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ABSTRACT 

Joseph W. Zabinski: Advancing Environmental Human Health Risk Assessment through Bayesian 
Network Analysis 

(Under the direction of Jacqueline MacDonald Gibson) 

 

Regulatory agencies rely on quantitative risk assessment to design policies, such as 

environmental quality standards, to protect public health. Although risk assessment forms the 

foundation of important policy decisions, recent reviews have indicated the need for technical 

and practical improvements to risk assessment. This dissertation advances the application of 

Bayesian networks (BNs) in environmental human health risk assessment in response to this 

need.  BNs were developed to support causal inference in artificial intelligence applications but 

are not currently used by environmental regulatory agencies. 

First, a proof-of-concept BN is developed to test BN performance in predicting the effect 

of maternal exposure to arsenic in drinking water on the risk of newborn lower birthweight for 

gestational age.  The network is the first of its kind to model a dose-response relationship 

connecting an environmental hazard to a human health outcome.  In addition, unlike prevailing 

regulatory risk assessment approaches, it accounts for inter-individual metabolic differences.  

The BN is shown to outperform current regulatory risk assessment methods in balancing 

predictive sensitivity and specificity.  

Second, a BN is developed to predict the effect of arsenic exposure in drinking water on 

the risk of diabetes and prediabetes, while accounting for inter-individual differences in arsenic 
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metabolism and body mass index. In addition, the BN’s utility to risk managers is demonstrated 

by using the model to predict the population-level health consequences of reduced arsenic 

exposure (including decreased diabetes prevalence). These predictions demonstrate the 

importance of considering both cancer and non-cancer outcomes when making policy. BNs’ 

ability to facilitate cost-benefit calculations in regulatory contexts is highlighted. 

Finally, improvements to risk assessment utility by using BNs are illustrated through a 

model developed to quantify risk to wastewater treatment workers of contracting Ebola virus 

disease from contact with contaminated wastewater during an outbreak. The model is used to 

identify key factors affecting risk and captures risk under different mitigation strategies. 

These results suggest that BNs offer a quantitatively sophisticated, flexible, and 

transparent method that addresses key challenges in current risk assessment practice in 

support of policymaking.  
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PREFACE 

This dissertation is organized in a non-traditional format, including three manuscripts. Chapter 

1 provides introduction, background material, and justifications. Chapters 2, 3, and 4 must 

stand alone as manuscripts to be submitted for publication. As such, they may contain some 

redundancies with other chapters. Chapter 5 discusses conclusions of the work, implications, 

and provides suggestions for future research. 
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CHAPTER 1: INTRODUCTION 

1. Introduction 

Quantitative risk assessment plays a central role in U.S. environmental policy decisions 

intended to protect public health from environmental contaminants. Risk assessment is used to 

determine costs and benefits of changes in policy and regulation, and weighing these factors 

determines what regulations are ultimately set. Risk assessment estimates, for example, the 

number of cases of disease avoided or years of life saved through new policy; these estimates 

can then be compared with costs to businesses and the economy of complying with the policy. 

In the United States every major new environmental regulation must undergo a cost-benefit 

analysis prior to promulgation.  Such analysis is required by Executive Order 12291, signed by 

President Reagan in 1981 and continued by every president since then.1 The order requires 

analysis of the proposed regulation’s “net benefit to society” and of “alternative approaches 

that could substantially achieve the same regulatory goal.”  

For environmental regulations designed to protect human health, calculation of benefits 

requires quantitative risk assessment to aid in predicting the number of deaths or illnesses that 

the proposed regulation could prevent.2  The predicted numbers of avoided deaths and 

illnesses are then incorporated into a risk management process, in which these predictions are 

monetized in order to weigh regulatory benefits against implementation costs to industry and 

others.   As a consequence, quantitative risk assessment is one of the most important tools in 

environmental policymaking.   
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The vital relevance of risk assessment to risk management in environmental health 

policy-making is illustrated well in the process by which the EPA introduced a new standard 

lowering the Maximum Contaminant Level (MCL) for arsenic in drinking water. In 1996, the EPA 

was tasked by Congress to review and revise this standard from its then-current value of 50 

μg/L. EPA based its primary justification for reducing the MCL on cases of bladder and lung 

cancer avoided calculated in the course of its risk assessment, stating in its proposed rule 

change that “although arsenic causes numerous health effects, bladder and lung cancer are the 

only endpoints for which an Agency-approved metric for evaluating arsenic-related risk 

currently exist.”3  Based on this cancer-focused risk assessment, the EPA initially proposed a 

revised standard of 5 μg/L.4 Subsequent tradeoff analysis estimated the benefits at this level at 

$191.1-$355.6 million, but costs were estimated at $414.8-$471.7 million; thus, costs 

outweighed benefits.3 Public comment revealed significant concern as a result, and the EPA 

ultimately decided on a standard of 10 μg/L to “maximize health risk reduction benefits at a 

cost that is justified by the benefits.”5 At 10 μg/L, benefits were estimated at $139.6-$197.7 

million and costs at $180.4-$205.6 million. Upper and lower bound estimates of the cost-

benefit tradeoff were calculated at several different proposed MCLs (3, 5, 10, and 20 μg/L) and 

at two discount rates (3% and 7%) using Monte Carlo simulation analyses. The 10 μg/L level was 

the lowest value at which the net benefit was positive for at least a portion of the scenarios 

simulated (Table 1). 
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Table 1. Net benefits of each regulatory option ($ millions). (adapted from Arsenic in Drinking Water Rule 
Economic Analysis

3
)

 MCL (μg/L) 3 5 10 20 

3% Discount Rate 

Net Benefits 
lower bound (484.0) (223.7) (40.8) (0.6) 

upper bound (206.8) (59.2) 17.3  8.5  

7% Discount Rate 

Net Benefits 
lower bound (578.3) (280.6) (66.0) (10.3) 

upper bound (301.1) (116.1) (7.9) (1.2) 

 

While risk assessment plays a central role in environmental policymaking, a 2009 U.S. 

National Research Council report (Science and Decisions: Advancing Risk Assessment) 

highlighted numerous challenges to the current practice of environmental risk assessment.6  

The report states that “risk assessment…is at a crossroads, and its credibility is being 

challenged,” adding that the usefulness of risk assessment to policy-making is also in question: 

“disconnects between the available scientific data and the information needs of decision-

makers hinder the use of risk assessment as a decision-making tool.”6 Nonetheless, the report 

concluded, “risk assessment remains the most appropriate available method for measuring the 

relative benefits of the many possible interventions available to improve human health and the 

environment and that its absence or its inappropriate application will result in seriously flawed 

decisions.”  The report recommended steps to improve (1) the technical soundness of risk 

assessment and (2) the utility of risk assessment to decision-makers. 

This dissertation advances the use of a novel technical approach – Bayesian network 

(BN) modeling – to improve both the technical quality and the utility of risk assessment.  

Importantly, while BN models have been used in ecological risk and food safety assessment, 

they have never before been used in assessing human health impacts of exposure to 

contaminants in environmental media (water, air, or soil).  BN methods are not currently used 
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to support regulatory decision-making at EPA or other environmental regulatory agencies.  The 

dissertation demonstrates for the first time how Bayesian network approaches can improve the 

technical analysis underlying environmental risk assessments of public health outcomes.  In 

addition, the dissertation demonstrates how Bayesian networks can improve the practical 

utility of risk assessments to decision-makers focused on decreasing environmental risks to 

public health in specific contexts.  Specifically, the dissertation 

 develops the first machine-learned BN models linking environmental exposure and 

health outcome data,  

 demonstrates that these machine-learned BN models are significantly more accurate in 

predicting observed health outcomes than prevailing methods in risk assessment, and 

 illustrates in two separate contexts how BNs could improve the practical utility of 

environmental risk assessments to decision-makers concerned about human health 

outcomes.  

2. National Research Council recommendations for improving risk assessment 

The National Research Council’s 2009 report, in which key challenges to risk assessment 

were identified, built upon an earlier publication by the same organization in which the risk 

assessment process was given formal structure. This study, Risk Assessment in the Federal 

Government: Managing the Process, has served as the EPA’s guideline for risk assessment since 

its publication in 1983.7 In it, the environmental risk assessment is broken down into four steps:   

1. hazard identification: “the process of determining whether exposure to an agent can 

cause an increase in the incidence of a health condition [by] characterizing the nature 

and strength of the evidence of causation”7 
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2. dose-response assessment: “the process of characterizing the relation between the 

dose of an agent administered or received and the incidence of an adverse health effect 

in exposed populations and estimating the incidence of the effect as a function of 

human exposure to the agent”7 

3. exposure assessment: “the process of measuring or estimating the intensity, frequency, 

and duration of human exposures to an agent currently present in the environment or 

of estimating hypothetical exposures that might arise from the release of new chemicals 

into the environment”7 

4. risk characterization: “the process of estimating the incidence of a health effect under 

the various conditions of human exposure described in exposure assessment” 7 

These four steps remain the NRC’s current recommendation for conducting risk assessment.6 

2.1. Technical improvements 

The 2009 NRC report identifies improvements in dose-response assessment models as 

the chief need for improving the technical analysis that supports risk assessment. As Figure 1 

(reproduced from the NRC report) illustrates, the key limitations include  

 inconsistency between dose-response assessment methods for cancer and non-cancer 

outcomes,  

 lack of consideration of low-dose effects for non-carget outcomes,  

 lack of a quantifiable risk measure for non-carget endpoints and for cancer endpoints 

for which evidence of a response threshold exists,  

 lack of sufficient consideration of inter-human variability, and  

 lack of uncertainty characterization.8,9 
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Figure 1. Current approach to non-carget and cancer dose-response assessment. (from Science and Decisions: 
Advancing Risk Assessment

6
) 

Dose-response assessment for non-cancer outcomes is currently conducted by first 

examining available human (if available) and animal studies relating the hazardous substance 

under evaluation to health outcomes. Health endpoints and indicators are chosen by regulators 

(for example, liver function as measured by sorbitol dehydrogenase levels), and data from a 

study containing this information are used to compute points of departure (POD) for further 

calculation. This POD may be either the no/lowest observed adverse effects level (NOAEL or 

LOAEL), or a benchmark dose (BMD) calculated according to an assumption of functional form 

to correspond to some predetermined response level (like a 10% increase over baseline risk of 
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the outcome under consideration).10 This POD is then divided by factors of 1, 3, or 10 to 

account for different types of uncertainty: EPA guidance states that “uncertainty factors are 

applied as needed to account for extrapolation of results in experimental animals to humans, 

interindividual variability including sensitive subgroups, extrapolation from a LOAEL to a NOAEL, 

extrapolation of results from subchronic exposures to chronic exposures, and database 

inadequacies.”10 The resulting value for a chosen health outcome, termed a reference dose 

(RfD), is used as a limit below which risk of the outcome of concern is presumed absent. 

 

Figure 2. Reference dose approach. The reference dose for inorganic arsenic, 3×10-4 mg/kg-day11 (1991), is shown 
at the center of the axis. Under this approach, risk is presumed absent below this level and present above it. 

In risk assessment, the reference dose is used to express risk of the non-carget outcome 

through calculation of a hazard quotient (HQ). This value is simply the ratio of exposure dose to 

the reference dose11: 

0

1

0.0 0.1 0.2 0.3 0.4 0.5 0.6

ri
sk

 

dose (μg/kg-day) 
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( 1 ) 

EPA guidelines state that “exposures at or below the reference level (HQ=1) are not 

likely to be associated with adverse health effects,” but cautions that the HQ “should not be 

interpreted as a probability of adverse effects.”11 

For cancer outcomes, a different procedure is used. When specific mode of action data 

are available, these data may be taken into account to understand a range of safe doses of the 

carcinogen (for example, there is evidence that some carcinogenicity arises from effects on cell 

division only present at higher doses).12,13 Unless these data lead to a definitive conclusion of 

no risk at low doses, however, no dose of the carcinogen is presumed safe. In addition, unless 

conclusive evidence demonstrates otherwise, the relationship between exposure and 

probability of developing cancer is considered to be linear: “linear extrapolation is used as a 

default approach, because linear extrapolation generally is considered to be a health-protective 

approach.”8 As with non-cancer outcomes, data are drawn from animal or, if available, human 

studies linking exposure to different levels of the carcinogen to outcomes. These data are used 

to determine a POD at which a response of interest is measured (for example, tumor 

development). The slope of a line drawn from the POD to the origin is termed the slope factor, 

and cancer risk is established as the product of the slope factor and exposure level.8  
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Figure 3. Slope factor approach. The slope of the line is the slope factor for inorganic arsenic, 1.5×10
-3

 per μg/kg-
day

14
 (1995); risk is the product of this factor with dose. 

Note that the functional form of this dose-response model is identical to a simple linear 

regression model with a single covariate (dose) and regression coefficient (slope factor; the 

intercept term is zero due to the assumption of no safe dose). 

                                

( 2 ) 

The divide between cancer and non-cancer outcomes is primarily due to the historical 

development of the risk assessment process. Cancer risk assessment was first based on the 

assumption that chemical carcinogenesis was mechanistically similar to radiation 

carcinogenesis, which was understood to be capable of damaging DNA at all levels of 

exposure.15 As such, no dose of a carcinogen has been presumed safe in risk assessment even 

though subsequent research has shown a far broader range of carcinogenic mechanisms 

through which risk does not necessarily scale linearly with toxicant exposure.16 Non-cancer 

outcome dose-response assessment, in contrast, was developed according to the older 

toxicological concept of a threshold dose below which harmful effects are not present17; 

subsequent research has shown that this assumption of threshold effect does not always hold 

0E+0

2E-1

4E-1

6E-1

8E-1

1E+0

0.0 0.1 0.2 0.3 0.4 0.5 0.6

ri
sk

 

dose (μg/kg-day) 
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either.18,19 As such, the continued separation of methods used for dose-response assessment of 

cancer and non-cancer outcomes does not adequately reflect underlying biological realities, 

and a unified approach is needed.20 

As a result of the differences between cancer and non-carget risk assessment 

approaches, the NRC indicates, “non-cancer effects have been underemphasized, especially in 

benefit-cost analyses.”6 The lack of attention to non-cancer consequences is due to the inability 

of the RfD approach to produce a risk measure, for example the change in the number of 

diabetes cases (or cases of some other observable health outcome) expected due to a change in 

exposure to a toxin. Instead, the RfD approach produces only a binary indicator of whether the 

exposure is above or below a level of concern.  A quantified estimate of the number of 

outcomes prevented by a proposed regulation is necessary to include the outcome in cost-

benefit analysis.  A related limitation of the RfD approach is that it does not allow for 

assessment of low-dose exposure risks without low-dose exposure data, because it assumes 

risks are zero below the RfD even if there is biological evidence of potential risks.  A similar 

limitation applies to cancer risks for which EPA has determined a risk threshold exists.   

An additional limitation of technical approaches for dose-response assessment 

described in the NRC report is the lack of characterization of uncertainty and population 

variability.  Points of departure are selected from one study, rather than reflecting the 

uncertainty evident from differing possible points of departure across studies.  In addition, 

within-study uncertainty is not characterized explicitly, for example by providing confidence 

intervals around cancer slope factors.  Uncertainty in RfDs currently is characterized with 

uncertainty factors selected through judgment of EPA staff.  The NRC recommends the “use of 
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probabilistic distributions instead of uncertainty factors when possible” in order to capture 

uncertainty as indicated in available data.6  Inter-human variability also is not captured by 

current methods (except through the use of uncertainty factors). Dose-response assessment 

methods that characterize population variability could add significant value by identifying at-

risk subgroups.  

2.2. Utility of risk assessment 

The NRC report also identified a need for advances in risk assessment beyond those 

suggested for dose-response assessment. It concluded that the risk assessment process as a 

whole can benefit from improvements that better align it with the decision-making it is 

intended to inform. The critical need for improving the utility of risk assessments is a 

framework that first identifies risk management options, in collaboration with decision-makers 

and stakeholders, and then organizes the risk assessment to evaluate the effects of each option 

on health outcomes. The 2009 NRC report identifies this need as fundamental to improving the 

utility of the risk assessment process, noting that “*the earlier+ framework was not oriented to 

identifying the optimal process for complex decision-making but rather to ensuring the 

conceptual separation of risk assessment and risk management.”6 This separation has taken 

root in practice, leading to risk assessment processes that frequently devote time and effort to 

answering questions of little practical use for risk management while leaving other relevant 

questions (especially regarding the effects of different policies) unanswered.  

To address this issue, the NRC proposed a reorganized framework in which risk analysis 

is integrated with risk management decision-making. As shown in Figure 4, the proposed 

framework includes explicit consideration of how risk assessment will inform the effects on risk 
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of proposed policy options in its first stage (problem formulation and scoping). The process also 

includes an explicit step involving confirmation of the assessment’s utility to decision-making, 

and suggests that if utility is insufficient, the assessment should be revised. This kind of iterative 

risk assessment framework requires modeling approaches that are easy for decision-makers to 

understand and, ideally, that enable them to interactively assess changes in risk in response to 

changes in key decision variables. 

 

Figure 4. A framework for risk-based decision-making that maximizes the utility of risk assessment. (from Science 
and Decisions: Advancing Risk Assessment

6
). 

3. Potential for Bayesian networks to address key risk assessment challenges 

Bayesian networks are not currently used in regulatory risk assessment at the EPA. 

However, they may provide a framework for addressing several of the key risk assessment 
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challenges identified by the NRC. In particular, BNs may be able to improve dose-response 

assessment by harmonizing approaches to cancer and non-cancer outcomes and by allowing for 

reduced dependence on assumptions of functional dose-response form (particularly in low-

dose regions). BNs’ ability to perform diagnostic inference could also help to identify 

subpopulations at particular risk, and their inherent use of probabilities to describe variables 

could shift characterization of uncertainty in dose-response assessment to the use of 

distributions rather than uncertainty factors, as the NRC suggests. More broadly, Bayesian 

networks may be able to improve the utility of risk assessment by providing an interactive, 

visual modeling platform that could make risk assessments useful to decision-makers. Updating 

based on information could also improve risk assessment utility through scenario analysis, by 

which different risk management options can be tested for costs and benefits. In order to more 

fully explore these potential advantages, though, an understanding of Bayesian networks’ 

properties is necessary. 

3.1. Overview of Bayesian networks 

Bayesian networks were first formulated by Judea Pearl as a way of exploring causal 

inference in complex systems.21,22  Formally, they are directed acyclic graphs that represent 

variables as nodes and connections between variables as arcs (Figure 5). Bayesian networks 

specify the joint distribution of included variables, and use Bayes’ Rule to update conditional 

probabilities given evidence. Bayesian networks have been used across a diverse range of fields, 

including software engineering23, threat evaluation24, drug efficacy analysis25, tourism 

management26, and environmental modeling27 among many others. Early applications were 

constrained by limited computing power, but increases in memory availability as well as Pearl’s 
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solution algorithms and software platforms implementing them have resulted in substantially 

expanded BN use.28,29 Even so, the potential for BN applications is still far from fully realized.30 

 

Figure 5. A simple Bayesian network. Node N has parent node P, child node C, and spouse nodes S1 and S2. The 
unmarked nodes are also part of the network, but node N is conditionally independent of them given the states of 

the red nodes. The set of red nodes (all parents, children, and spouses) is termed node N’s Markov blanket, and 
every node in a Bayesian network is conditionally independent of all other nodes given its Markov blanket. 

Each node Xi in a Bayesian network is characterized by a probability distribution P(Xi). 

Nodes that are not directly connected are conditionally independent of each other if nodes 

between them are specified: for nodes Xi and Xk not directly connected, with intermediate node 

Xj, P(Xi|Xj,Xk) = P(Xi|Xj) and P(Xk|Xj,Xi) = P(Xk|Xj)  In addition, node Xi is conditionally 

independent of all other nodes given its parents Pai (other nodes directly connected to Xi by 

arcs terminating in Xi): denoting all non-parents of Xi as Npi, P(Xi|Pai,Npi) = P(Xi|Pai). This 

property is termed the local, or parental, Markov condition.31 Using it and the chain rule of 

probability calculus, the joint distribution of an entire Bayesian network with n nodes can be 

expressed as32  
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( 3 ) 

This factorization of the joint distribution into a discrete, limited number of conditional 

distributions allows the network to be solved analytically. Finally, Bayes’ Rule is key to the 

propagation of information in Bayesian networks. If Xp is a single parent node of Xi, Bayes’ Rule 

gives an expression of the probability of Xp conditional on information on Xi: 

 (  |  )  
 (  |  ) (  )

 (  )
 

( 4 ) 

This relationship allows information added to a Bayesian network to influence the 

probability of its parents, in addition to its children – and through them, the rest of the 

network. 

3.2. Improving technical soundness of risk assessment 

Bayesian networks have a number of properties that could enable them to respond to 

the technical needs identified by the NRC for improvements in dose-response methodology. 

Because of their probabilistic structure, they do not require assumptions of functional form 

(like those underpinning current dose-response methods) to link variables. In addition, Bayesian 

networks have well-demonstrated advantages in performing classification: assigning a group of 

specifications across a variable set X to a class of variable Y. More simply, classification 

algorithms seek to predict an outcome of interest from available data. This is precisely the aim 

of dose-response assessment, potentially making BNs’ advantages in performing classification 

relevant to dose-response applications.  
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Most classifiers can be categorized as either generative or discriminative.33 Generative 

classifiers use data to estimate P(X,Y) – the joint distribution of all variables – and use Bayes’ 

rule to calculate P(Y|X), the probability of some outcome of interest given available 

information. In contrast, discriminative classifiers assume a certain structure of the relationship 

between X and Y and estimate parameters to determine P(Y|X) directly. Logistic regression is 

an extremely popular discriminative classifier. For binary classification, it assumes a functional 

relationship of the form 

 (     )   
    (   ∑      )

      (   ∑      )
 

( 5 ) 

and uses maximum likelihood to estimate the regression coefficient vector β (as the equation 

has no closed-form solution). This expression can be transformed to express the familiar log-

likelihood: 

  (
 (     )

 (     )
)     ∑    

 

 

( 6 ) 

The logistic regression maintains an important assumption: that the log odds (logit) can 

be accurately represented as a linear combination of explanatory factors.34 This representation 

can be used to account for interactions among variables (including higher-order self 

interactions), but in practice, it can be difficult to select which interactions to include because 

of the great number of potentially relevant interactions in even a moderately complex system 

and limits on data in assessing these factors’ unique contributions. Choosing which interactions 
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to study is usually done through expert judgment or a stepwise approach, either of which can 

introduce bias.34  

Unlike logistic regression models, Bayesian networks belong to the group of generative 

classifiers because they reconstruct the joint distribution P(X,Y) from which data are 

generated.33 When used exclusively for prediction, the structure of a Bayesian network matters 

a great deal. Naïve Bayes is the simplest algorithm used to generate BNs from data.35 It is 

‘supervised’, in the sense that the modeler chooses the target variable to be predicted, and it 

makes a very strong assumption about the network’s structure: that the non-target variables 

are conditionally independent given the target variable. The algorithm first learns P(X|Y) (the 

probability distribution of each non-target variable given different states of the target variable) 

as well as P(Y) (the marginal distribution of the target variable), and finally uses Bayes’ Rule to 

estimate P(Y|X). Classification of a case is performed by calculating the probability of each state 

of the target variable using observed data on non-target variables, and then choosing a state of 

the target variable as the case’s class according some decision rule. For example, available data 

about a person (age, gender, education level, etc.) could be used to estimate the probabilities 

that the person did or did not smoke; the person would be classified as a smoker if and only if 

his estimated probability of smoking was greater than his probability of not smoking.  

The assumption of conditional independence has the benefit of significantly reducing 

the complexity of estimating P(X|Y) and P(Y). Perhaps surprisingly, it frequently performs well 

in classification tasks even though the underlying assumption is unrealistic.36 For cases in which 

conditional independence is unlikely, other learning algorithms that relax the strict assumption 

are available. The first of these is the tree augmented naïve Bayes (TAN). It allows relationships 
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between non-target variables, but imposes a spanning tree structure on them: each non-target 

node must be connected to some other non-target node, and can have at most one non-target 

node parent.35,37 Further relaxations like the augmented naïve Bayes (BAN) remove the 

requirement of tree structure and permit learning across a broader set of available 

relationships at the expense of greater computing intensity.38 This learning can be 

accomplished by algorithms that test all possible relationships between non-target variables for 

independence (constraint-based algorithms), or that search different available network 

structures to find one that maximizes the likelihood of available data (score-based algorithms). 

In practice, the former tend to be more efficient (especially when the number of variables is 

large) while the latter tend to be more accurate.39 The two approaches can also be hybridized; 

further details are available in Bielza and Larrañaga (2014).40 

Under certain conditions, Bayesian network classifiers can be shown to be equivalent to 

logistic regression classifiers. In particular, BNs constructed with the objective of maximizing the 

likelihood of P(Y|X) map to logistic regressions. Naïve Bayesian networks correspond exactly to 

‘simple’ logistic regression; TAN networks correspond to regression in which interaction terms 

are incorporated.41,42 It is important to note that even this expansion is highly nontrivial: to 

match a TAN network, a logistic regression must include all possible interactions (of all orders). 

In practice, this is generally not feasible given the amount of data available. Furthermore, more 

relaxed BNs (like BAN models) cannot be mapped to logistic regression at all, and complex 

variable transformations may be necessary to approximate a match while satisfying the logistic 

regression’s underlying assumption of linearity in the log likelihood.35 
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These matches have been termed discriminative-generative classifier pairs, and it is 

instructive to investigate their performance in the same settings. Ng and Jordan provide a 

foundation for this analysis. They showed that discriminative classifiers’ asymptotic variance is 

bounded above by their paired generative classifier’s asymptotic variance: in other words, a 

discriminative classifier will always perform at least as well as its generative counterpart as data 

availability approaches completeness relative to the total population being modeled.43 

However, generative classifiers converge to their asymptote more quickly. (Ng and Jordan show 

that generative classifiers achieve uniform closeness in parameters to their asymptotic values 

with log(n) samples, rather than n samples for discriminative classifiers).43 In practice, this 

means that generative classifiers will generally perform better in environments where data is 

sparse relative to the total population. 

In addition, BNs learned using more advanced algorithms (like TAN or BAN) can have 

both theoretical and practical advantages over logistic regressions. As noted above, TAN 

networks can technically be represented through logistic regression with interactions specified. 

In practice, specifying all possible interactions is not generally feasible. The number of 

interactions among variables is 2n-2, excluding self-interactions. Of course, most of these are 

usually insignificant – but excluding them from a regression formalizes this assumption, while 

explicitly including them quickly causes identification issues in all but the most data-rich 

environments.34 

The insights gained from theory can be examined in practice through parallel 

applications of discriminative and generative classifiers. We would expect Bayesian network 

techniques to have performance comparable or superior to regression methods in performing 
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classification when data is sparse relative to the population being studied, or when 

relationships among variables with relevance to the classification task are either difficult or 

impossible to capture in the regression format.  

These patterns generally emerge from the literature across a broad range of contexts. 

Huang et al., for example, used BNs to predict the ideal temperature for a cooling system and 

compared performance to regression models.44 Their BN model determined ideal temperature 

with an order of magnitude greater accuracy than the regression model, and the authors noted 

that this is specifically due to the nonlinear thermodynamics governing temperature within the 

system they studied. Van der Gaag et al. demonstrated superior performance by BN model over 

logistic regression in predicting the success of in-vitro fertilization, noting that the complex 

relationships they hypothesize connect their predictor data to their outcome of interest cannot 

be capture by their logistic models.41 Zuo et al. provided a particularly elegant example of a 

Bayesian network’s elicitation of a known non-monotonic behavior.45 They used radio-

frequency identification (RFID) data from sensors attached to shoppers’ carts to monitor 

movement around a store, and attempted to predict binary purchasing decisions from this 

information as well as available demographic data. They showed a ‘tedium effect’: that 

purchasing likelihood increased with time spent in the store, to a point, but then began to 

decrease again. Its ability to capture this non-monotonicity allowed their BN model to perform 

significantly better than a logistic regression model given the same data (ROC AUC 0.90 v. 0.81). 

In addition, the literature reveals a number of instances in which BNs’ classification 

outperformance is directly attributable to superior ability to handle sparse data. Lee et al. 

demonstrated such results in a study of 54 patients to predict radiation pneumonitis, a 
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consequence of radiation therapy.46 They used bootstrapping to simulate further instances 

from their small dataset and showed clear improvement by the BN over a regression model in 

predicting the condition. Ducher et al. reported similar behavior when using data on 149 

patients to predict incidence of immunoglobulin A nephropathy: the stability of BNs in small 

data environments (ultimately due to their faster convergence to asymptotic error) resulted in 

superior performance relative to regression predictions.47 Furthermore, this advantage is 

evident in BNs’ ability to recover parsimony from available data. Milns et al. used both BNs and 

logistic regressions to attempt to learn the structure of complex ecological relationships among 

different birds and characteristics of their environments.48 They found that the relationships 

modeled by the BN were ‘realistically sparse’, in contrast to the regression approach’s inability 

to discount insignificant relationships while retaining realistic ones.    

It is important to consider conditions in which Bayesian networks offer no significant 

advantages over more familiar regression techniques in performing classification. First, the 

ability of BNs to capture nonobvious and complex relationships only matters when these are 

present in the data. Prosperi et al. note that the linear classifiers they used to predict responses 

to allergens may perform just as well as the nonlinear methods they studied (including BNs) 

due to the absence of these nonlinear relationships in their data, but also emphasize that their 

dataset may be insufficient to capture actual relationships (rather than concluding that these 

relationships do not exist).49 Similarly, attempting to predict certain outcomes without any data 

on factors driving the outcomes is usually an exercise in futility regardless of the method 

chosen. Frizzell et al. encountered this issued in attempting to predict 30-day all-cause hospital 

readmissions for heart failure patients.50 Even with a dataset of over 56,000 patients, 
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containing many different potential explanatory variables (demographics, medical history, 

medical history, lab test results, etc.), all models they tried performed comparably and poorly 

(average AUC ROCs of 0.62). They conclude that there is simply too much variability in all-cause 

hospital readmission to be captured by their explanatory variables. A similar conclusion was 

reached by Buursma in attempting to predict the outcomes of soccer matches using a number 

of different kinds of models.51 Finally, theory predicts that in circumstances where available 

data is both comprehensive (capturing all predictive variables) and nearly complete (‘large’ 

relative to the population being studied), regression methods will predict outcomes with 

greater accuracy than BN models (as long as no complex relationships are relevant). In practice, 

such ideal circumstances hardly ever occur. 

The literature reviewed allows several general conclusions about using Bayesian 

network models for classification and prediction. The models rarely underperform regression 

techniques severely in classification accuracy; their performance is usually equal or superior, 

though rarely extremely so. However, authors consistently return to a number of other 

advantages of using Bayesian network models. First, and perhaps most important, is the ability 

to perform prediction in incomplete data environments (for example, diagnosing illness when 

only a subset of relevant clinical indicators have been observed). This is not the same as 

predicting in sparse environments – when only a small subset of cases is available, but these 

cases are complete. In this instance, models face the added challenge of cases lacking some 

relevant data. This kind of prediction is studied less frequently in the literature as models tend 

to be trained on complete datasets, but is vital when these models are actually used in practice. 
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Wang et al. cite this capability of BNs as a key reason to prefer them for clinical application 

after developing models to predict metastasis of lung cancer tumors to the brain.52 

In addition, the ease of use and transparency of Bayesian networks recur as positive 

features that favor their use. BNs have an intuitive structure, and provide a clear visual 

representation of the effects of evidence propagating across the network (Gevaert et al. term 

them ‘white-box’ models53, in contrast to ‘black-box’ approaches like neural network 

techniques in which variable interaction is often opaque). 

Researchers also cite the ability of Bayesian networks to capture nonlinear behaviors 

and interactions among variables; this is particularly evident in settings in which researchers are 

aware of these kinds of complex interactions a priori, and they are accurately reproduced by 

the Bayesian network. BNs’ ability to incorporate expert knowledge is also consistently cited as 

an advantage, especially in concert with insight gained from data. In fact, several studies have 

demonstrated cases in which the best-performing models are BNs that combine both – and the 

worst-performing models rely only on expert knowledge. For example, Sesen et al. developed 

models to guide clinical decisions and predict survival for lung cancer patients.54 They found 

that a BN model populated only with experts’ prior beliefs on relevant factors performed worse 

than any other model they tried, while a model combining these beliefs with information 

learned from data performed best. These advantages are summarized in Table 2, which 

highlights relevant information on a sample of papers from across disciplines comparing 

Bayesian networks with other modeling approaches. 

Table 2. Literature comparison of Bayesian network models with other approaches. 

Paper Context 
Outcome 
predicted 

Other models Metrics Results BN advantages
* 

Bozkurt & Uyar 983 patients prostate cancer logistic sensitivity, logistic cause-effect 
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(2011)
55

 regression with 
forward 
selection 

specificity, 
ROC AUC 

better (AUC 
0.775 v. 
0.750) 

modeling; 
integrating priors 

and study data 

Feng & 
Timmermans 

(2016)
56

 

1554 trips 
(53,258 data 

points) 

transportation 
mode 

multinomial 
logistic 

regression 

sensitivity, 
Cohen’s 

kappa, hit 
ratio 

BN better 
(sensitivity: 
99.474% v. 
94.510%; 

kappa: 0.993 
v. 0.921; all 

hit ratios 
≥0.997 v. as 
low as 0.758 
for logistic) 

stable, robust, 
general; flexible; 
not a black box 

Huang et al. 
(2016)

44
 

8760 hourly 
demand and 
temperature 

readings 

ideal cooling 
system 

temperature 

simple linear and 
quadratic 
regression 

RMSD 
BN better 

(0.2-0.3:C v. 
2.3-3.3:C) 

captures 
nonlinear 

thermodynamic 
relationships – 
mean reversion 
in regressions 

Stokes et al. 
(2017)

57
 

113 beaches 
(77 

predictors) 

beach hazard 
and lifetime 

risk 

multiple linear 
regression 

R
2
, RMSE, RS 

logistic 
better at out-

of-sample 
prediction; 
otherwise 

comparable 
(small data 

set) 

ranking; ease of 
communication; 

capturing 
complex 

relationships; 
predictions 

where some data 
is missing 

Lee et al. 
(2015)

46
 

54 patients 
(network 

learned over 
200 

bootstrapped 
sets) 

radiation 
pneumonitis 

multivariate 
logistic 

regression 
ROC AUC 

BN better 
(AUC 0.83 v. 

0.77) 

prediction with 
incomplete 
information 
(better than 
imputation) 

van Koten & 
Gray (2006)

58
 

110 software 
cases 

software 
maintainability 

multiple linear 
regression 
(backwards 

elimination and 
stepwise 
selection) 

absolute 
residuals, 

magnitude 
of relative 

error 

BN even to 
better 

predictive 
capability 

depends on 
dataset 

characteristics 
and learning 

algorithm 

Milns, Beale, & 
Smith (2010)

48
 

birds and 
habitats 

ecological 
networks 

lasso regression ‘sparseness’ 

BN network 
recovered 

known 
relationships 

advantage over 
regression in 

being 
‘realistically 

sparse’ 

Ducher et al. 
(2013)

47
 

149 patients 
IgA 

nephropathy 
stepwise logistic 

regression 
ROC AUC 

BN better 
(AUC 0.83 v. 

0.75) 

can deal with 
small sample 

sizes and missing 
data; also 

appropriate for 
different 

conditions 
(clinics etc.); 

‘continual 
apprenticeship’ 

Frizzell et al. 
(2016)

50
 

56,477 
patients 

heart failure 
hospital 

readmissions 

backwards 
stepwise and 
lasso logistic 

C statistic 
(ROC AUC) 

similar (AUC 
0.618 v. 
0.624 v. 

limits on 
availability of 
data driving 
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regression 0.618) outcome 

van der Gaag 
et al. (2008)

41
 

152 women 
in-vitro 

fertilization 
success 

logistic 
regression 

ROC AUC 
BN better 

(AUC 0.85 v. 
0.68) 

BN advantage in 
sparse data 

environments 
and small 
datasets; 

complex BNs 
cannot map to 

regressions 

Ezawa & 
Schuermann 

(1995)
59

 

179,256 
debt files 

uncollectable 
debt 

linear and 
quadratic 

discriminant 
analysis 

sensitivity 
BN better 
(25.91% v. 

1.35%)  

highly significant 
outperformance 

in asymmetric 
data 

environment 

Gevaert et al. 
(2006)

53
 

856 patients 
ectopic 

pregnancies 

multicategorical 
logistic 

regression 
ROC AUC 

BN better 
(AUC 0.88 v. 

0.82)  

explicit use of 
expert priors on 

structure and 
parameters; 
advantage in 
interpreting 

network 
outcome 

Lee, Abbott, & 
Johantgen 

(2006)
34

 
nursing data 

nursing 
relationships 

logistic 
regression 

ability to 
handle large 

datasets 

BN models 
surpass 

regression 
assumptions 

BNs overcome 
linearity in logit 
and additivity; 

interactions 
difficult to assess 

in practice 
through 

regression 
approaches 

without a priori 
knowledge 

Sesen et al. 
(2013)

54
 

117,426 
patients 

lung cancer 
survival and 
treatment 

logistic 
regression 

ROC AUC 
comparable 
(both AUCs 

0.81) 

typical BN 
advantages 

(complex data 
modeling); also, 
BN from expert 

design 
performed worst 

Buursma 
(2011)

51
 

75 matches 
soccer match 

outcome 

linear and 
logistic 

regression 
sensitivity comparable 

difficult to 
predict without 
complete data 

on inputs driving 
performance 

Sohn et al. 
(2016)

60
 

751 patients 
surgical site 

infection 
logistic 

regression 
ROC AUC 

BN better 
(AUC 0.827 v. 

0.719) 

incorporation of 
natural language 
processing key 

Wang, 
Makond, & 

Wang (2014)
52

 

36,043 
patients 

brain 
metastasis 
from lung 

cancer 

logistic 
regression 

accuracy, 
sensitivity, 

and 
specificity 

mixed results 

BN advantage in 
nonlinear 
situations, 

missing data, and 
transparency 

Prosperi et al. 
(2014)

49
 

461 patients 
allergen 

responses 
logistic 

regression 

accuracy, 
sensitivity, 

and 
specificity 

comparable 

higher-order 
interactions 

were not found 
in available data 

but cannot be 



26 

 

ruled out 

Zuo, Yada, & 
Kita (2015)

45
 

1155 
shopping 

paths 

bread 
purchasing 

logistic 
regression 

ROC AUC 
BN better 

(AUC 0.9023 
v. 0.8094) 

nonmonotonic 
tedium effect on 

stay time – 
increasing time 

in store increases 
purchase 

likelihood to a 
point, but not 

beyond 
*
the advantages listed summarize the conclusions of the authors of the papers reviewed 

In addition to their potential advantages in advancing dose-response assessment 

methodology, Bayesian networks may also address the need for improvements that make risk 

assessment more useful for decision-makers. The NRC emphasizes the need to integrate, rather 

than separate, risk assessment and risk management. BNs offer particular promise in 

responding to this need because they are easy to interact with, and show the effects of risk 

mitigation decisions on both the outcome of interest as well as other characteristics of the 

system modeled. They also permit backwards diagnostic inference – the determination of 

factors influencing known risk. 

In current practice, risk management decisions are often analyzed using Monte Carlo 

simulation.61 In these applications, models are used to transform a set of inputs (some of which 

may be uncertain) to generate a numerical outcome of interest – the probability of risk or 

failure of a system, for example.62 Unlike in classification, there is generally no attempt to 

conduct out-of-sample ‘prediction’ that can be tested against some known result. Rather, this 

kind of modeling is concerned with integrating many different factors to characterize an 

outcome of interest and understand uncertainty associated with it.63 

An example of this Monte Carlo simulation approach for environmental risk 

management applications is provided in the EPA’s arsenic risk assessment, in which the 
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reduction in risk of bladder cancer from lower arsenic exposure is estimated.4 Lifetime cancer 

risk from inorganic arsenic exposure through drinking water is defined as the product of 

lifetime average daily dose (LADD) and the cancer slope factor (SF) derived from the dose-

response assessment. The LADD, in turn, is the product of the concentration of inorganic 

arsenic in drinking water [As] with intake rate (I), divided by body weight (BW): 

                               
[  ]   

  
    

( 7 ) 

To calculate estimates of lifetime cancer risk, this equation is solved 2000 times; each 

iteration draws from distributions characterizing the parameters above. Body weight is 

assumed normally distributed by age and gender. The cancer slope factor is also assumed to be 

normally distributed based on early estimates using data on arsenic exposure and cancer 

outcomes in Taiwan. The concentration of inorganic arsenic in drinking water is captured by a 

nonparametric probability distribution based on observed data for current health assessment; 

to estimate concentration under new regulatory policy, existing systems with concentrations 

above the proposed limit are adjusted to a concentration equal to 80% of the limit. Other 

systems are left unchanged. These simulations resulting from this repeated process are then 

used to characterize average risk as well as confidence intervals on it.4 

Bayesian networks offer an alternative way of generating these kinds of estimates based 

on probabilistic reasoning, relying on conditional probabilities to connect variables. A pure 

model built only through specifying these probabilities would rely on the joint distribution to 

transfer input parameter uncertainty to the output. BN models can also incorporate functional 
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dependencies and simulate variables based on specified distributions. In this sense, they can 

absorb some MC simulation characteristics.32 

Monte Carlo simulation methods are fundamentally unidirectional, and lack an 

interactive link between inputs and outputs.64 In practice, this means that when an MC 

simulation is run, an output is generated; backwards inference – through which causes of a 

particular output are diagnosed – is not possible. In addition, MC simulations sample from 

underlying distributions that do not (necessarily) interact.64 While they can incorporate 

dependencies among variables in theory, in practice this can be quite challenging to implement. 

In contrast, Bayesian networks are grounded in underlying interactions. Because they contain a 

full representation of the joint distribution of all variables, they are not unidirectional and can 

be used for both forward-looking prediction and backwards-looking diagnostic inference. In 

addition, they are able to update all parameters (not just ‘outputs’) based on the addition of 

new information. Finally, Bayesian networks incorporate interactions among variables explicitly, 

and changing one parameter can affect others directly and indirectly. This is particularly useful 

in environmental public health policy settings in which different regulatory options must be 

examined in incomplete data environments. BNs’ ability to diagnose factors affecting 

downstream risk and propagate the effects of changing one system variable on other elements 

of the system are key attributes that could improve the utility of risk assessment to decision-

makers beyond what is possible through more traditional Monte Carlo simulation approaches. 

Bayesian networks have two key disadvantages relative to MC simulation methods. First, they 

are computationally complex due to the need to estimate and update many nodes’ 

probabilities simultaneously. While this is only a challenge relative to available computing 
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resources, it can be substantial when simulating complex systems with many interacting 

factors.62  In addition, Bayesian networks typically require discretization of nodes into a finite 

and usually relatively small set of states.64 While discretization can generally be accomplished 

without distorting results, it can reduce precision by approximating rather than directly 

specifying underlying distributions. If incorrectly done, discretization can bias results and cause 

important relationships to be overlooked.63 

The EPA’s analysis in support of changing the drinking water arsenic standard 

referenced above provides an illustrative case in which traditional use of Monte Carlo 

simulation was used for risk assessment. To generate scenarios representing avoided cases of 

lung and bladder cancers, as well as costs associated with complying with different regulatory 

standards, EPA used a number of MC simulation models. These models drew from distributions 

representing different variables (daily water consumption, body weight, etc.), and outputs were 

used to generate point estimates and confidence intervals. Applied in this context, BNs would 

offer a number of concrete advantages. First, probabilistic relationships among variables could 

be established, and drawing from one would not necessarily be independent of another. 

Models could simulate outcomes but also identify parameters to which these outcomes were 

most sensitive, perhaps illuminating particular populations for whom intervention would be 

particularly impactful. Finally, different decision options could be added to the model in parts 

to observe network effects. 

A broad range of literature has been developed over the past two decades illustrating 

some of the advantages of Bayesian networks in decision-making contexts, often in situations in 

which a Monte Carlo simulation would otherwise be used. Bayesian network literature with 
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greatest relevance to human health and risk assessment falls into four broad categories: food 

safety, ecological risk assessment, engineering risk assessment, and medical diagnostics. 

Bayesian networks have been used extensively in quantitative microbial risk assessment 

(QMRA) in food safety since their application to this area was first proposed in 2004.65 Because 

the prevailing technique in this domain has been Monte Carlo simulation, the QMRA literature 

provides a useful region of research in which BN methods and model outcomes are compared 

to expected performance of MC simulation approaches. Beaudequin et al. provided a recent 

survey of 15 papers in this vein.66 A number of key themes emerge from their review. First, BNs 

are used to simulate the effects of decisions, and to consistently characterize and reduce 

uncertainty across an entire interactive system rather than in a singly model output. (One 

particularly elegant demonstration of BNs’ ability to absorb data to reduce network parameter 

uncertainty that is highlighted in the review was performed by Rigaux et al. They built a BN 

model to capture Bacillus cereus in zucchini puree, updated it using observations of actual 

bacterial concentrations, and found that approximately 25% of nodes updated strongly.67 This 

updating would be difficult to impossible to achieve in an interactive way in a more traditional 

MC simulation model.) Bayesian network models are also used in data-sparse or data-poor 

environments (for example, where the only experimental evidence comes from small studies). 

Backwards diagnostic inference and simultaneous updating are also consistently cited as 

advantages. Finally, the clarity gained through BNs’ intuitive visual representation of complex 

systems and their dependencies is also emphasized. As could be expected, discretization and 

computing power demands are cited as key disadvantages. The acyclicity of BN models is also 

mentioned, though this issue can be overcome by using dynamic Bayesian networks (at 
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significant computational cost) or by specifying nodes to correspond to long-term average 

behaviors within systems rather than short-term system responses.68,69 These conclusions are 

confirmed in other studies.70 

BNs have also seen significant use to understand complex interactive systems in the 

fields of ecology and ecological risk assessment. Particularly extensive work has been done in 

modeling aquatic environments. BNs have been used to assess progress in meeting water 

quality directives71, and in exploring tradeoffs in water resource management.72–75 BNs have 

also been used to describe the spread of disease76 and the effects of chemical stress77 in fish 

populations, as well as to model the factors driving fish population decline78 and to inform fish 

stock management practices.79,80 Finally, BNs have been used to assess best practices in 

monitoring and managing invasive species.81–83 BNs have also seen application in assessing the 

interaction of human activity with aquatic ecosystems through connecting agricultural 

phosphorus concentrations to algal blooms84,85 and examining eutrophication.86,87 A thorough 

review of the merits of using BNs in environmental and resource management was conducted 

by Barton, Borsuk et al. in 2012.88 Further analysis by Letcher, Borsuk et al. examined BNs as 

well as several other methods in environmental assessment and management applications. 

They identified several conditions (including prediction and decision-making under uncertainty) 

in which BN methods offer significant advantages.89 

Risk assessment in engineering contexts has also seen application of Bayesian network 

modeling in the literature. Specific examples include how to assess and manage offshore oil and 

gas leaks (including how to prevent such accidents90,91, model risks from tanker collisions92, 

characterize the efficiency of oil-cleanup efforts93,  and minimize risks to sensitive 
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ecosystems94). Finally, researchers have also used BNs as the backbone of a proposed new 

method for assessing the environmental impact of hazardous chemicals95 and to map out best 

practices in managing site cleanup.96–98 

BNs have also been used to inform medical decision-making through diagnostic 

inference and decision support, being used, for example, to analyze the risk of developing 

cancer99 as well as the process of accurately diagnosing it.100 Many of the studies cited above in 

the survey of BNs’ performance in classification tasks fall into this medical diagnostics category. 

In spite of their demonstrated advantages in a number of fields, Bayesian network 

models have not yet been used in regulatory risk assessments of the benefits of environmental 

policies for public health. Their characteristics and their potential ability to respond to the need 

for advances in both dose-response assessment methods and the utility of risk assessment to 

decision-makers make a clear case for the investigation of BN model performance in these 

areas. The projects in this dissertation test whether Bayesian network models can help to 

advance dose-response assessment and the utility of risk assessment in support of 

environmental public health policy. By examining Bayesian network performance in these 

contexts, this dissertation offers a novel contribution to the environmental human health risk 

assessment literature. 

4. Aims of this dissertation 

In this dissertation, the potential of Bayesian network modeling approaches to respond 

to the NRC’s call for improved dose-response and risk assessment methods is assessed. 

Ultimately, expanded use of Bayesian networks could shift the environmental risk assessment 

paradigm by enabling dose-response assessments to reflect nonlinear relationships; by 
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incorporating the ability to predict differences in responses for subpopulations with different 

metabolic, genetic, or other characteristics; by integrating data from multiple studies; and by 

providing diagnostic as well as predictive capability. In this dissertation, the potential usefulness 

of Bayesian networks in quantifying environmental risks to human health is illustrated through 

the use of BNs to solve three different risk assessment problems.  The dissertation is novel in its 

quantitative comparison of BN models for dose-response assessment to established 

approaches.  In addition, it adds to the as-yet very limited literature demonstrating the use of 

BNs in characterizing risks to support regulatory decision-making and improving risk 

assessment’s utility to that process.  

This dissertation has three specific objectives: 

Objective 1:  to develop a proof-of-concept BN capturing a dose-response relationship, and to 

test its performance in predicting incidence of health outcome against prevailing dose-response 

methods 

Hypothesis 1:  A BN model will have stronger predictive capability than a traditional 

regression model in predicting the risk of lower birthweight for gestational age as a 

function of arsenic exposure in drinking water and its metabolism. 

Objective 2:  to confirm the proof-of-concept model’s findings, using a different health 

outcome, larger dataset, and expanded comparisons to existing methods; and to demonstrate 

how BN use can improve utility of the risk assessment process to risk management through 

population outcome simulation 
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Hypothesis 2a:  A BN model will more accurately predict incidence of dysglycemia from 

demographic, arsenic exposure, and arsenic metabolism data than a reference dose 

model or logistic regression-based model. 

Hypothesis 2b:  A BN model incorporating a dose-response assessment can provide 

useful guidance for the development of environmental policy to protect public health 

through identification of at-risk subgroups and simulation of the effects of changes in 

population characteristics. 

Objective 3:  to illustrate the use of a BN model to support regulatory decision-making by 

developing a BN model to support decisions about the potential future regulation of discharge 

of hospital waste into municipal sewer systems during infectious disease outbreak conditions 

Hypothesis 3:  BNs can provide an easy-to-use interactive tool for supporting 

quantitative analysis of the potential health benefits of alternative regulatory scenarios 

while also providing diagnostic capability. 

The next three chapters of this dissertation present the results of research toward each 

objective. In Chapter 2, a BN model is developed to predict the risk of lower birthweight for 

gestational age from available data. Models based on current dose-response assessment 

methods (reference dose and linear regression) are also developed. Out-of-sample prediction is 

assessed by measuring sensitivity and specificity. Superior performance is found in the BN 

model’s performance, demonstrating the concept that BNs can capture dose-response 

relationships and confirming the hypothesis of superior performance over current methods 

(Hypothesis 1). 
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The performance of the BN method in dose-response assessment is tested in Chapter 3 

through development of a different model with a different health outcome (dysglycemia), with 

a larger dataset and comparison to a more sophisticated logistic regression-based model in 

addition to a reference dose model. The superiority of BN performance in out-of-sample 

prediction is demonstrated through both single-point sensitivity and specificity, and receiver 

operating characteristic (ROC) curve comparison. The hypothesis of improved performance 

(Hypothesis 2a) is confirmed. 

In addition, the BN model developed in Chapter 3 is used to investigate interactions in 

subgroups within the cohort, including the effects of arsenic metabolism in different body mass 

index (BMI) groups (normal, overweight, obese). A novel relationship between the effect of 

arsenic metabolism and BMI group is demonstrated. The BN is also used to simulate the effects 

of shifts in population characteristics – specifically, BMI and arsenic exposure through drinking 

water – on dysglycemia risk in the population, while maintaining the underlying dose-response 

model. These simulations are translated into public health consequences (cases of disease 

avoided) to inform policy. These applications of the BN model confirm Hypothesis 2b and show 

that BNs can be used to improve the utility of the risk assessment process to risk management 

decision-making in the environmental public health context. 

A BN model is developed in Chapter 4 to calculate risk of developing Ebola virus disease 

in wastewater system workers through occupational exposure to contaminated wastewater. 

This model quantifies risk, including to different subgroups of workers. The model is used to 

diagnose key factors to which workers’ risk is most sensitive, and simulation of policies through 

changes in these parameters (for example, the adoption of in-hospital waste disinfection) is 
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used to demonstrate the potential benefits of different regulatory scenarios at the level of 

individual workers and hospitals. This analysis confirms Hypothesis 3: that BN models can 

support regulatory decision-making through both their ability to easily simulate the effects of 

policy changes (forward inference) and to diagnose key drivers of risk (backwards diagnostics). 

Finally, Chapter 5 summarizes key findings and provides direction for future research.  

5. Novelty and intellectual contributions of this dissertation 

The projects within this dissertation constitute the first application of Bayesian networks 

to achieve the National Research Council’s recommended improvements of dose-response 

assessment of chemicals in the environment. Chapters 2 and 3 demonstrate BN models’ 

performance in dose-response contexts, and show how these models achieve predictive 

performance equal or superior to current methods while also fulfilling the NRC’s criteria for 

improved dose-response modeling methods (equal applicability to cancer and non-cancer 

outcomes, consideration of susceptible subgroups, explicit characterization of uncertainty 

through probability, and ability to integrate dose-response for non-cancer outcomes with cost-

benefit calculations).  

In addition, this dissertation also constitutes a novel application of Bayesian networks to 

achieve the NRC’s recommendations around improving the utility of risk assessment for 

decision-makers. Chapter 4 demonstrates the explicit integration of a risk assessment and risk 

management process through a BN, highlighting how BNs’ characteristics (especially updating 

based on partial information and backwards diagnostic inference) achieve the iterative 

assessment-management process that the NRC has proposed. Chapter 3 also uses a BN model 

to simulate the effects of changes in population characteristics on health risk given an 



37 

 

underlying dose-response model, translating these effects into health consequences and 

informing decision-making around population-level health policy. This is the first time such a 

Bayesian network model has been used to quantify risk from a toxicant in the environment and 

link that dose-response assessment to public health decision-making outcomes.  

In sum, this dissertation offers a novel demonstration that Bayesian networks can 

provide a platform for addressing critical limitations of risk assessment in support of U.S. 

environmental policy decisions designed to protect public health from environmental 

contaminants. The results obtained confirm BNs’ hypothesized advantages in these contexts 

and provide direction for future research. 
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CHAPTER 2: ADVANCING DOSE-RESPONSE ASSESSMENT METHODS FOR ENVIRONMENTAL 
REGULATORY IMPACT ANALYSIS: A BAYESIAN BELIEF NETWORK APPROACH APPLIED TO 

INORGANIC ARSENIC1 

1. Introduction 

Every major new US environmental regulation must undergo cost-benefit analysis to 

establish whether anticipated public health and environmental gains outweigh regulatory 

costs.101 If costs outweigh benefits, the Office of Management and Budget may return the 

proposed regulation to the Environmental Protection Agency (EPA) for modification or 

withdrawal.102,103 In order to predict health benefits, cost-benefit analysts rely on dose-

response functions. These functions predict the number of deaths and illnesses in a population 

exposed to contaminants. If dose-response functions are inaccurate, the resulting benefits 

estimates could be either too high, leading to inefficient regulations, or too low, leading to 

regulations insufficient to protect public health. 

For most contaminants, dose-response functions used for regulatory impact analyses 

are based on decades-old data collected in studies of laboratory rodents or, in a few cases, 

human populations.104,105  Dose-response functions for carcinogens assume a linear relationship 

between contaminant exposure and the lifetime probability of cancer.  That is, to predict 

cancer risks, analysts multiply the estimated exposure dose by a constant known as the “cancer 

slope factor.”  For all regulations other than those involving ambient air quality, dose-response 

                                           
1
 This chapter previously appeared as an article in Environmental Science & Technology Letters. The original 

citation is as follows: Zabinski, J.W. et al. “Advancing Dose–Response Assessment Methods for Environmental 
Regulatory Impact Analysis: A Bayesian Belief Network Approach Applied to Inorganic Arsenic,” Environ. Sci. 
Technol. Lett., 2016, 3 (5), pp 200–204. 
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assessments for non-carcinogenic effects are categorical:  if the exposure dose is above a 

threshold known as the reference dose (RfD), then the exposed individual is assumed to be at 

risk, while exposures below the RfD are assumed to pose zero risk.  These prevailing dose-

response functions fail to incorporate modern biomedical data that have arisen from new 

analytical technologies, such as methods for sequencing DNA, analyzing DNA expression, and 

characterizing metabolic profiles.  In addition, the approaches used for cancer and non-cancer 

health outcomes are inconsistent (the latter assuming a categorical response with a threshold 

and the former assuming a linear, no-threshold response). Due to these and other concerns, 

Congress has held hearings on and called for National Research Council reviews of EPA’s 

processes for developing dose-response functions,106 heightening the urgency of developing 

alternatives that can incorporate complex biomedical data while employing a consistent 

process for cancer and non-cancer risks. 

We propose that Bayesian belief networks (BBNs) could provide a platform for 

developing dose-response functions that incorporate modern biomedical data.  BBNs emerged 

from the artificial intelligence field in the 1980s as a means to support causal inference.22 

Although ecologists have long used BBNs in resource management and risk assessment,107–110  

to our knowledge BBNs have not been previously used in human health risk assessment for 

environmental regulatory applications.  We demonstrate the development of a BBN-based 

dose-response model for analyzing the risk of lower birthweight for gestational age as a 

function of arsenic exposure via drinking water, metabolic data, and demographic factors.  We 

parameterize and test our model using data from a cohort of 200 mothers and newborns in an 
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arsenic-endemic region of Mexico. We compare the BBN’s predictive capability to that of 

prevailing dose-response assessment methods.   

2. Materials and methods 

2.1. Maternal birth cohort 

To compare a BBN-based dose-response assessment approach to the prevailing RfD and 

slope factor approaches, we used maternal health, demographic, environmental exposure, and 

birth outcome data from the Biomarkers of Exposure to Arsenic (BEAR) prospective pregnancy 

cohort.111 This cohort was recruited in 2011-2012 from Gomez Palacio, Mexico, where 400,000 

people are exposed to high arsenic levels.112  Participant recruitment methods are described 

elsewhere.111   

For each participant, social workers collected information on age, education, smoking 

and alcohol consumption behaviors during pregnancy, seafood consumption, and sources of 

drinking and cooking water.  Attending physicians reported infant birthweights and gestational 

ages at delivery.  Maternal urine samples collected at delivery were analyzed for total, 

inorganic, and methylated arsenic as described in Laine et al. (2015).113 

2.2. Birth outcome measure 

Infants with birthweights below the 10th percentile for gestational age are typically 

classified as small for gestational age.114 We calculated the small-for-gestational age cutoff 

values using a World Health Organization tool.115 Using this definition, only 14 infants in the 

cohort were small for gestational age. Due to the small sample size, we developed dose-

response models to predict the probability that the birthweight-to-gestational-age (BWGA) 
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ratio was below the 25th percentile, an outcome that we designate as “lower BWGA.” Of the 

200 infants, 57 were designated as lower BWGA. 

2.3. Reference dose approach 

Current US environmental policies define the RfD  for assessing non-carget risks as116 

    
     

                       
 

( 8 ) 

where NOAEL is the no observable adverse effects level (the largest dose at which no 

statistically significant effects are observed) and the UFs are uncertainty factors accounting for 

interspecies extrapolation, intra-species differences, and uncertainty sources.  The current 

arsenic RfD, 0.3 µg arsenic/(kg body weight-day), was derived from 1968 data on 

hyperpigmentation and keratosis incidence in a Taiwanese population exposed to arsenic in 

drinking water.117  Because this RfD does not consider birth outcomes, we computed an RfD for 

the BEAR cohort using Equation 1.  Consistent with the current RfD, we assumed 

UFinter=UFintra=1 and UFother=3.14  In addition, we compared the BBN-based approach with the 

current regulatory RfD.  For both analyses, we assumed that pregnant women drink 0.872 

liters/day and weigh 75 kg.118  All women exposed at levels above the RfD were assumed to be 

at risk of delivering an infant with lower BWGA.  Sensitivity and specificity were estimated by 

comparing the resulting assignment of risk status to the true birth outcome for each 

participant. 

2.4. Slope factor approach 

The current arsenic slope factor, 1,500 kg-day/µg, was developed from data collected in 

1968 and 1977 on skin cancer prevalence as a function of arsenic exposure in the previously 
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mentioned arsenic-endemic region of Taiwan.  Because this slope factor is not applicable for 

estimating adverse birth outcomes, we estimated a slope factor for lower BWGA risk using the 

BEAR cohort.  Consistent with the general approach for estimating cancer risk slope factors, we 

computed a maximum likelihood estimator (using Stata) by regressing BWGA against inorganic 

arsenic exposure concentration in drinking water along with other covariates (total maternal 

urinary arsenicals, maternal urinary monomethylated arsenic, age, education, alcohol and 

seafood consumption during pregnancy, smoking during pregnancy, and infant gender). 

Covariates were chosen based on a prior BEAR cohort analysis.111 BWGA and all covariates 

measured on continuous scales were treated as continuous. We tested sensitivity and 

specificity using via leave-one-out cross-validation: each cohort member was removed from the 

data set, a regression model was fitted to the remaining 199 members, the model was used to 

predict BWGA for the corresponding test subject, and this estimate was converted to an 

indicator of lower BWGA status and compared against the case’s true status.  

2.5. BBN approach 

A BBN that predicts lower BWGA from the same covariates used in the regression model 

for the slope factor analysis was constructed using BayesiaLab (Laval, France) software.  To the 

explanatory variables in the regression model, we added urinary inorganic and dimethylated 

arsenic, which were excluded from the regression model due to multicollinearity.  In brief, a 

BBN is a probabilistic model represented as a directed acyclic graph in which nodes are 

variables and edges represent causal dependencies.22,119  A fully parameterized BBN represents 

the joint probability distributions among the variables. Our team’s biomedical experts 

developed the BBN structure based on known or suspected mechanisms through which 
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ingested inorganic arsenic is converted to potentially hazardous arsenic metabolites. The BEAR 

cohort data were then used to parameterize the model. All BBN variables were discretized 

(Table 3). We calibrated the posterior probability threshold above which lower BWGA status is 

assigned to maximize sensitivity first and then specificity. Sensitivity and specificity were tested 

using a leave-one-out cross-validation approach, in which the BBN was fitted to 199 cases and 

its prediction of lower BWGA status in the remaining case was compared to the case’s actual 

status.  

Table 3. Nodes in the Bayesian belief network. 

Title Name Units States and Prior Distributions 

Maternal 
Education 

edu [categorical] [college, highschool, none]; [0.205, 0.540, 0.255]
 

Mother’s Age age years [[0,22], (22-29], >29]; [0.480, 0.355, 0.165] 

Drinking Status drink [categorical] [no, yes]; [0.790, 0.210] 

Smoking Status smoke [categorical] [no, yes]; [0.925, 0.075] 

Seafood 
Consumption 

fish [categorical] [no, yes]; [0.775, 0.225] 

Infant Gender sex [categorical] [female, male]; [0.480, 0.520] 

Arsenic in Tap 
Water 

dwias μg/L [[0, 19.282], (19.282, 105.591], >105.591]; [0.585, 0.260, 0.055]
 

Total Arsenic in 
Urine 

utas μg/L [[0, 31.115], (31.115, 79.291], >79.291]; [0.625, 0.295, 0.080] 

Urinary Arsenic 
as IAs 

ias μg/L [[0, 1.536], (1.536, 4.143], >4.143]]; [0.595, 0.310, 0.095] 

Urinary Arsenic 
as MMAs 

mmas μg/L [[0, 1.869], (1.869, 5.05], >5.05]; [0.650, 0.250, 0.100] 

Urinary Arsenic 
as DMAs 

dmas μg/L [[0, 27.938], (27.938, 70.531], >70.531]; [0.635, 0.290, 0.075] 

Birthweight for 
Gestational Age 

bwga g/weeks [lower, normal, higher]; [0.285, 0.430, 0.285] 

 

3. Results and discussion  

3.1. Fitted models 

To estimate an RfD relating lower BWGA risk to arsenic exposure, we divided the LOAEL 

in the BEAR cohort (0.461 µg/liter, the detection limit) by an uncertainty factor of three, 

resulting in an RfD of 0.00179 µg/kd-day.  This estimated RfD is more than two orders of 



44 

 

magnitude less than the current US regulatory RfD of 0.3 µg/kg-day, which is based on skin 

hyperpigmentation and keratosis. 

To estimate a model consistent with the slope factor approach, we used a multivariate 

linear regression to predict BWGA from the inorganic arsenic concentration in drinking water 

and other covariates summarized in Table 4. Consistent with prior research on this cohort,111 

the urinary concentration of monomethylated arsenic was highly significant (p=0.003), and the 

drinking water arsenic concentration was marginally significant (p=0.107) (Table 4). 

Table 4. Summary statistics and regression coefficients for variables in regression dose-response model. 

Variable Counts Mean Range 
Regression 
Coefficient 

Variable 
p-value 

Birthweight divided by gestational age 
(g/weeks) 

- 85.0 [52.9, 128] - - 

Mother's age (years) - 24.0 [18, 41] 0.39
*
 0.01 

Completed high school 149 yes; 51 no - - -2.02 0.321 

Completed university 41 yes; 159 no - - 1.10 0.567 

Occasional or frequent smoker 15 yes; 185 no - - -5.48 0.108 

Occasional or frequent consumer of 
alcohol 

42 yes; 158 no - - 2.22 
0.251 

Arsenic in drinking water (μg/L) - 24.6 [0.33, 235.55] 0.04 
0.107 

Total arsenic metabolites in urine (μg/L) - 35.5 [1.89, 488.20] 0.04 0.209 

Monomethylated arsenic in urine (μg/L) - 2.28 [0.07, 25.46] -1.10
**

 0.003 

Occasional or frequent consumer of 
seafood 

45 yes; 155 no - - -1.39 
0.485 

Newborn is male 104 yes; 96 no - - 4.96
**

 0.003 

     
Number of 
observations: 
F(10, 189): 
p-value: 
R

2
 value: 

200 
2.6 

0.0056 
0.1224 

   

 

 

We fit a BBN model to predict lower BWGA status as a function of the same variables 

used in the regression model plus two additional descriptors of maternal arsenic metabolism 

(inorganic and dimethylated arsenic concentrations in urine) that could not be included in the 

regression model due to multicollinearity (Figure 6).  
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Figure 6. Bayesian belief network model for predicting the risk of lower birthweight for gestational age as a 
function of maternal arsenic exposure, arsenic metabolism, and behavioral and demographic factors. 

The lowest node predicts birthweight divided by gestational age (BWGA) as a function of 

all of the other variables in the network; the target symbol indicates that the lower BWGA node 

state is the outcome of interest.  The corresponding belief bars show probabilities of lower 

BWGA (< 25th percentile), middle BWGA (25th–75th percentile), or higher BWGA (>75th 

percentile) conditional on baseline states of the other nodes.  Underlying all nodes are 

conditional probability tables fitted to the data set used in this study.  Updated predictions of 

BWGA can be obtained by specifying the state of any node or set of nodes, and by performing 

the necessary probability calculus. While a number of nodes influence BWGA directly, several 

others’ effects are mediated by intermediates. The choice of structure was made to elicit 

predictive power while also maintaining biological plausibility. 

A sensitivity analysis showed mother’s age, infant gender, and urinary concentration of 

monomethylated arsenic have the greatest information value for predicting BWGA status 

(Figure 7). 



46 

 

 

Figure 7. Relative sensitivity of birthweight over gestational age to network nodes calculated using reduction in 
entropy. 

Values above represent the magnitude of entropy reduction relative to the greatest such 

reduction achieved. 
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3.2. Model sensitivity and specificity  

The RfD derived from the BEAR cohort predicted that every infant was in the lower 

BWGA category.  Sensitivity and specificity were therefore 100% and 0% (Figure 8).  In contrast, 

using EPA’s current RfD (28.6 μg/L), sensitivity and specificity were 25%, and 73%, respectively 

(Figure 8). Therefore, the current RfD misclassified 75% of lower BWGA cases.   

The slope factor approach also yielded skewed results. Though the data set contained 57 lower 

BWGA cases, the regression predicted three such cases (and of these three, only one was an 

actual case). The corresponding sensitivity and specificity were 2% and 99%, respectively. In 

contrast to the other methods, the BBN achieved a more even balance between sensitivity 

(71%) and specificity (30%; Figure 8). 
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Figure 8. Sensitivity and specificity of alternative dose-response functions for predicting lower birthweight for 
gestational age. RfD=reference dose; BBN=Bayesian belief network. 

As a sensitivity analysis of model performance, cross-validation was repeated with 10% 

of the data used as a testing set. The BBN model still outperformed the other methods in 

balancing sensitivity and specificity.  The sensitivities of the RfD, regression, and BBN models 

were 100%, 2%, and 65%, respectively; specificities were 0%, 98%, and 29%.   

3.3. Relevance 

Accurate risk assessment requires methods that balance the public health costs of false 

negatives with the potential excess regulatory costs of false positives. As demonstrated, our 

BBN model outperformed the RfD and slope factor methods in balancing sensitivity and 

specificity when predicting lower birthweight risk as a function of inorganic arsenic exposure in 

water. Specifically, the BBN achieved higher sensitivity (71%) than the slope factor approach 

(2%) and higher specificity (30%) than the RfD approach (0%). Furthermore, unlike the RfD 
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approach, the BBN also was able to incorporate data on maternal arsenic metabolism, thought 

to be an important factor in fetal risk.111 Unlike the slope factor model, the BBN included 

multiple, correlated measures of maternal metabolism.  

We hypothesize that the BBN outperforms the conventional methods for several 

reasons. The binary RfD approach cannot account for covariates or metabolic factors affecting 

infant risk. While the regression model includes metabolic indicators and demographic 

variables, its ability to do so is limited by the requirement of independence among predictors, 

the assumed linear relationship between BWGA and predictors, and limited ability to detect 

complex interactions.120  The regression model’s low R2 (0.122) indicates its limited predictive 

power. The BBN, in contrast, is distribution-free and can account for linear and nonlinear 

relationships (or even relationships that may have both linear and nonlinear regions) along with 

correlations and complex interactions among predictor variables.  

Although this work represents the first comparison of BBN-based and prevailing 

methods for human health dose-response assessment in an environmental context, a number 

of previous studies have compared BBN performance to that of prevailing predictive methods.  

For example, multiple studies have explored the capability of BBNs to predict health outcomes 

under alternative medical treatment regimes.121–126  Similar to in our study, many of these 

studies found that BBNs outperformed conventional prognostic methods.  As an example, 

Forsberg et al. (2011) demonstrated that a BBN outperformed conventional approaches in 

estimating survival in patients with operable skeletal metastases.126  In addition, other studies 

of medical outcomes have compared the performance of BBNs to that of regression models and 

found BBN performance comparable to or better than that of regression approaches.  As an 
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example, Stojadinovic et al. found that a BBN for estimating healthcare outcomes in severely 

wounded veterans was comparable in predictive capability to a logistic regression model.123  

Despite their comparable performance, the authors recommended use of the BBN over 

regression because it was able to reveal associations between factors that were not evident in 

the regression and because its intuitive graphical structure could help clinicians understand 

causes of alternative health outcomes. In addition to medical applications, applications in 

ecological risk assessment have demonstrated superior performance of BBNs in comparison to 

traditional methods.  As an example, Walton and Meidinger (2006) found that a BBN method 

for classifying ecosystem types in mapping applications outperformed the prevailing approach, 

which was based on expert review of various ecosystem measures.127 This evidence suggests 

that BBNs deserve further consideration for dose-response modeling, due to both their intuitive 

structure and their powerful analytic capabilities. 

The major limitation of this study is the small size of the data set. In addition, the 

newborns in this cohort were generally of healthy weight, perhaps due to the “Mexican 

paradox,” the tendency for Mexican newborns to be at lower risk for underweight birth than 

expected from demographic data.128 Nonetheless, our model was more effective than both 

prevailing methods in classifying cases according to lower BWGA status.  Future research with 

larger cohorts and/or additional variables representing the mechanisms through which arsenic 

acts on BWGA should improve model performance.  

We have demonstrated that a BBN model outperforms prevailing RfD and regression-

based slope factor approaches in predicting birthweight outcomes from arsenic exposure and 

maternal metabolic data. The BBN achieves this superior performance by incorporating 
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information in a nonlinear, nonparametric structure that offers greater freedom than 

traditional approaches. In addition, the organization of the BBN is visually intuitive: 

relationships between variables are mapped clearly, and the structure lends itself to the 

development of risk assessment tools that may be more user-friendly than those currently 

available. Unlike the separate RfD and slope factor approaches, the BBN model also offers a 

unified and consistent way of assessing both cancer and non-cancer risks. Perhaps most 

importantly, BBNs allow for the incorporation of modern biomedical data into dose-response 

functions, offering a promising opportunity for advancing dose-response assessment and health 

environmental regulatory impact analysis. 
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CHAPTER 3: DOSE-RESPONSE ASSESSMENT AND PREVALENCE SIMULATION OF ARSENIC-
MEDIATED DIABETES AND PREDIABETES THROUGH BAYESIAN NETWORK MODELING 

1. Introduction 

Regulatory risk assessment requires dose-response models that accurately link exposure 

to toxicants to the probability of adverse health outcomes. In current U.S. practice, different 

dose-response models are used by regulatory agencies depending on whether the health 

outcome of interest is a form of cancer or is a non-cancer illness. For non-cancer outcomes, 

dose-response models are binary:  they assume a threshold (called the “reference dose,” 

denoted RfD) above which risk is presumed present and below which it is presumed absent.129 

This approach does not allow for the computation of a quantitative risk measure that can be 

used in comparing health benefits of programs to reduce toxicant exposure.  Rather, it provides 

only a binary “safe” or “might not be safe” categorization.  On the other hand, for cancer 

outcomes, the risk of cancer is assumed to be a linear function of dose with no safe threshold.8  

The cancer approach assumes that this linear function can be used to estimate the probability 

of cancer in an exposed population.  This probability, in turn, is used to quantify the number of 

cancer cases that could be prevented by decreasing toxicant exposure.  The estimated number 

of cases avoided is then converted to an economic measure of the health benefits of the 

proposed preventive program. 

In 2009, the National Research Council (NRC) published a report (Science and Decisions: 

Advancing Risk Assessment) reviewing current risk assessment practices and recommending 

ways in which risk assessment could be improved.6 As part of this process, the NRC identified 
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several key needed improvements to dose-response modeling methods. First, and most 

important, a unified approach to both cancer and non-cancer outcomes is needed.  The NRC 

recommended that this unified approach produce a quantified risk measure that can be used in 

cost-benefit analysis, pointing out that “the end products of non-cancer . . . . assessments in the 

current paradigm . . . are inadequate for benefit-cost analyses or for comparative risk analyses.”  

The report concluded, “Separation of cancer and non-cancer outcomes in dose-response 

analysis is artificial [and] . . . leads to undesirable risk-management outcomes, including 

inadequate attention to non-cancer end points, especially in benefit-costs analyses.” Second, 

modeling approaches that can capture nonlinear relationships are needed. The NRC noted that 

the EPA’s default approach for capturing nonlinearity is to assume a safe threshold dose, below 

which risks are negligible. Finally, the NRC recommended, dose-response models should 

“characterize individuals and subgroups according to whether they have co-exposures to key 

nonchemical stressors, specific polymorphisms influencing metabolism or DNA repair, pre-

existing or endogenous disease processes, high background endogenous or exogenous 

exposures, and other determinants of increased susceptibility.” 

We propose that Bayesian network (BN) models can respond to these challenges. 

Bayesian networks are directed acyclic graphs, representing variables as nodes and 

relationships among them as arcs. They emerged in the computer science field in the 1980s to 

elucidate causal inference in complex systems21 and have been used increasingly to support 

prediction across a range of fields, from medical diagnostics46,47,55 to engineering safety 

assessment.92,94,130 Because BN models express relationships among variables through 

conditional probability tables, they do not require assumptions of functional form imposing an 
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assumed relationship (like linear dependency) between inputs and outputs.  In addition, they 

can simultaneously incorporate multiple different data types, potentially including biological 

endpoints such as genes expression, protein expression, metabolite level, and other data 

derived from multiple sources in order to represent variability in individual susceptibility.  

Indeed, prior evidence from other fields suggests that BNs offer advantages over other 

methods in prediction and in eliciting causal relationships among variables in complex systems 

47,48,66,121,131,132 BNs’ ability to represent complex, nonlinear relationships and to incorporate 

diverse data types, in addition to previous evidence of their predictive accuracy, make them 

particularly promising tools for conducting dose-response assessment. However, to our 

knowledge, only a single study by our own research group has assessed BN performance in 

predicting observable health outcomes from doses and metabolism of environmental 

contaminants.133  In that study, we demonstrated the capability of a BN to predict the risk of 

lower-birthweight for gestational age due to arsenic exposure in drinking water, considering 

inter-individual metabolic and dietary variability, and showed that the BN outperformed a 

quasi-linear regression model.  The model was constructed from a modest (n=200) data set 

from an arsenic-endemic region of Gómez Palacio, Mexico. 

In this work, we build on our prior research by comparing the performance of a BN 

model to current dose-response methods in predicting incidence of dysglycemia (defined as the 

presence of either diabetes or prediabetes) from exposure to arsenic in drinking water, arsenic 

metabolism (indicated by the proportions of methylated metabolites of inorganic arsenic), and 

demographic data. The present paper uses a larger data set (n=1050) than our prior research 

and considers co-morbidity data, along with metabolic differences.  Our work also builds on 
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prior research establishing an association between incidence of dysglycemia and exposure to 

and metabolism of inorganic arsenic.134 We compare the performance of the BN model in 

predicting dysglycemia to the prevailing reference dose approach and to a quasi-linear no-

threshold approach consistent with current EPA methods for assessing cancer risks.  We use the 

network to gain new insights about potential mechanisms affecting dysglycemia risks from 

arsenic exposure.  In addition, we assess the potential effects of a BN approach on regulatory 

decision-making by comparing health benefits (bladder cancer cases avoided) estimated by the 

current approach to those estimated using a BN approach (diabetes cases avoided).    

2. Methods 

Analysis proceeded in several steps (Figure 9). First, several models were developed 

using data from a study cohort to predict incidence of dysglycemia. These models were trained 

on a subset of the data and their predictive performance was tested on the remaining subset. 

Then, the BN was used to simulate the effects on dysglycemia risk and prevalence of changes in 

arsenic exposure through drinking water. The results of these simulations were assessed to 

quantify benefits to public health. Finally, the Bayesian network dose-response model was used 

to investigate sub-populations (based on gender, age, and body mass index category) for novel 

interactions among variables not previously discovered in the data. Simulations within these 

subpopulations were conducted to further explore these interactions. 
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Figure 9. Conceptual model of analytical steps. 

2.1. Cohort 

Dose-response models predicting dysglycemia and related health indicators as a 

function of arsenic exposure in drinking water were fitted to data from a previously established 

cohort of 1050 adults from an arsenic-endemic region of Chihuahua, Mexico.134–136Participants 

were recruited between 2008 and 2012, and demographic information (gender, age, smoking, 

alcohol consumption, etc.) was collected during home visits.134 Samples of subjects’ drinking 

water were gathered and analyzed for inorganic arsenic concentrations. In addition, samples of 

subjects’ urine were analyzed to quantify levels of arsenic metabolites (inorganic, 

monomethylated, and dimethylated arsenic) present. Taken together, these values constitute 

an individual’s arsenic metabolism profile. Details on data collection, drinking water analysis, 

and urinary analysis are available in Mendez et al (2016).134 

2.2. Outcomes of interest 

Prior work on this dataset showed associations between certain cardiometabolic 

function indicators and subjects’ arsenic metabolism profiles. In particular, higher levels of 
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dimethylated arsenic and lower levels of monomethylated arsenic corresponded to increased 

risk of dysglycemia (diabetes or prediabetes).134 Dysglycemia was chosen as the outcome of 

interest for this dose-response assessment. Following the definitions in Mendez et al., subjects 

were classified as diabetic if fasting plasma glucose exceeded 126 mg/dL or 2-hour plasma 

glucose exceeded 200 mg/dL, or if diabetes diagnosis or use of diabetes medication was 

reported by the subject. Subjects were classified as prediabetic if fasting plasma glucose 

exceeded 110 mg/dL or 2-hour plasma glucose exceeded 140 mg/dL. All diabetic and 

prediabetic subjects were classified as dysglycemic, and all others were classified as 

normoglycemic. 

2.3. Testing-training methodology and performance metric 

All models were trained using randomly selected subsets comprising 75% of the 

available dataset (the ‘training set’). Out-of-sample prediction of dysglycemic status was then 

conducted on the remaining 25% of the dataset (the ‘testing set’). For each model, this process 

was repeated ten times, and performance was averaged.  Model performance in predicting 

dysglycemia was quantified through sensitivity (true positive rate) and specificity (true negative 

rate).  

2.4. Reference dose method 

In current regulatory practice, the EPA calculates a reference dose (RfD) when 

performing dose-response analysis with a non-cancer health outcome.10 To determine the RfD, 

a point of departure (POD) is first determined using available data; the POD can be the lowest 

observed adverse effect level (LOAEL) – the lowest level of toxicant at which the health change 

under assessment is detected. The POD is then divided by uncertainty factors to account for 
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uncertainty to arrive at the RfD.10 In this form of dose-response model, risk is assumed absent 

at exposures below the RfD, and present at exposures above it. 

To calculate a reference dose, a point of departure was first determined from the 

training set. The LOAEL of arsenic in drinking water at which dysglycemia was observed was at 

the limit of detection (0.005 μg/L) in nine of ten training sets studied, and was 0.01 μg/L in the 

tenth. These LOAEL values were averaged to generate a POD of 0.006 μg/L. Divided by an 

uncertainty factor of 3 (the factor used in the current EPA arsenic reference dose calculation to 

account for uncertainty in reproductive toxicity) yielded a reference dose of 0.002 μg/L. 

The EPA has developed an alternate method of determining a POD for RfD calculations 

in an attempt to incorporate more information into the RfD. This alternate POD is a benchmark 

dose (BMD), and is calculated by fitting a model of assumed functional form (linear, 

exponential, etc.) to available data. The fitted model is then used to determine the dose that 

will generate a given response (for example, a 10% increase in the level of a particular biological 

indicator).10 In developing the RfD model, derivation of a BMD to use as a point of departure 

was also attempted, consistent with preferred EPA risk assessment practice. However, the 

dataset was unsuitable for this kind of analysis due primarily to the absence of dose groups.137 

Attempts to cluster subjects into dose ranges based on arsenic exposure through drinking water 

did not yield meaningful or consistent benchmark doses. 

2.5. Regression method 

Multiple logistic regression was used to predict presence or absence of dysglycemia in 

subjects from exposure to inorganic arsenic in drinking water and arsenic metabolism; this 

approach is conceptually consistent with EPA’s current approach for cancer dose-response 
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assessment, in which a linear relationship between dose and probability of developing cancer is 

assumed.8 Arsenic metabolism was characterized by dimethylated arsenic as percent of total 

arsenic metabolites in urine (PCTDMA), as well as the ratio of urinary dimethylated arsenic to 

urinary monomethylated arsenic (DMA:MMA ratio). Regressions initially controlled for the 

other factors used in Mendez et al. (age, gender, education, ethnicity, smoking, alcohol 

consumption, body mass index (BMI), drinking water source (well, plant, other), and seafood 

consumption. Following Mendez et al., arsenic concentration in drinking water as well as 

DMA:MMA ratio were log-transformed to improve normality. Due to collinearity, PCTDMA and 

DMA:MMA ratio could not be included in the regression model simultaneously. Because 

DMA:MMA ratio captures information on both dimethylated and monomethylated arsenic, the 

model using it as the marker of arsenic metabolism was used for subsequent analysis. 

Backward-selection was used to determine a subset of variables to use for predictive modeling 

based on lowest AIC and BIC scores (inclusion threshold p<0.1). The variables selected were 

age, BMI, elementary, ≥highschool, water_source_plant, ln(DMA:MMA ratio), and ln(water 

arsenic) (μg/L). Forward-selection using the same inclusion threshold was conducted as a 

sensitivity test, and yielded the same subset of variables. 

2.6. Bayesian network model 

A Bayesian network model was constructed using BayesiaLab (Version 6, Laval, France). 

A node indicating dysglycemia (presence or absence) was used as the target for analysis. All 

explanatory variables used in the regression model were used in the BN model. Nodes 

corresponding to naturally categorical variables (gender, smoking, alcohol consumption, etc.) 

were discretized into states corresponding to these categories. Continuous nodes were initially 
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discretized into seven states each using BayesiaLab’s multivariate LogLoss-GenOpt algorithm, 

which assigns state boundaries to minimize the difference between the envelope of the 

discretized states and the shape of the underlying distribution. Analysis was repeated using re-

discretization of continuous variables into six, then nine, states but did not lead to substantial 

improvements in predictive performance. 

The model’s structure and joint probability tables were then learned from the training 

set using an augmented naïve Bayes algorithm. This is a modified version of the well-known 

naïve Bayes algorithm, in which the conditional probability of each state of each non-target 

variable is first learned from training data given a state of the target variable under an 

assumption of conditional independence among non-target variables. Then, Bayes’ Rule is used 

to compute the posterior probabilities of states of the target variable given values of the non-

target variables.138 In this project, the algorithm used augmented the basic naïve Bayes 

procedure by relaxing the assumption of conditional independence among non-target variables 

to allow for the discovery of dependencies among these variables. This algorithm is itself a 

relaxation of the tree-augmented naïve Bayes algorithm, which also allows for discovery of 

relationships among non-target variables under the assumption of tree structure (in which each 

node, except one without parents, has exactly one parent).37 Removing the requirement of tree 

structure adds computational complexity because of the need to search over the variable space 

for dependencies, but results in better predictive power on testing sets. 

Once learned, sensitivity and specificity of predictions were computed. To assess the 

relative influence of different factors on probability of dysglycemia, mutual information 

between dysglycemia and the non-target variables was determined. This metric is used 
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frequently in Bayesian network analysis and quantifies the reduction in uncertainty of the 

target variable (Y) gained through knowledge about the non-target variable (X):  
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Interested readers can find more information on this metric from Nicholson and Jitnah.139 

2.7. ROC curve analysis 

To compare the predictive capability of the logistic regression and BN models, receiver-

operating characteristic (ROC) curves were used.  ROC curves offer a graphical representation 

of the tradeoff between sensitivity and specificity in models and are useful for evaluating model 

performance over a range of discrimination thresholds, rather than at a single point.140 The 

curves are generated by plotting sensitivity against 1-specificity. Model performance can be 

assessed by computing the area under the ROC curve (AUC); a naïve model would have an AUC 

of 0.5, and models that gain more than one incremental unit of sensitivity for each unit of 

specificity lost generate curves with AUC values >0.5. To examine the performance of the 

regression and BN models, ROC curves were generated for each. (As the reference dose 

approach outputs a binary prediction for dysglycemia, rather than a probability, a ROC curve 

cannot be generated for it.)   

2.8. Effects on dysglycemia risk of changing population characteristics 

To provide additional insights about interactions among arsenic exposure and other 

factors affecting dysglycemia risk, the Bayesian network model was used to study scenarios in 

which population characteristic changes were simulated. Holding the percentage of the 



62 

 

population with overweight BMI (25 kg/m2 – kg/m2) constant, the percentages of the 

population with obese BMI (>30 kg/m2) and normal BMI (< 25 kg/m) were adjusted by ten 

percent from their baseline levels to simulate the effect of individuals moving from one 

category to the other. Prevalence of dysglycemia was observed under these simulated 

scenarios. This analysis was then repeated after restricting the population to individuals with 

DMA:MMA ratio values in the lowest and highest quartiles.  

Finally, the BN model was used to simulate the effects on predicted dysglycemia 

prevalence in the Mexican population of changes in exposure to inorganic arsenic through 

drinking water. Age distribution and gender ratio were first adjusted to correspond to the 

population (the study group was significantly more female, and slightly older, than the Mexican 

population). The distributions of these nodes, as well as other non-target nodes not causally 

affected by changes in arsenic exposure, were then fixed. The thresholds between states in the 

arsenic in drinking water node were changed to 10 μg/L, 25 μg/L , 50 μg/L, 100 μg/L, 150 μg/L, 

and 200 μg/L, and predicted dysglycemia prevalence in the simulated population was then 

observed. Next, people in the highest category of arsenic exposure (>200 μg/L) were distributed 

among the remaining states to simulate the effect of eliminating cases of exposure above 200 

μg/L. The corresponding predicted dysglycemia prevalence was observed. This procedure was 

repeated, successively eliminating all cases above 100 μg/L, above 50 μg/L, above 25 μg/L (the 

current Mexican national guideline value141) and finally above 10 μg/L (the current U.S. 

standard and World Health Organization recommendation141). At each stage, predicted 

dysglycemia prevalence was observed. Details on the characteristics of the simulated Mexican 

population are available in the Supporting Information file. 
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2.9. Calculation of bladder cancer and diabetes cases avoided 

The National Water Commission of Mexico estimated that approximately 1.3 million 

people live in area with high levels of arsenic in drinking water in the states of Durango, 

Chihuahua, and Coahuila.142 The BN model was used to estimate changes in bladder cancer and 

diabetes prevalence in this population to demonstrate BN utility in translating dose-response 

relationships to changes in public health through policy. 

Predicted dysglycemia prevalence under the scenario in which all exposure was below 

the current Mexican standard was used to estimate the number of cases of diabetes avoided, 

assuming that half of avoided dysglycemia cases were diabetes (the ratio in the study group). 

Because regulatory policy on arsenic in drinking water has focused on bladder cancer cases 

avoided, estimates of reduction in bladder cancer prevalence under the same scenario were 

also determined using EPA methodology.4 See the Supporting Information file for calculation 

details. 

2.10. Monetized health benefits calculation 

Monetized benefits of reductions in bladder cancer and diabetes incidence were 

calculated using the same process employed by EPA to estimate these benefits in proposing a 

standard for arsenic in drinking water. In its proposed reduction of the arsenic standard, EPA 

valued each premature death due to bladder cancer at $6.06 million; each nonfatal case was 

valued at $178,405 based on cost-of-care data (1999 dollars).4 To calculate monetized benefits 

of avoided cases of diabetes, the same value of premature death was used. Dall et al. estimated 

an annual cost of $9677 for treatment of diabetes; discounting 15 years of treatment (based 

roughly on average life expectancy from diagnosis) at a rate of 3% provides a present value of 
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$118,989 (2007 dollars).143,144 These values were adjusted to 2017 dollars using an annual 

inflation rate of 2% (Table 5). 

Table 5. Values of nonfatal cases for bladder cancer and diabetes. 

 
Bladder cancer Diabetes 

 
1999 dollars 2017 dollars 2007 dollars 2017 dollars 

Value of nonfatal case $178,405 $254,806 $118,989 $145,047 

 
EPA estimated a 20-year mortality rate of bladder cancer at 26%. A similar value for 

diabetes is difficult to determine due to the interaction of diabetes with other health conditions 

in causing death, but for this calculation, 11% was used based on available literature.145,146  

Combining these estimates yielded present values from avoided cases of bladder cancer and 

diabetes in the population studied. 

2.11. Interactions between arsenic exposure and other diabetes risk factors 

In order to examine interactions among arsenic exposure and other factors affecting 

diabetes risk, the BN model was also used to examine the association between arsenic 

metabolism and multiple dysglycemia-associated health outcomes (dysglycemia, fasting plasma 

glucose and 2-hour plasma glucose) within population subgroups. The association was studied 

in subgroups generated by specifying gender, age category, and BMI category. For each 

parameter, the model was first restricted to consider only subjects within a certain subgroup 

(for example, only females). Null hypotheses of statistical independence between the 

dysglycemia-associated target variable and arsenic metabolism variables (PCTDMA and 

DMA:MMA ratio) were then tested using G-tests.147 Analysis was repeated using re-

discretizations of continuous variables into six, then nine, states to ensure results were not due 

only to discretization choices.  



65 

 

3. Results 

3.1. Fitted models 

To compare the performance of a Bayesian network dose-response model to prevailing 

reference dose and regression approaches for predicting health risks of exposure to arsenic in 

drinking water, models based on all three approaches were fitted to arsenic exposure and 

health outcome data from a cohort of 1,050 adults in an arsenic-endemic region of Chihuahua, 

Mexico.  

For the reference dose approach, a reference dose (RfD) 0.002 μg/L was calculated 

using a point of departure of 0.006 μg/L (the lowest exposure level at which dysglycemia was 

present in the data) and an uncertainty factor of 3. This uncertainty factor is used in the current 

EPA assessment to account for a lack of information on arsenic’s potential reproductive toxicity 

as well as individual susceptibility. While determined in a consistent manner, the RfD is 

substantially lower than the current EPA drinking water standard (10 μg/L). 

In the regression approach, logistic regression models were used to predict dysglycemia 

from data on arsenic exposure in drinking water, arsenic metabolism, and control variables. 

Variables for inclusion were selected using backward-selection. The model indicated a 

marginally significant positive association between arsenic exposure through drinking water 

and dysglycemia (p=0.065), and predicted a 6% increase in the odds of dysglycemia for every 

natural log-unit increase in arsenic concentration in water (Table 6). The model also confirmed 

that arsenic metabolism, indicated by proportions of the methylated arsenical. is significantly 

associated with dysglycemia (p=0.004), with a 92% increase in dysglycemia odds for every 

natural log-unit increase in DMA:MMA ratio. Increases in dimethylated arsenic, and decreases 
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in monomethylated arsenic, as portions of total urinary arsenic both increase DMA:MMA ratio 

and result in greater risk of dysglycemia. 

Table 6. Logistic regression output.
2
 

Variable Odds ratio (e
β 
) 95% confidence interval 

age (years)** 1.04 [1.03, 1.05] 

bmi (kg/m
2
)** 1.09 [1.06, 1.12] 

elementary* 0.70 [0.50, 0.98] 

≥highschool 0.44 [0.18, 1.08] 

water_source_plant* 1.57 [1.10, 2.24] 

ln_DMA:MMA RATIO** 1.92 [1.30, 2.82] 

ln_water arsenic (μg/L) 1.06 [1.00, 1.13] 

**p<0.01 *p<0.05 

The Bayesian network model was learned using dysglycemic status as the target variable 

and the demographic and behavioral variables used in the logistic regressions (Figure 10). 

Unlike the logistic regression, the BN model was able to incorporate both of the arsenic 

metabolism indicators, even though they are collinear. In addition, concentrations of arsenic 

metabolites in urine and metabolite ratios were not log-transformed as BNs do not require 

assumptions of distributional form. A G-test of the null hypothesis of independence of 

dysglycemic status and arsenic level in water could not be rejected (p = 0.24). However, a null 

hypothesis of independence of dysglycemic status and arsenic metabolic indicators was 

rejected after G-tests (p = 0.000 for DMA:MMA ratio). The augmented naïve Bayes algorithm 

also elucidated a number of secondary relationships among different non-target variables, 

indicated by the solid arcs in Figure 10. Consistent with the results of the regression model, the 

factors with greatest effect on dysglycemic status were age, BMI, education and arsenic 

metabolism as measured by mutual information. 

                                           
2 elementary and ≥highschool refer to education level relative to a baseline of illiteracy. water_source_plant distinguishes subjects 

who obtain drinking water from a plant from other sources. Finally, ln_DMA:MMA RATIO is the natural log of the ratio of a subject’s 
urinary dimethylated arsenic to their urinary monomethylated arsenic. 
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Figure 10. Bayesian network model learned from data using the naïve Bayes algorithm. The dotted arcs indicate 
the first step of the algorithm in which connections are made between the target node (dysglycemic?) and other 

nodes. The solid arcs represent additional relationships among non-target nodes learned by the algorithm. Note in 
particular the association between gender and many of the other variables. 

3.2. Model performance 

Sensitivity (true positive rate) and specificity (true negative rate) were calculated for 

each set of predictions to quantify model performance (Figure 11). Because the reference dose 

model yielded a reference dose below the limit of detection for arsenic in drinking water, the 

model predicted that all subjects would be dysglycemic. As such, sensitivity was 100% and 

specificity was 0%. Using the EPA’s current drinking water standard of 10 μg/L, sensitivity was 

85% and specificity was 18%.  
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For the regression approach, sum of sensitivity and specificity were assessed; the 

maximum sum was found at a point with sensitivity of 73% and specificity of 63%. The Bayesian 

network model’s performance was comparable to that of the regression approach. At this level 

of specificity (63%), the BN achieved sensitivity of 75%.  

 

Figure 11. Sensitivity and specificity profiles for models in predicting dysglycemia from available data. Both 
reference doses yield high sensitivity, but low specificity. The regression and Bayesian networks perform much 

better in balancing sensitivity and specificity. 

To further compare predictive capability of the BN and logistic regression models, 

receiver operating characteristic (ROC) curves were plotted and the areas under the curves 

(AUCs) were calculated (Figure 12). AUCs for the regression and BN models were 0.74 and 0.76 

respectively. 
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Figure 12. Receiver-operating characteristic (ROC) curves for the regression and Bayesian network models. These 
curves show incremental gains in sensitivity as the model’s threshold of detection is lowered, and its specificity is 

reduced. The area under the curve for the BN model is 0.76, with 0.74 for the regression model. 

3.3. Simulations of changes in dysglycemia prevalence 

The Bayesian network model developed to capture a dose-response relationship was also used 

to simulate the effects of changing arsenic exposure on predicted risk of dysglycemia. After 

adjusting gender and age distributions to better reflect the Mexican population as a whole, 

predicted dysglycemia prevalence in the population was 26.7%. Moving all exposure below 25 
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μg/L (the current Mexican standard) reduced dysglycemia prevalence to 24.0%. Intermediate 

scenarios showed monotonic reductions in dysglycemia rates (Figure 13).   

 

Figure 13. Effects of reducing arsenic exposure on dysglycemia prevalence in the simulated Mexican population in 
arsenic-endemic regions. At the left, predicted prevalence and average exposure in the population are shown. 

Each successive data point corresponds to reducing exposure to below the levels specified (200, 100, 50, 25, and 
10 μg/L). 

Using the same adjustments to gender and age distributions, these changes in 

dysglycemia prevalence in response to reduced arsenic exposure were compared to similar 

changes in response to simulated reductions in obesity in the population. Reducing obesity by 

5% had roughly the same effect on dysglycemia prevalence (decrease by 0.8%) as the effect of 

shifting the population to arsenic exposure below 50 μg/L (decrease in dysglycemia prevalence 

by 1.0%). More substantial shifts resulted in greater reductions in prevalence: reducing obesity 

by 10% decreased dysglycemia prevalence by 1.6%, while shifting the population below the 

current Mexican arsenic drinking water standard of 25 μg/L decreased prevalence by 2.7%. 
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Implementing both of these changes yielded a drop in dysglycemia prevalence of 4.2% (Figure 

14). 

 

Figure 14. Reductions in dysglycemia prevalence from simulated changes in population obesity characteristics and 
arsenic exposure. Predicted prevalence changes from reducing obesity by 5% (10%) are roughly equal to predicted 

changes from reducing arsenic exposure below 50 μg/L (25 μg/L). 

3.4. Avoided cases of diabetes and bladder cancer 

The scenario in which exposure across the population was reduced below the current 

Mexican standard was used to estimate the number of cases of diabetes and bladder cancer 

avoided in a population of approximately 1.3 million Mexicans living an arsenic-endemic region 

of the country.142 Reducing arsenic exposure in this population to below the current standard of 

25 μg/L resulted in slightly more than 18,000 cases of diabetes avoided. Roughly 1460 cases of 

bladder cancer were also calculated to be avoided through this exposure change. This is an 

order of magnitude less than the 18,000 cases of diabetes avoided, and highlights the need to 

consider multiple health outcomes in setting regulatory policy. 

Monetizing these avoided cases using EPA methods showed a present value from the 

exposure change of $3.6 billion from bladder cancer avoided, and $19.5 billion from diabetes 

0%

1%

2%

3%

4%

5%

obesity 5%

reduction

obesity 10%

reduction

As all <=50 

μg/L 

As all <=25 

μg/L 

obesity 10% 

+ As all 
<=25 μg/L 

%
 r

e
d

u
c
ti

o
n

 i
n

 d
y
s
g

ly
c
e

m
ia

 

p
re

v
a

le
n

c
e

 



72 

 

avoided. While these estimates were calculated using a Mexican population and U.S. economic 

data, they further illustrate the importance of considering both cancer and non-cancer health 

outcomes in assessing the effects of public health policy. 

3.5. BMI subgroups 

G-tests performed using the entire dataset indicated statistically significant associations 

between dysglycemia-associated indicators (fasting plasma glucose and 2-hour plasma glucose), 

and measures of arsenic metabolism (percent of urinary arsenic metabolites as dimethylated 

arsenic (PCTDMA) and ratio of dimethylated arsenic to monomethylated arsenic in urine 

(DMA:MMA ratio)); associations with level of arsenic in drinking water were marginally 

significant. 

Analysis was also conducted after restricting the model to BMI groups (normal, 

overweight, and obese). The association between arsenic metabolism indicators and 

dysglycemia-associated indicators was stronger for the normal and obese BMI groups than for 

overweight subjects (Figure 15).  
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Figure 15. Responses of 2-hour plasma glucose and fasting plasma glucose to 10% change in DMA:MMA 
ratio, by BMI group. The overall pattern is consistent with the positive relationship between increased 

DMA:MMA ratio and increased levels of dysglycemia-associated indicators. However, the relationship is not 
significant in the overweight BMI group for either indicator. 

 

 

These results suggest that the association between arsenic metabolism and dysglycemia 
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normal-BMI and obese subjects. While the data available does not allow a full explanation of 

this pattern, the possibility of a non-monotonic sensitivity to arsenic metabolism across a range 

of BMIs warrants further study.  

3.6. Simulated changes in health among different arsenic metabolic groups 

The conditional probability tables generated within the Bayesian network model allow 

for exploration of how shifts in population characteristics can correspond to population-level 

health outcomes.  

Discretizing DMA:MMA ratio into four quartiles was used to examine how other 

population characteristics vary among different arsenic metabolism groups. The predicted 

fraction of the population in each BMI category changed with DMA:MMA quartile; subjects 

with lower DMA:MMA ratios had lower BMIs. However, the fraction of the population in the 

overweight category remained relatively constant. Changes in the normal and obese categories 

were much more substantial (Figure 16). This insight informed subsequent simulations in which 

the percentage of the population in each BMI category was varied: the portions of the 

population in the normal and obese groups were varied, while the portion in the overweight 

group was held constant.  
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Figure 16. Changes in predicted percent of the population in each BMI category by quartiles of ratio of urinary 
dimethylated to monomethylated arsenic (DMA:MMA ratio). In the cohort as a whole, 25.2% of people are normal 

BMI, 35.5% are overweight, and 39.2% are obese. These percentages vary as DMA:MMA quartile is varied. 
Membership in the overweight category remains relatively constant, while membership in the obese and normal 

categories varies more substantially. 

Given this understanding of BMI category differences by metabolism quartile, the effect 

of changing BMI categories in the population on dysglycemia risk was simulated. Overall, 

prevalence of dysglycemia in the population was 32.0%; BMI distribution was 25.2% normal, 

35.5% overweight, and 39.2% obese. Holding the overweight percentage constant, as well as 

other variables in the model, increasing the normal percentage by 10%, and decreasing the 

obese percentage by 10% led to a 1.8% decrease in predicted population dysglycemia 

prevalence. Similarly, increasing the obese percentage by 10% and decreasing the normal 

percentage by 10% increased population dysglycemia risk by 1.8% (Figure 17). 

Applying the same BMI category shifts after restricting to the first quartile of DMA:MMA 

ratio, the magnitude of change in dysglycemia prevalence changed: increasing the normal BMI 

group percentage by 10% decreased dysglycemia by 1.5%. In the fourth quartile of DMA:MMA 
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ratio, the effect was more pronounced (increasing normal BMI by 10% decreased dysglycemia 

by 2.0%). While these effects are small, they demonstrate how a BN model’s conditional 

probability distributions can be used to study simulated shifts in both populations and specific 

subgroups. 

 

Figure 17. Simulated changes in risk of dysglycemia from shifts in BMI group, by arsenic metabolism profile 
quartile. In the entire population, increasing the obese fraction by 10% increases dysglycemia risk by 1.8%; 

decreasing by 10% decreases risk by 1.8%. The simulated effect is stronger in individuals with problematic arsenic 
metabolism (fourth quartile ratio of dimethylated to monomethylated arsenic in urine – DMA:MMA), and weaker 

in the first quartile. 

4. Discussion 

The primary goal of this research was to test the performance of a Bayesian network 

(BN) model in dose-response assessment in comparison to current methods (reference dose 

and slope-factor approaches). Specifically, the models were used to predict incidence of 

dysglycemia out-of-sample from demographic data as well as information on subjects’ exposure 

to and metabolism of inorganic arsenic. The BN model outperformed the reference dose 

model’s sensitivity and specificity of 100% and 0% (resulting from severe over-prediction). The 
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BN model’s performance was comparable to that of a logistic regression model, which achieved 

optimized sensitivity and specificity of 73% and 63%; at that level of specificity, the BN model 

achieved sensitivity of 75%. Further analysis using receiver operating characteristic curves 

showed that the BN model successfully balanced sensitivity and specificity.  

Adjusting the BN model to more closely reflect the Mexican population as a whole was 

used to predict the effect of reducing arsenic exposure on dysglycemia prevalence in arsenic-

endemic regions. Estimated prevalence was 26.7% under current arsenic exposure conditions. 

Reductions in overall exposure corresponded to reduced dysglycemia prevalence, and achieving 

the current Mexican standard of 25 μg/L for the population resulted in a decrease in predicted 

dysglycemia prevalence to 24.0%. In a population of roughly 1.3 million people in three arsenic-

endemic Mexican states, this reduction in prevalence translated to roughly 18,000 cases of 

diabetes avoided. Because current arsenic regulation is based on avoided cases of bladder 

cancer, an estimate of bladder cancer cases avoided was also calculated using EPA methods and 

yielded 1460 cases avoided. Monetizing the benefits of these avoided cases resulted in $3.6 

billion for bladder cancer and $19.5 billion for diabetes. This disparity is substantial, and 

highlights the need to consider non-cancer outcomes like diabetes in developing regulation and 

policy to protect health from environmental contaminants. The BN model’s ability to generate 

prevalence estimates for both cancer and non-cancer outcomes suggests its utility to dose-

response and risk assessment in support of these policy decisions. 

In addition, exploration of the dataset using the BN model yielded novel insight into the 

relationship between arsenic metabolism and dysglycemia-associated outcomes. While a clear 

relationship between efficient metabolism and increased risk of dysglycemia across the dataset 
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was confirmed, subgroup analysis showed that the strength of this effect was much weaker in 

overweight individuals than in normal-BMI or obese subjects. This pattern was not previously 

observed and could suggest a moderating effect of body mass in overweight individuals not 

present in those with normal or obese BMIs. The potential health-protectiveness of being 

overweight is a highly debated concept in the medical literature148, and the evidence from this 

analysis adds to the need for further research to explore these counterintuitive results. Using 

this insight, the BN model was also used to predict the consequences of shifts in the BMI 

distribution of the study cohort on risk of dysglycemia given arsenic metabolism information. 

The simulations showed that, consistent with other findings, the consequences of shifts in BMI 

across the cohort are enhanced in individuals with arsenic metabolism profiles associated with 

dysglycemia. 

Bayesian network models have been used in a number of health risk assessment 

contexts, including quantitative microbial risk assessment.70,131,149 However, their use in dose-

response assessment is significantly sparser. Hack et al. used a BN network approach to test 

different biomarkers for associations with anemia, leukopenia, and acute myeloid leukemia 

based on data drawn from literature.150 Their work does not predict incidence of these health 

outcomes in a population, though, and does not quantitatively compare a BN model’s 

predictive performance to current dose-response methods. To our knowledge, the only other 

study using a Bayesian network in human health risk assessment to model dose-response for 

environmental regulatory applications is our own prior work (Zabinski et al., 2016133). In that 

study, incidence of lower birthweight for gestational age in newborns was predicted from 

demographic information as well as maternal arsenic exposure and metabolism. Our work 
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builds on that study by demonstrating superior BN model relative to prevailing dose-response 

methods using a different health outcome (dysglycemia), a significantly larger cohort, and more 

robust comparisons to regression models. 

Other methods have been also used to address challenges to current dose-response 

methodology, including improving the biological plausibility of models and incorporating 

different kinds of data. Substantial effort has been devoted to improving the calculation of 

benchmark doses to use as points of departure in determining reference doses rather than no 

observed adverse effects levels (NOAELs).151,152 However, these methods typically rely on 

studies (often on animals) with dose groups; human cohort information, like the data used in 

our work, is not amenable to a benchmark dose calculation.137 Most importantly, efforts to 

modify the calculation of reference doses still do not provide a risk metric that can be used to 

support regulatory cost-benefit analysis. In contrast, using a Bayesian network approach allows 

for direct cost-benefit comparisons among different scenarios considering both cancer and non-

cancer health outcomes. 

Other studies have focused on assessing the relative performance of different 

assumptions of functional form (logistic, Weibull, etc.)153, or on nesting these models within 

one another to improve performance.151 Unlike these approaches, this Bayesian network model 

dispenses with the need for functional form assumptions in favor of a different kind of 

representation of relationships between variables through conditional probabilities. There has 

been some interest in using BN models to incorporate different kinds of toxicological and 

metabolic data into a single analytic framework. For example, Gat-Viks et al. proposed a 

modeling framework based in part on Bayesian networks to synthesize several different kinds 
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of information, including high-throughput assay data, into a comprehensive biological model of 

metabolism and toxicity; they demonstrate this approach to model yeast cells’ response to 

hyperosmotic stress.154 However, they do not use this proposed model to devise a dose-

response relationship or to predict health outcomes. 

This study has a number of important limitations. First, Bayesian networks are always 

sensitive to choices of discretization within nodes. While our results were robust to changes in 

discretization, selecting appropriate discretization levels in a BN model always requires 

tradeoffs between precision and statistical reliability. In addition, our conclusions are limited to 

the context of a largely ethnically homogeneous population (Mexicans of mixed Amerindian-

Caucasian descent). As such, the generalizability of our findings to populations in other arsenic-

endemic regions of the world could be limited. Finally, while the size of our dataset was 

adequate for analysis (including the use of testing and training sets), BN models benefit from 

larger cohorts to better establish conditional probability distributions. Repeating the analysis on 

a larger dataset or meta-dataset would allow for confirmation of results. 

In addition, our study cohort differs from the Mexican population in a number of ways. 

The cohort itself was substantially more female and more obese than the Mexican population. 

The cohort is also restricted to adults ages 18 and over; even with this restriction, it remains 

slightly older than the Mexican adult population. Finally, the study cohort is exposed to 

inorganic arsenic at a much higher level than the Mexican population. The simulation of 

changes in dysglycemia prevalence after adjusting the model to better reflect population 

characteristics does not change the underlying distribution of arsenic exposure learned from 

the dataset, and is thus more reflective of the population in arsenic-endemic regions. While 
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comprehensive information on dysglycemia prevalence and arsenic exposure across Mexico is 

not yet readily available142,155, further Bayesian network analysis on fuller datasets could better 

translate the effects of changes in exposure into health outcomes for the country as a whole.  

There is a rich body of literature studying the relationships among body mass index, 

arsenic metabolism, and cardiometabolic health (including dysglycemia).156,157 Interactions 

among these factors are not yet fully understood, and eliciting these underlying mechanisms – 

including causal relationships – is certainly beyond the scope of our work in this project. In 

addition to these factors, recent literature has explored others (including gender, genetic 

polymorphisms, age, pregnancy, and environmental stressors) on differential arsenic 

metabolism.158,159 Emerging evidence suggests that the gut microbiome plays a key and 

complex role in mediating the interactions between metabolism, obesity, and cardiometabolic 

health outcomes.160,161 Indeed, the association of higher BMI, greater risk of dysglycemia, and 

higher DMA:MMA ratio we observed in our cohort using the BN model is supported by similar 

conclusions from some earlier, more targeted studies of these interactions. For example, 

Gomez-Rubio et al. demonstrated a significant association between higher BMI and higher 

DMA:MMA ratio in a cohort of adult women exposed to arsenic through drinking water162; 

Nizam et al. found significantly higher DMA levels in arsenic-exposed subjects with diabetes 

than in those without.163 Other studies, however, have questioned these associations: for 

example, Chen et al. found no relationship between arsenic exposure and diabetes prevalence 

in a large cohort of roughly 11,000 people from Bangladesh.164 These relationships clearly merit 

further study, and while our model was not designed to map them exhaustively or to elucidate 
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causality among factors, Bayesian networks could be used to do so if more comprehensive data 

encompassing relevant factors in cohort were available. 

Even with these limitations, understanding how changes in different factors influence 

dysglycemia prevalence is vital to guiding effective public health interventions to reduce 

prediabetes and diabetes rates. Diabetes is a currently major public health challenge in Mexico, 

with both higher prevalence and lower rates of effective management than most other 

countries165,166; a recent estimate attributed nearly 14% of deaths in Mexico to diabetes as the 

primary cause.155 While determining prevalence is hampered by poor data availability, most 

recent studies estimate the rate of diabetes in Mexico at around 15%.167 Given the significance 

of diabetes in Mexico, we believe that our models’ simulation of changes in dysglycemia 

prevalence from reduced arsenic exposure can have implications for public health – particularly 

in arsenic-endemic regions.  

Taken together, our results support increased use of Bayesian network models in dose-

response assessment and population simulation contexts. From a methodological perspective, 

the BN approach performed significantly better than the reference dose method and 

comparable to the regression approach. In addition, the potential for subgroup analysis in 

Bayesian networks can lead to non-obvious results like the interactions of arsenic metabolism 

and BMI category discovered in this analysis. While these interactions may be accessible using 

other tools, BNs excel in rapidly and transparently examining them. Similarly, population shift 

simulation using Bayesian networks takes advantage of the conditional probabilities within the 

models to allow exploration of nuanced, interacting scenarios. For these reasons, Bayesian 
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networks should play a greater role in dose-response contexts and human health risk 

assessment. 
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CHAPTER 4: A BAYESIAN BELIEF NETWORK MODEL ASSESSING THE RISK TO WASTEWATER 
WORKERS OF CONTRACTING EBOLA VIRUS DISEASE DURING AN OUTBREAK3 

1. Introduction 

1.1. Background and motivation 

Ebola virus is a highly infectious pathogen with the potential to spread through direct 

contact with bodily fluids.168 The 2014 outbreak of Ebola virus disease (EVD) provided renewed 

incentive to study and quantify the risk of EVD to different populations. Though the outbreak 

was concentrated in West Africa169, cases emerged worldwide as infected individuals traveled 

from the outbreak’s epicenter to other countries. Several cases occurred in the United States, 

and a combination of a lack of Ebola-specific protocols and public concern with the possibility of 

infection led to broad variation in procedures for handling patients and their liquid waste.170 

Policies to address the risk of disease transmission via wastewater contaminated with liquid 

patient waste require that this risk be well-characterized, but to date such characterizations 

remain sparse. Though the Centers for Disease Control and Prevention (CDC) regulates disposal 

of hospitals’ liquid waste, questions have surfaced over whether the CDC’s policies are 

sufficient to appropriately manage EVD risk.171 

The CDC has determined that liquid waste from Ebola patients could be flushed directly 

into municipal wastewater systems, without disinfection, based on guidance from the World 

Health Organization. This policy differs from the CDC’s guidelines for handling other kinds of 

                                           
3
 This chapter previously appeared as an article in Risk Analysis. The original citation is as follows: Zabinski, J.W., 

Pieper, K.J., MacDonald Gibson, J. “A Bayesian Belief Network Model Assessing the Risk to Wastewater Workers of 
Contracting Ebola Virus Disease During an Outbreak,” Risk Anal., 2017, doi:10.1111/risa.12827. (electronic 
publication ahead of print) 
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EVD patient waste (linens, food service items, cloths, etc.), for which autoclaving or incineration 

is recommended.172 Furthermore, the U.S. Army Institute of Public Health and several states 

developed protocols that contradict the CDC’s guidelines by requiring disinfection before 

flushing.173 This inconsistency across guidelines created confusion among municipal wastewater 

system managers and public health officials about whether wastewater workers could be at risk 

if untreated EVD patient liquid waste were flushed into municipal sewers. Beyond the risk of 

infection, wastewater system employees’ potential reaction to the perceived risk was also 

concerning.174 If workers were sufficiently worried about occupational exposure to Ebola to 

stay home from work, wastewater systems could face operational difficulties due to labor 

shortages.  

To address concerns about the magnitude of risks wastewater workers might face under 

a future epidemic of Ebola or similarly virulent pathogen and to inform future decisions about 

hospital management of patient liquid wastes prior to flushing into the sewer, we developed a 

model to quantify risk to wastewater workers under different exposure and hospital waste 

treatment scenarios.  The model, which is based on principles of quantitative microbial risk 

assessment (QMRA), uses a Bayesian belief network (BBN) to integrate characteristics of Ebola 

virus, infected patients, hospitals, and wastewater systems to generate numerical risk estimates 

and associated uncertainties. 

1.2. Relevant literature   

Multiple prior studies have sought to determine whether wastewater workers are at 

increased risk of infectious diseases due to occupational exposure to pathogens. Most of this 

work, however, has been epidemiological, relying on surveys, clinical data, and biomedical tests 
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to examine the connections among symptoms, work tasks, and incidence of infectious illnesses. 

Literature with greatest relevance to the risk of EVD to wastewater workers focuses on other 

viruses’ capacity for transmission through wastewater, in particular different varieties of 

hepatitis virus. A literature survey by Keeffe provides a useful summary of studies on hepatitis A 

virus (HAV) risks to wastewater workers in different locations (Ohio, Texas, the United Kingdom, 

Germany, and Canada).175 All the studies assessed these workers’ occupational hazard for HAV 

by measuring anti-HAV seroprevalence. Associations between work tasks and anti-HAV 

seroprevalence were found to be significant overall, but other factors (including age and 

national origin) were also significant; as such, a definitive risk from wastewater exposure alone 

could not be established.  Other research has focused on hepatitis E virus. For example, Jeggli et 

al. used prospective cohort studies to examine risk to wastewater workers of increased 

incidence of infection from hepatitis E or Helicobacter pylori176,177 They concluded that such 

increased risk was not present. This was the case even though other work has demonstrated a 

higher prevalence of HEV in both sewage and treated wastewater relative to other enteric 

pathogens.178 Van Hooste et al. also examined incidence of Helicobacter pylori in wastewater 

workers and found no significant association between disease occurrence and occupational 

exposure.179  Overall, these studies demonstrate the continued lack of consensus about the 

existence and magnitude of risks of transmissible disease for workers with occupational 

exposure to wastewater. 

 To our knowledge, only one other study has evaluated the risk to wastewater treatment 

workers of contracting EVD through occupational exposure to contaminated wastewater. Bibby 

et al. have recently developed a QMRA model to assess wastewater workers’ risk of developing 
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the disease through inhalation exposure, published as a report by the Water Environment 

Research Foundation (WERF).180 The model uses Monte Carlo simulation and focuses on risk 

through inhalation for workers closest to the hospital in which the EVD patient is being treated 

under scenarios in which workers do or do not use personal protective equipment (PPE; in this 

case, a properly-fitted, NIOSH-approved N-95 respirator). The model does not consider in-

hospital disinfection as a risk mitigation strategy. 

To our knowledge, ours is the first model to quantify Ebola risks to wastewater workers 

under alternative protocols for handling liquid wastes from Ebola patients prior to flushing the 

wastes into the sewer. This information can guide the development of appropriate protocols to 

protect wastewater workers and help improve clarity of decisions about handling waste in 

future epidemics, not only of Ebola but also involving other infectious pathogens. 

2. Methods 

2.1. BBN introduction 

The QMRA to investigate the risk of Ebola transmission through wastewater was 

encoded as a BBN. BBNs are directed acyclic graphs that represent the joint probability 

distribution of a set of variables and outcomes of interest.181 Variables are represented as 

nodes, with inter-nodal relationships shown as arcs. A major advantage of BBNs, in comparison 

to the Monte Carlo methods typically used in QMRAs, is the potential for diagnostic inference 

analysis of how the state of outcome variables influences the prior probabilities of predictive 

factors.63 For example, if a wastewater worker were to become infected with Ebola, this finding 

could be entered in the model, and the BBN would automatically update probability 

distributions in all other nodes to enable understanding of factors that may have contributed to 
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virus transmission.  Sensitivity analysis (in the absence of direct observations) within the model 

can also identify parameters that most affect risk, and this information can be used to target 

and optimize system interventions to reduce risk. BBNs have been used in multiple previous 

studies of health and environmental risk.  For example, BBNs have mapped the spread of West 

Nile virus, combining human epidemiologic data with information on changes in environmental 

conditions to pinpoint indicators of change in disease vector populations and the disease 

patterns that result.182 BBNs have also combined data on pathogen behavior with supply chain 

structures to model risk of Staphylococcus aureus in milk sold as ‘pasteurized’.183 A full review 

of BBN studies in the context environmental risk assessment can be found elsewhere.27  

2.2. Model overview 

Wastewater workers’ risk of EVD depends on their exposure to wastewater containing 

active Ebola virus, and quantifying this risk therefore depends on assessing active viral 

concentrations at different locations in the wastewater system where workers could be 

exposed under alternative scenarios that consider patient, hospital, and sewer system 

characteristics. Active viral particles enter the wastewater system when EVD patient diarrhea 

(‘EVD waste’) is flushed down the toilet in the patient’s room (Figure 18A). This EVD waste 

mixes with other hospital wastewater before discharging into a sewer main (Figure 18B), and 

travels through the system before reaching primary and secondary (Figure 18C) and tertiary 

(Figure 18D) treatment. 
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Figure 18. Conceptual model of wastewater flow. Water flows from the patient’s room (A) to the hospital-
wastewater system interface (B) and finally through the wastewater system, including primary and secondary 

treatment at the treatment plant (C) as well as tertiary treatment (D) when present. The model considers exposure 
points from when hospital waste enters the system (B) through tertiary treatment (D). Three categories of workers 
are examined: collection system workers, maintenance mechanics, and treatment plant operators. Workers in the 

latter two categories can be exposed to wastewater both prior to and after tertiary treatment. 

Workers could be exposed at any location between the hospital discharge pipe and the 

treatment plant effluent pipe.  The BBN is structured to reflect the movement and survival of 

Ebola virus along this potential exposure pathway. Combined with an estimate of the worker’s 

occupational exposure to wastewater, an exposure dose of active viral particles is then 

calculated. Finally, a dose-response model is used to quantify the probability of developing EVD 

based on this exposure dose. Figure 19 shows the full network structure, with the central 

column of nodes representing this conceptual modeling framework.  
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Figure 19. Influence diagram for estimating risk of Ebola virus disease for wastewater workers exposed to hospital 
discharges under future outbreak scenarios. The central column represents changes in Ebola virus concentration as 
patient waste travels through hospital pipes and the sewer system to points at which wastewater system workers 

could be exposed. The final node shows the probability of illness, which can be updated by specifying values of 
other nodes in the network. 

Table 7 defines all the variables, their possible states and prior probabilities, and the 

information sources used to characterize them. Additional information on uncertainty arising 

from characterization of variables and on model construction (including node state 

discretization, conditional probability estimation, and causality assumptions) is available in the 

Supporting Information file. The BBN was constructed using Netica (Norsys Software Corp., 

Vancouver, Canada).  

Table 7. BBN model nodes, with descriptions and sources. 

Title Name Units Equation or States Description Sources 

Disease 
state 

state - {severe, nonsevere} 
 phase of 

illness with 
184185186187
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diarrheal 
discharge 

≥1L/day, or 
not 

Initial viral 
concentratio

n 

presence 
(PR) 

particles/m
L 

                               

  {
  [    ( )]                   

  [  ( )   ( )]                
 

 

calculation of 
uncorrected 

viral 
concentration 

in diarrhea 
from patient 

n/a 

Hemorrhage 
correction 

hemorrhag
e (HC) 

- 
{study 1, study 2, study 3, study 4, study 5, 

study 6, study 7} 

probability of 
patient 

experiencing 
gastrointestin

al 
hemorrhaging 

185
 
188

 
189

 
190

 
191

 
192

 
169

 

Concentratio
n in patient 

waste 

conwaste 
(CW) 

particles/m
L 

                               
                       
                      
                

calculation of 
viral 

concentration 
in patient 

waste 

n/a 

Disinfection 
method

1 
disinfection 

(DI) 
- {bleach, quats, peracetic acid, none}

 

type of 
disinfectant 

used in 
hospital 

n/a 

Exposure 
time

1 exposure minutes {two min, fifteen min, thirty min} 

duration of 
exposure to 
disinfectant 

used in 
hospital 

n/a 

Attenuation attenuation - 
{none, low bleach, med bleach, high bleach, 

low quats, med quats, high quats, low 
peracetic, med peracetic, high peracetic} 

viral 
attenuation 

from hospital 
disinfection 

(Sassi et 
al., 

2016)
2 

Temperature 
of WW 

tempeffect 
(TE) 

:C 
{<15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 

27, 28, 29, >29} 

expected 
temperature 

of 
wastewater in 

system 

193
 
194

 

Number of 
patients 

number 
(NU) 

number of 
patients 

{1, 2, 3, 4, 5, 6, 7} 
number of 

EVD patients 
in the hospital 

n/a 

Work group group - 
{collection system worker, maintenance 

mechanic, WW treatment operator} 
wastewater 
worker type 

195
 

WW 
treatment 

passed 

treatment 
(TT) 

- {pretertiary, tertiary} 

whether 
worker is 
exposed 
before or 

after tertiary 
wastewater 
treatment 

195
 

Worker 
distance 

from 
hospital 

distance miles 
{up to 1, up to 2, up to 3, up to 4, up to 5, 

greater than 5} 

worker's 
distance from 

hospital (in 
pipe-miles) 

195
 

Time 
elapsed at 

worker 
time days 

{less than half, up to 1, up to 2, greater than 
2} 

time taken by 
wastewater 
to flow from 

195
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hospital to 
worker 

Concentratio
n in hospital 

discharge 

condischarg
e (CD) 

particles/m
L 

                                   
                               
                                    
                     

intermediate 
calculation of 

viral 
concentration 
in wastewater 

n/a 

Hospital size 
hospital 

(HS) 
square feet 

{up to 500k, 500k to 1000k, greater than 
1000k} 

size and 
internal 

dilution of 
hospital 

196
 

% of WW 
from 

hospital at 
worker 

percent 
(PC) 

- 
{less than 5%, 5%-50%, 50%-95%, greater 

than 95%} 

fraction of 
total 

wastewater 
at worker 

originating in 
hospital 

195
 

Concentratio
n at 

exposure 
point 

conexpose 
(CX) 

particles/m
L 

                               
                                    
                       
                       

                           

final 
calculation of 

viral 
concentration 
in wastewater 

n/a 

Exposure 
volume 

exposevol 
(EV) 

mL/day 
{zero, daily inhalation, 10-second ingestion, 1-

min ingestion} 

estimate of 
daily 

wastewater 
volume 

ingested or 
inhaled by 

worker 

197
 
198

 

Inactivation 
study 

study - {study 1, study 2, study 3} 

viral presence 
to infectious 

virus 
correction 

199
 
200

 
201

 

PCR 
correction 

correct (CO) - 

                             

  {

  (      )                 

  [  (     )   (   )]                 

  [  (      )   (   )]                

 

calculation of 
viral presence 

to infection 
virus 

correction 

n/a 

Exposure 
dose 

dose (DO) 
particles/da

y 

             
                                
                 

calculation of 
dose of 

infectious 
viral particles 

to worker 

n/a 

Probability 
of illness 

sick - dose-response model 

calculation of 
probability of 

developing 
EVD 

(Haas, 
Rose, 

Mitchell, 
and 

Rycroft, 
2016)

2 

1
choice nodes leave specification of state to the user, with prior assumption of equal probability for each state 

2
unpublished – manuscript in preparation 
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2.3. Viral concentration in EVD waste 

2.3.1. Initial viral concentration  

An EVD patient’s diarrhea may contain active viral particles if the patient is experiencing 

internal hemorrhaging. For such patients, the volume of diarrhea and concentration of viral 

particles increase as the illness becomes more severe.184–187 In the model, the patient’s disease 

state was divided into two phases : ‘severe’ if daily diarrhea discharge exceeds 1 L and 

‘nonsevere’ otherwise. The ‘severe’ phase was assigned a prior probability of 33% based on 

literature estimates of the fraction of an EVD patient’s hospital stay during which daily diarrhea 

discharge exceeds 1 L.184–187 This information was encoded in the node Disease state. 

Viral concentration during the severe phase ranges from approximately 103 to 107 

particles/mL, and up to approximately 103 particles/mL during the nonsevere phase. 

Concentration was modeled as   

                                         {
  [    ( )]                   

  [  ( )   ( )]                
 

( 10 ) 

           

Uniform distributions were used because supporting studies only provide ranges for viral 

concentration in patient waste. These distributions achieve equal representation by order of 

magnitude across the concentration ranges considered. 

2.3.2. Correction for internal hemorrhaging 

Not all patients experience the gastrointestinal hemorrhaging that transmits viable 

Ebola virus to the patient’s liquid waste. Therefore, the estimate of viral concentration in 

diarrhea was modified to account for the probability of patients experiencing hemorrhaging 
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using information from clinical studies of EVD patients. 169,185,188–192 For each study, the 

proportion of EVD patients recorded as experiencing gastrointestinal hemorrhaging or relevant 

related symptoms (i.e., melena, hematochezia, or hematuria) was extracted. Inverse population 

weighting was used to assign a weight to each such study (results are in the node Hemorrhage 

correction), where for study m, 

         
                                   

∑                                        
 

( 11 )                                                                         

2.3.3. Correction for use of PCR methods 

 Quantifications of viral concentration rely on polymerase chain reaction (PCR) methods. 

However, there is considerable uncertainty about the fraction of viral particles detected 

through PCR that are viable.202 Unfortunately, prior studies of Ebola virus have not estimated 

this fraction. Therefore, the model incorporated results from three studies comparing 

poliovirus concentrations detected by PCR and infectious concentrations assessed through cell 

culturing (node PCR correction).  These results take the form of log-reduction in the estimate of 

active virus concentration. One study, for example, estimates a 2-log difference between virus 

concentration detected and actual infectious concentration. Such log-reduction or log-

inactivation factors are used throughout the model where appropriate given underlying 

literature.  

 These factors were combined in the node Viral concentration in EVD waste (conwaste, 

CW) to produce an estimate of active virus concentration in EVD waste, corrected for the 

probability of hemorrhaging and for PCR method inaccuracies, in units of active viral 

particles/mL: 
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2.4. Viral concentration in hospital discharge 

2.4.1. In-hospital waste disinfection 

 Disinfectants applied by hospital staff to the EVD waste, before flushing, may have a 

substantial impact on active Ebola virus concentration. Based on unpublished data collected by 

Sassi et al. (in preparation, 2016), concentration reductions from exposure to three 

disinfectants (bleach, quaternary ammonium cations [quats], and peracetic acid) over three 

distinct time intervals (2, 15, and 30 minutes) were incorporated (Disinfection node). 

2.4.2. In-hospital dilution 

 Using data from a U.S. Energy Information Administration survey196, large U.S. hospitals 

were divided into three categories based on area footprint (limiting consideration to large 

hospitals as these are the only U.S. facilities approved to treat EVD patients).203 For each 

hospital size, the daily wastewater volume produced by a single bed was divided by the 

wastewater volume generated by the hospital to account for dilution before EVD waste exits 

the hospital. The resulting dilution factors are captured in the Hospital size node. 

2.4.3. Number of EVD patients 

The model assumes a single EVD patient by default, but the node Number of EVD 

patients allows for up to seven patients to be considered simultaneously. Combining this factor 

with the effects of in-hospital disinfection and dilution yields the Viral concentration in hospital 

discharge in active viral particles/mL: 
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2.5. Viral concentration at point of exposure 

A number of transformative processes affect virus-bearing wastewater and reduce 

active viral concentration by the time a worker is exposed, with the degree of reduction 

depending on wastewater temperature, size of the sewer system, and worker location, the 

latter of which is influenced by work task. To characterize concentrations at potential exposure 

points, the model uses information from the City of Raleigh’s responses to the American Water 

Works Association’s (AWWA) 2014 Utility Benchmarking Survey 195 and conversations with 

Raleigh wastewater treatment management staff about how to interpret those responses. 

Raleigh’s network is representative of a wastewater collection and treatment system for a mid-

sized city, with approximately 2,300 miles of sewer pipe, average flow of 65.2 million gallons 

per day, service population of 521,000, and staff of 224 people. 

2.5.1. Worker group 

 In the AWWA benchmarking survey as completed by Raleigh, workers were classified 

into three groups: collection system worker, maintenance mechanic, and wastewater 

treatment operator. Collection system workers are at highest risk for wastewater exposure, as 

they are responsible for conducting maintenance and repairs in the sewer lines and pump 

stations. Maintenance mechanics work in wastewater treatment plants, where exposure risks 
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are lower than for collection system workers. Wastewater treatment operators are largely 

confined to control rooms within the plants and consequently have low exposure risk.  

2.5.2. Distance from hospital 

 The worker’s spatial distance from the hospital was quantified as the distance between 

the worker and the hospital discharge point. In the model, probabilities are assigned to values 

across a range of distances (from less than 1 mile to greater than 5 miles) for each of the three 

work groups (Worker distance from hospital node).  

2.5.3. Time elapsed before wastewater reaches worker 

 A worker’s distance from the hospital was multiplied by a constant wastewater velocity 

of 1.07 m/s (3.50 ft/s) to compute the time elapsed between EVD waste discharge and worker 

exposure (Time elapsed at worker node).204 At this flow rate, EVD waste is expected to reach 

most workers within the distance range considered (up to 6 miles) in less than a day.  

2.5.4. Temperature-moderated viral attenuation 

 Ebola virus survives poorly outside the human body, and its die-off rate is greater at 

higher temperatures. To account for these effects, the results of a study of enveloped virus 

inactivation in human sewage193 were used to estimate the percentage inactivation of Ebola 

virus per unit time as a function of temperature. Raleigh atmospheric data194 were used to 

develop a wastewater temperature distribution; the inactivation fractions for different 

temperatures are specified in the Temperature of wastewater node.  
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2.5.5. In-system wastewater dilution 

 Dilution occurring between the hospital and the exposure point is captured in the node 

% of WW from hospital at worker node, which contains four states specifying different levels 

of dilution as estimated from the Raleigh AWWA benchmarking survey.  

2.5.6. Tertiary wastewater treatment 

 Though not present in all systems, the model assumes zero active Ebola virus 

concentration in wastewater that has undergone tertiary treatment (encoded in the node 

Tertiary treatment). In combination with the preceding factors, this variable yields Viral 

concentration at exposure point in active viral particles/mL: 

                               

                                                           

                                                  

( 14 ) 

2.6. Exposure dose 

 The node Concentration at exposure point updates the concentration of active viral 

particles in hospital discharge to account for die-off, dilution, and tertiary treatment if present 

(see equation in Table 7):  to estimate exposure dose, the model then multiplies this 

concentration by assumed exposure volumes for different hypothetical scenarios.  The model 

can estimate doses for inhalation of aerosolized wastewater or direct ingestion of droplets. As 

data on inhalation for wastewater workers are sparse, a study of aerosolized water inhalation 

during showering was used to estimate inhalation exposure volumes.198 Data from the 

experiment conducted at highest temperature and highest water velocity were used, resulting 
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in the greatest volume of water inhaled, to be conservative relative to available literature on 

wastewater aerosolization.205 In addition, the inhaled volume value from the 10-minute 

experiment was multiplied by 24 to determine the amount of water expected to be inhaled 

over a 4-hour exposure. This value— 0.00012 mL – was then used as an estimate of a daily dose 

of inhaled wastewater and encoded in the node Exposure volume for the inhalation scenario. 

 To estimate a volume of wastewater swallowed via direct ingestion, the EPA Exposure 

Factors Handbook was used.197 During a one-hour episode of swimming, a person ingests 23 mL 

of water. This value was adjusted to determine 10-second and 1-minute ‘ingestion episodes’, 

with volumes of 0.383 mL and 0.064 mL respectively. Assuming an average droplet size of 0.05 

mL206, these scenarios are equivalent to swallowing approximately 8 drops and 1 drop of water 

respectively. Probability distributions across the three exposure volumes in addition to no 

exposure were specified for each of the three worker groups, although the ideally a model user 

would specify the exposure scenario in estimating risks. 

 Incorporating the volumes based on routes of exposure, a dose of infectious viral 

particles to the wastewater worker over the course of a day is determined. This value is 

expressed in the node Exposure dose. 

2.7. Dose-response and probability of illness 

 To estimate the probability of developing EVD, the exposure dose was used in an 

exponential dose-response model developed by Haas, Rose, Mitchell, and Rycroft (in 

preparation, 2016) based on data from prior primate studies.  (The Haas et al. model estimates 

a median infectious dose (dose at which 50% of exposed patients develop the disease) of 

approximately 9 viral particles.) This prediction is captured in the network’s final node, 
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Probability of illness. The probability of illness is discretized into ten states, each giving a risk 

range indicating the probability of developing EVD under the assumptions specified throughout 

the rest of the network. Due to the possible combinations of discrete node states specified in 

the model, the minimum nonzero probability of illness the model can reliably assess is 10-12; for 

smaller values, risk is categorized as below the model’s limit of detection (LOD). 

2.8. Model compilation 

Once the model’s structure was established, distributions based on data added, and 

relationships between nodes defined, conditional probabilities were estimated by simulating 

100,000 joint instances of the model. In each instance, values for nodes with marginal 

probabilities encoded were drawn according to these distributions. Values for nodes 

incorporating random variables were drawn from these distributions. Then, the equations 

linking nodes were used to generate remaining values. The process produced 100,000 unique 

cases of the model in which each node had a set value. This simulated set of cases was then 

used to determine conditional probabilities through frequency analysis. For a detailed example 

of this process, see the Supporting Information file. 

2.9. Scenario analysis 

To explore risk under different conditions, multiple scenarios were examined. First, a 

‘worst-case’ scenario was simulated to define an upper bound of EVD risk by setting all 

parameters that could vary for a particular exposure episode to maximize risk: severe disease 

state, no hospital disinfection, low temperature, minimal dilution from both hospital and 

network, no tertiary treatment, exposure close to the hospital, and exposure volume equivalent 
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to ingestion of approximately 8 drops of wastewater (a 1-minute swimming episode). For 

simplicity, the number of patients was left at its default setting of 1.  

Building on this worst-case scenario, each of the parameters specified was 

independently varied to simulate different risk scenarios while holding the remainder of the 

base case settings constant. For each scenario, mean and median single-day risk were recorded. 

Mean risk was also estimated over an exposure period:  

                (              )
  

( 15 ) 

2.10. Sensitivity analysis  

 Global sensitivity analysis without any state specification was not carried out because 

interpretation of results across all scenarios simultaneously is not informative for risk 

mitigation. Instead, sensitivity analysis was restricted to scenarios. The sensitivity of the 

model’s risk estimates to the key predictor variables was tested under the 1-minute ingestion 

exposure scenario. Under this setting, the effects of different nodes on the probability of illness 

were examined by using the BBN software’s ‘sensitivity to findings’ procedure, which varies one 

node at a time and measures the effect on the outcome node while holding the rest of the 

network constant. This procedure quantifies the reduction in the outcome node’s entropy—the 

degree of uncertainty about the outcome node’s true state. The entropy of node X is initially 

calculated as207 
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where x indicates the set of states of X and px indicates the prior probability of state x. The 

change in this entropy given findings at node S is then calculated as  

    ( )   (   ) 

( 17 ) 

Sensitivity of risk to several model parameters was also examined under more specific scenarios 

to investigate sensitivity analysis robustness and variability. 

3. Results 

3.1. Risks from scenario analysis 

A BBN model was developed to assess risk of developing EVD for wastewater system 

workers during an Ebola outbreak, to test the effects on risk of pretreating EVD waste prior to 

flushing into the sewer, and to examine which other parameters had greatest influence on risk. 

There was substantial variation in predicted risk based on the characteristics of the EVD 

patient(s), the hospitals treating the patient(s), the wastewater system, and specific worker 

groups.  Under the worst-case scenario in which risk is maximized (severe disease state, lowest 

wastewater temperature, no tertiary treatment, smallest hospital size, and minimum system 

dilution, distance to worker, and time elapsed), the model estimates a median EVD risk of 

5.8×10-4 (90% confidence interval: 8.8×10-7–9.5×10-2; mean 3.2×10-2) (Table 8).  However, this 

risk decreases substantially as these worst-case assumptions are removed (Table 8, changed 

variables highlighted in grey). Scenarios in the table are arranged in decreasing order of impact 
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on risk: each successive variable has less of an impact on changing risk relative to the worst-

case scenario. 

Table 8. Estimated risk of Ebola virus disease to wastewater workers under a worst-case and alternative scenarios. 

Disease 
state 

Disinfection  
method 

Disinfection 
exposure 

time (min) 

Temperature 
(:C) 

Distance 
from 

hospital 
(mi) 

Tertiary 
treatment 

Hospital 
size (ft2; in-

hospital 
dilution) 

% of WW 
coming 

from 
hospital 

Exposure 
method 

Median 
(Mean) 1-
Day Risk 

Median 
(Mean) 7-
Day Risk 

severe none - ≤15:C ≤1 no ≤500k >95% 1min ingest 
5.8×10-4 

(3.2×10-2 ) 
4.1×10-3 

(2.0×10-1 ) 

severe none - >29:C ≤1 no ≤500k >95% 1min ingest 
4.4×10-4 

(2.8×10-2 ) 
3.1×10-3  

(1.8×10-1 ) 

severe none - ≤15:C ≤1 no >1000k >95% 1min ingest 
1.2×10-4 

(1.6×10-2 ) 
8.4×10-4  

(1.1×10-1 ) 

severe none - ≤15:C ≤1 no ≤500k >95% 10s ingest 
7.0×10-5 

(4.3×10-3 ) 
4.9×10-4 

(3.0×10-2 ) 

severe bleach 15 min ≤15:C  ≤1 no ≤500k >95% 1min ingest 
3.4×10-5 

(2.7×10-3 ) 
2.4×10-4  

(1.9×10-2 ) 

severe none - ≤15:C ≤1 no ≤500k <5% 1min ingest 
2.9×10-5  

(2.6×10-3 ) 
2.0×10-4 

(1.8×10-2 ) 

severe quats 15 min ≤15:C  ≤1 no ≤500k >95% 1min ingest 
5.9×10-6 

(3.8×10-4 ) 
4.1×10-5  

(2.7×10-3 ) 

severe 
peracetic 

acid 
15 min ≤15:C ≤1 no ≤500k >95% 1min ingest 

3.8×10-7 

(2.9×10-5 ) 
2.7×10-6 

(2.0×10-4 ) 

severe none - ≤15:C ≤1 no ≤500k >95% inhalation 
8.9×10-8 

(1.2×10-5 ) 
6.2×10-7 

(8.4×10-5 ) 

non-
severe 

none - ≤15:C ≤1 no ≤500k >95% 1min ingest 
1.5×10-7 

(6.7×10-6 ) 
1.0×10-6  

(4.7×10-5 ) 

 
Without prior information about worker or system characteristics (that is, without 

specifying any node states in the model), the model estimates that wastewater workers’ daily 

median risk of developing EVD from contact with wastewater of hospital origin 6.1×10-12 (90% 

CI: 1.0×10-12–5.4×10-9; mean 1.8×10-6). Median risk when specifying inhalation exposure, but 

leaving all other nodes unspecified, is 6.7×10-12 (90% CI: 1.0×10-12–9.1×10-9; mean 1.2×10-7); 

specifying 10-second immersion (1-drop ingestion) instead, median risk is higher, at 6.7×10-10 

(90% CI: 6.3×10-12–7.5×10-6; mean 5.1×10-5). Specifying 1-minute immersion (8-drop ingestion) 

and leaving all other nodes unspecified yields a median risk of 6.1×10-9 (90% CI: 5.5×10-11–

7.0×10-5; mean 4.2×10-4). These results indicate that risk is higher under direct ingestion 

scenarios. Risk also differs across the three worker subgroups included in the model. Without 

specifying any prior node states other than worker group, the model estimates that collection 
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system workers are at greatest risk given their assessed potential for wastewater ingestion 

while working in sewer mains and pump stations, with median risk of 7.1×10-12 (90% CI: 1.0×10-

12–3.7×10-8; mean 3.2×10-6) . Maintenance mechanics’ median risk is 5.5×10-12 (90% CI: 1.0×10-

12–4.9×10-10; mean 2.3×10-7)  due to their small but nonzero probability of wastewater ingestion 

as well as their potential exposure to wastewater that has not undergone tertiary treatment 

while working in the wastewater treatment plant. Treatment operators’ risk is below the 

model’s limit of detection of 1X10-12, as most of their work tasks do not result in exposure to 

wastewater. In general, these results suggest that risk is greatest for workers with exposure to 

higher volumes of wastewater through ingestion at points closer to hospitals treating EVD 

patients.  

3.2. Effects of in-hospital disinfectant use 

The three potential disinfectants that hospitals could apply to waste before flushing into 

the sewer system and that are included in this model have different effects on mean daily risk 

of developing EVD based on contact time (Figure 20). Peracetic acid is the most effective, with 

median risk reduced to 5.8×10-12 (90% CI: 1.0×10-12–6.9×10-10; mean 4.3×10-8) after two minutes 

of contact and to 5.5×10-12 (90% CI: 1.0×10-12–8.2×10-11; mean 3.6×10-9)  after 15 minutes of 

contact for a scenario in which all variables other than those related to disinfection are 

unspecified. Quaternary ammonium cations (quats) were nearly as effective as peracetic acid 

after two minutes (median: 5.9×10-12, 90% CI: 1.0×10-12–8.9×10-10; mean 6.5×10-8), but longer 

exposure times did not produce substantial reduction in active viral concentration. Use of 

bleach yielded slower inactivation than quats during the first two-minute interval (median: 

6.7×10-12, 90% CI: 1.0×10-12–3.8×10-8; mean 2.7×10-6), but resulted in a greater degree of 
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reduction in active viral concentration after 30 minutes than quats (median/mean risks 5.6×10-

12/6.9×10-9 for bleach, versus 5.8×10-12/4.5×10-8for quats). These results suggest that peracetic 

acid is preferable to quats and bleach in mitigating downstream EVD risk, as its rapid and 

effective reduction in viral activity propagates through the network.  

 

Figure 20. Effects of in-hospital disinfection on the risk to wastewater workers of contracting Ebola virus disease. 

3.3. Variation in risk across distance from hospital 

 Examining risk at increasing distance from the hospital shows a predictable but 

nonconstant decrease in risk with distance. While the dilution effects illustrated here are 

specific to Raleigh’s wastewater system structure, wastewater dilution in any system will 

produce a similar effect. The decrease is steepest over the first mile due to the rapid decrease 

in viral concentration that occurs as wastewater is diluted (Figure 21). A second region of 

steeper decrease in risk is also present for workers at distances farthest from the hospital due 

to the model’s assumption that workers beyond five miles from the hospital are substantially 

more likely to be exposed to wastewater that has undergone tertiary treatment (where 

provided).  
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Figure 21. Effects of worker distance from hospital on the risk to wastewater workers of contracting Ebola virus 
disease. 

3.4. Changes in risk with increasing number of EVD patients  

 Varying the number of EVD patients undergoing treatment in the hospital yields an 

interesting nonlinear response in downstream risk to wastewater treatment workers (Figure 

22). Without specifying any nodes, and using the model’s default assumption of one EVD 

patient in the hospital, mean daily risk is 1.8×10-6. The mean risk approximately doubles to 

3.8×10-6with two patients and triples to 6.2×10-6 with three. However, specifying ten patients 

yields a mean risk of 1.6×10-5, roughly eight times the risk from one patient. Examining this 

trend at higher numbers of patients generates a concave plot, with risk increasing at a 

decreasing rate with each successive addition of patients. Mean risk with 100 patients, for 

example, is 9.4×10-5—approximately 52 times the risk from a single patient. As the distribution 

of active viral concentration for each patient is skewed (with high likelihood of low 

concentration), the effect of combining many such distributions is to reduce the simultaneous 

probability of higher concentrations, leading to a mean risk value lower than that obtained by 

simply multiplying single-patient risk by number of patients. It is important to note that during 
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the 2014-2015 Ebola outbreak, no more than two EVD patients were treated simultaneously in 

any single U.S. hospital.208 Even so, the behavior of the model with greater numbers of patients 

offers potential insight into risk under severely worse epidemic conditions, or when dealing 

with other pathogens where greater numbers of patients could undergo simultaneous 

treatment.  

 

Figure 22. Effects of number of Ebola virus disease patients being treated in hospital on the risk to wastewater 
workers of contracting Ebola virus disease. 

3.5. Sensitivity analysis  

 Sensitivity analysis was conducted to determine the effects of each parameter on the 

probability of developing EVD, while holding all other parameters constant under the 

assumption of 1-minute ingestion exposure (Figure 23). The analysis revealed that the worker’s 

risk of developing EVD is most sensitive to the patient’s disease state (i.e., the phase of illness in 

which daily diarrhea discharge exceeds 1 L heightens risk). Disinfectant used at the hospital 

ranks second, with dilution from the wastewater system ranking third and worker’s distance 

from the hospital (a partial proxy for system dilution) ranking fourth. In-hospital dilution does 

1E-6

1E-5

1E-4

0 20 40 60 80 100

M
e
a
n
 r

is
k
 o

f 
co

n
tr

a
ct

in
g
 E

b
o
la

 
v
ir
u
s 

d
is

e
a
se

 (
lo

g
1
0
) 

Number of Ebola virus disease patients being treated in hospital 



108 

 

not seem substantial in the sensitivity analysis output, but this is somewhat misleading. In-

hospital dilution is very important in reducing risk, but all three hospital sizes have similar 

dilution values (6.2×10-5, 2.8×10-5, and 1.6×10-5 in order of ascending hospital size), as EVD 

waste makes up a small fraction of the hospital wastewater regardless of the hospital’s size.   

 Finally, time in the system and wastewater temperature have closely related impacts on 

risk. Ebola virus degrades more rapidly at higher temperatures, and as such, time elapsed has 

greater effect on risk when temperature is higher. Even so, the assessed sensitivity of risk to 

time elapsed at the highest temperature evaluated (29:C), as measured by entropy reduction, 

is only 1.8%; at the lowest temperature assessed (15:C), sensitivity is 0.03%. This relative 

insensitivity of risk to time elapsed is due to the rapid speed with which wastewater moves 

through the system. Under an assumption of a constant velocity of 1.07 m/s (3.5 ft/s, or 2.4 

mi/hr), the model assigns very low likelihood to worker exposure occurring more than a few 

hours after EVD waste leaves the hospital. 

 Specifying time elapsed, however, shows a more substantial effect of variation in 

temperature at greater time. At the shortest amount of time elapsed in the model (less than 

half a day), risk sensitivity to variation in temperature is only 0.9%. When the greatest amount 

of time elapsed (three days) is specified, though, sensitivity to temperature is 10.5%. Variation 

in temperature can significantly impact a worker’s risk of contracting EVD, but only if sufficient 

time passes before exposure occurs. The model considers such scenarios unlikely given 

wastewater velocity. 
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Figure 23. Results of sensitivity analysis, showing the sensitivity (entropy reduction) of risk of developing EVD after 
1-min ingestion exposure to different model parameters. 

 While additional variability in sensitivity is possible with further scenario specification, 

other parameters’ influence on risk remained relatively constant when evaluated under other 

scenarios. The factors to which risk is most sensitive warrant greatest attention in future 

research, as best modeling practices specify focus on reducing uncertainty in variables with 

greatest influence on the outcome of interest.209  

3.6. Diagnostic inference 

 To illustrate the utility of BBN models in conducting diagnostic inference, the Probability 

of illness node was set to its highest value, and a most probable explanation analysis was run 

on the rest of the model. This test sets unspecified nodes in the model to the state(s) most 

consistent with the evidence entered. As expected, the analysis immediately identified key 

elements of the worst-case exposure scenario (wastewater ingestion, patient in the severe 

disease state, absence of in-hospital waste disinfection, etc.).  
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 In a diagnostic application this backward inference procedure could be useful in 

identifying sets of conditions that could lead to a given outcome. For example, setting both the 

Probability of illness node to its highest state and the Exposure volume node to the inhalation 

exposure state shifted probability mass in the Number of patients node completely off the 

single-patient state. This indicated that even with all states available in all other nodes in the 

network, the model could not reconcile the highest risk of developing EVD with the inhalation 

exposure scenario without increasing the number of EVD patients in the hospital. In addition to 

its potential as a diagnostic tool, this procedure offered useful confirmation of the sensitivity 

analysis: it identified node states most consistent with high-risk outcomes that the sensitivity 

analysis identified as key drivers of risk. 

4. Discussion 

During the recent Ebola epidemic, workers in U.S. wastewater treatment facilities 

connected to hospitals treating Ebola patients expressed concerns about risks to their health 

due to hospital practices of flushing liquid waste from Ebola patients into the sewer system 

without prior disinfection. A BBN model was developed to assess risk of developing EVD for 

wastewater system workers, to test the effects of pretreatment in-hospital of EVD waste on 

this risk, and to examine which other parameters had greatest influence on risk. Without 

specification of any states within the model, mean risk was 5.6×10-7. The ‘worst-case’ scenario 

assessed by the model, equivalent to the ingestion of approximately 8 drops of untreated water 

directly outside the hospital during a patient’s severe illness phase, yielded mean daily risk of 

8.9×10-3. Through sensitivity analysis, the model determined that the most important factors in 

reducing risk are dilution and use of disinfectant on EVD waste before flushing. Of the 



111 

 

disinfectants incorporated in the model, peracetic acid was most effective in reducing risk. The 

substantial reduction in EVD risk for wastewater workers resulting from disinfectant use 

suggests that it may be advisable to mandate such in-hospital disinfection prior to flushing 

during future epidemics. 

 To our knowledge, the only other study assessing wastewater workers’ risk of 

developing EVD through occupational exposure was recently developed by Bibby et al. and 

published as a report by the Water Environment Research Foundation (WERF).180 The Monte 

Carlo model focuses on inhalation exposure for workers closest to the hospital and evaluates 

scenarios in which personal protective equipment is or is not used. The report concludes that in 

the worst-case scenario considered—with no personal protective equipment use and a one-to-

one correspondence between Ebola concentration measured via PCR and infectious viruses—

the median risk is approximately 1.7×10-6. The authors stress that though no acceptable risk of 

EVD has yet been defined, this risk warrants concern. 

 While ultimately addressing a similar question, our study differs in a number of ways 

from Bibby et al.’s report. First, we consider ingestion risk in addition to inhalation exposure.  

We also account for wastewater system parameters (including temperature and dilution 

outside the hospital) that allow our model to assess risk for workers other than those adjacent 

to the hospital. The WERF report includes a thorough literature review to address inactivation 

of Ebola virus by various agents, but the effects of using disinfectant on EVD waste before 

flushing are not included in the Bibby et al. model. Our current model does not include a 

correction for use of PPE. Most important, though, are the differences between the WERF 

report’s Monte Carlo simulation and our BBN approach. The BBN model can adapt to findings at 
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different nodes to generate risk profiles under different conditions, automatically updating all 

nodes based on entry of findings. In spite of these differences, under settings closest to those 

used by Bibby et al., the BBN model estimates mean risk from inhalation exposure for collection 

system workers close to the hospital as 2.5×10-5 (90% confidence interval: 3.7×10-9–8.2×10-5). 

This value is greater than the Bibby model’s mean risk of 1.5×10-6, but of the same order of 

magnitude as its third quartile risk (2.2×10-5).  

 The BBN model has a number of limitations. First, the model relies on Raleigh’s 

wastewater system parameters to estimate dilution, travel times, and temperature. The model 

is restricted to calculation of risk greater than or equal to its limit of detection (1×10-10), which 

was set based on the model’s assessment of risk under low viral concentrations and was 

required due to the need for state discretization in BBNs. The dose-response function used in 

the model was developed based on primate studies; consequently, this function may not be 

wholly accurate in predicting the human response to Ebola virus exposure, but no alternatives 

are available, and the same function was used by Bibby et al. The methods used to estimate 

exposure doses are also a limitation and could be improved with rigorous assessment of 

occupational exposure volumes in the specific context of wastewater workers. In addition, 

although the BBN model corrects for the potential for PCR to overestimate infectious viral 

particle concentrations, the correction is not specific to Ebola due to lack of data. Estimating 

viral concentration in EVD waste also proved challenging due to uncertainties about the 

presence of blood in waste. Finally, the time- and temperature-dependent degradation 

parameters for Ebola virus used in the model were extrapolated from published data but lack 

specific experimental confirmation. 
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 More generally, the choice of a BBN rather than a Monte Carlo approach is not without 

tradeoffs. MC models more transparently incorporate functional dependencies. They are also 

able to efficiently use continuous variables without the need for discretization into states.210 

While BBNs are able to use continuous variables in theory, in practice the computational 

requirements for calculating joint and conditional probabilities using continuous distributions 

are currently prohibitive in most cases other than those involving Gaussian distributions.63 The 

disadvantages of a BBN approach can be mitigated to an extent by careful choice of 

discretizations. Sensitivity of the model to these discretization choices can also be measured to 

characterize model stability and reliability. In addition, simulation of uncertain parameters can 

be incorporated into models. In this way, the functional dependencies that inform MC models 

can be replicated in BBNs. BBNs also provide several advantages over Monte Carlo approaches. 

First among these is their diagnostic capability, allowing for the tracing of observed outcomes 

(like cases of disease) to most probable root causes. Smid et al. provide an explicit 

demonstration of these advantages over MC techniques in the context of modeling pathogen 

contamination in the food supply chain.63 In their model, microbial concentration in food is 

measured after passing through several steps of the supply chain. Knowledge of microbial 

growth factors during each of these steps allows for diagnosis of which state was responsible 

for contamination given final microbial concentration. A similar model could be used in an 

outbreak in which wastewater workers had potential exposure to a pathogen through 

occupational contact with wastewater as well as through their communities. By specifying 

known information about an infected worker, for example, the model could aid in pinpointing 

the actual exposure pathway.  
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 In addition, BBNs’ ability to absorb observed data and update all parameters accordingly 

could be useful in outbreak situations. Patients could be surveyed for relevant information 

(work tasks, recent location, contact with other patients, etc.), and this information could be 

added to the BBN. The model would then update remaining parameters (disease 

characteristics, effectiveness of protective measures, etc.) in relation to the data observed. For 

example, the model could include a node characterizing the effectiveness of occupational 

hazard prevention procedures in mitigating pathogen exposure. Added information from 

patients on their work tasks would update this hazard prevention node and could reveal 

weaknesses in these prevention procedures for certain groups of workers. The updated BBN 

could then be used to predict and respond to future outbreaks.  

 Combining epidemiologic studies with information on pathogen behavior and 

wastewater system characteristics allows for assessments of the risk of diseases spreading 

through these systems. BBNs provide a flexible and analytically powerful framework for 

modeling the interactions of pathogens and wastewater systems,  and the model developed 

provides evidence that under certain scenarios, workers could be exposed to pathogens from 

wastewater originating in hospitals. Further investigation of this potential for exposure is 

warranted, including better specification of wastewater system parameters and workers’ 

exposure to wastewater through different routes. Incorporating this information into BBN 

models would clarify understanding of the need for interventions to decrease risk of infection 

through occupational exposure to wastewater.  
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CHAPTER 5: CONCLUDING REMARKS 

1. Key Findings 

This dissertation advances the use of Bayesian network (BN) modeling to improve 

environmental health risk assessment in support of policy-making. The National Research 

Council recently identified key needs for improvement to the risk assessment process6, and 

Bayesian networks are shown to respond to several of these needs in practice. Bayesian 

networks are used to model dose-response relationships between environmental toxicants and 

health outcomes, and to simulate the effects of changes in toxicant exposure on incidence of 

these outcomes. A BN is also used to determine risk of infection during a microbial outbreak, 

identify key factors affecting risk, and simulate the effects of risk mitigation decisions. Together, 

these projects demonstrate the advantages of using BNs in environmental human health risk 

assessment. 

Chapter 2 describes the use of a Bayesian network model to address the need for 

improvements to dose-response assessment. It is the first application of a machine-learned 

Bayesian network to human health dose-response assessment. The model developed is shown 

to perform significantly better in predicting birthweight for gestational age from available data 

than either of the two methods (reference dose and slope factor approach) currently used by 

the EPA for dose-response assessment. The BN also performs much better in balancing 

sensitivity and specificity in prediction.  
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In Chapter 3, the performance of a Bayesian network model learned from data relative 

to other dose-response techniques is demonstrated. The research builds on the proof-of-

concept BN approach to dose-response demonstrated in Chapter 2. The BN’s ability to perform 

out-of-sample prediction of dysglycemia (diabetes and prediabetes) while balancing sensitivity 

and specificity is demonstrated. The BN performs comparably to the logistic regression model 

in prediction. In addition, the BN dose-response model is used to investigate other relationships 

between variables in the study cohort. The overall effect of arsenic metabolism on dysglycemia 

risk is confirmed, but this effect is shown to be weaker in overweight individuals than those 

with normal or obese BMIs. The model is also used to simulate how changes in the Mexican 

population could affect dysglycemia risk. The effects of both changes in overall obesity rates 

and in arsenic exposure levels through drinking water are simulated. A reduction of population 

exposure to arsenic below 50 μg/L (twice the current Mexican regulatory standard) yields 

roughly the same decrease in dysglycemia prevalence is predicted from a 5% reduction in 

obesity. This finding emphasizes the importance of considering arsenic exposure mitigation, as 

reduced dysglycemia risk could be comparable to gains from more familiar reduction in BMI. 

These reductions in risk are translated into cases of diabetes avoided for a subpopulation in an 

arsenic-endemic region of three Mexican states. Finally, these avoided cases are compared to 

the predicted number of avoided cases of bladder cancer (the health outcome by which 

regulation has been made in the U.S.4) from the same change in arsenic exposure. The results 

show a reduction of roughly ten times as many cases of diabetes as bladder cancer. Because US 

agencies currently consider only cancer risk in setting permissible arsenic levels in drinking 
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water, this finding illuminates substantial benefits to health from reduced toxicant exposure 

that may be overlooked in the regulatory process.  

Chapter 4 provides additional support for the use of Bayesian networks to inform 

environmental health decision-making. The BN model developed is used to quantify risk to 

wastewater treatment workers of developing Ebola virus disease (EVD) through occupational 

contact with contaminated water during an outbreak. The need for this model arose during the 

2014 EVD outbreak, and was built in response to a request from the wastewater treatment 

industry for quantifications of EVD risk and how different risk management options could affect 

that risk. There was also a need to evaluate the effectiveness of existing policies in protecting 

workers, and the BN model was developed to respond to these needs for policy analysis and 

development. The model shows EVD risk to be low (10-12-10-9) in general, but higher by several 

orders of magnitude (10-6-10-4) under a simulated worst-case scenario involving ingestion of 

concentrated, untreated wastewater. In addition, the model uses backwards diagnostic 

inference to identify parameters with greatest effect on risk (wastewater dilution and in-

hospital waste disinfection). This capability informs the development of policies to protect 

wastewater treatment workers; based on model simulations, 15-minute disinfection with 

peracetic acid prior to flushing reduces risk to workers in the worst-case scenario by several 

orders of magnitude.  

2. Policy Implications 

The work in this dissertation demonstrates the ability of BN modeling to respond to the 

need for specific improvements in the risk assessment process in support of public health 

decision-making. These projects have direct relevance to several actionable areas of policy. 
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2.1. Dose-response assessment improvements 

The results of this dissertation confirm that Bayesian networks can perform as well as, 

or better than, current dose-response assessment methods without the need for assumptions 

of functional form or restriction to data from animal studies in which dose-response 

relationships are tested explicitly. For this reason, Bayesian networks should be more widely 

used to conduct dose-response assessment. BNs have a number of characteristics in theory that 

make them attractive modeling tools. These include probabilistic rather than function-based 

characterizations of systems, ability to propagate changes to variables to other variables in the 

network, and the possibility of using backwards diagnostic inference rooted in Bayesian 

updating to identify key factors affecting outcomes. The advantages identified in theory, and 

confirmed in practice, make BNs a valuable tool for dose-response analysis; the abilities to 

capture interacting relationships without assumptions of functional form and to specify risk for 

particular subgroups are especially relevant. In addition, BNs’ flexibility easily allows for the 

integration of both cancer and non-cancer risk into dose-response and risk assessment 

frameworks. For this reason, BNs should be used to develop dose-response models for both 

cancer and non-cancer health outcomes in response to the need identified by the National 

Research Council for these kinds of dose-response assessments. Given that regulatory analysis 

currently places disproportionate weight on cancer outcomes6, unified assessments using BNs 

can better inform policy-making.  

2.2. Unifying dose-response models and simulation of policy effects 

As demonstrated in Chapter 3, Bayesian networks permit closer integration of dose-

response models with simulation of the effects of changes in exposure to environmental 
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hazards. This ability can allow policy-makers to rely on a single model to capture both dose-

response relationships and population-level health characteristics rather than segregating these 

models. The addition of cost-benefit analysis to the Bayesian network structure can further 

integrate risk management and risk assessment, consistent with the goal of an iterative process 

proposed by the National Research Council.6 BNs’ ability to simulate and quantify effects of 

policy decisions on incidence of non-cancer health outcomes is particularly relevant given the 

current lack of attention to these outcomes in setting policy.  

2.3. Disease management improvements 

The work in this dissertation also suggests more specific use of Bayesian networks in 

managing response to environmental health risk during crises like outbreaks of infectious 

disease. While intended to assess risk of Ebola virus disease, the model developed in Chapter 4 

could be adapted to reflect the particular characteristics of other pathogens; the underlying 

parameters of hospitals and wastewater systems remain the same. This suggests the value of 

using Bayesian networks to capture complex environmental health systems, and then specifying 

those models to particular pathogens in response to particular outbreaks. The absence of this 

sort of underlying model we encountered in performing the work in Chapter 4 suggests a need 

for these kinds of generalized, modular structures. This need has been recognized in the risk 

management community: for example, the World Health Organization has called for the 

development of mathematical models that can be used to quickly and effectively map disease 

risk and spread in order to response to outbreaks.211 Bayesian networks’ demonstrated 

flexibility and adaptability enforce the advantage they could provide in these contexts. 
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3. Limitations 

The research in this dissertation is limited in a number of ways. First, any analysis of 

single datasets is bound by the limits of those datasets; error, bias, and simple sampling 

variability all reduce confidence in any statistical conclusions drawn. While the data used in this 

dissertation provide insight, results could be confirmed with the use of additional datasets 

(targeting other health outcomes, and with other relationships driving outcomes). It is 

important to note that this limitation applies more to the specific implications to policy with 

respect to arsenic-influenced health outcomes and infectious disease management, rather than 

the broader ability of BNs to be applied in risk assessment for risk management in public health. 

Demonstration of this ability in this dissertation is in agreement with a substantial body of 

theoretical and applied literature reviewed in Chapter 1. 

The conclusions in Chapter 2 are primarily limited by the size of the available dataset. 

While the 200-member cohort was sufficient to demonstrate the advantages of using a 

Bayesian network in performing dose-response assessment over current methods, the model’s 

predictive abilities are still limited. In addition, low birthweight is a complex health outcome 

that depends on many factors.212 The dose-response assessment conducted could be improved 

with additional data incorporating more of these factors. 

While the dataset used in Chapter 3 is roughly five times larger than that used in 

Chapter 2, the complexity of the underlying relationships demands that the chapter’s 

conclusions be considered carefully. As has been discussed in the literature at length, diabetes 

is a complex disease with a complex set of mitigating and exacerbating factors, some of which 

remain poorly understood.213 In addition, the public health predictions derived using the model 
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are limited by the extent to which it could be adjusted to reflect the broader Mexican 

population. The decision to focus on approximately 1.3 million people living in an arsenic-

endemic region of Mexico was a compromise between focusing on a much smaller population 

(the study cohort) for which data was readily available, and generalizing to a much larger 

population (Mexico as a whole) across which the factors considered in the model are 

impossible to quantify with confidence based on current data availability. In addition, a major 

limitation of this work is its focus on people of mixed Amerindian-Caucasian descent. Existing 

literature provides some evidence of variation in arsenic metabolism among people from 

different ethnic groups (including those of indigenous American ancestry) 214,215 as well as in 

susceptibility to diabetes.216,217 While the methods could be applied to data from these other 

groups, caution must be used in generalizing insights from this research effort to them.   

Similarly, the greatest limitation of Chapter 4 arises from the data and assumptions used 

to characterize several model parameters. Wastewater system variables (distances, wastewater 

temperature, etc.) were based on data from Raleigh, NC, and extrapolation to other systems 

with substantially different characteristics should be done with caution. In addition, it was 

difficult to characterize the probability of internal hemorrhaging (necessary for a patient’s 

waste to contribute a significant viral load to wastewater) due to limited and substantially 

variant data in the literature. Finally, the model does not correct for the use of personal 

protective equipment (PPE) by wastewater treatment workers. Literature across a range of 

fields has shown poor compliance with PPE policies218–221, which could lessen these policies’ 

impact on risk in practice. However, the potential of PPE to mitigate risk if used properly still 

merits further attention.  
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These limitations, though important to consider, do not detract from the major 

conclusions of this dissertation that BNs are able to address key technical and practical needs in 

risk assessment. The advantages BNs provide have been shown to apply even given the 

limitations on data outlined above. Indeed, the specific research conclusions of the projects 

could be generalized more fully given additional data (on additional wastewater systems, for 

example, or on other ethnic groups’ responses to inorganic arsenic). BNs’ demonstrated 

performance with limited data in responding to needs for improvement to the risk assessment 

process supports expanded use of BN modeling in risk assessment more generally, including in 

environments where more data is available. 

4. Future Research 

The results of this dissertation suggest direction for a number of future research 

projects. Most prominently, the application of Bayesian network models to risk assessment to 

support environmental health policy-making should be expanded and tested in practice. 

4.1. Regulatory risk assessment of hazardous chemicals based on animal data 

One specific project meriting exploration is a comprehensive risk assessment of a 

toxicant currently regulated by the EPA based exclusively on animal data (like carbon 

tetrachloride, for example), using a Bayesian network rather than or in addition to current 

methods. Such an assessment would illustrate the advantages of a BN approach in direct 

comparison to process currently used. The development of a BN to perform this assessment 

would start with a review of EPA documentation to determine literature and studies used in the 

development of the current regulation. This literature review could be augmented by a search 

for more recent data relative to the assessment. Then, a BN could be developed using the data 
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from the studies reviewed connecting exposure with health outcomes. In current practice, 

models are usually based on a single health indicator as the outcome using data from a single 

study. The BN could incorporate multiple indicators using data from multiple studies to provide 

a more comprehensive reflection of underlying data. 

For example, the current assessment for carbon tetrachloride is based on 

measurements of serum sorbitol dehydrogenase as an indicator of liver injury; the data used to 

develop the reference dose comes from a study conducted on rats by Bruckner et al.222 The 

assessment, however, reviews a number of other studies as well as additional indictors of injury 

(including alkaline phosphatase and ornithine carbamoyltransferase). Information on kidney 

damage is also discussed, though not used in the assessment. A BN model could easily 

incorporate these different sources of information, with weighting based on the sizes of the 

studies themselves or on expert knowledge.  The BN would contain the current assessment, but 

its flexibility would allow for the incorporation of additional information that would more 

comprehensively link exposure data and health outcomes. In addition, the model could test for 

agreement among studies and different indicators of the same health outcome. This 

information would be helpful in characterizing uncertainty and informing regulatory policy. 

Current practice uses uncertainty factors to address deficiencies in underlying data (due to both 

quality and quantity). A BN could incorporate these factors if desired, but could also assess the 

reliability of available study data more rigorously by comparing sample sizes, variance within 

datasets, and agreement across different studies. Once developed, the conclusions of a BN 

model of this kind could be compared directly to the conclusions underpinning current 

regulation.  
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4.2. Using modern toxicity data in risk assessment 

Research has established a relationship between epigenetics and a broad range of 

health outcomes. While the work in this dissertation does not address epigenetics, Bayesian 

network models are capable of incorporating this information along with other factors to 

predict incidence of disease or to identify groups at risk. Indeed, the incorporation of epigenetic 

information into the risk assessment process has been proposed due to the significant 

information added to understanding risk of disease outcomes223; Bayesian networks offer a tool 

to accomplish exactly this integration. Similarly, methodological challenges around the 

incorporation of in silico toxicity data and information from high-throughput assays into the risk 

assessment process remain.224 Bayesian networks’ flexibility invites an attempt to use these 

data along with more traditional dose-response data, in which lab animals’ physiological and 

biochemical responses to calibrated toxicant doses are measured, to better assess relationships 

among factors driving health outcomes and improve models’ predictive performance. 

Developing methods to integrate these data into dose-response models is a crucial step in 

expanding the use of BNs in dose-response and risk assessments to take better advantage of 

their capabilities. 

In practice, a Bayesian network incorporating these different types of data could begin 

with an assessment of links within an epigenetic dataset; the model generated would provide a 

statistical description of different patterns and epigenetic associations. Recent developments in 

algorithms to recover these kinds of associations have demonstrated BNs’ ability to accomplish 

the task accurately relative to other methods while also reflecting uncertainty in the 

relationships discovered.225 A separate BN could be used to capture relationships between 
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toxicant exposure and biochemical response from high-throughput assays, using machine 

learning algorithms similar to those employed in this dissertation.226,227 Available metabolic 

data – like that used in Chs. 2 and 3 – could also be linked to health outcomes of interest in a 

third BN. Once constructed, these BNs could be joined. With no overlapping information (for 

example, no health outcome data in the epigenetic dataset or epigenetic data in the 

metabolism dataset), this joining could first be accomplished under guidance from experts (by, 

for example, building links between particular epigenetic and demographic profiles). Similarly, 

joining animal or in silico data could be accomplished using expert expertise. These expert-

defined relationships could be tested more rigorously in the presence of overlapping data 

between different kinds of datasets. Once compiled, this kind of BN would link available data to 

allow for the estimation of health outcomes. Furthermore, the BNs’ backwards diagnostic 

inference capability would allow for nodes and states associated with high risk to be identified, 

potentially informing policy or screening efforts. In addition, BNs offer an ability to characterize 

uncertainty in this kind of assessment through measures like entropy reduction (used in Ch. 4). 

These metrics reflect how well different nodes agree or disagree with one another, and can also 

be used to quantify how much information knowledge of one variable or set of variables brings 

to outcomes of interest. This information can provide a crucial check on whether data within 

the model agree, and can also help to prioritize the collection and exploration of additional data 

with greatest power in reducing model uncertainty.   

4.3. Incorporating BN models into regulatory practice 

The next step in exploiting BNs’ advantages in risk assessment applications is their 

explicit use by regulatory risk assessors contemplating policy changes. To achieve this 
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application, future research could involve collaborative work with EPA assessors in which BN 

models are developed in real time to model changes in regulation under consideration 

(including these changes’ effects). This collaboration would demonstrate the advantages of BNs 

in policy development to those actually responsible for setting regulations. 

To accomplish this collaboration, future researchers should first interview risk assessors 

to understand changes contemplated and the motivation for updating current regulation; 

perhaps new data have become available about the toxicant, or evidence about additional 

health impacts requires consideration. Based on this understanding, researchers would then 

develop traditional and BN models to respond to risk managers’ needs using available data (for 

example, developing a BN to capture relationships from data on neurodevelopment and 

inorganic arsenic exposure). The models could be augmented to incorporate features like cost-

benefit analysis if desired. Once completed, these models would then be presented to the risk 

managers for evaluation based on clarity, ease of use, flexibility, content, and confidence in 

outcomes (including the models’ predictive capacity as well as ability to provide insight into 

biological interactions). Risk managers’ input would be solicited through a survey assessing 

these factors, and their suggestions for changes and expansions to the models to improve 

utility would also be gathered. Based on this feedback, improvements would be made to the 

models, which would then be presented to the risk managers again and graded on 

improvements and flexibility. Again, a survey could be used to capture this feedback in a more 

structured way. 

This study of responses to and perceptions of BNs is crucial to their further application. 

The data gathered from surveys and collaboration with risk managers could be used to isolate 
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and illustrate key advantages of BNs (or traditional models) from these managers’ perspective, 

and to guide the development of a formalized protocol for conducting environmental human 

health risk assessment using BNs as the analytical method of choice. This protocol, developed in 

collaboration with those whose work depends on risk assessment’s outputs, would provide a 

roadmap for expanded BN use in the risk assessment and risk management processes. 

4.4. Software and algorithm needs 

The ability of computing resources to handle complex Bayesian networks has grown 

substantially in recent years. Available software packages (like Netica and BayesiaLab, the 

applications used in this dissertation) are flexible and relatively straightforward to use. In 

addition, there exist packages in the open source statistical computing language R that allow BN 

construction, though using them requires a certain degree of expertise in statistical 

programming. Together, these tools provide a foundation for the development of BNs for use in 

human health risk assessment. 

However, a key step in the application of BNs to this field in a sustainable, systematic 

way will be the development of integrated software tools designed to absorb relevant data 

(outlined above, including demographic, clinical, metabolic, epigenetic, and high-throughput 

assay data), and provide probabilities of risk as outputs. The ability to conduct cost-benefit 

analysis will also be a necessary addition to make this tool useful to risk managers and 

policymakers. EPA’s benchmark dose software (BMDS) provides a useful example of this kind of 

software solution. BMDS incorporates the modeling tools (various kinds of regressions) within 

an interface designed to accept data from dose-response studies. It allows the user to specify 

different parameters relevant to dose-response assessment, and outputs functions and 
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benchmark doses that can be used in the risk assessment process. A BN tool developed 

specifically for human health risk assessment would similarly include BN ‘machinery’ (updating, 

structure learning algorithms, etc.) within a framework designed to accept relevant data and to 

output health and cost information important to the assessment. Such a software tool would 

retain the theoretical advantages of BNs while making their use straightforward for risk 

assessors, managers, and policymakers. 

Finally, future research must continue to improve the understanding of BNs and the 

ability of computational techniques to exploit their advantages to the fullest. Bayesian 

networks’ major computational limitation remains their inability to capture continuous 

distributions in nodes, necessitating discretization. This limitation is not absolute, as there exist 

packages that characterize mixtures of Gaussians or exponentials.228 However, recent literature 

suggests that the inability of (free) software packages to allow mixing of discrete and 

continuous data, as well as Bayesian inference, is a particular limitation in combining genomic, 

clinical, and demographic data in bioinformatics applications.154 While some solutions to these 

issues are emerging in the literature154, the development of BNs that can handle complex 

biological data with fewer restrictions will increase their usefulness.  

There also remain open theoretical questions around methods of efficiently learning 

Bayesian network structure. In practice, these concerns are not very relevant when data can be 

processed by available algorithms in a tractable amount of time. In biological situations with 

many data points, however, improvements to the efficiency and accuracy of algorithms are 

necessary. Recent research has made progress in the development of exact algorithms for 

network structure learning. Unlike approximate learning methods, these algorithms guarantee 
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globally optimal structure according to a particular objective function (an NP-hard problem). 

While they remain computationally intensive, implementation of algorithms based on integer 

programming using cutting planes has shown promise; these algorithms would provide 

substantial value in eliciting structures in biological systems, and merit further research.229 

Finally, the possibilities of the just-emerging field of quantum machine learning to improve 

Bayesian network performance are truly exciting. While quantum computers are not yet a 

reality, there already exist theoretical generalization of BNs within the field of quantum 

information theory (called generalized Bayesian networks).230 Early work on these systems has 

shown promise in vastly expanding BNs’ ability to elicit causality231, which could be of 

tremendous value in better understanding of the relationships within biological systems. 

Research in this vein should continue so that the theory and algorithms are ready for use when 

these machines become viable in practice.  

5. Conclusions 

This dissertation expands the use of Bayesian networks in environmental risk 

assessment applications to support the development of policies protecting human health. The 

ability of Bayesian networks to capture dose-response relationships and improve upon current 

methods is illustrated in Chapter 2; the utility of using BN models in these contexts is 

demonstrated through simulations of policy effects and resultant population-level health 

changes in Chapter 3. The assessment of risk to human health from environmental chemical 

contaminants is complemented by the use of BNs to quantify risk from a microbial source in 

Chapter 4. The utility of this approach to decision-makers is further demonstrated through 
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identification of factors driving risk and simulation of the consequences of different risk 

management decisions. 

Crucially, this dissertation establishes a solid justification for applying Bayesian networks in 

environmental human health risk assessment in response to needs for improvement to the 

process identified by the National Research Council. BNs’ ability to respond to these needs 

suggests that their use in risk assessment should be further investigated in research, and 

expanded in practice. 
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APPENDIX A: SENSITIVITY ANALYSIS METHODOLOGY (CH. 2) 

Sensitivity analysis was conducted using Netica software (available from Norsys 

Software Corp., Vancouver, BC, Canada) according to the following procedure. First, the 

entropy of the target node X (designated H(X)) is calculated. This value gives an indication of 

the sample’s homogeneity. The formula used is: 

 ( )   ∑      (  )

   

 

( 18 ) 

where X indicates the set of states of X and px indicates the proportion of cases in state x Є X. In 

this study, for example, X = {lower BWGA, middle BWGA, higher BWGA}, and plower BWGA = 

57/200 = 0.285. Choosing a node S to test for sensitivity, entropy is then calculated again for 

the target node X given the specification of the test node to each of its possible states.  The 

entropy reduction for each test node is calculated as: 

    ( )   (   ) 

( 19 ) 

A node with high entropy indicates high uncertainty across the states. Correspondingly, 

a reduction in the entropy of the target node through the specification of another node 

indicates that information about the latter allows for better specification of the states of the 

former.  
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APPENDIX B: POPULATION SHIFT ANALYSIS (CH. 3) 

Population shift characteristics 

To simulate the Mexican adult population, the gender, age, and BMI group distributions 

learned from the study group were adjusted. Existing probability relationships within the 

network propagated these shifts to other variables (smoking, alcohol consumption, etc.). 

Table 9. Study group and Mexican population characteristics. 

Node States Study group Mexican population 

gender
232

 
male 36.6% 48.8% 

female 63.4% 51.2% 

BMI group
233

 

normal 22.6% 35.6% 

overweight 33.0% 36.3% 

obese 38.6% 28.2% 

age
232

 

<=24 9.5% 18.6% 

<=29 8.9% 11.5% 

<=34 9.8% 11.0% 

<=39 11.2% 10.7% 

<=44 8.8% 10.3% 

<=49 11.3% 8.5% 

<=54 10.3% 7.6% 

<=59 9.0% 6.1% 

<=64 7.4% 4.8% 

<=69 5.1% 3.7% 

<=74 5.0% 2.8% 

>74 3.6% 4.3% 

 

Avoided cases of bladder cancer 

In its risk assessment for bladder cancer from exposure to inorganic arsenic through 

drinking water, the EPA uses two estimates (lower and upper bounds) of lifetime cancer risk 

slope factor per person per 1 μg/L arsenic assuming average water consumption of 2 L/day: 

1.46×10-5 and 2.47×10-5.4 These factors were used to derive lower and upper bounds on 

numbers of bladder cancer cases under current arsenic exposure conditions for approximately 
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1.3 million people living in three arsenic-endemic Mexican states.142 After simulation under 

which exposure of this population was reduced to below the current Mexican regulatory limit 

of 25 μg/L, lower and upper bounds on numbers of bladder cancer cases were again estimated. 

The differences between pre- and post-simulation numbers of cases provide lower and upper 

bound estimates of cases avoided (1087 and 1839). Details of intermediate calculations are 

shown in the table below. 

Table 10. Calculations of estimated bladder cancer prevalence under current arsenic exposure conditions, and if 
arsenic exposure were reduced to below the current regulatory limit. 

    
current adjusted 

As 
exposu

re 
state 
(μg/L) 

mean As 
concentrat
ion (μg/L) 

lower 
bound 

lifetime 
risk per 
person 

upper 
bound 

lifetime 
risk per 
person 

population 
in each As 
exposure 

state, from 
study data 

(%) 

population 
in each As 
exposure 

state 

cases of 
bladder 
cancer 
(lower 
bound) 

cases of 
bladder 
cancer 
(upper 
bound) 

population in 
each As 

exposure 
state (%) 

population 
in each As 
exposure 

state 

cases of 
bladder 
cancer 
(lower 
bound) 

cases of 
bladder 
cancer 
(upper 
bound) 

<=10 1 1.3E-05 2.2E-05 17% 224,595 3 5 68% 913,949 12 20 

<=25 18 2.6E-04 4.3E-04 8% 104,738 27 45 32% 426,152 109 185 

<=50 41 6.0E-04 1.0E-03 29% 391,629 234 396 0% - 0 0 

<=100 69 1.0E-03 1.7E-03 30% 395,455 401 679 0% - 0 0 

<=150 119 1.7E-03 2.9E-03 9% 118,764 206 349 0% - 0 0 

<=200 174 2.6E-03 4.3E-03 3% 37,159 95 160 0% - 0 0 

>200 244 3.6E-03 6.0E-03 5% 67,761 242 410 0% - 0 0 

totals 
    

1,340,101 1,208 2,044 
 

1,340,101 121 205 
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APPENDIX C: MODEL CONSTRUCTION AND NODE PARAMETERS (CH. 4) 

Estimation of conditional probabilities 

Once the model’s structure was established, all equation-based relationships between 

nodes were added. For example, the value of Concentration in patient waste is the product of 

Presence in hospital discharge, Hemorrhage correction, and PCR correction. Marginal 

probabilities were also added to the model where these were known based on underlying 

literature and data. For example, marginal probabilities of the states of the node Temperature 

correspond to the frequencies with which these temperatures were observed in the dataset 

cited. 

Simulation was then used to generate 100,000 instances of the model. In each instance, 

values of nodes without functional dependencies were drawn from their marginal distributions. 

These values were then used to determine values of nodes functionally dependent on other 

nodes. The simulated dataset was then used to determine conditional probabilities throughout 

the network by frequency analysis. 

An example of this process is shown in Figure 24. In the simplified network, there are two 

parent nodes (α and β) and a child node, γ. The value of α is drawn at random from a uniform 

distribution with range *0,1+ and is ultimately discretized into two states of equal width. β has 

two states, with a pre-defined marginal probability of state 0 of 75% and probability of state 1 

of 25%. The value of node C is simply the sum of the values of α and β. Its range is *0,2+, and it is 

discretized into four states using the same increment (0.5) as node α. 

The simulation process is represented in Figure 24. For each instance of the model, a row 

with values of all three nodes is generated. The resulting table is then analyzed to determine 
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conditional probabilities for all states of γ and all combinations of α and β. The resulting 

conditional probability table is shown in Table 11. 

 

α β γ 

0.37 1 1.37 

0.03 0 0.03 

0.45 0 0.45 

0.69 0 0.69 

0.43 0 0.43 

0.69 1 1.69 

0.57 0 0.57 

0.26 0 0.26 

. . . 

. . . 

. . . 
 

 

A B C 
Figure 24. Example of BBN compilation process. Nodes are first populated (A) with underlying random variables 

(α), marginal distributions (β), or functional dependencies (γ). Joint instances of the model are then simulated (B), 
with each simulation producing a set of values for each node in the model. The resulting simulated dataset is then 

analyzed to determine remaining distributions (C). 

Table 11. Posterior conditional distributions. 

C A B P(C|A,B) 

≤0.5 ≤0.5 0 100% 

≤1.0 0 0% 

≤0.5 1 0% 

≤1.0 1 0% 

≤1.0 ≤0.5 0 0% 

≤1.0 0 100% 

≤0.5 1 0% 

≤1.0 1 0% 

≤1.5 ≤0.5 0 0% 

≤1.0 0 0% 

≤0.5 1 100% 

≤1.0 1 0% 

≤2.0 ≤0.5 0 0% 

≤1.0 0 0% 

≤0.5 1 0% 

≤1.0 1 100% 
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Causality 

Bayesian belief networks can represent causal associations between variables through 

the direction of the arc connecting different nodes (the arc points in the direction in which 

causality flows). In models in which causality is uncertain, assertions of causal relationships 

must be tested. In the BBN constructed in this paper, the causality underlying connections 

between variables is derived from underlying source literature and consultations with experts. 

In particular, factors that quantify the effects of different factors (temperature, in-hospital 

waste disinfection, etc.) on Ebola virus survival in wastewater are included with a presumption 

that the relationships themselves are causal – that is, that these factors actually do effect the 

concentration of viable Ebola virus in wastewater. While BBNs can be used to test for causality 

when uncertainty is present, doing so in this model would not be informative given as accepting 

the causality of relationships asserted in underlying literature is a necessary assumption to 

construct the model.  

Discretization 

BBNs generally require that all nodes be discretized into a finite number of states. 

Discretizations in this BBN were chosen based on natural categories arising from the concepts 

being modeled. When deciding how to construct a node, literature was first consulted to 

determine appropriate bounds on uncertain parameters and a distributional form to populate 

the range specified. The range was then divided into a discrete number of states. 

For example, the node PCR correction relies on three studies of the factor in question 

(the correction factor relating viral copies detected by polymerase chain reaction techniques to 

infectious viruses present). One study arrived at a single value for this factor (0.0398). The other 
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two presented ranges, without further specification: [0.0001, 0.1] for one study, and [0.00079, 

0.1] for the other. Estimates of the correction factor based on these studies were drawn from 

distributions with uniform dispersion across these ranges. PCR correction was then discretized 

into five states. One was localized to the point estimate 0.0398, and the other four covered the 

remaining space from the ranges derived from the studies: [0 to 0.001], (0.001 to 0.01], (0.01 to 

0.0398), and (0.0398 to 0.1]. Conditional probabilities for each of these states were then 

determined using the simulation procedure described in ‘Estimation of conditional 

probabilities’ above. 

Model nodes, states, and marginal probabilities 

Table 12. BBN nodes and supporting information. 

Title Units States 
Marginal State 

Probability 

Number 
Associated 
with State 

(disinfection 
factor, etc.) 

Description 
Data 

Source 
Type 

Source 
Size 
per 

Study 
(n) 

Potential 
Sources of 

Uncertainty 

Disease state - 
severe 

nonsevere  
0.333 
0.667 

- 
phase of illness with 
diarrheal discharge 

≥1L/day, or not 
literature 

1; 37; 
2; 1 

limitations in 
literature on 

measurements 
of viral 

concentration 
in waste; small 

sample sizes 

Initial viral 
concentration 

particles/mL 

up_to_1e1 
up_to_1e2 
up_to_1e3 
up_to_1e4 
up_to_1e5 
up_to_1e6 
up_to_1e7 

0.219 
0.221 
0.222 
0.089 
0.084 
0.083 
0.083 

- 

calculation of 
uncorrected viral 
concentration in 

diarrhea from 
patient 

literature - 

limitations in 
literature on 

measurements 
of viral 

concentration 
in waste; small 

sample sizes 

Hemorrhage 
correction 

- 

study 1 
study 2 
study 3 
study 4 
study 5 
study 6 
study 7 

0.018 0.221 
0.318 0.010 
0.011 0.021 

0.402 

0.243 
0.040 
0.009 
0.250 
0.435 
0.023 
0.057 

probability of 
patient experiencing 

gastrointestinal 
hemorrhaging 

literature 
+ expert 
opinion 

37; 
464; 
666; 

20; 23; 
44; 
843 

weighting 
method 

presumes 
equal quality 
of data across 

studies 
considered 

Concentration 
in patient 

waste 
particles/mL 

up_to_1en2 
up_to_1en1 
up_to_1e0 
up_to_1e1 
up_to_1e2 
up_to_1e3 
up_to_1e4 
up_to_1e5 
up_to_1e6 
up_to_1e7 

0.267 
0.202 
0.178 
0.118 
0.084 
0.075 
0.056 
0.019 
0.004 
0.000 

- 
calculation of viral 
concentration in 

patient waste 
functional  - - 

Disinfection 
method1 - 

bleach 
quats 

peracetic acid 
none 

0.250 
0.250 
0.250 
0.250 

- 
type of disinfectant 

used in hospital 
-  - - 

Exposure 
time1 minutes 

two min 
fifteen min 
thirty min 

0.333 
0.333 
0.333 
0.333 

- 
duration of exposure 
to disinfectant used 

in hospital 
- - - 
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Attenuation - 

none 
low bleach 
med bleach 
high bleach 
low quats 
med quats 
high quats 

low peracetic 
med peracetic 
high peracetic 

0.250 
0.083 
0.083 
0.083 
0.083 
0.083 
0.083 
0.083 
0.083 
0.083 

1.000 
0.333 
0.039 
0.001 
0.012 
0.010 
0.006 
0.005 

4.3×10-4 

3.1×10-4 

viral attenuation 
from hospital 
disinfection 

literature - 

low 
uncertainty 
expected; 
underlying 
study was 

designed to 
examine 

attenuation of 
an Ebola virus 
surrogate in a 
toilet through 
disinfectant 

use 

Temperature 
of WW 

:C 

<15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 

>29 

0.28 
0.03 
0.05 
0.05 
0.02 
0.05 
0.05 
0.03 
0.03 
0.05 
0.06 
0.08 
0.11 
0.04 
0.01 
0.06 

0.084 
0.145 
0.206 
0.267 
0.327 
0.388 
0.450 
0.510 
0.571 
0.631 
0.692 
0.753 
0.814 
0.875 
0.935 
0.999 

expected 
temperature of 
wastewater in 

system 

literature 
+ expert 
opinion 

 

low 
uncertainty 

expected; data 
is taken from 
temperature 

measurements 

Number of 
patients 

number of 
patients 

1 
2 
3 

10 
20 
30 
40 
50 
60 
70 
80 
90 

100 

1.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 

- 
number of EVD 
patients in the 

hospital 
- - - 

Work group - 
collection system worker 
maintenance mechanic 

WW treatment operator 

0.536 
0.219 
0.245 

- 
wastewater worker 

type 

survey 
data + 
expert 

opinion 

224 

worker group 
categories 
limited to 

those 
used/defined 
by Raleigh, NC 
Wastewater 

Utility 

WW 
treatment 

passed 
- 

pretertiary 
tertiary 

0.673 
0.327 

1 
0 

whether worker is 
exposed before or 

after tertiary 
wastewater 
treatment 

survey 
data + 
expert 

opinion 

- 

worker group 
categories 
limited to 

those 
used/defined 
by Raleigh, NC 
Wastewater 

Utility 

Worker 
distance from 

hospital 
miles 

up to 1 
up to 2 
up to 3 
up to 4 
up to 5 

greater than 5 

0.029 
0.116 
0.145 
0.178 
0.180 
0.352 

0.5 
1.5 
2.5 
3.5 
4.5 
6.0 

worker's distance 
from hospital (in 

pipe-miles) 

survey 
data + 
expert 

opinion 

- 

distance built 
on data and 
knowledge 

from Raleigh, 
NC 

Wastewater 
Utility 

Time elapsed 
at worker 

days 

less than half 
up to 1 
up to 2 

greater than 2 

0.886 
0.068 
0.027 
0.018 

0.1 
1.0 
2.0 
3.0 

time taken by 
wastewater to flow 

from hospital to 
worker 

survey 
data + 
expert 

opinion 

- 

constant 
wastewater 

velocity 
presumed 

Concentration 
in hospital 
discharge 

particles/mL 

up_to_1en6 
up_to_1en5 
up_to_1en4 
up_to_1en3 
up_to_1en2 
up_to_1en1 
up_to_1e0 
up_to_1e1 
up_to_1e2 
up_to_1e3 
up_to_1e4 
up_to_1e5 

0.591 
0.132 
0.104 
0.075 
0.050 
0.030 
0.015 
0.004 

9.1×10-5 

5.2×10-6 

4.7×10-9 

0 

- 

intermediate 
calculation of viral 
concentration in 

wastewater 

functional - - 
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up_to_1e6 
up_to_1e7 

0 
0 

Hospital size square feet 
up to 500k 

500k to 1000k 
greater than 1000k 

0.491 
0.340 
0.168 

6.2×10-5 

2.8×10-5 

1.6×10-5 

size and internal 
dilution of hospital 

survey 
data 

1494 

low 
uncertainty 

expected; data 
taken from 

targeted 
hospital 

survey, and 
dilution 

factors similar 
across 

categories 

% of WW 
from hospital 

at worker 
- 

less than 5% 
5%-50% 

50%-95% 
greater than 95% 

0.920 
0.045 
0.026 
0.009 

0.025 
0.225 
0.725 
0.975 

fraction of total 
wastewater at 

worker originating in 
hospital 

survey 
data + 
expert 

opinion 

1494 

reliant on data 
and 

knowledge 
from Raleigh, 

NC 
Wastewater 

Utility 

Concentration 
at exposure 

point 
particles/mL 

up_to_1en9 
up_to_1en8 
up_to_1en7 
up_to_1en6 
up_to_1en5 
up_to_1en4 
up_to_1en3 
up_to_1en2 
up_to_1en1 
up_to_1e0 
up_to_1e1 
up_to_1e2 
up_to_1e3 
up_to_1e4 

0.324 
0.160 
0.237 
0.106 
0.066 
0.047 
0.031 
0.018 
0.008 
0.003 

2.7×10-4 

2.3×10-6 8.1×10-8 

1.3×10-9 

- 
final calculation of 
viral concentration 

in wastewater 
functional - - 

Exposure 
volume 

mL/day 

zero 
daily inhalation 

10-second ingestion 
1-min ingestion 

0.357 
0.614 
0.028 
0.005 

0 
1.0×10-4 

0.0583 
0.3500 

estimate of daily 
wastewater volume 
ingested or inhaled 

by worker 

literature 
+ expert 
opinion 

- 

volumes based 
on studies of 

inhaled 
aerosolized 

water during 
showering, 
and water 
ingestion 
volumes 
during 

swimming 

Inactivation 
study 

- 
study 1 
study 2 
study 3 

0.333 
0.333 
0.333 

- 
viral presence to 
infectious virus 

correction 
- - - 

PCR 
correction 

- 

0 to 0.001 
0.001 to 0.01 

0.01 to 0.0398 
0.0398 

0.0398 to 0.1 

0.123 
0.273 
0.108 
0.333 
0.162 

- 

calculation of viral 
presence to 

infection virus 
correction 

literature 
+ expert 
opinion 

- 

limitations in 
literature: 
study of 

poliovirus 
rather than 
Ebola virus, 

lack of clarity 
on study 
quality, 

several studies 
provided 

ranges rather 
than values 

Exposure 
dose 

particles/day 

up_to_1en10 
up_to_1en9 
up_to_1en8 
up_to_1en7 
up_to_1en6 
up_to_1en5 
up_to_1en4 
up_to_1en3 
up_to_1en2 
up_to_1en1 
up_to_1e0 
up_to_1e1 
up_to_1e2 
up_to_1e3 

greater_than_1e3 

0.814 
0.067 
0.051 
0.032 
0.020 
0.010 
0.004 
0.001 

3.8×10-4 

1.0×10-4 

1.0×10-5 

2.3×10-7 

5.5×10-9 

1.1×10-10 

1.3×10-11 

- 
calculation of dose 
of infectious viral 

particles to worker 
functional - - 

Probability of 
illness 

- 

<1 in 10^11 
<1 in 10^10 
<1 in 10^9 
<1 in 10^8 
<1 in 10^7 

0.816 
0.067 
0.050 
0.032 
0.019 

- 
calculation of 
probability of 

developing EVD 

literature 
(dose-

response 
model)  

- 

dose-response 
model derived 

from non-
human 
primate 
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<1 in 10^6 
<1 in 10^5 
<1 in 10^4 
<1 in 10^3 
<1 in 10^2 

<1 in 10 
>1 in 10 

0.010 
0.004 
0.001 

4.0×10-4 

1.2×10-4 

1.0×10-5 

3.6×10-9 

studies 
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