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ABSTRACT 
Sarah Lynn Vizza 

 A Prediction of SICK Scapula Syndrome Score from Muscle Activation and Kinematic 
Analysis in Overhead Athletes 

(Under the direction of Dr. Joseph B. Myers, Sakiko Oyama, Dr. Steven M. Zinder, and Dr. 
William E. Prentice) 

 
 

Objective: To determine if subject score on the SICK Scapula, Static Measurements, 

0 to 20 Point Rating Scale1 can be predicted from scapular stabilizer muscle activation.  

Design: Quasi-experimental, one group design with a counterbalancing of two functional 

tasks.  Subjects: NCAA Division I and/or recreational club overhead athletes (n = 40).  

Measurements: The SICK Scapula, Static Measurements, 0 to 20 Point Rating Scale1 was 

used for assessing the severity of scapular malposition.  Muscle activation was recorded for 

the upper trapezius, middle trapezius, lower trapezius, and serratus anterior muscles.  

Results: Regression analyses revealed that scapular stabilizer muscle activation amplitude 

did not significantly predict the subject score on the SICK Scapula, Static Measurements, 0 

to 20 Point Rating Scale.1  Conclusion: In overhead athletes, mean muscle activation 

amplitude of the scapular stabilizers was not found to be valid predictor of subject score on 

the SICK Scapula, Static Measurements, 0 to 20 Point Rating Scale.1  
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CHAPTER I 

INTRODUCTION 
 

An Overview  

 Shoulder pain, regardless of its nature, source, or severity, currently plagues today’s 

overhead athlete.2-4  The demands of sport require overhead athletes to repetitively endure 

high amounts of stress and strain to the glenohumeral and scapulothoracic joints.  These 

demands are great, and in turn, so is the risk of shoulder soft tissue injury due to overuse.  

Warner et al5 have shown that the vast majority of patients suffering from an overuse 

shoulder pathology present with scapulothoracic asymmetries during an elevation task.  

When evaluating a shoulder soft tissue injury, medical professionals face the challenge of 

determining whether scapular malposition and dyskinesis were the result of a shoulder joint 

pathology or the source of its development. Current literature suggests that scapular 

asymmetries may be an objective means of understanding the development of the shoulder 

pathology itself.1, 3, 5-16  Scapular malalignment is perhaps one of the most evident signs of 

shoulder dysfunction that may lead to the initiation of the pathological sequence of events 

thereafter.1, 3, 4, 8-10, 13-15, 17, 18 

 The upper extremity kinetic chain begins at the shoulder joint complex, with the 

scapula serving as the base of stability during the performance of overhead functional 

movement patterns.19  Because the scapula is connected to the axial skeleton via the small 

acromioclavicular joint, its stability and mobility are dictated by the numerous muscles 



attached to it.  The scapular force couple refers specifically to the stability and balance 

provided to the scapulothoracic joint by the upper trapezius, lower trapezius, rhomboid 

major, rhomboid minor, levator scapulae, and serratus anterior muscles.9  Alteration of the 

activity in any of the muscles contributing to this force couple can lead to the disruption of 

the force couple, which may decrease both the scapula’s stability and overall ability to serve 

as a muscle attachment site for the scapulothoracic and scapulohumeral muscles. When these 

muscles surrounding the shoulder girdle lose their stable base of attachment, dynamic 

glenohumeral joint stabilization may be compromised.  

The serratus anterior and trapezius muscles are recognized as two of the critical 

muscles providing scapular stability as well as serving to upwardly rotate the scapula.  

Having this critical role in scapular kinematics, various research studies suggest that 

dysfunction of these muscles are associated with overhead pathologies.9, 15, 19-23    

 Findings by Wadsworth et al23 revealed that, in a population of swimmers suffering 

from subacromial impingement syndrome, muscle recruitment of the serratus anterior was 

delayed when compared to an asymptomatic control group.  Results of a study by Ludewig et 

al10, 24 indicated that patients suffering from shoulder impingement syndrome displayed 

altered neuromuscular control of the scapular dynamic stabilizers when compared to an 

asymptomatic control group.  Based on the results of these studies, it can be theorized that 

altered muscle activation at the shoulder joint complex may be related to soft tissue injury.    

 Research has repeatedly shown that scapular dyskinesis and postural abnormalities in 

overhead athletes may be an important risk factor for the development of subacromial 

impingement syndrome.1, 3, 4, 8-10, 13-15, 17, 18  Shoulder soft tissue pathology and scapular 

dyskinesis appear to be intimately related to one another.  As a result, asymmetric 
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malpositioning of the scapula is now being considered a precursor to the development of a 

number of different shoulder joint pathologies, specifically subacromial impingement 

syndrome.1, 3, 4, 8-10, 13-15, 17, 18  Shoulder soft tissue overload and the subsequent injury that 

results from subacromial impingement syndrome have been linked to decreased scapular 

upward rotation, decreased scapular posterior tilt, and increased scapular internal rotation 

with humeral elevation tasks.10   

Burkhart et al1 use the acronym SICK when describing a specific form of scapular 

dyskinesis.  SICK scapula refers to the presence of Scapular malposition, Inferior medial 

border prominence, Coracoid pain and malposition, and dysKinesis of scapular movement.  

Overhead athletes diagnosed with SICK scapula syndrome typically present with a unilateral 

lowered and anteriorly tilted scapula with accompanied anterior shoulder pain on the 

involved side.  In overhead athletes, one initial sign of SICK scapula syndrome is shoulder 

biomechanical dysfunction and pain.  Because athletic skill is dependent on biomechanical 

ease and efficiency, shoulder pain and altered overhead biomechanics can become extremely 

debilitating for the competitive overhead athlete.1, 6, 7, 9, 13, 19, 25  With the ongoing 

establishment of SICK scapula syndrome, scapular dyskinesis is becoming more objectively 

assessed for both therapeutic rehabilitation purposes and prophylactic conditioning purposes. 

 

The Problem 

Currently there is much speculation among sports medicine professionals regarding 

the pathologic pathway occurring in the symptomatic overhead athletic shoulder.  This 

pathway is summarized in the above introduction and is a representation of the current status 

of understanding regarding chronic, overuse overhead shoulder pathologies in the athletic 
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population.  Unfortunately however, both the linkages and the sequence of the events taking 

place in this pathway remain unclear.  More specifically, it is not yet fully understood 

whether altered EMG muscle activation of the scapular stabilizers is a sign of an existing 

pathology or a precursor to its development. 

Overhead athletes are susceptible to developing postural malalignments due to 

overhead sport-specific pattern overloads.13, 26  As a result of these postural malalignments, 

muscle imbalances may develop at the shoulder joint complex, specifically between the 

anterior and posterior musculature of the thorax.  Whether unilateral or bilateral, muscle 

imbalance at the scapulothoracic joint can contribute to scapular malpositionings.  In 

overhead athletes exhibiting scapular malpositionings, passive lengthening of the thorax’s 

posterior musculature (i.e. the scapular stabilizers) has occurred in response to the passive 

shortening of the thorax’s anterior musculature (i.e. the pectoralis minor muscle).13, 26  

Altered length-tension relationships occurring within each of the scapular stabilizer muscles 

can lead to decreased function and force production, and as a result, lead to decreases in 

scapular stabilizer muscle strength.9, 19  Scapular force couple muscle imbalances are thought 

to compromise dynamic joint stabilization, specifically altering the upper trapezius to middle 

trapezius, lower trapezius, and serratus anterior force couple ratio.  Although there is no 

definitive link between muscle imbalances of the scapular force couple and shoulder 

subacromial impingement, the influence of such imbalances on scapular kinematics is one of 

potential injury acquisition.18  Even the most subtle scapular and/or glenohumeral muscle 

imbalance can lead to scapular dyskinesis9, 19, which in turn, can manifest itself into a 

predictable pattern of tissue overload and dysfunction.1, 3, 4, 8-10, 13-15, 17, 18   
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Whether via special tests (i.e. the Scapular Assistance Test) or the palpation of 

anatomical landmarks (i.e. the coracoid process of the scapula), one approach to the clinical 

diagnosis of an underlying shoulder pathology has been the use of patient self-reported pain 

symptoms.  Pain is the common thread interweaving most shoulder disorders, with the source 

and mechanism of such pain being of extreme variability.  Because pain is a person’s 

perception of physical damage, subjective athlete pain reports have the advantage of being 

athlete-specific and providing an important perspective on athlete status.  They cannot, 

however, accurately represent the presence or the severity of an actual physical impairment 

with associated soft tissue damage.  Currently, there is a need for validated, quantitative 

measures to improve the reliability of shoulder pathology assessment.   

As is the case with the clinical assessment of SICK scapula syndrome, qualitative 

pain measures provide an incomplete picture of the severity of this scapular malpositioning 

and dyskinetic disorder.  Based upon both the literature and screening guidelines of Burkhart 

and Morgan1, the severity of the SICK scapula syndrome is graded on a 0 to 20 point scale, 

with 0 representing complete shoulder health and 20 representing severe, symptomatic SICK 

scapula syndrome.  It must be noted, however, that both the validity and the reliability of this 

scale have not yet been established.  Typically upon screening, athletes who present with 

symptomatic SICK scapula syndrome will score somewhere within the range of 10 to 14 on 

the SICK Scapula, Static Measurements, 0 to 20 Point Rating Scale1, but, at this point in 

time, the scale’s diagnostic value is merely anecdotal.  This suggests the need for a valid, 

structured clinical tool that could be utilized by clinicians as a predictor for the potential, 

presence, and/or severity of SICK scapula syndrome.    
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Purpose and Clinical Relevance  

The purpose of this study was to validate the SICK Scapula, Static Measurements, 0 

to 20 Point Rating Scale, developed by Burkhart et al1,  by predicting subject score from 

scapular stabilizer muscle activity.  Determining the validity of the SICK Scapula, Static 

Measurements, 0 to 20 Point Rating Scale1 may allow clinicians to more readily utilize this 

scale as an accurate screening tool toward the identification of SICK scapula syndrome.   

The identification of scapular muscle dysfunction in pathologic, SICK scapula 

syndrome overhead athletes will allow the condition to be more successfully treated.  

Understanding the adaptive scapular stabilizer activation deficiencies associated with SICK 

scapula syndrome would allow clinicians to implement specific rehabilitation exercises when 

treating affected athletes.  The rehabilitation exercises that target the muscle identified to be 

dysfunctional in this study could help restore ideal scapular force couple synchronization, 

thus allowing the scapula to move harmoniously with the moving humerus.  Such fine-tuned, 

corrective exercise would effectively allow a rehabilitating athlete to have a pain-free return 

to competition.    
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Research Question 

Is mean electromyographic (EMG) amplitude of scapular stabilizer muscles a valid predictor 

of subject score on the SICK Scapula, Static Measurements, 0 to 20 Point Rating Scale1 

during functional tasks in overhead athletes? 

• RQ1: Is mean muscle activation amplitude of the upper trapezius a valid predictor of 

subject score on the SICK Scapula, Static Measurements, 0 to 20 Point Rating Scale1 

during functional tasks (glenohumeral elevation in the sagittal plane and 

glenohumeral elevation in the scapular plane) in overhead athletes?  

• RQ2: Is mean muscle activation amplitude of the middle trapezius a valid predictor of 

subject score on the SICK Scapula, Static Measurements, 0 to 20 Point Rating Scale1 

during functional tasks (glenohumeral elevation in the sagittal plane and 

glenohumeral elevation in the scapular plane) in overhead athletes?  

• RQ3: Is mean muscle activation amplitude of the lower trapezius a valid predictor of 

subject score on the SICK Scapula, Static Measurements, 0 to 20 Point Rating Scale1 

during functional tasks (glenohumeral elevation in the sagittal plane and 

glenohumeral elevation in the scapular plane) in overhead athletes?  

• RQ4: Is mean muscle activation amplitude of the serratus anterior a valid predictor of 

subject score on the SICK Scapula, Static Measurements, 0 to 20 Point Rating Scale1 

during functional tasks (glenohumeral elevation in the sagittal plane and 

glenohumeral elevation in the scapular plane) in overhead athletes?  

 

Research Design 

Quasi-experimental, nonequivalent one group design with a counterbalancing of tasks 
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Independent Variables (see Table 2) 

• Mean muscle activation amplitude (normalized to a maximum voluntary contraction) of 

the upper trapezius, middle trapezius, lower trapezius, and serratus anterior muscles 

during ascending and descending phases of functional movement patterns  

• Tasks 

o Glenohumeral elevation in the sagittal plane (flexion)  

o Glenohumeral elevation in scapular plane (scaption) 

• Phases of the tasks 

o Ascending phase of glenohumeral elevation  

 0-120º 

o Descending phase of glenohumeral elevation  

 120-0o 

 

Dependent Variable (see Table 2) 

• Severity of pathology 

o Subject score from the SICK Scapula, Static Measurements, 0 to 20 Point Rating 

Scale1 
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Hypotheses 

Mean muscle activation amplitude of the scapular stabilizers will be a valid predictor of 

subject score on the SICK Scapula, Static Measurements, 0 to 20 Point Rating Scale1 during 

functional movement patterns in overhead athletes   

• H1: An increase in upper trapezius mean muscle activation amplitude during functional 

tasks (glenohumeral elevation in the sagittal plane and glenohumeral elevation in the 

scapular plane) will be a valid predictor of subject score on the SICK Scapula, Static 

Measurements, 0 to 20 Point Rating Scale1 in overhead athletes. 

• H2: A decrease in middle trapezius mean muscle activation amplitude during functional 

tasks (glenohumeral elevation in the sagittal plane and glenohumeral elevation in the 

scapular plane) will be a valid predictor of subject score on the SICK Scapula, Static 

Measurements, 0 to 20 Point Rating Scale1 in overhead athletes. 

• H3: A decrease in lower trapezius mean muscle activation amplitude during functional 

tasks (glenohumeral elevation in the sagittal plane and glenohumeral elevation in the 

scapular plane) will be a valid predictor of subject score on the SICK Scapula, Static 

Measurements, 0 to 20 Point Rating Scale1 in overhead athletes. 

• H4: A decrease in serratus anterior mean muscle activation amplitude during functional 

tasks (glenohumeral elevation in the sagittal plane and glenohumeral elevation in the 

scapular plane) will be a valid predictor of subject score on the SICK Scapula, Static 

Measurements, 0 to 20 Point Rating Scale1 in overhead athletes. 
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Operational Definitions 

• Overhead athletes: 

o NCAA Division I overhead athletes and/or recreational club overhead athletes 

who participate in a sport that requires their arm to be above their shoulder height 

on a repetitive basis during throwing or striking activities (i.e. baseball, softball, 

swimming, tennis, volleyball).  Athletes must be active in their overhead sport for 

a duration of at least 30 minutes per session for at least 3 individual sessions per 

week 

• SICK scapula syndrome:  

o SICK Scapula, Static Measurements, 0 to 20 Point Rating Scale1 (see Figure 1) 

will be used to define the subjects with SICK scapula syndrome  

o Subjects who score a 10 or greater on the rating scale will be considered to have 

SICK scapula syndrome   

o Subjective    

 Coracoid process pain 

 Acromioclavicular joint pain 

 Periscapular pain (superior medial angle)  

 Subacromial pain (proximal lateral arm pain) 

 Radicular pain below the elbow 
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o Objective   

 Coracoid process tenderness 

 Acromioclavicular joint tenderness 

 Superior medial angle/scapular tenderness 

 (+) Provocative impingement test (Hawkins-Kennedy Impingement Sign)  

 (+) Scapular assistance test 

 (+) Thoracic outlet syndrome test (Allen Test) 

o Static Scapular Malposition  

 Infera (i.e. the visual appearance of a dropped scapula due to scapular 

tilting or protraction) 

 Lateral displacement 

 Abduction   
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o Functional movement patterns: 

 Glenohumeral elevation in the sagittal plane (flexion) with hand in neutral 

position  

 Glenohumeral elevation in the scapular plane (scaption) with hand in 

neutral position 

 Mean EMG amplitude for all functional movement patterns recorded upon 

both the ascending phase (0o-120o) and the descending phase (120o-0o) of 

shoulder flexion and scaption 

 Functional movement patterns will be performed in an approximately 2-

second ascending phase, 2-second descending phase motion  

 10 repetitions per each set  

 2-minute rest periods between all sets 

 

Assumptions 

• Sex did not influence the results of this study 

• Overhead athletes perform relatively the same functional glenohumeral/scapulothoracic 

movement patterns, regardless of  their specific overhead sport 

• Subject symptom report was both honest and unbiased 
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Delimitations 

• Subjects with the following history of injury will be excluded from the study to control 

for the influence of each injury on scapular muscle activity:  

o Shoulder or neck surgery 

o Rotator cuff tear 

o Cervical spine pathology 

o Acute-onset shoulder pathology within the last six months 

o Adhesive capsulitis 

o Unstable episodes within the last six months (glenohumeral subluxation, 

dislocation, self-subluxation) 

o Scoliosis  

 



 

 

 

CHAPTER II 

REVIEW OF THE LITERATURE 
 
 

Introduction 

 There are a number of gaps in the current literature concerning the role that scapular 

muscle activation, scapular kinematics, and shoulder biomechanics play in the progression of 

injury to the shoulder joint complex in athletics.  Disagreement exists regarding both the 

etiology and the sequence of events thereafter concerning these chronic, overuse injuries 

afflicting much of today’s athletic population.2-4   

 Currently there is much debate surrounding the topic of scapular dyskinesis as to 

whether it is a precursor, product, or complication of shoulder soft tissue pathology.  

Nevertheless, studies have shown that alterations in scapular position and motion occur in 64 

to 100% of patients afflicted with shoulder injuries.5  Kibler et al9 have shown that scapular 

dyskinesis is extremely prevalent among individuals suffering from some type of shoulder 

pathology, revealing its occurrence in 68% of patients with rotator cuff abnormalities, 94% 

of patients with labral tears, and 100% of patients with diagnosed glenohumeral multi-

directional instability.  These findings are further supported by Warner et al5 in a study 

comparing subjects suffering from overuse shoulder pathologies with that of an 

asymptomatic control group.  Findings of this study revealed that the vast majority of the 

pathologic population presented with scapulothoracic asymmetries.   



With the highly repetitious nature concerning the demands of overhead athletics, any 

degree of scapular malalignment or dyskinesis could exacerbate an already underlying soft 

tissue pathology.  Future research needs to be focused toward understanding what acts as the 

catalyst in the progression from sport-specific pattern dominance to injury.  Clinically, 

further understanding regarding scapular asymmetries could lead to the implementation of 

prophylactic conditioning protocols, effective treatments for pain management, and 

corrective, therapeutic exercises to help return athletes to their peak of athleticism.    

 

Critical Shoulder Anatomy 

 Before one can master the art of effectively treating a shoulder pathology, one must 

first understand both the structural and functional anatomy comprising the shoulder joint 

complex.  A true understanding of shoulder girdle anatomy will reveal how the form of the 

shoulder’s bony and soft tissue structures effectively suits its function.  

 The shoulder joint complex refers to the intricate arrangement of the humerus, 

clavicle, scapula, and sternum and their articulations with one another.  The joint “complex” 

itself is actually composed of four distinct joints: the sternoclavicular joint, acromioclavicular 

joint, glenohumeral joint, and scapulothoracic joint. 

 

Sternoclavicular Joint 

 The clavicle is commonly referred to as a “strut” capable of supporting the 

glenohumeral joint in a free-moving, suspended position lateral to the midline of the axial 

skeleton.  The sternoclavicular joint refers to the articulation of the sternal extremity of the 

clavicle with the clavicular fossa of the manubrium, with an articular disk interposed between 
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the two.  This saddle-type joint allows for clavicular elevation/depression, anterior/posterior 

rotation, and protraction/retraction throughout shoulder range of motion in three planes of 

movement.25   

 Static stabilization at the sternoclavicular joint is provided by the costoclavicular 

ligament, the interclavicular ligament, and the sternoclavicular ligaments.  These ligamentous 

structures provide restraint against distal loads.  The costoclavicular ligament is comprised of 

two portions, an anterior portion and a posterior portion.  The anterior portion of the 

costoclavicular ligament functions to resist both upward rotation and lateral displacement of 

the medial clavicle on the clavicular fossa of the manubrium, while the posterior portion of 

the costoclavicular ligament functions to resist both downward rotation and medial 

displacement of this same articulation.  The interclavicular ligament adjoins the right 

mediosuperior clavicle to the left mediosuperior clavicle, just superior to the manubrium.  

This ligament is capable of preventing downward rotation of the lateral clavicle upon distal 

loading.  Similar in function to that of the interclavicular ligament are the sternoclavicular 

ligaments.  These ligaments are sectioned thickenings of the sternoclavicular joint capsule, 

and as indicated, prevent downward rotation of the lateral clavicle upon distal loading.25  

   

Acromioclavicular Joint 

 Laterally the clavicle articulates with the acromion process.  Joint congruency 

between these two bony surfaces is provided by a meniscoid disk located within the 

acromioclavicular joint capsule.  Stability at the acromioclavicular joint comes from the 

strength provided by its joint capsule, with capsular thickness most substantial at its superior 

portion.  Stability at the acromioclavicular joint is also provided indirectly from two auxiliary 

 16



ligaments, the coracoacromial ligament and the coracoclavicular ligament.  The 

coracoacromial ligament runs from the coracoid process to the inferior surface of the 

acromion process.  The coracoclavicular ligament is actually made up of two distinct smaller 

ligaments, the conoid and the trapezoid.  Similar in function to that of the coracoacromial 

ligament, this ligamentous complex acts to absorb and distribute distal loads that occur at or 

around the acromioclavicular joint.  As previously mentioned, both the coracoacromial 

ligament and the coracoclavicular ligamentous complex assist the acromioclavicular joint 

capsule in adjoining the clavicle to the scapula. 

   

Glenohumeral Joint 

By far the most intricate articulation of the shoulder joint complex is the 

glenohumeral joint.  This articulation consists of the hemi-spherical humeral head on the 

glenoid fossa of the scapula.  The anatomy of these two articulating surfaces greatly favors 

joint mobility to joint stability.  The mobility of this ball-and-socket joint is remarkable and 

allows for fine, distal motor skill at both the wrist and fingers.  

 Static stabilization at the glenohumeral joint is provided by a number of different 

components.  The first component is known as humeral version.  Humeral version refers to 

the 130 to 140 degree posterior angulation of the humeral neck relative to the humeral shaft, 

as well as the 30 degree retroversion of the humeral head relative to the transepicondylar axis 

of the elbow.25  Both of these anatomical angulations help to control anterior humeral head 

translation by increasing the articular stability of the humeral head on the shallow glenoid 

fossa in a posteriorly directed position.    
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 The second component of glenohumeral joint static stabilization is known as glenoid 

version.  Differing slightly from humeral version, glenoid version refers the angulation of the 

glenoid fossa relative to the scapula.  In a resting position, the glenoid fossa has been found 

to have a 5-degree superior tilt relative to the scapular body.25  This anatomical angulation 

helps to control inferior humeral head translation by increasing the articular stability of the 

humeral head on the glenoid fossa in a superiorly directed position. 

 The third component of glenohumeral joint static stabilization is the presence of a 

fibrocartilaginous ring known as the glenoid labrum.  The nature of the glenohumeral ball-

and-socket joint is one of a very large ball relative to a very small, shallow socket.  Studies 

have revealed that only approximately 25% of the humeral head is in contact with the glenoid 

fossa’s center of rotation at any point throughout full humeral range of motion.  The 

glenohumeral index is a ratio, where maximum glenoid diameter is divided by maximum 

humeral diameter.  Calculations reveal the glenohumeral index to be 0.75 in the sagittal plane 

and 0.76 in the transverse plane, indicating the inherent instability found within the 

glenohumeral articulation itself.  The glenoid labrum functions to deepen the glenoid fossa 

by 9 mm in the superior-inferior direction and by 5 mm in the anterior-posterior direction.25  

This deepening of the socket results in up to a 50% depth increase of the glenoid fossa and 

helps to stabilize the humeral head on the glenoid fossa.   

 The fourth component of glenohumeral joint static stabilization is the presence of 

intraarticular pressure.  Within the glenohumeral joint capsule, there is a slightly negative 

intraarticular pressure that functions to center and hold the humeral head on the glenoid 

fossa.  This suction effect is extremely effective at decreasing the space between the humeral 

head and the glenoid cavity when the shoulder is in a resting position but gradually decreases 

 18



as the humerus moves from adduction to abduction and from internal rotation to external 

rotation.   

 As intraarticular pressure decreases in effectiveness throughout humeral elevation, the 

glenohumeral joint’s static restraints increase in value.  These static stabilizers are referred to 

collectively as the glenohumeral ligament complex and are of increasing importance as the 

humerus moves from a neutral position to positions of shoulder abduction, flexion, and 

external rotation.  Specifically, this complex consists of the superior glenohumeral ligament, 

middle glenohumeral ligament, and inferior glenohumeral ligament.  The superior 

glenohumeral ligament runs from the supraglenoid tubercle of the scapula to the lesser 

tuberosity of the humerus.  The primary function of this ligament is to prevent excessive 

inferior translation of the humerus when the shoulder is in neutral and to prevent excessive 

shoulder external rotation in the early degrees of frontal plane range of motion.  The middle 

glenohumeral ligament runs from the superior glenoid fossa region of the scapula to the 

lesser tuberosity of the humerus.  The primary function of this ligament is to prevent 

excessive anterior translation of the humerus when the shoulder is abducted to 45 degrees 

and to prevent excessive external rotation of the humerus when the shoulder is abducted 

between 60 and 90 degrees.  The inferior glenohumeral ligament is actually comprised of two 

distinct bands, an anterior and a posterior band.  The anterior band of the inferior 

glenohumeral ligament runs from the superior-anterior glenoid labrum to the inferior humeral 

head near the subscapularis tendon, and the posterior band of the inferior glenohumeral 

ligament runs from the superior-posterior glenoid labrum to the inferior humeral head near 

the triceps long head tendon.  The coupling of these two ligament bands allows the inferior 

glenohumeral ligament to shift positions dependent on shoulder position.  When the humerus 
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is in a position of abduction/external rotation, the inferior glenohumeral ligament shifts 

anteriorly, hence allowing it to prevent excessive anterior translation of the humerus.  When 

the humerus is in a position of abduction/internal rotation however, the inferior glenohumeral 

ligament shifts posteriorly, therefore positioning itself to prevent excessive posterior 

translation of the humerus.  One final ligamentous structure of the glenohumeral joint is the 

coracohumeral ligament.  The coracohumeral ligament is extraarticular in nature, running 

from the lateral coracoid process and inserting on both the lesser and greater tuberosities of 

the humerus.  The primary function of this ligament is to prevent excessive inferior 

translation when the humerus is in a position of adduction/external rotation. 

 The glenohumeral joint is dynamically stabilized by both the rotator cuff musculature, 

specifically the supraspinatus, infraspinatus, teres minor, and subscapularis, and the long 

head of the biceps brachii muscle.  Each of the individual muscles of the rotator cuff and the 

biceps brachii originate on the scapular body and insert onto the humeral head, thus pulling 

the humerus closer to the glenoid cavity upon activation.  Simultaneous contraction of these 

five muscles creates a compression effect of the humeral head into the glenoid cavity.  As the 

rotator cuff and biceps brachii musculature contract to pull the humeral head downward and 

inward, this humeral head compression is coupled by the upward and outward pull of the 

anterior, middle, and posterior deltoid musculature.  This mechanism is commonly referred 

to as the glenohumeral force couple in the frontal plane.  When in balance, this force couple 

functions to center the humeral head in the glenoid cavity by resisting excessive superior-

inferior humeral translation.  Another glenohumeral force couple refers to the simultaneous 

contraction of the infraspinatus, teres minor, and subscapularis muscles.  This mechanism is 

commonly referred to as the glenohumeral force couple in the sagittal plane.  When in 
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balance, this force couple functions to center the humeral head in the glenoid cavity by 

resisting excessive anterior-posterior humeral translation.   

 

Scapulothoracic Joint  

The scapulothoracic joint refers to the non-traditional articulation between the 

anterior, concave surface of the scapula on the posterior, convex surface of the thorax.  This 

specific joint is non-traditional in nature due to its stabilizing features.  The scapulothoracic 

joint is comprised solely of dynamic stabilizers functioning to suspend the scapula on the 

posterior thorax wall.  Perhaps the most defining characteristic of the scapulothoracic joint is 

its high degree of mobility.  This mobility of the scapula on the thorax wall is made possible 

due to the influence of the force couple of the muscles attached to the scapula.  Although 

there are numerous periscapular muscles that attach to the scapula, the scapular force couple 

refers specifically to the stability and balance provided to the scapulothoracic joint by the 

upper trapezius, middle trapezius, lower trapezius, rhomboid major, rhomboid minor, levator 

scapulae, and serratus anterior muscles.9  The scapular stabilizers function both eccentrically 

and concentrically to position the scapula on the thorax throughout upper extremity range of 

motion.  Eccentrically, the scapular stabilizers undergo controlled lengthening (i.e. 

deceleration of shoulder internal rotation/protraction/extension).  Concentrically, the scapular 

stabilizers undergo active shortening (i.e. acceleration of shoulder external 

rotation/retraction/flexion).  Optimal scapular force couple synchronization allows for normal 

scapular rotation.3    

 The upper trapezius has an origin at the external occipital protuberance and an 

insertion at the posterior-lateral clavicle.  Contraction of the upper trapezius creates scapular 
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upward rotation, elevation, and retraction.  The middle trapezius has an origin at spinous 

processes of the first through fifth thoracic vertebrae and an insertion at the medial margin of 

the acromion.  Contraction of the middle trapezius creates scapular upward rotation and 

retraction.  The lower trapezius has an origin at the spinous processes of C7 through T12 and 

an insertion at the tubercle crest of the scapular spine.  Contraction of the lower trapezius 

creates scapular upward rotation, depression, and retraction.  The rhomboid major has an 

origin at spinous processes of the T2 through T5 vertebrae and an insertion at the medial 

scapular border from the scapular spine to the inferior angle.  Contraction of the rhomboid 

major creates scapular retraction, downward rotation, and depression.  The rhomboid minor 

has an origin at the nuchal ligament and the spinous processes of C7 and T1 vertebrae and an 

insertion at the medial scapular border of scapula just inferior to the scapular spine.  Similar 

to that of the rhomboid major, contraction of the rhomboid minor creates scapular retraction, 

downward rotation, and depression.  The serratus anterior is composed of three distinct 

divisions.  The first division has origins on the first and second ribs and an insertion onto the 

superior angle of the scapula.  The second division has origins on the second, third, and 

fourth ribs and an insertion onto the anterior-medial border of the scapula.  The third division 

has origins on the fifth through the ninth ribs and an insertion onto the inferior border of the 

scapula.  Contraction of the serratus anterior creates scapular protraction and upward 

rotation.  Most importantly, the serratus anterior acts as the primary scapular stabilizer 

holding the scapula securely onto the thorax wall, a crucial role in the maintenance of normal 

scapular kinematics.  
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Neuromuscular Control of the Shoulder 

Coinciding with the dynamic stability provided by the shoulder joint complex’s 

surrounding musculature comes one final mechanism responsible for joint stability, 

neuromuscular control.  Neuromuscular control is defined as the unconscious activation of 

dynamic restraints occurring in preparation and in response to joint motion and loading for 

the purpose of maintaining functional joint stability.27  Neuromuscular control is the 

preparatory muscle contraction that occurs in response to anticipated external loads as a 

means of injury prevention.  The ability to unconsciously stabilize the shoulder joint 

complex, especially when in vulnerable positions throughout the range of motion, 

significantly minimizes the potentially devastating consequences that could result without 

this mechanism of dynamic stabilization.27 

 

Overview of Shoulder Osteokinematics and Arthrokinematics 

 The kinematics involved at the shoulder joint complex are joint-specific and 

extremely multifaceted.  The sternoclavicular, acromioclavicular, glenohumeral, and 

scapulothoracic joints are each mechanically unique from one another.  At the 

sternoclavicular joint, the clavicle rotates superiorly with shoulder flexion/abduction and 

rotates inferiorly with shoulder extension/adduction.  The clavicle also rotates anteriorly with 

scapular protraction and posteriorly with scapular retraction.25  Shoulder flexion causes the 

clavicle to posteriorly rotate on its axis approximately 45 degrees.25 

 At the glenohumeral joint, the humeral head glides anteriorly with shoulder external 

rotation and posteriorly with shoulder internal rotation.  The humeral head also glides both 

posteriorly and inferiorly upon humeral flexion and anteriorly and superiorly upon humeral 
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extension.  Lastly, the humeral head glides inferiorly with abduction and superiorly with 

adduction.   

 The kinematics of the scapulothoracic joint are typically described using three sets of 

rotational descriptives: anterior and posterior tilting, upward and downward rotation, and 

internal and external rotation.  These three rotation sets occur in the following axes: anterior 

and posterior tilting occurs about an axis that runs through the scapular spine, upward and 

downward rotation occurs about an axis perpendicular to the plane of the scapula, and 

internal and external rotation occurs about an axis parallel to the longitudinal axis of the 

thorax.28  Humeral elevation involves the simultaneous scapular kinematics of posterior 

tilting, upward rotation, and external rotation, while humeral depression involves the 

simultaneous scapular anterior tilting, downward rotation, and internal rotation.4       

 While there is indeed independent movement occurring at each of the four 

articulations of the shoulder joint complex, there is also an intimate relationship between all 

four.  Such kinematic synchronization is the key to the efficient upper extremity movement.4, 

9, 13, 19, 25, 29  One such relationship is commonly referred to as scapulohumeral rhythm.  

Scapulohumeral rhythm accounts for the approximately 2:1 ratio between glenohumeral 

abduction and scapulothoracic rotation occurring throughout overhead activities when the 

athlete is functioning between 20 and 120 degrees of glenohumeral abduction.4, 13, 25, 29    

Prior to 20 degrees of glenohumeral abduction, the scapula is stationary as it is being held 

onto the thorax by the scapular stabilizers.  After 120 degrees of glenohumeral abduction, 

scapulohumeral rhythm shifts from an approximately 2:1 ratio between glenohumeral 

abduction and scapulothoracic rotation to an approximately 1:1 ratio for the remainder of 

overhead range of motion achievement.4, 13, 25, 29   
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Characteristics of the Athletic Shoulder 

 The complexity of the shoulder joint complex cannot fully be appreciated until it is 

looked at kinematically throughout the demands of athletics.  In a healthy population of 

athletes, according to Kibler19, there are five major functions of the scapula.  The first role of 

the scapula is to provide stability to the glenohumeral joint.  In doing so, the scapula moves 

harmoniously with the moving humerus to ensure that there is always a stable center of 

rotation for the moving humerus throughout its active range of motion.  When the humerus 

and the scapula move in coordination with one another, the humeral head will remain 

centered on the glenoid cavity throughout the range of motion, which allows for 

glenohumeral activity with minimum stress on the surrounding soft tissue structures.   

 The second role of the scapula is its ability to both protract and retract.  As was 

previously described, the scapula will retract and externally rotate along the thorax as the 

humerus moves from a position of extension and internal rotation to a position of flexion and 

external rotation.  The position of shoulder flexion, maximum external rotation and abduction 

to 90 degrees, often referred to as the “cocking” phase of throwing or serving, is crucial for 

overhead athletes, because it allows the anterior musculature of their shoulder and trunk (i.e. 

the horizontal adductors – pectoralis major and pectoralis minor) to undergo maximum 

tension just prior to an explosive, concentric contraction.  The acceleration of the limb by the 

explosive muscle contraction is directly related to the velocity of the pitch or a serve, and 

therefore is critical for an overhead athlete’s performance.  Scapular protraction is what is 

occurring throughout the completion of the acceleration phase of an overhead athlete’s 

functional movement pattern, where the scapula is internally rotating along the thorax as the 
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humerus moves from a position of flexion and external rotation to a position of extension and 

internal rotation.   

 The third role of the scapula regards acromial elevation.  Acromial elevation prevents 

impingement of the rotator cuff tendons in the “cocking” phase of the overhead athlete 

functional movement pattern.  Fleisig et al17 found that almost all throwing and serving 

activities occur with the humerus-to-scapular spine angle between 85 to 100 degrees of 

abduction, thus making rotator cuff impingement seemingly inevitable without acromial 

elevation.  Similar to these findings, Myers et al13 found an adaptive increase in scapular 

upward rotation among normal, healthy throwing athletes.  This adaptation was believed by 

the authors to assist in the achievement of subacromial clearance throughout the throwing 

movement pattern, thus acting as a means of injury prevention (i.e. subacromial 

impingement). 

 The fourth role of the scapula concerns its function as a site for muscle origin as well 

as insertion for both the intrinsic and extrinsic muscles of the shoulder joint complex.  

Specifically, the scapula is the insertion site for the scapular stabilizers (i.e. the rhomboid 

major, rhomboid minor, serratus anterior, levator scapulae, and all three divisions of the 

trapezius).  Also, the scapula is the origin for the four rotator cuff muscles, as well as the 

teres major, biceps brachii, middle and posterior deltoid, and the long head of the triceps 

brachii.   

 The fifth and final role of the scapula coincides with the fourth role that the scapula 

plays in athletic function.   The scapula acts as an extremely crucial link in the body’s kinetic 

chain, transferring the power generated from the lower extremity and trunk to the functional 

movement pattern of an athlete’s sport-specific motion.  By providing this dynamic link 
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between the trunk and the humerus, the muscles originating and inserting on the scapula are 

the driving force behind all scapular and glenohumeral kinematic movement.  When there is 

a disruption of this dynamic link (i.e. scapular muscle activation dysfunction), inefficient 

energy transfer occurs throughout the kinetic chain, leading to decreased athletic 

performance.  

 

Pathology of the Athletic Shoulder  

 When there is harmony between each of the shoulder joint complex’s many facets, 

the shoulder is capable of functioning efficiently.  It becomes very clear, however, after 

understanding both the anatomy and kinematics involved that the potential for dysfunction at 

the shoulder joint complex is innate to its structural and functional complexity.  The demands 

of sport are remarkable and require overhead athletes to repetitively endure high amounts of 

stress and strain to the glenohumeral and scapulothoracic joints.  Even the most subtle 

disruption of one of the static or dynamic components of shoulder joint stabilization can lead 

to kinematic dysfunction, tissue overload, and injury acquisition.1, 6, 7, 9, 13, 19, 25  Subacromial 

impingement syndrome describes the pathologic contact of the shoulder rotator cuff tendons, 

biceps brachii long head tendon, or other glenohumeral joint soft tissue structures with the 

inferior surface of the acromion process and/or coracoacromial ligament.17  Due to long-term 

mechanical overload, the result of subacromial impingement is often abrasion, compression, 

entrapment, degeneration, or even full thickness rupture of one or a number of the 

musculotendonous structures lying within the subacromial space.4  Countless researchers 

have dedicated themselves toward understanding the progression from sport-specific 
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functional pattern dominance to injury, and as a result, many different theories currently 

exist.   

 Despite the researchers’ effort to identify a defining characteristic of individuals with 

subacromial impingement syndrome, the risk factors toward the development of this injury 

have not been clearly understood due to the lack of prospective design studies.  However, 

various physical characteristics have been suggested to be associated with the subacromial 

impingement syndrome.  The following five conditions are, perhaps, the most important 

concerning the progression of shoulder soft tissue pathology: forward head and rounded 

shoulders posture, posterior shoulder tightness and/or contracture, anterior coracoid 

musculature tightness and/or contracture, weakness and/or inhibition-based muscle 

dysfunction of scapular stabilizers, and altered neuromuscular control patterns of 

glenohumeral or scapular force couple muscles.1, 6, 7, 15, 27, 30-32  

 

Forward Head and Rounded Shoulders Posture 

 The first commonly described predisposing factor contributing to the acquisition of 

subacromial impingement syndrome is a forward head and rounded shoulders posture 

(FHRSP).  Patients with shoulder pain demonstrate a scapular resting position of increased 

protraction and downward rotation when compared to those with ideal posture, as well as an 

increased kyphotic angle of the thoracic spine.15  Thoracic kyphosis refers to an increased 

posterior spinal curvature of at least 5 degrees due to an anterior vertebral wedging-effect 

that involves at least three consecutive vertebrae.25  Thigpen15 found that subjects with 

FHRSP displayed significant alterations in scapular kinematics during humeral elevation in 

the frontal plane.  Specifically, these individuals remained in an increased scapular internally 
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rotated and anteriorly tilted position throughout humeral elevation when compared to those 

with ideal posture.  FHRSP is thought to decrease the size of the subacromial space, therefore 

decreasing the space of the supraspinatus outlet and increasing one’s potential toward the 

acquisition of subacromial impingement syndrome.  

 

Posterior Shoulder Tightness and/or Contracture 

 A second commonly described predisposing factor of subacromial impingement 

syndrome, as well as internal impingement, is posterior shoulder tightness or contracture.  

Myers et al32 found that throwers with pathologic internal impingement demonstrated 

increased posterior shoulder tightness, with their GIRD to ERG ratio less than or equal to 

one.33  GIRD is the acronym used to describe Glenohumeral Internal Rotation Deficit based 

on the difference in internal rotation between the involved and uninvolved shoulder.  ERG, 

on the other hand, is the acronym used to describe External Rotation Gain based on the 

difference in external rotation between the involved and uninvolved shoulder.  The authors 

believe that a GIRD greater than the ERG was a predisposing factor toward the acquisition of 

shoulder soft tissue pathology, specifically internal impingement.  Pathologic internal 

impingement refers to a condition in which there is an impingement occurring of the 

supraspinatus and/or the infraspinatus tendons between the greater tuberosity of the humerus 

and the posterior aspect of the glenoid rim.6, 7, 32  Typically, this type of impingement will 

present itself as posterior shoulder pain.  Chronic internal impingement, whether due to 

posterior shoulder tightness or some other etiology, may result in lesion development on the 

involved tendon(s).  Internal impingement may also be related to posteriorsuperior glenoid 

labrum fraying (i.e. superior labral anterior posterior (SLAP) lesions).   
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Kibler et al9 theorized that an inflexibility or contracture of the posterior capsule 

would increase scapular protraction and scapular depression.  Excessive scapular protraction 

due to a contracture of the posterior joint capsule is thought to cause subacromial 

impingement as the scapula internally rotates and tilts anteriorly, thereby narrowing the 

subacromial space.10, 19, 25  

 

Anterior Coracoid Musculature Tightness and/or Contracture 

 Another commonly described possible predisposing factor of subacromial 

impingement syndrome is anterior musculature tightness or contracture.  Kibler et al9 

reported from their clinical observation that subjects with scapular dyskinesis exhibit 

tightness of the pectoralis minor and short head of the biceps brachii, as well as increased 

anterior scapular tilt.  Tightness of the anterior musculature is thought to cause the coracoid 

process to be pulled anteriorly due to its increased tension, resulting in increased scapular 

protraction, scapular depression, and scapular downward rotation.  Borstad et al34 compared 

subjects within a long pectoralis minor group with those in a short pectoralis minor group 

and found that the long pectoralis minor group demonstrated significantly more scapular 

posterior tipping when compared to the short pectoralis minor group at 90 degrees of humeral 

elevation.  Individuals with increased pectoralis minor tension were demonstrated to have 

increased scapular internal rotation with humeral elevation.  Excessive scapular protraction 

due to tightness of the anterior coracoid muscles is likely to cause subacromial impingement 

as the scapula internally rotates and tilts anteriorly.10, 19, 25 

 The findings of Borstad et al34 are consistent with Ludewig et al35 who concluded that 

increased pectoralis minor tightness impedes normal scapular posterior tipping motion.  In 
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addition to these findings, Ludewig et al35 speculated that rhomboid major, rhomboid minor, 

and levator scapulae tightness may impede the normal scapular upward rotation.  These 

authors theorize that decreased scapular posterior tipping, in conjunction with decreased 

scapular upward rotation and decreased scapular retraction, may have the potential to 

contribute to clinical pathology of the shoulder’s soft tissue structures.9, 34, 35  

 

Weakness and/or Inhibition-based Muscle Dysfunction of Scapular Stabilizers 

 A fourth commonly described predisposing factor of subacromial impingement 

syndrome is periscapular muscle weakness and/or inhibition.  The upper extremity kinetic 

chain begins at the shoulder joint complex, with the scapula serving as the base of stability 

during the performance of overhead functional movement patterns.  Overuse of an athlete’s 

sport-specific upper extremity movement system can result in the development of upper 

extremity muscle imbalances.  As was previously mentioned, there is adaptive muscle 

shortening of the pectoralis minor in some athletes, but there is also adaptive muscle 

weakening of the middle trapezius, lower trapezius, serratus anterior, rhomboid minor, and 

rhomboid major in these individuals.9, 34, 35  These adaptations are known as upper-cross 

syndrome.26  Within muscle altered length-tension relationships of scapular force couple 

muscles compromise dynamic joint stability, specifically altering the upper trapezius to 

middle trapezius, lower trapezius, and serratus anterior force couple ratio.13  Most researchers 

agree that the serratus anterior and the lower trapezius are inherently the most susceptible of 

the scapular stabilizers to the effects of both weakness and inhibition.15, 21, 23, 36  When the 

serratus anterior and lower trapezius suffer weaknesses, there is a significant decrease in 

scapular upward rotation.37  Also, inadequate serratus anterior function prevents the 
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anchoring of the inferior scapular angle to the wall of the thorax, thus also preventing smooth 

scapular movement.3  This is commonly referred to as a “winging” effect of the involved 

scapula. 

 Ludewig et al10 compared both shoulder electromyographic (EMG) activity and 

kinematics of subjects with symptoms of subacromial impingement syndrome to an 

asymptomatic control group as each group performed humeral elevation in the scapular plane 

(scaption) under three hand-held load conditions: no load, 2.3-kg load, and 4.6-kg load.  It 

was revealed that subjects in the subacromial impingement syndrome group demonstrated a 

statistically significant 9% reduction in serratus anterior muscle activity across load and 

phase conditions as well as a very subtle increase in the upper trapezius muscle activity.  

These findings are consistent with those demonstrated by Wadsworth et al23, where the 

activation of the serratus anterior muscle of swimmers suffering from subacromial 

impingement syndrome was found to be delayed by three times when performing a scapular 

plane elevation task as compared to the asymptomatic control group.    

Myers et al13 stated that poor scapular positioning and movement can lead to altered 

length-tension relationships of the periscapular musculature, thus adversely affecting their 

ability to generate force.  Similarly, Kibler19  found that subjects displaying scapular 

dyskinesis demonstrated a lack of stability regarding their periscapular musculature, leading 

the author to theorize that dysfunctional scapular muscle performance is indeed a 

contributing factor for scapular dyskinesis.  Weaknesses of the scapular stabilizers resulted in 

force production alterations, and thus an overall decrease in their development of maximal 

torque.  Kibler19 stated that if the scapula became a truly unstable base, a compensatory 

reversal of origin and insertion characteristics result.  In the pathologic population of 
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individuals suffering from scapular dyskinesis, the authors observed the scapula actually 

being pulled laterally into a position of scapular protraction and scapular external rotation by 

the humeral distal insertion sites, which were consequently acting as the more stable base. 

 

Altered Neuromuscular Control of Glenohumeral and Scapular Force Couples 

 Altered neuromuscular control patterns act very similar in effect to that of muscle 

imbalances due to weakness and/or inhibition.  These alterations of the shoulder joint 

complex’s neuromuscular control patterns are the fifth commonly described predisposing 

factor of subacromial impingement syndrome.  As defined by Myers et al27, neuromuscular 

control refers to the unconscious control of dynamic restraints occurring in preparation and in 

response to joint motion and loading for the purpose of maintaining functional joint stability.  

One component of neuromuscular control is proprioception – the specialized variation of 

sensory modality of touch that encompasses the sensation of joint movement (kinesthesia) 

and joint position – which is transmitted via intrafusal muscles spindles to the central nervous 

system.5  In a pre-test/post-test research design with a fatigue intervention, Myers et al31 

required subjects to perform either an active angle-reproduction test or a single-arm dynamic 

stability test both before and after performing a fatigue protocol.  Fatigue tasks utilized 

continuous concentric shoulder internal and external rotation.  Myers et al31 concluded that 

muscle fatigue desensitized muscle spindle threshold, thereby possibly decreasing afferent 

feedback to the central nervous system.  The authors theorized that fatigue had decreased 

proprioception by affecting the mechanoreceptors present within the musculature of the 

shoulder, thus hindering the neuromuscular control of joint stability.   
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 Similar to previous findings, Myers et al27 found that decreased proprioception and 

altered neuromuscular control resulted in functional instabilities of the glenohumeral joint.  

Myers et al38 stated that more sensitive muscle spindles are capable of detecting stretch 

caused by perturbation, thus producing rapid reflexive responses.  Myers et al24 also 

concluded that there exists altered neuromuscular control patterns in subjects with anterior 

glenohumeral instability.  Specifically, these subjects displayed a suppression of pectoralis 

major and biceps brachii mean activation, increased peak activation of the rotator cuff 

muscles, a slower biceps brachii reflex latency, and suppression of both the supraspinatus 

and subscapularis muscles.  Any loss of dynamic joint stability, whether acute or chronic in 

mechanism, can potentially lead to subacromial impingement of the shoulder’s soft tissue 

structures.  As laxity increases about the glenohumeral joint, in turn so does the potential for 

subacromial impingement symptoms secondary to unstable episodes (i.e. glenohumeral 

dislocation/subluxation).5  In general glenohumeral instabilities are thought to manifest 

themselves as shoulder pain due to subacromial impingement syndrome.39   

 

Scapular Dyskinesis 

 One final, and possibly the most significant, predisposing factor of subacromial 

impingement syndrome is the presence of scapular dyskinesis.  By definition scapular 

dyskinesis is an alteration in the normal position or motion of the scapula during coupled 

scapulohumeral movements.9  Scapular dyskinesis is associated with shoulder pain and 

typically coincides with any combination of the above possible predisposing factors of 

subacromial impingement syndrome.1, 6-10, 13, 18, 19  Any combination of these conditions can 

provide an adequate mechanism of injury for the initial development of subacromial 
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impingement syndrome.9  It is speculated that the result of subacromial impingement is 

inhibition or disorganization of scapular muscle activation patterns, and ultimately, scapular 

dyskinesis.9  Scapular kinematic alterations have been previously identified in subjects with 

shoulder impingement syndrome.4, 5, 8, 9, 11, 12, 18   Studies comparing the scapular kinematics 

of healthy subjects and subjects with subacromial impingement have revealed that the 

pathologic subjects demonstrated increased anterior tilt, increased internal rotation, and 

decreased upward rotation of the scapula during humeral elevation.  Researchers concluded 

that such altered scapular kinematics may decrease the size of the subacromial space, thus 

increasing one’s susceptibility for soft tissue impingement.  

 Ebaugh et al29, Tsai et al16, and Su et al14 utilized fatigue tasks  to compare subject 

scapular kinematics under  pre-fatigue and post-fatigue conditions.  The authors theorized 

that fatigue was capable of producing scapular kinematic changes, specifically a decrease of 

scapular posterior tilt following completion of the fatigue protocol.  Such altered kinematic 

patterns parallel those that exist in populations with shoulder girdle muscle weaknesses and 

imbalances.  Specifically, Ludewig et al10 found that the subacromial impingement group 

demonstrated a significant 4.1 degree decrease in scapular upward rotation at 60 degrees of 

abduction in the scapular plane, a significant 5.8 degree increase in scapular anterior tilting at 

120 degrees of abduction in the scapular plane, and statistically significant increases in 

scapular internal rotation under all loaded conditions.   

 Kibler et al9 stated that scapular dyskinesis is the result of both altered muscle 

activation patterns of the scapular force couples due to painful conditions around the 

shoulder as well as excessive thoracic kyphosis.  Pink et al3 theorized that improper 

scapulohumeral positioning (i.e. thoracic kyphosis) that presented as an adaptation of 
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swimming place increased stress on the anterior capsular structures of the shoulder joint 

complex, causing an increase of anterior humeral translation with secondary impingement of 

the rotator cuff tendons. 

   McClure et al4 found that subjects within a subacromial impingement group presented 

with compensatory strategies to avoid the pain associated with subacromial impingement 

syndrome.  These compensatory strategies included both greater upward rotation and 

clavicular elevation in midrange positions (90 to 120 degrees) of flexion and greater posterior 

tilt, upward rotation, and clavicular retraction at midrange positions (90 to 120 degrees) of 

scaption.  These authors also found significantly less range of motion (i.e. flexion and 

scaption) and less isometric force production (i.e. rotator cuff musculature force production) 

for all measures when compared with an asymptomatic control group. 

 In a study comparing construction workers with and without symptoms of shoulder 

impingement, Ludewig et al18 results contrast those found by McClure et al4 in regards to 

altered scapular kinematics in the presence of an underlying pathology.  Unlike the findings 

of McClure et al4 where the subacromial impingement syndrome group displayed increased 

scapular upward rotation and increased scapular posterior tilt when compared to a healthy, 

control group, Ludewig et al18 found the subacromial impingement syndrome group to have 

decreased scapular upward rotation and decreased scapular posterior tilt when compared to a 

healthy, control group.  It should be noted that Ludewig et al18 implemented loaded 

conditions, whereas McClure et al4 did not in an attempt to prevent inducing or increasing 

symptoms of pain.   

 Bandholm et al40 supported the findings of McClure et al4 regarding pain’s effects on 

force production.  Using healthy subjects and experimental pain, the researchers 
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demonstrated pain’s ability to inhibit maximal force steadiness and related muscle activity 

while having no effect on the shoulder musculature’s contractile properties.  The authors 

believed that the excitation of the muscle nociceptor afferents facilitate inhibitory pathways 

during muscle agonist activity.40  

 Regardless of what acts as the precursor toward the acquisition of scapular 

dyskinesis, its presence is problematic until both treated and corrected.  Burkhart et al1 use 

the acronym SICK when describing a specific form of scapular dyskinesis.  SICK scapula 

syndrome refers to the presence of Scapular malposition, Inferior medial border prominence, 

Coracoid pain and malposition, and dysKinesis of scapular movement.  Based upon both the 

literature and screening guidelines of Burkhart and Morgan1, the inclusion criteria for the 

SICK scapula group is based on a 0 to 20 point scale, with 0 representing complete shoulder 

health and 20 representing severe, symptomatic SICK scapula syndrome.  Typically upon 

screening, athletes who present with symptomatic SICK scapula syndrome will score 

somewhere within the range of 10 to 14 on the SICK Scapula, Static Measurements, 0 to 20 

Point Rating Scale.1  Athletes diagnosed with SICK scapula syndrome typically present with 

a unilateral lowered and anteriorly tilted scapula with accompanied anterior shoulder pain on 

the involved side.  While the validity and the reliability of the SICK Scapula, Static 

Measurements, 0 to 20 Point Rating Scale1 has not been established, the scale is used in 

clinical settings to aid in the objective shoulder evaluation process.   

 Burkhart et al1, as well as Kibler et al9, have presented their view on the association 

between scapular dysfunction and shoulder pathology based on their clinical observation.  

The authors theorize that such scapular asymmetries are a sign of underlying alteration in 

scapular muscle activation, resulting in altered scapular kinematics during overhead activity.  
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The authors also theorized that altered scapular kinematics are strongly associated with 

various shoulder pathologies such as subacromial impingement syndrome, rotator cuff lesion, 

and labral tear.  However, it must be mentioned that a limitation of such findings is the lack 

of a comparison to the asymptomatic population.  Future research should focus on case-

control comparisons between healthy subjects and subjects suffering from some form of 

scapular biomechanical dysfunction, such as SICK scapula syndrome. 

 Researchers agree that alterations of scapulothoracic kinematics can stress the 

shoulder girdle’s soft tissues.  The high prevalence of such kinematic dysfunction found at 

clinical settings demands the development of effective therapeutic exercises designed 

specifically to correct scapular dyskinesis by both stretching and strengthening the 

appropriate tissues.  Identification of the dysfunctional tissues associated with the dyskinesis 

will allow clinicians to prescribe rehabilitation specific to the needs of the patients with the 

condition.  Corrective exercise protocols play an essential role in the rehabilitation of athletes 

with scapular impairments.  Furthermore, it can be assumed that the implementation of 

adequate prehabilitation exercise protocols is the essential step toward the prevention of 

scapular dyskinesis in the athletic population.   

 

Methodological Considerations for Electromyographic (EMG) Analysis 

 Electromyographic (EMG) analysis has traditionally been utilized as a dependable 

source of data collection in medical research, typically demonstrating both good reliability 

and validity10, 15, 16, 20-23, 36, 38, 40-45, with ICC(2,1) values in an acceptable range.15, 46  In sports 

medicine research, surface EMG is utilized to study neuromuscular activation in targeted 

muscles during both postural tasks and functional movements.  When a research design is 
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focused on the study of kinematics pertaining to a specific population, muscle activation can 

be an extremely telling dependent variable.  Because kinematic function is predominately 

influenced by the muscle activity surrounding a given articulation, it can be theorized that 

kinematic dysfunction may be the result of altered periarticular muscle activity.     

 In regards to the study of scapular kinematics however, there is a weak body of 

literature concerning the analysis of scapular stabilizer EMG.  Researchers have shown in 

comparison studies that dysfunctional kinematics do exist in individuals suffering from 

shoulder pathology when compared to healthy, control subjects4, 5, 8-12, 14, 23, 32, and authors 

have also qualitatively assessed and described specific dyskinetic syndromes (i.e. SICK 

scapula syndrome) in similar pathological populations.1, 3, 6, 7, 9, 19  Currently however, 

researchers are limited in their understanding of the muscle deficiencies present in 

individuals suffering from scapular dyskinesis, and as a result, must speculate on the 

associated scapular force couple dysfunction occurring in afflicted individuals.  This 

speculation is the driving force behind the implementation of therapeutic exercises designed 

specifically to restore normal scapular kinematics via scapular force couple re-education. 

In healthy individuals, overhead functional movement requires scapular force couples 

to stabilize the scapula, allowing for both the absorption and transference of forces and 

moments from the upper extremity to and from the trunk and lower extremity.19  McMahon 

et al47 describe a synergistic relationship existing between each of the scapular force couple 

muscles.  This synergistic relationship is of paramount importance regarding normal scapular 

kinematics.  Researchers have found significant group differences in scapular muscle activity 

between healthy and patient populations3-5, 10, 12, 21, 23, 24, 40, 43, 45, 47-50, but variation exists 

among each study’s EMG dependent variable.  When studying the muscle activity of the 
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scapular stabilizer muscles, researchers typically manipulate their usage of EMG to analyze 

one of three specific variables: muscle activation recruitment sequence, peak muscle 

activation amplitude, or mean muscle activation amplitude.     

 When comparing healthy overhead athletes with those who presented with 

impingement symptoms during an isokinetic perturbation test, Cools et al21 found that 

athletes with impingement showed a delay in muscle activation for both the middle and lower 

trapezius muscles.  From these findings, the authors concluded that overhead athletes with 

impingement symptoms show abnormal muscle recruitment patterns for both the middle and 

lower trapezius muscles.21  

In a similar research design with an implemented fatigue protocol and no patient 

population, Cools et al48 found that, following fatigue, the upper trapezius, middle trapezius, 

and lower trapezius muscles were recruited secondary to the onset of the deltoid muscle.  The 

authors then theorized that shoulder muscle recruitment patterns are delayed following 

fatigue but not altered.48  The implications of fatigue on muscle recruitment could be 

detrimental regarding its effects on normal scapular kinematics for athletes already suffering 

from scapular stabilizer insufficiency. 

Wadsworth et al23 also utilized muscle recruitment EMG analysis.  In a comparison 

study of healthy swimmers and swimmers suffering from subacromial impingement 

syndrome, the researchers found the activation of the serratus anterior muscle to be delayed 

by three times when compared to healthy swimmers while performing a scaption task.    

When analyzing peak EMG for the scapular stabilizers, Pink et al3 found the serratus 

anterior muscle to have decreased activation in a population of swimmers with painful 

shoulders when compared to healthy swimmers while swimming.  These researchers also 
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found that the rhomboid major and rhomboid minor muscles of the impingement swimmers 

displayed increased peak EMG when compared to the healthy swimmers.  As a result, the 

authors concluded that the already failing serratus anterior muscle was being forced to work 

in direct opposition to the rhomboid muscles as they function to downwardly rotate the 

scapula.3 

Peak EMG analysis has also been utilized to assess the efficacy of specific scapular 

strengthening exercises implemented in therapeutic exercise protocols.  In a study designed 

to examine the activity of scapular muscles throughout each of 16 different exercises, 

Moseley et al20 concluded there to be four most effective scapular stabilizer strengthening 

exercises: scaption, rowing, push-up with a plus, and press-up.   

Utilizing mean EMG activation, Ludewig et al10 compared subjects with symptoms of 

subacromial impingement syndrome to an asymptomatic control group as each group 

performed a scaption task under three loaded conditions.  Significant findings revealed a 

reduction in the serratus anterior muscle activity in the impingement subjects across load and 

phase conditions when compared to healthy subjects.   The researchers also found there to be 

a very subtle increase in the upper trapezius muscle activity in impingement subjects.   

In a comparison study conducted by Cools et al49 between overhead athletes with and 

without impingement symptoms, mean EMG activity of the upper trapezius, middle 

trapezius, and lower trapezius were measured during isokinetic glenohumeral abduction and 

external rotation.  The results showed a significant increase in upper trapezius activity during 

both glenohumeral abduction and glenohumeral external rotation in the patient group.  The 

findings of this study also revealed decreased activity in the lower trapezius during the 
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glenohumeral abduction task and decreased activity in the middle trapezius during the 

glenohumeral external rotation task when compared to healthy subjects. 

Implications for rehabilitation can also be addressed with the usage of mean 

amplitude EMG.  In a study conducted by Cools et al51, the activation of the upper trapezius, 

middle trapezius, lower trapezius, and serratus anterior muscles were analyzed during twelve 

commonly used shoulder therapeutic exercises.  The researchers then calculated both 

intermuscular and intramuscular balance ratios.  Based on the results of this study, the 

authors suggest the usage of side-lying external rotation, side-lying forward flexion, prone 

horizontal abduction with external rotation, and prone extension exercises as the most 

effective exercises at promoting lower trapezius and middle trapezius activity while 

minimizing the activation of the upper trapezius.51 

The purpose of this study is to validate the SICK Scapula, Static Measurements, 0 to 

20 Point Rating Scale, developed by Burkhart et al1,  by predicting subject score from 

scapular stabilizer muscle activity.  For the purposes of this study, mean amplitude EMG was 

selected as the most appropriate dependent variable for analyzing scapular muscle activation 

occurring during both the ascending and descending phases of a functional task. 



 

 

CHAPTER III 

METHODOLOGY 
 

Clinical Relevance  

The purpose of this study was to validate the SICK Scapula, Static Measurements, 0 

to 20 Point Rating Scale1 by predicting subject score from scapular stabilizer muscle activity.  

Determining the validity of the SICK Scapula, Static Measurements, 0 to 20 Point Rating 

Scale1 may allow clinicians to more readily utilize this scale as an accurate screening tool 

toward the identification of SICK scapula syndrome.  Understanding the mean 

electromyographic (EMG) activity of the scapular muscles in overhead athletes with SICK 

scapula syndrome will help sports medicine professionals to prescribe these patients with 

rehabilitation exercises specific to their deficits, which may lead to better treatment outcome.  

 With the highly repetitious nature of overhead movement in athletics, even a small 

degree of scapular malalignment or dyskinesis may overload the shoulder’s soft tissue 

structures over time.   As was previously mentioned, the union between the scapula and the 

axial skeleton is extremely limited to the surface area of the acromioclavicular joint.  As a 

result of this minimal articulation, scapular stability and mobility are largely dictated by the 

numerous muscles originating and inserting on the scapular surface.  Understanding the 

adaptive scapular muscle activation deficiencies associated with SICK scapula syndrome, as 

well as the condition’s affect on scapular force couple synchronization, will allow clinicians 

to implement specific rehabilitation exercises when dealing with affected overhead athletes.  

Corrective exercises implemented to target the muscles identified to be dysfunctional in this 



study can help restore ideal scapular force couple synchronization, thus allowing the scapula 

to move harmoniously with the moving humerus.    

 

Population and Recruitment 

 Subjects were recruited from a university population of NCAA Division I overhead 

athletes and/or recreational club overhead athletes at The University of North Carolina at 

Chapel Hill.  Subjects were both male and female and were between the ages of 18 and 25 

years old.    

Based upon a recent study performed at UNC-CH with similar dependent variables, 

forty subjects were required to achieve a statistical significance level of 0.05 with a power of 

0.80 (see Table 1).49, 52  Utilizing both the mean difference and standard deviation of these 

similar research studies, the effect size index for each dependent variable was calculated (see 

Figure 2).  A priori power was determined for each dependent variable using a standard 

Power Table and the calculated effect size index.  

 

Subject Inclusion Criteria  

 Subjects qualifying for this study were NCAA Division I overhead athletes and/or 

recreational club overhead athletes who participate in an overhead sport for a duration of at 

least 30 minutes per session for at least 3 individual sessions per week. 
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Subject Exclusion Criteria  

 Individuals with a history of shoulder and/or neck surgery, rotator cuff tear, cervical 

spine pathology, history of acute-onset shoulder pathology within the past six months, 

adhesive capsulitis, history of unstable episodes within the past six months (glenohumeral 

subluxation, dislocation, self-subluxation), or scoliosis were excluded from the study.   

 

Research Design 

 The selected research design was quasi-experimental in nature, specifically a 

nonequivalent one group design with a counterbalancing of tasks.  The study took place in an 

approximately 90 minute session. Prior to testing, subjects were screened for both inclusion 

and exclusion criteria as well as skill and activity level.      

 

Procedure and Description of Tasks 

 Upon entering the lab, each subject was briefed on testing procedures and signed and 

received a personal copy of the Consent to Act as a Human Subject form.  Subjects then 

filled out a medical history form, underwent screening based on the SICK scapula, Static 

Measurements, 0 to 20 Point Rating Scale (see Figure 1), and were measured for both height 

and weight.  Limb selection was dictated either by 1) the subject’s involved side in those who 

had reported symptoms of shoulder pain or 2) the dominant side in those who had reported to 

be asymptomatic for shoulder pain.  Subjects were screened a total of twice (one screening 

per principle investigator), and an average of the two scores was calculated and utilized for 

later statistical analysis.     
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Counterbalancing for functional tasks was implemented following the subject’s 

briefing session, where subjects selected a random task completion order of one 

(glenohumeral elevation in the sagittal plane) and two (glenohumeral elevation in the 

scapular plane). 

 After the setup for both EMG and kinematic analysis (see Measurement and 

Instrumentation section) was completed, subjects completed the following tasks: 

glenohumeral elevation in the sagittal plane (flexion) and glenohumeral elevation in the 

scapular plane (scaption).  Each of the two humeral elevation tasks required the subject to lift 

their arm for ten repetitions per task.  The sagittal plane was defined as the plane parallel to 

the sagittal plane of the thorax.  The scapular plane was defined as the plane 30 degrees 

anterior to the frontal plane of the thorax.   

 Subjects completed their full range of motion at a controlled movement velocity by 

moving in time with a digital metronome set at 1 beat per second.  Each functional task 

required ten continuous repetitions, with each repetition lasting approximately four seconds 

(two-second ascending phase, two-second descending phase).  A guiding pole made of PVC 

pipe was used as a guide for both flexion and scaption.  For the flexion task, the guide pole 

was placed in the sagittal plane, parallel to the sagittal plane of the thorax.  For the scaption 

task, the guide pole was placed in the scapular plane, 30 degrees anterior to the frontal plane.   

 

Description of Tasks 

 Glenohumeral flexion tasks were performed through a range of motion of 

approximately 0 degrees humeral elevation to approximately 180 degrees of humeral 

elevation in the sagittal plane.  The subject elevated their arm until they were able to reach 
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their terminal end point in their available range of motion.  The subject then returned to the 

starting position.  Subjects maintained a neutral hand position throughout the ten-repetition 

task.  

 Glenohumeral scaption tasks were performed through a range of motion of 

approximately 0 degrees humeral elevation to approximately 180 degrees of humeral 

elevation in the scapular plane.  The subject elevated their arm until they were able to reach 

their terminal end point in their available range of motion.  The subject then returned to the 

starting position.  Subjects maintained a neutral hand position throughout the ten-repetition 

task.    

 

Measurement and Instrumentation 

SICK Scapula, Static Measurements, 0 to 20 Point Rating Scale 

The SICK Scapula, Static Measurements, 0 to 20 Point Rating Scale is a grading 

system used for assessing the severity of scapular malposition based on 1) infera (i.e. the 

visual appearance of a dropped scapula due to scapular tilting or protraction), 2) lateral 

displacement, and 3) abduction.  All measurements were made statically with the patients 

standing erect with arms relaxed at their side.  The measurement of infera is the difference in 

vertical height of the superomedial scapular angle of the dropped scapula in centimeters 

compared with the contralateral superomedial angle.1  While limited in both reliability and 

external validity, the SICK Scapula, Static Measurements, 0 to 20 Point Rating Scale was 

used to give a quantitative sense of SICK scapula syndrome severity.   

Prior to the study, reliability and precision of this scale were established from a small 

pilot study by the chief investigators using intraclass correlation coefficient (ICC) and 
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standard error of measurement (SEM).  The inter-session reliability and precision were 

calculated to yield an ICC of 0.682 and SEM of 1.44 points, respectively.  The inter-tester 

reliability and precision were calculated to yield an ICC of 0.684 and SEM of 1.18 points, 

respectively. 

 

Kinematic Analysis 

 A Motion Star (Ascension Technologies Inc, Burlington, Vt) electromagnetic motion 

analysis mini bird system controlled by the Motion Monitor (Innovative Sports Training Inc, 

Chicago, Ill) software was used to assess shoulder complex kinematics at a sampling rate of 

100 Hz.  Previous research demonstrates that electromagnetic tracking systems provide valid, 

accurate, and reliable measures of dynamic motion that are comparable to camera based 

systems.53-57  The Motion Star system has been shown to be accurate within 1.8 mm for 

linear displacements and 0.5º for angular displacements.15  Separate electromagnetic 

receivers were attached to the thorax, scapula, and humerus.  The thorax sensor was placed 

over the spinous process of the seventh cervical vertebrae (C7), and the scapula receiver was 

placed over the broad, flat surface of the posterolateral acromion.  The humeral receiver was 

placed over the posterior aspect of the humerus, distal to the triceps muscle belly.  The 

humeral kinematic data were used to define the ascending and descending phases during each 

humeral elevation task.  All receivers were attached using double-sided tape.  An elastic wrap 

was used to further secure the humeral receiver.  Before receiver application, the skin was 

dried and sprayed with an adhesive spray to improve adherence.   

 

 48



Electromyographic Analysis 

 Electromyographic (EMG) muscle activation analyses were performed to measure the 

mean amplitude of the upper trapezius, middle trapezius, lower trapezius, and serratus 

anterior muscles using a Delsys Bagnoli-8 EMG (Boston, MA) with differential amplication, 

CMRR >80 dB, input impedance >1015//0.2 ohm//pF, SNR >40 dB using an 8 channel 

amplifier.  The EMG signal was amplified by a factor of 1000 over a bandwidth of 0.01 to 

2000 Hz, passed via an A/D converter (National Instruments, Austin, TX) sampling at 1000 

Hz then corrected for DC bias.  Raw EMG data were collected by the Motion Monitor 

software and stored for analysis.  The electrodes were 19.8 mm wide and 35 mm long with 

approximately 10 mm between contacts. 

Before applying surface electrodes, the subject’s skin was shaved, cleaned with 

alcohol, and lightly abraded to ensure good electrode contact and transmission.  We fixed a 

bar Ag/AgCl single differential surface electrode (Delsys Inc., Boston, MA) on the midpoint 

of each muscle belly perpendicular to the muscle fiber direction using surgical tape and 

adhesive stickers.  The specified electrode placement has been used in a number of studies.15, 

21, 43  Electrodes were placed according to previously published guidelines on the upper 

trapezius, middle trapezius, lower trapezius, and serratus anterior muscles’ fibers in the 

following arrangement.15, 21, 43  

Upper trapezius: one half the distance from the mastoid process to the root of the 

spine of the scapula approximately at the angle of the neck and shoulder 

Middle trapezius: one half the distance from the spine of the scapula to the spinous 

process in a position perpendicular to the spine. 

 49



Lower trapezius: two finger widths medial to the inferior angle of the scapula on 45-

degree angle towards T10 

Serratus anterior: below the axilla, anterior to latissimus dorsi, placed over 4th 

through 6th ribs angled at 30 degrees above the nipple line 

 A carbon reference electrode was placed over the non-involved olecranon process.  

Isometric manual muscle tests were performed to ensure accurate placement of electrodes 

and to measure and record maximal voluntary isometric contraction (MVIC) EMG.  Subjects 

performed each MVIC measure for five seconds.   

 Manual muscle tests to determine MVIC were randomized and performed according 

to the procedures described by Kendall et al.58  Prior to testing, subjects performed one sub-

maximal contraction to familiarize themselves with proper form for each manual muscle test.  

Following this warm-up and learning session, subjects performed three maximal voluntary 

isometric contractions measured for each muscle with a one-minute rest period between each 

muscle and a thirty-second rest period between each trial.  The peak mean force for a five-

second period was recorded.  Mean amplitude value for the three trials was used to express 

muscle activity during tasks as a percentage of muscle activity during the maximal isometric 

contraction (%MVIC). 

 

Upper Trapezius MVIC Assessment 

 Testing of the upper trapezius was performed with the subject seated with their arms 

at their side.  The tester stood behind the subject and gave the instructions to “shrug your 

shoulders straight up and turn your face in the opposite direction” and hold that position.  

 50



The tester provided a downward force on the superior aspect of the acromion and back of the 

head for five seconds.  The subject was then instructed to “relax”.15, 22    

 

Middle Trapezius MVIC Assessment 

 Testing of the middle trapezius was performed with the subject lying prone on a table 

with their shoulder at the edge of the table and both arms externally rotated and extended at 

their sides to approximately 90 degrees of abduction.  The tester stood on the dominant 

shoulder side and gave the instructions to “lift both arms up placing your shoulder blades in 

your opposite back pocket”.  The tester provided a downward force on the forearm for five 

seconds.  The subject was then instructed to “relax”.15, 22, 43 

 

Lower Trapezius MVIC Assessment 

 Testing of the lower trapezius was performed with the subject lying prone on a table 

with their shoulder at the edge of the table and both arms externally rotated and extended 

overhead to approximately 130 degrees of abduction.  The tester stood on the dominant 

shoulder side and gave the instructions to “lift both arms up placing your shoulder blades in 

your opposite back pocket”.  The tester provided a downward force on the forearm for five 

seconds.  The subject was then instructed to “relax”.15, 22, 43 

 

Serratus Anterior MVIC Assessment 

 Testing of the serratus anterior was performed with the subject in a seated position 

with their arm internally rotated and elevated in the scapular plane to approximately 120 

degrees.  The tester was positioned standing beside the subject and gave the instructions to 
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“lift your arm out and up; don’t let me push you down”.  The tester provided a downward 

force on the superior aspect of the arm at the elbow while providing pressure at the lateral, 

inferior angle of the scapula inwards for five seconds.  The subject was then instructed to 

“relax”.  This position has been shown to yield the most reliable and highest MVIC values 

for the serratus anterior.15, 22, 43 

 

Data Reduction 

Kinematic Data Reduction 

  Raw kinematic data were low pass filtered with a fourth-order zero-phase shift at a 

6.6 Hz cut off frequency.10, 13, 52, 59 10, 13, 60, 61  Glenohumeral elevation angles of 0º and 120º 

were identified for the purposes of analyzing mean EMG amplitude between those points 

during the ascending and descending phases of glenohumeral elevation.   

  The local coordinate system for each segment were defined according to the 

recommendations established by the International Shoulder Group of the International 

Society of Biomechanics.62  Two points were first defined as the segment’s longitudinal axis 

with a third point defining the plane.  A second axis was determined perpendicular to the 

plane, and the third axis was defined as perpendicular to both of the first two axes.  When 

standing in a neutral stance, the orthogonal coordinate system for each segment was vertical 

(y-axis), horizontal to the right (x-axis), and posterior (z-axis).  Matrix transformations for 

each of the segments were used to move from the global to local coordinate systems, 

producing a 4 x 4 position and orientation matrix.  

  Euler-angle decompositions were used to describe humeral orientation with respect to 

the thorax.  Humeral orientation was determined as rotation about the y-axis of the humerus 
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(plane of elevation), rotation about the z-axis of the humerus (elevation), and rotation about 

the y-axis of the humerus (axial rotation).  Each of these rotations was chosen based on the 

recommendations of the International Shoulder Group.62  The Euler-angle sequences were 

used to most closely represent clinical definitions of movements and to decrease 

mathematical inconsistencies.63  

 

Electromyographic Data Reduction 

All electromyographic (EMG) data reduction was done using the Motion Monitor 

software.  EMG data were filtered using a band-pass filter (10-350 Hz) and a Butterworth 

filter (4th order, recursive, zero-phase lag).  The root mean square (RMS) of the EMG signal 

over a 50 ms time constant was taken to further smooth the data.  The MVIC was calculated 

as the mean of the EMG activity during the 5-second trial.   

Mean EMG amplitude was calculated, with the ascending phase (0o-120o) and the 

descending phase (120-0o) being determined by the humeral elevation angle data.  For each 

repetition, the lowest point of humeral elevation represented the initiation of the ascending 

phase, and the highest point of humeral elevation represented the cessation of the ascending 

phase and the initiation of the descending phase.  The subsequent lowest point of humeral 

elevation represented the cessation of the descending phase.  The EMG activity during both 

the ascending and descending phases were calculated as an average of the mean EMG 

amplitude over each phase of motion for the middle 5 repetitions of each muscle tested.  The 

mean EMG activity independent variables were normalized to the MVICs obtained prior to 

the trials, and were expressed as a percentage of the MVIC (%MVIC).  Variables were 

 53



 54

calculated and processed using Matlab R2007a (The MathWorks Inc., Natick, 

Massachusetts). 

 

Statistical Analysis 

 Mean EMG amplitude data were used to represent muscle activation over each phase 

of humeral elevation for the upper trapezius, middle trapezius, lower trapezius, and serratus 

anterior.   

 Multiple linear regressions were used to predict the scores derived from the SICK 

Scapula, Static Measurements, 0 to 20 Point Rating Scale1 using the Statistical Package for 

Social Sciences (SPSS 15.0, Inc, Chicago, IL)(see Table 2).  Statistical significance for all 

comparisons was set a priori at alpha-level of 0.05. 



 

 

 

CHAPTER IV 

RESULTS 
 

Descriptive Statistics  

Forty Division I overhead athletes and/or recreational club overhead athletes (10 

softball players, 20 swimmers, 9 volleyball players, and 1 water polo player; 33 right arm 

dominant, 7 left arm dominant) participated in this study.  Due to errors in data, three 

subjects were dropped from this study.  Out of the remaining 37 participants, 20 reported to 

be currently experiencing shoulder pain.  The descriptive statistics on demographics and 

subject SICK scapula syndrome score are presented in Table 3.  The breakdown of SICK 

scapula syndrome score for all subjects is presented in Table 4.  Mean amplitude EMG was 

calculated for the upper trapezius, middle trapezius, lower trapezius, and serratus anterior 

muscles (see Table 5). 

 

Upper Trapezius 

A simple linear regression was performed to assess how the upper trapezius mean 

muscle activation amplitude during a sagittal and scapular plane elevation task was able to 

predict the subject score on the SICK Scapula, Static Measurements, 0 to 20 Point Rating 

Scale.1  A simple linear regression analysis for the ascending phase of the flexion task 

revealed that the mean upper trapezius muscle activation amplitude did not significantly 

predict the subject score on the SICK Scapula, Static Measurements, 0 to 20 Point Rating 



Scale1, (F =  0.568, df = 35, p = 0.456), with an r2 of 0.016 (see FIGURE 3).  Regression 

analysis for the descending phase of the flexion task also revealed no significant findings, (F 

= 0.092, df = 35, p = 0.764), with an r2 of 0.003 (see FIGURE 4).  Regression analysis for the 

ascending phase of the scaption task revealed no significant findings, (F = 0.010, df = 35, p = 

0.921), with an r2 of less than 0.001 (see FIGURE 5).  Regression analysis for the descending 

phase of the scaption task also revealed no significant findings, (F = 0.329, df = 35, p = 

0.570), with an r2 of 0.009 (see FIGURE 6). 

 

Middle Trapezius 

A simple linear regression was performed to assess how the middle trapezius mean 

muscle activation amplitude during a sagittal and scapular plane elevation task was able to 

predict the subject score on the SICK Scapula, Static Measurements, 0 to 20 Point Rating 

Scale.1  A simple linear regression analysis for the ascending phase of the flexion task 

revealed that the mean middle trapezius muscle activation amplitude did not significantly 

predict the subject score on the SICK Scapula, Static Measurements, 0 to 20 Point Rating 

Scale1, (F = 0.026, df = 35, p = 0.874), with an r2 of 0.001 (see FIGURE 7).  Regression 

analysis for the descending phase of the flexion task also revealed no significant findings, (F 

= 0.021, df = 35, p = 0.886), with an r2 of 0.001 (see FIGURE 8).  Regression analysis for the 

ascending phase of the scaption task revealed no significant findings, (F = 0.278, df = 35, p = 

0.601), with an r2 of 0.008 (see FIGURE 9).  Regression analysis for the descending phase of 

the scaption task also revealed no significant findings, (F = 2.116, df = 35, p = 0.154), with 

an r2 of 0.056 (see FIGURE 10).   
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Lower Trapezius 

A simple linear regression was performed to assess how the lower trapezius mean 

muscle activation amplitude during a sagittal and scapular plane elevation task was able to 

predict the subject score on the SICK Scapula, Static Measurements, 0 to 20 Point Rating 

Scale.1  A simple linear regression analysis for the ascending phase of the flexion task 

revealed that the mean lower trapezius muscle activation amplitude did not significantly 

predict the subject score on the SICK Scapula, Static Measurements, 0 to 20 Point Rating 

Scale1, (F = 0.026, df = 35, p = 0.873), with an r2 of 0.001 (see FIGURE 11).  Regression 

analysis for the descending phase of the flexion task also revealed no significant findings, (F 

= 0.010, df = 35, p = 0.919), with an r2 of less than 0.001 (see FIGURE 12).  Regression 

analysis for the ascending phase of the scaption task revealed no significant findings, (F = 

0.000, df = 35, p = 0.998), with an r2 of less than 0.001 (see FIGURE 13).  Regression 

analysis for the descending phase of the scaption task also revealed no significant findings, 

(F = 0.196, df = 35, p = 0.660), with an r2 of 0.005 (see FIGURE 14).   

  

Serratus Anterior 

A simple linear regression was performed to assess how the serratus anterior mean 

muscle activation amplitude during a sagittal and scapular plane elevation task was able to 

predict the subject score on the SICK Scapula, Static Measurements, 0 to 20 Point Rating 

Scale.1  A simple linear regression analysis for the ascending phase of the flexion task 

revealed that the mean serratus anterior muscle activation amplitude task did not significantly 

predict the subject score on the SICK Scapula, Static Measurements, 0 to 20 Point Rating 

Scale1, (F = 0.214, df = 35, p = 0.646), with an r2 of 0.006 (see FIGURE 15).  Regression 
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analysis for the descending phase of the flexion task also revealed no significant findings, (F 

= 0.000, df = 35, p = 0.998), with an r2 of less than 0.001 (see FIGURE 16).  Regression 

analysis for the ascending phase of the scaption task revealed no significant findings, (F = 

0.087, df = 35, p = 0.770), with an r2 of 0.002 (see FIGURE 17).  Regression analysis for the 

descending phase of the scaption task also revealed no significant findings, (F = 0.000, df = 

35, p = 0.982), with an r2 of less than 0.001 (see FIGURE 18).   

   



 

 
 
 
 

 
CHAPTER V 

DISCUSSION 
 

The purpose of this study was to determine if subject score on the SICK Scapula, 

Static Measurements, 0 to 20 Point Rating Scale1 can be predicted from scapular stabilizer 

muscle activation.  If muscle activation is found to be predictive, the hope is that some level 

of validation can be established for the SICK Scapula, Static Measurements, 0 to 20 Point 

Rating Scale1, theoretically allowing sports medicine professionals to better prescribe 

affected athletes with the most effective rehabilitation exercises when addressing their 

specific scapular movement and stabilizer strength deficits.  Ultimately the goal clinically is 

to improve treatment outcome. The rationale for the validation of the SICK Scapula, Static 

Measurements, 0 to 20 Point Rating Scale1 was to test its clinical efficacy as a predictor for 

the potential, presence, and/or severity of SICK scapula syndrome.   

Our results indicate that mean muscle activation amplitude of the scapular stabilizers 

was not found to be a valid predictor of subject score on the SICK Scapula, Static 

Measurements, 0 to 20 Point Rating Scale.1  Our research hypothesis anticipated an increase 

in upper trapezius muscle activity, as well as decreases in middle trapezius, lower trapezius, 

and serratus anterior muscle activity as a valid predictor of symptomatic SICK scapula 

syndrome (i.e. 10 or greater on the SICK Scapula, Static Measurements, 0 to 20 Point Rating 

Scale1).  Based on our findings however, we conclude that neither upper trapezius muscle 

over-activation nor middle trapezius, lower trapezius, or serratus anterior muscle under-



activation can reliably or accurately predict subject score on the SICK Scapula, Static 

Measurements, 0 to 20 Point Rating Scale.1 

Scapular stabilizer muscles dictate both scapular position and motion and are also 

considerably inhibited by the presence of pain.40  Theoretically, EMG analysis of the 

scapular stabilizers should be an accurate predictor of subject score on the SICK Scapula, 

Static Measurements, 0 to 20 Point Rating Scale1, with the scale designed specifically to 

assess the presence of scapular malpositioning and shoulder pain.   

The muscles originating and inserting on the scapula are the driving force behind all 

scapular and glenohumeral kinematic movement.  Therefore, it was inferred that scapular 

positioning and motion are notably impacted when there is a disruption of this dynamic link 

via scapular muscle activation dysfunction.  

Scapular muscle activation dysfunction refers specifically to strength deficits of the 

middle trapezius, lower trapezius, and serratus anterior muscles in relation to the upper 

trapezius muscle.13  Most researchers agree that the serratus anterior and the lower trapezius 

are inherently the most susceptible of the scapular stabilizers to the effects of both weakness 

and inhibition.15, 21, 23, 36  When the serratus anterior and lower trapezius suffer weaknesses, 

there is a significant decrease in scapular upward rotation.37  Also, inadequate serratus 

anterior function prevents the anchoring of the inferior scapular angle to the wall of the 

thorax, thus also preventing smooth scapular movement.3  Essentially, scapular 

malpositioning and dyskinesis have a certain dependency on the presence of scapular 

stabilizer strength deficits.   

Bandholm et al40 studied the effects of pain on force steadiness and related muscle 

activity.  Using healthy subjects and experimental pain, the researchers demonstrated pain’s 
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ability to inhibit maximal force production while having no effect on musculature contractile 

properties.  The authors believed that the excitation of the muscle nociceptor afferents 

facilitate inhibitory pathways during muscle agonist activity.40   

Both Pink et al3 and Ludewig et al10 compared muscle activity  in subjects with 

symptoms of subacromial impingement syndrome to an asymptomatic control group.  

Significant findings revealed decreased activation of the serratus anterior muscle in the 

impingement subjects when compared to healthy, control subjects.  Similarly, Wadsworth et 

al23 demonstrated that the activation of the serratus anterior muscle of swimmers suffering 

from subacromial impingement syndrome was found to be delayed by three times when 

performing a scapular plane elevation task as compared to the asymptomatic control group.    

Cools et al49 also utilized a comparison study to observe the differences in scapular 

muscle activity between overhead athletes with and without impingement symptoms.  Here 

researchers measured the mean EMG activity of the upper trapezius, middle trapezius, and 

lower trapezius during isokinetic glenohumeral abduction and external rotation.  Their results 

showed significantly decreased activity in the lower trapezius during the glenohumeral 

abduction task and decreased activity in the middle trapezius during the glenohumeral 

external rotation task in individuals with impingement symptoms when compared to healthy, 

control subjects.   

In the presence of shoulder pain, the literature clearly supports the linkage of altered 

scapular stabilizer muscle activity and the initiation of some degree of scapular 

malpositioning and/or dyskinesis.  Over half of the subjects tested in this study self-reported 

as having a painful shoulder, yet only four scored higher than 10 out of 20 points on the 

scale, which is a criteria clinically used to diagnose individual as having SICK scapula 
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syndrome.  If subjects are categorically symptomatic for self-reported shoulder pain, yet 

qualify as “healthy” upon assessment, one must question both the sensitivity and accuracy of 

the instrumentation being utilized for pathology detection.    

In attempting to explain why altered EMG of the scapular stabilizers was unable to 

predict SICK scapula syndrome score in this study, we must acknowledge flaws in both the 

structural and theoretic framework of the SICK Scapula, Static Measurements, 0 to 20 Point 

Rating Scale.1  Pilot work, an a priori reliability study, and the thesis project itself allowed 

researchers to screen over 100 athletes utilizing the SICK Scapula, Static Measurements, 0 to 

20 Point Rating Scale.1 Out of all the athletes who were screened, only four were clinically 

diagnosed as having a SICK scapula syndrome.  The principal investigator suggests two 

structural flaws within the scale’s framework.  The first flaw is the ambiguity of the 

questionnaire and the second is the threshold scoring.   

Questionnaire ambiguity was encountered in the form of subject confusion regarding 

the subjective portion of the screening process.  One common example of such uncertainty 

often came in response to the question, “do you ever have pain on, in between, or around 

your shoulder blades?”  Subjects seemed reluctant to answer yes but would later test positive 

for tenderness to palpation of scapular soft tissue structures.  Athletes seemingly had the 

perception that muscular pain in the form of myofascial trigger points was unrelated to the 

subacromial and/or internal impingement symptoms they may have been experiencing.  We 

believe this misunderstanding among athletes to be extremely reasonable considering the 

nature, source, and severity of their pain is so inherently different.  Question clarification by 

the principal investigator may have allowed athletes to give a more appropriate response to a 

 62



subjective symptom question; however, we felt that doing so may affect the athlete 

responses.  

 Threshold scoring was utilized for the scapular malpositioning portion of subject 

screening.  While this method was deemed the most appropriate to maintain adequate inter-

tester reliability, it often resulted in a lower score than the amount of malposition would 

suggest.  For example, while measuring scapular abduction, a subject may have a four-degree 

abduction discrepancy between scapulae in resting position but would receive no points, 

because it failed to reach the five-degree threshold that would have allotted one point.    

As was previously mentioned, there are definitive links between shoulder pain, 

scapular malpositioning, and altered scapular stabilizer muscle activity, however we must 

acknowledge that combinations of the three can be mutually exclusive to one another.  

Shoulder pain can exist without the presence of scapular malpositioning and/or dyskinesis.  

Myers et al32 found that throwers with pathologic internal impingement typically present with 

posterior shoulder pain.  If screened utilizing the SICK Scapula, Static Measurements, 0 to 

20 Point Rating Scale1, these athletes may receive up to 11 subjective and objective points 

but display no scapular malpositioning.  In such instances, these athletes would be clinically 

diagnosed as having SICK scapula syndrome without the defining characteristics of Scapular 

malposition, Inferior medial border prominence, Coracoid pain and malposition, and 

dysKinesis of scapular movement. 

Suggesting some flaws with the SICK Scapula, Static Measurements, 0 to 20 Point 

Rating Scale1, we also recognize the asymptomatic scapular malpositionings demonstrated as 

healthy adaptations in overhead athletes.  Myers et al13 found an adaptive increase in scapular 

upward rotation among normal, healthy throwing athletes.  This adaptation was believed by 
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the authors to assist in the achievement of subacromial clearance throughout the throwing 

movement pattern, thus acting as a means of preventing subacromial impingement.  

Possessing marked scapular malpositioning does not always mandate an involved 

symptomatic shoulder. 

Lastly, scapular stabilizer deficits can exist without the presence of either shoulder 

pain or scapular malpositioning.  Weakness and/or inhibition-based muscle dysfunction of 

the scapular stabilizers is a common trend among overhead athletes, where there is adaptive 

muscle shortening of the pectoralis minor in conjunction with an adaptive muscle weakening 

of the middle trapezius, lower trapezius, serratus anterior, rhomboid minor, and rhomboid 

major.9, 34, 35  The presence of upper extremity muscle imbalances is generally accepted to be 

the result of sport-specific pattern dominance and can be entirely asymptomatic in nature.9, 34, 

35  

While one criticism regarding the theoretic framework of the scale refers to inflated 

scores without the true presence of scapular malpositioning, an inverse criticism is the 

relative difficulty of scoring in general, even in the presence of both shoulder pain and 

scapular malpositioning.     

The subjective and objective portions of the SICK Scapula, Static Measurements, 0 to 

20 Point Rating Scale1 dually assess an athlete for a wide range of chronic shoulder 

pathologies, from AC joint sprain to thoracic outlet syndrome to subacromial impingement 

syndrome.  While an athlete may possess all of the classic characteristics of SICK scapula 

syndrome (i.e. Scapular malposition, Inferior medial border prominence, Coracoid pain and 

malposition, and dysKinesis of scapular movement), he or she may not score any points for 

AC joint irritation, TOS parathesias, or subacromial impingement syndrome.  As a result, 
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subject score would be rather low on both the subjective and objective portions of the scale, 

thus allowing the subject to appear seemingly healthy.  Because total subject score is heavily 

reliant on reports of pain in these two sections, only gross scapular malpositioning (i.e. > 15 

degrees of scapular abduction) would result in a clinical diagnosis of SICK scapula 

syndrome.  Studies comparing healthy subjects and subjects experiencing shoulder pain 

found only modest differences (i.e. < 5 degrees) in scapular kinematics between groups.4, 5, 8, 

9, 11, 12, 18  A 15-degree scapular asymmetry is not only uncommon among ill-maintenance 

shoulders, it is relatively non-existent among Division I overhead athletes. 

The SICK Scapula, Static Measurements, 0 to 20 Point Rating Scale1 was designed as 

a structured clinical tool that could be utilized by clinicians as a predictor for the potential, 

presence, and/or severity of SICK scapula syndrome.  However, it appears to have rather 

poor predictive value.  In this study, SICK scapula syndrome and other chronic shoulder 

pathologies proved to be far too multi-factorial in nature for one all encompassing number.  

 

Limitations 

Perhaps the greatest limitation of this study was the narrow and low-ended range of 

subject scores collected utilizing the SICK Scapula, Static Measurements, 0 to 20 Point 

Rating Scale.1  While subject recruitment made no distinction regarding a need for either 

symptomatic or asymptomatic shoulders, upon screening, only four subjects scored higher 

than 11 out of a possible 20 points, which is a minimum cutoff score commonly used to 

clinically diagnose individual as having SICK scapula syndrome. Again, we attribute 

unexpected subject scoring to flaws of both the structural and theoretic framework of the 

SICK Scapula, Static Measurements, 0 to 20 Point Rating Scale.1  
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Due to in-season compliance issues, this study was subject to an unintentional 

exclusion of baseball players.  Baseball players, specifically baseball pitchers, often 

experience shoulder or elbow pain that prevents them from participation in sports at some 

point in their careers.44  Therefore, caution must be used in extrapolating our findings to a 

baseball pitcher population.     

 

Future Research 

Future research should seek to further identify scapular muscle dysfunction in 

symptomatic overhead athletes, specifically those suffering with SICK scapula syndrome.  

Based on our findings, we believe that it is necessary to conduct a large-scale study of 

overhead athletes, perhaps focusing on ill-maintained shoulders to better exemplify the 

condition in its most exaggerated form.   

 Another potential avenue regarding future research would be the construction of a 

more theoretically sound screening instrument, similar in principle to the SICK Scapula, 

Static Measurements, 0 to 20 Point Rating Scale.1  SICK scapula syndrome represents a 

collection of signs and symptoms commonly seen in individuals with various shoulder 

pathologies.  A more fine-tuned, pathology-specific screening tool may allow clinicians to 

more reliably identify and quantify shoulder injuries. 

 We acknowledge the findings listed in Table 4 when offering sound 

recommendations regarding the development of a new and theoretically improved screening 

instrument.  By dissecting SICK scapula syndrome score for each of the forty subjects 

screened, we were able to tease out exactly where the bulk of point allotment occurred, 

specifically among those with self-reported shoulder pain.  Based on score breakdown, we 
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conclude that ten characteristics of SICK scapula syndrome best exemplify the condition’s 

signs and symptoms, thus serving as the most accurate predictors regarding its presence and 

severity.  We recommend the following subjective questions for the presence of pain: 

coracoid process, periscapular, proximal lateral arm, and radicular symptoms.  We 

recommend the following objective palpations and/or special tests for the presence of pain: 

coracoid process, superior medial scapular angle, and Hawkins-Kennedy Impingement Test.  

We recommend the following measurements for the determination of scapular 

malpositioning: infera 0 to 1 cm, lateral protraction 0 to 1 cm, and abduction 0 to 5 degrees. 

We also recommend the implementation of a more detailed objective screening 

process; one which includes a postural assessment, observation and measurement of dynamic 

scapular positioning, soft-tissue mobility assessment, and scapular muscle strength 

assessment.  Postural assessments should seek to identify and grade the presence of cervical 

lordosis, thoracic kyphosis, lumbar lordosis, pelvic rotations, and abnormal hip rotations that 

may affect scapular kinematics as energy is transferred through the kinetic chain from the 

lower extremity and core to the thorax and upper extremity.9  Clinicians may perform a quick 

and effective postural assessment utilizing a plumb-line while observing the patient from a 

side-view.   

Scapular position should be observed at rest and during loaded and unloaded humeral 

elevation.  While in resting position, clinicians should observe the scapulae for signs of 

winging (i.e. excessive scapular internal rotation, scapular anterior tilt, and scapular 

elevation).  Dynamic scapular motion should be assessed in both loaded and unloaded 

conditions.  Johnson et al.64  developed a protocol to detect abnormal scapular motion via the 

repetitive challenging of the scapulae under loaded conditions.  The authors data indicated 
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that three tests were able to detect abnormal scapular motion: 1) observation of bilateral 

scapular motion during five to ten repetitions of unloaded humeral elevation in the scapular 

plane (scaption) to establish a baseline of scapular movement, 2) observation of bilateral 

scapular motion during five to ten repetitions of loaded (0.5-5 kg) scaption, and 3) 

observation of unilateral scapular motion during resisted isometric external rotation with the 

arm at the side in neutral rotation (i.e. scapular flip sign).64   

The scapular lateral slide test is a semi-dynamic, quantitative assessment of scapular 

position.  This test has been shown to be reliable in assessing the bilateral position of the 

scapulae in relation to a fixed point on the spine as varying loads are placed on the 

supporting scapular musculature.9  The test involves a series of three measurement positions.   

Evaluation of the mobility of the posterior glenohumeral joint capsule, the posterior 

shoulder musculature, and the anterior coracoid musculature provides critical information 

regarding the pathomechanic assessment of scapular dysfunction.  Posterior glenohumeral 

joint capsule contracture has been shown to produce excessive superior and anterior humeral 

head translation, thereby compromising the size of the subacromial space and altering 

glenohumeral and scapular kinematics.10, 19, 25  Posterior shoulder tightness is an additional 

commonly described flexibility characteristic of scapular dysfunction. 1, 3, 8,9, 13, 17, 32  Myers et 

al. quantify posterior shoulder tightness utilizing supine and side-lying horizontal adduction 

assessments.65  One final flexibility measurement to consider during scapular evaluation is 

pectoralis minor mobility.  Due to its proximal attachment on the coracoid process of the 

scapula, inflexibility of the pectoralis minor muscle may manifest as excessive scapular 

anterior tilt and internal rotation, thus resulting in coracoid process pain and scapular 

dysfunction.   
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Manual muscle testing of the scapular stabilizing muscles is critical in determining 

the presence of or potential for scapular dysfunction.  Strength of the middle and lower 

trapezius, rhomboids major and minor, and the serratus anterior muscles should be assessed 

through manual muscle testing techniques.  Additional scapular muscle strength and 

endurance tests include the isometric scapular retraction pinch and wall push up tests.  

Typically, patients are able to hold an isometric pinch of the scapulae in retraction for 15 to 

20 seconds without the onset of burning pain or muscle weakness.  An inability to hold this 

position due to pain or weakness provocation is a positive sign indicating scapular muscle 

dysfunction.9   The ability of the serratus anterior muscle to stabilize the scapula on the 

thorax is easily evaluated with the wall push-up test.  The patient performs 5-10 wall push-

ups while the clinicians observes for abnormalities in scapular position and motion, 

specifically scapular winging.9   

 

Conclusion 

This study is the first to assess the validity of the SICK Scapula, Static 

Measurements, 0 to 20 Point Rating Scale.1  In overhead athletes, mean muscle activation 

amplitude of the scapular stabilizers was not found to be valid predictor of subject score on 

the SICK Scapula, Static Measurements, 0 to 20 Point Rating Scale.1  However, the results of 

this study need to be interpreted with caution, because the majority of subjects scored lower 

than the commonly accepted threshold score for the clinical diagnosis of SICK scapula 

syndrome.  
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Table 1. Estimated Study Power for Each Dependent Variable (n = 40) 

 
 Standard Deviation

(s) 
Mean Difference 

(Xcontrol – Xexperimental) 
Effect Size 

Index 
(d) 

 

Power 

Upper Trapezius 
(% max muscle activity) 
 

80% 60% .750 .94 

Middle Trapezius 
(% max muscle activity) 
 

12.9% 24% 1.884 .99 

Lower Trapezius 
(% max muscle activity) 
 

80% 50% .625 .87 

Serratus Anterior 
(% max muscle activity) 
 

80% 55% .688 .90 

(Cools et al.49, Thigpen et al.15) 
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Table 2. Individual Study Research Questions 
RQ1: Is mean electromyographic 
(EMG) amplitude of the upper 
trapezius a valid predictor of 
subject score on the SICK Scapula, 
Static Measurements, 0 to 20 Point 
Rating Scale1 during functional 
tasks (glenohumeral elevation in 
the sagittal plane and 
glenohumeral elevation in the 
scapular plane) in overhead 
athletes?  
 

IV:   
Glenohumeral flexion task 
Glenohumeral scaption task 
Upper trapezius mean EMG 
amplitude  muscle activation  
 
DV:  
Subject score on the SICK 
Scapula, Static Measurements, 0 
to 20 Point Rating Scale1 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

Multiple linear regressions 
will be used to predict the 
scores derived from the 
SICK Scapula, Static 

Measurements, 0 to 20 Point 
Rating Scale1 

RQ2: Is mean electromyographic 
(EMG) amplitude of the middle 
trapezius a valid predictor of 
subject score on the SICK Scapula, 
Static Measurements, 0 to 20 Point 
Rating Scale1 during functional 
tasks (glenohumeral elevation in 
the sagittal plane and 
glenohumeral elevation in the 
scapular plane) in overhead 
athletes? 

IV:   
Glenohumeral flexion task 
Glenohumeral scaption task 
Middle trapezius mean EMG 
amplitude  muscle activation  
 
DV:  
Subject score on the SICK 
Scapula, Static Measurements, 0 
to 20 Point Rating Scale1 

RQ3: Is mean electromyographic 
(EMG) amplitude of the lower 
trapezius a valid predictor of 
subject score on the SICK Scapula, 
Static Measurements, 0 to 20 Point 
Rating Scale1 during functional 
tasks (glenohumeral elevation in 
the sagittal plane and 
glenohumeral elevation in the 
scapular plane) in overhead 
athletes? 

IV:   
Glenohumeral flexion task 
Glenohumeral scaption task 
Lower trapezius mean EMG 
amplitude  muscle activation  
 
DV:  
Subject score on the SICK 
Scapula, Static Measurements, 0 
to 20 Point Rating Scale1 

RQ4: Is mean electromyographic 
(EMG) amplitude of the serratus 
anterior a valid predictor of subject 
score on the SICK Scapula, Static 
Measurements, 0 to 20 Point Rating 
Scale1 during functional tasks 
(glenohumeral elevation in the 
sagittal plane and glenohumeral 
elevation in the scapular plane) in 
overhead athletes? 

IV:   
Glenohumeral flexion task 
Glenohumeral scaption task 
Serratus anterior mean EMG 
amplitude muscle activation  
 
DV:  
Subject score on the SICK 
Scapula, Static Measurements, 0 
to 20 Point Rating Scale1 



Table 3. Study Participant Demographics 

Mean ±SD Mean ±SD
Age (years) 19.14 1.07 19.97 1.08
Height (cm) 181.43 2.48 173.79 8.42
Mass (kg) 73.87 3.59 69.00 7.90
SICK Score a 5.29 2.23 4.32 3.44
Subjective b 2.14 1.25 1.66 1.64
Objective c 1.43 0.79 1.45 1.62
Malpositioning d 1.71 0.64 1.23 0.84

(n = 7) (n = 30)
Male Participants Female Participants

 
 

a  SICK Scapula, Static Measurements, 0 to 20 Point Rating Scale1 
b  Self-reported pain of the coracoid process, AC joint, periscapular soft tissue, proximal 
lateral arm, and/or elbow (possible 5 points) 

c  Self-reported tenderness to palpation of the coracoid process, AC joint, superior medial 
angle; (+) provocative impingement test (Hawkins-Kennedy Impingement Sign), (+) scapular 
assistance test, and/or (+) thoracic outlet syndrome test (Allen Test) (possible 6 points) 
d   Scapular malposition based on 1) infera (i.e. the visual appearance of a dropped scapula 
due to scapular tilting or protraction), 2) lateral displacement, and 3) abduction (possible 9 
points
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                     Subjective        Objective                Scapular Malpositioning

1 1 Y xx
2 0 N
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5 2 N x xx x
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9 2 Y x xx x

10 2 N x xx x
11 1 N xx
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16 0.5 N x
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21 6.5 Y xx x x x xx xx xx x
22 11 Y xx xx xx xx xx xx xx xx xx x x xx
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27 1 N x x
28 8.5 Y x xx xx xx x xx xx xx xx x
29 0 N
30 7.5 Y xx x xx x xx xx x xx x x
31 10 Y xx xx xx xx xx xx xx xx xx x x x
32 3.5 N xx x x xx
33 2.5 N xx xx xx
34 5.5 Y xx xx xx xx xx x
35 2.5 N x x xx x
36 5.5 Y xx x x x x xx x xx
37 6.5 Y x xx xx x xx x x x
38 0 N
39 3.5 N xx x x x xx
40 1 N xx

Total 4.4 20 9 19 14 14 19 10 17 18 2 5 22 0 0 23 2 0 21 2 0

x = identified by one investigator
xx = identified by two investigators

Scap assist test = scapular assistance test
Lat prot = lateral protraction
Ab = abductionProx lat arm = proximal lateral arm

SM scap ang = superior medial scapular angle

T
able 4. B

reakdow
n of SIC

K
 Scapula Syndrom

e Score  
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Table 5: Mean and Standard Deviation Muscle Amplitude (%MVIC) 

Mean ±SD Mean ±SD
Upper Trapezius 54.01 28.53 28.91 16.75
Middle Trapezius 20.61 22.07 16.02 19.58
Lower Trapezius 26.91 24.15 20.18 24.11
Serratus Anterior 53.57 40.26 26.33 19.86

Mean ±SD Mean ±SD
Upper Trapezius 62.70 30.25 33.92 22.35
Middle Trapezius 31.24 35.39 24.53 33.03
Lower Trapezius 25.05 22.99 20.51 23.65
Serratus Anterior 51.06 38.12 29.87 25.03

Scaption Elevation Task
Ascending Phase Descending Phase

Flexion Elevation Task
Ascending Phase Descending Phase
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Figure 1. SICK Scapula, Static Measurements, 0 to 20 Point Rating Scale.  Dr. Craig D. 

Morgan, MD.1  
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Figure 2. Effect Size Index Calculations (Cools et al.49, Thigpen et al.15)  

 

Upper Trapezius 

d = (Xcontrol – Xexperimental)/(s) 

d = (60)/(80) 

d = 0.75 

 

Middle Trapezius 

d = (Xcontrol – Xexperimental)/(s) 

d = (58)/(80) 

d = 0.73 

 

Lower Trapezius 

d = (Xcontrol – Xexperimental)/(s) 

d = (50)/(80) 

d = 0.625 

 

Serratus Anterior 

d = (Xcontrol – Xexperimental)/(s) 

d = (55)/(80) 

d = 0.688 

d, effect size index 
s, standard deviation 
X, group mean  
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Figure 3. Upper Trapezius Muscle Activity during Sagittal Plane Elevation (Ascending 

Phase) 

R² = 0.016
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Figure 4. Upper Trapezius Muscle Activity during Sagittal Plane Elevation (Descending 

Phase) 
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Figure 5. Upper Trapezius Muscle Activity during Scapular Plane Elevation (Ascending 

Phase) 

R² < 0.001
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Figure 6. Upper Trapezius Muscle Activity during Scapular Plane Elevation 

(Descending Phase) 
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Figure 7. Middle Trapezius Muscle Activity during Sagittal Plane Elevation (Ascending 

Phase) 
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Figure 8. Middle Trapezius Muscle Activity during Sagittal Plane Elevation 

(Descending Phase) 
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Figure 9. Middle Trapezius Muscle Activity during Scapular Plane Elevation 

(Ascending Phase) 

R² = 0.008
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Figure 10. Middle Trapezius Muscle Activity during Scapular Plane Elevation 

(Descending Phase) 
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Figure 11. Lower Trapezius Muscle Activity during Sagittal Plane Elevation (Ascending 

Phase) 
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Figure 12. Lower Trapezius Muscle Activity during Sagittal Plane Elevation 

(Descending Phase) 

R² < 0.001
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Figure 13. Lower Trapezius Muscle Activity during Scapular Plane Elevation 

(Ascending Phase) 

R² < 0.001
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Figure 14. Lower Trapezius Muscle Activity during Scapular Plane Elevation 

(Descending Phase) 
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Figure 15. Serratus Anterior Muscle Activity during Sagittal Plane Elevation 

(Ascending Phase) 
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Figure 16. Serratus Anterior Muscle Activity during Sagittal Plane Elevation 

(Descending Phase) 

R² < 0.001
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Figure 17. Serratus Anterior Muscle Activity during Scapular Plane Elevation 

(Ascending Phase) 
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Figure 18. Serratus Anterior Muscle Activity during Scapular Plane Elevation 

(Descending Phase) 
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ABSTRACT 

A Prediction of SICK Scapula Syndrome Score from Muscle Activation and Kinematic 
Analysis in Overhead Athletes 

 
 

Context: Scapular malposition, Inferior medial border prominence, Coracoid pain and 

malposition, and dysKinesis of scapular movement (SICK) are associated with shoulder 

injury.  In overhead athletes, one initial sign of SICK scapula syndrome is shoulder 

biomechanical dysfunction and pain, yet it is not fully understood whether altered muscle 

activation of the scapular stabilizers is a sign of SICK scapula syndrome or a precursor to its 

development.  Currently, there is a need for validated, quantitative measures to improve the 

reliability SICK scapula syndrome assessment.  Objective: To determine if subject score on 

the SICK Scapula, Static Measurements, 0 to 20 Point Rating Scale1 can be predicted from 

scapular stabilizer muscle activation.  Design: Quasi-experimental, one group design with a 

counterbalancing of two functional tasks.  Setting: Research laboratory.  Patients or Other 

Participants: NCAA Division I and/or recreational club overhead athletes (n = 40).  Data 

Collection and Analysis: The SICK Scapula, Static Measurements, 0 to 20 Point Rating 

Scale was used for assessing the severity of scapular malposition.  Muscle activation was 

recorded for the upper trapezius, middle trapezius, lower trapezius, and serratus anterior 

muscles. Using mean EMG amplitude data to represent muscle activation over each phase of 

humeral elevation, multiple linear regressions were used to predict subject score derived 

from the SICK Scapula, Static Measurements, 0 to 20 Point Rating Scale.1  Results: 

Regression analyses revealed that scapular stabilizer muscle activation amplitude did not 

significantly predict the subject score on the SICK Scapula, Static Measurements, 0 to 20 

Point Rating Scale.1  Conclusion: In overhead athletes, mean muscle activation amplitude of 
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the scapular stabilizers was not found to be valid predictor of subject score on the SICK 

Scapula, Static Measurements, 0 to 20 Point Rating Scale.1  Key Words: shoulder, scapula, 

muscle activation, dyskinesis, validity.
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INTRODUCTION 

Shoulder pain, regardless of its nature, source, or severity, currently plagues today’s 

overhead athlete.2-4  The demands of sport require overhead athletes to repetitively endure 

high amounts of load to the glenohumeral and scapulothoracic joints.  These demands are 

great, and in turn, so is the risk of shoulder soft tissue injury due to overuse.  Warner et al5 

have shown that the vast majority of patients suffering from an overuse shoulder pathology 

present with scapulothoracic asymmetries during an elevation task.  When evaluating a 

shoulder soft tissue injury, medical professionals face the challenge of determining whether 

scapular malposition and dyskinesis were the result of a shoulder joint pathology or the 

source of its development.  Current literature suggests that scapular asymmetries may be an 

objective means of understanding the development of the shoulder pathology itself.1, 3, 5-16  

Scapular malalignment is perhaps one of the most evident signs of shoulder dysfunction that 

may lead to the initiation of the pathological sequence of events thereafter.1, 3, 4, 8-10, 13-15, 17, 18 

Research has repeatedly shown that scapular dyskinesis and postural abnormalities in 

overhead athletes may be an important risk factor for the development of shoulder pain .1, 3, 4, 

8-10, 13-15, 17, 18  As a result, shoulder soft tissue pathology and scapular dyskinesis appear to be 

intimately related to one another.  Shoulder soft tissue overload and the subsequent injury 

that results from shoulder pain, specifically subacromial impingement syndrome, have been 

linked to decreased scapular upward rotation, decreased scapular posterior tilt, and increased 

scapular internal rotation with humeral elevation tasks.10  Burkhart et al1 use the acronym 

SICK when describing a specific form of scapular dyskinesis.  SICK scapula refers to the 

presence of Scapular malposition, Inferior medial border prominence, Coracoid pain and 

malposition, and dysKinesis of scapular movement.  Overhead athletes diagnosed with SICK 
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scapula syndrome typically present with a unilateral lowered and anteriorly tilted scapula 

with accompanied anterior shoulder pain on the involved side.  In overhead athletes, one 

initial sign of SICK scapula syndrome is shoulder biomechanical dysfunction and pain.  

Because athletic skill is dependent on biomechanical ease and efficiency, shoulder pain and 

altered overhead biomechanics can become extremely debilitating for the competitive 

overhead athlete.1, 6, 7, 9, 13, 19, 25  With the ongoing establishment of SICK scapula syndrome, 

scapular dyskinesis is becoming more objectively assessed for both therapeutic rehabilitation 

purposes and prophylactic conditioning purposes. 

Whether via special tests (i.e. the Scapular Assistance Test) or the palpation of 

anatomical landmarks (i.e. the coracoid process of the scapula), one approach to the clinical 

diagnosis of an underlying shoulder pathology has been the use of patient self-reported pain 

symptoms.  Pain is the common thread interweaving most shoulder disorders, with the source 

and mechanism of such pain being variable.  Because pain is a person’s perception of 

physical damage, subjective athlete pain reports have the advantage of being athlete-specific 

and providing an important perspective on athlete status.  They cannot, however, accurately 

represent the presence or the severity of an actual physical impairment with associated soft 

tissue damage.  Currently, there is a need for a validated, reliable, quantitative measure of 

scapular dyskinesis for shoulder pathology assessment.   

As is the case with the clinical assessment of SICK scapula syndrome, qualitative 

pain measures provide an incomplete picture of the severity of this scapular malpositioning 

and dyskinetic disorder.  Based upon both the literature and screening guidelines of Burkhart 

& Morgan1, the severity of the SICK scapula syndrome is graded on a 0 to 20 point scale, 

with 0 representing complete shoulder health and 20 representing severe, symptomatic SICK 
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scapula syndrome.  It must be noted, however, that both the validity and the reliability of this 

scale have not yet been established.  Typically upon screening, athletes who present with 

symptomatic SICK scapula syndrome will score somewhere within the range of 10 to 14 on 

the SICK Scapula, Static Measurements, 0 to 20 Point Rating Scale1, but at this point in time, 

the scale’s diagnostic value is merely anecdotal.  This suggests the need for a valid, 

structured clinical tool that could be utilized by clinicians as a predictor for the potential, 

presence, and/or severity of SICK scapula syndrome.   

The purpose of this study was to validate the SICK Scapula, Static Measurements, 0 

to 20 Point Rating Scale, developed by Burkhart et al1,  by predicting subject score from 

scapular stabilizer EMG activity.  Determining the validity of the SICK Scapula, Static 

Measurements, 0 to 20 Point Rating Scale1 may allow clinicians to more readily utilize this 

scale as an accurate screening tool toward the identification of SICK scapula syndrome.   

The identification of scapular muscle dysfunction in pathologic, SICK scapula 

syndrome overhead athletes will allow the condition to become more successfully treated.  

Understanding the adaptive scapular stabilizer activation deficiencies associated with SICK 

scapula syndrome would allow clinicians to implement specific rehabilitation exercises when 

treating affected athletes.  The rehabilitation exercises that target the muscle identified to be 

dysfunctional in this study could help restore ideal scapular force couple synchronization, 

thus allowing the scapula to move harmoniously with the moving humerus.  Such fine-tuned, 

corrective exercise would effectively allow a rehabilitating athlete to have a pain-free return 

to competition.    
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METHODS 

Subjects 

Subjects were recruited from a university population of NCAA Division I overhead 

athletes and/or recreational club overhead athletes at The University of North Carolina at 

Chapel Hill.  Subjects were both male and female and were between the ages of 18 and 25 

years old.    

Overhead athletes were operationally defined as those who participate in a sport that 

requires their arm to be above their shoulder height on a repetitive basis during throwing or 

striking activities (i.e. baseball, softball, swimming, tennis, volleyball, and water polo) for a 

duration of at least 30 minutes per session for at least 3 individual sessions per week. 

Instrumentation 

The SICK Scapula, Static Measurements, 0 to 20 Point Rating Scale is a grading 

system used for assessing the severity of scapular malposition based on 1) infera (i.e. the 

visual appearance of a dropped scapula due to scapular tilting or protraction), 2) lateral 

displacement, and 3) abduction.  All measurements were made statically with the patients 

standing erect with arms relaxed at their side.  The measurement of infera is the difference in 

vertical height of the superomedial scapular angle of the dropped scapula in centimeters 

compared with the contralateral superomedial angle.1  The SICK Scapula, Static 

Measurements, 0 to 20 Point Rating Scale was used to give a quantitative sense of SICK 

scapula syndrome severity.   

Prior to the study, reliability and precision of this scale were established from a small 

pilot study by the chief investigators using intraclass correlation coefficient (ICC) and 
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standard error of measurement (SEM).  The inter-session reliability and precision were 

calculated to yield an ICC of 0.682 and SEM of 1.44 points, respectively.  The inter-tester 

reliability and precision were calculated to yield an ICC of 0.684 and SEM of 1.18 points, 

respectively. 

A Motion Star (Ascension Technologies Inc, Burlington, Vt) electromagnetic motion 

analysis mini bird system controlled by the Motion Monitor (Innovative Sports Training Inc, 

Chicago, Ill) software was used to assess shoulder complex kinematics at a sampling rate of 

100 Hz.  The humeral kinematic data were used to define the ascending and descending 

phases during each humeral elevation task.   

Electromyographic (EMG) muscle activation analyses were performed to measure the 

mean amplitude of the upper trapezius, middle trapezius, lower trapezius, and serratus 

anterior muscles using a Delsys Bagnoli-8 EMG (Boston, MA).  The EMG signal was 

amplified by a factor of 1000 over a bandwidth of 0.01 to 2000 Hz, passed via an A/D 

converter (National Instruments, Austin, TX) sampling at 1000 Hz then corrected for DC 

bias.   

 

Procedures 

Upon entering the lab, each subject was briefed on testing procedures and signed and 

received a copy of the Consent to Act as a Human Subject form, that was approved by the 

University Institution Review Board.  Subjects then completed a medical history form, 

underwent a screening by two trained clinicians using the SICK scapula, Static 

Measurements, 0 to 20 Point Rating Scale, and were measured for both height and weight.   
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Limb selection was dictated either by 1) the subject’s involved side in those who had 

reported symptoms of shoulder pain or 2) the dominant side in those who had reported to be 

asymptomatic for shoulder pain.  Subjects were screened twice (one screening per trained 

clinician/investigator), and an average of the two scores was calculated and utilized for later 

statistical analysis.     

Isometric manual muscle tests were performed to ensure accurate placement of 

electrodes and to measure and record maximal voluntary isometric contraction (MVIC) 

EMG.  Subjects performed each MVIC measure for five seconds.  The MVIC measures were 

taken for three trials averaged for normalization of muscle activity during each task.  The 

peak mean force for a five-second period was recorded.  Mean amplitude values for the three 

trials were expressed as a percentage (%MVIC) for each functional task. 

After the setup for both EMG and kinematic analysis was completed, subjects 

completed the following tasks in a counterbalanced order: glenohumeral elevation in the 

sagittal plane (flexion) and glenohumeral elevation in the scapular plane (scaption).  Each of 

the two humeral elevation tasks required the subject to lift their arm for ten repetitions per 

task.  The sagittal plane was defined as the plane parallel to the sagittal plane of the thorax.  

The scapular plane was defined as the plane 30 degrees anterior to the frontal plane of the 

thorax.   

 Subjects completed their full range of motion at a controlled movement velocity by 

moving in time with a digital metronome set at one beat per second.  Each functional task 

required ten continuous repetitions, with each repetition lasting approximately four seconds 

(two-second ascending phase, two-second descending phase).  A PVC guide pole was used 

as a guide for both flexion and scaption.   
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Data Reduction 

All raw trial and MVIC data EMG data were filtered using a fourth order Butterworth 

band-pass filter (10-350 Hz). The root mean square (RMS) of the EMG signal over a 50 ms 

time constant was taken to further smooth the data.     

Mean EMG amplitude was calculated, with the ascending phase (0o-120o) and the 

descending phase (120-0o) being determined by the humeral elevation angle data.  For each 

repetition, the lowest point of humeral elevation represented the initiation of the ascending 

phase, and the highest point of humeral elevation represented the cessation of the ascending 

phase and the initiation of the descending phase.  The subsequent lowest point of humeral 

elevation represented the cessation of the descending phase.   

The EMG activity during both the ascending and descending phases were calculated 

as an average of the mean EMG amplitude over each phase of motion for the middle five 

repetitions of each muscle tested.  The mean EMG activity independent variables were 

normalized to the MVICs obtained prior to the trials, and were expressed as a percentage of 

the MVIC (%MVIC).  Variables were calculated and processed using Matlab R2007a (The 

MathWorks Inc., Natick, Massachusetts). 

 

Statistical Analyses 

Mean EMG amplitude data were used to represent muscle activation over each phase 

of humeral elevation for the upper trapezius, middle trapezius, lower trapezius, and serratus 

anterior.   

 Multiple linear regressions were used to predict the scores derived from the SICK 

Scapula, Static Measurements, 0 to 20 Point Rating Scale1 using the Statistical Package for 
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Social Sciences (SPSS 15.0, Inc, Chicago, IL)(see Table 2).  Statistical significance for all 

comparisons was set a priori at alpha-level of 0.05. 

 

RESULTS 

Descriptive Statistics  

Forty Division I overhead athletes and/or recreational club overhead athletes (10 

softball players, 20 swimmers, 9 volleyball players, and 1 water polo player; 33 right arm 

dominant, 7 left arm dominant) participated in this study.  Due to errors in data, three 

subjects were dropped from this study.  Out of the remaining 37 participants, 20 reported to 

be currently experiencing shoulder pain.  The descriptive statistics on demographics and the 

SICK Score is presented in Table 3.  The breakdown of SICK scapula syndrome score for all 

subjects is presented in Table 4.  Mean amplitude EMG was calculated for the upper 

trapezius, middle trapezius, lower trapezius, and serratus anterior muscles (see Table 5). 

 105



 

Mean ±SD Mean ±SD
Age (years) 19.14 1.07 19.97 1.08
Height (cm) 181.43 2.48 173.79 8.42
Mass (kg) 73.87 3.59 69.00 7.90
SICK Score a 5.29 2.23 4.32 3.44
Subjective b 2.14 1.25 1.66 1.64
Objective c 1.43 0.79 1.45 1.62
Malpositioning d 1.71 0.64 1.23 0.84

Table 3. Study Participants Demographics

(n = 7) (n = 30)
Male Participants Female Participants

 
a  SICK Scapula, Static Measurements, 0 to 20 Point Rating Scale1 
b  Self-reported pain of the coracoid process, AC joint, periscapular soft tissue, proximal 
lateral arm, and/or elbow (possible 5 points) 
c  Self-reported tenderness to palpation of the coracoid process, AC joint, superior medial 
angle; (+) provocative impingement test (Hawkins-Kennedy Impingement Sign), (+) scapular 
assistance test, and/or (+) thoracic outlet syndrome test (Allen Test) (possible 6 points) 
d   Scapular malposition based on 1) infera (i.e. the visual appearance of a dropped scapula 
due to scapular tilting or protraction), 2) lateral displacement, and 3) abduction (possible 9 
points) 
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21 6.5 Y xx x x x xx xx xx x
22 11 Y xx xx xx xx xx xx xx xx xx x x xx
23 2 N x x
24 5 Y xx x x xx x xx x
25 7 Y x xx xx xx xx x x xx
26 7 Y x xx xx x x xx xx x xx
27 1 N x x
28 8.5 Y x xx xx xx x xx xx xx xx x
29 0 N
30 7.5 Y xx x xx x xx xx x xx x x
31 10 Y xx xx xx xx xx xx xx xx xx x x x
32 3.5 N xx x x xx
33 2.5 N xx xx xx
34 5.5 Y xx xx xx xx xx x
35 2.5 N x x xx x
36 5.5 Y xx x x x x xx x xx
37 6.5 Y x xx xx x xx x x x
38 0 N
39 3.5 N xx x x x xx
40 1 N xx

Total 4.4 20 9 19 14 14 19 10 17 18 2 5 22 0 0 23 2 0 21 2 0
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Table 5: Mean and Standard Deviation Muscle Amplitude (%MVIC) 

Mean ±SD Mean ±SD
Upper Trapezius 54.01 28.53 28.91 16.75
Middle Trapezius 20.61 22.07 16.02 19.58
Lower Trapezius 26.91 24.15 20.18 24.11
Serratus Anterior 53.57 40.26 26.33 19.86

Mean ±SD Mean ±SD
Upper Trapezius 62.70 30.25 33.92 22.35
Middle Trapezius 31.24 35.39 24.53 33.03
Lower Trapezius 25.05 22.99 20.51 23.65
Serratus Anterior 51.06 38.12 29.87 25.03

Scaption Elevation Task
Ascending Phase Descending Phase

Flexion Elevation Task
Ascending Phase Descending Phase

 

 

A simple linear regression was performed to assess how the upper trapezius mean 

muscle activation amplitude during a sagittal and scapular plane elevation task was able to 

predict the subject score on the SICK Scapula, Static Measurements, 0 to 20 Point Rating 

Scale.1  A simple linear regression analysis for the ascending phase of the flexion task 

revealed that the mean upper trapezius muscle activation amplitude did not significantly 

predict the subject score on the SICK Scapula, Static Measurements, 0 to 20 Point Rating 

Scale1, (F =  0.568, df = 35, p = 0.456), with an r2 of 0.016.  Regression analysis for the 

descending phase of the flexion task also revealed no significant findings, (F = 0.092, df = 

35, p = 0.764), with an r2 of 0.003.  Regression analysis for the ascending phase of the 

scaption task revealed no significant findings, (F = 0.010, df = 35, p = 0.921), with an r2 of 

less than 0.001.  Regression analysis for the descending phase of the scaption task also 

revealed no significant findings, (F = 0.329, df = 35, p = 0.570), with an r2 of 0.009.   



A simple linear regression was performed to assess how the middle trapezius mean 

muscle activation amplitude during a sagittal and scapular plane elevation task was able to 

predict the subject score on the SICK Scapula, Static Measurements, 0 to 20 Point Rating 

Scale.1  A simple linear regression analysis for the ascending phase of the flexion task 

revealed that the mean middle trapezius muscle activation amplitude did not significantly 

predict the subject score on the SICK Scapula, Static Measurements, 0 to 20 Point Rating 

Scale1, (F = 0.026, df = 35, p = 0.874), with an r2 of 0.001.  Regression analysis for the 

descending phase of the flexion task also revealed no significant findings, (F = 0.021, df = 

35, p = 0.886), with an r2 of 0.001.  Regression analysis for the ascending phase of the 

scaption task revealed no significant findings, (F = 0.278, df = 35, p = 0.601), with an r2 of 

0.008.  Regression analysis for the descending phase of the scaption task also revealed no 

significant findings, (F = 2.116, df = 35, p = 0.154), with an r2 of 0.056.   

A simple linear regression was performed to assess how the lower trapezius mean 

muscle activation amplitude during a sagittal and scapular plane elevation task was able to 

predict the subject score on the SICK Scapula, Static Measurements, 0 to 20 Point Rating 

Scale.1  A simple linear regression analysis for the ascending phase of the flexion task 

revealed that the mean lower trapezius muscle activation amplitude did not significantly 

predict the subject score on the SICK Scapula, Static Measurements, 0 to 20 Point Rating 

Scale1, (F = 0.026, df = 35, p = 0.873), with an r2 of 0.001.  Regression analysis for the 

descending phase of the flexion task also revealed no significant findings, (F = 0.010, df = 

35, p = 0.919), with an r2 of less than 0.001.  Regression analysis for the ascending phase of 

the scaption task revealed no significant findings, (F = 0.000, df = 35, p = 0.998), with an r2 
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of less than 0.001.  Regression analysis for the descending phase of the scaption task also 

revealed no significant findings, (F = 0.196, df = 35, p = 0.660), with an r2 of 0.005.   

A simple linear regression was performed to assess how the serratus anterior mean 

muscle activation amplitude during a sagittal and scapular plane elevation task was able to 

predict the subject score on the SICK Scapula, Static Measurements, 0 to 20 Point Rating 

Scale.1  A simple linear regression analysis for the ascending phase of the flexion task 

revealed that the mean serratus anterior muscle activation amplitude task did not significantly 

predict the subject score on the SICK Scapula, Static Measurements, 0 to 20 Point Rating 

Scale1, (F = 0.214, df = 35, p = 0.646), with an r2 of 0.006.  Regression analysis for the 

descending phase of the flexion task also revealed no significant findings, (F = 0.000, df = 

35, p = 0.998), with an r2 of less than 0.001.  Regression analysis for the ascending phase of 

the scaption task revealed no significant findings, (F = 0.087, df = 35, p = 0.770), with an r2 

of 0.002.  Regression analysis for the descending phase of the scaption task also revealed no 

significant findings, (F = 0.000, df = 35, p = 0.982), with an r2 of less than 0.001.   

 

DISCUSSION 

The purpose of this study was to determine if subject score on the SICK Scapula, 

Static Measurements, 0 to 20 Point Rating Scale1 can be predicted from scapular stabilizer 

muscle activation.  If muscle activation is found to be predictive, the hope is that some level 

of validation can be established for the SICK Scapula, Static Measurements, 0 to 20 Point 

Rating Scale1, theoretically allowing sports medicine professionals to better prescribe 

affected athletes with the most effective rehabilitation exercises when addressing their 

specific scapular movement and stabilizer strength deficits.  Ultimately the goal clinically is 
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to improve treatment outcome. The rationale for the validation of the SICK Scapula, Static 

Measurements, 0 to 20 Point Rating Scale1 was to test its clinical efficacy as a predictor for 

the potential, presence, and/or severity of SICK scapula syndrome.   

Our results indicate that mean muscle activation amplitude of the scapular stabilizers 

was not found to be a valid predictor of subject score on the SICK Scapula, Static 

Measurements, 0 to 20 Point Rating Scale.1  Our research hypothesis anticipated an increase 

in upper trapezius muscle activity, as well as decreases in middle trapezius, lower trapezius, 

and serratus anterior muscle activity as a valid predictor of symptomatic SICK scapula 

syndrome (i.e. 10 or greater on the SICK Scapula, Static Measurements, 0 to 20 Point Rating 

Scale1).  Based on our findings however, we conclude that neither upper trapezius muscle 

over-activation nor middle trapezius, lower trapezius, or serratus anterior muscle under-

activation can reliably or accurately predict subject score on the SICK Scapula, Static 

Measurements, 0 to 20 Point Rating Scale.1 

Scapular stabilizer muscles dictate both scapular position and motion and are also 

considerably inhibited by the presence of pain.40  Theoretically, EMG analysis of the 

scapular stabilizers should be an accurate predictor of subject score on the SICK Scapula, 

Static Measurements, 0 to 20 Point Rating Scale1, with the scale designed specifically to 

assess the presence of scapular malpositioning and shoulder pain.   

The muscles originating and inserting on the scapula are the driving force behind all 

scapular and glenohumeral kinematic movement.  Therefore, it was inferred that scapular 

positioning and motion are notably impacted when there is a disruption of this dynamic link 

via scapular muscle activation dysfunction.  
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Scapular muscle activation dysfunction refers specifically to strength deficits of the 

middle trapezius, lower trapezius, and serratus anterior muscles in relation to the upper 

trapezius muscle.13  Most researchers agree that the serratus anterior and the lower trapezius 

are inherently the most susceptible of the scapular stabilizers to the effects of both weakness 

and inhibition.15, 21, 23, 36  When the serratus anterior and lower trapezius suffer weaknesses, 

there is a significant decrease in scapular upward rotation.37  Also, inadequate serratus 

anterior function prevents the anchoring of the inferior scapular angle to the wall of the 

thorax, thus also preventing smooth scapular movement.3  Essentially, scapular 

malpositioning and dyskinesis have a certain dependency on the presence of scapular 

stabilizer strength deficits.   

Bandholm et al40 studied the effects of pain on force steadiness and related muscle 

activity.  Using healthy subjects and experimental pain, the researchers demonstrated pain’s 

ability to inhibit maximal force production while having no effect on musculature contractile 

properties.  The authors believed that the excitation of the muscle nociceptor afferents 

facilitate inhibitory pathways during muscle agonist activity.40   

Both Pink et al3 and Ludewig et al10 compared muscle activity  in subjects with 

symptoms of subacromial impingement syndrome to an asymptomatic control group.  

Significant findings revealed decreased activation of the serratus anterior muscle in the 

impingement subjects when compared to healthy, control subjects.  Similarly, Wadsworth et 

al23 demonstrated that the activation of the serratus anterior muscle of swimmers suffering 

from subacromial impingement syndrome was found to be delayed by three times when 

performing a scapular plane elevation task as compared to the asymptomatic control group.    
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Cools et al49 also utilized a comparison study to observe the differences in scapular 

muscle activity between overhead athletes with and without impingement symptoms.  Here 

researchers measured the mean EMG activity of the upper trapezius, middle trapezius, and 

lower trapezius during isokinetic glenohumeral abduction and external rotation.  Their results 

showed significantly decreased activity in the lower trapezius during the glenohumeral 

abduction task and decreased activity in the middle trapezius during the glenohumeral 

external rotation task in individuals with impingement symptoms when compared to healthy, 

control subjects.   

In the presence of shoulder pain, the literature clearly supports the linkage of altered 

scapular stabilizer muscle activity and the initiation of some degree of scapular 

malpositioning and/or dyskinesis.  Over half of the subjects tested in this study self-reported 

as having a painful shoulder, yet only four scored higher than 10 out of 20 points on the 

scale, which is a criteria clinically used to diagnose individual as having SICK scapula 

syndrome.  If subjects are categorically symptomatic for self-reported shoulder pain, yet 

qualify as “healthy” upon assessment, one must question both the sensitivity and accuracy of 

the instrumentation being utilized for pathology detection.    

In attempting to explain why altered EMG of the scapular stabilizers was unable to 

predict SICK scapula syndrome score in this study, we must acknowledge flaws in both the 

structural and theoretic framework of the SICK Scapula, Static Measurements, 0 to 20 Point 

Rating Scale.1    

Pilot work, an a priori reliability study, and the thesis project itself allowed 

researchers to screen over 100 athletes utilizing the SICK Scapula, Static Measurements, 0 to 

20 Point Rating Scale.1 Out of all the athletes who were screened, only four were clinically 
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diagnosed as having a SICK scapula syndrome.  The principal investigator suggests two 

structural flaws within the scale’s framework.  The first flaw is the ambiguity of the 

questionnaire and the second is the threshold scoring.   

Questionnaire ambiguity was encountered in the form of subject confusion regarding 

the subjective portion of the screening process.  One common example of such uncertainty 

often came in response to the question, “do you ever have pain on, in between, or around 

your shoulder blades?”  Subjects seemed reluctant to answer yes but would later test positive 

for tenderness to palpation of scapular soft tissue structures.  Athletes seemingly had the 

perception that muscular pain in the form of myofascial trigger points was unrelated to the 

subacromial and/or internal impingement symptoms they may have been experiencing.  We 

believe this misunderstanding among athletes to be extremely reasonable considering the 

nature, source, and severity of their pain is so inherently different.  Question clarification by 

the principal investigator may have allowed athletes to give a more appropriate response to a 

subjective symptom question; however, we felt that doing so may affect the athlete 

responses.  

 Threshold scoring was utilized for the scapular malpositioning portion of subject 

screening.  While this method was deemed the most appropriate to maintain adequate inter-

tester reliability, it often resulted in a lower score than the amount of malposition would 

suggest.  For example, while measuring scapular abduction, a subject may have a four-degree 

abduction discrepancy between scapulae in resting position but would receive no points, 

because it failed to reach the five-degree threshold that would have allotted one point.    
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As was previously mentioned, there are definitive links between shoulder pain, 

scapular malpositioning, and altered scapular stabilizer muscle activity, however we must 

acknowledge that combinations of the three can be mutually exclusive to one another. 

 Shoulder pain can exist without the presence of scapular malpositioning and/or 

dyskinesis.  Myers et al32 found that throwers with pathologic internal impingement typically 

present with posterior shoulder pain.  If screened utilizing the SICK Scapula, Static 

Measurements, 0 to 20 Point Rating Scale1, these athletes may receive up to 11 subjective 

and objective points but display no scapular malpositioning.  In such instances, these athletes 

would be clinically diagnosed as having SICK scapula syndrome without the defining 

characteristics of Scapular malposition, Inferior medial border prominence, Coracoid pain 

and malposition, and dysKinesis of scapular movement. 

Suggesting some flaws with the SICK Scapula, Static Measurements, 0 to 20 Point 

Rating Scale1, we also recognize the asymptomatic scapular malpositionings demonstrated as 

healthy adaptations in overhead athletes.  Myers et al13 found an adaptive increase in scapular 

upward rotation among normal, healthy throwing athletes.  This adaptation was believed by 

the authors to assist in the achievement of subacromial clearance throughout the throwing 

movement pattern, thus acting as a means of preventing subacromial impingement.  

Possessing marked scapular malpositioning does not always mandate an involved 

symptomatic shoulder. 

Lastly, scapular stabilizer deficits can exist without the presence of either shoulder 

pain or scapular malpositioning.  Weakness and/or inhibition-based muscle dysfunction of 

the scapular stabilizers is a common trend among overhead athletes, where there is adaptive 

muscle shortening of the pectoralis minor in conjunction with an adaptive muscle weakening 
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of the middle trapezius, lower trapezius, serratus anterior, rhomboid minor, and rhomboid 

major.9, 34, 35  The presence of upper extremity muscle imbalances is generally accepted to be 

the result of sport-specific pattern dominance and can be entirely asymptomatic in nature.9, 15, 

21, 23, 34-36  

While one criticism regarding the theoretic framework of the scale refers to inflated 

scores without the true presence of scapular malpositioning, an inverse criticism is the 

relative difficulty of scoring in general, even in the presence of both shoulder pain and 

scapular malpositioning.     

The subjective and objective portions of the SICK Scapula, Static Measurements, 0 to 

20 Point Rating Scale1 dually assess an athlete for a wide range of chronic shoulder 

pathologies, from AC joint sprain to thoracic outlet syndrome to subacromial impingement 

syndrome.  While an athlete may possess all of the classic characteristics of SICK scapula 

syndrome (i.e. Scapular malposition, Inferior medial border prominence, Coracoid pain and 

malposition, and dysKinesis of scapular movement), he or she may not score any points for 

AC joint irritation, TOS parathesias, or subacromial impingement syndrome.  As a result, 

subject score would be rather low on both the subjective and objective portions of the scale, 

thus allowing the subject to appear seemingly healthy.  Because total subject score is heavily 

reliant on reports of pain in these two sections, only gross scapular malpositioning (i.e. > 15 

degrees of scapular abduction) would result in a clinical diagnosis of SICK scapula 

syndrome.  Studies comparing healthy subjects and subjects experiencing shoulder pain 

found only modest differences (i.e. < 5 degrees) in scapular kinematics between groups.4, 5, 8, 

9, 11, 12, 18  A 15-degree scapular asymmetry is not only uncommon among ill-maintenance 

shoulders, it is relatively non-existent among Division I overhead athletes. 
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The SICK Scapula, Static Measurements, 0 to 20 Point Rating Scale1 was designed as 

a structured clinical tool that could be utilized by clinicians as a predictor for the potential, 

presence, and/or severity of SICK scapula syndrome.  However, it appears to have rather 

poor predictive value.  In this study, SICK scapula syndrome and other chronic shoulder 

pathologies proved to be far too multi-factorial in nature for one all encompassing number.  

 

Limitations 

Perhaps the greatest limitation of this study was the narrow and low-ended range of 

subject scores collected utilizing the SICK Scapula, Static Measurements, 0 to 20 Point 

Rating Scale.1  While subject recruitment made no distinction regarding a need for either 

symptomatic or asymptomatic shoulders, upon screening, only four subjects scored higher 

than 11 out of a possible 20 points, which is a minimum cutoff score commonly used to 

clinically diagnose individual as having SICK scapula syndrome. Again, we attribute 

unexpected subject scoring to flaws of both the structural and theoretic framework of the 

SICK Scapula, Static Measurements, 0 to 20 Point Rating Scale.1  

Due to in-season compliance issues, this study was subject to an unintentional 

exclusion of baseball players.  Baseball players, specifically baseball pitchers, often 

experience shoulder or elbow pain that prevents them from participation in sports at some 

point in their careers.44  Therefore, caution must be used in extrapolating our findings to a 

baseball pitcher population.     
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Future Research 

Future research should seek to further identify scapular muscle dysfunction in 

symptomatic overhead athletes, specifically those suffering with SICK scapula syndrome.  

Based on our findings, we believe that it is necessary to conduct a more large-scale study of 

overhead athletes, perhaps focusing on ill-maintained shoulders to better exemplify the 

condition in its most exaggerated form.   

 Another potential avenue regarding future research would be the construction of a 

more theoretically sound screening instrument, similar in principle to the SICK Scapula, 

Static Measurements, 0 to 20 Point Rating Scale.1  SICK scapula syndrome represents a 

collection of signs and symptoms commonly seen in individuals with various shoulder 

pathologies.  A more fine-tuned, pathology-specific screening tool may allow clinicians to 

more reliably identify and quantify shoulder injuries for clinical purpose. 

 We acknowledge the findings listed in Table 4 when offering sound 

recommendations regarding the development of a new and theoretically improved screening 

instrument.  By dissecting SICK scapula syndrome score for each of the forty subjects 

screened, we were able to tease out exactly where the bulk of point allotment occurred, 

specifically among those with self-reported shoulder pain.  Based on score breakdown, we 

conclude that ten characteristics of SICK scapula syndrome best exemplify the condition’s 

signs and symptoms, thus serving as the most accurate predictors regarding its presence and 

severity.  We recommend the following subjective questions for the presence of pain: 

coracoid process, periscapular, proximal lateral arm, and radicular symptoms.  We 

recommend the following objective palpations and/or special tests for the presence of pain: 

coracoid process, superior medial scapular angle, and Hawkins-Kennedy Impingement Test.  
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We recommend the following measurements for the determination of scapular 

malpositioning: infera 0 to 1 cm, lateral protraction 0 to 1 cm, and abduction 0 to 5 degrees. 

We also recommend the implementation of a more detailed objective screening 

process; one which includes a postural assessment, observation and measurement of dynamic 

scapular positioning, soft-tissue mobility assessment, and scapular muscle strength 

assessment.  Postural assessments should seek to identify and grade the presence of cervical 

lordosis, thoracic kyphosis, lumbar lordosis, pelvic rotations, and abnormal hip rotations that 

may affect scapular kinematics as energy is transferred through the kinetic chain from the 

lower extremity and core to the thorax and upper extremity.9  Clinicians may perform a quick 

and effective postural assessment utilizing a plumb-line while observing the patient from a 

side-view.   

Scapular position should be observed at rest and during loaded and unloaded humeral 

elevation.  While in resting position, clinicians should observe the scapulae for signs of 

winging (i.e. excessive scapular internal rotation, scapular anterior tilt, and scapular 

elevation).  Dynamic scapular motion should be assessed in both loaded and unloaded 

conditions.  Johnson et al.64  developed a protocol to detect abnormal scapular motion via the 

repetitive challenging of the scapulae under loaded conditions.  The authors data indicated 

that three tests were able to detect abnormal scapular motion: 1) observation of bilateral 

scapular motion during five to ten repetitions of unloaded humeral elevation in the scapular 

plane (scaption) to establish a baseline of scapular movement, 2) observation of bilateral 

scapular motion during five to ten repetitions of loaded (0.5-5 kg) scaption, and 3) 

observation of unilateral scapular motion during resisted isometric external rotation with the 

arm at the side in neutral rotation (i.e. scapular flip sign).64   

 119



The scapular lateral slide test is a semi-dynamic, quantitative assessment of scapular 

position.  This test has been shown to be reliable in assessing the bilateral position of the 

scapulae in relation to a fixed point on the spine as varying loads are placed on the 

supporting scapular musculature.9  The test involves a series of three measurement positions.   

Evaluation of the mobility of the posterior glenohumeral joint capsule, the posterior 

shoulder musculature, and the anterior coracoid musculature provides critical information 

regarding the pathomechanic assessment of scapular dysfunction.  Posterior glenohumeral 

joint capsule contracture has been shown to produce excessive superior and anterior humeral 

head translation, thereby compromising the size of the subacromial space and altering 

glenohumeral and scapular kinematics.10, 19, 25  Posterior shoulder tightness is an additional 

commonly described flexibility characteristic of scapular dysfunction. 1, 3, 8,9, 13, 17, 32  Myers et 

al. quantify posterior shoulder tightness utilizing supine and side-lying horizontal adduction 

assessments.65  One final flexibility measurement to consider during scapular evaluation is 

pectoralis minor mobility.  Due to its proximal attachment on the coracoid process of the 

scapula, inflexibility of the pectoralis minor muscle may manifest as excessive scapular 

anterior tilt and internal rotation, thus resulting in coracoid process pain and scapular 

dysfunction.   

Manual muscle testing of the scapular stabilizing muscles is critical in determining 

the presence of or potential for scapular dysfunction.  Strength of the middle and lower 

trapezius, rhomboids major and minor, and the serratus anterior muscles should be assessed 

through manual muscle testing techniques.  Additional scapular muscle strength and 

endurance tests include the isometric scapular retraction pinch and wall push up tests.  

Typically, patients are able to hold an isometric pinch of the scapulae in retraction for 15 to 
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20 seconds without the onset of burning pain or muscle weakness.  An inability to hold this 

position due to pain or weakness provocation is a positive sign indicating scapular muscle 

dysfunction.9   The ability of the serratus anterior muscle to stabilize the scapula on the 

thorax is easily evaluated with the wall push-up test.  The patient performs 5-10 wall push-

ups while the clinicians observes for abnormalities in scapular position and motion, 

specifically scapular winging.9   

 

Conclusion 

This study is the first to assess the validity of the SICK Scapula, Static 

Measurements, 0 to 20 Point Rating Scale.1  In overhead athletes, mean muscle activation 

amplitude of the scapular stabilizers was not found to be valid predictor of subject score on 

the SICK Scapula, Static Measurements, 0 to 20 Point Rating Scale.1  However, the results of 

this study need to be interpreted with caution, because the majority of subjects scored lower 

than the commonly accepted threshold score for the clinical diagnosis of SICK scapula 

syndrome.  
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University of North Carolina-Chapel Hill 
Consent to Participate in a Research Study  
Adult Subjects Biomedical Form 
________________________________________________________________________ 
 
IRB Study #________07-1689_____________  
Consent Form Version Date: _______11/19/07_______  
Title of Study: A Validation of the SICK Scapula Rating Scale in Overhead Athletes: 
Prediction of Score from Strength, Flexibility, Muscle Activation, and Kinematic Analysis 
Principal Investigator: Karen Tankersley, BS, ATC-L ; Sarah Vizza, BS, ATC-L 
UNC-Chapel Hill Department: Exercise and Sport Science 
UNC-Chapel Hill Phone number: 919-962-2067 
Email Address: ktankers@email.unc.edu; svizza@email.unc.edu 
Co-Investigators: Kevin Guskiewicz, PhD, ATC-L; William Prentice, PhD, ATC-L; Steven 
Zinder, PhD, ATC; Shana Harrington, MPT; Johna Register Mihalik, MA, ATC-L; Saki 
Oyama, MS, ATC 
Faculty Advisor: Joseph Myers, PhD, ATC 
Funding Source:            
Study Contact telephone number: 919-962-2067 
Study Contact email: ktankers@email.unc.edu; svizza@email.unc.edu 
_________________________________________________________________ 
  
What are some general things you should know about research studies? 
You are being asked to take part in a research study.  To join the study is voluntary.  
You may refuse to join, or you may withdraw your consent to be in the study, for any reason. 
 
Research studies are designed to obtain new knowledge that may help other people in the 
future.  You may not receive any direct benefit from being in the research study. There also 
may be risks to being in research studies. 
 
Deciding not to be in the study or leaving the study before it is done will not affect your 
relationship with the researcher, your health care provider, or the University of North 
Carolina-Chapel Hill.  If you are a patient with an illness, you do not have to be in the 
research study in order to receive health care.  
 
Details about this study are discussed below.  It is important that you understand this 
information so that you can make an informed choice about being in this research study.  
You will be given a copy of this consent form.  You should ask the researchers named above, 
or staff members who may assist them, any questions you have about this study at any time. 
                                    
What is the purpose of this study?  
The purpose of this study is to validate a clinical shoulder assessment tool called the SICK 
Scapula Rating Scale.  This study is designed to look at shoulder strength, flexibility, 
shoulder blade movement, and shoulder blade muscle activity in athletes who use their arms 
over their heads. 
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You are being asked to volunteer for this study because you actively participate in a physical 
activity at least 3 times per week for a minimum of 30 minutes each session, one in which 
your arms are required to be over your head for a significant period of time within each 
session.  It is believed that physically active individuals participating in repetitive overhead 
activities are at greatest risk for exhibiting alterations of normal position or motion of the 
shoulder blades.                                                

 
Are there any reasons you should not be in this study? 
You should not be in this study if you have a history of shoulder or neck surgery, rotator cuff 
tear, cervical spine pathology, history of acute-onset shoulder pathology within the last six 
months, adhesive capsulitis, history of unstable episodes within the past six months 
(glenohumeral subluxation, dislocation, self-subluxation), or scoliosis.  
  
How many people will take part in this study? 
If you decide to be in this study, you will be one of approximately 60 people in this research 
study. 
 
How long will your part in this study last?  
If you participate in this study, you will spend approximately 90 minutes during one testing 
session.  A follow up session is not required.    
  
What will happen if you take part in the study? 
You will be asked to report to the Motor Control Lab located in 123 Fetzer on the UNC-CH 
campus.  Male subjects will be asked to remove their shirt, and female subjects will be asked 
to wear either an athletic bra or tank-top.  You will be asked questions regarding your 
shoulder history to ensure that you meet this study’s criteria.  You will then be measured for 
both height and weight and briefed on testing procedures.  Your shoulder will then be 
evaluated by two Certified Athletic Trainers.  They will ask you questions regarding your 
shoulder pain and take measurements around your shoulder.  Following your briefing 
session, you will select a random task completion order for two shoulder elevation tasks. 
 
During testing, male subjects will be required to take off their shirt and female subjects will 
be in a tank-top or wearing an athletic bra. This is to allow exposure of your shoulder blades 
and arms for strength testing and sensor/electrode placement.  
 
Band-aid like electrodes that measure muscle activity will be attached over muscles on back 
of your neck, below your shoulder blade, and on the side of your trunk, just below your 
armpit.  Sensors that measure joint motion will be placed on back of your neck, your 
shoulder, and close to your elbow.  All of these sensors will then be secured with tape.   
 
Prior to testing, you will perform one sub-maximal contraction for each of the previously 
mentioned muscles around the shoulder and upper back to adequately familiarize yourself 
with proper form for each manual muscle test.  Following this warm-up and learning session, 
an investigator will apply a small force to your forearm, and you will be asked to hold your 
arm as still as possible for approximately five seconds.  This process will be repeated in four 
different arm positions and three trials will be recorded for each position.   
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After the setup and baseline measurement has been completed, you will complete two lifting 
tasks.  The first lifting task will require you to raise your arms above your head while they’re 
directly in front of you.  The second lifting task will require you to raise your arms above 
your head while they’re off to the side of your body.  You will lift your upper arm at shoulder 
while keeping your elbow straight over your head as far as possible.  This will be done at a 
controlled movement velocity while keeping in time with a digital metronome.  Each lifting 
task will require ten continuous repetitions, with each repetition lasting approximately four 
seconds.  You will be given a 2 minute rest period between each lifting task.  Lastly, your 
shoulder flexibility will be measured.  
 
What are the possible benefits from being in this study? 
Research is designed to benefit society by gaining new knowledge.  You may not benefit 
personally from participating in this study. 
 
What are the possible risks or discomforts involved with being in this study?  
If you are selected for participation in this study, there is a risk of common discomfort that 
may be experienced during and following each of the two functional tasks.  You may 
potentially experience mild discomfort during and following each of the two functional tasks, 
which can be attributed to the onset of muscle soreness due to temporary overuse.  The 
discomfort that may be experienced with participation is similar to that associated with 
overhead athletic participation and/or activities of daily living in which your arms are being 
used over your head.  In addition, there may be uncommon or previously unknown risks that 
might occur.  You should report any problems to the researchers.  If such problems occur, the 
researchers will assist you in obtaining medical care. However, any costs for the medical care 
will be billed to you or your insurance company. The University of North Carolina at Chapel 
Hill has not set aside funds to pay for any such reactions or injuries, or for the related 
medical care. However, by signing this consent form, you do not give up any legal rights. 
 
What if we learn about new findings or information during the study?  
You will be given any new information gained during the course of the study that might 
affect your willingness to continue your participation.   
 
How will your privacy be protected?   
You will not be identified in any report or publication about this study. Although every effort 
will be made to keep research records private, there may be times when federal or state law 
requires the disclosure of such records, including personal information.  This is very unlikely, 
but if disclosure is ever required, UNC-Chapel Hill will take steps allowable by law to 
protect the privacy of personal information.  In some cases, your information in this research 
study could be reviewed by representatives of the University, research sponsors, or 
government agencies for purposes such as quality control or safety.    
 
What will happen if you are injured by this research? 
All research involves a chance that something bad may happen to you.  This may include the 
risk of personal injury. In spite of all safety measures, you might develop a reaction or injury 
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from being in this study. If such problems occur, the researchers will help you get medical 
care, but any costs for the medical care will be billed to you and/or your insurance company. 
The University of North Carolina at Chapel Hill has not set aside funds to pay you for any 
such reactions or injuries, or for the related medical care. However, by signing this form, you 
do not give up any of your legal rights. 
 
What if you want to stop before your part in the study is complete? 
You can withdraw from this study at any time, without penalty.  The investigators also have 
the right to stop your participation at any time. This could be because you have had an 
unexpected reaction, or have failed to follow instructions, or because the entire study has 
been stopped. 
 
Will you receive anything for being in this study? 
You will not receive anything for taking part in this study. 
 
Will it cost you anything to be in this study? 
No cost will be required of you for this study. 
 
What if you are a UNC student? 
You may choose not to be in the study or to stop being in the study before it is over or at any 
time.  This will not affect your class standing or grades at UNC-Chapel Hill.  You will not be 
offered or receive any special consideration if you take part in this research. You may choose 
not to participate or withdrawal from the study at any time or for any reason without 
jeopardizing your relationship with your coach, athletic trainer, or physician and without 
being penalized in any way.  If you are an athlete, there will be no benefit or consequence to 
your standing on your athletic team in any way.   

 
What if you have questions about this study? 
You have the right to ask, and have answered, any questions you may have about this 
research. If you have questions, or if a research-related injury occurs, you should contact the 
researchers listed on the first page of this form. 
 
What if you have questions about your rights as a research subject? 
All research on human volunteers is reviewed by a committee that works to protect your 
rights and welfare.  If you have questions or concerns about your rights as a research subject 
you may contact, anonymously if you wish, the Institutional Review Board at 919-966-3113 
or by email to IRB_subjects@unc.edu. 
 
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -  
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IRB Study # 07-1689  
Title of Study: A Validation of the SICK Scapula Rating Scale in Overhead Athletes: 
Prediction of Score from Strength, Flexibility, Muscle Activation, and Kinematic Analysis 
Principal Investigators: Karen Tankersley, BS, ATC-L ; Sarah Vizza, BS, ATC-L 
 
Subject’s Agreement:  
 
I have read the information provided above.  I have asked all the questions I have at this time.  
I voluntarily agree to participate in this research study. 
 
_________________________________________   _________________ 
Signature of Research Subject     Date 
 
_________________________________________ 
Printed Name of Research Subject 
 
_________________________________________  _________________ 
Signature of Person Obtaining Consent   Date 
 
_________________________________________ 
Printed Name of Person Obtaining Consent 
 
 

 127



 

 REFERENCES 

1. Burkhart SS, Morgan CD, Kibler WB. The disabled throwing shoulder: spectrum of 
pathology Part III: The SICK scapula, scapular dyskinesis, the kinetic chain, and 
rehabilitation. Arthroscopy. Jul-Aug 2003;19(6):641-661. 

2. Fayad F HG, Yazbeck C, Lefevre-colau MM, Poiraudeau S, Revel M, Roby-Brami A. 
3-D Scapular Kinematics During Arm Elevation: Effect of Motion Velocity. Journal 
of Clinical Biomechanics. 2006;21:932-941. 

3. Pink MM, Tibone JE. The painful shoulder in the swimming athlete. Orthop Clin 
North Am. Apr 2000;31(2):247-261. 

4. McClure PW, Michener LA, Karduna AR. Shoulder function and 3-dimensional 
scapular kinematics in people with and without shoulder impingement syndrome. 
Phys Ther. Aug 2006;86(8):1075-1090. 

5. Warner JJ, Micheli LJ, Arslanian LE, Kennedy J, Kennedy R. Scapulothoracic 
motion in normal shoulders and shoulders with glenohumeral instability and 
impingement syndrome. A study using Moire topographic analysis. Clin Orthop Relat 
Res. Dec 1992(285):191-199. 

6. Burkhart SS, Morgan CD, Kibler WB. The disabled throwing shoulder: spectrum of 
pathology. Part II: evaluation and treatment of SLAP lesions in throwers. 
Arthroscopy. May-Jun 2003;19(5):531-539. 

7. Burkhart SS, Morgan CD, Kibler WB. The disabled throwing shoulder: spectrum of 
pathology Part I: pathoanatomy and biomechanics. Arthroscopy. Apr 2003;19(4):404-
420. 

8. Hebert LJ, Moffet H, McFadyen BJ, Dionne CE. Scapular behavior in shoulder 
impingement syndrome. Arch Phys Med Rehabil. Jan 2002;83(1):60-69. 

9. Kibler WB, McMullen J. Scapular dyskinesis and its relation to shoulder pain. J Am 
Acad Orthop Surg. Mar-Apr 2003;11(2):142-151. 

10. Ludewig PM, Cook TM. Alterations in shoulder kinematics and associated muscle 
activity in people with symptoms of shoulder impingement. Phys Ther. Mar 
2000;80(3):276-291. 

11. Lukasiewicz AC MP, Michener L et al. Comparison of 3-Dimensional Scapular 
Position and Orientation Between Subjects With and Without Shoulder Impingement. 
J Orthop Sports Phys Ther. 1999;29:574-583. 

 128



12. McClure PW, Bialker J, Neff N, Williams G, Karduna A. Shoulder function and 3-
dimensional kinematics in people with shoulder impingement syndrome before and 
after a 6-week exercise program. Phys Ther. Sep 2004;84(9):832-848. 

13. Myers JB, Laudner KG, Pasquale MR, Bradley JP, Lephart SM. Scapular position 
and orientation in throwing athletes. Am J Sports Med. Feb 2005;33(2):263-271. 

14. Su KP, Johnson MP, Gracely EJ, Karduna AR. Scapular rotation in swimmers with 
and without impingement syndrome: practice effects. Med Sci Sports Exerc. Jul 
2004;36(7):1117-1123. 

15. Thigpen CA PDea. Effects of Forward Head and Rounded Shoulder Posture on 
Scapular Kinematics, Muscle Activity, and Shoulder Coordination. In Press. 

16. Tsai NT, McClure PW, Karduna AR. Effects of muscle fatigue on 3-dimensional 
scapular kinematics. Arch Phys Med Rehabil. Jul 2003;84(7):1000-1005. 

17. Fleisig GS, Barrentine SW, Escamilla RF, Andrews JR. Biomechanics of overhand 
throwing with implications for injuries. Sports Med. Jun 1996;21(6):421-437. 

18. Ludewig PM CT. Alterations in Shoulder Kinematics and Associated Muscle Activity 
in People With Symptoms of Shoulder Impingement. Phys Ther. 2000;80:276-291. 

19. Kibler WB. The role of the scapula in athletic shoulder function. Am J Sports Med. 
Mar-Apr 1998;26(2):325-337. 

20. Moseley JB, Jr., Jobe FW, Pink M, Perry J, Tibone J. EMG analysis of the scapular 
muscles during a shoulder rehabilitation program. Am J Sports Med. Mar-Apr 
1992;20(2):128-134. 

21. Cools AM, Witvrouw EE, Declercq GA, Danneels LA, Cambier DC. Scapular muscle 
recruitment patterns: trapezius muscle latency with and without impingement 
symptoms. Am J Sports Med. Jul-Aug 2003;31(4):542-549. 

22. Ludewig PM, Hoff MS, Osowski EE, Meschke SA, Rundquist PJ. Relative balance of 
serratus anterior and upper trapezius muscle activity during push-up exercises. Am J 
Sports Med. Mar 2004;32(2):484-493. 

23. Wadsworth DJ, Bullock-Saxton JE. Recruitment patterns of the scapular rotator 
muscles in freestyle swimmers with subacromial impingement. Int J Sports Med. Nov 
1997;18(8):618-624. 

24. Myers JB, Ju YY, Hwang JH, McMahon PJ, Rodosky MW, Lephart SM. Reflexive 
muscle activation alterations in shoulders with anterior glenohumeral instability. Am J 
Sports Med. Jun 2004;32(4):1013-1021. 

25. Garrett WE SK, Kirkendall DT. Principles and Practice of Orthopaedic Sports 
Medicine. 2000:329-510. 

 129



26. Medicine NAoS. Performance Enhancement Specialist. 2007. 

27. Myers JB, Lephart SM. The Role of the Sensorimotor System in the Athletic 
Shoulder. J Athl Train. Jul 2000;35(3):351-363. 

28. Wu. ISB Recommendation on Definitions of Joint Coordinate Systems of Various 
Joints for the Reporting of Human Joint Motion—Part II: Shoulder, Elbow, Wrist and 
Hand. Journal of Biomechanics. 2005;38:981-992 

29. Ebaugh DD, McClure PW, Karduna AR. Scapulothoracic and glenohumeral 
kinematics following an external rotation fatigue protocol. J Orthop Sports Phys 
Ther. Aug 2006;36(8):557-571. 

30. Bach HG, Goldberg BA. Posterior capsular contracture of the shoulder. J Am Acad 
Orthop Surg. May 2006;14(5):265-277. 

31. Myers JB, Guskiewicz KM, Schneider RA, Prentice WE. Proprioception and 
Neuromuscular Control of the Shoulder After Muscle Fatigue. J Athl Train. Oct 
1999;34(4):362-367. 

32. Myers JB, Laudner KG, Pasquale MR, Bradley JP, Lephart SM. Glenohumeral range 
of motion deficits and posterior shoulder tightness in throwers with pathologic 
internal impingement. Am J Sports Med. Mar 2006;34(3):385-391. 

33. Tyler TF NS, Roy T, Gleim GW. Quantification of posterior capsule tightness and 
motion loss in patients with shoulder impingement. AM J Sports Med. 
2000;29(4):668-673. 

34. Borstad JD, Ludewig PM. The effect of long versus short pectoralis minor resting 
length on scapular kinematics in healthy individuals. J Orthop Sports Phys Ther. Apr 
2005;35(4):227-238. 

35. Ludewig PM, Cook TM, Nawoczenski DA. Three-dimensional scapular orientation 
and muscle activity at selected positions of humeral elevation. J Orthop Sports Phys 
Ther. Aug 1996;24(2):57-65. 

36. Smith J, Dahm DL, Kaufman KR, et al. Electromyographic activity in the 
immobilized shoulder girdle musculature during scapulothoracic exercises. Arch Phys 
Med Rehabil. Jul 2006;87(7):923-927. 

37. Ebaugh DD, McClure PW, Karduna AR. Three-dimensional scapulothoracic motion 
during active and passive arm elevation. Clin Biomech (Bristol, Avon). Aug 
2005;20(7):700-709. 

38. Myers JB, Riemann BL, Ju YY, Hwang JH, McMahon PJ, Lephart SM. Shoulder 
muscle reflex latencies under various levels of muscle contraction. Clin Orthop Relat 
Res. Feb 2003(407):92-101. 

 130



39. Safran MR BP, Lephart SM, Fu FH, Warner JJP  Shoulder Proprioception in Baseball 
Pitchers. J Shoulder Elbow Surg. 2001;10:438-444. 

40. Bandholm T, Rasmussen L, Aagaard P, Jensen BR, Diederichsen L. Force steadiness, 
muscle activity, and maximal muscle strength in subjects with subacromial 
impingement syndrome. Muscle Nerve. Nov 2006;34(5):631-639. 

41. Hughes RE, An KN. Force analysis of rotator cuff muscles. Clin Orthop Relat Res. 
Sep 1996(330):75-83. 

42. Konrad. ABC of EMG – A Practical Introduction to Kinesiological 
Electromyography. 2005. 

43. Michener LA, Boardman ND, Pidcoe PE, Frith AM. Scapular muscle tests in subjects 
with shoulder pain and functional loss: reliability and construct validity. Phys Ther. 
Nov 2005;85(11):1128-1138. 

44. Myers. On-the-Field Resistance-Tubing Exercises for Throwers: An 
Electromyographic Analysis. J Athl Train. 2005;40(1):15-22. 

45. Reddy AS, Mohr KJ, Pink MM, Jobe FW. Electromyographic analysis of the deltoid 
and rotator cuff muscles in persons with subacromial impingement. J Shoulder Elbow 
Surg. Nov-Dec 2000;9(6):519-523. 

46. Conner. The Relationship Between Humeral Rotation and Scapular Tipping. In 
Submission. 2006. 

47. McMahon. Comparative electromyographic analysis of shoulder muscles during 
planar motions: anterior glenohumeral instability versus normal. J Shoulder Elbow 
Surg. 1996;5(2):118-123. 

48. Cools. Scapular Muscle Recruitment Pattern: Electromyographic Response of the 
Trapezius Muscle to Sudden Shoulder Movement Before and After a Fatiguing 
Exercise. J Orthop Sports Phys Ther. 2002;32(5):221-229. 

49. Cools. Trapezius Activity and Intramuscular Balance During Isokinetic Exercise in 
Overhead Athletes with Impingement Symptoms. Scand J Med Sci Sports. 
2007;17:25-33. 

50. McMaster WC RA, Stoddard T. A Correlation Between Shoulder Laxity and 
Interfering Pain in Competitive Swimmers. The American Journal of Sports 
Medicine. 1998;26(1):83-86. 

51. Cools. Rehabilitation of Scapular Muscle Balance: Which Exercises to Prescribe? Am 
J Sports Med. 2007;X(X):1-8. 

52. Thigpen CA PDea. Effects of Forward Head and Rounded Shoulder Posture on 
Scapular Kinematics, Muscle Activity, and Shoulder Coordination. In Press. 2006. 

 131



 132

53. Bull. Accuracy of an electromagnetic tracking device. J Biomech. 1997;30(8):857-
859. 

54. Bull. Accuracy of an electromagnetic measurement device and application to the 
measurement and description of knee joint motion. Proc Inst Mech Eng. 
1998;212(5):347-355. 

55. Eckhouse. A comparison of kinematic recording instruments. J Med Syst. 
1996;20(6):429-456. 

56. Finley. Reliability of biomechanical variables during wheelchair ergometry testing. J 
Rehabil Res Dev. 2002;39(1):73-81. 

57. Milne. Accuracy of an electromagnetic tracking device: a study of the optimal range 
and metal interference. J Biomech. 1996;29(6):791-793. 

58. Kendall. Muscles: Testing and Function with Posture and Pain. 2005. 

59. Ludewig. Comparison of Surface Sensor and Bone-Fixed Measurement of Humeral 
Motion. J Appl Biomech. 2002;18(2). 

60. Borstad JD, Ludewig PM. Comparison of scapular kinematics between elevation and 
lowering of the arm in the scapular plane. Clin Biomech (Bristol, Avon). Nov-Dec 
2002;17(9-10):650-659. 

61. Thigpen CA, Padua DA, Morgan N, Kreps C, Karas SG. Scapular kinematics during 
supraspinatus rehabilitation exercise: a comparison of full-can versus empty-can 
techniques. Am J Sports Med. Apr 2006;34(4):644-652. 

62. Veeger HE, van der Helm FC, Chadwick EK, Magermans D. Toward standardized 
procedures for recording and describing 3-D shoulder movements. Behav Res 
Methods Instrum Comput. Aug 2003;35(3):440-446. 

63. Portney LG WM. Foundations of Clinical Research Applications to Practice. 2nd ed. 
Upper Saddle River, NJ: Prentice Hall Health; 2000. 

64. Johnson MP. New method to assess scapular upward rotation in subjects with 
shoulder pathology. J Orthop Sports Phys Ther. 2001 Feb;31(2):81-9. 

65. Myers JB. Reliability, Precision, Accuracy, and Validity of Posterior Shoulder 
Tightness Assessment in Overhead Athletes. In Press. 2007. 

 

 
 
 


