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ABSTRACT 
 

CINDY M. CHANG: Fluorescence In Situ Hybridization (FISH) and Risk Factors for 
Non-Hodgkin Lymphoma (NHL) Subtypes Defined by t(14;18) Translocations and  

bcl-2 Expression 
(Under the direction of Jane C. Schroeder) 

 
 

In hopes of increasing etiologic specificity of non-Hodgkin lymphoma (NHL), we 

defined NHL tumors by acquired chromosomal translocations involving the immunoglobulin 

heavy chain (any IGH), t(14;18), t(8;14) and BCL6 translocations using fluorescence in situ 

hybridization (FISH) assays of archival paraffin-embedded tumor blocks.  Translocations 

were identified in samples from over 200 unselected NHL cases originally enrolled in the 

National Cancer Institute’s Factors Affecting Rural Men (FARM) study (1981-1984).  We 

re-evaluated reported associations between tobacco exposures and t(14;18)-NHL case-

subtypes that were previously defined based on polymerase chain reaction (PCR) assays.   

We also evaluated bcl-2 protein expression based on immunohistochemistry.  t(14;18)-FISH 

case-subtypes were compared with t(14;18)-PCR case-subtypes by frequency according to 

histologic subtype and bcl-2 status.  Case:control associations were estimated using 

multivariate polytomous logistic regression for t(14;18)-NHL and factors including tobacco 

use, family history of hemolymphatic cancer, and hair dye use.  The expectation-

maximization (EM) algorithm was applied to case:control models to reduce bias due to 

missing case-subtype data.  BCL6 translocations, t(8;14), and other IGH translocations were 

uncommon in the study population.  t(14;18) was identified in 53% of cases, including 39% 

of diffuse large cell lymphomas (26 of 66 cases) and 81% of follicular lymphomas (35 of 43 
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cases).  FISH assays detected almost twice as many t(14;18)-positive follicular lymphomas 

as PCR assays (44%) run on the same samples.  The majority of cases expressed bcl-2, 

including 87% of t(14;18)-positive cases and 58% of t(14;18)-negative cases.  Adjusting for 

age, state, and proxy status, t(14;18)-negative NHL was associated with any tobacco use 

(OR=1.98, 95% CI=1.09-3.59) and cigarette smoking, without evidence of a linear dose-

response with increasing pack-years or intensity of smoking.  In contrast, tobacco and 

cigarette use were not clearly associated with t(14;18)-positive NHL or with bcl-2 case-

subtypes.  Our results support the use of FISH assays of archival samples to identify t(14;18)-

NHL case-subtypes.  The association between t(14;18)-negative NHL and cigarette smoking 

was unexpected given previous evidence of associations between smoking and follicular 

lymphoma (which is largely t(14;18)-positive).  Additional molecular characterization of 

t(14;18)-negative cases may clarify whether the association between tobacco use and 

t(14;18)-negative NHL was causal versus an artifact of chance or bias. 
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CHAPTER 1 

INTRODUCTION 

Non-Hodgkin lymphoma (NHL) is a heterogeneous group of lymphomas involving 

the malignant clonal proliferation of B- (85% of lymphomas) or T-lymphocytes (15%) (1).  

Sixty to 80% of lymphomas occur in the lymph nodes, while the remaining occur outside of 

the lymph nodes or extranodally, most commonly in the bone marrow, spleen, liver and 

gastrointestinal tract.  

According to the International Agency for Research on Cancer (IARC), over 300,000 

new NHL cases occurred in 2002 with a male age-adjusted incidence of 6.1 cases per 

100,000 and a female age-adjusted incidence of 4 cases per 100,000 (2).  In the year 2007, an 

estimated 34,200 new male cases (9.9 cases per 100,000) and 28,990 new female cases (6.4 

per 100,000) accounted for 4.4% of all new cases of cancer occurring in the U.S. (3).  By 

geographic region, North America and Europe have the highest NHL incidences, while Asia 

and Africa have much lower rates (Figure 1.1).  From the 1950s to the 1990s, NHL incidence 

has increased annually by 3-4% in Europe and North America in both sexes and all ages, but 

has stabilized in both males and females in the last 10 years (Figure 1.2a-b) (4,5).  Much of 

the increase has been shown to be independent of changes in reporting, diagnosis, or 

classification of NHL (6).  Although AIDS-associated NHL may have accounted for part of 

the rise of NHL in young men during the 1980s, it does not explain the increase in the elderly 

nor the increasing trends before the AIDS epidemic (6,7).   The increase of NHL is not well 

understood, and risk factors for the majority of cases are still unknown. 
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Classification of NHL has remained a challenge due to its heterogeneous nature, 

though histologic subtypes are increasingly more refined with the incorporation of 

immunophenotypes and other molecular characteristics (8,9).  NHL case-subtypes defined by 

somatic mutations have been suggested to minimize the etiologic heterogeneity of NHL 

outcomes for epidemiologic research (10,11).  Chromosomal translocations occur when 

segments from two different chromosomes are exchanged.  In lymphomas, they often involve 

the juxtaposition of an enhancer, such as the IGH gene promoter on chromosome 14, with an 

oncogene involved with cell proliferation and differentiation.  Overexpression of the 

oncogene as a result of this fusion is believed to play a role in lymphomagenesis (1,8,10).  

This study’s objective is to assess whether NHL defined by molecular characteristics 

including IGH translocations, t(14;18), t(8;14), BCL6 translocations, and bcl-2 expression 

might better address the many questions that remain unanswered in lymphoma etiology. 

 

 

 

 

 

 

 

 



  

Figure 1.1. Age-adjusted NHL incidence in males and females across geographic regions, Globocan 2002 (2) 
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Figure 1.2a. International NHL trends in males around the world between 1958 and 1997 (12) 
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Figure 1.2b. International NHL trends in females around the world between 1958 and 1997 (12) 
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CHAPTER 2 
CRITICAL REVIEW OF THE LITERATURE 

 

A.  Pathologic Classification 

 
By 1982, there were 6 different classification schemes for NHL, including the World 

Health Organization (WHO), Rappaport, Lukes/Collins, Dorfman, British and the Kiel 

classification schemes.  The National Cancer Institute (NCI) devised the Working 

Formulation (WF), providing a unified system that could be used to translate among the 6 

schemes.  The WF separated NHL into 10 morphological categories grouped into 3 broad 

groups based on low, intermediate, and high grades.  Although the WF was quickly adopted 

as a classification scheme in its own right, it did not distinguish between B and T cell 

subtypes, grouped biologically unrelated diseases, separated related diseases, and excluded 

newly recognized lymphomas such as mantle cell lymphomas and marginal zone B-cell 

lymphomas (1-2).     

In 1994, the formulation of the Revised European-American Lymphoma (REAL) 

scheme by the International Lymphoma Study Group (ILSG) departed from a purely 

morphologic approach and emphasizes biologic characteristics.   REAL subtypes were 

defined by immunophenotype (B or T-cell origin) with incorporation of stage of 

differentiation, morphologic features, genotype, etiology, epidemiology, clinical behavior, 

cytogenetics, and molecular characteristics.  In 2001, the new WHO classification was 

introduced with the addition of new entities (e.g. nodal marginal zone B-cell lymphomas), 



  

refinement of some terminology (e.g. follicular center to follicular lymphoma), and the 

merging (e.g. Burkitt-like added to Burkitt lymphoma) and splitting of groups (e.g. anaplastic 

large cell to primary systemic and cutaneous (Table 2.1)) (2).   

In spite of the significant progress, the current WHO classification scheme is 

primarily designed for clinical use rather than for finding NHL risk factors.  The suggestion 

by epidemiologists to divide NHL as finely as possible for reflecting common etiologies is 

supported by examples of lymphoma subtypes with distinct etiology (i.e. endemic Burkitt 

lymphoma and EBV, AIDS-associated NHL, etc.) (3-4).  Since their discovery in the 1970s, 

the presence of nonrandom cytogenetic abnormalities has helped explain the causes of altered 

growth and differentiation of neoplastic cells.  The advent of techniques for detecting 

cytogenetic and molecular genetic abnormalities has provided clearly defined, reproducible 

diagnostic tests that have the ability to verify the neoplastic nature and lineage of a tumor 

independent of clinical and histological characteristics (5).  Although the new WHO 

classification scheme incorporates cytogenetic and molecular findings into subtypes, 

subtyping solely by molecular characteristics may provide further refinements to the current 

classification scheme.   

 

B.  Epidemiologic, Morphologic, Molecular Characteristics of Selected Lymphomas 

 

B.1. Diffuse large B-Cell lymphoma (DLBCL) 

Patients having diffuse large B-Cell lymphoma (DLBCL) may present with large 

tumors in the lymph node or in extranodal sites, most frequently the gastrointestinal tract.  

DLBCL, believed to encompass a heterogeneous group of lymphomas, accounts for 25-40% 
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of the NHL cases in most countries (6).  Most common in men at middle age and elderly 

whites, the median age at diagnosis is 70 years, but the age range is broad (4).  There are 

several subtypes of DLBCL including anaplastic large B cell, which accounts for 25% of 

NHL in children.  Morphologically, DLBCL infiltrates the normal architecture of the lymph 

node or extranodal tissue in a diffuse pattern.  The morphologic variants are distinguished by 

nuclear appearance, the presence of centroblasts, and immunophenotyping (expression of 

various markers and proteins).  DLBCL is characterized by a number of gene 

rearrangements, including translocations involving the BCL2 gene (20-30% of cases), CMYC 

gene (6-16%) and BCL6 gene (10-30%) (7-9). 

 

B.2. Follicular lymphomas (FL) 

Follicular lymphoma (FL) is one of the most common non-Hodgkin lymphomas in 

the U.S. and Europe, accounting for 20-35% of all cases.  Incidence of FL is lower in Asia 

and developing countries (4,6).  In a study of Asian migrants, follicular lymphoma incidence 

was higher in US-born Chinese (2.2 per 100,000) and Japanese (1.0 per 100,000) compared 

to their Asian-born counterparts (0.29 per 100,000 and 0.39 per 100,000, respectively) (10).    

Because such a difference is not seen for other NHL subtypes, this observation suggests that 

environmental factors may play a larger role in follicular lymphoma risk than for other 

subtypes, further making the case for using subtype-specific analyses for finding risk factors.   

FLs are usually found in the lymph nodes, but also occur in the spleen, bone marrow, 

skin and other areas.  Progression to an intermediate-grade DLBCL occurs in 25-60% of 

patients and often involves a secondary genetic alteration, particularly 9p deletions.  

Follicular lymphomas occur more frequently in white males and females (17.4% and 22.2%, 
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respectively) than in black males and females (9.7% and 12.0%, respectively) with an overall 

median age of 59 years (8,11).  The neoplastic cells of FL have a distinctive appearance 

resembling cells in a normal germinal center of lymphoid follicles, and the neoplastic 

follicles are closely packed.  Two types of cells are found in FL: small to medium-sized cells 

with cleaved nuclei and large transformed cells with occasionally undented nuclei.  Grading 

is based on the presence of centroblasts with the greater number of centroblasts per field 

corresponding to a higher grade.  t(14;18) is present in 85-100% of cases, BCL6 

rearrangements in 9-14%, and BCL6 5’ mutations in 40% of cases (7,8,12).   

 

B.3. Small lymphocytic lymphoma/ chronic lymphocytic leukemia (SLL/CLL) 

Small lymphocytic lymphoma (SLL) presents in the lymph nodes, while chronic 

lymphocytic leukemia (CLL) presents in the bone marrow and peripheral blood.   SLL/CLL 

accounts for about 6.7% of non-Hodgkin lymphomas worldwide.  Most patients are older 

than 50 years (median 65 years) and have a male to female ratio of 2:1.  Morphologically, the 

neoplastic cells form a pseudofollicular pattern with larger cells surrounded by smaller cells.  

The main type of cell is a small lymphocyte with clumped chromatin and a round nucleus.  

Up to 80% of cases have genetic abnormalities, including t(14;18) in 1-2% of cases, trisomy 

12 in 20% of cases, deletions at 13;14 in 50%, deletions in p53, and expression of p53 in 

other cases (8-9).   

 

B.4. Mantle cell lymphoma (MCL) 

Mantle cell lymphoma (MCL) usually presents in lymph nodes, but also appears in 

the spleen and bone marrow.  Gastrointestinal involvement accounts for 30% of patients.  
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MCL accounts for 3-10% of NHL cases, occurs in older adults (median age 60 years), and 

has a 2:1 male to female ratio.  Mantle cell lymphoma is more frequent in Switzerland (14%) 

than in other sites (1-8%) (6). Neoplastic cells can have a nodular, diffuse, or mantle zone 

growth pattern.  The cells are small to medium-sized, and the nuclei are slightly irregular.  

t(11;14), the IGH translocation with the CCND1 gene is found in almost 100% of cases by 

FISH, and cyclin D1 overexpression detected by immunohistochemistry is found in 67% of 

MCL (8;13).   

 

B.5. Extranodal marginal zone B-cell lymphoma of mucosa-associated lymphatic tissue 

(MALT) 

Extranodal marginal zone B-cell lymphoma of mucosa-associated lymphatic tissue 

(MALT) lymphomas present most commonly in the gastrointestinal tract (50% of cases), 

particularly in the stomach, small intestine, and colon.  MALT accounts for 7-8% of all B-

cell lymphomas, has a median age at diagnosis of 61 years, and is slightly more common in 

women than in men (male to female ratio 1:1.2).   A subtype of gastric MALT lymphoma 

called immunoproliferative small intestinal disease (IPSID) occurs frequently in the Middle 

East and South Africa.  Patients with MALT often have a history of autoimmune disorders 

and chronic inflammatory disorders, including Sjögren syndrome and Helicobacter pylori 

infection.  Neoplastic cells usually are small to medium-sized with irregular nuclei, dispersed 

chromatin, inconspicuous nucleoli and a large amount of pale cytoplasm.  Chromosome 

abnormalities include trisomy 3 in 60% of cases and t(11;18); however, neither t(14;18) nor 

t(11;14) has been found (8).   
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B.6. Burkitt/Burkitt-like lymphoma (BL/BLL) 

Burkitt lymphoma (BL) is an aggressive B-cell lymphoma that has three main 

subtypes: endemic BL, occurring in equatorial Africa and presenting in the jaw and other 

facial bones in 50% of cases; sporadic BL cases presenting more often in the ileo-coecal 

region (intestinal region); and AIDS-BL presenting in the lymph nodes and the bone marrow.  

Endemic BL is the most common childhood cancer in Africa, with a peak incidence from 

ages 4 to 7 years and a male to female ratio 2:1.  Sporadic BL accounts for 1-2% of all 

lymphomas in the Western world and accounts for 30-50% of childhood lymphomas, with a 

male to female ratio of 2-3:1.  Epstein-Barr virus (EBV)-positive BL is associated with low 

socioeconomic status and EBV infection early in childhood.  The EBV genome has been 

detected in 100% of endemic BL, 25-40% of AIDS-BL, and less than 30% of sporadic BL 

cases (7,8).  “Classical” BL is a morphologic type seen in both endemic and sporadic BL and 

is characterized by a high proliferation rate with many mitotic figures and a “starry sky” 

pattern due to the presence of numerous macrophages that have ingested dead tumor cells.  

Nearly 100% of AIDS-associated BL cases have mutations involving activation of CMYC 

and 50-60% have inactivating mutations of p53 tumor suppressor (14).  Approximately 80% 

of BL cases have rearrangement of the CMYC gene on chromosome 8, involving the IGH 

gene (t(8;14)).  CMYC translocations with genes on the kappa (IGK) and lambda (IGL) light 

chain loci occur in 15% and 5% of BL cases, respectively.  t(14;18) has been reported to 

occur in 0-50% of BL cases (15-18).   
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B.7. Variation in subtypes 

In a descriptive study, the proportion of DLBCL in total NHL cases did not vary 

substantially (25%-36%) across geographic regions, but FL was more common in Omaha, 

Nebraska, United States, Vancouver, Canada, London, England, and Capetown, South Africa 

(28-32%), compared to other areas (8-18%) (6).  Asian countries, including India and 

Thailand, are frequently observed to have lower incidences of FL compared to Western 

countries (19,20).  Mantle cell lymphoma was more frequent in Switzerland (14%,) than in 

other sites (1-8%).  Angiocentric nasal T-/NK-cell tumors are present exclusively in Hong 

Kong (8%) and Lyon, France (2%) (Figure 2.1) (6).  

High-grade NHL tripled in males and doubled in females between 1978 and 1995 in 

the U.S.  During this same time period, DLBCL increased for males by 30-41% and females 

by 19-25% (11).  More recently (1992-2001), DLBCL has declined 0.5% per year, primarily 

in men 25 to 54 years old (11,21).  Whereas FL was on the rise between 1963-1982 and 

1984-1988 particularly in whites and black men, from 1992 to 2001, FL remained stable 

overall, but increased 1.8% per year among the elderly (4,11,21).  From 1992 to 2001, 

incidence of marginal zone, mantle cell, and BL rose between 4% and 10% per year during 

this period; CLL/SLL decreased 2-3% per year in men and 9% in Asian females (21).  The 

different patterns and trends of NHL by subtype and by population are likely to reflect 

different etiologic and host factors, further supporting the need to define subtypes as 

specifically as possible.   
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C.  Chromosomal translocations involved in NHL 

 
The generation of antibody diversity requires a number of recombination events from 

which chromosomal translocations are believed to arise, though the mechanism is not known.  

Supporting this hypothesis are the observations that many translocations involve genes that 

play a role in normal recombination events including the J segments of the immunoglobulin 

heavy chain (IGH) gene (9). 

 

C.1. Generation of antibody diversity 

Immunoglobulins (Ig) are the antigen-binding proteins located on the membrane of 

B-cells and secreted by plasma cells.  These proteins are made up of two long polypeptide 

chains (heavy chains) and two short chains (light chains) that form a “Y” linked by disulfide 

bonds (Figure 2.2).  Functioning as antibodies, they play an important role in adaptive 

immunity responsible for providing lifelong immunity following disease or vaccination.   

Lymphocytes bearing these antigen receptors carry a unique and single specificity.  In other 

words, they recognize only one protein (or other residue) that is usually just one small part of 

a larger molecule.  The interactions that bind the receptor to antigen involve a combination of 

noncovalent forces including hydrogen bonds and electrostatic forces.  Once the antigen is 

recognized and bound, the immune response is elicited and other cells are recruited to 

destroy the antigen.  Because each antibody carries a unique specificity, diversity is needed 

to enable the body’s immune system to fight off a wide range of invading foreign antigens 

(22-23).   

Progenitor B-cells (pro-B cells) interact with cells in the bone marrow environment in 

order to undergo heavy chain gene rearrangements (Figure 2.3).  Three separate gene 
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segments, named V, D, and J, that encode the variable region undergo rearrangement and 

assemble to form a complete variable region sequence.   Productive VDJ joining results in 

expression of the immunoglobulin heavy chain protein in a precursor (pre-B) cell, while 

nonproductive rearrangements result in cell death.  Once the pre-B receptor is assembled 

from the heavy chain protein and a surrogate light chain protein, small pre-B cells arise and 

light-chain rearrangements begin.  Light-chain rearrangements of  the kappa (IGK) and 

lambda (IGL) light chain genes are similar to heavy-chain rearrangements except they occur 

on two different chromosomes and involve joining V and J segments (instead of V, D, J), and 

repeated segments of unused V and J allow for several successive attempts at productive 

rearrangement.  This organization allows the rescue of a pre-B cell if the initial attempt at 

productive rearrangement fails (22,23).   

The assembled light-chain protein and heavy chain protein form a complete 

immunoglobulin M (IgM), one of the 5 main classes of antibodies.  Expression of the IgM on 

the cell membrane defines the B cell as an immature B cell.  Of the 50 million B-cells 

produced per day, only 5 million (10%) leave the bone marrow.  The other 90% are cells 

with non-productive rearrangements or cells that express autoantibodies that undergo 

apoptosis (programmed cell death).  The antigen-dependent phase starts once mature B cells 

leave the bone marrow and circulate in the body between the blood and peripheral lymphoid 

tissues.  Mature B cells that recognize and bind to an antigen become activated, then 

proliferate and differentiate into memory B cells and plasma cells.  Circulating naïve B cells 

that are not activated within a few weeks undergo apoptosis (22,23). 

After a B cell is activated, additional diversity is generated when the B cell undergoes 

somatic hypermutation which introduces a high rate of point mutations, deletions, insertions 
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into the variable region of rearranged heavy and light-chain genes.  B cells with antibodies 

that bind better to the antigen after this process are preferentially selected to mature into 

antibody-secreting plasma cells.  Further somatic recombination involving the C region 

allows isotype or class switching (from IgM to IgG, IgA or IgE) without changing antigen 

specificity (23). 

 

C.2. Chromosomal translocations 

During VDJ rearrangement and heavy chain isotype switching, DNA is broken and 

rejoined to bring distant Ig gene elements together.  This process may result in the exchange 

of genetic material, known as chromosomal translocations.  Because DNA rearrangement is 

restricted to specific stages of B-cell development, translocations are hypothesized to arise 

during the B cell’s pro-B phase, pre-B phase and antigen-activated phase (24).  IGH 

translocations involve the exchange of DNA fragments from the IGH gene on chromosome 

14 with DNA from another chromosome (Figure 2.4).  How these non-Ig genes become 

partners with the IGH gene may be a result of the non-Ig gene and the Ig gene 

rearrangements being transcribed at the same time and the non-Ig gene being in close 

proximity to the rearranging complex.  Genes that are juxtaposed with the IGH gene on 

14q32 may become transcriptionally deregulated by the IGH promoter.   
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C.2.1. t(14;18) 

The most common chromosomal translocation in NHL is t(14;18) which is found in 

85-100% of follicular lymphomas and 20-30% of diffuse large B-cell lymphomas (Table 

2.2).  Almost all breakpoints within the IGH gene cluster on the Jh segment, while on the 

BCL2 gene 50% of breaks are in the major breakpoint region (MBR) and another 25% fall 

within the minor breakpoint region (mcr) (9).  t(14;18) is believed to be an early step in 

lymphomagenesis, in part because non-neoplastic t(14;18)-positive lymphocytes are also 

detected at low levels in 50-80% of healthy individuals (23,24).  Furthermore, the 

observation that the breakpoint on chromosome 14 occurs at the J region adjacent to 

heptamer-nonomer signal sequences (needed for Ig gene rearrangement) suggests t(14;18) 

arises close to the time of Ig gene rearrangement.  The juxtaposition of the BCL2 oncogene 

on 18q21 with the IGH gene on 14q32 results in the overexpression of antiapoptic bcl-2 

protein.  Consequently, the B-cell escapes cell death and becomes immortalized, potentially 

undergoing additional “hits” leading to malignant transformation.   Additionally, bcl-2 

promotes cell-cycle arrest, essentially retarding entry into the cell cycle.  The anti-apoptotic 

and cell-cycle arrest functions of bcl-2 may explain the indolent nature of follicular 

lymphoma (25).  

 

C.2.2. BCL6 translocations 

The second most common lymphoma-associated translocation involves the BCL6 

gene on 3q27 which may be exchanged with a number of partner chromosome loci.  BCL6 

rearrangements occur in 30-40% of diffuse large B-cell lymphomas, 20% of AIDS-associated 

diffuse large B-cell lymphoma and 5-14% of follicular lymphomas (Table 2.2) (26).  The 
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mechanism of how bcl-6 overexpression leads to transformation is not known (9).  However, 

BCL6 encodes a zinc-finger transcription factor implicated in germinal center B cell 

differentiation, antibody affinity maturation and T helper cell mediated responses.  The 

protein is normally expressed by germinal center B cells, but down-regulated in postgerminal 

center formation.  The dysregulation of bcl-6 due to translocation is believed to play a role in 

the malignant transformation of germinal center-derived B cells (25).   

 

C.2.3. t(8;14) 

The CMYC gene resides on 8q24.  The function of the c-myc protein is not well 

understood, but it has been observed to undergo a burst of transcription when a cell 

transitions from a resting state to a presynthetic state (G0 to G1), committing the cell to a 

program of DNA synthesis and mitosis.  Overexpression of c-myc may keep the B cell in a 

proliferative cycling mode (24).  t(8;14) occurs in 80-85% of BL cases (Table 2.2).  

Additionally, 65% of BL have demonstrated point mutations in the C-MYC gene (25).  

Endemic BL occurs primarily in young children in Africa and is associated with EBV.  

Sporadic BL occurs much less frequently in the US and is not EBV-associated.   

The locus where the piece of DNA carrying the CMYC gene breaks off of 

chromosome 8 differs between endemic BL and sporadic BL.  Chromosome 8 breakpoints 

for endemic BL generally occur upstream of the CMYC gene, while they occur within or 

close to CMYC in sporadic BL.  A study of the molecular epidemiology of BL in different 

regions of the world found that African tumors had breakpoints far from the 5’ end of 

chromosome 8, while US tumors had breakpoints occurring at the first exon of chromosome 

8.  South American tumors suggested a third type of BL with a breakpoint immediate to the 
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5’ end of chromosome 8 (26,27).  Breakpoints in chromosome 14 also varied between 

endemic and sporadic BL: while breakpoints occurred in the J or D regions of the IGH gene 

in eBL, they occurred in the IGH switch C regions for sBL.  Because of these breakpoint 

locations, eBL is likely to arise in the pro-B cell before DJ joining, while sBL may arise later 

in development during IGH class switching (28).  The geographical variation in the 

occurrence of BL and chromosomal breakpoint patterns suggest the role of environmental 

factors in the formation of t(8;14) and development of BL. 

 

D. bcl-2 Expression 

bcl-2 is a 25 kilodalton protein that enables B-cells to survive in absence of growth 

factors (29,30).  Localized within the cell cytoplasm, bcl-2 is quiescent in resting B cells, 

upregulated in proliferating B cells but is down regulated in differentiating B cells (29,31).  

When bcl-2 is inappropriately expressed in resting B cells, their survival is prolonged, 

increasing chances of acquiring secondary genetic changes that could progress to lymphoma.  

Although t(14;18) translocation is an established mechanism leading to bcl-2 expression, 

studies show that many bcl-2-positive lymphomas are t(14;18)-negative, suggesting that 

alternative mechanisms may also cause bcl-2 expression (30).  A recent study detected bcl-2 

in 87% of 45 lymphoma cases that were t(14;18)-negative among an unselected sample of 

lymphomas.  Additionally, they found no association between histologic subtype and level of 

bcl-2 expression (31).   

Among alternative deregulating mechanisms for bcl-2 that have been proposed, gene 

amplification of BCL2 has been explored.  A study found a correlation between bcl-2 gene 

amplification and bcl-2 expression with 6 out of 7 DLBCL cases with extra bcl-2 signals also 
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having bcl-2 expression.  However, 20% of the cases with strong bcl-2 expression had 

neither bcl-2 amplification nor t(14;18), leaving the possibility of other mechanisms (32).  

Viral infections including EBV and cytomegalovirus, hypomethylation of the 5’ end of the 

bcl-2 gene, and cytokine effects have all been proposed to cause bcl-2 expression (31). 

The new WHO classification scheme for defining NHL subtypes is highly evolved, 

encompassing a wide variety of features including morphologic, immunophenotypic, 

cytogenetic as well as etiologic data (e.g. H. pylori and MALT).  In spite of the advances in 

classification, the fact that common translocations are associated with several subtypes (i.e. 

t(14;18) in FL, DLBCL, CLL/SLL, BL) raises the possibility that etiologically similar 

lymphomas are being separated, while etiologically different lymphomas are being grouped, 

and as a result, associations with risk factors may be diluted.   Defining subtypes by common 

translocations and other molecular characteristics could provide an alternative way of 

examining NHL patterns and may provide further refinements to the current classification 

scheme.  

  

E.  Risk Factors for Non-Hodgkin Lymphoma 

E.1.Age, race, sex and education 

Age is the most established NHL risk factor.  Incidence of NHL increases 

exponentially with age, which may be associated with a weakened immune system and 

reflect the accumulation of exposures over a long time (Figure 2.5).  NHL subtypes occur 

more frequently in men than women (i.e. FL, SLL/CLL, MCL).  Between 1973 and 2002 in 

the U.S., NHL incidence in white and black males increased at higher rates than for white 

and black females (Figure 2.6).  The highest rates of NHL occur in geographic regions (U.S., 
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Canada, Australia/New Zealand, and Europe) that are predominantly Caucasian (see Chapter 

I).  According to the Surveillance, Epidemiology, and End Results (SEER) registry between 

1998 and 2002, white males and females had the highest incidence of NHL of all other 

groups within their respective sexes (Table 2.3).  The sex and race differences are 

hypothesized to be related to biological differences and exposure differences (i.e. occupation) 

(33,34).  NHL has been positively associated with income and years of education (35), but 

studies have been conflicting (36). 

 

E.2. Immune suppression 

Immune suppression, especially in AIDS and transplant patients, is strongly 

associated with NHL.  Both solid organ and stem cell transplants are associated with NHL, 

though it varies by type of transplant (37,38).  A Swedish cohort study found that patients 

receiving organ transplants other than kidney, including heart, lung, liver and pancreas, have 

a risk of NHL eight times that of kidney transplant recipients (RR=8.4, 95% CI=4.3-16) (37). 

Uncontrolled proliferation of EBV infected B-cells resulting from medically induced immune 

suppression may explain the etiology in many cases of post-transplant lymphomas.  Chronic 

antigenic stimulation by the transplanted organ may also contribute to pathogenesis given 

that the primary lymphoma occurs at the site of the transplant in many cases (39,40).  

In a cohort of AIDS patients,  the risk of NHL in 366,034 patients 4 to 27 months 

after developing AIDS was 73 times the expected risk in the general population (RR=72.8, 

95% CI=70.4-75.3) (41).  Factors associated with NHL in AIDS patients include duration of 

immune suppression and degree of B-cell stimulation due to HIV and high serum globulin 

(4).  AIDS-related NHL is a heterogeneous group of malignancies, consisting primarily of 
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Burkitt lymphomas (BL) (50%), diffuse large B-cell lymphoma with centroblastic or 

immunoblastic features (35%), and lymphomas of the central nervous system (15%).  EBV 

association with NHL also varies among the subtypes, with EBV-positive neoplastic cells 

present in essentially all central nervous system (CNS) lymphomas and at least half of other 

AIDS-associated NHL subtypes.  Similar to medically-induced immune suppression for 

transplant patients, HIV-related immune suppression promotes development of EBV-infected 

and immortalized B-cell clones that are susceptible to further genetic damage leading to 

malignant transformation (42).  The variation in subtypes for both post-transplant and AIDS-

associated lymphomas is likely to reflect different pathogenetic mechanisms, and 

underscores the value of treating these subtypes as distinct diseases rather than as one entity. 

 

E.3. Genetic factors 

Lymphomas account for approximately 50% of the tumors that develop in people 

with primary immune deficiencies due to inherited genetic defects.  The risk of NHL in 

Wiskott-Aldrich syndrome and Ataxia-telangiectasia (AT) patients is at least 15 times or 

higher than the baseline risk in people without these conditions (43).  Defective immune 

regulation after B- and T-cell activation has been observed to foster a favorable environment 

for lymphoma development in these patients.  As with AIDS and organ transplant patients, 

EBV is believed to play an important role in the development of NHL in patients with 

primary immune deficiencies (44).   

Families with a history of multiple cases of NHL more frequently have immune 

function abnormalities such as ataxia-telangiectasia and X-linked recessive immune 

deficiency disorder than families without history of NHL (45).  Clinical studies have found 

 22



  

depressed levels of immunoglobulins and cutaneous anergy, impaired in vitro lymphocytic 

responses to phytohemagglutinin, and other markers of immune dysfunction in individuals 

with family history of hemolymphatic (HLP) cancer (44).  The association between NHL and 

family history of hematopoeitic cancer is consistent with a role of early environmental 

exposures or an association with inherited genetic variation such as X-linked or recessive 

genes.  In the Scandinavian Lymphoma Etiology (SCALE) study, a population-based case-

control study, having a first-degree relative diagnosed with NHL was positively associated 

with any NHL (OR=2.2, 95% CI=1.4-3.5) (46).  Among Iowa and Minnesota farmers, having 

a sibling with a hemolymphatic cancer was associated with NHL (OR=2.7, 95% CI=1.5-5.1) 

and some subtypes including FL (OR=3.2, 95% CI=1.3-7.6), DLCL (OR=2.3, 95% CI=0.9-

5.7) and SLL (OR=5.2, 95% CI=1.9-13.6) (47).  The InterLymph study group found an 

increased risk of NHL (10,211 cases) associated with individuals who report having a first-

degree relative with NHL, Hodgkin lymphoma (HL), or leukemia.  Having a brother with 

NHL was strongly associated with NHL (OR=2.8, 95% CI=1.6-4.8) which suggests that 

shared environmental and genetic factors among male relatives may be important (48). 

 

E.4. Infections 

E.4.1. Epstein-Barr Virus 

Epstein-Barr virus (EBV), a member of the herpes virus family, is a prevalent 

infection in over 95% of adults worldwide that is transmitted person to person through the 

saliva or breast milk.  In developing countries infants are often infected in the first year of 

life.  In developed countries, primary infection usually is delayed to young adulthood (49-

51).  The clinical manifestation of EBV infection depends primarily on age at infection.  
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Young children (under 5 years) usually experience no symptoms when infected.  For 

adolescents and young adults, some infections produce symptoms similar to those of a cold 

or other mild viral illness, while about half develop infectious mononucleosis (IM) (52).  

EBV establishes a lifelong asymptomatic infection, usually in a latent or nonreplicating form 

in resting memory B cells.  Infected B cells that continue to proliferate would normally be 

destroyed by cytotoxic T cells (CTL) with specificity for B cells expressing EBV antigens, 

but in the immune deficient host, inadequate CTL response may lead to uncontrolled 

proliferation of EBV-infected B cells (53,54). 

EBV DNA has been found in almost 100% of endemic BL, 50% of AIDS-associated 

BL cases, and 20% of sporadic BL cases (51).  The widespread presence of EBV in the 

world’s population and its unchanging prevalence suggest that EBV plays a necessary but not 

sufficient role in lymphomagenesis.  In equatorial Africa, children infected with EBV may be 

susceptible to BL due to immune suppressive and chronic antigen stimulating effects of 

malaria, in combination with the B cell transforming properties of Euphorbia tirucalli plants 

commonly used for medicinal purposes (54).  A major clue supporting the role of 

environmental factors is the variation of t(8;14) breakpoint patterns in chromosome 8 that 

correspond with BL subtypes in different regions of the world.  It is conceivable that each 

environment or geographic region would offer a different set of cofactors to act with EBV to 

directly or indirectly produce a certain type of t(8;14) (49-51).   

 

E.4.2. Human T-lymphotropic virus-1 (HTLV-1) 

Human T-lymphotropic virus-1 (HTLV-1) infection is endemic in Japan, the 

Carribean, central Africa, parts of South America, Melanesia, Papua New Guinea, and the 
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Solomon Islands, with about 15-20 million carriers worldwide (55).  HTLV-1 was identified 

as a cause of adult T-helper cell lymphoma (ATL) in 1978.  In some cases, HTLV-1 infection 

stimulates polyclonal expansion of infected T-helper cells.  Infected cells escaping immune 

surveillance and undergoing monoclonal expansion may be at increased risk of progression 

to malignancy.  The lifetime risk of developing ATL among adult HTLV-1 carriers in 

southwest Japan (where HTLV-1 seroprevalence is 16.2% in adults) is 6.6% in men and 

2.1% in women.  However, because of its limited geographical distribution, low 

transmission, and stable presence, HTLV-1 is not believed to contribute to the increased 

incidence of NHL worldwide (51,56). 

 

E.4.3. H. pylori 

Helicobacter pylori is a gastric pathogen that causes chronic gastritis.  It also is 

believed to play a role in some gastric lymphomas, specifically MALT (mucous-associated 

lymphoid tissue) lymphoma.  Chronic gastric inflammation has been shown to lead to the 

accumulation of lymphocytes in the submucosa, and H. pylori infection helps establish an 

environment in which cell proliferation and oxidative damage of epithelial and lymphopoetic 

cells may occur (4).  Strong associations between H. pylori seropositivity and gastric 

lymphoma have been found, with a risk in H. pylori-positive individuals that is up to 6 times 

as high as the risk in the general population.  Additionally, clinical studies have reported that 

antibiotic treatment of H. pylori leads to regression of early lymphoma lesions in 60-92% 

cases, possibly due to decreased chronic inflammation and cell proliferation (4,51,57). 

 

E.4.4. Hepatitis C Virus (HCV) 
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Hepatits C virus (HCV) causes liver disease and is involved in several extrahepatic 

disorders.  HCV prevalence ranges from 1-2% in most Western countries to more than 10% 

in Egypt, Italy, South Korea and parts of Japan.  The geographical variation in HCV may 

explain the discrepancies found in a recent review of US and international studies in which 

HCV-positive individuals had 2 to 4 times the risk of NHL of HCV-negative individuals 

(58).  An Italian hospital-based study of 400 NHL cases and 396 controls found that HCV 

was strongly associated with B-NHL (OR = 3.1, 95% CI=1.8-5.2) and many NHL subtypes 

(59).  A SEER study of 813 cases and 684 population-controls found that HCV was 

associated with NHL overall (OR=1.89, 95% CI=1.00-4.00) and with follicular lymphoma 

(OR=2.46, 95% CI=1.01-5.81) (60).  

The role of HCV in lymphomagenesis is likely to be indirect because HCV is an 

RNA virus and it cannot integrate into host cell DNA.  Possible mechanisms are chronic 

antigenic stimulation of B-cells by HCV, or neoplastic transformation secondary to the 

activation of antiapoptotic pathways within HCV-infected B-cells (60).  A “triple 

association” for HCV, autoimmune disease and NHL has been observed in at least one 

clinical study, suggesting the two may act as cofactors in lymphomagenesis (61).   Antiviral 

treatment in patients having both HCV and t(14;18)-positive cells reportedly eliminated the 

presence of t(14;18) in the peripheral blood in 50% (15/30) of those responding to therapy, 

while t(14;18) persisted in nonresponders and the controls (62).    

 

E.4.5 Hepatitis B virus (HBV) 

Hepatitis B virus (HBV) is responsible for many cases of chronic hepatitis, cirrhosis, 

and liver cancer in Asia and Africa.  A South Korea case-control study found a relative 
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increase in B-cell NHL in HBV-positive compared with HBV-negative individuals 

(OR=3.30, 95% CI=1.69-6.45).  Possible mechanisms include a direct immune suppressive 

effect of HBV infection, chronic antigenic stimulation, and a causal effect of some other 

unmeasured virus associated with HBV due to similar routes of transmission (63).   

 

E.5. Medical factors  

E.5.1. Vaccination 

In at least two studies, Bacillus Calmette-Guerin (BCG), a tuberculosis (TB) vaccine 

derived from Mycobacterium bovis widely used in high-prevalence countries, has been 

weakly associated with an increased risk of NHL (64-66).  Because BCG is primarily 

administered to children in developing countries outside the US, factors associated with 

living abroad may confound the association between increased risk of BCG vaccination and 

NHL.   

Many vaccinations have been inversely associated with NHL (64,66-67).  NHL has 

been inversely associated with vaccines for cholera, yellow fever, and tetanus (66,67).  A 

Bay Area population-based case-control study found inverse associations between various 

vaccines and NHL subtypes: hepatitis and DLBCL (OR=0.70, 95% CI=0.50-0.98), 

diphtheria-pertussis-tetanus (DPT) and diffuse mixed small cleaved and large-cell (OR=0.44, 

95% CI=0.26-0.74), and measles and diffuse small cleaved-cell (OR=0.52, 95% CI=0.26-

1.0).  Additionally, five or more vaccinations were inversely associated with DLBCL 

(OR=0.65, 95% CI=0.52-0.82) (64).  The association between vaccine history and NHL is 

unclear and may be due to other unmeasured factors. 
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E.5.2. Blood Transfusions 

Transfusion may increase NHL risk by causing immune suppression, transmission of 

viruses, or engraftment of lymphocytes from a donor with subclinical NHL (68,69).  In spite 

of strict regulation by the Food and Drug Administration (FDA) and other organizations, 

blood transfusions still pose risks, such as allergic reactions, and bacterial and viral infections 

(52).  Although initial studies suggested an elevated risk of NHL in patients receiving blood 

transfusions (68,70), recent studies have found no association (69,71).  Inconsistent findings 

across studies may be due to patient populations differing in their reasons for blood 

transfusions and in their treatment regimens, and other unaccounted viruses (e.g. HCV); 

recent negative findings may also be a result of improved screening (69).   

 

E.5.3. Infectious Diseases 

Reported history of infectious diseases associated with NHL in some studies include 

scarlet fever (71,72), tuberculosis, kidney infections and chronic bronchitis (61,62,67,68), 

history of infectious mononucleosis (67,72,74), malaria (67,74), measles (72), and recent 

history of herpes zoster (67,73), but results have been inconclusive because of imprecise and 

inconsistent findings.   

 

E.5.4. Autoimmune and chronic inflammatory disorders 

Rheumatoid arthritis, primary Sjögren syndrome, systemic lupus erythematosus, and 

celiac disease are all autoimmune diseases characterized by B-cell proliferation and 

autoantibody production and have been consistently linked with NHL (52,71,75).  In a 

Swedish population-based case-control study, history of autoimmune conditions was 
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associated with NHL overall: rheumatoid arthritis (OR=1.5, 95% CI=1.1-1.9), primary 

Sjögren syndrome (OR=6.1, 95% CI= 1.4-27), systemic lupus erythematosus (OR=4.6, 95% 

CI=1.0-22), and celiac disease (OR=2.1, 95% CI=1.0-4.8) (75).  Among Connecticut women, 

a history of autoimmune disorders was associated with NHL overall (OR=2.2, 95% CI=1.3-

3.7), FL (OR=3.1, 95% CI=1.5-6.5), and DLBCL (OR=2.1, 95% CI=1.0-4.3) (71).   

 

E.5.5. Chronic disease 

Anemia has been weakly associated with NHL in at least 2 studies (66,71).  Anemia, 

caused by nutrient deficiencies, blood loss, chronic disease, and medical treatments, may be 

linked to NHL due to its underlying causes, associated treatments, or stimulation of the bone 

marrow due to blood loss.   

A history of cancer is also positively associated with NHL (66,76).  People reporting 

a history of cancer might all have underlying immune dysfunction that would predispose 

them to NHL.  Alternatively, history of cancer may act as a marker for an unmeasured 

exposure associated with NHL, including chemo- or radiation therapy, or high doses of UV 

radiation among whites who develop skin cancer. 

 

E.5.6. Allergic conditions  

In a Los Angeles study, allergies to nuts and berries, allergy to insect bites, eczema 

were inversely associated with NHL (66).  A Bay Area study reported associations between 

plant allergies and NHL subtypes including SLL (OR=0.57, 95% CI=0.36-0.92) and DLBCL 

(OR=0.72, 95% CI=0.55-0.94).  Allergies to animal dander was also inversely associated 
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with DLBCL (OR=0.40, 95% CI=0.21-0.73).  One possible explanation is that allergies 

indicate a hyperactive immune system (64).   

 

E.5.7. Common medications 

The exponential growth in antibiotic production between the 1940s and 1970s 

paralleled the rapid increase in NHL incidence.  Sulfonamides and other antibiotics have 

been associated with NHL, but their effects are difficult to separate from the effects of 

underlying infections, chronic inflammation, impaired immune function or smoking.   

Similarly, cimetidine and other histamine-2 receptor antagonists, used to treat ulcers, are 

inconsistently associated with NHL and may be markers for chronic underlying H. pylori 

infection (64,77-78). 

Among a cohort of Iowa women NHL was associated with aspirin use alone 

(OR=2.31, 95% CI=1.04-5.15), NSAID use alone (OR=3.39, 95% CI=1.38-8.32) and 

combined NSAID and aspirin use (OR=2.82, 95% CI=1.24-6.39).  However, other studies 

including both men and women have found an inverse association between NHL and 

NSAIDs (64,71).  NSAIDs have been inversely associated with other cancers including 

colorectal.  NSAIDs-mediated inhibition of Cox-2, which normally promotes cell growth and 

differentiation, may induce apoptosis of cancer cells (64).  On the other hand, NSAIDs may 

increase risk of NHL by interfering with NF-κB function, important for developing immune 

response (79).  The association between NHL and NSAIDs may be confounded by their 

indication, such as rheumatoid arthritis (71,75). 

 

 

 30



  

E.6. Environmental / occupational exposure 

E.6.1. Occupational exposure 

NHL has been associated with occupations in agriculture, forestry, fishing, and 

construction industries, crop production, metal-working with machinery and equipment, 

telecommunications, teaching, farming, welding, soldering, building caretakers, clerks and, 

working in printing and publishing industry, hairdressers, textile workers (80-85).  Exposures 

to pesticides, herbicides, fertilizers, fuels and engine exhausts, organic and inorganic dusts, 

metals, organic solvents, and magnetic fields may mediate the association between 

occupation and NHL (80,83,84,86).  Organic solvents have been shown to reduce B and T 

cell function and numbers, possibly playing a role in lymphomagenesis through immune 

suppression, but their associations with NHL have been inconsistent (33,87).  

 

E.6.2. Pesticides 

Compared to the general population, farmers and other farm workers have an elevated 

cancer incidence in the lips, skin, stomach, prostate, brain and testis (88).  The link between 

farming and NHL is consistent with an intermediate role played by pesticides, chronic 

antigenic stimulation, or infectious microorganisms.   Exposure to pesticides in farmers and 

the general population has been increasing since the 1940s.   Agricultural exposures 

associated with NHL include 2,4-D, a phenoxyacetic acid herbicide, organophospate 

pesticides, fumigants methyl bromide, farm animals, type of farming, orchard work, and the 

use of mineral-, cutting-, or lubricating oils (88-91). 

Associations between pesticides and t(14;18) have been observed in two population-

based case-control studies.  Among Iowa and Minnesota men, t(14;18)-positive NHL (n=68) 
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was associated with exposure to several insecticides including lindane (OR=2.3, 95% 

CI=1.3-3.9), dieldrin (OR=3.7, 95% CI=1.9-7.0), and toxaphene (OR=3.0, 95% CI=1.5-6.1) 

and the fungicide phthalimides (OR=2.9, 95% CI=1.1-7.5), while t(14;18)-negative NHL 

(n=114) was not associated (92).  The Nebraska study of white men and women also found 

subtype-specific associations between t(14;18)-positive NHL (n=65)  and various 

insecticides, herbicides, and fumigants, but none were associated with t(14;18)-negative 

NHL (n=107).  Longer duration of use of insecticides and herbicides was associated with 

t(14;18)-positive NHL as well (93).  Both studies support the use of t(14;18)-NHL case-

subtypes in etiologic research, but need further confirmation. 

 

E.6.3. Sunlight 

The hypothesis that sunlight increased the risk of NHL has been explored with mixed 

results.  A Swedish report found lower south residential latitude (increased sunlight 

exposure) to be weakly associated with NHL in men and women (men, OR=1.21, 95% 

CI=1.08-1.35 and women, OR=1.26, 95% CI=1.08-1.40), but no association between 

occupational sun exposure and NHL was found (94).  Other studies have found null or 

inverse associations with sunlight and ultraviolet radiation exposure (34,95-97).  The 

conflicting findings on UV radiation may reflect bias and chance with different exposure and 

outcome definitions and not adjusting for other confounding factors including amount of time 

spent outdoors.  UV radiation has been shown to cause DNA damage and immune 

suppression in both humans and animals in lab studies (98).  Additionally, UVB (measured 

from sunlight records) was reported to have a positive dose-response with t(14;18) frequency 

in peripheral lymphocytes collected from a people during the summer months in the United 
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Kingdom (high >125 Jm-2 vs. low <125 Jm-2 UVB deviation), raising the possibility that 

sunlight plays a role in increasing the number of t(14;18)-positive B-cells (99). 

 

E.7. Lifestyle factors 

E.7.1. Hair dye 

The weak association between hair dye use and NHL varies with duration, type of 

color, and NHL subtype (100-105).  A recent meta-analysis pooled estimates from 12 cases-

control studies and 2 cohort studies and found a moderately elevated risk of NHL associated 

with any hair dye use (random-effects RR=1.23, 95% CI=1.07-1.42) (105).  The use of hair 

dye has increased dramatically since the 1940s, paralleling the increase of NHL, and  

laboratory studies have shown that hair dye components are strongly mutagenic after 

oxidization.  Nonetheless, the potential public health significance of hair dyes is believed to 

be small.  

 

E.7.2. Tobacco use 

Most studies on smoking and other tobacco use and NHL have found a weak 

association that varied across NHL subtypes and type of tobacco product (Table 2.4).  In the 

InterLymph study, ever smoking was weakly associated with NHL (OR=1.07, 95% CI=1.00-

1.15).  Associations with follicular lymphoma were slightly stronger than those for NHL 

overall which is supported by a number of studies (106-111).  The association between NHL 

and smokeless tobacco including snuff and chewing tobacco has also been found in men 

(103,112).   
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Tobacco smoke contains many carcinogenic compounds that may increase risk of 

NHL through a direct or indirect effect on lymphocytes.  Two studies suggesting that 

smoking correlates with the number of t(14;18)-positive lymphocytes in the peripheral blood 

and bone marrow of healthy individuals and patients with non-lymphoid diseases support the 

reported associations between smoking and follicular lymphomas which are almost always 

t(14;18)-positive (113-114).  Mutagens in tobacco smoke may cause the translocations to 

occur, leading to immortalized lymphocytes that become more likely to undergo malignant 

transformation.  Smoking could also increase the number of lymphocytes carrying t(14;18) 

through chronic antigenic stimulation.  In the two population-based studies of t(14;18)-NHL, 

smoking was not positively associated with t(14;18)-positive NHL, but misclassification may 

have occurred (103,115). 

Another pathway through which smoking may increase risk of lymphomas is through 

immune suppression or impairment of the body’s defenses.  Smoking is associated with 

immunologic alterations including alterations in T cell subsets, elevated white blood cell 

counts and lower proportions of natural killer cells.  Natural killer cells are likely to play an 

important role in anti-tumor activity, and studies suggest that they are impaired in smokers.  

At least two studies found that natural killer cell count and activity were lower in peripheral 

blood lymphoid cells of smokers compared with never smokers (116-117). 

Evidence of the association between risk of NHL and smoking remains unclear.  No 

positive dose-response has been established, and point estimates for relative risk are often 

imprecise.  The consistent association between follicular lymphoma and smoking warrants 

further study, especially for NHL molecular subtype-specific associations.  
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E.7.3. Alcohol intake 

The InterLymph study reported inverse associations between drinking and NHL 

overall (OR=0.83, 95% CI=0.76-0.89), and some subtypes, particularly FL (OR=0.84, 95% 

CI=0.73-0.97), DLBCL (OR=0.64, 95% CI=0.53=0.77), and BL (OR=0.29, 95% CI=0.13-

0.64) (118).  Other studies have found no association between drinking and any of the NHL 

subtypes (119-120).  The protective effect of light to moderate alcohol use may be due to 

immunomodulatory effects that improve cellular and humoral immune responses (118). 

Other studies found an inverse association between NHL and wine drinking.  A 

prospective study of post-menopausal women found an inverse association between NHL 

and red wine, (OR=0.85, 95% CI=0.51-1.40 for 2 or more servings of red wine) and white 

wine (higher than median intake, OR=0.35, 95% CI=0.13-0.96) (121).  In another study, men 

32 to 60 years old, drinking less than 1 glass of wine a day had a decreased risk of NHL 

(OR=0.5, 95% CI=0.2-0.9), though no association was found for beer and spirits (122).  

Wine drinking may decrease risk of NHL through the effects of resveratrol, a phytoestrogen 

produced by grapes and reported to have inhibitory effect on antiapoptotic bcl-2 protein 

(121-122).  The use of NHL case-subtypes defined by bcl-2 expression may elucidate this 

inverse association between wine drinking and NHL. 

 

E.7.4. Dietary factors 

A high intake of meat and high intake of saturated fats were associated with NHL in 

two case-control studies (123-124).  The role of dietary meat in lymphomagenesis has been 

hypothesized to involve the chronic hyperstimulation of the immune system, mutagenic 

preservatives in processed meats that contain precursors to N-nitroso compounds, and 
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polycyclic aromatic hydrocarbons produced when meat is fried or grilled (123).  Fat has been 

hypothesized to hyperstimulate the immune system through its effects on cell membrane 

structure and function, while fibers have been proposed to affect dilution, absorption, and /or 

breakdown of fat and animal protein in the gut by modifying the gut microflora composition 

(124).  Dairy, eggs and bread have been found to be associated with elevated NHL risk (123-

125).  Pasta, bread and rice all contain a high amount of sugars and carbohydrates that could 

trigger insulin secretion in which high levels have been linked to several cancers in past 

studies.  Inconsistent findings may be due to chance associations or reflect differences in fat 

or cooking among populations. 

Similar to other nutrition and cancer studies, NHL is inversely associated with the 

high consumption of fruits and vegetables including carrots, broccoli, green vegetables, citrus 

fruits, tomatoes, squash, cabbage, cauliflower, onions, leeks, salad, citrus fruits, vitamin C, 

multivitamins, and dietary fiber (124-126).  Conversely, low intake of vitamin C and 

carotene was positively associated with NHL in one study, though the association was 

restricted to those with a family history of cancer (125).   

 

E.7.5. Anthropometric factors 

Several studies have supported an association between body mass index (BMI) and 

NHL overall or subtypes (127-129).  However, a large Swedish cohort study of 330,000 

construction workers found no association between NHL and high BMI (≥30) in men or 

women.  Results from animal studies suggest that body mass may affect cell proliferation and 

apoptosis.  Impaired immune function and nutritional factors are some other proposed 

mechanisms (127,130).  Diabetics who are often obese may be susceptible to developing 
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NHL through impairments of their immune system, metabolic alterations and high levels of 

insulin which stimulate cell growth through the insulin receptor or insulin-like growth factor 

I receptor.  Among a cohort of Iowa women, history of adult-onset diabetes (age-adjusted 

RR=2.18, 95% CI=1.22-3.90) was positively associated with NHL (76).  In a large 

population-based Canadian case-control study, the highest quartile of total recreational 

physical activity compared with the lowest quartile was inversely associated with NHL in 

men and women (OR=0.79, 95% CI=0.59-1.05 and OR=0.59, 95% CI=0.42-0.81, 

respectively).  Possible mechanisms for physical activity are enhanced immune function 

resulting in higher clearance of tumor cells, improved antioxidant defense systems, increased 

insulin sensitivity, decreased insulin and insulin-like growth factors (128).   

 

E.8. Summary of risk factors 

In summary, the risk factors for NHL represent some common themes, each of which 

the establishment and growth of a malignant cell is facilitated: 1) an underlying immune 

suppressive state whether congenital (e.g. AT) or acquired (HIV, transplant recipients) 2) 

chronic antigenic stimulation due to infection (e.g. H pylori) or other agents (e.g. smoking) 

and 3) possible mutagenic effects of an agent (e.g. smoking, chemicals and viruses) (51).  

Our inability to identify these risk factors consistently may be due, in part, to grouping 

outcomes that may be unrelated etiologically.  Equipped with molecular biomarkers of early 

or late events in lymphomagenesis defining the outcome, we may find more risk factors and 

provide further refinements to the current WHO classification scheme.   



  

Table 2.1. Comparison of 3 recent classification systems for selected NHL subtypes (2,8) 
 
 
 
New World Health Organization 
(WHO) Classification, 2001 

 
Revised European-American Lymphoma 
(REAL) Classification, 1994 

  
Working Formulation (WF) for NHL, 
1981 

B-chronic lymphocytic 
leukemia/small lymphocytic 
lymphoma (CLL/SLL) 

 B-cell chronic lymphcytic leukaemia 
 
 

 Small lymphocytic, consistent with 
CLL 
 

Mantle cell lymphoma  Mantle cell lymphoma 
 

 Malignant lymphoma, diffuse, small 
cleaved cell type 

Follicular lymphoma  Follicle centre lymphoma, follicular 
 

 Follicular small cleaved, mixed, 
large, or small non-cleaved cell 

Extranodal marginal zone B-cell 
lymphoma of MALT type 

 Marginal zone B-cell lymphoma 
 
 

 Small lymphocytic, 
lympplasmacytoid, diffuse small 
cleaved cell 

Nodal marginal zone B-cell 
lymphoma 

 Marginal zone B-cell lymphoma 
 
 
 

 Small lympocytic, plasmacytoid, 
follicular or diffuse small cleaved 
cell, follicular or diffuse mixed small 
and large cell 

Splenic marginal zone B-cell 
lymphoma 

 Splenic marginal zone B-cell lymphoma 
 

 Small lymphocytic lymphoma 
 

Diffuse large B-cell lymphoma  Diffuse large B-cell lymphoma 
 
 

 Diffuse large cell, large cell 
immunoblastic, diffuse mixed small 
and large cell 

Burkitt/Burkitt-like lymphoma  Burkitt lymphoma; high-grade B-cell 
lymphoma, Burkitt-like (provisional 
entity) 

 Small non-cleaved cell , Burkitt type 
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Figure 2.1. NHL REAL subtypes by geographic region (6) 
 
 



  

Figure 2.2. Antibody structure and binding sites (23) 

 
Figure 2.3. B-cell development in the bone marrow and peripheral lymphoid organs (22,23) 

 

Immature
B cell 

Y 

Y 
Memory B cell

Y 

Y

YY

In periphery 

In bone 

t(3;14) 
t(8;14) 

t(14;18) 

Activated B cell

Plasma cell 

Mature B cell 

Pre-B cell
Pro-B cell

Lymphoid 
cell 

 

 40



  

Figure 2.4. Illustration of t(8;14) translocation (adapted from Janeway 2001, 19) 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
Table 2.2. NHL translocations and associated World Health Organization (WHO) subtypes* 
Translocation NHL Subtype Frequency 
t(14;18) Follicular 

Diffuse Large B Cell 
CLL/SLL 

80-90% 
20-30% 
2% 

BCL6 translocations Diffuse Large B Cell 
Follicular 

27% 
5-14% 

t(8;14) Burkitt  
Diffuse Large B Cell 

80-100% 
6-16% 

*Vega 2003 (26); Medeiros 1999 (28); Bastard 1994 (139); Campbell 2005 (7); Willis 2000 
(9) 
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Figure 2.5. U.S. NHL incidence by age, race, sex (1998-2002) (131) 
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Figure 2.6. Age-adjusted NHL incidence by race and sex, all ages (1973-2002) (131) 

  
Table 2.3. NHL incidence by race and sex (1998-2002) (131) 
Race/Ethnicity  Men (cases per 100,000)  Women (cases per 100,000) 
All Races   23.2   15.8  
White  24.4   16.7  
Black  17.6   11.6  
Asian/Pacific Islander   16.8   11.5  
American Indian/Alaska Native   10.2   7.5  
Hispanic  18.8   13.4  
 



  

Table 2.4. Selected studies on smoking and NHL 
Study Design Population Exposure categories Estimate Comments 

Chiu 2007 
(115) 

Population-
based case-
control 

Nebraska men and 
women, cases=172, 
controls=1,655  

Ever/former/current 
smoking, cigar smoking, 
chewing tobacco use, age 
began smoking, duration, 
intensity, pack-years 

Men: all null associations for both 
t(14;18)-NHL case-subtypes; 
Women: t(14;18)-positive NHL-- all 
null or inverse associations; t(14;18)-
negative NHL—ever smoking 
OR=1.9, 95% CI=1.1-3.3, all 
smoking categories associated with 
t(14;18)-negative NHL 

Estimates were adjusted for age, 
type of respondent, and farming 
status.  Smoking was associated 
with cigarette smoking in women, 
but number of exposed cases was 
small; not much dose-response 

Besson 
2006 (132) 

Population 
based case-
control (7 
European 
countries) 

Epilymph: Czech Rep, 
Finland, France, 
Germany, Ireland, Italy, 
Spain cases=1,742, 
controls=2,465 

Smoking status, type of 
tobacco, duration, 
intensity, age at start 

Ever smoking and NHL: OR=1.06, 
95% CI=0.92-1.21; most associations 
null; FL and current smoking 
OR=1.35, 95% CI=0.96-1.90 

Adjusted for age, sex, education, 
alcohol monthly consumption, 
center; no support for smoking and 
NHL 

Morton 
2005 (106) 

Pooled 
analysis of 8 
pop based and 
1 hospital 
based case-
control 1998-
2004 

InterLymph, 
cases=6,594, 
controls=8,892 

age began smoking, 
current smking habits, 
duration/intensity of smk, 
pack-years 

ever smoking pooled OR=1.07, 95% 
CI=1.00-1.15; current smoker 
OR=1.10, 95% CI=1.0-1.2; former 
smoker OR=1.06, 95% CI=0.98-
1.15, 36+ pack-years OR=1.21, 95% 
CI=1.09-1.34; stronger for FL 

Sex, age, race, BMI, family history 
of NHL in 1st degree relative, 
history of alcohol consumption 
and SES were considered as 
potential confounders; final 
estimates adjusted for study center, 
sex, age, and race 

Bracci 
2005 (112) 

Bay area 
population-
based case-
control 1988-
1995 

Cases=1,593; 
Controls=2,515, HIV-
negative participants 

Cigarette, pipe, cigar, 
chewing tobacco, snuff, 
intensity, duration, 
former, current smoking 

Mostly null for smoking in men and 
women; snuff or chewing tobacco 
assoc with NHL in men: OR=4, 95% 
CI=1.3-12 (3 exposed cases), other 
tobacco only in men OR=1.5, 95% 
CI=0.96-2.4 

Adjusted for age; no overall 
association between smoking and 
NHL; smokeless tobacco use 
based on small numbers 

Stagnaro 
2004 (107) 

population-
based case-
control (11 
Italian areas) 

Italian, 1450 cases, 
1779 controls 

cigarette brand, date of 
starting and stopping 
smoking, # cigarettes 
smoked, use of filters; 
pack-years=packs/day x 
years smoked 

blond tobacco, OR=1.4, 1.1-1.7 
(NHL); OR=2.1, 1.4-3.2 (follicular) 

Dose-response for pack-years was 
limited to men younger than 52 
(p<0.001); blond worse than black, 
mixed intermed risk; agrees with 
Freedman 1998; stronger effect on 
high-grade NHL 
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Table 2.4.  Selected studies on smoking and NHL (continued) 
Study Design Population Exposure categories Estimate Comments 

Willet 2004 
(119) 

population-
based case-
control 

England, age 18-64, 
700 cases 

ever smoking cigarettes, 
cigars, or pipe once/day 
for 6 months, age or year 
started, amt/day, age or 
year stopped 

no association between smoking and 
NHL or subtypes; no assoc between 
alc and NHL or subtypes; no dose-
response observed  

Morton 
2003 (108) 

population-
based 

Conn. Women; 601 
cases and 718 controls 

smoker=at least 100 
cigarettes; age started, ave 
# cigarettes/day, years 
smoked at least 1 cig/day, 
age stopped 

risk of FL increased with 16-33 p-y, 
OR=1.5, 0.9-2.5; 34 p-y OR=1.8, 
1.1-3.2 ptrend=0.05 

increased risk only seen for 
follicular 

Besson 
2003 (133) 

hospital case-
control 

France; 180 cases, 2 
groups of 180 hospital-
based controls 

smoking status, smoking 
duration, cigs/day, age 
smking initiated and 
termin 

for NHL, current smoker (women) 
OR=2.40, 1.19-4.84; smoking for 
>31 y, OR=5.04, 1.40-18.12; for FL, 
ORs elevated but CI wide 

differences between genders may 
be biologic diff; no effect on other 
subtypes except for FL 

Schroeder 
2002 (103) 

population-
based case-
control 

Iowa and Minnesota 
men, cases=182, 
controls=1245 

Any tobacco use, type of 
tobacco product 
(cigarette, pipe, cigar, 
chewing tobacco, snuff), 
cigarettes only/cig and 
other/other tob only, cig 
pack-years, intensity, age 
started smoking 

t(14;18)-positive NHL associated 
with chewing tobacco (OR=1.7, 95% 
CI=0.9-3.1) and young age at first 
chew tobacco use (before 18) 
(OR=2.5, 95% CI=1-6), null 
association for cigarette smoking; 
t(14;18)-negative NHL not 
associated with any tobacco 
exposures 

Estimates were adjusted for age 
and state.  EM algorithm was 
applied to reduce imprecision and 
bias. 

Stagnaro 
2001 (109) 

Italian pop-
based case-
control 

Italian, 3357cases, 2391 
controls 

former smokers stopped 
at 1 year b/c study, 
cigarettes/day and years--
3 levels 

current smk, OR=1.2, 1.0-1.5 (NHL); 
current for FL, OR=2, 1.3-3.0; >36 
years OR=2.3, 1.4-3.8 

smoking an RF for NHL with a 
consistent assoc only for FL in 
women 

Parker 
2000 (110) cohort study 

Iowa women, 37,336 
women, 200 cases 
(random sample of 
Iowa women) 

current, former, never; 
pack-years 

former smk and FL OR=1.6, 0.7-3.4; 
current sk and FL OR=2.3, 1.0-5.0 

no assoc between smoking history 
and NHL overall; or for 
low/intermed--positive for high 
grade but small cases; suggestive 
association for FL 
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Table 2.4.  Selected studies on smoking and NHL (continued) 
Study Design Population Exposure categories Estimate Comments 

Freedman 
1998 (134) 

pop-based 
case-control 

Vietnam vets, 1190 
cases, 2299 controls 

packs per day, years 
smoking, age at start, 
years since quitting, pack-
years; current smoking--
men who stopped within 1 
year of study 

sig linear trends for packs/day and 
pack-years for NHL and >50 p-y 
OR=1.41, 1.1-1.8; low grade and >50 
pack-years OR=1.65 (1.2-2.5); high-
grade OR=1.73, 1.1-2.8 

in men starting at younger age, 
smoked more and for longer period 
of time; effect was modified by 
age (heavy smk affected younger 
age risk)' maybe younger men with 
NHL are more susceptible 

Herrinton 
1998 (111) 

prospective, 
11 year 
follow-up 

Kaiser Perman 
members, 674 cases of 
incident NHL 

current, past, years of 
regular cig smk, ave 
pack/day 

smokers at increased risk of FL, 
former smk RR=1.9, 1.2-2.9, current 
smkers RR=1.4, 0.9-2.2 

smoking history only one point in 
time, no info on HIV 

Zahm 1997 
(135) 

pooled 
analysis of 3 
pop-based 
case-control 

Nebraska, Kansas, IA, 
MN--1200 cases 

age began 
smoking,cigarettes/day, 
age stopped, 
duration/intensity of smk, 
pack-years 

no association with men, but 
smoking and NHL associated in 
women 

Brown et al. 1992 and Linet et al. 
1992 referenced; no clear 
gradients; study provides evidence 
that smoking has little effect on 
NHL in men 

Nelson 
1997 (136) 

population-
based case-
control LA county, 378 cases 

never, ever, former, 
current, cigarettes/day 

current smoking in men OR=1.90 (1-
3.51); in women OR=0.79 (0.44-
1.43); cocaine 9+ times OR=3.25 
(1.35-7.85) 

history of alcohol and tobacco use 
not associated with NHL in men; 
cocaine use sig in stepwise & drug 
use in last 5 & 10 y; increase in 
NHL coincides w/ epidemic of 
recreational drug use in US 

Brown 
1992 (137) 

population-
based case-
control 

white men over 30 from 
Iowa health registry and 
MN  

tobacco use, first and last 
year of use, age at first 
use, amt/day 

risk of lymphoma, pipes or cigars, 
smless tob OR=2.9 (1.4-6.1); cig 
only OR=1.5 (1.2-2.1); ORs 
decreased when only using living; 
cig and other tobacco OR for high-
grade=2.5 (1.1-5.9)  

association with high grade and 
unclassified are new findings; 1st 
to use morph classif; no intensity-
response gradients seen with hg or 
unclass lymphomas; new finding 
inc risk for users of smokeless 
tobacco who also use pipes and/or 
cigars; but based on small #'s 

Linet 1992 
(138) cohort study 

white males of 
Lutheran Brotherhood 
Insurance Soc.; 286,731 
PY; 1967-86; 49 NHL 
deaths tobacco use, cig/day 

used any tobacco risk of NHL 
elevated, RR=1.9 (0.8-4.5); >1 
pack/day RR=3.8 (1.4-10.1) 

1st cohort study to show dose-
response relationship--smoking 
only measured once in 1966, so 
risk may be underestimated 
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CHAPTER 3 

STATEMENT OF SPECIFIC AIMS 

A.  Specific Aims 

The current study extends a previous study of risk factors for t(14;18)-non-Hodgkin 

lymphoma (NHL) case-subtypes based on polymerase chain reaction (PCR) assays (J. 

Schroeder, PI) by running fluorescence in situ hybridization (FISH) assays to detect common 

translocations in over 200 NHL cases originally enrolled in the National Cancer Institute’s 

(NCI) Factors Affecting Rural Men (FARM) population-based case-control study (A. Blair, 

PI) (1,2).  

 

A.1. Utility of FISH in a Case-Control Study 

A.1.1. Primary Aim  

 To use and assess commercially available FISH assays to identify any IGH, t(14;18), 

t(8;14), and any BCL6 translocations, in archival paraffin tumor sections from FARM study 

cases and to compare the detection of t(14;18) by FISH and PCR previously run on the same 

samples (1).   

 

A.1.2. Secondary Aim 

 To use bcl-2 immunostaining to identify bcl-2 expression in archival paraffin tumor 

sections from FARM study cases and describe the distribution of bcl-2 status across 

translocations and histological classification subtypes.  



  

A.2. Risk Factors for NHL Defined by t(14;18) and bcl-2 Expression 

A.2.1. Primary Aim 

 To determine whether data support NHL molecular subtype-specific associations with 

putative risk factors including tobacco products (by type, intensity, and duration of use), 

family history of hemolymphatic (HLP) cancer in first and second-degree relatives, any hair 

dye use, and alcohol consumption when NHL subtypes are defined based on t(14;18) and 

bcl-2 expression. 

 

A.2.2. Secondary Aim 

 To re-evaluate associations previously assessed using a PCR method believed to be 

less accurate than FISH. 

 

B.  Hypothesis 

This study is designed to evaluate the following hypotheses: 

 1.  FISH assays will be a practical and effective means of classifying archival samples 

into molecular subtypes for epidemiologic research.  

 

 2.  The incidence of NHL molecular subtypes defined by t(14; 18) translocations and 

bcl-2 expression will vary by tobacco use and other risk factors. 

 

C.  Rationale 

 NHL case-subtypes defined by somatic mutations have been suggested to minimize 

the etiologic heterogeneity of NHL outcomes for epidemiologic research (3,4).  The previous 
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analysis of t(14;18)-NHL based on PCR found subtype-specific associations between family 

history and t(14;18)-negative NHL, but did not find a clear association between smoking and 

t(14;18)-NHL case-subtypes (1).  Misclassification of cases may have occurred.  Although 

PCR is believed to be a reasonably specific method for detecting t(14;18) in archival tumor 

samples, assays will fail to detect translocations with BCL2 breakpoints that occur outside of 

regions bounded by the PCR primers used (approximately 15-25% of translocations 

depending on the specific assay) (5).   

 In contrast, fluorescence in situ hybridization (FISH) assays can detect translocations 

with more widely dispersed breakpoints than PCR.  The sensitivity of fluorescence in situ 

hybridization (FISH) has been shown to be higher than that of polymerase chain reaction 

(PCR) for detecting t(14;18)-positive non-Hodgkin lymphomas (NHL) (6-12).  Therefore, we 

re-evaluated associations estimated for tobacco use and other factors among study 

participants using FISH assays to determine the t(14;18) status of archival tumor samples 

previously classified based on PCR.  

 In addition, we estimate associations with lymphoma subtypes defined by bcl-2 

expression (based on immunohistochemistry), since expression may be increased through 

mechanisms other than t(14;18) (13).  To our knowledge, this study is the first to incorporate 

both t(14;18) translocations and bcl-2 expression in defining NHL case-subtypes in a 

population-based case-control study.   
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CHAPTER 4 

METHODS 

A. Overview of Methods   

The first goal is to determine whether the detection of translocations by FISH 

compared with PCR, for t(14;18), is advantageous for epidemiologic studies.  The second 

goal is to evaluate whether associations between risk factors and NHL differ according to the 

t(14;18) and bcl-2 status of the tumor.   

 

B.  Design 

B.1.  Subject Identification 

B.1.1. FARM Study Population 

The cases and controls for the current study were originally enrolled in the FARM 

study (A. Blair, PI), a large population-based study of incident, pathologically confirmed 

hemolymphatic cancer cases in Iowa and Minnesota men, was conducted by the National 

Cancer Institute to evaluate associations between agricultural exposures and hemolymphatic 

cancers including NHL.  Population-based cases diagnosed in 1980-1983 were white rural 

men aged 30 or older identified through Iowa and Minnesota state registries.  Controls were 

1,245 white males aged 30 or older without a history of hemolymphatic cancer that were 

frequency-matched to cases by age (within five-year groups), state, and vital status.  Detailed 

information on agricultural exposures, other occupational exposures, medical history, 

smoking, and other potential risk factors for NHL were obtained through in-person structured 



  

interviews of cases, controls, or next-of-kin (1981-1984). The FARM study population is 

described in greater detail in published results and Chapter 5 (1-6).   

 

B.1.2.  t(14;18)-PCR Study 

In hopes of increasing etiologic specificity, an alternative method of NHL 

classification based on t(14;18) was proposed for FARM study cases (J Schroeder, P.I.).  In 

1997, tumor blocks for 248 (40%) of the original 622 FARM study cases were retrieved and 

sectioned.  Translocation status of each case was determined by performing polymerase 

chain reaction (PCR) assays on DNA extracted from each archival paraffin-embedded tumor 

block.  Primers used for each reaction included a Jh consensus primer on chromosome 14, the 

MBR1 primer corresponding to the BCL2 major breakpoint region (MBR) on chromosome 

18, and the MBR2 primer 360 base pairs upstream of MBR1.  A 175-base pair segment of 

the human hemoglobin beta (HBB) gene was amplified as an internal positive control to 

confirm that the DNA extracted from each sample was adequate for PCR amplification of 

t(14;18).  Amplified DNA was isolated, denatured, and separated by gel electrophoresis.  The 

t(14;18)-PCR study is described in greater detail in Chapter 5 and published results (1-6).   

 
B.1.3. Case-Subtype Ascertainment Based on FISH and IHC 
 

For the current study, commercially available FISH IGH, t(14;18), BCL6, and t(8;14) 

assays were run on 5-micron archival paraffin-embedded tumor sections from FARM study 

cases.  bcl-2 immunostaining was performed on paraffin sections from 229 FARM study 

cases using a mouse monoclonal antibody (clone 124; Dako) corresponding to bcl-2 amino 

acids 41-54 (16).  FISH and bcl-2 immunostaining methods and results including a FISH-

PCR comparison are described in greater detail in Chapter 5.   
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B.2. Methods 

B.2.1. Classification of Exposure 

Tobacco use and use of specific tobacco products (cigarettes, cigars, pipe tobacco, 

chewing tobacco, snuff) were classified according to ever/never use (daily use for at least 3 

months). In addition, cigarette smoking was categorized according to average intensity of use 

(0, 1-10, 11-20, >20 cigarettes per day), age of first use (18 or less, over age 18), and pack-

years (0, >0-20, >20-40, >40).  We also estimated associations between NHL case-subtypes 

and family history of hemolymphatic cancer diagnoses in any first-degree blood relatives 

including parents, children, and siblings or in any second-degree relatives including 

aunts/uncles, grandparents/children, and nieces/nephews, any hair dye use (ever use of hair 

dye at least once a month for at least one year or occupational exposure on any job held for 1 

or more years), and weekly alcohol use (ever drank beer, wine or hard liquor weekly for at 

least one year).  Occupation as farmer (ever worked on a farm for 6 continuous months or 

longer since the age 18), education (<=12 years, >12 years), marital status 

(married/widowed, divorced/separated, never married), state (living in Minnesota versus 

Iowa (reference category)), proxy status (whether next-of-kin was interviewed in place of a 

deceased participant), and age (restricted quadratic splines) were also evaluated as covariates. 

 

B.2.2. Classification of Outcomes 

The main outcomes were t(14;18)-positive and –negative NHL case-subtypes based 

on FISH and bcl-2-positive and –negative NHL case-subtypes based on IHC.  The joint 

distribution of t(14;18) and bcl-2 (t(14;18)-positive and bcl-2-positive cases, t(14;18)-

positive and bcl-2-negative cases,  t(14;18)-negative and bcl-2-positive cases, and t(14;18)-
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negative and bcl-2-negative cases.  For risk factor analysis, NHL cases were not subtyped 

based on other IGH, BCL6, and t(8;14) translocations due to their small numbers, but their 

distribution is decribed in Chapter 5. 

 

B.3. Data Analysis 

B.3.1. Univarite Analysis 

The distributions of exposures and covariates among the outcomes were assessed 

through univariate analysis.  Selected characteristics such as education, marital status, age, 

family history and smoking were compared among t(14;18) case-subtypes classified based on 

FISH versus PCR.  t(14;18)-positive cases identified using FISH were more likely than  

PCR-t(14;18)-positive cases to be between 55 and 65 years of age (21 of 81 cases (25.9%) 

and 12 of 68 cases (17.7%), respectively); and were less likely to report ever use of alcohol 

as least once a week (for at least one year) (36 of 81 cases (44.4%) and 38 of 68 cases 

(55.9%), respectively) (Table 4.1).  Otherwise, characteristics were comparable between 

case-subtypes defined by the two assays. 

 

B.3.2. Case-Case Analyses  

Case-only (case-case) analyses were performed using unconditional logistic 

regression models adjusted for matching factors (see below) to determine whether estimates 

were comparable between molecular subtypes, including t(14;18)-positive vs. –negative 

case-subtype comparisons and bcl-2 positive vs. -negative case-subtype comparisons.  Case-

only comparisons among joint t(14;18) and bcl-2 case-subtypes were also estimated using 
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polytomous logistic regression with t(14;18)-negative and bcl-2-positive cases as a common 

referent group.    

 

B.3.3. Multivariate Modeling  

Polytomous logistic regression was used to estimate case-subtype: control 

associations.   All models included the matching factors, state (living in Minnesota versus 

Iowa (reference category)), proxy status (whether next-of-kin was interviewed in place of a 

deceased participant), and age (restricted quadratic splines).  For each main exposure 

evaluated, the covariates selected were factors associated with NHL in past studies (e.g. 

alcohol use (21), family history of hemolymphatic (HLP) cancer (22) and farming (23) as 

well as demographic factors (age (24) and education (24,25)).  For the full logistic model of 

each main exposure evaluated, potential confounders were selected based on being a 

common cause of both the exposure and disease using conceptual models (26) (Figures 4.1-

4.4).  Using a backwards elimination approach, no confounding was evident based on a 0.15 

or greater change in the beta coefficient of the main exposure variable when the potential 

confounder was removed from the model; therefore, final models included the matching 

factors only.  Details of how missing case-subtypes were handled are further discussed in 

Chapter 6. 

 

 
 
 
 
 
 



  

Table 4.1. Characteristics of controls and t(14;18)-non-Hodgkin lymphoma (NHL) case-subtypes based on FISH versus PCR, Iowa and Minnesota, 1981-1983 
  Controls  FISH  PCR 
    t(14;18)-positive (n=81) t(14;18)-negative (n=73)  t(14;18)-positive (n=68) t(14;18)-negative (n=114) 
Exposure  N %  N % N %  N % N % 
Farmer              
 Yes  698 56.1  52 64.2 40 54.8  44 64.7 65 57.0 
 No  547 43.9  29 35.8 33 45.2  24 35.3 49 43.0 
State              
 Iowa  603 48.4  51 63.0 39 53.4  41 60.3 64 56.1 
 Minnesota  642 51.6  30 37.0 34 46.6  27 39.7 50 43.9 
Age              
 30-55  252 20.3  20 24.7 16 22.2  18 26.5 27 23.9 
 >55-65  283 22.8  21 25.9 18 25.0  12 17.7 26 23.0 
 >65-75  352 28.3  23 28.4 22 30.6  21 30.9 33 29.2 
 >75  357 28.7  17 21.0 16 22.2  17 25.0 27 23.9 
Respondent status              
 Self  826 66.4  63 77.8 51 69.9  53 77.9 85 74.6 
 Proxy  419 33.7  18 22.2 22 30.1  15 22.1 29 25.4 
Any hair dye              
 Yes  58 4.7  8 9.9 12 16.4  9 13.2 17 14.9 
 No  1187 95.3  73 90.1 61 83.6  59 86.8 97 85.1 
Education               
 = 12 years  878 70.8  60 74.1 49 67.1  53 77.9 82 71.9 
 >12 years  363 29.3  21 25.9 24 32.9  15 22.1 32 28.1 
Drank alcohol weekly              
 Yes  686 55.5  36 44.4 41 56.9  38 55.9 60 53.1 
 No  551 44.5  45 55.6 31 43.1  30 44.1 53 46.9 
Family History of HLP              
 Yes  51 4.2  3 3.9 6 8.2  4 6.0 11 9.7 
 No  1169 95.8  75 96.2 67 91.8  63 94.0 102 90.3 
Marital status              
 Married or widowed  1128 90.6  74 91.4 63 86.3  55 80.9 105 92.1 
 Divorced or separated  47 3.8  3 3.7 7 9.6  6 8.8 5 4.4 
 Never married  70 5.6  4 4.9 3 4.1  7 10.3 4 3.5 

69

Percents are the proportion of cases or controls in each exposure category out of the total number of case-subtypes or controls  

 



  

 
Figure 4.1. Conceptual model for the relation of tobacco use and covariates with NHL case-subtypes 
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Figure 4.2. Conceptual model for the relation of alcohol consumption and covariates with NHL case-subtypes 
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Figure 4.3. Conceptual model for the relation of family history of hemolymphatic cancer in 1st or 2nd degree relatives and covariates 
with NHL case-subtypes 
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Figure 4.4. Conceptual model for the relation of hair dye use and covariates with NHL case-subtypes 
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CHAPTER 5 
 

  NON-HODGKIN LYMPHOMA (NHL) SUBTYPES DEFINED BY COMMON 
TRANSLOCATIONS: UTILITY OF FLUORESCENCE IN SITU HYBRIDIZATION 

(FISH) IN A CASE-CONTROL STUDY  
A. Abstract 

Extending a previous analysis on non-Hodgkin lymphoma (NHL) defined by t(14;18) 

translocations based on polymerase chain reaction (PCR), we used fluorescence in situ 

hybridization (FISH) to identify any IGH, t(14;18), t(8;14), and BCL6 translocations in 

paraffin-embedded tumor sections from over 200 unselected NHL cases originally enrolled 

in the National Cancer Institute’s (NCI) Factors Affecting Rural Men (FARM) study (1981-

1984).  Additionally, we evaluated bcl-2 protein expression based on immunohistochemistry.  

BCL6 translocations, t(8;14) and other IGH translocations were uncommon in the study 

population.  t(14;18) was identified in 39% of diffuse large cell lymphomas (26 of 66 cases) 

and 81% of follicular lymphomas (35 of 43 cases).  FISH assays detected almost twice as 

many t(14;18)-positive follicular lymphomas as PCR assays (44%) run on the same samples.  

The majority of cases expressed bcl-2, including 87% of t(14;18)-positive cases and 58% of 

t(14;18)-negative cases.  Consistent with expectations, FISH appeared to be more sensitive 

than PCR for detecting t(14;18).  The value of the FISH assays to subtype cases according to 

BCL6 and t(8;14) was limited in this study due to the small numbers of positive cases. Study 

findings support the use of FISH assays to detect t(14;18) in archival tumor samples for 

population-based studies of NHL subtypes. 

 



 

B. Introduction 

Classification of lymphomas according to common somatic mutations has been 

suggested to reduce the etiologic heterogeneity of lymphoma outcomes for epidemiologic 

research (1-2).  Chromosomal translocations associated with lymphomas often juxtapose the 

IGH promoter on chromosome 14 with an oncogene whose subsequent overexpression 

contributes to lymphomagenesis (1, 3-4).  t(14;18) translocations involving IGH and BCL2 at 

18q21 cause overexpression of the anti-apoptotic bcl-2 protein, while t(8;14) translocations 

disrupt the normal regulation of the CMYC transcription factor located at 8q24.  

Translocations involving BCL6 at 3q27 and IGH or other partner genes result in 

overexpression of bcl-6 protein, which may contribute to malignant transformation in 

germinal center-derived B cells.   

Two recent population-based case-control studies reported evidence of subtype-

specific associations between potential risk factors and non-Hodgkin lymphoma (NHL) 

subtypes defined by the presence or absence of t(14;18) translocations. One used polymerase 

chain reaction (PCR) assays to detect t(14;18) in archival tumor samples from a subset of 

participants in the Factors Affecting Rural Men (FARM) study (5-8), while the other used 

fluorescence in situ hybridization (FISH) assays to identify t(14;18) in archival samples from 

a population-based case-control study of men and women in Nebraska (9).   

We extended the previous analysis of FARM study samples by using FISH assays to 

identify tumors with any IGH translocations, t(8;14) translocations and BCL6 translocations. 

In addition, we used FISH to identify t(14;18) translocations in samples that were previously 

classified based on PCR and evaluated bcl-2 protein expression based on 

immunohistochemistry.  In this report, we describe the frequency of these common 
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translocations (overall and according to histologic subtype) in archival paraffin-embedded 

lymphoma samples from the population-based FARM study, compare PCR and FISH assay 

results for t(14;18), and discuss the utility of FISH-based molecular subtyping for 

epidemiologic research. 

   

C. Patients, materials, and methods 

C.1. Study population   

The FARM study (A. Blair, PI), a large population-based study of incident, 

pathologically confirmed hemolymphatic cancer cases in Iowa and Minnesota men, was 

conducted by the National Cancer Institute (NCI) to evaluate associations between 

agricultural exposures and hemolymphatic cancers including NHL.  The study population 

and methods were previously described in detail (5,6).  Briefly, cases diagnosed in 1980-

1983 among white men aged 30 or older were identified through hospital and pathology 

laboratory records (in Minnesota) and the Iowa State Health Registry.  The study was 

restricted to white men from areas other than metropolitan Minnesota in order to increase the 

proportion with agricultural exposures, the primary focus of the study.   

 Eighty-nine percent (694) of 780 ascertained NHL cases were enrolled, and the 

diagnosis of NHL was confirmed for 622 cases by a pathology review panel (5,6).  NHL 

cases were limited to solid tumors; therefore lymphocytic leukemias were not included in the 

NHL case subgroup.  Controls were 1,245 white males aged 30 or older without a history of 

hemolymphatic cancer that were frequency-matched to cases by age (within five-year 

groups), state, and vital status.  Detailed information on agricultural exposures, other 

occupational exposures, medical history, smoking, and other potential risk factors for NHL 
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was obtained through in-person structured interviews of cases, controls, or the next-of-kin of 

deceased cases and controls (6, 10-13). 

 

C.2. t(14;18)-PCR study   

In 1997, archival paraffin-embedded tumor blocks were requested and successfully 

retrieved for 248 FARM study NHL cases (40% of all NHL cases in the original study) (7,8).  

Over half of the tumor blocks that were not retrieved had been destroyed or lost; the 

remainder were held at institutions that declined to participate in the t(14;18)-NHL study.  

Up to 16 5-micron sections and 16 10-micron sections were cut from each archival block. A 

single pathologist reviewed the first, middle, and last sections to confirm the presence of 

tumor tissue and assign histological subtypes according to the Revised European American 

Lymphoma classification scheme (REAL) (14).  Five-micron sections and slides were 

processed with diethyl procarbonate (DEPC) to prevent DNAse or RNAse from interfering 

with future assays (15). 

 t(14;18)-PCR assays were performed on DNA extracted from 10-micron sections cut 

from archival tumor blocks (7,8).  Each reaction used a consensus primer corresponding to 

the J segment of the IGH gene on chromosome 14 (5’-ACCTGAGGAGACGGTGAGC-3’) 

and a second primer corresponding to the BCL2 major breakpoint region (MBR) on 

chromosome 18 (MBR1: 5’-GAGAGTTGCTTTACGTG-GCCTG-3’).  Negative samples 

were subjected to a second PCR reaction with the IGH consensus primer and a second BCL2 

primer 360 base pairs upstream of the MBR primer (MBR2: 5’-

CGCTTGACTCCTTTACGTGCTG-3’).  Amplified DNA was isolated, denatured, and 

separated by gel electrophoresis, and transferred to a nylon membrane using a Southern blot 
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procedure.  Amplification was confirmed using radiolabeled probes that hybridized to DNA 

adjacent to each BCL2 primer site.  A 175-base pair segment of the human hemoglobin beta 

(HBB) gene was amplified as an internal positive control to confirm that the DNA extracted 

from each sample was adequate for PCR amplification of t(14;18).  Sixty-six samples that 

were t(14;18)-negative and HBB-negative were classified as inadequate for PCR.  

Amplification products from 20 of the 68 t(14;18)-positive samples were sequenced to 

confirm that unique translocation breakpoints were amplified from each sample. 

 

C.3. t(14;18)-FISH study  

For the current study, commercially available FISH IGH, t(14;18), BCL6, and t(8;14) 

assays were run on 5-micron sections archived from FARM study tumor blocks.  All sections 

were stored at 4°C prior to use.  Histologic subtypes were updated according to a modified 

version of the WHO classification scheme based on morphology only (16).  Cases that would 

be classified as chronic lymphocytic leukemias/small lymphocytic lymphomas (CLL/SLL) 

according to the WHO scheme are referred to as small lymphocytic lymphomas (SLL) since 

study cases were limited to solid tumors only.  The majority of cases classified as diffuse 

large cell lymphomas (DLCL) were probably diffuse large B cell lymphomas (DLBCL); 

however, B-cell status was not confirmed. Cases classified as Burkitt lymphomas (BL) 

include both Burkitt and Burkitt-like lymphomas. 

 Samples were assayed using commercially available FISH assay kits (Vysis, 17), run 

according to the manufacturer’s instructions with minor modifications (as described below). 

Translocations involving IGH on chromosome 14 were identified using the LSI® IGH Dual 

Color, Break Apart Rearrangement Probe which includes a 900 kilobase pair (kb) 
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SpectrumGreen labeled probe that hybridizes to the entire IGH variable (V) region and a 250 

kb SpectrumOrange labeled probe that hybridizes to the 3’ flanking region (Figure 5.1A).  In 

a normal nucleus, the expected signal pattern is two orange/green (yellow) fusion signals 

(Figure 5.2A).  In translocation-positive cells, separation of one pair of probes produces one 

orange and one green signal in addition to the fusion signal associated with the normal copy 

of IGH (Figure 5.2B).  

 The LSI® BCL6 Dual Color, Break Apart Rearrangement assay was used to detect 

BCL6 translocations.  The assay includes a 300 kb SpectrumOrange probe and a 600 kb 

SpectrumGreen probe that hybridize to the flanking regions of the BCL6 gene, (Figure 5.1B) 

so that probe separation in translocation-positive cells produces one orange signal, one green 

signal and one fusion signal (18).  t(14;18) translocations were identified using the LSI® 

IGH/BCL2 Dual Color, Dual Fusion Translocation Probe which includes a 1.5 mega base 

pair (Mb) SpectrumGreen probe that spans the entire IGH locus plus 300 kb centromerically, 

and a 750 kb SpectrumOrange probe that covers BCL2 plus 250 kb beyond each end of the 

gene (Figure 5.1C).  The expected signal pattern in a normal nucleus is two orange and two 

green signals (Figure 5.2C).  In translocation-positive cells, the juxtaposition of an orange 

and green probe produces one fusion signal in addition to the separate orange and green 

signals associated with the normal copies of IGH and BCL2 (Figure 5.2D).  The LSI® 

IGH/MYC, CEP 8 Tri-color, Dual Fusion Translocation assay for t(8;14) includes a 1.5 Mb 

SpectrumGreen IGH probe and an 821 kb SpectrumOrange probe that covers the entire 

CMYC gene and plus several hundred kilobase pairs beyond both ends of the gene (Figure 

5.1D).  A set of green and orange probes is juxtaposed in translocation-positive cells to 
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produce one fusion signal in addition to the separate orange and green signals associated with 

the normal copies of IGH and CMYC (18). 

 We assayed all cases with at least two 5-micron sections available (N = 230) for any 

IGH translocation. To increase efficiency, subsequent FISH assays were performed only on 

samples that were of adequate quality to successfully classify them as positive or negative 

based on the IGH assay (n=167).   Deparaffinization and pretreatment of archival 5-micron 

sections was performed using the Vysis® VP2000™ Processor (17).  Next, a probe mixture 

containing a 7:1:2 ratio of buffer, fluorescent probe, and distilled water was applied to each 

slide.  After a coverslip was placed over the tissue and sealed with rubber cement, the slide 

was placed in a HYBrite™ machine (17) where denaturation occurred at 75°C for 6 minutes, 

followed by hybridization at 37°C for 16 to 18 hours.   

 A rapid wash procedure was performed to remove unbound probe.  Rubber cement 

was removed and slides were soaked for 60 minutes at ambient temperature in a 70 ml of 

solution of sodium chloride, sodium citrate and non-ionic detergent (2x SSC 0.1 NP40,  pH 

7-7.5).  Next, coverslips were removed and slides were soaked for 2 minutes in 70 ml of 2x 

SSC 0.1 NP40 heated to 73°C.  After slides were air-dried in darkness, 10μl of DAPI II 

counterstain was applied and a new coverslip was placed over the target area.  Newly assayed 

slides were stored at -20°C until scoring.   

 To conserve archival samples we followed a sequential FISH procedure that allowed 

reuse of previously assayed sections (17).  Used sections were soaked in ambient temperature 

2x SSC 0.1 NP40 for 30 to 60 minutes to remove DAPI counterstain and FISH probes.  Next, 

slides were soaked for one minute in 3 different solutions of ethanol and water (70%, 85%, 

and 100% ethanol), then air dried.   FISH hybridization was performed with the denaturation 
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step reduced to three minutes.  Sections were not routinely checked for residual FISH probe, 

but several test runs showed that no traces of the old probe remained after the denaturation 

step.  A total of 168 assays were run on previously assayed sections, including 110 that were 

successfully classified and 58 that failed to produce a definitive result. Twenty-eight of 42 

unsuccessful assays that were repeated on a new section (69%) were successfully classified 

based on the second assay.  

 

C.3.1. FISH Scoring   

FISH assays were scored using the 40x and 100x oil objectives on a Zeiss Axioskope 

2 (Carl Zeiss, 19) equipped with a triple bandpass filter set (DAPI/Green/Orange V.2, 17).  

Image capture was done using a color digital Axiocam 412-312 (19), and the software 

Openlab version 4.0.3 (Improvision, Inc, 20). 

 Criteria for scoring were set before performing FISH assays.  For each sample, a 

minimum of 25 non-overlapping lymphocytes with complete FISH signals were scored; 

samples with less than 25 readable cells were not classified.  A complete FISH signal was 

defined as one that included the full set of orange, green or fusion signals expected in a 

positive or negative cell; therefore we did not score lymphocytes with truncated nuclei and 

incomplete signals, or overlapping cells with multiple signals.  In addition, the strength of 

both the orange and green FISH signals had to be adequate to distinguish separate signals 

from fusion signals.  The appearance and quality of FISH signals varied depending on the 

source of the tissue, the adequacy and type of sample fixation, and the overall quality of the 

tissue section. Samples in which the quality of the sample or the strength of the FISH signals 

were deemed inadequate (i.e. samples having less than 25 cells with adequate signal) to 
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reliably identify positive cells were classified as unreadable for the assay.   Cases were 

classified as translocation positive if more than 30% of cells showed abnormal signal 

patterns. 

 Cells other than lymphocytes, for example, epithelial or connective tissue cells in 

biopsies from extranodal sites, were not scored.  Clonal evolution may result in both positive 

and negative neoplastic clones within a single tumor, and the distribution and clustering of 

neoplastic lymphocytes may vary depending on the tumor site and histologic subtype; 

therefore, each section was examined in its entirety for positive lymphocytes before being 

classified as translocation negative. Although the proportion of neoplastic versus non-

neoplastic lymphocytes within a neoplastic focus may vary, rare lymphocytes with positive 

FISH signals are unlikely to be representative of the neoplastic clone; consequently, samples 

with only 1-2 positive lymphocytes were classified as negative.  Non-neoplastic cells, which 

were present in all samples, served as internal negative controls.   

  IGH, t(14;18), and BCL6 assays were scored by two investigators (CC and JS).  

Samples that were initially classified as positive by one reviewer and negative by the other 

(51 of 579 assays total) were successfully assigned a consensus classification based on a joint 

review.  Sixty-two of the 77 cases that were initially classified as unreadable by one scorer 

were subsequently classified as positive or negative by both reviews after a joint review; the 

15 remaining assays were classified as unreadable.  Agreement between scorers was nearly 

100% for BCL6 assays due to the small number of positive cases; therefore, t(8;14) assays for 

which even fewer positive cases were expected were scored by one investigator only.   
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C.3.2. Labor and cost  

Assays were performed on up to 24 sections at a time.  Each run took approximately 

two days to complete including pretreatment, 16 hours of hybridization, and a rapid wash 

procedure.  On average, it took each scorer about 3 hours to classify 24 slides, with an 

additional hour for image capture.  The cost of materials, including FISH probes and other 

reagents, was approximately $40 for each section assayed. Using individual sections for more 

than one assay allowed us to conserve archival sections but increased costs (and labor) by 

approximately 35%. 

 

C.4. bcl-2 expression   

bcl-2 immunostaining was performed on paraffin sections from 229 FARM study 

cases using a mouse monoclonal antibody (clone 124; Dako) corresponding to bcl-2 amino 

acids 41-54 (21).  Cases were classified as bcl-2 positive if more than 20% of cells showed 

cytoplasmic staining. Ten samples that were inadequate for scoring were classified as 

missing for bcl-2 expression.  Scoring was performed by two investigators (WY and JS).  

Independent scores were concordant for 201 of 219 cases (92%). Eighteen cases with 

discordant results were reviewed and assigned a consensus classification (7 positive, 11 

negative for bcl-2).   

 

C.5. Data analysis  

FISH data were entered into an Access database (Microsoft Corp., 22).  Univariate 

analyses were carried out using SAS (SAS Institute, 23).  The distribution of cases with each 

type of translocation (IGH, BCL6, t(14;18) and t(8;14)) was examined according to WHO 
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histologic subtype.  The joint distribution of bcl-2 expression and t(14;18) across WHO case 

subtypes was also evaluated.  In addition, t(14;18)-FISH assay results were compared with 

t(14;18)-PCR results.   

 

D. Results 

D.1. Distribution of Translocations Detected by FISH 

One hundred sixty-six of the 230 tumor samples assayed for any IGH translocation 

were successfully classified as positive (n = 94) or negative (n = 72).  No additional FISH 

assays were run on 64 samples that were classified as inadequate for IGH scoring.   

 t(14;18) assays were successful on 154 of 168 cases, including 81 (53%) that were 

t(14;18)-positive. The BCL6 assay was successful on 158 cases, including 5 that were 

positive (3%).  Only 134 of 161 cases assayed for t(8;14) were adequate for scoring, and of 

these, only one was t(8;14)-positive.  Ten cases that were classified as positive for an IGH 

translocation were negative for t(14;18), BCL6, and t(8;14); seven IGH-positive cases were 

missing or unreadable for other translocations.  

 Eighty-one percent of follicular lymphomas (FL) (35 of 43 FL cases assayed) were 

t(14;18)-positive (Table 5.1), including one that was also BCL6-positive. One FL was IGH-

positive but negative for t(14;18), t(8;14) and BCL6.  Over a third of diffuse large cell 

lymphomas (DLCL) were t(14;18)-positive (26 of 66 cases assayed), including one that was 

also BCL6-positive and one that was also t(8;14)-positive. Three DLCL were BCL6-positive 

only, and 4 were positive for an IGH translocation but negative for t(14;18), t(8;14) and 

BCL6 translocations.   Five of 15 SLL were t(14;18)-positive only, and 3 were IGH-positive 
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only.  Six of 12 Burkitt lymphomas (BL) were t(14;18)-positive only, and one was IGH-

positive only. Contrary to expectations, all BL were t(8;14)-negative.   

 

D.2. bcl-2 Expression  

Over 75% of cases assayed for bcl-2 expression by IHC (168 of 219 total cases) were 

bcl-2 positive, including 62 of 66 FL and 29 of 29 SLL (Table 5.2).  bcl-2 expression was 

more likely to be positive in t(14;18)-positive cases (87% bcl-2 positive) than t(14;18)-

negative cases (58% positive).  

 

D.3. t(14;18)-FISH versus t(14;18)-PCR   

PCR and FISH assays for t(14;18) were concordant for 71% (92/132) of cases 

successfully evaluated by both assays, including 39 that were t(14;18)-positive and 53 that 

were t(14;18)-negative (Table 5.3).  Among the discordant cases, 32 were PCR-negative/ 

FISH-positive (18 FL, 4 DLCL, 94% bcl-2 positive), and 8 cases were PCR-positive/ FISH-

negative (2 FL, 3 DLCL, 88% bcl-2 positive).  Overall, cases were more likely to be 

classified as t(14;18)-positive based on FISH (81 of 154 cases, 52%) than PCR (68 of 182 

cases, 37%).  The success rate (proportion of cases with interpretable results) of PCR assays 

(182 of 248 cases, 73%) was slightly higher than that of FISH assays (67%), but almost half 

of the samples that were inadequate for FISH (36 of 75) were also inadequate for PCR.   

 

E. Discussion 

In general, FISH assay results were consistent with expectations. t(14;18), the most 

common translocation in our samples, was identified in 81% of FL and 39% of DLCL.  Other 
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studies of cases diagnosed in the United States (US), Canada, and Europe reported similar 

frequencies of t(14;18) by FISH in FL (83-100%) (Table 5.4).  Several Japanese studies 

reported lower t(14;18) frequencies (56-64%), while other Asian studies reported frequencies 

similar to US and other European studies.  Thus, variation in t(14;18) frequency in FL may 

reflect differences in case selection and protocol rather than biological differences among 

populations (24).  The frequencies of t(14;18) by FISH in DLCL reported by other US 

studies (20-32%) were similar to our estimates, while the frequency reported in other 

countries varied widely (0-94%) (Table 5.5).  The variation of t(14;18) frequency in DLCL 

may reflect the heterogeneity of this histologic subtype in addition to methodologic factors. 

 Only 5 study cases were BCL6-positive, including 1 FL (2% of FL) and 4 DLCL (6% 

of DLCL).  Previous studies have reported a similarly low occurrence of BCL6 translocations 

in FL (0-13%) (25,27,28,29,50,51).  Our estimates of BCL6 translocations in DLCL are 

within the range reported in recent cytogenetic studies (0-10%) of cases diagnosed in the US 

and Canada (25-27); however, BCL6 frequency in DLCL has ranged from 0 to 27% among 

international studies based on cytogenetics, FISH and other techniques (28-32).   

 The frequency of t(8;14) in our study cases was lower than expected. Specifically, 

only one diffuse large cell lymphoma was t(8;14)-positive, while all 10 Burkitt lymphoma 

(BL) cases run with t(8;14)-FISH were t(8;14)-negative. This is in marked contrast with the 

majority of previous FISH and cytogenetic studies, which have reported t(8;14) in 75 to 

100% of BL cases (33-37).  The BL study cases may have had CMYC translocations with 

other partner genes including 2p12 or 22q11 (t(8;22) or t(2;8)) which occur in 15% and 5% 

of BL/BLL cases (38).  In addition, we did not distinguish classical BL cases from Burkitt-

 88



 

like (BLL) lymphomas, which are less likely to be t(8;14)-positive (19-33%  positive based 

on FISH and cytogenetics) (35,39,40).   

 Ten cases (1 FL, 4 DLBCL, 3 SLL, 1 BL, and 1 unclassified) that were positive for 

an IGH translocation but negative for t(14;18), t(8;14) and BCL6 translocations presumably 

had t(11;14) or other IGH translocations that were not assayed for this study. We had initially 

considered using a hierarchical approach to increase efficiency and decrease costs, such that 

t(14;18) assays would have been run on IGH-positive samples only, and t(8;14) and BCL6 

assays would have been run on t(14;18)-negative samples only. However, we would have 

missed five t(14;18)-positive cases that were negative based on the more general IGH assay, 

which indicated that the sensitivity of the IGH assay was inadequate to justify this approach. 

In addition, we would not have detected one BCL6-positive case (which may have involved a 

partner gene other than IGH), and would have failed to identify three cases with multiple 

translocations (two t(14;18)- and BCL6-positive; one t(14;18)- and t(8;14)-positive) had we 

run assays using a hierarchical approach. 

 In our analysis, bcl-2 was expressed by the majority of cases, regardless of t(14;18) 

status. This is also consistent with previous research, which suggests that bcl-2 expression 

may be increased in t(14;18)-negative tumors by BCL2 amplification or hypomethylation, 

EBV or CMV proteins, and other mechanisms (41,42). 

 Overall, our results suggest that FISH was more sensitive than our previous PCR 

assay for detecting t(14;18)-positive tumors, consistent with previous studies (Table 5.6). We 

expected that up to 25% of true t(14;18)-positive cases would have been false-negative based 

on PCR (41), which cannot detect translocation breakpoints that occur outside of the regions 

bounded by PCR primers.  Conversely, PCR may be less specific than FISH to detect 
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t(14;18)–positive lymphomas because of its potential to detect rare non-neoplastic t(14;18)-

positive lymphocytes that may be present in biopsy samples (44). This may explain 

discordant results for some or all the 8 study cases that were FISH-negative but PCR-positive 

for t(14;18).  Sample contamination could also have caused false-positive PCR assays, but 

precautions were taken to prevent contamination, and sequencing confirmed unique t(14;18) 

breakpoints in a subset of samples (7).  

 Although we cannot confirm the sensitivity and specificity of FISH versus PCR in the 

absence of a “gold standard” cytogenetic assay, we believe that the weight of the evidence 

supports FISH versus PCR as the method of choice for detecting t(14;18) in archival samples 

for observational epidemiologic research. FISH also has advantages over karyotyping for 

observational research.  First, it does not require fresh tissue and dividing cells, but can be 

performed on preserved sections that may be readily available for a majority of cases 

(including archival paraffin embedded sections over 25 years old, most of which were 

successfully assayed in our study).  Second, it can be performed directly on tumor sections, 

thus preserving architecture and allowing localization to neoplastic cells (3).   

 Disadvantages of FISH include the inability to score overlapping or truncated cells, 

which contributed to our inability to successfully classify approximately 33% of cases.  The 

high cost of commercial FISH probes and the labor and training required to perform and 

score assays is also a concern, though costs and labor may be reduced through the use of 

tissue microarrays (TMAs) (9), and automated scoring (45).  Our ability to reuse sections for 

multiple FISH assays allowed us to conserve archival samples, but a number of assays were 

unsuccessful and had to be repeated on new sections; therefore, we recommend this 

procedure only if preservation of sections is a priority and the added cost and time required to 
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repeat assays is acceptable.  Another potential disadvantage of FISH over other in situ assays 

is the loss of fluorescent signals over time, particularly during scoring; however, we did not 

experience significant problems with this in our study, and contrary to expectations found 

that signal strength was maintained for several months after assays were initially scored.   

 In summary, the frequency of common translocations identified using FISH assays in 

a group of unselected lymphoma cases was generally consistent with expectations, with the 

possible exception of t(8;14).  FISH appeared to be more sensitive to detect t(14;18)-positive 

tumors than PCR, though we were unable to formally evaluate either assay against a 

cytogenetic “gold standard.”  Large-scale epidemiologic studies of lymphoma subtypes 

should consider the advantages of FISH over other assays and incorporate strategies for 

minimizing time and resources. Our experience suggests that large numbers of cases would 

be needed to provide sufficient power to assess risk factors for translocation subtypes other 

than t(14;18) in an unselected population-based sample of cases. However, the use of FISH 

assays to classify lymphomas according to t(14;18), in combination with the use of IHC 

assays to assess bcl-2 expression, may provide a simple and powerful way of discovering 

new risk factors and etiologic mechanisms for lymphomas.   
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Figure 5.1a). Gene regions corresponding to FISH probes used to detect chromosomal 
translocations.  IGH gene regions corresponding to LSI IGH Dual Color Break Apart probes 
used to detect IGH translocations (regardless of the partner gene) (adapted from Vysis, 18). 
 

 
 
Figure 5.1b). Gene regions corresponding to FISH probes used to detect chromosomal 
translocations.  BCL6 gene regions corresponding to LSI BCL6 Dual Color, Break Apart 
probes used to detect BCL6 translocations (regardless of the partner gene) (adapted from 
Vysis, 18). 
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Figure 5.1c). Gene regions corresponding to FISH probes used to detect chromosomal 
translocations.  Regions of IGH (upper) and BCL2 (lower) corresponding to LSI IGH/BCL2 
Dual Color Dual Fusion probes to detect t(14;18).  Arrows indicate the location of the Jh 
consensus primer on chromosome 14, the MBR1 primer corresponding to the BCL2 major 
breakpoint region (MBR) on chromosome 18, and the MBR2 primer 360 base pairs upstream 
of MBR1 (adapted from Vysis, 18). 
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Figure 5.1d). Gene regions corresponding to FISH probes used to detect chromosomal 
translocations.  Regions of IGH (upper) and CMYC (lower) corresponding to LSI IGH/MYC, 
CEP 8 Tri-color, Dual Fusion probes to detect t(8;14) (adapted from Vysis, 18). 
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Figure 5.2. Photomicrographs showing signal patterns expected for FISH assays of normal 
cells and translocation positive cells. a) Vysis LSI IGH Dual Color, Break Apart probes for 
any IGH translocation showing the expected signal pattern for a translocation-negative cell (2 
fusion signals). b) Vysis LSI IGH Dual Color, Break Apart probes for any IGH translocation 
showing the expected signal pattern for an IGH-positive cell (1 orange, 1 green, and 1 
fusion).  c) Vysis LSI IGH/BCL2 Dual Color, Dual Fusion probes for t(14;18) showing the 
expected signal pattern for a translocation-negative cell (2 orange, 2 green). d) Vysis LSI 
IGH/BCL2 Dual Color, Dual Fusion probes for t(14;18) showing the expected signal pattern 
for a translocation-positive cell (1 orange, 1 green, and 2 fusion). 
 

a) b) 

  
c) d) 

 
 
   Table 5.1. Frequency of FISH-detected translocations by histologic subtype 
Histologic Subtype Cases 

Assayed* 
Any 
translocation† 

t(14;18) 

 N N % N % 
Follicular 45 38 84 35 81 
Diffuse Large Cell 73 37 51 26 39 
Small lymphocytic 16 8 50 5 33 
Burkitt/Burkitt-like 13 8 62 6 50 
Mantel Cell 4 3 75 3 100 
Unclassified 10 7 70 6 60 

Percents indicate the proportion of cases that were positive for each translocation out of the total number 
assayed for that translocation. Histologic subtypes were determined using a modified (World Health 
Organization) WHO classification scheme based on morphology only. 
*Numbers of cases within each subtype that were assayed successfully for at least one FISH assay. 
†Cases positive for IGH, t(14;18), BCL6, or t(8;14) translocations based on at least one FISH assay.  
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Table 5.2. Numbers of positive cases according to histologic subtype, t(14;18) status and  
bcl-2 expression 
Histologic Subtype t(14;18)-

positive, 
bcl-2-
positive 

t(14;18)-
negative, 
bcl-2-
positive 

t(14;18)-
positive, 
bcl-2-
negative 

t(14;18)-
negative, 
bcl-2-
negative 

Total 

Follicular 32 7 3 1 43 
Diffuse Large Cell 18 15 4 23 60 
Small lymphocytic 5 10 0 0 15 
Burkitt/Burkitt-like 4 2 2 4 12 
Lymphoblastic 0 0 0 1 1 
Mantel Cell 3 0 0 0 3 
Marginal zone 0 1 0 0 1 
Unclassified 4 4 1 0 9 
Total 66 40 10 29 145 

Histologic subtypes were determined using a modified (World Health Organization) WHO classification 
scheme based on morphology only.  t(14;18) status was determined using Vysis LSI IGH/BCL2 Dual Color, 
Dual Fusion FISH assays run on archival paraffin-embedded tumor sections.  bcl-2 expression was determined 
using a mouse monoclonal antibody (clone 124; Dako, 21) corresponding to bcl-2 amino acids 41-54 run on 
paraffin-embedded tumor sections.  17 cases were missing either t(14;18)- or bcl-2-case status. 
 
 
 
Table 5.3. Numbers of t(14;18)-positive and t(14 ;18)-negative cases based on FISH versus 
t(14;18)-PCR 
t(14;18)-FISH t(14;18)-PCR 
 Positive Negative Unreadable‡ Not Assayed Total 
Positive 39 32 10 0 81 
Negative 8 53 10 2 73 
Unreadable† 14 25 37 0 76 
Not Assayed 7 4 9 0 20 
Total 68 114 66 2 250 

t(14;18) status was determined using Vysis LSI IGH/BCL2 Dual Color, Dual Fusion FISH assays and PCR assays with the 
Jh consensus primer, MBR1 primer corresponding to the BCL2 major breakpoint region (MBR), and the MBR2 primer 360 
base pairs upstream of MBR1.  Assays were run using archival paraffin-embedded tumor sections.   
†Unreadable FISH assays could not be scored because of inadequate sample or FISH signal strength.  
‡Unreadable PCR assays were negative for the human hemoglobin beta (HBB) internal control segment and for t(14;18).  
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Table 5.4.  Proportions of follicular lymphoma cases positive for t(14;18) translocations in 
previous studies of cases classified using FISH assays 
Study, year Location* Case sample† Specimen‡ Total 

cases 
t(14;18) 

    N % 
Current Study US Population-based Paraffin 43 81 
Gong 2003 (46) US Hospital-based FNA 40 85 
Chiu 2006§ (9) US Population-based Paraffin 63 66 
Richmond 2006 (47) US Hospital-based FNA 35 81 
Hirose 2003 (48) Japan Convenience Paraffin 11 64 
Matsumoto 2004 (49) Japan Hospital-based Paraffin 50 56 
Guo 2005 (50) China Convenience Frozen 147 81 
Sekiguchi 2005 (51) Japan Hospital-based Paraffin 47 60 
Peh 2004 (52) Malaysia Hospital-based Paraffin 62 74 
Fan 2003 (27) Canada Hospital-based Paraffin 24 83 
Godon 2003 (53) France Convenience Frozen 63 100 
Bernicot 2005 (28) France Hospital-based Metaphase 20 85 
Vaandrager|| 2000 (54) Netherlands Convenience Frozen 40 88 

*Country in which study was conducted: US, United States 
†Selection of study cases: Population-based, use of state or national registries; Hospital-based, case series; Convenience, use 
of tissue/cytology files or banks 
‡Type of sample on which assay was conducted: Paraffin, paraffin-embedded tumor section; FNA, fine needle aspirate; 
Frozen, fresh-frozen tumor sample; Metaphase, metaphase spread from fresh tumor specimen; Interphase, interphase nuclei 
of tumor cells from fresh tumor specimen  
§FISH assays run on four representative 0.6-mm cores from each biopsy included on a tissue microarray (TMA).  
||FISH assays performed using yeast-artificial-chromosome (YAC)-DNA probes. 
 
Table 5.5. Proportions of diffuse large cell lymphoma cases positive for t(14;18), BCL6 and 
t(8;14) in previous studies of cases classified using FISH assays 
Study Location* Cases sample† Specimen‡ Total 

Cases 
t(14;18) 

    N % 
Current Study US Population-based Paraffin 66 39 
Huang 2002§ (55) US Not specified Paraffin 35 20 
Gong 2003 (46) US Hospital-based FNA 17 29 
Iqbal 2004 (56) US Hospital-based Paraffin 141 24 
Chiu 2006§ (9) US Population-based Paraffin 65 32 
Cerretini 2006 (32) Argentina Hospital-based Metaphase 30 30 
Hirose 2003 (48) Japan Convenience Paraffin 61 15 
Godon 2003 (53) France Convenience Frozen 17 94 
Bernicot 2005 (28) France Hospital-based Metaphase 26 19 

*Country in which study was conducted: US, United States 
†Selection of study cases: Population-based, use of state or national registries; Hospital-based, case series; Convenience, use 
of tissue/cytology files or banks 
‡Type of sample on which assay was conducted: Paraffin, paraffin-embedded tumor section; FNA, fine needle aspirate; 
Frozen, fresh-frozen tumor sample; Metaphase, metaphase spread from fresh tumor specimen; Interphase, interphase nuclei 
of tumor cells from fresh tumor specimen.  
§FISH assays run on four representative 0.6-mm cores from each biopsy included on a tissue microarray. 
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Table 5.6. Frequency of t(14;18)-positive follicular lymphomas according to PCR and FISH 
assays of paraffin-embedded tumor samples 
Study Location t(14;18) by PCR t(14;18) by FISH 
  Cases 

assayed 
(N) 

% 
positive 

Cases 
assayed 

(N) 

% positive 

Einerson 2005 *† (57) US 14 36 24 100
Barrans 2003 ‡† (58) UK 20 40 28 93
Godon 2003§|| (53) France 33 58 63 100
Godon 2003† (53) France NA NA 39 98
Belaud-Rotureau 2006 ‡† (59) France 39 64 51 92
Poetsch 1996*¶ (60) Germany 28 64 28 100

Abbreviations: US, United States; UK, United Kingdom; MBR, major breakpoint region; mcr, minor cluster region 
*PCR assays performed using primers for MBR, mcr, and the Jh consensus regions.  
†FISH assays performed using Vysis LSI IGH/BCL2 probes.  
‡Multiplex PCR assays performed using primers for MBR, 3’MBR, 5’mcr, and the Jh consensus regions. 
§PCR assays performed using primers for MBR and Jh consensus regions. 
||FISH assays performed using Cos Ig10/ PAC210c12 probes.  
¶FISH assays performed using yeast-artificial-chromosome (YAC)-DNA probes. 
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CHAPTER 6 
 

A CASE-CONTROL STUDY OF TOBACCO USE AND NON-HODGKIN LYMPHOMA 
(NHL) SUBTYPES DEFINED BY t(14;18) TRANSLOCATIONS AND bcl-2 

EXPRESSION (UNITED STATES) 
A. Abstract 

We re-evaluated reported associations estimated for tobacco use and other factors 

among study participants using fluorescence in situ hybridization (FISH) assays to determine 

the t(14;18) status of archival tumor samples believed to be better classified than previously 

based on polymerase chain reaction (PCR).  Commercial FISH assays were used to detect 

t(14;18) translocations in samples from unselected NHL cases enrolled in the National 

Cancer Institute’s Factors Affecting Rural Men  (FARM) study (1981-1984).  In addition, 

bcl-2 immunostaining was performed on paraffin sections to estimate associations with 

lymphoma subtypes defined by bcl-2 expression.  Polytomous logistic regression models 

estimated associations between NHL case-subtypes (versus 1,245 population-based controls) 

and tobacco use, family history of hemolymphatic cancer and hair dye use; expectation-

maximization (EM) was applied to the models to reduce bias caused by missing case-subtype 

data.  FISH assays were successful on 154 cases (81 positive).  Adjusting for age, state, and 

proxy status, t(14;18)-negative NHL was associated with any tobacco use (OR=1.98, 95% 

CI=1.09-3.59), including cigarette use only (OR=2.10, 95% CI=1.12-3.94).  t(14;18)-

negative NHL was also positively associated with all levels of pack-years and intensity, but 

without evidence of positive dose-response.  Tobacco exposures were not clearly associated 

with t(14;18)-positive NHL or bcl-2 case-subtypes.  The association between t(14;18)-



 

negative NHL and cigarette smoking was unexpected given previous evidence of 

associations between smoking and follicular lymphoma (which is largely t(14;18)-positive).  

Future studies characterizing additional molecular characteristics of t(14;18)-negative NHL 

may help determine whether the association with smoking may have been causal versus an 

artifact of chance or bias.  

 

B. Introduction 

 The International Lymphoma Epidemiology Consortium (InterLymph) pooled 

analysis of eight case-control studies (6,594 cases and 8,892 controls) reported a weak 

association between ever smoking and non-Hodgkin lymphoma (NHL) (OR=1.07, 95% 

CI=1.00-1.15).  Associations with follicular lymphoma (n=1,452) were slightly stronger than 

those for NHL overall, particularly for current smoking (OR=1.31, 95% CI=1.12-1.52) and 

current heavy smoking (36 or more pack-years) (OR=1.45, 95% CI=1.15-1.82) (1).  Several 

population-based case-control studies also have found stronger associations between 

cigarette smoking and follicular lymphoma than with NHL overall and other lymphoma 

subtypes (2-7). 

 The t(14;18) translocation, which is detected in 85-100% of follicular lymphomas, 

juxtaposes the IGH gene on chromosome 14 with the BCL2 gene at 18q21 resulting in 

overexpression of the anti-apoptotic bcl-2 protein (8).   t(14;18) is believed to be an early 

step in lymphomagenesis, in part because non-neoplastic t(14;18)-positive lymphocytes are 

also detected at low levels in healthy individuals (9) . In addition, it has been reported that 

numbers of t(14;18)-positive bone marrow and peripheral lymphocytes are increased in 

smokers compared with non-smokers (10,11).  Therefore, it has been suggested that 
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associations observed between follicular lymphoma and smoking may reflect an effect of 

smoking on the frequency or prevalence of t(14;18)-positive lymphocytes (12).   

 A previous analysis in which polymerase chain reaction (PCR) assays were run to 

detect t(14;18) in archival tumor samples from a subset of Iowa and Minnesota NHL cases in 

the Factors Affecting Rural Men (FARM) case-control study did not find a clear association 

between smoking and t(14;18)-NHL case-subtypes, but misclassification of cases may have 

occurred (12).  Although PCR is believed to be a reasonably specific method for detecting 

t(14;18) in archival tumor samples, assays will fail to detect translocations with BCL2 

breakpoints that occur outside of regions bounded by the PCR primers used (approximately 

15-25% of translocations depending on the specific assay) (14).   

 In contrast, fluorescence in situ hybridization (FISH) assays can detect translocations 

with more widely dispersed breakpoints than PCR.  Studies comparing t(14;18) assays run on 

the same samples have shown that FISH consistently detects more t(14;18)-positive samples 

than PCR (15-20).  In addition, use of FISH allows in situ localization of t(14;18) to 

neoplastic lymphocytes, thus decreasing the likelihood of falsely classifying lymphomas as 

t(14;18)-positive due to amplification of rare non-neoplastic t(14;18)-positive lymphocytes 

(21-23).   

 Therefore, we re-evaluated associations between t(14;18)-positive and –negative case 

subtypes and tobacco use, family history and other factors among FARM study participants 

after using FISH assays to re-classify the t(14;18) status of archival tumor samples that were 

previously classified based on PCR (12).  In addition, we estimated associations with 

lymphoma subtypes defined by bcl-2 expression (based on immunohistochemistry) (24).   
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C. Patients, materials, and methods 

C.1. Study population 

 The FARM study (A. Blair, PI), a large population-based study of incident 

hemolymphatic cancers among white men from Iowa and Minnesota, was conducted by the 

National Cancer Institute (NCI) to evaluate associations with agricultural exposures.  The 

study population and methods were previously described in detail (25,26).  Briefly, cases 

diagnosed in 1980-1983 among white men aged 30 or older were identified through hospital 

and pathology laboratory records (in Minnesota) and the Iowa State Health Registry.  The 

study was restricted to white men from areas other than metropolitan Minnesota in order to 

increase the proportion with agricultural exposures, the primary focus of the study.  Eighty-

nine percent (694) of 780 ascertained NHL cases were enrolled, and the diagnosis of NHL 

was confirmed for 622 cases by a pathology review panel (25,26).  NHL cases were limited 

to solid tumors; therefore lymphocytic leukemias were not included in the NHL case 

subgroup.  Controls were 1,245 white males aged 30 or older without a history of 

hemolymphatic cancer that were frequency-matched to cases by age (within five-year 

groups), state, and vital status.  Detailed information on agricultural exposures, other 

occupational exposures, medical history, smoking, and other potential risk factors for NHL 

was obtained through in-person structured interviews of cases, controls, or next-of-kin (25-

30). 

 

C.2. t(14;18)-PCR study 

 In 1997, archival paraffin-embedded tumor blocks were requested and successfully 

retrieved for 248 FARM study NHL cases (40% of all NHL cases in the original study) (12).  

 109



 

Over half of the tumor blocks that were not retrieved had been destroyed or lost; the 

remainder were held at institutions that declined to participate in the t(14;18)-NHL study.  

Up to 16 5-micron sections and 16 10-micron sections were cut from each archival block. A 

single pathologist reviewed the first, middle, and last sections to confirm the presence of 

tumor tissue and assign histological subtypes according to the Revised European American 

Lymphoma classification scheme (REAL) (31).   

 t(14;18)-PCR assays were performed on DNA extracted from 10-micron sections cut 

from archival tumor blocks (12).  Each reaction included a consensus primer corresponding 

to a conserved portion of the J segment of the IGH gene on chromosome 14 (5’-

ACCTGAGGAGACGGTGAGC-3’) and a second primer corresponding to the BCL2 major 

breakpoint region (MBR) on chromosome 18 (MBR1: 5’-GAGAGTTGCTTTACGTG-

GCCTG-3’) which includes 40-60% of BCL2 breakpoints involved in t(14;18).  

Translocation-negative samples were subjected to a second PCR reaction with the IGH 

consensus primer and a second BCL2 primer 360 base pairs upstream of the MBR primer 

(MBR2: 5’-CGCTTGACTCCTTTACGTGCTG-3’).  Amplified DNA was isolated, 

denatured, and separated by gel electrophoresis, and transferred to a nylon membrane using a 

Southern blot procedure.  Amplification was confirmed using radio-labeled probes that 

hybridized to DNA adjacent to each BCL2 primer site.  A 175-base pair segment of the 

hemoglobin beta (HBB) gene was amplified as an internal positive control to confirm that the 

DNA extracted from each sample was adequate for PCR amplification of t(14;18).  Sixty-six 

samples that were t(14;18)-negative and HBB-negative may have been false-negative because 

of DNA that was degraded or otherwise inadequate for the assay; therefore, these cases were 

classified as missing to distinguish them from translocation-negative samples in which HBB 

 110



 

amplification was successful.  Amplification products from 20 of the 68 t(14;18) positive 

samples were sequenced to confirm that unique translocation breakpoints were amplified 

from each sample. 

 

C.3. t(14;18)-FISH study 

 Commercially available FISH t(14;18) assays were run on 5-micron sections that 

were previously cut and archived from FARM study tumor blocks (Vysis, 32).  All sections 

were stored at 4°C prior to use.  Histologic subtype classifications were updated according to 

a modified version of the current World Health Organization (WHO) classification scheme 

based on morphology only with cases that would be classified as chronic lymphocytic 

leukemias/small lymphocytic lymphomas (CLL/SLL) are referred to as small lymphocytic 

lymphomas (SLL) since they were limited to solid tumors (33). The majority of cases 

classified as diffuse large cell lymphomas (DLCL) probably correspond to diffuse large B 

cell lymphomas (DLBCL); however, B-cell status was not confirmed.  Cases classified as 

Burkitt lymphomas (BL) may include both Burkitt and Burkitt-like lymphomas. 

 t(14;18) translocations were identified using the LSI® IGH/BCL2 Dual Color, Dual 

Fusion Translocation Probe  (Vysis, 32). Assays were run according to manufacturer’s 

instructions with minor modifications, as described in detail previously (Chang et al 2007, 

submitted for publication, 34).  Briefly, we began by assaying cases with at least two 5-

micron sections available (N = 230) for any IGH translocation.  Deparaffinization and 

pretreatment of archival 5-micron sections was performed using the Vysis® VP2000™ 

Processor (31).  A 6-minute denaturation was followed by a 16-18 hour hybridization step 

(HYBrite™ machine, Abbott Molecular Inc., 32).  Finally, a rapid wash procedure was 
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performed to remove unbound probe, and DAPI II counterstain was applied over the target 

area.  Newly assayed slides were stored at -20°C until scoring.   

 FISH assays were scored using the 40x and 100x oil objectives on a Zeiss Axioskope 

2 (Carl Zeiss, 35) equipped with a triple bandpass filter set (DAPI/Green/Orange V.2,32).  

For each sample, a minimum of 25 non-overlapping lymphocytes with complete FISH 

signals were scored; samples with less than 25 readable cells were classified as unreadable.  

In addition, samples were classified as unreadable if the signal strength of one or both FISH 

probes was inadequate to visualize signals or distinguish fusion signals from signals 

produced by individual probes. t(14;18) assays were scored by two investigators.  Cases were 

classified as translocation positive if more than 30% of cells showed abnormal signal 

patterns.  Individual scores were concordant for 121 of 169 assays. Samples with discordant 

results were assigned a consensus classification based on a joint review, including 22 assays 

that were initially classified as positive by one reviewer and negative by the other, and 26 

that were initially classified as unreadable by one scorer only (with 20 subsequently 

classified as positive or negative, and 6 classified as unreadable based on joint review.) 

 

C.4. bcl-2 expression by IHC 

 bcl-2 immunostaining was performed on paraffin sections from 229 FARM study 

cases using a mouse monoclonal antibody corresponding to bcl-2 amino acids 41-54 (clone 

124; Dako, 36).  Cases were classified as bcl-2 positive if more than 20% of cells showed 

cytoplasmic staining. Independent scores assigned by two investigators were concordant for 

201 of 219 cases (92%) that were adequate for scoring. Cases with discordant results were 

assigned a consensus classification after review (7 positive, 11 negative for bcl-2).   
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C.5. Data analysis 

 Ever use of any tobacco and specific tobacco products (cigarettes, cigars, pipe 

tobacco, chewing tobacco, snuff) was defined as daily use for at least 3 months. Cigarette 

smoking was categorized according to average intensity of use (0, 1-10, 11-20, >20 cigarettes 

per day), age of first use (18 or less, over age 18), and pack-years (0, >0-20, >20-40, >40).  

In addition, we estimated associations between NHL case-subtypes and other putative NHL 

risk factors including, family history of hemolymphatic cancer (in a first- or second-degree 

relative), hair dye use (ever use of hair dye at least once a month for at least one year, or 

occupational exposure to hair dyes on any job held for 1 or more years), occupation as farmer 

(ever worked on a farm for 6 continuous months or longer since the age 18), weekly alcohol 

use (ever drank beer, wine or hard liquor weekly for at least one year), education (<=12 

years, >12 years), and marital status (married/widowed, divorced/separated, never married). 

 Case-only (case-case) analyses were performed using unconditional logistic 

regression models to determine whether estimates were comparable between molecular 

subtypes, including t(14;18)-positive vs. –negative case-subtype comparisons and bcl-2 

positive vs. -negative case-subtype comparisons (SAS 9.1, 37).  Case-subtype: control 

associations were estimated by polytomous regression models with the expectation-

maximization (EM) algorithm used to reduce potential bias caused by missing case-subtype 

data (for cases for whom tumor blocks could not be retrieved or that were not successfully 

assayed) as previously described (38) (Stata release 9.0, 39).   

 All models included the matching factors state (Minnesota vs. Iowa), age at diagnosis 

(coded using upper and lower tail-restricted quadratic splines), and proxy status.  Covariates 

examined were factors associated with NHL in past studies (e.g. alcohol use (40), family 
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history of hemolymphatic (HLP) cancer (41) and farming (42) as well as demographic 

factors (age (43) and education (43,44)).  For the full logistic model of each main exposure 

evaluated, potential confounders were selected based on being a common cause of both the 

exposure and disease using conceptual models (45).  No confounding was evident based a 

0.15 or greater change in the beta coefficient of the main exposure variable when the 

potential confounder was removed from the model; therefore, final models included the 

matching factors only. 

 
D. Results 

 Overall, cases were more likely to be classified as t(14;18)-positive based on FISH 

(81 of 154 cases, 53%) than PCR (68 of 182 cases, 37%).  Additionally, detection of t(14;18) 

among follicular lymphomas by FISH (81%, 35 of 43 FL cases assayed) was higher than by 

PCR (44%) (Chapter 5) (34). The majority of cases with discordant results for FISH versus 

PCR (32 of 40 cases with data for both assays) were PCR-negative/ FISH-positive (18 FL, 4 

DLCL, 94% bcl-2 positive), consistent with our expectation that FISH assays would have a 

higher sensitivity to detect t(14;18) than our previous PCR assay (15-21).  

  Tobacco use was common in the study population, with only 23% of 1245 controls 

and 17% of 154 successfully assayed cases reporting no use of tobacco products.  Any 

tobacco use was associated with t(14;18)-negative NHL (OR=1.98, 95% CI=1.09-3.59), but 

not t(14;18)-positive NHL (OR=0.94, 95% CI=0.63-1.41) (Table 6.1).  In addition, t(14;18)-

negative NHL was associated with any cigarette use (OR=1.53, 95% CI=0.74-3.17), cigar 

use (OR=1.58, 95% CI=0.98-2.55), and use of both cigarettes with other forms of tobacco 

(OR=2.09, 95% CI=1.12-3.89).  The association between cigarette use and t(14;18)-negative 

NHL was consistent for all categories of cigarettes per day, pack-years and age at first use, 
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without evidence of a positive dose-response relation.  In contrast, associations between the 

same exposures and t(14;18)-positive NHL were null or inverse (OR’s 0.6-1.0).  Case-case 

effect estimates for t(14;18)-positive vs. t(14;18)-negative NHL were often close to 0.5 or 

below for cigarette exposures, consistent with associations with t(14;18)-positive NHL that 

were generally below the null, while associations with t(14;18)-negative NHL were above 

the null (Table 6.1).   

 t(14;18)-positive NHL was imprecisely associated with tobacco use other than 

cigarette smoking (OR=1.57, 95% CI=0.88-2.79), pipe use (OR=1.31, 95% CI=0.84-2.06), 

and chewing tobacco use (OR=1.45, 95% CI=0.85-2.5).  In addition, there was evidence of a 

stronger association when chewing tobacco use began before age 18 based on a small number 

of exposed cases (OR=2.12, 95% CI=0.97-4.64, 6 exposed cases).   

 Based on bcl-2 expression detected by IHC, 168 cases were bcl-2-positive (77%) and 

51 cases were bcl-2-negative.  As expected, the majority of t(14;18)-positive cases were bcl-

2-positive (66 of 76 cases), with only 10 t(14;18)-positive cases classified as bcl-2-negative.  

The majority of t(14;18)-negative cases also were bcl-2-positive (40 of 69 cases), with only 

29 t(14;18)-negative cases classified as bcl-2-negative.   Any tobacco use appeared to be 

more strongly associated with bcl-2-negative NHL (OR=1.79, 95% CI=0.84-3.79) than bcl-

2-positive NHL (OR=1.18, 95% CI=0.88-1.6) (Table 6.2).  However, cigarette use, pack-

years, and intensity were not clearly associated with either bcl-2 case-subtype.  Consistent 

with these findings, case-case estimates for bcl-2 positive NHL versus bcl-2 negative NHL 

were close to null (Table 6.2). Associations between tobacco use and other risk factors were 

not estimated for case-subtypes defined by the joint distribution of t(14;18) and bcl-2 

expression due to small numbers of cases within subgroups. 
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 Estimated associations for other non-occupational exposures and t(14;18) case-

subtypes were generally consistent with previously reported estimates for t(14;18) case-

subtypes classified based on PCR (Table 6.3) (12).  Consistent with previous findings, a 

positive family history of hemolymphatic cancer was associated with t(14;18)-negative 

lymphoma (OR=2.9, 95% CI=1.77-4.76), but not t(14;18)-positive lymphoma (OR=0.91, 

95% CI=0.36-2.34).  However, a positive family history was associated with both bcl-2 

negative (OR=2.31, 95% CI=1.11-4.80) and bcl-2 positive (OR=1.7 95% CI=1.1-2.63) case-

subtypes (Table 6.3).  FISH results suggest a weaker association between hair dye use and 

t(14;18)-positive NHL (OR=1.36, 95% CI=0.67-2.73) than t(14;18)-negative lymphoma 

(OR=2.73, 95% CI=1.56-4.76), while IHC results suggest a stronger association between hair 

dye use and bcl-2 positive NHL (OR=2.16, 95% CI=1.4-3.32), than bcl-2 negative NHL 

(OR=1.37, 95% CI=0.5-3.79); however, all estimates were based on small numbers of 

exposed cases in each case-subgroup.   

 

E. Discussion 

 Using FISH assays, we detected a number of t(14;18)-positive cases that had been 

previously classified as t(14;18)-negative based on PCR.  Although case-subtype:control 

associations for many exposures were similar between the current study and the previous 

PCR-based study, we noted a positive association between t(14;18)-negative NHL and 

tobacco use that was not apparent based on our previous analysis.  A previous population-

based case-control study of tobacco use and t(14;18) NHL in Nebraska also reported an 

association between smoking and t(14;18)-negative NHL (OR=1.9, 95% CI=1.1-3.3), but the 

association was specific to women, with no t(14;18) case-subtype associations evident among 
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men (13). The Nebraska study investigators also reported that a positive family history of a 

hematopoietic cancer was associated with both t(14;18)-subtypes (OR’s 1.9-2.2) among both 

men and women, while only t(14;18)-negative NHL was associated with family history in 

our study.  Finally, we noted an association between hair-dye use and t(14;18)-negative NHL 

(and to a lesser extent, t(14;18)-positive NHL), while hair-dye use was not associated with 

either case-subtype in the Nebraska study (13).   

 Differences between the current study and the Nebraska study of t(14;18) NHL may 

reflect differences between the two study populations, random variation due to small sample 

sizes, bias due to sampling error or uncontrolled confounding, or differences in case-

subtyping (13).  Although both studies used the same commercial FISH t(14;18) assay kits, 

we scored assays run on standard sections cut through the entire biopsy sample for each case, 

while Nebraska study samples were scored based on a review of four representative 0.6-mm 

cores from each biopsy that were included in a tissue micoarray (TMA). Use of TMAs 

reduces assay costs and increases scoring efficiency, but it is also possible that neoplastic 

t(14;18)-positive lymphocytes may not be represented in TMA cores for some cases.  We 

noted a higher proportion of t(14;18)-positive cases among all cases (53% vs. 38%) and 

among follicular lymphomas (81% vs. 67%) than those in the Nebraska study, which would 

be consistent with differences in the prevalence of t(14;18)-NHL between the two study 

populations, or with reduced sensitivity due to the use of TMAs in the Nebraska study.  

 The association between cigarette smoking and t(14;18)-negative NHL was 

unexpected, given results of several previous studies that found a positive association 

between smoking and follicular lymphoma (1-7), which is largely t(14;18)-positive (14-21), 

as well as prior evidence of increased t(14;18) in the peripheral blood lymphocytes of smoker 
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compared with non-smokers (10,11).  The lack of positive dose-response for cigarette 

smoking suggests a low-dose threshold or that smoking is acting as a proxy for another 

unmeasured factor, though chance association or bias are still possible.  Although cigarette 

use was consistently associated with t(14;18)-negative NHL, the evaluation for other tobacco 

products including daily pipe use, chewing tobacco, and cigar use was inconclusive based on 

small numbers (see also Appendices L and M).   

 t(14;18)-negative NHL pathways are likely to be etiologically heterogeneous.  

Attempting to find several other common translocations (any IGH, BCL6, and t(8;14)) by 

running FISH assays on FARM study samples (34), we detected 14 cases positive for other 

IGH translocations and 3 cases positive for BCL6 translocations among the t(14;18)-negative 

cases and two BCL6-positive and one t(8;14)-positive cases among the t(14;18)-positive 

cases.  Additional molecular characterization of t(14;18)-negative cases will require studies 

of sufficient size to estimate more precise associations with case-subtypes and might help 

clarify whether the association between tobacco use and t(14;18)-negative NHL may have 

been causal versus an artifact of chance or bias. 

 Strengths of the study include use of a large population-based control group, the 

availability of detailed exposure data from both cases and controls, the use of FISH to 

determine t(14;18)-subtypes, and the availability of bcl-2 expression data in addition to 

information on t(14;18). However, due to small numbers of cases we were unable to evaluate 

case-subtypes defined by both bcl-2 and t(14;18).  

 Among the limitations, only 25% of the 622 original FARM study NHL cases were 

successfully assigned a case-subtype, and only 20% of participants reported never use of 

cigarettes, resulting in small case subgroups and imprecise estimates.  The majority of 
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missing cases were from Minnesota (56% of 461 total missing), consequently, case-

subtype:control estimates may have been biased if missing outcome data were associated 

with exposures.  We used an EM-based method to impute missing case-subtype data, as 

previously described; however, bias due to missing data cannot be ruled out (38).  

 In summary, our data suggest that smoking and a family history of hemolymphatic 

cancer may be associated with t(14;18)-negative NHL.  In order to clarify the role of 

smoking and other potential risk factors in the etiology of t(14;18) NHL, future studies 

should incorporate histologic subtypes assigned in clinical settings where the role of 

molecular analyses is increasing in the routine pathologic evaluation of lymphoma cases 

(46); subtypes defined by molecular characteristics in addition to t(14;18) should be pursued 

as well.  Alternatively, improved methods to estimate the incidence and prevalence of 

t(14;18) translocations in the peripheral blood lymphocytes of people without cancer may 

help clarify whether or how smoking and other exposures influence the pathogenesis of 

t(14;18)-positive lymphomas (47-49).  Improvements on these studies, including better 

control for confounding and detection of additional genetic events, could generate hypotheses 

in regards to identifying genotoxic exposures that may be associated with NHL molecular 

subtypes (50-53). 
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Table 6.1. Adjusted* odds ratios for use of tobacco products among t(14;18)-positive or –negative NHL cases† compared with 
controls, and for t(14;18)-positive cases compared with –negative cases† 
Exposures Controls  t(14;18)-positive vs. controls‡  t(14;18)-negative vs. controls‡  t(14;18)-positive vs. 

t(14;18)-negative§ 
 N  N OR 95% CI  N OR 95% CI  OR 95% CI 
No tobacco use 286  17 1.0   9 1.0     
Used any tobacco 959  64 0.94 0.63 - 1.41  63 1.98 1.09 - 3.59  0.59 0.24-1.44 
             
Tobacco by product             
Cigarettes 825  51 0.57 0.33 - 0 .98  56 1.53 0.74 - 3.17  0.41 0.13-1.26 
Pipe 293  26 1.31 0.84 - 2.06  20 0.86 0.53 - 1.38  1.54 0.72-3.28 
Cigar 167  7 0.69 0.34 - 1.39  14 1.58 0.98 - 2.55  0.45 0.17-1.32 
Chew tobacco  115  13 1.45 0.85 - 2.50  9 1.03 0.54 - 1.98  1.48 0.54-4.10 
Snuff 141  9 1.04 0.56 - 1.94  8 0.77 0.4 - 1.48  1.27 0.42-3.78 
             
No tobacco use 286  17 1.0   9 1.0     
Cigarettes only 457  26 0.83 0.5 - 1.37  28 2.10      1.12 - 3.94      0.53 0.20-1.44 
Cigarettes and other 368  25 0.87 0.54 - 1.4  28 2.09 1.12 - 3.89  0.52 0.19-1.40 
Other tobacco only 132  13 1.57 0.88 - 2.79  7 1.38 0.58 - 3.26  1.32 0.35-5.08 
             
Cigarette pack-years             
0-20 pack-yrs 216  17 1.0 0.6 - 1.67  11 1.68 0.89 - 3.16  0.81 0.29-2.28 
20-40 pack-yrs 207  11 0.8 0.45 - 1.41  8 1.27 0.62 - 2.59  0.78 0.24-2.51 
40+ pack-yrs 342  20 0.6 0.37 -0 .96  33 1.99 1.19 - 3.34  0.26 0.10-0.63 
             
Cigarettes/day             
0 418  30 1.0   16 1.0     
>0-10 176  11 0.85 0.48 - 1.51  10 1.82 0.99 - 3.35  0.56 0.19-1.68 
>10-20 363  21 0.7 0.43 - 1.11  23 1.86 1.1 - 3.15  0.42 0.17-1.05 
>20 259  17 0.7 0.42 - 1.15  22 1.72 1.0 - 2.98  0.36 0.14-0.92 
             
Product/age started             
Cigarettes             
>18 332  22 0.81 0.51 - 1.28  19 1.69 0.97 - 2.93  0.62 0.25-1.51 
≤18 493  29 0.71 0.46 - 1.08  37 1.96 1.19 - 3.21  0.39 0.17-0.89 
Chewing tobacco             
>18 86  7 1.21 0.63 - 2.33  6 1.16 0.57 - 2.36  1.08 0.31-3.77 
≤18 29  6 2.12 0.97 - 4.64  3 1.16 0.39 - 3.5  1.75 0.40-7.72 
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*Adjusted for state, age (restricted quadratic splines), and proxy status   
†Case-subtypes based on fluorescence in situ hybridization (FISH) assays 
‡Estimates from expectation-maximization (EM) polytomous regression models including controls and both case-subtypes  

§Estimates from unconditional logistic regression models restricted to assayed cases 

 



 

Table 6.2. Adjusted* odds ratios for use of tobacco products among bcl-2-positive or –negative NHL cases† compared with controls, 
and for bcl-2-positive cases compared with –negative cases† 
Exposures Controls  bcl-2-positive vs. controls‡  bcl-2-negative vs. controls‡  bcl-2-positive vs. 

bcl-2-negative § 
 N  N OR 95% CI  N OR 95% CI  OR 95% CI 
No tobacco use 286  32 1.0   7 1.0     
Used any tobacco 959  136 1.18     0.88 - 1.6    43 1.79 0.84 - 3.79       0.71 0.29-1.76  
             
Tobacco by product             
Cigarettes 825  119 1.07     0.68 - 1.66     35 0.56      0.26 - 1.18       1.92 0.68-5.43 
Pipe 293  43 1.08     0.8 - 1.47        11 1.0   0.51 - 1.94       1.24 0.55-2.75  
Cigar 167  22 1.08     0.75 - 1.55       7 1.18     0.55 - 2.52       0.93 0.36-2.40  
Chew tobacco  115  20 1.26     0.84 - 1.91       5 1.18     0.49 - 2.86       1.17 0.38-3.66 
Snuff 141  14 0.73      0.46 - 1.18       7 1.51     0.67 - 3.38       0.49 0.16-1.47  
             
No tobacco use 286  32 1.0   7 1.0     
Cigarettes only 457  67 1.18     0.85 - 1.65       21 1.66     0.74 - 3.75       0.78 0.29-2.08  
Cigarettes and other 368  52 1.2      0.85 - 1.69       14 1.67     0.71 - 3.92       0.80 0.29-2.25 
Other tobacco only 132  17 1.16     0.72 - 1.89       8 2.89     1.09 - 7.66      0.38 0.11-1.34 
             
Cigarette pack-years              
0-20 pack-yrs 216  31 1.11     0.75 - 1.63       10 1.62     0.8 - 3.28        1.02 0.38-2.69  
20-40 pack-yrs 207  30 1.13     0.79 - 1.61       4 0.44      0.15 - 1.26       3.00 0.82-10.93 
40+ pack-yrs 342  50 1.03     0.74 - 1.43       18 1.2 0.64 - 2.25       0.89 0.39-2.05  
             
Cigarettes/day              
0 418  49 1.0   15 1.0      
>0-10 176  24 1.21     0.82 - 1.79       6 1.14     0.49 - 2.67       1.31 0.43-3.95  
>10-20 363  52 1.09     0.79 - 1.5        15 1.12     0.58 - 2.16       1.18 0.50-2.79 
>20 259  39 1.07     0.75 - 1.52       12 1.01     0.5 - 2.06        1.11 0.45-2.72  
             
Product/age started             
Cigarettes             
>18 332  51 1.14     0.82 - 1.57       14 1.05     0.54 - 2.07       1.24 0.53-2.91 
≤18 493  68 1.14     0.84 - 1.53       21 1.13     0.61 - 2.1        1.09 0.49-2.42 
Chewing tobacco              
>18 86  11 1.15     0.7 - 1.89        3 1.32     0.46 - 3.79       0.85 0.21-3.38  
≤18 29  9 1.69     0.88 - 3.26       2 1.43     0.34 - 6.07       1.10 0.21-5.65  
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*Adjusted for state, age (restricted quadratic splines), and proxy status     
†Case-subtypes based on immunohistochemistry (IHC) assays 
‡Estimates from expectation-maximization (EM) polytomous regression models including controls and both case-subtypes  
§Estimates from unconditional logistic regression models restricted to assayed cases 
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Table 6.3.  Adjusted*† odds ratios for selected exposures among t(14;18)-positive or –negative NHL cases‡ compared with controls 
and for bcl-2-positive or –negative NHL cases§ compared with controls 
Exposures Controls  t(14;18)-positive vs. 

controls 
 t(14;18)-negative vs. 

controls 
 bcl-2-positive vs. 

controls 
 bcl-2-negative vs. 

controls 
 N  N OR 95% CI  N OR 95% CI  N OR 95% CI  N OR 95% CI 
Farmer 698  52 1.34    0.88 - 2.04      40 0.97     0.64 - 1.46       99 1.10    0.85 - 1.43    29 1.26    0.73 - 2.18    
Any hair dye 58  8 1.36    0.67 - 2.73      12 2.73    1.56 - 4.76      21 2.16    1.40 - 3.32    4 1.37    0.50 - 3.79   
Education ≤ 12 years 878  60 1.26    0.81 - 1.95      49 0.87     0.58 - 1.31       118 1.09    0.82 - 1.45    34 0.91 0.52 - 1.60 
Drank alcohol weekly 686  36 0.73     0.49 - 1.07      41 1.16    0.78 - 1.74       87 0.86    0.66 - 1.11    30 1.12    0.64 - 1.94    
HLP in first-degree relatives 51  3 1.32    0.48 - 3.60       6 2.60     1.36 - 5.00       11 1.63    0.94 - 2.84    6 2.97    1.33 - 6.63    
HLP in first or second-degree 
relatives 

78  4 0.91     0.36 - 2.34      10 2.90     1.77 - 4.76      19 1.70    1.10 - 2.63    8 2.31    1.11 - 4.80    

*Adjusted for state, age (restricted quadratic splines), and proxy status 
†Estimates from expectation-maximization (EM) polytomous regression models including controls and both case-subtypes 
‡Case-subtypes based on fluorescence in situ hybridization (FISH) assays 
§Case-subtypes based on immunohistochemistry (IHC) assays  
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CHAPTER 7 

DISCUSSION 

A.  Study Aims and Findings 

A.1. Utility of FISH  

 We extended a previous analysis (1) of the NCI’s Factors Affecting Rural Men 

(FARM) study samples by using fluorescence in situ hybridization (FISH) assays to identify 

tumors with translocations involved with the immunoglobulin heavy chain gene (IGH) 

promoter on chromosome 14, including any IGH translocation, t(8;14) involving IGH and the 

C-MYC gene on chromosome 8, and translocations involving BCL-6 on chromosome 3.  In 

addition, we used FISH to identify t(14;18) involving IGH and BCL2 on chromosome 18 in 

samples that were previously classified based on PCR and also evaluated bcl-2 protein 

expression in tumor samples based on immunohistochemistry.   

 Our first aim was to evaluate the utility of FISH for detecting common translocations 

in paraffin-embedded NHL tumor sections. To increase efficiency, we had considered using 

the IGH assay as an intitial screen such that translocation-specific assays would be run only 

on cases that were first determined to have a translocation involving IGH.  However, we 

concluded that the IGH assay was not reliable enough to use in this fashion because it failed 

to detect five t(14;18)-positive cases detected in the FISH assays.  In addition, the majority of 

IGH-positive cases were t(14;18)-positive (75 of 94 IGH-positive cases); consequently, 

associations between exposures and case-subtypes defined by any IGH translocation would 

be largely determined by t(14;18) status.   



 

 The number of positive cases detected by the BCL6- (n=5) and t(8;14)-FISH probes 

(n=1) in our case population was insufficient for meaningful epidemiologic analyses.  

Previous studies have shown that these translocations are less common compared to t(14;18) 

(2,3).  None of the 10 Burkitt lymphoma cases run with t(8;14)-FISH in our study population 

were t(8;14)-positive, contrary to expectations that 75-100% would be (4-8); however, cases 

may have had CMYC translocations with partner genes other than IGH (e.g. t(8;22) or t(2;8)), 

which occur in 20% of BL/BLL cases (9). 

 Follicular lymphoma cases were more likely to be classified as t(14;18)-positive 

based on FISH (81%) than PCR (44%).  This finding supports the higher sensitivity of FISH 

versus PCR to detect t(14;18) (10-14), given that 83-100% of follicular lymphoma cases are 

expected to be t(14;18)-positive (2,15-18). The success rate for classifying t(14;18) status 

was somewhat higher for PCR (73%) than FISH (67%); however, we believe that up to 28% 

of cases classified as t(14;18)-negative based on PCR may have been false-negative.  One 

other study found a higher success rate with FISH (86%) than PCR (50%) (14), but this may 

reflect differences in assay protocols or characteristics of study samples. For example, 

archival samples assayed in our study were 23 to 26 years old.    

 

A.2. Tobacco and t(14;18)-NHL 

 The second aim of our study was to determine whether risk factors varied among 

NHL molecular subtypes.  We evaluated tobacco use as a risk factor across NHL case-

subtypes defined by t(14;18) and bcl-2 expression.  In previous studies, smoking was more 

strongly associated with follicular lymphomas, which are almost always t(14;18)-positive 

(19), than with NHL overall or other lymphoma subtypes (20-26).  Additionally, studies have 
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found associations between smoking and the frequency of t(14;18)-positive cells in the bone 

marrow and peripheral blood of healthy individuals (27,28).  These observations suggested 

that smoking may act directly or indirectly to increase the risk of t(14;18)-positive tumors.  

Therefore, the positive associations found with t(14;18)-negative NHL for any tobacco use 

(OR=1.98, 95% CI=1.09-3.59) and cigarette use only (OR=2.10, 95% CI=1.12-3.94), and the 

null associations with t(14;18)-positive NHL (any tobacco, OR=0.94, 95% CI=0.63-1.41; 

cigarette use only, OR=0.83, 95% CI=0.5-1.37) were unexpected.  The associations with 

t(14;18)-negative NHL persisted when cigarette smoking was classified according to pack-

years, intensity (cigarettes per day), and age at first use, without evidence of a positive dose-

response or difference by age at intiation.   

 In the previous analysis of t(14;18)-NHL based on PCR, smoking was not clearly 

associated with either subtype (1); however, we believe that case-classification was improved 

in the current study as a consequence of the use of FISH to classify cases.  The only other 

population-based case-control study of risk factors for t(14;18) subtypes that we are aware of 

reported a positive association between smoking and t(14;18)-negative NHL, but the 

association was only evident among women (OR=1.9, 95% CI=1.1-3.3, based on 64 cases), 

and there was no evidence of an association among men (29).  Differences between the 

current study and the Nebraska study of t(14;18) NHL may reflect differences between the 

two study populations, random variation due to small samples sizes, bias due to sampling 

error or uncontrolled confounding, or differences in case-subtyping.  

 Overall, bcl-2 expression assays did not clarify the nature of the subtype-specific 

association between t(14;18)-negative NHL and cigarette smoking.  We did not see evidence 

of associations between smoking and bcl-2 negative NHL, which suggests that the 
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associations observed with t(14;18)-negative NHL were not a function of bcl-2 negative 

status.  However, the majority of t(14;18)-negative and t(14;18)-positive cases were positive 

for bcl-2 expression (87% and 58% respectively); consequently, associations with bcl-2-

negative case-subtypes and joint t(14;18)-bcl-2-negative case-subtypes were difficult to 

interpret due to the small numbers within case-subtype strata.  

 

B.  Strengths and Limitations 

 Strengths of the study included use of a large population-based control group, the 

availability of detailed exposure data from both cases and controls, the use of FISH to 

determine t(14;18)-subtypes, and the availability of bcl-2 expression data in addition to 

information on t(14;18).  However, we were unable to interpret effect estimates for case-

subtypes defined by both bcl-2 and t(14;18) due to small numbers of cases within subtype 

groups.  

 The small number of cases hampered the precision and stability of estimates.  

Although 622 cases were enrolled in the study, tumor blocks were available for less than 

40% of the cases.  The number of successfully assayed cases was reduced to 25% of the 

original FARM study cases, and the majority of missing cases (56%) were from one of the 

two states included in the study.  Use of the EM algorithm to impute missing case subtype 

data may have reduced bias improved precision (34), but small number of cases still 

hampered precision, and bias due to misclassification, uncontrolled confounding, and other 

sources of systematic error cannot be ruled out.  

 Unlike PCR, which requires that DNA be extracted from tumor samples, FISH can be 

performed and visualized directly on histologic sections.  With the tissue architecture 
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preserved, the scorer has the ability to focus on appropriate regions of the tumor, therefore 

enhancing specificity for detecting translocations in neoplastic versus non-neoplastic 

lymphocytes.  In addition, the fluorescent probes in FISH can hybridize to long regions of 

DNA; in contrast, PCR cannot detect widely dispersed breakpoints or breakpoints outside of 

the PCR primers used (30).  Disadvantages of FISH include the difficulty of scoring cells that 

are overlapping or truncated, and the loss of signal strength on exposure to fluorescent light, 

and over time (though we observe signals lasting for several months).  As a consequence, 

many samples were classified as “unreadable,” which reduced the number of cases with 

known subtypes for the analysis.  In addition, FISH probes were expensive, costing about 

$1000 for 20 assays, and scoring individual sections was labor intensive.   

    

C. Future Directions 

 Our results support the use of FISH for detecting t(14;18) translocations in archival 

paraffin-embedded tumor blocks from case-control studies.  We found that cigarette smoking 

was consistently associated with t(14;18)-negative NHL, however the reason for this 

association is unclear given that t(14;18)-negative pathways are likely to be etiologically 

heterogeneous, and given prior information suggesting that tobacco use may increase the 

prevalence of t(14;18) in bone marrow and peripheral lymphocytes (27,28) and thus increase 

the risk of t(14;18)-positive follicular lymphoma.  Additional molecular characterization of 

t(14;18)-negative cases, which accounted for nearly 50% of the cases evaluated, might help 

clarify whether the association between tobacco use and t(14;18)-negative NHL may have 

been causal versus an artifact of chance or bias. 
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 Future studies should consider incorporating strategies to minimize cost and labor 

including the use of tissue microarrays (TMAs) that include representative cores from 

multiple case biopsies (29,31) and automated FISH scoring (32,33).  Alternatively, new 

studies may be able to take advantage of molecular analyses that are increasingly common as 

part of the routine pathologic evaluation of lymphoma cases.  Specifically, many pathologists 

now attempt to perform a cytogenetic analysis of all tumor biopsies, with translocation-

specific FISH assays used when cytogenetic analyses are unsuccessful.  Incorporating these 

data would allow epidemiologic analyses of molecular subtypes without the expense and 

difficulty of obtaining archival tumor blocks and running and scoring FISH assays (35).   
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Appendix A. Expected FISH signal pattern of break-apart probe in negative and positive cells  
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Appendix B. Example of sections assayed with the IGH break-apart FISH probe 

    a) IGH-negative          b) IGH-positive 
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Appendix C. Example of sections assayed with the BCL6 break-apart FISH probe 

  a) BCL6-negative         b) BCL6-positive 
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Appendix D. Expected FISH signal pattern of dual-fusion probe in negative and positive cells 
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Appendix E. Example of sections assayed with the t(14;18) dual-fusion FISH probe 

   a) t(14;18)-negative          b) t(14;18)-positive 
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Appendix F. Example of sections assayed with the t(8;14) dual-fusion FISH probe 

   a) t(8;14)-negative          b) t(8;14)-positive 
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Appendix G. Strategy and frequency of translocations detected using FISH assays.  Numbers of cases that were positive (pos), 
negative (neg) or unreadable (inadequate for scoring due to sample quality or signal strength, UR) for each FISH translocation assay. 
Sixty-four cases that were inadequate for the IGH assay were not subjected to any additional assays.   
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Appendix H. Adjusted* odds ratios for use of tobacco products among t(14;18)-positive/ bcl-2-positive, t(14;18)-negative/ bcl-2-
positive, t(14;18)-positive/ bcl-2-negative, t(14;18)-negative/ bcl-2-negative NHL cases† compared with controls 
Exposure t(14;18)-positive/ bcl-2-positive 

(n=66) 
 t(14;18)-negative/ bcl-2-positive 

(n=40) 
 t(14;18)-positive/ bcl-2-negative 

(n=10) 
 t(14;18)-negative/ bcl-2-negative 

(n=29) 
 N  OR 95% CI  N OR 95% CI  N OR 95% CI  N OR 95% CI 
Used any tobacco 51 1.01 0.56-  1.84  35 2.07 0.80 -5.34   9 2.62 0.33 -20.94   26 3.92 0.92 -16.64  
                
Tobacco by product                 
Cigarettes 43 0.71 0.31-1.62   32 1.45 0.42 -5.03  6 0.16 0.04 -0.68   23 0.99 0.28 -3.55 
Pipe 21 1.63 0.91 -2.93   10 0.91 0.43-1.94   2 0.69 0.14-3.42  9 1.23 0.53 -2.82  
Cigar 5 0.52 0.20 -1.33  8 1.48 0.65 -3.34   2 1.61 0.32 - 7.98   5 1.17 0.43-3.19  
Chew tobacco 12 2.33 1.16 -4.71  5 1.35 0.50 -3.65  1 0.94 0.11 -7.91  4 1.48 0.49 -4.50  
Snuff 7 1.09 0.46 -2.55   2 0.38 0.09-1.64   1 1.24 0.14 -10.69   5 1.66 0.58 -4.74 
                    
No tobacco use 15     5     1     2    
Cigarettes only 20 0.79 0.40 -1.58   17 2.03 0.73 -5.61  5 2.73 0.31-23.77  10 3.00 0.65 -13.86 
Cigarettes and 
other 

23 1.16 0.59-2.27  15 2.29 0.82-6.38   1 0.77 0.05 -12.49   13 5.03 1.12 -22.56  

Other tobacco only 8 1.49 0.60 -3.70  3 1.53 0.35 -6.67  3 11.36 1.12-115.72  3 4.09 0.66 -25.47  
                    
0-20 pack-yrs 12 0.86 0.41 -1.78  5 1.08 0.34 -3.40  4 1.60 0.39 -6.63   5 1.73 0.48-6.19  
20-40 pack-yrs 11 0.85 0.40 -1.79  5 1.15 0.37-3.6   0     3 1.12 0.26 -4.82 
40+ pack-yrs 17 0.81 0.42 -1.55   20 2.97 1.26 -6.99   2 0.46 0.08-2.57  13 3.21 1.10 - 9.34  
                    
Cigarettes/day                    
>0-10 9 0.87 0.39-1.93  5 1.43 0.46 -4.45   1 0.55 0.06 -4.94   4 1.88 0.50 -7.11 
>10-20 18 0.76 0.40 -1.45   8 1.59 0.63  4.00  3 0.64 0.14-2.93   11 2.40 0.81 -7.11  
>20 14 0.86 0.43 -1.72  15 2.86 1.17 -7.04  2 0.63 0.11 -3.50   7 2.01 0.62 -6.55  
                    
Product/age started                 
Cigarettes                    
>18 17 0.85 0.44 -1.63  10 1.47 0.57-3.81   4 1.01 0.25-4.12   9 2.20 0.72 -6.69  
≤18 26 0.85 0.47 -1.53   22 2.15 0.93-4.96  2 0.34 0.06 -1.86  14 2.15 0.76-6.11  
                    
Chewing tobacco                    
>18 7 1.72 0.75 -3.95   3 1.14 0.34-3.83   0     3 1.85 0.53 -6.38 
≤18 5 4.10 1.47 -11.43  2 2.53 0.56 -11.42  1 6.43 0.72 -57.49   1 2.08 0.26-16.43 

147

Abbreviations: n, number of total cases; N, number of exposed cases; OR, odds ratio; CI, confidence interval 
*Adjusted for state, age (restricted quadratic splines), and proxy status 
†Case-subtypes based on fluorescence in situ hybridization (FISH) assays and immunohistochemistry (IHC) assays 

 



 

Appendix I. Adjusted* odds ratios for selected exposures among t(14;18)-positive/ bcl-2-positive, t(14;18)-negative/ bcl-2-positive, 
t(14;18)-positive/ bcl-2-negative, t(14;18)-negative/ bcl-2-negative NHL cases† compared with controls 
Exposure t(14;18)-positive/ bcl-2-

positive (n=66) 
 t(14;18)-negative/ bcl-2-

positive (n=40) 
 t(1;418)-positive/ bcl-2-

negative (n=10) 
 t(14;18)-negative/ bcl-2-

negative (n=29) 
 N OR 95% CI  N OR 95% CI  N OR 95% CI  N OR 95% CI 
Farmer 41 1.34 0.79-2.27  21 0.90 0.47-1.73  6 1.34 0.36-4.96  16 1.09 0.50-2.34 
Any hair dye 8 2.55 1.15- 5.65  8 4.81 2.09 -11.07  0 n/a n/a  4 3.12 1.04-9.41 
Education ≤ 12 years 48 1.18 0.66-2.09  29 1.15 0.56-2.39  7 1.06 0.26-4.35  17 0.64 0.29-1.39 
Drank alcohol weekly 28 0.56 0.34-0.94  21 0.85 0.44-1.62  6 1.16 0.32-4.22  17 1.12 0.51-2.46 
HLP in first-degree 
relative 

3 1.15 0.35 -3.81  2 1.19 0.28-5.10  0 n/a n/a  4 3.67 1.22 -11.01 

HLP in first or second-
degree relative 

4 0.92 0.32-  2.60  4 1.53 0.53 -4.42  0 n/a n/a  6 3.61 1.42 -9.20 

Abbreviations: n, number of total cases; N, number of exposed cases; OR, odds ratio; CI, confidence interval; HLP, hemolymphatic cancer 
*Adjusted for state, age (restricted quadratic splines), and proxy status 
†Case-subtypes based on fluorescence in situ hybridization (FISH) and immunohistochemistry (IHC) assays 
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Appendix J. Adjusted* odds ratios for tobacco exposures among modified World Health Organization (WHO) subtypes compared 
with controls 
Exposures FL   DL   SLL   BL   Uncl  
 N OR, 95% CI  N OR, 95% CI  N OR, 95% CI  N OR, 95% CI  N OR, 95% CI 
No tobacco use 20 1.0  15 1.0  5 1.0  2 1.0  11 1.0 
Used any tobacco 63 0.95 (0.56-1.61)  99 1.91 (1.09-3.36)  28 1.73 (0.66-4.55)  15 2.17 (0.48-9.79)  34 0.89 (0.44-1.78) 
               
Tobacco by product               
Cigarettes 56 0.92 (0.40-2.13)  86 0.94 (0.50-1.78)  21 0.48 (0.19-1.24)  13 0.79 (0.16-3.80)  32 2.21 (0.50-9.72) 
Pipe 18 0.95 (0.54-1.70)  30 1.0 (0.64-1.58)  7 0.63 (0.26-1.51)  6 2.04 (0.70-5.97)  11 1.12 (0.54-2.36) 
Cigar 13 1.33 (0.70-2.53)  15 0.91 (0.51-1.63)  7 1.34 (0.55-3.28)  1  0.48 (0.06-3.75)  4 0.67 (0.23-1.95) 
Chew tob 5 0.67 (0.26-1.74)  17 1.75 (0.98-3.12)  3 0.79 (0.23-2.76)  1 0.94 (0.12-7.62)  4 1.03 (0.35-3.07) 
Snuff 5 0.65 (0.25-1.68)  14 0.99 (0.53-1.83)  2 0.39 (0.09-1.72)  4 2.37 (0.67-8.42)  3 0.68-0.20-2.36) 
               
No tobacco use 20 1.0  15 1.0  5 1.0  2 1.0  11 1.0 
Cigarettes only 32 0.95 (0.53-1.70)  49 1.91 (1.05-3.49)  13 1.83 (0.64-5.25)  6 1.57 (0.30-8.07)  20 1.04 (0.49-2.24) 
Cigarettes and other 24 0.94 (0.51-1.74)  37 1.89 (1.01-3.51)  8 1.16 (0.37-3.6)  7 2.96 (0.59-14.8)  12 0.82 (0.35-1.89) 
Other tobacco only 7 1.05 (0.43-2.60)  13 2.04 (0.93-4.46)  7 3.17 (0.96-10.5)  2 2.68 (0.35-20.5)  2 0.47 (0.1-2.16) 
               
0-20 pack-yrs 17 0.98 (0.52-1.86)  24 1.58 (0.89-2.83)  8 1.31 (0.52-3.31)  2 1.05 (0.18-6.0)  5 0.64 (0.22-1.84) 
20-40 pack-yrs 18 1.11 (0.59-2.08)  15 1.02 (0.53-1.97)  3 0.50 (0.14-1.83)  4 1.99 (0.47-8.39)  8 1.0 (0.42-2.55) 
40+ pack-yrs 19 0.78 (0.42-1.44)  38 1.53 (0.91-2.58)  10 1.06 (0.44-2.55)  4 1.14 (0.27-4.79)  17 1.34 (0.63-2.84) 
               
Cigarettes/day               
0 27 1.0  28 1.0  12 1.0  4 1.0  13 1.0 
>0-10 10 0.87 (0.41-1.84)  14 1.16 (0.59-2.25)  7 1.36 (0.52-3.53)  5 2.74 (0.71-10.66)  4 0.68 (0.22-2.12) 
>10-20 30 1.11 (0.64-1.91)  41 1.59 (0.95-2.65)  5 0.48 (0.16-1.39)  4 1.03 (0.25-4.30)  12 0.87 (0.39-1.96) 
>20 14 0.66 (0.34-1.29)  29  1.57 (0.90-2.74)  9 1.31 (0.53-3.26)  3 1.01 (0.22-4.72)  14 1.42 (0.64-3.12) 
               
Product/age started 

s
              

Cigarette                
>18 20 0.91 (0.50-1.67)  36 1.48 (0.88-2.50)  12 1.33 (0.58-3.04)  5 1.45 (0.38-5.58)  11 0.97 (0.42-2.21) 
≤18 36 0.96 (0.56-1.64)  50 1.39 (0.85-2.27)  9 0.65 (2.7-1.59)  8 1.48 (0.43-5.09)  21 1.14 (0.55-2.35) 
               
Chewing tobacco               
>18 4 0.68 (0.24-1.94)  10 1.47 (0.73-2.96)  1 0.40 (0.05-3.03)  0 --  2 0.64 (0.15-2.73) 
≤18 4 0.66 (0.09-4.98)  7 3.47 (1.44-8.33)  4 2.1 (0.46-9.6)  3 5.80 (0.68-50)  4 2.28 (0.51-10.3) 
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Percents are the proportion of cases in each exposure category out of the total number of WHO case-subtypes  
Abbreviations: FL, follicular lymphoma; DL, diffuse large cell lymphoma; SLL,small lympocytic lymphoma; BL, Burkitt lymphoma; Uncl, unclassified; N, number of exposed 
cases; OR, odds ratio; CI, confidence interval 
*Adjusted for state, age (restricted quadratic splines), and proxy status 
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Appendix K. Adjusted* odds ratios for selected exposures among modified World Health Organization (WHO) subtypes compared 
with controls 
Exposures FL   DL   SLL   BL   Uncl  
 N OR, 95% CI  N OR, 95% CI  N OR, 95% CI  N OR, 95% CI  N OR, 95% CI 
Farmer 40 0.85 (0.54-1.36)  68 1.21 (0.81-1.80)  21 1.20 (0.57-2.51)  7 0.69 (0.25-1.89)  24 0.96 (0.52-1.78) 
Any hair dye 14 3.76 (1.97-7.17)  8 1.53 (0.71-3.31)  2 1.14 (0.27-4.93)  2 4.04 (0.84-19.4)  3 1.26 (0.37-4.21) 
Education ≤ 12 years 52 0.85 (0.53-1.38)  81 0.99 (0.64-1.52  24 1.07 (0.49-2.37  13 1.65 (0.49-5.54)  32 1.06 (0.54-2.08) 
Drank alcohol weekly 38 0.58 (0.37-0.92)  66 1.05 (0.71-1.57)  19 1.16 (0.57-2.39)  8 0.50 (0.19-1.35)  28 1.24 (0.66-2.32) 
HLP in first-degree 
relative 

4 1.18 (0.41-3.37)  7 1.47 (0.65-3.32)  4 3.18 (1.06-9.54)  3 5.25 (1.39-19.8)  4 2.14 (0.73-6.26) 

HLP in first or 
second-degree 
relative 

9 1.58 (0.75-3.3)  10 1.38 (0.69-2.76)  6 3.43 (1.34-8.76)  4 4.8 (1.48-15.7)  8 2.9 (1.31-6.58) 

Percents are the proportion of cases in each exposure category out of the total number of WHO case-subtypes  
Abbreviations: FL, follicular lymphoma; DL, diffuse large cell lymphoma; SLL,small lympocytic lymphoma; BL, Burkitt lymphoma; Uncl, unclassified; N, number of exposed 
cases; OR, odds ratio; CI, confidence interval; HLP, hemolymphatic cancer 
*Adjusted for state, age (restricted quadratic splines), and proxy status



 

Appendix L. Adjusted* odds ratios for intensity of tobacco product use among t(14;18)-
positive or –negative NHL cases† compared with controls 
Exposures Controls  t(14;18)-positive vs. controls‡  t(14;18)-negative vs. controls‡ 
 N  N OR 95% CI  N OR 95% CI 
Average amount used/day          
Bowls of pipe/day          
0 951  55 1.00   52 1.00  
>0-3 75  9 1.62 0.86 - 3.04  8 1.63 0.89 - 3.00     
>3 182  16 1.18 0.74 - 1.88  10 0.80 0.44 - 1.44  
          
Cigars/day          
0 1077  74 1.00   58 1.00  
1 to 2 104  5 0.74 0.33 - 1.66    9 1.60 0.9 - 2.83    
3 to 4 56  2 0.64  0.19 - 2.18   5 1.86 0.93 - 3.72   
          
Oz. chewing tobacco/day          
0 791  57 1.00   49 1.00  
1 374  22 0.89 0.42 - 1.88  15 0.93  0.42 - 2.04 
2+ 80  2 1.48 0.39 - 5.68   8 2.46  0.92 - 6.59  
          
Pinches of snuff/day          
0 1103  72 1.00   64 1.00  
>0-6 67  4 0.84 0.35 - 2.04  3 0.67 0.26 - 1.77   
>6 55  4 1.22 0.52 - 2.87   4 1.10 0.47 - 2.59   
Abbreviations: N, number of exposed cases or controls; OR, odds ratio; CI, confidence interval 
*Adjusted for state, age (restricted quadratic splines), and proxy status   
†Case-subtypes based on fluorescence in situ hybridization (FISH) assays 
‡Estimates from expectation-maximization (EM) polytomous regression models including controls and both case-subtypes 
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Appendix M. Adjusted* odds ratios for duration and age at first tobacco product use among 
t(14;18)-positive or –negative NHL cases† compared with controls 
Exposures Controls  t(14;18)-positive vs. controls‡  t(14;18)-negative vs. controls‡ 
 N  N OR 95% CI  N OR 95% CI 
Cigarette-years          
0 132  13 1.00   7 1.00  
>0 to 25 238  19 0.85 0.42 - 1.75  11 1.01 0.35 - 2.91 
>25 to 45 331  16 0.44 0.23 - 0.85    25 1.48 0.69 - 3.19 
>45 211  13 0.53 .27 - 1.04   16 1.46 0.65 - 3.26  
          
Pipe-years          
0 665  38 1.00   43 1.00  
>0-10 117  11 1.18 0.66 - 2.1    10 0.86 0.47 - 1.58 
>10 139  14 1.61 0.92 - 2.8    9 0.91 0.48 - 1.73 
          
Cigar-years          
0 791  57 1.00   49 1.00  
>0-25 97  4 0.52 0.21 - 1.28  10 1.28 0.73 - 2.24   
>25 47  3 1.04 0.29 - 3.7    4 2.18 0.88 - 5.39   
          
Chewing  tobacco-years          
0 841  51 1.00   54 1.00  
>0-10 39  4 1.79 0.78 - 4.12    2 0.95 0.26 - 3.49   
>10 64  4 0.77 0.3 - 1.95     6 1.13 0.55 - 2.34   
          
Snuff-years          
0 817  55 1.00   54 1.00  
>0-20 46  2 0.82 0.28 - 2.41    2 0.79 0.28 - 2.23 
>20 80  6 1.33 0.64 - 2.78    5 0.75 0.32 - 1.78  
          
Product/age started          
Pipe          
>18 228  21 1.31 0.86 - 2      12 0.86 0.5 - 1.47     
≤ 18 65  5 0.90 0.38 - 2.13   8 1.81 0.98 - 3.34    
          
Cigar          
 >18 131  6 0.68 0.33 - 1.4    10 1.23 0.7 - 2.16     
≤ 18 22  1 0.59 0.08 - 4.3    4 3.94 1.78 - 8.71   
          
Snuff          
>18 95  6 1.36 0.74 - 2.52    2 0.51 0.15 - 1.76 
≤ 18 46  3 0.74 0.24 - 2.29    6 1.46 0.68 - 3.12  
Abbreviations: N, number of exposed cases or controls; OR, odds ratio; CI, confidence interval 
*Adjusted for state, age (restricted quadratic splines), and proxy status   
†Case-subtypes based on fluorescence in situ hybridization (FISH) assays 
‡Estimates from expectation-maximization (EM) polytomous regression models including controls and both case-subtypes 
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