subjects presenting with an AMI. 

Translational Research Investigating Underlying Disparities in Acute Myocardial 

Infarction Patients' Health Status (TRIUMPH) is a prospective, observational study of 4,340 

consecutive AMI adult patients across 24 US hospitals from April 2005 to December 2008, as 

described (32-34). DNA was available in 2,979 participants. Analyses in the present study were 

conducted on Caucasians and African Americans (n=2712) with genetic information. 

Diagnosis of AMI was based on standard definitions as described earlier above (Chapter 

1: Acute myocardial infarction) and in the literature (35, 36). Briefly, patients who had an 

elevated troponin value in the setting of symptoms or ECG changes during the index 

hospitalization were diagnosed as having an AMI. All participating institutions obtained 

approval from their respective ethics committees and all participants signed an informed consent 

during the initial screening period, as reported previously (32, 37). 

 

Genotyping 

The EPHX2 p.Lys55Arg polymorphism (rs41507953) was genotyped in the TRIUMPH 



 

 

79 

Applied Genomics Core facility using the PSQ 96 HS Pyrosequencer automated genotyping 

system (Biotage AB, Uppsala, Sweden) (38). 

 

Measurement of circulating biomarkers 

Plasma troponin T, high sensitivity C reactive protein (hs-CRP), and pro-B-type 

natriuretic peptide (proBNP) were measured in a subset of TRIUMPH subjects at baseline, 1 

month, and 6 months following index hospitalization (32). For follow-up visits at 1 month and 6 

months, blood was collected by trained medical personnel via an in-home visit or with a kit that 

was mailed to the subject and sent back to the lab for processing for subjects who agreed to 

provide follow-up samples. Data on 24% of subjects for all 3 blood collection periods were 

available. Analysis of blood for biomarker levels were done at the Clinical Reference Laboratory 

(Lenexa, KS). 

 

CV outcomes 

In the current analysis, all-cause mortality was captured as the primary endpoint by query 

of the Social Security Death Masterfile or the Center for Disease Control National Death Index. 

Mortality is reported at 3-month, 6-month, 9-month, 1-year, 2 year, 3-year, 4-year, and 5-year 

time intervals in INFORM. For TRIUMPH, mortality is reported at 1 month and every 6 months 

thereafter (i.e., 7-month, 13-month, etc.) up to 55-month interval. 

 

Statistical analysis 

For baseline characteristics, continuous variables were compared using Student’s T-test 

and categorical variables were compared using chi-square or Fisher’s exact test if >20% of 
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expected cell frequencies were >5. EPHX2 Lys55Arg did not deviate from Hardy-Weinberg 

equilibrium in INFORM or TRIUMPH within Caucasian and African American populations, 

thus further statistical analyses were carried forward in these subsets. Genotype-survival 

associations were evaluated in each cohort using (a) a Cox proportional hazards model 

(unadjusted and adjusted) and (b) the log-rank test to compare Kaplan-Meier survival curves 

across genotypes. In TRIUMPH, two adjustment models were used. Model 1 corrected for age 

sex and race. Model 2 corrected for pre-specified baseline covariates known to predict adverse 

outcomes in AMI patients including age, race, sex, AMI type (STEMI or NSTEMI), diabetes, 

and AMI treatment strategy (medical management or PCI/CABG) (29). In INFORM, only 

unadjusted analyses were conducted since adjusted models had been previously used in the full 

ACS cohort (Chapter 1: The epoxyeicosatrienoic acid metabolic pathway and parallel pathways 

of eicosanoid metabolism) (29). Analyses were completed assuming either an additive mode of 

inheritance or a dominant mode of inheritance. Genotype-survival race-stratified analyses were 

also conducted. For biomarker analysis, continuous variables were compared in a dominant 

mode of inheritance using Student’s t-test. Biomarker analyses were repeated with an additive 

mode of inheritance with the non-parametric Kruskal-Wallis test to lessen the impact of skew 

that occurs with smaller number in each cell. Analyses were performed using SAS 9.2 (SAS 

Institute, Cary, NC). P<0.05 was considered to be statistically significant. Power calculations 

were conducted using Quanto (39). Mortality estimates to derive power were based on 4.5-year 

mortality (36% of patients had 4.5-year mortablity data available) as a conservative estimate 

since 5-year mortality data was not available.  
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Results 

 

INFORM baseline characteristics in ACS population 

In the full ACS population, 79% of participants were Caucasian and 36% were female. 

The 5-year mortality rate in the full population was 17%. Patient characteristics by genotype are 

shown in Table 3.1. No significant differences in baseline characteristics were observed by 

genotype other than African American race which was more prevalent in the Arg55 Carrier 

group warranting race-stratified analyses. The MAF was 11.7% in Caucasians and 21.7% in 

African Americans, consistent with previous literature (14). Of the total INFORM ACS 

population with EPHX2 Lys55Arg data available (n=667), 394 participants were AMI patients. 

Of these, 88% were Caucasian and the total 5-year mortality rate was 17%. 

 

EPHX2 Lys55Arg genotype and mortality in the AMI population from INFORM 

EPHX2 Lys55Arg genotype was significantly associated with survival following an AMI 

in the total INFORM study population where variant carriers had a significantly higher risk of 

death (Figure 3.1a). This association persisted in the Caucasian subset (Figure 3.1b). 

 

TRIUMPH baseline characteristics 

Of the 2712 participants with genetic information, the average age was 59, 76% were 

Caucasian, 32% were female, 44% were suffering from a STEMI, and 76% underwent coronary 

artery vascularization during the index hospitalization (Table 3.2). Patient characteristics by race 

are shown in Table 3.2. There were significant differences in baseline demographics (age and 

sex), ACS classification type, past medical history (smoking, hypertension, diabetes, 
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hyperlipidemia, heart failure, MI), cholesterol (high density lipoprotein [HDL], triglycerides), 

treatment strategy, and beta blocker use between Caucasians and African Americans, warranting 

race-stratified genetic analyses. The MAF was 11.2% in Caucasians and 22.4% in African 

Americans, consistent with prior reports (14). Patient characteristics by genotype for the total 

population, Caucasians, and African Americans are shown in Tables 3.3-3.5. In the total 

population, variant allele carriers were less likely to be admitted for a STEMI and more likely to 

be using beta blocker medication. Within the Caucasian subset, there were no significant 

differences in baseline characteristics. In African Americans, variant carriers had higher LDL, 

higher cholesterol levels, higher beta-blocker use, and lower aspirin use. 

 

EPHX2 Lys55Arg genotype and mortality in TRIUMPH 

Follow-up data were not available in the full population as shown (Table 3.6). Complete 

follow-up data at 3 years was available in 75% of the population. The observed 3-year mortality 

rate was 12.1% overall (327 deaths), 10.1% in Caucasiancs (206 deaths), and 18.3% in African 

Americans (121 deaths). 

EPHX2 Lys55Arg genotype was not significantly associated with survival following an 

AMI in the total TRIUMPH study population (Log-rank P=0.144; Figure 3.2a). Based on 

mortality estimates generated from the subset of participants with full 3-year mortality data, 

genotype was not significantly associated with 3-year mortality (All Subjects: HR 1.19 95% CI 

0.94-1.51, P=0.156; Figure 3.2a). Furthermore, there was no association between genotype and 

survival in race-stratified analyses (Caucasians: log-rank P=0.742; Figure 3.2b-c; African 

Americans: log-rank P=0.269; Figure 3.2b-c).  Genotype was not significantly associated with 3-

year mortality (Caucasians: HR 0.96 95% CI 0.68-1.36, P=0.831; African Americans: HR 0.84 
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95% CI 0.61-1.17, P=0.303; Figure 3.2b-c). The association remained non-significant after 

adjusting for demographic and clinical covariates (Table 3.7). 

Using an additive mode of inheritance (unadjusted analyses) in the combined Caucasian 

and African American population, Arg/Arg subjects (n=75) had a HR of 1.62-fold greater risk of 

projected 3-year mortality relative to Lys/Lys patients following AMI, however this did not meet 

the threshold of significance (95% 0.88-2.96, P=0.194). No significant differences across 

genotype were observed using an additive mode of inheritance in unadjusted analyses for 

projected 3-year mortality data (Caucasians: P=0.675; African Americans: P=0.758; Figure 3.3, 

Table 3.8). 

 

EPHX2 Lys55Arg genotype and cardiac biomarkers in TRIUMPH 

To provide mechanistic insight into the genotype-prognosis association, Troponin T 

(myocardial injury), hs-CRP (inflammation), and proBNP (myocardial stretch) were measured in 

a subset of subjects. There was no significant difference between troponin T levels in Arg55 

variant carriers compared to wildtype individuals at baseline (P=0.656), 1 month (P=0.057), and 

6 months (P=0.215) following AMI (Table 3.9). Similarly no differences in hs-CRP were 

observed at baseline, 1 month, and 6 months (P=0.899, P=0.059, P=0.931, respectively). No 

differences were observed in proBNP between Lys/Lys and Arg55 carriers. Using the additive 

mode of inheritance, genotype was not associated with Troponin T at baseline (P=0.563) or 6 

months (P=0.225). However, Troponin T levels were significantly associated with genotype at 1 

month across Lys/Lys (0.02 ± 0.02 mg/dL), Lys/Arg (0.02 ± 0.03), and Arg/Arg patients (0.25 ± 

0.96 mg/dL). No differences were observed in hs-CRP and proBNP levels across genotype using 

the additive mode of inheritance at baseline, 1 month, and 6 months following AMI. 
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Discussion 

Our group has previously observed an association between EPHX2 p.Lys55Arg genotype 

with 5-year survival in a cohort of ACS patients (INFORM) (29), where EPHX2 Arg55 variant 

allele carriers had a significantly higher risk of death. The objective of the present study was to 

determine the relationship between EPHX2 Lys55Arg polymorphism and survival in patients 

recently admitted for an AMI. Using the AMI subpopulation of INFORM as well as a larger 

cohort of AMI patients (TRIUMPH), we determined that EPHX2 Lys55Arg was significantly 

associated with mortality in AMI patients from INFORM, but that this association was not 

validated in the larger population of AMI patients from TRIUMPH. 

Although TRIUMPH has a larger sample size compared to INFORM and thus should 

have more power to detect differences, it is important to reiterate that full mortality data was not 

available for analysis in this cohort. Whereas INFORM data had 5-year mortality data in all 

patients available for analysis, no patients in TRIUMPH had 5-year mortality data available and 

only 36% had full 4.5 year data. Thus, power to validate a genotype-survival association in 

TRIUMPH was limited. Based on the available mortality data at 3 years, we had 74% power to 

detect an association assuming a hazard ratio (HR) of 1.4 in a dominant model. With full 4.5-

year mortality, we anticipate 80% power (Table 3.10). Additionally, it is qualitatively evident in 

the results of the INFORM AMI patients that survival curves don’t begin to separate until 3 years 

post-AMI. Thus, although speculative in nature, it is plausible that a similar pattern could occur 

in TRIUMPH with complete mortality data. A final analysis when full 5-year mortality data are 

available is necessary to rule out the possibility that lack of sufficient power prevented the 

positive INFORM results from being replicated in TRIUMPH. Full 4-year mortality data will be 

available in summer 2015 and 5-year data is anticipated to be available within a year thereafter. 
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Biologically, separation of survival curves at 3 years indicates that the EET metabolic pathway 

may play an important role in the chronic period after AMI (rather than the acute period), further 

justifying the need for longer term mortality follow-up in TRIUMPH. 

Considering the well-established cardioprotective/anti-inflammatory effects of EETs in 

preclinical studies (4) and to gain more insight into a potential association between genotype and 

survival, we explored the impact of EPHX2 Lys55Arg on established plasma biomarkers of 

myocardial injury, inflammation, and remodeling in TRIUMPH subjects at baseline, 1 month, 

and 6 months following AMI. In the overall population, we determined that for the majority of 

biomarkers and time points, genotype was not associated with levels. However, we observed that 

EPHX2 Lys55Arg genotype was associated with plasma troponin T at 1 month using an additive 

mode of inheritance (P=0.038), where mean levels in Arg/Arg patients were 12.5-fold higher 

than levels in Lys/Lys and Lys/Arg. Using a dominant mode of inheritance, mean plasma 

troponin T levels in Arg55 carriers were 2-fold greater than mean levels in noncarriers 

(P=0.057). These associations are in the direction hypothesized since we would predict that 

enhanced sEH-derived hydrolysis would have a deleterious effect and suggest that Arg/Arg 

subjects may have evidence of increased myocardial infarct size following AMI compared to 

Lys/Lys and Lys/Arg participants. It is important to note, however, that clinical guidelines 

recommend measuring troponin levels within hours of symptom onset for AMI diagnosis and 

potentially once on day 3 or 4 after symptom onset for post-AMI prognosis. Furthermore, the 

rise and falling pattern of troponin levels is similarly important for prognosis following AMI as 

the levels themselves (40). Thus the clinical relevance of an association between genotype and a 

single 1-month troponin level is unknown. Nevertheless, troponin levels have been found to 

predict survival in CVD patients not suffering from an AMI (41). Overall, results of this 
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exploratory analysis must be interpreted with caution due to small numbers in the Arg/Arg group 

(n=19) from loss to follow-up in biomarker sample collection (Kruskal-Wallis non-parametric 

analyses were conducted to alleviate the effects of skewed biomarker data which are inflated 

with small data). Additionally, these results underscore the need for follow-up TRIUMPH 

analysis with full 5-year mortality data to determine if the relationship between genotype and 

troponin T following AMI contributes to an association between genotype and survival. 

As mentioned, insufficient power may be the reason why there was a lack of genotype-

survival association. However, if current findings in the TRIUMPH cohort hold when full 

mortality data are available, this would be discordant with several previous studies that have 

shown that EPHX2 Lys55Arg polymorphism is associated with the risk of cardiovascular disease 

(13, 22, 23). Nevertheless, several key studies reported a lack of association between Lys55Arg 

and the incidence of CVD. There was no relationship between EPHX2 Lys55Arg genotype and 

restenosis in a population of CAD patients following PCI (42). EPHX2 Arg287Gln, but not 

Lys55Arg was found to be associated with the incidence of atrial fibrillation following catheter 

ablation (28). Likewise, EPHX2 Arg287Gln, but not Lys55Arg was associated with the 

occurrence of ischemic stroke in Caucasians with multiple risk factors for CVD (43). 

Interestingly, although in vitro  transfection of the Arg287Gln polymorphism into cell lines has 

been found to reduce cell death compared to non-transfected cells in both cardiomyocytes (44) 

and neuronal cells (10) undergoing ischemic injury, transfection with Lys55Arg in the same 

respective models did not cause any significant change in the rate of cell death. Although our lab 

previously did not find an association between EPHX2 Arg287Gln and mortality following ACS 

in the full INFORM cohort, further analysis investigating the association between EPHX2 

Arg287Gln and survival following AMI is needed to better understand the role of EPHX2 
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genetic variation in prognosis following CVD. 

The aforementioned lack of consistent findings across studies suggests that the 

relationship between genetic markers and CVD is highly complex and may involve other factors. 

Indeed, associations between CAD and EPHX2 variation are more pronounced in cigarette 

smokers (13, 21). We recently reported that multiple clinical factors were associated with low 

EET levels in patients with established CAD (45), suggesting that quantifying EET metabolite 

levels may provide insight into factors associated with inter-individual variation in EET 

biosynthesis and EET hydrolysis (beyond genetic polymorphisms). The quantification of EET 

levels in humans would provide further insight into this association; circulating levels of EETs 

was not obtained sample from the TRIUMPH or INFORM cohort. Prior evidence, however, 

functionally links EPHX2 Lys55Arg genotype to sEH activity and suggests that eicosanoids are 

altered by this polymorphism in humans (8, 13). Furthermore, we reported that EET levels were 

associated with the extent of CAD in the largest observational human study to date that 

quantifies EET levels in humans with CVD (Chapter 2: Figure 1). We also showed in 

exploratory analyses that baseline EETs may predict the risk of CV events in obstructive CAD 

patients (Chapter 2: Figure 3). Investigation of the relationship between baseline EET levels and 

survival in a large cohort of AMI patients would provide further insight into a genotype-

prognosis association (or lack thereof) with EPHX2 Lys55Arg genotype following AMI. 

There are some limitations to this study. First, mortality rates were determined using the 

full sample size as the denominator (for all analyses including the power calculations), thus they 

underestimate the actual mortality rate. However, using sample size based on the proportion of 

patients with full mortality data available as the denominator grossly overestimates the sample 

size (i.e., 40% mortality rate at 4.5 years in total population), because this approach assumes 



 

 

88 

incorrectly that patients who did not survive would have had full follow-up data 5 years had they 

not died during this time interval. In the absence of full mortality data, future interim analyses 

should include a projected/estimated mortality calculation for a more accurate estimation of the 

mortality rate. Second, even with full mortality data available, power calculations reveal that we 

are underpowered to detect associations in the African American subset (Table 3.10). However, 

it is well established that African Americans are poorly represented in clinical trials despite 

having a greater risk of CVD. TRIUMPH is one of the largest registries to provide detailed 

information on clinical, genetic, and metabolic characteristics in a racially-diverse population. 

Indeed, one of the goals of TRIUMPH was to investigate racial disparities in post-AMI 

outcomes. Consequently, 16 of the 24 recruitment sites were located in large urban centers to 

enable enrollment of a racially diverse population (32). When full mortality data are available, 

the relatively large sample size of African Americans in TRIUMPH provides more power to 

detect associations in this subpopulation, which was one of the limitations of the INFORM 

cohort. Low MAF and small numbers in TRIUMPH preclude analysis in populations who are not 

African American or Caucasian. The association between variants in EPHX2 and CVD in Asian 

and Hispanic population has not been investigated and is a potential future direction. Third, 

smaller effect sizes than anticipated (HR<1.5) would limit power to detect significant 

associations even in Caucasians when full mortality data are available. Nevertheless, 80% power 

exists to detect an HR of 1.4 in the overall population when full mortality data are available. 

Furthermore, HR (95% CI) was 2.33 (1.43-3.79) and 2.42 (1.40-4.19) in INFORM total 

population and Caucasian cohorts, respectively. This indicates that assuming a HR of 1.4 or 1.5 

(along with using 4.5-year mortality rates) to estimate power is conservatively low for the 

incoming 5-year mortality data. Moreover, effect sizes may be larger in the presence of an 
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environmental exposure such as current cigarette smoker or other clinically distinct high-risk 

subset such as hs-CRP >2 g/dL (46). Our group and others have shown that associations between 

EPHX2 and CAD risk are most pronounced in cigarette smokers (47). Evaluation of such 

interactions is an important area of further investigation.  

In conclusion, we observed that EPHX2 Lys55Arg was associated with 5-year mortality 

following AMI, but we were not able to replicate this in an independent cohort of AMI patients. 

Future analysis with full 5-year mortality data is needed as a follow-up to this interim analysis to 

validate the association with adequate power.  
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Figures 

 

  

 

Figure 3.1 Mortality in acute myocardial infarction (AMI) patients from the INFORM 

cohort by genotype using a dominant mode of inheritance. A comparison of Kaplan-Meier 

curves and a comparison of 5-year mortality rates between noncarriers and EPHX2 Lys55Arg 
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carriers in (a) Caucasian + African American (n=394) and (b) Caucasian (n=345) subjects. Log-

rank P-values and hazard ratio (HR) for each population are unadjusted.  
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Figure 3.2 Mortality in acute myocardial infarction (AMI) patients from the TRIUMPH 

cohort by genotype using a dominant mode of inheritance. A comparison of Kaplan-Meier 

curves and a comparison of observed 3-year mortality rates between noncarriers and EPHX2 

Lys55Arg carriers in (a) Caucasian + African American (n=2712) , (b) Caucasian (n=2049), and 

(c) African American (n=663) subjects. Log-rank P-values and hazard ratio (HR) for each 

population are unadjusted.  
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Figure 3.3 Mortality in acute myocardial infarction (AMI) patients from the TRIUMPH 

cohort by genotype using an additive mode of inheritance. A comparison of Kaplan-Meier 

curves and a comparison of projected 3-year mortality rates between noncarriers and EPHX2 

Lys55Arg carriers in (a) Caucasian + African American (n=2712) , (b) Caucasian (n=2049), and 

(c) African American (n=663) subjects. Log-rank P-values and hazard ratio (HR) for each 

population are unadjusted.  
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Tables 

 

Table 3.1 Characteristics of the acute coronary syndrome (ACS) study population from the INFORM 

cohort by genotype 

 

Characteristic    Lys/Lys  Arg55 Carrier   P 

     (n=502)   (n=165) 

Age (years)    60.4 ± 12.4  60.8 ± 12.8   0.69 

Female     177 (35.3%)   64 (38.8%)    0.413 

African-American race   76 (15.1%)   46 (27.9%)    <0.001 

ACS Classification Type         0.064 

 ST elevation MI/LBBB   154 (30.7%)   36 (21.8%) 

 Non ST elevation MI   152 (30.3%)   52 (31.5%) 

 Unstable angina    196 (39.0%)   77 (46.7%) 

Past medical history 

 History of hypertension   324 (64.5%)   113 (68.5%)    0.355 

 History of diabetes  136 (27.1%)   51 (30.9%)    0.344 

 History of hyperlipidemia  295 (58.8%)   109 (66.1%)   0.096 

 Current heart failure   38 (7.6%)   14 (8.5%)   0.704 

 Prior MI    159 (31.7%)   58 (35.2%)    0.408 

Smoking Status           0.869 

 Current     183 (36.5%)   57 (34.5%) 

 Former     178 (35.5%)   62 (37.6%) 

 Never     140 (27.9%)   46 (27.9%) 

BMI (kg/m2) *     29.6 ± 6.3   30.2 ± 6.7    0.282 

Total cholesterol (mg/dL) #   178.4 ± 39.6 [65]  181.6 ± 49.1 [14]   0.436 

LDL (mg/dL) #     103.5 ± 34.5 [91] 102.3 ± 44.2 [24]  0.757 

HDL (mg/dL) #    41.6 ± 14.7 [71]  43.6 ± 17.9 [17]   0.183 

Triglycerides (mg/dL) #   176.4 ± 117.8 [70] 181.2 ± 144.9 [17]  0.698 

Treatment Strategy           0.252 

 Medical Management   182 (36.3%)   68 (41.2%) 

 PCI     299 (59.6%)   87 (52.7%) 

 CABG     21 (4.2%)   10 (6.1%) 

Discharge Medications 

 Beta-blocker    412 (82.2%)   124 (75.6%)    0.063 

 Statin     382 (76.1%)   121 (73.3%)    0.475 

 Aspirin     463 (92.4%)   157 (95.7%)    0.142 

BMI, body mass index; CABG, coronary artery bypass graft; HDL, high density lipoprotein; LBBB, left bundle 

branch block; LDL, low density lipoprotein; MAF, minor allele frequency; MI, myocardial infarction; PCI, 

percutaneous coronary intervention. Data presented as mean ± standard deviation or count (%). Number of 

participants with missing values is in brackets 

Student’s t-test was performed for continuous variables and chi-squared test or Fisher’s exact test was performed for 

categorical variables as appropriate. 

* Measured at admission # Measured at discharge  
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Table 3.2 Characteristics of the TRIUMPH cohort overall and by race 

 

Characteristic    Total   Caucasian  African American P 

     (n=2712)  (n=2049)  (n=663) 

Age (years)    59.2 ± 12.2  59.8 ± 12.1  57.4 ± 12.2  <0.001  

Sex               <0.001 

 Male    1855 (68.4%)  1483 (72.4%)  372 (56.1%) 

 Female    857 (31.6%)   566 (27.6%)   291 (43.9%)   

AMI Classification Type           <0.001 

 ST elevation MI    1186 (43.7%)   985 (48.1%)  201 (30.3%)  

 Non ST elevation MI   1526 (56.3%)   1064 (51.9%)  462 (60.7%) 

Past medical history 

 Current smoker   1062 (39.5%) [21] 760 (37.3%) [14] 302 (46.0%) [7]  <0.001 

 Obese (BMI ≥30 kg/m2)  1105 (42.6%) [118] 844 (42.1%) [42] 261 (44.5%) [76] 0.299 

 History of hypertension   1775 (65.4%)  1256 (61.3%)  519 (78.3%)  <0.001 

 History of diabetes  795 (29.3%)  532 (26.0%)  263 (39.7%)  <0.001 

 History of hyperlipidemia  1326 (48.9%)  1037 (50.6%)  289 (43.6%)  0.002 

 Current heart failure   217 (8.0%)  112 (5.5%)  105 (15.8%)  <0.001 

 Prior myocardial infarction 532 (19.6%)  379 (18.5%)  153 (23.1%)  0.010 

Total cholesterol (mg/dL) *   156.1 ± 38.0 [592] 155.3 ± 37.3 [479] 158.6 ± 39.7 [113] 0.076 

LDL (mg/dL) *     95.5 ± 31.9 [592] 95.3 ± 31.1 [479] 96.1 ± 33.8 [113] 0.583 

HDL (mg/dL) *    40.0 ± 10.6 [592] 38.7 ± 9.8 [479]  43.6 ± 12.0 [113] <0.001 

Triglycerides (mg/dL) *   154.0 ± 102.7 [592] 162.0 ± 108.1 [479] 131.3 ± 81.2 [113] <0.001 

Treatment Strategy 

 PCI/CABG during index visit 2056 (75.8%)  1665 (81.3%)  391 (59.0%)  <0.001 

Discharge Medications 

 Beta-blocker    2459 (90.7%)  1878 (91.7%)  581 (87.6%)   0.002 

 Statin     2398 (88.4%)  1824 (89.0%)  574 (86.6%)    0.087 

 Aspirin    2579 (95.1%)  1958 (95.6%)  621 (93.7%)  0.050 

EPHX2 Lys55Arg MAF   13.9%   11.2%   22.4%    

BMI, body mass index; CABG, coronary artery bypass graft; HDL, high density lipoprotein; LDL, low density lipoprotein; MAF, minor allele frequency; MI, 

myocardial infarction; PCI, percutaneous coronary intervention. Data presented as mean ± standard deviation or count (%). Number of participants with missing 

values is in brackets 

Student’s t-test was performed for continuous variables and chi-squared test or Fisher’s exact test was performed for categorical variables as appropriate. 

* Measured at admission
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Table 3.3 Characteristics of the TRIUMPH cohort overall and by genotype using a dominant mode of inheritance 

 

Characteristic    Total   Lys/Lys  Arg55 Carrier  P 

     (n=2712)  (n=2020)  (n=692) 

Age (years)    59.2 ± 12.2  59.2 ± 12.2  59.1 ± 12.2  0.879 

Sex               0.488 

 Male    1855 (68.4%)  1389 (68.8%)  466 (67.3%) 

 Female    857 (31.6%)   631 (31.2%)  226 (32.7%)   

AMI Classification Type           0.005 

 ST elevation MI    1186 (43.7%)   915 (45.3%)  271 (39.2%)  

 Non ST elevation MI   1526 (56.3%)   1105 (54.7%)  421 (60.8%) 

Past medical history 

 Current smoker    1062 (39.5%) [21] 803 (40.0%) [10] 259 (38.0%) [11] 0.376 

 Obese (BMI ≥30 kg/m2)  1105 (42.6%) [118] 822 (42.4%) [82] 283 (43.1%) [36] 0.745 

 History of hypertension   1775 (65.4%)  1306 (64.7%)  469 (67.8%)  0.136 

 History of diabetes  795 (29.3%)  576 (28.5%)  219 (31.6%)  0.118 

 History of hyperlipidemia  1326 (48.9%)  980 (48.5%)  346 (50.0%)  0.500 

 Current heart failure   217 (8.0%)  152 (7.5%)  65 (9.4%)  0.118 

 Prior myocardial infarction 532 (19.6%)  395 (19.6%)  137 (19.8%)  0.889 

Total cholesterol (mg/dL) *   156.1 ± 38.0 [592] 155.9 ± 37.3 [451] 156.7 ± 39.8 [141] 0.671 

LDL (mg/dL) *     95.5 ± 31.9 [592] 95.4 ± 31.3 [451] 95.8 ± 33.5 [141] 0.817 

HDL (mg/dL) *    40.0 ± 10.6 [592] 39.7 ± 10.2 [451] 40.6 ± 11.6 [141] 0.096 

Triglycerides (mg/dL) *   154.0 ± 102.7 [592] 156.2 ± 107.4 [451] 147.6 ± 87.4 [141] 0.088 

Treatment Strategy 

 PCI/CABG during index visit 2056 (75.8%)  1547 (76.6%)  509 (73.6%)  0.108 

Discharge Medications 

 Beta-blocker    2459 (90.7%)  1814 (89.8%)  645 (93.2%)   0.008 

 Statin     2398 (88.4%)  1782 (88.2%)  616 (89.0%)    0.571 

 Aspirin    2579 (95.1%)  1918 (95.0%)  661 (95.5%)  0.549 

BMI, body mass index; CABG, coronary artery bypass graft; HDL, high density lipoprotein; LDL, low density lipoprotein; MI, myocardial infarction; PCI, 

percutaneous coronary intervention. Data presented as mean ± standard deviation or count (%). Number of participants with missing values is in brackets 

Student’s t-test was performed for continuous variables and chi-squared test or Fisher’s exact test was performed for categorical variables as appropriate. 

* Measured at admission  



 

 

 

9
9
 

Table 3.4 Characteristics of the TRIUMPH cohort overall and by genotype using a dominant mode of inheritance in Caucasian patients only 

 

Characteristic    Total   Lys/Lys  Arg55 Carrier  P 

     (n=2049)  (n=1620)  (n=429) 

Age (years)    59.8 ± 12.1  59.8 ± 12.0  59.2 ± 12.2  0.989 

Sex               0.248 

 Male    1483 (72.4%)  1163 (71.8%)  320 (74.6%) 

 Female    566 (27.6%)  457 (28.2%)  109 (25.4%)   

AMI Classification Type           0.498 

 ST elevation MI    985 (48.1%)  785 (48.5%)  200 (46.6%)  

 Non ST elevation MI   1064 (51.9%)  835 (51.5%)  229 (53.4%) 

Past medical history 

 Current smoker   760 (37.3%) [14] 610 (37.8%) [8]  150 (35.5%) [6]  0.368 

 Obese (BMI ≥30 kg/m2)  844 (42.1%) [42] 664 (41.9%) [34] 180 (42.8%) [8]  0.743 

 History of hypertension   1256 (61.3%)  990 (61.1%)  266 (62.0%)  0.735 

 History of diabetes  532 (26.0%)  414 (25.6%)  118 (27.5%)  0.413 

 History of hyperlipidemia  1037 (50.6%)  809 (49.9%)  228 (53.1%)  0.237 

 Current heart failure   112 (5.5%)  88 (5.4%)  24 (5.6%)  0.895 

 Prior myocardial infarction 379 (18.5%)  297 (18.3%)  82 (19.1%)  0.711 

Total cholesterol (mg/dL) *   155.3 ± 37.3 [479] 156.0 ± 37.7 [382] 152.5 ± 35.9 [97] 0.124 

LDL (mg/dL) *    95.3 ± 31.1 [479] 95.9 ± 31.3 [382] 93.0 ± 30.5 [97]  0.140 

HDL (mg/dL) *    38.7 ± 9.8 [479]  38.7 ± 9.6 [382]  38.6 ± 10.4 [97]  0.808 

Triglycerides (mg/dL) *   162.0 ± 108.1 [479] 163.1 ± 110.8 [382] 157.5 ± 97.3 [97] 0.400 

Treatment Strategy 

 PCI/CABG during index visit 1665 (81.3%)  1320 (81.5%)  345 (80.4%)  0.616 

Discharge Medications 

 Beta-blocker    1878 (91.7%)  1476 (91.1%)  402 (93.7%)   0.084 

 Statin     1824 (89.0%)  1437 (88.7%)  387 (90.2%)    0.375 

 Aspirin    1958 (95.6%)  416 (97.0%)  1542 (95.2%)  0.111 

BMI, body mass index; CABG, coronary artery bypass graft; HDL, high density lipoprotein; LDL, low density lipoprotein; MI, myocardial infarction; PCI, 

percutaneous coronary intervention. Data presented as mean ± standard deviation or count (%). Number of participants with missing values is in brackets 

Student’s t-test was performed for continuous variables and chi-squared test or Fisher’s exact test was performed for categorical variables as appropriate. 

* Measured at admission   
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Table 3.5 Characteristics of the TRIUMPH cohort overall and by genotype using a dominant mode of inheritance in African American patients 

only 

 

Characteristic    Total   Lys/Lys  Arg55 Carrier  P 

     (n=663)   (n=400)   (n=263) 

Age (years)    57.4 ± 12.2  56.9 ± 12.0  58.0 ± 12.4  0.238 

Sex               0.802 

 Male    372 (56.1%)  226 (56.5%)  146 (55.5%) 

 Female    291 (43.9%)  174 (43.5%)  117 (44.5%)   

AMI Classification Type           0.131 

 ST elevation MI    201 (30.3%)  130 (32.5%)  71 (27.0%)  

 Non ST elevation MI   462 (69.7%)  270 (67.5%)  192 (73.0%) 

Past medical history 

 Current smoker    302 (46.0%) [7]  193 (48.5%) [5]  109 (42.2%) [2]  0.117 

 Obese (BMI ≥30 kg/m2)  261 (44.5%) [76] 158 (44.9%) [48] 103 (43.8%) [28] 0.801 

 History of hypertension   519 (78.3%)  316 (79.0%)  203 (77.2%)  0.580 

 History of diabetes  263 (39.7%)  162 (40.5%)  101 (38.4%)  0.589 

 History of hyperlipidemia  289 (43.6%)  171 (42.8%)  118 (44.9%)  0.591 

 Current heart failure   105 (15.8%)  64 (16.0%)  41 (15.6%)  0.887 

 Prior myocardial infarction 153 (23.1%)  98 (24.5%)  55 (20.9%)  0.283 

Total cholesterol (mg/dL) *   158.6 ± 39.7 [113] 155.6 ± 36.1 [69] 163.2 ± 44.3 [44] 0.028 

LDL (mg/dL) *     96.1 ± 33.8 [113] 93.6 ± 31.2 [69]  99.9 ± 37.1 [44]  0.033 

HDL (mg/dL) *    43.6 ± 12.0 [113] 43.7 ± 12.7 [69]  43.5 ± 11.5 [44]  0.878 

Triglycerides (mg/dL) *   131.3 ± 81.2 [113] 130.4 ± 89.2 [69] 132.5 ± 67.4 [44] 0.772 

Treatment Strategy 

 PCI/CABG during index visit 391 (59.0%)  227 (56.8%)  164 (62.4%)  0.151 

Discharge Medications 

 Beta-blocker    581 (87.6%)  338 (84.5%)  243 (92.4%)   0.003 

 Statin     574 (86.6%)  345 (86.3%)  229 (87.1%)    0.761 

 Aspirin    515 (77.7%)  329 (82.3%)  186 (70.7%)  <0.001 

BMI, body mass index; CABG, coronary artery bypass graft; HDL, high density lipoprotein; LDL, low density lipoprotein; MI, myocardial infarction; PCI, 

percutaneous coronary intervention. Data presented as mean ± standard deviation or count (%). Number of participants with missing values is in brackets 

Student’s t-test was performed for continuous variables and chi-squared test or Fisher’s exact test was performed for categorical variables as appropriate. 

* Measured at admission
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 Table 3.6 Mortality follow-up status in TRIUMPH 

 

Interval  Evaluable *  Mortality rate (deaths) † 

2-year  2654 (98%)  9.6% (259 deaths) 

3-year  2024 (75%)  12.1% (327 deaths) 

4-year  1298 (48%)  14.1% (382 deaths) 

4.5-year 981 (36%)  14.4% (391 deaths) 

5-year  0 (0%)   N/A  

* Total population with evaluable mortality data (%) 

† Overall mortality rate based on data available
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Table 3.7 Hazard ratios between EPHX2 Lys55Arg and 3-year mortality using a dominant mode of 

inheritance 

 

     HR (95% CI)  P 

All subjects    

 Arg55 carrier vs Lys/Lys  

  Unadjusted   1.19 (0.94-1.51)  0.156   

  Model 1   1.02 (0.80-1.30)  0.889  

  Model 2   1.00 (0.78-1.28)  0.999  

 

Caucasians 

 Arg55 carrier vs Lys/Lys      

  Unadjusted   0.96 (0.68-1.36)  0.831   

  Model 1   0.98 (0.69-1.38)  0.889  

  Model 2   0.90 (0.64-1.27)  0.564  

 

African Americans 

 Arg55 carrier vs Lys/Lys   

  Unadjusted   1.14 (0.80-1.64)  0.473  

  Model 1   1.08 (0.75-1.55)  0.688  

  Model 2   1.11 (0.77-1.59)  0.591  

Model 1: adjusted for age, sex, and race (age and sex in race-stratified analyses) 

Model 2: adjusted for age, sex, race, AMI type (STEMI, NSTEMI), diabetes, treatment strategy (medical 

management, PCI, CABG) 

CI=confidence interval, HR=hazard ratio
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Table 3.8 Hazard ratios between EPHX2 Lys55Arg and 3-year mortality using an additive mode of inheritance 

 

   Unadjusted)    Model 1    Model 2    

   HR (95% CI)  P  HR (95% CI)  P  HR (95% CI)  P 

All subjects    

       0.194     0.954     0.840 

  Lys/Lys  Reference    Reference    Reference 

  Lys/Arg  1.15 (0.89-1.48)    1.01 (0.78-1.30)    0.98 (0.76-1.27) 

  Arg/Arg 1.62 (0.88-2.96)    1.10 (0.60-2.03)    1.19 (0.64-2.19) 

 

Caucasians 

       0.675     0.812     0.484 

  Lys/Lys  Reference    Reference    Reference 

  Lys/Arg  0.93 (0.65-1.33)    0.95 (0.66-1.36)    0.87 (0.61-1.24) 

  Arg/Arg 1.47 (0.54-3.96)    1.33 (0.49-3.57)    1.54 (0.57-4.16) 

 

African Americans 

       0.758     0.921     0.865 

  Lys/Lys  Reference    Reference    Reference 

  Lys/Arg  1.13 (0.78-1.64)    1.08 (0.74-1.57)    1.11 (0.76-1.61) 

  Arg/Arg 1.22 (0.56-2.66)    1.06 (0.48-2.31)    1.10 (0.50-2.42) 

Model 1: adjusted for age, sex, and race (age and sex in race stratified-analyses) 

Model 2: adjusted for age, sex, race, AMI type (STEMI, NSTEMI), diabetes, treatment strategy (medical management, PCI, CABG) 

CI=confidence interval, HR=hazard ratio  



 

 

 

1
0
4
 

Table 3.9 Relationship between EPHX2 Lys55Arg and biomarkers of myocardial injury, inflammation, and ventricular remodeling 

 

Dominant     Overall   Lys/Lys  Arg55 carrier  P   

Baseline   

 Troponin T (mg/L)   1.57 ± 2.14 [684] 1.55 ± 2.11 [516] 1.60 ± 2.23 [168] 0.656   

 hs-CRP (mg/L)    3.64 ± 4.79 [558] 3.63 ± 4.80 [424] 3.66 ± 4.76 [134] 0.899 

 proBNP (g/L)    2.94 ± 8.13 [568] 2.82 ± 7.95 [434] 3.25 ± 8.64 [134] 0.284 

 

1 month 

 Troponin T (mg/L)   0.02 ± 0.14 [1796] 0.02 ± 0.02 [1341] 0.04 ± 0.28 [455] 0.057   

 hs-CRP (mg/L)    0.55 ± 1.16 [1789] 0.50 ± 0.88 [1339] 0.67 ± 1.73 [450] 0.059 

 proBNP (g/L)    1.67 ± 9.93 [1789] 1.78 ± 11.36 [1337] 1.36 ± 3.44 [452] 0.568 

 

6 months 

 Troponin T (mg/L)   0.02 ± 0.03 [2070] 0.01 ± 0.03 [1537] 0.02 ± 0.04 [533] 0.215  

 hs-CRP (mg/L)    0.39 ± 0.63 [2062] 0.39 ± 0.63 [1530] 0.38 ± 0.66 [532] 0.931 

 proBNP (g/L)    1.00 ± 5.15 [2061] 1.09 ± 5.61 [1530] 0.71 ± 3.42 [531] 0.413 

 

Additive     Lys/Lys  Lys/Arg  Arg/Arg  P 

Baseline   

 Troponin T (mg/L)   1.55 ± 2.11 [516] 1.63 ± 2.31 [151] 1.31 ± 1.14 [17]  0.997 

 hs-CRP (mg/L)    3.63 ± 4.80 [424] 3.60 ± 4.64 [120] 4.29 ± 5.85 [14]  0.878 

 proBNP (g/L)    2.82 ± 7.95 [434] 3.25 ± 8.82 [120] 3.27 ± 6.65 [14]  0.655 

 

1 month 

 Troponin T (mg/L)   0.02 ± 0.02 [1341] 0.02 ± 0.03 [411] 0.25 ± 0.96 [44]  0.038   

 hs-CRP (mg/L)    0.50 ± 0.88 [1339] 0.66 ± 1.78 [407] 0.78 ± 1.02 [43]  0.523 

 proBNP (g/L)    1.78 ± 11.36 [1337] 1.20 ± 2.98 [408] 3.14 ± 6.72 [44]  0.403 

 

6 months 

 Troponin T (mg/L)   0.01 ± 0.03 [1537] 0.02 ± 0.04 [485] 0.03 ± 0.06 [48]  0.780  

 hs-CRP (mg/L)    0.39 ± 0.63 [1530] 0.39 ± 0.68 [484] 0.26 ± 0.31 [48]  0.295 

 proBNP (g/L)    1.09 ± 5.61 [1530] 0.74 ± 3.6 [483]  0.37 ± 0.34 [48]  0.690 

proBNP, pro-B-type natriuretic peptide; hs-CRP, high sensitivity C reactive protein. Data presented as mean ± standard deviation. Number of participants with 

missing values is in brackets 

One-way ANOVA was performed for dominant mode of inheritance data and Kruskal-Wallis test was performed for additive mode of inheritance data 
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Table 3.10 Power calculations 

 

Population    Power 
                                   Current analysis   Projected full analysis 

    HR=1.4  HR=1.5  HR=1.4  HR=1.5 

Total population   74%  88%  80%  92% 

Caucasians only    50%  66%  57%  74% 

African Americans only   38%  51%  41%  55% 

Power calculations to detect a hazard of 1.4 or 1.5 between EPHX2 Lys55Arg genotype (dominant model) and 

mortality based on the current 3-year mortality data available and if full 4.5 year mortality data was available 

Power calculations of the current analysis were based on the 3-year mortality rates in the current report (total 

population: 12.1%, Caucasians: 10.1%, and African Americans: 18.3%) 

Power calculations of the projected full analysis were based on the 4.5-year mortality rates in the current report 

(total population: 14.4%, Caucasians: 12.5%, and African Americans: 20.4%) and assuming that all patients had full 

mortality data at 4.5 years
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CHAPTER 4 - CHARACTERIZATION OF MALADAPTIVE VENTRICULAR 

REMODELING IN AN IN VIVO MOUSE MODEL OF MYOCARDIAL ISCHEMIA 

REPERFUSION INJURY 

 

Introduction 

 

A key consequence of CAD is heart failure, which afflicts almost 6 million Americans 

and is predicted to increase by an additional 46% by 2030. Patients who survive an AMI are at 

especially increased risk of developing heart failure. Consistent with the overall heart failure 

incidence, the incidence of post-AMI heart failure has also increased in recent decades (1). This 

devastating disease is a major reason why CVD as a whole remains the leading cause of 

morbidity and mortality worldwide (2). 

Heart failure is a clinical syndrome that manifests in patients as dyspnea (shortness of 

breath) and/or fluid retention (edema). Symptoms of heart failure result primarily from structural 

or functional deficits that lead to a reduced ability in ventricular filling (diastolic dysfunction) or 

ejection of blood (systolic dysfunction). It is important to reiterate that structural abnormalities in 

heart failure patients range from having no changes at all to having marked ventricular dilation. 

Likewise, functional impairment may or may not coexist with structural changes and range from 

having HFpEF to having HFrEF (Chapter 1: Introduction). 

Post-AMI heart failure is preceded by myocardial cell death, inflammation, and 

maladaptive ventricular remodeling which are integral to its pathogenesis and progression. The 

initial injury caused by prolonged ischemia and subsequent reperfusion ultimately leads to 
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cardiomyocyte necrosis (uncontrolled cell death) and apoptosis (programmed cell death), each of 

which independently contribute to the resulting infarct (3). Troponin is a cardiac enzyme that is 

highly specific to myocardial damage and is released primarily by necrosed cardiomyocytes (4). 

Changes in the myocardial expression of the anti-apoptotic Bcl-2 and the pro-apoptotic Bax 

regulate activation of the caspase family, which is primarily pro-apoptotic. 

Necrosis but not apoptosis is recognized as the primary mediator of the acute 

inflammatory response (3). Inflammatory-mediated induction of a class of chemoattractants 

called chemokines promotes leukocyte recruitment to the site of injury. Notably, MCP-1 and 

MIP-2α, which are chemotactic for monocytes and neutrophils, respectively, are induced by 

myocardial necrosis (5). Recruited leukocytes subsequently initiate the cytokine cascade 

including the synthesis of IL-6 in leukocytes and cardiomyocytes. Cytokines induce the 

myocardial expression of adhesion molecules such as ICAM-1, which specifically aid in the 

recruitment of further neutrophils to the site of infarct and mediate neutrophil-derived 

cytotoxicity. This marked inflammatory response is followed by maladaptive ventricular 

remodeling. 

Mediators involved in the resolution of the inflamed myocardium initiate a maladaptive 

ventricular remodeling response including scar tissue formation, structural changes to 

cardiomyocytes, and cardiac dysfunction (6). Fibrosis is initiated following the early 

inflammatory phase of AMI when circulating and resident fibroblasts infiltrate the myocardium 

in the infarct zone (Figure 1.2). In tandem, these fibroblasts undergo rapid proliferation 

(mediated by FGF-2) followed by activation into myofibroblasts (a process largely mediated by 

transforming growth factor TGF-β). Subsequently, activated myofibroblasts, distinguished from 

their quiescent precursors via the expression of TGF-β/Smad3 pathway-induced α-smooth 
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muscle actin SMA, function to produce extracellular matrix ECM proteins that ultimately cause 

scar formation (7). The ECM proteins including the structural proteins collagens, glycoproteins, 

proteoglycans, glycosaminoglycans, and matricellular proteins are induced post-AMI 

contributing to dynamic changes in ECM structure. The ECM proteins also include proteases that 

are involved in the degradation of these structural components, further contributing to dynamic 

changes post-AMI. In addition to myofibroblasts which are the most abundant source of ECM 

proteins post-AMI, endothelial cells, neutrophils, mast cells, lymphocytes, and macrophages are 

other major sources of ECM proteins. Collagens are considered the structural backbones of the 

ECM and are present at low levels in the normal, non-infarcted heart. Post-AMI, collagen 

expression increases in all regions of the heart, with the greatest magnitude of expression in the 

infarct zone (8). Only myofibroblasts synthesize collagen. LOX mediates the maturation of scar 

tissue by cross-linking collagen fibrils. Following this process, myofibroblasts halt production of 

further profibrotic mediators and become less abundant in the myocardium, potentially through 

apoptosis (7).  

The development of fibrosis is often accompanied by activation of the fetal gene 

program, which results in the dysregulation of a set of genes associated with maladaptive 

ventricular remodeling. Increased BNP expression and a “switch” from expression of the adult α-

myosin heavy chain MHC to the fetal β-MHC are biomarkers of this process (9). BNP promotes 

compensatory vasodilator and natriuretic responses that indicate that myocardial strain (i.e. an 

abnormal structural change) is occurring (10). Fetal gene activation begins early and is thought 

to be promoted at least partially by initial mechanical stretch-induced activation of EGR-1 (11). 

It is evident that the induction of these mediators during the acute phase following IR activates 

responses that promote ventricular remodeling during the early chronic and late chronic stages. 
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Established and emerging biomarkers of these ventricular remodeling processes have been found 

to have prognostic and therapeutic utility in patients (10). 

The extracellular matrix governs not only the structure of the heart, but also the 

connections between heart muscle bundles that regulate the ability of the heart to contract (12). 

Thus fibrosis development can cause abnormalities in cardiac function. In addition to the 

aforementioned molecular changes, the neurohormonal system including the renin–angiotensin–

aldosterone system (RAAS) and the sympathetic nervous system is activated. These systems 

cause vasoconstriction and increased cardiac output in order to compensate further for the loss of 

cardiomyocytes from the IR injury (12). When overcompensation occurs, these processes in 

tandem with advanced structural changes including severe wall thinning progresses to systolic 

and/or diastolic dysfunction ultimately leading to the first signs and symptoms of heart failure 

(6). Importantly, progression can occur quickly (13) and clinical trial data shows that the 

development of heart failure in AMI patients with no previous history of AMI or heart failure 

can occur within a week (14). Indeed, early treatment post-AMI has been found to reduce the 

occurrence of heart failure (15, 16), likely due to attenuation of the early maladaptive ventricular 

remodeling response. It is clear that early and aggressive therapy well before the manifestation of 

symptomatic heart failure improves outcomes. 

For decades, the cornerstone therapies for AMI have consisted of antiplatelet agents, beta 

blockers, statins, and renin-angiotensin aldosterone system inhibitors post-AMI (17-19). 

Considering the aforementioned projections of heart failure, novel therapeutic strategies are 

necessary to attenuate this rising burden. Preclinical models of post-AMI myocardial remodeling 

are critical tools to screen/develop novel therapeutic strategies (20). 
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Induction of AMI in rodents in vivo is feasible and produces injury comparable to the 

more established large animal models of AMI. Mice in particular are more amenable to genetic 

manipulation compared to other rodents, enabling the evaluation of key biological pathways that 

mediate AMI evoked maladaptive cardiac remodeling and the development of heart failure and 

discovery of new therapeutic targets (21, 22). The LAD coronary artery is the artery most 

commonly manipulated in these models compared to other regions of the coronary anatomy (23). 

Clinically, it also usually supplies the largest amount of blood to the myocardium among the 

three major non-left main epicardial branches (24). Surgical ligation is the most common 

technique to evoke myocardial IR (25). Multiple mouse models of LAD coronary artery ligation 

each offer specific advantages depending on the objective of the experiment. Permanent 

occlusion (PO) of the LAD induces a great degree of damage which improves the ability to 

measure the impact of protective interventions. The in vivo model of myocardial IR is a more 

clinically relevant approach to understanding the pathophysiology of AMI; unlike PO, AMI 

patient undergo reperfusion procedures through coronary artery revascularization. Furthermore, 

it allows for the study of maladaptive ventricular remodeling without causing the overt dilated 

cardiomyopathy phenotype that permanent ligation causes (23). Thus, mouse myocardial IR can 

be considered a model of early ventricular remodeling before the onset of symptomatic heart 

failure. Moreover, since experimental transient myocardial ischemia produces injury of less 

magnitude than permanent ischemia, this approach may be better suited for experimental 

interventions hypothesized to enhance myocardial injury and/or remodeling. Surprisingly, the 

acute and chronic impact of this model on parameters of ventricular remodeling has not been 

fully characterized in the literature and requires further investigation. A more thorough 

understanding of the pathophysiology of myocardial remodeling following IR in mice will 
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facilitate the design of experimental studies that elucidate the role of therapeutic pathways in the 

disease. As an initial means to design a future mouse study characterizing the role of the EET 

metabolic pathway in post-IR ventricular remodeling, the objective of the present study was to 

systematically characterize a time course of the molecular, structural, functional, and histological 

alterations that occur in the mouse myocardium in vivo at time points widely considered to be 

acute (<1 week) and chronic (1-3 weeks) following IR (26, 27).  
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Materials and Methods 

 

Mice 

All mice used to complete these experiments were adult, male, and wild-type on a 

C57BL/6 background. Mice were acquired from Taconic Laboratories (Hudson, NY), from 

Charles River Laboratories (Wilmington, MA), or the NIEHS/NIH (Research Triangle Park, 

NC). Mice derived from the NIEHS/NIH were kindly provided by Dr. Darryl Zeldin. Mice were 

2-5 months of age at the time of ligation. All mice had free access to food and water, and were 

housed in controlled conditions for temperature and humidity using a 12-h light/dark cycle. All 

experiments were completed in accordance with the US National Institutes of Health (NIH) 

Guide for the Care and Use of Laboratory Animals and were approved by the Institutional 

Animal Care and Use Committee at the University of North Carolina at Chapel Hill and the 

National Institute of Environmental Health Sciences. 

 

Myocardial IR injury model 

The LAD coronary artery ligation model was utilized to evaluate the impact of 

myocardial IR on myocardial injury, inflammatory responses, myocardial fibrosis, and cardiac 

function. Surgeries were conducted by the UNC McAllister Heart Institute Mouse 

Cardiovascular Models Core laboratory under the direction of Dr. Mauricio Rojas. 

Briefly, the mice were anesthetized with pentobarbital (45 mg/kg). Under direct 

visualization of the trachea, an endotracheal tube was inserted and connected to a Harvard rodent 

volume-cycle ventilator. The chest cavity was opened by a 0.5 cm incision of the left third 

intercostal space, the pericardial sac was opened, and the LAD artery was visualized. Ligation 
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was performed with an 8-0 silk suture passed with a tapered needle underneath the LAD artery 

about 1 mm lower than the tip of the left auricle. The artery was compressed by tightening the 

ligature, producing myocardial blanching and electrocardiographic S-T segment elevation 

(indicative of ischemia). After occlusion of the desired time (30 minutes), blood flow was 

restored by removing the ligature to produce an IR response similar to that produced in humans 

undergoing a revascularization procedure. Lidocaine (6 mg/kg) was administered as needed to 

prevent lethal ventricular arrhythmias and atropine (0.04-0.1 mg/kg) was administered as 

necessary to combat bradycardia. The chest wall was then closed with a prolene or silk suture. 

Sham surgery mice (control) underwent an identical procedure except there was no tightening of 

ligature and therefore no IR.  A subset of mice also underwent an identical procedure except the 

ligature was not removed to determine the impact of permanent LAD occlusion. Post-

operatively, each mouse was kept on rodent warming pads until they regained consciousness, 

after which they are housed in their respective cages and observed until they have recovered to 

normal activity. Mice were euthanized by CO2 or isoflurane inhalation at short-term (2 hours, 24 

hours) or long term (2 weeks) time points following IR. Blood was collected through the inferior 

vena cava, and plasma was separated by centrifugation, aliquoted and stored at -80°C. Whole 

hearts were extracted, blotted dry, and, weighed. Hearts that were reserved for histological 

analysis were fixed in 4% paraformaldehyde (24-48 hours). A subset of hearts was flash frozen 

in liquid nitrogen and stored at -80°C for subsequent molecular phenotyping after being 

dissected into LV, right ventricle, and atria upon extraction. 
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Quantitative real-time PCR 

RNA was isolated from frozen LV and right ventricle tissue using the RNeasy Mini Kit 

(Qiagen, Valencia, CA) and reverse transcribed to complementary (cDNA) using the High 

Capacity cDNA Reverse Transcription Kit (Applied Biosystems, Foster City, CA, USA). 

Quantitative real-time PCR (qPCR) analysis was performed in triplicate using the 7300 Real-

Time PCR system (Applied Biosystems), as described (28). Expression of myocardial α-MHC 

(Myh6), β-MHC (Myh7), Bax (Bax), Bcl-2 (Bcl2), BNP (Nppb), EGR-1 (Egr1), ICAM-1 

(Icam1), IL-6 (Il6), LOX (Lox), MCP-1 (Mcp1), MIP-2α (Cxcl2), and TGF-β (Tgfb) mRNA 

levels were quantified using Taqman Assays on Demand (Applied Biosystems). Data was 

normalized to Gapdh (endogenous reference) and expressed relative to a designated 

experimental control group using the 2-ΔΔCt method (29). Only mouse hearts from experiments 

(sham and IR procedure) evaluating the impact of IR underwent analysis form gene expression at 

acute time points. Mouse hearts from experiments evaluating the impact of PO were not 

analyzed for gene expression at acute time points. 

 

Myocardial necrosis 

Twenty-four hour plasma cardiac troponin levels were measured by ELISA (Life 

Diagnostics, West Chester, PA), according to the manufacturer instructions, as a biomarker of 

cardiomyocyte necrosis and an early index of infarct size (30). 

 

Cardiac structure and function 

Echocardiography on conscious mice was performed over the course of 2 weeks 

(baseline, 24 hours, 72 hours, 1 week, 2 weeks) following IR using a Vevo 2100 Imaging System 
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(VisualSonics, Toronto, ON). M-mode images were traced to measure direct parameters of 

cardiac structure at diastole and systole of the cardiac cycle during all 5 of the aforementioned 

time points. Direct parameters of structure from M-mode images included ventricle wall 

thickness and chamber size. Wall thickness parameters were inter ventricular septum at systole 

(IVSs), inter ventricular septum at diastole (IVSd), left ventricular posterior wall at systole 

(LVPWs), and left ventricular posterior wall at diastole (LVPWd). Chamber size parameters 

were left ventricular internal diameter at systole (LVIDs) and left ventricular internal diameter at 

diastole (LVIDd). The calculated parameters of structure (LV Mass) and systolic function 

(fractional shortening [FS], EF) were derived from the direct parameters of structure as well as 

from LV volume at systole (Vols) and LV volume at diastole (Vold) as follows: 

EF (%) = 100 * ((LV Vold – LV Vols) / LV Vold) 

LV Vold (µL) = ((7.0 / (2.4 + LVIDd)) * LVIDd3) 

LV Vols (µL) = ((7.0 / (2.4 + LVIDs)) * LVIDs3) 

FS (%) = 100 * ((LVIDd – LVIDs) / LVIDd) 

LV Mass (corrected) (mg) = 0.8424 * ((LVIDd + LVPWd + IVSd)3 – LVIDd3) 

Pulsed wave Doppler on mitral valve images were traced to measure direct parameters of 

diastolic function and systolic function at baseline and 2 weeks following IR. Direct parameters 

of diastolic function from Doppler images included early (E)-peak velocity, atrial (A)-peak 

velocity, isovolumic relaxation time (IVRT), deceleration rate (Dr), and deceleration time (Dt). 

Direct parameters of systolic function included isovolumic contraction time (IVCT) and aortic 

ejection time (AET). Each calculated parameter of diastolic dysfunction (E/A ratio) and global 

function (myocardial performance index [MPI]) was derived from direct parameters of diastolic 

dysfunction and systolic function as follows: 
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E/A ratio = E-peak velocity / A-peak velocity 

MPI (ratio) = (IVRT + IVCT) / AET 

At each time point for each mouse, all direct echocardiography parameters were averaged 

across a series of ≥3 sets of ≥3 consecutive beats. Heart weight/tibial length ratio at 2 weeks was 

measured as a secondary parameter of non-echocardiography cardiac structure. 

 

Histology 

Fixed hearts were embedded in paraffin, and cut into 5μm transverse sections to measure 

evidence of fibrosis. Specifically, serial interrupted sectioning was performed to the hearts. 

Starting from the apex, the most inferior distance where sections were collected occurred where 

both the left and right ventricle could be visualized. A series of sections (4-6) were collected at 

this distance. The next series of sections were collected at a distance 200 microns superior to the 

previous distance. This was repeated for several distances to cover a large portion of the heart 

where injury was anticipated to occur. For hearts of mice undergoing IR, sections from 8 

distances (spanning 1800 microns from the most inferior distance) were collected per sample 

(note: only 4 distances were collected from an IR experiment described later where sections were 

stained with both Masson’s Trichrome and Picrosirius Red stain). Sections from 5 distances 

(spanning 1000 microns) were collected per sample for hearts of mice undergoing permanent 

ischemia. For each sample, a slide contained a section from each distance where sections were 

collected. The result was that each slide contained serial sections with each section representing 

a specific distance from the apex of the heart. Our group believed that this technique was 

advantageous over the traditional approach of analyzing an isolated section from each sample. 

Furthermore, each heart sample had multiple slides which allowed for multiple stains to be done 
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at each specific distance from the heart’s apex. Embedding and processing of samples were 

completed in the Cell Services & Histology Core within the UNC Center for Gastrointestinal 

Biology and Disease. Sectioning and staining by was done in the Histology Research Core 

within the Department of Cell Biology and Physiology under the direction of Kirk McNaughton. 

Sections were stained with Picrosirius Red (collagen) or Masson’s Trichrome (connective 

tissue including collagen and proteoglycans) for image analysis. 

All images were digitally scanned with the ScanScope CS System (Aperio Technologies, 

Vista, CA). From the digital scans, one 1x zoom image was taken per section of each sample, 

which allowed for the coverage of the entire heart cross-section. The area of fibrosis was 

measured with NIH ImageJ (31). Specifically, two sets of color thresholding minimums and 

maximums for red, green, and blue colors were generated to capture the area of the stain and the 

area of the total ventricle cross-section. These thresholding ranges were generated from three 

randomly-selected representative images. The same ranges for stain and total cross-section were 

applied to all sections used in the study without regards to treatment groups to minimize observer 

bias. The surface area of staining was normalized to the surface area of total myocardial tissue 

for each section. The resulting % stained value averaged over the total amount of serial sections 

used for each sample (sections from 4-8 distances) generated a single value per mouse that 

reflected the average staining throughout the infarcted region. All quantification was averaged 

over multiple sections per heart sample using NIH ImageJ. 

 

Statistical analysis 

Data are expressed as mean± standard error of the mean (SEM) unless stated otherwise. 

All analyses were conducted on log-transformed data. Gene expression and troponin data were 
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compared across experimental groups with Student’s t-test at every given time point. For M-

mode-derived echocardiography analysis in mice from IR experiments, data from 3 different 

experiments that used different time points were merged together for graphical purposes but 

were analyzed as 3 separate data sets statistically to compare parameters between experimental 

groups. Echocardiography data at 1 and 3 days were each analyzed with ANCOVA with baseline 

as a covariate followed by Fisher’s LSD post hoc tests (if overall ANCOVA was significant). 

Echocardiography data at 7 and 14 days were from the same experiment and analyzed together 

using repeated measures ANOVA with baseline as a covariate followed by Fisher’s LSD post 

hoc tests (if overall repeated measures ANOVA was significant). For Pulse Wave Doppler-

derived echocardiography analysis, data were compared across experimental groups using 

ANCOVA at 2 weeks with baseline as a covariate followed by Fisher’s LSD post hoc tests (if 

overall ANCOVA was significant). For M-mode-derived echocardiography analysis in mice 

from PO experiments, data at 7 and 14 days were from the same experiment and analyzed 

together across experimental groups together using repeated measures ANOVA with baseline 

values as a covariate followed by Fisher’s LSD post hoc tests (if overall ANCOVA was 

significant). For histology data analyzed across two experimental groups, comparisons were 

performed with Student’s t-test at 2 weeks. For histology data comparing staining methods, 

linear regression analysis was conducted and Pearson's correlation coefficient was calculated. 

P<0.05 was considered to be statistically significant. Statistical analyses were performed using 

SAS 9.2 (SAS Institute, Cary, NC).  
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Results 

 

Acute biomarkers of myocardial injury, inflammation, and remodeling following ischemia 

reperfusion 

Myocardial ischemia for 30 minutes significantly increased biomarkers of cardiomyocyte 

necrosis and apoptosis compared to sham treatment. In particular, IR increased plasma troponin 

levels after 2 and 24 hours of reperfusion (Figure 4.1a) and myocardial Bax:Bcl-2 ratio mRNA 

levels at 24 hours of reperfusion compared to sham-treated mice (Figure 4.1b). Similarly, IR 

increased myocardial inflammatory gene expression compared to sham-treated mice at 2 hours, 

24 hours, or 2 and 24 hours of reperfusion (Figure 4.2). LV Il6 expression was significantly 

increased by IR at 2 and 24 hours following IR (Figure 4.2a). Right ventricle Il6 expression was 

significantly increased in IR-treated mice at 24 hours following IR (Figure 4.2b). Importantly, 

the magnitude of induction in the right ventricle was less pronounced than in the LV. Expression 

of subsequent markers is only reported in the LV. LV Mcp1 expression was significantly greater 

in IR-treated hearts compared to sham at 2 hours following IR (Figure 4.2c), demonstrating IR-

induced upregulation of monocyte expression. Expression of Cxcl2 in the LV was significantly 

increased by IR at 2 and 24 hours following IR (Figure 4.2d). Expression of Icam1 in the LV was 

greater in IR-treated hearts compared to sham-treated hearts at 2 hours following IR (Figure 

4.2e). 

IR also increased the myocardial mRNA levels of a majority of the markers associated 

with ventricular remodeling at acute time points following initial injury (Figure 4.3). IR 

induction of Egr1 expression was significantly pronounced 2 hours following IR (Figure 4.3a). 

Expression of LV Tgfb was not significantly increased by IR injury at 2 hours (P=0.68) or 24 
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hours (P=0.25) of reperfusion (Figure 4.3b). However, Lox expression was significantly 

increased at 2 and 24 hours of reperfusion in IR-treated mice compared to sham-treated mice 

(Figure 4.3c). Expression of LV Myh7:Myh6 was significantly increased by IR at 24 hours 

following IR injury (Figure 4.3d). LV atrial natriuretic factor (ANF) expression was not 

significantly induced by IR at 2 hours (P=0.91) or 24 hours (P=0.22) of reperfusion (Figure 

4.3e). In contrast, BNP gene expression in the LV was significantly greater in IR-treated mouse 

hearts compared to sham-treated hearts at 2 hours following IR (Figure 4.3f). BNP expression 

was not statistically significant at 24 hours following IR (P=0.14). 

 

Systolic function 

IR did not significantly alter EF over time compared to sham treatment (Analysis A [1 

day] P=0.070, Analysis B [3 days] P=0.202, Analysis C [7 and 14 days] P=0.460; Figure 4.4a). 

Likewise, IR did not significantly alter FS over time compared to sham treatment (Analysis A [1 

day] P=0.113, Analysis B [3 days] P=0.172, Analysis C [7 and 14 days] P=0.539; Figure 4.4b). 

EF and FS were lower in IR-treated mice compared to sham-treated mice at 2 weeks; however, 

the difference was not statistically significant and should be interpreted with caution (EF: overall 

repeated measures ANOVA P=0.460, Fisher’s post-hoc P=0.048; FS: overall repeated measures 

ANOVA P=0.539, Fisher’s post-hoc P=0.054). 

Similar results were seen with Pulse Wave Doppler image-derived parameters of systolic 

function Table 4.1). IVCT was not impacted by IR-treatment compared to sham treatment at 2 

weeks (P=0.41). AET was not affected by IR compared to sham (P=0.14). 
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Diastolic function 

Diastolic dysfunction indicated by a reduction in E/A ratio, was unchanged between 

sham and IR at 2 weeks following IR (P=0.678; Figure 4.5a). Likewise, IVRT was not affected 

by IR treatment compared to sham treatment at 2 weeks of reperfusion (P=0.951; Figure 4.5b). 

This was confirmed in all other parameters of diastolic dysfunction (P>0.05 for all parameters, 

Analyses A-C Table 4.1). 

 

Cardiac structure 

Mean echocardiography-derived parameters of cardiac structure over 2 weeks for sham 

and IR mice are summarized in Table 4.2. IR did not significantly alter any of these indices over 

time compared to sham treatment (P>0.05 for all parameters in Analyses A-C). Likewise, there 

was no difference in heart weight/tibial length between IR and sham (5.82 ± 0.35 versus 6.18 ± 

0.24 mg/mm, respectively, P=0.486). 

 

Myocardial fibrosis 

Given the early induction of LOX in myocardial tissue acutely following IR, heart 

sections were stained for evidence of collagen deposition. Histological stains of collagen were 

examined using two different staining approaches. Collagen deposition as measured by 

Picrosirius Red was significantly correlated with connective tissue deposition from Masson’s 

trichrome staining (Figure 4.6) at 2 weeks following IR. Following the confirmation of a 

correlation between the stains, further analysis was conducted with Picrosirius Red stained slides 

only since thresholding was more time-efficient thresholding compared to Masson’s Trichrome 

(2-color stain vs 3-color stain). An independent experiment was conducted to determine the 
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impact of IR on collagen deposition. Although sham-treated hearts did show evidence of 

collagen at 2 weeks, induction of collagen was significantly increased in the IR-treated mice 

(Figure 4.7a-b) with a mean % collagen deposition of 3.43 ± 0.64%. 

 

Impact of permanent occlusion 

A subset of mice were subjected to permanent LAD ligation surgery (2 weeks of 

ischemia) for comparison with the above results in IR-treated mice as a means to further 

characterize the impact of IR on ventricular remodeling. PO did not significantly alter LVIDs 

(Figure 4.8a) or EF (Figure 4.8b). In particular, at 1 and 2 weeks following PO, LVIDs was non-

significantly increased by 1.93-fold and 2.07-fold induction, respectively, by PO compared to 

sham. EF in PO-treated mice was 0.62-fold and 0.59-fold the value of sham-treated mice at 1 and 

2 weeks, respectively. Similar results were observed with other parameters of cardiac structure 

that showed a lack of effect (LVIDd: Repeated measures ANOVA P=0.096) and function (FS: 

Repeated measures ANOVA P=0.510). In contrast, PO enhanced fibrosis extensively with a 

mean % connective tissue deposition of 29.07 ± 4.93% (Figure 4.8c-d). Myocardial structural 

changes (including ventricular wall thinning) were qualitatively evident in the majority of heart 

from mice that underwent permanent ischemia (Figure 4.8c), but not appreciable following IR 

(Figure 4.7b).  
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Discussion 

 

Preclinical models of post-AMI myocardial remodeling are critical tools that aid in the 

discovery and development of novel therapeutic strategies (20), but they can only facilitate 

translation of novel strategies if they truly mimic the pathophysiology of AMI in humans. There 

are few reports in the literature fully dedicated to the characterization of pathological responses 

in mice following myocardial IR. Consequently, using molecular, echocardiography, and 

histological approaches, we determined that a 30-minute mouse model of myocardial ischemia 

followed by reperfusion caused time-dependent responses associated with ventricular 

remodeling. In particular, IR induced myocardial cell death and inflammation acutely following 

ischemia and generated substantial fibrosis at an early chronic time point, but did not cause 

significant changes in myocardial structure or function. 

The acute myocardial cell death and inflammatory response in the current study peaked at 

2 hours and dropped by 24 hours, though the drop was not to the level of sham-treated mice; this 

demonstrates the transient but marked acute response that occurs in the myocardium following 

IR. These effects were most pronounced in the left ventricule. Importantly, they were also 

present in the right ventricle (to a lesser degree), despite the fact that the LAD does not supply 

the right ventricle. These acute myocardial necrotic and inflammatory responses mirror what has 

been shown by others. It has been previously shown that IR in mice causes acute increases in 

troponin levels that are low in sham-operated mice (32). An investigation of the time course of 

myocardial inflammatory gene expression showed that IR induced IL-6 expression markedly at 3 

hours of reperfusion. This increase in cytokine expression had largely dissipated after 24 hours 

of reperfusion, but levels remained significantly elevated compared to sham (33). 
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Fibrosis is a key component of ventricular remodeling and biomarkers of fibrosis are 

independent predictors of poor prognosis in patients with ventricular remodeling on top of 

established risk factors (34, 35). In the current study, myocardial fibrosis formation was the most 

altered phenotype during the early chronic phase following IR. IR promoted the deposition of 

collagen into the myocardial tissue. This finding was supported by the foreboding induction of 

myocardial LOX gene expression, a key mediator of collagen maturation, during the acute phase 

following IR. The induction of left ventricular TGF-β expression by IR was not statistically 

significant; however, evidence exists that this important fibrosis mediator may reach its peak at 

72 hours following IR in C57BL/6 mice (36). Furthermore, a greater than 2-fold change at 24 

hours suggests that this lack of a statistically significant difference was due, at least partially, to 

low power (n=3, coefficient of variation at 24 hours in IR-treated mice=52.11%). Moreover, 

Gapdh may not be the most stable housekeeping gene in the AMI model and may have increased 

variability within experimental groups (37). Thus further exploration including validation with a 

larger n, follow-up with myocardial protein expression analysis, the inclusion of an additional 

‘subacute’ time point (3 days following IR), and confirmation with a second housekeeping gene 

is necessary to address limitations with the evaluation of mRNA expression data in this study. 

In contrast to induction of myocardial fibrosis, IR did not produce significant changes in 

cardiac structure demonstrating that there was no evidence of ventricular wall thinning or 

hypertrophy. Furthermore, IR did not produce significant changes in either systolic or diastolic 

function during the acute (24 hours), subacute (3 days) and early chronic (7, 14 days) time 

points. This discrepancy between the induction of myocardial fibrosis and structural/functional 

changes was unexpected. One possible explanation for this finding is that changes in cardiac 

function actually occurred, but echocardiography was not sensitive enough to pick up these 
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changes. The use of alternate tools that may be more sensitive in detecting cardiac function 

changes (i.e., catheter-based invasive analyses (38)) would provide more insight as to whether 

technical difficulties contributed to the lack of association between fibrosis and cardiac 

dysfunction. Another plausible explanation for these findings is that perhaps the fibrosis changes 

truly did not correlate with cardiac function. Indeed, these findings agree with clinical data 

showing that fibrosis does not correlate with ejection fraction. In heart failure participants from 

the Cardiovascular Health Study, circulating BNP levels, but not markers of collagen deposition 

discriminated heart failure patients with preserved ejection fraction from those with reduced 

ejection fraction even after adjustment for covariates (39). This is further corroborated in another 

clinical study in which no association was found between a marker of collagen deposition and 

either structural or functional cardiac dysfunction (40). In line with this explanation, it is possible 

that enhanced fibrosis compensated for and thus masked any worsening of IR-induced systolic 

dysfunction by replacing dead myocardial cells and preserving the structural integrity of the 

ventricle. This is supported by our data which shows an early increase in expression of fetal gene 

activation mediators, demonstrating that mediators of cardiac dysfunction had been, at least 

transiently, activated. Furthermore, we do not differentiate between adaptive and maladaptive 

fibrosis which would provide insight as to if the increased fibrosis compensated for changes in 

dysfunction. However, few studies investigating fibrosis address this issue because techniques 

that delineate protective and harmful fibrosis have not been developed (41). This is an important 

future area of investigation because novel therapies that attenuate adaptive fibrosis would be 

deleterious. New approaches are needed to better discriminate between adaptive and maladaptive 

fibrosis as well as the relationship between these processes and cardiac function/structure in this 

mouse model of AMI. 
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Any subtle differences in systolic function that did occur were observed at the earliest (24 

hours) and latest (2 weeks) measured time points following IR. This biphasic pattern of 

dysfunction likely derives from two independent sources of tissue damage with the initial hit 

being related to infarct size and the second drop occurring in latter stages when fleeting attempts 

to recover from the acute injury causes overcompensating, maladaptive ventricular remodeling. 

Considering the lack of a statistical significance in cardiac dysfunction at these two time points, 

these data must be interpreted with major caution. However, this postulation is supported by 

clinical evidence that recovery of initial systolic dysfunction is a common clinical occurrence 

(42). Furthermore, evidence exists in C57BL/6 mice that the most pronounced drop in EF may 

occur at about 7 weeks of reperfusion following IR (43), shining light on the possibility of a 

triphasic pattern of systolic dysfunction in this strain of mice. Moreover, structural changes 

related to dilated cardiomyopathy (increased end diastolic volume and reduced ventricular wall 

thickness) have been found to peak after 7 weeks of reperfusion following IR (43). A future 

investigation evaluating the impact of 30-minute myocardial IR in mice on cardiac structure and 

function at prolonged reperfusion time points is warranted (late chronic phase: >7 weeks post-

IR). 

Thus, the in vivo mouse model of 30-minute ischemia followed by 2 weeks of reperfusion 

is best suited for investigating the impact of intervention on inflammatory and fibrotic responses 

independent of cardiac structure or function. On the other hand, we found that an in vivo mouse 

model of permanent LAD coronary artery ligation for 2 weeks caused gross histological 

evidence of ventricular dilation, myocardial wall thinning, and myocardial fibrosis.  This agrees 

with previous data showing structural changes as early as 1 week following surgery (23). 

Furthermore, an acute inflammatory response is blunted in the permanent ischemia model (23, 
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33), which precludes the investigation of acute inflammatory response with that model. PO did 

not significantly alter systolic and diastolic function at 2 weeks of ischemia. Considering the 

large absolute decline in EF (0.59 fold at 2 weeks) and increase in LVIDs (2.07-fold at 2 weeks) 

which are indicative of reduced systolic function and dilated cardiomyopathy, respectively, as 

well as the aforementioned PO-induced histological alterations of ventricular remodeling, 

statistical power may have played a role, at least partially, in the non-significant findings 

(coefficient of variation in EF at 2 weeks in IR-treated mice=61.40%). Although conscious 

echocardiography measurements offer the advantage of deriving physiological parameters, they 

also may increase variability due to varying levels of excitement and sympathetic activation from 

being manipulated (25); this may potentially reduce power. This hypothesis needs confirmation 

in future studies with a larger sample size or with echocardiography using anesthetized mice. 

There are limitations in this study. The reproducibility of the extent of injury varies since 

placement of the ligature influences the size of the infarct. Sources of this problem include the 

small size of the mouse heart and variation in coronary branching pattern even among inbred 

mice, but technology to improve the consistency of mouse infarcts within experiments are 

improving (32). Moreover, results may not translate to humans for a variety of reasons. Firstly, 

this model of IR does not entirely replicate revascularization following an AMI in humans 

because our mice do not have underlying atherosclerotic cardiovascular disease at the time of 

surgery. Efforts have begun to utilize mice with comorbid conditions in models of AMI (44). 

Secondly, suture ligation does not mimic the etiology of AMI, which most commonly involves 

the disruption and occlusion of an atheromatous plaque in the coronary artery. Preclinical models 

of thrombosis-induced AMI are in the infancy phases in large animals and rodents and are not 

yet routinely used as established methods (45, 46). Thirdly, results are only from C57BL/6 mice, 
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though myocardial IR injury in mice varies by strain (43, 47). The Collaborative Cross is a large 

panel of novel inbred mouse strains that simulate genetic diversity in humans (48). Application 

of this tool to AMI is a potential avenue for further investigation that could increase the 

generalizability of results. Altogether, scarce data exist in the literature that utilize IR models 

more closely resembling AMI in clinical practice, thus these are issues that have not been 

adequately addressed by the scientific community and warrant further investigation. 

In conclusion, the present study demonstrates that myocardial IR injury induces 

myocardial cell death, inflammation, and collagen deposition. As a whole, these results provide a 

better understanding of the pathology that occurs after AMI and facilitate the design and 

interpretation of future studies that investigate the role of pathways as novel therapeutic targets 

in mouse models of AMI. For our research group, these findings lay the foundation for the 

evaluation of the contribution of cardiomyocyte sEH to maladaptive ventricular remodeling in 

mice post-AMI in vivo.  
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Figures 

 

 

 

Figure 4.1 Impact of myocardial ischemia reperfusion (IR) on myocardial cell death. Time 

course of myocardial IR-induced (a) necrosis and (b) apoptosis. Reference group for relative 

mRNA levels: sham levels at 24 hours. Sham: n = 3-5 per group. IR: n = 4-8 per group. * P < 

0.05 for sham vs IR at each time point. Bax, bcl-2-like protein 4; Bcl-2, B-cell lymphoma 2. 
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Figure 4.2 Impact of myocardial ischemia reperfusion (IR) on acute inflammatory 

responses. Time course of myocardial IR-induced (a-b) cytokine, (c-d) chemokine, and (e) 

cellular adhesion molecule expression in the left ventricle (LV) or right ventricle. Reference 

group for relative mRNA levels: sham levels at 24 hours. Sham: n = 3 per group. IR: n = 4-5 per 

group. * P < 0.05 for sham vs IR at each time point. ICAM-1, intercellular adhesion molecule 1; 

IL-6, interleukin 6; MCP-1, monocyte chemoattractant protein-1; MIP-2α, macrophage 

inflammatory protein 2-alpha.  
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Figure 4.3 Impact of myocardial ischemia reperfusion (IR) on early maladaptive 

ventricular remodeling. Time course of myocardial IR-induced (a) early response, (b-c) 

fibrosis, and (d-f) fetal gene activation expression. Reference group for relative mRNA levels: 

sham levels at 24 hours. Sham: n = 3 per group. IR: n = 3-5 per group. * P < 0.05 for sham vs IR 

at each time point. ANF, atrial natriuretic factor; BNP, brain natriuretic peptide; EGR-1, early 

growth response protein 1; LOX, lysyl oxidase; MHC, myosin heavy chain; TGF-β, transforming 

growth factor beta  
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Figure 4.4 Impact of myocardial ischemia reperfusion (IR) on systolic function. Time course 

of myocardial IR-induced changes on (a) ejection fraction (EF) and (b) fractional shortening 

(FS). Combined mean±SEM from 3 experiments are displayed. Experiment 1 measured 

parameters at baseline, 7 days, and 14 days: N = 6-7 per group. Experiment 2 measured 

parameters at baseline, 1 day, and 3 days: N = 2-7 per group. Experiment 3 measured parameters 

at baseline and 1 day: N = 7-12 per group. Total: n = 2-26 per time-group (n=2 in sham group at 

3 days only). Due to sample size differences and experiment differences for each time point, 

analyses were conduct as 3 individual data sets. Analysis A involved ‘1 day’ data corrected for 

baseline using ANCOVA. Analysis B involved ‘3 days’ data corrected for baseline using 

ANCOVA. Analysis C involved ‘7 days’ and ‘14 days’ data corrected for baseline using 

repeated measures ANOVA.  

0

10

20

30

40

50

60

70

80

90

100

Baseline 1 day 3 days 7 days 14 days

E
F

(%
)

Post-IR

a

■ sham   ■ IR

0

10

20

30

40

50

60

Baseline 1 day 3 days 7 days 14 days

F
S

(%
)

Post-IR

bANOVA P > 0.05 for each of 3 experiments ANOVA P > 0.05 for each of 3 experiments



 

138 

 

 

 

Figure 4.5 Impact of myocardial ischemia reperfusion (IR) on diastolic function. 

Myocardial IR-induced changes on (a) E-peak velocity / A-peak velocity (E/A) ratio and (b) 

isovolumic relaxation time (IVRT) at 2 weeks following IR. n = 7-9 per group. P > 0.05 for 

sham vs IR at 2 weeks corrected for baseline  

0.0

0.5

1.0

1.5

2.0

Baseline 2 weeks

E
/A

(r
a

ti
o

)

Post-IR

0

5

10

15

20

25

Baseline 2 weeks

IV
R

T
(m

s
)

Post-IR

ba

■ sham   ■ IR

ANOVA P = 0.678 ANOVA P = 0.951



 

139 

 

 

 

Figure 4.6 Correlation between staining methods of fibrosis. (a) Representative images and 

(b) correlation of Picrosirius Red- and Masson’s Trichrome-blue stained heart sections (averaged 

from 4 distances of the heart) at 2 weeks following ischemia reperfusion (IR). n = 27. 



 

140 

 

 

Figure 4.7 Impact of myocardial ischemia reperfusion (IR) on fibrosis. (a) Representative 1X 

images between groups as well as a zoomed 20X image detailing pattern the of collagen 

deposition in an IR-treated mouse and (b) quantification of collagen deposition from Picrosirius 

Red-stained heart sections (averaged from 8 distances of the heart) at 2 weeks following IR. 

Each set of images has a different scale. Sham: n = 6. IR: n = 8. * P < 0.05  
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Figure 4.8 Impact of myocardial permanent occlusion (PO) on maladaptive ventricular 

remodeling. Impact of permanent ischemia on (a) left ventricular internal diameter (LVID) and 

(b) ejection fraction (EF) as well as (c) representative images and (d) quantification of collagen 

deposition from Picrosirius Red-stained heart sections (averaged from 5 distances of the heart) at 

2 weeks of PO. Sham: n = 5. IR: n = 8. * P < 0.05.  
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Tables 

 

Table 4.1 Impact of myocardial ischemia reperfusion (IR) on mitral pulse Doppler parameters of cardiac 

dysfunction 

 

Parameters  Baseline  2 weeks   P 

Isovolumic contraction time (IVCT), ms 

 sham  11.0 ± 0.9  16.1 ± 2.0  0.421 

 IR  12.2 ± 1.0  13.3 ± 1.5 

Aortic ejection time (AET), ms 

 sham  29.8 ± 2.0  34.1 ± 1.2  0.326 

 IR  28.4 ± 1.8  36.7 ± 1.6 

Early-peak velocity (E), mm/s 

 sham  441.4 ± 39.8  579.9 ± 49.9  0.859  

 IR  457.4 ± 36.5  585.5 ± 64.0 

Atrial-peak velocity (A), mm/s 

 sham  341.7 ± 33.2  402.3 ± 44.6  0.961 

 IR  356.8 ± 25.1  397.7 ± 45.5 

E/A, ratio 

 sham  441.4 ± 39.8  579.9 ± 49.9  0.902 

 IR  457.4 ± 36.5  585.5 ± 64.0 

Deceleration (Dt), ms 

 sham  24.2 ± 2.8  21.9 ± 2.1  0.575 

 IR  27.7 ± 2.9  21.5 ±  2.4 

Deceleration (Dr), mm/s2 

 sham  -19.2 ± 2.1  -27.6 ± 3.8  0.906 

 IR  -18.9 ± 3.2  -28.2 ± 5.3 

Isovolumic relaxation time (IVRT), ms 

 sham  16.4 ± 1.0  14.3 ± 1.9  0.877 

 IR  18.5 ± 1.2  14.2 ± 1.7 

Myocardial performance index (MPI), ratio 

 sham  1.0 ± 0.1  0.9 ± 0.1  0.481 

 IR  1.1 ± 0.1  0.8 ± 0.1 

Comparisons at 2 weeks between sham and IR were corrected for baseline levels. N = 7-9 per group. * P < 0.05 for 

sham vs. IR 



 

 

 

1
4
3
 

Table 4.2 Impact of myocardial ischemia reperfusion (IR) on cardiac structure over time 

 

Parameters  Baseline  1 day   3 days   7 days   14 days 

LVIDs (mm) 

 sham  1.74 ± 0.10  1.94 ± 0.08  2.08 ± 0.17  1.39 ± 0.11  1.20 ± 0.15  

 IR  1.73 ± 0.09  2.07 ± 0.13  2.09 ± 0.05  1.44 ± 0.19  1.53 ± 0.07  

LVIDd (mm) 

 sham  3.06 ± 0.08  3.24 ± 0.10  3.48 ± 0.02  2.67 ± 0.15  2.49 ± 0.17  

 IR  3.09 ± 0.09  3.14 ± 0.10  3.25 ± 0.11  2.63 ± 0.22  2.71 ± 0.12  

IVSs (mm) 

 sham  1.72 ± 0.05  1.68 ± 0.05  1.69 ± 0.16  1.86 ± 0.08  1.88 ± 0.05  

 IR  1.65 ± 0.03  1.48 ± 0.07  1.49 ± 0.08  1.82 ± 0.07  1.86 ± 0.07  

IVSd (mm) 

 sham  1.19 ± 0.03  1.14 ± 0.04  1.08 ± 0.03  1.33 ± 0.04  1.33 ± 0.04  

 IR  1.13 ± 0.03  1.09 ± 0.04  1.10 ± 0.07  1.36 ± 0.08  1.33 ± 0.07  

LVPWs (mm) 

 sham  1.64 ± 0.07  1.57 ± 0.05  1.49 ± 0.11  1.71 ± 0.11  1.83 ± 0.13  

 IR  1.71 ± 0.04  1.51 ± 0.08  1.48 ± 0.03  1.69 ± 0.13  1.66 ± 0.05  

LVPWd (mm) 

 sham  1.09 ± 0.05  1.13 ± 0.05  1.03 ± 0.00  1.21 ± 0.07  1.38 ± 0.16  

 IR  1.07 ± 0.03  1.03 ± 0.04  0.98 ± 0.05  1.25 ± 0.17  1.27 ± 0.06  

Echocardiography-derived LV mass corrected (mg) 

 sham  104.48 ± 4.89  113.33 ± 5.77  111.97 ± 3.85  104.21 ± 8.57  104.01 ± 4.28  

 IR  99.57 ± 3.17  97.23 ± 4.32  99.93 ± 10.36  104.53 ± 6.10  109.82 ± 7.17  

Combined mean±SEM from 3 experiments are displayed. 

Experiment 1 measured parameters at baseline, 7 days, and 14 days: N = 6-7 per group. Experiment 2 measured parameters at baseline, 1 day, and 3 days: N = 2-

7 per group. Experiment 3 measured parameters at baseline and 1 day: N = 7-12 per group. Total: n = 2-26 per time-group (n=2 in sham group at 3 days only). 

Due to sample size differences and experiment differences for each time point, analyses were conducted as 3 individual data sets. Analysis A involved ‘1 day’ 

data corrected for baseline using ANCOVA. Analysis B involved ‘3 days’ data corrected for baseline using ANCOVA. Analysis C involved ‘7 days’ and ‘14 

days’ data corrected for baseline using repeated measures ANOVA. * P < 0.05. 

IVSd, interventricular septum at diastole; IVSs, interventricular septum at systole; LV, left ventricle; LVIDd, left ventricular internal diameter at diastole; LVIDs, 

left ventricular internal diameter at systole; LVPWd, left ventricular posterior wall at diastole; LVPWs, left ventricular posterior wall at systole
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CHAPTER 5 - THE CONTRIBUTION OF CARDIOMYOCYTE SOLUBLE EPOXIDE 

HYDROLASE TO ACUTE MYOCARDIAL INFARCTION-INDUCED MALADAPTIVE 

VENTRICULAR REMODELING IN MICE 

 

Introduction 

 

Following the acute recovery phases of an AMI, the infarcted and inflamed myocardium 

promotes maladaptive ventricular remodeling, a chronic and progressive pathological process 

that manifests as scar tissue formation (fibrosis) and LV dysfunction within the first few weeks 

to months after the index event (1, 2). Progression of these maladaptive processes, and the 

presence of LV fibrosis and dysfunction, markedly increases the risk of worsening systolic 

and/or diastolic function and the development of clinical heart failure, ventricular arrhythmias 

and sudden cardiac death, and overall mortality (3-5). Thus, this chronic maladaptive remodeling 

process is a key driver of worsened prognosis following AMI. The identification of key 

pathways that regulate remodeling following AMI offers enormous potential to facilitate the 

development of novel therapeutic strategies that prevent the development of heart failure and its 

associated morbidity and mortality. 

CYP epoxygenases from the CYP2J and CYP2C subfamilies catalyze the metabolism of 

arachidonic acid into EETs, which have become increasingly recognized to possess potent anti-

inflammatory, vasodilatory, fibrinolytic, anti-apoptotic, pro-angiogenic, and smooth muscle cell 

anti-migratory effects in the cardiovascular system (6). The life of circulating EETs, however, is 

ephemeral as they are quickly hydrolyzed into the less potent DHETs by sEH. 
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Early chronic preclinical models of IR-induced ventricular remodeling (3-4 weeks of 

reperfusion following 45 minutes of ischemia) have recently been utilized to determine the role 

of EETs in maladaptive remodeling following AMI (7, 8). These data have shown that increasing 

EETs via pharmacological sEH inhibition attenuates myocardial fibrosis and systolic function. 

Although inhibition of sEH to promote the effects of EETs has been proposed as a novel 

cardioprotective therapeutic strategy following AMI (6, 9), more rigorous investigation is 

warranted to further define the contribution of sEH and EETs to the pathogenesis and 

progression of ventricular remodeling. In particular, the direct contribution of increased 

myocardial sEH expression to the pathogenesis and progression of maladaptive ventricular 

remodeling post-AMI in vivo has not been studied to date. Consequently, we investigated the 

role of myocardial sEH in maladaptive ventricular remodeling post-IR in vivo using a transgenic 

mouse model with cardiomyocyte-specific overexpression of human sEH driven by the α-myosin 

heavy chain promoter (α-MHC-EPHX2 mice).  
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Materials and Methods 

 

Mice 

All experiments were completed in adult male mice on a C57BL/6N background. 

Transgenic mice that overexpress human EPHX2 in cardiomyocytes under control of the murine 

α-MHC promoter (α-MHC-EPHX2) were developed on a C57BL/6N background (Xenogen, 

now Taconic, Germantown, NY) by the laboratory of Dr. Darryl Zeldin (NIEHS/NIH; 

unpublished), similar to past studies, and kindly provided for these experiments. Briefly, the 

human sEH cDNA (NM001979.5) was amplified with primers (Fwd: 5′-

TAAGCTTGGCTGCAGACCCGCCGCCATGACG-3′, Rev: 5′-

TAGCGGCCGCTCTACATCTTTGAGACCACC-3′) and subcloned downstream of the murine 

α-MHC promoter and upstream of the human growth hormone (hGH) polyadenylation signal 

(kindly provided by Dr. Jeffrey Robbins, University of Cincinnati) (Figure 5.1a), as described 

previously (10). Linearized constructs were agarose gel-purified, microinjected into pronuclei of 

single cell C57BL/6 mouse embryos, and implanted into pseudopregnant mice. Hemizygous 

founder pups were identified by PCR genotyping of genomic DNA. 

All mice used in these experiments were ages 2-6 months. Heterozygous transgenic mice 

from only one founder mouse line [C57BL/6-Tg(Myh6-EPHX2)12Dcz] were used in the study 

to minimize inter-line variability in the magnitude of sEH overexpression. A subset of the 

control mice were age/sex-matched wildtype littermates from Tr12, however additional wildtype 

C57BL/6N mice were purchased from Charles River Laboratories (Wilmington, MA, USA) and 

used as controls. 
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The α-MHC promoter is expressed almost exclusively in cardiomyocytes (11). 

Characterization of α-MHC-EPHX2 mice were performed by Artiom Gruzdev and colleagues 

(NIEHS/NIH). 

All procedures and experiments were conducted in accordance with the US National 

Institutes of Health (NIH) Guide for the Care and Use of Laboratory Animals and were approved 

by the Institutional Animal Care and Use Committee at the University of North Carolina at 

Chapel Hill and the National Institute of Environmental Health Sciences. 

 

Myocardial IR injury model 

The LAD coronary artery ligation IR model was utilized to evaluate the impact of 

cardiomyocyte-specific sEH overexpression on ventricular remodeling as described previously 

(Chapter 4). Briefly, the chest cavity was opened to visualize the LAD artery and the artery was 

compressed by tightening a ligature, producing myocardial blanching and electrocardiographic 

S-T segment elevation. After occlusion of the LAD for the desired time (30 minutes; ischemia), 

blood flow was restored by removing the ligature (reperfusion). The chest wall was then closed 

with a prolene or silk suture. Sham surgery mice (control) underwent an identical procedure 

except there was no tightening of ligature.  

At 24 hours following surgery, blood was collected by modified tail-clip technique which 

may reduce stress to mice compared to the use of a restraint device (12). Plasma was then 

separated by centrifugation and stored at -80⁰C for future troponin quantification. 

Mice were euthanized at 2 weeks following IR. Blood was collected through the inferior 

vena cava and plasma was separated by centrifugation, aliquoted, and stored at -80⁰C. Whole 
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hearts were extracted, blotted dry, and, weighed before being fixed for future histological 

analysis. 

A portion of wildtype mice were euthanized at 2 hours or 24 hours following IR. In these 

mice, whole hearts were flash frozen in liquid nitrogen and stored at -80°C for subsequent 

molecular phenotyping after being dissected into LV, right ventricle, and atria upon extraction. 

 

Quantitative real-time PCR 

To determine the impact of myocardial IR on Ephx2 expression in wildtype mice, qPCR 

was performed on LV tissue from the hearts that were stored at -80°C. Briefly, RNA was 

isolated from mouse LV tissue (Qiagen) and reverse transcribed to cDNA (Applied Biosystems). 

Analysis was performed in triplicate using the 7300 Real-Time PCR system (Applied 

Biosystems), as described (13). Expression of myocardial mouse sEH mRNA levels was 

quantified using Taqman Assays on Demand (Applied Biosystems). Data was normalized to 

Gapdh (endogenous reference) and expressed relative to a designated experimental control group 

using the 2-ΔΔCt method (14). 

 

Myocardial necrosis  

Twenty-four hour plasma cardiac troponin I levels were measured by ELISA (Life 

Diagnostics, West Chester, PA), according to the manufacturer instruction, as a biomarker of 

cardiomyocyte necrosis and an early index of infarct size (15). 
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Cardiac structure and function 

Echocardiography on conscious mice was performed at baseline and following IR using a 

Vevo 2100 Imaging System (VisualSonics, Toronto, ON) as previously described (Chapter 4). 

Briefly, M-mode images were traced to measure direct parameters of cardiac structure at baseline 

and 24 hours. The calculated parameters of structure (LV Mass) and systolic function (FS and 

EF) were derived from the direct parameters of structure as well as from LV Vold and LV Vold. 

Pulsed wave Doppler images were traced to measure parameters of systolic, diastolic, and global 

function at baseline and 2 weeks. Heart weight-to-tibia length ratio at 2 weeks was measured as a 

parameter of cardiac size. 

 

Histology 

Fixed hearts were embedded in paraffin, and cut into 5μm transverse sections to measure 

evidence of fibrosis. Specifically, serial interrupted sectioning was performed to the hearts. 

Starting from the apex, the most inferior distance where sections were collected occurred where 

both the left and right ventricle could be visualized. A series of sections (4-6) were collected at 

this distance. The next series of sections were collected at a distance 200 microns superior to the 

previous distance. This was repeated for several distances to cover a large portion of the heart 

where injury was anticipated to occur. For hearts of mice undergoing IR, sections from 8 

distances (spanning 1800 microns from the most inferior distance) were collected per sample. 

For collagen, sections were stained with Picrosirius Red, as described (16). For activated 

myofibroblasts, after being baked at 37⁰C overnight and 60⁰C for 1.5 hours, slides were 

deparaffinized, rehydrated, and blocked for endogenous peroxidase in 3% hydrogen peroxide for 

10 minutes. Sections were then blocked with Rodent Block M (DAKO, Carpinteria, CA) for 
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non-specific binding according to the manufacturer’s protocol. Slides were incubated with mouse 

monoclonal anti-alpha smooth muscle actin (α-SMA) primary antibody (DAKO, Carpinteria, 

CA), diluted 1:400 for two hours at room temperature, followed by Mouse-on-Mouse HRP 

Polymer (Thermo Fisher Scientific, Waltham, MA) for 15 minutes at room temperature. 

Immunoreactivity was visualized by DAB chromogen (Thermo Fisher Scientific). 

For quantification of Picrosirius red stain-derived collagen deposition, digitally scanned 

images of the entire heart section were used to generate staining data using NIH ImageJ 

thresholding technology, as previously described (Chapter 4: Methods, Histology). For anti-α-

SMA stained slides, slides were digitally scanned using ScanScope CS System (Aperio). From 

the digital scans, one 10x zoom image was taken per section of each sample capturing about 1/10 

of the total cross-section. The region that had the most intense anti-α-SMA stain was chosen as 

long there was evidence of collagen deposition based on Picrosirius red stained section from the 

same heart distance. Thresholding ranges were set by averaging the ranges of all samples in a 

representative section for each batch. Imaging and threshold setting was done by an investigator 

blinded to treatment groups. The surface area of staining was normalized to the surface area of 

total myocardial tissue for each section. The resulting % stained value averaged over 8 serial 

sections for each mouse heart generated a single value per mouse that reflected the average 

staining throughout the infarcted region. 

Data were pooled from two independent experiments. In order to control for 

interexperiment variability in the absolute % stain values, values were normalized to the IR 

(wildtype) group within each experiment prior to analysis; thus, the % stain data are presented 

relative to the IR (wildtype) group. 
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Statistical analysis 

Data are expressed as mean±SEM unless stated otherwise. Gene expression, troponin, 

and histology data were log-transformed and compared across experimental groups using one-

way ANOVA followed by Fisher’s LSD post hoc tests (if overall ANOVA was significant). 

Echocardiography data were log-transformed and compared across experimental groups using 

ANCOVA with baseline values set as the covariate followed by Fisher’s LSD post hoc tests (if 

overall ANCOVA was significant). Statistical analyses were performed using SAS 9.2 (SAS 

Institute, Cary, NC). P<0.05 was considered to be statistically significant.  
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Results 

 

Initial characterization of a transgenic mouse model with cardiomyocyte-specific 

overexpression of human sEH driven by the α-myosin heavy chain promoter 

The design of the α-MHC-EPHX2 construct is shown in Figure 5.1a. RNA isolation from 

hearts was done with the RNAeasy Mini kit (Qiagen, Valencia, CA) followed by conversion of 

RNA to cDNA with High Capacity cDNA Archive kit (Applied Biosystems, Foster City, CA). 

Native mouse Ephx2 mRNA levels detected by qPCR were not significantly different between α-

MHC-EPHX2 and wildtype mouse hearts (Figure 5.1b), however total mouse (Ephx2) + human 

(EPHX2) sEH mRNA levels were significantly higher in α-MHC-EPHX2 mouse hearts (Figure 

5.1c). Western blotting confirmed the expression of human sEH in whole heart homogenates 

(Figure 5.1d) isolated from α-MHC-EPHX2 but not in wildtype mice. Immunohistochemical 

staining showed that human isoform was abundantly expressed in cardiomyocytes, but not 

kidney or liver tissue of α-MHC-EPHX2 mice (Figure 5.1e). The heart, kidney, and tissue of 

wildtype mice showed no detection of human sEH isoform (Figure 5.1e).  

Levels of the 14,15-EET:DHET ratio were significantly lower in α-MHC-EPHX2 mice 

compared to wildtype mice (Figure 5.1f), suggesting that sEH metabolic function was 

significantly higher in transgenic mice compared to wildtype mice. An ex vivo sEH activity assay 

confirmed that α-MHC-EPHX2 mouse hearts had markedly increased 14,15-EET hydrolysis 

activity compared to wildtype (Figure 5.1g). 
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Myocardial expression of soluble epoxide hydrolase 

Relative murine Ephx2 mRNA levels were not significantly different between IR-treated 

and sham-treated mice in LV tissue at 2 and 24 hours following surgery (Figure 5.2). 

 

Circulating biomarker of myocardial cell death 

Plasma troponin levels in IR-treated wildtype mice were greater than levels in sham-

treated mice, since levels in sham treated mice were undetectable. There was no significant 

difference (P=0.10) in troponin levels between α-MHC-EPHX2 mice and wildtype mice 

undergoing IR (Figure 5.3). 

 

Echocardiograph indices of cardiac function and structure 

For M-mode image-derived parameters of systolic function, there were no significant 

differences in FS (Figure 5.4a) or EF (Figure 5.4b) across sham-treated wildtype, IR-treated 

wildtype, and IR-treated α-MHC-EPHX2 mice at 1 day following IR. 

For Pulsed Wave Doppler image-derived parameters of systolic function, AET and IVCT 

were not significantly different across sham-treated wildtype, IR-treated wildtype, and IR-treated 

α-MHC-EPHX2 mice at 2 weeks following IR (Table 5.1). 

For Pulsed Wave Doppler image-derived parameters of diastolic and global function, 

there were no significant differences in E/A ratio (Figure 5.5a) across sham-treated wildtype, IR-

treated wildtype, and IR-treated α-MHC-EPHX2 mice at 2 weeks following IR. Likewise, there 

were no significant differences for the individual E-peak velocity and A-peak velocity 

components of the E/A ratio (Table 5.2). IVRT was not significantly different across groups 

(Figure 5.5b). Furthermore, deceleration rate and time of mitral valve blood flow during ventricle 
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relaxation were not significantly different across treatment groups at 2 weeks following IR 

(Table 5.2). Finally MPI, an index of global function derived from IVCT and IVRT was also not 

different across groups. 

For cardiac structure, there were no significant differences in ventricle wall thickness 

(IVS, LVPW) at systole or diastole across sham-treated wildtype, IR-treated wildtype, and IR-

treated α-MHC-EPHX2 mice (Table 5.3) at day 1 (adjusted for baseline), demonstrating no 

evidence of either hypertrophy or myocardial wall thinning in any of the experimental groups. 

Echocardiography-derived LV mass (Table 5.3) at day 1 as well as heart weight/ tibial length at 

2 weeks (6.18 ± 0.24, 5.82 ± 0.35, 6.57 ± 0.60 mg/mm; P = 0.49) were also not different between 

sham-treated wildtype, IR-treated wildtype, and IR-treated α-MHC-EPHX2 mice, respectively. 

Finally, no differences were detected in ventricle diameter (LVIDs or LVIDd) across groups 

(Table 5.3). Collectively these echocardiography results demonstrate that there was no evidence 

of differences in systolic function, diastolic function, and cardiac structure across experimental 

groups. 

 

Myocardial fibrosis 

There was a significant difference in collagen deposition staining across sham-treated 

wildtype, IR-treated wildtype, and IR-treated α-MHC-EPHX2 mice (P<0.01; Figure 5.6a) at 2 

weeks of reperfusion. Pairwise comparisons revealed significantly increased collagen deposition 

in IR-treated wildtype mice compared to sham-treated wildtype mice (P<0.01). Likewise, 

collagen deposition in IR-treated α-MHC-EPHX2 was significantly increased compared to IR-

treated wildtype mice (P=0.02). Finally, collagen was significantly higher in IR-treated α-MHC-

EPHX2 mice compared to sham-treated wildtype mice (P<0.01).  
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The extent of staining for activated myofibroblasts was also significantly different across 

sham-treated wildtype, IR-treated wildtype, and IR-treated α-MHC-EPHX2 mice (P<0.01; 

Figure 5.6b). In post-hoc analyses however, the extent of α-SMA staining in wildtype mouse 

hearts was not significantly increased compared to sham-treated wildtype mice (P=0.09). 

Similarly, staining in IR-treated α-MHC-EPHX2 mouse hearts was not significantly increased 

compared to IR-treated wildtype mice (P=0.08). Although these comparisons were not 

significant, the direction of the effect is consistent with out hypothesis that IR-injury induces 

myofibroblast activity, which is further enhanced in IR-treated α-MHC-EPHX2 mice. 

Furthermore, α-SMA staining was significantly correlated with collagen staining (P<0.01, 

r=0.66). Hearts from IR-treated α-MHC-EPHX2 mice had increased staining compared to sham-

treated wildtype mouse hearts (P<0.01).  
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Discussion 

 

This is the first study to evaluate the direct contribution of cardiomyocyte-sEH 

expression to maladaptive ventricular remodeling following AMI in vivo. We demonstrated that 

transgenic mice with overexpression of human sEH in cardiomyocytes exhibited enhanced 

myocardial collagen deposition compared to wildtype controls following AMI, but did not 

exhibit altered cardiac function or structure. These data indicate increased myocardial sEH 

activity is a key mediator of collagen deposition during early chronic ventricular remodeling 

following IR, and suggest that strategies which reduce myocardial sEH activity may have 

therapeutic utility to prevent or delay the long term consequences (heart failure, sudden cardiac 

death) that are promoted by fibrosis. 

The role of sEH in the development and progression of cardiovascular disease has been 

studied in a variety of preclinical models (17). The expression of sEH is significantly elevated in 

two rat models of angiotensin II-induced hypertension including in the aortic intima (18), the 

hypertrophic heart (19), and renal cortical tissue (20). Importantly, both in vitro and in vivo 

studies revealed that these effects were driven by angiotensin II (18). As an initial step in 

determining the role of sEH in maladaptive ventricular remodeling following AMI, we 

investigated whether myocardial Ephx2 expression is induced by myocardial IR. We found that 

IR did not impact myocardial Ephx2 expression acutely following injury. This suggests that 

acute induction of myocardial sEH is not a pathological response to IR in vivo. That being said, 

we measured sEH expression before, but not during the development of maladaptive ventricular 

remodeling. Future studies investigating the impact of IR on Ephx2 expression at subacute and 
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early chronic points are warranted to fully characterize the impact of IR-induced ventricular 

remodeling on changes in myocardial sEH expression and function. 

Although IR did not acutely alter Ephx2 expression, interindividual variation in 

myocardial sEH expression was previously reported to exist within a group of patients with 

CAD. In particular, EPHX2 expression in the heart biopsies of CAD patients was lower if the 

patient had reduced EF (21). Given the aforementioned evidence demonstrating the 

cardioprotective effects of sEH inhibition putatively mediated by EETs in preclinical models of 

maladaptive ventricular remodeling, these findings allude to the possible presence of a 

compensatory downregulation of myocardial sEH expression in the presence of HFrEF. 

However the direct effects of increasing myocardial sEH expression on IR-evoked maladaptive 

ventricular remodeling have not been studied. Consequently, using α-MHC-EPHX2 transgenic 

mice, we investigated the impact of cardiomyocyte-specific overexpression of human sEH on 

structural (ventricle chamber dilatation and wall thinning), functional (systolic dysfunction, 

diastolic dysfunction), and fibrotic (collagen deposition, myofibroblasts activation) changes 

following IR to determine the direct functional contribution of cardiomyocyte sEH to IR-evoked 

maladaptive ventricular remodeling. Our data collectively demonstrated that overexpression of 

cardiomyocyte sEH resulted in enhanced collagen deposition, but did not impact cardiac 

dysfunction or maladaptive structural changes. 

Previous preclinical studies have investigated the role of sEH in post-IR ventricular 

remodeling. Li et al. showed in a mouse model of 45 minutes of LAD occlusion followed by 3 

weeks of reperfusion, that administration of a sEH inhibitor reduced collagen deposition (8), 

consistent with the current findings in which increasing myocardial sEH activity increased 

myocardial fibrosis. However, unlike the current results, sEH modulation also impacted cardiac 
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function and structure following AMI. In particular, sEH inhibition improved FS as well as 

LVID at diastole (8). The different models of AMI may be the cause for the discrepant findings 

between studies. A longer period of ischemia and reperfusion in the Li et al. study may have 

enhanced the remodeling response and thereby enabled the demonstration of an effect from the 

experimental intervention. Indeed, we show that myocardial IR in a model of AMI with a shorter 

ischemia time (30 minutes) and a shorter reperfusion time (2 weeks) did not result in worsened 

cardiac structure (ventricle chamber dilation, wall thinning) (Chapter 4: Results). This may have 

precluded our ability to determine the impact of sEH overexpression on cardiac structure 

following IR. Likewise, our model did not cause significant cardiac dysfunction (Chapter 4: 

Results) thus limiting our ability to determine the impact of cardiomyocyte sEH on cardiac 

function. An investigation of the impact of cardiomyocyte sEH overexpression in an AMI model 

that produces greater levels of maladaptive remodeling such as a permanent ischemia model or 

an IR model of late maladaptive chronic remodeling (by increasing the length of post-AMI 

reperfusion follow-up) would provide further insight into the role of cardiomyocyte sEH on 

maladaptive ventricular remodeling following AMI. 

The fibrotic response following AMI is known to increase myocardial stiffness, precede 

the impairment of cardiac function, and ultimately lead to the development of heart failure 

progression (22). Thus, it is plausible to postulate that α-MHC-EPHX2 mice have greater systolic 

and diastolic dysfunction in the later chronic stages following IR, compared to wildtype mice, at 

least partially due to enhanced myocardial collagen deposition during early chronic ventricular 

remodeling. However, as mentioned above, this hypothesis has not been investigated and needs 

to be tested. Circulating biomarkers of fibrosis predictive of poor prognosis following AMI 

correlate strongly with cardiac function (23). Furthermore, much remains unknown concerning 
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the precise mechanisms linking fibrosis to cardiac dysfunction following AMI (24). Addressing 

this gap in knowledge would provide clarity on the relevance of an experimental effect that alters 

fibrosis but not cardiac function following AMI. This would be of greatest importance if it is 

ultimately found that cardiomyocyte sEH overexpression does not impact cardiac function in the 

late chronic phase following IR. 

Accumulating evidence, across multiple laboratories and species, has demonstrated that 

EETs abrogate a variety of acute pathophysiological responses following myocardial IR, 

including the reduction of left ventricular infarct size (25). Thus, it is unknown whether the 

observed enhancement of cardiac fibrosis in the presence of cardiomyocyte sEH overexpression 

was independent of infarct size following IR. This is of clinical significance, because an EET-

promoting agent indicated to reduce IR injury would most likely be administered to patients 

during or after, and not prior to, the ischemic phase of an AMI. Overexpression of sEH in our 

transgenic mice did not significantly increase troponin levels, which suggests that the 

significantly enhanced myocardial fibrosis observed in these mice may be independent, at least 

in part, of infarct size in vivo. The impact of sEH overexpression on post-IR infarct size is also 

being investigated currently in an ex vivo model of AMI. Three recent studies have provided 

further insight into this important issue, by demonstrating the impact of sEH inhibition on post-

AMI phenotypes. In one study, a sEH inhibitor was administered immediately following 

permanent LAD occlusion in rats; pharmacologic suppression of sEH attenuated LV ejection 

fraction (systolic function) independent of collagen deposition reduction in the infarct zone 

following 5 weeks of occlusion (26). A second study by a separate group utilized a chronic 

model of overt heart failure in rats (permanent LAD ligation for 50 days), but administered a 

sEH inhibitor at distinct time points after the initial phase of infarct healing: 8 days (42-day sEH 
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inhibitor treatment) or 47 days (3-day inhibitor treatment) following LAD occlusion. It was 

discovered that both regimens improved LV ejection fraction at 50 days; however, only long 

term treatment elicited an improvement in LV end-diastolic pressure (diastolic function) (27). A 

third study in mice utilizing a model of IR injury demonstrated that sEH inhibition administered 

a week following AMI was still able to attenuate chronic collagen deposition measured three 

weeks later (7). Collectively, these studies demonstrate that sEH inhibition improves 

maladaptive ventricular remodeling independent of the aforementioned acute reductions in 

infarct size elicited by EETs. Administration of a sEH inhibitor to α-MHC-EPHX2 mice 

following the acute phase of IR would provide further insight on whether the enhanced fibrosis 

was independent of infarct size, and is an important future direction for this line of investigation. 

It is also important to note that the aforementioned effects in previous studies were not 

reported to be related to blood pressure reduction, suggesting that direct EET action on the heart 

is a likely mechanism of cardioprotection.  However, in addition to cardiomyocytes, the heart is 

also composed of fibroblasts, endothelial cells, and vascular smooth muscle cells (28). Although 

the transgene was only expressed in cardiomyocytes, it is unknown which cell types are most 

important to the observed enhancement of cardiac fibrosis in the transgenic mice. Cardiac 

fibroblasts certainly accelerate fibrosis via secretion of growth factors and cytokines (28). 

Furthermore, fibroblasts are the only cell type that synthesize collagen and are the most abundant 

source of ECM proteins. However, endothelial cells, neutrophils, mast cells, lymphocytes, and 

macrophages are other major sources of ECM proteins (28). Studies have shown that 

pharmacologic inhibition of sEH directly blocks the proliferation, differentiation, migration, and 

secretion capacity of fibroblasts (7, 26). Additionally, substantial evidence indicates that EETs, 

through inhibition of NF-κB activation, attenuate inflammation in endothelial cells and 
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monocytes (29) and mitigate macrophage/neutrophil infiltration in the vasculature (30); however, 

these effects have not been extensively studied in the coronary vasculature following myocardial 

ischemic injury. Kompa et al. demonstrated that sEH inhibition impedes the infiltration of 

macrophages in the peri-infarct region of the myocardium in rats following permanent LAD 

ligation. Intriguingly, sEH inhibition did not reduce macrophage infiltration in the infarct region 

of the myocardium (26). Overall, further studies are necessary to determine the relative 

functional role of myocardial cell-type in EET-mediated cardioprotection. Studies in individual 

cell types isolated from the hearts of the transgenic mice following AMI would elucidate which 

cells are most important in the observed enhancement of fibrosis in these mice. 

Even within a specific cell-type of the heart, there are multiple mediators which promote 

fibrosis along the full cascade of its development, as described (Chapter 4: Introduction). Briefly, 

circulating and resident fibroblasts infiltrate the myocardium in the infarct zone and undergo 

rapid proliferation (mediated by FGF-2) followed by activation into myofibroblasts (largely 

mediated by TGF-β). Subsequently, activated myofibroblasts function to produce ECM proteins 

that ultimately cause scar formation (31). LOX mediates the maturation of scar tissue by cross-

linking collagen fibrils. However, before the maturation of the fibrotic scar and after collagen 

fibers are synthesized further, ECM remodeling can occur as a consequence of mediators such as 

osteopontin, fibronectin, TIMPs, and MMPs that regulate ECM turnover (32). Notably, only 

MMP can degrade collagen (2). In renal tissue, Ephx2 disruption reduced the extent of TGF-β 

signaling, fibronectin, activated myofibroblasts, and collagen deposition (33), suggesting that 

sEH may play a role in fibrosis development along the full spectrum of its pathogenesis. It is 

unknown if the observed changes in myocardial collagen deposition reported in the current study 

are a result of increased collagen synthesis upstream of ECM remodeling, impaired collagen 
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proteolytic degradation during the latter phases, or both. We observed that hearts of IR-treated α-

MHC-EPHX2 mice had increased collagen deposition compared to hearts of IR-treated wildtype 

mice (P<0.01), but did not observe a significant difference in activated myofibroblasts between 

these two groups at 14 days following IR (P=0.08). This suggests that the enhanced collagen 

deposition may be, at least in part, a consequence of reduced ECM degradation in α-MHC-

EPHX2 mouse hearts. Of note, the levels of activated myofibroblasts, TGF-β, and osteopontin in 

the mouse heart may peak at 3 days following IR (34). Future studies which investigate the role 

of cardiomyocyte sEH on the time course of the aforementioned mediators in the infarcted heart 

following IR would elucidate the mechanism by which sEH overexpression caused increased 

collagen deposition. For example, in characterizing the IR model used in this study, we measured 

early myocardial expression of mediators important in fibrosis such as LOX and TGF-β in 

wildtype mice (Chapter 4: Results). These markers should also be measured in future studies 

with the transgenic mice. 

There are some limitations to our transgenic mouse model. First, the model exhibits 

supraphysiological levels of sEH expression in cardiomyocytes. However this was a proof of 

concept study to determine the impact of extreme increases in sEH expression on chronic 

phenotypes following AMI. Furthermore, pharmacological inducers of sEH to elucidate the 

effect of enhanced sEH-derived EET hydrolysis are not available, thus genetic modification 

remains the only method to increase sEH-derived hydrolysis of EETs. Moreover, this genetic 

tool offers the advantage of allowing the determination of the role of cardiomyocyte-specific 

sEH in remodeling. Future work investigating the impact of knocking in EPHX2 Lys55Arg and 

EPHX2 Arg287Gln in mice would increase our understanding of the role of common human 

polymorphisms on myocardial remodeling following AMI. A second limitation is that only one 
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founder mouse line was used across all experiments, thus we cannot rule out whether the 

transgene itself or the location where the transgene is inserted is driving the phenotype. 

However, using one mouse line allowed us to control for variation in the expression level of the 

transgene and thereby enhance reproducibility of the phenotype. Furthermore, Gruzdev et al. 

demonstrated in an ex vivo model of IR that two other founder lines showed nearly identical 

phenotypes (unpublished), highly suggesting that insertional mutagenesis by the transgene is 

unlikely to play a role in the observed ventricular remodeling. 

In summary, mice with cardiomyocyte-specific overexpression of human sEH exhibited 

enhanced IR-induced myocardial collagen deposition in vivo. This suggests that lower cardiac 

EETs may promote fibrosis post-AMI; however, future studies are needed to elucidate the 

molecular mechanisms including the direct implication of EETs in these effects.  
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Figures 

 

 

 

Figure 5.1 Characterization of cardiomyocyte-specific soluble epoxide hydrolase (sEH) 

overexpressing transgenic mice. (a) Schematic of the transgenic construct which contains the 

α-myosin heavy chain (α-MHC) promoter, human sEH isoform coding sequence, and polyA 

sequences. Bar graphs show baseline (b) native murine Ephx2 and (c) total sEH (native Ephx2 + 

transgenic EPHX2) expression in the whole heart. (d) A representative immunoblot of human 

sEH protein levels in the whole heart and β-actin loading control. (e) Representative 

immunohistochemistry staining for human sEH in the heart, kidney, and liver of α-MHC-EPHX2 

mice and wildtype (WT) control. (f) Baseline levels of 14,15-EET:DHET ratio in the whole 

heart. (g) Levels of 14,15-DHET (pg) as a measure of myocardial sEH function in an assay 
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where exogenous 14,15-EET was added to isolated protein in the heart tissue of α-MHC-EPHX2 

mice and WT controls. N = 3-5 per group. * P < 0.05. Figures adapted from Gruzdev et al. 

(unpublished). All characterization of transgenic mice was conducted by the Darryl Zeldin lab. 
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Figure 5.2 Impact of myocardial ischemia reperfusion (IR) on soluble epoxide (sEH) 

expression. Bar graph shows the time course of myocardial IR-induced Ephx2 expression in the 

left ventricle (LV) of wildtype mice. Reference group for relative mRNA levels: sham levels at 

24 hours. Sham: n = 3 per group. IR: n = 5 per group. * P < 0.05 for sham vs IR at each time 

point.  
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Figure 5.3 Impact of cardiomyocyte sEH overexpression on myocardial necrosis. Plasma 

troponin levels at 24 hours following ischemia reperfusion (IR) in sham-treated wildtype (WT), 

IR-treated WT, and IR-treated α-myosin heavy chain- (α-MHC)-EPHX2 mice. IR: n = 17-19 per 

group. Sham: n = 8. * P < 0.05 for IR-treated WT versus IR-treated α-MHC-EPHX2. 
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Figure 5.4 Impact of cardiomyocyte soluble epoxide hydrolase (sEH) overexpression on M-

mode image-derived parameters of systolic function. Bar graphs show (a) ejection fraction 

(EF) and (b) fractional shortening (FS) at 1 day following ischemia reperfusion (IR) in sham-

treated wildtype (WT), IR-treated WT, and IR-treated α-myosin heavy chain- (α-MHC)-EPHX2 

mice. Comparisons across groups were conducted at 1 day using ANCOVA with baseline as the 

covariate. IR: n = 17-19 per group. Sham: n = 9.  
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Figure 5.5 Impact of cardiomyocyte soluble epoxide hydrolase (sEH) overexpression on 

diastolic function. Bar graphs show (a) E-wave to A-wave (E/A) ratio and (b) isovolumic 

relaxation time (IVRT) at 2 weeks following ischemia reperfusion (IR) in sham-treated wildtype 

(WT), IR-treated WT, and IR-treated α-myosin heavy chain- (α-MHC)-EPHX2 mice. 

Comparisons across groups were conducted at 2 weeks using ANCOVA with baseline as the 

covariate. n = 7-9 per group.  
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Figure 5.6 Impact of cardiomyocyte soluble epoxide hydrolase (sEH) overexpression on 

fibrosis. (a) Representative 1X images and (b) quantification of Picrosirius Red-stained collagen 

deposition as well as (c) representative 10X images and (d) quantification of anti-α-smooth 

muscle actin- (α-SMA)-stained myofibroblast activation at 2 weeks following ischemia 

reperfusion (IR) in sham-treated wildtype (WT), IR-treated WT, and IR-treated α-myosin heavy 

chain- (α-MHC)-EPHX2 mice. Staining was completed on 8 serial-interrupted heart sections, 

quantified in each sectin, and then averaged across the 8 sections in each mouse. Data are 

expressed relative to the IR-treated WT group. Each set of representative images has a different 

scale. Sham: n = 6. IR: n = 14-15 per group. * P < 0.05 for Fisher’s LSD post hoc test 
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Table 5.1 Impact of cardiomyocyte soluble epoxide hydrolase (sEH) overexpression on Pulsed 

Wave Doppler image-derived parameters of systolic function following ischemia-reperfusion 

(IR) injury. 

 

Parameters   Baseline  2 weeks   P 

Isovolumic contraction time (IVCT), ms 

 sham (wildtype)  11.0 ± 0.9  16.1 ± 2.0  0.55 

 IR (wildtype)  12.2 ± 1.0  13.3 ± 1.5 

 IR (α-MHC-EPHX2) 11.0 ± 2.7  14.0 ± 1.7 

Aortic ejection time (AET), ms 

 sham (wildtype)  29.8 ± 2.0  34.1 ± 1.2  0.49 

 IR (wildtype)  28.4 ± 1.8  36.7 ± 1.6 

 IR (α-MHC-EPHX2) 32.3 ± 2.0  33.8 ± 1.8 

Comparisons across groups were conducted at 2 weeks using ANCOVA with baseline as the covariate. n = 7-9 per 

group. * P < 0.05 (ANCOVA). 

α-MHC, α-myosin heavy chain  
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Table 5.2 Impact of cardiomyocyte soluble epoxide hydrolase (sEH) overexpression on Pulsed 

Wave Doppler image-derived parameters of diastolic and global function following ischemia-

reperfusion (IR) injury. 
 

Parameters   Baseline  2 weeks   P 

Early-peak velocity (E), mm/s 

 sham (wildtype)  441.4 ± 39.8  579.9 ± 49.9  0.77 

 IR (wildtype)  457.4 ± 36.5  585.5 ± 64.0 

 IR (α-MHC-EPHX2) 488.8 ± 50.8  528.5 ± 51.8 

Atrial-peak velocity (A), mm/s 

 sham (wildtype)  341.7 ± 33.2  402.3 ± 44.6  0.46  

 IR (wildtype)  356.8 ± 25.1  397.7 ± 45.5 

 IR (α-MHC-EPHX2) 353.6 ± 49.8  337.8 ± 33.0 

Deceleration (Dt), ms 

 sham (wildtype)  24.2 ± 2.8  21.9 ± 2.1  0.61 

 IR (wildtype)  27.7 ± 2.9  21.5 ± 2.4 

 IR (α-MHC-EPHX2) 21.8 ± 4.2  18.7 ± 1.8 

Deceleration (Dr), mm/s2 

 sham (wildtype)  -19.2 ± 2.1  -27.6 ± 3.8  0.96 

 IR (wildtype)  -18.9 ± 3.2  -28.2 ± 5.3 

 IR (α-MHC-EPHX2) -26.5 ± 5.0  -26.3 ± 2.3 

Myocardial performance index (MPI), ratio 

 sham (wildtype)  1.0 ± 0.1  0.9 ± 0.1  0.54  

 IR (wildtype)  1.1 ± 0.1  0.8 ± 0.1 

 IR (α-MHC-EPHX2) 0.8 ± 0.1  0.9 ± 0.1 

Comparisons across groups were conducted at 2 weeks using ANCOVA with baseline as the covariate. n = 7-9 per 

group. * P < 0.05 (ANCOVA). 

α-MHC, α-myosin heavy chain  
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Table 5.3 Impact of cardiomyocyte soluble epoxide hydrolase (sEH) overexpression on cardiac 

structure following ischemia-reperfusion (IR) injury. 

 

Parameters   Baseline  1 day   P 

LVID, systolic (mm) 

 sham (wildtype)  1.51 ± 0.10  1.94 ± 0.08  0.86 

 IR (wildtype)  1.69 ± 0.10  2.07 ± 0.13 

 IR (α-MHC-EPHX2) 1.52 ± 0.08  1.94 ± 0.13 

LVID, diastolic (mm) 

 sham (wildtype)  2.92 ± 0.10  3.24 ± 0.10  0.57 

 IR (wildtype)  3.05 ± 0.10  3.14 ± 0.10 

 IR (α-MHC-EPHX2) 2.90 ± 0.07  3.07 ± 0.10 

IVS, systolic (mm) 

 sham (wildtype)  1.85 ± 0.04  1.68 ± 0.05  0.12 

 IR (wildtype)  1.64 ± 0.04  1.48 ± 0.07 

 IR (α-MHC-EPHX2) 1.79 ± 0.04  1.70 ± 0.08 

IVS, diastolic (mm) 

 sham (wildtype)  1.24 ± 0.05  1.14 ± 0.04  0.06 

 IR (wildtype)  1.09 ± 0.03  1.09 ± 0.04 

 IR (α-MHC-EPHX2) 1.18 ± 0.04  1.26 ± 0.06 

LVPW, systolic (mm) 

 sham (wildtype)  1.78 ± 0.07  1.57 ± 0.05  0.75 

 IR (wildtype)  1.76 ± 0.04  1.51 ± 0.08 

 IR (α-MHC-EPHX2) 1.81 ± 0.07  1.55 ± 0.07 

LVPW, diastolic (mm) 

 sham (wildtype)  1.16 ± 0.04  1.13 ± 0.05  0.37 

 IR (wildtype)  1.08 ± 0.03  1.03 ± 0.04 

 IR (α-MHC-EPHX2) 1.13 ± 0.04  1.09 ± 0.05 

Echocardiography-derived LV mass corrected (mg) 

 sham (wildtype)  106.04 ± 4.68  113.33 ± 5.77  0.10 

 IR (wildtype)  95.86 ± 3.46  97.23 ± 4.32 

 IR (α-MHC-EPHX2) 98.97 ± 4.24  111.15 ± 6.35 

Comparisons across groups were conducted at 1 day using ANCOVA with baseline as the covariate. IR: n = 17-19 

per group. Sham: n = 8. * P < 0.05 (ANCOVA) 

IVS, interventricular septum; LV, left ventricle; LVID, left ventricular internal diameter; LVPW, left ventricular 

posterior wall  
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CHAPTER 6 - DISCUSSION AND PERSPECTIVE 

 

Summary and Scope 

 

Despite advances in evidence-based medical therapies, CVD has been the leading cause 

of death for over a century and its prevalence is expected to continue to rise tremendously. Most 

notably, CAD, which includes AMI and stable angina, is the primary source of this public health 

burden causing almost half of all CVD deaths. Heart failure, a key clinical outcome of CAD, is 

also a major source of the health burden (1). Recent failures in CAD drug development suggest 

that innovative approaches are needed to mitigate increasing attrition rates and more successfully 

translate novel therapies into clinical practice (2-4). Biomarkers offer considerable promise to 

prospectively identify subsets of CAD patients at high risk of experiencing a cardiovascular 

event that exhibit dysfunction in a specific pathway (putative responders), consequently enabling 

novel therapies that target the pathway to maximize their therapeutic effect and improve 

outcomes. A more thorough understanding of the mechanisms underlying the pathophysiology of 

CAD is necessary to facilitate the development of biomarkers and novel therapeutic strategies 

that ultimately prevent AMI events, delay the development of heart failure, and improve public 

health outcomes. 

CAD is a complex disease involving the development of atherosclerosis along the walls 

of the coronary arteries as well as the formation of an intracoronary thrombus from a ruptured 

atheromatous plaque leading to an ACS (5). Myocardial cell death from an AMI promotes 
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maladaptive ventricular remodeling which leads to the development of heart failure (6). EETs 

yields potent cardiovascular protective effects in preclinical models of cardiovascular disease, 

which suggests that increasing EET levels may be a viable therapeutic strategy for CAD, AMI, 

post-AMI ventricular remodeling (7). Key questions, however, remain to be addressed prior to 

translation of therapeutic EET-promoting strategies into successful proof-of-concept phase I and 

II clinical trials (Appendix B). Thus, the overall aim of this dissertation was to advance our 

understanding of the role of the EET metabolic pathway across the full spectrum of CAD and 

post-AMI consequences as a means to determine the biological and therapeutic importance of 

EETs in the progression of this disease cascade. To accomplish this, we have taken a 

translational approach integrating both preclinical and clinical studies to evaluate the 

contribution of the EET metabolic pathway across the full spectrum of CAD. The major findings 

of this work include 1) the discovery that obstructive CAD is significantly and independently 

associated with lower circulating EET levels secondary to suppressed EET biosynthesis, 2) the 

preliminary, hypothesis-generating observation that EPHX2 Lys55Arg may be associated with 

poor prognosis following AMI, and 3) a demonstration of the key contribution of cardiomyocyte-

derived sEH to the development of fibrosis following AMI. Overall, these results demonstrate 

that the EET metabolic pathway may play a role in the pathophysiology of CAD and its 

associated complications including the development of coronary atherosclerosis, post-AMI early 

ventricular remodeling, and post-AMI mortality. Collectively, these data help to set the 

foundation for future clinical research in this area, including the rational design of prospective, 

biomarker-guided interventional studies in targeted subsets of the CAD population with enriched 

potential to derive clinical benefit from emerging EET-promoting therapies.  
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Key Findings 

 

The clinical course of CAD is always initiated by the development of an atheroma in the 

lumen of the coronary artery and progresses from stable angina to AMI to heart failure to death  

(5). The overall aim of this dissertation was to advance our understanding of the role of the EET 

metabolic pathway across this full spectrum of CAD and post-AMI. 

In Aim 1, we advanced our understanding of the role of the EET pathway in the earlier 

stages of this full CAD spectrum. Namely, we recruited a cohort of patients referred for coronary 

angiography; subjects were at varying stages of atherosclerotic-driven coronary artery stenosis 

where the majority of patients did not have a prior AMI (85%), were not suffering from an AMI 

at the index hospitalization (91%), and did not have a history of heart failure (87%). In order to 

elucidate the relationship between EET levels and the extent of CAD, we utilized a targeted 

metabolomics approach where we quantified a panel of eicosanoids in the participants. This is 

the largest study to date that quantifies EET levels in patients with or at risk for CVD. 

We observed that the presence of atherosclerotic obstructive CAD was significantly 

associated with lower circulating EET levels. It is well established that patients with obstructive 

CAD are at the greatest risk of adverse CV outcomes compared to patients with less extensive 

CAD (8). These findings suggest that CYP-derived EETs may play an important role in the 

pathogenesis and progression of CAD in humans. Validation of the observed relationships in an 

independent cohort is necessary. 

However, other eicosanoids derived from COX, LO, and CYP also play a role in 

cardiovascular disease (7, 9-11). Nevertheless, the association between EETs and CAD was 

significantly more pronounced than other eicosanoid metabolism pathways, further 
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demonstrating an important role for these lipid mediators in the pathophysiology of CAD. 

Although the panel of eicosanoids included 28 metabolites which were derived from various 

biosynthetic enzymes and fatty acid substrates, several other fatty acid metabolites including 

leukotrienes, resolvins, and protectins were not on the panel. Furthermore, it is unknown if 

changes in the levels the parent substrates themselves such as arachidonic acid impacted the 

relationship between EETs and CAD extent. The relative strength of the EET-CAD association 

compared to these other potent mediators is a future area of investigation. 

CAD extent was also associated with lower sum EETs+DHETs (a biomarker of CYP 

epoxygenase-derived EET biosynthesis) as an inverse association, but not EET:DHET ratio (a 

biomarker of sEH-derived EET hydrolysis). These data suggest that the association between EET 

levels and CAD extent may be mediated by suppression of EET synthesis and not an increase in 

EET hydrolysis. Accordingly, it is well-established that inflammatory stimuli suppress CYP-

mediated xenobiotic metabolism through a variety of mechanisms, including cytokine-mediated 

transcriptional downregulation of CYP expression (12); fittingly, inflammatory stimuli also drive 

the development and progression of CAD (13). These findings suggest that suppression of CYP-

mediated EET biosynthesis may be a key pathological consequence of the inflammation-

mediated development and progression of CAD. Future studies are necessary to elucidate the 

mechanisms underlying the association between lower EET levels and advanced CAD in 

humans. 

In a secondary analysis of the coronary angiography patients, we explored the 

relationship between inter-individual variation in EET metabolite levels and risk of a future 

adverse cardiovascular event exclusively in patients with obstructive CAD at baseline. We 

observed a stepwise relationship across the EET tertiles where the highest event incidence 
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occurred in those with the lowest EET levels at baseline. Although this relationship was not 

statistically significant and should be observed with caution due to the small number of events, 

these findings are biologically plausible considering the anti-inflammatory and protective effects 

of EETs in numerous preclinical models of cardiovascular disease.  

Altogether, these findings demonstrated that patients with obstructive CAD are 

predisposed to low EET metabolite levels secondary to suppressed EET biosynthesis, and 

suggest that novel strategies that promote the effects of EETs may have therapeutic promise in 

patients with obstructive CAD. Further investigation in needed to determine relationship between 

the EET metabolic pathway and prognosis in patients with established CAD. Indeed, 

nonobstructive lesions have thinner fibrous caps and are more vulnerable to rupture (5), thus a 

strong relationship between EETs and CAD extent may not equate to a correlation between EETs 

and adverse CV events. 

Although sEH-derived EET hydrolysis was not associated with CAD extent suggesting 

that sEH may not play a role in CAD progression, preclinical and genetic observational studies 

have demonstrated a potential link between sEH and the complications of CAD such as AMI. In 

Aim 2, we advanced our understanding of the role of the EET metabolic pathway in prognosis 

following AMI (later in the clinical course of CAD compared to Aim 1). In particular, using a 

candidate gene approach, we determined the relationship between the EPHX2 p.Lys55Arg 

polymorphism and survival two independent cohorts of AMI patients. INFORM is a 2-center 

cohort of ACS patients with full 5-year mortality data available and TRIUMPH is a 24-center, 

racially-diverse population of AMI patients. We observed that EPHX2 Lys55Arg was associated 

with 5-year mortality following AMI in INFORM, but we were not able to replicate this finding 

in TRIUMPH. Notably, TRIUMPH only had full 2-year mortality data available. Thus, an 
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important issue in this study is the lack of statistical power that may have limited our ability to 

detect differences in TRIUMPH. A repeat analysis when full 5-year mortality data are available 

is necessary to rule out the possibility that lack of sufficient power prevented the INFORM 

results from being replicated in TRIUMPH. Futhermore, considering the impact of CYP-derived 

EET biosynthesis in the inititation and progression of coronary atherosclerosis in Aim 1, the 

association between SNPs in genes encoding for CYP epoxygenase and survival following AMI 

is necessary to fully understand the EET metabolic pathway in post-AMI mortality. 

We investigated mortality in our candidate gene study, because it is an important 

endpoint following AMI; however, maladaptive ventricular remodeling is the key 

pathophysiological process that ultimately drives the progression to heart failure and death 

following AMI (14). Consistent with the overall aim of this translational project to better 

understand the role of the EET metabolic pathway in CAD and its associated complications, we 

used a genetic manipulation approach (Aim 3) to investigate the role of myocardial sEH in 

maladaptive ventricular remodeling post-IR in vivo using a transgenic mouse line with 

cardiomyocyte-specific overexpression of human sEH. However, there are surprising few studies 

that characterize the early maladaptive ventricular remodeling response following IR in mice. A 

more thorough understanding of the pathophysiology of myocardial remodeling following AMI 

in mice will facilitate the design of experimental studies that elucidate the role of therapeutic 

pathways in the disease. Consequently, we first characterized the impact of IR injury (30-minute 

of myocardial ischemia followed by 2 weeks of reperfusion) in mice in vivo. We observed that 

IR induced transient but marked myocardial cell death and inflammation acutely following IR 

and generated substantial fibrosis at an early chronic time point. New approaches are needed to 
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better discriminate between adaptive and maladaptive fibrosis. This is an important future area of 

investigation because novel therapies that attenuate adaptive fibrosis would be deleterious. 

In contrast to induction of myocardial fibrosis, IR did not produce significant changes in 

myocardial structure, systolic function, or diastolic function in early chronic remodeling. This 

finding is in line with data suggesting that the fibrotic response following AMI precedes the 

impairment of cardiac function and structure (15). A future investigation evaluating the impact of 

30-minute myocardial IR in mice on cardiac structure and function at a late chronic time point is 

warranted. 

Altogether, we found that our in vivo mouse model was best suited for investigating the 

impact of intervention fibrotic responses in early chronic myocardial remodeling independent of 

cardiac structure or function. These findings set the foundation for the evaluation of the 

contribution of cardiomyocyte sEH to maladaptive ventricular remodeling in mice post-AMI. We 

discovered that cardiomyocyte-specific overexpression of human sEH exhibited enhanced IR-

induced myocardial collagen deposition during early chronic ventricular remodeling following 

IR. Although, this suggests that myocardial sEH activity is a key mediator of collagen 

deposition, it is unknown whether the observed enhancement of cardiac fibrosis in the presence 

of cardiomyocyte sEH overexpression was independent of infarct size following IR. A few 

studies have shined light on this question, reporting evidence that this effect is independent of 

changes to infarct size (16-18). Administration of a sEH inhibitor to α-MHC-EPHX2 mice 

following the acute phase of IR would provide insight on whether the enhanced fibrosis was 

independent of infarct size, and is an important future direction for this line of investigation. 

Furthermore, it is unknown if the observed changes in myocardial collagen deposition are a 

result of increased collagen synthesis, impaired collagen proteolytic degradation, or both. Our 
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findings suggest that the enhanced collagen deposition may be, at least in part, a consequence of 

reduced ECM degradation in α-MHC-EPHX2 mouse hearts. Future studies which investigate the 

role of cardiomyocyte sEH on the time course of the aforementioned mediators in the infarcted 

heart following IR would elucidate the mechanism by which sEH overexpression caused 

increased collagen deposition. 

In contrast, cardiomyocyte-specific overexpression did not alter systolic function, 

diastolic function, or cardiac structure in early ventricular remodeling. Based on the results of 

our studies characterizing the in vivo IR model in which IR did not produce functional 

impairment or structural damage, it was not surprising that the transgenic mice did not exhibit 

altered structure or function following IR. Fibrosis inevitably leads to some degree of systolic or 

diastolic dysfunction (15), so the relevance of an intervention that never impacts cardiac function 

is unknown. An investigation of the impact of cardiomyocyte sEH overexpression in an AMI 

model that produces greater levels of maladaptive remodeling such as a PO model or an IR 

model of late chronic remodeling would provide further insight into the role of cardiomyocyte 

sEH on cardiac function and structure following AMI. 

Overall, this is the first study to investigate the impact of cardiomyocyte sEH on 

maladaptive ventricular remodeling following AMI. This work opens the door for future studies 

investigating the role of cardiomyocyte-derived sEH in the development of heart disease. The 

direct implication of EETs in this observation is needed to establish that lower cardiac EETs 

promote fibrosis post-AMI. 

Thus, we demonstrated that the EET metabolic pathway may play a role in the 

pathophysiology of CAD and its associated complications including the development of 

coronary atherosclerosis (Aim 1; clinical), post-AMI mortality (Aim 2; clinical), and post-AMI 
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early ventricular remodeling (Aim 3; clinical). In Aim 1, we showed that obstructive CAD is 

strongly associated with lower plasma EETs, thereby identifying a potential subset of the CAD 

population that may be at greater risk of a more aggressive disease course. In Aim 2, we showed 

that a functionally relevant polymorphism associated with increased EET hydrolysis may be 

associated with increased mortality following AMI. In Aim 3, we showed in a mouse model of 

IR-induced maladaptive ventricular remodeling (a key consequence of CAD) that 

cardiomyocyte-specific overexpression of human sEH and putative reduction in cardiac EETs 

enhances collagen deposition. Collectively, these data provide evidence that lower EETs may 

promote deleterious consequences in CAD and post-AMI, and in turn suggest that promoting the 

effects of EETs may have therapeutic utility in CAD and AMI patients predisposed to low 

circulating EET levels. Furthermore, plasma EETs levels or EPHX2 Lys55Arg genotype may be 

promising biomarkers that detect which CAD patients may derive the greatest benefit from EET-

promoting agents. 
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Clinical Implications 

 

Despite advances in evidence-based medical therapies, CAD remains a leading cause of 

mortality in the US (1) and novel therapeutic strategies are needed to further improve outcomes. 

A series of recent failures in CAD drug development suggest that innovative approaches are 

needed to reduce high attrition rates and more successfully translate novel therapies into clinical 

practice (2-4). Compared to the conventional ‘one-size fits all’ methodology to drug 

development, a precision medicine approach has the potential to facilitate the development of 

novel therapeutics candidates and increase the probability of success for these therapies (19). 

This approach prospectively identifies subsets of patients that exhibit dysfunction in a specific 

pathway (putative responders), thereby enabling novel or existing therapies that target the 

pathway to maximize their therapeutic effect and improve outcomes. This approach has shown 

great clinical success in cancer, and is promising in several areas of CVD (Appendix A). 

Importantly, the discovery of biomarkers involved in the pathogenesis of CAD is needed to 

identify subsets of high-risk patients who would derive the greatest benefit from therapies that 

modulate that pathway (20, 21). 

Our study in CAD patients referred for angiography demonstrates that obstructive CAD 

is strongly associated with lower EETs and thereby identifies a subset of the CAD population 

that may be at greater risk. We also showed, in a mouse model of IR-induced maladaptive 

ventricular remodeling (a key consequence of CAD), that cardiomyocyte-specific overexpression 

of human sEH and putative reduction in cardiac EETs enhances collagen deposition. This further 

suggests that lower EETs may promote deleterious consequences post-AMI. Collectively, these 

data provide evidence that promoting the effects of EETs may have therapeutic utility in CAD 
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and AMI patients predisposed to low circulating EET levels. Furthermore, EET levels may be a 

promising biomarker that detects the CAD patients at highest risk of adverse outcomes that may 

derive the greatest benefit from EET-promoting agents. 

Notably, numerous sEH inhibitors have been discovered by drug companies and an 

academic group. Many of these agents have properties favorable to further drug development 

(22). One agent that has shown promise in rodent studies (23) is being developed for chronic 

obstructive pulmonary disease (COPD) in clinical trials (NCT01762774, NCT02006537). In 

addition, EET mimics are being optimized in the early discovery stage into candidates which 

may also show promise in further preclinical studies (24). In parallel, tools for the high-

throughput quantification of CYP-derived eicosanoids in humans are advancing, showing 

promise as a feasible biomarker that can be measured in the clinical setting (25). Thus, the 

technology is in place for the successful development of EET-promoting therapies. 

The findings from this dissertation contribute to the science evaluating the therapeutic 

utility of EET-promoting agents, thereby complimenting the aforementioned advances which 

have improved the profile of drug candidates and the efficiency of the quantification of EET 

metabolic pathway biomarkers. Follow-up preclinical studies elucidating underlying mechanisms 

and follow-up clinical studies which validate our findings across the full spectrum of CAD are 

still needed before this work can truly advance the field; however, positive follow-up results will 

set the foundation for the rational design of prospective, biomarker-guided interventional studies 

in targeted subsets of the CAD population (low EET levels) with enriched potential to derive 

clinical benefit from emerging EET-promoting therapies.  
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Conclusions 

In conclusion, we found that obstructive CAD is significantly and independently 

associated with lower circulating EET levels secondary to suppressed EET biosynthesis using a 

targeted metabolomics approach. In addition, using a candidate gene approach, we observed that 

EPHX2 p.Lys55Arg may be associated with mortality in the AMI subset of an ACS population. 

This paves the way for a validation study in an independent population with full 5-year mortality 

available to substantiate these preliminary findings. Moreover, we characterized a mouse model 

of IR injury-induce maladaptive ventricular remodeling, showing its effect on myocardial cell 

death, inflammation, and collagen induction. This allowed us to ultimately demonstrate that mice 

with cardiomyocyte-specific overexpression of human sEH exhibited enhanced IR-induced 

myocardial collagen deposition. Overall, this dissertation used both pre-clinical and human 

studies to provide insight into the role of the EET metabolic pathway in the pathophysiology of 

CAD and its associated complications. We show that alterations in the EET metabolic pathway 

which are predicted to reduce EET levels may promote the development of coronary 

atherosclerosis, post-AMI early ventricular remodeling, and post-AMI mortality. Collectively, 

this work sets the stage for future studies that investigate the therapeutic utility of modulating 

EETs in CAD patients.  
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APPENDIX A - PHARMACOGENOMICS IN HEART FAILURE: WHERE ARE WE 

NOW AND HOW CAN WE REACH CLINICAL APPLICATION1 

 

Introduction 

 

Heart failure has reached epidemic proportions. Approximately 5 million adults have 

heart failure in the United States with recent projections suggesting that by 2030, the prevalence 

of this syndrome will increase another 25%. (1) Thus, heart failure has tremendous impact on the 

health care system and constitutes a major medical and societal burden. Heart failure is 

characterized by insufficient cardiac performance to meet metabolic requirements or 

accommodate systemic venous return. (2) The body’s neurohormonal system including the renin-

angiotensin-aldosterone system (RAAS) and the sympathetic nervous system (SNS) is activated 

in order to compensate for these deficiencies (2) but activation of these systems contribute to 

worsening heart failure, worsened quality of life, and poor outcomes such as the need for a heart 

transplant, or sudden cardiac death.  (3) Evidence-based medical therapies that suppress these 

responses can substantially reduce the progression of this syndrome. (4-6) Accordingly, 

comprehensive heart failure management guidelines from both the American College of 

Cardiology (ACC)/American Heart Association (AHA) and the Heart Failure Society of America 

(HFSA) recommend specific pharmacological management, mostly focused on neurohormonal 

suppression, to improve outcomes in all patients with heart failure and reduced ejection fraction. 

(7, 8) β blockers and angiotensin converting enzyme (ACE)-inhibitors are considered the 

foundation, but evidence has shown important roles for other therapies which help delay 

progression of heart failure and reduce mortality including angiotensin receptor blockers 

                                                 
1Oni-Orisan, A. & Lanfear, D.E. Pharmacogenomics in heart failure: where are we now and how can we reach 

clinical application? Cardiol Rev  22, 193-8 (2014). 
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(ARB)s, aldosterone antagonists, hydralazine/isosorbide combination, and even device therapies 

such as implanted defibrillators and cardiac resynchronization therapy (CRT). (7, 8) In addition, 

while there is no evidence for mortality benefits with loop diuretics and digoxin, these agents are 

indispensable, improving symptoms and possibly reducing hospitalizations. (9, 10) It is thus 

evident that heart failure patients are currently subjected to a multiplicity of medications to 

achieve maximum benefit and optimized outcomes. This polypharmacy in health failure patients 

is associated with increased risk of toxicity, drug interactions, and poor compliance. (11) Current 

guidelines do offer some advice regarding tailoring of therapy on clinical grounds; for example, 

the HFSA guidelines recommend that factors such as age, ethnicity, heart failure severity, renal 

function, and serum potassium should be used to choose which of the many agents a heart failure 

patient should receive in his or her regimen. (7) However, even in patients who appear to have 

similar clinical factors, a great deal of variability exists in response to treatment. (12) Genetic 

variability in response to heart failure treatment exists (13) and genetic information may 

complement conventional clinical information in tailoring therapy to an individual patient, 

ultimately improving outcomes. The present review focuses on available data from 

pharmacogenomic studies in heart failure medications, particularly focusing on new 

developments over the past 2 years (earlier literature has been nicely described elsewhere (14, 

15)), summarized by medication class. Proof-of-principle findings are presented that are 

important to be aware of, but actionable genetic testing to guide therapeutic choices in heart 

failure remains limited to date. Thus, the review also shows that further work in this area is 

needed before the clinical implementation of heart failure pharmacogenomics becomes a reality, 

and we provide a glimpse of the future needs and directions. 
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Beta adrenergic antagonists 

 

The role of the adrenergic signaling pathway of the SNS in heart failure is characterized 

by a vicious cycle in which chronic stimulation of the adrenergic receptor (AR) by circulating 

catecholamines norepinephrine (NE) and epinephrine promotes cardiac dysfunction that results 

in the release of more adrenergic-stimulating catecholamines and further disease progression. 

(16) While the sub-cellular mechanism of action is not completely elucidated, it is clear that β 

blockers work by suppression of the adrenergic pathway and interruption of this vicious cycle. 

(17) Due to evidence of survival benefit, β blockers have been a mainstay of heart failure 

pharmacotherapy for almost 20 years. (18-20) However, there is great variation in response to β 

blocker therapy including certain subsets of the heart failure population that do not receive the 

same mortality and morbidity benefit. (21, 22) SNPs in the β1-AR (ADRB1), β2-AR (ADRB2), 

α2C AR (ADRA2C), and G-protein receptor kinase 5 (GRK5) genes of the adrenergic system 

may partially explain the variable effects received from β blockade.  In fact, most of the 

published pharmacogenomic literature over the past 2 years concerning heart failure has focused 

on response to β blockers; thus we have given it first and most attention among the drug classes 

of interest. 

β1-AR is the primary pharmacologic target of β blockers. One of the most widely-studied 

polymorphisms for heart failure in ADRB1 is the Arg389Gly variant. Arg389 is associated with 

enhanced adrenergic response to agonist stimulation of β1-AR in vitro (23) and in vivo(24). 

Importantly, in a genetic substudy of the β Blocker Evaluation of Survival Trial (BEST), a 

relationship between β1 genotype and mortality response to treatment with the β blocker 

bucindolol was found.(25) BEST was a large, randomized, clinical trial testing the efficacy of 
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bucindolol in heart failure patients. (26) The trial was terminated prematurely at 2 years due to a 

lack of mortality benefit, though bucindolol significantly improved mortality in the non-black 

subset (~75% of the patients).(26) As a result of clinical failure in the overall population, 

bucindolol was never approved by the FDA for the treatment of heart failure. Notably, 

bucindolol also acts as a potent sympatholytic in addition to its β blocking properties, reducing 

circulating NE levels to a much greater extent than the β blockers FDA-approved for heart 

failure (e.g. carvedilol and metoprolol succinate).(27) This distinct property of bucindolol may 

have reduced NE to deleteriously low levels thereby abrogating cardiac contractility and 

negating any beneficial effects realized through β blockade.(25) In the genetic substudy, Arg389 

homozygotes were found to have a 34% mortality benefit from bucindolol. (25) A greater 

survival rate in patients with this genotype was found when NE levels did not decrease compared 

to baseline, suggesting that an enhanced β blockade affect rather than protection from 

exaggerated sympatholysis may be responsible for reduced mortality in this population. In 

contrast, no clinical benefit was observed in carriers of the Gly389 variant. (25) These results 

were backed up by ex vivo and cell data which also showed that enhanced bucindolol response 

was associated with Arg389. (25) In addition, the results may explain racial differences in 

bucindolol efficacy, as blacks were less likely to carry Arg389 compared to non-blacks. (25) 

However the relatively small difference in allele frequencies between racial groups (0.62 in 

blacks, 0.73 in non-blacks)(25) and contradictory clinical trial data that do not show variation in 

response to β blocker therapy across race(28), suggest that Arg389 does not sufficiently explain 

racial disparities in bucindolol response. 

In addition to the Arg389Gly polymorphism, a variant at codon 49 also has been found to 

influence drug response and clinical adverse outcomes in heart failure patients. Specifically in a 
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population of patients with idiopathic dilated cardiomyopathy, Ser49 homozygotes had worsened 

prognosis (death or cardiac transplantation) compared to Gly49 carriers. (29) This association 

remained present among patients who received β blocker therapy (~39% of the population), 

though the specific β blocker drug patients were taking was not specified. (29) These data were 

supported by mechanistic follow-up studies where cells transfected with Gly49 had increased 

sensitivity to metoprolol as well as enhanced catecholamine-induced β1-AR desensitization, 

which is considered a protective response to heart failure progression. (30)  An expanded clinical 

follow-up confirmed that Gly49 carriers had better survival compared to Ser49 homozygotes, 

suggesting that higher β blocker doses may be warranted in Ser49Ser patients to achieve optimal 

survival response. (31)  

ADRB2 has a role in adrenergic signaling in parallel with ADRB1. Indeed, clinical trial 

data from the COMET trial and experimental evidence both suggest that antagonism of β2 AR is 

at least partially responsible for beneficial effects of carvedilol in heart failure. (32, 33) ADRB2 

genotype may be important in heart failure pathophysiology and response to β blocker therapy. 

Kaye et al. were able to show that among heart failure patients receiving carvedilol, the 

proportion of patients with a favorable EF response to therapy (≥10% improvement in absolute 

LVEF or ≥5% improvement in absolute FS) was significantly higher in Glu27 carriers compared 

to Gln27 homozygous patients(34).  These findings were validated in a larger population.(35)  

Moreover, this effect has been replicated in terms of survival in several subsequent studies. (36-

38)  For example, in a well-treated cohort of advanced heart failure patients (81% were receiving 

β blockers), individuals who carried 2 copies of the ADRB2 Arg16-Gln27 haplotype were more 

likely to die or require a heart transplant.(38) 
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The ADRA2C gene is responsible for the expression of the α2C AR, an autoreceptor 

located on presynaptic adrenergic neurons, which limits the release of NE through a negative 

feedback system. (39, 40) Genetic disruption of α2 ARs in mice resulted in elevated NE levels 

and hearts with significant hypertrophy. (40)  The multiple-nucleotide polymorphism α2C322–

325 deletion (Del) similarly increased risk of developing heart failure in black patients (41), who 

have a minor allele frequency of 0.4 compared with 0.04 in whites (42). In a BEST DNA 

substudy, ADRA2C variability surprisingly did not alter baseline levels of NE or the natural 

course of heart failure progression in placebo-treated patients. ADRA2C genotype, however, did 

affect response to bucindolol treatment. (42) Patients who were carriers of the Del allele had 

enhanced norepinephrine reduction from bucindolol compared to wild-type patients. 

Furthermore, bucindolol was found to improve survival only in α2C322–325 wild-type 

homozygotes. (42) Though the precise mechanisms by which ADRA2C genotype impacts the 

ability of bucindolol to reduce NE levels remain unknown, these results are consistent with 

previous findings(25) that an exaggerated sympatholytic response to bucindolol is associated 

with reduced survival response to bucindolol. 

GRK5 codes for G-protein receptor kinase 5 which desensitize β AR signaling. (43) 

Substitution of Gln at the 41st amino acid position with Leu has been found to be a gain-of-

function allele resulting in enhanced desensitization, (43) analogous to an endogenous β blocking 

effect. In a prospective cohort of African American heart failure patients, who have 10-fold 

higher allele frequencies of this gain-of-function polymorphism than Caucasians, the presence of 

GRK5 Leu41 was just as protective in preventing cardiac death or heart transplant as β blocker 

use. (43) These findings were recapitulated in an expanded population of African American heart 

failure patients: GRK5 Leu41 improved survival. (44) 
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Inconsistencies that contradict the above associations between variants in genes of the 

adrenergic system and survival response to β blockers exist in the literature. For example, the 

significant relationship between ADRB1 Arg389Gly genotype and mortality response to 

bucindolol is less clear with the β blocker therapies FDA-approved for heart failure(27, 45-48); 

however, the aforementioned differences in sympatholytic properties among β blockers may 

explain why the pharmacogenetic association with ADRB1Arg389Gly in heart failure patients is 

inconsistent across members of this drug class. Moreover, De Groote et al. did not find a 

significant genetic association between any of the five aforementioned adrenergic receptor 

polymorphisms and survival in β blocker-treated heart failure patients. (49) An investigation in a 

large registry of heart failure patients with left ventricular dysfunction receiving metoprolol or 

carvedilol showed that individual variants and haplotypes involving ADRB1, ADRB2, and 

ADRA2C were not found to have a significant effect on survival.(27) Altogether, these results 

imply that other factors such as race, disease severity, specific β blocker, and phenotype may 

interact with pharmacogenomic associations. In addition, SNPs may interact with each other and 

attenuate the elucidation of these associations. 

Despite these challenges (or perhaps because of them), the pharmacogenetics of β 

blockers in heart failure continues to be an active area of investigation in recent years. Further 

work has attempted to sort out these inconsistencies, validate findings, and fully characterize the 

subset of optimal responders to β blocker therapy. An approach that continues to be used to 

address contradictions in the literature is the investigation of associations between genetic 

combinations and response to β blocker therapy, rather than individual polymorphisms. (50) This 

strategy has been adopted by multiple investigators in recent years. Petersen et al. observed that 

heart failure patients who were homozygous for ADRB Arg389 and carriers of ADRB2 Gln27 in 
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combination received less survival benefit from carvedilol treatment. (51) In contrast, this 

genotype combination did not impact response to metoprolol, likely due to differences in 

pharmacological properties. (51) More recently, O’Connor et al. have further elucidated the 

interaction of multiple adrenergic polymorphisms on β blocker response with another genetic 

substudy in BEST.(52) In particular they reported an additive loss of bucindolol response in 

terms of morbidity and mortality in carriers of β1 Gly389 and α2C322–325 Del alleles, consistent 

with the effects of the individual SNPs on bucindolol response. (52) And an even more recent 

BEST substudy shows that genotype combinations determined from β1 Gly389 and α2C322–325 

Del interact with response to bucindolol in terms of its efficacy in preventing ventricular 

arrhythmias in heart failure patients(53); this morbidity response to bucindolol is similar to the 

abovementioned mortality response when using the same SNP combinations. Another important 

issue that is often overlooked in heart failure pharmacogenomic studies involves the impact of 

other comorbidities. This issue has been recently explored as well. In a substudy of BEST, atrial 

fibrillation status did not affect response to bucindolol. β1 Arg389 homozygote patients, but not 

β1 Gly389 carriers, had reduced death and hospitalization from bucindolol; which confirms the 

pharmacogenomic association discovered in the full BEST genetic population. (54) On the 

contrary, atrial fibrillation history impacted genetic response to β blockers in a population of 

elderly patients (age > 65) with heart failure. (55) Patients who were β1 Arg389 homozygotes 

and also suffered from atrial fibrillation had blunted heart rate reduction from carvedilol, but not 

bisoprolol; no attenuation in response to therapy was seen with patients in normal sinus rhythm 

regardless of β blocker or genotype (55)  demonstrating that comorbidities may interact with 

pharmacogenetic associations. Indeed β blocker response to adrenergic polymorphisms in acute 

myocardial infarction patients conflict with those seen in heart failure patients.(56) In addition to 
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these studies which look at the impact of gene-gene interactions and comorbidities on 

pharmacogenomic associations, investigators continue to report data on individual 

polymorphisms. In a prospectively recruited population of heart failure patients, Talameh et al. 

showed that β1 Ser49Ser homozygotes, but not Gly49 carriers, had enhanced survival response to 

β blocker therapy, using a larger population to corroborate previous findings that β blocker 

therapy has a greater influence on outcomes only in patients with Ser49Ser genotype. (31, 57) 

Another recent genetic substudy looked at the impact of genotype on dose response in heart 

failure patients receiving metoprolol or carvedilol. (58) β1 Arg389 homozygote patients had 

increased mortality and worsened quality of life from lower β blocker doses, whereas dose did 

not affect outcomes in Gly389 carriers. (58) This contribution is significant, because few have 

assessed quality of life outcomes or gene-dose response in pharmacogenomic heart failure 

studies. (58) Collectively, these recent findings indicate that while progress in this field 

continues, more work is still needed before clinical utility of β blocker pharmacogenomics can 

be achieved. At the current rate, this goal does not seem achievable in the near future; a 

heightened effort is warranted.  
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Drugs targeting the renin-angiotensin-aldosterone system 

 

The RAAS also plays a key role during the development and worsening of heart failure. 

(59)  Several classes of agents for heart failure are available that work at different sites within the 

RAAS to suppress its effects. In particular, ACE inhibitors help to comprise the cornerstone of 

modern heart failure pharmacotherapy and have compelling evidence of survival benefit in 

multiple clinical trials. (60, 61) ACE inhibitors act by blocking ACE-mediated conversion of 

angiotensin I to angiotensin II, thereby reducing vasoconstriction, salt-retention, and hypertrophy 

that occur with this neurohormone. (62)  Genetic modifiers of ACE inhibitor effectiveness have 

been long sought with some early success.  An insertion (I)/deletion (D) polymorphism in ACE is 

responsible for half of the variance in systemic ACE levels; the D allele is associated with 

increased ACE. (63) The presence of this variant is also associated with heart failure incidence 

and severity. (64, 65) Additionally, past research has shown that this polymorphism alters 

response to ACE inhibitors. Cuoco et al. showed in a population of heart failure patients (90% 

receiving ACE inhibitors) that carriers of the D allele had significantly improved LVEF 

compared to wild-type patients after a mean follow-up of ~39 months. (66) In contrast, in a 

population of patients with left ventricular hypertrophy and hypertension receiving ACE 

inhibitors, patients with the D/D genotype had less improvement in hypertrophy. (67) In a third 

study, the presence of the D allele had no impact on mortality in diastolic heart failure patients 

who received ACE inhibitors. (68) This finding that does not concur with either of the above 

results, but does agree with an earlier study in systolic heart failure patients that also showed a 

diminished impact of the polymorphism on outcomes in patients receiving ACE inhibitor 

therapy, specifically at higher doses. (69) 
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Currently, the pharmacogenomic impact of ACE genetic variation in heart failure remains 

a controversial subject.  In a recent genetic substudy of a randomized trial investigating the 

impact of pharmacist intervention on outcomes in heart failure patients (68% receiving ACE 

inhibitors and 13% receiving ARBs at baseline), the ACE I/D polymorphism was not found to be 

associated with the composite of ED visits and hospitalizations. (70)  Further work, including the 

resolution of the aforementioned conflicting data, is necessary to elucidate the potential 

application of using of pharmacogenomic information to guide the therapeutic regimen of RAAS 

drugs in heart failure.  
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Other heart failure therapies 

 

Guidelines recommend additional therapy as adjuncts to β blockers and ACE inhibitors 

for relieving symptoms, delaying the progression of cardiac dysfunction, and improving survival 

in heart failure patients. (7, 8) Among others, adjunct therapies with the most promising 

pharmacogenetic evidence are digoxin and loop diuretics. 

It is fairly well established that digoxin reduces symptoms of heart failure and 

hospitalizations. (10) Digoxin has been used for centuries in heart failure and continues to be 

recommended in this population, but only at doses that correlate with relatively low serum levels 

due to increased mortality at higher levels. (7, 71) Given this narrow therapeutic range, factors 

which impact digoxin concentration may have important clinical implications. P-glycoprotein 

which is coded by ABCB1 plays a role in digoxin elimination.(72) The TTT haplotype is a 

combination of three SNPs (the substitution of thymine at positions 1236, 2677, and 3435) in 

ABCB1 that are highly linked and have been found to be associated with digoxin serum levels. 

(73) In particular, a 2008 study reported that the TTT haplotype was associated with increased 

digoxin levels in a population of elderly Caucasian patients receiving digoxin. (73) This contrasts 

an earlier study that evaluated this association in a small population of heart failure patients did 

not find a significant ABCB1effect on digoxin levels, (74) suggesting that further work 

investigating the pharmacogenetics of digoxin is needed. This area continues to be investigated; 

a recent study confirms that the ABCB1 TTT haplotype may be predictive of elevated digoxin 

concentrations in patients receiving this medication, especially in females. (75) However, similar 

to the 2008 digoxin report mentioned, this 2012 study did not include a population of exclusively 

heart failure patients. The negative finding in heart failure patients hint that perhaps clinical or 
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other factors related to the disease state may override any genetic association altering digoxin 

response. Validation in a larger independent population is necessary to establish if there is a 

genetic link to digoxin levels and clinical response in heart failure patients receiving digoxin.  

Loop diuretics, similar to digoxin, have not been found to have a mortality benefit but are 

the most common agents used for symptomatic relief due to sodium and water retention. They 

act by inhibiting sodium-potassium-chloride luminal transporters in the loop of Henle causing an 

attenuation of the reabsorption of sodium and water. (76) Recently a small study in healthy 

volunteers suggests that genetics may play a clinically-relevant role in response to loop diuretics. 

(77) Polymorphisms in GNB2, ANP, ACE, and ADD1 impacted the excretion amounts of sodium 

chloride, potassium, and calcium. (77) Similar to the pharmacogenetics of digoxin, further work 

including confirmation in heart failure patients and a link to clinical efficacy is a necessary 

fundamental to understand if clinical application is possible.  
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Future prospects for pharmacogenomics 

 

Over the past 15 years the field of pharmacogenetics has spread to include therapy for 

heart failure. Since the earliest periods of discovery, β blocker pharmacogenomics has been the 

most heavily explored, however response to other heart failure therapies also have shown the 

potential to be impacted by genotype. Taken together, the knowledge base summarized above 

demonstrates that genetic information does have the potential to guide therapeutic regimens for 

patients with heart failure and to improve outcomes. Despite this wealth of investigation, 

however, the pharmacogenomics of heart failure therapies still have not reached clinical utility.  

Additional steps are needed before this can be realized. 

First, clarifying the current areas of inconsistency between gene-drug response 

associations should be a high priority. These inconsistencies suggest that complex genetic and 

environmental factors play a role. There needs to be a continued focus on the creation of 

‘polygenic profiles’ which serve as novel biomarkers for the response to heart failure 

medications and allows for the identification of ‘full’, ‘intermediate’, and ‘non-’ responder 

subsets.  Additionally the consideration of comorbidities and other clinical factors are beginning 

to show utility in predicting which subsets of the heart failure population would respond best to 

certain agents; these results require further exploration. 

Secondly, much emphasis has been placed on genes related to the adrenergic system as 

expected considering its great promise in predicting response to β blockers in clinical practice. 

Nonetheless, more attention needs to be placed on emerging pharmacogenetic biomarkers. In 

addition to the aforementioned pharmacogenetic findings that have been investigated in the past 

couple years involving ACE inhibitors, digoxin, and loop diuretics, novel genetic biomarkers in 
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the early phases of discovery have potential to determine drug response in the heart failure 

population. For example, a recent study has shown that variation in genes coding for matrix 

metalloproteinases may interact with response to therapies altering the risk of heart failure 

development in hypertension patients. (78) Furthermore, novel genetic biomarkers have the 

potential to predict response to heart failure therapies beyond pharmacological agents. De Maria 

et al. recently found that among heart failure patients receiving CRT, those who did not achieve 

clinically significant reverse remodeling were more likely to have the NR3C2 minor C allele 

(rs5522 C/T) compared to patients who achieved reverse remodeling. (79) These data, of course 

require validation, but overall, support the potential of emerging genetic predictors of response to 

both pharmacological and non-pharmacological treatment in the early development as well as the 

advanced progression of heart failure. 

Another important step is the continued and expanded use of genetic analyses of heart 

failure randomized clinical trials (Table). These datasets serve as critical platforms to determine 

pharmacogenetic associations because they can supply large cohorts in which the impact of the 

therapy-gene interaction on outcomes can be most clearly demonstrated. Although genetic 

substudies are limited when the initial intervention has already become standard of care since 

this may preclude replication in an independent population, alternates for the validation of 

pharmacogenomic findings exist; these are beyond the scope of this review and are reviewed in 

great depth elsewhere. (80) Furthermore, these types of studies are ideal for emerging therapies 

where they may aid in identifying the best responders to a therapy and reduce the probability of 

drug development failure in clinical trials. As a result of genetic substudies of BEST that have 

provided a wealth of knowledge, bucindolol may be the most auspicious candidate to be 

approved as a heart failure therapy that incorporates a pharmacogenomic-guided strategy. While 



 

213 

genetic information is now routinely being collected in clinical trials worldwide (81, 82), it is not 

always being actively utilized or opened for exploration, squandering many great opportunities. 

Ultimately randomized clinical studies of pharmacogenomic-guided therapy would be 

needed to conclusively establish the utility of a pharmacogenomic approach in a clinical setting.  

The authors feel that one pharmacogenetic clinical trial success in heart failure would invigorate 

interest and open the flood gates for future studies. On the other hand, while randomized clinical 

trials represent the definitive proof, it is not a practical endeavor for each genetic variant and 

drug of potential interest. Indeed efforts to incorporate pharmacogenomic-guided decision 

making at the bedside at progressive institutions are taking place without the evidence of 

randomized, prospective trials.(83-85) The medical and scientific community still needs to 

grapple with and decide on the level of evidence required for universal integration of heart 

failure pharmacogenomics in clinical practice. 

In conclusion, progress in the field of heart failure pharmacogenetics continues, but 

further research is necessary. A collective and concerted effort between basic, clinical, and 

translational researchers is merited to achieve its incorporation into guidelines as a standard of 

clinical care.
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Tables 

 

 

Table B.1 Recent heart failure pharmacogenomic findings from clinical trials (2012-present). 

 
Gene (genotype) Parent trial Drug Primary endpoint Association 

ADRA2C (322–325), 

ADRB1 (Arg389Gly) 

BEST* (1) Bucindolol ACM, ACM or 

transplant 

Carriers of Gly389 and Del in combination had 

complete loss of bucindolol response in HF patients 

ADRA2C (322–325), 

ADRB1 (Arg389Gly) 

BEST* (2) Bucindolol Incidence of VT/VF Carriers of Gly389 and Del in combination had 

complete loss of bucindolol response in HF patients 

ADRB1 (Arg389Gly) CIBIS-ELD† (3) Bisoprolol, 

carvedilol 

HR Arg389 homozygotes had reduced carvedilol response 

in elderly (age > 65) HF patients with AF 

ADRB1 (Arg389Gly) BEST* (4) Bucindolol ACM or HFH, CVM 

or CVH, HR 

Arg389 homozygotes had reduced bucindolol response 

in HF patients with AF (for all endpoints but HR) 

ADRB1 (Arg389Gly) HF-ACTION†† (5) Any HF β 

blocker 

ACM or ACH Arg389 homozygotes had reduced β blocker response 

(low doses) in HF patients 
*Efficacy of bucindolol versus placebo in patients with heart failure 

†Efficacy and safety of carvedilol versus bisoprolol in elderly patients with heart failure 

††Efficacy of exercise training versus usual care in patients with heart failure 

ACM, all-cause mortality; ACH, all-cause hospitalization; AF, atrial fibrillation; CVH, cardiovascular hospitalization; CVM, cardiovascular mortality; HF, 

heart failure; HFH, heart failure hospitalization; HR, heart rate; VF, ventricular fibrillation; VT, ventricular tachycardia 
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APPENDIX B - EPOXYEICOSATRIENOIC ACIDS AND CARDIOPROTECTION: THE 

ROAD TO TRANSLATION2 

 

Introduction 

 

Despite major advances in evidence-based medical therapies, cardiovascular disease 

(CVD) remains the leading cause of morbidity and mortality worldwide. In the western world, 

CVD has been the leading cause of death for almost a century and its prevalence is expected to 

continue to rise tremendously (1, 2). Most notably, acute myocardial infarction (AMI) events, 

complications of CVD, are a primary source of the public health burden associated with this 

illness (1, 2). AMI is typically characterized by rupture of an atheromatous plaque resulting in an 

intracoronary thrombus and myocardial ischemia (3). The restoration of blood flow, termed 

ischemia-reperfusion (IR), is imperative to prevent further myocardial cell necrosis. 

Paradoxically, however, IR also triggers injury to the myocardium (4). Consequently, 

identification and characterization of the key pathways that regulate IR injury will facilitate the 

development of novel therapeutic strategies that mitigate IR injury and its pathological 

consequences, thereby reducing the risk of adverse outcomes following AMI. 

It is now well-established that cytochrome P450 (CYP)-derived epoxyeicosatrienoic 

acids (EETs), endogenous lipid metabolites of arachidonic acid, elicit potent anti-inflammatory, 

vasodilatory, fibrinolytic, anti-apoptotic, pro-angiogenic, and smooth muscle cell anti-migratory 

effects in the cardiovascular system (5, 6). Furthermore, accumulating preclinical evidence from 

in vitro, ex vivo, and in vivo models of AMI demonstrate that EETs directly protect the 

myocardium following ischemia via a variety of mechanisms (7-9). Additionally, associations 

                                                 
2Oni-Orisan, A., Alsaleh, N., Lee, C.R. & Seubert, J.M. Epoxyeicosatrienoic acids and cardioprotection: the road to 

translation. J Mol Cell Cardiol  74, 199-208 (2014). 
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between genetic polymorphisms in the CYP epoxygenase pathway and the risk of developing 

CVD have been reported in humans (10). Therefore, therapeutic interventions that promote the 

cardioprotective effects of EETs offer considerable promise as a novel therapeutic strategy to 

reduce sequelae following AMI; however, key questions remain to be addressed prior to 

translation of EET-promoting strategies into successful proof-of-concept phase I and II clinical 

trials. The acute and chronic cardioprotective effects of EETs and underlying mechanisms have 

not been fully characterized. Furthermore, the association between genetic polymorphisms in the 

CYP epoxygenase-EET pathway and poor prognosis has not been studied in patients suffering 

from an AMI. These are currently active areas on investigation. 

This review aims to 1) outline the known cardioprotective effects of EETs and underlying 

mechanisms with a particular focus on myocardial IR injury, 2) describe studies in human 

cohorts that demonstrate a relationship between EETs and associated pathways with the risk of 

coronary artery disease (CAD), and 3) discuss preclinical and clinical areas that require further 

investigation in order to increase the probability of successfully translating this rapidly emerging 

body of evidence into a clinically applicable therapeutic strategy for AMI.  
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The CYP epoxygenase pathway 

 

Arachidonic acid is metabolized by CYP epoxygenase enzymes to form bioactive EETs 

(Fig. 1) (11). CYP2J and CYP2C epoxygenases are the primary source of all four EET 

regioisomers (5,6-, 8,9-, 11,12-, and 14,15- EETs) (12). Each regioisomer is composed of 2 

different stereoisomers (R,S or S,R configuration) (12). CYP2J2, CYP2C8 and CYP2C9 are 

extensively and constitutively expressed in human heart tissue (13, 14). The predominant fate of 

EETs is through rapid metabolism by soluble epoxide hydrolase (sEH) into 

dihydroxyeicosatrienoic acids (DHETs), which generally have less biological activity (6, 7). 

EPHX2 codes for human sEH (15) and is expressed in a multitude of cell types (16). Importantly, 

sEH is highly expressed in the myocardium (16). 

In parallel, arachidonic acid is also metabolized by cyclooxygenase, lipoxygenase and 

CYP hydroxylase enzymes to produce biologically active metabolites that play a functional role 

in myocardial IR injury (17-19). In addition to arachidonic acid-derived products, other members 

of the n-6 polyunsaturated fatty acid (PUFA) family (most notably linoleic acid) and of the n-3 

PUFA family such as docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) play a role 

in cardiovascular disease (20). CYP-dependent epoxy-derivatives of these PUFAs are also potent 

biological mediators in the cardiovascular system and may be subsequently metabolized into 

vicinal diols by epoxide hydrolases (12, 21, 22). Although these emerging data are beyond the 

scope of this review, we summarize select examples from the literature throughout the review 

that will stimulate future research in this area. 

A variety of pharmacologic and genetic strategies have been utilized to characterize the 

functional role of EETs in preclinical studies. Administration of exogenous EETs and synthetic 
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EET analogs has been utilized as agonists to characterize the direct cardioprotective effects of 

EETs (23). The synthetic analog 14,15-epoxyeicosa-5(Z)-enoic acid (14,15-EEZE) has the 

unique property of exhibiting putative EET receptor antagonist-like activity (24), and 

consequently has also been very useful to study EET action. An alternative approach is to target 

enzymes involved in the biosynthesis (CYP epoxygenases) and metabolism (sEH) of endogenous 

EETs. Notably, cardiomyocyte-specific CYP2J2 overexpression (α-MHC-CYP2J2-transgenic 

[Tr] mice), global disruption of Ephx2 (Ephx2-/- mice), and pharmacologic inhibition of sEH 

have each been utilized to increase EETs in vivo and study the contribution of the CYP 

epoxygenase-EET pathway to cardioprotection (25-27).  
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Acute EET effects following IR 

 

Accumulating evidence, across multiple laboratories and species, has demonstrated that 

EETs abrogate a variety of acute pathophysiological responses following myocardial IR, 

including the reduction of left ventricular infarct size and improved recovery of left ventricular 

function (Table 1) (8). Furthermore, as outlined in more detail below, EETs elicit these 

cardioprotective effects through multiple mechanisms, namely through activation of prosurvival 

signaling, attenuation of apoptosis, and promotion of mitochondrial protection acutely following 

IR (Table 1, Fig. 2B). 

 

Promotion of prosurvival signaling 

Numerous signal-transduction pathways are activated following IR, dictate the extent of 

cell survival following myocardial injury, and thus are pro-survival therapeutic targets for 

cardioprotection (28, 29). Our group has shown that α-MHC-CYP2J2-Tr mice exhibit increased 

myocardial DHET biosynthesis (the stable metabolite of EETs) and improved left ventricular 

developed pressure (LVDP) following 20 minutes of ischemia and 40 minutes of reperfusion 

compared to wild-type littermate controls (30). This cardioprotection was thought to be mediated 

by putative mitochondrial KATP (mitoKATP) channel-derived and p42/p44 mitogen-activated 

protein kinase (p42/p44 MAPK) prosurvival signaling (30). The exogenous administration of 

11,12-EET produced a similar recovery of ventricular function (30).  Further evidence of 

improved recovery of LVDP following IR was observed in Ephx2-/- mice, which was reversed by 

14,15-EEZE implicating that the effect was promulgated directly by EETs. Infarct size was also 

reduced in these mice (31). These actions were mediated via activation of sarcolemma KATP 
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(sarcKATP) and mitoKATP channels as well as phosphatidylinositol-3 kinase (PI3K) signaling 

(31). Results in canine and rat models of AMI have confirmed the role of KATP channels in EET-

mediated cardioprotection (32-34). 

Further research has brought the role of prosurvival signaling in EET-mediated 

cardioprotection to a more detailed level of understanding. Evidence suggests the timing of EET 

administration relative to IR injury is important and that EET-mediated cardioprotection is 

regulated by the activation of sarcKATP channels only if EETs are administered  during the 

ischemic period (35). Selective inhibition of PI3K was found to attenuate improved LVDP and 

infarct size from an agent that possesses both EET-mimetic and sEH inhibitory properties, 

implicating class-I isozymes of PI3K in EET-mediated cardioprotection (36). Moreover, 

phosphatidylinositol-3 kinase-alpha (PI3Kα) was reported to be the specific isoform within the 

class-I PI3K family that was implicated in EET-mediated protection (37). Interestingly, these 

effects occurred through a PI3Kα-dependent activation of sarcKATP channels (37).  Results from 

another study conflict with this data by showing that EETs activate sarcKATP channels 

independent of PI3K-mediated pathways (38). Experimental factors such as species (rats versus 

mice), EET regioisomer (14,15-EETs versus 11,12 EETs), and inhibitor (wortmannin versus PI-

103) may explain these discordant findings. Indeed, evidence from a study that improved LVDP 

following IR injury with 11,12-EET that was absent in 14,15-EET at the same dose suggests that 

the cardioprotective potency of EETs may vary by regioisomer (39). Studies have also 

implicated endothelial NO synthase (eNOS) (35), signal transducer and activator of transcription 

3 (STAT3) (40), brain natriuretic peptide (BNP) (41), and opioid receptor (42) signaling in EET-

mediated cardioprotection. Overall, work remains necessary to further delineate the relative 
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contribution of specific signaling pathways and regioisomers to the cardioprotective effects of 

EETs. 

 

Attenuation of apoptosis 

It is well-established that activation of apoptosis promotes infarct size and worsens 

recovery of cardiac function following IR injury (43). Importantly, EETs possess potent anti-

apoptotic properties in cardiomyocytes. Cultured cells from neonatal rat hearts and a mouse atrial 

lineage (HL-1) that were pretreated with EETs had reduced expression of multiple markers of 

apoptosis and maintained rhythmic myocyte beating after 8 hours of hypoxia and 16 hours of 

reoxygenation (44). In a subsequent study, the anti-apoptotic properties of EETs were further 

demonstrated in isolated myocardium from patients with cardiovascular disease, highlighting the 

observation that cellular mechanisms of EET-mediated cardioprotection in rodents also occur in 

the human heart (38). 

 

Preservation of mitochondrial function and structure 

Mitochondria provide the primary source of energy that fuels the contractile apparatus 

and act as key regulators of cell survival and death (45). IR injury can cause significant 

mitochondrial damage resulting in cellular death and cardiac dysfunction (45). Specifically 

ischemia causes the mitochondrial permeability transition pore (mPTP), a non-specific pore in 

the inner membrane of mitochondria, to open allowing free passage of molecules <1.5 kDa (46). 

The accumulation of these molecules in the mitochondria due to prolonged pore opening results 

in mitochondrial dysfunction and integrity and eventually leads to irreversible cell death (46). 

Signal transduction pathways, including a large proportion of those mentioned previously that 
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are implicated in EET-mediated cardioprotection, converge onto the mPTP thereby promoting or 

suppressing its opening following cardiac injury (47). In addition, the mitochondrial membrane 

potential (ΔΨm), which reflects the electrochemical gradient important for ATP generation, 

influences mPTP opening: its depletion following cardiac injury enhances mPTP opening (46). 

Agents that prevent these processes have been found to reduce infarct size and improve recovery 

of cardiac function (43).  Emerging evidence demonstrates that EETs possess potent protective 

effects directly limiting mitochondria damage.  For example, hearts from α-MHC-CYP2J2-Tr 

mice had limited mitochondrial swelling and fragmentation following IR compared to hearts 

from wild-type littermate controls (48). Cell culture experiments demonstrated that exogenous 

administration of EETs slowed the loss of ΔΨm and prevented opening of the mPTP following 

the induction of stress to cardiac cells; this was reversed by 14,15-EEZE (48, 49). And recent 

data show that EET-mediated protection of mitochondria involves regulating an autophagic 

response, which shifts the cell pathway in starved cardiac cells from death via apoptosis or 

necrosis toward survival, representing a novel prosurvival mechanism in cardiac cells (50). 

However, an important issue that remains unknown is how the EET protective signals reach the 

mitochondria and preserve its structure.  One potential mechanism implicates caveolins 

(cardioprotective structural proteins) in the EET-mediated preservation of mitochondrial 

structural integrity following IR (51). In particular, compared to untreated wild-type mice, 

plasma membrane and mitochondria isolated from the hearts of Ephx2-/-  and EET-treated wild-

type mice exhibited an attenuated IR-induced loss of caveolin-1 (Cav-1), but not caveolin-3 

(Cav-3) isoform expression (51). Altogether, these results underscore the important role of 

preserving mitochondrial function and architecture following IR injury. 
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Altogether, these preclinical findings in acute models of IR have made important 

contributions to the characterization of EET-mediated cardioprotection, confirming a direct 

protective effect of EETs on cardiomyocytes and offering mechanistic insight. It is worth 

reemphasizing that a structure-activity relationship exists with EETs based on the observations 

that 1) the endogenously formed EET regioisomers exert their biological effects at varying 

potencies, and 2) synthetic analogs of EETs agonize and antagonize their effects at varying 

degrees (52). This is the main reason why, although it remains to be discovered, at least one 

EET-specific receptor (whether at the cell surface or intracellularly) is widely believed to exist 

(9, 53). Thus, identification and characterization of an EET receptor would provide critical 

insight into the diverse biological effects of EETs, including cardioprotection, and drive future 

research and drug discovery.  
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Chronic EET effects following ischemia reperfusion 

 

Following the acute recovery phases of an AMI, the infarcted and inflamed myocardium 

chronically promotes LV remodeling, which manifests as scar tissue formation (fibrosis), LV 

dysfunction, and ultimately heart failure (54, 55). Fibrosis following AMI leads to electrical 

conduction abnormalities, which predispose patients to ventricular arrhythmias and higher risk of 

sudden cardiac death (56). Thus, this chronic maladaptive remodeling process is associated with 

worsened prognosis following AMI (57). 

Chronic preclinical models of ischemic cardiomyopathy have recently been utilized to 

determine the impact of increasing EETs on longer term endpoints following AMI. In a mouse 

model of post-AMI heart failure, where the left anterior descending (LAD) coronary artery was 

occluded for 45 minutes followed by 3 weeks of reperfusion, administration of a sEH inhibitor 

reduced collagen deposition (fibrosis), reduced arrhythmia, and improved LV fractional 

shortening (systolic function) (58). However, it is important to note that the sEH inhibitor was 

administered three days before the induction of AMI; thus it is unknown whether the observed 

attenuation of cardiac remodeling was derived independently of infarct size reduction and the 

other beneficial actions of EETs that occur acutely following IR. In a clinical situation, a 

pharmacological agent indicated to reduce IR injury would most likely be administered during or 

after, and not prior to, the ischemic phase. Three recent studies have provided insight into this 

important issue. In one study, a sEH inhibitor was administered immediately following 

permanent LAD occlusion in rats; pharmacologic suppression of sEH attenuated LV ejection 

fraction (systolic function) independent of collagen deposition reduction in the infarct zone 

following 5 weeks of occlusion (59). A second study by a separate group utilized a more chronic 
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model of heart failure in rats (permanent LAD ligation for 50 days), but administered a sEH 

inhibitor at distinct time points after the initial phase of infarct healing: 8 days (42-day sEH 

inhibitor treatment) or 47 days (3-day inhibitor treatment) following LAD occlusion (60). It was 

discovered that both regimens improved LV ejection fraction at 50 days; however, only long 

term treatment elicited an improvement in LV end-diastolic pressure (diastolic function) (60). A 

third study in mice utilizing a model of IR injury demonstrated that sEH inhibition administered 

a week following AMI was still able to attenuate chronic collagen deposition measured three 

weeks later (61). Collectively, these studies demonstrate that sEH inhibition improves 

maladaptive chronic ventricular remodeling independent of the aforementioned acute reductions 

in infarct size elicited by EETs. It is also important to note that these effects were not reported to 

be related to blood pressure reduction, suggesting that direct action on cardiomyocytes is a likely 

mechanism of cardioprotection. More rigorous investigation, including the use of other 

pharmacologic and genetic tools that promote or depress the effects of EETs, is warranted to 

further define the contribution of sEH and EETs to the pathogenesis and progression of ischemic 

cardiomyopathy.  
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Chronic EET effects in non-ischemic cardiomyopathy 

 

Non-ischemic cardiomyopathy is caused by variety of factors unrelated to an AMI (i.e., 

longstanding hypertension) and is a source of devastating consequences including arrhythmia, 

left ventricular dysfunction, heart failure, and mortality (62). Importantly, EETs have been found 

to be cardioprotective in rodent models of non-ischemic cardiomyopathy. Furthermore, in the 

majority of models, these protective effects were not reported to be dependent on blood pressure 

lowering. 

Inhibition of sEH was found to reverse transverse aortic constriction (TAC)-induced 

cardiac hypertrophy (63). Furthermore, angiotensin II, a potent driver of cardiac hypertrophy, 

upregulates sEH expression in cardiomyocytes and pharmacologic sEH inhibition attenuates 

angiotensin II-induced cardiac hypertrophy (64). CYP2J overexpression also reversed decline in 

cardiac function from tumor necrosis factor alpha (TNF-α) administration to rats (65) and 

prevented the development of TAC-induced arrhythmias in mice (66). These results are 

confirmed when sEH is modulated genetically, as Ephx2-/- mice were protected from cardiac 

dysfunction and arrhythmia following chronic high dose angiotensin II treatment or TAC 

banding (67). Spontaneously hypertensive heart failure rats were found to have increased 

transcript levels of Ephx2 and lower 14,15-EET levels compared to spontaneously hypertensive 

rats that do not develop heart failure, further suggesting an important role for sEH-mediated EET 

hydrolysis in the development of heart failure unrelated to IR injury and AMI (67). In contrast to 

preclinical models of IR, EET-mediated cardioprotection in non-ischemic cardiomyopathy has 

not been demonstrated in non-rodent models and remains an important future direction for this 

line of investigation.  
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EET action in cardiac non-myocytes 

 

In addition to cardiomyocytes, the heart is composed of fibroblasts, endothelial cells, and 

vascular smooth muscle cells (68). It is clear that these other cell types are important in the 

production and action of EETs in the heart (Fig. 2A); however, the contribution of EETs that act 

on or are produced by these other cell types to the cardioprotection phenotype observed in 

preclinical studies is less certain. 

 

Action of EETs derived from cardiac endothelial cells on myocardial cells 

CYP epoxygenases and sEH are highly expressed in endothelial cells (69, 70). Isolated 

hearts from transgenic mice with endothelial sEH or CYP2J2 overexpression (Tie2-sEH-Tr and 

Tie2-CYP2J2-Tr mice) did not alter the recovery of LVDP or infarct size following IR compared 

to wild-type mice, demonstrating that endothelial-derived EETs do not have a significant impact 

on acute myocardial recovery in this model of IR injury (71). Intriguingly, isolated hearts from 

transgenic mice with endothelial CYP2C8 overexpression (Tie2-CYP2C8-Tr mice) had 

worsened LVDP and infarct size compared to hearts from wild-type mice (71). This 

demonstrates that the specific CYP epoxygenase isoform catalyzing the formation of EETs in the 

endothelium appears to play an important role in cardiac function in mice (71). Increased parallel 

production of reactive oxygen species (ROS) and linoleic acid-derived metabolites were found to 

be the cause of the enhanced IR injury in Tie2-CYP2C8-Tr mice (71). Specifically, CYP2C8 

overexpression catalyzed the formation of epoxyoctadecaenoic acids (EpOMEs, leukotoxin) 

from linoleic acid in endothelial cells, which are subsequently metabolized by sEH to 

dihydroxyoctadecaenoic acids (DHOMEs, leukotoxin diol) (71). Enhanced endothelial DHOME, 
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along with reactive oxygen species (ROS), formation mediated the cardiodepressive phenotype 

observed in Tie2-CYP2C8-Tr, but not Tie2-CYP2J2-Tr, mice (71). It remains unclear whether 

similar CYP isoform specific effects occur in cardiomyocytes. 

 

Action of EETs derived from cardiac endothelial cells on cardiac smooth muscle cells 

Endothelial-derived EETs exert their vasodilatory action in coronary vessels through 

calcium-activated potassium channel (Kca)-dependent hyperpolarization of smooth muscle cells 

independent of prostaglandin or NO synthesis (72, 73). Interestingly, this effect has been found 

to be greatest in smaller coronary arterioles, rather than larger epicardial coronary arteries (74). 

Despite these findings, EET-mediated vasodilation in the setting of IR injury and its putative 

beneficial effect of aiding in the perfusion of oxygenated blood to ischemic regions of the heart 

remain unclear. Altogether, further work is necessary to validate the role of endothelial EETs in 

cardioprotection, especially in in vivo and chronic models of AMI. 

 

Action of EETs in cardiac endothelial cells  

Endothelial-derived EETs have well-established pro-angiogenic properties through a 

multitude of signaling pathways that are reviewed in great detail elsewhere (75). Experimental 

studies demonstrate that angiogenesis is associated with cardioprotection in chronic phases 

following IR (76). Few studies have investigated the role of EET-derived angiogenesis in 

cardioprotection following IR and as a result this topic remains poorly understood. One report 

revealed that inhibition of sEH promotes capillary tube formation (angiogenesis) in the isolated 

endothelial progenitor cells (EPCs) of post-AMI patients (compared to control subjects) through 

the EET–PPARγ pathway (77). It is unknown if these effects occur with in vivo administration of 
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a sEH inhibitor. Moreover, the EPCs were derived from whole blood and the effect of sEH 

inhibitor specifically on coronary vasculature formation was not evaluated (77). Finally, it 

remains to be determined if these effects impact myocardial recovery following AMI. 

Consequently, further work is necessary to confirm and better understand these findings. 

 

Action of EETs on inflammatory cells and cardiac fibroblasts 

We mentioned earlier that inflammation promotes cardiac remodeling and fibrosis 

following myocardial IR injury. Although they are not a permanent cellular component of the 

myocardium, bone-marrow derived inflammatory cells such as monocytes and neutrophils drive 

this inflammatory process when they infiltrate the site of injury  following IR (78). Substantial 

evidence indicates that EETs, through inhibition of nuclear factor-kappaB (NF-κB) activation, 

attenuate inflammation in endothelial cells and monocytes (6) and mitigate 

macrophage/neutrophil infiltration in the vasculature (79); these effects have not been 

extensively studied in the coronary vasculature following myocardial ischemic injury. Kompa et 

al. demonstrated that sEH inhibition impedes the infiltration of macrophages in the peri-infarct 

region of the myocardium in rats following permanent LAD ligation (59). Intriguingly, sEH 

inhibition did not reduce macrophage infiltration in the infarct region of the myocardium (59). 

Further investigation is warranted to fully characterize the contribution of inflammation 

reduction in EET-mediated cardioprotection. Inflammation precedes the development of chronic 

myocardial fibrosis during the following IR injury. Cardiac fibroblasts accelerate this 

maladaptive remodeling via secretion of growth factors and cytokines (68). Inhibition of sEH has 

been found to directly block the proliferation, differentiation, migration, and secretion capacity 

of fibroblasts (59, 61). More work is necessary to directly implicate EETs in sEH inhibition-
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mediated fibroblast suppression and to provide further mechanistic insight into this effect. 

Overall, further studies are necessary to determine the functional role of these cell-types in EET-

mediated cardioprotection relative to cardiomyocytes.  
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Clinical studies investigating the role of EETs in the progression of CVD 

 

Since pharmacological tools that directly and specifically manipulate EETs are currently 

not available for clinical use, we and others have relied on genetic and biomarker-driven 

observational studies to understand the role of the CYP epoxygenase-EET pathway in human 

CVD. Associations between the risk of developing a cardiovascular event and polymorphisms in 

genes coding for CYP2J2 (80-82), CYP2C8/9 (82, 83), and sEH (EPHX2) (84-89) have been 

discovered. Studies evaluating genetic variation and risk of CVD development have been 

summarized in great detail elsewhere (10) and continue to be an active area of investigation (88, 

89). 

Inconsistencies in the strength of the associations between genetic variation in the CYP 

epoxygenase-EET pathway and CVD susceptibility have been reported across studies, 

suggesting that the relationship is likely complex and most profound in certain subsets of the 

population (10). For instance, associations between EPHX2, CYP2J2 and CYP2C8 variants and 

CAD risk have often been most pronounced in cigarette smokers (81, 82, 84, 87). Although the 

mechanism remains unclear, this suggests that the pathologic impact of genetic predisposition to 

alter CYP-derived EET levels may be greatest in the presence of underlying cardiovascular 

dysfunction. Indeed, modulation of CYP-derived EETs has minimal impact on basal 

cardiovascular function in preclinical models; whereas, the blood pressure lowering, anti-

inflammatory, and cardioprotective effects are most substantial upon induction of a pathologic 

stimulus (6). The relationship between genetic and metabolic variation in CYP epoxygenase-

EET pathway genes and prognosis in patients with established CAD, however, has not been 

investigated and requires rigorous study.  
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Recently, we measured circulating eicosanoid metabolite concentrations in a cohort of 

patients with established and stable CAD and a corresponding population of healthy volunteers 

at low risk for CAD (90). The 14,15-EET:DHET ratio in plasma (a biomarker of sEH metabolic 

function) was significantly greater in CAD patients relative to healthy volunteers suggesting that 

sEH metabolic function was suppressed in the presence of established CAD (90). In 

concordance, plasma EET levels were also higher in CAD patients (90). Given the 

aforementioned evidence demonstrating the cardioprotective effects of EETs in preclinical 

models of CVD, these findings allude to the possible presence of a compensatory increase in 

EET levels in the presence of established CAD. Interestingly, this observation is consistent with 

a prior study in which myocardial biopsies obtained patients who developed heart failure 

(defined as ejection fraction < 45%) secondary to CAD exhibited lower EPHX2 mRNA 

expression compared to the biopsies obtained from control CAD patients without evidence of 

heart failure (67). However, these preliminary observations must be interpreted with caution until 

further studies validate the observed differences in additional populations. 

Despite the observed presence of lower sEH metabolic function and higher EET levels in 

this population of patients with established CAD, compared to healthy volunteer controls, 

substantial inter-individual variation in the 14,15-EET:DHET ratio and EET levels existed within 

the CAD population and the presence of obesity, advanced age, and cigarette smoking were the 

strongest predictors of low 14,15 EET:DHET ratios (higher sEH metabolic function) and low 

EETs (90, 91). Consistent with the aforementioned preclinical evidence demonstrating the 

cardiovascular protective effects of EETs, lower 14,15-EET:DHET ratios (i.e., higher sEH 

metabolic function) and lower EET levels were significantly associated with pro-inflammatory 

phenotypes predictive of poor prognosis (higher circulating levels of the chemokine monocyte 
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chemoattractant protein-1 and cellular adhesion molecules) (91). Importantly, these associations 

were independent of clinical factors (91). Taken together, these initial findings suggest that the 

subset of CAD patients with enhanced sEH metabolic function and low EET levels may be 

predisposed to poorer prognosis and thus likely to derive therapeutic benefit from an intervention 

that promotes the biological effects of EETs. However, subsequent studies remain necessary to 

first determine the association between inter-individual variation in the CYP epoxygenase-EET 

pathway and prognosis (i.e., clinical outcomes rather than surrogate markers) in patients with 

existing CAD. 

Importantly, evaluation of genetic and metabolic variation in the CYP epoxygenase-EET 

pathway, biomarkers of cardiovascular inflammation and cardiac remodeling, and prognosis in 

patients during and following the acute stage of an AMI has not been completed to date. 

Completion of such studies offers enormous potential to facilitate initial translation of the 

aforementioned growing body of preclinical evidence and guide the rational design of 

prospective, proof-of-concept clinical trials that aim to evaluate the cardioprotective effects of 

novel therapeutic strategies that promote the effects of EETs following an AMI.  
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Discussion: key considerations prior to initiation of proof-of-concept clinical trials 

 

Despite major medical advances over the past four decades, there still exists a major need 

to develop cardioprotective therapies that reduce death and improve quality of life in AMI 

patients. Over the past decade, there have been numerous unsuccessful clinical trials involving 

novel AMI therapeutics that had shown initial promise in preclinical studies (4). These failures 

underscore the complex pathophysiology of AMI and suggest that full preclinical elucidation 

into the cardioprotective effects of candidate agents is necessary to increase the probability for 

success in clinical trials. Past clinical trial failures were likely a consequence of being rushed 

through development before obtaining rigorous mechanistic insight in preclinical studies, and 

were therefore wrought by limitations in their design (4). Specifically, important study design 

details such as timing and dose of intervention were determined based on theoretical evidence 

and not validated a priori in animal models of AMI (4). Investigating the effects of a 

cardioprotective strategy across multiple experimental systems in vitro, ex vivo, and in vivo and 

ensuring that preclinical findings can be replicated across these experimental systems before 

human testing would allow for full mechanistic elucidation, facilitate a more accurate prediction 

of which drug candidates should be carried forward to humans, and ultimately improve clinical 

trial design. Significant initiatives have already begun to alleviate these major preclinical 

challenges in AMI therapy translation. For example, an NIH consortium of investigators called 

CAESAR (Consortium for preclinicAl assESsment of cARardioprotective therapies) has been set 

up to examine therapies in preclinical studies using the same rigorous standards that are used in 

clinical trials to ensure reproducibility and screen for truly effective therapeutic candidates (92). 
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Considering the thousands of interventions that have been reported to be cardioprotective 

in preclinical studies over the past few decades (92), it is not feasible for every promising 

intervention to be evaluated through this mechanism. Thus, a collective and collaborative effort 

between basic, clinical, and translational scientists using the same rigorous standards is needed to 

develop therapeutic strategies that promote the cardioprotective effects of EETs. In addition to 

the aforementioned issues in the development of therapeutic strategies for AMI, further 

considerations must be kept in mind in order to facilitate specifically the translation of EET-

promoting strategies into successful proof-of-concept phase I and II clinical trials. 

 

Development of therapeutic strategies that promote EET action in humans 

The successful development of this strategy for AMI is only as promising as the 

pharmacologic agents that modulate the CYP epoxygenase-EET pathway. The potential for 

clinical translation of exogenous EET administration is limited due to its short half-life and poor 

solubility. Synthetic EET analogs overcome this limitation. Historically, synthetic EET analogs 

conducive to in vivo dosing were not available (23); however, in recent years, a novel generation 

of EET analogs have been developed. These improved agents are orally bioavailable and reach 

therapeutic levels in live animals as illustrated by their protective effects in in vivo rodent models 

of renal injury (93, 94). Despite this steadfast improvement, lack of a known EET receptor 

continues to slow progress in this area. Discovery of the putative EET receptor(s) would further 

contribute to the field by elucidating structure-activity relationships and facilitating the design of 

agents with further improvements; efforts are ongoing. 

Over the past decade, a variety of selective and potent sEH inhibitors have been 

optimized through structure-activity relationship techniques. The history of sEH inhibitor 
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development is akin to that of EET analog development: compared to earlier members of the 

class, newer sEH inhibitors possess pharmacokinetic properties in animals predicted to be more 

favorable for oral human administration. Thus these agents are being actively developed and 

evaluated in both academic and pharmaceutical industry laboratories for a variety of indications 

and offer considerable promise as a therapeutic strategy for ischemic CVD (21, 95).  Thus, the 

sEH inhibitors and synthetic EET analogs are the most conducive therapeutic strategies poised 

for translation into humans in the near future. Investigators should prudently select new 

generation agents from these classes to evaluate their effects, especially in chronic and in vivo 

preclinical models of AMI where drugs ideal for chronic dosing are most important. 

 

Potential unintended effects of increasing EET levels 

EETs have a myriad of biological functions and therapeutically promoting these actions 

has the potential to cause unintended effects that should be considered. For instance, as 

mentioned earlier, EETs have potent vasodilatory effects. Although this could be beneficial in 

hypertensive patients, delayed restoration of blood pressure may have played a role in the 

increased mortality of Ephx2-/- mice observed in a model of cardiac arrest-induced hypotension 

followed by cardiopulmonary resuscitation (CPR) (96). The precise cause of death, including the 

direct role of EETs, remains unknown, but these data may have important clinical implications 

since cardiac arrest and hypotensive shock are complications of AMI. Future preclinical studies 

are warranted to replicate these findings and implicate EETs as the causative mediator of this 

effect. 

Despite their vasodilatory effects in the peripheral and coronary vasculature, EETs have 

vasoconstrictive effects in the pulmonary vasculature and may be important mediators in 



 

245 

pulmonary hypertension (97, 98). Ephx2-/-mice develop pulmonary vascular remodeling, right 

ventricular hypertrophy, and reduced exercise capacity (pulmonary hypertension) (99). 

Interestingly, these phenotypes were not replicated in wild-type mice receiving chronic 

administration of a sEH inhibitor (99). This suggests that the role of EETs and sEH in pulmonary 

hypertension is complex and further work is necessary to determine if EET-mediated pulmonary 

vasoconstriction is deleterious in the setting of an AMI or chronic cardiac remodeling. 

Similar to Kca-mediated hyperpolarization of smooth muscle cells to induce vasodilation, 

EETs activate Kca-mediated hyperpolarization in platelets (100). This leads to reduced platelet 

activation and prevents platelet adhesion to endothelial cells (100). Such findings have been 

recapitulated in vivo in the skin muscle of hamsters (101) and in the cerebral arterioles of mice 

(102). As agents that promote the EETs progress through development, we believe that the 

clinical relevance of this anti-platelet effect is enormous considering the well-established 

importance of long-term, anti-platelet therapies in patients suffering from an AMI (103, 104). Of 

note, epoxydocosapentaenoic acids (EDPs) and epoxydocosapentaenoic acid (EEQs), which are 

CYP-dependent epoxy-derivatives of DHA and EPA, respectively (Fig. 1), are potent inhibitors 

of platelet aggregation (105). Further preclinical studies are needed to grasp the potential 

additive/synergistic benefit of epoxyeicosanoid anti-platelet effects on top of their 

cardioprotective effects, specifically in the coronary arteries during IR injury. 

EETs enhanced tumorigenesis and multiorgan metastasis in multiple mouse models of 

cancer (106, 107). Specifically, these enhanced effects were observed in Ephx2-/-, Tie2-CYP2J2-

Tr, and Tie2-CYP2C8-Tr mice; observed after the direct administration of EETs and sEH 

inhibitors; and mediated via the pro-angiogenic (VEGF-secreting) properties of EETs in the 

endothelium (106). Though these effects have not been observed to occur in the absence of 
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spontaneous tumor models, these findings raise a serious concern about the potential cancer 

causing ability of therapies that increase endogenous EET levels. Importantly, the pro-

angiogenic effects of EETs also promote wound healing and tissue regeneration (108, 109), 

which may be beneficial in myocardial recovery following IR injury. Furthermore, EDPs inhibit 

tumor growth and metastasis through anti-angiogenic effects (110); however, the impact of the 

synthetic EET analogs on these phenotypes has not been well characterized. More studies are 

clearly necessary to determine the role of CYP epoxygenase-EET and parallel metabolic 

pathways in the regulation of angiogenesis, especially in the setting of an AMI. 

In addition to studying these biological effects of EETs for the purpose of understanding 

potential risks and benefits, this knowledge can also guide early drug design of EET-promoting 

agents. For example, a new series of sEH inhibitors have been modified to reduce their pro-

angiogenic properties while maintaining potent and selective sEH inhibition (111). Similarly, 

modification of synthetic EET analogs can alter their biological properties (112), (analogous to 

the aforementioned varying potencies across EET regioisomers). In fact, data suggests that EET-

mediated cancer cell proliferation is regioisomer-specific (113). Consequently, further research 

in this area is clearly needed to select the most promising compounds for further development 

and subsequent translation into clinical studies. Furthermore, considering the complex course of 

pathological events in response to IR injury in the myocardium, optimizing the timing, dose, 

duration, and route of administration of EET-modulating therapeutics will be essential to 

maximize the cardioprotective benefits while minimizing the potential harmful effects of these 

strategies. 
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The use of clinically relevant models of AMI including assessing the impact of 

comorbidities 

An additional reason for drug development failure is the evaluation of candidate agents in 

animal models that are not clinically-relevant and therefore poorly mimic the AMI patient 

population (92). Indeed, the majority of preclinical AMI models in the literature involve young, 

healthy animals lacking the comorbid conditions that are typically associated with the AMI 

population in humans (4). Importantly, efforts have begun to determine the impact of these 

conditions on EET-mediated cardioprotection. For instance, it is well known that aging, a risk 

factor highly prevalent in the AMI population, exacerbates myocardial IR injury (28). 

Cardioprotection from cardiomyocyte-specific CYP2J2 overexpression in the isolated hearts of 

young α-MHC-CYP2J2-Tr mice were lost in aged α-MHC-CYP2J2-Tr hearts following global 

IR injury (114). However, this loss was regained when aged α-MHC-CYP2J2-Tr hearts were 

perfused with a sEH inhibitor, suggesting that pharmacological inhibition of sEH activity 

remains cardioprotective even in aged hearts (114). Future studies in clinically-relevant AMI 

models are needed in order to determine if the cardioprotective effects of EETs are influenced by 

conditions such as aging, diabetes, and obesity. 

 

Subsets of the AMI population may derive greater benefit from agents that promote the 

cardioprotective effects of EETs 

Even after addressing all of the aforementioned considerations in the translation of EET-

promoting therapeutics, the innate heterogeneity of the AMI population is an important barrier to 

the successful translation of AMI therapeutics (4) as novel treatments may not work in broad 
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populations. As technology advances and we enter an era of personalized medicine, genetic and 

biochemical biomarkers offer considerable promise to identify which patients are defective in the 

specific pathway that the drug targets, are at increased risk of poor prognosis, and may derive the 

most benefit from that therapeutic intervention. Thus, selective administration of EET promoting 

therapy to a pre-identified population of ‘responders’ predisposed to low EET levels may 

increase the probability of clinical trial success. Notably, the EPHX2 Lys55Arg polymorphism is 

a promising genetic biomarker that may help identify patients predisposed to low EET levels 

since variant carriers have enhanced sEH metabolic function and increased risk of incident CAD 

(84). Moreover, direct measurement of EET levels has the potential to identify these patients. 

Indeed, higher throughput methods to quantify eicosanoids in a clinical setting have been found 

to be precise, accurate, and feasible (115). Altogether, further work is necessary to determine 1) 

which biomarkers can best identify the subset of AMI patients with reduced EET levels and 2) if 

these patients have poorer prognosis before the initiation of clinical trials that test whether 

interventions are likely to be most effective in those subsets.  
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Summary/ Conclusion 

 

After a 1997 paper reported that EETs were cardioprotective in ex vivo and in vitro 

models (39), it took about 10 years before the first in vivo reports began to recapitulate these 

findings. Since then, much attention has been focused on the role of the CYP epoxygenase-EET 

pathway in AMI and the potential for therapeutic modulation of this pathway to improve 

outcomes in humans. In parallel, the improvement of experimental strategies to manipulate the 

pathway through pharmacologic and genetic approaches has allowed for great advances in the 

knowledge surrounding EET-mediated cardioprotection. Evidence for the beneficial effects of 

EETs has been replicated using multiple species, experimental heart disease models, and 

phenotypes relevant to cardioprotection, which underscores the great promise of this therapeutic 

strategy. Most of the data in the literature highlight the acute role of EETs in prosurvival 

pathway-mediated mitochondrial preservation in cardiomyocytes following AMI, but EETs have 

also been found to attenuate chronic cardiac remodeling and elicit protective effects in other cell 

types following AMI. It remains unknown whether EETs cause deleterious effects that could 

outweigh these cardioprotective benefits. Moreover, it is poorly understood if modulation of 

parallel epoxide and diol metabolites derived from other PUFAs impacts this benefit-risk ratio. 

Consequently, further work will be critical to move this line of investigation closer to clinical 

trials. 

Ultimately, randomized controlled trials will be necessary to determine the benefits and 

risks of therapeutic strategies that promote the effects of EETs in patients experiencing an AMI. 

Before advancing promising agents that promote the effects of EETs into clinical trials, 

additional preclinical and human investigations are needed in order to lay an essential foundation 
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for the rational design of these future prospective trials and select the agent, dosing strategy, and 

patient population most likely to circumvent clinical failure. A concerted effort to address these 

prerequisites will serve to improve the probability of translational success from a rapidly 

emerging body of evidence into a clinically applicable therapeutic strategy for patients with 

AMI.  
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Figures 

 

 

 

Figure B.1 Cytochrome P450 (CYP) epoxygenase–epoxyeicosatrienoic acid (EET) and 

parallel pathways. Through the activation of cytosolic phospholipase A2 (cPLA2) in 

cardiomyocytes followingAMI,membrane-bound fatty acids are released into the cytosol and 

subsequently metabolized by CYP epoxygenases to form biologically active eicosanoids. The 

CYP2J and CYP2C epoxygenases produce four regioisomers of EETs from arachidonic acid 

(AA) that elicit various biological effects. These bioactive epoxyeicosanoids are extensively 

hydrolyzed by soluble epoxide hydrolase into the less biologically active 

dihydroxyeicosatrienoic acid (DHET) metabolites. DHA, docosahexaenoic acid; DHEQ, 

dihydroxy-eicosatetraenoic acid; DHOME, dihydroxyoctadecaenoic acid; DiHDPA, dihydroxy-
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docosapentaenoic acid; EDP, epoxydocosapentaenoic acid; EEQ, epoxyeicosatetraenoic acid; 

EPA, eicosapentaenoic acid; EpOME, epoxyoctadecaenoic acid; LA, linoleic acid. 
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Figure B.2 Epoxyeicosatrienoic acid (EET) cardioprotection in the heart. A) EETs elicit 

action in cardiac endothelial cells (pro-angiogenic, anti-inflammatory), smooth muscle cells 

(vasodilatory), fibroblasts (anti-fibrotic), and inflammatory cells (anti-inflammatory). 

These effects may protect the myocardium following IR injury. B) EETs derived from 

cardiomyocytes (CMs) elicit direct cardioprotection of the myocardium during the acute 

phase following IR injury. They activate prosurvival signaling pathways, many of which 

converge ontomitochondria and promote its preservation. BNP, B-type natriuretic peptide; 

CAM, cell adhesion molecules; EC, endothelial cell; EGFR, epidermal growth factor 

receptor; ENK, enkephalin; IR, ischemia reperfusion; MCP-1, monocyte chemoattractant 
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protein-1; mitoKATP, mitochondrial ATP-activated K+ channel; mPTP, mitochondrial 

permeability transition pore; NF-κB, nuclear factor-κB; NPR-A, natriuretic peptide receptor 

type-A; p42/p44MAPK, p42/p44 mitogen-activated protein kinase; PI3K, phosphoinositide 

3-kinase; sarcKATP, sarcolemmal ATP-activated K+ channel; SMC, smooth muscle cell; 

STAT3, signal transducer and activator of transcription.  
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Tables 

 

Table B.1 Mechanisms underlying direct cardioprotective effects of epoxyeicosatrienoic 

acids (EETs) on cardiomyocytes 

EET action Model Mechanisms 

Reduced 

myocardial cell 

death and apoptosis 

 

Hypoxia-

reoxygenation (in 

vitro); OGD/RGR 

(in vitro) 

 

PI3K/Akt signaling (36, 38, 44) 

KATP channel signaling (37, 38) 

STAT3 signaling (40) 

Improved recovery 

of left ventricular 

developed pressure 

 

Global ischemia and 

reperfusion (ex vivo) 

 

KATP channel signaling (30, 31, 37, 48) 

p42/p44 MAPK signaling (30) 

PI3K/Akt signaling (30, 31, 36, 41, 116) 

BNP/NPR-A signaling (41) 

Opioid signaling (42)  

Protein phosphatase 2A signaling (114) 

Reduced leukotoxin diol levels (114) 

Reduced oxidative stress (114) 

Preservation of caveolin-1 (51)  
 

Reduced left 

ventricular infarct 

size 

 

Global ischemia and 

reperfusion 

(ex vivo);  Ischemia-

reperfusion (in vivo) 

PI3K/Akt signaling (31, 36) 

KATP channel signaling (26, 31-35, 37) 

STAT3 signaling (40)  

Opioid signaling (42) 

eNOS activation (35) 

Initial ROS formation (34) 

Inhibition of mPTP opening (35) 
 

Reduced chronic 

left ventricular 

remodelinga 

 

Ischemia-

reperfusion (in vivo) 

 

 

Increased eNOS : iNOS ratio (60) 

Reduced myocardial collagen deposition (58-61) 

Reduced cardiac fibroblast activation (59)  

Reduced inflammatory cytokines (58, 61) 

Reduced macrophage infiltration (59)  

Reduced oxidative stress (60) 
aChronic ischemia-reperfusion involved reperfusion periods of at least 2 weeks following ischemia 

Akt, protein kinase B; BNP, B-type natriuretic peptide; eNOS, endothelial nitric oxide synthase; iNOS, 

inducible nitric oxide synthase; KATP, ATP-activated K+ channel; mPTP, mitochondrial permeability 

transition pore; NPR-A, natriuretic peptide receptor type-A; OGD, oxygen and glucose deprivation; p42/p44 

MAPK, p42/p44 mitogen-activated protein kinase; PI3K, phosphoinositide 3-kinase; RGR, reoxygenation and 

glucose repletion; ROS, reactive oxygen species; STAT3, signal transducer and activator of transcription 3  
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