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ABSTRACT

Thomas Gordon Stewart: Statistical Learning with Missing Data
(Under the direction of Michael Wu and Donglin Zeng)

Statistical learning is a popular family of data analysis methods which has been

successfully employed in biomedical research, the social sciences, public safety appli-

cations, and most data dependent areas of research. A major goal of statistical learning

methods is to construct rules which predict an outcome y from a set of predictors x,

for example, predicting treatment response from a set of pre-treatment biomarkers.

Accurate prediction rules of treatment response can guide health care providers to

select the best treatment options. The support vector machine (SVM) is a statistical

learning method profitably employed in a number of research areas such as biomedi-

cal computer vision tasks, drug design, and genetics. Because SVMs admit nonlinear

prediction rules, it is a natural choice for analyzing data with potentially complex rela-

tionships. One drawback to SVMs is the limited means of handling missing data in the

training set, yet missing data is ubiquitous in studies of health-related outcomes. In

this research, we review the literature on missing data, and we summarize those sce-

narios when missing data may bias statistical analysis. We also provide an overview

of supervised classification methods, especially those methods which accommodate

missing data. We pay special attention to SVMs as this family of methods is the fo-

cus of our proposed contributions to this body of work. We propose three methods

involving SVMs and missing data. The first paper proposes an EM-based solution for

constructing SVMs when the training set includes observations with missing covari-

ates. We present the method for continuous covariates but the method is applicable to

discrete covariates as well. The second paper proposes weighting methods inspired by
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weighted estimating equations, also for the purpose of constructing SVMs when the

training set includes observations with missing covariates. The third paper considers

scenarios in which class labels are missing or are partially observed, an area of study

commonly called semi-supervised learning. We propose an EM-type solution for the

semi-supervised learning scenario, and we apply the method to both two-class and

multi-class SVMs. In each paper, the proposed methods will be demonstrated in the

context of a large multi-center observational study of Hepatitis C patients.
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CHAPTER 1: LITERATURE REVIEW

1.1 Introduction

Missing data are ubiquitous. Despite continuing advances in data collection,

missing data are likely to remain a permanent feature of statistical analysis. While

many missing data methods exist for multivariate normal models [47], general likeli-

hood models [89, 28], survey sampling models [90], and weighted estimating equation

models [86], all the developments are either parametric or semi-parametric methods,

so they are sensitive to model miss-specification and may not be applicable in high

dimensional settings.

Statistical learning is a popular family of data analysis methods particularly

suited for high dimensional settings. Statistical learning methods have been success-

fully employed in biomedical research, the social sciences, public safety applications,

and most data dependent areas of research. The goal of statistical learning meth-

ods is to construct rules which predict an outcome y from a potentially large set of

predictors x, for example, predicting treatment response from a set of pre-treatment

biomarkers. However, methods in statistical learning for missing data are, in many

cases, ad-hoc. The scant attention to the topic in statistical learning texts, like Devroye

et al. [29] and Hastie et al. [50], points to this issue and the need to close this gap

in current statistical learning methodology. The collective examples of Ghahramani

and Jordan [42], Nigam et al. [75], and Williams et al. [108] indicate that many of the

principled approaches which grew from Rubin [89] and Dempster et al. [28] can also

be extended to statistical learning. The goal of this literature review is to provide an

overview of the approaches in statistical learning to handle missing data. We give
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special attention to support vector machines (SVM) because it is the focus of methods

for missing data proposed in the following chapters. The support vector machine is a

statistical learning method introduced in Boser et al. [15], Cortes and Vapnik [25] and

Vapnik [106]. The method has been successfully employed in both classification and

regression tasks, and it is particularly useful in computer vision applications [77, 23].

It is a basis expansion method which provides the user with considerable modeling

flexibility.

The literature review is organized into four sections. The first is a review of

Rubin [89] and many of the parametric or semi-parametric methods that followed.

We introduce likelihood with EM, imputation, weighted estimating equations, and

Bayesian methods for missing data. The second section is an overview of binary

supervised classification methods and their associated methods for missing data. The

third section particularly focuses on SVM and describes its methods for missing data.

Lastly, we describe a research plan which provides three principled missing data

methods.

1.2 Parametric and semi-parametric methods for missing data

1.2.1 Missing data mechanism

Consider a training data set of n observations with outcome yi and covariate

vector xi of dimension d for each patient. Depending on the scenario, outcomes or

covariates may be missing. To indicate which variables are missing, let zi = (yi, xi) and

define vector ri to indicate if the corresponding data element in zi is observed or not,

ri = (ri0, ri1, ri2, . . . , rid) ri j =


1 if zi j is observed

0 if zi j is missing.

Often data are partitioned into subvectors of missing and observed elements, for

example zi = (zm
i
, zo

i
). The processes which generates missing data are grouped into
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three types. The simplest type of missing data mechanism is missing completely at

random (MCAR). MCAR describes situations when the missing data mechanism is

independent of the data. In terms of the missing data indicator, MCAR mechanisms

are characterized as

P(ri | zm
i , zo

i ) = P(ri).

In other words, the mechanisms which lead to missing data are unrelated to either

outcome or predictors. The second type of missing data mechanism is missing at

random (MAR). It occurs if, conditional on the observed data zo, the missing data

mechanism is independent of the missing data zm. That is,

P(ri | zm
i , zo

i ) = P(ri | zo
i ).

Lastly, not missing at random (NMAR) occurs if the missing data model is a function

of the unobserved missing value. The missing value is unobserved for reasons related

to the value. In the notation of missing data models, NMAR is

P(ri | zm
i , zo

i ) = P(ri | zm
i , zo

i ),

or any distribution which depends on zm
i

. The three types of missing data represent a

hierarchy of modeling assumptions. MCAR is the strongest assumption while NMAR

is the weakest.

Rubin [89] studied scenarios when the missing data model can be ignored

in likelihood based analyses. Specifically, if (a) the missing mechanism is MAR or

MCAR and (b) the missing data model parameters are distinct from the response

model parameters, then maximum likelihood estimates based on the observed data

likelihood which ignores the missing indicator model are valid. That is to say, data

analysis can proceed without the cumbersome burden of modeling the missing data
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mechanism under these two assumptions. In contrast, if the missing data are NMAR,

likelihood and Bayesian methods must incorporate the unverifiable assumptions of

a missing indicator model. In the sections that follow, we will discuss methods and

identify them as being applicable to MAR data or MCAR data.

1.2.2 Complete case analysis and imputation methods

Perhaps the earliest and easiest method for handling missing data is to omit ob-

servations with missing values, a method known as complete case analysis. Complete

case analysis is valid in MCAR situations, but is not valid with MAR data.

Imputation is a two-stage method and is popular because it works with a wide

variety of models and estimation techniques. One of its earliest forms was developed

and used extensively with the Current Population Survey by the US Census Bureau,

despite its poorly developed theory [4]. In the context of large scale surveys, Rubin

[90] introduced multiple imputation and provided conditions for the method’s appli-

cation to unbiased estimation, also see Schafer [93], Harel and Zhou [46] and Rubin

[91]. There are two general imputation types: single and multiple. The single impu-

tation procedure is to replace missing values with values drawn from an imputation

model. The filled-in or complete data set is analyzed with the desired method. As

noted in Rubin [90], single imputation standard error estimates are generally too small

because uncertainty from the imputations is not incorporated into the standard error

calculations.

Multiple imputation improves on single imputation by producing more accurate

standard error estimates. The procedure is to: (a) generate several, say Q, filled-in

data sets, (b) generate an estimate from each data set, and finally (c) combine the

Q estimates by taking the average. The standard error of the estimate is calculated

as
√

U + (1 + 1/Q)B where U is mean standard error of the Q estimates and B is the

imputation error or the variance of the Q estimates. If the imputed data sets all generate
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very similar estimates, the imputation error leads to a small increase in standard error.

Conversely, disparate estimates lead to a larger standard error.

Depending on the analysis method and its attendant assumptions, the imputa-

tion model can be chosen so that resulting estimates are unbiased in cases of MCAR

or MAR data [90]. However, when missing values are drawn from a convenience

distribution instead of the proper imputation distribution, the imputation model is

improper. Estimates calculated from improper imputation can be reasonable, but

there is no assurance that the estimates are unbiased.

1.2.3 Parametric and semi-parametric methods

Here we consider the methods for missing data in three broad families of param-

eter estimation: likelihood estimation, estimating equations, and Bayesian estimation.

The methods described here can be generalized to a wide variety of classification and

regression methods. In each method, we consider estimation of some population

parameter β.

Likelihood estimation and EM

In the context of likelihood estimation of a regression model, say of y = xtβ + ǫ,

with MAR missingness in the covariates, Rubin [89] noted that estimation only requires

maximization of the observed data likelihood. Thus, if P(y|x, β) is the likelihood

and P(xm|xo,α) is the covariate distribution, then the observed data likelihood to be

maximized is

L(β,α) =

n∏

i

∫
P(yi|xi,β) P(xm

i |xo
i ,α) dxm

i . (1.1)

Because equation 1.1 can be difficult to maximize directly, the EM algorithm [28] pro-

vided a computationally feasible solution to maximizing the observed data likelihood.

The algorithm avoids the computational difficulties of the observed data likelihood

by working with the complete data log-likelihood for which maximization algorithms
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are already available. One starts the algorithm by postulating values for parameters

β(0) and α(0). Then, the iterations of the algorithm consist of two steps. In the first, one

replaces the unobserved complete data log-likelihood with its expectation conditional

on the observed data, and postulated values of model parameters,

E{ℓ(β,α) |Xo,y,β(0),α(0)} =
n∑

i=1

E{log[P(yi|xi,β)] | xo
i , yi,β}

+

n∑

i=1

E{log[P(xm
i |xo

i )] | xo
i , yi,α}.

At the second step and with the expectation in hand, one maximizes the log likelihood

as if the data were fully observed. The estimates β̂ and α̂ update the previously

postulated model parameters, β(1)
= β̂ andα(1) = α̂. The expectation and maximization

steps repeat, each time updating the postulated parameter values with the estimates.

The repeated two steps give rise to the name EM: expectation and maximization. The

EM iterations continue until the model parameters converge.

Louis [70] provided formulas to estimate variance and covariance via the ob-

served information matrix. Wu [109] defined regularity conditions and provided

convergence properties for the EM algorithm. Although EM is guaranteed to con-

verge under mild conditions, the rate of convergence can be slow. In light of the slow

convergence, several researchers have proposed modifications to improve speed; these

include Meng and van Dyk [73], Meng and van Dyk [72], Berlinet and Roland [13],

and Liu and Rubin [67].

The EM algorithm has been successfully employed in a number of parametric

models involving missing data. Fuchs [39] applied it to missing data in log linear

models. Ibrahim [55] applied it to generalized linear models with missingness in

discrete covariates. Lipsitz and Ibrahim [64] addressed missingness in categorical

covariates in survival analysis; Herring and Ibrahim [52] developed a weighted EM in

order to estimate Cox model parameters when predictor values are missing. Herring
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and Ibrahim [53] applies EM to cure rate models with random effects when there is

non-ignorable missingness in the predictors. The successful application of the EM

algorithm to parametric and semi-parametric models is substantial, and it highlights

the method’s utility.

Weighted estimating equations

Likelihood estimation can be seen as a member of a broader family of estimation

methods known as estimating equations. Introduced in Godambe [43] and Godambe

and Thompson [44], an estimating equation for parameter β is a function ψ(y, x,β)

which satisfies the expression

EP[ψ(y, x,β)] = 0. (1.2)

Estimation of β is based on the empirical expectation; the estimate β̂ is selected so that

n∑

i

ψ(yi, xi, β̂) = 0.

The estimate is unbiased, and the method is free of any specific distributional assump-

tions. Estimating equations are a framework often used in causal inference and robust

estimation research. Robins et al. [86] and Bang and Robins [8] introduced weighted

estimating equations as a missing data method. The method, known as the doubly

robust estimator, builds on earlier ideas known as inverse probability weighting. We

summarize both. Let ṙi indicate if patient i is a complete case.

The inverse probability weighted (IPW) method starts with the selection prob-

ability, pi = P(ṙi = 1|xo
i
, yi). The estimate β̂ is selected so that

n∑

i

ṙi

pi
ψ(yi, xi, β̂) = 0.

7



Only complete case observations contribute to the estimating equation, but value 1/pi

weights each observation so that the expectation of the estimating equation is the

desired output. For example, if missingness is a function of gender and responses are

less likely from males, the inverse selection probability up-weights males and down-

weights females so that the resulting average reflects the entire population and not the

complete case sample.

The doubly robust (DR) estimator builds on the IPW. The key improvement of

the DR estimator over the IPW estimator is that incomplete cases contribute to the

estimating equation. This is achieved with a surrogate function, φ(Y,Xo, θ), which

takes the place of ψ for incomplete cases. The DR estimating equation is

n∑

i

ṙi

pi
ψ(yi, xi,β) −

(
ṙi

pi
− 1

)
φ(yi, x

o
i ,β).

Bang and Robins [8] shows that the resulting estimator is consistent if either (a) the

estimates of pi are correct or (b) the surrogate functionφ approximates well the function

ψ. For optimal efficiency, the surrogate function is selected as

φ(yi, x
o
i ,β) = E[ψ(yi, xi,β)|yi, x

o
i ],

which in practice is often approximated with imputation techniques. See Carpenter

et al. [18], Vansteelandt et al. [105], and Ibrahim et al. [57] for reviews of DR estimators.

Note that likelihood based estimation can be framed within estimating equations. The

score function S(β) =
∂ℓ(β)

∂β can be an estimating equation ψ. Thus, the IPW and DR

missing data methods can apply to likelihood estimation as well.

Bayesian estimation

Briefly, consider the Bayesian estimation of β with missing data. Ibrahim et al.

[56] showed that the Bayesian paradigm offers a straightforward approach to missing
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data. Like likelihood methods, it begins with a likelihood function P(y|x,β), a data

model P(xm|xo,α), and possibly a missing data model P(r|φ). One also assumes a

prior distribution P(β,α,φ) for the model parameters. Estimates of β are based on

the observed data posterior distribution P(β|xo, y). Operationally, Bayesian analyses

usually involve sequential sampling methods, like Gibbs, to draw from the complete

data posterior distribution. Without missing data, the sampling sequence at each

iteration draws from (a) P(β|α, xo, xm, y) then (b) P(α|β, xo, xm, y). With missing data,

the sequence also includes draws from (c) P(xm|α,β, xo, y). Inference about β is based

on summaries of the resulting sample.

1.3 Statistical learning methods for missing data

In this section, we discuss a general framework for supervised classification

methods and properties of optimal classifiers. Additionally, we discuss several sta-

tistical learning classifiers and their associated missing data methods. This summary

covers binary classification, though the concepts can be generalized to classification

into several groups.

To begin, we introduce notation specific to classification in the context of a

patient population where the outcome is cure status. Those that are cured, label

yi = +1; label all others yi = −1. Let y and x denote the outcome and covariates

of a generic patient not in the training set Tn. The classification task is to construct

a classification rule f : R
d → {±1} which predicts cure status y from inputs x. To

measure classification performance, consider the four possible outcomes of a classifier

for a single patient:

y

f (x) +1 -1

+1 correct error A

-1 error B correct

9



The relative importance of error A to error B depends on the specific application;

when both errors are penalized equally, classification error is captured by the c-loss

function Lc[yo, f (x)] = I[yo , f (x)] or equivalently I[yo f (x) < 0]. The performance of

any classification rule is measured in terms of average classification error (or risk)

which is defined as

RLc,P( f ) = EP

{
Lc[yo, f (x)]

}
(1.3)

where P denotes the distribution P(y, x). Optimal classifiers minimizes this quantity.

Such classifiers are known as Bayes classifiers, and the minimum classification risk is

the Bayes risk, i.e.,

fbayes(x) = arg min
f
RLc,P( f ) and RLc,P( fbayes) = min

f
RLc,P( f ).

If the distribution P(y, x) is known, then the Bayes classifier can be calculated directly

as

fbayes(x) = sign
[
P(y = +1 | x) − 1

2

]
. (1.4)

Many of the methods discussed in this section are plug-in estimates, in that the primary

endeavor of several methods is to generate an estimate of P(y = +1 | x). In fact, the

methods that follow can be classified into four groups. The first group assumes a

distribution, usually some form of the Bernoulli distribution P(y|θ(β, x)) where θ(β, x)

is the odds parameter and a function of x and β. The second endeavors to estimate

the conditional distribution without parametric assumptions. The third group is the

distribution free k-nearest neighbors. And, the last group approaches the problem

with empirical risk minimization.

1.3.1 Plug-in method

In the plug-in method, one estimates p(y = +1 | x) directly via parametric or

semi-parametric methods. Logistic regression is an extremely popular method and is
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a standard likelihood and Bayesian model. In the context of classification performance

and finding a Bayes classifier, the logistic regression model starts with the assumption

that y|x is a Bernoulli random variable with odds parameter θ(β, x). Thus, once θ(β, x)

is estimated, the model P[y|θ(x)] can be plugged into equation (1.4) as an estimate of

the Bayes rule. If the distribution and modeling assumptions are correct, the resulting

classifier is asymptotically a Bayes classifier.

The simplest model of log odds is the linear model. It is:

log[θ(x)] = xtβ

where β is a vector of size d, and the model parameters are interpreted in terms of

odds ratios. Estimates of β are computed by maximizing the likelihood, a task usually

achieved with the iterative Newton-Raphson algorithm or with iteratively reweighted

least squares. Logistic regression is a low variance estimator in the sense that repeated

application of the logistic regression model to data generated in the same way will lead

to similar estimates from one dataset to the next. This stability is an important benefit.

The drawback, however, is that the model only captures linear relationships between

the outcome and predictors. As a likelihood based model, methods for missing data

include the four discussed in detail earlier: imputation, maximum likelihood via EM,

weighted estimating equations, and Bayesian estimation.

When the predictor x is high dimensional, one goal is to find which predictors

are important. The LASSO, introduced in Tibshirani [99], and Elastic Net, introduced

in Zou and Hastie [119], are regularized forms of logistic regression. In the case of

LASSO,

β̂ = arg min
β
ℓ(β) such that ||β||1 ≤ c;

and elastic net,

β̂ = arg min
β
ℓ(β) + λ1||β||1 + λ2||β||2,
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where in both cases ℓ(β) is similar to the linear log odds model. The parameters λ1

and λ2 control the degree of regularization. The estimates are found using algorithms

specifically suited the task, such as least angle regression [33] for LASSO and LARS-EN

for elastic net.

In case of missing data, Hastie et al. [50] recommends multiple imputation,

and De Ruyck et al. [27] applied such a strategy to a lung cancer cohort. In a related

study, Sabbe et al. [92] proposed an EM solution and applied it to the analysis of 273

lung cancer patients and 345 predictor variables. While no publication for the IPW

solution and LASSO or Elastic Net was found, current software implementations of

both methods allow for weighted observations [37]. It follows that the IPW solution

could easily be implemented. Park and Casella [78] introduces a Bayesian LASSO;

though, there is no mention of missing data.

Another type of plug-in method is the basis expansion model. Basis expansion

models in the logistic regression family estimate the log odds with a function of the

form

log[θ(x)] =

m∑

k=1

βkhk(x).

The functions hk are transformations of the data and are called basis functions. They

can be polynomial-, exponential-, log-, indicator-functions, or combinations of all four.

Popular choices of the basis functions include the natural cubic spline and wavelets.

In these two setups, each predictor is modeled by a set of smoothing functions. The

overall function is

log[θ(x)] =

d∑

k=1

hk(xk)
tβk

where hk(xk) is a vector of basis functions for the kth predictor. The advantage of this

setup over the linear case is the very large class of potentially non-linear functions

that result from transformations of the data. The disadvantage is that the method can

be high variance in the sense that estimates calculated from one dataset to another
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similarly generated dataset can be markedly different. The estimation algorithms for

basis expansion models are the same as the linear model or regularized linear model

because the basis expansion model is linear in terms of the transformed variables.

Missing data methods for the linear model of log odds all apply to basis expansion

methods because the model is linear in transformed variables. Thus, likelihood,

weighting, Bayesian, and imputation methods are available.

The last type of plug-in method we discuss is the generalized additive model.

The generalized additive log odds model has a similar setup to the basis expansion

model, except that basis functions are not specified before hand. Rather, the model

log[θ(x)] =

d∑

k=1

βkhk(xk)

is composed of nonlinear functions hk estimated along with the coefficients. The func-

tion hk(xk) takes a single predictor as input and is estimated as a scatterplot smoother.

Again, the contribution of the generalized additive model is a very flexible model of

log odds which can reveal non-linear relationships between y and x. Computation of

the coefficients and functions is achieved through a back fitting algorithm described

in Yee [115]. Hastie [48] suggests mean imputation as a missing data method, and

French and Wand [36] provides an EM solution for missing data in an application of

estimating spatially correlated cancer incidence rates.

1.3.2 Discriminant analysis

Discriminant analysis does not assume a distribution for P(y|x); rather, it as-

sumes a distribution for P(x|y). Specifically, x|y ∼ Nd(µy,Σy). The quadratic classifier
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(QD) is constructed by calculating the log likelihood ratio

QD(x) = log
P(x|y = +1)

P(x|y = −1)

=(x − µ+1)tΣ−1
+1(x − µ+1) + logΣ−1

+1 − (x − µ−1)tΣ−1
−1(x − µ−1) − logΣ−1

−1.

The linear classifier (LD) assumes a common covariance among groups,Σ−1 = Σ+1 = Σ,

which simplifies the ratio to

LD(x) = xtΣ−1(µ+1 − µ−1).

In linear and quadratic versions, the classifier predicts y = +1 if the ratio exceeds a

constant c,

fLDA(x) = sign[LD(x) − c] fQDA(x) = sign[QD(x) − c].

Note that both classifiers are based on estimates of means and covariances from the

normal distribution. Thus, all five general types of missing data methods — likelihood

EM, estimating equations, Bayesian estimation, imputation, and complete case — are

available. The work in Little [65], Beale and Little [10] and Chan and Dunn [19] address

the imputation and likelihood type solutions. Their contributions represent a number

of pre-Rubin 1976 solutions, and represent ad-hoc recommendations. Shortly after the

introduction of the EM algorithm, an EM solution for constructing discriminant func-

tions with missing data was introduced in Little [65] as one among several proposed

missing data solutions; in a small comparison the EM solution performed as well as

other single imputation type options.

The fact that the classifier is based on the multivariate normal model highlights

its advantages and disadvantages. First, the method does not perform well when the

underlying distribution deviates significantly from the normal. Second, the method

requires estimation of covariance parameters, which is an issue (a) when the data
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contain outliers or (b) in high dimensional settings. However, when the underlying

assumptions are true, discriminant analysis can be a Bayes classifier if the cutoff is

properly selected.

1.3.3 Trees based methods

In this section, we consider a family of methods which estimate P(y|x) with what

is called a tree. Unlike the estimation in the previous section, tree methods attack the

conditional probability directly and non-parametrically. We first present a single tree

classifier, and then we present random forest classifiers which combine information

from several single tree classifiers.

Single classification tree

A classification tree introduced in Breiman et al. [17] is a series of splits which

partition the predictor space (Rd). Figure 1.1 provides a small example. In the figure,

capital letters refer to predictors and lower case letters refer to thresholds. The tree

starts at the top; the first partition sends observations with A > a to the right and all

others to the left. At the second level, both partitions are split again. The left partition

is split so that observations with B > b are sent to the right and the remainder are

sent to the left. Likewise, the right partition is split with variable C. The recursive

partitioning continues for a prespecified number of levels. In Figure 1.1, the tree has 8

terminal groups labeled P1, P2, etc.

A classification tree is constructed so that the terminal groups are homogenous

in terms of the outcome. There are two phases to the tree’s construction: growing and

pruning. During the iterations of the growing phase, the algorithm selects a predictor

variable and threshold which minimizes variance in the resulting groups. During the

pruning phase, splits are eliminated which fail a complexity-benefit criterion.

Estimates of P(y = +1|x) are calculated by finding the terminal partition for x and
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P1 P2 P3 P4 P5 P6 P7 P8

Figure 1.1: Example of classification tree

calculating the proportion of y = +1 outcomes in the group. The estimates are plugged

into the Bayes rule to generate the classification rule. Because of the sequential nature

of selecting splits, trees are sensitive to the earliest splits. Errors because of outliers are

perpetuated. This instability is a drawback of the classification tree.

Random forests

Random forests [16] are an ensemble method: a single classifier is constructed by

averaging the predictions of several single trees. The individual trees are constructed

with a slight modification from before. Rather than considering all predictors as

candidates for a split, only a random subset of predictors are considered. A new

random subset is selected at each opportunity to make a split. The trees are not

pruned.

Thus, if P̂k(y = +1|x) is the kth random tree generated, then the random forest

(RF) estimate is

P̂RF(y = +1|x) =
1

B

B∑

k=1

P̂k(y = +1|x).

The number of trees B is usually several hundred (B > 200); and the number of

predictors selected at each node is usually
√

d. Both parameters can be tuned. Because

the random forest classifier is an ensemble of single trees, the method avoids the
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instability issues inherent in single trees. Also, the sharp divisions between partitions

in a single tree are smoothed in a random forest. Lastly, the random forest classifier

outperforms a single tree [16].

There are several tree-specific missing data methods, along with EM and im-

putation. Any single tree missing data method can be applied to random forests.

The tree-specific methods are described in [9, 31, 50]. The following descriptions are

summarized from those references.

Surrogate split

Consider the step of selecting a split in the tree. Each predictor is considered

individually; if a predictor value is missing, then the observation is momentarily

omitted in computations related to the threshold and homogeneity of the outcome.

Once the best predictor-threshold split is selected, the algorithm determines a sequence

of predictors-thresholds which best replicate the first choice. The sequence is ordered

by the quality of the replication. Thus, each split is represented by a sequence of

predictor-thresholds, (B < b,E < e, . . . ,W < w), instead of just one. At the moment of

classification, an observation is directed to the left or right partition based on the first

applicable predictor-threshold pair.

Probability split

Consider the step of sending an observation to the left or right. If the observation

is missing the value of the needed predictor, the observation is sent to both sides.

However, the contribution to the right partition is weighted to reflect the probability

of being assigned right, likewise for the contribution to the left partition. Computations

downstream of the split are altered to reflect observation weights. Depending on the

tree and the predictors that are missing, an observation may appear in several terminal

groups, weighted so that the total contribution sums to one. Generally, probability
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weights are naively calculated. The weight in the right partition is the proportion of

observed observations in the right partition, likewise for the left weights.

Missing category

In the case of a nominal categorical predictor with missing values, missing is

treated as a category. In the case of ordinal data, both discrete and continuous, missing

values are replaced with a large value far outside the normal range of values. This

allows the algorithm to create partitions which separate missing and non-missing

observations. Of course, this strategy can be sensitive to replacing missing values with

a large positive value or a large negative value.

A simulation study [31] compared single-tree performance of these three tree-

specific methods (with caveats for surrogate split) along with mean imputation and

complete case. The probability split performed well in situations when the validation

set did not have missing values. The missing category worked well in situations when

the missingness mechanism was a function of the outcome y. This is not surprising

because the missing category can capture that relationship well.

1.3.4 k-nearest neighbor

The methods presented up to this point have all approached the classification

task via a distribution, either by explicitly assuming a distribution (logistic, LDA,

and QDA classifiers) or by estimating a distribution (tree-based classifiers). In this

section, we consider the nearest neighbor classifier which does not necessarily assume

or estimate a distribution.

The k-nearest neighbors (KNN) classifier predicts y from x by taking a poll

of the k nearest neighbors in the training set Tn. In the case of 3-nearest neighbor,

the predicted outcome is the majority outcome of the 3 nearest training points. The

k-nearest neighbors classifier has been successfully used in a number of computer
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vision tasks [50], and is especially useful when the probability of group membership

changes abruptly at the boundary. Further, because KNN does not require any distri-

butional assumptions, it can be applied in nearly any situation. However, the resulting

model is not easily interpreted, and calculating distances in large databases requires

considerable memory.

Imputation is the most prevalent missing data method for KNN classifiers [2].

KNN itself is used widely as an imputation technique [51], and it has been widely

used. Missing values xm
i

are predicted from KNN applied to xo
i
. Say for k = 5, the

replacement of xm
i

is the average of the 5 other training values closest to xo
i
. In multiple

imputation setups, replacement values are drawn from the set of nearest neighbors.

1.4 Support Vector Machines

As noted earlier, SVMs are a statistical learning classifier introduced in Boser

et al. [15], Cortes and Vapnik [25] and Vapnik [106]. The method has historical basis

in linear separating hyperplanes, and the following description builds on that basis.

For the sake of demonstration, suppose that that x is two-dimensions, and that we can

plot the data as in Figure 1.2. In this case, the two groups are separable in the sense

that there is a lines (planes in higher dimensions) in the x−space which separates the

groups. In fact there are infinitely many such lines; two are shown in the figure. Such

lines can be used as classifiers for future, unseen points by labeling points on one side

of the line as +1 and labeling the others as −1. If we parametrize each line as

{x |wxx + b = 0},

then the classifier is f (xo) = sign(wtxo + b), and the signed distance between a point xo

and the line is ||w||−1(wtxo + b). For each separable line, the margin is the perpendicular
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Figure 1.2: SVM Demonstration, toy data

distance from the line to the nearest point,

margin(w,b) = min
i
||w||−1|wtxi + b|.

The motivating, geometric interpretation of a linear SVM is to select the line, of all

separating lines, which maximizes the margin. This can be expressed as

min
w,b
||w|| such that yi(w

txi + b) ≥ 1, i = 1, . . . ,n.

The constraint enforces separability. Note in the simple example in Figure 1.2, the line

on the left (the SVM solution) does maximize the margin, while the one on the right

does not. In the case of unseparable data, the geometric interpretation of the SVM

introduces the concept of a slack variable ξi, which provides a penalty if a point is
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misclassified. Specifically,

min
w,b
||w|| + C

n∑

i

ξi

such that yi(w
txi + b) ≥ 1 − ξi i = 1, . . . ,n (1.5)

ξi ≥ 0 i = 1, . . . ,n.

Thus, in the unseparable case, some points will always incur a penalty because the

definition of unseparable implies yi(w
txi + b) < 0 for at least one point for every w and

b. The parameter C controls the tradeoff between the penalty and the complexity of

the classifier. Maximization of the SVM is a quadratic programming problem which

can be expressed as

min
α

n∑

i=1

αi −
1

2

n∑

i=1

n∑

j=1

αiα jyiy jx
t
ix j

such that 0 ≤ αi ≤ C

n∑

i=1

αiyi = 0,

where the solution is w =
∑n

i=1 αiyixi. The key contribution of Cortes and Vapnik [25]

was to identify that the data xi enters the objective function through the dot-product

xt
i
x j, and that general forms of dot-products in a Hilbert space, φ(xi) · φ(x j) = κ(xi, x j),

could replace the euclidean dot-product without affecting the computational burden.

General dot-product forms represent a large family of transformations on the data,

φ(xi), but they only enter into the computation via a kernel function κ which satisfies

certain conditions. Such transformations admit flexible, non-linear functions of the

form

f (x) = b +
∑

xi∈Tn

ciκ(x, xi). (1.6)
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This important link between the geometric beginnings of SVM and the kernel trans-

formation recast the method into a framework of empirical risk minimization within a

Reproducing Kernel Hilbert Space (RKHS) of functions. To see the connection, return

to (1.5) and rewrite (wtxi + b) as f (xi)

min
f∈H
|| f || + C

n∑

i

ξi

such that ξi ≥ 1 − yi f (xi) i = 1, . . . ,n

ξi ≥ 0 i = 1, i = 1, . . . ,n.

Allow Lh[yi, f (xi)] = max[0, 1 − yi f (xi)], and the objective function is identical to the

following objective:

fsvm = arg min
f∈H

λ|| f ||2H︸ ︷︷ ︸
penalty

+ RLh,D( f )
︸   ︷︷   ︸

empirical h-risk

, (1.7)

empirical h-risk: RLh,D( f ) =
1

n

n∑

i

max[0, 1 − yi f (xi)]︸                  ︷︷                  ︸
Lh

.

which in an empirical and regularized approximation of the Bayes objective function,

fbayes(x) = arg min
f
RLc,P( f ).

Note the subscript D to denote the empirical distribution instead of P for the true distri-

bution. Regularized empirical risk minimization over a RKHS provides a framework

for exploring the statistical properties of the method, including asymptotic properties.

It is also in this framework that we develop our proposed methods for missing data.
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Asymptotic properties

The SVM solution is unique, stable, consistent, and ensures generalization [94,

98, 34, 50]. Consistency is defined in the statistical sense that finite sample h-risk

converges in probability to the minimum h-risk as n gets large.,

RLh,P( fsvm)
p→ min

f
RLh,P( f ).

Generalization refers to fact that the training risk converges in probability to true risk,

RL,D( fsvm)
p→ RL,P( fsvm),

and it suggests that the SVM solution does not over-fit the data as a non-regularized

empirical risk solution would.

Steinwart and Christmann [98] and Schölkopf and Smola [94] discuss a number

of computational advantages to this setup. The h-loss function seen in equation

(1.7) is convex, which allows the implementation of efficient optimization algorithms.

As noted above, the SVM solution converges in probability to the minimum h-risk;

however, the primary goal is to find a solution that minimizes the c-risk. In fact, as

n→∞, classification risk of fsvm converges to the Bayes risk,

RLc,P( fsvm)→ min
f
RLc,P( f ).

Kernel function and tuning parameters

The RKHSH is characterized by a kernel functionκ : Rd×Rd → R, and functions

inH are of the form in equation (1.6), and are a linear combination of basis functions

hi(x) = κ(x, xi). Computationally, the construction of fsvm(x) centers on finding values

for c1, . . . , cn and b. Predictions from the SVM classifier are calculated as sign[ fsvm(x)].

The choice of kernel function affects the form of the classification function. Two
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common choices of κ are

κ(u,v) = utv︸         ︷︷         ︸
Linear kernel

and κ(u,v) = e−γ||u−v||2

︸                ︷︷                ︸
Guassian kernel

.

The linear kernel generates decision rules with a linear boundary; the Gaussian kernel

generates both linear and nonlinear boundaries. The details regarding the inherent

transformation of Gaussian kernel functions is discussed in Steinwart and Christmann

[98].

Note that equation (1.7) includes the parameterλ and the definition of the Gaus-

sian kernel function includes parameter γ. These parameters are tuning parameters.

The cost parameter λ (also reparameterized as C) controls the impact of the complexity

penalty relative to the empirical h-risk; the parameter γ is a scale or bandwidth param-

eter. In practice, the values of tuning parameters are selected from a list of potential

values on the basis of cross validation.

Computational details

Equation (1.7) can be re-expressed as a constrained quadratic programming

problem for n-vector α:

min
α

1

2
αtWα − 1

tα (1.8)

such that ytα = 0

0 ≤ αi ≤ C, i = 1, . . . ,n

Note the conventions: (a) 1 is a vector of ones, (b) C = 1/(2λn), (c) the kernel matrix

Ki j = κ(xi, x j), and (d) Wi j = yiKi jy j. With optimal α, the SVM classifier is defined in

equation (1.6) with ci = yiαi. One result of the computation is that αi = 0 for observa-

tions outside the margin, that is those with yi f (xi) > 1. This means the corresponding
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component of the classifier in equation (1.6) can be omitted. Only those observations

inside the margin, yi f (xi) ≤ 1, contribute to the classifier and are call ‘the support

vectors’. As such, the SVM solution represents data reduction in the sense that all non-

support vectors can be omitted from the training set without affecting the resulting

classifier. This, especially in large databases, is an advantage of the SVM model.

A wide variety of computational algorithms exist for solving this quadratic

programming problem; most SVM software packages implement a type of sequential

minimal optimization (SMO). This specific algorithm can solve (1.8) even when the

memory required for the n×n matrix W exceeds available computer memory; thus, the

SMO algorithm can generate a solution when the sample size is large. For a discussion

of computational details see [20, 94].

SVM example with toy data

For completeness, we end this section on support vector machines with a simple

demonstration of a SVM classifier constructed from a training set of 50 patients. Plots of

the constructed classifier along with details of the demonstration are reported in Figure

1.3. Both the linear and non-linear boundaries are demonstrated. The toy example

highlights a number of advantages and disadvantages of the SVM model. In the

linear case, the SVM is interpretable in terms of the maximum margin plane described

earlier. In the non-linear case, the interpretation of the SVM solution is not straight

forward. The solution represents the maximum margin plane in a vaguely specified

transformation of the data. In the two dimensional toy example, the boundary can

be plotted and interpreted. In higher dimensions, no descriptive interpretation is

available.
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(A) Non-linear example (B) Linear example

X1

X2

X1

X2

Figure 1.3: Examples of Two SVM Classifiers

Panel (A) is a non-linear example fit with Gaussian kernel; panel (B) is a
linear example fit with linear kernel. Training set data is plotted as larger,
darker circles. The regions defined by the SVM classifier are denoted with
the red or blue background colors. The tuning parameters selected with
cross validation are C = 0.125.

SVM methods for missing data

Improper Imputation

There are a number of improper imputation methods posited for SVMs and

other statistical learning methods. Many of the methods rely on statistical learning

methods in order to generate the underlying imputation distribution. For example,

[2] encouraged the use of KNN imputation and [41] suggested Naive Bayes type

imputation, while neither provided examples specific to SVMs. In Farhangfar et al. [35],

the authors consider the Gaussian SVM with hot deck imputation, Naive Bayes, mean

imputation, and regression-based imputation. To the author’s credit, they consider

these imputations over a very large range of missingness levels, ranging from 5%

to 50%. However, the missing data mechanism was MCAR. The authors reported

very mild accuracy improvements over the complete case classifier. Dick et al. [30]
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suggests an imputation scheme in which parameters of the imputation distribution are

jointly selected with the classification function. That is, it searches for the classifier and

the missing data distribution which minimizes loss. The performance of the method

is compared to single imputation with MCAR missing data. On balance, results

comparing this imputation method to single imputation showed 1% - 2% improvement

in accuracy, though some example datasets showed around 4% improvement.

Kernel Completion

Kernel completion is an SVM specific missing data method suggested in Tsuda

et al. [100] and Anderson and Gupta [3]. The method centers on equation (1.8), the

quadratic programming problem which solves the SVM objective function. Note that

data from the predictors xi enter the expression solely through the kernel matrix K.

Thus, when the outcomes yi are fully observed and missing data is restricted to the

predictors, the kernel completion method for missing data is to reconstruct K. With K

in hand, a solution for cis in (1.6) is available. When K is the linear kernel, no additional

steps are needed. When K is a non-linear kernel, one must also specify κ(x, xi) in the

same equation.

In Tsuda et al. [100], authors propose a kernel completion method in which one

uses auxiliary information to fill-in the missing portions of the kernel matrix. The

argument goes something like this: Let P be the partially observed kernel matrix. Let

M be a kernel matrix derived from fully observed auxiliary data. Think of P and M

as covariance matrices from zero mean multivariate normal distributions. Then, the

Kullback-Leibler distance is

KL(P,M) = tr(M−1P) + log det M − log det P − n

where n is the number of observations. At a basic level, the objective is to complete P
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in a way that (a) P remains positive semi-definite and (b) minimizes KL(P,M). Because

this method assumes an auxiliary data set, it is only applicable to situations when

such data is available and when one can argue that the auxiliary data is a reasonable

surrogate. Thus, this method is quite limited in its application.

In Anderson and Gupta [3], researchers proposed kernel completion method

in which one specifies distributions for the predictor vector xi and then calculates the

expected kernel,

E[Ki j] =

∫ ∫
κ(xi, x j)p(xi)p(x j) dxi dx j.

The authors are not clear if the assumed distributions should be conditional on the

observed components. This framework is similar to multiple imputation methods:

rather than averaging several classifier functions, one averages several kernels and

then finds a single classifier. Like imputation, this method is easy to implement. But

like imputation, it relies on convenience distributions.

Missing data loss function

Smola et al. [97] provides a principled missing data method based on a connec-

tion between SVM and exponential family distributions. Specifically, if
y

2
φ(x) is the

sufficient statistic of p(y|x), then the SVM solution with kernel κ(xi, x j) = φ(xi) · φ(x j) is

also the solution which maximizes the log-likelihood ratio. The method proposes that

for missing data, one replace the loss function with one constructed with sufficient

statistics from the distribution p(y|xo). The solution requires a number of “thorny” [97]

computational issues, and it is limited in workable size.

Probability Constraint

Shivaswamy et al. [95] takes advantage of equation 1.5. The authors propose a
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missing data method in which the first constraint is replaced by a probability statement:

P(1 − yi f (xi) ≤ ξi|xo
i , yi) ≥ 1 − vi vi ∈ (0, 1]; i = 1, . . . ,n.

In essence, this method replaces uncertain observations with distributions. Think-

ing geometrically, the standard constraint penalized each misclassified point. The

probability constraint penalizes uncertain points if 1 − vi percent of the distribution

is misclassified. The computation of this solution is non-trivial especially with any

non-linear kernel. In the case of the linear kernel, the resulting objective function

is a second order cone program. This limits the solvable sample size and increases

computation time. The computational issues are exacerbated in the case of non-linear

kernels like the Gaussian. Despite the computational issues, the probability constraint

method is applicable to MCAR and MAR missing data situations.

Geometric Max Margin

Chechik et al. [22] proposed a missing data method built on the geometric

perspective of SVMs; the basic idea is to define the margin in terms of non-missing

predictor variables. That is, to define the margin within a subspace. Recall that the

geometric linear SVM objective function is

max
w,b

min
i
||w||−1|wtxi + b|︸           ︷︷           ︸

margin

.

The geometric max margin method redefines the margin uniquely for each observation.

If ri is the indicator vector (as defined in section 1.2.3) then the margin within the

observed subspace is

margin(w, b, xi, yi) =




d∑

k=1

rikw
2
k




−1 ∣∣∣∣∣∣∣
b +

d∑

k=1

wkrikxik

∣∣∣∣∣∣∣
,
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and the objective function is

max
w,b

min
i

margin(w, b, xi, yi).

This geometric solution performs reasonably well when the missing data are MCAR,

but it does not work well when the missing data are MAR. Further, the computation

requires non-convex optimization when the two groups are not separable. This limits

the computational speed and the size of the training set.

1.5 Multi-class Support Vector Machines

Due to the popularity of SVMs in the two-class setting, a natural extension of

the method is the multi-class setting in which one wants to construct a classifier that

distinguishes between more than two classes. There are two families of multi-class

SVMs, which we consider in turn.

1.5.1 Composite-of-binary SVMs

. The first family, which we call the composite-of-binary family, constructs a set

of two-class SVM rules from which a single multi-class rule is constructed. Procedures

of this type are widely used in many classification settings and are not specific to

SVMs [38, 49]. The three most popular composite-of-binary SVMs are one-versus-one

SVM, the one-versus-many SVM, and the one-versus-one DAGSVM [81]. In a K-class

setting, the one-versus-one multi-class SVM is constructed by generating all K(K−1)/2

binary rules that separate generic class i from generic class j. To classify a point, the

covariate vector is input to each binary classifier which outputs a vote for one of two

classes. The overall multi-class rule outputs the class which receives the most votes.

The one-versus-one DAGSVM is a similar alternative in which classification is based

on a decision tree with a one-versus-one classifier at each node. The decision tree
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is constructed so that one potential class is eliminated at each decision node, and the

terminal node represents the class prediction. Lastly, we describe the one-versus-many

classifier which generates K binary rules which separate generic class i from all other

classes. To classify a point, the covariate vector is input to each two-class rule; the final

prediction corresponds to the class which generated the largest signed distance, i.e.,

ŷ = arg maxi=1,...,K fi(x). Variations of the these composite-of-binary SVMs exist, and

generally vary by how each component classifier casts a vote for a potential class. For

example, using the component SVMs to generate probability estimates which in turn

are combined in a final decision rule. See [49, 80, 20, 110] for a discussion of generating

and combining multi-class probabilities from SVMs.

Because of their operational efficiency, versions of the composite-of-binary

multi-class SVM are implemented widely in statistical software packages [20]. Both in

simulation settings and applied settings, the composite-of-binary family has demon-

strated its usefulness [54, 32]. Much of the operational efficiency of the composite-

of-binary SVM stems from the fact that it takes advantage of specialized but widely

distributed algorithms for the two-class SVM. The draw back to this type of multi-class

SVM is that voting does not always generate a clear winning class. For example, a

one-versus-one multi-class rule in a K = 3 class setting is built on 3 two-class rules.

For some covariate combinations, the 3 two-class rules may generate a vote for each

class. The same scenario can occur with one-versus-all multi-class rules as well. The

primary advantage of the DAGSVM is that it avoids the ambiguities like ties that can

arise in the standard voting scheme. Beyond the issue of ties is the issue of consistency,

for which the author in [68] shows examples when one-versus-all is not Fisher consis-

tent. Despite this issue, the composite-of-binary approach continues to be a popular

multi-class SVM method [84].
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1.5.2 Simultaneously Trained SVMs

The second family of multi-class SVM builds a decision rule by simultaneously

training K functions where each function corresponds to a single class [107, 26, 62, 69].

Distinguished by specific multi-class loss functions, the various flavors of multi-class

SVMs simultaneously construct the K functions so that the predicted class corresponds

to the function with the largest value. The simultaneous estimation of the K functions

ensures that the estimated multi-class rule targets the multi-class Bayes rule.

The general setup is very similar to the two-class setting, and we describe it

here. Consider a training set, Tn, of n observations, each consisting of a d-vector of

covariates, x ∈ R
d, and multi-class outcome, y ∈ {1, . . . , k}. Each observation is an iid

draw from an unknown distribution P(x, y). Consider functions f(x) = { f1(x), . . . , fk(x)}

so that the class label of x can be predicted as

ŷ = arg max
i

fi(x).

The classifier which minimizes the average classification error over P(x, y) is the Bayes

classifier,

fbayes = arg min
f

EP[y , arg max
i

fi(x)].

The average classification error of the Bayes classifier is called the Bayes risk. The

goal is to construct a classifier from the training set Tn which is asymptotically a Bayes

classifier but also performs well in finite sample situations.

The SVM solution frames the task within empirical risk minimization; specifi-

cally, the SVM solution is

f̂ = arg min
f∈H

λ||f||2H +
1

n

n∑

i=1

L[yi, f(xi)] (1.9)

32



such that

k∑

i

fi(x) = 0

where ||f||H =
∑k

i || fi||2H and L[yi, f(xi)] is a loss function which penalizes misclassifica-

tion. The multi-class SVM methods discussed here build on the reinforced multi-class

SVM (RMSVM) proposed in [69] because it provides a multi-class loss function which

unifies the earlier work of [62] and [107] as special cases of a general multi-class loss

function. The RMSVM loss function is

L[y, f(x)] = γ[(k − 1) − fy(x)]+ + (1 − γ)
∑

j,y

[1 + f j(x)]+

where the function [t]+ = max{0, t} and γ is a tuning parameter which calibrates the

loss. The set of solutions,H , is constructed so that each component of solution, f̂, is of

the form

fi(x) = b +

n∑

j=1

c jK(x, x j) x j ∈ Tn

where K(u,v) is a kernel function. The linear kernel, K(u,v) = utv, and the Gaussian

kernel, K(u,v) = exp{−σ||u − v||2}, are commonly used.

As the solution to the empirical risk minimization problem, the SVM targets

the conditional expectation of the loss function, E{L[y, f(x)] |x}. When γ ≤ 1/2, the

RMSVM solution is Fisher consistent in the sense that the minimizer of E{L[y, f(x)|x]} is

also the multi-class Bayes rule [69]. Simulation examples in [69] show that the RMSVM

performs better when γ = 1/2 than when γ = 0 or 1.

1.6 Semi-supervised Learning and Support Vector Machines

Examples of collected data in which some class labels are missing are increas-

ingly common. Any situation where determining the class label is expensive or overly

invasive can generate data with fully-observed covariates but few class labels. For

example, data for which class labels must be assigned by a human expert, as with

33



immunohistochemistry data, or data for which disease subtype must be ascertained

by biopsy or expensive blood-assay, as with rare forms of hepatitis. Often, the research

goals associated with these types of datasets is to construct a classifier which predicts

class labels because the gold-standard method is inaccessible. Classifiers built with

some missing class labels are often called semi-supervised classification rules [87].

There are existing methods for constructing semi-supervised two-class or multi-

class rules in statistical learning contexts, many of which are based on missing data

ideas like imputation and the expectation-maximization (EM) algorithm while other

methods are based on statistical learning ideas like boosting. For example, [42] ap-

plied EM as a way to estimate Gaussian mixture models in an unsupervised, clustering

context and to missing data in a supervised context. In [76], researchers perform semi-

supervised text classification with a naive Bayes classifier and the EM algorithm.

Imputation type semi-supervised classification include co-training [14] and ASSEM-

BLE [12]. In [103], authors provide a general purpose semi-supervised algorithm for

any multi-class classifier based on boosting.

1.6.1 S3VM

One semi-supervised method specific to two-class SVMs is the method intro-

duced in [11] called S3VM. While standard SVM methodology chooses the rule which

minimizes the empirical hinge risk, S3VM chooses the rule which minimizes the em-

pirical hinge risk calculated as if unlabeled points are in fact correctly labeled. Because

unlabeled points are treated as correctly classified, the unlabeled points in the empir-

ical hinge risk act as a ‘high density’ penalty. That is to say, the S3VM setup prefers

rules with boundaries in low density regions. Computationally, the S3VM objective

function is not convex and has potentially many local minima; however, there are a

number of algorithms developed to find the S3VM solution. See [118, 117, 21] for a dis-

cussion of the various non-convex optimization techniques which have been proposed
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for constructing S3VM rules.

Multi-class extensions of S3VM were proposed in [113] for specific types of

kernels (sparse and full rank) with a specific multi-class loss function. Using a sparse

Laplacian kernel matrix (a kernel to which the method applies), the algorithm employs

gradient descent to find a solution. In contrast to the limited setting of sparse and full

rank kernels, a more accessible multi-class extensions of S3VM have been developed

with the composite-of-binary multi-class SVM, such as the methods proposed first

in [21] and adapted in [6]. In [21], the composite-of-binary multi-class SVM applies

S3VM methods to each of the two-class rules. The method requires all unlabeled

points to be included when training each two-class rule, even with a one-versus-one

rule. In [6], authors adapted the composite-of-binary S3VM method of [21] by intro-

ducing participation weights of unlabeled observations. Based on a generic similarity

measure, the participation weights will up-weight or down-weight the contribution

of unlabeled observations when training individual two-class S3VMs as part of the

larger composite-of-binary rule. Thus, unlabeled observations which are similar to

class 1 observations are given greater weight when constructing rules involving class

1. Likewise, observations not similar to class 1 are given less weight. As demon-

strated in a number of examples, using participation weights in the construction of

semi-supervised composite-of-binary multi-class SVMs appears to improve classifier

performance.

1.6.2 Maximum Margin Clustering

Another approach to semi-supervised SVMs was introduced in [112] in the con-

text of clustering with SVMs with a method known as maximum margin clustering

[111]. The objective of maximum margin clustering is to find a set of class labels which

minimizes the SVM empirical risk under the constraint that the class balance in the

proposed solution is within prescribed bounds. Once the optimal set of class labels is
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found, an SVM classifier is constructed from a training set composed of the new class

labels and covariates. The key extension of max margin clustering to semi-supervised

learning is that the max margin clustering objective function can incorporate informa-

tion from observations with known outcomes by introducing constraints. Often called

the semi-definite SVM (SD-SVM) because the objective function is a semi-definite pro-

graming problem, the SD-SVM is similar to S3VM in the two-class setting but has

the additional advantage of also providing a multi-class solution. However, the SD-

SVM as a semi-supervised method is limited in application by the computationally

expensive algorithm, its sensitivity to tuning parameters, and its assumption that the

intercept term (sometimes called the bias term) is zero [102]. While [102, 116] pro-

posed unsupervised clustering algorithms based on SD-SVM which minimize these

drawbacks, the resulting methods do not admit a semi-supervised solution.

The SD-SVM can be framed as a two-step procedure in which the first step

clusters the data and the second step constructs an SVM based on the predicted class

labels. A cluster-then-construct solution is one in which any clustering procedure

provides class labels in the first step and an SVM is constructed in the second step.

SD-SVM differs from this ad-hoc procedure because the clustering criteria minimized

in the first step is the SVM empirical risk. Note that the semi-supervised composite-

of-binary multi-class SVM from [6] which is described above is another flavor of the

cluster-then-construct type solution. The first step generates fuzzy-cluster labels in the

form of participation weights and the second step constructs a composite-of-binary,

one-versus-one S3VM rules. Because this method relies on a composite-of-binary SVM,

its computational burden is much less than SD-SVM.

As evidenced by the several types of semi-supervised SVMs in both the two-

class and multi-class settings, there is considerable interest in developing algorithms

which efficiently generate semi-supervised SVM classifiers. Despite the interest in the

topic, the value of semi-supervised multi-class SVMs over complete-case multi-class
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SVMs has been questioned, as a number of authors have provided examples where

complete-case multi-class SVMs out perform semi-supervised multi-class SVMs, such

as [120] and [63]. Further, the computation required for many semi-supervised meth-

ods can be substantial, though recent algorithms such as those described in [96] im-

prove on earlier algorithms for two-class SVMs. In the multi-class setting, however,

computation time may still be prohibitively expensive, such as the SD-SVM solution

which requires estimation of n + n2
u parameters where n is the number of observa-

tions and nu is the number of unlabeled observations. Multi-class methods which are

computationally expensive like the multi-class S3VM methods are restricted to specific

application areas (sparse, full rank kernels) or rely on composite-of-many SVMs. In

our judgment, there is a need for a stable, multi-class semi-supervised SVM.

1.7 Dissertation topics

The missing data methods for SVMs, with a few exceptions, are ad-hoc tech-

niques. Those that are based on statistical reasoning are limited in sample size, only

apply to MCAR missing data, or require specialized software. In the first paper, we

will propose an EM-type missing data method which can be performed with standard

SVM software. As such, this method will provide SVM users an important tool to

address a common issue. The performance of the method is examined in a simula-

tion study and in application to a subset of an observational study database of patients

treated for hepatitis C (HCV-TARGET). The simulations cover a variety of missing data

scenarios, including situations in which missingness in the covariates is a function of

the outcome.

In the second paper, we will propose a weighted estimating equation missing

data method. A unique feature of SVMs makes this route possible; specifically, the

empirical risk function can be an estimating equation. This approach is promising

because it avoids two important draw backs of the EM-type solution. First, the EM
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solution requires estimation of data distribution parameters, and in high dimensional

settings, the number of parameters can be very large. Second, for missingness in

continuous covariates, it requires MCMC methods for sampling from the conditional

EM distribution which can be time consuming. Thus, as the method developed in the

second paper avoids these issues, it may be particularly helpful for high dimensional

settings, a common setting for SVMs.

In the third paper, we propose an EM-type SVM to address situations involving

missing class labels, an area of study commonly called semi-supervised learning. We

apply the method to both two-class and multi-class SVMs. We also show how the

method can be applied to settings when some information about missing class labels

is available, for example when observations with missing labels are known to be of

class 2 or 3 but not of class 1. We examine the performance of our proposed method

with both simulated data and with data from HCV-TARGET.
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CHAPTER 2: AUGMENTED AND WEIGHTED SUPPORT VECTOR MACHINES
FOR MISSING COVARIATES

2.1 Introduction

Hepatitis C is the most prevalent blood born infection in the United States [24]

with 3.4 to 4.9 million infected US residents [5]. The mortality burden of hepatitis

C continues to grow, and in 2007 the number of deaths from hepatitis C exceeded

those from HIV [71]. In the last five years, new drug therapies such as Telaprevir

have offered physicians an effective means for treating hepatitis C infection [1]. How-

ever, the cost of these new treatments is substantial. In the United States, the cost

per cure for Telaprevir ranges between $150,000 and $250,000 [101]. The prevalence

of hepatitis C infection coupled with the cost of treatment are motivating factors for

developing classification rules that identify patients which are more likely to respond

to treatment. Such rules could improve the cost effectiveness of treatment and lower

the risk of unnecessary therapy. HCV-TARGET is a multi-center longitudinal obser-

vational study which enrolls a diverse population of patients receiving treatment for

hepatitis C. Researchers collected relevant demographic, clinical, and outcome data

during treatment and follow-up. A scientific objective is to develop a classifier that

can accurately predict treatment efficacy using baseline variables.

In the HCV-TARGET study, the potential complex relationship between treat-

ment efficacy and baseline biomarkers requires a statistical approach that provides

modeling flexibility. Support vector machine classification (SVM) is a statistical

method that offers modeling flexibility by allowing for both linear and non-linear

relationships between the predictors and outcomes. SVMs have been used within a

wide range of different applications, including gene expression analysis [40], fMRI
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analysis [83], and other biomedical computer vision tasks. SVMs represent a natural

approach for building a decision rule because of the modeling flexibility. However,

SVMs do not easily accommodate missing covariate information, yet this is of prime

importance within the HCV-TARGET study as the researchers were unable to collect

all baseline data for all patients for a wide variety of reasons. For example, physicians

sometimes collected certain chemistry measures and not others depending on the pa-

tient’s health or the presence of comorbidities. In other instances, the cause of missing

baseline chemistry measures is unknown. It is necessary to accommodate the missing

data in developing SVM based classifiers.

In section 1.4, we discussed a number of published SVM with missing data

methods. We noted that most of those solutions were ad-hoc and validated via simu-

lation studies in very limited missing data scenarios. And those methods motivated

by statistical reasoning are plagued by computational challenges or are limited to

specialized missing data scenarios. Given the limitations of existing methods and mo-

tivated by the HCV-TARGET study, we propose the augmented and weighted support

vector machine (AWSVM) classifier, an EM-motivated solution to the missing data

problem for SVMs which maintains the convex objective function and which allows

the researcher to use the same software as the complete case solution. The method

is iterative and involves replacing incomplete observations in the training set with

several draws from the EM conditional distribution. The observations in the training

set are weighted so that the draws corresponding to a single incomplete observation

contribute the same as a single, fully observed observation. We will show that in

certain situations, the AWSVM asymptotically minimizes classification error, i.e., is a

Bayes classifier. Further, we will show through simulation that the AWSVM has good

finite sample properties as well. In contrast to existing approaches, the AWSVM is

built on statistical principles which have been effective in other missing data methods.

In addition to advancing core biostatistical and machine learning methodology
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through the development of the AWSVM method, we also make an important contri-

bution to the field of hepatology. In particular, we apply the AWSVM method to the

motivating HCV-TARGET study to develop a novel classification rule for determining

whether or not treatment will be efficacious using baseline factors. The rule is sensitive

and while further validations are required, it represents an important step towards the

development of personalized treatment rules that can reduce the health risks and costs

associated with treatment of hepatitis C.

2.2 Method

Our proposed method to accommodate incomplete observations is motivated by

EM-principles as described in section 1.2.3. The focus of our analysis is the regularized

empirical risk function which defines the SVM solution (section 1.4). Here, we make

use of the weighted form of the objective function derived in Yang et al. [114]. With

observation weights wi, the weighted SVM objective function is

f̂Tn = arg min
f∈H

1

2
|| f ||2H +

n∑

i

wi max(0, 1 − yi f (xi)). (2.1)

We use the same notation as chapter 1; recall that outcomes and covariates are denoted

as yi and xi for the n observations of the training set Tn. Building on the weighted

objective function, we assume that the sampling model of yi|xi can be approximated by

a quasi-probability model which is a function of the loss Lh and decision boundary f .

We denote this quasi-probability model as p̃(y|x, f ). Second, we assume a distribution

p(x; θ). Together, these assumptions imply a conditional quasi-probability model for

the missing covariates xm conditional on the observed data and parameters, i.e.,

p̃(xm
i |xo

i , yi, f ,θ) =
p̃(yi|xi, f )p(xm

i
|xo

i
,θ)∫

p̃(yi|xi, f )p(xm
i
|xo

i
,θ) dxm

i

. (2.2)
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The proposed method is to replace max[0, 1 − yi f (xi)] in equation (2.1) with its condi-

tional expectation Ẽ
{

max[0, 1 − yi f (xi)] | xo
i
, yi, f ,θ

}
for incomplete observations. Fur-

ther, we propose that the expectation be replaced as a sum of finite draws:

Ẽ
{

max[0, 1 − yi f (xi)] | · · ·
}
=

1

r

r∑

k=1

max[0, 1 − yi f (x(k)

i
)]

where x
(k)

i
is xi with missing values replaced with a draw from p̃(xm

i
|xo

i
, yi, f ,θ).

The key observation is that this setup essentially amounts to replacing each

incomplete observation with r draws from the conditional distribution and then ad-

justing the corresponding weight for each observation. Thus the algorithm begins

with a postulated rule, usually the complete case solution, and then proceeds between

drawing replacement observations for missing values and constructing a new decision

rule which is then used in the next step of drawing replacement values. The iterative

solution is outlined in Table 2.1 for the standard case when each observation is initially

weighted the same, i.e., wi = C/n.

In many situations, sampling from the conditional distribution of p̃(xm
i
|xo

i
, yi, f ,θ)

will require MCMC methods. As such, we describe a Metropolis-Hastings algorithm

which can be used in the augment step which uses a normal proposal distribution.

For an observation x with missing values at an arbitrary augment step (t + 1) of the

AWSVM algorithm, start the sampling chain with an initial, prior value of x(1). Let

xo
(1)
= xo. Then generate a proposal value from the normal distribution centered at x(1),

call it x
p

(1)
. Again, ensure the observed elements of x match the corresponding elements

in x
p

(1)
. (The proposal distribution my be tuned via the covariance if needed.) Let u be

a uniform random variable, and let φ be the normal distribution function. If

p̃(yi|xp

(1)
, f (t))φ(x

p

(1)
;θ(t))

p̃(yi|x(1), f (t))φ(x(1);θ(t))
≥ u

then we set x
p

(1)
as the second link in the chain, x(2) = x

p

(1)
. Otherwise, we set x(2) = x(1).
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Table 2.1: AWSVM Algorithm

Step Procedure
0 Choose a distribution for P(x;θ), say normal. Let f (0) and θ(0) be

initial, starting values of f and θ.

1 Let t index the iterations. Start t = 0.

1a (Augment) For each observation with missing values, construct r

replicates (indexed by k) of x
(k)

i
with draws from p̃(xm

i
|xo

i
, yi, f (t),θ(t)).

Augment the data set with these draws, call it Taw.

1b (Weight) For entries corresponding to complete cases, set the
weight to C/n. For entries of incomplete cases, set the weight to
C/(rn).

1c Find f̂Taw(x) and weighted maximum likelihood estimates of θ. Set

f (t+1) = f̂Taw(x) and θ(t+1) = θ̂

2 Repeat step 1 until f (t+1) converges.

The procedure continues with x(2) acting as the prior value in order to generate x(3),

and so forth. The first 1000 values are discarded, and then every 20th draw is kept.

The set of r values drawn from this procedure are the replicates x
(k)

i
described in step

1a of the AWSVM algorithm reported in Table 2.1. These draws are appended to the

training set with the corresponding weights set to 1/r of the complete case weight.

Users of AWSVM must select the cost parameter C and any kernel specific

parameters just as they might in a situation without missing data. We propose two

options: the first is standard cross-validation in which one uses the same proposed

value of the tuning parameters at every iteration. The second is a cross validation step

at the start of each iteration, thus allowing the tuning parameters to change. Depend-

ing on the computational burden of (a) generating draws from the quasi-conditional

distribution and (b) cross-validation, one option may be more time-effective. If (b) is

more time intensive, then the standard method is likely time-effective. Conversely, if
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(a) is more time intensive, then allowing the parameters to change at each iteration is

preferred. Our simulations have not identified either one to be better/worse in terms

of prediction error.

2.2.1 Properties of the AWSVM

We frame the AWSVM in terms of a quasi-likelihood; it is in that context that

we derive the method’s properties. When weights are uniform each observation

contributes

1

C
|| f ||H +max(0, 1 − yi f (xi))

to the penalized empirical risk. The loss function is such that properly classified

observations contribute less while misclassified observations contribute more. We

build the proposed quasi-conditional probability, p̃(yi|xi, f ), with this risk contribution.

Let D be a normalizing constant, and let ∆L(xi) = max[0, 1 + f (xi)] −max[0, 1 − f (xi)].

We define the quasi-conditional probability model as

p̃(yi|xi, f ) = D exp{−empirical risk contribution}

=
[
1 + exp

{−yi∆L(xi)
}]−1 .

If xi is on the boundary of the decision rule f , the induced conditional probability is 1
2
.

Otherwise, p̃(yi|xi, f ) is larger in regions of smaller loss, and conversely, is smaller in

regions of larger loss.

The proposed method has important asymptotic properties which we state here

and prove section A.1 (page 104) and section A.2 (page 108) of the appendix.

Proposition 1. The AWSVM solution maximizes the observed data quasi-likelihood.

Proposition 2. If the data model p(x;θ) is specified correctly, then then decision function that

maximizes the expected observed quasi likelihood is asymptotically a Bayes classifier.
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The first proposition and its proof indicate that the AWSVM algorithm does con-

verge to a meaningful classifier. Similar to other EM methods, the AWSVM algorithm

generates a rule which maximizes the observed data quasi-likelihood. The second

proposition indicates that under certain conditions, the AWSVM solution is consistent

in the sense that the AWSVM solution is a Bayes classifier.

2.3 Simulation Study

In this section, we compare the performance of the proposed AWSVM method

to a set of commonly used competitors. We consider both linear and non-linear

boundaries, both linear and Gaussian kernels, and two types of missingness models.

For each data set, we built a decision rule with AWSVM and with the following

competitors: Complete Case (CC), Mean Imputation (Imp), Multiple Imputation (MI),

K-Nearest Neighbor (KNN), and Probability constraint (PC). For reference, we also

built the Oracle (O) rule, the SVM classifier built with no missing data. The SVM

competitors are described in section 1.4. We built the AWSVM decision rule using

the complete case solution as the initial decision rule. We selected p(x;θ) to be the

normal distribution, and we sampled from p̃(xm|xo, y, f (t),θ(t)) using the MCMC method

described in section 2.2 with r = 30 draws.

2.3.1 Results

We start with simulations involving d = 2 predictors. There are two boundary

models (rows) and two missingness models (columns). Thus, the results are reported

in four panels in Figure 2.1, and each panel represents a different combination of

boundary and missingness model. The top row is the linear boundary, and the bottom

row is the non-linear boundary. The left column is missingness dependent on only

predictors, and the right column is missingness dependent on predictors and the
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outcome. The linear boundary (data in the top row) was generated with normally

distributed predictors centered at 10, and the outcome was generated from the linear

log odds model

log
p(y = +1|x)

p(y = −1|x)
= γ1t

d(x − 10 · 1d).

The parameter γwas calibrated to achieve a consistent signal strength, specifically 15%

error rate for the oracle classifier, and in the case of d = 2 predictors, γ = 2.4. The non-

linear boundary (data in the bottom row) was generated with normally distributed

predictors centered at 10, and the outcome was generated from a non-linear boundary,

log
p(y = +1|x)

p(y = −1|x)
= γ ( δ + xd −

d−1∑

i=1

(xi − 10)2 ). (2.3)

Similarly, γ calibrates signal strength of the missingness model and was set at 2.5. The

parameter δ controls the proportion of observations in each group and was set for

uniform group sizes at δ = 0.7. Missingness dependent on only the predictors (left

column) is generated as

log
p(Missing xik|xi,k+1)

p(Observed xik|xi,k+1)
= α + β(xi,k+1 − 10). (2.4)

The parameter β controls the signal strength of the missingness model. The parameter

α calibrates the overall missingness percentage. When β = 0, the missing data are

MCAR. For values of β away from zero, the missing data are MAR. The simulations

consider several values of β: -10, -6, -2, 0, 2, 6, and 10. Missingness dependent on

predictors and the outcome (right column) was generated as

log
p(Missing xik|xi,k+1, yi)

p(Observed xik|xi,k+1, yi)
= α + βyi(xi,k+1 − 10) (2.5)

with the same interpretation and values for α and β. In each panel and for each level

of β, we generated 100 datasets. In these simulations, a linear kernel is constructed
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for the linear boundary scenarios and a Gaussian kernel is constructed for the non-

linear boundary. While the true boundary is not known to the user, the boundaries in

this simulation are sufficiently linear or non-linear that cross-validation would have

indicated to the user the right kernel to use. The results are presented on that basis,

but we revisit this point in a discussion of Figure 2.3.

In the simulations involving missingness dependent on predictors (left column),

AWSVM performs better than the competitors. In some regions of β the improvement

is 5% less prediction error. When missingness is dependent on the predictors and the

the outcome (right column), the AWSVM performs better than competitors in some

regions of β and performs comparably well in others. Further, in the right column, no

method is clearly superior.

The results involving d = 20 predictors are reported in Figure 2.2. The bound-

ary and missingness models are the same, except the signal strength parameters are

calibrated to account for the additional predictors (γ = 0.75 and δ = 16.5). We also

performed simulations for d = 100 predictors, but those results are omitted because

they closely mimic the d = 20 case. In the linear boundary scenario, regardless of

missingness model, all the methods performed well except for complete case. This

scenario represents less information loss than the d = 2 scenario because only 3.5% of

predictor values are missing in this scenario compared to 35% in the d = 2 scenario.

Thus, the fact that all methods perform well is to be expected. In the non-linear bound-

ary scenarios, complete case and probability constraint are markedly poor performers.

The probability constraint method is a linear solution and the poor performance is

expected in the non-linear case. Interestingly, AWSVM performs 2-3% worse than the

competitors in this situation.

In practice, the true decision boundary is not known. Further, decision rules

built with the linear kernel can perform well even when the decision boundary is

mildly non-linear, especially when the number of predictors is large. The non-linear
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Figure 2.1: Comparison of AWSVM to competitors, simulation results for d = 2 pre-
dictors.

The X-axis is β in equations (2.5) and (2.4). The Y-axis is prediction error above oracle
error. The missingness percentage is 70%.
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Figure 2.2: Comparison of AWSVM to competitors, simulation results for d = 20
predictors.

The X-axis is β in equations (2.5) and (2.4). The Y-axis is prediction error above oracle
error. The missingness percentage is 70%.
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Figure 2.3: Prediction error when the boundary is linear and the decision rule is
constructed with a Gaussian kernel

decision boundary used in this simulation is sufficiently non-linear so that linear

rules trained with the non-linear data perform poorly. Conversely, rules constructed

with the Gaussian kernel even when the boundary is linear did perform well. (See

Figure 2.3.)

Figure 2.4 provides a graphical display of the variability of the simulation

results. The simulation variability of AWSVM was better or comparable to its com-

petitors in this and many other scenarios.

2.4 Application to HCV-TARGET Data

We apply the AWSVM method to a subset of patients from the HCV-TARGET

database. HCV-TARGET is a consortium of North American academic and community

medical centers performing a longitudinal observational study of patients undergoing

treatment for hepatitis C. Specifically, we consider previously treated, non-cirrhotic,

female patients treated with Telaprevir. One reason for choosing this subset is that its

cure rate is lower than some of its counterparts.
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Figure 2.4: Comparison of Prediction Error Variability of Commonly Used Missing
Data Methods
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Cure, the outcome of interest, is defined as undetected hepatitis C virus 12

weeks after ending treatment. The training set (N=112) are those patients treated prior

to 1 January 2012. The validation set (N=38) are those treated after. The predictors of

interest include age and five blood assays at baseline: total bilirubin (BILI), creatinine

(CRE), hemoglobin (HGB), hepatitis C viral load (LOGHCV), and absolute neutrophil

count (ANC). We selected these predictors from the set of baseline measures in con-

sultation with members of the HCV-TARGET team. In the training set, 37% of patients

have incomplete data. Of those with incomplete data, 71% are missing one predictor,

20% are missing two predictors, and the remaining 9% are missing three predictors.

We applied the AWSVM method along with complete case, mean imputation,

multiple imputation, k-nearest neighbor, and probability constraint methods to the

construction of decision rules with linear and Gaussian kernels. For comparison

purposes, we also considered the logistic regression with EM method with the other

linear classifiers. The out-of-sample prediction error for each classification rule is

reported in Table 2.2. There may be non-linear relationships between the predictors

and the outcome; each kernel method performed better with the Gaussian kernel than

the linear kernel. Our proposed method performs best among non-linear decision rules

(prediction error 18.4%); the multiple imputation method was second best (23.7%).

Interestingly, logistic regression with EM performed poorly in the linear case (50%)

while the probability constraint method did well (31.5%). AWSVM was second best

among linear methods (36.8%).

The out-of-sample performance of the AWSVM predictor indicates that person-

alized treatment-assignment rules may exist which identify patients likely to respond

to treatment. The Gaussian AWSVM rule constructed with the HCV-TARGET data is

reported in Figure 2.5. The pairwise plot of BILI and ANC, for example, is created

by setting the value of all other predictors to the respective conditional mean. Only

values within two standard deviations of the mean are plotted in order to restrict the
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Table 2.2: Prediction Error of Competing Classification Methods Applied to HCV-
TARGET Data

Method Linear Kernel Gaussian Kernel

AWSVM 36.84 18.42
Complete Case 44.74 31.58
KNN 44.74 31.58
Logistic Regression EM 50.00
Mean Imputation 47.37 28.95
Multiple Imputation 39.47 23.68
Probability Constraint 31.58

regions to areas in which training data are observed. While SVM decision rules are

difficult to interpret in terms of a single predictor or even two predictors, the plots do

demonstrate potentially important non-linear boundaries between outcome groups in

the predictor variables. Note, for example, that a number of relationships indicate one

group near the mean and the other group near both tails. AGE is one such predictor

with this trend. Others like BILI tend to have a more linear-type relationship, where

higher values of BILI do not favor cure. The Gaussian AWSVM rule admits both non-

linear and linear relationships, and as this example demonstrates, such rules represent

potentially significant cost savings and reduced risk of unhelpful exposure to toxic

treatment.

2.5 Conclusion

We have proposed an SVM classifier for situations when the training data in-

cludes incomplete observations. We compared the AWSVM classifier to common com-

petitors with simulated data; those simulations suggested that the AWSVM decision

rule had fewer out-of-sample prediction errors in many situations. The simulations

also showed that the advantages of AWSVM are largest when the number of predic-

tors is small. In the analysis of hepatitis C data from HCV-TARGET, we used age,

total bilirubin, creatinine, hemoglobin, hepatitis C viral load, and ANC to predict
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Figure 2.5: Plots of AWSVM decision rule constructed with HCV-TARGET data.
Dark gray indicates cure. Values have been centered and scaled. The center of each
axis is the mean. Each pairwise plot is created by setting all other predictor variables
to the conditional mean.
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cure among a specific subset of patients. The proposed method provided the lowest

validation set prediction error.

There are several ways in which AWSVM can be modified or extended to fit

specific data analyses. First, consider the replicates with which one augments the

training data set. We proposed generating the replicates with an MCMC sampler. In

our simulations, we drew 30 replicates for each missing observation. Depending on

the size of the training set and the number of incomplete observations, the size of the

augmented training set can become prohibitively large. One possible extension is to

augment the training set with a smaller number of observations but weighted in a way

that the expectation is reasonably preserved.

Second, consider the data model p(X;θ). In the current setup, the user must

specify the data model. In our simulations and in the analysis of hepatitis C data, we

choose a normal distribution. One area of future work is finding ways which relax this

requirement.

The AWSVM provides a principled and usable solution to the problem of miss-

ing data and SVM classifiers. It does not require specialized software beyond that

used for the non-missing data case. In the analysis of clinical data in HCV-TARGET

database, where missing data in the training set is expected, the AWSVM classification

rule provided a personalized treatment rule with smaller classification error than its

competitors.
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CHAPTER 3: DOUBLY ROBUST SUPPORT VECTOR MACHINES FOR
MISSING COVARIATES

3.1 Introduction

The Support Vector Machine (SVM) is a popular tool in a number of biomedical

applications in which researchers must predict a binary outcome from a potentially

large set of predictors. For example, SVMs were used in gene expression analysis

[40], fMRI analysis [83], and other biomedical computer vision tasks. SVMs are suc-

cessful in computer vision applications because the method can accommodate a large

number of predictors and because the method constructs with relative ease both linear

and non-linear models. Despite the method’s success in applications of machine-

generated biomedical data (e.g., fMRI data), SVMs have not experienced the same

success in applications which regularly involve missing data because the SVM does

not easily accommodate missing data. Because applications which generate datasets

with missing data are prevalent, we propose a weighted SVM classifier which accom-

modates missing data in the covariates. The proposed SVM is based on ideas from

weighted estimating equations and inverse probability weighting, and the classifier

can be constructed with standard SVM software. Because this method can be widely

implemented and eliminates missing data barriers, this method has the potential to

expand SVM tools to a broader set of application areas.

One such application area which motivates this work is HCV-TARGET, an

observational and longitudinal study of Hepatitis C patients. As is expected in such

studies, researchers were unable to collect all baseline data for all patients. For example,

baseline data like blood assay measures Albumin may not have been collected for some

patients. Despite missing data issues, researchers intend to analyze the HCV-TARGET
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database in order to identify patient sub-populations which respond differently to

current treatment regimens. SVMs may be a valuable tool for this research task

because the SVM offers considerable modeling flexibility. The method proposed in

this paper accommodates the missing values in the covariates.

There is substantial literature related to missing data within parametric and

semi-parametric modeling approaches [28, 85, 56, 90]. Notably, [89] introduced a

general framework for understanding missing data and the scenarios when missing

data can bias data analysis results. Only limited work has been done within the

context of SVMs despite their importance for accommodating the complexity of many

real data sets. One popular SVM method for missing data includes complete case

analysis which operates by omitting observations with missing data and constructing

a decision rule with only fully observed observations. The method can be seriously

biased when missingness depends on the outcome and can be inefficient even when

valid. Another popular missing data method with SVMs is single imputation [50].

The method replaces missing values with values from an imputation model (e.g.

via regression or k-nearest neighbors). The method is simple but its validity rests

on the quality of the imputation model. A poorly specified imputation model may

introduce bias. Similarly, multiple imputation for SVMs, which requires imputing

multiple data sets and averaging classification rules derived from each data set, relies

on the imputation model. Because single and multiple imputation are accessible and

widely used, there is some research about various imputation models and SVMs.

For example, [2] encouraged the use of KNN imputation and [41] suggested Naive

Bayes type imputation. In [35], the authors consider the Gaussian SVM with hot

deck imputation, Naive Bayes, mean imputation, and regression-based imputation.

Other imputation methods which are popular in parametric analyses but have not, to

our knowledge, been considered with SVMs include Sequences of Regression Models

(SRM) [82] and Multivariate Imputation by Chained Equations (MICE) [104].
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Other methods for SVMs that are more sophisticated than complete case analy-

sis and imputation include probability constraint techniques (PC) [95], methods which

recast the SVM objective as estimation in the exponential family (EF) [97], and a geo-

metric max-margin approach (MM) [22]. Although better motivated from a statistical

standpoint, such methods require the use of nonstandard optimization techniques

leading to computational challenges. These challenges are exacerbated by modest

sample sizes and non-linearity, thereby losing one of the key advantages of using

SVMs.

The method proposed in this paper is motivated by missing data methods

known as doubly-robust estimators [8] which were developed in the context of para-

metric and semi-parametric models. The method combines the ideas of re-weighting

and multiple imputation in order to correct for potential bias introduced by missing

data [57, 61, 105, 88]. Furthermore, the objective function of doubly-robust estimators

combines the contributions of imputation and re-weighting in such a way that if the

imputation model or the re-weighting model are correctly specified, then the resulting

estimator is unbiased. The method gets its name from the fact that only one of the two

models needs to be correctly specified for the method to generate unbiased estimates.

In the context of SVMs, we apply re-weighting and imputation so that the

empirical risk component of the objective function is unbiased. The proposed method

is easily implemented with standard software. The method is developed in section 3.2

and a simulation study of these methods and their alternatives is reported in section

3.3. We compare the performance of the proposed method to its alternatives when

applied the HCV-TARGET database in section 3.4, and we conclude in section 3.5.
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3.2 Methods

3.2.1 Support Vector Machine Classifiers

Consider the task of constructing a classification rule fTn(x) from training set Tn

to predict binary outcomes y ∈ {−1,+1} from predictors x ∈ Rd. Specifically, construct

the rule so that the predicted outcome is ŷ = sign[ fTn(x)], which means an outcome

is correctly predicted if y fTn(x) > 0 and is incorrectly predicted otherwise. The SVM

classification rule built from Tn minimizes this complexity-penalized empirical risk

function:

f̂Tn = arg min
f∈HTn

λ|| f ||2HTn

︸   ︷︷   ︸
penalty

+
1

n

n∑

i

max[0, 1 − yi f (xi)]

︸                          ︷︷                          ︸
empirical risk

. (3.1)

The restricted set of functions, denoted H , is a Reproducing Kernel Hilbert Space of

functions. Member functions ofH are of the form

fTn(z) = b +
∑

xi∈Tn

ciκ(z, xi)

where κ is a kernel function. Thus, the SVM rule is a type of linear basis expan-

sion model; the rule is a linear combination of basis functions hi(z) = κ(z, xi). The

construction of fTn(x) centers on finding values for c1, . . . , cn and b.

With regards to the asymptotic properties of SVMs, two key results are that (a)

the empirical risk converges to the hinge risk,

1

n

n∑

i

max[0, 1 − yi f (xi)]→ EP{max[0, 1 − y f (x)]},

and (b) the hinge risk minimizer also minimizes the classification risk. The combination

of these statements implies that the SVM decision rule enjoys an important property:

asymptotically, it is a Bayes classifier. See [98] for details and proofs.
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3.2.2 Doubly Robust Support Vector Machine

Now consider the specific situation when the training set Tn = {(yi, xi)|i =

1 . . . n} from which the classifier is to be built includes observations with some missing

predictor values. Let xm
i

and xo
i

denote the components of xi which are missing and

observed, respectively. Also, let xa
i

denote the subset of predictors that are fully

observed for all observations. To denote which observations include missing predictor

values, construct the variable ri. If an observation is missing a predictor value, let ri = 0.

Otherwise, let ri = 1. The subset of observations with ri = 1 are called the complete

cases and are denoted as Tcc (|Tcc| = ncc). The compliment set are the incomplete cases

and are denoted as Tic (|Tic| = nic).

Incomplete data is problematic when the population of fully observed subjects

(where ri = 1) differs in important ways from the population of both fully observed and

incompletely observed subjects, i.e., issues with missing data occur when P(r = 1, y, x)

differs from P(y, x). In the context of SVMs built with fully observed subjects, the

empirical risk portion of the objective function no longer approximates the hinge risk

with respect to P(y, x). Rather, the empirical risk portion approximates the hinge risk

with respect to P(r = 1, y, x). The motivating idea of our proposed method is to re-

weight fully observed subjects so that the empirical risk approximates the risk with

respect to P(y, x).

As noted earlier, the concept of adjusting observation weights to preserve an

expectation is used in survey sampling, causal inference, epidemiology, and several

other areas of data analysis. Because the method proposed in this paper is based on

the Doubly Robust estimator and combines the ideas of imputation and re-weighting,

we call the method the Doubly Robust Support Vector Machine (DRSVM). As a pre-

liminary step in developing the ideas of the DRSVM, suppose that p̂i ∈ (0, 1) could be
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selected so that

1

ncc

∑

i

ri

p̂i
max[0, 1 − yi f (xi)]→ EY×X{max[0, 1 − Y f (X)]}

as ncc gets large. Called inverse probability weighting in semi-parametric estimating

equation frameworks, p̂i is chosen to approximate P(ri = 1|xi, yi). If the expectation

is preserved, an SVM constructed with the weights ri/p̂i would be, asymptotically, a

Bayes classifier. The draw back of stopping here is that only complete case observations

contribute to the resulting classifier. As such, the efficiency of such an SVM may be

poor.

We augment the inverse probability weighted empirical risk function with a

surrogate loss function, φ(yi, xa
i
), so that observations with missing values contribute

to the empirical risk calculation. The surrogate loss function incorporates the multiply

imputed values of the missing covariates, and the objective function for the DRSVM is

f̂DR = arg min
f∈H

λ|| f ||2H

+
1

n

∑

i

ri

p̂i
max[0, 1 − yi f (xi)] −

(
ri

p̂i
− 1

)
φ(yi, x

a
i ). (3.2)

The advantage of such a setup is that the solution is asymptotically a Bayes classifier

if one of the following holds:

1. The surrogate loss function captures the true loss, φ(yi, xa
i
) = E{max[0, 1 −

yi f (xi)]|yi, xa
i
}, for all observations.

2. The estimated probabilities p̂i are unbiased in the sense that p̂i = P(ri = 1|xi, yi).

The proofs of these propositions are relegated to section B.2 (page 111) in the appendix.

The key advantage of this method compared to the commonly used imputation is that

properly specified inverse probability weights protect against poorly specified imputa-

tion models. Likewise, this method compared to the inverse probability weights on just
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the complete cases has the advantage of incorporating some information from incom-

plete cases. Lastly, this method highlights the key role of the empirical classification

risk in the SVM framework; so long as the empirical classification risk approximates

the true classification risk, the resulting SVM will be a Bayes classifier.

3.2.3 Computation of the DRSVM

In practice, the probabilities p̂i are estimated by specifying a model for ri =

1|xi, yi. Logistic regression, classification trees, or even SVMs and other statistical

learning classifiers can be used for this task. Whatever the tool, estimates of p̂i which

are relatively very small require extra attention as the corresponding observation may

overly influence the estimate.

The surrogate loss, φ(yi, xa
i
), incorporates information from the observations

with missing covariates. However, it is calculated for all observations, including those

which are fully observed. Based on the subset of covariates that are observed for

all observations, xa, the surrogate loss is calculated via imputation. One chooses an

imputation model conditional on xa
i

and yi, and then samples the remaining covariates

for each observation. Each observation is imputed K times. Denote filled-in draws as

ẋ
(k)

i
. The surrogate loss is calculated as

φ(yi, x
a
i ) =

1

K

K∑

k=1

max[0, 1 − yi f (ẋi
(k))].

Operationally, however, the surrogate loss need not be computed directly. Rather, note

that computation of the DRSVM relies on three types of observations: (a) covariates

with imputed values from observations with missing values, (b) covariates with im-

puted values from observations without missing values, and (c) covariates with fully

observed values. Consider a matrix
∗
X in which all three types of covariates are stacked

to form a single covariate matrix. Let
∗
y record the corresponding outcomes for each
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row in
∗
X. Suppose the vector v indicates the corresponding observation type for each

row in
∗
X. And, lastly, depending on the observation type, let the vector w record the

corresponding weight for each row in
∗
X. That is,

wi =



1
K

observation of type (a)

1
K

(
1 − 1

p̂i

)
observation of type (b)

1
p̂i

observation of type (c)

The DRSVM objective function can be re-expressed with
∗
X,

∗
y and w as

f̂DR = arg min
f∈H

λ|| f ||2H +
1

n

∑

i

wi max[0, 1 − ∗yi f (
∗
xi)].

Computationally, this means the DRSVM can be expressed as a weighted SVM [114]

with an augmented covariate matrix and outcome vector.

The DRSVM objective function is not convex. However, it can be approximated

with convex functions in a way that allows users to compute the DRSVM with standard

SVM software. The issue is that for observations of type (b), the corresponding weight,

wi, is negative. In section B.1 (page 110) of the appendix, we show that

f̂DR = arg min
f∈H

λ|| f ||2H +
∑

i

|wi|max[0, 1 − sign(wi)
∗
yi f (

∗
xi)]. (3.3)

is an asymptotically equivalent solution which preserves convexity of the objective

function. Because it is an approximate solution, situations involving heavily weighted

observations of type (c) can lead to classifiers which poorly approximate the DRSVM

classifier. However, such situations can be diagnosed in the following way. Starting

with the most influential fully-observed observation, reconstruct
∗
X,

∗
y and w as if the

observation had missing covariates. Operationally, reconstructing the data simplifies

to adjusting the corresponding values in w. For the potentially influential observation,
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change the weights of observations of type (b) as if the observations were of type (a).

Further, set the corresponding weight of the observation of type (c) to zero. With the

new weights, re-fit the classifier. Large changes in the resulting classifier suggest that

the heavily weighted observation led to a classifier which poorly approximated the

DRSVM solution. If such is the case, the re-fit solution is preferred. If the re-fit classifier

is similar to the first, one can continue to check subsequent influential observations.

3.2.4 Doubly Weighted SVM Classifier

Despite the complications of approximating the DRSVM, the motivating ideas

behind DRSVM are appealing, specifically (a) weighting fully observed data to esti-

mate a proper empirical risk and (b) increasing efficiency by incorporating incomplete

observations via imputation and surrogate loss. In this section we propose a weighted

SVM classifier motivated by the same ideas of DRSVM but which avoids the compu-

tational complications associated when approximating the DRSVM.

RecallTcc (|Tcc| = ncc) is the set of complete case observations, andTic (|Tic| = nic)

is the set of incomplete observations. The proposed empirical risk is

η

[
1

ncc

∑ ri

p̂i
max[0, 1 − yi f (xi)]

]
+ (1 − η)

[
1

nic

∑ 1 − ri

1 − p̂i
φ(yi, x

o
i )

]
.

The first part of the empirical risk mirrors the inverse probability weighted empir-

ical risk and captures contributions from complete case observations. The second

part is a weighted surrogate loss which captures contributions from incomplete cases.

Moreover, the surrogate loss is defined in terms of xo
i

instead of xa
i
, which means the

imputations which make up the surrogate loss calculation incorporate more of the ob-

served information. The parameter η ∈ (0, 1) calibrates the relative contribution of each

part to the overall estimation. Because both complete and incomplete observations are

reweighted, we call this the doubly weighted SVM (DWSVM).
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DWSVM does not enjoy the doubly robust property and the surrogate loss may

introduce bias similar to all improper imputation methods; however, DWSVM differs

from other improper imputation methods because the analyst can control the relative

importance of the surrogate loss and imputation model with the parameter η. It is

an important contribution to SVMs and missing data research because it provides

the analyst one way to gauge how sensitive an SVM model may be to a particular

choice of imputation distribution. By calculating a classifier at several values of η,

the researcher may examine how the classifier changes as more weight is given to the

imputed portion. Further, the user may choose η via cross-validation as any other

tuning parameter if the right level of η is in question.

Computation of the DWSVM involves similar steps of augmenting the dataset

and computing inverse probability weights. By arguments similar to those in statement

2 of section B.2 (page 111) in the appendix, if the estimated probabilities, p̂i, are

unbiased, then the DWSVM is asymptotically a Bayes classifier.

3.3 Simulation Study

3.3.1 Simulation Scenarios

The finite sample performance of the proposed estimators was evaluated through

a series of simulation scenarios. The simulation study was organized as a factorial

experiment in which we considered combinations of the following factors: (a) the

distribution of the underlying covariate data, (b) the shape of the boundary between

groups, (c) the number of predictors, and (d) the missing data model. We considered

two distributions for the underlying data. In half of the scenarios, we generated d

covariates from a multivariate random normal distribution with mean zero, unit vari-

ance, and pairwise correlation among covariates as 0.3. In the other half of scenarios,

we generated d covariates from a χ2 distribution with no pairwise correlation among

covariates. We generated the outcome, y, in two ways. The first creates a linear
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boundary between y = +1 and y = −1:

y ∼ BIN[1,P(y = 1|x)] where log
P(y = +1|x)

P(y = −1|x)
= γ(1t

dx + δ). (3.4)

The parameter γ is calibrated to achieve a consistent signal strength which we define

as a 15% error rate for the oracle classifier. The parameter δ is calibrated to maintain

consistent group proportions. We set the parameter so that P(y = 1) = .5. We

also generated the outcome so that a non-linear boundary exists between groups,

Specifically,

y ∼ BIN[1,P(y = 1|x)] where log
P(y = +1|x)

P(y = −1|x)
= γ ( δ + xd −

d−1∑

i=1

x2
j ). (3.5)

Like the linear case, γ is set to achieve consistent signal strength, and δ is set to maintain

consistent group proportions. The number of covariates, d, was set to 2 or 10.

Missing data was generated in two ways. In both missing data scenarios,

half of the covariates (indexed as k = 1, . . . , d/2) were eligible to be missing. In the

first scenario, the probability of missingness is a function of both the outcome and

covariates:

log
P(Missing xik|xi,d/2+k, yi)

P(Observed xik|xi,d/2+k, yi)
= α + βyixi,d/2+k. (3.6)

In the second scenario, the probability of missingness is a function of only the covari-

ates:

log
P(Missing xik|xi,d/2+k)

P(Observed xik|xi,d/2+k)
= α + βxi,d/2+k. (3.7)

In both missing data models, the parameter β controls the missing-model signal

strength. When β = 0, missingness does not depend on the covariates or the out-

come. That scenario represents data missing completely at random (MCAR). As β

deviates from 0, the association between missingness and the corresponding covari-

ates (and outcome) is more pronounced. Scenarios with β , 0 represent data missing
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at random (MAR). Note that negative and positive values of β represent considerably

different missing data patterns, and methods for missing data can have non-symmetric

performance along the range of βs. To evaluate the performance of the missing data

methods, we consider β = -6, -2, 0, 2, 6. The parameter α in both missing data models

controls the overall proportion of observations with missing values. This parameter is

set so that 60% of observations have at least on missing covariate.

With 2 levels in each of the 4 experimental factors, there are 24 simulation

scenarios in this simulation experiment. Within each scenario, the missingness signal

is set to 5 levels, for a total of 24 · 5 simulation settings. In each of these settings, we

generated 100 training data sets along with a single out-of-sample validation data set

of 10,000 observations. Unlike the training set, the validation set did not have missing

covariates. For each training set, we constructed classification rules with the methods

considered in this study. The prediction error for each rule was calculated as the

percentage of observations in the validation set which were missclassified.

We compared the performance of the proposed DRSVM and DWSVM methods

to a set of commonly used competitors. For each data set, we built a decision rule

with DRSVM, DWSVM, and with the following competing missing data methods:

Complete Case (CC), Mean Imputation (Imp), Multiple Imputation (MI), K-Nearest

Neighbor (KNN), and Probability constraint (PC). For reference, we also built the

Oracle (O) rule, the SVM classifier built with no missing data. In each simulation

setting, we constructed the SVM classifiers with both linear and Gaussian kernels

(except the PC classifier).

The PC method [95], as noted earlier, takes advantage of the constrained op-

timization problem which characterizes computation of the SVM solution. Without

67



missing data, the constrained optimization problem is

fsvm = arg min
f∈H

λ|| f ||2H +
1

n

n∑

i

ξi

Such that 1 − yi f (xi) ≤ ξi and ξi ≥ 0 for i = 1, . . . ,n

The PC method replaces the constraints involving missing covariates with

P(1 − yi f (xi) ≤ ξi|xo
i , yi) ≥ 1 − vi vi ∈ (0, 1]; i = 1, . . . ,n.

The authors show that Chebyshev inequalities applied to the constraint allow the

optimization problem to be recast as a second order cone programming problem. We

construct linear classification rules with this method.

We constructed both DRSVM and DWSVM with K = 5 imputed draws to

construct the surrogate loss. The imputations were drawn from a 10-nearest-neighbor

imputation model. That is, replacement values for missing covariates were selected

by drawing with replacement from the nearest 10 observations.

The cost parameter and the scale parameter (when using the Gaussian kernel)

of each SVM method were selected with 2-fold cross validation. The grid of possi-

ble tuning parameter values was the sequence {2−15, 2−14, . . . , 214, 215}. In the case of

DWSVM, the parameter η, the relative weight of complete case observations to incom-

plete observations, was also selected with two-fold cross validation from the sequence

{.5, .6, .7, .8, .9}.

3.3.2 Simulation results

Let oracle error be the out-of-sample prediction error achieved when the training

set is fully observed. We define the above oracle prediction error (AOPE) as the out-

of-sample prediction error minus the oracle error. The AOPE represents the loss in
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accuracy due to missing data in the covariates. Tables B.1 – B.4 in section B.4 (page 117)

in the appendix report the AOPE for each competing method in each of the simulation

settings.

The number of predictors is an important factor in the performance of each of

the missing data methods. With more covariates, the stability of the resulting classifier

improves. Consider the inter quartile range (IQR) of AOPE within each simulation

setting. With two covariates, mean imputation has the smallest median IQR across

all settings at 2.4 percentage points. DRSVM generates the largest median IQR at 3.5

percentage points. Thus, all methods exhibit comparable variability in AOPE. With ten

covariates, the median IQR drops for each method with the smallest median IQR at 1

percentage point (mean imputation) and the largest is 1.9 percentage point (DRSVM).

Roughly speaking, each method experiences a 50% decrease in IQR between two and

ten predictors. The complete case method, however, is the exception. Its median

IQR remained essentially unchanged between two and ten predictors. For all but the

complete case method, the improved stability as the number of covariates increases

is expected. Note that in these simulations, the number of observations and number

of observations with missing data remain constant while the number of covariates

increases. A single missing covariate represents much greater information loss in the

setting with two covariates than the setting with ten covariates. Continuing with

this heuristic thinking, the stability of the complete case method does not improve

because a single missing covariate represents the same percent information loss in

the two covariate setting as the ten covariate setting because the entire observation is

removed.

Along with stability, the number of predictors affects the overall accuracy of each

of the methods. Averaging over all simulation settings, the median prediction error

improved from 3.6 percentage points (in the case KNN imputation) to 0.6 percentage

points (in the case of mean imputation) when increasing the number of predictors from
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two to ten. The complete case solution is the only method which did not improve with

more covariates.

Focusing on specific classifiers, the clearest (and expected) result from the sim-

ulation study is that complete case classifier only performs well in MCAR situations

(β = 0). When missingness depends on the covariates and outcome (β , 0), the com-

plete case has an average increase in prediction error of 5 percentage points compared

to when missingness depends on the covariates but not the outcome. On average, the

other classification methods did not perform differently under one missing data model

than the other.

Considering the settings where kernel choice matches boundary type, most

missing data methods performed better in the linear boundary settings. The difference

was most pronounced with fewer predictors. One exception to this observation is the

DRSVM classifier, which performed worse by about 1 percentage point in the non-

linear settings even with 10 predictors.

The performance of some classifiers did not vary when the covariate distribution

changed from normal toχ2, when averaging over the other factors. However, complete

case performed worse by 2.5 percentage points in the χ2 setting. Similarly, the accuracy

of DRSVM decreased by 1.5 percentage points when the underlying data was χ2

while the performance of the other competitors, including DWSVM, stayed within 0.5

percentage points.

The simulation results highlight situations when the DRSVM performs well and

situations when it does not. Note that in the first scenario of Table 3.1, the DRSVM

performs best at all levels of β except for the extreme case when β = −6. The DRSVM

is most beneficial in situations with few covariates and considerable missing data.

The method seems to work much better with the linear kernel than with the Gaussian

kernel. The DRSVM struggles with the Gaussian kernel in large part because of is-

sues related to the approximate objective function, over-fitting, and tuning parameter
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selection. Recall that the objective function, in order to maintain convexity, is approx-

imated as in equation (3.3) in which the data has been reorganized into an augmented

set of observations of types (a), (b), and (c) as described above. Operationally, the ap-

proximation re-labels observations of type (b). Thus each complete case observation

contributes to the augmented data a single observation of type (c) and K observations

of type (b). The weighted, average loss of those contributed observations is the loss

contribution of the complete case observation to the standard (not augmented) objec-

tive function (3.2) so long as the rule classifies all of the contributed observations to the

same class. The linear kernel will classify each contributed observation to the same

class except for contributed observations close to the classifier boundary. The Gaussian

kernel, because it can generate complex boundaries, can generate boundaries so that

contributed observations in the augmented dataset from a single complete case are

classified into different classes. In such situations, the loss contribution from the com-

plete cases is poorly approximated by equation (3.3). The poor approximation issue is

an over-fitting issue and can be remedied by selecting appropriate tuning parameters.

On a dataset-by-dataset basis, the user can inspect the outcomes to ensure over-fitting

does not occur. This simulation study highlights the need for an automated solution

for this issue for situations when dataset-by-dataset review is not feasible. Potential

ideas for an automated solution are discussed in the conclusions.

3.4 Application to HCV-TARGET Study

Hepatitis C is a common blood born infection which “affects about 2.35% of the

worldwide population” [74]. The prevalence of hepatitis C infection coupled with the

cost of treatment are motivating factors for developing classification rules that identify

patients which are more likely to respond to treatment. Such rules could improve

the cost effectiveness of treatment and lower the risk of unnecessary therapy. HCV-

TARGET is a multi-center longitudinal observational study which enrolls a diverse
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Table 3.1: Subset of Simulation Results (Full results are in the Appendix)

Median AOPE [IQR]

D Missingness X distr Boundary Kernel β cc dr dw mi knn mi3 socp

2 Y and X Normal Linear Linear -6 13.0 [3.8] 2.8 [5.4] 6.7 [7.7] 13.3 [4.5] 12.2 [5.6] 2.3 [3.2] 14.2 [3.1]
-2 5.7 [3.7] 0.6 [1.4] 1.4 [2.0] 7.0 [3.9] 9.4 [5.6] 1.8 [2.3] 10.8 [4.4]
0 0.3 [0.9] 0.1 [0.6] 0.3 [0.7] 0.3 [0.7] 3.3 [2.9] 1.9 [2.0] 2.5 [2.9]
2 12.4 [8.3] 0.5 [1.1] 1.7 [2.0] 3.5 [2.2] 5.3 [2.3] 3.2 [2.5] 3.6 [1.2]
6 32.8 [7.1] 1.8 [2.3] 4.8 [3.4] 4.6 [2.2] 8.0 [2.4] 3.8 [3.4] 5.2 [1.1]

Non-linear -6 13.6 [3.6] 20.2 [10.4] 25.9 [6.9] 16.4 [5.1] 13.1 [6.6] 8.9 [10.6]
-2 6.4 [3.8] 8.6 [10.8] 20.2 [5.8] 7.8 [3.8] 9.0 [5.0] 3.6 [5.9]
0 0.6 [1.3] 1.6 [3.7] 12.9 [3.7] 0.7 [1.1] 4.2 [2.9] 1.8 [1.8]
2 13.1 [6.8] 2.4 [4.1] 8.9 [3.7] 5.2 [3.3] 5.9 [3.2] 4.0 [2.9]
6 31.7 [7.4] 5.1 [4.4] 9.4 [4.2] 8.4 [3.2] 8.7 [3.9] 9.2 [5.6]

Non-linear Non-linear -6 8.8 [1.9] 12.4 [6.9] 19.2 [5.8] 10.3 [3.5] 9.9 [2.9] 11.6 [5.6]
-2 5.1 [3.9] 6.4 [7.6] 15.7 [6.6] 6.9 [4.7] 7.7 [4.5] 10.1 [4.0]
0 0.9 [1.8] 2.4 [3.1] 11.3 [4.1] 2.6 [2.4] 4.7 [3.6] 10.4 [4.1]
2 11.2 [5.7] 2.8 [4.1] 8.3 [3.7] 7.6 [7.7] 5.5 [3.6] 13.3 [6.0]
6 26.4 [8.4] 3.7 [4.5] 7.7 [4.1] 17.1 [5.5] 6.4 [3.2] 16.4 [5.0]

2 X χ2 Linear Linear -6 1.5 [3.7] 2.6 [4.5] 1.3 [2.9] 1.1 [1.9] 6.5 [5.7] 6.0 [5.3] 5.1 [2.6]
-2 0.7 [2.2] 2.0 [3.0] 0.5 [1.6] 0.8 [2.7] 8.2 [3.4] 5.8 [4.2] 5.5 [2.7]
0 0.6 [1.8] 3.4 [4.2] 0.7 [1.4] 1.2 [2.2] 7.9 [2.1] 3.5 [2.4] 6.4 [3.2]
2 0.7 [2.2] 5.1 [4.9] 1.0 [1.5] 2.1 [2.9] 9.3 [2.9] 2.6 [2.9] 9.3 [3.6]
6 4.1 [5.2] 4.1 [4.6] 2.5 [2.8] 7.4 [7.0] 10.2 [2.8] 2.8 [3.7] 11.1 [2.7]

Non-linear -6 1.7 [4.4] 13.6 [13.2] 15.2 [13.9] 1.5 [3.4] 4.2 [4.1] 5.9 [4.3]
-2 0.9 [2.3] 4.4 [12.4] 19.5 [7.8] 1.4 [2.8] 4.7 [2.8] 5.3 [3.8]
0 1.2 [1.9] 2.4 [3.5] 16.8 [6.9] 1.4 [2.1] 5.6 [3.0] 3.4 [2.7]
2 8.6 [11.3] 3.4 [3.8] 6.7 [6.4] 2.1 [2.4] 6.2 [3.1] 2.2 [3.4]
6 25.1 [22.9] 4.4 [4.1] 3.8 [3.6] 3.9 [6.1] 8.6 [5.0] 2.4 [3.6]

Non-linear Non-linear -6 5.3 [9.5] 16.3 [6.7] 14.9 [6.3] 6.7 [9.6] 8.6 [13.1] 12.0 [7.2]
-2 1.2 [2.4] 11.2 [9.7] 14.1 [5.8] 2.2 [3.7] 6.5 [5.4] 7.5 [4.1]
0 0.9 [1.5] 3.0 [4.1] 9.8 [4.6] 1.7 [1.4] 2.3 [2.7] 4.8 [3.3]
2 1.8 [2.6] 2.2 [2.5] 4.1 [4.0] 2.0 [1.8] 2.8 [2.6] 4.1 [3.9]
6 2.4 [2.9] 2.3 [2.5] 1.8 [3.2] 1.9 [2.2] 2.8 [2.5] 8.7 [6.4]
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population of patients receiving treatment for hepatitis C in order to assess efficacy

and safety in non-clinical settings [45]. Researchers collected relevant demographic,

clinical, and outcome data during treatment and follow-up. Because recently devel-

oped treatments will slowly gain adoption in areas outside the US and Europe, one

objective is to use US and European data to develop a classifier that can accurately

predict which patients will respond to earlier generation treatment.

We apply DRSVM, DWSVM, and commonly used competitors using a subset

of patients from the HCV-TARGET database.

Cure, the outcome of interest, is defined as undetected hepatitis C virus 12

weeks after ending treatment. The training set (N=112) are those patients treated prior

to 1 January 2012. The validation set (N=38) are those treated after. The predictors of

interest include age and five blood assays at baseline: total bilirubin (BILI), creatinine

(CRE), hemoglobin (HGB), hepatitis C viral load (LOGHCV), and absolute neutrophil

count (ANC). We selected these predictors from the set of baseline measures in con-

sultation with members of the HCV-TARGET team. In the training set, 37% of patients

have incomplete data. Of those with incomplete data, 71% are missing one predictor,

20% are missing two predictors, and the remaining 9% are missing three predictors.

We constructed decision rules with linear and Gaussian kernels. The out-of-

sample prediction error for each classification rule is reported in Table 3.2. There

may be non-linear relationships between the predictors and the outcome; each ker-

nel method performed better with the Gaussian kernel than the linear kernel. Our

proposed DRSVM method performs best among non-linear decision rules (prediction

error 20.4%); the DWSVM method was second best (21.1%). Interestingly, logistic

regression with EM performed poorly in the linear case (50%) while the probability

constraint method did well (31.5%). The out-of-sample performance of the DRSVM

and DWSVM predictor indicates that personalized treatment-assignment rules may

exist which identify patients likely to respond to treatment.
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Table 3.2: Prediction Error of Competing Classification Methods Applied to HCV-
TARGET Data

Prediction Error (%)
Method Linear Kernel Gaussian Kernel
DRSVM 34.21 20.42
DWSVM 44.78 21.05
Complete Case 44.74 31.58
KNN 44.74 31.58
Logistic Regression EM 50.00
Mean Imputation 47.37 28.95
Multiple Imputation 39.47 23.68
Probability Constraint 31.58

3.5 Conclusion

We have proposed an SVM classifier for situations when the training data in-

cludes incomplete observations. We compared the DRSVM classifier to common

competitors with simulated data; those simulations suggested that the DRSVM deci-

sion rule had better performance when the number of predictors is small and a linear

kernel is appropriate. In the analysis of hepatitis C data from HCV-TARGET, we used

age, total bilirubin, creatinine, hemoglobin, hepatitis C viral load, and ANC to predict

cure among a specific subset of patients. The proposed method provided the lowest

validation set prediction error.

We are currently exploring ways in which DRSVM can be modified to avoid

over-fitting so that the method works without user inspection when constructing

classifiers with the Gaussian kernel. As noted earlier, the issue is that the approximate

surrogate loss in equation (3.3) for complete case observations,

φ(yi, x
a
i ) =

∣∣∣∣∣1 −
1

p̂i

∣∣∣∣∣
1

K

K∑

k=1

max[0, 1 + yi f (ẋi
(k))],

performs poorly if f is so flexible that the observed xi are classified differently than

its associated imputed values, ẋ
(k)

i
. In other words, the approximation is poor when
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sign f (xi) , sign f (ẋ(k)

i
). One modification of DRSVM to avoid over-fitting in the Gaus-

sian setting is to limit the flexibility of f to classify complete case points differently

than the associated imputed values. This limitation is achieved by restricting the set

of solutions,H , to functions of the form

f (z) = b +
∑

xi∈Tcc

ciκ(z, xi),

where Tcc is the set of complete cases. Only complete case observations are potential

support vectors. If Ta is the augmented data, then the proposed objective function is

f̂ = arg min
f∈HTcc

1

2
|| f ||2HTcc

+
∑

i∈Ta

wi max[0, 1 − yi f (xi)].

In the absence of other complete case observation, the classifier cannot generate local-

ized regions where sign f (xi) , sign f (ẋ(k)

i
) because the imputed values are not support

vectors. The construction of the quadratic programming problem for this modification

is reported in the appendix.

In this paper, we considered missing covariates, but the ideas that motivate the

proposed method can be applied to situations when the outcome is missing or when

both outcome and some covariates are missing. Both situations are avenues for future

research. Furthermore, linear SVMs are often used in variable selection contexts when

the number of predictors is large. The performance of the DRSVM in the variable

selection setting is also an area of future study.

In conclusion, the DRSVM provides a usable solution to the problem of missing

data and SVM classifiers. While some care is needed for Gaussian kernel classifiers, the

method does not require specialized software beyond that used for the non-missing

data case. In certain simulation scenarios, the method performed well, and in the

analysis of clinical data in HCV-TARGET database, where missing data in the training

set is expected, the DRSVM classification rule provided a personalized treatment rule
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with smaller classification error than its competitors.

3.6 Acknowledgments

We thank Dr. Michael Fried and HCV-TARGET for providing the data analyzed

in Section 3.4.

76



CHAPTER 4: SUPPORT VECTOR MACHINES FOR
PARTIALLY OBSERVED OUTCOMES

4.1 Introduction

A common complication of liver disease is the development of varices in the

gastrointestinal tract. Varices are large, swollen blood vessels leading to the liver that

have a higher-than-normal likelihood of rupturing. Rupture of the varices is an ad-

verse event which requires emergency medical attention because the mortality rate

associated with variceal hemorrhage is high [59]. When treating diseases of the liver,

such as Hepatitis C, researchers are often interested in the differential treatment re-

sponse that may occur when treating patients with and without varices. Furthermore,

in accessing the safety profile of treatments, another important question is differential

rates of adverse events between patients with and without varices. However, health

care providers do not always perform the procedure to identify varices. In the con-

text of HCV-TARGET, an observational and longitudinal study of patients undergoing

treatment for Hepatitis C, information regarding varices is missing from 62% of patient

records. Because of the interest within HCV-TARGET regarding differential treatment

effects and differential safety profiles between patients with and without varices, re-

searchers want to develop classification rules which utilize baseline covariate data in

order to predict if a patient has varices.

In this paper, we propose to apply missing data methods to SVMs in order to

accommodate missing outcome data. We propose a method which works for two-class

and multi-class SVMs and which works for any type of kernel. Our proposed method is

based on EM principles which we can extend to settings which go beyond the standard

missing-class-information problem to include a setting when some information about
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class labels is known. For example, we develop a multi-class SVM which incorporates

information that a training observation is in class 2 or class 3 but not in class 1. Thus, the

method which we propose will be applicable to standard missing-class-information

settings but also to settings when class information is partially observed. In the

remainder of the introduction, we describe the literature related to two-class SVMs,

multi-class SVMs, and the issue of missing class information which is commonly called

called semi-supervised learning. In section 4.2, we describe our proposed method. In

section 4.3, we demonstrate the performance of our method in a simulation study.

An important contribution of this work is to demonstrate that in many situations, the

complete case solution performs very well. We apply the method to HCV-TARGET

data in section 4.4.1. In the final section, we discuss extensions for this work.

4.1.1 Two-class and Multi-class Support Vector Machines

The Support Vector Machine (SVM) introduced in [25, 106] is a method for bi-

nary classification which has been successfully implemented in a number of biomed-

ical applications such as gene expression analysis [40], fMRI analysis [83], and other

biomedical computer vision tasks. The appeal of SVMs stems from the method’s

capability to (a) model non-linear relationships between covariates and the outcome

classes, and (b) generate a solution when the number of covariates exceed the number

of observations. Further, the method differs from other popular classification methods

like logistic regression, LASSO, trees, and random forests because the method does

not make an assumption about or attempt to estimate the distribution of the outcome

class conditional on the covariates. Rather, the SVM approach works to approximate

the optimal boundary between classes. As the number of observations increases, the

SVM classifier achieves the lowest possible expected classification error, regardless of

the underlying distribution of outcomes and covariates [94]. Because of its success

as a binary classifier, a number of researchers have adapted the SVM to multi-class
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settings.

There are two families of multi-class SVMs. The first, which we call the

composite-of-binary family, constructs a set of two-class SVM rules from which a

single multi-class rule is constructed. Procedures of this type are widely used in many

classification settings and are not specific to SVMs [38, 49]. The three most popular

composite-of-binary SVMs are one-versus-one SVM, the one-versus-many SVM, and

the one-versus-one DAGSVM [81]. In a K-class setting, the one-versus-one multi-class

SVM is constructed by generating all K(K − 1)/2 binary rules that separate generic

class i from generic class j. To classify a point, the covariate vector is input to each

binary classifier which outputs a vote for one of two classes. The overall multi-class

rule outputs the class which receives the most votes. The one-versus-one DAGSVM

is a similar alternative in which classification is based on a decision tree with a one-

versus-one classifier at each node. The decision tree is constructed so that one potential

class is eliminated at each decision node, and the terminal node represents the class

prediction. Lastly, we describe the the one-versus-many classifier which generates K

binary rules which separate generic class i from all other classes. To classify a point,

the covariate vector is input to each two-class rule; the final prediction corresponds

to the class which generated the largest signed distance, i.e., ŷ = arg maxi=1,...,K fi(x).

Variations of the these composite-of-binary SVMs exist, and generally vary by how

each component classifier casts a vote for a potential class. For example, using the

component SVMs to generate probability estimates which in turn are combined in a

final decision rule. See [49, 80, 20, 110] for a discussion of generating and combining

multi-class probabilities from SVMs.

Because of their operational efficiency, versions of the composite-of-binary

multi-class SVM are implemented widely in statistical software packages [20]. The

draw back to this type of multi-class SVM is that voting does not always generate a

clear winning class. For example, a one-versus-one multi-class rule in a K = 3 class
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setting is built on 3 two-class rules. For some covariate combinations, the 3 two-class

rules may generate a vote for each class. The same scenario can occur with one-versus-

all multi-class rules as well. The primary advantage of the DAGSVM is that it avoids

the ambiguities like ties that can arise in the standard voting scheme. Beyond the

issue of ties is the issue of consistency, and the author in [68] shows examples when

one-versus-all is not Fisher consistent. Despite this issue, the composite-of-binary

approach continues to be a popular multi-class SVM method. While members of the

composite-of-binary family of SVMs are similar in performance and popularity, in a

comparison of the composite-of-binary multi-class rules reported in [32], the authors

concluded that probability based multi-class SVMs performed best, especially with

sparse training data. Before that report, the authors in [84] demonstrated with a

number of real-life datasets the desirable performance of the one-versus-all SVM with

proper tuning.

The second type of multi-class SVM builds a decision rule by simultaneously

training K functions where each function corresponds to a single class [107, 26, 62, 69].

Distinguished by specific multi-class loss functions, the various flavors of multi-class

SVMs simultaneously construct the K functions so that the predicted class corresponds

to the function with the largest value. The simultaneous estimation of the K functions

ensures that the estimated multi-class rule targets the multi-class Bayes rule. We

provide greater detail of the simultaneous, direct multi-class SVM in section 4.2

4.1.2 Missing class labels

Examples of collected data in which some class labels are missing are increas-

ingly common. Any situation where determining the class label is expensive or overly

invasive can generate data with fully-observed covariates but few class labels. For

example, data for which class labels must be assigned by a human expert, as with

immunohistochemistry data, or data for which disease subtype must be ascertained
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by biopsy or expensive blood-assay. Often, the research goals associated with these

types of datasets is to construct a classifier which predicts class labels because the

gold-standard method is inaccessible. Classifiers built with some missing class labels

are often called semi-supervised classification rules [87].

There are existing methods for constructing semi-supervised two-class or multi-

class rules in statistical learning contexts, many of which are based on missing data

ideas like imputation and the expectation-maximization (EM) algorithm while other

methods are based on statistical learning ideas like boosting. For example, [42] ap-

plied EM as a way to estimate Gaussian mixture models in an unsupervised, clustering

context and to missing data in a supervised context. In [76], researchers perform semi-

supervised text classification with a naive Bayes classifier and the EM algorithm.

Imputation type semi-supervised classification include co-training [14] and ASSEM-

BLE [12]. In [103], authors provide a general purpose semi-supervised algorithm for

any multi-class classifier based on boosting.

One semi-supervised method specific to two-class SVMs is the method intro-

duced in [11] called S3VM. While standard SVM methodology chooses the rule which

minimizes the empirical hinge risk, S3VM chooses the rule which minimizes the em-

pirical hinge risk calculated as if unlabeled points are in fact correctly labeled. Because

unlabeled points are treated as correctly classified, the unlabeled points in the empir-

ical hinge risk act as a ‘high density’ penalty. That is to say, the S3VM setup prefers

rules with boundaries in low density regions. Computationally, the S3VM objective

function is not convex and has potentially many local minima; however, there are a

number of algorithms developed to find the S3VM solution. See [118, 117, 21] for a dis-

cussion of the various non-convex optimization techniques which have been proposed

for constructing S3VM rules.

Multi-class extensions of S3VM were proposed in [113] for specific types of

kernels (sparse and full rank) with a specific multi-class loss function. Using a sparse
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Laplacian kernel matrix (a kernel to which the method applies), the algorithm employs

gradient descent to find a solution. In contrast to the limited setting of sparse and full

rank kernels, a more accessible multi-class extensions of S3VM have been developed

with the composite-of-binary multi-class SVM, such as the methods proposed first

in [21] and adapted in [6]. In [21], the composite-of-binary multi-class SVM applies

S3VM methods to each of the two-class rules. The method requires all unlabeled

points to be included when training each two-class rule, even with a one-versus-one

rule. In [6], authors adapted the composite-of-binary S3VM method of [21] by intro-

ducing participation weights of unlabeled observations. Based on a generic similarity

measure, the participation weights will up-weight or down-weight the contribution

of unlabeled observations when training individual two-class S3VMs as part of the

larger composite-of-binary rule. Thus, unlabeled observations which are similar to

class 1 observations are given greater weight when constructing rules involving class

1. Likewise, observations not similar to class 1 are given less weight. As demon-

strated in a number of examples, using participation weights in the construction of

semi-supervised composite-of-binary multi-class SVMs appears to improve classifier

performance.

Another approach to semi-supervised SVMs was introduced in [112] in the con-

text of clustering with SVMs with a method known as maximum margin clustering

[111]. The objective of maximum margin clustering is to find a set of class labels which

minimizes the SVM empirical risk under the constraint that the class balance in the

proposed solution is within prescribed bounds. Once the optimal set of class labels is

found, an SVM classifier is constructed from a training set composed of the new class

labels and covariates. The key extension of max margin clustering to semi-supervised

learning is that the max margin clustering objective function can incorporate informa-

tion from observations with known outcomes by introducing constraints. Often called

the semi-definite SVM (SD-SVM) because the objective function is a semi-definite pro-
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graming problem, the SD-SVM is similar to S3VM in the two-class setting but has

the additional advantage of also providing a multi-class solution. However, the SD-

SVM as a semi-supervised method is limited in application by the computationally

expensive algorithm, its sensitivity to tuning parameters, and its assumption that the

intercept term (sometimes called the bias term) is zero [102]. While [102, 116] pro-

posed unsupervised clustering algorithms based on SD-SVM which minimize these

drawbacks, the resulting methods do not admit a semi-supervised solution.

The SD-SVM can be framed as a two-step procedure in which the first step

clusters the data and the second step constructs an SVM based on the predicted class

labels. A cluster-then-construct solution is one in which any clustering procedure

provides class labels in the first step and an SVM is constructed in the second step.

SD-SVM differs from this ad-hoc procedure because the clustering criteria minimized

in the first step is the SVM empirical risk. Note that the semi-supervised composite-

of-binary multi-class SVM from [6] which is described above is another flavor of the

cluster-then-construct type solution. The first step generates fuzzy-cluster labels in the

form of participation weights and the second step constructs a composite-of-binary,

one-versus-one S3VM rule. Because this method relies on a composite-of-binary SVM,

its computational burden is much less than SD-SVM.

As evidenced by the several types of semi-supervised SVMs in both the two-

class and multi-class settings, there is considerable interest in developing algorithms

which efficiently generate semi-supervised SVM classifiers. Despite the interest in the

topic, the value of semi-supervised multi-class SVMs over complete-case multi-class

SVMs has been questioned, as a number of authors have provided examples where

complete-case multi-class SVMs out perform semi-supervised multi-class SVMs, such

as [120] and [63]. Further, the computation required for many semi-supervised meth-

ods can be substantial, though recent algorithms such as those described in [96] im-

prove on earlier algorithms for two-class SVMs. In the multi-class setting, however,
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computation time may still be prohibitively expensive, such as the SD-SVM solution

which requires estimation of n+ n2
u parameters where n is the number of observations

and nu is the number of unlabeled observations. Multi-class methods which are not

computationally expensive like the multi-class S3VM methods are restricted to specific

application areas (sparse, full rank kernels) or rely on composite-of-many SVMs. In

this paper, we propose a method that is computationally feasible for large numbers

of observations, is applicable to all application areas, and is applicable to both two-

class and multi-class settings (particularly composite-of-many SVMs). The method

proposed in this paper is an EM-type algorithm, and the method’s primary advantage

is that it can easily be computed with standard SVM software. Further, our proposed

EM solution is particularly helpful when some information about the class label is

known. It is this setting where the proposed method has the potential to be valuable,

hence our focus on the setting in the simulation scenarios.

4.2 Methods

4.2.1 The Reinforced Multi-class Support Vector Machine

While the method applies to two-class and multi-class SVMs, we develop the

method in the multi-class context. Consider a training set, Tn, of n observations, each

consisting of a d-vector of covariates, x ∈ R
d, and multi-class outcome, y ∈ {1, . . . , k}.

Each observation is an iid draw from an unknown distribution P(x, y). Consider

functions f(x) = { f1(x), . . . , fk(x)} so that the class label of x can be predicted as

ŷ = arg max
i

fi(x).

The classifier which minimizes the average classification error over P(x, y) is the Bayes

classifier,

fbayes = arg min
f

EP[y , arg max
i

fi(x)].
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The average classification error of the Bayes classifier is called the Bayes risk. The

goal is to construct a classifier from the training set Tn which is asymptotically a Bayes

classifier but also performs well in finite sample situations.

The SVM solution frames the task within empirical risk minimization; specifi-

cally, the SVM solution is

f̂ = arg min
f∈H

λ||f||2H +
1

n

n∑

i=1

L[yi, f(xi)] (4.1)

such that

k∑

i

fi(x) = 0

where ||f||2H =
∑k

i || fi||2H and L[yi, f(xi)] is a loss function which penalizes misclassifica-

tion. The multi-class SVM methods proposed in this paper builds on the reinforced

multi-class SVM (RMSVM) proposed in [69] because it provides a multi-class loss

function which unifies the earlier work of [62] and [107] as special cases of a general

multi-class loss function. The RMSVM loss function is

L[y, f(x)] = γ[(k − 1) − fy(x)]+ + (1 − γ)
∑

j,y

[1 + f j(x)]+

where the function [t]+ = max{0, t} and γ is a tuning parameter which calibrates the

loss. The set of solutions,H , is constructed so that each component of solution, f̂, is of

the form

fi(x) = b +

n∑

j=1

c jK(x, x j) x j ∈ Tn

where K(u,v) is a kernel function. The linear kernel, K(u,v) = utv, and the Gaussian

kernel, K(u,v) = exp{−σ||u − v||2}, are commonly used.

As the solution to the empirical risk minimization problem, the SVM targets

the conditional expectation of the loss function, E{L[y, f(x)] |x}. When γ ≤ 1/2, the

RMSVM solution is Fisher consistent in the sense that the minimizer of E{L[y, f(x)|x]} is
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also the multi-class Bayes rule [69]. Further, because simulation examples in [69] show

that the RMSVM performs better when γ = 1/2 than when γ = 0 or 1, we proceed with

γ always 1/2, thus, ensuring a Fisher consistent rule.

4.2.2 Proposed Method for Missing Class Labels

Our proposed method for handling missing class labels is based on EM prin-

ciples described in [28] which have been successfully applied in other missing data

situations in both likelihood based contexts [66] and statistical learning contexts [42].

In the likelihood context, the EM algorithm is an iterative method for finding max-

imum likelihood (ML) estimates when the likelihood includes missing data. The

algorithm begins with an initial value of the likelihood parameter, say θ = θ(0). Then,

each iteration of the EM algorithm involves two steps which generate an update of the

estimate of θ. In the first step, also called the expectation- or E-step, one replaces the

log-likelihood with its expectation conditional on the covariates and the current value

of θ. Thus, in the rth iteration, if the log-likelihood is ℓ(θ) =
∑n

i log[p(yi|xi, θ)], then

Q(θ|θ(r−1)) =

n∑

i

E{ ℓ(θ) | xi, θ
(r−1)}.

In the second step, called the maximization- or M-step, one updates the value of θ

with the maximizer of Q(θ|θ(r−1)). The two steps taken together are the basis of the EM

algorithm:

E Step: Calculate Q(θ|θ(r−1))

M Step: Solve θ(r) = arg min
θ

Q(θ|θ(r−1)).

The algorithm ends when |θ(r) − θ(r+1)| is smaller than some prespecified threshold.

As shown in [109], the EM algorithm converges to a local maximum under certain

regularity conditions.
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The EM algorithm can be applied to situations when some outcomes or covari-

ates or both are missing. In the specific situation of missing categorical outcomes,

note that the log-likelihood in the E-step can be reduced to a weighted average of all

possible outcomes:

E{ log[p(yi|xi, θ)] | xi, θ
r} =

k∑

j=1

w( j, r) log p(yi = j|xi, θ)

where w( j, r) = p(yi = j|xi, θ(r)). As was observed in [55], the missing outcome situation

can be recast into a weighted likelihood procedure. In the procedure, observations

with missing outcomes are replaced with k observations. In the first replacement

observation, the outcome is recorded as yi = 1. In the second, the outcome is yi = 2,

and so on for all k replacement observations. The k new observations are weighted as

w( j, r). In this setup, the E-step of the EM algorithm involves updating the weights,

and the M-step involves fitting the weighted log-likelihood. This procedure is called

EM-by-method-of-weights.

Our proposed method is to apply similar concepts to the objective function of

the RMSVM or the composite-of-binary counterpart. The resulting procedure will be

iterative and similar to the EM-by-method-of-weights. In order to incorporate weights,

we need to re-express the two-class SVM and RMSVM with observation weights. In

[114], authors provided a weighted version of the two-class SVM. In section C.3 (page

126) of the appendix, we show that the RMSVM can be re-expressed as

f̂ = arg min
f∈H
||f||2H +

n∑

i=1

wiL[yi, f(xi)] (4.2)

where wi = 1/(λn) in the standard setup.

For observations with missing class labels, we propose that the loss be replaced

with Ẽ{L[yi, f(xi)]|x, f(r)}, the expected loss over a quasi-distribution p̃(y|x, f(r)). Because
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Figure 4.1: Schematic of EM algorithm for RMSVM with missing class labels

the expected loss can be expressed as a weighted sum, the loss then becomes

L̃[yi, f(xi), f
(r)] =


L[yi, f(xi)] label known
∑k

j=1 w( j, r)L[yi = j, f(xi)] label unknown
(4.3)

The key observation is that this loss function essentially amounts to replacing each

observation with missing class label with k draws from the conditional distribution and

then adjusting the corresponding weight for each observation. Figure 4.1 is a schematic

of the algorithm where Y denotes class labels and X denotes the covariates in the

training set. The vector AY and matrix AX are the augmented outcomes and covariate

in which observations with missing labels have been replaced with k observations, one

for each possible class. The vector W records the corresponding weights. Like EM-

by-method-of-weights, the E-step involves calculating weights w( j, r) from the quasi-

distribution p̃(y|x, f(r)). The M-step involves solving the RMSVM objective function

with the usual algorithm. The iterations continue until ||f(r) − f(r+1)|| is smaller than a

convergence threshold.

An important aspect of this method is the quasi-distribution p̃(y|x, f(r)) from

which the weights are calculated. As noted earlier, there are methods for extracting

multi-class probabilities from SVMs [49, 80, 20, 110]. Here, we implement a simplified
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version of the method proposed in [80]. Specifically,

p̃( y = c | x, f(r) ) =
exp{−L[y = c, f(r)(x)]}

∑k
j=1 exp{−L[y = j, f(r)(x)]}

.

This quasi-distribution offers a number of desirable properties. First, larger values of

fc(x) correspond to larger values of p̃(y = c|x, f(r)). Second, points on the boundary

between classes ( fi(x) = f j(x)) have equal quasi-probability of being in those classes

(p̃(y = i|x, f(r)) = p̃(y = j|x, f(r))).

4.2.3 Partially Observed Outcomes

Up to this point, the proposed method treats each missing outcome as if the

label is completely missing. However, in some settings, some information about

class labels may be known. For example, the data is structured so that the class

label is known to come from a subset of size two out of four possible outcomes. This

information is easily incorporated into the EM solution by using the added information

to construct the weights. Let PY be the set of potential class labels, then the updated

quasi-probabilities are:

p̃( y = c | x, f(r), y ∈ PY ) =
exp{−L[y = c, f(r)(x)]} · I(c ∈ PY)∑

j∈PY exp{−L[y = j, f(r)(x)]} .

It follows that for c < PY, p̃(y = c|x, f(r)) = 0. Observations with zero weight can be

omitted from the augmented training set.

4.2.4 Properties

In this section, we examine the properties of the proposed method by framing

it in terms of a quasi-likelihood. The proposed method has important asymptotic

properties which we state here and prove in section C.1 (page 124) and section C.2

(page 124) the appendix.
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Proposition 1. The algorithm converges in the sense that each iteration of the algorithm

constructs a classifier which increases the observed data quasi-likelihood.

Proposition 2. The solution is Fisher consistent.

Proposition 1 indicates that the algorithm converges and indicates that the solution

converges to a meaningful quantity. The proof of proposition 2 shows Fisher con-

sistency. Taken together, these propositions indicate that the solution is an unbiased

method when the quasi-distribution, p̃, is specified correctly. That is, the method

constructs a Bayes classifier under correct assumptions about the distribution. Similar

to the other EM-type algorithms, the first proposition and its proof indicate that the

algorithm creates a sequence of classifiers where each new classifier improves upon

the previous classifier in terms of the observed data quasi-likelihood. Because the

observed data quasi-likelihood is bounded, the sequence corresponding to the classi-

fiers does converge. The second proposition indicates that under certain conditions,

the function which maximizes the observed quasi-likelihood also minimizes the SVM

hinge risk. Because the minimizer of the SVM hinge risk is a Bayes classifier, the

solution of the proposed method is also a Bayes classifier.

4.2.5 Computation

One of the important advantages of the proposed method is that the objective

function is convex, unlike S3VM and its multi-class extension. As such, the proposed

method can utilize software already widely distributed for SVMs or quadratic pro-

graming programs. One drawback is that the method requires the training set to be

augmented. Because the size of the training set determines the size of the quadratic

programming problem which solves the SVM objective function, the computation time

may be increased. However, because our method uses software algorithms developed

and optimized for SVMs (like [79]), the computation time is not noticeably longer than

90



the competitor’s computation time. In comparison to the multi-class SD-SVM which

requires semi-definite programing, our EM approach requires less memory and, in our

experience, is must faster.

As with all SVM methods, our method requires the user to specify tuning param-

eters related to the complexity penalty (λ in equation (4.1)) and possible kernel-specific

scale parameters (like σ in the Gaussian kernel). In developing and testing this method,

we have used a 2-fold cross validation grid search approach when selecting values for

the tuning parameters. The performance of this approach has been satisfactory. In

some situations where fitting the RMSVM is relatively slow, we have found that using

a using a one-versus-all multi-class SVM in the tuning parameter grid search phase can

speed up the overall fitting process without any noticeable decrease in performance.

4.2.6 Improvements for two-class and multi-class settings

In situations where there is a large number of missing outcomes, the method

requires adding the same covariate observation for each possible outcome. We have

found that the method works best when each covariate is represented only once in

the resulting SVM classifier, that is, when SVM derived from the slightly different

formulation. Let the full training set be Tn, and let Tm ⊂ Tn be a subset of the training

set. Let observations in Tm serve a basis functions of the SVM solution and calculate

the empirical risk portion from all observations in Tm, as in

f̂ = arg min
f∈HTm

||f||2HTm
+

n∑

i∈Tn

wiL[yi, f(xi)]

where f(z) = [ f1(z) . . . fk(z)] and f j(z) = b +
∑

i∈Tm

ci jκ(z, xi).

The computational details for the multi-class version are reported in section refoutcomeem:mn-

multi-class (page 131). Computational details for the two-class version are similar to

the multi-class version.
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4.3 Simulation Study

4.3.1 Classification with Partially-Observed Outcomes

We examined the performance of our proposed method in a setting where class

labels were partially observed. We considered the performance of the method under

several experimental conditions such as (a) the number of covariates, (b) the number

of observations and the relative balance of class proportions, (c) the percent of labels

fully observed, and (d) the underlying level of classification risk. With these four

factors, we constructed a 2× 2× 3× 4 factorial experiment in which we generated data

sets with 2 or 10 covariates, with four levels of class balance and class size, with 5%

or 25% observations fully observed, and with .05, .15, or .35 underlying classification

risk. This last factor refers to the relative ease or difficulty of separating the classes.

The value is the proportion of errors for the best possible classifier, and lower values

represent settings that are inherently easier to classify. For each of the combination

of settings, we generated 100 datasets with k = 4 classes at the specified balance

and class size along with each of the other settings. Partially observed outcomes

were constructed by randomly selecting another class to which the observation may

belong. Thus, for fully observed observations, the label was know exactly. For partially

observed observations, the class label was known up to a set of size two. Along with

the training data, we generated a validation data set 50 times the size of the training

set in order to measure out-of-sample prediction accuracy. For each data set we

constructed 8 classifiers of which 4 were linear SVMs and 4 were nonlinear Gaussian

kernel SVMs. We constructed the complete case SVM (CC) by constructing an SVM

without observations with missing class labels. We constructed a two-step cluster-

then-classify SVM, labeled the Naive classifier. In the first step, an observation was

labeled as the class most likely of the two possible based on the complete case SVM

solution. In the second step, the SVM was constructed with the full training set with

newly labeled observations. Along with constructing the SVM proposed in this paper,
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we constructed the Oracle SVM, or the SVM constructed with fully observed data. In

each case, tuning parameters were selected by grid search 2-fold cross validation. The

methods searched over the same grid. With SVM rules in hand, we calculated the out

of sample prediction accuracy.

4.3.2 Results of Partially-Observed Outcomes Simulation

The full results are reported in section C.5 (page 136) of the appendix. Here

we briefly note a number of observations. First, the factor affecting performance was,

expectedly, the level of classification risk. At the 0.05 level, nearly all methods were

able to achieve around 90% median accuracy. The complete case SVM, however, is

the exception. Particularly with smaller sample sizes, both the linear and nonlinear

complete case methods scored poorly for nearly all levels of classification risk. Along

with the level of classification risk, decreasing the percentage of fully observed class

labels (25% to 5%) or decreasing the sample size (100 to 40 observations per class)

decreased the performance of each of the non-oracle classifiers by about 5 percentage

points of accuracy.

We now note a handful of setting in which the proposed method performed

well in comparison to the non-oracle competitors. As a matter of full disclosure,

the proposed method and the cluster-then-classify method we’ve labeled Naive, on

average, perform about the same. However, there are settings when the proposed EM

solution does seem to give better results. Table 4.1 provides a selection of simulation

results. It features one of the more difficult settings: fewer observations and even

fewer class labels. In both the linear set and the non-linear set, the proposed EM

solution generated highly accurate decision rules. This setting also highlights that the

proposed EM method generally did well in the D = 10 covariate simulation scenarios.

The appendix includes a series of graphical displays of the results which offer
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Table 4.1: Selection of Simulation Results, Partially Observed Outcomes

Prediction Accuracy [IQR]

N D SIZE % OBSD RISK Oracle-L CC-L Naive-L EM-L

40 10 Equal 5 0.05 93.5 [01] 57.3 [17] 64.9 [08] 91.2 [03]
0.15 82.3 [01] 50.2 [15] 56.6 [07] 80.1 [03]
0.35 60.5 [02] 38.2 [08] 41.4 [07] 52.8 [03]

Unequal 5 0.05 93.8 [00] 65.6 [23] 90.4 [06] 92.1 [04]
0.15 82.5 [01] 54.0 [10] 70.5 [12] 81.0 [04]
0.35 61.5 [01] 37.8 [06] 45.1 [06] 54.4 [06]

N D SIZE % OBSD RISK Oracle-N CC-N Naive-N EM-N

40 10 Equal 5 0.05 93.3 [01] 47.2 [18] 66.5 [06] 90.8 [08]
0.15 81.7 [02] 43.5 [12] 54.6 [11] 74.7 [08]
0.35 59.5 [03] 30.6 [10] 39.3 [08] 44.3 [09]

Unequal 5 0.05 93.8 [01] 62.6 [11] 87.8 [12] 91.8 [02]
0.15 82.4 [01] 50.7 [13] 63.5 [12] 78.5 [04]
0.35 60.6 [02] 37.2 [11] 42.9 [08] 51.0 [06]

a detailed look at the distribution of prediction accuracy scores. The displays indicate

that there are a handful of settings were the proposed method did not fare well.

Overall, the performance of the method suggests that the EM solution is a reasonable

approach when class labels are only partially observed.

4.3.3 Semi-supervised classification

We also considered a simulation experiment in standard semi-supervised learn-

ing in which class labels are missing with no other partial information. Using the same

experimental factors as the previous simulation study, we altered the data generation

process so that all class information was lacking for observations selected to be miss-

ing. In addition, we considered K = 2 and K = 4 settings, along with two types of

missing mechanisms. The first was simple random selection, i.e., MCAR data. The

second mechanism generated MAR data by censoring class labels from observations at

an extreme end of the covariate distribution. As a set of competitors for this simulation

study, we considered the complete case SVM, S3VM, and the SD-SVM. However, the

computational memory required by the SD-SVM method often outran our available
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resources, and as such, we had to discontinue it from the simulation study. For some

very modest problem sizes, the algorithm called for 8 or more gigabytes of RAM. The

version of S3VM we implemented is commonly called SVMlight [60].

As before, we generated 100 training datasets along with a single validation

dataset 50 times the size of the training set for each combination of factors. We tuned

the EM and complete case in the same way as the previous simulation study. For S3VM,

the cost parameter was tuned via grid search. For the nonlinear S3VM, the kernel

parameter was selected as the inverse of the average distance between covariates.

4.3.4 Results

The complete results are reported in section C.6 (page 147) of the appendix.

As expected, the same factors that were important in the previous experiment are

important in this one. Notably, the underlying classification risk is the most important

factor in classifier performance. It reflects the level of separation between classes, and

larger classification risk is the result of less separable classes. Table C.6 clearly shows

the reduction is prediction accuracy as the the risk goes up. Table C.5 highlights the

increase in prediction performance for each method as fewer class labels are missing.

Considering only linear classifiers and averaging over all experimental factors,

the EM solution performed about 1 percentage point better than the complete case

solution, and about 5 percentage points better than S3VM. Stratified by underlying

classification risk, the performance of all three methods is poor in the high risk setting.

In the low risk setting, the EM solution outperforms the complete case by 3 percentage

points and S3VM by 10 percentage points. In the medium risk setting (risk=0.15) the

differences were less, with a 1.5 and 5 percentage point difference, respectively. For

the nonlinear classifiers, the pattern was the same with regards to classification risk.

Because each method performed poorly in the high risk setting, we set aside that

setting and discuss the results restricted to low and medium risk. Table 4.2 provides
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Table 4.2: Summary of Semi-supervised Learning Simulation Restricted to Low and
Medium Classification Risk Settings

Accuracy Difference (95% CI)

K Factor EM - S3VM EM - CC

Linear 2 Class Sizes Equal 11.1 (10, 12) 2.7 (2, 4)
Unbalanced 6.9 (6, 8) 1.4 (1, 2)

Missingness MAR 7.8 (7, 9) 1.3 (0, 2)
MCAR 10.1 (9, 11) 2.6 (2, 4)

N 100 9.3 (8, 10) 0.5 (-0, 1)
40 8.5 (8, 9) 3.4 (2, 4)

OBSD 25 10.7 (10, 11) 0.9 (0, 2)
5 6.6 (6, 8) 3.2 (2, 4)

4 Class Sizes Equal -2.3 (-3, -2)
Unbalanced -6.0 (-7, -5)

Missingness MAR -2.8 (-4, -2)
MCAR -5.3 (-6, -5)

N 100 -6.7 (-7, -6)
40 -1.2 (-2, -0)

OBSD 25 -4.6 (-5, -4)
5 -3.3 (-4, -2)

Nonlinear 2 Class Sizes Equal 14.2 (13, 15) 3.5 (3, 5)
Unbalanced 9.6 (9, 10) 1.1 (0, 2)

Missingness MAR 10.7 (10, 12) 1.4 (0, 2)
MCAR 13.0 (12, 14) 3.0 (2, 4)

N 100 12.1 (11, 13) 0.8 (-0, 2)
40 11.4 (11, 12) 3.5 (3, 4)

OBSD 25 13.0 (12, 14) 0.8 (0, 2)
5 10.2 (9, 11) 3.8 (3, 5)

4 Class Sizes Equal 0.0 (-1, 1)
Unbalanced -3.8 (-5, -3)

Missingness MAR -2.8 (-4, -2)
MCAR -0.8 (-2, 0)

N 100 -5.9 (-7, -5)
40 2.6 (2, 4)

OBSD 25 -2.2 (-3, -2)
5 -1.1 (-2, -0)
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a summary of differences between the proposed method and the two competitors.

Most noticeable from the table is that the proposed method works well for two-class

settings. It out performs the S3VM and the complete case method in nearly every

setting. However, in the multi-class setting, the method is out performed by the

complete case solution. The version of S3VM implemented in this study performed

poorly, with both linear and nonlinear kernels. The poor performance suggests that

we consider other implementations of the S3VM algorithms.

4.4 Application to Real Datasets

4.4.1 Application to HCV-TARGET data

Hepatitis C (HCV) is the most prevalent blood born infection in the United

States [24] with 3.4 to 4.9 million infected US residents [5]. Recently, a string of new

treatments for HCV have been approved for use in the United States and Europe which

has expanded the pool of patients that can be safely treated. Because the patient pool

is very large and diverse, it is possible that the population exhibits heterogeneity of

treatment effectiveness particularly between patients with and without pre-existing

medical conditions. One condition particularly relevant to the treatment of the liver

is the presence of varices. Not only is the presence of varices an important condition

by itself, it is also potentially a marker for the underlying health of the patient’s

liver. Because clinical trials for new generations of HCV treatments included patient

populations with fewer cirrhotic patients than the currently population undergoing

treatment, additional study of these patients is needed.

HCV-TARGET is a multi-center longitudinal observational study in North Amer-

ica and Europe which enrolls a diverse population of patients receiving treatment for

hepatitis C. Researchers collected relevant demographic, clinical, and outcome data

during treatment and follow-up. However, information about the presence of varices

was often missing from patient records. A scientific objective is to develop a classifier
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Table 4.3: Prediction Error of Semi-supervised SVM Methods Applied to HCV-
TARGET Varices Data

Prediction Error (%)
Method Linear Kernel Gaussian Kernel
Proposed 24.76 24.76
CC 24.76 24.76
S3VM 24.76 24.76

that can accurately predict the presence of varices using baseline variables; however,

the potential complex relationship between liver function and baseline biomarkers re-

quires a statistical approach that provides modeling flexibility. We apply our proposed

method and its competitors to a subset of patients from the HCV-TARGET database.

The training set (N=800) are those patients that have started treatment from

1 December 2014 through 30 March 2015. Of the total, the presence or absence of

varices is reported for 179 patients; the patient records for the remaining 621 subjects

are missing information about varices. The validation set is N=200 patients for which

the presence or absence of varices is known. Using a forward selection process, the

predictors included in the model are: cirrhosis status, sex, and baseline hepatitis

C viral load. These variables were selected from a list of predictors developed in

consultation with members of the HCV-TARGET team. The baseline covariates are all

fully observed.

We constructed decision rules with the Gaussian and linear kernels within the

proposed method. The out-of-sample prediction error for each classification rule is

reported in Table 4.3. This particular data example resulted in similarly effective

classifiers, and both classifier performed well. Each classified correctly 75% of patients

in the validation group. Despite the similar performance, this data example highlights

that our proposed method can easily implement a non-linear kernel.
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4.5 Conclusion

In this paper, we proposed a semi-supervised SVM algorithm which provides

a computationally simpler solution than existing approaches, like S3VM. The key idea

was to employ the EM algorithm so that the SVM objective function remains convex,

thus allowing a solution which can use standard and optimized software. In our

simulations, we showed that the algorithm constructed a solution noticeably faster

than S3VM. Furthermore, the proposed method can accommodate non-linear kernel

functions without any modification. Also, an important contribution of the paper was

an exploration of partially-observed outcomes, or settings where the class labels are

known to belong to a subset of possible outcomes, but the exact class label is unknown.

There are a number of areas related to these methods that deserve continued

study. For example, we hope to find computational improvements that leverage the

fact that the covariate vectors of observations with missing outcomes appear multiple

times in the augmented training set. Another related area is the quasi-probability

function which uses the classifier as a parameter. In this paper, we proposed a rather

simple model. Because the method relies on the probability distribution, we suspect

that future research will generate better performing alternatives.
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CHAPTER 5: FUTURE RESEARCH TOPICS

Each paper in this dissertation ends with a discussion about specific ways in

which the proposed methods might be improved. This chapter describes a number

of research topics which follow from or are inspired by the methods developed in the

previous three papers. The common thread which links these proposed research topics

and the dissertation is that each applies concepts developed in a parametric regression

setting in order to address a question in the statistical learning framework.

5.1 Re-weighting Instead of Tuning

An important task when constructing an SVM is selecting reasonable values for

the cost parameter along with any kernel-specific parameters like the scale parameter,

σ, in the Gaussian kernel. Cross validation is a popular method for selecting the tuning

parameters in which the cross validation error is calculated at each combination of pre-

specified cost and kernel parameter values. The list of all possible combinations can

be large and the search can be time intensive.

As noted in the papers of this dissertation, the cost parameter is closely related

to the weights in the weighted formulation of the support vector machine. Specifically,

we noted that the relationship wi = C/n links the weighted SVM to the standard SVM,

and we have taken advantage of treating the empirical risk as an estimating-equation in

order to handle missing data. The estimating-equation approach to SVMs also suggests

one way for tuning the SVM which is analogous to iteratively re-weighted least squares

and robust regression methods that re-weight overly influential observations. The

algorithm is proposed as follows:
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• Set w(0)

i
= 1.

• Repeat until convergence:

– Solve f (k) = arg min 1
2
|| f ||2 +∑

i w(k)

i
L[yi, f (xi)].

– Assign w(k+1)

i
∝ exp{−L[yi, f (k)(xi)]}.

The cost parameter attempts to balance the flexibility of SVMs with the potential risk

of over-fitting the data. Much like its counterpart in the regression setting, SVM re-

weighting minimizes the influence of outliers which, in turn, reduces the potential to

over-fit the data.

We performed an initial proof-of-concept of this tuning method, and the sim-

ulation results look promising. We generated 100 datasets in which 240 observations

were drawn from class-specific mixture distributions. (120 observations were drawn

from each class-specific distribution.) Then, we constructed two SVMs with Gaussian

kernel: one was constructed using grid search 10-fold cross validation, and the other

was constructed using the re-weighting algorithm described above. The out-of-sample

prediction accuracy was calculated from a validation set 50 times larger than the train-

ing set. The results are reported in Figure 5.1. The results are promising because in a

large majority (> 80%) of the the simulation datasets, the re-weighted tuning method

performed better than grid search cross validation. The median improvement was 2

percentage points and the 75th quantile was 5 percentage points. In some datasets,

the improvement in out-of-sample prediction accuracy by the proposed method was

greater than 10 percentage points.

Given the initial results, this avenue of research appears promising and worthy

of continued study. The topic fits with the ideas developed in this dissertation be-

cause it utilizes the weighted formulation of the SVM in order to incorporate concepts

developed for parametric models.
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Figure 5.1: Simulation Results Comparing the Prediction Accuracy of Re-weighted
Tuning and Cross Validation Tuning of the Cost Parameter

5.1.1 SVMs and NMAR Data

There are a number of research questions related to SVMs and missing data that

deserve further consideration. The methods described in chapter 2 and chapter 3 were

developed in the context of covariates Missing at Random (MAR). A natural next step

is to consider situations when the covariates are Not Missing at Random (NMAR).

In parametric settings, one way to analyze NMAR data is to explicitly model the

missingness mechanism. The outcome/prediction model and the missingness model

are estimated jointly such that if both models are specified correctly, then the estimated

parameters are unbiased. A similar approach with SVMs is a reasonable starting point

for this research question. As a statistical learning approach, the missingness model

could be non-parametric.

In addition to SVM methods for NMAR missing data, there is also the more

general question of whether one can even determine whether missing data are MAR

or NMAR. In parametric settings, some procedures exist to test this question. One area

of future research is to consider these procedures in high dimensional settings when
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most of the covariates are not predictive of the outcome.

5.1.2 Causal Inference and Statistical Learning

A key issue in observational, comparative effectiveness studies is to account

for potential confounding due to treatment choice. Current practices to adjust for

covariates related to treatment choice include doubly robust type estimators, stratifi-

cation, or matching. Each of these methods can and often use propensity scores, and

researchers have recently implemented propensity scores constructed from statistical

learning methods [7]. Such research is an important first step towards implementing

statistical learning ideas as solutions to traditional statistical issues like confounding.

There is still ample work to be done in this area. For example, recent work with covari-

ate balancing propensity scores [58] improves on earlier parametric propensity score

methods, and extending such methods with statistical learning methods is potentially

valuable to causal inference and comparative effectiveness research.
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APPENDIX A: AWSVM PROPOSITIONS AND ADDITIONAL RESULTS

A.1 Proposition 1

Define the quasi-sampling model as

p̃(yi|xi, f ) =
[
1 + exp{yi(max[0, 1 + f (xi)] −max[0, 1 − f (xi)])}

]−1
;

Then, the quasi-likelihood is

L(yi, xi, f , θ) = p̃(yi|xi, f )p(x;θ),

and the observed data quasi-likelihood is

Lo(yi, x
o
i , f , θ) =

∫
L(yi, xi, f , θ) dxm

i .

Thus, for a sample of size n, the observed data quasi-likelihood is

Lo( f , θ) =

n∏

i

Lo(yi, x
o
i , f , θ).

The AWSVM solution maximizes the observed data quasi-likelihood.

Proof. We accomplish this task using the sequence of decision rules and model pa-

rameters estimated in each iteration of the AWSVM algorithm: ( f (0), θ(0)), ( f (1), θ(1)),

( f (2), θ(2)), . . .. For notational ease, allow t to denote ( f (t), θ(t)) when t is a function

argument.

We will show

∑
log

[
Lo(xo

i , yi, t)
]
≤

∑
log

[
Lo(xo

i , yi, t + 1)
]
.
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This indicates that Lo(t) is monotonically increasing with respect to t, and that each

subsequent estimate of ( f (t), θ(t)) improves this quantity.

The quasi-log-likelihood in the usual EM notation is

ℓ̃( f , θ) =
∑

log
[
p̃(yi|xi, f )

]
+

∑
log

[
p(xi, θ)

]
.

Its expectation is

Q̃
(

f , θ | f (t), θ(t), yi, x
o
i

)

=
∑

Ẽ
{
log

[
p̃(yi|xi, f )

] | f (t), θ(t), yi, x
o
i

}

+
∑

Ẽ
{
log

[
p(xi, θ)

] | f (t), θ(t), yi, x
o
i

}
.

Denote the first sum as Q̃1 and the second sum as Q̃2. We begin the argument by noting

that the following:

Q̃1( f (t+1) | t, yi, x
o
i ) ≥ Q̃1( f (t), | t, yi, x

o
i )

and

Q̃2(θ(t+1) | t, yi, x
o
i ) ≥ Q̃2(θ(t) | t, yi, x

o
i ).

So,

Q̃( f (t+1), θ(t+1) | t, yi, x
o
i ) ≥ Q̃( f (t), θ(t) | t, yi, x

o
i )
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which we rewrite as

∑
E
{

log
[L(yi, xi, t + 1)

] | t, yi, x
o
i

}

≥
∑

E
{

log
[L(yi, xi, t)

] | t, yi, x
o
i

}
.

Multiply the inner expression by one to get:

∑
E

{
log

[ L(yi, xi, t + 1)

Lo(yi, xo
i
, t + 1)

Lo(yi, x
o
i , t + 1)

]
| t, yi, x

o
i

}

≥
∑

E

{
log

[ L(yi, xi, t)

Lo(yi, xo
i
, t)
Lo(yi, x

o
i , t)

]
| t, yi, x

o
i

}
.

Rewrite as

(A)
∑

E
[

log
(
Lo(yi, x

o
i , t + 1)

)
| t, yi, x

o
i

]
+

(B) E
[

log
(
L̃(xm

i |xo
i , yi, t + 1)

)
| t, yi, x

o
i

]

(C) ≥
∑

E
[

log
(
Lo(yi, x

o
i , t)

)
| t, yi, x

o
i

]
+

(D) E
[

log
(
L̃(xm

i |xo
i , yi, t)

)
| t, yi, x

o
i

]
.

Note, in lines (B) and (D) that

L̃(xm
i |xo

i , yi, t + 1) =
L(yi, xi, t + 1)

Lo(yi, xo
i
, t + 1)

is the conditional distribution of xm
i

given observed data and model parameters. Recall

the property of Kullback-Leibler divergence: EP[log(dP)] ≥ EP[log(dQ)]. Applied to

lines (B) and (D), we note

(B) E
{

log
[
L̃(xm

i |xo
i , yi, t + 1)

]
| t, yi, x

o
i

}

(D) ≤ E
{

log
[
L̃(xm

i |xo
i , yi, t)

]
| t, yi, x

o
i

}
.
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This means for lines (A) and (C),

(A)
∑

E
{

log
[
Lo(yi, x

o
i , t + 1)

]
| t, yi, x

o
i

}

(C) ≥
∑

E
{

log
[
Lo(yi, x

o
i , t)

]
| t, yi, x

o
i

}
.

Note that Lo is not a function of xm
i

, so

∑
log

[
Lo(yi, x

o
i , t + 1)

]
≥

∑
log

[
Lo(yi, x

o
i , t)

]
.

This is the desired result. The observed-quasi-likelihood is non-decreasing with respect

to the sequence of quasi-EM classifiers f (t) and data model parameters θ(t).
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A.2 Proposition 2

Let Lo be the observed quasi likelihood defined in proposition 1. If the data model P(x;θ) is

specified correctly, then decision function that maximizes the expected observed quasi likelihood

is asymptotically a Bayes classifier.

Proof. Consider the case when w(x; θ) is the correct data distribution. Let po = p(y =

1|xo).

E
[
logLo(y, xo, t)

]

= Exo

{
Ey

[
logLo(y, xo, t) | xo ]}

=

∫
Ey

[
logLo(y, xo, t) | xo ] w(xo) dxo

Note

Ey

[
logLo(y, xo, t) | xo ]

= po log [Lo(1, xo, t)] +
(
1 − po) log [Lo(−1, xo, t)]

= po log

[
Lo(1, xo, t)

w(xo)

]
+

(
1 − po) log

[
Lo(−1, xo, t)

w(xo)

]

+ log[w(xo)]

Let p̃o = p̃(y = 1|xo) = L
o(1,xo,t)
w(xo)

.

E
[
logLo(y, xo, t)

]

=

∫ [
po log

(
p̃o) + (

1 − po) log(1 − p̃o)
]

w(xo) dxo + C

Note that for each x, the value p̃o that maximizes the inner quantity is p̃o = po. This

108



means the maximizer, f ∗, satisfies

Lo(1, xo, f ∗)

w(xo)
= p(y = 1|xo),

and it implies

p̃(y = 1|xo, f ∗) = p(y = 1|xo).

Finally, we note

Ẽ{Lh[y, f (x)]|xo} = E{Lh[y, f (x)]|xo}

is the hinge-loss classification risk for (y, xo). The maximizer of the hinge-loss classifi-

cation risk is a Bayes classifier.

109



APPENDIX B: RESULTS AND PROPOSITIONS FOR WEIGHTED SUPPORT
VECTOR MACHINES

B.1 Proposition 1

Consider a sample of size N of covariates, outcomes, and weights: (x1, y1,w1), (x2, y2,w2), . . .,

(xn, yn,wn). If wi < 0 for a subset of observations, then empirical risk minimization

f = arg min
f∈H

n∑

i=1

wiI[yi , f (xi)]

can be re-expressed as

f = arg min
f∈H

n∑

i=1

|wi| I[sign(wi)yi , f (xi)].

Proof.

n∑

i=1

wiI[yi , f (xi)] =
∑

wi>0

wiI[yi , f (xi)] +
∑

wi<0

wiI[yi , f (xi)]

=
∑

wi>0

wiI[yi , f (xi)] +
∑

wi<0

wi{1 − I[yi = f (xi)]}

=
∑

wi>0

wiI[yi , f (xi)] +
∑

wi<0

−wiI[yi = f (xi)] +
∑

wi<0

wi

=
∑

wi>0

|wi| I[sign(wi)yi , f (xi)] +
∑

wi<0

|wi| I[sign(wi)yi , f (xi)] + C

=

n∑

i=1

|wi| I[sign(wi)yi , f (xi)] + C
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B.2 Proposition 2

Recall equation (3.2), the objective function for the DRSVM,

f̂DR = arg min
f∈H

λ|| f ||2H

+
1

n

∑

i

ri

p̂i
max[0, 1 − yi f (xi)] −

(
ri

p̂i
− 1

)
φ(yi, x

a
i ).

The solution is Fisher consistent if one of the following holds:

1. The surrogate loss function captures the true loss,φ(yi, xa
i
) = E{max[0, 1−yi f (xi)]|yi, xa

i
},

for all observations.

2. The estimated probabilities p̂i are unbiased in the sense that p̂i = p(ri = 1|xi, yi).

Proof of statement 1. Let φ(y, xa) = E{max[0, 1 − y f (x)]|y, xa}. We show that expectation

of the DRSVM loss is equal to the expectation of the standard SVM hinge loss. Thus,

the population minimizer of the DRSVM risk is also a population minimizer of the
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standard hinge risk which is a Bayes classifier.

Ey,x

{
r

p̂
max[0, 1 − y f (x)] −

(
r

p̂
− 1

)
E{max[0, 1 − y f (x)]|y, xa}

}

=
r

p̂
Ey,x

{
max[0, 1 − y f (x)]

}

−
(

r

p̂
− 1

)
Ey,x

{
E{max[0, 1 − y f (x)]|y, xa}}

=
r

p̂
Ey,x

{
max[0, 1 − y f (x)]

}

−
(

r

p̂
− 1

)
Ey,x

{
max[0, 1 − y f (x)]

}

=

(
r

p̂
− r

p̂
+ 1

)
Ey,x

{
max[0, 1 − y f (x)]

}

= Ey,x
{
max[0, 1 − y f (x)]

}

Proof of statement 2. Let p̂ = p(r = 1|y, x). We show that expectation of the DRSVM

loss is equal to the expectation of the standard SVM hinge loss. Thus, the population

minimizer of the DRSVM risk is also a population minimizer of the standard hinge
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risk which is a Bayes classifier.

Er,y,x

{
r

p̂
max[0, 1 − y f (x)] −

(
r

p̂
− 1

)
φ(y, xa)

}

= Ey,x Er|y,x

{
r

p̂
max[0, 1 − y f (x)]

}

− Ey,x Er|y,x

{(
r

p̂
− 1

)
φ(y, xa)

}

= Ey,x

{
p(r = 1|y, x)

1

p̂
max[0, 1 − y f (x)]

}

− Ey,x

{
p(r = 1|y, x)

(
1

p̂
− 1

)
φ(y, xa) − p(r = 0|y, x)φ(y, xa)

}

= Ey,x
{
max[0, 1 − y f (x)]

}

− 0
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B.3 Proposition 3

If either of the following conditions hold

1. E
[

ri

p̂i

]
= 1

2. E
[
Lh[yi, f (xi)] − φ(yi, xa

i
)
]
= 0

then, as n gets large, the DRSVM classifier achieves the Bayes risk.

Proof. The setup of this proof builds on the consistency results for standard SVMs dis-

cussed in [94]. Let R( f ) = E{Lh[y, f (x)]}denote the risk, and let Remp( f ) = 1
n

∑
Lh[yi, f (xi)]

denote the empirical risk. Denote the Bayes classifier as fbayes = arg min f R( f ). Denote

the standard svm classifier as f̂svm = arg min f Remp( f ). Likewise, let Rdr
emp( f ) be the

empirical loss of the DRSVM, and let f̂dr = arg min f Rdr
emp( f ). The following statements

follow:

R( f̂dr) − R( fbayes) ≥ 0,

Rdr
emp( fbayes) − Rdr

emp( f̂dr) ≥ 0

The sum of these inequalities satisfies:

(P3.1) 0 ≤ R( f̂dr) − R( fbayes) + Rdr
emp( fbayes) − Rdr

emp( f̂dr)

= R( f̂dr) − Rdr
emp( f̂dr) + Rdr

emp( fbayes) − R( fbayes)

≤ sup
f

[R( f ) − Rdr
emp( f )]

︸                   ︷︷                   ︸
A

+Rdr
emp( fbayes) − R( fbayes)

︸                     ︷︷                     ︸
B

The basic idea of this proof is to leverage results for SVMs to show that the right

hand side of the last line of the above inequality converges to 0. Two results which we
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will leverage are (proved elsewhere such as [94]),

sup
f

[R( f ) − Remp( f )]→p 0,

|Remp( fbayes) − R( fbayes)| →p 0

as n gets large.

To proceed, suppose that all covariates are fully observed, but that construc-

tion of the DRSVM and the calculation of the DR empirical risk proceeds as if some

covariates are missing. Define

Q( f ) = Rdr
emp( f ) − Remp( f )

=
1

n

n∑

i=1

[
ri

p̃i
− 1

] [
Lh[yi, f (xi)] − φ(yi, x

a
i )
]
.

Note that by the strong law of large numbers,

Q( f )→as E

{[
r1

p̃1
− 1

] [
Lh[y1, f (x1)] − φ(y1, x

a
1)
]}
,

and it is clear to see that

E

{[
r1

p̃1
− 1

] [
Lh[y1, f (x1)] − φ(y1, x

a
1)
]}
= 0

if either E[r1/p1] = 1 (condition 1) or E[Lh[y1, f (x1)] − φ(y1, xa
1
)] = 0 (condition 2) hold.

Returning back to expression A of (P3.1),

sup
f

[R( f ) − Rdr
emp( f )] = sup

f

[R( f ) − Remp( f ) −Q( f )]

≤ sup
f

[R( f ) − Remp( f )] + sup
f

|Q( f )|.
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Because sup f [R( f ) − Remp( f )]→p 0 and sup f |Q( f )| → 0, if follows that

sup
f

[R( f ) − Rdr
emp( f )]→p 0.

We now proceed to expression B of (P3.1).

Rdr
emp( fbayes) − R( fbayes) = Remp( fbayes) +Q( fbayes) − R( fbayes)

≤ |Remp( fbayes) − R( fbayes)| + |Q( fbayes)|

As noted earlier, |Remp( fbayes) − R( fbayes)| converges to 0 as n gets large. Likewise for

|Q( fbayes)|, if condition 1 or condition 2 holds.

Thus, both expressions A and B in (P3.1) converge to zero. Because

0 ≤ R( f̂dr) − R( fbayes) ≤ A + B

and (A + B)→p 0, it follows that

|R( f̂dr) − R( fbayes)| →p 0

if either condition 1 or condition 2 holds.
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B.4 Simulation Results for Doubly Robust SVM

The following tables report simulation results involving the DRSVM. Each

method is labeled as follows:

Label Method

cc Complete Case

dr Doubly Robust

dw Doubly Weighted

mi Mean Imputation

mi3 Multiple Imputation

knn k-Nearest Neighbor

socp Probability Constraint
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Table B.1: Simulation Results (2 Covariates, Missingness depends on Y and X)

Median AOPE [IQR]

D Missingness X distr Boundary Kernel β cc dr dw mi knn mi3 socp

2 Y and X Normal Linear Linear -6 13.0 [3.8] 2.8 [5.4] 6.7 [7.7] 13.3 [4.5] 12.2 [5.6] 2.3 [3.2] 14.2 [3.1]
-2 5.7 [3.7] 0.6 [1.4] 1.4 [2.0] 7.0 [3.9] 9.4 [5.6] 1.8 [2.3] 10.8 [4.4]
0 0.3 [0.9] 0.1 [0.6] 0.3 [0.7] 0.3 [0.7] 3.3 [2.9] 1.9 [2.0] 2.5 [2.9]
2 12.4 [8.3] 0.5 [1.1] 1.7 [2.0] 3.5 [2.2] 5.3 [2.3] 3.2 [2.5] 3.6 [1.2]
6 32.8 [7.1] 1.8 [2.3] 4.8 [3.4] 4.6 [2.2] 8.0 [2.4] 3.8 [3.4] 5.2 [1.1]

Non-linear -6 13.6 [3.6] 20.2 [10.4] 25.9 [6.9] 16.4 [5.1] 13.1 [6.6] 8.9 [10.6]
-2 6.4 [3.8] 8.6 [10.8] 20.2 [5.8] 7.8 [3.8] 9.0 [5.0] 3.6 [5.9]
0 0.6 [1.3] 1.6 [3.7] 12.9 [3.7] 0.7 [1.1] 4.2 [2.9] 1.8 [1.8]
2 13.1 [6.8] 2.4 [4.1] 8.9 [3.7] 5.2 [3.3] 5.9 [3.2] 4.0 [2.9]
6 31.7 [7.4] 5.1 [4.4] 9.4 [4.2] 8.4 [3.2] 8.7 [3.9] 9.2 [5.6]

Non-linear Linear -6 -0.3 [0.7] 0.5 [1.6] -0.2 [0.9] -0.1 [0.5] -0.1 [0.6] 2.2 [7.2] 0.0 [0.7]
-2 -0.3 [0.8] 0.1 [0.8] -0.1 [0.8] -0.1 [0.5] -0.1 [0.5] 0.9 [4.2] 0.0 [0.7]
0 0.2 [1.2] 0.1 [0.7] 0.1 [0.7] 0.1 [0.4] 0.0 [0.5] 0.6 [2.3] 0.1 [0.6]
2 21.4 [8.0] 0.1 [0.5] 0.3 [0.8] 1.6 [2.8] -0.1 [0.4] 0.7 [2.4] 0.1 [0.6]
6 43.4 [2.2] 0.1 [0.5] 1.0 [1.8] 2.6 [2.7] -0.0 [0.6] 0.8 [2.4] 0.1 [0.9]

Non-linear -6 8.8 [1.9] 12.4 [6.9] 19.2 [5.8] 10.3 [3.5] 9.9 [2.9] 11.6 [5.6]
-2 5.1 [3.9] 6.4 [7.6] 15.7 [6.6] 6.9 [4.7] 7.7 [4.5] 10.1 [4.0]
0 0.9 [1.8] 2.4 [3.1] 11.3 [4.1] 2.6 [2.4] 4.7 [3.6] 10.4 [4.1]
2 11.2 [5.7] 2.8 [4.1] 8.3 [3.7] 7.6 [7.7] 5.5 [3.6] 13.3 [6.0]
6 26.4 [8.4] 3.7 [4.5] 7.7 [4.1] 17.1 [5.5] 6.4 [3.2] 16.4 [5.0]

χ2 Linear Linear -6 13.1 [2.5] 6.6 [7.2] 7.1 [3.7] 11.5 [1.7] 11.8 [1.8] 4.9 [5.0] 12.3 [2.1]
-2 6.5 [4.3] 2.9 [5.3] 4.1 [2.5] 10.0 [1.8] 11.4 [1.9] 5.1 [3.7] 11.7 [2.5]
0 0.4 [1.7] 3.0 [3.7] 0.5 [1.3] 1.2 [2.2] 8.6 [2.9] 3.7 [3.3] 6.6 [3.0]
2 6.4 [3.6] 2.2 [3.6] 0.6 [1.7] 3.1 [1.6] 6.0 [2.5] 5.1 [2.3] 5.1 [2.3]
6 13.7 [7.7] 1.9 [3.3] 3.5 [4.0] 4.0 [1.3] 6.2 [1.8] 7.7 [4.4] 5.6 [1.7]

Non-linear -6 12.5 [2.2] 15.6 [11.5] 23.6 [7.0] 11.6 [4.1] 11.3 [3.4] 12.6 [4.7]
-2 7.2 [3.9] 8.9 [11.8] 21.1 [7.6] 7.9 [3.5] 9.7 [3.5] 8.8 [5.1]
0 1.0 [2.1] 2.1 [3.6] 16.5 [9.0] 1.8 [2.5] 5.7 [3.5] 4.0 [2.4]
2 12.0 [8.4] 2.1 [2.5] 6.2 [7.6] 3.1 [2.3] 4.9 [2.5] 5.2 [3.8]
6 24.7 [10.0] 3.5 [3.6] 7.5 [7.9] 4.6 [2.6] 5.2 [2.4] 8.2 [5.9]

Non-linear Linear -6 8.6 [2.2] 2.0 [4.1] 3.9 [3.4] 4.6 [1.5] 5.4 [1.5] 9.8 [6.0] 5.5 [1.2]
-2 5.3 [3.1] 1.9 [3.7] 2.2 [3.6] 2.5 [3.1] 5.0 [2.3] 10.1 [5.9] 5.1 [1.7]
0 0.3 [1.2] 2.0 [2.1] 0.2 [1.0] 0.3 [0.9] 2.9 [2.8] 7.2 [3.7] 3.3 [2.3]
2 24.7 [1.7] 1.3 [1.8] -0.1 [0.8] 1.1 [1.3] 4.6 [1.6] 0.6 [2.5] 3.4 [2.1]
6 25.1 [1.2] 1.0 [2.2] -0.0 [0.8] 2.1 [1.5] 5.2 [1.0] -0.1 [1.2] 4.5 [1.8]

Non-linear -6 5.3 [3.1] 11.5 [6.4] 13.2 [5.4] 5.9 [3.8] 5.7 [6.0] 4.5 [3.4]
-2 2.2 [2.3] 8.5 [7.3] 12.3 [5.5] 3.9 [2.6] 4.0 [5.2] 4.2 [2.8]
0 0.7 [1.6] 2.2 [3.4] 9.9 [5.1] 1.9 [1.8] 2.8 [3.5] 4.3 [4.6]
2 9.6 [5.4] 2.2 [3.1] 4.9 [5.2] 9.3 [5.1] 5.3 [3.4] 8.9 [5.9]
6 25.3 [6.9] 3.8 [6.2] 3.5 [6.3] 16.0 [7.2] 6.4 [2.3] 11.8 [5.7]
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Table B.2: Simulation Results (2 Covariates, Missingness depends on X)

Median AOPE [IQR]

D Missingness X distr Boundary Kernel β cc dr dw mi knn mi3 socp

2 X Normal Linear Linear -6 0.8 [3.0] 2.3 [3.5] 2.8 [3.9] 1.9 [3.0] 4.1 [4.4] 3.0 [3.5] 3.6 [3.9]
-2 0.5 [1.2] 0.7 [1.1] 0.5 [1.5] 1.4 [2.6] 3.4 [4.9] 2.6 [2.3] 2.8 [3.1]
0 0.2 [0.9] 0.3 [0.6] 0.2 [0.6] 0.3 [0.8] 3.4 [3.3] 2.0 [2.0] 2.0 [2.3]
2 0.4 [1.1] 0.7 [1.2] 0.8 [1.3] 1.3 [1.6] 4.7 [5.1] 2.1 [2.5] 2.6 [2.2]
6 0.9 [2.2] 2.2 [3.7] 2.4 [2.9] 2.1 [2.9] 2.8 [5.4] 2.9 [3.2] 3.7 [4.0]

Non-linear -6 4.5 [12.9] 9.0 [6.9] 14.8 [6.0] 2.4 [4.5] 5.7 [7.4] 3.2 [3.5]
-2 1.1 [2.7] 5.3 [7.0] 13.5 [4.6] 2.2 [2.8] 5.2 [4.5] 2.4 [2.1]
0 0.4 [1.5] 1.5 [2.7] 12.6 [4.2] 0.7 [1.5] 4.2 [4.5] 1.8 [1.8]
2 1.3 [3.0] 4.5 [5.4] 12.8 [3.8] 2.1 [2.8] 5.0 [5.0] 2.1 [2.3]
6 4.4 [12.5] 8.0 [7.1] 13.3 [6.1] 2.1 [3.5] 6.0 [7.3] 2.7 [3.6]

Non-linear Linear -6 20.9 [1.3] 0.1 [0.7] 0.7 [1.0] -0.1 [0.4] 0.2 [0.7] 0.2 [1.7] 0.0 [0.7]
-2 0.5 [17.8] 0.1 [0.8] 0.4 [0.9] 0.0 [0.5] 0.0 [0.6] 0.3 [1.0] 0.0 [0.7]
0 0.2 [1.0] 0.2 [0.7] 0.1 [0.6] 0.0 [0.4] 0.0 [0.5] 0.4 [2.7] -0.0 [0.4]
2 5.7 [21.5] 0.1 [0.6] 0.0 [0.7] 0.6 [1.6] 0.0 [0.6] 0.9 [4.4] 0.1 [0.4]
6 22.7 [14.9] 0.2 [0.5] 0.7 [1.9] 1.8 [2.7] 0.7 [1.8] 4.0 [6.2] 0.3 [0.7]

Non-linear -6 20.3 [19.8] 7.0 [7.8] 11.4 [5.4] 7.5 [7.4] 10.0 [7.8] 19.4 [7.7]
-2 4.9 [5.3] 4.2 [5.5] 11.6 [5.5] 3.8 [4.9] 7.8 [4.1] 17.1 [6.1]
0 0.9 [1.7] 2.6 [3.3] 11.1 [3.3] 2.7 [2.2] 5.0 [5.0] 10.6 [4.3]
2 1.5 [4.2] 4.2 [6.1] 12.2 [5.1] 2.8 [2.5] 3.3 [3.6] 11.8 [6.4]
6 3.8 [12.7] 7.9 [6.7] 11.9 [6.2] 3.8 [4.9] 5.9 [8.5] 16.1 [6.6]

χ2 Linear Linear -6 1.5 [3.7] 2.6 [4.5] 1.3 [2.9] 1.1 [1.9] 6.5 [5.7] 6.0 [5.3] 5.1 [2.6]
-2 0.7 [2.2] 2.0 [3.0] 0.5 [1.6] 0.8 [2.7] 8.2 [3.4] 5.8 [4.2] 5.5 [2.7]
0 0.6 [1.8] 3.4 [4.2] 0.7 [1.4] 1.2 [2.2] 7.9 [2.1] 3.5 [2.4] 6.4 [3.2]
2 0.7 [2.2] 5.1 [4.9] 1.0 [1.5] 2.1 [2.9] 9.3 [2.9] 2.6 [2.9] 9.3 [3.6]
6 4.1 [5.2] 4.1 [4.6] 2.5 [2.8] 7.4 [7.0] 10.2 [2.8] 2.8 [3.7] 11.1 [2.7]

Non-linear -6 1.7 [4.4] 13.6 [13.2] 15.2 [13.9] 1.5 [3.4] 4.2 [4.1] 5.9 [4.3]
-2 0.9 [2.3] 4.4 [12.4] 19.5 [7.8] 1.4 [2.8] 4.7 [2.8] 5.3 [3.8]
0 1.2 [1.9] 2.4 [3.5] 16.8 [6.9] 1.4 [2.1] 5.6 [3.0] 3.4 [2.7]
2 8.6 [11.3] 3.4 [3.8] 6.7 [6.4] 2.1 [2.4] 6.2 [3.1] 2.2 [3.4]
6 25.1 [22.9] 4.4 [4.1] 3.8 [3.6] 3.9 [6.1] 8.6 [5.0] 2.4 [3.6]

Non-linear Linear -6 23.9 [22.4] 1.1 [3.1] 0.4 [3.0] 3.6 [2.5] 4.8 [2.4] 8.5 [4.9] 5.1 [1.5]
-2 1.0 [2.9] 1.3 [1.8] 0.4 [1.3] 1.7 [2.4] 4.9 [1.4] 8.4 [4.0] 4.7 [1.7]
0 0.5 [1.0] 1.8 [2.1] 0.2 [1.0] 0.4 [0.9] 3.3 [2.5] 6.8 [4.7] 3.2 [2.4]
2 0.4 [2.0] 1.2 [1.4] 0.0 [0.9] 0.1 [0.8] 2.5 [2.4] 4.8 [5.4] 2.0 [2.7]
6 2.9 [14.1] 0.8 [1.0] 0.2 [1.0] -0.1 [0.7] 0.7 [2.2] 2.1 [6.7] 1.6 [2.8]

Non-linear -6 5.3 [9.5] 16.3 [6.7] 14.9 [6.3] 6.7 [9.6] 8.6 [13.1] 12.0 [7.2]
-2 1.2 [2.4] 11.2 [9.7] 14.1 [5.8] 2.2 [3.7] 6.5 [5.4] 7.5 [4.1]
0 0.9 [1.5] 3.0 [4.1] 9.8 [4.6] 1.7 [1.4] 2.3 [2.7] 4.8 [3.3]
2 1.8 [2.6] 2.2 [2.5] 4.1 [4.0] 2.0 [1.8] 2.8 [2.6] 4.1 [3.9]
6 2.4 [2.9] 2.3 [2.5] 1.8 [3.2] 1.9 [2.2] 2.8 [2.5] 8.7 [6.4]
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Table B.3: Simulation Results (10 Covariates, Missingness depends on Y and X)

Median AOPE [IQR]

D Missingness X distr Boundary Kernel β cc dr dw mi knn mi3 socp

10 Y and X Normal Linear Linear -6 17.3 [4.3] 3.8 [2.5] 3.2 [2.3] 2.3 [2.2] 2.4 [1.7] 1.2 [1.4] 2.1 [1.8]
-2 10.7 [3.6] 2.9 [2.5] 1.8 [2.0] 1.7 [1.5] 1.3 [1.7] 0.7 [1.4] 1.4 [1.6]
0 1.6 [1.5] 1.5 [1.3] 0.6 [1.0] 0.6 [1.0] 0.4 [1.1] 0.6 [0.9] 0.5 [1.1]
2 13.6 [6.7] 1.8 [1.9] 2.2 [1.7] 1.0 [1.4] 0.4 [1.0] 1.0 [1.4] 0.7 [1.5]
6 22.0 [5.2] 2.1 [1.7] 3.2 [2.4] 1.5 [1.7] 0.9 [1.1] 1.3 [1.9] 1.3 [1.7]

Non-linear -6 16.6 [4.7] 4.2 [3.4] 5.1 [3.8] 3.7 [2.6] 2.8 [2.0] 1.4 [1.9]
-2 11.1 [5.5] 3.7 [2.4] 3.0 [2.7] 2.1 [1.9] 1.5 [1.7] 0.8 [1.4]
0 1.8 [2.2] 2.2 [2.7] 1.0 [1.9] 0.5 [1.1] 0.4 [1.3] 0.5 [0.9]
2 14.5 [7.0] 2.1 [2.4] 3.2 [2.4] 1.2 [1.6] 0.6 [1.4] 1.0 [1.7]
6 21.5 [6.1] 2.6 [2.6] 4.2 [3.0] 1.6 [2.0] 0.8 [1.6] 1.0 [1.6]

Non-linear Linear -6 -3.8 [2.9] -0.2 [2.2] -3.8 [3.5] -0.1 [1.8] 0.0 [1.1] 0.2 [1.1] 0.0 [1.4]
-2 -4.6 [3.6] -0.2 [1.9] -4.6 [3.3] -0.0 [1.5] 0.0 [1.3] 0.2 [1.3] -0.1 [1.4]
0 0.2 [3.1] 0.0 [1.3] 0.0 [1.9] 0.0 [0.5] 0.0 [0.5] 0.0 [1.0] 0.0 [1.1]
2 2.1 [3.6] 0.4 [1.2] 0.8 [4.1] 0.5 [1.4] 0.0 [0.7] 0.3 [1.5] 0.0 [1.0]
6 3.5 [4.6] 0.3 [2.1] 1.1 [3.4] 0.3 [1.8] 0.0 [0.7] 0.3 [1.5] 0.0 [0.8]

Non-linear -6 17.2 [7.1] 3.9 [3.1] 2.5 [1.9] 1.6 [2.1] 1.0 [1.2] 1.4 [1.8]
-2 9.8 [7.8] 4.2 [3.4] 2.2 [2.1] 0.9 [2.0] 0.5 [1.4] 1.1 [1.4]
0 2.8 [2.5] 3.8 [3.9] 1.1 [1.6] 0.7 [1.4] 0.5 [1.3] 0.8 [1.7]
2 11.0 [4.8] 4.3 [2.4] 2.0 [2.2] 1.0 [1.5] 0.6 [1.2] 1.0 [1.5]
6 17.5 [6.1] 3.7 [2.6] 2.1 [1.9] 1.5 [1.7] 0.6 [1.4] 1.4 [1.7]

χ2 Linear Linear -6 9.6 [3.9] 1.2 [1.6] 1.3 [1.4] 0.4 [0.8] 1.5 [1.9] 0.5 [0.8] 1.7 [2.1]
-2 6.5 [2.9] 1.1 [1.6] 1.0 [1.2] 0.3 [0.7] 1.0 [1.3] 0.4 [0.8] 1.0 [1.5]
0 1.3 [2.0] 0.9 [1.7] 0.4 [0.8] 0.2 [0.5] 0.4 [0.9] 0.3 [0.8] 0.3 [0.9]
2 8.4 [5.6] 1.1 [1.7] 0.9 [1.0] 0.3 [0.7] 0.7 [1.2] 0.5 [1.0] 0.8 [1.7]
6 12.1 [5.0] 1.0 [1.3] 0.7 [1.4] 0.2 [0.6] 0.9 [0.9] 0.4 [1.1] 0.9 [1.2]

Non-linear -6 12.2 [5.2] 1.9 [2.3] 1.8 [2.2] 0.5 [1.1] 1.3 [1.8] 0.6 [1.3]
-2 8.6 [4.7] 1.4 [1.6] 1.5 [2.0] 0.5 [1.3] 1.0 [1.6] 0.4 [1.3]
0 1.8 [2.3] 1.2 [2.3] 0.7 [1.9] 0.1 [0.9] 0.4 [1.2] 0.4 [1.1]
2 11.3 [6.4] 1.5 [2.3] 1.1 [2.2] 0.3 [1.3] 0.8 [1.4] 0.6 [1.6]
6 15.7 [7.4] 0.9 [1.8] 0.9 [1.8] 0.2 [1.0] 0.8 [1.5] 0.4 [1.6]

Non-linear Linear -6 5.6 [2.6] 0.9 [1.6] 1.1 [1.4] 0.2 [0.8] 0.8 [0.9] 0.8 [1.8] 0.7 [1.3]
-2 4.0 [2.3] 1.2 [1.6] 1.1 [1.4] 0.3 [0.8] 0.6 [0.9] 0.7 [1.4] 0.6 [1.6]
0 1.7 [1.7] 1.1 [1.3] 0.6 [1.1] 0.2 [0.6] 0.4 [0.7] 0.4 [1.2] 0.6 [1.6]
2 14.2 [2.6] 0.8 [1.2] 1.7 [1.9] -0.0 [0.6] 0.4 [0.9] 0.4 [1.4] 0.3 [0.9]
6 18.5 [4.5] 0.9 [1.3] 2.5 [1.9] 0.1 [0.6] 0.4 [0.9] 1.2 [1.9] 0.5 [1.0]

Non-linear -6 3.5 [2.8] 1.1 [1.7] 1.6 [1.6] 0.8 [1.7] 0.7 [1.1] 2.3 [2.2]
-2 1.6 [1.8] 0.9 [1.9] 1.4 [1.8] 0.5 [1.2] 0.4 [1.0] 1.7 [2.0]
0 1.2 [1.9] 1.3 [1.8] 1.0 [1.7] 0.4 [0.9] 0.4 [1.1] 0.9 [1.5]
2 5.6 [6.3] 2.0 [1.9] 0.7 [1.9] 0.1 [0.8] 0.5 [0.9] 0.6 [1.5]
6 12.2 [8.2] 2.2 [2.2] 0.8 [1.9] 0.3 [0.9] 0.6 [1.0] 0.6 [1.4]
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Table B.4: Simulation Results (10 Covariates, Missingness depends on X)

Median AOPE [IQR]

D Missingness X distr Boundary Kernel β cc dr dw mi knn mi3 socp

10 X Normal Linear Linear -6 2.1 [2.4] 1.4 [1.5] 0.9 [1.0] 0.6 [0.9] 0.8 [1.1] 0.8 [1.2] 0.5 [1.3]
-2 1.6 [2.1] 1.3 [1.4] 0.6 [1.2] 0.4 [0.9] 0.7 [1.1] 0.8 [1.2] 0.5 [1.1]
0 1.6 [1.5] 1.7 [1.8] 0.5 [1.1] 0.3 [0.8] 0.5 [1.0] 0.6 [0.8] 0.5 [1.1]
2 1.7 [1.8] 1.4 [1.6] 0.7 [0.9] 0.6 [0.9] 0.6 [0.9] 0.6 [1.3] 0.5 [1.1]
6 2.0 [2.9] 1.5 [1.7] 0.8 [1.1] 0.8 [0.9] 1.0 [1.3] 1.1 [1.3] 0.5 [1.1]

Non-linear -6 3.4 [3.0] 2.4 [2.9] 1.3 [2.1] 0.8 [1.4] 1.1 [1.2] 1.2 [2.3]
-2 2.5 [3.2] 2.5 [2.8] 1.2 [2.1] 0.8 [1.7] 0.9 [1.5] 0.8 [1.7]
0 1.8 [2.1] 2.3 [1.8] 1.0 [1.7] 0.4 [1.1] 0.6 [0.9] 0.6 [1.0]
2 2.7 [2.8] 2.3 [2.5] 1.3 [2.5] 0.6 [1.3] 0.8 [1.3] 1.0 [1.4]
6 2.9 [2.6] 2.2 [2.0] 1.6 [2.2] 0.8 [1.3] 1.2 [1.5] 1.6 [2.0]

Non-linear Linear -6 -6.1 [3.5] -0.8 [2.0] -3.9 [5.1] -0.0 [1.8] 0.0 [1.0] 0.1 [1.9] 0.0 [0.9]
-2 -5.4 [3.5] -0.1 [1.8] -2.9 [3.9] -0.1 [1.3] 0.0 [0.8] 0.0 [1.1] 0.0 [1.2]
0 0.6 [2.8] 0.1 [1.3] 0.0 [1.8] 0.0 [0.7] 0.0 [0.7] 0.0 [1.1] -0.1 [0.9]
2 -2.7 [4.0] 0.7 [2.2] -0.1 [4.2] 0.6 [1.7] 0.2 [1.1] 0.0 [1.3] 0.0 [1.2]
6 -3.9 [3.3] 0.5 [1.9] -0.7 [3.6] 0.4 [1.5] 0.0 [1.1] 0.5 [1.6] 0.0 [1.1]

Non-linear -6 7.0 [3.8] 3.8 [2.8] 1.0 [2.2] 0.8 [1.3] 0.8 [1.4] 1.4 [2.6]
-2 4.3 [2.4] 3.4 [2.9] 1.2 [1.7] 0.8 [1.3] 0.5 [1.3] 1.1 [1.8]
0 2.4 [1.9] 3.8 [3.0] 1.3 [1.7] 0.7 [1.4] 0.4 [1.3] 0.8 [1.4]
2 3.2 [2.5] 4.2 [2.9] 0.8 [2.0] 0.7 [1.3] 0.4 [1.5] 1.0 [1.6]
6 3.8 [3.7] 4.6 [2.5] 1.1 [2.0] 0.5 [1.4] 0.4 [1.3] 1.4 [2.3]

χ2 Linear Linear -6 1.3 [1.9] 1.3 [1.7] 0.4 [1.0] 0.1 [0.6] 0.4 [1.0] 0.5 [0.8] 0.5 [1.2]
-2 1.4 [2.0] 1.2 [1.6] 0.4 [0.9] 0.2 [0.6] 0.4 [0.8] 0.3 [0.9] 0.6 [1.2]
0 1.3 [1.3] 0.8 [1.3] 0.4 [0.9] 0.1 [0.7] 0.3 [0.9] 0.4 [0.9] 0.4 [1.0]
2 2.6 [2.9] 0.8 [1.4] 0.5 [0.9] 0.2 [0.7] 0.6 [0.9] 0.5 [1.1] 0.5 [1.2]
6 4.0 [4.2] 1.0 [1.3] 0.5 [1.0] 0.1 [0.8] 0.7 [1.4] 0.6 [1.0] 0.8 [1.4]

Non-linear -6 1.5 [2.4] 1.6 [2.3] 0.7 [1.9] 0.2 [1.1] 0.3 [1.1] 0.4 [1.3]
-2 1.5 [2.2] 1.5 [1.9] 0.6 [1.5] 0.2 [1.0] 0.4 [1.1] 0.5 [1.2]
0 1.7 [2.3] 1.5 [2.2] 0.7 [1.7] 0.2 [0.9] 0.4 [1.1] 0.3 [1.0]
2 5.3 [6.8] 1.7 [1.9] 0.6 [1.7] 0.4 [1.1] 1.1 [1.4] 0.7 [1.6]
6 7.8 [7.1] 1.6 [2.0] 0.6 [1.3] 0.4 [1.0] 1.0 [1.3] 0.9 [1.7]

Non-linear Linear -6 1.3 [1.7] 1.2 [1.4] 0.5 [1.0] 0.1 [0.7] 0.4 [0.8] 0.2 [1.0] 0.4 [1.0]
-2 1.4 [2.0] 1.0 [1.5] 0.5 [1.2] 0.1 [0.7] 0.4 [1.1] 0.3 [0.9] 0.4 [1.0]
0 1.8 [1.9] 1.0 [1.5] 0.5 [0.8] 0.1 [0.6] 0.2 [0.8] 0.3 [0.7] 0.4 [1.1]
2 8.6 [4.0] 1.0 [1.3] 0.7 [1.4] 0.1 [0.6] 0.5 [1.2] 0.8 [1.8] 0.6 [2.0]
6 12.0 [5.6] 0.9 [1.0] 0.7 [1.3] 0.2 [0.6] 0.4 [1.0] 1.8 [2.4] 0.6 [1.3]

Non-linear -6 1.2 [1.8] 1.0 [2.1] 0.9 [1.5] 0.4 [0.9] 0.3 [1.2] 1.2 [1.8]
-2 1.1 [1.8] 1.3 [1.9] 1.0 [1.9] 0.3 [0.9] 0.4 [1.2] 1.3 [1.9]
0 1.1 [2.1] 1.1 [1.9] 1.1 [2.1] 0.3 [1.2] 0.2 [1.0] 1.2 [1.6]
2 1.9 [2.4] 2.0 [2.3] 0.8 [1.4] 0.3 [0.8] 0.6 [1.1] 1.2 [1.7]
6 3.0 [2.8] 2.4 [2.0] 0.4 [1.8] 0.2 [1.0] 0.5 [1.2] 1.8 [2.2]
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APPENDIX C: PROPOSITIONS AND RESULTS FOR PARTIALLY OBSERVED
OUTCOME SUPPORT VECTOR MACHINES

C.1 Proposition 1

Define

p̃(k, f) = p̃ (Y = k |X, f) =
exp{−L[Y = k, f(X)]}

∑K
j=1 exp{−L[Y = j, f(X)]}

as a quasi-probability distribution over Y as a function of the SVM classifier and loss. The

function

g(f) =

n∑

i=1


ln p̃

(
yi, f

)
known label

0 unknown label

is the observed data likelihood. For successive solutions of the EM algorithm, the following

holds:

g
(
f(m)

)
≤ g

(
f(m+1)

)
.

Because g is bounded above, the sequence

g
(
f(1)

)
, g

(
f(2)

)
, . . .

converges to a local maximum.

Proof. Let

h
(
f|f(m)

)
=

n∑

i=1


ln p̃

(
yi, f

)
known label

∑K
j=1 p̃

(
j, f(m)

)
ln p̃

(
j, f

)
unknown label.

Further, let a
(
f|f(m)

)
= h

(
f|f(m)

)
+ g

(
f(m)

)
− h

(
f(m)|f(m)

)
. By construction, the following
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inequality/equality hold:

(A) a
(
f(m+1)|f(m)

)
≥ a

(
f(m)|f(m)

)

(B) a
(
f(m)|f(m)

)
= g

(
f(m)

)
.

We will show

(C) g (f) ≥ a
(
f|f(m)

)
for all f.

We derive (C) in the following way:

g (f) − a
(
f|f(m)

)
=

n∑

i=1



0 label known
∑K

j=1 p̃
(
j, f(m)

)
ln

p̃( j,f(m))
p̃( j,f)

label unknown

Because KL divergence EP

[
ln

(
P
Q

)]
≥ 0 it follows that

K∑

j=1

p̃
(
j, f(m)

)
ln

p̃
(
j, f(m)

)

p̃
(
j, f

) ≥ 0

which implies that g (f) − h
(
f|f(m)

)
≥ 0.

Using (A), (B), and (C), the following inequality holds:

g
(
f(m)

)
= a

(
f(m)|f(m)

)
≤ a

(
f(m+1)|f(m)

)
≤ g

(
f(m+1)

)
.

Because g
(
f(m)

)
≤ g

(
f(m+1)

)
and because g is bounded above, the sequence

g
(
f(1)

)
, g

(
f(2)

)
, . . .

converges to a local maximum.
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C.2 Proposition 2

Let P(Y,X) denote a distribution over Y × X where Y ∈ {±1} and X ∈ Rd. Let R be a random

variable which is one if Y is observed and zero otherwise. Define

p̃(k, f) = p̃ (Y = k |X, f) =
exp{−L[Y = k, f(X)]}

∑K
j=1 exp{−L[Y = j, f(X)]}

as a quasi-probability distribution over Y as a function of the SVM classifier and loss. If

(a) P̃(Y = c|x) = P(Y = c|x), and

(b) the multi-class loss function generates a Fisher consistent classifier,

fbayes = arg min
f

E{L[Y, f(X)]},

then the EM multi-class loss function,

L̃[yi, f(xi)] =


L[yi, f(xi)] class label known
∑k

j=1 P̃(Y = c|x)L[yi = j, f(xi)] class label unknown
,

also generates a Fisher consistent classifier.

Proof. We show that E{̃L[Y, f(X)] |X = x} = E{L[Y, f(X)] |X = x}. Because L[Y, f(X)]
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generates a Fisher consistent classifier, so does L̃[Y, f(X)].

E{̃L[Y, f(X)] |X = x} = P(R = 1) E{̃L[Y, f(X)] |R = 1,X = x}︸                           ︷︷                           ︸
A

+ P(R = 0) E{̃L[Y, f(X)] |R = 0,X = x}︸                           ︷︷                           ︸
B

A = E{L[Y, f(X)] |R = 1,X = x}

B = E


K∑

k=1

P̃(Y = k|x)L[Y = k, f(X)] |R = 0,X = x



=

K∑

k=1

P̃(Y = k|x)E{L[Y = k, f(X)] |R = 0,X = x}

=

K∑

k=1

P(Y = k|x)E{L[Y = k, f(X)] |R = 0,X = x}

= E{L[Y, f(X)] |R = 0,X = x}

Thus,

E{̃L[Y, f(X)] |X = x} = P(R = 1)E{L[Y, f(X)] |R = 1,X = x}

+ P(R = 0)E{L[Y, f(X)] |R = 0,X = x}

= E{L[Y, f(X)] |X = x}
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C.3 Constructing a weighted multi-class SVM classifier

Consider a training set Tn = {(x1, y1,w1), . . . , (xn, yn,wn)} where xi ∈ R
d, yi ∈

{1, . . . , k}, and wi ∈ [0,∞). Here we show how the the reinforced multi-class support

vector machine (RMSVM) introduced in [69] can be expressed in terms of a weighted

empirical risk in which each observation is weighted by wi. Constructed from Tn, the

RMSVM classifier with kernel function κ is of the form f(z) = [ f1(z) . . . fk(z)] where

f j(z) = b j +

n∑

i=1

κ(z, xi)vi j.

The function is characterized by the matrix of coefficients V and intercept vector b.

Let K be the kernel matrix with Ki j = κ(xi, x j). For notational ease, let Ki = rowi(K)

and v j = col j(V). In the weighted setting, the RMSVM is the solution to the following

objective function:

f̂ = arg min
f

k∑

j=1

1

2
vt

jKv j +

n∑

i=1

wi

γ[z − byi
− Kivyi

]+ + (1 − γ)

k∑

j,yi

[1 + b j + K jv j]+



s.t.
k∑

j=1

[
b j + Kiv j

]
= 0 for i = 1, . . . ,n.

Note that wi =
1
λn

is the standard, uniformly weighted objective function.

Here we show that the solution can be computed from a quadratic programing

problem involving the dual of the objective function. Following the steps similar to

[69], we introduce slack variables:

k∑

j=1

1

2
vt

jKv j +

n∑

i=1

wi

γξi,yi
+ (1 − γ)

k∑

j,yi

ξi j
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s.t.
k∑

j=1

[
b j + Kiv j

]
= 0 i = 1, . . . ,n

ξi j ≥ 0 i = 1, . . . ,n

ξi,yi
≥ z − byi

− Kivyi
i = 1, . . . ,n

ξi,yi
≥ 1 + bi + Kivi i , j, i = 1, . . . ,n.

Then construct the Lagrangian:

L =
k∑

j=1

1

2
vt

jKv j

+

n∑

i=1

wi

γξi,yi
+ (1 − γ)

k∑

j,yi

ξi j



−
n∑

i=1

k∑

j=1

τi jξi j

+

n∑

i=1

δi

k∑

j=1

[
b j + Kiv j

]

−
n∑

i=1

αi,yi

[
ξi,yi
− z + byi

+ Kivyi

]

−
n∑

i=1

k∑

j,yi

αi j

[
ξi j − 1 − b j − Kiv j

]
.

Define the matrices A and B so that

Ai j =


αi j yi = j

−αi j yi , j
Bi j =


γ yi = j

1 − γ yi , j.
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Group terms in Lagrangian by ξi j, b j, and v j:

L =
k∑

j=1

1

2
vt

jKv j +

n∑

i=1

k∑

j=1

[
δi − Ai j

]
Kiv j

+

n∑

i=1

[
wiBi j − τi j − αi j

]
ξi j

+

n∑

i=1

k∑

j=1

[
δi − Ai j

]
b j

+

n∑

i=1

Ai j [z + 1]

−
n∑

i=1

k∑

j=1

Ai j

The derivatives of the Lagrangian with respect to the primal variables ξi j, b j, and v j

are:

∂L
∂ξi j
= wiBi j − αi j − τi j

∂L
∂b j
=

n∑

i=1

δi − Ai j

∂L
∂v j
= vt

jK +

n∑

i=1

[
δi − Ai j

]
Ki

We set derivatives to zero and solve to get

τi j = wiBi j − αi j i = 1, . . . ,n j = 1, . . . , k

δ =
1

k
A1k

V = A
[
Ik −

1

k
1k1

t
k

]
,
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along with the conditions that

0 ≤ αi j ≤ wiBi j i = 1, . . . ,n j = 1, . . . , k

n∑

i

Ai j =

n∑

i

Ai,1 j = 2, . . . , k.

Note that the solution of V includes the residual projection matrix

R = Ik −
1

k
1k1

t
k,

and that v j = A col j(R). Plugging the solutions back into the Lagrangian, the dual

problem is

max
αi j

− 1

2

k∑

j=1

Rt
jA

tKAR j +

n∑

i=1

Ai j [z + 1] −
n∑

i=1

k∑

j=1

Ai j

s.t. 0 ≤ αi j ≤ wiBi j i = 1, . . . ,n j = 1, . . . , k

n∑

i

Ai j =

n∑

i

Ai,1 j = 2, . . . , k.

With the goal of expressing the problem as a quadratic programing problem, note that

k∑

j=1

Rt
jA

tKAR j = vec(AR)t(Ik ⊗ K) vec(AR)

= vec(A)t (Rt ⊗ It
n)(Ik ⊗ K)(R ⊗ In)

︸                       ︷︷                       ︸
Q

vec(A).

Also define vector g,

g = vec(G) where Gi j =


1 j , yi

−z j = yi
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So the quadratic programing problem is

min
Ai j

1

2
vec(A)tQ vec(A) + gt vec(A)

s.t. 0 ≤ Ai j ≤ wiBi j i = 1, . . . ,n j = yi

− wiBi j ≤ Ai j ≤ 0 i = 1, . . . ,n j , yi

n∑

i

Ai j =

n∑

i

Ai,1 j = 2, . . . , k.

And the solution V∗ = A∗R where A∗ is the solution to the quadratic programing

problem. The parameter b can be found in the way described in [69].
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C.4 Constructing a multi-class SVM classifier with fewer basis functions

Consider a training set of size n, Tn = {(x1, y1,w1), . . . , (xn, yn,wn)}where xi ∈ Rd,

yi ∈ {1, . . . , k}, and wi ∈ [0,∞). The RMSVM classifier constructed from Tn with kernel

function κ is of the form f(z) = [ f1(z) . . . fk(z)] where

f j(z) = b j +
∑

xi∈Tn

κ(z, xi)vi j.

Each observation acts as a basis function, κ(z, xi), in the RMSVM classifier. Here we

show how to compute a weighted RMSVM in which only the first m observations of

the training set act as basis functions but all observations contribute to the weighted

empirical risk. Specifically, we show how to find

f̂ = arg min
f∈HTm

||f||HTm
+

∑

i∈Tn

wiL[yi, f(xi)].

Let m < n, and let Tm denote the first m observations of Tn. Let Ki j = κ(xi, x j)

denote the kernel matrix constructed from Tn and kernel function κ. Let Knm denote

the first m columns of K, and let Kmm denote the first m columns and first m rows. The

objective function is:

f̂ = arg min
f∈HTm

k∑

j=1

1

2
vt

jK
mmv j +

n∑

i=1

wi

γ[z − byi
− Knm

i vyi
]+ + (1 − γ)

k∑

j,yi

[1 + b j + Knm
j v j]+



s.t.
k∑

j=1

[
b j + Knm

i v j

]
= 0 for i = 1, . . . ,n.

As before, the notation Knm
i
= rowi(K

nm) and v j = col j(V).

Here we show that the solution can be computed from a quadratic programing

problem involving the dual of the objective function. Following the steps similar to

131



[69] and proposition, we introduce slack variables:

k∑

j=1

1

2
vt

jK
mmv j +

n∑

i=1

wi

γξi,yi
+ (1 − γ)

k∑

j,yi

ξi j



s.t.
k∑

j=1

[
b j + Knm

i v j

]
= 0 i = 1, . . . ,n

ξi j ≥ 0 i = 1, . . . ,n

ξi,yi
≥ z − byi

− Knm
i vyi

i = 1, . . . ,n

ξi,yi
≥ 1 + bi + Knm

i vi i , j, i = 1, . . . ,n.

Then construct the Lagrangian:

L =
k∑

j=1

1

2
vt

jK
mmv j

+

n∑

i=1

wi

γξi,yi
+ (1 − γ)

k∑

j,yi

ξi j



−
n∑

i=1

k∑

j=1

τi jξi j

+

n∑

i=1

δi

k∑

j=1

[
b j + Knm

i v j

]

−
n∑

i=1

αi,yi

[
ξi,yi
− z + byi

+ Knm
i vyi

]

−
n∑

i=1

k∑

j,yi

αi j

[
ξi j − 1 − b j − Knm

i v j

]
.

Define the matrices A and B so that

Ai j =


αi j yi = j

−αi j yi , j
Bi j =


γ yi = j

1 − γ yi , j.
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Group terms in Lagrangian by ξi j, b j, and v j:

L =
k∑

j=1

1

2
vt

jK
mmv j +

n∑

i=1

k∑

j=1

[
δi − Ai j

]
Knm

i v j

+

n∑

i=1

[
wiBi j − τi j − αi j

]
ξi j

+

n∑

i=1

k∑

j=1

[
δi − Ai j

]
b j

+

n∑

i=1

Ai j [z + 1]

−
n∑

i=1

k∑

j=1

Ai j

The derivatives of the Lagrangian with respect to the primal variables ξi j, b j, and v j

are:

∂L
∂ξi j
= wiBi j − αi j − τi j

∂L
∂b j
=

n∑

i=1

δi − Ai j

∂L
∂v j
= vt

jK
mm +

n∑

i=1

[
δi − Ai j

]
Knm

i

We set derivatives to zero and solve to get

τi j = wiBi j − αi j i = 1, . . . ,n j = 1, . . . , k

δ =
1

k
A1k

V = [Kmm]−[Knm]tA
[
Ik −

1

k
1k1

t
k

]
,
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along with the conditions that

0 ≤ αi j ≤ wiBi j i = 1, . . . ,n j = 1, . . . , k

n∑

i

Ai j =

n∑

i

Ai,1 j = 2, . . . , k.

Let P = [Kmm]−[Knm]t. Note that the solution of V includes the residual projection

matrix

R = Ik −
1

k
1k1

t
k,

and that v j = PA col j(R). Plugging the solutions back into the Lagrangian, the dual

problem is

max
αi j

− 1

2

k∑

j=1

Rt
jA

tPtKPAR j +

n∑

i=1

Ai j [z + 1] −
n∑

i=1

k∑

j=1

Ai j

s.t. 0 ≤ αi j ≤ wiBi j i = 1, . . . ,n j = 1, . . . , k

n∑

i

Ai j =

n∑

i

Ai,1 j = 2, . . . , k.

With the goal of expressing the problem as a quadratic programing problem, note that

k∑

j=1

Rt
jA

tPtKPAR j = vec(AR)t(Ik ⊗ PtKmmP) vec(AR)

= vec(A)t (Rt ⊗ It
n)(Ik ⊗ PtKmmP)(R ⊗ In)

︸                                ︷︷                                ︸
Q

vec(A).

The matrix PtKmmP reduces to Knm[Kmm]−[Knm]t. Also define vector g,

g = vec(G) where Gi j =


1 j , yi

−z j = yi
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So the quadratic programing problem is

min
Ai j

1

2
vec(A)tQ vec(A) + gt vec(A)

s.t. 0 ≤ Ai j ≤ wiBi j i = 1, . . . ,n j = yi

− wiBi j ≤ Ai j ≤ 0 i = 1, . . . ,n j , yi

n∑

i

Ai j =

n∑

i

Ai,1 j = 2, . . . , k.

And the solution V∗ = PA∗R where A∗ is the solution to the quadratic programing

problem. The parameter b can be found in the way described in [69].
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C.5 Simulation Study Results for Partially-observed Outcomes

The following tables report simulation study results for the partially-observed

settings. The competing methods are labeled with a -L or -N to denote linear kernel

or nonlinear Gaussian kernel, respectively. The methods are:

Label Method

Oracle SVM trained with no missing data

CC Complete Case SVM

Naive Cluster-then-classify SVM

EM The method proposed in this paper
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Table C.1: Simulation results of methods for partially-observed outcomes, N = 40 for smallest class

Prediction Accuracy [IQR]

D BALANCE % OBSD BAYES RISK Oracle-L CC-L Naive-L EM-L Oracle-N CC-N Naive-N EM-N

2 Equal 5 0.05 94.8 [00] 89.8 [23] 93.9 [11] 89.1 [15] 94.6 [01] 86.0 [43] 93.3 [18] 92.7 [04]
0.15 84.5 [00] 76.5 [19] 82.8 [13] 81.6 [06] 84.2 [01] 77.6 [26] 79.0 [16] 82.7 [04]
0.35 64.6 [01] 55.2 [13] 56.5 [12] 61.7 [04] 63.6 [02] 51.5 [16] 54.3 [11] 59.0 [05]

25 0.05 94.7 [00] 94.2 [02] 94.7 [00] 91.5 [14] 94.6 [01] 93.7 [07] 94.4 [01] 93.0 [04]
0.15 84.5 [00] 83.6 [02] 84.2 [01] 82.5 [04] 84.2 [01] 81.8 [06] 83.8 [02] 82.6 [02]
0.35 64.5 [01] 63.0 [04] 63.9 [01] 63.0 [02] 63.7 [02] 59.2 [08] 62.0 [03] 61.9 [03]

Unequal 5 0.05 94.7 [00] 91.3 [19] 94.5 [01] 90.0 [07] 94.6 [01] 91.9 [07] 93.9 [01] 93.6 [02]
0.15 84.6 [00] 79.3 [09] 83.6 [03] 80.5 [04] 84.4 [01] 78.4 [16] 82.3 [06] 82.7 [03]
0.35 64.6 [01] 59.4 [08] 62.0 [04] 62.3 [02] 63.7 [02] 56.6 [11] 59.6 [08] 60.7 [04]

25 0.05 94.8 [00] 94.3 [01] 94.7 [00] 91.5 [07] 94.6 [01] 94.1 [01] 94.5 [01] 93.7 [02]
0.15 84.6 [01] 84.2 [02] 84.5 [01] 82.3 [04] 84.3 [01] 83.7 [02] 84.1 [01] 83.6 [01]
0.35 64.6 [01] 64.1 [02] 64.2 [01] 63.7 [02] 63.6 [02] 61.4 [04] 62.5 [03] 63.2 [03]

10 Equal 5 0.05 93.9 [01] 84.1 [27] 90.7 [27] 92.0 [03] 93.9 [01] 77.1 [41] 91.6 [25] 91.6 [04]
0.15 83.2 [01] 56.5 [20] 75.5 [23] 81.0 [03] 82.9 [02] 48.9 [19] 75.8 [23] 77.3 [08]
0.35 62.1 [03] 47.0 [06] 48.5 [14] 57.5 [04] 61.2 [03] 31.5 [10] 44.6 [14] 49.8 [10]

25 0.05 94.0 [01] 91.9 [03] 93.6 [01] 92.7 [02] 93.9 [01] 92.0 [04] 93.5 [01] 92.7 [02]
0.15 83.1 [01] 79.9 [04] 81.9 [03] 82.1 [03] 82.7 [02] 78.0 [08] 81.6 [03] 80.7 [04]
0.35 61.8 [03] 55.4 [08] 58.9 [05] 59.3 [05] 60.8 [03] 55.0 [06] 57.3 [05] 58.0 [07]

Unequal 5 0.05 94.0 [01] 83.9 [21] 92.2 [03] 93.1 [03] 94.1 [01] 69.1 [27] 92.4 [04] 92.9 [02]
0.15 83.5 [01] 65.7 [18] 79.2 [09] 81.9 [03] 83.1 [01] 56.4 [17] 78.2 [16] 79.8 [05]
0.35 62.6 [02] 46.1 [09] 52.3 [12] 60.0 [04] 62.0 [02] 40.7 [13] 50.3 [13] 52.8 [07]

25 0.05 94.1 [01] 92.7 [03] 93.9 [01] 93.1 [02] 94.0 [01] 92.4 [03] 93.8 [01] 93.2 [01]
0.15 83.4 [02] 80.1 [04] 82.6 [02] 82.8 [02] 83.3 [01] 80.1 [04] 82.4 [03] 82.1 [03]
0.35 62.1 [02] 56.3 [06] 59.6 [05] 60.5 [05] 61.3 [03] 55.4 [06] 58.6 [05] 58.5 [05]
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Table C.2: Simulation results of methods for partially-observed outcomes, N = 100 for smallest class

Prediction Accuracy [IQR]

D BALANCE % OBSD BAYES RISK Oracle-L CC-L Naive-L EM-L Oracle-N CC-N Naive-N EM-N

2 Equal 5 0.05 94.8 [00] 89.8 [23] 93.9 [11] 89.1 [15] 94.6 [01] 86.0 [43] 93.3 [18] 92.7 [04]
0.15 84.5 [00] 76.5 [19] 82.8 [13] 81.6 [06] 84.2 [01] 77.6 [26] 79.0 [16] 82.7 [04]
0.35 64.6 [01] 55.2 [13] 56.5 [12] 61.7 [04] 63.6 [02] 51.5 [16] 54.3 [11] 59.0 [05]

25 0.05 94.7 [00] 94.2 [02] 94.7 [00] 91.5 [14] 94.6 [01] 93.7 [07] 94.4 [01] 93.0 [04]
0.15 84.5 [00] 83.6 [02] 84.2 [01] 82.5 [04] 84.2 [01] 81.8 [06] 83.8 [02] 82.6 [02]
0.35 64.5 [01] 63.0 [04] 63.9 [01] 63.0 [02] 63.7 [02] 59.2 [08] 62.0 [03] 61.9 [03]

Unequal 5 0.05 94.7 [00] 91.3 [19] 94.5 [01] 90.0 [07] 94.6 [01] 91.9 [07] 93.9 [01] 93.6 [02]
0.15 84.6 [00] 79.3 [09] 83.6 [03] 80.5 [04] 84.4 [01] 78.4 [16] 82.3 [06] 82.7 [03]
0.35 64.6 [01] 59.4 [08] 62.0 [04] 62.3 [02] 63.7 [02] 56.6 [11] 59.6 [08] 60.7 [04]

25 0.05 94.8 [00] 94.3 [01] 94.7 [00] 91.5 [07] 94.6 [01] 94.1 [01] 94.5 [01] 93.7 [02]
0.15 84.6 [01] 84.2 [02] 84.5 [01] 82.3 [04] 84.3 [01] 83.7 [02] 84.1 [01] 83.6 [01]
0.35 64.6 [01] 64.1 [02] 64.2 [01] 63.7 [02] 63.6 [02] 61.4 [04] 62.5 [03] 63.2 [03]

10 Equal 5 0.05 93.9 [01] 84.1 [27] 90.7 [27] 92.0 [03] 93.9 [01] 77.1 [41] 91.6 [25] 91.6 [04]
0.15 83.2 [01] 56.5 [20] 75.5 [23] 81.0 [03] 82.9 [02] 48.9 [19] 75.8 [23] 77.3 [08]
0.35 62.1 [03] 47.0 [06] 48.5 [14] 57.5 [04] 61.2 [03] 31.5 [10] 44.6 [14] 49.8 [10]

25 0.05 94.0 [01] 91.9 [03] 93.6 [01] 92.7 [02] 93.9 [01] 92.0 [04] 93.5 [01] 92.7 [02]
0.15 83.1 [01] 79.9 [04] 81.9 [03] 82.1 [03] 82.7 [02] 78.0 [08] 81.6 [03] 80.7 [04]
0.35 61.8 [03] 55.4 [08] 58.9 [05] 59.3 [05] 60.8 [03] 55.0 [06] 57.3 [05] 58.0 [07]

Unequal 5 0.05 94.0 [01] 83.9 [21] 92.2 [03] 93.1 [03] 94.1 [01] 69.1 [27] 92.4 [04] 92.9 [02]
0.15 83.5 [01] 65.7 [18] 79.2 [09] 81.9 [03] 83.1 [01] 56.4 [17] 78.2 [16] 79.8 [05]
0.35 62.6 [02] 46.1 [09] 52.3 [12] 60.0 [04] 62.0 [02] 40.7 [13] 50.3 [13] 52.8 [07]

25 0.05 94.1 [01] 92.7 [03] 93.9 [01] 93.1 [02] 94.0 [01] 92.4 [03] 93.8 [01] 93.2 [01]
0.15 83.4 [02] 80.1 [04] 82.6 [02] 82.8 [02] 83.3 [01] 80.1 [04] 82.4 [03] 82.1 [03]
0.35 62.1 [02] 56.3 [06] 59.6 [05] 60.5 [05] 61.3 [03] 55.4 [06] 58.6 [05] 58.5 [05]
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Figure C.1: Simulation results of methods for partially-observed outcomes, linear SVMs, N = 40 per class

Prediction Accuracy Boxplot (length of line is 0 to 100 %)

D BALANCE % OBSD BAYES RISK Oracle-L CC-L Naive-L EM-L

2 Equal 5 0.05
0.15
0.35

25 0.05
0.15
0.35

Unequal 5 0.05
0.15
0.35

25 0.05
0.15
0.35

10 Equal 5 0.05
0.15
0.35

25 0.05
0.15
0.35

Unequal 5 0.05
0.15
0.35

25 0.05
0.15
0.35
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Figure C.2: Simulation results of methods for partially-observed outcomes, linear SVMs, N = 100 per class

Prediction Accuracy Boxplot (length of line is 0 to 100 %)

D BALANCE % OBSD BAYES RISK Oracle-L CC-L Naive-L EM-L

2 Equal 5 0.05
0.15
0.35

25 0.05
0.15
0.35

Unequal 5 0.05
0.15
0.35

25 0.05
0.15
0.35

10 Equal 5 0.05
0.15
0.35

25 0.05
0.15
0.35

Unequal 5 0.05
0.15
0.35

25 0.05
0.15
0.35
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Figure C.3: Simulation results of methods for partially-observed outcomes, nonlinear SVMs, N = 40 per class

Prediction Accuracy Boxplot (length of line is 0 to 100 %)

D BALANCE % OBSD BAYES RISK Oracle-N CC-N Naive-N EM-N

2 Equal 5 0.05
0.15
0.35

25 0.05
0.15
0.35

Unequal 5 0.05
0.15
0.35

25 0.05
0.15
0.35

10 Equal 5 0.05
0.15
0.35

25 0.05
0.15
0.35

Unequal 5 0.05
0.15
0.35

25 0.05
0.15
0.35
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Figure C.4: Simulation results of methods for partially-observed outcomes, nonlinear SVMs, N = 100 per class

Prediction Accuracy Boxplot (length of line is 0 to 100 %)

D BALANCE % OBSD BAYES RISK Oracle-N CC-N Naive-N EM-N

2 Equal 5 0.05
0.15
0.35

25 0.05
0.15
0.35

Unequal 5 0.05
0.15
0.35

25 0.05
0.15
0.35

10 Equal 5 0.05
0.15
0.35

25 0.05
0.15
0.35

Unequal 5 0.05
0.15
0.35

25 0.05
0.15
0.35
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Figure C.5: Simulation results of methods for partially-observed outcomes, side-by-side comparison, linear SVMs, N = 40
per class

Prediction Accuracy Boxplot (length of line is 0 to 100 %)

D BALANCE % OBSD METHOD BAYES RISK 0.05 BAYES RISK 0.15 BAYES RISK 0.35

2 Equal 5 CC-L
Naive-L
Oracle-L
Proposed-L

25 CC-L
Naive-L
Oracle-L
Proposed-L

Unequal 5 CC-L
Naive-L
Oracle-L
Proposed-L

25 CC-L
Naive-L
Oracle-L
Proposed-L

10 Equal 5 CC-L
Naive-L
Oracle-L
Proposed-L

25 CC-L
Naive-L
Oracle-L
Proposed-L

Unequal 5 CC-L
Naive-L
Oracle-L
Proposed-L

25 CC-L
Naive-L
Oracle-L
Proposed-L
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Figure C.6: Simulation results of methods for partially-observed outcomes: side-by-side comparison, nonlinear SVMs,
N = 40 per class

Prediction Accuracy Boxplot (length of line is 0 to 100 %)

D BALANCE % OBSD METHOD BAYES RISK 0.05 BAYES RISK 0.15 BAYES RISK 0.35

2 Equal 5 CC-N
Naive-N
Oracle-N
Proposed-N

25 CC-N
Naive-N
Oracle-N
Proposed-N

Unequal 5 CC-N
Naive-N
Oracle-N
Proposed-N

25 CC-N
Naive-N
Oracle-N
Proposed-N

10 Equal 5 CC-N
Naive-N
Oracle-N
Proposed-N

25 CC-N
Naive-N
Oracle-N
Proposed-N

Unequal 5 CC-N
Naive-N
Oracle-N
Proposed-N

25 CC-N
Naive-N
Oracle-N
Proposed-N
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Figure C.7: Simulation results of methods for partially-observed outcomes, side-by-side comparison, linear SVMs, N = 100
per class

Prediction Accuracy Boxplot (length of line is 0 to 100 %)

D BALANCE % OBSD METHOD BAYES RISK 0.05 BAYES RISK 0.15 BAYES RISK 0.35

2 Equal 5 CC-L
Naive-L
Oracle-L
Proposed-L

25 CC-L
Naive-L
Oracle-L
Proposed-L

Unequal 5 CC-L
Naive-L
Oracle-L
Proposed-L

25 CC-L
Naive-L
Oracle-L
Proposed-L

10 Equal 5 CC-L
Naive-L
Oracle-L
Proposed-L

25 CC-L
Naive-L
Oracle-L
Proposed-L

Unequal 5 CC-L
Naive-L
Oracle-L
Proposed-L

25 CC-L
Naive-L
Oracle-L
Proposed-L
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Figure C.8: Simulation results of methods for partially-observed outcomes: side-by-side comparison, nonlinear SVMs,
N = 100 per class

Prediction Accuracy Boxplot (length of line is 0 to 100 %)

D BALANCE % OBSD METHOD BAYES RISK 0.05 BAYES RISK 0.15 BAYES RISK 0.35

2 Equal 5 CC-N
Naive-N
Oracle-N
Proposed-N

25 CC-N
Naive-N
Oracle-N
Proposed-N

Unequal 5 CC-N
Naive-N
Oracle-N
Proposed-N

25 CC-N
Naive-N
Oracle-N
Proposed-N

10 Equal 5 CC-N
Naive-N
Oracle-N
Proposed-N

25 CC-N
Naive-N
Oracle-N
Proposed-N

Unequal 5 CC-N
Naive-N
Oracle-N
Proposed-N

25 CC-N
Naive-N
Oracle-N
Proposed-N
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C.6 Simulation Study Results for Semi-supervised Learning

The following tables report simulation study results for the semi-supervised

settings. The competing methods are labeled with a -L or -N to denote linear kernel

or nonlinear Gaussian kernel, respectively. The methods are:

Label Method

SD SD-SVM

CC Complete Case SVM

S3VM S3VM as implemented in [60]. Commonly called SVMlight.

EM The method proposed in this paper
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Table C.3: Simulation results of semi-supervised methods by Missing Data Model

Prediction Accuracy [IQR]

K N D MCAR /MAR EM-L EM-N SD-L SD-N S3VM-L S3VM-N CC-L CC-N

2 40 2 MAR 82.6 [30] 77.4 [29] 66.5 [33] 60.0 [33] 80.3 [30] 75.7 [31]
MCAR 84.3 [28] 81.3 [29] 81.4 [34] 63.2 [38] 83.4 [29] 80.6 [32]

10 MAR 70.5 [29] 69.0 [27] 60.0 [29] 60.0 [16] 69.2 [26] 65.8 [25]
MCAR 73.8 [30] 71.9 [27] 60.0 [31] 60.0 [16] 65.1 [25] 60.2 [23]

100 2 MAR 78.9 [27] 65.1 [27] 66.8 [25] 62.4 [25] 77.4 [24] 70.3 [27]
MCAR 84.5 [29] 84.2 [28] 84.0 [30] 64.5 [34] 84.7 [28] 84.2 [29]

10 MAR 73.0 [29] 73.0 [30] 60.0 [32] 59.4 [24] 73.7 [26] 73.6 [27]
MCAR 80.1 [31] 79.1 [33] 60.0 [34] 60.0 [30] 79.6 [28] 78.2 [29]

4 40 2 MAR 58.6 [23] 57.6 [26] 62.4 [28] 58.7 [29]
MCAR 61.9 [20] 67.2 [25] 69.1 [25] 63.8 [31]

10 MAR 69.1 [30] 62.8 [30] 61.7 [27] 57.6 [28]
MCAR 68.8 [28] 62.1 [29] 60.1 [29] 55.8 [32]

100 2 MAR 62.2 [21] 58.8 [27] 72.1 [27] 69.4 [28]
MCAR 69.0 [20] 76.8 [23] 83.8 [29] 83.2 [30]

10 MAR 77.0 [31] 71.9 [30] 75.5 [31] 75.2 [32]
MCAR 80.7 [28] 79.1 [29] 80.8 [28] 80.6 [31]
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Table C.4: Simulation results of semi-supervised methods by Class Balance

Prediction Accuracy [IQR]

K N D BALANCE EM-L EM-N SD-L SD-N S3VM-L S3VM-N CC-L CC-N

2 40 2 Equal class sizes 84.2 [29] 78.2 [33] 68.7 [44] 63.3 [43] 80.9 [32] 63.5 [36]
Unequal class sizes 83.9 [28] 79.8 [28] 81.3 [34] 60.0 [32] 83.0 [27] 81.4 [28]

10 Equal class sizes 71.6 [29] 70.4 [29] 52.3 [30] 50.0 [17] 65.8 [30] 58.3 [28]
Unequal class sizes 72.8 [30] 71.3 [25] 60.0 [21] 60.0 [02] 69.3 [22] 68.2 [21]

100 2 Equal class sizes 84.7 [26] 72.1 [27] 84.0 [31] 82.7 [43] 81.8 [25] 75.1 [29]
Unequal class sizes 83.2 [30] 78.1 [26] 76.9 [26] 63.2 [25] 82.6 [23] 81.7 [25]

10 Equal class sizes 75.9 [29] 75.2 [32] 52.7 [32] 50.0 [26] 75.9 [27] 75.5 [28]
Unequal class sizes 78.7 [33] 78.0 [32] 60.0 [24] 60.0 [19] 77.7 [28] 77.4 [29]

4 40 2 Equal class sizes 59.7 [23] 61.4 [27] 61.7 [27] 55.0 [30]
Unequal class sizes 61.3 [20] 62.6 [26] 72.7 [26] 71.0 [26]

10 Equal class sizes 67.7 [29] 59.2 [30] 55.2 [27] 52.2 [31]
Unequal class sizes 70.6 [29] 64.3 [29] 67.0 [26] 64.2 [28]

100 2 Equal class sizes 64.3 [22] 64.4 [28] 78.0 [26] 76.4 [27]
Unequal class sizes 66.3 [20] 69.7 [27] 80.0 [27] 77.7 [28]

10 Equal class sizes 79.4 [30] 72.6 [28] 78.7 [29] 77.7 [30]
Unequal class sizes 78.0 [27] 76.1 [27] 77.1 [27] 76.5 [29]
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Table C.5: Simulation results of semi-supervised methods by Different Quantities of Missing Data

Prediction Accuracy [IQR]

K N D % OBSD EM-L EM-N SD-L SD-N S3VM-L S3VM-N CC-L CC-N

2 40 2 5 81.7 [28] 75.8 [28] 73.7 [33] 60.0 [33] 76.6 [27] 63.7 [29]
25 84.4 [29] 82.4 [30] 80.8 [34] 64.5 [33] 84.3 [28] 82.9 [29]

10 5 66.2 [27] 62.4 [23] 60.0 [27] 60.0 [10] 60.0 [21] 60.0 [19]
25 77.0 [31] 75.5 [31] 60.0 [29] 60.0 [25] 76.1 [30] 75.2 [30]

100 2 5 83.2 [33] 67.6 [34] 64.8 [34] 60.0 [25] 78.1 [30] 75.9 [27]
25 83.9 [26] 80.0 [22] 83.1 [23] 80.7 [25] 83.2 [21] 83.2 [22]

10 5 70.1 [28] 70.9 [30] 60.0 [32] 58.4 [22] 71.1 [25] 70.2 [25]
25 80.6 [32] 79.6 [33] 60.0 [31] 60.0 [29] 79.8 [30] 79.1 [31]

4 40 2 5 55.8 [22] 55.6 [25] 57.4 [29] 49.3 [30]
25 63.2 [20] 67.1 [25] 72.2 [24] 70.1 [26]

10 5 59.8 [30] 51.3 [27] 49.9 [25] 44.0 [24]
25 74.2 [32] 70.5 [32] 71.9 [30] 70.2 [27]

100 2 5 58.8 [22] 59.6 [27] 74.2 [27] 71.6 [28]
25 69.7 [20] 71.5 [24] 82.5 [26] 80.0 [27]

10 5 69.6 [33] 63.9 [30] 70.6 [34] 69.8 [33]
25 81.2 [21] 80.0 [25] 80.7 [20] 80.5 [21]
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Table C.6: Simulation results of semi-supervised methods by Underlying Risk

Prediction Accuracy [IQR]

K N D BAYES RISK EM-L EM-N SD-L SD-N S3VM-L S3VM-N CC-L CC-N

2 40 2 0.05 93.0 [04] 90.8 [11] 93.9 [35] 92.9 [34] 91.9 [06] 90.3 [14]
0.15 82.1 [09] 77.5 [14] 81.4 [25] 65.2 [23] 80.4 [11] 75.7 [22]
0.35 61.0 [12] 56.6 [11] 59.9 [12] 58.5 [10] 60.0 [10] 57.4 [10]

10 0.05 91.0 [07] 90.5 [09] 89.0 [33] 60.5 [28] 87.4 [12] 86.5 [19]
0.15 73.9 [13] 73.2 [13] 66.1 [19] 60.0 [18] 72.6 [16] 71.8 [17]
0.35 54.6 [06] 55.5 [06] 54.9 [10] 55.8 [10] 56.0 [08] 56.4 [08]

100 2 0.05 93.6 [02] 92.4 [11] 94.3 [04] 94.1 [35] 92.8 [07] 92.1 [09]
0.15 83.6 [03] 83.3 [10] 83.6 [08] 83.2 [25] 83.0 [07] 83.5 [10]
0.35 61.9 [10] 57.9 [11] 63.1 [05] 60.0 [08] 61.2 [09] 59.5 [10]

10 0.05 92.9 [05] 93.1 [04] 91.9 [44] 82.0 [42] 90.7 [06] 90.0 [06]
0.15 78.3 [10] 77.5 [09] 74.5 [32] 60.0 [28] 77.3 [10] 76.3 [09]
0.35 56.3 [06] 55.9 [07] 56.3 [10] 55.4 [10] 56.7 [06] 56.5 [06]

4 40 2 0.05 72.5 [24] 78.7 [24] 84.3 [21] 79.7 [26]
0.15 67.9 [17] 68.0 [18] 72.0 [21] 68.2 [25]
0.35 54.0 [12] 49.3 [13] 53.9 [16] 50.2 [17]

10 0.05 86.0 [13] 83.6 [19] 81.9 [22] 74.8 [26]
0.15 71.5 [14] 67.2 [17] 67.7 [20] 66.2 [22]
0.35 47.2 [12] 44.6 [12] 47.3 [13] 45.5 [15]

100 2 0.05 76.3 [19] 82.1 [19] 92.4 [07] 91.5 [08]
0.15 70.4 [15] 71.2 [20] 80.1 [10] 78.4 [12]
0.35 56.1 [09] 51.1 [15] 58.0 [11] 55.7 [12]

10 0.05 90.3 [06] 86.8 [10] 89.9 [06] 89.8 [06]
0.15 77.5 [09] 73.0 [14] 75.4 [09] 74.9 [09]
0.35 51.7 [11] 48.1 [13] 49.8 [10] 50.0 [10]
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