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Abstract

YI LIU: Fast and Accurate Haplotype Inference

with Hidden Markov Model
(Under the direction of Wei Wang and Yun Li)

The genome of human and other diploid organisms consists of paired chromosomes.

The haplotype information (DNA constellation on one single chromosome), which is

crucial for disease association analysis and population genetic inference among many

others, is however hidden in the data generated for diploid organisms (including human)

by modern high-throughput technologies which cannot distinguish information from two

homologous chromosomes. Here, I consider the haplotype inference problem in two com-

mon scenarios of genetic studies:

1. Model organisms (such as laboratory mice): Individuals are bred through prescribed

pedigree design.

2. Out-bred organisms (such as human): Individuals (mostly unrelated) are drawn

from one or more populations or continental groups.

In the two scenarios, one individual may share short blocks of chromosomes with

other individual(s) or with founder(s) if available. I have developed and implemented

methods, by identifying the shared blocks statistically, to accurately and more rapidly

reconstruct the haplotypes for individuals under study and to solve important related

problems including genotype imputation and ancestry inference. My methods, based

on hidden Markov model, can scale up to tens of thousands of individuals. Analysis
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based on my method leads to a new genetic map in mouse population which reveals

important biological properties of the recombination process. I have also explored the

study design and empirical quality control for imputation tasks with large scale datasets

from admixed population.

iv



To my parents and my wife.

v



Acknowledgements

First of all I would like to express my sincere thanks to my advisors, Drs. Wei Wang

and Yun Li, for their continuous guidance and support, for being approachable anytime

I had a problem, for explaining to me patiently even when I was in the “memoryless”

state, and for giving me much freedom in working (and playing).

I had been very lucky to have chances to explore several different areas. I feel es-

pecially fortunate to have worked with Drs. Fernando Pardo Manuel de Villena and

Vladimir Jojic. Fernando has patiently taught me many basics of biology and helped me

in linking computational methods to real biology problems; Vladimir introduced me to

many optimization techniques and always inspired me through thoughtful questions. My

thanks also go to other research collaborators and committee members for helpful dis-

cussions on research and on completing my dissertation, William Valdar, Ethan Lange,

Gary Churchill, Leonard McMillan, Xiang Zhang and all students (current and past) in

the CompGen group and in the Li lab. I am very grateful to Qi Zhang for mentoring and

helping me in many ways during my first year and my internships, to Zhaojun Zhang

and Qing Duan for carrying out research together.

Finally, I would like to thank my parents, Yongjian and Chengcui, for their endless

support, and for buying me my first computer with all their savings 20 years ago. I am

also deeply thankful to my wife, Ping, for trust in me, and for following me across the

ocean to every place we have lived in and to the next place we are heading for.

vi



Table of Contents

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.1 DNA and Haplotype . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.2 Genotype . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Model Organisms from Prescribed Breeding . . . . . . . . . . . . . . . . 3

1.3 Samples from Out-bred Human Populations . . . . . . . . . . . . . . . . 5

1.4 Thesis Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.5 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.5.1 Model Organisms from Prescribed Breeding . . . . . . . . . . . . 8

1.5.2 Samples from Out-bred Human Populations . . . . . . . . . . . . 9

2 Efficient Genome Ancestry Inference in Complex Pedigrees

with Inbreeding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 The Genome Ancestry Problem . . . . . . . . . . . . . . . . . . . . . . . 15

2.3 Modeling Inheritance in Pedigree . . . . . . . . . . . . . . . . . . . . . . 15

vii



2.3.1 Modeling Inbreeding Generations . . . . . . . . . . . . . . . . . 16

2.3.2 Integrating the Inbreeding Model . . . . . . . . . . . . . . . . . . 22

2.4 Modeling the Collaborative Cross . . . . . . . . . . . . . . . . . . . . . . 25

2.4.1 The Breeding Scheme . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.4.2 Modeling the Genome of G2Ik Generation . . . . . . . . . . . . . 26

2.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.5.1 Experiments on Simulated Data . . . . . . . . . . . . . . . . . . . 27

2.5.2 Experiments on Real CC data . . . . . . . . . . . . . . . . . . . . 29

2.5.3 Running Time Performance . . . . . . . . . . . . . . . . . . . . . 33

2.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3 High Definition Recombination Map in a Highly Divergent

Mouse Population . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.2 Materials and Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.2.1 The Genotype Data . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.2.2 Haplotype Reconstruction and Recombination Inference . . . . . . 38

3.3 Overview of the Recombination Map . . . . . . . . . . . . . . . . . . . . 40

3.4 Sex Effect on Recombination . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.5 Cold Regions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.5.1 Identification of Cold Regions in the G2I1 Population . . . . . . . 46

3.5.2 External Validation of Cold Regions . . . . . . . . . . . . . . . . 47

3.5.3 Genomic Analysis of Cold Regions . . . . . . . . . . . . . . . . . 49

3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

viii



4 MaCH-Admix: Genotype Imputation for Admixed Populations . . . 51

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.2 Materials and Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.2.1 General Framework . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.2.2 Piecewise IBS-based Reference Selection . . . . . . . . . . . . . . 56

4.2.3 Ancestry-weighted Approach . . . . . . . . . . . . . . . . . . . . . 59

4.2.4 MaCH-Admix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.2.5 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.2.6 Methods Compared . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.2.7 Measure of Imputation Quality . . . . . . . . . . . . . . . . . . . 65

4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.3.1 WHI-AA and WHI-HA with the 1000G Reference . . . . . . . . . 66

4.3.2 HapMap ASW and MEX with the 1000G Reference . . . . . . . . 73

4.3.3 Imputation Performance with HapMap References . . . . . . . . . 75

4.3.3.1 WHI-HA and WHI-AA with HapMap references . . . . . 75

4.3.3.2 HapMap ASW and MEX with HapMap references . . . 75

4.3.4 Running Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5 Genotype Imputation of Metabochip SNPs in African

Americans Using a Study Specific Reference Panel . . . . . . . . . . . 89

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.2 Materials and Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.2.1 Pre-Imputation Quality Control . . . . . . . . . . . . . . . . . . . 91

ix



5.2.2 General Pipeline for Reference Construction and

Subsequent Imputation . . . . . . . . . . . . . . . . . . . . . . . . 92

5.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.3.1 Genomewide Imputation . . . . . . . . . . . . . . . . . . . . . . . 92

5.3.2 Quality Estimate by Masking GWAS SNPs . . . . . . . . . . . . . 94

5.3.3 Quality Estimate by Masking Reference Individuals . . . . . . . . 96

5.3.4 Overall Imputation Performance and Practical Guidelines . . . . . 102

5.3.5 Rare SNPs during Haplotype Reconstruction . . . . . . . . . . . . 103

5.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

6.1 Future Directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

6.1.1 Model Organisms from Prescribed Breeding . . . . . . . . . . . . 115

6.1.2 Samples from Out-bred Human Populations . . . . . . . . . . . . 116

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

x



List of Tables

2.1 All Possible Transitions of S(a), S(b) . . . . . . . . . . . . . . . . . . . . 19

3.1 Summary of Identified Recombination Events in G2I1 Mice . . . . . . . . 40

3.2 List of Cold Regions Identified . . . . . . . . . . . . . . . . . . . . . . . . 48

4.1 Median Half Life of r2 (in Kb) . . . . . . . . . . . . . . . . . . . . . . . . 63

4.2 Imputation Results of WHI-HA Individuals over Five 5Mb

Regions with the 1000G reference . . . . . . . . . . . . . . . . . . . . . . 71

4.3 Imputation Results of WHI-AA Individuals over Five 5Mb

Regions with the 1000G reference . . . . . . . . . . . . . . . . . . . . . . 72

4.4 Imputation Results of HapMap ASW & MEX Individuals

over Five 5Mb Regions with the 1000G reference . . . . . . . . . . . . . . 76

4.5 Imputation Results of WHI-HA Individuals over Five 5Mb

Regions with the HapMapII reference . . . . . . . . . . . . . . . . . . . . 77

4.6 Imputation Results of WHI-AA Individuals over Five 5Mb

Regions with the HapMapII reference . . . . . . . . . . . . . . . . . . . . 78

4.7 Imputation Results of 49 ASW Individuals Over All Five

Short Regions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.8 Imputation Results of 49 ASW Individuals Over All Five

Short Regions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.9 Imputation Results of 50 MEX Individuals Over All Five

Short Regions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.1 Average Dosage r2 by MAF, Estimated by Masking 2%

GWAS SNPs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

xi



5.2 Average Rsq and Dosage r2 by MAF, Estimated by Masking

100 Reference Individuals . . . . . . . . . . . . . . . . . . . . . . . . . . 101

5.3 Effect of Including Rare Variants for Reference Panel

Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

5.4 Effect of Including Rare Variants for Haplotype Reconstruction

among Target Individuals . . . . . . . . . . . . . . . . . . . . . . . . . . 107

5.5 Effect of Including/Excluding the 100 Masked Reference

Individuals during Reference Haplotype Reconstruction . . . . . . . . . 108

5.6 Average Rsq and Dosage r2 by MAF, Estimated by Masking

One Reference Individual at a Time . . . . . . . . . . . . . . . . . . . . . 108

xii



List of Figures

1.1 Toy example of two chromosomes with haplotypes defined

on three sites containing variations . . . . . . . . . . . . . . . . . . . . . 2

2.1 Inhertiance indicators of an inbreeding process . . . . . . . . . . . . . . . 17

2.2 Comparison of predicted probabilities and observed probabilities

from simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.3 Collaborative Cross breeding scheme and the corresponding

inheritance indicators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.4 Comparison of error rates of GAIN, MERLIN and HAPPY

on simulated data sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.5 Proportion of probabilities assigned to wrong ancestry by

GAIN and HAPPY on simulated data sets . . . . . . . . . . . . . . . . . 29

2.6 The difference in ancestry estimated by GAIN and HAPPY . . . . . . . . 31

2.7 Two examples of ancestry inference by GAIN and HAPPY . . . . . . . . 32

2.8 Average running time of GAIN, HAPPY and MERLIN . . . . . . . . . . 33

3.1 The CC funnel pedigree to G2I1 generation . . . . . . . . . . . . . . . . 37

3.2 Distribution of recombination interval length in log-scale . . . . . . . . . 41

3.3 Recombination map length of autosomes by Prdm9 allele

and gender . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.4 Distribution of recombination events along the autosomes

in female and male meioses . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.5 Distribution of single and double recombination events along

the autosomes in female and male meioses . . . . . . . . . . . . . . . . . 45

xiii



4.1 A cartoon illustration of two scenarios where three IBS-

based selection methods perform differently . . . . . . . . . . . . . . . . 58

4.2 Median r2 half-life value of 5Mb windows on 5 chromosomes . . . . . . . 64

4.3 Imputation of 3587 WHI-HA with the 1000G reference panel . . . . . . . 68

4.4 Imputation of 8421 WHI-AA with the 1000G reference panel . . . . . . . 69

4.5 Minor Allele Frequency (MAF) distribution of SNPs in

WHI-AA and WHI-HA. . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.6 Imputation of 49 HapMap ASW and 50 HapMap MEX

individuals with the 1000G reference panel . . . . . . . . . . . . . . . . . 74

4.7 Imputation quality of ASW with HapMapII CEU+YRI+

LWK+MKK reference panel . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.1 Reference construction and imputation pipeline using a

study-specific reference panel . . . . . . . . . . . . . . . . . . . . . . . . 93

5.2 Imputation accuracy by chromosome for 2% randomly

masked GWAS SNPs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.3 Rsq by dosage r2 for 2% randomly masked GWAS SNPs . . . . . . . . . 97

5.4 MAF distributions of Affymetrix 6.0 and Metabochip SNPs . . . . . . . . 98

5.5 Physical spreading of Affymetrix 6.0 and Metabochip SNPs . . . . . . . . 99

5.6 Imputation accuracy by chromosome for Metabochip

SNPs (estimated by masking 100 reference individuals) . . . . . . . . . . 99

5.7 Accuracy and calibration of imputation . . . . . . . . . . . . . . . . . . . 100

5.8 Rsq by dosage r2 for Metabochip SNPs (estimated by masking

100 reference individuals) . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

xiv



Chapter 1

Introduction

Recent technological advances in life sciences have generated massive amounts of data

which enables accurate analyses of genome ancestry, recombination properties, complex

disease susceptibility, and drug response, among many others. However, it is often the

haplotype information that is more powerful in such analyses than the data directly

obtained from high-throughput technologies such as genotyping. Therefore, how to re-

construct haplotype information from massive amount of raw data and make related

inference based on recovered haplotype information are key problems in genetic studies

and pose serious computational challenge.

In this thesis, I have developed statistical methods and computational tools that, by

reconstructing haplotype information, generate accurate inferences for important prob-

lems including genome ancestry and imputation. My methods, based on Hidden Markov

Model (HMM), can efficiently handle large scale datasets from two common settings in

modern genetic studies:

1. Model organisms (such as laboratory mice): Individuals are bred through prescribed

pedigree design.

2. Out-bred organisms (such as human): Individuals (mostly unrelated) are drawn

from one or more populations or continental groups.



1.1 Background

1.1.1 DNA and Haplotype

Diploid species, which include nearly all mammals, carry paired homologous chromo-

somes, one inherited from each parent. A haplotype refers to the DNA sequence data

from one of the paired chromosomes. Within the same species, DNA sequences are

largely identical differing only slightly among individuals. Thus haplotypes are often

defined only at positions with sequence variations. Figure 1.1 shows a toy example of

two chromosomes with 15 sites and the two haplotypes defined at sites with variations.

Figure 1.1: Toy example of two chromosomes with haplotypes defined on three sites
containing variations

Haplotype knowledge describes how genetic materials are inherited from generation

to generation. It thus provides direct knowledge of genome ancestry and historical re-

combination events. Furthermore, utilizing haplotype sharing information, one can fill in

missing genotypes (imputation) [Li et al., 2009]. Haplotypes are also important to many

other fundamental problems in genetics. To name a few: (1) linkage analysis and linkage

disequilibrium patterns [Stephens et al., 2001; Wall et al., 2003]; (2) mapping complex

traits and diseases [Johnson et al., 2001; Altshuler et al., 2008]; (3) selection, evolution

and historical migration in population genetics [Sabeti et al., 2002; Merriwether et al.,
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1995]. In these problems, even if reconstructed with uncertainty, haplotype information

could lead to significantly increased power in inferences.

Even though it is possible to obtain haplotype information of diploid organisms di-

rectly from biological experiments, it is generally expensive and cannot scale to large sam-

ple size. On the contrary, modern high-throughput genotyping technologies can generate

accurate genotype readings on hundreds of thousands of markers at much lower cost. It is

thus valuable to conduct analysis by reconstructing haplotypes based on genotype inputs.

1.1.2 Genotype

Modern high-throughput genotyping technologies generate genotype readings on a pre-

selected set of genetic markers. The set of markers can be defined by standard commercial

platforms (e.g., Affymatrix 6.0, Illumina 1M), or customized by researchers (e.g., Yang

et al. [2009]). Each genotype reading, or simply genotype, is an unordered combination

of two alleles from paired chromosomes. In other words, genotypes are unable to dis-

tinguish between the two haplotypes of a diploid organism. It cannot tell which allele

is from which haplotype.

In this dissertation, I consider how to bridge the gap between genotype data and

desired genetic analyses by reconstructing haplotypes probabilistically. Here, I consider

two common settings in genetic studies and related inference problems specific to settings.

1.2 Model Organisms from Prescribed Breeding

Model organisms, such as laboratory mice, are frequently bred or crossed in order to

study genetic influences [Churchill et al., 2004; Valdar et al., 2006; Chia et al., 2005].

Often, organism resources are generated using prescribed breeding system to ensure di-

versity and reproducibility, which leads to complex pedigree structure consisting of many

generations. Through recombination, DNA sequences of founder organisms are inter-
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mixed in each generation. A DNA sequence of any descendant organism is a mosaic of

its founders’ DNA segments.

One example of such resources is the international Collaborative Cross (CC) project

which is a major effort in the mouse research community and has been under development

for more than 10 years [Threadgill and Churchill, 2012]. The CC project consists of

hundreds of independently bred, recombinant-inbred mouse lines generated through a

funnel breeding design (Figure 2.3). Each line has more than 20 expected generations.

High-density genotype data of the CC resources not only provide opportunities for fine-

resolution quantitative trait locus (QTL) studies, but also facilitate exciting new research

areas such as the inference of genetic networks underlying phenotypic traits in mammals.

Among many analyses of interest, a core problem is to discover the founder attribution

to genomes in subsequent generations. That is to say, given a descendant organism

in the resource, I want to find out which part of its DNA sequences is inherited from

which founder (genome ancestry in founders). The genome ancestry information provides

direct knowledge of historical recombination events and opportunities for error detection

and imputation. It also enables downstream analyses such as measuring strain effect

in quantitative traits.

Inference of genome ancestry involves resolving the potential inheritance flow at all

markers of interest. This naturally requires the resolution of haplotype information as

haplotypes correspond to the variants inherited together in the breeding process. It is

straightforward to show that, in a pedigree with n non-founders andmmarkers of interest,

there are 2mn possible inheritance configurations even if one assumes known founder

haplotypes and only bi-allelic markers. In a typical CC pedigree, there could be more

than 40 mice and the enormous search space presents a major computational challenge.

The commonly favored pedigree-based haplotyping methods [Kruglyak et al., 1996;

Abecasis et al., 2001; Gudbjartsson et al., 2005] are all based on the Lander-Green algo-

rithm (Lander and Green, 1987) as the running time is linear to the number of markers

4



which far exceeds other parameters. However, these methods are limited to pedigrees

of moderate size since the running time grows exponentially with pedigree size. When

they are applied to the genotype data from CC, the search space becomes extraordinarily

large due to the large pedigree structure with many untyped intermediate generations.

Other pedigree-based haplotyping methods include MCMC sampling methods [Sobel and

Lange, 1996; Jensen and Kong, 1999], whose computing time can be substantial when

applied to a large number of tightly linked markers, and rule-based methods [Qian and

Beckmann, 2002; Li and Jiang, 2005], which have a crude approximation by minimiz-

ing recombinations in pedigree. More computationally efficient approaches for solving

the genome ancestry problem have ignored pedigree information, including the breed-

ing scheme. Examples include the combinatorial optimization approach by Zhang et al.

[2008] and the HMM-based method in HAPPY [Valdar et al., 2006; Mott et al., 2000], a

QTL mapping tool suite for association studies. All ancestry compositions are considered

possible in the two methods. While breeding design does not determine the locations

of recombination, it places important constraints on the possible ancestry choices at

a single marker and at neighboring markers. Therefore, incorporating breeding design

information would lead to more accurate inference.

1.3 Samples from Out-bred Human Populations

The ultimate goal of almost all genetic research is to understand genetic mechanisms in

humans. Therefore, tremendous efforts have been spent on investigating human samples

directly. In contrast to model organisms where breeding is often designed and controlled,

humans are out-bred and the genetic data of founders are generally unavailable. Since

Risch and Merikangas [1996] showed that association studies are more powerful than

linkage studies, genetic data collected for humans in the past one and a half decades

are largely from unrelated individuals. The consequence of out-breeding, lack of founder
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genetic information, and use of unrelated individuals is that individuals studied tend to

share only short haplotype segments (e.g., several hundred Kbs) of their chromosomes.

This is further confounded by the presence of population and sub-population structure.

Reconstruction of haplotype in such out-bred populations is therefore challenging but

of great importance in genetic studies.

By aligning samples under study to samples in existing studies (e.g., HapMap and

1000 Genomes projects [The International HapMap Consortium, 2010; The 1000 Genomes

Project Consortium, 2012]), researchers can identify the shared haplotype segments

among samples. Consequently, one can not only recover the sporadic technological fail-

ures in genotypes, but also impute the markers that are untyped in individual studies

but typed in reference samples. This genotype imputation technique greatly improves

the marker density and analysis power of individual studies.

Moreover, as the typical small to moderate effect of individual genetic variant on

complex trait entails large sample size, collaborative efforts that pool information across

multiple studies are typically taken to enhance the statistical power for detecting causal

variants. In these collaborative efforts, samples from different studies are typically geno-

typed at different sets of markers because different commercially available genotyping

platforms are used. The commonly used genotyping platforms have a small fraction of

markers in common (∼10% is typical between platforms from two different companies).

Restricting analysis to markers in common leads to much reduced marker density and

huge loss of information. Imputation of markers untyped in individual studies greatly

facilitates the integration of samples across studies (meta-analysis) .

Several HMM-based imputation methods [Li et al., 2010a; Howie et al., 2009; Brown-

ing and Browning, 2009] have previously been developed by reconstructing the haplo-

types and shown to achieve good imputation performance in a number of populations

[Pei et al., 2008; Huang et al., 2009], particularly those with high level of linkage dis-

equilibrium (LD) or having closely matched reference population(s) from the HapMap
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or the 1000 Genomes Projects [The International HapMap Consortium, 2010; The 1000

Genomes Project Consortium, 2010]. The wealth of literature using genotype imputa-

tion has focused on using external reference panels (for example, phased haplotypes from

the HapMap and 1000 Genomes projects), largely in individuals of European ancestry,

for inference of genotypes at common (minor allele frequency [MAF] > 0.05) genetic

markers. Several important issues have not been adequately addressed including the

utility of study-specific reference, accommodation of increasingly large reference panels,

performance in admixed populations, and quality for less common (MAF ∼ 0.005-0.05)

and rare (MAF < 0.005) variants. These issues only recently became addressable with

Genome-Wide Association (GWA) follow-up studies using dense genotyping or sequenc-

ing in large samples of non-European individuals.

Also, little methodological work exists for imputation in admixed populations, such

as African Americans and Hispanic Americans, which comprise more than 20% of the US

population. Admixed populations offer a unique opportunity for gene mapping, but also

impose challenges for imputation. To efficiently benefit from emerging large reference

panels, one key issue to consider is on how to traverse the reference space harboring the

most probability mass with minimum computational efforts. In modern genotype impu-

tation framework, this corresponds to the selection of effective reference panels. Existing

works often focused on constructing a pre-defined reference panel prior to running

the imputation engine. Such methods (e.g., a cosmopolitan panel [Hao et al., 2009; Li

et al., 2009; Shriner et al., 2010] or a weighted combination panel [Egyud et al., 2009;

Huang et al., 2009; Pasaniuc et al., 2010; Pemberton et al., 2008]) have limited flexibil-

ity and aggravate the already heavy computation burden. Another approach, based on

whole-haplotype closeness heuristics, has been adopted by IMPUTE2 [Howie et al., 2009]

and can be embedded within other existing imputation models. The above-mentioned

methods have shown promising results but have not been evaluated systematically. In

addition, both categories of methods can be further improved statistically and compu-
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tationally, for example, through integration of the former approach within (rather than

prior to) the hidden Markov model, or through more elegant heuristics.

1.4 Thesis Statement

Genetic analyses of model organism resources and out-bred populations can be achieved

by reconstructing haplotype information implicitly or explicitly via HMM. By applying

effective state-space pruning strategies, I present haplotype-based inference algorithms

that can scale to large datasets without compromising accuracy. Application to CC mouse

data leads to new biological discovery of properties of recombination events. Case study

on Women’s Health Initiative (WHI) metabochip data leads to generalizable quality

control guidelines for imputation analysis.

1.5 Contributions

In this section, I briefly summarize the contributions presented in subsequent chapters.

1.5.1 Model Organisms from Prescribed Breeding

• In Chapter 2, I propose a method, GAIN, to infer genome ancestry in organism

resources. The method can efficiently handle complex pedigrees with inbreeding

which is an important process in generating organism resources. Using a pair of

dependent quaternary indicators to capture all recombinations in the inbreeding

history, my method achieves accurate ancestry inference without the need to ex-

plicitly model every intermediate generation. By encoding the inbreeding model

into the inheritance vectors, I design a Lander-Green-like algorithm whose running

time remains constant with respect to the number of inbreeding generations. GAIN

is implemented and evaluated on the CC high-density single-nucleotide polymor-
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phism (SNP) data with complex breeding design. Experiments show that, GAIN

generates accurate results efficiently on data that cannot be handled by existing

pedigree haplotyping software. Compared with HAPPY [Mott et al., 2000], which

does not model pedigree structure, GAIN substantially reduces ambiguities in an-

cestry inference.

• In Chapter 3, I generate a new linkage map of the laboratory mouse genome using

GAIN described in previous chapter. The map is built with the recombination

and ancestry information inferred from the genotypes of 237 male-female sibling

pairs. Exploiting the large number of recombination events (n∼22,000), the high

precision in mapping each event (∼35kb) and the unique characteristics of the CC

mice, I provide a new and powerful look at the effects of sex, strain and genotypes at

polymorphic loci of interest (e.g., the Prdm9 gene) on recombination. In addition to

an extended catalog of sex and strain specific hotspots, I report the presence of cold

regions for recombination with striking distributions and genomic characteristics.

1.5.2 Samples from Out-bred Human Populations

• In Chapter 4, I propose and evaluate a number of methods for effective refer-

ence panel construction to improve haplotype-based imputation engines. Using

a novel piecewise IBS method, my software package MaCH-Admix yields con-

sistently higher imputation quality than existing methods/software. I evaluated

the performance on individuals from recently admixed populations, including 8421

African Americans and 3587 Hispanic Americans from the Women’s Health Initia-

tive (WHI), which allow assessment of imputation quality for uncommon variants.

The advantage is particularly noteworthy among uncommon variants where up

to 5.1% information gain is observed with the difference being highly significant

(Wilcoxon signed rank test P -value < 0.0001). This work is the first that considers
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various sensible approaches for imputation in admixed populations and presents a

comprehensive comparison.

• In Chapter 5, I present a case study of imputation in a large cohort of African Amer-

icans from the Women’s Health Initiative (WHI) study. This study presents three

under-studied aspects: (1) imputation of markers from a region-centric platform

that are largely of low frequency; (2) imputation using a study-specific reference

panel; and (3) imputation in admixed population. In this study, I describe a pipeline

for constructing study-specific reference panels using individuals genotyped or se-

quenced at a larger set of genetic markers and for imputation into individuals with

genotype data at a subset of markers. I demonstrate several approaches to reliably

estimate imputation quality for SNPs in different MAF categories. Experiment

results suggest that imputation of region-centric SNPs, including low frequency

SNPs with MAF 0.005-0.05, is feasible and well worthwhile for power increase in

downstream association analysis. I further provide practical guidelines regarding

post-imputation quality control.
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Chapter 2

Efficient Genome Ancestry Inference

in Complex Pedigrees with

Inbreeding

2.1 Introduction

Model organisms, such as laboratory mice, are frequently bred or crossed in order to

study genetic influences [Churchill et al., 2004; Valdar et al., 2006; Chia et al., 2005].

Often, such animal resources are generated using prescribed breeding system to ensure

diversity and reproducibility, which leads to complex pedigree structure consisting of

many generations. Through recombination, the DNA sequences of founder organisms are

intermixed in each generation. A DNA sequence of any descendant organism is a mosaic

of its founders’ DNA segments. As recombinations at each breeding stage cannot be

observed directly, it is of great interest to infer the ancestry of resulting DNA sequences.

In other words, which part of a resulting DNA sequence is inherited from which founder.

The vast majority of the sequence variations are attributed to single base-pair mu-

tations known as single-nucleotide polymorphism (SNPs), thus making SNPs ideal for

resolving the genome ancestry problem. The set of SNPs on the same chromosome con-

stitutes a haplotype. While any of the four nucleotides (A,T,C,G) is possible, in practice

nearly all SNPs appear in only two variations. This results from the fact that SNPs



originate as mutations, which are rare events within a vast genome. It is therefore con-

venient to encode a SNP allele as a binary value and represent haplotypes as binary

sequences. Modern high-throughput genotyping technologies are unable to distinguish

between the two haplotypes of a diploid organism. Instead, a genotype sequence is mea-

sured where, at each SNP site, one of three possibilities is observed ({00, 01, 11}, since

10 cannot be distinguished from 01).

Using the genotype representation for DNA sequences, the genome ancestry problem

estimates the origin of each genotype from a descendant’s sequence given the genotype

sequences of its distant founders. To achieve high resolution, dense SNP markers are

used ( tens of thousands on each chromosome ). Knowledge of genotype’s ancestry is

particularly useful in many problems such as studying the structure and history of haplo-

type blocks [Gabriel et al., 2002; Zhang et al., 2002; Schwartz et al., 2004], and mapping

quantitative trait loci (QTLs)[Valdar et al., 2006; Mott et al., 2000]. In these studies,

a probabilistic interpretation is favored over discrete solutions, due to the prevalence of

ambiguities and measurement errors.

The genome ancestry problem is closely related to haplotype inference with pedigree

data. Inferring haplotypes in a pedigree often involves solving the inheritance flow of

alleles at each generation. On the other hand, given the genome ancestry information,

it is straightforward to reconstruct the descendant haplotypes. As pedigree analysis is

NP-hard [Piccolboni and Gusfield, 2003], existing algorithms are either approximate or

suffer exponential running times. Among the maximum likelihood approaches, meth-

ods [Kruglyak et al., 1996; Abecasis et al., 2001; Gudbjartsson et al., 2005] based on

the Lander-Green algorithm [Lander and Green, 1987] are often favored because their

running time is linear to the number of markers. MERLIN [Abecasis et al., 2001], an

implementation based on sparse binary trees, is one of the most successful pedigree anal-

ysis programs. Unfortunately, methods based on Lander-Green algorithms are limited

to pedigrees of moderate size since the running time grows exponentially with pedigree
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size. MCMC sampling methods [Sobel and Lange, 1996; Jensen and Kong, 1999] have

been proposed to address larger pedigrees. But their computing time can be substan-

tial when applied to a large number of tightly linked markers. Other efforts include

rule-based methods [Qian and Beckmann, 2002; Li and Jiang, 2005] which approximates

a solution by minimizing recombinations in the pedigree (MRHC). PedPhase [Li and

Jiang, 2005], which employs an effective integer linear programming (ILP) formulation,

has been widely used in solving the MRHC.

Current haplotyping methods for pedigrees are incapable of solving the genome ances-

try problem in animal resources for the following reasons: 1) Pedigrees of model animal

resources often contain large number of generations to ensure diversity and reproducibil-

ity. 2) None or few of the intermediate generations are genotyped due to the size of the

resources. 3) A large number of dense markers are genotyped to achieve fine resolution.

As a concrete example, more than one thousand lines have been started in the Collabo-

rative Cross project [Churchill et al., 2004; The Collaborative Cross Consortium, 2012].

Each line is expected to undergo at least 23 generations before reaching 99% inbred.

Hundreds of mice of various generations were genotyped, but on average only few are

from the same line. The missing genotypes make the search space extraordinarily large.

Other computationally efficient approaches for solving the genome ancestry problem

have largely ignored the breeding scheme. While breeding design does not determine the

locations of recombination, it often places constraints on the possible ancestry choices

at a single site and at neighboring sites. The genome ancestry problem was modeled as

a combinatorial optimization problem in [Zhang et al., 2008]. By minimizing recombi-

nations, discrete solutions are generated. Mott et al. has proposed an approach using

Hidden Markov Model (HMM) for ancestry inference in HAPPY [Valdar et al., 2006;

Mott et al., 2000], a QTL mapping tool suite for association studies. All founder pairs

are considered as possible hidden states for emitting the observed genotype at each site.

Besides founder genotypes, no pedigree data are used in these two approaches.
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There have also been many efforts to analyze pedigree by identifying symmetries in

HMM state space [Donnelly, 1983; McPeek, 2002; Browning and Browning, 2002; Geiger

et al., 2009]. The states are then grouped to accelerate the calculation. However, finding

the maximal grouping is non-trivial. In real-world problems, only obvious symmetries

such as founder phase and chain structure in pedigree can be best utilized.

Besides model organisms, the genetic ancestry problem has been studied for human

individuals that have recently been admixed from a set of isolated populations, instead

of a set of founders[Tang et al., 2006; Sundquist et al., 2008; Sankararaman et al., 2008;

Paşaniuc et al., 2009]. In this problem, pedigree structure is usually not present (unre-

lated individuals) or the size of pedigree is small. Efficient methods have been developed

to handle large-scale datasets[Tang et al., 2006; Sundquist et al., 2008; Sankararaman

et al., 2008].

Leveraging the observation that large animal resource pedigrees often contain repet-

itive sub-structures, I propose a method that can efficiently handle complex pedigrees

with inbreeding which is an important process in generating animal resources. Using a

pair of dependent quaternary indicators to capture all recombinations in the inbreeding

history, my method achieves accurate ancestry inference without explicit modeling every

generation. By encoding the inbreeding model into the inheritance vectors, I design a

Lander-Green-like algorithm whose running time remains constant with respect to the

number of inbreeding generations. My method is implemented and evaluated on the

Collaborative Cross breeding design [Chesler et al., 2008; The Collaborative Cross Con-

sortium, 2012] with dense SNP data. Experiments show that, my approach generates

accurate results efficiently on data that cannot be handled by existing pedigree haplo-

typing software. Compared with HAPPY, which does not consider pedigree structure,

my approach significantly reduces ambiguities and errors in ancestry inference.
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2.2 The Genome Ancestry Problem

Given a pair of chromosomes, consider L SNP markers ordered by their chromosomal

locations. For each SNP site, we use 0 and 1 to encode the two possible values. The

genotype at each site is the unordered combination of corresponding alleles from both

chromosomes, which can assume one of three values: 00, 01, 11. A genotype sequence is a

genome-ordered set of genotypes denoted as: G = g1...gl...gL, (gl ∈ {00, 01, 11}). A hap-

lotype H = h1...hl...hL consists of alleles from one of the chromosomes where hl ∈ {0, 1}.

Consider a pedigree containing a set of founders FS = {F1, ..., FN} and a descendant

of interest. I denote the set of founder genotype sequences by {GF1, ..., GFN
}, all of

which are given. Given the genotype sequence, GD, of the descendant generated through

the pedigree structure, its genome ancestry is to be determined. Every genotype gl in

GD inherits its alleles from two founders, say FA and FB. I refer to the founder pair

(FA, FB) as the genome ancestry at site l of genotype sequence GD. I want to estimate,

for every SNP site l, the probability P (Ancestry(gl) = (FA, FB)) for every founder pair

(FA, FB)∈FS×FS. Note that founder pairs are unordered ((FA, FB) = (FB, FA)), and

it is possible that FA = FB.

2.3 Modeling Inheritance in Pedigree

I start from the standard Lander-Green approach to model a pedigree: At each SNP

site, an inheritance indicator is used to indicate the outcome of each meiosis. These

inheritance indicators together form the inheritance vector. Since a child haplotype

inherits its allele from either the paternal or maternal sequence, an inheritance indicator

is a binary variable. For a pedigree with n non-founder animals, there are 2×n inheritance

indicators at each site. Hence, the inheritance vector at site l, vl, can be defined as a

binary sequence of length 2 × n. An instance of vl specifies a possible configuration of
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inheritance flow at site l of all animals in the pedigree. When SNP markers are dense

enough, one can assume at most one recombination between two sites in generating

one haplotype. If a recombination happens between site l and l + 1, the corresponding

inheritance indicator will have different states for the two sites. Hence, to measure the

number of recombinations between l and l + 1 in the whole pedigree, one can count

the difference in bits between vl and vl+1. The probability of having d recombinations

between l and l + 1 is θd(1 − θ)2n−d, where θ is the recombination fraction.

The length of inheritance vector grows linearly with the number of animals in the pedi-

gree and this causes exponential growth in the number of possible inheritance patterns.

Considering the fact that full pedigree analysis is computationally intractable, I overcome

the issue by modeling important sub-structure in breeding systems as a shortcut to effi-

cient computation. My first natural choice of sub-structure is inbreeding: 1) Inbreeding is

often used in model animal resources to generate genetically diverse and/or reproducible

descendants. 2) Inbreeding is often carried out for many generations and each generation

elongates the inheritance vectors by 4 bits. Hence, if a pedigree involves inbreeding, the

inbreeding generations often account for most of the computational complexity. I seek an

aggregated inheritance indicator to replace the collection of many inheritance indicators

in the inbreeding process. Such an aggregated indicator can be encoded in much shorter

length and incorporated into the inheritance vector. If the state and transition proba-

bility of the aggregated indicator can be modeled efficiently, full pedigree analysis will

become feasible on these animal resources. In the next section, I explain how inheritance

in inbreeding generations can be modeled as an aggregated indicator.

2.3.1 Modeling Inbreeding Generations

During inbreeding, offspring are produced by sibling matings for many generations. At

each generation, four new haplotypes are formed by recombining the four haplotypes

from the previous generation. The inbreeding process at a single site is shown in Figure
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(a) (b)

Figure 2.1: (a) Lattice of binary inheritance indicators representing the inheritance pat-
tern of an inbreeding process at a single site. (b) An equivalent quaternary indicator
representation

2.1(a). I denote the beginning generation of inbreeding as generation I0. Observe that, at

each site, because of the symmetry of inbreeding structure, the four alleles at generation

I0 have equal probabilities to be passed down to any haplotypes after I1. Thus, for a

descendant haplotype at generation Ik (k > 2), I can simply replace the lattice of binary

inheritance indicators by a single quaternary indicator. Each choice of the quaternary

indicator has 1/4 probability. Two quaternary indicators are needed for the two hap-

lotypes of a Ik descendant (Figure 2.1(b)). However, the two quaternary indicators are

not independent as the two haplotypes share the same inbreeding history until Ik−1. To

model this dependency between the two quaternary indicators, I find out the transition

events and probabilities of the pair of indicators. The grouped pair is then used as an

aggregated inheritance indicator as discussed above.

I label the four I0 haplotypes as 1, 2, 3, 4. I then denote by a, b the two Ik descendant

haplotypes and S(al), S(bl) are their I0 sources at site l, i.e., S(al), S(bl) ∈ {1, 2, 3, 4}.

Their I0 sources along the chromosome is denoted by S(a), S(b) ∈ {1, 2, 3, 4}L. A transi-

tion happens in S(a) between site l and l + 1 if S(al) 6=S(al+1). I consider, between two

17



adjacent sites, l and l + 1, all the possible transitions from S(al), S(bl) to S(al+1), S(bl+1)

(Table 2.1).

Note that:

PEE0 + PEN1 + PEE2 + PEN2 = P (S(al) = S(bl)) =

PEE0 + PEE2 + PNE1 + PNE2 = P (S(al+1) = S(bl+1))

and

PNE1 + PNN0 + PNN1 + PNN2 + PNE2 = P (S(al) 6=S(bl)) =

PEN1 + PEN2 + PNN0 + PNN1 + PNN2 = P (S(al+1) 6=S(bl+1))

The prior probability P (S(al) = S(bl)) at any site l is called the inbreeding coefficient

[Wright, 1922]. To calculate the probability, let ICk denote the inbreeding coefficient at

generation Ik. ICk can be computed recursively using ICk =
k−2∑

j=0

(
1

2
)k−j × (1 + ICj).

18



Site l Possible Transitions Site l + 1 Denote By

S(al) = S(bl)

Neither S(a) or S(b) transitions. S(al+1) = S(bl+1) PEE0

Either S(a) or S(b) transitions, but not both. S(al+1)6=S(bl+1) PEN1

Both S(a) and S(b) transition to same value. S(al+1) = S(bl+1) PEE2

Both S(a) and S(b) transition, but to different values. S(al+1)6=S(bl+1) PEN2

S(al)6=S(bl)

Neither S(a) nor S(b) transitions. S(al+1)6=S(bl+1) PNN0

Either S(a) or S(b) transitions, but not both. S(al+1) = S(bl+1) PNE1

S(a) and S(b) become equal after the transition.

Either S(a) or S(b) transitions, but not both. S(al+1)6=S(bl+1) PNN1

S(a) and S(b) remain different after the transition.

Both S(a) and S(b) transition. S(al+1)6=S(bl+1) PNN2

S(a) and S(b) remain different after the transition.

Both S(a) and S(b) transition. S(al+1)6=S(bl+1) PNE2

S(a) and S(b) become the same after the transition.

Table 2.1: All possible transitions of S(a), S(b). Each type of transition is denoted by 3 characters. First two letters indicate the
equality of S(a), S(b) before and after the transition. Then followed by a digit indicating the number of transitions in S(a), S(b).
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Next, I derive the probabilities in Table 2.1. Consider that any transition in S(a) or

S(b) is caused by one or more recombinations in the inbreeding process (Figure 2.1(a)).

My calculation is based on the assumption that the recombination fraction, θ, is rea-

sonably small. Hence, for any haplotype c at generation Ij (1≤j≤k), I assume that any

single transition in S(c) is solely caused by one recombination in generating c or its an-

cestor haplotypes. In other words, a single transition in S(c) is not the result of multiple

recombinations in the pedigree. My assumption is generally true for dense SNP markers

where θ is usually well below 0.001. Under the assumption, if a transition in S(c) is

caused by a recombination in generating c itself, I define this to be a lead transition.

Intuitively, a lead transition is one not inherited from its ancestors. A lead transition in

c will change the I0 source of c and all descendant haplotypes inheriting the transition.

A lead transition is only possible when the two parental haplotypes of c have different

I0 sources. Hence, between two sites, a haplotype at generation j has a lead transition

with probability θ × (1 − ICj−1).

With the inbreeding coefficients calculated, I can derive the marginal probability of ob-

serving transition in one of the Ik haplotypes, P1T = P (S(al) 6=S(al+1)) = P (S(bl) 6=S(bl+1)).

Without loss of generality, I consider P (S(al) 6=S(al+1)) for haplotype a. S(a) will tran-

sition if a itself or any of its ancestor haplotypes has a lead transition. At generation

k, the lead transition happens with probability θ × (1 − ICk−1). For generation k − 1,

there are 2 possible ancestor haplotypes, each with 1
2
θ × (1 − ICk−2) chance of causing

a transition in S(a). For each generation j from 1 to k − 2, there are 4 possible ances-

tor haplotypes with probability 1
4
θ × (1 − ICj−1). Consider that, at one site, any two

haplotypes from the same generation cannot both be the ancestor of a. Thus, for any

generation j, the expected probability of causing transition in S(a) is θ × (1 − ICj−1).

Under my assumption, P (S(al) 6=S(al+1)) can be expressed by 1−

k∏

j=1

(1−θ×(1−ICj−1)).

I then derive the probability PEE2 that S(a) and S(b) have equal state at site l, and

both transition to another state at site l + 1. This event happens only if a haplotype c at
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some previous generation is the common ancestor of a, b and c has a lead transition. The

probability of c at generation j being the common ancestor of a and b is 1
4
ICk−j. The

probability that c has a lead transition is θ× (1− ICj−1). Again, consider the fact that,

at one site, any two haplotypes from the same generation cannot both be the common

ancestor of a and b. Thus, the probability of EE2 event caused by lead transition at Ij

(1≤j≤k − 2) is θ × (1 − ICj−1)ICk−j. Assuming a small θ, PEE2 can be calculated by

1−

k−2∏

j=1

(1− θ × (1− ICj−1)ICk−j).

Lastly I consider the probability PNN1. To simplify my discussion, assume that the

transition happens in S(a) (i.e. S(al) 6=S(al+1)) and it inherits a lead transition in hap-

lotype c of generation j. Since S(al), S(al+1) and S(bl) all have different I0 ancestry,

alleles from at least 3 distinct I0 haplotypes should be observed at generation j − 1. Let

PDistinct(m, j) be the probability of observing exactly m distinct I0 alleles at generation

j. PDistinct(3, j) and PDistinct(4, j) can be computed recursively using:

PDistinct(4, j) =
1

4
PDistinct(4, j − 1)

PDistinct(3, j) =
1

2
PDistinct(3, j − 1) +

1

2
PDistinct(4, j − 1)

Then, PNN1 is the probability that (1) at least 3 distinct I0 alleles are present at gen-

eration j − 1 and (2) a’s ancestor c at generation j has a lead transition between sites

l and l + 1 which is inherited by a (3) before and after transition, the I0 source of c

is different from that of b.

Under my assumption of a small θ, PNN2, PNE2, PEN2 are all sufficiently small and

can be ignored in calculating other probabilities. The intuition is as follows: if k is small,

there are few animals in the inbreeding lattice and the chance of observing multiple

transitions is rare; when k becomes larger, the probability P (S(al) 6=S(bl)) approaches 0
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rapidly and PNN2, PNE2, PEN2 are much smaller than P (S(al) 6=S(bl)). With P1T , PEE2

and PNN1 derived, I can easily solve all the rest probabilities in Table 2.1:

PNE1 = PEN1 =
1

2
(2× (P1T − PEE2)− PNN1)

PEE0 = ICk − PEE2 − PEN1

PNN0 = 1− ICk − PNE1 − PNN1

PNN2, PNE2, PEN2 are approximated by a small probability PNE1×PNE1. I use simu-

lation to validate the probabilities derived above. The results are shown in Figure 2.2.

For θ around 0.01, my method gives reasonably close approximation. For θ below 0.001,

my method is very accurate. The recombination fraction between dense SNP markers

is usually well below 0.001.

So far I have derived all event probabilities in Table 2.1. The transition probability

from (S(al), S(bl)) to (S(al+1), S(bl+1)) is the corresponding probability in Table 2.1

conditioned on P (S(al) = S(bl)) or P (S(al) 6=S(bl)).

2.3.2 Integrating the Inbreeding Model

I have argued that each inbreeding process can be modeled by two quaternary indicators

and their transition probabilities can be accurately approximated when θ is small. It is

then straightforward to integrate the inbreeding model into the original Lander-Green

model. I encode the two quaternary indicators using 4 binary bits in the inheritance

vector. Consider a pedigree containing i inbreeding processes and n′ other members not

involved in inbreeding. The inheritance vector vl at every site l now has length 2×n′+4×i.

Each possible realization of vl is a hidden state in HMM. The transition probability from

vl to vl+1 is the product of transition probabilities of all binary indicators and pairs of

quaternary indicators. I can then solve the HMM using standard routine:
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Figure 2.2: Comparison of predicted probabilities and observed probabilities from
10000000 simulations. The data points in the figures are observed probabilities from sim-
ulations. The curves are derived from my formulas. (a) Predicted and simulated PEE0 for
θ = 0.01, 0.001, 0.0001. (b) Predicted and simulated PEN1 = PNE1 for θ = 0.001, 0.0001.
(c) Predicted and simulated PEE2 for θ = 0.001, 0.0001. I do not plot the case of θ = 0.01
in (b) and (c) because the values are much larger than that of the other two θ values.
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P (vl|GD) =
P (GD|vl)P (vl)

P (GD)

=
P (g1, ..., gl|vl)P (gl+1, ..., gL|vl)P (vl)

P (GD)

=
P (g1, ..., gl, vl)P (gl+1, ..., gL|vl)

P (GD)

=
α(vl)β(vl)

P (GD)

where

α(vl) = P (g1, ..., gl, vl)

β(vl) = P (gl+1, ..., gL|vl)

α(vl) and β(vl) can be solved recursively:

α(vl+1) =
∑

vl

α(vl)P (vl+1|vl)P (gl+1|vl+1)

β(vl) =
∑

vl+1

β(vl+1)P (vl+1|vl)P (gl+1|vl+1)

P (GD) is obtained from the calculated α(vl) and β(vl) at any site l:

P (GD) =
∑

vl

α(vl)β(vl)

The genome ancestry at site l is, for every founder pair (FA, FB),

P (Ancestry(gl) = (FA, FB)) =
∑

vl

P (vl|GD)

for all vl s.t. gl is inherited from (FA, FB).
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Note that, if I place the bits of quaternary indicators at the end of inheritance vec-

tor, the recursive calculation of α and β can still greatly benefit from the Elston-Idury

algorithm [Idury and Elston, 1997].

2.4 Modeling the Collaborative Cross

The Collaborative Cross (CC) [Churchill et al., 2004; Chesler et al., 2008; The Collabora-

tive Cross Consortium, 2012] is a large panel of reproducible, recombinant-inbred mouse

lines proposed by the Complex Trait Consortium. Over a thousand of mouse lines have

been started among which several hundred lines are kept inbreeding. All mouse lines

are generated using eight genetically diverse founders via a common breeding scheme

designed to randomize the genomic contribution of each founder. It provides an ideal

platform for testing my approach.

2.4.1 The Breeding Scheme

CC mice are derived from 8 fully inbred founders using the 8-way funnel breeding scheme

shown in Figure 2.3(a). The chromosomes of the eight founders (shown in different colors)

are combined by two generations of crosses (labeled G1 and G2I0), followed by at least

20 inbreeding generations (G2I1 to G2I∞).

The positions of the 8 founders are not fixed. Permutations of the founders are

used to randomize the genomes and balance the founder contributions to the resulting

CC lines. This variation in initial positions imposes different ancestry constraints on

each line. Without loss of generality, I assume a founder order of F1F2F3F4F5F6F7F8

as shown in Figure 2.3(a).
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(a) (b)

Figure 2.3: (a) Collaborative Cross breeding scheme: An example derivation of chro-
mosomes by recombining chromosomes from 8 ordered founders. G1 and G2I0 are two
generations of crosses. G2I1 to G2I∞ are multiple generations of inbreeding. (b) The
inheritance indicators used to represent the inheritance flow at a SNP site.

2.4.2 Modeling the Genome of G2Ik Generation

In a CC pedigree, any recombination in the formation of G1 haplotypes can be virtu-

ally ignored since all founders are fully inbred. Hence, at each SNP site, I only need

4 inheritance indicators for G2I0 haplotypes and 2 quaternary indicators for the two

haplotypes in a resulting G2Ik descendant. The structure of the inheritance indicators

is shown in Figure 2.3(b).

G2I1 mice are an exception which only involve one generation of inbreeding. For a

G2I1 mouse, I simply let the two quaternary indicators revert back to binary indicators.
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This becomes a standard Lander-Green model and it can be seen that the two G2I1

haplotypes are restricted to be from the left and right half of the funnel respectively.

2.5 Experiments

In this section, I evaluate the proposed model on both simulated data and real CC geno-

type data. I implement my model GAIN (Genome Ancestry with INbreeding) for CC

using C++. GAIN is compared with MERLIN [Abecasis et al., 2001] and HAPPY [Mott

et al., 2000]. MERLIN is a widely used pedigree analysis software based on Lander-Green

algorithm and can handle large number of markers. HAPPY is a QTL mapping tool

suite and can analyze genome ancestry based on only founder and descendant genotype

data, i.e., it ignores pedigree structure. Both software estimate the genome ancestry

directly or indirectly.

2.5.1 Experiments on Simulated Data

As ground truth is generally unavailable for real data, I evaluate the accuracy of genome

ancestry analysis using simulated data. I simulate the genotype of a G2Ik mouse by

recombining real CC founder haplotypes according to the CC pedigree structure. Given

the founder genotypes, the founder haplotypes can be obtained trivially since all founders

are fully inbred. At each generation I choose recombination position randomly. To simu-

late genotyping errors, I also introduce random errors to the resulting genotype sequence.

When a site is selected to represent an error, I flip its value to heterozygous if it is ho-

mozygous originally. If a heterozygous site is selected, I change it to one of the homozy-

gous state randomly. This resembles the fact that most genotyping errors are between

heterozygous and homozygous states, instead of between the two homozygous states.

I simulate 20 test cases for each generation from G2I1 to G2I20. The number of mark-

ers ranges from 6 to 10 thousands. As MERLIN does not output probability distribution
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for each inheritance vector, I first compare the best founder ancestry pair estimated by

each method against the true answer. The error rate is measured by the percentage of

sites where the estimated best founder ancestry does not match the ground truth. Fig-

ure 2.4 shows the error rate of all three methods in the simulated data with and without

errors. Results of MERLIN are only available for the first 4 generations as the running

time grows exponentially with the size of pedigree. No results can be generated within

reasonable running time (3 hours) for generations beyond G2I4. By incorporating pedi-

gree information, both GAIN and MERLIN infer accurate estimates (error rate less than

2%). In contrast, HAPPY has much higher error rates and is more sensitive to noise.
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Figure 2.4: (a) Comparison of error rates of GAIN, MERLIN and HAPPY on a simulated
data set with no noise. (b) Comparison on a simulated data set with 1% noise.

As mentioned previously, an accurate solution to the genome ancestry problem is

important to subsequent studies such as QTL analysis. In such studies, not only the

most likely genome ancestry is desired, but also the probabilities of each founder pair are

wanted. Hence, it is also important to evaluate the probability distribution generated

by each method. Both GAIN and HAPPY compute a probability distribution of each

founder pair being the ancestry at a SNP site. I investigate the proportion of prob-

abilities assigned to wrong founder ancestry. The result in Figure 2.5 shows that the

knowledge of pedigree structure is indispensable in solving the genome ancestry prob-
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lem. While HAPPY infers the most probable ancestry correctly for more than 80% of

the markers, it assigns near 60% of the total probabilities to wrong ancestry choices.

The mis-assigned probabilities could hamper further studies. With pedigree structure

modeled, GAIN can resolve most ambiguities and assigns only less than 4% of the total

probabilities to wrong ancestry.
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Figure 2.5: (a) Proportion of probabilities assigned to wrong ancestry by GAIN and
HAPPY on a simulated data set with no noise. (b) Proportion of probabilities assigned to
wrong ancestry by GAIN and HAPPY on a simulated data set with 1% noise.

2.5.2 Experiments on Real CC data

The data set consists of genotypes of all autosomes from 96 mice of generation G2I5 to

G2I12. The number of SNP markers on each chromosome ranges from 4122 to 35172.

Due to the running time constraint of MERLIN, I only compare GAIN with HAPPY

which does not consider pedigree structure. Since the true genome ancestry is unknown,

I investigate the difference between the results of the two approaches.

I compare both the best ancestry estimated and the full probability distribution of

each possible ancestry. The first comparison (Figure 2.6(a)) shows the percentage of

sites of which the best ancestry estimated by the two methods do not agree. The dif-

ference in best ancestry choice is very similar to that of my experiments on simulated
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data with random error: the results from the two methods differ by 20%. I further mea-

sure the difference in probability distributions quantitatively using Jensen-Shannon(JS)

Divergence [Lin, 1991] which is a smoothed and bounded divergence based on Kullback-

Leibler Divergence. The JS Divergence (JSD) between two probability distributions

p1 and p2 is defined as:

JSD(p1||p2) =

∑

i

p1(i) log2
p1(i)

1
2
p1(i) +

1
2
p2(i)

+
∑

i

p2(i) log2
p2(i)

1
2
p1(i) +

1
2
p2(i)

A low JS Divergence indicates high similarity between p1 and p2. The JS divergence

ranges between 0 and 2. Figure 2.6(b) compares the mean and standard deviation of

the JS Divergence between HAPPY’s results and ours over all markers and all 96 mice,

grouped by chromosomes.

Though I cannot compare the results against the ground truth for real CC data,

the source of difference are further investigated. Consider again the CC pedigree in

Figure 2.3(a). The initial four founder-mating pairs (F1, F2),(F3, F4), (F5, F6), (F7, F8)

cannot serve as ancestry for any genotypes of G2Ik descendants. This is because any

genetic material passed from a founder mating pair is carried by a single haplotype in

the G2I0 generation. These four founder pairs are thus invalid ancestry choices if the

pedigree structure is considered. As an example to show the improved inference due

to incorporating pedigree knowledge, the ancestry of chromosome 7 of a G2I6 mouse

inferred by GAIN and HAPPY are shown in Figure 2.7(a) and 2.7(b) respectively.

The most probable founder pair inferred by HAPPY agrees with GAIN’s result at most

sites. But their actual probabilities are often different. To quantify the extent to which

HAPPY assigns positive probabilities to invalid ancestry, at each site l, I aggregate the

probabilities of invalid ancestry and plot this “pedigree inconsistency” measure in Figure

2.7(c). I can see that, the difference between Figure 2.7(a) and 2.7(b) is largely influenced
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Figure 2.6: (a) The difference in best ancestry estimated by GAIN and HAPPY (b) The
average JS Divergence between results from GAIN and HAPPY on chromosome 1 to 19 of
96 real CC mice.

by the “pedigree inconsistency”. Moreover, the probability distributions of ancestry

choices at neighboring sites are not independent. Probabilities assigned to pedigree-

inconsistent ancestry can substantially influence the choice of ancestry at neighboring

sites. Such “propagated error” is sometimes the main cause of the JS Divergence between

HAPPY’s results and ours. As an example, Figure 2.7(d) shows a region in chromosome

1 from another G2I6 mouse where the propagated error is the main cause of divergence.

In this region, HAPPY does not assign significant probabilities to invalid ancestry choice,

except for a few sites at both ends of this region. But, in the middle part, HAPPY favors

ancestry choices that are one recombination away from these invalid ancestry choices.

To sum up, even partial pedigree knowledge causes a big difference in analyzing

genome ancestry. Though HAPPY can conduct analysis rapidly, its results on complex
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Figure 2.7: (a) Ancestry inference on chromosome 7 of a G2I6 mouse by GAIN (b) Ances-
try inference on chromosome 7 of the same mouse by HAPPY (c) The pedigree inconsistency
in (b), i.e. the aggregated probability assigned to ancestry that violates pedigree knowl-
edge. (d) A region in chromosome 1 from another G2I6 mouse where propagated error is
the main cause of divergence.

32



pedigrees can be biased. On the other hand, my method can provide a pedigree consistent

inference in comparable running time.

2.5.3 Running Time Performance

For a pedigree containing i inbreeding processes and n′ members not involved in inbreed-

ing, the time complexity of GAIN is O(L×n′ × 22n
′

× 28i) where L is the number of SNP

markers. For any G2Ik animal in CC pedigree, the time complexity remains the same.

The running time does not depend on the error rate of genotype data either. Figure 2.8

shows the running time comparison of GAIN, MERLIN and HAPPY.
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Figure 2.8: Average running time of the three methods on data set containing 6644
markers. The experiment is conducted on an Intel desktop with 2.66Ghz CPU and 8GB
memory.

2.6 Discussion

The development of high density SNP technology makes model animal resources a pow-

erful tool for studying genetic variations. It also makes any analysis on such resources

computationally challenging. In this chapter, I demonstrate that modeling repetitive

sub-structure of a pedigree can provide significant improvement in efficiency without

compromising accuracy. I introduce a novel method for modeling the inbreeding pro-
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cess. Integrated into the Hidden Markov Model framework originally introduced by the

Lander-Green algorithm, my method can handle large pedigrees such as Collaborative

Cross efficiently. The inbreeding sub-structure model alone does not speed up the ances-

try inference for all types of pedigrees, but, as I have shown with the Collaborative Cross,

the computational benefit can be crucial for analyzing many model animal resources. In

analyzing such data, my method outperforms previous methods in terms of accuracy

and efficiency. I believe that sub-structure modeling is a promising approach for large

pedigree analysis, especially when specific types of pedigree are of interest.
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Chapter 3

High Definition Recombination Map

in a Highly Divergent Mouse

Population

3.1 Introduction

Recombination is an essential biological process in sexual reproduction as it ensures

accurate chromosome segregation during meiosis and also contributes significantly to

DNA repair and genetic diversity. Abnormal recombination can result in missegregation

and is associated with multiple developmental diseases [Hassold and Hunt, 2001]. Despite

its importance, the regulation mechanism for the rate and pattern of recombination is

largely unknown, although previous studies have shown the influence of factors, including

sex, chromosome, DNA sequence and hotspots [Robinson, 1996; Smagulova et al., 2011].

The Collaborative Cross (CC) provides a unique opportunity for the study of genome-

wide recombination. The CC is a large panel of recombinant inbred lines (RIL) currently

under development [Chesler et al., 2008; The Collaborative Cross Consortium, 2012]. It

is derived from eight genetically diverse founder strains, including five classical inbred

strains (A/J, C57BL/6J, 129S1/SvImJ, NOD/ShiLtJ, and NZO/H1LtJ) and three wild-

derived strains (CAST/EiJ, PWK/PhJ, and WSB/EiJ). The eight founder strains were

selected to capture a much greater level of genetic diversity than existing RIL panels



[Roberts et al., 2007]. Each of the independently bred lines has equal contributions from

all eight founder strains via a funnel breeding scheme (Figure 2.3(a)). The eight founder

strains are first intercrossed to generate the G1 generation. The G1 progeny are then

crossed to create the four-way G2I0 generation. The first eight-way progeny, the G2I1

s are then generated from a G2I0 × G2I0 cross 1. After this generation, CC strains

become inbred by repeated generations of inbreeding through sibling mating. At the top

of the funnel, the eight founder strains are arranged in order that is randomized and not

repeated across lines. The left four founders contribute to the left half of the funnel and

the remaining four contribute to the right half. I also denote the four pairs of founders

that are crossed to produce G1 progeny as four quarters of the funnel.

In this study, I focus on the G2I1 generation which has balanced genome contribution

from both sides of the funnel pedigree. The breeding pedigree leading to G2I1 generation

contains eight observable meioses (Figure 3.1). I denote the four at crossing G1 generation

as MGM , MGP , PGM , PGP and the four meioses at crossing G2I0 generation as

Mm, Mf , Pm, Pf . Using the genotype data of G2I1 generation, I reconstructed the

haplotype at G2I1 generation and inferred all switching points of genome ancestry which

correspond to past recombination events in the pedigree. With the design of the breeding

scheme, every inferred recombination event can be assigned uniquely to one of the eight

meioses. With all recombinations inferred and characterized by gender, meioses and

genetic features, this study presents a high definition genome-wide recombination map

and associated analysis of its properties.

1Other researchers have used G2 and G2F1 to denote G2I0 and G2I1 generations
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Figure 3.1: The CC funnel pedigree to G2I1 generation. In total there are eight meioses
in the pedigree.

3.2 Materials and Methods

3.2.1 The Genotype Data

The genotype data were obtained from 244 male-female sibling pairs at G2I1 generation

using a customized high-density genotyping array [Yang et al., 2009]. The array contains

623,124 SNPs that capture the known genetic variation in laboratory mouse. Before I

conducted haplotype reconstruction, I separated SNPs into high-quality and mid-to-low

quality groups by examining:

• Genotype completeness (>0.99)
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• Concordance between G2I1 mice, founder mice and partially availableG1 genotypes

I kept only 15∼25% of all SNPs on each chromosome in the high-quality group and

used only these high-quality SNPs for haplotype reconstruction and recombination infer-

ence. The mid-to-low quality SNPs were used later to help refine recombination bound-

aries. I also excluded samples2 and chromosomes 3 with exceptionally high discordance

rate in haplotype reconstruction.

3.2.2 Haplotype Reconstruction and Recombination Inference

I utilized the method GAIN to conduct haplotype reconstruction and recombination

inference. The method, as described in Chapter 2, is a hidden-Markov-model based

method that can model haplotype and recombinations with all pedigree knowledge in-

corporated. It has been shown that GAIN can perform analysis in the CC with both

high accuracy and scalability with respect to the pedigree size (proportional to number

of generations). For the specific G2I1 generation, the model constructed in GAIN is

similar to that in an efficient implementation of Lander-Green algorithm (e.g., MERLIN

[Abecasis et al., 2001]) because there are no further inbreeding generations. I performed

analysis on each funnel independently but jointly on the siblings in the same funnel. This

is because siblings can share recombinations and joint analysis can help resolve ambi-

guity on recombination locations and haplotype boundaries. Recombinations, however,

are not shared across funnels.

For each pair of G2I1 sibling mice, GAIN took the genotypes of the eight founder

mice and genotypes of the two sibling mice as input. In addition, it required the funnel

order of eight founders. It then inferred the founder ancestry (in probabilities) at each

SNP site by building a descendency model at each SNP and evaluating the probabilities

of recombining between adjacent SNPs. The founder ancestry at each SNP describes

2fourteen mouse samples or seven sibling pairs

3six samples’ chromosome 18 and four samples’ chromosome X
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the probability that each pair of founders (e.g., C57BL/6J and CAST/EiJ) are the two

founders where the two alleles are inherited from. With pedigree knowledge considered

and careful QC steps, GAIN achieved a very high level of confidence in estimating the best

ancestry at most sites. More than 98% of the sites in all mice have the best ancestry choice

estimated with ≥ 0.99 probability. With the ancestry probability information, I could

define the haplotype blocks and recombinations trivially by tracing the most probable

founder ancestry along chromosomes. Each recombination event is described by:

• a mid-point where the most probable founder ancestry changes

• proximal and distal boundaries where the probability of the most founder ancestry

shrinks to a threshold

• proximal and distal ancestry founders on the recombining chromosome

• the type of meiosis it is associated to

The recombination interval inferred (from proximal to distal boundary) is expected to

contain the recombination event with high probability. Note that there are regions where

multiple founder ancestries have similar probabilities (due to lack of markers, low geno-

typing quality or similar DNA sequence in multiple founders). In such cases, long recom-

bination intervals were obtained and the recombination events cannot be determined

with high resolution.

Upon obtaining the recombination inference results, I further refined them with the

mid-to-low-quality SNPs filtered in the QC step. This was done by examining the con-

sistency at mid-to-low quality SNPs between founders, each G2I1 mice, and all G2I1

mice assigned the same ancestry. On average, this reduced the recombination intervals

inferred by approximately half.

Note also that GAIN fully enforces all constraints imposed by pedigree knowledge.

For example, two of the strongest constraints for G2I1 mice are:
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• For any SNP of any G2I1 mouse, the two alleles must come from different halves

of the funnel.

• Two siblings cannot inherit different alleles from one quarter funnel at any SNP

site.

If the input data contained errors (genotype data or funnel order), GAIN would infer

significantly more recombinations in order to satisfy the corresponding constraints. This

can be used as an effective indicator to identify and remove:

• Wrongly labeled funnels and mice

• Poorly performing and/or incorrectly mapped SNPs

3.3 Overview of the Recombination Map

Table 3.1: Summary of Identified Recombination Events in G2I1 Mice

Autosomes X chromosome
Meiosis # Type Sex of G2I1 Non-Shared Shared All Non-Shared Shared All Total
1 M f 3282 - 3282 183 - 183 3465
2 M m 3255 - 3255 150 - 150 3405
3 P f 2871 - 2871 - - - 2871
4 P m 2783 - 2783 - - - 2783
5 MGM f 826 756 1582 35 48 83

m 767 756 1523 35 48 83
all 1593 756 2349 70 48 118 2467

6 MGP f 733 730 1463 - - -
m 768 730 1498 - - -
all 1501 730 2231 - - - 2231

7 PGM f 807 766 1573 174 - 174
m 782 766 1548 - - -
all 1589 766 2355 174 - 174 2529

8 PGP f 740 745 1485 - - -
m 757 745 1502 - - -
all 1497 745 2242 - - - 2242

A total of 25,038 recombination events were identified in the 474 individual G2I1

mice. Of these 18,948 events are observed only once and 3,045 recombination events are

shared by the sib pair. Therefore, we have identified 21,993 unique recombination events

in our population, 21,368 on the autosomes and 625 on chromosome X. Table 3.1 presents

a summary of all types of recombination events identified.
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At a high level, I examined the correctness of the events by checking the ratio between

types of events (expected and observed). Firstly, the ratio of shared vs non-shared

events is expected to be 1:2 based on Mendel’s Law of Segregation. In the observed

data, non-shared events represent 67.3% of events in the MGM, MGP, PGM and PGP

meiosis (6,180 out of 9,177 events, the binomial test p-value is 0.17). This is consistently

observed in each type of meiosis: MGM, 67.8%; MGP, 67.2%; PGM, 67.5% and PGP,

66.8% (binomial test p-values are 0.25, 0.54, 0.42, 0.93). Secondly, there should not

be significant differences in the number of events in same type of meiosis (Mf vs Mm,

Pf vs Pm, MGM vs PGM and MGP vs PGP). The ratio of events observed is highly

consistent: Mf vs Mm, 1.02; Pf vs Pm, 1.03; MGM vs PGM, 0.975; and MGP vs PGP,

0.999 (binomial test p-values are 0.48, 0.25, 0.39, 0.88). Lastly, the ratio between (M+P)

events and (MGM+MGP+PGM+PGP) should be 4:3 ( 4
4+3

= .57) 4. I observed 12,191

and 9,177 events, respectively ( 12191
12191+9177

= .57, the binomial test p-value is 0.79).
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Figure 3.2: Distribution of recombination interval length in log-scale

4For one G2I1 mouse, we expect to observe four informative independent meiosis. But if we consider
two siblings, we expect to observe 4× 2− 1 = 7 meioses. Because each G1 meiosis has 0.25 probability
to be observed in both siblings
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On average, the resolution of recombination events is very high (Figure 3.2). The

median size of recombination interval is 35kbp. There are, however, some recombinations

that have very large uncertainty intervals (peak in Figure 3.2 between 1∼3Mbp). These

are mainly due to strain dependent identical-by-descent (IBD) regions or lack of genetic

markers in the interval. Based on the 21,993 identified unique recombination events,

a recombination density map that can be smoothed at different scales is constructed.

When smoothed with windows larger than 500kb, the G2I1 map is remarkably similar to

the map recently published but with much lower density of markers [Cox et al., 2009].

3.4 Sex Effect on Recombination

As expected, the total number of recombination events in autosomes is significantly

smaller in the male germline than in the female germline (10,127 events and 11, 241

events, respectively; binomial test p-value ≤ 3 × 10−14; Table 3.1). This sex difference

is also observed in the number of recombination events observed in each individual in

both G1 and G2 meioses. To investigate the possible causes of this difference, the effect

of the Prdm9 genotype on the size of the autosomal map was determined. One of

the eight founder strains of the CC, CAST/EiJ, carries the Prdm9a allele, four strains

(A/J, C57BL/6J, 129S1/SvImJ and NZO/HILtJ) carry the Prdm9b allele, two strains

(NOD/ShiLtJ and WSB/EiJ) carry the Prdm9c allele and the PWK/PhJ strain carries

the Prdm9d allele. There is a significant expansion of the female map length and a

reduction of the male map length in carriers of the Prdm9a allele (1,450 cM and 1,195

cM, respectively). There is also a significant contraction of the female map length and

an expansion of the male map length in carriers of the Prdm9d allele (1,300 cM and 1,325

cM, respectively). Finally, carriers of both Prdm9b and Prdm9c alleles have similar ratio

of female to male map lengths (Figure 3.3).
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Figure 3.3: Recombination map length of autosomes by Prdm9 allele
and gender

In addition to the sex differences in overall recombination, there are dramatic sex

differences in the pattern recombination events in the autosomes. Figure 3.4 shows the

distribution of recombination events along the autosomes in female and male meioses.

The most obvious difference is the increase in the density of recombination events in

the distal ends of chromosomes in male meiosis. In female meioses, there is a more

even distribution of recombination events along the autosomes (Figure 3.4(a)). In male

meioses, approximately half of the recombination events occur in the distal quarter of the

chromosomes and almost one third of events occur in the distal 10% of the autosomes

(data not shown). Comparison of the recombination density observed in single and double

recombinants reveals striking differences while preserving the increase in recombination

in the distal ends of the chromosomes (Figure 3.5). The most obvious difference is that

in double recombinants there are two peaks of high recombination rate separated by very

low recombination rate in the middle while in single recombinants the density proximal

to the distal peak remains basically constant. In double recombinants from male meioses,
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the distal peak is both higher and sharper than in singles and the proximal peak is lower

and much wider. This pattern suggests that recombination may progress temporally

from the telomere to centromere in males.
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(a) female meioses
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(b) male meioses

Figure 3.4: Distribution of recombination events along the autosomes in female and male
meioses. The x-axis corresponds to the relative position in all autosomes. The y-axis
indicates the kernel density estimates of recombinations in each type of meiosis.

3.5 Cold Regions

Regions with low levels of recombination have been reported previously [Smagulova et al.,

2011] and many mouse researchers have anecdotal evidence that the ability to efficiently
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(a) female meioses, single recombinant
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(b) female meioses, double recombinants
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(c) male meioses, single recombinant
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(d) male meioses, double recombinants

Figure 3.5: Distribution of single and double recombination events along the autosomes in
female and male meioses. The x-axis corresponds to the relative position in all autosomes.
The y-axis indicates the kernel density estimates of recombinations in each type of meiosis.

45



reduce the size of many candidate regions of interest is undermined by an apparent lack

of recombination. However, we know very little about the size, distribution, genomic fea-

tures and evolutionary stability of such regions. Thus identification and characterization

of such cold regions may provide important information on the distribution of genetic

variation and the level of linkage disequilibrium in the mammalian genome, the accuracy

of imputation of genetic variants and may provide new models to study the molecular

and cellular mechanisms of meiotic recombination.

3.5.1 Identification of Cold Regions in the G2I1 Population

Cold regions are defined as long (>500 kb) continuous genomic intervals that are markedly

depleted of recombination events in the G2I1 population. Given the total number of

recombination events in my experiment (∼22,000) I set up this 500 kb threshold in

the initial identification of cold regions to reduce the number of false positives (i.e., on

average I expect 8.7 recombination events per Mb).

The 50 coldest regions in male and female meioses are first identified independently to

allow for possible cold regions on chromosome X. The union of these regions constituted

the initial set and underwent several filtering steps. In the fist step regions in which

no calls (Ns) represent a large fraction of the nominal length are excluded. After this

step the boundaries of the 59 remaining cold regions are refined using the recombination

intervals in the G2I1 population. For 51 of these regions the new refined interval has no

recombination events and they are bound by the distal boundary of proximal recombi-

nation event and the proximal boundary of the distal recombination event (Table 3.2).

Overall, cold regions span 124.1 Mb (∼5% of the genome), distributed along 18 chromo-

somes (all chromosomes have cold regions except chromosomes 10 and 11) and with an

enrichment for proximal and distal sections of the chromosomes (Table 3.2)
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3.5.2 External Validation of Cold Regions

To determine whether the results in the G2I1 population are replicable in other popula-

tions, I estimated the recombination rate in these regions in the heterogeneous stock used

to construct the most recent linkage map of the mouse [Cox et al., 2009]. On average,

there is a four-fold reduction in recombination density in cold regions (0.14 cM/Mb ver-

sus the expected 0.5 cM/Mb that is observed genome wide). In fact, 57 of the 59 regions

are below the genome wide average and for 16 regions the recombination density in the

Cox map is zero (Table 3.2). The extent of validation is striking given the differences in

genetic background (only five of the 16 strains are shared between these two studies and

the non shared strains include three wild derived strains representing two subspecies that

are rare or absent in the genetic makeup of the strains in the Cox study), marker density

and approach to estimate recombination distances between these two populations.

Recently, several maps of recombination initiation sites in the mouse have been pub-

lished [Smagulova et al., 2011; Brick et al., 2012]. These studies identified regions with

significant enrichment of double strand breaks (DSB) in the male germline of mice of dif-

ferent genetic backgrounds. Smagulova et al. [2011] identified 21 recombination deserts

larger than 3 Mb, but noted that the inability of identifying hotspots in some of these re-

gions may be due to sequencing gaps or highly repetitive DNA. Eleven of the cold regions

identified in the G2I1 population overlap with those described previously in Smagulova

et al. [2011]. This level of concordance is even more remarkable once one considers that

one of the Smagulova desserts was eliminated from my analysis because of complete lack

of sequence 5 and the fact that nine additional regions that fail to make the cut in my list

still show low levels of recombination in the G2I1 population. More importantly, data

from the second study [Brick et al., 2012] can be used to estimate the density of DSB

in any given region. On average there is a 18X reduction in DSB density (range 14X to

24X) in cold regions compared to the genome average.

5chr 7: 39 Mb, see also new GRCm38 assembly of the mouse genome
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Table 3.2: List of Cold Regions Identified

Chr Start End Size G2I1 Cox B6 9R 13R F1 Smagulova (C+G) SD genes
1 7552017 8916100 1364083 0 0 2.217 2.37 3.112 3.511 No 38.29 0.06 6
1 16629188 17556666 927478 0 0.234 3.065 2.903 3.502 3.573 No 40.12 0 11
1 26449654 29071537 2621883 1 0.069 2.621 2.468 2.425 2.481 Yes 36.53 0.35 14
1 47989803 50296981 2307178 1 0 2.794 2.566 2.526 2.689 No 36.58 0.25 11
1 100644783 101554230 909447 0 0.198 3.001 2.845 1.939 0 No 37.72 0 2
1 111488506 113990313 2501807 0 0.048 2.802 2.653 2.278 2.652 No 36.46 0.22 11
1 147042689 150558199 3515510 1 0.031 2.638 2.523 2.372 2.654 No 36.39 0.58 7
1 151085005 152671374 1586369 0 0.228 3.115 2.949 3.307 3.731 No 39.01 0.08 13
2 80863558 82092319 1228761 0 0.103 3.171 3.027 3.402 3.853 No 36.79 0 1
2 99031585 101085143 2053558 0 0.292 3.669 3.546 2.783 3.546 No 36.99 0.29 6
3 5879218 7942959 2063741 0 0.092 2.944 2.799 3.221 3.495 No 38.02 0.22 12
3 12781208 13766597 985389 0 0 3.378 3.178 3.661 3.938 No 37.08 0 4
3 71924425 72840203 915778 0 0 3.216 3.039 3.127 3.039 No 36.30 0 1
3 91404734 92463929 1059195 0 0 2.564 1.984 3.591 4.034 No 38.83 0.34 35
3 93110421 94190526 1080105 0 0.271 2.486 2.042 3.32 3.923 No 41.99 0.54 37
3 111864347 114650278 2785931 0 0.134 2.511 2.358 2.267 2.258 No 36.95 0.40 19
4 3872920 4995031 1122111 0 0.334 3.777 3.509 3.527 3.857 No 39.69 0 9
4 71515502 73850480 2334978 0 0 3.268 3.113 3.171 3.589 No 38.71 0.33 21
4 78445659 80238398 1792739 0 0.126 2.43 2.341 2.572 2.627 No 36.77 0.06 3
4 109873098 110836231 963133 0 0.04 1.802 0 3.721 4.03 No 38.3 0 1
4 112348832 113862435 1513603 0 0 0 0 1.744 2.235 No 37.23 0.18 9
4 123025109 124537945 1512836 0 0.332 3.105 2.871 2.644 2.703 No 45.89 0.01 23
5 7624169 8730184 1106015 0 0.055 3.684 3.543 3.315 3.4 No 39.83 0.03 10
5 10717204 11949724 1232520 0 0.126 2.316 1.985 0 0 No 37.77 0.89 25
5 86051378 89055526 3004148 0 0.083 3.682 3.384 3.392 3.784 No 38.19 0.52 59
5 93726598 96365273 2638675 0 0 0 0 0 1.995 No 41.00 0.94 46
6 129843394 131358958 1515564 0 0 0 0 2.671 2.998 No 38.22 0.63 29
7 7231821 12298098 5066277 0 0.584 1.989 1.7 1.843 1.999 Yes 38.98 0.92 157
7 20689345 24188289 3498944 0 0.073 0 0 0 1.66 Yes 40.94 0.97 157
7 31943682 34982574 3038892 0 0.051 2.747 2.438 1.5 1.743 Yes 41.14 0.90 71
7 66503334 69332558 2829224 0 0.138 3.048 2.889 2.713 3.045 No 41.74 0.80 27
7 91783502 92931816 1148314 0 0.06 0 0 0 0 No 37.85 0.06 31
7 110909130 111734201 825071 0 1.017 3.23 3.083 1.947 0 No 40.43 0.10 55
7 113744664 114326885 582221 0 0.151 2.355 2.264 2.509 2.729 No 39.04 0 29
8 75489675 77295059 1805384 1 0.241 2.977 2.82 3.264 3.557 No 40.02 0.10 3
9 4932310 6150379 1218069 0 0 2.685 2.556 3.252 3.646 No 37.72 0 7
9 8055696 9141014 1085318 0 0 2.879 2.665 0 0 No 39.83 0 8
12 21307827 25245820 3937993 0 0.048 2.257 1.962 0 1.387 Yes 44.85 0.96 47
12 47788818 49655054 1866236 0 0.169 3.338 3.178 3.054 3.181 No 36.77 0.06 4
12 61325419 62237566 912147 0 0.229 2.856 2.706 3.026 3.206 No 36.70 0 4
12 119492704 120437290 944586 0 0 2.906 2.661 2.563 2.974 No 40.08 0 6
13 16817515 18417648 1600133 0 0.318 3.713 3.296 3.39 3.691 No 39.45 0.08 12
13 85193045 87485288 2292243 1 0.021 2.747 2.604 1.635 1.74 No 37.43 0.26 8
14 13925179 19817805 5892626 0 0.191 3.727 3.568 3.323 3.68 No 40.89 0.79 47
14 42010628 43812329 1801701 0 0.063 0 0 0 0 No 41.37 0.89 34
14 50370810 51760945 1390135 0 0.423 2.947 2.695 3.467 3.692 No 40.24 0.20 54
14 83838558 86170267 2331709 0 0 1.67 0 2.3 2.394 No 36.39 0.25 5
14 123768455 124578293 809838 0 0.305 3.134 2.887 2.806 3.209 No 37.98 0 3
15 14228552 15476602 1248050 0 0.19 2.084 0 2.708 2.866 No 36.63 0 1
16 46467540 47489432 1021892 1 0.098 2.684 2.509 2.643 2.535 No 38.16 0.029 4
17 18006880 21070398 3063518 0 0.26 0 1.551 2.08 2.54 Yes 37.32 0.70 69
17 38288007 40000987 1712980 0 0.111 1.906 1.739 0 0 Yes 37.23 0.28 17
18 17782801 18654834 872033 1 0 0 0 0 0 No 36.74 0 1
19 12545972 14689226 2143254 2 0.217 3.373 3.132 3.54 3.937 No 38.89 0.19 84
X 23031354 33248619 10217265 0 0.294 1.331 0.93 2.883 2.411 Yes 39.61 0.87 0
X 73163204 76792464 3629260 0 0.023 4.164 3.967 3.749 4.161 Yes 39.15 0.58 0
X 110686456 112707404 2020948 0 0 3.226 3.081 3.282 3.753 No 37.25 0.24 0
X 115246562 118828417 3581855 0 0.057 2.365 2.381 3.319 3.706 Yes 36.69 0.63 0
X 143956636 146641734 2685098 0 0 1.349 0 2.679 2.737 Yes 40.61 0.91 0

The table provides the chromosome location of 59 putative cold regions identified in the G2I1 population. In addition

to the size of these regions, the table lists:

G2I1, number of recombination events in the cold regions in the G2I1 population.

Cox, recombination rate in Cox et al. [2009]

B6, log10(number of reads at DSB/Mb) in the C57BL/6J strain of the Brick et al. [2012]

9R, log10(number of reads at DSB/Mb) in the 9R strain of the Brick et al. [2012]

13R, log10(number of reads at DSB/Mb) in the 13R strain of the Brick et al. [2012]

F1, log10(number of reads at DSB/Mb) in the (9Rx13R) strain of the Brick et al. [2012]

Smagulova, recombination dessert in reported by Smagulova et al. [2011] in (C57BL/10.SC57BL/10.F)F1 mice

(C+G), base composition in percent

SD,fraction of the interval included in segmental duplication identified using dotplots generated using Gepard

[Krumsiek et al., 2007]

# genes, number of genes

48



3.5.3 Genomic Analysis of Cold Regions

Several genomic features have been associated with suppressed recombination in regions

such centromeres including low C+G content, frequent and complex duplications and

enrichment for repeated sequences. Therefore, I determined the content of cold regions for

these and additional genomic features (gene content, presence of segmental duplications

(tandem and inverted)).

The overall C+G content in cold regions is significantly lower than the genome wide

average (Table 3.2). When all 59 intervals are plotted together the plot resembles the

aggregate of three different distributions with obvious peaks at 36%, 40% and 44%. The

lower peak is the most pronounced and represents approximately half of the cold regions

(26 cold regions with low C+G). This suggests that cold regions tend to be associated

with local low C+G content. I also observed a highly significant enrichment for large

(>15 kb) segmental duplications either in tandem or inverted in cold regions. On average,

in cold regions 28% of the sequences are involved in some type of rearrangement.

3.6 Conclusion

In this chapter, I present a genome-wide recombination study based on recombination

events inferred from the G2I1 generation in the CC resource. The unique design of the

CC allows us to fully determine the meiosis of each recombination event and attribute

recombinations to gender and other genetic features. I performed careful quality control

steps in constructing the recombination map. Extensive internal and external validations

have been done to verify the correctness of results obtained. The sex, jointly with Prdm9

alleles, have strong effect on the pattern of recombinations. The distribution of double

recombinants in male meioses strongly suggests a temporal pattern of the recombina-

tion progression. Furthermore, the vast majority of cold regions identified in the G2I1

population represent bona fide regions of suppressed recombination independent of the
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genetic background. Besides establishing the association with reduction in DSB density,

I investigated the relationship between cold regions and local DNA sequence.
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Chapter 4

MaCH-Admix: Genotype

Imputation for Admixed Populations

4.1 Introduction

Imputation of untyped genetic markers has been routinely performed in genome-wide

association studies (GWAS) [Sanna et al., 2010; Scott et al., 2007; WTCCC, 2007] and

meta-analysis [Dupuis et al., 2010; Smith et al., 2010; Willer et al., 2008], and will con-

tinue to play an important role in sequencing-based studies [Fridley et al., 2010; The

1000 Genomes Project Consortium, 2010]. Li et al. [2010a] have previously developed a

hidden Markov model (HMM) based method for imputation and shown that it achieves

high imputation accuracy in a number of populations [Huang et al., 2009], particularly

those with high level of linkage disequilibrium (LD) or having closely matched reference

population(s) from the HapMap [The International HapMap Consortium, 2010] or the

1000 Genomes Projects (1000G) [The 1000 Genomes Project Consortium, 2010, 2012].

However, little methodological work exists for imputation in admixed populations, such

as African Americans and Hispanic Americans, which comprise more than 20% of the

US population (see Web Resources).

Admixed populations offer a unique opportunity for gene mapping because one could

utilize admixture LD to search for genes underlying diseases that differ strikingly in preva-



lence across populations [Reich and Patterson, 2005; Rosenberg et al., 2010; Tang et al.,

2006; Winkler et al., 2010; Zhu et al., 2004]. Although useful for admixture mapping,

admixture LD also imposes challenges for imputation. Since an admixed individual’s

genome is a mosaic of ancestral chromosomal segments, to appropriately impute the

genotypes, it is imperative to incorporate the underlying ancestry information. Prac-

tically, this is equivalent to selecting an appropriate reference panel that matches the

corresponding ancestral population(s).

Existing studies have evaluated a wide range of choices on the construction of a

reference panel prior to running the imputation engine. The recommendation is to use a

pre-defined panel that either combines all reference populations (a cosmopolitan panel)

[Hao et al., 2009; Li et al., 2009; Shriner et al., 2010] or a weighted combination panel

[Egyud et al., 2009; Huang et al., 2009; Pasaniuc et al., 2010; Pemberton et al., 2008].

The cosmopolitan panel may include haplotypes from populations that are irrelevant,

and fails to reflect the underlying ancestry proportions and consequently the LD pattern

for the target population. The weighted combination panel is generated by duplicating

haplotypes according to certain weights, which substantially and unnecessarily increases

computational costs [Egyud et al., 2009].

An alternative approach, based on identity-by-state (IBS) sharing between the target

individual and haplotypes in the reference populations, can be embedded within exist-

ing imputation models. This approach constructs individual-specific effective reference

panels, by selecting the most closely related haplotypes (according to IBS score) from

the entire reference pool. The IBS-based selection is intuitive and useful for reducing

the size of the effective reference panel and is tailored separately for each target individ-

ual. The selection is usually conducted by finding pairwise Hamming distances which is

computationally very appealing. A simple IBS-based method, which selects a subset of

haplotypes into the effective reference panel according to their Hamming distance with

the haplotypes to be inferred across the entire genomic region to be imputed (hereafter
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referred to as whole-haplotype), has been adopted by IMPUTE2 [Howie et al., 2009].

Although some promising results have been shown when compared with random selec-

tion, no work has examined alternatives to this simple whole-haplotype based matching,

partly due to the heavy computational burden posed.

In this chapter, I evaluated two classes of reference selection methods: IBS-based

and ancestry-weighted approaches. Among the IBS-based approaches, I propose a novel

method based on IBS matching in a piecewise manner. The method breaks genomic

region under investigation into small pieces and finds reference haplotypes that best

represent every small piece, for each target individual separately. The method can be

incorporated directly into existing imputation algorithms and has identical computational

complexity to that of the existing whole-haplotype IBS-based method. Results from

all real datasets evaluated suggest that my piecewise IBS method is highly robust and

stable even when a small number of reference haplotypes are selected. Importantly,

for uncommon variants, my piecewise IBS selection method manifests more pronounced

advantage with large reference panels.

I have implemented all methods evaluated, including my piecewise IBS selection

method, in the software package MaCH-Admix. Besides the new reference selection

functionality, my software also retains high flexibility in two major aspects. First, both

regional and whole-chromosome imputation can be accommodated. Second, both data

independent and data dependent model parameter estimation are supported. Thus, be-

sides standard reference panel with pre-calibrated parameters, I can elegantly handle

study-specific reference panels and target samples with unknown ethnic origin.

The rest of the chapter is organized as follows. I first present the general framework

of the imputation algorithm, followed by the intuition and formulation of my piecewise

IBS and various other effective reference selection methods. Then I evaluate all these

methods implemented in MaCH-Admix, the whole-haplotype IBS method implemented

53



in IMPUTE2 [Howie et al., 2009], and BEAGLE[Browning and Browning, 2009] using

the following datasets:

• 3587 Hispanic American individuals from the Women’s Health Initiative (WHI)

• 8421 African American individuals from the WHI

• 49 HapMap III African American individuals

• 50 HapMap III Mexican individuals

All datasets are imputed with reference from the 1000 Genomes Project (2188 haplo-

types). I also explored the performance with small/medium reference set from HapMap

II/III. Finally, I provide practical guidelines for imputation in admixed populations in

the Discussion section.

4.2 Materials and Methods

Assume that we have n individuals in the target population that are genotyped at a

set of markers denoted by Mg. In addition, we have an independent set of H reference

haplotypes, e.g., those from the International HapMap or the 1000 Genomes Projects,

encompassing a set of markers denoted by Mr . Without loss of generality, I assume that

the set of markers assayed in the target population, Mg, is a subset of Mr, the markers in

the reference population. The goal of genotype imputation is to fill in missing genotypes

including those missing by design (for example, genotypes at markers in Mr but not Mg,

commonly referred to as untyped markers). As described earlier [Li et al., 2010a], the hid-

den Markov model as implemented in MaCH fulfills the goal by inferring the haplotypes

encompassing Mr markers for each target individual, from unphased genotypes at the

directly assayed markers in Mg. Haplotype reconstruction is accomplished by building

imperfect mosaics using some of the H reference haplotypes.
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4.2.1 General Framework

Since admixed individuals have inherited genetic information from more than one ances-

tral population, I start with a pooled panel: a panel with haplotypes from all relevant

populations, for example, CEU+YRI for African Americans and CEU+YRI+JPT+CHB

for Hispanic Americans, where CEU is an abbreviation for Utah residents (CEPH)

with Northern and Western European ancestry; YRI for Yoruba in Ibadan, Nigeria;

JPT for Japanese in Tokyo, Japan; and CHB for Han Chinese in Beijing, China. Let

G = (g1, g2, g3, ..., gMr
) denote the unphased genotypes at Mr markers for a target in-

dividual. Furthermore I define a series of variables Sm, m = 1, 2, ...,Mr to denote the

hidden state underlying each unphased genotype gm. The hidden state Sm consists of

an ordered pair of indices (xm, ym) indicating that, at marker m, the first chromosome

of this particular target individual uses reference haplotype xm as the template and the

second chromosome uses reference haplotype ym as the template, where xm and ym both

take values from {1, 2, ..., H}.

I seek to infer the posterior probabilities of the sequence of hidden states S =

(S1, S2, ..., SMr
) for each individual as the knowledge of S will determine genotype at

each of the Mr markers. Define P (Sm|H,G) as the posterior probability for Sm, the hid-

den state at marker m with H denoting the pool of reference haplotypes and G denoting

the genotype vector of the target individual. To infer these posterior probabilities, I run

multiple Markov iterations. Within each iteration, I calculate the conditional joint prob-

abilities P (Sm,G|H) at each marker m via an adapted Baum’s forward and backward

algorithm as previously described [Li et al., 2010a].

For admixed populations, as one tends to include more reference haplotypes in the

pool under the philosophy of erring on the safe side, and as one attempts not to duplicate

haplotypes, one key aspect of the modeling is on how to traverse the sample space

harboring the most probability mass with minimum computational efforts.
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4.2.2 Piecewise IBS-based Reference Selection

In piecewise IBS selection, I seek to construct a set of t effective reference haplotypes

from the pool of H haplotypes within each HMM iteration for each target individual

separately. Selected reference panels are therefore tailored for each target individual.

For presentation clarity, I consider a single target individual. Specifically, I calculate the

genetic similarity (measured by IBS, the Hamming distance between two haplotypes) in

a piecewise manner between the individual and each haplotype in the reference pool,

ignoring the sub-populations (e.g., CEU or YRI) within the reference.

Denote (h′

1,h
′

2) as the current haplotype guess for the target individual. I break

haplotype h′

1 into a maximum of t
2
pieces so that the typed markers are evenly placed

across pieces. Each piece has a minimum length of ν typed markers to ensure that the

calculated Hamming distance is informative. Denote the number of pieces by p. For each

haplotype piece, I calculated the piece-specific IBS score between h′

1 and each reference

haplotype and selects the top t
2p

reference haplotypes, resulting in a total of t
2
selected

for h′

1 across all p regions. I repeat the same procedure for h′

2 and select a second set of

t
2
reference haplotypes. In my implementation, I set ν = 32, which corresponds to an av-

erage length of <200Kb for commonly used genomewide genotyping platforms. To avoid

creating spurious recombinations at piece boundary, I apply a random offset to the first

piece in each sampling so that the boundaries differ across iterations. In the case where

t
2p

is not an integer, I select ( t
2p
) (the ceiling integer) reference haplotypes in each piece

for each target haplotype. Then I sample randomly from the selected reference haplo-

types. Note that the piecewise selection is repeated for each individual in each sampling

iteration. Thus the selection will change along with the intermediate sampling results.

I have also implemented two whole-haplotype IBS-based methods, IBS Single Queue

(IBS-SQ) and IBS Double Queue (IBS-DQ). The former defines IBS score with any

reference haplotype as the minimum Hamming distance to h′

1 and h′

2, thus ordering
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the H reference haplotypes in a single queue. The top t reference haplotypes will be

selected accordingly. The latter defines two separate IBS scores for h′

1 and h′

2, thus

ordering the H reference haplotypes in two queues. The top t/2 reference haplotypes

will be selected for h′

1 according to IBS scores for h′

1. Similarly, another t/2 reference

haplotypes will be selected for h′

2.

Figure 4.1 explains the three IBS strategies under two simple scenarios. In both

scenarios, there are eight markers measured in both target and reference with color

indicating the allelic status where the same color at the same locus implies the same

allele. In both Figures 4.1A and 4.1B, the first chromosome of the target individual

shares all eight alleles with the dark-colored reference haplotypes and zero alleles with

the light-shaded reference haplotypes. In Figure 4.1A, the second chromosome of the

target individual shares two alleles with the dark-colored reference haplotypes and the

remaining six alleles with the light-shaded reference haplotypes; whereas in Figure 4.1B,

the second chromosome shares six alleles with the dark-colored reference haplotypes and

the remaining two alleles with the light-shaded reference haplotypes.

Suppose t = H
2
. Figure 4.1A illustrates a scenario where the whole-haplotype Single

Queue strategy is not optimal because only dark-colored haplotypes will be selected into

the effective reference panel. By combining two sets selected from two separate queues,

the whole-haplotype Double Queue strategy is advantageous in the scenario. On the other

hand, neither the whole-haplotype Single Queue nor the whole-haplotype Double Queue

strategy can handle the scenario in Figure 4.1B well because both strategies would only

select the dark-colored reference haplotypes. Ideally, the selected reference haplotypes

should, when possible, contain information to represent every part of both chromosomes

carried by the target individual. In the scenario presented in Figure 4.1B, because the

target individual carries segment of the light-shaded haplotype, it is desirable to have

some representation of the light-shaded haplotypes in the effective reference panel. My

piecewise IBS method achieves this by breaking the whole region into pieces and selecting
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some reference haplotypes according to genetic matching in each piece (illustrated in the

bottom part of Figure 4.1A and 4.1B). By conducting local IBS-matching and choosing

a few reference haplotypes within each piece, it is able to have some representation of the

light-shaded reference haplotypes. As a result, all parts of the target chromosomes are

well represented by the selected reference haplotypes. In general, I believe that selecting a

small number of reference haplotypes for each piece locally performs better than selecting

globally at the whole-haplotype level. Note that the piecewise IBS method has the same

computational complexity as the two whole-haplotype IBS methods.

A B

Break into pieces to conduct IBS matching Break into pieces to conduct IBS matching

Figure 4.1: A cartoon illustration of two scenarios where three IBS-based selection meth-
ods perform differently. The two lines on the top panel represent the two chromosomes of
a target individual and the lines on the bottom panel represent the pool of H=16 reference
haplotypes. Color determines the allelic status such that the same color at the same locus
implies the same allele. The bottom parts show how my piecewise selection method breaks
the imputation region into four pieces with t = H

2 = 8. Here I assume no constraint on the
minimum piece size (i.e., ν = 0).
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4.2.3 Ancestry-weighted Approach

Besides IBS-based methods, I also evaluate an ancestry-weighted selection method, which

is motivated by the idea of weighted cosmopolitan panel discussed in the Introduction

Section. This method concerns the scenario where the reference panel consists of hap-

lotypes from several populations, for instance CEU and YRI, such that the H reference

haplotypes are naturally decomposed into several groups. Let Q denote the number of

populations included and Hq denote the number of haplotypes from reference population

q, q = 1, 2, ..., Q. I first consider the issue of weight determination for each contributing

reference population, i.e., the fraction of reference haplotypes to be selected from that

population. Intuitively, the weights should depend on the proportions of ancestry from

these reference populations for the target admixed individual(s). The weights can be, on

one extreme, the same for all individuals in the target population (for example, when

the admixture makeup is similar across all individuals), or different for sub-populations

within the target population, or on the other extreme, specific for each target individual.

For presentation clarity, I suppress the individual index i and denote w = (w1, w2, ..., wQ)

as the vector of weights, under the constraint that w1 + w2 + ...+ wQ = 1. In this work,

I consider the same set of weights for all target individuals. The weights are to represent

the average contributions over the imputation region and for all target individuals. I

choose to use such average weights over weights specific to each single individual because

the average weights can be more stably estimated.

There are several natural ways to estimate the weights. One could pre-specify the

weights according to estimates of ancestry proportion. For example, it is reasonable to

use a ∼2:8 CEU:YRI weighting scheme for African Americans who are estimated to have

about 20% Caucasian and 80% African ancestries [Lind et al., 2007; Parra et al., 1998;

Reiner et al., 2007; Stefflova et al., 2011]. Alternatively, one can estimate the ances-

try proportions for the target individuals under investigation. I have implemented an
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imputation-based approach within MaCH-Admix to infer ancestry proportions, accord-

ing to the contributions of reference haplotypes from each population to the constructed

mosaics of the target individuals so that the weights can be estimated by MaCH-Admix

internally. I use the software package structure [Pritchard et al., 2000], specifically

its Admix+LocPrior model, on LD-pruned set of SNPs to confirm my internal ances-

try inference.

Having determined the weights, I am interested in constructing a set of t effective ref-

erence haplotypes within each Markov iteration from the pool of H reference haplotypes

according to the ancestry proportions. I achieve this by sampling without replacement

t × wq haplotypes from the Hq haplotypes in reference population q. For each target

individual, I sample a different reference panel under the same set of weights.

4.2.4 MaCH-Admix

I have implemented the aforementioned methods (three IBS-based and one ancestry-

weighted) in my software package MaCH-Admix. MaCH-Admix breaks the one-step

imputation in MaCH into three steps: phasing, model parameter (including error rate

and recombination rate parameters) estimation and haplotype-based imputation. The

splitting into phasing and haplotype-based imputation is similar to IMPUTE2. My

software can accommodate both regional and whole-chromosome imputation and allows

both data dependent and data independent model parameter estimation. The flexibility

regarding model parameter estimation allows one to perform imputation with standard

reference panels such as those from the HapMap or the 1000 Genomes Projects with pre-

calibrated parameters in a data independent fashion, similar to IMPUTE2, which uses

recombination rates estimated from the HapMap data and a constant mutation rate.

Alternatively, if one works with study-specific reference panels, or suspects the model

parameters differ from those pre-calibrated (for example, when target individuals are of
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unknown ethnicity or from an isolated population), one has the option to simultaneously

estimate these model parameters while performing imputation.

4.2.5 Datasets

I assessed the reference selection methods in the following six target sets:

• 3587 WHI Hispanic Americans (WHI-HA)

• 8421 WHI African Americans (WHI-AA)

• 200 randomly sampled WHI-HA individuals

• 200 randomly sampled WHI-AA individuals

• 49 HapMap III African Americans (ASW)

• 50 HapMap III Mexican individuals (MEX)

The WHI SHARe consortium offers one of the largest genetic studies in admixed

populations. WHI [The WHI Study Group, 1998; Anderson et al., 2003] recruited a to-

tal of 161, 808 women with 17% from minority groups (mostly African Americans and

Hispanics) from 1993-1998 at 40 clinical centers across the U.S. The WHI SHARe con-

sortium genotyped all the WHI-AA and WHI-HA individuals using the Affymetrix 6.0

platform. Detailed demographic and recruitment information of these genotyped samples

are previously described [Qayyum et al., 2012]. Besides standard quality control (details

described previously in [Liu et al., 2012]), I removed SNPs with minor allele frequency

(MAF) below 0.5%. To evaluate the imputation performance on target sets of smaller

size, I randomly sampled 200 individuals from WHI-HA and WHI-AA separately.

For the two HapMapIII datasets, my target individuals are ASW (individuals of

African ancestry in Southwest USA) and MEX (individuals of Mexican ancestry in Los

Angeles, California) respectively from the phase III of the International HapMap Project
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[The International HapMap Consortium, 2010]. These individuals (83 ASW and 77 MEX)

were all genotyped using two platforms: the Illumina Human1M and the Affymetrix 6.0.

I restricted my analysis to founders only: 49 ASW and 50 MEX.

The main focus of my work is imputation with large reference panel. Thus, I first

evaluated the imputation performance of all six target sets with reference from the 1000

Genomes Project (release 20101123, H = 2188 haplotypes). For the WHI datasets, the

number of markers overlapping between the target and reference, bounded by the number

of markers typed in target samples, is smaller than that in the HapMap individuals.

Therefore, I performed imputation 10 times, each time masking a different 5% of the

Affymetrix 6.0 markers. This masking strategy allowed us to evaluate imputation quality

at 50% of Affymetrix 6.0 SNPs. For HapMap III ASW and MEX individuals, I randomly

masked 50% of the overlapping markers and evaluated the performance at these markers.

I used two different masking schemes for the HapMap and WHI samples because I have

∼1.5 million typed markers in the HapMap samples and thus can still achieve reasonable

imputation accuracy by masking 50% of the markers in a single trial. In the WHI samples,

masking 50% of the ∼0.8 million markers in a single trial would substantially reduce

imputation accuracy and using one trial with a small percentage of markers masked

would lead to insufficient number of markers for evaluation. Therefore, I used multiple

trials with 5% masking for the WHI datasets.

To provide a comprehensive evaluation, I also conducted imputation on all six tar-

get sets using HapMapII or HapMapIII haplotypes as the reference. I used HapMap II

CEU+YRI (H = 240) for WHI-AA individuals and HapMapII CEU+YRI+JPT+CHB

(H = 420) for WHI-HA individuals. The evaluation is based on masking 50% of the

overlapping markers. For HapMap III ASW target set, I considered three different refer-

ence panels: HapMapII CEU+YRI (H = 240), HapMapIII CEU+YRI (H = 464), and

HapMapIII CEU+YRI+LWK+MKK (H = 930), where LWK (Luhya in Webuye, Kenya)

and MKK (Maasai in Kinyawa, Kenya) are two African populations from Kenya. For
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HapMap III MEX target set, I considered HapMapII CEU+YRI+JPT+CHB (H = 420),

and HapMapIII CEU+YRI+JPT+CHB (H = 804). For the HapMap target sets with

HapMap references, I used genotypes at SNPs on the Illumina HumanHap650 Bead-

Chip for imputation input and reserved other genotypes for evaluation. I have posted

the HapMap data and my command lines used in this work on MaCH-Admix website

(see Web Resources).

I picked five 5Mb regions across the genome to represent a wide spectrum of LD

levels. I first calculated median half life of r2, defined as the physical distance at which

the median r2 between pairs of SNPs is 0.5, for every 5Mb region using a sliding window of

1Mb, in CEU, YRI, and JPT+CHB, respectively. I used HapMapII phased haplotypes for

the calculation. The five regions I picked are: chromosome3:80-85Mb, chromosome1:75-

80Mb, chromosome4:57-62Mb, chromosome14:50-55Mb, and chromosome8:18-23Mb in

a decreasing order of LD level. The median half life of r2 is around 90th, 70th, 50th,

30th, and 10th percentile within each of the three HapMap populations, for the five

regions respectively (Table 4.1). Figure 4.2 shows the LD levels for the five residing

chromosomes. For each region, I treat the middle 4Mb as the core region and the 500Kb

on each end as flanking regions. Only SNPs imputed in the core region were evaluated

to gauge imputation accuracy.

Table 4.1: Median Half Life of r2 (in Kb)

CEU YRI JPT+CHB

10th Percentile 26 16 22
30th Percentile 38 24 32
50th Percentile 48 30 41
70th Percentile 60 39 55
90th Percentile 92 57 83

chromosome3:80-85Mb 106 70 124
chromosome1:75-80Mb 69 38 80
chromosome4:57-62Mb 47 31 32
chromosome14:50-55Mb 40 25 43
chromosome8:18-23Mb 25 16 23

Percentiles are calculated within each population using all 5Mb windows across the genome.
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Figure 4.2: Median r2 half-life value of 5Mb windows on 5 chromosomes
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4.2.6 Methods Compared

I evaluated the following reference selection approaches implemented in MaCH-Admix:

• random selection (MaCH-Admix Random or original MaCH)

• IBS Piecewise selection (MaCH-Admix IBS-PW)

• IBS Single-Queue selection (MaCH-Admix IBS-SQ)

• IBS Double-Queue selection (MaCH-Admix IBS-DQ)

• Ancestry-Weighted selection (MaCH-Admix AW) (for HapMapIII datasets)

I also included IMPUTE2 [Howie et al., 2009] and BEAGLE [Browning and Brown-

ing, 2009] for comparison. I used IMPUTE 2.1.2 and BEAGLE 3.3.1 with default set-

tings (-k hap 500 -iter 30 for IMPUTE2; niterations=10 nsamples=4 for BEAGLE). As

aforementioned, MaCH-Admix can conduct imputation with pre-calibrated parameters

(similar to IMPUTE2); alternatively, MaCH-Admix can perform imputation together

with data-dependent parameter estimation in an integrated mode. The integrated mode

generates slightly better results at the cost of increased computing time. Here, I report

results from the pre-calibrated mode.

4.2.7 Measure of Imputation Quality

Previous studies have proposed multiple statistics to measure imputation quality [Brown-

ing and Browning, 2009; Li et al., 2009; Lin et al., 2010; Marchini and Howie, 2010],

measuring either the concordance rate, correlation, or agreement between the imputed

genotypes or estimated allele dosages (the fractional counts of an arbitrary allele at each

SNP for each individual, ranging continuously from 0 to 2) and their experimental coun-

terpart. I opt to report the dosage r2 values, which are the squared Pearson correlation

between the estimated allele dosages and the true experimental genotypes (recoded as 0,
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1, and 2 corresponding to the number of minor alleles), because it is a better measure for

uncommon variants by taking allele frequency into account and directly related to the ef-

fective sample size for downstream association analysis (Pritchard and Przeworski, 2001).

For the remainder of the work, with no special note, average dosage r2 values will be plot-

ted as a function of approximation level (measured by the effective reference panel size,

i.e., t described in Methods section, corresponding to MaCH-Admix’s --states option and

IMPUTE2’s -k option). Hereafter, I use approximation level, effective reference size, t,

and #states/-k interchangeably. I note that for standard haplotypes-to-genotype impu-

tation (that is, using reference haplotypes to imputed target individuals with genotypes),

computational costs increase quadratically with the approximation level. MaCH-Admix

and IMPUTE2 both also have an approximation parameter at the haplotype-based im-

putation step, MaCH-Admix’s --imputeStates and IMPUTE2’s -k hap, which increases

the computation time linearly and is by default set at a large value (500). I kept both at

the default value because increasing beyond the default has rather negligible effects on

imputation quality and that total computing time attributable to the haplotype-based

imputation step is typically much smaller compared to --states and -k.

4.3 Results

4.3.1 WHI-AA and WHI-HA with the 1000G Reference

Figures 4.3 and 4.4 show results for full WHI-HA andWHI-AA sets using 2188 haplotypes

from 20101123 release of the 1000 Genomes Project as the reference (selected three out

of the five 5Mb regions: the 1st, 3rd, and 5th regions according to level of LD). The

remaining results under the default or middle settings are presented in Tables 4.2 and

4.3 (all five regions for WHI-HA and WHI-AA respectively). Note that BEAGLE’s

performance remains constant because it does not have a parameter analogous to MaCH-

Admix’s --states or IMPUTE2’s -k.
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Generally, I observe higher imputation accuracy in regions with higher level of LD for

all approaches evaluated. In addition, in regions with higher LD, imputation accuracy

reaches a plateau with smaller effective reference sizes. This is because the LD pattern

can be captured fairly well by a smaller number of reference haplotypes in regions with

higher level of LD. In regions with lower level of LD, accuracy plateau is reached with

larger effective reference sizes. But generally an effective reference size of 80 to 120 is

good for MaCH-Admix to perform well at all LD levels.
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B: Uncommon SNP imputation quality of WHI-HA with the 1000G reference panel. I set the maximum plotting range on y-axis to
be 5%. IMPUTE2 in (c) is below the lower bound of the plotting range.

Figure 4.3: Imputation of 3587 WHI-HA with the 1000G reference panel. Imputation quality (measured by dosage r2) is plotted
as a function of the effective reference panel size (i.e., #states), for WHI-HA individuals in three selected 5Mb regions (ordered by
LD from high to low).
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B: Uncommon SNP imputation quality of WHI-AA with the 1000G reference panel. Note that WHI-AA has significantly less number
of SNPs in this category than WHI-HA does. Also, I set the maximum plotting range on y-axis to be 5%. MaCH-Admix Random
in (b),(c) and BEAGLE in (a),(b),(c) are below the lower bound of the plotting range.

Figure 4.4: Imputation of 8421 WHI-AA with the 1000G reference panel. Imputation quality (measured by dosage r2) is plotted
as a function of the effective reference panel size (i.e., #states), for WHI-AA individuals in three selected 5Mb regions (ordered by
LD from high to low).
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I found that the piecewise IBS selection approach (IBS-PW) is clearly the best among

the three IBS-based methods implemented in MaCH-Admix. Its performance is stable

even with a small #states value. For the other two IBS-based reference selection ap-

proaches implemented in MaCH-Admix, I observed IBS-DQ performs better than IBS-

SQ. The performance order of the three MaCH-Admix IBS-based methods is expected

based on my reasoning in the Material and Methods Section. In addition, all three

IBS-based methods show clear advantage over random selection, particularly when the

effective reference size is small. IMPUTE2 has similar performance to that of IBS-DQ

when the effective reference size is small. Interestingly, IMPUTE2’s accuracy curve tends

to stay relatively flat while those for MaCH-Admix’s IBS-based methods increase with

the effective reference size.

Across all five regions evaluated, with effective reference size at 120, IBS-PW has

consistent performance gain over other evaluated methods. Importantly, IBS-PW and

IBS-DQ, particularly IBS-PW, manifest more pronounced advantage for uncommon vari-

ants (MAF <5%) in WHI-HA. For these uncommon variants, average dosage r2 is 0.818,

0.782, and 0.794 (0.808, 0.805, and 0.756) for WHI-HA (WHI-AA) using IBS-PW, IM-

PUTE2, and BEAGLE respectively. The advantage of IBS-PW in uncommon SNPs is

however smaller in WHI-AA largely because of the much smaller number of uncommon

variants in WHI-AA (Figure 4.5). However, the difference is highly significant (p-value

≤5.02 × 10−5) in both WHI samples. My observation is consistent in both the full set

and the subset of 200 individuals (Tables 4.2 and 4.3).

The variance of imputation quality by markers is heavily influenced by the MAF

distribution. All methods exhibits much larger variance in imputing uncommon variants.

The standard error of my IBS-PW method ranges from 0.0046 to 0.0055 for all variants,

and from 0.016 to 0.0248 for uncommon variants in imputing the WHI-HA full set. In

imputing the WHI-AA full set, the standard error of IBS-PW ranges from 0.0037 to

0.0047 for all variants, and from 0.02 to 0.0299 for uncommon variants.
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Table 4.2: Imputation Results of WHI-HA Individuals over Five 5Mb Regions with the
1000G reference

All 3587 individuals Random 200 Subset
overall dosage r2 uncommon SNPs running overall dosage r2 uncommon SNPs running

(std dev) dosage r2(std dev) time (std dev) dosage r2(std dev) time

chromosome3:80-85Mb
MaCH-Admix Random 0.935(0.107) 0.796(0.189) 35968 0.921(0.121) 0.794(0.231) 841
MaCH-Admix IBS-PW 0.942(0.101) 0.817(0.189) 40422 0.923(0.111) 0.814(0.210) 1041
MaCH-Admix IBS-SQ 0.939(0.104) 0.799(0.190) 38208 0.923(0.119) 0.796(0.231) 988
MaCH-Admix IBS-DQ 0.941(0.102) 0.806(0.191) 38439 0.924(0.119) 0.799(0.232) 995
IMPUTE2 0.939(0.104) 0.797(0.191) 40722 0.925(0.119) 0.799(0.233) 2076
BEAGLE 0.931(0.107) 0.799(0.190) 162888 0.912(0.128) 0.779(0.231) 6614
chromosome1:75-80Mb
MaCH-Admix Random 0.918(0.130) 0.821(0.190) 50108 0.924(0.129) 0.855(0.211) 1214
MaCH-Admix IBS-PW 0.927(0.123) 0.841(0.186) 57671 0.927(0.121) 0.873(0.197) 1490
MaCH-Admix IBS-SQ 0.923(0.122) 0.823(0.187) 53908 0.926(0.125) 0.861(0.209) 1443
MaCH-Admix IBS-DQ 0.926(0.121) 0.830(0.185) 57321 0.928(0.123) 0.866(0.207) 1452
IMPUTE2 0.921(0.121) 0.809(0.183) 51362 0.921(0.127) 0.845(0.204) 2545
BEAGLE 0.917(0.124) 0.815(0.184) 229514 0.917(0.129) 0.851(0.209) 9194
chromosome4:57-62Mb
MaCH-Admix Random 0.904(0.148) 0.761(0.208) 53960 0.918(0.137) 0.813(0.213) 1239
MaCH-Admix IBS-PW 0.913(0.139) 0.783(0.202) 61827 0.922(0.134) 0.824(0.212) 1527
MaCH-Admix IBS-SQ 0.907(0.141) 0.757(0.195) 60806 0.918(0.135) 0.807(0.209) 1460
MaCH-Admix IBS-DQ 0.911(0.138) 0.770(0.195) 59088 0.921(0.133) 0.817(0.210) 1455
IMPUTE2 0.906(0.142) 0.751(0.198) 62272 0.908(0.147) 0.773(0.225) 2991
BEAGLE 0.900(0.150) 0.751(0.218) 360545 0.907(0.155) 0.787(0.244) 14888
chromosome14:50-55Mb
MaCH-Admix Random 0.921(0.132) 0.800(0.202) 57082 0.936(0.122) 0.847(0.202) 1600
MaCH-Admix IBS-PW 0.932(0.120) 0.826(0.184) 60800 0.940(0.119) 0.859(0.198) 1876
MaCH-Admix IBS-SQ 0.927(0.118) 0.807(0.175) 61112 0.938(0.119) 0.849(0.199) 1877
MaCH-Admix IBS-DQ 0.930(0.115) 0.819(0.176) 61175 0.939(0.118) 0.854(0.197) 1876
IMPUTE2 0.924(0.120) 0.793(0.180) 52818 0.931(0.125) 0.828(0.216) 2579
BEAGLE 0.926(0.121) 0.806(0.189) 332586 0.929(0.130) 0.824(0.218) 14182
chromosome8:18-23Mb
MaCH-Admix Random 0.896(0.155) 0.793(0.212) 75511 0.901(0.150) 0.821(0.225) 1899
MaCH-Admix IBS-PW 0.911(0.143) 0.824(0.198) 84885 0.906(0.147) 0.833(0.221) 2302
MaCH-Admix IBS-SQ 0.903(0.145) 0.797(0.200) 83051 0.903(0.149) 0.820(0.227) 2270
MaCH-Admix IBS-DQ 0.906(0.143) 0.805(0.200) 80794 0.904(0.147) 0.822(0.224) 2285
IMPUTE2 0.900(0.145) 0.773(0.206) 75001 0.893(0.159) 0.781(0.247) 3647
BEAGLE 0.905(0.142) 0.807(0.201) 498822 0.894(0.154) 0.800(0.232) 17146

All results were generated using default or suggested parameter values: MaCH-Admix:
--rounds 30, --states 120, --imputeStates 500; IMPUTE2: -iter 30, -k 120, -k hap 500;
BEAGLE: niterations=10 nsamples=4. Running time is measured in seconds.
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Table 4.3: Imputation Results of WHI-AA Individuals over Five 5Mb Regions with the
1000G reference

All 8421 Individuals Random 200 Subset
overall dosage r2 uncommon SNPs running overall dosage r2 uncommon SNPs running

(std dev) dosage r2(std dev) time (std dev) dosage r2(std dev) time

chromosome3:80-85Mb
MaCH-Admix Random 0.912(0.100) 0.782(0.150) 161637 0.932(0.091) 0.824(0.194) 897
MaCH-Admix IBS-PW 0.947(0.073) 0.850(0.158) 174083 0.945(0.083) 0.849(0.194) 1026
MaCH-Admix IBS-SQ 0.944(0.075) 0.844(0.161) 176147 0.942(0.086) 0.835(0.198) 1035
MaCH-Admix IBS-DQ 0.946(0.074) 0.849(0.160) 169442 0.944(0.083) 0.851(0.198) 1021
IMPUTE2 0.943(0.075) 0.847(0.151) 111307 0.943(0.085) 0.836(0.187) 2017
BEAGLE 0.921(0.088) 0.795(0.170) 23082∗ 0.915(0.107) 0.784(0.217) 6435
chromosome1:75-80Mb
MaCH-Admix Random 0.873(0.143) 0.703(0.219) 214385 0.886(0.141) 0.726(0.241) 1240
MaCH-Admix IBS-PW 0.921(0.106) 0.802(0.176) 226019 0.906(0.128) 0.770(0.232) 1530
MaCH-Admix IBS-SQ 0.915(0.109) 0.794(0.174) 232880 0.900(0.130) 0.756(0.224) 1504
MaCH-Admix IBS-DQ 0.918(0.106) 0.803(0.168) 232858 0.903(0.131) 0.762(0.235) 1476
IMPUTE2 0.917(0.103) 0.810(0.157) 138080 0.898(0.135) 0.760(0.240) 2412
BEAGLE 0.892(0.119) 0.759(0.173) 25618∗ 0.875(0.145) 0.713(0.242) 8621
chromosome4:57-62Mb
MaCH-Admix Random 0.883(0.126) 0.688(0.187) 241045 0.905(0.111) 0.749(0.169) 1290
MaCH-Admix IBS-PW 0.927(0.092) 0.795(0.159) 260231 0.922(0.100) 0.792(0.175) 1508
MaCH-Admix IBS-SQ 0.920(0.094) 0.782(0.148) 254002 0.915(0.105) 0.777(0.180) 1545
MaCH-Admix IBS-DQ 0.924(0.090) 0.796(0.138) 248524 0.920(0.100) 0.793(0.175) 1478
IMPUTE2 0.918(0.091) 0.787(0.129) 166642 0.912(0.104) 0.778(0.168) 2939
BEAGLE 0.898(0.109) 0.735(0.167) 43573∗ 0.892(0.131) 0.738(0.222) 14528
chromosome14:50-55Mb
MaCH-Admix Random 0.875(0.140) 0.726(0.216) 240789 0.908(0.120) 0.807(0.198) 1663
MaCH-Admix IBS-PW 0.921(0.105) 0.823(0.171) 254530 0.927(0.104) 0.852(0.167) 1900
MaCH-Admix IBS-SQ 0.914(0.108) 0.809(0.172) 253231 0.919(0.112) 0.835(0.191) 1918
MaCH-Admix IBS-DQ 0.918(0.105) 0.818(0.168) 254555 0.924(0.107) 0.850(0.175) 1900
IMPUTE2 0.912(0.106) 0.815(0.157) 143772 0.913(0.116) 0.820(0.186) 2575
BEAGLE 0.893(0.118) 0.775(0.176) 27666∗ 0.899(0.127) 0.786(0.216) 14139
chromosome8:18-23Mb
MaCH-Admix Random 0.830(0.177) 0.682(0.235) 343104 0.857(0.163) 0.735(0.235) 1977
MaCH-Admix IBS-PW 0.889(0.142) 0.798(0.207) 357858 0.884(0.148) 0.800(0.218) 2377
MaCH-Admix IBS-SQ 0.882(0.145) 0.789(0.207) 347473 0.877(0.152) 0.786(0.224) 2393
MaCH-Admix IBS-DQ 0.885(0.144) 0.795(0.205) 356928 0.881(0.149) 0.797(0.220) 2318
IMPUTE2 0.884(0.140) 0.795(0.194) 211879 0.876(0.153) 0.795(0.218) 3618
BEAGLE 0.858(0.151) 0.743(0.206) 43068∗ 0.856(0.158) 0.767(0.229) 16931

∗ In my experiments, BEAGLE cannot finish imputation with the complete 1000G
references within 7 days which is the hard limit on my cluster server. I thus restrict the
markers in the reference panel to be the set of Affymetrix 6.0 markers plus 2.5% of the
remaining 1000G markers. The size of the restricted set in each region is about 10 ∼ 15%
of the size of original 1000G marker set.

All results were generated using default or suggested parameter values: MaCH-Admix:
--rounds 30, --states 120, --imputeStates 500; IMPUTE2: -iter 30, -k 120, -k hap 500;
BEAGLE: niterations=10 nsamples=4. Running time is measured in seconds.
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Figure 4.5: Minor Allele Frequency (MAF) distribution of SNPs in WHI-AA and WHI-
HA.

4.3.2 HapMap ASW and MEX with the 1000G Reference

In this setting, I use a large reference panel to impute two small target sets. Figure 4.6

shows the imputation quality of three regions for both ASW and MEX. The complete

results are presented in Table 4.4. Similar to previous experiments, I found that IBS-PW

is very effective in finding the most relevant reference from a large panel (1000G) and

clearly outperforms the other methods. IMPUTE2 again shows a flatter curve in most

regions. Random selection and BEAGLE tend to perform worse than the IBS-based

methods. This again proves that IBS-based selections are very effective in working with

large reference panels.

In imputing ASW individuals, the standard error of my IBS-PW method ranges from

0.0034 to 0.0041 for all variants, and from 0.0189 to 0.0276 for uncommon variants. In

imputing MEX individuals, the standard error of IBS-PW ranges from 0.0031 to 0.0043

for all variants, and from 0.0132 to 0.0211 for uncommon variants.
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Figure 4.6: Imputation of 49 HapMap ASW and 50 HapMap MEX individuals with the 1000G reference panel. Imputation quality
(measured by dosage r2) is plotted as a function of the effective reference panel size (i.e., #states), for WHI-AA individuals in three
selected 5Mb regions (ordered by LD from high to low).
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4.3.3 Imputation Performance with HapMap References

First, consistent with what has been reported that imputation quality improves with ref-

erence panel size, imputation quality is indeed lower with HapMap references than with

the 1000G reference. For example, average dosage r2 is 90.0-91.3% with the 1000G refer-

ence (Table 4.2) for WHI-HA individuals in the chromosome4:57-62Mb region but drops

to 84.4-86.2% with HapMapII references (Table 4.5). Second, difference among various

methods is much smaller with these smaller HapMap reference sets (H = 240 ∼ 930),

which is consistent with my intuition that, given fixed computational costs, reference

selection makes more pronounced difference with large reference panel since only a small

portion of reference can be selected.

4.3.3.1 WHI-HA and WHI-AA with HapMap references

The complete results are presented in Tables 4.5 and 4.6. In WHI-HA (Table 4.5, H =

420), IBS-PW outperforms IBS-SQ and IBS-DQ slightly and the advantage disappears in

WHI-AA (Table 4.6, H = 240). MaCH-Admix and IMPUTE2 yield similar imputation

accuracy, and both outperform BEAGLE slightly.

4.3.3.2 HapMap ASW and MEX with HapMap references

For ASW, I experimented with three reference panels: HapMapII CEU+YRI, HapMapIII

CEU+YRI, and HapMapIII CEU+YRI+LWK+MKK; for MEX two reference panels:

HapMapII CEU+YRI+JPT+CHB and HapMapIII CEU+YRI+JPT+CHB. Results for

ASW with HapMapIII CEU+YRI+LWK+MKK as the reference are shown in Figure 4.7

(the same three selected regions). The remaining results are presented in Tables 4.7, 4.8

and 4.9. Again, MaCH-Admix and IMPUTE2 yield similar imputation accuracy, both

outperform BEAGLE slightly. IBS-PW is still an obvious winner in most regions and

settings. But the relative difference among different methods diminishes when H is small.

75



Table 4.4: Imputation Results of HapMap ASW & MEX Individuals over Five 5Mb
Regions with the 1000G reference (H = 2188)

49 ASW Individuals 50 MEX Individuals
overall dosage r2 uncommon SNPs running overall dosage r2 uncommon SNPs running

(std dev) dosage r2(std dev) time (std dev) dosage r2(std dev) time

chromosome3:80-85Mb
MaCH-Admix Random 0.937(0.104) 0.854(0.210) 189 0.966(0.080) 0.960(0.149) 173
MaCH-Admix IBS-PW 0.948(0.095) 0.888(0.192) 252 0.968(0.077) 0.968(0.148) 212
MaCH-Admix IBS-SQ 0.948(0.091) 0.898(0.176) 220 0.967(0.079) 0.961(0.148) 203
MaCH-Admix IBS-DQ 0.947(0.095) 0.889(0.190) 220 0.967(0.079) 0.963(0.149) 221
IMPUTE2 0.942(0.106) 0.877(0.201) 457 0.968(0.086) 0.953(0.187) 477
BEAGLE 0.906(0.137) 0.774(0.267) 2388 0.960(0.096) 0.938(0.196) 2760
chromosome1:75-80Mb
MaCH-Admix Random 0.915(0.135) 0.828(0.233) 273 0.937(0.132) 0.854(0.238) 257
MaCH-Admix IBS-PW 0.930(0.123) 0.859(0.216) 329 0.940(0.134) 0.867(0.250) 302
MaCH-Admix IBS-SQ 0.926(0.128) 0.849(0.222) 331 0.938(0.130) 0.870(0.235) 293
MaCH-Admix IBS-DQ 0.928(0.127) 0.852(0.227) 330 0.938(0.132) 0.866(0.243) 299
IMPUTE2 0.915(0.140) 0.842(0.229) 609 0.933(0.140) 0.847(0.270) 549
BEAGLE 0.900(0.148) 0.817(0.245) 3195 0.931(0.144) 0.839(0.264) 3779
chromosome4:57-62Mb
MaCH-Admix Random 0.922(0.116) 0.801(0.230) 283 0.941(0.127) 0.873(0.228) 244
MaCH-Admix IBS-PW 0.937(0.107) 0.852(0.220) 325 0.945(0.118) 0.896(0.203) 298
MaCH-Admix IBS-SQ 0.933(0.110) 0.837(0.224) 322 0.945(0.116) 0.894(0.200) 286
MaCH-Admix IBS-DQ 0.934(0.107) 0.845(0.215) 325 0.944(0.119) 0.883(0.210) 290
IMPUTE2 0.927(0.116) 0.819(0.238) 743 0.943(0.120) 0.889(0.207) 785
BEAGLE 0.897(0.144) 0.755(0.284) 4364 0.931(0.143) 0.839(0.263) 5677
chromosome14:50-55Mb
MaCH-Admix Random 0.899(0.144) 0.739(0.280) 392 0.947(0.119) 0.891(0.218) 366
MaCH-Admix IBS-PW 0.914(0.134) 0.769(0.273) 438 0.951(0.118) 0.900(0.218) 420
MaCH-Admix IBS-SQ 0.909(0.138) 0.765(0.282) 419 0.948(0.120) 0.896(0.223) 420
MaCH-Admix IBS-DQ 0.909(0.135) 0.763(0.264) 438 0.947(0.122) 0.889(0.231) 429
IMPUTE2 0.901(0.145) 0.770(0.281) 636 0.940(0.126) 0.874(0.234) 562
BEAGLE 0.879(0.167) 0.677(0.325) 4868 0.939(0.128) 0.872(0.232) 4643
chromosome8:18-23Mb
MaCH-Admix Random 0.859(0.172) 0.755(0.283) 420 0.914(0.145) 0.892(0.200) 404
MaCH-Admix IBS-PW 0.879(0.162) 0.792(0.280) 523 0.921(0.140) 0.908(0.186) 487
MaCH-Admix IBS-SQ 0.872(0.164) 0.775(0.282) 537 0.916(0.145) 0.898(0.197) 485
MaCH-Admix IBS-DQ 0.874(0.166) 0.774(0.293) 526 0.918(0.143) 0.901(0.196) 495
IMPUTE2 0.865(0.173) 0.767(0.298) 818 0.902(0.164) 0.864(0.247) 854
BEAGLE 0.844(0.181) 0.760(0.285) 6295 0.906(0.156) 0.875(0.233) 6509

All results were generated using the following parameter values: MaCH-Admix: --rounds
30, --states 120, --imputeStates 500; IMPUTE2: -iter 30, -k 120, -k hap 500; BEAGLE:
niterations=10 nsamples=4. Running time is measured in seconds. Best performance in
each comparison is highlighted by bold font.
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Table 4.5: Imputation Results of WHI-HA Individuals over Five 5Mb Regions with the
HapMapII reference (H = 420)

All 3587 individuals Random 200 Subset
overall dosage r2 uncommon SNPs running overall dosage r2 uncommon SNPs running

(std dev) dosage r2(std dev) time (std dev) dosage r2(std dev) time

chromosome3:80-85Mb
MaCH-Admix Random 0.897(0.157) 0.864(0.091) 9907 0.885(0.150) 0.807(0.101) 234
MaCH-Admix IBS-PW 0.905(0.150) 0.918(0.021) 10373 0.888(0.150) 0.831(0.081) 248
MaCH-Admix IBS-SQ 0.904(0.150) 0.913(0.033) 11303 0.887(0.150) 0.838(0.088) 246
MaCH-Admix IBS-DQ 0.904(0.150) 0.911(0.036) 10434 0.888(0.147) 0.845(0.082) 247
IMPUTE2 0.904(0.148) 0.924(0.011) 8874 0.887(0.144) 0.843(0.044) 403
BEAGLE 0.892(0.159) 0.902(0.062) 11877 0.873(0.164) 0.831(0.106) 232
chromosome1:75-80Mb
MaCH-Admix Random 0.855(0.184) 0.752(0.222) 14227 0.857(0.185) 0.723(0.253) 350
MaCH-Admix IBS-PW 0.863(0.176) 0.762(0.201) 13328 0.859(0.183) 0.721(0.236) 367
MaCH-Admix IBS-SQ 0.860(0.179) 0.748(0.204) 15146 0.860(0.181) 0.715(0.234) 363
MaCH-Admix IBS-DQ 0.861(0.178) 0.750(0.204) 15878 0.858(0.183) 0.712(0.237) 377
IMPUTE2 0.842(0.188) 0.740(0.248) 11782 0.840(0.194) 0.701(0.282) 556
BEAGLE 0.851(0.186) 0.792(0.230) 15446 0.849(0.191) 0.795(0.250) 296
chromosome4:57-62Mb
MaCH-Admix Random 0.852(0.169) 0.742(0.237) 14728 0.863(0.165) 0.775(0.210) 343
MaCH-Admix IBS-PW 0.862(0.162) 0.764(0.217) 17051 0.869(0.162) 0.787(0.201) 360
MaCH-Admix IBS-SQ 0.860(0.161) 0.756(0.223) 16123 0.868(0.162) 0.779(0.211) 362
MaCH-Admix IBS-DQ 0.860(0.161) 0.757(0.224) 15364 0.867(0.164) 0.786(0.205) 363
IMPUTE2 0.844(0.176) 0.717(0.231) 12369 0.847(0.180) 0.732(0.221) 541
BEAGLE 0.850(0.168) 0.740(0.234) 17503 0.851(0.174) 0.734(0.263) 348
chromosome14:50-55Mb
MaCH-Admix Random 0.845(0.190) 0.669(0.285) 19813 0.850(0.191) 0.677(0.290) 428
MaCH-Admix IBS-PW 0.854(0.184) 0.689(0.274) 19214 0.854(0.186) 0.690(0.273) 448
MaCH-Admix IBS-SQ 0.852(0.184) 0.682(0.283) 18357 0.854(0.186) 0.678(0.289) 450
MaCH-Admix IBS-DQ 0.852(0.184) 0.686(0.278) 19201 0.855(0.186) 0.689(0.277) 453
IMPUTE2 0.856(0.183) 0.681(0.272) 14430 0.855(0.187) 0.686(0.286) 660
BEAGLE 0.846(0.186) 0.666(0.279) 17102 0.845(0.191) 0.641(0.327) 356
chromosome8:18-23Mb
MaCH-Admix Random 0.826(0.216) 0.760(0.246) 22069 0.830(0.216) 0.754(0.244) 524
MaCH-Admix IBS-PW 0.838(0.211) 0.775(0.240) 21194 0.838(0.213) 0.763(0.238) 551
MaCH-Admix IBS-SQ 0.832(0.213) 0.765(0.241) 22098 0.833(0.213) 0.758(0.242) 551
MaCH-Admix IBS-DQ 0.833(0.213) 0.768(0.241) 22360 0.833(0.216) 0.750(0.243) 553
IMPUTE2 0.839(0.207) 0.772(0.236) 17910 0.835(0.214) 0.744(0.253) 875
BEAGLE 0.826(0.211) 0.742(0.245) 27236 0.822(0.215) 0.732(0.258) 543

All results were generated using the following parameter values: MaCH-Admix: --rounds
30, --states 120, --imputeStates 500; IMPUTE2: -iter 30, -k 120, -k hap 500; BEAGLE:
niterations=10 nsamples=4. Running time is measured in seconds. Best performance in
each comparison is highlighted by bold font.
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Table 4.6: Imputation Results of WHI-AA Individuals over Five 5Mb Regions with the
HapMapII reference (H = 240)

All 8421 Individuals Random 200 Subset
overall dosage r2 uncommon SNPs running overall dosage r2 uncommon SNPs running

(std dev) dosage r2(std dev) time (std dev) dosage r2(std dev) time

chromosome3:80-85Mb
MaCH-Admix Random 0.877(0.140) 0.684(0.271) 56434 0.875(0.149) 0.636(0.354) 259
MaCH-Admix IBS-PW 0.884(0.136) 0.683(0.294) 52858 0.877(0.149) 0.641(0.369) 275
MaCH-Admix IBS-SQ 0.883(0.137) 0.678(0.294) 61142 0.877(0.148) 0.645(0.356) 264
MaCH-Admix IBS-DQ 0.883(0.137) 0.677(0.297) 56255 0.876(0.150) 0.627(0.349) 265
IMPUTE2 0.885(0.135) 0.668(0.290) 25283 0.879(0.148) 0.613(0.371) 388
BEAGLE 0.842(0.164) 0.575(0.259) 116113 0.841(0.173) 0.558(0.368) 234
chromosome1:75-80Mb
MaCH-Admix Random 0.822(0.166) 0.746(0.146) 66325 0.811(0.174) 0.746(0.176) 394
MaCH-Admix IBS-PW 0.830(0.160) 0.759(0.143) 73130 0.815(0.172) 0.757(0.194) 407
MaCH-Admix IBS-SQ 0.830(0.160) 0.762(0.143) 75065 0.814(0.174) 0.746(0.200) 403
MaCH-Admix IBS-DQ 0.831(0.160) 0.764(0.144) 77968 0.815(0.173) 0.751(0.198) 402
IMPUTE2 0.812(0.167) 0.736(0.137) 35170 0.794(0.181) 0.712(0.167) 556
BEAGLE 0.798(0.185) 0.685(0.167) 142769 0.776(0.200) 0.656(0.222) 291
chromosome4:57-62Mb
MaCH-Admix Random 0.832(0.150) 0.664(0.152) 77490 0.831(0.154) 0.679(0.177) 368
MaCH-Admix IBS-PW 0.841(0.144) 0.686(0.149) 74439 0.835(0.152) 0.693(0.177) 378
MaCH-Admix IBS-SQ 0.842(0.143) 0.689(0.143) 74604 0.836(0.150) 0.704(0.169) 400
MaCH-Admix IBS-DQ 0.842(0.143) 0.691(0.142) 76374 0.835(0.152) 0.693(0.159) 384
IMPUTE2 0.826(0.153) 0.654(0.160) 34875 0.816(0.162) 0.666(0.177) 513
BEAGLE 0.798(0.183) 0.552(0.271) 145240 0.788(0.199) 0.464(0.261) 298
chromosome14:50-55Mb
MaCH-Admix Random 0.770(0.195) 0.628(0.288) 82618 0.780(0.199) 0.671(0.278) 427
MaCH-Admix IBS-PW 0.781(0.188) 0.645(0.279) 77589 0.784(0.195) 0.681(0.268) 442
MaCH-Admix IBS-SQ 0.780(0.187) 0.647(0.280) 82175 0.786(0.196) 0.679(0.262) 436
MaCH-Admix IBS-DQ 0.780(0.188) 0.644(0.283) 90951 0.787(0.194) 0.678(0.265) 450
IMPUTE2 0.791(0.180) 0.667(0.270) 39702 0.789(0.194) 0.689(0.265) 597
BEAGLE 0.742(0.210) 0.553(0.308) 124661 0.739(0.221) 0.579(0.315) 336
chromosome8:18-23Mb
MaCH-Admix Random 0.754(0.222) 0.619(0.241) 99090 0.758(0.216) 0.649(0.233) 570
MaCH-Admix IBS-PW 0.764(0.217) 0.641(0.240) 104999 0.764(0.214) 0.665(0.230) 584
MaCH-Admix IBS-SQ 0.768(0.214) 0.654(0.235) 95685 0.765(0.213) 0.677(0.232) 593
MaCH-Admix IBS-DQ 0.768(0.213) 0.655(0.236) 104526 0.765(0.213) 0.672(0.236) 590
IMPUTE2 0.779(0.203) 0.659(0.232) 53975 0.769(0.209) 0.675(0.225) 869
BEAGLE 0.717(0.232) 0.535(0.243) 162132 0.709(0.237) 0.543(0.269) 452

All results were generated using the following parameter values: MaCH-Admix: --rounds
30, --states 120, --imputeStates 500; IMPUTE2: -iter 30, -k 120, -k hap 500; BEAGLE:
niterations=10 nsamples=4. Running time is measured in seconds. Best performance in
each comparison is highlighted by bold font.
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Figure 4.7: Imputation quality of ASW with HapMapII CEU+YRI+LWK+MKK refer-
ence panel. Imputation quality (measured by dosage r2) is plotted as a function of the
effective reference panel size (i.e., #states), for ASW individuals in three selected 5Mb
regions (ordered by LD from high to low).

I also included ancestry-weighted selection in evaluation in this setting because weights

can be estimated stably given the relatively simple population structure in reference. In-

terestingly, I did not observe noticeable advantage of the ancestry-weighted selection

method despite the obvious population structure within the reference panel and the

target being admixed individuals. It however outperforms random selection slightly in

most ASW experiments.

4.3.4 Running Time

Methods implemented in MaCH-Admix have comparable running time to that of IM-

PUTE2. BEAGLE has similar running time in experiments with HapMap references.
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Table 4.7: Imputation Results of 49 ASW Individuals Over All Five Short Regions

HapMapII CEU+YRI reference HapMapIII CEU+YRI reference
overall dosage r2 uncommon SNPs running overall dosage r2 uncommon SNPs running

(std dev) dosage r2(std dev) time (std dev) dosage r2(std dev) time

chromosome3:80-85Mb
MaCH-Admix Random 0.937(0.106) 0.721(0.230) 168 0.942(0.121) 0.833(0.275) 138
MaCH-Admix AW 0.938(0.102) 0.766(0.191) 126 0.944(0.120) 0.837(0.275) 147
MaCH-Admix IBS-PW 0.940(0.099) 0.787(0.190) 125 0.946(0.111) 0.860(0.249) 158
MaCH-Admix IBS-SQ 0.939(0.100) 0.759(0.184) 128 0.943(0.121) 0.836(0.281) 158
MaCH-Admix IBS-DQ 0.937(0.106) 0.739(0.209) 132 0.946(0.112) 0.857(0.249) 149
IMPUTE2 0.939(0.099) 0.803(0.155) 288 0.942(0.119) 0.850(0.264) 316
BEAGLE 0.906(0.140) 0.702(0.276) 177 0.921(0.141) 0.796(0.296) 131
chromosome1:75-80Mb
MaCH-Admix Random 0.916(0.123) 0.862(0.201) 197 0.921(0.135) 0.810(0.237) 250
MaCH-Admix AW 0.915(0.124) 0.853(0.209) 194 0.922(0.134) 0.812(0.236) 280
MaCH-Admix IBS-PW 0.915(0.123) 0.857(0.202) 199 0.925(0.132) 0.826(0.234) 258
MaCH-Admix IBS-SQ 0.914(0.125) 0.853(0.207) 209 0.923(0.132) 0.819(0.230) 243
MaCH-Admix IBS-DQ 0.914(0.125) 0.858(0.211) 206 0.923(0.135) 0.815(0.240) 246
IMPUTE2 0.914(0.131) 0.839(0.228) 441 0.919(0.140) 0.810(0.253) 442
BEAGLE 0.893(0.150) 0.824(0.245) 178 0.898(0.166) 0.777(0.285) 199
chromosome4:57-62Mb
MaCH-Admix Random 0.898(0.138) 0.808(0.230) 188 0.920(0.125) 0.840(0.239) 226
MaCH-Admix AW 0.898(0.138) 0.814(0.231) 187 0.922(0.123) 0.850(0.239) 210
MaCH-Admix IBS-PW 0.900(0.136) 0.821(0.231) 203 0.922(0.127) 0.847(0.249) 234
MaCH-Admix IBS-SQ 0.899(0.141) 0.811(0.238) 192 0.920(0.127) 0.841(0.243) 230
MaCH-Admix IBS-DQ 0.899(0.140) 0.814(0.232) 317 0.921(0.127) 0.845(0.247) 228
IMPUTE2 0.897(0.140) 0.813(0.233) 415 0.920(0.128) 0.837(0.245) 452
BEAGLE 0.868(0.166) 0.775(0.252) 182 0.900(0.146) 0.803(0.280) 170
chromosome14:50-55Mb
MaCH-Admix Random 0.869(0.180) 0.744(0.298) 227 0.876(0.179) 0.757(0.306) 504
MaCH-Admix AW 0.871(0.176) 0.765(0.279) 232 0.880(0.177) 0.766(0.304) 282
MaCH-Admix IBS-PW 0.873(0.177) 0.762(0.293) 249 0.881(0.178) 0.769(0.304) 296
MaCH-Admix IBS-SQ 0.873(0.176) 0.761(0.289) 240 0.879(0.178) 0.765(0.302) 311
MaCH-Admix IBS-DQ 0.873(0.176) 0.757(0.293) 249 0.878(0.180) 0.757(0.312) 310
IMPUTE2 0.870(0.180) 0.756(0.289) 497 0.879(0.180) 0.766(0.301) 523
BEAGLE 0.841(0.199) 0.688(0.332) 189 0.849(0.201) 0.694(0.340) 214
chromosome8:18-23Mb
MaCH-Admix Random 0.861(0.170) 0.813(0.247) 329 0.849(0.189) 0.766(0.285) 392
MaCH-Admix AW 0.863(0.171) 0.824(0.249) 332 0.850(0.188) 0.765(0.288) 423
MaCH-Admix IBS-PW 0.862(0.170) 0.824(0.247) 332 0.853(0.189) 0.761(0.296) 423
MaCH-Admix IBS-SQ 0.861(0.172) 0.819(0.246) 373 0.849(0.191) 0.778(0.290) 508
MaCH-Admix IBS-DQ 0.862(0.171) 0.821(0.239) 344 0.849(0.190) 0.776(0.289) 418
IMPUTE2 0.860(0.175) 0.793(0.263) 658 0.853(0.194) 0.767(0.299) 767
BEAGLE 0.820(0.200) 0.728(0.303) 241 0.825(0.206) 0.732(0.309) 269

All results were generated using the following parameter values: MaCH-Admix: --rounds
30, --states 120; IMPUTE2: -iter 30, -k 120, -k hap 500; BEAGLE: niterations=10 nsam-

ples=4. Best performance in each comparison is highlighted by bold font.
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Table 4.8: Imputation Results of 49 ASW Individuals Over All Five Short Regions

HapMapIII CEU+YRI+LWK+MKK reference
overall dosage r2 uncommon SNPs running

(std dev) dosage r2(std dev) time

chromosome3:80-85Mb
MaCH-Admix Random 0.953(0.101) 0.868(0.232) 162
MaCH-Admix AW 0.954(0.097) 0.881(0.222) 159
MaCH-Admix IBS-PW 0.958(0.091) 0.898(0.208) 167
MaCH-Admix IBS-SQ 0.954(0.100) 0.871(0.233) 179
MaCH-Admix IBS-DQ 0.954(0.100) 0.876(0.233) 173
IMPUTE2 0.952(0.100) 0.877(0.225) 291
BEAGLE 0.934(0.124) 0.811(0.271) 334
chromosome1:75-80Mb
MaCH-Admix Random 0.932(0.122) 0.837(0.222) 236
MaCH-Admix AW 0.935(0.119) 0.847(0.217) 238
MaCH-Admix IBS-PW 0.939(0.117) 0.858(0.222) 283
MaCH-Admix IBS-SQ 0.935(0.124) 0.841(0.235) 270
MaCH-Admix IBS-DQ 0.935(0.120) 0.850(0.226) 272
IMPUTE2 0.932(0.124) 0.846(0.225) 553
BEAGLE 0.918(0.144) 0.819(0.259) 491
chromosome4:57-62Mb
MaCH-Admix Random 0.934(0.107) 0.885(0.200) 232
MaCH-Admix AW 0.934(0.110) 0.884(0.208) 251
MaCH-Admix IBS-PW 0.937(0.106) 0.892(0.200) 253
MaCH-Admix IBS-SQ 0.934(0.110) 0.879(0.211) 247
MaCH-Admix IBS-DQ 0.935(0.109) 0.878(0.210) 267
IMPUTE2 0.929(0.120) 0.861(0.237) 426
BEAGLE 0.914(0.132) 0.833(0.256) 469
chromosome14:50-55Mb
MaCH-Admix Random 0.883(0.170) 0.756(0.301) 318
MaCH-Admix AW 0.886(0.168) 0.772(0.295) 309
MaCH-Admix IBS-PW 0.891(0.167) 0.778(0.304) 352
MaCH-Admix IBS-SQ 0.889(0.166) 0.783(0.295) 320
MaCH-Admix IBS-DQ 0.890(0.166) 0.786(0.294) 335
IMPUTE2 0.893(0.168) 0.785(0.303) 642
BEAGLE 0.873(0.181) 0.757(0.305) 514
chromosome8:18-23Mb
MaCH-Admix Random 0.863(0.178) 0.781(0.274) 431
MaCH-Admix AW 0.865(0.180) 0.788(0.285) 417
MaCH-Admix IBS-PW 0.871(0.177) 0.790(0.286) 452
MaCH-Admix IBS-SQ 0.867(0.180) 0.800(0.281) 479
MaCH-Admix IBS-DQ 0.867(0.178) 0.785(0.281) 462
IMPUTE2 0.865(0.186) 0.800(0.286) 923
BEAGLE 0.848(0.190) 0.768(0.292) 718

All results were generated using the following parameter values: MaCH-Admix: --rounds
30, --states 120; IMPUTE2: -iter 30, -k 120, -k hap 500; BEAGLE: niterations=10 nsam-

ples=4. Best performance in each comparison is highlighted by bold font.
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Table 4.9: Imputation Results of 50 MEX Individuals Over All Five Short Regions

HapMapII CEU+YRI+JPT+CHB reference HapMapIII CEU+YRI+JPT+CHB reference
overall dosage r2 uncommon SNPs running overall dosage r2 uncommon SNPs running

(std dev) dosage r2(std dev) time (std dev) dosage r2(std dev) time

chromosome3:80-85Mb
MaCH-Admix Random 0.965(0.083) 0.988(0.040) 114 0.956(0.112) 0.893(0.227) 143
MaCH-Admix AW 0.965(0.080) 0.985(0.054) 120 0.957(0.109) 0.898(0.216) 144
MaCH-Admix IBS-PW 0.964(0.082) 0.989(0.037) 125 0.957(0.110) 0.899(0.222) 184
MaCH-Admix IBS-SQ 0.964(0.081) 0.987(0.046) 124 0.957(0.110) 0.897(0.221) 164
MaCH-Admix IBS-DQ 0.963(0.083) 0.989(0.042) 122 0.956(0.112) 0.896(0.223) 167
IMPUTE2 0.961(0.089) 0.986(0.036) 298 0.957(0.119) 0.898(0.237) 311
BEAGLE 0.959(0.093) 0.995(0.012) 225 0.947(0.130) 0.854(0.245) 232
chromosome1:75-80Mb
MaCH-Admix Random 0.927(0.136) 0.832(0.244) 192 0.923(0.165) 0.818(0.296) 255
MaCH-Admix AW 0.929(0.134) 0.827(0.240) 186 0.924(0.168) 0.814(0.306) 248
MaCH-Admix IBS-PW 0.930(0.134) 0.838(0.245) 209 0.926(0.169) 0.819(0.312) 272
MaCH-Admix IBS-SQ 0.926(0.136) 0.838(0.221) 203 0.921(0.171) 0.829(0.308) 251
MaCH-Admix IBS-DQ 0.926(0.139) 0.832(0.230) 220 0.922(0.170) 0.822(0.309) 262
IMPUTE2 0.927(0.141) 0.820(0.250) 471 0.923(0.177) 0.801(0.317) 476
BEAGLE 0.915(0.146) 0.806(0.245) 239 0.908(0.191) 0.775(0.338) 299
chromosome4:57-62Mb
MaCH-Admix Random 0.928(0.147) 0.806(0.296) 183 0.928(0.160) 0.840(0.286) 219
MaCH-Admix AW 0.929(0.146) 0.806(0.286) 189 0.927(0.162) 0.838(0.289) 214
MaCH-Admix IBS-PW 0.928(0.149) 0.802(0.304) 200 0.927(0.161) 0.844(0.287) 238
MaCH-Admix IBS-SQ 0.928(0.148) 0.812(0.286) 286 0.926(0.163) 0.851(0.288) 235
MaCH-Admix IBS-DQ 0.927(0.149) 0.809(0.292) 193 0.928(0.161) 0.839(0.291) 238
IMPUTE2 0.925(0.156) 0.806(0.300) 435 0.925(0.169) 0.832(0.298) 501
BEAGLE 0.920(0.160) 0.793(0.305) 230 0.919(0.172) 0.824(0.304) 320
chromosome14:50-55Mb
MaCH-Admix Random 0.922(0.158) 0.895(0.167) 249 0.916(0.183) 0.823(0.290) 347
MaCH-Admix AW 0.921(0.161) 0.902(0.168) 273 0.915(0.183) 0.816(0.292) 286
MaCH-Admix IBS-PW 0.922(0.163) 0.900(0.171) 252 0.918(0.182) 0.827(0.293) 335
MaCH-Admix IBS-SQ 0.921(0.161) 0.903(0.168) 273 0.915(0.183) 0.828(0.286) 316
MaCH-Admix IBS-DQ 0.920(0.161) 0.898(0.166) 263 0.917(0.181) 0.840(0.287) 315
IMPUTE2 0.922(0.165) 0.901(0.169) 541 0.916(0.182) 0.827(0.290) 598
BEAGLE 0.911(0.170) 0.891(0.172) 276 0.908(0.190) 0.813(0.299) 319
chromosome8:18-23Mb
MaCH-Admix Random 0.900(0.162) 0.852(0.233) 316 0.886(0.191) 0.824(0.284) 402
MaCH-Admix AW 0.901(0.160) 0.858(0.224) 336 0.885(0.196) 0.815(0.294) 401
MaCH-Admix IBS-PW 0.903(0.159) 0.867(0.218) 327 0.888(0.197) 0.826(0.298) 513
MaCH-Admix IBS-SQ 0.900(0.163) 0.863(0.223) 356 0.882(0.198) 0.817(0.298) 465
MaCH-Admix IBS-DQ 0.900(0.161) 0.864(0.212) 329 0.883(0.199) 0.813(0.301) 459
IMPUTE2 0.898(0.164) 0.871(0.199) 716 0.879(0.205) 0.811(0.302) 806
BEAGLE 0.889(0.169) 0.859(0.225) 340 0.870(0.211) 0.788(0.320) 434

All results were generated using the following parameter values: MaCH-Admix: --rounds
30, --states 120; IMPUTE2: -iter 30, -k 120, -k hap 500; BEAGLE: niterations=10 nsam-

ples=4. Best performance in each comparison is highlighted by bold font.
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It however needs significantly more computing time than MaCH-Admix and IMPUTE2

when imputing with the 1000G reference, which I believe has to do with how consecutive

untyped variants are modeled. Note that, due to the large number of experiments, I

conducted all experiments on a big Linux cluster with more than 1000 CPUs. This leads

to moderate fluctuations in running time over short regions due to I/O competition. But

I obtain largely consistent conclusions across different experimental settings.

4.4 Discussion

In summary, the emergence of large reference panels calls for more efficient methods

to utilize the rich resource. I have implemented two classes of reference-selection meth-

ods, namely IBS-based and ancestry-weighted approaches, to construct effective reference

panels within previously described HMM and implemented them in software package

MaCH-Admix for genetic imputation in admixed populations. I have performed sys-

tematic evaluations on large (WHI-AA and WHI-HA full sample with 8421 and 3587

individuals), medium (subset of 200 individuals from each of the two WHI admixed co-

horts), and small (HapMap ASW and MEX with 49 and 50 founders respectively) target

samples; using large (the latest 1000G with H = 2188) and small (HapMap with H =

240-930) reference panels; and in five regions with different levels of LD. Compared with

popular existing methods, MaCH-Admix demonstrates its advantage mostly because its

piecewise algorithm takes potential changes in haplotype pattern sharing across regions

into direct account (versus IMPUTE2 which adopts a whole-haplotype IBS matching

approach) and because it does not reduce local haplotype complexity (versus BEAGLE

which does so to gain computational efficiency). Based on my evaluations, I recom-

mend the proposed piecewise IBS-based method, which demonstrates the best trade off

between quality and computing time.
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As the reference panel continues to grow rapidly (for example, the 1000 Genomes

Project will generate ∼5,000 haplotypes within two years), approaches that can rapidly

explore the entire reference pool will become increasingly appreciated. IBS-based ap-

proaches show such potential. As manifested by results from both WHI individuals and

the HapMapIII individuals, IBS-based approaches can generate accurately imputed geno-

types by preferentially selecting a small but different subset of ∼100 (corresponding to

∼5% for the current 1000G case where H=2188) haplotypes from the entire reference

pool in each iteration. As computational costs increase quadratically with the effective

number of haplotypes used in each iteration, such ∼95% reduction in the effective number

of reference haplotypes corresponds to >99.5% reduction in computational investment.

Previous studies [Hao et al., 2009; Li et al., 2009; Shriner et al., 2010; Zhang et al.,

2011; Seldin et al., 2011] have recommended the use of a combined reference panel which

pools haplotypes from all available reference populations (e.g., from the HapMap or

the 1000 Genomes Projects), especially for populations that do not have a single best

match reference population for increased imputation accuracy. Two forces working in

opposite directions are introduced by including reference haplotypes from populations

different from those in target samples in such a cosmopolitan panel: shared haplotype

stretches (likely even shorter) that would increase imputation quality while noise added by

including population-specific local haplotypes would harm imputation quality. Therefore,

the recommendation of using a cosmopolitan panel to enhance imputation quality also

applies to MaCH-Admix, conceptually more applicable because MaCH-Admix reduces

the noise force by choosing local haplotypes that are most relevant into effective reference.

One key question concerns the optimal region size for imputation. From the per-

spective of including more LD information, particularly the long-range LD information

that would be particularly critical for the imputation of uncommon variants, imputa-

tion over longer regions is desired. However, approaches that select reference haplotypes

according to genetic matching between reference haplotypes and genotypes of target indi-
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viduals across the entire region like whole-haplotype IBS-based methods will likely suffer

from the change in genetic matching over a long region. For example, for both scenarios

presented in Figure 4.1, there are two distinct sub-regions according to the matching pat-

tern. Lumping them naively together, particularly using a single queue, may well lead

to inferior performance as discussed earlier. I attempt to solve the problem by break-

ing the entire region into smaller pieces and within each piece selecting some reference

haplotypes according to local genetic matching. This conceptually shares similarity with

local ancestry adjustment in analysis of admixed populations [Wang et al., 2011a]. Pasa-

niuc et al. [2011] also found local ancestry increases imputation accuracy. The proposed

piecewise IBS based selection method is robust to imputation region size. I have evalu-

ated the performance on whole chromosomes using ASW/MEX with HapMap references

and found that both piecewise IBS and ancestry-weighted selection perform much better

than whole-haplotype IBS based methods (data not shown). Between piecewise IBS and

ancestry-weighted selections, the piecewise IBS method has advantage in most whole

chromosome experiments and is very close to ancestry-weighted selection in the rest.

Ancestry-weighted approaches have been previously utilized to construct reference

panels in admixed populations for tagSNP selection or imputation [Egyud et al., 2009;

Pasaniuc et al., 2010; Pemberton et al., 2008]. However, such reference panels created

a priori induce two problems for imputation. First, haplotypes from contributing ref-

erence populations are literally duplicated, thus substantially increasing computational

burden. Second, the same fixed pre-constructed reference haplotypes are to be used for

all Markov iterations, preventing imputation algorithms from taking into account the

uncertainty in creating the reference panel. My ancestry-weighted approach selects ref-

erence haplotypes probabilistically according to the estimated ancestry proportions and

creates a different reference panel in each Markov iteration. This strategy ensures that

all reference haplotypes to be selected when I run the Markov iterations long enough,

thus avoiding both problems mentioned above. An attractive feature that I have added
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to MaCH-Admix is a functionality to estimate ancestry proportions so that it can inter-

nally generate weights for ancestry-weighted approach without the need to install and

call external programs. Although there exist many methods to infer ancestry includ-

ing for example structure [Pritchard et al., 2000], HAPMIX [Price et al., 2009] and

GEDI-ADMX [Pasaniuc et al., 2009], I believe that researchers will find this build-in

feature convenient. I found my estimates reasonably close to estimates from structure

and working well for imputation purpose.

In this study, I have examined the performance of my proposed and other imputa-

tion methods in both Hispanics and African Americans. Between the two, Hispanics

are known to have more complex LD structure because of three ancestral populations

involved as opposed to two for African Americans. The more complex LD in Hispanics

indeed makes it essential to more explicitly account for the larger variability in local

ancestry (for example, using my proposed piecewise approach). The more complex LD

and population substructure in Hispanics have prevented a lot of investigators from even

attempting imputation. However, I observe similar if not slightly better imputation

quality in the five regions examined, with an average dosage r2 of 92.5% (81.8%) versus

92.1% (81.4%) for all (uncommon) SNPs in WHI-HA and WHI-AA respectively using my

piecewise IBS approach. That imputation performance for Hispanics is comparable with

that for African Americans is expected due to on average less African ancestry (where

LD is the lowest and thus most challenging for imputation) in Hispanics compared to

African Americans. Therefore, I highly encourage investigators working with Hispanics

perform imputation as well.

Although in this work I propose the reference selection methods for imputation of

admixed individuals, the methods can be directly applied to imputation in general for

non-admixed populations by finding the best genetic match for each target individual.

For the same reason, IBS-based methods tend to work better than ancestry-weighted ap-

proaches when between-individual variation among the target individuals is large (data
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not shown). This is not surprising because IBS-based approaches select a different effec-

tive reference panel tailored for each target individual, rather than one uniform reference

sampling setting for all target individuals as in the ancestry-weighted approach.

I have also attempted to examine common and uncommon genetic variants separately,

using MAF 5% as cutoff. I observe more pronounced differences among the attempted

methods with uncommon variants, suggesting that choice of reference selection methods

matters more for uncommon variants. Due to the nature of the SNPs evaluated (ei-

ther typed Affymetrix 6.0 markers for the WHI individuals, or HapMap markers) and

the target sample size (49-50 for HapMapIII ASW and MEX), there are few really rare

(MAF<1%) variants. Although several attempts have been made [Wang et al., 2011b;

Howie et al., 2011; The International HapMap Consortium, 2010; Liu et al., 2012], im-

putation quality for uncommon variants is far from being fully assessed and needs to be

further evaluated when data from large scale sequencing efforts become available.

Last but clearly not the least point concerns computational efficiency. MaCH-Admix

is very flexible in terms of the effective number of haplotypes used in each iteration

and the number of iterations. Imputation accuracy depends on both parameters. Since

computational cost increases quadratically with --states and linearly with --rounds, for

practical purpose, I recommend using --states 100-120 and --rounds ≥20. I also have

an option analogous to IMPUTE2’s -k hap, which increases computational costs linearly

and even defaulting at a large value (500) contributes to only a small proportion of com-

puting time. Between the two categories of approaches proposed, the ancestry-weighted

approach requires only one-time up-front costs for the estimation of ancestry proportions.

The IBS-based methods, on the other hand, require overhead costs at each iteration for

calculating genetic similarities between individuals in the target population and the ref-

erence haplotypes. For both, the costs increase with the reference panel size. Finally,

computational costs would increase only linearly with --states if I start with haplotypes

of the target individuals, that is, for haplotype-to-haplotype (both reference and target
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are in haplotypes) imputation as performed by software minimac. I plan to extend my

proposed methods to minimac in the future.

Web Resources

Census fact for admixed populations,

http://quickfacts.census.gov/qfd/states/00000.html

The 1000 Genomes Project, http://www.1000genomes.org/

MaCH-Admix, http://www.unc.edu/~yunmli/MaCH-Admix/

MaCH, http://www.sph.umich.edu/csg/yli/mach/

IMPUTE, http://mathgen.stats.ox.ac.uk/impute/impute.html

BEAGLE, http://faculty.washington.edu/browning/BEAGLE/BEAGLE.html

structure: http://pritch.bsd.uchicago.edu/software.html
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Chapter 5

Genotype Imputation of Metabochip

SNPs in African Americans Using a

Study Specific Reference Panel

5.1 Introduction

Genotype imputation has become standard practice to increase genome coverage and im-

prove power in Genome-Wide Association Studies (GWAS) and meta-analysis [de Bakker

et al., 2008; Li et al., 2009; Marchini and Howie, 2010]. The wealth of literature using

genotype imputation has focused on using external reference panels (for example, phased

haplotypes from the International HapMap Project [The International HapMap Con-

sortium, 2007] or the 1000 Genomes Project [The 1000 Genomes Project Consortium,

2010]), largely in individuals of European ancestry, for inference of genotypes at common

(MAF > 0.05) genetic markers.

GWAS have identified > 4, 300 genetic variants associated with human diseases

and traits (http://www.genome.gov/gwastudies/) [Hindorff et al., 2009]. Investigators

across the world have begun efforts to fine map within regions where GWAS-identified

SNPs reside, through dense genotyping (e.g., using region-centric or gene-centric chips

like the Metabochip for metabolic related traits

(http://www.sph.umich.edu/csg/kang/MetaboChip/), or the ITMAT-Broad-CARe [IBC]

http://www.genome.gov/gwastudies/
http://www.sph.umich.edu/csg/kang/MetaboChip/


for cardiovascular related traits, or the immunochip for immune related diseases) or se-

quencing. Furthermore, multiethnic genetic association studies have been recognized as

potentially more powerful for both gene discovery and fine mapping [McCarthy et al.,

2008; Pulit et al., 2010; Rosenberg et al., 2010; Teo et al., 2010] and some initial ef-

forts have been carried out [He et al., 2011; Keebler et al., 2010; Lanktree et al., 2009;

Lettre et al., 2011; Smith et al., 2011; Waters et al., 2009]. In addition, because GWAS-

identified SNPs (mostly common) explain only a small proportion of overall heritability

for most complex diseases and traits [Eichler et al., 2010; Maher, 2008; Manolio et al.,

2009], whole-genome or whole-exome sequencing for rare SNPs and genetic variants other

than SNPs (e.g., copy number variations, structural variants) are under way.

So far, there has been relatively little research on the performance of genotype im-

putation in this new context. My study provides a typical scenario where 8, 421 African

Americans from the Women’s Health Initiative [The WHI Study Group, 1998] SNP

Health Association Resource (SHARe) were genotyped using the Affymetrix 6.0 genotyp-

ing platform. In an attempt to generalize genetic effects across racial groups, the Pop-

ulation Architecture using Genomics and Epidemiology (PAGE) consortium genotyped

a subset of 1,962 African American WHI participants with data on multiple metabolic

related phenotypes using the Metabochip [Matise et al., 2011]. To increase the power to

detect moderate to small genetic effects, I sought to impute the Metabochip SNPs in the

remaining 6,459 individuals in WHI SHARe with Affymetrix 6.0 data only. Imputing

SNPs in the fine mapping region tends to be more challenging because these SNPs tend

to be rare and in low linkage disequilibrium (LD) with GWAS SNPs. Here I describe a

pipeline for constructing study-specific reference panels using individuals genotyped or

sequenced at a larger set of genetic markers (in this case, individuals genotyped using

both Affymetrix 6.0 and Metabochip) and for imputation into individuals with genotype

data at a subset of markers (in this case, individuals genotyped using Affymetrix 6.0

only). I benchmark the quality of my imputation in an African American population, for
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SNPs on the Metabochip, a region-centric genotyping platform, with particular focus on

low frequency SNPs (MAF down to 0.001), using a large study-specific reference panel

containing 3, 924 haplotypes. An African American sample poses a greater challenge for

genotype imputation due to more complex LD patterns in African Americans compared

with individuals of European ancestry [Egyud et al., 2009; Shriner et al., 2010], and in

which comparatively less discovery work has been done.

I first describe how I constructed my study-specific reference panel using the 1, 962

African American individuals with genotypes for both Affymetrix 6.0 and Metabochip

SNPs and how I performed imputation of the Metabochip-only SNPs into the remaining

6, 459 individuals. I then show several approaches through which I estimated imputation

quality for SNPs in different MAF categories, with a special focus on less common (MAF:

0.01 − 0.05) and rare (MAF < 0.01) variants. I provide practical guidelines regarding

post-imputation quality control for different MAF categories, as well as for the inclusion

of rare variants during imputation.

5.2 Materials and Methods

5.2.1 Pre-Imputation Quality Control

Prior to phasing and imputation, quality control was applied to both the Metabochip

data and the GWAS data. Specifically, for the GWAS dataset (n = 6,459) I removed

Affymetrix 6.0 SNPs with genotype call rates < 90% (m = 1,633), or Hardy-Weinberg

exact test [Wigginton, et al. 2005] p-value < 10−6 (m = 16,327), or MAF < 0.01 (m =

14,014), resulting in a 829,370 GWAS SNPs passing quality control criteria [Reiner et al.,

2011]. Separate quality control criteria were applied to the Metabochip SNPs, leading to

182,397 QC+ SNPs with genotype call rates > 95% and Hardy-Weinberg p-value > 10−6

Individuals were excluded if they had a call rate below 95%, showed excess heterozygosity,

were part of an apparent first-degree relative pair, or were ancestry outliers as determined
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by Eigensoft [Price et al., 2006]. Details can be found in the PAGE Metabochip platform

paper [Buyske et al., 2011].

5.2.2 General Pipeline for Reference Construction and Subse-

quent Imputation

Figure 5.1 shows schematically how imputation was performed. In the top left panel,

I first merged genotypes from the Affymetrix GWAS panel (blue) and the Metabochip

(yellow) SNPs genotyped as part of the PAGE study for the 1,962 reference individuals

(i.e., individuals with genotype data from both platforms). I then reconstructed hap-

lotypes encompassing both GWAS and Metabochip SNPs for the reference individuals,

constituting the reference panel of 3,924 haplotypes. In the top right panel, haplotype

reconstruction for target individuals (i.e., individuals with GWAS genotypes only) was

carried out similarly, but at the GWAS markers only. Finally, a haplotype-to-haplotype

(that is, data are in haplotype form for both the reference and target individuals) im-

putation was performed to generate estimated genotypes at the Metabochip SNPs for

the 6,459 target individuals.

5.3 Results

5.3.1 Genomewide Imputation using Large Study-Specific Ref-

erence

After careful matching on strand (so that genotypes from both Affymetrix 6.0 and the

Metabochip are on the same strand), SNP ID, genomic coordinates, and actual geno-

types for SNPs in common, I had a merged set of 987,749 SNPs for the 1,962 reference

individuals. The average concordance rate for the 23,703 SNPs in common was 99.7%.

For discordant genotypes, I kept the GWAS genotypes to match those of the target indi-
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Figure 5.1: Reference construction and imputation pipeline using a study-specific refer-
ence panel. This schematic cartoon shows how I constructed my study-specific reference
panel using five individuals genotyped on both the Affymetrix 6.0 and the Metabochip plat-
form and how I performed imputation into the remaining five individuals with Affymetrix
6.0 data only.

viduals with GWAS data only. Haplotypes were reconstructed on the merged set using

MaCH [Li et al., 2010a]. In parallel, I constructed haplotypes across the 829,370 QC+

GWAS SNPs for all 8,421 individuals. Finally, I used the 3,924 haplotypes across the

merged set of 987,749 SNPs as reference to impute into haplotypes across GWAS SNPs of

the target individuals. The final haplotype-to-haplotype imputation was performed using

the software package minimac, which generates the allele dosages (the fractional counts

of an arbitrary allele at each SNP for each individual, ranging continuously from 0 to

2). Minimac also generates the SNP-level quality metric Rsq, which is the SNP-specific

estimated r2 between allele dosages and the unknown true genotypes. Rsq has been
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recommended as an efficient post-imputation quality control metric. Rsq, estimated r2,

and estimated imputation r2 are used interchangeably in the literature [Browning and

Browning, 2009; Li et al., 2009].

5.3.2 Quality Estimate by Masking Genotypes at 2% GWAS

SNPs

Aside from production (actual imputation presented in the section above), I randomly

masked 2% of the GWAS SNPs among the target individuals in the minimac imputation

step to estimate the true imputation accuracy as well as to evaluate the utility of Rsq as

a quality metric. By comparing imputed dosages with experimental genotypes, previous

studies have proposed several statistics to measure true imputation accuracy [Browning

and Browning, 2009; Li et al., 2009; Lin et al., 2010; Marchini and Howie, 2010], measuring

either the concordance rate, correlation, or degree of agreement. Here, I choose to report

the dosage r2, which is the squared Pearson correlation between the estimated allele

dosages and the true experimental genotypes (recoded as 0, 1, and 2 corresponding to

the number of minor alleles), because it is a more informative measure for low frequency

variants by taking allele frequency into account and because it is directly related to

the effective sample size for subsequent association analysis [Pritchard and Przeworski,

2001]. As dosage r2 is calculated using the true genotypes (assuming the experimental

genotypes are the true genotypes), people also call it true r2. Like Rsq, dosage r2 is

also specific to each SNP.

Figure 5.2 shows the average dosage r2 values for the 2% masked GWAS SNPs by

chromosome. Genomewide average is 93.68% (range 87.18% [chromosome 19] - 95.26%

[chromosome 10]). As expected, larger chromosomes (in terms of physical length) tend

to be slightly easier to impute due to slightly lower recombination rates and therefore

higher level of LD [The International HapMap Consortium, 2005]. Chromosome 19,

with the highest gene density, is most challenging for imputation. Table 5.1 shows the
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average dosage r2 values by MAF. Not surprisingly, lower frequency variants are harder to

impute due to poorer coverage by GWAS SNPs, lower degree of LD, and more challenging

haplotype reconstruction. For example, the average dosage r2 for SNPs with MAF >

0.05 is 95.08% ; while the average for SNPs with MAF 0.005-0.01 is 70.84
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Figure 5.2: Imputation accuracy by chromosome for 2% randomly masked GWAS SNPs.
Imputation accuracy (as measured by average dosage r2) for 2% GWAS SNPs masked at
random is plotted by chromosome.

Table 5.1: Average Dosage r2 by MAF, Estimated by Masking 2% GWAS SNPs

MAF #SNPs Average Std Dev
Dosage r2 Dosage r2

0.005-0.01 17 70.84% 18.23%
0.01-0.03 724 82.97% 16.07%
0.03-0.05 876 90.36% 11.03%
0.05-0.50 14983 95.08% 7.70%

While Figure 5.2 and Table 5.1 show the true imputation accuracy, in practice, re-

searchers are more interested in how well imputation quality metrics can predict true

imputation accuracy (measured by dosage r2). Figure 5.3 assesses the quality metric

Rsq by plotting it against dosage r2. One can see that Rsq can predict dosage r2 quite

well, particularly for common SNPs and those with reasonable Rsq values. For example,

the Pearson correlation is 0.938 for all SNPs (regardless of MAF and Rsq), 0.952 for

SNPs with MAF > 0.03 (regardless of Rsq), and 0.955 for SNPs with MAF > 0.03

and Rsq > 0.3.
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Whereas masking GWAS SNPs is a simple approach to estimate imputation accu-

racy, the approach estimates imputation quality for the “wrong” set of SNPs in that

I am imputing genotypes for Metabochip SNPs, not GWAS SNPs. The two set of

SNPs differ in two major aspects: MAF and physical density distribution. First, in

terms of allele frequency distribution: while Affymetrix 6.0 SNPs, like most commercially

available genomewide genotyping platforms, contain SNPs that are mostly common, the

Metabochip platform contains a much larger proportion of lower frequency variants. For

example, while only 4.3% and 9.9% of the Affymetrix SNPs have MAF < 0.03 and <

0.05 respectively, the proportions are 29.8% and 37.8% for Metabochip SNPs. Figure

5.4 shows the MAF distributions of the Affymetrix 6.0 SNPs and the Metabochip SNPs.

Second, the physical distribution of the SNPs is quite different. The Affymetrix 6.0

SNPs are rather evenly spread across the genome. SNPs on the Metabochip, chosen

for fine mapping of regions identified through GWAS to be associated with metabolic

related traits, scatter unevenly across the genome and are concentrated around GWAS-

identified signals. Figure 5.5 shows two typical regions where the GWAS SNP density

(green) is quite uniform across the region while Metabochip SNP density (red) peaks in

a sub-region chosen for follow-up but drops sharply outside the sub-region of interest.

5.3.3 Quality Estimate by Masking Genotypes at Metabochip

SNPs for a Subset of Reference Individuals

To estimate the imputation quality for the actually imputed Metabochip SNPs, I masked

Metabochip genotypes for 100 reference individuals, imputed them, and compared the

estimated dosages with the masked experimental genotypes. Note that I used haplo-

types constructed from GWAS data only for the 100 individuals. Figure 5.6 shows the

average dosage r2 by chromosome. Again imputation quality is slightly higher for larger

chromosomes and lowest for chromosome 19. Table 5.2 presents imputation accuracy

by MAF, with and without post-imputation filtering according to Rsq. First, it is clear
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Figure 5.3: Rsq by dosage r2 for 2% randomly masked GWAS SNPs. Estimated impu-
tation accuracy (minimac output Rsq) is plotted against the true dosage r2, for the 2%
GWAS SNPs masked at random.

that lower frequency variants are harder to impute. Previous studies have shown ear-

lier that imputation accuracy increases with the reference panel size, especially for the

imputation of lower frequency variants [Li et al., 2009; Marchini and Howie, 2010; The

International HapMap Consortium, 2010]. However, even with a reference panel of 3,924

haplotypes, I am not able to obtain reasonable imputed data for SNPs with MAF under

0.001. Without post-imputation filtering, the average dosage r2 is merely 0.39%. If I

apply a post-imputation filter of Rsq > 0.3 (>0.5), only 0.4% (0.3%) of the SNPs with

MAF < 0.001 pass the filter with an average dosage r2 of 24.85% (30.45%). For this rarest

category of SNPs (MAF < 0.001), even at an Rsq threshold of 0.95, which retains merely

23 out of 18,959 SNPs, I can only achieve an average dosage r2 of 47.82% (Figure 5.7(a)).

Second, SNPs with MAF > 0.01 can be imputed fairly well using a reference panel of this

size. For example, even without any post-imputation quality control filter, the average

dosage r2 is 85.32%, 91.73%, and 94.62% for SNPs with MAF 0.01-0.03, 0.03-0.03, and
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Figure 5.4: MAF distributions of Affymetrix 6.0 and Metabochip QC+ SNPs. I show the
histograms for the MAFs of the 829,370 Affymetrix 6.0 QC+ SNPs (top panel) and of the
182,397 Metabochip QC+ SNPs (bottom panel).

>0.05, indicating that ∼85-95% of the information can be recovered for SNPs in these

MAF categories. Third, I am able to impute a considerable proportion of less common

(MAF 0.001-0.01) variants reasonably well using a reference panel of this size along with

post-imputation quality filtering according to Rsq. For example, I can obtain an average

dosage r2 of 79.71% for 20.5% of the SNPs with MAF 0.001-0.005 by excluding SNPs

with Rsq < 0.5; and an average dosage r2 of 83.05% for 52.0% of the SNPs with MAF

0.005-0.01 by excluding SNPs with Rsq < 0.3, with both Rsq thresholds selected such

that the average Rsq is above 80%.
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Figure 5.5: Physical spreading of Affymetrix 6.0 and Metabochip QC+ SNPs. SNP
frequency is plotted against genomic coordinate for two randomly chosen regions, green for
Affymetrix 6.0 SNPs and red for Metabochip SNPs. The frequency is normalized so that
the total frequency in each region is 1.

 0.66
 0.68
 0.7

 0.72
 0.74
 0.76
 0.78
 0.8

 0.82
 0.84
 0.86
 0.88

 1  2  3  4  5  6  7  8  9  10 11 12 13 14 15 16 17 18 19 20 21 22

A
ve

ra
ge

 D
os

ag
e 

r2

Chromosome

Figure 5.6: Imputation accuracy by chromosome for Metabochip SNPs (estimated by
masking 100 reference individuals). Imputation accuracy (as measured by average dosage
r2) for Metabochip SNPs is plotted by chromosome, by masking 100 reference individuals
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Figure 5.7: Accuracy and calibration of imputation. Percentages of SNPs passing post-
imputation QC (left Y-axis) and average dosage r2 (right Y-axis) are plotted against Rsq
threshold used for post-imputation QC for SNPs in different MAF categories.
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Table 5.2: Average Rsq and Dosage r2 by MAF, Estimated by Masking 100 Reference Individuals

No Rsq Filter Rsq > 0.3 Rsq > 0.5

MAF #SNPs average average %SNPs average average %SNPs average average
Rsq dosage r2 Rsq dosage r2 Rsq dosage r2

0-0.001 18959 0.46% 0.39% 0.4% 72.31% 24.85% 0.3% 83.77% 30.45%
0.001-0.005 6925 21.80% 33.74% 23.8% 82.41% 73.94% 20.5% 89.24% 79.71%
0.005-0.01 7001 47.49% 64.87% 52.0% 87.32% 83.05% 48.2% 91.14% 86.00%
0.01-0.03 19894 77.57% 85.32% 83.6% 91.72% 88.98% 81.2% 93.21% 89.88%
0.03-0.05 13315 92.11% 91.73% 97.5% 94.27% 92.11% 96.3% 94.91% 92.57%
0.05-1.00 92597 96.94% 94.62% 99.9% 97.05% 94.71% 99.4% 97.30% 94.94%

Note: I evaluated a total of 158,691 out of the total 182,397 QC+Metabochip SNPs because 23,706 SNPs are both on the Metabochip
and the Affymetrix 6.0 panel and were excluded from quality evaluation to avoid upward bias.
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5.3.4 Overall Imputation Performance and Practical Guidelines

In practice, I recommend using Rsq as the post-imputation quality control metric. Figure

5.8 attests to the high correlation between Rsq and dosage r2. I observe that the vast ma-

jority of SNPs are both imputed well and are predicted to be well imputed, corresponding

to the biggest point masses (red to yellow range according to SNP frequency/count spec-

trum) with both high Rsq and high dosage r2. Overall, I find that Rsq can predict dosage

r2 fairly well, particularly for common SNPs and those with reasonable Rsq values. For

example, Pearson correlation between Rsq and dosage r2 is 0.86 for SNPs with MAF

0.005-0.01 and Rsq > 0.5; and 0.93 for SNPs with MAF 0.01-0.03 and Rsq > 0.3. I also

observe a noticeable point mass at the right bottom corner, corresponding to SNPs that

are predicted to be poorly imputed (low Rsq) but are actually well imputed (high dosage

r2). Closer examination revealed that most of these SNPs are of low frequency (95.4%

have MAF < 0.03 and 99.7% have MAF < 0.05), for which the imputation model has

low confidence in the estimated dosages that actually match the true dosages fairly well.

Furthermore, I recommend different Rsq thresholds for different MAF categories.

Figure 5.7 presents the percentage of SNPs passing post-imputation QC (left Y axis)

and the average dosage r2 (right Y axis) as a function of Rsq threshold (X axis). To

achieve an average dosage r2 of at least 0.85 for example, one would have to use an Rsq

threshold of 0.7 for SNPs with MAF 0.001-0.005 while an Rsq threshold of 0 suffices

for SNPs with MAF > 0.03. Based on Table 5.2 and Figure 5.7, for my dataset, I

chose an Rsq threshold of 0.5 for SNPs with MAF 0.001-0.005 and an Rsq threshold of

0.3 for SNPs with MAF > 0.005, resulting in a total of 127,132 SNPs (out of 158,691)

passing post-imputation QC. The sample size for SNPs with MAF < 0.001 is too small

for conclusions, but the pattern suggests that the few SNPs passing the post imputation

filter of Rsq > 0.5 are well imputed. In general, I recommend selecting an Rsq threshold

such that the average Rsq is above the desired average dosage r2.
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Figure 5.8: Rsq by dosage r2 for Metabochip SNPs (estimated by masking 100 reference
individuals). Estimated imputation accuracy (minimac output Rsq) is plotted against the
true dosage r2, for Metabochip SNPs by masking 100 reference individuals.

5.3.5 To Include or Not to Include: Rare SNPs during Hap-

lotype Reconstruction

One open question concerns whether rare SNPs should be included for haplotype re-

construction, either for the reference individuals or for the target individuals. For the

reference panel construction, on one hand, one would like to include as many variants

as possible so that they can be subsequently imputed in the target individuals. On

the other hand, inclusion of very rare SNPs may interfere with phasing (in the extreme

case, for example, singletons cannot be phased), resulting in less accurately constructed

haplotypes, and ultimately leading to inferior imputation quality, with little or no ben-

efit in return because these very rare SNPs are unlikely to be accurately imputed into

the target individuals. Similarly, for the target individuals, inclusion of rare SNPs may

103



harm phasing quality, leading to less accurate imputation. On the other hand, as rare

to-be-imputed SNPs are more likely to be tagged by rare GWAS SNPs than by common

GWAS SNPs, inclusion of rare GWAS variants is expected to increase imputation quality

for rarer SNPs. To evaluate this, I assessed the following 20 combinations by varying two

parameters: MAF threshold used for the reference panel construction and MAF thresh-

old used for phasing target individuals. For the reference panel construction, I evaluated

the following four settings: A) all MAF (i.e., no filtering by MAF); B) no singletons (i.e.,

removing SNPs with only one copy of the minor allele among the 8,421 individuals with

GWAS data); C) MAF > 0.001; and D) MAF > 0.005. For phasing target individuals,

I evaluated the following five settings: i) all MAF; ii) no singletons (i.e., removing SNPs

with only one copy of the minor allele among reference); iii) MAF > 0.001; iv) MAF >

0.005; and v) MAF > 0.01. Note that for my production imputation, I used v) MAF >

0.01. I picked a medium size chromosome, chromosome 12, for evaluation.

As the comparisons among the four settings for building the reference panel show

similar patterns across the five settings for target haplotype reconstruction and vice

versa, I present the average of all settings defined by the other parameter. For example,

Table 5.3 shows the effect of including rare variants for reference panel construction,

where the statistics (number of SNPs and average dosage r2) for each of the four settings

are averaged across the five settings for reconstructing target haplotypes. Among the four

settings evaluated, setting B (No Singletons) provides the best trade-off: noticeable gains

for MAF categories 0.001-0.01 at little cost for common SNPs. For example, for SNPs

with MAF 0.001-0.005, at an Rsq threshold of 0.3, setting B leads to 119 well-imputed

SNPs with an average dosage r2 of 84.0%, outperforming setting A which also results

in119 well-imputed SNPs but with a lower average dosage r2 of 82.8%, setting C of 123

well-imputed SNPs with dosage r2 of 82.8%, and setting D of 0 well-imputed SNPs (by

design). For common SNPs with MAF > 0.01, all four settings have similar performance.

On the other hand, there is no clear winner among the five settings for phasing GWAS
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data (Table 5.4). Removing SNPs with MAF < 0.001 or 0.005 (settings iii and iv) is

slightly advantageous for imputing SNPs with MAF 0.001-0.01. For example, with an

Rsq threshold of 0.3, average dosage r2 for SNPs with MAF 0.001-0.005 is 85.6% and

84.0% respectively for setting iii and iv; while dosage r2 for the other three settings are ≤

83.0%. However, these settings result in slightly lower imputation quality for SNPs with

MAF 0.01-0.05. For example, with an Rsq threshold of 0.3, average dosage r2 for SNPs

with MAF 0.01-0.03 is 90.4% (for 1255 SNPs) and 90.6% (for 1269 SNPs) respectively

for setting iii and iv; while dosage r2 for the other three settings are ≥ 91.0% for a larger

number of SNPs (number of SNPs ≥ 1289).
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Table 5.3: Effect of Including Rare Variants for Reference Panel Construction

A: All MAF B: No Singletons C: MAF > 0.1% D: MAF > 0.5%

MAF Rsq #SNPs average #SNPs average #SNPs average #SNPs average
Threshold dosage r2 dosage r2 dosage r2 dosage r2

0-0.001 0 22 44.0% 22 43.7% 0 NA 0 NA
0.001-0.005 0 266 70.9% 266 72.9% 266 72.3% 0 NA
0.005-0.01 0 494 85.7% 494 85.7% 494 84.8% 494 85.3%
0.01-0.03 0 1521 90.4% 1521 90.3% 1521 90.3% 1521 90.3%
0.03-0.05 0 955 93.4% 955 93.5% 955 93.4% 955 93.4%
0.05-1.00 0 5494 95.5% 5494 95.5% 5494 95.5% 5494 95.5%
0-0.001 0.3 2 100.0% 3 75.8% 0 NA 0 NA
0.001-0.005 0.3 119 82.8% 119 84.0% 123 82.8% 0 NA
0.005-0.01 0.3 333 87.6% 333 87.8% 328 87.6% 335 87.6%
0.01-0.03 0.3 1307 91.1% 1306 91.0% 1307 91.0% 1307 91.0%
0.03-0.05 0.3 941 93.6% 941 93.7% 940 93.8% 941 93.7%
0.05-1.00 0.3 5486 95.6% 5486 95.6% 5487 95.5% 5487 95.5%
0-0.001 0.5 2 100.0% 2 65.8% 0 NA 0 NA
0.001-0.005 0.5 105 85.6% 103 86.4% 105 85.9% 0 NA
0.005-0.01 0.5 310 89.1% 310 89.3% 308 89.1% 311 89.2%
0.01-0.03 0.5 1268 92.1% 1266 92.0% 1268 92.0% 1269 91.9%
0.03-0.05 0.5 931 94.2% 932 94.2% 932 94.2% 931 94.1%
0.05-1.00 0.5 5460 95.9% 5460 95.8% 5461 95.8% 5459 95.8%
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Table 5.4: Effect of Including Rare Variants for Haplotype Reconstruction among Target Individuals

i: All MAF ii: No Singletons iii: MAF > 0.1% iv: MAF > 0.5% v: MAF > 1%

MAF Rsq Threshold #SNPs average #SNPs average #SNPs average #SNPs average #SNPs average
Threshold dosage r2 dosage r2 dosage r2 dosage r2 dosage r2

0-0.001 0 22 45.3% 22 44.9% 22 44.2% 22 47.3% 22 37.5%
0-0.001 0.3 3 100.0% 2 100.0% 3 81.3% 2 75.0% 3 83.3%
0-0.001 0.5 3 100.0% 2 100.0% 3 81.3% 1 83.3% 3 83.3%

0.001-0.005 0 266 73.0% 266 72.7% 266 72.7% 266 71.8% 266 70.1%
0.001-0.005 0.3 102 83.0% 123 81.0% 122 85.6% 120 84.0% 133 82.3%
0.001-0.005 0.5 86 86.4% 104 84.5% 106 87.6% 107 86.5% 118 84.9%

0.005-0.01 0 494 85.5% 494 85.8% 494 86.6% 494 85.5% 494 83.4%
0.005-0.01 0.3 285 84.8% 332 88.8% 346 88.8% 350 88.3% 348 87.5%
0.005-0.01 0.5 264 86.4% 316 89.9% 325 90.1% 326 89.7% 317 89.8%

0.01-0.03 0 1521 90.5% 1521 90.6% 1521 90.3% 1521 90.1% 1521 90.1%
0.01-0.03 0.3 1289 91.4% 1347 91.6% 1255 90.4% 1269 90.6% 1373 91.0%
0.01-0.03 0.5 1256 92.3% 1293 92.7% 1222 91.5% 1231 91.6% 1337 92.1%

0.03-0.05 0 955 93.4% 955 93.6% 955 93.2% 955 93.5% 955 93.5%
0.03-0.05 0.3 938 93.7% 943 93.8% 943 93.4% 933 93.8% 946 93.7%
0.03-0.05 0.5 932 94.1% 932 94.4% 934 93.9% 922 94.4% 938 94.1%

0.05-0.50 0 5494 95.4% 5494 95.5% 5494 95.5% 5494 95.5% 5494 95.5%
0.05-0.50 0.3 5486 95.5% 5490 95.5% 5487 95.5% 5487 95.6% 5484 95.7%
0.05-0.50 0.5 5460 95.8% 5463 95.8% 5461 95.8% 5457 95.9% 5460 95.9%
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Table 5.5: Effect of Including/Excluding the 100 Masked Reference Individuals during
Reference Haplotype Reconstruction

n = 1862 (Excluding) n = 1962 (Including)

MAF Rsq #SNPs average #SNPs average
Threshold dosage r2 dosage r2

0-0.001 0 22 47.4% 22 40.3%
0-0.001 0.3 3 89.2% 2 85.2%
0-0.001 0.5 3 84.2% 2 77.1%
0.001-0.005 0 266 71.6% 266 72.6%
0.001-0.005 0.3 117 84.1% 123 82.3%
0.001-0.005 0.5 100 87.3% 108 84.7%
0.005-0.01 0 494 85.4% 494 85.4%
0.005-0.01 0.3 333 87.8% 332 87.5%
0.005-0.01 0.5 309 89.4% 310 89.0%
0.01-0.03 0 1521 90.3% 1521 90.4%
0.01-0.03 0.3 1305 91.0% 1308 91.1%
0.01-0.03 0.5 1267 92.0% 1268 92.1%
0.03-0.05 0 955 93.4% 955 93.4%
0.03-0.05 0.3 941 93.7% 940 93.7%
0.03-0.05 0.5 932 94.2% 931 94.2%
0.05-0.50 0 5494 95.5% 5494 95.5%
0.05-0.50 0.3 5487 95.5% 5487 95.6%
0.05-0.50 0.5 5459 95.8% 5462 95.8%

Table 5.6: Average Rsq and Dosage r2 by MAF, Estimated by Masking One Reference
Individual at a Time (Chromosome 12)

No Rsq Filter Rsq > 0.5 Rsq > 0.75

MAF #SNPs average average %SNPs average average %SNPs average average
Rsq dosage r2 Rsq dosage r2 Rsq dosage r2

0-0.001 1798 4.58% 2.47% 4.7% 70.58% 38.74% 1.7% 84.57% 47.31%
0.001-0.005 935 64.66% 48.41% 73.5% 76.06% 60.59% 38.8% 87.51% 77.21%
0.005-0.01 639 84.77% 79.81% 95.9% 86.67% 81.92% 80.3% 90.70% 86.66%
0.01-0.03 1586 90.86% 88.56% 99.1% 91.35% 89.13% 91.4% 93.55% 91.62%
0.03-0.05 955 94.60% 92.87% 99.6% 94.76% 93.04% 96.6% 95.63% 93.99%
0.05-1.00 5494 96.31% 94.73% 99.5% 96.64% 95.05% 97.6% 97.21% 95.68%

5.4 Discussion

As we are moving into the sequencing era, existing GWAS data provide an inexpensive

opportunity to leverage expensive sequencing data. Researchers across the world are

becoming increasingly keen on imputation as a tool to infer genotypes at less common
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(MAF 0.01-0.05) and rare (MAF < 0.01) variants. Li et al. [2010b] have previously shown

that larger reference panels improve imputation accuracy for less common variants. In

particular, enlarging a reference panel of 60 haplotypes to 1,000 haplotypes increases

dosage r2 for SNPs with MAF < 0.05 from 74% to 93%. However, there has been

little, if any research, on truly rare variants: it is not until recently that data became

available to assess imputation accuracy for these truly rare variants. Here, I used a

reference panel of 3,924 reference haplotypes to demonstrate that it is indeed possible to

impute a considerable proportion of rare variants reasonably well, even in a challenging

admixed sample of African Americans. Specifically (as indicated in bold in Table2), I

was able to impute 99.9% (97.5%, 83.6%, 52.0%, 20.5%) of SNPs with MAF > 0.05

(0.03-0.05, 0.01-0.03, 0.005-0.01, and 0.001-0.005) with average dosage r2 94.7% (92.1%,

89.0%, 83.1%, and 79.7%).

In the previous section, I presented results from masking Metabochip genotypes for

100 reference individuals during minimac imputation, whom I also included along with

the other 1,862 individuals during reference panel construction. One may reasonably

argue that the inclusion of the 100 individuals during phasing results in local haplotype

mosaics of other individuals better matching haplotypes of these 100 individuals (because

constructed haplotypes of the 100 individuals are likely to serve as template to construct

haplotypes of other individuals), and therefore over-estimated imputation accuracy. I

evaluated this potential over-estimation of imputation accuracy by re-constructing the

reference panel only on the other 1,862 individuals. Table 5.5 compares imputation

accuracy at Metabochip SNPs for the 100 masked individuals with (phasing ref n =

1,962) or without (phasing ref n = 1,862) them during phasing. I observed no obvious

over-estimation: the quality is either very close; or one has slightly smaller number of

well-imputed SNPs with slightly higher dosage r2 than the other. For example, for

SNPs with MAF 0.001-0.005, when using Rsq > 0.3 as the post-imputation filter, the

reference constructed using 1862 individuals resulted in slightly fewer (117) SNPs passing
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the filter with a slightly better average dosage r2 (84.1%), than the reference constructed

using 1962 individuals which had 123 SNPs passing the filter with an average dosage r2 of

82.3%. The over-estimation may manifest itself if the reference panel were smaller because

the 100 masked individuals would contribute more to the haplotype reconstruction of

other reference individuals.

I would also like to note that masking 100 reference individuals, although allowing us

to directly evaluate imputation quality at actually imputed Metabochip SNPs, still has

limitations. For example, sample MAF cannot go below 0.005 and SNPs with “popula-

tion” MAF (calculated based on n = 1,962 individuals) < 0.005 are either non-varying

or have the minor allele over-represented among the 100 individuals (i.e., sample MAF

> “population” MAF). Therefore, such SNPs are either not imputable (dosage r2 un-

defined and set to zero in my calculations) or tend to be easier to impute than a typical

SNP in the population MAF category. The latter case leads to a winner’s curse phe-

nomenon such that the actual imputation quality tends to be over-estimated. In order to

obtain more reliable estimates for the rarest MAF categories, I attempted a slightly more

complicated experiment on chromosome 12 where I masked one reference individual at a

time and imputed her genotypes at Metabochip SNPs using other reference individuals’

haplotypes. This experiment allows us to examine a sample size of 1,962 instead of 100.

The overall recommendation of picking an Rsq threshold such that the average Rsq

is at least 80% to achieve an average dosage r2 of 80% or above still applies. However,

compared with results based on 100 individuals, the actual Rsq thresholds selected for

the rare MAF categories are considerably larger, but result in the passing of a larger

proportion of SNPs. For example, an Rsq threshold of 0.75 (instead of 0.5 based on the

100 individuals) needs to be applied for SNPs with MAF 0.001-0.005 for the average Rsq

to be above 80%, passing 38.8% (instead of 20.5% SNPs). The larger Rsq threshold and

larger passing proportion are consistent with the winner’s curse phenomenon I discuss

above. For example, for SNPs with population MAF 0.001-0.005, the vast majority of
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SNPs are monomorphic among the 100 individuals and thus have Rsq close to zero,

reflected by the fact that 68.7% of SNPs have Rsq < 0.1 (Figure 5.7(b)). For the small

proportion of SNPs that have reasonable Rsq (Rsq > 0.3), which is the proportion of

SNPs with minor allele either over-represented or in more extensive LD with neighboring

SNPs among the sample of 100 masked individuals), the distribution is highly skewed

towards high values. For example, among the 20.5% SNPs with Rsq > 0.5, 16.9% (or

82.0% of the 20.5%) have Rsq > 0.75 such that the average Rsq is 89.24%. In contrast, a

much larger proportion of SNPs are no longer monomorphic among the 1,962 individuals

and better represent the full range of SNPs in these rare MAF categories, specifically

by adding the more challenging SNPs (SNPs with less or no over-representation of the

minor allele, and SNPs with less extensive LD with neighboring SNPs). For example,

now only 1.8% (compared with 68.7% above based on 100 individuals) SNPs have Rsq

< 0.1 for SNPs with MAF 0.001-0.005. Among the 73.5% (compared with 20.5% above)

of SNPs with Rsq > 0.5, 38.8% (or 52.8% of the 73.5%) have Rsq > 0.75 (Table 5.6).

Although this study examines an African American population genotyped using Affy-

metrix 6.0 platform, the recommendation to use Rsq threshold such that average Rsq

is around but over the desired dosage r2 value is generalizable to other populations and

other GWAS genotyping platforms, based on similar experiments conducted in several

European and Asian populations using different choices of genotyping platforms. For

example, in a sample of Filipinos [Wu et al., 2010] genotyped using the Affymetrix 5.0

platform, I found applying a filter of Rsq > 0.6 for SNPs with MAF 0.01-0.02, the av-

erage dosage r2 across the SNPs passing the filter was 0.8085 with an average Rsq of

0.8417. Additional assessment in other populations or using other GWAS platforms can

be found in earlier studies [Li et al., 2011, 2010a]. Before more data become available,

however, caution needs to be taken when applying the recommendation to rare variants.

For example, although imputation in general is more difficult in African populations be-

cause of more combinations of the common alleles, recent work [Fumagalli et al., 2010;
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Gravel et al., 2011] argue that the more distinctive background of common alleles may

benefit imputation of rare variants. In addition, tagSNPs on the Affymetrix 6.0 platform

were selected largely based on physical positions, in contrast to those on the Illumina

platforms which were selected largely to provide good coverage of the common SNPs

according to HapMap-based LD. Therefore, the Affymetrix 6.0 platform may perform

better for rare SNP imputation, particularly in samples of non-European ancestry.

My sample consist of females only, therefore, it is straightforward to perform im-

putation on chromosome X. Even for samples including males, widely used imputation

methods can now perform X chromosome imputation (see

http://genome.sph.umich.edu/wiki/MaCH:_machX and Marchini and Howie [2010]). I

did not attempt chromosome X in my dataset because there are only 93 QC+ Metabochip

SNPs on chromosome X.

In summary, by constructing a study-specific reference panel of 3,924 haplotypes, I

found it feasible to impute SNPs on the Metabochip, a region-centric dense genotyping

platform, in a sample of African Americans, including less common SNPs with MAF

0.005-0.05. In addition, I confirmed Rsq as an effective imputation quality metric for

these less common variants. In particular, I recommend different Rsq thresholds for

different MAF categories such that the average Rsq is above 80%. Furthermore, I found

it helpful to remove singleton SNPs when constructing reference haplotypes.

I view this work useful for investigators conducting fine-mapping studies using either

dense genotyping or next generation sequencing, particularly for studies in non-European

populations. Many efforts to fine map, especially in non-European ancestry participants,

are limited by small sample sizes. Now that there are increasing numbers of GWAS

studies conducted in non-European populations, imputation can provide a good solu-

tion to this sample size problem. For admixed samples like those in this study, new

methods are being developed that both leverage the admixture for phenotype-genotype
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association mapping and take imputation uncertainty into account [Manolio et al., 2009;

Pasaniuc et al., 2011].

113



Chapter 6

Conclusion

In this dissertation, I present efficient algorithms for genetic analyses in two common

genetic study scenarios:

1. Model organisms that are bred through prescribed pedigree design.

2. Humans that are drawn from out-bred populations or continental groups.

By reconstructing haplotype information implicitly or explicitly via HMM, I address

two core problems, genome ancestry and genotype imputation, for the two scenarios

respectively. In the genome ancestry problem (Chapter 2), I prune the state space in

HMM by contracting an important repetitive sub-structure, inbreeding. The major limit

of my inbreeding model is that it does not accelerate the ancestry inference for all types

of pedigrees. But the computational benefit brought can be crucial in important existing

model organism resources such as the Collaborative Cross. I have demonstrated both

the effectiveness and efficiency of the algorithm on synthetic and real Collaborative Cross

datasets. In the genotype imputation problem (Chapter 4), I accelerate the computation

using piecewise “greedy” selection of individual-tailored references. My method is most

effective with the emerging sequencing-based large-scale reference panels such as the

1000G panel [The 1000 Genomes Project Consortium, 2010, 2012]. Experiments on

admixed populations suggest that my method, implemented in the software package

MaCH-Admix, can achieve comparable imputation accuracy by selecting 1/10 of the



total references or less, which corresponds to substantial saving in computation effort.

Compared with existing methods, my method has particularly noteworthy advantage

among uncommon variants.

In addition to the methodology work, I have presented subsequent analysis of Col-

laborative Cross data using the ancestry inferred. My analysis (Chapter 3) establishes

a new linkage map of the laboratory mouse genome and reveals important properties of

recombination events. I have also presented a case study of genotype imputation in a

large cohort (∼4000) of African Americans (Chapter 5). My study not only examines

imputation performance in under-studied aspects, but also provides practical guidelines

for both conducting imputation and post-imputation quality control.

6.1 Future Directions

Below I discuss potential subsequent analysis and future research avenues of the studies

presented in this dissertation.

6.1.1 Model Organisms from Prescribed Breeding

The ancestry knowledge estimated by my method GAIN has played a key role in studying

the complex traits present in emerging CC lines [Aylor et al., 2011; The Collaborative

Cross Consortium, 2012]. In this dissertation, I have also presented analysis on recombi-

nation events in early generations of CC resource. As the CC lines continue to develop

and, more importantly, become recombinant inbred, I could conduct more powerful sub-

sequent studies in various aspects of studying genetic variations. Also, as I have discussed

previously, modeling repetitive sub-structure is a promising approach not only for CC but

also for complex pedigrees in many other model organism resources. For example, I may

extend my method to handle the repetitive selfing process in plant resources [Cavanagh

et al., 2008; Kover et al., 2009].
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6.1.2 Samples from Out-bred Human Populations

One limitation of my imputation model is the assumption that a individual-tailored small

subset of the reference haplotypes is enough in explaining each target individual. The

assumption generally holds well for short or high-LD imputation regions in which the

haplotype diversity is low. For longer regions with higher haplotype diversity, using a

small subset of reference haplotypes could result in loss in imputation accuracy, especially

for rare variants. The loss can be partially compensated by the haplotype-based impu-

tation step in MaCH-Admix which utilizes a much larger set of reference haplotypes. I

would also like to explore a more robust framework that can eliminate the dependency

on the assumption. In addition, with the emergence of reference panels like 1000G [The

1000 Genomes Project Consortium, 2010, 2012] which contains samples from multiple

continental groups and populations, my imputation method can be naturally adapted

for population ancestry estimation. Compared with existing methods [Price et al., 2009;

Sundquist et al., 2008], my imputation-based framework could be more flexible in han-

dling multiple ancestral sources.
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Paşaniuc, B., Sankararaman, S., Kimmel, G., and Halperin, E. (2009). Inference of locus-
specific ancestry in closely related populations. Bioinformatics , 25(12), i213–i221. 14

Pasaniuc, B., Avinery, R., Gur, T., Skibola, C. F., Bracci, P. M., and Halperin, E.

(2010). A generic coalescent-based framework for the selection of a reference panel for
imputation. Genetic Epidemiology , 34(8), 773–782. 7, 52, 85

Pasaniuc, B., Zaitlen, N., Lettre, G., Chen, G. K., Tandon, A., Kao, W. H. L., Ruczinski,
I., Fornage, M., Siscovick, D. S., Zhu, X., and et al. (2011). Enhanced statistical tests

for gwas in admixed populations: Assessment using african americans from care and a
breast cancer consortium. PLoS Genetics , 7(4), 15. 85, 113

Pei, Y.-F., Zhang, L., Li, J., and Deng, H.-W. W. (2008). Analyses and comparison of
imputation-based association methods. PloS one, 5. 6

Pemberton, T. J., Jakobsson, M., Conrad, D. F., Coop, G., Wall, J. D., Pritchard, J. K.,
Patel, P. I., and Rosenberg, N. A. (2008). Using population mixtures to optimize the

utility of genomic databases: linkage disequilibrium and association study design in
india. Annals of Human Genetics , 72(Pt 4), 535–546. 7, 52, 85

Piccolboni, A. and Gusfield, D. (2003). On the complexity of fundamental computational

problems in pedigree analysis. Journal of Computational Biology , 10(5), 763–773. 12

Price, A. L., Patterson, N. J., Plenge, R. M., Weinblatt, M. E., Shadick, N. A., and

Reich, D. (2006). Principal components analysis corrects for stratification in genome-
wide association studies. Nature genetics , 38(8), 904–909. 92

122



Price, A. L., Tandon, A., Patterson, N., Barnes, K. C., Rafaels, N., Ruczinski, I., Beaty,
T. H., Mathias, R., Reich, D., and Myers, S. (2009). Sensitive detection of chromosomal

segments of distinct ancestry in admixed populations. PLoS Genetics , 5(6), e1000519.
86, 116

Pritchard, J. K. and Przeworski, M. (2001). Linkage disequilibrium in humans: models
and data. The American Journal of Human Genetics , 69(1), 1–14. 94

Pritchard, J. K., Stephens, M., and Donnelly, P. (2000). Inference of population structure

using multilocus genotype data. Genetics , 155(2), 945–59. 60, 86

Pulit, S. L., Voight, B. F., and de Bakker, P. I. (2010). Multiethnic genetic association

studies improve power for locus discovery. PloS one, 5(9), e12600. 90

Qayyum, R., Snively, B. M., Ziv, E., Nalls, M. A., Liu, Y., Tang, W., Yanek, L. R., Lange,

L., Evans, M. K., Ganesh, S., Austin, M. A., Lettre, G., Becker, D. M., Zonderman,
A. B., Singleton, A. B., Harris, T. B., Mohler, E. R., Logsdon, B. A., Kooperberg, C.,

Folsom, A. R., Wilson, J. G., Becker, L. C., and Reiner, A. P. (2012). A Meta-Analysis
and Genome-Wide Association Study of Platelet Count and Mean Platelet Volume in

African Americans. PLoS Genet , 8(3), e1002491+. 61

Qian, D. and Beckmann, L. (2002). Minimum-recombinant haplotyping in pedigrees.

The American Journal of Human Genetics , 70(6), 1434–1445. 5, 13

Reich, D. and Patterson, N. (2005). Will admixture mapping work to find disease genes?
Philosophical Transactions of the Royal Society of London. Series B, Biological Sci-

ences , 360(1460), 1605–7. 52

Reiner, A. P., Carlson, C. S., Ziv, E., Iribarren, C., Jaquish, C. E., and Nickerson,

D. A. (2007). Genetic ancestry, population sub-structure, and cardiovascular disease-
related traits among african-american participants in the cardia study. Human Genet-

ics , 121(5), 565–75. 59

Reiner, A. P., Lettre, G., Nalls, M. A., Ganesh, S. K., Mathias, R., Austin, M. A., Dean,

E., Arepalli, S., Britton, A., Chen, Z., et al. (2011). Genome-wide association study of
white blood cell count in 16,388 african americans: the continental origins and genetic

epidemiology network (cogent). PLoS genetics , 7(6), e1002108. 91

Risch, N. and Merikangas, K. (1996). The future of genetic studies of complex human

diseases. Science, 273(5281), 1516–1517. 5

Roberts, A., Pardo-Manuel de Villena, F., Wang, W., McMillan, L., and Threadgill,
D. W. (2007). The polymorphism architecture of mouse genetic resources elucidated

using genome-wide resequencing data: implications for qtl discovery and systems ge-
netics. Mammalian Genome, 18(6), 473–481. 36

123



Robinson, W. P. (1996). The extent, mechanism, and consequences of genetic variation,
for recombination rate. American journal of human genetics , 59(6), 1175. 35

Rosenberg, N. A., Huang, L., Jewett, E. M., Szpiech, Z. A., Jankovic, I., and Boehnke,
M. (2010). Genome-wide association studies in diverse populations. Nature Reviews

Genetics , 11(5), 356–366. 52, 90

Sabeti, P. C., Reich, D. E., Higgins, J. M., Levine, H. Z., Richter, D. J., Schaffner,

S. F., Gabriel, S. B., Platko, J. V., Patterson, N. J., McDonald, G. J., et al. (2002).

Detecting recent positive selection in the human genome from haplotype structure.
Nature, 419(6909), 832–837. 2

Sankararaman, S., Sridhar, S., Kimmel, G., and Halperin, E. (2008). Estimating local
ancestry in admixed populations. American journal of human genetics , 82(2), 290. 14

Sanna, S., Pitzalis, M., Zoledziewska, M., Zara, I., Sidore, C., Murru, R., Whalen, M. B.,
Busonero, F., Maschio, A., Costa, G., and et al. (2010). Variants within the im-

munoregulatory cblb gene are associated with multiple sclerosis. Nature Genetics ,
42(6), 495–497. 51

Schwartz, R., Clark, A., and Istrail, S. (2004). Inferring piecewise ancestral history from
haploid sequences. Computational Methods for SNPs and Haplotype Inference, pages

615–616. 12

Scott, L. J., Mohlke, K. L., Bonnycastle, L. L., Willer, C. J., Li, Y., Duren, W. L.,
Erdos, M. R., Stringham, H. M., Chines, P. S., Jackson, A. U., and et al. (2007). A

genome-wide association study of type 2 diabetes in finns detects multiple susceptibility
variants. Science, 316(5829), 1341–1345. 51

Seldin, M. F., Pasaniuc, B., and Price, A. L. (2011). New approaches to disease mapping
in admixed populations. Nature Reviews Genetics , 12(8), 523–528. 84

Shriner, D., Adeyemo, A., Chen, G., and Rotimi, C. N. (2010). Practical considerations
for imputation of untyped markers in admixed populations. Genetic Epidemiology ,

34(3), 258–265. 7, 52, 84, 91

Smagulova, F., Gregoretti, I. V., Brick, K., Khil, P., Camerini-Otero, R. D., and

Petukhova, G. V. (2011). Genome-wide analysis reveals novel molecular features of
mouse recombination hotspots. Nature, 472(7343), 375–378. 35, 44, 47, 48

Smith, J. G., Magnani, J. W., Palmer, C., Meng, Y. A., Soliman, E. Z., Musani, S. K.,

Kerr, K. F., Schnabel, R. B., Lubitz, S. A., Sotoodehnia, N., et al. (2011). Genome-
wide association studies of the pr interval in african americans. PLoS genetics , 7(2),

e1001304. 90

124



Smith, N. L., Chen, M.-H., Dehghan, A., Strachan, D. P., Basu, S., Soranzo, N., Hayward,
C., Rudan, I., Sabater-Lleal, M., Bis, J. C., and et al. (2010). Novel associations of

multiple genetic loci with plasma levels of factor vii, factor viii, and von willebrand
factor: The charge (cohorts for heart and aging research in genome epidemiology)

consortium. Circulation, 121(12), 1382–1392. 51

Sobel, E. and Lange, K. (1996). Descent graphs in pedigree analysis: applications to

haplotyping, location scores, and marker-sharing statistics. American journal of human

genetics , 58(6), 1323. 5, 13

Stefflova, K., Dulik, M. C., Barnholtz-Sloan, J. S., Pai, A. A., Walker, A. H., and

Rebbeck, T. R. (2011). Dissecting the within-africa ancestry of populations of african
descent in the americas. PLoS ONE , 6(1), e14495. 59

Stephens, J. C., Schneider, J. A., Tanguay, D. A., Choi, J., Acharya, T., Stanley, S. E.,
Jiang, R., Messer, C. J., Chew, A., Han, J.-H., et al. (2001). Haplotype variation and

linkage disequilibrium in 313 human genes. Science, 293(5529), 489–493. 2

Sundquist, A., Fratkin, E., Do, C., and Batzoglou, S. (2008). Effect of genetic divergence

in identifying ancestral origin using hapaa. Genome research, 18(4), 676–682. 14, 116

Tang, H., Coram, M., Wang, P., Zhu, X., and Risch, N. (2006). Reconstructing genetic

ancestry blocks in admixed individuals. The American Journal of Human Genetics ,
79(1), 1–12. 14, 52

Teo, Y.-Y., Small, K. S., and Kwiatkowski, D. P. (2010). Methodological challenges of

genome-wide association analysis in africa. Nature Reviews Genetics , 11(2), 149–160.
90

The 1000 Genomes Project Consortium (2010). A map of human genome variation from
population-scale sequencing. Nature, 467(7319), 1061–1073. 7, 51, 89, 114, 116

The 1000 Genomes Project Consortium (2012). An integrated map of genetic variation
from 1,092 human genomes. Nature, 491, 1. 6, 51, 114, 116

The Collaborative Cross Consortium (2012). The genome architecture of the collaborative
cross mouse genetic reference population. Genetics , 190, 389–401. 13, 14, 25, 35, 115

The International HapMap Consortium (2005). A haplotype map of the human genome.
Nature, 437(7063), 1299–1320. 94

The International HapMap Consortium (2007). A second generation human haplotype

map of over 3.1 million snps. Nature, 449(7164), 851–861. 89

The International HapMap Consortium (2010). Integrating common and rare genetic

variation in diverse human populations. Nature, 467(7311), 52–8. 6, 7, 51, 62, 87, 97

125



The WHI Study Group (1998). Design of the womens health initiative clinical trial and
observational study. Controlled Clinical Trials , 19(1), 61 – 109. 61, 90

Threadgill, D. W. and Churchill, G. A. (2012). Ten years of the collaborative cross.

Genetics , 190(2), 291–294. 4

Valdar, W., Solberg, L., Gauguier, D., Burnett, S., Klenerman, P., Cookson, W., Taylor,

M., Rawlins, J., Mott, R., and Flint, J. (2006). Genome-wide genetic association of

complex traits in heterogeneous stock mice. Nature genetics , 38(8), 879–887. 3, 5, 11,
12, 13

Wall, J. D., Pritchard, J. K., et al. (2003). Haplotype blocks and linkage disequilibrium
in the human genome. Nature Reviews Genetics , 4(8), 587–597. 2

Wang, X., Zhu, X., Qin, H., Cooper, R., Ewens, W., Li, C., and Li, M. (2011a). Ad-

justment for local ancestry in genetic association analysis of admixed populations.
Bioinformatics , 27(5), 670–7. 85

Wang, Z., Jacobs, K., Yeager, M., Hutchinson, A., Sampson, J., Chatterjee, N., Albanes,

D., Berndt, S., Chung, C., Diver, W., Gapstur, S., Teras, L., Haiman, C., Henderson,
B., Stram, D., Deng, X., Hsing, A., Virtamo, J., Eberle, M., Stone, J., Purdue, M.,

Taylor, P., Tucker, M., and Chanock, S. (2011b). Improved imputation of common
and uncommon snps with a new reference set. Nature Genetics , 44(1), 6–7. 87

Waters, K. M., Le Marchand, L., Kolonel, L. N., Monroe, K. R., Stram, D. O., Hender-

son, B. E., and Haiman, C. A. (2009). Generalizability of associations from prostate
cancer genome-wide association studies in multiple populations. Cancer Epidemiology

Biomarkers & Prevention, 18(4), 1285–1289. 90

Willer, C. J., Sanna, S., Jackson, A. U., Scuteri, A., Bonnycastle, L. L., Clarke, R.,
Heath, S. C., Timpson, N. J., Najjar, S. S., Stringham, H. M., and et al. (2008).

Newly identified loci that influence lipid concentrations and risk of coronary artery
disease. Nature Genetics , 40(2), 161–169. 51

Winkler, C. A., Nelson, G. W., and Smith, M. W. (2010). Admixture mapping comes of
age. Annual Review of Genomics and Human Genetics , 11, 65–89. 52

Wright, S. (1922). Coefficients of inbreeding and relationship. The American Naturalist ,

56(645), 330–338. 18

WTCCC (2007). Genome-wide association study of 14,000 cases of seven common dis-
eases and 3,000 shared controls. Nature, 447(7145), 661–78. 51

Wu, Y., Li, Y., Lange, E. M., Croteau-Chonka, D. C., Kuzawa, C. W., McDade, T. W.,

Qin, L., Curocichin, G., Borja, J. B., Lange, L. A., et al. (2010). Genome-wide as-
sociation study for adiponectin levels in filipino women identifies cdh13 and a novel

uncommon haplotype at kng1–adipoq. Human molecular genetics , 19(24), 4955–4964.
111

126



Yang, H., Ding, Y., Hutchins, L. N., Szatkiewicz, J., Bell, T. A., Paigen, B. J., Graber,
J. H., de Villena, F. P.-M., and Churchill, G. A. (2009). A customized and versatile

high-density genotyping array for the mouse. Nature methods , 6(9), 663–666. 3, 37

Zhang, B., Zhi, D., Zhang, K., Gao, G., Limdi, N. N., and Liu, N. (2011). Practical

Consideration of Genotype Imputation: Sample Size, Window Size, Reference Choice,
and Untyped Rate. Statistics and its interface, 4(3), 339–352. 84

Zhang, K., Deng, M., Chen, T., Waterman, M., and Sun, F. (2002). A dynamic program-

ming algorithm for haplotype block partitioning. Proceedings of the National Academy

of Sciences , 99(11), 7335–7339. 12

Zhang, Q., Wang, W., McMillan, L., Prins, J., Pardo-Manuel de Villena, F., and Thread-
gill, D. (2008). Genotype sequence segmentation: Handling constraints and noise.

Algorithms in Bioinformatics , pages 271–283. 5, 13

Zhu, X., Cooper, R. S., and Elston, R. C. (2004). Linkage analysis of a complex disease

through use of admixed populations. American Journal of Human Genetics , 74(6),
1136–53. 52

127


	List of Tables
	List of Figures
	1 Introduction
	1.1 Background
	1.1.1 DNA and Haplotype
	1.1.2 Genotype

	1.2 Model Organisms from Prescribed Breeding
	1.3 Samples from Out-bred Human Populations
	1.4 Thesis Statement
	1.5 Contributions
	1.5.1 Model Organisms from Prescribed Breeding
	1.5.2 Samples from Out-bred Human Populations


	2 Efficient Genome Ancestry Inference in Complex Pedigrees with Inbreeding
	2.1 Introduction
	2.2 The Genome Ancestry Problem
	2.3 Modeling Inheritance in Pedigree
	2.3.1  Modeling Inbreeding Generations 
	2.3.2 Integrating the Inbreeding Model

	2.4 Modeling the Collaborative Cross
	2.4.1 The Breeding Scheme
	2.4.2 Modeling the Genome of G2Ik Generation

	2.5 Experiments
	2.5.1 Experiments on Simulated Data
	2.5.2 Experiments on Real CC data
	2.5.3 Running Time Performance

	2.6 Discussion

	3 High Definition Recombination Map in a Highly Divergent Mouse Population
	3.1 Introduction
	3.2 Materials and Methods
	3.2.1 The Genotype Data
	3.2.2 Haplotype Reconstruction and Recombination Inference

	3.3 Overview of the Recombination Map
	3.4 Sex Effect on Recombination
	3.5 Cold Regions
	3.5.1 Identification of Cold Regions in the G2I1 Population
	3.5.2 External Validation of Cold Regions
	3.5.3 Genomic Analysis of Cold Regions

	3.6 Conclusion

	4 MaCH-Admix: Genotype Imputation for Admixed Populations
	4.1 Introduction
	4.2 Materials and Methods
	4.2.1 General Framework
	4.2.2 Piecewise IBS-based Reference Selection
	4.2.3 Ancestry-weighted Approach
	4.2.4 MaCH-Admix
	4.2.5 Datasets
	4.2.6 Methods Compared
	4.2.7 Measure of Imputation Quality

	4.3 Results
	4.3.1 WHI-AA and WHI-HA with the 1000G Reference
	4.3.2 HapMap ASW and MEX with the 1000G Reference
	4.3.3 Imputation Performance with HapMap References
	4.3.3.1 WHI-HA and WHI-AA with HapMap references
	4.3.3.2 HapMap ASW and MEX with HapMap references

	4.3.4 Running Time

	4.4 Discussion

	5 Genotype Imputation of Metabochip SNPs in African Americans Using a Study Specific Reference Panel 
	5.1 Introduction
	5.2 Materials and Methods
	5.2.1 Pre-Imputation Quality Control
	5.2.2 General Pipeline for Reference Construction and Subsequent Imputation

	5.3 Results
	5.3.1 Genomewide Imputation
	5.3.2 Quality Estimate by Masking GWAS SNPs
	5.3.3 Quality Estimate by Masking Reference Individuals
	5.3.4 Overall Imputation Performance and Practical Guidelines
	5.3.5 Rare SNPs during Haplotype Reconstruction

	5.4 Discussion

	6 Conclusion
	6.1 Future Directions
	6.1.1 Model Organisms from Prescribed Breeding
	6.1.2 Samples from Out-bred Human Populations


	Bibliography

