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ABSTRACT 

Aaron Hugh Nile: Chemical Inhibitors of Phosphatidylinositol Transfer Proteins Enable Highly 

Selective Interference With Specific Pathways of Phosphoinositide Signaling in Cells 

(Under the direction of Vytas Bankaitis) 

 

Phosphatidylinositol phosphates (PIP) are phosphorylated derivatives of 

phosphatidylinositol (PtdIns) that signal to and regulate diverse cellular functions including 

membrane trafficking, cytokinesis, cell cycle regulation and DNA repair.  PIP-signaling is 

regulated by a variety of proteins through degradation, phosphorylation and dephosphorylation.  

Members of the Sec14-like phosphatidylinositol transfer protein superfamily (Sec14-PITPs) have 

at least two functions which include lipid-binding platforms and/or ‘nanoreactors’ that direct 

PtdIns-OH kinase activity to generate discrete PIP-pools.  In Chapter 1, I outline the current 

literature on the Sec14-superfamily and the structurally unrelated START-like PITPs with 

special emphasis on mammalian PITPs, and how their disruption results in a number of inherited 

mammalian diseases.   

Neither Sec14-like or START-like PITPs have been targeted for chemical intervention 

using small molecule inhibitors (SMIs).  The development of PITP-directed SMIs provide 

applications not only as tool compounds, but also as therapeutic agents that inhibit a number of 

pathogenic organisms and potentially as activators of defective PITPs.  As proof-of-concept, I 

developed the first PITP-directed SMIs that specifically inhibit the prototype Sec14-like PITP 

from Saccharomyces cerevisiae.  In yeast, Sec14 connects the production of phosphatidylinositol 



iv 

4-phosphate (PtdIns(4)P) and phosphatidylcholine (PtdCho) metabolism with trafficking through 

the trans-Golgi/endosomal network.  In Chapter 2, I describe the development of the Sec14-

directed SMI, 4-chloro-3-nitrophenyl)(4-(2-methoxyphenyl) piperazin-1-yl)methanones or 

NPPM.  These SMIs specifically and directly inhibit Sec14 through its hydrophobic cavity, 

likely by a halogen-bonding mechanism.  Based on my work in Chapter 2, I developed a routine 

for the rapid validation of novel PITP-directed SMIs from a variety of organisms that will 

streamline future SMI-identification.  Together, these data deliver proof-of-concept that PITP-

directed SMIs offer new and generally applicable avenue for intervening with phosphoinositide 

signaling pathways with selectivities superior to those afforded by contemporary lipid kinase-

directed strategies.  Finally, the study of PIPs has been advanced through the development of 

multiple methodologies that both detect and modify PIPs in vivo.  In Chapter 3, I discuss current 

methods used to monitor and manipulate PIP-signaling pathways with special emphasis on SMIs 

that target PIP-modifying enzymes. 
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CHAPTER 1: MAMMALIAN DISEASES OF PHOSPHATIDYLINOSITOL 

TRANSFER PROTEINS AND THEIR HOMOLOGUES
1
 

Overview 

 Inositol and phosphoinositide signaling pathways represent major regulatory systems 

in eukaryotes.  The physiological importance of these pathways is amply demonstrated by the 

variety of diseases that involve derangements in individual steps in inositide and 

phosphoinositide production and degradation.  These diseases include numerous cancers, 

lipodystrophies and neurological syndromes.  Phosphatidylinositol transfer proteins (PITPs) 

are emerging as fascinating regulators of phosphoinositide metabolism.  Recent advances 

identify PITPs (and PITP-like proteins) as outstanding candidates for coincidence-detecting 

units which spatially and temporally coordinate the activities of diverse aspects of the 

cellular lipid metabolome with phosphoinositide signaling.  These insights are providing new 

ideas regarding mechanisms of inherited mammalian diseases associated with derangements 

in the activities of PITPs and PITP-like proteins.   

 

Introduction 

 The involvement of phosphorylated forms of D-myo-inositol (Ins-phosphates) and 

phosphatidylinositol (phosphoinositides) in eukaryotic signal transduction is well 

documented (Michell 2008).  Indeed, the breadth of inositide and phosphatidylinositol 

                                                 
1
 This chapter is an extended version of an article published in the journal of Clinical Lipidology.  The original 

citation is as follows: Nile, A. H., V. A. Bankaitis, V.A., Grabon, A. (2010). "Mammalian diseases of 

phosphatidylinositol transfer proteins and their homologs," Clinical lipidology 5(6): 867-897. 
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(PtdIns)-based signaling has inspired some to anoint Ins as evolution’s favorite molecule 

(Irvine 2005).  This is not an idle proclamation given the diversity of phosphorylated 

products that can be generated from Ins-containing compounds.  For example, yeast generate 

five phosphoinositides (PtdIns[3]P, PtdIns[4]P, PtdIns[5]P, PtdIns[4,5]P2, and PtdIns[3,5]P2) 

while higher eukaryotes produce seven (the five listed for yeast plus PtdIns[3,4]P2 and 

PtdIns[3,4,5]P3).  The case for Ins-phosphates is more impressive.  As each position of the 6-

member Ins ring can be phosphorylated (and in at least several cases pyro-phosphorylated), 

the cabal of possible soluble Ins-phosphate species is immense (63 + Ins for monophosphates 

and 728 + Ins if one imposes a limit of only two phosphates per Ins-OH).  These statistics 

identify the versatility of Ins as a six-bit chip where specific signaling information is encoded 

by a unique combination of positionally-specific phosphorylations on the Ins ring.  The Ins-

phosphate chemical code is subsequently interpreted by proteins which have the appropriate 

Ins-phosphate binding specificities. 

Use of Ins as a signaling scaffold, either in the form a soluble Ins-phosphate or a 

membrane-incorporated phosphoinositide, requires a fine coordination between biosynthetic 

activities (PtdIns-kinases) and degradative processes (catalyzed by phospholipases and 

phosphoinositide phosphatases).  Comprehensive reviews focusing on the metabolism of Ins-

phosphates and phosphoinositides treat these issues in detail, and the reader is referred to 

them (Fruman, Meyers et al. 1998; Martin 1998; Di Paolo and De Camilli 2006; Strahl and 

Thorner 2007).  In this regard, the physiological importance of Ins and PtdIns metabolism is 

obvious.  Defects in the enzymes that directly catalyze specific biosynthetic or degradative 

reactions in Ins-phosphate or phosphoinositide metabolic pathways result in a variety of 

inherited human diseases (Majerus and York 2009; Liu and Bankaitis 2010).  The landscape 
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assumes even greater complexity when issues of spatial/temporal control of phosphoinositide 

production and degradation (i.e. issues critical to biological regulation of Ins-phosphate and 

phosphoinositide signaling) are considered.  In this review, we will limit discussion to the 

production arm of phosphoinositide signaling. 

Present discussions of the roles for phosphoinositides in cell regulation focus on: (i) 

the function of these lipids as metabolic reservoirs for second messengers (e.g. diacylglycerol 

and soluble Ins-phosphates), and (ii) their involvement in the formation of membrane binding 

platforms for specific proteins (Balla 2005; McLaughlin and Murray 2005; Lemmon 2008).  

Regarding the latter context, the ability of a mammalian cell to produce 7 chemically distinct 

phosphoinositides allows for creation of a diverse set of binding platforms.  The chemical 

heterogeneity of phosphoinositides is in turn interpreted by protein binding motifs such as 

PH-domains, FYVE-domains, PX-domains, and even basic patches on protein surfaces that 

execute phosphoinositide binding by purely electrostatic mechanisms (see Chapter 3; Balla 

2005; McLaughlin and Murray 2005; Lemmon 2008). 

Discussions of phosphoinositide signaling are dominated by product-centric models 

that fail to capture important dynamics that accompany production of these lipids.  These 

discussions also do not adequately describe the consequences these mechanisms have with 

regard to functional diversification of phosphoinositide signaling.  The principle message to 

be delivered in this review is that we do not yet understand important aspects for how lipid 

signaling is regulated in eukaryotic cells, nor do we understand how the larger lipid 

metabolome is integrated with phosphoinositide signaling.  An emerging concept that bears 

on this theme is a specific phosphoinositide generated by a specific lipid kinase can 

nonetheless have multiple biological outcomes in a single cell eukaryote (Routt, Ryan et al. 
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2005; Schaaf, Ortlund et al. 2008; Bankaitis, Mousley et al. 2010).  Thus, biological outcome 

is not solely determined by the chemical nature of the phosphoinositide, nor is it determined 

by the PtdIns kinase that produced it.  Rather, biological outcome tracks with non-enzymatic 

proteins that stimulate PtdIns kinase activities.  These accessory proteins are the 

PtdIns/phosphatidylcholine (PtdCho)-transfer proteins (PITPs), and the data suggest PITPs 

‘instruct’ physiological outcomes for PtdIns kinase activities (Routt, Ryan et al. 2005; 

Schaaf, Ortlund et al. 2008; Bankaitis, Mousley et al. 2010).  PITP-like protein domains hold 

similar potential for providing such instructive functions, and these domains are found in 

intriguing contexts.  The importance of PITPs and PITP-domain proteins in eukaryotic cell 

biology and physiology is amply demonstrated by the mammalian diseases associated with 

derangements in the function of such proteins.  Herein, we review the PITPs and mammalian 

diseases of PITP-like protein dysfunction.  

 

Operational definitions for the PITPs 

Sec14-like and START-like PITPs 

 All eukaryotes express PITPs.  The so-called ‘classical’ PITPs (a purely historical 

definition), which are best studied, mobilize PtdIns and PtdCho transfer between membranes 

in vitro.   These PITPs bind PtdIns and PtdCho in a mutually exclusive manner.  PtdIns is the 

preferred binding substrate, and the rate of PtdIns-transfer is some 20-fold greater than that 

for PtdCho (Wirtz 1991).  This results from the greater affinity of PITP for PtdIns relative to 

PtdCho.  Presently, PITPs are most often interpreted to function as lipid carriers that supply 

PtdIns synthesized in endoplasmic reticulum membranes to membranes that are low in PtdIns 

(e.g. the plasma membrane) yet execute an active phosphoinositide cycle (Cockcroft and 
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Carvou 2007).  The ‘non-classical’ PITPs are so designated because these retain the ability to 

bind/transfer PtdIns, but do not conserve PtdCho-binding/transfer activity (Li, Routt et al. 

2000; Routt, Ryan et al. 2005; Phillips, Vincent et al. 2006).  The non-classical PITPs which, 

ironically, almost certainly outnumber the classical versions, provide interesting cases for 

how the diversity in lipid binding by PITPs and PITP-like proteins translates to the awesome 

diversity in biological outcome for phosphoinositide signaling (see below). 

PITPs are highly conserved.  The conservation of PITPs breaks down into two 

distinct branches based on their structural folds: (i) the Sec14-like PITPs, and (ii) the 

START-like (StAR-related lipid transfer) PITPs.  To date, all START-like PITPs studied are 

classical PITPs, while Sec14-like proteins include both classical and non-classical varieties.  

As described in detail below, the Sec14 and START folds are unrelated although these do 

share some general properties.  Whether Sec14-like and START-like PITPs evolutionarily 

converge on common functional mechanisms, or whether their shared transfer activities are 

purely coincidental, remains to be determined. 

Fungi, plants, metazoans, and apicomplexan parasites are rich in Sec14-like proteins, 

and these constitute an ancient and uniquely eukaryotic protein superfamily.  The founding 

member of this PITP class is yeast Sec14 (Bankaitis, Malehorn et al. 1989; Bankaitis, Aitken 

et al. 1990; Phillips, Vincent et al. 2006).  As detailed below, the Sec14 superfamily counts 

amongst its >1500 members the mammalian retinaldehyde binding proteins, domains of Rho-

GEF proteins, the neurofibromin Ras-GAPs, and plant phosphoinositide binding proteins.  

Even simple eukaryotes such as yeast express multiple Sec14-like proteins (S. cerevisiae 

expresses 6), while D. melanogaster, C. elegans, mice, humans, and plants (A. thaliana) each 

express greater than 20 Sec14-domain proteins.   
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By contrast, the START-like PITP family is a rather sparse one, is structurally 

unrelated to the Sec14-like proteins (Yoder, Thomas et al. 2001; Phillips, Vincent et al. 

2006), and is further subdivided into Type 1 and Type 2 PITPs.  The soluble START-like 

PITPs (Type 1 PITPs) are ~ 35 kD MW and are homologous to each other.  The Type II 

proteins are larger constructions with a domain homologous to the entire Type 1 START-like 

PITP sequence appended to the N-termini of large membrane-associated modules.  The 

START-like PITP family is not expanded to a large degree from flies (two Type 1 PITPs and 

one Type 2 PITP) to humans (three Type 1 PITPs and two Type 2 PITPs; 17).  The Type 2 

PITPs exhibit complex modular arrangements, but the PITP domain is the essential 

component of at least one of these proteins--the ca. 900 amino acid Drosophila Type 2 PITP 

RdgB.  This protein is required for the fly photoresponse – a high capacity phosphoinositide 

signaling system.  Yet, the 280 residue PITP domain of RdgB (comprises only ca. 25% of the 

total RdgB protein sequence) is both necessary and sufficient for rescue of the retinal 

degeneration associated with RdgB inactivation, and for restoration of a seemingly wild-type 

photoresponse in flies lacking the full-length protein  (Milligan, Alb et al. 1997).  This 

review focuses on Type 1 PITPs because these are better represented in models for 

mammalian disease. 

 

The slippery faces of lipid transfer activities 

 Because PITPs are not enzymes, translation of PITP-associated lipid exchange 

activities to biochemical or biological mechanisms is difficult.  While discussions of 

biological mechanisms for PITP function remain anchored to the historical concept that 

PITPs are bona fide carrier proteins that deliver lipid from one intracellular membrane 
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system to another (Figure 1a), such arguments are inherently circular.  That is, PITPs are 

defined on the basis of an operational transfer assay of uncertain functional significance, and 

the transfer activity is subsequently featured as the central cellular activity executed by the 

PITP.  Arguments that directly translate PITP in vitro transfer activities to facilitated 

mobilization of lipid between intracellular membranes in vivo are wrapped in important 

biological assumptions.  One central assumption made in such transfer models is that lipid 

synthesis is restricted to a few intracellular compartments.  As our understanding of cellular 

lipid biosynthetic capabilities grows, this assumption is coming under increasing fire.   

The general acceptance of lipid transfer mechanisms notwithstanding, there is little 

direct evidence to support simple transfer models for any individual PITP.  This evidentiary 

gap reflects the difficulties in experimentally testing transfer models in physiologically 

relevant settings.  Are there other perspectives from which to view the PITP/lipid transfer 

problem?  Insights culled from studies on PITPs, particularly PITPs of the Sec14-

superfamily; do indeed suggest new and detailed mechanistic possibilities.  The available 

evidence is most consistent with Sec14, and other Sec14-like proteins, functioning as 

‘primed’ lipid biosensors that couple binding of lipids other than PtdIns (sensor function) to a 

PtdIns-presentation activity (Figure 1b).  The PtdIns-presentation function potentiates 

PtdIns-kinase activity by making PtdIns a better substrate for the enzyme.  Thus, Sec14-like 

PITPs are engaged in the action of small machines, or nanoreactors, where metabolic and 

signaling reactions are integrated, and the products generated in a spatially and temporally 

appropriate manner.  We define a minimal nanoreactor as a functional interaction between a 

phospholipid-bound PITP and a PtdIns kinase.  ‘Nanoreactor’ models do not describe PITPs 

as trans-organellar lipid carriers, and offer new perspectives on how to interpret functions of 
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PITP-like modules in multi-domain proteins.  The Sec14 paradigm provides new ideas from 

which to view mechanisms of PITP function, and recent evidence suggests these new 

concepts might extend to Type 1 PITPs.   

 

 

Figure 1. Transfer vs. nanoreactor models for PITP function 

(a)  Lipid transfer models invoke a vectorial carrier function for PITPs where 

PtdIns is transported from membranes of high PtdIns concentration (ER) to 

relatively PtdIns-poor membranes of the distal compartments of the secretory 

pathway which house PtdIns-4OH kinase activity (TGN/endosomes or plasma 

membrane).  These models describe productive transfer as involving one 

heterotypic exchange reaction per donor and acceptor membrane (i.e. two 

such exchanges per cycle).  (b)  The ‘nanoreactor’ model predicts that PITPs 

stimulates PtdIns 4-OH kinase activity by executing multiple rounds of 

phopsholipid-exchange at a single membrane site.  Only heterotypic exchange 

reactions generate PtdIns configurations suitable for effective PtdIns-

presentation. 
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Sec14-like PITPs as molecules 

Sec14 and integration of PtdCho metabolic signals 

 Sec14, the major yeast PITP, is required for membrane trafficking through the trans-

Golgi network/endosomal system where it acts in a retrograde endosome to TGN trafficking 

capacity, and is essential for yeast cell viability (Phillips, Vincent et al. 2006; Mousley, 

Tyeryar et al. 2008; Bankaitis, Mousley et al. 2010).  ‘Bypass Sec14’ mutations that permit 

yeast viability in the absence of the normally essential Sec14 provide unique avenues for 

diagnosing how Sec14 translates its PtdIns/PtdCho-transfer activities to biological function 

(Cleves, Novick et al. 1989; Cleves, McGee et al. 1991; Cleves, McGee et al. 1991; Fang, 

Kearns et al. 1996; Rivas, Kearns et al. 1999; Li, Rivas et al. 2002).  The ‘bypass Sec14’ 

mutants reveal a remarkably intimate coupling between the cellular requirement for Sec14 

function and activity of the CDP-choline pathway for PtdCho biosynthesis.  That is, 

inactivation of the CDP-choline pathway obviates the cellular Sec14 requirement (Cleves, 

McGee et al. 1991; Cleves, McGee et al. 1991).  These studies also show that yeast mutants 

deranged for phospholipid biosynthesis, such that PtdIns is the major membrane 

phospholipid (~40 mol%—as compared to 20 mol% for wild-type yeast and 5 mol% for 

mammalian cells), still require Sec14 for cell viability.  A PtdIns surfeit of this magnitude 

should present a condition where PITP-driven PtdIns-supply requirements are no longer 

necessary–yet, the Sec14 requirement for cell viability and TGN/endosomal function stands.  

These various data are difficult to reconcile with PtdIns- and PtdCho-transfer models for 

Sec14 (Cleves, McGee et al. 1991; Cleves, McGee et al. 1991).  Rather, ‘bypass Sec14’ 

mutants identify Sec14 as an essential integrator required for proper coordination of a 

specific arm of PtdCho-metabolism with phosphoinositide synthesis.  This integration is 
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essential for membrane trafficking through the TGN/endosomal system (Cleves, McGee et 

al. 1991; Cleves, McGee et al. 1991; Fang, Kearns et al. 1996; Rivas, Kearns et al. 1999; Li, 

Rivas et al. 2002; Phillips, Vincent et al. 2006; Schaaf, Ortlund et al. 2008; Bankaitis, 

Mousley et al. 2010). 

 

The anatomy of phospholipid exchange by Sec14-like PITPs 

 All ideas regarding mechanisms of PITP function assign an important role for the 

phospholipid-exchange activities of these proteins.  These remarkable activities are sustained 

by thermal energy alone and require no additional co-factors.  What are the mechanics of the 

phospholipid exchange reaction from the perspective of the PITP and from the perspective of 

phospholipid ligand?  Crystallographic studies show the Sec14-domain (smart00516) to be a 

ca. 280 amino acid two-lobed globular structure that encases a large hydrophobic cavity 

which defines the phospholipid-binding pocket (Sha, Phillips et al. 1998; Phillips, Sha et al. 

1999; Schaaf, Ortlund et al. 2008).  Electron paramagnetic resonance measurements report 

that the hydrophobicity parameters of the pocket are such that this cavity, from the 

perspective of the phospholipid binding substrate, offers an environment that is similar to that 

provided by a membrane leaflet.  Thus, incorporation of a phospholipid from a membrane 

into the Sec14 interior, and vice versa, is primarily driven by partitioning of a phospholipid 

between two chemically equivalent environments (Smirnova, Chadwick et al. 2007).  How 

the phospholipid is brought to the point where such a partitioning choice is available remains 

unclear. 
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Access to the binding pocket is gated by a helical substructure whose configuration is 

flipped open in apo-Sec14 conformers that occur when Sec14 is docked onto membrane 

surfaces (Figure 2a; Sha, Phillips et al. 1998; Ryan, Temple et al. 2007; Schaaf, Ortlund et 

al. 2008).  The helical gate is closed in holo-Sec14 conformers (Figure 2b), and these 

represent solution configurations for Sec14::PtdIns and Sec14::PtdCho complexes.  The 

transitions between the ‘open’ and ‘closed’ conformers that accompany phospholipid binding 

and release on membrane surfaces are dominated by an 18Å displacement of the helical gate 

(Figure 2).  Helical gate dynamics are controlled by a compact ‘gating module’ that 

regulates an extensive H-bond network through which conformational information is 

transduced to the helical gate upon membrane binding (Ryan, Temple et al. 2007).  
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The core engineering of a Sec14 nanoreactor 

 How does Sec14 use its PtdIns- and PtdCho-transfer activities to integrate PtdCho 

metabolism with phosphoinositide synthesis?  The solution to this problem is encoded in the 

way Sec14 binds its phospholipid ligands.  The most remarkable feature of Sec14 (and Sfh1) 

is the striking difference in the binding poses of PtdIns and PtdCho upon incorporation into 

the hydrophobic pocket (Figure 3).  While the acyl chain regions of each phospholipid 

 

Figure 2. The Sec14-fold. 

Crystal structure of two Saccharomyces cerevisiae Sec14-like PITPs. (a)  The 

major yeast PITP, Sec14 is shown in its open conformation (pdb 1AUA–two 

bound detergent molecules are excluded).  (b) The close Sec14 homolog Sfh1 

in its closed conformation (pdb 3B7Z–the bound phospholipid was omitted).  

The β-strands comprising the floor of the phospholipid binding pocket are in 

yellow, while the α-helices that form the walls of the pocket are in blue.  

Access to the hydrophobic pocket is mediated by conformational transitions of 

the A10/T4 ‘helical gate’ shown in red.  The four N-terminal α-helices (α1-

α4) comprise the N-terminal lobe (or ‘tripod motif’; green). 
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occupy overlapping physical space, the respective headgroups are stabilized by distant 

regions of the hydrophobic pocket.  This curious and unexpected engineering for how Sec14 

binds distinct phospholipid headgroups is of functional significance as heterotypic 

phospholipid exchange capability must be housed within individual protein molecules in 

order for Sec14 to potentiate PtdIns 4-OH kinase activities in vivo (Schaaf, Ortlund et al. 

2008; Bankaitis, Mousley et al. 2010).  In principle, Sec14 employs a coincidence-detection 

strategy that integrates PtdCho metabolic information with the action of PtdIns 4-OH 

kinases–i.e. Sec14 employs its heterotypic PtdIns-/PtdCho-exchange activities to sense (bind) 

local PtdCho and so prime a ‘PtdIns-presentation’ unit, or ‘nanoreactor’, that stimulates 

PtdIns 4-OH kinases.  The necessity for such a complex program stems from the biological 

inadequacy of PtdIns 4-OH kinases as interfacial enzymes when confronted with PtdIns 

substrates incorporated into genuine membrane bilayers (Schaaf, Ortlund et al. 2008; 

Bankaitis, Mousley et al. 2010). 
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Primed PtdIns-presentation models versus lipid transfer models 

 The concept that Sec14 employs heterotypic exchange in a concerted phospholipid 

sensing/presentation cycle portrays the associated in vitro PtdIns-/PtdCho-transfer activities 

in a very different light than do lipid transfer models.  An attractive aspect of 

presentation/nanoreactor models is these frame specific and experimentally testable 

hypotheses.  Several are presented here for discussion.  While the questions are framed in the 

context of Sec14, each of these ideas generates questions that generally pertain to functional 

interpretations of PITPs and other lipid transfer proteins. 

 

Figure 3. Differential phospholipid binding strategies by Sec14-like 

PITPs. 

Structure of Sfh1 bound to: (a) PtdIns (pdb 3B7Z); (b) PtdCho (pdb 3B7Z). 

(c)  A description of the configurations of both PtdIns (gray) and PtdCho 

(black) in the Sfh1/Sec14-fold.  The data are from crystals composed of 

approximately equal numbers of unit cells of Sfh1 bound to PtdIns and Sfh1 

bound to PtdCho (pdb 3B7Z).  The A10/T4 ‘helical gate’ that mediates lipid 

entry is in red, surrounding α-helices are in blue, the ‘tripod motif’ is in green 

and β-strands that compose the floor of the hydrophobic pocket are in yellow.  

The polar headgroups of PtdIns and PtdCho bind at distinct sites within the 

hydrophobic pocket, while the acyl chain space within the hydrophobic pocket 

overlaps for these phospholipids. 
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Presentation models do not demand physical transfer of lipids from one intracellular 

destination to the other–it is the cycle that is the key.  How many average exchange cycles 

does Sec14 complete during its membrane dwell time?  Presentation models embrace the 

possibility that many such cycles are executed per membrane association window, while 

transfer models describe a scenario where there is one exchange cycle per transfer event. 

Is physical disengagement of Sec14 from membranes required for execution of 

biological function?  The simplest transfer models demand this be the case, although 

membrane ‘contact site’ models leave open the possibility that a membrane-bound Sec14 

could still retain biological function.  Space limitations prohibit detailed discussions of 

‘contact-site’ models but the concept is reviewed elsewhere (Wu and Voelker 2002; Holthuis 

and Levine 2005), and readers are referred to these for further information.  Presentation 

models easily accommodate scenarios where Sec14 (or other LTP domains) are biologically 

functional as membrane-bound multi-domain molecules. 

Is a complete cycle of exchange obligatory for function, or are abortive exchanges 

productive?  Transfer models demand completion of a pick-up and delivery cycle.  Not so for 

presentation models.  The ‘presentation’ concept describes a trapping of PtdIns molecules in 

a transitory state, one where the PtdIns is neither fully membrane- nor protein-incorporated, 

and is therefore particularly vulnerable to modification by PtdIns 4-OH kinases.  Such a 

mechanism posits that an invading PtdIns molecule is prevented from fully incorporating into 

the Sec14 hydrophobic pocket by a leaving PtdCho.  Such a frustrated PtdIns molecule can 

be marked by a PtdIns 4-OH kinase without the PtdIns ever having fully incorporated itself 

into the Sec14 hydrophobic pocket.  Interestingly, PtdCho enters/exits the hydrophobic 

pocket much more slowly than does PtdIns.  This raises the possibility that multiple rounds 
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of abortive PtdIns incorporation may occur per single PtdCho egress event–thereby providing 

a physical picture of priming.  A formal corollary to this hypothesis is that an appropriate 

covalent adduct of PtdCho, or any other suitable steric obstacle, within the Sec14 

hydrophobic pocket might still be compatible with the capability of Sec14 to stimulate PtdIns 

4-OH kinase activity– even though this arrangement is physically incompatible with lipid 

exchange. 

What trajectories do lipid molecules follow during entry/exit from the Sec14 

hydrophobic pocket?  Do PtdIns and PtdCho share similar trajectories (e.g. same entry and 

exit portals), or do these trace different paths?  Reductionist questions of this sort are not 

particularly important for understanding inter-organelle lipid transfer mechanisms.  However, 

solutions to these questions are central to an understanding of how presentation/nanoreactor 

mechanisms work because heterotypic phospholipid trajectories define the operative anatomy 

of the presentation process. 

Finally, how are Sec14 ‘sensing’ territories defined?  This question relates to how 

spatial regulation of phosphoinositide synthesis is controlled.  We define a sensing territory 

as that area on a given membrane where the PITP is executing biologically productive 

heterotypic phospholipid exchange reactions (i.e. result in enhanced phosphoinositide 

synthesis).  For membrane-tethered versions of Sec14-like PITPs (see below), the spatial 

restriction of the tethering (by accessory membrane-binding domains, membrane-binding via 

protein-protein or protein-lipid interactions intrinsic to the Sec14 domain), determines the 

sensing territory.  The cytosolic Sec14, however, potentiates the activities of distinct PtdIns 

4-OH kinases that reside in distinct intracellular compartments within the same cell.  How is 

this accomplished for such a nomadic PITP?  Transient interactions of Sec14 with a guiding 
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platform (protein or lipid) might contribute at some level.  The PtdIns 4-OH kinase itself is 

an obvious candidate for such a landmark.  However, the ability of the structurally unrelated 

vertebrate Type 1 PITPs to act as functional Sec14 surrogates in yeast argues against 

privileged Sec14/PtdIns 4-OH kinase interactions (Skinner, Alb et al. 1993; Tanaka and 

Hosaka 1994; Ile, Kassen et al. 2010).  As discussed in detail elsewhere (Bankaitis, Mousley 

et al. 2010), more stochastic arrangements can still be biologically productive (i.e. result in 

enhanced synthesis of phosphoinositide).   

 

A PITP-centric strategy for linking lipid metabolism to phosphoinositide signaling  

 The Sec14-fold is an evolutionarily ancient and versatile one conserved from single 

cell eukaryotes to man.  Its expansion throughout the eukaryotic kingdom reflects an 

impressive diversification of the unit to bind a wide variety of lipids and lipophilic 

molecules.  Primary sequence comparisons identify well-conserved crystal structure-based 

PtdIns-binding signatures in many of these proteins; however, PtdCho-binding signatures are 

not extensively conserved (Schaaf, Ortlund et al. 2008; Bankaitis, Mousley et al. 2010).  

These binding signatures, or bar codes, represent translation of 3-dimensional structural 

information into a 2-dimensional primary sequence read-out.  The PtdIns-binding bar code is 

depicted in Figure 4.  It is an attractive proposition that Sec14 superfamily proteins couple 

metabolism of a diverse set of lipids/lipophilic molecules (i.e. of Sec14-protein ligands) with 

phosphoinositide synthesis – thereby coordinating disparate arms of the lipid metabolome 

with common phosphoinositide signaling pathways.  These models might generally apply to 

PITPs and PITP-domain proteins.  We highlight these new perspectives in this review. 
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Figure 4. The PtdIns-binding bar code in Sec14-like proteins. 

(a) Crystal structure of Sfh1 bound to PtdIns (black; 3B7N) highlighting 

residues within the PtdIns binding bar code.  The tripod-motif is in green, the 

floor of the hydrophobic pocket is in yellow, and the α-helices are in blue with 

the exception of the helical gate, which is in red.  (b) Orientation of the Sfh1 

molecule is rotated by 90° counterclockwise parallel to the floor.  (c) 

Orientation of the Sfh1 molecule is rotated by 180° counterclockwise parallel 

to the floor.  (d) ClustalX2 alignments of selected Sec14-superfamily 

members (identified at right; proteins whose crystal structures have been 

solved are indicated with an (*) were superimposed onto the Sfh1 crystal 

structure using secondary structural elements as guide (diagrammed at top).  

Residues critical for PtdIns headgroup and backbone coordination are boxed 

and shaded in cyan – I, coordinate the Ins-headgroup; II, coordinate the 

glycerol backbone; III, coordinate the phosphate moiety through which the Ins 

headgroup is esterified to the glycerol backbone. Positions of missense 

substitution within the PtdIns-binding bar code of the corresponding Sec14-

like protein that cause disease are highlighted by orange boxes. 
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Mammalian Sec14-domain protein disorders 

Mammals employ the versatile Sec14 fold in diverse ways – in some cases as stand-

alone domains or, more frequently, as modules that contribute to more complex arrangements 

in multi-domain proteins.  Due to the sheer scope of the Sec14 superfamily, only a limited 

sampling of proteins can be summarized here.  We primarily restrict attention to those Sec14-

like proteins whose dysfunction is related to inherited mammalian disease (Figure 5).  
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Figure 5. Domain arrangements of Sec14-like proteins 

Representative Sec14-like proteins are schematized and ordered by general 

complexity. Domains of interest are identified.  
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Stand-alone Sec14-like proteins and disease 

 The stand-alone Sec14-like proteins regulate a variety of cellular events including the 

visual cycle, vitamin E homeostasis, apoptosis, and membrane trafficking.  Individual 

derangements in these stand-alone Sec14-like proteins primarily manifest themselves as 

neurological disorders.  Some outstanding examples are summarized below.  In some cases, 

the identities of the ligands which occupy the hydrophobic pocket are known.  For others, no 

ligand that incorporates into the protein interior is known.  Yet, many Sec14-like proteins 

exhibit a recognizable structurally defined PtdIns-binding bar code (Schaaf, Ortlund et al. 

2008).  Whether these proteins do indeed bind PtdIns, and whether these are capable of 

channeling PtdIns to phosphoinositide synthesis, raises interesting questions for study. 

 

α-tocopherol transfer protein and vitamin E status  

 Ataxia with vitamin E deficiency (AVED) is an autosomal recessive, progressive 

neurodegenerative disorder caused by deficiencies in the Sec14-like α-tocopherol binding 

protein (αTTP; Mariotti, Gellera et al. 2004).  This human disease is hallmarked by low 

vitamin E levels, and manifests itself through hyporeflexia, ataxia, muscle weakness, 

dementia, visual field contraction and even complete blindness, and cardiac arrhythmias 

(Aparicio, Belanger-Quintana et al. 2001).  Treatment for AVED involves high doses of 

orally administered vitamin E (1200 to 1500 mg/day) which restores vitamin E to normal 

circulating levels of 0.5-2.0 mg/dl.  Indeed, if administered prior to extensive progression of 

disease, either post-symptomatic or pre-symptomatic delivery of vitamin E can effectively 

reverse, or entirely prevent, AVED (Doria-Lamba, De Grandis et al. 2006).  Mice engineered 

for αTTP deficiency similarly exhibit low levels of circulating vitamin E, and present late-



22 

onset neurological deficits (Terasawa, Ladha et al. 2000; Yokota, Igarashi et al. 2001; 

Leonard, Terasawa et al. 2002). 

At least 25 mutations have been described in the 278-amino acid, αTTP structural 

gene (TTPA).  These fall into two clinical categories: those resulting in severe AVED with 

early onset and, and those characterized by milder AVED with late onset (Di Donato, 

Bianchi et al. 2010).  Several mutations in conserved residues (e.g. R59W, E141K, and R221W) 

compromise α-TOH binding/transfer and result in severe AVED (Morley, Panagabko et al. 

2004).  By contrast, the R192H, H101Q, and A120T missense substitutions involve partially 

conserved residues, do not strongly compromise α-TOH binding /transfer, and result in mild 

AVED (Qian, Atkinson et al. 2006; Morley, Cecchini et al. 2008). 

It is generally accepted that αTTP is the master regulator of plasma vitamin E levels.  

In comparative studies, αTTP preferentially binds and transfers α-tocopherol (α-TOH) 

between membranes in vitro relative to other tocopherols (Akihiro, Makoto et al. 1997; 

Panagabko, Morley et al. 2003; Zhang, Frahm et al. 2009).  It is thought that αTTP employs 

such a transfer activity to channel α-TOH to a secretory, rather than a degradatory, fate 

(Traber 2007; Clarke, Burnett et al. 2008).  Some models suggest that αTTP does so by 

mediating direct transport of α-TOH from endosomes to the plasma membrane for 

incorporation into very low density lipoproteins in an ABCA1 transporter-dependent hepatic 

secretory pathway (Horiguchi, Arita et al. 2003; Qian, Morley et al. 2005).  Consistent with 

this view, αTTP expression enhances α-TOH secretion in cultured hepatocytes (Arita, 

Nomura et al. 1997; Qian, Atkinson et al. 2006). 



23 

The Sec14 nanoreactor concept suggests an alternative model—αTTP may link 

heterotypic α-TOH/PtdIns binding/exchange to generation of a phosphoinositide pool 

dedicated to biogenesis of α-TOH-rich exocytic vesicles.  This model predicts that 

compromise of the PtdIns-binding bar code in αTTP will inactivate the protein.  In this 

regard, the R221W missense substitution, which results in severe AVED, directly alters the 

PtdIns-binding bar code.  This position corresponds to Sec14 residue K239.  This residue 

helps coordinate binding of the phosphate moiety through which the Ins headgroup is 

esterified to the glycerol backbone.  Substitutions at this position specifically compromise 

PtdIns binding by Sec14 (Phillips, Sha et al. 1999; Schaaf, Ortlund et al. 2008).  Similarly, 

the R192H AVED-associated missense substitution in αTTP corresponds to Sec14 amino acid 

G210 – a residue positioned adjacent to core elements of the PtdIns-binding bar code. 

 

Caytaxin and cerebellar ataxia 

 Cayman-type cerebellar ataxia is a rare autosomal recessive disorder whose incidence 

is limited to an isolated population on the Grand Cayman Island resulting from defects in the 

brain-specific, Sec14-like presynaptic protein termed caytaxin.  Clinical manifestations 

include cerebellar hypoplasia, psychomotor retardation, hypotonia from birth, prominent 

non-progressive cerebellar dysfunctions that manifest through intention tremors, dysarthric 

speech, and a wide-base ataxic gait.  This disease is distinguished from other ataxias by the 

presence of nystagmus and the lack of retinal defects (Nystuen, Benke et al. 1996; Bomar, 

Benke et al. 2003).  Although lipid ligand(s) for caytaxin are not known, structural modeling 

suggests PtdIns lipids are tenable candidates (Bomar, Benke et al. 2003; Xiao, Gong et al. 

2007)—a concept fortified by a recognizable structural bar code for PtdIns-binding (Schaaf, 
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Ortlund et al. 2008).  Analyses of Cayman-type ataxic individuals reveal two 

polymorphisms.  One disrupts an exon-intron boundary leading to truncation of much of the 

protein, and an S301R missense mutation (Bomar, Benke et al. 2003).  Our analyses project 

S301 to fall into the helical gate region of the caytaxin Sec14-fold, suggesting gate dynamics 

that regulate transitions between open and closed caytaxin conformers might be 

compromised.  An interesting question for future address is whether compromise of the 

putative caytaxin PtdIns-binding bar code inactivates the protein. 

Much of what is known about caytaxin is derived from the study of rodent models.  

Caytaxin derangements result in a spectrum of motor malfunctions/dystonia in the jittery (ji), 

hesitant (ji
hes

), sidewinder (ji
swd

) and wobbly mice 

[http://mutagenetix.scripps.edu/home.cfm], and the well-characterized dystonic (dt) rat (Xiao 

and LeDoux 2005).  A battery of electrophysiological and biochemical studies define the 

olivocerebellar pathway, particularly in the response of Purkinje cells to climbing fiber 

projections, as the point of functional abnormality in the dt rat (LeDoux and Lorden 2002).  

The dt rat cerebellar cortex exhibits altered transcript levels for signaling pathway 

components that regulate cell-surface signaling, calcium homeostasis, extracellular matrix, 

and PtdIns signaling (Xiao, Gong et al. 2007).  Upregulation of caytaxin in human prefrontal 

cortex is also associated with altered calcium homeostasis and immune system imbalances in 

schizophrenia (Martins-de-Souza, Gattaz et al. 2009).  Interestingly, while dt rats normally 

die by postnatal day 40, cerebellectomy rescues both ataxia and viability, suggesting that 

aberrant cerebellar signaling lies at the root of the observed dysfunctions (LeDoux, Lorden et 

al. 1993; LeDoux, Lorden et al. 1995; Raike, Jinnah et al. 2005). 

http://mutagenetix.scripps.edu/home.cfm
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Caytaxin physically interacts with number of proteins—including the E3 ubiquitin 

ligase CHIP (Grelle, Kostka et al. 2006), and peptidyl-prolyl isomerase during neuronal 

differentiation (Buschdorf, Chew et al. 2008).  These associations suggest caytaxin function 

may be regulated by its binding to these proteins.  Furthermore, the caytaxin Sec14-domain 

binds the kidney-type glutaminase – an enzyme which converts glutamine to the abundant 

neurotransmitter glutamate.  Caytaxin over-expression results in the translocation of the 

enzyme from the cell body to neurite terminals, and reduces steady state glutamate levels by 

inhibiting glutaminase.  On this basis, it is speculated that caytaxin deficiency-associated 

glutamate elevation underlies the clinical manifestations of cayman-type cerebellar ataxia 

(Grelle, Kostka et al. 2006).  Moreover, overexpression of either caytaxin (or its Sec14-

domain alone) result in the elongation of processes in MCF-7 cells, as is the case with 

overexpression of the caytaxin homologue BNIP-2 (Hayakawa, Itoh et al. 2007; Aoyama, 

Hata et al. 2009).  Finally, caytaxin also scaffolds kinesin light chain 1 in cultured 

hippocampal cells, thereby facilitating transport of vesicle cargo (Aoyama, Hata et al. 2009). 

 

Cellular retinaldehyde binding protein and the vertebrate visual cycle  

 In vertebrates, light absorption by opsin results in photoisomerization of 11-cis-

retinaldehyde (11-cis-RAL) to all-trans-retinaldehyde (all-trans-RAL).  Thus, 11-cis-RAL 

regeneration is essential for a sustained vertebrate visual cycle.  Detailed description of the 

vertebrate visual cycle is beyond the scope of this review; and the reader is referred to 

detailed reviews on the subject (Thompson and Gal 2003; Travis, Golczak et al. 2007).  An 

important component of 11-cis-RAL regeneration is the Sec14-like cellular retinal-binding 

protein (CRALBP1).  Multiple pathologies are associated with CRALBP1 dysfunction 
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including: retinitis pigmentosa, fundus albipunctatus, Newfoundland rod/cone dystrophy, and 

Bothnia dystrophy.  It is suggested that all of these disorders are manifestations of retinitis 

punctata albescens (a flecked retinal dystrophy characterized by early onset night blindness, 

uniform white-yellow spots across the fundus and the progression of macula and retina 

atrophy resulting in legal blindness) which is also a manifestation of CRALBP1 

insufficiencies (Thompson and Gal 2003; Saari and Crabb 2005).  Moreover, mice deficient 

in CRALBP1 manifest large reductions in rates of rhodopsin regeneration, 11-cis-RAL 

production, and dark adaptation after illumination.  Unlike the case in humans, photoreceptor 

degeneration is not observed (Saari, Nawrot et al. 2001).   

CRALBP1 is a soluble protein, primarily expressed in retinal pigment epithelium 

cells (RPE) and in Müller cells, but not in their adjacent photoreceptors (Thompson and Gal 

2003).  In RPE cells, CRALBP1 directly bind the 11-cis-retinol (11-cis-ROL) formed after 

the isomerization of all-trans-retinyl ester, or from activated 11-cis-retinyl esters used as a 

storage mechanism (Stecher, Gelb et al. 1999).  CRALBP1 functions primarily to: (i) 

regulate esterification of 11-cis-ROL (Stecher, Gelb et al. 1999), and (ii) act as a carrier 

molecule to assist in the oxidation of 11-cis-ROL to 11-cis-RAL in the vertebrate visual 

cycle (Saari, Bredberg et al. 1994).  CRALBP1 associates with 11-cis-retinoldehydrogenase 

(RDH5) in a ternary complex that involves interaction with ezrin, actin and the PDZ domain 

of EPB-50.  In this fashion, CRALBP1 is hypothesized to metabolically channel 11-cis-ROL 

to RDH5 for oxidation (Nawrot, West et al. 2004).  CRALBP1 binds acidic phospholipids, 

and this binding promotes release of bound 11-cis-retinal (Saari, Nawrot et al. 2009).  It is 

not yet clear whether 11-cis-retinal release is mediated by competition for an overlapping 

binding site within the CRALBP1 hydrophobic pocket (i.e. in effect a Sec14-like heterotypic 
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lipid exchange reaction), or whether acidic phospholipid interactions with the protein surface 

evoke conformational changes that eject 11-cis-retinal. 

  Several naturally-occurring mutations in CRALBP1 compromise retinoid binding 

(R151Q, M226K), or enhance its binding (e.g. R234W; Maw, Kennedy et al. 1997; Golovleva, 

Bhattacharya et al. 2003).  In this regard, the autosomal recessive, Bothnia dystrophy 

presents an interesting case.  Pathologies include night blindness in early childhood, and 

progressive macular/peripheral retinal degeneration (Burstedt, Sandgren et al. 1999; 

Golovleva, Köhn et al. 2010).  Bothnia dystrophy occurs in 1:3500 births worldwide with 

increased incidence in northern Sweden, primarily as a result of inheritance of the R234W and 

M226K variants (Golovleva, Köhn et al. 2010).  The crystal structures of 11-cis-RAL-bound 

CRALBP1 and the R234W mutant were recently solved (He, Lobsiger et al. 2009).  These 

studies reveal that R234W further stabilizes bound 11-cis-RAL by increasing packing 

interactions within the binding cavity.  Additionally, R234 resides in a conserved basic cleft of 

CRALBP1.  R234 corresponds to Sec14 residue R208 which helps coordinate PtdIns binding 

by Sec14 and is a component of the Sec14 structural bar code for PtdIns binding (Phillips, 

Sha et al. 1999; Schaaf, Ortlund et al. 2008). 

Although discussions of CRALBP1 are dominated by its involvement in the 

vertebrate visual cycle, elevated CRALBP1 levels are associated with altered calcium 

homeostasis and immune system imbalances in schizophrenia (Martins-de-Souza, Gattaz et 

al. 2009).  CRALBP1 may also represent a human autoimmune uveitis autoantigen (Deeg, 

Raith et al. 2007), and its status may affect ethanol preference in mice (Treadwell, Pagniello 

et al. 2004). 
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Multi-domain Sec14-like proteins and disease 

 The Sec14 superfamily is too large to cover in one review.  The distant members of 

the superfamily, the BNiP proteins which primarily function in apoptosis, are reviewed 

elsewhere (Zhang, Cheung et al. 2003; Curwin and McMaster 2008), and will not be 

emphasized here.  Rather, we focus on a set of examples relevant to human disease. 

Small GTPases of the Rho/Rac/Cdc42 families regulate a number of cellular activities 

such as migration, cytoskeleton dynamics, cell cycle progression, gene expression, cell 

adhesion, and others (García-Mata and Burridge 2007).  These do so by functioning in binary 

switch mode between GTP- (active) and GDP-bound (inactive) states.  Modular proteins with 

Sec14-domains include a number of regulators of small GTPase signaling; i.e. guanine 

nucleotide exchange proteins (GEFs) and GTPase activating proteins (GAPs).  Sec14-like 

domains are also associated with other enzymatic activities such as protein kinases and 

protein-tyrosine phosphatases.  In these multi-domain protein contexts, Sec14 domains are 

posited to function as nanoreactors that stimulate ‘on demand’ phosphoinositide synthesis in 

the immediate vicinity of the particular catalytic domain of the protein–thereby effecting an 

efficient regulation of protein enzymatic activity (Bankaitis, Mousley et al. 2010).  The 

spectrum of diseases caused by derangements in Sec14-like proteins include various cancers, 

neurological disorders, developmental, and trafficking defects.  Some outstanding examples 

are summarized below and the relevant Sec14-domains often present recognizable PtdIns-

binding bar codes. 
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Rho guanine nucleotide exchange proteins with Sec14 domains  

 The Dbl family of RhoGEFs is defined by a ca. 200-residue Dbl homology (DH) 

domain positioned adjacent to a C-terminal ca.100-residue plekstrin homology (PH) domain.  

Of the approximately 70 Dbl-family RhoGEFs, four (Dbl, Dbs/Ost, Duo/Kalirin and Trio) 

exhibit Sec14-domains (Rossman, Der et al. 2005; García-Mata and Burridge 2007; Curwin 

and McMaster 2008).  All four RhoGEFs are expressed as multiple sliceoforms, not all of 

which harbor a Sec14-domain, thereby offering mechanisms for differentially regulating the 

functional properties and subcellular localization of individual isoforms (Johnson, Penzes et 

al. 2000; Ueda, Kataoka et al. 2004; Kostenko, Mahon et al. 2005; Portales-Casamar, 

Briançon-Marjollet et al. 2006). 

 

DBL 

 Dbl, the founding member of the Dbl family of RhoGEFs, is represented by least four 

splice variants—three of which contain a Sec14-domain.  This domain regulates Dbl 

localization and GEF activities (Komai, Mukae-Sakairi et al. 2003), and binds [PtdIns(3)P, 

PtdIns(4)P and PtdIns(5)P] in vitro (Ueda, Kataoka et al. 2004).  Oncogenic forms of Dbl 

exist that exclude the N-terminal 496 residues of the protein, thereby truncating the Sec14-

domain and several spectrin repeats (Vanni, Mancini et al. 2002; Rossman, Der et al. 2005).  

These oncogenic forms of Dbl influence cell migration, cell polarity and vascularization of 

epithelial tissue in murine lens (Fardin, Ognibene et al. 2009).  Dbl null mice are rather 

normal phenotypically, although these do present measurable defects in dendrite elongation 

(Hirsch, Pozzato et al. 2002). 
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Kalirin /Duo  

 Kalirin/Duo is a neuronal RhoGEF represented by at least eleven forms, six of which 

contain a Sec14-domain (Kalirin-SOLO, 4, 7, 8, 9, and 12) (McPherson, Eipper et al. 2002; 

Rabiner, Mains et al. 2005; Schiller, Ferraro et al. 2008).  Full-length kalirin (Kalirin-12) is a 

complex protein that exhibits a Sec14-like domain, nine spectrin-like repeats, two DH, two 

PH, two SH3, one Ig, one FnIII, and one Ser/Thr protein kinase-like domain (Figure 5) 

(Penzes, Johnson et al. 2001).  The isolated Kalirin Sec14-domain is reported to bind 

phosphoinositides based on crude lipid blot assays (Schiller, Ferraro et al. 2008).  Kalirin 

nullizygous mice show cognitive and working memory deficiencies associated with reduced 

neuronal spine densities and abnormal spine morphologies (Cahill, Xie et al. 2009).  These 

neuronal morphology defects are also manifested in ex vivo culture (Xie, Cahill et al. 2010).  

Additionally, Kalirin is implicated as a genetic risk factor for ischemic stroke (Krug, Manso 

et al. 2010), coronary artery disease (Wang, Hauser et al. 2007), Alzheimer’s disease (Youn, 

Ji et al. 2007), and schizophrenia (Cahill, Xie et al. 2009; Hayashi-Takagi, Takaki et al. 

2010).   

The predominant Kalirin, Kalirin-7, is an important regulator of dendritic spine 

development and functional plasticity (Penzes and Jones 2008; Saneyoshi, Fortin et al. 2010).  

NMDA receptor activation in pyramidal neurons induces a CaMkII-dependent 

phosphorylation of Kalirin-7 on its Sec14-domain.  This phosphorylation stimulates Kalirin-7 

GEF activity, and elicits enlargement of neuronal spines via enhanced activation of Rac1 

(Xie, Srivastava et al. 2007).  Moreover, the Kalirin-7 Sec14-domain may also interact with 

GBγ subunits of heterotrimeric G-proteins (Nishida, Kaziro et al. 1999).  Although it is clear 

that the Sec14-domain is important for Kalirin-7 function, the mechanisms for how the 
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Sec14-domain interfaces with other Kalirin-7 domains is not understood.  As the Sec14-

domain is implicated as a negative regulators of other Dbl family members (Kostenko, 

Mahon et al. 2005), and phosphorylation of the Sec14-domain promotes GEF activity, a 

negative regulatory role is a distinct possibility (Xie, Srivastava et al. 2007).  Whether lipid 

binding is involved in such a circuit remains to be determined.  Moreover, variants produced 

from an alternative translation start site truncate the Sec14 domain and the first four spectrin 

repeats (Δ-Kalirin-7) exhibit distinct properties with regard to regulation of endocytosis, 

solubility, oligomerization state, cytoskeleton binding and subcellular localization (Schiller, 

Ferraro et al. 2008).   

 

TRIO 

 Trio contains a Sec14-domain and 8-9 spectrin repeats linked to two DH-domains, 

two PH-domains, two SH3-modules, one Ig-domain, and one serine/threonine kinase 

catalytic domain (Figure 5; Rossman, Der et al. 2005; Briancon-Marjollet, Ghogha et al. 

2008).  Trio is represented by at least six isoforms, five of which contain a Sec14-domain 

(Portales-Casamar, Briançon-Marjollet et al. 2006).  Trio nullizygous mice fail in embryonic 

development with deranged organization of neural tissues and defects in fetal skeletal muscle 

(O'Brien, Seipel et al. 2000).  Recent studies implicate Trio in netrin-1/DCC-dependent axon 

guidance through its ability to activate Rac1 (Briancon-Marjollet, Ghogha et al. 2008), and 

its expression is associated with invasive tumor growth and rapid tumor cell proliferation in 

bladder cancer (Zheng, Simon et al. 2004).  Moreover, genome association studies also link 

Trio expression to esophageal squamous cell carcinoma (Chattopadhyay, Singh et al. 2010).  

The short Solo/Trio8 isoform (contains the Sec14-domain), which is primarily expressed in 
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Purkinjie cells, localizes to endosomes where it activates Rho GTPases and promotes neurite 

elongation in developing Purkinjie cells.  The Sec14-domain is suggested to contribute to 

endosomal localization of this isoform (Sun, Nishikawa et al. 2006).  Human Trio also 

potentiates the nerve growth factor pathway for RhoG- and Rac1-dependent neurite 

outgrowth in PC12 cells.  The Sec14-domain is dispensable for the neurite promoting activity 

of Trio, however (Estrach, Schmidt et al. 2002).   

 

DBS 

 The Dbs/Ost RhoGEF is a proto-oncogene that modulates cell motility in human 

derived  breast epithelial cells via activation of Cdc42 and Rac1 (Liu, Adams et al. 2009).  

The protein consists of an N-terminal Sec14 domain, two spectrin repeats, DH domain, PH 

domain and an SH3 domain (Figure 5; Kostenko, Mahon et al. 2005).  The purified Dbs 

Sec14-domain binds a variety of phosphoinositides in crude lipid-blot assays (Kostenko, 

Mahon et al. 2005), and the Sec14-domain is responsible for directing Dbs subcellular 

localization so that it can interact with its primary substrate Cdc42 (Ueda, Kataoka et al. 

2004).  Sec14-domain activities are not simple as this module also inhibits Dbs transforming 

activity by interacting with the PH domain and regulating subcellular localization (Kostenko, 

Mahon et al. 2005).  Whether this Sec14/PH-domain interaction is regulated by lipid binding 

remains to be determined. 
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RhoGAPS  

 The RhoGAP family is populous – counting in excess of 70 members.  Of those, 

p50RhoGAP/Cdc42GAP and BPGAP1 are similar proteins that exhibit N-terminal Sec14-

domains appended to RhoGAP domains by proline-rich linker domains (Figure 5; 

Tcherkezian and Lamarche-vane 2007).  

 

CDC42GAP/p50RhoGAP  

 Mice deficient for Cdc42GAP exhibit multiple premature aging defects including 

reduction in body mass, loss of subdermal adipose, muscular atrophy, osteoporosis and 

delayed wound healing (Wang, Yang et al. 2007), and present enhanced rates of JNK-

mediated basal apoptosis (Wang, Yang et al. 2005).  As may be expected, Cdc42GAP-

deficient murine embryonic fibroblasts display elevated Cdc42 activity, and these cells are 

prone to spontaneous formation of filipodia with defects in directional migration (Yang, 

Wang et al. 2006).  Cdc42GAP derangements are implicated in human disorders such as 

Waldenstrom Macroglobulinemia (Hatjiharissi, Ngo et al. 2007) and human chronic myeloid 

leukemia (Jin, Liu et al. 2009).  CDC42GAP is also suggested to be a counter-regulator of 

tubule formation, forecasting a role in angiogenesis (Engelse, Laurens et al. 2008). 

The Sec14-like domain is responsible for localization of Cdc42GAP to endosomes as 

evidenced by the fact that missense substitutions in the presumptive Sec14-like lipid binding 

pocket result in Cdc42GAP mislocalization.  In that regard, Cdc42GAP interacts with the 

Rab11 GTPase, suggesting a link between Rab and Rho GTPases and endosome dynamics 

(Sirokmány, Szidonya et al. 2006).  Cdc42GAP exists in an autoinhibited state that is 
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controlled in part by intermolecular interactions between amino acids 1-48 and 169-197 

which reside in the Sec14-like domain.  Interaction with the prenyl group of small GTPases 

promotes the release of autoinhibition (Moskwa, Paclet et al. 2005).   

 

Neurofibromin RasGAPs  

 Neurofibromin NF-1 encodes for a 2818 residue RasGAP that is homologous to the 

yeast RasGAPs, Ira1 and Ira2 (Cichowski and Jacks 2001; D'Angelo, Welti et al. 2006).  

Defects in NF-1 result in the progressive, autosomal dominant disorder, neurofibromatosis 

type 1 affecting 1:3500 individuals world-wide.  The disease manifests through multiple 

brown skin macules (café-au-lait spots), intertriginous freckling, iris hamartoma (Lisch 

nodules), and learning disabilities.  NF1 patients are also at a higher risk for optical gliomas 

and neurofibromas (Friedman 1999; Ferner, Huson et al. 2007).  NF-1 primarily regulates 

p21-Ras-GTP levels, thereby modulating downstream cascades including Ras/MAPK and 

Akt/mTOR pathways.  Loss of NF-1 activity deregulates of these pro-proliferative pathways 

and inhibits apoptosis (Gottfried, Viskochil et al. 2010). 

NF-1 has three discrete domains: the RasGAP catalytic module (Xu, O'Connell et al. 

1990), the Sec14-like domain (Aravind, Neuwald et al. 1999), and a PH-domain (D'Angelo, 

Welti et al. 2006).  Several other domains have recently been defined largely on the basis of 

bioinformatic analyses (Figure 5; Bonneau, Lenherr et al. 2009).  A number of missense 

substitutions elicit NF1 loss-of-function phenotypes without destabilizing the protein 

(Upadhyaya, Maynard et al. 1995; Fahsold, Hoffmeyer et al. 2000).  Several of these map to 

the Sec14-domain, thereby demonstrating the functional importance of this domain for NF-1 



35 

biological activity.  A series of these disease-associated mutations affect residues that either 

comprise, or flank, the hinge domain of Sec14-like proteins.  These substitutions likely 

interfere  with conformational transitions of the helix which gates the hydrophobic pocket 

(Welti, Fraterman et al. 2007).  Additionally, a tandem repeat mutation identified in a 

neurofibromatosis patient with Noonan’s disease duplicates a linker region between the NF1 

Sec14- and PH-domains—indicating inter-domain communications between the Sec14-, PH-, 

and RasGAP-domains are required for proper NF1 activity (D'Angelo, Welti et al. 2006). 

 

Sec14-like protein tyrosine phosphatase  

 A Sec14-module is incorporated into the 68kDa, cytoplasmic, protein-tyrosine 

phosphatase MEG2/PTPN9 (Huynh, Wang et al. 2003; Alonso, Sasin et al. 2004; Saito, 

Tautz et al. 2007).  In vitro experiments suggest PTP-MEG2 binds PtdIns(3,5)P2, 

PtdIns(4,5)P2, PtdIns(3,4,5)P3 and phosphatidylserine (Zhao, Fu et al. 2003).  Thus, 

interaction of the Sec14-domain with lipids may control both MEG2 localization and 

phosphatase activity.  Murine MEG2 is highly expressed in the brain, liver, kidneys, and 

testes.  Mice deficient for MEG2 exhibit embryonic lethality with a penetrance of >90% with 

hemorrhage, neural tube defects, decreased size, immunodeficiency, and abnormal bone 

development.  It is suggested that many of these dysfunctions result from defects in secretory 

processes (Wang, Yang et al. 2005).  MEG2 targets to the cytoplasmic face of secretory 

vesicles in a Sec14-domain-dependent manner where it promotes vesicle fusion by 

dephosphorylating (and activating) the N-ethylmaleimide-sensitive factor essential for 

resolving cis SNARE-pins (Huynh, Bottini et al. 2004).  While missense substitutions 

projected to compromise PtdIns binding do not prevent MEG2 association with vesicles, 
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these substitutions do inactivate the protein for stimulating vesicular fusion (Huynh, Wang et 

al. 2003; Saito, Williams et al. 2007).  The available data suggest the MEG2 Sec14-domain 

executes functions in addition to membrane targeting. 

 

Table 1. Other selected Sec14-like proteins  

Gene Protein Description References 

BNIP-2 BNIP-2 Pro-apoptotic and promotes 

Cdc42 mediated cell 

elongation through its Sec14-

like domain. 

(Boyd, Malstrom et al. 

1994; Zhang, Cheung et al. 

2003; Zhou, Guy et al. 

2005; Sall, Zhang et al. 

2010) 

BNIPL BNIPL/ 

BNIPL2 

Pro-apoptotic, increases cell 

migration and may play a role 

in metastasis. 

(Qin, Hu et al. 2003; 

Zhang, Cheung et al. 2003; 

Xie, Qin et al. 2007)  

BMCC1/ 

BNIP-XL 

BMCC1/ 

BNIP-XL 

Pro-apoptotic protein highly 

expressed in the human 

nervous system. Interacts with 

RhoA via Sec14 domain, and 

is a favorable signature in 

neuroblastomas. 

(Zhang, Cheung et al. 

2003; Machida, Fujita et al. 

2005; Valencia, Cotten et 

al. 2007; Soh and Low 

2008; Clarke, Zhao et al. 

2009) 

BPGAP1 BPGAP1 Promotes pseudopodia 

formation, Erk signaling.  

(Shang, Zhou et al. 2003; 

Johnstone, Castellví-Bel et 
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Elevated levels associated 

with colorectal cancer and 

invasive cervical cancer. 

al. 2004; Lua and Low 

2004; Lua and Low 2005; 

Song, Lee et al. 2008) 

CRALBPL/ 

RLBP1L1 

Clavesin1 Regulates late 

endosome/lysosome 

morphology in neurons and is 

upregulated in hepatocellular 

carcinoma. 

(Kong, Ye et al. 2006; 

Zhao, Xu et al. 2008; 

Katoh, Ritter et al. 2009)  

 Clavesin2 Regulates late 

endosome/lysosome 

morphology in neurons. 

(Katoh, Ritter et al. 2009) 

Sec14L1 SEC14L1 Regulates cholinergic 

transporters and synaptic 

vesicle formation.  

(Ribeiro, Ferreira et al. 

2007; Saito, Tautz et al. 

2007)  

Sec14L5 SEC14L5 Unknown (Saito, Tautz et al. 2007) 

Sec14L2 SEC14L2/ 

TAP1/SPF 

Role cholesterol synthesis 

during fasting.  In humans a 

potential link to breast 

carcinogenesis and prostate 

cancer.  

(Ni, Wen et al. 2005; 

Shibata, Jishage et al. 2006; 

Saito, Tautz et al. 2007; 

Wen, Li et al. 2007; 

Johnykutty, Tang et al. 

2009; Wang, Ni et al. 

2009)  

Sec14L3 SEC14L3/ Potential link with drug  (Kempná, Zingg et al. 
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TAP2/p45 induced lung adenocarcinoma 

in mice. 

2003; Saito, Tautz et al. 

2007; Bortner, Das et al. 

2009) 

Sec14L4 SEC14L4/TAP3 Unknown (Saito, Tautz et al. 2007) 

SESTD1 Solo/ 

HIPLP 

Elevated levels in the 

thalamus and brain with 

potential functions in cone 

guidance and smooth muscle 

contraction.  It was shown to 

be embryonic lethal in mice 

and the Sec14 domain is 

involved in Rho activation. 

(Bezzerides, Ramsey et al. 

2004; Miehe, Bieberstein et 

al. 2010; Yang and 

Cheyette 2013) 

MOSPD2 MSPD2 Unknown function in humans 

but it localized with zebrafish 

maternal expression in eggs 

(Hong, Levin et al. 2010) 

 

Type 1 START-like PITPs as molecules 

 As is the case for Sec14-like PITPs, the origins of START-like PITPs are rooted deep 

in eukaryotic evolution.  Database searches identify candidate Type 1 PITP-like proteins in 

protists with highly streamlined genomes (e.g. Giardia, Enterocytozoon, Encephalitozoon).  

Because we highlight PITPs in the context of mammalian disease in this review, we focus 

primarily on what we know about the mammalian versions of these proteins.  There are three 



39 

mammalian START-like Type 1 PITPs (PITPα, RdgBβ, PITPβ).  Essentially nothing is 

known about RdgBβ and we will ignore it for the remainder of this review.  Rather, we focus 

on the homologous PITPα and PITPβ both of which are classical PITPs.  These proteins are 

encoded by distinct genes, yet share 77% identity at the primary sequence level.  PITPβ is 

expressed as two splice variants (termed canonical and alternative on a historical basis) 

which differ only in the extreme C-terminal primary sequence of the protein (Tanaka and 

Hosaka 1994; Morgan, Allen-baume et al. 2006; Phillips, Ile et al. 2006).  Zebrafish (Danio 

rerio) also express a mammalian-like cohort of Type 1 PITPs with the addition of a unique 

PITPβ-like version designated PITPγ.  The Type 1 PITP roster extends to interesting details 

of Type 1 PITP diversity— i.e. zebrafish execute precisely the same exon-skipping splicing 

event as do mammals in generating the canonical and alternative PITPβ splice variants (Ile, 

Kassen et al. 2010). 

Crystal structures for both PITPα and PITPβ are available, and multiple structural 

models for PITPα have been solved (Figure 6).  These include high resolution structures for 

PtdCho-bound and phospholipid-free forms (Yoder, Thomas et al. 2001; Schouten, Agianian 

et al. 2002), and a lower resolution structure for the PtdIns-bound form (Tilley, Skippen et al. 

2004).  As indicated above, Type 1 PITPs are structurally unrelated to Sec14-like PITPs and 

are characterized by a START structural fold that forms a single large lipid-binding cavity.  

Unlike the case for Sec14-like PITPs, PtdIns and PtdCho assume very similar poses within 

the Type 1 PITP lipid binding cavity (Figure 6).  The Type 1 PITP strategy for phospholipid 

binding suggests these proteins may not operate in a Sec14-like nanoreactor/PtdIns-

presentation mode.  However, genetic data identify residues Ser25 and Pro78 as being 

specifically required for PtdIns-binding/transfer by PITPα (Yoder, Thomas et al. 2001)—
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even though neither residue uniquely contacts PtdIns, or influences other residues that do so, 

in the holo-PITPα structure.  The existence of such enigmatic ligand-specific binding/transfer 

mutants suggests that PtdCho and PtdIns trajectories during lipid exchange are different in 

Type 1 PITPs, but ultimately converge on similar poses in the closed conformer.  Indeed, 

Type 1 PITPs rescue both cell viability and phosphoinositide production in yeast devoid of 

Sec14.  Because yeast membranes are rich in PtdIns (20mol%), these data indicate Type 1 

PITPs can function in a Sec14-like nanoreactor/PtdIns-presentation mode (Skinner, Alb et al. 

1993; Tanaka and Hosaka 1994).  Whether these do so in the PtdIns-poor mammalian cell 

(PtdIns represents 5mol% of bulk phospholipid) is difficult to demonstrate, yet, structural 

studies suggest that the apo-PITPα conformer displays an open channel which provides 

access to the headgroup binding region.  This channel provides a path via which a lipid 

kinase could potentially access a PITP-bound PtdIns headgroup (Schouten, Agianian et al. 

2002).  Such a mechanism requires productive PITP-PtdIns kinase interactions to occur 

during the interfacial lipid exchange reaction.  This concept is consistent with 

nanoreactor/PtdIns-presentation modes of action. 

The structural studies also suggest how Type 1 PITPs interact with membrane 

surfaces.  Type 1 PITPs present a loop with adjacent Trp residues (Trp203 and Trp204 in 

PITPα) and it is reported that compromise of this Trp-Trp motif inactivates the PITP -- 

presumably by compromising PITP interaction with membranes (Tilley, Skippen et al. 2004).  

This is a controversial issue as other studies, while demonstrating a requirement for this 

motif in the more stable association of PITPβ with Golgi membranes in vivo, nonetheless 

demonstrate the motif is neither important for the types of transient membrane interactions 
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that accompany lipid exchange reactions nor is it important for biological function in a 

vertebrate context (Phillips, Ile et al. 2006). 

 

 

Figure 6. PITPα Structures.  

(a)  PITPα apo-structure depicting an open conformation (pdb 1KCM); (b) 

PtdIns-bound form (pdb 1UW5); (c) PtdCho-bound form (pdb 1T27).  The 

eight β-strands (yellow) of PITPα comprise the hydrophobic cavity floor and 

two α-helices generate the cavity walls (blue).  Additional components of 

PITPα include a regulatory loop (green), a COOH-terminal region (red) and a 

lipid exchange loop (gray). 
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Cellular functions  

 The similarity between PITPα and PITPβ notwithstanding, the proteins exhibit 

important differences including: (i) PITPα localizes to the cytosol/nucleus while PITPβ 

targets to the trans-Golgi complex, (ii) PITPβ is able to bind/transfer the ceramide-based PL 

sphingomyelin (SM), in addition to the glycerol-PLs PtdIns and PtdCho, while PITPα only 

binds/transfers PtdIns and PtdCho.  From a functional perspective, PITPβ appears to execute 

important housekeeping function(s) in the face of robust PITPα expression (Alb, Phillips et 

al. 2002) , while PITPα is not essential for cell viability.  As discussed in detail below, PITPα 

nullizygosity results in neonatal lethality–even though normal levels of PITPβ are expressed 

in the nullizygotes. 

Remarkably little is known about the cellular functions of Type 1 PITPs.  Data from 

permeabilized cell systems report PITPα stimulates Ca
2+

-activated secretory granule 

exocytosis (Hay and Martin 1995), secretory vesicle and immature granule budding from 

hepatocyte and neuroendocrine trans-Golgi network (TGN; Ohashi, Jan de Vries et al. 1995), 

and plasma membrane receptor/G-protein-coupled phosphoinositide hydrolysis by 

phospholipase C (PLC) (Thomas, Cunningham et al. 1993).  PITPα requirements for agonist-

stimulated phosphoinositide synthesis are recorded whether signaling occurs via receptor or 

non-receptor tyrosine kinases, or through PLCβ or PLCγ1 (Kauffmann-Zeh, Thomas et al. 

1995; Xie, Ding et al. 2005).  Using a more physiological system, silencing experiments 

suggest a cellular role for mammalian PITPβ in regulating nuclear envelope morphology and 

retrograde membrane trafficking from cis-Golgi membranes to the endoplasmic reticulum 

(Carvou, Holic et al. 2010).  Below, we review functional studies of vertebrate Type 1 PITPs 
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with murine models as primary focus.  Both the congruence and the dissonance between 

cellular studies and animal studies of Type 1 PITPs are discussed. 

 

Vertebrate models for type 1 PITP-associated disease 

 Precisely how Type 1 PITP biochemical properties translate to biological activity of 

the individual proteins remains to be determined.  The RdgBβ remains uncharacterized, and 

only recently have insights in vertebrate PITPβ function been forthcoming (Carvou, Holic et 

al. 2010; Ile, Kassen et al. 2010).  However, it is clear that PITPα, at least, is essential for the 

viability of vertebrate organisms–including mammals.  Our understanding of the 

physiological consequences that accompany impaired PITPα functionality derive from 

analyses of a series of mouse lines with graded reductions in PITPα activity.  Hypomorphic 

lines include the vibrator homozygous mice (vb/vb) and vb/null heterozygous mice (Weimar, 

Lane et al. 1982; Hamilton, Smith et al. 1997; Alb, Phillips et al. 2007), which express 20% 

and 10% of wild-type levels of wild-type PITPα, respectively.  The vb allele is the result of a 

serendipitous insertion of an IAP retro-transposon into an intronic region of the pitpa 

structural gene--thereby reducing the efficiency with which the cognate pre-mRNA is 

processed (Weimar, Lane et al. 1982; Hamilton, Smith et al. 1997). 

There are presently two categories of what are operationally considered to represent 

pitpα null alleles.  One is an engineered deletion which eliminates two exons encoding 

essential functional elements of the protein.  The second is an insertion of a recombinant 

retro-transposon which harbors splice-trap activity and interrupts PITPα mRNA translation 

without deleting any portion of the structural gene.  Mice homozygous for either the deletion 
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allele or the splice-trap insertion fail to produce detectable amounts of PITPα protein and 

exhibit indistinguishable phenotypes (Alb, Cortese et al. 2003).  Most of the detailed 

characterizations executed to date involve mice homozygous for the deletion allele.   

 

PITPα and neurological disease  

 PITPα is produced in most (if not all) cells, but it is particularly highly expressed in 

brain and cerebellum.  In the adult rat, PITPα is produced most robustly in cerebellar 

Purkinje neurons and granule cells (Nyquist and Helmkamp 1989; Imai, Tanaka et al. 1997; 

Utsunomiya, Owada et al. 1997).  Consistent with these expression data, murine model 

systems report an important role for PITPα in maintaining integrity of the spinocerebellar 

system.  PITPα null (pitpα
0/0

) and hypomorphic mice exhibit striking neurological defects--

the severities of which are proportional to the level of PITPα expressed (Weimar, Lane et al. 

1982; Alb, Cortese et al. 2003; Alb, Phillips et al. 2007). 

The vb mouse line takes its name from the rapid whole-body tremor observed in vb/vb 

homozygotes that reflects a progressive, and ultimately fatal, neurodegenerative disease.  

Genetic modifiers strongly affect the lifespan of vb/vb homozygotes.  In the inbred C57/B6 

background, these hypomorphs live for 31-35 days after birth while, in outbred or even other 

inbred backgrounds, lifespans of up to six months are recorded (Weimar, Lane et al. 1982).  

One such genetic modifier operates at the level of improving ‘read-through’ of the IAP 

element that defines the vb insertion mutation, and elevating both the levels of mature PITPα 

mRNA and wild-type protein produced.  The net result is that lifespan is increased (Floyd, 

Gold et al. 2003).   
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By contrast, pitpα
0/0

 mice are born at the expected Mendelian frequencies but usually 

expire within several days of birth.  In rare instances, the pitpα
0/0

 homozygotes can persist for 

10-13 days after birth.  The inability of the nullizygotes to thrive is hallmarked by obvious 

tremor and impaired motor capacity (Alb, Cortese et al. 2003).  Unlike the case of vb/vb 

mice, the abbreviated lifespan of pitpα
0/0

 homozygotes is independent of genetic background, 

and is accompanied by two additional signature pathologies – hypoglycemia and intestinal 

chylomicron retention disease (CRD; Alb, Cortese et al. 2003; Alb, Phillips et al. 2007).  

These syndromes are addressed in subsequent sections and, as discussed below, contribute to 

the rate of onset of neurological disease in PITPα-deficient animals. 

The neurodegenerative disease course of the vb mouse is classified into three phases.  

Phase I describes the “true vibrator” phenotype defined by fine, high-frequency postural 

tremors that become apparent ca. 15 days after the birth of pitpα
vb/vb

 homozygotes.  Phase I 

postural tremors are reminiscent of the enhanced physiological tremors encountered in 

clinical settings (Weimar, Lane et al. 1982; Elble 1996).  While the etiology of enhanced 

physiological tremors in humans is not known, such tremors often present as a symptom of 

hyperthyroidism or metabolic dysfunction such as hypoglycemia and liver disease.  In that 

regard, pitpα
0/0

 mice also display hepatic steatosis and severe hypoglycemia (see below; Alb, 

Cortese et al. 2003). 

PITPα null mice do not present Phase I phenotypes.  Rather, Phase II symptoms are 

detected from the outset, indicating neuronal damage even at the earliest stages of postnatal 

life (Weimar, Lane et al. 1982; Alb, Cortese et al. 2003; Alb, Phillips et al. 2007).  Phase II is 

marked by ataxia and action tremors.  The coarse intention tremor is superimposed on the 

animal’s voluntary movements.  These neurological symptoms are distinct, and not simply 
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progressive, from Phase I symptoms.  Furthermore, Phase II presents with clear anatomical 

signs of degeneration.  Neurons in the lumbar and cervical spinal cord and in the cerebellum 

are vacuolated, aponecrotic, and display distended ER (see below).  In genetic backgrounds 

where vb mice are reasonably long-lived (5-6 months), the disease progresses to a severe 

cerebellar atrophy (Weimar, Lane et al. 1982).  For these reasons, Phase II defines the 

“degenerative” phase.  In the inbred C57/B6 background, Phase II persists until hours before 

the animal perishes.  The basic presentation of Phase II disease resembles the symptoms 

associated with clinical cases of stroke, inherited neurodegenerative disorders, and multiple 

sclerosis (Gauthier and Sniderman 1983; Schwab and McGeer 2008; Trapp and Nave 2008). 

The terminal stages of PITPα-insufficiency define Phase III disease characterized by 

loss of consciousness, decreased motor tone and fasciculations, and a progressive ascending 

motor paralysis that ultimately leads to asphyxiation.  For C57/B6 animals, Phase III signals 

imminent death (within hours) and appears ca. postnatal day 31-33 in the case of vb/vb 

homozygotes.   

 

Anatomy of neurodegenerative disease in PITPα -deficient mice  

 PITPα null mice exhibit robust inflammation and demyelination in the spinal cord 

(Alb, Cortese et al. 2003).  There are clear reductions in white matter in the cervical, thoracic 

and lumbar spinal cord, and damaged neurons are observed at the white and grey matter 

interface.  Inflammation is evident over the entire length of the spinal cord, but is most 

striking in the ventral horn, i.e. where motor neuron cell bodies are located.  Many of the 

neuronal cell bodies in the ventral horn present the vacuolation and low cytoplasmic content 
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typical of aponecrosis – a form of cell death associated with critically low cellular energy 

charge.  Indeed, measurements of ATP/ADP ratios indicate pitpα
0/0

 cerebellum and liver 

present significant reductions in energy charge while brain does not.  Consistent with the 

widespread aponecrosis occurring in those regions, mast cells and macrophages infiltrate into 

the perivascular matrix and vessels, as well as the perivascular tissue, indicating breach of 

blood-brain barrier integrity.  Extensive defects in myelination are obvious in both white and 

gray matter regions of dorsal spinal columns, and are accompanied by axonal swelling and 

neuropil degeneration.  Another striking property of pitpα
0/0

 brain is the reactive gliosis 

evident throughout the cerebellum -- the organ is inundated with activated microglia.  Again, 

vacuolations of smooth ER are prevalent in cerebellar neurons of pitpα
0/0

 mice (Alb, Cortese 

et al. 2003).  The fulminating spinocerebellar inflammatory disease indicates regulated 

exocytic pathways associated with the activities of inflammatory cells (e.g. mast cells) is not 

strongly compromised in the null animals, in contrast to data from permeabilized cells 

suggesting PITPα is required for such regulated exocytic events (Hay and Martin 1995; Alb, 

Cortese et al. 2003).  These data are consistent with the report that pitpα
0/0

 ES cells 

differentiated ex vivo produce mast cells capable fully of executing the agonist-stimulated 

compound exocytosis that is a distinguishing property of these inflammatory cells (Alb, 

Phillips et al. 2002).  Synaptic performance is also unperturbed in pitpα
0/0

 neurons under 

multiple testing regimes (Alb, Cortese et al. 2003).  This is a surprising result given that the 

synaptic vesicle cycle is a high capacity phosphoinositide-utilizing system (Di Paolo and De 

Camilli 2006). 

It is difficult to interpret whether the spinocerebellar degeneration observed in 

pitpα
0/0

 mice is a primary phenotype or a secondary consequence of the glucose homeostatic 
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and CRD defects that define major phenotypes of the null condition.  The substantially 

postnatal development of the cerebellum dictates a robust proliferative program for cerebellar 

neurons.  Engagement of such a vigorous cell growth program, in the face of severe 

hypoglycemic circumstances, must soon come to a critical point where proliferation can no 

longer be sustained in an inadequate physiological environment.  Such a catastrophic 

developmental failure is expected to result in manifest necrosis and induction of a 

fulminating inflammatory response.  These predictions are fulfilled by the cerebellar 

inflammatory disease of PITPα–deficient mice.  With regard to the spinal cord, affected 

motor neurons are extraordinarily large cells, and it is likely these are especially sensitive to 

environmental insult.  That the spinocerebellar degeneration is, at least in part, caused by a 

hostile physiological environment is further indicated by demonstrations that pitpα
0/0

 

cerebellar granule cells, and dorsal root ganglia from spinal cord, are not intrinsically fragile 

when cultured ex vivo.  Moreover, titration experiments indicate these pitpα
0/0

 neurons are 

not overly sensitive to reduced trophic factor availability relative to wild-type neurons (Alb, 

Cortese et al. 2003).   

To determine the degree of interdependence among the phenotypes observed in 

pitpα
0/0

 animals, Alb et al. generated an allelic series of mice in which levels of wild-type 

PITPα protein are graded across a broad functional range.  These studies establish that the 

threshold levels of PITPα activity sufficient to relieve CRD and hypoglycemia remain 

inadequate for sparing spinocerebellar degeneration; although onset of neurodegenerative 

disease is significantly delayed in the absence of hypoglycemia and CRD (Alb, Phillips et al. 

2007).  The collective data indicate that spinocerebellar disease is an intrinsic pathology of 

PITPα-deficient mice.   
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Cell non-autonomous mechanisms for PITPα -dependent neuroprotection  

 The neurodegenerative pathologies associated with PITPα insufficiencies suggest a 

pro-survival/anti-apoptotic role for PITPα at the cellular level.  Such an activity can be 

formally executed in a cell-non-autonomous manner, i.e., where PITPα function is not 

required in neurons but must be present in non-neuronal support cells that nourish neurons.  

Alternatively, PITPα could exert its functions in a cell-autonomous manner where protein 

activity is required in the neurons themselves.  The available information suggests both 

mechanisms may be relevant.  With regard to cell non-autonomous mechanisms of PITPα 

action, cells over-expressing PITPα are reported to secrete an as yet uncharacterized trophic 

factor that promotes neuronal survival ex vivo (Bunte, Schenning et al. 2006).  Presumably, 

genetic ablation of PITPα function interferes with production of this factor, thereby 

contributing to neuronal fragility in PITPα–deficient animals.  A chemical identification of 

such PITPα-regulated trophic factors would constitute an important advance in our 

understanding of how PITPα helps confer neuroprotection to the spinocerebellar system.  A 

cell non-autonomous mechanism of this nature forecasts that targeted ablation of PITPα 

function in neuronal support cells, such as glia and/or oligodendrocytes, will recapitulate at 

least some features of the spinocerebellar inflammatory disease recorded for pitpα
0/0

 mice. 

 

PITPα and cell autonomous signaling  

 PITPα is identified as an essential component in promoting signaling of plasma 

membrane-localized receptor tyrosine kinases that register extracellular signals and transmit 
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the information to downstream effector pathways.  Two such circuits feature prominently in 

discussions of intracellular mechanisms for PITPα function.  First, PITPα was purified as a 

cytosolic factor required for EGFR signaling in a system where the ligand-dependent EGFR 

stimulation of phospholipase Cγ (PLCγ) was reconstituted in permeabilized cells 

(Kauffmann-Zeh, Thomas et al. 1995).  In this system, PITPα is posited to deliver PtdIns to 

the signaling plasma membrane so that a phosphoinositide pool required for forward EGFR 

signaling is generated by PtdIns 4-OH and PtdIns(4)P 5-OH kinases.  Secondly, and in an 

analogous mechanism, PITPα is reported to be obligatorily required for signaling via the 

netrin receptor DCC (Xie, Ding et al. 2005).  Netrins are secreted guidance cues that promote 

axon elongation and direct pathfinding during neuronal development, and are essential for 

the proper formation of major commissures in the brain and spinal chord (Serafini, 

Colamarino et al. 1996; Fazeli, Dickinson et al. 1997).  In both studies, the major conclusion 

is that PITPα binds activated receptor and, in this fashion, brings PtdIns from the ER to the 

site of receptor/ligand engagement.  This supply activity is then posited to stimulate local 

production of phosphoinositide and, in turn, downstream signaling (Kauffmann-Zeh, Thomas 

et al. 1995; Xie, Ding et al. 2005).  In a related scenario, PITPα is reported as fueling a 

PtdIns(3)-OH kinase signaling pathway required for elongation of cortical neurons on 

specific extracellular matrices ex vivo (Cosker, Shadan et al. 2008). 

The parallel logic proposed for how PITPα promotes EGFR and DCC signaling via 

cell autonomous mechanisms is attractive because it makes strong predictions regarding how 

null cells should behave in a physiological context.  From the perspective of neuronal 

development, loss of an amplifying factor such as PITPα should impair spinal chord and 

brain structures whose development is netrin/DCC-dependent.  Some properties of the 
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pitpα
0/0

 mouse are superficially consistent with such a model (Alb, Cortese et al. 2003; Alb, 

Phillips et al. 2007).  It is a tenable hypothesis that comprehensive defects in axon guidance 

would lead to extensive neuronal cell death by apoptosis and, in the case of a hypoglycemic 

animal, aponecrosis–as is seen in pitpα
0/0

 mice.  However, there are discrepancies between 

the central predictions of the proposed model for functional coupling of PITPα to DCC and 

in vivo experimental results.  Significant defects in netrin signaling result in obvious 

structural abnormalities of the brain--including deranged development of the anterior and 

hippocampal commissures, and the corpus callosum (Serafini, Colamarino et al. 1996).  Yet, 

pitpα
0/0

 brain does not present such obvious derangements and, moreover, the pitpα
0/0

 cortex 

is not significantly smaller than its wild-type counterpart (Alb, Phillips et al. 2007).  The idea 

that PITPα obligatorily promotes DCC signaling is also inconsistent with the properties of 

the kanga mouse, a mutant animal with a spontaneous and clean deletion of the essential 

PITPα-binding domain in the DCC cytosolic tail (Finger, Bronson et al. 2002; Xie, Ding et 

al. 2005).  While this mouse exhibits an abnormal gait, and kanga brain recapitulates the 

structural defects observed in netrin-deficient brain, the mouse nonetheless survives to 

adulthood and is fertile (Finger, Bronson et al. 2002).  By contrast, DCC null mice present 

embryonic lethal phenotypes (Fazeli, Dickinson et al. 1997).  The kanga and pitpα
0/0

 

phenotypes are not consistent with strong compromise of DCC function in the absence of 

interaction with PITPα.   

The EGFR-PITPα forward signaling paradigm formulated from permeabilized cell 

studies also fails to translate cleanly to authentic physiological contexts.  As an active EGFR 

signaling network initiates a transcriptional response that promotes cellular survival and 

proliferation (Jones and Kazlauskas 2001), loss of a factor that increases the gain on forward-
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signaling (i.e. PITPα) should compromise cell vigor and proliferative capacity.  Yet, pitpα
0/0

 

murine embryonic stem cells retain their tumorigenicity when introduced into nude mice.  

This is not an outcome obviously consistent with overt growth factor signaling defects.  

Moreover, PITPα hypomorphic animals do not present obvious waved phenotypes that result 

from defective hair follicle development in mice with even partial defects in EGFR signaling 

(Weimar, Lane et al. 1982; Luetteke, Phillips et al. 1994; Alb, Phillips et al. 2007).   The 

corresponding null phenotypes differ as well.  EGFR nullizygosity generally results in 

embryonic lethality.  In some genetic backgrounds, the knockout mice are born alive, but 

expire within the first postnatal week, and exhibit multiple symptoms of delayed epithelial 

development.  Those ‘escapers’ show defective eyelid development, deranged terminal 

differentiation of the epidermis and hair follicles, and loss of structural integrity of intestine--

as evidenced by shortening of the organ, reduced numbers of villi, and hemorrhage.  

Moreover, EGFR deficiency leads to respiratory failure as a consequence of structurally 

immature alveoli (Miettinen, Berger et al. 1995; Sibilia and Wagner 1995).  No such defects 

are reported for pitpα
0/0

 mice. 

In summary, the in vivo data are not consistent with simple models invoking 

obligatory roles for PITPα in forward DCC or EGFR signaling.  It remains formally possible 

that a PITPα involvement in promoting DCC or EGFR signaling is subtle, or that this 

requirement exhibits an unexpected, and as yet unidentified, tissue-specificity.  The idea that 

significant compensatory mechanisms are engaged in the face of chronic PITPα deficiency 

also cannot yet be dismissed.  However, the counter view that PITPα does not promote 

forward EGFR or DCC signaling must be considered as well.  These issues frame a set of 

important questions for future analysis. 
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PITPα-insufficiencies and chylomicron retention disease  

 A major phenotype associated with pitpα
0/0

 homozygosity is failure of such neonates 

to thrive–i.e. mutant animals achieve only one-half to one-third the mass of PITPα
+/+

 and 

PITPα
0/+

 heterozygous littermates within the first postnatal week.  The phenotype is 

manifested even though the null animals nurse reasonably effectively–as evidenced by direct 

observation of the act and analysis of stomach contents, and by the fact that pitpα
0/0

 

nullizygotes are not dehydrated.  Whole-body chemical analyses demonstrate the reduced 

body mass is substantially accounted for by a pathologically low body fat content, a 

deficiency confirmed by the virtual absence of axillary and inguinal fat pads in nullizygotes 

(Alb, Cortese et al. 2003).  These homeostatic pathologies stem from inefficient processing 

of dietary fat by the nullizygous animals, and available data report that the homeostatic 

deficiencies are manifestations of functional derangements in pitpα
0/0

 intestine and liver. 

 Two lines of evidence indicate that pitpα
0/0

 neonates cannot effectively absorb dietary 

fat across the intestinal epithelium.  First, enterocytes of the pitpα
0/0

 duodenum stain 

unusually heavily with lipophilic agents (Figure 7), and this property disappears upon 

prolonged fasting.  Second, electron microscopy reveals dramatic accumulations of lipid 

bodies in the lumen of the enterocyte endoplasmic reticulum (ER) of pitpα
0/0

 neonates—an 

accretion accompanied by dilations of smooth ER (Figure 7).  These accumulated lipid 

bodies resemble maturing chylomicrons, i.e. the lipoprotein transport units that ferry dietary 

fat through the enterocyte secretory pathway for discharge into the circulation and 

disbursement throughout the body.  Taken together, the morphological data indicate pitpα
0/0

 

enterocytes are competent for: (i) hydrolysis of dietary triglycerides (TGs) into fatty acids 
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and monoacylglycerols, (ii) for transport of these hydrolytic products into the enterocyte ER 

lumen, and (iii) for reconstitution of these products into TGs for subsequent packaging into 

what we loosely term as chylomicron precursors.  The point of failure is in inefficient export 

of chylomicron precursors from the enterocyte ER, through the secretory pathway, and into 

the circulation. 

 Consistent with this basic scenario, pitpα
0/0

 neonates present dramatic reductions in 

levels of circulating post-prandial TG and brain α-tocopherol (another lipophilic molecule 

whose transport across the enterocyte into the circulation requires a functional chylomicron 

pathway).  The collective data suggest a PITPα involvement in the packaging of TG cores 

into functional chylomicron carriers for transport from the enterocyte ER.  Defects in this 

process hallmark chylomicron retention disease (CRD).  The threshold requirement for 

PITPα in chylomicron transport is low given that 80% reductions in PITPα expression are 

insufficient to induce CRD in mice, but >90% reductions in PITPα load do (Alb, Phillips et 

al. 2007).  The defect is also tissue-autonomous as reconstitution of intestine-specific PITPα 

expression in the null animal rescues the chylomicron retention disease (Alb, Phillips et al. 

2007). 

PITPα involvements in ER functions are unanticipated, as all discussions of 

functional mechanisms focus on roles for PITPα in modulating plasma membrane signaling 

circuits (see above).  It remains to be established whether PITPα is directly, or more 

indirectly, involved in chylomicron biogenesis.  Indirect models would include regulation of 

chylomicron maturation from a remote compartment via some PITPα-dependent signaling 

pathway.  Some concepts for how PITPα may directly interface with chylomicron trafficking 

from the ER are suggested by recent studies on the etiology of human CRD, such as 
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Anderson’s disease and hyperbetalipoproteinemia.  These CRD syndromes are autosomal 

recessive disorders characterized by fat malabsorption and pediatric failure to thrive 

(Charcosset, Sassolas et al. 2008).  The associated human duodenal steatosis, when coupled 

with other aspects of human CRD symptomology, is similar to the CRD and associated 

phenotypes of pitpα
0/0

 mice.  Positional cloning analyses demonstrate that one mechanism 

for inherited human CRD stems from autosomal recessive loss-of-function mutations in the 

SARA2 GTPase (Jones, Jones et al. 2003).  SARA2 is the product of the SAR1B gene, and 

represents one of the two members of the Sar1-like small GTPases expressed in humans. 

The Sar1-like GTPases are conserved from yeast to man and these are essential for 

nucleation of COPII vesicle formation at organized regions of the ER membrane surface 

termed ER exit sites (Miller and Barlowe 2001).  The specific requirement for SARA2/Sar1b 

in chylomicron packaging for transport from the enterocyte ER is interesting because these 

lipoprotein cargos are much larger than typical COPII transport vesicles.  One interpretation 

of the genetic data is that SARA2/Sar1b is a privileged GTPase dedicated to formation of 

atypical COPII vesicles designed to carry unusually large cargos.  It follows that PITPα is a 

similarly privileged component of such a specialized COPII vesicle biogenic pathway (Alb, 

Cortese et al. 2003).  Perhaps PITPα regulates an ER pool of PtdIns(4)P required for 

biogenesis of a subclass of COPII vesicles dedicated to transport of mega-cargos such as 

chylomicrons.  This proposal is supported by the demonstration that mice expressing wild-

type amounts of a PtdIns-binding-defective mutant of PITPα as sole source of the protein are 

indistinguishable from pitpα
0/0

 animals–including with regard to severity of CRD (Alb, 

Phillips et al. 2007).  While the concept that PITPα modulates an ER pool of 

phosphoinositide departs from dogmatic views that phosphoinositides are localized 
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exclusively to intracellular compartments in the distal secretory pathway (D'Angelo, 

Vicinanza et al. 2008), recent findings that Sar1-mediated ER exit sites are formed by and 

regulated by PtdIns-4-phosphate signaling provide evidence to this idea (Blumental-Perry, 

Haney et al. 2006).   
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Figure 7. Intestinal and hepatic steatosis in PITPα-deficient mice.   

Intestinal slices stained for neutral lipid content with osmium from (a) 

PITPα
+/+

 and (b) pitpα
0/0

 mice.  Note the obvious accumulation of neutral 

lipid in mutant enterocytes.  This accumulation is dependent on nursing and 

chases only slowly during periods of fast.  The phenotype is also obvious in 

electron micrographs of the villi of duodenal enterocytes from (c) PITPα
+/+

 

and (d) pitpα
0/0

 mice (scale bars are 0.2µm and 0.5µm, respectively).  Lipid 

deposits are highlighted by ().  Liver slices stained with osmium from (e) 

PITPα
+/+

 and (f) pitpα
0/0

 mice are also shown. 
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pitpα
0/0

 mice and hepatic steatosis  

 Intestine and liver deploy similar strategies for the processing and export of 

lipoprotein cargos from the ER into distal compartments of the secretory pathway and, 

ultimately, into the circulation.  In that regard, pitpα
0/0

 liver also presents extensive 

microvesicular steatosis as evidenced by the unusually enhanced staining with osmium or the 

lipophilic dye Oil Red O (Figure 7; Alb, Cortese et al. 2003).  Electron microscopic and 

lipidomic analyses confirm dramatic intracellular accretion of neutral lipid in the organ.  In 

this case, however, a large fraction of the lipid accumulates in cytosolic lipid droplets (LDs) 

and, remarkably, in LDs that populate the nuclear matrix of pitpα
0/0

 hepatocytes (Figure 7; 

Alb, Cortese et al. 2003).  While vb/vb mice do not present such dramatic symptoms of 

hepatic steatosis, lipidomic analyses report livers of these animals also exhibit elevated levels 

of neutral lipid (Monaco, Kim et al. 2004). 

 The intra-hepatic lipid accumulation is not the result of elevated lipid biosynthesis -- 

the expression of key fatty acid and lipid biosynthetic enzymes is not enhanced.  Whether 

pitpα
0/0

 liver is defective in lipoprotein trafficking from the ER, as is the case in intestine, 

remains to be investigated.  However, there is no doubt that an important aspect of lipid 

homeostasis is deranged in pitpα
0/0

 liver, and this deficiency has interesting consequences for 

outcomes of intestine-specific reconstitution strategies directed at alleviating CRD.  Rescue 

of CRD by intestine-specific expression of PITPα in otherwise pitpα
0/0

 mice levies 

surprisingly modest improvements in the systemic TG and fat storage defects that 

characterize this animal.  The basis for the inefficient translation of a functionally 

reconstituted intestine to more normal circulating lipoprotein levels appears to rest with 

enhanced accretion of lipid in the pitpα
0/0

 liver of such animals.  We presently consider the 
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amplified accretion to reflect enhanced lipid flow into a dysfunctional liver that cannot 

adequately process circulating lipoproteins (Alb, Phillips et al. 2007).  The increased import 

is presumably driven by a now functional intestine that efficiently secretes chylomicrons into 

the circulation of the otherwise pitpα
0/0

 mouse.   

 

PITPα--a link between Ins nutrition and lipoprotein metabolism?  

 There is an old literature associating nutritional deprivation of Ins with defective lipid 

clearance from rodent liver and intestine.  Rats fed a fatty diet accumulate triacylglycerides 

and cholesterol in the liver when myo-inositol is withheld from the diet (Hayashi, Maeda et 

al. 1974; Burton and Wells 1976; Burton and Wells 1977).  This accumulation of neutral 

lipid is the result of defective mobilization of hepatic triglycerides (Hayashi, Maeda et al. 

1974; Burton and Wells 1979).  In the Mongolian gerbil model, myo-inositol starvation 

resulted in accumulation of lipid in the small intestine (Kroes, Hegsted et al. 1973)– a 

phenotype associated with qualitative changes in the fatty acid composition of enteric 

phospholipids (Woods and Hegsted 1979; Chu and Hegsted 1980).  Notably, this condition 

was also marked by significantly decreased levels of circulating lipoprotein (Chu and 

Hegsted 1980)–a deficit which was established as the consequence of inefficient transport of 

lipid across the intestine (Chu and Geyer 1982). 

 While these observations were taken as evidence for an involvement of PtdIns 

metabolism with lipid transport across the intestine (Chu and Geyer 1982), no underlying 

mechanism for the Ins effect has yet been described.  The intestinal and hepatic steatosis that 

characterizes pitpα
0/0

 mice broadly recapitulates the effects of inositol deprivation in rodents.  

It is now an attractive proposition that Ins deprivation and functional ablation of PITPα share 
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an underlying mechanism for provoking intestinal, and perhaps hepatic, steatosis.  That is, 

that phosphoinositides play an important role in the packaging of unusual cargoes like 

chylomicrons, and other lipoprotein particles, for transport from the ER to late stages of the 

secretory pathway.  This hypothesis raises the interesting possibility that PITPα sets the 

efficiency for lipoprotein assembly in intestine and liver, and therefore determines the 

capacity for lipid clearance in liver and intestine.   

 

PITPα and the pancreas  

 The third signature pathology associated with pitpα
0/0

 mice is a severe hypoglycemia 

where circulating glucose levels (and insulin levels) are nearly an order of magnitude lower 

than those of wild-type siblings (Alb, Cortese et al. 2003; Alb, Phillips et al. 2007).  One 

major defect appears to be in hepatic gluconeogenesis with severe deficits in both 

proglucagon gene expression and in circulating glucagon levels.  As a result, pitpα
0/0

 liver 

inappropriately stores glycogen in the face of a catastrophic hypoglycemia (Alb, Cortese et 

al. 2003).  As in the case of the CRD, the threshold requirement for PITPα in maintenance of 

proper glucose homeostasis is low.  Functional PITPα reductions of 90% or greater are 

required for manifestation of hypoglycemia (Alb, Phillips et al. 2007). 

 The glucose and gluconeogenic derangements on display in pitpα
0/0

 neonates are 

accompanied by obvious structural derangements of the pancreas.  While pitpα
0/0

 exocrine 

pancreas is morphologically normal, the endocrine pancreas is not.  The number of 

recognizable islets per pitpα
0/0

 pancreas is strongly reduced relative to wild-type, 

vacuolations are evident in the islets, and the pitpα
0/0

 islet cells themselves are shrunken 

(Alb, Cortese et al. 2003).  It is not yet known whether these pancreatic deficits are the result 
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of indirect damage inflicted by a hostile physiological environment (e.g. associated with 

CRD), or whether these are manifestations of some other intrinsic developmental problem. 

 

Zebrafish type 1 PITPs 

 Zebrafish (Danio rerio) express a mammalian-like cohort of Type 1 PITPs with the 

addition of a unique PITPβ-like protein designated PITPγ (Ile, Kassen et al. 2010).  The 

conservation of Type 1 PITP roster further extends to interesting details of Type 1 PITP 

diversity–i.e. zebrafish execute precisely the same exon-skipping event as mammals do in 

generating the canonical and alternative PITPβ splice variants.  As a result, this non-

mammalian model is a facile system for study of vertebrate Type 1 PITPs, and it is 

particularly informative with respect to the physiological functions of PITPβ isoforms.  

Whereas functional ablation experiments have, to this point, been uninformative for the 

PITPγ isoform, new insights are forthcoming regarding PITPβ function in this organism.  

Zebrafish express PITPβ splice variants predominantly in the eye, and specifically to the 

synaptic pedicles of retinal double cone cells (Ile, Kassen et al. 2010).  Morpholino-based 

silencing experiments demonstrate PITPβ splice variant activity is required for the biogenesis 

and/or the maintenance of the double cone photoreceptor cell outer segments.  The deficits in 

double cone cell outer segment biogenesis and structure are also reversible.  As effectiveness 

of PITPβ-directed morpholinos wanes with age of the morphant fish, and PITPβ expression 

is restored, development of morphologically correct and electro-physiologically functional 

double cone cells is re-engaged (Ile, Kassen et al. 2010).   

 What functional mechanisms underlie PITPβ splice variant involvement in zebrafish 

double cone cell outer segment biogenesis/maintenance?  Cone cell outer segments are 
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comprised of an intricate network of membraneous discs/lamellae.  These membranes are 

subject to a vigorous course of self-renewal that involves a high capacity membrane 

trafficking program (Young 1974; Ile, Kassen et al. 2010).  The general localization of PITPβ 

splice variants to the trans-Golgi network suggests a scenario where deficiencies in PITPβ 

activity subtly compromise Golgi function in double cone cells, and evoke significant defects 

in biosynthetic trafficking of opsin into the outer segment.  If the normally high rates of 

membrane turnover in these structures are maintained in the face of reduced incorporation of 

biosynthetic material, outer segment integrity will be compromised.  In mammalian rod cells, 

the SARA adaptor couples PtdIns(3)P cues to syntaxin t-SNARE activity in potentiation of 

the vesicle fusion events involved in outer segment membrane disc formation and 

maintenance (Chuang, Zhao et al. 2007).  One possibility is zebrafish PITPβ splice variants 

support a similarly privileged phosphoinositide-dependent trafficking pathway in double 

cone cells.   

 The zebrafish PITPα studies are surprising in that, unlike in mice, functional ablation 

of PITPα results in defective gastrulation.  The failure occurs at a stage where highly 

migratory cells of the blastoderm extend and converge to cover the yolk cell surface (Ile, 

Kassen et al. 2010).  As in mice, PtdIns-binding is an essential functional property of PITPα 

activity in zebrafish development.  The lack of functional redundancy between PITPα and 

PITPβ isoforms is also clearly evident—PITPα does not compensate for PITPα deficits in 

zebrafish development (Ile, Kassen et al. 2010).  Thus, different vertebrates employ 

paralogous Type 1 PITPs in substantially different ways.   
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PITPs and fungal pathogens 

Many fungal pathogens are capable of reversibly transitioning between blastospore 

and hyphal growth phases, termed a dimorphic transition.  Dimorphic transitions are 

proposed to promote pathogenic activities of fungi; however, it is likely only one of many 

factors (Brown and Gow 1999; Gow, Brown et al. 2002).  To investigate Sec14’s role in 

dimorphic transitions, the model system Yarrowia lipolytica was employed, demonstrating 

that Sec14p’s homologue, Sec14
YL

, is a non-essential (probably due to additional isoforms), 

Golgi-associated protein that modulates dimorphic transitions (Lopez, Nicaud et al. 1994).  

Sec14’s role is thought to regulate of the delivery of cargo to the plasma membrane for 

mycelial growth.  Interestingly, this defect can be bypassed through the addition of the 

neutral lipid, oleic acid (Titorenko, Ogrydziak et al. 1997) which enlarges lipid droplets and 

lowers the ratio of TAG to sterol esters in Y.lipolytica (Athenstaedt, Jolivet et al. 2006).  

Candida infections or candidemia, represent a large cause of nosocomial infections in 

the United States, accounting for an estimated annual mortality rate between 2800 and 

11,200 deaths.  Of the Candida species, the majority of infectious episodes are caused by 

Candidia albicans (Pfaller and Diekema 2007).  C.albicans is a commensal, dimorphic 

fungus, often found in the human gastrointestinal tract.  Most commonly, mucosal 

membranes are the sites of infection, resulting in oropharyngeal, esophageal, and vaginal 

candidiasis; however, more severe systemic infections occur.  All individuals are susceptible 

to infection; however, contributing factors include wide spectrum antibiotics, corticosteroids, 

hormone therapy, and HIV (Calderone 2002).  Interestingly, the yeast Sec14p homologue in 

C.albicans, CaSec14p, is likely an essential gene; however, its role in dimorphic transition is 

not clear (Monteoliva, Sanchez et al. 1996).   
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Additionally, multiple Sec14-like and mammalian PITP protein have been cloned 

from Dictyostelium discoideum that can bind and transfer PtdIns and PtdCho (Swigart, Insall 

et al. 2000).  Recently, a novel Sec14-like protein was identified in Taenia solium or 

Sec14Tsol. T.solium is an infectious parasite found in humans and porcine that can cause 

cysticercosis or neurocysticerosis.  Sec14Tsol binds phospholipids and is localized to the 

Golgi membranes of the metacestode tegument, suggesting a potential role in host 

interactions (Montero, Gonzalez et al. 2007; Sinha and Sharma 2009).  Although antifungal 

agents exists for C.albicans (Sobel 2008) and cysticdes for T.solium (Sinha and Sharma 

2009); none probe the hydrophobic patch of Sec14, providing an attractive, and essentially 

virgin territory to combat these pathogens and are discussed in Chapter 3.   

 

Conclusions and future perspectives 

 The appropriate spatial and temporal regulation of lipid metabolic flux is central to 

cellular homeostasis--even subtle derangements of this system lead to disease.  Yet, we are 

far from an understanding of how diverse territories of the cellular lipid metabolome are 

interfaced and how lipid metabolic processes are coordinated with lipid signaling.  It is 

becoming increasingly clear that Sec14-like PITPs, and likely PITPs in general, contribute to 

the integration of diverse aspects of lipid metabolism with phosphoinositide signaling.  

Physical pictures of how this may happen are emerging, particularly for Sec14-like proteins, 

and these models identify new areas for experimental inquiry.  Two general areas are ripe for 

investigation.  First, it will be interesting to discern whether the PtdIns-binding bar codes of 

Sec14-like proteins not annotated as PITPs (e.g. caytaxin, CRALBP1 and α-TTP) forecast 
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authentic inositol-lipid binding capabilities.  If so, and it seems likely that it will be so in 

some cases, the activities of these proteins, and the etiologies of the associated diseases, will 

need to be re-interpreted.  Second, the question of PtdIns-presentation function will be 

particularly interesting from the standpoint of Sec14- or PITP-like modules in complex 

multi-domain proteins.  The concept that such PITP-like domains prime production of local 

phosphoinositide signals in response to metabolic cues, and that these phosphoinositide 

signals in turn modulate catalytic activities of these complex proteins, describes new 

conceptual frameworks for how such proteins operate.  We expect that Sec14-domains in 

particular will garner more attention in this regard, and will become increasingly attractive 

targets for pharmacological intervention.  The importance of being able to visualize, in living 

cells, when and where PITPs execute lipid exchange is also clear.  Reliable conformational 

biosensors will be invaluable tools in those efforts, and will provide unique approaches 

towards faithfully imaging PITP-regulated interfaces between lipid metabolism and signaling 

in vivo. 

Finally, we forecast interest in PITPs, and perhaps primarily Sec14-like PITPs, as 

targets for pharmaceutical intervention in the context of infectious diseases.  While not 

discussed in this review, eukaryotic pathogens express PITP-like proteins–some of which are 

clearly PITPs.  These proteins are sufficiently diverged from their vertebrate paralogs to 

suggest that identification of specific small molecule inhibitors will be feasible.  It is in this 

arena that PITP-directed therapies, and a detailed understanding of PITP biology and 

biochemistry, may ultimately make the greatest impact in human health.   
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Table 2. Chapter one summary 

PITPs and Inositol Signaling 

 Emerging data implicate PITPs as instructors of phosphatidylinositol 

metabolism, a role that contributes to the functional diversification of PI 

signaling. 

 PITPs separate into two evolutionarily unrelated classes: the highly 

conserved Sec14-like PITPs and the metazoan PITPs.   

 Analysis of PITP function has been limited by the inability to describe 

PITPs using traditional enzyme definitions. 

 Structural and genetic studies on the yeast Sec14 have implicated its role 

as a “nanoreactor”, wherein its primary function is not simple lipid 

exchange between membranes, but integration of PtdCho metabolism 

with presentation of PtdIns to PtdIns 4-OH kinase. 

Sec14-like PITPs in Human Disease  

 Sec14-like proteins can form stand-alone proteins or be part of more 

complicated landscapes within multidomain proteins. 

 Malfunctions in Sec14-like domains result in a variety of human 

disorders including ataxia with vitamin E deficiency, cayman-type 

cerebellar ataxia, visual cycle defects, retinitis punctata albescens, and 

neurofibromatosis type 1.   

 Sec14-like proteins in general, have a conserved PtdIns binding ‘bar 

code’.  Mutations within this region often result in protein dysfunction 
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Materials and methods 

Sequence alignment 

Protein sequences were acquired from the Universal Protein Resource (Consortium 2012), 

aggregated using UGENE (version 1.10.1; http://ugene.unipro.ru/)(Okonechnikov, Golosova 

et al. 2012), and aligned with the Clustal X2 module using the default settings (Larkin, 

Blackshields et al. 2007). Homologous sequences were superimposed onto structural models 

(PDB IDs 1AUA, 1OLM, 3B7Z, 4FMM) to highlight the PtdIns/PtdCho lipid binding 

barcode. 

and are well represented in physiologically relevant mutations. 

Physiology of Mammalian Type I PITPs 

 The mammalian Type 1 PITPs are structurally unrelated to the Sec14-

like PITPs, but may nonetheless function as nanoreactors. 

 Mice with graded reductions of PITPα expression have been used to 

dissect the physiological roles of PITPα. PITPα deficiency results in 

spinocerebellar disease, enteric and hepatic steatosis, and hypoglycemia. 

 PITPα is implicated in both cell autonomous and cell non-autonomous 

signaling mechanisms. 

 The roles of Type 1 PITPs are being addressed in the zebrafish model 

system, describing a role for PITP  in maintaining outer segment 

integrity in specific cone cells. 

http://ugene.unipro.ru/
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Molecular graphics 

Molecular graphics and analyses were performed with the UCSF Chimera package 

(version 1.8; http://www.cgl.ucsf.edu/chimera)(Pettersen, Goddard et al. 2004). 

Chimera is developed by the Resource for Biocomputing, Visualization, and 

Informatics at the University of California, San Francisco (supported by NIGMS 

P41-GM103311).  

  

http://www.cgl.ucsf.edu/chimera/
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CHAPTER 2: CHEMICAL INHIBITORS OF PHOSPHATIDYLINOSITOL 

TRANSFER PROTEINS ENABLE HIGHLY SELECTIVE INTERFERENCE WITH 

SPECIFIC PATHWAYS OF PHOSPHOINOSITIDE SIGNALING IN CELLS
2
 

Overview 

Sec14-like phosphatidylinositol transfer proteins (PITPs) integrate diverse territories 

of intracellular lipid metabolism with stimulated phosphatidylinositol-4-phosphate 

production, and are discriminating portals for interrogating phosphoinositide signaling.  Yet, 

neither Sec14-like PITPs, nor PITPs in general, have been exploited as targets for chemical 

inhibition for such purposes.  Herein, we validate the first small molecule inhibitors (SMIs) 

of the yeast PITP Sec14.  These SMIs are nitrophenyl(4-(2-methoxyphenyl)piperazin-1-

yl)methanones (NPPMs), and are effective inhibitors in vitro and in vivo.  We further 

establish Sec14 is the sole essential NPPM target in yeast, that NPPMs exhibit exquisite 

targeting specificities for Sec14 (relative to related Sec14-like PITPs), propose a mechanism 

for how NPPMs exert their inhibitory effects, and demonstrate NPPMs exhibit exquisite 

pathway selectivity in inhibiting phosphoinositide signaling in cells.  These data deliver 

proof-of-concept that PITP-directed SMIs offer new and generally applicable avenues for 

intervening with phosphoinositide signaling pathways with selectivities superior to those 

afforded by contemporary lipid kinase-directed strategies.  Additionally, we will discuss 

several non-NPPM Sec14-directed inhibitors, some of which are natural products or inhibit 

dimorphic transitions in pathogenic yeast. 

                                                 
2
 This chapter previously appeared as a shortened article in Nature Chemical Biology.  The original citation is 

as follows: Nile, A. H., A. Tripathi, et al. (2014). "PITPs as targets for selectively interfering with 

phosphoinositide signaling in cells." Nature Chemical Biology 10(1): 76-84. 
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Introduction 

 Lipid signaling modulates a wide range of cellular processes, including regulation of 

G-protein-coupled receptor and receptor tyrosine kinase signaling at the plasma membrane 

(Wymann and Schneiter 2008), actin dynamics (Janmey and Lindberg 2004), transcription 

(Irvine 2003; Henry, Kohlwein et al. 2012), and membrane trafficking (Di Paolo and De 

Camilli 2006). A major pillar of eukaryotic lipid signaling involves regulated production of 

phosphoinositides and the soluble second messengers derived from them–i.e. the soluble 

inositol (Ins) phosphates (Strahl and Thorner 2007; Michell 2008). Phosphatidylinositol 

(PtdIns) is an essential phospholipid in eukaryotes that serves as metabolic precursor for both 

phosphoinositides and Ins-phosphates.  While the chemical diversity of the Ins-phosphates is 

large, the phosphoinositide cabal is much simpler.  Yeast produce only five 

phosphoinositides (PtdIns-[3]-phosphate, PtdIns-[4]-phosphate, PtdIns-[5]-phosphate, 

PtdIns-[4,5]-bisphosphate, and PtdIns-[3,5]-bisphosphate) while higher eukaryotes produce 

seven; those synthesized by yeast as well as PtdIns-[3,4]-bisphosphate and PtdIns-[3,4,5]-

trisphosphate (Michell 2008).  This limited phosphoinositide cohort nonetheless supports a 

remarkably diverse landscape of lipid signaling that modulates the actions of hundreds of 

proteins (Strahl and Thorner 2007).  Such functional diversification emphasizes the intricacy 

with which phosphoinositide signaling is woven into the fabric of eukaryotic cell biology. 

 The acute and specific inactivation of a target enzyme is a highly desirable instrument 

for dissecting mechanisms of lipid signaling in cells.  A major difficulty with productively 

achieving that goal rests with the fact that compensatory arms of lipid metabolism often 

buffer the desired effects of traditional (i.e. genetic or siRNA-based; discussed in Chapter 3) 

interventions that target lipid signaling pathways.  While chemical biology offers potential 
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advantages in this regard, the problem continues to be a difficult one.  This is especially true 

in the context of phosphoinositide signaling whose very diversification demands highly 

targeted approaches for clean analysis.  Specific interventions at the level of individual lipid 

kinases, or compartment-specific interventions at the level of defined phosphoinositide 

species using sophisticated Rapalog technologies (Suh, Inoue et al. 2006; Varnai, 

Thyagarajan et al. 2006), remain unsatisfactorily blunt experimental instruments. Such 

interventions exert pleiotropic effects.  These pleiotropies reflect the multitude of effector 

activities impaired upon inhibition of a target Ins-lipid kinase, or upon compartment-specific 

depletion of a specific phosphoinositide species.   

PtdIns-transfer proteins (PITPs) of the Sec14 protein superfamily are key regulators 

of phosphoinositide signaling as evidenced by demonstrations that individual PITPs specify 

discrete biological outcomes of PtdIns kinase action (Schaaf, Ortlund et al. 2008; Bankaitis, 

Mousley et al. 2010).  Deficiencies in individual Sec14-like PITPs compromise membrane 

trafficking through the trans-Golgi network (TGN) and endosomal systems (Bankaitis, 

Malehorn et al. 1989), decarboxylation of phosphatidylserine to phosphatidylethanolamine 

(Wu, Routt et al. 2000), fatty acid metabolism (Desfougères, Ferreira et al. 2008), polarized 

cell growth (Vincent, Chua et al. 2005) and fungal dimorphism (Lopez, Nicaud et al. 1994).  

Mutations in PITPs or PITP-like proteins are also root causes of mammalian 

neurodegenerative, pancreatic and lipoprotein biogenic diseases (Alb, Cortese et al. 2003; 

Nile, Bankaitis et al. 2010). 

The various data indicate PITPs offer highly discriminating portals for interrogating 

phosphoinositide signaling, and identify PITPs as potential targets for small molecule-based 

inhibition of select phosphoinositide signaling pathways in cells.  In this chapter, we exploit 
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the genetic and post-genomic tools the yeast system offers to make just that case.  The power 

of the PITP-directed approach resides in the exquisite specificities it affords in chemically 

intervening with phosphoinositide signaling.  That is, it offers selectivities far superior to 

those delivered by strategies which target individual PtdIns-kinase isoforms or individual 

phosphoinositide species.   

 

Results: NPPM-like SMIs  

Identification of candidate Sec14-directed SMIs 

 Sec14, the major yeast PITP, is an essential protein required for membrane trafficking 

through the TGN/endosomal system (Bankaitis, Malehorn et al. 1989).  Chemogenomic 

profiling of 188 bioactive chemical inhibitors of yeast growth identified a candidate for a 

Sec14-directed SMI (Hoon, Smith et al. 2008).  This unvalidated compound, 4130-1278 (1), 

is a 4-chloro-3-nitrophenyl)(4-(2-methoxyphenyl) piperazin-1-yl)methanone (NPPM).  Since 

4130-1278 exhibited a mediocre potency, and only limited water solubility, we surveyed 13 

other NPPM-like SMIs in a search for more promising candidate Sec14 inhibitors (see 

Figure 8a).  One such derivative, 4130-1276 (2), exhibited superior solubility in aqueous 

solutions, and provoked growth arrest of a sec14Δ/SEC14 heterozygous strain at 10-fold 

lower concentrations than those required for 4130-1278 to levy similar inhibitory effects 

(Figure 8b).  
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Figure 8. Identification of 4130-1278 and 4130-1276 as candidate Sec14-

directed SMIs. 

(a) Chemical-induced growth inhibition of a ho∆/HO control strain (black) 

and the sec14∆/SEC14 strain (red) by the indicated SMI (molecular structure 

shown within the graph) is plotted. The ‘relative growth’ parameter compares 

growth rate in presence of compound relative to the “no-drug” control 

(DMSO; see methods). Data are represented as a function of SMI 

concentration (x-axis). Growth rates were determined from a single 

experiment. (b) Experiment performed as in (a) with an expanded range of 

SMI concentrations. 
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Chemogenomic profiling of ca. 6200 yeast deletion strains correlated gene-dosage 

with yeast sensitivity to 4130-1278 or 4130-1276 challenge on a genome-wide scale (Figure 

9a-f). The profiling identified sec14Δ/SEC14 heterozygous diploid cells as the most sensitive 

to 4130-1278 and 4130-1276 challenge of all homozygous Δ/Δ and heterozygous Δ/+ 

diploids tested (non-essential and essential gene queries, respectively; Figure 9a-f).  A 

limited set of other genes was also identified for which dosage reduction resulted in 

decreased fitness in the presence of 4130-1278 and 4130-1276 (Figure 9c,f).  Gene functions 

identified in the more extensive 4130-1276 hit list included Golgi trafficking, sporulation, 

exocytosis, vacuolar transport, and lipid metabolism.  High scoring chemogenomic 

interactions, include phospholipase D (PLD; SPO14), a strong synthetic interactor with 

sec14-1
ts
 (Xie, Fang et al. 1998; Schaaf, Ortlund et al. 2008) and the phospholipase D 

regulator SRF1 (Kennedy, Kabbani et al. 2011), were independently recognized in genome-

scale synthetic genetic array (SGA) analyses that employed sec14-1
ts
 as query allele 

(Mousley, Tyeryar et al. 2008; Curwin, Fairn et al. 2009).   
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Figure 9. Chemogenomic interaction-profiles of 4130-1276 and 4130-

1278. 

Individual sensitivities of 1050 heterozygous (a) and 4337 homozygous (b) 

deletion strains to 4130-1278 (35.5μM) are plotted on the y-axis. (c) Relative 

gene sensitivities are ranked. Genes independently identified as interactors in 

sec14-1
ts
 synthetic genetic arrays (SGAs) are highlighted in red. Individual 

sensitivities of 1064 heterozygous (d) and 4455 homozygous (e) deletion 

strains to 4130-1276 (6.7μM) are plotted on the y-axis. (f) Relative gene 

sensitivities are ranked. Sensitivities reflect the relative under-representation 

of each query strain in the pool population after culture in the presence of 

inhibitor compared to incubation in absence of inhibitor (see Methods). Genes 

so identified by statistically significant fitness defects (●) or resistance (■) are 

listed with corresponding P-values. Genes independently identified as 

interactors in sec14-1
ts
 synthetic genetic arrays (SGAs) are highlighted in red. 
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Expansion of the candidate Sec14-directed SMI set 

 The attractiveness of 4130-1278 and 4130-1276 as potential Sec14 inhibitors focused 

searches for other candidate Sec14-targeted SMIs.  To this end, an expanded set of 34 

compounds was assembled around the 4130-1276 scaffold. For the initial rounds of 

compound selection, the Chembridge chemical library was filtered using the Similarity 

Search (Marvin Applet tool on Hit2Lead–Cambridge database).  The filter clamped structural 

similarity to ca. 80% of the query 4130-1276 molecule and highlighted functional groups as 

sites for diversification (Figure 10a,b).  NPPMs 4130-1276, 67170-49 (3) and 6748-481 (4), 

were chosen as foci for further analysis because, among this group, these compounds 

represented the most potent inhibitors of yeast cell proliferation.  The closely related 

analogue 5564-701 (5) elicited no such growth inhibitory effects and served as a convenient 

negative control in these studies.  The structures of the five primary NPPMs of interest are 

presented in Figure 11a.   
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Figure 10. In vivo SAR analyses. 

(a) Growth of wild-type (hoΔ/HO) and sec14Δ/HO yeast strains was monitored 

at λ610nm (see Figure 8) in the presence of the indicated SMI.  IC50s are 

displayed with the corresponding test SMI (see Methods). One experiment was 

conducted. (b) Growth inhibition of wild-type (CTY182), SEC14
P-136 

(CTY374), cki1Δ (CTY303) or kes1Δ (CTY159) yeast strains by the indicated 

SMI (see Methods).  At least three independent experiments were conducted 

and the mean ± the 95% confidence interval is displayed (see Methods).  IC50s 

indicated by (
a
) were determined by visual inspection of YPD plates or 

microtiter plates supplemented with the corresponding SMI. 
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Yeast sensitivity to NPPM is a function of Sec14 expression levels 

 Dose response experiments showed that haploid yeast tolerance to NPPM challenge 

was directly proportional to cellular Sec14 levels.  NPPM 6748-481 served as representative 

SMI in these experiments as it is the most water soluble of the bioactive compounds, and was 

the most potent inhibitor of yeast growth.  The half-maximal inhibitory concentration (IC50) 

for 6748-481 was 2.9 ± 0.6 µM for wild-type haploid cells (Figure 11b).  When endogenous 

Sec14 levels were reduced approximately 7-fold (by driving SEC14 expression from a 

truncated genomic SEC14 promoter, SEC14
P-136

; Salama, Cleves et al. 1990) the IC50 fell 

proportionately (0.44 ± 0.16 µM; Figure 11b).  The effect was specific as SEC14
P-136

 

haploids were not sensitized to the biologically inactive 5564-701 (IC50 > 200µM; Figure 

11b).  Reciprocally, elevated Sec14 expression enhanced yeast resistance to the growth 

inhibitory properties of 6748-481 (Figure 11c).   
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Figure 11. NPPMs specifically inactivate Sec14. 
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(a) Chemical structures of 6748-481, 67170-49, 4130-1276, 4130-1278 and 

5564-701 are shown.  (b) Growth inhibition of the wild-type (WT) control 

strain (CTY182; red) and SEC14
P-136

 (CTY374; black) strains by 6748-481 

(●,■) or 5564-701 (▲,♦) was measured. Relative growth compares growth 

rate in presence of compound relative to the “no-drug” control (DMSO; see 

Methods). Data are plotted as a function of NPPM concentration (x-axis). 

Doubling times were measured at λ610nm and values show the mean ± s.e.m of 

normalized doubling times for each drug concentration from 3 independent 

experiments. IC50s represent the 95% confidence interval from three 

independent experiments (P*<0.0001; extra sum-of-squares F-test).  (c) Yeast 

ectopically expressing either physiological levels of Sec14 [YCp(SEC14)], or 

elevated levels of Sec14 [YEp(SEC14)], were spotted in 10-fold dilution 

series onto YPD agar supplemented either with DMSO or with 6748-481 

(20µM), as indicated, and incubated at 30°C for 48h.  (d) Sec14-catalyzed 

transfer of [
3
H]-PtdIns was monitored in vitro using purified recombinant 

Sec14 in the presence of 5564-701, 4130-1276, 6748-481 or 67170-49.  

Relative [
3
H]-PtdIns transfer is a comparison of activity in presence of NPPM 

relative to the vehicle control (DMSO; see Methods) in assays where Sec14 

protein concentration was clamped at 287nM. Values indicate the mean ± 

s.e.m of triplicate determinations from 3 independent experiments.  IC50 

values fall into the 95% confidence interval. [
3
H]-PtdIns input ranged from 

12790-16800 cpm per assay, with background ranging from 478-751 cpm.  

Transfer efficiency (% of total input) ranged from 24-32%.  (e) Purified 

recombinant Sfh proteins (10µg) were assayed for [
3
H]-PtdIns transfer in the 

presence and absence of indicated NPPM (40µM).  Values are the mean ± s.d 

of triplicate determinations from 3 independent experiments. P*=1.8202E
-11

 

and P**=4.31133E
-12

 relative to mock DMSO control (two-tailed t-test with 

heteroscedastic variance, Microsoft Excel 2010). [
3
H]-PtdIns input ranged 

from 14441-15101 cpm per assay, with background ranging from 640-657 

cpm. Transfer efficiency (% of total input) varied as a function of protein 

assayed: Sec14 (24-32%), Sfh1 (10-14%), Sfh2 (8-11%), Sfh3 (11-14%), Sfh4 

(7-12%) and Sfh5 (3-4%).   

 

NPPMs directly and selectively inhibit Sec14 in vitro 

To establish whether bioactive NPPMs target Sec14 directly, the sensitivities of 

Sec14 activity to NPPM challenge were measured in a purified system.  As Sec14 is not an 

enzyme, its activity is operationally defined by the energy-independent exchange of PtdIns 

and PtdCho monomers between liposomal membranes in vitro (Schaaf, Ortlund et al. 2008).  

In titrations where purified Sec14 was clamped at 287nM (see Methods), NPPMs 67170-49, 
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6748-481 and 4130-1276 displayed potent and dose-dependent inhibitions of Sec14-mediated 

[
3
H]-PtdIns transfer.  The IC50s ranged from 175-283nM (Figure 11d).  At these 

concentrations, the Sec14:NPPM molar stoichiometries were ca. 1:1.   

Two experiments excluded trivial possibilities that NPPMs interfere with Sec14 lipid 

exchange activities via non-specific membrane-active effects. First, a number of closely 

related, yet biologically inactive, NPPMs (e.g. 5564-701) failed to diminish Sec14-mediated 

PtdIns-transfer--even at concentrations 500-fold above the IC50s measured for the active 

NPPMs (Figure 11d; Figure 12).  Second, the NPPM sensitivities for [
3
H]-PtdIns transfer 

were assayed for each of the other five yeast Sec14-like PITPs (Sfh1-Sfh5; Li, Routt et al. 

2000).  Neither of the two Sec14-active NPPMs tested (6748-481 and 4130-1276) interfered 

with Sfh protein-dependent [
3
H]-PtdIns transfer activities at concentrations some 200-fold 

greater than the corresponding IC50s measured for Sec14 (40µM SMI; Figure 11e).  The 

indifference of Sfh proteins to NPPM challenge in vitro demonstrates a clear selectivity of 

these molecules for Sec14 as Sfh proteins share 23%-64% primary sequence identity and 

43%-89% primary sequence similarity with Sec14.  While this point is further examined 

below, the fact that Sfh1-mediated transfer activities were not inhibited by NPPMs deserves 

emphasis.  These data underscore the exquisite selectivity of the NPPMs for Sec14 as the 

functionally enigmatic Sfh1 is the closest known homolog to Sec14 (64% primary sequence 

identity) (Schaaf, Dynowski et al. 2011). 
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NPPM structure activity relationships 

 Forty-six NPPM-like molecules were evaluated for structure-activity relationships 

(SAR) for Sec14 inhibition in vitro and in vivo.  The cumulative SAR data assigned the 

relative importance of each NPPM functional group to activity as Sec14 inhibitor 

(IC50<10µM in vitro activity threshold).  Those results are summarized in Figure 13a and in 

Figures 10 and 12. SAR reported an obligatory requirement for ortho-Cl in the Cl-

nitrophenyl (i.e. activated aryl halide) moiety of NPPMs (Figures 10, 12 and 13b).  Either 

removal of the Cl- group (compare 4130-1276 to 5355-152 [6]), or shift of the Cl- to the para 

position (compare 4130-1276 to 5658-722 [7]), increased the IC50 for Sec14 inhibition by 

>500-fold (Figure 13b,d). The linker ketone that connects the Cl-nitrophenyl and piperazinyl 

groups was also important.  Modification of this group reduced NPPM potency in vitro by 

30-fold (compare 6748-481 and 5263-433 [8]).  The NO2-group contributed to NPPM 

potency as its removal resulted in an approximately 10-fold increase in the IC50 for Sec14 

PtdIns-transfer activity (compare 6748-481 and 5357-399 [9]; Figure 13d). 

With regard to the apolar end of the NPPM, addition of hydrophobic functional 

groups to the fluorobenzene tail enhanced potency by approximately 4-fold (compare 5348-

909 [10] with 6748-481, 4130-1276, 67170-49, 7276-196 [11] and 6828-980 [12]; Figure 10 

and Figure 12). Extending the linker that bridges the piperazinyl and fluorobenzene groups 

by only a single carbon also reduced NPPM potency (5348-909 vs. 5356-684 [13]; Figure 

12). 
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Figure 12. In vitro SAR analyses. 

(a) Sec14-catalyzed [
3
H]-PtdIns transfer was monitored in vitro using purified 

recombinant Sec14 in the presence of the indicated SMI. Relative [
3
H]-PtdIns 

transfer compares Sec14 activity in presence of NPPM relative to the vehicle 

control (DMSO; see Methods) in assays where Sec14 concentration was 

clamped at 287nM. IC50s are represented as the mean ± the 95% confidence 

interval of three independent experiments performed in triplicate. IC50s 

highlighted by (
a
) represent single concentration measurements where the 

IC50s exceeded the indicated value. 
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Figure 13. NPPM SAR relationships. 

(a) A summary of the contributions of each highlighted functional group of 

NPPM 6748-481 to potency as Sec14 inhibitor is depicted.  Data represent a 

compilation, and superimposition onto the 6748-481 scaffold, of IC50 

measurements for Sec14-catalyzed [
3
H]-PtdIns transfer activity for each SMI 

listed in Figure 12.  (b-f) Chemical-induced inhibition of Sec14-catalyzed 

[
3
H]-PtdIns transfer activity was monitored in the presence of the indicated 

SMI. Chemical identities for functional groups X,Y and Z are identified for 

each SMI tested, and are highlighted in red.  Relative [
3
H]-PtdIns transfer 

compares activity in presence of compound relative to the “no-drug” control 

(DMSO) in assays where Sec14 concentration was clamped at 287nM. [
3
H]-

PtdIns input ranged from 7,542-13,002 cpm per assay, with background 

ranging from 282-1,317 cpm and transfer efficiency (% of total input) ranged 

from 11% to 32%. Values indicate the mean ± s.e.m of triplicate 

determinations from three independent experiments.  IC50 values represent the 

95% confidence interval or for single concentration points a predicted IC50. 

Statistical comparisons of values used the “unpaired two-tailed t-test” where 

P***<0.0001, P**=0.0024 and P*=0.0089. 
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Sec14 inhibition and chemical nature of the NPPM halide 

 The obligate requirement for ortho-Cl on the activated aryl halide of Sec14-active 

NPPM raised the question of whether chemical nature of the halide influences NPPM 

potency.  A variable aryl halide series, represented by compounds BBV34896-755 (14), 

BBV34846-244 (15) and Z1082669-326 (16), was assembled, and 6748-481 was 

resynthesized for inclusion in the series (BBV34846-247 [17]).  Comparisons of the NPPM 

potencies for inhibition of Sec14 PtdIns-transfer activity demonstrated the Cl-, Br- and I- 

derivatives (4130-1276 and 6748-481; BBV34846-244; Z1082669-326, respectively) 

exhibited potencies superior to those of the H-, CH3- or F-derivatives (5355-152, 5348-723 

[18], BBV34896-755, respectively).  In rank order: Br-NPPM > I-NPPM > Cl-NPPM (6748-

481; BBV34846-247) >> F-NPPM, CH3-NPPM, H-NPPM (Figures 12 and 13c).  Consistent 

with the in vitro data, the -Cl, -Br and -I versions were potent growth inhibitors, whereas the 

–H, -CH3 and –F derivatives were not (Figure 10).   

Six ‘NO2-less’ derivatives differing in halide chemistry and/or position, were 

similarly evaluated (5356-628 [19], 5356-350 [20], 5567-782 [21], 5357-399, 5353-036 [22], 

7329-906 [23], 5355-139 [24], 5528-054 [25]; Figures 10, 12 and 13d).  The relative 

potencies of these compounds as Sec14 inhibitors were also directly proportional to the 

atomic mass and lipophilicities of the ortho-halide, and inversely proportional to halide 

electronegativity: I-NPPM > Br-NPPM > Cl-NPPM >> CH3-NPPM > F-NPPM > H-NPPM 

(Figures 12 and 13d).  The requirement for a properly positioned halide for SMI activity 

was similarly conserved (Figures 12 and 13e).  Results from parallel in vivo experiments 

recapitulated the in vitro data.  The IC50s for the -Cl, -Br and -I compounds for wild-type 
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yeast were 28 ± 5µM, 7.7 ± 1.5µM and 5.2 ± 1µM, respectively, whereas the -H, -CH3 and -

F derivatives were inactive (IC50s > 200µM; Figure 10).   

 

NPPM docking pose within the Sec14 phospholipid-binding pocket 

 NPPMs are amphipathic molecules that efficiently partition into apolar environments 

(ClogP ~ 3.0).  The chemical properties of Sec14-active NPPMs, when coupled with the fact 

that the compounds inhibit both Sec14 PtdIns- and PtdCho-transfer activities, suggested the 

NPPMs load into the hydrophobic pocket during phospholipid exchange.  To gain more 

precise insights into how Sec14 binds NPPMs, a virtual binding surface (~1400Å
2
) was 

modeled (see Methods). This surface formed a boundary for unconstrained docking routines 

using 6748-481 as query NPPM (Figure 14; see Methods).  Multiple independent 

simulations, using different docking platforms, produced a solution set of >3000 potential 

binding poses that reduced themselves into 6 representative modes.  These modes shared 

certain features with regard to Sec14 interactions with 6748-481, but these exhibited unique 

features as well (Figure 15a-f and Figure 16a,b).   

 Two pose classes (modes 1,2 and modes 3,4) represented mirror images of each other 

where orientations of bound 6748-481 were rotated 180º around the long axis of the NPPM.  

Another pose class (modes 5,6) shifted the 6748-481 binding site further down the 

hydrophobic pocket (Figure 15a-f).  The 6 representative modes were mapped for 

Sec14::NPPM interactions, and the fingerprints highlight how modes 5,6 slide the 6748-481 

binding site down the Sec14 pocket relative to modes 1,2 and 3,4 (Figure 15g).  Moreover, 

the interaction fingerprints highlighted how mode 5,6 poses pressed NPPM polar groups into 
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hydrophobic environments. This unappealing feature, when coupled with lack of 

experimental support for these poses (see below), led us to reject mode 5,6 poses from 

further consideration.   

A feature common to modes 1,2 and 3,4 is intercalation (in flipped orientation) of the 

6748-481 fluorobenzene tail into the narrow hydrophobic cleft lined by Sec14 residues L232, 

F228, F225, I240, F221, L179, I214, and M177 (Figure 15a-g and Figure 16a).  The fluoro-benzyl 

moiety wedges between the side chains of F228 on one side and F212 and M177 on the other -- 

thereby consolidating a network of hydrophobic and π-π stacking interactions.  A second 

common feature is inter-digitation of the 6748-481 chloro-nitrophenyl group in a hydrophilic 

subdomain of the Sec14 pocket where it is set within H-bonding distance (1.5-3.5Å) to 

residues framing the Sec14 PtdCho headgroup-coordinating substructure (S173, Y111, Y122, 

Y151 ; Figure 15g).  All modes predict NPPM-binding is sterically incompatible with 

PtdIns/PtdCho-binding (Figure 16b).   

Modes 1,2 were distinguished from modes 3,4 by the orientation of the 6748-481 

ketone. Mode 1,2 poses anchored the ketone via H-bond interactions with S201, whereas 

mode 3,4 poses projected ketone interactions with Y151.  Modes 1 and 2 were distinguished 

from each other by their mirror-image orientation of the activated aryl halide. Mode 1 poses 

anchored the nitro- group by interactions with residues S173/Y122 and the halide with 

Y111/S173.  Mode 2 poses featured nitro- and halide interactions with S173 and Y111/Y122, 

respectively. Mode 3 poses assigned interactions of the nitro- and halide groups with residues 

S173 and Y111, respectively, whereas mode 4 poses projected that both the nitro- and halide 

groups engage residues S173/Y111.  In total, the solution sets predict a number of interactions 

between the Sec14 residues S173, Y111, Y122, Y151 with the activated aryl halide of the NPPM 
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(albeit in flipped orientations), and anchor the NPPM’s ketone group to S201 or Y151.  

Together these solution sets provide several models that can be distinguished through the 

introduction of rational mutations into Sec14 to monitor for the disruption of NPPM::Sec14 

interaction pairs.   
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Figure 14 Homology model of a closed Sec14 conformer. 

 The Sec14 primary sequence was threaded onto a holo-Sfh1 structure (pdb 

3B7N) and a virtual cavity surface was defined (see Methods).  The open 

Sec14 structure (black) and the closed Sec14 model (gray) are shown.  The 

virtual surface is rendered using a hydrophobicity scale ranging from blue 

(hydrophobic) to tan (hydrophilic). 
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           Figure 15. In silico docking solutions for 6748-481 binding by Sec14. 

Simulation of NPPM binding within the Sec14 hydrophobic cavity. Pocket 

surface is rendered on the basis of lipophilicity (cyan, hydrophilic; brown, 

hydrophobic). Carbon (grey), oxygen (red), nitrogen (blue), chlorine and 

flourine (green).  (a) 220 GOLD-generated docking poses are compiled for 

6748-481 binding within the Sec14 lipid binding cavity.  (b) Top scoring 

GOLD poses selected from representative clusters illustrate the various 

potential binding modes for 6748-481 within the cavity.  (c) Representative 

poses from (b) isolated from the cavity.  (d) The 2700 binding poses for 6748-

481 generated using GLIDE are compiled.  (e) Top scoring GLIDE poses 

selected from representative clusters illustrate the different categories of 

binding modes for 6748-481 within the cavity.  (f) Representative poses from 

(e) isolated from the cavity.  (g) A qualitative representation of Sec14::NPPM 

interactions for binding modes 1-6 is shown. Interactions were defined using a 

combination of HINT scoring and MOE fingerprinting. Interactions between 

Sec14 and 6748-481 are color-coded as indicated. Strong HINT interaction is 

defined as >100 or < -100. 
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        Figure 16 Interaction fingerprints of representative 6748-481 docking poses. 

(a) Composites of 6748-481 binding modes 1-6 produced from GOLD and 

Glide docking simulations are shown (see Figure 3), and Sec14 interactions are 

depicted on the 6748-481 structure using MOE (see Methods). The interaction 

territories of the indicated Sec14 residues with the NPPM are color coded.  (b) 

2-Dimensional diagrammatic representations of binding modes 1-6 (ball 

diagrams, as indicated) are shown relative to PtdIns (blue) and PtdCho (yellow) 

binding space within the Sec14 cavity. Phospholipids are rendered in stick 

diagram.  NPPMs are color-coded according to element; carbon (grey), oxygen 

(red), nitrogen (blue), hydrogen (white), and halide (green). 
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NPPM-resistant Sec14 proteins 

 The various NPPM binding models make distinguishing experimental predictions 

which guided design of Sec14 missense substitutions predicted to diminish NPPM binding 

without affecting PtdIns/PtdCho exchange activity or biological function. The mutant Sec14 

proteins were subsequently purified and assayed for PtdIns transfer activity.  Residue S173 

was of particular interest as it was consistently identified as the highest scoring NPPM-

interacting residue in docking simulations.  Indeed, the S173C missense substitution rendered 

Sec14 completely resistant to inhibition by NPPM 6748-481 in vitro (Figure 17a-c).  

Sec14
S173C

 PtdIns-transfer activity was indifferent to 6748-481 challenge even at 

concentrations approaching the solubility limit of the NPPM (>736-fold more resistant than 

Sec14).  Because the SC missense substitution is chemically subtle, these data provide 

strong evidence for a critical interaction between S173 and 6748-481 (Figure 17a-c).  The 

resistance properties of Sec14
S173C

 translated to the other Sec14-active NPPMs (Figure 18a). 

Reductions in 6748-481 sensitivity were also scored for Sec14
S201C

, Sec14
Y111A

 and 

Sec14
Y151A

. The PtdIns-transfer activities of these proteins were 22-, 337- and 140-fold less 

sensitive to 6748-481 inhibition, respectively, whereas Sec14
Y111F

, Sec14
Y122A

, Sec14
M177C

 

and Sec14
Y122F

 showed only 3- to 5-fold reductions in the same (Figure 17a-c).  Sec14
Y151F

 

presented an interesting case as the mutant protein displayed modestly enhanced sensitivity 

to 6748-481 in vitro (Figure 17a-c).   
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Figure 17. Sec14 mutants resistant to NPPM inhibition. 

Sec14-catalyzed transfer of [
3
H]-PtdIns was measured using purified 

recombinant Sec14 proteins (287nM) in the presence of 6748-481.  (a) 

Relative [
3
H]-PtdIns transfer compares activities in presence of 6748-481 

relative to the “no-drug” control (DMSO; see Methods).  Input ranged from 

9,227-16985 cpm per assay, with background ranging from 160-724 cpm.  

Transfer efficiencies were as follows: Sec14 (24-32%), Sec14
Y111A 

(5-13%), 

Sec14
Y111F

 (38-41%), Sec14
Y122A

 (13-15%), Sec14
Y122F

 (18-27%), Sec14
Y151A 

(31-40%), Sec14
Y151F 

(31-40%), Sec14
S173C

 (22-24%), Sec14
T175C

 (5-16%), 

Sec14
S201C

 (6-11%), Sec14
M177C

, (8-10%) and Sec14
F228A

 (18-27%).  (b) 

NPPM-resistance of each of the indicated Sec14 missense mutants relative to 

Sec14 is listed.  (c) NPPM inhibition curves are shown for the indicated Sec14 

derivatives.  Values indicate the mean ± s.e.m of triplicate determinations 

from at least three independent experiments. IC50 values represent the 95% 

confidence interval. Statistical comparisons of WT to mutant IC50 values used 

the “extra sum-of-squares F-test” where P***<0.0001. 
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Figure 18. Sec14
S173C

 is resistant to inhibition by NPPMs. 

(a) [
3
H]-PtdIns transfer assays using Sec14

S173C
 or Sec14 (287nM) were run in 

the presence of 20µM of the indicated SMI.  Input [
3
H]-PtdIns ranged from 

9110-13928 cpm per assay, with protein-independent background transfer 

ranging from 422-681 cpm.  Transfer efficiencies were as follows: Sec14 (24-

32%), Sec14
S173C

 (22-24%) and Sec14
T175C

 (5-16%).  Values represent the 

mean ± s.e.m of triplicate determinations from three independent experiments.  

(b) Molecular structures of SMIs used are shown. 
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NPPMs and sec14-1
ts
 at non-permissive temperature induce a G2 cell-cycle arrest 

Although sec14-1
ts
 has been extensively studied, quantitative measurements of potential cell-

cycle disruptions have, to our knowledge, to our knowledge has never been measured.  To 

determine if sec14-1
ts
 (CTY1-1A) at non-permissive temperature (37◦C) or active-NPPM 

induce cell cycle arrest, CTY1-1A was incubated at 37◦C for three hours or in the presence of 

the active compounds NPPM 481, NPPM 49 or the inactive-NPPM 701 for three hours at 

30◦C (Figure 19).  Inactivation of Sec14 resulted in an accumulation of G2 arrested cells in 

the active drugs and at 37◦C but not in the inactive drug or DMSO at 30◦C (Figure 19). 
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Figure 19. Active-NPPMs phenocopy sec14-1
ts
 cell cycle arrest 

Wild type (CTY182) or sec14-1
ts
 (CTY1-1A) yeast were grown at 30◦C in 2% 

glucose containing YPD media overnight to mid logarithmic phase (λ600=0.5).  

The indicated strains were treated as indicated for three hours.  Cells were 

fixed and treated with propidium iodide and their DNA quantity was assayed 

by FACS (see methods).  Values indicate the % of cells in their respective 

growth phase from three independent experiments.  
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Sec14 is the sole essential NPPM target in cells 

Two lines of evidence demonstrated that Sec14 represents the sole essential NPPM 

target in cells.  First, yeast expressing Sec14
S173C

 were resistant to challenge with 6748-481 

(Figure 20a).  Additionally, the expression of several mutations at S173 and T175 were also 

resistant to 6748-481 (Figure 20b).  The second came from exploitation of ‘bypass Sec14’ 

mutants that no longer require Sec14 for viability.  Genetic inactivation of the CDP-choline 

pathway for PtdCho biosynthesis (cki1Δ), or of the oxysterol binding protein homolog Kes1 

(kes1Δ), effects ‘bypass Sec14’ (Cleves, McGee et al. 1991; Cleves, McGee et al. 1991; 

Fang, Kearns et al. 1996; Li, Rivas et al. 2002). Both cki1Δ and kes1Δ cells were indifferent 

to 6748-481, 67170-49 or 4130-1276 (Figure 20c,d).   
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Figure 20. Sec14 is the sole essential cellular target of bioactive NPPMs. 

(a) Expression of NPPM-resistant Sec14 derivatives renders cells insensitive to 

NPPM-mediated growth arrest.  Yeast expressing physiological levels of Sec14 

[YCp(SEC14); top row], or the indicated Sec14 variant, as the sole source of Sec14 in 

the cell, were diluted in a 10-fold series onto YPD agar containing DMSO, 20µM or 

40µM 6748-481, as indicated. Plates were incubated at 30°C for 48h.  (b) Experiment 

was conducted as in (a) with the addition of multiple S173 and T175 mutants.  (c) 

‘Bypass Sec14’ mutants are NPPM-resistant.  Congenic WT (CTY182), SEC14
P-136

 

(CTY374), and the sec14Δ cki1Δ (CTY303) and sec14-1
ts
 kes1Δ (CTY159) ‘bypass 

Sec14’ mutants, were analyzed as in (a).  (d) Chemical-induced growth inhibition of 

the indicated strain by 6748-481 was measured in a dose-response regime.  Relative 

growth (y-axis) compares growth rate in presence of NPPM to that of the vehicle 

control (DMSO; see Methods).  Data are plotted as a function of NPPM concentration 

(x-axis).  Values indicate the mean ± s.e.m from 3 independent experiments.  IC50 

values represent the 95% confidence interval. 
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NPPMs induce phospholipase D activity in vegetative yeast 

Phospholipase D (PLD) consumes H2O and PtdCho in trans-phosphatidylation 

reactions that produce choline and phosphatidic acid.  Activation of this enzyme in yeast is 

typically reserved for diploid cells engaged in a developmental program of meiosis in 

response to nutrient stress (Honigberg, Conicella et al. 1992; Rose, Rudge et al. 1995).  

Curiously, Sec14-deficiencies subvert this tight developmental regulation and elicit 

precocious phospholipase D activation in vegetative haploid cells.  Such potentiation of 

phospholipase D activity is not observed upon functional ablation of individual PtdIns 4-OH 

kinase isoforms, or of other PtdIns-4-phosphate effector functions we have tested (our 

unpublished data).  Yet, all ‘bypass Sec14’ mechanisms require this enhanced phospholipase 

D activity (Sreenivas, Patton-Vogt et al. 1998; Li, Routt et al. 2000; Figure 21a).  As 

phospholipase D activation is a hallmark cellular signature of Sec14 deficiencies, we tested 

whether NPPM-intoxication of vegetative yeast cells induced phospholipase D activity in 

vegetative cells in the face of a physiologically normal Sec14 load. 

Enhanced phospholipase D activity was recorded upon NPPM challenge as measured 

by phospholipase D-dependent release of free choline from cells (Figure 21b).  In these 

experiments, ‘bypass Sec14’ strain cki1Δ mutants were employed as the associated choline 

kinase deficiency renders cki1Δ cells incapable of recycling free choline back into PtdCho 

synthesis via the cytidine-diphosphate choline salvage pathway.  Additionally, it allows the 

examination of phospholipase D activity in NPPM-resistant background.  Salvage failure 

supports unobstructed accumulation of the choline liberated by phospholipase D action 

(Henry, Kohlwein et al. 2012).  As phospholipase D is a PtdIns(4,5)P2-dependent enzyme in 

vitro (Rose, Rudge et al. 1995), similar to that observed in mammals  (Hammond, Altshuller 



109 

et al. 1995; Colley, Sung et al. 1997).  The observation that phospholipase D activity is 

induced by chemical inhibition of Sec14 suggested bioactive NPPMs impose selective 

defects on cellular phosphoinositide signaling that mimic those observed in the genetic 

inactivation of Sec14 in vivo. 
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Figure 21. NPPM intoxication stimulates phospholipase D activity in 

vegetative yeast.  

(a) Wild-type, spo14Δ, sec14-1
ts
, or “bypass-Sec14” mutants and their 

corresponding spo14Δ yeast were spotted in 10-fold serial dilution on YPD 

plates ± 20µM 6748-481, as indicated, and plates incubated for 48h at 25°C or 

37°C.  (b) sec14-1
ts
, cki1Δ and sec14-1

ts
, cki1Δ, or spo14Δ strains were 

quantified for free choline release in the presence of 6748-481, 5564-701 or a 

“no-drug” DMSO vehicle control and incubated for 2h at 25°C or 37°C.  

Values represent the mean ± s.e.m calculated from triplicate determinations 

from at least three independent experiments.  P*** <0.0001 (two-tailed t-test, 

Graphpad).  D=DMSO. 
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NPPM intoxication and genetic ablation of Sec14 activity evoke similar phenotypes  

Sec14 promotes membrane trafficking through the TGN/endosomal system by 

coordinating PtdCho metabolism with production of PtdIns(4)phosphate (Cleves, McGee et 

al. 1991; Fang, Kearns et al. 1996; Mousley, Tyeryar et al. 2008).  Thermal inactivation of 

Sec14 (i.e. by shift of sec14-1
ts
 mutants to 37ºC) provoked accumulation of cargo-engorged 

TGN/endosomes in the cytoplasm (Figure 22).  These morphological phenotypes were 

recapitulated in wild-type and SEC14
P-136

 cells upon challenge with NPPMs 6748-481, 

67170-49 or 4130-1276.  Mock challenge with DMSO, or with the inactive 5564-701 control, 

had no such effect (Figure 22).  The kes1Δ and cki1Δ ‘bypass Sec14’ mutants were 

phenotypically unaffected when confronted with normally inhibitory concentrations of 6748-

481, 67170-49, or 4130-1276 (Figure 23).  Similarly, cells reconstituted for Sec14
S173C

 

expression were phenotypically unperturbed by NPPM challenge relative to the mock 

challenge (Figure 24). 

The trafficking defects induced by poisoning cells with Sec14-active NPPMs were 

also on display when transport and/or recycling of specific cargo through the 

TGN/endosomal system was analyzed.  Endocytic transport of an internalized pool of the 

bulk membrane tracer FM4-64 to the limiting vacuole membrane (Figure 25), and recycling 

to the cell surface from TGN/endosomes of endocytosed Snc1 v-SNARE, was retarded when 

cells were cultured in the presence of 6748-481, 67170-49 or 4130-1276. Mock challenge 

with DMSO, or with the inactive 5564-701 control, had no such effect (Figure 26).  

Trafficking of secretory invertase to the cell surface was similarly impaired in the face of 

6748-481, 67170-49, or 4130-1276 challenge, but not by challenge with 5564-701 or DMSO 

(Figure 27).  Furthermore, the kes1Δ ‘bypass Sec14’ mutation fully rescued the NPPM-
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induced FM4-64, GFP-Snc1, and invertase trafficking defects (Figure 28).  When cells 

expressing Sec14
S173C

 were treated with Sec14-active NPPMs, invertase secretion was again 

observed to be substantially resistant to inhibition by these compounds (Figure 29). 

The effects of NPPM challenge on transit of vacuolar carboxypeptidase Y (CPY) 

through the TGN/endosomal system were monitored by a regimen of pulse-chase 

radiolabeling. Impaired trafficking from ER or TGN compartments is diagnosed by enhanced 

accumulation of CPY precursor forms (p1 and p2, respectively (Stevens, Esmon et al. 1982).  

Indeed, pools of p1CPY, and particularly of p2CPY, accumulated when sec14-1
ts
 yeast were 

shifted to the restrictive temperature of 37ºC, and upon treatment of WT or SEC14
P-136

 cells 

with NPPMs 6748-481, 67170-49 or 4130-1276 (Figure 30).  Neither DMSO, nor 5564-701, 

impaired CPY transport from ER or TGN/endosomal compartments in wild-type or SEC14
P-

136
 cells--as evidenced by quantitative conversion of CPY to the mature form during the 

course of chase (Figure 30).  The inhibitory effects of Sec14-active NPPMs on CPY 

trafficking were both dose- and time-dependent (Figure 31), and were only poorly reversible.  

This property of poor reversibility was on display upon NPPM-washout conducted in the 

presence of cycloheximide to prevent new Sec14 synthesis.  As shown in Figure 32, 

precursor CPY forms failed to chase to mCPY – even after a 2hr washout period in the 

presence of cycloheximide.  Finally, NPPM 6748-481, 67170-49, and 4130-1276-mediated 

inhibition of CPY transit through the secretory pathway to the vacuole was efficiently 

reversed in kes1Δ and cki1Δ ‘bypass Sec14’ mutants (Figure 33 a,b), and in cells expressing 

Sec14
S173C

 as their sole Sec14 source (Figure 33c).   
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Figure 22. NPPMs induce accumulation of TGN/endosomal 

compartments.   

WT (CTY182), sec14-1
ts
 (CTY1-1A), and SEC14

P-136
 (CTY374) yeast strains 

were cultured in YPD medium to mid-logarithmic phase at 30°C, then shifted 

to a restrictive temperature for sec14-1
ts
 mutants (37°C), or treated with 

NPPM (20µM) or DMSO for 2h, as indicated.  The morphological phenotype 

associated with Sec14 insufficiency was assessed by thin section transmission 

electron microscopy, and is characterized by the accumulation, in the 

cytoplasm, of toroid structures that represent trafficking-defective cargo-

engorged TGN/endosomal compartments.  Penetrance of the membrane 

trafficking defects was scored for each condition and is expressed as a ratio of 

(# cells with sec14-like mutant phenotypes)/(total cells counted).  Between 24 

and 79 cells were evaluated for each condition.   
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Figure 23.  ‘Bypass Sec14’ are resistant to NPPM-induced accumulation 

of defective TGN/endosomal compartments.   

Isogenic sec14-1
ts
 (CTY1-1A), kes1Δ (CTY159), and cki1Δ (CTY160) 

‘bypass Sec14’ strains were cultured in YPD medium to mid-logarithmic 

phase at 30°C, then shifted to a restrictive temperature for sec14-1
ts
 mutants 

(37°C), or treated with NPPM (20µM) or DMSO for 2h, as indicated. 

Interpretation of the EM micrographs is detailed in the legend to Figure 23.  

Penetrance of the membrane trafficking phenotypes was scored for each 

experiment and is expressed as a ratio of (# cells with sec14
ts
-like trafficking 

phenotypes)/(total cells counted).  Between 26 and 123 cells were evaluated 

for each condition.   
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Figure 24. SEC14

S173C
 cells are resistant to NPPM-induced accumulation 

of defective TGN/endosomal compartments.   

Thin-section electron microscopy.  A yeast strain (CTY558) expressing either 

Sec14 or Sec14
S173C

, as their sole Sec14-source, and congenic wild-type 

(CTY182), or sec14-1
ts
 strains (CTY1-1A), were cultured in YPD medium to 

mid-logarithmic phase at 30°C.  Cultures were then shifted to 37°C, or treated 

with NPPM (20µM) or DMSO, for 2h, as indicated.  Individual cells were 

scored as having WT or sec14-mutant-like morphologies.  Incidence of cells 

with membrane trafficking defects for each condition is reported as a function 

of number of cells counted. Between 12 and 81 cells were evaluated for each 

condition.   
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Figure 25. NPPMs induce defects in bulk endocytosis. 

(a) Isogenic wild-type (CTY182) or sec14-1
ts
 (CTY1-1A) yeast strains were 

grown in YPD media to mid-logarithmic phase at 30
o
C with or without 3h 

shift to 37
o
C, or NPPM treatment (20µM) at 30

o
C, as indicated. Cells were 

pulsed with the endocytic tracer FM4-64 (10µM) for 20 min., washed into 

fresh media without dye, chased for the indicated times, then poisoned with 

NaN3/NaF (1mM final, each) on ice, and their FM4-64 profiles imaged. Bar, 

5µm.  (b) Quantification of FM4-64 profiles in (a). Penetrance of FM4-64 

localization profiles is represented as % of total cells examined (n > 200). 
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Figure 26. Endocytic recycling of GFP-Snc1 is retarded in NPPM-

intoxicated cells. 

(a) Isogenic WT (CTY182) and sec14-1
ts
 (CTY1-1A) strains were cultured in 

YPD medium to mid-logarithmic phase at 30°C, and then shifted to a 

restrictive temperature for 2h. Defective recycling is characterized by an 

accumulation of GFP-Snc1 in TGN/endosomal puncta, whereas the normal 

steady-state location for the reporter is on the plasma membrane.  Bar, 5µm.  

(b) WT yeast were cultured as in (a) with the exception that cells were treated 

with NPPM (20µM) for 2h at 30°C, as indicated.  Penetrance of GFP-Snc1 

localization in plasma membrane or TGN/endosomes is quantified as % of total 

cells examined (n > 300).  Bar, 5µm. 
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Figure 27. Sec14-active NPPMs block invertase secretion.   

(a) Invertase secretion indices for sec14-1
ts
 yeast (CTY1-1A) incubated at 

30ºC and 37ºC report secretory efficiency under Sec14-proficient and -

deficient conditions, respectively.  WT (CTY182) and SEC14
P-136

 (CTY374) 

yeast strains were challenged with NPPM (20µM) for 1h prior- and 2h post-

induction of secretory invertase synthesis by shift to low glucose medium. 

Statistics relate the experimental condition to the corresponding DMSO 

control (two-tailed unpaired t-test, p-values indicated). 
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Figure 28. ‘Bypass Sec14’ mutations correct NPPM-induced trafficking 

defects. 

When challenged with normally toxic concentrations of Sec14-active NPPMs, 

the kes1Δ ‘bypass Sec14’ mutant (CTY159) efficiently trafficked FM4-64 

(panels a and b), endocytic recycling of GFP-Snc1 (panel c), and invertase 

secretion (panel d).  The kes1Δ data in this panel were collected at the same 

time as partner experiments shown in Figure 28 so the same sec14
ts
 and WT 

data are used in this Figure.  For all image panels, bar=5µm.  The data were 

performed at the same time as the partner data sets presented in Figures 25, 

26 and 27, respectively, and quantifications were performed as so described. 
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Figure 29. Sec14
S173C

 yeast secrete invertase in the face of Sec14-active 

NPPMs. 

Culture conditions for imposing Sec14 deficiencies by temperature shift or 

NPPM challenge are as in Figure 27.  Invertase secretion indices for a sec14-

1
ts
 strain incubated at 30ºC or 37ºC report the secretory efficiency under 

Sec14-proficient and -deficient conditions, respectively.  The isogenic wild-

type (CTY182) strain provides a positive control for both conditions. A wild-

type strain (CTY182) expressing NPPM-sensitive Sec14, and its congenic 

partner (CTY558) expressing the NPPM-resistant Sec14
S173C

 as sole Sec14 

source, were challenged with the indicated NPPM (20µM) for 1h prior to, and 

2h following, induction of secretory invertase synthesis. Statistics compare the 

indicated wild-type and Sec14
S173C

 NPPM-treated conditions (two-tailed 

unpaired t-test; p-values indicated). The Sec14
S173C

 data in this panel were 

collected at the same time as partner experiments shown in Figure 27 so the 

same sec14
ts
 and wild-type data are used in this Figure. 
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Figure 30. Sec14-active NPPMs induce CPY trafficking defects. 

Isogenic wild-type (CTY182) or sec14-1
ts
 yeast (CTY1-1A) were grown to 

mid- logarithmic phase in YPD media. CPY trafficking of WT (at 30ºC or 

after shift to 37ºC for 2hrs) and sec14-1
ts
 yeast strains (at 30ºC) report CPY 

transit through the secretory pathway under Sec14-proficient conditions.  Shift 

of sec14-1
ts
 yeast to 37ºC for 2hrs reports CPY trafficking under Sec14-

deficient conditions. In parallel, wild-type (a) and SEC14
P-136

 yeast (b) were 

grown at 30ºC, and subsequently challenged with NPPM (20µM) or DMSO 

for 2hrs. Cells were radiolabeled with [
35

S]-amino acids for 20 min., a 30 min 

chase was run, samples were processed, and immunoprecipitates evaluated by 

SDS-PAGE and autoradiography (see Methods).  Precursor p1CPY and 

p2CPY forms and the fully processed vacuolar mCPY forms are identified.  

Quantification of pCPY forms (p1 + p2) as percentages of total CPY species 

are given at bottom for each condition. 
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Figure 31.  NPPM induced CPY trafficking defects are poorly reversible. 

WT (CTY182) or sec14-1
ts
 yeast (CTY1-1A) were grown to mid-logarithmic 

phase at 30ºC and treated with NPPM (20µM), DMSO, or shifted to 37°C, for 

2h as indicated at top. Cells were radiolabeled with [
35

S]-amino acid 

(20µCi/ml) for 20 min. and chase was initiated with excess unlabeled 

methionine and cysteine (final concentration, 1%) for 30 min. Subsequently, 

cells were transferred to fresh media without inhibitor and incubated at 30°C 

in the presence of cychlohexamide (100µg/ml) to inhibit new Sec14 synthesis. 

The incubation was terminated at the indicated times by addition of ice-cold 

trichloroacetic acid (final concentration, 5%). Core glycosylated proCPY (p1), 

fully glycosylated proCPY (P2), and the matured vacuolar mCPY forms are 

identified. Quantification of pCPY forms (p1 + p2) as percentages of total 

CPY species are given at bottom for each condition. 
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Figure 32. NPPM-induced CPY trafficking block is dose-and time-

dependent. 

(a) Isogenic WT and sec14-1
ts
 yeast strains (CTY182, CTY1-1A) were grown 

to mid-logarithmic phase at 30°C and shifted to 37°C to provide reference 

CPY trafficking profiles under Sec14-sufficient and –deficient conditions, 

respectively.  In parallel, SEC14
P-136

 yeast were cultured in the presence of 

6748-481 (20µm) for increasing times at 30ºC, as indicated at top.  Cells were 

subsequently radiolabeled at the indicated temperatures for 30 min, and CPY 

species evaluated by SDS-PAGE and autoradiography.  Precursor and mature 

forms of CPY are identified.  Quantification of pCPY forms (p1 + p2) as 

percentages of total CPY species are given at bottom for each condition.  (b) 

Similar experiment as in (a) except 6748-481 and 67170-49 concentrations 

were varied, as indicated at top. Quantification of pCPY forms (p1 + p2) as 

percentages of total CPY species are given at bottom for each condition. 
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Figure 33. ‘Bypass Sec14’ mutations and Sec14
S173C

 expression alleviate 

NPPM-induced CPY trafficking defects. 

(a) sec14-1
ts
 yeast (CTY1-1A) were grown to mid-logarithmic phase at 30°C 

and shifted to 37°C for 2hrs to provide reference CPY trafficking profiles 

under Sec14-sufficient and –deficient conditions, respectively.  The isogenic 

kes1Δ ‘bypass Sec14’ mutant (CTY159) was grown to mid-logarithmic phase 

at 30ºC and challenged with NPPM (20µM) or DMSO for 2hrs, as indicated at 

top. Cells were radiolabeled with [
35

S]-amino acids (20µCi/ml) for 20 min. 

Chase was initiated with excess unlabeled methionine and cysteine (final 

concentration, 1%), then terminated after 30 min with ice-cold trichloroacetic 

acid (final concentration, 5%).  Precursor and mature forms of CPY are 

identified. Quantifications of pCPY forms (p1 + p2) are reported as 

percentages of total CPY species at bottom for each condition.  (b) 

Experiment was carried out as in (a) with the isogenic cki1Δ ‘bypass Sec14’ 

mutant (CTY160).  (c) Experiment was carried out as in (a) with a yeast strain 

CTY558/YCp(SEC14
S173

) expressing Sec14
S173C

 as sole Sec14 source.  

Quantifications of pCPY forms (p1 + p2) are reported as percentages of total 

CPY species at bottom for each condition. 

 

NPPMs discriminate between chemically distinct phosphoinositide pools  

 Sec14 potentiates the activities of both of the essential yeast PtdIns 4-OH kinases in 

vivo (i.e. Stt4 and Pik1) (Hama, Schnieders et al. 1999; Phillips, Sha et al. 1999; Rivas, 
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Kearns et al. 1999; Schaaf, Ortlund et al. 2008).  We therefore tested whether bulk 

PtdIns(4)P production in cells was sensitive to inhibition by Sec14-active NPPMs. In these 

experiments, sac1 mutants inactivated for the major yeast PtdIns(4)P phosphatase were 

employed because these mutants accumulate PtdIns(4)P to high levels (Guo, Stolz et al. 

1999; Rivas, Kearns et al. 1999).  This accumulation provides the duals benefits of 

simplifying measurements of PtdIns(4)P biosynthetic rates, and by increasing the statistical 

power of PtdIns(4)P quantification. 

Challenge with 6748-481, 67170-49, 4130-1276, reduced bulk PtdIns(4)P levels by 

approximately 40% compared to the levels recorded when cells were challenged with DMSO 

or inactive NPPM 5564-701 controls (Figure 34a,b).  Neither challenge with 6748-481, nor 

with 5564-701, exerted significant reductions in bulk PtdIns(3)P or PtdIns(4,5)P2 levels when 

compared to challenge with vehicle alone (Figure 34c,d). 

The selectivity of NPPM effects on phosphoinositide homeostasis in wild-type yeast 

cells was similarly on display in vital imaging assays using isomer-selective biosensors.  To 

probe status of cellular PtdIns(4,5)P2 pools, we monitored intracellular distribution of the 

GFP-2xPH
PLCγ1

 PtdIns(4,5)P2 biosensor. This reporter localized to the yeast plasma 

membrane in the expected PtdIns(4,5)P2-dependent manner--as evidenced by biosensor 

release into the cytoplasm upon inactivation of a temperature-sensitive version of the single 

yeast PtdIns(4)P 5-OH kinase (Mss4; Figure 35).  In accord with [
3
H]-inositol radiolabeling 

data, GFP-2xPH
PLCγ1

 remained bound to the plasma membrane–even after a 3hr incubation 

of cells with Sec14-active SMIs. Moreover, release of GFP-2xPH
PLCγ1

 from the plasma 

membrane was not observed upon individual inactivation of the other PtdIns kinases.  
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The status of TGN/endosomal PtdIns(4)P pools was queried using two different 

biosensors; GFP-GOLPH3 and GFP-2xPH
Osh2

 (Roy and Levine 2004; Baird, Stefan et al. 

2008; Wood, Schmitz et al. 2009).  Optimal association of these reporters with punctate 

TGN/endosomal compartments is both Sec14- and Pik1-dependent as evidenced by their 

enhanced release from these organelles upon shift of sec14
ts
, and particularly pik1

ts
, mutants 

to non-permissive temperatures (Figure 36).  Intoxication of yeast with 6-748-481, 67170-

49, or 4130-1276 similarly released GFP-2xPH
Osh2

 from TGN/endosomal structures into the 

cytoplasm.  The effect on GFP-GOLPH3 localization was different, however, in that both 

genetic and NPPM-mediated inactivation of Sec14 effected what was primarily a structural 

transformation of the GFP-GOLPH3 compartment accompanied by some release of the 

reporter to the cytoplasm (Figure 36).  As expected, the appropriate membrane association 

profiles for both reporters were unaffected in cells devoid of PtdIns(3)P and PtdIns(3,5)P2 

(vps34Δ; Figure 36).  

In addition to the Sec14- and Pik1-dependent TGN/endosomal PtdIns(4)P pool, GFP-

2xPH
Osh2

 also scored an Stt4-dependent pool of this phosphoinositide in the plasma 

membrane (Figure 36c,d).  The dual localization of this biosensor revealed a compartmental 

pool-specificity for NPPM-mediated interference of PtdIns(4)P signaling.  Challenge of WT 

cells with 6748-481, 67170-49 or 4130-1276 (but not 5564-701 or DMSO) released GFP-

2xPH
Osh2

 from TGN/endosomal compartments without obviously compromising biosensor 

targeting to the plasma membrane (Figure 36c,d).  We had previously shown that kes1Δ 

phenotypically rescues the growth defects of pik1
ts
, but not stt4

ts
, mutants at semi-permissive 

temperatures (Li, Rivas et al. 2002)–identifying Kes1 as an antagonist of Pik1-dependent 

PtdIns(4)P signaling. Consistent with those findings, the kes1Δ ‘bypass Sec14’ mutant 
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presented undiminished GFP-2xPH
Osh2

 association with TGN/endosomal membranes in the 

face of 6748-481, 67170-49, or 4130-1276 challenge (Figure 37) suggesting that Kes1 

disruption rescues NPPM-induced trafficking defects through PtdIns(4)P signaling events in 

vivo. 
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Figure 34. Sec14-active NPPMs target specific phosphoinositide classes. 

sac1Δ yeast (CTY100) were radiolabeled with [
3
H]-Ins (10µCi/ml) for 24 

hours at 30ºC, and treated ± NPPM (20µM) or DMSO for 3hr, as indicated.  

(a) Lipids were extracted and resolved by TLC or (b) the 

glycerophosphoinositols (groPtdIns) were collected from lipid extracts, 

resolved by strong ion-exchange HPLC, and radioactivity in each 

phosphoinositide class measured. (b) PtdIns(4)P  (c) PtdIns(4,5)P2 and (d) 

PtdIns(3)P are quantified.  Statistical significance compared the NPPM 

conditions to DMSO control using two-tailed t-test (P<0.05; n = 3; Graphpad, 

see Methods). 
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Figure 35. GFP-2xPH
PLCδ1

 plasma membrane association is unperturbed 

by challenge with Sec14-active NPPMs. 
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(a) Top panels: wild-type yeast (CTY182) were intoxicated with indicated 

SMIs (20µM) for 3h at 25
o
C and GFP-2xPH

PLCδ1
 images collected (bar = 

5µm).  GFP-2xPH
PLCδ1

 profiles were scored as PM or diffuse cytoplasmic (see 

below).  Bottom panels: Data from a set of control experiments run in parallel 

with NPPM challenge experiments are shown.  Indicated PtdIns kinase 

mutants expressing GFP-2xPH
PLCδ1

 were shifted to 37
o
C for 3h--except mss4-

5
ts
 which was shifted to 37

o
C for 30 min.  The vps34Δ strain was analyzed at 

25
o
C as it is unconditionally defective for synthesis of all 3-OH 

phosphorylated phosphoinositides.  (b) Incidence of GFP-2XPH
PLC

 plasma 

membrane and endosomal localization profiles is quantified as % of total cells 

examined (n > 300) for all conditions in (a).  D=DMSO. 
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Figure 36. PtdIns(4)P biosensors. 

(a) GFP-2xPH
Osh2

 registers Stt4-generated PtdIns(4)P pools at the plasma 

membrane (see stt4-4
ts
 control) and Pik1- and Sec14-dependent pools in 

punctate TGN/endosomal compartments (pik1-83
ts
 and sec14-1

ts
 controls).  

Indicated PtdIns kinase mutants expressing GFP-2xPH
Osh2

 were shifted to 

37
o
C for 3h.  The vps34Δ strain was analyzed at 25

o
C as it is unconditionally 

defective for synthesis of all 3-OH phosphorylated phosphoinositides.  The 

mss4-5
ts
 condition was not analyzed in these experiments as we were unable 
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to generate viable mss4-5
ts
 mutants that expressed GFP-2xPH

Osh2
.  (b) GFP-

2xPH
Osh2

 distribution was scored, and >300 cells were evaluated for each 

condition.  GFP-2xPH
Osh2

 distributions were classified as PM, punctate, or 

both.  Data are expressed in three values scored from the same cell set--a PM 

value (cells showing PM localization profiles/total #cells evaluated) x 100, a 

TGN/endosomal value (cells showing punctate localization profiles/total 

#cells evaluated) x 100 or both (cells showing PM and punctate profiles/total 

#cells evaluated) x 100. ND–not determined.  (c) Cultures were grown as in 

(a) except mss4-5
ts
 yeast expressing GFP-GOLPH3 were shifted to 37

o
C for 

30 min. GFP-GOLPH3 normally associats with punctate TGN/endosomal 

compartments at steady-state. sec14-1
ts
 mutants distended the compartment at 

37ºC with some release of GFP-GOLPH3 from TGN/endosomal membranes -

- a phenotype recapitulated by NPPM-intoxicated cells (see below).  (d) GFP-

GOLPH3 distributions were scored as punctate, or not, or all conditions in (c).  

Data are expressed as (cells showing punctate localization profiles/total #cells 

evaluated) x 100%.  At least 300 cells were scored for each condition. 
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Figure 37. GFP-2xPH
Osh2

 localization to membranes is unperturbed in 

kes1Δ ‘bypass Sec14’ mutants by challenge with Sec14-active NPPMs. 

(a) A kes1Δ ‘bypass sec14’ strain (CTY159) expressing GFP-2xPH
Osh2

 was 

cultured to mid-logarithmic growth phase in uracil-free 3% glucose-

containing minimal medium supplemented with 1% casamino acids at 25
o
C.  

Cells were treated ± NPPM (20µM) for 3h at 25
o
C and the GFP-2xPH

Osh2
 

profiles imaged. Steady-state distribution of GFP-2xPH
Osh2

 to PM and 

punctate TGN/endosomal compartments was evident under all conditions 

tested (bar = 5µm).  (b) Quantification of localization profiles is expressed in 

three values scored from the same cell set--a PM value (cells showing PM 

localization profiles/total #cells evaluated) x 100, a TGN/endosomal value 

(cells showing punctate localization profiles/total #cells evaluated) x 100 or 

both (cells showing PM and punctate profiles/total #cells evaluated) x 100. At 

least 300 cells were scored for each condition. These experiments were 

performed in parallel to those described in Figure 36 c,d. 
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NPPMs discriminate between local PtdIns(4)P signaling pathways 

 The [
3
H]-inositol metabolic labeling and biosensor imaging results described above 

speak to the pool specificity with which Sec14-active SMIs disrupted phosphoinositide 

signaling as a function of chemical identity [PtdIns(4)P vs. PtdIns(4,5)P2)], and PtdIns(4)P 

signaling as a function of intracellular compartment (TGN/endosomes vs. plasma 

membrane).  Is the pool specificity even more discriminating?  The distinct biological 

activities of Sec14 and the Sec14-like Sfh4 protein provided a test of whether Sec14-active 

NPPMs distinguish between functionally diversified PtdIns(4)P signaling pathways that 

operate in the same general endomembrane system. Sec14 and Sfh4 both control PtdIns(4)P 

production in TGN/endosomes. Unlike Sec14, Sfh4-dependent PtdIns(4)P signaling supports 

phosphatidylserine (PtdSer) decarboxylation to phosphatidylethanolamine (PtdEtn) in those 

compartments (Figure 38a; Wu, Routt et al. 2000).  As PtdEtn is an essential lipid, loss of 

Sfh4 activity results in an Etn auxotrophy when the functionally redundant mitochondrial 

PtdSer decarboxylase 1 pathway is also incapacitated (psd1Δ mutants; Figure 38b, rows 3,5). 

Because Sfh4 is not inhibited in vitro by NPPMs that potently inactivate Sec14, we 

examined whether Sec14-active SMIs respect the PtdIns(4)P pool-selectivities of these 

distinct PITP-dependent metabolic circuits.  Thus, psd1Δ cells were reconstituted for 

Sec14
S173C

 expression (to circumvent growth defects associated with NPPM-mediated 

inactivation of Sec14), and the strains were intoxicated with 6748-481.  The NPPM challenge 

failed to impose Etn auxotrophy onto the PSD1 control, or onto the isogenic psd1Δ derivative 

(Figure 38b, rows 3,4)–thereby demonstrating that Sfh4 retained biological activity in the 

face of this NPPM. 
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These in vivo results were independently supported by [
3
H]-serine metabolic 

radiolabeling experiments that directly measured Sfh4-dependent decarboxylation of PtdSer 

to PtdEtn in TGN/endosomes.  NPPM 6748-481 challenge of psd1Δ mutants did not 

compromise this decarboxylation in vivo–thereby confirming intrinsic Sfh4 resistance to 

Sec14-active NPPMs.  This result was observed regardless of whether psd1Δ mutants 

expressed Sec14 (TGN/endosomal trafficking is blocked in this condition) or Sec14
S173C

 

(cells remain competent for TGN/endosomal trafficking in this condition; Figure 38c).  

Taken together, the data establish that NPPM intoxication of yeast failed to interfere with 

Sfh4-dependent PtdIns(4)P signaling in TGN/endosomes–even as this challenge strongly 

impaired Sec14-dependent PtdIns(4)P signaling in the same endomembrane system. 
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Figure 38. NPPMs discriminate between Sec14- and Sfh4-mediated 

PtdIns(4)P signaling.  

(a) Sec14 and Sfh4 control distinct PtdIns(4)P signaling pathways in 

TGN/endosomal compartments.  The Sec14-pathway couples PtdIns 4-OH 

kinase action with vesicle biogenesis, whereas the Sfh4 pathway couples 

PtdIns 4-OH kinase action with decarboxylation of PtdSer to PtdEtn. The 

decarboxylation reaction is catalyzed by Psd2 and is posited to involve a 

membrane contact site that bridges the endoplasmic reticulum (ER) with 

TGN/endosomes.  (b) WT (CTY182), sfh4Δ (PYY40), or sfh4Δ psd1Δ 

(PYY30) yeast expressing Sec14 [YCp(URA3)] or the NPPM-resistant 

Sec14
S173C

 [YCp(SEC14
S173C

)] were spotted in 10-fold dilution series on 

uracil-free minimal agar ± ethanolamine (1mM), with or without 6748-481 

(20µM), as indicated.  Plates were incubated for 96h at 30°C. (c) To monitor 

PtdSer decarboxylation, WT (CTY182), sec14-1
ts
 (CTY1-1A), psd1Δ 

(PYY23), sfh4Δ (PYY40), or sfh4Δ psd1Δ (PYY30) cells expressing either 

Sec14 or Sec14
S173C

 (as indicated) were cultured in YNB uracil-free media 

containing ethanolamine (2mM) at 30°C.  Mid-logarithmic growth phase 

cultures (λ600=0.3) were incubated in the presence of [
3
H]-serine (3.3μCi/ml) 

for a total of six hours.  At hour three, cells were presented with 6748-481 

(20μM), DMSO, or shifted to non-permissive temperature (37°C), as 

appropriate. Lipids were extracted and resolved by thin layer chromatography 

(see Methods).  PtdSer and PtdEtn species were harvested, quantified by 

liquid scintillation counting, and data expressed as the indicated 
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precursor/product ratio.  Values represent the mean ± s.e.m from at least 3 

independent experiments.  Defects in Sfh4-dependent conversion of PtdSer to 

PtdEtn are diagnosed by the high PtdSer/PtdEtn ratios characteristic of the 

psd1Δ sfh4Δ double mutant control strains.  Statistical comparisons of values 

used the ‘unpaired two-tailed t-test” relative to DMSO control, where # (P = 

0.0495), ## (P = 0.002), ** (P = 0.0051), *** (P = 0.0004). 
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Discussion of NPPM-like Sec14-directed inhibitors 

 Herein, we translate the cell biological concept that PITPs represent highly 

discriminating portals for interrogating phosphoinositide signaling to the realm of chemical 

biology.  We describe the first validated small molecule inhibitors of a PITP, and 

demonstrate an exquisite in vivo specificity of action for such compounds.  We further 

propose a chemical mechanism for how these SMIs exert their inhibitory effects.  These 

studies deliver a strong proof-of-concept that PITP-directed SMIs offer new prospects for 

intervening with cellular phosphoinositide signaling pathways, and in doing so with 

selectivities superior to those delivered by: (i) contemporary PtdIns-kinase-targeted 

strategies, or (ii) Rapalog-driven depletion of compartment-specific pools of a particular 

phosphoinositide class. 

The data identify NPPMs as Sec14-directed inhibitors. Consistent with this 

assignment, intoxication of cells with Sec14-active NPPMs comprehensively recapitulates 

the morphological and cell biological phenotypes associated with loss of Sec14 function in 

vivo.  That Sec14 is the sole essential NPPM target in yeast is established by the NPPM-

resistance of: (i) cells whose viability relies on expression of mutant NPPM-resistant Sec14 

proteins, (ii) ‘bypass Sec14’ mutants, and (iii) yeast whose viability is supported by 

expression of Sec14-like PITPs naturally resistant to NPPMs (i.e. Sfh2, Sfh4 or Sfh5).  

Moreover, the ability of NPPM to cleanly discriminate between Sfh4- and Sec14-dependent 

functions in the same endomembrane system demonstrates a strict PITP and PtdIns(4)P 

signaling pool specificity for these compounds in a physiologically relevant context. 
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NPPM-mediated inhibition of Sec14 is accompanied by the indifference of Sec14 

mutants defective in NPPM binding, and of the Sfh1- Sfh5 PITPs, to high concentrations of 

these compounds.  These findings convincingly demonstrate that NPPMs do not exert their 

Sec14-targeted effects via non-specific membrane-active mechanisms.  Rather, NPPMs 

inactivate the Sec14 protein itself.  The data are most consistent with NPPMs loading into the 

Sec14 hydrophobic pocket during a phospholipid exchange cycle and effecting a poorly 

reversible inhibition of both PtdIns- and PtdCho-transfer activities.  Docking simulations 

forecast that bound NPPM invades the space occupied by the PtdIns- and PtdCho-acyl 

chains, engages with Sec14 residues essential for PtdCho headgroup coordination.  This 

steric invasion of PtdIns/PtdCho-binding space by NPPMs accounts for how these molecules 

inactivate Sec14. 

The likelihood that NPPMs engage Sec14 pocket residues essential for coordinating 

the PtdCho headgroup offers a coherent rationale for why the Sfh2, Sfh3, Sfh4 and Sfh5 

PITPs are indifferent to NPPM challenge.  That is, these Sec14-like PITPs do not conserve 

the structural elements required for PtdCho headgroup coordination (Figure 39), and 

therefore lack the elements required for coordination of the aryl-halide moiety of the NPPM 

in the binding reaction. Sfh1 presents an interesting conundrum in that it is highly 

homologous to Sec14 (64% and 89% primary sequence identity and similarity, respectively), 

and this Sec14-like PITP conserves the functional PtdCho-binding unit critical for NPPM 

binding. Yet, Sfh1 is intrinsically resistant to inhibition by NPPMs. This issue is further 

discussed below. The Sfh1 paradox notwithstanding, all Sfh PITPs conserve the PtdIns-

binding ‘barcode’ (Schaaf, Ortlund et al. 2008; Nile, Bankaitis et al. 2010).  Therefore, the 

structural engineering of Sec14-like PITPs holds out prospects not only for developing highly 
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selective inhibitors (as shown here), but also for developing broader range inhibitors which 

target PtdIns-headgroup binding substructures. 

 

Figure 39. The Sec14 PtdIns and PtdCho binding barcodes.  

(a) T-Coffee alignments of selected Sec14-superfamily members (identified at 

left; proteins for which crystal structures are available are identified with an 

asterisk) were superimposed onto the Sfh1 crystal structure using secondary 

structural elements as guide (diagrammed at top).  Residues critical for PtdIns 

headgroup and glycerol (Gro) backbone coordination are boxed and shaded in 

cyan. Residues critical for PtdCho headgroup coordination are highlighted in 

red. Residues that contribute to the definition of acyl chain space for both 

PtdIns and PtdCho are marked with “♦”.  AA=amino acid; Sc= 

Saccharomyces cerevisiae; Sp=Schizosaccharomyces pombe; Ca=Candida 

albicans; An=Aspergillus nidulans, Hs=Homo sapiens. 
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SAR analyses establish an obligatory requirement for an ortho-halide in Sec14-active 

NPPMs, and indicate an important role for the NO2- group.  The chemical properties of such 

activated aryl halides suggest two potential mechanisms for how NPPMs effect poorly 

reversible inhibition of Sec14.  The first involves aromatic nucleophilic substitution (ANS) 

reactions where strong e
-
-withdrawing groups on the NPPM (NO2, Cl, C=O) collaborate to 

form an activated aryl halide that presents an electrophilic ring carbon unusually susceptible 

to attack by a Lewis base.  Nucleophilic attack decomposes the aromatic ring and produces a 

resonance-stabilized carbanion.  This Meisenheimer intermediate ultimately resolves into a 

covalent Sec14::NPPM adduct with halide as leaving group (Sykes 1986; Figure 40).  Sec14 

harbors four residues (Y111 , Y122, Y151, S173) positioned within 3-4 Å of the halogen group 

that could potentially act as nucleophiles (Sykes 1986), but the relative potencies of the 

compounds in the ortho-halide NPPM series are most consistent with halogen bonding 

mechanisms (Figure 41a).  

The second, ‘halogen bonding’, or ‘short oxygen-halogen interactions’, are non-

covalent interactions which confer specificity and affinity for halogenated ligands 

(Auffinger, Hays et al. 2004; Lu, Wang et al. 2009).  These mechanisms require organization 

of an electropositive ‘σ -hole’ on the charge surface of the halogen–an organization enhanced 

by vicinal e- withdrawing groups (e.g. -NO2).  Halogen bonding mechanisms predict NPPM 

potencies of –I > -Br > -Cl with –F, -CH3 and -H being inactive.  This rank order reflects the 

propensities of larger halide atoms to adopt anisotropic distributions of electrostatic 

potentials (Metrangolo and Resnati 2001; Auffinger, Hays et al. 2004).  The plausibility of 

halogen bonding mechanisms for NPPM-mediate inhibition of Sec14 is supported by 

correlation of the activities of NPPM molecules as Sec14 inhibitors with features of NPPM 
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electrostatic surface potentials.  These simulations project the activated aryl halide groups of 

NPPMs can form σ-holes, and that the magnitudes of these σ-holes (and NPPM potencies as 

Sec14 inhibitors) are inversely proportional to halide electronegativity (Figure 41a). 

The halogen bonding hypothesis allows us to refine our projections of NPPM binding 

space in the Sec14 pocket.  Taking SAR and Sec14 mutagenesis data into account, we 

propose NPPM occupancy in the Sec14 pocket is anchored by S173 engagement with ortho-

halide via a halogen bond, NO2-group engagements with Y111 and Y151, an H-bond 

interaction of the ketone group with S201, and intercalation of the NPPM fluorobenzene group 

between residues F228 of the helical gate and F212/M177 of the Sec14 pocket floor (Figure 

41b,c).  Proof of a halogen-bonding mechanism requires structural data, however, as the 

cardinal signature is a ‘short’ halide-oxygen bond whose length is less than the sum of the 

halide and oxygen van der Waals radii (Metrangolo and Resnati 2001; Auffinger, Hays et al. 

2004; Lu, Wang et al. 2009).   

Washout data indicate a poor reversibility for NPPM-mediated inhibition of Sec14 in 

vivo.  How does non-covalent NPPM binding in the Sec14 pocket exert such an inhibition?  

NPPM-mediated bridging of the pocket floor and gate sub-structures might tether these 

elements too strongly for Sec14 to spring the gate for ligand exchange upon membrane 

association.  Alternatively, NPPM may decouple the conformational switch elements 

required for gate opening for ligand exchange by disturbing the H2O network that lubricates 

the pocket surface (Ryan, Temple et al. 2007)--thereby locking Sec14 in a ‘closed’ NPPM-

bound state.  
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Why do Sec14 and Sfh1 exhibit such different NPPM-sensitivities given the high 

Sec14/Sfh1 homology?  Our current view is that subtle alterations in pocket geometry 

underlie the differential NPPM-sensitivities of these proteins.  The Sec14 pocket constricts 

tightly in the region where the apolar end of the NPPM is projected to bind--thereby fostering 

extensive interactions that anchor NPPM binding to Sec14.  The corresponding region of the 

Sfh1 pocket is more expansive, however, and we posit Sfh1 cannot anchor that domain of the 

NPPM and therefore cannot stably bind the small molecule.  Indeed, docking simulations 

consistently fail to produce coherent solutions for NPPM binding within the Sfh1 pocket.  

Either way, the remarkable differences in Sec14 and Sfh1 NPPM-sensitivities highlight the 

exquisite PITP selectivities of these SMIs.   

The collective data project Sec14-active NPPMs as valuable tool compounds in 

several respects.  First, the powerful genetic technologies afforded by the yeast system 

notwithstanding, these SMIs allow circumvention of the tedious process of incorporating 

sec14
ts
 mutations into large sets of isogenic yeast strains for purposes of executing genome-

scale functional interaction screens.  Second, the SMIs allow ‘tuning’ of Sec14 activity in 

cells--thereby providing a chemically-induced means for analyzing cellular responses to 

graded levels of Sec14 function.  Third, these SMIs are useful reagents in biochemical 

reconstitutions of membrane trafficking.  Optimal exploitation of such systems is frequently 

hindered by misbehavior, during purification, of biochemical fractions derived from mutant 

cells.  Chemical inactivation of Sec14 enables surgical manipulation of assays fully 

reconstituted with wild-type components.   

Taken together, our results firmly establish PITPs as tractable pharmacological 

targets.  As the non-enzymatic activities of these proteins complicate high-throughput 
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screening efforts, we believe cell-based phenotypic screens constitute the most attractive 

strategy for discovering new chemical modulators of PITP activities.  It is from this applied 

perspective that we have assembled a versatile platform for rational discovery of SMIs 

directed against a target PITP of the investigator’s choosing.  The platform exploits yeast 

‘tester’ strains whose survival obligatorily requires target PITP activity.  The screen is 

conducted in multiplex format where distinct PITPs are simultaneously interrogated for 

inhibition along with sentinel ‘bypass Sec14’ strains that control for ‘off-target’ effects.  This 

design feature incorporates internal specificity controls into the screen for rapid target 

validation.   

As PITPs are ubiquitously distributed across the Eukaryota (Phillips, Vincent et al. 

2006), a yeast-based PITP-directed screening platform offers a promising instrument for drug 

discovery.  For example, because expression of the structurally-unrelated mammalian 

StART-like PITPs rescues Sec14 defects in yeast (Skinner 1993), the platform can be 

repurposed for discovery of SMIs that target these mammalian PITPs.  PITP-directed 

inhibitors also empower exploration of phosphoinositide signaling in organisms intractable to 

genetic approaches.  Many such organisms are pathogens, and we have identified new classes 

of PITP-directed SMIs that inhibit dimorphic transitions of pathogenic fungi–i.e. inhibit the 

very developmental processes essential to success of these organisms as infectious agents. 
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Figure 40. Aromatic nucleophilic substitution of NPPMs.   

Aromatic nucleophilic substitution proceeds via a Meisenheimer intermediate and culminates 

in a covalent Sec14::NPPM adduct.  Potential nucleophiles for initiating Meisenheimer 

chemistry are shown.  Nu=nucleophile. 
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Figure 41. Mechanism for NPPM-mediated inhibition of Sec14.  

(a) Simulations of the electrostatic potentials of the indicated NPPM activated 

aryl halides predict formation of progressively larger electropositive σ-holes 

in the -Cl, -Br and -I activated aryl halides, respectively.  The -CH3 and -F 

derivatives are forecast to be incapable of forming significant σ-holes.  (b) 

NPPM binding mode 2 is most consistent with the various data and is depicted 

within the Sec14 hydrophobic pocket. Hydrogen bonds (magenta), carbon 

(blue), oxygen (red), nitrogen (dark blue), chlorine and fluorine (green).  (c) A 

focused view of NPPM binding mode 2 highlighting Sec14 residues which 

form the PtdCho headgroup coordinating substructure, and whose alteration 

renders Sec14 resistant to NPPM inhibition.  Hydrogen bonds (magenta), 

carbon (blue), oxygen (red), nitrogen (dark blue), chlorine and fluorine 

(green).  
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Results: alternative Sec14-directed SMIs 

Chemicogenetic profiles identified additional scaffolds predicted to inhibit Sec14 

function in vivo (Figure 42a).  All chemical scaffolds identified through the chemogenomic 

screen and those assembled with SAR analysis were further classified on the basis of 

structural similarity by applying a fragment-based hierarchical algorithm in ISIDA/Cluster 

(see Methods).  Through this analysis we subdivided all assembled compounds into 12 

structurally similar groups based on chemical similarity (Figure 42b).  Three of these 

scaffolds: identified 9131112, 9097855 and 9053361, were tested for their ability to inhibit 

Sec14-mediated PtdIns transfer activity (Figure 43) and yeast growth (Figure 44).  Based on 

this data these additional scaffolds appear to be promising lead SMIs that specifically inhibit 

Sec14 and potentially other Sec14-like proteins.   
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Figure 42. Hierarchical analysis of SAR reveals 12 structural clusters 

SMI clustering by chemical similarity.  (a) Representative 2D chemical structures of 

the indicated small molecule inhibitors.  (b) Heat map representing the tanimoto 

coefficient (i.e. similarity) matrix (right; see methods) between compounds and the 

corresponding dendrogram (left): The map is colored according to the chemical 

similarity between compounds (black-blue-violet, high similarity; yellow-red, low 

similarity).  Clusters with high levels of chemical similarity can be identified on the 

diagonal of the matrix.  Clusters 1-12 are indicated by colored boxes and SMI identity 

are located between the dendrogram and heat map. Compound numbers colored in 

red were not tested.  (c) Values were calculated using the ISIDA/Cluster program 

(http://infochim.u-strasbg.fr) (Fourches, Barnes et al. 2010). 
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Figure 43. Inhibition of Sec14-mediated PtdIns transfer activity.  

Transfer of radiolabelled phosphatidylinositol (PtdIns), as a percent of the 

untreated control (y-axis), measured in the presence of 9131-112, 9097-855, 

9053-361 and 9045-654 (an inactive derivative) at the indicated 

concentrations (x-axis).  Error bars represent the standard deviation of three 

independent experiments performed in triplicate.   
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Figure 44.  Resistance of Sec14 inhibitors to genetic ‘bypass Sec14’ 

mutants. 

Growth rate relative to the no-drug control (vehicle only; y-axis) was measured in 

increasing concentrations of 9131-112, 9097-855, 9053-361 and 9045-654 (x-axis) 

concentration.  Results for wild-type (CTY182; top panel), a SEC14 promoter mutant 

(CTY374; SEC14
P-136

), in which steady-state Sec14 protein levels are reduced ~7 fold 

relative to wild-type (second panel), the SEC14 bypass mutants, cki1Δ (CTY303; 

third panel) and kes1Δ (CTY159; bottom panel) are shown.  Plotted are the mean of 3 

replicates; error bars represent the standard error of the mean (s.e.m.).  IC50s represent 

the 95% confidence interval.  Chemical structures are shown on the right.  

 

The natural product himbacine is an active Sec14-inhibitor 

 Interestingly, the natural product himbacine was identified as a potential Sec14-

directed small molecule inhibitor (our unpublished results).  Himbacine is an alkaloid that 

was originally isolated from the bark of the Australian magnolias (Figure 45).  It is an 

inhibitor of the Muscarinic acetylcholine receptor M2 and subsequently became of interest 

for Alzheimer research (Chackalamannil, Doller et al. 2004).  Currently an analogue of 

himbacine is in clinical trials as a thrombin receptor antagonist (Chackalamannil, Wang et al. 

2008).  There are currently no reported interactions with himbacine and any Sec14-like 

protein.  Given the number of clinical trials that have utilized himbacine it will be useful to 

identify other binding partners of this natural product. 

 To determine if himbacine inhibits Sec14 we utilized a similar validation approach to 

that used in Chapter 2.  The analysis was more limited primarily resulting from limited 

commercial structural analogues and the high cost of himbacine.  Our results were as 

follows: first, himbacine inhibits yeast growth in a dose-dependent manner and changes 
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appropriately when the Sec14 cellular-load is altered (data not shown).  Second, ‘bypass 

Sec14’ yeast are insensitive to himbacine, demonstrating that Sec14 is likely himbacine’s 

sole-essential target (data not shown).  Third, himbacine inhibits Sec14-mediated transfer of 

PtdIns in vitro with an IC50 of 1164±80nM (Figure 46).  Finally, we introduced point 

mutations into the hydrophobic cavity of Sec14 that endowed himbacine resistance in vitro 

(Figure 47).  In silico docking simulations were unable to resolve coherent docking modes of 

himbacine (data not shown).  Because of this limitation, we introduced large changes at the 

Sec14 PtdCho headgroup recognition site that maintains PtdIns transfer activity but abolishes 

PtdCho exchange activity [Sec14
S173I,T175I

 (referred to as II) and Sec14
S173A,T174A 

(referred to 

as AA; Schaaf, Ortlund et al. 2008).  This data suggests that himbacine occupies space near 

the PtdCho recognition-site.  Detailed mutagenesis analyses are forthcoming. 

 

 

Figure 45.  The structure of himbacine. 

Chemical structure of himbacine. MW=345.27 g/mol 
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Figure 46. Himbacine inhibits Sec14-mediated PtdIns transfer activity in 

vitro. 

Transfer of [
3
H]-PtdIns as a percent of the untreated control (y-axis), 

measured in the presence of himbacine at the indicated concentrations (x-axis; 

in µM).  Sec14p activity is clamped at 287nM with a mass of 10µg.  The IC50 

of himbacine is 1164±80nM and represents the 95% confidence interval. 
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Figure 47. Mutations in the PtdCho binding site of Sec14 confer 

Himbacine-resistance. 

Transfer of radiolabelled phosphatidylinositol (PtdIns), as a percent of the 

untreated control (y-axis), measured in the presence of 10µM himbacine or 

the vehicle control.  Sec14
S173A,T175A

 or Sec14
S173I,T175I

 was clamped at 

287nM.  Error bars represent the standard error mean of one experiment done 

in triplicate. 

 

Sec14 inhibitors show inhibitory activity against pathogenic yeast in the Candida 

genus 

From a previous chemical screen: SMI 741 or 2-(4-chlorophenyl)-N'-[(2,4 

dimethoxybenzoyl) oxy]ethanimidamide, was identified along with NPPM 1278 as a 

potential inhibitor of Sec14 (Hoon, Smith et al. 2008).  Subsequently we selected several 

SMIs to conduct a limited SAR analysis and isolated SMI 212 as a putative inactive 

derivative of SMI 741 (Figure 48).  We demonstrated that SMI 741 shows activity against 

S.cerevisiae with an in vivo IC50 of 8.7 ± 1.4 µM (data not shown) and an in vitro IC50 of 

1.16 ± 0.11 µM (Figure 49).  Surprisingly, SMI 212 which had a poor ability to inhibit 

Sec14 in vitro (IC50 74.58 ± 17.41) had a similar in vivo profile in wild-type yeast (CTY182).  

Additionally, the three ‘bypass Sec14’ strains kes1Δ, cki1Δ and sac1Δ (CTY159, CTY160, 

and CTY100, respectively) all had in vivo IC50s of ~50µM, suggesting that these compounds 
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have off-target activity in S.cerevisiae.  Interestingly, the yeast Sec14p homologue in 

Candida albicans, CaSec14, is likely an essential gene; however, its role in dimorphic 

transition is not clear (Monteoliva, Sanchez et al. 1996).   

To monitor SMI 741’s potential as an antifungal agent, SMI 741 was incubated with 

Candida albicans in YPD media containing 10% FBS at 37◦C to promote dimorphic 

transitions.  We demonstrated that SMI 741 has the ability to inhibit dimorphic transitions in 

Candida albicans (Figure 50) and several other species within the Candida genus (Table 3; 

data not shown).  Interestingly, Candida galbrata, a pathogenic species closely related to 

Saccharomyces cerevisiaee is also inhibited by NPPM 481 (Table 3; data not shown).  This 

data suggests that NPPM 481 may act as a potent antifungal therapeutic in some Candida 

species as an inhibitor of Sec14 of Sec14-like protein.  As we discussed in Chapter 2, the 

dimorphic transition of Yarrowia lipolytica is controlled by Sec14
YL

 and shows a similar 

string of pearls phenotype as observed under SMI 741 intoxication.  Together this data 

suggests that these compounds deserve additional attention to probe their applicability as 

inhibitors of CaSec14 and potentially as therapeutic agents.   
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Figure 48.  Chemical structure of SMI 741 

Figure 48 shows the chemical structure of SMI 741 or 2-(4-chlorophenyl)-N'-[(2,4 

dimethoxybenzoyl) oxy]ethanimidamide (left) and SMI 212 or 2-(4-chlorophenyl)-

N'-[(2,4-dimethoxybenzoyl)oxy]ethanimidamide (right).   
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Figure 49.  Inhibition of Saccharomyces cerevisiae Sec14 in vitro by SMI 

741 
Transfer of [

3
H]-PtdIns as a percent of the untreated control (y-axis), measured in the 

presence of the indicated SMI at the indicated concentrations (x-axis; in µM).  

Sec14p is clamped at 287nM with a mass of 10µg.  The IC50 is indicated to the right 

and represents the 95% confidence interval.  Error bars represent the s.e.m. of three 

independent experiments. 
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Figure 50.  SMI 741 inhibits dimorphic transitions in Candida albicans. 

An overnight culture of Candida albicans was grown in 2% glucose YPD at 

30°C and transferred to the same media supplemented with 10% FBS at 37°C 

to initiate dimorphic transition.  At that time SMI 741 or the vehicle control 

(DMSO) was added, and the cells were imaged 6 hours later with differential 

interference contrast (DIC) microscopy.  The IC50 of inhibiting the dimorphic 

transition was approximately 40µM.   
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Table 3.  SMI 741 inhibits dimorphic transitions in Candida albicans 

Candida species Drug Dymorphic 

Transition? 

Dimorphic 

inhibition with 

Drug? 

Candida albicans 741 YES YES 

Candida tropicalis 741 YES YES 

Candida parapsilesis 741 YES YES 

Candida krusei 741 YES YES 

Candida kefyr 741 YES YES 

Candida galbrata 481 NO Inhibits growth 

Cultures grown at 37˚C in YPD containing 2% glucose and 10% FBS 

 

  



160 

Discussion: alternative sec14-directed inhibitors 

Many fungal pathogens are capable of reversibly transitioning between blastospore 

and hyphal growth phases, termed a dimorphic transition.  Dimorphic transitions are 

proposed to promote pathogenic activities of fungi; however, it is likely only one of many 

contributing factors (Brown and Gow 1999; Gow, Brown et al. 2002).  To investigate 

Sec14’s role in dimorphic transitions, the model system Yarrowia lipolytica was employed, 

demonstrating that the Sec14p’s homologue, Sec14
YL

, is a non-essential (probably due to 

additional isoforms), Golgi-associated protein that modulates Y.lipolytica’s dimorphic 

transition (Lopez, Nicaud et al. 1994). This transition is regulated by the delivery of plasma 

membrane and cell envelope proteins that are specific for mycelial growth.  Interestingly, this 

defect is bypassed through the addition of the neutral lipid, oleic acid (Titorenko, Ogrydziak 

et al. 1997) which enlarges lipid droplets and lowers the ratio of TAG to sterol esters in 

Y.lipolytica (Athenstaedt, Jolivet et al. 2006).  

Candida infections or candidemia, represent a large cause of nosocomial infections in 

the United States, resulting in an estimated annual mortality rate between 2800 and 11,200 

deaths.  Of the Candida species, the majority of infectious episodes are caused by Candidia 

albicans (Pfaller and Diekema 2007).  C.albicans is a commensal, dimorphic fungus, often 

found in the human gastrointestinal tract.  Most commonly, mucosal membranes are the sites 

of infection resulting in oropharyngeal, esophageal and vaginal candidiasis; however, more 

severe systemic infections can occur.  All individuals are susceptible to infection although 

contributing factors include wide spectrum antibiotics, corticosteroids, hormone therapy, and 

HIV (Calderone 2002).   
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Additionally, multiple Sec14-like and mammalian PITP protein have been cloned 

from Dictyostelium discoideum that can bind and transfer PtdIns and PtdCho (Swigart, Insall 

et al. 2000).  Recently, a novel Sec14-like protein was identified in Taenia solium or 

Sec14Tsol. T.solium is an infectious parasite found in humans and porcine that can cause 

cysticercosis or neurocysticerosis.   Sec14Tsol binds phospholipids and is localized to the 

Golgi membranes of the metacestode tegument, suggesting a potential role in host 

interactions (Montero, Gonzalez et al. 2007; Sinha and Sharma 2009).  Although antifungal 

agents exists against C.albicans (Sobel 2008) and cysticdes for T.solium (Sinha and Sharma 

2009); none probe the hydrophobic patch of Sec14, providing an attractive, and essentially 

virgin territory to combat these pathogens. 

Together this data suggests that a wide range of chemical structures are capable of 

inhibiting Sec14 activity in vivo and in vitro.  These compounds will require additional 

validation for their use as tool or therapeutic agents.  However, we have identified a number 

of lead compounds that may provide information for the development of novel SMIs directed 

against Sec14-like proteins.   
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Materials and methods 

Molecular graphics and chemical drawing 

 Molecular graphics and analyses were performed with the UCSF Chimera package 

(version 1.8; http://www.cgl.ucsf.edu/chimera/; Pettersen, Goddard et al. 2004). Marvin was 

used for drawing, displaying and characterizing chemical structures, substructures and 

reactions, Marvin 5.10.0 and 5.11.4, 2012, ChemAxon (http://www.chemaxon.com). 

Docking poses and cavity surfaces were generated using MOE suite (2011.10; Chem. Comp. 

Group Inc., Montreal, Canada). 

 

Yeast strains, media and reagents  

 Yeast media and transformation methods are described (Sherman 1983). Restriction 

endonucleases were from New England Biolabs (Ipswich, MA), standard reagents from 

Sigma (St. Louis, MO) or Fisher Scientific (Norcross, GA), and all phospholipids were 

purchased from Avanti Polar Lipids Inc. (Alabaster, AL).  [
35

S]-Translabel was purchased 

from MP Biomedicals (Irvine, CA).  Yeast strain genotypes are listed in Table 9 and 

plasmids in Tables 10 and 11.   

 

Small molecule inhibitors 

 The compounds shown in Figure 8 were from ChemDiv (San Diego, CA). SMIs 

BBV34896-755, BBV34846-244, Z1082669-326, BBV34846-247, BBV34847-734 were 

synthesized by UORSY/Ukrorgsyntez Ltd. (Riga Latvia).  Himbacine was purchased from 

http://www.cgl.ucsf.edu/chimera/
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Enzo Life Sciences.  Unless otherwise noted, all other compounds were purchased from 

ChemBridge Chemical Store, San Diego, CA (www.hit2lead.com).  SMIs were dissolved in 

DMSO (Fisher, D128-500) to a final stock concentration of 20mM and stored in the dark at 

room temperature.   

 

Chemogenomic screening 

 Pools of bar-coded homozygous and heterozygous deletion strains were grown in 

YPD + 25mM HEPES (pH 6.8) supplemented with 4130-1276 (6.7µM) for 5 and 20 

generations, respectively. Genomic DNA extraction, PCR amplification of molecular 

barcodes, and Genflex tag16k array hybridization/scanning (Affymetrix), and analysis of 

chemogenomeic data, were as described (Hoon, Smith et al. 2008). Quantile normalized 

fluorescence values for each tag were log2-transformed, and z-scores calculated: Tag z-score 

= [(average of controls)-(experimental value)]/(std. dev. of controls); where the controls were 

12 replicate samples of pools treated with DMSO. The z-score for each strain is the average 

of the two tags associated with that strain, and represents the sensitivity value.   

 

Docking simulations 

 Several independent docking platforms were used. These included; GOLD [CCDC] 

(Jones, Willett et al. 1997); Glide (Friesner, Murphy et al. 2006); QM Polarized Ligand 

Docking [QM-PLD] (Cho, Guallar et al. 2005). Details are presented in the Methods section. 

 

http://www.hit2lead.com/
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GOLD docking 

 Computational docking used the genetic algorithm-based ligand docking program 

GOLD (version 3.0.25; Jones, Willett et al. 1995; Jones, Willett et al. 1997). GOLD 

exhaustively explores ligand conformations and provides limited flexibility to protein side 

chains with -OH groups by reorienting the hydrogen bond donor and acceptor groups. The 

GOLD scoring function is based on favorable conformations found in Cambridge Structural 

Database, and on empirical results of weak chemical interactions. The active site was defined 

by a single solvent accessible point near the center of the protein active site, a radius of ~10 

Å, and the GOLD cavity detection algorithm. GOLD docking was carried out without 

constraints to obtain an unbiased result and to explore all possible ligand binding modes. 

Ligand was docked in independent runs, 50 solutions were produced for each run, (except for 

one where 20 were generated), as opposed to the default of 10, and early termination of 

ligand docking was switched off. All other parameters were as the defaults. All ligands were 

docked using the same parameters. 

 

Hydropathic scoring 

 The HINT (Hydropathic INTeractions) scoring function was used to analyze docking 

solutions (version 3.11S b; Meng, Kuntz et al. 1994; Abraham, Kellogg et al. 1997).  HINT 

evaluates each atom-atom interaction in a biomolecular complex using a parameter set 

derived from solvation partition coefficients for 1-octanol/water. The thermodynamic 

parameter Log Po/w can be directly correlated with free energy. HINT describes specific 

interactions between two molecules as:  
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 B = ΣΣ bij = ΣΣ (aiSiajSjRijTij + rij)  

where a is the hydrophobic atom constant derived from Logo/w, S is the solvent accessible 

surface area, T is a function that differentiates polar-polar interactions (acid–acid, acid–base 

or base–base), and R, r are functions of the distance between atoms i and j as previously 

described (Abraham, Kellogg et al. 1997). The binding score, bij, describes the specific 

atom–atom interaction between atoms i and j, whereas B describes the total interaction. For 

selection of the optimum docked conformation and to further differentiate the relative 

binding efficacy of the NPPM ligands, interaction scores were calculated for each pose found 

by docking. The protein and ligands were partitioned as distinct molecules. ‘Essential’ 

hydrogen atoms, that is, only those attached to polar atoms (N, O, S, P), were explicitly 

considered in the model and assigned HINT constants.  The inferred solvent model, where 

each residue is partitioned based on its hydrogen count, was applied. The solvent accessible 

surface area for the amide nitrogens was corrected with the ‘+20’ option.   

 

Glide docking 

 Protein and ligands were prepared using Protein Preparation Wizard and LigPrep 

module of Maestro 9.2 Interface of Schrodinger Suite (Schrodinger Suite 2012; Glide version 

5.8). Receptor Grids were generated without using any constraints and standard settings were 

used. Docking was performed using Standard Glide and QM-PLD modules with SP and XP 

scoring function respectively (Friesner, Banks et al. 2004; Halgren, Murphy et al. 2004; Cho, 

Guallar et al. 2005; Friesner, Murphy et al. 2006).  No similarity, torsional and inter-

molecular interaction (hydrogen bonding or hydrophobic) constraints were used. Ligand was 
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docked flexibly with nitrogen inversions and ring sampling turned on with post-docking 

minimization.  

 

PLIF 

 Protein-Ligand Interaction Fingerprint (PLIF) was calculated within MOE suite 

(2011.10; Chem. Comp. Group Inc., Montreal, Canada; Labute 2001; Clark, Labute et al. 

2006; Clark and Labute 2007).  PLIF was calculated between a closed Sec14 conformer and 

6 representative binding modes produced by the docking runs.  The protein Ligand 

Interaction Fingerprint (PLIF) is a method to encapsulate the interaction between ligands and 

proteins using a fingerprint scheme.  To generate PLIF within MOE, maximum 250 bits were 

used with Min Score 1 turned off and keeping the Min Score 2 to its default value. 

 

Hierarchical cluster analysis 

 The clustering of a chemical data set consists of merging compounds into 

independent clusters that include chemically similar molecules as determined by their 

tanimoto score.  We employed the Sequential Agglomerative Hierarchical Nonoverlapping 

(SAHN) method implemented in the ISIDA/Cluster program (http://infochim.u-strasbg.fr; 

Fourches, Barnes et al. 2010).  The ISIDA/Cluster allows visualization of molecular 

structures in each cluster to draw the heat map of the tanimoto coefficient similarity matrix, 

as well as the dynamic dendrogram of compound clusters.   

 

http://infochim.u-strasbg.fr/
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FACS sorting 

 Cells were grown to mid-logarithmic phase (OD λ600=0.5) and either subjected to a 

temperature shift or SMI intoxication for 3h.  Cells were sonicated for 10 sec. and 

resuspended in 70% ethanol overnight at room temperature.  Cells were washed twice in 

50mM Tris-HCl pH=7.8, and resuspended in 200µg of RNAseA overnight at 37°C.  Cells 

were then resuspended in 50mM Tris-HCl pH=7.8 and 2.5mg of pepsin for 30 min. at 37°C.  

Subsequently, cells were washed in 200 mM Tris-HCl pH7.5, 211 mM NaCl, 78 mM MgCl2, 

and resuspended in 0.55ml of the same buffer containing 16µg/ml of propidium iodide.  Prior 

to FACS sorting cells were again sonicated for 10 seconds to break up clumped cells.  Cells 

were analyzed with a Becton Dickinson LSRII and the data was analyzed with FlowJo (Tree 

Star, v 7.6.5) and fit to the Dean-Jett-Fox algorithm.  Values are given as a percentage of 

cells counted. 

 

Protein purification 

 Recombinant proteins were purified essentially as described (Schaaf, Ortlund et al. 

2008).  In summary, pET28b-His8-Sec14, pET28b-His8 -Sfh1, pET28b-His8 –Sfh3 and 

pET28b-His8–Sfh4 were grown in E.coli BL21 (DE3; New England BioLabs Inc, Ipswich, 

MA).  Sfh2 and Sfh5 expression was driven by pQE30-His6-Sfh2 and pQE30-His6-Sfh5 

vectors in E.coli strain KK2186 (Li, Routt et al. 2000).  Recombinant proteins of interest 

were bound to TALON metal affinity beads (Clontech, Mountain View, CA), and eluted with 

imidazole (10mM-200mM gradient) and dialyzed (Prod # 68100, Thermo Scientific, 

Rockford, IL).  In the case of Sec14, dialysis was against 300mM NaCl, 25mM Na2HPO4 
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(pH=7.5), 5mM β-mercapthoethanol.  Purified Sfh proteins were dialyzed against the same 

buffer with the exception that 50mM Na2HPO4 was used. Proteins mass was quantified by 

SDS-PAGE with BSA standard and A280.   

 

Rat liver microsomes 

 Rat liver microsomes containing [
3
H]-PtdIns were produced as previously described 

(Paulus and Kennedy 1960).  In summary, six rats were euthanized and their livers removed, 

blended and dounce homogenized 10 times in a 30% SET buffer (pH 7.4, 250 mM Sucrose, 

5mM Tris-HCL, 1mM EDTA).  The slurry was centrifuged for 10 min. at 1000xg and the 

supernatant was centrifuged for 90 min. at 95,000xg.  The pellet was resuspended in 80 ml 

cold pH=7.4, 20mM Tris-KCL. 0.8mL of 1M MnCl2 was added containing 100µCi of [
3
H]-

inositol and incubated for 2hr at 37◦C.  The slurry was centrifuged for 1hr at 95,000xg and 

the supernatant was decanted.  The pellet was serially centrifuged, resuspended and washed 

in 10mM Tris-HCL, 2mM inositol pH=8.6, then 1mM Tris-HCL, 2mM inositol, pH=8.6, and 

finally resuspended in cold SET buffer.   

 

PtdIns-transfer assays  

 [
3
H]-PtdIns-transfer assays were performed using established methods (Schaaf, 

Ortlund et al. 2008). In assays involving SMI, purified recombinant PITP was pre-incubated 

in the presence of acceptor membranes, buffer (300mM NaCl, 25mM Na2HPO4, pH 7.5) and 

SMI for 30 min. at 37°C prior to initiating the assay by addition of radiolabeled donor 

membranes.  Fractional transfer of [
3
H]-PtdIns was normalized to mock DMSO controls. 
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Nonlinear regression was applied to the dataset to calculate the best fit equation using 

[Y=100/(1+10^((LogIC50-X)*HillSlope))] in Graphpad Prism v5.0.  Statistical comparisons 

of inhibition was calculated using “extra sum-of-squares F-test” in Graphpad prism v 5.00.  

 

Statistical analyses 

 Curve fitting and t-test were performed using GraphPad Prism version 5.00 for 

Windows, GraphPad Software, La Jolla California USA (www.graphpad.com) unless 

otherwise noted. General data handling was carried out in Excel 2010 (v14.0.4734.1000, 32-

bit; Microsoft Corporation).  Statistical comparisons of [
3
H]-PtdIns transfer activities and 

growth inhibition were calculated using the “extra sum-of-squares F-test” in Graphpad prism 

v 5.00. 

 

Growth rate analyses  

 Growth assays were conducted in 96 well microtiter plates. In Figures 8 and 9, 

optical densities were measured every 15 min. over the course of 20 hours using a GENios 

microplate reader (Tecan). All other growth rates were determined as follows.  Cells were 

cultured to mid-logarithmic growth phase in YPD medium (2% glucose) and diluted to λ600 

nm=0.1 in media appropriately supplemented with SMI or DMSO. Cultures were incubated in 

96 well plates in a final volume of 250µl of YPD (2% glucose) for 10-16 hours between 

30°C and 32°C. ODs were measured every 15 min. at λ610nm (BioTek Synergy 2) or λ595nm 

(PerkinElmer VictorX3 3030 Multilabel Plate Reader).  Doubling times were calculated and 
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normalized to an internal DMSO control.  Nonlinear regression was applied to the dataset to 

calculate the best fit equation using [Y=100/(1+10^((LogIC50-X)*HillSlope))] in Graphpad 

Prism v5.0. IC50 values represent the 95% confidence interval from at least three independent 

experiments unless otherwise noted.  Statistical comparison of SMI-mediated growth 

inhibition were determined using the “extra sum-of-squares F-test” in Graphpad prism v 

5.00.   

 

[
3
H]-Serine labeling of yeast cells 

 [
3
H]-Serine radiolabeling of yeast strains was performed as previously described 

(Wu, Routt et al. 2000), with modification.  The indicated strains were grown overnight at 

30ºC in uracil- and serine-free minimal media containing glucose (3%), ethanolamine 

(2mM), and sub-cultured to a λ600nm=0.3.  Cells were metabolically radiolabeled for 3h with 

3.33µCi/ml L-[3-
3
H]-serine (ART 0246; American Radiolabeled Chemicals Inc., St. Louis, 

MO), and either shifted to 37ºC, or challenged with 6748-481 (20µM) or DMSO for 3h, as 

appropriate.  Labeling was terminated upon addition of ice-cold trichloroacetic acid (10% 

final concentration), and samples were incubated on ice for 30 min. Pellets were washed 2X 

with cold ddH2O and re-suspended in ddH2O:absolute ethanol (1:4, v/v) at 100ºC for 45 min.  

The aqueous phase was re-extracted with CHCl3:CH3OH:0.2M KCl (4:4:3.3 v/v/v).  The 

organic phase was washed 2X with PBS: CH3OH (9:10, v/v), dried under N2 gas, and the 

lipid film re-suspended in CHCl3:CH3OH (2:1, v/v) with 1mg/ml of butylated 

hydroxytoluene.  Lipids were resolved by Silica Gel H thin layer chromatography (Analtech, 

Newark, DE) in a CHCl3:2-propanol:0.25% KCl:triethylamine (30:9:6:18, v/v/v/v) solvent 
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system.  Plates were sprayed with 0.2% (w/v) 8-anilino-1-napthalenesulfonic acid, and lipids 

visualized under UV illumination. Individual lipid species were identified by internal 

standards (Avanti Lipids), collected, and radioactivity quantified by liquid scintillation 

counting. Sample loads were normalized by total cpm.   

 

Choline release assay 

 Yeast strains were cultured to mid-logarithmic growth phase at 30°C in choline-free 

yeast nitrogen base (Difco 2015-08-31) supplemented with uracil, histidine and glucose 

(2%).  Yeast were washed twice with ddH2O, resuspended in fresh choline-free media and 

challenged with SMI, DMSO and/or temperature shift to 37°C, as appropriate.  After 2h, 

cells were pelleted by centrifugation, the culture supernatant were collected and filtered 

through a 0.45µm (pore size) filter. Free choline was determined using a choline oxidase-

coupled Trinder reaction where H2O2 (produced via enzymatic oxidation of choline by 

choline oxidase; Sigma C5896) was reacted with phenol, 4-aminoantipyrine (Sigma A4382) 

and peroxidase (Sigma P6782). The resulting quinoneimine was quantified spectrophoto-

metrically at λ490nm.  Standard curves relating choline concentration (Acros A4382) to 

quinoneimine production were used to extract absolute choline concentrations (Warnick 

1986; Li, Routt et al. 2000).   
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Homology modeling of sec14 closed conformation 

 A homology model for the closed conformer of Sec14 was generated using the 

Modeller program (Šali and Blundell 1993) based on the templates of the open conformer of 

Sec14 (PDB ID 1AUA; Sha, Phillips et al. 1998) and the closed conformer of Sfh1 bound to 

PtdIns (PDB ID 3B7N; Schaaf, Ortlund et al. 2008).  Gate residues in the Sec14 open 

conformation (I215 – Y247) were removed from that template structure prior to modeling 

whereas the corresponding gate residues in the closed conformation in Sfh1/PtdIns were 

retained.  In addition, residues Ala 84–Gln 111 on the far side of the binding pocket from the 

gate were removed from the Sfh1 template prior to modeling since they were structurally 

divergent from the corresponding Sec14 residues.   

 

Site-directed mutagenesis 

 Site-directed mutations were generated using QuickChange
TM

 (Stratagene) as 

recommended by the manufacturer. Primer sequences are available from the authors by 

request. 

 

Transmission electron microscopy  

 Yeast were grown to an OD600 nm=0.5 and cultures were either shifted to 37°C for 2 

hours or challenged with 20µM SMI for 2 hours at 30°C. Cells were fixed in 3% 

glutaraldehyde, converted to spheroplasts, stained with 2% OsO4 and 2% uranyl acetate, 

dehydrated in a 50%, 70%, 90% ethanol series, and washed in 100% ethanol and 100% 

acetone, respectively.  Cell pellets were embedded into Spurr’s resin at 60°C for 48h and 
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sectioned (Adamo, Moskow et al. 2001).  Thin sections produced from strains in the SEC14
p-

136
 (CTY374) background were imaged at 80 kV on a Tecnai 12 electron microscope (FEI, 

Hillsboro, OR), and images captured using Gatan micrograph with version 3.9.3 software 

(Gatan, Pleasanton, CA).  All other samples were visualized on a Jeol 1200 EX TEM 

operated at an accelerating voltage of 100 kV.  Images were captured at calibrated 

magnifications using an optically coupled 3k slow scan CCD camera (model 15C, SIA, 

Duluth, GA) and Maxim DL imaging software. 

 

Metabolic labeling and immunoprecipitation  

 Samples were prepared as previously described with modification (Phillips, Sha et al. 

1999; Rivas, Kearns et al. 1999).  Strains were grown in minimal media lacking methionine 

and cysteine to mid-logarithmic phase (OD600nm ~ 0.5). Where indicated, cultures were 

treated with 20µM SMI or shifted to 37°C for 2h and radiolabeled with 20µCi/ml [
35

S]-

amino acids (Translabel; MP Biomedicals).  Chase was initiated by addition of unlabeled 

methionine and cysteine (2 mM each, final concentration) and terminated with trichloroacetic 

acid (5% wt/vol, final concentration).  CPY immunoprecipitation, SDS-polyacrylamide gel 

electrophoresis (PAGE), and autoradiography were performed as described (Young, Craven 

et al. 2001).  In washout experiments, cultures were pulse-radiolabeled and subjected to 

chase.  Cells were then pelleted (30sec at 4,000rpm), washed 2X with fresh YPD medium, 

resuspended in YPD containing cyclohexamide (100µg/ml), and further incubated for the 

indicated times at 30°C. Subsequently, cells were poisoned with trichloroacetic acid (5% 

wt/vol, final concentration) and samples further processed as described above. 
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Phosphoinositide analyses  

 Strains CTY182 (wild-type) or CTY100 (sec14-1
ts
, sac1Δ) were grown overnight in 

uracil-free minimal media containing 3% glucose, 1% case amino acids and labeled to steady 

state for at least 20h with 10µCi/ml [
3
H]-myo-inositol (ART 0116A; American Radiolabeled 

Chemicals Inc., St. Louis, MO).  Cells were either shifted to 37ºC, or challenged with NPPM 

or DMSO vehicle for 3h, as appropriate. Labeling was terminated with trichloroacetic acid 

(5% final concentration) and samples incubated on ice for 30 min.  Cells were pelleted 

(10,000 rpm for 1 min), washed twice in 500µl of cold ddH2O, and resuspended in 500µl 

4.5% perchloric acid.  Approximately, 300µl of 0.5mm glass beads were added and cells 

disrupted by vigorous agitation for 10 min in 1 min bursts with 1 min rest on ice.  

 In experiments where inositol-glycerophospholipids were deacylated and resolved by 

strong anion exchange HPLC, bulk lipids were extracted as previously described with 

modification (Stolz, Kuo et al. 1998).  Lipids were extracted in 2x 250µl of 

CH3CH2OH:ddH2O: (C2H5)2O:C4H9OH (15:15:5:1 vol/vol), dried under N2 gas, and 

deacylated (Clarke and Dawson 1981) by resuspension in 300µl of CH3OH:ddH2O: 

C4H9OH:CH3NH2 (0.8:0.6:0.2:0.35 vol/vol) and incubation for 30 min. at 53ºC. 100µl of 

cold CH3CH2CH2OH was added to the solution, the liquid centrifuged to dryness under 

vacuum, and the dessicate resuspended in 400µl ddH2O. The solution was extracted 2X with 

750µl 1-butanol:petroleum ether:ethyl formate (20:4:1 v/v/v), adjusted to 10mM (NH4)3PO4, 

(pH 3.5), and soluble glycero-phosphoinositols resolved and quantified by HPLC (Stolz, Kuo 

et al. 1998; Guo, Stolz et al. 1999; Rivas, Kearns et al. 1999). 
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In experiments where phosphoinositides were quantified by thin layer 

chromatography, the lysate from disrupted cells was collected and centrifuged at 13,000 rpms 

for 10 min., the pellet washed with 500µl of 100mM EDTA (pH 7.4), and resuspended in 

500µl of CHCl3:CH3OH:HCL (2:1:0.007).  A two-phase system was produced by addition of 

100µl of 0.6M HCl, the sample vortexed for 5 min., and sample centrifuged for 5 min. 

(13,000 rpm).  The organic phase was collected, washed 2X with 250µl of CH3OH:0.6M 

HCl:CHCl3 (1:0.94:0.06), dried under N2 gas and resuspended in 50µl CHCl3. Samples were 

resolved by thin layer chromatography on Partisil LK6DF 60Å silica gel plates (Whatman, 

Cat# 4866-821) using a CHCl3:CH3OH:ddH2O:NH4OH (1:0.83:0.15:0.1) solvent system.  

Lipids were visualized by autoradiography and quantified with ImageJ (version 1.47t, 

National Institute of Health; Schneider, Rasband et al. 2012).  

 

Fluorescence imaging 

 N-[3-Triethylammoniumpropyl]-4-[p-diethylaminophenylhexatrienyl] pyridinium 

dibromide (FM4-64; Invitrogen, Carlsbad, CA) staining was performed essentially as 

described (Vida and Emr 1995).  Cells were grown to mid-logarithmic phase (OD600 nm=0.5) 

in YPD medium at 30°C, then either shifted to 37°C for 2h or treated with 20µM SMI at 

25°C for 2 h. Subsequently, cells were pulsed with 10µM FM4-64 (Invitrogen) for 15 min. 

washed 2X in YPD media matched to the appropriate drug or temperature condition. 

Labeling was terminated at indicated times by washing cells in NaN3/NaF (1mM final 

concentration of each) and placing samples on ice prior to imaging.  
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Cultures for GFP-Snc1 imaging were grown in synthetic defined medium lacking 

uracil at 30°C.  Cells processed for imaging of phosphoinositide biosensors were collected 

from liquid cultures grown in uracil-free YNB supplemented with 3% glucose and 1% 

casamino acids at 25°C by centrifugation at 4,000 rpm for 1 min, and resuspended into fresh 

uracil-deficient medium prior to analysis.  Cells were immobilized onto a thin layer of 

growth medium with 20% gelatin (G-2500, Sigma-Aldrich), sealed under a coverslip with 

Valap, and examined at 25°C as described (Coffman, Nile et al. 2009).  The imaging system 

employed a CFI plan apochromat lambda 100x oil immersion objective lens NA 1.45 

mounted on a Nikon Ti-U microscope base (Nikon, Melville, NY) interfaced to a 

Photometrics CoolSNAP HQ2 high sensitivity monochrome CCD camera (Roper Scientific, 

Ottobrunn, Germany) or an Andor Neo sCMOS CCD camera (Andor Technology, Belfast, 

UK).  A Lumen 200 Illumination System (Prior Scientific Inc., Rockland, MA.) was used in 

conjunction with a B-2E/C (465-495nm/515-555nm;EX/EM) or G-2E/C (528-553nm/590-

650nm;EX/EM) filter set (Nikon, Melville, NY). Images were captured using the Nikon NIS 

Elements software package (Nikon, Melville, NY, version 4.10) and exported as .TIF files. 

Image analyses were performed using ImageJ (version 1.47t, National Institute of Health; 

Schneider, Rasband et al. 2012) and figures were constructed using Adobe Illustrator and 

Adobe Photoshop CS6 (version 15.0.0). 

 

Simulation of charge distribution on activated aryl halides  

Wave function calculations were carried out using the PC Spartan package 

(Wavefunction Inc. Irvine, CA; version 10 1.1.0).  Starting geometries were obtained using 



177 

Spartan’s interactive building mode, and pre-optimized using the MMFF force field. Wave 

functions were approximated using the Hartree-Fock method at the 3-21G
(
*

)
 gaussian basis 

set. Electrostatic potentials were generated onto surfaces of molecular electron densities 

(0.002 electrons per A
3
). 

 

Invertase secretion assays  

 Total and extracellular invertase activities were determined by modification of a 

previously described assay (Bankaitis, Malehorn et al. 1989). Cells were grown to mid-

logarithmic phase in YPD (2% glucose) at 30°C. Cultures were split and cells were cultured 

at 30°C ± NPPM (20µM) or DMSO or 37°C for 1h in YPD (2% glucose), as indicated.  Cells 

were then pelleted (2000g), washed twice with pre-warmed YPD (0.1% glucose), 

resuspended in the low glucose YPD medium, and incubated as before for 1.5h. To halt 

trafficking, samples were adjusted to 10mM NaN3, and incubated on ice.  The samples were 

washed 3X with 500µl ice-cold 10mM NaN3 and re-suspended in 500µl of the same. The 

samples were split into 10mM NaN3 buffers ± 0.2 % Triton X-100 (final) with the Triton-

solubilized fractions also being subjected to one cycle of freeze-thaw to generate the 

permeabilized cell fraction. The partner non-permeabilized and permeabilized samples were 

used to determine extracellular and total invertase activities, respectively, using the assay of 

Goldstein and Lampen (Goldstein and Lampen 1975).  Invertase units were expressed as 

nmoles of glucose produced per min. at 30°C.   
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Sequence alignment 

Protein sequences were acquired from the Universal Protein Resource (Consortium 

2012), aggregated using UGENE (version 1.10.1; http://ugene.unipro.ru/; Okonechnikov, 

Golosova et al. 2012), and aligned with the T-Coffee module using the default settings 

(Notredame, Higgins et al. 2000). Homologous sequences were superimposed onto structural 

models (PDB IDs 1AUA, 1OLM, 3B7Z, 4FMM) to highlight the PtdIns/PtdCho lipid 

binding barcode (Schaaf, Ortlund et al. 2008; Nile, Bankaitis et al. 2010). 

 

NPPM chemogenomic interactions 

Interactions were determined according to their Gene Ontology (GO) descriptors (Ashburner, 

Ball et al. 2000).  Data sets from chemogenomic profiling were analyzed and enriched gene 

sets were chosen that had Z-scores greater than 4. Gene-sets that did not pass enrichment 

threshold are not shown.    

 

Table 4. Chapter two summary 

Validation of Sec14-direced small molecule inhibitors 

 Validation of Sec14 as a direct target for NPPMs. 

 Sec14 is the sole essential cellular NPPM target. 

 Demonstration of the exquisite phosphoinositide and PtdIns(4)P pathway 

selectivity shown by these compounds in vivo. 

http://ugene.unipro.ru/
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 Demonstration of the suitability of PITPs as novel targets for specific 

dissection of phosphoinositide signaling pathways in eukaryotic cells. 
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CHAPTER 3: MEASURING AND MODULATING PHOSPHOINOSITIDE 

SIGNALING IN CELLS 

Overview 

Phosphatidylinositol phosphates (PIPs) regulate virtually all aspects of cellular 

function and have been intensely studied for decades.  The study of phosphoinositide 

signaling has been facilitated by the development of tools to monitor and alter cellular PtdIns 

phosphate levels, activity, and localization.  In this Chapter, I will discuss methods used to 

track and modify PIPs in vivo.  Additionally, I will discuss many of the tools currently being 

employed for the attenuation of PIP signaling with focus on small molecule inhibitors of PIP-

modifying enzymes.  As I discussed in Chapter 1, phosphatidylinositol transfer proteins 

(PITPs) provide attractive targets for chemical intervention as they channel the activity of 

phosphatidylinositol kinases.  These proteins are also disrupted in a number of inherited 

mammalian diseases and are essential in a number of pathogenic organisms.  In Chapter 2, I 

designed novel and specific inhibitors of the prototype Sec14-like PITP, demonstrating that 

even highly homologous Sec14-like PITPs can be selectively inhibited.  In conclusion, I will 

discuss the future discovery of Sec14-like PITPs and proteins that genetically interact with 

Sec14 using yeast as a platform to interrogate diverse chemical libraries for novel SMIs.  
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Introduction 

All glycerophospholipids in yeast, including the major phospholipids, 

phosphatidylinositol (PtdIns), phosphatidylserine (PtdSer), phosphatidylethanolamine 

(PtdEtn), and phosphatidylcholine (PtdCho) are all derived from phosphatidic acid (PtdOH) 

(Henry, Kohlwein et al. 2012).  Each of these lipids is composed of two fatty acid molecules 

esterfied to a glycerol backbone at the sn-1 and sn-2 positions (Figure 51).  In the case of 

PtdIns, a myo-inositol is linked to a phosphatidic acid backbone linked by a phosphate group.  

PtdIns can then be phosphorylated on its inositol headgroup at the 3, 4 and/or 5 position(s) 

(D-3, D-4 or D-5, respectively) generating five unique combinations in yeast, and seven in 

mammals (Michell 2008; Figure 52).  PtdIns represents approximately 10-20 mol% of total 

cellular phospholipids where PtdIns(4)P and PtdIns(4,5)P2 are only ~0.1-1 mol% which 

translates to approximately 2-5% of all PtdIns and the other PIP derivatives are significantly 

less abundant (Balla 2013).  Even though PIPs represent a relatively minor lipid species, they 

play critical roles in virtually all aspects of cell biology (Balla and Balla 2006; Di Paolo and 

De Camilli 2006; Bankaitis, Mousley et al. 2010; Balla 2013). 

Phosphoinositides are found on the cytoplasmic face of membranes, and through the 

combinatorial phosphorylation of their inositol ring become discriminating platforms for the 

recruitment of PIP-binding domains and thus initiate signaling events (Lemmon 2003; 

Lemmon 2008).  PIP-mediated signaling events are critical to normal cellular function and 

are deranged in numerous human diseases, making their study a topic of intense research.  To 

maintain PIP homeostasis and diversification, cells have evolved numerous enzymes for their 

regulation: PtdIns hydroxyl kinases, PtdIns phosphate phosphatases, PtdIns transfer proteins 

(PITPs) and PtdIns-lipases (see Chapter 1; Balla 2013).  To facilitate the study of these 
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enzymes and PIPs, multiple techniques have been developed.  In this chapter I discuss 

techniques used to monitor and disrupt PIPs with focus on the chemical modulation of PIP-

modifying enzymes.  Additionally, I will expand upon the studies in Chapter 2 and discuss 

several screening methods we developed to identify novel chemical inhibitors of currently 

‘undrugged’ enzymes involved in a variety of lipid-signaling pathways.   

 

 

Figure 51 Structure of phosphoinositides 

Phosphatidylinositol (PtdIns) is an acidic phospholipid with a phosphatidic 

acid backbone where myo-inositol is linked via a phosphate group.  PtdIns can 

then be phosphorylated at the 3, 4 and/or 5 position(s) on the inositol ring 

(indicated in red) generating phosphatidylinositol phosphates (PIPs). 
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Figure 52. PIP diversity in yeast and mammals 

Variation of phosphoinositides in Saccharomyces cerevisiae and mammalian 

cells.  Indicated are the different PIP species found in yeast (gray box) and 

mammals (all shown PIPs). 
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Methods to monitor phosphatidylinositol phosphate status  

Cells are composed of more than 1000 unique lipid species, all of which contribute to 

cellular function, making the study, and isolation of desired lipid species difficult simply by 

their sheer diversity (van Meer 2005).  Phosphatidylinositol phosphates (PIPs) constitute a 

relatively minor lipid species in this mixture, are highly dynamic, have diverse 

phosphorylation and acyl-chain composition.  Because of these factors, the PIP signal to 

noise ratio is low and requires a robust toolset to monitor their distribution, dynamics and 

mass, to infer their signaling role(s).  Here I detail several of the most common methods used 

to monitor PIPs through both direct and indirect methods.  For more detailed explanations 

and protocols, the reader is referred to several resources (Balla, Szentpetery et al. 2009; 

Christie 2010; Davison, Bankaitis et al. 2012; Wymann and Schultz 2012).   

 

Direct measurement of phosphatidylinositol phosphates 

The biochemical measurement of PIP levels is accomplished through a variety of 

methods.  Most commonly, radioactive compounds including inorganic phosphate (
32

Pi or 

33
Pi) or [2-[

3
H]-myo-inositol] are incubated with cells, tissue, or whole animals followed by 

lipid extraction and analysis (Guillou, Stephens et al. 2007; Kim, Shanta et al. 2010).  After 

the desired incubation time and conditions, the material is harvested and the lipids are 

extracted.  Typically extraction employs a chloroform/methanol extraction followed by an 

acidified (HCl or citric acid) solvent extraction (Guillou, Stephens et al. 2007; Kim, Shanta et 

al. 2010; Nile, Tripathi et al. 2014).  Lipids are often subsequently resolved using thin layer 

chromatography (TLC; van Dongen, Zwiers et al. 1985) or alternatively, the 
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glycerolphospholipids can be chemically deacylated with methylamine and the radioactive 

inositol headgroups isolated (Clarke and Dawson 1981; Guo, Stolz et al. 1999; Rivas, Kearns 

et al. 1999; Guillou, Stephens et al. 2007; Nile, Tripathi et al. 2014).  Following extraction, 

the inositol headgroup is separated by high-performance liquid chromatography (HPLC) 

using strong anion-exchange chromatography and radioactivity is detected (e.g. β-RAM from 

LabLogic; Guo, Stolz et al. 1999; Rivas, Kearns et al. 1999; Guillou, Stephens et al. 2007).  

This technique separates the radioactive inositol headgroups by charge characteristics and is 

often favored due to its increased reproducibility and quantitative nature.  Techniques 

involving radioactivity often require: long incubations, expensive reagents, specialized 

equipment, are rarely compatible with the analysis of clinical samples (e.g. biopsies, etc.), 

and typically only monitor steady-state PIPs.  Additionally, the radiolabeling of PIPs 

measures only active-PIPs undergo turnover potentially missing ‘dormant’ pools.   

Several non-radioactive methods exist to monitor PIPs.  These methods often suffer 

from reduced sensitivity compared to radioactive methods and they are less commonly used 

in the field.  First, phospholipids can be separated by TLC and visualized by charring 

densitometry (Fewster, Burns et al. 1969; Baron, Cunningham et al. 1984).  Second, lipids 

are: isolated, deacylated, and the inositol-phosphates then separated by strong anion-

exchange HPLC and then detected with metal/indicator complexes (Mayr 1988).  This 

system monitors absorbance response when the metal is displaced and provides ~1 pmol 

detection, but not all anions can be resolved (Mayr 1988).  A more recent technique is to 

separate the deacylated PIPs after strong-anion HPLC and monitor the PIP-species using 

suppressed conductivity.  The major anionic lipid species detected by suppressed 

conductivity included PA, PIP, and PIP2, and these were detected with a ‘practical detection 
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limit’ of approximately 100pmol, however, the D-3 isoforms of monophosphorylated and 

bisphosphorylated PtdIns were measured as the shoulders of peaks.  This technique suffers 

from decreased sensitivity of approximately 1-2 log units compared to isotopic methods 

(Nasuhoglu, Feng et al. 2002).  Currently, there is a push to develop enzyme-coupled 

detection methods, however these systems still require optimization for their general use 

(Guillou, Stephens et al. 2007).   

 

Mass spectrometry 

Mass spectrometry (MS) systems are becoming increasingly sensitive and are being 

employed to monitor system-level lipid-profiles or ‘lipidomics’ with the intent to identify 

biomarker signatures and measure global lipid profiles (Wenk 2005; Wakelam, Pettitt et al. 

2007; Ivanova, Milne et al. 2009).  ‘Lipidomics’ has applied a number of methods to address 

this question including electrospray ionization (ESI)-MS, atmospheric pressure chemical 

ionization (APCI)-MS, and matrix-assisted laser desorption/ionization (MALDI)-MS (Wenk 

2005).  Theoretically, MS will provide a method to measure global nonradioactive PIP levels 

based on their phosphorylation status and also their acyl-chain characteristics (Wenk, Lucast 

et al. 2003).  Additionally, it may eventually be possible to develop MALDI-MS based 

methods with acceptable tissue-level PIP localization (Kielkowska, Niewczas et al. 2014). 

The low abundance of PIPs coupled with their acidic nature introduces a number of 

technical challenges.  Techniques have been developed to monitor PIPs by MS using ESI-

MS, MALDI-TOF-MS, and FAB-MS (Wakelam, Pettitt et al. 2007; Kim, Shanta et al. 2010; 

Kielkowska, Niewczas et al. 2014).  These techniques often allow the parallel profiling of 
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many phospholipid family members including PIPs; however, PIP and PIP2 are not 

differentiated from family members (e.g PIP [PtdIns(3)P vs. PtdIns(4)P vs. PtdIns(5)P] or 

PIP2 [PtdIns(3,4)P2 vs. PtdIns(3,4)P2 vs. PtdIns(3,4)P2]; Kielkowska, Niewczas et al. 2014).  

Although information regarding acyl chain composition can be extracted, PIPs can only be 

defined as PIP, PIP2 or PIP3 while using current MS-based methods and the results will be 

skewed towards the most abundant PIP in each class (Kielkowska, Niewczas et al. 2014).  

Therefor PIP3 is the only PIP species that can be unambiguously assigned acyl-chain 

compositions (Wakelam and Clark 2011).  MS-based methodology to measure PIPs is an 

emerging, and technically detailed field so the reader is referred to several reviews for 

additional information (Kim, Shanta et al. 2010; Wenk 2010; Wakelam and Clark 2011; 

Sparvero, Amoscato et al. 2012; Kielkowska, Niewczas et al. 2014).   

 

Isomer-specific PIP antibodies 

Isomer-specific PIP antibodies have been developed as a method to provide superior 

spatial resolution relative to more global PIP-detection methods, such as radiochemical 

labeling and mass spectrometry.  Unfortunately, their use typically requires fixation and often 

relegated their use as validation of more sophisticated PIP-monitoring systems.  I will not 

discuss anti-PIP antibodies in detail and the reader is referred to manuscripts that have 

utilized anti-PIP antibodies.  Several commercial antibodies are available that detect: 

PtdIns(3)P (Nobukuni, Joaquin et al. 2005; Dowling, Vreede et al. 2009; Zornetta, Brandi et 

al. 2010), PtdIns(4)P (Weber, Ragaz et al. 2006; Blagoveshchenskaya, Cheong et al. 2008), 

PtdIns(3,4)P2 (Bae, Ding et al. 2010), PtdIns(4,5)P2 (Hirono, Denis et al. 2004; Leloup, Shao 
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et al. 2010), PtdIns(3,5)P2 (Touchberry, Bales et al. 2010) and PtdIns(3,4,5)P3 (Weiner, 

Neilsen et al. 2002).  In addition to their role in PIP-localization, anti-PIP antibodies are 

being explored as therapeutic agents to treat diseases, such as the human immunodeficiency 

virus (HIV; Brown, Karasavvas et al. 2007).   

 

PtdIns phosphate binding domains 

The inositol headgroup of phosphatidylinositol phosphates (PIPs) are exposed to the 

cytoplasmic face of membranes, where they can selectively recruit PIP-binding domains 

based on their phosphorylation status and subsequently modulate downstream signaling 

events (Lemmon 2008).  To circumvent the limitations associated with antibodies, a number 

of groups over the last 20 years have engineered PIP binding domains to monitor the isomer-

specific PIP-landscape by fusing these proteins to reporters such as fluorescent proteins or 

quantum dots (Qdots; Lemmon 2008; Irino, Tokuda et al. 2012).  These isomer-specific PIP 

‘biosensors’ allow the visualization of intracellular PIP localization with high spatial and 

temporal resolution, providing significant insights into PIP localization and their response to 

cellular modifications.  Here we will highlight several phosphoinositide binding domains 

including: PH, PX, TUBBY, BAR, PTB, BATS, SYLF, GLUE and EHD domains.  For 

several examples of PIP-binding domains, the reader is referred to Table 5.  This is not an 

exhaustive examination of PIP-binding domains and the reader(s) is referred to review 

articles that cover these domains in significant biological and structural detail (Stahelin, Scott 

et al. ; Kutateladze 2007; Lemmon 2008; Moravcevic, Oxley et al. 2012).   
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Table 5. List of PtdIns phosphate binding domains 

Name of 

Domain 

Gene Primary Lipid 

Species 

Other 

Binding 

Partners 

Reference 

  

Plexstrin 

PtdIns(4,5)P2 PtdIns(4)P 

PtdIns(3)P 

(Harlan, Hajduk et 

al. 1994) 

 

 

 

 

 

 

 

 

 

 

 

Plexstrin 

homology (PH) 

domain 

 

DAPP1 

PtdIns(3,4,5)P3 , 

PtdIns(3,4)P2 

 (Dowler, Currie et 

al. 2000) 

 

Grp1 

 

PtdIns(3,4,5)P3 

 (Dowler, Currie et 

al. 2000) 

 

 

PLCδ1 

 

 

PtdIns(4,5)P2 

 

 

Ins(1,4,5)P3 

(Lemmon, 

Ferguson et al. 

1995; Dowler, 

Currie et al. 2000) 

 

TAPP1 

 

PtdIns(3,4)P2 

 (Dowler, Currie et 

al. 2000) 

 

TAPP2 

 

PtdIns(3,4)P2 

 (Dowler, Currie et 

al. 2000) 

 

FAPP1 

 

PtdIns(4)P + ARF 

 (Dowler, Currie et 

al. 2000) 

 

PEPP1 

 

PtdIns(3)P 

 (Dowler, Currie et 

al. 2000) 

 

AtPH1 

 

PtdIns(3)P 

 (Dowler, Currie et 

al. 2000) 

Centaurin-β2  

PtdIns(3,5)P2 

 (Dowler, Currie et 

al. 2000) 

 

Evectin-2 

 

PtdIns(3,4,5)P3 

 (Dowler, Currie et 

al. 2000) 

 

LL5a 

All PIPs  (Dowler, Currie et 

al. 2000) 

 

LL5B 

All PIPs  (Dowler, Currie et 

al. 2000) 

 

Plekstrin-2 

Multiple  (Dowler, Currie et 

al. 2000) 

 

PH30 

Multiple  (Dowler, Currie et 

al. 2000) 

  

OSBP 

 

PtdIns(4)P 

 (Levine and Munro 

2002) 

 

Akt 

PtdIns(3,4)P2 

PtdIns(3,4,5)P3 

 (Franke, Kaplan et 

al. 1997) 

 

 

Slm1 

 

PtdIns(4,5)P2 and 

DHS1-P for proper 

binding 

 (Tabuchi , Audhya 

et al. 2006; 

Gallego, Betts et 

al. 2010) 
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FYVE domains 

 

 

EEA1 

 

 

PtdIns(3)P 

 (Stenmark, 

Aasland et al. 

1996; Kutateladze 

2006) 

 

BATS 

 PtdIns(4,5)P2 

PtdIns(3)P 

  

(Fan, Nassiri et al. 

2011) 

 

 

SYLF 

 

 

SH3YL1 

PtdIns(3,4,5)P3 

PtdIns(4,5)P2 

PtdIns(3,5)P2 

  

(Hasegawa, 

Tokuda et al. 2011) 

 

DHR 

  

PtdIns(3,4,5)P3 

 (Premkumar, 

Bobkov et al. 

2010) 

 

PHD 

  

PtdIns(5)P 

 (Huang, Zhang et 

al. 2007) 

 

 

Tubby domain 

 

 

TUB 

PtdIns(4,5)P2 

PtdIns(3,4)P2 

PtdIns(3,4,5)P3 

 (Santagata, 

Boggon et al. 

2001; Szentpetery, 

Balla et al. 2009) 

Phox homology 

(PX) domain 

 PtdIns(3)P PtdIns(4,5)P2 

PtdIns(3,4)P2 

(Seet and Hong 

2006) 

FERM   

PtdIns(4,5)P2 

 (Frame, Patel et al. 

2010) 

PTB domain   

PtdIns(4,5)P2 

 (DiNitto and 

Lambright 2006) 

PTB Disabled-1 NPXY peptide and 

PtdIns 

 (Stolt, Jeon et al. 

2003) 

Eps15 homology 

(EHD) domain 

EHD1 PtdIns(3,4)P2, 

PtdIns(4,5)P2,  

PtdIns(3,5)P2, 

PtdIns(4)P 

PtdIns(5)P 

PtdIns(3,4,5)P3 

  

 

(Blume, Halbach et 

al. 2007; 

Naslavsky, 

Rahajeng et al. 

2007; Jović, 

Kieken et al. 2009) 

EHD EHD2 PtdIns(4)P 

PtdIns(3,4)P2, 

PtdIns(4,5)P2, 

PtdIns(3,4,5)P3 

  

 

(Blume, Halbach et 

al. 2007; Daumke, 

Lundmark et al. 

2007) 

EHD EHD3 PtdIns(4)P 

PtdIns(4,5)P2 

  

Blume, Halbach et 

al. 2007) 

EHD EHD4 PtdIns(4)P 

PtdIns(4,5)P2 

 Blume, Halbach et 

al. 2007) 
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PH domains 

PH (pleckstrin homology) domains were the first identified PIP-binding domains with 

high specificity and affinity (Haslam, Koide et al. 1993; Mayer, Ren et al. 1993).  There are 

at least 303 proteins in humans and 32 in S.cerevisiae that contain PH domains, making the 

PH-domain the 11
th

 most common domain (Lemmon 2007; Lemmon 2008).  PH domains 

consist of approximately 100-120 amino acids and were originally identified as regions with 

sequence homology to plekstrin (Harlan, Hajduk et al. 1994) a substrate of protein kinase C 

(PKC) in platelets (Tyers, Haslam et al. 1989) that can bind PtdIns(4,5)P2.  However, the 

specific binding of PtdIns(4,5)P2 was not shown until the examination of the PLCδ1 PH-

domain (Garcia, Gupta et al. 1995; Lemmon, Ferguson et al. 1995).  Subsequent studies 

demonstrating that other PH domains also have PIP-binding ability, including PtdIns(3,5)P2, 

PtdIns(4,5)P2, and PtdIns(3,4,5)P3 (Lemmon, Ferguson et al. 1995; Dowler, Currie et al. 

2000).  Importantly, a number of PH domains bind PtdIns(3,4,5)P3 and or PtdIns(3,4)P2 that 

propagate PtdIns(3,4,5)P3 signaling cascades including PI4L/Akt (Franke, Kaplan et al. 1997; 

Stokoe, Stephens et al. 1997) and phosphoinositide-dependent kinase-1 (PDK1; Stephens, 

Anderson et al. 1998; Currie, Walker et al. 1999; Komander, Fairservice et al. 2004).  Even 

though PH domains are commonly thought to be primarily PIP-binding domains, only 

approximately 10% of PH-domains bind PIPs.  Alternative binding partners including 

protein-protein and lipid binding interactions and these alternative functions continue to be 

investigated (Lemmon 2007; Lemmon 2008).   

As of this writing there are ~161 solved PH-domain structures submitted to the 

protein database (PDB; Pfam Accession Number PF00169).  Several classic examples of PH-

domain crystal structures include PLCδ1 (Ferguson, Lemmon et al. 1995), Dapp1-PH, Grp1-
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PH (Ferguson, Kavran et al. 2000) in addition to number of other structures (DiNitto and 

Lambright 2006).  Based on these structures it was determined that PH-domains share low 

sequence homology even though they have significant structural similarity.  In general, PH 

domains consist of a 7 stranded β-sandwhich (β1 through β7) which is capped by a COOH-

terminal α-helix where the open end is linked by three variable loops (β1-β2; β3-β4 and β6-

β7).  PH domains have a wide range of PIP binding affinities where the PIP headgroup 

recognition is primarily mediated by the length, and sequence of these variable loops, and in 

particular, the β1 to β2 loop.  The β1- β2 loop lines the PH-domain pocket, and contains the 

conserved sequence motif KXn(K/R)XR, where the basic residues provide the majority of the 

PIP headgroup interactions (Isakoff, Cardozo et al. 1998; Lemmon and Ferguson 2000; 

DiNitto and Lambright 2006; Lemmon 2007; Lemmon 2008).  A number of PH-domains 

have been utilized as isomer-specific PIP biosensors including, but not limited to, PLCδ1-PH, 

Osh2-PH, and GOLPH3 to monitor PIP distribution and dynamics in cells (see Chapter 2) 

(Stefan, Audhya et al. 2002; Roy and Levine 2004; Baird, Stefan et al. 2008; Wood, Schmitz 

et al. 2009).  Detailed reviews describing biosensor applications, structural analysis, and 

alternative PH-domain activities are available (Lemmon 2007; Lemmon 2008).   

 

PX domains 

The PX (Phox Homology) domain was originally identified and named after the two 

phagocytic NADPH oxidase (phox; phagocytic oxidase) subunits, p40
phox

 and p47
phox

 

(Ponting 1996).  Since its discovery in 1996, more than 47 mammalian and 15 yeast proteins 

have been identified that contain a PX-domain (Kutateladze 2007; Lemmon 2008).  The 
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majority of these domains are incorporated into sorting nexins some of which are commonly 

involved in the retrograde-transport of resident trans-Golgi proteins from endosomes 

specifically, through the retromer (Seet and Hong 2006; Cullen 2008; Cullen and Korswagen 

2012).  Proteins that contain PX-domains are primarily found associated PtdIns(3)P-enriched 

endosomal vesicles and vacuoles (Cozier, Carlton et al. 2002; Kutateladze 2007); however, 

they have also been shown to bind PtdIns(3,4)P2, PtdIns(3,5)P2, PtdIns(4,5)P2 and 

PtdIns(3,4,5)P3 (Kanai, Liu et al. 2001; Song, Xu et al. 2001).   

The PX domain consists of approximately 130 amino-acids and is structurally 

conserved in eukaryotes (Hiroaki, Ago et al. 2001; Kutateladze 2007).  Multiple PX-domains 

have been solved and share common structural elements despite poor sequence homology 

[e.g. (Bravo, Karathanassis et al. 2001; Kutateladze 2007)].  For more biological and 

structural details regarding PX domain containing-proteins and structural rational for PIP 

binding the reader is referred to several reviews (Kutateladze 2007; Lemmon 2007; Lemmon 

2008; Kutateladze 2010; Cullen and Korswagen 2012).   

 

GLUE domains 

The NH2-terminal GLUE (GRAM-Like Ubiquitin-binding in EAP45) domain from 

the yeast Vps36, was crystalized to 1.9Å (PDB ID code 2CAY) revealing a ‘split’ PH 

domain and shares similarity to the GRAM domain (Teo, Gill et al. 2006).  The Vps36 

GLUE domain forms a non-canonical lipid binding site that is distinct from other PH 

domains (Teo, Gill et al. 2006).  Subsequently, Vps36 was crystalized in complex with 

Vps22 and Vps25 (ESCRT-II complex; Im and Hurley 2008).  This Vps36 GLUE domain 
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contains a large sequence insertion containing two Npl4-type zinc finger domains, NZF1 and 

NZF2 (Teo, Gill et al. 2006).  The GLUE domain of Vps36 was shown to bind PtdIns(3)P 

(affinity ~0.1µM), PtdIns(4)P, PtdIns(3,4)P2, PtdIns(3,5)P2, and is the primary membrane-

targeting domain for the ESCRT-II complex in yeast (Teo, Gill et al. 2006).  Mutations in the 

GLUE domain were shown to inhibit lipid binding and caused defects in the sorting of 

ubiquinated cargo (Teo, Gill et al. 2006).  The mammalian Vps36 orthologue, Eap45, 

strongly bound PtdIns(3,4,5)P3 and PtdIns(3,4)P2 and weakly binds PtdIns(3,5)P2 in vitro as 

assayed by lipid-overlay (Slagsvold, Aasland et al. 2005).  Given the poor isofom-specificity 

of the GLUE domain it is unlikely that it will develop into a useful isoform-specific PIP 

biosensor. 

 

Tubby domains 

The tubby mouse is a naturally occuring mutation at the splice-site junction of the 3’ 

coding exon (Stubdal, Lynch et al. 2000) isolated at the Jackson Laboratory as an autosomal 

recessive mouse that shows maturity-onset obesity (Coleman and Eicher 1990), blindness 

and deafness (Ohlemiller, Hughes et al. 1995).  Through positional cloning efforts, Tub was 

identified as the phenotype-inducing gene (Kleyn, Fan et al. 1996; Noben-Trauth, Naggert et 

al. 1996).  TUB is the founding member of the tybby-like proteins or TULPs.  These proteins 

are found in diverse organisms throughout the animal- and plant-kingdoms (Boggon, Shan et 

al. 1999; Santagata, Boggon et al. 2001).  The biological-significance, structural-differences, 

and cellular distribution of TULPs will not be discussed here, and we refer the reader to 

published review articles (Carroll, Gomez et al. 2004; Mukhopadhyay and Jackson 2011).   
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Tub protein family-members are defined as having a highly conserved carboxy-

terminal domain of approximately 260 amino acids, refered to as the ‘tubby domain’with a 

less-conserved NH2-termini that resembles the activation domains from known transcription 

factors (Boggon, Shan et al. 1999).  The crystal structure of the mouse protein Tub was 

solved, revealing a 12-stranded, anti-parallel, closed β-barrel that surrounds a central α-helix 

(site of the tubby mutation) that forms most of the hydrophobic core (PDB# 1C8Z; 1.90 Å; 

Boggon, Shan et al. 1999).  Tub localizes to the plasma membrane and through lipid-binding 

assyas was demonstrated to interact with PtdIns(4,5)P2, PtdIns(3,4)P2, and PtdIns(3,4,5)P3 

but not PtdIns(3,5)P2 or any monophosphorylated phosphonositide species through its -

COOH-teminal ‘tubby’ domain.  Analysis further suggests that Tub acts as a membrane-

bound transcription regulator that translocates to the nucleus in response to PLD-dependent 

phosphoinositide hydrolysis, providing a direct link between G-protein signaling and the 

regulation of gene expression (Santagata, Boggon et al. 2001).   

To provide sturctural insights into the PIP:Tub interactions, the crystal structure of 

Tub from mouse was solved in complex with L-α-glycerophospho-D-myo-inositol(4,5)P2 

(Santagata, Boggon et al. 2001).  This PIP2 derivative binds to a positively charged cavity in 

the tubby domain.  The co-crystal strucure revealed that the conserved residue K320 

intercalates the the 4- and 5-phosphates of the inositol headgroup whereas R363 coordinates 

with the inositol ring at the 3-position and the side-chain NH2 group of N310 hydrogen-

bonds to the oxygen atoms at the 4- and 5-phosphoester position (Santagata, Boggon et al. 

2001).  These observations were confirmed through site directed-mutagenesis followed by 

lipid-binding assays that demonstrated that PIP2::Tubby interactions were abbrogated (PDB# 

1I7E;1.95Å)(Santagata, Boggon et al. 2001).  The ‘specific’ PIP2 binding activity of Tub’s 



196 

tubby domain has been exploited for use as a biosensor and it is reported to have a higher 

affinity for PIP2 than the commonly used PH
PLCδ1

 biosensor (Field, Madson et al. 2005; 

Nelson, Nahorski et al. 2008; Quinn, Behe et al. 2008; Szentpetery, Balla et al. 2009). 

 

BATS domains 

Fan et al. recently described a novel lipid binding domain from last 80 COOH-

terminal amino acids of the Barkor/Atg14(L) protein.  This region is referred to as the BATS 

domain and is the minimal subunit required to target the class III phosphatidylinositol 3-OH 

kinase complex to early autophagic structures (Fan, Nassiri et al. 2011).  Bioinformatic 

analysis suggests that 19 amino acids of the BATS domain form a classic amphipathic α-

helix wheel with hydrophobic and hydrophilic residues that align on adjacent sides of the α-

helix.  The GST-BATS domain was shown to favor membranes enriched in PtdIns(3)P and 

PtdIns(4,5)P2 but not PtdIns(4)P or PtdIns(5)P as measured by liposome binding assays.  

This domain is preferentially recruited to membranes with high curvature enriched in 

PtdIns(3)P but not PtdIns(4,5)P2 (Fan, Nassiri et al. 2011).  

 

PROPPINs 

Atg18 defines the prototype 500 amino acid β-propeller protein in S.cerevisiae that 

binds phosphoinositides and was named PROPPIN (β-propellers that bind phosphoinositides) 

(Michell, Heath et al. 2006; Lemmon 2008).  Additional PROPPINs were shown to bind 
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monophosphorylated PIPs and PtdIns(3,4)P2, in vitro (Jeffries, Dove et al. 2004; Strømhaug, 

Reggiori et al. 2004; Michell, Heath et al. 2006) 

 

SYLF domains 

The SYLF domain (also called DUF500) has been proposed to be a novel lipid 

binding domain named after SH3YL1 (SH3 domain containing Ysc84-like 1 protein), 

Ysc84p/Lsb4, Lsb3, and plant and plant FYVE domains that contain it (Hasegawa, Tokuda et 

al. 2011).  The SYLF domain is highly conserved and found in Gram-negative bacteria, also 

in eukaryotes such as mammals and green plants.  Proteins that contain SYLF domains are 

found as stand-alone proteins or in combination with more complicated multi-subunit 

proteins (Hasegawa, Tokuda et al. 2011).  The SYLF domain of SH3YL1 is an 

approximately 220 amino acids and binds PtdIns(3,5)P2, PtdIns(4,5)P2, and PtdIns(3,4,5)P3 

and to a lesser extent PA (Hasegawa, Tokuda et al. 2011).  Although the crystal structure has 

not been solved, the lipid binding capacity of this domain was isolated to positively charged 

residues on a putative ampathic NH2-terminal helical structure (residues 9-23).  Point 

mutations or deletion to this putative α-helical structure in SYLF reduced lipid binding 

(Hasegawa, Tokuda et al. 2011).   

 

EH domains 

The Eps15 homology (EH) domain was originally identified as a 70-100 amino acid 

conserved NH2-terminal region of Eps15 and is conserved from yeast to mammals 
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(Confalonieri and Di Fiore 2002; Miliaras and Wendland 2004; Naslavsky and Caplan 2011).  

Through bioinformatics analysis it was determined that there are at least 50 proteins that 

contain EH-domains (Confalonieri and Di Fiore 2002; Naslavsky and Caplan 2011).  A 

number of EH domain structures have been solved by NMR (de Beer, Carter et al. 1998; 

Koshiba, Kigawa et al. 1999; Whitehead, Tessari et al. 1999; Enmon, de Beer et al. 2000; 

Kim, Cullis et al. 2001) and crystallography (Daumke, Lundmark et al. 2007).  EH domain 

proteins are formed by of two EF-hand motifs (loop-helix-loop), connected by a short 

antiparallel β-sheet, and the residues that form the α-helicies are conserved in the majority of 

EH domains (~60% similarity) (Miliaras and Wendland 2004).  EF-hands have Ca
2+

 binding 

properties although not all EH-domain proteins maintain Ca
2+

 binding (Confalonieri and Di 

Fiore 2002).  For more detailed descriptions of the structure and variations between EHD 

domains the reader is referred to several reviews on the subject (Confalonieri and Di Fiore 

2002; Miliaras and Wendland 2004; Naslavsky and Caplan 2011).  

In addition to various protein binding partners (Confalonieri and Di Fiore 2002; 

Miliaras and Wendland 2004; Naslavsky and Caplan 2011), EHD domains have recently 

been shown to bind phosphoinositides in vitro.  All four COOH-terminal EHD domain 

containing proteins (EHD1-EHD4) in mammals bind phosphatidylinositol phosphates with 

varying specificity in vitro (Blume, Halbach et al. 2007; Daumke, Lundmark et al. 2007; 

Naslavsky, Rahajeng et al. 2007; Jović, Kieken et al. 2009).  These domains were shown to 

bind phosphatidylinositol phosphates with low affinity in vitro likely because 

oligomerization is required for optimal membrane binding (Lee, Zhao et al. 2005).  The 

crystal structure of the mouse EHD2 domain was recently crystalized and provided some 

rational as to how these EHD domains interact with PIPs.  It was suggested that the primary 
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membrane binding site is localized to poly-basic cluster within the α9 helix of EHD2 dimers 

(Daumke, Lundmark et al. 2007).  Additionally, the COOH-terminal EHD proteins may 

induce membrane curvature and may contribute to their in vivo function (Daumke, Lundmark 

et al. 2007).  Given the poor specificity it is unlikely that these domains will provide a useful 

tool construct to PIPs in vivo.   

 

FERM domains 

The FERM (4.1/ezrin/radixin/moesin) domain is typically found at the NH2-terminal 

of FERM-containing proteins (Chishti, Kim et al. 1998).  FERM domain containing proteins 

are often associated with the cytoskeleton and plasma membrane (Chishti, Kim et al. 1998).  

There are approximately 50 FERM-containing proteins across 30 genes in the human genome 

(Frame, Patel et al. 2010).  Applying sequence alignment of FERM domains from human, 

Caenorhabditis elegans, and Dictyostelium discoideum these proteins were segregated into 

three groups and classified by their predominant members: (i) talin and kindlin (ii) ERMs 

(ezrin/radixin/moesin), guanine nucleotide exchange factors (GEFs), kinases and 

phosphatases and (iii), myosin and Krev interaction trapped (KRIT) proteins (Frame, Patel et 

al. 2010).   

 The FERM domain is a cysteine-rich hydrophobic molecule that is composed of 

approximately 300 amino acids.  The crystal structure of several FERM domains have been 

solved including exrin (PDB # 1NI2; Smith, Nassar et al. 2003), moesin (Pearson, Reczek et 

al. 2000; Edwards and Keep 2001), and radixin (Hamada, Shimizu et al. 2000).  Using these 

structures, the FERM domain was divided into three sub-domains, that when combined, form 
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a three-lobed clover shape.  These lobes are classified as F1, F2 and F3:  F1 is the NH2-

terminal lobe which resembles ubiquitin, F2 is the ‘central lobe’ which resembles an acyl-

CoA binding protein, and F3 is the COOH-terminal lobe which contains a pleckstrin 

homology-phosphotyrosine binding (PH-PTB) domain (Hamada, Shimizu et al. 2000; 

Pearson, Reczek et al. 2000).  FERM domains have been isolated and bind several PIPs 

including PtdIns(3,4)P2, hoever each FERM domain is unique and must be individually 

tested (Moleirinho, Tilston-Lunel et al. 2013).  There is a large base of literature on FERM 

domains, and FERM-domain containing proteins and the reader is referred to several review 

articles (Chishti, Kim et al. 1998; Fehon, McClatchey et al. 2010.; Frame, Patel et al. 2010; 

Arpin, Chirivino et al. 2011; Moleirinho, Tilston-Lunel et al. 2013).   

 

BAR domains 

BAR (Bin-Amphiphysin-Rvs) domains are highly conserved domains that are found 

in a number of proteins involved in membrane dynamics, filopodia formation, and 

endocytosis,   (Razzaq, Robinson et al. 2001; Lee, Marcucci et al. 2002; Lemmon 2008; 

Cullen and Korswagen 2012).  The BAR domain is approximately 260 amino acids that form 

dimers with a crescent or ‘banana’ shape (Peter, Kent et al. 2004).  Since the original crystal 

structure, a number of structures have been crystalized that display with variations on the 

classic ‘banana shape’, including ‘Zeppelins’, and ‘tildes’ (Masuda and Mochizuki 2010).  

BAR domains have been shown to induce membrane deformation in PtdIns(4,5)P2 containing 

vesicles in vitro and are thought to act as sensors of membrane curvature (e.g. Snx1; Peter, 

Kent et al. 2004; van Weering, Verkade et al. 2012).  For additional information regarding 

BAR domains, and various variations such as I-BAR, and F-BAR domains, the reader is 



201 

referred to several review articles (Gallop and McMahon 2005; Lemmon 2008; Itoh and 

Takenawa 2009; Ahmed, Goh et al. 2010; Bhatia, Hatzakis et al. 2010; Campelo, Fabrikant 

et al. 2010; Madsen, Bhatia et al. 2010; Masuda and Mochizuki 2010; Cvrckova 2013).   

 

FYVE domains 

Vps34 was originally identified as VPT29 (vacuolar protein targeting) mutant in 

S.cerevisiae (Robinson, Klionsky et al. 1988).  Subsequently, Vps34 was identified as a 

homologue of the class III mammalian phosphoinositide 3-OH kinase (PI3K; Schu, 

Takegawa et al. 1993).  The disruption of Vps34 has been linked to a number of protein 

sorting (Herman and Emr 1990; Schu, Takegawa et al. 1993) and autophagic defects (Kihara, 

Noda et al. 2001).  Insights into the mechanism of action were initially made using proteins 

recruited by PtdIns(3)P in wortmannin treated cells (PtdIns 3-OH kinase inhibitor) and, for 

example, the detection of EEA1 loss of endosomal localization upon wortmannin treatment 

(early endosomal autoantigen 1; Patki, Virbasius et al. 1997).  Subsequent studies linked 

Vps34-mediated PtdIns(3)P production and the recruitment of EEA1 with proper vacuolar 

sorting (Stenmark, Aasland et al. 1996; Burd and Emr 1998; Patki, Lawe et al. 1998).  Upon 

examination of EEA1, it was shown that the EEA1 FYVE domain mediated the PtdIns(3)P-

specific recruitment of EEA1 to PtdIns(3)P enriched endosomes (Burd and Emr 1998; 

Gaullier, Simonsen et al. 1998; Patki, Lawe et al. 1998).  Together, this made a mechanistic 

link between: PtdIns(3)P synthesis, EEA1 recruitment to the membrane-cytoplasmic 

interface, and endosomal trafficking (Hayakawa, Hayes et al. 2007). 
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The binding of EEA1 FYVE domain is comprised of a cysteine-rich Zn
2+

 finger 

binding domain composed of approximately 60-70 amino acids (Stenmark, Aasland et al. 

1996; Misra and Hurley 1999).  FYVE’s name is derived from the first letter of the first four 

proteins it was originally identified in: Fab 1,YOTB, Vac 1, and EEA1 (Mu, Callaghan et al. 

1995; Stenmark, Aasland et al. 1996).  FYVE domains have been divided into two classes: 

those that specifically bind PtdIns(3)P and those that have an undetermined function 

(Tibbetts, Shiozaki et al. 2004).  Even though proteins that contain FYVE domains are 

expected to bind PtdIns(3)P and thus endosomes many do not (Hayakawa, Hayes et al. 

2007).  This variation has been attributed to: the propensity of FYVE domains to 

oligomerize, their ability to insert into membranes, and their varied electrostatic potentials 

(Hayakawa, Hayes et al. 2007).  Given the high specificity of FYVE domains for PtdIns(3)P 

they make excellent biosensors for tracking PtdIns(3)P localization in cells.   

FYVE domains are found in numerous eukaryotic proteins from yeast to man 

(Banerjee, Basu et al. 2010).  Humans are predicted to have approximately 38 gene products 

that contain FYVE domains (Hayakawa, Hayes et al. 2007; Lemmon 2008).  The crystal 

structure of several FYVE domains have been solved including the S.cerevisiae Vps27p, 

Drosophila Hrs, human EEA1, CARP2 and LMS1 (Misra and Hurley 1999; Mao, Nickitenko 

et al. 2000; Dumas, Merithew et al. 2001; Kutateladze and Overduin 2001; Tibbetts, Shiozaki 

et al. 2004).  General features of FYVE domains reveal two double-stranded antiparallel β 

sheets and a C-terminal α-helix (Kutateladze 2007).  The FYVE-domain fold is stabilized by 

the binding of two Zn
2+

 atoms that bind to four CxxC motifs (Kutateladze 2007).  For more 

details regarding FYVE domains the reader is referred to the following reviews (Stahelin, 

Scott et al. ; Hayakawa, Hayes et al. 2007; Kutateladze 2007; Lemmon 2008).   
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PIP biosensors and FRET 

 Fluorescence/Förster resonance energy transfer (FRET) a phenomenon first predicted 

by Förster in 1946 that describes the non-radioactive energy transfer from a ‘donor’ 

fluorophore to an ‘acceptor’ fluorophore that stimulates acceptor-fluorescence (Stryer and 

Haugland 1967; Cheng 2006).  The energy transfer observed in FRET is largely dependent 

on two factors.  First, as the distance of the FRET-pairs increases, the FRET efficiency is 

inversely proportional to the sixth power of the distance between the ‘donor’ and ‘acceptor’ 

fluorophores (i.e. 1/r
6
; Miller 2005).  Second, the relative orientation of the FRET-pairs also 

influences FRET efficiency.  Although this is a simplistic view of the variables, the general 

principal is that only fluorescent macromolecules-pairs in close proximity (low nm range) 

will induce FRET (Miller 2005).  These features allow for the calculation of distance 

between any two FRET-pairs and led to FRET being used as a ‘molecular-’ or ‘spectroscopic 

ruler’ (Stryer and Haugland 1967).  Subsequently genetically encoded FRET pairs were 

developed to monitor Ca
2+

 signaling in cells (Miyawaki, Llopis et al. 1997) and opened up a 

powerful ‘new’ technique that could be applied to a variety of systems (e.g. yeast, cell 

culture, whole animal, etc.).  For more general information on FRET, the reader is referred to 

several resources that describe this technique in more detail [e.g. (Miller 2005; Cheng 2006; 

Padilla-Parra and Tramier 2012; Zadran, Standley et al. 2012; Ueda, Kwok et al. 2013)]. 

Multiple FRET-based systems have been developed to monitor PIP interactions.  For 

example, the CFP- PH
PLCδ1

 and YFP-PH
PLCδ1

 domains have been used to monitor 

PtdIns(4,5)P2 depletion in the plasma membrane of mammalian cells upon PLC activation.  

This increased temporal resolution and reduced excitation damage to the cells (van Rheenen, 

Mulugeta Achame et al. 2005).  Additionally, techniques to monitor PtdIns(3,4,5)P3 using 
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lipid-binding domains, coupled with FRET have also been utilized (Margolin 2000; Sato, 

Ueda et al. 2003; Sato 2006; Ueda and Hayashi 2013).  FRET pairs have also been 

constructed for PtdIns(4)P, PtdIns(3,4)P2, PtdIns(4,5)P2 and DAG to monitor PIP-turnover 

and cell migration in MDCK cells (Nishioka, Aoki et al. 2008).   

 

Coincidence detection  

It’s becoming apparent that the simplistic view of a single lipid binding one lipid 

binding domain excludes a number of co-binding elements.  Multiple lipid binding domains 

have been shown to require multiple binding events either from various lipid species or other 

protein domains for robust membrane recruitment.  Coincidence detection (i.e. multiple 

signaling cues working together to direct localization) is not covered here and the reader is 

referred to several manuscripts discussing coincidence detection and PIP binding domains 

(Stahelin, Scott et al. ; Wenk and De Camilli 2004; Behnia and Munro 2005; Carlton and 

Cullen 2005; Di Paolo and De Camilli 2006; Lemmon 2008). 
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Modulation of cellular phosphatidylinositol phosphates 

Fundamental to our understanding of phosphatidylinositol phosphate (PIP) signaling 

is the ability to selectively disrupt PIP-signaling pathways through both direct and indirect 

methods.  Traditionally, employed techniques include physical application of lipids, 

antibodies, genetic alteration(s) and pharmacological intervention of phosphatidylinositol 

phosphate metabolizing-enzymes.  More recent methodologies include genetically encoded 

light- and chemical-induced enzyme-localization constructs that enhance the spatial and 

temporal resolution of PIP-attenuation relative to more traditional methods.  In this section, I 

discuss common methods used to attenuate PIP-signaling with an emphasis on chemical 

modulators of PIP-modifying enzymes.  For additional information surrounding the 

disruption of PIP signaling the reader is referred to these resources (Chang-Ileto, Frere et al. 

2012; Wymann and Schultz 2012).   

 

Addition of exogenous phosphatidylinositol phosphates 

In principal, the simplest method to modify cellular PIP composition is to add 

exogenous PIPs to the culture media.  Phosphatidylinositol phosphates have an intrinsic 

anionic characteristic that makes it relatively difficult for them to penetrate the electrical 

potential of -60mV to -70mV at the plasma membrane (Ozaki, DeWald et al. 2000; Wymann 

and Schultz 2012) and thus, the intracellular environment.  To circumvent this limitation, 

various PIPs have been incorporated into polyamine carriers to “ferry” PIPs across the cell 

membrane (Ozaki, DeWald et al. 2000).  Additionally, these polyamine carriers have been 

used to deliver PIP-mimetics that inhibit various PIP-modifying enzymes (see below).  
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Several PIP species have been loaded into cells using polyamine carriers and subsequently 

their localization, metabolism, and effects on signal transduction pathways have been 

monitored (Ozaki, DeWald et al. 2000).  Alternatively, PIPs can pass through the plasma 

membrane by utilizing ‘bioactivatable’ protecting groups (Schultz 2003), or lipid micelles 

can be directly injected into cells, a technique which has been used to monitor diffusion 

patterns of PtdIns(4,5)P2 (Golebiewska, Nyako et al. 2008).   

More sophisticated PIP derivatives are those that incorporate functional groups to 

‘cage’ PIPs thereby keeping them biologically inactive until ‘uncaged’ by light.  These ‘cage’ 

techniques provide superior control over the spatial and temporal activity of PIPs by 

modulation of the intensity, localization and frequency of light applied to cells (Mentel, 

Laketa et al. 2011).  Additionally, ‘caged’-PIPs allows cells to stabilize the PIP cellular-

distribution and if bioactive protecting groups were used for cellular entry, also gives cells 

time to metabolize (i.e. remove) these groups (Mentel, Laketa et al. 2011).  However, the 

ability of ‘caged’-PIPs to mimic natural lipids is not well studied and their expense is often 

prohibitive.  Several ‘caged’-lipid derivatives have been developed including PtdIns(3)P 

[cgPtdIns(3)P] (Subramanian, Laketa et al. 2010), PtdIns(3,4,5)P3 [cgPtdIns(3,4,5)P3/AM) 

(Mentel, Laketa et al. 2011) and although not a PIP, DAG (Nadler, Reither et al. 2013).  The 

‘caged’ PtdIns(3)P when applied to cells induced rapid endosomal fusion, suggesting that 

PtdIns(3)P is sufficient to drive an EEA1-dependent fusion (Subramanian, Laketa et al. 

2010).  In the case of cgPtdIns(3,4,5)P3/AM, it was shown to be cell permeable, 

photoactivatable, membrane ruffling and PH-domain transloacating when activated in cells 

(Mentel, Laketa et al. 2011).  Finally, the ‘caged’ DAG derivative was used to determine the 
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influence of fatty acid chain length on PKC-dependent signaling (Nadler, Reither et al. 

2013).   

Various ‘metabolically stable’ (ms) PIPs have been generated to separate direct PIP 

effects from downstream metabolic products.  Multiple ‘metabolically-stabilized’ PIP-

derivatives have been developed for: PtdIns(3)P (Xu, Lee et al. 2006), PtdIns(4)P (He, 

Gajewiak et al. 2011), PtdIns(5)P (Huang, Zhang et al. 2007) and PtdIns(3,4,5)P3 (Zhang, 

Markadieu et al. 2006; Zhang, Xu et al. 2006).  Together these methods provide varying 

degrees of control over the application of exogenously added lipids.  However, they are all 

limited in their ability to control PIP- localization, are expensive and are often difficult to 

obtain.   

 

Genetic modulation of PIP modifying enzymes 

 Genetic modulation of PIP-modifying enzymes has been instrumental in the 

elucidation of PIP-signaling events and the identification of PIP-modifying enzymes.  

Methods to genetically attenuate PIPs included the attenuation of PIP-modifying enzyme by: 

overexpression (Mousley, Yuan et al. 2012), RNAi (Prasad and Decker 2005; Reagan-Shaw 

and Ahmad 2006) and organismal deletion(s) (Di Cristofano, Pesce et al. 1998; Sasaki, 

Suzuki et al. 2002).  Ideally the genetic disruption will quickly and selectively disrupt the 

PIP-modifying enzyme of choice by either reducing or increasing the level of PIP-modifying 

enzymes.  However, these methods are slow to implement (e.g. days), and thus, provide cells 

with time to reroute signaling networks, adapt to their new conditions and potentially mask 

results—especially acute responses.  Temperature-sensitive (ts) mutations solve some of 
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these limitations; we will limit our discussion to this class of genetic modulators as it’s most 

relevant to Chapter 2.  

Instrumental to the understanding of PIP-modifying enzymes has been the generation 

of conditional mutants, and in particular temperature sensitive (ts) alleles.  These mutations 

inactivate a protein at ‘nonpermissive temperature’ (e.g. 37˚C in S.cerevisiae) but are active 

at ‘permissive’ temperature (e.g. 25-30˚C in S.cerevisiae).  Temperature sensitive mutations 

are often highly conservative (e.g. single point mutations) that introduce structural instability 

into a protein that become critically unstable at their ‘non-permissive’ temperature, to the 

point of inactivity.  These mutations have provided a powerful toolbox to study essential 

gene function in a number of model systems: Schizosaccharomyces pombe (Nurse, Thuriaux 

et al. 1976), Saccharomyces cerevisiae (Hartwell 1974), Chinese Hamster cells (Roscoe, 

Robinson et al. 1973) and Caenorhabditis elegans (Ward and Miwa 1978).  Temperature 

sensitive genes are typically essential, and by definition, are poorly-buffered by redundant 

pathways that code for an important cellular function (Hartman, Garvik et al. 2001).  These 

genes are often highly conserved in evolution, making their study in lower organisms highly 

relevant to cell biology (Hughes 2002).  The isolation of temperature-sensitive mutations in 

S.cerevisiae have provided insights into a variety of cellular activities that translate from 

yeast to mammals including: cell cycle (Howell and Lew 2012), secretion (Barlowe and 

Miller 2013), nutrient-signaling (Loewith and Hall 2011), lipid metabolism (Henry, 

Kohlwein et al. 2012), DNA repair (Boiteux and Jinks-Robertson 2013) and PIP-signaling 

(Robinson, Klionsky et al. 1988; Bankaitis, Malehorn et al. 1989; Audhya, Foti et al. 2000).   

The number of methods and manuscripts that genetically manipulate PIP-regulating 

proteins is vast and will not be covered in detail here.  However, despite their wide use they 
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suffer from various limitations: (i) the generation of tools is time-consuming (ii) 

modifications require application to each genetic background (iii) cells have time to adapt to 

modifications.  Temperature sensitive systems are also not ideal: (i) generation of 

temperature sensitive mutations is often a limiting factor in their application, especially in 

multicellular organisms (Harris and Pringle 1991).  (ii) The detection of minor defects at 

‘permissive’ temperature is difficult, (iii) analysis is conducted at sub-optimal temperature(s) 

and (iv) they are often limited to essential genes.  For these and other reasons, it’s desirable 

to use a system that will modify PIP pools quickly, specifically and with a high degree of 

spatial and temporal resolution.  Several tools that provide these traits are chemical- and 

light-induced protein targeting technologies (CID and LID, respectively).   

 

Chemical- and light-induced enzyme targeting  

Continuous disruption of PIPs as described above can result in a number of 

compensatory mechanisms in cells (e.g. alter lipid metabolism, effector proteins, bypass 

mutations, etc.).  Because of this cellular compensation, observed outcomes may represent 

artifacts complicating experimental interpretation.  Additionally, many PIP responses are 

short lived and these acute disruptions will be missed.  To circumvent these limitations, 

genetically encoded drug- or light-induced (i.e. optogenetics) dimerization systems were 

developed to allow the rapid dose-dependent recruitment of PIP-modifying enzymes (e.g. 

kinases and phosphatases) to subcellular regions of interest.  Additionally, these systems 

allow for gain-of-function studies by localizing desired proteins to a site of interest.  Several 

variations of these systems exist to modulate cellular activities including gene expression, 
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endocytosis, and cargo sorting (Chang-Ileto, Frere et al. 2012).  Major advances have been 

applied to neurobiology and have been reviewed in detail elsewhere (Zhang, Wang et al. 

2007; Deisseroth 2011; Yizhar, Fenno et al. 2011; Chow, Han et al. 2012; Mei and Zhang 

2012; Pathak, Vrana et al. 2013).  I will not describe these systems in detail and the reader is 

directed to review articles for additional details (Chang-Ileto, Frere et al. 2012; Wymann and 

Schultz 2012).   

 

Pharmacological intervention of phosphoinositide signaling 

Although CID and LID technologies are superior relative to more traditional genetic 

methodologies in several ways, they require significant genetic modification, optimization 

and are not available for genetically intractable systems.  An alternative PIP-modifying 

enzyme is the application of pharmacological modulators (i.e. compounds that activate or 

inactivate a target).  Chemical modulators provide a dose-dependent, specific, acute, potent 

and in some cases reversible tool to modulate the activity of a chosen target; however, the 

majority of these compounds are target-inactivators (i.e. loss-of-function studies; see below).  

Additionally, these chemical modulators can often transition between model systems (e.g. 

Saccharomyces cerevisiae, Schizosaccharomyces pombe, Caenorhabditis elegans, 

Toxoplasma gondii, etc.) and cell types (e.g. Schneider 2, HeLa, etc.)—assuming the 

appropriate controls have been conducted (e.g. cells contain the target, etc.).  Here I describe 

several pharmacological agents that are directed against PIP-modifying enzymes and when 

applicable highlighting how inadequate validation of chemical modulators can confuse the 

interpretation of experimental results.   
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Small molecule inhibitor validation in S.cerevisiae 

Effective chemical modulators (e.g. SMIs) require proper validation prior to their use.  

Although this seems obvious, it’s often the exception as opposed to the rule.  Results 

obtained from inadequately validated inhibitors cannot be interpreted with confidence, and 

thus, will add confusion and uncertainty into the literature.  Several common problems 

associated with poorly-validated SMIs are: multiple SMI targets, isoform cross-reactivity, 

general cytotoxic activity, metabolic effects and the lack of mechanistic understanding of the 

SMI.  For example, in a PubMed search conducted in March 2014, the commonly used 

phospholipase C (PLC) inhibitor, U-73122 resulted in more than 1600 results (and an 

unknown number of citations).  U-73122 has a number of off-targets, and to my knowledge 

has never been shown to directly inhibit PLC.  This exemplifies the importance of properly 

validating a chemical modulator; otherwise, your experimental data cannot be validated and 

1600 manuscripts with data of unknown relevance.  Although it’s almost impossible to obtain 

absolute confidence regarding SMI-validation, every attempt should be made within the 

chemical biology field to raise the standards of ‘validated’ chemical modulators.  As I 

describe below, many ‘specific’ SMIs are poorly validated; often a result of investigator 

oversight or historical classification that has been misinterpreted over time.  Great care must 

be used when selecting a chemical modulator for your application, with substantial primary 

literature research to determine what is, and is not known.   

Below are ‘rules’ that I developed/used in Chapter 2 (and a few I could not achieve in 

the NPPM-validation regime) to assist the investigator in determining the quality of a 

chemical-modulator.  These ‘rules’ were developed for essential proteins in Saccharomyces 

cerevisiae; however, many are applicable to multiple systems.  If possible, the investigator 
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should determine if their protein of interest complements a homologous yeast protein.  

Although this is not always possible, it will allow additional assays to detect SMI off-targets 

especially those of essential proteins (Hughes 2002).   

 

1. SMI intoxication phenocopies genetic inactivation of protein. 

2. SMI-sensitivity is proportional to target-protein cellular-load. 

3. SMI inhibits recombinant protein in a dose-dependent manner 

4. Do SMIs inhibit closely related proteins? 

5. Inactive SMIs are not active in 1-4. 

6. SAR provides predictive capability towards chemical SMI modification(s). 

7. SMI::Protein interactions are observed (e.g. co-crystal, NMR, mass spec, etc.). 

8. Rational mutations in recombinant protein endow resistance to SMI. 

9. Cells made dependent on SMI-resistant protein are resistant to SMI. 

10. When available, SMI target protein bypass mutations are SMI resistant. 

 

Inhibitors of PIP signaling pathways 

Phosphatidylinositol phosphates recruit various PIP-binding proteins that 

subsequently regulate multiple downstream signaling events.  The phosphorylation status, 

localization and lifetime of these PIPs mediate how and what signals are propagated.  To 

maintain appropriate signaling networks the PIP phosphorylation status is tightly regulated 

through the coordination of PtdIns kinases, phosphatases and lipases.  Multiple diseases have 
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been associated with the derangement of these PIP-regulating proteins such as cancer, insulin 

resistance and viral replication.  Since this field is expanding rapidly, I will only briefly 

discuss the biological role of these proteins and focus on their chemical modulation.  For 

additional information the reader is referred to excellent review articles that cover both the 

biological and historical details when appropriate.   

 

Akt/PKB inhibitors 

Akt, also known as protein kinase B (PKB) is a serine/threonine-specific protein 

kinase that regulates multiple cellular events including, apoptosis, cell proliferation, 

transcription, protein synthesis and cell migration.  Since Akt promotes cell survival and 

inhibits apoptosis it has become a promising target for chemical intervention.  Multiple ATP-

competitive, PIP-analogue and allosteric Akt-inhibitors have been developed, primarily with 

the intent of generating cancer therapeutics.  The generation of Akt/PKB-directed SMIs is a 

major area of investigation; however, since Akt does not directly modify PIPs I direct the 

reader to review articles on Akt and Akt inhibitors (Cheng, Lindsley et al. 2005; Lindsley 

2010; Wang, Zhang et al. 2011; Mahajan and Mahajan 2012).   

 

PtdIns-3-kinases inhibitors 

Phosphatidylinositol 3-OH kinase (PI3K) catalyze the phosphorylation of the D-3 

position of the inositol ring of PtdIns.  PI3K enzymes are divided into three classes: Class I 

PI3Ks are composed of an 110kDa catalytic domain (α, β, γ, and δ) which is encoded by four 
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genes in mammals.  Five genes encode the regulatory domains for Class I PI3Ks p85a, p101 

and p84/p87.  Class II PI3Ks are 150-180 kDa proteins that exist in three isoforms (α, β, and 

γ) and there is a single Class III PI3K in mammals.  The PI3K pathway influences multiple 

cellular activities and when it becomes deranged mammalian disease occur including cancers 

(Balla 2013).  Under normal conditions the second messenger PtdIns(3,4,5)P3 is maintained 

at low concentration in the plasma membrane (Palmieri, Nowell et al. 2010).  Upon the 

activation of receptor tyrosine kinases (RTK), phosphatidylinositol-3-kinase(s) (PI3K) is 

recruited to the cytoplasmic face of the plasma membrane generating PtdIns(3,4,5)P3 from 

PtdIns(4,5)P2 (Balla 2013).  As a result, multiple PtdIns(3,4,5)P3 binding proteins are 

recruited to the plasma membrane (e.g. PH-domains).  Some of these recruited proteins 

include the phosphoinositide kinase 1 (PDK1; Stephens, Anderson et al. 1998; Currie, 

Walker et al. 1999; Komander, Fairservice et al. 2004) and protein kinase B (Akt; Franke, 

Kaplan et al. 1997; Stokoe, Stephens et al. 1997) which facilitates their downstream activity.  

The literature surrounding the PI3K/Akt pathway is massive and the reader is directed to 

review articles that cover this subject in depth (Vanhaesebroeck, Stephens et al. 2012; Balla 

2013).   

 Yeast have a single Class III PI3K, Vps34 which phosphorylates the inositol 

headgroup of PtdIns to generate PtdIns(3)P (Auger, Carpenter et al. 1989; Stack and Emr 

1994).  Vps34 (first identified as Vpt29) was identified in a screen to identify vacuolar 

protein sorting (Vps) defects (Robinson, Klionsky et al. 1988).  Vps34 is the sole source of 

all D-3 phosphorylated PIPs in yeast as vps34Δ cells do not contain D-3 phosphorylated PIPs 

(Auger, Carpenter et al. 1989; Schu, Takegawa et al. 1993; Wenk, Lucast et al. 2003).  

Vps34p specifically catalyzed the D-3 phosphorylation of PtdIns but not PtdIns(4)P or 
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PtdIns(4,5)P2 in vitro (Schu, Takegawa et al. 1993; Stack and Emr 1994; Stack, DeWald et 

al. 1995).  Vps34p is recruited to TGN/endosomes from the cytoplasm through interactions 

with the protein kinase Vps15p which forms a complex enhances kinase activity (Herman, 

Stack et al. 1991; Stack, Herman et al. 1993; Stack, DeWald et al. 1995).  Regulatory 

proteins such as Rab5 and Rab7 bind to Vps15 and promote the recruitment to membranes 

and the activity of Vps34/Vps15 (Murray and Backer 2005; Shin, Hayashi et al. 2005; 

Simonsen and Tooze 2009).  Mammals contain a single Class III PI3K which is associated 

with p150 the human orthologue of Vps15 (Volinia, Dhand et al. 1995; Panaretou, Domin et 

al. 1997).  Vps34 has a number of in yeast including localizing vacuolar proteins, vacuolar 

segregation (Herman and Emr 1990) and autophagy (Kihara, Noda et al. 2001) and in 

mammals it has been shown to regulate endocytic sorting (Christoforidis, McBride et al. 

1999), autophagy (Vergne and Deretic 2010), transport to lysosomes through MVB (Schu, 

Takegawa et al. 1993), endosome to TGN transport through the retromer (Burda, Padilla et 

al. 2002).  Additionally, Vps34 it has been shown to have roles in the nutrient sensing 

through the mTOR pathway (Byfield, Murray et al. 2005; Nobukuni, Joaquin et al. 2005) and 

signal downstream of hererotrimeric GTP-binding protein-coupled receptors (Slessareva, 

Routt et al. 2006).  The structure of the Drosophila melanogaster Vps34 was solved without 

its C2 domain which is not required for its catalytic activity in vitro (Miller, Tavshanjian et 

al. 2010).  This structure reveals that the overall fold of the protein containing a solenoid 

helical domain, forming a compact unit with many inter-domain contacts (Miller, 

Tavshanjian et al. 2010).  The literature surrounding PI3Ks is expansive and the reader is 

referred to excellent review articles that cover these proteins in much greater detail 

(Vanhaesebroeck, Stephens et al. 2012; Balla 2013; Fruman and Rommel 2014). 
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The recruitment and activation of phosphatidylinositol-3-kinase (PI3K) to the plasma 

membrane is an early event in the PI3K/Akt pathway and thus, its chemical inactivation is an 

attractive avenue to modulate PI3K/Akt signaling, several of which are in clinical trials 

(Kurtz and Ray-Coquard 2012).  Informed by the solution of multiple PI3K structures, high 

throughput screening, the utilization of medicinal chemistry and in silico methodologies, the 

list of PI3K inhibitors has greatly expanded from the first two identified inhibitors, 

wortmannin (Arcaro and Wymann 1993; Wymann and Arcaro 1994) and LY294002 (Vlahos, 

Matter et al. 1994).  Wortmannin is a steroid metabolite originally isolated from Penicillium 

wortmannin (Brian, Curtis et al. 1957) and was shown to inhibit respiratory burst in 

neutrophils and monocytes (Baggiolini, Dewald et al. 1987).  Subsequently, wortmannin was 

demonstrated to inhibit PI3K (Arcaro and Wymann 1993) through covalent modification at 

Lys802 within the ATP binding site of p110α (Wymann, Bulgarelli-Leva et al. 1996) and 

Lys833 in p110γ (Stoyanova, Bulgarelli-Leva et al. 1997; Walker, Pacold et al. 2000).  

LY294002 is a morpholine derivative of quercetin, a naturally occurring bioflavonoid which 

reversibly inhibits PI3K at the ATP binding site (Vlahos, Matter et al. 1994).  Because 

wortmannin inhibits through covalent modification, its IC50 is approximately 5nM, whereas 

LY294002 is ~1.4 µM (Vlahos, Matter et al. 1994; Wymann and Arcaro 1994).  Wortmannin 

is unstable in solution unlike LY294002, although both compounds have numerous off-

targets including mTOR (Brunn, Williams et al. 1996) and myosin light chain kinase 

(MLCK) (Hu, Zaloudek et al. 2000).  LY294002 also has a number of off targets including 

casein kinase 2 (CK2), SmMLCK (Davies, Reddy et al. 2000) and skin-related toxic side 

effects (Hu, Zaloudek et al. 2000; Kong and Yamori 2008).  Because of limitations in 

specificity, pharmacology and potency significant efforts have been devoted to designing 
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wortmannin and LY294002 derivatives in addition to novel classes of PI3K-directed 

inhibitors.  Because of the large number and diversity of PI3K inhibitors the reader is 

referred to reviews that specifically focus on this area (Kong and Yamori 2008; Workman, 

Clarke et al. 2010; Wymann and Schultz 2012; Welker and Kulik 2013).   

 

PTEN PtdIns 3-Phosphatase inhibitors 

PTEN (phosphatase and tensin homologue) is a tumor suppressor that was identified 

as a loss of function (LOF) cancer hot spot on human chromosome 10q23 (Steck, Pershouse 

et al. 1997).  PTEN contains a HCXXGXXRS/T phosphatase signature similar to that found 

in protein tyrosine phosphatases (PTPase), suggesting that PTEN was a protein phosphatase 

(Li, Yen et al. 1997).  It appears that the most relevant biological activity of PTEN is as a PIP 

phosphatase that is directed against the D-3 position where it has preferential activity against 

PtdIns(3,4,5)P3 in vivo and in vitro (Myers, Stolarov et al. 1997; Maehama and Dixon 1998).  

Through this PIP phosphatase activity PTEN negatively regulates PI3K/Akt signaling 

pathways (Hopkins, Hodakoski et al. 2014).  Additionally, PTEN’s activity is thought to play 

a role through protein phosphatase and non-catalytic activities although these activities are 

less well understood (Myers, Stolarov et al. 1997; Freeman, Li et al. 2003; Shen, Balajee et 

al. 2007; Leslie, Maccario et al. 2009; Liu and Bankaitis 2010; Tibarewal, Zilidis et al. 

2012).  PTEN is composed of a two-domains, a NH2-terminal phosphatase domain followed 

by a loop to a C2 domain, a class 1 PDZ binding motif and a putative PtdIns(4,5)P2 binding 

domain on the catalytic subunit (Lee, Yang et al. 1999; Gericke, Munson et al. 2006).  

PTEN’s preference for PIPs is explained by the solution of its structure where the NH2-
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terminal phosphatase domain is enlarged relative to the canonical protein phosphatase 

catalytic motif which is surrounded by three basic residues CX5RT/S (Lee, Yang et al. 1999).  

It’s this enlarged region that allows PTEN to specifically dephosphosphorylate the D-3 

position of PtdIns(3,4,5)P3 (Lee, Yang et al. 1999).   

PTEN negatively regulates PtdIns(3,4,5)P3 signaling in cells and functions as a tumor 

suppressor by downregulating the PI3K/Akt signaling pathways (Hopkins, Hodakoski et al. 

2014).  When PTEN is disrupted, PtdIns(3,4,5)P3 levels increase and recruits the Ser/Thr 

kinase Pdk1.  Subsequently, Pdk1 phosphorylates the Akt kinase which is also recruited to 

PtdIns(3,4,5)P3 membranes through its PH domain.  Through this PtdIns(3,4,5)P3/PI3K/Akt 

signaling pathway cell promoting pro-proliferation and anti-apoptotic activity—tumor 

suppressor.  Its function as a tumor suppressor is primarily attributed to the negative 

regulation of the PI3K/AKT signaling pathways and thus promote uncontrolled cell growth 

and prevents cell death (Cantley and Neel 1999; Rameh and Cantley 1999; Cantley 2002; 

Downes, Ross et al. 2007; Liu, Boukhelifa et al. 2009).  Mutations in PTEN result in a 

number of inherited human diseases including Cowden’s disease, Bannayan-Zonana 

syndrome and Lhermitte-Duclos disease (Hollander, Blumenthal et al. 2011; Pilarski, Burt et 

al. 2013).  Loss of PTEN is also found in a number of spontaneous cancers including 

gliomas, melanomas, thyroid and breast (Hollander, Blumenthal et al. 2011).  For these 

reasons, the chemical modulation of PTEN is highly desirable due to the large implications 

for human health.  The literature surrounding PTEN is expansive and the reader is referred to 

review articles that discuss this topic in much greater detail (Liu and Bankaitis 2010; 

Hollander, Blumenthal et al. 2011; Hopkins, Hodakoski et al. 2014).   
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 PTEN-directed SMIs have utility as tool compounds for loss-of-function 

studies in various systems.  Additionally, reduced PTEN activity has been linked to enhanced 

glucose uptake and has been proposed as a target for enhanced insulin sensitivity in insulin-

resistant individuals (Lazar and Saltiel 2006).  As discussed above, PTEN is a potent tumor 

suppressor where even heterozygous deletion of PTEN results in increased rates of tumor 

formation in mice (Di Cristofano, Pesce et al. 1998), making the therapeutic application of 

PTEN inhibitors inherently risky (Lazar and Saltiel 2006).  Vanadate is a widely used 

competitive and reversible inhibitor of protein tyrosine phosphatases (PTPase) (Cuncic, 

Detich et al. 1999; Bhattacharyya and Tracey 2001).  Vanadate derivatives such as 

peroxovanadium (pV) and dimethylhydroxylamine have also been used at PTPase inhibitors 

(Posner, Faure et al. 1994; Cuncic, Desmarais et al. 1999).  Because PTPases share 

significant homology with PTEN (Li, Yen et al. 1997), vanadate and vanadate derivatives 

were tested as potential PTEN inhibitors.  Subsequently, several of these derivatives, namely 

bisperoxovanadium (bpV) had preferential PTEN inhibitory activity although it also inhibited 

PTP-β and PTP-1β with IC50s of 14±2.3 nM, 4.9±0.9 µM and 25.3±2.9 µM in vitro, 

respectively (Schmid, Byrne et al. 2004).  BpV has been used by several groups as a 

‘specific’ inhibitor of PTEN (Morohaku, Hoshino et al. 2013); however, this terminology is 

inappropriate as bpV has cross reactivity with multiple cysteine-based phosphatases such as 

PTP-β, SAC1, myotubularin (MTM1) and Sopb (Rosivatz, Matthews et al. 2006).  Using 

bpV as lead-compound, vanadate scaffolds complexed with organic ligands produced a 

vandyl complexed to hydroxypicolinic acid (VO-OHpic IC50=35 ± 2.0 nM against PTEN, in 

vitro) was reported to be a more selective inhibitor of PTEN relative to other cysteine-bases 

phosphatases in vivo and in vitro (Rosivatz, Matthews et al. 2006).  Subsequent studies, gave 
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insight into the mechanism of VO-OHpic showing that it’s a reversible and noncompetitive 

inhibitor of PTEN (Mak, Vilar et al. 2010).  VO-OHpic has been used in multiple studies 

including PTEN’s role in PI3K-dependent signaling (Papakonstanti, Ridley et al. 2007), 

PTEN-induced senescence (Alimonti, Nardella et al. 2010) and cardiac function (Zu, Shen et 

al. 2011).   

 

Chemical modulators of SHIP phosphatase  

As with PTEN, both SHIP1 and SHIP2 negatively regulate PtdIns(3,4,5)P3 signaling 

pathways although through their 5-phosphatase activity to generates PtdIns(3,4)P2.  The mis-

regulation of SHIP proteins through either their activation or inactivation produces a number 

of beneficial or detrimental phenotypes making them attractive targets for chemical 

modulation (Viernes, Choi et al. 2013).  The literature regarding SHIP proteins is expansive 

and the reader is referred to several excellent review articles (Bunney and Katan 2010; Liu 

and Bankaitis 2010; Viernes, Choi et al. 2013).  Here I will discuss several of the recent 

advances in chemicals that activate SHIP1 and those that inhibit SHIP1, SHIP2 or are pan-

SHIP inhibitors.   

To identify SHIP1 agonists, crude extracts of marine invertebrates were screened in 

vitro for SHIP1-catalyzed conversion of ins(1,3,4,5)P4 to ins(1,3,4)P3.  From this screen, 

Yang et al. identified SHIP1-activating activity in the MeOH extract of Dactylospongia 

elegans that were collected from Papua New Guinea.  By utilizing assay-guided 

fractionation, pelorol was identified as the active compound (Yang, Williams et al. 2005).  

Subsequent studies generated the pelorol derivative, tolyl (AQX-016A) which had improved 
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biological activity (Yang, Williams et al. 2005; Ong, Ming-Lum et al. 2007; Meimetis, 

Nodwell et al. 2012).  Due to AQX-016A’s unfavorable medicinal chemistry, the catechol-

free derivative AQX-MN100 was developed which has similar potency profile to that of 

AQX-016A although with more favorable chemistry (Goclik, König et al. 2000; Ong, Ming-

Lum et al. 2007).  These inhibitors are allosteric activators of SHIP1 and provided the first 

experimental evidence that SHIP1 activators function as anti-inflammatory agents in vivo and 

in vitro (Ong, Ming-Lum et al. 2007).  Clinical trials have been initiated with non-plorol 

SHIP1 activators that showed an approximately ~20% increase in SHIP1 activity , inhibited 

cytokines and was effective at treating pulmonary inflammation in mice (Stenton, Mackenzie 

et al. 2013; Stenton, Mackenzie et al. 2013; Viernes, Choi et al. 2013).  Other SHIP1 agonists 

have been identified such as Australin E and cyclic depsipeptides; however, these will not be 

discussed here (Williams, Amlani et al. 2010; Li, Carr et al. 2011; Viernes, Choi et al. 2013).   

SHIP1 inhibitors have been developed that utilize metabolically stabilized 

PtdIns(3,4,5)P3.  Derivatives were synthesized that replace the D-3 or D-5 phosphate group 

with a phosphorothioate (PT) or methylenephosphonate (MP) to generate 3-PT, 3-MP- 

(Zhang, Markadieu et al. 2006), 5-PT- ,5-MP-PtdIns(3,4,5)P3 (Zhang, Markadieu et al. 2006) 

and 3,4,5-P3PtdIns(3,4,5)P3.(Zhang, Xu et al. 2008).  PT’s are phospho-mimetics that have 

reduced rates of enzyme-mediated hydrolysis (Lampe, Liu et al. 1994).  These derivatives do 

not perfectly mimic PtdIns(3,4,5)P3 as the P=O replaced by P=S results in a lost hydrogen-

bond acceptor and altered its pKa (Murray and Atkinson 1968; Hampton, Brox et al. 1969).  

It was shown that the 5-PT- and 5-MP-PtdIns(3,4,5)P3 derivatives were ineffective against 

both SHIP2 and PTEN phosphatase activity in vitro (Zhang, He et al. 2010).  In vitro, 5-MP-

PtdIns(3,4,5)P3 and 3,4,5-PT3-PtdIns(3,4,5)P3 showed approximately 50% inhibition against 
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SHIP1 with approximately 20% inhibition of SHIP2, and no inhibition of PTEN phosphatase 

activity as measured by the dephosphorylation of Ins(3,4,5)P3 in vitro.  Another class of 

inhibitor was later identified by utilizing a fluorescent polarized-based high-throughput 

screen the SHIP1 inhibitor, 3 α-aminocholestane (3AC).  3AC inhibited SHIP1 with an IC50 

of 10µM with no inhibition observed for SHIP2 or PTEN in vitro  (Brooks, Fuhler et al. 

2010).  3AC demonstrated cytotoxicity towards hematologic cancers in vitro and multiple 

myeloma (MM) in an in vivo mouse model (Brooks, Fuhler et al. 2010; Fuhler, Brooks et al. 

2012) suggesting that it may be a potential anti-cancer lead compound.   

SHIP2 inhibitors have been developed including biphenyl 2,3’,4,5’,6-

pentakisphosphate which is composed of five phosphate groups on two rings and inhibits the 

catalytic domain of human type-I InsP3 5-phosphatase and SHIP2 (both involved in insulin 

signaling).  Type-I InsP3 5-phosphatase and SHIP2 are inhibited with IC50s of 7.9±0.7µM 

and 1.8±0.2µM, respectively, as measured by the dephosphorylation of Ins(1,3,4,5)P4 in vitro 

(Vandeput, Combettes et al. 2007).  Suwa et al., identified the thiophene-based SMI, 

AS1949490, a SHIP2-specific inhibitor that selectively and competitively inhibits both 

human (IC50=0.62±0.02 µM) and mouse SHIP2 (IC50=0.34±0.1µM) in vitro (Suwa, 

Yamamoto et al. 2009).  SHIP1 has an IC50 of approximately 12µM whereas human PTEN, 

synaptojanin and myotubularin are not inhibited by AS1949490 in vitro (Suwa, Yamamoto et 

al. 2009).  Treatment with AS1949490 activates intracellular insulin signaling while 

decreasing both fasting and post-pardial blood glucose in diabetes (db/db) mice (Kobayashi, 

Forte et al. 2000; Suwa, Yamamoto et al. 2009).  Subsequently, Suwas et al., conducted 

additional characterization and identified the SHIP2 inhibitor, AS1938909, that has increased 

selectivity for SHIP2 compared to SHIP1 while maintaining similar potency for SHIP2 
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(Suwa, Kurama et al. 2010).  Recently, the phosphatase domain of SHIP2 was crystalized in 

complex with biphenyl-derived polyphosphate, biphenyl 2,3′,4,5′,6-pentakisphosphate 

(BiPh(2,3′,4,5′,6)P5) to 2.1 Å (Suwa, Kurama et al. 2010).  Interestingly, this group did 

molecular dynamics simulations with AS1938909 and demonstrated that it can bind in the 

region where BiPh(2,3′,4,5′,6)P5 binds and propose SMI analogues to increase fidelity (Mills, 

Persson et al. 2012).  Utilizing a high-throughput affinity selection-mass spectrometry screen, 

three classes of SHIP2 inhibitors were identified; however, the pyrazole-based SHIP2 

inhibitor NGD-61338 was highlighted (Annis, Cheng et al. 2009).  NGD-61338 is a 

competitive inhibitor with a predicted target-specific binding of one (Annis, Cheng et al. 

2009).   

Ichihara et al., utilized the structures of both AS1949490 (Suwa, Yamamoto et al. 

2009) and NGD-61338 (Annis, Cheng et al. 2009) for in silico ligand-based drug design 

(LBDD) to identify novel SHIP2 inhibitors (Ichihara, Fujimura et al. 2013).  LBDD compiled 

the three-dimensional structures of the two known SHIP2-directed inhibitors to generate a 

total of 18,193,092 alignments.  Subsequently, the top 63 highest scoring alignments were 

clustered into four modes which informed the synthesis of the four lead compounds.  

Through SAR analysis, 28 compounds were synthesized for downstream testing cell-based 

testing (Ichihara, Fujimura et al. 2013).  Of these compounds, twelve out of the twenty eight 

inhibited insulin-induced Akt phosphorylation in tissue-culture where several from each of 

the four classes inhibited this activity, suggesting that the designed scaffolds are potential 

SHIP2 inhibitors (consistent with their parent inhibitors).  The most potent inducer of Akt 

phosphorylation was N-[4-(4-chlorobenzyloxy) pyridin-2-yl]-2-(2,6-difluorophenyl)-

acetamide or CPDA which also partially rescued abnormal glucose metabolism in diabetic 
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mice (db/db; Ichihara, Fujimura et al. 2013).  Although this data is suggestive that SHIP2 is 

inhibited by CPDA, evidence was not provided that demonstrates direct-inhibition of SHIP2 

or specificity relative to other phosphatases (e.g. SHIP1).  Multiple groups have generated 

SHIP2-directed lead compounds that utilize high-throughput affinity selection-mass 

spectrometry (inhibitor NGD-61338; Annis, Cheng et al. 2009), competitive fluorescence 

polarization assays (Drees, Weipert et al. 2003) and microfluidics (Rowe, Hale et al. 2006).   

Three pan-SHIP inhibitors were identified in a high-throughput screen for SHIP 

inhibitors (Brooks, Fuhler et al. 2010).  These inhibitors, 1PIE, 2PIQ and 6PTQ have IC50s 

(µmol/L) for SHIP1/SHIP2 of 30/30, 500/500, 63/35 in vitro, respectively (Fuhler, Brooks et 

al. 2012).  Additionally, none of these three inhibitors inhibited the inositol polyphosphate 5-

phosphatase OCRL-1 (INPPP5F).  As with the SHIP1 inhibitor 3-AC MM cells were also 

inhibited by the pan-SHIP inhibitors; however the cells were more sensitive to the pan-SHIP 

inhibitors.  For additional information regarding SHIP proteins and SMIs that target them the 

reader is referred to review articles on the subject (Hamilton, Ho et al. 2011; Kerr 2011; 

Fernandes, Iyer et al. 2013; Viernes, Choi et al. 2013).  Viernes et al., is an excellent 

historical account of SHIP modulators and the rational for the development of SHIP 

modulators (Viernes, Choi et al. 2013).   

 

Screening for synaptojanin inhibitors 

Synaptojanin 1 is a phosphatidylinositol phosphate phosphatase that displays enriched 

expression in the nervous system whereas its isoform, synaptojanin 2, is broadly expressed 

(McPherson, Takei et al. 1994; Nemoto, Wenk et al. 2001).  Synaptojanin 1 consists of two 
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splice variants, synaptojanin-145 and synaptojanin-170 where synaptojanin-145 is highly 

expressed in nerve terminals (Ramjaun and McPherson 1996).  Synaptojanin interacts with 

clathrin-coated endocytic intermediates and functions in the clathrin-mediated endocytosis of 

synaptic vesicles (McPherson, Garcia et al. 1996; Ramjaun and McPherson 1996; Haffner, 

Takei et al. 1997).  Synaptojanins are composed of: an NH2-terminal region homologous to 

the yeast Sac1p [reviewed in (Liu and Bankaitis 2010)], a central inositol 5-phosphatase 

domain, a COOH-terminal region with a Src homology 3 (SH3) domain, three NPF-repeats 

and an AP2-binding site (Montesinos, Castellano-Muñoz et al. 2005).  The Synaptojanin 

Sac1-domain hydrolyzes PtdIns(3)P, PtdIns(4)P, and PtdIns(3,5) in vitro (Guo, Stolz et al. 

1999); however, its in vivo substrate is unknown.  The central PtdIns 5-phosphatase domain 

hydrolyzes both PtdIns(4,5)P2 and PtdIns(3,4,5)P3 at the D-5 position with PtdIns(4,5)P2 

being its primary physiological substrate (McPherson, Garcia et al. 1996; Cremona, Di Paolo 

et al. 1999; Guo, Stolz et al. 1999; Chang-Ileto, Frere et al. 2011).  It’s this conversion of 

PIP3 to PIP2 that is thought to be synaptojanin’s primary physiological role (Cremona, Di 

Paolo et al. 1999).  The COOH-terminal region of synaptojanin domain interacts with 

multiple proteins involved in clathrin-mediated vesicles (Montesinos, Castellano-Muñoz et 

al. 2005; Liu and Bankaitis 2010).  Defects in Synaptojanin has recently been linked to early 

onset Parkinsonism disorder (Quadri, Fang et al. 2013).  In 2010 Montesinos et al., 

developed a high-throughput assay to identify small molecule inhibitors of synaptojanin.  

This assay monitors the phosphatase activity of recombinant synaptojanin, through the 

detection of free phosphate through the fluorescence of resorufin after a series of oxidative 

reactions initiated by free phosphate.  No synaptojanin inhibitors have yet been published 

(McIntire, Lee et al. 2013).  For additional information regarding synaptojanin the reader is 
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referred to the following texts (Montesinos, Castellano-Muñoz et al. 2005; Liu and Bankaitis 

2010).   

 

Inhibitors of PtdIns-4-kinasess 

PtdIns 4-OH kinases catalyze the phosphorylation of PtdIns at the D-4 position of its 

inositol headgroup to generate PtdIns(4)P through the consumption of PtdIns and ATP.  

PtdIns represents approximately 10-20% (mol%) of total cellular phospholipids, where 

PtdIns(4)P and PtdIns(4,5)P2 constitute approximately 2-5% of total PtdIns (Balla, Baukal et 

al. 1988; Di Paolo and De Camilli 2006; Balla 2013).  PtdIns(4)P is commonly considered a 

trans-Golgi marker; however, it regulates multiple activities including the recruitment of 

membrane trafficking components (Santiago-Tirado and Bretscher 2011; Balla 2013), viral 

replication (Bishe, Syed et al. 2012; Delang, Paeshuyse et al. 2012) and it is reported to be 

misregulated in some cancers (Altan-Bonnet and Balla 2012; Waugh 2012).  Additionally, 

PtdIns(4)P is the precursor of two important PIPs, PtdIns(4,5)P2 and PtdIns(3,4,5)P3  and 

thus, pools of PtdIns(4)P are found at both the plasma membrane in addition to 

TGN/endosomes (Roy and Levine 2004).   

PtdIns 4-OH kinases are divided into two families; Type II and Type III kinases, 

based on their biochemical properties, activity in cellular fractions and sensitivity to 

wortmannin (Balla 2013).  Type I PtdIns 4-OH kinase are no longer included as they were 

subsequently identified as PtdIns 3-OH kinase (Whitman, Downes et al. 1988).  

Saccharomyces cerevisiae contains a single Type II PtdIns 4-OH kinase Lsb6, whereas 

vertebrates express two isoforms, PI4KIIα and PI4KIIβ (Han, Audhya et al. 2002; Balla 
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2013).  Lsb6 was originally identified as a binding partner of Las17p using a yeast two-

hybrid assays (Madania, Dumoulin et al. 1999) which is the yeast homologue of the Wiskott-

Aldrich Syndrome protein (WASP; Li 1997). WASP is linked to immune-deficiencies and 

defects in blood cell morphogenesis (Derry, Ochs et al. 1994).  Lsb6p is non-essential, 

associates with the plasma membrane and vacuolar membranes (Han, Audhya et al. 2002).  

Lsb6 null strains do not display obvious growth-defects or defects in PIP synthesis (Han, 

Audhya et al. 2002).  Lsb6 null strains display impaired endosome motility; however, yeast 

expressing the catalytically-dead Lsb6p, rescue endosomal defects, indicating that the 

endosomal motility defects are PtdIns(4)P-independent (Chang, Han et al. 2005).  The 

mammalian Type II enzymes, PI4KIIβ and PI4KIIα are primarily localized to internal 

TGN/endosomal membranes (Balla, Tuymetova et al. 2002).  PtdIns(4)P generated through 

PI4KIIα recruits clathrin adapter proteins to TGN/endosomes such as GGAs (Wang, Sun et 

al. 2007), AP-1 (Wang, Wang et al. 2003) and AP-3 to endosomes (Salazar, Craige et al. 

2005).  In general, little is known about the PI4KIIβ isoform (Balla and Balla 2006; Balla 

2013).   

The first PI4Ks to be cloned were Pik1 and Stt4, both Type III kinases from 

Saccharomyces cerevisiae (Flanagan, Schnieders et al. 1993; Yoshida, Ohya et al. 1994).  

Pik1 and Stt4 have non-redundant functions despite generating the same lipid product, 

distinguishing their activity by their localization to distinct membrane compartments 

(Audhya, Foti et al. 2000); however, Lsb6 overexpression partially suppresses stt4Δ yeast 

(Han, Audhya et al. 2002).  Stt4 was originally identified as a protein affecting staurosporine 

sensitivity (Yoshida, Ohya et al. 1994).  STT4 is an essential gene, whose product Stt4p is a 

~215 kDa membrane associated protein (Yoshida, Ohya et al. 1994; Audhya and Emr 2002).  
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Disruption of Stt4 causes multiple defects which include impaired cell wall integrity, actin 

organization, vacuolar morphology (Audhya, Foti et al. 2000) and sphingolipid metabolism 

(Tabuchi , Audhya et al. 2006).  Stt4p localizes to the plasma membrane through Sfk1p 

(Suppressor of Four Kinase), and regulates Rho/Pkc1-mediated MAP kinase cascade 

(Audhya and Emr 2002).  Yeast’s other type II PI4K, PIK1 is an essential gene whose protein 

product, Pik1p is a soluble 125kD protein that primarily localizes to the Golgi and nucleus 

(Flanagan and Thorner 1992; Garcia-Bustos, Marini et al. 1994; Walch-Solimena and Novick 

1999).  The temperature sensitive pik1 alleles have a number of defects at non-permissive 

temperature, including: normal secretion, Golgi and vacuole membrane dynamics, 

endocytosis (Audhya, Foti et al. 2000) and autophagy (Wang, Yang et al. 2012).  Together 

with Stt4, these two enzymes generate the majority of PtdIns(4)P in yeast cells where each 

contribute about half of the PtdIns(4)P (Audhya, Foti et al. 2000).  However, overexpression 

of one enzyme cannot complement the other, demonstrating unique activities for their 

respective PtdIns(4)P pools (Audhya, Foti et al. 2000).  For Pik1 to support cell viability Pik1 

must localize to both TGN/endosomal membranes and the nucleus.  Membranes localization 

of Pik1 is mediated by Frq1 (a homologue of the neuronal calcium sensor (NCS)), where it 

binds to Pik1’s NH2-termni (Hendricks, Qing Wang et al. 1999; Strahl, Hama et al. 2005).   

The mammalian Type III PtdIns 4-OH kinases PIK4IIIα, is the orthologue of the 

yeast Stt4 (Yoshida, Ohya et al. 1994).  This protein is primarily localized to the plasma 

membrane of mammalian cells and its main function is to supply plasma membrane 

PtdIns(4)P (Balla, Kim et al. 2008).  A number of recent reports have linked the disruption of 

PI4KIIIα with reduced viral replication of the hepatitis C (HCV), making PIK4IIIα a new 

‘hot’ drug target.  For more details regarding PtdIns 4-OH kinases, the reader is referred to a 
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number of excellent reviews on the subject (Balla 2007; Santiago-Tirado and Bretscher 2011; 

Altan-Bonnet and Balla 2012; Balla 2013).  PI4K inhibitors will provide useful tool 

compounds and are promising targets to inhibit viral propagation and other infections 

organism such as Plasmodium.  The number and quality of PI4K inhibitors is limited and 

significant efforts are only starting to be devoted to their discovery.   

The PtdIns 3-OH kinase inhibitors, wortmannin and LY294002 inhibit PtdIns 4-OH 

kinase at levels in excess of those needed to inhibit PtdIns 3-OH kinase activity (Nakanishi, 

Catt et al. 1995; Downing, Kim et al. 1996; Sorensen, Linseman et al. 1998; Balla and Balla 

2006).  Both the alpha and beta isoforms of PI4KIII are sensitive to both Wortmannin with 

an IC50 ~50-300nM and to LY294002 which inhibits PI4KIIIα and PI4KIIIβ with IC50a of 

~50-100µM or 100µM, respectively (Nakanishi, Catt et al. 1995; Downing, Kim et al. 1996; 

Meyers and Cantley 1997; Sorensen, Linseman et al. 1998; Balla and Balla 2006).  The more 

potent inhibitory activity of these compounds towards PI3K (see above) makes the data 

interpretation of experiments utilizing wortmannin or LY294002 to inhibit PI4KIIIs 

uninterruptable.  Additionally, phenylarsine oxide (PAO) has been used as an inhibitor of PIP 

synthesis (Schaefer, Wiedemann et al. 1994; Wiedemann, Schafer et al. 1996; Balla and 

Balla 2006).  PAO inhibit PIP synthesis that and prevents the release of catcholamine from 

chromaffin cells presumably through the inhibition of PI4K (Wiedemann, Schafer et al. 

1996). Subsequently, it was reported that PAO inhibits the endocytosis of muscarinic 

cholinergic receptors through the inhibition of PI4K in neuroblastoma cells (Sorensen, 

Linseman et al. 1998).  The incubation of PAO also inhibits N-formyl-methionyl-leucyl-

phenylalanine (fMLP)-stimulated respiratory burst and a PMA-induced respiratory burst 

(Yue, Liu et al. 2001).  Because PMA is a ‘direct activator’ of PLC, it was suggested that 
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PAO is a non-specific inhibitor of PI4K activity likely making the data obtained using PAO 

uninterruptable (Yue, Liu et al. 2001).  Additionally, it is reported that both mammalian 

PI4KIIs are insensitive to PAO (IC50>100µM) whereas PI4KIIIα and P4KIIIβ have IC50s of 

1-5µM and ~30µM, respectively (Balla and Balla 2006).  Resveratrol is a naturally occurring 

stilbene (one of two isomers of 1,2-diphenylethene) that is generated by plants in response to 

injury or fungal infection (Langcake and Pryce 1977) and has been shown to inhibit PI4KIIβ 

but not PI3K (IP of p85 or p110) or the yeast Pik1p (vertebrate PI4KIIIβ) in vitro.  

Resveratrol has a binding coefficient of Kd=7.2µM and competes with the PtdIns binding 

site (Srivastava, Ratheesh et al. 2005).  Resveratrol has been shown to bind and inhibit 

multiple targets including cyclooxygenases, PKC, and COX2 (Slater, Seiz et al. 2003; 

Murias, Handler et al. 2004; Zykova, Zhu et al. 2008) suggesting that it may not be an ideal 

inhibitor of PI4K; however, the limited investigations of its interactions with PI4KIIβ suggest 

that it may provide superior selectivity compared to wortmannin and LY294002 less than 

ideal.   

 Evidence has been accumulating that viral replication utilizes PtdIns 4-OH kinases 

(Altan-Bonnet and Balla 2012; Bishe, Syed et al. 2012; Delang, Paeshuyse et al. 2012).  

Because of this connection, multiple groups have intensified screening efforts to identify 

inhibitors of PtdIns 4-OH kinases.  It was previously demonstrated that the mammalian 

PtdIns 4-OH kinase IIIα (PI4KIIIα) and PI4KIIIβ are important host factors for the hepatitis 

C virus (HCV) and potentially other viruses (Balla and Balla 2006; Borawski, Troke et al. 

2009; Altan-Bonnet and Balla 2012).  These recent ‘anti-viral’ lead-compounds are relatively 

new with limited validation and will not be discuss in detail.  Several examples of these 

newly identified SMIs include: quinazolinone (Leivers, Tallant et al. 2013), Thiazolyl-
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dihydro-chinazoline (Brandl, Maier et al. 2007; Vaillancourt, Brault et al. 2012), Thiazolyl-

dihydro-cyclopentapyrazole (Breitfelder, Maier et al. 2007; Vaillancourt, Brault et al. 2012), 

AL-9 (Bianco, Reghellin et al. 2012), Enviroxime (Arita, Kojima et al. 2011; van der Schaar, 

Leyssen et al. 2013), GW5074 (van der Schaar, Leyssen et al. 2013), and others (LaMarche, 

Borawski et al. 2012; van der Schaar, Leyssen et al. 2013; Waring, Andrews et al. 2014).   

Two novel drug classes, imidazopyrazines and quinoxaline were recently identified as 

antimalarial agents that inhibit the parasite’s PI4KIIIβ.  As discussed above on of the 

functions for PI4KIIIβ is to regulate intracellular signaling and trafficking in Plasmodium of 

these compounds were tested as anti-malarial drug candidates (McNamara, Lee et al. 2013).  

Indeed, under drug intoxication the intracellular development of multiple Plasmodium 

species was disrupted at every stage of host infection with IC50s in the low nM range 

(McNamara, Lee et al. 2013).  Treatment with imidazopyrazines blocks late stage parasite 

development through the disruption of membrane ingression around the daughter merozoites.  

This is suggested to be a result of altered PtdIns(4)P levels and the disruption of Rab11A-

mediated membrane trafficking (McNamara, Lee et al. 2013).  Mechanistically, these SMIs 

are predicted to inhibit the PtdIns 4-OH kinase by binding to the ATP-binding pocket as 

determined through both ATP-competition assays, mutation-induced resistance, and in silico 

analysis.  To monitor for off target activity, an array of approximately 40 human kinases 

were assayed demonstrating that the parasite kinase is ~1000x more sensitive to drug.  

Finally, it was demonstrated that the propagation of Plasmodium in rodent malaria models 

was inhibited upon drug treatment (McNamara, Lee et al. 2013).  Together McNamara et al., 

provide compelling data regarding target-validation and its role as a potential anti-malarial 

therapeutic that targets all life stages of Plasmodium.   
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Inhibitors of phospholipase C   

Phospholipase C enzymes (PLC) are divided into two classes based on their substrate 

specificity: those that act on phosphatidylinositol (PtdIns-PLC) or phosphatidylcholine 

(PtdCho-PLC; Balla 2013).  Here I will only discuss PtdIns-PLC enzymes as they as are most 

relevant to our discussion on PIP-regulation.  PtdIns-PLC enzymes catalyzes the cleavage of 

the polar head group of inositol-containing phospholipids including PtdIns, PtdIns(4)P and 

PtdIns(4,5)P2 at the phosphodiester bond proximal to the glycerol backbone generating 

Ins(1)P, Ins(1,4)P2, and Ins(3,4,5)P3, respectively (Ryu, Suh et al. 1987) and cyclic inositol 

phosphates (Kim, Ryu et al. 1989).  All of these substrates when degraded generate 

diacylglycerol (DAG; Ryu, Suh et al. 1987) which itself is involved in multiple downstream 

signaling pathways including the promotion of protein kinase C (PKC) phosphorylation 

(Lipp and Reither 2011).  The primary substrate of PLC is PtdIns(4,5)P2 to generate DAG 

and ins(1,4,5)P3 which binds ins(1,4,5)P3 receptors.  Subsequently, Ca
2+

 is released from the 

endoplasmic reticulum and in conjunction with DAG is responsible for many downstream 

signaling events (Kadamur and Ross 2013).  Ins(3,4,5)P3 receptors are conserved from 

humans to C.elegans although they are not found in yeast (Taylor, Genazzani et al. 1999).  

Instead in yeast Ins(1,4,5)P3 is the precursor for water soluble inositol polyphosphates (IPs) 

which regulate multiple cellular processes including gene expression, mRNA export, DNA 

repair and telomerase maintenance (York 2006; Tsui and York 2010).   

Mammalian PtdIns-PLC proteins contain a core conserved structure that is comprised 

of a pleckstrin homology (PH) domain, four tandem EF-hand domains, a split TIM barrel, 
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and a C2 domain (Kadamur and Ross 2013).  The catalytic site, and the Ca
2+

 binding site, is 

contained on the TIM barrel (Kadamur and Ross 2013).  PtdIns-PLC proteins are conserved 

proteins and are found in bacteria, yeast, flies, and mammals (Vines 2012; Kadamur and 

Ross 2013).  In yeast, a single cytoplasmic PtdIns-PLC variant (PLC1; most similar to 

mammalian Plcδ) is present and is specific for PtdIns(4,5)P2.  Deletion of PLC1 in yeast, 

results in a number of defeats including: reduced growth rate, impaired cell wall integrity, 

impaired management of osmotic stress and difficulties in the utilization of non-glucose 

carbon sources (Flick and Thorner 1993; Yoko-o, Matsui et al. 1993; Rebecchi and Pentyala 

2000).  Mammals contain thirteen PtdIns-PLC isozymes which are divided into six isotypes 

(β, γ, δ, ε, ζ, and η) based on their structure, activity and localizations (Balla 2013; Kadamur 

and Ross 2013).  The literature associated with PtdIns-PLC enzymes is extensive and it will 

not be described in depth.  Instead, the reader is referred to review articles that provide 

additional depth (Rhee and Choi 1992; Rebecchi and Pentyala 2000; Balla 2013; Kadamur 

and Ross 2013).   

 PLC enzymes regulate the activity and level of important signaling molecules key to 

cellular survival.  The generation of PLC-specific inhibitors will greatly help advance our 

understanding of these enzymes; however, none that meet my validation criteria exist.  

Several putative small molecule inhibitors have been developed that are directed against PLC 

with varying selectivity towards PLC isozymes.  The most commonly used SMI U-73122, is 

a sterol mimetic that inhibits PtdIns-PLC activity as measured by platelet aggregation 

stimulated by collagen (IC50=0.6µM) or thrombin (IC50=5µM; Bleasdale, Thakur et al. 1990; 

Smith, Sam et al. 1990).  As control, the close structural analogue U-73343 was used that 

differs in that U-73343 contains an N-alkylsuccinimide moiety in place of the N-
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alkymaleimide found in U-73122 (Bleasdale, Thakur et al. 1990).  This structural 

modification suggests that the inhibitory activity of U-73122 is likely the result of the 

electrophilic malemide (Bleasdale, Thakur et al. 1990).  Maleimides react with sulfhydryl 

groups (-SH) at near neutral pH and form stable thioether linkages which may explain the 

numerous off targets associated with this SMI (Lutter and Kurland 1975).  As of this writing 

there is limited evidence that U-73122 directly inhibits PLC. 

U-73122 has a number of off targets including: telomerase (Chen, Sheng et al. 2006), 

5-lipoxfenase synthesis induced by cell stress (Feißt, Albert et al. 2005), histamine H1 

receptor (Hughes, Gibson et al. 2000), calcium channels (Pulcinelli, Gresele et al. 1998), 

sarcoplasmic/endoplasmic reticulum calcium ATPase pump in smooth muscle (MacMillan 

and McCarron 2010), cardiac phospholipase D by a PIP2-dependent mechanism (Burgdorf, 

Schafer et al. 2010), exocytotic signaling pathways in rat peritoneal mast cells (RPMCs) 

(Gloyna, Schmitz et al. 2005), Kir3 and BK channels (Klose, Huth et al. 2008).  Other reports 

suggest that U-73122 has preferential activity towards PLCβ (Vines 2012) where others 

claim it’s an activator of hPLCβ3, hPLCγ1 and hPLCβ2 as measured in a cell-free, mixed 

micelle system (Klein, Bourdon et al. 2011).  The reliance on U-73122 in the literature has 

been extensive with thousands of papers relying on this SMI as an inhibitor of PtdIns-PLC 

and as a probe for PLC’s involvement in phenotypic and cellular responses.  Most 

experiments use U73122 to monitor downstream events of PLC activation (e.g. intracellular 

calcium release) coupled with the lack of data for direct inhibition and the reported off-

targets, great care should be used when interpreting results obtained from the use of the SMI 

U-73122.   
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Recently, a high-throughput screen based on the fluorogenic substrate reporter WH-

15, identified three novel PLC inhibitors (Huang, Barrett et al. 2013).  These inhibitors, 

aurintricarboxylic acid (ATA), 3013 and 3017 inhibited PLCδ1 with IC50s of 0.53±0.36µM, 

7.3±2.1µM and 8.0±0.3µM in vitro, respectively as measured by a fluorescent-based assay 

(Huang, Barrett et al. 2013).  Additionally, PLCγ1 and PLCβ3 were inhibited to a similar 

extent in vitro, suggesting that all three inhibitors bind to the conserved PLC binding pocket 

(Huang, Barrett et al. 2013).  The compound ATA has been shown to inhibit several enzymes 

including DNA topoisomerase II (Benchokroun, Couprie et al. 1995), the cytosine deaminase 

APOBEC3G (Li, Shandilya et al. 2011) and the kinase c-Met (Milanovic, Radtke et al. 2012) 

indicating that ATA will not become a useful tool compound (Huang, Barrett et al. 2013).  

Additionally, the other two compounds, 3013 and 3017 have limited solubility, moderate 

potency with no reports in the literature suggesting that more research will need to be done to 

determine if these SMIs will become useful tool compounds (Huang, Barrett et al. 2013).  

The natural product Manoalide irreversibly inhibits PLC, PLA2 and calcium channels 

(Bennett, Mong et al. 1987; Wheeler, Sachs et al. 1987; Potts, Faulkner et al. 1992).  The 

natural product Thielavin B, derived from Thielavia terricola inhibits PLC, prostanglandin 

biosynthesis, telomerase activity , cell wall transglycosylation inhibitors, and glucose-6-

phosphatase (G6Pase; Kitahara, Endo et al. 1981; Mani, Sancheti et al. 1998; Togashi, Ko et 

al. 2001; Sakemi, Hirai et al. 2002).  The cytotoxic ether lipid mimetic Edelfosine (ET-18-

OCH3) direct inhibitor of Swiss 3T3 fibroblast and BG1 ovarian adenocarcinoma cell 

cytosolic phosphoinositide selective phospholipase C (PIPLC) (Powis, Seewald et al. 1992).  

However, there are a number of alternative targets for ET-18-OCH3 indicating that this ether 

lipid is not a suitable inhibitor of PLC (Mollinedo, Gajate et al. 2004).  It‘s clear that there 
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are not currently any PLC or PLC isozyme-specific inhibitors available to the community 

highlighting the need to identify new and specific tool compounds.   

 

Inhibitors of inositol monophosphatase (IMPase) 

Inositol monophosphatases (IMPase; EC 3.1.3.25) are highly conserved enzymes 

found in archaebacteria (Chen and Roberts 1998), plants (Gillaspy, Keddie et al. 1995), and 

mammals (Hallcher and Sherman 1980; Gee, Ragan et al. 1988).  IMPases are members of 

the phosphodiesterase family of enzymes, are homodimers and require Mg
2+

 for catalyzing 

the dephosphorylation of Ins(1)P, Ins(3)P and Ins(4)P (Hallcher and Sherman 1980; Majerus, 

Connolly et al. 1988).  IMPase may also have a number of alternative cellular functions 

including  Zn
2+

-dependent tyrosine phosphatase activity, carbohydrate metabolism and 

protein dephosphorylation (Miller and Allemann 2007).  Multiple IMPase structures have 

been solved, revealing that the monomer consists of alternating layers of α-helices and β-

sheets forming a penta-layered αβαβα core structure (Bone, Springer et al. 1992).   

Lithium has been used effectively to treat bipolar disorder; however, lithium has at 

least 10 targets (Can, Schulze et al. 2014) and two reported at clinical concentrations (0.6-

1mM serum levels): glycogen synthase 3β (O'Brien and Klein 2009) and IMPase (Hallcher 

and Sherman 1980; Gee, Ragan et al. 1988; Atack, Cook et al. 1993).  Lithium inhibits 

recombinant IMPase and increase Ins(1)P levels in the brain (Hallcher and Sherman 1980; 

Sherman, Gish et al. 1986; Berridge, Downes et al. 1989) through an uncompetitive 

mechanism that also displaces Mg
2+

 (i.e. it becomes more effective as substrate levels 

increase; Hallcher and Sherman 1980; Gee, Ragan et al. 1988; Atack, Cook et al. 1993).  
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Myo-inositol is primarily generated from two sources: (i) the cyclization of glucose-6-

phosphate (Eisenberg 1967) or (ii) the dephosphorylation of inositol monophosphate by 

IMPase (Berridge, Downes et al. 1982).  Regardless of where inositol originates, IMPase is 

required for the final biosynthetic step prior to inositol’s incorporation into CDP-DAG and 

the generation of PtdIns for downstream PIP-signaling (Agranoff, Bradley et al. 1958; Chen 

and Charalampous 1966; Gee, Ragan et al. 1988; Nahorski, Ragan et al. 1991).  From this 

work, it was hypothesized that lithium reduces free myo-inositol and thus, PtdIns signaling 

which may restore overactive neurotransmitter signaling associated with mania.  This model 

is now referred to as the ‘inositol depletion hypothesis’ (Berridge, Downes et al. 1982; 

Berridge, Downes et al. 1989; Schloesser, Huang et al. 2008).  For a historical account and 

more details regarding the ‘inositol depletion hypothesis’ the reader is referred to several 

texts (Berridge, Downes et al. 1989; Schloesser, Huang et al. 2008). 

Lithium is toxic at twice the therapeutic dosage and has a number of side effects 

including weight gain, thirst, tremors and kidney damage (Cade 1949).  Coupled with the 

uncertainty of lithium’s in vivo effect is the possibility that IMPase inhibition is not specific 

(e.g. glycogen synthase 3β) therefore multiple SMIs have been developed against IMPase.  

All IMPase-directed SMIs demonstrate poor bio-availability except one (Miller and 

Allemann 2007; Singh, Halliday et al. 2013).  To provide focus, I will exclude all bio-

unavailable compounds except the original series.  The initial IMPase-directed SMIs 

constructed contain phosphate groups but were ineffective in vivo.  Through iterative 

modification, the drug L-690,330 was developed and is still in use (Baker, Carrick et al. 

1991; Kulagowski, Baker et al. 1991; Atack, Cook et al. 1993; Shtein, Toker et al. 2013).  L-

690,330 is a competitive inhibitor (i.e. as substrate increases, the drug becomes less 
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effective) of IMPase in vitro and in cell culture (Atack, Cook et al. 1993).  However L-

690,330 had poor in vivo characteristics relative to lithium, likely a result of poor blood brain 

barrier penetration and solubility (Atack, Cook et al. 1993).  This poor blood-brain barrier 

penetration was attributed to the inherent cell permeability issues associated with the 

bisphosphonate functional groups in L-690,330 (Atack, Cook et al. 1993).  In an attempt to 

fix the ‘defect’ in L-690,330, the tetrapivaloyloxymethyl ester pro-drug L-690,488 was 

developed (Atack, Prior et al. 1994).  However, administered L-690,488 was not detected in 

either serum or brain, suggesting that L-690,488 was unable to leave the injection site; 

relegating its use to in vitro applications (Atack, Prior et al. 1994).  Recently through the use 

of intracerebroventricular (icv) administration of L-690,330-loaded liposomes has allowed its 

use in animal models to attenuate brain IMPase activity (Shtein, Toker et al. 2013).   

Singh et al. recently reported the identification the first bio-available lithium-mimetic, 

ebselen (Singh, Halliday et al. 2013).  To identify ebselen, they expressed human IMPase in 

bacteria and screened the NIH Clinical Collection library (Austin, Brady et al. 2004; Singh, 

Halliday et al. 2013).  Ebselen inhibited human (IC50=1.5µM) and mouse IMPase in vitro and 

requires an electrophilic selenium group to initiate the covalent and irreversible inhibition of 

IMPase.  Ebselen reduced the agonist-induced cortically mediated 5-HT2 receptor-dependent 

head twitch in a dose-dependent manner suggesting that ebselen inhibited IMPase in vivo (a 

PIP-dependent process), similar to that of lithium (Barnes and Sharp 1999; Singh, Halliday et 

al. 2013).  Ebselen passed the blood brain barrier, reduce inositol levels and rescues bipolar-

associated behavioral phenotypes in mice.  These behavioral phenotypes are restored upon 

the delivery of intracerebroventricular inositol as observed with lithium treatments in rats 
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(Kofman and Belmaker 1990; Singh, Halliday et al. 2013).  Together ebselen offers a novel 

and exciting new lead compound for the treatment of bipolar disorder.  

 

Conclusions and future directions  

Utilizing counter-ligand and pocket geometry to identify  

isomer-specific PITP inhibitors 

 Chapter 1 describes how the disruption of PITPs results in multiple inherited 

mammalian diseases and how these proteins are utilized as essential virulence factors for 

pathogenic organisms.  Primary amino acid alignments and the solution of Sec14-like crystal 

structures reveal a highly conserved structure--the Sec14-fold.  Based on this data, it’s 

apparent that the binding site for PtdIns, but not the counter ligand is conserved throughout 

the Sec14-superfamily (Figure 4).  Disease causing mutations in many PITPs are located at 

the counter-ligand binding site and can easily explain protein dysfunction.  For example, 

mutations in the α-tocopherol binding site in αTTP; however, multiple mutations are often 

occupy a distant site and were not so explained until recently.  Many of these mutations align 

with the PtdIns binding barcode, although these proteins were not thought to bind or 

exchange PtdIns/PIP because most of these proteins were isolated based on their ability to 

bind and transfer their counter ligand (e.g. α -tocopherol).  These disruptive mutations in the 

PtdIns barcode suggest the divergent Sec14-like PITPs also use a two-ligand heterotypic 

exchange mechanism similar to those found in Sec14/Sfh1.  This model is supported by the 

recent crystallization of αTTP bound to PtdIns(3,5)P2 or PtdIns(4,5)P2, where PIP2 mimics 

the distinct PtdIns binding observed in Sfh1 and Sec14.  As expected, mutations in the PtdIns 

head-group binding site disrupts PIP2 binding/transfer, which is essential for αTTP in vivo 
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activity (Kono, Ohto et al. 2013), as we predicted (Schaaf, Ortlund et al. 2008; Nile, Tripathi 

et al. 2014).  Together this data supports the conservation of the ‘nanoreactor’ model from 

yeast to mammalian Sec14-like PITPs (Nile, Bankaitis et al. 2010{Schaaf, 2008 #1008).  

From these and other studies it’s apparent that Sec14-like proteins have three ‘hot-spots’ 

where point-mutations inactivate Sec14-like PITPs: (i) the PtdIns/PIP head-group binding 

site (ii) the counter-ligand binding site (e.g. PtdCho, α-tocopherol, etc.) or (iii) the gating 

module (e.g. G266D in sec14-1
ts
; Figure 4).   

 The study of PITPs has been hindered by the lack of chemical modulators directed 

against them.  To my knowledge there has been no directed-efforts to identify chemical 

modulators of PITPs, likely because Sec14-like proteins appear to be challenging targets for 

chemical intervention, because: (i) there are at least 20 conserved family members in 

mammals making isoform-specific chemical modulation difficult (ii) PITPs have a large 

hydrophobic cavity that may bind non-specifically to hydrophobic molecules and (iii) no 

previous chemical modulators of PITPs have been identified.  However, these ‘weaknesses’ 

as I describe below provide rational for developing chemical modulators with high degree of 

selectivity—even between the two closest homologues, Sec14 and Sfh1.   

 Variation between the counter-ligand binding site easily explains why NPPMs 

differentiate between Sec14 and other yeast Sec14-like proteins (e.g. Sfh2, Sfh3, Sfh4 and 

Sfh5, Figure 11) because the PtdCho binding site is not conserved.  Unexpectedly, Sec14’s 

closest homologue, Sfh1 is insensitive to NPPMs which was not predicted based on primary 

sequence alone (Figure 11, Figure 15).  Utilizing in silico cavity-search-routines coupled 

with NPPM-docking simulations, reveal that NPPMs don’t form coherent solution sets in 

Sfh1’s hydrophobic cavity.  We attribute this to an elongated hydrophobic patch relative to 
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Sec14 which eliminates π- π and hydrophobic interactions with the NPPM’s phenyl tail, 

thereby destabilizing the NPPM-headgroup interactions at the PtdCho recognition site 

(Figure 53).  Although we have not yet identified inhibitors directed against other Sec14-like 

proteins, this work provides evidence that isomer-specific chemical modulators of highly-

similar Sec14-like proteins is probable by utilizing: (i) counter-ligand recognition site and (ii) 

the variable geometry of the hydrophobic cavity.  Additionally, by taking advantage of the 

conserved PtdIns binding site may allow for the development of pan-Sec14 inhibitors; 

expanding the repertoire of useful tools to study these proteins.   

 

Figure 53.  Sfh1 has an elongated hydrophobic cavity 

Displayed are the Sfh1 (yellow) and the closed Sec14 homology (red) ribbon structures.  The 

hydrophobic cavity is defined in silico and are displayed for both Sec14 (red) and the 

elongated hydrophobic cavity of Sfh1 (yellow).   
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Identification of SMIs directed against PITPs  

PITPs are ubiquitously distributed across the Eukaryota, and are essential for the 

viability of pathogenic organisms such as Candida albicans, Plasmodium and humans.  The 

fact that many of these PITPs genetically complement the yeast Sec14 can be exploited as 

yeast can be made into a screening platform for a desired PITP then screened for growth 

defects in the presence of diverse chemicals.  Lead compounds can then be easily validated 

as described in Chapter 2.  Importantly, this system also allows us to identify inhibitors of the 

structurally-unrelated mammalian START-like PITPs which also rescue Sec14 defects in 

yeast.  Through this procedure I expect that we will identify multiple SMIs of interest against 

diverse PITPs.   

 

SMIs against ‘bypass Sec14’ proteins and phospholipase D 

The isolation of spontaneous suppressors of the sec14-1
ts
 allele (i.e. ‘bypass Sec14’) 

was instrumental in connecting Sec14’s PtdIns(4)P signaling cues and flux through the CDP-

choline pathway (discussed in Chapter 1).  These ‘bypass Sec14’ mutations suppress both 

the genetic and chemical inactivation of Sec14 (Nile, Tripathi et al. 2014; Figure 20; see 

Chapter 1).  These genes are divided into three pathways which include the oxysterol 

binding protein Kes1, the PtdIns(4)P phosphatase (Sac1) and members of the CDP-Choline 

pathway (see Chapters 1 and Chapter 2).  Taking advantage of the PITP activator screen 

described above, inhibitors of ‘bypass Sec14’ proteins will also be isolated.  This screen 

relies on the recovery of yeast growth, thereby eliminating many of the technical and 

signal/noise difficulties associated with high-throughput loss-of-function screens.  
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Additionally, a series of sec14-1
ts
 and ‘bypass Sec14’ double mutants can be screened for 

inhibitors of PLD (PLD is required for ‘bypass Sec14’ activity) by monitoring loss of growth 

in ‘bypass Sec14’ yeast.  ‘Bypass Sec14’ inhibitors can be easily separated from PITP 

activators because ‘bypass Sec14’ inhibitors will no longer function in the phospholipase D 

deletion background whereas the activators should (spo14Δ; Figure 21).  Although this is 

only a cursory test, it will provide confidence that the SMIs in question are worth additional 

validation and will inform the experimenter where the chemical modulator is acting.   

 

Closing remarks 

 Phosphatidylinositol transfer proteins are highly conserved proteins that are found 

throughout the Eukaryota.  Throughout evolution Sec14-like PITPs have retained their ability 

to bind and transfer PtdIns/PIPs, whereas the counter ligand(s) and associated binding sites 

have diversified to cover a variety of molecules such as α-tocopherol in the case of αTTP.  

We believe that it’s this second ligand that provides the signaling cue for the Sec14-like 

protein to stimulate PIP synthesis in vivo.  Because these proteins are highly conserved based 

on their primary amino acid sequence and they contain a large hydrophobic cavity, Sec14-

like PITPs have not been considered viable targets for chemical modulation.  In Chapter 2, I 

describe how these characteristics can work in our favor to develop highly specific and 

potent SMIs that target the counter-ligand binding site and utilize subtle architectural 

differences in the hydrophobic cavity.  By targeting PITPs we can more specifically inhibit 

specific arms of PIP signaling relative to the more traditional kinase inhibitors discussed in 

Chapter 3.  As described above, most inhibitors that target PtdIns kinases target the 
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conserved ATP binding site making isomer cross-reactivity a common problem.  However, 

unlike the kinase, we have multiple sites of variability within Sec14-like PITPs to design 

inhibitor that target specific isomers or if desirable, pan-Sec14 inhibitors.  In conclusion, I 

have developed the first SMIs that target any PITP and have developed a rapid validation 

protocol for the development of novel inhibitors.  Additionally, I propose utilizing what I 

have learned about drug validation and what we know about Sec14’s genetic interactions to 

isolate chemical modulators of multiple proteins from diverse organisms that include: (i) 

PITPs (ii) OSBPs (iii) PtdIns(4)P phosphatases, (iv) phospholipase D and (v) members of the 

CDP-choline pathway.   
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Table 6. Yeast Strains 

Strains   Genotype      Origin 

CTY1-1A  MATa ura3-52 lys2-801 his3Δ-200 sec14-1
ts
 
 

(Bankaitis, Malehorn et al. 1989) 

CTY 100  MATa ura3-52 lys2-801 his3Δ-200 sec14-1
ts
  (Rivas, Kearns et al. 1999) 

sac1-26
CS

   

 

CTY159  MATa ura3-52 lys2-801 his3Δ-200 sec14-1
ts  

(Cleves, McGee et al. 1991)
 

kes1-1   

 

CTY160  MATa ura3-52 his3Δ-200 sec14-3 cki1-1  (Cleves, McGee et al. 1991) 

CTY182  MATa ura3-52 lys2-801 his3Δ-200 SEC14  (Bankaitis, Malehorn et al. 1989) 

CTY303  MATa ura3-52 lys2-801 his3Δ-200    (Li, Routt et al. 2000) 

sec14Δ::HISG cki1-1  

 

CTY374  MATα trpΔ his3Δ-200 lys2-801 ade2-101  (Salama, Cleves et al. 1990) 

sec14Δ1::HIS3 ura3-52::[sec14-ΔP136/URA3] 

 

CTY558  MATα ade2 ade3 leu2 his3Δ ura3-52    (Phillips, Sha et al. 1999)  

sec14Δ1::HIS3 pCTY11 

CTY1568 MATα leu2 ura3 his3 trpΔ lys2-800    Jeremy Thorner 

suc2Δ stt4Δ::HIS3 YCp[stt4-4 LEU2] 

 

CTY1708 MATa ade2-101 his3Δ-200 leu2-Δ1 trp1-Δ1  Jeremy Thorner 

ura3-52 lys2-801α pik1-83::TRP 

HO1  MATα HO/ho::KanMX3    (Hoon, Smith et al. 2008) 

ANY104  MATα ade2 ade3 leu2 his3Δ ura3-52   (Nile, Tripathi et al. 2014) 

sec14Δ1::HIS3 YCplac33(SEC14) 

ANY115  MATα ade2 ade3 leu2 his3Δ ura3-52   (Nile, Tripathi et al. 2014) 

sec14Δ1::HIS3 YCplac33(SEC14
Y111A

) 

ANY116  MATα ade2 ade3 leu2 his3Δ ura3-52   (Nile, Tripathi et al. 2014) 

sec14Δ1::HIS3 YCplac33(SEC14
Y111F

) 

ANY117  MATα ade2 ade3 leu2 his3Δ ura3-52   (Nile, Tripathi et al. 2014) 

sec14Δ1::HIS3 YCplac33(SEC14
Y122A

) 

ANY118  MATα ade2 ade3 leu2 his3Δ ura3-52   (Nile, Tripathi et al. 2014) 
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sec14Δ1::HIS3 YCplac33(SEC14
Y122F

) 

ANY119 MATα ade2 ade3 leu2 his3Δ ura3-52   (Nile, Tripathi et al. 2014) 

sec14Δ1::HIS3 YCplac33(SEC14
151A

) 

ANY120  MATα ade2 ade3 leu2 his3Δ ura3-52   (Nile, Tripathi et al. 2014) 

sec14Δ1::HIS3 YCplac33(SEC14
Y151F

) 

ANY114 MATα ade2 ade3 leu2 his3Δ ura3-52   (Nile, Tripathi et al. 2014) 

sec14Δ1::HIS3 YCplac33(SEC14
S173C

) 

ANY137  MATα ade2 ade3 leu2 his3Δ ura3-52   (Nile, Tripathi et al. 2014) 

sec14Δ1::HIS3 YCplac33(SEC14
T175C

) 

ANY122 MATα ade2 ade3 leu2 his3Δ ura3-52   (Nile, Tripathi et al. 2014) 

sec14Δ1::HIS3 YCplac33(SEC14
S201C

)
 

ANY160 MATα mss4Δ::KanMX ura3-52 his3-Δ200  (Nile, Tripathi et al. 2014) 

ade pRS315(mss4-5
ts
)  

ANY185 MATα mss4::URA3 pRS315(mss4-5
ts
)  (Nile, Tripathi et al. 2014) 

ANY219 MATα his3Δ1 leu2Δ0 ura3Δ0 lys2Δ0   Research Genetics 

vps34Δ::KanMX4  

PYY23  MATa ura3-52 lys2-801 his3Δ-200    (Nile, Tripathi et al. 2014) 

psd1::KanMX4 

PYY30  MATa ura3-52 lys2-801 his3Δ-200    (Nile, Tripathi et al. 2014) 

sfh4Δ::HIS psd1Δ::NAT1 

PYY40  MATa ura3-52 lys2-801 his3Δ-200    (Nile, Tripathi et al. 2014) 

sfh4Δ::KanMX4 

PYY68  MATa ura3-52 lys2-801 his3Δ-200    (Nile, Tripathi et al. 2014) 

psd1Δ::KanMX4 cki1Δ::NAT1 

PYY69  MATa ura3-52 lys2-801 his3Δ-200    (Nile, Tripathi et al. 2014) 

psd1Δ::KanMX4 kes1Δ::NAT1 
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Table 7. Protein Expression Plasmids. 

Plasmid  Description    Citation 

pRE644  pQE30(His6-SFH2)   (Li, Routt et al. 2000) 

pRE745  pQE30(His6-SFH5)   (Li, Routt et al. 2000) 

pRE1201  pET28b(His8-SEC14)   (Schaaf, Ortlund et al. 2008) 

pRE1227  pET28b(His8-SFH1)   (Schaaf, Ortlund et al. 2008) 

pRE1270  pET28b(His8-SEC14
S173C

)
  

(Nile, Tripathi et al. 2014) 

pRE1271  pET28b(His8-SEC14
T175C

)
  

(Nile, Tripathi et al. 2014) 

pRE1272  pET28b(His8-SEC14
M177C

)
  

(Nile, Tripathi et al. 2014) 

pAN1   pFU#1     Personal Collection 

pAN2   pFU#2     Personal Collection 

pAN3   pET28b(reverse transcriptase) Personal Collection 

pAN4   Taq     Personal Collection 

pAN5   Lyticase    Personal Collection 

pAN6   pRS416(GFP-GOLPH3)  Chris Burd 

pAN7   pbluScript    Personal Collection 

pAN31   pET28b(His8-SEC14
Y111F

)
  

(Nile, Tripathi et al. 2014) 

pAN32   pET28b(His8-SEC14
Y111A

)
  

(Nile, Tripathi et al. 2014) 

pAN33   pET28b(His8-SEC14
Y122F

)
  

(Nile, Tripathi et al. 2014) 

pAN34   pET28b(His8-SEC14
Y122A

)
  

(Nile, Tripathi et al. 2014) 

pAN35   pET28b(His8-SEC14
Y151F

)  (Nile, Tripathi et al. 2014) 

pAN36  pET28b(His8-SEC14
Y151A

)  (Nile, Tripathi et al. 2014) 

pAN37  pET28b(His8-SEC14
Y111F,Y122F

) Personal Collection 
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pAN38  pET28b(His8-SEC14
Y111F,Y151F

) Personal Collection 

pAN39  pET28b(His8-SEC14
Y122F,Y151F

) Personal Collection 

pAN40  pET28b(His8-SEC14
Y111F,Y122F,Y151F

)  Personal Collection 

pAN41  pET28b(His8-SEC14
S201A

)  Personal Collection 

pAN42  pET28b(His8-SEC14
F228A

)   (Nile, Tripathi et al. 2014) 

pAN43  pET28b(His8-SEC14
F228Y

)  Personal Collection 

pAN44  pET28b(His8-SEC14
F228I

)  Personal Collection 

pAN45  pET28b(His8-SEC14
F228L

)  Personal Collection 

pAN46  pET28b(His8-SEC14
E124L

)  Personal Collection 

pAN86  pGEX4T(SAC1)   John York 

pAN87  pGEX4T(Sac1
C392S

)   Personal Collection 

pAN120  pET28b(His8-SFH3)   (Ren, Schaaf et al. 2011) 

pAN121  pET28b(His8-SFH4)   (Nile, Tripathi et al. 2014) 

pAN138  pET28b-(His8-SEC14
S201C

)
  

(Nile, Tripathi et al. 2014) 

  



249 

Table 8. Yeast Expression Plasmids 

Plasmid  Description    Citation 

pDR195  YEp(URA3)    (Rentsch, Laloi et al. 1995) 

YCplac33  YCp(URA3)    (Gietz and Sugino 1988) 

pRS315  YCp(LEU2)    (Sikorski and Hieter 1989) 

pRS426  YEp(URA3)    (Sikorski and Hieter 1989) 

pCTY11   YEp(LEU2,ADE3,SEC14)  (Lopez, Nicaud et al. 1994) 

pCTY1600   YCplac33(URA3)   (Schaaf, Ortlund et al. 2008) 

pCTY1611   YCplac33(myc-SEC14)  (Schaaf, Ortlund et al. 2008) 

pCTY1651   YCplac33(myc-SEC14
S173C

)
  

(Nile, Tripathi et al. 2014) 

pCTY1652   YCplac33(myc-SEC14
T175C

)
  

(Nile, Tripathi et al. 2014) 

pAN6   pRS416(GFP-GOLPH3)  (Wood, Schmitz et al. 2009) 

pAN11   YCplac33(myc-SEC
 Y111F

)
  

(Nile, Tripathi et al. 2014) 

pAN12  YCplac33(myc-SEC
 Y111A

)
  

(Nile, Tripathi et al. 2014) 

pAN13  YCplac33(myc-SEC14
Y122F

)
  

(Nile, Tripathi et al. 2014) 

pAN14  YCplac33(myc-SEC14
Y122A

)
  

(Nile, Tripathi et al. 2014) 

pAN15  YCplac33(myc-SEC14
122V

)  Personal Collection 

pAN16   YCplac33(myc-SEC14
Y151F

)
  

(Nile, Tripathi et al. 2014) 

pAN17  YCplac33( myc-SEC14
Y151A

)
  

(Nile, Tripathi et al. 2014) 

pAN18  YCplac33( myc-SEC14
Y151L

)  Personal Collection 

pAN19  YCplac33( myc-SEC14
Y111F,Y122F

) Personal Collection 

pAN20  YCplac33( myc-SEC14
Y122F,Y151F

) Personal Collection 

pAN21  YCplac33( myc-SEC14
Y111F,Y151F

) Personal Collection 

pAN22  YCplac33( myc-SEC14
Y111F, Y122I, Y151F

) Personal Collection 

pAN23  YCplac33( myc-SEC14
E124Q

)  Personal Collection 

pAN24  YCplac33( myc-SEC14
E124L

)  Personal Collection 

pAN25  YCplac33( myc-SEC14
F228Y

)  Personal Collection 

pAN26  YCplac33( myc-SEC14
F228A

)  Personal Collection 

pAN27  YCplac33( myc-SEC14
F228I

)  Personal Collection 

pAN28  YCplac33( myc-SEC14
F228L

)  Personal Collection 
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pAN29  YCplac33( myc-SEC14
S201A

)  Personal Collection 

pAN30   YCplac33(myc-SEC14
S201C

)
  

(Nile, Tripathi et al. 2014) 

pAN49  YIplac211(myc-p
-136

-SEC14)  Personal Collection 

pAN50  YIplac211(myc-p
-136

-SEC14
S173C

) Personal Collection 

pAN51  YIplac211(myc-p
-136

-SEC14
S173A

) Personal Collection 

pAN52  YIplac211(myc-p
-136

-SEC14
T175C

) Personal Collection 

pAN53  YIplac211(myc-p
-136

-SEC14
T175A

) Personal Collection 

pAN54  YIplac211(myc-p
-136

-SEC14
Y151A

) Personal Collection 

pAN55  YIplac211(myc-p
-136

-SEC14
S201C

) Personal Collection 

pAN56  YIplac211(myc-p
-136

-SEC14
S201A

) Personal Collection 

pAN57  YIplac211(myc-p
-136

-SEC14
Y111A

) Personal Collection 

pAN58  YIplac211(myc-p
-136

-SEC14
Y111F

) Personal Collection 

pAN61  YIplac211(myc-p
-136

-SEC14
Y151F

) Personal Collection 

pAN62  YIplac211(myc-p
-136

-SEC14
V154F

) Personal Collection 

pAN63  YIplac211(myc-p
-136

-SEC14
M177C

) Personal Collection 

pAN65  YIplac211(myc-p
-136

-SEC14
A197V

) Personal Collection 

pAN66  YIplac211(myc-p
-136

-SEC14
F228A

) Personal Collection 

pAN67  YIplac211(myc-p
-136

-SEC14
F228V

) Personal Collection 

pAN132  pRS416(mRFP-EEA1
FYVE

 )  Emr Lab 

pAN133  pRS424 (GFP-EEA1
FYVE

)  Emr Lab 

pAN134  pRS426(GFP-PLC
PH

)   (Stefan, Audhya et al. 2002) 

pAN135  pRS426(GFP-2xPH
PLCδ1

)  (Stefan, Audhya et al. 2002) 

pAN142  pRS426(GFP-2xPH
Osh2

)  (Baird, Stefan et al. 2008) 

pAN156  pRS315(mss4-5
ts
)   (Nile, Tripathi et al. 2014) 

pAN160  pDR195(SEC14)   (Schaaf, Ortlund et al. 2008) 
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