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ABSTRACT 
 

REBECCA ANNE HUNTER: Electrochemical Detection of Nitric Oxide  
from Biological Systems 

(Under the direction of Mark H. Schoenfisch) 
 

 Nitric oxide (NO) is known to be involved in a number of physiological processes, 

including the immune response. As such, its role in severe infection and sepsis has been 

investigated, but previous measurement techniques have relied on complicated 

instrumentation or the quantification of NO byproducts (e.g., nitrate and nitrite). Herein, the 

fabrication of a microfluidic amperometric sensor for the direct detection of NO in whole 

blood is described. These sensors were used to evaluate the potential of NO and nitrosothiols 

(a stable transporter) as prognostic and/or diagnostic biomarkers for infection and sepsis. 

 The microfluidic devices facilitated the selective electrochemical measurement of NO 

in small volumes of blood at the point-of-care, with adequate sensitivity and limits of 

detection achieved in buffer, wound fluid, and whole blood. A green (530 nm) light-emitting 

diode was coupled to the device to enable photolysis of S-nitrosothiol species with 

subsequent NO detection. While inefficient photolysis prevented the measurement of 

nitrosothiols in whole blood, detection in serum was achieved. 

 A porcine model of sepsis permitted monitoring of temporal changes in NO and 

nitrosothiols throughout disease progression. While increases in NO were observed 

concurrently with other indicators (e.g., increased blood lactate and base deficit), the 
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accumulation of nitrosothiols was observed hours prior to the onset of other symptoms, 

despite a dramatic drop in the circulating white blood cells that produce NO. 

 A murine model of sepsis was utilized to understand the effects of bacterial virulence 

and immune suppression on NO during an infection. A non-lethal pneumonia with 

Pseudomonas aeruginosa resulted in elevated NO levels at 72 h that returned to baseline 

concentrations after 1 wk. A more virulent bacterium, Klebsiella pneumoniae, resulted in 

much greater increases in NO, reflecting its pathogenicity. Conversely, in a murine model of 

post-burn immune suppression and infection, blood NO concentrations remained unchanged 

relative to uninfected animals despite increased infection severity. 

 Nitric oxide-selective microelectrodes were also used to study NO release at the 

single cell level, from both immune cells and neurons. Upregulation of carbon monoxide 

production by the macrophages was demonstrated to inhibit their ability to release NO 

following immune stimulation. Additionally, the concentration and kinetics of NO release 

from neurons were determined. 
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CHAPTER 1. PHYSIOLOGICAL SIGNIFICANCE OF NITRIC OXIDE AND ITS 
MEASUREMENT WITHIN BIOLOGICAL SYSTEMS 

 

1.1 The ubiquitous roles of nitric oxide 

Investigation into the physiological roles of nitric oxide (NO) has expanded 

immensely since the realization that the endothelial derived relaxation factor was, in fact, 

likely to be NO.1 Since that time, the pivotal role of this gaseous free radical species has been 

recognized in numerous biological processes including the immune response to infection,2-4 

vasodilation,5 would healing,6,7 and cancer biology.8 Nitric oxide is known to impart 

physiological activity through binding to the heme center of soluble guanylyl cyclase (sGC), 

an enzyme involved in the formation of the second messenger cyclic guanosine 

monophosphate (cGMP). A multitude of physiological processes are linked to cGMP, 

including vascular smooth muscle relaxation, platelet activation, and protein kinase signaling 

cascades.9 As such, the physiological roles of NO are far-reaching. 

Despite the breadth of knowledge that has been gained since its discovery, much 

remains unknown about NO, especially with regard to absolute concentrations, its role in 

specific disease states, and how its dysfunction can be corrected for. As such, new detection 

methodologies are sought after to further the understanding of this small but immensely 

important free radical species. 
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1.1.1 Nitric oxide in the immune system 

Within the immune system, NO is produced by specific cells (i.e., 

monocytes/macrophages, neutrophils, eosinophils) by the inducible isoform of nitric oxide 

synthase (iNOS), an enzyme whose expression is regulated by complex cascades of 

cytokines from different immune cells.4,10 All isoforms of NOS (i.e., inducible, endothelial, 

neuronal) produce NO from L-arginine, which is oxidized to produce N-hydroxy-L-arginine. 

Further oxidation of this intermediate yields both L-citrulline and NO. Stimulation of iNOS 

by cytokines or components of the bacterial cell wall allows for continuous release of NO for 

up to 5 d, as long as the stimuli remains present and the intracellular L-arginine supply is not 

depleted.4 When released by these cells, NO acts as a signaling molecule and may have 

antimicrobial/anti-tumor (pro-inflammatory) activity or immunosuppressive (anti-

inflammatory) effects, depending on the concentration released. For example, the presence of 

bacteria within the body will signal an upregulation in iNOS production and subsequent 

release of NO from immune cells will cause killing of nearby microbial organisms.3,4,11-13 

The bactericidal properties of NO are attributed to both nitrosative and oxidative stress.14 For 

example, the reaction of NO with oxygen produces toxic byproducts such as dinitrogen 

trioxide, which initiates nitrosation of protein thiols and DNA deamination. Nitric oxide may 

also react with superoxide (a radical product of normal cell respiration) to yield peroxynitrite. 

Buildup of peroxynitrite results in lipid peroxidation and membrane damage.15-17 While 

eukaryotic cells have evolved mechanisms for preventing buildup of such toxic byproducts 

(e.g., production of superoxide dismutase to scavenge superoxide and limit peroxynitrite 

accumulation), excessive inflammation and NO release may still damage host tissue. For this 

reason, NO is believed to play an important role in disease states that are caused by severe 
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infection and/or injury.18,19 While NO may be elevated to dangerous levels in the presence of 

high concentrations of bacteria, low NO concentration may indicate immune suppression 

and/or an insufficient response to infection.  

Nitric oxide may also serve an opposing role in the immune system as an anti-

inflammatory molecule or immune suppressant, providing a mechanism to defend the host 

from itself. For example, NO suppresses T helper cell proliferation and cytokine production, 

thus limiting the chronic immune response.20 Neutrophils, which are involved in the body’s 

non-specific response to infection, while stimulated by low NO concentrations, may 

experience inhibited adhesion to endothelial cells when exposed to high concentrations of 

NO, thus hindering their ability to traverse the vascular wall and migrate to local sites of 

infection.21 Further, NO has been observed to inhibit mast cell degranulation.22 While these 

negative feedback mechanisms help to prevent potentially dangerous chronic inflammatory 

states, immune dysfunction is still prevalent in severe diseases such as sepsis. 

1.1.2 Nitric oxide in the nervous and cardiovascular systems 

Unlike the immune system, NO in the nervous and cardiovascular systems is 

generally not produced by an inducible NOS isoform. Instead, it is generated by NOS 

isoforms that are triggered by increases in intracellular calcium: endothelial (eNOS) and 

neuronal (nNOS) nitric oxide synthase for the cardiovascular and nervous systems, 

respectively.23-25 Small, transient increases in intracellular calcium concentrations will thus 

cause short-lived production of NO (nM amounts within 10 min),26 in contrast to the 

sustained production resulting from iNOS stimulation. 

The physiological importance of NO was first realized within the cardiovascular 

system, where it is now known to regulate vascular tone and prevent platelet and leukocyte 
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adhesion.5,23,27,28 Due to its function as a blood pressure regulator, reduced bioavailability of 

NO may be of importance in a number of cardiovascular diseases.29 Naseem reported that 

reduced NO release from the endothelium may lead to more rapid progression of diseases 

such as atherosclerosis, where adhesion of platelets and leukocytes contribute to buildup and 

blockage along the vascular wall.29 Additionally, hindered NO production could lead to 

decreased angiogenesis. Conversely, overproduction of NO would cause dangerous systemic 

vasodilation. 

Within the central nervous system, NO is involved with general neurotransmission, 

thermal regulation, hormone release, and sleep cycles.30-33 Nitric oxide is also known to play 

a key role in long-term potentiation (memory formation).34 Studies by Rehder et al. have 

indicated the importance of NO in neuronal development, as it regulates the extension of 

neuronal growth cone filopodia.35,36 Nitric oxide produced by nNOS within the peripheral 

nervous system is also involved with smooth muscle relaxation.25 Similar to the 

cardiovascular and immune systems, dysfunctional NO production within the nervous system 

can contribute to disease. Inflammation and the resulting NO production contributes to 

numerous neurodegenerative diseases, including Alzheimer’s, Parkinson’s, amyotrophic 

lateral sclerosis, and multiple sclerosis.37 

1.2 Nitrosothiols as physiological transporters of nitric oxide 

Nitric oxide is a free radical gaseous species with a half-life ranging from 

milliseconds to seconds depending upon its concentration and the medium in which it 

exists.38 As such, its lifetime in the body, most notably in blood, is believed to be as short as 

2 msec due to the presence of scavengers (i.e., proteins and oxygen).39 Conversely, S-

nitrosothiol species, originally known as thionitrites, are more stable biological transporters 



 5 

of NO and transducers of NO bioactivity. Nitrosothiols have been shown to exhibit effects 

similar to NO in vivo, including smooth muscle relaxation40 and reduced platelet adhesion.41 

Unlike free NO radicals, nitrosothiols do not react directly with metalloproteins (e.g., 

hemoglobin) or other radical species (e.g., superoxide), thus increasing their lifetime and 

preventing the buildup of toxic species such as peroxynitrite. 

S-nitrosothiols are synthesized on the bench top via a reaction between thiols and 

species such as nitrous acid, dinitrogen trioxide, dinitrogen tetraoxide, or nitrosyl chloride.42 

In vivo, nitrosothiols may be formed via multiple reactions involving NO and/or its 

byproducts with the thiols of proteins (e.g., albumin and hemoglobin), amino acids (e.g., L-

cysteine), and other small molecules (e.g., glutathione).43 Blood plasma alone contains ~600 

µM thiol “groups”, including ~500 µM albumin and 20–45 µM low molecular weight thiols 

(i.e., L-cysteine and glutathione).44 Despite it’s greater size and abundance, albumin contains 

only one free cysteine residue at which nitrosothiols form. Though once considered a major 

scavenger of NO, Stamler et al. demonstrated the ability of hemoglobin to accommodate 

nitrosation of its β-93-cysteine group, thus conserving the biological reactivity of NO by 

forming S-nitrosohemoglobin.45 Nitric oxide stored in this manner may later be released by 

multiple mechanisms, most notably under hypoxic conditions.46-48  

As shown in Figure 1.1, a common route of nitrosothiol formation requires a mixture 

of NO, oxygen (O2), and a thiol.49 One of many nitrosothiol formation pathways relies on the 

oxidation of NO by O2, where a peroxynitrite radical is generated and then further reacts with 

NO to produce nitrogen dioxide (•NO2). At normal physiological concentrations of NO (i.e., 

<100 nM), this reaction is unlikely as it may take hours to proceed.50 In the event that this 

reaction does occur, •NO2 reacts directly with a thiol to form a thiyl radical, which can 
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subsequently combine with NO to form nitrosothiol. Alternatively, •NO2 may react with 

another molecule of NO to form dinitrogen trioxide (N2O3), which directly nitrosates a thiol 

species. In the event that NO autooxidation does not take place, NO reacts directly with a 

thiol, forming an aminoxyl radical that can be oxidized to form nitrosothiol. Evidence 

suggests that copper and iron ions can also generate S-nitrosothiols. The proposed 

mechanisms involve either a one-electron oxidation of a thiol (with subsequent reaction of 

the thiyl radical with NO) or the formation of a complex between NO and the metal.51,52 This 

mechanism is complicated by the fact that these same metals also initiate nitrosothiol 

decomposition. Within cellular compartments, transnitrosation is important in the formation 

and function of S-nitrosothiols.53 In this reaction, a thiolate anion attacks a nitroso nitrogen, 

allowing for transfer of the S-nitroso functional group as shown below: 

RS- + Rʹ′SNO ⇌ RSNO + Rʹ′S- 

Of note, transnitrosation rates are not equal between all thiols, and may vary between 0.1 and 

500 M-1s-1.50  

While S-nitrosothiols species are considered stable relative to the lifetime of free NO 

in vivo, numerous mechanisms exist by which nitrosothiols decompose to release NO. As 

shown in Figure 1.2, thermal and photolytic cleavage are two decomposition mechanisms 

that result in hemolytic cleavage of the S–N bond, generating a thiyl radical and gaseous 

NO.54 While trace metals such as copper have been implicated in the formation of 

nitrosothiols in vivo, they are also closely linked with their catalytic decomposition. 

Copper(II) may be reduced by trace thiolate, with the resulting copper(I) reacting with 

nitrosothiols to liberate NO upon returning to its oxidized state. 54 As mentioned previously,  
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Figure 1.1 Routes of nitrosothiol formation in vivo requiring nitric oxide, oxygen, and 
glutathione. 
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Figure 1.2 Routes of decomposition of nitrosothiols. 
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transnitrosation between a nitrosothiol and free thiols is an alternative and biologically 

relevant route of decomposition. 

As the formation and decomposition of nitrosothiols in vivo are so closely linked with 

NO-dependent pathways, a major goal has been to study their concentrations within cells and 

tissues. Within mouse macrophage cells (RAW 264.7), S-nitrosothiol levels are reported to 

be ~5 pmol mg-1 protein.55 Reported basal concentrations of nitrosothiols in blood plasma 

range widely, from 1 nM in rats56 to µM levels in humans, depending on the measurement 

technique utilized.57 Certain disease states lead to even greater levels of nitrosothiol 

formation and accumulation. In one example, nitrosothiol levels were observed to increase 

from 300 nM in healthy subjects to 4 µM in pneumonia patients.58 

While the roles of both NO and nitrosothiols in the body are apparent, much remains 

unknown regarding specific pathways and mechanisms of action. As such, techniques to 

accurately monitor small concentration changes and pinpoint specific protein targets are 

critical for future studies. 

 

1.3 Detection of nitric oxide and nitrosothiols 

1.3.1 Spectroscopic detection of nitric oxide 

To date, NO can be measured in a number of ways, each with distinct advantages. 

Spectroscopic methods (i.e., absorbance, fluorescence, chemiluminescence, and electron 

paramagnetic resonance) rely on the indirect detection of NO via byproducts of reactions 

with other chemicals or adducts formed between NO and other compounds.59 First described 

in 1864,60  the Griess assay, formally know as the diazotization assay, allows for the 

quantification of total NO concentrations via nitrite analysis. Nitrite is a stable byproduct of 
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the reaction of NO with oxygen in aqueous media, and upon reaction with sulfanilamide and 

N-(1-napthyl)ethylenediamine an azo dye is formed. Absorbance spectroscopy is then used to 

relate the concentration of dye to the concentration of nitrite (and thus NO that was in 

solution). Although inexpensive and easily obtained commercially, the Griess assay only 

provides a limit of detection of ~0.5 µM in buffer solution and is mainly useful for 

determination of NO totals.59,61,62 The lack of real-time information and poor limit of 

detection of this assay preclude its use for analysis of biological solutions. 

In contrast, chemiluminescence detection, a more costly method due to 

instrumentation requirements, measures NO directly via reaction with ozone.63 This reaction 

produces an excited state nitrogen dioxide, which emits a photon upon relaxation to the 

ground state. Nitric oxide-release kinetics may be determined directly from materials in 

solution, as the NO is immediately transported from solution to the detector by an inert 

carrier gas. As an alternative, nitrate and nitrite in solution can be measured following their 

reduction to NO. These spectroscopic techniques generally require complex instrumentation 

and thus are not amenable to in vivo applications. Additionally, their use with biological 

media (e.g., cell culture solutions and blood/serum) is limited due the need to purge solutions 

of oxygen. 

1.3.2 Real-time amperometric detection of nitric oxide 

Due to NO’s redox activity, electrochemistry is also commonly used to quantify NO 

in a variety of formats (e.g., direct oxidation via amperometry) and even at the single cell 

level due to the ability to miniaturize sensors.62 Currently, electrochemical methods for 

detecting NO remain the most pliable for biological applications given their adaptability and 

capacity to measure real-time release. Compared to other techniques, the electrochemical 
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measurement of NO provides some distinct advantages, including superior spatial and 

temporal resolution, the potential for low limits of detection, and the ability to tune 

selectivity and sensitivity by changing the potential applied or modifying the electrode with a 

catalyst and/or permselective membrane.59,64 Electrode platforms of varied shapes and sizes 

can be fabricated for the amperometric detection of NO, providing excellent spatial 

resolution when required. 

 Despite the simplicity of this measurement technique, a number of important 

considerations must be made to carry out accurate physiological measurements. The 

sensitivity, limit of detection (LOD), and linear response range of the sensor are especially 

important given the varied, but generally small concentrations of NO (i.e., picomolar to 

micromolar) that exist physiologically. For an amperometric measurement, selectivity is 

equally important given the number of potential electroactive interferents that may be present 

in vivo (e.g., nitrite, nitrate, hydrogen sulfide, ascorbic acid, dopamine). Due to its reactive 

nature, not all the NO released from a system may reach the electrode surface to be detected. 

As such, the size and shape of the electrode must be carefully considered for each 

application. For example, measurement of NO from a single cell adhered to a surface would 

best be achieved by placing a small electrode (similar in size to the cell) directly above the 

cell, thus limiting the distance traveled and the amount of NO that is allowed to diffuse 

and/or react without being detected. Despite such operational challenges, a number of sensor 

systems have been developed and demonstrated to accurately measure physiological levels of 

NO. 

Regardless of sensor design, each transducer must include a surface at which to 

oxidize or reduce NO and a means of excluding potential interferents (i.e., species that are 
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oxidized/reduced at a similar potential). The most common electrodes are platinum,2 carbon 

fiber,65 glassy carbon,66 and gold.67 Platinum is perhaps most widely utilized as it can be 

coated with small platinum black particles to increase microscopic surface area, thus 

significantly improving sensitivity and detection limits.68-70  

Amperometric measurements in biological systems are made even more challenging 

by a number of interferents that may be present in whole blood, plasma/serum, or 

cell/bacteria culture medium. Such species are electroactive at working potentials similar to 

or lower than NO (i.e., +0.7–1.0 V for oxidation). Common biological interferents and their 

concentrations are given in Table 1.1. The membranes utilized for enhancing selectivity 

toward NO vary significantly depending on other sensor characteristics. Most selective 

membranes rely on exclusion of interferents based on size and/or charge. For example, 

Nafion® is a widely used hydrophobic, cation exchange fluoropolymer that is applied via a 

dip-coating process and excludes interferents based on charge.71 While applied in a manner 

similar to Nafion®, xerogel-based permselective membranes allow for greater control of 

hydrophobicity and porosity. Shin et al. first described the use of xerogels derived from 

fluorinated alkylalkoxysilane precursors to maximize selectivity of electrodes toward 

NO.72,73 Additionally, xerogels may be applied to any sensor geometry (i.e., disk type, 

conical, planar) via dip coating, casting, or spray coating application of the sol.74 To exclude 

interferents based on size, Ferreira et al. electropolymerized o-phenylenediamine (o-PD) onto 

carbon film electrodes that had previously been dip coated with Nafion®.75 This treatment 

allowed for a 30:1 selectivity for NO over interferents tested (e.g., nitrite and ascorbic acid), 

but was not particularly effective against small cationic species (e.g., dopamine and 

serotonin). In another study, Kato et al. utilized cross-linked Langmuir-Blodgett (LB) 
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Table 1.1 Common biological interferents and their basal concentrations in vivo. 

Interferent In vivo concentration Tissue/media Reference 

Hydrogen sulfide < 100 nM blood 76 

Ammonium (pH 7.4) 30 µM blood 77 

Nitrite 176 nM blood 78 

Uric acid 254 µM serum 79 

Ascorbic acid 43 µM serum 80 

Acetaminophen 130 µM plasma 81 

Ammonia (pH 11) 35 pM blood 77 

Peroxynitrite 
(ONOOH/ONOO-) 30 pM endothelium 82 

Carbon monoxide 0.5–1.5 µM mouse kidney 83 
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films of oligo(dimethyl-siloxane) copolymer as permselective coatings, allowing for a 25:1 

selectivity for NO over nitrite while maintaining sensitivities to NO that were similar to bare 

electrodes.84 An alternative means of enhancing selectivity without coatings is the use of 

nanopore electrodes. Shim et al. developed a nanopore-platinized platinum electrode for NO 

detection by electrochemically etching a platinum nanodisk and subsequently depositing 

layers of porous platinum black onto the disk.85 The inside of the pore was then silanized to 

increase hydrophobicity and further enhance sensitivity and selectivity.  

While all electrochemical NO sensors utilize a specific working electrode material 

and selective membrane, varied sensor styles can also be considered depending on the 

application. The Shibuki-style sensor, based on the original oxygen electrode developed by 

Clark et al.,86 is comprised of a micropipette which contains both the working (platinum) and 

reference (silver) electrodes. This micropipette is then sealed with a gas-permeable 

membrane and filled with electrolyte solution.87 As the construction of the Shibuki sensor 

limits its amenability to miniaturization, new sensors were designed to avoid the requirement 

of an internal filling solution. Solid permselective electrodes allow for direct modification of 

the electroactive area with a hydrophobic membrane, typically via a simple dip coating or 

casting process. This advancement accommodates the use of electrodes of varied shapes and 

size. Designed in a manner similar to the solid permselective electrodes, solid catalytic 

sensors were created to improve the efficiency of the oxidation or reduction of NO at the 

electrode surface and/or allow for a reduction in the working potential. Such electrodes 

usually include a mediator capable of catalyzing the electrochemical process directly on the 

electrode surface or within a permselective membrane.88  
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Each of the aforementioned sensor designs is capable of detecting NO via its 

oxidation or reduction. While electrooxidation is primarily used, some reports of NO 

measurement via electroreduction exist.89-91 This reaction proceeds via the following two 

electron process at potentials ranging from -0.5 to -1.4 V vs. Ag/AgCl:88 

2NO + 2e- 
! N2O2

- 

Of note, oxygen is a major interferent in this process as it is also reduced at -0.6 V vs. 

Ag/AgCl via the process given below: 

O2 + 4H+ + 4e- ! 2H2O 

While most other interfering species are avoided when utilizing electroreduction, reduced 

sensitivity is a caveat. Furthermore, electroreductive NO sensors do not operate efficiently at 

physiological pH and are characterized by poor detection limits (i.e., µM range).92 Improved 

sensitivity is possible by coating electrodes with complexes that catalyze the reduction of NO 

(e.g., chromium complexes,93 hemoglobin94). Despite these few reports of NO detection via 

electroreduction, oxidation of NO remains the most common means of detecting NO 

electrochemically. 

Nitric oxide is readily oxidized at potentials ranging from +700–900 mV vs. Ag/AgCl 

reference via the three-electron process below:95,96 

NO ! NO+
 + e- 

NO+ + OH- ! HNO2 

HNO2 + H2O ! NO3
- + 2e- +3H+ 

Conversion of the nitrosonium cation (NO+) to nitrite is irreversible.64 Due to the 

aforementioned presence of interferents (Table 1.1) and the relatively high working potential, 

the use of a selective membrane is required for sensors that utilize this process to detect NO. 
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Catalytic oxidation of NO allows for enhancement of both selectivity and sensitivity 

by reducing the potential at which NO is oxidized, thus limiting the effect of interfering 

species. Recently reported electrode modifications include metalloporphyrins, 

metallophthalocyanines, self-assembled monolayers (SAMs), and protein catalysts. For 

example, Hrbáč et al. utilized the electropolymerization of nickel porphyin onto carbon fiber 

microelectrodes to achieve a 6-fold increase in sensitivity while also enhancing selectivity.97 

Unfortunately, metalloporphyrins degrade rapidly, so metallophthalocyanines have been 

adopted as a more stable alternative electrocatalytic layer.98 Self-assembled monolayers form 

highly stable chemical bonds with glassy carbon electrodes, making them useful as 

electrocatalysts for compounds with relatively high oxidation potentials (e.g., NO). 

Sivanesan et al. utilized SAMs of 1,8,15,22-tetraaminophthalocyanatocobalt(II) to decrease 

NO’s oxidation potential by 310 mV while simultaneously increasing the oxidation current 

produced.99 

Electrochemical detection continues to be one of the most promising methods for NO 

measurement, especially from biological systems. Further enhancements in sensitivity and 

selectivity, as well as new sensor configurations (e.g., microfluidic devices) will allow for 

greater understanding of the many essential roles of NO in vivo. 

1.3.3 Detection of nitrosothiols 

To date, the techniques most commonly utilized for nitrosothiol analysis exploit 

indirect detection schemes.100 Indirect detection of S-nitrosothiols is achieved via 

decomposition and detection of the resulting products (i.e., NO, NO+).62,100 Despite their 

relative stability, nitrosothiol species will decompose via multiple pathways (i.e., heat, light, 
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and chemical reduction) as shown in Figure 1.2. The figures of merit for the most commonly 

utilized methods for nitrosothiol detection are outlined in Table 1.2. 

The Saville assay is a colorimetric assay modeled after the Griess assay.101 Mercuric 

ions (Hg2+) are used to cleave the S–NO bond. The NO+ generated from this cleavage then 

reacts with O2 to form nitrite (NO2
-). The reaction then proceeds in the same manner as the 

Griess assay, where nitrite is reacted with acidic sulfanilamide and N-(1-

naphthyl)ethylenediamine to form an azo dye which is detected spectrophotometrically.60 

Despite the simplicity of this assay, in vivo nitrite concentrations are usually much greater 

than that of nitrosothiols, making accurate quantification of nitrosothiols challenging. Indeed, 

the limit of detection for the Saville assay is ~500 nM in buffer solution. Analogous to the 

Saville assay, nitrite generated from nitrosothiols can be reacted with 2,3-

diaminonaphthalene to form the fluorescent 2,3-naphthotriazole (λexcitation = 365 nm, λemission 

= 405 nm) for in situ detection.102 As a more selective alternative, 4,5-diaminofluorescein can 

be used to react directly with NO released from nitrosothiols.103 However, while the UV 

photolysis utilized to decompose nitrosothiols is efficient, it also causes NO generation from 

nitrate, leading to artificially elevated NO totals.78 Chemiluminescence NO detection has also 

been combined with reductive or photolytic cleavage of nitrosothiols.104 Detection limits 

have been reported in the nM range with various reducing agents employed depending on the 

application (e.g., Cu+/cysteine, iodine/triiodide).105,106 Although less common due to cost, 

high performance liquid chromatography (HPLC) has been used to separate and detect 

different classes of nitrosothiols. Specifically, Marzinzig et al. coupled reverse phase HPLC 

with electrochemical or fluorescence detection to separate and quantify mixtures of low 

molecular weight nitrosothiols.107 While reductive cleavage of the S–NO bond would  
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Table 1.2 Summary of predominant analytical methods for detecting S-nitrosothiols in 
biological samples. 
 
Method Detected species LOD RSNOs analyzed Sample 

Saville assay Azo dye 500 nM LMW1 Plasma 

Chemiluminescence NO2
* pM LMW + AlbSNO 

Blood 
Plasma 
Serum 

Fluorimetry Fluorescent adduct nM LMW + AlbSNO Blood 

Electrochemistry NO 10 nM LMW + AlbSNO 
Plasma 
Serum 

Diluted blood 
1LMW: low molecular weight nitrosothiols 
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theoretically allow for a means of direct nitrosothiol detection via electrochemistry, this 

method would suffer from O2 interference and not accommodate selective detection of 

different types of nitrosothiols due to the similar reduction potentials required. As such, 

indirect electrochemical detection of nitrosothiols is achieved in a manner similar to other 

nitrosothiol assays, where NO detection (via electrochemical oxidation) follows nitrosothiol 

decomposition. 

Compared to other techniques, detection of nitrosothiols via electrochemistry 

provides superior spatial and temporal resolution without the requirement of complex or 

costly instrumentation. S-nitrosothiol decomposition to NO may be achieved in a manner 

identical to other techniques, including chemical reduction and photolysis. Copper catalyzed 

reduction is one such method and whereby the addition of copper chloride salt or the addition 

of copper(II) in the presence of an additional reducing agent (e.g., glutathione, L-cysteine, 

ascorbate) breaks down the nitrosothiols to NO. Despite the facile nature of this method, NO 

generation (and thus nitrosothiol amount detected) varies significantly based on the amount 

of Cu+ or the ratio of Cu2+ to reducing agent.108-110 Furthermore, the addition of catalyst 

solutions to small biological samples is inconvenient and has the potential to dilute already 

small quantities of nitrosothiols to undetectable levels. To deal with these shortcomings, 

Meyerhoff et al. developed immobilized catalysts for the decomposition of NO and 

incorporated them into electrochemical NO sensors. A number of catalysts (e.g., copper, 

organoselenium, organotelluride) were immobilized into sensor membranes that coated the 

tip of the working electrode to facilitate nitrosothiol decomposition with immediate NO 

detection.111-114 Organoselenium-based sensors generated superoxide upon reaction of 

oxygen with the catalyst, and thus their utility was limited by NO scavenging.115 
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Nevertheless, these devices were utilized to estimate levels of both low and high molecular 

weight nitrosothiols in biological samples. Meyerhoff et al. also developed nitrosothiols 

sensors that entrapped glutathione peroxidase behind a NO-selective PTFE membrane. 

Exploiting a similar idea, Bedioui et al. designed a ring-disk ultramicroelectrode where the 

center disk oxidized electrodeposited Cu(0) to Cu(I).116 The Cu(I) released facilitated 

nitrosothiol decomposition and the outer ring was used to detect the resulting NO. The same 

group also demonstrated the utility of this method using both dual disk-disk and band-band 

electrode configurations.116 

Alternatively, nitrosothiol decomposition may be triggered by light, specifically in the 

wavelength ranges of 290–270 nm and 505–625 nm.117 Decomposition via photolysis occurs 

by direct homolytic cleavage of the S–NO bond without involvement of side reactions.117 

Coupling this decomposition pathway with electrochemical detection of NO is particularly 

appealing as the light intensity (and thus NO generation) is highly tunable. Light sources can 

easily be adapted to a variety of electrochemical configurations, including small microfluidic 

devices. Additionally, this method does not require the addition of chemicals to samples, 

which is especially important if the sample volume is small and/or when measurements must 

be made rapidly. Riccio et al. described the combination of visible photolysis and 

amperometric detection of S-nitrosothiols.118 Visible light (532 nm) was chosen to avoid 

electrochemical interference, as ultraviolet (UV) light generates NO from nitrite in solution, 

and would thus overestimate nitrosothiol concentrations.78 Despite slightly decreased 

sensitivity relative to copper catalysts, this work demonstrated how tuning the properties of a 

light source (e.g., varying light intensity) could change the rate and amount of NO generation 

from both low and high molecular weight nitrosothiols in phosphate buffered saline and 
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blood plasma. Despite these advantages, the measurement required deoxygenation of the 

sample to overcome NO scavenging by oxygen. Additionally, relatively large sample 

volumes (~20 mL) were required for analysis. While these shortcomings limit the current 

clinical utility of this measurement technique, a light source could easily be coupled with 

numerous sensor configurations. For example, incorporation into a microfluidic device would 

allow for improved sample irradiation with enhanced sensitivities and detection limits. 

Additionally, a microfluidic device is more amenable to the small sample volumes required 

for future clinical analysis applications. 

 

1.4 Nitric oxide and nitrosothiols in sepsis 

 The general understanding of sepsis within the medical community has varied greatly 

throughout the years. During the sixteenth century, what we now understand to be sepsis was 

referred to as “hectic fever.”119 Even then, Machiavelli understood that this mysterious 

malady was easy to treat but difficult to detect at its inception, while later becoming simple 

to recognize but challenging to cure.119 More recently, sepsis was simply considered to be a 

systemic host response to infection.120 A more detailed, concrete definition of sepsis was not 

outlined until 1992, when the American College of Chest Physicians and the Society of 

Critical Care Medicine convened and came to a consensus on the differences between the 

spectrum of syndromes related to the body’s response to infection.121 As outlined in Table 

1.3, this spectrum includes systemic inflammatory response syndrome, sepsis, severe sepsis, 

and septic shock, each presenting with different symptoms.122 To date, these definitions have 

not been modified. 
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Table 1.3 Definition of systemic inflammatory response syndrome, sepsis, severe sepsis, 
and septic shock in humans.   
 
Syndrome Definition 
Systemic inflammatory response syndrome 
(SIRS) 

2 or more of the following:  
- Body temperature >38°C or <36°C 
- Heart rate >90 beats per minute 
- Respiration >20 breaths per minute or 

PaCO2 <32 mmHg 
- White blood cell count >12,000 mm-3 or 

<4,000 mm-3 
  
Sepsis SIRS caused by suspected or confirmed 

infection 
  
Severe sepsis Sepsis with acute organ dysfunction, 

hypotension, or hypoperfusion 
  
Septic shock Sepsis with hypotension/hypoperfusion 

despite adequate fluid resuscitation 
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 The current framework for classifying patients with sepsis is extremely important 

given its severity, the challenge of diagnosis, and associated treatment strategies. A recent 

epidemiological study examined trends in sepsis from 1979 through 2000, revealing that 

>750,000 cases of sepsis occur annually in the United States, accounting for 1.3% of all 

hospitalizations.123 While mortality has decreased over the years and currently ranges from 

18–30%, sepsis remains the leading cause of death in critically-ill patients. Recent statistics 

indicate sepsis-related incidences are increasing by 8.7% annually. In the United States 

alone, healthcare costs for treating sepsis exceed $16 billion.124 Clearly the need for 

improved understanding, diagnosis, and treatment of the disease and its underlying causes is 

highly warranted. 

1.4.1 Sepsis disease progression 

 The immune response to pathogens broadly is a normal physiological response and is 

usually tightly regulated. During a typical infection by a limited number of bacteria, the 

innate immune response is initiated upon detection of the invading organisms and the 

polarization of local macrophages to the M1 (pro-inflammatory) phenotype.125 Detection of 

foreign pathogens can occur through a number of mechanisms, although the best understood 

are pathogen-recognition receptors (e.g., Toll-like receptors) that identify bacterial cell wall 

components (e.g., lipopolysaccharide). The resulting “activated” macrophages (along with 

other immune cells) phagocytose the invading organisms and produce pro-inflammatory 

cytokines (e.g., tumor necrosis factor, IL-6, and IL-8) in order to recruit other circulating 

white blood cells (e.g., neutrophils, lymphocytes, monocytes) to assist. Following uptake of 

the bacteria by the macrophage, it becomes entrapped within the phagolysosome, where the 
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combination of reduced pH, proteases, and other antimicrobial agents (including NO) cause 

rapid killing and clearance of the invading species.  

Sepsis, being a systemic inflammatory response, occurs when this normal response to 

infection becomes so severe or dysfunctional that it causes harm to the host. Such action may 

be caused when the bacterial load present is too large for the body to handle, when the 

infection is due to a particularly virulent strain, or when the immune system is not 

functioning properly. This dysfunction will cause a number of physiological changes, both at 

the cellular and systemic levels, leading to severe and dangerous symptoms. During the later 

stages of sepsis, the body enters an immunosuppressive phase, termed the compensatory anti-

inflammatory response syndrome (CARS).126 This phase of the disease is particularly 

dangerous, as it increases patient susceptibility to secondary infections and death. Figure 1.3 

illustrates this changing immune response over time during the progression of sepsis. 

During the first phase of sepsis, a dramatic increase in production of pro-

inflammatory cytokines is observed. This phenomenon, know as the “cytokine storm,” allows 

the innate immune system (i.e., macrophages and neutrophils) to communicate with the 

body’s adaptive immune system.127,128 This overstimulation also causes a significant 

upregulation of the expression of iNOS129-131 and certain cell surface markers (e.g., CD80 

and CD86), which permit juxtacrine signaling between phagocytes and T cells.132,133  

Cell death is another major hallmark of sepsis, including both necrosis and apoptosis. 

Necrosis, which usually occurs following an ischemic injury and results in slow death due to 

lack of nutrient supply, causes leakage of caustic enzymes which may also damage 

surrounding tissue.134,135 Conversely, apoptosis is a programmed cell death that can occur via 

binding of proteins to specific receptors or a mitochondrial-mediated pathway. This process  
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Figure 1.3 Changes in immune response during the progression of sepsis in human 
patients. Adapted from Hotchkiss et al.136 
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is a normal part of cellular proliferation, but occurs to an extreme and detrimental extent 

during sepsis. Of note, apoptosis is more pronounced in lymphocytes and gastrointestinal 

epithelial cells during sepsis.137,138 Lymphocyte death is linked to the CARS that is observed 

in later stages of sepsis.139,140 Under normal circumstances, the intestine has an unusually 

high cell turnover rate, making it particularly sensitive to changes in apoptosis.141 In contrast 

to this increased cell death, neutrophils often undergo delayed apoptosis during sepsis, 

leading to further damage to tissue by the release of toxic antimicrobial products.142 

1.4.2 Clinical manifestations of sepsis 

 These phenotypic and chemical changes at the cellular level manifest a number of 

systemic physiological changes that may be monitored in the hospital setting. As provided in 

Table 1.3, physicians consider a set of symptoms that define sepsis within a spectrum of 

disorders. In addition to these basic physiological metrics, a number of potential biomarkers 

for sepsis have been proposed for diagnostic and/or prognostic use. Due to the shear number 

of physiological processes involved in sepsis and its systemic nature, the quantity of 

biomarkers that have been evaluated to date is immense, with at least 178 independent 

biomarkers since 2010 alone.143 Most biomarkers have been tested for their prognostic 

ability, but of greater importance may be the ability to improve the diagnosis of sepsis, as 

early and appropriate treatment is known to improve patient outcomes.144-147 The most 

commonly studied categories of biomarkers include cytokines/chemokines and acute phase 

proteins. A number of cells (most notably immune cells) release cytokines and chemokines in 

order to mediate the pathophysiology of sepsis. For example, pro-inflammatory cytokines 

such as tumor necrosis factor148,149 and various interleukins150-169 are released at high levels 

in response to infection. Similarly, anti-inflammatory cytokines and chemokines may be 
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examined to monitor the immunosuppressive phase of sepsis.170 While clinical and 

experimental studies have revealed that these biomarkers are elevated in sepsis and may 

predict survival,171 they are neither sensitive nor specific enough to be clinically useful. 

Acute phase proteins such as C-reactive protein may aid in predicting a patient’s response to 

therapy, but serve no diagnostic value.172-174 Other categories of molecules that have been 

studied for their diagnostic and/or prognostic value include cell surface markers, coagulation 

biomarkers, vasodilation biomarkers, organ dysfunction biomarkers, vascular endothelial 

damage biomarkers, and receptor biomarkers.143 However, no one biomarker to date has 

proven both sensitive and specific enough to become routinely implemented in sepsis 

monitoring. Future approaches must include the evaluation of new potential biomarkers as 

well as multi-biomarker panels for more accurate diagnosis.170 

1.4.3 Nitric oxide and nitrosothiols as prognostic/diagnostic biomarkers 

Due to the well-established roles of NO in the immune system and inflammation, as 

well as its role in blood pressure maintenance, many have hypothesized that endogenous NO 

levels may become erratic during the development and progression of sepsis. For example, 

multiple studies have indicated increases in iNOS during progression of sepsis.129,131,175,176 

Regulation of iNOS has been examined to determine whether its up- or down-regulation may 

be beneficial for the treatment of sepsis, but the results have been mixed. For example, some 

findings have indicated that inhibition of iNOS provides a protective effect and thus 

improves outcomes.177-179 In contrast, others have reported that NO scavenging or iNOS 

deficiencies actually worsen outcomes, likely due to the role of NO in mediation of 

infection.180,181 Such conflicting results indicate a delicate balance and the need for methods 

that more directly determine circulating NO and nitrosothiol levels in vivo. To date, a 
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number of studies have examined changes in metabolites of NO (i.e., nitrate, nitrite, and 

nitrosothiols) more directly during sepsis in humans and other animal species, most 

frequently utilizing chemiluminescence and colorimetric detection methods. The results of 

select studies have been summarized in Table 1.4. While the reported concentrations vary 

widely, an increase in endogenous NO relative to controls was observed in almost all cases. 

One notable exception was reported by Jacob et al., who observed a decrease in plasma 

nitrate/nitrite levels in patients with trauma and infection relative to control (no trauma or 

infection) patients.182 Despite this trend, an increase was observed relative to patients with 

trauma but without infection. The ability to measure NO and nitrosothiols directly in whole 

blood and/or plasma would provide a clearer understanding of the mechanisms involved in 

this immune dysfunction. 

1.4.4 Animal models of sepsis 

 Outcomes for sepsis may only be further improved through advancements in 

understanding mechanisms of disease pathophysiology and the development of new 

therapeutics. Well-controlled and reproducible studies to achieve such an outcome are only 

possible through the use of animal models.183 Preclinical (i.e., animal) studies are especially 

necessary for testing of potential therapeutic agents prior to human clinical trials. The main 

concern in planning such studies is that the model accurately replicates the complex 

physiological state of human sepsis, in which the inflammatory response develops over days 

and leads to multi-organ failure when not treated promptly. 

While mimicking human sepsis remains a priority,184,185 the use of nonhuman 

primates in sepsis research is rare, due in part to ethical objections.186 Large animal species—

including dogs, sheep, and pigs—are often used and share some similar disease pathways  
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Table 1.4 Summary of reported changes in NO and its metabolites during sepsis. 

Species Analyte Medium Detection Method Control  Septic Reference 

Human NOX
a Plasma 

Capillary 
electrophoresis 

20 ± 3 µM 144 ± 39 µM 130 

Human NOX Plasma 
Reduction/ 

chemiluminescence 
 133 ± 48 µM 187 

Human NOX Plasma Griess assay 29 ± 4 µM 72 ± 9 µM 19 
Human NOX Plasma Griess assay  90–150 µM 188 
Human NOX Serum Griess assay 43 ± 24 µM 118–145 µM 189 

Human RSNO Blood 
Reduction/ 

chemiluminescence 
 1.2–6.25 µM 190 

Mouse RSNO Plasma 
Reduction/ 

chemiluminescence 
5 × 10-6 SNOb 

per heme 
4 × 10-5 SNO 

per heme 
191 

Rat RSNO Plasma 
Reduction/ 

chemiluminescence 
108 ± 23 nM 

1335 ± 423 
nM 

192 

Pig NOX Plasma 
Reduction/ 

chemiluminescence 
No difference, but did observe 

upregulated iNOS during sepsis 
175 

 

a NOX refers to byproducts of NO oxidation, nitrate and nitrite. 
b SNO refers to a nitrosothiol moiety. 
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with humans. These species also allow for clinical monitoring (e.g., heart rate, cardiac 

output, blood gasses) that is similar to an intensive care unit setting. Despite these 

advantages, the use of large animals are often cost prohibitive. As such, their use in studying 

sepsis is less prevalent than rodent models (i.e., mice and rats). Unlike other models for 

sepsis, rodent models afford the ability to study disease mechanisms in greater detail, 

especially with the use of genetically engineered knockouts. Due to low total blood volumes 

(~2 mL in mice) however, serial sampling in a mouse is not possible without the induction of 

hypovolemic shock.185 Of note, each of these species has a varied timeframe for sepsis 

development and mortality, as well as differing sensitivities to bacteria and endotoxin.185 

Another important consideration in terms of relevance of this model is animal age. While 

most human patients who develop sepsis are >65 years of age,193 animals used for modeling 

sepsis and other diseases are generally juvenile, leading to significantly decreased 

mortality.194,195 

Once the appropriate species has been chosen, one must consider the means of 

inducing sepsis. Three main categories of sepsis models exist: administration of a toxin (e.g., 

lipopolysaccharide), administration of a viable pathogen (e.g., bacteria), and surgical 

alteration of a protective barrier (e.g., bowel perforation). Each method has its own distinct 

advantages and caveats, as outlined in Table 1.5. Direct administration of live bacteria is 

another means of inducing sepsis in animal models that can be useful for studying specific 

mechanisms of host response to infection by particular bacteria. The two main routes of 

infection include direct administration into the blood or peritoneum, and intra-tracheal 

administration for lung infection. Direct inoculation of the blood will have a rapid effect on 

the cardiovascular system, while a lung or peritoneal infection will first induce immune cell 
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Table 1.5 Advantages and caveats of various animal models of sepsis. Adapted from 

Buras et al.196 and Zanotti-Cavazzoni et al.185 

Model Advantages Caveats Variable Parameters 
    

Endotoxemia 

- well-controlled 
- easy to perform 
- changes in 

cardiovascular state and 
cytokine levels 

- single toxin dissimilar 
to human sepsis 

- variable response 
depending on species 

- variable response 
depending on dose 

- type of toxin 
- route of administration 
- dose 
- animal species 

    
    

Bacterial infection 

- allows measurement of 
host response to 
pathogen 

- response tunable with 
bacteria load 

- single pathogen does 
not always mimic 
human sepsis 

- requires prior bacteria 
quantification 

- genetic background 
affects host response 

- bacterial strain 
- compartment of 

infection 
- timing of infusion 
- antibiotics 
- animal species 

    
    

CLP and CASP 

- polymicrobial sepsis 
-  most closely mimics 

human disease states 
(hemodynamic, 
metabolic, and immune) 

- polymicrobial sepsis 
leads to variability 
between animals 

- uncontrolled bacterial 
load (CLP model) 

- abscess formation in 
CLP model 

- age variability  
 

- size of puncture (CLP) 
or stent (CASP) 

- number of perforations 
- antibiotics 
- animal species 
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differentiation and migration.197 Other important considerations for this model include 

bacterial strain and load.198 This method is also desirable because the strain causing the 

infection is known, allowing for the assessment of specific targeted treatments. 

The host-barrier disruption model of sepsis usually involves perforation of the bowel. 

Cecal ligation and puncture (CLP), considered the “gold standard” in sepsis research, is 

meant to mimic ruptured appendicitis in humans.199-201 The bowel perforation created using 

this model allows for fecal leakage into the abdomen, creating a polymicrobial infection and 

necrotic tissue.202,203 Disease severity is usually adjusted by changing the puncture size or 

number of punctures.199 This model is especially clinically relevant as it mimics the 

hemodynamic, metabolic, and immune responses most often observed in humans during 

sepsis.199,204 However, disease severity and progression is more difficult to control, as the 

load of fecal material and bacteria is variable. Similar to CLP, the colon ascendens stent 

peritonitis (CASP) model also creates bowel leakage into the abdomen, but seepage is 

prolonged due to stent placement. As a result, increases in systemic cytokine and bacteria 

levels are generally higher in the CASP model.196 Disease severity can be modified by 

altering the size of the stent placed. This model is typically used to study the acute phase of 

septic peritonitis. 

 Choosing an appropriate model and means of inducing sepsis relies greatly on the 

desired result of a given experiment. While no model is perfect, careful selection of 

parameters can provide data that is relevant and translatable to human subjects.  
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1.5 Summary of dissertation research 

The focus of my dissertation research was to develop improved methods for detecting 

NO and nitrosothiols from a variety of complex biological systems. To accomplish this, I 

made use of electrochemical detection of NO and nitrosothiols using an assortment of 

platforms suited for each individual measurement environment. The specific aims of my 

research included the: 

1) understanding of commonly utilized methods for detection NO, including their 

advantages and shortcomings, specifically in complex biological media; 

2) design and evaluation of a microfluidic electrochemical NO sensor specifically 

suited for detection of NO in small volumes of blood; 

3) adaption and evaluation of the microfluidic sensor to accommodate on-chip 

photolytic cleavage and amperometric detection of S-nitrosothiols in 

physiological fluids; 

4) utilization of the microfluidic sensor to evaluate NO as a diagnostic and/or 

prognostic biomarker for sepsis using controlled animal models; 

5) use of a microsensor for understanding the dynamics of NO release from single 

cell systems including neurons and macrophage cells. 

The goal of this introductory chapter was to provide an overview of the current 

understanding of the physiological roles of NO and S-nitrosothiols, including their role in 

sepsis, and how electrochemistry can be utilized for both NO and nitrosothiol detection in 

complex biological systems. In Chapter 2, a more thorough evaluation of the most common 

NO detection schemes (i.e., Griess assay, chemiluminescence, and electrochemistry) in 

multiple types of biological media will be provided. Chapters 3 and 4 will focus on the 



 34 

development of a microfluidic sensor to facilitate NO measurement in small volumes of 

physiological fluid and its adaption to allow for photolysis and amperometric detection of S-

nitrosothiols. The study of NO and nitrosothiols as potential diagnostic/prognostic 

biomarkers for sepsis in two animal models (i.e., mice and pigs) will be detailed in Chapter 5. 

In Chapter 6, the use of a microelectrode to study NO release from single cell systems (i.e., 

macrophages and neurons) will be discussed. Finally, a summary of my work along with a 

description of future studies will be provided in Chapter 7.  
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CHAPTER 2: CHALLENGES OF NITRIC OXIDE MEASUREMENT FROM 
BIOLOGICAL SYSTEMS2 

 

2.1 Introduction 

Nitric oxide (NO), an endogenous free radical produced by a collection of enzymes 

known as NO synthases (NOS), is a physiological mediator of the cardiovascular, immune 

and nervous systems.1 For example, NO produced in the vasculature by endothelial NOS 

serves as a vasodilator and blood pressure regulator.2,3 The immune system produces NO at 

high concentrations via inducible NOS to serve as a signaling molecule4,5 and potent 

antimicrobial agent.6 In the brain, NO produced by neuronal NOS functions as a 

neurotransmitter and is involved in memory formation.7 The physiological significance of 

NO has led to increased research on NO and NO-releasing scaffolds as potential 

therapeutics.8-12 Given that the location and concentration of NO governs its biological effect, 

the release characteristics of NO-based therapies often influence their success. Consequently, 

developing and assessing methods for the accurate quantitative measurement of NO is 

critical. 

While understanding NO’s behavior in vivo is obviously important, this task is far 

from trivial. Nitric oxide is highly reactive with a lifetime on the order of seconds in most 

biological media.13 Additionally, the diffusion of NO is rapid, with diffusion coefficients 
                                                
2 This chapter previously appeared as a manuscript in Analytical Chemistry. The original citation is 
as follows: Hunter, R. A.; Storm, W. L.; Coneski, P. N.; Schoenfisch, M. H. "Inaccuracies of nitric 
oxide measurement methods in biological media." Analytical Chemistry 2013, 85, 1957-1963. 
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approaching 3300 µm2 s-1 in physiological buffer.14,15 Complicating matters further, 

physiological concentrations of NO span six orders of magnitude (pM to µM),16 requiring 

sensitive measurement techniques over wide dynamic ranges.17 To date, three analytical 

techniques account for the majority of NO measurements in the literature.12,18  

First described in 1864,19  the Griess assay, formally know as the diazotization assay, 

allows for the quantification of total NO concentrations via nitrite analysis. Nitrite is a stable 

byproduct of the reaction of NO with oxygen in aqueous media, and upon reaction with 

sulfanilamide and N-(1-napthyl)ethylenediamine an azo dye is formed. Absorbance 

spectroscopy is then used to relate the concentration of dye to the concentration of nitrite 

(and thus NO that was released into solution). Although inexpensive and easily obtained 

commercially, the Griess assay only provides a limit of detection around 0.5 µM and is 

mainly useful for determination of NO totals.12,20,21  

In contrast, chemiluminescence detection, a more costly method due to 

instrumentation requirements, measures NO directly via reaction with ozone.22 This reaction 

produces and excited state nitrogen dioxide, which emits a photon upon relaxation to the 

ground state. Nitric oxide-release kinetics may be determined directly from materials in 

solution, as the NO is immediately purged from solution to the detector. As an alternative, 

nitrate and nitrite in solution can be measured following their reduction to NO. 

Due to NO’s redox activity, electrochemistry is also commonly used to quantify NO 

in a variety of formats (e.g., direct oxidation via amperometry) and even the single cell level 

due to sensor miniaturization.21 This detection scheme is especially advantageous for in vivo 

and in situ application due to the spatial and temporal resolution provided by the 

measurement technique. 
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While each of these techniques has inherent advantages for measuring NO, it is 

important to consider the environment in which the NO is measured. Since NO readily reacts 

with thiols, other free radical species (e.g., superoxide, thiyl radicals, and lipid peroxyls), and 

metal-containing proteins (e.g., hemoglobin) in situ, the available (i.e., free) NO will vary 

depending on the sample medium.23-25 While a number of reviews have focused on 

describing the available methodologies for biological measurement of NO, 21,22,26-33 a 

systematic study of the effects of biological media on the validity of such methods is lacking. 

Herein, we evaluate the accuracy of NO analysis with respect to measuring NO in 

physiological buffers and fluids, cell culture media, and bacterial broth using the Griess 

assay, a chemiluminescence analyzer, and an amperometric sensor. 

 

2.2 Materials and Methods 

(Heptadecafluoro-1,1,2,2-tetrahydrodecyl)trimethoxysilane (17FTMS) was purchased 

from Gelest (Morrisville, PA). Methyltrimethoxysilane (MTMOS) was purchased from Fluka 

(Buchs, Switzerland). Griess assay reagents were purchased from Promega (Madison, WI). 

Tryptic soy broth (TSB) and brain heart infusion (BHI) broth were purchased from BD 

Biosciences (San Jose, CA). Dulbecco’s Modified Eagle Medium (DMEM), McCoy’s 

Medium 5A Modified, fetal bovine serum (FBS), dipotassium ethylenediaminetetraacetic 

acid (K2EDTA), nicotinamide adenine dinucleotide phosphate (NADPH), and nitrate 

reductase (from Aspergillus niger) were purchased from Sigma (St. Louis, MO). Opti-MEM 

I (a reduced serum medium) was purchased from Life Technologies (Grand Isle, NY). 

Leibovitz medium (L-15; a carbon dioxide-free cell culture medium) was purchased from 

Lonza (Basel, Switzerland). Porcine blood was obtained from the Francis Owen Blood 
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Research Laboratory (University of North Carolina; Chapel Hill, NC). Blood serum was 

obtained by collecting porcine blood without the addition of anticoagulant. After allowing 

the blood to clot, it was centrifuged at 2500 rpm for 15 min and the supernatant (i.e., serum) 

was removed. To obtain blood plasma, porcine blood was drawn into a tube with K2EDTA 

(~1.8 mg mL-1), mixed immediately, and then centrifuged at 2500 rpm for 15 min. After 

centrifugation, three layers were present (from top to bottom: plasma, leukocytes, and 

erythrocytes); the top layer was removed. A Millipore Milli-Q UV Gradient A10 System 

(Bedford, MA) was used to purify distilled water to a final resistivity of 18.2 MΩ·cm and a 

total organic content of ≤6 ppb. Nitrogen and argon gases were purchased from AirGas 

National Welders (Raleigh, NC). Nitric oxide gas was purchased from Praxair (Danbury, 

CT).  Other solvents and chemicals were analytical-reagent grade and used as received.   

2.2.1 Preparation of physiological media 

Artificial saliva solution was prepared as described by Arvidson et al.34 via the 

addition of the following components to 500 mL of Milli-Q water: 279 mg monopotassium 

phosphate, 284 mg sodium phosphate dibasic, 1.24 g potassium bicarbonate, 482 mg sodium 

chloride, 254 mg magnesium chloride, 184 mg calcium chloride, and 394 mg citric acid.  The 

pH of the solution was subsequently adjusted to 6.7.  A 500 mL solution of artificial normal 

human urine was prepared according to Kark et al.35 by adding the following to Milli-Q 

water: 2.40 g sodium phosphate, 2.25 g potassium chloride, 3.75 mg sodium chloride, and 

9.1 g urea.  After the pH of this solution was adjusted to 5.9, 25 mg bovine serum albumin 

and 1.0 g creatinine were added.  For a 500 mL solution of physiosol in Milli-Q water the 

following were added: 2.63 g sodium chloride, 185 mg potassium chloride, 150 mg 

magnesium chloride, 1.11 g sodium gluconate, and 2.51 g sodium acetate.36  The pH of the 
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solution was then adjusted to 6.0. A saturated NO solution (1.9 mM NO) was made by 

purging ~20 mL of PBS with argon for 30 min to remove oxygen, followed by NO gas for 20 

min.   

2.2.2 Synthesis of PROLI/NO 

N-diazeniumdiolated L-proline (PROLI/NO) was prepared following a previously 

published protocol.37 Briefly, L-proline (2.05 g) was dissolved in a solution of methanol (25 

mL) and sodium methoxide (2.00 g). The solution was then placed in a stainless steel 

reaction vessel and flushed with Ar six times (three in succession, three for 10 min each), 

then charged with NO at a pressure of 10 atm for 3 d with constant stirring. Six additional Ar 

purges were performed after 3 d. The solution was then precipitated by the addition of diethyl 

ether (150 mL) at −20 °C for 4 h. The white precipitate was isolated by vacuum filtration and 

dried in vacuo to yield PROLI/NO, which was stored at −20 °C until use. Ultraviolet spectra 

of a 14.9 μg·mL–1 solution of the product (in 1.0 M sodium hydroxide) were acquired on a 

Thermo Scientific evolution array UV–visible spectrophotometer (Figure 2.1). The molecular 

weight of pure PROLI/NO was taken to be 251 g·mol–1. 

2.2.3 Griess assay 

To quantify NO via the Griess assay,38 50 µL of a 2 mg mL-1 solution of PROLI/NO 

in 100 mM sodium hydroxide (NaOH) was added to 15 mL of desired media and incubated 

at room temperature for at least 24 h. Aliquots (50 µL) of this sample were added to a 

sulfanilamide solution (50 µL) and incubated in the dark at room temperature for 5 min. 

Naphthylethylenediamine (50 µL) was added to the mixture to form a colorimetric product 

with concomitant absorbance measured in each well at 540 nm using a LabSystems 
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MultiSkan RC microplate reader (Helsinki, Finland). Sodium nitrite standards were used to 

normalize the assay reactivity and associated absorbance. 

For analysis of blood constituents (i.e., plasma and serum), NADPH (25 µL) and 

nitrate reductase (2 µL) were added to the samples and allowed to incubate for at least 30 min 

prior to the addition of the Griess reagents. 

2.2.4 Chemiluminescence detection 

Real-time NO release was monitored using a Sievers 280 Chemiluminescent NO 

Analyzer (Boulder, CO). The instrument was calibrated with a 25.6 ppm gas standard 

(balance N2) and an atmospheric sample that had been passed through a NO zero filter. 

Samples were prepared by adding 10 µL of a 2 mg mL-1 solution of PROLI/NO in 100 mM 

NaOH to 30 mL of desired media that had been degassed in a sample vessel for at least 20 

min. Nitric oxide produced in the vessel was carried to the NO analyzer by a stream of 

nitrogen gas bubbled into the solution (80 mL min-1) across the headspace of the flask (120 

mL min-1), equivalent to 200 mL min-1 flow to the instrument. 

2.2.5 Electrochemical detection 

Inlaid 2 mm diameter polycrystalline platinum (Pt) disk electrodes sealed in Kel-F 

(CH Instruments; Austin, TX) were mechanically polished with successively finer grades of 

deagglomerated alumina slurries down to 0.05 µm particles (Buehler; Lake Bluff, IL). 

Residual alumina was removed using an ultrasonic cleaner (in water) and the electrodes were 

dried with nitrogen.  A fluorinated NO selective xerogel membrane was applied to the 

electrode as previously described to minimize response to common interferents.39,40 Briefly, a 

silane solution was prepared by mixing MTMOS (60 µL) in ethanol (300 µL). To this 

solution, 17FTMS (15 µL) was added, resulting in a 20% v/v fluoroalkoxysilane (balance 
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MTMOS) mixture. The silane solution was subsequently mixed with water (80 µL) and 0.5 

M HCl (5 µL) for 1 h. The resulting sol (1.5 µL) was cast onto Pt working electrodes and 

allowed to cure for 24 h under ambient conditions. To evaluate the analytical performance of 

the NO sensors, amperometric measurements were performed using a CH Instruments 730B 

bipotentiostat (Austin, TX). The electrode assembly (3-electrode configuration) consisted of 

the xerogel-modified Pt working electrode, a Pt-coiled counter electrode, and a Ag/AgCl 

reference electrode (3.0 M KCl; CH Instruments). Electrooxidation currents were recorded at 

an applied potential of +700 mV (vs. Ag/AgCl). To measure NO release in the various media 

using PROLI/NO as the NO source, a 2 mg mL-1 solution of the NO donor was added to a 

constantly stirring bulk solution (30 mL) for a final concentration of 0.1 mg mL-1. Of note, 

the larger volume of media was necessary to accommodate the working, reference, and 

counter electrodes in the flask. 

 

2.3 Results and Discussion 

Diverse biological media were chosen for these experiments to properly represent 

environments in which NO measurements are relevant (e.g., in vivo, cell/tissue culture, 

bacteria culture). Solutions included simple physiological buffers (PBS and physiosol), 

simulated biological fluids (saliva, urine, and wound fluid), cell culture media (DMEM, 

McCoy’s, L-15, and Opti-MEM), bacterial broth (TSB and BHI), whole blood, plasma, and 

serum.  The salt, amino acid, protein, and vitamin content of these media vary significantly 

(Tables 2.1–2.4) and thus likely impact the validity of NO measurement data. 

  



 63 

2.3.1 Nitric oxide determination via Griess 

The Griess assay allows for indirect measurement of NO via nitrite, NO’s reaction 

product in oxygenated media (eqs 1–3): 

2NO + O2 ! 2NO2    (1) 

NO + NO2 ! N2O3    (2) 

N2O3 + H2O ! 2NO2
- + 2H+    (3) 

The resulting nitrite is reacted with the sulfanilamide and N-(1-naphyl)ethylenediamine 

producing an azo dye with an absorbance maximum at 540 nm. To accurately quantify NO, 

calibration curves are constructed with a standard nitrite solution in the sample medium.38 

In theory, 1 molecule of PROLI/NO decomposes to release 2 molecules of NO, for a 

theoretical total NO release of 7.9 μmol·mg–1.37 Following synthesis, PROLI/NO was 

characterized by UV/vis spectroscopy (Figure 2.1). An observed λmax at 252 nm confirmed N-

diazeniumdiolate formation from the L-proline precursor, consistent with prior reports.37 A 

14.9 μg·mL–1 solution was prepared in 1.0 M sodium hydroxide and the molar absorptivity 

coefficient (ε) reported previously by Saavedra et al.37 at 252 nm (8.4 mM–1·cm–1) was used 

to determine a PROLI/NO concentration of 55.7 μM. If total purity were assumed, the 

concentration of this solution would be 59.5 μM, implying a relative purity of 93.5%. This 

value is also supported by the chemiluminescent NO release totals in buffers lacking 

scavenging components (i.e., PBS). 
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Figure 2.1 UV-visible spectra of 14.9 µg mL-1 PROLI/NO in 1.0 M sodium hydroxide. 
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Table 2.1 Salt concentrations (g L-1) and pH of common biological media.   

 

Media 
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pH 7.4 6.0 6.7 5.9 7.4 7.3 7.4 7.3 7.5 7.4 

CaCl2   0.37  0.20 0.14 0.14# 0.10   

MgCl2  0.30# 0.51    0.094    

Fe(NO3)3     0.0001      

MgSO4     0.98# 0.98# 0.098#    

KCl 0.20 0.37  4.5 0.40 0.40 0.40    

KH2PO4 0.54  0.56    0.060  2.5  

NaHCO3   2.5  3.7 2.2  X   

NaCl 8.1 5.3 0.96 7.5 6.4 6.5 8.0  5.0 5.0 

Na2HPO4 0.87#  0.57# 4.8# 0.11# 0.50# 0.19#   2.5# 

Citric acid   0.79        

Sodium 
gluconate  2.2         

Sodium 
acetate  5.0         

*The complete Opti-MEM formulation is proprietary, so not all components and their 
concentrations are available (those known to be present are denoted with an X).  #Denotes 
anhydrous form of salt. 
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Table 2.2 Amino acid concentrations (g L-1) of common biological media.  

*The complete Opti-MEM formulation is proprietary, so not all components and their 
concentrations are available (those known to be present are denoted with an X).  #Amino acid 
content derived from tryptone and peptone.  ‡ Amino acid content derived from brain heart 
infusion.  
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L-Alanine      0.013 0.45  0.82 0.39 

L-Arginine •HCl     0.084 0.042 0.50  0.63 0.19 

L-Asparagine •H2O      0.045 0.25  0.11 0.024 

Aspartic acid         0.58 0.23 

L-Cysteine •HCl     0.063 0.024 0.12  0.051 0.03 

L-Glutamine     0.58   X 0.0085 0.0060 

Glutamic acid      0.022   2.8 0.38 

Glycine     0.030 0.0075 0.20  0.77 0.22 

L-Histidine •HCl •H2O     0.042 0.021 0.25  0.35 0.072 

Hydroxy-L-proline      0.020     

L-Isoleucine     0.11 0.39 0.25  1.0 0.14 

L-Leucine     0.11 0.39 0.13  1.4 0.26 

L-Lysine •HCl     0.15 0.037 0.07
5  1.2 0.25 

L-Methionine     0.030 0.015 0.15  0.38 0.060 

L-Phenylalanine     0.066 0.017 0.25  0.97 0.14 

L-Proline      0.017   1.4 0.20 

L-Serine     0.042 0.026 0.20  0.42 0.018 

L-Threonine     0.095 0.018 0.60  0.34 0.042 

L-Tryptophan     0.016 0.0031 0.02
0  0.15 0.018 

L-Tyrosine •2Na •2H2O     0.10 0.026 0.37  0.24 0.072 

L-Valine     0.094 0.018 0.20  1.1 0.19 
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Table 2.3 Vitamin concentrations (mg L-1) of common biological media.   
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Ascorbic acid      0.60     

D-Biotin      0.20     

Choline chloride     4.0 5.0 1.0    

Riboflavin 
mononucleotide       0.1

0    

Folic acid     4.0 10 1.0    

Inositol     7.2 36 2.0    

Nicotinamide     4.0 0.50 1.0    

p-Aminobenzoic 
acid       1.0     

Niacin (B3)      0.50     

D-Pantothenic acid 
(B5) 

    4.0 0.20 1.0    

Pyridoxine •HCl 
(B6) 

    4.0 0.50 1.0    

Pyridoxal •HCl 
(B6) 

     0.50     

Riboflavin (B2)     0.4
0 0.20     

Thiamine •HCl     4.0 0.20     

Thiamine 
monophosphate       1.0    

Cobalamin (B12)      2.0     

*The complete Opti-MEM formulation is proprietary, so not all components and their 
concentrations are available.   
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Table 2.4 Concentrations (g L-1) of other additives in common biological media.   

 

Media 

PB
S 

Ph
ys

io
so

l 

Sa
liv

a 

U
rin

e 

D
M

EM
 41

,4
2  

M
cC

oy
’s

 42
-4

4  

L-
15

 45
 

O
pt

i-M
EM

 
46

* 

TS
B

 47
 

B
H

I 47
 

D-Glucose     4.5 3.0  X 2.5  

D+Galactose       0.90    

Creatinine    2.0       

Dextrose          3.0 

Urea    18.2       

HEPES        X   

Hypoxanthine        X   

Thymidine        X   

Phenol red •Na     0.016 0.011 0.010 X   

Pyruvic acid •Na     0.11  0.55 X   

Tyrptone         17  

Peptone      0.60   3.0  

Glutathione      0.00050     

Insulin        X   

Transferrin        X   

*The complete Opti-MEM formulation is proprietary, so not all components and their 
concentrations are available (those known to be present are denoted with an X).  #BHI also 
contains infusion from brain and heart (6.0 g L-1), peptic digest of animal tissue (6.0 g L-1), 
and pancreatic digest of gelatin (14.5 g L-1).   
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Estimated NO release totals derived from the total nitrite present in each type of media are 

given in Figure 2.2 along with totals derived from chemiluminescence detection. The total 

NO measured in PBS via the Griess assay was only 5.67 ± 0.27 µmol mg-1, ~30% lower than 

the theoretical amount and that detected via the chemiluminescence method (7.24 ± 0.04 

µmol mg-1). Of note, care was taken to add fresh PROLI/NO solution to the media quickly. 

In addition, multiple samples were analyzed to obtain standard deviations. Similar depressed 

NO levels were observed in all of the media types tested by Griess. We attribute the 

deviation between Griess and theoretical to lost (e.g., escaped) NO gas (from solution) that 

subsequently was not accounted for in the total nitrite levels. Indeed, when the headspace in a 

20 mL scintillation vial was reduced by adding 20 mL of PBS versus 15 mL, the total nitrite 

detected was increased by 44% ± 12%. Conversely, when the total buffer volume was 

decreased to 10 mL, the total nitrite recovered was reduced by 32% ± 21% (data not shown). 

The most significant decreases in measured NO levels were observed for bacterial broth (i.e., 

TSB and BHI), certain cell culture media (i.e., McCoy’s and L-15), and blood constituents 

(i.e., plasma and serum), likely the result of NO’s reaction with proteinaceous components in 

the media. Both cell culture and bacterial growth media consist of complex mixtures of 

amino acids, proteins, sugars, and vitamins of various concentrations (Tables 2.1–4). Proteins 

and other additives present in some media have been shown to interfere with the Griess assay 

previously,48-50 acting as either positive or negative interferents. For example, positive 

interferents such as NOS and hemoglobin also absorb light around 540 nm.  A number of 

other interferents including cysteine, tyrosine, ascorbate, and NADPH react with nitrite to 

negatively skew NO totals. Although interfering proteins could be removed by chemical 

precipitation or ultrafiltration,26 such solution conditioning is tedious and would be at the 
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expense of biological relevance.  As anticipated, NO release in whole blood was not 

quantifiable via Griess due to both the opacity of blood and the presence of interfering 

proteins.49 Additionally, NO and nitrite are rapidly oxidized to nitrate in whole blood.51,52 

Nevertheless, nitrite levels were measureable from plasma and serum samples extracted from 

the blood with the caveat that nitrate reductase and NADPH were used to revert any nitrate 

that formed back to nitrite. In both plasma and serum, the totals of NO detected were >15% 

lower (4.75 ± 1.1 µmol mg-1 and 4.18 ± 0.85 µmol mg-1, respectively) than that in PBS, 

indicating the challenge of using the Griess assay to determine NO levels in blood 

constituents. Indeed, NADPH has been indicated as an interferent for Griess. Furthermore, 

nitrite recovery is highly variable and dependent on enzyme activity.26,31,53 

The accurate detection of NO via the Griess assay is also concentration-dependent in 

certain types of media. While no significant differences were observed for non-proteinaceous 

media, detection in the more complex media (i.e., cell culture media and bacterial broth) 

varied significantly depending on the amount of PROLI/NO added to solution (Figure 2.3). 

For example, while the addition of a low PROLI/NO concentration (0.67 µg·mL–1) in 

DMEM yielded nitrite totals that were only 48% ± 9% of those achieved at the highest 

concentration of PROLI/NO (67 µg·mL–1), an intermediate concentration (67 µg·mL–1) 

yielded nitrite amounts that nearly matched the highest concentration (97% ± 1%). The same 

trend held true for the bacterial broth TSB. This can be attributed to the effect of scavenging, 

as the concentration of such scavengers in a given medium is constant, so adding more NO 

allows this effect to be overcome to some extent. 

Given these results, the use of Griess for quantifying NO in most biological media 

leads to questionable results. Nevertheless, the potential for high-throughput analysis via 
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microtiter plates and readers makes Griess useful for initial screening of NO-release 

materials in less complex media (e.g., PBS) so long as such data are supplemented with more 

rigorous analysis in relevant milieu prior to drawing conclusions regarding clinical utility. In 

addition, some kinetic data are obtainable via Griess by taking aliquots from a sample 

solution at set periods or moving bulk (i.e., larger) substrates (e.g., polymer-coated slides) in 

and out of a soak solution and subsequently sampling those solutions. For example, AHAP 

films soaked in select media yielded totals similar to those obtained under the same 

conditions by chemiluminescent detection (Table 2.5) after 1 week. Although the low levels 

of NO release were undetectable with chemiluminescence after 2 weeks, the accumulation of 

nitrite was still measurable by the Griess assay and indicated a continued release of NO from 

the substrates. 
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Figure 2.2 Total NO released from PROLI/NO in several types of biological media 
determined via Griess assay (solid) and chemiluminescence (striped).  Theoretical NO 
release from PROLI/NO is 7.9 µmol mg-1.  *Denotes a significant difference (p <0.05) 
relative to PBS. 
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Figure 2.3 Concentration dependence trends of PROLI/NO in different types of media 
for each technique. For the Griess assay and electrochemistry the final concentrations of 
PROLI/NO were 0.67, 6.7, and 67 µmol mg-1. For chemiluminescence analysis, the 
concentrations used were 0.167, 1.67, and 16.7 µmol mg-1. Chemiluminescence analysis 
could not be performed in bacterial broth due to frothing. Results were normalized to the 
highest concentration used for each. *Denotes a significant difference (p<0.05). 
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Table 2.5 Total NO release from AHAP xerogel films in various media at 1 and 2 weeks 
as determined using nitrite concentrations via the Griess assay. Total NO as determined using 
chemiluminescence was 1.29 µmol cm-2 in PBS at 1 week. 
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2.3.2 Chemiluminescence nitric oxide analyzer 

To facilitate real-time measurement with improved (lower) limits of detection relative 

to the Griess assay, chemiluminescence has become an important tool for solution-based NO 

analysis.18 Comparable to Griess, the measurement principles for chemiluminescence are 

straightforward. Nitric oxide is reacted with ozone in an instrument separate from the 

solution/sample vessel to form an excited-state nitrogen dioxide species that emits a photon 

upon relaxation back to the ground state. This light (600–875 nm) is detected by a 

photomultiplier tube. The reaction is both specific for and sensitive to NO with a detection 

limit approaching 0.5 ppb (0.66 pM in 100 mL) in PBS.12 

Analogous to Griess experiments, samples of PROLI/NO (0.67 µg mL-1) were 

introduced into a solution, but analyzed using chemiluminescence detection to quantify NO 

release. The media compatible with this method was limited to solutions that did not foam as 

a result of purging with nitrogen gas. Foaming due to nitrogen bubbling was most prominent 

for culture media, bacterial broth solutions, and blood (i.e., whole, plasma, serum) due to 

their high protein content.54 Unfortunately, purging the sample is necessary to both 

deoxygenate the media (to reduce autooxidation) and carry NO to the instrument, making this 

technique incompatible with samples containing high concentrations of proteins. Nitric oxide 

release totals for the compatible media are shown in Figure 2.2, allowing for direct 

comparison of total NO detected with the Griess assay as a function of media type. Of note, 

the 7.24 ± 0.04 µmol NO mg-1 measured in PBS via chemiluminescence was near the 

predicted NO payload for PROLI/NO and further confirmed the integrity of our NO donor as 

synthesized. Surprisingly, no significant differences in NO totals were observed for low 

protein content media using chemiluminescence, indicating the high accuracy of this 
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technique for measuring total NO. While L-15 cell culture media contains biomolecular 

components that may scavenge NO as described above, such reactivity was limited as 

nitrogen rapidly carried the NO from the sample vessel to the instrument upon formation.  

Another advantage of chemiluminescence detection is the ability to extract kinetic 

information about the NO release. For example, the maximum NO flux, time to the 

maximum release (tmax) and NO release half-lives (t1/2) may be determined for a particular 

NO source (e.g., macromolecular scaffold) in addition to NO totals. The kinetic NO release 

profiles from PROLI/NO in PBS, physiosol, artificial saliva, and L-15 are provided in Table 

2.6. Little variation in the NO release kinetics for PROLI/NO in these media was noted using 

chemiluminescence, with two exceptions. In artificial saliva, the maximum NO release was 

significantly lower than that in PBS (73,360 ± 1,100 vs. 86,200 ± 3,700 pmol s-1 mg-1, 

respectively).  This behavior may be attributed to a lower pH compared to PBS (6.7 vs. 7.4, 

respectively). The pH effects on NO release from N-diazeniumdiolate NO donors are well 

known.9 Likewise, the half-life of PROLI/NO was reduced by ~8 s in L-15 cell culture 

media. These variances are not surprising given the complex and varying nature of biological 

media (Tables 2.1–2.4). 

Despite the advantage of providing real-time NO-release kinetic information, the 

instrumental setup for chemiluminescence remains problematic for performing measurements 

in biological samples (e.g., undesirable frothing). In addition, the reaction vessel should be 

free of oxygen to minimize side reactions that would result in decreased NO detection.12,22 

Unfortunately, most NO-producing cells require an oxygenated environment (for survival), 

thus precluding chemiluminescence for measuring long-term, real-time cellular NO release.   
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Table 2.6 Kinetic parameters of NO release from PROLI/NO in PBS, physiosol, L-15, 
and artificial saliva. *Denotes a significant difference (p <0.05) relative to PBS. 
 
 

 tmax (s) max NO release 
(pmol s-1 mg-1) t1/2 (s) 

PBS 42 ± 1.9 86,200 ± 3,700 65 ± 3.0 

Physiosol 40 ± 1.7 81,200 ± 36 64 ± 1.1 

L-15 40 ± 1.2 96,600 ± 3,100 57 ± 0.7* 

Saliva 47 ± 5.2 73,400 ± 1,100* 74 ± 3.5 
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2.3.3 Amperometric nitric oxide sensor 

In contrast to other NO measurement approaches, electrochemical sensors allow for 

the measurement of NO in almost any biological setting, including at the single cell level.55-57 

The advantages of electrochemical detection of NO include superior spatial and temporal 

resolution, excellent limits of detection and dynamic ranges, and the potential for 

miniaturization. In addition, both the selectivity and sensitivity of the sensor are tunable by 

changing the applied potential to the working electrode and modifying the working electrode 

with a catalyst and/or permselective membrane.12,58 Due to these inherent advantages, 

amperometric sensors have been used extensively to examine both endogenous11,56,57,59-62 and 

exogenous63-65 NO production. In particular, constant potential amperometry is most often 

utilized for NO detection as it allows for sub second temporal resolution,56 and produces a 

current proportional to NO concentration upon the oxidation of NO via a three-electron 

process (eqs 4–6): 

NO ! NO+ + e-   (4) 

NO+ + OH- ! HNO2   (5) 

HNO2 + H2O ! NO3
- + 2e- + 3H+   (6) 

A NO-selective fluorosilane-based xerogel-coated platinum working electrode39 was 

used to measure the electrooxidation of NO as current at an applied potential of +700 mV vs. 

Ag/AgCl reference electrode in a well-stirred solution. Total NO release was determined by 

integrating the current vs. time response of each sample, since the charge at the electrode 

surface is proportional to the moles of analyte oxidized. The integrated totals obtained 

yielded NO concentrations significantly lower than the theoretical amount of NO released 

from PROLI/NO regardless of media. These results were not surprising since the electrode is 
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only able to oxidize a portion of the NO liberated in its vicinity due to its small size. 

Consequently, the total NO release calculated is not representative of the actual total amount 

of NO produced by PROLI/NO in bulk solution. This effect may be further compounded in 

biological media where several sinks for NO exist (e.g., proteins). While electrochemical 

sensors are clearly less suitable for characterization of potential NO donors, useful 

information may be deduced upon comparison of relative NO totals in different media and 

certainly when quantifying localized NO release (e.g., from a surface or single cell). As 

shown in Figure 2.4, the greatest total NO detected for oxygenated media was in PBS at 16 ± 

1.4 × 10-4 µmol mg-1. Unsurprisingly, the NO release from PROLI/NO in oxygenated 

physiosol was not significantly different than PBS due to their similarity; only their salt 

concentration and pH differ slightly. Nitric oxide release totals in oxygenated L-15 and Opti-

MEM cell culture media were also similar to those in PBS despite significant protein content.  

However, L-15 and Opti-MEM did not contain added fetal bovine serum (FBS) as do 

DMEM and McCoy’s, the latter resulting in NO scavenging via the presence of sulfhydryl-

containing proteins (e.g. albumin, fibrinogen, macroglobulins, glycoproteins).66,67 For 

example, the amount of NO measured in simulated wound fluid (10% v/v FBS in water) was 

significantly lower (60.4 ± 7.4 × 10-5 µmol mg-1).  In whole blood, undoubtedly the most 

complex of all the media tested, the measured NO total was the lowest (17.3 ± 4.8 × 10-7 

µmol mg-1), due to the expected reaction of NO with numerous blood proteins including 

oxyhemoglobin.68 Despite the low total NO measured in whole blood, it was still quantifiable 

using the amperometric sensor.  Nitric oxide totals in blood constituents (i.e., plasma and 

serum) were also determined with the amperometric sensor.  Due to the reduced hemoglobin 
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concentration in these samples, the NO totals were greater than those in blood (4.02 ± 1.3 × 

10-4 µmol mg-1 and 1.63 ± 0.67 × 10-4 µmol mg-1 for plasma and serum, respectively).  

While testing of deoxygenated media was limited to solutions that did not foam, NO 

levels were larger after the removal of oxygen (Figure 2.4). These results were expected 

since oxygen reacts readily with NO.69,70 In blood and other media containing high protein 

content or cells, fouling due to protein/cell adsorption may also impact the analytical 

accuracy of the measurement for electrochemical sensors.71-74 Of note, such fouling for 

sensors used in the short experiments described herein only accounted for a 3–5% decrease in 

sensitivity (data not shown), and therefore did not contribute significantly to the differences 

observed in NO totals.  

Analogous to the Griess assay and chemiluminescent detection, the accurate 

electrochemical detection of NO was also dependent on the concentration of the NO donor. 

However, a concentration-dependent effect was observed in all media (Figure 2.3). We 

attribute this effect to the finite surface area of the working electrode, whereby greater 

concentrations of the NO donor readily alter the local NO concentrations. 

As the amount of NO donor near the electrode surface influences the concomitant NO 

measured, the electrode distance from an NO source should have a similar effect on NO 

measurement. To examine this methodically, a NO-selective electrode was placed 25, 50, and 

100 µm above a NO-releasing surface (xerogel polymer cast on glass) under ambient 

conditions in PBS. The amperometric signal (current) obtained when the working electrode 

was placed 50 µm above the surface at 95 min was 45% of that recorded at 25 µm (Figure 

2.5). Similarly, the signal was reduced by 73% at 100 µm above the surface (relative to the 

25 µm working electrode placement). While such NO source/electrode distance dependence 
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will clearly impact the analytical accuracy of a measurement, it may be useful for measuring 

the diffusion of NO from surfaces or cells as a function of biological medium. 

Despite the overall low NO totals that would be quantified electrochemically, the use 

of amperometric sensors remains beneficial due to unequalled spatial and temporal 

resolutions. As such, electrochemistry has proven to be quite useful for the characterization 

of cellular NO release11,56,57,59-62 and may prove useful for measurements from small NO-

releasing surfaces. However, electrochemical NO analysis is generally the least robust of the 

methods described herein, requiring frequent calibration and performance testing to maintain 

data integrity.   
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Figure 2.4 Nitric oxide totals measured using PROLI/NO as the NO source in several 
types of biological media as determined via amperometry in oxygenated (solid) and 
deoxygenated (striped) solutions.  Theoretical NO release from PROLI/NO is 7.9 µmol mg-1.  
*Significant difference (p <0.05) relative to PBS.  #Significant difference (p <0.05) relative 
to deoxygenated solution. 
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Figure 2.5 Distance-dependent NO release from xerogel membranes in PBS detected via 
constant potential amperometry. 
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2.4 Conclusions 

The analytical measurement of NO is complex,12 requiring careful scrutiny of both 

the analysis method and its performance as a function of solution milieu. While prior work 

has described the utility of the Griess assay, chemiluminescence analyzers, and 

electrochemical sensors for measuring NO in solution, performance discrepancies as a 

function of sample type have been disregarded. The data reported here clearly demonstrate 

the significant variations between analysis technique and sample composition. As such, the 

caveats of the analytical method employed must be carefully considered with respect to 

sample, desired data (e.g., NO totals, flux, kinetics and bioavailability), and result integrity. 

 

  



 85 

2.5 References 

(1) Epstein, F. H.; Moncada, S.; Higgs, A. "The L-arginine-nitric oxide pathway." New 
England Journal of Medicine 1993, 329, 2002-2012. 

(2) Ignarro, L. J.; Buga, G. M.; Wood, K. S.; Byrns, R. E.; Chaudhuri, G. "Endothelium-
derived relaxing factor produced and released from artery and vein is nitric oxide." 
Proceedings of the National Academy of Sciences of the United States of America 1987, 84, 
9265-9269. 

(3) Moncada, S.; Radomski, M. W.; Palmer, R. M. J. "Endothelium-derived relaxing factor: 
Identification as nitric oxide and role in the control of vascular tone and platelet function." 
Biochemical Pharmacology 1988, 37, 2495-2501. 

(4) Thomas, D. D.; Ridnour, L. A.; Isenberg, J. S.; Flores-Santana, W.; Switzer, C. H.; 
Donzelli, S.; Hussain, P.; Vecoli, C.; Paolocci, N.; Ambs, S.; Colton, C. A.; Harris, C. C.; 
Roberts, D. D.; Wink, D. A. "The chemical biology of nitric oxide: Implications in cellular 
signaling." Free Radical Biology and Medicine 2008, 45, 18-31. 

(5) Snyder, S. H.; Bredt, D. S. "Biological roles of nitric oxide." Scientific American 1992, 
266. 

(6) Fang, F. C. "Perspectives series: host/pathogen interactions. Mechanisms of nitric oxide-
related antimicrobial activity." Journal of Clinical Investigation 1997, 99, 2818-2825. 

(7) Snyder, S. H. "Nitric oxide and neurons." Current Opinion in Neurobiology 1992, 2, 323-
327. 

(8) Carpenter, A. W.; Schoenfisch, M. H. "Nitric oxide release: Part II. Therapeutic 
applications." Chemical Society Reviews 2012. 

(9) Riccio, D. A.; Schoenfisch, M. H. "Nitric oxide release: Part I. Macromolecular 
scaffolds." Chemical Society Reviews 2012. 

(10) Nichols, S. P.; Storm, W. L.; Koh, A.; Schoenfisch, M. H. "Local delivery of nitric 
oxide: Targeted delivery of therapeutics to bone and connective tissues." Advanced Drug 
Delivery Reviews 2012. 



 86 

(11) Patel, B. A.; Galligan, J. J.; Swain, G. M.; Bian, X. "Electrochemical monitoring of 
nitric oxide released by myenteric neurons of the guinea pig ileum." Neurogastroenterology 
& Motility 2008, 20, 1243-1250. 

(12) Hetrick, E. M.; Schoenfisch, M. H. "Analytical chemistry of nitric oxide." Annual 
Review of Analytical Chemistry 2009, 2, 409-433. 

(13) Lowenstein, C. J.; Dinerman, J. L.; Snyder, S. H. "Nitric oxide: a physiologic 
messenger." Annals of Internal Medicine 1994, 120, 227-237. 

(14) Lancaster, J. R. "A tutorial on the diffusibility and reactivity of free nitric oxide." Nitric 
Oxide 1997, 1, 18-30. 

(15) Malinski, T.; Taha, Z.; Grunfeld, S.; Patton, S.; Kapturczak, M.; Tomboulian, P. 
"Diffusion of nitric oxide in the aorta wall monitored in situ by porphyrinic microsensors." 
Biochemical and Biophysical Research Communications 1993, 193, 1076-1082. 

(16) Wink, D. A.; Mitchell, J. B. "Chemical biology of nitric oxide: insights into regulatory, 
cytotoxic, and cytoprotective mechanisms of nitric oxide." Free Radical Biology and 
Medicine 1998, 25, 434-456. 

(17) Moncada, S.; Palmer, R. M.; Higgs, E. A. "Nitric oxide: physiology, pathophysiology, 
and pharmacology." Pharmacological Reviews 1991, 43, 109-142. 

(18) Coneski, P. N.; Schoenfisch, M. H. "Nitric oxide release: Part III. Measurement and 
reporting." Chemical Society Reviews 2012. 

(19) Griess, P. "On a new series of bodies in which nitrogen is substituted for hydrogen." 
Philosophical Transactions of the Royal Society of London 1864, 154, 667-731. 

(20) Sun, J.; Zhang, X. J.; Broderick, M.; Fein, H. "Measurement of nitric oxide production 
in biological systems by using Griess Reaction assay." Sensors 2003, 3, 276-284. 

(21) Bryan, N. S.; Grisham, M. B. "Methods to detect nitric oxide and its metabolites in 
biological samples." Free Radical Biology and Medicine 2007, 43, 645-657. 

(22) Bates, J. N. "Nitric oxide measurement by chemiluminescence detection." 
Neuroprotocols 1992, 1, 141-149. 



 87 

(23) Williams, R. J. P. "Nitric oxide in biology: its role as a ligand." Chemical Society 
Reviews 1996, 25, 77-83. 

(24) Möller, M. N.; Li, Q.; Lancaster, J. R.; Denicola, A. "Acceleration of nitric oxide 
autoxidation and nitrosation by membranes." IUBMB Life 2007, 59, 243-248. 

(25) Hall, C. N.; Garthwaite, J. "What is the real physiological NO concentration in vivo?" 
Nitric Oxide 2009, 21, 92-103. 

(26) Tsikas, D. "Analysis of nitrite and nitrate in biological fluids by assays based on the 
Griess reaction: Appraisal of the Griess reaction in the l-arginine/nitric oxide area of 
research." Journal of Chromatography B 2007, 851, 51-70. 

(27) Taha, Z. H. "Nitric oxide measurements in biological samples." Talanta 2003, 61, 3-10. 

(28) Allen, B. W.; Liu, J.; Piantadosi, C. A.; Lester, P.; Enrique, C. In Methods in 
Enzymology; Academic Press, 2005, pp 68-77. 

(29) Bedioui, F.; Villeneuve, N. "Electrochemical nitric oxide sensors for biological samples 
– Principle, selected examples and applications." Electroanalysis 2003, 15, 5-18. 

(30) Yao, D.; Vlessidis, A. G.; Evmiridis, N. P. "Determination of nitric oxide in biological 
samples." Microchimica Acta 2004, 147, 1-20. 

(31) Giustarini, D.; Rossi, R.; Milzani, A.; Dalle-Donne, I. "Nitrite and nitrate measurement 
by Griess reagent in human plasma: Evaluation of interferences and standardization." Nitric 
Oxide 2008, 440, 361-380. 

(32) Tsikas, D. "Methods of quantitative analysis of the nitric oxide metabolites nitrite and 
nitrate in human biological fluids." Free Radical Research 2005, 39, 797-815. 

(33) Guevara, I.; Iwanejko, J.; Dembinska-Kiec, A.; Pankiewicz, J.; Wanat, A.; Anna, P.; 
Golabek, I.; Bartus, S.; Malczewska-Malec, M.; Szczudlik, A. "Determination of 
nitrite/nitrate in human biological material by the simple Griess reaction." Clinica Chimica 
Acta 1998, 274, 177-188. 

(34) Arvidson, K.; Johansson, E. G. "Galvanic currents between dental alloys in vitro." 
European Journal of Oral Sciences 1985, 93, 467-473. 



 88 

(35) Kark, R. M.; Lawrence, J. R.; Pollack, V. E.; Pirani, C. L.; Muehrcke, R. C.; Silva, H. A 
Primer of Urinalysis, 2nd ed.; Hoeber Medical Division, Harper & Row: New York, 1964. 

(36) In DailyMed, NIH, Ed.; U.S. National Library of Medicine: Bethesda, 2006. 

(37) Saavedra, J. E.; Southan, G. J.; Davies, K. M.; Lundell, A.; Markou, C.; Hanson, S. R.; 
Adrie, C.; Hurford, W. E.; Zapol, W. M.; Keefer, L. K. "Localizing antithrombotic and 
vasodilatory activity with a novel, ultrafast nitric oxide donor." Journal of Medicinal 
Chemistry 1996, 39, 4361-4365. 

(38) Schmidt, H.; Kelm, M. In Methods in nitric oxide research, Feelisch, M.; Stamler, J. S., 
Eds., 1996, pp 491-497. 

(39) Shin, J. H.; Privett, B. J.; Kita, J. M.; Wightman, R. M.; Schoenfisch, M. H. "Fluorinated 
xerogel-derived microelectrodes for amperometric nitric oxide sensing." Analytical 
Chemistry 2008, 80, 6850-6859. 

(40) Shin, J. H.; Weinman, S. W.; Schoenfisch, M. H. "Sol-gel derived amperometric nitric 
oxide microsensor." Analytical Chemistry 2005, 77, 3494-3501. 

(41) Dulbecco, R.; Freeman, G. "Plaque production by the polyoma virus." Virology 1959, 8, 
396-397. 

(42) Morton, H. "A survey of commercially available tissue culture media." In Vitro Cellular 
& Developmental Biology - Plant 1970, 6, 89-108. 

(43) Patterson, M. K.; Dell'orco, R. T. "Proparation of McCoy's Medium 5A." Tissue Culture 
Association Manual 1978, 4, 737-740. 

(44) McCoy, T. A.; Maxwell, M.; Kruse, P. F. "Amino acid requirements of the Novikoff 
Hepatoma in vitro." Proceedings of the Society for Experimental Biology and Medicine. 
Society for Experimental Biology and Medicine (New York, N.Y.) 1959, 100, 115-118. 

(45) Leibovitz, A. "The growth and maintenance of tissue/cell cultures in free gas exchange 
with the atmosphere." American Journal of Epidemiology 1963, 78, 173-180. 

(46) Technologies, L., Ed., 2001. 



 89 

(47) In Difco and BBL Manual, Zimbro, M. J.; Power, D. A.; Miller, S. M.; Wilson, G. E.; 
Johnson, J. A., Eds.; Becton, Dickenson and Company: Sparks, MD, 2009. 

(48) Indika, P. N.; Bayachou, M. "Eliminating absorbing interference using the H-point 
standard addition method: case of Griess assay in the presence of interferent heme enzymes 
such as NOS." Analytical and Bioanalytical Chemistry 2004, 379, 1055-1061. 

(49) Tsikas, D.; Caidahl, K. "Recent methodological advances in the mass spectrometric 
analysis of free and protein-associated 3-nitrotyrosine in human plasma." Journal of 
Chromatography B 2005, 814, 1-9. 

(50) Fox, J. B. "Kinetics and mechanisms of the Griess reaction." Analytical Chemistry 1979, 
51, 1493-1502. 

(51) Moshage, H.; Kok, B.; Huizenga, J. R.; Jansen, P. L. "Nitrite and nitrate determinations 
in plasma: a critical evaluation." Clinical Chemistry 1995, 41, 892-896. 

(52) Miranda, K. M.; Espey, M. G.; Wink, D. A. "A rapid, simple spectrophotometric 
method for simultaneous detection of nitrate and nitrite." Nitric Oxide 2001, 5, 62-71. 

(53) Tsikas, D.; Gutzki, F.-M.; Rossa, S.; Bauer, H.; Neumann, C.; Dockendorff, K.; 
Sandmann, J.; Frolich, J. C. "Measurement of nitrite and nitrate in biological fluids by gas 
chromatography/mass spectrometry and by the Griess assay: Problems with the Griess 
Assay--solutions by gas chromatography/mass spectrometry." Analytical Biochemistry 1997, 
244, 208-220. 

(54) Kitabatake, N.; Doi, E. "Surface tension and foaming of protein solutions." Journal of 
Food Science 1982, 47, 1218-1221. 

(55) Privett, B. J.; Shin, J. H.; Schoenfisch, M. H. "Electrochemical nitric oxide sensors for 
physiological measurements." Chemical Society Reviews 2010, 39, 1925-1935. 

(56) Amatore, C.; Arbault, S.; Bouton, C.; Drapier, J. C.; Ghandour, H.; Koh, A. C. "Real‐
time amperometric analysis of reactive oxygen and nitrogen species released by single 
immunostimulated macrophages." ChemBioChem 2008, 9, 1472-1480. 

(57) Cha, W.; Tung, Y.-C.; Meyerhoff, M. E.; Takayama, S. "Patterned electrode-based 
amperometric gas sensor for direct nitric oxide detection within microfluidic devices." 
Analytical Chemistry 2010, 82, 3300-3305. 



 90 

(58) Davies, I. R.; Zhang, X.; Robert, K. P. In Methods in Enzymology; Academic Press, 
2008, pp 63-95. 

(59) Lee, Y.; Yang, J.; Rudich, S. M.; Schreiner, R. J.; Meyerhoff, M. E. "Improved planar 
amperometric nitric oxide sensor based on platinized platinum anode. 2. Direct real-time 
measurement of NO generated from porcine kidney slices in the presence of L-arginine, L-
arginine polymers, and protamine." Analytical Chemistry 2004, 76, 545-551. 

(60) Patel, B. A.; Arundell, M.; Parker, K. H.; Yeoman, M. S.; O'Hare, D. "Detection of 
nitric oxide release from single neurons in the pond snail, Lymnaea stagnalis." Analytical 
Chemistry 2006, 78, 7643-7648. 

(61) Amatore, C.; Arbault, S.; Bouton, C.; Coffi, K.; Drapier, J.-C.; Ghandour, H.; Tong, Y. 
"Monitoring in real time with a microelectrode the release of reactive oxygen and nitrogen 
species by a single macrophage stimulated by its membrane mechanical depolarization." 
ChemBioChem 2006, 7, 653-661. 

(62) Amatore, C.; Arbault, S. p.; Koh, A. C. W. "Simultaneous detection of reactive oxygen 
and nitrogen species released by a single macrophage by triple potential-step 
chronoamperometry." Analytical Chemistry 2010, 82, 1411-1419. 

(63) Riccio, D. A.; Nutz, S. T.; Schoenfisch, M. H. "Visible photolysis and amperometric 
detection of S-nitrosothiols." Analytical Chemistry 2012, 84, 851-856. 

(64) Zhang, X.; Cardosa, L.; Broderick, M.; Fein, H.; Davies, I. R. "Novel calibration method 
for nitric oxide microsensors by stoichiometrical generation of nitric oxide from SNAP." 
Electroanalysis 2000, 12, 425-428. 

(65) Hou, Y.; Wu, X.; Xie, W.; Braunschweiger, P. G.; Wang, P. G. "The synthesis and 
cytotoxicity of fructose-1-SNAP, a novel fructose conjugated S-nitroso nitric oxide donor." 
Tetrahedron Letters 2001, 42, 825-829. 

(66) Elsadek, B.; Kratz, F. "Clinical impact of serum proteins on drug delivery." Journal of 
Controlled Release 2012, 157, 4-28. 

(67) Stamler, J. S.; Simon, D. I.; Osborne, J. A.; Mullins, M. E.; Jaraki, O.; Michel, T.; 
Singel, D. J.; Loscalzo, J. "S-nitrosylation of proteins with nitric oxide: synthesis and 
characterization of biologically active compounds." Proceedings of the National Academy of 
Sciences 1992, 89, 444-448. 



 91 

(68) Kim-Shapiro, D. B.; Schechter, A. N.; Gladwin, M. T. "Unraveling the reactions of 
nitric oxide, nitrite, and hemoglobin in physiology and therapeutics." Arteriosclerosis, 
Thrombosis, and Vascular Biology 2006, 26, 697-705. 

(69) Solc, M. "Kinetics of the reaction of nitric oxide with molecular oxygen." Nature 1966, 
209, 706-706. 

(70) Lewis, R. S.; Deen, W. M. "Kinetics of the reaction of nitric oxide with oxygen in 
aqueous solutions." Chemical Research in Toxicology 1994, 7, 568-574. 

(71) Wisniewski, N.; Moussy, F.; Reichert, W. M. "Characterization of implantable 
biosensor membrane biofouling." Fresenius' Journal of Analytical Chemistry 2000, 366, 611-
621. 

(72) Wisniewski, N.; Klitzman, B.; Miller, B.; Reichert, W. M. "Decreased analyte transport 
through implanted membranes: Differentiation of biofouling from tissue effects." Journal of 
Biomedical Materials Research 2001, 57, 513-521. 

(73) Frost, M.; Meyerhoff, M. E. "In vivo chemical sensors: Tackling biocompatibility." 
Analytical Chemistry 2006, 78, 7370-7377. 

(74) Voskerician, G.; Anderson, J. In Wiley Encyclopedia of Biomedical Engineering; John 
Wiley & Sons, Inc., 2006. 
 



 92 

 

CHAPTER 3: MICROFLUIDIC DEVICE FOR AMPEROMETRIC NITRIC OXIDE 
DETECTION IN BIOLOGICAL MEDIA3 

 

3.1 Introduction 

Nitric oxide (NO), a diatomic free radical endogenously produced by a class of 

enzymes known as nitric oxide synthases (NOS),1-9 plays a role in a number of physiological 

processes including wound healing,10-12 angiogenesis,13-16 and the immune response.6,17,18 As 

might be expected, the detection and quantification of NO in vivo and from NO donor 

scaffolds has been the subject of intense research.19-25 Measuring NO in biological systems is 

challenging due to NO’s reactivity (i.e., short half-life), wide concentration range (pM to 

µM),1-3,9 and sample complexity.19 Despite such challenges, direct and indirect methods for 

measuring NO are routinely employed to determine its concentration in biological samples.26 

Often, NO is most easily quantified by measuring its oxidative byproducts (e.g., nitrite and 

nitrate). In this respect, absorbance or fluorescence may be used to quantify NO upon its 

reaction with an assay reagent after oxidation to nitrite or nitrate (i.e., NOX).3,27-29 Depending 

on the sample, pre-existing NOX species could be measured simultaneously and thus must be 

considered when determining the signal from solely NO.  For example, the Griess assay is 

widely used to quantify NO indirectly as nitrite in solution. Nitrite and nitrate levels fluctuate 
                                                
3 This chapter previously appeared as a manuscript in Analytical Chemistry. The original citation is 
as follows: Hunter, R. A.; Privett, B. J.; Henley, W. H.; Breed, E. R.; Liang, Z.; Mittal, R.; Yoseph, 
B. P.; McDunn, J. E.; Burd, E. M.; Coopersmith, C. M.; Ramsey, J. M.; Schoenfisch, M. H. 
"Microfluidic amperometric sensor for analysis of nitric oxide in whole blood." Analytical 
Chemistry 2013, 85, 6066-6072. 
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in physiological milieu,1-3,9 making real-time NO concentration determination complex.3 

Strategies for measuring NO more directly include chemiluminescence,30,31 electron 

paramagnetic resonance (EPR) spectroscopy,30,32,33 and the use of electrochemical sensors.19, 

26 Although measurement of NO by chemiluminescence or EPR allows for sensitive and 

direct analysis, the required instrumentation for these methods is expensive, requires 

extensive user training, and is difficult to adapt for analysis of challenging biological 

matrices such as whole blood.26,34 In contrast, electrochemistry allows for real-time 

measurement of NO in physiological media using a sensor platform that is tunable (i.e., 

sensor style, geometry, material, and size) based on the application at a generally low 

cost.19,20,22,26,32,35-48 For biomedical use, electrochemical sensors are amenable to 

miniaturization and thus can facilitate both in vivo and ex vivo analysis.19,20,49,50  

A notable obstacle for measuring NO accurately in biological milieu via amperometry 

is the presence of interfering species such as nitrite, acetaminophen, ascorbic acid, uric acid, 

hydrogen sulfide and ammonium/ammonia that may also be redox active at the working 

electrode potential required for NO analysis.19,51,52 Almost all effective NO sensor designs 

include a membrane-modified working electrode to eliminate or reduce the diffusion of 

interferents and concomitant erroneous sensor response. For example, working electrodes 

have been modified with Teflon,® Nafion,® and silicon rubber membranes to restrict the 

diffusion of nitrite and larger molecules such as dopamine and ascorbic acid to the electrode 

surface, relative to NO.43,44,50,53 To simplify NO sensor fabrication, we have employed 

xerogel sensor membranes that enable straightforward modification of a number of electrode 

geometries via dip coating or casting of a sol solution.45,46 The ensuing xerogel-modified 
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sensors are characterized by superior analytical performance (i.e., sensitivity and selectivity 

for NO). 

The style of electrode platform (i.e., needle-type, planar, microfluidic) is dependent 

on the intended measuring environment. For example, needle-type sensors provide adequate 

NO sensitivity for single cell analysis.42,47 The sensor design requirements for blood analysis 

are more complex. Malinski et al. reported the fabrication of a Teflon®-coated NO 

microsensor (5 µm tip diameter) to measure NO intravascularly in human subjects before and 

after the administration of bradykinin.47 However, the clinical utility of such in vivo devices 

proved poor primarily due to biofouling (i.e., protein adsorption, platelet adhesion, and clot 

formation) that leads to erratic or unreliable sensor response.54 While ex vivo measurements 

are possible, the most common sensor designs require large sample volumes (>1 mL) and 

convection that increases background noise and negatively impacts analytical performance. 

In contrast to stand-alone sensors, the use of microfluidics allows for reduced sample 

volume and handling (e.g., elimination of mechanical convection), thus addressing the 

shortcomings of prior devices and analytical methodology required for clinical analysis.55,56 

With respect to NO, Spence et al. combined microfluidics with planar carbon ink electrodes 

to measure NO from stimulated endothelial cells.57 The device was fabricated using 

polydimethylsiloxane (PDMS) channel walls. Recognizing that NO and other gases may 

diffuse through PDMS, Cha et al. reported the fabrication of a catalytic gold/indium tin oxide 

microfluidic NO sensor using polyethylene tetraphthalate/polyurethane channels to minimize 

loss of NO.58 Despite suitable analytical performance in phosphate buffered saline (PBS; 10 

pA nM-1 NO), the design of this device was complex, requiring hand assembly.   
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Herein, we report the use of sol-gel chemistry and standard photolithographic 

techniques amenable to rapid, reproducible, and inexpensive fabrication of microfluidic NO 

sensors. The analytical performance of the device is demonstrated in simulated wound fluid 

and whole blood, indicating the ability to measure NO in complex media. Toward more 

clinical applications, the device is used to monitor NO concentrations in a murine model of 

sepsis confirming that NO levels increase during a systemic inflammatory response to 

infection.2,3 

 

3.2 Materials and Methods 

 (Heptadecafluoro-1,1,2,2-tetrahydrodecyl)trimethoxysilane (17FTMS) was 

purchased from Gelest (Tullytown, PA). Methyltrimethoxysilane (MTMOS), (3-

aminopropyl)triethoxysilane (APTES), ascorbic acid, acetaminophen, sodium sulfide and 

sodium nitrite were purchased from Sigma (St. Louis, MO).  Ammonium hydroxide solution 

(14.8 M) was purchased from Fisher Scientific (Hampton, NH).  Nitric oxide gas (99.5%) 

was purchased from Praxair (Danbury, CT).  Nitrogen and argon gases were purchased from 

National Welders Supply (Raleigh, NC). Other solvents and chemicals were analytical-

reagent grade and used as received. A Millipore Milli-Q UV Gradient A10 System (Bedford, 

MA) was used to purify distilled water to a final resistivity of 18.2 MΩ·cm and a total 

organic content of <6 ppb. Simulated wound fluid was produced by diluting fetal bovine 

serum (FBS) obtained from Sigma in distilled water (1:10, v:v). Whole porcine blood was 

drawn into 1:10 (v:v) 40 mM ethylenediaminetetraacetic acid (EDTA) from healthy pigs at 

the Francis Owen Blood Lab (University of North Carolina, Chapel Hill, NC).  
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3.2.1 Preparation of working electrodes 

Planar platinum (Pt) electrodes were patterned onto on a 0.9 mm thick SCHOTT 

B270 glass substrate (Telic Company; Valencia, CA) via photolithography and evaporative 

metal deposition. Glass substrates (100 × 100 mm) were cleaned with distilled water, 

isopropanol, nitrogen gas, and then dried at 95 °C for 5 min. After cooling to room 

temperature, Microposit S1813 photoresist (Microchem Corp.; Newton, MA) was deposited 

via spincoating at 3000 rpm for 45 s.  The substrate was then soft-baked at 115 °C for 2 min. 

An electrode pattern was exposed through a polyester film/emulsion photomask (Infinite 

Graphics Incorporated; Minneapolis, MN) for 10 s using a Karl SÜSS MA6/BA6 mask 

aligner (hard contact, 100 µm gap) equipped with a 350 W UV lamp (SÜSS Microtec; 

Garching, Germany). The pattern was developed in an AZ400 alkaline developer (1:3 

dilution in water) for 1 min, rinsed with distilled water, dried with nitrogen gas, and then 

baked on a hotplate at 115 °C for 2 min. The exposed glass surface was oxygen plasma 

cleaned at 100 W for 1 min. To fabricate working electrodes, 10 nm Ti and 150 nm Pt were 

deposited in a Kurt J. Lesker PVD 75 magnetron sputtering system (Clairton, PA). The 

substrate was soaked in acetone to liftoff the remaining photoresist and excess metal 

resulting in 100 µm wide patterned Pt electrodes on glass. 

3.2.2 Membrane synthesis and deposition 

Working electrode-modified glass substrates were rinsed with distilled water, dried 

with nitrogen, and heated to 95 °C for 5 min.  Substrates were then oxygen plasma cleaned at 

100 W for 1 min. The membrane deposition regions were masked by evenly applying 1002F-

50 photoresist (prepared as previously described59) by spin-coating at 500 rpm for 10 s, 3000 

rpm for 40 s, and heating at 95 °C for 1 h on a hot plate. The electrode pattern was exposed 
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through a chrome mask for 80 s using the mask aligner. Following exposure, the substrate 

was baked on a hot plate at 95 °C for 10 min. The pattern was developed in SU-8 developer 

(Microchem Corp.; Newton, MA) for 6 min, rinsed with isopropanol, dried with nitrogen, 

and baked on a hotplate at 115 °C for an additional 10 min. An adhesion layer of APTES was 

deposited via three 5 mL injections at 130 °C using a LabKote vapor deposition system 

(Yield Engineering Systems; Lawrence, CA). The fluoroalkoxysilane membrane solution 

was prepared via the acid catalyzed hydrolysis and condensation of 17FTMS and MTMOS as 

reported previously.45 Briefly, 600 µL absolute ethanol, 120 µL MTMOS, 30 µL 17FTMS, 

160 µL distilled water, and 10 µL 0.5 M HCl were added sequentially to a 1.5 mL micro 

centrifuge tube with vigorous mixing between the addition of each component. This solution 

was then vortexed for 1 h. Working with 16 electrode batches, 30 µL of the sol solution was 

spread-cast across the working electrodes using a pipette tip for 1 min to ensure even coating.  

The xerogel-coated substrate was then dried overnight under ambient conditions to facilitate 

adequate curing. The 1002F-50 photoresist was removed by soaking the substrate for 1 h in 

distilled water. Membrane thickness was characterized using a P15 Profilometer (KLA-

Tencor Corp.; San Jose, CA). 

3.2.3 Microfluidic device fabrication 

Reference electrodes were fabricated on separate glass microscope slides. The slides 

were oxygen plasma cleaned (100 W, 5 min) and masked with tape so that only the middle 

third of each slide remained exposed. Reference electrodes were deposited in this region by 

first sputtering a 10 nm Ti adhesion layer followed by a ~1 µm Ag layer in the magnetron 

sputtering system. To form channel walls, two parallel strips of 6.3 mm double-sided 

Kapton® polyimide tape (90 µm thick, KaptonTape.com) were applied ~3 mm apart and 
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perpendicular to the Pt electrodes on the working electrode substrate. The reference electrode 

slide was then bonded to the working electrode substrate (reference electrode facing down) 

by aligning and clamping the components together with spring clamps and heating at 100 °C 

for 5 min. After the ends of the channel were sealed, 8 mm diameter inlet/outlet reservoirs 

were affixed to the device using a high-strength, chemical-resistant epoxy (Loctite® 

Professional Heavy Duty 5 min; Westlake, OH). Electrical wires were soldered directly to 

the solder-on pads of each electrode facilitating an electrical connection to the potentiostat. 

Prior to using the device to measure NO, the Ag electrode was chemically oxidized by 

reaction in 50 mM ferric chloride for 10 s to create a pseudo-reference/counter electrode. 

Following this process, the device channel was rinsed with distilled water. 

3.2.4 Microfluidic device characterization 

To evaluate the performance of the microfluidic device, the working and 

reference/counter electrodes were connected to a CH Instruments 1030A 8-channel 

potentiostat (Austin, TX).  Gravity solution flow (~100 µL min-1) was employed to move 

sample through the device by attaching a 40 mm piece of Tygon® tubing to the inlet 

reservoir. This location served as the introduction site. Prior to sample analysis, the device 

was polarized at 700 mV vs. the AgCl pseudo-reference/counter electrode for up to 1 h in 

PBS. To calibrate the device, a saturated NO standard solution (prepared by purging 

deaerated PBS with NO gas for ~10 min resulting in a 1.9 mM solution of NO) was diluted 

with PBS and introduced into the inlet reservoir. To assess the selectivity of the sensor for 

NO, separate solutions of nitrite, acetaminophen, ascorbic acid, uric acid, hydrogen sulfide, 

ammonia/ammonium, and peroxynitrite (protonated and deprotonated) were injected into the 

device. The sensitivity of the microfluidic sensor to NO was also tested in both simulated 
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wound fluid (10% v/v fetal bovine serum in water) and anti-coagulated porcine whole blood. 

In these experiments, select volumes of the saturated NO solution were added to 2 mL 

aliquots of blood, mixed briefly, and added to the sample reservoir. For wound fluid testing, 

increasing volumes of saturated NO were added to 30 mL of wound fluid, mixed, and added 

to the sample reservoir.  

3.2.5 Animals 

Murine sepsis experiments were performed using C57Bl6/J mice that had free access 

to food and water, and were maintained on a 12 h light/dark schedule.  Animal studies were 

performed in accordance with National Institutes of Health Guidelines and approved by the 

Emory University Institutional Animal Care and Use Committee (IACUC). To initiate 

pneumonia-induced sepsis, mice were anesthetized using isoflurane and then received a mid-

line cervical incision. A total of 40 µL of Pseudomonas aeruginosa (ATCC 27853) 

suspended in normal saline was then introduced by direct intratracheal installation using a 

28-gauge needle, corresponding to 2–4 x 107 colony-forming units.60,61 To enhance delivery 

of the bacteria into the lungs, mice were held vertically for 10 s. All mice received a 

subcutaneous injection of saline (1 mL) post-operatively to compensate for insensible fluid 

losses. For NO measurement, 250 µL of blood was obtained via cardiac puncture (while the 

animals were under anesthesia) at the time of sacrifice. The blood was immediately 

transferred to an EDTA tube, mixed, and injected onto the sample port of the microfluidic 

device. Blood samples from control mice in the absence of bacteria exposure were used as 

the 0 h time point for NO analysis and were run throughout the experiment. Additionally, all 

sensors were calibrated before, during, and after animal experiments. 
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3.2.6 Statistical analysis 

Murine sepsis data were analyzed using OriginPro 7.0 (OriginLab; Northampton, 

MA) and presented as mean ± standard error of the mean. Comparisons between groups were 

performed using the Wilcoxon rank-sum test with P < 0.05 considered to be statistically 

significant. 

 

3.3 Results and Discussion 

Working electrode compositions for NO analysis have spanned many materials 

including carbon ink,57 gold/indium tin oxide,62 and platinum.46,63 Platinum (Pt) working 

electrodes were utilized for this study due to availability, compatibility with our 

microfabrication equipment, and inherent robustness for sensor applications. Working 

electrodes were deposited by metal evaporation using standard photolithographic techniques. 

Clean glass was first modified with a thin (10 nm) layer of Ti to improve the adhesion of Pt 

at the desired thickness (150 nm), with metal thickness monitored using a quartz crystal 

microbalance. 

Prior to xerogel modification, an ethanol-resistant photoresist (1002F-50) mask was 

applied over the entire substrate to enable selective deposition of the membrane solution over 

only the working electrodes after UV exposure and processing.  To ensure selectivity for NO 

over interfering species, a 20% (v/v) 17FTMS-MTMOS fluorinated alkoxysilane xerogel 

membrane was deposited onto the microfabricated working electrodes. Selectivity for NO 

using xerogel sensor membranes was modified slightly from what we reported previously for 

Pt-coated tungsten conical wire electrodes.45 Of note, spread-casting of the sol was necessary 

to enable reproducible coating of the planar Pt electrodes; dip-coating of this substrate (in 

sol) did not allow for sufficient control over the ensuing xerogel thickness. The spread-
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casting process consistently produced xerogel membranes that were 129 ± 59 nm thick, 

robust (i.e., scratch resistant) and capable of withstanding subsequent solution immersion (for 

use as sensors) without delamination or cracking of the films. 

Before microfluidic device fabrication, the xerogel-coated Pt electrodes were 

characterized with respect to NO sensitivity and selectivity over common interferents in a 

stirred solution of PBS.  An unforeseen benefit of the cast NO-selective membrane was 

reduced background signal and noise while making measurements. While the sensitivity of 

the membrane-coated Pt electrodes to NO was reduced by ~10% relative to bare electrodes 

(2.2 to 2.0 pA nM-1 NO, respectively), the decreased noise allowed for an improved limit of 

detection (260 vs. 6 nM NO for bare vs. xerogel-coated, respectively). Analogous to our 

previous wire-based electrodes,45 the sensitivity of the xerogel-modified electrodes to NO 

was ~4 orders of magnitude greater than any of the interferents tested (nitrite, ascorbic acid, 

acetaminophen, uric acid, hydrogen sulfide, ammonia/ammonium). 

A microfluidic device was fabricated by placing a glass substrate patterned with a Ag 

reference electrode on top of a ~3 mm wide microfluidic channel formed by applying two 

strips of double-sided Kapton® polyimide tape (~90 µm thick) across the working electrode 

substrate.  A cutaway illustration of the device fabricated in the manner is shown in Figure 

3.1, with a cross-section given in Figure 3.2. A deep, wide channel was chosen for this 

design to allow for adequate flow of more viscous biological fluids like blood or plasma. The 

addition and removal of sample were accomplished by fixing glass (8 mm diameter) 

reservoirs over the inlet and outlet vias with epoxy.  

The fully assembled device was characterized using constant potential amperometry 

at a working electrode potential of +700 mV vs. Ag/AgCl pseudo-reference/counter 
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electrode. To achieve a steady baseline current, the device was polarized in PBS for ~1 h 

prior to testing. Nitric oxide calibration curves were constructed by adding 1.6 µL aliquots of 

saturated NO to a PBS solution and transferring ~1 mL of this solution to the sample inlet 

reservoir of the device. Measurements were recorded upon stabilization of the oxidation 

current. The NO solution in the reservoir was then replaced with another NO solution of a 

different concentration. As shown in Figure 3.3, the response to NO for bare and membrane-

coated electrodes in the microfluidic device geometry was 2.0 and 1.4 pA nM-1 NO, 

respectively. As would be expected, the xerogel-coated electrode was characterized by a 

lower sensitivity than the bare electrode due to slowed NO diffusion across the membrane to 

the electrode surface. In addition, sensor response to NO for both the bare and coated 

electrodes was lower for the microfluidic devices relative to the entire glass substrate 

(described previously) because the channel exposes only a portion of the actual working 

electrode area patterned onto the glass. 

Despite lower sensitivity when encased within the microfluidic device, the limit of 

detection for both the bare and coated microfluidic electrodes were 880 and 840 pM NO, 

roughly 1 log lower than the same electrodes prior to device fabrication. The improved limit 

of detection is attributed to lower noise due to the elimination of bulk convection and 

oscillating magnetic field from the stir plate. Furthermore, the use of gravity flow avoids 

pulsatile noise common to peristaltic pumps. For the device configuration described, volumes 

as low as 250 µL were adequate for successful NO analysis. By integrating a pulsatile-free 

flow control device (e.g., a venturi or syringe pump) and/or reducing channel width, even 

smaller volumes are conceivable. The response of the xerogel-coated electrode to nitrite, 

ascorbic acid, acetaminophen, uric acid, hydrogen sulfide, ammonium, ammonia, and   
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Figure 3.1 A) Cutaway illustration of electrode locations and channel construction; and, 

B) fully assembled device with inlet and outlet reservoirs. 
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Figure 3.2 Illustration of device cross-section (not shown to scale). 
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Figure 3.3 Typical sensor response of bare (dotted red line) and xerogel-coated (solid 

black line) electrodes in microfluidic geometry to NO in PBS flowing at 15 µL/min. Inset 

shows NO calibration curves for bare (●) and xerogel-coated (▲) sensors. 
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Interferent  
Selectivity 

(coated) 

Selectivity 

(bare) 

Hydrogen sulfide < -6.0 -0.5 

Ammonium -5.8 -5.6 

Nitrite -5.3 -4.2 

Uric acid -5.0 -2.8 

Ascorbic acid -4.2 -2.4 

Acetaminophen -4.0 -2.7 

Ammonia -3.8 -3.8 

Peroxynitrite (ONOO-) -4.0 -2.7 

Peroxynitrite (ONOOH) -1.5 -0.5 

Table 3.1 Selectivity coefficients of common interferents for both bare and xerogel-

coated platinum working electrodes 
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peroxynitrite (both protonated and deprotonated) was exceptionally low. The difference in 

selectivity between bare and xerogel-coated platinum electrodes is given in Table 3.1. Of 

note, an improvement in selectivity over most interferents was observed with the addition of 

the xerogel membrane. One exception to the selectivity improvement was ammonia, which is 

not a concern as it wouldn’t be present in high concentrations at physiological pH (7.4). 

3.3.1 Microfluidic nitric oxide sensor response in physiological fluids 

The analytical performance (i.e., sensitivity and selectivity) of the microfluidic NO 

sensor was characterized in wound fluid and whole blood to determine clinical analysis 

potential. Despite the presence of proteins, the microfluidic NO sensor proved capable of 

measuring NO in simulated wound fluid (10% FBS in water, v/v, based on the composition 

of interstitial fluid), a clinically relevant sample for which NO analysis may prove useful due 

to NO’s role in wound healing.10-12,64 Boykin recently suggested that NO could be used as a 

prognostic biomarker for assessing wound healing if easily measured in wound extracts.64 

The microfluidic sensor responded to NO additions in the simulated wound fluid sample with 

a LOD of 18 nM, roughly 20 times higher than in PBS.  The increased NO detection limit is 

attributed to NO scavenging, as would be expected for proteinaceous solutions. Indeed, the 

LOD was increased further in whole blood. 

Measurement of NO in whole blood is believed to be difficult due to NO scavengers 

such as hemoglobin and oxygen.65-67 To calibrate NO sensitivity accurately, aliquots of a 

saturated NO solution were added to 1 mL samples of porcine blood prior to transfer into the 

microfluidic device.  As shown in Figure 3.4, the addition of saturated NO solution was 

readily measurable, producing currents proportional to the amount of NO spiked into the 

blood up to 100 µM. Of note, care was taken to minimize the period between NO injection 
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into the blood and the analysis to avoid degradation of the NO signal due to reaction with 

scavenging species present in the blood.  As shown in Figure 3.4, the signal did decay over 

time (within ~100 s), indicating the prevalence of, and problems associated with, NO 

scavenging/loss. 

Although the sensitivity to NO in blood was decreased relative to PBS (0.0035 vs. 1.4 

pA nM-1 NO), the reduced noise characteristic of the microfluidic device configuration still 

enabled a satisfactory LOD (472 nM NO).  A LOD of ~500 nM is likely sufficient for 

studying a number of NO-mediated disease states where NO concentrations have been 

reported in the µM range.2,3,36,68-71 Of note, slightly higher sensitivities (0.0125 vs. 0.0035 pA 

nM-1 NO) were observed for higher NO concentration ranges (i.e., 20–100 µM NO), likely 

attributed to the greater concentration of NO relative to potential scavengers in blood. 

3.3.2 Nitric oxide levels in sepsis 

Sepsis is a systemic inflammatory response caused by severe infection and 

characterized by a multifaceted immunologic response consisting of an initial 

hyperinflammatory phase and subsequent immunosuppression.72-75 Due to NO’s role in the 

immune response to pathogens,6,17,18 previous studies have monitored plasma concentrations 

of nitrate and nitrite—both stable end products of NO oxidation in vivo—using the Griess 

assay to assess their role as biomarkers of sepsis. As expected, large concentration changes 

were observed for severely septic patients.2,3,76 While indirect NO monitoring via the Griess 

assay may provide some insight into changes in NO dynamics throughout the progression of 

disease, blood sample processing and poor LOD preclude bedside monitoring and/or sepsis 

risk assessment (at pre-severe disease levels). In contrast, the microfluidic NO sensor 

described herein may represent a strategy for point-of-care monitoring of NO directly in 
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whole blood. To evaluate the ability to assess sepsis progression, we infected mice with a 

single but lethal (96% mortality within 48 h) dose of P. aeruginosa (2–4 x 107 colony-

forming units). A group of unmanipulated control animals (n=8) was used as the 0 h-time 

point to represent healthy or baseline blood NO concentrations. Blood was sampled from 

infected mice at 2, 6, and 24 h (n = 8, 10, and 13 animals per group, respectively) throughout 

the course of sepsis progression. As expected, blood NO concentration changes over 2, 6, and 

up to 24 h after introduction of bacteria were statistically significant, reaching 82 ± 12 µM at 

24 h (Figure 3.5). This 8-fold increase agrees with those reported previously by indirect 

detection of NOX species.2,3,76 For example, Strand et al. reported a 7-fold increase in average 

NOX concentration in human patients with sepsis (144 ± 39 µM) relative to healthy patients 

(20 ± 3 µM).2 The observed large increase in blood NO in this study is not surprising given 

the lethal bacterial dose administered. Future experiments will employ a lower, less lethal 

dose of P. aeruginosa and smaller measurement intervals, if necessary, to study the onset of 

sepsis. Additionally, the effects of other bacterial strains and antibiotic treatment on blood 

NO levels will be assessed to more fully gauge the suitability of NO as a sepsis biomarker 

and prognosis indicator upon treatment.  
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Figure 3.4 Typical microfluidic sensor response to 1 µM increases in NO concentration 

(A) and full dynamic range (B) in porcine whole blood.  
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Figure 3.5 Temporal changes in blood NO concentrations during the progression of 

sepsis in a pneumonia murine model of sepsis. Each data point represents the average ± 

standard error of the mean for a group of mice of n ≥ 8. *denotes a significant difference in 

blood NO relative to the 0 h unmanipulated group (p < 0.05). 
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3.4 Conclusions 

Herein we describe the use of standard photolithographic microfabrication techniques 

to construct a microfluidic NO sensor.  The use of a NO-selective working electrode and 

microfluidic geometry enable highly sensitive detection of NO in both PBS and more 

challenging biological matrices including simulated wound fluid and whole blood. The 

analytical performance of the microfluidic sensor was dependent on sample milieu, with 

excellent sensitivity and selectivity for NO in PBS.  As expected, the response of the device 

to NO in biological fluids was attenuated due to scavenging of NO by proteins.  

Nevertheless, the 472 nM LOD in blood is the lowest reported to date using direct 

electrochemical detection.  The microfluidic device configuration enables rapid analysis of 

NO at low concentrations and in small (~250 µL) sample volumes that may prove useful for 

studying NO’s action as a potential disease biomarker and/or therapeutic. As an example, 

whole blood NO levels changed dramatically in a pneumonia mouse model of infection 

indicating NO’s potential as a biomarker for sepsis. 
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CHAPTER 4: IMPROVED DETECTION OF S-NITROSOTHIOLS VIA VISIBLE 
PHOTOLYSIS AND AMPEROMETRIC DETECTION IN A MICROFLUIDIC 

DEVICE 
 

4.1 Introduction 

Nitric oxide (NO), a seemingly ubiquitous endogenous free radical, is intricately 

involved in a number of physiological processes including wound healing,1-4 angiogenesis,5-8 

and the immune response.9-12 As such, the detection and quantification of NO and its 

metabolites is the subject of intense investigation, especially in biological environments.13-21 

S-nitrosothiols (RSNOs), present in both low molecular weight (e.g., S-nitrosoglutathione 

and S-nitrosocysteine) and macromolecular (e.g., S-nitrosoalbumin) forms in vivo,22-29 are a 

class of metabolites believed to be the primary endogenous reservoirs and transporters of NO 

due to the nitrosation of thiols within blood plasma (which contains ~600 µM free thiols), 

cells, and tissues.30 Futhermore, RSNO concentrations have been identified as important in a 

number of disease states, including sepsis, asthma, and tuberculosis.25,31-33 While some 

RSNOs have even been employed for clinical applications (e.g., S-nitroso-N-acetyl-

penicillamine as a vasodilator),27,34 further understanding of the formation, decomposition, 

and circulating concentrations of these species in both healthy and disease states is vital as 

future therapeutic uses emerge. 

To date, nearly all RSNO measurement strategies are based on chemiluminescence, 

fluorescence, or electrochemistry.13,18,35-37 These methods rely on the indirect quantification 

of RSNOs via homolytic cleavage of the S—N bond with subsequent NO release and 
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detection. Reductive catalytic bond cleavage can be achieved via copper or other reducing 

agents (e.g., ascorbate), but requires the addition of external reagents or the immobilization 

of a catalyst.38-45 Photolysis is an alternative means of achieving S—N bond cleavage that is 

easily coupled to a detection platform. In such experiments, the frequency of light has been 

proven to be an important parameter. For example, the use of visible over ultraviolet light 

allows for efficient photolysis while avoiding the possibility of overestimation of RSNOs due 

to the generation of NO from nitrate.46-49 Riccio et al. previously reported on the use of 

visible photolysis and amperometric detection for the quantification of RSNOs in both 

phosphate buffered saline (PBS) and blood plasma.50 To achieve adequate limits of detection, 

this detection scheme required deoxygenation of samples to avoid the reaction of NO with 

oxygen. The requirement of large sample volumes (40 mL), further limited the clinical utility 

of the setup. 

In contrast, microfluidic devices permit the use of significantly reduced sample 

volumes, improving amenability to clinical analysis.51,52 The smaller sample volume also 

allows for more complete sample irradiation, thus increasing the RSNO to NO conversion 

efficiency of photolysis. Improvements in limits of detection and RSNO conversion to NO 

using a microfluidic platform have the potential for more accurate measurement of 

biologically relevant RSNO concentrations in physiological media (e.g., blood serum or 

plasma).  

Herein, we report the use of a modified microfluidic platform for enhanced visible 

photolysis and amperometric detection of S-nitrosothiols. The improved analytical 

performance of this device is demonstrated in both PBS and blood plasma. The device was 

also used to monitor the basal endogenous RSNO levels in healthy swine. 
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4.2 Materials and Methods 

  (Heptadecafluoro-1,1,2,2-tetrahydrodecyl)trimethoxysilane (17FTMS) was purchased 

from Gelest (Morrisville, PA). Methyltrimethoxysilane (MTMOS), (3-

aminopropyl)triethoxysilane (APTES), reduced l-glutathione (GSH), bovine serum albumin 

(BSA), l-cysteine-hydrochloride (Cys), and diethylene triamine pentaacetic acid (DTPA) 

were purchased from Sigma (St. Louis, MO). Nitric oxide gas (99.5% pure) was purchased 

from Praxair (Danbury, CT).  Nitrogen and argon gases were purchased from National 

Welders Supply (Raleigh, NC). A Millipore Milli-Q UV Gradient A10 System (Bedford, 

MA) was used to purify distilled water to a final resistivity of 18.2 MΩ·cm and a total 

organic content of <6 ppb. A high-power mounted 530 nm light-emitting diode (LED; model 

M530L2) and driver were purchased from Thorlabs Inc. (Newton, NJ). Other solvents and 

chemicals were analytical-reagent grade and used as received.  

4.2.1 Microfluidic device fabrication 

Devices were fabricated as previously described.15 Briefly, 150 nm thick planar 

platinum (Pt) electrodes with a 10 nm titanium seed layer were patterned onto a glass 

substrate via photolithography and evaporative metal deposition. The resulting Pt electrodes 

were 100 µm wide. To impart selectivity to NO, a xerogel membrane was applied to each 

working electrode. Following the deposition of a 1002F-50 photoresist mask, an adhesion 

layer of APTES (1% v/v in ethanol) was deposited via three passes with a spray coater. The 

substrate was then rinsed with water and dried in ambient conditions overnight. A 

fluoroalkoxysilane membrane solution was prepared via the acid catalyzed hydrolysis and 

condensation of (heptadecafluoro-1,1,2,2-tetrahydrodecyl)trimethoxysilane (17FTMS) and 
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methyltrimethoxysilane (MTMOS) as reported previously.15,21 Briefly, 600 µL absolute 

ethanol, 120 µL MTMOS, 30 µL 17FTMS, 160 µL distilled water, and 10 µL 0.5 M HCl 

were added sequentially to a 1.5 mL microcentrifuge tube with vigorous mixing between the 

addition of each component. This solution was then vortexed for 1 h. The sol solution (30 

µL) was spread-cast across the working electrodes for 1 min using a pipette tip to ensure 

even coating.  The xerogel-coated substrate was then dried overnight under ambient 

conditions to facilitate adequate curing. The 1002F-50 photoresist was removed by soaking 

the substrate for 1 h in distilled water.  

Reference electrodes were fabricated on separate glass microscope slides by 

sputtering a 10 nm Ti adhesion layer followed by a ~1 µm Ag layer in the magnetron 

sputtering system. To form channel walls, two parallel strips of 6.3 mm wide double-sided 

Kapton® polyimide tape (90 µm thick) were applied ~1 mm apart and perpendicular to the Pt 

electrodes on the working electrode substrate. The reference electrode slide was then 

clamped to the working electrode substrate bonded by heating at 100 °C for 5 min. After the 

ends of the channel were sealed, 8 mm diameter inlet/outlet reservoirs were affixed to the 

device. Prior to using the device, the Ag electrode was chemically oxidized by reaction in 50 

mM ferric chloride for 10 s to create a pseudo-reference/counter electrode. Following this 

process, the device channel was rinsed with distilled water. 

4.2.2 Preparation of S-nitrosothiols 

Low molecular weight RSNOs were prepared using a previously reported procedure.50,53 

Nitrosation of thiols was achieved by mixing 5 mM GSH or Cys dissolved in 120 mM 

sulfuric acid with an equal volume of 5 mM sodium nitrite in 20 µM EDTA. S-

nitrosoalbumin (AlbSNO) was prepared by mixing a solution of BSA (200 mg mL-1 in water) 
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with 1.5 mM sodium nitrite in 0.5 M hydrochloric acid in the dark for 30 min.24 Final 

concentrations of the RSNO solutions were determined via their UV absorption maxima at 

335 nm (ε = 503, 586, and 3869 M–1 cm–1 for S-nitrosocysteine (CysNO), S-

nitrosoglutathione (GSNO), and AlbSNO, respectively).54 Nitrosothiol solutions were 

shielded from light and stored at 4 °C prior to use to prevent premature degradation. 

4.2.3 Electrochemical analysis of S-nitrosothiols 

The working and reference/counter electrodes of the microfluidic device were 

connected to a CH Instruments 1030A 8-channel potentiostat (Austin, TX). Prior to sample 

analysis, the device was polarized at +800 mV vs. the Ag/AgCl pseudo-reference/counter 

electrode for at least 1 h in PBS with 500 µM DTPA (required to chelate free copper ion and 

avoid undesirable RSNO degradation). The LED was placed 100 mm above the device and 

focused using an adjustable biconvex lens to tune the focus and resulting spot size of the light 

upon the channel. An LED driver was used to vary light intensity. To calibrate the device, a 

saturated NO standard solution (prepared by purging deaerated PBS with NO gas for ~10 

min to yield a 1.9 mM solution of NO) was diluted with PBS and introduced into the inlet 

reservoir. Nitrosothiol samples were introduced into the device in an identical manner. The 

light intensity of the LED at the device channel was measured at 530 nm using a Newport 

Model 840-C hand-held optical power meter (Irvine, CA). Plasma was prepared by collecting 

fresh blood into 3 mL EDTA-coated Vacutainer® tubes (Becton, Dickinson and Company; 

Franklin Lakes, NJ) and centrifugation of this sample at 4 °C (1300 ×g for 10 min). 

Following introduction of plasma into the device, aliquots of each RSNO were added to 

facilitate calibration. To determine the ability to detect RSNOs added to whole blood, a 
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similar calibration was performed where RSNOs were added to blood prior to centrifugation, 

with subsequent analysis of the resulting plasma. 

4.2.4 Determination of basal S-nitrosothiols levels in blood 

Arterial blood was collected from Yucatan™ miniature swine (n=4) into 3 mL 

EDTA-coated Vacutainer® tubes. The blood was immediately centrifuged at 4 °C (1300 ×g 

for 10 min) to isolate blood plasma. This sample was subsequently run through the 

microfluidic device. Following sample introduction, the LED was turned on to facilitate 

RSNO decomposition to NO. 

 

4.3 Results and Discussion 

The microfluidic NO sensor utilized herein has been previously characterized with 

respect to blood NO analysis.15 In other works, Riccio et al. established the effectiveness of 

green (500–550 nm) light for photolysis of RSNOs with subsequent amperometric detection 

of NO. As such, initial analyses focused on optimizing a light source for incorporation of 

visible photolysis and amperometric detection of RSNOs within the microfluidic device 

platform. A 530 nm high-power LED was chosen as the ideal source due to its small size and 

amenability to tuning position, focus, and light intensity. The LED was positioned directly 

over the microfluidic channel at a distance of 100 mm to ensure complete irradiation of the 

sample prior to reaching the working electrode while also avoiding sample heating. The total 

transit time from the device inlet to the NO selective electrode was ~5 s.  

4.3.1 Optimization of LED configuration 

Low molecular weight nitrosothiol GSNO in oxygenated PBS was used to evaluate 

the effect of light intensity and irradiation area/focus. When evaluating intensity, the LED 
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light was focused to a 10 mm diameter spot centered on the inlet channel. As indicated in 

Table 4.1, greater light intensity yielded a linear increase in sensitivity while improving the 

limit of detection (attributed to greater RSNO to NO conversion with the more intense 

source). Representative current traces as a function of light intensity are given in Figure 4.1. 

To evaluate the effect of irradiating a larger portion of the channel (the channel length from 

inlet to working electrode is ~20 mm), the focus of the light was altered to create a larger 

area of irradiation, centered along the length of the channel. Spot sizes of 5, 10, and 20 mm 

in diameter produced slightly varied output powers of 34, 40, and 27 mW, respectively. 

While a significant difference in sensitivity was observed between the 10 and 20 mm spot 

diameters (22.6 ± 1.6 and 12.3 ± 1.2 pA µM-1), all sensitivities became equal when 

normalized to output power (~0.5 pA µM-1 mW-1), indicating this difference resulted from 

the change in apparent light output instead of variation in irradiation area. The optimized 

configuration was used (focused 10 mm diameter light at 100% intensity) for subsequent 

experiments. 

4.3.2 Detection of common low molecular weight and macromolecular nitrosothiols 

In addition to GSNO, the utility of this device was evaluated for sensitivity to CysNO 

and AlbSNO in oxygenated PBS (to represent a physiologically relevant system). As 

indicated in Table 2, the device exhibited identical sensitivities for both low molecular 

weight RSNOs (i.e., GSNO and CysNO; 22.6 ± 1.6 and 25.5 ± 1.3 pA µM-1, respectively), 

an expected result due to comparable molar absorptivities (ε = 17.2 and 14.9 M-1 cm-1, 

respectively). The maximum current signal was obtained after only 100 s, with linear 

responses up to 150 µM, well beyond expected in vivo concentrations. Based on the 

oxidation current measured from dilutions of a saturated NO solution, utilizing visible 



 128 

photolysis within the microfluidic device configuration allows for a ~40% conversion of 

RSNO to free NO. Compared to 7–11% conversion in a 25 mL deoxygenated solution 

reported by Riccio et al. (using chemiluminescence detection),50 this result represents a 

significant improvement compared to utilizing this method in bulk solution.  

The ability of the device to detect NO from nitrosated serum albumin (AlbSNO) was 

also evaluated, as nitrosated proteins make up the majority of RSNO species in vivo.23 Not 

surprisingly, an ~80% decrease in sensitivity was observed compared to low molecular 

weight RSNOs. The greater stability of AlbSNO relative to low molecular weight RSNOs is 

well known and attributed to the protection of the nitrosocysteine group within a 

hydrophobic pocket of the protein.22,23,29,55 Of note, albumin contains only a single free 

cysteine residue for nitrosothiol formation despite its greater size,23 making its theoretical 

NO storage/release equivalent to GSNO and CysNO. 

After normalizing for differences in irradiation power and electrode surface area, a 6–

8× improvement was observed for the low molecule weight RSNOs after 1 min irradiation, 

while the sensitivity for AlbSNO was improved by ~20×. In addition, the LOD for each was 

improved by at least 55%. Importantly, the results reported herein were obtained in 

oxygenated PBS. Further performance improvements would be expected in deoxygenated  
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Figure 4.1 Representative amperometric responses for CysNO detection at 100 (blue 

dashed-dotted, 40 mW), 75 (purple dotted, 25 mW), 50 (red dashed, 6 mW), and 25% (black 

solid, 2 mW) light intensity and 10 mm irradiation diameter.  
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Table 4.1 Effect of light intensity and irradiation area on S-nitrosoglutathione sensitivity 
in oxygenated phosphate buffered saline. Data represent the mean ± standard deviation (n≥3). 
 

Spot diameter 

(mm) 

Apparent power 

(mW) 

Sensitivity 

(pA µM-1) 

Limit of detection 

(nM) 

5 34 17.6 ± 0.9 80 

10 

40 22.6 ± 1.6 60 

25 11.7 ± 2.4 120 

6 5.0 ± 1.7 280 

2 2.9 ± 0.1 480 

0 0.6 ± 0.0 2500 

20 27 12.3 ± 1.2 110 
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solutions. Indeed, a 44% increase in current was noted for a sample of GSNO upon dilution 

in deoxygenated versus oxygenated PBS (data not shown). 

4.3.3 Detection in plasma 

To fully evaluate the utility of this device for the determination of RSNOs in 

biologically relevant systems, it was important to establish whether measurement in 

physiological milieu (i.e., whole blood and plasma) was possible. Despite the significantly 

reduced sample cross-section (~90 µm) and irradiated volume (~450 nL), detection of 

exogenous RSNOs added to whole blood was not possible, likely due to light scattering 

and/or absorbance by red blood cells. Based on complete blood cell counts obtained from 

these samples, 450 nL of blood contains an average of 2 × 106 red blood cells. Nevertheless, 

measurements of RSNOs in oxygenated plasma were possible using the microfluidic device 

whether plasma was spiked with RSNOs or the RSNOs were first added to whole blood with 

subsequent centrifugation to collect plasma.  

Compared to measurements carried out in PBS, the sensitivities and limits of 

detection in plasma were greatly reduced, with an ~80% decrease in sensitivity for all RSNO 

species evaluated as shown in Table 4-2. Identical responses were achieved regardless of 

how the RSNO was added to the samples (Figure 4-2). Samples that were frozen (−20 °C) 

and reanalyzed after 24 h exhibited a ~50% decrease in sensitivity (data not shown). Based 

on these sensitivities, theoretical limits of detection of 400, 240, and 2660 nM were achieved 

for GSNO, CysNO, and AlbSNO, respectively. This diminished response is somewhat 

expected due to the opacity of plasma relative to PBS, as well as NO scavenging and light 

scattering due to the presence of proteins.56,57 Indeed, the transmittance of 530 nm light in 

blood plasma is limited to 26%.  
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Table 4.2 Sensitivity and limit of detection of a range of S-nitrosothiol species in 
oxygenated phosphate buffered saline and plasma. Data represent the mean ± standard 
deviation (n≥3). 
 

 
PBS  Blood plasma 

RSNO 

type 

Sensitivity 

(pA µM-1) 

LOD 

(nM) 
 

Sensitivity  

(pA µM-1) 

Sensitivity 

decrease from 

PBS (%) 

LOD 

(nM) 

GSNO 22.6 ± 1.6 60  4.2 ± 1.8 82 400 

CysNO 25.5 ± 1.3 60  6.9 ± 3.2 73 240 

AlbSNO 5.0 ± 1.4 280  0.6 ± 0.2 87 2660 
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Figure 4.2 Representative amperometric responses for CysNO added directly to 

phosphate buffered saline (solid black), plasma (dashed red), and whole blood (dotted blue). 

Following addition to whole blood, the sample was centrifuged to separate plasma and 

immediately analyzed. 
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Despite the decreased sensitivity, this technique was used to determine endogenous 

RSNO levels in fresh plasma separated from blood obtained from healthy swine, with an 

average of 1.5 ± 1.0 µM determined (n=4). This concentration likely represents only low 

molecular weight RSNOs due to the elevated limit of detection for AlbSNO in plasma (2.7 

µM), yet falls within plasma RSNO concentrations determined by numerous other 

methodologies (up to 9 µM).37 

  

4.4 Conclusions 

The work presented herein represents a significant enhancement in the measurement 

of RSNO in physiological fluids using photolytic cleavage with amperometric detection of 

NO. By utilizing a microfluidic device to reduce the sample cross-section and volume, 

irradiation and resulting RSNO decomposition to NO were increased, thus improving the 

sensitivity and limit of detection for both low molecular weight and protein nitrosothiols. 

Additionally, the required analysis time was minimal (i.e., <2 min for sample irradiation and 

detection) was required. While detection of RSNOs directly in blood was not realized, 

analysis in the plasma separated from whole blood was possible with RSNO levels in healthy 

swine falling within previously reported ranges.37 Future studies should include the analysis 

of RSNO levels during disease states as well (e.g., sepsis) where both NO and RSNO 

concentrations are expected to rise.33,58-60 

Small LED sources can easily be coupled to future device designs, potentially 

allowing for simultaneous measurement of NO and RSNO in one sample. Light sources with 

greater intensity may permit the measurement of RSNO directly in whole blood, but care 

must be taken to avoid sample heating. Within whole blood, S-nitrosohemoglobin is an 
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especially relevant analyte of interest, as NO stored/transported in this form may be of 

importance to NO generation under hypoxic conditions.61-63 
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CHAPTER 5: TEMPORAL MONITORING OF NITRIC OXIDE AND 
NITROSOTHIOLS IN A PORCINE MODEL OF SEPSIS 

 

5.1 Introduction 

 Sepsis, a systemic inflammatory response syndrome (SIRS), occurs when the body’s 

normal response to infection becomes so severe or dysfunctional that it causes harm to the 

host. This dysfunction may initiate a number of physiological changes, both at the cellular 

and systemic levels, leading to severe symptoms including a dramatic increase in the 

production of pro-inflammatory cytokines. This “cytokine storm” has the potential to cause 

multiple organ dysfunction and death.1,2 A recent epidemiological study revealed that 

>750,000 cases of sepsis occur annually in the United States and account for 1.3% of all 

hospitalizations.3,4 While mortality has decreased and currently ranges from 18–30%, sepsis 

remains the leading cause of death in critically-ill patients. Recent statistics indicate that 

sepsis-related illness is increasing by 8.7% annually. In the United States alone, the cost for 

treating sepsis exceeds $16 billion per year.3,4 Clearly the need for improved understanding, 

diagnosis, and treatment of this disease and its underlying causes is highly warranted. 

Changes at the cellular level manifest a number of systemic physiological 

manifestations that may be monitored in the hospital setting. In addition to basic 

physiological metrics (e.g., lactate, base excess, heart rate), a number of potential biomarkers 

for sepsis have been proposed for diagnostic use. Indeed, the number of biomarkers 

evaluated to date is immense, with >178 independent biomarkers considered since 2010,5,6 
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due in part to the complex physiology associated with sepsis. Unfortunately, no single 

biomarker has proven both sensitive and specific enough to be routinely implemented for 

sepsis monitoring. Potential future approaches must include the evaluation of and new 

biomarkers and multi-biomarker panels for more accurate diagnosis.  

Much research has pointed to endogenous NO levels as a sepsis biomarker due to 

NO’s roles in the immune system, inflammation, and blood pressure maintenance. For 

example, many studies have indicated increased iNOS expression during the progression of 

sepsis.7-9 Additionally, a number of studies monitored changes in NO metabolites (i.e., 

nitrate, nitrite, and nitrosothiols) during sepsis using chemiluminescence or colorimetric 

detection methods.7,10-17 While reported “NO” concentrations vary and range up to ~150 µM, 

an increase in endogenous NO relative to controls has been observed in most cases. 7,15-18 

Similar to NO, nitrosothiols have been shown to induce smooth muscle relaxation19 and 

reduced platelet adhesion.20 Unlike free NO radicals, nitrosothiols do not react directly with 

metalloproteins (e.g., hemoglobin) or other radical species (e.g., superoxide), thus increasing 

their lifetime and preventing the buildup of toxic species such as peroxynitrite. The ability to 

directly measure NO and nitrosothiols in whole blood and/or plasma at the bedside may 

provide a clearer understanding of the mechanisms involved in this immune dysfunction 

given NO’s significant chemical reactivity.  

Herein, we describe the use of a microfluidic amperometric sensor to monitor 

temporal changes in NO throughout the progression of sepsis in a porcine model of cecal 

ligation and puncture (CLP). The changes in NO are compared to more traditionally 

monitored indicators in intensive care unit patients (e.g., lactate, mean arterial pressure) to 

determine the usefulness of NO as a prognostic and/or diagnostic biomarker for sepsis. In a 
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separate study, this device was fitted with a light-emitting diode (LED) to facilitate 

nitrosothiol and subsequent NO detection. Nitrosothiols levels during sepsis are directly 

compared to temporal changes in NO. 

 

5.2 Materials and Methods 

5.2.1 Microfluidic device fabrication and characterization 

Microfluidic NO sensors were fabricated as described previously.21 Briefly, 150 nm 

thick planar platinum (Pt) electrodes with a 10 nm titanium (Ti) seed layer were patterned 

onto a glass substrate via photolithography and evaporative metal deposition. The resulting 

Pt electrodes were 100 µm wide. To provide selectivity to NO, a xerogel membrane was 

applied to each working electrode. Following the deposition of 1002F-50 photoresist mask, 

an adhesion layer of (3-aminopropyl)triethoxysilane (1% v/v in ethanol) was deposited via 

three passes with a spray coater. The substrate was then rinsed with water and allowed to dry 

in ambient conditions overnight. The fluoroalkoxysilane membrane solution was prepared 

via the acid catalyzed hydrolysis and condensation of (heptadecafluoro-1,1,2,2-

tetrahydrodecyl)trimethoxysilane (17FTMS) and methyltrimethoxysilane (MTMOS).22,23 

Briefly, 600 µL absolute ethanol, 120 µL MTMOS, 30 µL 17FTMS, 160 µL distilled water, 

and 10 µL 0.5 M hydrochloric acid were added sequentially to a 1.5 mL microcentrifuge tube 

with vigorous mixing between the addition of each component. This solution was then 

vortexed for 1 h. The sol solution (30 µL) was spread-cast across the working electrodes 

using a pipette tip for 1 min to ensure even coating.  The xerogel-coated substrate was then 

dried overnight under ambient conditions to facilitate curing of the sensor membrane. The 

1002F-50 photoresist was removed by soaking the substrate for 1 h in distilled water.  
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Reference electrodes were fabricated on separate glass microscope slides by 

sputtering a 10 nm Ti adhesion layer followed by a ~1 µm Ag layer. To form channel walls, 

two parallel strips of 6.3 mm wide double-sided Kapton® polyimide tape (90 µm thick, 

KaptonTape.com) were applied ~1 mm apart and perpendicular to the Pt electrodes on the 

working electrode substrate. The reference electrode slide was then bonded to the working 

electrode substrate by clamping the components and heating at 100 °C for 5 min. After the 

ends of the channel were sealed, 8 mm diameter inlet/outlet reservoirs were affixed to the 

device. Prior to using the device, the Ag electrode was chemically oxidized by reaction in 50 

mM ferric chloride for 10 s to create a pseudo-reference/counter electrode. The device 

channel was rinsed with distilled water following this process. 

The working and reference/counter electrodes of each microfluidic device were 

connected to a CH Instruments 1030A 8-channel potentiostat (Austin, TX). Prior to sample 

analysis, the device was polarized at +800 mV vs. the Ag/AgCl pseudo-reference/counter 

electrode for at least 1 h in PBS. For nitrosothiol measurement, a 530 nm LED (Thorlabs 

Inc.; Newton, NJ) at 100% intensity was placed 100 mm above the device and focused on the 

microfluidic channel (just before the working electrode) using an adjustable biconvex lens. 

To calibrate the devices, a saturated NO standard solution (prepared by purging deaerated 

PBS with NO gas for ~10 min to yield a 1.9 mM solution of NO) was diluted with PBS and 

introduced into the inlet reservoir. For nitrosothiols, aliquots of nitrosothiols were added 

following introduction of serum into the device. 

5.2.2 Porcine model for sepsis 

All experiments were conducted in compliance with The University of North 

Carolina at Chapel Hill Institutional Animal Care and Use Committee. For temporal 
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monitoring of NO, twelve male swine were obtained from the North Carolina State 

University breeding colony in Raleigh, NC. Swine were subjected to overnight fasting prior 

to each experiment. Anesthesia was induced intramuscularly using a mixture of ketamine and 

buprenorphine (500 and 0.3 mg) and animals were administered isoflurane and intubated for 

mechanical ventilation. A femoral venous catheter was used for fluid maintenance 

throughout the duration of the study and femoral artery catheter allowed for hourly blood 

draws and constant monitoring of heart rate and mean arterial pressure. A midline 

laparotomy was performed following catheter placement. The cecum was ligated with suture 

and an incision was made to allow for removal of intestinal contents. The cecum contents 

were weighed and ~1 g fecal material per kg body weight (in 500 mL saline) was placed into 

the abdominal cavity. The cecum was then replaced in the abdominal cavity and the 

laparotomy incision was closed. Control animals (n=5) underwent a sham surgery consisting 

of a laparotomy with only cecal manipulation (i.e., no perforation). The time of cecal 

perforation was considered to be zero for the experiment. During the entire study duration, 

animals were maintained on isotonic fluids at a maintenance rate and buprenorphine was 

administered as necessary.  

For a follow-up study comparing temporal changes in NO and nitrosothiols, the 

Yucatan minipig was utilized. The CLP surgery and all other procedures were performed in 

the same manner as previously, but pain medication (i.e., buprenorphine) was administered at 

a constant low dose of 1.5 µg kg-1 h-1. 

Physiological monitoring 

Temperature, heart rate (HR), mean arterial pressure (MAP), central venous pressure 

(CVP), and electrocardiogram (ECG) were monitored throughout the duration of the 
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experiment (up to 26 h or until termination). Arterial blood (~3 mL) was drawn into 

ethylenediamine triacetic acid (EDTA)-coated Vacutainer® tubes hourly for standard 

monitoring of blood gasses and complete blood counts. For blood gas analysis, a Radiometer 

ABL800 Flex (Copenhagen, Denmark) was utilized. A Horiba scil Vet ABC hematology 

analyzer (Kyoto, Japan) was used to facilitate complete blood counts. Fresh volumes of 

blood (~500 µL) were used (immediately after collection) for the microfluidic NO analysis. 

The remaining blood was immediately centrifuged at 4 °C (1300 ×g for 10 min) to isolate 

blood serum. This sample was subsequently run through the microfluidic device. Following 

sample introduction, the LED was turned on to facilitate RSNO decomposition to NO. 

5.2.3 Statistical analysis 

Porcine sepsis data are presented as the mean ± standard error of the mean. 

Comparisons between groups and from basal levels were performed using the Wilcoxon 

rank-sum test with p <0.05 considered to be statistically significant. 

 

5.3 Results and Discussion 

The swine model was selected for this study because of their physiological similarity 

to humans compared to other models (e.g., rodents).24 In particular, their large size allows for 

routine physiological monitoring and serial blood draws. Cecal ligation and puncture was 

used to replicate the complex physiological state of human sepsis, as it mimics ruptured 

appendicitis and polymicrobial sepsis. Cecal ligation and puncture is often referred to as the 

“gold standard” in modeling sepsis because it mirrors the hemodynamic, metabolic, and 

immune responses observed in humans during sepsis.25-27  
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5.3.1 Physiological changes in a porcine model of sepsis and their effect on circulating 

nitric oxide concentrations 

 In the mixed-breed study, temporal changes in NO were monitored in order to 

compare its rate and magnitude of change to other physiological metrics. Of note, survival 

varied between control and septic groups, as shown in Figure 5.1. Similar to humans, sepsis 

in this swine model resulted in significant changes in hemodynamic and blood chemistry 

profiles. Within the control group, HR (Figure 5.2) and MAP (Figure 5.3) were maintained at 

~110 beats per minute (BPM) and ~100 mmHg, respectively. While the development of 

sepsis led to few significant changes in HR, disease progression resulted in decreased MAP 

at ~13 h post-surgery. Systemic hypotension and rapid HR are known outcomes of sepsis,28 

and others have suggested NO’s potential role in this process due to its role as a 

vasodilator.29 

Using the microfluidic NO sensor, we monitored blood NO concentrations hourly. 

Similar to previous reports using alternative detection schemes and NO metabolites (e.g., 

nitrate and nitrite), a significant increase in NO was observed over the course of the 

experiment and progression of sepsis. In general, the changes in blood NO were noted when 

other physiological metrics also began to change in favor of enhanced NO circulation. In 

contrast, NO levels in control animals decreased slightly over the 24 h experiment (Figure 

5.4). When averaged across all CLP animals (Figure 5.4A), significant increases in NO 

relative to controls were noted at 6 h. Amongst the CLP swine that survived the entire study 

duration (Figure 5.4B), a significant increase in NO relative to controls was first observed 8 h 

(40 ± 19% increase from baseline levels). Significant increases were also observed at 11, 14, 

15, and 20 h post-surgery.   
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Figure 5.1 Survival for control (solid black) versus cecal ligation and puncture (dashed 
red) swine over 24 h post-surgery. 
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Figure 5.2 Changes in heart rate of septic (") versus control (#) swine. Data are 
presented as the mean ± standard error of the mean. * denotes a significant difference relative 
to the control group at the given time point (p <0.05).  
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Figure 5.3 Changes in mean arterial pressure of septic (") versus control (#) swine. Data 
are presented as the mean ± standard error of the mean. * denotes a significant difference 
relative to the control group at the given time point (p <0.05). 
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As shown in Figure 5.4C, elevation of blood NO was even greater during severe sepsis, 

which was classified by early mortality (≤15 h survival). Within this group, a significant 

increase in NO relative to controls was apparent as early as 3 h (88 ± 33% increase from 

baseline levels). In addition to occurring earlier, this increase in blood NO was larger than 

the initial changes in survival CLP swine. At 14 (final time point), we measured a 6-fold 

increase in NO relative to baseline levels. This trend is similar to our observations in a lethal 

model of murine sepsis, where NO increased ~800% within 24 h, indicating that NO is a 

predictor of mortality.21 To more accurately compare all animals within both the control and 

septic groups, the final percent change in NO for each group was averaged, based on the last 

sample collected for each animal (Figure 5.4D). While the variation amongst CLP swine was 

large (415 ± 44% increase from baseline), NO increases were consistently greater than those 

observed for control animals (-23 ± 7% change from baseline). 

While full blood chemistry profiles (i.e., blood gasses and complete blood counts) 

were collected hourly for each animal following CLP surgery, lactate, average base excess 

(ABE), white blood cell (WBC) counts and hemoglobin concentrations were monitored most 

closely as these parameters are currently considered most relevant in the hospital setting. 

Nitric oxide production during sepsis is most often attributed to the robust immune response 

and stimulation of immune cells.14,16,30,31 Not surprisingly, the number of circulating WBCs 

increased by 133 ± 38% in control swine (Figure 5.5), peaking at 8 h following surgery. Such 

WBC behavior was expected as leukocytosis is a normal response to surgical trauma.32 

Despite the WBC surge, no increase in NO levels was noted for controls. In contrast, septic 

animals experienced an immediate and dramatic reduction in WBC counts, with counts   
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Figure 5.4 Percent change from baseline NO concentrations in septic (") versus control 
(#) swine. (A) Data from all animals; (B) Data from only animals that survived the 
experiment duration; (C) Averages of the septic animals that survived <15 h; and (D) The 
final end-of-life change for all animals. Data are presented as the mean ± standard error of 
the mean. * denotes a significant difference relative to the control group at the given time 
point (p <0.05).   
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decreasing from (13.5 ± 0.4) to (5.4 ± 1.1) × 103 cells mm-3 at the time of death for all septic 

animals. Leukopenia during sepsis has been well documented, and is not necessarily the 

result of apoptosis. Rather, studies in both rodents and swine have indicated the recruitment 

of WBC into the liver or infection loci during abdominal sepsis.33-35 While not circulating, 

these leukocytes still produce NO, and do so at concentrations up to 10-fold higher than cells 

obtained from sham animals.33 While unlikely that the NO produced from localized WBCs 

was able to circulate systemically and be detected by our device, buildup of other metabolites 

(nitrite, nitrate, nitrosothiols) is likely and the altered blood chemistry in a severely 

compromised physiological state may facilitate the regeneration of NO.36-39 

Similar to initial changes in NO levels, total hemoglobin concentrations also peaked at 5 h, 

with an increase of 63 ± 12% from baseline level in septic animals (Figure 5.6). Red blood 

cell counts increased by ~40% (data not shown), indicating hemolysis and a subsequent 

increase in free hemoglobin. Elevated concentrations of free hemoglobin (and thus heme), 

caused by the presence of blood borne pathogens,40 has been linked with an increased risk of 

mortality for patients with sepsis.41 Larsen et al. reported that mice lacking heme oxygenase-

1 had greater concentrations of circulating heme making them more susceptible to death 

following CLP-induced polymicrobial sepsis,42 attributed to the ability of heme to induce 

programmed cell death in the presence of other pro-inflammatory mediators, leading to 

multiple organ dysfunction.42,43 In addition, it is possible that increased circulating 

hemoglobin concentrations, in conjunction with the metabolic acidosis of severe sepsis, 

contributed to enhanced circulation of NO with concomitant systemic vasodilation. 
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Figure 5.5 Percent change from baseline white blood cell counts in septic (") versus 
control (#) swine. Data are presented as the mean ± standard error of the mean. * denotes a 
significant difference relative to the control group at the given time point (p <0.05).  
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Figure 5.6 Percent change from baseline hemoglobin concentrations in septic (") versus 
control (#) swine. Data are presented as the mean ± standard error of the mean. * denotes a 
significant difference relative to the control group at the given time point (p <0.05).  
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Lactate, a product of anaerobic cellular metabolism following glycolysis, becomes elevated 

during tissue hypoxia.44 Prior work has indicated that consistently increased lactate levels are 

predictive of poor patient outcomes.45,46 Base excess (or base deficit), calculated based on the 

measured carbon dioxide partial pressure (PCO2), blood pH, and bicarbonate concentration, 

has also been reported as a predictor of morbidity and mortality in patients with sepsis.46 

While the lactate and ABE levels remained consistent within the control group throughout 

the study, large changes were observed for both in the septic animals. Lactate was increased 

up to 175 ± 127% at 4 h post-CLP, reflective of the severity of this model (Figure 5.6). 

Similarly, changes in ABE were significant, with deviations from basal levels of up to -153 ± 

69% at 6 h post-surgery (Figure 5.7). Collectively, these fluctuations indicate ongoing tissue 

hypoxia and slight acidification of the blood, which may directly impact the circulating 

concentration of NO. Indeed, the lactate increase at 4 h correlated with NO increases between 

3–7 h. Lactic acidosis has previously been reported to stimulate inducible NO synthase47 and 

increases concentrations of the pro-inflammatory cytokine interleukin-6.48 Additionally, the 

slightly hypoxic conditions that contribute to increased lactate levels are optimal for the 

generation of NO from nitrite via reaction with hemoglobin.36-38 
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Figure 5.7 Percent change from baseline lactate concentrations in septic (") versus 
control (#) swine. Data are presented as the mean ± standard error of the mean. * denotes a 
significant difference relative to the control group at the given time point (p <0.05).  
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Figure 5.8 Percent change from baseline base excess in septic (") versus control (#) 
swine. Data are presented as the mean ± standard error of the mean. * denotes a significant 
difference relative to the control group at the given time point (p <0.05).  
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Table 5.1 Levels of nitric oxide, lactate, base excess, white blood cells, and hemoglobin 
at 0, 4, and 15 h post-surgery. Data are presented as the mean ± standard error of the mean. * 
denotes a significant difference relative to the control group at the given time point and ‡ 
denotes a significant difference from basal levels (p <0.05).  
 
  Time post-surgery (h) 

Analyte Group 0 4 15 

Nitric oxide 
(nM) 

Control 210 ± 40 150 ± 40 160 ± 10 

Septic 160 ± 20 350 ± 50 920 ± 250*‡ 

     

Lactate 
(mM) 

Control 1.9 ± 0.1 1.6 ± 0.2 0.7 ± 0.1‡ 

Septic 1.7 ± 0.1 2.7 ± 0.2* 4.6 ± 1.2* 

     

Average base excess 
(mM) 

Control 5.2 ± 0.1 6.0 ± 0.1 6.0 ± 0.2 

Septic 7.1 ± 0.2 4.3 ± 0.4‡ -0.8 ± 1.8*‡ 

     

White blood cells 
(103 mm-3) 

Control 13.2 ± 1.0 27.0 ± 1.9‡ 19.9 ± 1.8‡ 

Septic 13.5 ± 0.4 5.6 ± 0.5*‡ 5.4 ± 1.1*‡ 

     

Hemoglobin 
(g dL-1) 

Control 10.7 ± 0.2 11.2 ± 0.3 10.1 ± 0.3 

Septic 10.0 ± 0.1 16.0 ± 0.4*‡ 12.5 ± 1.1* 
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While nitrite was once considered a useless oxidation product of NO metabolism, 

new evidence suggests the possibility of nitrite recycling to NO under hypoxic and/or acidic 

conditions.39 Although the potential pathways/mechanisms are many and complex, the most 

likely scenarios involve the reaction of nitrite with deoxy-hemoglobin to regenerate NO 

directly or provide dinitrogen trioxide that subsequently reacts with thiol species to produce 

nitrosothiols. Nitric oxide can also form a complex with oxy-hemoglobin that may be 

oxidized to regenerate free NO in the presence of nitrogen dioxide radicals (formed via the 

reaction of nitrite with oxy-hemoglobin). Stamler et al. also demonstrated the ability of 

hemoglobin to accommodate nitrosation of its β-93-cysteine group, thus conserving the 

biological reactivity of NO by forming S-nitrosohemoglobin.49 Nitric oxide stored in this 

manner may be liberated via multiple mechanisms, most notably under hypoxic conditions.50-

52 The increased lactate and base deficit observed in our study indicate the development of 

tissue hypoxia and an increase in blood acidity, conditions that are ideal for the recycling of 

nitrite to NO. As shown in Figure 5.9, the fraction of oxy-hemoglobin decreased in the most 

severe cases of sepsis, and NO concentrations appeared to increase at a similar rate. These 

results suggest that dramatic increases in NO during the progression of sepsis are more likely 

due to nitrite accumulation and blood acidification and deoxygenation that favored the 

recycling of nitrite to NO, rather than directly from stimulated immune cells. The most 

dramatic NO elevations during severe sepsis correlate with significantly decreased MAP and 

thus mortality. 
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Figure 5.9 Correlation between changes in nitric oxide and fraction of oxyhemoglobin in 
blood for severely septic swine. 
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5.3.2 Nitrosothiols versus nitric oxide in a porcine model of sepsis 

The results from the mixed-breed swine model of sepsis indicated a possible buildup 

of byproducts of NO, which may include nitrite, nitrate, and/or nitrosothiols. As nitrosothiols 

have long been considered stable, physiological transporters of NO,19,53-56 we sought to 

monitor temporal changes in NO and nitrosothiols simultaneously. For this study, Yucatan 

miniature swine were utilized. This breed of swine is commonly used for laboratory studies 

due to decrease variability between animals.57 A previous study utilizing this breed for 

monitoring of peritoneal sepsis demonstrated the slow onset of disease over multiple days.35 

Overall, the severity of sepsis within a 24 h period was reduced in this breed of swine 

compared to the mixed-breed swine utilized in the first study. All animals in the Yucatan 

study survived the experiment (n=6 CLP, n=4 sham control). Figure 5.10 depicts the stark 

difference in NO changes between the two separate models of sepsis. While control groups 

were reproducible between studies, sepsis severity and NO levels varied greatly. Lactate 

concentrations did not increase significantly relative to controls until 20 h following CLP, 

with increases from baseline of only 35 ± 34% (Figure 5.11). In comparison, lactate levels 

were doubled at 6 h in the mixed-breed model. Increases in circulating NO concentrations 

(61 ± 14% from basal levels) also occurred at 20 h (Figure 5.12). As our mixed-breed study 

alluded to, measurable changes in circulating NO may be delayed due to the late shift in 

blood chemistry that occurred.  

Despite the delayed increase in NO, nitrosothiol levels began to increase as early at 8 

h following CLP (Figure 5.13) in the Yucatan study. At this time, serum nitrosothiol levels 

were 61 ± 21% greater than basal concentrations. An initial burst in NO produced by immune   
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Figure 5.10 Box-and-whisker plots depicting percent change in NO for control and septic 
animals in mixed-breed (A) and Yucatan (B) mini pigs. 
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Figure 5.11 Percent change from baseline lactate concentrations in septic (") versus 
control (#) Yucatan swine. Data are presented as the mean ± standard error of the mean. * 
denotes a significant difference relative to the control group at the given time point (p <0.05). 
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Figure 5.12 Percent change from baseline NO concentrations in septic (") versus control 
(#) Yucatan swine. Data are presented as the mean ± standard error of the mean. * denotes a 
significant difference relative to the control group at the given time point (p <0.05). 
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Figure 5.13 Percent change from baseline nitrosothiol concentrations in septic (") versus 
control (#) Yucatan swine. Data are presented as the mean ± standard error of the mean. * 
denotes a significant difference relative to the control group at the given time point (p <0.05). 
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cells may cause accumulation of nitrosothiols via a number of mechanisms. The most 

common routes of nitrosothiol formation requires a mixture of NO, oxygen (O2), and thiols.58 

One of many nitrosothiol formation pathways relies on the oxidation of NO by O2, where a 

peroxynitrite radical is generated that further reacts with NO to produce a nitrogen dioxide 

radical (•NO2). Nitrogen dioxide will react directly with a thiol to form a thiyl radical, that 

subsequently combines with NO to form nitrosothiol. Alternatively, •NO2 may react with 

another molecule of NO to form dinitrogen trioxide (N2O3) that directly nitrosates a thiol 

species. In the event that NO autooxidation does not take place, NO reacts directly with a 

thiol, forming an aminoxyl radical that can be oxidized to form a nitrosothiol. Following this 

initial increase in nitrosothiols concentration, their level remained relatively stable, indicating 

an early increase in NO generation. 

 

5.4 Conclusions 

 These two CLP studies using the mixed-breed and Yucatan swine indicate that NO 

and nitrosothiols play a key role in the onset, development, and outcome of sepsis. In less 

severe cases of sepsis (Yucatan swine model), nitrosothiols appear to accumulate in the blood 

12 h prior to the onset of other symptoms. While increased nitrosothiol levels do not appear 

to be linked directly to decreased blood pressure that can ultimately result in multiple organ 

dysfunction and death, the accumulation of these and other byproducts of NO production 

(e.g., nitrite) may prime the bloodstream for late-stage regeneration of NO as the blood 

chemistry becomes optimal (i.e., more acidic and hypoxic) for this process. Late production 

of large quantities of free NO was especially evident during severe sepsis, resulting in 

sizeable arterial pressure decreases and often death (n=4 animals). While NO is important for 
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the killing and clearance of bacterial pathogens during infection, its seemingly unregulated 

production in late-stage sepsis has the potential to cause significant physiological dysfuntion 

and death. 
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CHAPTER 6: NITRIC OXIDE MONITORING IN A MURINE MODEL OF 
SEPSIS—EFFECTS OF BURN INJURY AND BACTERIAL VIRULENCE 

 

6.1 Introduction 

Infection and resulting sepsis are especially common amongst patients in the 

intensive care unit due to their immunocompromised state. Pneumonia, often a ventilator-

associated infection, is the most common nosocomial (i.e., hospital acquired) infection, with 

an estimated annual incidence of 160,000 cases in the United States alone.1,2 While the 

immune response to pathogens is a normal physiological response to infection and is usually 

a tightly regulated cascade, sepsis results when the body’s response to infection becomes 

dysfunctional to the point of causing harm to tissues and organ systems. To date, sepsis 

remains the leading cause of mortality amongst critically-ill patients. In addition, the 

incidence of sepsis is increasing annually by 8.7%.3,4 As such, the significant healthcare 

burden of sepsis motivates the need for improved understanding, diagnosis, and treatment of 

sepsis and its underlying causes. 

While many types of bacteria have been implicated in nosocomial infection, 

Pseudomona aeruginosa and Klebsiella pneumonia are among the most prominent, 

particularly in ventilator-associated pneumonia.1,5,6 Infection severity may vary significantly 

depending on the virulence (i.e., degree of pathogenicity) of a particular bacterial strain.7 K. 

pneumoniae is known to be particularly virulent, sometimes resulting in immune paralysis.8 

In addition to other common virulence factors, this species of bacteria develops a thick, 
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acidic polysaccharide capsule, protecting it from phagocytosis and other immune defense 

mechanisms.9  

Physical trauma such as burn injury also causes severe immune dysfunction, 

increasing the risk of infection, sepsis, multiple organ dysfunction, and death.10 The immune 

response following trauma is characterized by an initial pro-inflammatory period and a 

subsequent anti-inflammatory phase.10,11 The early stage is similar to the systemic 

inflammatory response syndrome (SIRS) that occurs during severe infection and sepsis,12 

with the release of pro-inflammatory mediators (e.g., tumor necrosis factor, interferon 

gamma, interleukin-6, interleukin-1β).13 In the struggle to maintain homeostasis, a 

compensatory anti-inflammatory response syndrome (CARS) ensues following SIRS.11,14,15 

While limiting damage due to chronic inflammation, the CARS phase also increases a 

patient’s susceptibility to infection.6,14,16 Burn patients are especially prone to ventilator-

associated and wound infections,16,17 and the leading cause of death following burn injury is 

related to infection and sepsis.16,18  

The ability to monitor the immune response during and following trauma and 

infection is key for understanding the physiological changes that occur and evaluating 

treatment options. The measurement of endogenous nitric oxide (NO), a free radical species 

that is intricately involved with the innate immune response,19-34 may reflect the immune 

status of an organism. Indeed, the upregulation of inducible nitric oxide synthase (iNOS) 

during SIRS has been reported, in addition to the accumulation of NO byproducts in blood 

and tissue.6,20,25,35-39 Conversely, Jacob et al. reported decreased serum concentrations of 

nitrate and nitrite in trauma patients, indicating suppressed NO production resulting from 
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CARS.40 Cairns et al. reported that burn injury induced a late decrease in expression of Toll-

like receptor (TLR),41 a macrophage receptor linked with the induction of iNOS.42-44  

Until recently, direct detection of NO in whole blood was not possible, but instead 

required the measurement of its byproducts (i.e., nitrate and nitrate) or the use of complex 

instrumentation (i.e., electron paramagnetic resonance spectroscopy).45 As described in 

Chapter 3, a microfluidic amperometric sensor was developed to enable the measurement of 

NO in small volumes of blood.36 To date, the effects of bacterial virulence and trauma-

induced CARS on NO levels during infection have not been elucidated, and thus this device 

was used to study blood NO changes in a murine model of sepsis. Small animal (e.g., rodent) 

models of sepsis are particularly attractive as they permit the study of more fundamental 

mechanisms of sepsis due the availability of genetic variants and routes of infection (e.g., 

CLP, pneumonia).46-49 Direct administration of live bacteria into the trachea or nasal passage 

produces severe pneumonia that represents ventilator-associated infection.47,49,50 The effect of 

virulence is studied by comparing two separate strains of bacteria (i.e., P. aeruginosa and K. 

pneumoniae) with known pathogenicity variation. Lastly, we used a murine model of burn 

injury to examine the effect of trauma on NO levels during a late-stage infection. 

 

6.2 Materials and Methods 

6.2.1 Microfluidic device fabrication and characterization 

Devices were fabricated as described previously.36 Briefly, 150 nm thick planar 

platinum (Pt) electrodes with a 10 nm titanium (Ti) seed layer were patterned onto a glass 

substrate via photolithography and evaporative metal deposition. The resulting Pt electrodes 

were 100 µm wide. To provide selectivity to NO, a xerogel membrane was applied to each 
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working electrode. Following the deposition of 1002F-50 photoresist mask, an adhesion layer 

of (3-aminopropyl)triethoxysilane (1% v/v in ethanol) was deposited via three passes with a 

spray coater. The substrate was then rinsed with water and allowed to dry under ambient 

conditions overnight. The fluoroalkoxysilane membrane solution was prepared via the acid 

catalyzed hydrolysis and condensation of (heptadecafluoro-1,1,2,2-

tetrahydrodecyl)trimethoxysilane (17FTMS) and methyltrimethoxysilane (MTMOS) as 

reported previously.51,52 Briefly, 600 µL absolute ethanol, 120 µL MTMOS, 30 µL 17FTMS, 

160 µL distilled water, and 10 µL 0.5 M hydrochloric acid were added sequentially to a 1.5 

mL microcentrifuge tube with vigorous mixing between the addition of each component. 

This solution was then vortexed for 1 h. The sol solution (30 µL) was spread-cast across the 

working electrodes using a pipette tip for 1 min to ensure even coating.  The xerogel-coated 

substrate was then dried overnight under ambient conditions to facilitate adequate curing. 

The 1002F-50 photoresist was removed by soaking the substrate for 1 h in distilled water.  

Reference electrodes were fabricated on separate glass microscope slides by 

sputtering a 10 nm Ti adhesion layer followed by the deposition of a ~1 µm Ag layer. To 

form channel walls, two parallel strips of 6.3 mm wide double-sided Kapton® polyimide tape 

(90 µm thick) were applied ~1 mm apart and perpendicular to the Pt electrodes on the 

working electrode substrate. The reference electrode slide was then bonded to the working 

electrode substrate by clamping the components together and heating at 100 °C for 5 min. 

After the ends of the channel were sealed, 8 mm diameter inlet/outlet reservoirs were affixed 

to the device. Prior to using the device, the Ag electrode was chemically oxidized by reaction 

in 50 mM ferric chloride for 10 s to create a pseudo-reference/counter electrode. Following 

this process, the device channel was rinsed with distilled water. 
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The working and reference/counter electrodes of the microfluidic device were 

connected to a CH Instruments 1030A 8-channel potentiostat (Austin, TX). Prior to sample 

analysis, the device was polarized at +800 mV vs. the Ag/AgCl pseudo-reference/counter 

electrode for at least to 1 h in PBS. Prior to use, a saturated NO standard solution (prepared 

by purging deaerated PBS with NO gas for ~10 min to yield a 1.9 mM solution of NO) was 

diluted with PBS and used to calibrate the device. 

6.2.2 Murine model of infection with Klebsiella pneumonia and Pseudomonas aeruginosa 

To evaluate the effect of bacterial virulence, two strains were used to induce 

pneumonia: 1) intratracheal administration of 50 µL P. aeruginosa (PAK strain, 1 × 106 

colony forming units mL-1) or 2) intranasal administration of 20 µL K. pneumoniae (2 × 105 

colony forming units mL-1). Uninfected groups were administered identical volumes of 

phosphate buffered saline (PBS) containing protease peptone. At select times following 

infection, ~300 µL blood was drawn into ethylenediaminetetraacetic acid (EDTA)-coated 

microcentrifuge tubes via submandibular puncture. This blood was immediately (within 10 s) 

injected into the microfluidic device and analyzed amperometrically to determine NO 

concentrations. 

6.2.3 Murine model for sepsis and burn injury 

All protocols were performed in accordance with the National Institutes of Health 

guidelines and approved by the University of North Carolina at Chapel Hill Institutional 

Animal Care and Use Committee. Nine week-old female C57BL/6 mice weighing ~18 g 

underwent a 20% total body surface area (TBSA) burn injury as previously described.53 

Briefly, mice were anesthetized with gaseous isofluorane, their dorsal flanks shaved, and 

they received a subcutaneous injection of morphine sulphate prior to receiving a full-
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thickness burn with 4 applications of a copper rod heated in boiling water. Following burn 

injury, mice were resuscitated via an intraperitoneal injection of lactated Ringer’s solution. 

Throughout the experiment duration, mice were monitored and received morphine in their 

drinking water (0.02 mg mL-1; 4 mg kg-1 body weight per day) ad libitum. Sham (0% TBSA) 

mice also underwent these treatments as described, except the application of the copper rod. 

Rapamycin-treated mice received an intraperitoneal injection of rapamycin (4 mg kg-1) 5 d 

prior to burn injury, with continued daily treatment following injury. 

At 14 d following burn injury, pneumonia was induced via the intratracheal 

administration of 50 µL Pseudomonas aeruginosa (PAK strain, 1 × 106 colony forming units 

mL-1) following sedation via Avertin. Uninfected groups were administered 50 µL PBS with 

protease peptone in the same manner. At 48 h following infection, ~300 µL blood was drawn 

into EDTA-coated microcentrifuge tubes via submandibular puncture. This blood was 

immediately injected into the microfluidic device and analyzed amperometrically to 

determine NO concentrations. 

6.2.4 Statistical analysis 

An unpaired, two-sided Student’s t-test was used to determine statistical significant 

between groups, with p <0.05 considered to be significant. 

 

6.3 Results and Discussion 

6.3.1 Nitric oxide levels during systemic infection and the effect of virulence 

 Following infection with P. aeruginosa, blood NO levels were monitored at 1, 3, and 

7 d. At the dose of bacteria administered (1 × 106 colony forming units mL-1), mice were 

expected to clear the infection and fully recover without treatment. Conversely, the virulence 
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associated with K. pneumoniae in mice often leads to mortality within 72 h following 

infection54 and thus blood was drawn to monitor NO concentrations at 12, 24, and 72 h 

following infection. As shown in Figures 6.1—6.3, the blood NO levels remained relatively 

unchanged for uninfected mice in both experiments. In contrast, both infections resulted in 

greater circulating NO concentrations, although there were differences in the magnitude of 

change. Indeed, an infection of P. aeruginosa resulted in significant increases in NO at 72 h 

following infection, with a 90 ± 50% change relative to uninfected mice (Figure 6.4). By 7 d 

after the initial infection, NO concentrations returned to basal levels (Figure 6.5). For the 

more virulent K. pneumoniae, the most substantial increases in NO also occurred at 72 h 

following infection, with a much greater magnitude than that observed for P. aeruginosa at 

the same time point. Relative to uninfected mice, NO concentrations were increased by 600 ± 

110% at 72 h. These mice do not generally recover from K. pneumoniae infection,54 and the 

large increase in NO is likely attributable to the infection severity. The increase in NO 

observed in this model is similar to fatal infections that we previously reported on in both 

murine and porcine models of sepsis.36 Given these results, it is clear that circulating NO 

concentrations reflect the severity of an infection, with infections by more pathogenic 

bacteria resulting in the generation of more NO. 
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Figure 6.1 Change in blood NO concentrations for uninfected (#) and Pseudomonas 
aeruginosa infected mice ("). Data are given as mean ± standard error of the mean. For each 
time point, n = 4 for uninfected and n = 6 for infected.  
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Figure 6.2 Change in blood NO concentrations for uninfected (#) and Klebsiella 
pneumoniae infected mice (").Data are given as mean ± standard error of the mean. For each 
time point, n = 2–3.  
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Figure 6.3 Change in blood NO concentrations over time during Pseudomonas 
aeruginosa (") and Klebsiella pneumoniae (!) infections in a murine model. Shown relative 
to uninfected mice (#). Data are given as mean ± standard error of the mean. 
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Figure 6.4 Percent change in murine blood NO concentrations relative to uninfected 
animals during infections with Pseudomonas aeruginosa (green) and Klebsiella pneumoniae 
(blue).  
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Figure 6.5 Percent change in murine blood NO concentrations relative to basal levels 
during infections with Pseudomonas aeruginosa (blue) and Klebsiella pneumoniae 
(magenta). Shown relative to uninfected mice for P. aeruginosa (green) and K. pneumoniae 
(cyan). 
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6.3.2 Nitric oxide during the compensatory anti-inflammatory response syndrome following 

burn injury 

While these studies have made the link between NO and SIRS evident, the effect of 

CARS on systemic NO concentrations remains unknown. As burn injury elicits late-stage 

CARS,14,55,56 a murine burn model was used to evaluate changes in NO production during 

periods of immune suppression. A previous report by Cairns et al. demonstrated that while 

burn injury induced upregulated expression of Toll-like receptor (TLR) by macrophages 

early (3 d) following trauma, decreased TLR expression occurred at later time points (14 d).41 

Other studies have linked TLR with the induction of iNOS and concomitant release of NO by 

innate immune cells (e.g., macrophages).42-44 Indeed, TLR is directly involved in microbe 

recognition by innate immune cells (TLR2 for Gram-positive peptidoglycan and TLR4 for 

Gram-negative lipopolysaccharide) and thus mediates subsequent inflammatory signals, 

including NO.57 As shown in Figure 6.6, blood NO levels were significantly increased during 

a P. aeruginosa infection without previous trauma. At 48 h following infection, NO 

concentrations were 810 ± 180 and 370 ± 40 nM for infected and uninfected mice, 

respectively. This deviation is not surprising, as NO is known to be produced in response to 

bacteria,58 with increased endogenous NO levels having been observed during systemic 

infection.36 However, similarly increased NO levels were not observed during P. aeruginosa 

infection occurring 14 d following burn injury. Nitric oxide concentrations were 410 ± 110 

and 290 ± 80 nM for uninfected and infected mice, respectively. The differences between the 

infected and uninfected groups with burn injury were insignificant and indicate a late-stage 

effect of trauma on immune function (i.e., immune suppression) and NO production   
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Figure 6.6 Nitric oxide levels 48 h following P. aeruginosa infection in a murine model 
of sepsis, both with and without prior burn injury. Data are given as mean ± standard error of 
the mean. For each treatment, n = 3–4 and 4–6 for uninfected and infected groups, 
respectively. Statistical significance is indicated by * based on p <0.05.  
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during an infection. Of note, the NO concentrations observed in burn mice (both infected and 

uninfected) were equivalent to those in the uninfected sham mice. The dysfunctional immune 

response following burn injury has been well documented,11 with CARS frequently observed 

late after burn injury. Multiple studies have suggested that early hyperactivity of macrophage 

cells contributes to the development of immune suppression.59-61 The observed decrease in 

NO production is not surprising given the numerous immune defense systems linked to TLR, 

including the induction of iNOS.57 Reduction in NO production by innate immune cells, 

along with other aspects of immune suppression (e.g., shifts in T cell phenotype,61 altered 

cytokine profiles62), contribute to the increased infection susceptibility of burn patients. 

 Similar to burn injury, treatment with rapamycin also led to decreased NO levels 

despite infection. Rapamycin is well known for its immunosuppressive action by its blockage 

of the mammalian target of rapamycin (mTOR), which is believed to regulate the innate 

immune response.63 In particular, inhibition of mTOR has been proven to decrease NO 

production by lipopolysaccharide-stimulated macrophage cells, possibly due to decreased 

secretion of interferon-β.64 As shown in Figure 6.7, rapamycin treatment negated the 

expected NO upregulation relative to uninfected animals, both with and without prior burn 

injury. A study by Malik et al. has also demonstrated the ability of rapamycin treatment to 

inhibit the clearance of a P. aeruginosa lung infection, likely due in part to decreased 

oxidative burst from pulmonary neutrophils.65 

Nitric oxide concentrations during infection were similar between the rapamycin-

treated and burn groups. Some studies have indicated that all isoforms of NOS are 

upregulated during severe infection and sepsis,66,67 but our studies suggest the iNOS is the  
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Figure 6.7 Percent change in NO relative to uninfected mice during Pseudomonas 
aeruginosa with and without 14 d prior burn injury and after rapamycin treatment. Each 
treatment group has a separate uninfected control group. For each treatment, n = 3–4 and 3–6 
for uninfected and infected groups, respectively.  
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major contributor to NO production. While the physiological response to burn trauma and the 

development of immune suppression are complex, modulation of NO release may be key in 

improving patient outcomes. Especially during CARS, supplementing endogenous NO 

production (via NO-release vehicles or modulation of physiological pathways to stimulate 

NO release) may prevent the spread of serious systemic infections. Diminishing the initial 

inflammatory burst that results in later immune suppression is likely of equal importance. 

 

6.4 Conclusions 

While increased levels of endogenous NO may indicate development of a severe 

infection and SIRS in otherwise healthy animals, the immune dysfunction during CARS 

caused by prior trauma (e.g., burn injury) will also significantly alter its production. As such, 

monitoring in vivo NO production may provide insight into emerging infection as well as 

immune dysfunction. As such, understanding normal circulating NO concentrations is vital to 

comprehending the immune response to infection. The clinical utility of blood NO 

measurements should be evaluated further by monitoring concentration changes at additional 

time points (i.e., more frequently) throughout the course of infection/sepsis and throughout 

the SIRS/CARS phase following trauma. Additionally, the effect of pathogenicity must be 

evaluated with the use of identical strains of varied virulence. 
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CHAPTER 7: SUMMARY AND FUTURE DIRECTIONS 

7.1 Summary of work 

 In the preceding chapters, the development of sensors for NO and nitrosothiol 

measurements was described, along with select biologically relevant applications. Most 

notably, they were used to measure the production of NO and nitrosothiols during the 

infection and inflammation associated with sepsis. Before such measurements were 

possible, it was necessary to understand the various techniques available for the 

measurement of NO and their caveats in complex biological environments. In Chapter 2, 

the three main analytical techniques for the measurement of NO (i.e., Griess assay, 

chemiluminescence, and electrochemistry) were evaluated for accuracy in variety of 

complex media, including cell/bacterial culture broths and blood (whole, serum, and 

plasma). This work was especially important given the relatively low physiological 

concentrations of NO. The Griess assay was quite useful for estimating total NO 

concentrations based on the buildup of its byproducts (i.e., nitrate and nitrite) in solution, 

but accuracy depended on the sample milieu. In addition, sample volume (and thus 

headspace within the sample vial) was important, as a large headspace volumes permitted 

the loss of NO and resulted in underestimations. A dependence on sample concentration 

was also observed. The chemiluminescence analyzer was especially useful for obtaining 

real-time kinetic information and totals. However, this technique required the use of very 

specialized equipment and was limited to non-proteinaceous media, as purging with 



 201 

nitrogen was required to carry NO to the detector. As such, scavenging effects were 

minimized due to the lack of oxygen and the limited time allowed for NO to interact with 

media components. Electrochemical detection (i.e., constant potential amperometry) 

allowed for the greatest versatility, as it could be utilized in all types of media (including 

whole blood), whether they were deoxygenated or not. Due to the small electrode size (3 

mm diameter) relative to the large volume of media (~30 mL), overall totals calculated 

were low, as detection is limited to the NO oxidized at the surface of the electrode. 

Similar to the Griess assay, a dependence on concentration and headspace volume was 

observed for electrochemistry as well. When measuring from a NO-releasing surface 

(e.g., films or cells) a distance-dependence also existed. Despite what seem like 

numerous disadvantages, electrochemical techniques provide unparalleled versatility and 

as such are ideal for measuring NO from biological samples, including cells and whole 

blood. 

 The advantages of electrochemical NO detection were exploited to develop a 

microfluidic amperometric sensor for the measurement of small volumes of biological 

fluids (e.g., blood). The fabrication and utilization of this device was described in 

Chapter 3. Standard photolithographic techniques were used to pattern working, counter, 

and reference electrodes onto glass slides. The microfluidic channels were formed using 

Kapton® tape to seal the slides together. The device was evaluated in phosphate buffered 

saline, wound fluid (10% v/v fetal bovine serum in water), and whole blood. While 

sensitivity was decreased in whole blood relative to phosphate buffered saline, limits of 

detection down to 400 nM were still achievable. Additionally, the device was selective 

against a number of important physiological interferents (i.e., nitrite, ascorbic acid, 
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acetaminophen, uric acid, hydrogen sulfide, ammonium, ammonia, and both protonated 

and deprotonated peroxynitrite). Blood samples as small as ~250 µL was measurable, 

which is especially necessary for collecting samples from small mammals (e.g., rodents). 

To demonstrate the clinical utility of the device, it was used to measure temporal changes 

in blood NO levels in a murine model of sepsis. For the lethal dose of bacteria 

administered, seven-fold increases in NO were observed over a period of 24 h. 

 In Chapter 4, the utility of the microfluidic sensor was expanded to incorperate 

the detection of S-nitrosothiols (i.e., S-nitrosoglutathione, S-nitrosocysteine, and S-

nitrosoalbumin) via visible photolysis and subsequent detection of NO. The device itself 

was identical to that detailed in Chapter 3, but with the addition of an external 530 nm 

LED. As nitrosothiols absorb light in this region of the spectrum, photolysis can be 

facilitated without interference from nitrite. The light source was tuned to achieve 

efficient nitrosothiol photolysis and detection. As expected, increased light intensity 

yielded improved sensitivity. Irradiation area was also tuned, but light intensity varied as 

the spot size was changed, and no change in sensitivity was noted due to irradiation area 

alone. Once the optimal LED arrangement was achieved, a significant improvement in 

sensitivity and limit of detection compared to previously reported results in bulk solution 

(~40 mL) was noted due to the small sample volume and cross-section of the device. 

Indeed, a 6–20× improvement in sensitivity (depending on nitrosothiol type) was noted in 

phosphate buffered saline when utilizing the microfluidic configuration. Additionally, 

minimal analysis time (i.e., <2 min for sample irradiation and detection) was required. 

While detection of RSNOs directly in blood was not realized, analysis in the serum 
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separated from whole blood was achieved. Using this device, basal nitrosothiol levels in 

healthy swine were quantified at 1.5 ± 1.0 µM, falling within previously reported ranges. 

 The application of the microfluidic amperometric NO and nitrosothiol sensors for 

numerous animal models was described in Chapter 5. Both murine and porcine models 

for sepsis were utilized to determine the link between NO and this disease state and 

evaluate its potential as a prognostic and/or diagnostic biomarker. In order to monitor 

disease progression longitudinally, a porcine cecal ligation and puncture model for sepsis 

was chosen. Utilizing large animals allowed for the hourly collection of blood and the use 

of traditional intensive care unit monitoring (i.e., heart rate, blood pressure, body 

temperature, blood gasses, and blood cell counts). Hemodynamic trends were as 

expected, with steadily increased heart rate and decreased mean arterial pressure 

observed. In the preliminary porcine study, NO levels increased in conjunction with other 

potential indicators (e.g., lactate), but the percent change from basal levels was 

significantly more dramatic for NO. A large rise in NO concentration was observed at 

~4–5 h post-surgery. Significant increases (up to 800%) were also observed at much later 

time points, especially in animals where the model was lethal prior to 24 h. Surprising, 

circulating white blood cells counts were significantly diminished within a few hours 

following the surgery in the septic animals. A follow-up study allowed for some 

modifications, including continuous (rather than bolus) administration of lower levels of 

buprenorphine and the detection of nitrosothiols in addition to NO. The swine were also 

changed from a mixed breed to a more standardized breed, in the hopes of reducing 

variability between animals. While this breed appeared to be much more robust and 

tolerant of the procedure, the additional measurement of nitrosothiols proved promising, 
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as significant changes were noticed in septic versus control animals at ~8 h post-surgery. 

Overall, changes in lactate and NO were less dramatic relative to the first group of swine, 

with significant increases not occurring until 19 and 20 h for NO and lactate, 

respectively. This study highlighted the link between circulating NO concentrations and 

other physiological changes (e.g., blood lactate), but also indicated that metabolites of 

NO (i.e., nitrosothiols) may accumulate early in sepsis. 

 Unlike the porcine model, a murine model of sepsis is particularly useful for 

studying mechanistic details of the role of NO in sepsis and general inflammation. Thus 

far, work in this model has focused solely on the measurement of NO. The murine model 

involved the intratracheal administration of pure strains of bacteria at known 

concentrations. Initial experiments monitored NO changes over a multi-day period to 

determine its role as infection developed and resolved. This was carried out for two 

separate strains of bacteria, Pseudomona aeruginosa and Klebsiella pneumoniae, to 

determine if strain virulence had an effect on NO levels. Indeed, mice easily clear the 

dose of P. aeruginosa administered in <1 wk, while mice infected with K. pneumoniae 

usually do not recover. As such, mice infected with P. aeruginosa had increased 

concentrations of NO at 72 h following infection (91 ± 50% increase relative to controls), 

but returned to basal levels by 1 wk, indicating their ability to recover from this infection. 

Conversely, during an infection with K. pneumoniae, NO levels were increased much 

more dramatically at 72 h (600 ± 110% increase relative to controls). This infection is 

fatal, and these increases in NO are similar to those observed during a high dose P. 

aeruginosa infection (lethal within 48 h). Finally, as patients with prior trauma are 

especially prone to nosocomial infection,1,2 we sought to evaluate the effect of burn 
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injury on NO levels in this murine model of infection. As expected, an infection that 

occurred 14 d following a burn injury yielded no detectable increase in NO relative to 

uninfected animals, demonstrating the significant immunosuppressive effect of CARS 

following burn injury. While this may limit to ability to “track” the progression of an 

infection in burn patients, it does offer insight into the immune suppression that is 

occurring which must also be controlled.  

 At a more fundamental level, electrochemical sensors can also be used to measure 

NO from various cell systems. Chapter 6 detailed the use of microelectrodes to probe NO 

and CO release from cultured macrophage cells as well as snail buccal ganglia. Increases 

in NO and CO generation from RAW 264.7 macrophage cells was noted following 

stimulation with lipopolysaccharide/interferon-gamma and hemin/NADPH, respectively. 

Promotion of increased CO generation prior to iNOS stimulation resulted in reduced NO 

production, with higher hemin concentrations resulting in lower amounts of NO release. 

The cross talk between NO and CO was also obvious in snail buccal ganglia, as inhibited 

CO generation led to a significant increase in the production of NO. 

 

7.2 Future studies 

 Initial results from animal models of infection and sepsis have indicated the 

pivotal role of NO in inflammation. Monitoring of endogenous NO production may 

eventually prove to be of diagnostic and/or prognostic value to patients in the intensive 

care unit, but more systematic studies in animal models must first be carried out. In 

particular, mouse models will allow for the study of fundamental roles of NO during 

infection and following treatment. To build on the work completed thus far, future studies 



 206 

must assess whether infection with different types of bacteria has an effect on NO 

production or its duration and rate of release. For example, more virulent strains may 

induce more rapid NO release or higher concentrations, as these strains are more 

challenging to clear.3 For example, Matsumoto et al. discovered that a virulence 

regulatory factor CvfB (common in some strains of Staphylococcus aureus and 

Streptococcus pneumonia) binds RNA and plays a role in infection severity.4 

Additionally, Gram-positive bacteria must be evaluated as they induce an immune 

response via different receptors on innate immune cells.5 In particular, infections by 

Staphylococcus aureus are especially common in hospital patients.1,6 While we have 

observed that NO levels in mice decrease once the infection has been eradicated, there is 

also an interest in understanding whether antibiotic administration will produce a similar 

effect. In particular, it is necessary to understand if the use of bactericidal versus 

bacteriostatic antibiotics will produce differential effects. While bacteriostatic antibiotics 

keep bacteria in the stationary phase of growth, bactericidal agents kill >99.9% of the 

inoculum. However, the lytic action of bactericidal agents may cause an intensified 

immune response,7 thus altering NO release.  

The effect of physical trauma such as burn injury, with or without infection, is 

also of immense interest as these patients are particuarly prone to nosocomial infection. 

Even without a subsequent infection, the inflammation caused by injury may result in 

changing in NO levels over the course of many weeks following trauma.8 Indeed, while 

the SIRS/CARS phenomenon following trauma has been elucidated at discrete time 

points, it still poorly understood overall.9 The physiological response to infection 

following injury will also vary significantly depending on when exposure to bacteria 
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occurs (i.e., early or late after trauma).10,11 As such, NO levels should be monitored in 

infections that begin at varying time points following a burn or other traumatic injury. 

To date, it is unclear whether NO produced during inflammation is due solely to 

iNOS or also originates from endothelial NOS and/or neuronal NOS. While our studies 

involving rapamycin treatment revealed the ability of this drug to inhibit NO production 

via iNOS during infection, NO release was not completely diminished. In the future, the 

study of NO concentrations in iNOS knockout mice with and without infection could be 

directly compared to rapamycin treatment. Additionally, nNOS and eNOS knockout mice 

(and/or drugs to inhibit these enzymes) should be utilized to understand the role of each 

enzyme in inflammation due to infection and trauma. 

While ventilator-associated infection (pneumonia) is common in hospital patients, 

other types of infection also persist.12,13 Utilizing alternative models of sepsis in rodents, 

especially cecal ligation and puncture, will provide additional information on the role of 

NO in multiple routes of infection, as septic peritonitis and polymicrobial infections are 

common.14 Additionally, a two-hit model of sepsis may provide relevant information, as 

sepsis often occurs after bacteria exposure that follows another type of injury and/or 

inflammation.15 

In addition to building upon previous animal studies, future work will also require 

refinement of the measurement device. Most importantly, the device must be 

miniaturized in order to accommodate smaller sample volumes. The current minimum 

volume (~250 µL) prevents serial measurements in a single mouse, as drawing a large 

volume such as this induces hypovolemic shock.16 Ideally, a single drop of blood (<50 

µL) could be used for future measurements. Further tuning of selectivity and sensitivity 
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will also be important. Enhanced sensitivity would allow for detection of much smaller 

changes in NO concentrations and is most easily achieved by tuning electrode surface 

area. For example, platinization of the working electrode (with lead acetate and platinum 

black) has been utilized on disk-type microelectrodes, but not planar electrodes within a 

microfluidic device. Thickness of this platinization layer will be important, as a layer that 

is too thick may impede flow through the device. This modification may necessitate 

recessing the working electrode so it does not significantly protrude into the channel. 

Further tuning of the composition and application of the selective xerogel membrane may 

allow for a simultaneous improvement in selectivity and sensitivity. In particular, spray-

coating procedures should be evaluated, as they will allow for more even and 

reproducible coatings. 

While NO and nitrosothiol detection are currently carried out in separate devices, 

it is possible to eventually incorporate both into a single platform. The current challenge 

in achieving this lies in the inability to detect nitrosothiols in whole blood, resulting from 

significant light absorbance/scattering by red blood cells. The two main options that exist 

for addressing this problem are 1) the use of a much more intense light source and 2) the 

removal of red blood cells from the measurement entirely. While a more intense light 

source may help overcome the poor transmittance of blood, there is also a risk of sample 

heating, which will initiate non-specific nitrosothiol degradation. It is also 

disadvantageous to remove red blood cells from both the NO and nitrosothiol 

measurement, as they play an important role in NO regeneration from nitrite. A useful 

alternative would be the creation of a device that allows for detection of NO from whole 

blood with subsequent exclusion of red blood cells to allow for photolysis and detection 
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of nitrosothiols. This would be possible with the incorporation of a filter or a narrowing 

channel. Numerous examples that utilize both currently exist in the literature.17-20 Having 

a single device to make both measurements simultaneously will significantly decrease 

analysis time and increase the feasibility of future clinical implementation. 

Finally, there are a number of studies outside the scope of animal models that can 

help further elucidate the physiological roles of NO. Related to the murine sepsis studies 

that have been carried out, it is also of interest to study NO in inflammation at the cellular 

level. During in vivo studies, immune cells are routinely harvested, sorted, and analyzed 

to determine release of expression of various markers, cytokines, and other mediators. 

These cells could be cultured and monitored electrochemically to determine their NO 

release profiles or their ability to be stimulated by lipopolysaccharide or peptidoglycan. 

The study of CO release would also be possible using the dual microelectrodes pioneered 

by the Lee lab.21,22  

As our lab also designs nanomaterials for clinical applications, there is interest in 

characterizing their immune stimulation characteristics in addition to cytotoxicity. While 

many of the materials generated in the lab have proven non-cytotoxic, they may still 

generate a host immune response. While this response is normal, a prolonged or 

overzealous response—possibly elicited by certain types of materials or functional 

groups—will create a risk of chronic inflammation. Both types of NO sensors developed 

in our lab (i.e., microfluidic devices and disk-type microelectrodes) coupled with more 

traditional assays (e.g., cytotoxicity and cytokine profiling) could be used to assess this 

response in cultured macrophage cells. While scanning electrochemical microscopy is 

useful for spatial resolution of NO release from individual cells, these cells can also be 
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cultured within the channel of our microfluidic device. This setup would facilitate 

incubation with different types of nanomaterials to assess their biocompatibility. The 

measurement of NO in addition to pro-inflammatory cytokines (e.g., tumor necrosis 

factor and interferon gamma) will provide insight into macrophage phenotype, with 

increased concentrations indicating a shift toward the M1 (pro-inflammatory) phenotype. 

Assessment of cytotoxicity is possible using a lactate dehydrogenase assay.23 As 

transition to the M1 phenotype requires a significant increase in metabolic activity, the 

MTT/MTS assay can be used to monitor mitochondrial activity.24 In particular, changes 

in macrophage phenotype as a function of exposure time, material type or 

functionalization, and concentration can be determined. For nanoparticles, assessment as 

a function of size is also important.  

 

7.3 Conclusions 

 Electrochemical devices are well-suited for tuning to specific biological systems 

and as such, will help to elucidate the complex physiological roles of NO and 

nitrosothiols, potentially providing new diagnostic tools. Induced NO release from 

immune and other cells types is especially of interest, as various triggers and complex 

pathways are involved. Despite knowing little about the exact mechanism of action, many 

hypothesize that NO plays a vital role in disease states related to severe infection and 

inflammation, such as sepsis. Our research provides the first example of direct 

monitoring of endogenous NO levels during the progression of sepsis in two separate 

animal models. The ability to measure NO directly, rather than its metabolites and/or 

byproducts, provides unique real-time information about the circulation of NO, whether 
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via its direct production from cells or recycling in the blood and tissues. As previous 

indirect assays have indicated, NO levels do increase quite significantly in sepsis, and it 

seems that other physiological changes also play an important role in its generation, 

scavenging, recycling, and circulation. Future devices will expand on the versatility of 

such measurements and further enhance the understanding of NO’s role in biology, in 

areas including wound healing, organ transplant, cystic fibrosis, and neurological 

diseases.   
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APPENDIX: CELLULAR NITRIC OXIDE AND CARBON MONOXIDE—
UNDERSTANDING RELEASE FROM PHAGOCYTES AND NEURONS 

 

A.1 Introduction 

Since the realization that the endothelial derived relaxation factor was likely to be 

nitric oxide (NO),1 the pivotal role of this gaseous free radical species has been 

recognized in a number of biological processes including the immune response to 

infection,2-4 vasodilation,5 would healing,6,7 and cancer biology.8 Other biological gasses 

have also been recognized as significant, including oxygen (O2), hydrogen sulfide (H2S), 

and carbon monoxide (CO).9 Much interest in how these gasses interact with one another 

while exerting their individual physiological roles now exists, particularly with respect to 

certain diseases. Both NO and CO are known to impart physiological activity through 

binding to the heme center of soluble guanylyl cyclase (sGC), an enzyme involved in the 

formation of the second messenger cyclic guanosine monophosphate (cGMP). This 

shared target means NO and CO serve similar physiological roles (i.e., vasodilation,10,11 

inflammation,12,13 and neurotransmission14,15). 

Within the innate immune system, NO is produced by specific cells (i.e., 

monocytes/macrophages, neutrophils, eosinophils) via the inducible isoform of nitric 

oxide synthase (iNOS), an enzyme whose expression is regulated by complex cascades of 

cytokines from immune cells.4,16 All isoforms of NOS (i.e., inducible, endothelial, and 

neuronal) produce NO from L-arginine, which is oxidized to produce N-hydroxy-L-

arginine. Further oxidation of this intermediate yields both L-citrulline and NO. 

Stimulation of iNOS by cytokines or components of the bacterial cell wall (e.g., 

lipopolysaccharide or peptidoglycan) initiates NO release for up to 5 d as long as the 
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stimuli remains present and the intracellular L-arginine supply is not depleted.4 When 

released by these cells, NO acts as a signaling molecule and may also have pro-

inflammatory activity or immunosuppressive (i.e., anti-inflammatory) effects, depending 

on the concentration. For example, the presence of bacteria within the body will 

upregulate iNOS production by immune cells, with the NO release killing nearby 

microbial organisms.3,4,17-19 The bactericidal properties of NO are attributed to both 

nitrosative and oxidative stress, caused by toxic byproducts such as dinitrogen trioxide, 

which initiates nitrosation of protein thiols and DNA deamination.20 Nitric oxide may 

also react with superoxide (a radical product of normal cell respiration) to yield 

peroxynitrite, the buildup of which results in lipid peroxidation and membrane damage.21-

23  

Nitric oxide also serves as an anti-inflammatory molecule or immune suppressant, 

providing a mechanism to defend the host from itself. For example, NO has been shown 

to suppress T-helper cell proliferation and cytokine production, thus limiting the chronic 

immune response.24 While neutrophils are stimulated by low NO concentrations, they 

may experience inhibited adhesion to endothelial cells in the presence of elevated NO 

levels, thus hindering their ability to traverse the vascular wall and migrate to local sites 

of infection.25 Further, NO has been observed to inhibit mast cell degranulation.26  

Carbon monoxide, in addition to ferrous iron and biliverdin, is produced by cells 

by the degradation of free heme via heme oxygenase (HO) in the presence of O2 and 

nicotinamide adenine dinucleotide phosphate (NADPH).9 Similar to NOS, three isoforms 

of HO exist, including an inducible form (HO-1) linked to the immune response.27 Unlike 

NO, CO serves a protective role in the immune system as both an anti-inflammatory and 
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anti-oxidative molecule.28 Up-regulation of HO-1 occurs during oxidative stress,29 

suggesting coordinating functions of NO and CO. Additionally, HO-1 is associated with 

the production of superoxide dismutase, which will limit the cytotoxic effects of NO by 

decreasing peroxynitrite formation.30 Increased CO generation can also down regulate 

NO production as CO can bind to and/or degrade the heme active site of NOS.31 

In contrast to the immune system, NO in the nervous system is not produced by 

an inducible NOS isoform. Rather, it is generated by neuronal nitric oxide synthase 

(nNOS), which is triggered by increases in intracellular calcium.32-34 Small, transient 

increases in intracellular calcium concentrations will thus cause short-lived production of 

NO (nM amounts for <10 min).35 Within the central nervous system, NO is involved in 

general neurotransmission, thermal regulation, hormone release, and sleep cycles.36-39 

Nitric oxide is also plays a role in long-term potentiation (i.e., memory formation).40 

Rehder et al. reported the importance of NO in neuronal development, as it regulates the 

extension of neuronal growth cone filopodia.41,42 Nitric oxide produced by nNOS within 

the peripheral nervous system is involved in smooth muscle relaxation.34 Similar to the 

cardiovascular and immune systems, dysfunctional NO production within the nervous 

system can contribute to disease. Inflammation and resulting NO production contributes 

to numerous neurodegenerative diseases, including Alzheimer’s, Parkinson’s, 

amyotrophic lateral sclerosis, and multiple sclerosis.43 

Heme oxygenase-2 is concentrated in the brain and produces CO as a neuronal 

messenger with functions comparable to NO.38 For example, CO is involved with long 

term potentiation in the brain.44 Verma et al. demonstrated the ability of CO to inhibit the 

release of certain endocrine factors, including oxytocin and arginine vasopressin.14 
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Additionally, CO may be linked to circadian rhythm regulation.45 While NO is implicated 

in vasodilation, CO can function as a vasoconstrictor or vasodilator, depending on the 

presence of reactive oxygen species.46 Carbon monoxide has recently been implicated in 

neurological disease, including stroke.47 Cross-talk between NO and CO can occur in the 

same manner as in the immune system and remains misunderstood to date. 

The most common detection strategies for NO and CO analysis from cells and 

tissues involves the measurement of their byproducts. The accumulation of nitrate and 

nitrite from NO released into solution (i.e., culture medium or blood plasma) is easily 

measured using the Griess assay.48 Carbon monoxide production is quantified via 

detection of biliverdin, a byproduct of CO generation by heme oxygenase.49 

Immunohistochemical staining has been used to quantify the upregulation of NOS or HO 

within tissues.50 While only recently gaining in popularity, electrochemical methods offer 

the unique advantage of allowing for the detection of NO and CO directly from its source 

in real time. The first microelectrode for the simultaneous measurement of NO and CO 

was reported by Lee et al. in 2007.51,52 These sensors were used to measure NO and CO 

from brain and kidney tissue. A final goal of my thesis was to measure NO release from 

snail buccal ganglia and quantify both NO and CO simultaneously from cultured 

macrophage cells, further expanding the knowledge of the in vivo relationship between 

NO and CO generation.  
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A.2 Materials and Methods 

A.2.1 Sensor fabrication and characterization 

 A dual amperometric sensor for the simultaneous measurement of NO and CO 

was prepared as described previously.51 Briefly, two platinum (Pt) wires (25 and 75 µm) 

were inserted into the openings of a pulled dual barrel capillary. The tapered region of the 

capillary was then thermally fused. The end of the electrode was polished using 3.0, 1.0, 

0.05 µm diamond paper and then electrochemically cleaned in 0.5 M sulfuring acid using 

cyclic voltammetry (+1.2 to −0.3 V vs. Ag/AgCl). The 75 µm (NO/CO) working 

electrode was platinized in a 1% (v/v) chloroplatinic acid aqueous solution using 

chronocoulometry at −0.1 V vs. Ag/AgCl (2 C cm-2). The surface was further modified 

with the addition of a tin layer, deposited electrochemically at −0.6 V vs. Ag/AgCl in a 

stirred aqueous solution containing 0.01 M tin chloride and 3 M sulfuric acid for 1 h. The 

25 µm (NO) working electrode was platinized in a 3% (v/v) chloroplatinic acid aqueous 

solution using cyclic voltammetry (+0.6 to −0.35 V vs. Ag/AgCl) at a scan rate of 20 mV 

s-1. Single microelectrodes for the measurement of NO alone were fabricated in a similar 

manner utilizing a 50 µm Pt wire. To impart selectivity against common interferents, the 

microsensors were dip-coated sequentially into a (3-aminopropyl)triethoxysilane solution 

(1% v/v in ethanol) and a fluorosilane-based sol, prepared as described previously.53,54 

Briefly, 600 µL absolute ethanol, 120 µL methyltrimethoxysilane, 30 µL 

(heptadecafluoro-1,1,2,2-tetrahydrodecyl)trimethoxysilane, 160 µL distilled water, and 

10 µL 0.5 M hydrochloric acid were added sequentially to a 1.5 mL microcentrifuge tube 

with vigorous mixing between the addition of each component. The sol was then 

vortexed for 1 h prior to use. 
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Sensors were calibrated before and after each measurement using saturated NO 

(1.9 mM) and CO (0.9 mM) solutions, prepared by the deoxygenation of phosphate 

buffered saline (pH 7.4) using argon gas for 30 min, with subsequent purging using either 

NO or CO for another 30 min. All the electrochemical experiments were carried out 

using a scanning electrochemical microscope (SECM, model 900C, CH Instruments; 

Austin, TX). For measurements from cells (cultured macrophages or snail buccal ganglia) 

the electrode was positioned ~50 µm above the surface of the cells. Prior to measurement, 

the electrode was polarized for >1 h (+0.8 and +0.6 V vs. Ag/AgCl for NO and CO 

electrodes, respectively). 

A.2.2 Macrophage cell culture 

  RAW 264.7 murine macrophages (American Type Culture Collection, TIB-71) 

was used for the macrophage experiments. Cells were cultured in 60 × 15 mm 

CellBIND® dishes (Corning Life Sciences; Cornina, NY) at 37  °C under 5% carbon 

dioxide atmosphere in Dulbecco's modified Eagle's medium (DMEM) containing 1.0 

g  L−1 D-glucose and L-glutamine, and supplemented with 10% (v/v) fetal bovine serum, 

100 units mL−1 penicillin, and 100 µg·mL−1 streptomycin. All stimulants were added 

following the growth of a confluent monolayer of cells (~24 h). The addition of 

interferon gamma (IFN-γ, 20 units  mL−1) and lipopolysaccharide (LPS, 50 ng  mL−1) was 

required to induce NO release. For combined NO and CO generation, hemin (20–100 

µM) and NADPH (80 µM) were added 2 h before IFN-γ and LPS. Prior to 

electrochemical measurement, the RAW 264.7 cells were mechanically removed from 

half the culture dish. For lateral scanning experiments, the sensor was traversed from the 

blank side of the dish to the side containing cells. For long-term measurements, the 
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electrode was positioned directly above cells to facilitate continuous measurement from a 

single group of cells. 

A.2.3 Preparation of ganglia and neurons 

 The buccal ganglion from Helisoma trivolvis was dissected as described by Cohan 

et al.55 The snail was deshelled and then anesthetized in a 25% v/v solution of Listerine® 

in saline. After 20 min in the anesthetic solution, the snail was pinned onto a dissecting 

dish. An incision was made on the dorsal side of the snail, from the mid-back region to 

the top between the antennae. Following this incision, the penis was pinned to the side 

and the esophagus cut to expose the buccal mass. The buccal ganglion was then detached 

from the attaching nerves and muscles, and pinned in a separate dish containing saline. 

 

A.3 Results and Discussion 

A.3.1 Nitric oxide and carbon monoxide from macrophages 

 As NO and CO both serve important roles in the immune response, cultured 

macrophage cells were used to study the dynamics of their release following stimulation 

with LPS and IFN-γ or hemin. To establish the time course of NO and CO release, the 

dual electrochemical microelectrode was positioned ~50 µm above a confluent 

monolayer of cells for 18 h. As shown in Figure A.1, NO production peaked ~13 h 

following stimulation with LPS and IFN-γ, increasing 170 nM from baseline 

concentrations. A lateral scan of blank and LPS/IFN-γ stimulated macrophage cells   
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Figure A.1 Release profiles of NO (black) and CO (blue) following stimulation with 
LPS/ IFN-γ and hemin/NADPH, respectively. Basal concentrations of NO and CO prior 
to stimulation were below the limit of detection. 
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revealed similarly elevated NO concentrations following a 15 h incubation period (Figure 

A.2). Carbon monoxide levels did not increase after stimulation with LPS and IFN-γ, as a 

source of heme is required and was not present in the media. In the presence of hemin (20 

µM) and NADPH (80 µM), CO generation was promoted, peaking much earlier than NO, 

with an increase of 580 nM relative to baseline levels observed at ~5 h (Figure A.1). 

Carbon monoxide generation from macrophage cells was also examined as a 

function of hemin concentration. Cells were incubated overnight (~18 h), with 20, 50, 

and 100 µM hemin (and 80 µM NADPH) in DMEM with LPS/IFN-γ. Following the 

incubation period, the media was replaced with fresh PBS and a constant-distance lateral 

scan was performed across the cell dish. While the increase in CO generation between 20 

and 50 µM hemin was minimal (Figure A.3), 100 µM hemin caused CO levels to increase 

by ~1 µM. In all cases, NO generation was suppressed to non-detectable levels. Others 

have observed similar decreases in NO generation upon upregulation of HO-1, although 

via indirect measurement of these analytes (i.e., nitrite and biliverdin for NO and CO, 

respectively).56 

 These results demonstrate the cross-talk phenomena between NO and CO. 

Common immune stimulants, such as LPS and IFN-γ, seemed to shift the macrophages 

toward a pro-inflammatory (M1) phenotype, resulting in the generation of large quantities 

of NO over many hours. Amatore et al. have demonstrated that these cells also release 

other reactive oxygen and nitrogen species.57-60 While in this pro-inflammatory state and 

without a source of heme, CO generation was extremely limited due to down-regulation 

of HO-1. Conversely, the presence of hemin resulted in enhanced CO production with 

concomitant suppression of NO generation. In addition to its involvement in the   
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Figure A.2 Nitric oxide release from unstimulated (black) macrophage cells and those 
stimulated with LPS and IFN-γ (red). Nitric oxide concentrations from unstimulated cells 
were undetectable and thus considered to be zero. Dashed red line indicates barrier 
between blank dish and cultured cells. 
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Figure A.3 Carbon monoxide release from macrophage cells incubated with 20 
(black), 50 (red) and 100 µM (blue) hemin and LPS/IFN-γ for ~18 h. Dashed red line 
indicates barrier between blank dish and cultured cells. Release of CO was not measured 
from the blank side of the dish. 
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production of superoxide dismutase,30 HO plays a role in the degradation of free heme 

(often from lysed red blood cells).61 During a severe bacterial infection (sepsis) where 

hemolysis and extreme upregulation of NO are common,62 the down-regulation of heme 

oxygenase may prove detrimental. Indeed, increased concentrations of free heme in the 

blood have been associated with poor patient outcomes.63 Future experiments should 

include the study of NO release as a function of duration of CO upregulation (i.e., 

preincubation with hemin/NADPH at varied intervals prior to iNOS stimulation to 

determine if extended exposure to CO will inhibit immune stimulation of NO to a greater 

extent. In addition, HO and NOS inhibitors (e.g., zinc deuteroporphyrin 2,4-bis 

glycol and 1400-W, respectively) should be utilized. 

A.3.2 Nitric oxide release from buccal ganglia 

 Helisoma trivolvis snail ganglia and neurons were utilized in a subsequent study 

due to their size (up to 100 µm) and the ease at which they can be cultured.55 Little is 

known about rate and concentration of NO released from these cell bodies and how NO 

rates/levels may affect neighboring neurons. Microelectrodes offer the spatial and 

temporal resolution required to examine NO release from such systems. As nNOS is 

dependent on transient increases in intracellular calcium, potassium chloride (KCl, 17 

mM) was added to the surgically extracted ganglia at varying intervals to cause 

membrane depolarization. As shown in Figure A.4, the subsequent calcium influx 

resulted in rapid and short-lived NO release. The addition of sodium chloride (17 mM) 

resulted in no detectable signal change, indicating that this effect is not the result of a 

change in ionic strength. The use of a selective nNOS inhibitor (7-nitroindazole (7-NI),   
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Figure A.4 Nitric oxide release from a H. trivolvis buccal ganglia following 
stimulation with 17 mM KCl. Nitric oxide concentrations prior to stimulation were 
undetectable. Signal returns to baseline after ~10 min. 
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400 µM, 30 min incubation), resulted in a significant reduction (of ~40%) in NO 

generation following stimulation with KCl (Table A.1). 

To date, dual NO/CO measurements from ganglia have been challenging due to 

irreproducible placement of the dual electrode system. Buccal ganglia are bundles of 

nerve cells with specific locations, so care must be taken to place the electrodes in an 

identical manner across experiments. While this problem may be minimized by using 

SECM to scan the entire ganglia, the transient release of NO and CO following 

stimulation would make timing of the measurement challenging. We predict that the 

cross-talk between NO and CO in this system would be similar to macrophage cells, with 

inhibition of one resulting in the upregulated production of the other. Future experiments 

should study the effects of specific inhibitors such as 7-nitroindazole (a nNOS inhibitor) 

and zinc deuteroporphyrin 2,4-bis glycol (ZnBG, a HO inhibitor). 

 

A.4 Summary 

 The spatial and temporal resolution enabled by using microelectrodes allows for 

the measurement of NO and CO from cell systems. The results presented herein represent 

the first simultaneous direct measurement of NO and CO from cultured macrophage 

cells, and suggest that upregulation of CO generation may prevent pro-inflammatory 

macrophage polarization. In addition, a NO sensor was used to determine NO-release 

kinetics and concentration from extracted snail buccal ganglia, indicating the transient 

release of NO from nNOS relative to iNOS.  
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Table A.1 Nitric oxide concentrations released from H. trivolvis buccal ganglia 
following stimulation with 17 mM KCl with and without 7-nitroindazole inhibition. Data 
are presented as average ± standard error of the mean. 
 
 

Stimulation NO concentration (nM) n 
KCl 435 ± 77 8 
NaCl no detectable signal 8 
KCl after 7-NI incubation 272 ± 91 4 
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