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ABSTRACT

Samuel Blackwell Heroy: Rigidity Percolation in Disordered Fiber Systems: Theory and
Applications

(Under the direction of Peter J. Mucha)

Nanocomposites, particularly carbon nanocomposites, find many applications spanning an

impressive variety of industries on account of their impressive properties and versatility. However,

the discrepancy between the performance of individual nanoparticles and that of nanocomposites

suggests continued technological development and better theoretical understanding will provide

much opportunity for further property enhancement. Study of computational renderings of disordered

fiber systems has been successful in various nanocomposite modeling applications, particularly

toward the characterization of electrical properties. Motivated by these successes, I develop an

explanatory model for ‘mechanical’ or ‘rheological percolation,’ terms used by experimentalists to

describe a nonlinear increase in elastic modulus/strength that occurs at particle inclusion volume

fractions well above the electrical percolation threshold. Specifically, I formalize a hypothesis given

by Penu et al. (2012), which states that these dramatic gains result from the formation of a ‘rigid

CNT network.’ Idealizing particle interactions as hinges, this amounts to the network property of

rigidity percolation—the emergence of a giant component (within the inclusion contact network)

that is not only connected, but furthermore the inherent contacts are patterned to constrain all internal

degrees of freedom in the component.

Rigidity percolation has been studied in various systems (particularly the characterization of

glasses and proteins) but has never been applied to disordered systems of three-dimensional rod-

like particles. With mathematically principled arguments from rigidity matroid theory, I develop

a scalable algorithm (Rigid Graph Compression, or RGC), which can be used to detect rigidity

percolation in such systems by iteratively compressing provably rigid subgraphs within the rod

contact networks. Prior to approaching the 3D system, I confirm the usefulness of RGC by using

it to accurately approximate the rigidity percolation threshold in disordered systems of 2D fibers—
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achieving< 1% error relative to a previous exact method. Then, I develop an implementation of RGC

in three dimensions and determine an upper bound for the rigidity percolation threshold in disordered

3D fiber systems. More work is required to show that this approximation is sufficiently accurate—

however, this work confirms that rigidity in the inclusion network is a viable explanation for the

industrially useful mechanical percolation. Furthermore, I use RGC to quantitatively characterize the

effects of interphase growth and spatial CNT clustering in a real polymer nanocomposite system of

experimental interest.

iv



ACKNOWLEDGEMENTS

From my advisors, Drs. Peter J. Mucha and M. Gregory Forest, I simply could not ask anything

more. How does one get two top tier advisors to guide his or her doctoral study? I have no idea, but

it happened to me, and it will shape not only this research, but my entire career. In addition to their

formal involvement in my PhD committee, the rest of my committee has also been indispensable

to my research and each member has been a joy to work with. Dr. Daphne Klotsa’s course on soft

matter research helped me to understand how geometry underplays a large body of the materials

research canon, besides being one of the most enjoyable classes I have had in graduate school. Both

she and Dr. Theo Dingemans, professors in the Applied Physical Sciences department at UNC, have

provided great and advice helped me guide my research towards realistic applications as part of a

mathematics/applied physical sciences collaborative group. While Dr. David Adalsteinsson has been

less directly involved with my research, he has proved very helpful whenever I have met with him,

and his introductory course on scientific computation has helped guide my overall understanding of

this field.

Several people have contributed greatly to the development of my research and scholarly activity

over the years—first and foremost, Drs. Dane Taylor (SUNY-Buffalo) and Feng “Bill” Shi, have been

highly involved in my research as postdoctoral research associates and as young faculty members.

In particular, the idea of rigid graph compression was originally conceived by Dr. Taylor, while

much of the code I use has roots in Dr. Shi’s work. Dr. Maruti Hegde, a staff scientist working

for Dr. Dingemans, has provided great scientific understanding, while Ryan Fox and Minzhi Jiang,

graduate students in the Applied Physical Sciences department, have done the same within our

mathematics/applied physical sciences collaborative group. Laurie Straube, Sara Kross, and Jean

Foushee-Tyson (staff in UNC mathematics office) have been incredibly helpful in constantly looking

out for me as well as all the students within our department over these five years.

I am also grateful for the support of various friends in the UNC community within and outside

of the math department, as they have enriched my experience here and supported my study, either

v



academically or simply morally—especially, in alphabetical order—Manuchehr Aminian, Aaron

Barrett, Dr. Nicholas Battista, Francesca Bernardi, Emma Buckingham, Brandon Byers, Alyssa

Byrnes, Martin Dewitt, Colin Guider, Dr. Alex Hoover, Dr. Caitlin Hult, Zeliha Kihiliç, Dr. Michael
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4.4 Differing definitions of rigidity percolation. Top: Two rod dispersions
contain rigid components that are identified as spanning by either defi-
nition (I) or (II) but not both. In the left configuration, the boundaries
template growth of the rigid component, which is spanning according to
definition (I). Only the triangle of touching rods is identified as rigid if the
boundary nodes are not present, and because this triangle intersects only
the right boundary, it is not spanning according to (II). In the right, the
entire component is rigid without the boundary nodes. Because the com-
ponent intersects both boundaries, it is rigid according to definition (II).
However, if boundary nodes were introduced, this component would be
singly connected to each boundary node and thus would not be identified
as spanning by (I). The case of the left panel (II but not I) occurs with far
greater frequency in simulation (see Fig. 4.6). Bottom: If boundary nodes
are introduced as in definition (I), 3D-RGC identifies two components
in the initial 3-clique community compression—these are the magenta
rods in one component, and both the red and black rods together in one
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CHAPTER 1: INTRODUCTION

“I agree with you,” replied the stranger; “we are unfashioned creatures, but half made
up, if one wiser, better, dearer than ourselves– such a friend ought to be—do not lend
his aid to perfectionate our weak and faulty natures. I once had a friend, the most noble
of human creatures, and am entitled, therefore, to judge respecting friendship. You
have hope, and the world before you, and have no cause for despair. But I—I have lost
everything and cannot begin life anew. ∼Mary Shelley’s Frankenstein; or, the Modern
Prometheus (1818)

1.1 Overview

In the past quarter century following their first confirmed synthesis (Iijima and Ichihashi, 1993),

carbon nanotubes have received a remarkable amount of attention—alongside other promising

nanoparticles—from both engineers and physical scientists. Yet while the promise of these nanopar-

ticles is immense on account of their extremely impressive mechanical and electrical properties, the

industrial use of nanocomposites (particularly carbon nanocomposites) has not at this point matched

the hopes of many researchers. While the properties of individual carbon nanotubes (CNTs) are

unparalleled, the bulk properties of carbon nanocomposites are less impressive (though often still

quite useful). This discrepancy is thought to result from CNTs’ tendency to bundle and agglomerate,

as well as to the lack of interfacial bonding between the CNTs and the polymer matrix (Coleman et al.,

2005). Despite these hindrances, CNTs have use in many present-day applications and much research

is dedicated to finding novel applications for carbon nanocomposites, as well as other nanocomposites

(see De Volder et al. 2013 for a comprehensive discussion of applications). Coinciding with this

persistent engineering interest is increased attention to theoretical modeling of nanocomposites (see

Coleman et al. 2004; Fralick et al. 2012; Shi et al. 2014, as well as many other studies). Because

nanocomposites are inherently complex, highly disordered systems, theoretical and computational

studies require new methods which account for the interactions of the many individual particles, yet

remain valid and computationally tractable at large system sizes.

My doctoral research in particular focuses on using network scientific tools to assess mechanical

properties of nanocomposites. From simple renderings of disordered particle systems, I look to

capture within their totalities of particle interactions emergent network properties, which I hypothesize
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give rise to measurable properties. The majority of this research is dedicated to studying network

properties—in particular rigidity percolation (which I introduce in Sec. 1.3)—of these simple

computational renderings. In the introductory chapter of this dissertation, I will first outline in

Sec. 1.2 successes related to modeling of nanocomposites’ electrical property properties, which

motivate my analogous study of mechanical properties. Then, I detail experimental results that are

of interest to my study in Sec. 1.3, before moving to lay out the organization of this dissertation in

Sec. 1.4.

1.2 Modeling of nanocomposites’ electrical properties

High aspect ratio particles (e.g., thin rods) of nanoscopic or microscopic scales are routinely

incorporated into polymeric host materials to enhance attributes such as electrical and thermal

conductivity, charge storage, and mechanical resilience. These composites often exhibit a nonlinear

response with respect to the density (measured by volume fraction, φ) of rods or other filaments:

the property gain scales linearly at small volume fractions, then increases dramatically as φ passes

through a critical threshold φmin. When considering the conductivity of a poorly conducting polymer

enhanced with highly conductive rods, this sharp transition is associated with ‘contact percolation,’

wherein interacting rods form a giant, spatially extended network component (Shi et al., 2014).

In the simplest conception of contact percolation, two perfectly conducting rectangular plates are

placed at each end of a three dimensional domain and highly conductive nanoparticles are dispersed

within the domain. One technique for studying this system is to idealize it as a three-dimensional

lattice, wherein sites are occupied (conducting) with some probability—this approach has been

studied in various forms for many years (Stauffer and Aharony, 1992), and has been successful in

reproducing experimentally observed bulk conductivity properties (Shi et al., 2013). However, the

more faithful representation involves Monte Carlo simulation of randomly placed ‘sticks’ (capped

cylinders, or spherocylinders) of some aspect ratio—study of this system traces back to Balberg and

Binenbaum (1984), who first determined the nature of the the percolation threshold’s dependence on

aspect ratio and macroscopic anisotropy. In either case, percolation theory has proven successful in

capturing the dramatic power-law scaling of conductivity enhancements at and above the percolation

threshold (Shi et al., 2013, 2014).

Beyond simply identifying whether or not a (nano)composite has percolation in its inclusion

phase, methods from network science and graph theory are useful in making tractable the computa-
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tional problems that arise in studying electrical properties of large systems. In particular, Shi et al.

(2013, 2014) efficiently attained the current distribution of random nanorod/random lattice resister

networks by solving Kirchoff’s law on the subgraph given by the network’s plate constrained 2-core

(i.e. the component containing all nodes of degree ≥ 2 that are connected to the boundary plates).

By only considering this subgraph (thereby filtering out 90% of the edges in networks near the

percolation threshold), the authors were able to efficiently attain current distributions and recover

bulk conductivity in sufficiently large networks without removing any current-carrying particles from

the respective system of interest. Similar graph-theoretic techniques have been used to successfully

capture dieletric properties (Simoes et al., 2008), as well as the relationship between system disorder

and bulk conductance in real nanocomposites (Silva et al., 2011).

Another layer of complexity comes from particle anisotropy and particle distribution hetero-

geneity. Shi et al. (2014) explored nanorod anisotropy by using orientational probability distribution

functions from kinetic Brownian rod dispersion flow codes to simulate particle distributions (Forest

et al., 2004, 2008). This approach allows for accurate estimation of percolation thresholds and

mean conductivity, given realistic processing conditions in sheared thin films of nanorod dispersions.

Related work has examined the influence of processing conditions on percolation and conductivity in

dispersions of carbon nanotubes, which have different rheological properties from their nanorod coun-

terparts (Seidel and Puydupin-Jamin, 2011). Furthermore, this latter study implemented a multi-scale

model that purportedly mimics the experimentally observed spatial agglomeration of nanotubes, in

order to explain the ultra-low percolation thresholds observed in experimental data. Other simulation-

based models have also accounted for spatial agglomeration of nanotubes—interestingly, one study

predicts that agglomeration has a net reducing effect on conductivity in polymer nanocomposites,

and claims this is the main factor in the discrepancy between observed conductivity and relevant

theoretical limitations (Gong et al., 2014). Another study (in the same journal) predicts that a certain

amount of agglomeration is beneficial to electrical conductivities at low volume fractions (Tarlton

et al., 2017). Clearly, there is a richness of geometrical considerations to modeling real nanocompos-

ites (polydispersity presents another), and these considerations have important implications to their

electrical properties as well as general importance to the greater body of nanocomposite modeling.
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1.3 Mechanical percolation

In addition to the well-understood gains in conductivity at the contact percolation threshold, a

sharp rise in mechanical stability at volume fractions greater than or equal to the contact percolation

threshold has been observed in numerous composite systems (Favier et al., 1995b, 1997; Liu et al.,

2016; Noël et al., 2014; Zhang et al., 2013; Penu et al., 2012). However, characterization of the

physical mechanism underlying this so-called ‘mechanical percolation’ remains an open problem—

no emergent phenomenon (akin to contact percolation) in rod or rod-polymer interactions has been

shown to trigger this macroscopic behavior. Motivated by the success in network-based modeling of

nanocomposites’ electrical properties, my ultimate goal is to develop network-based computational

tools that can be used to assess nanocomposites’ electrical properties.

1.3 Experimental characterizations

The nature of mechanical percolation varies considerably with the complexity of the composite

system. As an example, cellulose fibers (or whiskers) obtained from tunicin have high tensile

modulus (∼120-150 GPa) and high aspect ratio (10-20 nm width and 100 nm to several µm length)

(Favier et al., 1997, 1995b). In cellulose fiber-reinforced composites, generic percolation models

with fitting parameters tuned to data accurately describe the relationship of different moduli to the

volume fraction φ of cellulose fibers (Favier et al., 1997, 1995a; Ouali et al., 1991). The reactivity of

readily available hydroxyl groups along the whiskers makes hydrogen bonding interactions especially

favorable, such that contacts transmit bending modes in addition to compression modes, thereby

fixing the angles between contacting particles (Favier et al., 1997; Kalia et al., 1976). Thus, the

presence of a spatially extended network component of contacting particles is posited to drastically

increase the stiffness of these composite materials, consistent with experimental results as well as with

physically-based two-dimensional simulations (Favier et al., 1995b, 1997; Wilhelm and Frey, 2003).

In other systems, however, attractive forces are relatively soft and only transmit compressive and

tensile forces, so that contact percolation alone is not enough to mechanically stabilize the network

and additional constraints are needed. In such systems, experiments show that mechanical percolation

occurs at higher volume fractions than electrical percolation, both when the reinforcement particles

are of high aspect ratio (Celzard et al., 2001; Liu et al., 2016; Penu et al., 2012), and otherwise

(Niklaus and Shea, 2011; Noël et al., 2014).
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The mechanical properties of any composite material depend on the specific properties of each

phase, the volume fraction as well as morphology of the reinforcing components, and the interfacial

properties (Kalia et al., 1976). Homogenization models, such as the Halpin-Tsai equations, have been

successfully adapted to a variety of systems with different morphologies and interfacial properties to

predict modulus as a function of volume (or weight) fraction of the reinforcing phase (Coleman et al.,

2006; Affdl and Kardos, 1976). Micromechanical modeling efforts have provided more sophisticated

and accurate models, which take into account the interplay between random microstructure and

interphase (Baxter et al., 2016; Baxter and Robinson, 2011; Fralick et al., 2012; Qiao and Brinson,

2009). While many different classes of mechanical models are generally useful and have more

immediate predictive capability than my study here, none of these demonstrate an explicit mechanism

for the emergent nonlinear gain in mechanical properties generated by favorable interactions between

particles within the reinforcing phase.

1.3 Rigidity: a microstructural mechanism for mechanical percolation?

In my work, I look to explore a hypothesis posed by Penu et al. (2012), who explored the

relationship between electrical and mechanical (‘rheological’ in their study) percolation thresholds

in an ensemble of studies of CNT-based nanocomposites. In some of these studies, the electrical

percolation threshold φmin,c occurrs at lower density than the rheological percolation threshold

φmin,r—in others, the reverse is true. Attempting to reconcile this disparity, Penu et al. (2012)

proposed that there is a ‘soft’ rheological percolation threshold at low φ(< φmin,c), and another

‘hard’ one at higher φ(> φmin,r). The lower threshold is posited as a transition wherein nanotubes

become close enough to be connected by a polymer macromolecular coil, while the higher threshold

is posited as emerging from the presence of a rigid network. The study of Penu et al. (2012) does

not explicitly define a rigid network of CNTs, but rather the authors cite a theoretical prediction

given by Celzard et al. (2001) for the ratio of the ‘hard’ rheological percolation threshold (‘vectorial

percolation’) to the electrical percolation threshold (φmin,r/φmin,c = D2−1
2D−1 for dimension D, 1.6

for D = 3). While some experimental measurements fall in the range of this ratio, this macroscopic

theoretical prediction—derived from an analysis of glass/crystal systems—falls short in many systems

wherein the inclusions have high aspect ratio (i.e. random two dimensional fibers, as shown in Ch. 3)

and I contend that a simulation-based characterization will give rise to a more powerful prediction of

rheological/mechanical/vectorial percolation.
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Figure 1.1: Rigidity in two-dimensional rod-hinge systems. Left: Supposing that rods interact as
hinges at intersections, four rods connected pairwise in two dimensions are ‘floppy’ (dotted) in that
they may deform through different interior angles, whereas three rods connected pairwise are ‘rigid’
(solid). Right: A large component of mutually rigid rods may add mechanical stability to a host
composite. I use rigidity characterization algorithms to detect the presence of such a component
connecting two boundaries (vertical rods) bounding a large computational domain. In order to keep
the rod distribution uniform throughout the (white) domain, I allow rods to be placed in the ‘buffer’
regions (grey rectangles) on the exterior sides of the boundaries.

It is my hypothesis that mechanical or rheological percolation occurs when the reinforcing phase

has sufficient volume fraction so as to coalesce into a giant rigid scaffold or spanning rigid component,

wherein the individual reinforcing particles are not only in contact, but furthermore the constraints

that result from these connections are sufficient to eliminate any nontrivial degrees of freedom

(‘floppy modes’) within the component (see Figure 1.1). My study is motivated by the success

in using Monte Carlo simulations of nanoparticle dispersions to characterize electrical properties

through the resultant networks of particle interactions (as discussed in the previous subsection). I

use a similar network representation of nanoparticle interactions to characterize the dispersions’

mechanical properties, assuming that stiff rods interact solely through pairwise attractive contacts in

an otherwise soft medium.

As will be discussed in Ch. 2, a number of studies have been devoted to the characterization

of rigidity and rigidity percolation, but none of the associated methods have proven adequate for

large three-dimensional rod systems. Unlike previous studies of rigidity percolation, my work

takes the perspective that large rigid scaffolds are ‘built up’ from simple topological patterns that

apply at any scale. With this perspective, I identify and prove primitive rigid motifs—specific

contact rules that determine when a small set of interacting rigid components are together rigid—

so that these motifs may be condensed into larger rigid components. In two dimensions, these

motifs do not require specification as to whether the separate components be individual particles

or compositions themselves; and only minimal specification as to whether these particles be rods,
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ellipsoids, curvilinear fibers, whiskers, etc. In three dimensions, the problem is only slightly more

complicated in that axisymmetric particles have one less degree of freedom (5) than more complex

rigid bodies which lack axisymmetry (6)—giving rise to different treatment between the base

particles and compositions of particles. The algorithm I develop using this ‘topological building

blocks’ perspective—rigid graph compression (RGC)—is therefore applicable to any number of

spatial dimensions upon selection of appropriate motifs, and is also applicable to systems of varying

particle shape (nanorods, ellipsoids, curvilinear fibers, etc.).

I use the term ‘disordered particle systems’ to denote physical networks of randomly distributed,

high aspect ratio, and completely inflexible particles—this study is specifically oriented towards the

study of cylindrical particles (which may be used to model stiff fibers, rods, whiskers, nanotubes,

etc.). In two dimensions, these cylinders may be infinitesimally thin line segments which physically

intersect (termed ‘Mikado models’ in Head et al. 2003a,b; Wilhelm and Frey 2003), while in three

dimensions the cylinders must have finite radii to intersect. I model contacts between particles as

hinges, such that intersecting particles may pivot about their contact points, but Van der Waals forces,

friction, etc. keep them in contact at these points (as in Figure 1.1). When a component of particles

has enough contacts such that these constraints keep all the particles fixed relative to each other, they

may only move as a single rigid component, and I refer to the rods in this body as being mutually

rigid.

This previous discussion assumes that all contacts have the effect of enhancing mechanical

properties—however, an abundance of constraint-forming contacts limits the random motion of

particles and thus adds stress to the system. From this perspective, rigidity percolation constitutes the

onset of stress, as any further contacts have an effect of adding constraints beyond those required

to fully constrain a spatially extending component’s internal degrees of freedom. The perspective

required for applications naturally depends on the types of particle interactions and other considera-

tions in the system of interest. In any case, development of rigidity percolation detection software

can help guide understanding of nanocomposites’ mechanical properties and provide a basis for

optimizing such properties.

1.4 Outline of the dissertation

In Ch. 2, I discuss existing methods for rigidity characterization, as well as their strengths and

drawbacks for modeling disordered particle (rod/fiber) systems, before introducing the algorithm
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central to this dissertation, rigid graph compression. In Ch. 3, I apply this algorithm to two-

dimensional fibers, showing that it can be used to approximate the rigidity percolation threshold

to within 1% accuracy relative to a previous exact method. In Ch. 4, I apply RGC to systems of

three-dimensional fibers, wherein no previous methods exist for accurate characterization of rigidity

percolation, and establish an upper bound for the associated rigidity percolation threshold. Moreover,

I outline methods that can aid in establishing—as well as improving—the tightness of this upper

bound estimation to the true threshold. In Ch. 5, I use this analysis of 3D fiber systems, as well as

other methods, to assess experimental results for a nanocomposite of interest. Finally, I conclude this

dissertation by summarizing these findings and discussing important next steps for simulation-based

study of nanocomposite systems.
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CHAPTER 2: RIGID GRAPH COMPRESSION

Chemistry is that branch of natural philosophy in which the greatest improvements have
been and may be made; it is on that account that I have made it my peculiar study; but at
the same time, I have not neglected the other branches of science. A man would make
but a very sorry chemist if he attended to that department of human knowledge alone. If
your wish is to become really a man of science and not merely a petty experimentalist, I
should advise you to apply to every branch of natural philosophy, including mathematics.
∼ Professor Waldman

2.1 Overview

In this chapter, I develop a methodology for studying rigidity in disordered or ‘off-lattice’

systems of interacting particles, which will be studied in both Chapters 3 and 4. While these results

for 2D and 3D fiber systems are specific case studies, I note that the algorithm developed in this

section is applicable to systems in which the disordered particles have any shape (e.g. ellipsoids,

spheres, etc.), so long as these base particles have no internal degrees of freedom. Regardless of

the dimension, a configuration, or realization of a randomly disordered particle dispersion, will be

denoted ρ–this encodes geometrical information (spatial centers and orientations), which informs

topological information. More specifically, a contact graph is extracted wherein nodes correspond to

particles and edges correspond to contacts between those particles. Rigid Graph Compression (RGC)

will be used to determine which particles in a configuration ρ are rigid with respect to one another

(locally), and to determine the sizes of components of mutually rigid particles in ρ. After attaining

this latter information for systems of many different domain sizes and particle densities, it is possible

to estimate the rigidity percolation threshold and associated correlation coefficient (as will be done in

Sec. 3.4 and 4.4.2).

Importantly, though RGC is indiscriminate to the shape of particle under consideration, it is

only relevant to systems wherein contacts between particles are hinge-like—that is, if two particles

i and j contact at some point p, then they can rotate about p but stay fixed relative to p. More

precisely, the distance from p to any point in i and j stays fixed for all time, but the distance between

some point pi 6= p in i to a point pj 6= p in j may vary as a function of time. This condition is a
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simplistic idealization of the ‘soft’ attractive forces present in networks of carbon nanotubes and

other inclusions (see Sec. 1.3.1).

2.2 Previous methods

Many previous studies have been used to consider the rigidity of disordered particle systems,

particularly in two dimensions. Here, I present the methods of these studies (Secs. 2.2.1–2.2.3), and

then attend to their efficacies for studying rigidity percolation in disordered fiber systems, as well as

to the information structure required for algorithmic implementation (2.2.4).

2.2 Maxwell counting

The oldest (and simplest) technique for studying rigidity is Maxwell counting, which predicts that

a system is rigid if the number of constraints is equal to the number of inherent degrees of freedom

were the system’s particles all completely unbound (Maxwell, 1864). This condition can best be

represented using central force (CF) networks–simple graphs G(V,E) embedded in D-dimensional

Euclidean space wherein the set of edges (‘bonds’), E, denotes fixed distances between members

of the vertex set, V (‘nodes’ or ‘atoms’). In this representation, Maxwell counting translates to the

equality |E| = D|V | − χ(D) ≈ D|V |, where χ(D) is equal to the number of rigid motions of the

system in D dimensions.

In a previous study, this condition has been applied to study rigidity percolation in 2D ‘random

networks of stiff fibers,’ with number density of unit-length rods q = nr/L
2, where nr is the number

of rods, and L is the length of the simulation area (Latva-Kokko and Mäkinen, 2001; Latva-Kokko

et al., 2001). In this system, the number of contacts Nc scales linearly with the total number and

density of rods (Kallmes and Corte, 1960):

Nc ≈ nrq/π (2.1)

In two-dimensional space, a contact between two rods constrains two degrees of freedom. Assuming

without justification (and incorrectly) that all such constraints are independent of one another, one

infers that the network becomes rigid at the rigidity percolation threshold qmin satisfying:

3nr = 2Nc =
2nrqmin

π
⇒ qmin =

3

2
π
.
= 4.71 . (2.2)
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As I will show in Ch. 3, the density predicted for rigidity percolation based on Maxwell counting

in this system is far too low—indeed, it is even lower than the contact percolation threshold for

two-dimensional isotropically random rod systems (qc
.
= 5.71) (Pike and Seager, 1974). Importantly,

the number of contacts per rod obeys a Poisson distribution, and thus many constraints redundantly

bind the same free motions within the system (‘floppy modes’), while others are left unconstrained

(Latva-Kokko and Mäkinen, 2001; Latva-Kokko et al., 2001). In other systems—such as glasses

and crystals (trivially), these redundant constraints are apparently less common, as the Maxwell

prediction is more accurate (Phillips and Thorpe, 1985).

2.2 Laman, the pebble game, and Henneberg constructions

The inadequacy of Maxwell’s condition in disordered systems necessitates a description ac-

counting for dependence between constraints. Laman’s condition can be used to determine when the

constraints in a 2D CF network are independent (Laman, 1970).

Theorem 2.1 (Laman’s Condition). The edges of a graph G(V,E) are independent in two dimen-

sions if and only if no subgraph containing V ′ vertices has more than 2V ′ − 3 edges. If a graph has

exactly 2V ′ − 3 edges within each subgraph on V ′ vertices, then it is called a Laman graph.

Rigid graph characterization based on direct application of Laman’s Condition would require

iterating tests upon every subgraph of a CF network G, which would be computationally hopeless for

all but the smallest systems. However, an equivalent formulation of this condition is the following:

the edges of G(V,E) are independent in two dimensions if and only if, for each edge eij ∈ E,

the graph formed by adding three new edges between i and j has no subgraph on V’ nodes with

more than 2V’ edges. Jacobs and Thorpe developed this corollary into a “pebble game” test for

independence of edges with computational complexity that scales in the worst case as O(|V |1.2)

(Jacobs and Thorpe, 1995; Jacobs and Hendrickson, 1997). In 2D CF networks, each node is assigned

a pair of ‘pebbles’ to represent the two degrees of freedom of a point in a plane. Each bond between

these nodes pins down one of their allotted pebbles, so long as there are sufficient pebbles for each

bond—otherwise, some edges are redundant, or ‘stressed.’ Once the pebble game is implemented,

the locations of free pebbles and enumeration of independent edges allow for decomposition of the

network into sets of mutually rigid nodes, alongside an accurate count of the system’s net degrees of

freedom. The pebble game has been applied to a variety of systems, including CF networks with
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random topologies (e.g. Erdős Rényi graphs), wherein Thorpe et al. show that networks undergo a

rigidity transition as the mean coordination number (average degree) approaches ≈ 4 (Thorpe et al.,

1999).

The pebble game is deconstructive in that it is used for partitioning a graph into rigid and floppy

components. An alternative goal is the construction of rigid graphs, which can be accomplished

for 2D CF networks using Henneberg constructions, inductive rules for the construction of Laman

graphs (Henneberg, 1911). Constructions begin with an edge connecting two vertices (a trivially

rigid graph). Then, the following steps are repeated iteratively: a new vertex is added, adjoined either

(a) to two vertices via two new edges; or (b) to two previously adjacent nodes, while the old edge

between these latter nodes is severed and a third edge is placed between the new node and another

previously existing node. As noted above, every Henneberg construction is a Laman graph; but

perhaps more surprisingly, every Laman graph can be realized by Henneberg constructions (Tay and

Whitely, 1985).

2.2 Rigidity matroid theory

Unlike the approaches described above, rigidity matroid theory uses a graph’s embedding in

Euclidean space, or ‘framework’ (equivalent to a configuration), ρ(G), to characterize its rigidity

through the language of linear algebra (Cucuringu et al., 2012; Graver, 1991; Hendrickson, 1992).

Consider the set of node positions to be a dynamical system such that pi(t) is the D-dimensional

position of node i at time t. The condition that each edge eij ∈ E maintains a fixed distance dij

between nodes i and j requires
∑D

D′=1 |pD
′

i (t) − pD′j (t)|2 = d2
ij ∀eij ∈ E. Since this quadratic

system is not computationally convenient, it is convenient to linearize by differentiating each side

with respect to time, obtaining:

(pi(t)− pj(t)) · (ui(t)− uj(t)) = 0 ∀eij ∈ E (2.3)

where ui(t) = dpi(t)/dt is the instantaneous velocity of node i. The totality of these constraints

informs an |E| ×D|V | matrix, X—the rigidity matrix of ρ(G)—satisfying Xu = 0, where u is the

D|V |-vector of velocities and 0 is the corresponding all-zero vector. A vector u satisfying Xu = 0

is an infinitesimal motion of ρ(G), and the right nullspace of X includes the full set of such motions.

If G is embedded in Euclidean space RD and the right nullspace of X spans only the D(D + 1)/2
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rigid-body motions of translation and rotation, the framework ρ(G) is said to be infinitesimally rigid.

Otherwise, ρ(G) is infinitesimally flexible.

Importantly, it has been shown generically that if a framework ρ(G) is infinitesimally rigid, then

all other realizations of G are infinitesimally rigid (Gluck, 1975). Therefore, one can (generically)

infer rigidity from the topology of a graph itself, rather than from any particular embedding in

space. We note that this argument breaks down when at least one nontrivial minor of X has a

zero determinant—however, these cases occur with probability zero in disordered particle systems.

Practically, determining the rigidity of ρ(G) thus reduces to computing the rank of X , and using the

rank nullity theorem to then determine the dimension of the matrix’s null space, which corresponds

injectively to the underlying graph’s degrees of freedom count.

2.2 Relationship to rigidity percolation in disordered Particle systems

These prior methodologies have been central to the study of graph rigidity; however, none are

entirely suited to study of rigidity percolation in disordered particle systems. First, the techniques

described in Secs. 2.2.2–2.2.3 have been developed for CF networks; however, in disordered particle

systems, the position of each contact between two particles is fixed relative to the entirety of both

of these particles, which may include any number of contacts with other particles. In two studies

(Latva-Kokko and Mäkinen, 2001; Latva-Kokko et al., 2001), Latva Kokko and colleagues introduce

augmented constraints between second nearest neighbors to extend the pebble game to 2D disordered

fiber systems, and use this extended method to determine the critical rod density of rigidity percolation

as well as the scaling of rigid component size near the threshold. However, because it depends on

Laman’s condition for 2D graphs, the pebble game cannot extend exactly to three dimensions in its

current form, and it is unclear whether any such breadth first search algorithm could even possibly

account for the complicated variety of three dimensional floppy modes. Instead, the pebble game has

been only approximately extended to 3D glass-like networks (Chubynsky and Thorpe, 2007); it is

unclear whether or not this approximate extension can be modified for 3D disordered fiber systems,

and if it indeed can, what accuracy it might obtain.

One can instead augment rigidity matroid theory for disordered systems (see Sec. 3.2). However,

while rigidity matroid theory is (unlike the pebble game) valid in any number of dimensions, rigidity

matrices do not offer any local information about which sets of rods are rigid relative to others. That

is, while one could in principle use rigidity matrices to tally the macroscopic degrees of freedom
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in various large systems, they would not immediately characterize rigidity percolation (barring an

extremely exhaustive brute force search of submatrices) (Hendrickson, 1992). Furthermore, because

rigidity matrices rely on the full set of particle intersection points, many of these points will be

spatially close at sufficiently high particle densities, subjecting the analysis of the corresponding

matrix to numerical error (Hendrickson, 1992; Cucuringu et al., 2012).

Finally, I consider another previously used technique for rigidity analysis of disordered fiber

systems, in which rods are considered to be stiff springs that connect at their intersection points

(Wilhelm and Frey, 2003; Head et al., 2003a,b). These points are first subjected to a perturbation

(corresponding to physical deformation), and then the spring system is relaxed using nonlinear

optimization. If the initial pairwise distance between two nodes is maintained after relaxation, then

the points (and the rods containing them) are deemed rigid with respect to one another; otherwise,

they are not. This method does allow for characterization of rigidity percolation—achieving similar

results to those of the pebble game (Wilhelm and Frey, 2003)—but being a search for the “lowest

point of a complicated high-dimensional valley with extremely steep slopes but hardly varying base

altitude” (Wilhelm and Frey, 2003), it was observed to be highly unstable in large 2D fiber systems

and has not been attempted in 3D fiber systems.

To help guide the development of scalable algorithms for rigidity analyses in both two dimensions

and beyond, I highlight that there is a hierarchy of information required across these previous methods.

Maxwell’s counting requires only the global density of particles (q); the pebble game and Henneberg

constructions require topological information, specifying which contact points are adjacent (i.e., an

edge list or adjacency matrix); rigidity matroid theory and the spring relaxation method additionally

require the spatial locations of particle intersection points. In the next section, I derive an alternative

method that stems from rigidity matroid theory, and can therefore be generalized to higher dimensions.

However, in application this method is a scalable topological algorithm that only requires a list of

particle contacts instead of the full knowledge of the locations of contacts.

2.3 Motif-based rigidity decomposition

I now introduce a novel methodology for rigidity analysis of disordered particle systems in

any number of dimensions with any particle shape. In Sec. 2.3.1, I adapt rigidity matroid theory

(described in Sec. 2.2.3) to disordered particle systems; and in Sec. 2.3.2, I describe an algorithm that

utilizes this constructive adaptation for the purpose of deconstructing disordered particle systems
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into their inherent rigid components. The next two chapters will specify this algorithm for systems of

fibers in two and three dimensions, and conclude with analysis of appropriate numerical results.

2.3 Rigidity matroid theory for interacting rigid components

Here, I use rigidity matroid theory to study the motions of small numbers of interacting rigid

components. The motions of any rigid component in D dimensions can be fully determined from

D + 1 points contained in the component, the translations and rotations of which together generate

the Special Euclidean group SE(D) (Cederberg, 2001). (In principle, fewer coordinates are needed if

employing angular constraints, but for simplicity I choose to work with D + 1 points.) Hence, for

some rigid body R ⊂ RD, defined as the union of volumes enclosed within some integer number

nr > 0 of D-dimensional rods, I affix a (nonunique) coordinate labeling of R composed of at least

D + 1 points {pi} which fully capture the rigid motions of R. Importantly, no more than two points

in a coordinate labeling may be collinear, or else the coordinate labeling will only capture a subset of

the rigid motions of the corresponding body. Due to the rigidity of R, the pairwise distances between

the points are fixed, providing
(
D+1

2

)
constraint rows in the corresponding rigidity matrix X , each

having the form:

∆pi,j · ui −∆pi,j · uj = 0, (2.4)

where ui and uj are the instantaneous velocities corresponding respectively to points pi and pj

affixed in R and ∆pi,j = pi − pj . Note that regardless of the dimension of the rod network, if R

includes only a single rod, then it has a spatial dimension 1, and so only two points are needed to

specify its rigid motions.

When two or more rigid components {Ri} interact in contact, I denote the composite system by

R1 ∗R2 ∗ . . . and the corresponding composite rigidity matrix by X1 ∗X2 ∗ . . . . For such systems,

I construct sets of minimal coordinate labelings, wherein each rigid component’s coordinate labeling

is chosen such that interaction points between other rigid components are included wherever possible.

For a given set of coordinate labelings of {Ri}, a constraint graph may be constructed encoding

the topology of interactions (i.e., physical constraints) between the rigid components. This graph

is constructed by creating for each rigid component Ri with Si points in its coordinate labeling a

(Si)-clique—that is, an all-to-all connected subgraph. The constraint graph is defined as the union of

these cliques.
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The formalism above will be used in Secs. 3.2 and 4.2.2 to prove certain topological rules for

aggregating rigid components into larger rigid components. These rules are encoded into primitive

rigid motifs, which represent topological ‘building blocks’ of rigidity. I use the term ‘primitive’

because these motifs may not be decomposed into simpler motifs, yet many larger, more complicated

patterns of interaction can be constructed from these motifs, analogous to the formation of Laman

graphs from Henneberg constructions. In order to organize this discussion, I adopt the naming schema

“Motif xDy” with x indicating the spatial dimension and y indicating the number of aggregating

rigid components in the motif.

2.3 Algorithmic framework for Rigid Graph Compression

Whereas the language above used for rigid motif identification is constructive, the main purpose

for these rigid motifs is in deconstruction of disordered particle systems into their inherent rigid

components. The primitive rigid motifs described above will be used to identify large-scale rigid

components agglomerated from rigid components identified at smaller scales, starting from the

microscopic scale of primitive rigid motifs acting on individual particles. In so doing, it is convenient

to work in terms of contact graphs in which each node represents a rigid component and edges

indicate contacts or interactions between such components. Importantly, this network construction

contrasts the constraint graphs described earlier (in which nodes represented coordinate labelings

and edges represent rigidity constraints).

The RGC algorithm involves initialization (Step 1), followed by iterative identification and

compression of rigid motifs (Steps 2 & 3): (1) given the spatial locations of a candidate set of

interacting rigid particles ρ, construct a contact network of rods represented as nodes and contacts

between rods represented as edges; (2) identify rigid motifs in the contact network; (3) compress

each rigid motif instance into a single node, yielding a reduced set of rigid components (with weights

or multi-edges corresponding to the number of contacts between the compressed components) and an

updated contact network; (4) return to Step 2. The format of this algorithm can be adapted to include

any number of motifs in any number of dimensions (with only slight modification). Not all rigid

motifs incorporated into RGC must be primitive—indeed, it is more computationally efficient to

utilize some nonprimitive constructions (i.e those used in Secs. 3.3 and 4.3). The implementation of

the general algorithm with rigid motifs rigid motif 1, rigid motif 2,...rigid motif n on a configuration

ρ is described through pseudocode in Algorithm 1.
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Algorithm 1 : Rigid Graph Compression (RGC)
Generate Contact Graph G(V,E) from ρ
while ∃ rigid motif 1 OR rigid motif 2 OR · · · rigid motif n ∈ G do

Identify rigid motif 1 in G
for each rigid motif 1 in G do

Compress(G,{nodes in rigid motif 1}, {edges in rigid motif 1})
Identify rigid motif 2 in G
for each rigid motif 2 in G do

Compress(G,{nodes in rigid motif 2}, {edges in rigid motif 2})
· · ·
Identify rigid motif n in G
for each rigid motif n in G do

Compress(G,{nodes in rigid motif n}, {edges in rigid motif n})
Identify rigid motif 1, rigid motif 2, · · · rigid motif n in G

procedure COMPRESS(G, {nodes}, {edges})
Rewire all out-edges within {edges} to a node x ∈ nodes, assign a weight/multi-edge of x to

any out-edges that are rewired x times
Delete all nodes in {nodes} except x.

Finally, I note that this algorithm relies on an implicit assumption that two rigid components

cannot share particles. That is, RGC can only identify a particle as being part of a single rigid

component. This has been shown to be untrue in CF networks (Chubynsky and Thorpe, 2007), and

it also untrue in 3D disordered fiber systems (see Fig. 4.3)—however, I conjecture that this false

assumption is inconsequential to the detection of a spanning rigid component. Evidence for the

conjecture is presented in the last paragraph of Sec. 4.4.2.
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CHAPTER 3: RIGIDITY PERCOLATION IN DISORDERED SYSTEMS OF TWO-
DIMENSIONAL FIBERS

One secret which I alone possessed was the hope to which I had dedicated myself;
and the moon gazed on my midnight labours, while, with unrelaxed and breathless
eagerness, I pursued nature to her hiding-places. Who shall conceive the horrors of my
secret toil as I dabbled among the unhallowed damps of the grave or tortured the living
animal to animate the lifeless clay? My limbs now tremble, and my eyes swim with
the remembrance; but then a resistless and almost frantic impulse urged me forward; I
seemed to have lost all soul or sensation but for this one pursuit. ∼Victor Frankenstein

3.1 Overview

In this chapter, I consider the application of RGC (introduced in Sec. 2.3) to disordered systems

of 2D rods. In particular, rods or fibers are treated as infinitesimally thin line segments which interact

only at intersection points. In Sec. 3.2, I begin by using the rigidity matroid theory for interacting

rigid components to prove three rigid motifs for 2D disordered rod systems and then specify how

these motifs are incorporated into the algorithmic framework of Sec. 2.3.2. I perform a rigorous

percolation analysis of these results of this implementation in Sec. 3.4, and finally discuss some

related considerations in Sec. 3.5.

3.2 Primitive rigid motifs in two dimensions

I now use the language of rigid components developed in Sec. 2.3 to identify three primitive

rigid motifs in disordered systems of 2D rods. In this treatment, rigid components are here defined

as rods or sets of connected rods, but there is very little about the formalism requiring that the

individual particles be rods, and the results of this treatment may with only slight modification be

extended to ellipsoids, curvilinear filaments, and other 2D shapes, so long as the interactions between

the particles are hinge-like. The three rigid motifs are presented below, simultaneously with their

respective proofs, and then depicted in Fig. 3.1.

Theorem 3.1 (Motif 2D2). The composition of two rigid components R1 and R2 that intersect at

two or more points p1,p2, ... in two dimensions is rigid.

Proof. As a first case, I assume both rigid components are inherently 2D (that is, n1
r , n

2
r > 1) and

represent each aggregating rigid component using a coordinate labeling with three noncollinear
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Figure 3.1: Derivation of three primitive rigid motifs for 2D rod-hinge systems. Top Row: Rigid
components, which may be individual rods or sets of connected rods, distinguished here by color,
intersect with three specific topologies as described in Sec. 3.2 to form larger-scale rigid components:
(left column) two rigid components R1 and R2 interacting at a pair of points; (middle column) three
rigid components R1, R2 and R3 interacting pairwise; and (right column) five rigid components,
R1, . . . , R5 interacting in an identified pattern. For simplicity, I depict the rigid bodies in the middle
and right columns as rods, but the proofs are general to include composite rigid components. Middle
Row: Coordinate labelings are affixed to each rigid component: three noncollinear points are
required to describe the motions of a 2D rigid component consisting of multiple rods, whereas
individual rods are 1D and require only two points (although more may be used).For each motif, I
identify a set of minimal coordinate labelings that include intersection points whenever possible (see
text for clarification). Bottom Row: The coordinate labelings give rise to constraint graphs in which
edges (black lines) indicate distances between adjacent points that are fixed. The dashed ellipses
group the rigid components to which these points belong. By Theorems 3.1, 3.2, and 3.3, these
constraint graphs and the motifs that generated them are rigid in two dimensions.

points. Importantly, I require for both coordinate labelings that two of these points, p1 and p2, be the

intersection points between the rigid components so that the composite labeling is minimal (if there

are more than two intersection points, I pick two arbitrarily). I denote the remaining two coordinate

labeling points for R1 and R2 as pR1 and pR2 , respectively, and choose them arbitrarily, subject to

being noncollinear with p1 and p2, from the sets R1\R2 and R2\R1 (that is, in the restriction of
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the space R1 to points not in R2, and vice versa). Thus, the coordinate labelings for R1 and R2 are

the sets {p1,p2,pR1} and {p1,p2,pR2}, respectively. (See, for example, the coordinate labeling in

Fig. 3.1.)

I determine the rigidity of the composite system R1 ∗R2 through the rigidity matrix X1 ∗X2,

obtained by combining the rigidity matrices of the individual rigid components:

X1 =


∆p1,2 −∆p1,2 0

∆p1,R1 0 −∆p1,R1

0 ∆p2,R1 −∆p2,R1

 , (3.1)

X2 =


∆p1,2 −∆p1,2 0

∆p1,R2 0 −∆p1,R2

0 ∆p2,R2 −∆p2,R2

 . (3.2)

Note that X1 and X2 are each of size 3 × 6 with ∆pi,j = pi − pj and each pi ∈ R2 denoting a

length-2 row vector encoding the (x, y)-coordinates of a coordinate-labeling point. The 5× 8 rigidity

matrix of the composite system R1 ∗R2 is given by

X1 ∗X2 =



∆p1,2 ∆p2,1 0 0

∆p1,R1 0 ∆pR1,1 0

0 ∆p2,R1 ∆pR1,2 0

∆p1,R2 0 0 ∆pR2,1

0 ∆p2,R2 0 ∆pR2,2


, (3.3)

where the first row derives from R1 ∩ R2, the second and third rows from R1, and the fourth and

fifth rows from R2. I group these elements into blocks such that the diagonal blocks are


[

∆p1,2 −∆p1,2

]
,

 ∆pR1,1

∆pR1,2

 ,
 ∆pR2,1

∆pR2,2


 , (3.4)

each of which has full row rank (i.e., rank 1, 2, and 2, respectively), because pR1 and pR2 are each

individually noncollinear with p1 and p2, by construction of the coordinate labelings. Because each

diagonal block has full row rank, the block triangular matrix also has full row rank. Therefore,
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rank(X1 ∗X2) = 5, dim(null(X1 ∗X2)) = 8− 5 = 3, and the composition is rigid—that is, the

minimum number of degrees of freedom for a rigidity matrix of a two-dimensional system is 3.

In the case that n2
r1 = 1 (a rigid component that is a single rod), R1 only requires two points to

specify its rigid motions, and so I choose these to be p1 and p2, giving the 3× 6 rigidity matrix

X1 ∗X2 =


∆p1,2 −∆p1,2 0

∆p1,R2 0 −∆p1,R2

0 ∆p2,R2 −∆p2,R2

 , (3.5)

which trivially has full row rank and thus a right nullspace dimension of 3. Because individual

distinct straight rods cannot intersect at more than one point, n1
r and n2

r cannot simultaneously both

be one, so the two cases complete the proof.

The necessity of two contacts in this latter scenario (where n1
r = 1) begs the following (rather

obvious) lemma, which differentiates rigidity percolation from contact percolation:

Lemma 3.1. Every rod in a rigid 2D rod-hinge system (with nr > 1) must have at least two contacts.

Proof. Suppose that a single rod R1 has exactly one contact p1 with a rigid component R2. Only

two points are required to specify the rigid motions of R1; I choose these to be p1 and pR1 . For R2,

I choose the coordinate labeling {p1,pR2a ,pR2b
}. The corresponding 4× 8 rigidity matrix is

X1 ∗X2 =



∆p1,R1 −∆p1,R1 0 0

∆p1,R2a 0 −∆p1,R2a 0

∆p1,R2b
0 0 −∆p1,R2b

0 0 ∆pR2a,R2b
−∆pR2a,R2b


, (3.6)

which trivially cannot have rank > 4 and thus its right nullspace dimension is at least 4, implying the

composition is not rigid.

Theorem 3.2 (Motif 2D3). The composition of three rigid components R1, R2, and R3 intersecting

pairwise in two dimensions at three or more points including p1 ∈ (R1 ∩ R3), p2 ∈ (R1 ∩ R2),

p3 ∈ (R2 ∩R3), is rigid.
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Proof. First, suppose n1
r > 1, n2

r > 1, and n3
r > 1. As in the proof of Thm. 3.1, I choose a minimal

coordinate labeling for each rigid component, each of which includes two intersection points and one

additional point, giving the sets of labelings: {pR1 ,p1,p2}, {pR2 ,p2,p3}, and {pR3 ,p3,p1}. The

composition’s 9× 12 rigidity matrix is larger in this scenario:

X1 ∗X2 ∗X3 =



∆p1,2 −∆p1,2 0 0 0 0

∆p1,R1 0 0 −∆p1,R1 0 0

0 ∆p2,R1 0 −∆p2,R1 0 0

0 ∆p2,3 −∆p2,3 0 0 0

0 ∆p2,R2 0 0 −∆p2,R2 0

0 0 ∆p3,R2 0 −∆p3,R2 0

∆p1,3 0 −∆p1,3 0 0 0

∆p1,R3 0 0 0 0 −∆p1,R3

0 0 ∆p3,R3 0 0 −∆p3,R3



. (3.7)

The first three rows derive from R1, the second three from R2, and the third from R3. Row

permutation of X1 ∗X2 ∗X3 gives



∆p1,2 −∆p1,2 0 0 0 0

∆p1,3 0 −∆p1,3 0 0 0

0 ∆p2,3 −∆p2,3 0 0 0

∆p1,R1 0 0 −∆p1,R1 0 0

0 ∆p2,R1 0 −∆p2,R1 0 0

0 ∆p2,R2 0 0 −∆p2,R2 0

0 0 ∆p3,R2 0 −∆p3,R2 0

∆p1,R3 0 0 0 0 −∆p1,R3

0 0 ∆p3,R3 0 0 −∆p3,R3



. (3.8)
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The same block diagonal argument from the proof in Thm 3.1 may be applied to show that this matrix

has full row rank and thus right nullspace dimension 3. Explicitly, the diagonal blocks


[

∆p1,2 −∆p1,2

]
,

 −∆p1,3

−∆p2,3

 ,
 −∆p1,R1

−∆p2,R1

 ,
 −∆p2,R2

−∆p3,R2

 ,
 −∆p1,R3

−∆p3,R3



(3.9)

are each full row rank because the three points in a coordinate labeling are necessarily noncollinear.

Therefore, the matrix is of full row rank (9) and the dimension of the right nullspace is 12− 9 = 3,

which is again the minimum for all two-dimensional network rigidity matrices.

If one or more of the individual rigid components are single rods, then for each of these I may

drop one of pR1 , pR2 , or pR3 , as well as the two corresponding constraints, giving no net change in

the dimension of the right nullspace. Therefore, the composition is rigid.

Theorem 3.3 (Motif 2D5). If five rigid components {R1, . . . , R5} intersect in two dimensions at

six or more points such that p1 ∈ (R1 ∩ R3), p2 ∈ (R2 ∩ R3), p3 ∈ (R1 ∩ R4), p4 ∈ (R2 ∩ R4),

p5 ∈ (R1 ∩R5), p6 ∈ (R2 ∩R5), then their composition is rigid—except in the degenerate case in

which {p1,p3,p5} and {p2,p4,p6} are collinear (rod-sharing) sets, and the vectors ∆p1,2, ∆p3,4,

∆p5,6 are mutually parallel (which occurs with probability 0).

Proof. In the first case, I assume that the intersection points contained in R1 (p1,p3, and p5) are

noncollinear (they do not all lie along the same rod) as are those contained in R2 (p2,p4, and p6).

I also assume that n1
r > 1, ..., n5

r > 1. Then, I choose as coordinate labelings: {p1,p3 p5} for R1,

{p2,p4 p6} for R2, {p1,p2,pR3} for R3, {p3,p4,pR4} for R4, and {p5,p6,pR5} for R5. These

labelings inform 5(3) constraints, given in the rigidity matrix:
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X1 ∗ ... ∗X5 =

∆p1,2 −∆p1,2 0 0 0 0 0 0 0

∆p1,3 0 −∆p1,3 0 0 0 0 0 0

0 ∆p2,4 0 −∆p2,4 0 0 0 0 0

0 0 ∆p3,4 −∆p3,4 0 0 0 0 0

∆p1,5 0 0 0 −∆p1,5 0 0 0 0

0 0 ∆p3,5 0 −∆p3,5 0 0 0 0

0 ∆p2,6 0 0 0 −∆p2,6 0 0 0

0 0 0 ∆p4,6 0 −∆p4,6 0 0 0

0 0 0 0 ∆p5,6 −∆p5,6 0 0 0

∆p1,R3
0 0 0 0 0 −∆p1,R3

0 0

0 ∆p2,R3
0 0 0 0 −∆p2,R3

0 0

0 0 ∆p3,R4
0 0 0 0 −∆p3,R4

0

0 0 0 ∆p4,R4
0 0 0 −∆p4,R4

0

0 0 0 0 ∆p5,R5
0 0 0 −∆p5,R5

0 0 0 0 0 ∆p6,R5 0 0 −∆p6,R5



. (3.10)

As in the proof of Thm 3.2, I have arranged the rows for convenience in rank computation—rows

2, 5, 6 derive from R1; 3, 7, 8 from R2; 1, 10, 11 from R3; 4, 12, 13 from R4; and 9, 14, 15 from R5.

This matrix may be partitioned to have the diagonal blocks:

A =

[
∆p1,2 −∆p1,2

]
,

B =



−∆p1,3 0 0 0

0 −∆p2,4 0 0

∆p3,4 −∆p3,4 0 0

0 0 −∆p1,5 0

∆p3,5 0 −∆p3,5 0

0 0 0 −∆p2,6

0 ∆p4,6 0 −∆p4,6

0 0 ∆p5,6 −∆p5,6


, C =



−∆p1,R3 0 0

−∆p2,R3 0 0

0 −∆p3,R4 0

0 −∆p4,R4 0

0 0 −∆p5,R5

0 0 −∆p6,R5


.

Matrix A trivially has full row rank and matrix C has full rank due to the points in each coordinate

labeling being noncollinear. I use a series of elementary row operations to eliminate the last six
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entries in row B6,•, and then place B6,• between B1,• and B2,•, giving that B is rank equivalent to:

B′ =



−∆p1,3 0 0 0

c1∆p3,4 + c2∆p3,5 0 0 0

0 −∆p2,4 0 0

∆p3,4 −∆p3,4 0 0

0 0 −∆p1,5 0

∆p3,5 0 −∆p3,5 0

0 ∆p4,6 0 −∆p4,6

0 0 ∆p5,6 −∆p5,6



,

where c1 =
Det[∆p4,6,∆p2,4]·Det[∆p5,6,∆p2,6]
Det[∆p3,4,∆p2,4]·Det[∆p5,6,∆p4,6] and c2 =

Det[∆p4,6,∆p2,6]·Det[∆p5,6,∆p1,5]
Det[∆p3,5,∆p1,5]·Det[∆p4,6,∆p5,6] (Det[i, j]

indicates the determinant of

[
i

j

]
). The upper 2 × 2 block of this latter matrix has determinant

c1Det[∆p3,4,∆p1,3] + c2Det[∆p3,5,∆p1,3]. Because I assume under generic conditions that none

of these vectors are parallel, each of the terms in this determinant are nonzero. Then, upon appropriate

substitution and use of the geometric equality Det([i j]T ) = |i||j| sin θ (where | · | refers to the

2-norm and θ is the angle formed between i and j), I find that this determinant is zero if and only if:

|∆p1,5| sin θ1

|∆p2,6| sin θ2
=
|∆p1,3| sin θ3

|∆p2,4| sin θ4
, (3.11)

where θ1 refers to the angle between ∆p1,5 and ∆p5,6; θ2 refers to the angle between ∆p2,6 and

∆p5,6; θ3 refers to the angle between ∆p1,3 and ∆p3,4; and θ4 refers to the angle between ∆p2,4

and ∆p3,4 (see Fig. 3.2).

Under generic conditions in which none of the vectors in X1 ∗ ...∗X5 are parallel, the quantities

on the left hand side of Eq. 3.11 do not fully determine those on the right (see Fig. 3.2). Therefore,

Eq. 3.11 is satisfied with probability 0 and the upper left 2×2 block in B′ has full rank. Additionally,

as each pair of vectors is nonparallel under generic conditions, each 2× 2 block along the diagonal

of B′ has full rank. Therefore B itself has full rank, and the 15× 18 matrix X1 ∗ ... ∗X5 has full

row rank and right nullspace dimension 3. If any one or more components R3, R4, and/or R5 are
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Figure 3.2: Visualization of quantities of interest in Eqs. 3.11. Given that p1,p3,p5 and
p2,p4,p6 form noncollinear sets, the variables |∆p1,5|, |∆p2,6|, θ1, and θ2 (red) do not fully
determine |∆p1,3|, |∆p2,4|, θ3, and θ4 (green).

singleton rods, I omit the corresponding point(s) pRi and the corresponding pair(s) of constraint

rows, giving no net change in the resultant degrees of freedom calculation.

The careful reader will note that if points p1, p3, and p5 lie along the same rod (as would be

necessary if R1 is a singleton rod), then the vectors ∆p1,5 and ∆p3,5 are parallel—in this case, the

matrix B above would not have full row rank. In the first case, I excluded this possibility—now, I

turn to the case in which the sets {p1,p3,p5} and {p2,p4,p6} are both collinear sets (i.e. each set of

three intersections shares a single rod). This collinearity condition makes my task more challenging,

as each of the three collinear points in {p1,p3,p5} ({p2,p4,p6}) lie in R1 (R2), yet I must choose

three noncollinear points in each coordinate labeling. First, I choose p3 to lie between p1 and p5,

and p4 to lie between p2 and p6 (this is arbitrary—as R3, R4, and R5 have the same connectivities).

Then, I choose as coordinate labelings {p1,p5 pR1} for R1, and {p2,p6 pR2} for R2, where pR1

and pR2 are chosen to be noncollinear with p1 and p5 (p2 and p6). I choose coordinate labelings

R3, R4, and R5 as before.

This choice of labelings give 3(5) constraints as above, but I have included 11 as opposed to 9

points in these constraints, and so even if these constraints are linearly independent, the resulting

degrees of freedom calculation is 2(11)− 15 = 7. However, as alluded to in Sec. 2.2.4, these former

constraints of the form Eq. 2.4 do not account for the fact that all points along a single rod are rigid
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with respect to another. Given that p3 lies between p1 and p5, I account for this using the geometric

equality:

p3 = sp5 + (1− s)p1, (3.12)

where s =
|∆p1,3|
|∆p1,5| ∈ (0, 1). We can think of this equation parametrically, with s giving the fractional

distance along the line segment from p1 to p5 at which p3 is located. Because this fractional distance

is fixed (i.e. p3 cannot shift along its containing rod), I also have the condition that dsdt = 0, and

therefore:

u3 = su5 + (1− s)u1 (3.13)

I can similarly derive that u4 = s′u6 + (1 − s′)u2, where s′ =
|∆p2,4|
|∆p2,6| ∈ (0, 1). Each equation

introduces two augmented constraints into the augmented 19× 22 composite rigidity matrix. Using

similar steps, I can show that this latter matrix has full row rank unless ∆p1,2, ∆p3,4, and ∆p5,6 are

mutually parallel (which I excluded by hypothesis). The case in which one but not both of the sets

{p1,p3,p5} and {p2,p4,p6} are collinear follows similarly.

3.3 Algorithmic details of Rigid Graph Compression applied to 2D disordered fiber systems

(2D-RGC-5)

Algorithms 2D-RGC-3 and 2D-RGC-5 are implementations of Algorithm 1. Essentially, 2D-

RGC-5 incorporates the three rigid motifs of the previous section, while 2D-RGC-3 only incorporates

the 2- and 3-body rigid motifs. Rather than identifying instances of Motif 2D3 directly, I make

use of an available fast algorithm (Palla et al., 2005; Hagberg et al., 2008) for identifying k-clique

communities, which are sets of k-cliques (complete subgraphs on k nodes), joined pairwise at k − 1

points. In particular, any 3-clique community (see Fig 3.3) is necessarily a composite rigid motif

in 2D, by repeated application of Motifs 2D2 and 2D3. Furthermore, every instance of Motif 2D3

is a member of a 3-clique communities (at that spatial scale), although the same cannot be said for

Motif 2D2. I describe 2D-RGC-5 explicitly via psuedocode in Algorithm 2, and then illustrate its

implementation on a configuration in Fig. 3.3.

I conjecture that while the order of the three motif compression steps of Algorithm 2 could be

chosen in 3! = 6 possible ways, this order does not affect the resulting analysis. In the case that rigid
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Figure 3.3: Graph compression of rod-hinge systems using rigid motifs Using a 10-component
rod-hinge system as an example, I describe 2D-RGC-5 (Algorithm 2), which iteratively compresses
2- and 5-component primitive rigid motifs, as well as 3-clique communities (see top left inset for
contact network representations of these motifs). In the first step, the physical rod dispersion is
transformed into a rod contact network. This contact network contains both a 3-clique community
(nodes 1-4) and a 5-component motif (5-9). In two steps, each of these motifs are compressed into a
single compound node. These two composite nodes are connect by two edges, which is the
2-component primitive rigid motif and is then compressed in the final step, giving one compound
node representing rods 1-9 connected to another node representing rod 10. Stopping in the absence
of any other primitive rigid motifs, RGC thus identifies two rigid components within the candidate
rod-hinge system.
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Algorithm 2 : Rigid Graph Compression (2D-RGC-5)
Generate Contact Graph G(V,E) from {R}
while ∃ 3-clique communities OR 2-component motifs OR 5-component motifs ∈ G do

Identify 3-clique communities in G
for each 3-clique community in G do

Compress(G,{nodes in 3-clique community}, {edges in 3-clique community})
Identify 2-component motifs in G
for each 2-component motif in G do

Compress(G,{nodes in 2-component motif}, {edges in 2-component motif})
Identify 5-component motifs in G
for each 5-component motif in G do

Compress(G,{nodes in 5-component motif}, {edges in 5-component motif})
Identify 3-clique communities, 2-component motifs, 5-component motifs in G

procedure COMPRESS(G, {nodes}, {edges})
Rewire all out-edges within {edges} to a node x ∈ nodes, assign a weight of two to any

out-edges that are rewired ≥ 2 times
Delete all nodes in {nodes} except x.

motifs do not intersect, any motif compression order trivially gives the same result; but when two

or more rigid motifs intersect (their contact network representations share at least one node), this

conclusion is slightly more nuanced. Below, I argue that any motif compression order will yield

the same results when Algorithm 2 is subjected to intersecting motifs. In general, iterative graph

compression of two intersecting motifs might achieve different final states if different orderings of

motif compression are used. However, in testing the motifs used here on small systems (described

below), I do not find any cases where the output of 2D-RGC-5 or 2D-RGC-3 is affected by the order

of compression of 2-, 3-, and 5-component motifs (as well as 3-clique communities).

First, I consider simple cases in which the different motifs share at least one node in common.

For example, suppose a 2-component and a 3-component motif intersect. There are two ways in

which this may occur: the former may be fully contained in the latter, or the motifs may simply

share a node (see the top two graphs in Fig. 3.4). In the former case, application of Motif 2D2 yields

another 2D2 motif (which is then compressed), while application of Motif 2D3 compresses the graph

in a single step. In the latter case, application of Motif 2D3 leads to Motif 2D2, and vice versa. In

Fig. 3.4, I enumerate the possible (nonisomorphic) ways in which any of the 2-, 3-, and 5-component
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Figure 3.4: Nonisomorphic intersections of 2-, 3-, and 5-component motifs. Top Row: Simplest
nonisomorphic cases involving intersections of (that is, containing both) the 2- and 3-body primitive
rigid motifs. Middle Row: Simplest intersections of 2- and 5-component motifs. Bottom Row:
Simplest intersections of 3- and 5-component motifs. Each of these networks compress to a single
rigid component regardless of the order in which the 2D primitive rigid motifs are compressed.

motifs may intersect pairwise. It is easy to check that any order of motif compression will yield a

single rigid component in these cases.

I have additionally employed the graphlet-based exhaustive search method used in Sec. 3.5 to

verify that each ordering of graph compression gives the same output for all rod contact networks

generated with up to nr = 8 rods. Generally, I thus expect that graph compression ordering is very

likely inconsequential in two dimensions (the three-dimensional case is similar, and is discussed in

Sec. 4.2.1).

3.4 Numerical experiments

3.4 Experimental design

In order to characterize rigidity percolation in 2D disordered fiber systems, I recreate the

experimental system of (Latva-Kokko and Mäkinen, 2001): unit-length rods are placed with uniformly

random position and orientation in a rectangular domain. This domain is divided into an L×L square

region, with 1× L ‘buffer regions’ on the left and right sides along one dimension, to eliminate bias

in the rod density near these boundaries. I effectively place a large, length L (infinitesimally thin) rod

along the boundary between each buffer region with the interior square domain, and define rigidity

percolation by the presence of a spanning rigid component containing both of these boundaries (see

Fig. 1.1). Periodic boundary conditions are used in the other dimension.

For this analysis, I generate configurations wherein rods are dispersed in domains of size

L = 40, 60, 80, 100, 120, 140, and 160. In each domain size, 15 different rod densities q = r/(qcL
2)

are considered, where qc
.
= 5.71 is the contact-percolation threshold for 2D disordered fiber systems

systems (Pike and Seager, 1974)—these densities are chosen so as to be centered about the rigidity
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Figure 3.5: Comparison of 2D-RGC-3, 2D-RGC-5, and pebble-game algorithms for 2D
rigidity percolation. Left: For all three rigidity-detection algorithms, there is a phase transition in
π(q, L) that becomes sharper with increasing L—an extrapolation algorithm is used to estimate
rigidity percolation thresholds (vertical dashed lines) from these individual curves. The transitions
identified using the RGC algorithms approximate that of the pebble game, with that of the
2D-RGC-5 being the closer approximation. Incorporation of yet more rigid motifs would further
increase the accuracy of this approximation. Right: Rigidity percolation transitions for each of the
three algorithms are displayed for a large domain size, L = 140.

percolation estimate found in (Latva-Kokko and Mäkinen, 2001). In each configuration, I check

for the presence of a spanning rigid component using each of three algorithms: 2D-RGC-3 and

2D-RGC-5 (described in previous subsection); and the pebble game (Sec. 2.2.2). Between 150 and

1100 simulation trials are implemented at each (q, L) pair to approximate the probability of rigidity

percolation π(q, L) across this parameter space (see Fig. 3.5).

3.4 Results

In order to accurately estimate the rigidity percolation threshold qmin and correlation length

exponent ν (associated with the divergence of the correlation length about qmin) corresponding

to each algorithm, I first assume a data collapse in accordance with classical percolation theory
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Figure 3.6: Estimation of correlation length exponent and rigidity percolation threshold for
RGC and pebble game algorithms. Left: Using each rigidity characterization algorithm, I use the
relation ∆qmin(L) ∼ L−1/ν to estimate ν. Right: An extrapolation scheme is used to estimate qmin

using each of the three rigidity detection algorithms. For comparison, I display the rigidity
percolation threshold found in (Latva-Kokko and Mäkinen, 2001) using the pebble game (PG [26]),
in my own pebble game calculations (PG), and in (Wilhelm and Frey, 2003) using spring relaxation
(SR).

(Latva-Kokko and Mäkinen, 2001; Stauffer and Aharony, 1992):

π(q − qmin, L) = Π([q − qmin]L1/ν), (3.14)

from which I find dπ
dq = L1/νφ′([q − qmin]L1/ν) for q → qmin. As in Latva-Kokko and Mäkinen

(2001), I invert the scaling of dπ/dq with L1/ν , finding that

∆qmin(L) := 〈
√

(qest − qav)2〉 (3.15)

scales as L−1/ν , where qest is the density at which a spanning cluster first appears for a particular

set of simulations at a given L and qav is the average of these simulations (angular brackets denote

averages). For each algorithm and domain size L, I estimate ∆qmin(L), the standard deviation of the

rigidity percolation threshold (this use of ∆ is not to be used with the prior one, which indicated
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Figure 3.7: Demonstration of data collapse. Using the identified values of ν and qmin for each
rigidity detection algorithm, I find the data collapse assumption (according to Eq. 3.14) to be quite
sound.

a vector difference), by fitting a cumulative logistic distribution F (q;µ, σ) = 1/(1 + e−
q−µ
σ ) to

the set of values π(q, L), and then setting ∆qmin(L) equal to the standard deviation σπ/
√

3 of this

distribution. I fit log ∆qmin(L) versus logL (left panel of Fig. 3.6) via least squares minimization to

estimate ν, using a simple case resampling method to simultaneously determine confidence intervals

for every ∆qmin(L) estimation. From each set of ∆qmin(L) samples, I estimate a fit for ν and use

the collection of these fits to calculate the corresponding confidence intervals. I thereby obtain

ν
.
= 1.1682, 1.1025, 1.1812 for 2D-RGC-3, 2D-RGC-5, and the pebble game, respectively, with

corresponding 95% confidence intervals of [1.1137, 1.2546], [1.0474, 1.1670], and [1.1036, 1.2340].

While the correlation length exponent estimated by 2D-RGC-5 is comparatively low, I note the

confidence intervals from the three methods overlap.

Having estimated ν, I seek to now estimate qmin. To derive a scaling law, I expand π(q, L)

around q = qmin in Eq. 3.14 and invert, deriving the condition:

qx(L) = (constant) · L−1/ν + qmin , (3.16)
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where qx(L) is a probability distribution such that π(qx(L), L) = x for some x ∈ [0, 1] (Latva-

Kokko and Mäkinen, 2001; Stauffer and Aharony, 1992). I use this equation to extrapolate the

qx(L) values as L→∞ to predict qmin for each algorithm as follows. First, I find qx(L) via inverse

prediction from the corresponding cumulative distribution F (q;µ, s) for x = 0.2, 0.4, 0.6, 0.7, 0.85.

Then, I fit each set of log qx(L) values against −ν−1 logL, with the constraint that each of these

fits must coincide at the intercept with the q axis (see right panel of Fig. 3.6). I estimate the

intercepts to be qmin
.
= 1.1920, 1.1757, and 1.1692 for 2D-RGC-3, 2D-RGC-5, and the pebble game,

respectively, with corresponding 95% confidence intervals of [1.1912, 1.1929], [1.1756, 1.1767],

and [1.1686, 1.1698]. Taking the pebble game estimate to be the true threshold, I find the relative

errors for the 2D-RGC-3 and 2D-RGC-5 estimates to be 1.9% and 0.6%, respectively. Finally, having

identified qmin and ν for each rigidity-detection algorithm, I confirm that the rescaling data collapse

π(q, L) = Π([q − qmin]L1/ν) assumption is quite accurate (see Fig. 3.7).

3.5 Related directions

To better understand the discrepancies between the rigidity percolation transition as predicted by

RGC and the pebble game, I apply each algorithm to graphlets—small connected nonisomorphic

graphs—in the rod contact network representation. I limit this search to graphlets with minimal

degree two (on account of Lemma 3.1). I confirm that 2D-RGC-3 perfectly characterizes rigidity

for all graphlets of nr ≤ 4 components, but of course fails to detect that the nr = 5 Motif 2D5

is rigid, and thus misses a number of nr > 5 cases as well (the yellow motifs in Fig. 3.8). By

accounting for the rigidity of Motif 2D5, 2D-RGC-5 is accurate for all graphlets with nr ≤ 6, but

misses three nr = 7 cases (purple motifs in Fig. 3.8). By incorporating these primitive rigid motifs

with 7 components, one might develop a 2D-RGC-7 algorithm and estimate qmin with even higher

accuracy relative to the two RGC versions used in this study.
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nr=5

nr=6 nr=7

Figure 3.8: Rigid motifs not identified by 2D-RGC-3 and/or 2D-RGC-5. Exhaustive search of
rod contact networks containing up to seven rods reveals seven rigid motifs incorrectly identified as
floppy by 2D-RGC-3 only (yellow), and three other rigid motifs incorrectly identified as floppy by
both 2D-RGC-3 and 2D-RGC-5 (purple). These latter motifs—which are classified as rigid via the
pebble game—could potentially be incorporated into a 2D-RGC-7 algorithm.
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CHAPTER 4: RIGIDITY PERCOLATION IN DISORDERED SYSTEMS OF THREE-
DIMENSIONAL FIBERS

Of my creation and creator I was absolutely ignorant, but I knew that I possessed no
money, no friends, no kind of property. I was, besides, endued with a figure hideously
deformed and loathsome; I was not even of the same nature as man. I was more agile
than they and could subsist upon coarser diet; I bore the extremes of heat and cold with
less injury to my frame; my stature far exceeded theirs. When I looked around I saw and
heard of none like me. Was I, then, a monster, a blot upon the earth from which all men
fled and whom all men disowned? ∼ ‘the monster’

4.1 Overview

Unlike in the two-dimensional case, rigidity percolation in systems of disordered 3D fibers

remains an open problem. While this problem is challenging, and this dissertation comes short of a

complete rigidity analysis of such systems, the methodology used in this section provides a clear

path towards a solution. In Sec. 4.2, I develop the rigidity motifs in three dimensions according to the

methodology discussed in Ch. 2. In Sec. 4.3, I organize these motifs into the rigidity decomposition

algorithm 3D-RGC, which I implement on systems of randomly dispersed fibers in Sec. 4.4. Finally,

in Sec. 4.5, I discuss methods for showing that this algorithm achieves sufficient accuracy and

conclude this chapter.

4.2 Primitive 3D rigid motifs

4.2 Differences between rigidity analysis in 2 and 3 dimensions

In two dimensions, ‘fibers’ essentially amount to line segments (one could lower the aspect ratio

in a different study, in which case fibers would be considered as thin rectangles), which interact

at intersection points. In three dimensions, line segments (with infinite aspect ratio) intersect with

probability zero. Fibers must have nonzero radii in order for intersections to occur. Therefore, in this

study, I consider pairs of fibers to be interacting if their nearest points fall within some distance γr of

one another.

Another difference between 2D and 3D fiber systems arises from the increased number of

degrees of freedom in three dimensional rigid bodies. In the plane, line segments (nr = 1) and other

nonlinear rigid bodies (nr > 1) each have χ(2) = 3 degrees of freedom (two from translation and
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one from rotation)—allowing for the equivalency of scales in 2D-RGC. However, in three dimensions

a composite rigid body (nr > 1) has χ(3) = 6 degrees of freedom (three from translation and

three from rotation in ‘yaw,’ ‘pitch,’ and ‘roll’), while a cylinder or axisymmetric body—that lacks

marking or is otherwise indistinguishable for rotation around the axis of symmetry—has five. This

difference can be illustrated with coordinate labelings.

Being that a line segment has dimension one, only two points are necessary to specify the rigid

motions of a rod using a coordinate labeling. Because a complete graph on two vertices has one edge,

the resulting rigidity matrix has size 1× 2(3) and thus right nullspace dimension five (recall from

Sec. 2.3.1 that the right nullspace dimension of a rigidity matrix is equal to the degrees of freedom of

the corresponding body). If a rigid body is nonplanar, then 3 + 1 = 4 points are necessary to specify

its rigid motions. A complete graph of constraints between 4 vertices (K4) has 6 edges—when such

a graph is embedded in three dimensional space, the constraint-forming edges are rather trivially

linearly independent. Thus, the rigidity matrix for a coordinate labeling of such a body has right

nullspace dimension equal to 4(3)− 6 = 6—equivalently, the group SE(3) has order 6 (Cederberg,

2001). If on the other hand, a rigid body is planar but lacking cylindrical symmetry (e.g. a triangle),

then 2 + 1 = 3 points are necessary to specify its rigid motions. As well, K3 has three edges, and

the rigidity of the corresponding coordinate labeling in 3-space has right nullspace dimension equal

to 3(3)− 3 = 6. In the following subsection, it will therefore be necessary to distinguish linear rods

(nr = 1), which have five degrees of freedom, from other rigid bodies (nr > 1), which have six.

While rods require differentiation from other rigid components in the treatment below, planar and

nonplanar rigid components do not. The coordinate labeling for a planar rigid component R (with

rigidity matrix X) has three points, but adding a new point along with corresponding constraints to

the unperturbed coordinate labeling set does not change the rank of X . Hence, in each of the proofs

of the next subsection, I assume that each rigid component with nr > 1 is nonplanar and let the

corresponding result extend to the case in which one or more components are planar.

A third and final difference between the treatment here of 2D and 3D disordered fiber systems is

slightly more subtle. In two dimensions, it was only necessary to consider interactions in which pairs

of rigid bodies share ≤ 2 contacts. Owing to the increased number of degrees of freedom for rigid

bodies in three dimensions, this will not always be the case in the rigid motifs of the next subsection.

As noted in Sec. 2.3.1, a coordinate labeling must be chosen such that no subset of ≥ 2 contained
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points are collinear. However, if ≥ 2 contacts occur along a single rod, then there is a possibility

in which ≥ 2 of these are collinear (i.e. if they lie along the axis of the rod). Therefore, in treating

compositions between rigid bodies sharing ≥ 2 contacts in three dimensions, it is critical to attend to

whether or not these contacts are rod-sharing. As in Sec. 3.2, I assume generic conditions wherein if

> 2 points do not share a rod, the set of these points is noncollinear.

4.2 Primitive rigid motifs in three dimensions

Here, I present and sketch the proofs of many rigid motifs for the construction of composite rigid

components in three dimensions. As in two dimensions, this list is nonexhaustive (and constructing

an exhaustive list may be impossible). In order to avoid creating a new litany of symbols, I do not

distinguish rods (nr = 1) from other rigid components (nr > 1)—both are called Ri for some

i—or rod-sharing contacts from other contacts notationally. However, attention is given to the

considerations of the previous subsections within the hypothesis of each proof. I assume as in two

dimensions that each rigid component involved in the hypothesis shares no rods (they may of course

share intersection points) with other components in the hypothesis. Because points are embedded in

3-space, ∆pi,j now indicates a 1× 3 vector given by pi − pj for position vectors pi and pj . Finally,

I note that in cases in which there are more than one motif with x rigid bodies (as the distinction

between rods from other rigid bodies opens up this possibility), I distinguish between the different

rigid motifs by lettering: rigid motif 3DxA, 3DxB,...

Theorem 4.1. Motif 3D2A: The composition of two rigid components, R1 and R2 (n1
r , n

2
r > 1),

intersecting at ≥ 3 distinct points p1,p2,p3, ..., is rigid if these points do not all share the same rod.

Proof. As noted in the previous subsection, I assume these rigid components are both nonplanar, in

which case R1 and R2 have four points apiece. I choose three of these points to be the intersection

points, giving the coordinate labelings {p1,p2,p3,pR1} and {p1,p2,p3,pR2}, where pR1 is a point

in R1\R2 and vice versa. The rigidity matrix for this system is given by:
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X1 ∗X2 =



∆p1,R1 0 0 −∆p1,R1 0

0 ∆p2,R1 0 −∆p2,R1 0

0 0 ∆p3,R1 −∆p3,R1 0

∆p1,2 −∆p1,2 0 0 0

0 ∆p2,3 −∆p2,3 0 0

∆p1,3 0 −∆p1,3 0 0

∆p1,R2 0 0 0 −∆p1,R2

0 ∆p2,R2 0 0 −∆p2,R2

0 0 ∆p3,R2 0 −∆p3,R2



, (4.1)

where the first three constraints derive from R1\R2, the second three from R1 ∪R2, and the final

three from R2\R1. Row permutations give that X1 ∗X2 is rank equivalent to:



∆p1,2 −∆p1,2 0 0 0

0 ∆p2,3 −∆p2,3 0 0

∆p1,3 0 −∆p1,3 0 0

∆p1,R1 0 0 −∆p1,R1 0

0 ∆p2,R1 0 −∆p2,R1 0

0 0 ∆p3,R1 −∆p3,R1 0

∆p1,R2 0 0 0 −∆p1,R2

0 ∆p2,R2 0 0 −∆p2,R2

0 0 ∆p3,R2 0 −∆p3,R2



, (4.2)

which is a block triangular matrix with diagonal blocks:


[

∆p1,2 −∆p1,2

]
,

 −∆p2,3

−∆p1,3

 ,

−∆p1,R1

−∆p2,R1

−∆p3,R1

 ,

−∆p1,R2

−∆p2,R2

−∆p3,R2


 , (4.3)
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As each entry is itself a 1× 3 vector, these blocks have ranks 1, 2, 3, and 3, respectively. (Note

that if p1, p2, and p3 are all collinear, then at least one of the latter three diagonal blocks lose

a dimension—hence, I rule out this case in the hypothesis.) Therefore, rank(X1 ∗X2) ≥ 9 and

dim(null(X1 ∗X2)) ≤ 6 (as X1 ∗X2 has 15 columns). Because a rigid body in three dimensions

(lacking any symmetries) has six degrees of freedom, I conclude that R1 ∪R2 is rigid.

Theorem 4.2. Motif 3D3A: Let R1, R2, and R3 be intersecting rigid bodies (n1
r , n

2
r , n

3
r > 1). If R1

and R2 intersect at one point p1, R1 and R3 intersect at two points p2 and p3; R2 and R3 intersect

at two points p4 and p5; then the composition is rigid, unless: p1 shares a rod with both p2 and p3;

or p1 shares a rod with both p4 and p5; or p2, p3, p4, and p5 all share the same rod (I exclude these

cases via hypothesis).

Proof. I choose as the coordinate labelings {p1,p2,p3,pR1} for R1; {p1,p4,p5,pR2} for R2; and

{p2,p3,p4,p5} forR3, where pR1 lies inR1\(R2∪R3) and pR2 lies inR2\(R1∪R3). Appropriate

constraints give the rigidity matrix:

X1 ∗ X2 ∗ X3 =



∆p1,R1 0 0 0 0 −∆p1,R1 0

0 ∆p2,R1
0 0 0 −∆p2,R1

0

0 0 ∆p3,R1 0 0 −∆p3,R1 0

∆p1,2 −∆p1,2 0 0 0 0 0

∆p1,3 0 −∆p1,3 0 0 0 0

0 ∆p2,3 −∆p2,3 0 0 0 0

∆p1,R2
0 0 0 0 0 −∆p1,R2

0 0 0 ∆p4,R2
0 0 −∆p4,R2

0 0 0 0 ∆p5,R2
0 −∆p5,R2

∆p1,4 0 0 −∆p1,4 0 0 0

∆p1,5 0 0 0 −∆p1,5 0 0

0 0 0 ∆p4,5 −∆p4,5 0 0

0 ∆p2,4 0 −∆p2,4 0 0 0

0 ∆p2,5 0 0 −∆p2,5 0 0

0 0 ∆p3,4 −∆p3,4 0 0 0

0 0 ∆p3,5 0 −∆p3,5 0 0



, (4.4)

where the constraint rows 1 − 6 derive from R1 ∪ R3, 7 − 12 derive from R2 ∪ R3, and 13 − 16

derive from R3 only. I use row permutations to find that X1 ∗X2 ∗X3 is rank equivalent to the
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block triangular matrix:



∆p1,2 −∆p1,2 0 0 0 0 0

∆p1,3 0 −∆p1,3 0 0 0 0

0 ∆p2,3 −∆p2,3 0 0 0 0

∆p1,4 0 0 −∆p1,4 0 0 0

0 ∆p2,4 0 −∆p2,4 0 0 0

0 0 ∆p3,4 −∆p3,4 0 0 0

∆p1,5 0 0 0 −∆p1,5 0 0

0 0 0 ∆p4,5 −∆p4,5 0 0

0 ∆p2,5 0 0 −∆p2,5 0 0

0 0 ∆p3,5 0 −∆p3,5 0 0

∆p1,R1 0 0 0 0 −∆p1,R1 0

0 ∆p2,R1
0 0 0 −∆p2,R1

0

0 0 ∆p3,R1 0 0 −∆p3,R1 0

∆p1,R2
0 0 0 0 0 −∆p1,R2

0 0 0 ∆p4,R2
0 0 −∆p4,R2

0 0 0 0 ∆p5,R2
0 −∆p5,R2



. (4.5)

I show in the following paragraph that the diagonal blocks:
[

∆p1,2 −∆p1,2

]
,

 −∆p1,3

−∆p2,3

 ,

−∆p1,4

−∆p2,4

−∆p3,4

 ,

−∆p1,5

−∆p4,5

−∆p2,5

−∆p3,5


,


−∆p1,R1

−∆p2,R1

−∆p3,R1

 ,

−∆p1,R2

−∆p4,R2

−∆p5,R2




(4.6)

have ranks 1, 2, 3, 3, 3, and 3, respectively.

The first two and last two of these block rank claims are trivial under the hypotheses that

{p1,p2,p3} and {p1,p4,p5} are not rod-sharing sets. The third block would lose a dimension

if some three member subset of {p1,p2,p3,p4} were collinear. First, {p1,p2,p3} is assumed

noncollinear. In addition, neither {p1,p2,p4} nor {p1,p3,p4} may be collinear, as each of these

sets contains points from R1, R2, and R3. Collinearity of either of these sets would in turn imply

that each rigid component contains the same rod. If {p2,p3,p4} were collinear, then interchanging

of p4 and p5 would preserve the block rank of three (under the given hypotheses), which I show here.

Because {p2,p3,p4,p5} is assumed noncollinear, collinearity of the set {p2,p3,p4} guarantees

noncollinearity of the set {p2,p3,p5} (see Fig. 4.1). As it may be seen that such interchanging does
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not affect the rank of the previously discussed blocks, I conclude that proper choice of p4 and p5

assures full rank of the third diagonal block.

The fourth block has rank ≤ 2 only if either a four member subset of {p1,p2,p3,p4,p5} is

collinear—which is impossible given the hypotheses—or two three member sets of the involved

constraints are both collinear. This latter situation is also impossible because ∆p1,5 cannot be

collinear with any of the other three constraints in the block. This statement follows from the

hypothesis that {p1,p4,p5} is not collinear, and from the observation that neither {p1,p2,p5} nor

{p1,p3,p5} can be collinear (for the same reason that neither {p1,p2,p4} nor {p1,p3,p4} can be

collinear). Therefore, because the rank of a matrix is bounded below by the sum of the ranks of

its diagonal blocks, the composite rigidity matrix X1 ∗X2 ∗X3 has rank 15 and right nullspace

dimension six.

p2

p3

p4

p5

Figure 4.1: If {p2,p3,p4,p5} is noncollinear, then {p2,p3,p4} and {p2,p3,p5} cannot
simultaneously be collinear.

Motif 3D2A motif is somewhat analogous to Motif 2D2—as in two dimensions, individuals rods

may only intersect at one point, and so at least one of the two bodies in this motif must contain

more than one rod. However, the hypothesized condition—that not all of the intersections share

the same rod—necessitates that neither R1 nor R2 is a single rod, and therefore both n1
r > 1 and

n2
r > 1. The case that one of these components is a single rod begs a different motif, beginning the

consideration of rigid motifs featuring compositions of individual rods with other (non-axisymmetric)

rigid components.

Theorem 4.3. Motif 3D2B: The composition of a rigid body R1 (n1
r > 1) with a single rod R2 is

rigid if R1 and R2 intersect at ≥ 2 points (p1 and p2).
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Proof. Choose the coordinate labeling forR2 to be {p1,p2} and that forR1 to be {p1,p2,pR1a ,pR1b
}.

The constraint graph of the composition is then exactly the same as that for R1 individually, which is

rigid by hypothesis.

Theorem 4.4. Motif 3D3C: If two rigid bodies R1 and R2 (n1
r , n

2
r > 1) intersect at ≥ 2 points

p1 and p2, and also each intersect another distinct rod R3 (n3
r = 1) at one point apiece, such that

R1 ∩R3 = p3 and R2 ∩R3 = p4, then the composite body is rigid—so long as neither p3 nor p4 is

collinear with both p1 and p2.

Proof. I choose as coordinate labelings {p1,p2,p3,pR1} for R1, {p1,p2,p4,pR2} for R2, and

{p3,p4} for R3, where pR1 is not collinear with any pair of points in {p1,p2,p3} and pR2 to not

be collinear with any pair of points in {p1,p2,p4}. Upon row rearrangement, this choice gives the

rigidity matrix:

X1 ∗X2 ∗X3 =



∆p1,2 −∆p1,2 0 0 0 0

∆p1,3 0 −∆p1,3 0 0 0

0 ∆p2,3 −∆p2,3 0 0 0

∆p1,4 0 0 −∆p1,4 0 0

0 ∆p2,4 0 −∆p2,4 0 0

0 0 ∆p3,4 −∆p3,4 0 0

∆p1,R1
0 0 0 −∆p1,R1

0

0 ∆p2,R1 0 0 −∆p2,R1 0

0 0 ∆p3,R1
0 −∆p3,R1

0

∆p1,R2
0 0 0 0 −∆p1,R2

0 ∆p2,R2 0 0 0 −∆p2,R2

0 0 0 ∆p4,R2
0 −∆p4,R2



, (4.7)

which has diagonal blocks:
[

∆p1,2 −∆p1,2

]
,

 −∆p1,3

−∆p2,3

 ,

−∆p1,4

−∆p2,4

−∆p3,4

 ,

−∆p1,R1

−∆p2,R1

−∆p3,R1

 ,

−∆p1,R2

−∆p2,R2

−∆p4,R2


 . (4.8)

To establish that the middle block has full rank, I first claim that—while it is not directly stated in

the hypothesis—neither p2 nor p1 lie collinear with both p3 and p4. Otherwise, one of p2 or p1
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would lie along the rod R3, which is nonsensical. This noncollinearity, along with the noncollinearity

of the sets {p1,p2,p3} and {p1,p2,p4}, establishes the full rank of the middle block. Because I

have chosen pR1 and pR2 to not be collinear with any pair of points in their respective coordinate

labelings, and because of noncollinearity of the sets {p1,p2,p3} and {p1,p2,p4}, it is trivial that

each of the remaining blocks has full row rank. Therefore X1 ∗X2 ∗X3 has rank 12 and right

nullspace dimension 6.

Theorem 4.5. Motif 3D4A: If one rigid body R1 (n1
r > 1) intersects three rods R2, R3, R4

(n2
r , n

3
r , n

4
r = 1) at the points p1,p2,p3 (respectively); R2 intersects R3 at p4; and R3 intersects R4

at p5, then the composite body is rigid unless p1, p2 and p3 are collinear.

Proof. I choose as (minimal) coordinate labelings {p1,p2,p3,pR1} for R1 (where pR1 is a point in

R1 that is not collinear with any pair of points in {p1,p2,p3}), {p1,p4} for R2, and {p3,p5} for

R4. However, the rod R3 contains three intersection points. Therefore, either pair can be chosen as

an appropriate coordinate labeling (I choose {p4,p5}), but an augmented constraint must be added

to enforce the condition that these three points must remain collinear (as in Motif 2D5 of Sec. 3.2):

u2 = su4 + (1− s)u5, (4.9)
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where s =
|∆p2,5|
|∆p4,5| . Letting I3 be the 3× 3 identity matrix, and 03 the 3× 3 all-zero matrix, these

augmented constraints give the composite rigidity matrix:

X1 ∗X2 ∗X3 ∗X4 =



∆p1,2 −∆p1,2 0 0 0 0

∆p1,3 0 −∆p1,3 0 0 0

0 ∆p2,3 −∆p2,3 0 0 0

∆p1,R1 0 0 −∆p1,R1 0 0

0 ∆p2,R1 0 −∆p2,R1 0 0

0 0 ∆p3,R1 −∆p3,R1 0 0

∆p1,4 0 0 0 −∆p1,4 0

0 0 ∆p3,5 0 0 −∆p3,5

0 0 0 0 ∆p4,5 −∆p4,5

03 I3 03 03 sI3 (1− s)I3



.

(4.10)

Elementary row operations give that this matrix is rank equivalent to:



∆p1,2 −∆p1,2 0 0 0 0

∆p1,3 0 −∆p1,3 0 0 0

0 ∆p2,3 −∆p2,3 0 0 0

∆p1,R1 0 0 −∆p1,R1 0 0

0 ∆p2,R1 0 −∆p2,R1 0 0

0 0 ∆p3,R1 −∆p3,R1 0 0

∆p1,4 0 0 0 −∆p1,4 0

0 − 1
1−s∆p3,5 ∆p3,5 0 s

1−s∆p3,5 0

0 −1
1−s∆p4,5 0 0

(
1 + s

1−s

)
∆p4,5 0

03 −I3 03 03 sI3 (1− s)I3



, (4.11)

which has full rank blocks of rank 1, 2, 3, 3, and 3. The first three and last of these claims are

trivial, given that p1, p2, and p3 are noncollinear. The penultimate claim is true because it would be

nonsensical for any collinearities to exist between ∆p1,4, ∆p3,4, and ∆p4,5.
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The final two motifs proven here involve individual rods only. The first (Motif 3D3B) is obviously

analogous to Motif 2D3, although Motif 3DB is only applicable at the scale of single rods. Together,

Motifs 3D3B and 3D2B show that a 3-clique community is also rigid in three dimensions. The last is

analogous to Motif 2D5, but an additional rod is apparently needed to constrain this structure in three

dimensions.

Theorem 4.6. Motif 3D3B: A 3-clique of rods (n1
r , n

2
r , n

3
r = 1), wherein R1 intersects R3 at p1, R1

intersects R2 at p2, and R2 intersects R3 at p3, is rigid.

Proof. Choose as the coordinate labelings the respective intersection points. The resulting rigidity

matrix is of size 3× 9 and trivially has full row rank.

Theorem 4.7. Motif 3D6A: If six rods (n1
r = 1, · · · , n6

r = 1) intersect in the strutted fashion of

Motif 2D5—such that p1 ∈ (R1 ∩ R3), p2 ∈ (R2 ∩ R3), p3 ∈ (R1 ∩ R4), p4 ∈ (R2 ∩ R4),

p5 ∈ (R1 ∩R5), p6 ∈ (R2 ∩R5), p7 ∈ (R1 ∩R6), and p8 ∈ (R2 ∩R6)—then their composition

is rigid.

Rather, then prove this analytically, I form the corresponding rigidity matrix, and use symbolic

algebra to find that it has full row rank. I choose as minimal coordinate labelings {p1,p5} for R1,

{p2,p6} for R2, {p1,p2} for R3, {p3,p4} for R4, {p5,p6} for R5, and {p7,p8} for R6. As in

Motif 2D5 and Motif 3D4A, I introduce augmented constraints to ensure that the positioning of p3

and p5 each stay fixed relative to p1 and p7 (and both p4 and p6 each stay fixed relative to p2 and

p8) for all time.

X1 ∗ ... ∗X5 =

∆p1,2 −∆p1,2 0 0 0 0 0 0

0 0 ∆p3,4 −∆p3,4 0 0 0 0

∆p1,5 0 0 0 −∆p1,5 0 0 0

0 0 0 0 ∆p5,6 −∆p5,6 0 0

0 ∆p2,6 0 0 −∆p2,6 0 0

0 ∆p2,6 0 0 0 0 ∆p7,8 −∆p7,8

s1I3 0 −1 0 0 0 (1− s1)I3 0

s2I3 0 0 0 −1 0 (1− s2)I3 0

0 s3I3 0 −1 0 0 0 (1− s3)I3

0 s4I3 0 0 −1 0 0 (1− s4)I3



, (4.12)
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where s1 =
|∆p1,3|
|∆p1,7| , s2 =

|∆p1,5|
|∆p1,7| , s3 =

|∆p2,4|
|∆p2,8| , s4 =

|∆p2,6|
|∆p2,8| . It is quite tedious to show that the row

rank of this matrix is 18 (and therefore right nullspace dimension 6)—instead, I have verified this

only with Mathematica.

While I conjecture that these motifs sufficiently characterize rigid graphs with size nr ≤ 3, the

complexity of these motifs clearly increases greatly with the number of components involved. I have

outlined a method to search for motif candidates containing any number of individual components

≤ x for some x in Sec. 4.5. A contact graph representation of the seven motifs proven above is

shown in Fig. 4.2.

3D2A 3D3A

3D2B 3D3B 3D4A

3D3C 3D6A

Figure 4.2: Seven motifs featuring individual rods (small) and other non-axisymmetric
(nr > 1) rigid components (big) are proven to be rigid in Sec. 4.2. In the rod contact graph
representation, nodes represent rigid components and edges represent contacts. These images do not
depict certain conditions regarding which constacts may or may not be rod-sharing.

4.3 Algorithmic implementation

The algorithmic framework of 3D-RGC is essentially similar to that of 2D-RGC (discussed

in Sec. 3.3)—however, some important differences do arise. First, as discussed in Sec. 4.2.1, it

is essential to distinguish between rigid components that are individual rods (nr = 1) and those

which are not. Therefore, a graph attribute ‘rods in node’ is employed to track the size of each
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rigid component throughout RGC (this is also used to identify the sizes of the rigid components at

the conclusion of the algorithm), and each motif identification function discriminates accordingly.

For instance, Motifs 3D3B and 3D6A are employed first, as these act exclusively on individual

rods. As in the two dimensional case, 3-clique communities (which are rigid via Motif 3D3B and

successive application of Motif 3D2B) are compressed rather than explicit 3-cliques, for the sake

of computational efficiency. However, care must be taken to ensure that each node in this 3-clique

community is a rod, as 3-clique communities of non-axisymmetric rigid bodies are not necessarily

rigid in three dimensions. After identification/compression of all 3-clique communities and of all

instances of Motif 3D6A, the same identification/compression while loop of Algorithm 2 is applied

iteratively (using the remaining rigid motifs of the previous subsection) upon the candidate graph.

Additionally, a multi-graph representation is used to keep track of which edges in the contact

graph are rod-sharing. The original contact graph, in which each node represents a single rod

,contains no multi-edges. But as compressions occur, multiple contacts between rods are represented

via multi-edges rather than with weights (which are used to this end in Algorithm 2). Each of these

edges is associated with a tuple edge attribute ‘original edge,’ which refers to the corresponding edge

in the original contact graph. Rod-sharing contacts are distinguished by multi-edges that share a

node in the original contact graph—motif identification functions distinguish accordingly.

A final consideration differentiating 2D-RGC and 3D-RGC is that, while I conjecture that rigidity

percolation is indiscriminate to the order of motif compression in the former case (see Sec. 3.3), this

is certainly not the case in three dimensions. A simple example in which RGC identifies different

rigid components for different motif compression orderings is displayed in Fig. 4.3. Ideally, I could

account for this dependence on motif compression order by implementing upon each candidate graph

all possible 7! orderings of 3D-RGC. As this algorithm is by design a ‘sufficient but not necessary’

rigidity detection algorithm, detection using any of these possible orderings would guarantee the

candidate configuration is rigid. However, given the computational cost of 3D-RGC as implemented

in this study (see Sec. 4.4.3), such exhaustive analysis is prohibitively expensive. Instead, the ordering

is determined for each candidate graph using a random permutation. After identification/compression

of 3-clique communities and instances of Motif 3D6A, the remaining identification-compression

order is chosen at random and fixed until convergence. In Sec. 4.4.2, I show that while this role of

48



ordering may affect the rigidity analysis of a particular candidate graph in certain cases, it has no

effect on the macroscopic characterization of rigidity percolation.

Motif 3D4AMotif 3D2B Motif 3D3B

Figure 4.3: Different orderings of motif compression in 3D-RGC can give different results for
certain graphs. Left: The top five-node graph could be compressed into either four nodes (via Motif
3D2B) or two nodes (3D4a). Depending on whether the objective is to reduce the number of vertices
in the graph, or to agglomerate the most rods into a single node (greedily), one or the other option
may be preferable. Right: Even in the initial identification/compression of 3-clique communities,
choices must be made—the base contact graph can be compressed into either four or three nodes,
depending on which 3-clique community is compressed first. Graphs with adjacent 3-clique
communities could be compressed in alternative ways, as shown here. In the implementation of the
next section, 3-clique communities will be compressed greedily (the largest will be compressed first,
as in the right path which leaves three nodes). Note that such a choice is not necessary in two
dimensions, wherein 2D-RGC-5 need not distinguish whether a node represents a rod or a larger
rigid body (giving that any adjacent 3-clique communities are mutually rigid). An observation
related to this problem is that the middle node—that shared by both 3-clique communities—is rigid
with respect to either 3-clique community, but the algorithm of 3D-RGC necessitates that it be
identified as being part of a single rigid component only.

One more detail is used for computational purposes—as in the two-dimensional case, each rod

in a three-dimensional rigid component (containing nr > 1 rods) trivially must have at least two

contacts. In the language of graph theory, rigid components (of more than one rod) are therefore

contained only in the 2-core of the contact graph. Therefore, during initialization, 3D-RGC extracts

from the full candidate graph the 2-core subgraph, upon which rigid motifs are identified and

compressed. (This time-saving procedure ought have been implemented in the two-dimensional case
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as well, but it is certainly not as important to efficiency as in the study of Shi et al. 2014, which

considers sparser networks.) Furthermore, non-percolating nodes with degree 1 can be eliminated

throughout the identification-compression process (however, this does not seem to significantly

enhance the speed of the algorithm).

A reader at this point may wonder: why is there not a number at the end of 3D-RGC as in

2D-RGC-3,5? Because there is an exact method for two dimensional rigidity characterization, I could

equivocally show that 2D-RGC-5 exactly characterizes rigid components containing up to nr = 5

(actually 6 as shown in Sec. 3.5) individual rigid bodies. This is not the case in three dimensions—I

will show in Sec. 4.5 that the current version of 3D-RGC identifies all rigid components containing

≤ 5 rods but not necessarily all rigid components containing ≤ 5 rigid components (which may or

may not be axisymmetric).

4.4 Numerical experiments

4.4 Experimental design

A model fully true to the experimental system of nanoparticle packings would involve sequen-

tially packing fibers of some aspect ratio (with rejection in the case that they take up the same volume).

However, I assume for simplicity (and computational expediency) that this is not terribly significant

to capturing the statistical physics of rigidity (as in Shi et al. 2014 as well as other simulation-based

studies). Future study could verify this assumption, using a grid-based random sequential adsorption

process akin to that of Viot et al. (1992). Such an approach, which is implemented for study of

contact percolation by Berhan and Sastry (2007), would also require a distinction between the radius

of impenetrable volume and that of particle interaction. Instead, I simply modify the measure of

measurement of volume fraction φ from the raw geometry-free assumption to Balberg’s formula (for

sphereocylinders of unit length):

φ = 1− exp

(
−
nrπ(γ2

r + 4
3γ

3
r )

L3

)
, (4.13)

where nr is again the number of rods (Balberg, 1986). Note that because this volume is used to

generate the contact network via intersections of the individual spherocylinders—it is not equivalent

to the volume fractions measured in the experiments discussed in Ch 1. In the latter case, φ only
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includes the volume composed of the particles themselves, which is necessarily lower than the

effective volume fraction measure considered here.

As in Sec. 3.4, unit length rods (spherocylinders) are placed with uniform position and orientation

into a cubic volume of length L. However, boundary conditions are slightly modified to allow for

more accurate density measurement. That is, periodic boundary conditions are implemented in all

three dimensions (as opposed to the scheme used in two dimensions). All experiments are performed

at one aspect ratio ζ = 1/(2γr) = 50, while domain box size is varied such that 5 ≤ L ≤ 10. At

each box size, I generate an ensemble of configurations at ∼ 20− 50 different volume fractions. The

number of configurations per volume fraction and domain size varies between 20− 100, depending

on L and φ. From each configuration, I find the contact network representation using a tree-based

search (as in two dimensions), and then implement 3D-RGC.

In order to explicitly check for the presence of a spanning rigid component within a configuration,

I must first define such a component explicitly. First, a spanning component may be defined as in two

dimensions. In this definition (I), I consider the upper and lower ends of the simulation box (in one

dimension, say the x dimension) to be rigid plates, and define a spanning rigid component as a rigid

component containing these two plates. Computationally, checking for this spanning component

amounts to connecting each node which touches the lower (upper) x-boundary to a lower (upper)

x-boundary node, and then searching for a rigid component containing these two boundary nodes

after implementationof 3D-RGC. In order for this criterion to be nontrivial, rods touching the lower

boundary must be dissociated from their periodic duplicates on the right boundary and vice versa.

As a simple alternative, I consider a second definition wherein a spanning rigid component simply

contains rods which touch both boundaries along the x-dimension (II), and also study the behavior

of the relative size of the largest rigid component (III), which could also be used to define a spanning

rigid component.

One may be tempted to suppose that any rigid component defined as spanning by (I) is also

spanning by (II). However, in many simulations, rigid components are instead identified by (I) and

not by (II), as the highly connected boundary nodes tend to template growth of rigid components

throughout RGC (see Fig. 4.4). While there are certainly configurations with spanning rigid compo-

nents by definition (II) but not (I), these were never observed in the simulations of this study (some

were found at L = 1).

51



Rigidity Percolation by  
Def. III but not by Def. I

x
x

xx

x

x

x
x

x

Rigidity Percolation by  
Def. I but not by Def. III

x

x
x

x
x x

x

x
x

x

x

x

xx

Spanning by  
Def. (I) but not by Def. (II)

Spanning by  
Def. (II) but not by Def. (I)

1.2

-0.4

-0.2

0

1.4 1

0.2

0.4

0.6

z

0.8

1.2

1

1.2

0.81 0.60.8

x

0.6 0.4

y

0.4 0.20.2 00 -0.2 -0.2-0.4

Figure 4.4: Differing definitions of rigidity percolation. Top: Two rod dispersions contain rigid
components that are identified as spanning by either definition (I) or (II) but not both. In the left
configuration, the boundaries template growth of the rigid component, which is spanning according
to definition (I). Only the triangle of touching rods is identified as rigid if the boundary nodes are not
present, and because this triangle intersects only the right boundary, it is not spanning according to
(II). In the right, the entire component is rigid without the boundary nodes. Because the component
intersects both boundaries, it is rigid according to definition (II). However, if boundary nodes were
introduced, this component would be singly connected to each boundary node and thus would not be
identified as spanning by (I). The case of the left panel (II but not I) occurs with far greater frequency
in simulation (see Fig. 4.6). Bottom: If boundary nodes are introduced as in definition (I), 3D-RGC
identifies two components in the initial 3-clique community compression—these are the magenta
rods in one component, and both the red and black rods together in one component. The latter
component is a 3-clique community only if the boundary node is included—it fragments into the red
triangle of rods (one 3-clique community) and assorted rods if the corresponding boundary node is
not included. Consequentially, this configuration (including ∼ 90 rods excluded from this depiction
for clarity) is identified as having a spanning rigid component according to definition (I) but not (II)
after full implementation of 3D-RGC.
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4.4 Results

Interestingly, results indicate that at finite L, πI(φ,L) ≥ πII(φ,L) for all φ (with the bound

being proper for φ ≤ φmin,II ), and that the largest rigid component becomes giant alongside the

formation of a spanning rigid component according to II (see Fig. 4.5). However, the finite-size

scaling analysis to follow seems to indicate that the three rigidity percolation thresholds may be

equal (i.e. φmin,I = φmin,II = φmin,III
.
= φmin), though more samples are needed to show this

unequivocally.

I conduct finite size scaling analyses to find the rigidity percolation thresholds (I and II) and

associated correlation parameters using exactly the same procedure as that used in the previous

chapter, assuming here that φ(φ,L) = Π([φ − φmin]L1/ν), for some function Π and the rigidity

percolation threshold φmin (according to either of the definitions). For each domain size L, I fit a

cumulative logistic distribution to the set of values πII(φ,L) and estimate ∆φmin(L), the variance

of the rigidity percolation window in terms of volume fraction, as well as φx(L), the probability

distribution defined by πII(φx(L), L) = x for x = 0.2, 0.4, 0.6, 0.85 (see Fig. 4.6). Using these

fits, I determine ν by fitting a relationship between ∆φmin and logL according to the scaling

relation of Eq. 3.15. I attain that νI
.
= 0.728 with 95% confidence intervals of (0.223, 2.04); and

that νII
.
= 0.978 with 95% confidence intervals of (0.745, 1.29). Then, I use Eq. 3.16 to find that

φmin,I
.
= 0.0604 with 95% confidence intervals of (0.0603, 0.0607); and that φmin,II

.
= 0.0603

with 95% confidence intervals of (0.0600, 0.0607). Large confidence intervals suggest certain points

are undersampled. For simplicity, I omit a finite size scaling analysis of πIII in this study.

As noted in Sec. 4.3, the results of 3D-RGC are subject to the ordering of motif compression.

In order to determine the significance of this somewhat unfortunate observation, I conduct rigidity

analyses on the same configurations using repeated implementations of 3D-RGC (with randomized

motif compression orderings). Implementing 3D-RGC five times upon the same 10 configurations

for all 46 different volume fractions at L = 6, I find no instances in which 3D-RGC finds differing

results according to I or II based on compression. In three of these 460 total runs, the size of the

largest component varies slightly, with differences no greater than 0.02 (relative to the number of

rods in the configuration).
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Figure 4.5: Rigidity Percolation as Measured by Three Definitions. While the rigidity
percolation threshold corresponding to definition I is be lower than that corresponding to II for any
finite L, these thresholds seem to converge as L→∞ (see Fig. 4.6). The dependence of the relative
size of the largest rigid component on L and φ seems to be similar to that of πII .

4.4 A note about computational efficiency

I have largely spared the computational details of motif-finding in this documentation. However,

in order to identify any of the motifs of size nr > 3, I rely on the well-known graph-theoretic

property that the number of paths of length k between two nodes i and j is given by Akij , the i, j entry

of the kth power of the adjacency matrix, A. In particular, identification of Motif 3D4A involves

finding instances in which two adjacent nodes are connected (in addition to the edge between them)

by two paths of length 2. (Further checks on ‘rods in node’ and on whether the involved edges are

rod-sharing are also performed in accordance with the motif’s hypotheses.) As well, identification of

instances of Motif 3D2A and 3D2B involve construction of the (weighted) adjacency matrix, and

querying for entries of appropriate size. Identification of these motifs at any stage thus involves

forming a contact graph’s (weighted) adjacency matrix, (sparse) matrix multiplication, and finding

certain entries in the resulting matrix. These operations are rather slow in Python’s NetworkX library

(Hagberg et al., 2008), presumably because it stores graphs using edgelists rather than with sparse

matrices. Indeed, I find that identification of instances of Motif 3D4A can be as much as 40 times
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Figure 4.6: Finite-size scaling analysis (top) and data collapse (bottom) for rigidity percolation
as measured by (I) and (II). Using the standard scaling analysis of Stauffer and Aharony (1992), I
find that πI(L) = ΠI([φ− 0.0604]L1/0.728) and that πII(L) = ΠII([φ− 0.0603]L1/0.978).
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faster in MATLAB than in NetworkX for networks generated from dispersions of size L = 9. It may

be worthwhile to rewrite this code in a more amenable language for future study at larger domain

sizes (keeping in mind that some functionality in Networkx, for example the use of multi-graphs,

will perhaps be lost). As shown in Fig. 4.7, the computational time of the current implementation

scales as L7.9 or V 2.6 (though the accompanying constant is rather low)—this implementation also

requires significant memory allocation.
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Figure 4.7: Scaling of 3D-RGC as currently implemented. Computational efficiency could surely
improved, but the current implementation is sufficient for deducing the rigidity percolation threshold
at the studied aspect ratio.

4.5 Accuracy of the rigidity percolation threshold estimation

The previous section attains an upper bound for the rigidity percolation threshold of disordered

3D fiber systems (with uniformly random position and orientation). However, none of this analysis

is sufficient to determine how close this bound is to the actual rigidity percolation threshold. With

further effort, it would be easy but tedious to identify and prove more rigid motifs in this 3D system.

However, the more important task is to determine some measure of accuracy. Here, I outline some

methods for demonstrating the convergence of 3D-RGC’s φmin estimation to the true threshold.

First, I construct graphlets of size up to nr = x for x ≤ 7, and—interpreting these graphlets

as rod contact networks—I classify them as either rigid or not (as in Sec. 3.5). However, this is

less powerful here, owing to the difference of scales between rods and non-linear rigid components:
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showing that 3D-RGC exactly characterizes the rigidity of components containing up to x individual

rigid bodies is more ambitious than stating it does so for components containing up to x rods.

Nonetheless, I am able to identify candidate rigid motifs—composed of single rods or of other rigid

bodies—using this approach. Along with implementing 3D-RGC, I compute whether or not the

graph satisfies the global Maxwell counting rigidity condition as applied to 3D fiber systems with

hinge-like contacts (Connelly et al., 2009):

5|V | − 6− 3|E| ≤ 0, (4.14)

where |V | is the number of nodes (rods) in the graphlet and |E| is the number of edges (contacts).

I also classify which graphlets are contained within their 2-cores. As both of these conditions are

necessary but not sufficient conditions for rigidity, I use these to identify candidate rigid motifs,

finding that 3D-RGC identifies all candidates for nr ≤ 5. Nine graphlets of size |V | = 6 are

identified as rigid candidates via the 2-core/Maxwell condition (see Fig. 4.8). While 57 graphlets of

size |V | = 7 are identified as rigid candidates, all but 24 of these contain one of the nine |V | = 6

graphlets as subgraphs. Furthermore, among the nine |V | = 6 candidates, I identify only two of

these as rigid (by computing their corresponding rigidity matrices—such analysis is excluded here).

Future work involves distinguishing which |V | = 7 candidates are truly rigid (‘true positives’) from

those which are not (‘false positives’), and furthermore exploring whether this analysis can recover

any motifs that act on larger rigid bodies, rather than solely on rods.

Ideally, it would be useful to develop a method (in addition to 3D-RGC) which exactly charac-

terizes rigidity percolation for small dispersions. A candidate for this method is the spring-based

optimization routine discussed in Sec. 2.2.4. However, this method suffers from considerable numeri-

cal instability in three dimensions. Notably, in analysis of small L < 2 systems, I find no cases in

which the spring-based method identifies a larger rigid component than does 3D-RGC (yet many

in which this method does not identify the largest rigid component, due to this aforementioned

instability).

Given the instability of applying a spring-based method to this system, the most hopeful determi-

nation of accuracy for 3D-RGC probably lies in use of the graphlet-based analysis described above.

Having determined the accuracy of 3D-RGC-x up to some number of components x, I can reasonably
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claim that if the difference between the rigidity percolation thresholds as found via 3D-RGC-(x-1),...,

approach that of 3D-RGC-x, then the number of motifs incorporated into 3D-RGC-x is likely suffi-

cient (begging a very informal comparison to Cauchy convergence). The closeness of the rigidity

percolation thresholds attained by 2D-RGC-3 and 2D-RGC-5 motivates this approach.
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Figure 4.8: Graphlet-based analysis of the accuracy of 3D-RGCLeft: The sufficient but necessary
algorithm 3D-RGC identifies as rigid all those graphlets containing at most 5 vertices (i.e. nr ≤ 5),
which both satisfy the Maxwell counting condition (Eq. 4.14) and the requirement that a rigid graph
is contained in its 2-core. These latter two conditions are necessary but not sufficient for rigidity—9
graphlets of size |V | = 6 (signifying nr = 6) and 57 of size |V | = 7 meet these latter conditions but
are not classified as rigid by 3D-RGC. Of these 57, only 24 do not contain one of the former |V | = 6
candidate motifs as a subgraph, and thus merit consideration. Right: Upon further inspection, two of
the |V | = 6 graphlets are rigid when viewed as rod contact networks—the other seven satisfy 4.14
and are contained in their 2-cores but are nonetheless floppy.

4.6 Maxwell prediction

As noted in Sec. 2.2.1, the Maxwell prediction of the rigidity percolation threshold is quite

low relative to the true threshold in two dimensional fiber networks. In three dimensions, a similar

derivation reveals that Maxwell counting in three dimensions predicts that the rigidity percolation

threshold occurs when the average number of contacts per rod or mean contact number 2Nc
nr

reaches

10/3. Previously, it has been derived that for long rods (such that L >> γr), the mean contact

number scales approximately linearly with volume fraction (Philipse, 1996):

< 2Nc/nr >= φ
L

2γr

[
8
L

γr
+

3L/(2γr)

3L/(2γr) + 2

]
. (4.15)

Setting this equation equal to 10/3 gives φmin = 0.0637, an unexpected overprediction of φmin. I

offer two explanations for this effect. First, the random contact equation seems to slightly overpredict
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Nc in the simulated dispersions (see Fig. 4.9). Second, in many studies it is common to first remove

any unbonded particles from the system before applying the Maxwell count (Huisman and Lubensky,

2011). As there is no analytical expression for the number of contacts with degree ≥ 1, I simply

plot the rigidity percolation probability πII(φ,L) against φ (Fig. 4.9) and find that the threshold is

apparently very close to 10/3 (more analysis should be undertaken to give an explicit prediction).

Given that a spanning rigid component must be contained in the two-core, I also plot this percolation

probability against the within-2-core mean contact number. This latter calculation suggests that the

critical contact number within the 2-core is greater than 10/3, which shows that there are still many

redundant contacts at the onset of rigidity percolation (though certainly less than was the case in two

dimensions).
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Figure 4.9: Comparison of Maxwell prediction with observed rigidity percolation threshold.
Left: The rod contact equation seems to slightly overpredict the mean number of contacts per rod in
these simulations (only one box size is used in this graphic, but symbols overlap completely when the
six sizes are included). This overprediction may be either the result of some slight approximations
used in the employment of periodic boundary conditions, or of correlations between contacts not
considered in the equation’s derivation. Right: Curiously, the Maxwell prediction 2Nc/nr = 10/3
seems to be quite accurate only when the degree zero nodes are not included in this calculation.
Information from all six box sizes is used in this box (with colors corresponding to those of Fig. 4.5).
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CHAPTER 5: CHARACTERIZATION OF NANOCOMPOSITES WITH INTERFACIAL
CRYSTALLINE GROWTH

I beheld the wretch—the miserable monster whom I had created. He held up the curtain
of the bed; and his eyes, if eyes they may be called, were fixed on me. His jaws opened,
and he muttered some inarticulate sounds, while a grin wrinkled his cheeks. He might
have spoken, but I did not hear; one hand was stretched out, seemingly to detain me, but
I escaped and rushed downstairs. I took refuge in the courtyard belonging to the house
which I inhabited, where I remained during the rest of the night, walking up and down
in the greatest agitation, listening attentively, catching and fearing each sound as if it
were to announce the approach of the demoniacal corpse to which I had so miserably
given life. ∼ Victor Frankenstein

5.1 Overview

At this point of the dissertation, I turn from an abstract perspective on nanocomposites’ me-

chanical properties towards study of real materials and laboratory data. In particular, I use two

different approaches to characterize the geometry of the nanocomposite of interest; and then use

network analysis of simulated rod dispersions (as in the rest of this dissertation), in order to assess

the nanocomposite’s mechanical properties.

The system I consider in this chapter is rather complex—rather than being a two-phase nanocom-

posite in which nanoparticles are dispersed in polymer, this nanocomposite contains a third phase

formed by polymer crystallizing around nanoparticles. Precise details are available in associated

experimental publications (Hegde et al., 2013, 2014, 2015; Hegde, 2014), but I will briefly describe

the system in the following subsection.

5.1 Description of experimental system

In the experiments of interest, a nanocomposite with promising thermomechanical properties

is synthesized in two main steps. First, single-walled carbon nanotubes (SWCNTs) are dispersed

by probe sonification in solvent (N-Methyl-2-pyrrolidone, or NMP) until absorbance values plateau

(indicating maximum exfoliation), at which point the mixture is subjected to three more hours of

sonification under a bath. The relatively linear poly-imide (PEI) ODPA-P3 (see Fig. 5.1) is then

stirred into this intermediate, which undergoes in-situ polymerization for 24 hours. In the second step,
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the nanocomposite is subjected to film casting, vacuum drying, and thermal imidization according to

established protocols for preparation of the final ODPA-P3 SWCNT nanocomposite film.

This carefully prepared nanocomposite is notable for containing highly ordered interface around

dispersed SWCNTs, as observed via X-ray diffraction and transmission electron microscopy (while

their having only one wall may be important, SWCNTs are from this point forward simply referred to

as CNTs). Indeed, this is the only studied composite in which the host polymer depends on the CNTs

for crystallization. Other polymers have been observed to crystallize around CNTs, but such polymers

do not require CNTs for nucleation as does ODPA-P3. As a result, the nanocomposite has impressive

mechanical properties that persist over a wide temperature range. Specifically, property measurements

indicate that nanocomposites containing CNT volume fractions 0.001, 0.003, 0.006, and 0.012

have broad industrial appeal. Experimentalists have synthesized higher loadings as well, but the

resulting composites are brittle and lack the desirable properties of these sparser nanocomposites.
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Figure 5.1: Favorable interactions between the polyimide and CNTs give rise to a third phase
of crystal coating. The principal ingredients of the nanocomposite of interest are the amorphous
polyetherimide 3,3’,4,4’-oxdiphthalic dianhydride (ODPA-P3), shown left—and single walled
carbon nanotubes (SWCNTs), shown right.

5.1 Modeling goals

The goal of this modeling is to better understand the microstructural mechanism responsible

for the ODPA-P3/CNT nanocomposite’s measured high performance properties, and to guide future

experimentation. This latter goal may be broken into parameter optimization (i.e. pinpointing the

highest promise CNT volume fraction), and qualitative analysis (i.e. understanding the property

implications of improving dispersion quality). Whereas experimentalists have extensively character-

ized the nanocomposite’s mechanical and thermomechanical properties, each of which is of interest

to potential applications, this study will focus on just a few specific, temperature-fixed material

properties (italicized below). The rest of this chapter is organized as follows.
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First, in Sec. 5.2, I use a statistical/probabilistic modeling approach to relate the observed

crystallinity to the input volume fraction of CNTs, and furthermore use these results to predict

elastic modulus using well-established homogenization techniques (elastic modulus measures the

material’s elasticity, and is equal to the stress/strain ratio at low deformations). Then, in Sec. 5.3,

I further explore the relationship between CNT volume fraction and crystallinity by developing

a simple discrete characterization scheme for CNT dispersions of varying spatial distribution. In

Sec. 5.4, I consider the network properties of homogeneous and heterogeneous CNT dispersions,

and explore a network-based hypothesis which accounts for observed stress-strain measurements.

While there doesn’t seem to be a clear relationship between the CNT concentration and tensile stress,

the material has the most desirable stress-strain behavior at the lowest CNT concentration studied

(volume fraction 0.001). This can be seen by measurements of % elongation at break and toughness

(area under the stress-strain curve) for the different CNT loadings.

5.2 Geometric characterization of CNT-facilitated crystallinity

In this section, I attend to purely geometric considerations in studying crystalline growth around

dispersed CNTs. The central assumption of this chapter is that crystal grows radially up to some

thickness γmax around the nucleating CNTs (of radius γc), but this growth is impeded by the

condition that crystalline layers from two or more CNTs cannot occupy the same space. While

this latter condition is a truism, the assumption represents an admittedly very simple picture of

semicrystalline composites—the inherent physics are much more complicated, and it would be

useful to reconcile the results of this analysis with a more physics-based modeling effort of the

crystallization, but such work is beyond the scope of this study. Nonetheless, I suspect this assumption

is sufficient for understanding global properties—it is consistent with the tendency of semicrystalline

nanocomposites’ inclusions to efficiently promote crystallization at low volume fractions and for this

efficiency to taper with increasing volume fraction (Laird and Li, 2013).

5.2 Probabilistic modeling

If no crystalline layers overlap, and each grows uniformly to some thickness γmax, it is quite

simple to relate crystallinity Vcrys to γmax and φc (the volume fraction of CNTs with non-varying

radii γc and length `):

Vcrys = φc

[(
γmax + γc

γc

)2

− 1

]
, (5.1)
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under the assumption that ` � γc. In real materials, ` and γc may be distributions rather than

constants, and this equation—which I refer to as the unimpeded growth model—may be modified

to account for this using a probabilistic argument (in this entire dissertation, I assume this effect is

not greatly significant and that CNTs as well as their associated crystalline layers may be treated

as monodisperse). One can then measure crystallinity for dispersions of different CNT volume

fraction, and use the linear dependence of Eq. 5.1 on φc to estimate γmax (Coleman et al., 2004;

Hegde et al., 2013). Here, I use the condition that two cylinders cannot occupy the same space

to modify Eq. 5.1—this basically amounts to Balberg’s formula (used in Eq. 4.13). Whereas I

previously used this formula to account for the effect of nonsequential rod packing on rod volume

fraction, the formula derives from a probabilistic argument used to determine the total expected

surface-enclosed volume (Vcrys + φc here) in a random packing of fully penetrable surfaces with

uniform shape as well as uniformly random position and orientation (Balberg, 1986). The stated

condition above assumes that the crystalline layers are instead impenetrable, in that one crystalline

layer cannot occupy another’s excluded volume. However, as would-be multiply-occupied volumes

do not contribute to Vcrys, this problem is essentially equivalent to Balberg’s. In this scenario, the

bare CNTs ought be sequentially packed prior to crystalline growth, but I assume this effect is small

as Vcrys � φc in all of the experimental measurements. Hence, using measured values of Vcrys and

φc, I am able to estimate γmax by fitting this data to a slight modification of Balberg’s equation,

which I refer to as the homogeneous geometric model:

Vcrys = 1− exp

[
−φc

(
γmax + γc

γc

)2
]
− φc. (5.2)

While this equation presents a more sophisticated geometric model than does Eq. 5.1, it is still quite

crude. In particular, this model assumes that the CNTs are both uniformly dispersed and isotropically

oriented. In real nanocomposites, dispersions are imperfect and optical microscopy images illustrate

a very spatially heterogeneous distribution of CNTs (Fig. 5.2).

As a first approach, I modify the homogeneous geometric model of Eq. 5.2 to reflect the

hypothesis that CNTs are clustered entirely within a fractional volume vc = f(φc) of the material’s
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domain (the confinement model):

Vcrys = vc

{
1− exp

[
−φc
vc

(
γmax + γc

γc

)2
]}
− φc ; (5.3)

vc = kφc, (5.4)

for some constant k. Furthermore, the second equation constrains this fractional volume vc(φc)

to scale linearly with φc. Therefore, the local concentration of CNTs (φc/vc) within the occupied

volume is set as a constant for all φc (clearly, vc ∈ (0, 1]). While I note that my study is certainly not

the first to consider the implications of CNT aggregation in polymer nanocomposites (see e.g. Ma

et al. 2017), such effects have perhaps not received due theoretical attention. Spatial heterogeneity in

this class of materials is difficult to model, but an understanding of its effect would undoubtedly be

very useful to guiding future experimentation.

In order to inverse predict γmax (and vc for the confinement model), each of these simple

crystalline growth models is fit to experimental crystallinity results using a standard least squares

optimization routine (these crystallinity measurements are obtained via the standard wide angle

X-ray scattering protocol, as noted in any of the previously cited Hegde references). The predicted

crystalline radius increases with model complexity (γmax = 2.5, 3.0, 3.5 nm for the unimpeded

growth, homogeneous geometric, and confinement models, respectively), as seen in Figure 5.3–

left. Unsurprisingly, the two parameter confinement model (with selected local concentration

φc/vc = 0.0175) prediction gives the lowest residual sum of squares. Generally, more than four

points ought be used for training of any model—however, the confinement model seems to fit the

data reasonably well. The point corresponding to the lowest CNT loading has the highest residual

for each model. As noted in Sec. 5.4, the behavior of this nanocomposite seems to have different

properties than the other three, and it may be inappropriate to assume it follows the same crystalline

growth model.

Finally, I use these crystalline growth models to predict the bulk Young’s modulus Ebulk as a

function of γmax for the four composites of varied CNT loadings, using the random fiber Halpin Tsai
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equation (Affdl and Kardos, 1976; Coleman et al., 2005):

Ebulk =

[
3

8

(
1 + ζηL(Vcrys + φc)

1− ηL(Vcrys + φc)

)
+

5

8

(
1 + 2ηT (Vcrys + φc)

1− ηT (Vcrys + φc)

)]
Em (5.5)

ηL =
Ecomp/Em − 1

Ecomp/Em + ζ
ηT =

Ecomp/Em − 1

Ecomp/Em + 2
, (5.6)

where ζ = `n/γc = 2000 is the CNT aspect ratio, Em = 2.6 GPa is the experimentally measured

Young’s modulus of the pure PEI, and Ecomp = 10.4 GPa is the Young’s modulus of the CNT-

containing PEI crystal complexes (Hegde, 2014). This two-body modulus prediction seems to

perform reasonably well in comparison to experimental measurements of Hegde et al. (2013) (see

Fig. 5.3–right). However, as above, the prediction at the lowest CNT loading seems to be less

accurate than those of the other loadings.

The differences between each of the three crystalline growth models at any given CNT loading

has an interesting materials engineering interpretation. Under the assumption that CNT agglomeration

and spatial crowding of crystalline layers are the limiting factors to crystallinity, the gap between

the prediction of the homogenous growth model and that of the confinement model (in Fig. 5.3)

represents the maximum possible gain in crystallinity and elasticity, were the CNTs to be uniformly

dispersed. While each of these models are quite crude, such maximum possible gains might be

considered in future experiments when weighing the consideration of dispersion quality.

5.3 Discretized geometric characterization

The models of the previous section apply probabilistic methods to the task of predicting crys-

tallinity from radial crystalline growth (or the inverse problem). In this section, a different, discretized

approach is used to predict crystallinity from radial growth in any given simulated CNT dispersion.

While it will be shown that the homogeneous geometric model considered above agrees very strongly

with the discretized method considered here (for uniformly random CNT dispersions), this latter

method has some advantages for future applications, in that it may be modified for different, and

perhaps more accurate CNT dispersion models than that considered in the confinement model. Fur-

thermore, it may be used to approximate to any desired accuracy the exact locations of crystalline

layer in a simulated dispersion (which could be used for a finite element or other discretized approach

in related modeling, should that be desired).
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Figure 5.2: Observed CNT agglomeration guides simulation-based study. Left: On account of
Van der Waals attractions, chemical bonds, and impurities, CNTs tend to agglomerate—while
sonication and other procedures are frequently used to disaggregate them, it is highly difficult to
attain a dispersion that can be considered anything close to uniform. The film shown in this optical
microscopy image corresponds to the study introduced in Sec. 5.1.1 and discussed throughout this
chapter. Here, PEI is shown to crystallize around CNTs of concentration φc = 0.001 (Figure adapted
from Hegde et al. 2013). Right: In order to mimic the CNT/crystal distribution observed in
microscopy, a simple spatial model (the Matérn process of Sec. 5.3.1) is used to generate clustered
rod dispersions.

Given any dispersion of rods in a cubic domain of size L3, it is simple but tedious to determine

the entire volume that is within some radius γmax + γc of the rods’ central axes. There are two

approaches for this type of brute force calculation. One could find the volume within γmax + γc

distance of any rod’s central axis, checking for overlapping regions simultaneously and discounting

these. In a dilute dispersion, this might be the most efficient solution. However, in denser packings, a

less rod-centered approach is perhaps more sensible. The basic approach of this method is to divide

the space into cubic voxels, and identify all voxels which fall within γmax + γc distance of any rod’s

central axis. While the computational expense of this method necessarily grows cubically with the

size of the domain box, the routine may be parallelized immensely.

First, the cubic domain is divided into cubic subdomains of size L3
s containing a sufficient but

tractable number of voxels of size L3
v (as with any parallelization, there is a tradeoff between the

number of cores/CPUs used and computational time per CPU). Then within each cubic subdomain,

a procedure (commonly used in video game design) is used to check which rods (line segments)

intersect the cube, and then to determine the rod endpoints which are local to the subdomain. If a rod

has an endpoint in a cubic subdomain, then this endpoint is a local (and global) endpoint; if not, the
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Figure 5.3: Statistical fitting results for various models of crystalline growth about CNTs. Left:
Three simple models (indicated by line style) are used to predict total crystallinity for four different
CNT loadings (indicated by color) as a function of maximum radial crystalline growth γmax. For
each value of φc and γmax, there is an obvious ordering of Vcrys predictions (the unimpeded growth
model predicts the greatest crystallinity followed by the homogenous geometric model and then by
the heterogeneous crystalline model). Experimental measurements of crystallinity (Hegde et al.,
2013) as a function of φc are fit using each model to inverse predict γmax—the predictions of the
three models are γc + γmax

.
= 3.0, 3.5, 4.0 nm for each of the respective models, as indicated by

vertical lines. Right: The simple models are here used to predict Young’s modulus as a function of
radial crystalline growth for the four different CNT loadings considered experimentally. No fitting of
the displayed experimental data is undertaken. Rather, the vertical lines correspond to the inverse
predictions of γmax given in the left figure.

local endpoint is its intersection with the surface of the cubic subdomain. Then, all of the rods within

the subdomain are discretized into a point cloud and a K-dimensional tree (or KD-tree) is formed to

cluster the spatial locations within this point cloud efficiently. In the rod discretization step, a rod’s

central axis is discretized into n` evenly spaced points. Then, the (Ls/Lv)
3 voxels’ centroids in the

subdomain are treated as a second point cloud, and a large calculation is performed to determine

which of these points are within γmax + γc distance from any of the points of the subdomain’s rod

point cloud. This latter procedure is implemented for all subdomains to find the positions of all

crystalline/CNT-occupied voxels, the number of which can be simply divided by the total number of

voxels in the domain (= L/Lv)
3 to attain the fraction of space occupied by both CNTs and crystal

(Vcrys + φc).

Both n` and Lv are parameters which control the accuracy of the total calculation. In particular,

as n` becomes large, these points along the rods’ central axes become finely packed together so that

any points falling within γc + γmax of the rod point cloud are counted as occupied by crystal or
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Figure 5.4: Basic approach of discrete geometric characterization scheme Left: In this 2D
schematic of the discretized geometric characterization approach, CNTs (fuzzy) are first discretized
into n` evenly spaced points apiece along their central axes (the local endpoints must also be
selected). Then, a KD-tree is used to determine which voxels (squares) have centroids within some
radius γc + γmax of the rod point cloud (teal circles represent the coverage of this point cloud).
Voxels identified as occupied are here marked as red-bordered squares, while the others have black
border. Note that some voxels that are counted vacant may have some volume within the
crystal/CNT-occupied regions, while some counted occupied have some volume not within such
regions–the fineness of the approximation is controlled by `n and Lv. Right: In this 3D realization,
voxels identified as occupied are denoted by red points, which surround their nucleating CNTs.

rod. In the limit n` →∞, the intersection of balls of radius γc + γmax converge to their containing

cylinder. However, as n` is increased, less points are contained in rod point cloud and the routine

becomes faster, but certain regions of the domain that are within γc+γmax distance from the rods are

not identified via the procedure (see Fig. 5.4). Calculus can be used to determine the exact fraction A

of the enclosing cylinder that is occupied by n` intersecting balls of some radius γ:

n`(4πγ
3/3)− (n` − 1)π/12(4γ + `/n`)(2γ − `/n`)2

4πγ3/3 + `πγ2
= A. (5.7)

In the experiments discussed below, n` is chosen such A ≥ .9995. Lacking theoretical justification

for any particular choice of Lv, I show in Fig. 5.5–left that the crystallinity calculation converges as

Lv becomes small (I choose Lv = 2 nm in the below experiments).

Using the approach described above, I predict the crystallinity as a function of γmax in uniformly

distributed CNT dispersions at the four different CNT loadings considered in the modeling of

Sec. 5.2.1, as well as two higher density loadings. At each CNT loading, I implement the discrete

characterization technique on five sampled CNT dispersions apiece (for a total of 30 samples).

Because the main time-intensive step in each run is generation of the KD-trees, it is easy to estimate
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Vcrys using many values of γmax—here, I choose eight. As can be seen in Fig. 5.5–right, the

homogeneous geometric model of Sec. 5.2.1 agrees very closely with the results of this discrete

approach at every value of γmax and φc.
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Figure 5.5: Accuracy of discrete geometric characterization Left: Estimations of crystallinity
converge as Lv → 0—treating the calculation with Lv = 0.5 nm as ground truth, I calculate the
percent error for varying γmax in characterization routines wherein the chosen voxel size varies
between 50 and 1 nm. For the rest of the simulations in this study, I balance accuracy and efficiency
in choosing Lv = 2 nm. Right: When implemented on CNT dispersions of uniform position and
orientation (with periodic boundary conditions), the discretized geometric approach agrees strongly
with the homogeneous geometric model. Error bars are not shown here but standard deviations
(across the five different samples per point) are smaller than plot symbols.

5.3 Models for heterogeneous CNT dispersions

In Sec. 5.2, I introduced a very simple statistical model (Eq. 5.4) reflecting observed spatial

heterogeneity of CNT/crystal complexes. This model assumes that all stiffening phase (φc + Vcrys)

is contained in a fractional volume of the material’s domain. This idealization is simple, and whereas

it may be sufficient for relating crystalline growth to bulk crystallinity, it cannot fully reflect the

complex spatial heterogeneity of the studied nanocomposite. Capturing this spatial heterogeneity is a

challenging problem and one of the key challenges in this research direction (which I discuss further

in Ch. 6). Here, I consider two very simple Poisson cluster processes for computationally simulating

heterogeneous dispersions that attempt to mimic the empirically observed CNT aggregation.

There is a slight vocabulary challenge in defining such heterogeneous dispersions. When I

have thus far referred to heterogeneous dispersions, I mean that the distribution of rod placement

is nonuniform. However, if these rods are to be centered in clusters, the distribution may not be
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uniform but still statistically homogeneous if these clusters themselves are placed according to a

random uniform distribution. A thorough treatment of spatial statistics in materials modeling is given

in Torquato (2002). In this dissertation, I equate heterogeneity with nonuniformity, even though this

may be undesirable to the heterogeneous materials modeling community.

Poisson cluster processes refer to processes in which Poisson(λsL
3) ‘seed’ points are placed at

random within a simulation’s domain volume (λs is called the intensity of the point process). Then, a

probability distribution is used to determine the placement of the final ‘daughter’ points (rod centers,

in this case) around these seeds. In a Matérn process, this latter distribution is uniform, and the

Poisson(λd) daughter points are located within γM nm of the seed points. Given Poisson(λs), λd

is attained in order to give a predetermined expectation of φc. In concept, this process is similar to the

confinement model, which also considers rods to be uniformly dispersed in a fractional domain—but

in the Matérn process, only the CNT centers are confined to this fractional domain. Regions of

thickness `/2 around the seed balls also contain portions of CNT-crystalline volume. Additionally,

these clusters may overlap, and so the within-cluster concentration is not necessarily uniform. In

a similar model, termed a Thomas process, the rod center distribution is a multivariate Gaussian

distribution centered at the seed points (with some covariance matrix Σ). For a more in-depth study

of these clustering processes and others, see Buryachenko (2007).

As I will discuss in Ch. 6, a highly accurate computational rendering of the experimental system

likely requires a less restrictive model than the Poisson cluster processes, in addition to a statistical

learning algorithm to fit the model to data. Nonetheless, I can illustrate the effect of agglomeration

on crystallinity using the simple models discussed above. In the models of Sec. 5.2, it was relatively

easy to derive expectations for the volume of stiffening phase given the probabilistic argument

of Balberg. Attaining such an expectation from these cluster process models is far too difficult,

and so I use the discrete characterization scheme of the previous subsection to approximate this

expectation for φc = 0.001, 0.003 and varying γmax. I use the Matérn and Thomas processes to

generate these heterogeneous dispersions, varying γM as well as Σ accordingly. Specifically, Σ

is chosen such that the distribution is symmetric with variance σ2. In order to heuristically realize

the observation that the CNTs’ local concentration varies little for samples of different φc, I let

λs(φc = 0.003) = 3λs(φc = 0.001). Because the expected overlap between these clusters increases
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with the density of clusters, this condition is similar to but not quite equivalent to the relevant

condition in the confinement model (that φc/v is constant).

As can be seen in Fig. 5.6, the results of these heterogeneous dispersions sit between those of the

homogeneous and confinement models. Even though these clusters take up a relatively small portion

of the domain (especially when λs and γM/σ are low), given the implemented simulation parameters

they are never quite so low as the fitted values of vc at these volume fractions ( .= 0.057, 0.171 for

φc = 0.001 and φc = 0.003, respectively, as found in Sec. 5.2.1).
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Figure 5.6: Discrete geometric characterization of heterogeneous CNT dispersions Left: At
φc = 0.001 (left) and φc = 0.003 (right), the dispersion parameters λs and γM (if the process is
Matérn) or σ (Thomas) affects the calculation of crystallinity, as more clustered dispersions are
marked by crowding and less efficient growth. For each curve, data points represent averages of five
simulations and error bars represent standard deviations.

5.4 Network-based assessments for property characterization

In addition to predicting the composition of the PEI-CNT nanocomposite, simulated reconstruc-

tions of the system can be used for inferring network properties of mechanical significance. As noted

in the introduction to this dissertation, the impact of a giant rigid component may have different

interpretations depending on the nature of the inherent inter-particle interactions as well as of the

interactions between nanoparticles and polymer. In particular, interactions between two crystal-CNT

complexes in the system of Sec. 5.1.1 may be viewed as grain boundaries between overlapping crystal

domains (Hegde et al., 2013). A large part of this dissertation is aimed at supporting the hypothesis

that rheological or mechanical percolation occurs with the emergence of a large rigid cluster of

interacting CNTs in nanocomposites (see Ch. 1). In such systems, my work implicitly assumes that

the dominant contribution to mechanical reinforcement comes from CNT-CNT interactions rather
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than from CNT-polymer interactions. The internal stresses generated by crystal-crystal interactions

have the opposite effect, and the mechanical reinforcement of this system instead originates from

CNT-polymer (crystal) interactions.

The effect of a large rigid component (or even a large connected component) therefore does not

have a wholly beneficial interpretation regarding the nanocomposite’s bulk mechanical properties.

Considering the high experimental measurements of crystallinity, it is hard to envision that these

nanocomposites do not possess some regions in which contacting crystalline domains are ubiquitous—

yet these composites are nonetheless stable and even have considerable elongation at break. However,

being that the composite is composed largely of what has been termed secondary agglomerates

(Alig et al., 2012), inhomogeneous clusters of CNT-crystal complexes, these internal stresses may be

considered as localized.

In particular, an interesting experimental result is the observed advantage in toughness and

percent elongation (or strain) at break in the φc = 0.001 nanocomposites (Fig. 5.7). Whereas yield

strength does not show any clear dependence on CNT volume fraction, toughness and % strain both

peak at φc = 0.001 and then decline with φc (when φc = 0.044, the resulting nanocomposites are

too brittle to handle). Whereas the decline in these mechanical properties at high φc is expected, no

current theoretical model can be used to predict or explain these peaks at low φc.

This discussion begs the question of what mechanism leads to brittleness and fracture in the

semi-crystalline nanocomposite of interest. That is, what network property (if this can be captured

as a network property) differentiates stressed yet mechanically strong nanocomposites from brittle

materials of no practical use? I tentatively express that a tipping point occurs when the rigid

components containing internal stresses merge from secondary agglomerates into one globally rigid

component, which has no outlet with which to transmit internal stresses. Because more sophisticated

methodology is necessary to mimic the heterogeneity of experimental systems (as suggested in the

previous section), it is not in the scope of this work to fully engage this hypothesis. In this analysis,

I show (with an eye towards this hypothesis) how network properties are influenced by crystalline

growth within both homogeneous CNT dispersions and the simple Matérn process dispersions

introduced in Sec. 5.3.1.
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5.4 Numerical experiments

In the experiments of this subsection, I study the formation of connected and rigid compo-

nents in CNT dispersions as crystal grows about the CNTs. That is, I first simulate random

bare CNT dispersions (without sequential packing, as in other experiments of this dissertation)

and study the rigidity/connectivity of this relatively sparse network. Then, I vary the radius of

the crystal-rod complexes according to the results of Sec. 5.2—letting crystalline growth vary

(γmax = 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5 nm) about the bare CNTs (γ = 0.5 nm, ` = 1 µm)—and

performing the same analysis for each value of γmax. First, I perform this rigidity analysis upon

random homogeneous rod dispersions (uniformly random position and orientation as in the experi-

ments of Ch. 4). The results for this analysis in five simulations at which φc = 0.001 and φc = 0.003

are displayed in Fig. 5.8–top. Even when the CNTs are relatively sparse, increasing γmax in these

homogeneous dispersions facilitates the formation of a giant connected component at γmax ≤ 0.5

nm, and of a giant rigid component at

gammamax ≤ 2.0 nm in the φc = 0.001 dispersions. The bare rods are already connected in the

φc = 0.003 dispersions, but crystalline growth facilitates the formation of a giant rigid component at

γmax ≤ 1.0 nm in these denser packings.

As noted above, agglomeration certainly has an important effect on the composite’s network

properties. Reliable inference of these properties will ultimately depend on the accuracy of the

material reconstruction. Here I demonstrate the effects of crystallinity on network properties in a

simple heterogeneous simulation—namely, the Matérn process discussed in Sec. 5.3.1. In this simple

heterogeneous model, clusters have dense CNT concentration (while the rest of the volume is sparse)

and the number of within-cluster contacts can become very high when γmax > 0. Because rigid

graph compression of such highly connected networks is very time-consuming, I only consider a

rather small simulation size (L = 4). In order to avoid having a great amount of variance between

results at this small box size, rather than setting the density of clusters equal to Poisson(λs) in these

experiments, I simply fix the number of clusters in the domain. At φc = 0.001, I set this number to

be three, and then set at φc = 0.003, I set it to be nine (in accordance with the hypothesis that the

local concentration stays approximately constant across the different CNT loadings). I also set the

cluster radius to be γM = 700 nm for each dispersion.
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Again, analysis is carried out for five dispersions apiece with CNT concentrations φc = 0.001

and 0.003, and varying crystalline radius γmax = 0.0, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5 nm (Fig. 5.8–

bottom). In four of the five sparser dispersions, clusters form separate large but not quite network-

spanning connected/rigid components when γmax > 0 due to spatial separation of the clusters.

Because the number of clusters scales with volume fraction, lesser separation of clusters in the

φc = 0.003 case allows the clusters to join together into one giant connected (rigid) component for

γmax > 0.5.

These heterogeneous results indicate that the spatial separation of clusters determines whether

the CNT-crystal complexes form a globally rigid component, or whether they form an array of

secondary rigid components. As mentioned above, these results are somewhat contrived and more

sophistication is required to accurately capture the spatial heterogeneity of real material samples.

However, I note that if the hypothesized presence of a globally rigid cluster is indeed responsible

for brittleness, then the clustering of CNTs into these secondary agglomerates may actually have

mechanical benefits. Even at very low CNT concentration, the homogeneous dispersions form a

global spanning rigid component as γmax reaches experimentally relevant quantities—whereas this

is not necessarily so in heterogeneous dispersions. This hypothesis ought be considered in design

of new experiments, as better dispersion quality may not then be the best avenue for optimizing

mechanical properties.
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Stress-strain behavior of ODPA-P3 nanocomposites 

Figure 5.7: Experimental characterization of nanocomposite strength. Whereas experimental
data shows clearly that increasing CNT vol % (or volume fraction) gives a higher modulus, the
relationship between % CNTs and other mechanical properties are more complicated. In particular,
the toughness and % strain at break both peak at φc = 0.001 and then decline with higher CNT vol
%. Tensile strength measurements do not indicate any clear dependence on vol %. Figure reproduced
from Hegde et al. (2014).
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Figure 5.8: Network Characterization of Crystallization about Homogeneous and
Heterogeneous CNT Dispersions Top: As polymer crystallizes around CNTs, more contacts (red
line) facilitate the agglomeration of rod-crystal complexes into rigid components. First, the
complexes form a giant connected component and then as the crystalline layers expand a giant rigid
component. Each data point represents the average of results for five different simulations of rod
dispersions with random position and orientation (Left: φc = 0.001 nm, Right: φc = 0.003 nm).
Bottom: In clustered (Matérn) CNT dispersions (Left: φc = 0.001 nm, Right: φc = 0.003 nm), the
proximity of CNTs gives rise to even higher mean contact numbers. Each blue curve here represents
the rigidity analysis output of one simulation in which three clusters contain all CNTs in a 0.1%
dispersion. If the clusters are isolated, the network condenses into five separate rigid components.
Should these clusters intersect, these clustered rigid components may join into a lesser number rigid
components. In the sparser case, only one of these (small) dispersions condense into one rigid
component—but in the φc = 0.003 case, less spatial separation between clusters allows these
clusters to join into just one (rigid) component within each dispersion.

76



CHAPTER 6: CONCLUSIONS AND FUTURE DIRECTIONS

Farewell! I leave you, and in you the last of humankind whom these eyes will ever
behold. Farewell, Frankenstein! If thou wert yet alive and yet cherished a desire of
revenge against me, it would be better satiated in my life than in my destruction. But it
was not so; thou didst seek my extinction, that I might not cause greater wretchedness;
and if yet, in some mode unknown to me, thou hadst not ceased to think and feel, thou
wouldst not desire against me a vengeance greater than that which I feel. Blasted as thou
wert, my agony was still superior to thine, for the bitter sting of remorse will not cease
to rankle in my wounds until death shall close them forever. ∼ ‘the monster’

The central goal of my doctoral study is to accurately characterize rigidity percolation in

disordered 3D particle systems with hinge-like contacts. This dissertation describes its mathematical

underpinnings (Ch. 2), the success of the root algorithm RGC in characterizing rigidity percolation

in systems of disordered 2D fibers (Ch. 3), and promising results in application towards systems

of disordered 3D fibers (Ch. 4). While this latter portion is not yet complete, the current work is

sufficient for attaining an upper bound for the associated rigidity percolation threshold. Pending

complete analysis of rigidity percolation in systems wherein fibers have uniformly random position

and orientation, the next step is to apply this technique towards dispersions of realistic processing

conditions.

I describe in the introduction the hypothesis that rigidity percolation underlies the dramatic

gains (‘mechanical’ or ‘rheological percolation’) in various nanocomposites’ mechanical properties

seen at critical volume fractions above the corresponding electrical percolation thresholds. But as

discussed in both Ch. 1 and Ch. 5, these real systems are far from the homogeneous ones considered

in Ch. 3 and Ch. 4. Especially when the inclusions phase consists of carbon nanotubes, nanoparticle

agglomeration is unavoidable and likely has importance consequences on the resulting network

properties. Moreover, in Ch. 5, I illustrate this effect using simple clustering models wherein the

increased local contacts facilitate the emergence of large rigid clusters at relatively low CNT volume

fractions as compared to their homogeneous analogues. The cluster models used in the study, while

perhaps valuable for their illustrating the effects of spatial heterogeneity on network properties,

cannot reproduce the experimental images seen in real nanocomposites (see Fig. 6.1). Similar work
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illustrates the effect of agglomeration on the contact percolation threshold (Seidel and Puydupin-

Jamin, 2011; Gong et al., 2014; Tarlton et al., 2017). But, there is (as far as I have found) no study

involving network properties of particle distributions learned from experimental data itself.

There is, however, much work in the more general task of reconstructing materials computation-

ally from images. In one approach, pioneered by Yeong and Torquato (1998), the 2-point correlation

function (for distance in pixels 0 < d < dmax) of the inclusion phase is computed from images and

denoted the target correlation function f̂(d). Then, the same correlation functions are computed for

an initial ‘trial’ microstructure f0(d) and a simulated annealing procedure is used to evolve the trial

microstructure towards the target, by minimizing an energy function E =
∑dmax

i=0 [ft(di)− f̂(di)]
2,

for discrete pixel distance (or physical distance, if appropriate conversions are made) di. This

procedure can readily be adapted to materials with more than one phase, and the minimization can

certainly incorporate more than a single point correlation function (Torquato, 2002). A number of

modifications have been made to adapt this method to a variety of heterogeneous materials (other

than carbon nanocomposites)—in particular, an interesting adaptation relevant to the composite

considered in Ch. 5 utilizes ‘auxilary microstructures’ throughout the energy minimization process

to simulate real dynamical processes such as grain growth (Chen et al., 2015). Other studies use

deep learning for the material reconstruction problem (see e.g. Cang et al. 2016), yet none consider

carbon nanocomposites, possibly on account of the difficulty of reconstructing such a disordered

system along with the difficulty of attaining appropriate images. However, even if the sharpness

of the reconstruction would likely be underwhelming compared to those of other media, learning

reconstructions even only at the mesocopic level (i.e. the size and distribution of agglomerates) can

inform more realistic geometries and allow for exploration of their network properties, which are

clearly very different from those of naive homogeneous dispersions. Future work in nanocomposite

modeling would do well to pursue this data-oriented approach.
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Figure 6.1: A Poisson cluster process model cannot adequately model the carbon
nanocomposite system of Ch. 5. The 2-point correlation function for the pore-space between
randomly packed, fully penetrable spheres has been derived by Torquato and Stell (1983) as a
(discontinuous) function of the sphere radius and number density. Here, I use a genetic algorithm to
minimize the pointwise distance between this two point correlation function (for the radial distance d
in µm) to that computed from the experimental image shown in Fig. 5.2. Being that this is the best
fit possible, a simple Poisson cluster process (of which this sphere packing is an idealization) likely
cannot accurately capture the complexity of this real system.
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Favier, V., Chanzy, H., and Cavaillé, J. (1995a). Polymer nanocomposites reinforced by cellulose
whiskers. Macromolecules, 28(18):6365–67.
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