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ABSTRACT 

Jessica L. Rinsky: The role of occupational exposure to animal production in chronic obstructive 

pulmonary disease among farmers in Iowa and North Carolina 

(Under the direction of Steve Wing) 

 

Individuals who work in animal production may be exposed to respiratory hazards 

including high concentrations of organic dust, gases, and chemicals. Long-term, chronic 

inhalation of these agents may contribute to risk of chronic obstructive pulmonary disease 

(COPD). I examined the association between work in animal production, including the use of 

insecticides, and the prevalence of COPD diagnosis and chronic bronchitis symptoms among 

22,721 farmers who enrolled in the Agricultural Health Study (AHS) (1993-1997) and 

participated in the 2005-2010 interview. I also assessed the impact of restricting analysis to 

participants of the 2005-2010 interview. 

To assess the impact of restriction, predictors of participation in the 2005-2010 interview 

were identified, example exposure-outcome associations estimated in the enrollment and 2005-

2010 cohorts were compared, and the utility of inverse probability of selection weights (IPSW) 

to correct for selection bias was considered. Participation was related to age, state, race/ethnicity, 

education, marital status, smoking, and alcohol consumption. In example analyses, when case 

participation was differential with respect to exposure, estimates were biased; IPSW conditional 

on exposure and covariates failed to fully correct estimates. When participation was non-

differential, estimates from 2005-2010 participants and the enrollment cohort were similar 

rendering IPSW unnecessary.  
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Using log binomial regression and inverse probability of exposure weights to address 

confounding, I estimated the association between animal production, insecticide use and COPD 

diagnosis and symptoms. Raising beef cattle, hogs, or poultry was associated with greater 

prevalence of chronic bronchitis symptoms. Farmers with medium/large animal operations had 

1.51 (95% CI: 1.21, 1.89) times the prevalence of chronic bronchitis symptoms than those raising 

no animals. Applying insecticides to livestock and use of coumaphos, diazinon, dichlorvos, 

malathion, parathion, carbaryl, and permethrin were also associated with greater prevalence of 

chronic bronchitis. Personal use of diazinon and trichlorfon were associated with a greater 

prevalence of COPD diagnosis. 

These results support an association between animal production, including use of 

insecticides, and chronic bronchitis, a component condition of COPD. Further investigation of 

animal production- and insecticide-related risk factors for COPD is necessary. There is also a 

need for continued monitoring of the respiratory health of farmers and workers involved in 

animal production.  
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CHAPTER 1.  

SPECIFIC AIMS 

Food animal production has become increasingly industrialized during the past several 

decades [1]. Industrial animal production facilities rely on confinement and heavy inputs to 

produce large numbers of animals on limited land [2]. As a result, individuals working in or 

around animal production facilities may be exposed to high concentrations of particulates, gases, 

and chemicals [2-13]. Chronic inhalation of these agents has been linked with short-term decline 

in respiratory function [3, 5, 14-20], symptoms of respiratory irritation [4, 5, 8, 16, 19, 21-23], 

and increased risk of certain respiratory conditions [14, 19].  

Chronic obstructive pulmonary disease (COPD) is a disease process caused by an 

inflammatory response to inhalation of noxious particles [24]. Globally and domestically, COPD 

(ICD-10 codes J40-J44) [25], is a major cause of morbidity and mortality [24, 26-29]. Although 

a large proportion of COPD is attributable to smoking [24], occupational exposures may play an 

important role in disease pathogenesis [9, 10, 12, 13, 24, 30-33]. Studies of agricultural workers 

have noted similar or increased prevalence of COPD-related conditions and symptoms (i.e. 

chronic bronchitis, chronic cough and phlegm) as compared to the general public [3, 4, 8-10, 12, 

13, 15, 32, 34-36], despite lower rates of smoking [37, 38]. Among agricultural workers, those 

working in industrial animal production appear to experience some of the highest burdens of 

COPD-related symptoms [13, 21, 32, 39].   

Despite this knowledge, few studies have examined the link between work in animal 

production and COPD specifically. Available work has mainly been conducted in Europe and 

may not represent the exposure and disease patterns in the United States [15, 40]. Previous work 
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from the United States has relied on large administrative databases lacking detailed exposure and 

covariate information, or small samples of farmers and farmworkers, which lack the ability to 

examine potentially important modifying factors [9, 13-15].  

The Agricultural Health Study (AHS) [41, 42] provides a unique opportunity to examine 

the association between animal production work and the prevalence of COPD among a large 

population of farmers. Farmers enrolled in the AHS produce animals on small and large 

operations allowing for consideration of exposure to the full spectrum of animal production. 

Although the AHS provides this opportunity, approximately 54% of farmers did not participate 

in a follow-up interview conducted between 2005 and 2010, approximately 12-years after study 

enrollment. Only those who participated in the 2005-2010 interview were able to report 

information about the onset of COPD-related symptoms and diagnoses. 

To examine the association between work in animal production and COPD among the 

farmers in the AHS, I addressed the following aims: 

 

Aim 1: Evaluate the potential for attrition to bias effect estimates estimated from farmers 

participating in the 2005-2010 interview of the Agricultural Health Study.  

1a: Identify a set of enrollment characteristics predictive of and strongly associated with 

participation  

1b: Quantify the range of bias affecting effect estimates due to selective participation in a 

follow-up interview under conditions relevant to analysis of the association between 

work in animal production and COPD. 

1c. If evidence suggests bias due to selective participation, determine the utility of 

inverse probability of selection weights to correct for such bias. 
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Hypothesis: Demographic, behavioral, medical history, and agricultural characteristics 

reported at enrollment will be predictive of participation in the 2005-2010 interview. Some bias 

due to selective participation may be present in analyses restricted to farmers who participated 

in the 2005-2010 interview. However, because selective participation will be predicted by 

measured enrollment variables, inverse probability of selection weights will reduce the 

magnitude of bias.  

Aim 2: Quantify the association between work in animal production and the prevalence of 

COPD among AHS farmers.  

2a. Quantify the association between type and number of animals raised and COPD. 

2b. Quantify the association between personal use of chemical classes of insecticides 

registered for use on or around animals and COPD. 

Hypothesis: Farmers engaged in raising animals using industrial practices (e.g., use of 

inecticides on or around animals, confinement of animals) will exhibit a greater prevalence of 

COPD than farmers who are not engaged in industrialized animal production activities. 
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CHAPTER 2.  

BACKGROUND 

History of animal production  

Traditionally, food animals were raised outdoors on diversified farms. Since the mid-20
th

 

century, methods of animal production have undergone substantial changes. The number of small 

farms with diverse production of many animal species has decreased while operations which 

specialize in the production of large numbers of one species of animal have increased [43]. The 

term industrial animal production (North American Industrial Classification System code: 112 

[44] ) is used to describe these large-scale operations that often rely on the confinement of 

animals in factory-like buildings and increased use of inputs including chemicals (e.g., pesticides 

and cleaning agents), antibiotics, food, and water to produce large numbers of animals on limited 

land [1, 2, 9, 39, 45-47]. In the United States, these industrial operations, referred to as animal 

feeding operations (AFOs), produce a large proportion of livestock and poultry used for meat, 

dairy products and eggs [45, 48]. There are currently an estimated 450,000 AFOs in the United 

States. Iowa and North Carolina are two of the top producing states for swine and poultry [49].  

Occupational exposures in animal production  

The change from raising animals outside on pasture to a model that concentrates large 

numbers of animals inside buildings has led to changes in the types and intensity of respiratory 

hazards present in the production environment [39, 46]. The main respiratory hazards are organic 

dusts, gases, and chemicals. Organic dust, defined as airborne and settled particulate matter of 

biologic origin [13] may include molds and spores, bacteria, mites and their excreta, as well as 



5 

 

particles of animal feed, dander, urine, and feces. One component of organic dust particularly 

important to respiratory disease is endotoxins, or lipopolysaccharide complexes from the cell 

walls of gram-negative bacteria [50]. Many gases are found in the animal production 

environment including ammonia, hydrogen sulfide, methane, carbon dioxide, and carbon 

monoxide along with other odorants and volatile organic compounds [51-57]. Chemicals present 

in the animal production environment include pesticides (mainly insecticides) and cleaning 

agents. Insecticides are used to control insects including cockroaches, flies, and external 

parasites on animals (e.g., mites, lice) [58, 59]. Historically, organophosphate, 

pyrethroid/pyrethrin, and carbamate insecticides [58, 60] have been the most common types used 

in animal production. Table 1 provides a list of insecticides belonging to these chemical classes 

along with the year each was first registered for use in the United States. Recently use of 

pyrethroids/pyrethrins has increased to compensate for a decline in use of organophosphates, 

which are more acutely toxic to birds and mammals [60]. Insecticides used in animal production 

come in different forms including sprays, dusts, dips, granules, tags, and pours [61, 62]. Each of 

these formulations has different implications for human respiratory and skin exposure. In 

addition to insecticides, disinfectants containing chloramine-T or quaternary ammonium 

compounds alone or in combination with aldehydes [13, 52] are also used.  

Organic dust, gases, and chemicals mix together in the animal production environment. 

The composition of the mixture can vary widely dependent on the type of facility, waste disposal 

system, type and age of animals being produced, type of feed and bedding used, activities being 

conducted, season, geographic location, and ventilation system [39, 51, 52, 63]. And, individual 

exposure will vary by work site (inside or outside) and use of personal protective equipment 

(e.g., gloves, masks, respirators). 
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Regulation of exposures relevant to human respiratory health 

Some of the agents present in the animal production environment are regulated in 

workplaces by the Occupational Safety and Health Administration (OSHA), and agencies 

including the National Institute of Occupational Safety and Health (NIOSH), and the American 

Conference of Industrial Hygienists (ACGIH) have set recommendations on exposure limits 

(Table 2). However, OSHA enforcement does not apply to family farmers. In addition, animal 

production facilities often have a small number of employees, and employers with 10 employees 

or fewer during a calendar year are not typically required to keep OSHA injury or illness records 

[64]. Many of the insecticides used in industrial animal production are designated restricted use 

pesticides (RUP) and therefore their sale is regulated by the US Environmental Protection 

Agency [65]. This classification requires that the substance only be used by, or under the 

supervision of, a certified pesticide applicator.  

Previous work has documented concentrations of dust, gases, and endotoxin in industrial 

swine [5, 16-18, 23, 57, 66-77], poultry [66, 69, 78, 79], and dairy operations [56, 69]. 

Concentrations vary widely and, at times, exceed recommended exposure levels.  

Respiratory health effects from occupational exposure to animal production 

Inhalation of the agents present in the animal production environment is known to result 

in an inflammatory response in the airways and lungs [39, 80, 81]. Personal exposure to 

insecticides outside of the animal production environment has also been linked with 

inflammation, impaired respiratory muscle function, and other effects on the respiratory system 

in both animal [82] and human studies [83, 84]. Individuals involved in animal production 

exhibit increased prevalence of many respiratory symptoms and conditions compared with the 

general public and other rural populations. These symptoms and conditions include cough, 
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phlegm, chronic bronchitis, asthma, wheeze, and organic dust toxic syndrome [10, 13, 85].  

Long-term, chronic inhalation of the agents present in the animal production environment has the 

potential to result in a chronic inflammatory response in the airways and lungs manifesting as 

COPD. However, the association between work in animal production and COPD remains largely 

unexplored. 

Chronic obstructive pulmonary disease 

COPD is a broad term that refers to a collection of conditions responsible for irreversible 

airflow limitation [24, 86]. The Global Initiative for Chronic Obstructive Lung Disease (GOLD) 

defines COPD as a disease state “characterized by persistent airflow limitation that is usually 

progressive and associated with an enhanced chronic inflammatory response in the airways and 

the lung to noxious particles or gases” [87, 88]. Chronic bronchitis and emphysema are two 

conditions included under the term COPD. Chronic bronchitis is defined on the basis of clinical 

presentation of the presence of cough and sputum production for at least three months in each of 

two consecutive years [88]. This clinical presentation is due to hypersecretion of mucus in the 

large airways [24]. Emphysema is defined morphologically as “an abnormal permanent 

enlargement of air spaces distal to terminal bronchioles, accompanied by destruction of their 

walls without obvious fibrosis” [89]. The term COPD may also be used to refer to other 

conditions such as constrictive bronchiolitis (a fibrotic disease of the small airways) [24, 90], and 

other causes of non-reversible airway obstruction. 

As indicated in the disease definition, the inflammation of airways in COPD is initiated 

by inhalation of noxious particles or gases. The mass of the particles inhaled dictates where in 

the respiratory system they deposit and the biological response [81, 91]. Typically, the lungs’ 

defense mechanisms respond to deposition of particles through coughing, mucociliary transport, 
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and the innate immune system [92]. However, when the defense system is overwhelmed or fails, 

a disease process may begin. Because of the strong defense mechanism of the respiratory system, 

long-term exposure to agents is usually required for the development of COPD [88, 93] although 

high peak exposures may play a role in hastening the onset of symptoms or exacerbating the 

condition [88].  

The inflammatory response to the presence of inhaled particles causes direct destruction 

of lung tissues and impairment of the defense mechanisms, which usually repair damaged tissue, 

leading to inflammation and manifestation of COPD symptoms [94]. A range of inflammatory 

cells are involved with neutrophils, macrophages, and CD8+ T cells predominating [94]. 

Neutrophils and macrophages release proteases, disrupting the balance of proteases and 

antiproteases in the lung leading to increased proteolysis. Oxidative stress and inflammatory 

mediators also play a role in the pathogenesis of COPD [88]. This inflammatory response leads 

to destruction in the lung parenchyma, characteristic of emphysema, and mucus hypersecretion 

and cilliary disfunction, characteristic of chronic bronchitis.  Destruction of air spaces and mucus 

hypersecretion lead to airflow limitation and air trapping, gas-exchange abnormalities, and 

changes in the pulmonary vasculature [88]. These occurrences in the lungs have both local and 

systemic manifestations [89]. Genetic or host factors must also play a role as not all individuals 

exposed to respiratory irritants develop disease [94].  

Challenges in Diagnosing COPD for Research Purposes 

Diagnosis of COPD is complicated and relies on several components – physical exam, 

documentation of symptoms, radiographic studies, and spirometry. Ideally, case ascertainment in 

epidemiologic research would rely on a gold-standard set of diagnostic criteria. However, this 

comprehensive diagnostic approach is often not feasible for research studies that involve large 
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populations, especially studies spread over a wide geographic area or reliant on mail or telephone 

contact with participants in order to reduce burden of participation [95]. Consequently, 

alternatives for identifying cases of COPD are necessary for research. Spirometry has been 

recommended to provide an objective, standardized and simplified approach to ascertaining 

cases of airway obstruction, and some studies have relied solely on this diagnostic approach [96, 

97]. However, spirometry still requires in-person assessment of study participants by trained 

staff. Spirometric results also lead to wide variation in disease estimates depending on the 

population and how disease definitions are applied. For example, in a study of National Health 

and Nutrition Examination Survey (NHANES) participants (2007-2010), the prevalence of 

COPD ranged from 10-21% depending on the criteria applied to spirometric results [97].  

Alternatively, studies have used self-report of a doctor diagnosis of COPD. Participant 

report of a doctor diagnosis relies on many pieces including receiving a valid diagnosis, patient 

understanding of the diagnosis, and accurate patient recall and reporting of the diagnosis. Little 

work has been done to validate the use of self-reported diagnoses. Studies that have conducted 

spirometry and collected self-report of doctor-diagnosed COPD, consistently show that self-

report results in an under ascertainment of COPD compared with spirometry [27, 29]. This may 

be because self-reported diagnosis is more representative of clinically relevant disease that has 

driven someone to seek care, while spirometric results also represent those with subclinical 

obstruction. The Nurses’ Health Study directly validated self-report of doctor-diagnosed COPD, 

including chronic bronchitis and emphysema [95]. Among this population, 89-92% of self-

reported emphysema, 81-93% of COPD, and 79-84% of chronic bronchitis cases were confirmed 

to be accurate based on medical record review and uniform diagnostic criteria.  
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Ascertainment of COPD cases in epidemiologic studies is imperfect whether spirometric 

measures of obstruction or self-report of diagnoses are used. Self-reported doctor diagnosis may 

lead to some false-positive reports of diagnoses due to attribution of symptoms to a diagnosis by 

the participant themselves or misdiagnosis. However, when relying on self-report, under-

reporting of COPD may be more likely [95, 98]. Incorporation of self-reported information on 

symptoms used to define chronic bronchitis in a physician’s office (e.g., chronic cough and 

phlegm for more than 3 months over two consecutive years) may aid in reducing the number of 

false-negatives.  

Epidemiology of COPD 

The domestic and global burden of COPD is large and is continuing to grow [87, 88]. 

COPD is the third leading cause of death in the United States and is expected to be the third 

leading cause of death globally by 2030 [86, 88]. The impact of COPD-related morbidity is also 

large. In the United States during 2010, approximately 10.3 million physician office visits, 1.5 

million emergency room visits, and 699,000 hospital discharges were attributed to COPD or its 

complications [26]. In 2008, the direct costs attributed to COPD were more than $50 billion [26]. 

In addition, disability and impaired quality of life resulting from COPD add to the high social 

costs of the condition [27].  

The prevalence of COPD is difficult to determine as it varies greatly based on disease 

definition, method of measurement, and population under study. In the United States, estimates 

range between 5-7% of the general population reporting a physician diagnosis of COPD [26, 29, 

99]. Estimates based on spirometry range between 10-20% [97]. 

Cigarette smoking is widely recognized as the most important exposure related to COPD 

[27, 86, 88, 99]. It is estimated that 80% of individuals who have COPD in the United States are 
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or were smokers [86]. Many of the other risk factors for COPD influence disease risk through 

smoking. Older age, male gender, white race, low education and socio-economic status, and poor 

diet and obesity are associated with increased risk of COPD [26, 28, 29, 86, 87, 97, 100, 101]. In 

addition, specific genetic mutations, asthma and other airway disease, and perinatal events and 

childhood respiratory illness are also positively associated with risk of COPD [86]. Recently, 

more attention has been paid to environmental pollution and occupational exposures as risk 

factors [24, 31, 86, 98, 102-113].  

Occupational exposures have been identified as important in the etiology of many of the 

underlying conditions and symptoms of COPD since the 19
th

 century [98, 112]. However, 

occupational exposures remain somewhat unexplored due to an emphasis on smoking as the 

most influential risk factor. In addition, the dominance of more traditional occupational 

respiratory diseases such as pneumoconiosis has also led to little focus of research on 

occupational risk factors for COPD [108, 111].  

Occupational exposures and COPD 

In 2003, the American Thoracic Society (ATS) released a statement and review of the 

literature on the association between occupational exposures and COPD [108, 109]. The 

statement and several studies published since indicate that among US adults the attributable 

fraction of COPD due to occupational exposures is 15-20% [31, 98, 106, 108, 109]. This 

estimate may also be as high as 30% for never smokers [31].  Agriculture is one of the industries 

that is recognized as having a high burden of COPD [31, 108, 109, 114]. And, within the 

agricultural sector, those working in animal production have been identified as a high-risk group 

[31, 114]. 
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Occupational exposure to animal production and COPD 

In 2004, Monso et al. reported the prevalence of COPD among a sample of 105 non-

smoking animal confinement workers from Denmark, Germany, Switzerland, and Spain [14]. 

Using spirometry and the GOLD criteria, COPD was identified in 18 workers (17%). The 

prevalence of COPD was associated with increasing levels of dust exposure. This study was 

small and could not stratify results by the type of animal produced. To my knowledge, no other 

studies have explicitly examined the burden of COPD among animal production facility 

owner/operators or workers. 

Previous work has examined the burden of COPD-related symptoms and chronic 

bronchitis among animal production facility owner/operators and workers. Most research has 

focused on work in industrial swine or poultry production and industrial and non-industrial 

dairies. The prevalence of chronic bronchitis reported in these studies ranges between 8 and 46% 

depending on the animal produced (swine, poultry, dairy) and whether study participants were 

farm owner/operators or workers. Prevalence of chronic cough (10-57%), chronic phlegm (5-

58%), and shortness of breath (9-32%) varied similarly [5, 8, 19, 20, 23, 73, 115-127].  

Research examining the respiratory effects of work in animal production has mainly 

focused on exposure to organic dusts and gases. However, insecticides are commonly used in 

animal production and a positive association between exposure to insecticides and COPD 

diagnoses or symptoms has been reported. In a recent study involving two cohorts from The 

Netherlands, de Jong et al. (2014) reported that exposure to pesticides was associated with lower 

pulmonary function measures and an indication of obstructive disease [128]. This study assigned 

exposure based on current or last held job title/description and included no information about 

type, intensity, or frequency of pesticide use by participants [129]. In India, Chakraborty et al. 
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observed increased prevalence of respiratory symptoms (cough, dyspnea), chronic bronchitis, 

and COPD among Indian farmers using organophosphate and carbamate insecticides as 

compared to controls [130]. Although the population was fairly young (median age: 40 years; 

range: 25-53), COPD was diagnosed (using GOLD criteria) in 18% of the agricultural workers 

compared with 7% of the comparison group. 

Most of the research examining the association between use of specific insecticides and 

COPD-related symptoms and conditions among farming populations has been completed within 

the AHS [131-134]. Researchers have reported statistically significant associations between ever 

use of insecticides (carbaryl, carbofuran, DDT, heptachlor, diazinon, malathion, and permethrin 

for crops), lifetime days of use (carbaryl, DDT, dichlorvos, malathion, and permethrin used on 

crops), and increased odds of a self-reported doctor diagnosis of chronic bronchitis [133].  

A limited number of studies have explicitly considered the effect of joint exposure to 

animals and insecticides. Using information from the Iowa Farm Family Health Study, Sprince et 

al. reported that persons who apply pesticides to livestock had significantly increased odds of 

phlegm (1.9; 95% CI: 1.02, 3.57) as compared to those who did not apply pesticides to livestock 

after adjusting for smoking [135]. In the AHS, Hoppin et al. (2007) found that pesticide 

applicators who reported applying pesticides to animals had increased odds of chronic bronchitis 

as compared with those who did not report applying pesticides to animals (OR: 1.39; 95% CI: 

1.18, 1.64). Beyond this work, the effects of joint exposure to animals and insecticides remains 

largely unexplored. 
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Strengths and limitations of previous work 

Previous work has provided firm evidence that work in animal production may contribute 

to the global burden of COPD. However, only one previous investigation has been focused on 

the association between work in animal production and COPD specifically. Research examining 

the prevalence of respiratory symptoms or airway obstruction has mainly been conducted in 

Europe and therefore may not reflect the methods of animal production used or the distribution 

of COPD in the United States. Most of these studies have been cross-sectional and consequently 

may not include farmers that have left work due to respiratory illness. Finally, previous work 

conducted in the United States has been conducted using either large, administrative databases 

with little information on personal exposures and covariates or small samples with detailed 

personal exposure or disease information. Both of these designs prohibit consideration of joint 

exposure effects and modification by smoking and other potentially important contributing 

factors. 

The Agricultural Health Study: A Unique Opportunity  

The AHS provides a unique opportunity to examine the role of work in animal production 

in the etiology of COPD among a large cohort of farmers followed over a median 12 years. AHS 

participants come from two major animal producing states and include small, traditional farms as 

well as large, industrial farms.  

Selective participation: A methodological challenge 

At enrollment, the AHS cohort included 52,394 farmers. However, the cohort has 

experienced attrition over time. Sixty-four percent of farmers participated in an interview 

occurring approximately five years after enrollment (1999-2003). An investigation of non-

participation in this interview revealed that non-participants were younger, less educated, and 
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had poorer health behaviors but fewer diagnosed medical conditions than participants [136]. 

Non-participants also had lower reported pesticide use overall but some variation existed 

between farmers in North Carolina and Iowa. As part of this analysis, investigators estimated 

odds ratios using the full cohort and the cohort of farmers who participated in the 1999-2003  

interview for 1) use of chlorpyrifos and depression reported at enrollment; 2) smoking and 

chronic lung disease reported at enrollment; and, 3) smoking and incident cancer [136].  Odds 

ratios estimated from interview participants for each exposure-outcome association were similar 

to those from the cohort present at enrollment.  

The next interview (2005-2010) occurred roughly 12 years (range: 8-16 years) after study 

enrollment. This interview included questions about respiratory diagnoses and symptoms that 

were not included on questionnaires used at enrollment or during the previous interview. 

Approximately 46% of enrolled farmers participated in the 2005-2010 interview [137]. Farmers 

who did not participate are missing information about COPD. 

Loss to follow-up has become a frequently discussed problem for large cohort studies, 

especially those following older populations over a lengthy period [138, 139]. The most common 

approach to handle loss is to restrict analyses to those with complete information. The effects of 

restriction on estimates of disease occurrence and exposure-disease associations has been 

examined using simulated examples [140-143], directed acyclic graph (DAG) theory [144, 145], 

and some real-world examples [146]. These investigations indicate that results of analyses 

restricted to participants are only valid under certain conditions. Depending on the magnitude 

and distribution of loss, varying levels of bias and loss of precision may be present in study 

results [141, 142, 147-149].  
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Characterizing attrition by identifying how study variables relate to participation can help 

conceptualize the extent of bias and precision loss that may result from restricting analysis to 

those who remain under study [144]. As previously demonstrated through simulation studies 

[140, 141, 149] and the application of DAG theory [144, 145, 150], bias can occur if attrition is 

related to the exposure and outcome under study, or to factors related to both the exposure and 

outcome. As approximately 54% of the original cohort of farmers was not able to report 

respiratory symptoms and diagnoses at follow-up, it is necessary to consider how selection bias 

may influence results of the proposed analysis.  
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Tables 

Table 2.1. Organophosphate, pyrethroid, and carbamate insecticides and the year first registered 

for use in the United States [151-153]. Partially reproduced from Hoppin et al. (2012) [151]. 

  

Organophosphates Registration  Pyrethroids  Registration 

Chlorpyrifos 1965  Allethrin 1981 

Coumaphos 1958  Bifenthrin 1985 

Diazinon 1948  Cyfluthrin 1987 

Dichlorvos 1948  Cyhalothrin 1988 

Fonofos 1967  Cypermethrin 1984 

Malathion 1955  Deltamethrin 1994 

Parathion 1954  Esfenvalerate 1973
 

Phorate 1959  Fenpropathrin 1989 

Terbufos 1974  Fluvalinate 1988
 

   Permethrin 1977 

Carbamates Registration  Resmethrin 1967 

Carbaryl 1947  Tefluthrin 1989 

  

 Tetramethrin 1968 

  

 

 Tralomethrin 1993 
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Table 2.2. Regulatory limits and recommendations for workplace exposure to dust, endotoxin, 

and gases. 

  Dust Endotoxin Gases 

 Total
a
 Respirable

b
 Total

 d
 Ammonia H2S 

 (mg/m
3
) (mg/m

3
) (EU/m

3
) (PPM) (PPM) 

OSHA PEL
c
 15 5 Not Listed

  
50  20

e
  

NIOSH REL Not Listed Not Listed Not Listed
 

25 10 

ACGIH TLV 10 3 Not Listed 25 10 

OSHA = Occupational Safety and Health Administration  

PEL = permissible exposure limit 

NIOSH = National Institute for Occupational Safety and Health 

REL = recommended exposure limit 

ACGIH = American Conference of Industrial Hygienists 

TLV = threshold limit value
 

a
 Total dust includes all airborne particles, regardless of their size or composition [154].  

b
 Respirable dust refers to dust particles that are small enough to penetrate the nose and upper respiratory system 

and deep into the lungs (< 10 µm) [154].  
c 
Based on an 8-hour time weighted average (TWA) exposure 

d 
Although no OSHA PEL or NIOSH REL is listed, other countries have suggested limits. The Netherlands 

recommends a health-based exposure limit of 50 Endotoxin units (EU)/m
3
. Researchers in the United States 

have recommended a human-health based limit of 100 EU/m
3 
[155]. 

e 
Exposures shall not exceed 20 ppm (ceiling) with the following exception: if no other measurable exposure 

occurs during the 8-hour work shift, exposures may exceed 20 ppm, but not more than 50 ppm (peak), for a 

single time period up to 10 minutes [156].  
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CHAPTER 3.  

NON-PARTICIPATION IN A STUDY FOLLOW-UP INTERVIEW AND SELECTION 

BIAS: AN EXAMPLE FROM THE AGRICULTURAL HEALTH STUDY 

Introduction 

Prospective cohort studies are important tools for identifying preventable causes of 

disease [157-159]. However, studies that follow participants over time are susceptible to 

attrition, including loss to follow-up and death [140, 141, 159-161]. If analyses are limited to 

participants who remain under study, attrition may result in biased measures of disease 

occurrence or exposure-disease associations [140, 150, 159]. As previously demonstrated 

through simulation studies [140, 141, 149] and the application of DAG theory [144, 145, 150], 

bias can occur if attrition is related to both the exposure and outcome under study, or to factors 

related to both the exposure and outcome. Therefore, identification of factors related to attrition 

can help evaluate the potential for bias in studies using data collected only through study visits or 

interviews.  

Identifying factors associated with attrition can be useful in determining whether 

selection bias may affect study results. In addition, with attrition-related factors identified, 

investigators can determine the utility of analytical methods (e.g., inverse probability weighting, 

multiple imputation of missing data, sensitivity analyses) to illustrate or mitigate the effects of 

attrition. As these analytical methods have become easier to implement, analyses of cohort 

studies have begun to include formal evaluation of the potential impacts of attrition on results 

and the use of analytical methods to mitigate those impacts [143, 162, 163].  
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The AHS is a longitudinal cohort study that enrolled 52,394 private pesticide applicators, 

hereafter “farmers,” who applied for restricted use pesticide licenses in Iowa and North Carolina 

between 1993 and 1997 [41, 42]. The AHS was designed to evaluate the potential health effects 

of farming-related exposures among pesticide applicators and their spouses [41]. Cancer 

incidence, mortality, and end-stage renal disease are obtained through linkage with state and 

federal sources [41, 164] and, therefore, analyses of exposures measured at enrollment and these 

outcomes are unaffected by attrition. Since enrollment, information on specific farming activities 

and other health outcomes is collected at interviews occurring approximately every five years. In 

the second interview, occurring between 2005 and 2010, information about lifestyle, specific 

farming activities, and incident disease was collected. Approximately 46% of farmers enrolled in 

the AHS responded to this interview (60% of those contacted) presenting a potential challenge 

for evaluating exposures or incident disease self-reported at this interview. Here, I identify 

characteristics associated with participation in the 2005-2010 interview, evaluate the extent to 

which attrition may influence results from analyses restricted to interview participants, and 

consider the utility of inverse probability of selection weights to correct for selection bias in 

studies of incident outcomes reported by participants during follow-up interviews. 

Methods 

To enroll in the AHS, farmers completed a questionnaire, which requested information on 

demographics and lifestyle, medical history, and farming activities. Between 1999 and 2003, 

farmers were re-contacted to respond to a Computer Assisted Telephone Interview (CATI) to 

update information on farming activities. Investigators have previously examined factors 

associated with non-participation during this interview [136].  



21 

 

Another interview was conducted between 2005 and 2010. At this time, farmers were 

asked to provide updated information on lifestyle and farming activities, and to report a range of 

incident medical conditions. Reasons for non-participation in this interview have been described 

previously [137]. Briefly, three groups of farmers were not contacted for this interview: 1) 

farmers who refused further contact prior to the interview; 2) farmers who died prior to interview 

identified through linkage with state mortality records and the National Death Index [41]; and, 3) 

farmers who were administratively excluded because of non-participation in study activities 

since enrollment, pilot testing of materials, and other reasons explained previously [137]. 

Farmers contacted for the 2005-2010 interview either completed the CATI or a reason for non-

response was noted. Reasons for non-response included: 1) refusal; 2) inability to reach the 

person by phone; and, 3) illness prohibiting participation. For the present analysis, farmers who 

were not contacted or who did not respond to the 2005-2010 interview are referred to as non-

participants, whereas, those who completed the interview are referred to as participants.  

The AHS was approved by the Institutional Review Boards (IRBs) of the National 

Institutes of Health and its contractors. The current analysis was also approved by the IRB of the 

University of North Carolina at Chapel Hill. Participants indicated initial informed consent by 

completing the enrollment questionnaire. Copies of all questionnaires are available on the study 

Web site (http://www.aghealth.nih.gov/collaboration/questionnaires.html).   

Basline predictors of participation 

I considered exposures and covariates reported on the enrollment questionnaire, and 

commonly used in other AHS analyses as predictors of participation in the 2005-2010 interview. 

These variables included demographic and lifestyle factors (age, state, gender, race/ethnicity, 

education, marital status, smoking status, and alcohol consumption), medical conditions (heart 

http://www.aghealth.nih.gov/collaboration/questionnaires.html
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disease, asthma, other chronic lung disease, kidney disease, diabetes, Parkinson’s disease, 

depression, tuberculosis, and pneumonia), personal use of pesticides (ever use, percent of time 

using, lifetime years of use, days per year of use, and ever use of functional groups and chemical 

classes), and other farm work/farm characteristics (farm size, work in hog or poultry 

confinement, number of livestock and poultry, and major income producing animals). I 

examined the distribution of each variable by participation status (participants vs. non-

participants) and by reason for non-participation (death vs. refusal/exclusion). I estimated crude 

associations between variables and participation and categorized variables to preserve the shape 

of the association between each factor and participation.  

I removed variables with more than 10% missing data from consideration. I then used 

logistic regression models and a backward elimination approach to identify a set of variables that 

described the relationship between covariates reported on the enrollment questionnaire and 

participation in the 2005-2010 interview. I began by removing variables with a non-significant χ
2
 

statistic (two-sided test, α=0.05), ending with demographic and lifestyle variables which were 

hypothesized to be the most strongly predictive of participation. I then removed variables that 

although predictive of participation based on the χ
2
 statistic, were not strongly associated with 

participation (-0.40<β<0.40). I report regression coefficients (β) and standard errors (SE) to 

show the direction, magnitude and precision of the association between each variable and 

participation. Wald χ
2 

values are also reported to indicate the contribution of the variable to the 

prediction of participation. The presented results indicate the set of enrollment variables that are 

predictive of and strongly associated with participation. Estimates for other variables adjusted for 

the set of predictors are provided. 
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Assessing selection bias 

Cancer incidence for members of the AHS was ascertained by linkage of the enrollment 

cohort with state (Iowa, North Carolina) cancer registries through December 31, 2010. 

Consequently, the association between enrollment information and cancer incidence over the 

period from enrollment through 2010 is not affected by attrition (except for the small proportion 

of farmers who leave the state) and can be estimated for the full cohort. In contrast, most other 

health outcomes are self-reported by participants during follow-up interviews and therefore case 

status is unavailable for non-participants. The present analysis is meant to serve as an example of 

the potential impact of attrition on analyses of associations between agricultural exposures and 

self-reported health outcomes when estimated using information ascertained from farmers 

participating in the 2005-2010 interview. Because complete-case ascertainment for cancer is 

available, I used cancer outcomes to illustrate conditions under which restricting analyses to 

2005-2010 participants may result in biased effect estimates. 

For this example, I defined two cohorts within the AHS. The full cohort includes all 

farmers who enrolled in the AHS (N = 52,394). The second cohort, a subset of the full cohort 

(referred to as the sub-cohort) includes farmers who participated in the 2005-2010 interview (N = 

24,171). Within the full and sub-cohorts, I examined three exposure-outcome associations: 1) a 

strong, well-established association – ever smoking and incident lung cancer [165]; 2) a weaker, 

well-established association – ever smoking and incident bladder cancer [166]; and, 3) an 

association usually observed to be null – ever smoking and incident prostate cancer [167, 168]. 

These outcomes differ in mortality and disability rates that may impact participation in study 

activities. I assigned farmers as ever or never smokers based on information reported at 

enrollment while cancer incidence was obtained from cancer registry information. Figure 3.1 
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illustrates the relationships between ever smoking (E), each incident cancer outcome (D), a 

vector of covariates (Z) and selection (S) for each association.  

I estimated the association between ever smoking and each incident cancer outcome in 

the full cohort and in the sub-cohort. For each smoking-cancer association, I used inverse 

probability of exposure weights (IPEW) to address confounding. The application of IPEW is a 

form of direct standardization that creates a “pseudo-population” in which the distributions of 

confounding variables are similar across exposure groups [169-171]. Confounders and risk 

factors for each cancer outcome were identified by previous literature [172], and included age at 

censoring, state, gender, education, race/ethnicity, and marital status. Alcohol consumption was 

also included in the model to estimate weights for the ever smoking-bladder cancer association. 

The association for ever smoking and prostate cancer was restricted to male farmers.  First, I 

used logistic regression models to estimate the predicted probability of ever smoking (i.e., 

propensity scores for smoking for each individual), conditional on confounders or non-

confounding risk factors for each cancer outcome. Next, I assigned each individual a weight 

equal to the inverse of the predicted probability that the individual had his/her observed smoking 

status. To stabilize each individual’s weight, I multiplied each weight by the marginal probability 

of their observed smoking status.   

I applied IPEW to log-binomial and linear-binomial models to estimate standardized 

cumulative incidence, risk differences (RDs), and risk ratios (RRs) for the three ever smoking-

cancer associations. Models included one explanatory term for ever smoking. The application of 

weights induces within-subject correlation by weighting individuals to represent themselves as 

well as others with similar covariate patterns. To account for this within-subject correlation, I 

used robust variance estimates to calculate standard errors and 95% confidence intervals [170]. 
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These robust estimates are equivalent to generalized estimating equation estimates using an 

independent working covariance matrix [173]. I considered the estimated association for the full 

cohort as the target parameter of interest. 

In this example, I examine incidence proportions so results will apply to the outcomes 

reported as part of the 2005-2010 interview with limited information on timing of onset and 

diagnosis (e.g., COPD). Because timing of cancer diagnosis is available, I repeated analyses 

using a time-to-event approach and conclusions remained the same (results not shown). 

Inverse probability weighting for selection bias 

A second set of weights – stabilized inverse probability of selection weights (IPSW) – 

were estimated to address non-participation in the 2005-2010 interview. I estimated stabilized 

IPSW using logistic regression models. The numerator for each individual’s stabilized IPSW was 

the marginal probability of their observed participation status in the overall study population; the 

denominators were calculated in two ways. First, the denominator for each individual’s stabilized 

IPSW was equal to their predicted probability of their observed participation status conditional 

on smoking (E), the vector of variables identified as predictors of participation (Z), and disease 

status (D). These weights, referred to as IPSW|E,Z,D are necessary to remove selection bias 

when attrition is related to exposure, covariates, and the outcome. In practice,  non-participants 

are missing disease status, and simpler weights, conditional on E and Z are often used. Simpler 

weights may suffice in some but not all settings. Therefore, I estimated a second set of weights 

with denominators for each individual equal to their predicted probability of their observed 

participation status conditional only on E and Z. I refer to this set of weights as IPSW|E,Z.  
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Among the sub-cohort, using log-binomial and linear-binomial models I estimated 

cumulative incidence, RRs, RDs for the three ever smoking-cancer associations after applying 

IPSW|E,Z,D and IPSW|E,Z. 

For each analysis, adjustment for confounding and selection was achieved by applying a 

product of the IPEW and IPSW [169, 171, 174]. The distribution of all weights used in these 

analyses are provided in Table 3.1. Weights were well-behaved with means close to one and no 

extreme values (<0.05 or >20). All analyses were performed using SAS, version 9.3 (SAS 

Institute, Inc., Cary, North Carolina). 

Results 

A total of 28,223 farmers did not participate in the 2005-2010 interview (Figure 3.2). 

Thirteen percent of non-participants died prior to interview. Other reasons for non-participation 

included refusal at the current interview or a previous point, exclusion, an inability to be 

contacted, and illness.  

Baseline predictors of participation 

The set of enrollment variables that were identified as predictive of and strongly 

associated with participation included age, state, race/ethnicity, education, marital status, 

smoking status, and alcohol consumption (Table 3.2). Age less than 40 or older than 70 years 

was associated with a decrease in log odds of participation compared to 40-49 year olds. As age 

at enrollment increased death explained an increasing portion of non-participation. Enrollment in 

North Carolina, race/ethnicity other than non-Hispanic white, having less than a high school 

degree, not being married or living as married, and heavy drinking were associated with a 

decrease in log-odds of participation. Current smoking at enrollment, regardless of the number of 



27 

 

pack-years, was associated with a decrease in log-odds of participation compared to never 

smokers. As the number of pack years increased for former and current smokers, death explained 

a greater proportion of non-participation. Males also had a lower log-odds of participation than 

females.  

Medical conditions, pesticide use, and farm characteristics reported at enrollment were 

not included in the set of variables predictive of and associated with participation (Tables 3.3-

3.5). Self-report of a doctor diagnosis of heart disease, diabetes, and Parkinson’s disease at 

enrollment was associated with a decrease in log-odds of participation. Generally, variables 

indicating personal pesticide use or raising animals were associated with small increases in log-

odds of participation. Several of these variables were significant predictors but were not strongly 

associated with participation or the characteristic was rare. Size of farm was predictive of 

participation but was missing for 11% of the cohort.  

Assessing selection bias 

Ever smoking was weakly associated with participation – a greater proportion of ever 

smokers were non-participants compared with never smokers (Table 3.6). Overall, incident lung 

cancer had a strong, inverse association with participation, incident bladder cancer was not 

associated with participation, and incident prostate cancer had a weak, positive association with 

participation. The proportion of non-participation due to mortality was greatest for lung cancer, 

followed by bladder cancer, and then prostate cancer.  

The number and proportion of participants by smoking and cancer outcome is shown in 

Table 3.7. Because of lower participation among never and ever smoking lung cancer cases 

compared with non-cases, the cumulative incidence estimates of lung cancer from the sub-cohort 

were underestimates compared to those from the full cohort. Participation among lung cancer 
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cases was also differential with respect to smoking – a smaller proportion of ever-smoking lung 

cancer cases participated than never-smoking lung cancer cases. Similar proportions of bladder 

cancer cases and non-cases participated in the 2005-2010 interview leading to similar cumulative 

incidence estimates from the full and sub-cohorts. A greater proportion of prostate cancer cases 

participated compared with non-cases. This led to an overestimate of the cumulative incidence of 

prostate cancer in the sub-cohort compared to the full cohort. Participation for bladder and 

prostate cancer cases and non-cases was non-differential with respect to smoking. 

Standardized estimates of the RR (95% CI) and RD (95% CI) for smoking in the full and 

sub-cohorts are shown in Figures 3.3 and 3.4. Because of differential participation of lung 

cancer cases with respect to smoking, the sub-cohort RR and RD were underestimates of the 

effect of ever smoking on lung cancer estimated in the full cohort. Precision was reduced for the 

sub-cohort RR and its 95% CI contained the full-cohort estimate. Non-differential participation 

of bladder and prostate cancer cases by smoking status led to sub-cohort RR estimates similar to 

full cohort estimates. The sub-cohort RD for ever smoking and bladder cancer was also similar to 

the full cohort RD. For ever smoking and prostate cancer, the sub-cohort RD was on the opposite 

side of the null and less precise but was not significantly different than the full cohort RD. 

Illustrating bias reduction through IPSW 

Differential participation of lung cancer cases by smoking status indicated the need for 

IPSW|E,Z,D to fully correct for selection bias. Application of IPSW|E,Z,D produced RR and RD 

estimates similar to, but less precise than, full-cohort estimates (Figures 3.3 and 3.4). Under 

these conditions, simpler IPSW|E,Z were unable to fully correct sub-cohort estimates. The sub-

cohort RR and RD estimates for ever smoking and bladder cancer were already similar to full-

cohort estimates. Although RR and RD estimates for ever smoking and prostate cancer were 
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similar to full-cohort estimates, application of IPSW|E,Z  shifted estimates to the same side of 

the null as full-cohort estimates.  

Discussion 

Forty-six percent of farmers enrolled in the AHS participated in the 2005-2010 interview 

occurring a median 12 years after enrollment. Both loss (through non-response or exclusion) and 

mortality contributed to attrition within the cohort. The enrollment variables age, state, 

education, race/ethnicity, marital status, smoking, and alcohol consumption were predictors of 

participation in the 2005-2010 interview; prevalent disease, personal use of pesticides and raising 

animals, variables often considered as exposures in AHS analyses, generally were not strongly 

associated with participation. Using outcomes with complete-case ascertainment (incident 

cancers) as examples, I identified conditions under which restricting analyses to participants of 

the 2005-2010 interview may introduce bias. In the absence of the exposure and outcome being 

strongly predictive of participation, sub-cohort results were similar to full-cohort estimates. 

Further, when the exposure and outcome were weakly associated with participation but were not 

associated with each other, little bias was observed. The identification of predictors of 

participation from enrollment data and conditions under which analyses that must be restricted to 

sub-cohort participants may produce results similar to those from the full cohort can be used to 

inform analyses of associations involving incident disease reported only as part of the 2005-2010 

interview. 

Loss due to non-response or exclusion was the main reason for non-participation in the 

2005-2010 interview. However, mortality accounted for greater proportions of non-participants 

among farmers 60 years and older at enrollment compared with those younger than 60. Mortality 

was also greater for smokers compared with never smokers and those reporting a diagnosis of 
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one of several chronic medical conditions at enrollment; although residual confounding by age 

may partially explain these associations. A greater proportion of deaths also occurred among 

farmers with less than a high school education, reporting more than 20 years of pesticide use, or 

living or working on smaller properties. Although death accounted for greater proportions of 

non-participants within specific sub-groups, a majority of non-participants were either excluded 

(28%), could not be reached (35%), or refused to participate (23%).  

Observed associations between enrollment factors and non-participation were similar to 

those found within other cohort studies. Other researchers have observed non-participation in 

study follow-up activities associated with younger and older age [175-179], male gender [177, 

178, 180], minority race/ethnicity [178], lower levels of education [161, 175, 178, 179], and 

marital status other than married [175, 179-181]. Although mortality was a major contributor to 

non-participation among older farmers, younger farmers may have less time to participate in 

study activities or be unwilling to participate for other reasons. Smoking [175, 178, 179, 181, 

182] and heavy alcohol consumption [179, 182] have also been consistently associated with 

attrition in previous work; as has abstention from alcohol [179], which was not observed here. 

Finally, as observed here for farmers reporting a diagnosis of heart disease, diabetes or 

Parkinson’s disease, other researchers have observed that persons reporting general poor health 

[176] or chronic illness [182] participate less in study activities. I hypothesize that other chronic 

conditions (e.g., asthma, other chronic lung disease, kidney disease, depression) were not 

associated with participation in the AHS partly because these conditions may not lead to 

mortality or the onset of severe disability as rapidly as some of the previously mentioned 

conditions. The proportion of farmers who died prior to the 2005-2010 interview was larger for 
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diagnoses that were associated with participation compared with the ones that were not, 

consistent with this hypothesis.   

Relationships between enrollment characteristics and participation were consistent with 

factors associated with participation in the 1999-2003 interview with a few notable exceptions 

[136]. In the previous investigation, odds of participation increased with increasing age; 

however, that investigation excluded those who died prior to interview. This exclusion, coupled 

with the aging of the cohort since the previous interview may partially account for the difference. 

Individuals reporting illness at enrollment were more likely to participate in the 1999-2003 

interview, which the authors suggested could be explained by the “worried ill” phenomenon 

[136]. I did not observe this phenomenon in the present investigation. It is possible that with 

more time, the “worried ill” phenomenon has faded. Farmers reporting a diagnosed medical 

condition at enrollment have had more time to experience complications that may lead to non-

participation. Elevated mortality rates for farmers reporting a diagnosed medical condition 

compared with those who did not, provides evidence supporting this explanation. Although the 

“worried ill” phenomenon was not observed for medical conditions reported at enrollment, a 

greater proportion of incident prostate cancer cases than non-cases participated in the 2005-2010 

interview. This could indicate that disease-related interest in participation may be operating 

along with disease-related reasons for non-participation.  

Although specific farm activities were not strongly associated with participation, similar 

to the previous investigation [136], I observed that the proportion of participation among farmers 

reporting no personal pesticide use and no animal production at enrollment, was lower than 

farmers actively engaged in these activities at enrollment. This observation may indicate that 

farmers who were actively engaged in using pesticides or other farming activities may have had 



32 

 

a stronger interest in participating in a study of the health effects of such exposures. 

Alternatively, it is possible that farmers who reported infrequent pesticide use at enrollment or 

who were not involved in other activities, were less healthy than other farmers and therefore 

were unable to participate in study interviews.  

Researchers have previously used simulation studies and DAG theory to investigate the 

potential impacts of attrition in cohort studies [140-142, 145, 183]. However, few studies include 

investigations of potential impacts of attrition in a real-world setting [143]. Using three 

examples, I identified conditions under which analyses that must be restricted to interview 

participants produced similar effect estimates to those from the full cohort. I illustrated that 

effect estimates estimated from those who remain under study may be biased when exposure and 

outcome are associated and, participation is associated with the exposure and outcome under 

study leading to differential participation of cases or non-cases by exposure status. This could 

occur when the outcome under study is associated with rapid mortality or disability rates 

precluding participation soon after diagnosis. Under the conditions examined here, the RR 

estimated from 2005-2010 interview participants was much less precise than the full-cohort RR, 

leading it to contain the full cohort estimate within its bounds. This was not the case for the RD. 

Alternatively, when the outcome under study was not strongly associated with participation 

resulting in non-differential participation of cases and non-cases by exposure, sub-cohort RD and 

RR estimates were similar to, although less precise than, estimates from the full cohort.  

When both the exposure and outcome were predictive of participation, I demonstrated 

that IPSW|E,Z,D improved sub-cohort estimates. Simpler weights estimated using only exposure 

and covariates were unable to fully correct estimates in this scenario. When the outcome was 

weakly associated with participation, and the true association was null IPSW|E,Z returned 
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estimates to the same side of the null but did not substantially alter conclusions. Finally, when 

the outcome was not associated with participation, IPSW were unnecessary. Collectively, these 

observations align with findings from simulation studies and theoretical examples [141, 142, 

144, 145]. 

The examples considered here do not pertain to analyses of the association between 

exposures measured at enrollment and outcomes obtained through registries (e.g., cancer, 

mortality). Alternatively, these results have implications for the design of future analyses of 

associations between agricultural exposures and outcomes reported only by participants of the 

2005-2010 interview. For example, several respiratory outcomes, including COPD and asthma, 

are reported only by participants of the 2005-2010 interview. Applying pesticides and raising 

animals at enrollment do not appear to be strongly associated with participation in the 2005-2010 

interview. In addition, many of the outcomes reported during the 2005-2010 interview (e.g., 

allergy, chronic obstructive pulmonary disease, diabetes, arthritis) do not have high rates of rapid 

mortality or disability precluding participation soon after diagnosis and, therefore, would not be 

expected to be strongly predictive of participation in study activities after enrollment. Although 

these results and previous observations within the AHS [184] indicate that IPSW may not be 

necessary to correct effect estimates under these conditions, IPSW may be useful when the 

exposure of interest is a stronger predictor of participation, as has been demonstrated previously 

using simulations [142] and in other cohorts, some with similar attrition to the AHS [178, 181, 

185, 186]. Further, weights may be useful for confirming that there are no substantial differences 

in results when weights are applied. To that end, the predictors of participation reported here can 

inform the construction of weights for future AHS analyses. 
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Although I was able to evaluate associations between many enrollment characteristics 

and participation, it is possible that other unmeasured characteristics were important predictors 

of participation. Specifically, I was not able to examine associations between many of the 

incident diseases reported as part of the 2005-2010 interview and participation because they were 

unavailable for non-particpants. It is possible that enrollment information and incident cancer do 

not adequately represent the participation experience of farmers who develop other medical 

conditions during follow-up. I was also unable to evaluate associations between updated 

agricultural work and participation for the full cohort. Engagement in farming activities after 

enrollment may be an important predictor of participation in later interviews. In addition, it is 

possible that different criteria for identifying variables important in predicting participation 

would produce an alternative set of predictor variables. Although this is true, I demonstrated that 

using the identified set of variables, I was able to estimate weights that produced RR and RD 

estimates from the sub-cohort of participants that were similar to the full-cohort estimates. This 

supports the idea that weight models were well-specified. Further, I found that results estimated 

using IPSW were robust to the inclusion of several additional variables in weight-generation 

models. However, weight models were sensitive to the inclusion of variables with large amounts 

of missing data and to the exclusion of variables identified here as strongly associated with 

participation. This illustrates the importance of meeting the assumptions implicit in the use of 

inverse probability weighting including no model misspecification [169]. Finally, it must be 

noted that the three examples used to examine the potential for selection bias represent a small 

set of assumptions. Many other sets of conditions could be explored, which may result in 

alternative conclusions.  
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Specific to the AHS, understanding the make-up of the cohort participating in the 2005-

2010 interview can help focus efforts on ensuring participation in future interviews and guide 

analyses aimed at evaluating associations between agricultural work and incident disease self-

reported by participants. Beyond the AHS, this investigation serves as an applied example 

supporting previous theoretical work regarding the effects of attrition on the estimation of effect 

estimates from long-term cohort studies. This work also demonstrates that statistical tools are 

available for evaluating the impact of attrition on results, particularly if detailed information on 

predictors of attrition is collected at study enrollment.  
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Figures and Tables 

Figure 3.1. Directed acyclic graphs illustrating the associations between ever smoking (E), the 

cancer outcome of interest (D), a vector of covariates (Z), and selection (S) among 24,171 

farmers who participated in the 2005-2010 interview. The three associations depicted are ever 

smoking and A) incident lung cancer; B) incident bladder cancer; and, C) incident prostate 

cancer. Dotted lines indicated associations induced by conditioning on selection (a collider). + 

signs indicate the strength of the association between E, D, and Z. 
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Figure 3.2. Description of participation and non-participation in the 2005-2010 interview, 

Agricultural Health Study. 
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Figure 3.3. Standardized risk ratios (95% CI) indicating associations between ever smoking and 

A) incident lung cancer; B) incident bladder cancer; and, C) incident prostate cancer among 

52,394 farmers present at enrollment and the sub-cohort of 24,171 farmers participating in the 

2005-2010 interview.
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Figure 3.4. Standardized risk differences/1,000 persons (95% CI) indicating associations 

between ever smoking and A) incident lung cancer; B) incident bladder cancer; and, C) incident 

prostate cancer among 52,394 farmers present at enrollment and among the sub-cohort of 24,171 

farmers participating in the 2005-2010 interview.  

 

 

 

 



 

 

Table 3.1. Distribution of stabilized inverse probability of exposure and selection weights applied to analyses of the 

association between ever smoking and 1) incident lung cancer; 2) incident bladder cancer; and, 3) incident prostate cancer.  

  Mean SD Min 5th 25th 50th 75th 95th Max Sum 

IPSW|E,Z,D                     

Lung cancer 0.9999 0.2361 0.5529 0.7206 0.8332 0.9710 1.1248 1.4088 6.6040 48208 

Bladder cancer 0.9999 0.2227 0.5875 0.7313 0.8438 0.9735 1.1265 1.4053 5.5454 48205 

Prostate cancer 0.9999 0.2251 0.5849 0.7282 0.8354 0.9662 1.1204 1.4041 5.8415 47004 

IPSW|E,Z 0.9999 0.2226 0.5879 0.7314 0.8433 0.9735 1.1275 1.4046 5.5121 48205 

IPEW Full cohort
a
 

Lung cancer
a
 1.0000 0.3370 0.5603 0.6533 0.7816 0.9251 1.0780 1.7023 6.7487 49198 

Bladder cancer 1.0002 0.4056 0.4965 0.6148 0.7386 0.8691 1.1521 1.7444 7.2308 47016 

Prostate cancer 0.9995 0.3337 0.5667 0.6500 0.7888 0.9312 1.0717 1.7291 4.2260 47929 

IPEW Sub-cohort
a
 

Lung cancer 1.0005 0.3850 0.5260 0.6415 0.7612 0.8907 1.1112 1.7506 10.5890 23109 

Bladder cancer 1.0010 0.4613 0.4744 0.5948 0.7278 0.8383 1.1745 1.8154 9.9001 22235 

Prostate cancer 0.9995 0.3731 0.5219 0.6425 0.7668 0.8974 1.1046 1.7538 4.6703 22457 

IPEW*IPSW|E,Z,D 

Lung cancer 0.9774 0.5065 0.4426 0.5788 0.7188 0.8276 1.0175 1.8181 13.3305 21713 

Bladder cancer 0.9772 0.5598 0.4046 0.5413 0.6746 0.8283 1.0473 2.0028 12.5342 21708 

Prostate cancer 0.9794 0.4993 0.4312 0.5783 0.7220 0.8412 1.0263 1.8173 8.6708 21186 

IPEW*IPSW|E,Z           

Lung cancer 0.9786 0.5052 0.4432 0.5799 0.7206 0.8336 1.0133 1.8253 13.4019 21739 

Bladder cancer 0.9772 0.5595 0.4045 0.5453 0.6807 0.8277 1.0485 2.0133 12.5300 21707 

Prostate cancer 0.9776 0.4972 0.4648 0.5811 0.7167 0.8380 1.0207 1.8167 8.1685 21147 

SD = Standard deviation 

IPSW|E,Z = inverse probably of selection weights conditional on ever smoking (E) and (Z) which includes age, state, race/ethnicity, education, 

marital status, and alcohol consumption. 

IPSW|E,Z,D = inverse probably of selection weights conditional on ever smoking (E), (Z), and the specified cancer outcome (D). 
a
 Estimated using indicator variables for age at censoring, state, gender, race/ethnicity, education, and marital status. Alcohol consumption was 

included for the ever smoking-bladder cancer association. The ever smoking-prostate cancer analysis was restricted to male farmers. 
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Table 3.2. Associations between demographic and lifestyle variables reported at enrollment (1993-1997) and participation in 

the 2005-2010 interview among 52,394 farmers, Agricultural Health Study.  

 Enrollment 

Enrolled Participants Non-participants       

  
Refusals/Exclusions Deaths 

  
Wald 

characteristics N =52394 N = 24171 %
a
 N = 24682 %

a
 N = 3541 %

a
 β

b
 SE χ

2
 

Age 

   

  

  

  

   <30 years 4493 1443 32 3019 67 31 1 -0.65 0.04 221.61 

30-39 years 12141 5205 43 6788 56 148 1 -0.23 0.03 67.66 

40-49 years 14108 7012 50 6749 48 347 2 Ref 

  50-59 years 11155 5913 53 4491 40 751 7 0.21 0.03 51.84 

60-69 years 7768 3781 49 2723 35 1264 16 0.11 0.03 10.72 

70-79 years 2487 784 32 836 34 867 35 -0.54 0.06 84.98 

80 + years 242 33 14 76 31 133 55 -1.84 0.29 40.73 

State 

   

  

  

  

   Iowa 31876 15760 49 14572 46 1544 5 Ref 

  North Carolina 20518 8411 41 10110 49 1997 10 -0.23 0.02 93.91 

Gender 

   

  

  

  

   Female 1362 674 49 616 45 72 5 0.23 0.07 10.36 

Male 51031 23496 46 24066 47 3469 7 Ref 

  Race/Ethnicity 

   

  

  

  

   White 49345 23202 47 22891 46 3252 7 Ref 

  Black 1172 336 29 705 60 131 11 -0.55 0.10 32.29 

Hispanic 523 206 39 285 54 32 6 -0.48 0.19 6.69 

Other 288 93 32 153 53 42 15 -0.25 0.11 5.55 

Missing 1066 
    

  

  

   Education 

   

  

  

  

   < High school degree 5224 1840 35 2580 49 804 15 -0.32 0.04 57.56 

High school grad/GED 24061 10739 45 11720 49 1602 7 Ref 

  Some college 12119 5988 49 5608 46 523 4 0.23 0.02 83.31 

≥ College grad 8589 4740 55 3490 41 359 4 0.44 0.03 239.30 
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 Enrollment 

Enrolled Participants Non-participants       

  
Refusals/Exclusions Deaths 

  
Wald 

characteristics N =52394 N = 24171 %
a
 N = 24682 %

a
 N = 3541 %

a
 β

b
 SE χ

2
 

Missing 2401 
    

  

  

   Marital Status 

   

  

  

  

   Married/Living as 43692 21114 48 19468 45 3110 7 Ref 

  Divorced/Separated 2299 756 33 1437 63 106 5 -0.57 0.05 116.81 

Widowed/Never married 6143 2228 36 3617 59 298 5 -0.24 0.03 48.51 

Missing 260 260 
   

  

  

   Smoking status (pack years) 

  

  

  

  

   Never  26690 13031 49 12476 47 1183 4 Ref 

  Former, <5  5635 2907 52 2448 43 280 5 0.07 0.03 4.54 

Former, 5-29 6168 2974 48 2654 43 540 9 -0.06 0.03 3.63 

Former, ≥ 30 2831 1275 45 1060 37 496 18 -0.12 0.05 6.80 

Current, <15 2980 1027 34 1825 61 128 4 -0.35 0.05 57.49 

Current, 15-44 3618 1405 39 1912 53 301 8 -0.37 0.04 79.66 

Current,  ≥45 1263 503 40 550 44 210 17 -0.36 0.07 26.94 

Missing 3209 
    

  

  

   Alcohol consumption
c
 

    

  

  

   None 16837 7936 47 7255 43 1646 10 Ref 

  Light drinker 30521 14481 47 14603 48 1437 5 -0.10 0.02 17.95 

Heavy drinker 1113 375 34 708 64 30 3 -0.42 0.07 32.80 

Missing 3923 3923                 
a
 The % shown is the proportion of participation, or non-participation (by death and refusals/exclusions), by the specified level of each 

enrollment characteristic. 
b 
β coefficient is the change in log odds of participation comparing the specified level of each characteristic to the referent. 

c
 Heavy drinkers reported consuming five or more drinks on the same occasion on each of five or more days in the past 30 days, light 

drinkers reported consuming at least one drink on at least one day during the past 12 months but did not qualify as a heavy drinker 

[187].  
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  Table 3.3. Associations between diagnosed medical conditions measured at enrollment (1993-1997) and participation in the 

2005-2010 interview among 52,394 farmers, Agricultural Health Study. 

  Enrolled Participants Non-participants       

Medical diagnoses
a 

  
  Refusals/Exclusions Deaths   

  
reported at enrollment N =52394 N = 24171 %

b
 N = 24682 %

b
 N = 3541 %

b
 Β

c
 SE Wald χ

2
 

Heart disease 2637 1122 43 933 35 582 22 -0.22 0.04 26.26 

Asthma 2599 1245 48 1169 45 185 7 0.03 0.04 0.60 

Other chronic lung  

disease 
1808 850 47 707 39 251 14 0.03 0.05 0.33 

Kidney disease 481 226 47 164 34 91 19 0.02 0.10 0.03 

Diabetes 1471 578 39 586 40 307 21 -0.36 0.06 41.48 

Parkinson's  75 25 33 27 36 23 31 -0.59 0.26 5.00 

Depression 1828 886 48 772 42 170 9 0.03 0.05 0.36 

Tuberculosis 113 52 46 51 45 10 9 0.01 0.20 <0.01 

Pneumonia 7137 3550 50 2992 42 595 8 0.07 0.03 7.70 

a
 Data were missing for 1-8% of medical diagnoses. 

b
 The % shown is the proportion of participation, or non-participation (by death and refusals/exclusions), by the specified level of each 

enrollment characteristic. 
c 
β coefficient is the change in log odds of participation comparing the specified level of each characteristic to the referent adjusted for 

age, state, race/ethnicity, education, smoking, and alcohol consumption.  
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Table 3.4. Associations between pesticide use variables reported at enrollment (1993-1997) and participation in the 2005-2010 

interview among 52,394 farmers, Agricultural Health Study.  

 

Enrolled Participants Non-participants 

   Pesticide use at 
   

Refusals/Exclusions Deaths 
   

enrollment N =52394 N = 24171 %
a
 N = 24682 %

a
 N = 3541 %

a
 β

b
 SE Wald χ

2
 

Ever mixed/applied pesticides 

  

        

   Never 450 120 27 305 68 25 6 Ref 

  Ever   50620 23643 47 23613 47 3364 7 0.58 0.12 23.8 

Missing 1324 
    

  

  

   Personally apply pesticides 

  

  

  

  

   Never 2253 855 38 1227 54 171 8 Ref 

  < half the time 11330 4962 44 5575 49 793 7 0.18 0.04 24.81 

≥ half the time 34728 16951 49 15641 45 2136 6 0.35 0.03 111.09 

Missing 4083 
    

  

  

   Lifetime years of mixing/applying 

 

  

  

  

   None 498 143 29 326 65 29 6 Ref 

  ≤ 1 year 1116 409 37 644 58 63 6 0.11 0.08 2.05 

2-5 years 5571 2247 40 3060 55 264 5 0.23 0.05 20.48 

6-10 years 7469 3175 43 3892 52 402 5 0.22 0.05 20.63 

11-20 years 15987 7644 48 7611 48 732 5 0.32 0.05 48.05 

21-30 years 11672 5978 51 4888 42 806 7 0.34 0.05 52.76 

>30 years 6494 3339 51 2298 35 857 13 0.41 0.05 64.80 

Missing 3587 
    

  

  

   Days/year mixing/applying 

  

  

  

  

   None 498 143 29 326 65 29 6 Ref 

  < 5 days 8691 4132 48 3811 44 748 9 0.39 0.05 72.75 

5-9 days 11330 5498 49 5028 44 804 7 0.36 0.05 65.50 

10-19 days 14349 7156 50 6388 45 805 6 0.42 0.04 89.58 

20-39 days 9240 4206 46 4541 49 493 5 0.28 0.05 37.37 
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Enrolled Participants Non-participants 

   Pesticide use at 
   

Refusals/Exclusions Deaths 
   

enrollment N =52394 N = 24171 %
a
 N = 24682 %

a
 N = 3541 %

a
 β

b
 SE Wald χ

2
 

40-59 days 2408 984 41 1300 54 124 5 0.18 0.06 9.60 

60-150 days 1572 589 37 893 57 90 6 0.11 0.07 2.66 

> 150 days 349 120 34 205 59 24 7 -0.01 0.13 <0.01 

Missing 3957 
  

  

  

  

   Ever use
c 
 

   

  

  

  

   Fungicides 19094 8944 47 8735 46 1415 7 0.15 0.02 47.34 

Fumigants 12168 5890 48 5241 43 1037 9 0.21 0.02 72.35 

Herbicides 49678 23327 47 23068 46 3283 7 0.28 0.06 24.97 

Insecticides 47312 22487 48 21692 46 3133 7 0.29 0.04 52.66 

Organochlorines 25465 13190 52 10016 39 2259 9 0.26 0.02 150.40 

Organophosphates 44796 21443 48 20476 46 2877 6 0.19 0.03 38.01 

Carbamates 33222 16260 49 14563 44 2399 7 0.25 0.02 137.94 

Pyrethroids 11006 5604 51 4947 45 455 4 0.14 0.02 34.82 

Triazines 39260 18834 48 17967 46 2459 6 0.04 0.02 3.42 

Phenoxy 38852 18855 49 17452 45 2545 7 0.12 0.02 27.79 

Use of chemically resistant gloves 

 

  

  

  

   No  16021 6697 42 8412 53 1710 11 Ref 

  Yes 34112 16618 49 16264 48 1830 5 0.10 0.02 20.48 

Missing 8                   
a
 The % shown is the proportion of participation, or non-participation (by death and refusals/exclusions), by the specified level of each 

enrollment characteristic. 
b 
β coefficient is the change in log odds of participation comparing the specified level of each characteristic to the referent adjusted for 

age, state, race/ethnicity, education, smoking, and alcohol consumption. 
c 
Derived from reported use of individual pesticides. Fungicides include benomyl, captan, chlorothalonil, maneb/mancozeb, metalaxyl, 

and ziram. Fumigants include aluminum phosphide, carbontetrachloride/carbon disulfide (80/20 mix), ethylene dibromide, and methyl 

bromide. Herbicides include alachlor, butylate, chlorimuron-ethyl, dicamba, EPTC, glyphosate, imazethepyr, metolachlor, paraquat, 

pendimethalin, petroleum oil, trifluralin, phenoxy (2,4-D, 2,4,5-T, 2,4,5-TP), triazines (atrazine, cyanazine, metribuzin). Insecticides 

include carbamates (aldicarb, carbaryl, carbofuran), organochlorines (aldrin, chlordane, DDT, dieldrin, heptachlor, lindane, toxaphene), 

organophosphates (chlorpyrifos, coumaphos, diazinon, dichlorvos, fonofos, malathion, parathion, phorate, terbufos, trichlorfon, and 

pyrethroids (permethrin for animals, permethrin for crops). Data were missing for 1-12% of pesticide use variables.  
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Table 3.5. Associations between farming characteristics measured at enrollment (1993-1997) and participation in the 2005-

2010 interview among 52,394 farmers, Agricultural Health Study.  

 
Enrolled Participants Non-participants 

   Farm characteristics  
   

Refusals/Exclusions Deaths 
   

at enrollment N =52394 N = 24171 %
a
 N = 24682 %

a
 N = 3541 %

a
 β

b
 SE Wald χ

2
 

Size of farm (acres) 

   

  

  

  

   Didn't work on a farm 1875 780 42 869 46 226 12 -0.10 0.05 3.71 

< 5  1787 877 49 707 40 203 11 0.27 0.05 24.72 

5-49 4557 2235 49 1839 40 483 11 0.23 0.04 37.01 

50-199 8311 4063 49 3536 43 712 9 Ref 

  200-499 13076 6326 48 6036 46 714 5 -0.13 0.03 22.51 

500-999 10339 4871 47 5058 49 410 4 -0.22 0.03 52.58 

>1,000 6849 2886 42 3771 55 192 3 -0.34 0.03 103.54 

Missing 5600 
    

  

  

   Work in swine 

confinement 

   

  

  

  

   No 38440 17282 45 18173 47 2985 8 Ref 

  Yes 13954 6889 49 6509 47 556 4 0.06 0.02 7.74 

Work in poultry 

confinement 

   

  

  

  

   No 50445 23309 46 23718 47 3418 7 Ref 

  Yes 1949 862 44 964 49 123 6 0.04 0.05 0.81 

No. of poultry 

   

  

  

  

   Didn't work on a 

farm/None 
41042 19316 47 19178 47 2548 6 Ref 

  < 50 2128 1119 53 894 42 115 5 0.30 0.05 40.88 

50-99 527 269 51 232 44 26 5 0.17 0.09 3.33 

100-999 607 286 47 277 46 44 7 0.04 0.08 0.20 

1,000-10,000 127 61 48 60 47 6 5 0.22 0.19 1.36 

> 10,000 990 406 41 524 53 60 6 -0.10 0.07 2.04 

Missing 6973 
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Enrolled Participants Non-participants 

   Farm characteristics  
   

Refusals/Exclusions Deaths 
   

at enrollment N =52394 N = 24171 %
a
 N = 24682 %

a
 N = 3541 %

a
 β

b
 SE Wald χ

2
 

No. of livestock 

   

  

  

  

   Didn't work on a 

farm/None 
15477 6706 43 7491 48 1280 8 Ref 

  < 50 6349 2972 47 2866 45 511 8 0.17 0.03 30.19 

50-99 3824 1874 49 1694 44 256 7 0.18 0.04 24.53 

100-499 8851 4508 51 3918 44 425 5 0.19 0.03 46.17 

500-999 5209 2570 49 2455 47 184 4 0.17 0.03 23.86 

1,000+ 6359 3017 47 3142 49 200 3 0.04 0.03 1.63 

Missing 6325 
    

  

  

   Major income producing animals 

  

  

  

  

   Beef cattle 19398 9540 49 8753 45 1105 6 0.09 0.02 21.18 

Dairy cattle 2884 1503 52 1257 44 124 4 0.21 0.04 27.44 

Hogs/swine 16492 8085 49 7693 47 714 4 0.04 0.02 2.81 

Poultry 1948 892 46 922 47 134 7 0.06 0.05 1.28 

Sheep 1670 883 53 699 42 88 5 0.11 0.05 4.31 

Eggs 643 289 45 300 47 54 8 0.03 0.08 0.16 

Other farm animals 951 429 45 463 49 59 6 -0.04 0.07 0.32 
a
 The % shown is the proportion of participation, or non-participation (by death and refusals/exclusions), by the specified level of each 

enrollment characteristic. 
b 
β coefficient is the change in log odds of participation comparing the specified level of each characteristic to the referent adjusted for 

age, state, race/ethnicity, education, smoking, and alcohol consumption. 
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Table 3.6. Associations between ever smoking (E) reported at enrollment (1993-1997); incident lung, bladder, and prostate 

cancer (D) obtained from state cancer registries and participation (S) in the 2005-2010 interview among 52,394 farmers, 

Agricultural Health Study.  

  Enrolled Participants Non-participants 
β

a
 SE 

Wald 

χ
2
 

    
Refusals/Exclusions Deaths 

  N = 52394
b
 N = 24171 %

c
 N = 24682

b
 %

c
 N = 3541

b
 %

c
       

Ever smoker 

   

  

   

  

  No 25175 13031 49 12476 47 1183 4 Ref 

  Yes 21845 10622 45 11107 47 2122 9 -0.18 0.02 88.79 

                      

Lung cancer 
  

  

   

  

  No 48635 22985 47 22769 47 2881 6 Ref 

  Yes 555 111 20 155 28 289 52 -1.17 0.10 125.17 

Bladder cancer 
  

  

   

  

  No 45552 21622 47 21180 46 2750 6 Ref 

  Yes 240 125 52 69 29 46 19 0.19 0.12 2.48 

Prostate cancer 
  

  

   

  

  No 42360 19913 47 19989 47 2458 6 Ref 

  Yes 1973 1124 57 662 34 187 9 0.36 0.05 62.91 
a 
β coefficient is the change in log odds of participation comparing the specified level of each characteristic to the 

referent  adjusted for age, state, race/ethnicity, education, marital status, and alcohol consumption. 
b
 Numbers do not sum to totals because of exclusions for prevalent cancer cases (lung cancer: N = 28; bladder cancer: N 

= 67; prostate cancer: N = 418) and farmers missing data on predictors of participation (lung cancer: N = 5370; bladder 

cancer: N = 5359; prostate cancer: N = 5107). 
c
 The % shown is the proportion of participation, or non-participation (by death and refusals/exclusions) by the specified 

level of each enrollment characteristic. 
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Table 3.7. Joint distribution of ever smoking and 1) incident lung cancer; 2) incident bladder 

cancer; and, 3) incident prostate cancer among the full cohort (N = 52,394) and the sub-cohort of 

farmers participating in the 2005-2010 interview (N = 24,171).  

  Case Participation Non-case Participation 
Cumulative Incidence

b
 

/1000 persons 

 
N (%

a
) N (%

a
) (95% CI)  

Lung cancer       

Full cohort 
   

 Never Smoker 59 (100) 26039 (100) 2.8 (2.1, 3.6) 

Ever Smoker 496 (100) 22596 (100) 17.7 (16.2, 19.4) 

Phase 3 cohort 
   

 Never Smoker 17 (29) 12772 (49) 1.4 (0.9, 2.4) 

Ever Smoker 94 (19) 10213 (45) 7.4 (6.0, 9.1) 

Bladder cancer       

Full Cohort 
   

 Never Smoker 67 (100) 25093 (100) 3.1 (2.4, 4.0) 

Ever Smoker 173 (100) 20432 (100) 7.4 (6.3, 8.6) 

Phase 3 Cohort 
   

 Never Smoker 37 (55) 12354 (51) 3.3 (2.4, 4.7) 

Ever Smoker 88 (51) 9268 (50) 8.3 (6.6, 10.5) 

Prostate cancer       

Full cohort 
   

 Never Smoker 995 (100) 23263 (100) 48.3 (45.5, 51.4) 

Ever Smoker 977 (100) 19091 (100) 45.3 (42.7, 48.1) 

Phase 3 cohort 
   

 Never Smoker 578 (58) 11344 (48) 56.6 (52.2, 61.4) 

Ever Smoker 545 (56) 8567 (44) 57.1 (52.6, 61.9) 

CI = confidence interval 
a
 The % shown is the proportion of farmers participating in the respective exposure-disease category.  

b
 Cumulative incidence is estimated from log binomial models with inverse probability of exposure 

weights. It is presented per 1,000 persons. 
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CHAPTER 4. 

ANIMAL PRODUCTION AND CHRONIC OBSTRUCTIVE PULMONARY DISEASE 

AMONG PRIVATE PESTICIDE APPLICATORS 

Introduction 

High levels of organic dust, gases and chemicals are present in the animal production 

environment [13, 57, 188, 189]. Inhalation of these agents can result in an inflammatory response 

in the airways [11]. Chronic obstructive pulmonary disease (COPD), an important cause of 

morbidity and mortality in the United States, arises from an enhanced chronic inflammatory 

response in the airways to noxious particles or gases [24]. The term COPD includes chronic 

bronchitis, emphysema, and other causes of irreversible airway obstruction. Although smoking is 

the most important risk factor for COPD, research has demonstrated that the fraction of COPD in 

the United States related to occupational exposures may be between 15-20% and as high as 30% 

for never smokers [31, 98, 109]. This research has generated a call to identify work-related risk 

factors for COPD. 

Large studies of surveillance data from the United States have indicated an increased risk 

of COPD for workers employed in the agriculture industry [31, 85, 114], and specifically for 

persons involved in animal production [85]. Using small, cross-sectional studies researchers have 

shown associations between  levels of organic dust and endotoxin in animal production facilities 

and increased prevalence of conditions considered under the term COPD, including chronic 

cough and phlegm, chronic bronchitis, and airway obstruction [13, 189]. A small but growing 

body of literature also supports the potential for a link between exposure to pesticides and COPD 

[128-130, 133, 135, 190], including the insecticides commonly used to control pests in the 
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animal production environment [130, 133]. Finally, studies of other occupational groups have 

demonstrated associations between occupational exposure to cleaning agents used in the animal 

production environment (e.g., chloramine-T, quaternary ammonia) and related respiratory 

conditions such as asthma [191-193]  

Despite recognition of a link between specific exposures present in the animal production 

environment and symptoms indicative of COPD, only one previously published study focuses on 

the association between work in animal production and COPD explicitly. In the previous study, 

the prevalence of COPD among never-smoking animal farmers working in confinement 

buildings in Europe was 17% [14]. In addition, limited research into COPD-related symptoms 

has been conducted in the United States among large cohorts of farmers or farm workers with 

detailed information about smoking and other relevant confounding or modifying factors. 

Finally, few studies have had the ability to consider the contribution of exposure to insecticides 

as part of the animal production environment. 

The aim of the present analysis is to estimate associations between exposure to animals 

and use of insecticides and COPD among farmers in the AHS. The AHS provides a unique 

opportunity to examine these associations in a large cohort of farmers from two major animal 

producing areas in the United States. 

Methods 

Study Population 

Between 1993 and 1997, pesticide applicators applying for or renewing their pesticide-

use license in Iowa and North Carolina were invited to enroll in the AHS [41]. A total of 52,394 

private pesticide applicators, hereafter “farmers,” enrolled in the study by completing an 
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enrollment questionnaire in which information about demographics and lifestyle, medical 

history, farm characteristics, and farming activities was requested. Farmers were sent home with 

a take-home questionnaire requesting additional information about medical history, farm 

characteristics, and farming activities, which 22,916 (44%) returned. Farmers who did not return 

the take-home questionnaire were older but did not substantially differ in other ways from those 

who returned the questionnaire [194]. During a median 12 years, two computer assisted 

telephone interviews (CATIs) were conducted. 33,457 farmers (64%) responded to the first 

interview (1999-2003) and 24,171 farmers (46%) responded to the second interview (2005-

2010). A total of 21,142 farmers responded to both interviews. Information on work with 

animals and use of insecticides was collected as part of all three interviews while detailed 

information on respiratory symptoms and diagnoses was collected only during the 2005-2010 

interview. 

Investigators have previously compared enrollment characteristics of farmers 

participating in the 1999-2003 interview to those who did not participate [136]. Chapter 3 

provides an in-depth investigation and discussion of participation in the 2005-2010 interview. 

Demographic and lifestyle characteristics were predictive of participation at each interview. 

Examples used to evaluate the extent of bias that may impact studies restricted to interview 

participants indicate that substantial bias should be of concern when it is hypothesized that the 

exposure and outcome under study were strongly predictive of participation leading to 

differential participation of cases or non-cases with respect to exposure. The exposures of 

interest here, use of insecticides and raising animals, when measured at enrollment, were not 

strongly predictive of participation in the 2005-2010 interview. Chronic lung disease reported at 

enrollment was also not associated with participation in the 2005-2010 interview. The outcome 
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of interest, COPD, although a major cause of morbidity and mortality, is a chronic condition that 

is typically not associated with rapid death or severe disability upon onset of symptoms or 

diagnosis [195]. For these reasons, I assume that effect estimates estimated from farmers 

participating in the 2005-2010 interview would likely be similar to those obtained from the full 

cohort had COPD information been available for all farmers in the AHS. Consequently, the 

analyses presented here are restricted to the 24,171 farmers participating in the 2005-2010 

interview of the AHS. I excluded an additional 453 farmers because of missing information on 

COPD diagnoses and symptoms. Finally, I excluded 997 farmers with missing information on 

important covariates. After all exclusions, the study population consisted of 22,721 farmers. 

The AHS was approved by the Institutional Review Boards (IRBs) of the National 

Institutes of Health and its contractors. The current analysis was also approved by the IRB of the 

University of North Carolina at Chapel Hill. Farmers indicated informed consent by completing 

the enrollment questionnaire. Copies of all questionnaires are available on the study Web site 

(http://www.aghealth.nih.gov/collaboration/questionnaires.html).  

Exposure assessment 

Raising animals and personal use of insecticides registered for use on or around animals 

were used as proxies for exposure to the animal production environment. Questions about 

exposures at each interview differed slightly. See Figure 4.1 for a detailed description of the 

information collected at each interview.  

Raising animals 

Lifetime history of raising animals was not available; information about raising animals 

was only available during specific periods while each farmer was under study. Farmers reported 

http://www.aghealth.nih.gov/collaboration/questionnaires.html
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the presence of beef cattle, dairy cattle, hogs, poultry (including broilers and layers), and 

sheep/goats present on the property where each farmer lived or worked at the time of interview 

(enrollment), in the year prior to interview (1999-2003), and since the time of last interview 

(2005-2010). Binary indicator variables were created to indicate the presence of each type of 

animal at each interview.  

The number of each type of animal on the property was reported at the two follow-up 

interviews. Although information about confinement and waste management would be necessary 

to distinguish between industrial vs. pasture-raised operations, I used the number of animals as 

an approximate indicator of the presence of industrial animal production on a farmer’s property. 

This approximation was made by applying the US Environmental Protection Agency (US EPA) 

regulatory definitions for confined animal feeding operations (CAFOs) [196] to the reported 

number of each type of animal. I categorized farmers as working on an operation with no 

animals or on an operation that met the definition of a small or medium/large animal feeding 

operation. These assignments were made assuming that all reported animals were of mature 

weight. Small operations included both operations with a small number of animals raised on 

pasture without confinement and operations that may be raising animals in confinement. These 

operations would be regulated as a CAFO if the permitting authority deemed the operation to be 

a significant contributor of pollutants. Medium and large operations are likely to be raising 

animals in confinement, and, therefore, these operations were considered as one category. 

Variables indicating the type of animal operation based on each animal type were combined into 

a summary variable indicating the type of animal operation based on all animal types produced 

on the property. Only results for the summary variable are presented here as this variable 
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accounts for the production of several animal types on one property and preserved adequate 

sample size. 

Insecticide use 

Lifetime use of insecticides belonging to major classes of insecticides formerly or 

currently registered to control pests on animals or in and around animal production facilities was 

available from each interview. Table 4.1 provides a list of these insecticides and the animals 

they are used on or around. I examined ever use, current use, and lifetime days of use of ten 

organophosphates (chlorpyrifos, coumaphos, diazinon, dichlorvos, fonofos, malathion, parathion, 

phorate, trichlorfon, terbufos), one carbamate (carbaryl), and one pyrethroid insecticide 

(permethrin) reported at all three interviews. At enrollment, lifetime days of use was reported 

only on the take-home questionnaire for four insecticides (diazinon, malathion, parathion, and 

carbaryl). Ever use, current use, and lifetime days of use of six additional pyrethroids/pyrethrins 

(pyrethrins, pyrethrum, cyfluthrin, lambda cyhalothrin, esfenvalerate, tefluthrin) were reported as 

part of the two follow-up interviews but not at enrollment.  

Binary indicator variables for each insecticide indicated lifetime ever or never use at each 

interview. Lifetime days of use for each insecticide were calculated as the product of frequency 

of application (days/year) and duration of application (years) reported at each interview. I 

examined the distribution of lifetime days of use of each insecticide. I categorized lifetime days 

to preserve the shape of the association with COPD and to ensure adequate sample size of cases 

and non-cases within each exposure level. After exploration of multiple cut points a three-level 

variable categorized as never users, users with less than or equal to median days of use, and users 

with greater than median days of use was used.  
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Outcome assessment  

As part of the 2005-2010 interview, farmers reported ever receiving a diagnosis of 

chronic bronchitis, emphysema, or COPD. Farmers also reported cough and bringing up phlegm 

and the number of years they experienced these symptoms. For this analysis, I define COPD in 

two ways: 1) report of at least one relevant diagnosis (chronic bronchitis, emphysema, COPD); 

and, 2) report of symptoms that meet the clinical definition of chronic bronchitis (productive 

cough for three months or more during two consecutive years) [87]. Both definitions are 

considered here as the term COPD encompasses a range of conditions – some resulting in 

airflow limitation (chronic obstructive bronchiolitis and emphysema), and chronic bronchitis 

which is not necessarily associated with airflow limitation [197]. Consequently, considering both 

diagnoses and relevant symptoms allows for the identification of potential exposure effects on 

the range of conditions included under the term COPD [197].  

Because COPD diagnoses and symptoms were not reported at enrollment, it was not 

possible to confidently exclude prevalent cases. Further, because of the questions used to collect 

exposure information at each interview it was not possible to establish clear temporality of 

changes in exposure during study follow-up and onset of symptoms or diagnosis.  Consequently, 

this analysis will examine the prevalence of COPD reported at the 2005-2010 interview.  

Statistical Analysis 

I examined the distribution of demographic and lifestyle characteristics reported at 

enrollment for all participants and by COPD status to describe the study population. I then 

examined the distribution of animal and insecticide use variables reported at each interview to 

identify temporal variation in production of animals or use of insecticides for the study 

population. I also examined temporal variation in animal production and insecticide use by 
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COPD status as differences between cases and non-cases over time could indicate a healthy-

worker survivor effect.  

Using previous literature and directed acyclic graphs (DAG) [198], I identified age, state, 

gender, education, and smoking as confounders of associations between animal production, 

insecticide use and COPD. For this analysis I used stabilized inverse probability of exposure 

weights (IPEW) to create a “pseudo-population” where the distributions of confounding 

variables are similar across exposure groups. This is a form of direct standardization that results 

in no association between the exposure and confounders in the analysis population [169-171]. 

Linear, logistic, or polytomous/ordinal logistic regression models were used to estimate the 

predicted probability of exposure (i.e., propensity scores), conditional on the identified 

confounders for continuous, binary, and multi-level exposures, respectively. For these models, I 

included age, state, gender, education and smoking categorized as shown in Table 4.2. Next, I 

assigned each individual a weight equal to the inverse of the predicted probability that the person 

had his/her observed exposure. Finally, to stabilize each individual’s weight, I multiplied each 

one by the marginal probability of their observed exposure level. 

Stabilized weights were applied to log-binomial models that included the exposure as the 

only explanatory variable. From these models, I estimated prevalence ratios (PRs) quantifying 

the associations between each exposure variable and prevalent COPD reported as part of the 

2005-2010 interview. The application of weights induces within-subject correlation by weighting 

individuals to represent themselves as well as others with similar covariate patterns. To account 

for this within-subject correlation, I used robust variance estimates to calculate standard errors 

and 95% confidence intervals (CIs) [170]. These robust estimates are equivalent to generalized 

estimating equation estimates using an independent working covariance matrix [173]. 
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I used four criteria to evaluate the appropriateness of calculated weights: 1) nearness of 

the mean to one; 2) the size and number of extreme weights (<0.05 or >20); 3) positivity; and, 4) 

an informal validity-precision tradeoff [169]. To informally assess the validity-precision tradeoff, 

I truncated the stabilized weights by resetting weights less (or greater) than a designated 

percentile to the value of that percentile. Treating the PR derived from the untruncated weights 

as most “valid,” I examined how the weights, the corresponding PRs, and their 95% CIs changed 

with increasing truncation. Because the untruncated weights demonstrated means close to one 

with few extreme values, I present results generated using the untruncated weights only. The 

distribution of the weights used in these analyses are presented in Supplementary Table S4.1. 

Based on previous literature, I evaluated smoking [27, 31] and early life exposure to farm 

animals [199, 200] as potential effect measure modifiers. I also evaluated state as an effect 

measure modifier because animal production practices [43, 151] and smoking rates vary by state 

[201]. I examined interactions between type of animal raised and ever/never use of the 

insecticides examined. To assess the presence of modification, I estimated two sets of IPEW 

[202]. First, I estimated stabilized weights for the modifying factors. Second, including a term 

for the modifying factor in the exposure prediction model, I estimated stabilized weights for the 

main exposure. I then multiplied the two sets of weights and applied the product of the two 

exposure weights to log-binomial models including a term for the main exposure, the modifier, 

and an interaction term between the two.  Modification on the multiplicative scale was 

considered to be present if stratum-specific PRs differed (90% CIs did not contain the other point 

estimate) or if the p-value for the Wald chi-square statistic for the interaction term was less than 

0.1. Departures from additive effects were also considered by calculating the risk for those who 
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are jointly unexposed, exposed only to one of the two exposures, and the jointly exposed. These 

risks were then used to calculate the absolute excess risk due to interaction [202]. 

I considered exposures to be associated with COPD if the confidence interval did not 

include 1.00 or if 0.87>PR>1.15 with a confidence limit ratio <2. These criteria were used to 

capture statistically significant associations and associations of the same order of magnitude 

often observed in studies of environmental and occupational exposures that do not reach 

statistical significance because of limited sample size. 

Sensitivity analyses 

I conducted several sensitivity analyses to consider the robustness of results to alterations 

in the study population and to control for confounding and selection effects. First, I reanalyzed 

the data excluding farmers <40 years old at enrollment because these individuals may require 

longer follow-up to observe COPD. I also reanalyzed the data excluding farmers reporting a 

doctor diagnosis of asthma, as asthma symptoms may be easily confused with symptoms of 

chronic bronchitis [203, 204] and have also been found to be related to use of pesticides, 

exposure to cleaning agents [191-193], and work with animals [15, 32, 39, 131, 132, 205, 206]. 

Results of these sensitivity analyses did not alter conclusions and are not presented here.  

I also re-analyzed data excluding farmers who were suspected to have COPD at 

enrollment based on reported age at diagnosis or onset of symptoms at the 2005-2010 interview 

compared with their date of enrollment. This resulted in the exclusion of 539 cases (46%) who 

reported a diagnosis of COPD and 371 cases (31%) who reported chronic bronchitis symptoms. 

Although this was a substantial number of cases, besides reducing precision, conclusions did not 

differ substantially and, therefore, results are not presented here. After establishing that results 

were fairly robust to alterations in the study population and definitions of disease status, I 
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considered alternative specification of variables in the models used to generate weights. Adding 

additional variables to the weight-estimation models and alternative coding of variables did not 

substantially alter weights or results.  

Finally, I conducted the main analysis using inverse probability of selection weights 

(IPSW) to account for the 28,223 farmers who enrolled in the AHS but did not participate in the 

2005-2010 interview. Application of IPSW conditional on enrollment characteristics identified in 

Chapter 3 did not alter conclusions and, therefore, results are not presented here. 

All statistical analyses were conducted in SAS v9.3 (Cary, NC). 

Results 

Of the 22,721 farmers included here, 1,176 (5%) reported a COPD diagnosis while 1,216 

(5%) reported symptoms meeting the clinical definition of chronic bronchitis (Figure 4.2). Little 

overlap was observed between these two groups. The 254 (1%) farmers reporting both a COPD 

diagnosis and symptoms meeting the clinical definition of chronic bronchitis are included in 

analyses of both outcomes. 

The prevalence of COPD diagnoses and chronic bronchitis symptoms increased with 

increasing age and was greater among former and current smokers compared with never smokers 

and heavy drinkers compared with never drinkers (Table 4.2). Prevalence of COPD diagnoses 

and symptoms decreased with increasing education. Prevalence of COPD diagnoses was greater 

among farmers who enrolled in North Carolina compared to those from Iowa and among females 

compared to males. However, chronic bronchitis symptoms were more prevalent among farmers 

from Iowa than from North Carolina and among males than females. 
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Changes in exposures over time 

Declines in the proportion of farmers raising each type of animal and actively using 

insecticides were observed during the study period. However, these declines did not differ by 

COPD status, or by other demographics. Changes also closely aligned with temporal trends in 

animal production and insecticide use documented in the general US population [2, 49, 207]. 

Estimates of associations with COPD diagnoses and chronic bronchitis symptoms were similar 

for exposure variables defined at each interview. Consequently, I present associations between 

exposures reported at the 2005-2010 interview and COPD diagnoses and chronic bronchitis 

symptoms wherever possible. Exposure variables from 2005-2010 interview were chosen 

because this allowed for consideration of lifetime use of insecticides, detailed information about 

raising animals, and consistency between exposure information presented.  

Animal exposures 

I observed no evidence of an association between raising animals and COPD diagnosis 

(Table 4.3). Raising beef cattle, hogs, or poultry was associated with an elevated prevalence of 

chronic bronchitis symptoms. Farmers working on small operations had an 18% greater 

prevalence of chronic bronchitis symptoms compared to those raising no animals (95% CI: 1.04, 

1.34). Farmers working on medium or large operations, likely to be raising animals in 

confinement, had 51% higher prevalence of chronic bronchitis symptoms compared to those 

raising no animals (95% CI: 1.21, 1.89). 

Insecticide Use 

Applying insecticides to farm animals or animal shelters in the year prior to enrollment 

was not associated with a COPD diagnosis; however, this activity was associated with a 22% 

increase in prevalence of chronic bronchitis symptoms (95% CI: 1.08, 1.38) (Table 4.4). Ever 
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use of the organophosphates diazinon or trichlorfon, both registered for use on or around 

animals, and ever use of permethrin for crops was associated with increased prevalence of COPD 

diagnosis. Ever use of the following insecticides registered for use on or around animals was 

associated with increased prevalence of chronic bronchitis symptoms: coumaphos, diazinon, 

dichlorvos, malathion, carbaryl, and permethrin. Ever use of parathion, an organophosphate not 

registered for use on or around animals, was also associated with increased prevalence of chronic 

bronchitis symptoms.  

When lifetime days of use were considered (Table 4.5), both categories of use of 

diazinon were associated with increased prevalence of COPD diagnosis compared with never 

users as were lifetime days of malathion use. Lifetime days of carbaryl was also associated with 

elevated prevalence of COPD diagnosis, but these associations were not statistically significant. 

Farmers reporting the highest category of lifetime days of use of coumaphos and malathion had 

increased prevalence of chronic bronchitis symptoms compared with never users. Both use 

categories of permethrin on animals were associated with greater prevalence of chronic 

bronchitis symptoms compared to never users. Users of parathion also had increased prevalence 

of chronic bronchitis symptoms, with the largest PR observed for farmers reporting less than or 

equal to the median number of days of use compared to never users.  

Discussion 

Occupational exposure to animal production has been previously linked with short-term 

decline in respiratory function [3, 5, 14-20], symptoms of respiratory irritation [4, 5, 8, 16, 19, 

21-23], and increased risk of chronic bronchitis [3, 5, 15, 19, 39, 118, 120-122, 127, 208]. 

However, few researchers have investigated the role of occupational exposure to animal 

production in the etiology of COPD including diagnosed disease and symptoms or had the ability 
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to consider insecticide use as a component of work in animal production. In this analysis of a 

large cohort of US farmers, using type and number of animals produced and personal use of 

insecticides registered for use on or around animals, I present further evidence to support a link 

between animal production and chronic bronchitis symptoms. Further, I observed some evidence 

that personal use of specific insecticides may be associated with increased prevalence of 

diagnosed COPD. These findings support concerns about the respiratory health effects of 

exposure to animal production and provide further evidence that personal insecticide use may 

either play a role in the etiology or exacerbation of COPD or serves as a marker of other 

exposures related to these outcomes among farming populations.   

Raising beef cattle, hogs, or poultry and raising animals on small, medium or large 

operations was associated with chronic bronchitis symptoms, but not with diagnosed COPD. 

Researchers have previously reported greater prevalence of chronic bronchitis  [3, 5, 19, 20, 34, 

118, 120-124, 127, 208] and cough and phlegm [5, 19, 20, 23, 73, 115-117, 120-123, 125, 126] 

among farmers and farm workers involved in production of cattle (mostly dairy), hogs, and 

poultry, mainly in industrial settings. Few researchers have considered the human respiratory 

health effects of occupational exposure to beef cattle production specifically, but similar levels of 

organic dust and endotoxin to those found in hog confinement facilities have been observed in 

cattle feedlots [209, 210].  

Although these associations were observed here, simply raising animals is a crude proxy 

for exposure to animal production. Application of US EPA  regulatory definitions [211] to 

identify operations as small, medium, or large animal feeding operations improved specificity of 

exposure to industrial animal production. Based on these definitions, medium and large 

operations are likely to be industrial simply due to the large number of animals produced. 
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However, it remains that owning or working on a medium or large operation does not indicate 

personal exposure to production. Further, I did not have information about age or size of animals, 

animal confinement practices, or waste management systems, all of which are required to 

conclusively determine type of operation. Use of these crude proxies for exposure to animal 

production likely resulted in some misclassification of exposure, which could have led to an 

exaggeration or attenuation of effects.  

Associations were not observed between raising animals and COPD diagnoses 

independently of symptoms. There may be several explanations for these discrepant results. It is 

possible that these results indicate that the biological response to work in animal production may 

manifest as chronic bronchitis symptoms that do not drive farmers to seek or receive a COPD-

related diagnosis. This hypothesis aligns with what has been reported with respect to 

occupational exposure to other dusty trades [111, 212]. It is also possible that limitations of the 

information available on animal production may partially explain the discrepancy. In addition to 

the limitations mentioned above, no information was available on personal exposure to animal 

production, including lifetime duration or intensity of work with animals. It is possible that this 

unmeasured information resulted in exposure misclassification that could operate differently in 

analyses of COPD diagnoses and chronic bronchitis symptoms. For example, if farmers with a 

COPD diagnosis removed themselves from work in animal production but those with symptoms 

remained, a healthy-worker survivor effect may be operating when considering COPD diagnoses 

as the outcome but not as strongly when considering chronic bronchitis symptoms. Researchers 

have previously documented that a healthy-worker survivor effect may influence results of 

studies of agricultural exposures and respiratory health outcomes [213-217]. Lacking lifetime 

information about work with animals, I could not directly examine the potential for the healthy-
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worker survivor effect to influence effect estimates. Finally, it is also possible that chronic 

bronchitis symptoms reported here reflect chronic bronchitis and asthma, a cause of reversible 

airway obstruction. Occupational exposures have been accepted as important in the etiology of 

asthma [111]. COPD can be difficult to distinguish without a detailed clinical assessment and 

because some overlap exists [203]. Further, evidence suggests that asthma may be an important 

risk factor for COPD [203, 204, 218-220]. In the present study, a doctor diagnosis of asthma was 

more common among those with a COPD diagnosis (29%) or chronic bronchitis symptoms 

(16%) compared with farmers who did not report a COPD diagnosis or symptoms (6%) 

demonstrating some overlap between COPD and asthma in this population.  

The observed associations between personal use of insecticides and COPD support 

mounting evidence that occupational use of insecticides may also contribute to disease burden or 

may be a marker for other relevant exposures. General use of pesticides has been linked with 

chronic bronchitis in a case-control study in Lebanon [221] as well as reduced pulmonary 

function and higher prevalence of mild and moderate or severe airway obstruction among two 

population-based cohorts in The Netherlands [128]. Among rural residents of Beijing, China, use 

of insecticides was associated with  twice the odds of cough and phlegm [222]. Similar to what I 

report here, farmers in the Iowa Farm Family Health and Hazard Surveillance Project who 

applied insecticides to livestock had twice the odds of phlegm than farmers who did not [135]. 

However, these studies lacked information on type, frequency, and duration of pesticides used 

[129]. In the present analysis, the insecticides associated with chronic bronchitis symptoms 

included the organophosphates coumaphos, diazinon, dichlorvos, malathion, and parathion; the 

carbamate carbaryl; and, the pyrethoid permethrin (for animals). Use of diazinon, malathion, 

carbaryl, and permethrin (for crops) was also associated with increased prevalence of having a 
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COPD diagnosis. In a previous investigation in the AHS among farmers responding to the take-

home questionnaire after enrollment associations between self-reported doctor diagnosis of 

chronic bronchitis and  personal use of coumaphos, diazinon, dichlorvos, malathion, parathion, 

carbaryl and permethrin along with several other pesticides were also observed [133]. 

Results from a small number of human and animal studies have indicated mechanisms by 

which exposure to insecticides may affect pulmonary function [82, 83]. However, it is also 

possible that insecticide use may serve as a proxy for exposure to other agents such as dusts, 

gases, and other chemicals (e.g., disinfectants) in the farm environment. All of the insecticides 

observed to be associated with COPD or related symptoms in the present study, except parathion, 

were or are used on or around animals. However, many of these insecticides are also used on 

crops or for other purposes [223] and, therefore, the effects seen here cannot be ascribed solely to 

use in animal production. With the exception of permethrin, pyrethroids/pyrethrins were not 

consistently associated with an increased prevalence of COPD or related symptoms. Use of 

pyrethroids/pyrethrins has been increasing over the past decade as use of organophosphates, 

which are more acutely toxic, has declined [60]. The carbamate carbaryl was also widely used in 

poultry production until 2009 when this use was terminated [224]. Because use of 

pyrethroids/pyrethrins in animal production is relatively new, farmers have not been exposed to 

these pesticides for the same duration as organophosphates. Because pyrethroid/pyrethrin use is 

increasing, associations between personal use and respiratory disease may change and, therefore, 

should continue to be monitored.  

Additional research is needed to better understand whether exposure to insecticides 

themselves or other agents in the environment where insecticides are used is most relevant for 

COPD, including the symptoms of chronic bronchitis. Future research focused on this question 
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should consider the relevance of using different pesticide formulations (e.g., sprays, dips, tags, 

and dusts), application methods, and use of personal protective equipment when working with 

insecticides to the risk of COPD. And, future research should consider and collect detailed 

information on the environment where application is occurring. These characteristics could 

influence personal exposure to insecticides, dust, gases, and other chemicals. Finally, the present 

study was limited to insecticides belonging to chemical classes registered for use in animal 

production. However, other classes of pesticides are associated with adverse respiratory health 

effects and, therefore, their association with COPD should also be considered [131, 132, 205, 

206, 225]. 

Five percent of the present study population reported a qualifying doctor diagnosis of 

COPD (Iowa: 4%; NC: 8% ) which is similar to the age-adjusted prevalence in the general 

population (6%) (Iowa: 5%; North Carolina: 7%) [99] despite a lower prevalence of smoking and 

a greater potential for a healthy-worker effect in the AHS. The 5% prevalence of chronic 

bronchitis symptoms observed in the AHS is lower than estimates of chronic bronchitis 

symptoms from other US studies of animal confinement workers (7-25%) [3, 15, 20, 116, 122, 

127, 226]. Prevalence of both COPD diagnosis and chronic bronchitis symptoms are lower than 

the estimates of COPD based on spirometry among individuals involved in animal production 

(17%) [14] and the general public (10-20%) [97]. This is not surprising, as reliance on self-report 

is known to result in an underestimate of COPD compared with spirometry [27, 29, 95, 98]. 

Spirometry or clinical confirmation of case status could have improved ascertainment of COPD 

cases in the present study. Although the lack of clinical measures is a limitation, self-reported 

diagnosis may be more representative of clinically relevant disease that has driven someone to 

seek care while spirometric results also represent those with subclinical obstruction. Reliance on 
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self-report may have resulted in misclassification of COPD status. There is no evidence to 

indicate that misclassification would be differential with respect to the exposure and, therefore, 

most likely would result in bias toward the null [95].  

In addition to limitations previously mentioned, several others should be considered when 

interpreting the results presented here. This analysis was restricted to farmers who participated in 

the 2005-2010 AHS interview. Restriction was necessary because COPD-related diagnoses and 

symptoms were not collected from all participants at previous interviews. Although it is possible 

that restriction could have induced bias, the magnitude of such bias should be negligible based 

on the results presented in Chapter 3. As presented in the previous chapter, substantial bias 

would be expected when both the exposure and outcome were predictive of participation. 

Raising animals and use of insecticides reported at enrollment were not strongly associated with 

participation in the 2005-2010 interview. Report of asthma or “other chronic lung disease” on the 

enrollment questionnaire was also not associated with participation in the interview. In addition, 

COPD is typically a slowly developing, chronic condition that does not result in rapid mortality 

or extreme disability immediately after onset of symptoms or diagnosis [195], thus making it less 

likely to interfere with participation in study activities than more acute or severe disease 

processes. Based on this information, it is unlikely that substantial bias of effect estimates would 

occur because of restriction to follow-up interview participants. Assuming negligible bias, IPSW 

would not be necessary to correct for selection effects. In sensitivity analyses, I observed that 

application of IPSW conditional on enrollment exposures and covariates strongly associated with 

participation in the 2005-2010 interview, resulted in no substantial change in results or 

conclusions.  
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In this analysis, I was unable to establish the temporal ordering of exposure and disease. 

COPD symptoms and diagnoses were only reported by most of the study population during the 

2005-2010 interview. Although farmers reported age at diagnosis and number of years of 

symptoms, these reports were made a median 12 years after enrollment and for some many years 

after the receipt of diagnosis or onset of symptoms. In addition, exposure information was 

collected every five years with questions referring to different reference periods (e.g., year prior 

to interview, since last interview). Consequently, even using timing of diagnosis or symptoms 

provided by farmers, I was unable to construct temporal ordering of exposure and disease. For 

these reasons, I was unable to confidently conduct a time-to-event analysis. However, when I 

excluded cases suspected to be prevalent at enrollment based on timing of diagnoses and 

symptoms (COPD diagnosis: N = 539; chronic bronchitis symptoms N = 371), conclusions 

remained the same although precision of estimates was greatly reduced.  

Another important characteristic of the AHS is that participants are recruited on the basis 

of being private pesticide applicators. Because of this design, few participants are truly 

unexposed to all pesticides. Consequently, farmers who use one pesticide must be compared to 

others who use different pesticide(s). If multiple pesticides are associated with disease risk, 

having no clear unexposed group would limit the ability to observe associations [227]. In 

addition, the AHS includes mainly farm owner/operators. Consequently, the AHS population 

may not represent farm workers who may receive greater exposure to the animal production 

environment than farm owner/operators. Therefore, the findings reported here are not directly 

generalizable to the farm worker population.  

The large sample size and prospective nature of the AHS were important strengths of the 

present analysis. The sample size and extensive information about demographics and lifestyle 
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factors allowed for control of confounders and exploration of modification and interactions 

between exposures. Although I did not observe evidence of interactions between exposures or 

modification of the animal production-COPD associations examined, the ability to consider 

modification by smoking revealed that the observed associations were present among never, 

former, and current smokers alike. Because the AHS continues to follow farmers who change 

farming activities or even cease farm work, concerns common to cross-sectional studies 

regarding the exclusion of farmers who have left work are reduced.  In addition, although there 

are many limitations of the exposure information, the AHS provides one of the most detailed 

assessments of personal insecticide use currently available.   

The results of this investigation continue to add evidence that work in animal production 

and personal use of insecticides is correlated with COPD-related symptoms or diagnoses. The 

results support the call for further research into the role of occupational exposures, and 

specifically animal production-related exposures, in the etiology of COPD. It also demonstrates 

the need for prospective studies of farmers and farm workers in the United States to be 

conducted with improved information on animal production exposures. Only by addressing these 

limitations will the scientific and farming communities be able to identify animal production and 

insecticide use-related risk factors for COPD and methods for protecting at risk populations.



 

 

Figures and Tables 

Figure 4.1. Illustration of the collection of exposure data and the timing of exposure information recorded at each interview. 

Lifetime ever use of all organophosphate insecticides, carbaryl, and permethrin was assessed on the enrollment questionnaire. 

Years and days of use of the following insecticides were assessed on the enrollment questionnaire:  chlorpyrifos, coumaphos, 

dichlorvos, phorate, fonofos, terbufos, trichlorfon, and permethrin; and, on the take-home questionnaire: diazinon, malathion, 

parathion, and carbaryl. Ever use and years and days of use for all insecticides were reported as part of the 1999-2003 and 

2005-2010 interviews.  
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Figure 4.2. Distribution of diagnosis of COPD (including chronic bronchitis, emphysema, and 

COPD) and report of symptoms meeting the clinical definition of chronic bronchitis (cough and 

phlegm for at least three month over two consecutive years) among 22,721 farmers participating 

in the 2005-2010 interview, Agricultural Health Study. 
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Tables 

Table 4.1. Insecticides of chemical classes registered for use on or around animals.  

  
Used in animal 

production Type of animal 

      

Organophosphates 

  Chlorpyrifos X Swine, Poultry, Sheep/Goats 

Coumaphos X Swine, Cattle 

Diazinon X Swine, Cattle 

Dichlorvos X Swine, Cattle, Poultry 

Malathion X Swine, Poultry, Cattle, Sheep  

Parathion 

  Phorate 

  Fonofos 

  Terbufos 

  Trichlorfon X Swine, Cattle 

Carbamates 

  
Carbaryl X

a
 Poultry 

Pyrethroids/Pyrethrins 

  Permethrin (crops) 

  Permethrin (animals) X Swine, Cattle, Poultry, Sheep/Goats 

Pyrethrins X Swine, Cattle, Poultry 

Pyrethrum 

  Cyfluthrin X Swine, Cattle, Poultry 

Lambda Cyhalothrin X Swine, Cattle, Poultry 

Esfenvalerate X Swine, Poultry 

Tefluthrin 

 

  

a
 Carbaryl was used in poultry production until 2009. 

 



 

 

 

Table 4.2. Associations between selected characteristics and COPD diagnosis and chronic bronchitis symptoms among 22,721 

farmers participating in the 2005-2010 interview, Agricultural Health Study.  

    COPD diagnosis Chronic bronchitis symptoms 

 

Total Cases Prev PR
a
 95% CI Cases Prev PR

a
 95% CI 

Enrollment characteristics N = 22721 N = 1176  %         N = 1216 %          

Age
b
 

       

  

     <50 years 4862 82 2 Ref 
   

208 4 Ref 
   

50-59 years 6874 226 3 1.93 1.52 , 2.47 344 5 1.16 0.99 , 1.37 

60-69 years 5718 358 6 3.66 2.91 , 4.60 296 5 1.18 1.00 , 1.40 

70-79 years 4213 394 9 5.45 4.34 , 6.84 285 7 1.58 1.33 , 1.87 

80 + years 1054 116 11 6.66 5.12 , 8.67 83 8 1.82 1.44 , 2.32 

State 
             

Iowa 15224 577 4 Ref 
   

851 6 Ref 
   

North Carolina 7497 599 8 1.81 1.62 , 2.03 365 5 0.82 0.73 , 0.93 

Gender 
             

Female 622 40 6 1.20 0.89 , 1.63 23 4 0.67 0.45 , 1.01 

Male 22099 1136 5 Ref 
   

1193 5 Ref 
   

Race/Ethnicity 
             

White, non-Hispanic 21712 1058 5 Ref 
   

1137 5 Ref 
   

Other 533 37 7 1.24 0.91 , 1.70 22 4 0.76 0.50 , 1.15 

Missing 476 
            

Education 
             

< High school degree 1737 187 11 Ref 
   

126 7 Ref 
   

High school graduate/GED 10480 577 6 0.80 0.68 , 0.94 587 6 0.81 0.67 , 0.98 

Some college 5853 256 4 0.76 0.63 , 0.92 314 5 0.80 0.65 , 1.00 

≥ College graduate 4651 156 3 0.55 0.44 , 0.68 189 4 0.61 0.49 , 0.77 

Marital Status 
             

Married/Living as married 19892 1066 5 Ref 
   

1079 5 Ref 
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    COPD diagnosis Chronic bronchitis symptoms 

 

Total Cases Prev PR
a
 95% CI Cases Prev PR

a
 95% CI 

Enrollment characteristics N = 22721 N = 1176  %         N = 1216 %          

Other 2802 106 4 0.94 0.78 , 1.15 131 5 0.94 0.79 , 1.13 

Missing 27 
            

Smoking status  
             

Never  12605 329 3 Ref 
   

489 4 Ref 
   

Former 7248 509 7 1.90 1.66 , 2.18 401 6 1.37 1.20 , 1.56 

Current 2868 338 12 4.11 3.54 , 4.78 326 11 3.33 2.90 , 3.81 

Alcohol consumption
c
 

             
None 7532 460 6 Ref 

   
341 5 Ref 

   
Light drinker 13970 631 5 1.01 0.89 , 1.15 789 6 1.18 1.03 , 1.35 

Heavy drinker 357 19 5 1.23 0.79 , 1.91 34 10 1.69 1.20 , 2.39 

Missing 862 
          

, 
 

Size of farm (acres) 
             

Didn't work on farm/None 727 56 8 1.03 0.77 , 1.38 47 6 1.21 0.88 , 1.65 

<5 820 64 8 1.11 0.84 , 1.46 50 6 1.34 0.98 , 1.82 

5-49 2076 175 8 1.24 1.01 , 1.52 106 5 1.07 0.85 , 1.35 

50-199 3886 227 6 1.12 0.94 , 1.34 199 5 0.97 0.82 , 1.15 

200-499 6113 259 4 Ref 
   

342 6 Ref 
   

500-999 4719 161 3 0.89 0.73 , 1.07 245 5 0.95 0.81 , 1.11 

>1,000 2795 102 4 1.07 0.86 , 1.33 146 5 0.98 0.81 , 1.18 

Missing 1585 
   

      
   

      

Prev = prevalence 

PR = prevalence ratio 

CI = confidence interval 
a 
Estimates for state, gender, and race/ethnicity are adjusted for age. Estimates for education, marital status, and smoking are adjusted for age and 

state. Estimates for alcohol consumption and size of farm are adjusted for age, state, and smoking. 
b
 Age reflects age at the 2005-2010 interview.  

c
 Heavy drinkers reported consuming five or more drinks on the same occasion on each of five or more days in the past 30 days, light drinkers 

reported consuming at least one drink on at least one day during the past 12 months but did not qualify as a heavy drinker [187].  
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Table 4.3. Associations between raising animals and COPD diagnosis and chronic bronchitis symptoms among 22,721 farmers 

participating in the 2005-2010 interview, Agricultural Health Study.  

    COPD diagnosis Chronic bronchitis symptoms  

 

Total Cases Prev PR
a
 95% CI Cases Prev PR

a
 95% CI 

Exposure N = 22721 N = 1176  %         N = 1216 %          

Type of Animal Raised 

       

  

     Beef cattle 7689 321 4 0.96 0.85 , 1.09 451 6 1.23 1.09 , 1.38 

Dairy cattle 888 30 3 1.08 0.69 , 1.67 41 5 1.04 0.70 , 1.54 

Hogs 3514 86 2 0.85 0.61 , 1.19 208 6 1.28 1.03 , 1.59 

Poultry/Eggs 1090 47 4 0.97 0.71 , 1.33 63 6 1.22 0.93 , 1.60 

Sheep/Goats 777 34 4 1.09 0.76 , 1.55 38 5 0.92 0.65 , 1.30 

Size of Animal Production
b
  

             
No animals 11963 761 6 Ref 

   
613 5 Ref 

   
Small operation 7374 328 4 0.95 0.84 , 1.09 411 6 1.18 1.04 , 1.34 

Medium/Large operation 3384 87 3 0.91 0.66 , 1.25 192 6 1.51 1.21 , 1.89 

Prev = prevalence 

PR = prevalence ratio 

CI = confidence interval
 

a 
PRs were estimated using IPEW to address confounding. Weights were estimated using age at the 2005-2010 interview, state, gender, race, and 

education categorized as shown in Table 4.1. 
b 
Size of animal production was determined using the number of animals produced on a farmer’s property and categorized using the regulatory 

definitions of CAFOs [196]. Large and medium operations are likely to be raising animals in confinement. 
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Table 4.4. Associations between ever use of selected insecticides and COPD diagnosis and chronic bronchitis symptoms 

among 22,721 farmers participating in the 2005-2010 interview, Agricultural Health Study.  

    COPD diagnosis Chronic bronchitis symptoms  

 

Total Cases Prev PR
a
 95% CI Cases Prev PR

a
 95% CI 

Exposure N = 22721 N = 1176  %         N = 1216 %          

Insecticide application to farm 

animals
b
 

7254 300 4 1.08 0.94 , 1.24 427 6 1.22 1.08 , 1.38 

Organophosphates 
             

Chlorpyrifos 10569 489 5 0.99 0.88 , 1.11 589 6 1.11 0.99 , 1.24 

Coumaphos 2093 118 6 1.14 0.94 , 1.38 140 7 1.26 1.06 , 1.50 

Diazinon 8108 506 6 1.20 1.06 , 1.35 482 6 1.26 1.12 , 1.42 

Dichlorvos 2687 120 4 1.00 0.79 , 1.28 178 7 1.34 1.08 , 1.66 

Malathion 16948 880 5 1.13 0.98 , 1.29 956 6 1.30 1.13 , 1.50 

Parathion
c
 3727 262 7 1.11 0.95 , 1.29 235 6 1.28 1.10 , 1.49 

Phorate
c
 8008 362 5 0.92 0.79 , 1.07 487 6 1.06 0.94 , 1.20 

Fonofos
c
 4942 210 4 0.96 0.79 , 1.18 311 6 1.08 0.91 , 1.28 

Terbufos
c
 8881 391 4 1.09 0.95 , 1.25 499 6 1.04 0.92 , 1.17 

Trichlorfon 166 14 8 1.73 1.00 , 2.99 6 4 0.67 0.27 , 1.68 

Carbamates 
             

Carbaryl 13700 814 6 1.08 0.94 , 1.24 782 6 1.26 1.11 , 1.43 

Pyrethroids/Pyrethrins 
             

Permethrin (crops)
c
 3453 173 5 1.24 1.05 , 1.46 169 5 1.02 0.86 , 1.20 

Permethrin (animals) 3970 143 4 1.01 0.81 , 1.27 249 6 1.37 1.15 , 1.64 

Pyrethrins 353 16 5 1.18 0.69 , 2.03 20 6 1.35 0.83 , 2.22 

Pyrethrum
 c,d

 10 0 0 
    

0 0 
    

Cyfluthrin 1789 44 2 0.77 0.49 , 1.19 95 5 1.02 0.80 , 1.29 

Lambda Cyhalothrin 852 20 2 0.81 0.48 , 1.37 34 4 0.83 0.52 , 1.32 

Esfenvalerate 381 15 4 0.97 0.50 , 1.88 14 4 0.79 0.43 , 1.48 
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    COPD diagnosis Chronic bronchitis symptoms  

 

Total Cases Prev PR
a
 95% CI Cases Prev PR

a
 95% CI 

Exposure N = 22721 N = 1176  %         N = 1216 %          

Tefluthrin
 c
 770 24 3 0.84 0.46 , 1.53 48 6 0.98 0.62 , 1.57 

Prev = prevalence 

PR = prevalence ratio 

CI = confidence interval
 

a 
PRs were estimated using IPEW to address confounding. Weights were estimated using age at the 2005-2010 interview, state, gender, race, and 

education categorized as shown in Table 4.1. 
b
 Reported at enrollment. 

c 
Not used on or around animals. 

d 
PR (95% CI) not shown because no cases reported use of pyrethrum.  
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Table 4.5. Associations between categories of lifetime days of use of selected insecticides and 

COPD diagnosis and chronic bronchitis symptoms among 22,721 farmers participating in the 

2005-2010 interview, Agricultural Health Study. 

    COPD Diagnosis Chronic bronchitis symptoms  

 

Total Cases PR
a
 95% CI Cases PR

a
 95% CI 

Lifetime days of use N = 23147 N = 1176         N = 1216         

Organophosphates                       

Coumaphos 
           

0 20472 1059 Ref 
   

1070 Ref 
   

2-20 1138 64 1.10 0.85 , 1.42 72 1.13 0.89 , 1.44 

21-3,550 882 46 1.09 0.80 , 1.47 64 1.46 1.13 , 1.88 

Diazinon
b
 

           
0 9680 465 Ref 

   
546 Ref 

   
1-19 1405 93 1.27 1.02 , 1.60 85 1.10 0.87 , 1.39 

20-3,181 1482 110 1.35 1.07 , 1.72 90 1.15 0.89 , 1.48 

Dichlorvos 
           

0 19903 1052 Ref 
   

1038 Ref 
   

1-50 1298 55 0.80 0.52 , 1.24 73 1.21 0.81 , 1.83 

50.75-8,530 1325 62 1.40 0.93 , 2.12 98 1.32 0.90 , 1.94 

Malathion
b
 

           
0 4175 207 Ref 

   
212 Ref 

   
1-20 4217 220 1.24 1.02 , 1.50 239 1.14 0.95 , 1.37 

20.5-5,000 4176 240 1.25 1.04 , 1.51 267 1.31 1.10 , 1.57 

Parathion
b,c

 
           

0 11524 580 Ref 
   

645 Ref 
   

1-20.5 517 43 1.22 0.85 , 1.75 43 1.55 1.09 , 2.20 

21-3,100 516 42 1.17 0.77 , 1.78 33 1.23 0.80 , 1.89 

Carbamates 
   

      
  

      

Carbaryl
c
 

           
0 6957 290 Ref 

   
759 Ref 

   
1-24 2716 155 1.15 0.94 , 1.41 201 1.17 0.97 , 1.40 

24.5-3,100 3058 221 1.20 0.96 , 1.48 185 1.13 0.91 , 1.41 

Pyrethroids 
   

      
  

      

Permethrin (crops)
c
 

     
  

     
0 19202 1003 Ref 

  
  1052 Ref 

   
1-18 1680 60 0.95 0.72 , 1.26 73 0.80 0.62 , 1.03 

18.5-3,100 1643 104 1.53 1.24 , 1.90 84 1.07 0.85 , 1.36 

Permethrin (animals) 
     

  
     

0 18623 1029 Ref 
   

962 Ref 
   

1-24 1879 69 1.03 0.74 , 1.44 115 1.40 1.06 , 1.84 
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    COPD Diagnosis Chronic bronchitis symptoms  

 

Total Cases PR
a
 95% CI Cases PR

a
 95% CI 

Lifetime days of use N = 23147 N = 1176         N = 1216         

24.5-7,000 2040 71 1.05 0.76 , 1.43 133 1.41 1.13 , 1.77 

PR = prevalence ratio 

CI = confidence interval
 

a 
PRs were estimated using IPEW to address confounding. Weights were estimated using age at the 2005-

2010 interview, state, gender, race, and education categorized as shown in Table 4.1. 
b
 Limited to the 12,804 farmers who responded to the take-home questionnaire.  

c 
Not used on or around animals. 

 

 



 

 

Supplementary Table S4.1.Distribution of stabilized IPEW used to estimate associations between specific animal production 

activities and COPD diagnoses and chronic bronchitis symptoms.  

            Percentiles   

Variable N Mean SE Sum Min 5th 25th Median 75th 95th Max 

Raising animals                       

Beef cattle 20245 1.0001 0.1894 20247 0.6121 0.7561 0.8720 0.9751 1.0860 1.3134 2.8473 

Dairy cattle 20245 1.0006 0.1534 20256 0.1879 0.9697 0.9805 0.9934 1.0115 1.0556 6.1099 

Hogs 20245 1.0037 0.4896 20321 0.3117 0.5678 0.8810 0.9584 1.0679 1.2690 12.8483 

Poultry 20245 0.9995 0.0944 20234 0.2880 0.9713 0.9826 0.9949 1.0106 1.0529 3.5647 

Sheep/Goats 20245 0.9998 0.0763 20241 0.3485 0.9781 0.9892 0.9985 1.0092 1.0269 3.3748 

Number of livestock 20245 1.0032 0.7118 20310 0.2809 0.5469 0.7294 0.8883 1.1129 1.6318 23.1662 

Number of poultry 20245 0.9999 0.2301 20244 0.0985 0.9710 0.9827 0.9943 1.0097 1.0521 9.1044 

Ever use of Insecticides                      

Chlorpyrifos 20245 1.0000 0.1633 20245 0.6111 0.7951 0.8910 0.9799 1.0871 1.2375 3.2133 

Coumaphos 20245 1.0000 0.0948 20245 0.5420 0.9357 0.9807 0.9996 1.0182 1.0523 3.3925 

Diazinon 20245 1.0011 0.2841 20268 0.4850 0.6318 0.8402 0.9326 1.1119 1.5240 4.5153 

Dichlorvos 20245 0.9997 0.3184 20238 0.3669 0.7076 0.9096 0.9969 1.0518 1.1467 8.8411 

Malathion 20245 1.0005 0.2514 20256 0.3290 0.6329 0.8865 0.9494 1.0674 1.4683 3.2064 

Parathion 20245 1.0001 0.2530 20247 0.3236 0.5753 0.9182 0.9535 1.0572 1.3761 7.7980 

Phorate 20245 1.0075 0.5485 20397 0.5296 0.6464 0.7312 0.7963 1.1459 1.5913 13.5124 

Fonofos 20245 1.0014 0.5559 20274 0.5450 0.6511 0.8118 0.8297 1.1183 1.2126 18.2986 

Terbufos 20245 0.9983 0.3763 20211 0.6381 0.7245 0.7598 0.7885 1.2163 1.9226 8.8241 

Trichlorfon 20245 1.0001 0.0483 20246 0.4223 0.9966 0.9975 0.9999 1.0017 1.0072 5.6431 

Permethrin (crops) 20245 0.9997 0.1351 20238 0.4971 0.8097 0.9478 0.9910 1.0409 1.1470 2.4719 

Permethrin (animals) 20245 0.9982 0.3556 20208 0.4225 0.6327 0.8672 0.9697 1.0838 1.2486 9.0062 

Carbaryl 20245 0.9984 0.4317 20212 0.4496 0.6358 0.7234 0.8789 1.1249 1.6922 6.2234 

Pyrethrins 20245 0.9991 0.0807 20226 0.2598 0.9859 0.9922 0.9975 1.0062 1.0205 6.4978 

Pyrethrum 20245 0.9999 0.0116 20243 0.2834 0.9995 0.9997 0.9999 1.0001 1.0010 1.8654 

Cyfluthrin 20245 0.9956 0.2063 20156 0.2833 0.8826 0.9495 0.9816 1.0364 1.1243 12.1045 

Lambda Cyhalothrin 20245 0.9974 0.1571 20193 0.1908 0.9667 0.9755 0.9894 1.0139 1.0701 7.4623 
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            Percentiles   

Variable N Mean SE Sum Min 5th 25th Median 75th 95th Max 

Esfenvalerate 20245 0.9989 0.1091 20224 0.1215 0.9859 0.9895 0.9949 1.0031 1.0352 8.6006 

Tefluthrin 20245 0.9986 0.7009 20217 0.2633 0.9656 0.9662 0.9960 1.0214 1.0579 81.9086 

Lifetime days of use - categorized                   

Coumaphos 20245 1.0002 0.1157 20248 0.5019 0.9330 0.9812 1.0001 1.0182 1.0505 4.2539 

Diazinon 11118 1.0017 0.2935 11137 0.3114 0.5367 0.8868 0.9373 1.0530 1.5461 3.6864 

Dichlorvos 11118 0.9997 0.3516 11115 0.3373 0.7031 0.8988 1.0048 1.0513 1.1382 9.8973 

Malathion 11113 1.0002 0.2263 11115 0.4300 0.7013 0.8570 0.9537 1.1064 1.4177 2.7237 

Parathion 11118 1.0000 0.2446 11118 0.2184 0.7450 0.9524 0.9615 1.0444 1.1928 5.6907 

Permethrin (crops) 20243 1.0000 0.1833 20243 0.2953 0.7444 0.9460 0.9898 1.0416 1.1597 4.2622 

Permethrin (animals) 20245 0.9972 0.3579 20189 0.3667 0.6272 0.8681 0.9707 1.0840 1.2497 10.7442 

Carbaryl 11115 1.0024 0.6050 11142 0.3284 0.4027 0.7134 0.8313 1.0490 2.3129 7.9166 

SE = standard error 
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CHAPTER 5.  

DISCUSSION 

Background 

Over the past several decades, interest in identifying occupational risk factors for COPD 

has grown [13, 108, 228, 229]. Despite indication that farmers and farm workers engaged in 

animal production experience high prevalence of cough, phlegm, wheeze, and chronic bronchitis, 

little information is available about the burden of or occupational risk factors for COPD in this 

population [229]. Only in one previous study was COPD explicitely examined among persons 

working in animal production [14]. In addition, a growing body of evidence indicates that 

pesticide use, and specifically insecticides, may be associated with COPD. However, studies 

with detailed information about lifetime use history of specific types of pesticide are needed to 

further characterize this association [129].  

The AHS provides a unique opportunity to examine the association between work in 

animal production and COPD while addressing some limitations of available work. The AHS is a 

large cohort of farmers, enrolled between 1993 and 1997 in two major animal producing states – 

Iowa and North Carolina. Investigators have collected information about animal production, 

lifetime use of insecticides, and covariates relevant to investigating COPD including smoking 

over approximately 12 years. One limitation of the AHS is that COPD diagnoses and symptoms 

were only collected from approximately 46% of the original cohort that responded to a follow-up 

interview occurring between 2005 and 2010. Although non-participation of 54% of the original 

cohort is a limitation, it presented an opportunity to investigate the potential effects of restricting 
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analyses of exposure-disease associations to individuals who participate and report incident 

disease during the 2005-2010 interview. 

Therefore, this work had two main objectives: 1) to evaluate the potential for attrition in 

the AHS to bias results of analyses restricted to farmers participating in the 2005-2010 interview; 

and, 2) to quantify the association between work with animals and COPD among farmers in the 

AHS. This objective included considering the role of raising animals and use of insecticides in 

COPD.  

Attrition in the AHS 

The results presented in Chapter 3 characterize participants of the 2005-2010 AHS 

interview, quantify the extent of bias that may be present in analyses limited to interview 

participants, and evaluate the utility of IPSW to reduce selection bias introduced by restriction of 

analyses to participants. Participation in the 2005-2010 interview was strongly associated with 

the enrollment variables age, state, race/ethnicity, education, marital status, smoking, and alcohol 

consumption; animal production and personal pesticide use reported at enrollment were not 

strongly associated with participation. Using this information, three example associations were 

evaluated within the full- and sub-cohorts to illustrate conditions under which selection bias may 

impact effect estimates generated from sub-cohort participants. When exposure and outcome 

status jointly affected the probability of participation, resulting in differential participation by 

cases or non-cases by exposure status, the RR and RD estimated from interview participants  

differed from full-cohort estimates. However, even with more than 50% attrition, when the 

exposure and outcome did not jointly affect participation, sub-cohort estimates were similar to 

full-cohort estimates. These examples serve as real-world demonstrations of theory regarding 

selective participation described previously [140, 144, 145]. 
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IPSW has been proposed and applied in other cohort studies to correct effect estimates 

for non-participation [181, 186, 230]. The analysis presented in Chapter 3 indicates that when 

exposure and outcome jointly affected participation, IPSW conditional on exposure and covariate 

information could not create an appropriate “pseudo-population” where a selection effect did not 

exist. When the outcome was not strongly predictive of participation, IPSW were unnecessary, as 

negligible bias was present in sub-cohort estimates. These observations support previous findings 

that application of IPSW to correct for non-participation in other AHS analyses did not 

substantially alter results [174, 184]. Further, these findings align with results of previous 

analyses examining the utility of IPSW using simulations and application within other cohort 

studies [142, 178, 181, 185, 186, 230]. 

Impact of findings 

The results of this investigation directly informed the analysis of AHS data to estimate 

associations between animal production work and COPD. Raising animals and insecticide use 

reported at enrollment were not strongly associated with participation in the 2005-2010 

interview. In addition, reporting a doctor diagnosis of asthma or “other chronic lung disease” at 

enrollment was not strongly associated with participation. Finally, despite being a major cause of 

morbidity and mortality, COPD is a chronic condition that individuals often live with for many 

years after the onset of symptoms or diagnosis [195]. Taken together, this evidence suggests that 

it is unlikely that work in animal production and COPD would be strongly predictive of 

participation in the 2005-2010 interview. Operating under this assumption, I estimated the effect 

of animal production and insecticide use on COPD among participants of the 2005-2010 

interview assuming negligible selection bias.  
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These findings have broader implications for the AHS as well. The identification of 

enrollment factors associated with participation in study activities can inform efforts to improve 

participation in future AHS interviews. A majority of non-participants (87%) refused, were 

excluded, or could not be contacted for the 2005-2010 interview. Greater efforts to engage study 

participants in future interviews could reduce concerns about selection at subsequent interviews. 

These results can also provide a foundation for future investigations restricted to participants of 

the 2005-2010 interview to consider the potential for selection bias. Future analyses limited to 

2005-2010 interview participants can use the results reported here to consider whether IPSW is 

useful to correct for potential selection effects and, if so, to guide variable selection for weight 

estimation models.  

Beyond the AHS, this analysis provides a simple example of the importance of 

examining attrition in long-term cohort studies and considering impacts on analyses of exposure 

or outcomes only available for those that continue to participate in study activities. It has long 

been suggested that attrition >50% is of grave concern [141]. Although investigators should 

proceed with caution when dealing with large amounts of attrition, this report serves as a real-

world example that substantial attrition may not always lead to substantial bias when analyses 

are restricted to participants remaining under study.  

Researchers using these results to design future analyses should recognize the limitations 

of this work. This investigation was limited to considering the predictive ability and association 

of enrollment factors on participation in the 2005-2010 interview. There is potential that changes 

in lifestyle, work patterns, or health after enrollment may be associated with participation in later 

study activities. In addition, the three examples examined in this analysis represent a small set of 



87 

 

assumptions. There are many other sets of conditions that could be explored, which may result in 

alternative conclusions about the impacts of attrition and the utility of IPSW.  

Animal production & COPD 

The results presented in Chapter 4, support the hypothesis that animal production and 

insecticide use are associated with COPD-related morbidity, specifically symptoms of chronic 

bronchitis. Raising animals on a medium/large animal operation and specifically raising beef 

cattle, hogs, or poultry was associated with greater prevalence of chronic bronchitis symptoms. 

Applying insecticides to livestock and use of coumaphos, diazinon, dichlorvos, malathion, 

parathion, carbaryl, and permethrin were also associated with greater prevalence of chronic 

bronchitis. Little evidence was found to indicate an association between raising animals, 

insecticide use and COPD diagnosis. Personal use of diazinon and trichlorfon were associated 

with a greater prevalence of COPD diagnosis but other activities were not.  

The differences observed in associations between the exposures examined and COPD 

diagnoses and chronic bronchitis symptoms was surprising based on previous literature and the 

fact that chronic bronchitis is a component condition of COPD. However, in this population, 

there was little overlap between the farmers reporting a COPD diagnosis and chronic bronchitis 

symptoms, and there may be several explanations for these disparate findings. It is possible that 

these results indicate that the biological response to work in animal production may manifest as 

chronic bronchitis symptoms that do not drive farmers to seek or receive a COPD-related 

diagnosis. This hypothesis aligns with what has been reported with respect to occupational 

exposure to other dusty trades [111, 212]. It is also possible that limitations of the information 

available on animal production may partially explain the discrepancy. With the available 

exposure information, I was unable to determine if farmers who receive a COPD diagnosis 
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remove themselves from exposure while those with symptoms remain. This would indicate a 

healthy-worker bias [231] among those with a COPD diagnosis but not among those with 

chronic bronchitis symptoms. Researchers have previously documented that a healthy-worker 

survivor effect may bias results of studies of agricultural exposures and respiratory health 

outcomes [213-217]. It is also possible that chronic bronchitis symptoms reported here reflect 

chronic bronchitis and asthma, a cause of reversible airway obstruction. Occupational exposures 

have been accepted as important in the etiology of asthma [111] and COPD symptoms can be 

difficult to distinguish without a detailed clinical assessment and because some overlap exists 

[203]. Even if asthma partially explained the associations observed between work with animals 

and chronic bronchitis symptoms, the findings remain relevant because evidence suggests that 

asthma may be an important risk factor for COPD [203, 204, 218-220].  

Results also provided evidence that use of specific insecticides was associated with 

prevalence of chronic bronchitis symptoms. In the present analysis, the insecticides associated 

with chronic bronchitis symptoms included the organophosphates coumaphos, diazinon, 

dichlorvos, malathion, and parathion; the carbamate carbaryl; and, the pyrethoid permethrin (for 

animals). Use of diazinon, trichlorfon, and permethrin (for crops) was also associated with 

increased prevalence of having a COPD diagnosis.  

Organophosphate and carbamate insecticides have been associated with increased 

prevalence of COPD among nonsmoking agricultural workers in India [130]. These specific 

insecticides have also been associated with self-reported chronic bronchitis in the AHS among 

the sample of enrollment farmers returning the supplemental take-home questionnaire [133]. All 

of the insecticides found to be associated with increased prevalence of COPD in the present 

study except parathion were or are registered for use on or around animals. However, many of 
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these insecticides are also used on crops or for other purposes [223], and therefore the effects 

seen here cannot be ascribed solely to use on animals.  

With the exception of permethrin, use of pyrethroids/pyrethrins were not found to be 

associated with COPD. Use of pyrethroids/pyrethrins in this cohort was rarer than 

organophosphates. However, use of pyrethroids/pyrethrins has been increasing over the past 

decade as use of organophosphates, which are more acutely toxic, has declined [60, 207]. 

Because use of pyrethroids/pyrethrins has begun to replace use of organophosphates, farmers 

may not have experienced long-term exposure to these insecticides. Consequently, personal 

exposure to pyrethroid/pyrethrin insecticides should continue to be monitored for adverse 

respiratory effects.  

The observed associations between personal use of insecticides and COPD is especially 

relevant as interest in identifying pesticide-related risk factors for COPD has increased [129]. 

The associations observed here provide additional evidence that occupational use of insecticides 

may contribute to COPD directly, or may serve as a marker for other relevant exposures such as 

dust. 

Impact of findings 

The observations reported here provide further evidence that producing animals and 

using insecticides may contribute to the burden of COPD or its component conditions. These 

observations also support the call to consider the contribution of occupational risk factors for 

COPD among individuals involved in animal production. Continued work to identify specific 

risk factors for COPD and methods for reducing relevant exposures is necessary. Below I 
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describe some strengths and limitations of this work and offer suggestions to encourage future 

work. 

Breadth vs. Depth: Limitations of large cohort studies 

The AHS provided a unique opportunity to examine the association between animal 

production, insecticide use and COPD. However, the AHS is a large cohort study designed and 

administered by several federal agencies with a range of interests. These large studies are quite 

powerful – they follow large numbers of participants and collect data on a range of exposures 

and outcomes. The breadth of information available in the AHS allows researchers to explore a 

range of research questions. However, an important limitation of this approach is a lack of 

detailed information on all exposures and outcomes. This includes limited measurements of 

exposures or clinical outcomes. As the association between work in animal production and 

COPD has not been widely examined in other populations of farmers in the United States, the 

AHS provided an opportunity to characterize this association in a large cohort. However, 

because the AHS was not specifically designed to answer this question, there were many 

limitations encountered in this work and I describe some of the main challenges in the following 

paragraphs. 

Limitations of exposure assessment 

Available information about work in animal production was limited. In this analysis, type 

and number of animals produced were used as a proxy for exposure to animal exposure, and 

specifically to industrial animal production. This is problematic as presence of specific types of 

animals, or presence of large numbers of animals, does not indictate personal exposure to the 

animals or the production environment. Further, lifetime exposure information was not available 

as number and type of animals raised was only collected in reference to specific time points 
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during the study period. These limitations most certainly resulted in exposure misclassification. 

Misclassification could have been differential with respect to COPD diagnoses or symptoms, and 

there is potential that misclassification occurred differently in analyses examining COPD 

diagnoses and chronic bronchitis symptoms, contributing to the disparate findings. 

Misclassification of exposures could have biased results toward or away from the null depending 

on the magnitude and type. In future studies, direct measurement of personal exposure to dust, 

endotoxin, gases, and chemicals used in tandem with more detailed information about frequency 

and duration of work with animals could improve classification of exposure.  

A major strength of this analysis was that lifetime information on use of specific 

insecticides was available. However, this information was self-reported and, therefore, is subject 

to recall and reporting bias. Researchers have previously considered concerns about the validity 

and reliability of self-reported pesticide information in the AHS. Self-reported use of pesticides 

compared reasonably well with pesticide registration information [152], and using enrollment 

data, 70–90% repeatability of self-reported pesticide use was found one-year after enrollment 

[232]. Future analyses could improve assessment of pesticide exposure by incorporating 

information about pesticide formulations (e.g., sprays, dips, tags, and dusts) used, application 

methods, and use of personal protective equipment when assigning exposure. With improved 

information about exposure to all of the agents in the animal production environment, a stronger 

evaluation of their role in COPD could be undertaken. Further, interactions between these 

exposures could be directly considered with more confidence allowing for a better understanding 

of the role of each agent individually and their joint contribution to disease risk. 
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Limitations of defining COPD 

Farmers reported ever receiving a doctor diagnosis of COPD or experiencing the 

symptoms of chronic bronchitis as part of the 2005-2010 interview. Self-report of doctor 

diagnosis has been used in previous work including studies of the general US population [27, 

29]. Supplementation of COPD diagnoses with symptom reports was a major strength of this 

study. Although self-report of a doctor diagnosis or symptoms is subject to recall and reporting 

error resulting in misclassification, there is no evidence to indicate that  disease misclassification 

was differential with respect to exposure and probably resulted in attenuation of effects. Future 

work that complements self-report with spirometry or standardized clinical diagnosis, will be 

important in continuing to investigate the adverse respiratory health effects of exposure to the 

animal production environment. Because spirometry and medical exams can be time and 

resource intensive, alternative ways of validating a COPD diagnosis may be useful in future 

studies. For example, collection of information about use of COPD medication or other treatment 

may aid in identifying cases, and understanding overlap between symptoms and diagnoses.  

Inability to establish a temporal relationship between exposure and COPD 

Animal production and insecticide use information was collected in five-year intervals. 

Farming activities were assumed to be constant within each interval. COPD diagnoses along with 

the age of diagnosis were reported only at the 2005-2010 interview. Cough and phlegm was also 

reported at the 2005-2010 interview along with the number of years symptoms were present. 

This data collection approach prohibited establishing a clear temporal relationship between 

exposure and onset of symptoms and disease. It also made exclusion of prevalent cases 

challenging. Because of this, a time-to-event analysis of incident cases was not possible. Without 

a time-to-event analysis, I could not address questions about timing of onset of disease. Future 
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work following at-risk individuals over time with clear documentation of the timing of exposure 

and onset of COPD will be useful in evaluating the role of animal production in risk of COPD 

and determining whether these activities influence the timing of onset of disease.  

Generalizability 

AHS participants are mainly farm owner/operators. Consequently, the AHS population 

does not represent farm workers who may receive greater exposure to the animal production 

environment than farm owner/operators. Therefore, the findings reported here may not be 

generalizable to the farm-worker population. Future efforts to characterize the burden of and risk 

factors for COPD among farm-worker populations are necessary to understand the impact of 

occupational exposure to the agents present in the animal production environment. 

Conclusions 

This work continues to raise concerns about the respiratory health effects due to 

occupational exposures in animal production. It also supports the call to consider the role of 

insecticides in COPD among persons working in agriculture. In future work, researchers should 

examine the role of animal production and use of insecticides in COPD among farmers and farm 

workers with a focus on improving assessment of relevant exposures and COPD. Because there 

is substantial evidence that work in animal production and use of insecticides may be associated 

with respiratory symptoms, future research should also focus on the utility of establishing 

enforceable regulations and identifying potential improvements to protect workers from 

exposures with the potential to adversely impact respiratory health.  
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