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ABSTRACT

GEN LI: INTEGRATED ANALYSIS OF MULTIPLE DATA SETS
WITH BIOMEDICAL APPLICATIONS

(Under the direction of Andrew B. Nobel and Haipeng Shen)

It is increasingly common to have measurements from multiple platforms on the same set

of samples in modern biomedical sciences. In this dissertation, we develop novel methodologies

for integrated analysis of multiple data sets. In particular, we devise a supervised principal

component analysis framework that achieves dimension reduction of the primary data with

guidance from an auxiliary data set. It extracts accurate and interpretable low-rank structures

that are potentially driven by the auxiliary information. We further extend the method to

accommodate special features of data such as functionality and high dimensionality through

regularization. Numerical examples demonstrate that the proposed methodologies have clear

advantages over existing methods. In addition, we develop a Bayesian hierarchical model for

multi-tissue eQTL analysis. It exploits shared information in multiple tissues to increase the

power of eQTL discovery and improve tissue specificity assessment. The method has been

adopted by the Genotype-Tissue Expression (GTEx) consortium and successfully applied to

the nine-tissue pilot data.
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CHAPTER 1: INTRODUCTION

Collection of multiple data sets on the same set of samples becomes increasingly common.

Many scientific research fields, such as genetics, finance and economics, now involve the

analysis of multiple data types. Multiple data sets provide vast opportunities and challenges

to statistics.

As an example, The Cancer Genome Atlas Network (2012) (TCGA) aims at understanding

how genetic variations interact to drive cancers. The TCGA consortium collected multiple

data types such as gene expression data, genotype data, and DNA methylation data from

over 500 subjects for each cancer selected for study. Conceptually, different data types are

inherently related and may shed light on the mechanism of disease from different perspectives.

Jointly analyzing the multiple genetic data types may help us get a more comprehensive un-

derstanding. Another example is the Genotype-Tissue Expression (GTEx) project (Lonsdale

et al., 2013; The GTEx Consortium, 2015). The primary goal is to create a comprehensive

public atlas of gene expression and regulation across multiple human tissues. Noticing the

commonality among tissues, one may borrow strength across tissues when studying genetic

regulation in one tissue. Moreover, the joint analysis of multiple tissues may expand the

scope of single tissue analyses by addressing more fundamental biological questions about the

nature and source of variation among tissues.

There are two primary ways of analyzing multiple data types: individual analysis and

integrated analysis. Individual analysis focuses on a single data set at a time. It neither

accounts for interaction between data sets, nor fully recognize shared information across

multiple sets. Therefore, integrated analysis is usually preferable in most cases. However,

multiple data types usually have different scales, units, and formats. They cannot be simply

concatenated for joint analysis. Most existing statistical methodologies are not specially

developed for analyzing multiple data types. The integrated analysis of multiple data sets is

an open and promising research area.



In this dissertation, we develop two statistical methodologies for integrated analysis of

multiple data sets: one is supervised dimension reduction and the other is multi-tissue eQTL

model. For the first topic, we are interested in dimension reduction of a primary data set,

with the presence of an auxiliary data set. The goal is to exploit the auxiliary information to

improve the accuracy and interpretability of the reduced primary data. Motivated by many

applications, we assume the auxiliary data set potentially drives the underlying structure

of the primary data. We develop a latent variable model to account for the supervision

effect in dimension reduction. For the second topic, we are interested in studying eQTL, or

significant gene-SNP associations, in multiple tissues. The goal is to utilize genetic data across

multiple tissues to increase eQTL detection power and improve tissue-specificity assessment.

We develop a hierarchical Bayesian model to jointly analyze gene-SNP associations in multiple

tissues.

In this chapter, we briefly review some relevant concepts and existing methods. In Sec-

tion 1.1, we introduce several dimension reduction methods for a single multivariate data

set, including Singular Value Decomposition (SVD), Principal Component Analysis (PCA),

and factor analysis. In Section 1.2, we extend to methods involving multiple data sets, such

as Sufficient Dimension Reduction (SDR), Canonical Correlation Analysis (CCA), and par-

simonious multivariate regression. In Section 1.3, we give an overview of the expression

quantitative trait loci (eQTL) analysis. In Section 1.4, we briefly introduce the empirical

Bayes framework. A summary of our contributions and the outline of the dissertation is

given in Section 1.5.

Notation: Throughout the dissertation, without special notification, we use bold capital

letters (e.g., X, Y) to denote matrices, bold small letters (e.g., u, v) to denote column

vectors, and plain letters (e.g., λ, c) to denote scalars. For a random data matrix, we assume

each row corresponds to a sample and each column corresponds to a variable.

1.1 Dimension Reduction of Single Dataset

Singular Value Decomposition
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SVD is a popular matrix decomposition approach. It factorizes a matrix into a sum of

several unit-rank layers. Formally, let X be an n × p data matrix of rank k, where k ≤

min(n, p). The SVD of X can be written as

X = UDVT =
k∑
i=1

diuiv
T
i

where U = (u1, · · · ,uk) is an n × k matrix of orthonormal left singular vectors, V =

(v1, · · · ,vk) is a p×k matrix of orthonormal right singular vectors, and D = diag(d1, · · · , dk)

is a diagonal matrix with positive singular values d1 ≥ · · · ≥ dk > 0. In particular, diuiv
T
i is

the ith unit-rank layer with Frobenius norm di. If all singular values are distinct, the decom-

position is uniquely defined. When some of the di’s are equal, the column space spanned by

the corresponding left (or right) singular vectors is unique, while the specific singular vectors

are determined up to an orthogonal rotation.

SVD can be used as a dimension reduction approach. We can obtain a low rank approxi-

mation of X by taking the summation of the first few unit-rank layers. In particular, for any

rank r ≤ k, we have

r∑
i=1

diuiv
T
i = arg min

C∈Rn×pr

‖X−C‖F = arg min
C∈Rn×pr

tr{(X−C)(X−C)T }

where Rn×pr is the set of all n × p matrices with rank r, and ‖ · ‖F represents the Frobenius

norm. In the sense, SVD provides the best low rank approximation of a matrix in terms of

minimizing the Frobenius norm of the difference between the low rank matrix and the original

one.

Principal Component Analysis

PCA is one of the most widely used dimension reduction techniques in multivariate statis-

tics. It seeks directions that are mutually orthogonal and sequentially maximize variations

of data. Mathematically, assume x is a length-p random vector with mean µ and covari-

ance matrix Σ. The first principal component loading vector is the solution of the following

3



criterion:

arg max
{v1∈Rp:‖v1‖2=1}

var(vT1 x),

and subsequent loading vectors (k = 2, · · · , p) are obtained by solving

arg max
{vk∈Rp:‖vk‖2=1,vTk vj=0,j=1,··· ,k−1}

var(vTk x).

It is easy to see that the PC loadings are the eigenvectors of Σ on population level.

When the true Σ is unknown, PC loadings can be estimated from a sample covariance

matrix. This is closely related to the SVD method. Let X denote an n × p data matrix

where each row is an independent identically distributed (i.i.d.) sample with mean µ and

covariance Σ. Without loss of generality, we assume X has been column centered. PCA can

be computed by the SVD of X. In particular, if we write the SVD of X as UDVT where U

is the left singular matrix V is the right singular matrix and D is the diagonal singular value

matrix, the columns of UD correspond to PC scores and the columns of V correspond to PC

loadings. Alternatively, one may also obtain PC loadings by decomposing XTX, and obtain

PC scores by decomposing XXT .

Recently, many variants of PCA have been investigated and adapted for different applica-

tions. For example, Shen and Huang (2008b) proposed a sparse PCA method by imposing `1

penalty on loading vectors. The method achieves dimension reduction and variable selection

simultaneously. Also see Zou et al. (2006) and Yang et al. (2014). Witten et al. (2009) and

Lee et al. (2010) generalized the idea by imposing penalties on both loading and score vectors

to get two-way sparse PCA methods. In functional data analysis, each sample is an observa-

tion from some underlying smooth function. A variety of functional extensions of PCA have

been studied (cf. Huang et al., 2008; Silverman, 1996). As an analog of the two-way sparse

PCA, Huang et al. (2009) proposed a two-way functional PCA method. Zhang et al. (2013)

further modified the method to be robust against outliers. Very recently, Allen (2013) devel-

oped a general framework of two-way sparse and functional PCA that unifies many existing

4



regularized PCA methods.

Factor Analysis

Factor analysis describes variability of correlated variables in terms of a small number of

latent factors. Formally, the factor model for a length-p random vector x is

x = µ+ Lf + ε

where µ is a mean vector, f is an length-r random vector (r < p) with entries being uncorre-

lated latent factors, L is a p × r loading matrix, and ε is a p × 1 error vector. We assume f

has mean zero and covariance I, and is independent of ε which has mean zero and covariance

Σ. Hence the covariance of x is LLT + Σ. One may impose different covariance structures

on Σ to form different factor models.

To estimate µ, L, and Σ in a factor model, people usually use the Expectation-Maximization

(EM) algorithm. It is an iterative algorithm alternating between an E step and an M step. In

the E step, we calculate the conditional distribution of the latent factor f given the observed

data x and parameters estimated from the previous iteration; in the M step, we maximize the

conditional expectation of the joint likelihood of x and f with respect to model parameters.

Factor analysis is closely related to PCA, but they are not the same. By definition, the

PC loadings of x are the eigenvectors of LLT + Σ, which are not necessarily the columns of

L. However, when Σ is isotropic (i.e., Σ = σ2I) and L has orthogonal columns, it is easy to

see the first r eigenvectors of LLT + Σ are proportional to the columns of L. In fact, when

Σ = σ2I, the factor model is the probabilistic PCA model proposed by Tipping and Bishop

(1999).

1.2 Dimension Reduction with Multiple Datasets

Sufficient Dimension Reduction

Assume we have a univariate response y and a multivariate predictor vector x ∈ Rp. The

goal is to predict y based on x. When p is large, we may want to reduce the dimensionality of

x to facilitate visualization and interpretation. The idea of SDR is to get a reduced version

5



of x, denoted by R(x), that lies in a lower dimensional subspace Rr (r < p) and contains all

relevant information about y in x. Formally, a reduction R(·) : Rp 7→ Rr is sufficient if it

satisfies one the following conditions:

(1) x|(y,R(x)) ∼ x|R(x),

(2) y|x ∼ y|R(x),

(3) x |= y|R(x),

where ∼ means identically distributed and |= means independent. These conditions are

equivalent when (y,x) has a joint distribution. Different conditions may be useful in different

situations. For example, when the response is assumed fixed, only condition (1) makes sense

since it does not require y to be random; for fixed design where x is assumed fixed, only

condition (2) is meaningful.

The sufficient reduction R(·) can be of any form. In the extreme case where no reduction

is available, R(·) is a one-to-one mapping of x. For simplicity, people usually assume that

R(·) is a collection of linear transformations: R(x) = (βT1 x, · · · ,βTr x)T = BTx, where B =

(β1, · · · ,βr) is a p×r coefficient matrix. The column space of B is called a dimension reduction

subspace, denoted by SB. Since any superspace of SB also contains all relevant information

about y in x, the dimension reduction subspace is not unique. Under mild conditions, Cook

(1996) shows that the intersection of two dimension reduction subspaces is still a dimension

reduction subspace. Consequently, the inferential target in sufficient dimension reduction

is often taken to be the intersection of all dimension reduction subspaces which is uniquely

defined. It is called the central subspace, denoted by Sy|x.

There has been a lot of efforts devoted to the estimation of central subspace. In particular,

there are two major lines: moment-based methods and likelihood-based methods. Li (1991)

proposed a sliced inverse regression (SIR) approach that exploits the first moment of x given

y to derive the central subspace. In the discussion of the same paper, Cook and Weisberg

proposed a sliced average variance estimation (SAVE) method to achieve the same goal using

the first and second moments. Both methods provide consistent estimators of Sy|x under

standard conditions. Later, several methods have been proposed to combine the strength of
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SIR and SAVE and move beyond (see Cook and Ni, 2005; Ye and Weiss, 2003; Yin and Cook,

2003, for example). Cook and Forzani (2009) proposed a maximum likelihood estimator

of the central subspace based on Gaussian assumptions. They demonstrated the method

outperforms moment-based methods and is robust against deviations from normality.

Parsimonious Multivariate Regression

In multivariate regression problems, the response has multiple variables. In particular,

assuming y = (y1, · · · , yq)T ∈ Rq and x = (x1, · · · , xp)T ∈ Rp, a multivariate regression has

the following form

y = µ+ BTx + ε

where µ is a q×1 intercept vector, B is a p×q coefficient matrix, and ε is an error vector with

mean zero and covariance Σ. Without loss of generality, in the context we always assume

that all variables are centered beforehand so we get rid of the intercept term. When multiple

observations are available, the model can be written in the matrix form as

Y = XB + E

where Y is an n × q response matrix, X is an n × p design matrix, and each row of E is

i.i.d. with mean zero and covariance Σ. In particular, we assume columns of X are linearly

independent to avoid indeterminacy.

Ordinary least square (OLS) is one of the most popular approaches to estimate the re-

gression coefficient matrix B. It minimizes the following criterion

B̂OLS = arg min
B

‖Y −XB‖2F = arg min
B

tr{(Y −XB)T (Y −XB)}

where ‖ · ‖F is the Frobenius norm. The above problem has a unique closed-form solution as

B̂OLS = (XTX)−1XTY
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when X has full column rank. OLS is equivalent to maximum likelihood estimate (MLE) when

the random noise has a multivariate Gaussian distribution. Under Gaussian assumption, the

log likelihood of the observed data is proportional to −tr{(Y−XB)Σ−1(Y−XB)T }. When

Σ is isotropic, i.e., Σ = σ2I, the MLE has the same object function as OLS; when Σ is

any positive definite matrix, using elementary matrix calculus calculations we can derive the

closed form solution of MLE to be the same as that of OLS as well. Namely, B̂MLE ≡ B̂OLS

under normality.

In high dimension, overfitting issue may arise in estimation. Two primary solutions have

been extensively studied: one is feature selection, and the other is feature extraction. The

idea of feature selection is to use a subset instead of all of the p variables to construct the

model. The idea of feature extraction is to transform the data from the p-dimensional space

to a low-dimensional subspace. Both are achieved by adding structural constraints on the

coefficient matrix B. In particular, feature selection can be achieved by imposing sparsity on

B. Unimportant variables are removed from the analysis by the device of zero coefficients in

B. Various sparse multivariate linear regression methods have been studied in literature (cf.

Turlach et al. (2005), Yuan et al. (2007), Lee and Liu (2012), Rothman et al. (2010)).

To realize feature extraction, one general approach is to impose a rank constraint on the co-

efficient matrix. Consider the multivariate regression model with the constraint rank(B) = r

where r is a prespecified number much smaller than min(p, q, n). We write the QR decompo-

sition of B as QRT where Q is a q×r matrix, R is a p×r matrix. As a result, the constrained

regression model can be written as

Y = XQRT + E.

XQ is a linear transformation of the data from the original p-dimensional space to a r-

dimensional subspace. The above model is commonly referred to as the reduced rank re-

gression (RRR) model (cf. Izenman (1975) and Reinsel and Velu (1998)). RRR reduces the

number of parameters in the model and takes advantage of the interrelation of multiple vari-

ables. Therefore, the interpretation and the prediction are both enhanced. The following
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OLS criterion is commonly used to estimate B in RRR

B̂RRR = arg min
rank(B)=r

‖Y −XB‖2F.

Again, this is equivalent to MLE when the random error is Gaussian with isotropic covariance

structure. The explicit solution is given in Reinsel and Velu (1998) as

B̂RRR = (XTX)−1XTYHHT

where H = (h1, · · · ,hr) and hi is the ith eigenvector of YTX(XTX)−1XTY. When the

random error is Gaussian but with arbitrary positive definite covariance structure, the OLS

is not equivalent to the MLE anymore. The closed form MLE solution is given in Izenman

(1975). Recently, Chen et al. (2012) and Chen and Huang (2012) combined feature selection

and feature extraction by imposing sparsity on the low rank coefficient matrix estimation.

Numerical studies show the proposed sparse RRR methods have more appealing performances

in many situations.

Envelope model (Cook et al., 2010) is another parsimonious variation of multivariate

regression. The motivation comes from the observation that some variations in response

might be unrelated with the predictor. In that case, by separating the material variation

from the immaterial one and only focusing on the former, one expects to reduce the coefficient

estimation variability. In particular, the coordinate version of the envelope model is

Y = XΛΓT + E

Σ = ΓΩΓT + Γ0Ω0Γ
T
0

where ΛΓT is the low rank coefficient matrix, (Γ,Γ0) is a q × q orthogonal matrix, Σ is the

covariance structure for each i.i.d. row of E, and Ω and Ω0 are two positive definite matri-

ces. YΓ envelops the material variation in the response, and YΓ0 envelops the immaterial

variation. The envelope model can be viewed as a special case of the RRR model with the

specially set covariance structure. Since proposed, different variations of the envelope model
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have been studied in Su and Cook (2011), Su and Cook (2012), Su and Cook (2013), Cook

and Su (2013) and Cook et al. (2013).

Canonical Correlation Analysis

Unlike regression models, CCA focuses on examining correlation structures between two

multivariate random vectors. It treats both random vectors equally, without assuming one

to be response and the other to be predictor. The idea of CCA is to find linear combinations

such that the correlations between the two are sequentially maximized. Assume we have

multivariate vectors x = (x1, · · · , xp)T ∈ Rp and y = (y1, · · · , yq)T ∈ Rq. The first pair of

canonical loadings (u1,v1) is the solution of the following optimization problem

max
u∈Rp,v∈Rq

corr(uTx,vTy).

For identifiability purpose, we need to require both loading vectors have norm 1. The sub-

sequent pairs of loadings are defined in a similar way under the orthogonal constraint that

uTi uj = vTi vj = δij where δij is the kronecker delta.

Let Σx and Σy denote the covariance matrices of x and y respectively, and let Σxy =

cov(x,y) and Σyx = cov(y,x). With some algebraic calculations, we know the loading vectors

ui’s are the eigenvectors of Σ−1
x ΣxyΣ−1

y Σyx and vi’s are the eigenvectors of Σ−1
y ΣyxΣ−1

x Σxy.

Correspondingly, uTi x and vTi y are called the ith canonical scores. When the true covariance

matrices are unknown, we can replace them with sample covariance matrices. Let X and Y be

data matrices with n i.i.d. samples. We have Σ̂x = 1
nXTX, Σ̂y = 1

nYTY, Σ̂xy = 1
nXTY and

Σ̂yx = 1
nYTX. The canonical loadings are estimated accordingly through eigendecomposition

of the product of sample covariance matrices.

However, when data are of high dimension, i.e., p > n or q > n, corresponding sample

covariance matrices may be invertible. In fact, in high dimension, there always exists infinite

number of pairs with correlation 1. Namely, we encounter the overfitting problem. Witten

et al. (2009) proposed a penalized approach for CCA that achieves sparse estimation of the

loading vectors. With proper regularization, the coefficients for unimportant variables are set

to 0 to avoid overfitting. In practice, the sparse CCA approach provides highly interpretable
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results.

1.3 Expression Quantitative Trait Loci Analysis

Genetic variation in a population is commonly studied through the analysis of SNPs,

which are variants occurring at specific sites in the genome. Differences among these vari-

ants drive primary phenotypic differences between members of the population. For humans

these differences range from physical characteristics to disease susceptibility. Mediating the

connection between genetic variation and resulting phenotypes are the effects of SNPs on

the expression of different genes. The analysis of eQTL seeks to identify genetic variants

that affect the expression of one or more genes: a gene-SNP pair for which the expression

of the gene is associated with the value of the SNP is referred to as an eQTL. Enabled by

high-throughput sequencing, eQTL analysis has proven to be an effective approach for the

discovery of genomic variants that influence expression, and a potentially useful tool in the

study of pathways and networks that underlie disease in human and other populations. For

an overview of eQTL analysis and disease mapping, see Cookson et al. (2009), Mackay et al.

(2009), Rockman and Kruglyak (2006), and the references therein. Kendziorski and Wang

(2006) and Wright et al. (2012) survey existing statistical and computational methods for

eQTL analysis, respectively.

To date, most eQTL studies have considered the effects of genetic variation on expression

within a single tissue. Nonetheless, these studies have provided enhanced understanding

of gene regulation and the etiology of various diseases, cf. Franke and Jansen (2009) and

Westra et al. (2013). A natural next step in understanding genomic variation of expression

is the simultaneous analysis of eQTLs in multiple tissues. Multi-tissue eQTL analysis has

the potential to improve the findings of single tissue analyses by borrowing strength across

tissues, and to expand the scope of single tissue analyses by addressing more fundamental

biological questions about the nature and source of variation between tissues.

In a single tissue eQTL study, the goal is to identify gene-SNP pairs for which the expres-

sion of the gene is associated with the SNP genotype. An important feature of multiple tissue
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studies is that a SNP may be associated with the expression of a gene in some tissues, but

not in others. Thus a full multi-tissue analysis must identify complex patterns of association

across multiple tissues. We will refer to an eQTL as ’common’ if association is present in all

available tissues, and ’tissue-specific’ if association is present in at least one tissue, but not all.

Until recently, understanding of multi-tissue eQTL relationships was limited by a shortage of

true multi-tissue data sets, requiring the assimilation of data or results from different stud-

ies (one for each tissue) involving distinct populations, measurement platforms, and analysis

protocols, cf. Emilsson et al. (2008) and Xia et al. (2012).

Recently, a number of human true multi-tissue eQTL data sets have been collected, for

example by Dimas et al. (2009) and Nica et al. (2011), although these contain relatively few

tissues. By contrast, the GTEx initiative (Lonsdale et al. (2013)) and related projects are

generating eQTL data from dozens of tissues in several hundred individuals, greatly expanding

our potential understanding of the variation and specificity of eQTL effects across multiple

tissues. The size and complexity of these emerging multi-tissue data sets has created the need

to expand existing statistical tools for eQTL analysis.

1.4 Empirical Bayes

Empirical Bayes methods are statistical inference procedures that combine Bayesian mod-

els with Frequentist estimation procedures. In Bayesian hierarchical models, parameters of

interest are treated as random variables with prior distributions in which the parameters are

called the hyperparameters. A typical Bayes approach would either integrate out the hyper-

parameters or set them to be values based on some subjective prior knowledge. For empirical

Bayes methods, the hyperparameters are estimated from observed data through marginal

maximum likelihood which is a typical Frequentist approach. Conceptually, empirical Bayes

approaches fully utilize the information in the observed data.

We use a simple example to illustrate the idea of empirical Bayes methods. Suppose θ is

a unknown parameter vector of length p, and x is an observation vector of the same length,
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such that the observations are normally distributed as

x ∼ N (θ, σ2I).

We are interested in estimating the parameter vector θ using the single observation vector x.

For simplicity, we assume σ2 is known. In Frequentist inference, the least square estimate of

θ is just x.

In Bayesian framework, the parameter vector θ is assumed random, and one can impose

a flexible prior distribution on θ based on prior knowledge. In particular, we set the prior

distribution of θ to be N (0, τ2I) where τ2 is an unknown hyperparameter. The posterior

distribution of θ given x is

θ|x ∼ N
(

τ2

τ2 + σ2
x,

τ2σ2

τ2 + σ2

)
.

Consequently, for any fixed τ2, the Bayes estimate of θ is [τ2/(τ2 + σ2)]x. Notice the Bayes

estimate depends on the subjective choice of the hyperparameter τ2.

The empirical Bayes approach takes advantage of the flexible Bayesian model while esti-

mating the hyperparameter from the data. In particular, from the marginal distribution of x

we know

E
(

1− (p− 2)σ2

‖x‖22

)
=

τ2

τ2 + σ2

for any p > 2. We can substitute this into the Bayes estimate and get the empirical Bayes

estimate as
(

1− (p−2)σ2

‖x‖22

)
x. This estimate has the same form with the James-Stein estimate

(Stein, 1956). It has been proved (Efron and Morris, 1973) that the empirical Bayes estimate

strictly outperforms the Frequentist estimate when p ≥ 3 in terms of the mean square error

for any true value.

The above idea can be easily extended to more general frameworks. Beginning with the

work of Newton et al. (2001) and Efron et al. (2001), empirical Bayes approaches have been

applied to hierarchical models in a number of genetic applications, most notably the study
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of differential expression and co-expression in gene microarrays, cf. Kendziorski et al. (2003),

Newton et al. (2004), Smyth (2004), Efron (2008), and Dawson and Kendziorski (2012).

1.5 New Contributions and Outline

In this dissertation, we focus on two topics of the integrated analysis of multiple data

sets, i.e., supervised dimension reduction and multi-tissue eQTL analysis. We shall illustrate

that in both studies integrated analysis outperforms separate analysis by borrowing strength

across data sets. Briefly, the remainder of the dissertation is organized as follows:

In Chapter 2, we develop a supervised PCA framework that extends standard PCA to

incorporate auxiliary data (Li et al., 2015). The auxiliary information that potentially drives

the underlying structure of the primary data of interest is referred to as supervision. The goal

is to obtain a more interpretable and accurate low-rank approximation of the primary data

with the help of supervision. It is different from the scope of SDR or parsimonious multivariate

regression which seeks a reduced version of the primary data that keeps all information about

the supervision. We treat the auxiliary data as covariates for the intrinsic structure of the

primary data rather than response. An appealing feature of the method is that it learns the

amount of supervision needed in dimension reduction adaptively, and reduces to the standard

PCA method when the auxiliary data are actually irrelevant to the low rank structure. We

apply the supervised PCA to a gene expression data set of breast cancer tumors where disease

subtypes are treated as supervision. By incorporating the auxiliary subtype information in

dimension reduction, we obtain a low-rank structure consisting of clear patterns driven by

subtypes and patterns from within-subtype variations. We also consider an arrival rate data

set from a call center where incorporating the day-of-week index as supervision in dimension

reduction reveals interpretable arrival patterns and increases call volume forecasting accuracy.

In Chapter 3, we extend the supervised PCA framework to incorporate regularization to

better accommodate high dimensional data and functional data (Li et al., 2014b). Smoothness

and sparsity constraints are imposed on loading vectors to reduce variability and enhance

interpretability of estimation. In addition, we also impose sparsity on supervision coefficients
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to identify auxiliary variables with no supervision effect. The resulting methodology subsumes

the original supervised PCA method, as well as existing regularized PCA methods, such

as functional PCA and sparse PCA as special cases. Numerical studies show the proposed

method outperforms competitive approaches in terms of low-rank structure recovery accuracy

in a wide range of settings. In an application example concerning yeast cell cycle-related

genes, the supervised regularized PCA method takes advantage of auxiliary transcription

factors binding information and captures underlying cyclic patterns of gene expressions in

two cell cycles. Moreover, it simultaneously identifies important transcription factors that

regulate cell cycles, which is not achieved by other dimension reduction methods.

In Chapter 4, we study an empirical Bayes approach for joint eQTL analysis in multiple

tissues (Li et al., 2014a). We build a Multi-Tissue eQTL model (MT-eQTL) that captures the

presence or absence of an eQTL and accounts for the heterogeneity of effect size variations

in multiple tissues simultaneously. The model can flexibly identify whether a gene and a

SNP are significantly associated in all tissues, or a subset of tissues, or no tissues. As genetic

data are often of several gigabytes, fast computation is an extremely desirable feature. The

proposed method employs an empirical Bayes approach for model estimation and inferences

where the computational speed is tenfold faster than standard permutation-based methods,

making it preferable in practice. In collaboration with experts in the GTEx consortium, we

apply the method to a 9-tissue data set from the pilot project. We show that jointly analyzing

data from multiple tissues increases the statistical power of eQTL detection and improves the

tissue-specificity assessment.
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CHAPTER 2: SUPERVISED SINGULAR VALUE DECOMPOSITION AND

ITS ASYMPTOTIC PROPERTIES

2.1 Introduction

As high dimensional data become increasingly common, dimension reduction becomes

more and more important, since it is easier to visualize and analyze a low dimensional struc-

ture in high dimensional data. SVD is a fundamental tool used in multivariate analysis to

decompose a high-dimensional data matrix into a sum of unit-rank layers ordered by impor-

tance. The first few layers, which often capture the majority of the variation, act as a low

rank approximation or dimension reduction of the original data.

However, one drawback of SVD is that it only makes use of a single data set, and by

default the resulting dimension reduction cannot incorporate any additional information that

may be relevant. When multiple related data sets are available on the same set of samples,

sharing information across data sets may lead to recovery of a low rank structure that is

more interpretable. Several approaches have been developed for analyzing multiple data sets.

For example, Lock et al. (2013) develops an integrative approach to study joint and individ-

ual variations simultaneously; Bair et al. (2006) develops a supervised principal component

regression method to select predictors and do prediction. In this chapter, we propose a su-

pervised SVD (SupSVD) model to achieve dimension reduction that incorporates auxiliary

information. We assume that the auxiliary data set, which we refer to as the supervision, is

a potential driving factor for the low rank structure of the primary data of interest.

The assumption is reasonable in many applications. For example, some genetic studies

collect both gene expression and single-nucleotide polymorphism (SNP) data on the same

group of subjects. One interesting topic is to investigate intrinsic patterns of the expression

data. Biologically, expression of some genes is regulated by SNPs known as eQTL. In other

words, SNPs indeed drive underlying structure in the gene expression data which one can



potentially get a better understanding of if we take advantage of the supervision (SNP) data.

We now introduce the SupSVD model using matrix notation. Let X denote the data

matrix of primary interest which has n rows (or samples) and p columns (or variables). Let

Y denote the supervision data matrix which has n rows (matched with X) and q columns.

We assume that the intrinsic information in X is low dimensional with rank r (r ≤ min(n, p)),

and is possibly driven by Y, in a linear fashion. In matrix form, the SupSVD model can be

expressed as follows:


X =UVT + E,

U =YB + F,

(2.1)

where U is an n × r latent score matrix, V is a p × r full-rank loading matrix, and B is a

q × r coefficient matrix, with F and E being n× r and n× p error matrices, respectively.

Overall, the SupSVD model captures situations in which X has an intrinsic low rank

structure and the structure is partially affected by Y. The first equation in (2.1) is motivated

by the additive-multiplicative low-rank approximation model for SVD, as in Dozier and Sil-

verstein (2007) and Shabalin and Nobel (2013). It indicates that the observed data matrix X

consists of the low rank structure UVT plus measurement errors E. We use a multivariate

linear regression model to capture the potential supervising effect of Y on the score matrix

U. In particular, the matrix F captures information in U that cannot be explained by Y. We

note that very recently Fan et al. (2014) proposed a projected PCA method that generalizes

the second equation of (2.1) to a semi-parametric model.

The SupSVD model is related to the latent variable model in Bair et al. (2006) and the

surrogate variable model in Leek and Storey (2007). The latent variable model utilizes the

same low-rank additive model of X as in the first formula of (2.1). However, it differs from

the SupSVD model in the second formula: it assumes the latent variable U drives Y, rather

than the opposite. In other words, Y is regressed on U. In the surrogate variable model, it

is assumed that the auxiliary data affect each variable of the primary data directly instead

of through its low-rank structure. The primary data X is regressed on Y with a structured
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error term, consisting of a few latent factors and noise. The name of the model comes from

the fact that the latent factors are modeled with surrogate variables. Both models are related

to but different from the SupSVD model we propose here.

Compared with the SVD, the SupSVD model incorporates the auxiliary information in

Y. The potential advantages of SupSVD over SVD are two-fold. First, using additional infor-

mation may help reveal interesting patterns that might otherwise be undiscovered. Second,

the low rank structure recovered by the SupSVD model might have superior interpretability.

Evidence can be found in the simulated examples in the appendix, Section 2.7.6. Overall we

find that SupSVD performs favorably when the supervision information is indeed a driving

factor of low rank data. When auxiliary data are irrelevant, for example in Case 2 of Section

2.5.1.1, SupSVD automatically adapts to the situation and performs as well as SVD.

There is a rich literature on dimension reduction of a data matrix X in the presence

of auxiliary information Y, for example sufficient dimension reduction Cook and Ni (2005),

supervised principal components Bair et al. (2006), and principal fitted components Cook

(2007); Cook and Forzani (2008). Moreover, reduced rank regression (RRR) Izenman (1975);

Reinsel and Velu (1998) can also be viewed as a dimension reduction approach for X if we

regress X on Y. The focus of most existing methods is to find a dimension reduced version of

X that keeps all the information about Y. This is different from the scope of the current paper.

Here our primary goal is to identify low rank structure of X, whether or not the structure is

related to the auxiliary information Y. The auxiliary information Y offers guidance for the

dimension reduction of X. To the best of our knowledge, our work is the first to address this

topic.

The rest of the chapter is organized as follows. In Section 2.2, we give more details of

the SupSVD model, and explain its connections with existing models. In Section 2.3, we

propose a modified version of the EM algorithm for parameter estimation. The asymptotic

properties of the estimates are discussed in Section 2.4. In Section 2.5, we compare different

methods using extensive simulations and apply SupSVD to a real data example. We conclude

in Section 2.6, with a brief discussion of potential extensions of our framework to functional

data analysis. Proofs, technical details, and additional numerical examples can be found in
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the appendix, Section 2.7.

2.2 The SupSVD Model

In this section, we describe the SupSVD method in detail. Section 2.2.1 gives an equivalent

formulation of the model, and discusses identifiability conditions. Section 2.2.2 establishes

connections of the proposed model with some existing methods.

2.2.1 An Equivalent Form of The Model

In Model (2.1), if we substitute the latent matrix U in the first equation with the second

equation, we get an equivalent form for the SupSVD model as:

X = YBVT + FVT + E. (2.2)

Without loss of generality, we assume that both X and Y are column-centered; hence, the

model does not have intercepts. The random matrices E and F are assumed independent.

Each entry of the error matrix E is independently identically distributed (i.i.d.) with mean

zero and variance σ2
e. This follows the signal-plus-noise model for matrix reconstruction, cf.

Shabalin and Nobel (2013), as well as the r-component spiked covariance model for PCA, cf.

Johnstone (2001); Paul (2007). Each row of F is i.i.d. with mean zero and covariance matrix

Σf , which is an unknown r × r positive definite matrix.

Furthermore, Model (2.2) can be viewed as a special setup of a multivariate linear regres-

sion model

X = Yβ + ε

where the coefficient matrix β is BVT of rank min(r, q), and the random noise matrix ε is

FVT +E. The rows of the noise matrix ε are i.i.d. with covariance Σ equal to VΣfV
T +σ2

eIp

where Ip is the p× p identity matrix.

The primary goal of the SupSVD model is to identify low rank structure in the observed
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data X using Y. Namely, we want to estimate YBVT + FVT , where YBVT is the deter-

ministic part and FVT is the random part. The deterministic signal is driven by Y and the

random signal captures important structures from unknown sources. The two parts are re-

lated through the common loading matrix V, and together they form the underlying low rank

representation for X. In practice, we substitute all model parameters by estimates obtained

from the observed data, and replace the random matrix F by its best unbiased prediction.

The SupSVD model (2.2) is identifiable in terms of the coefficient matrix β = BVT and

the covariance matrix Σ = FVT + E, but unidentifiable in terms of the specific parameters

B, V, Σf , and σ2
e. To see this, let B? = BQ, V? = VQ, and Σ?

f = QTΣfQ for any

r × r orthogonal matrix Q. It is easily seen that BVT = B?V?T and VΣfV
T = V?Σ?

f V
?T .

Namely, the two sets of parameters lead to the same Model (2.2). In particular, we define

two sets of parameters to be equivalent when they give identical likelihood functions (see (2.6)

below).

For regression purpose knowing β and Σ is enough, but for dimension reduction purpose

we need to obtain all specific parameters since each parameter has an important interpreta-

tion. For example, the columns of V can be interpreted as projection directions; the matrix

Σf gives the covariance structure of latent scores; each column of B indicates how the su-

pervision matrix Y is related with the corresponding score vector. Therefore we impose the

following constraints to identify the model.

(1) The p× r matrix V has orthonormal columns, i.e., VTV = Ir;

(2) The r × r matrix Σf is diagonal with r distinct positive eigenvalues;

(3) The columns of V are sorted in the descending order in terms of column norms of XV,

and the first entry of each column is positive.

The first condition is commonly used in SVD analysis. Each loading vector corresponds with

a projection direction. The orthonormality of loading vectors naturally leads to an orthogonal

basis with unit lengths. The second condition implies that the latent variables in U are un-

correlated. We assume all diagonal entries to be positive and distinct to avoid indeterminacy

of the loading vectors. In practice, this condition generally holds. The third condition rules
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out column and sign switches. In addition, we also assume that the supervision data matrix

Y has linearly independent columns; in practice, one can discard linearly dependent columns

in Y. Under these conditions, the SupSVD model is identifiable. Hereafter, without special

notice, we assume that the model satisfies all the aforementioned identifiability conditions.

We comment that the identifiability conditions help us identify the unique representative in

an equivalence class.

Proposition 2.2.1. In Model (2.2), for any parameter set (B,V,Σf , σ
2
e) such that the largest

r eigenvalues of Σ = VΣfV
T + σ2

eI are distinct and greater than the remaining eigenvalues,

there exists an unique parameter set that is equivalent with (B,V,Σf , σ
2
e) and satisfies the

identifiability conditions.

For cases in which two or more of the first r eigenvalues of Σ are equal, the above con-

ditions are not sufficient for identifiability, and one may have to impose constraints on B as

well. However, in real data examples, equal-eigenvalue cases rarely occur. Therefore, we can

reasonably restrict our scope to models that satisfy the identifiability conditions.

2.2.2 Connections with Existing Models

The SupSVD model (2.2) has close connections with several existing models. On the one

hand, when B = 0, i.e., when the score matrix U equals to the random matrix F, Model

(2.2) reduces to

X = FVT + E. (2.3)

In Model (2.3), each row of X is i.i.d. with mean zero and covariance matrix VΣfV
T + σ2

eIp,

which is exactly the r-component spiked covariance model for PCA, cf. Johnstone (2001);

Paul (2007); Shen et al. (2013). In the model, the r columns of V are the first r principal

component (PC) loadings, and the columns of XV are the corresponding PCs. Note that the

PCA model is unsupervised, as the matrix Y does not appear in the model.

On the other hand, when the latent score matrix U is fully driven by Y, i.e., Σf = 0, the
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SupSVD model reduces to

X = YBVT + E, (2.4)

where for identifiability purposes we let B have orthogonal columns. We note that Model (2.4)

is the reduced rank regression (RRR) model (Izenman, 1975; Reinsel and Velu, 1998) with

isotropic covariance structure (we will refer to isotropic RRR as RRR). The matrix C = BVT

is the rank r coefficient matrix whose least square estimator is explicitly given in Reinsel and

Velu (1998). In this case, the true underlying structure of X is YBVT , whose column space is

a subspace of the column space of Y. In other words, the underlying structure is fully driven

by the supervision information. We therefore refer to the RRR model as fully supervised.

The SupSVD model (2.2) is also connected with the envelope model that was recently

proposed by Cook et al. Cook et al. (2010) and further developed in (Cook et al., 2013;

Cook and Su, 2013; Cook and Zhang, 2015; Su and Cook, 2011). The envelope model is a

parsimonious model for multivariate regression that is based on the assumption that variation

in the response can be divided into two parts: a material part that is related to the predictor,

and an immaterial part that is unrelated to the predictor. The envelope model achieves

substantial efficiency gain in parameter estimation by focusing on the material part of the

response. The coordinate version of the envelope model can be written as

y = α+ Γηx + ε (2.5)

Σ = ΓΩΓT + Γ0Ω0Γ
T
0 .

Here y is a p-dimensional response, x is a q-dimensional predictor, Γ is p× r semi-orthogonal

matrix and η is an r× q matrix. The product of Γ and η acts as a coefficient, while α and ε

are the intercept and the random error. The random error ε has covariance matrix Σ defined

in the second equation, in which (Γ,Γ0) is orthogonal, and Ω and Ω0 are positive definite.

If we regard the response as the primary data to be approximated, and the predictor

as the supervision data, it can be shown that Model (2.5) coincides with Model (2.2). The

22



covariance of (2.2) is slightly more specific than that of (2.5). However, we note that the two

models arise in the analysis of different problems, and that they have different applications

and interpretations. The SupSVD model attempts to extract a low rank representation of a

primary data matrix, and is intended for dimension reduction problems in which auxiliary

data is present. The goal of the envelope model is to reduce the variation of coefficient

estimation in regression problems. Here we impose identifiability conditions on the model

and estimate each parameter, as the parameters are directly interpretable in the context

of dimension reduction. In Cook et al. (2010) the authors focus on identifying estimable

subspaces that are spanned by the parameters of their model; the parameters themselves are

of less importance. In addition, fitting of the SupSVD and envelope models is carried out

in fundamentally different ways. We describe a computationally efficient EM type algorithm

to fit the model (2.1) for which the likelihood of the observed data usually converges to a

local maximum after a few iterations. In order to fit the envelope model, the authors of Cook

et al. (2010) directly maximize the likelihood function, which involves optimization over a

Grassmann manifold. We compared the computational speeds of both methods using various

simulations, and in general the EM algorithm is faster.

SupSVD can be viewed as a general model for supervised dimension reduction. It encom-

passes unsupervised PCA and fully supervised RRR as two extremes. When the auxiliary

information is irrelevant to low rank structure of the primary data, the SupSVD model re-

duces to the PCA model; when the underlying structure is totally driven by the auxiliary

data, the SupSVD model reduces to the RRR model. It also connects with the envelope

model from a multivariate regression point of view.

2.3 Model Estimation

In this section, we describe the parameter estimation algorithm, incorporating the iden-

tifiability constraints discussed in Section 2.2.1. We assume multivariate normality for the

random matrices E and F hereafter. To begin, we assume that the rank of the underlying

structure of X is known to be r. Data-driven selection of the rank r is discussed at the end
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of this section.

Under the normality assumption for E and F, we can obtain the distribution of the

observed data X according to (2.2) as

vec(XT ) ∼ Nnp
(
vec(VBTYT ), In ⊗ (VΣfV

T + σ2
eIp)

)
,

where vec(·) is the column-stacking operator and ⊗ is the Kronecker product. Thus the log

likelihood of X can be expressed explicitly as

L(X) =− np

2
log(2π)− n

2
log det (VΣfV

T + σ2
eIp)

− 1

2
tr
(
(X−YBVT )(VΣfV

T + σ2
eIp)

−1(X−YBVT )T
)
,

(2.6)

where the parameters satisfy the identifiability conditions discussed above.

One way to estimate the parameters is to directly maximize the likelihood function (2.6)

under the identifiability conditions. However, a direct constrained maximization is challenging

for two reasons: 1) V appears in both the mean and the variance of the normal distribution;

and 2) the constrained parameter space is not convex. As a remedy, we propose a modified

EM algorithm, namely an expectation-maximization-standardization (EMS) algorithm, to ef-

ficiently estimate the model parameters. The additional standardization step guarantees that

the parameter estimates satisfy the identifiability conditions.

The latent matrix U in Model (2.1) naturally suggests the possibility of using the EM

algorithm for parameter estimation. The joint log likelihood of X and U, i.e., L(X,U), can

be separated into two parts: the conditional log likelihood of X given U, and the marginal

log likelihood of U. In detail,

L(X,U) = L(X|U) + L(U), (2.7)
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where

vec(XT ) | U ∼ Nnp
(
vec(VUT ), σ2

eInp
)
, and (2.8)

vec(UT ) ∼ Nnr
(
vec(BTYT ), In ⊗ Σf

)
. (2.9)

The benefit of this separation is that the parameters (B,Σf ) are isolated from (V, σ2
e),

and each parameter only contributes to one part of the likelihood. Using (2.7) the joint log

likelihood has the following form:

L(X,U) ∝ −np log σ2
e − σ−2

e tr
(
(X−UVT )(X−UVT )T

)
−n log det Σf − tr

(
(U−YB)Σ−1

f (U−YB)T
)
.

Below we describe the steps of the EMS algorithm, which is presented as Algorithm

1 at the end of this section. We use θ(i) = (B(i),V(i),Σ
(i)
f , σ2

e
(i)

) to denote the parameter

estimates obtained in the ith iteration, which satisfy the identifiability conditions.

E Step: We calculate the conditional expectation of L(X,U) with respect to U given

X and θ(i), i.e., EU(L(X,U)|X, θ(i)). The conditional distribution of U given X and the

previous parameter estimation θ(i) is

vec(UT ) | X ∼ N
(

vec

(
Θ

(i)
U|X

T
)
, In ⊗ Ω

(i)
U|X

)
, (2.10)

where

Θ
(i)
U|X = EU(U|X) =

(
YB(i)

(
σ2

e
(i)

Σ
(i)
f

−1
)

+ XV(i)

)(
Ir + σ2

e
(i)

Σ
(i)
f

−1
)−1

,

Ω
(i)
U|X =

(
Σ

(i)
f

−1
+ σ−2

e
(i)

Ir

)−1

.

Note that the conditional expectation of U given X is a weighted average of YB(i) and XV(i),

where the weights are determined by σ2
e

(i)
and Σ

(i)
f .

M Step: We maximize EU(L(X,U)|X, θ(i)) with respect to all the parameters under the

identifiability constraints in Section 2.2.1. The optimization is challenging since the constraint
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is not convex. As the joint distribution of X and U is identifiable even without the side condi-

tions, we propose a modified EM algorithm that bypasses the constrained optimization prob-

lem. More specifically, we first obtain the unconstrained optimizers of EU(L(X,U)|X, θ(i)),

and then find the unique set of parameters that is equivalent to the optimizers in terms of

the SupSVD model, and that satisfies the identifiability conditions.

The unconstrained optimization problem can be solved analytically. Setting partial deriva-

tives of EU(L(X,U)|X, θ(i)) with respective to each parameter to zero, we obtain

B̂ = (YTY)−1YTEU(U|X, θ(i)), (2.11)

V̂ = XTEU(U|X, θ(i))
[
EU(UTU |X, θ(i))

]−1
, (2.12)

Σ̂f =
1

n
EU

[
(U−YB̂)T (U−YB̂) |X, θ(i)

]
, (2.13)

σ̂2
e =

1

np
EU

[
tr((X−UV̂T )(X−UV̂T )T ) |X, θ(i)

]
, (2.14)

where the corresponding conditional expectations can be obtained from (2.10). Details can

be found in the appendix, Section 2.7.3.

S Step: The unconstrained optimizers (B̂, V̂, Σ̂f , σ̂2
e) in (2.11)–(2.14) typically satisfy

the condition of Proposition 2.2.1. In this case, we can obtain the unique equivalent set

of parameters that satisfy the identifiability conditions. In particular, we perform SVD on

V̂Σ̂f V̂
T to obtain the following eigen-decomposition:

V(i+1)Σ
(i+1)
f V(i+1)T = V̂Σ̂f V̂

T ,

where the columns of V(i+1) are the orthonormal eigenvectors and the diagonal entries of the

diagonal matrix Σ
(i+1)
f are the eigenvalues. In practice, the eigenvalues are almost always

positive and distinct, so that the matrices V(i+1) and Σ
(i+1)
f satisfy the identifiability con-

ditions and are unique up to a column reordering. Then, we set B(i+1) = B̂V̂TV(i+1) and

σ2
e

(i+1)
= σ̂2

e. It is easy to see that

B(i+1)V(i+1)T = B̂V̂T .
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Lastly, we reorder the columns of V(i+1), and accordingly the columns of B(i+1) and the

rows/columns of Σ
(i+1)
f , in order to ensure that the column norms of XV(i+1) are decreasing.

As a result, we get parameter estimates θ(i+1) = (B(i+1),V(i+1),Σ
(i+1)
f , σ2

e
(i+1)

) for the (i +

1)th iteration.

Each step of the EMS algorithm has an analytical expression and can be computed effi-

ciently. Our numerical studies indicate that the algorithm is insensitive to initial values. In

practice, we use the naive estimates from SVD as the initial values. The following proposition

guarantees convergence of the EMS algorithm to a local optimum.

Proposition 2.3.1. In each iteration of the EMS algorithm, the log likelihood of the observed

data L(X) is monotonically nondecreasing. Therefore, the EMS algorithm always converges

to some stationary point (maybe local maximum).

Algorithm 1 The EMS Algorithm for Parameter Estimation under the SupSVD Model

1: Set initial values for the parameters (B(0),V(0),Σ
(0)
f , σ2

e
(0)

);
2: while L(X|θ(i+1))− L(X|θ(i)) >threshold do

3: E Step: Derive the conditional distribution (2.10) given θ(i) = (B(i),V(i),Σ
(i)
f , σ2

e
(i)

);

4: M Step: Obtain the unconstrained optimizer (B̂, V̂, Σ̂f , σ̂2
e) from (2.11)-(2.14);

5: S Step: Standardize (B̂, V̂, Σ̂f , σ̂2
e) to get θ(i+1) = (B(i+1),V(i+1),Σ

(i+1)
f , σ2

e
(i+1)

)
that satisfy the identifiability conditions;

6: Set i← i+ 1.
7: end while

The presentation in this section assumes that the rank r is known. In practice, the rank

has to be determined from the data. In the numerical studies of Section 2.5.1, we adopt a

popular practice within the PCA literature: using the scree plot of a primary data matrix to

determine a proper rank. The rationale is that we assume the rank of the underlying signal of a

primary data matrix is inherent. Auxiliary information is used to help recover the underlying

low-rank structure more accurately, without altering the rank. Other rank selection methods

that have been studied in the PCA literature, e.g., the permutation assessment method in

Buja and Eyuboglu (1992) and the bi-cross-validation method in Owen and Perry (2009), are

also appropriate in our framework. The likelihood ratio test approach of Cook et al. (2010)

could be used to select r in the SupSVD model as well.
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2.4 Asymptotic Analysis

In this section, we state the consistency and asymptotic normality of the SupSVD param-

eter estimates. Since the SupSVD model is overparameterized, i.e., unidentifiable without

side conditions, standard asymptotics from the maximum likelihood framework do not apply

directly. Instead, we refer to the asymptotic results in Shapiro (1986) for overparameterized

structural models. A similar treatment can be found in Cook et al. (2010).

Specifically, we first focus on the estimable functions β = BVT and Σ = VΣfV
T + σ2

eI,

which uniquely define the likelihood function. In order to fit our analysis into the framework

of (Shapiro, 1986), we rewrite the parameters as

φ =



vec(B)

vec(V)

vech(Σf )

σ2
e


=



φ1

φ2

φ3

φ4


,

where the operator vech(·) stacks the lower triangular part of a symmetric matrix into a

vector. The estimable functions can then be expressed as

h(φ) =

 vec(β)

vech(Σ)

 =

 vec(BVT )

vech(VΣfV
T + σ2

eI)

 =

h1(φ)

h2(φ)

 . (2.15)

For any d×d symmetric matrix Ω, we denote the d(d+1)/2×d2 constant contraction matrix

as Cd, and the d2×d(d+ 1)/2 constant expansion matrix as Ed to relate the operator vech(·)

and vec(·), i.e., vech(Ω) = Cdvec(Ω) and vec(Ω) = Edvech(Ω). Moreover, for any l×mmatrix

Γ, we denote the lm× lm constant commutation matrix as Klm, i.e., vec(ΓT ) = Klmvec(Γ).

We can obtain the following theorem, whose proof can be found in the appendix, Section

2.7.4.

Theorem 2.4.1. Assume Model (2.2) and let h(·) be as in (2.15). Denote H = ∂h(φ)/∂φ,

and let J be the Fisher information of h(φ). Let ĥ be the maximum likelihood estimator of
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h. Then,

√
n(ĥ− h)→d N (0,Σh), (2.16)

where Σh = H(HTJH)†HT , where † indicates the Moore-Penrose inverse. Specifically,

H =

V ⊗ Iq (Ip ⊗B)Kpr 0 0

0 2Cp(VΣf ⊗ Ip) Cp(V ⊗V)Er vech(Ip)


and

J =

Σ−1 ⊗ΣY 0

0 1
2ET

p (Σ−1 ⊗Σ−1)Ep


where ΣY = lim

n→∞
YYT /n.

As a result, we know that
√
n vec(β̂−β) and

√
n vech(Σ̂−Σ) are jointly asymptotically

normally distributed with mean zero. Moreover, under the identifiability conditions, we obtain

the following asymptotic property for each parameter in φ̂.

Corollary 2.4.1. Given (2.16), under the identifiability conditions,
√
n vec(B̂−B),

√
n vec(V̂−

V),
√
n diag(Σ̂f −Σf ), and

√
n (σ̂2

e − σ2
e) are asymptotically jointly normal with mean zero.

The asymptotic covariance matrix of
√
n (v̂i−vi), where v̂i and vi are the ith columns of V̂

and V respectively, is given in the appendix, Section 2.7.5.

2.5 Numerical Examples

We compare SupSVD with SVD and RRR using extensive simulations (Section 2.5.1) and

a real data example (Section 2.5.2). Section 2.5.1.1 compares the three methods with data

simulated from each of the models respectively to show the adaptivity of SupSVD. Section

2.5.1.2 illustrates the performances of the methods under a spectrum of settings ranging from

PCA to RRR. In Section 2.5.2, we illustrate SupSVD using the breast cancer data from The
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Cancer Genome Atlas Network (2012). Additional simulation and real data examples can be

found in the appendix, Section 2.7.6, 2.7.7, and 2.7.8.

2.5.1 Simulation Studies

2.5.1.1 Adaptivity of SupSVD

We consider three simulation examples where the data are generated from each one of the

three models (SupSVD, PCA, RRR) respectively. In particular, the PCA example illustrates

a situation where the “supervision” data are actually not related to the primary data; the

RRR example illustrates a situation where the underlying structure of primary data is fully

driven by supervision. For each simulated example, we apply all three methods to analyze

the simulated data, and demonstrate the adaptivity of SupSVD under different settings. We

have tried a range of parameter settings in each case and the results are concordant across

settings. Below we choose to only present representative results in each example.

In all three examples, we set the sample size n = 100, the dimension of X as p = 68, and

the dimension of the supervision data Y as q = 4. The rank of the underlying structure is

set to be r = 2. We fill in the supervision data matrix Y with numbers generated from a

standard normal distribution. The loading vectors in V are set to be the first two orthogonal

loadings with unit norms estimated from the call center data in the appendix, Section 2.7.8.

The intention is to make the simulation setting as realistic as possible. In particular, the

primary data matrix X is generated in the following ways for different examples.

(1) Case 1 (SupSVD): X is generated from the SupSVD model X = YBVT + FVT + E.

The 4 × 2 fixed coefficient matrix B is standardized to have orthogonal columns with

norm 3. The matrix F has i.i.d. rows from a multivariate normal distribution with

mean zero and covariance matrix Σf = diag(9, 4). The matrix E has i.i.d. entries from

N (0, 3).

(2) Case 2 (PCA): X is generated from the PCA model X = FVT + E, where F is

generated in the same way as in Case 1, and E has i.i.d. entries from a standard normal
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distribution.

(3) Case 3 (RRR): X is generated from the RRR model X = YBVT +E, where the 4×2

fixed coefficient matrix B is standardized to have orthogonal columns with norm 6 and

3 respectively. The error matrix E has i.i.d. entries from N (0, 3).

Performance Measures The three methods are compared in two aspects, low rank structure

recovery and parameter estimation. The low rank recovery accuracy is measured by the mean

square error (MSE) defined as

MSEUVT =
1

np
‖UVT − ÛV̂T ‖2F,

where ‖ · ‖F denotes the Frobenius norm, and UVT and ÛV̂T are the true and estimated low

rank structures respectively. For SVD, Û = XV̂SV D; for RRR, Û = YB̂RRR; for SupSVD,

Û =
(
YB̂(σ̂2

eΣ̂f
−1

) + XV̂
)(

Ir + σ̂2
eΣ̂f

−1
)−1

, where (B̂, V̂, Σ̂f , σ̂2
e) is the parameter set es-

timated from the SupSVD approach. We also considered other matrix norms such as 1-norm

and 2-norm (Golub and Van Loan, 2012), and obtained similar results.

For parameter estimation, only the loading matrix V and the noise variance σ2
e are com-

mon across the three methods. We use the following performance measures:

MSEV =
1

pr
‖V − V̂‖2F, MSEσ2

e
= (σ2

e − σ̂2
e)2.

Moreover, since the columns of a loading matrix form a basis for a projection subspace,

we also measure the largest principal angle (Golub and Van Loan (2012)) between the true

subspace and the estimated subspace which is defined as

AngleV =
180

π
arccos(min eig(VT V̂)),

where min eig(·) denotes the minimal eigenvalue.

Results For each case, we repeat the simulation 100 times and present in Table 2.1 the median

and the median absolute deviations (MAD) of each performance measurement for the three
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methods. The results clearly show that SupSVD performs favorably no matter which true

model the data are generated from, while SVD and RRR only work well in their respective

settings. This demonstrates that SupSVD, covering SVD and RRR as special cases, adapts to

a wide range of practical situations. In practice, whenever additional information is available

(whether it is truly supervision or not), SupSVD is always a good choice for dimension

reduction. In these simulations, SupSVD always provides the best results, equivalent to (or

better than) the method corresponding to the true data generative model.

SupSVD SVD RRR

MSEUVT 0.1289 (0.0082) 0.1830 (0.0128) 0.2487 (0.0154)
Case 1 MSEV 0.0025 (0.0005) 0.0036 (0.0013) 0.0080 (0.0048)
(SupSVD) MSEσ2

e
0.0104 (0.0066) 0.0357 (0.0127) 0.0075 (0.0060)

AngleV 23.1605 (1.3312) 23.5571 (1.4463) 27.0765 (2.0600)

MSEUVT 0.0497 (0.0035) 0.0606 (0.0036) 0.2066 (0.0138)
Case 2 MSEV 0.0022 (0.0003) 0.0022 (0.0003) 0.0199 (0.0027)
(PCA) MSEσ2

e
0.0009 (0.0007) 0.0035 (0.0014) 0.0231 (0.0056)

AngleV 25.0287 (2.3239) 24.9046 (2.1729) 77.1232 (7.0102)

MSEUVT 0.0659 (0.0051) 0.1845 (0.0097) 0.0635 (0.0055)
Case 3 MSEV 0.0032 (0.0014) 0.0024 (0.0003) 0.0018 (0.0002)
(RRR) MSEσ2

e
0.0082 (0.0064) 0.0329 (0.0130) 0.0063 (0.0052)

AngleV 25.4285 (1.6554) 29.4099 (2.0742) 25.2282 (1.5882)

Table 2.1: Median(MAD) for Low Rank Structure Recovery Accuracy and Parameter Esti-
mation Accuracy.

Note that Table 2.1 also shows that the MSEV of SupSVD is larger than the other two

methods when the data are generated from the RRR model, i.e. in Case 3. We remark that

this is due to the low identifiability of the SupSVD model when the true Σf is exactly zero.

Numerically, SupSVD is still applicable but the estimated loading vectors are subject to an

unstable orthogonal rotation. However, we comment that the estimated projection subspace

of V (i.e., AngleV) and the low-rank recovery accuracy (i.e., MSEUVT ) are unaffected.

Generally, it’s very unlikely that the underlying structure of a primary data matrix is fully

driven by supervision without any variations in practice. Therefore, we do not view this as a

major drawback of SupSVD for practical use.
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2.5.1.2 Comparison across A Spectrum

We now compare SupSVD, SVD and RRR across a spectrum of simulation settings ranging

from the PCA model to the RRR model. For easy presentation, we set n = 210, p = 68,

q = 1, and r = 1. Fill the 210 × 1 vector Y with standard normal random numbers. We

simulate X from the SupSVD model, with the loading vector being the first column of V

in Case 1 above, σ2
e = 16, and (B,Σf ) ∈ {(0, 36), (1, 25), (2, 16), (3, 9), (4, 0)}, corresponding

to Setting 1 to 5, respectively. Therefore, the SupSVD model ranges from the PCA model

X = 6ZVT + E (Setting 1; Z is a random vector with i.i.d. entries from standard normal

distribution) to the RRR model X = 4YVT + E (Setting 5). Again, under each setting, we

run 100 simulations and summarize the results.

To avoid redundancy, we only show the median curves of MSEUVT , MSEV, and AngleV

for the methods in Figure 2.1. We observe that SupSVD is uniformly the best over the

spectrum of settings, with similar performance with SVD when the true underlying model is

PCA, and similar performance with RRR when the true underlying model is RRR. Again,

the results illustrate that SupSVD is a robust method that adapts well over a wide range of

data-generating models.
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Figure 2.1: Median Curves for AngleV, MSEV, and MSEUVT Based on 100 Simulation
Runs.

2.5.2 Breast Cancer Data

We consider a real data set containing gene expression measurements from breast tumors,

obtained from the The Cancer Genome Atlas (TCGA) project (The Cancer Genome Atlas

Network, 2012). A pointer to the publicly available data is at https://tcga-data.nci.nih.

gov/docs/publications/brca_2012/. A primary goal is to understand underlying patterns
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of genetic variation among tumors. In this case, we have additional information of disease

subtype for each tumor. We may regard cancer subtypes as a partial driver of the underlying

structure of the gene expression data (Schadt et al., 2005). Samples from the same subtype

will share common genetic variations. We use the subtype information as our supervision

data and apply the SupSVD method.

The raw data set contains 17814 genes and 348 samples. Out of the 348 samples, there

are 5 subtypes of breast cancer with different number of samples in each subtype: Basal

(66), Her2 (42), LumA (154), LumB (81), and Normal (5). We preprocessed the data in

the same way as in Lock and Dunson (2013). We first imputed missing values with the k-

nearest neighbors algorithm (k = 10), then removed genes with low variations across samples

(standard deviation smaller than 1.5), and finally mean centered each gene. The result is a

column-centered data matrix X with 348 samples and 645 genes. Based on the scree plot of

the singular values of X, we select the rank of the underlying structure to be 3.

Figure 2.2 shows the scatter plots of the estimated SupSVD scores. The first score vector

clearly separates the Basal subgroup from the rest. The second score vector captures vari-

ations within each subtype. The third score vector roughly separates the Her2, LumA, and

LumB subgroups.
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Figure 2.2: Breast Cancer Data - Scatter Plots of SupSVD Score Vectors. The 5 different
subtypes are well separated by the first three score vectors.
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Figure 2.3: Breast Cancer Data - Heat Map of First Three Unit-rank SupSVD Structures of
the Gene Expression Data. Blue is negative and red is positive. The samples are grouped
in the order of Basal, Her2, LumA, LumB, Normal. The genes are reordered for better
visualization.

Figure 2.3 presents the heat maps of the unit-rank structures from SupSVD. There are

clear patterns driven by subtypes. For example, the first layer is dominated by the unique

pattern in the Basal subgroup. The third layer shows patterns similar between Basal and

Her2, but different among Her2, LumA and LumB. There are also within-group variations

that are not driven by subtypes. For example, the LumA samples in the second layer clearly

exhibit several different patterns. The SVD and RRR results are given in the appendix,

Section 2.7.7. In comparison, SupSVD effectively captures important underlying patterns

consisting of both between-group variations driven by the subtype information and within-

group variations from unknown sources.

2.6 Discussion

In this chapter, we propose a supervised dimension reduction model, SupSVD that takes

advantage of auxiliary information to better recover the underlying low-rank structure in the

primary data of interest. We focused on recovering comprehensive low-rank structures from

the data with the potential guidance of the supervision information. The SupSVD model
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contains the PCA model and the RRR model as two extreme cases: when the supervision

information is unrelated to the data of interest, SupSVD reduces to PCA; when the underlying

structure is fully driven by the supervision information, SupSVD reduces to RRR. SupSVD

automatically adjusts the amount of supervision used for dimension reduction without the

use of tuning parameters. The proposed EMS algorithm for parameter estimation in SupSVD

is computationally efficient. Asymptotic properties of SupSVD are derived for the resulting

estimates. Simulation studies and real data applications clearly demonstrate the advantages

and flexibility of the SupSVD method.

Dimension reduction is also useful in functional data analysis (FDA) to facilitate vari-

ous subsequent analyses. For an overview of the FDA literature including recent advances,

see Bongiorno et al. (2014); Ferraty and Vieu (2006); Horváth and Kokoszka (2012); Silver-

man and Ramsay (2005). We remark that our SupSVD method can be directly adapted to

FDA through a basis approach. In particular, one can decompose discretized observations

of functional data onto proper basis functions, obtain a coefficient matrix, and then apply

SupSVD to the coefficient matrix. The low rank approximation obtained from SupSVD can

then be converted back to the original functional space through the basis functions. Another

approach is to first select important variables in discretized values of the function (Aneiros

and Vieu, 2014), and then apply SupSVD to the dimension-reduced vectors. Alternatively,

in the next chapter, we extend the recent regularization formulation of functional principal

component analysis (Huang et al., 2008, 2009) to incorporate supervision for FDA. We im-

pose both sparsity (Shen and Huang, 2008b) and roughness regularization to incorporate both

high-dimensional multivariate data as well as infinite-dimensional functional data.

2.7 Appendix

2.7.1 Proof of Proposition 2.2.1

Proof. Let (B,V,Σf , σ
2
e) be a parameter set such that B is a q × r matrix, V is a p × r

matrix, Σf is a r × r positive definite matrix, and σ2
e is a positive scalar. Moreover, let the

largest r eigenvalues of the p× p matrix Σ = VΣfV
T + σ2

eI to be distinct and greater than

36



the rest p − r equal eigenvalues. It’s equivalent to say that VΣfV
T has r positive distinct

eigenvalues. We have the eigen-decomposition of the p× p matrix VΣfV
T as

VΣfV
T = V̂Σ̂f V̂

T

where Σ̂f is the r× r diagonal matrix containing the distinct eigenvalues, and V̂ is the p× r

orthonormal matrix containing the corresponding eigenvectors. Moreover, set B̂ = BVT V̂.

Since V and V̂ have the same column space, we know

BVT = B̂V̂T .

Therefore, the new parameter set (B̂, V̂, Σ̂f , σ
2
e) is equivalent with the original parameter set

in terms of Model (2.2), and satisfies the aforementioned identifiability conditions.

The uniqueness of the resulting parameter set is guaranteed by the uniqueness of the

eigen-decomposition of the matrix with distinct eigenvalues.

2.7.2 Proof of Proposition 2.3.1

Proof. Let θ(i) = (B(i),V(i),Σ
(i)
f , σ2

e
(i)

) denote the EMS parameter estimation from the ith

iteration. From the algorithm we know it satisfies the identifiability conditions. Let Q(θ|θ(i))

denote the conditional expectation of the joint log likelihood. Namely,

Q(θ|θ(i)) = EU(L(X,U|θ)|X,θ(i))

= EU(L(U|X,θ)|X,θ(i)) + L(X|θ)

Let θ̂ denote the unconstrained optimizer from the M step of EMS algorithm. Namely,

θ̂ = arg max
θ

Q(θ|θ(i))
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Referring to the information inequality that Eg(log f) ≤ Eg(log g) for any densities f and g,

we have

EU(L(U|X, θ̂)|X,θ(i)) ≤ EU(L(U|X,θ(i))|X,θ(i))

Combining with the fact Q(θ̂|θ(i)) ≥ Q(θ(i)|θ(i)), we know

L(X|θ̂) ≥ L(X|θ(i))

Moreover, let θ(i+1) denote the equivalent parameter set that satisfies the identifiability con-

ditions. We have

L(X|θ(i+1)) = L(X|θ̂) ≥ L(X|θ(i))

Therefore, the likelihood of the observed data X is monotonically nondecreasing with itera-

tions. If we assume the maximum likelihood exists, the EMS algorithm can always converge.

2.7.3 Details of Algorithm 1

In the paper, we propose the EMS algorithm, which is a modified version of EM algorithm,

to efficiently estimate the SupSVD model parameters. The detailed calculations for each step

in each iteration are described below. We use (B(i),V(i),Σ
(i)
f , σ2

e
(i)

) to denote the estimations

from the ith iteration.

Initial estimation: Our numerical studies indicate the algorithm is not sensitive to

initial values. In practice, we apply SVD to the matrix X to get the initial estimation. More

specifically, we first find the rank-r approximation of X as

X ≈ UVT (2.17)

where U is the n × r semi-orthogonal matrix (i.e., the submatrix of the product of the left

singular matrix and the diagonal singular value matrix), and V is the p × r matrix with
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orthonormal columns (i.e., the submatrix of the right singular matrix). Here V is an initial

estimation of V in our model. We treat X − UVT as a random matrix with i.i.d. entries

from N (0, σ2
e). Therefore we can get an initial estimation of σ2

e. Then we regress U on Y

and assume that the multivariate residuals are i.i.d. with diagonal covariance structure. The

regression coefficient matrix is an initial estimation of B and the diagonal covariance matrix

is an initial estimation of Σf .

E step: We have the conditional distribution (2.10) of U given X under the current

parameter estimations. We can calculate the following quantities to be used in M step.

(1) First order conditional expectation:

EU

(
U|X, θ(i)

)
=

(
YB

(
σ2

e
(i)

Σ
(i)
f

−1
)

+ XV(i)

)(
Ir + σ2

e
(i)

Σ
(i)
f

−1
)−1

, Θ
(i)
U|X

(2) Second order conditional expectation:

EU

(
UTU|X, θ(i)

)
= nΩ

(i)
U|X + Θ

(i)
U|X

T
Θ

(i)
U|X

where Ω
(i)
U|X ,

(
Σ

(i)
f

−1
+ σ−2

e
(i)

Ir

)−1

.

(3) Conditional expectation of any quadratic form in U:

EU

(
tr
(
U∆UT

)
|X, θ(i)

)
= ntr

(
∆Ω

(i)
U|X

)
+ tr

(
Θ

(i)
U|X∆Θ

(i)
U|X

T
)

where ∆ is any r × r symmetric matrix.

M step: We maximize the object function EU

(
L(X,U)|X, θ(i)

)
without any constraints.

Specifically, we set the partial derivatives of the conditional expectation with respect to all

parameters to zero, and solve for the maximizer. Referring to the Leibniz’s rule, we can
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exchange partial derivative with conditional expectation. We have

∂L(X,U)

∂B
= 2(YTU−YTYB)Σ−1

f

∂L(X,U)

∂V
= 2σ−2

e (XTU−VUTU)

∂L(X,U)

∂Σf
= −nΣ−1

f + Σ−1
f (U−YB)T (U−YB)Σ−1

f

∂L(X,U)

∂σ2
e

= −npσ−2
e + σ−4

e tr
(
(X−UVT )(X−UVT )T

)
By setting the conditional expectations of the above items to zero, we have

B̂ = (YTY)−1YTEU(U|X, θ(i)),

V̂ = XTEU(U|X, θ(i))
[
EU(UTU |X, θ(i))

]−1
,

Σ̂f =
1

n
EU

[
(U−YB̂)T (U−YB̂) |X, θ(i)

]
,

σ̂2
e =

1

np
EU

[
tr((X−UV̂T )(X−UV̂T )T ) |X, θ(i)

]
.

By substituting the corresponding conditional expectations with the quantities obtained in E

step, we have the following explicit expressions of all unconstrained maximizers

B̂ = (YTY)−1YTΘ
(i)
U|X

V̂ = XTΘ
(i)
U|X

(
nΩ

(i)
U|X + Θ

(i)
U|X

T
Θ

(i)
U|X

)−1

Σ̂f =
1

n

(
nΩ

(i)
U|X + Θ

(i)
U|X

T
Θ

(i)
U|X + B̂TYTYB̂− B̂TYTΘ

(i)
U|X −Θ

(i)
U|X

T
YB̂

)
σ̂2

e =
1

np

[
tr
(
XXT

)
− 2tr

(
Θ

(i)
U|XV̂TXT

)
+ ntr

(
V̂T V̂Ω

(i)
U|X

)
+tr

(
Θ

(i)
U|XV̂T V̂Θ

(i)
U|X

T
)]

where the parameters are estimated from previous iteration.

S step: We standardize the parameter set (B̂, V̂, Σ̂f , σ̂2
e) by decomposing V̂Σ̂f V̂

T as

V(i+1)Σ
(i+1)
f V(i+1)T , and setting B(i+1) = B̂V̂TV(i+1) and σ2

e
(i+1)

= σ̂2
e, as in Section 2.7.1.
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As a result, (B(i+1),V(i+1),Σ
(i+1)
f , σ2

e
(i+1)

) is the set of parameter estimations from the cur-

rent iteration that satisfies the identifiability conditions.

Stopping rule: As shown in Section 2.7.2, the log likelihoods of the observed data are

monotonically nondecreasing with iterations. We evaluate the log likelihood at each iteration

and terminate the algorithm when the increase between two iterations is below 10−5.

2.7.4 Proof of Theorem 2.4.1

Proof. The proof is similar with the proof of Theorem 5.1 in Cook et al. (2010).

The SupSVD model (2.2) can be written as a simple multivariate linear model

X = Yβ + ε

where the coefficient matrix β and the noise matrix ε are equal to BVT and FV + E sep-

arately. Rows of the residual matrix is i.i.d. from Np(0,Σ) where Σ = VΣfV
T + σ2

eI. Let

h =

 vec(β)

vech(Σ)

 denote the true parameters that satisfy the overparameterized structural

constraints, and let ĥfull denote the unconstrained maximum likelihood estimation of the

multivariate regression model. From classic asymptotic theories for maximum likelihood we

know
√
n(ĥfull − h) is asymptotically normally distributed with mean equal to zero and

covariance equal to J−1, i.e., the inverse of the Fisher information matrix of h.

J =

Σ−1 ⊗ΣY 0

0 1
2ET

p (Σ−1 ⊗Σ−1)Ep


where ΣY = lim

n→∞
YYT /n and Ep is the expansion matrix relating vech() with vec().

In order to apply Shapiro’s theorem, we define a discrepancy function F (·, ·) as follows.

It is proportional to the log likelihood difference between ĥfull and any parameter set h that
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satisfies the overparameterized structural constraints.

F (ĥfull,h) = tr((X−Yβ)T (X−Yβ)Σ) + n log |Σ|

−tr((X−Yβ̂full)
T (X−Yβ̂full)Σ̂full)− n log |Σ̂full|

It’s straightforward to see that F (ĥfull,h) is nonnegative, equal to 0 if and only if h = ĥfull.

Moreover, F (ĥfull,h) is twice continuously differentiable in terms of h and ĥfull. Besides,

from the regularity of the normal likelihood we know, there is no neighborhood of ĥfull such

that F (ĥfull,h) is zero for all h in it. Therefore, from Shapiro’s theorem, we know the

minimizer of F (ĥfull, ·), or equivalently, the maximizer of the log likelihood function under

the structural constraints, has the asymptotic normality. More specifically,

√
n(ĥ− h)→d N (0,Σh)

and Σh = PΓPT , where P = H(HTJH)†HTJ is the projection matrix and Γ is the asymp-

totic covariance matrix for ĥfull. Here the matrix J is the Fisher Information of h as n goes

to infinity, and the matrix H is the Jacobian matrix of h with respect to the overparame-

terized model parameters. The symbol † denotes the Moore-Penrose inverse. Particularly,

under normality we know that Γ = J−1, so that the asymptotic covariance matrix Σh can

be simplified as H(HTJH)†HT . The derivation of the Jacobian matrix H follows from basic

matrix calculus, which can also be found in Cook et al. (2010). Specifically,

H =

V ⊗ Iq (Ip ⊗B)Kpr 0 0

0 2Cp(VΣf ⊗ Ip) Cp(V ⊗V)Er vech(Ip)


where Cp is the p(p+1)/2×p2 constant contraction matrix; Er is the r2×r(r+1)/2 constant

expansion matrix; Kpr is the pr × pr constant commutation matrix.
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2.7.5 Proof of Corollary 2.4.1

Proof. We follow the procedure in Anderson (1963) to prove all parameter estimations are

jointly asymptotically normal, and derive the asymptotic covariance for the estimated loading

vectors
√
n(v̂i − vi), where i = 1, · · · , r.

First, we introduce some notations. We know from Theorem 2.4.1 that
√
n(vech(Σ̂) −

vech(Σ)) →d N (0,Σ0), where Σ0 is the p(p + 1)/2 × p(p + 1)/2 lower corner submatrix of

H(HTJH)†HT . We can decompose Σ̂ and Σ as

Σ̂ = Γ̂∆̂Γ̂
T
, Σ = Γ∆Γ

where Γ̂ = (V̂, V̂⊥), ∆̂ =

Σ̂f + σ̂2
eIr 0

0 σ̂2
eIp−r

, Γ = (V,V⊥), ∆ =

Σf + σ2
eIr 0

0 σ2
eIp−r

.

For notation purpose, we write V = (v1, · · · ,vr), and diag(Σf ) = (σ2
f ,1, · · · , σ2

f ,r). The

parameters (V,Σf , σ
2
e) and (V̂, Σ̂f , σ̂2

e) satisfy the identifiability conditions. Following the

idea in Anderson (1963), we denote

M ,
√
n(ΓT Σ̂Γ−∆) =

√
n(ΓT Γ̂∆̂Γ̂

T
Γ−∆).

It’s easily seen that M is asymptotically normally distributed with asymptotic mean E(mij) =

0 and asymptotic covariance

E(mijmgh)

= E[vTi
√
n(Σ̂−Σ)vjv

T
g

√
n(Σ̂−Σ)vh]

= E[vTj ⊗ vTi
√
n(vec(Σ̂)− vec(Σ))vTh ⊗ vTg

√
n(vec(Σ̂)− vec(Σ))]

= vTj ⊗ vTi E[
√
n(vec(Σ̂)− vec(Σ))

√
n(vec(Σ̂)− vec(Σ))T ]vh ⊗ vg

= vTj ⊗ vTi EpΣ0E
T
p vh ⊗ vg
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Moreover, we denote T , ΓT Γ̂ and partition it as

T =



vT1 v̂1 · · · vT1 v̂r vT1 V̂⊥
...

...
...

vTr v̂1 · · · vTr v̂r vTr V̂⊥

VT
⊥v̂1 · · · VT

⊥v̂r VT
⊥V̂⊥


=



t11 · · · t1r T1⊥
...

...
...

tr1 · · · trr Tr⊥

T⊥1 · · · T⊥r T⊥⊥


.

Accordingly, we partition M as

M =



m11 · · · m1r M1⊥
...

...
...

mr1 · · · mrr Mr⊥

M⊥1 · · · M⊥r M⊥⊥


.

Following the proof verbatim in Section 2 of Anderson (1963), we know the diagonal values

of
√
n(∆̂−∆) are asymptotically normally distributed. In other words,

√
ndiag(Σ̂f−Σf ) and

√
n(σ̂2

e − σ2
e) are jointly asymptotically normal. The diagonal blocks of T have the limiting

distribution
√
n(t2ii − 1) →d 0 (i = 1, · · · , r) and

√
n(T⊥⊥T

T
⊥⊥ − Ip−r) →d 0. For the off

diagonal blocks of T,
√
ntij (i, j = 1, · · · , r; i 6= j) has the same limiting distribution as

mij/(σ
2
f ,i − σ2

f ,j);
√
nTi⊥ (i = 1, · · · , r) has the same limiting distribution as Mi⊥/σ

2
f ,i; and

√
nT⊥j (j = 1, · · · , r) has the same limiting distribution as M⊥j/σ

2
f ,j .
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In order to get the limiting distribution of
√
n(v̂i − vi) (i = 1, · · · , r), we notice that

√
n(v̂i − vi)

=
√
n(ΓΓT v̂i − vi)

=
√
n(

r∑
j=1

vjv
T
j v̂i + V⊥VT

⊥v̂i − vi)

=
√
n(viv

T
i v̂i − vi) +

√
n
∑

j≤r,j 6=i
vjv

T
j v̂i +

√
nV⊥VT

⊥v̂i

=
√
nvi(tii − 1)

+
√
n(v1 · · ·vi−1,vi+1 · · ·vr,V⊥)(t1i · · · t(i−1)i, t(i+1)i · · · tri, T T⊥i)T

=
√
nvi(tii − 1) +

√
nΓ−it(−i)i

where Γ−i is the submatrix of Γ without the ith column and t(−i)i is the ith column of T

without the ith entry. The limiting distribution of the first term is 0. The limiting distribu-

tion of the second term can be substituted by the limiting distribution of corresponding M

components. Therefore, we have the following two have the same limiting distribution.

√
n(v̂i − vi) =d Γ−i∆im(−i)i

where ∆i is the (p− 1)× (p− 1) submatrix of ∆− (σ2
f ,i + σ2

e)Ip without the ith row and ith

column, and m(−i)i is the ith column of M without the ith entry. From previous derivation,

we know the limiting distribution of m(−i)i is multivariate normal with mean 0 and covariance

(vTi ⊗ ΓT−i)EpΣ0E
T
p (vi ⊗ Γ−i). Therefore, we have

√
n(v̂i − vi)→d Np(0,Σvi)

where Σvi = Γ−i∆i(v
T
i ⊗ ΓT−i)EpΣ0E

T
p (vi ⊗ Γ−i)∆iΓ

T
−i, for i = 1, · · · , r.

Lastly, since B = BVTV = βV and V can be expressed as a function of Σ, B can be

expressed as a function of β and Σ. According to the joint asymptotic normality of β and

Σ, it’s obvious that
√
nvec(B̂−B) is also asymptotically normal.
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2.7.6 Two Motivating Examples

Example 1: Let X be a data matrix with 80 samples and 200 variables. The samples are

divided into 4 equal-sized subgroups, which have different means in the first two dimension

of X. Specifically,

X = u1v
T
1 + u2v

T
2 + E,

where v1 = (1, 0, 0, · · · , 0)T , v2 = (0, 1, 0, · · · , 0)T , u1=[rep(16,20),rep(-16,20), rep(0,40)]T +

ε1, and u2=[rep(0,40),rep(10,20),rep(-10,20)]T + ε2. The notation rep(a, b) denotes a row

vector of length b whose entries are all equal to a. The random vectors ε1 and ε2 have i.i.d.

entries from N (0, 4) and N (0, 9), respectively. The random matrix E has i.i.d. entries from

N (0, 16). The supervision information Y is the subgroup index.

This setting simulates the situation where the true underlying structure is partially driven

by the supervision information, and partially affected by variations from unknown sources.

Figure 2.4 shows the scatter plot of the true score vectors in the first two dimensions as well as

the score vectors estimated by the different methods, with the subgroups indicated by different

colors and symbols. Clearly, the results from SupSVD are the closest to the underlying truth.

SupSVD not only explains a large portion of variation in the data, but also separates the

underlying subgroups well. The SVD, although explaining slightly more variations, mixes the

subgroups together. In particular, the SVD fails to capture the subgroup structure in the

data. The RRR scores, on the other hand, shrink the four subgroups into four points, and

do not allow any sample-to-sample variation. This example shows that by incorporating the

additional supervision information, SupSVD can better recover the true underlying structure.

Example 2: Let X be a 210 × 100 data matrix. The first two dimensions of X have 4

subgroups, each of which follows a bivariate normal distribution. Specifically, 105 samples

are from N ((−40, 30)T ,diag(40, 1560)), and one third of the remaining samples are from

N ((10,−30)T ,diag(55, 35)), N ((40,−30)T ,diag(120, 120)), and N ((70, 0)T ,diag(60, 20)) re-

spectively. The other dimensions of X are i.i.d. N (0, 4). The supervision information Y is
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Figure 2.4: Example 1 - Scatter Plots of U1 and U2 from Different Methods. The standard
deviations of two score vectors are given by std1 and std2.

the subgroup index.

Figure 2.5 shows the first two dimensions of X with the projected data onto the first two

loading vectors obtained by each method. The projection from SupSVD is most similar to

the truth, offering a good interpretation: the first direction separates the four subgroups; the

second direction explains the variation within each subgroup. By contrast, both SVD and

RRR have tilted loading directions. The variances explained by the first two components are

similar among all three methods. This example indicates that SupSVD can provide improved

interpretability by taking into account the supervision information.

2.7.7 Breast Cancer Data

In this section, we show additional analysis results of the breast cancer data from SVD

and RRR. Figure 2.6 shows the scatter plots of the SVD scores. Compared with the SupSVD

scores in Figure 2.2 of the main paper, the SVD scores are less interpretable, with samples

from different subgroups tilted and intertwined. Figure 2.7 shows the heat maps of the unit-

rank SVD approximations. Again, the information is less clear than that in the SupSVD

results (Figure 2.3 of the main paper). Figures 2.8 and 2.9 depict the corresponding results
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Figure 2.5: Example 2 - Scatter Plots of XV1 and XV2. The standard deviations of two
projections are given by std1 and std2.

from RRR. Since RRR assumes that the underlying structures are fully driven by supervision,

the resulting scores do not present any within-group variations. This is unrealistic and not

informative for practical use.

2.7.8 Call Center Data

In this section, we provide an additional application of SupSVD to the call center data

previously studied by Shen and Huang (2008a). The data record the number of agent-seeking

calls to a banking call center during each 15-minute interval (from 7am to midnight) for 42

consecutive weeks. The goal is to understand the arrival pattern of calls and forecast future

call volumes. The raw data can be found in Figure 2.10. We process the data set in the

same way as in Shen and Huang (2008a), and focus on the 210 weekdays since the weekends

have very different patterns. After imputing missing data, replacing outliers, and applying

the square root transformation
√
N + 1/4 where N is the count data matrix, we get the data

matrix X with 210 rows (days) and 68 columns (15-minute intervals). Moreover, we center

each column of X to have mean zero. The scree plot of the singular values of X suggests the

rank to be 4. The supervision data matrix Y for this case contains the dummy variables for
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Figure 2.6: Breast Cancer Data - Scatter Plots of SVD Score Vectors.
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Figure 2.7: Breast Cancer Data - Heat Map of First Three Unit-rank SVD Structures of the
Gene Expression Data. The genes are reordered for better visualization.
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Figure 2.8: Breast Cancer Data - Scatter Plots of RRR Score Vectors.
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Figure 2.9: Breast Cancer Data - Heat Map of First Three Unit-rank RRR Structures of the
Gene Expression Data. The genes are reordered for better visualization.
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the day-of-week. Shen and Huang (2008a) point out that the entries of X are approximately

normally distributed, and the weekday effect is a primary factor for the call volume patterns.

Therefore, it makes sense to apply SupSVD in this case.
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Figure 2.10: Call Center Data - Raw Data. Each curve corresponds to a day, with different
markers representing different days of the week.

We apply SupSVD, SVD and RRR to the preprocessed data. The estimates of the first 4

loading vectors are shown in Figure 2.11. The SupSVD estimates have good interpretations.

The first loading vector indicates the major variation of call volumes occurs in the daytime.

The second loading captures the morning-afternoon contrast, as the curve crosses the zero

line at about 12p.m.. The third loading vector changes signs at about 9a.m. and 5p.m.,

which coincide with common business hours. The forth loading vector explains more subtle

variations in the early morning, late morning, afternoon, and late night. In contrast, SVD

and RRR loadings do not have such clear interpretations. We remark the improvement of

SupSVD is likely due to incorporating the supervision information of the day-of-week effect.

We follow the forecasting procedure proposed by Shen and Huang (2008a) (details can

be found therein), but replacing their SVD with our SupSVD. We perform a rolling one-day-

ahead forecasting scheme: use 150 days of data as the training set to predict the call volumes

for the next day; then roll the forecasting window ahead for one day; repeat for 60 days. For

each day, the forecasting accuracy is measured by the root mean squared error (RMSE) and
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Figure 2.11: Call Center Data - Loading Vectors Estimates from Different Methods. Solid,
dashdot and dashed lines represent SupSVD, SVD and RRR respectively.

the mean relative error (MRE) defined as

RMSE =

√√√√ 1

68

68∑
i=1

(Ni − N̂i)2, MRE =
100

68

68∑
i=1

|Ni − N̂i|
Ni

where Ni and N̂i are the true and predicted call volumes in the ith interval of the next day.

Table 2.2 presents the comparison of forecasting performance between SVD and SupSVD.

Clearly, SupSVD outperforms SVD. By using the additional weekday information to guide

the dimension reduction, SupSVD captures more essential patterns in the call volumes and

has a greater forecasting power.

RMSE MRE
Q1 Median Q3 Q1 Median Q3

SupSVD 41.1769 50.1403 60.1383 4.4082 5.2686 6.5211

SVD 41.5895 50.6250 60.1436 4.4468 5.3321 6.6797

Table 2.2: Call Center Data - Comparison of Forecasting Accuracy between SVD and
SupSVD. Results are based on one-day-ahead forecasting for 60 days.
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CHAPTER 3: SUPERVISED REGULARIZED PRINCIPAL COMPONENT

ANALYSIS

3.1 Introduction

PCA has been widely used in multivariate analysis to extract important features in data.

PC loadings usually provide useful interpretation of major variations, while PC scores facili-

tate follow-up statistical analyses such as clustering and regression. It is a powerful tool for

dimension reduction, pattern recognition, and visualization for big data.

This chapter concerns regularized PCA methods, which impose useful structural regular-

ization on PCA, and have been extensively studied in the literature. Special structures like

sparsity and smoothness are imposed on the loading vectors to model high-dimensional data

with complex structure. For example, functional PCA is used to model functional observa-

tions such as temporal data or spatial data (cf. Rice and Silverman (1991), Silverman (1996),

Huang et al. (2008), and references therein). In high dimensional situations where most vari-

ables are noise and only a few variables are important, sparse PCA is used to simultaneously

select variables and capture major variations (cf. Zou et al. (2006), Shen and Huang (2008b),

d’Aspremont et al. (2008), and references therein). More recently, some researchers studied

two-way extensions of the above one-way regularized PCA methods (see Allen, 2013; Huang

et al., 2009; Lee et al., 2010, for example).

Although powerful, the above regularized PCA methods have one limitation in common:

they only make use of a single data set, and by default ignore any other measurements

collected on the same set of samples. It is now increasingly common that multiple related

data sets are available on the same set of samples. In such cases, borrowing information

across data sets may lead to recovery of a more interpretable low rank structure. This is

especially relevant when the additional measurements, referred to as supervision information,

can potentially drive underlying patterns within the primary data. For example, in Section



3.5, we are interested in studying expression patterns of a number of yeast genes over two

cell cycles. In addition to the gene expression data, we have extra binding information of

transcription factors (TFs) for each gene. Since TFs regulate gene expressions biologically

(Lee and Young, 2000; Nikolov and Burley, 1997), using TF binding information as supervision

when studying expression patterns can lead to a more inherent and meaningful discovery.

Another motivating example considered in Section 3.6.3 concerns daily arrival rates of patients

to a hospital emergency room. It is of interest to understand patient arrival patterns to better

allocate medical resources. In addition to the primary data, i.e., the arrival rates at different

time of day over many days, we want to use the day-of-week index as supervision to extract

day-of-week specific arrival patterns.

Motivated by these applications, we develop a supervised regularized PCA framework

that makes use of extra supervision information when doing regularized PCA. We name it the

supervised sparse and functional PCA, or SupSFPC. Supervision, subject to variable selection,

directly affects the PC scores, while smooth and sparse structures are imposed on the PC

loadings. The SupSFPC framework is very general and flexible. It unifies and generalizes

many variants of PCA. In particular, without the supervision, it encompasses regularized

PCA methods such as functional PCA and sparse PCA as special cases. Supervision and

regularization complement each other under SupSFPC. By smoothing the loading vectors,

our method can borrow strength across neighboring variables to reduce noise; with sparsity,

the variation of the functional estimate is reduced; supervision indirectly affects the loading

vectors to make them more interpretable. Overall, the proposed SupSFPC method can recover

an interpretable and accurate low-rank approximation of a primary data set with potential

guidance from supervision data.

SupSFPC is related to the SupSVD method in the previous chapter. However, SupSVD

cannot accommodate special features of functional or high dimensional data. Incorporat-

ing smoothness and sparsity in such data reduces estimation variability and improves inter-

pretability. Furthermore, SupSVD cannot achieve variable selection of the supervision set:

when auxiliary data contain irrelevant information to the low-rank structure of the primary

data, it is desirable to eliminate unimportant variables and identify crucial driving factors.
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For example, in the yeast gene expression application of Section 3.5, researchers are also inter-

ested in identifying TFs that regulate cell cycles. The SupSFPC method addresses the above

problems through regularization, and covers the method of Li et al. (2015) as a special case.

The computational algorithm for SupSFPC is innovative. We combine the EM algorithm with

several ascent algorithms, and embed tuning parameter selection in the iterative scheme. Nu-

merical results show high computational efficiency and improvement in interpretability over

existing methods.

The rest of the chapter is organized as follows. In Section 3.2, after reviewing the func-

tional PCA model, we propose our new SupSFPC model, followed by the penalized likelihood

framework. We then elaborate on connections of the SupSFPC framework to various reg-

ularized PCA and supervised PCA methods. In Section 3.3, we develop a computationally

efficient algorithm to estimate the model parameters, and briefly discuss tuning parameter

selection. We then demonstrate our method using comprehensive simulation studies in Sec-

tion 3.4 and a real data example in Section 3.5. Additional technical details and numerical

studies can be found in the appendix, Section 3.6.

3.2 Model and Likelihood

In this section, we first review the functional PCA model, and then develop the SupSFPC

model and introduce a regularized likelihood approach for the model fitting.

3.2.1 Functional PCA Model

We assume that Zi(s) (i = 1, · · · , n) are independent realizations of a smooth random

function Z(s) with mean function E(Z(s)) = µ(s) and covariance function cov(Z(s), Z(s′)) =

G(s, s′). The index variable s can represent any continuous measure such as time, spatial

location, and so on. Its domain S is assumed bounded. The covariance function can be

decomposed as

G(s, s′) =

∞∑
k=1

dkVk(s)Vk(s
′)
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where d1 ≥ d2 ≥ · · · ≥ 0 are the eigenvalues and Vk(s) (k = 1, 2, · · · ) are the corresponding

orthogonal unit-norm eigenfunctions. Consequently, by the Karhunen-Loève theorem, the

random function Z(s) can be expressed as a linear combination of the eigenfunctions as

Z(s) = µ(s) +
∑∞

k=1 ukVk(s) where uk =
∫
S Z(s)Vk(s)ds (k = 1, 2, · · · ) are uncorrelated

random variables with mean zero and variance dk. In particular, Zi(s) has the expression

Zi(s) = µ(s) +
∞∑
k=1

uikVk(s), (3.1)

where uik (i = 1, · · · , n) are independent realizations of uk. This is the classical functional

PCA model where (u1k, · · · , unk)T is the kth score vector, corresponding to the kth loading

function Vk(s), k ≥ 1.

Researchers usually consider the above functional model with measurement errors added,

as in for example Yao et al. (2005). Namely, each observed trajectory, denoted by Xi(s), is

expressed as

Xi(s) = Zi(s) + ei(s),

where Zi(s) is the latent random function given in (3.1), and ei(s) is a measurement error

process that is assumed to be uncorrelated at each point with mean zero and variance σ2
e,

independently identically distributed (i.i.d.) for different observations.

In practice, the majority of variations in data is contained in the subspace spanned by

the first few PC loadings in (3.1). Namely, the first few layers of the latent function Z(s)

dominate and the rest are negligible. Hereafter, we consider the following rank-r functional

PCA model:

Xi(s) = µ(s) +
r∑

k=1

uikVk(s) + ei(s) = µ(s) + uT(i)V(s) + ei(s), (3.2)

where u(i) = (ui1, · · · , uir)T is the r × 1 score vector for the ith observation, and V(s) =

(V1(s), · · · , Vr(s))T is the collection of r loading functions. In particular, the finite linear

56



combination uT(i)V(s) is referred to as the low-rank approximation of the ith demeaned ob-

servation Xi(s)− µ(s).

3.2.2 SupSFPC Model

Let Xi(s) be the ith functional observation from Model (3.2). Let y(i) be an q × 1 vector

containing q auxiliary variables for the ith observation. We assume that y(i), the supervision

data, drives the low-rank structure of Xi(s), the primary data, by directly affecting its PC

score vector u(i) in Model (3.2). In particular, we propose the following multivariate linear

model for the scores:

u(i) = β0 + BTy(i) + f(i) (3.3)

where β0 is an r×1 intercept vector, B is a q×r coefficient matrix with the rows corresponding

to the supervision variables and the columns corresponding to the PC scores, and f(i) is an

independent realization of an r × 1 random vector with mean zero and unknown covariance

Σf . For example, in the genetic application of Section 3.5, Xi(s) denotes the gene expression

profile of the ith sample, while y(i) are the corresponding transcription factors.

Model (3.3) consists of a fixed term β0 + BTy(i) and a random term f(i). The fixed term

captures the variations in u(i) that can be explained by the supervision data y(i). The random

term effectively collects the leftover variations driven by other (unknown) factors. Model

(3.3) is flexible enough to adapt to different situations including those where the supervision

information is indeed redundant, as we discuss later in Section 3.2.3.

Combining (3.2) and (3.3), we obtain the supervised functional PCA model. In particular,

we substitute u(i) in (3.2) with (3.3) and get the following equivalent expression of the model:

Xi(s) = µ(s) + (β0 + BTy(i) + f(i))
TV(s) + ei(s)

=
[
µ(s) + βT0 V(s)

]
+ yT(i)BV(s) +

[
fT(i)V(s) + ei(s)

]
. (3.4)

The first term, µ(s)+βT0 V(s), is an intercept term. Without loss of generality, we assume that
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Xi(s) and y(i) are centered at each variable so we can omit this intercept term. The second

term, yT(i)BV(s), is a fixed term that incorporates the supervision information. The third

term, fT(i)V(s) + ei(s), is a random term, with the covariance function being V(s)TΣfV(s′) +

σ2
eδ(s − s′), where δ(·) is the Dirac delta function. The recovery of the low-rank structure

yT(i)BV(s) + fT(i)V(s) is of primary interest in dimension reduction.

We further generalize Model (3.4) by assuming that B and V(s) are potentially sparse.

Consequently, we name Model (3.4) the supervised sparse and functional PCA model, or the

SupSFPC model. Recall that B is a coefficient matrix to incorporate supervision. Sparsity on

B can effectively identify auxiliary variables that do not provide supervision to the low-rank

structure of the primary data. In particular, when B is a zero matrix, all auxiliary variables are

irrelevant to the primary data, and the SupSFPC model reduces to the functional PCA model

(3.2). The loading functions in V(s) can be sparse as well, in the sense that the support of

each loading function may not be the entire domain S. Similar to James et al. (2009) where

the authors study a regression model with a (potentially sparse) functional predictor, we

remark that sparse functions facilitate model interpretations by removing unnatural wiggles

around zero. Overall, sparsity is usually a desirable (and sometimes necessary) feature in

practice, especially when analyzing high-dimensional data.

As it stands, Model (3.4) is not identifiable. Because, for any r × r orthogonal matrix

Q, we have BQQTV(s) = BV(s) and fT(i)QQTV(s) = fT(i)V(s). Moreover, the columns of B

and the entries of V(s) and f(i) are subject to scale and order shifts. To rule out this kind of

ambiguity, we impose the following identifiability constraints:

(1) The loading functions in V(s) form an orthonormal basis, i.e.,
∫
S Vi(s)Vj(s)ds = δij ,

where δij is the Kronecker delta;

(2) The covariance matrix Σf is diagonal with distinct positive eigenvalues;

(3) The diagonal values of Σf are strictly decreasing.

The orthonormality constraint of the loading functions, also used in the functional PCA model

(3.1), facilitates interpretation and rules out scale shift. The diagonality of the covariance

matrix with distinct eigenvalues prevents random rotations. The order of the eigenvalues of
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Σf determines the order of the loading functions in V(s) and the columns in B. We remark

that under the above conditions, the loading functions carry explicit interpretations: the first

loading captures the direction where variation in the data from unknown sources is maximized;

subsequent loadings are orthogonal to the previous ones and sequentially maximize variations

from unknown sources. This is similar with functional PCA where there is no supervision

and all variations are from unknown sources.

3.2.3 Penalized Likelihood

In reality, typically we do not observe an entire function but rather at discrete sampling

points. In particular, we assume that there are p sampling points in domain S indexed by

s1, · · · , sp, which may not be evenly spaced. For notational simplicity, without special notice

we generally use i = 1, · · · , n to index samples, use j = 1, · · · , p to index discretized points,

and use k = 1, · · · , r to index PC layers.

The discrete observations of the functional data Xi(s) (i = 1, · · · , n) are collected in an

n× p matrix X, where xij = Xi(sj). We discretize V(s) and ei(s) in Model (3.4) accordingly

as a p× r loading matrix V with vjk = Vk(sj) and an n× p error matrix E with eij = ei(sj).

We further denote U = (u(1), · · · ,u(n))
T as an n×r score matrix, Y = (y(1), · · · ,y(n))

T as an

n×q supervision data matrix (viewed as fixed in the current context), and F = (f(1), · · · , f(n))
T

as an n × r random error matrix. As a result, we obtain the following discretized version of

the SupSFPC model (3.4):


X =UVT + E

U =YB + F

, or X = YBVT + FVT + E. (3.5)

The identifiability conditions follow directly from those for the functional version of the

model (3.4). Namely, VTV equals to an r × r identity matrix Ir, and Σf is diagonal with

positive decreasing eigenvalues.

To fit the SupSFPC model, we adopt a maximum likelihood approach. We assume nor-

mality for E and F. In particular, we assume that eij is i.i.d. from an univariate normal
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distribution N (0, σ2
e), and f(i) is i.i.d. from a multivariate normal distribution Nr(0,Σf ). In

addition, eij is independent of f(i). From (3.5), we see that the observation vector x(i) follows

Np(VBTy(i),VΣfV
T + σ2

eI), and different samples are independent. As a result, the log

likelihood of the observed data matrix X is

L(X) =− np

2
log(2π)− n

2
log det (VΣfV

T + σ2
eIp)

− 1

2
tr
(
(X−YBVT )(VΣfV

T + σ2
eIp)

−1(X−YBVT )T
)
.

To impose desirable structures (i.e., smoothness and sparsity) on V and B, we optimize a

regularized log likelihood function to estimate the model parameters. Let θ , (B,V, σ2
e,Σf )

denote the model parameter set and Θ be the parameter space under the identifiability con-

ditions. We propose to solve the following optimization problem:

max
θ∈Θ
{L(X)− Pf (V)− Ps(V)− Ps(B)}, (3.6)

where Pf (V) is the roughness penalty (“f” stands for functionality) on columns of V, and

Ps(V) and Ps(B) are the sparsity-inducing penalties (“s” stands for sparsity) on entries of

V and B respectively. We remark by imposing sparsity on B we also avoid overfitting in

the multivariate linear model (3.3) when the dimension of supervision data is high (q > n).

Therefore, SupSFPC does not have any restrictions on the order of n, p, and q, and is suitable

for high dimensional data.

For sparsity, numerous penalties have been proposed and studied in the literature (cf.

Fan and Li, 2001; Tibshirani, 1996; Tibshirani et al., 2005; Yuan and Lin, 2006). In this

paper, we present out method using the LASSO penalty (Tibshirani, 1996). It can be easily

generalized to incorporate other penalties as well. The sparsity-inducing penalties in (3.6)

take the following form:

Ps(V) =
r∑

k=1

λk‖vk‖1, Ps(B) =
r∑

k=1

γk‖bk‖1, (3.7)
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where vk and bk are the kth columns of V and B corresponding to the kth layer of the

low rank structure respectively, and λk and γk are the corresponding layer-specific tuning

parameters.

For smoothness, generalized `2 penalties are widely used in the literature. Here we consider

the elliptical `2 penalty:

Pf (V) =
r∑

k=1

αkv
T
k Ωvk, (3.8)

where αk are the layer-specific tuning parameters, and Ω is a fixed p × p positive semi-

definite matrix depending on the sampling points, with the quadratic form vTk Ωvk penalizing

differences among adjacent values in vk. Here we use the same formulation of Ω as in Green

and Silverman (1994) which connects nicely with smoothing splines.

The penalized likelihood framework (3.6) is very general and it subsumes many existing

methods as we now discuss. If Pf (V) = Ps(V) = Ps(B) = 0, i.e., without any structural

constraints, it reduces to the SupSVD method of Li et al. (2015). When Ps(B) = ∞, i.e.,

B = 0, it reduces to regularized PCA methods: if Pf (V) 6= 0 and Ps(V) = 0, it corresponds

to functional PCA of Huang et al. (2008); if Pf (V) = 0 and Ps(V) 6= 0, it results in sparse

PCA of Shen and Huang (2008b); if Pf (V) 6= 0 and Ps(V) 6= 0, one obtains the one-way

situation of the sparse and functional PCA (SFPC) method of Allen (2013). We also note

that the general framework includes many degenerated situations which have not been well

studied before. For instance, when Pf (V) = 0 while Ps(V) 6= 0 and Ps(B) 6= 0, the framework

reduces to a supervised PCA method with sparsity in V and B.

We want to comment on situations where the sampling points are different for different

samples. For example, in longitudinal studies, patients may follow up at different times and

also have distinct time domains. Similar situations have been referred to as sparsely-observed

data in functional data analysis(see James et al., 2000; Yao et al., 2005, for example). In

such situations, we can think of two possible approaches. For the first one, we can find a

set of common grid points that are finer than the irregular sampling points, and treat the

functional observations as missing on those grids where no data are observed. Our estimation
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algorithm can be extended to incorporate missing values. The second approach is to use basis

expansion to interpolate the functional data, and then evaluate them on a set of common

sampling points.

3.3 Computational Algorithm

In this section, we propose an algorithm for parameter estimation of the SupSFPC model.

For the sake of clarity in describing the estimation algorithm, we first assume that all the

tuning parameters, including the rank of the model, are given. We motivate and summarize

the algorithm in Section 3.3.1, and derive the algorithm in more detail in Section 3.3.2. Then

we briefly discuss the data-driven selection of tuning parameters in Section 3.3.3. Detailed

derivation of the tuning parameter selection can be found in Section 3.6.1.

3.3.1 EM Algorithm

Directly optimizing the penalized log likelihood (3.6) with respect to the identifiability

constraints is non-trivial. The model parameters are intertwined in the log likelihood L(X):

both the mean and the covariance terms share the parameter matrix V. In addition, the

sparsity-inducing penalties are non-differentiable; the feasible region determined by the iden-

tifiability conditions is non-convex. We propose an algorithm that effectively combines the

EM algorithm with proximal gradient ascent (Beck and Teboulle, 2009; Nesterov, 2005) and

block coordinate descent (Ortega and Rheinboldt, 2000) to overcome these computational

difficulties.

To motivate the EM formulation, we first note that the hierarchical Model (3.5) contains

the PC scores U as latent variables. It is easily seen that x(i) and u(i) are jointly normally

distributed, and different samples are independent. The joint log likelihood of the observed

data X and the latent data U can be decomposed as:

L(X,U) = L(X|U) + L(U),
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where the conditional log likelihood of X given U is

L(X|U) ∝ −np log σ2
e − σ−2

e tr
[
(X−UVT )(X−UVT )T

]
, (3.9)

which only depends on V and σ2
e, while the marginal log likelihood of U is

L(U) ∝ −n log det Σf − tr
[
(U−YB)Σ−1

f (U−YB)T
]
, (3.10)

only depending on B and Σf . Therefore, an EM algorithm can effectively separate the

parameter estimation into two parts to simplify the optimization.

The EM algorithm iterates between an E step and an M step. In the (t+ 1)th iteration,

the E step is to calculate EU|X,θ(t) [L(X,U)], where the expectation is taken with respect to

U given X and θ(t) = (B(t),V(t), σ2
e

(t)
,Σf

(t)), the estimated parameter set obtained in the

tth iteration. The M step is to maximize EU|X,θ(t) [L(X,U)]− Pf (V)− Ps(V)− Ps(B) with

respect to θ ∈ Θ, with the penalty terms as in (3.7) and (3.8). We denote the corresponding

optimizer as θ(t+1). After convergence, we obtain a local optimal solution for optimizing the

regularized log likelihood (3.6).

Algorithm Summary: Before the detailed technical derivation, we summarize the algorithm

with fixed tuning parameters below in Algorithm 2.

Algorithm 2 EM Algorithm for Fitting SupSFPC

1: Initialize model parameters θ(0) = (B(0),V(0),Σ
(0)
f , σ2

e
(0)

);
2: Repeat until convergence:

(a) E Step:

– Get critical conditional expectations (3.13), (3.14), and (3.15);

(b) M Step:

– Estimate v
(t+1)
k for k = 1, · · · , r from (3.20);

– Estimate σ2
e

(t+1)
from (3.18);

– Estimate b
(t+1)
k for k = 1, · · · , r from (3.22);

– Estimate Σf
(t+1) from (3.19);
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3.3.2 Derivation of the EM Algorithm

Since u(i) and x(i) are jointly normally distributed, the conditional distribution of u(i)

given x(i) and θ(t) is easily derived as Nr
(
µ

(t)
(i),Ψ

(t)
)

where

µ
(t)
(i) =

(
Ir + σ2

e
(t)

Σf
(t)−1

)−1 [(
σ2

e
(t)

Σf
(t)−1

)
B(t)Ty(i) + V(t)Tx(i)

]
, (3.11)

Ψ(t) = σ2
e

(t)
(

Ir + σ2
e

(t)
Σ

(t)
f

−1
)−1

. (3.12)

We remark that the conditional expectation of the PC scores for the ith sample is a weighted

average of B(t)Ty(i) and V(t)Tx(i), where the weight is determined by Σ
(t)
f and σ2

e
(t)

. Namely,

in SupSFPC, the PC scores are partially driven by the supervision effect y(i), and partially

affected by the observation x(i) as in the ordinary PCA.

In the E step, given (3.11) and (3.12), we can derive the explicit expression of EU|X,θ(t)(L(X,U)).

As a matter of fact, we do not need to calculate the expectation of the entire joint log likeli-

hood, but rather only the following three terms:

first order term: EU|X,θ(t)(U) , Γ(t) =
(
µ

(t)
(1), · · · ,µ

(t)
(n)

)T
, (3.13)

second order term: EU|X,θ(t)(U
TU) = nΨ(t) + Γ(t)TΓ(t), (3.14)

quadratic form: EU|X,θ(t)
[
tr
(
UΛUT

)]
= ntr

(
ΛΨ(t)

)
+ tr

(
Γ(t)ΛΓ(t)T

)
,(3.15)

where Λ is any r × r symmetric matrix.

In the M step, we optimize EU|X,θ(t) [L(X,U)]−Pf (V)−Ps(V)−Ps(B) with respect to

θ ∈ Θ. It is equivalent to the following two separate optimization problems

max
V,σ2

e: VTV=I
EU|X,θ(t) [L(X|U)]−

r∑
k=1

λk‖vk‖1 −
r∑

k=1

αkv
T
k Ωvk, (3.16)

max
B,Σf : Σf=diag(Σf )

EU|X,θ(t) [L(U)]−
r∑

k=1

γk‖bk‖1, (3.17)

where L(X|U) is given by (3.9), and L(U) is given by (3.10). The notation, diag(Σf ),

represents a diagonal matrix whose diagonal entries are the diagonal entries of Σf .
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Estimation of σ2
e and Σf

We take the first order derivative of (3.16) (or (3.17)) with respect to σ2
e (or the diagonal

entries of Σf ) and set them to zero, and obtain the analytical expressions

σ2
e

(t+1)
=

1

np
EU|X,θ(t)

{
tr
[
(X−UV(t+1)T )(XT −V(t+1)UT )

]}
, (3.18)

Σf
(t+1) =

1

n
diag

{
EU|X,θ(t)

[
(U−YB(t+1))T (U−YB(t+1))

]}
, (3.19)

where V(t+1) and B(t+1) are the optimizers of V and B for (3.16) and (3.17) respectively, to

be discussed below. In particular, the conditional expectation terms of (3.18) and (3.19) can

be obtained using (3.13) to (3.15) from the E step.

Estimation of V

Optimizing (3.16) with respect to V under the orthogonality constraint is formidable.

Instead, we propose to drop the orthogonality and optimize the criterion with respect to the

columns of V, one at a time while fixing the others, mimicking a block coordinate descent

algorithm. Since the conditional distribution (3.9) of X given U is identifiable even without

the orthogonality condition, the optimization problem is still well defined. The scheme is

similar to the deflation method used in the regularized PCA literature (see Allen, 2013; Hays

et al., 2012; Huang et al., 2008; Shen and Huang, 2008b, for example). We remark that the

greedy algorithm maintains orthogonality of the columns of V approximately throughout the

EM iterations. Therefore, the column-by-column optimizers serve as a reasonable surrogate

of the global optimizer of (3.16).

Given all the parameters except the kth column of V, we can estimate v
(t+1)
k as

v
(t+1)
k = arg min

vk:‖vk‖2=1

1

2
‖vk − β

(t)
k ‖

2
2 + λ

(t)
k ‖vk‖1 +

1

2
α

(t)
k vTk Ωvk, (3.20)

where β
(t)
k = EU|X,θ(t)

[
(XT −V

(t)
−kU

T
−k)uk

]
/c

(t)
k , λ

(t)
k = σ2

e
(t+1)

λk/(2c
(t)
k ), α

(t)
k = σ2

e
(t+1)

αk/c
(t)
k ,

and c
(t)
k = EU|X,θ(t)(u

T
k uk). The matrices U−k and V

(t)
−k are the submatrices of U and V(t)

leaving out the kth column uk and v
(t)
k , respectively. This setup facilitates parallel comput-

ing for the different columns in V. The constants β
(t)
k and c

(t)
k can be calculated from (3.13)
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and (3.14). The modified tuning parameters λ
(t)
k and α

(t)
k can absorb the unknown constant

σ2
e

(t+1)
, and be selected adaptively in a data-driven fashion in each iteration. For now, we

treat them as known.

To solve (3.20), we adopt the proximal gradient ascent scheme studied in Nesterov (2005)

and Beck and Teboulle (2009). We drop the subscripts and the superscripts in (3.20) for

simplicity, and the optimization problem becomes min
v:‖v‖2=1

f(v) +λ‖v‖1 where f(v) , 1
2‖v−

β‖22 + 1
2αvTΩv. This optimization is solved by the iterative procedure

v(l+1) = arg min
v:‖v‖2=1

{
1

2

∥∥∥∥v − (v(l) − 1

L
∇f(v(l))

)∥∥∥∥2

2

+
λ

L
‖v‖1

}
, (3.21)

where ∇f is the gradient of f , and L is the Lipschitz constant of ∇f such that ‖∇f(a) −

∇f(b)‖2 ≤ L‖a− b‖2 for every a,b ∈ Rp. Since ∇f(v) = −β + (I + αΩ) v, L is the largest

eigenvalue of I+αΩ. Note that l is the proximal gradient ascent iteration index for estimating

one column of V, not to be confused with the EM iteration index t. In particular, we solve

(3.21) approximately through the following two steps

v? = thres

(
v(l) − 1

L
∇f(v(l)) ,

λ

L

)
,

v(l+1) =


v?

‖v?‖2
, v? 6= 0,

0, v? = 0,

where thres() is a soft-thresholding function that thres(β, λ) , sign(β)(|β| − λ)+.

Estimation of B

To estimate B, we can rewrite (3.17) as r independent unconstrained optimization prob-

lems, and obtain each column of B as

b
(t+1)
k = min

bk

1

2
‖EU|X,θ(t)(uk)−Ybk‖22 + γ

(t)
k ‖bk‖1, (3.22)

where γ
(t)
k = σ2

f ,k
(t+1)

γk/2, with σ2
f ,k

(t+1)
being the kth diagonal entry of Σf

(t+1). The un-

known constant σ2
f ,k

(t+1)
is absorbed by the modified tuning parameter γ

(t)
k that can be
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adaptively selected. The vector EU|X,θ(t)(uk) can be calculated from (3.13).

The optimization problem (3.22) is an univariate LASSO problem with EU|X,θ(t)(uk) being

the response vector, Y being the n × q design matrix, and bk being the coefficient vector.

In addition, both the response vector and the design matrix are column centered, so there

is no intercept term. Many methods have been developed to solve (3.22) (cf. Efron et al.,

2004; Friedman et al., 2010). Here we use the default coordinate descent algorithm in Matlab

(Friedman et al., 2010).

3.3.3 Tuning Parameter Selection

The tuning parameters in (3.6) play an important role in balancing the likelihood and

the penalties. Note that there are 3r tuning parameters in the model. Searching over a

3r-dimensional grid and refitting the model (potentially multiple times, if one uses cross

validation) for each tuning set can be a huge computational burden. Instead, we adopt

a nested procedure of selecting tuning parameters introduced by Huang et al. (2009). In

each iteration, we find the optimal tuning parameters λ
(t)
k and α

(t)
k for v

(t+1)
k while solving

(3.20), and find the best γ
(t)
k for b

(t+1)
k while solving (3.22). Numerical results illustrate this

nested procedure always converges. Theoretical justification of the convergence property of

the scheme is an open question.

In particular, when selecting λ
(t)
k and α

(t)
k , we assume that they do not interfere with

each other and select one while fixing the other as zero. As a result, the selection of α
(t)
k

is equivalent to selecting the smoothing parameter in a smoothing spline problem. For this

selection task, we use leave-one-out cross validation (LOOCV), since the LOOCV score has

an analytical form from Green and Silverman (1994) that facilitates fast computation. To

select λ
(t)
k , we set it at an asymptotical value since the problem is equivalent to a filtering

problem studied in Yang et al. (2014). The asymptotical value can induce appropriate amount

of sparsity in v
(t+1)
k . The tuning parameter γ

(t)
k in (3.22) is selected using BIC, which is a

popular choice in LASSO problems (Chand, 2012; Wang et al., 2009). The degree of freedom

is determined in the same way as in Tibshirani and Taylor (2012). As a result, the algorithm
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is computationally efficient and scalable for high dimensional data. Numerical results in

Sections 3.4 and 3.5 suggest that the scheme performs well. A more detailed derivation of

tuning parameter selection can be found in Section 3.6.1.

So far we have assumed that the rank r of the model is known. In practice, the rank needs

to be determined from data. It is reasonable to assume that the rank of the underlying signal

of the primary data matrix is inherent. Therefore, all rank selection methods studied in the

PCA literature may be used in our framework. In this paper, we adopt a popular approach

of using the scree plot of the primary data matrix to determine a proper rank. One can also

consider other methods, such as the permutation assessment method in Buja and Eyuboglu

(1992) and the bi-cross-validation method in Owen and Perry (2009). More sophisticated rank

selection methods for functional data and high dimensional data need further investigation

and are beyond the scope of the current paper.

3.4 Simulations

In this section, we compare SupSFPC with SupSVD proposed by Li et al. (2015), one-way

SFPC proposed by Allen (2013), and the PCA using comprehensive simulations.

Simulation Settings

Data are generated from the low rank model: X = YBVT + FVT + E, which connects

to the SupSFPC, SupSVD, one-way SFPC, and PCA models respectively through specific

choices of B,Σf and V. Throughout the section, we assume that each entry of E is i.i.d.

standard normal (i.e., σ2
e = 1).

Study I: We first consider an unit-rank setup where n = 200, p = 100, q = 4, r = 1.

The 200× 4 supervision matrix Y is filled with standard normal random numbers and then

column centered. The 200× 100 primary data matrix X is also column-centered after being

generated. We focus on 4 settings where data are generated from each model respectively:

• Case 1 (SupSFPC): The loading vector V is shown in the left panel of Figure 3.1;

the coefficient vector B is (3,−3, 5, 0)T ; F is a 200× 1 random vector where each entry

is i.i.d. standard normal (i.e., Σf = 1).
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• Case 2 (SupSVD): The parameters B and Σf are the same as in Case 1; the loading

vector V is filled with standard normal random numbers and scaled to have norm one.

Namely, there is no smoothness or sparsity in the loading.

• Case 3 (SFPC): The vector V is the same as in Case 1; the coefficient B = 0, which

eliminates the supervision effect; each entry of F is i.i.d. N (0, 9) (i.e., Σf = 9).

• Case 4 (PCA): The parameters B and Σf are the same as in Case 3, and the loading

vector V is obtained in the same way as in Case 2.
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Figure 3.1: Smooth and sparse loading vectors. Left: the loading vector for Cases 1 and 3 in
the unit-rank example; right: the loading vectors for Cases 5 and 7 in the rank-3 example.

Study II: We then consider a multi-rank setup, where n = 100, p = 120, q = 10,

r = 3. Again, the 100× 10 supervision matrix Y contains standard normal random numbers

and column centered. The 100 × 120 primary data X is also column-centered after being

generated. Similarly to the unit-rank setup, we consider the following 4 settings:

• Case 5 (SupSFPC): The loading vectors in V are shown in the right panel of Figure

3.1; the 10×3 coefficient matrix B = [3,−4, 2,−1, rep(0, 6); rep(0, 3), 2,−3, 1, 1, rep(0, 3);

rep(0, 6),−1, 1, 1, 2]T , where rep(a,b) means repeat a b times; the 3×3 covariance matrix

Σf is a diagonal matrix with diagonal values (1, 3, 4).

• Case 6 (SupSVD): The parameters B and Σf are the same as in Case 5; the 120× 3

loading matrix V is filled with standard normal random numbers and normalized to

have orthonormal columns.
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• Case 7 (SFPC): The loading matrix V is the same as in Case 5; the coefficient matrix

B = 0, which eliminates the supervision effect; the covariance matrix Σf is diagonal

with diagonal values (16, 9, 4).

• Case 8 (PCA): The parameters B and Σf are the same as in Case 7, and the loading

vectors are obtained in the same way as in Case 6.

Performance Measures

We compare the methods in three aspects, loading estimation, score prediction, and low-

rank structure recovery. To evaluate the loading estimation accuracy, we use two criteria, the

mean square error and the largest principal angle (Golub and Van Loan, 2012):

MSEV =
1

pr
‖V − V̂‖2F, AngleV =

180

π
arccos(min eig(VT V̂)),

where ‖ · ‖F denotes the Frobenius norm, and min eig(·) denotes the minimal eigenvalue. The

former characterizes the entry-wise accuracy, and the latter captures the subspace-wise accu-

racy which is invariant to rotations. For evaluating score prediction and low-rank structure

recovery, we use mean squared prediction errors defined as:

MSPEU =
1

nr
‖U− Û‖2F, MSPEUVT =

1

np
‖UVT − ÛV̂T ‖2F,

where the true scores U = YB + F, and the predicted Û have different formulas for different

methods. For SupSFPC and SupSVD, Û = E
U|X,θ̂(U) where θ̂ is specific to respective

methods; for SFPC and PCA, Û = XV̂ where V̂ is method specific.

Results

For each case, we repeat the simulation 100 times and present the median and the median

absolute deviation (MAD) of each performance measurement for all methods in Table 3.1.

The results show that SupSFPC outperforms the other methods in all cases, in terms of

the considered aspects. One explanation for the superior performance is that SupSFPC is a

general framework unifying many existing methods. It automatically adapts to a wide range
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of practical situations.

There are several interesting observations in Table 3.1. First, in Case 3 and Case 7 ,

SFPC surprisingly performs badly in all aspects. This is likely due to an inadequate tuning

parameter selection procedure. The original SFPC paper did not provide any guidance on how

to set tuning grids for BIC, which is a crucial issue in practice. We consulted with the author

and used a suggested tuning grid here. Second, in Case 4 and Case 8, SupSFPC and SupSVD

outperform SFPC and PCA in terms of score prediction and low-rank structure recovery.

Since the auxiliary data are irrelevant in both cases, the improvement in score prediction

must come from the shrinkage effect imposed by
(
I + σ2

eΣ−1
f

)−1
in (3.13). This has been

studied from a random matrix point of view by Shabalin and Nobel (2013). Third, in Case

6 where the generating model is SupSVD, the medians of MSPEU and MSEV for SupSVD

are larger than SupSFPC. In this case the only difference between SupSFPC and SupSVD is

that the former does not require strict orthogonality in loading estimation, so we think the

improvement comes from this extra flexibility. Nevertheless, both SupSVD and SupSFPC

have similar medians of MSPEUVT that are superior to SFPC and PCA. This suggests that

the recovery of low-rank structures actually benefits from incorporating auxiliary data.

Note: In Case 2, Case 4, Case 6 and Case 8, we deliberately set the sparsity and smooth-

ness parameters in SupSFPC and SFPC to zero to improve performances. Practically, we

usually know when smoothness and sparsity are needed.

3.5 Real Data Example: Yeast Cell Cycle Data

In this section, we demonstrate the advantage of SupSFPC using a yeast cell cycle data

set.Two additional real data examples, a government bond yield data set and a hospital

emergency room visit data set, are considered in Sections 3.6.2 and 3.6.3.

We consider microarray expression measurements (X) of yeast genes over a certain time

period. About 800 cell cycle-related genes are identified in Spellman et al. (1998) through

three independent synchronization methods. We consider the data from the α factor based

experiment where mRNA levels were measured at every 7 minutes for 18 time points (about
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SupSFPC SupSVD SFPC PCA

r = 1 MSEV .44e-4 (1.0-5) 1.0e-4 (.86e-5) 2.8e-4 (3.3e-5) 1.0e-4 (.86e-5)
Case 1 AngleV 3.8 (.45) 5.8 (.24) 9.6 (.55) 5.9 (.24)
(SupSFPC) MSPEU 1.0 (.07) 1.0 (.06) 2.0 (.14) 2.1 (.14)

MSPEUVT .72e-2 (.60e-3) .99e-2 (.60e-3) 2.3e-2 (1.5e-3) 1.5e-2 (.80e-3)
MSEV 1.1e-4 (1.0e-5) 1.1e-4 (1.0e-5) 1.1e-4 (1.1e-5) 1.1e-4 (1.1e-5)

Case 2 AngleV 5.8 (.29) 5.8 (.28) 5.9 (.29) 5.9 (.29)
(SupSVD) MSPEU 1.0 (.07) 1.0 (.07) 2.0 (.11) 2.0 (.11)

MSPEUVT 1.0e-2 (5.6e-4) 1.0e-2 (5.6e-4) 1.5e-2 (7.3e-4) 1.5e-2 (7.3e-4)
MSEV .20e-3 (.69e-4) .60e-3 (.81e-4) 7.4e-3 (9.2e-4) .60e-3 (.82e-4)

Case 3 AngleV 7.6 (1.5) 14 (0.9) 51 (3.5) 14 (1.0)
(SFPC) MSPEU 1.9 (.18) 2.0 (.15) 4.5 (.65) 2.3 (.16)

MSPEUVT 1.3e-2 (1.2e-3) 1.5e-2 (.80e-3) 6.4e-2 (3.7e-3) 1.7e-2 (.90e-3)
MSEV 5.8e-4 (7.1e-5) 5.8e-4 (7.3e-5) 5.8e-4 (7.1e-5) 5.8e-4 (7.1e-5)

Case 4 AngleV 14 (.88) 14 (.88) 14 (.87) 14 (.87)
(PCA) MSPEU 2.0 (.17) 2.0 (.16) 2.3 (.17) 2.3 (.17)

MSPEUVT 1.5e-2 (1.0e-3) 1.5e-2 (1.1e-3) 1.7e-2 (1.2e-3) 1.7e-2 (1.2e-3)

r = 3 MSEV .60e-3 (.10e-3) 3.7e-3 (1.4e-3) 2.0e-3 (.40e-3) 3.3e-3 (.90e-3)
Case 5 AngleV 15 (1.5) 18 (.87) 22 (1.5) 18 (.92)
(SupSFPC) MSPEU 1.9 (.12) 6.0 (2.5) 2.7 (.19) 6.0 (1.5)

MSPEUVT 3.0e-2 (2.2e-3) 4.9e-2 (2.0e-3) 5.8e-2 (4.7e-3) 6.0e-2 (2.6e-3)
MSEV 1.8e-3 (.20e-3) 3.9e-3 (1.6e-3) 3.6e-3 (1.0e-3) 3.6e-3 (1.0e-3)

Case 6 AngleV 18 (1.1) 18 (1.0) 18 (1.0) 18 (1.0)
(SupSVD) MSPEU 2.2 (.23) 6.6 (3.3) 6.4 (1.6) 6.4 (1.6)

MSPEUVT 4.9e-2 (1.8e-3) 4.9e-2 (1.7e-3) 6.0e-2 (2.0e-3) 6.0e-2 (2.0e-3)
MSEV 1.4e-3 (.20e-3) 5.3e-3 (.70e-3) 4.5e-3 (1.7e-3) 5.3e-3 (.60e-3)

Case 7 AngleV 19 (1.3) 32 (2.0) 35 (7.5) 32 (2.0)
(SFPC) MSPEU 2.5 (.17) 3.9 (.68) 3.2 (.49) 4.5 (.58)

MSPEUVT 3.6e-2 (.23e-2) 5.9e-2 (.26e-2) 6.5e-2 (1.2e-2) 6.8e-2 (.32e-2)
MSEV 5.3e-3 (7.2e-4) 5.3e-3 (6.8e-4) 5.3e-3 (7.1e-4) 5.3e-3 (7.1e-4)

Case 8 AngleV 33 (2.0) 33 (2.2) 33 (2.1) 33 (2.1)
(PCA) MSPEU 3.7 (.51) 3.9 (.55) 4.3 (.49) 4.3 (.49)

MSPEUVT 5.8e-2 (2.9e-3) 5.8e-2 (3.0e-3) 6.8e-2 (3.0e-3) 6.8e-2 (3.0e-3)

Table 3.1: Median(MAD) of performance measurements for different settings based on 100
simulation runs.
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2 hours) covering two cell cycles. In addition to the expression data, we also have ChIP-chip

data (Lee et al., 2002) that contain binding information (Y) of 106 TFs for the cell cycle-

related genes. We exclude genes with missing values in either expression measurements or TF

binding information as in Chen and Huang (2012) and Chun and Keleş (2010), and consider

a subset of 542 genes. The data are publicly available in the R package “spls”. Figure 3.2

shows the raw expression time series of the 542 cell cycle-related genes.
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Figure 3.2: Raw expression curves for 542 cell-cycle related genes.

The goal of the yeast cell cycle data analysis is two-fold: 1) understanding the underlying

expression patterns of cell cycle-related genes, and 2) identifying transcription factors (TFs)

that regulate cell cycles. Below we address both topics simultaneously using SupSFPC. Zhao

et al. (2004) primarily focus on the former by projecting the raw time series onto Fourier

basis functions with even frequencies and carrying out principal component analysis of the

projected data. Chun and Keleş (2010) and Chen and Huang (2012) study the latter by

regressing the gene expression data onto TF data through sparse partial least square and

sparse reduced rank regression respectively.

The primary data matrix X contains expression measurements of 542 genes at 18 time

points. The supervision data matrix Y contains binding information of the same genes for

106 TFs. We mean center each time point in X and each TF in Y. Based on the scree plot

of singular values of the column-centered data matrix X, we select the rank to be r = 4. The

fitting procedure took about an hour on a standard desktop to reach relatively high accuracy

(`2 difference between consecutive estimates of loading vectors below 10−3).
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Figure 3.3 compares the loading estimates from four methods: SupSFPC, SupSVD, SFPC

and PCA. By taking into account the auxiliary binding information, the SupSFPC loadings

are the most interpretable ones. The first and the forth loading vectors of SupSFPC effectively

capture periodic patterns of cell cycles without referring to a priori knowledge of true cyclic

information as in Zhao et al. (2004). In addition, the second loading mainly presents the

variation in the first cell cycle, and the third loading reflects the contrast of the two cycles.

The fourth loading also emphasizes the variation in the second cycle.
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Figure 3.3: The first 4 loading vectors estimated from SupSFPC, SupSVD, SFPC, and PCA.

Figure 3.4 shows the clustering results of the 542 cell cycle-related genes based on SupSFPC

scores. We apply a 5-mean clustering approach, where the number of clusters is suggested

by Zhao et al. (2004). Different clusters contain genes with different periodic phases. In

particular, the genes in the 2nd-5th clusters clearly exhibit different cyclic patterns, similar

to the results in Zhao et al. (2004). The genes in the first cluster, on the other hand, do not

show strong periodicity, which may need further investigation.

We also investigate the TF activities. Active TFs correspond to the nonzero rows of the

estimated supervision coefficient matrix B̂. Out of the 106 TFs, we identify 32 to be active,

with 13 of them being among the 21 experimentally confirmed TFs in Wang et al. (2007). The

TF activities for those discovered by SupSFPC are shown in Figure 3.5. Most of the confirmed

TFs have clear periodic behavior; among the unconfirmed ones, DOT6, MET4, SFL1, and
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Figure 3.4: Raw gene expression curves clustered into 5 groups based on SupSFPC scores.

YAP5 have the most significant cyclic patterns, which may provide useful guidance to further

investigate the regulation effect of TFs on yeast cell cycle.

3.6 Appendix

3.6.1 Tuning Parameter Selection

In this section, we elaborate on the tuning parameter selection procedures for SupSFPC,

which are briefly discussed in Section 3.3.3 of the main paper. For computational efficiency,

we embed the selection procedures in each EM iteration, as in Huang et al. (2009) and Allen

(2013). Before presenting more technical details, we summarize the comprehensive SupSFPC

algorithm in Algorithm 3.

3.6.1.1 Select α and λ

The optimization (3.20) involves two tuning parameters: α
(t)
k and λ

(t)
k . They control the

smoothness and the sparsity of the kth estimated loading vector v
(t+1)
k , respectively. To

select the best values for both tuning parameters simultaneously, one may search over a
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Figure 3.5: TF activities identified by SupSFPC that are related to yeast cell cycles. The
first 13 (with bold titles) are experimentally confirmed TFs that are related to cell cycles.

2-dimensional tuning grid and use cross validation methods (Zou and Hastie, 2005) or infor-

mation theoretic criteria (Allen, 2013). However, the searching procedure is computationally

intensive, especially when we do not have a good knowledge of the range of different tuning

parameters and have to search over a large grid. Moreover, we need to repeat the procedure

for different PC layers in every EM iteration. The overall computational cost can be huge.

As a remedy, we propose to select α
(t)
k and λ

(t)
k separately. In particular, we omit the

sparsity penalty (i.e., set λ
(t)
k = 0) when selecting the smoothness parameter α

(t)
k , and vice

versa. An advantage of this approach is that the optimization (3.20) reduces to two well-

studied problems: a smoothing spline problem (when λ
(t)
k = 0) and a penalized least square

problem (when α
(t)
k = 0). For each respective problem, the other tuning parameter can be

selected adaptively using some computationally efficient methods. We drop the subscripts

and the superscripts in (3.20) for simplicity and discuss in more detail below.
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Algorithm 3 EM Algorithm for SupSFPC with Adaptive Tuning Selection

1: Initialize model parameters θ(0) = (B(0),V(0),Σ
(0)
f , σ2

e
(0)

);
2: Repeat until convergence:

(a) E Step:

– Get critical conditional expectations (3.13), (3.14), and (3.15);

(b) M Step:

– for k = 1 · · · r do

∗ Select α
(t)
k from (3.24);

∗ Set λ
(t)
k to be (3.25);

∗ Estimate v
(t+1)
k from (3.20);

– end for

– Estimate σ2
e

(t+1)
from (3.18);

– for k = 1 · · · r do

∗ Select γ
(t)
k from (3.26);

∗ Estimate b
(t+1)
k from (3.22);

– end for

– Estimate Σf
(t+1) from (3.19);

When λ = 0, (3.20) becomes

min
v
‖β − v‖22 + αvTΩv (3.23)

where Ω has an expression that is the same as that in smoothing splines (Green and Silverman,

1994). Therefore, (3.23) is a smoothing spline problem. For a given α > 0, the closed-form

solution of (3.23) is v̂α = Hαβ, where Hα = (I + αΩ)−1 is a p × p hat matrix. Leave-

one-out cross validation (LOOCV) is commonly used to select the smoothing parameter α in

smoothing splines. Given an α, we leave out one entry of β at a time, and solve (3.23) to get

a smooth estimate of v; then we calculate the squared difference between the left-out value

in β and the corresponding interpolated value in v; we repeat the procedure for all entries

of β and sum up the squared differences as the LOOCV score for this tuning parameter α.

In a candidate tuning set, the one that has the smallest LOOCV score is the optimal tuning

parameter.

Solving (3.23) multiple times for each α can be computationally expensive. However,
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Green and Silverman (1994) show that the LOOCV score for smoothing spline problems can

be obtained analytically by solving the full optimization problem once as

LOOCV(α) =
1

p

p∑
j=1

(
βj − v̂α,j
1− hα,jj

)2

, (3.24)

where βj and v̂α,j are the jth entry of β and v̂α, and hα,jj is the jth diagonal entry of Hα.

Therefore, LOOCV is an efficient method for tuning parameter selection in smoothing spline.

We adopt LOOCV for selecting α in our algorithm. In practice, we can search over a wide

range of candidate values at rather low cost.

Given α = 0, (3.20) reduces to a penalized least square problem:

min
v

1

2
‖β − v‖22 + λ‖v‖1,

which has an explicit solution v̂λ = thres(β, λ). Namely, λ > 0 is the shrinkage amount

imposed on β. Given U, we know from the definition that the vector β = (ET+vuT )u/‖u‖22 =

v + ETu/‖u‖22, where E is the measurement error matrix in Model (3.5) with i.i.d. entries

from N (0, σ2
e). Namely, β can be viewed as the true sparse vector v plus a noise vector

with i.i.d. entries from N (0, σ2
e/‖u‖22). To accurately estimate the zero entries in v, a proper

threshold is the asymptotically tight upper bound of the expectation of infinity norm of the

noise vector, which is
√

2 log(p)σ2
e/‖u‖22 (Yang et al., 2014). In practice, since both ‖u‖22

and σ2
e are unknown, we substitute them with estimates from the previous EM iteration. In

particular, the approximate optimal value for λ
(t)
k is

λ
(t)
k =

√
2 log(p)σ2

e
(t)/c

(t)
k , (3.25)

where c
(t)
k = EU|X,θ(t)(u

T
k uk). Numerical studies indicate this constant works well.
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3.6.1.2 Select γ

The tuning parameter γ
(t)
k in (3.22) is a LASSO sparsity parameter as we formulate and

solve (3.22) as a LASSO problem. Selection of sparsity parameter in a LASSO problem has

been well studied in the literature. See, for example, Wang et al. (2009) and Chand (2012).

Among data-driven approaches, BIC is a favorable method due to its theoretical merit and

fast computation. In particular, since the coordinate descent algorithm can recover the entire

solution path efficiently, using BIC to tune LASSO roughly has the same cost as fitting LASSO

with a known parameter. Therefore, the BIC procedure for selecting γ
(t)
k is suitable to be

embedded in the EM iteration. For simplicity, we drop the subscripts and the superscripts in

the discussion below.

In (3.22), the BIC score for a given tuning parameter γ is defined as

BIC(γ) = n log(MSEγ) + dfγ log(n), (3.26)

where MSEγ is the mean residual sum of squares, and dfγ is the degree of freedom of the fitted

model corresponding to the tuning parameter γ. The degree of freedom of a LASSO fit has

been studied in Zou et al. (2007) for a full-column-rank design matrix, and in Tibshirani and

Taylor (2012) for general design matrices. In our case, the design matrix is Y where columns

are potentially linearly dependent. Therefore, we estimate dfγ according to Tibshirani and

Taylor (2012) as

d̂fλ = rank(YA(γ)),

where A(γ) is a column index set corresponding to nonzero LASSO estimates at γ, and YA(γ)

is a submatrix of Y with columns in A(γ). The value that leads to the smallest BIC score is

the selected tuning parameter.
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3.6.2 Government Bond Yield Data

In this section, we consider the application of SupSFPC to the government bond yield

data also studied in Diebold and Li (2006) and Hays et al. (2012). We use the example to

illustrate that when auxiliary data are irrelevant to the primary data of interest, SupSFPC

can adaptively ignore the supervision effect and perform as well as an unsupervised method.

The primary data contain the end-of-month price quotes for U.S. Treasuries, from January

1985 to December 2000 (192 months). For each month, we consider yields on zero coupon

bonds of 18 fixed maturities (imputed if missing) of 1.5, 3, 6, 9, 12, 15, 18, 21, 24, 30, 36, 48,

60, 72, 84, 96, 108, 120 months. Each month is a sample (n = 192) and each maturity is a

variable (p = 18), resulting in a 192×18 primary data matrix X. The 192 raw yield curves of

different maturities are shown in Figure 3.6, with random coloring. For each sample, we also

have the auxiliary monthly index information, which may or may not influence the underlying

structure of X. In particular, we treat the monthly indices (converted to dummy variables)

for the 192 months as supervision data Y.
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Figure 3.6: Raw yield curves of different maturities from January 1975 to December 2000.

Each column of X and Y is centered before applying SupSFPC. We set the rank r = 2

as the first 2 principal components of the column-centered X explain over 99% of the total

variation. Then we estimate the SupSFPC model parameters from the data. The fitting

procedure took less than 1 second to converge. The estimated supervision coefficient matrix B̂

is a zero matrix, meaning the auxiliary monthly index data are not relevant to the underlying
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structure of the yield data. Namely, the yield curves do not present any strong monthly

patterns. This is concordant with our observation from the raw data in Figure 3.6.

We also compare the loading vectors estimated from SupSFPC with those obtained de-

terministically from the dynamic Nelson-Siegel (DNS) model (Diebold and Li, 2006), which

is designed under prior economic theory guidance. Figure 3.7 shows the comparison results.

The first panel shows the mean yield curve from the data versus the first loading from the

DNS model, both representing a long-term factor. The deviance indicates that the constant

loading of the DNS model may not be adequate to capture the overall yield trend at different

maturities. The other two panels show the comparison between the 2nd and 3rd loading

vectors between SupSFPC and DNS, respectively. From an economic point of view, the two

pre-specified DNS loadings possess the interpretation of medium-term and short-term effects

respectively. The two SupSFPC loadings have similar shapes with the respective DNS load-

ings, meaning that SupSFPC captures similar yield curve patterns as in the DNS model.

However, we note that SupSFPC only uses information in the data without referring to any

economic prior knowledge. Namely, SupSFPC is flexible enough to adapt to the dominant

features in the data.
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Figure 3.7: Loadings estimated from SupSFPC (solid line) and the pre-specified loadings from
the dynamic Nelson-Siegel model (dashed line).
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3.6.3 Emergency Room Visit Data

We now analyze the patient arrival rate data from Armony et al. (2011), that contain

hourly number of patients arriving to the emergency room (ER) of the Rambam Hospital,

Israel for 417 consecutive days (from September 10th, 2006 to October 31th, 2007). The goal

is to understand underlying patient arrival patterns to better allocate human and medical

resources. The 417 raw arrival rate curves are shown in the 1st panel of Figure 3.8.
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Figure 3.8: Raw arrive rate curves of the hospital ER visit data. The first panel shows the
overall curves for 417 consecutive days; the other panels show arrival curves on different days
of the week respectively.

Other than the hourly arrival rates, we also know the day-of-week index of each day. In

particular, the 2nd-8th panels in Figure 3.8 show arrival curves grouped by the day-of-week

index. It can be seen that different days of a week have distinct arrival patterns. Namely,

the day-of-week index may be treated as supervision information as it partially drives the

underlying structure of the arrival rates.

Each row of the 417 × 24 primary data matrix contains hourly arrival rates of a day.

We apply a square root transformation to the arrival rate data (i.e.,
√

arrival rate + 1/4)

to achieve approximate normality (Brown et al., 2005). Then we column center the data
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matrix and denote it as X. The supervision data matrix Y contains 417 day-of-week indices

(converted to dummy variables and column centered). The rank is set to be 4 based on the

scree plot of the singular values of X.

We apply different methods (SupSFPC, SupSVD, one-way SFPC and PCA) to the data.

The fitting procedure of SupSFPC took about 1 minute to converge. Figure 3.9 shows the

loading vectors estimated from the methods. By taking into account the auxiliary day-of-week

information and allowing regularization, SupSFPC loadings have superior interpretability.

The four loadings of SupSFPC capture major variabilities of arrival data from unknown

sources after separating the day-of-week effect. They represent large variations of arrival

rates at noon, in the evening, overnight, and in the morning, respectively. The day-of-week

structure identified by SupSFPC is shown in Figure 3.10. To get the curves in the figure,

we transform YB̂V̂T (where B̂ and V̂ are the SupSFPC parameters estimated from the

data) back into the original scale by adding the column mean of X and applying a square

transformation. The recovered low-rank structures resemble the (smoothed) average arrival

patterns for different weekdays in Figure 3.8.
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Figure 3.9: The first 4 loading vectors estimated from SupSFPC, SupSVD, SFPC, and PCA.
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Figure 3.10: The Day-of-Week Structure Identified by SupSFPC.
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CHAPTER 4: AN EMPIRICAL BAYES APPROACH FOR MULTIPLE

TISSUE EQTL ANALYSIS

4.1 Introduction

In this chapter we introduce and study a multivariate, hierarchical Bayesian model for the

simultaneous analysis of eQTLs in multiple tissues, which we call MT-eQTL. The dimension

of the MT-eQTL model is equal to the number of tissues. Importantly, we do not seek to

describe the full joint relationship between expression and genotype across tissues. Instead,

we directly model the vector z of Fisher transformed correlations between expression and

genotype across tissues, after appropriate scaling to account for different degrees of freedom

in each tissue. The entries of z are z-statistics for testing the association between genotype and

expression in each tissue. Working with the test statistics on the transformed scale facilitates

modeling and interpretation. The upper panel of Figure 4.1b shows a density-based scatter

plot of the z-vectors for nerve and skin tissue in the December 2012 release of the GTEx data.

The lower panel illustrates the results of the MT-eQTL model: vectors close to the origin for

which no eQTLs are detected have been removed, resulting in the central white area; detected

eQTLs are colored according to whether an eQTL is detected in both tissues (blue points) or

a single tissue (red and green points).

The MT-eQTL model can be expressed in an equivalent, mixture form in which each

component corresponds to a binary configuration indicating the presence (1) or absence (0) of

an eQTL in each tissue. We adopt an empirical Bayes approach, fitting the MT-eQTL model

by maximum likelihood using an EM based algorithm. Throughout we restrict attention to

local (sometimes referred to as ‘cis’) gene-SNP pairs, for which the SNP is within a fixed

genomic distance of the coding region of the gene.

We briefly describe some of the key features of the MT-eQTL model. A detailed description

is given in Section 4.2. The model explicitly captures patterns of variation in the presence



or absence of eQTLs, as well as the heterogeneity of effect sizes across tissues. In complex

multi-tissue data like that from GTEx, the number of samples can vary substantially from

tissue to tissue, and the sets of donors for different tissues can exhibit different degrees

of overlap. The MT-eQTL model is rich enough to accommodate both of these features.

Another important aspect of complex multi-tissue data is that effect sizes in different tissues

may be correlated. Correlations in effect sizes arise from biological factors (for example, the

underlying relationships among tissues), and are reflected in the correlation structure of the

vector z. The correlation structure of z also reflects experimental factors such as donor overlap

among tissues. The MT-eQTL model explicitly accounts for both sources of correlation in an

identifiable way. Lastly, the MT-eQTL model has the desirable property of being marginally

consistent: roughly speaking, the mixture model for a subset of tissues can be obtained from

the full mixture model via marginalization.

Fitting of the MT-eQTL model from the z-vectors of local gene-SNP pairs is carried out via

empirical Bayes using an approximate EM algorithm. Fitting is fast enough to accommodate

the full analysis of real data sets on a desktop computer. After fitting, the MT-eQTL model

provides, for any given z-vector, posterior probabilities for every binary configuration of eQTL

absence (0) or presence (1) across tissues. Using the fitted model, we define the local false

discovery rate of a gene-SNP pair to be the posterior probability of the zero configuration (no

eQTL in any tissue) given its vector of z-statistics. We test for gene-SNP pairs having an

eQTL in some tissue by adaptive thresholding of the local false discovery rates. Assessment of

tissue specificity can be obtained from the posterior probabilities of non-zero configurations.

The procedure is readily generalized to more general hypothesis testing settings.

4.1.1 Related Work

Research on multi-tissue eQTLs is relatively new, with early published work dating from

2007. Most existing multi-tissue analyses extract eQTLs individually from each tissue and

then apply post-hoc procedures to assess commonality and specificity. Dimas et al. (2009) and

Heinzen et al. (2008) consider the simple pairwise overlap of single tissue eQTL discoveries.
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Ding et al. (2010) proposed a procedure to measure eQTL overlap that accounts for differences

in statistical power between data sets for individual tissues. Fu et al. (2012) proposed a

resampling based procedure to assess the tissue-specificity of cis-eQTLs. Bullaughey et al.

(2009) examined the gene-SNP associations in five human primary tissues of eQTLs with

large effect sizes in lymphoblastoid cell lines. A similar idea is implemented in Nica et al.

(2011): given a set of gene-SNP pairs with small p-values in one tissue, the p-values of these

same pairs are examined in other tissues to assess enrichment of significant associations. In

addition, several meta-analysis based approaches have been applied to integrate eQTL results

for different tissues, cf. Brown et al. (2013) and Xia et al. (2012).

The papers cited above provide exploratory studies of eQTLs in multiple tissues, or pair-

wise conditional analysis of eQTLs declared significant in an initial tissue. However, they do

not address the ab-initio statistical analysis of multi-tissue data in a manner that fully utilizes

the data. Gerrits et al. (2009) used an ANOVA model to jointly analyze gene-SNP associa-

tions across tissues, with eQTL configurations assigned according to effect sizes in different

tissues. Petretto et al. (2010) proposed a sparse Bayesian regression model in which gene

expression in different tissues is treated as a multivariate response, and SNPs are treated as

predictors; the presence and specificity of eQTLs are captured by a sparse coefficient matrix.

Following Wen et al. (2014), Flutre et al. (2013) proposed a Bayesian framework for the joint

analysis of eQTLs across tissues. They use a linear model to capture gene-SNP association

in each tissue, and place a prior distribution on the coefficients subject to a latent indicator

of whether or not it is an eQTL. Each of these methods uses permutation based procedures

to control and calculate false discovery rates., which is computationally burdensome when

dealing with millions of gene-SNP pairs and multiple tissues. In addition, these methods

assume that each tissue has samples from an identical set of individuals; as noted above, in

many cases the set and number of donors varies from tissue to tissue.

In recent work, Sul et al. (2013) proposed a“Meta-Tissue” method that combines linear

mixed models and meta-analysis. The linear mixed model captures gene-SNP correlations

across tissues and accounts for partial overlap among donors. Meta-analysis is used to address

detection of eQTLs in multiple tissues, but the model does not use an explicit indicator vector
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for eQTLs across tissues, making assignment of tissue specificity less straightforward than with

other methods. Moreover, their hypothesis testing procedure does not make direct use of the

alternative distribution, which may lead to a reduction in statistical power.

4.1.2 Outline

The MT-eQTL model is described in the next section. The modified EM algorithm used to

fit the model is described in detail in Section 4.3. Section 4.4 describes the application of MT-

eQTL to multi-tissue inference, including eQTL detection (both in all tissues and in a subset

of tissues) using the local false discovery rate, and the determination of tissue specificity.

Section 4.5 presents the results of a simulation study with four tissues. Section 4.6 is devoted

to the analysis of new data from the GTEx initiative consisting of nine human tissues with

sample sizes ranging from 83 to 156. Technical proofs can be found in the appendix, Section

4.8.

4.2 The MT-eQTL Model

In this section we describe the MT-eQTL model in detail, beginning with a general de-

scription of multi-tissue data, and a detailed account of the multivariate z-statistics on which

the model is based.

4.2.1 Format of Multi-Tissue eQTL Data

The general data format for the multi-tissue eQTL problem is as follows. For each of n

donors we have full genotype information, and measurements of gene expression in at least one

of K tissues. We assume that the same array platform is used for measurements of genotype,

and similarly for expression.

Let G be an m× n matrix containing the measured genotype of each donor in the study

at m genetic loci that are the sites of single nucleotide polymorphisms (SNPs). Each column

of G corresponds to a donor, and each row corresponds to a locus/SNP. The measured

transcript levels for tissue k are contained in a p × nk matrix Xk, where p is the number of
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measured transcripts, and nk ≤ n is the number of donors from which samples of tissue k

are available. Each column of Xk has an identifier indicating the donor associated with the

measurements in that column. In general, the number of donors nk can vary widely among

tissues, and even if two tissues have similar numbers of samples, they may have relatively few

common donors. The data available for the purposes of multi-tissue eQTL analysis has the

form (G,X1, . . . ,XK). Figure 4.1a gives an illustration of the typical data format with two

tissues.
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Figure 4.1: (a) Illustration of the typical data format with two tissues. Genotype data G is
available for m SNPs and each of n samples. Expression measurements are available for p
genes; sample sets for different tissues may not be the same. (b) Scatter plots of z-statistics
for nerve and skin: for all local gene-SNP pairs (top), and for significant local gene-SNP pairs
with tissue specificity by color (bottom).
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4.2.1.1 Data Preprocessing and Covariate Adjustment

In most cases eQTL analysis is preceded by several preprocessing steps and covariate

adjustment. The genotype data matrix G consists of values 0, 1, and 2, typically coded

as the number of minor allele variants; SNPs with too few minor allele instances are often

discarded. Expression measurements may be obtained from array-based platforms or from

RNA-Seq tag counts. Lowly expressed genes are typically dropped from the analysis.

Genotype and expression data may contain confounding factors. Some confounders, such

as gender, are observed, while others are of unknown technical or biological origin. To identify

the unknown confounding factors, most studies use principal components, surrogate variables

(Leek and Storey, 2007), or PEER cofactors (Stegle et al., 2012) as covariates. We assume

that the expression data and genotype data have been residualized for the confounders, so

the comparison of these residualized quantities are partial correlations adjusted for covari-

ates. The degrees of freedom lost in fitting the covariates is accounted for in computing the

association between expression and genotype.

4.2.2 Multivariate z-Statistic from Single Tissue Correlations

Denote a measured transcript by i ∈ {1, . . . , p} and a measured genotype by j ∈ {1, . . . ,m}.

We focus on a subset Λ of the full index set {1, . . . , p}×{1, . . . ,m} that consists of pairs (i, j)

such that SNP j is located within a fixed distance (usually 100 Kilobases or 1 Megabase) of

the transcription start site of gene i.

Let λ = (i, j) be a gene-SNP pair of interest, and let k be a tissue for which measurements

of transcript i are available. Let rλk and ρλk denote, respectively, the sample and population

correlation of transcript i and SNP j in tissue k. Note that the sample correlation rλk

depends only on the nk measurements from donors of tissue k. The vector of correlations

rλ = (rλ1, . . . , rλK) captures the association between the expression of transcript i and the

value of genotype j in each of the K tissues. Relationships between different tissues will be

reflected in correlations between the entries of rλ. These features make rλ a natural starting

point for a multi-tissue eQTL model.
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In order to construct a multivariate model for the correlations rλ, it is convenient to work

in a Gaussian setting. To this end, let

h(rλ) =
(
h(rλ1), . . . , h(rλK)

)
be the vector obtained by applying the Fisher transformation

h(r) =
1

2
log
(1 + r

1− r

)

to each component of rλ. Let

d1/2 := (
√
d1 − 3, . . . ,

√
dK − 3)

be a scaling vector, where dk is the degrees of freedom for Xk and G, equal to nk minus the

number of covariates used to correct genotype and expression for samples in tissue k. Finally,

define the vector

zλ = d1/2 · h(rλ) (4.1)

where u · v denotes the Hadamard (entry-wise) product of vectors u and v.

Consider a random vector Zλ derived in the same fashion as zλ from random data

(G,X1, . . . ,XK). We assume that the expression measurements Xk are approximately nor-

mal. Standard arguments for the Fisher transformation (Winterbottom, 1979) show that

h(rλk) is approximately normal with mean h(ρλk) and variance (dk − 3)−1. By a routine

multivariate extension of this fact, Zλ is approximately normally distributed with mean

µλ = d−1/2 · h(ρλ).

The variance stabilizing property of the Fisher transformation and our choice of scaling en-

sures that the variance of each entry Zλk of Zλ is close to one, regardless of ρλ. In particular,

if the true correlation ρλk between transcript i and SNP j for tissue k is zero, then Zλk is

approximately standard normal. Thus the k-th entry of the observed vector zλ is a z-statistic
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for testing ρλk = 0 vs. ρλk 6= 0. Importantly, the components of Zλ need not be independent,

even when all the true correlations ρλk are zero. Capturing this dependence is a key feature

of the MT-eQTL model, which is described in detail below.

4.2.3 Hierarchical Model

Let λ = (i, j) be a gene-SNP pair in Λ. MT-eQTL is a multivariate, hierarchical Bayesian

model for the random vector Zλ. In detail, we assume that

Zλ |µλ ∼ NK (µλ,∆) (4.2)

µλ = Γλ ·αλ (4.3)

Γλ ∼ p on {0, 1}K (4.4)

αλ ∼ NK(µ0,Σ), independent of Γλ (4.5)

The mean vector µλ contains the effect sizes for the relationship between transcript i and SNP

j in each tissue. The K×K covariance matrix ∆ is constrained to have diagonal entries equal

to one, reflecting the variance stabilization of the Fisher transformation, and the scaling in

(4.1). The off-diagonal entries of ∆ capture correlations among the entries of Zλ that are due

to commonalities among tissues that arise from the underlying sampling process, for example,

correlations resulting from shared donors among a pair of tissues.

We assume that the mean vector µλ of Zλ is equal to the entrywise product of a multi-

normal random vector µλ and a vector Γλ with binary entries. The indicator vector Γλ

determines the presence (Γλk = 0) or absence (Γλk = 1) of an association between transcript

i and SNP j in tissues k = 1, . . . ,K. The strength of an association, when present, is deter-

mined by the corresponding component of αλ. The covariance matrix Σ of αλ captures tissue

specific variation in effect sizes, and correlations among effect sizes that reflect biological

commonalities between tissues. The mean vector µ0 of αλ captures the average effect sizes

across tissues. In practice we usually set µ0 = 0 because high expression levels of a gene can

be associated with either the major or minor allele with roughly equal probability, resulting
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in average effect sizes to be approximately zero across tissues. We have noticed little effect

of this setting on numerical results. The final parameter of the model is a probability mass

function p on {0, 1}K that assigns probabilities to each of the 2K possible configurations of

Γλ. In particular, p0 (i.e., p(0,··· ,0)) is the prior probability that transcript i and SNP j have

no association in any tissue.

4.2.4 Mixture Model

The hierarchical model (4.2)-(4.5) describing the distribution of Zλ is fully specified by

θ = (µ0,∆,Σ,p), which consists of 2K +K2 +K − 1 real-valued parameters. Estimation of,

and inference from, the hierarchical model is based on an equivalent mixture representation

that we now discuss.

If U is distributed as NK(µ,Σ) and γ is a fixed vector in {0, 1}K , then one may readily

verify that the entrywise product U · γ is distributed as NK
(
µ · γ,Σ · γγT

)
. A straightfor-

ward argument then shows that the hierarchical model (4.2)-(4.5) is equivalent to a mixture

distribution of the form

Zλ ∼
∑

γ∈{0,1}K
pγ NK

(
µ0 · γ, ∆ + Σ · γγT

)
. (4.6)

We adopt an empirical Bayes approach for performing inference from the model (4.6). Specif-

ically, the parameters θ = (µ0,∆,Σ,p) of the hierarchical model are estimated from the

observed z-statistics {zλ : λ ∈ Λ} by approximately maximizing a pseudo-likelihood derived

from (4.6); see Appendix 4.3 for more details. Beginning with the work of Newton et al.

(2001) and Efron et al. (2001), empirical Bayes approaches have been applied to hierarchical

models in a number of genetic applications, most notably the study of differential expression

and co-expression in gene expression microarrays, cf. Kendziorski et al. (2003), Newton et al.

(2004), Smyth (2004) and Efron (2008), and Dawson and Kendziorski (2012).

The mixture model (4.6) is readily interpretable. Each component of the model corre-

sponds to a unique configuration γ, or equivalently, a unique pattern of tissue specificity.

The model component corresponding to γ = 0 represents the case in which there are no
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eQTLs in any tissue, and has associated (null) distribution NK(0,∆). The model component

corresponding to γ = 1 represents the case in which there are eQTLs in every tissue, and

has associated distribution NK(µ0,∆ + Σ). Other values of γ represent intermediate cases

in which there are eQTLs in some tissues (those with γk = 1) and not in others (those with

γk = 0).

4.2.5 Marginal Consistency

In eQTL studies with multiple tissues, it is likely that some subsets of the tissues are

of particular interest. From the point of view of model fitting and model interpretation, it

is desirable if the model for any subset of tissues is consistent with the full model in the

sense that it can be obtained from the full model (or any model on a superset of tissues) via

marginalization. We refer to this property as marginal consistency.

To elaborate, let S ⊆ {1, . . . ,K} be a subset of r tissues, with 1 ≤ r ≤ K. The mixture

model (4.6) has two important compatibility properties: (i) the marginalization of the full

model to S has the same general form as the model derived from S alone; and (ii) the

parameters of the marginal model are obtained by restricting the parameters of the full

model to S. The following definition and lemma makes these statements precise. A proof of

the lemma is given in the appendix.

Definition: Let S ⊆ {1, . . . ,K} with cardinality |S| = r. For each vector u ∈ RK let

uS = (uk : k ∈ S) ∈ Rr be the vector obtained by restricting u to the entries in S. Similarly,

for each matrix A ∈ RK×K let AS = {akl : k, l ∈ S} be the r× r matrix obtained by retaining

only the rows and columns with indices in S. Note that if A is non-negative (positive) definite,

then AS is non-negative (positive) definite as well.

Lemma 4.2.1. If Z ∈ RK be a random vector having the mixture distribution (4.6), then

ZS ∼
∑

ζ∈{0,1}r
pS,ζNr

(
µ0S · ζ, ∆S + ΣS · ζζT

)
(4.7)

where (pS,0, · · · , pS,1) is the probability mass function on {0, 1}r obtained by marginalizing p
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to S, i.e., pS,ζ =
∑

γ:γS=ζ pγ .

Remark: Suppose that the parameters θ = (µ0,∆,Σ,p) of the full mixture model (4.6) are

estimated from the z-statistic vectors {zλ : λ ∈ Λ}, and let S ⊆ {1, . . . ,K} be a set containing

r tissues. Lemma 4.2.1 describes the model θS obtained by marginalizing the full model to

the tissue set S.

4.3 Model Fitting and Parameter Estimation

4.3.1 Matrix eQTL

The set of correlations rλk for all transcript-SNP pairs λ and tissues k = 1, . . . ,K can be

conveniently calculated using the R package Matrix eQTL by Shabalin (2012). The package

is designed for fast eQTL analysis in individual tissues. Matrix eQTL accounts for covariates

and can filter transcript-SNP pairs by the distance between their genomic locations. Once

Matrix eQTL is applied separately for each tissue, the t-statistics it reports can be transformed

into correlations using the simple transformation

rλk =
tλk√
dk + t2λk

where dk is the number of degrees of freedom in the tests for tissue k which is defined in Section

4.2.2 and is also reported by Matrix eQTL. The set of correlations can then be combined in

a single matrix with rows rλ.

4.3.2 Modified EM Algorithm

We wish to estimate the parameter θ = (µ0,∆,Σ,p) from the observed z-statistics {zλ :

λ ∈ Λ}, which are computed directly from the sample correlations rλk obtained from Matrix

eQTL. In order to make the estimation of θ tractable, we assume that the random vectors

Zλ are independent. The likelihood of the model then has a simple product form, depending
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only on the unknown parameter θ, and the observed z-statistics {zλ}:

L({zλ}|θ) =
∏
λ∈Λ

∑
γ∈{0,1}K

pγ fγ(zλ | θ), (4.8)

where fγ(· | θ) is the probability density function of the NK
(
µ0 ·γ,∆ + Σ ·γγT

)
distribution.

Remark: It is important to note that the parameter θ concerns only the (common) marginal

distribution of the random vectors Zλ, and is unaffected by their dependence. The assumption

that the random vectors Zλ are independent facilitates estimation of θ, but does not impose

any constraints on the marginal dependence structure of Zλ.

We estimate the parameter θ by seeking to maximize the logarithm of the likelihood (4.8).

The log-likelihood is not concave, and there appears to be no closed form solution to the max-

imization problem. Thus one must to rely on iterative algorithms that produce a sequence of

parameters θ(t) converging to a (local) maximum of the likelihood. A direct approach employ-

ing a generic software routine for numerical maximization of the likelihood function would be

computationally intensive, as each iteration would require multiple (at least 2K) calculations

of the likelihood function around the estimate obtained at the previous iteration. A much

faster convergence can be achieved by applying a modification of Expectation Maximization

(EM) algorithm. Details are given below.

We treat the unobserved tissue-specificity information vector Γλ ∈ {0, 1}K as a latent

variable. The joint likelihood of both observed and latent variables is:

L(z,γ | θ) = pγ fγ(z | θ).

The EM algorithm operates in an iterative fashion. Let θ(t) = (µ
(t)
0 ,∆(t),Σ(t),p(t)) be the

estimate of the model parameters after t iterations. The estimate θ(t+1) is defined by

θ(t+1) = arg max
θ

Q(θ : θ(t)),
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where

Q(θ : θ(t)) =
∑
λ

EΓλ|zλ,θ(t)
[

logL(zλ,Γλ|θ)
]
.

The expectation of the log-likelihood is calculated with respect to the conditional distribution

of Γλ given the observed vector of correlations zλ and the model parameters θ(t).

Consider the conditional expectation appearing in Q(θ : θ(t)). Let p(γ | θ) denote the

probability of the configuration γ under the probability mass function p associated with the

parameter θ, and define

p(γ | z, θ) = P(Γλ = γ | z, θ) =
p(γ | θ)fγ(z | θ)∑
γ′ p(γ

′ | θ)fγ′(z | θ)

The objective function Q(θ : θ(t)) then has the form

Q(θ : θ(t)) =
∑
λ

∑
γ

p(γ | zλ, θ(t))
[

log p(γ | θ) + log fγ(zλ | θ)
]

Maximization of Q with respect to θ leads to the explicit formula

p(γ | θ(t+1)) =
∑
λ

p(γ | zλ, θ(t))
/
|Λ|

where |Λ| is the number of gene-SNP pairs under consideration. There appears to be no

closed form solution for the iterates of µ
(t)
0 , Σ(t) and ∆(t). However, in practice, most of the

probability mass of p is concentrated at the two extreme cases γ = 0 and γ = 1, reflecting the

fact that most transcript-SNP pairs are associated in no tissues or all tissues. Approximating

Q(·) by restricting the second sum to γ = 0, 1 leads to explicit (approximate) estimates of
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µ0, Σ and ∆ via the following first order conditions:

∆(t+1) =
∑
λ

p(0 | zλ, θ(t))zλz
T
λ

/∑
λ

p(0 | zλ, θ(t))

µ
(t+1)
0 =

∑
λ

p(1 | zλ, θ(t))zλ

/∑
λ

p(1 | zλ, θ(t))

Σ(t+1) + ∆(t+1) =
∑
λ

p(1 | zλ, θ(t))(zλ − µ
(t+1)
0 )(zλ − µ

(t+1)
0 )T

/∑
λ

p(1 | zλ, θ(t))

At some iterations the estimates Σ(t+1) may fail to be non-negative definite. In such cases we

force Σ(t+1) to be non-negative definite by calculating its singular value decomposition and

dropping terms with negative coefficients (negative eigenvalues).

Starting with an initial parameter value θ(0), we perform sequential updates in the manner

described above until the change in the likelihood falls below a pre-set threshold. To assess

the reliability of the estimate one may run the algorithm multiple times using distinct starting

points. In our experiments the algorithm tends to converge to the same estimate regardless

of the starting point.

4.4 Multi-Tissue eQTL Inference

Once fit, the mixture model (4.6) provides the basis for inference about eQTLs across

tissues. In practice, we expect that θ will be well-estimated due to the large number of

available gene-SNP pairs; we therefore regard θ as fixed and known. For data sets with

small sample sizes, approximate standard errors can be obtained from the likelihood via the

observed information matrix.

In most applications the covariance matrix ∆ will be positive definite, and we assume this

is the case here. With this assumption, the distribution NK
(
µ0 · γ, ∆ + Σ · γγT

)
associated

with the configuration γ ∈ {0, 1}K has a density, which we denote by fγ . Thus under the

mixture model (4.6) the random vector Zλ has density

f(z) =
∑
γ

pγ fγ(z) z ∈ RK . (4.9)
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In view of this expression and the hierarchical model (4.2)-(4.5), one may regard Zλ as one

element of a jointly distributed pair (Γλ,Zλ), where

Γλ ∼ p and Zλ |Γλ ∼ fγ . (4.10)

We carry out multi-tissue eQTL analysis based on the posterior distribution of the configu-

ration Γλ given the observed vector of z-statistics zλ. Two inference problems are of central

interest to us. The first is eQTL detection, in all tissues and in a subset of tissues. The

second is assessing the tissue specificity of eQTLs in transcript-SNP pairs where an eQTL is

present in at least one tissue.

4.4.1 Detection of eQTLs Using the Local False Discovery Rate

A primary goal of multi-tissue analysis is testing each transcript-SNP pair for the presence

of an eQTL in at least one tissue. This can be formulated as a multiple testing problem,

namely testing

H0,λ : Γλ = 0 versus H1,λ : Γλ 6= 0 for λ ∈ Λ. (4.11)

For λ = (i, j) ∈ Λ the null hypothesis H0,λ asserts that there is no eQTL between transcript

i and SNP j in any tissue, while the alternative H1,λ asserts that there is an eQTL between

i and j in at least one tissue.

The null hypotheses can also be expressed in the form H0,λ : Zλ ∼ NK
(
0, ∆

)
. It is possible

to derive a p-value for zλ directly from the null distribution, and then control the overall false

discovery rate in (4.11) using a step-up procedure like that of Benjamini and Hochberg (1995).

However, this type of analysis ignores relevant information about the distribution of Zλ under

the alternative that is contained in the mixture model.

We address the multiple testing problem (4.11) using the local false discovery rate in-

troduced by Efron et al. (2001) in the context of an empirical Bayes analysis of differential

expression in microarrays. Other applications of the local false discovery rate to genomic
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problems can be found in Newton et al. (2004), Efron (2007), and Efron (2008). To simplify

notation in what follows, let (Γ,Z) denote a generic pair distributed as (Γλ,Zλ).

Definition: The local false discovery rate of an observed z-statistic vector z under the model

(4.6) is defined by

η(z) := P(Γ = 0 |Z = z) =
p0f0(z)

f(z)
. (4.12)

Let α ∈ (0, 1) be a target false discover rate (FDR) for the multiple testing problem

(4.11). Vectors z for which the local false discovery rate η(z) is small provide evidence for the

alternative Γ 6= 0. We carry out testing of gene-SNP pairs using a simple step-up procedure

that is applied to the running average of the ordered local false discover rates. The procedure,

which is described below, appears in essentially the same form in Newton et al. (2004), Sun

and Cai (2007), and Cai and Sun (2009).

Local FDR Step-Up Procedure: Target FDR = α

1. Given: Observed z-statistic vectors {zλ : λ ∈ Λ}.

2. Enumerate the elements of Λ as λ1, . . . , λN so that η(zλ1) ≤ · · · ≤ η(zλN ).

3. Reject hypotheses H0,λ1 , . . . ,H0,λL where L is the largest integer such that L−1
∑L

l=1 η(zλl) ≤

α.

In order to better understand the local FDR step-up procedure, and to assess its perfor-

mance, it is useful to express the procedure in an equivalent form. As noted by Efron et al.

(2001), the false discovery rate associated with a rejection region R ⊆ Rk for the multiple

testing problem (4.11) is given by P(Γ = 0 |Z ∈ R). They establish the following elementary

fact, which exhibits a connection between the false discovery rate and the local false discovery

rate.

Proposition 4.4.1. If R ⊆ Rk is such that P(Z ∈ R) > 0, then P(Γ = 0 |Z ∈ R) =

E(η(Z) |Z ∈ R).
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As noted above, vectors z for which η(z) is small provide evidence against Γ = 0, so it

is natural to reject H0,λ when η(zλ) falls below an appropriate threshold. Consider rejection

regions of the form R(t) = {z : η(z) ≤ t} for t ∈ (0, 1). Given a target false discovery rate α,

we wish to find t such that α = P(Γ = 0 |Z ∈ R(t)). By Proposition 4.4.1 this is equivalent

to finding t ∈ (0, 1) such that F (t) = α, where

F (t) := E(η(Z) | η(Z) ≤ t) =
E[η(Z) I(η(Z) ≤ t)]

P(η(Z) ≤ t)
. (4.13)

The empirical analog of F (t) is the ratio

F̂ (t) =

∑
λ∈Λ η(zλ) I(η(zλ) ≤ t)∑

λ∈Λ I(η(zλ) ≤ t)
,

which depends only on η(·) and the observed vectors {zλ}. It is easy to see that the local

FDR step-up procedure is equivalent to the rule

Reject H0,λ if and only if η(zλ) ≤ sup{t : F̂ (t) ≤ α}. (4.14)

We show in Proposition 4.8.1 that F (t) is strictly increasing and continuous. Thus if F (t)

and F̂ (t) were equal, the local FDR step-up procedure and the idealized threshold procedure

would coincide. In general, F (t) and F̂ (t) will be different, but multiplying the numerator

and denominator of F̂ (t) by |Λ|−1 it is evident that the two functions will be close if |Λ| is

large and the dependence among the observed z-vectors is not extreme. Asymptotic control

of the false discovery rate by the local FDR step-up procedure is established in Theorem 4.4.1

below.

Let Λ∗ ⊆ N × N be an infinite index set, and let Λ1,Λ2, . . . ⊆ Λ∗ be a sequence of finite

subsets of Λ∗. Let α ∈ (0, 1) be a target FDR that is less than the maximum value of η(z). For

each n ≥ 1 let {(Γλ,Zλ) : λ ∈ Λn} be jointly distributed pairs having the same distribution as

(Γ,Z). In order to assess the performance of the local FDR step-up procedure on the observed

z-statistic vectors {Zλ : λ ∈ Λn} we consider the equivalent rule (4.14), which rejects H0,λ
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when η(Zλ) ≤ θ̂n = sup{t : F̂n(t) ≤ α} where

F̂n(t) =

∑
λ∈Λn

η(Zλ) I(η(Zλ) ≤ t)∑
λ∈Λn

I(η(Zλ) ≤ t)
0 < t < 1.

The number of false discoveries and total discoveries for the local FDR step-up procedure are

equal, respectively, to

Mn =
∑
λ∈Λn

I(Γλ = 0) I(η(Zλ) ≤ θ̂n) and Nn =
∑
λ∈Λn

I(η(Zλ) ≤ θ̂n).

Theorem 4.4.1. Let (Γ,Z) have joint distribution given by the mixture model (4.10) with

parameters (µ0,∆,Σ,p). Assume that ∆ is positive definite and that the diagonal entries of

Σ are positive. If F̂n(t) → F (t) in probability for each t ∈ (0, 1) then EMn/ENn → α as n

tends to infinity.

The proof of Theorem 4.4.1 is given in the appendix, Section 4.8.2. The ratio of expec-

tations EMn/ENn is sometimes referred to as the marginal false discovery rate (m-FDR).

Sun and Cai (2007) and Cai and Sun (2009) established optimality properties and m-FDR

control of several local FDR based testing procedures, including the step-up procedure used

here, under independence and monotonicity assumptions. However, these assumptions are

typically violated in the setting of interest to us here. The monotonicity assumption, which

in the present case involves the relationship between the distributions of the local FDR η(Zλ)

under H0,λ and H1,λ, does not appear to hold. Moreover, in eQTL data there are typically

significant correlations between nearby SNPs (linkage disequilibrium), leading to to complex,

non-stationary correlations between the gene-SNP based vectors Zλ.

Theorem 4.4.1 makes no explicit assumptions on the joint distribution of the vectors Zλ;

instead it relies on the relatively weak condition that F̂n(t) → F (t) in probability. This

condition holds, for example, under the (very mild) assumption that the variance of the

numerator and denominator of F̂n(t) is equal to o(|Λn|2). While strong correlations between

nearby SNPs will be present, gene-SNP pairs that are well separated will have little or no

correlation, so the variance decay assumption is reasonable in practice. When the variance
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decay assumption holds, the conclusion of the theorem may be strengthened to Mn/Nn =

α+ oP (1).

In regards to the proof of Theorem 4.4.1, the assumption that ∆ be positive definite is

only needed to ensure the existence of the the densities fγ ; the assumption that the diagonal

entries of Σ are positive is reasonable in practice, but can likely be weakened. The proof makes

use of the properties of the multivariate normal, specifically the normality of conditional

distributions and the fact that normal densities are analytic functions, but could likely be

extended to more general exponential families with additional work.

4.4.2 Analysis for Subsets of Tissues

In some problems, a subset S ⊆ {1, . . . ,K} of the available tissues may be of primary

interest. The multiple testing framework described above can be adapted to the tissues in S

in two primary ways. The first is to construct a model based only on the tissues in S and

use the resulting local FDR to identify multi-tissue eQTLs. However, this approach does not

make use of the available data from tissues outside S and as such it does not borrow strength

from commonalities among tissues. As an alternative, one may use the marginal local FDR

for S, defined by

ηS(z) := P(ΓS = 0 |Z = z) =

∑
γ:γS=0 pγfγ(z)

f(z)
. (4.15)

Here ΓS and γS denote, respectively, the restriction of the vectors Γ and γ to the tissues in

S, while pγ , fγ and f correspond to the full model (4.6). We emphasize that the marginal

local FDR ηS(z) is a function of the complete vector of z-statistics, and therefore depends on

the fitted model for the full set of tissues.

4.4.3 Assessments of Tissue Specificity

Testing gene-SNP pairs is typically the first step in multi-tissue eQTL analysis. Rejection

of H0,λ is based on evidence that λ is an eQTL in at least one of the available tissues. More

detailed statements about the pattern of eQTLs across tissues can be made using information
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about the full configuration vector Γλ. If the hypothesis H0,λ is rejected, a natural estimate

of Γλ is the maximum a-posteriori (MAP) configuration defined by

γ̂λ = arg max
γ∈{0,1}K\0

p(γ | zλ) = arg max
γ∈{0,1}K\0

pγ fγ(zλ).

The MAP rule is investigated in the simulation section below. As an alternative, one may

compute the marginal posterior probability of an eQTL in each tissue k, namely

p(Γλ,k = 1|zλ) =
∑

γ:γk=1

p(γ|zλ) =
∑

γ:γk=1

pγ fγ(zλ)/f(zλ),

and declare an eQTL in tissue k if this marginal probability exceeds a predefined threshold.

Both MAP and thresholding of the marginal posterior extend to subsets of tissues.

4.4.4 Testing a Family Configurations

The goal of the multiple testing problem (4.11) is to determine whether the configuration

Γλ of a gene-SNP pair is equal to 0 or belongs to the complementary set {0, 1}K \ {0}. More

generally, one may test membership of Γλ in any fixed subset T ⊆ {0, 1}K of configurations.

The associated testing problem can be written as

HT
0,λ : Γλ ∈ T c versus HT

1,λ : Γλ ∈ T, λ ∈ Λ. (4.16)

A test statistic for (4.16) can be obtained by marginalizing the full local FDR (4.12), which

yields

ηT (z) := P(Γ ∈ T c |Z = z) =

∑
γ:γ∈T c pγfγ(z)

f(z)
.

The local FDR step-up procedure can then be applied to the values {ηT (zλ)} in order to

control the overall FDR in (4.16).
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4.5 Simulation Study

In this section, we examine the performance of MT-eQTL through a simulation study. As

the basis of the model and subsequent inferences is the collection of z-statistic vectors derived

from the observed genotype and transcript data, we directly simulate the z-statistic vectors

themselves.

4.5.1 Simulation Setting

For K = 4 tissues we simulate 10 million vectors zλ independently from the mixture

model (4.6) using parameters θ = (µ0,∆,Σ,p) obtained from eQTL analysis of data from

the GTEx initiative. Specifically, we consider the tissues blood, lung, muscle, and thyroid,

which we denote by a, b, c, and d, respectively. Sample sizes, sample overlap, and degrees of

freedom after covariate correction are given in Table 4.1. See Section 4.6 for more details.

a b c d Degree of Freedom
a 156 104 122 90 137
b 119 100 84 100
c 138 88 119
d 105 86

Table 4.1: Sample sizes (diagonal), sample overlap (off-diagonal), and degrees of freedom for
different tissues in the simulation.

For computational simplicity, µ0 is set to zero in the simulations and model fitting. The

generating parameters ∆ and Σ based on the GTEx data are as follows:

∆ =



1.0000 0.1347 0.0805 0.1089

0.1347 1.0000 0.1204 0.1794

0.0805 0.1204 1.0000 0.1288

0.1089 0.1794 0.1288 1.0000


, Σ =



6.5699 5.3098 4.4683 4.7126

5.3098 5.9752 4.7906 5.5778

4.4683 4.7906 5.5263 4.6493

4.7126 5.5778 4.6493 6.0178


.

The generating parameter p can be found in Table 4.2. We simulated each vector zλ from

(4.6) in a two-step fashion: first drawing γ ∈ {0, 1}4 from p, and then drawing zλ from fγ(z).

Access to the true configurations γ enables us to assess false discovery rates associated with
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inferences from the fitted model.

4.5.2 Model Fit

The approximate EM procedure was used to fit the full 4-tissue model, as well as all

possible 1-, 2-, and 3-tissue models. We terminated EM updates when the difference between

log likelihoods in two consecutive iterations was less than 0.01. The number of iterations

until convergence of the EM procedure varied from 40 to 132, with average equal to 80. The

running time of the EM procedure depended on the number of tissues in the model, ranging

from about 1 second per iteration for the 1-tissue models to about 40 seconds per iteration

for full 4-tissue model. Fitting of the 4-tissue model based on the simulated data took slightly

more than one hour.

As expected, the parameters estimated from the simulated data are very close to those

used to generate the data. For the 4-tissue model, the relative error of each entry of Σ is less

than 0.3%, while the relative error for each entry of ∆ is less than 0.7%. For the probability

mass vector p, thirteen of sixteen entries had relative error less than 1%, with the remaining

relative errors equal to 1.45%, 1.66% and 4.31%. These results confirm that the EM procedure

works well on the simulated data.

4.5.3 Results

We applied the adaptive thresholding procedure to the full 4-tissue model with FDR

threshold α = 0.05 in order to identify gene-SNP pairs that are eQTLs in at least one tissue.

For all models considered in the simulation, the true false discovery rates were slightly below

0.05.

Table 4.2 shows results from the 4-tissue model with MAP estimates of the configura-

tion γ. The TS-config column enumerates the 16 possible configurations according to the

tissues in which eQTLs are present. The True column shows the true numbers of transcript-

SNP pairs with the specified configuration in the simulated data. The Discoveries column

shows the number of transcript-SNP pairs in the simulation estimated to have the specified
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configuration. The Intersection column shows cardinality of the intersection of true and dis-

covered transcript-SNP pairs with the specified configuration. The Proportion column gives

the proportion of true discoveries.

For each configuration, only a modest fraction (about 1/4) of the true eQTLs with that

configuration are detected by the local FDR procedure. This does not imply that the local

FDR procedure is under-powered, but instead reflects features of the data generation process

that we believe are representative of real data. In detail, the multi-tissue z-statistics of each

gene-SNP pair are generated from a mixture multivariate Gaussian distribution centered at

zero. As a result, the majority of alternative gene-SNP pairs have z-statistics near zero; these

z-statistics are not readily distinguishable from those generated under the null.

For most configurations the proportion of true discoveries relative to total discoveries (the

Proportion column) are above 60 percent. This is relatively high, given that distinguishing

between nearby configurations (those with 1’s in all but one of same positions) as well as the

null configuration can be difficult.

TS-config 100*p True Discoveries Intersection Proportion
0 77.24 7720693 8961544 7669320 0.86
a 1.96 196868 52070 33128 0.64
b 1.04 103866 23786 17070 0.72
c 1.88 189859 45253 28738 0.64
d 2.05 202925 53716 37600 0.70

a-b 0.29 29516 4592 3035 0.66
a-c 0.08 7835 446 313 0.70
a-d 0.09 9507 1280 870 0.68
b-c 0.10 9552 1448 903 0.62
b-d 0.33 32552 5196 2997 0.58
c-d 0.37 36738 6382 4294 0.67

a-b-c 0.19 19022 1730 1258 0.73
a-b-d 0.86 85418 9115 6194 0.68
a-c-d 0.09 8614 951 731 0.77
b-c-d 1.08 107405 14031 9445 0.67

a-b-c-d 12.34 1239630 818460 640847 0.78

Table 4.2: eQTL analysis results from the 4-tissue model for the simulation data.

In order to assess how the use of multiple tissues increases statistical power in the context

of the simulation, we fit models for tissue sets {a}, {a, b}, {a, b, c}, and {a, b, c, d} and only

focused on eQTL detection in tissue a. In each case we applied the adaptive thresholding
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procedure to the marginal local FDR defined in (4.15). Figure 4.2 shows that the number of

discoveries for tissue a increases steadily with the number of auxiliary tissues. The realized

false discovery rates were all controlled at the specified 0.05 level.

{a} {a,b} {a,b,c} {a,b,c,d}
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Figure 4.2: The number of significant discoveries in tissue a from the model for {a}, {a, b},
{a, b, c}, and {a, b, c, d} respectively.

4.6 GTEx Data Analysis

In this section, we apply the MT-eQTL model and inference procedures to the December

2012 data freeze from the GTEx initiative. The data is publicly available from http://www.

broadinstitute.org/gtex/.

4.6.1 Data Preprocessing

We focus on nine primary tissues having between 80 and 160 samples: adipose, artery,

blood, heart, lung, muscle, nerve, skin, and thyroid. In what follows, tissues will be ordered

alphabetically. In total, there are 175 genotyped individuals with expression data in at least

one of these tissues. Figure 4.3 shows the sample sizes and the donor overlaps for all nine

tissues.

Each entry of the genotype data matrix G records the minor allele frequency (MAF)

of one donor at one SNP locus. Any missing value at a locus was imputed by the average

MAF of that locus across donors. Loci with MAF less than 5% in all genotyped individuals
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Figure 4.3: Sample information of the GTEx data. Each column represents a genotyped
individual with expression measurements in at least one tissue; each row corresponds to a
tissue. Red means the individual is a donor of the corresponding tissue.

were discarded, resulting in slightly less than 7 million SNPs. The expression level for each

gene in each tissue and sample is measured by the number of mapped reads per kilobase per

million reads (RPKM). Genes having less than 10 samples with RPKM greater than 0.1 in

some tissue were discarded, leaving slightly more than 20 thousand common genes. In order

to improve robustness, the expression values of each gene across the samples in a tissue are

inverse quantile normalized.

Fifteen PEER factors were identified from the expression data from each tissue, and three

principal components were identified from the genotype data. With an additional covariate

for gender, we obtained nineteen covariates in total. For each tissue, the confounding effects

were adjusted by residualizing the expression data and the corresponding genotype data on

nineteen covariates respectively. Consequently, the degree of freedom for each tissue is equal

to the sample size in that tissue minus 19.

4.6.2 Model Fit

We focus on testing of cis-eQTLs, restricting our attention to SNPs that lie within 100

kilobases of the transcription start site of a gene, yielding roughly 10 million gene-SNP pairs of
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interest. The z-statistic vectors that act as input for the MT-eQTL model were obtained from

the Matrix eQTL package. Subsequently, the 9-tissue MT-eQTL model was fit using the EM

algorithm described in Section 4.3.2, with the parameter µ0 set to zero. Fitting of the model

took less than 24 hours, and required less than 8 gigabytes of RAM, on a desktop computer

with 2.93GHz Intel Xeon CPU. Timing results for sub-models based on alphabetically ordered

tissues are given in Table 4.3. (We note that fitting sub-models of MT-eQTL is unnecessary

in practice, as one can obtain them through marginalization of the full model.)

k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7 k = 8 k = 9

Time 15 min 30 min 50 min 1.5 hr 2.5hr 6hr 11hr 16 hr 24 hr

Table 4.3: Approximate timing result for fitting a k-tissue model using the GTEx data.

In what follows we denote the estimated model parameters by θ = (µ0,∆,Σ,p), which are

given in the appendix, Section 4.8.3. The off-diagonal values of ∆ are all positive but small in

scale (between 0.07 and 0.2), suggesting that donor overlap among tissues and other features

of the experimental design have a weak but positive effect on the correlations of effect sizes

across tissues. The diagonal values of Σ indicate modest heterogeneity of effect size variation

across tissues. The off-diagonal values of Σ reflect positive, often large, correlation of effect

sizes arising from commonalities among tissues. The fitted probability mass function p assigns

probabilities to each of the 29 possible eQTL configurations. The most likely configuration is

0 with p0 = 0.6808, indicating that about 68% of the gene-SNP pairs do not have an eQTL

in any tissue. To summarize p we compute the overall probability of seeing an eQTL in k

tissues, where k ranges from 0 to 9. The results are shown in the blue curve of Figure 4.4. The

curve indicates that the most likely configurations are eQTLs in no tissue, in a single tissue,

or in all tissues, and that the least likely configurations are those with eQTLs in roughly half

the tissues.

In order to assess the fit of the MT-eQTL model to the data, we compared the marginal

distribution of the z-statistics for each tissue under the fitted model with the empirical distri-

bution of the z-statistics for that tissue using a Q-Q plot. The results are given in Figure 4.5.

Overall, the marginal two component Gaussian mixture for each tissue fits the bulk of the
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Figure 4.4: The probability of seeing an eQTL in k tissues based on the estimated mass
function p (blue circle), and the proportion of the gene-SNP pairs with an eQTL in k tissues
based on the analysis results from the 9-tissue model (red cross), where k ranges from 0 to 9.

observed data well, though we note that there is room for more complex models that might

better capture the tail behavior of the data.

4.6.3 Results

Applied to the full 9-tissue model with FDR threshold α = .05, the local FDR step-

up procedure identified roughly 1.2 million gene-SNP pairs (roughly 12% of the total) with

an eQTL in at least one tissue. We subsequently applied the MAP rule to each significant

discovery in order to assess tissue specificity. The results, which are summarized in the

red curve of Figure 4.4, are in broad agreement with the those derived from the underlying

configuration probability p. The downward shift in the red curve results from the fact that

many eQTL have small effect sizes and are not detectable by the local FDR procedure at the

specified value of α. See also the discussion in Section 4.5.

To better visualize eQTL discoveries and assessments of tissue specificity derived from

the MT-eQTL model, it is useful to consider the simple case of two tissues. Figure 4.1b

shows scatter plots of z-statistics for nerve and skin, while Figure 4.6 shows scatter plots

of z-statistics for adipose and muscle. The black and white plot shows the density of the
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Figure 4.5: Q-Q plots of the observed z-statistics versus the marginal distribution of the fitted
model for each tissue.

observed z-statistic vectors, while the companion plot shows the results of inference based

on the fitted two-dimensional MT-eQTL model. In the companion plot, z-statistic vectors

deemed not to be significant are omitted, leading to the white space at the center of the plot.

The remaining points (corresponding to eQTLs) are colored according to their assessed tissue

specificity: green represents the configuration (1, 0) in which there is an eQTL in tissue 1 but

not tissue 2; red represents the configuration (0, 1) in which there is an eQTL in tissue 2 but

not tissue 1; and blue represents the configuration (1, 1) in which there is an eQTL in both

tissues.

The overall shape of each plot is a tilted ellipse, with extreme values along the main

diagonal and, to a lesser extent, along the coordinate axes. As expected, significant points

close to one of the coordinate axes show evidence for an eQTL in a single tissue (tissue

specific eQTL), while those along the positive diagonal show evidence for eQTLs in both

tissues (common eQTL). In all other pairs of tissues (not shown), we observe similar results.

In Figure 4.6, we also observe some discoveries along the anti-diagonal. For anti-diagonal

pairs there is significant correlation between genotype and expression in each tissue, but the
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Figure 4.6: Scatter plots of z-statistics for adipose and muscle. Density-based scatter plot for
all gene-SNP pairs (left), and significant eQTL discoveries with tissue specificity assessments
from the fitted two-dimensional MT-eQTL model (right).

correlation is positive in one tissue, and negative in the other. The model reasonably identifies

these points as common eQTLs. Similar phenomena are observed in Fu et al. (2012). Better

biological understanding of anti-diagonal points is the subject of ongoing research.

To investigate how the use of auxiliary tissues increases statistical power of the analysis

of subsets of tissues, we study a sequence of nested MT-eQTL models and focus on eQTL

discoveries in a single tissue. For each of the nine tissues, we first fit the 1-dimensional model

with just the primary tissue and then added other tissues one by one alphabetically to get a

sequence of super-models. For each considered model, we applied the adaptive thresholding

procedure to the marginal local FDR for the primary tissue, and recorded the number of

significant discoveries in that tissue. Figure 4.7 shows the number of significant discoveries

versus the dimension of a model. Each curve corresponds to a case where one of the nine

tissues is set to be the primary tissue. In all cases, the number of eQTL discoveries in the

primary tissue increases with the dimension of a model.

4.7 Discussion and Future Work

In this chapter, we proposed a hierarchical Bayesian model, MT-eQTL, for multi-tissue

eQTL analysis. We adopted an empirical Bayes approach to estimate the model and to

perform inferences. The proposed methodology greatly enhances classical single-tissue eQTL
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Figure 4.7: The number of significant discoveries in a primary tissue versus the dimension of
a MT-eQTL model. Each curve corresponds to a case where one of the nine tissues is set to
be the primary tissue. The FDR threshold is fixed to be 0.05.

analysis methods by accounting for the information shared among tissues. In particular, our

method has the following desirable features.

• The MT-eQTL model can be used to analyze complex multi-tissue data where the

sample sizes and degrees of overlap may vary from tissue to tissue. We directly models z-

statistic vectors, i.e., Fisher-transformed covariate-adjusted correlation vectors between

genes and SNPs across tissues, which facilitate interpretation and visualization.

• The model captures the presence or absence of an eQTL in each tissue simultaneously.

It also explicitly reflects the heterogeneity of effect size variations across tissues. In

addition, the model is able to identify correlations of effect sizes among tissues arising

from experimental factors and from biological factors.

• The local FDR, which accounts for the distribution under the alternative when testing

the presence of an eQTL, can be easily computed from the model. It can be generalized

to analyze subsets of tissues while accounting for information in auxiliary tissues. The

step-up thresholding procedure for the local FDR effectively control the overall FDR.

• The assessment of tissue specificity using the MAP rule or the other proposed methods

takes into account the data across tissues simultaneously, leading to a reasonable global

view of configuration assessments.
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The MT-eQTL approach is applied to the new, 9-tissue data set from the GTEx initiative.

To our knowledge, this is the first attempt to jointly analyze eQTLs in multiple tissues using

the GTEx data. Our analysis results provide useful directions for follow-up biological research.

Altogether, we anticipate that the proposed approach could have a significant contribution

to the eQTL analysis of the emerging multi-tissue data. The R code for MT-eQTL is avail-

able from http://www.bios.unc.edu/research/genomic_software/Multi-Tissue-eQTL/.

The Matlab code is available upon request.

The following topics pertaining to multi-tissue eQTL analysis need further investigation:

• Theoretically justify that the use of auxiliary tissues increases statistical power of the

analysis of subsets of tissues. Previously, we have shown in the simulation and real

data study that accounting more auxiliary tissues increases the number of significant

discoveries in the primary subset of tissues. This result is intuitive since auxiliary tissues

may provide additional information. However, this is only a conjecture since no rigorous

statement has been proved yet.

• Study trans eQTLs. Currently, we only focus on cis gene-SNP pairs where genes and

SNPs are close in distance. For trans eQTL study, the number of candidate gene-SNP

pairs is tremendous while the true eQTLs are rare. Increasing computational efficiency

and controlling error rate are of particular interest and difficulty.

• Study gene-level eQTLs. An important feature of our model is that each gene-SNP pair

is treated independently in the multiple testing procedure. However, local SNPs are

usually highly correlated (i.e., referred to as LD blocks). Analyzing gene-level eQTLs

and specifying causal SNPs may be of practical interest and make more biological sense.

• Adapt the tissue-specificity assessment to the many-tissue situation. As the number

of tissues increases, the number possible configurations grows exponentially. When the

number of tissues is really large (say, 20, the corresponding number of configurations is

220 ≈ 106), the data may not provide enough power to distinguish all configurations.

Particularly, the “adjacent” ones (i.e., two binary indicator vectors only differ in few
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entries) may not be well separable. In that case, more robust assessment methods for

tissue specificity are needed. One possible solution is to cluster similar configurations.

4.8 Appendix

4.8.1 Proof of Lemma 4.2.1

Proof. Let S be a subset of {1, . . . ,K} with cardinality |S| = r. It follows from the defin-

ing properties of the multivariate normal distribution that if U ∼ NK(µ, A) then US ∼

Nr(µS, AS). It therefore follows from (4.6) that

ZS ∼
∑

γ∈{0,1}K
pγ Nr

(
(µ0 · γ)S, (∆ + Σ · γγT )S

)
(4.17)

Here and in the remainder of the proof we follow the convention that γ ranges over {0, 1}K ,

and ζ ranges over {0, 1}r. Elementary arguments show that

(µ0 · γ)S = µ0,S · γS and (∆ + Σ · γγT )S = ∆S + ΣS · γSγTS

It then follows from (4.17) that

ZS ∼
∑

γ∈{0,1}K
pγ Nr

(
µ0,S · γS, ∆S + ΣS · γSγTS

)
=

∑
ζ∈{0,1}r

∑
γ:γS=ζ

pγ Nr
(
µ0,S · γS, ∆S + ΣS · γSγTS

)

=
∑

ζ∈{0,1}r
Nr
(
µ0,S · ζ, ∆S + ΣS · ζζT

) ∑
γ:γS=ζ

pγ

=
∑

ζ∈{0,1}r
pζ,SNr

(
µ0,S · ζ, ∆S + ΣS · ζζT

)
,

which is the desired expression for distribution of ZS.
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4.8.2 Proof of Theorem 4.4.1

Lemma 4.8.1. Let U be a bounded, non-negative random variable. For t ≥ 0 define

G(t) = E[U |U≤ t ] =
E[U I(U≤ t) ]

P(U≤ t)
. (4.18)

Then the following hold:

1. G is non-decreasing and right continuous;

2. If P(U = t) = 0 then G is continuous at t;

3. If P(a < U < b) > 0 for each 0 < a < b < L then G is strictly increasing on (0, L).

Proof. To show that G is non-decreasing it suffices to show that G(t + δ) − G(t) ≥ 0 for

each fixed t ≥ 0 and δ > 0. If G(t) = 0 then the result is immediate as the function G is

non-negative. If G(t) is positive, then

G(t+ δ)−G(t) =
E[U I(U≤ t+ δ) ]

P(U≤ t+ δ)
− E[U I(U≤ t) ]

P(U≤ t)

=
E[U I(U≤ t+ δ) ]P(U≤ t) − E[U I(U≤ t) ]P(U≤ t+ δ)

P(U≤ t+ δ)P(U≤ t)
.

By elementary arguments the numerator of the last fraction can be expressed as

E[U I(t < U≤ t+ δ) ]P(U≤ t) − E[U I(U≤ t) ]P(t < U≤ t+ δ)

≥ tP(t < U≤ t+ δ)P(U≤ t) − tP(U≤ t)P(t < U≤ t+ δ) (4.19)

= 0.

Thus G is non-decreasing. Right continuity of G follows by applying the monotone conver-

gence theorem to the numerator and denominator in (4.18). If P(U = t) = 0 then continuity

of G at t follows from the dominated convergence theorem in a similar fashion. Finally, if

P(t < U < t + δ) > 0 then the inequality in (4.19) is strict, and the final claim follows by

considering t ∈ [0, L) and δ > 0 such that t+ δ < L.
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Lemma 4.8.2. For i = 0, . . . ,m let fi be the density of the d-variate normal distribution

Nd(µi,Σi) and let c1, . . . , cm be positive constants. If at least one of f1, . . . , fm is not equal

to f0, then

md

({
x : f0(x) =

∑m
j=1 cj fj(x)

})
= 0

where md(·) denotes Lebesgue measure on Rd.

Proof. Define h(x) = f0(x) −
∑m

j=1 cj fj(x) and let A = {x : h(x) = 0}. As h is continuous,

A is a closed subset of Rd. We establish the result by way of contradiction. Consider first the

case in which d = 1 and h(x) = 0 for each x ∈ R. By an easy argument, we can assume that

the densities fi, i = 0, 1, . . . ,m are distinct and that m ≥ 1. Let µi and σi be, respectively, the

mean and variance of the distribution specified by the density fi. Let (σj , µj) be the largest

element, under the usual lexicographic order, of the set {(σi, µi) : 0 ≤ i ≤ m}. Considering

the limit of h(x)/fj(x) as x tends to infinity, we conclude that cj = 0 if j 6= 0 or 1 = 0 if

j = 0. In either case we obtain a contradiction, and therefore h(x) cannot be identically equal

to zero.

The remainder of the proof proceeds by induction on d. Consider first the case d = 1.

Note that h(x) is an analytic function of the real variable x. If m1(A) > 0 then there exists

M < ∞ such that m1(A ∩ [−M,M ]) > 0. In particular, there are infinitely many points of

A in the compact set [−M,M ]. Thus A has a limit point x0, and h(x0) = 0 as A is closed.

As the zeros of a non-zero analytic function are necessarily isolated, it follows that h(x) is

identically zero. This contradicts the argument given above, and we conclude that m1(A) = 0.

Assume now that the lemma holds for dimensions 1, . . . , d − 1, and consider the general

case of dimension d. Suppose that md(A) > 0. By Fubini’s theorem, there exist a Borel

measurable set B ⊂ R such that (i) m1(B) > 0 and (ii) for every xd ∈ B the section

A(xd) = {xd−1
1 : (xd−1

1 , xd) ∈ A} ⊆ Rd−1

has (d− 1)-dimensional Lebesgue measure greater than zero. (Here xd−1
1 denotes the ordered
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sequence x1, . . . , xd−1.) Note that h(x) = 0 can be written in the equivalent form

0 = f0(xd−1
1 |xd) f0(xd) −

m∑
j=1

cj fj(x
d−1
1 |xd) fj(xd) x ∈ A (4.20)

where fj(x
d−1
1 |xd) denotes the conditional density of xd−1

1 given xd under fj , and fj(xd)

denotes the marginal density of xd under fj . If for each xd ∈ B the conditional densities

fj(x
d−1
1 |xd) are equal on A(xd) then (4.20) becomes

0 = f0(xd) −
m∑
j=1

cj fj(xd) xd ∈ B,

which contradicts the induction hypothesis. Suppose then that for some xd ∈ B the condi-

tional densities fj(x
d−1
1 |xd) are not all equal on A(xd). Then equation (4.20) becomes

0 = f0(xd−1
1 |xd) −

m∑
j=1

c′j fj(x
d−1
1 |xd) xd−1

1 ∈ A(xd)

where c′j = cj fj(xd)/f0(xd). Our assumption regarding the conditional densities ensures that

fj(x
d−1
1 |xd) is different from f0(xd−1

1 |xd) for some j ≥ 1, again contradicting the induction

hypothesis. This completes the proof.

Lemma 4.8.3. Let η(z) be defined as in (4.12) and assume that every diagonal entry of Σ

is positive. Then the following hold.

1. infz∈Rd η(z) = 0.

2. For every c ≥ 0 the Lebesgue measure of the set {z : η(z) = c} in RK is zero.

Proof. Proof of 1: As η(z) is always positive, it is enough to show that there exists z ∈ Rd

and γ ∈ {0, 1}K such that f0(bz)/fγ(bz) → 0 as b → ∞. From the exponential form of the

multivariate normal densities, it can be seen that the last relation will hold if the matrix

∆−1 − (∆ + Σ · γγT )−1 has an eigenvalue greater than zero.
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Let x0 be an eigenvector of the matrix ∆ corresponding to the smallest eigenvalue λmin(∆)

(which is positive by assumption). Assume without loss of generality that ||x0|| = 1. Using

the variational formula for eigenvalues, and the relationship between the eigenvalues of a

matrix and those of its inverse, we find that

λmax(∆−1 − (∆ + Σ · γγT )−1) = max
z:||z||=1

zT (∆−1 − (∆ + Σ · γγT )−1)z

≥ max
z:||z||=1

zT∆−1z − max
z:||z||=1

zT (∆ + Σ · γγT )−1z

= λmax(∆−1) − λmax((∆ + Σ · γγT )−1)

= λmin(∆) − λmin(∆ + Σ · γγT )

≥ xT0 ∆x0 − xT0 (∆ + Σ · γγT )x0

= xT0 (Σ · γγT )x0

Let 1 ≤ i ≤ K be any index for which x0,i 6= 0. If γ is the binary K-vector having a 1 in

position i and all other entries equal to 0, then it is easy to see that the last expression above

is σii x
2
0,i, which is positive.

Proof of 2: This follows immediately from Lemma 4.8.2

Proposition 4.8.1. The function F (t) defined in (4.13) is continuous and strictly increasing

on the interval (0, Lη), where Lη = supz∈Rd η(z) < 1.

Proof. Note that F (t) is of the form g(t) in (4.18) with U = η(Z). Part 2 of Lemma 4.8.3

establishes that P(η(bZ) = t) = 0, and continuity of F then follows from Lemma 4.8.1. For

0 < a < b < Lη we have

P(a < η(Z) < b) = P(η(Z) ∈ (a, b)) = P(Z ∈ η−1(a, b)).

As η(z) is continuous η−1(a, b) is an open subset of Rd. Moreover, η−1(a, b) is non-empty by

Part 1 of Lemma 4.8.3. Thus P(a < η(Z) < b) > 0 as the density f of Z is positive on Rd.

Continuity of F (t) then follows from Lemma 4.8.1.
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Lemma 4.8.4. Let G1, G2, . . . : [0, 1]→ R be non-decreasing functions. For fixed α ∈ (0, Lη)

define θn = sup{t : Gn(t) ≤ α} and let θ ∈ (0, 1) be the unique number such that F (θ) = α.

If Gn(t)→ F (t) for each t in a dense subset T of [0, 1] then θn → θ.

Proof. Suppose by way of contradiction that |θn − θ| 6→ 0. Then there exists δ1, δ2 > 0

such that {θ − δ1, θ + δ2} ⊆ T and an infinite subsequence nk of 1, 2, . . . such that either

θnk ≤ θ − 2δ1 for each k ≥ 1 or θnk ≥ θ + 2δ2 for each k ≥ 1. In the first case, the definition

of θn and the monotonicity of Gn imply

α ≤ Gnk(θnk + δ1) ≤ Gnk(θ − δ1)

Taking limits as k → ∞ we find α ≤ F (θ − δ1) < α as F is strictly increasing, which is a

contradiction. In the second case, a similar argument shows that

α ≥ Gnk(θnk − δ2) ≥ Gnk(θ + δ2).

Taking limits as k → ∞ yields α ≥ F (θ + δ2) > α, which is again a contradiction. This

concludes the proof.

Proof of Theorem 4.4.1:

Proof. Let θ̂n = sup{t : F̂n(t) ≤ α} and let θ be the unique number such that F (θ) = α. We

claim that θ̂n → θ in probability. To show this, assume to the contrary that there exists δ > 0

and a subsequence nk such that

P
(
|θ̂nk − θ| > δ

)
> δ for each k ≥ 1. (4.21)

Let T be any countable, dense subset of [0, 1]. Our assumptions imply that F̂n(t) → F (t)

in probability for each t ∈ T . By a standard diagonalization argument, there exists a subse-

quence mk of nk such that F̂mk(t)→ F (t) with probability one for each t ∈ T . It then follows

from Lemma 4.8.4 that θ̂mk → θ with probability one, which contradicts (4.21).
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In order to establish the theorem, it will be convenient to work with version of Mn and

Nn in which the data-dependent threshold θ̂n is replaced by the limiting value θ. Define

M̃n =
∑
λ∈Λn

I(Γλ = 0) I(η(Zλ) ≤ θ) and Ñn =
∑
λ∈Λn

I(η(Zλ) ≤ θ)

Note that EÑn = |Λn| · P(η(Z) ≤ θ). By an elementary conditioning argument,

EM̃n =
∑
λ∈Λn

E
{
P(Γλ = 0 |Zλ) I(η(Zλ) ≤ tn(α))

}
=

∑
λ∈Λn

E
{
η(Zλ) I(η(Zλ) ≤ tn(α))

}
= |Λn| · E[η(Z) I(η(Z) ≤ t)].

For each δ > 0,

E|Ñn −Nn| ≤
∑
λ∈Λn

P(η(Zλ) ∈ [θ̂n, θ] ∪ [θ, θ̂n])

≤ |Λn|
[
P
(
η(Z) ∈ (θ − δ, θ + δ)

)
+ P

(
|θ̂n − θ| ≥ δ

)]
.

As θ̂n → θ in probability and the distribution of η(Z) has no point masses, the last inequality

implies that E|Ñn−Nn| = |Λn|·o(1). A similar argument shows that E|M̃n−Mn| = |Λn|·o(1).

Thus as n tends to infinity,

EMn

ENn
=

EM̃n + |Λn| · o(1)

EÑn + |Λn| · o(1)

=
E[η(Z) I(η(Z) ≤ θ)] + o(1)

P(η(Z) ≤ θ) + o(1)

→ E[η(Z) I(η(Z) ≤ θ)]
P(η(Z) ≤ θ)

= F (θ) = α.

This completes the proof of the theorem.
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4.8.3 GTEx Estimations

The estimated model parameters ∆ and Σ for the GTEx data are given below. The tissues

are ordered alphabetically. The parameter µ0 was set to zero. The estimated mass function

p is provided in a separate file due to space limitations.

∆ =



1.0000 0.1704 0.0923 0.1010 0.1390 0.1409 0.1687 0.1415 0.1441

0.1704 1.0000 0.0960 0.1179 0.1518 0.1460 0.1942 0.1336 0.1491

0.0923 0.0960 1.0000 0.0779 0.1312 0.0780 0.1007 0.0890 0.1032

0.1010 0.1179 0.0779 1.0000 0.1268 0.1192 0.1093 0.0893 0.1247

0.1390 0.1518 0.1312 0.1268 1.0000 0.1188 0.1543 0.1220 0.1767

0.1409 0.1460 0.0780 0.1192 0.1188 1.0000 0.1366 0.1095 0.1258

0.1687 0.1942 0.1007 0.1093 0.1543 0.1366 1.0000 0.1372 0.1477

0.1415 0.1336 0.0890 0.0893 0.1220 0.1095 0.1372 1.0000 0.1097

0.1441 0.1491 0.1032 0.1247 0.1767 0.1258 0.1477 0.1097 1.0000



,

Σ =



4.2692 4.5320 4.1062 3.2993 4.6078 4.0864 4.2076 3.9694 4.4595

4.5320 5.4178 4.4545 3.6526 5.0411 4.5731 4.6975 4.3167 5.0072

4.1062 4.4545 6.1588 3.3196 5.0385 4.2452 4.0646 4.0090 4.5213

3.2993 3.6526 3.3196 3.2123 3.7223 3.6852 3.3418 3.1225 3.7332

4.6078 5.0411 5.0385 3.7223 5.5488 4.5088 4.6816 4.5263 5.2369

4.0864 4.5731 4.2452 3.6852 4.5088 5.1569 4.0399 3.9304 4.3674

4.2076 4.6975 4.0646 3.3418 4.6816 4.0399 4.5993 4.0265 4.6699

3.9694 4.3167 4.0090 3.1225 4.5263 3.9304 4.0265 4.3420 4.4163

4.4595 5.0072 4.5213 3.7332 5.2369 4.3674 4.6699 4.4163 5.6492



.
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