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Abstract 

CHRISTOPHER A. MCPHERSON:  Characterization of the neurogenic 
microenvironment in the mouse hippocampus following chemical induced neuronal 

injury. 
(Under the direction of Dr. G. Jean Harry.) 

 
 Adult neurogenesis occurs in the subgranular zone (SGZ) of the hippocampal 

dentate dyrus generating new dentate granule neurons and can be induced with 

brain injury.  Resident microglia cells and infiltrating macrophages produce 

inflammatory molecules in response to brain injury.  While inflammation has been 

reported to be detrimental to hippocampal neurogenesis, other studies have 

suggested that the localized inflammatory response and stimulation of microglial 

cells can promote neurogensis.  The working hypothesis of this work was that 

activated resident mircroglia serve a supportive role during injury-induced 

neurogenesis in the hippocampus.  To examine this hypothesis the hippocampal 

toxicant, trimethyltin was used (TMT; 2.3 mg/kg, i.p.) to selectively target dentate 

granule cell death in adolescent and 1 year-old CD-1 male mice.  mRNA of pro-

inflammatory M1 markers and anti-inflammatory M2 genes were measured during 

the temporal injury response were measured in subdissected DG.  Within 2 d post-

TMT, neuronal death was accompanied by resident microglia activation in the 

abscence of infiltrating peripheral macrophages, and elevations in mRNA expression 

of M1 markers interleukin (IL)-1α, IL-1β, IL-6, and tumor necrosiss factor alpha 

(TNFα).  Bromodeoxyuridine (BrdU) incorporation identified the peak time of 

neurogenesis as coinciding with this upregulation of M1 markers.  At 14 d post-TMT 

new cells migrated to the GCL, expressed the mature neuronal marker NeuN.  At 

this time of differentiation increased expression of the M2 markers IL-1 receptor 

antagonist (IL-1Ra), arginase 1 (AG-I), chitinase 3-like-3 (YM-1), brain derived 

neurotrophic factor (BDNF), glial cell line derived growth factor (GDNF), and nerve 

growth factor (NGF).  The proliferative response was sufficient to fully repopulate 
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neurons in the GCL and provide functional recovery.  The neurogenic response to 

injury differs with age.  In this model, fewer BrdU+ NPCs were observed in naive and 

injured adult hippocampus as compared to the corresponding number seen in 

adolescent mice.  At 2 d post-TMT, a similar level of neuronal death was observed 

across ages, yet activated microglia were observed in the adolescent and 

hypertrophic process-bearing microglia in the adult.  IL-1α mRNA levels were 

elevated in the adolescent hippocampus; IL-6 mRNA levels were elevated in the 

adult.  In the SGZ isolated by laser capture microdissection, IL-1β was detected but 

not elevated bby TMT, IL-1α was elevated at both ages, while IL-6 was elevated 

only in the adult.  Naive NPCs isolated from the hippocampus expressed transcripts 

for IL-1R1, IL-6Rα, and gp-130 with significantly higher levels of IL-6Rα mRNA in 

the adult.  In vitro, IL-1α (150 pg/ml) stimulated proliferation of adolescent and adult 

NPCs.  Microarray analysis of the SGZ post-TMT indicated a prominence of IL-

1α/IL-1R1 signaling in the adolescent and IL-6/gp130 signaling in the adult.
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Chapter 1 

Introduction 

1.1 Historical overview of adult neurogenesis 

In the early 20th century, the preeminent neuroanatomist, Ramon y Cajal, 

concluded, “Once development has ended the fonts of growth and regeneration of 

axons and dendrites dried up irrevevocably.  In adult centers, the nerve paths are 

something fixed and immutable: everything may die, nothing may be regenerated.  It 

is for the science of the future to change, if possible, this harsh decree” (Ramon y 

Cajal, 1928).  This quotation represents a presumption held for over a century in the 

field of neuroscience that has influenced our approach to evaluating the repair 

capability of the brain.  The predominant idea that neurons are generated only 

during fetal development of the brain, with no capability for generation after birth, 

established the dogma that no new neurons are generated in the adult mammalian 

brain and that all the future holds is a loss of these critical cells.  It was not until the 

early 1960’s that pioneers within the field were bold enough to suggest that the 

neurogenic capability of the brain and the generation of new neurons could extend 

well after birth and into the young adult age.  These data set the framework for 

subsequent investigations to change the “harsh decree” of Cajal and, as such, 

represent a major paradigm shift in the field of neuroscience.
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In the early 1960’s, Altman and co-investigators used the newly available tool 

[3H]-thymidine, a thymidine homologue, to birthdate mitotic cells within distinct brain 

structures.  Pulse-labeling newly proliferating cells in the rat brain with [3H]-thymidine 

at distinct developmental periods demonstrated that neuronal proliferation continues 

into the postnatal developmental period.  Two specific and distinct locations were 

identified to contain postnatally generated neurons, the hippocampus and the 

olfactory bulb (Altman, 1963, 1969; Altman and Das, 1965).  Building upon these 

reports, Kaplan coupled ultrastructural analysis with [3H]-thymidine uptake and 

reported that newly generated cells within the adult rat brain displayed 

characteristics of neurons.  Newly generated neurons were identified in the olfactory 

bulb, hippocampus, and throughout the cortex (Kaplan, 1981; Kaplan and Bell, 1984; 

Kaplan and Hinds, 1977).  These findings initiated a series of studies to determine 

whether the generation of new neurons was species specific.  Using a similar 

approach, Pasko Rakic and co-workers evaluated the potential for this process in 

the non-human primate brain (Rakic, 1974, 1985). The generation of neurons was 

identified as a process in the fetal and in early postnatal brain but was not observed 

in the adult brain.  Rakic and colleagues attributed this difference to evolutionary 

behavior complexity between the rodent and primate brain (Eckenhoff and Rakic, 

1988; Rakic, 1985). 

Newly generated neurons were identified in the adult rodent brain; however, 

functional integration was not identified until the process was examined in the 

songbird brain (Alvarez-Buylla et al., 1988; Burd and Nottebohm, 1985; Goldman 

and Nottebohm, 1983).  This work by Nottebohm and colleagues reinvigorated the 
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examination of neurogenesis in the rodent brain, and during the early 1990’s, 

significant research was generated laying the framework of our current 

understanding of the process of adult neurogenesis. The co-localization of neural 

cell specific markers with the thymidine homologue, 5’-bromo-2’-deoxyuridine 

(BrdU), for incorporation into the s-phase of the cell cycle confirmed the generation 

of neurons within the hippocampus of the adult rodent brain (Kempermann et al., 

1997; Kuhn et al., 1996).  This process was confirmed within the non-human primate 

brain (Gould et al., 1999; Gould et al., 1998; Kornack and Rakic, 1999) and finally, 

newly generated neurons were identified in human post-mortem tissue (Eriksson et 

al., 1998).  After decades of debate, beginning with the seminal work of Altman and 

Kaplan in the 1960’s and 1970’s, it is now accepted that mitotically active precursor 

cells are present in specialized neurogenic regions of the adult brain.  This 

population of cells is comprised of stem cells with the capacity to self-renew,                  

and undergo multi-lineage differentiation, as well as, lineage-restricted progenitor 

cells with limited self-renewal capacity (Seaberg and van der Kooy, 2002, 2003).   

 Under normal conditions, neurogenic regions of the mammalian brain 

produce or recruit new neurons throughout adulthood.  Two established neurogenic 

regions include the subventricular zone (SVZ) of the lateral ventricle and the 

subgranular zone (SGZ) of the hippocampus (Bayer, 1983; Cameron et al., 1993; 

Kuhn et al., 1996).  Other regions of the brain are usually considered non-

neurogenic because new neurons are not generated or recruited to these regions 

under normal conditions (Fricker et al., 1999).  While the SVZ and SGZ are 

considered the only established neurogenic regions in the adult brain, neurogenesis 
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in other brain regions such as the neocortex, striatum, and substantia nigra remains 

in question (Gould, 2007).  There is strong evidence that the SVZ and SGZ receive 

and integrate newly generated neurons, olfactory bulb interneurons and dentate 

granule neurons, respectively throughout adulthood.  These new neurons are 

capable of functionally integrating into the neural circuitry of the terminal structure.  

Thus, adult neurogenesis may represent an inherent capacity of the olfactory bulb 

and the hippocampus to respond to environmental stimuli or the organism’s internal 

state (Lledo et al., 2006). 

1.2 Characterization of newly generated cells in the SGZ 

Adult neurogenesis in the hippocampus is initiated by a relatively small 

population of neural progenitor cells (NPCs) located within the SGZ between the 

glia-rich hilus and the tightly packed neurons of the granule cell layer (GCL) of the 

dentate gyrus (DG).  This zone includes the basal cell band of the granule cell layer 

and a two-cell-wide layer into the hilus.  The SGZ is a multi-cellular 

microenvironment comprised of NPCs, astrocytes, microglia, and a limited 

population of oligodendroglia (Seri et al., 2004; Sierra et al., 2010).  While a resident 

stem cell population has been demonstrated within the SVZ, a prominent stem cell 

population has not been clearly demonstrated in the SGZ.  The initial cell isolations 

of cells from the SGZ, demonstrated stem cell features of self-renewal capacity and 

multipotent characteristics of differentiating into astrocytes, oligodendrocytes, and 

neurons (Palmer et al., 1999; Palmer et al., 1995; Palmer et al., 1997).  In these 

studies, cell self-renewal and multipotency were based predominantly on the 

characterization of neural precursor cells in vitro using the neurosphere assay (NSA) 
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and the monolayer culture assay. These assays assume clonality of all of the 

spheres formed in the assay, in that each neurosphere is derived from a single 

neural stem cell.  The neural precursor cell’s ability to proliferate over an extended 

period of time, and to generate large numbers of progeny that differentiated into 

primary neuronal cell types has been examined (Reynolds and Rietze, 2005; 

Seaberg and van der Kooy, 2003).  With further characterization, a large proportion 

of the proliferative cell population was identified as lineage-specific NPCs with 

limited self-renewal capacity (Bull and Bartlett, 2005; Seaberg and van der Kooy, 

2002).  While it is generally accepted that the proliferating cell in the SGZ is a 

lineage specific NPC, there is also limited supporting evidence for a neural stem cell 

in the adult mammalian SGZ (Suh et al., 2007). 

1.3 Stages of adult hippocampal neurogenesis 

 NPCs in the hippocampus undergo distinct developmental stages as they are 

generated in the SGZ and migrate into the granule cell layer.  They are classified by 

these developmental stages as type-1, type-2, or type-3 cells (Fig. 1).  The type-1 

cell is the early NPC of the hippocampus located in the SGZ and demonstrates 

morphological characteristics of radial glia with large triangular-shaped soma and 

long apical processes reaching into the granule cell layer.  Type-1 cells express the 

intermediate filament protein nestin, the astrocytic marker, glial fibrillary acidic 

protein (GFAP), and do not express S110β, a calcium binding protein and marker of 

post-mitotic astrocytes (Filippov et al., 2003; Seri et al., 2001).  They comprise 66% 

of the nestin positive cells; however, their basal rate of cell division is rare with only 
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5% of the cells undergoing cell division (Filippov et al., 2003; Kronenberg et al., 

2003) giving rise to type-2 daughter cells (Filippov et al., 2003; Fukuda et al., 2003). 

The expansion of newly born cells in the SGZ occurs primarily during the 

type-2 stage, as they are fast proliferating lineage specific progenitor cells.  Located 

in the SGZ, type-2 cells express nestin but do not express GFAP.  Morphologically 

these cells display an irregular shaped cell body with short, plump, non-apical 

processes oriented parallel to the SGZ.  Type-2 cells are further classified into two 

subtypes based on the expression of nestin and the immature neuronal marker 

doublecortin (DCX).  Type-2a cells express both nestin and DCX, while type-2b cells 

express DCX in the absence of nestin (Brandt et al., 2003; Brown et al., 2003).  The 

type-2b cells can express the mature neuronal marker, mouse neuronal nuclei  

(NeuN), and a specific marker for dentate granule cell neurons, prospero-related 

homeobox-1 (Prox-1) (Brandt et al., 2003; Steiner et al., 2004).  As the cells 

transition from proliferating neuroblast to postmitotic immature neuron, they are 

considered a type-3 stage cell.  While these cells maintain the capacity to undergo 

mitotic cell division, they undergo a morphological shift to cells with a rounded soma 

and processes of various lengths and complexities.  At this stage, the cells no longer 

express nestin but prominently express DCX and the neuronal lineage markers 

polysialated form of neural cell adhesion molecule (PSA-NCAM), NeuroD, and Prox-

1.  Within 2-3 weeks post-generation, the type-3 cells migrate into the granule cell 

layer.  With this migration, the type-3 cell downregulates calretinin expression, 

upregulates expression of calbindin as an effect on calcium binding proteins (Brandt 

et al., 2003), and loses mitotic capability (Encinas et al., 2006).  
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Only a small fraction of immature neurons in the adult hippocampus are 

destined for long-term incorporation into the hippocampal structure (Biebl et al., 

2000; Kempermann et al., 2003).  In the early stages of progenitor cell proliferation, 

the majority of type-1 cells undergo apoptosis during their transition to later staged 

type-2 or-3 neuroblasts.  These apoptotic newborn cells are then rapidly cleared by 

unchallenged phagocytotic microglia within the SGZ (Sierra et al., 2010).  Under 

normal conditions, adult-generated hippocampal cells migrate primarily to the inner 

third of the granule cell layer, extending many fine dendritic processes from a 

globular cell body into the molecular layer (Toni et al., 2007; Zhao et al., 2006) and 

axons into the cornus ammonis 3 (CA3) pyramidal cell layer (Hastings and Gould, 

1999; Toni et al., 2008).  The regulation for further maturation of these cells has 

been attributed to contact interactions with both microglia and astrocytes during 

migration (Aarum et al., 2003; Song et al., 2002).   

Within approximately 2 months of cell division, cells assume the nuclear and 

cytoplasmic morphology of the surrounding neurons, express biochemical markers 

of immature and mature neurons and receive functional gamma-aminobutyric-acid 

(GABA)ergic contacts. Thus, at this stage interactions between the new neurons and 

existing dentate granule neurons and inhibitory inter-neurons contribute to the fate of 

the cells within the hippocampus.  When the neurons are established in their final 

position within the GCL, they develop spiny dendrites reaching the outer molecular 

layer and an increase is observed in functional glutamatergic afferents.  With the 

final stages of maturation, the cells obtain perisomatic GABAergic contacts 

(Schmidt-Hieber et al., 2004; van Praag et al., 2002). 
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In summary, adult hippocampal NPCs undergo stages of development, which 

include a slow proliferation of NPCs within the SGZ.  This slow proliferation gives 

rise to daughter cells that further proliferate and become lineage restricted.  

Following specific developmental stages, these lineage-restricted daughter cells 

migrate into the hippocampal granule cell layer where they enter a second post-

mitotic phase subsequently differentiating into immature neurons.  Upon maturation 

into dentate granule neurons these cells extend both axonal and dendritic 

projections to integrate into the functioning hippocampal circuitry.  Each of these 

discrete events occurs within microenvironment uniquely permissive to the stage of 

neurogenesis allowing for successful proliferation, differentiation, and maturation of 

cells.   

1.4 Functional role of newly generated hippocampal neurons 

The acceptance of neurogenesis as an ongoing process in the adult brain 

raised questions regarding the functional role of this process and the new neurons.  

A large body of literature has clearly demonstrated the role of the hippocampus and 

the dentate granule neurons in learning and memory and poses the possibility that 

newly generated neurons are associated with short-term and working memory.  

Whether or not maintenance of the hippocampal NPC population is required for 

hippocampal dependent tasks is a question that is just recently being addressed.  

The hippocampal formation is a central component of the limbic system 

critically involved in learning, memory, and emotional responses.  Structurally, the 

hippocampus is comprised of the Ammon's horn, DG, and the subiculum.  The 

Ammon's horn is subdivided into the CA1, CA2, and CA3-4 pyramidal cell layers and 
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the DG is composed of two blades (suprapyramidal and infrapyramidal) of granule 

neurons and the mossy fibers of the hilus.  The hippocampus receives sensory input 

from functionally distinct brain regions and is required for the formation and storage 

of declarative memories (Eichenbaum et al., 1992).  The main relay point for this 

hippocampal circuitry is the entorhinal cortex.  This cortical structure provides a 

predominantly unidirectional input to the DG via the perforant pathway.  The dentate 

granule neurons are responsible for holding this short-term memory and then 

relaying this input information primarily to the CA3 pyramidal neurons via the mossy 

fibers.  Signals from the CA3 pyramidal neurons are relayed along the Schaffer 

collaterals forming contacts with the CA1 pyramidal neurons.  The intra-hippocampal 

tri-synaptic loop is completed with the projections of the CA1 pyramidal neurons to 

the subiculum.  At this point, the subiculum projects back to the entorhinal cortex 

(Martin and Clark, 2007).  From the entorhinal cortex the information can then be 

sent to widespread neocortical areas for long-term memory storage and retrieval 

(Eichenbaum et al., 1992).   

Some of the first work to understand the overall functional contribution of 

newborn neurons was the demonstration of preferential incorporation into 

hippocampal-dependent declarative memory networks (Kee et al., 2007; van Praag 

et al., 2002).  Initial work by Shors et al. (2001; 2002) demonstrated that a transient 

inhibition of neuroprogenitor cell proliferation using the anti-mitotic agent, 

methylazoxymethanol acetate (MAM), resulted in a deficit in hippocampal dependent 

trace conditioning (Shors et al., 2001) with no alteration observed in spatial learning 

in a Morris water maze or in contextual fear conditioning (Shors et al., 2002).  The 



 10 

selectivity of the contribution may have been related to the transient nature of the 

inhibition.  Depletion of the proliferating cell population by irradiation caused 

impaired long-term spatial memory in the Morris water maze (Madsen et al., 2003; 

Meshi et al., 2006; Saxe et al., 2006) with no effects on short-term memory.  With 

this level of depletion, deficits were also reported for contextual fear conditioning 

(Saxe et al., 2006; Snyder et al., 2009).  Similar patterns of effects have been 

observed with chemical exposure models that decreased NPC proliferation.  

Following toluene exposure, deficits in fear conditioning and novel object recognition 

were reported(Seo et al., 2010).  With ongoing lead acetate exposure, the 

downregulation of hippocampal NPC proliferation showed no effects on water maze 

performance in rats (Gilbert et al., 2005).  Overall, these data suggest that inhibition 

of NPC proliferation can alter normal hippocampal dependent tasks and that the 

nature of the task altered may depend on the severity of the inhibition.   

1.5 Neurogenic niches of the hippocampus 

 Proliferation and differentiation of NPCs does not exist independently but 

rather reflects a dynamic interaction between NPCs and their surrounding 

multicellular microenvironment to regulate the process.  Within the milieu of cells 

(NPCs, astrocytes, neurons, microglia, oligodendrocytes) and secreted factors, a 

SGZ neurogenic niche exists to support NPC self-renewal (Fig. 2).  The concept of a 

stem cell “niche” was first introduced in 1978 through studies of hematopoietic stem 

cells (Schofield, 1978).  Since then stem cell niches have been identified in multiple 

organ systems and their study assumes a major role in understanding the regulation 

of stem cell proliferation and survival (Morrison and Spradling, 2008).  Stem cell 
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niches are defined by a number of characteristics.  For example, they provide an 

environment to prevent excessive stem cell production and to sequester cells from 

signals that would deplete stem cell reserves (i.e. differentiation signals, death).  The 

niche maintains the critical balance of stem cell quiescence and, upon activation, is 

able to orchestrate the proliferation of progenitor cells that become mature cell 

lineages (Moore and Lemischka, 2006).  In the hippocampus, by strict definition, the 

SGZ should be considered the NPC niche, as this is the site for maintenance of 

proliferative type-1 NPCs.  As the cells differentiate into type-2 and type-3 cells they 

begin migrating into the multi-cellular microenvironment of the granule cell layer that 

is permissive to neuronal differentiation and thus, represents a secondary niche.  

Therefore, one can consider the process of adult hippocampal neurogenesis as a 

“two-niche” event.  Within the SGZ or primary niche, cells and secreted factors serve 

as the primary unit of interaction between NPCs and their environment to promote 

an appropriate level of proliferation and survival of healthy NPCs.  In the GCL or 

secondary niche, the microenvironment of the mature granule cell layer serves as a 

regulatory site for the migration and differentiation of NPCs into mature neurons or 

glia (Fig. 3).  Distinct differences between these two niches provide key signaling 

events for the multi-stage differentation of NPCs into mature neurons or glia. In 

addition, they may represent two distinct critical target sites for endogenous and 

exogenous factors, including genetic and environmental factors, to interfere with a 

compensatory process within the adult brain. 
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1.6 Regulation of hippocampal neurogenesis 

It has been proposed that adult neurogenesis may represent an inherent capacity of 

the olfactory bulb and the hippocampus to respond to the host environment (Lledo et 

al., 2006).  It is also possible that the inherent characteristics of mature neurons 

within these regions differ from the majority of terminally differentiated long-lived 

neurons in the brain and may be more susceptible to changes in their environment.  

Current understanding of the neurogenic capability of the adult brain has been 

derived from studies examining the response following stimulation by extrinsic and 

intrinsic factors.  Extrinsic factors including physical exercise (van Praag et al., 1999) 

and enriched environment (Kempermann et al., 1997) can stimulate the proliferation 

and survival of newly generated cells from the SGZ, respectively, supporting the 

idea of multiple environments influencing the outcome of neurogenesis.  

Alternatively, stress can serve to down regulate NPC proliferation (Tanapat et al., 

2001; Vollmayr et al., 2003) with the demonstration that corticocosteroid hormone 

inhibits SGZ neurogenesis (Cameron and Gould, 1994).  Hormones such as 

estrogen have been reported to enhance NPC proliferation in females during times 

of pro-estrous (Tanapat et al., 1999).  Additionally, neurotransmitters, including 

GABA (Bernabeu and Sharp, 2000; Cameron et al., 1995), serotonin (Brezun and 

Daszuta, 1999), norepinephrine (Kulkarni et al., 2002), and acetylcholine (Cooper-

Kuhn et al., 2004) are capable of modulating adult neurogenesis.  As are trophic 

factors, including brain derived neurotrophic factor (BDNF), glia cell line-derived 

neurotrophic factor (GDNF), and nerve growth factor (NGF) (Aberg et al., 2000; 

Chen et al., 2005; Frielingsdorf et al., 2007; Larsson et al., 2002).  A contributory 
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role for glia and glial-derived cytokines to modulate adult neurogenesis in the 

hippocampus has also been reported (Battista et al., 2006; Ekdahl et al., 2003; Jin et 

al., 2002; Kaneko et al., 2006; Lu et al., 2002; Monje et al., 2003). 

Age is a very potent regulator of hippocampal neurogenesis.  Compared to 

the young adult, by middle age the rate of proliferation and the number of NPCs in 

the hippocampus are reduced (Kuhn et al., 1996).  This coincides with a decreased 

ability of these cells to differentiate into a neuronal phenotype (McDonald and 

Wojtowicz, 2005; Rao et al., 2005).  Associations between age-related reduction in 

hippocampal neurogenesis and decreased cognitive function have been 

demonstrated (Klempin and Kempermann, 2007) and suggested to be linked with a 

diminished capability for repair (Hattiangady et al., 2008; Shetty et al., 2010).  Thus 

the higher level of neurogenesis in the young brain, compared to an aging brain, 

may reflect a greater level of plasticity in the young (Altman et al., 1973; Changeux 

and Danchin, 1976) and a loss of plasticity in the aged.  A number of factors have 

been proposed to account for this decline with age such as a depletion of the 

progenitor cell pool, diminished neurotrophic factors, senescence of microglia and 

their decreased ability to remove toxic debris from the environment or provide a level 

of neuroprotection.  While proposed, strong supporting data for each of these factors 

is not currently available. 

1.7 Neurogenesis following hippocampal insult 

 Sensitivity and vulnerability of dentate granule neurons has been 

demonstrated across a number of hippocampal insults (Harry and Lefebvre 

d'Hellencourt, 2003).  Damage to dentate granule neurons is often accompanied by 
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a proliferative response of NPCs in the SGZ.  In many cases, the severity of the 

injury will correlate with the robustness of proliferation.  While it was previously 

thought that ischemic insults damaged only CA1 pyramidal neurons, it has been 

shown that dentate granule cell apoptosis occurs shortly after ischemic injury (Siren 

et al., 2002; Wang et al., 1999).  One may consider that the death of dentate granule 

neurons remained unidentified in earlier ischemia studies due to the later time frame 

for histological examination that would allow for the clearance of dead cells by 

microglia and potential replacement by newly generated neurons hippocampal 

neurogenesis (Liu et al., 1998).  Seizure activity can also induce apoptotic cell death 

of dentate granule neurons (Bengzon et al., 1997; Sloviter et al., 1996) followed by 

an induction of NPC proliferation. Epileptic seizures in the adolescent demonstrate 

susceptibility of dentate granule neurons in the human (Dam, 1980; Tang et al., 

2001).  Even with a relatively remote damage such as traumatic brain injury (TBI), 

proliferation of NPCs in the SGZ is induced (Jin et al., 2001; Keiner et al., 2010; Kim 

et al., 2009).  This often follows an early stage of apoptosis of dentate granule 

neurons (Clark et al., 1997; McCullers et al., 2002) linked with associated memory 

loss (Smith et al., 1994).  With ischemic damage, the proliferation of NPCs within the 

SGZ is followed by migration into the GCL and differentiation into mature neurons 

within 14-28 d in adult mice (Keiner et al., 2010).  Other studies demonstrated that 

many of the neurons generated in response to ischemic insult die in the adult mouse 

(Liu et al., 1998; Tureyen et al., 2004; Yagita et al., 2001) while the surviving 

replacement neurons established synapses within the existing hippocampal circuitry 

(Jakubs et al., 2006; Wang et al., 2005). 
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 Dentate granule neurons are susceptible to environmental and occupational 

toxicants such as ozone, soman, benzyl acetate, ethanol, and organometals (Abdo 

et al., 1998; Bhagat et al., 2005; Obernier et al., 2002; Reuhl and Cranmer, 1984; 

Rivas-Arancibia et al., 2010).  One model for which a selective vulnerability of 

dentate granule neurons across multiple species is the organometal, trimethyltin 

(Chang et al., 1982; Fortemps et al., 1978; Reuhl and Cranmer, 1984).  Using this 

model system to examine the association between localized neuronal death and the 

induction of hippocampal NPCs, different laboratories have demonstrated a rapid 

stimulation of NPC proliferation (Harry et al., 2004; Ogita et al., 2005) sufficient to 

ameliorate the associated short-term learning and memory impairment (Ogita et al., 

2005).  Using a more extended exposure model, 4 h of daily inhalation exposure of 

0.25 parts per millions (ppm) ozone for 90 days, a decrease in NeuN+ cells within the 

GCL in rats is seen with a concurrent increase in proliferative p53+ cells (Rivas-

Arancibia et al., 2010).  DCX expressing cells were increased at 30 days suggesting 

an induction of NPCs; however, this increase was not evident at longer time points.  

The transient nature of the effect could be due to an adaptation of the SGZ niche or 

a depletion of the NPC pool.  In any case, the lack of a sustained proliferation of 

NPCs in the hippocampus with continued ozone exposure likely contributed to the 

observed deficits in short and long-term memory as assessed using a passive 

avoidance paradigm (Rivas-Arancibia et al., 2010).  A 7-day exposure to the 

neurotoxicant Soman (pinacolyl methylphono-fluoridate) resulted in damage of CA1 

pyramidal cell and dentate granule neurons of the hippocampus in rats and mice 

(Bhagat et al., 2005; Collombet et al., 2005).  Examination of the temporal 
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progression of the injury identified an early NPC proliferative response in the SGZ 

within 3 days (Collombet et al., 2005); however, no studies have been conducted to 

determine if the NPCs serve to provide a functional repair of the hippocampus.   

Overall, the body of literature on adult hippocampal neurogenesis, whether under 

normal conditions or following injury or insult, demonstrate a capability of the brain to 

maintain a level of plasticity and self-repair throughout life.   

1.8 Microglia and pro-inflammatory cytokines in the neurogenic niche 

Recent research has started to address questions regarding how the 

neurogenic microenvironment 1) serves to foster the proliferation of NPCs, 2) 

contributes to the survival of NPCs and neuroblasts, 3) allows for the migration of 

neuroblasts to the appropriate location, 4) supports differentiation of neuroblasts to 

mature neurons, and 5) allows for differentiated neurons to develop functional 

circuitry within the hippocampus (Ekdahl et al., 2009).  Within the neurogenic niche, 

astrocytes and microglia have been identified as putative regulators of neurogenesis 

(Barkho et al., 2006; Ekdahl et al., 2003; Monje et al., 2003).  In the normal brain, 

the processes of ramified microglia serve a specialized phagocytic function to 

remove any unhealthy proliferative cells (Sierra et al., 2010).  While different than 

the amoeboid microglia response for phagocytosis of mature neurons, the ability of 

the microglia projections to engulf localized unhealthy cells demonstrates the 

adaptation of a regulatory role of microglia.  This action maintains a homeostatic 

balance within the local region, potentially enhancing the survival of healthy NPCs 

(Mattocks and Tropepe, 2010).  With injury to the hippocampus, microglia within the 

GCL, including the SGZ, undergo a morphological shift and display both stellate and 



 17 

amoeboid morphologies accompanying neuronal death (Davalos et al., 2005; 

Nimmerjahn et al., 2005).  The morphology ranges from hyper-ramified cells, 

enlarged cell bodies with thickened and retracted processes, to a full amoeboid 

phagocytic phenotype (Kreutzberg, 1996).  It is usually considered that upon such 

activation, microglia are the predominant source of pro-inflammatory cytokines in the 

brain including interleukin-1α (IL-1α), IL-1β, IL-6, and tumor necrosis factorα (TNFα).  

Regulatory effects of multiple inflammatory cytokines including IL-1, IL-6 and 

TNFα on NPC proliferation, differentiation, and survival have been reported (Ekdahl 

et al., 2003; Iosif et al., 2006; Monje et al., 2003; Spulber et al., 2008).  TNFα is 

expressed at low levels in the normal brain (Pitossi et al., 1997) as either a soluble 

or transmembrane molecule.  TNFα initiates signaling by binding to two distinct cell 

surface receptors, a 55 kDa type-1 receptor (TNFp55R) and a 75 kDa type-2 

receptor (TNFp75R).  TNFp55R contains a cytoplasmic sequence identifying an 

intracellular death domain essential for the transduction of an apoptotic signal 

(Micheau and Tschopp, 2003; Thorburn, 2004) whileTNFp75R activation primarily 

initiates trophic/protective actions (Shen et al., 1997; Yang et al., 2002).  It has been 

suggested that the effect of TNFα on NPCs depends upon localized receptor 

expression (Ben-Hur et al., 2003; Iosif et al., 2006; Klassen et al., 2003).  Cultured 

NPCs from human fetal brain express TNFα, as well as,  TNFp55R and TNFp75R 

(Klassen et al., 2003; Sheng et al., 2005).  Mouse embryonic hippocampal NSCs 

express both TNFp55R and TNFp75R and in culture and cell survival was 

significantly diminished with the addition of recombinant TNFα protein (Cacci et al., 

2005).  In vivo, NPCs within the hippocampal SGZ selectively express TNFp75R 
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potentially as a mechanism to utilize TNFα as a neurotrophic factor, allowing for 

survival in a highly pro-inflammatory environment following localized injury (Harry et 

al., 2008).  Support for TNFα signaling as a regulatory component of NPC 

proliferation has been provided from the work of Iosif et al., (2006) in which mice 

lacking TNFp55R showed an increase in newly generated BrdU+/NeuN+ cells, while 

mice lacking TNFp75R showed a minor decrease in these hippocampal cells.   

Interleukin-1α and IL-1β are proteins synthesized from two different genes.  

They have <30% structural homology and bind to the same surface receptor, IL-1 

receptor (IL-1R1), which requires binding to IL-1R accessory protein (IL-1RAcP) for 

signal transduction (Dinarello, 1996; Greenfeder et al., 1995).  Regulation of IL-1 

occurs primarily via binding of the IL-1R1 by the competitive IL-1 receptor 1 

antagonist (IL-1ra) for downregulation (Greenfeder et al., 1995).  IL-1 can induce the 

production of inflammatory cytokines, chemokines, and prostaglandins by activated 

microglia and astrocytes (Aloisi et al., 1992; Basu et al., 2002).  In the normal 

hippocampus, IL-1 and IL-1R1 are constitutively expressed in the hippocampus at 

low levels (Ban, 1994); however, with injury expression can be significantly elevated.  

Within the hippocampus, IL-1 receptors are present in the molecular and granular 

layers of the dentate gyrus (Cunningham et al., 1992) and IL-1 receptor mRNA is 

seen in dentate granule cells, pyramidal cells of the hilus, and CA3 pyramidal cell 

region (Cunningham et al., 1992).  Isolated hippocampal NPCs  express IL-1R1 and 

treatment with recombinant IL-1β inhibited cell proliferation, which could be blocked 

by IL-1ra treatment (Koo and Duman, 2008).  Similar effects were demonstrated in 

vivo, where extended intracerebroventricular administration of recombinant IL-1β 
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inhibited hippocampal NPC proliferation (Koo and Duman, 2008).  Concurrent 

administration of IL-1ra blocked the anti-proliferative effects of IL-1 (Koo and Duman, 

2008).  Further examination of the impact of IL-1R1 activation on hippocampal NPC 

proliferation demonstrated a deficit in constitutive proliferation in transgenic mice 

with GFAP-directed over-expression of human soluble IL-1ra (Tg hsIL-1ra) (Spulber 

et al., 2008).  A similar downregulation of hippocampal NPC proliferation in the 

transgenic hsIL-1ra mice was observed following kainic acid-induced hippocampal 

seizures (Spulber et al., 2008). 

 Along with IL-1 and TNFα, IL-6 is a pleiotropic cytokine involved in the 

regulation of inflammatory and immunologic responses (Kishimoto et al., 1992).  

However, many of the TNFα and IL-1 actions are modulated by the anti-

inflammatory properties of IL-6 that activate both local and systemic host defense 

mechanisms in response to injury and secretion of TNFα and IL-1 (Aderka et al., 

1989; Schindler et al., 1990; Ulich et al., 1991).  It can induce the expression of 

soluble TNFα receptors and IL-1ra (Tilg et al., 1994) and downregulate TNFα 

expression (Aderka et al., 1989).  Its expression in cultured astrocytes is regulated 

by cytokines such as IL-1b and TNFα (Norris et al., 1994).  In the brain, IL-6 and its 

receptors are expressed on neurons and glial cells under normal physiological 

conditions (Gadient and Otten, 1997).  One of the first studies to examine the effects 

of IL-6 on adult hippocampal NPCs was conducted by Monje et al., (2003).  In this 

study, conditioned media from lipopolysaccharide (LPS) stimulated microglia 

decreased neuronal differentiation of NPCs.  Normal rates of neuronal differentiation 

were restored with administration of a blocking antibody to IL-6 concurrent with LPS.  
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A similar decline in NPC proliferation has been demonstrated in the hippocampus in 

vivo in transgenic mice over-expressing IL-6 in astrocytes (Vallieres et al., 2002).  

Overall these studies suggested that IL-6 adversely affects the proliferation and 

differentiation of NPCs in the hippocampus. While still in question, the current data is 

clear in that the inflammatory environment and activation of the pro-inflammatory 

cascade contributes significantly to the regulation of the hippocampal NPC 

proliferation and differentiation.  The differential regulation properties as a function of 

cellular source, astrocytes, resident microglia, or infiltrating blood-borne monocytes 

remains a critical question in addressing the impact of various injuries and 

neurodegenerative diseases on the neurogenic niche and the NPC population. 

1.9 Assessing functional states of microglia 

Concepts in assessing the inflammatory response within the injured brain 

have focused on the functional activation stages of microglia and are derived from 

biological studies of other mononuclear phagocytes, monocytes and macrophages. 

Macrophages and monocytes activated by pathogens or cytokines initiate a pro-

inflammatory response, which is a tissue defense mechanism specializing in 

pathogen elimination. This initial activation state has been designated as classical 

activation, or the M1 activation state, which is characterized by the production of IL-

1, IL-6, and TNFα (Gordon, 2003; Mantovani et al., 2005).  While the initiation of this 

response is beneficial for survival of the organism, the immune response is also 

capable of inducing a toxic environment for the surrounding tissue (Colton and 

Wilcock, 2009).  In order to return damaged tissue to homeostasis, the M1 activation 

phase is followed by an anti-inflammatory and repair phase.  This phase, designated 
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M2, leads to immunoresolution and wound healing (Mantovani et al., 2005). The M2 

activation phase has been further broken down into two subgroups designated 

alternatively activated and acquired deactivation (Gordon, 2003).  These phenotypes 

have been characterized based on the expression of specific genes, proteins or 

enzymes associated with the pro- and anti-inflammatory response.  In macrophages, 

the phenotypic change from M1 to M2 has been suggested to be a linear shift with 

M1 representing one extreme and M2 representing another. However, macrophages 

as a population appear to exist in a wide range of activation states that depend on 

the sequence of exposure to various cellular cues (Mosser and Edwards, 2008).   

Recently, attempts have been made to translate these markers of activation 

state from peripheral macrophages to brain microglia/macrophages.  Anti-

inflammatory molecules expressed in the M2 activation phase include IL-4, IL-10, 

arginase 1 (AG-I), and transforming growth factor beta 1 (TGFβ1).  Molecules 

associated with the repair phase of M2 activation include BDNF, chitinase 3-like 3 

(YM-1), GDNF, and NGF (Colton and Wilcock, 2010; Michelucci et al., 2009).  While 

assessing microglia activation using the M1/M2 phenotypic approach exists as a 

framework to attempt to classify microglia, it is highly likely that a continuum of 

intermediate microglia activation states exists (Colton and Wilcock, 2010) as well as 

cell-cell interactions with other neural cells, including astrocytes.  With injury, it is 

highly likely that the various stages of microglia represent a well-regulated 

inflammatory response and subsequent down-regulation may provide an 

environment for NPC proliferation, differentiation and repopulation.  Understanding 

how inflammatory signaling within the injured hippocampus changes during this time 
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may lead to a better understanding of how the hippocampus is capable of self-repair 

following injury.  Further, the ability to identify a “trigger” that serves to shift microglia 

from one functional phenotype to another is a critical step in identifying the key 

regulatory events of neuroinflammation. 

1.10 Model of chemical injury-induced neurogenesis 

 For many injury models associated with increased neurogenesis in the SGZ, 

there is an associated early death of the dentate granule neurons.  While the 

severity of neuronal loss may be marginal, the early events of cell death and the 

associated microglia response likely serve as a stimulus for the generation of 

replacement neurons.  Given that SGZ NPC proliferate and mature into dentate 

granule neurons, an injury model focused selectively on apoptotic damage to this 

specific neuronal population would allow for the examination of regulatory changes 

that occurred within the SGZ as well as the dentate granule cell layer.   

 There are a number of chemicals or surgical manipulations that cause 

localized damage to the dentate granule neurons such as the microtubule disruptor, 

colchicine (Goldschmidt and Steward, 1980), viral infection (Gerber et al., 2003; 

Tauber et al., 2005), and adrenalectomy (Nichols et al., 2005; Spanswick et al., 

2011).  However, each of these is limited in either a direct effect on the NPC 

population, the route of administration, the surgery requirement, and the timeframe 

of the insult.  One well established model of chemical induced hippocampal damage 

is the organometal, trimethyltin (TMT). This compound is used commercially as 

polyvinyl chloride (PVC) heat stabilizer, catalyst, and in biocides (ATSDR, 2005).  

More recently, the drinking water contaminant, dimethyltin, has been demonstrated 
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to undergo endogenous methylation to trimethyltin in rodents and humans, raising a 

new level of concern for TMT-induced neurotoxicity (Furuhashi et al., 2008).  A 

consistent pattern of susceptibility of the dentate granule neurons has been 

demonstrated in multiple species, including humans (Fortemps et al., 1978; 

Kreyberg et al., 1992; Rey et al., 1984).  In mice, a single intraperitoneal injection of 

TMT selectively damages the DG within 24 h, sparing the CA pyramidal cell layer of 

the hippocampus, with continued cell death lasting until 72 h post-TMT (Cockerill et 

al., 1987).  Microglia and astrocyte activation accompany the DG damage induced 

by TMT (Fiedorowicz et al., 2001; O'Callaghan, 1991).  Further work demonstrated 

that the response was limited to resident microglia with a lack of infiltrating blood-

borne macrophages (Funk et al., 2011).  A temporal induction of inflammatory 

cytokines (IL-1 and TNFα) mRNA is seen during the 72 h of DG granule cell 

apoptosis and gliosis (Bruccoleri et al., 1998) with evidence that the neuronal death 

is related to TNF-α signaling (Harry et al., 2008).  Previous work demonstrated that 

within this defined period of neuronal death, a burst of NPC proliferation occurs 

(Corvino et al., 2005; Ogita et al., 2005) and that these cells mature into dentate 

granule neurons (Harry et al., 2004).  Given the temporal and spatial dynamics of 

neuronal death, microglia activation, and NPC proliferation, this model system was 

selected to examine the impact of the microglia response and production of pro-

inflammatory cytokines on the NPC proliferation and differentiation occurring as 

representative of injury-induced hippocampal neurogenesis.   
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1.11 Scope of this dissertation 

 The recent paradigm shift with regards to ongoing neurogenesis in the adult 

brain offers a new model to study the impact of disease, genetics, or environmental 

exposures on the ability of the brain to restore and maintain normal level of function.  

While the NPC has received the greatest level of attention over the last few years, 

research on regulatory and supportive nature of the neurogenic niches for promoting 

proliferation, cell migration, differentiation, and survival of NPC has gained 

momentum.  This is based on a number of factors, not the least of which is that the 

neurogenic niche and the cells comprising the niche represent a critical potential 

target for changes, whether due to genetic background, early life exposure, or direct 

effect of disease or environmental exposures.  It also represents a potential target 

for pharmacological intervention.  Further interest has developed given the influence 

of inflammatory factors on NPCs with regards to proliferation and differentiation.  

 Most neurological diseases in humans display a progressive nature with 

regards to clinical signs; however, recent data suggests that cellular and 

morphological events in the brain may actually occur in a series of acute events 

(Combrinck et al., 2002; Cunningham et al., 2008; Cunningham et al., 2005; Meyer-

Luehmann et al., 2008).  It is possible that one could view such events like acute 

injury and the associated stimulation of NPCs as representative of the series of 

events that may occur during aging and age related diseases.  The following series 

of studies was designed to address specific and focused questions with regards to 

the role and contribution of microglia to the functioning of the neurogenic niche.   
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  In the initial study presented in chapter 2, the interaction of NPCs with 

microglia and astrocytes was examined in the TMT-induced focal injury to the DG.  

In the early stages of hippocampal injury and repair following a systemic injection of 

trimethyltin (TMT), microglia were found in a contact relationship with the newly 

generated cells.  This relationship was predominant in the SGZ and, with migration 

of the new neurons into the GCL, the primary glial contact shifted to the astrocyte.  

Given that this region reflected a high inflammatory environment, it was considered 

that the microglia served in a protective role for the new neurons.  In addition, the 

differential protein expression of TNFp75R in NPCs in the absence of TNFp55R 

possibly allowed for the new cells to utilize TNFa as a growth factor rather than an 

inducer of apoptosis. 

 The next series of studies, detailed in chapter 3, examined the temporal 

changes in the neurogenic environment and the differentiation of NPCs into 

functioning dentate granule cells following TMT-induced injury.  The neurogenic 

response was characterized with regard to peak time of NPC proliferation, 

differentiation and migration of DCX+ cells, and the subsequent expression of the 

mature neuronal marker, NeuN, by newly generated cells.  Within this time frame of 

events, microglia cells shifted their morphological phenotype suggesting a possible 

shift in functional phenotype.  This possible shift from injurious to reparative 

microglia phenotype was evaluated by determining the M1 and M2 immune profile 

based upon the work from Colton and Wilcock (2010).  At defined periods 

representing different stages of the injury response and repair, the molecular profile 

of the DG was examined using quantitative real-time polymerase chain reaction 
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(qRT-PCR) for molecules previously reported to be associated with inflammation, 

anti-inflammatory, and repair.  The functional incorporation of cells generated during 

the high injury/inflammatory period was confirmed by a recovery of performance on 

a hippocampal dependent spatial learning and memory task, the Morris Water Maze 

(MWM), and the performance-dependent activation of the transcription factor Fos in 

BrdU+ dentate granule neurons.  In addition, the structural recovery of the dentate 

granule cell layer was confirmed by a return to normal dentate neuron number as 

determined by unbiased stereology.  

 The final study, detailed in chapter 4, expanded upon the observations in the 

previous study of an involvement of interluekin-1 and interleukin-6 in defining the 

various stages of the GCL environment.  To further examine the impact of age on 

the neurogenic capacity and the involvement of the pro-inflammatory cytokines, 

multiple responses in adolescent mice were compared with responses in the adult 1-

year-old mouse.  An age-related shift in IL-1α and IL-6 within the SGZ was identified.  

Upon further examination of primary NPCs cultured from the hippocampus at each 

age, age-related effects of IL-1α and IL-6 were identified, with IL-1α showing a 

prominent regulatory role in the young tissue and IL-6 showing a regulatory role in 

the adult.  This data supported a differential effect of pro-inflammatory cytokines on 

hippocampal NPC self-renewal following injury.  In the final chapter, chapter 5, the 

major findings of the studies are summarized and discussed within the framework of 

the current level of understanding of injury-induced neurogenesis . Future research 

directions are identified and discussed within the framework of specific questions 

and contribution to the field as it currently stands.
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Figure 1.1.  Stages of adult hippocampal neurogenesis. 
Neural progenitor cells (NPCs) in the hippocampus undergo distinct developmental 
stages as they are generated in the subgranular zone (SGZ) and migrate into the 
granule cell layer (GCL).  Cells can be identified based on their morphology, 
proliferative capability, and their expression of lineage specific proteins markers.  
The type-1 cell is a slow proliferating cell with long apical processes that extend into 
the GCL and expresses both Nestin and GFAP.  Type-2a and type-2b cells are 
transit amplifying NPCs that express the neural specific markers Nestin, doublecortin 
(DCX), and prospero homeobox-1 (Prox-1).  Type-3 NPCs maintain a limited 
proliferative capacity and in their later stages of development express mature 
neuronal markers.  
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Figure 1.2.  Multiple cell types compose the SGZ. 
Multiple cell types compose the neurogenic SGZ including: mature granule cells, 
astrocytes, oligodendrocytes, microglia and the neural progenitor cells (NPCs).  
These cells as well as the cell-cell contacts and their secreted factors maintain a 
neurogenic niche, which serves as the primary unit of interaction between the NPCs 
and their environment.
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Figure 1.3.  NPC regulatory niches in the dentate gyrus. 
Adult hippocampal NPCs encounter two neurogenic niches during their 
development.  Within the SGZ or primary niche, cells and secreted factors serve as 
the primary unit of interaction between NPCs and their environment.  In the GCL or 
secondary niche, the microenvironment of the mature granule cell layer serves as a 
regulatory site for the migration and maturation of NPCs into neurons or glia.
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Chapter 2 

Injury-induced neurogenesis: consideration of resident microglia as 
supportive of neural progenitor cells.1 

 

2.1 Introduction 

It is now accepted that the adult brain maintains neurogenic capability in 

discrete germinal regions, the subgranular zone (SGZ) of the dentate gyrus (DG) 

within the hippocampus and in the subventricular zone (SVZ) of the lateral ventricle.  

The SGZ, located between the glia-rich hilus and the tightly-packed neurons of the 

granule cell layer (GCL), is the result of a continued presence of a relatively small 

number of proliferating cells derived from the cells of the hippocampal 

pseudostratified ventricular epithelium during embryogenesis. Neurons generated 

from hippocampal neural progenitor cells (NPCs) migrate primarily to the inner third 

of the GCL.  Once there, they assume the nuclear and cytoplasmic morphology of 

surrounding dentate granule neurons, express biochemical markers of immature and 

mature neurons (Kempermann et al., 2004), and become incorporated into 

hippocampal-dependent declarative memory networks (Kee et al., 2007; van Praag 

et al., 2002).  

The specialized SGZ microenvironment or “niche” for NPCs is comprised of 

astrocytes, microglia, and a limited population of oligodendroglia. In particular, 

                                                        
1 McPherson, C.A., Kraft, A.D., and Harry, G.J.  2011.  Neurotox. Res. 19(2):341-
352. 
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microglia within the neurogenic “niche” have been identified as putative regulators of 

adult neurogenesis (Barkho et al., 2006; Butovsky et al., 2006; Ekdahl et al., 2003; 

Monje et al., 2002; Monje et al., 2003).  For example, down-regulation of NPC 

proliferation and neuronal differentiation has been attributed to injury-induced 

microglia release of pro-inflammatory cytokines, interleukin-1β (IL-1β), interleukin-6 

(IL-6) and tumor necrosis factor α (TNFα) (Monje et al., 2002; Monje et al., 2003) 

Acute brain insults, e.g., stroke and status epilepticus (SE), can induce a 

neuroinflammatory and microglia response but they also trigger increased 

neurogenesis.  In addition, the survival, migration, and differentiation of NPCs into 

neurons can be directed by microglia (Aarum et al., 2003) 

One of the primary microglia-secreted pro-inflammatory cytokines is TNFα.  In 

vitro studies demonstrate a detrimental effect of TNFα on NPC survival and 

differentiation (Cacci et al., 2005; Liu et al., 2005).  TNFα initiates its multiple effects 

on cell function by binding to two distinct cell surface receptors, a 55kDa type-1 

receptor (TNFp55R) and a 75kDa type-2 receptor (TNFp75R). TNFp55R contains a 

cytoplasmic sequence identifying an intracellular death domain required for 

transduction of apoptotic signals (Micheau and Tschopp, 2003; Thorburn, 2004). In 

contrast, TNFp75R activation primarily initiates trophic / protective actions (Shen et 

al., 1997; Yang et al., 2002). Cultured NPCs from human fetal brain express low 

levels of TNFα as well as TNFp55R and TNFp75R (Klassen et al., 2003; Sheng et 

al., 2005). NPCs isolated from the mouse striatum express TNFp55R (Ben-Hur et 

al., 2003).  Iosif et al. (2006) demonstrated an increase in NPC proliferation in mice 

lacking TNFp55R, while mice lacking TNFp75R showed a minor decrease, 
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suggesting a regulatory component of the TNFα signaling pathway. Given that 

microglia are the primary source of TNFα within the brain, the expression of TNFRs 

on NPCs provides a possible mechanism by which, upon stimulation, microglia 

influence injury-induced neurogenesis.   

An apparent sensitivity and vulnerability of dentate granule neurons is 

demonstrated across a wide spectrum of hippocampal injuries thus, various models 

have been developed to examine injury-induced stimulation of hippocampal 

neurogenesis.  For example, following acute ischemic insult, a significant amount of 

dentate granule cell apoptosis occurs that is accompanied by an increase in 

proliferation of new cells in the SGZ and migration to the GCL within 7-10 d (Jin et 

al., 2001). In rodent models of temporal lobe epilepsy, an increased rate of 

neurogenesis occurs in the hippocampus within a week of seizure activity (Bengzon 

et al., 1997; Gray and Sundstrom, 1998; Parent et al., 1997). Traumatic brain injury 

results in apoptosis of DG neurons within 6 h of injury (Clark et al., 1997; McCullers 

et al., 2002) and neurogenesis at 7 d (Lu et al., 2007; Yu et al., 2008).  Systemic 

exposure to the organometal, trimethyltin (TMT) induces active apoptosis of dentate 

granule neurons between 6 and 72 h; however, contrary to the other injury models, 

this results in a concurrent rapid and robust proliferation of NPCs in the SGZ 

between 2-5 d of insult (Corvino et al., 2005; Harry and Lefebvre d'Hellencourt, 

2003; Harry et al., 2004; Ogita et al., 2005). This activity occurs during the peak level 

of microgliosis and elevations in IL-1α and TNFα (Bruccoleri et al., 1998; Bruccoleri 

and Harry, 2000; Harry et al., 2008a; Harry and Lefebvre d'Hellencourt, 2003).  Ogita 

et al. (2005) and Harry et al. (2004) reported that the newly generated cells matured 
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into dentate neurons within 10 d suggesting proliferation and survival within a high 

inflammatory environment.  As this would be inconsistent with the proposed 

detrimental effect of microglia activation on NPC proliferation, we examined the 

morphological phenotype and location of glia and NPCs to characterize changes in 

cell-cell contact with migration into the GCL.  We proposed that glia serve a 

supportive role during injury-induced neurogenesis.  We now provide data 

suggesting that an interaction between glia and proliferating cells within the 

hippocampus contributes to NPC proliferation and migration of generated cells 

following injury.  

2.2 Materials and Methods 

2.2.1 Animals. 

Twenty-one day old CD-1 male mice (Charles River Labs, Raleigh, NC) and 

an additional cohort of mice, tnfp75r-/-(C57BL/6-Tnfrsf1btm1Mwm) and C57BL/6J 

(WT) (Jackson Labs; Bar Harbor, ME) were examined.  Mice were administered a 

single intraperitoneal (i.p.) injection of 2 mg/kg trimethyltin hydroxide (TMT; 2ml/kg) 

or saline (n=10). Previous work demonstrated that the peak time of NPC proliferation 

occurs within the first 24-96 h post-injection (McPherson et al., 2003). Thus, based 

upon this temporal pattern, mice were injected with bromodeoxyuridine (BrdU; 50 

mg/kg i.p.) at the time of TMT dosing and at 12 h intervals for a total of 6 injections. 

The multiple injections of BrdU at 12 h intervals allowed for incorporation during 

discrete intervals within the peak time of proliferation and would generate a gradient 

of BrdU+ cells and their migration into the blades of the dentate.  A relationship with 

glia could then be examined relative to distance from the SGZ within the same 
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animal.   

Animals were individually housed in a dual corridor, semi-barrier animal 

facility (21° ± 2°C; 50% ± 5% humidity; 12 h light/d ark cycle).  Food (autoclaved NIH 

31 rodent chow) and deionized, reverse osmotic-treated water were available ad 

libitum.  At 72 h post-TMT, mice were deeply anesthetized with CO2 and 

decapitated.  Brains were dissected and bisected in the midsagittal plane.  One 

hemisphere was immersion fixed in 4% paraformaldehyde (PFA)/0.1M phosphate 

buffer (PB; pH 7.2) overnight (ON), processed for paraffin embedding, and 10 µm 

serial sections cut through the hippocampus. Sentinel animals recorded negative for 

pathogenic bacteria, mycoplasma, viruses, ectoparasites, and endoparasites.  All 

experiments were conducted according to an animal use protocol approved by 

NIEHS/NIH Animal Care and Use Committee. 

2.2.2 Histology 

To confirm the level of dentate granule cell death at 72 h post-TMT, one 

randomly selected paraffin-embedded section from each brain was subjected to 

terminal deoxynucleotidyl transferase-mediated dUTP-biotin in situ end labeling 

(TUNEL; ApopTag®, Intergen, Purchase, NY) and visualized by horseradish 

peroxidase-conjugated digoxigenin antibodies (diluted 1:1000 in PBS) and 3,3’-

diaminobenzidine (DAB) substrate.  A second randomly selected paraffin embedded 

section from the hippocampus of each mouse (n=10) was transferred to 0.01 M 

citrate buffer (pH 6.0), subjected to heat-induced epitope retrieval (HIER) using a 

decloaking chamber (Biocare Medical, Walnut Creak, CA), blocked with 10% normal 

goat serum/1%BSA in phosphate buffered saline for 30 min, then incubated with 
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rabbit polyclonal anti-active caspase 3 (AC3: 1:1000, 18 h, 4°C, Chemicon Intl., 

Temecula, CA) and visualized with goat anti-rabbit IgG AF 488 (1:1000; Molecular 

Probes, Inc., Eugene, OR).  Neurons were labeled with Neurotrace® blue 

fluorescent Nissl stain (1:500, 1h, RT; Molecular Probes).  To examine the 

localization of BrdU+ cells or the proximity of microglia or astrocytes with such cells, 

one initial section of the hippocampus was randomly selected and then every 6th 

section was collected for a total of 10 sections of the hippocampus per mouse 

(n=10).  Based upon the work of Widera et al. (2006) showing that cyclin D1 plays a 

crucial role in the proliferation of NSCs induced by TNFα we included cyclin D1 as 

an additional marker. This selection process was repeated for microglia and 

astrocyte staining, and for co-staining of BrdU or cyclin D1 and glia. Rehydrated 

sections were subjected HIER in 0.01 M citrate buffer (pH 6.0), and blocked with 

either a MOMTM immunodetection kit (Vector Labs, Burlingame, CA) or 10% normal 

goat serum/1% BSA/ PBS for 30 min. Sections were incubated 18 h at 4°C, with rat 

anti-BrdU (1:10,000, Chemicon, Temecula, CA) or with mouse anti-cyclin D1 (1:200; 

Zymed Labs, Inc., San Francisco, CA). Astrocytes were labeled by rabbit polyclonal 

anti-glial fibrillary acidic protein (GFAP; 1:200, 1 h, 24oC, Dako Corp, Carpinteria, 

CA). Microglia were identified by morphological criteria of size and ramification of 

cells stained with a rabbit polyclonal antibody to ionized calcium-binding adaptor 

molecule 1 (Iba-1; 1:500; 1 h, 24oC; Wako Chemicals, Richmond, VA). TNF receptor 

localization was detected with rabbit polyclonal anti-TNFR1 (p55; 1:500, #CSA-815, 

Stressgen, Ann Arbor, MI) or polyclonal goat anti-mouse TNFR2 (p75; 1:500, 

#AF426PB, R&D Systems, Minneapolis, MN).  Antibody specificity was verified by 
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Western blots (Harry et al., 2008b). Staining was visualized with IgG Alexa Fluor® 

(1:1000, Molecular Probes). Coverslips were mounted with Prolong® Antifade 

Reagent with or without the nuclear stain, DAPI (Molecular Probes).  

2.2.3 Microscopy 

Digital images were acquired using a SpotRT™ cooled, charged-couple 

device camera (Diagnostic Instruments, Sterling Heights, MI) on a Leica DMRBE 

microscope (Wetzlar, Germany) equipped with epifluorescence and Z-control and 

Metamorph™ (Universal Imaging Co., Downingtown, PA).  Contact between glia and 

BrdU+ cells was further examined via deconvoluted z-stack images and nearest 

neighbor correction. Co-localization images and representative contact images were 

confirmed by confocal microscopy.   

Three distinct sections (region of interest: ROI) of the hippocampal dentate 

granule layer (DGL) were identified at increasing distances from the SGZ with the 

assumption that this would represent cells at different stages of maturation and 

migration. ROI-1) a 2-cell width at the inner blade considered the SGZ; ROI-2) the 

next consecutive 5-6 neuron width, and ROI-3) the outer granular neuronal region of 

the dentate blade.  The identification of BrdU+ NPC derived cells adhered to 

exclusion criteria of a minimum of 8 µm diameter. These criteria were selected for 

two reasons.  One was the fact that mature dentate granule neurons were 

undergoing apoptosis and we wanted to ensure that we did not include apoptotic 

neurons (< 6 µm) that may have incorporated BrdU.  The second was based upon 

the fact that the early time interval of between 1 and 3 days allowed for the 

examination of proliferating cells but not for uniform co-labeling with markers of cell 
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fate determination.  As we previously reported, the immature neuronal markers of 

doublecortin and Prox-1were not increased in this model until 4-7 d post-TMT (Harry 

et al., 2004; McPherson et al., 2003) and, at these earlier time points, we observed 

the NPC marker, nestin (data not shown) indicative of non-differentiated progenitor 

cells.   According to design considerations for sampling of rare events, the total 

number of BrdU+ cells, BrdU+ cells in contact with microglia, and BrdU+ cells in 

contact with astrocytes was determined for each region. Again a selection criterion 

was required as, by 72 h post-TMT, amoeboid microglia were actively phagocytizing 

dying neurons.  Thus, contact between BrdU+ cells and process bearing ramified 

microglia was recorded.  If the microglia cell fully encircled the BrdU+ cell or 

demonstrated an amoeboid like morphology it was excluded. If the BrdU+ cell 

maintained a diameter >8 µm and a ramified microglia (nucleus size of maximum 2 

µm) was in contact it was included.  2 independent trained investigators blind to the 

experimental conditions conducted evaluations. 

2.2.4 Statistical analysis 

Statistical significance was determined with Student’s t-test. All data is 

presented as mean ± SD.  All statistical significance levels were set at p < 0.05. 

2.3 Results 

2.3.1 TMT induced histopathology 

The extent of NPC proliferation in the SGZ is dependent upon the severity of 

damage.  In addition, the level and stage of microgliosis is also dependent upon the 

timing and severity of neuronal death.  These two features can significantly confound 

the interpretation of any data with regards to neurogenesis or the impact of a 
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microglia response. The TMT mouse model is highly reproducibility in severity and 

timing of neuronal death across individual mice. Consistent with previous studies, 

acute exposure to TMT resulted in clinical signs of seizure activity between 18-30 h 

and apoptotic death of dentate granule cells as identified by TUNEL (Fig. 2.1A,B) 

and AC3 (Fig. 2.1E,F) characterized by nuclear pyknosis and karyolysis. 

In the normal CD-1 mouse hippocampus, GFAP+ astrocytes are observed 

primarily at the borders of the densely packed GCL.  Consistent with radial astrocyte 

morphology, cell bodies were observed along the inner blade with fibrous astrocyte 

processes extending into the GCL (Fig. 2.1C).  Similar to what has been previously 

reported (Harry et al., 2008a; Harry et al., 2008b) after an injection of TMT, GFAP 

immunoreactivity was elevated and astrocytes showed a slight thickening of the 

processes within the GCL (Fig. 2.1D).  

In the normal hippocampus, microglia display very thin, ramified processes 

and normally, are not evident within the densely packed dentate GCL but rather 

seen within the hilus and molecular layer (Fig. 2.1G).  Consistent with our previous 

work within the GCL, heterogeneity in microglia responses was observed at 72 h.  

Within proximity to dying neurons, microglia showed an amoeboid morphology 

characteristic of a phagocytic phenotype.  In addition, increased staining was also 

observed for ramified process-bearing microglia also showing heterogeneity in 

morphology (Fig. 2.1H).  

2.3.2 Induction of NPC proliferation in the SGZ 

The BrdU dosing regimen allowed for a gradient of labeled cells within the 

GCL, representing different stages of generation and migration.  Figure 2.2A 
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represents the mouse SGZ.  In the normal adolescent hippocampus, while higher 

than what is observed in the adult mouse, BrdU+ cells were sparse and restricted to 

the inner blade/SGZ layer of the dentate (Fig. 2.2B).  Consistent with our previous 

work (Harry et al., 2004; McPherson et al., 2003), the increased number of BrdU+ 

cells in the TMT dosed mice was distributed across the full width of the upper and 

lower blades of the dentate gyrus (Fig. 2.2B).  The upper and lower blades of the 

GCL were demarcated into 3 distinct regions of interest (Fig. 2.2C). Region of 

interest (ROI) 1 was inclusive of the SGZ, ROI-2 represented the middle 3rd of the 

GCL, and the outer 30% would represent the requirement for replacement of dentate 

granule neurons across the full width of the GCL.   When we examined the 

distribution of BrdU+ cells across the GCL as a function of identified ROIs (Fig. 

2.2C), the BrdU+ cells in the control hippocampus were located within the ROI-1 

representing the SGZ.  Following TMT, a significant increase in the number of BrdU+ 

cells within ROI-1 was detected as well as the increased presence of BrdU+ cells 

within both ROI-2 and -3 consistent with the visual images of a more uniform 

distribution across the GCL.  In previous work, we confirmed this proliferation with 

multiple markers including PCNA and Ki-67 and demonstrated that the cells matured 

into dentate granule neurons by subsequent co-localization of staining with NeuN at 

10-14 days (Harry et al., 2004).  As an additional marker of cell proliferation, the cell 

cycle protein cyclin D1 is present in the adult SGZ (Heine et al., 2004) and plays a 

role in the proliferation of NPCs induced by TNFα and signaling via IKK/NF-kB 

(Widera et al., 2006).  Cyclin D1 expression was increased, but to a significantly 

lesser extent than BrdU, after TMT (McPherson et al., 2003).  Figure 3 illustrates the 
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co-localization of cyclin D1 and BrdU in the GCL.  We estimated that 80% of the 

cyclin D1+ cells co-stained with BrdU.  Given the short half-life (approx. 1 h) at the 

end of mitosis of proteins like Ki-67 and the cyclins, versus the long-term expression 

of BrdU, would be consistent with the absence of a reverse association.  However, 

staining for cyclin D1 provided us an additional marker for proliferating cells in the 

SGZ. Consistent with our previous work (McPherson et al., 2003), we found no co-

localized staining between cyclin D1 or BrdU and GFAP or Iba-1 (data not shown). 

2.3.3 Glia cells in contact with proliferating cells. 

Given the neurogenesis previously reported for TMT-induced hippocampal 

damage occurring within a high pro-inflammatory cytokine environment, we 

examined the proximity and contact relationship between glia and proliferating cells 

within the peak interval of induction by the TMT insult. The BrdU dosing regimen 

allowed for a 3 d interval of labeling  cells across a range of migration distances 

throughout the width of the GCL. Given that an active process of neuronal death and 

microglia activation was ongoing during the peak time of proliferation, it was 

necessary to set morphological criteria to distinguish between microglia of different 

morphological phenotypes. For inclusion in counting, BrdU+ cells were required to be 

> 8 µm in diameter and the microglia cells to be of a ramified process bearing 

morphology. Figure 2.4 A (microglia) and 2.4B (astrocytes) provides representative 

images of cells in contact that meet the criteria for inclusion in the quantitation. 

Based upon our previous work with this model, any expression of active caspase 3 

will be accompanied by a microglia cell that has shifted its morphological phenotype 

to amoeboid; while microglia with ramified processes, as represented in Figure 4B, 
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are associated with neuronal survival (Kraft et al., 2009).  Once these morphological 

criteria were established for use at the light microscopic level, 2 investigators blind to 

the experimental conditions examined the sections for contact between BrdU+ cells 

and microglia or astrocytes.  Given the changes that occur in the shape of the 

hippocampus as the brain is sectioned, we ensured that equivalent sized regions 

across sections from all animals were used for quantitation.  Contact between 

microglia and BrdU+ cells was greatest within the inner third of the blade and less in 

the outer ROI-3 layer (Fig. 2.4C).  Contact with GFAP+ astrocytes was minimal 

within the inner ROI-1 section and became more pronounced in ROI-2 and 3. While 

we cannot rule out contact with fine non-GFAP+ astrocytic processes, the GFAP+ 

contacts detected were less in the inner region, ROI-1, as compared to the other two 

ROIs (Fig. 2.4C).  

2.3.4 BrdU+ cells in SGZ express TNFp75R. 

Our previous work demonstrated by in situ hybridization, that both process-

bearing and amoeboid microglia upregulated expression of TNFα in the 

hippocampus following TMT (Bruccoleri et al., 1998). In addition, the induction of 

NPC proliferation within the SGZ occurs during a period of peak elevation of mRNA 

levels for TNFα and receptors (Harry et al., 2008b; Lefebvre d'Hellencourt and 

Harry, 2005).  Based upon earlier reports suggesting that the effect of TNFα on NPC 

could be dependent on receptor expression (Ben-Hur et al., 2003; Iosif et al., 2006; 

Klassen et al., 2003), we determined the expression of TNFRs by BrdU+ cells in the 

SGZ following TMT.  Within the SGZ and ROI-1 of the dentate gyrus, a limited 

number of BrdU+ cells were found to express TNFp75R at 72 h (Fig. 2.5). We did not 
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detect such cells in the other two ROIs. We were unable to detect TNFp55R 

expression in BrdU+ cells at this time; however, this does not rule out an earlier or 

transient expression. We then examined the injury and induced neurogenesis in 

mice deficient for TNFp75R. Consistent with our previous reports (Harry et al., 

2008b) the absence of this receptor did not diminish the severity of the neuronal 

death following TMT nor modify the astrocyte or microglia response (data not 

shown). An increase was observed in the number of BrdU+ cells along the SGZ in 

both WT and tnfp75r- deficient mice relative to saline controls.  At the time point 

examined, BrdU+ cells could be seen within the GCL in the WT mice (Fig. 6A) while, 

in the tnfp75r- deficient mice these cells remained within ROI-1 (Fig. 6B).  We did 

not determine the number of BrdU+ cells generated. 

2.4 Discussion 

Under normal conditions, adult-generated hippocampal cells migrate primarily 

to the inner third of the granular cell layer where they assume the nuclear and 

cytoplasmic morphology of surrounding neurons, express biochemical markers of 

immature and mature neurons (Kempermann et al., 2004), extend axonal projections 

to form synapses with CA3 pyramidal cell neurons (Markakis and Gage, 1999), and 

become incorporated into hippocampal-dependent declarative memory networks 

(Kee et al., 2007; van Praag et al., 2002).  When significant damage occurs to the 

dentate granule cell population, NPCs are exposed to an environment of elevated 

pro-inflammatory cytokines including TNFα; yet, NPC proliferation is induced and 

migration of the generated cells is stimulated. We now provide data demonstrating a 

differential response and location of microglia within the GCL with injury that may 
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indicate the contribution of cell-cell interactions between the two cell populations 

during the proliferation and migration process.  

While numerous studies have documented adverse effects of microglia and 

their secreted factors on NPC proliferation, others have suggested that these factors 

can be stimulatory to the repair and generation of NPCs within the brain (Aarum et 

al., 2003; Ekdahl et al., 2003). Thus, it is not unlikely that an injury in a young animal 

that initiates a microglia response would also initiate a neurogenic response. For 

example, previous work with adrenalectomy-induced apoptotic dentate granule cell 

death suggested that microglia activation contributed to an environment conducive 

to neurogenesis (Battista et al., 2006).  In the case of TMT, the stimulation of NPCs 

occurs during the active period of neuronal death and elevated TNFα levels (Harry 

et al., 2008a). Additionally, a developmental ontogeny for responses to TNFα has 

been suggested due to the high expression of TNFα within the embryonic brain 

(Mehler and Kessler, 1997; Yamasu et al., 1989). It has been suggested that the 

effect of TNFα on NPCs depends upon localized receptor expression (Ben-Hur et 

al., 2003; Iosif et al., 2006; Klassen et al., 2003). There is a limited amount of 

information regarding the expression of TNFα or TNF receptors (TNFR) on NPCs.  

Klassen et al. (Klassen et al., 2003) demonstrated TNFα expression on NPC derived 

from neonatal rat hippocampus and in cultured NPCs from human fetal brain.  The 

cultured human NPCs were found to express  TNFp55R and TNFp75R (Klassen et 

al., 2003). Progenitor cells isolated from mouse striatum were found to express 

TNFp55R (Ben-Hur et al., 2003).  In the current in vivo study, we demonstrate the 

expression of TNFp75R on BrdU+ cells in the SGZ following TMT, suggestive of 
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localization on hippocampal NPCs.  However, at the time point examined, we did not 

observe the expression of TNFp55R.  It is possible that this is not necessarily 

reflective of a general lack of expression but rather that the expression of TNFp55R 

is transient and occurs at a different time.  In our previous work, we demonstrated a 

transient expression of TNFp55R followed by the expression and internalization of 

TNFp75R in dentate granule neurons undergoing early stages of apoptosis that 

could be as short as 6 h (Harry et al., 2008b) .  Thus, further examination along a 

temporal sequence would be required to determine receptor expression. To 

determine if the role for cyclin D1 in the TNFα signaling via IKK/NFkB identified by 

Widera et al. (2006) was also at play in the current model, additional studies are 

needed to examine the co-localization of cyclin D1, BrdU, and TNFp75R as the 

action may require concurrent expression or not utilize the TNFp75R.  Although, 

given the relatively short half-life of cyclin D1 and the transient expression of 

TNFp75R this may be difficult to quantify. In fact, in the one time point examined in 

the tnfp75r  knockout mice, we were unable to detect a sufficient number of cyclin 

D1 cells for analysis.   

The work of Iosif et al. (2006) show increased cell proliferation with or without 

stimulation in mice lacking TNFp55R, while mice lacking TNFp75R showed no 

change in basal proliferation and a minor decrease in NPC proliferation following SE.  

Our findings are somewhat consistent with these results in that, at the early 72 h 

time point, BrdU+ cells were localized at the SGZ layer in mice deficient for 

TNFp75R and there was no indication of migration into the dentate blades. However, 

with similar severity levels of dentate granule cell death, migration was observed in 
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the wildtype mouse within the first 72 h. We did not determine if the actual number of 

NPCs was increased.  Further studies are required to determine if this represents a 

long-term deficit or only a delay in migration and the role that TNFR signaling may 

play in this process.  Whether these differences are directly due to the absence of 

TNFp75R or the result of the production of other pro-inflammatory cytokines cannot 

be determined in the current study.  In previous work (Harry et al., 2008b), we 

reported that at the dose level used in the current study, mRNA levels for various 

pro-inflammatory cytokines in the hippocampus was similar to the wildtype.  

However, at a lower dose level, when there was no elevation in the wildtype mouse, 

mRNA levels were elevated for MIP1α and IL-1α in the TNFp75ko mice.  Thus, it is 

likely that other unique changes are occurring in the TNFp75ko mouse following 

TMT that may have a significant impact on the NPCs. 

Our current data suggests that, as the BrdU+ cells migrated through the GCL, 

contact with microglia cells is diminished and contact with GFAP+ astrocytes 

becomes more prominent. This shift appeared to occur within ROI-2 and 3, which 

would be at a stage when the cells would be reaching their final migration site.  

While this may represent a normal shift that would occur under basal neurogenesis, 

it is difficult to determine given the minimal staining for either microglia or astrocytes 

within the densely packed GCL of the normal mouse.  However, it is apparent that, 

with the loss of neurons within the GCL, there is a void for which both the astrocytes 

and microglia can fill as well as removal of the restrictive matrix allowing for cell 

migration. Thus, while the overall process may be similar the ability to distinguish the 

cell contacts may not be as robust in the control hippocampus.  With the death of 
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dentate granule neurons one would expect a disruption in the integrity of the 

parenchyma. The associated loss of the cellular matrix may diminish the cellular 

barriers for soluble factors thus allowing for glial-glial interactions such as 

interactions with astrocytes by microglia release of IL-1 (Spranger et al., 1990).  We 

have previously demonstrated elevations in IL-1 by microglia following TMT 

(Bruccoleri et al., 1998).  Whether this represents a process unique to the injury or 

an enhancement of a normal migration of newly generated cells requires additional 

experimentation. 

Microglia effects on granule neuron precursor cells have been previously 

reported by Morgan et al. (2004) as a mitogenic effect of microglia derived 

neurotrophic factors.  Choi et al. (2008) demonstrated an upregulation of microglia 

insulin-like growth factor-1 (IGF-1) expression triggering p42/44 mitogen-activated 

protein kinase (MAPK) activation in NPC of the SGZ resulting in increased 

proliferation. With TMT injury to the hippocampus, the CA1 pyramidal neurons 

remain intact.  In this case, IGF-1 immunostaining was observed in process-bearing 

microglia and along GFAP+ processes of astrocytes (Wine et al., 2009).  More 

recently, Thored et al. (2009) reported data suggesting that a long-term 

accumulation of microglia expressing IGF-1 served in a supportive role for 

neurogenesis in the SVZ following stroke. Thus, further examination of localized 

changes may help us understand dynamic interactions between microglia and 

astrocytes with regards to their effects on newly generated cells within the 

hippocampus. Gaining a better understanding of these events will significantly 
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enhance our ability to identify therapeutic intervention strategies to promote 

successful brain repair.
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Figure 0.1. Histopathology of the hippocampus. 
Representative images of the histopathology of the dentate granule cell layer (GCL) 
of the hippocampus in control CD-1 male mice (A,C,E,G) and in mice 72 h following 
trimethyltin (2.0 mg TMT/kg bwt, i.p.) (B,D,F,H).  (A-B) Representative images of 
TUNEL+ cells in (A) control and (B) TMT-dosed mice. A significant number of 
TUNEL+ cells (brown) were evident within the GCL. Scale bar = 50 µm. (C-D) 
Representative DIC images of GFAP+ astrocytes (red) showing thin processes 
through the GCL in (C) control mice (D) the increased GFAP staining in the GCL of 
mice dosed with TMT was characterized by thicker astrocyte processes throughout 
the GCL suggestive of hypertrophy. Scale bar = 25 µm.  (E-F) Representative image 
of immunostaining for active caspase 3 (AC3; red) with a Nissl (blue) counterstain.  
(E) control mice displayed minimal staining for AC3 with punctate staining seen only 
in the blood vessel.  In the mice dosed with TMT AC3 staining was evident in 
neurons showing evidence of collapsed nuclei. Nissl (blue) stained sections of the 
hippocampus from controls show normal cellular morphology and evidence of dense 
collapsed cells in the TMT dosed mice.  Scale bar = 25 µm.  (G-H) Representative 
images of process bearing Iba-1+ microglia (red) in (G) control and (H) microglia 
displaying a thickening and retraction of processes and an amoeboid phenotype in 
TMT dosed mice.  In control mice, microglia are present at both the inner and outer 
layer of the GCL with processes transverse across the layer.  In the TMT dosed 
mice, round amoeboid microglia can be seen within the GCL. Blue – DAPI 
counterstain.  Scale bar = 25 µm
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Figure 2.2.  Localization of BrdU in the DG. 
(A) Representative subgranular zone (SGZ) location and orientation along the two 
innermost cell layers (box) of the hippocampal dentate gyrus.  (B) Representative 
image of BrdU+ cells in the control hippocampus and in the hippocampus of mice 72 
h following trimethyltin (2.0 mg TMT/kg bwt, i.p.).  Mice received 2x day i.p. injection 
of BrdU (50 mg/kg body wt) at 12 h intervals, initiated with the saline or TMT 
injection, for a total of 6 injections. BrdU+ cells (brown) were located at the SGZ layer 
in the control mice. In mice injected with TMT, there is significant amount of cell 
death as evidenced by hematoxylin counter stain indicating loss of cells and 
presence of dense cells with collapsed nuclei.  BrdU+ cells are detected along the 
SGZ and within the GCL.  (C) Schematic of defined regions of interest (ROI) across 
the blades of the dentate. The upper and lower blades of the GCL were demarcated 
into 3 distinct regions of interest. ROI-1) a 2-cell width at the inner blade considered 
the SGZ; ROI-2) the next consecutive 5-6 neuron width, and ROI-3) the outer 
granular neuronal region of the dentate blade. (D) The mean (+/- SD) number of 
BrdU+ cells in the SGZ and GCL in control CD-1 male mice and in mice dosed with 
TMT (10 sections, 10 mice per group). Total number of positive cells determined 
within each of the regions of interest (ROI) as a distance from the SGZ as described 
in the Methods section.  Sections were counter stained with hematoxylin.  Scale bar 
= 50 µm. *indicates statistical significance at p<0.05.
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Figure 2.3.  Cyclin D1 / BrdU immunofluorescence. 
Representative image obtained from the hippocampus of CD-1 male mice dosed 
with 2mg/kg TMT, i.p. at PND 21 of the co-localization of BrdU (green) in cells 
immunopositive for cyclin D1 (red).  Merged images demonstrate a co-expression of 
proteins in cells along the inner border of the GCL.  Insets represent the z-stack 
images of the co-localization. DAPI (blue).  Mice received 2x day i.p. injection of 
BrdU (50 mg/kg body wt) at 12 h intervals, initiating with the TMT injection, for a total 
of 6 injections.  Scale bar = 10 µm.
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Figure 2.4.  BrdU glial contact. 
Representative images and quantitation of contact between BrdU+ cells and Iba-1+ 
microglia and GFAP+ astrocytes in the GCL of  male CD-1 mice at 72 h post-TMT.  
(A)  As apoptosis was an active process at the 72 h time point following a systemic 
injection of TMT (2 mg/kg, i.p. at PND 21), criteria were required to distinguish non-
amoeboid, process bearing microglia for contact with Brdu+ cells. Using the 
“roundedness” as criteria for exclusion we identified Iba-1+ (red) that presented with 
a process bearing phenotype in contact with BrdU+ cells >8 µm (green). Scale bar = 
10 µm.  (B)  Similar criteria was set for the inclusion of counting GFAP+ astrocytes 
(green) in contact with BrdU+ cells (red) within the different ROIs in the GCL. Contact 
could be with either the GFAP+ processes or with the main GFAP+ body of the 
astrocyte.  Scale bar = 10 µm.  (C) Quantitation of the percentage of BrdU+ cells (>8 
µm diameter) in contact with Iba1+ microglia or GFAP+ astrocytes within each of the 
ROIs (as described in Methods and in Figure 2) at 72 h post-dosing with either 
saline or TMT (2.0 mg/kg, i.p.; PND21).  Data represents the mean +/- SD. * 
indicates statistically significance p<0.05.
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Figure 2.5.  BrdU / TNFp75R immunofluorescence. 
Representative con-focal image of the co-localization of TNFp75R (green) and BrdU 
(blue) within two cells identified along the inner blade of the GCL (ROI-1).  Microglia 
processes are identified with Iba-1 immunostaining (red).  Approximately 15% +/-4% 
of the BrdU+ cells at the SGZ co-localized with TNFP75R. Scare bar = 10 µm.
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Figure 2.6.  BrdU immunohistochemistry in TNFp75 -/- mice. 
Representative image of BrdU+ cells within the SGZ and GCL of (A) WT mice and 
(B) mice deficient for TNFp75R at 72 h post-TMT (2 mg/kg, i.p.; PND21).  BrdU+ 
cells stained black and were evident within the GCL in WT mice.  In the TNFp75R 
mice BrdU+ cells were localized along the SGZ and not seen within the GCL. 
Sections were counterstained with Nissl. Scare bar = 50 µm. 
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Chapter 3 

Characterization of the neural progenitor cell microenvironment during injury-
induced neurogenesis. 

 
3.1 Introduction 

 Neurogenesis within the subgranular zone (SGZ) of the dentate gyrus (DG) of 

the hippocampus is stimulated upon injury to DG neurons including ischemia, 

traumatic brain injury, seizure activity, and neurotoxicant exposure (Bengzon et al., 

1997; Collombet et al., 2005; Keiner et al., 2010; Liu et al., 1998; Rivas-Arancibia et 

al., 2010).  Injury-induced stimulation of neurogenesis in the SGZ suggests a 

capacity for self-repair of DG following injury, raising questions regarding the specific 

processes involved in the initiation of proliferation and survival of these new cells 

(Cho and Kim, 2010; Ming and Song, 2005).  In numerous models of injury-induced 

neurogenesis, there is often a concurrent localized elevation of pro-inflammatory 

cytokines and microglial activation in response to DG neuronal death.  It has been 

proposed that this localized inflammatory response may modulate neurogenesis. 

 Early studies suggested the inflammatory response to brain injury hinders 

neurogenesis.  Specifically pro-inflammatory cytokines including interleukin-1α (IL-

1α), interleukin-1β (IL-1β), interleukin-6 (IL-6), and tumor necrosis factor-α (TNFα) 

were demonstrated to adversely affect the proliferation, differentiation and survival of 

neural progenitor cells (NPCs) (Ajmone-Cat et al., 2010; Das and Basu, 2008; 
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Mathieu et al., 2010).  The adverse effects of neuroinflammation on 

neurogenesishave been attributed to infiltrating blood-borne monocytes as well as 

resident microglial cells.  This raised questions regarding the potential role of 

inflammatory factors relative to the cellular source i.e., resident microglia or 

infiltrating blood-borne macrophages (Cacci et al., 2005; Monje et al., 2003; 

Nakanishi et al., 2007; Peng et al., 2008).  Recent work demonstrated that resident 

microglia assist in regulating  SGZ NPCs by phagocytosis of unhealthy and possibly 

excess NPCs (Sierra et al., 2010).  Additionally, a supportive role for microglia to 

promote NPC survival and differentiation has been reported (Aarum et al., 2003; 

McPherson et al., 2011b). 

 These studies provided evidence that microglia are potentially beneficial to 

newly generated NPCs. This beneficial role of microglia is consistent with multiple 

studies providing evidence that activated microglia serve a beneficial 

neuroprotective function (Batchelor et al., 2002; Choi et al., 2008; Mandrekar et al., 

2009).  Activated microglia exhibit multiple morphological phenotypes, and possibly, 

multiple functional profiles in response to their surrounding environment (Kreutzberg, 

1996; Streit, 2006).  One paradigm proposed to classify microglial functional 

phenotypes is based on the study of monocyte lineage associated macrophage 

polarization.  Macrophages respond to environmental stimuli by adopting functionally 

distinct activation states, as manifested by changes in morphology or gene 

expression profiles.  These include the classically activated (M1) or alternatively 

activated (M2).  The M1 activation state is characterized by the production of 

oxidative metabolites (nitric oxide and superoxide) and the pro-inflammatory IL-1, IL-
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6, and, TNFα (Gordon, 2003; Mantovani et al., 2005).  M1, pro-inflammatory, 

macrophages are responsible for destroying foreign organisms, damaged cells, and 

tumor cells.  In order to return damaged tissue to homeostasis, the M1 activation 

phase is followed by an anti-inflammatory and repair phase.  This phase, designated 

M2, leads to immunoresolution and repair.  The anti-inflammatory molecules 

associated with the M2 phase include arginase 1 (AG-I), IL-4, IL-10, IL-13, and 

transforming growth factor beta 1 (TGFβ1). In the brain, molecules associated with 

the repair phase of M2 activation include brain derived neurotrophic factor (BDNF), 

chitinase 3-like 3 (YM-1), glial cell line derived neurotrophic factor (GDNF), and 

nerve growth factor (NGF).  These activation states may be representative of the 

differentiation or staging of brain macrophages (Colton and Wilcock, 2010; 

Mantovani et al., 2005). 

 The ability of microglia to shift between the M1 and M2 phenotype has been 

proposed to contribute to neurodegenerative disease and chronic inflammation.  

Pro-inflammatory factors and excitotoxic molecules released by M1 activated 

microglia are thought to be detrimental in brain injury and disease (Colton and 

Wilcock, 2010) while anti-inflammatory molecules associated with the M2 phenotype 

are considered neuroprotective (Clarke et al., 2008; Dietrich et al., 1999; Lee et al., 

2011; Yu et al., 2010).   In vitro, microglia cells can be stimulated to produce pro-

inflammatory M1 cytokines IL-1β, IL-6, and TNF-α (Colton et al., 2006; Michelucci et 

al., 2009).  In these studies the M2 phenotype was also induced, as measured by 

the expression of anti-inflammatory molecules IL-4, IL-10, AG-I,TGFβ1 (Colton et al., 

2006; Michelucci et al., 2009).  Hippocampal NPCs express receptors for M1 pro-
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inflammatory signaling factors including the 55 kDa type-1 TNF receptor (TNFp55R), 

75 kDa type-2 (TNFp75R), IL-6 receptor (IL-6R), gp130, and IL-1 receptor 1 (IL-1R1) 

suggesting a possible modulatory role of microglia via inflammatory signaling during 

injury-induced proliferation (Iosif et al., 2006; Koo and Duman, 2008; McPherson et 

al., 2011a).  The differential expression of M1/M2 related factors is likely 

representative of a well-regulated injury response (Colton et al., 2006; Hung et al., 

2002; Ponomarev et al., 2007). Thus, the induction of an injury response in the brain 

by resident microglia may provide an environment for NPC proliferation, 

differentiation, and subsequent repair/repopulation in the injured hippocampus. 

 It has been previously demonstrated that a focal injury to dentate granule cell 

neurons in young mice prompts proliferation of NPCs within the SGZ (Harry et al., 

2004).  The localized damage to the dentate granule neurons was induced by the 

well characterized hippocampal toxicant, trimethyltin (TMT)(Bruccoleri et al., 1998; 

Geloso et al., 2002; Kassed et al., 2002; Reuhl and Cranmer, 1984).  This model of 

hippocampal damage causes selective death and loss of dentate granule neurons 

over a 3 day period that is accompanied by a microglia response and activation of a 

pro-inflammatory cascade (Bruccoleri et al., 1998; Fiedorowicz et al., 2001; Lefebvre 

d'Hellencourt and Harry, 2005).  In the work from our laboratory,  we have 

demonstrated the stimulation of NPC proliferation occurs during the active process 

of neuronal degeneration, microglia phagocytosis, and under highly inflammatory 

conditions (Harry et al., 2004; McPherson et al., 2011a).  These observations have 

been confirmed by the work of Ogita et al. (2005).  Employing the TMT model of 

acute and selective neuronal death, the current study builds upon these 



 81 

observations to further characterize this model and examined the morphological and 

molecular profile related to microglia morphological activation stages over the course 

of neuronal death and subsequent neurogenesis.  We examined whether the 

observed morphological change in microglia represents a shift from the M1 (pro-

inflammatory) to an M2 (anti-inflammatory/repair) profile over the timecourse of 

injury and recovery in the DG.  

We now provide data demonstrating NPCs are generated and migrate in the 

GCL during a time that microglia demonstrate morphological characteristics of 

activation and down regulation to a resing state, astrocytes remain activated 

throughout this time.  The NPC proliferation and migration occurs in a pro-

inflammatory microenvironment.  At the time of neuronal differentiation microglia and 

astrocytes did not exhibit morphological characteristics of activation.  The DG 

microenvironment at the time of neuronal differentiation of newly generated cells 

was characterized by the expression of pro-inflammatory markers and repair-

associated markers.  The observed proliferative response to TMT injury leads to 

long-term repopulation of DG granule neurons and functional recovery of the 

hippocampus. 

3.2 Materials and Methods 

3.2.1 Mouse model of dentate granule cell death and induced neurogenesis 

 Postnatal day 21 (PND21) CD-1 male mice (Charles River Laboratories, 

Raleigh, NC) were individually housed in a dual corridor, semi-barrier animal facility 

with food (autoclaved NIH 31) and deionized, reverse osmotic-treated water 

available ad libitum.  Sentinel animals recorded negative for pathogenic bacteria, 
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mycoplasma, viruses, ectoparasites, and endoparasites.  All procedures were 

conducted in compliance with NIEHS/NIH Animal Care and Use Committee 

approved protocol.  Mice received an intraperitoneal (i.p.) injection of either saline 

(SAL) or 2.3 mg/kg trimethyltin hydroxide (TMT; Alfa Products, Danvers, MA)/kg 

body weight (bwt) in an injection vol of 2 ml/kg bwt.  Within 24 h, apoptosis of 

dentate granule neurons (Bruccoleri et al., 1998; Fiedorowicz et al., 2001; Harry et 

al., 2008b) was accompanied by microglia activation (Bruccoleri et al., 1998; Harry 

et al., 2008b).  Mice displayed transient clinical signs of seizure at 24 h with no acute 

morbidity.  This localized injury was confirmed to trigger proliferation of NPCs within 

the SGZ (Harry et al., 2004; Ogita et al., 2005).  

3.2.2 Total tin (Sn) levels in the hippocampus 

 In order to determine the level of injected material that reached the target 

tissue and clearance, total tin (Sn) was analyzed in hippocampal samples at 1, 3, 

and 7 d post-TMT.  Animals were euthanized by CO2, the brain excised, the 

hippocampus dissected, placed in acid-washed glass vials and frozen.  Individual 

samples were digested and Sn analysis was conducted using an inductively coupled 

plasma-mass spectrometry (ICP-MS; Hewlett-Packard; Palo Alto, CA).  This method 

provided a limit of detection of 0.0032 µg Sn/g and could be reliably used to 

determine an experimental quantitation limit of 0.025 µg Sn/g.  Statistical analyses 

were performed using the measured Sn concentrations obtained from the study 

samples and prepared blank samples (solvent, system, and matrix).  Each 

measurement was analyzed in a one-way analysis of variance using PROC GLM 

(SAS Institute, Inc., Cary, NC).   
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3.2.3 Histopathology and immunohistochemistry 

At 2,5,7 and 14 d post-injection, mice (n=14 per group with age matched 

controls) were anesthetized with CO2 and decapitated.  Brains were removed from 

the cranium, bisected in the midsagittal plane, and one hemisphere immersion-fixed 

in 4% paraformaldehyde/0.1M phosphate buffer (PB; pH 7.2) overnight at room 

temperature (RT). Brains were rinsed with PB, dehydrated in ethanol, embedded in 

paraffin, and 8 µm sections cut deparaffinized and ethanol rehydrated and stained 

with hematoxylin and eosin (H&E).  Severity scores (1-4) were assigned for dentate 

granule cell death based upon number and location (progressing from the inner 

blade to throughout the blade of the dentate) of eosin+ cells and structural 

characteristics of dense and collapsed chromatin as described previously (Funk et 

al., 2011).  A score of 1 indicated no evidence of cell death, 2 indicated neuronal 

death occurring along the inner blade of the dentate to within a 3-cell layer width.  A 

score of 3 indicated cell death throughout the entire blade of the dentate and a score 

of 4 indicated significant cell loss as indicated by the absence of distinct cellular 

material as represented by the presence of voids in the granule cell layer (GCL).  

Paraffin sections (8 µm) of the hippocampus at 2, 5, 7, and 14 d post-injection 

were selected within the sagittal plane (0.36-1.95 mm lateral to the brain midline).  

Cleared and rehydrated sections were subjected to heat induced-epitope retrieval 

(HIER) in 1X Reveal Decloaker in a decloaking chamber (Biocare Medical, Walnut, 

CA) for 3 min, rinsed and maintained at RT for 20 min. Microglia were identified with 

a rabbit polyclonal antibody to ionizing calcium-binding adaptor molecule 1(Iba-1, 

1:500; 1 h at RT; Wako Chemicals, Richmond, VA) and astrocytes were identified 
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with rabbit polyclonal antibody to glial fibrillary acidic protein (GFAP, 1:500; 1 h at 

25oC, Dako Corp., Carpenteria, CA).  Immunoreactivity was visualized using a 

Vecastain Elite ABC goat IgG kit (Vector Laboratories).  To detect immature NPCs, 

sections were incubated (3 h at RT) in 0.1M PB containing 2% normal goat serum 

and goat anti-doublecortin (DCX) antibody (1:100; Santa Cruz Biotechnology, Santa 

Cruz, CA).  DCX immunoreactivity was visualized using a Vecastain Elite ABC goat 

IgG kit.  Sections were counterstained with hematoxylin QS (Vector Laboratories). 

3.2.4 BrdU immunohistochemistry 

To determine peak time of NPC proliferation within the SGZ following TMT injection, 

mice received 2 injections of 5-bromo-2’-deoxyuridine (BrdU [50 mg/kg i.p.]; Sigma-

Aldrich, St. Louis, MO) at 12 h intervals prior to tissue collection on days 1 through 7.  

Based upon these data and previous reports (Harry et al., 2004), a repeated BrdU 

dosing regimen [2x day - at the time of TMT dosing, and thereafter every 12 h for up 

to 3 days (d)] was used to label proliferating cells for quantitation and to determine 

cell fate over the course of 2 weeks.   

 At 24 h intervals between 3 and 7 d and at 14 d post-TMT or SAL injection, 

mice (n=6) were deeply anesthetized with CO2, decapitated, the brain rapidly 

excised, cut in the mid-sagittal plane and one hemisphere immersion fixed in 

4%PFA/PB for 18 h then processed for paraffin embedding.  From each mouse, six 

section of the hippocampus were randomly selected within the sagittal plane (0.36-

1.95 mm lateral to the brain midline).  Cleared and rehydrated sections were 

incubated in 2N HCl (37°C, 30 min) to denature DNA, rinsed in PBS, and 

endogenous peroxidase activity quenched with 3% H2O2 (10 min).  BrdU 
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incorporation was detected with a rat monoclonal anti-BrdU (1:500; 30 min at RT; 

Accurate Chemical and Scientific Corp, Westbury, NY) for 1h and visualized using a 

Vectastain Elite® ABC Rat IgG kit and DAB chromagen (Vector Laboratories, 

Burlingame, CA).  To determine co-localization to neurons, BrdU was detected with 

AlexaFluor goat anti-rat 594 (Invitrogen, Carlsbad, CA).  Sections were then 

washed in 0.1 M PB, incubated in blocking solution (2% normal goat serum in 0.1 M 

PB), followed by incubation (90 min) in blocking solution containing mouse anti-

NeuN AlexaFluor 488 conjugated (1:500; Millipore).  Sections were coverslipped 

with ProLong Gold with DAPI (Invitrogen). 

3.2.5 Cell Imaging and Microscopy 

H&E and immunohistochemical images of the hippocampus were collected at 

both 20x and 40x magnification using an Aperio Scanscope T2 Scanner (Aperio 

Technologies, Inc. Vista, CA) and viewed using Aperio Imagescope v. 6.25.0.1117.  

Digital fluorescent images were captured as 16-bit monochrome images and 

pseudo-colored.  For co-localization of fluorescent staining, digital images were 

acquired using a Leica LSM 5 laser-scanning microscope (Wetzlar, Germany).   

For cell counting, a region of interest (ROI) was created for the dentate 

granule cell layer and individual eosin+ positive cells displaying characteristics of cell 

death, Iba-1 microglia, and BrdU+ cells were counted under a 100x objective using a 

Leica DMBRE light microscope.  For counting of DCX+ cells, two ROI were identified 

do estimate the migration of cells into the dentate granule cell layer.  These included 

a 2-cell width at the inner blade of the DG representing the SGZ and on the basis of 
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exclusion of the SGZ, the remaining neuronal width of the GCL representing both 

the suprapyramidal and infrapyramidal blades of the dentate gyrus.  

To examine the physical change in microglia within the GCL over the 

temporal progression of injury and repair, a rating scale was used to rank 

morphological phenotype.  This rating scale was based upon the works of Wilms et 

al. (1997) and Heppner et al. (1998) for examining ramifications of microglia and 

macrophages.   The modifications previously employed by Funk et al. (2011) take 

into consideration the in vivo sampling and the range of the cells from fine process 

bearing (score 1-2), to stellate, process-bearing (score 3-4), or amoeboid and 

rounded morphology (score 5-6). 

3.2.6 Characterization of the mononuclear cell population in the hippocampus 

To determine the origin of brain macrophages within the hippocampus 

following TMT, SAL and TMT treated mice (n=6) were anesthetized at 2 d post-

injection with isoflourane and trans-cardiacally perfused with ice-cold phosphate 

buffered saline (PBS; pH 7.4).  Brains were rapidly excised and the hippocampus 

mechanically dissociated by forcing through 160 and 70 µm nylon filters and the cell 

populations examined by flow cytometry for expression levels of CD11b and CD45 

(Carson et al., 1998).  The resulting individual hippocampal cell suspensions were 

enzymatically digested with DNase I (28 U/ml; Ambion) and collagenase (0.2 mg/ml; 

Worthington Biocem. Corp., Lakewood, NJ), in serum free Hank's buffered saline 

solution (HBSS) for 1 h at 37°C.  Following incubation, the enzymatic digestion was 

quenched with 10% fetal bovine serum (FBS).  Cell suspensions were separated on 

a discontinuous 1.03/1.088 Percoll Plus (GE Healthcare; Piscataway, NJ) gradient 
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(1500g for 20 min).  Following centrifugation, myelin and cell debris floated above 

the gradient and were discarded.  Monocytes collected from the interphase and 1.03 

Percoll Plus fraction were washed 3x in one vol HBSS and cetrifuged at 1500g for 

10 min at 4°C.  The resuspended cells were incubated in mouse Fc Block (1:1000; 

BD Biosciences, cat #553141, San Diego, CA) in FACS buffer (HBSS + 10% FBS).  

Cells were washed with FACS buffer and incubated on ice for 30 min with 1:500 

diluted PE-conjugated antibody to CD-45 (BD Biosciences, cat #553081) and FITC-

conjugated anti CD-11b (cat #557396) or isotype controls (cat #553989 & 553988; 

BD Biosciences) in FACS buffer.  Cells were washed in FACS buffer and staining 

was analyzed using Cell Quest 3.1 on a FACSORT instrument (BD Biosciences). 

3.2.7 Quantitative real-time polymerase chain reaction (qRT-PCR) 

A temporal association between specific transition points of microglia 

morphology and mRNA levels for genes related to M1 and M2 macrophage 

phenotypes within the dentate granule cell layer were examined.  At 2, 5, 7, and 14 d 

post-injection, the excised hippocampus (n=4-6) was placed in ice-cold dissection 

media containing 50% Minimum Essential Medium (MEM; w/Earl’s salts, w/o L-

Glutamine) and 50% HBSS supplemented with 25mM HEPES, 36mM Glucose (D), 

and 1µM MK-801 and cut into approximately 10-12, 1 mm sections using a McIlwain 

Tissue Chopper (Ted Pella, Redding, CA).  Sections were then transferred into 

dissection media and the DG sub-dissected using micro-dissection knife and needle 

under a dissection microscope (Suppl. Fig. 3.1). 

RNA was isolated from the sub-dissected DG of each individual hippocampus 

with Trizol Reagent (Invitrogen) and 2.5 µg used for reverse transcription 
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(SuperScriptII Reverse Transcriptase; Invitrogen).  qRT-PCR was carried out on a 

Perkin Elmer ABI Prism 7700 Sequence Detector using 3 µl cDNA as a template, 

in a final concentrations of 1X Power SYBR Green Master Mix (Applied 

Biosystems; Foster City, CA) and optimized forward and reverse primers for genes 

associated with the various activation stages (Table 3.1).  The 50µl reaction mixture 

was held at 50°C for 2 min, 95°C for 10 min, followed by 40 cycles at 95°C for 15 s, 

and 1 min at 60°C.  Amplification curves from individual qRT-PCR reactions were 

generated (Sequence Detection System (SDS) 1.9.1 software (Applied Biosystems), 

threshold cycle values determined, and mean fold changes calculated from each 

transcript relative to the average age matched SAL control using the comparative CT 

method (Schmittgen and Livak, 2008).   

3.2.8 Unbiased stereology of dentate granule neurons 

As a measure of long-term neuronal recovery, the total number of dentate 

neurons was examined at 6 months (m) post-injection.  Adult mice previously 

injected on PND21 with SAL or TMT (n=6) were deeply anesthetized by Nembutal (52 

mg/kg, i.p.) and transcardially perfused with 4°C 0.1M PB followed by 10 ml of 4°C 

4% PFA/PB (pH 7.4).  Samples were post-fixed overnight, rinsed in PB, 

cryoprotected in 30% sucrose, embedded in OTC (Ted Pella, Redding, CA), and 

cryosectioned at 50µm.  Total number of cresyl violet stained dentate granule 

neurons was determined by computerized unbiased stereology (Stereologer, 

Stereology Resource Center, Inc., Chester MD; (Lei et al., 2003; Long et al., 1998; 

Mouton et al., 2002).  Sampling fractions for the optical fractionator method (West et 

al., 1991) were (a) section sampling fraction (ssf, the number of sections sampled 
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divided by the total number of sections); (b) the area sampling fraction (asf, the area 

of the sampling frame divided by the area of the x-y sampling step); and (c) the 

thickness sampling fraction (tsf, the height of the dissector divided by the section 

thickness).  The dentate granule cell blades on each section were outlined under low 

power magnification (4X objective) and neurons in granule cell and pyramidal cell 

layers, respectively, were counted under oil immersion magnification (60X objective).  

The counting criteria required the presence of a distinct neuronal phenotype, 

including nuclear membrane, nucleolus, cytoplasm, and cell membrane; and 

placement within the 3-D virtual counting probe (dissector) or touching the inclusion 

planes, according unbiased counting rules (Gundersen, 1977).  A guard volume of 2-

3 µm was used to avoid artifacts (e.g., lost caps) at the sectioning surface.  

Stereological analysis was conducted on 8-12 sections sampled through the entire 

rostral-caudual extent of the hippocampus in a systematic random manner, every 

fifth section with a random start on sections 1-5. 

3.2.9 Neurobehavioral assessment of hippocampal deficit and recovery 

 Hippocampal dependent learning and spatial reference memory were 

assessed in the Morris water maze.  Seven days following injection of TMT or SAL, 

each mouse (n=6) was allowed a 1-min water-habituation trial followed by 3, 1 min 

trials/day (3 min inter-trial interval (ITI)) over 4 d, to learn the location of a 

submerged platform.  On day 5, acquisition training was followed by a 1 min probe 

trial in the absence of a platform, during which the percent total time spent in the 

training platform (goal) quadrant was recorded (Any Maze, Stoelting, Wood Dale, 

IL). 
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To determine if the observed proliferation of SGZ NPCs following TMT 

resulted in a functional recovery of hippocampal spatial memory, a cohort of mice 

(n=6) were examined at 6 months post-injection.  Beginning at the time of TMT 

dosing, mice received BrdU (50 mg/kg i.p.) 2x a day for 3 d. As adults, mice were 

subjected to 4 d of training for acquisition of the Morris water maze and one probe 

trial.  Ninety min following completion of the probe test, mice were deeply 

anesthetized with Nembutal (52 mg/kg, i.p.) and transcardially perfused with 4°C 

0.1M PB followed by 10 ml of 4°C 4% PFA/PB (pH 7.2).  Samples were post-fixed 

18 hrs, rinsed in PB, and cryoprotected in 30% sucrose, embedded in OTC (Ted 

Pella, Redding, CA), and cryosectioned at 50 µm.  Cryosections containing the 

hippocampus were subjected to immunostaining for BrdU and Fos to assess the 

functional integration of BrdU+ cells, as previously reported (Kee et al., 2007).  

Sections were incubated in 1N HCl at 37°C for 30 min, washed in 0.1M PB, and 

incubated in 0.1M PB with 0.3% Triton X-100, 2% normal goat serum, rat 

monoclonal antibody to BrdU (1:500; Accurate Biochemicals), and rabbit polyclonal 

anti-Fos (1:1000; Calbiochem, San Diego, CA).  Immunoreactive product was 

detected using AlexaFluor goat rat-488 and AlexaFluor goat rabbit-594 (1:500; 

Invitrogen) secondary antibodies.  Sections were coverslipped with Prolong Gold 

with DAPI. 

3.2.10 Statistical analysis 

 H&E severity scores and cell counts were analyzed by one-way ANOVA 

followed by independent group means comparisons by a Dunnett’s multiple 

comparisons test.  Microglia phagocytic microglia scores were analyzed by repeated 
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measures multivariate ANOVA, followed by independent group means comparisons 

by a Bonferoni test.  Fold change in mRNA expression obtained by qRT-PCR were 

log transformed to obtain homogeneity of variance and analyzed by Student’s t-test.  

Total Sn levels, flow cytometry data and unbiased stereology of neuronal counts 

were analyzed by Student’s t-test.  Acquisition of the Morris water maze was 

analyzed by a two-way repeated measures ANOVA, followed by independent group 

means comparisons by a Bonferoni test.  Time spent in the goal quadrant in the 

probe test was analyzed by Student’s t-test. 

3.3 Results 

3.3.1 Sn concentration in the hippocampus 

 Sn concentrations measured in the hippocampus samples from the SAL 

treated group (0.03 ± 0.008 mg Sn/g tissue; mean ± SD) were within the calibrated 

range of the instrument.  The highest Sn concentration was observed in samples 

collected 1 d post-TMT (0.9 ± 0.15 mg Sn/g; p<0.01), decreasing at 3 d (0.21 ± 0.04 

Sn/g; p<0.05) and returning to within control levels by 7 d (0.04 ± 0.009 Sn/g).   

3.3.2 Histopathology 

 Consistent with previous reports, the neuropathology of the acute TMT 

injection involved the death of DG neurons in the hippocampus characteristic of 

apoptotic death with presence of nuclear fragmentation (i.e., apoptotic bodies) and 

cytoplasmic acidophilia (Funk et al., 2011; Harry et al., 2008a; Harry et al., 2008b).  

The pattern of neuronal death expanded through the blades of the DG and, by 2 d 

post-TMT, pyknotic eosin+ neurons were evident throughout the GCL. The level of 

degeneration increased in severity to encompass a significant number of the dentate 
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granule neurons.  Morphological evidence of ongoing neuronal death was 

diminished by 5 d post-TMT and, by 7 d, eosin+ cells were rare and the H&E staining 

was similar to SAL controls (Fig. 3.1A).  A similar profile was generated at 2 d and 7 

d with TUNEL as a marker of apoptotic cell death (Suppl. Fig. 3.2).  Based upon 

defined severity scores, a significant effect of treatment (F(3,52)=33.54; p<0.0001) 

was detected with a one-way ANOVA.  Independent group mean analysis indicated 

severity score at 2 and 5 d post-TMT (p<0.05; Fig. 3.1B).  

3.3.3 BrdU incorporation 

 Using BrdU uptake, the active period of NPC proliferation was identified to 

peak at day 2 post-TMT.  In the post-weaning SAL control mice, a limited number of 

BrdU+ cells were identified in the SGZ.  Upon injury to the dentate granule neurons 

by TMT, an increase of BrdU+ cells birth-dated with BrdU injections every 12 h for 3 

d  during the time of active cell death was observed in the SGZ and within the DG at 

2, 5, and 7 d (Fig. 3.2A).  An ANOVA identified a statistically significant effect of 

treatment (F(7,22)=20.92; p<0.0001), with independent group mean analysis indicating 

significant increases in BrdU+ cells observed at 2-7 d post-TMT (p < 0.05; Fig. 3.2B).  

Mice were given BrdU injections every 12 h for 24 h prior to injection to identify the 

initiation of the proliferative response.  The peak initiation of BrdU incorporation (Fig. 

3.2C) was identified at 2 d post-TMT (Fig. 3.2D).  BrdU+ cells were significantly 

increased following TMT administration (F(7,21)=24.96; p<0.0001).  Independent 

group mean analysis showed a significant increase in the number of BrdU+ cells in 

the DG labeled at either 2 or 3 d (p<0.01) post-TMT.  By 5 d and later, the number of 

cells that incorporated BrdU was similar between TMT dosed and SAL control mice.   
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3.3.4 Doublecortin cells were increased within the blades of the dentate 

 Doublecortin (DCX) staining demonstrated that newly generated neurons 

rapidly migrated from the SGZ to the GCL (Brandt et al., 2003; Brown et al., 2003).  

In SAL treated mice, DCX+ cell bodies were limited to within the SGZ.  These cells 

displayed triangular soma and long vertical processes extending through the GCL 

characteristic of type-3 NPCs of the DG (Brandt et al., 2003; Brown et al., 2003)  

(Fig. 3.3A). By 5 d post-TMT, DCX+ cells were present within the granule cell blades 

often observed in clusters (Fig. 3.3A).  The total number of DCX+ cells within the DG 

was significant increased following TMT (F(3,8)=103.6; p<0.0001) at each time point 5 

d (p<0.001; Fig. 3.3B).  At 2 d, ≈80% of DCX+ cells were located in the SGZ.  By 5 d 

post-TMT, the number of DCX+ cells that had migrated into the GCL was 

significantly increased to ≈50% of the total number of cells (Fig. 3.3C).  By 7 d, the 

DCX staining pattern was similar to SAL controls, suggesting a return to a normal 

distribution across the two distinct regions. 

3.3.5 Microglia and astrocyte morphology in the GCL during injury-induced 

proliferation and NPC migration. 

 In the SAL treated mouse hippocampus, Iba-1+ microglia extend thin ramified 

processes throughout the GCL and SGZ (Fig. 3.4A).  As expected, with injury to the 

dentate granule neurons by TMT, the microglia showed a morphological shift to 

either an amoeboid or stellate process bearing morphology indicative of activation 

(Fig. 3.4A).  This resulted in an increase in the number of microglia compared to 

SAL controls (F(3,12)=9.932; p<0.0014) at 2 d (p<0.001) and 5 d (p<0.05) post-TMT.  

While the number of Iba1+ microglia remained elevated at day 5, cells shifted from 
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an activated amoeboid morphology to a morphology charactarized by thick ramified 

stellate processes.  These reactive stellate microglia persisted in the GCL at day 7 

and could be observed to extend processes into the SGZ (Fig. 3.4A).  Quantitative 

estimates of the morphological response were conducted using a rating scale for 

process bearing (score 1-2), stellate process bearing (score 3-4), amoeboid process 

bearing, and amoeboid (score 5-6) microglia as previously described (Funk et al., 

2011) (Table 3.2).  In SAL mice, all of the microglia displayed thin ramified 

processes characteristic of score range of 1-2. Scoring data at 2,5,7 and 14 d post-

TMT was analyzed by a repeated measures multivariate ANOVA.  A significant main 

effect of score (F (2,30) = 8.82; p<0.001), day (F (4,30) = 6.6; p<0.01), and significant 

score x day interaction (F (8,36) = 68.73; p<0.0001) were observed.  Independent 

group mean analyses were then conducted on the TMT treated groups. In the 2 d 

post-TMT dosed mice, 80.42% ± 5.87% of the cells ranked at a score of 5-6 

(p<0.001), indicative of a predominant amoeboid morphology.  The remaining 20% 

of the cells displayed stellate, thickened processes, ranking at a score of 3-4 

(p<0.001).  By 5 and 7 d post-TMT, microglia displayed morphological phenotypes 

ranging across the scoring spectrum with the predominant morphology falling 

between score 3-4 (p<0.05) and a sparse demonstration of amoeboid microglia.   

 The astrocyte response over the same time period was also examined (Fig. 

5), a thickening and retraction of processes was evident at 2 d, as compared to the 

thin and long fibrous processes projecting through the SGZ and GCL seen in 

controls.  At 5-7 d, astrocyte hypertrophy was observed throughout the hippocampus 

and not limited to the GCL (Fig. 3.5).   
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3.3.6 Determination of the macrophage population in the injured hippocampus 

 Based upon expression of CD11b and a differential level of CD45 expression 

microglia and infiltrating macrophages in brain tissue can be identified and 

discriminated by flow cytometry (Babcock et al., 2003; Carson et al., 1998).  In the 

SAL control mice CD45low/CD11b+ resident were observed, with very few 

CD45high/CD11b+ infiltrating macrophages observed (Fig. 3.6A).  At the peak time of 

neuronal loss and microglia activation, 2 d post-TMT, a significant increase was 

observed in the number of CD45low/CD11b+ resident microglia (t = 2.644; df=4; 

p<0.05) with no change seen in CD45high/CD11b+ infiltrating macrophages (Fig. 3.6A 

and C).  A direct intracerebral injection of lipopolysaccharide (LPS, 100 ng/ml) into 

the hippocampus served as positive control tissue (Carson et al., 1998) and resulted 

in a significant increase in CD45low/CD11b+ resident microglia (t = 2.222; df=4; 

p<0.05) and CD45high/CD11b+ infiltrating macrophages (t = 2.448; df=4; p<0.05) as 

compared to SAL controls. 

3.3.7 qRT-PCR of M1 and M2 markers 

 Across the temporal pattern of neuronal death, microglia response, and NPC 

proliferation and differentiation, we examined mRNA levels for the M1 and M2 

related genes to determine if we could identify a distinct profile associated with the 

morphological events.  The selection of genes represented pro-inflammatory, anti-

inflammatory, and repair-associated phenotypes as previously reported (Colton and 

Wilcock, 2010; Mantovani et al., 2005; Michelucci et al., 2009).  With the primary 

phagocytic microglia response occurring with neuronal death at 2 d post-TMT, 

mRNA levels were significantly elevated for IL-1α (t = 2.843; df=9; p<0.05), IL-1β (t = 
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3.931; df=9; p<0.05), IL-6 (t = 3.096; df=9; p<0.05), TNF-α (t = 8.164; df=9; p<0.05), 

and IL-1Ra (t = 3.924; df=9; p<0.05), as compared to SAL controls.  At this time, a 

significant decrease was observed in mRNA levels of the anti-inflammatory 

associated factors, IL-4 (t = 2.620; df=9; p<0.05) and IL-13 (t = 5.205; df=9; p<0.05), 

with no change in iNOS, AG-I, TGFβ, and IL-10.  For the repair-associated genes, 

YM-1 was significantly increased (t=5.205; df=9; p<0.05), with no change seen in 

BDNF, GDNF, and NGF mRNA levels (Fig. 3.7A).   

At 5 d post-TMT, resolution of the damage was accompanied by a significant 

elevation in mRNA levels for IL-1α (t = 6.323, p<0.05) and TNF-α (t = 4.288; df=10; 

p<0.05; Fig. 3.7B).  mRNA levels for IL-6, IL-1β, IL-1Ra, and iNOS were not 

significantly different from controls.  For anti-inflammatory genes, a slight increase 

was suggested for TGFβ1 mRNA levels but failed to reach statistical significance 

and AG-1, IL-4, IL-10, and IL-13 were not altered.  In the repair related transcripts, 

BDNF (t = 2.289; df=10; p<0.05) mRNA levels were significantly decreased with no 

difference observed in GDNF and NGF mRNA levels.  The earlier elevation in YM-1 

was no longer evident at 5 d with mRNA levels falling under SAL controls.  

By 7 d, the active period of neuronal death ceased and the associated 

microglia activation significantly resolved.  mRNA levels for IL-1α remained elevated 

(t = 6.258; df=6; p<0.05) while TNF-α returned to within control levels.  These 

changes were accompanied by a second elevation in IL-1Ra (t = 3.737; df=6; p < 

0.05) and IL-6 (t=3.628; df=6; p<0.05) (Fig. 3.7C).  IL-1β levels were increased 4-fold 

but did not reach statistical significance.  mRNA levels for iNOS (t = 3.565; df=6; p < 

0.05) were significantly lower, as compared to controls.  BDNF was the only repair-
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related gene significantly elevated (t = 4.971; df=6; p < 0.05) with no changes 

observed for GDNF, NGF, and YM-1 (Fig. 3.7C). 

3.3.8 Repair processes at 14 d post-TMT 

We previously reported that BrdU+ cells generated during the time of 

microglia activation migrate into the DG within 14 d of injury and express the mature 

neuronal marker neuronal nuclei (NeuN) (Harry et. al., 2004).  This migration was 

confirmed in the current study and, by 14 d, BrdU+/NeuN+ neurons were observed 

throughout the entire dentate granule cell layer (Fig. 3.8).  At this time, Iba-1+ 

microglia displayed thin processes throughout the GCL and SGZ, similar to SAL 

controls with 100% of microglia falling within the score range of 1-2  (Fig. 3.9A, 

Table 2).  GFAP+ astrocytes extended fibrous processes throughout the SGZ and 

GCL in both groups (Fig. 3.9B).  However, in the TMT-dosed mice, the GFAP+ 

astrocytes displayed thicker processes through the blade of the dentate and along 

the SGZ (Fig. 3.9B).  When we examined the M1 and M2 related genes at this time 

of repair, a significant elevations in mRNA levels for IL-1β (t = 2.932; df=8; p<0.05), 

IL-6 (t = 6.991; df=8; p<0.05), and iNOS (t = 4.530; df=8; p<0.05) were observed.  

This was accompanied by significant elevations in AG-I (t = 2.648; df=8; p<0.05) and 

IL-1Ra (t = 2.501; df=8; p<0.05).  A significant increase was observed in mRNA 

levels for the repair related genes, BDNF (t = 2.633; df=8; p<0.05), GDNF (t = 4.398; 

df=8; p<0.05), NGF (t = 3.155; df=8; p<0.05), and YM-1 (t = 3.573; df=8; p<0.05)  

(Fig. 3.10).   
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3.3.9 Unbiased stereology of dentate granule neurons at 6 months post-injury 

indicated a full replacement of the neuronal population 

 To determine persistence of the newly generated dentate granule cell, the 

number of neurons within the dentate granule cell blades 6 months (mo) post-TMT 

was determined using unbiased stereology.  The morphological and structural 

features of the hippocampus demonstrated no differences between the TMT and SAL 

control groups (Fig. 3.11A).  The total volume of the superpyramidal and 

infrapyramidal blades of the dentate was not significantly different in the TMT mice 

(Fig. 3.11B).  In addition, the loss of dentate granule cells following TMT was no 

longer evident in the adult with a similar total number of dentate granule neurons as 

observed in the SAL controls (Fig. 3.11B).   

3.3.10 Morris Water Maze 

 To examine the functional deficit and recovery of the hippocampal injury 

following TMT, mice were assessed in the Morris water maze at 7 d and 6 m post-

injection.  At 7 d post-TMT, mice displayed adverse clinical signs of acute toxicity.  

Prior to maze testing, we confirmed no evidence of altered body weight gain, 

hindlimb strength, activity levels, or swimming speed that could compromise 

performance on the water maze.  Latency data was analyzed by a repeated 

measures ANOVA and indicated significant main effects of training day (F (3,30) = 

13.4; p<0.0001), treatment (F (1,30)=71.42; p<0.0001), and significant training day x 

treatment interaction (F (3,30) = 3.562; p<0.025).  Both dose groups showed an 

acquisition of the task over the 4 days of training (Fig. 3.12A); however, the majority 

of TMT dosed mice failed to perform the task within the maximum latency period of 
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60 sec on training days 1 and 2, showed decreased latency on day 3, and, by day 4, 

performed at a similar latency to SAL controls.  Independent group mean analysis 

indicated that the deficit in performance on day 2 was statistically significant (p<0.05) 

(Fig. 3.12A).  In the probe test to assess memory of the platform location (goal 

quadrant), TMT dosed mice did not demonstrated a normal preference for the goal 

quadrant as seen in SAL control mice (t=2,89; df=10; p<0.01) (Fig. 3.12B).  

 In mice that were allowed to recover from the injury over a 6 m period, 

consistent with the unbiased stereology data, hippocampal functioning, as assessed 

by the Morris water maze, had returned to within normal control performance.  

Acquisition of the task was clearly demonstrated over the 4 days of training (F 3,42 = 

69.41; p<0.0001) (Fig. 3.11C) with no evidence of differences in mice previously 

injected with TMT.  In the probe trial, both groups of mice demonstrated similar 

preference for the goal quadrant (Fig. 3.12D). The immediate early gene Fos is 

rapidly induced by performance on the probe trial reflecting circuitry activation 

(Guzowski et al., 2005).  The functional integration of the BrdU+ cells generated 

during the initial injury response was supported by co-localization of Fos within 90 

min following the probe test (Fig. 12E).  

3.4 Discussion 

 Although inflammation is gaining attention with regards to brain injury induced 

neurogenesis, the role of brain-endogenous inflammatory factors on the injury/repair 

process is not fully understood nor is the involvement of microglia.  In the current 

study, we examined a broad spectrum of pro-inflammatory (M1) markers and anti-

inflammatory/repair (M2) within a framework of neuronal death, microglia activation, 
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and induction of NPC proliferation.  We had several goals for this study.  One was to 

correlate the markers for each inflammatory state with the morphological changes of 

microglia over the temporal course of the TMT-induced injury.  The second was to 

correlate these changes with the generation, migration, and maturation of newly 

generated cells induced by neuronal death in the DG.  We considered that 

identification of a link between stages of microglia activation and NPC proliferation 

and survival would provide a framework for examining neurodegenerative processes 

and potential repair mechanisms.   

 Neuroinflammation and elevations in pro-inflammatory cytokines have been 

largely associated with a detrimental effect upon NPC proliferation and neuronal 

differentiation (Ajmone-Cat et al., 2010; Das and Basu, 2008; Mathieu et al., 2010).  

A majority of the supporting studies identified a detrimental effect of microglia in 

vitro, and may not properly model the inflammatory contribution of resident microglia 

within the neurogenic region.  Additional in vivo studies utilized brain insults 

including seizure, ischemia and traumatic brain injury that likely breach the blood 

brain barrier (BBB) allowing the infiltration of peripheral monocytes into the brain 

parenchyma (Lehrmann et al., 1997; Stoll et al., 1998; Williams et al., 2006; Zattoni 

et al., 2011).  Compared to resident microglia, cells of the peripheral immune system 

are strong antigen presenting cells, provide an enriched source of cytokine and 

inflammatory factors and thus exhibit exaggerated activation phenotypes (Hickey 

and Kimura, 1988). Thus, brain macrophages derived from infiltrating blood-borne 

monocytes would represent a source of inflammatory related factors significantly 

higher than resident microglia and serve as a major confounder.  Consistent with this 
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is the work from Shohami et al. that (1999) suggests the diverging consequences of 

pro-inflammatory cytokine receptor activation is dependent on subtle differences in 

the intensity or duration of the stimulus, as well as, the extra/intracellular 

environment.  Recent work has demonstrated infiltrating monocytes as detrimental 

to NPCs in an in vivo model of human immunodeficiency virus infection (Peng et al., 

2008).  It is possible that infiltrating macrophages produce either different levels of 

the pro-inflammatory cytokines or different inflammatory molecules altogether than 

those produced by resident microglia, thereby negatively affecting the endogenous 

response to injury in the neurogenic region.  Using the TMT model, we confirmed 

previous work demonstrating an absence of recruitment of blood borne monocytes 

to the injury site (Funk et al., 2011; Harry et al., 2003).  We now provide data 

demonstrating that resident microglia and the pro-inflammatory cytokine elevation 

occurring following injury are not detrimental to the generation and differentiation of 

healthy SGZ NPCs.   

 The distinct morphological response of microglia, as it relates to the state of 

the neuron, suggests both protective and injurious actions.  Functional changes of 

activated microglia are often accompanied by a morphological transformation 

leading from cells with thin, ramified processes to cells with larger somata and 

shorter, coarser cytoplasmic processes.  This can eventually progress to amoeboid 

cells with morphology similar to macrophages.  In vivo, the transformation of resident 

microglia into those with a phagocytic phenotype is strictly regulated; however, they 

retain the capability to shift their phenotype within specific stages of the inflammatory 

response (Stout and Suttles, 2005) and may not follow a macrophage stereotypic 
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and linearly graded phenotypic reaction (Hanisch and Kettenmann, 2007; Ransohoff 

and Perry, 2009).  Consistent with previous work using the TMT model, activation of 

microglia with an amoeboid morphology is evident in the GCL with the presence of 

apoptotic neurons (Bruccoleri et al., 1998; Harry et al., 2002).  However, even within 

this region a number of microglia maintain a ramified morphology suggesting 

heterogeneous functions.  As active neuronal death dissipates, the local microglia 

response shifts to a stellate morphology eventually returning to a normal ramified 

process bearing morphology.  This shift temporally and spatially corresponds with 

the migration of new cells into the region that has been cleared of neuronal debris 

allowing for repair.  An astrocyte response, characterized by increased GFAP 

immunoreactivity in process bearing cells, follows microglia activation and the 

initiation of neuronal death consistent with previous reports (Bruccoleri et al., 1998);  

yet, it continues for a greater period of time extending into the synaptic remodeling of 

the hippocampus. 

Shifts in markers of the M1 and M2 inflammatory states (Colton, 2009; 

Gordon, 2003) have recently been used in an attempt to discriminate inflammatory 

status between mouse models of Alzheimer’s disease (Wilcock et al., 2011).  While 

the TMT injury/repair model spans a few days to a couple of weeks, we saw a 

similar profile as reported for these more chronic models (Wilcock et al., 2011).  In 

the APPSw/NOS2-/- mice, a mixed profile of elevated mRNA levels of M2 markers 

YM1, AG-I, IL-1Ra and M1 markers TNFα, IL-6, and IL-1β occurred at an age of 

significant hippocampal neuronal loss (Wilcock et al., 2011).  While, in the APPSw 

mouse, the presence of amyloid deposition and absence of neuronal death was 
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accompanied by elevated mRNA levels for M2 related genes.  We considered that 

these heterogenous patterns were due to the chronic nature of the injury process 

and that with a more acute and defined injury and microglia response one would be 

able to detect a clear sequential pattern of inflammatory states.  However, we now 

demonstrate that the heterogeneous pattern of inflammatory states is recapitulated 

with acute injury and repair and that a clear shift in phenotype from M1 to M2 is not 

clearly demonstrated.  It is known that apoptotic cells can directly stimulate an 

inflammatory state that can also initiate an acquired deactivation response 

(Cameron and Landreth, 2010; Ransohoff and Perry, 2009).  The pronounced 

apoptotic death of dentate granule neurons following TMT was accompanied by 

phagocytic microglia for debris clearance.  This coincided with an elevation in M1 

cytokines IL-1α, IL-1β, IL-6, and TNFα, as well as the M2 associated genes, IL-1Ra 

and YM-1.  The previous demonstration that TMT-induced dentate granule cell death 

is a TNF receptor dependent event (Harry et al., 2008b) concurs with the 

interpretation of TNFα elevation as a detrimental pro-inflammatory event.  While IL-

1α and IL-1β are also elevated, it is likely that the elevation in IL-1Ra, possible 

stimulated by TNFα and IL-1 (Watkins et al., 1999), is sufficient to block receptor 

activation (Seckinger et al., 1987).  This would be consistent with the previous report 

indicating a lack of involvement of IL-1R activation in the TMT-induced neuronal 

death (Harry et al., 2008a).  Of interest is the absence of elevation in iNOS as it is 

considered to contribute to the classically activated M1 response (Colton and 

Wilcock, 2010). Thus, from the current study and previous studies (Bruccoleri et al., 

1998; Maier et al., 1995) it appears as if the TMT model excludes this component 
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from the injury pro-inflammatory stage,  The early elevation in IL-6, while pro-

inflammatory, could reflect anti-inflammatory actions via the downregulation of TNFα 

and IL-1α signaling through induction of the decoy soluble TNF receptor and  IL-1Ra 

(Petersen and Pedersen, 2006; Tilg et al., 1994).  Previous studies identified 

astrocytes as the primary source for IL-6 following TMT and expression of IL-6R on 

surviving neurons (Funk et al., 2011) supporting the idea that IL-6 is serving in a 

neuroprotective capacity.  The only clear M2 related gene shown to be elevated in 

these early stages of injury was YM-1.  This protein is expressed in microglia 

following brain injury (Hung et al., 2002) and has been implicated as a link between 

the anti-inflammatory and repair process (Raes et al., 2002a; Raes et al., 2002b).  

While the exact anti-inflammatory mechanism of YM-1 is not known, it is believed to 

modulate inflammation and leukocyte trafficking by competing for binding sites on 

the extracellular matrix (Chang et al., 2001).  However, in the absence of leukocytes 

exactly what role YM-1plays is still in question.  Thus, during the peak of neuronal 

death, the region is stimulating the production of classical pro-inflammatory 

cytokines, which can serve to stimulate the production of anti-inflammatory 

regulatory factors such as IL-1Ra but also initiate signals toward the resolution of 

injury. 

With the end of the neuronal death phase, microglia showed a progressive 

return to a ramified morphology suggesting a shift in function. Thus, in the absence 

of apoptotic signals and presence of cellular debris, the microglia either 

downregulate to a more quiescent phenotype or totally shift their active functions.   

However, upon further examination it was found that with the apparent 
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downregulation of microglia as evidenced by a shift in morphology, elevated mRNA 

levels of IL-1α, IL-6, and TNFα were maintained.  In the full commitment to repair, 

new neurons were integrated into the dentate granule layer and microglia returned to 

a normal basal level morphology.  As expected, this was accompanied by an 

increase in arginase 1 and the repair associated genes, BDNF, GDNF, and NGF.  

YM-1 continued to be elevated similar to levels seen at day 3.  However, a second 

increase in mRNA levels for IL-1β was observed and this was accompanied by an 

elevation in IL-1Ra.  Of interest was the continued elevation in mRNA levels for 

TNFa and IL-6 but now, with remodeling and repair, iNOS was elevated.  

Induction of M2 associated genes is considered to initiate repair following an 

acute M1 response (Gordon, 2003; Raes et al., 2002b) to ensure proper brain 

homeostasis and limit the M1 cytotoxicity (Choi et al., 2011; Frieler et al., 2011).  

The absence of an increase in the classical anti-inflammatory cytokines IL-4, IL-10, 

and IL-13 suggest that under these conditions IL-1Ra may play a signifcant role in 

regulation of inflammatory signaling.  A further regulatory role for IL-1Ra is 

implicated subsequent to the resolution of the injury, with a secondary increase in IL-

1β mRNA levels.  Interestingly, the later time point associated with a return of 

microglia to a normal morphology and the appearance of healthy dentate granule 

neurons was the only time at which elevations in mRNA levels for iNOS were 

observed.  iNOS is considered to contribute to the classically activated M1 response 

(Colton and Wilcock, 2010), however the results of this study and previous work in 

the TMT model do not implicate it during the early pro-inflammatory response .  This 

was accompanied by an elevation in mRNA levels for AG-I potentially regulating by 
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competing with iNOS for arginine (Morris, 2004).  At the later time point AG-I directly 

inhibit iNOS, or iNOS may have a neuroprotective role such as has been reported in 

ischemia (Cho et al., 2005).  

Much of the previous work examining the impact of neuroinflammation on 

NPCs has focused on the regulatory roles of TNFα, IL-1β, and IL-6 and detrimental 

effects upon various aspects of adult neurogenesis (Cacci et al., 2008; Cacci et al., 

2005; Iosif et al., 2006; Koo and Duman, 2008; Monje et al., 2003; Vallieres et al., 

2002).  Given that the temporal pattern of neuronal death and microglia activation 

coincided with peak stimulation of NPCs proliferation, we examined the inflammatory 

profile within the framework of its impact on the newly generated cells.  The SGZ is 

considered the primary regulatory environment for hippocampal NPCs.  Within this 

environment, mRNA levels for IL-1α are elevated with death of dentate granule 

neurons.  This occurs in the absence of elevations in IL-1β, or IL-6 (McPherson et 

al., 2011) and TNFα (Suppl. Fig 3).  In addition to the SGZ, the neighboring GCL can 

also be viewed as a "neurogenic niche" with regards to secreted factors, as well as a 

physical environment for fostering the migration, differentiation, and maturation of 

newly generated cells.  In the present study, elevations in IL-1α, IL-1β, IL-6, and 

TNFα mRNA levels were observed in the subdissected DG, which included both the 

SGZ and the GCL.  It is possible that NPCs in the SGZ could be exposed to these 

cytokines by diffusion from the neighboring GCL. 

As a pro-inflammatory cytokine, TNFα inhibits NPC proliferation in vitro (Cacci 

et al., 2005).  Using knockout mice, Iosif et al., (2006) confirmed these effects 

showing increased NPC proliferation in the absence of TNFp55R and a deficit in 
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mice deficient for TNFp75R; with a concurrent deficit in migration from the SGZ 

(McPherson et al., 2011b).  In the TMT injury, a differential pattern of TNFp55R and 

TNFp75R is initiated as the injury progresses.  Early in the TMT injury response (6-

12 h) neurons predominately express TNFp55R or both TNFp55R/TNFp75R.  By 24-

48 h there is an equal distribution of neurons expressing TNFp75R and 

TNFp55R/TNFp75R with the remainder expressing TNFp55R (Harry et al., 2008b).  

Newly generated cells express TNFp75R during the peak proliferative response in 

the TMT injury model (McPherson et al., 2011b).  Based on these studies the 

elevation of TNFα in the DG at 5 d may be contributing to the migration and survival 

of the new cells into the injured GCL.    

Newly born cells within the SGZ express IL-1R1 protein (Koo and Duman, 

2008), and NPCs isolated from the hippocampus of PND21 mice express mRNA for 

IL-1R1 and IL-1R accessory protein (IL-1RAcP)(McPherson et al., 2011a).  Previous 

work implicated IL-1R1 signaling, via IL-1α or IL-1β, in the regulation of NPC 

proliferation (Koo and Duman, 2008; McPherson et al., 2011a; Spulber et al., 2008).  

Anti-proliferative effects of IL-1β on hippocampal NPC proliferation have been 

demonstrated in vivo and in vitro (Koo and Duman, 2008) while, the upregulation of 

IL-1α and downstream IL-1R1 pathway signaling has been implicated in NPC 

proliferation (McPherson et al., 2011a).  Data in this study suggest a robust 

proliferative response occurs within the DG in the presence of elevated levels of 

both IL-1α and IL-1β, supporting the potential pro-neurogenic effects of IL-1R1 

signaling.  IL-Ra is also elevated at the times of the elevations in IL-1α and IL-1β.  
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IL-1Ra may serve to minimize the pro-inflammatory effects of IL-1α and the anti-

proliferative actions of IL-1β in the TMT injury model.  

An elevation in IL-6 mRNA was also observed at day 14 of neuronal 

differentiation.  In the brain, IL-6 has a dual role both as a pro-inflammatory molecule 

(Bauer et al., 2007) and as a neurotrophic factor.  IL-6 can promote neuronal 

differentiation (Cao et al., 2006) and survival in vitro (Cao et al., 2006; Zhang et al., 

2007); yet, Monje et al., (2003) reported IL-6 inhibition of neuronal differentiation of 

adult hippocampal NPCs.  Neuronal regeneration in vivo can be enhanced with over-

expression of IL-6 and soluble IL-6 receptor (Hirota et al., 1996). IL-6 works in 

concert with BDNF to promote neuronal survival (Murphy et al., 2000) or NGF to 

promote neuronal differentiation (Kunz et al., 2009; Sterneck et al., 1996) in vitro.  

Thus, it is likely that during the repair stage IL-6 works in concert with BDNF, NGF, 

and GDNF to promote differentiation and survival of healthy new hippocampal 

neurons (Frielingsdorf et al., 2007).  Given the overall profile at this time, the 

concurrent increase in YM-1 is likely reflective of efforts to stabilize growth factor 

signaling by regulating protein degradation (Raes et al., 2002a; Raes et al., 2002b).  

One could speculate that the increased growth factor signaling coupled with the 

observed increase in AG-I, IL-1Ra, and YM-1 represents a shift to a pro-neurogenic 

repair M2 response.  Indeed our results demonstrate that the BrdU+ cells generated 

early in the injury begin expressing the mature neuronal marker NeuN within this 

environment.  The timing of this repopulation is consistent with the birth and 

differentiation of NPCs in the normal hippocampus where post-mitotic NPCs begin to 

display characteristics of mature neurons within 14-21 d following birth (Brandt et al., 
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2003; Kronenberg et al., 2003).  The function of these newly generated neurons was 

tested in the Morris water maze (MWM).  Training mice in the MWM to find the 

hidden platform produces long-lasting spatial memories dependent on hippocampal 

circuitry including the DG (McNaughton et al., 1989; Teixeira et al., 2006).   While a 

repopulation of the DG with BrdU+/NeuN+ cells was observed, it did not ameliorate 

deficits in hippocampal function as observed in the MWM.  Since it takes newly 

generated neurons 4-8 weeks to become functionally indistinguishable from mature 

granule neurons (van Praag et al., 2002), the deficits observed at 14 d in the MWM 

were not unexpected.  However, at 6 m post-TMT BrdU+ cells generated in the peak 

proliferative response expressed Fos following the hippocampal dependent memory 

task, suggesting these cells repopulate the DG and become functional within the 

hippocampal circuitry (Kee et al., 2007). 

In this study the adolescent brain displays a robust capacity to generate new 

hippocampal neurons and to utilize a highly inflammatory environment to facilitate 

the success of this process.  The sequence of events associated with M1/M2 

signaling suggests that while a number of these molecules are used in brain repair 

the profile is very heterogenous.  In comparison to other injury studies, any 

differences may be attributed to the reliance on resident microglia alone in the TMT 

model. While microglia are the primary source of genes associated with the 

inflammatory related responses, astrocytes and neurons may also be a source for 

these genes as well as those for the various growth factors. (Colton, 2009; Colton 

and Wilcock, 2010; Wilcock et al., 2011).  Furthermore, it is highly likely that the 

cellular source of the various markers shifts with the demands of the environment.  
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While one may consider our data within the framework of progressive 

neurodegenerative given the similarities to the profile generated in the AD mouse 

models (Colton et al., 2011) we consider the data, and model, well suited to begin 

the identification of critical signals and cellular sources for the M1/M2 related 

proteins at critical periods of brain injury and repair. Gaining further understanding 

will contribute to identifying therapeutic strategies to enhance successful NPC 

proliferation and neuronal differentiation to repair brain injury. 



Table 3.1.  Quantitative real time PCR primer sequences. 

 

111 



 

Table 3.2. Quantitative scoring of microglia morphology in the dentate gyrus. 

 

 

Values represent mean percent of total microglia in each scoring category ± SEM in each treatment group (SAL, 2, 5, 
7 and 14 d post-TMT).  Data were analyzed by repeated measures multivariate ANOVA, followed by a Bonferoni post-
hoc test. 
 
a
 p < 0.01, compared SAL in each score group. 
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Figure 3.1.  Histopathology in the dentate gyrus. 
(A) Representative hematoxylin and eosin (H&E) in the DG of SAL control and 2, 5, 
and 7 d post-TMT (2.3 mg/kg, i.p.).  Neuronal death characterized by nuclear and 
karylosis (arrows) was observed in the dentate gyrus (DG) at 2 and 5 d post-TMT.  
Scale bar = 30µm.  (B) Data represents the mean neuronal death severity score 
(±SEM) within the DG as described in methods. Data was analyzed by one-way 
ANOVA followed by a Dunnett's multiple comparison test (*p<0.05).   
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Figure 3.2.  Injury-induced proliferative response in the dentate gyrus. 
(A) Representative images of BrdU immunohistochemistry (dark black product) 
located in the subgranular zone (SGZ).  Mice received BrdU every 12 h for 3 d 
following SAL or TMT (2 mg/kg, i.p.).  BrdU+ cells were observed in the SGZ of SAL 
treated mice, following TMT and increased number of BrdU+ cells are observed in 
the SGZ and granule cell layer (GCL) at 2,5, and 7 d.  Scale bar = 50 µm.  (B) 
Quantitation of BrdU+ cells in the DG as described in Methods.  Data represents 
mean (±SEM) and was analyzed by one-way ANOVA followed by a Dunnett's 
multiple comparison test (*p<0.05). 
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(C) Representative images of BrdU immunohistochemistry (dark black product), 
mice received BrdU every 12 h for 24 h prior to sacrifice.  BrdU+ cells were observed 
in the SGZ of SAL treated mice, following TMT and increased number of BrdU+ cells 
are observed in the SGZ and granule cell layer (GCL) at 2 d and 3 d only.  Scale bar 
= 50 µm.  (B) Quantitation of BrdU+ cells in the DG as described in Methods.  Data 
represents mean (±SEM) and was analyzed by one-way ANOVA followed by a 
Dunnett's multiple comparison test (*p<0.05).   
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Figure 3.3.  Doublecortin immunohistochemistry in the injured dentate gyrus. 
(A) Representative images of doublecortin (DCX) immunohistochemistry in SAL and 
5 d post-TMT (2.3 mg/kg i.p.), scale bar = 50 µm.  (B) Quantitation of DCX 
immunoreactive cells in the dentate gyrus (DG) as described in Methods.  Data 
represents mean DCX+ cells per mm2 DG ±SEM and was analyzed by one-way 
ANOVA followed by a Dunnett's multiple comparison test (*p<0.05).  (C) Localization 
of DCX+ cells within the subgranular zone (SGZ) and granule cell layer (GCL) of the 
DG, data represent the mean % DCX+ cells ±SEM. 
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Figure 3.4.  Microglia response in the injured dentate gyrus. 
(A) Representative images of Iba-1+ microglia in SAL control, 2,5, and 7 d post-TMT.  
Iba-1+ cells in SAL mice showed thin elongated processes with the subgranular zone 
(SGZ) and granule cell layer (GCL).  At 2 d post-TMT iba-1+ microglia with rounded 
amoeboid morphology as well as hypertrophied process bearing cells were present 
within the SGZ and GCL.  At 5 and 7 d post-TMT the predominant microglia 
morphologies were thick ramified process bearing cells within the SGZ and GCL. 
Scale bar = 50 µm. (B) Fold increase of Iba-1+ cells in the DG at 2, 5, and 7 d post-
TMT compared to SAL control.  Data represent mean fold increase (±SEM) and 
were analyzed by one-way ANOVA followed by a Dunnett's multiple comparison test 
(*p<0.05). 
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Figure 3.5.  Astrocyte morphology in the injured dentate gyrus. 
Representative images of GFAP+ astrocytes in dentate gyrus (DG) of SAL control, 2, 
5, and 7 d post-TMT.  GFAP+ astrocytes displayed long processes that extend 
through the granule cell layer (GCL) of SAL control mice.  At 2 d post-TMT GFAP+ 
cells demonstrate thickened processes and hypertrophy that persists until 7d post-
TMT.  Scale bar = 50 µm. 
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Figure 3.6.  Assessment of brain macrophages in the injured dentate gyrus. 
(A) Flow cytometry for CD45 and CD11b expressing microglia and resident 
macrophages in SAL control, 2 d TMT, and 2 d LPS injected positive control mice.  
(B) Resident microglia and peripheral macrophages both express CD11b, resident 
microglia are CD45low/CD11b+ (lower left quadrant), and peripheral macrophages 
are CD45high/CD11b (upper left quadrant).  (C) Histogram represents the number of 
microglia and macrophages in the hippocampus of TMT and LPS treated mice as a 
% of the SAL control mice.  Quadrants were set on the basis of fluorescent levels 
using isotype-matched control antibodies.  Data are representative of pooled 
hippocampus from 6 mice from each treatment group repeated 3 times and were 
analyzed by one-way ANOVA followed by a Dunnett's multiple comparison test 
(*p<0.05).   
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Figure 3.7.  qRT-PCR for M1 and M2 related genes in the injured dentate gyrus. 
qRT-PCR for pro-inflammatory, anti-inflammatory, and repair related genes 
expressed in the subdissected dentate gyrus at (A) 2d, (B) 5d, and (C) 7d post-TMT.  
Data are presented as fold change in mRNA expression compared to age-matched 
SAL control (mean ±SEM).  Data were analyzed by two-tailed Student's t-test 
(*p<0.05). 
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Figure 3.8.  Newly-generated cells express NeuN. 
Representative image of BrdU (red) and NeuN (green) immunofluorescence in the 
dentate gyrus (DG) at 14d post-TMT.  At 14d post-TMT BrdU+ cells generated during 
the first 3d of injury migrate into the granule cell layer (GCL) of the DG and merged 
(yellow) with the mature neuronal marker NeuN.  Scale bar = 50 µm. 
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Figure 3.9. Microglia and astrocyte morphology at 14 d post injury. 
Figure 8.  Representative images of Iba 1+ microglia (A) and GFAP+ astrocytes (B) 
at 14 d post-SAL and 14 d post-TMT.  (A) Thin ramified process bearing Iba 1+ 
microglia were observed in the GCL of both SAL and TMT mice.  (B) GFAP+ 
astrocytes displayed thin processes that extended into GCL in both SAL and TMT 
mice.  Scale bars = 50 µm 
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Figure 3.10. qRT-PCR for M1 and M2 related genes in the injured dentate 
gyrus. 
qRT-PCR for pro-inflammatory, anti-inflammatory, and repair related genes 
expressed in the subdissected DG at 14 d post-TMT and age matched SAL controls 
(2.3 mg/kg i.p.).  Data are presented as fold change compared to age-matched SAL 
control (mean ±SEM, n = 4-6) analyzed by two-tailed Student’s t-test (*p < 0.05) 



 124 

 

 
 

Figure  3.11.  Long-term recovery of the dentate gyrus following injury. 
(A) Representative images of cresyl violet stained coronal sections of the DG at 6 
months (mo) post-SAL or TMT (2.3 mg/kg i.p.).  (B) Stereological analysis of total 
neurons in the DG at 6 mo post-SAL and 6 mo post-TMT.  Data represent total 
neurons in the DG (mean ±SEM, n = 6) analyzed by Student’s t-test (*p < 0.05). 
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Figure 3.12.  Hippocampal function following injury to the dentate gyrus. 
Comparison of SAL and TMT treated mice in the Morris Water Maze (MWM).  (A) At 
7 d post-SAL and TMT mice were trained in the MWM (3 trials per day) for 4 d.  
Mean escape latencies (±SEM) for 7 d post-SAL (open squares) and 7 d post-TMT 
(closed squares), data were analyzed by one-way ANOVA (*p < 0.05, n = 6).  (B) 
Three days after the final training session, mice were given a probe test.  In the 
probe test the percent time spent in the goal quadrant by SAL and TMT mice was 
calculated (±SEM).  Data was analyzed by Student’s t-test (*p < 0.05). (C) At 6 mo 
post-SAL and TMT mice were trained in the MWM (3 trials per day) for 4 d.  Mean 
escape latencies (±SEM) for 7 d post-SAL (open squares) and 7 d post-TMT (closed 
squares), data were analyzed by one-way ANOVA (n = 6).  (D) Three days after the 
final training session, mice were given a probe test.  In the probe test the percent 
time spent in the goal quadrant by SAL and TMT mice was calculated (±SEM).  Data 
was analyzed by Student’s t-test (n = 6).  (E) BrdU+ cell in the DG (Green) birthdated 
during the inflammatory response expresses Fos (Green) following the probe test. 



 
 
 
Figure 3.13. Graphical summary of TMT-injury response. 
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Supplemenatl Figure 3.1. Subdissection of the dentate gyrus. 
(A) A schematic representative image of the hippocampal formation was used as a 
guide to subdissect the DG from other hippocampal regions. (B) One mm sections of 
the hippocampus were placed under a microscope. (C) One cut was made to separate 
the CA3 from the CA1 and DG, (D) the DG and CA1 were then separated.  RNA was 
then isolated from the DG. 
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Supplemental Figure 3.2. TUNEL staining in the injured dentate gyrus. 
Apoptotic cells were identified using terminal deoxynucleotidyl transferasemediated 
dUTP-biotin in situ end labeling (TUNEL; ApopTag; Intergen, Purchase, NY, USA) and 
visualized by horseradish peroxidase-conjugated digoxigenin antibodies (diluted 1:1000 
in phosphate-buffered saline) and 3,3'-diaminobenzidine (DAB) substrate.  
Representative images of SAL control and 2, 7 d post-TMT, demonstrate the presence 
of apoptotic cells (brown) located throughout the granule cell layer (GCL) of the dentate 
gyrus.  Scale bar = 100 µm. 
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Supplemental Figure 3.1. TNFαααα mRNA expression in the SGZ. 
qRT-PCR mRNA levels of TNFα in the laser-capture microdissected subgranular zone 
(SGZ) TMT treated mice at 48 h post-TMT (2.3 mg/kg, i.p.).  Data represents mean + 
SEM mRNA expression relative to GAPDH (n=6) analyzed by a Students t-test. 
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Chapter 4 

Interleukin (IL)-1 and IL-6 regulation of neural progenitor cell proliferation with 
hippocampal injury: Differential regulatory pathways in the subgranular zone 

(SGZ) of the adolescent and mature mouse brain.2 
 

4.1 Introduction. 

Adult hippocampal neurogenesis is initiated with the proliferation of neural 

progenitor cells (NPCs) within the subgranular zone (SGZ) of the dentate gyrus 

leading to the formation of new dentate granule neurons.  Regulation of this process 

in the normal control brain and following injury occurs via numerous secreted factors 

such as hormones (Cameron and Gould, 1994), neurotransmitters (Banasr et al., 

2004; Yoshimizu and Chaki, 2004), growth factors (Aberg et al., 2000; Larsson et al., 

2002), and cytokines (Das and Basu, 2008; Kaneko et al., 2006; Mathieu et al., 

2010; Taupin, 2008).  Though not fully understood at this time, regulation of this 

process through either cellular components such as microglia and astrocytes 

(Alvarez-Buylla and Lim, 2004) or secreted factors is known to be critical for 

hippocampal neurogenesis following brain injury, and is thought to contribute to the 

capacity for “self-repair” of the dentate granule neurons (Ming and Song, 2005). 

Associated with the regulation of NPCs in the hippocampus following injury is 

often the concurrent activation of microglia.  Microglia serve as the resident immune

                                                        
2 McPherson, C.A., Aoyama, M., and Harry, G.J.  2011.  Brain Behav. Immun. 
25:850-62> 
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 cells of the brain and upon injury they shift to a reactive phenotype (Davalos et 

al.2005; Nimmerjahn et al., 2005).  Upon activation these cells produce pro-

inflammatory cytokines including interleukin-1β (IL-1β), interleukin-1α (IL-1α), and 

interleukin-6 (IL-6) (Mrak and Griffin, 2005).  Overall, the literature indicates IL-1β, 

IL-1α, and IL-6 adversely affects neurogenesis by altering proliferation, survival, 

differentiation, and functional aspects of NPCs (Ajmone-Cat et al., 2010; Das and 

Basu, 2008; Mathieu et al., 2010).  Recent studies examining the specificity of these 

effects on NPC proliferation support the critical modulatory effects of 

neuroinflammation (Monje et al., 2003) and targeted effects of IL-1 and IL-6 

signaling (Monje et al., 2003; Spulber et al., 2008).  Upon activation of microglia by 

lipopolysaccharride (LPS) to release pro-inflammatory cytokines, a direct inhibition of 

NPC proliferation has been observed (Cacci et al., 2005; Monje et al., 2003). In 

addition, this inhibition is associated with an enhanced differentiation of NPC to the 

glial lineage.  A similar decline in NPC proliferation has been demonstrated in the 

hippocampus in vivo in transgenic mice over-expressing IL-6 in astrocytes (Vallieres 

et al., 2002).  Further examination of the modulation effects of IL-1β showed that the 

inhibition of NPC proliferation is the result of downstream signaling events occurring 

following the activation of IL-1 receptor 1 (IL-1R1) (Koo and Duman, 2008).  These 

effects of IL-1R1 activation have not necessarily been translated in vivo in that 

transgenic mice over-expressing IL-1 receptor antagonist (IL-1Ra) demonstrated 

diminished NPC proliferation following an excitotoxic injury (Spulber et al., 2008).  

The work of Spulber et al (2008) was the first to suggest that the effect of IL-1R1 

signaling on NPCs was conditional on the age of the animal.  Under non-injury 
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conditions, the basal level of hippocampal NPC proliferation was significantly 

diminished in 5 month-old IL-1Ra transgenic mice and by 22 months-of-age, this 

difference was no longer evident.    

Studies have demonstrated diminished hippocampal NPC proliferation as a 

function of aging from the adolescent/young adult to the adult rodent (Hattiangady et 

al., 2008; He and Crews, 2007; Kuhn et al., 1996) and brain insult (Hattiangady et 

al., 2008; Shetty et al., 2010).  These studies clearly demonstrate an ontogeny in the 

level of hippocampal NPC proliferation that has only been marginally examined 

within the framework of a coordinated development of the proliferative SGZ, the 

dentate granule cell layer, and microglia.  The proliferative zone of the hippocampus 

is established between the 2nd and 4th week following birth when precursor cells of 

dentate granule neurons populate the SGZ of the rodent (Schlessinger et al., 1975).  

The dentate granule cell layer (GCL) is also established during this same age 

period.  Concurrent with these developmental processes, microglia are proliferating 

rapidly and establishing a unique nervous system identity primarily between 

postnatal days 5 to 20 (Lawson et al., 1990).  The impact of these coordinated 

development events on the response of hippocampal NPC to injury and the 

associated elevation of pro-inflammatory cytokines due to maturing microglia has not 

been adequately examined.  

To address these questions, we compared changes in the SGZ in the 

adolescent (21 day-old) and the adult (1 yr-old) CD-1 male mouse following a 

localized damage to the dentate granule neurons. We utilized the hippocampal 

toxicant, trimethyltin (TMT) to produce hippocampal damage, elevate pro-
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inflammatory cytokines, and induce the proliferation of NPC within the SGZ (Harry 

and Lefebvre d'Hellencourt, 2003; Harry et al., 2004; McPherson et al., 2010).  Using 

this injury model, an elevation of IL-1α signaling via IL-1R1 and downstream genes 

within the IκB/NFkB1 signaling pathway were observed in the SGZ of 21 day-old 

mice.  An alternative pathway was activated in 1 yr-old mice, with an upregulation of 

IL-6/gp130 signaling via the Ras/MAPK pathway.  When we compared the effects of 

IL-1α and IL-6 on the in vitro proliferation of NPCs obtained from the hippocampus of 

adolescent and adult mice, an induction of NPC proliferation was observed with IL-

1α and a specific inhibition of NPC proliferation was seen in the 1 yr-old mice.  Thus, 

our data demonstrates an age-related shift in IL-1α and IL-6 signaling within the 

SGZ supporting a differential effect of pro-inflammatory cytokines on hippocampal 

NPC self-renewal following injury. 

4.2 Materials and Methods 

4.2.1 Animals 

Male adolescent (21 day-old) and adult (1 yr-old) CD-1 mice were obtained 

from Charles River Laboratories (Raleigh, NC).  Mice were individually housed in a 

dual corridor, semi-barrier animal facility with food (autoclaved NIH 31 rodent chow) 

and deionized, reverse osmotic-treated water available ad libitum.  Sentinel animals 

recorded negative for pathogenic bacteria, mycoplasma, viruses, ectoparasites, and 

endoparasites.  All procedures were conducted in compliance with NIEHS/NIH 

Animal Care and Use Committee approved animal protocol. 
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4.2.2 Model of dentate granule cell death 

Mice received a single intraperitoneal (i.p.) injection of either 2.3 mg/kg 

trimethyltin hydroxide (TMT; Alfa Products, Danvers, MA) or vehicle (saline), in a 

dosing volume of 2 ml/kg body weight using a 50 µl Hamilton syringe. Tremor was 

evident at 24 h post-TMT with no acute morbidity.  All endpoints were examined at 

48 h post-dosing time point.  

4.2.3 Tissue fixation and sectioning 

Mice were anesthetized with CO2 and decapitated.  Brains were excised, 

bisected in the midsagittal plane, and one hemisphere immersion-fixed in 4% 

paraformaldehyde(PFA)/0.1M phosphate buffer (PB; pH 7.2) overnight at room 

temperature (RT).  Within 24 h, the brains were rinsed with PB and dehydrated in 

ethanol, embedded in paraffin, and sections were cut at 8 µm.  

For unbiased stereology and immunostaining, mice from each treatment and 

age group were deeply anesthetized by Nembutal (52 mg/kg, i.p.) at 48 h post-

injection of saline or TMT and perfused transcardially with 4˚C 0.1 M phosphate 

buffer (PB) followed by 10 ml of 4˚C 4% PFA/PB (ph 7.4).  Brains post-fixed with 4% 

PFA/PB for 18 h, cryoprotected in 30% sucrose/PB, and frozen. Serial cryostat 

sections (≈70) were cut at an instrument setting of 50 µm through the entire 

hippocampus.  Based upon sampling requirements for unbiased stereology, one 

section was selected from each block of 8 sections and stained for Nissl to visualize 

neuronal architecture. 

4.2.4 Histological assessment of neuronal death 

From each mouse, six H&E stained sections at systematic-random location 
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were selected and the severity of dentate granule cell death scored by three 

independent observers according to an a priori defined severity scale (0-4), as 

previously described (Harry et al., 2008).  Apoptotic cell death was detected with 

immunostaining for fractin, the product of beta actin cleavage by active caspase 3 

(Oo et al., 2002).  Sections were incubated (72 h at 4°C) in 0.3% Triton X-100, 2% 

normal goat serum, and rabbit polyclonal antibody to fractin (1:500; Invitrogen), 

rinsed, then incubated in 0.1M PB containing 0.3% Triton X-100, 2% normal goat 

serum and AlexaFluor goat anti-rabbit 594 (1:500; Invitrogen) for 30 min at RT.  

Sections were coverslipped with ProLong Gold with DAPI (Invitrogen).  Digitized 

images of were acquired using a Leica LSM 5 laser-scanning microscope.   

4.2.5 Immunohistochemistry for microglia and astrocyte response 

Cryostat sections were incubated (72 h at 4°C) in 0.3% Triton X-100, 2% 

normal goat serum, and either rabbit polyclonal antibody to rabbit polyclonal anti-

ionized calcium-binding adaptor molecule-1 (Iba-1 1:500; Wako Chemicals, Japan) 

or GFAP (1:500; Dako Corp., Carpenteria, CA).  Sections were washed, incubated in 

AlexaFluor goat anti-rabbit 594 (1:500; Invitrogen) as described above.  Sections 

were coverslipped with ProLong Gold with DAPI (Invitrogen) as a nuclear 

counterstain.  Digitized images were acquired using a Leica LSM 5 laser-scanning 

microscope. 

4.2.6 Immunofluorescent staining and unbiased stereology of BrdU+ cells 

within the GCL/SGZ 

Mice, at both ages, were injected with 5-bromo-2’-deoxyuridine (BrdU [50 

mg/kg i.p]; Sigma-Aldrich, St. Louis, MO) at the time of TMT or saline dosing, and 
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four injections thereafter every 12 h for 48 h allowing for incorporation at discrete 

intervals during the peak interval of NPC proliferation. Based upon sampling 

requirements for unbiased stereology, from the ∼70 sagittal cryostat sections 

representing the entire hippocampus, a set of 8 sequential sections was sampled in 

a systemic-random manner, i.e., every eighth section with a random start on 

sections 1-8.  Sections were incubated at 37°C in 1N HCL for 30 min, washed in 

PBS (30 min), and incubated in 0.1M PB with 0.3% Triton X-100, 2% normal goat 

serum and rat monoclonal antibody to BrdU (1:500; Accurate Biochemicals; 

Westbury, NY).  Sections were washed, incubated in AlexaFluor goat rat-488 

(1:500; Invitrogen) as previously described, and coverslipped with ProLong Gold 

with DAPI.  Digitized images of immunofluorescence were acquired using a Leica 

DMBRE laser-scanning microscope. 

 To determine the number of newly generated BrdU+ cells, a fractionator, 

sampling scheme for rare events was used (Kempermann et al., 2002).  The sum of 

objects counted was multiplied by the reciprocal of the fraction of reference space 

sampled. The sampling fractions were defined as follows: (a) section sampling 

fraction (ssf), the number of sections sampled divided by the total number of 

sections for each hippocampus; (b) area sampling fraction (asf), the area of the 

sampling frame divided by the area of the x-y sampling step; and (c) thickness 

sampling factor (tsf), the height of the dissector divided by the section thickness.  

BrdU+ cells co-stained with DAPI were identified throughout the latero-medial 

extension of the GCL and SGZ under 100x using a Leica DMRBE fluorescent 

microscope.  In this procedure, the uppermost and lowermost 5 µm focal planes of 
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the section were eliminated to avoid artifacts created by the knife blade.  The 

number of BrdU+ cells was estimated as N = ΣQ-(1/ssf)(1asf)(1tsf), where N = 

number of total estimated BrdU+ cells and ΣQ- = the number of counted BrdU+ cells.  

All analysis was conducted with the observer blinded to the treatment conditions. 

4.2.7 Confirmation of immature NPC phenotype in BrdU+ cells by nestin 

immunofluorescent staining 

A set of three sections was selected out of ∼70 sagittal cryostat sections at 

random from animals in each age and treatment group.  Sections were 

immunostained for BrdU as described with the addition of rabbit polyclonal anti-

nestin (1:500; Abcam, Cambridge, MA) as a marker for immature NPCs.  

Immunoreactive product was detected with AlexaFluor goat rat- 488 and 

AlexaFluor goat rabbit-594 (1:500; Invitrogen) secondary antibodies.  Sections 

were coverslipped with Prolong Gold with DAPI.  Digital images were acquired 

throughout the latero-medial extension of the GCL and SGZ under 60x magnification 

using a Leica LSM 5 laser-scanning microscope.  A series of 1 mm sections 

throughout the entire z-plane was analyzed.  To ensure that all nestin+ cells were 

captured regardless of location within the hippocampal dentate, either the GGL or 

the SGZ, cells were counted across both regions and data was expressed as the 

total number of BrdU+ cells co-expressing nestin.   

4.2.8 qRT-PCR of hippocampal glial activation and pro-inflammatory cytokines 

Total RNA was isolated from the hippocampus (n=6) using the RNeasy Mini 

Kit (Qiagen, Valencia, CA) and 2.5 µg used for reverse transcription (SuperScriptII 

Reverse Transcriptase; Invitrogen).  Quantitative real-time PCR (qRT-PCR) was 
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carried out on a Perkin Elmer ABI Prism 7700 Sequence Detector using 3 µl cDNA 

as a template, combined with a reaction mixture to give final concentrations of 1X 

Power SYBR Green Master Mix (Applied Biosystems; Foster City, CA) and 

optimized forward and reverse primers (Table 1).  The 50 µl reaction mixtures were 

held at 50°C for 2 min, 95°C for 10 min, followed by 40 cycles at 95°C for 15 s, and 1 

min at 60°C.  Amplification curves from individual qRT-PCR reactions were 

generated (Sequence Detection System (SDS) 1.9.1 software (Applied 

Biosystems)).  Relative mRNA amounts were calculated using a normalized 

standard curve and expressed as ratios of target gene to GAPDH. 

4.2.9 Laser capture microdissection (LCM) of the SGZ 

Cryostat sagittal brain sections (12 µm) were collected on uncoated glass 

slides and fixed for 1 min in 70% ethanol. Sections were rinsed in RNase-free water 

for 30 s, stained with Histogene Staining Solution (Arcturus, Mountain View, CA) 

for 15 s, rinsed in RNase-free water for 30 s, dehydrated in 95% ethanol for 30 s, 

100% ethanol for 30 s and xylene for 5 min, and air-dried for 5 min in a laminar flow 

hood.  A two-cell width at the inner-blade edge of the GCL, representative of the 

SGZ, was excised using a PixCell Laser Capture Microscope with an infrared diode 

laser (Arcturus) within 2 h of cryosectioning.  A total of 100 sections from each brain 

hemisphere provided 60000 µm2  x 100 total area from the SGZ  using 7500 laser 

pulses, 15 µm beam diameter, 75 mW power, 2.5 ms pulse.  Total RNA from LCM 

samples was isolated on an individual animal basis (n = 6) using the PicoPure 

RNA Isolation Kit (Arcturus) within 12 h of cyrosectioning.  RNA on the column was 

subjected to RNase-Free DNase Set (Qiagen) then eluted with Elution Buffer.  qRT-
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PCR was conducted as described for hippocampal tissues.   

4.2.10 Generation of Primary Neurospheres 

Two mm thick coronal sections containing the hippocampus were collected 

from three 21 day-old or 1 yr-old mice, as previously described (Bull and Bartlett, 

2005).  The hippocampus was dissected from the coronal slice excluding the corpus 

callosum, lateral ventricle, and cortex.  Minced tissue was dissociated using the 

NeuroCult Enzymatic Dissociation Kit for Adult Mouse and Rat CNS Tissue 

(Stemcell Technologies, Vancouver, BC).  Single cell suspensions were sequentially 

filtered through 70 µm and 40 µm strainers into proliferation medium (PM) consisting 

of mouse NeuroCult NSC Basal Medium (mouse) plus NeuroCult NSC 

Proliferation Supplement (Stemcell Technologies) with the addition of 20 ng/ml 

recombinant human epidermal growth factor (rhEGF), 10 ng/ml recombinant human 

fibroblast growth factor basic (rhFGFb), and 2 µg/ml heparin (StemCell 

Technologies).  Single cell suspensions were plated at a density of 3500 cells/cm2 in 

T-75 tissue culture flasks (BD Falcon) in PM, and incubated at 37°C in 5% CO2/5% 

O2, forming neurospheres by 7 days in vitro (DIV). 

4.2.10.1 Neural colony forming-cell assay (NCFCA) 

The NeuroCult Neural Colony-Forming Cell Assay Kit (NCFCA; StemCell 

Technologies) was used to discriminate between stem and progenitor cells on the 

basis of their proliferative capability and size of colony formed.  At 7 DIV, 

neurospheres generated from the hippocampus of each age and each dosing group 

were dissociated into single cell suspensions (NeuroCult Chemical Dissociation 

Kit; StemCell Technologies) for use in NCFCA as previously described (Louis et al., 
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2008).  Briefly 2.5 x 103 cells were plated in 35 mm tissue culture dishes in a semi-

solid collagen matrix containing NeuroCult NCFC media, supplemented with 20 

ng/ml rhEGF, 10 ng/ml rhFGFb and 2 µg/ml heparin.  Cultures were incubated at 

37°C in 5% CO2/5% O2 and fed with 60 µl of PM every 7 days, until 21 days.  At 21 

days post-plating, the total number of colonies was counted from each experimental 

group, and categorized by size, as imaged by an inverted Nikon TE-2000 

microscope using a 2 mm x 2 mm gridded scoring dish (StemCell Technologies).   

4.2.10.2 qRT-PCR for IL-1R1, IL-1RAcP, IL-6Rαααα, gp130 in neurospheres 

To measure mRNA expression, total RNA was isolated from neurospheres at 7 DIV 

(RNeasy Mini Kit; Qiagen).  qRT-PCR for each transcript (Table 1) was conducted 

as described for hippocampal samples.  Amplification curves were generated and 

relative mRNA amounts were calculated using a normalized standard curve and 

expressed as ratio of target gene to GAPDH. 

4.2.11 NCFCA in the presence of IL-1αααα or IL-6 

The NCFCA was used to determine the effects of IL-1α or IL-6 on the 

formation of neural cell colonies.  Based upon previous work (Harry et al., 2002; 

Monje et al., 2003) a dose range of recombinant IL1α and IL-6 was selected.  At 

initial plating of single cell suspensions, media (NeuroCult NCFC Serum Free 

Media without Cytokines; 20 ng/ml rhEGF, 10 ng/ml rhFGFb and 2 µg/ml heparin) 

was supplemented with either recombinant mouse IL-6 (rmIL-6, [5, 10, or 15 ng/ml]) 

or recombinant mouse IL-1α (rmIL-1α [75, 150, or 150 pg/ml]) (R&D Systems; 

Chicago, IL).  In NPCs obtained from adolescent hippocampus, a linear dose 

response pattern was evident with a stimulation of proliferation observed with IL-1a 
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and an inhibition with IL-6 (Suppl. Fig. 1).  From this dose response, dose levels of 

IL-1a (150 pg/ml) and IL-6 (10ng/ml) were selected for a direct comparison of 

proliferation across age of NPCs.  An additional comparison was conducted with a 

combined dosing of rm IL-6 [10 ng/ml and rm IL-1α [150 ng/ml].  Cells were 

incubated at 37°C in 5% CO2/5% O2.  Cultures were fed with 60 µl of PM every 7 

days until 21 days. At 21 days post-plating, the total number of colonies was counted 

from each experimental group, and categorized by size. 

4.2.12 Statistical analysis 

Data for cell number determination and each mRNA transcript displaying a 

homogenous distribution of variance were analyzed by ANOVA.  Group differences 

between 21 day-old and 1 year-old mice with and without TMT were assessed using 

a 2 × 2 multi-factorial ANOVA with age and treatment as major factors. Subsequent 

independent group mean comparisons were conducted using the Bonferroni test.  

Student t-tests were conducted to determine the effect of combined cytokine 

exposure and mRNA levels within NPCs obtained from control mice at each age.  All 

statistical significance levels for independent group mean analyses were set at p < 

0.05. 

4.2.13 Microarray analysis 

To examine changes induced in genes related to the IL-1 and IL-6 pathways, 

total RNA (10-20 ng) from LCM samples of the SGZ (n=3) was amplified (Affymetrix 

One-Cycle cDNA Synthesis Protocol).  Fifteen µg of amplified biotin-cRNAs were 

fragmented and hybridized to Affymetrix Mouse Genome 430 2.0 GeneChip® array 

for 16 h at 45ºC in a rotating hybridization oven using the Affymetrix Eukaryotic 
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Target.  Slides were stained with steptavidin/phycoerythrin using a double-antibody 

staining procedure and washed utilizing the EukGE-WS2v5 protocol of the 

Affymetrix Fluidics Station FS450 for antibody amplification.  Arrays were scanned 

with an Affymetrix Scanner 3000 and data obtained using the GeneChip® Operating 

Software (GCOS; Version 1.2.0.037).  Data were processed with an Affymetrix-

specific error model for estimating measurement variance, using Rosetta Resolver, 

as described (Weng et al., 2006).  Biological replicates were combined through 

error-weighted averaging and comparison ratios were built between samples. 

Statistical significance was set at p < 0.001 and a minimum fold change of 1.2 was 

set as criteria. 

 Genes that were differentially regulated in 21 day-old versus 1 yr-old TMT 

exposed mice, taking into account differences in baseline expression in naïve mice, 

were analyzed using PathwayArchitect (Stratagene) software.  This software uses 

the KEGG, DIP, and BIND databases and natural language scans of Medline to 

identify functional associations among differentially expressed genes.  Gene 

interactions and associations (binding, expression, metabolism, promoter binding, 

protein modification and regulation) were represented graphically as a network.  In 

this analysis, age was considered a mediator of injury related differential expression 

patterns using ANOVA. 
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4.3 Results 

4.3.1 TMT induced an equivalent level of localized dentate granule neuron 

apoptosis at 21 days and 1 yr of age 

We examined severity of neuronal apoptosis in the GCL and determined a 

uniform level and timing of hippocampal neuronal death induced by TMT across both 

ages. No evidence of cell death was observed by H&E staining in saline treated 

control (severity scores = 0-1; Fig. 1A,B).  At 48 h post-TMT, dentate granule 

neurons displayed nuclear pyknosis and karyolysis (severity scores = 3-4; Fig. 

1C,D).  No indication of apoptosis was detected in saline control mice by 

immunostaining for fractin (Fig. 1E,F); fractin+ neurons were prominent following 

TMT (Fig. 1G,H).  

4.3.2 TMT injury-induced proliferation is greater in the adolescent versus 

mature hippocampus 

In the 21 day-old and 1 yr-old control mice, BrdU+ cells were sparse and 

restricted to the GCL inner blade/SGZ (Fig. 2A,B).  An increase in BrdU+ cells was 

observed at 48 h post-TMT in the SGZ, as well as within the GCL in both 21 day-old 

(Fig. 2C) and the 1 yr-old mice (Fig. 2D).  These visual observations were confirmed 

by unbiased stereology (Fig. 2E).  Two-way ANOVA revealed a significant effect of 

treatment (F(1,8)=49.58; p=0.0001), age (F(1,8)=43.43; p=0.0002), and treatment x age 

interaction on BrdU+ cell number in the GCL/SGZ (F(1,8)=27.20; p=0.0008).  The 

number of BrdU+ cells within the GCL/SGZ was significantly higher in the 21 day-old 

control mice than in 1 yr-old control mice (p<0.05).  In both age groups, TMT 

exposure resulted in a significant increase in the number of BrdU+ cells within the 
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GCL/SGZ (p<0.05).  In 21 day-old mice, the increase in BrdU+ cells was 

approximately 7-fold higher than the basal level observed in controls.  In 1 yr-old 

mice, the increase in BrdU+ cells was significantly less, at an estimated 3.5-fold 

elevation (p<0.05).   

We then confirmed the proliferation of NPC by examining immunostaining for 

nestin and co-localization with BrdU (Fig. 2F-H).  To capture any changes in the 

distribution of NPCs as a function age or injury, the distribution of BrdU+ cells across 

the entire GCL was examined.  The percent total #BrdU+ cells throughout the GCL 

that co-expressed nestin was determined within controls and TMT-dosed mice for 

each age group (Fig. 2I).  A two-way ANOVA indicated a significant main effect of 

age (F(1,8)=36.41; p=0.0003) with the 21 day-old mice showing a higher percentage 

of co-localized immunostaining as compared to 1 yr-old, across both conditions.  A 

significant main effect of TMT treatment (F(1,8)=49.04; p=0.0001) was observed with 

an increase in co-localization at 48 h following TMT injection.  No significant 

interaction of age and TMT was detected with the adolescent mice showing an 

approximate 30% increase over the higher basal level and the mature mice 

demonstrating an approximate 50% increase over the lower basal level.   

4.3.3  Microglia demonstrate different morphological responses to injury as a 

function of age 

In the normal 21 day-old mouse hippocampus, microglia displayed thin, 

ramified processes within the SGZ, hilus, and the densely packed dentate GCL (Fig 

3A).  Similar to the Iba-1 staining pattern in the 21 day-old, microglia within the 1 yr-

old hippocampus were prominent within the hilus and molecular layer.  In addition, 
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Iba-1+ microglia displayed an increased staining in processes within the SGZ, hilus, 

and GCL (Fig. 3B), suggestive of a lower threshold for activation (Sparkman and 

Johnson, 2008). 

In the 21 day-old mice, neuronal injury and loss following TMT induced an 

activation of microglia displaying an amoeboid morphology within proximity to dying 

neurons showing dense collapsed nuclei (Fig. 3C).  In addition, process-bearing 

responsive microglia were evident throughout the GCL and in the hilus, occasionally 

extending into the SGZ.  In 1 yr-old mice, a comparable level of neuronal death did 

not result in the localization of amoeboid microglia with dying neurons.  Rather, 

prominent reactive microglia within the GCL displayed thick ramified processes.  

Similar to the 21 day-old mice, process-bearing reactive microglia were observed 

throughout the GCL and hilus occasionally extending into the SGZ (Fig. 3D).  The 

morphological response of microglia was supported by qRT-PCR of Iba-1 (Fig. 3E).  

Two-way ANOVA of Iba-1 mRNA levels revealed a significant effect of treatment 

(F(1,20)=8.438; p<0.0088) and higher levels seen in the 21 day-old TMT dosed mice. 

(p<0.05).  No significant main effects of age or interaction between age and 

treatment were observed.    

4.3.4 GFAP+ astrocytes demonstrate similar morphological responses to injury 

across ages 

In control mice, minimal differences in GFAP staining were observed as a 

function of age.  At both ages, astrocytes displayed fibrous processes projecting 

thorough the SGZ and GCL (Fig. 3F,G).  Within 48 h post-TMT a retraction and 

moderate thickening of GFAP processes, was evident throughout the GCL (Fig. 
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3H,I).  The increase in GFAP immunoreactivity with TMT was supported by qRT-

PCR for GFAP mRNA levels (Fig. 3J).  Two-way ANOVA revealed a significant 

effect of treatment (F(1,20)=14.82; p=0.001) with a significant increase observed 

following TMT in both ages, as compared to controls (p<0.05).  No significant main 

effects of age or age x treatment interaction were observed. 

4.3.5 IL-1αααα and IL-6 mRNA levels are differentially elevated in the hippocampus 

following TMT as a function of age 

Given the differential activation of microglia in 21 day-old, as compared to 1 

yr-old mice, additional characterization of the microglial response was conducted 

based on proposed pro-inflammatory (MI) or anti-inflammatory (M2) phenotypes 

(Colton and Wilcock, 2010; Michelucci et al., 2009).  Gene expression associated 

with the M1 phenotype was examined (IL-1β, IL-6) as well as the pro-inflammatory 

cytokine IL-1α.  Expression of anti-inflammatory M2 phenotype associated genes: 

arginase I (AG-I), chitinase 3-like-3 (YM-1), IL-10, and transforming growth factor 

beta (TGFβ1) were also examined.  Consistent with our previous work (Bruccoleri et 

al., 1998), we did not observe an elevation in mRNA levels for TGFβ1 in the 

hippocampus at this early time point (Fig. 4A).  IL-10 and AG-I mRNA levels were 

not significantly altered in the hippocampus (Fig. 4A) following TMT.  No signal for 

YM-1 mRNA was detected (data not shown).  IL-1β mRNA expression was not 

significantly elevated by TMT in either age group (Fig. 4A).  Two-way ANOVA for IL-

1α mRNA expression showed significant main effects of treatment (F(1,20)=45.41; 

p=<0.0001), age (F(1,20)=19.91; p<0.0001), and treatment x age interaction 

(F(1,20)=24.67; p=<0.0001).  A significant TMT-induced elevation was observed in 21 
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day-old mice (p<0.001).  IL-6 mRNA levels in the hippocampus were significantly 

elevated following TMT (F(1,20)=7.755; p=<0.05) in 1 yr-old mice (p<0.001).   

4.3.6 TMT-induced injury selectively elevated IL-6 mRNA in SGZ of mature 

mice 

To further examine whether the differential inflammatory cytokine response 

observed in the hippocampus was observed within the SGZ, mRNA levels were 

determined from LCM samples. A slight elevation in mRNA levels for TGFβ1 within 

the SGZ following TMT was noted at both ages but failed to reach statistical 

significance (Fig. 4B).  IL-10 and AG-I mRNA levels in the SGZ were not significantly 

altered by TMT (Fig. 4B). No signal for YM-1 mRNA was detected (data not shown).  

mRNA levels for IL-1β showed no significant differences as a function of age or TMT 

injection (Fig. 4B).  IL-1α mRNA levels (Fig. 4B) were significantly elevated with TMT 

(F(1,20)=42.50; p<0.0001) in both age groups (p<0.01).  No significant effect was 

observed as a function of age.  IL-6 mRNA levels (Fig. 4B) were significantly 

elevated by TMT (F(1,20)=8.595; p<0.005) and with age (F(1,20)=5.304; p<0.05).  A 

significant treatment x age interaction (F(1,20)=5.036; p<0.05) was detected with TMT-

induced elevations in IL-6 mRNA levels occurring in 1 yr-old mice (p<0.05).  

4.3.7 In vivo TMT exposure induced neural colony cell formation in vitro 

Neurogenic cells within the SGZ are primarily progenitor cells that maintain 

the capability to differentiate into neurons or glia (Bull and Bartlett, 2005; Seaberg 

and van der Kooy, 2002); however, with localized neuronal activation, a latent stem 

cell population has also been identified (Walker et al., 2008).  Using the NCFCA to 

discriminate between colonies of neural stem and progenitor cells, we examined 
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alterations in the size of colonies formed from hippocampal cells as a function of age 

and in vivo neuronal activation/injury by TMT.  We found no difference in culturing 

success of NPC from young and mature brains, consistent with similar published 

work (Blackmore et al., 2009).  Colonies >2.0 mm were not observed in either age or 

treatment group, suggesting origination from progenitor cells, rather than stem cells.  

The mean total number of colonies generated in vitro was greater in 21 day-old as 

compared to the 1 yr-old saline control mice (Fig. 5A; p<0.005).  TMT treatment 

induced colony formation from both 21 day-old and 1 yr-old mice.  The number of 

colonies generated from the hippocampus of mice injected with TMT was greater at 

21 days of age compared to the 1 yr-old; however, the fold increase over saline 

control was similar in both ages (1.8 fold for 21 day-old and 1.9 fold for the 1 yr-old). 

4.3.8  NPCs from the adolescent and mature hippocampus express IL-1R1, IL-

1RAcP, IL-6Rαααα, and gp130 

To confirm that NPC displayed the capability to respond to the in vivo 

elevations in IL-1α and IL-6 within the SGZ, IL-1R1, IL-1RAcP, IL-6Rα, and gp130 

mRNA levels were determined in isolated NPCs generated from each age group.  A 

basal level of each transcript was detected (Fig. 5D).  No differences as a function of 

age were seen for IL-1R1, IL-1RAcP, or gp130.  Hippocampal NPCs derived from 1 

year-old mice expressed higher levels of IL-6Rα, compared to NPCs from 21 day-old 

mice (t = 4.871, p < 0.05).  
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4.3.9.  IL-1αααα stimulated colony formation of adolescent NPCs and IL-6 inhibited 

colony formation of adolescent and mature NPCs 

Given the expression of IL-1 and IL-6 receptors on NPCs, we examined the 

proliferative response to exogenous recombinant IL-1α, IL-6, or a combination of IL-

1α and IL-6 proteins in the NCFCA.  Following a 21 DIV exposure to rmIL-1α, two-

way ANOVA revealed a significant effect of treatment (F(1,8)=14.64; p=0.005), age 

(F(1,8)=127.3; p=<0.0001), and treatment x age interaction on total colony formation 

(F(1,8)=7.029; p=0.02).  Treatment with rmIL-1α significantly increased formation of 

colonies obtained from the hippocampus of 21 day-old mice (p<0.05; Fig. 6A).  rmIL-

1α did not stimulate colony proliferation in cultures obtained from the hippocampus 

of 1 yr-old mice.  Following 21 DIV, exposure to rmIL-6 produced a significant effect 

of treatment (F(1,8)=14.64; p=0.005), age (F(1,8)=127.3; p=<0.0001), and treatment x 

age interaction on total colony formation (F(1,8)=7.029; p=0.02).  Decreased colony 

formation with rmIL-6 was observed in hippocampal NPC from both ages (p<0.05; 

Fig. 6B).  In NPCs from 21 day-old mice, concurrent exposure to IL-1α and IL-6 did 

not result in a significant increase in colony formation thus, inhibiting the stimulatory 

properties of IL-1α.  (Fig. 6C) In NPCs from 1-yr-old mice, concurrent exposure to 

both cytokines resulted in a significant decrease (t=3.113, p<0.05) in colony 

formation similar to the effects observed with IL-6 alone. 

4.3.10 Differential activation of the IL-1 pathway in the adolescent and the IL-6 

pathway in the mature SGZ following TMT injury 

Based upon our observations that hippocampal NPCs isolated from both age 

groups 1) expressed IL-1 and IL-6 receptors for downstream signaling activation, 2) 
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expressed both cytokines in vivo within the SGZ, and 3) demonstrated age related 

proliferative responses in isolated NPC, we examined the molecular profiles 

associated with both receptor pathways as a function of age and injury.  Microarray 

profiles generated from LCM SGZ tissue identified a total of 109 unique transcripts 

changed in the 21 day-old samples, 54 unique transcripts in the 1 yr-old samples, 

with a total of 88 similarly changed at both ages as a function of TMT (Fig. 7A).  

While a full analysis of the microarray data is outside the scope of this manuscript, a 

number of genes were identified in support of the speculation that a greater level of 

“immune” activation occurs in the adolescent SGZ.  For example, CD44 antigen 

transcript was elevated 10.9-fold (p<0.0001) in the adolescent with only a 2-fold 

(p=0.23) elevation in the adult.  Similar patterns were seen for Mmd (monocytes to 

macrophage differentiation-associated) transcripts with a 2.8-fold increase in the 

adolescent (p<0.00001) and a 1.4 fold increase in the adult (p=0.0005) and for Msr2 

(macrophage scavenger receptor 2) with a 3.4-fold increase (p<0.000001) in the 

adolescent and a 1.08-fold non-significant increase in the adult.   

We used PathwayArchitect software to examine the differential expression of 

IL-1α and IL-6 related genes in the SGZ as a function of age and TMT injury.  The 

transcript expression pattern generated from the SGZ suggested a primary 

involvement with injury of the IL-1 signaling pathway in the 21 day-old mice with IL-6 

serving a primary role in the SGZ of 1 yr-old mice (Fig. 7B).  Using this approach, 

statistical significance was set at p<0.001 and a minimum fold change of 1.2 was set 

as criteria.  IL-1α and IL-1R1 were induced at a greater level in the adolescent SGZ 

compared with the mature SGZ. A specific alternative pathway for neurogenesis has 
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yet to be reported.  We now report a network association between IL-1α and 

signaling genes downstream of IL-1R1 including: myeloid differentiation primary 

response gene-88 (Myd88), IκB, and NFκB1 in the SGZ with higher levels in the 21 

day-old injured SGZ as compared to the 1 yr-old mice.  

With TMT injury, IL-6 mRNA levels were significantly elevated in the SGZ of 1 

yr-old with a minimal induction in 21 day-old mice.  The IL-6/IL-6R complex initiates 

signaling through the gp130 receptor (Jones et al., 2005) leading to activation of 

either Janus kinase (JAK) or Ras-mediated signaling (Heinrich et al., 1998; Hirano et 

al., 2000) regulating cell growth, proliferation, differentiation, and apoptosis.  We 

noted a concurrent upregulation of IL-6 and a number of Ras-mediated signaling 

genes in the SGZ of adult mice following injury.  Ras- Genes elevated in the 

Ras/MAPK signaling pathway included SHC, the gene encoding a signaling and 

transforming protein Src homology 2 and 3 that are involved in mitogenic signal 

transduction and facility the activation of Ras proteins.  Growth factor receptor bound 

protein-2 (Grb-2), an adaptor protein involved in epidermal growth factor receptor 

tyrosine kinase for the activation of Ras and downstream kinases, ERK1,2.  

Elevations were noted in v-raf-1, murine leukemia viral oncogene homolog 1 (Raf-1), 

the gene encoding MAP3K that functions downstream of Ras membrane associated 

GTPases.  Raf-1 phosphorylates MEK1 and MEK2 to activate ERK1 and ERK2, 

controlling gene expression involved in cell division, differentiation, migration, and 

apoptosis.  Elevations were seen in mitogen-activate protein kinase kinase-1 

(MAP2K1) for which the associated protein product, MEK1 protein kinase is 

essential for normal development before and survival after birth. 



 161 

4.4 Discussion 

In the current study, we examined microglia activation, IL-1α and IL-6 mRNA 

levels, and NPC proliferation within the SGZ in mice exposed to the hippocampal 

toxicant, TMT.  Based upon the adolescent establishment of the proliferative SGZ 

(Schlessinger et al., 1975) and active NPC proliferation in the hippocampus, we 

further compared differences in the response to TMT-induced injury as a function of 

age.  These comparisons incorporated differences in the SGZ of the normal 

adolescent hippocampus as compared to an adult age showing a decline in NPC 

proliferation.  Our data confirmed previous reports of a greater number of NPCs in 

the SGZ of adolescent, as compared to adult mice under normal conditions (Ben 

Abdallah et al., 2010; He and Crews, 2007; Kuhn et al., 1996), as well as with brain 

injury (Hattiangady et al., 2008; Shetty et al., 2010).  The novel findings of these 

studies include age-related differences in the response of isolated NPCs to IL-1α or 

IL-6 and the molecular profiles generated from the injured SGZ.  First, we report that 

the age-related level of NPC proliferation in vivo following TMT-induced injury 

correlates with elevations in IL-1α mRNA levels in the adolescent hippocampus and 

IL-6 within the adult.  We show that proliferation of NPCs isolated from the 

hippocampus of mice at both ages was inhibited by IL-6.  Proliferation of NPCs by 

IL-1α was observed only in cells derived from the hippocampus of adolescent mice 

and not from NPCs from the mature hippocampus.  Third, we examined the 

molecular profile of the SGZ from each age and treatment and identified distinct 

signaling pathway activations as a function of age.  TMT injury selectively induced 

an activation of IL-1α signaling via IL-1R1 and downstream genes within the 
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IkB/NFkB1 signaling pathway in the 21 day-old and IL-6Rα/gp130 signaling via the 

Ras/MAPK pathway in the 1 yr-old mice.  From these data, we conclude that the age 

related expression of IL-1α and subsequent signaling pathway activation in the 

adolescent fosters NPC proliferation.  In comparison, activation of the IL-6Rα/gp130 

pathway in the adult contributes to maintaining a tight regulatory control on NPC 

proliferation, thus serves as a basis for an age-dependent level of NPC self-renewal 

following injury.  

 Both IL-1β and IL-α induce signaling via binding to IL-R1 followed by a 

sequence of protein-protein interactions forming a complex to recruit IL-1RAcP 

(Greenfeder et al., 1995).  Myeloid differentiation primary response gene-88 (Myd88) 

is then recruited to the IL-1α/IL-R1 complex activating the interleukin-1 receptor 

associated kinase (IRAK) (Wesche et al., 1997), for activation either of ERK, 

p38MAPK, c-jun, or NFκB signaling (Dunne and O'Neill, 2003; O'Neill, 2002; O'Neill 

and Greene, 1998).  Previous studies have demonstrated that IL-1R1 is expressed 

in vitro in NPCs isolated from the rat embryonic forebrain (Wang et al., 2007) and in 

the adult rat hippocampus in vivo (Koo and Duman, 2008).  This receptor expression 

suggests the potential for direct effect of receptor action via IL-1β or IL-1α 

(Greenfeder et al., 1995).  Wang et al., (2007) demonstrated that the treatment of rat 

embryonic forebrain NPCs with IL-1β and upon IL1-R1 activation of the SAP/JNK 

pathway inhibited proliferation. Additionally, activation of the NFκB pathway by IL-1β 

binding to IL-1R1 decreased proliferation but not differentiation of adult hippocampal 

NPCs both in vivo and in vitro (Koo and Duman, 2008).  Inhibition of proliferation, 

observed by Wang et al. (2007), was accompanied by a normal pattern of cell 



 163 

differentiation; but a lower level of GFAP protein expression in differentiated NPCs.  

A direct effect of IL-1β on the differentiation of NPCs to neurons has been suggested 

by the work of Kuzumaki et al., (2010) indicating a decrease in β-tubulin+ neurons 

differentiated from mouse whole brain embryonic NPCs.   

While the majority of the work on IL-1 signaling in NPCs has focused on IL-1β, 

IL-1α also activates the IL-1R1 and direct effects on NPCs have been observed.  

Using mouse embryonic cortical NPCs, IL-1α exposure was reported to direct 

differentiation to the astrocyte lineage (Ajmone-Cat et al., 2010).  The effect of IL-

1R1 signaling on NPC proliferation has been supported by the studies of Spulber et 

al. (2008) utilizing transgenic mice overexpressing IL-1 receptor antagonist (IL-1ra).  

In these animals, the overexpression of IL-1ra was sufficient to inhibit in vivo 

excitotoxicity-induced hippocampal progenitor cell proliferation.  Further 

observations from this study suggested that the effect of IL-1ra on the in vivo basal 

level of hippocampal progenitor cell proliferation was influenced by the age of the 

animal.  In 5 month-old mice, the IL-1ra transgenic mice demonstrated a decrease in 

basal proliferation for which no such effects were observed in mice at ∼22 months of 

age.  Our current data supports the work of Spulber et al. (2008) suggesting that the 

effect of IL-1R1 activation on NPCs can be dependent upon the age of the animal.  

In the isolated SGZ, a significant elevation was observed for IL-1α in both age 

groups; however, activation of the IkB/NFkB signaling cascade was restricted to the 

adolescent.  Consistent with this in vivo observation, IL-1α stimulated in vitro 

proliferation of NPCs isolated from adolescent hippocampus; while, no such effects 

were observed in cells isolated from the adult.  Activated microglia provide the 
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earliest source of IL-1α and IL-1ra after injury (Eriksson et al., 2000; Eriksson et al., 

1999) and in the TMT-induced injury model (Bruccoleri et al., 1998).  Thus, the age 

related changes we observed in the current study with regards to IL-1R1 activation 

are likely influenced by the maturation of microglia and differences in activation.  

Just as the functional capability of microglia change in the aged brain (Streit, 2006), 

microglia during the postnatal period represent a more immature phenotype 

(Kuzumaki et al., 2010; Rezaie and Male, 1999; Yokoyama et al., 2004).  TMT 

induced a similar severity of neuronal death in both age groups but a pronounced 

activation of microglia within the GCL was seen only in the adolescent, as evidenced 

by the morphological phenotype and the elevation in IL-1α.  In the adult, a more 

blunted hypertrophic process-bearing microglia response was observed.  No 

elevation was observed the in microglia M2 associated genes, AG-I, TGFβ1, IL-10, 

and chitinase-3-like-3 (YM-1) (Colton and Wilcock, 2010; Michelucci et al., 2009) 

suggesting the absence of an alternatively activated microglia phenotype at both 

ages following TMT exposure.  Thus, as a source of IL-1α in this injury model 

(Bruccoleri et al., 1998), activated microglia could serve as a major influence not 

only on the NPC in vivo but also on the surrounding astrocytes, resulting in an 

environment promoting differences observed as a function of age. 

The prominent cytokine response observed in the adult GCL and SGZ following 

TMT-induced injury was the up-regulation of IL-6.  We also showed a slight elevation 

in mRNA levels of IL-6 in the normal adult hippocampus as compared to the 

adolescent.  This finding is consistent with the report of an increase in IL-6 protein 

expression in the hippocampus of aged, as compared to juvenile mice (Ye and 
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Johnson, 1999, 2001).  While a body of literature exists demonstrating the ability of 

multiple neural cell types to express IL-6 mRNA or protein, there is limited available 

data in the literature demonstrating the cellular source of IL-6 within the brain.  

Recent work suggests the expression of IL-6 protein in cortical lesions from patients 

with either tuberous sclerosis complex (TSC) or focal cortical dysplasia type IIb 

(FCDIIb)(Shu et al., 2010).  Within the TSC tubers cortical tubers, IL-6 

immunoreactivity co-localized to dysmorphic neurons and giant neurons with no 

evidence of localization to GFAP astrocytes.  In FCDIIb, balloon cells expressed 

both IL-6 and GFAP.  Additional work suggests the expression of IL-6 in neurons of 

the cerebral cortex and hypothalamus with trinitrobenzene sulfonic acid-induced 

colitis (Wang et al., 2010).  Further work has demonstrated that the combination of 

neuronal depolarization and activation of IL-1R1 with IL-1β can induce neurons to 

synthesize and release IL-6 (Juttler et al., 2002; Ringheim et al., 1995; Tsakiri et al., 

2008a, b).  It is possible that the production of IL-1a by microglia, coinciding with the 

stimulation of neurons by TMT, could lead to the increased neuronal production of 

IL-6.  Microglial production of IL-6 has also been demonstrated in non-pathological 

conditions in vivo (Schobitz et al., 1992) and classically activated M1 microglia are 

also identified to produce IL-6 (Colton and Wilcock, 2010; Monje et al., 2003).  We 

attempted to identify the cellular source of IL-6 within the current study however, a 

consistent staining pattern was not observed across various antibody sources.  With 

a monoclonal antibody we were able to identify localization to neurons; yet, with a 

polyclonal antibody, a similar pattern of neuronal expression was lacking and the 

overall impression was of localization to microglia.  In neither case did we identify 
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immunoreactivity within GFAP+ astrocytes.  However, to identify the cellular source 

will require additional studies to verify specificity of the antibodies and confirmation 

of a consistent pattern of immunostaining.  Whatever the source, the effects of IL-6 

upon NPCs were clearly demonstrated.  

 IL-6 binds to IL-6Rα then to the gp130 receptor to initiate signal transduction via 

the Janus tyrosine kinase /signal transducers and activators of transcription 3 

(JAK/STAT3) and phosphatidylinositol (PI)-3 kinase/Akt pathways.  It is known that 

these pathways can then be employed as a mechanism for cell survival (Reich, 

2007).  Recent studies report that, while rat embryonic neural stem cells respond in 

vitro to IL-6 (Nakanishi et al., 2007), NPCs from the embryonic subventricular zone 

(SVZ) do not express a functional membrane IL-6R (Islam et al., 2009).  In this latter 

case, exposure to hyper IL-6 (the complex of IL-6/IL-6R) was required to stimulate 

gp130 signaling and cell differentiation (Islam et al., 2009).  IL-6 has been shown to 

promote astrocytic differentiation of embryonic neural stem cells derived from the rat 

SVZ (Nakanishi et al., 2007) via the Janus tyrosine kinase/signal transducers and 

activators of transcription 3 (JAK/STAT3) signaling pathway (Bromberg and Darnell, 

2000).  Monje et al., (2003) reported that, in vitro, IL-6 inhibits neuronal 

differentiation of adult hippocampal NPCs; however, recent work demonstrated that 

while gliogenesis due to IL-6 receptor activation is related to signaling via the 

JAK/STAT pathway, neuronal differentiation occurs via activation of the RAS-MAPK 

signaling pathway (Islam et al., 2009; Taga and Fukuda, 2005).  Within the SGZ of 

the adult brain, we now report elevations in genes associated with both IL-6Rα and 

gp130, as well as genes associated with downstream signaling through Ras to 
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activate Raf-1 or MAP2K1.  The prevailing hypothesis that acute exposure to IL-6 is 

detrimental to NPCs (Ekdahl et al., 2003; Ekdahl et al., 2009; Monje et al., 2003; 

Vallieres et al., 2002), is further supported by our finding that IL-6 inhibited 

proliferation of hippocampal NPCs, regardless of age.  While the inhibition of 

proliferation may be a direct effect, further studies may determine a correlation with 

an earlier onset of differentiation.  In light of the work of Islam et al. (2009), a 

possible role for IL-6 in promoting neurogenesis for replacement of dentate granule 

cells following hippocampal injury with TMT requires consideration.   

In the early work identifying the sustained neuro-proliferative capability of the 

hippocampus, Altman et al., (1973) proposed the idea that changes occurring with 

maturation from the adolescent to the adult hippocampus represented selective 

stabilization of the structure. Consistent with this idea, and similar ones proposed by 

Changeux and Dauchin (1976), is the idea that the higher levels of NPC proliferation 

observed in the adolescent brain reflect a greater level of hippocampal plasticity.  

Lower levels observed in the adult appear to reflect a system focused on maintaining 

cellular homeostasis and survival.  We now propose that the contribution of pro-

inflammatory cytokines, and possibly neuroinflammation in general, varies as a 

function of maturational stage and can assume different regulatory roles with 

regards to the self-renewal of NPCs within the injured hippocampus.  One could 

speculate that the upregulation of IL-1α, as an initiator, and the lack of 

corresponding upregulation of IL-6, as a down-regulator, serve to enhance the 

neurogenic proliferative response to injury in the adolescent SGZ.  In comparison, in 

the adult hippocampus, the GCL is a more developed and compacted region and the 
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induction of IL-6 and absence of IL-1 signaling with injury may represent these 

maturational differences.  The dynamic neurogenic response in the adolescent 

hippocampus following the death of dentate granule neurons as a result of a 

systemic injection of TMT provides a model to identify critical factors delineating the 

adolescent SGZ and the transition to an adult profile.   

 



Table 4.1 Quantitative real-time PCR sequences 
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Figure 4.1.  Cell death in the DG. 
(A-D)  Representative hematoxylin and eosin (H&E) staining in the subgranular zone 
(SGZ) and granule cell layer (GCL) of the dentate gyrus (DG) in CD-1 male mice.  
Twenty one day-old (A) and 1 yr-old (B) saline control, or 21 day-old (C) and 1 yr-old 
(B) at 48 h post-TMT (2.3 mg/kg i.p.). (C & D) Eosin+ staining (deep pink) of neurons 
displaying nuclear pyknosis and karyolysis indicated an equivalent level of neuronal 
death (represented by a severity score of 3-4 as defined in Methods).  (E-H)  
Representative immunofluorescent staining for fractin (red; arrowheads) and DAPI 
(blue) in the GCL.  Scale bar = 50 µm 
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Figure 4.2.  NPC proliferation in the DG. 
(A-D) Representative immunofluorescent images of 5’-bromo-2’-deoxyuridine (BrdU) 
(green) and DAPI (blue) in the SGZ and GCL (A, B) along the inner cell layer of 
saline control mice and (C, D) within the GCL 48 h post- TMT (2.3 mg/kg i.p.). Scale 
bar = 50 µm.  (E) Unbiased stereology of the number of BrdU+ determined by rare 
events protocol as described in Methods.  Data represents mean + SEM as defined 
in Methods and analyzed by a 2x2 ANOVA followed Bonferonni post hoc test (*p < 
0.05).  (F-H) Representative immunostaining of BrdU+ cells co-localized with nestin 
at 48 h post-TMT. Scale bar = 10 µm (I)  Mean + SEM number of BrdU+ cells that co-
stained with nestin within the SGZ and GCL.  Data analyzed by a 2x2 ANOVA 
followed by Bonferonni post hoc test (*p < 0.05). 
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Figure 4.3.  Gliosis in the DG. 
Representative images of Iba-1+ microglia (A-D, red) and GFAP+ astrocytes (F-I, 
red), DAPI (A-D, F-I, blue), in the GCL and SGZ (lower portion of each image) in 
saline control and 48 h post-TMT CD-1 male 21 day-old or 1 yr-old mice.  (A) Iba-1+ 
cells in control 21 day-old mice showed thin elongated processes with distal 
ramifications.  (B) Iba-1+ cells (red) in 1 yr-old mice showed increased staining 
thickened processes with proximal arborization.  With TMT (C) Iba-1+ cells 
differentiated to a rounded amoeboid morphology in the GCL and cells with enlarged 
cell bodies and retracted processes in the hilus in the 21 day-old and (D) process 
bearing cells showing thickened and retracted processes in the 1 yr-old.  (F-I) 
GFAP+ astrocytes (red) showing thin processes through the GCL in (F, G) control 
and an increased staining at 48 h post-TMT in both (H) 21 day-old and 1 yr-old (I). 
Scale bar = 50 µm.  (E, J) qRT-PCR mRNA levels for Iba-1 and GFAP relative to 
GAPDH. (E) mRNA levels for Iba-1 were significantly elevated in the 21 day-old at 
48 h post-TMT. (J) mRNA levels for GFAP were significantly elevated in the 21 day-
old and 1 yr-old mice 48 h post-TMT.  Data represents mean + SEM.  Data analyzed 
by a 2x2 ANOVA followed by Bonferonni post hoc test (*p<0.05). 
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Figure 4.4.  qRT-PCR of pro-inflammatory and anti-inflammatory markers. 
qRT-PCR mRNA levels of TGFβ1, IL-10, AG-I, IL-1β, IL-α, and IL-6 in the  (A) 
hippocampus and (B) laser-capture microdissected subgranular zone (SGZ) of 21 
day-old and 1 yr-old saline and TMT treated mice at 48 h post-TMT (2.3 mg/kg, i.p.).  
Data represents mean + SEM mRNA expression relative to GAPDH (n=6) analyzed 
by a 2x2 ANOVA followed by Bonferonni post hoc test (*p<0.05). 
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Figure 4.5.  Neurosphere proliferation following TMT. 
(A) Proliferation of neurospheres as indicated by determining the mean total 
numbers of colonies formed per 103 cells plated from the hippocampus of 21 day-old 
and 1 yr-old mice 48 h post-TMT (2.3 mg/kg, i.p.) or saline.  Data represents mean + 
SD (n=2).  (B-C) Representative images of neurospheres obtained from the 
hippocampus of (B) 21 day-old or (C) 1 yr-old mice. Scale bar = 100 µm. 
(D)  qRT-PCR for mRNA levels of IL-1R1, IL-RAcP, IL-6Rα, and gp130 within 
neurospheres isolated from the hippocampus of 21 day or 1 yr-old mice.  Data 
represents mean + SEM transcript level relative to GAPDH (*p<0.05). 
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Figure 4.6.  Effects of cytokines on proliferation of NPCs 
Differential effects of 21 day exposure to recombinant mouse (A) IL-1α [150 pg/ml],  
(B) IL-6 [10 ng/ml], or (C) IL-1α [150 pg/ml] and IL-6 [10 ng/ml] protein on neural 
colony formation.  Data represents the mean total colony number per 103 cells 
plated ± SEM.  Data (A,B) was analyzed by a 2x2 ANOVA followed by Bonferonni 
post hoc test or (C) Student t-test (*p < 0.05). 
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Figure 4.7.  Expression of inflammatory pathway genes in the SGZ. 
ANOVA was used to identify genes differentially expressed in TMT-treated versus 
saline-treated SGZs while taking into account the age-related interaction. (A) Venn 
diagram represents differentially expressed genes (1.2-fold or greater) by two-way 
error weighted ANOVA (ANOVA p<0.001 with Benjamini-Hochberg FDR p<0.05). 
(B) Graphical representation of differentially expressed genes following TMT-
induced injury in 21 day-old versus 1 yr-old mice created using Pathway Archictect.  
Genes were then further analyzed using the categories of binding, expression, 
metabolism, promoter binding, protein modification and regulation (see legend). In 
this analysis, age was considered a mediator of injury related differential expression 
patterns using ANOVA.  These data suggest key molecules in the IL-6 signaling 
pathway are upregulated (grey ovals) in the 1 yr-old SGZ following injury.  
Alternatively, IL-1α pathway genes are upregulated (white ovals) in the young SGZ 
following injury. 
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Supplemental Figure 4.1.  Neurosphere proliferation. 
(A) Proliferation of neurospheres as indicated by determining the mean total 
numbers of colonies formed per 103 cells plated from the hippocampus of 21 day-old 
and 1 following a 21 day exposure to recombinant mouse (A) IL-1α [75, 150, or 300 
pg/ml] or (B) IL-6 [5, 10, or 15 ng/ml], Data represents mean + SD. 
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Chapter 5 

Overall discussion and future directions. 

In the years since the discovery of the neurogenic region in the adult 

hippocampus, investigators have focused on identifying molecules responsible for 

regulating the endogenous proliferation and differentiation of NPCs.  While this is a 

continuous process over the life of the organism it varies with age and other 

endogenous changes such as stress, exercise, and hormonal balance. Modulation 

of adult neurogenesis by a diverse array of factors has lead to an intensive research 

effort to determine signaling molecules associated with proliferation, migration, and 

differentiation of NPCs as well as the functional integration of the neurons into the 

brain circuitry (Cho and Kim, 2010; Ming and Song, 2005). While much 

advancement has been made identifying signaling factors that modulate NPCs, 

questions remain regarding the nature of this pool of progenitor cells and their fate.  

Of primary interest for the field of neurotoxicology and neurodegeneration is the fact 

that neurogenesis is rapidly upregulated with brain injury or insult.  The ability of this 

response to serve in a repair/replacement function has been implicated in a number 

of studies; however, the level at which the neurogenic process can provide new 

neurons for repair has not been clearly delineated.
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Data from the current series of studies clearly demonstrate a robust 

neurogenic response in the SGZ to fully replace the large number of dentate 

granule neurons that are lost with TMT exposure.  This is the first study to 

demonstrate such a capacity both in cell numbers and integration into the 

hippocampal circuitry for functional recovery of learning and memory.  In addition 

a robust neurogenic response appears prominent in the adolescent brain while a 

slightly diminished response is observed in the mature brain.  While this may be 

due to an “aging” of the NPC, the current study (Chapter 4), suggested a 

relationship to a change or aging of the regulatory processes of the SGZ 

neurogenic “niche”.  One hypothesis is based upon the generalized increase in 

inflammatory factors in the brain with aging, and proposes that the inflammatory 

state hinders the successful production and differentiation of NPCs.  Data from 

the current studies demonstrated that the influence of pro-inflammatory cytokines 

on NPCs changes as a function of age.  In addition to inflammatory factors, 

microglia of the adolescent brain appear to shepherd the newly generated 

neurons through the dentate granule cell layer to their final mature location.  

Overall the data suggest that microglia play a critical role in hippocampal injury-

induced neurogenesis both in cell-cell contact and secreted factors.  These data 

set the stage for an extended observation into staging the characteristics of the 

cells during the course of neuronal death and replacement.  

Along with NPCs, astrocytes, oligodendroglia, and microglia contribute to 

the cellular composition of the intact SGZ.  While there are numerous reports of 

microglia clusters in the normal SGZ, it was not until the work of Sierra et al. 
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(2010) that the unique role for these cells with regards to regulation of NPCs 

became appreciated.  Neurogenesis in the SGZ appears to be a rather prominent 

event with hundreds of BrdU+ progenitor cells reported to be generated over a 24 

h period (Kronenberg et al., 2003). The normal life of BrdU+ cells is rather short 

with apoptotic death in the first 1-4 days of their life, representative of the 

transition from amplifying NPC to neuroblasts (Kempermann et al., 2003; Steiner 

et al., 2004). A majority of these cells are eliminated, with a small number of cells 

recruited into the functional circuitry (Biebl et al., 2000; Young et al., 1999) 

becoming indistinguishable from mature neurons within 4-6 weeks of birth (Kee 

et al., 2007; van Praag et al., 2002).  Given the fact that a comparable level of 

cell death in the GCL has not been reported, one can not assume that the cells 

serve in a replacement function for dentate granule neurons. This then raised the 

issue of the mechanism for clearing the excess or unhealthy cells to maintain 

homeostasis of the region (Mattocks and Tropepe, 2010). The work of Sierra et 

al. (2010) demonstrated that within the SGZ, microglia display a functional 

morphology that allows for the clearance of unhealthy NPCs by microglial 

phagocytosis. In this case rather than the microglia differentiating to an amoeboid 

macrophage as is normally seen with brain injury, SGZ microglia extend their 

processes to contact NPCs and, in the case of unhealthy NPC, they engulf and 

clear the small NPCs.  While neurogenesis decreases as a function of age, the 

efficiency of this clearance process is maintained across the lifespan suggesting 

that it is a tightly regulated event (Sierra et al., 2010).   
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 While the work of Sierra et al. (2010) demonstrated a clearance role for 

SGZ microglia, additional work suggests that microglia can play a beneficial role 

to stimulate neurogenesis and to support the newly generated cells through a 

high inflammatory environment (McPherson et al., 2011b).  In the first set of 

experiments conducted within this dissertation project, amoeboid microglia were 

identified in the dentate granule cell layer actively engulfing apoptotic neurons.  

However microglia displaying a non-amoeboid morphology were also observed, 

often in contact with healthy surviving dentate granule neurons.  This suggested 

that the microglia, as a population performed various functions within a localized 

injury site.  Upon further examination a prominent physical contact was identified 

between microglia and newly proliferating BrdU+ cells (McPherson et al., 

2011b)(Fig. 5.1).  Consistent with the work of Sierra et al. (2010), contact 

between the two cell types in the normal hippocampus was predominant within 

the SGZ; however, these cells were not engulfing dying cells.  The spatial 

distribution of the cell-cell contact suggested a primary location closest to the 

SGZ, with contact relationship diminishing as BrdU+ cells migrated to the outer 

layers of the dentate blades.  As these BrdU+ cells showed normal morphological 

features of healthy cells, it was speculated that contact with microglia had a 

supportive role, not only for cell survival, but also for migration into the GCL.  

Upon migration, the BrdU+ cell-glia contact relationship appeared to shift from the 

microglia to a predominant contact relationship with astrocytes.  This shift 

occurred as the NPC matured and migrated into the outer layer of the DG.  
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These data suggested a spatial shift for the supportive glial cells and a potentially 

coordinated effort to ensure the success of neurogenesis.   

Previous work showed that astrocytes within the SGZ “cradle” newborn 

progenitors (Plumpe et al., 2006).  In comparison in the TMT damaged 

hippocampus, this “cradling” appeared to be performed by microglia, shifting to 

the astrocyte only upon migration into the blades of the dentate.  In support of the 

observation of a more prominent role for astrocyte contact in the outer GCL, 

Shapiro et al. (2005) reported a contact relationship between newborn DCX+ 

cells and GFAP+ astrocyte processes as the cells migrate into the GCL. Thus in 

the TMT model it appears as if the glial cells hand-off the newly generated 

neurons from microglia to astrocytes for full migration and maturation of the 

neurons.  It is also speculated from the current data that the microglia cells may 

serve to maintain the new cells in a less differentiated form to facilitate their 

migration across the entire width of the dentate blades. The pattern of microglia 

morphology and NPC proliferation and maturation to neurons suggests the 

potential for a shift in the environment to support the different cellular 

development stages.  Thus one could visualize two distinct neurogenic “niches”.  

One niche, existing within the SGZ, responsible for the proliferation of NPCs and 

the other, within the neighboring GCL responsible for the migration, 

differentiation, and integration of new neurons into the hippocampus.  In addition 

this secondary niche may also serve to regulate proliferation within the 

neighboring SGZ with the production and secretion of various inflammatory or 

neurotrophic factors.  
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Within the brain parenchyma microglia rapidly respond to changes in the 

environment often resulting in the release of pro-inflammatory cytokines. One 

would assume that a similar response of microglia occurs within the SGZ.  

Overall the body of published literature suggests that the mode of activation, the 

context of the injury, and the intensity of the response serve to determine 

whether microglia will exert a beneficial or detrimental effect on injury-induced 

neurogenesis.  Previous studies suggested that the production of pro-

inflammatory cytokines by brain macrophages, both resident microglia and 

infiltrating peripheral macrophages, serve to down regulate hippocampal 

neurogenesis (Ekdahl et al., 2003; Monje et al., 2003). These studies contributed 

to establishing a prevailing hypothesis that microglial-derived inflammatory 

factors are detrimental to neurogenesis. However this would not necessarily be 

consistent with the wealth of data demonstrating with injury and the associated 

pro-inflammatory cytokine response neurogenesis is upregulated.  One point for 

consideration is the nature of the stimuli.  For example in the original Monje et al. 

(2003) and Ekhdal et al. (2003) studies, microglia were stimulated by LPS.  

However if the microglia are stimulated in vitro with pro- and anti-inflammatory 

cytokines rather than with LPS, the effects are quite different and there is 

neuronal survival (Butovsky et al., 2006).  Further work in vivo using an ischemic 

injury model demonstrated that ED-1 activated microglia did not compromise 

BrdU uptake into cells of the SGZ (Kelsen et al., 2006; Kelsen et al., 2010) and 

thus, no adverse effect on NPC proliferation.  In adrenalectomized rats the loss 

of dentate granule neurons was accompanied by stellate microglia and yet, 
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neurogenesis was enhanced (Battista et al., 2006). In this case the authors 

speculated that the activated but non-amoeboid microglia served a different 

function and expressed the anti-inflammatory cytokine, TGFβ1, rather than the 

pro-inflammatory cytokines normally produced by their fully activated amoeboid 

counterparts.  It is likely that a distinction can be made as it relates to the level 

and inducer of the response and possibly to the composition of the factors 

released by microglia.  

The potential for pro-inflammatory cytokines to directly impact NPCs is 

suggested by in vivo and in vitro studies demonstrating that hippocampal NPCs 

express receptors for TNF, IL-1, and IL-6 (Iosif et al., 2006; Koo and Duman, 

2008; McPherson et al., 2011a).  Upon a general review of the existing literature, 

activation of these receptors by pro-inflammatory cytokines is deemed to 

adversely impact neurogenesis by altering proliferation, survival or neuronal 

differentiation of NPCs (Aimone et al., 2010; Das and Basu, 2008; Mathieu et al., 

2010).  However data from this dissertation demonstrated the BrdU+ cells (NPCs) 

in the SGZ selectively expressed the TNFp75R and were devoid of TNFp55R 

suggesting that the newly generated cells utilize TNFα within the high 

inflammatory environment as a growth-promoting factor (McPherson et al., 

2011b). In support of this hypothesis is the observation that the migration of 

BrdU+ cells into the GCL following injury appeared diminished in TNFp75R -/- 

mice following TMT injury (McPherson et al., 2011b) or with status epilecticus 

(Iosif et al., 2006).  
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Using an in vivo model of direct IL-1β delivery to the hippocampus, Koo 

and Duman (2008) demonstrated that activation of IL-1R1 inhibits the basal level 

of NPC proliferation and that these anti-proliferative effects could be blocked with 

the co-infusion of IL-1Ra.  A role for IL-1R1 signaling in stress-induced reduction 

of NPC proliferation was similarly demonstrated with blockage by IL-1Ra (Koo 

and Duman, 2008).  While these studies suggested activation of IL-1R1 

diminishes hippocampal neurogenesis, Spulber et al. (2008) reported that 

blockage of IL-1R1 by IL-1Ra decreased NPC proliferation normally induced by 

excitotoxic injury.  In the current study the expression of IL-1R1 on hippocampal 

NPCs, the induction of proliferation in vitro with recombinant IL-1α, and the ability 

of an IL-1α neutralizing antibody to block the increase in proliferation induced by 

TMT (Appendix A) demonstrated a specific effect for IL-1 signaling at this time 

point in the response. In additional studies conducted in our lab, preliminary 

findings suggest that NPC proliferation as indicated by BrdU labeling is 

diminished in mice deficient for IL-1R1.  While interesting this observation 

requires additional evaluation for any full interpretation of the findings. For 

proliferation induced with hippocampal neuronal death, and seizure, IL-1R1 

activation appears to play a contributory role.  In contrast, the IL-1R1 associated 

reduction of NPC proliferation induced by a mild insult such as stress may 

represent changes that occur with a lower level of IL-1α or IL-1β rather than what 

would be seen with death.  It is also possible that the differences observed 

between the stress and the injury conditions are related to the level of concurrent 

increase in IL-1Ra.  
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Recent research has focused on assessing the functional phenotypes of 

microglia or their inflammatory status, during injury or under neurodegenerative 

states based on the expression of pro-inflammatory (M1), anti-inflammatory (M2), 

and repair (M2) associated molecules as originally described for peripheral 

macrophages (Colton and Wilcock, 2010).  When this approach was used to 

examine the brains from transgenic mouse models of Alzheimer’s disease, a 

linear polarization of microglia from the M1 to M2 phenotype was not evident.  

Rather, the microglia displayed heterogeneous populations as defined by 

morphology and M1/M2 expression profile (Colton and Wilcock, 2010; Frieler et 

al., 2011).  The authors concluded that the nature of the effect of microglia and 

neuroinflammation on neurons was dependent on the balance of pro- and anti-

inflammatory cytokines. 

While more of an acute model than the AD transgenic mice, a distinctive 

shift in the M1 to M2 markers did not occur during the period of repopulation 

following TMT.  The prominent pattern observed was one of elevated NPC 

proliferation, migration of DCX+ NPCs, and differentiation to NeuN+ neurons. This 

coincided with a transition of the microglia from the fully activated amoeboid state 

to one represented by stellate, then ramified morphology. While the initial 

migration into the GCL occurred in the presence of amoeboid microglia, it is 

possible that differentiation and survival would benefit from microglia exhibiting a 

non-phagocytic phenotype.  However it was found that as the new cells 

established a mature phenotype, genes associated with the M1 and M2 

classifications of microglia were concurrently elevated (Fig. 3.13).  Whether this 
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represented the heterogeneity observed in the morphology of the microglia within 

the region or the recruitment of other cells such as astrocytes into the neurogenic 

support group is not currently known. One would expect that indeed multiple cells 

are contributing to the repair response. While the current work was unable to 

address this specific question further development and availability of specific 

antibodies for immunohistochemistry will allow for identification of the cellular 

localization of the identified proteins. 

 Of interest is the transient pattern of the cytokine response and the 

secondary elevation in the DG that coincided with a stage of repair.  It is likely 

that in this stage one may identify the role of classical inflammatory cytokines in 

remodeling and repairing the brain that would be applicable to various and more 

subtle types of injury.  While the TMT model is a more acute type of injury/repair 

response, the pattern of changes with regards to M1/M2 signaling appears to 

follow a similar trend as the more chronic models of brain insult such as reports 

for the genetic AD mice (Wilcock et al., 2011).  Thus, the well-defined temporal 

and spatial pattern of response may allow for the identification of distinct markers 

of the different microglia stages and the impact on the neuronal population.  

From such work, one may identify the trigger that will shift microglia from a 

neurodestructive to a neuroprotective phenotype.  The fact that the model is so 

well defined would allow for testing of therapeutic approaches to modify the 

microglia response within various stages of the injury to identify critical factors to 

minimize brain damage and to promote brain repair.  The heterogeneity of the 

microglia response may differ in the TMT injury as compared to other conditions 
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in which NPC proliferation is blunted.  However such data on the actual cell 

morphology is rarely available from much of the published literature to support 

this hypothesis. It is possible that the differential stages of microglia may be 

representative of different levels of inflammatory factors as well as the potential 

for a different profile of factors released.  Potentially providing not only the 

actions required upon cell injury but also actions to promote NPC proliferation 

and survival.   

There is a contrast between the various studies examining the impact of 

pro-inflammatory cytokines and NPCs. How might one explain this discrepancy?  

There are a number of possibilities ranging from the model system, in vitro 

versus in vivo, source of brain macrophage (resident microglia or infiltrating 

peripheral macrophages), level of cytokine produced, and production of anti-

inflammatory factors.  A large proportion of the work on NPCs and inflammation 

has been conducted in vitro.  This would effectively remove the cells from their in 

vivo “niche” and thus, change their basal level of cytokine receptor expression.  

Under such conditions, one would expect factors that serve to down-regulate 

cytokine signaling such as IL-1Ra, or soluble TNF receptor would not be present.  

Therefore while such studies demonstrate that the machinery is in place with 

regards to receptor expression, the regulatory component of the niche is absent.  

An additional component of the TMT injury model that differs from many of 

the injury models in the literature is the massive clearance of dead dentate 

granule neurons within a very short time period.  With the loss of DG neurons 

and successful clearance of the cellular debris, the environment may shift to one 
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much more conducive to the entry of new cells.  Regardless of signaling events, 

just the depletion of a physical barrier represented by the granule neurons would 

offer less resistance to the newly generated cells.  Not only do the microglia 

perform a direct support of injury-induced neurogenesis but they facilitate the 

migration and maturation of the cells into functioning neurons simply by providing 

the space and opening the routes for migration. Under these conditions it is 

possible that a signaling gradient can be established between microglia and 

NPCs.   

In a model of experimental allergic encephalomyelitis (EAE), NPCs 

transplanted in the presence of Iba1+ microglia in the acute phase of the injury 

showed evidence of migration; yet, when the cells were transplanted during the 

chronic phase of EAE when there are less Iba1+ microglia a shorter migration 

distance was observed (Muja et al., 2011).  This decrease in migratory distance 

coincided with the decrease in microglia along the NPC migratory path.  It has 

been considered the release of chemokines and/or neurotrophic factors from 

microglia contributes to the migration (Neumann et al., 2009).  This signaling 

hypothesis is somewhat supported by the work of Aarum et al. (2003) with the 

demonstration of precursor cell migration from the embryonic brain toward a 

gradient of microglial-conditioned media in vitro.  Aarum et al. (2003) also 

reported that presence of microglia-conditioned media facilitated differentiation of 

precursor cells to neurons.  It is possible that changes in the GCL environment, 

as a result of neuronal death and glial activation, not only clears the way for cell 

migration but also shifts to a more pro-migratory and pro-neuronal differentiation 
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environment providing appropriate signals to the NPC.  We know that the 

chemokines MIP-1α  and MIP-1β are some of the earliest and highest transcripts 

elevated in the hippocampus following TMT (Bruccoleri et al., 1998; Lefebvre 

d'Hellencourt and Harry, 2005) and are localized to microglia (Harry, personal 

communication).  These chemokines remain elevated over the course of the first 

week of the injury.  It is likely that microglia serve to stimulate and protect the 

new neurons, and they also serve in a role to promote and direct their migration.   

It is the presumption that the activation of microglia and NPCs occurs as a 

result of the neuronal damage; however, it is possible that TMT can directly 

activate microglia leading to neuronal death.  Earlier work demonstrated TMT 

stimulates the production of TNFα, and IL1  by microglia in vitro (Maier et al., 

1997).  Further work in vitro suggested that the production of TNFα was a 

causative factor for neuronal death (Harry et al., 2002).  This was substantiated 

with the in vivo demonstration that the death of dentate granule neurons was a 

TNFR mediated event (Harry et al., 2008).  Whether this was dependent upon a 

prominent presence of activated microglia has been previously discounted by the 

studies of Bruccoleri et al. (2000) using mice deficient in colony stimulating 

growth factor and thus deficient in microglia.  This work demonstrated that while 

there was a substantial deficit in the actual number of microglia, their production 

if TNFα was 700% higher following TMT as compared to wildtype.  In addition, 

TMT has been shown to directly induce proliferation of human neural stem cells 

in vitro (Dr. Tim Shafer, personal communication).  These observations may 

allow us to use TMT to stimulate the cells of interest to address additional 



 198 

questions regarding the interaction between these two cell types in the 

hippocampus.  

For example, once a dose-response for stimulation of each cell type has 

been established in culture one could then translate that to the in vivo model.  

Using this approach, it is possible to begin to ask questions as they relate to the 

activation state of the microglia.  It may be possible to maintain the microglia in a 

non-process bearing state for an extended period of time to determine the impact 

on NPC survival and migration.  In addition, if the dose response data allows one 

to identify a sub-threshold dose of TMT for microglia activation that will stimulate 

NPC proliferation this may allow for testing the hypothesis of the requirement for 

microglia activation and/or the appearance of “space” to promote NPC migration.  

TMT may provide a tool with which to address a number of questions regarding 

cell interactions associated with hippocampal neurogenesis.   

When comparing the overall body of literature examining the effects of 

inflammatory factors derived from brain macrophages on NPCs a common 

underlying theme emerges.  These results suggest that the mode of activation, 

the intensity of the response, and source of the brain macrophage serves to 

determine whether a beneficial or detrimental effect on successful injury-induced 

neurogenesis will occur. Under normal conditions, the BBB prevents factors in 

the brain extracellular space from gaining access to the vascular lumen, and vice 

versa.  With a physical injury such as trauma or ischemia, or during autoimmune 

events, the barrier is disrupted and blood-borne immune cells gain access to the 

brain parenchyma. Importantly, compared to resident microglia cells of the 
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peripheral immune system provide an enriched source of cytokine and 

inflammatory factors, therefore exhibiting exaggerated activation phenotypes as 

compared to those of microglia.  In the current series of studies, it was confirmed 

that the brain macrophage response was limited to the resident microglia without 

the recruitment of peripheral macrophages. Given the higher level of 

inflammatory products produced by non-resident cells, their contribution in any 

injury likely drive the interpretation of a negative impact on neurogenesis.   

As with any model, there are limitations that need to be considered. The 

strength of the TMT model lies in the rapid initiation of cell death, proliferation, 

migration and differentiation of new neurons.  Yet these can also be confounders, 

in that any discussion of the molecular or cellular changes observed must be 

done with the knowledge that hippocampal neurogenesis is not the only repair 

mechanism employed.  While a significant level of neuronal death occurs, there 

is a large population of neurons that survive this insult and the pro-inflammatory 

environment.  Thus many of the signals observed within the DG will reflect local 

actions of neuronal death and neuronal survival, in addition to those of interest 

for successful neurogenesis.   For example with the exception of IL-1α, there is 

little indication of induction of cytokines in the SGZ by hippocampal injury 

suggesting that cytokine contribution to NPC proliferation would be derived from 

neighboring areas, in this case the GCL.  The overproduction of pro-inflammatory 

cytokines in the GCL associated with neuronal death could easily diffuse to the 

SGZ resulting in a stimulus for NPC proliferation.  Once a more broad profile is 

generated other stimulatory signals may emerge that serve to drive the 
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production of new neurons for the replacement of dentate granule cells and the 

repair of the hippocampus.  Teasing these components apart to identify critical 

aspects for regulating adult hippocampal neurogenesis following injury or in 

disease states becomes a bit more difficult.   

The current opinion is that microglia are not pro- or anti-neurogenic per se 

but rather that the net outcome on NPCs depends upon a multitude of factors.  

While the primary interpretation of the data generated from this dissertation 

project has focused upon the temporal response of microglia and the induction of 

NPC proliferation and migration with injury and during repair, there are a number 

of other aspects of the system that need consideration not the least of which is 

the contribution from other cells within the environment.  When interpreting the 

results of this project a number of take home points emerge.  First, morphological 

phenotype may contribute to the identification and understanding of differential, 

shifting roles of microglia. Second, differential stages of microglial activation may 

contribute to the successful proliferation and migration of NPCs in the injured 

hippocampus.  Third, the profile of molecular changes for inflammation suggests 

multiple cell types are involved.  Further investigation of changes that occur 

within the primary and secondary neurogenic niches can contribute to unmasking 

critical triggers regulating cell responses and the development of targeted 

therapeutics to foster hippocampal self repair.  

 With regards to a translational aspect of the research, the decline in 

neurogenic potential observed as a function of aging and the potential for 

stimulation of this process for repair and recovery of function in 
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neurodegenerative disorders raises interesting questions with regards to the 

identification of regulatory factors for therapeutic potential.  In comparing not only 

the proliferative potential but also the molecular environment of the SGZ as a 

function of age, a difference in inflammatory signaling was identified within the 

primary neurogenic niche during the initiation of the NPC proliferative response.  

The directly comparable effects of TMT on the dentate granule cells, regardless 

of age allowed for a relatively uniform model to examine critical features of the 

SGZ neurogenic niche that changed with age.  In an unbiased molecular profile 

comparison between the SGZ as a function of age and TMT, the primary likely 

candidates of IL-1 and IL-6 were identified.  This finding then focused 

subsequent studies on the differential effects of each cytokine on NPCs.  

However, given that a full array was conducted, there is a wealth of data that can 

be analyzed for the identification of other differentially regulated genes.  Further 

comparisons are possible between the SGZ and the GCL in the adolescent and 

mature hippocampus.  Using this approach, the gene profile and novel signaling 

pathways may be identified that are differentially expressed across the young 

and mature neurogenic niches.  Building upon these findings, specific pathways 

identified at each age could be evaluated in cultured NPCs following a similar 

approach to that used for IL-6 and IL-1.  The goal of this work would be to identify 

critical genes/signaling pathways that are activated in the adolescent for a robust 

level of repair but are absent in the more muted mature brain response.  From 

this, one may be able to identify a few likely candidates that could be used to 

foster NPC proliferation and survival in the mature brain.   
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An additional approach could be taken to identify the molecular 

environment of the mature GCL that may serve to maintain regulatory control 

over the NPCs in the SGZ to prevent unnecessary proliferation.  By identifying 

such factors, one may begin to identify ways to manipulate not only the SGZ 

niche but also the GCL niche to foster proliferation and neuronal differentiation.  

With further speculation, one could envision identifying genes that serve to make 

a non-neurogenic brain region resistant to NPC engraftment and thus, provide an 

approach to modify the region to foster the integration of transplantation of 

exogenous NPCs. Thus, data obtained from these series of experiments open up 

an array of directions for future examination that could lead to a better 

understanding not only of neuroinflammation but also how the regulatory aspect 

can be harnessed to facilitate brain repair in the human. 
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Figure 5.1.  Representative images of BrdU / Iba1 in the SGZ. 
Representative immunofluorescent images of 5’-bromo-2’-deoxyuridine (BrdU) (Red) 
and Iba1 (green) in the SGZ of saline control mice and (C, D) within the GCL 2 d 
post- TMT (2.3 mg/kg i.p.)
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Appendix A. 
 

 
 

(A) Representative proliferating cellular nuclear antigen (PCNA) 
immunohistochemistry in the dentate gyrus of mice treated with SAL, TMT, or TMT + 
neutralizing antibody to IL-1α as described in the methods below.  (B) Histogram 
represents mean number of PCNA positive cells counted from a single section in the 
dentate gyrus of SAL, TMT, and TMT + anti-IL-1α. Data represents mean ±SEM and 
was analyzed by one-way ANOVA followed by a Dunnett’s multiple comparison test 
(*p < 0.05, n = 4-6). Treatment with neutralizing antibody blunted TMT-induced 
PCNA immunoreactivity.   
 

Effects of IL-1αααα neutralizing antibody on SGZ proliferation in PND 21 mice. 

 An experiment was designed to examine the effects of a cytokine-neutralizing 

antibody on proliferative response in the SGZ following.  In a previous study, we 

reported that peripheral cytokine TNFα signaling did not contribute to the TMT 

hippocampal pathology yet, a CNS delivery of TNFα  antibody was sufficient to block 

neuronal death (Harry et al., 2003).  Based upon these studies, a systemic injection 

of neutralizing antibody would not be expected to reach the brain tissue.  Thus, we 

employed the approach used in this previous study (Harry et al., 2003) that allowed 

for a direct delivery of antibody to the ventricular system without causing a physical 
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injury to the brain tissue.  In 21 day-old mice, an intracisternal (i.c.v.) injection into 

the fourth ventricle of the brain between the cerebellum and the cerebrum was 

possible.  Each animal received an i.p. injection of either TMT (2.3 mg/kg) or saline 

(2 ml/kg) body weight.  Three hours later mice received 2 ml artificial cerebral spinal 

fluid (ACSF) or a purified monoclonal neutralizing antibody (20 ng) to IL-1α (anti-

mouse; R & D Systems).  From pilot studies we confirmed that actions of the 

injected antibody were present for a minimum of 24 h and that tin levels can be 

detected in the brain within 3 h of injection peaking at 24 h, and that proliferation is 

initiated by 24 h.  Based upon these data, hippocampal tissue was collected from all 

animals 36 hrs after the TMT injection.  The dose selection for each antibody was 

determined based on our previous in vivo and in vitro studies (Harry et al., 2003; 

Harry et al., 2002) and the calculated Neutralization Dose50 (ND50) provided in the 

accompanying data sheet for each antibody (R & D Systems). Given that the 

injections were delivered directly into the ventricular system of the brain, initial dose 

estimates were obtained from in vitro studies demonstrating the level of each 

cytokine protein produced in mixed glia cultures with TMT exposure and the dose–

response relationship to each antibody (Harry et al., 2002). 
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