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SHP-2 is a protein tyrosine phosphatase that has been shown to be required for proper 

vertebrate embryogenesis.  Loss of function studies demonstrate roles for SHP-2 in 

gastrulation, cell migration, and the maintenance of trophoblast stem cells and results in 

lethality prior to or during gastrulation.  In addition to the requirement for SHP-2 during 

early vertebrate development, there is also a requirement for SHP-2 during heart 

development which is supported by studies showing patients with Noonan syndrome often 

having mis-sense mutations in Shp-2.  To date the mechanism leading to abnormal cardiac 

development in Noonan syndrome patients has not been determined.  We have examined the 

effects of SHP-2 inhibition and of human mis-sense mutations of Shp-2 on early heart 

development using Xenopus.  We find that in the absence of SHP-2 signaling, cardiac 

progenitor cells down-regulate genes associated with early heart development and fail to 

initiate cardiac differentiation. We further show that this requirement for SHP-2 is restricted 

to cardiac precursor cells undergoing active proliferation. By demonstrating that SHP-2 is 

phosphorylated on Y542/Y580 and that it binds to FRS-2, an effector of FGF signaling, we 

place SHP-2 in the FGF pathway during early embryonic heart development. Furthermore, 

we demonstrate that inhibition of FGF signaling mimics the cellular and biochemical effects 

of SHP-2 inhibition and that these effects can be rescued by constitutively active/Noonan 
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syndrome associated forms of SHP-2.  We also find that N308D, a Shp-2 mutation associated 

with Noonan Syndrome, leads to cardiac abnormalities in Xenopus.  Characterization of the 

phenotypic defects in these hearts show that they are reduced in size and display delayed 

morphological movements.  These cardiac abnormalities appear to be associated with 

alterations in the actin cytoskeleton.  In addition, we also observed a dramatic increase in the 

number of cells in M-phase of the cell cycle without an increase in cell number.  These 

defects appear to reflect lengthening of the cardiac cell cycle.  Collectively, these results 

show that SHP-2 functions within the FGF/MAPK pathway to maintain survival of 

proliferating populations of cells and that Shp-2 N308D function primarily to alter actin 

muscle development which ultimately leads to defects in cardiac morphogenesis.  
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CHAPTER 1 

Introduction 

 

Currently, there are nearly one million adults in the United States living with congenital heart 

defects with new cases occurring in one of one hundred twenty live births (Pierpont et al., 

2007).  Advances in medicine, technology, and health care have increased life expectancy for 

individuals living with these defects.  As the number of cases of congenital heart defects and 

cardiovascular disease rises, it becomes critical to understand the signals and mechanisms 

required for proper cardiac development.  Scientists have made tremendous strides towards 

the understanding of a number of these critical developmental processes.  However, despite 

numerous efforts, there is still much we do not understand about the complex mechanisms 

used to specify cardiac cells, to regulate cardiac proliferation and differentiation, and to 

promote cardiac cell survival.   

 
Overview of Cardiac Development 

The basic mechanisms of vertebrate cardiac development are conserved from fish and frogs 

through to humans.  In Xenopus development, cardiac precursor cells reside in two bilateral 

populations located dorsally and equatorially in the early stage embryo.  During gastrulation 

the cardiac precursor cells are specified and committed into the cardiac lineage in response to 

inductive signals from the Spemann organizer and the underlying endoderm (Harland and 

Gerhart, 1997; Nascone and Mercola, 1995; Sater and Jacobson, 1989).  By early neurula 



 

stage the cells begin to migrate anteriorly and ventrally towards the antero-ventral midline.  

Once the two populations of cells reach the midline the cells fuse to form a single population 

of cardiac progenitors (Fig. 1.1A).  The sheet of cardiac progenitor cells then rounds up 

dorsally to form a bilaminar heart tube patterned along the anterior-posterior axis of the 

embryo with the inflow tract positioned posteriorly and the outflow tract positioned 

anteriorly (Fig. 1.1B).  In mouse and chick, the linear heart tube is then extended by the 

addition of cardiac cells from extra-cardiac sources of the anterior and secondary heart fields.  

The anterior heart field is comprised of cephalic mesoderm located anteriorly to the heart.  

Cells within this region delaminate and migrate posteriorly to eventually give rise to the 

myocardium of the outflow tract (conus and truncus) and right ventricle of the heart (Cai et 

al., 2003; Mjaatvedt et al., 2001).  Similarly, cells are added to the poles of the heart from the 

secondary heart field which is derived from pharyngeal mesoderm caudally adjacent to the 

distal end of the heart tube and eventually gives rise to the myocardium of the truncus and 

arterial pole (Kelly et al., 2001; Waldo et al., 2001).  Concomitant with linear tube 

expansion, the heart begins a coordinated set of morphological movements resulting in 

rightward looping of the heart.  Chamber morphogenesis is initiated following cardiac 

looping and infiltration of cardiac neural crest cells.  Through further morphological 

movements the heart is septated into a three chambered heart in Xenopus, and a four 

chambered heart in chick, mice, and humans.   

 
Fibroblast Growth Factor (FGF) Family 

Studies have shown that the FGF family is highly conserved across species (Itoh, 

2007; Ornitz and Itoh, 2001).  In Xenopus and chick seven FGF ligands and four receptors 

have been identified (Itoh, 2007; Ornitz and Itoh, 2001).  Orthologs of these FGF genes are 
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found among the twenty-two ligands and four receptors found in humans and mice (Ornitz 

and Itoh, 2001).   

The majority of FGF signaling proceeds in a paracrine fashion with FGF ligands 

secreted from cells and interacting with their cognate receptors on adjacent cells or tissues.  

Ligand binding initiates receptor dimerization and autophosphorylation of the cytoplasmic 

tail of the receptor leading to activation of downstream signaling pathways which include the 

mitogen-activated protein kinase (MAPK) pathway, PI-3 kinase (PI3K) pathway, and 

phospholipase C gamma (PLC-γ) pathway (Fig 1.2).   

Although FGFs are expressed in a number of embryonic and adult tissues, their 

signaling is tightly regulated both temporally and spatially with a subset of ligands expressed 

exclusively in embryonic tissues (FGF-8) and others expressed in both embryonic and adult 

tissues (FGF-2) (Kengaku and Okamoto, 1993; Meyers et al., 1998; Montero et al., 2000).   

Similar to FGF ligands, FGF receptors can be developmentally restricted to specific tissues 

(epithelial or mesenchymal) (Ornitz and Itoh, 2001; Peters et al., 1992).  Moreover, the FGF 

receptors exist as splice variants, generating a spatially or a temporally restricted receptor 

signaling component (Ornitz and Itoh, 2001; Peters et al., 1992).   

Within the heart, differential and overlapping domains of FGF expression mediate 

tissue specific effects necessary for proper cardiac development. For instance, FGF-9 

signaling from the endocardium and epicardium to the myocardium is required to pattern the 

mouse ventricle (Lavine et al., 2005).  Heparin sulfate proteoglycans which bind and stabilize 

FGF ligands add an additional level of regulation.  For example, Allen et al. demonstrated 

FGF2 and FGF4 recognize and bind the same heparin sulfates in some tissues, however 

FGF4 can not bind heparin sulfate in the heart or vascular system (Allen et al., 2001). 
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FGFs and Vertebrate Heart Development 

FGF signaling is critical for both early and late cardiac development and a large 

number of FGF ligands have been shown to be expressed in the vertebrate heart including 

FGF 1, 2, 4, 8-10, 16, 18, and 20 as well as the FGF receptors FGFR 1 and 2 (Franciosi et al., 

2000; Lavine et al., 2005; Macatee et al., 2003; Mima et al., 1995; Reifers et al., 2000; Sugi 

et al., 2003; Sugi et al., 1995; Sugi et al., 1993; Zhu et al., 1996).  However, only in a few 

cases has an endogenous role for any ligand been demonstrated.  

 
Cardiac Specification and Maintenance 

 Specification of the cardiac fields at gastrulation, involves the complex coordination 

of a number of instructive cues to direct a small population of lateral plate mesodermal cells 

into the cardiac lineage.  In Ciona intestinalis, a bHLH transcription factor Mesp, specifies a 

region of mesodermal cells competent to respond to FGF signals (Davidson et al., 2006; 

Davidson et al., 2005).  In turn, FGF signaling, most likely FGF9 expressed in adjacent cells, 

leads to expression of Ets1/2 transcription factors which in turn regulates cardiac gene 

expression of Gata4, Nkx2.5, and Hand-like (Beh et al., 2007; Davidson et al., 2006).  Like 

Ciona, FGF signaling is also required for the induction of cardiac gene expression in 

zebrafish myocardial precursors.   Zebrafish FGF8 mutants (acerebellar) have reduced 

expression of molecular markers of early heart development including Nkx2.5, Nkx2.7, and 

Gata4 (Reifers et al., 2000).  In rescue experiments, Reifers et al. found that expression of 

Nkx2.5 and Gata4 can be restored in response to FGF signaling, but that Nkx2.5 and Gata4 

expression was never observed outside of endogenous domains suggesting that only a subset 

of mesodermal cells are competent to respond to FGF signals (Reifers et al., 2000).  FGF 

signals emanating directly from Henson’s node and/or rostral endoderm are sufficient to 
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induce cardiogenesis in chick embryos, further suggesting a requirement for FGF signals in 

cardiac specification (Lopez-Sanchez et al., 2002).   

FGF signaling has also been shown to be required for cardiac progenitor cell survival 

both prior to and during differentiation of the heart (Langdon et al., 2007).  Langdon et al. 

determined that the non-receptor protein tyrosine phosphatase SHP-2 is required to maintain 

proliferating cardiac progenitor cells during early and late stages of cardiac development and 

in its absence the progenitor cells die (Langdon et al., 2007).  They further determined that 

signaling is mediated through the FGF/SHP-2/MAPK pathway (Langdon et al., 2007). 

FGF signaling is also required to maintain cardiac progenitor cells derived from the 

anterior heart field.  The LIM homeobox transcription factor Islet 1 (Isl1) marks progenitor 

cells of the anterior heart field and Isl1 null mice lack an outflow tract and right ventricle 

(Cai et al., 2003)  Recently, Cohen et al. determined that FGF signaling in the anterior heart 

field was required to maintain Isl1 progenitor cells (Cohen et al., 2007) and demonstrated 

that Wnt signaling was required upstream of FGFs to stimulate the maintenance of Isl1 

positive cells.  Interestingly, although a number of FGFs are expressed in the anterior heart 

field only FGF3, 10, and 16 are positively regulated in response to Wnt signals while others 

were repressed (FGF4) or unaffected (FGF8, 13, and 18) (Cohen et al., 2007).  Although 

these studies appear to suggest that FGF3, 10, and 16 are required for survival of Isl1 positive 

cells, the observation that FGF4 was suppressed may indicate that FGFs also function to 

promote proliferation of cardiac progenitor cells.  The FGF ligands un-responsive to Wnt 

signaling (FGF 8, 13 and 18) may be required for cell identity or required in conjunction with 

other signaling molecules such as BMPs to promote additional cardiac processes such as cell 

migration or actin rearrangement. 
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FGF8 plays a similar role for the maintenance of cardiac neural crest cell survival 

both pre- and post incorporation into the heart and is also required for survival of inflow tract 

cells (Abu-Issa et al., 2002).  These studies would suggest that rather than altering the 

mechanisms of cardiac cell survival after the heart has begun to differentiate that these 

pathways are maintained.  This suggests that elaborate signaling networks act to coordinate 

FGF mediated progenitor cell survival and proliferation with FGF mediated cardiac 

differentiation. 

 
Cardiac Cell Migration 

 FGF signals also play a role during migration of mesodermal cells, which is also 

critical for proper cardiac development.  In Drosophila, FGF receptor expression is essential 

for migration of the mesoderm and subsequent cardiac development.  Heartless mutants 

lacking the FGF receptor (DFR1) in the mesoderm are unable to migrate and spread out to 

form the second germ layer over the ectoderm resulting in a reduction of visceral mesoderm 

leading to a failure in heart formation (Beiman et al., 1996; Shishido et al., 1997).  Similarily, 

chimeric analysis of FGF receptor 1 (Fgfr1) in mouse found that FGF receptor 1 deficient 

cells were unable to contribute to the heart (Ciruna et al., 1997).  Thus, there appears to be an 

evolutionarily conserved role for FGF signaling in mesoderm migration and cardiac 

specification.   

 The majority of studies have been unable to separate the requirement for FGF 

signaling for cardiac specification from the requirement for FGF signaling for early 

migration but the two processes have recently begun to be mechanistically separated.  

Davidson et al. found that cardiac specification occurs through the Mesp activation of FGF 

signals which act on Ets1/2 to initiate cardiac specification in Ciona (Davidson et al., 2006).  
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In a separate study they further demonstrated that a constitutively active form of Mesp 

resulted in ectopic formation of cardiac tissue in the tail.  Thus at least in Ciona cardiac 

specification can be mechanistically separated from cardiac cell migration (Davidson et al., 

2005).  More recently in Ciona, Beh et al. determined that FoxF functions both downstream 

and in parallel to the FGF/MAPK/Ets1/2 pathway to promote migration, yet is dispensable 

for cardiac specification (Beh et al., 2007).  Together, these studies suggest that although 

cardiac specification and migration are linked and utilize several of the same molecules these 

common pathways diverge to promote specific functions (Beh et al., 2007; Davidson et al., 

2005).   

 
FGF Signaling and Cardiac Proliferation and Differentiation 

In addition to their role in migration, FGF receptors have additional requirements 

during cardiac development in the fly.  To address the specific temporal requirements for the 

Drosophila FGF receptor (heartless) on cardiac development, Beiman et al. used an 

inducible dominant negative FGF receptor (DN-htl) to demonstrate that although the dorsal 

vessel undergoes proper vessel closure, there were fewer pericardial and cardial cells 

(Beiman et al., 1996).  The reduction in cardiac cell numbers is consistent with a requirement 

for FGF signaling to promote proliferation and/or cardiac cell survival.  This data also 

suggests that FGF receptor 1 may be the major receptor involved in cardiac proliferation and 

or survival. 

 In vertebrates, as the heart develops, cardiac cells undergo two phases of 

proliferation.  The first phase is initiated prior to linear heart tube formation while the second 

phase is initiated following cardiac looping (Alsan and Schultheiss, 2002; Soufan et al., 

2006; Thompson and Fitzharris, 1979).  A number of studies are consistent with a role for 
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FGF signaling in regulating cardiac cell proliferation (Sheikh et al., 1999; Sheikh et al., 1997; 

Sugi et al., 1995; Thompson and Fitzharris, 1979).  In chicks, FGF1, FGF2, and FGF4 lead to 

the proliferation of precardiac mesoderm, while blocking FGF signaling leads to the converse 

effect, a decrease in either cell proliferation or cell survival during the first phase of cardiac 

proliferation (Franciosi et al., 2000; Mima et al., 1995; Zhu et al., 1996).  The majority of 

proliferation during the later stages occurs in the ventricles, outflow tract and cardiac 

cushions.  The requirement for FGFs to regulate cardiac proliferation is supported by genetic 

studies in mice by Lavine et al. which show that both endocardial and epicardial derived FGF 

signals (Fgf9, Fgf16, and Fgf20) regulate myocardial proliferation (Lavine et al., 2005).  

Similarly, FGF4 has been shown to be required for the proliferation of cells in the cardiac 

cushions (Sugi et al., 2003).  The role of FGFs is further emphasized by the observation that 

mutations in three of the four FGF receptors are associated with human congenital diseases 

(reviewed in Coumoul and Deng, 2003).  

In general, growth factor signaling has been shown to regulate cell cycle progression 

at the G1/S transition (reviewed in Goetz and Conlon, 2007).  These factors promote S phase 

entry through induction of cyclin expression and promotion of cyclin association with the 

respective cyclin dependent kinases (cdks) during G1.  The cyclin/cdk complexes initiate a 

signaling cascade resulting in activation of the E2F transcription factor and subsequent 

activation of genes required for cell cycle progression.  Frederick and Wood show that FGF2 

induces the expression of Cyclin D in early G1 and  Cyclin E in late G1 to promote cell cycle 

progression in oligodendrocyte progenitor cells (Frederick and Wood, 2004).  It is possible 

that FGF regulation of cardiac cell proliferation results from a direct or indirect role in cell 
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cycle progression.  However, at this time data demonstrating a direct role for FGF signaling 

in cardiac cell cycle progression has yet to be reported. 

 
Cardiac Differentiation 

Concurrent with a role for FGFs in cardiac proliferation FGF signaling has been 

implicated as a mediator of cardiac differentiation.  In vitro studies with FGF1, 2, 4, or FGF 

receptor 1 demonstrate that these signaling molecules are required for cardiac differentiation 

and in their absence cardiomyocyte differentiation is reduced or absent (Dell'Era et al., 2003; 

Kawai et al., 2004; Rosenblatt-Velin et al., 2005; Sugi and Lough, 1995; Zhu et al., 1996).  

Consistent with these findings, FGF2 and 4 signaling in vivo  is required to drive pericardial 

mesoderm into an epicardial cell lineage (Kruithof et al., 2006).  Similarly, FGF4 drives 

valve precursor cells within the endocardial cushions toward differentiation into tendon cells 

and away from a cartilage cell lineage (Lincoln et al., 2006).  These studies show that FGF 

signals are critical for cardiac differentiation as evident by the fact that expression of FGF4 

and BMP2 are sufficient to induce non-precardiac mesoderm to form contractile 

differentiated cardiac tissue (Barron et al., 2000; Lough et al., 1996).  Collectively these 

studies suggest FGF signaling is critical for cardiac differentiation, but that this process in 

vivo requires coordination between multiple growth factor signaling pathways.  In spite of the 

suggestion of interplay between FGFs and other signaling pathways in the promotion of 

cardiac proliferation and/or differentiation the mechanisms required to initiate and/or switch 

from a cardiac proliferation program to a cardiac differentiation program remains elusive.   
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Modulation of FGF Signaling 

 Different mechanisms are used to modulate the length and strength of FGF signals 

including FGF inhibitors such as sproutys, spreds, XFLRT3, MAP kinase phosphatase 3 

(MKP3), and ERM proteins (reviewed in Thisse and Thisse, 2005).  However, the role for 

any of these molecules in heart development remains to be established. 

 
Discussion 

 Heart development can be divided into 4 major processes- specification, proliferation, 

differentiation, and cardiac morphogenesis/remodeling.  It is evident from numerous studies 

that FGF signaling has a defined temporal role in each of these processes.  Alterations in 

FGF signaling leads to an assortment of cardiac abnormalities ranging from under/over 

proliferation of cardiac cells to premature differentiation of cardiomyocytes.  Vertebrates 

have devised multiple mechanisms to tightly regulate the process of cardiac development and 

FGF signaling is one mechanism used to coordinate and promote the signals necessary for 

proper cardiac development.   

FGF signaling appears to have opposing roles in heart development; in some 

instances promoting proliferation or cardiac cell survival and in other instances promoting 

differentiation or migration.  This phenomenon can be partially explained through spatial and 

temporal expression of FGF ligands and receptors.  FGF receptors 1and 2 are both expressed 

in a number of the same tissues in the heart.  The expression level of the receptors in some 

instances appears to be altered with respect to each other in time and space.  For example, 

between 9.5 to 12.5 days p.c. of mouse cardiac development, FGF receptor 2 is highly 

expressed in endocardial cushions and the overlying endothelium.  Simultaneously, FGF 

receptor 1 is highly expressed in the myocardium and expressed to a lesser extent in 
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endocardial cushions (Peters et al., 1992).  These FGF receptor expression patterns suggest 

both independent and overlapping domains of receptor expression and thus establishing a 

means to differentially regulate cellular output while utilizing the same signaling pathway.  

Further examination of a number of tissues suggests that when the two FGF receptors are 

expressed at the same time and place, within an organ, receptor expression may be restricted 

to specific cell types within the tissue, i.e. FGF receptor 2 expression restricted to epithelial 

tissue and FGF receptor 1 expression restricted to mesenchymal tissue (Peters et al., 1992).  

This data lend credence to the idea that a major means of cellular regulation is simply 

regulating the localization of critical signaling components.  Through regulation of receptor 

or ligand expression, the organism can specify populations of cells within the same cardiac 

region to both proliferate and differentiate.  Similarly, the organism expresses FGF ligands in 

independent and overlapping domains of expression to promote the maintenance and 

proliferation of cardiac progenitor cells and differentiation of cardiomyocytes (Cohen et al., 

2007; Kruithof et al., 2006; Lincoln et al., 2006).     

 Little is known about what signals lie upstream of FGFs to regulate their expression 

during cardiac development and even less is known about what lies downstream of 

FGF/MAPK signaling to mediate the effects of FGF signaling.  In a few instances portions of 

the pathway have been defined (Fig. 1.3).  For example, in Ciona Beh et al determined that 

Ets1/2 and FoxF function downstream of FGF signaling to promote migration of cardiac 

progenitor cells and Cohen et al. determined that Wnt/β-catenin signaling functions upstream 

of FGF3, 10, 16, and 20 in the anterior heart field to promote Isl1 progenitor cell expansion 

(Beh et al., 2007; Cohen et al., 2007).  However the majority of studies on the role of FGFs 

during cardiac development have not looked at specific FGFs and/or FGF receptors (Barron 
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et al., 2000; Kruithof et al., 2006; Lincoln et al., 2006; Lopez-Sanchez et al., 2002; Lunn et 

al., 2007; Macatee et al., 2003; Marguerie et al., 2006; Mima et al., 1995; Rosenblatt-Velin et 

al., 2005; Sugi et al., 2003; Zhu et al., 1996).  Instead studies focused on the pathway as a 

whole and inhibited FGF signaling through inactivation of the FGF receptors by retroviruses 

or pharmacological inhibitors.  Therefore, there is a large gap in our understanding of which 

ligand and receptors are required for which processes and tissues during cardiac 

development.  However, as we complete more genetic analysis we are discovering greater 

roles for FGF signals in heart development through knock down of multiple FGFs in concert 

to generate a clearer understanding of the role of FGF signals in cardiac development.  At 

this time, further research into FGF signaling and cardiac development needs to focus on 

determining what molecules and pathways lie up and downstream of FGFs in the heart.  

Understanding the up and downstream modulators of the FGF/MAPK pathway will 

help to determine where the specificity for FGF ligands and receptors are in relationship to 

their role in cardiac development.  In addition, future studies need to focus on determining 

which FGF inhibitors are expressed in the heart and by which mechanisms these inhibitors 

regulate FGF signaling.  These studies are critical since much of FGF signaling in cardiac 

development occurs through the MAPK pathway resulting in either transient or prolonged 

ERK activation and it has been suggested that the strength and/or length of ERK activation is 

associated with alternate cellular responses i.e. proliferation versus differentiation (reviewed 

in Marshall, 1995).  Sprouty proteins have been suggested to function at the level of ERK 

and thus to modulate the strength and length of FGF signals.  Therefore if we can establish 

the requirement for each ligand and receptor in heart development and the FGF inhibitor 
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feedback loops we can create a signaling network that can be used towards the development 

of new therapies to treat cardiovascular disease and congenital heart defects. 
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Figure 1.1. Vertebrate heart development. 

Schematic of vertebrate heart development.  (A) Cardiac crescent.  (B) Linear heart tube.  (C) 

The process of cardiac looping. (D) Mature four-chambered heart. RV, right ventricle; LV, 

left ventricle; RA, right atria; LA, left atria; OFT, outflow tract; AO, aorta; SV, sinus 

venosus. 
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Figure 1.2. Activation of FGF receptors and downstream signaling pathways. 

(1-4) Activation of FGF receptors- FGF ligands bind to FGF receptors and the complex is 

stabilized with heparin sulfate proteoglycans (HSPG).  These interactions result in 

dimerization and autophosphorylation of tyrosine residues on the FGF receptors.  (5) MAPK 
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signaling and PLCγ signaling are two major signal transduction pathways through which 

FGFs signal.  MAPK signaling is initiated in several different ways in response the FGF 

receptor activation.  FRS is directly activated through interaction with the FGF receptor and 

subsequently activates the Grb2-Sos complex leading to activation of Ras and transduction of 

MAPK signaling.  Alternatively the MAPK pathway can be activated by SHP-2 which can 

interact directly with the FGF receptor as well as GAB, FRS, and Grb2.  PLCγ signaling is 

initiated when PLCγ bind to the activated FGF receptor.  Activated PLCγ hydrolyzes 

phosphatidyl-inositol-4,5-diphosphate (PIP2) to diacylglycerol (DAG) and inositol-1,4,5-

triphophate (IP3).  The IP3 releases Ca2+ while DAG activates protein kinase C-δ (PKCδ) 

which in turn can activate Raf and signaling through the MAPK pathway.   
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Figure 1.3. In vivo requirements for FGF signaling during Chordate cardiac 

development. 

Schematic of upstream and downstream in vivo mediators of FGF signaling during cardiac 

development for the processes of cardiac specification, migration, proliferation and 

differentiation. 
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CHAPTER 2 

SHP-2 is Required for the Maintenance of Cardiac Progenitors 
 

PREFACE TO CHAPTER 2 

Although SHP-2 has previously been suggested to have a role in proper cardiac development 

as mutations in Shp-2 are associated with the human congenital syndrome Noonan Syndrome 

(Noonan and O'Connor, 1996; Tartaglia et al., 2001), a direct role for SHP-2 in cardiac 

development has not been demonstrated.  Chapter 2 describes the requirement for the protein 

tyrosine phosphatase SHP-2 to maintain cardiac progenitor cells during early vertebrate heart 

development as well as the role of the FGF growth factor signal pathway in this process. 

 This work was published in Development in 2007 and is a co-first author publication 

between myself and a former graduate student in the lab Dr. Sarah C. Goetz.  Additional 

collaborators on the paper include Anna Berg and Dr. Jackie Thomas Swanik.  I performed 

the SHP-2 inhibitor studies, the rescue experiments and the phosphorylation studies.  In 

addition I assisted with the FGF inhibitor and cell cycle inhibitor experiments. 

 



 

Summary 

The isolation and culturing of cardiac progenitor cells has demonstrated that growth 

factor signaling is required to maintain cardiac cell survival and proliferation.  In this 

study, we demonstrate that SHP-2 activity is required for the maintenance of cardiac 

precursors in vivo. In the absence of SHP-2 signaling, cardiac progenitor cells down-

regulate genes associated with early heart development and fail to initiate cardiac 

differentiation. We further show that this requirement for SHP-2 is restricted to 

cardiac precursor cells undergoing active proliferation. By demonstrating that SHP-2 is 

phosphorylated on Y542/Y580 and that it binds to FRS-2, we place SHP-2 in the FGF 

pathway during early embryonic heart development. Furthermore, we demonstrate 

that inhibition of FGF signaling mimics the cellular and biochemical effects of SHP-2 

inhibition and that these effects can be rescued by constitutively active/Noonan 

syndrome associated forms of SHP-2. Collectively, these results show that SHP-2 

functions within the FGF/MAPK pathway to maintain survival of proliferating 

populations of cardiac progenitor cells. 

 

Introduction 

Cells of the cardiac lineage are amongst the first mesodermal cells to be allocated to a 

specific tissue type in vertebrates. By the onset of gastrulation, the cells which will give rise 

to cardiac tissue are located in two regions at the anterior edge of the mesoderm.  Extirpation, 

explantation, and tissue isolation studies in amphibian and avian embryos are all consistent 

with the cells of the cardiac lineage being specified and committed to the heart lineage during 

these early stages of development (Dehaan, 1963; Sater and Jacobson, 1989; Warkman and 
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Krieg, 2006). Once cells are committed to the cardiac lineage, the cells migrate laterally and 

anteriorly, and subsequently fuse at the ventral anterior midline to form the bilaminar heart 

tube comprised of an outer myocardial and an inner endocardial layer (van den Hoff et al., 

2004). It is during this period that the vertebrate heart expresses the first molecular markers 

of cardiac development Tbx5, Gata4, Tbx20 and Nkx2.5, the homologue of the Drosophila 

gene tinman (Fishman and Chien, 1997; Harvey et al., 2002). It is also during this time that 

the cardiac precursors begin a period of rapid proliferation (Goetz and Conlon, 2007; 

Pasumarthi and Field, 2002).  

The isolation and culturing of cardiac progenitor cells has strongly implied the 

requirement for growth factor function to maintain cardiac cell survival. Collectively these 

studies have shown that survival and proliferation of cardiac progenitor populations requires 

either the aggregation of clonal colonies, that the cells be co-cultured with heart tissue, or 

that the cultures be supplemented with a mixture of growth factors and cytokines (Goetz and 

Conlon, 2007; Kouskoff et al., 2005; Moretti et al., 2006; Parmacek and Epstein, 2005; 

Srivastava, 2006; Wu et al., 2006). However the precise nature of the endogenous growth 

factors and the downstream signaling pathways required for cardiac survival or proliferation 

remain unidentified.  

SHP-2, also known as SH-PTP2, Ptpn11, PTP1D, or PTP2C, is the vertebrate 

homologue of the Drosophila gene corkscrew (Csw), a widely expressed non-receptor protein 

tyrosine phosphatase (PTP) known to function genetically and biochemically downstream of 

a number of growth factors including epidermal growth factors (EGFs), platelet derived 

growth factor (PDGF), insulin and fibroblast growth factors (FGFs) (Delahaye et al., 2000; 

Feng, 1999; Pawson, 1994; Qu, 2000; Van Vactor et al., 1998; Zhang et al., 2000). The 

 25



 

sequence, expression pattern and function of SHP-2 are highly conserved throughout 

evolution with genetic studies in a number of animal models all suggestive of a critical role 

for SHP-2 in early development. For example, mice homozygous for a null mutation in Shp-2 

die at implantation, due to a failure in the development of the extra-embryonic 

trophectodermal lineage, while introduction of a dominant negative form of SHP-2 in 

Xenopus can completely block mesoderm formation in response to the FGF/MAPK pathway 

and leads to gastrulation arrest (Tang et al., 1995; Yang et al., 2006).  

Studies have also suggested a role for SHP-2 in heart development. Noonan 

syndrome, a relatively common autosomal dominant disorder that leads to a number of 

cardiac abnormalities including atrial septal defects, ventricular septal defects, pulmonary 

stenosus and hypertrophic cardiomyopathy, is associated with mutations in Shp-2 in 

approximately half of affected individuals (Noonan and O'Connor, 1996; Tartaglia et al., 

2001). All SHP-2 associated Noonan syndrome mutations are mis-sense mutations and occur 

within one of the two SRC-homology 2 (SH2) domains, regions required for protein-protein 

interactions, or within the phosphatase domain.  These mutations are thought to be involved 

in switching SHP-2 between its inactive and active states, and to act in a constitutively active 

fashion (Allanson, 2002; Maheshwari et al., 2002; Schollen et al., 2003; Tartaglia et al., 

2002; Tartaglia et al., 2001). However, the precise requirement for SHP-2 in heart 

development remains to be established.  

  In this study, we have bypassed the early embryonic requirements for SHP-2 by 

means of a cardiac explant assay. Using this assay, we define a requirement for SHP-2 in 

maintaining cardiac precursor populations in vivo. In the absence of SHP-2 signaling all 

early cardiac makers are down regulated and cardiac cells fail to initiate cardiac 
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differentiation. We further show that SHP-2 is required for cardiac progenitor populations 

that are actively proliferating but not those that have exited the cell cycle. We show that 

SHP-2 functions directly downstream of FGF in this process and that inhibiting FGF 

phenocopies SHP-2 inhibition.  Furthermore, SHP-2 is directly phosphorylated on specific 

residues in vivo in response to FGF signaling, and co-immunoprecipitates with FRS, a 

component of the FGF pathway. Most critically, we can rescue the cardiac lineage and the 

downstream signaling pathways in FGF inhibited tissues by the expression of a constitutively 

active/Noonan syndrome version of SHP-2.  

 

Materials and Methods 

DNA Constructs 
 
FL-SHP-2 was generously provided by Nikola Pavletich (Georgescu et al., 2000). Shp-2 

N308D and N308D-PTP were generated by site-directed mutagenesis (Stratagene) according 

to the manufacturer’s protocol. Primer sequences available upon request. For epitope 

labeling, each construct was subcloned into a HA modified pcDNA3.1(+) vector kindly 

provided by Da-Zhi Wang. 

 

Embryo Injections 

Xenopus embryos were obtained by in vitro fertilization (Smith and Slack, 1983), cultured in 

0.1X Modified Barth’s Saline (MBS) and staged according to the Normal Table of Xenopus 

laevis (Nieuwkoop and Faber, 1975). RNA for injection was synthesized using the 

mMessage in vitro transcription kit (Ambion) according to manufacturer’s instructions.  
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Embryos were injected at the one-cell stage with 2ng RNA dissolved in 10nl water unless 

otherwise stated. 

 

Cardiac Explants 

Tissue posterior to the cement gland and including the heart field was excised at stage 22 in a 

manner similar to that described by Raffin et al. (Raffin et al., 2000). The explants include 

overlying pharyngeal endoderm and some foregut endoderm. Explants were cultured at 23 °C 

in either 2.5mM DMSO, 500μM NSC-87877 (Sigma), 50μM SU5402 (Pfizer), 150μM 

aphidicolin (Sigma), 20mM hydroxyurea (Sigma), or 50μM colchicine (Sigma) in 1X MBS 

(Chemicon) (Chen et al., 2006; Dasso and Newport, 1990; Harris and Hartenstein, 1991; 

Mason et al., 2002).  Explants were cultured until specified stages and fixed for 2 hours in 

MEMFA at room temperature. 

 

Immunoblotting 

To detect endogenous SHP-2, five embryos per condition were homogenized in lysis buffer 

(100 mM NaCl, 20 mM NaF, 50 mM Tris pH 7.5, 10 mM Sodium Pyrophosphate, 5 mM 

EDTA, 1% NP40 and 1% Sodium Deoxycholate) with the addition of complete protease 

inhibitor cocktail (Roche) and PMSF (Sigma) and processed according to standard protocols. 

In vitro translation of SHP-2 was performed using wheatgerm TNT coupled 

transcription/translation (Promega) according to manufacturer’s instructions.   

Western blots were probed with anti-mouse total SHP-2 antibody PTP1D/SHP-2 (BD 

Transductions Laboratories) at 1:2500. Heart explant western blots were probed with 

antibodies against phospho-ERK1/2 and total ERK1/2, each used at 1:1000 (Cell Signaling). 
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Whole heart immunoblots were prepared from seventy dissected hearts as described and 

probed with antibodies against total SHP-2.  Calf intestinal phosphatase (CIP) treatment was 

carried out by incubating whole embryo lysate or heart lysate with 5U of CIP, CIP buffer, 

and EDTA-free complete protease inhibitors at 37°C for 1.5 hr prior to western blot analysis.  

Loading levels of tissue were standardized in pilot runs of western blots assayed by 

densitometry. 

 

Whole Mount Antibody Staining and in situ hybridization 

Whole-mount antibody staining of whole embryos and explants were performed as described 

(Kolker et al., 2000) with anti-tropomyosin (1:50; Developmental Studies Hybridoma Bank), 

anti-Myosin Heavy Chain (1:500 Abcam), and phospho-histone H3 (1:200 Upstate) to mark 

cells in M phase (Goetz et al., 2006) and visualized on a Leica MZFLIII microscope. 

Immunostaining of histological sections was performed according to protocols and 

procedures described previously (Goetz et al., 2006). For these studies, phospho-SHP-2 

(Tyr542; Cell Signaling) and phospho-SHP-2 (Tyr580; Cell Signaling) were used at 1:1000. 

Whole-mount in situ hybridizations were performed with Nkx2.5 (Tonissen et al., 1994), 

Tbx5 (Brown et al., 2003; Horb and Thomsen, 1999), Tbx20 (Brown et al., 2003), Gata4 

(Jiang and Evans, 1996), Gata5 (Jiang and Evans, 1996), Gata6 (Gove et al., 1997), MLC1v’ 

(IMAGE clone 4408657, GenBank Accession No.: BG884964) , Sox2 (Lu et al., 2004), 

Endocut (Costa et al., 2003), Ami (Inui and Asashima, 2006), Xmsr (Xenopus EST clone 

XL327k24ex (Mills et al., 1999)), and Shp1 (IMAGE clone 5513271, GenBank Accession 

No.: BC09538), using protocols as previously described (Harland, 1991). In situ 

hybridization of sectioned Xenopus hearts was performed on 14μm cryostat sections using 
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DIG-labeled antisense RNA probes followed by enzymatic detection according to 

manufactures protocols (Roche). The following probes were used Shp-2 (cloned from stage 

19-26 X. laevis pCS2+ cDNA library) using a forward Shp-2 primer sequence of 

CGCCCTAAAGAATCGCAC and a reverse Shp-2 primer sequence of 

ACACTGTAGAGATGAAGATGCCTC resulting in a 1.8kb insert, Shp-1 (IMAGE clone 

5513271, GenBank Accession No.: BC09538), and Tbx20 (Brown et al., 2003). Embryos 

were cleared using 2:1 benzyl benzoate/benzyl alcohol.  

 
 
Whole Mount TUNEL Staining 
 
Apoptotic cells were detected by TUNEL staining as previously described (Hensey and 

Gautier, 1998) with the chromogenic detection of DIG-dUTP incorporation carried out with 

BCIP (175 ug/mL, Roche) and nitro blue tetrazolium (337 ug/mL, Roche). 

 

Immunoprecipitation 

For immunoprecipitations from hearts, embryos were injected, as described above, with 2ng 

of HA-tagged full length Shp-2 RNA. 1400 hearts were dissected at stage 35 and 

homogenized in lysis buffer (50 mM Tris 7.6, 150 mM NaCl, 10 mM EDTA, 1 % Surfact-

Amps Triton-100, 25 mM PMSF supplemented with complete protease inhibitor mini tablet 

(Roche)). Supernatants were precleared with protein A/G beads for two hours at 4°C.  20μl 

of HA beads (Covance) or 30μl of Shp-2 agarose beads (Santa Cruz Biotechnology) was 

added to the supernatant and rotated overnight at 4°C.  Immunoblotting was performed using 

anti-HA (Covance) at 1:1000, anti-FRS-2 (Santa Cruz) at 1:200, anti-SHP-2 (BD 

Transduction Labs) at 1:2500, and anti-phospho Y-542 SHP-2 (Cell Signaling) at 1:1000.  
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For immunoprecipitations from explants, endogenous SHP-2 was immunoprecipitated from 

100 explants per condition, and immunoprecipitations carried out as described above. 

 
 
Results 

 
SHP-2 is required for MHC expression in cardiac tissue  

To begin to elucidate the molecular pathways involved in cardiac cell survival, we have 

focused on the role of SHP-2 during the early stages of heart development. Clinical studies in 

humans and genetic studies in mice are all consistent with a role for SHP-2 in early heart 

development. However it remains unclear if SHP-2 acts directly or indirectly in the cardiac 

lineage. Western blot analysis with an antibody specific for total SHP-2 as well as section in 

situs shows SHP-2 to be present throughout stages of early Xenopus embryogenesis including 

in embryonic heart tissue (Fig. S2.1A-C, S2.2B). 

 Having established that SHP-2 is expressed in early embryos, we next tested the 

requirement for SHP-2 in early heart development. To bypass the early embryonic 

requirement for SHP-2, we have used a cardiac explant assay. Based on anatomical and gene 

expression studies in Xenopus, at late neurulation (stage 22) the cardiac precursors exist in 

two cell populations which lie directly posterior to the cement gland along the anterior-

ventral aspects of the embryo (Dale and Slack, 1987; Moody, 1987; Raffin et al., 2000; Sater 

and Jacobson, 1989). When dissected and cultured in isolation this tissue forms a ridge of 

cardiac tissue on top of developing endoderm (stages 22-33) and will eventually form a 

beating heart (stage 38/40) while the donor embryo completely lacks any cardiac tissue 

(Xenopus can develop to late tadpole stage in the absence of a functioning heart or 

circulation). We have carried out an extensive analysis of these explants using early, mid and 
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late molecular markers of heart tissue and show that the explants display a temporal and 

spatial expression of cardiac genes that faithfully recapitulates that of control 

(unmanipulated) embryos (Fig. 2.1A-B). Therefore, the use of explants for studying the 

requirement for SHP-2 allows us to bypass secondary morphogenesis and tissue interactions 

that may complicate the analysis of the role of SHP-2 in early heart development. To 

determine the requirement for SHP-2 in developing heart tissue, explants were treated with 

DMSO or the SHP-2 specific inhibitor NSC-87877 (Chen et al., 2006). We observe a 

dramatic downregulation of myosin heavy chain (MHC) expression in NSC-87877 treated 

explants compared to controls suggesting that SHP-2 is required for the maintenance of 

MHC expression (Fig. 2.1C).  

Previous studies have shown that NSC-87877 can also inhibit SHP-1 activity. To 

ensure the downregulation of MHC is not due to interference with SHP-1, we identified a full 

length Xenopus Shp-1 EST (Image Clone 5513271, GenBank Accession No. BC097538) and 

performed in situ analysis on early stage Xenopus embryos. Consistent with work in mouse, 

we never detected the presence of Shp-1 in developing Xenopus heart tissue between stages 

22-37 (Fig. S2.2), therefore the defects we observe are most likely due to the inhibition of 

SHP-2. To confirm the specificity of NSC-87877, we show that its effect on MHC can be 

rescued by injection of the Noonan syndrome-associated constitutively active form of human 

SHP-2, N308D (Shp-2 N308D) but not a phosphatase dead version of N308D (Fig. 2.1C, 

2.S3; data not shown).  To ensure that N308D is not inducing ectopic cardiac tissue in 

explants, we further tested the effects of Shp-2 N308D on heart development by injecting 

mRNA encoding Shp-2 N308D and performing whole mount in situ hybridization with 

markers of early heart development including Nkx2.5 (Tonissen et al., 1994), Tbx5 (Brown et 
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al., 2003; Horb and Thomsen, 1999), and Tbx20 (Brown et al., 2003). Consistent with the 

results shown in Fig. 2.1 there are no alterations in the expression of any of these markers 

between control and N308D derived embryos (Fig. S2.4). Taken together, these data indicate 

that SHP-2 signaling is required to induce or maintain expression of MHC.  

 
SHP-2 signaling is required for the maintenance of cardiac progenitors 

Since we observed that the SHP-2 is required for MHC expression in cardiac tissue, we 

addressed whether this effect is specific for MHC or reflects a general requirement for SHP-2 

signaling in heart development. To establish the role of SHP-2 in heart development and to 

determine how rapidly SHP-2 inhibition effects cardiac gene expression, we assayed cardiac 

explants for expression of Nkx2.5, Tbx5, Tbx20 and the cardiac differentiation marker 

MLC1v′ at time points corresponding to stage 22, the stage when the cardiac precursors are 

two distinct lateral populations of cells; stage 26, the period when the two cardiac precursors 

populations are positioned at the anterior, ventral region of embryo flanking the midline; 

stage 29 when the cardiac fields fuse across the ventral midline and stage 33 when the 

bilaminar heart tube initiates cardiac looping.  These studies show that there is a progressive 

loss of all three early markers with increasing length of SHP-2 inhibition. We observe that 

controls and tissue treated for one hour are indistinguishable at stage 22 (Fig. 2.2A-C) 

however by early tailbud stage (St. 26) cardiac precursors in treated explants remain in two 

bilateral populations while the cardiac precursors in controls have migrated toward the 

midline (Fig. 2.2A-C). At stage 29, when the hearts in control explants have formed a linear 

heart tube, the cardiac fields in SHP-2 inhibited explants remain unfused and display reduced 

expression of Nkx2.5, Tbx5, and Tbx20. Similarly, at stage 33, Nkx2.5, Tbx5, and Tbx20 

expression appears to continue to be restricted to a subset of tissue at the leading edge of the 
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cardiac field or is absent entirely. The expression of the cardiac differentiation marker 

MLC1v’ is never initiated in SHP-2 inhibited explants (Fig. 2.2D).  Thus overall there 

appears to be a progressive and rapid loss of early cardiac marker expression in SHP-2 

inhibited explants and markers of cardiac differentiation fail to be expressed (Fig. 2.2A-D). 

We do note however, that cardiac cells at the leading edge continue to express Tbx5 until at 

least stage 33 (Fig. 2.2B, arrows) suggesting that in these cells Tbx5 expression is regulated 

in a SHP-2-independent fashion.  

 To confirm and extend these findings we tested explants for expression of the early 

cardiac/endoderm markers Gata4, Gata5, and Gata6. Similar to Nkx2.5, Tbx5, and Tbx20, we 

detect a dramatic down-regulation of Gata4, Gata5 and Gata6 (Fig. S2.5). The loss of 

cardiac markers is not due to dedifferentiation since the explants do not express markers of 

undifferentiated mesoderm (data not shown). Moreover, the effects of SHP-2 are dose 

dependent with the dose of NSC-87877 that affects early cardiac marker expression being the 

same dose that in cardiac explants blocks MAPK signaling, a downstream mediator of SHP-2 

signaling (Fig. S2.6). However, we cannot formally exclude the possibility that other SHP-2 

like molecules may also be involved in the same signaling process. Consistent with published 

reports showing that NSC-87877 affects SHP-2’s phosphatase activity, we are able to rescue 

the expression of molecular markers of early cardiac development in SHP-2 inhibited 

explants by the expression of a constitutively active SHP-2 N308D and to a lesser extent 

wildtype SHP-2 (Fig. 2.2E, S2.3, S2.6, data not shown).  

Since NSC-87877 cannot be absorbed by whole Xenopus embryos, to determine if the 

effects we observe with our tissue culture explants is reflective of a requirement for SHP-2 in 

developing embryos we cultured the anterior third of stage 22 embryos in media containing 
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NSC-87877 at the same dose used in our explant studies. Identical to the cardiac explants, 

treatment with NSC-87877 specifically inhibits expression of Nkx2.5 in the developing heart 

while having no effects on its expression in the developing pharyngeal endoderm (Fig. 2.2F). 

Collectively, these results suggest that SHP-2 is required to maintain the expression of early 

cardiac markers in most of the cardiac field and for the onset of cardiac differentiation.  

 
SHP-2 signaling is required for pharyngeal mesoderm but is not required for the 

induction and/or maintenance of endodermal or endothelial tissue types 

To determine whether the requirements for SHP-2 are cardiac-specific, we assayed the 

effects of SHP-2 inhibition on the additional cell types present in tissue explants; endoderm, 

endothelial cells, and overlying pharyngeal mesoderm (Fig. 2.3A). Similar to our findings 

with cardiac-specific markers, SHP-2 signaling is required for the maintenance of the 

pharyngeal mesoderm-associated genes Fgf8, Tbx1, and Isl1 as inhibition of SHP-2 signaling 

results in loss of expression of these genes in explanted tissue (Fig. 2.3B and data not 

shown). In contrast, results show that SHP-2 signaling is not required for the expression of 

genes associated with the deep endoderm (Edd and Endocut positive tissue) or pharyngeal 

endoderm (Sox2 positive; Fig. 2.3C). Similarly, we observe that SHP-2 signaling is not 

required for the onset of expression of the endothelial cell markers Xmsr and Ami (Fig. 2.3C). 

We note however, that Xmsr and Ami are expressed in SHP-2 inhibited tissue in coherent un-

branched patterns verses control explants suggesting that SHP-2 is required either directly or 

indirectly for the proper development and growth of endothelial tissues. Collectively, these 

results show SHP-2 is required for the maintenance of early markers of cardiac and 

pharyngeal mesoderm but is not required for the maintenance of endodermal or endothelial 
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cell types, and further imply that the requirement for SHP-2 in cardiac tissue is not an 

indirect effect of alterations in endodermal induction or patterning.  

 
Inhibition of SHP-2 results in a progressive increase in cardiac cell death 

To determine if the loss of cardiac tissue in response to SHP-2 inhibition is due to defects in 

cardiac cell survival or proliferation, we repeated our analysis examining programmed cell 

death in control explants and explants in which SHP-2 signaling was inhibited. Explants were 

again treated with the SHP-2 inhibitor beginning at stage 22, and then analyzed at stages 22, 

26, 29, and 33. TUNEL staining of cardiac explants reveals that at stage 22 there is no 

apparent difference in cardiac cell death in the ridge of mesodermal tissue which contains the 

cardiac tissue in either control or SHP-2 inhibited explants (Fig. 2.4) however, by stage 26 

we begin to detect an increase in TUNEL positive cells in SHP-2 inhibited in cardiac tissue 

(Fig. 2.4). By stages 29 and 33, the number of apoptotic cells in the SHP-2 inhibited explants 

has further expanded in the more lateral regions of the cardiac ridge (Fig. 2.4). To further 

ensure that the cells undergoing programmed cell death are cardiac cells, we performed 

double in situ-TUNEL staining on cardiac explants in which SHP-2 was inhibited. Results 

from these studies show that the cells undergoing programmed cell death are adjacent with 

those expressing TBX5, which is only expressed in the cardiac tissue in the explants (Fig. 

2.4). Therefore, in the absence of SHP-2 signaling, cardiac cells cease development and 

undergo programmed cell death initiated by stage 26.  

 
SHP-2 is required in proliferating cardiomyocytes 

Since studies have implied a role for SHP-2 in cell cycle progression (Guillemot et al., 2000; 

Yuan et al., 2005; Yuan et al., 2003), we tested if withdrawal from the cell cycle could 
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account for the observed loss of cardiac marker expression and programmed cell death in 

SHP-2 inhibited explants. Therefore, we treated explants with cell cycle inhibitors and 

determined the effects on the expression of early and late heart markers. As expected, the 

explants cultured in media containing aphidicolin (Aph) which blocks S-phase progression, 

leads to a dramatic reduction in the number of mitotic cells (Fig. 2.5A).  Surprisingly, results 

show Aph leads to a loss of the early cardiac markers Nkx2.5, Tbx5, Tbx20, and Gata6 (Fig. 

2.5B,C) however, G1/S interphase arrest by Aph has no effect on the expression of the 

expression of other early heart markers including Gata4 and Gata5 (Fig. 2.5C), and in 

contrast to SHP-2 inhibition, has no effect on markers of cardiac differentiation including 

Hsp27 (Brown et al., 2007), MLC1v’, MHC, and tropomyosin (Fig. 2.5D,E). However, as 

predicted from cell cycle arrest, we observed a reduction in the size of the hearts in the Aph-

treated explants. These results are not due to treatment with Aph per se since identical results 

were obtained with M-phase arrest by treatment with colchicine (Fig. 2.5F). Thus, these 

findings suggest that the lack of cardiac differentiation in SHP-2 inhibited tissue is not the 

result of cell cycle arrest. Moreover, these observations are consistent with studies 

demonstrating that genetic mutations or protein depletion of Nkx2.5, Tbx5, and/or Tbx20 has 

no effect on cardiac differentiation and further implies that cell cycle arrest and cardiac 

differentiation are independently regulated in vivo (Brown et al., 2005; Bruneau et al., 2001; 

Cai et al., 2005; Goetz et al., 2006; Lyons, 1995; Singh et al., 2005; Stennard et al., 2005; 

Takeuchi et al., 2005). 

To determine the developmental period at which SHP-2 functions to maintain 

survival of cardiomyocytes, SHP-2 signaling was blocked in cardiac explants beginning at a 

series of developmental stages: late neurula (St. 22 and 24), early tailbud (St. 26), and late 
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tailbud (St. 29); and cultured to tadpole stage (St. 37; Fig. 2.6A). Results from these studies 

show a decreasing requirement for SHP-2 between stages 22 and 33; treatment at stage 22 

shows no MHC expression, starting at stages 24 and 26 show a marked reduction in MHC 

expression by stage 37, while treatment beginning from stage 29 results in hearts with high 

levels of MHC expression, but that are reduced in size by stage 37 (Fig. 2.6A).  

Our results demonstrate that SHP-2 signaling is required during late neurula stages a 

period when increasing numbers of cardiomyocytes begin to exit the cell cycle and undergo 

terminal differentiation (Goetz et al., 2006). To further examine the correlation between the 

requirement for SHP-2 and cell cycle exit, we analyzed cardiac cell proliferation and terminal 

differentiation between stages 33 and adult. Taken together with our past studies (Goetz et 

al., 2006), these results demonstrate that there is a gradual reduction in cycling 

cardiomyocytes during early and mid-tadpole stages and a proliferation persists in terminally 

differentiated cardiomyocytes until late tadpole stage (Fig. 2.6B).  

To directly determine if SHP-2 signaling is required for the maintenance of 

proliferating cardiac cells, we inhibited SHP-2 signaling beginning at a stage when there are 

two populations of cardiomyocytes: one that is undergoing active division and a second that 

is exited the cycle and undergone terminal differentiation (stage 29) and allowed the explants 

to mature to stage 37. Results from these studies show that SHP-2 is required at this later 

stage, inhibited explants have a mitotic index that is approximately half that of control 

explants (Fig. 2.6C,D), suggesting that SHP-2 signaling is required for the maintenance and 

survival of proliferating cardiac cells.  
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SHP-2 functions downstream of the FGF pathway to regulate cardiac cell survival 

The phosphorylation state of SHP-2 has been demonstrated to be reflective of its function 

within a specific receptor tyrosine kinase (RTK) pathway (e.g. (Bjorbaek et al., 2001)). For 

example, SHP-2 has been shown to be phosphorylated on tyrosine residues 542 and 580 in 

response to FGF or PDGF stimulation but not EGF stimulation (Araki et al., 2004). To 

determine the phosphorylation state of SHP-2 in heart tissue in vivo, we immunprecipitated 

SHP-2 from embryonic and adult hearts and conducted western blots with a phospho-Y542 

SHP-2 antibody. Results show that SHP-2 is phosphorylated at residue Y542 in cardiac tissue 

during the same period when SHP-2 functions to maintain cardiac cell survival (Fig. 2.7B; 

Fig. 2.6). Consistent with these results, immunohistochemistry shows that both phospho-

Y542 SHP-2 and phospho-Y580 SHP-2 are expressed in the developing myocardium (Fig. 

2.7A). Collectively these results demonstrate that SHP-2 is present in its phosphorylated state 

in developing myocardial tissue, and therefore most likely acting within the FGF and/or 

PDGF pathways. 

In tissue culture, SHP-2 interacts with the docking protein FRS within the FGF but 

not PDGF signaling pathway (Kouhara et al., 1997). To test if SHP-2 is functioning 

downstream of FGF in embryonic heart tissue in vivo, we carried out co-

immunoprecipitation experiments from isolated embryonic heart tissue. Results show that in 

isolated embryonic heart tissue SHP-2 directly interacts with FRS (Fig. 2.7B). This is the 

first demonstration that SHP-2 interacts with FRS in vivo. 

Since the decrease in Nkx2.5 expression in SHP-2-inhibited explants is similar to that 

reported in embryos which genetically lack Fgf8 (Ilagan et al., 2006) or those in which the 

endoderm adjacent to the cardiac mesoderm has been surgically removed (Alsan and 
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Schultheiss, 2002), and since we observe phosphorylation of SHP-2 on tyrosine residues 542 

and 580 and direct association of SHP-2 with FRS in embryonic heart tissue, we reasoned 

that FGF acts through SHP-2 to maintain the cardiac lineage. To investigate this possibility, 

we tested the effects of inhibiting FGF signaling in cardiac explants. Results from these 

assays show that similar to SHP-2 inhibition, treatment of cardiac explants with the FGFR 

inhibitor SU5402 leads to a decrease in expression of early and late cardiac markers (Fig. 

2.8A). However, we note that in contrast to SHP-2 inhibition, FGF inhibition leads to a 

reduction but not loss of Tbx5 (Fig. 2.8A,B). Consistent with the weaker Tbx5 phenotype, we 

observe the persistence of the SHP-2-FRS interaction and a reduction but not loss of 

phospho-Y542 SHP-2 in FGF inhibited explants (Fig. 2.8E). Taken together, these results 

imply that SHP-2 functions in both the FGF pathway and an additional unidentified SHP-2-

FRS pathway in the developing heart.  

To determine if SHP-2 functions within the FGF pathway to maintain survival of 

proliferating cardiomyocytes, we first determined if the alteration in cardiac gene in response 

to FGF inhibition expression temporally mimics that seen with SHP-2 inhibition. As 

observed with SHP-2 inhibition, the cardiac explants respond to FGF inhibition between 

stages 22 and 26 (data not shown) and western blots of cardiac explants lacking SHP-2 

activity or FGF signaling show a dramatic decrease in phospho-ERK (3 fold or more in 

response to inhibition as assayed by densitometry; Fig. 2.8C-D). Consistent with SHP-2 

acting downstream of FGF, injection of a constitutively active SHP-2 (N308D) in FGFR 

inhibited explants rescues expression of the early heart markers Nkx2.5 and results in full 

expression of Tbx5 (Fig. 2.8B). Taken together these studies demonstrate that SHP-2 

functions in the FGF pathway to regulate cardiac progenitor survival.  
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Discussion  

In recent years, there has been great clinical interest in identifying cardiac progenitor cells 

from various sources, however, little effort has been expended to understand the precise 

nature of the endogenous growth factor signaling pathways required for survival or 

proliferation of cardiac cells (Goetz and Conlon, 2007; Kattman et al., 2006; Kouskoff et al., 

2005; Moretti et al., 2006; Parmacek and Epstein, 2005; Srivastava, 2006; Wu et al., 2006). 

To date, studies of early cardiac tissue have implied a requirement for growth factors to 

maintain cardiac cell survival, with survival and proliferation of cardiac progenitor 

populations requiring either the aggregation of clonal colonies, that cardiac progenitors be 

co-cultured with heart tissue, or that the cultures be supplemented with a mixture of growth 

factors and cytokines. However, neither the endogenous growth factor nor the signaling 

cascade required for cardiac progenitor survival has been identified (Parmacek and Epstein, 

2005; Srivastava, 2006). To address these issues, we have characterized the endogenous role 

for SHP-2, a non-receptor protein phosphatase disrupted in the congenital heart disease 

Noonan syndrome, and have demonstrated that SHP-2 functions in the FGF pathway to 

maintain the survival of proliferating cardiomyocytes in vivo. 

 

SHP-2 and cardiac cell cycle 

The time at which SHP-2 is required for the maintenance of cardiac progenitor cells 

corresponds with a period of rapid cardiac proliferation (Fishman and Chien, 1997; Goetz 

and Conlon, 2007; Goetz et al., 2006; Pasumarthi and Field, 2002).  In many tissues, such as 

muscle and the nervous system, the withdrawal of cells from the cell cycle is tightly 

associated with the onset of terminal differentiation (Alexiades and Cepko, 1996; Dyer and 
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Cepko, 2001; Lathrop et al., 1985; Li and Vaessin, 2000; Walsh and Perlman, 1997). In 

contrast, relatively little is known about the relationship between the cell cycle progression 

and terminal differentiation in the heart.  

Our previous work has demonstrated that cardiac cells which initiate terminal 

differentiation retain the ability to divide (Goetz and Conlon, 2007; Goetz et al., 2006).  In 

the current study, we have extended these findings to demonstrate that while cardiomyocytes 

of the adult frog ultimately exit the cell cycle, cells expressing markers of terminal 

differentiation are still undergoing cell division at stage 42.  By this stage, cardiac 

morphogenesis is largely complete and all cardiac cells, including those still dividing, 

possess the anatomical and molecular hallmarks of differentiation suggesting that in the 

heart, the onset of terminal differentiation does not require cell cycle exit.  Our findings are 

broadly consistent with recent work showing that cell cycle exit and terminal differentiation 

are mechanistically separable processes (Goetz and Conlon, 2007; Grossel and Hinds, 2006; 

Nguyen et al., 2006; Vernon and Philpott, 2003).  As a corollary to these experiments, we 

have also examined here the consequences of induced cell cycle arrest on cardiac 

differentiation and found that blocking the cell cycle in S-phase with aphidicolin, or in M-

phase with colchicine does not result in a block in cardiac differentiation.  Interestingly, 

however, we have found that cell cycle arrest results in reduced expression of the early 

cardiac markers Tbx5, Tbx20, and Nkx2.5.  Thus, these findings are consistent with the 

observation that none of these early cardiac proteins are required for cardiac differentiation, 

and further imply that the expression of these early cardiac transcription factors may be cell 

cycle-dependent.  
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Coinciding with program cell death, we also observe that blocking SHP-2 activity 

leads to a failure of early cardiac cells to fuse at the ventral midline. At present we can not 

distinguish between a role for SHP-2 mediating a trophic factor response and/or a role for 

SHP-2 in cell adhesion. However, genetic studies in zebrafish and mouse strongly imply that 

the inability of the cardiac fields to fuse is not the primary cause of the downregulation of 

early cardiac markers or the failure of SHP-2 inhibited explants to initiate cardiac 

differentiation. For example, genetic mutations resulting in cardiac bifidia, such as Gata5, 

hand2, Casanova, and Bonnie and clyde and miles apart in zebrafish (Alexander et al., 1999; 

Kupperman et al., 2000; Reiter et al., 1999) or Gata4 and MesP1 (Molkentin et al., 1997; 

Saga et al., 1999) in mouse, as well as genetic mutations in cardiac cell adhesion proteins 

(Trinh and Stainier, 2004), show no alteration in the expression of early cardiac markers such 

as Nkx2.5 or of markers associated with terminal differentiation. Therefore, it is most likely 

that the failure of cardiac cells to migrate is a secondary consequence of cell survival or it 

maybe that SHP-2 has two temporally distinct roles in heart development one, regulating cell 

adhesion and a second in cell survival.  

 

SHP-2 and the FGF pathway 

In this study we show SHP-2 to be phosphorylated on tyrosines 542 and 580 in the 

embryonic heart and that it co-immunoprecipitates with FRS-2, demonstrating an in vivo 

interaction between SHP-2 and FRS-2 for the first time.  Given that we have shown 

inhibitors of both SHP-2 and FGFR to cause comparable cardiac phenotypes, and that a 

constitutively active form of SHP-2 can rescue formation of cardiac tissue in FGF inhibited 
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explants, we conclude that SHP-2 participates in the FGF signal transduction pathway in 

Xenopus embryonic hearts.  

Recent work examining the role of FGFs in response to cardiac damage or injury 

lends further support for the direct role of SHP-2 in cardiac cell survival.  The over-

expression of both FGF-1 and FGF-2 have been shown to promote the survival of adult 

cardiomyocytes in response to ischemic injury in vivo (House et al., 2005; Jiang et al., 2002; 

Jiang et al., 2004; Palmen et al., 2004) and the cardioprotective effects of FGF-2 in the adult 

myocardium are mediated through the MAPK pathway (House et al., 2005); the same branch 

of the FGFR signaling cascade which we have shown in cardiac tissue functions through 

SHP-2.  Interestingly, the specific function of FGF-2 in preventing programmed cell death in 

response to ischemic insult was shown to be independent of its mitogenic or angiogenic 

functions, suggesting that FGF-2 is functioning specifically to promote cardiomyocyte cell 

survival (Jiang et al., 2004). Together with our data showing that SHP-2 activity downstream 

of FGFR is required for the maintenance of proliferating cardiac progenitor cells, these data 

suggest that the FGF/MAPK pathway functions in promoting cardiac progenitor cell survival 

during development and further suggests that the FGF/SHP-2/MAPK pathway must be 

maintained to promote survival of cardiac progenitor cells in vitro. Intriguingly, the 

FGF/SHP-2 has also recently been shown to be required for the survival of trophectoderm 

stem cells and for the ability of hematopoietic stem cells to self-renew (Chan et al., 2006; 

Yang et al., 2006) thus, raising the possibility that the FGF/SHP-2 pathway is a common 

pathway for progenitor cell survival.  

What are the mechanisms by which SHP-2 acts to activate the MAPK pathway and 

promote cell survival? Studies have shown that SHP-2 acts as a positive regulator in the FGF 
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pathway in at least two ways, the first is by acting as a scaffold to recruit GRB2 which in turn 

recruits SOS, the guanine nucleotide exchange factor for RAS which leads to the activation 

of the ERK cascade potentially leading to the destabilization of the pro-apoptotic protein 

BIM (Yang et al., 2006).  Alternatively or concomitantly, SHP-2 may act as a positive 

regulator in RAS signaling by inhibiting Sprouty, a key FGF/RTK inhibitor (Christofori, 

2003; Kim et al., 2004; Tsang and Dawid, 2004).  Consistent with the later possibility, 

Sprouty has recently been shown to be a direct substrate of SHP-2 and studies have shown 

that one of the four mammalian sproutys, Sprouty 1, is expressed in the heart and upregulated 

upon cardiac insult (Hanafusa et al., 2004; Huebert et al., 2004; Jarvis et al., 2006). However, 

it remains unknown if any of the Sprouty family have an endogenous role in early heart 

development or if like Drosophila, Sprouty acts as an endogenous substrate of SHP-2 in vivo 

(Jarvis et al., 2006). 
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Figure 2.1.  Inhibition of SHP-2 activity results in loss of MHC expression. 

Tissue explants show identical cardiac expression profiles as intact embryos. (A) Whole 

mount antibody staining of cardiac differentiation with tropomyosin (Tmy; red) or myosin 

heavy chain (MHC; red) antibodies as indicated, in whole embryos and cardiac explants at 

stages 22 (neurula), 29 (tailbud), and 37 (tadpole; scale bar=0.5 mm). (B) Whole mount in 

situ hybridization for early heart markers Tbx5, Tbx20, Nkx2.5 in whole embryos and cardiac 

explants at stage 22, 29 and 37, as indicated (Scale bar = 1 mm). 

(C) MHC expression is dependent on SHP-2 activity. Whole mount antibody staining for 

MHC (red) in cardiac explants taken from uninjected (Control) embryos or embryos injected 

with Shp-2 N308D and treated with either buffer or DMSO carrier as controls or with NSC-

87877 as indicated.  BF= bright field (scale bar=0.5 mm). 
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Figure 2.2. SHP-2 is required for the maintenance and the expression of cardiac 

markers. 

(A-D) Cardiac explants isolated and cultured in DMSO or NSC-87877 beginning at stage 22. 

In situ hybridization performed on explants with Nkx2.5 (A), Tbx5 (B), Tbx20 (C), and 

MLC1v′ specific probes (D) at stages 22, 26, 29, and 33, as indicated. Black arrows denote 

Tbx5 expression at the leading edge of the cardiac ridge at stage 33 (scale bar=1.0 mm). (E) 

In situ hybridization of Nkx2.5 in uninjected (control) or Shp-2 N308D injected explants 

treated with DMSO or NSC-87877 beginning at stage 22, and assessed at stage 37 (scale 

bar=1.0 mm). (F) In situ with Nkx2.5 of anterior region of whole embryos cultured in DMSO 

(Control) or NSC-87877 P= pharyngeal arches. H= heart. (Scale bar=1.0 mm). 
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Figure 2.3. SHP-2 activity is required for pharyngeal mesoderm. 

(A) Schematic of tissues and rudimentary organ structures in tissue explants. (B) Cardiac 

explants isolated and cultured in DMSO or NSC-87877 (NSC) beginning at stage 22. In situ 

hybridization performed on explants with Tbx1, Fgf8, at stages 22, 26, 29, and 33. (Scale bar 

= 1 mm). (C) Whole mount in situ hybridization of Endocut, Endodermin, Sox2, Ami, and 

Xmsr at stage 37;  whole embryos and cardiac explants treated with DMSO (Control) or 

NSC-87877 (NSC), as indicated (scale bar=1.0 mm). 
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Figure 2.4. SHP-2 is required for cardiac cell survival. 

TUNEL staining of control cardiac explants (DMSO) and explants treated with NSC-87877.  

Cell death examined in explants at stages 22, 26, 29, and 33, as indicated.  Red arrows denote 

cardiac cells, yellow arrows denote endodermal cells (Scale bar = 1 mm). Double in situ 

(red)/TUNEL (dark blue) using a Tbx5 specific probe on stage 26 explants that were cultures 

in DMSO or NSC-87877 from stage 22-26. Black arrow points to Tbx5 expressing cells in 

NSC-87877 treated explants (Scale bar = 0.5 mm).  
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Figure 2.5. Blocking the cardiac cell cycle results in loss of early, but not late, cardiac 

markers. 

(A) Cardiac explants isolated and cultured in DMSO or Aphidicolin (Aph) to block cell s in 

S-phase beginning at stage 22 and fixed at stage 37. Whole mount immunostaining of 

explants with phospho-histone H3 specific antibody (pH3; red; scale bar=1.0 mm). In situ 

hybridization on explants with early the cardiac markers (B) Tbx5, Tbx20, Nkx2.5, (C) Gata4, 

Gata5, and Gata6 (scale bar=1.0 mm); (D) with the cardiac differentiation markers Hsp27 

and MLC1v’ and (E) by whole mount immunostaining with the cardiac differentiation 

markers Tmy and MHC (BF- bright field, scale bar=1.0 mm). (F) Explants were treated with 
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DMSO or colchicine (Colch) to block cells in M-phase of the cell cycle.  In situ hybridization 

was performed to examine expression of Tbx5, Nkx2.5, and MLC1V’, as indicated (scale 

bar=1.0 mm) 
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Figure 2.6.  SHP-2 is required for the survival of proliferating cardiac cells. 

 (A) Cardiac explants were treated with the SHP-2 inhibitor NSC-87877 beginning at stage 

22, 24, 26, or 29 as indicated, cultured to stage 37 and stained with an MHC antibody (red); 

(BF= bright field, scale bars=0.5 mm). (B) Representative transverse sections through stage 

33, 35, 42 and adult Xenopus hearts with antibodies against MHC (green) or Tmy (green), 

phospho histone H3 (pH3; red) and DAPI (blue) (Scale bar = 10 µm). (C) Representative 

transverse sections through the cardiac tissue of a DMSO-treated and an explant treated with 

NSC-87877 beginning at stage 29, and stained with antibodies against phospho-histone H3 

(pH3, red), and Tmy (green), as assessed at stage 37 (Scale bar = 200 μm). (D) Cardiac 
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mitotic index of explants treated beginning at stage 29 with DMSO (blue bar) or NSC-87877 

(magenta bar) and assessed at stage 37.  Bars represent the mean mitotic index of 4 explants 

per condition.  Error bars denote the standard deviation.  * denotes a statistically significant 

reduction in mitotic index of NSC-87877 treated explants (P = 0.0021).     
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Figure 2.7. SHP-2 is phosphorylated and interacts with FRS in vivo. 

(A) Transverse cryosections through the heart of control embryos stained with tropomyosin  

to mark cardiac tissue (Tmy; green), DAPI, to mark cell nuclei (blue), and  anti-total SHP-2, 

anti-phospho-542 SHP-2 or anti-phospho-580 SHP-2 (all shown in red). Arrows denote 

endocardial cells that are negative for SHP-2. (All samples from stage 37, scale bars=100 

μm). (B)  SHP-2 interacts with FRS in vivo. Hearts from FL-HA-SHP-2 derived embryos 

were dissected at stage 35 and immunoprecipitated with an anti-SHP-2 antibody (+) or beads 
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with no antibody (-).Western analysis was then performed using antibodies specific for total 

SHP-2, phospho-542 SHP-2 and FRS-2. Note the level of SHP-2 phopho-542 in input was 

below levels of detection.  
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Figure 2.8. FGF functions through SHP-2 to maintain the cardiac lineage. 

(A) Whole mount in situ hybridization for Tbx5, Tbx20, and Nkx2.5 or whole mount 

immunostaining for MHC (red) performed on explants treated with DMSO or the FGFR1 

inhibitor SU5402 (Scale bars = 1 mm). (B) Explants isolated from uninjected (Control) or 

SHP-2 N308D injected embryos cultured in DMSO or SU5402 and analyzed by in situ 

hybridization for the cardiac markers Nkx2.5 and Tbx5 (Scale bar = 1 mm). (C, D) Western 

blot analysis of DMSO, NSC-87877 (C) or SU5402 (D) treated explants for phosphorylated 

and total ERK; α-tubulin is used as a loading control. (E) Explants were cut at stage 22 and 

then incubated in either modified Barth’s solution (MBS) or SU5402 until stage 35.  Either 

endogenous SHP-2 was immunoprecipitated (IP) or explants were lysed (IB) and western 

analysis performed as in (Fig. 2.7B). 
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Supplemental Figure 2.1.  SHP-2 is expressed in during early Xenopus development. 

(A) Western blot of in vitro translated Xenopus SHP-2 in the sense orientation or anti-sense 

orientation (Neg.) probed with an anti-SHP-2 antibody. (B) Western blot analysis of early 

Xenopus embryogenesis at stages 10.5 (gastrula) through stage 40 (late tadpole) with a SHP-

2 specific antibody. Anti-EF-2 was used as a loading control. (C) Western blot analysis of 

SHP-2 and Tmy in whole embryos and isolated heart tissue from stage 37 embryos with α-

tubulin as the loading control. 
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Supplemental Figure 2.2. Shp-1 expression in the Xenopus.  

(A) Whole mount in situ hybridization of uninjected embryos at stages 22-37 with a Shp-1 

specific probe (Scale bars= 1mm; anterior is positioned to the left, posterior to the right). We 

observe that similar to studies of Shp-1 expression in mice, Xenopus Shp-1 expression is 

observed in the developing hematopoetic lineage; arrowheads in panels of stage 29, 33 and 

37 embryos. (B) In situ hybridization of transverse serial sections through a stage 29 Xenopus 

heart with probes against Tbx20, Shp-2, and Shp-1with Shp-1 being the most anterior section 

followed by Tbx20 and Shp-2 with arrow pointing to corresponding Tbx20 positive tissue in 

adjacent sections (Scale bar=100μm).  
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Supplemental Figure 2.3. Shp-2 rescues expression of cardiac tissue in a dose dependent 

manner.  

Whole mount antibody staining of cardiac explants  derived from either uninjected embryos 

or embryos injected with 1ng of FL-Shp2 or Shp-2 N308D. Embryos shown at stage 37 

stained with an antibody against myosin heavy chain (MHC; shown in red; anterior 

positioned to the left and dorsal to the top, scale bar=0.5mm).  
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Supplemental Figure 2.4. Shp-2 N308D does not block cardiac commitment, migration 

or fusion.  

Whole mount in situ hybridization of control, full length Shp-2 injected, or Shp-2 N308D 

injected embryos at stage 26 with cardiac specific probes Nkx2.5, Tbx5, or Tbx20.  
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Supplemental Figure 2.5. Gata 4, 5, and 6 expression in SHP-2 inhibited explants. 

Whole embryo controls (whole) and cardiac explants were isolated at stage 22 and cultured 

until stage 37 in DMSO or NSC-87877. In situ hybridization was performed on explants with 

Gata4, Gata5 and Gata6 (Scale bars=0.5mm). 

 63



 

 

 64



 

Supplemental Figure 2.6. Dose response of the SHP-2 inhibitor NSC-87877. 

(A) Whole mount in situ analysis of whole embryo and cardiac explants with a Nkx2.5 

specific probe. All explants were removed and treated at stage 22 and cultured in either 

carrier (DMSO) with the respective dose of NSC-87877 until stage 37. Upper left-hand panel 

shows a representative Nkx2.5 in situ of a stage 37 embryo (Scale bars=0.5mm for whole 

embryo and 1mm for explants). (B) Western blot analysis of active and total ERK in cardiac 

explants cultured in DMSO or increasing doses of NSC-87877 until stage 37 with alpha actin 

used as a loading control. 
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CHAPTER 3 

 
An Evolutionarily Conserved Role for SHP-2 Signaling in Early Heart Development 

 

PREFACE TO CHAPTER 3 

Chapter 3 describes the effects of the Noonan associated mutation Shp-2 N308D on cardiac 

development.  Previously, it has been shown that patients with Noonan syndrome have 

mutations in the protein phosphatase SHP-2 (Tartaglia et al., 2001).  The most prevalent 

mutation of the Noonan associated mutations is Shp-2 N308D with this mutation accounting 

for one third of all affected individuals (Musante et al., 2003).  In this chapter we test the 

hypothesis that Shp-2 N308D has a direct effect on heart development.  This work was 

performed in collaboration with a former undergraduate in the lab, Jennifer Duddy.   

 

 

 



 

Summary 

 
Noonan syndrome is one of the most common causes of human congenital heart disease 

and is frequently associated with mis-sense mutations in the protein phosphatase Shp-2. 

A second subset of mis-sense mutations in Shp-2 is associated with leukemia, thus 

suggesting a genotype-phenotype relationship between Shp-2 mis-sense mutations and 

disease states. To establish the relationship between Shp-2 mis-sense mutations and 

phenotypic abnormalities, and to identify the cellular and molecular pathways through 

which Noonan syndrome associated Shp-2 mutations act, we introduced mRNAs 

encoding the most prevalent Noonan syndrome and leukemia associated Shp-2 

mutations into Xenopus embryos. The resulting embryos show a direct relationship 

between a Noonan Shp-2 mutation and its ability to cause cardiac defects in Xenopus; 

the Noonan mutation leads to a morphologically abnormal heart whereas the leukemic 

associated mutation does not. Using this animal model, we have conducted a detailed 

phenotypic analysis and generated a 3D molecular model of the Xenopus hearts derived 

from the introduction of the Noonan mutation. Our findings strongly suggest that heart 

defects associated with Noonan mutations are associated with transient lengthening of 

the cardiac cell cycle and are associated with an increase in the mitotic index and an 

increase in S-phase associated proteins. In addition, we observe alterations in heart 

morphology. We further show that SHP-2 enzymatic activity is required for these 

cardiac defects, and that the abnormalities are associated with an elevation in both 

active ERK and active MEK, known mediators of SHP-2 signaling. Collectively these 

studies suggest that SHP-2 Noonan mutations lead to a MAPK-associated mis-

regulation of embryonic cardiac cell cycle progression.  
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 Introduction 

 
Noonan syndrome is one of the most common causes of congenital heart disease. The 

disorder leads to a number of cardiac developmental abnormalities including atrial septal 

defects, ventricular septal defects, pulmonary stenosis and hypertrophic cardiomyopathy 

(Noonan, 1968; Noonan, 1994). It was recently shown that Noonan syndrome is associated 

with mis-sense mutations in Shp-2 in approximately half of affected individuals (Kosaki et 

al., 2002; Maheshwari et al., 2002; Tartaglia et al., 2002; Tartaglia et al., 2001). Shp-2  mis-

sense mutations are associated with a gain of function and are thought to result in prolonged 

activation of downstream signaling pathways (Tartaglia et al., 2001). Interestingly, people 

with acute myelogenous leukemia (AML), acute lymphoblastic leukemia (ALL) and juvenile 

myelomonocytic leukemia (JMML) carry a second, mostly mutually exclusive, somatically 

introduced subset of mis-sense mutations in Shp-2, strongly suggesting a genotype-

phenotype relationship between Shp-2 mis-sense mutations and a disease state (Bentires-Alj 

et al., 2004; Kratz et al., 2005; Loh et al., 2004; Musante et al., 2003; Tartaglia et al., 2003). 

However, the cellular and biochemical basis for the role of SHP-2 in Noonan syndrome, 

AML, ALL, and JMML is unknown.  

SHP-2 is a widely expressed non-receptor tyrosine phosphatase comprised of two 

tandemly arranged SH2 domains and a protein tyrosine phosphatase (PTP) domain. SHP-2 

also known as SH-PTP2, Ptpn11, PTP1D, or PTP2C, is the vertebrate homologue of the 

Drosophila gene corkscrew (Csw). This protein is known to function genetically and 

biochemically downstream of a number of growth factors including epidermal growth factors 

(EGFs), fibroblast growth factors (FGFs), and platelet derived growth factor (PDGF) (Feng, 

1999; Pawson, 1994; Qu, 2000; Van Vactor et al., 1998; Zhang et al., 2000). The sequence, 

 76



 

expression pattern and function of SHP-2 are highly conserved throughout evolution. For 

example, Xenopus and human orthologues display 94% sequence identity and, as in fly and 

mouse, Xenopus Shp-2 is believed to be ubiquitously expressed (Tang et al., 1995). 

Moreover, a number of animal models have suggested a critical role for Shp-2 in vertebrate 

development. For example, mice mutant for an internal deletion of the amino-terminal (N-

SH2) domain of SHP-2 die at late gastrulation and display several mesodermal abnormalities 

including heart and vascular defects (Saxton et al., 1997; Saxton and Pawson, 1999; Yang et 

al., 2006). In addition SHP-2 mutant cells derived from homozygous mutant embryos, show 

SHP-2 to be required for full and sustained activation of the MAPK pathway in response to 

FGF, thus demonstrating SHP-2 functions downstream of the fibroblast growth factor 

(FGF)/MAPK pathway in vivo (Barford and Neel, 1998; Feng, 1999; Feng et al., 1993; 

Herbst et al., 1999; Saxton et al., 1997; Tang et al., 1995; Van Vactor et al., 1998; Vogel et 

al., 1993). Consistent with these findings, studies in Xenopus have shown a dominant 

negative form of Xenopus Shp-2 can completely block mesoderm formation in response to 

both MAPK and FGF (Tang et al., 1995). Furthermore, recent reports have shown that in 

vitro and in tissue culture Csw/Shp-2 can interact directly with the FGF inhibitor sprouty 

leading to sprouty phosphorylation and hence, rendering it inactive (Hanafusa et al., 2004; 

Jarvis et al., 2006). Finally, it appears that in addition to early requirements for SHP-2 

signaling during development that SHP-2 is required downstream of FGF to promote cardiac 

cell survival (Langdon et al., 2007). 

Recently it has been demonstrated in the mouse and chick that SHP-2 is required in 

the EGF pathway for formation of cardiac valves. However, since approximately one-third of 

patients with Noonan associated heart defects appear to undergo normal valvulogenesis 
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(Chen et al., 2000; Krenz et al., 2005), it remains unclear if SHP-2 is required downstream of 

other receptor tyrosine kinase receptors (RTK) for other aspects of heart development. To 

address if SHP-2 functions in cardiac pathways in addition to EGF and valvulogenesis, and 

to further characterize the evolutionarily conserved cellular and cardiac defects associated 

with Shp-2 mis-sense mutations, we introduced the most prevalent human Noonan and 

JMML mutations into the human form of Shp-2 (Kosaki et al., 2002; Maheshwari et al., 

2002; Tartaglia et al., 2002; Tartaglia et al., 2001) and introduced these into Xenopus. This 

revealed a direct relationship between a Noonan mutation and the ability of SHP-2 to cause 

heart defects in Xenopus; the Noonan mutation leads to a morphologically abnormal heart 

whereas the JMML-associated mutation does not, thus demonstrating evolutionarily 

conserved tissue-specific effects of Noonan mutations.  

Using this model, we have conducted a detailed marker analysis and molecular 3D 

modeling of the Xenopus hearts derived from the introduction of Noonan mutations versus 

those derived from injection of full-length SHP-2, a JMML associated mutation or control 

embryos. Results from these studies show that the Noonan mutation does not alter cardiac 

commitment or terminal differentiation but rather suggest that the mutation disrupts cell 

cycle progression and heart morphology. Consistent with this proposal, we observe a stage-

specific increase in the cardiac mitotic index and a concomitant increase in S-phase 

associated proteins without an increase in programmed cell death. We further show, by 

mutating the SHP-2 catalytic site in the Noonan construct, that SHP-2 phosphatase activity is 

required in vivo for the effect of Shp-2 N308D on heart tissue. In addition, we show that the 

cardiac defects caused by the Noonan associated mutation Shp-2 N308D leads to an increase 

in levels of MEK and ERK, known signal transduction downstream mediators of SHP-2 
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activity. Collectively, these studies argue that Noonan associated mutations in Shp-2 lead to a 

transient lengthening of the cell cycle and provide insights into the cellular and molecular 

mechanisms by which a Noonan associated Shp-2 mutation affects cardiac tissue. 

 

Materials and Methods 

DNA Constructs 

FL-SHP-2 and E76A were kindly provided by Nikola Pavletich (Georgescu et al., 2000). FL-

PTP, N308D, and N308D-PTP were generated by site-directed mutagenesis (Stratagene) 

according to manufacturer’s protocol. Primer sequences available upon request. Each 

construct was subcloned into an HA modified pcDNA3.1(+) vector kindly provided by Da-

Zhi Wang. 

 
Embryo Injections 

Xenopus laevis embryos were fertilized in vitro and injected as previously described (Smith 

and Slack, 1983; Wilson and Hemmati-Brivanlou, 1995).  Embryos were maintained in 0.1X 

Modified Barth’s Serum and staged according to Nieuwkoop and Faber (Nieuwkoop and 

Faber, 1975).  2ng of RNA dissolved in 10nl water was injected into the one cell stage 

embryo unless otherwise stated.  

 
Immunoblotting 

For assays of endogenous levels of SHP-2, five whole embryos were homogenized in lysis 

buffer (100 mM NaCl, 20 mM NaF, 50 mM Tris pH 7.5, 10 mM Na Pyrophosphate, 5 mM 

EDTA, 1% NP40 and 1% Na Deoxycholate) with the addition of complete protease inhibitor 

cocktail (Roche) and PMSF (Sigma) and processed according to standard protocols. Anti-
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mouse total SHP-2 antibody PTP1D/SHP-2 (BD Transductions Laboratories) was used to 

probe Western blots at 1:2500. Whole heart immunoblots were prepared from seventy 

dissected hearts as described above and probed with antibodies against  phospho-MEK1/2 

(1:1000), MEK1/2 (1:1000), p44/42 MAPK (1:1000), phospho-p44/42 MAPK (1:1000), 

(Cell Signaling), SLBP, (generous gift from W. Marzluff, 1:1000) (Wang et al., 1999) and 

PCNA (Zymed, 1:1000).  Densitometry was used to standardize loading levels in western 

blot analysis. 

 
Antibody Staining  

Whole-mount antibody staining was performed as described (Kolker et al., 2000; Langdon et 

al., 2007) with anti-tropomyosin (1:50; Developmental Studies Hybridoma Bank) (Kolker et 

al., 2000), anti-fibrillin (1:50 Developmental Studies Hybridoma Bank) and phalloidin 

conjugated to Alexa 488 flourophore (1:500 Molecular Probes) and visualized on a Zeiss 

LSM410 confocal microscope. For immunostaining of histological sections, embryos were 

collected at indicated stages, fixed for 2 hours in 4% paraformaldehyde, and embedded in 

OCT cryosectioning medium (Tissue Tek).  Cryostat sections (14um) were rinsed with wash 

buffer and incubated with corresponding antibodies according to (Goetz et al., 2006; 

Langdon et al., 2007). To calculate the mitotic index and index for program cell death, 

embryos at each stage were serial-sectioned through the cardiac regions and triple immuno-

stained with anti-tropomyosin (Tmy) to mark cardiomyocytes, DAPI to mark cell nuclei, and 

either anti-phospho histone H3 (pH3) (1:200 Upstate) to mark cells in M phase or anti-

caspase 3 (1:50 Pharmigen) to mark cells undergoing mitosis. All studies were carried out 

with a minimum of three embryos and repeated a minimum of two independent times (i.e. 

two independent rounds of injections).  
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3D Modeling 

Global software a 3D reconstruction program was adapted from a program by Stephen 

Aylward, Remi Charrier, and Cedric Caron at the University of North Carolina. All data was 

collected and 3D models were created as described in Langdon, et al. (Submitted).   

 
Microarray Analysis 

Total RNA was isolated from hearts of embryos either injected with Shp-2 N308D or FL-

SHP-2 using Ambion’s RiboPure kit. Isolated RNA was converted to cDNA and run on 

Xenopus tropicalis Affymetrix arrays according to standard protocols.  The data was 

analyzed by GeneSpring GX 7.3.1. 

 
Histology 

Embryos were fixed in 2% paraformaldehyde/2.5% gluteraldehyde overnight. Embryos were 

then post-fixed in ferrocyanide-reduced osmium and embedded in Spurr’s epoxy resin. 

Transverse thick (1 μm) sections were mounted on slides and stained with 1% toluidine blue 

in 1% sodium borate. Sections were imaged on Leica DMIRB inverted scope. 

 
Transmission Electron Microscopy 

Embryos were fixed in 2% paraformaldehyde/2.5% gluteraldehyde overnight and post-fixed 

in ferrocyanide-reduced osmium prior to embedding in Spurr’s epoxy resin. Transverse 

ultrathin sections (70 μm) sections were placed on copper grids and stained first with 4% 

aqueous uranyl acetate followed by Reynolds’ lead citrate. Sections were imaged on LEO 

EM-910 transmission electron microscope. 

 
Mass Spectroscopy of Xenopus tropicalis 
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Xenopus tropicalis were anaesthetized with .025% tricane (Sigma) for 30 minutes and pre-

primed with 10 units of human chorionic gonadotropin (hCG). Twenty hours later the 

tropicalis were anaesthetized as previously described and primed with 200 units of hCG.  

Tropicalis were place in water for one hour prior to being switched to 1X MMR.  The eggs 

were in vitro fertilized according to standard protocols and 0.5ng of FL-SHP-2 RNA was 

dissolved in 3nl of water and injected into embryos.  Control and injected embryos were 

collected at stage 16 and immuno-precipitation performed according to standard procedures 

using mouse total SHP-2 antibody PTP1D/SHP-2 (BD Transductions Laboratories) 

(Langdon et al., 2007).  Samples were run on NuPage 4-12% Bis-tris gels (Invitrogen) and 

silver stained with SiverQuest (Invitrogen) according to protocols. Six bands were excised 

from the gel and analyzed at the Riken institute by the mass spectroscopy core facility. 

 

Results 

 
Shp-2 N308D but not Shp-2 E76A leads to abnormal heart development in Xenopus  

Noonan syndrome associated mutations in Shp-2 result in a gain of function and occur in 

about half of affected individuals. Interestingly, humans with juvenile myelomonocytic 

leukemia (JMML) carry a second and mostly mutually exclusive somatically introduced 

subset of mis-sense mutations in Shp-2 suggesting a genotype-phenotype relationship 

between Shp-2 mis-sense mutations and disease states  (Kosaki et al., 2002; Maheshwari et 

al., 2002; Tartaglia et al., 2002; Tartaglia et al., 2001). To test the relationship between 

specific Shp-2 mis-sense mutations and normal heart development, we engineered into 

human Shp-2 the most prevalent Noonan and JMML mutations by site-directed mutagenesis, 

Shp-2 N308D and Shp-2 E76A, respectively (Kosaki et al., 2002; Maheshwari et al., 2002; 
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Tartaglia et al., 2002; Tartaglia et al., 2001) (Fig. 3.1A; Note constructs used in this 

experiment were not epitope tagged with HA). Corresponding mRNAs were then introduced 

into Xenopus at the one cell stage. Tropomyosin staining of the resultant embryos at late 

tadpole stages clearly shows a direct relationship between Noonan mutations and the ability 

of Shp-2 mutations to cause heart defects in Xenopus; Noonan mutation Shp-2 N308D leads 

to a smaller heart that fails to complete looping or undergo chamber formation by stage 37 

while the JMML mutation does not (Fig. 3.1C-L). These defects are confined to the cardiac 

tissue and we could detect no other developmental abnormalities at concentrations up to 4ng 

(data not shown). However, when RNA concentrations were increased to 5ng we began to 

observe anterior defects. Specifically we observed reduced heads and abnormal eyes (data 

not shown).  

One explanation for the failure of the JMML mutation to result in cardiac defects 

could be a decrease in the efficiency of RNA translation or in RNA/protein stability. To test 

these possibilities, we epitope tagged all constructs with hemagglutinin (HA; Fig. 3.1A). 

Corresponding RNAs were injected and total protein was isolated from embryos at defined 

time-points during early heart development (stages 10, 16, 26). Western blot analysis of 

embryo extracts probed with an anti-HA or total SHP-2 antibody show no differences in 

protein levels between controls, Noonan or JMML constructs at any stage (Fig. 3.1B), 

demonstrating that neither Noonan- nor JMML-associated Shp-2 mutations lead to RNA or 

protein instability in vivo. Collectively, these results suggest that a direct correlation exists 

between human Noonan associated mutations and cardiac defects in Xenopus.  
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Phenotypic analysis of Noonan associated cardiac defects 

Phenotypic analysis of embryos derived from multiple rounds of injection show hearts from 

Shp-2 N308D-derived stage 37 embryos to be smaller in size and morphologically abnormal 

compared to uninjected controls or embryos injected with a full-length Shp-2 or Shp-2 E76A. 

By stage 37 the Shp-2 N308D-derived embryos have a range of defects with the least 

severely affected hearts displaying developmental delays, failure to undergo cardiac looping, 

and a failure to undergo chamber formation (Fig. 3.1F) while the more severely affected 

hearts show a substantially reduced formation of differentiated cardiac tissue (Fig. 3.1G). 

Thus, in Xenopus the affect of Noonan mutations is much more severe than that reported in 

humans or mice. 

To examine the cardiac defects in more detail, we carried out histochemistry on 

control and Shp-2 N308D hearts at stage 33 and stage 37. By stage 33, we can detect a single 

class of heart defects in the Shp-2 N308D hearts relative to controls. In control hearts, by 

stage 33 the myocardium has fused along the ventral midline to form a bilaminar heart tube, 

while Shp-2 N308D-derived hearts are delayed in dorsal closure and remain as an open 

cardiac trough (Fig. 3.1 H,I). We note that, as with controls, by stage 33 the Shp-2 N308D 

hearts have defined myocardial and endocardial layers. By stage 37, the Shp-2 N308D hearts 

display a range of severity in phenotype, with the less severe Shp-2 N308D hearts 

(approximately 40%; N>500) eventually closing ventrally to form a bilaminar heart tube that 

begins to kink or jog but do not undergo looping or chamber formation while the more severe 

Shp-2 N308D hearts (approximately 60%; N>500) remain as a cardiac trough; it also appears 

in some cases that cardiac cells fail to incorporate into the myocardium, the endocardium, or 

the lateral plate mesoderm (Fig. 3.1 K,L). 
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Shp-2 N308D expression leads to a decrease in cardiac cell number 

To determine if Shp-2 N308D could affect cardiac cell number, we serial sectioned through 

the cardiac regions of control and Shp-2 N308D embryos and double stained with DAPI and 

an antibody against tropomyosin (data not shown). Both myocardial and endocardial cells 

were counted in all hearts at all stages for each condition. Results from these experiments 

show no difference between Shp-2 N308D embryos and control embryos at stage 29 (Fig. 

3.2M) however four stages later at stage 33, and continuing to stage 37, the Shp-2 N308D 

embryos show a statistically significant decrease in cardiomyocyte cell number relative to 

controls (p= 0.04, p= 0.01 stage 33 and stage 37, respectively) (Fig. 3.2M).  

 
3D Modeling of Shp-2 N308D hearts 

To further characterize the defects in cardiac development associated with the Shp-2 N308D 

Noonan mutation, we carried out 3D modeling of Xenopus hearts derived from control or 

Shp-2 N308D embryos at early, mid, and late tadpole stages (stages 29, 33, and 37). For 

these studies, a minimum of three embryos at each stage were serial sectioned through the 

cardiac region and stained with anti-tropomyosin to mark myocardial tissue and DAPI to 

mark cell nuclei. Data was then entered into a 3D global software histology program and 

rendered by a 3D visualization program (Langdon et al., submitted).  

3D reconstruction at stage 29 shows control hearts in which the bilateral heart fields 

have fused across the ventral midline to form a single heart field arranged into a myocardial 

trough that runs along the anterior-posterior axis. Examination of 3D reconstruction at stage 

29 reveals little to no difference between myocardium derived from control or Shp-2 N308D 

embryos at this stage (Fig. 3.2A, B, G, H). Although we observe an equal number of cells 
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between control and Shp-2 N308D hearts (Fig. 3.2M), we note that the Shp-2 N308D hearts 

occasionally do not extend as far anteriorly as controls at this stage (Fig. 3.2G, H).  

By Stage 33, control hearts have closed dorsally to form a bilaminar heart tube and 

the dorsal mesocardium elongates in the posterior portion of the heart (Fig. 3.2C, I). In stark 

contrast Shp-2 N308D hearts remain as an open trough and fail to close dorsally while they 

extend along the dorsal-ventral axis (Fig. 3.2D, J also see 3.1I). We note at these stages 

however, that the Shp-2 N308D have significantly fewer cardiac cells and there appears to be 

less growth in the posterior aspects of Shp-2 N308D hearts relative to controls (Fig. 3.2I, J). 

In addition, the more anterior portions of the heart are extended and the chamber is wider in 

the anterior aspects of the heart possibly representing a differential effect of Shp-2 N308D 

along the anterior to posterior axis of the heart. We note we are able to only detect a single 

class of heart defects at this stage.  

By stage 37, control heart tubes have begun to undergo cardiac looping, leading to a 

shortening of the heart along the anterior-posterior axis and an elongation of the heart along 

the dorsal-ventral axis. In contrast Shp-2 N308D hearts display a range of severity in cardiac 

development. We modeled those with the less severe phenotype (Fig. 3.1), which have 

significantly fewer cardiomyocytes (p= 0.01), and are developmentally delayed- it is only at 

this stage that they have rounded up and begun to fuse along the dorsal axis, as we observe 

two ridges of tissue running down the heart in an anterior-posterior direction at the site of 

fusion (Fig. 3.2E, F, K, L also see 3.1K, 3.5D). Despite the failure to properly fuse, the Shp-2 

N308D hearts have begun some of the cellular movements associated with looping, including 

a leftward spiral of the cardiac tissue as noted by the relative shift of the inflow tract relative 

to the outflow tract (Fig. 3.2I, J, K, L). However, the Shp-2 N308D hearts are more 
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compressed along the anterior-posterior axis versus controls while still being extended fully 

along the dorsal-ventral axis (comparing Fig. 3.2K to L). Collectively, these studies 

demonstrate that the introduction of Shp-2 N308D leads to an abrupt decrease in cardiac cell 

numbers relative to controls and a delay in cardiac morphogenetic movements between 

stages 29 and 33, leading to a smaller morphologically abnormal heart by stage 37.  

 
Noonan associated mutation Shp-2 N308D leads to alterations in the cardiac mitotic 

index 

To determine if the decrease in cardiac cell number in Shp-2 N308D hearts is associated with 

changes in cardiomyocyte cell cycle progression, we conducted a series of studies to analyze 

the mitotic index of cardiomyocytes at defined time points during heart development. For 

these studies embryos at early, mid, and late tadpole stages were serial sectioned through the 

cardiac regions and triple-stained with DAPI to mark cell nuclei, anti-tropomyosin to mark 

cardiomyocytes, and anti-phospho H3 to mark dividing cells (Fig. 3.3A-D). All cardiac cells, 

as judged by anti-tropomyosin were counted in all hearts at all stages for all conditions with 

the complete study being performed at least two independent times.  

  We found a transient increase in the cardiac mitotic index in Shp-2 N308D embryos 

compared to control embryos at stage 33 (P= 0.04) (Fig. 3.3E). This increase was stage 

specific with no significant increase in the cardiomyocyte mitotic index observed either at 

earlier or later stages (stage 29 and 37; Fig. 3.3E). Since SHP-2 has recently been reported to 

have a role in cell survival (Langdon et al., 2007; Yang et al., 2006), we next tested if the 

decrease in cardiomyocyte cell number and increase in mitotic index in Shp-2 N308D 

embryos might be associated with increased programmed cell death. Therefore, we repeated 

the experiments serial sectioning through heart tissue for each condition triple staining with 
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DAPI to mark cell nuclei, anti-tropomyosin to mark cardiomyocytes, and anti-Caspase 3 to 

mark cells undergoing program cell death (Fig. 3.3F). At no time point could we detect any 

significant difference in programmed cell death between Shp-2 N308D and control embryos. 

Thus, we find that Shp-2 N308D leads to a stage specific increase in the cardiomyocyte 

mitotic index without a concomitant increase in program cell death. 

 
Noonan mutation Shp-2 N308D transiently disrupts cell cycle progression 

The observation that in Shp-2 N308D derived hearts there is an increase in the mitotic index 

without an increase in cardiomyocytes cell number, suggests that Shp-2 N308D leads to 

either lengthening in M-phase, lengthening of the cardiac cell cycle as a whole or to 

cardiomyocytes prematurely exiting from the cell cycle. To address these issues, we 

dissected out heart tissue from control and Shp-2 N308D embryos at stages 37 and carried 

out western blot analysis on isolated cardiac tissue with antibodies that recognize the S-phase 

enriched proteins Stem Loop Binding Protein (SLBP) and proliferating cell nuclear antigen 

(PCNA) (Fig. 3.3G). These studies show that over-expression of Shp-2 N308D leads to a 

dramatic increase in SLBP and PCNA proteins. These results, taken together with our results 

showing that Shp-2 N308D leads to a transient increase in the mitotic index, suggest that 

Noonan associated mutations lead to a stage specific delay or arrest of the embryonic cardiac 

cell cycle.  

 
Noonan mutation Shp-2 N308D does not appear to effect cardiac commitment or 

differentiation 

Histological analysis and 3D molecular modeling of hearts derived from Shp-2 N308D 

embryos strongly suggest that the N308D mutation leads to smaller and abnormally shaped 
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hearts by stage 33. We have previously shown that this is not due to a block in the 

commitment or migration of cardiac precursors to the ventral midline (Langdon et al., 2007).  

Therefore, to determine if the cardiac defects in Shp-2 N308D embryos are due to a block in 

cardiac differentiation, we collected control and Shp-2 N308D embryos at stage 37, and 

serial sectioned through the cardiac tissue and stained for the terminal differentiation markers 

tropomyosin, cardiac actin, or fibrillin (Fig. 3.4A-I). This data demonstrates that Shp-2 

N308D hearts undergo terminal differentiation but are developmentally delayed in 

morphogenesis.  

 
Microarray analysis of Shp-2 N308D mis-expression in the developing heart 

To determine the molecular pathways that are disrupted in Shp-2 N308D we conducted 

microarray analysis with isolated heart tissue from Shp-2 N308D injected and FL-SHP-2 

injected control embryos. Each study was performed on three independent sets of embryos. 

We observed an alteration in the transcriptional level of 33 genes of which several are 

involved in regulating the actin cytoskeleton (Table. 1). To support the microarray data we 

analyzed the cardiomyocyte structural defects associated with the introduction of Shp-2 

N308D by ultrastructure analysis (Fig. 3.4J-M). This analysis reveals that by stage 33 hearts 

of control embryos have cardiac muscle bundles located throughout the myocardium, 

positioned in both longitudinal as well as concentric arrays (Fig. 3.4J, L). In stark contrast, 

Shp-2 N308D hearts show far fewer sarcomeres than controls, and the sarcomeres and 

myofibrils that form are arranged solely in concentric arrays (Fig. 3.4K, M). Collectively, our 

immuno-histochemistry and ultrastructure analysis suggest that Shp-2 N308D does not block 

cardiac differentiation but instead leads to an apparent decrease in myofibrils and defects in 

myofibril polarity in the developing heart.  

 89



 

 
SHP-2 associates with actin in vivo  

Our microarray analysis suggests that SHP-2 is involved in regulating actin dynamics and 

this is supported by the ultrastructure defects observed in Shp-2 N308D hearts. Consistent 

with the experiments shown here Xu et al. established that SHP-2 localizes to actin in vitro 

(Xu et al., 2001). Therefore to determine if SHP-2 directly interact with actin in vivo we 

performed mass spectroscopy on six protein bands isolated from embryos injected with FL-

SHP-2. The mass spectroscopy data confirmed that SHP-2 associates with actin in vivo.  

Collectively, these studies suggest that one function of SHP-2 during cardiac development is 

to promote and maintain actin myofibril development and orientation. 

   
SHP-2 phosphatase activity is required for cardiac defects 

Based on the SHP-2 crystal structure, biochemistry, and tissue culture assays, it has been 

implied that Noonan mutations may function as open or constitutive active forms of SHP-2  

(Fragale et al., 2004; O'Reilly et al., 2000; Tartaglia et al., 2003). To test if the effect of Shp-

2 N308D on actin organization requires SHP-2 enzymatic activity, a critical amino acid 

within the protein phosphatase (PTP) domain, amino acid 459, was mutated from a cysteine 

to a glycine creating a non-functional PTP domain (Bennett et al., 1996) (Fig. 3.1A). 

Injection of the corresponding RNA gave rise to embryos with hearts that are 

indistinguishable from uninjected or full-length controls (Fig. 3.5), and have protein levels 

equivalent to those from cardiac tissue derived from embryos injected of full-length or Shp-2 

N308D parent constructs (data not shown). Thus, Shp-2 N308D appears to function as a 

constitutive active form of SHP-2 in vivo and its phosphatase activity is required for the 

cardiac abnormalities associated with Shp-2 N308D. 
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Shp-2 N308D leads to an increase of ERK and MEK in heart tissue in vivo 

It has been shown that Shp-2 can function within the MAPK pathway in developing cardiac 

tissue and that MAPK can function to regulate cardiac cell proliferation or survival (Langdon 

et al., 2007; Neel et al., 2003; Qu, 2000). To determine whether the cardiac abnormalities 

associated with Shp-2 N308D are mediated by the MAPK pathway in cardiac tissue in vivo, 

we tested if Shp-2 N308D derived hearts lead to either an elevation in levels or increase in 

the number of cells that express activated ERK or MEK (Fig. 3.6). Consistent with Shp-2 

N308D leading to elevated ERK and MEK activity,  isolated cardiac tissue from stage 37 

Shp-2 N308D embryos, versus controls, shows an increase in the levels of both total and 

activated levels of ERK and MEK. However, the relative levels of activated to total ERK and 

MEK remain the same in controls and Shp-2 N308D embryos.  

To investigate if the elevation in MAPK is due to either a greater level of MAPK per 

cardiomyocyte or if it is due to a greater number of cells expressing MAPK, control and Shp-

2 N308D derived embryos at stage 37 were serial sectioned and triple immuno-stained with 

anti-tropomyosin (Tmy) to mark cardiomyocytes, DAPI to mark cell nuclei, and an antibody 

that recognizes total active MEK (data not shown) or activated MEK (Fig. 3.6A, B). Since 

we could not detect any significant difference in the percentage of cells expressing active 

MEK in control verses Shp-2 N308D derived hearts, these results suggest that the elevation 

in MEK is due to an increase in the amount of MEK being expressed per cardiomyocyte and 

not an increase in the number of cardiomyocytes expressing MEK.   
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Discussion    

Studies on Noonan patients have demonstrated an association between Noonan Shp-2 

mutations and cardiac valve defects (Noonan, 1968). Consistent with these clinical features, 

studies in mouse and chick have shown SHP-2 to be required in the EGF pathway for proper 

semilunar valvulogenesis (Chen et al., 2000; Krenz et al., 2005). However, approximately 

one-third of all Noonan patients have heart defects that are not associated with valve 

abnormalities, raising the possibility that SHP-2 may have additional roles in heart 

development (Noonan, 1968; Noonan, 1994). Here we report, that a Noonan associated 

mutation in Shp-2 leads to cardiac specific defects at time points that greatly precede that of 

cardiac valve formation. Our results strongly suggest that the cardiac defects we observe 

from the introduction of Shp-2 N308D, the most common Noonan associated Shp-2 mutation, 

may leads to alterations in the actin cytoskeleton which in turn may leads to a transient delay 

in the embryonic cardiac cell cycle that is mediated by an increase in ERK/MEK activation.  

 

Shp-2 N308D disrupts actin myofibril development 

SHP-2 functions in diverse signaling pathways to regulate a number of developmental 

process including cell morphology, cell migration, cell adhesion, and actin dynamics. SHP-2 

promotes these processes through regulation of the quantity of focal contacts and modulation 

of actin dynamics and SHP-2 has been found to localize to F-actin (Xu et al., 2001). 

Consistent with a role for SHP-2 in actin regulation, loss of function studies found that the 

absence of SHP-2 results in an increase in the number of actin fibers and focal adhesion 

contacts in vitro (Inagaki et al., 2000; Schoenwaelder et al., 2000; Yu et al., 1998). Our 

current data suggests an in vivo role for SHP-2 in proper myofibril development in cardiac 
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tissue as we show that introduction of the Noonan associated mutation, Shp-2 N308D, 

appears to leads to decreased numbers of myofibrils and the disruption of myofibril polarity. 

Our studies imply that a primary function of SHP-2 in the heart is to regulate actin dynamics. 

The molecular modeling studies showed that at stage 29, a time where there were no 

differences in total cell number between control and Shp-2 N308D hearts, there was still an 

observable defect within the hearts of Shp-2 N308D embryos. The hearts of embryos injected 

with Shp-2 N308D are more compact along the anterior posterior axis suggesting that this 

defect precedes the transient changes in cell cycle progression. Therefore, myofibril 

disruption is the first discernible defect in Shp-2 N308D hearts and occurs at stage 29, 

followed by the cell cycle defect which is initiated between stage 29 and 33. Shp-2 N308D 

may functions downstream of integrin and/or rho signaling pathways in the heart as both 

integrin and rho signaling are critical for regulation of actin dynamics (integrin signaling 

reviewed in Brancaccio et al., 2006; rho signaling reviewed in Brown et al., 2006) and SHP-2 

has been implicated in signaling downstream of both pathways (Inagaki et al., 2000; 

Schoenwaelder et al., 2000). We propose that in the heart Shp-2 N308D is localized to areas 

of developing concentric myofibrils and rapidly dephosphorylate one or more molecules 

associated with the formation of actin filaments during myofibril assembly.  However the 

mechanism of Shp-2 N308D localization, which proteins are dephosphorylated by Shp-2 

N308D, and how actin filament disruption leads to loss of concentric myofibrils remains to 

be determined. 

 
Shp-2 N308D leads to a delay in the embryonic cardiac cell cycle 

Evidence for SHP-2 as a regulator of cell cycle progression suggests that SHP-2 functions to 

promote the transition from G1 to S phase (Bennett et al., 1996).  Similarly, we find that 
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cardiac cell cycle progression is altered in response to Shp-2 N308D mis-expression. We 

demonstrate that the introduction of the Noonan mutation, Shp-2 N308D, into Xenopus leads 

to a transient delay of the cardiac cell cycle as measured by a transient increase in the mitotic 

index, an increase in the S-phase enriched proteins SLBP and PCNA, and a decrease in 

cardiac cell number. The cell cycle defect is first observed at stage 33 suggesting that the 

defect may be secondary to earlier defects in actin regulation. However, it is possible that the 

cell cycle defects are independent of the earlier actin defects. At this point it is still unclear if 

the actin defects in Shp-2 N308D hearts lead to the alterations in cell cycle progression or if 

the cell cycle defects represent a second primary function of SHP-2 in the heart.  

We note that our observations of decreased cardiac cell number are contrary to those 

reported for Shp-2 N308D in tissue culture cells and tissue explants where it has been shown 

that activating forms of SHP-2, including Shp-2 N308D, leads to an increase in cell 

proliferation  (Krenz et al., 2005; Oishi et al., 2006; Schubbert et al., 2005). We suspect that 

SHP-2 plays different roles that depend on the cellular or temporal context. It is well 

documented that activation of ERK can lead to growth arrest and differentiation of a number 

of cell types including neurons and megakaryocytes (Kerkhoff and Rapp, 1997; Mansour et 

al., 1994). Antiproliferative effects have also been reported for upstream activators of ERK. 

For example, premature cell cycle arrest is observed in response to activated RAS, including 

JMML associated RAS mutations, in Schwann cells and primary fibroblasts (Clark et al., 

2004; Davies et al., 2002; Flotho et al., 1999; Franza et al., 1986; Kalra et al., 1995; Ussar 

and Voss, 2004). Moreover, these effects of RAS have been found in some instances to be 

mediated by the activation of the RAF/MEK/ERK pathway. Similarly, over-expression of an 
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activated Raf can also lead to cell cycle arrest in a variety of cell types including Schwann 

cells and PC12 cells (Bar-Sagi and Feramisco, 1985; Lloyd et al., 1997).  

 Thus, similar to our findings with SHP-2, there is a fundamental difference between 

the oncogenic properties of RAS in immortalized cell lines versus its role in growth arrest 

and promotion of differentiation in some primary vertebrate cells. In the case of RAS, this is 

in part mediated by the ability of RAS to activate either the p21WAF1 pathway or the 

p16/p15/p19 pathway in embryonic or primary cell types (Crespo and Leon, 2000). It is 

interesting to speculate that SHP-2 functions within embryonic cardiac tissue either as a 

upstream component of this pathway or in a RAS independent pathway with similar cellular 

outcomes.  

 
Cardiac Specificity of Shp-2 N308D 

The crystal structures of SHP-2 (Hof et al., 1998) and mutational analysis (Fragale et al., 

2004; O'Reilly et al., 2000; Tartaglia et al., 2003) show that in its basal state SHP-2 folds 

back upon itself, with the N-terminal SH2 (N-SH2) domain forming an intra-molecular 

association with the PTP domain and hence rendering SHP-2 in a ‘closed conformation’ and 

enzymatically inactive (Fig. 3.7A). Upon interaction of the C- SH2 domains with a 

phophotyrosyl motif in the cytoplasmic tail of RTKs or scaffolding proteins (Fig. 3.7B) the 

intra-molecular association of SHP-2 is disrupted, freeing the PTP domain, and placing SHP-

2 in its ‘open’ or active conformation and resulting in a gain of function for SHP-2 

phosphatase activity (Neel et al., 2003) (Fig. 3.7C). Noonan associated mutations mainly 

cluster at the N-SH2:PTP interface and are therefore thought to destabilize the intra-

molecular folding of SHP-2 placing SHP-2 in a more active state (Fragale et al., 2004; 

O'Reilly et al., 2000; Tartaglia et al., 2003) (Fig. 3.7D). Thus, one simple hypothesis for our 
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results is that the cardiac cell cycle is particularly sensitive to changes in SHP-2 enzymatic 

activity and that prolonged or elevated levels of SHP-2 activity lengthens or arrests the cell 

cycle. Consistent with this hypothesis we show that a mutation that abolishes PTP activity in 

Shp-2 N308D abolishes the effect on cardiac development (Fig. 3.5). However, a number of 

findings argue against this model. First, there appears to be no direct genotype-phenotype 

relationship in patients carrying particular Noonan Shp-2 mutations (Tartaglia et al., 2002; 

Zenker et al., 2004). Second, the Shp-2 mutation at position 76 in the JMML mutant has been 

demonstrated to have elevated phosphatase activity relative to that of Shp-2 N308D. Since 

Shp-2E76A has no effect on heart development, there does not appear to be any direct 

relationship between the strength of a Shp-2 allele and its ability to affect cardiac 

development (Fragale et al., 2004). Third, neither decreasing (.5ng) nor increasing (4ng) the 

amount of Shp-2 N308D introduced into Xenopus has an effect on tissue specificity (data not 

shown).  

 What then leads to tissue specific effect of the Shp-2 N308D mutation? The majority 

of JMML, ALL, and AML mutations occur in the N-SH2 domain while the Shp-2 N308D 

mutation lies within the PTP domain (Bentires-Alj et al., 2004; Kratz et al., 2005; Loh et al., 

2004; Musante et al., 2003; Tartaglia et al., 2003). In its closed or inactive state SHP-2 folds 

back upon itself with the N-SH2 domain in contact with the PTP, leaving the C-SH2 domain 

to have little to no interaction with the PTP domain, and thus the C-SH2 binding pocket is 

left free by this ‘closed’ steric conformation (Fig. 3.7A). This has led to a model that 

proposes that the C-SH2 domain ‘searches’ for phospho-tyrosine targets (Neel et al., 2003) 

(Fig. 3.7B). We would propose that the Shp-2 N308D mutation leads to an open 

conformation of SHP-2 which unlike JMML (e.g. E76A), ALL, or AML mutations leaves 
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both the N-SH2 domain and the C-SH2 domain intact, leaving both domains to search for 

and bind phospho-tyrosine targets (Fig. 3.7D). We predict that the affinity and/or specificity 

of the two SH2 domains are not equivalent to that of the C-SH2 domain alone. Therefore, in 

the case of the Shp-2 N308D mutation, unlike the Shp-2 E76A mutation, the free N-SH2 

leads to an alteration in either the duration or specificity of a specific substrate interaction 

(Fig. 3.7E). This model is supported by recent studies mapping the binding preferences of the 

N-SH2 and C-SH2 domain in SHP-2 that show different sequence preferences for phospho-

substrate and also demonstrate that constructs containing both the N-SH2 and C-SH2 

domains, but not the PTP domain, bind with a higher affinity than constructs containing 

either SH2 domain alone (Poole and Jones, 2005; Sweeney et al., 2005). This model is also 

consistent with studies on the highly related protein phosphatase SHP-1 that demonstrate that 

the N-SH2 and C-SH2 domain prefer different phospho-substrates and bind substrates with 

different affinities (Beebe et al., 2000; Pluskota et al., 2000). Taken together, we predict that 

the availability of both the N-SH2 and the C-SH2 domain leads to an increased or 

inappropriate interaction with a cardiac specific substrate which in turn, leads to the heart 

specific defects observed with the Shp-2 N308D mutation. 
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Figure 3.1. Noonan associated mutation of Shp-2 lead to heart defects in Xenopus.  

(A) Schematic representation of human Shp-2 constructs introduced into Xenopus embryos 

(not to scale). (B) Western blot analysis of embryo lysates from embryos injected with the 

respective HA-epitope tagged Shp-2 constructs at stages 10 (gastrula), 16 (early neurula), and 

20 (late neurula) probed with an anti-HA antibody, an anti-SHP-2 antibody that recognizes 

both endogenous and introduced versions of SHP-2, and an anti-EF-2 antibody as a loading 

control. (C-G) Whole-mount antibody staining of stage 36 embryos with anti-tropomyosin 

antibody (Tmy). Anterior is to the left, posterior is to the right. Images are of cleared 

embryos. Hearts of embryos either (C) uninjected, or (D) embryos from injection of Shp-2 

full-length, (E) Shp-2 mis-sense mutation E76A,  (F) Shp-2 mis-sense mutation N308D, 

showing an example of a less severe heart defect, (G) Shp-2 mis-sense mutation N308D 

embryo, showing an example of a more severe heart defect. (H-L) Transverse histological 
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sections of Xenopus showing cardiac regions from (H) stage 33 control embryos, (I) 

corresponding embryos injected with Shp-2 N308D, (J) stage 37 control embryos, (K) 

corresponding embryos injected with Shp-2 N308D showing an example of a less severe 

heart defect, (L) corresponding embryos injected with Shp-2 N308D, showing an example of 

a more severe heart defect (T, open cardiac trough, M, myocardium; E, endocardium; C, 

unincorporated cardiac cells).   
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Figure 3.2.  3D Modeling of control and Shp-2 N308D cardiac tissue shows cardiac 

abnormalities in Shp-2 N308D hearts beginning at stage 33.  

3D modeling of tropomyosin expression in (A, B, G, H) stage 29 hearts, (C, D, I, J) stage 33 

hearts, (E, F, K, L) stage 37 hearts. (A-F) hearts viewed from anterior to posterior, red 

denoted most anterior section of the heart; lower right corner of panel (A) shows orientation 

of dorsal (D), ventral (V) axis.  (G-L) Lower right corner of panel (G) shows orientation of 

posterior (P), to anterior (A) axis. In panels (A-F) arrows denote the ends of the cardiac 

trough. Note in panel (C) that the trough has closed across the dorsal midline in the control 
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while remaining open in (D) the Shp-2 N308D heart. The edges of the trough come together 

by stage 37 (F) in the Shp-2 N308D heart but still have not closed across the ventral midline. 

Also at stage 33 (J) the Shp-2 N308D heart is much wider in the anterior portions while much 

thinner in the posterior portions (arrows) versus (I) the corresponding control. (O, outflow; I, 

inflow). Note, the relative orientation of O to I in panel I verses panel J, indicative of a delay 

in looping.  (M) Average total number of cells in control and Shp-2 N308D derived hearts at 

stage 29, 33, and 37. Error bars denote the standard deviation and * denotes a statistically 

significant difference (at p <0.05) between control and Shp-2 N308D embryos at a given 

stage. (Scale bars = 100 μm, K, L scale bar = 190 μm). 
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Figure 3.3. Shp-2 N308D leads to a delay of the cardiac cell cycle.  

Transverse heart sections through (A, B) stage 33 and (C, D) stage 37 embryos stained with 

Tmy, to mark cardiac tissue (green), and anti-histone H3 (red), to mark cells in M-phase (A, 

C) control embryos (B, D) Shp-2 N308D derived embryos.  Quantification of results from (E) 

proliferation, and (F) programmed cell death. In all cases, bars represent the average of at 

least 3 embryos: control = blue bar and Shp-2 N308D = red bar.  Error bars denote the 

standard deviation and * denotes a statistically significant difference (at p <0.05) between 

control and Shp-2 N308D embryos at a given stage. (Scale bars = 100 μm).  Results are 

derived from a single set of experiments, all experiments were repeated at least once with an 

independent batch of embryos. (G) Shp-2 N308D leads to a prolonged S-phase. Expression 

of the S-phase enriched proteins SLBP and PCNA in purified cardiac tissue stage 33 tissues 

from control uninjected embryos or embryos Shp-2 N308D as detected by western blot 

analysis; anti-EF-2 is used as a loading control.
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Figure 3.4.  Shp-2 N308D leads to alterations in cardiac myofibrils but does not disrupt 

cardiac differentiation.   

Cardiomyocyte structure in transverse sections through the hearts of stage 37 embryos either 

(A, D, G) control, (B, E, H) injected with full-length Shp-2 or (C, F, I), injected with Shp-2 

N308D as detected by immunostaining for (A-C) Tmy (green), fibrillin (red), (D-F) cardiac 

actin as detected by conjugated phalloidin (green), and DAPI (blue) or (G-I) tropomyosin 

(red) and DAPI (blue) (scale bar = 100 μm). (J-M) Representative transmission electron 

micrographs of transverse images from (J, K) stage 33 or (L, M) from stage 37 embryos of 

heart tissue derived from (J, L) control or (L, M) Shp-2 N308D injections. Cardiac muscle 

fibrils are shown pseudo-colored in yellow. (Scale bars = 1 μm).   
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Table 1. Genes altered at least 1.5 fold in response to expression of Shp-2 N308D in the 

heart.  
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Figure 3.5. Phosphatase activity is required for Shp-2 N308D function in the heart.  

Whole-mount antibody staining of hearts of stage 36 embryos stained with an anti-

tropomyosin antibody (Tmy). Anterior is to the left, posterior is to the right. Embryos either 

uninjected, or injected with Shp-2 N308D or N308D-PTP.  
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Figure 3.6. Shp-2 N308D leads to an increase in phospho-MEK and phospho-ERK in 

embryonic cardiac tissue.  

(A, B) MAPK positive cells in cardiac tissue in transverse sections of Xenopus from stage 37 

embryos with (A) uninjected controls or embryos injected with (B) Shp-2 N308D. Sections 

are stained with Tmy, to mark cardiac tissue (green), p-MEK (red), and DAPI to mark the 

cell nuclei (blue).  (Scale bars = 100 μm). Phospho-MEK results are derived from a single set 

of experiments, all experiments being repeated at least once with an independent batch of 

embryos. (C) Shp-2 N308D leads to increased ERK and MEK; in cardiac tissue. Expression 

of ERK, phospho-ERK, MEK, and phospho-MEK in purified cardiac tissue stage 33 tissues 

from control uninjected embryos or embryos injected with Shp-2 N308D as detected by 

western blot analysis; anti-EF-2 is used as a loading control. 
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Figure 3.7. Proposed mechanism for Shp-2 N308D cardiac specific effects.  

Schematic depicts growth factor receptors expressed in cardiac tissue (orange and green). (A) 

In control embryos, Shp-2 is normally present in a closed or enzymatically inactive state with 
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a free C-SH2 domain and the N-SH2 domain bound to the PTP domain. Upon interaction 

with their respective ligands, the growth factor receptors are phosphorylated (grey circles) 

(B) recruiting SHP-2 to one receptor (orange) through the interaction of the C-SH2 domain 

however, the C-SH2 domain cannot interact with the other receptor (green). (C) Once the C-

SH2 domain interacts with the phospho-residue, SHP-2 undergoes a conformational change 

to its open or enzymatically active state (Neel et al., 2003). (D, E) In the case of Shp-2 

N308D, SHP-2 is thought to be constitutively active and hence in an open conformation. 

Thus, unlike the control state the N-SH2 domain is free to interact with phospho-residues 

leading to an alteration in specificity (depicted as an interaction with the green receptor) 

which in turns leads to inappropriate signaling in the cardiac tissue. 
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CHAPTER 4 

A 3D Modeling Program to Rapidly Assess Cardiac Morphological Abnormalities:  3D 

Analysis of TBX5 Depleted Heart Tissue 

 
PREFACE TO CHAPTER 4   

Chapter 4 describes a 3D molecular modeling program designed to rapidly reconstruct serial 

sectioned vertebrate hearts.  The 3D models allow for analysis of the overall morphology of 

the heart, thus allowing visual access to surfaces and regions of the heart previously unseen 

by techniques such as whole mount tissue analysis.  Here we reconstruct hearts from 

embryos depleted of TBX5, a T-box protein know to regulate the cardiac cell cycle (Goetz et 

al., 2006).  

This work was done in collaboration with two students in the lab of Dr. Stephen 

Aylward, Remi Charrier and Cedric Caron, who designed the modeling program.  Additional 

collaborators on the project include Dr. Sarah C. Goetz, Tamaryn Kelley, Ashley Hayes, and 

Jennifer Duddy.  I initiated this project in our lab and I was intimately involved in the testing 

and optimization of the modeling program for Xenopus hearts.  In addition, I performed the 

majority of the modeling and reconstruction of TBX5 depleted and control hearts. 

 



 

Summary 
 
Characterizing the cellular and molecular basis of heart development largely depends 

on the ability to describe normal heart development, as well as cardiac phenotypes 

arising from the disruption of specific molecular pathways.  To build upon existing 

techniques for the examination of cardiac morphology during development, we have 

devised a 3-D modeling program known as HistologicalImageReconstruction.  This 

program provides an inexpensive and rapid method for characterizing the morphology 

of the heart or other tissue of interest at a high level of detail. As a test of the 3D 

modeling system, we have developed 3D images of Xenopus hearts using 2 different 

antibodies at 3 different developmental stages. This analysis shows both the utility of 

the program and also demonstrates a detailed temporal and spatial comparison of the 

cardiac cells expressing cardiac myosin heavy chain and tropomyosin. As a further test 

of the utility of the program we have conducted a detailed 3D analysis of Xenopus 

embryos depleted of TBX5, the gene mutated in the human congenital heart disease 

Holt Oram syndrome. We show that the HistologicalImageReconstruction is able to 

detect morphological and cellular abnormalities not previously described from 2D 

analysis which collectively suggest a role for TBX5 in dorsal tube closure and cardiac 

looping. 

 

Introduction 

Congenital heart defects are among the most common forms of birth defects in humans, 

comprising approximately 1% of all live births (Hoffman, 1995a; Hoffman, 1995b).  In 

recent years, numerous studies have elucidated many of the basic processes of heart 
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development, employing both embryological and molecular approaches (Bruneau, 2002; 

Kolker et al., 2000; Mohun, 2000; Olson and Srivastava, 1996) .  However, in spite of this, 

our understanding of the molecular mechanisms underlying normal heart development, as 

well as the mechanisms of human disease states remains incomplete.   

 Understanding the molecular mechanisms of heart development relies upon the ability to 

accurately describe both normal heart development and abnormalities resulting from the 

disruption of certain gene products or molecular pathways.  Existing tools for visualizing 

cardiac phenotypes consist primarily of whole-mount immunostaining, and immunostaining 

of histological sections.  Whole-mount immunostaining allows for the visualization of overall 

cardiac morphology, but is somewhat limited in ability to detect more subtle defects.  In 

contrast, histological sections provide a greater degree of detail and more easily allow for 

quantitative analysis of a cardiac phenotype, such as determination of cell number.  However, 

visualization of the overall morphology of the heart is often not possible using this technique. 

To address the limitations of these methods, we have devised an inexpensive, high-

throughput 3-dimensional (3D) modeling program, known as 

HistologicalImageReconstruction, that combines the detail of histological sections with the 

ability to easily observe the overall morphology of the heart.  Using this system we have 

conducted a detailed analysis of heart developmental in Xenopus during the early stages of 

heart tube formation.  

 As further demonstration of this technique, we generated 3D images of heart tissue 

depleted of Tbx5, the gene mutated in the human congenital disease Holt Oram syndrome. 

Tbx5, like Tbx1, Tbx2 and Tbx3, was first reported from studies of a mouse library screened 

with the PCR primers derived from Brachyury and omb (Bollag et al., 1994), and  
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homologues were identified in a wide variety of vertebrate species including chicken 

(Gibson-Brown et al., 1998a; Ohuchi et al., 1998), zebrafish (Begemann et al., 2002; 

Ruvinsky et al., 2000), Xenopus (Horb and Thomsen, 1999; Showell et al., 2006), and human  

(Basson et al., 1997; Li et al., 1997). Sequence comparison of the vertebrate homologues 

show that TBX5 has an extremely high degree of conservation through evolution: 99% in the 

T-box domain, and 57% overall between Xenopus and human (Horb and Thomsen, 1999).  

 Similar to other individual T-box containing genes, Tbx5 homologues share not 

only sequence similarity but also a high degree of conservation in their temporal and 

spatial pattern of expression. Initial studies in the mouse showed Tbx5 expression is 

restricted to a subset of cells in the developing heart, eye, and limb; it persists throughout 

all later stages of development except in the dorsal eye (Chapman et al., 1996). Tbx5 

homologues display a very similar pattern of expression (Begemann et al., 2002; Gibson-

Brown et al., 1998b; Horb and Thomsen, 1999; Li et al., 1997). In the developing heart 

Tbx5 initially appears to be expressed throughout the heart field with relatively high levels 

in the inflow tract and atrium, and low to undetectable levels observed in the ventricle. No 

staining is ever observed in the outflow tract or major arteries but in some species Tbx5 

has been reported to be expressed at relatively high levels in the veins including the 

common cardinal vein and the anterior aspects of the hepatic vein (Brown et al., 2005). In 

the atrium Tbx5 is expressed both in the endocardial and myocardial layers. Thus, Tbx5 is 

expressed in a posterior to anterior gradient and along with Nkx2.5 and Tbx20, Tbx5 is 

among the first genes expressed in cardiogenic precursor cells (Begemann and Ingham, 

2000; Bimber et al., 2007; Brown et al., 2005; Bruneau et al., 1999; Chapman et al., 1996; 

Gibson-Brown et al., 1998a; Griffin et al., 2000; Horb and Thomsen, 1999; Showell et al., 
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2006; Tonissen et al., 1994). 

 The first indication of a function for TBX5 in heart development came from 

studies of the human congenital heart disease Holt-Oram Syndrome (HOS), a relatively 

rare highly penetrant autosomal dominant condition that is associated with skeletal and 

cardiac malformations. The cardiac developmental abnormalities include atrial and 

ventricular defects, aberrant chamber formation, and conductivity abnormalities 

(Newbury-Ecob et al., 1996). Patients with HOS often carry mutations within the coding 

region of TBX5 (Basson et al., 1997; Basson et al., 1999; Basson et al., 1995; Benson et 

al., 1996; Li et al., 1997). The role of TBX5 in heart development, and in the HOS disease 

state, are supported by gene targeting experiments in mouse, that demonstrate mice 

heterozygous for mutations in Tbx5 display many of the phenotypic abnormalities of HOS 

patients (Bruneau et al., 2001; Hiroi et al., 2001) specifically, mice lacking a copy of Tbx5 

display atrial septal defects (ASDs), including secundum and primum ASDs. In line with 

these cardiac abnormalities, the Tbx5 heterozygous mutant mice show a dramatic reduction in 

the expression of ventricle contractile specific genes MLC2v, Irx4 and Hey2 as well as two 

markers associated with early cardiac commitment Nkx2.5 and Gata4. (Moskowitz et al., 

2004). 

 Distinct from its role in chamber specification and differentiation, TBX5 is also 

required for correct development of the cardiac conduction system. In newborn mice, 

Tbx5 is expressed in the atrioventricular bundle and in the left and right bundle branch 

where it continues to be expressed to adulthood. In Tbx5 heterozygous mutant newborn 

mice Tbx5 expression is initiated in the proper time within the tissue of the conductivition 

system, but the mutant mice display conductivity patterning defects in the bundle branches 
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and the atrioventricular bundle and fail to under go the morphological changes in the 

conduction system observed in wildtype mice. These defects in conductivity maturation 

are manifested in altered ECGs; Tbx5 mutant heterozygous and wildtype mice have an 

indistinguishable ECG at birth but as the mice mature, the Tbx5 heterozygous mutant mice 

fail to undergo a shortening of the time required for electrical propagation from the 

sinoatrial node to the ventricular myocardium, leading to a prolonged PQ interval. Thus, it 

appears that Tbx5 loss results in maturation failure in the atrioventricular node or the 

atrioventricular bundle and further implies that Tbx5 is required for the normal function of 

the ventricular conduction system, the atrioventricular bundle and the left and right bundle 

branches (Moskowitz et al., 2004).  

Analysis in Xenopus and zebrafish where Tbx5 is the gene mutated in the heartstrings 

mutation, has suggested an additional role for TBX5 in heart development prior to chamber 

formation or development of the conduction system. Loss of TBX5 leads to morphological 

defects in the heart including pericardial edema and loss of circulation. In Xenopus these 

defects are concomitant with a decrease in cardiac cell number, which results from a G1/S 

phase delay or arrest (see below) (Brown et al., 2005; Goetz et al., 2006). Although these 

studies provide insight into the precise role for TBX5 in heart development, the studies fail to 

demonstrate the overall morphological consequences of depleting TBX5 on the early steps of 

heart development. To address this issue we have used  HistologicalImageReconstruction to 

generate 3D models of TBX5 depleted heart tissue at distinct stages of cardiac development. 

Results from these studies confirm previous studies on the size of TBX5 depleted hearts but 

also reveal new phenotypic abnormalities and critically, show defects in dorsal tube closure 

and cardiac looping. 
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Materials and Methods 

Cryosectioning and Immunostaining of Heart Tissue 
 
For immunostaining of histological sections, embryos were collected at the indicated stages, 

fixed for 2 hours in 4% paraformaldehyde, and embedded in OCT cryosectioning medium 

(Tissue Tek).  Serial cryostat sections  (14µm) corresponding to the entire heart region were 

collected and rinsed with wash buffer (PBS with 1% Triton and 1% heat inactivated calf 

serum), and incubated at 4 ºC overnight as indicated with mouse anti-tropomyosin 1:50 or 

(Developmental Studies Hybridoma Bank); mouse anti-myosin heavy chain  (Zymed).  The 

sections were rinsed with wash buffer and the fluorescent conjugated secondary antibody, 

anti-mouse-Cy3 (Sigma), was applied to the samples, diluted in wash buffer at 1:100.  The 

slides were incubated with secondary antibody for 30 minutes at room temperature and 

rinsed with wash buffer.  Samples were then incubated 30 minutes at room temperature with 

DAPI (Sigma) to stain nuclei.  The samples were imaged on a Nikon E800 epiflourescent 

microscope.  Images were captured using the Metamorph software package. 

 

3D Molecular Modeling 

The 3D reconstruction software HistologyImageReconstruction was designed to reconstruct 

Mouse and Xenopus hearts.  The program consists of four steps: segmentation, stitching, 

stacking, and reconstruction.  For the current 3D reconstructions only 3 steps of the program 

are used segmentation, stacking, and reconstruction.  Briefly, the program utilizes tiff files of 

fluorescent heart histological sections which must be copied and placed in individual folders 

under a main folder i.e. 3D Model Xenopus.  Copies of the original tiff files are necessary as 
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the program overwrites the tiff data in the files.  Load the folder containing the 2D 

representations of the histological images into the histology program and begin the 

segmentation step.  Segmentation involves selecting the area of the heart to be reconstructed 

as marked by tropomyosin and excludes other areas of the sectioned embryo.  When a point 

on the heart is clicked the program selects all pixels of the same intensity and highlights the 

selected pixels in red.  To remove or add additional areas to the highlighted tissue the hand 

tracer tool can be used to erase tissue or add to the highlighted area.  Following segmentation 

of each image is the stacking step.  Stacking allows the user to pick corresponding points on 

consecutive sections and align the points together.  Initially the user is prompted to choose 

the best section of all of the sections as this is the section on which the stacking will be 

based.  For the current 3D models the section chosen contained the fewest tears and is the 

most morphologically distinct section.  The stacking step involves choosing a landmark on 

the starter section and then choosing the corresponding landmark on the subsequent section.  

A minimum of four landmarks must be selected for each section, but it is best to select as 

many landmarks as possible.  In addition to, landmark selection the transformation method 

should be selected.  For the current 3D models Rigid+Warp was selected.  It allows rotation, 

shifting, and deformation based on the images.  Once landmarks have been selected the 

transformed image can be calculated and a new window opens with the option to compare 

consecutive V sections.  This button shows the two sections overlaid on each other with the 

left image in green and the right image in red allowing for visualization of the combined 

sections.  If the sections are properly aligned then the transformation is accepted by pushing 

the rescale button, otherwise new landmarks can be selected by hitting the redo button.  

Following stacking all of the sections in the heart is the final reconstruction step.  The final 
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reconstruction step consists of the computer generating the 3D model of the stacked images 

into one final model which can be resized and displayed as a 3D image.  The program asks 

for several parameters gap size, height, multiplier, and spacing.  For the current models the 

gap size, height, and multiplier are 10, 25 and 1 respectively and the spacing is 1 for x and y 

and 25 for z.  The sections must then be transformed.  Following transformation the sections 

are then stacked.  The program will ask if folder size should be respected and no should be 

selected.  Subsequently the program will ask if the final image should be smaller; click yes 

and set a ratio of 0.5.   The program then writes a mhd file that can be visualized using 

VisualizeHistologyImage program.  

 

Results 

Xenopus is an especially valuable tool for the study of cardiovascular development because, 

unlike mammalian embryos, amphibian embryos can survive to late developmental stages 

without functional circulation.  Xenopus embryos are highly amenable to embryological 

manipulations and, with the advent of antisense morpholino technology, it has been possible 

to generate highly specific loss-of-function phenotypes for many genes of interest.  

Amphibian embryos also possess pulmonary circulation, making the physiology of their 

circulatory system more closely related to that of the mammals than is that of the zebrafish.   

Briefly, the modeling program consists of four steps: segmentation, stitching, 

stacking and the three dimensional reconstruction.   Utilizing sections through the Xenopus 

heart that have been stained with a cardiac muscle-specific antibody such as myosin heavy 

chain, a 3-dimensional model of the heart can be rendered.  The heart in each serial section is 

selected during segmentation and the images are stacked together based on reference points 
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provided by the previous image.  The stacked images are then converted to a 3D model that 

can be visualized using the VisualizeHistologyImage program, which is a companion 

program to HistologicalImageReconstruction.   

 

3D imaging of MHC expression during early Xenopus heart development 

To demonstrate the utility of the modeling program as a tool for analyzing normal heart 

development, we initially reconstructed 3D models of Xenopus hearts at three developmental 

stages, determined according to Nieuwkoop and Faber (Nieuwkoop and Faber, 1975); stage 

29, which corresponds to the folding of the cardiac field into the bilaminar heart tube; stage 

33, which corresponds to the onset of cardiac looping; and stage 37, corresponding to early 

cardiac remodeling and chamber formation.  At each of these stages hearts were serial 

section and immunostained with an antibody against cardiac myosin heavy chain (MHC) or 

tropomyosin.  Representative sections from the anterior, middle, and posterior regions of the 

heart for each stage are shown in Fig. 4.1.  The series of sections were then used to 

reconstruct a 3D model of the heart for each stage and visualized by 

VisualizeHistologyImage (Fig. 4.2).  These models reveal the overall morphology as detected 

by staining with cardiac specific antibodies of the heart at each stage as well as cataloging the 

expression of genes/ proteins at each of these developmental stages.  Through the 

visualization program, the rendered surface of the heart can be made transparent and each 

individual section of the heart viewed providing internal details of the heart relative to overall 

heart morphology.      

The model based on MHC expression of un-manipulated embryos at stage 29 shows 

that the bilateral Xenopus heart primordia have joined across the ventral midline to form a 
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single heart field.  The heart field has begun to round up to form a trough that is open at the 

dorsal-most aspect (Fig. 4.2A-C).  At this stage the heart and MHC expression are in a linear 

configuration, with the presumptive inflow and outflow of the heart aligned along the 

anterior-posterior axis (Fig. 4.2B-arrows).   

By stage 33, the heart tube is fully closed for much of its length (Fig. 4.2D-F), with 

the exception of the anterior-most portion of the heart, near the future outflow tract, where it 

remains open at the dorsal aspect (Fig. 4.2E-arrowhead).  By this stage, the heart has begun 

the morphogenetic process of rightward looping, as seen by the visible offsetting of the 

inflow to the right of the outflow (Fig. 4.2E-arrows).  At this stage the MHC expression 

domain has also increased in size due to high levels of cell proliferation within the Xenopus 

heart (Goetz et al., 2006), and has increased in length along the anterior-posterior axis (Fig. 

4.2- compare F with C).   

Finally, at stage 37, a greater degree of morphological complexity is evident as the 

heart continues to undergo cardiac looping and begins cardiac remodeling (Fig. 4.2G-I).  At 

this stage, the heart elongates along the left-right axis (Fig. 4.2H), and the chamber primordia 

become more distinct (Fig. 4.2G, I-arrow heads).  As was the case at stage 33, the hearts of 

the stage 37 embryos have fully closed with the exception of the anterior-most sections, 

although the dorsal opening in these anterior sections is more narrow than that of the stage 33 

embryos (Fig. 4.2-compare D with G), suggesting that the anterior portion of the heart at 

stage 37 is continuing to complete dorsal closure to form a fully enclosed tube.  By this point 

in development, our HistologicalImageReconstruction-generated model reveals that the 

outflow tract of the heart is still shifted to the right with respect to the inflow (Fig. 4.2H-

arrows).   
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3D imaging of TBX5 depleted heart tissue 

To show the utility of the HistologicalImageReconstruction modeling program in 

characterizing morphological abnormalities arising from loss or mis-expression of a 

particular gene product, we conducted further 3D modeling of Xenopus hearts with a second 

cardiac marker tropomyosin and compared these models to those of TBX5 depleted heart 

tissue(Brown et al., 2005; Goetz et al., 2006).  In control hearts at stage 29, similar to MHC 

tropomyosin positive cells ventrally-fuse across the midline and round up dorsally to form 

the linear heart tube by stage 33 (Fig. 4.3A, C).  In TBX5-depleted hearts, tropomyosin 

positive cells fuse at the ventral midline, in stark contrast to controls the cell fail or are 

delayed in migration towards the dorsal side of the embryo to initiate heart tube formation 

(Fig. 4.3B, D).  In addition, the number of cells expressing tropomyosin is reduced compared 

to controls.  

At stage 33, control and TBX5-depleted embryos contain approximately equal 

numbers of tropomyosin positive cells; however, several morphological abnormalities 

become apparent in the expression of tropomyosin in TBX5-depleted embryos (Fig. 4.3G-L). 

In control embryos, consistent with what we observed for the models based on MHC 

staining, we observe in tropomyosin 3D models that the heart tube is fully closed for much of 

its length with the exception of the most anterior portions of the heart (Fig. 4.3G,I) and 

cardiac tissue has begun the process of cardiac looping (note: the inflow tract is noticeably 

offset to the right from the outflow tract; Fig. 4.3I- arrows).  In comparison, hearts of the 

TBX5-depleted embryos at stage 33 still form a trough opening dorsally for all but a small, 

central portion of the heart tube (Fig. 4.3H-blue arrow) giving the appearance in Fig. 4.3H of 

a hole through the center of the heart.  The hearts derived from TBX5-depleted embryos have 
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also failed to initiated cardiac looping as the inflow tract is aligned with the outflow along the 

anterior-posterior axis, rather than offset to the right (Fig. 4.3J-arrows).   

By stage 37, control embryo tropomyosin staining marks the chamber primordia (Fig. 

4.3M, O-arrowheads).  In contrast, the hearts of TBX5- depleted embryos show fewer 

tropomyosin-positive cells (Fig. 4.3N, P, R).  In addition, the inflow and outflow tracts are 

aligned along the anterior-posterior axis, indicating that the heart has failed to undergo 

cardiac looping (Fig. 4.3P-arrows) (Goetz et al., 2006).  We also observe that the central 

portion of the dorsal aspect of the heart tube remains as an open trough (denoted by the blue 

arrow; Fig. 4.3P).  Interestingly, it appears that blood flow into the heart tube of the TBX5-

depleted embryos may be offset dorsally, as the anterior most portions of the heart tube are 

occluded (Fig. 4.3N-blue arrow).  This observation indicates that the defects seen in the 

TBX5-depleted embryos are not simply due to a delay in heart development, as the 

morphological abnormalities are more severe than those seen in earlier stage control hearts.  

 

Discussion 

While other modeling programs to examine heart development in Xenopus have been 

described (Mohun, 2000), the program we have developed offers several advantages and thus 

complements existing modeling programs.  First, in HistologicalImageReconstruction, the 

3D model can be reconstructed solely from corresponding points on adjacent sections 

through the heart without requiring the use of reference points outside the heart upon which 

to align the 3D model.  As a result, HistologicalImageReconstruction requires the use of less 

tissue and allows for a rapid reconstruction of 3D images.  In addition, 

HistologicalImageReconstruction utilizes the expression of cardiac muscle proteins to define 
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the cardiac tissue to be imaged.  In this way, we are able to distinguish cardiac tissue from 

surrounding mesoderm more easily at earlier developmental stages or in regions of the heart 

that are not morphologically well defined.  Thirdly, this program can reconstruct hearts from 

fluorescent immunostaining or from in situ hybridization without necessitating expensive 

software.  Thus, this method also allows us to catalog and compare the expression patterns of 

various heart proteins throughout development. 

 
3D Imaging of TBX5 depleted heart tissue 

Our  HistologicalImageReconstruction- generated 3D models of hearts from embryos lacking 

TBX5, shown in Fig. 4.3, are consistent with previous analysis, while also revealing 

differences in morphology between control and TBX5-depleted embryos that were not 

previously described (Brown et al., 2005; Goetz et al., 2006).   Specifically, the 

HistologicalImageReconstruction-generated 3D models accurately recapitulate both antibody 

expression patterns and morphological defects in TBX5-depleted cardiac tissue.  These 

include the failure of the heart to properly form a linear heart tube, defects in the relative 

positioning of the heart, and a general decrease in cardiac mass.  In addition to these defects 

the 3D images reveal additional morphological abnormalities not previously reported. 

Critically, we observe a misalignment of the inflow tract relative to the outflow tract even 

before the onset of cardiac looping.  Collectively, suggesting a role for TBX5 in dorsal tube 

closure and cardiac looping. 

Although the software has allowed a rapid evaluation of molecular expression 

patterns and cardiac defects in Xenopus, the program can be easily adapted or other tissues, 

organs, or model organisms.  A considerable advantage offered by our 3D modeling is its use 

of immunostaining to label the tissue of interest to be modeled.  Thus, this program offers 
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inexpensive, high-throughput 3D imaging to investigators wishing to study alterations in 

tissues that may not be morphologically distinct from the surrounding tissue during the 

developmental window of interest. 
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Figure 4.1.  Histological sections of Xenopus hearts showing expression of myosin heavy 

chain.   

Wild-type embryos were transversely serial sectioned at stages 29 (a-c), 33 (d-f), or 37 (g-i).  

Shown are representative sections from the anterior-most, middle, and posterior regions of 

the heart tube, as indicated, at each stage.  Cardiac myosin heavy chain expression is shown 

in red.  Scale= 100μM.  TA= truncus arteriosis, OFT= outflow tract, V= Ventricle, SV= 

sinus venosus.   
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Figure 4.2.  3D models of Xenopus hearts based on myosin heavy chain expression 

reveal dynamic MHC expression in the developing heart.   

VisualizeHistologyImage program was used to generate 3D models of Xenopus hearts at 

stages 29 (a-c), 33 (d-f) or 37 (g-i) based on sections immunostained with myosin heavy 

chain.  The models are shown in anterior (a,d,g), dorsal (b,e,h), and lateral (c,f,i)  views, with 

orientation of axes is shown for each series at stage 29.  A section corresponding to the most 

anterior region of the heart is shown in red for each stage.  Arrowheads mark cardiac 

chambers. A= atrium, V= ventricle.  Arrows in panels b-i mark the outflow (O) and inflow 

(I) tracts.  Orientation axis is shown for each series at stage 29 in the bottom right corner of 

the panel.  A= anterior, P= posterior, D= dorsal, V= ventral.  Scale= 50μM. 
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Figure 4.3.  3D modeling of tropomyosin expression in TBX5-depleted hearts reveals 

dynamic aspects of the cardiac phenotype.   

VisualizeHistologyImage program generated 3D models of Xenopus hearts from embryos at 

stages 29 (a-f), 33 (g-l), or 37 (m-r) injected with either control (CMO) or TBX5 

morpholinos (T5MO) as indicated.  3D models are shown in anterior (a,b,g,h,m,n), dorsal 

(c,d,i,j,o,p), or lateral (e,f,k,l,q,r) views, with orientation of axes shown for each series at 

stage 29.  Arrowheads mark cardiac chambers. A= atrium, V= ventricle.  Black arrows in 

panels i-j,o-p mark the outflow (O) and inflow (I) tracts.  Blue arrows indicate special 

features of the T5MO phenotype.  Axes are indicated in the top left panel of each grouping.  

A= anterior, P= posterior, D= dorsal, V= ventral.  Scale= 50μM. 
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CHAPTER 5 

Conclusion and Future Directions 

 
Protein tyrosine phosphates are critical for the regulation of a diverse set of developmental 

processes and consequently disruption of their activities can result in a number of 

developmental abnormalities.  The work presented in this dissertation begins to address the 

precise role for the non-receptor protein tyrosine phosphatase SHP-2 in cardiac development.  

The function of SHP-2 in cardiac development was addressed by 1) characterizing the 

requirement for SHP-2 in the maintenance of cardiac progenitor cells and 2) determining the 

effect of the Noonan associated SHP-2 mutation, SHP-2 N308D on cardiac development. 

 
Cardiac cell survival 

SHP-2 is a protein tyrosine phosphatase that is be required for the development of terminal 

structures in Drosophila, required for mesoderm patterning, morphogenetic movements at 

gastrulation and survival of trophoblast stem cells in the mouse, and required for posterior 

mesoderm patterning in Xenopus (Cleghon et al., 1998; Perkins et al., 1992; Saxton et al., 

1997; Saxton and Pawson, 1999; Tang et al., 1995; Yang et al., 2006).  Due to the early 

developmental requirement for SHP-2 it has not been possible to ascertain the precise role of 

SHP-2 in cardiac development.  In Chapter 2 we circumvented the early requirements for 

SHP-2 signaling through elaboration of an explant assay first reported by Tim Mohun and 

Mark Mercola (Raffin et al., 2000). Prior to excision of the cardiac 

 



 

explants, Xenopus embryos were allowed to develop to neurula stage at which point we 

isolated cardiac explants and inhibited SHP-2 signaling with a pharmacological inhibitor of 

SHP-2.  From these studies we showed that in the absence of SHP-2 signaling there is a rapid 

and progressive loss of early cardiac marker expression and inhibition of cardiac 

differentiation.  In addition we determined that in the absence of SHP-2 signaling cardiac 

cells undergo programmed cell death thus, demonstrating a role for SHP-2 in cardiac cell 

survival.   

 SHP-2 has been demonstrated to function downstream of a number of growth factor 

signaling pathways including FGF, EGF, and PDGF growth factor signaling pathways 

(Hanafusa et al., 2004; Neel et al., 2003; Schaeper et al., 2007; Wu et al., 2006).  Since a 

number of studies demonstrate a role for FGF signaling in the maintenance of cardiac cells or 

cardiac cell identity (Abu-Issa et al., 2002; Cohen et al., 2007; Davidson et al., 2006) we 

hypothesized that the SHP-2 functions downstream of FGF signaling to maintain 

proliferating cardiac progenitor cells.  In Chapter 2, we provide the first evidence that SHP-2 

interacts directly in vivo with a downstream component of the FGF signaling pathway, FRS 

and demonstrate that inhibition of FGF signaling has the same effect on cardiac development 

as the inhibition of SHP-2 signaling.  Critically, we found that an activated form of SHP-2 

can rescue the cardiac lineage defects resulting from loss of FGF signaling.   

 
Cardiac abnormalities associated with SHP-2 N308D mis-expression 

Chapter 3 analyzes the cellular and molecular effects of SHP-2 N308D, the most common 

Noonan associated mutation, on heart development.  Mis-sense mutations in SHP-2 are 

frequently associated with the human congenital syndrome Noonan syndrome, an autosomal 

dominant disorder that occurs in 1 to 1000-2500 live births (Tartaglia et al., 2001).  Patients 

 138



 

with Noonan syndrome have proportionate short stature, cranial-facial abnormalities, mental 

retardation, and cardiac disease which is manifested by atrial septal defects, ventricular septal 

defects, atrial-ventricular septal defects, pulmonary stenosis and hypertrophic 

cardiomyopathy to name a few (reviewed in Tartaglia and Gelb, 2005).  The most common 

Noonan syndrome associated SHP-2 mutation is a mis-sense mutation occurring at position 

308 in which an asparagine is substituted for aspartic acid (N308D).  This mutation accounts 

for one third of all Noonan affected individuals.   

In Chapter 3 we show that introduction of human Shp-2 N308D into Xenopus results 

in cardiac abnormalities.  To characterize the cardiac defects in Shp-2 N308D embryos, we 

performed 3-dimensional (3D) molecular modeling of control and Shp-2 N308D hearts.  The 

development and application of the 3D molecular modeling process was used in a pilot study 

in Chapter 4, to model control and Tbx5 morphant hearts.  When applied to Shp-2 N308D the 

3D models illustrate a delay with respect to morphological movements of the heart and a 

reduction in the size of the heart.  This result is consistent with previously described roles for 

SHP-2 in cell migration (Manes et al., 1999; O'Reilly et al., 2000; Saxton and Pawson, 1999; 

Tang et al., 1995) and our microarray experiments which identified changes in expression of 

a number of genes involved in actin dynamics.  Additionally, we performed TEM of control 

and Shp-2 N308D hearts and found that while control hearts contained both longitudinal and 

concentric muscle fibers, Shp-2 N308D hearts lacked concentric muscle fibers suggesting 

that Shp-2 N308D hearts may have a muscle polarity defect or be deficient for a subset of 

cardiac muscle.  By conducting immunoprecipitations of SHP-2 from whole embryos and 

analyzing the proteins associated with SHP-2 by mass spectroscopy we showed that SHP-2 

associates with actin in vivo.  Collectively these studies suggest that Shp-2 N308D cardiac 
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cells may have an impaired ability to migrate and maybe deficient for a subset of cardiac 

muscle. 

 
Shp-2 N308D and the cardiac cell cycle 

In addition, to a potential role for Shp-2 N308D in the actin cytoskeleton, our studies also 

reveal a role for SHP-2 in mediating cell cycle progression (Bennett et al., 1996; Guillemot et 

al., 2000).    Importantly, Shp-2 N308D hearts were found to have an increase in the 

expression of S-phase associated proteins suggesting the reduced number of cardiac cells 

may result from a block or delay (lengthening) in the cardiac cell cycle.  At the present time, 

it remains unclear if this occurs in response to Shp-2 N308D or if this is a secondary response 

to alterations in the actin cytoskeleton. 

 
Future Directions 

Tyrosine kinase signaling, SHP-2 and cardiac survival 

Our current work demonstrates that SHP-2 is required downstream of FGF signaling to 

maintain cell survival of cardiac progenitor cells in the heart. However, it is well established 

that SHP-2 functions in additional growth factor signaling pathways (Chen et al., 2000; Van 

Obberghen et al., 2001; Wu et al., 2006).  Therefore an immediate goal of this project is to 

determine if additional signaling pathways are involved in SHP-2 mediated cardiac cell 

survival.  Cell survival can be mediated through the EGF/PI3K/AKT pathway. However; in 

this pathway SHP-2 negatively regulates cell survival by dephosphorylating Gab1 thus 

inhibiting the ability of Gab1 to activate PI3K.  In contrast in the MAPK pathway SHP-2 has 

been found to promote cell survival (D'Alessio et al., 2007; Ren et al., 2007).  In particular, 
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Shp2 E76K, an activated mutant, leads to an increase in pro-survival factors in response to 

constitutive ERK activation (Ren et al., 2007).   

Taken together these studies suggest additional mechanism by which SHP-2 may 

function to maintain cardiac cell survival.  To test the hypothesis that SHP-2 functions 

downstream of additional growth factors in the heart for the maintenance of cardiac cells we 

will isolate cardiac explants and treat the explants with specific inhibitors of EGF, PDGF, 

NGF, or IGF signaling.  The tissue will then be analyzed by methods identical to those in 

Chapter 2.  If we identify additional signaling pathways for cardiac cell survival these studies 

will be further extended to determine whether the additional pathways act in parallel or 

converge on the FGF signaling pathway.   

 
Downstream Pathways 

 Ultimately, it is essential is to determine what genes act downstream of SHP-2 to 

maintain cardiac cell survival.  To approach this objective, we will perform subtractive 

hybridization screens of cardiac explants treated with the SHP-2 inhibitor at specific stages 

of cardiac development.  In Chapter 2, we demonstrate that treatment of our cardiac explants 

with the SHP-2 specific inhibitor at stage 22 results in the initiation of cardiac cell death at 

stage 26.  Therefore, there is a six hour window between SHP-2 inhibition (stage 22) and 

cardiac cell death (stage 26).  Since we know the window of time in which the cell death 

phenotype is observed, we can initiate inhibitor treatment at early stages of cardiac 

development and collect the explants at stages and times prior to when we would expect to 

observe any cell death.  We will then compare the results from each screen.  In this manner 

we will determine a subset of genes which may function to promote cardiac cell survival.  

Once identified, candidate genes will be assayed for the ability to rescue the loss of 
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differentiated cardiac tissue in response to SHP-2 inhibition.  Thus we will gain a better 

understanding of the molecular mechanisms used to promote cell survival of cardiac cells in 

vivo. 

 
Shp-2 N308D and actin cytoskeleton 

Our work on Shp-2 N308D has defined several potential cellular pathways by which Shp-2 

N308D may affects cardiac development.  Having identified actin dynamics and cell cycle 

progression as candidate SHP-2 regulated processes, an immediate goal of the project is to 

precisely define the role of Shp-2 N308D in these pathways.  Since SHP-2 has been shown to 

function downstream of integrin and Rho signaling for the regulation of actin stress fiber 

formation (Inagaki et al., 2000; Schoenwaelder et al., 2000) and we show that SHP-2 

associates with actin, we anticipate that cardiac cells in Shp-2 N308D hearts contain fewer 

actin fibers which in turn leads to alteration in the orientation of the remaining fibers or leads 

to the loss of a subset of actin fibers.  To test this hypothesis we will perform a detailed 

analysis of actin fiber orientation, distribution, and size by serial section confocal microscopy 

on Shp-2 N308D hearts stained for F-actin.  To identify whether integrin signaling, Rho 

signaling, or a combination of the two pathways result in the cardiac phenotypes observed in 

Shp-2 N308D embryos, the signaling pathways will be activated via expression of 

constitutively active molecules in the respective pathways.  Hearts of injected embryos will 

be serial sectioned and stained to mark actin fibers and confocal microscopy used to 

determine if activation of either pathway phenocopies the effects of Shp-2 N308D on heart 

development.  Finally, we will determine if inhibition of either pathway can rescue the 

defects in actin muscle fiber orientation and/or the defects in the numbers of actin muscle 

fibers.  Understanding the molecular pathway by which Shp-2 N308D alters actin fiber 
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orientation in the heart can give clues to the range of defects observed in Noonan syndrome 

patients. 

 
SHP-2 N308D and the cardiac cell cycle 

In Chapter 3 we observed that Shp-2 N308D leads to an alteration in cell cycle 

progression and hypothesize that this alteration results in lengthening of the cardiac cell 

cycle.  Therefore to further characterize the role of Shp-2 N308D in cell cycle progression, I 

will assay Shp-2 N308D derived hearts by western blot analysis, for expression of a panel of 

phase specific cell cycle markers that we have previously shown to be expressed in the 

embryonic heart (Goetz et al., 2006).  This data will identify the precise point Shp-2 N308D 

alters the cardiac cell cycle.  In addition, we propose that lengthening of the cardiac cell cycle 

occur cell autonomously.  To test this proposal we will co-inject Shp-2 N308D and a lineage 

tracer into one cell of the two-cell stage embryo allowing us to determine if only the cardiac 

cells receiving Shp-2 N308D have an increased rate of proliferation or whether proliferation 

is also increased in cells not expressing Shp-2 N308D.  If the effect is cell autonomous this 

would imply that activation of SHP-2 directly leads to modulation of genes required for the 

regulation of cell cycle progression.             

Ultimately a goal of this project is to identify direct endogenous SHP-2 and SHP-2 

N308D binding partners in the heart.  We hypothesize that the altered conformation of Shp-2 

N308D allows for promiscuous binding and subsequent dephosphorylation of molecules 

upstream of diverse pathways in the heart (Chen et al., 2006; Fragale et al., 2004; Hof et al., 

1998).  Initiation or inhibition of these signaling pathways eventually results in mis-

regulation of the pathways leading to altered muscle fiber development and cell cycle 

progression in Shp-2 N308D hearts.  To address this hypothesis, we will inject substrate 
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trapping mutants of Shp-2 N308D into the one cell stage Xenopus embryo.  Similar to wild-

type SHP-2 these mutants bind to SHP-2 interacting proteins however, the target proteins are 

unable to disengage from the substrate trapping mutants.  We will then identify the substrate 

trapped proteins through biochemical and molecular methods including immuno-

precipitation, mass spectroscopy, and mapping of binding domains.  Identification of 

endogenous and Shp-2 N308D binding proteins is critical as the list of known SHP-2 binding 

partners is relatively short and can not account for all of SHP-2/ Shp-2 N308D function in the 

heart.   

Finally, we are interested in investigating the precise timing of the effect of Shp-2 

N308D on the cardiac cell cycle and cardiac morphogenesis.  We suspect temporal 

requirements for Shp-2 N308D as preliminary results in Chapter 3 suggest that Shp-2 N308D 

may have more than one function in regards to the cardiac cell cycle.  Thus it is necessary to 

regulate Shp-2 N308D expression in a temporal fashion through the use of inducible N308D-

GR constructs.  From these studies we will determine discrete windows of Shp-2 N308D 

activity in the heart for cell cycle progression, actin regulation, as well as any of the other 

pathways found from the studies mentioned above.  Once we have identified the independent 

and overlapping requirement for Shp-2 N308D we can develop a signaling network of Shp-2 

N308D in the heart and begin to develop the same type of network for endogenous SHP-2. 
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