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ABSTRACT

NOORIE HYUN: Analysis of Interval Censored Data Using a
Longitudinal Biomarker

(Under the direction of Dr. Donglin Zeng and Dr. David J. Couper)

In many medical studies, interest focuses on studying the effects of potential risk

factors on some disease events, where the occurrence time of disease events may be

defined in terms of the behavior of a biomarker. For example, in diabetic studies,

diabetes is defined in terms of fasting plasma glucose being 126 mg/dl or higher. In

practice, several issues complicate determining the exact time-to-disease occurrence.

First, due to discrete study follow-up times, the exact time when a biomarker crosses

a given threshold is unobservable, yielding so-called interval censored events. Second,

most biomarker values are subject to measurement error due to imperfect technologies,

so the observed biomarker values may not reflect the actual underlying biomarker levels.

Third, using a common threshold for defining a disease event may not be appropriate

due to patient heterogeneity. Finally, informative diagnosis and subsequent treatment

outside of observational studies may alter observations after the diagnosis. It is well

known that the complete case analysis excluding the externally diagnosed subjects can

be biased when diagnosis does not occur completely at random.

To resolve these four issues, we consider a semiparametric model for analyzing

threshold-dependent time-to-event defined by extreme-value-distributed biomarkers.

First, we propose a semiparametric marginal model based on a generalized extreme

value distribution. By assuming the latent error-free biomarkers to be non-decreasing,

the proposed model implies a class of proportional hazards models for the time-to-event
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defined for any given threshold value. Second, we extend the marginal likelihood to a

pseudo-likelihood by multiplying the likelihoods over all observation times. Finally, to

adjust for externally diagnosed cases, we consider a weighted pseudo-likelihood estima-

tor by incorporating inverse probability weights into the pseudo-likelihood by assuming

that external diagnosis depends on observed data rather than unobserved data. We

estimate the three model parameters using the nonparametric EM, pseudo-EM and

weighted-pseudo-EM algorithm, respectively.

Herein, we theoretically investigate the models and estimation methods. We provide

a series of simulations, to test each model and estimation method, comparing them

against alternatives. Consistency, convergence rates, and asymptotic distributions of

estimators are investigated using empirical process techniques. To show a practical

implementation, we use each model to investigate data from the ARIC study and the

diabetes ancillary study of the ARIC study.
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CHAPTER1: INTRODUCTION

Many longitudinal studies of chronic disease such as cancer, AIDS, and diabetes

monitor patients for biomarkers, as an indicator of disease occurrence, in order to

investigate potential associations between risk exposures and time to disease occurrence.

For disease events determined by some biomarker and threshold, when interval between

visits is long or patients miss visits, the exact date of the event that an individual’s

biomarker value crosses the threshold is unobservable. Instead, what is usually known

are the latest and earliest visit dates at which an individual’s biomarker value crosses

a given threshold. Such data is called interval censored data. Using the interval rather

than the exact date of event occurrence may lead to invalid inferences (Lindsey and

Ryan 1998).

Most biomarkers measurement has variation and the variation consists of short-term

intra-individual variability and measurement error. Assay variability and within-person

effects complicate determination of whether an individual’s biomarker has actually

exceeded the threshold. In clinical practice, ad hoc approaches that are used to take

into account biomarker variability include taking two or more measurements over a

period of time. Regarding measurement error, for example, the National Institute of

Standards and Technology maintains the blood sample materials as the gold standard

and provides guidelines for instrument manufactures to determine the accuracy of their

measurement devices. If measurement error is non-ignorable but ignored in the analysis,

the analysis may yield an inaccurate conclusion.

Furthermore, biomedical studies have several limitations to the use of a single
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threshold that are usually ignored in practice. The threshold is generally regarded

as a fixed constant that is appropriate for everyone; however, this may not be appropri-

ate to all biomarkers. For instance, hypercholesterolemia does not cause symptoms but

can significantly increase risk of developing coronary heart disease (CHD). To reduce

risk, including that of CHD, people with substantially elevated cholesterol levels are

advised to start therapeutic lifestyle changes or drug therapy. The cholesterol level at

which to consider therapeutic intervention varies across different risk categories such

as smoking, hypertension, age, etc. (the National Cholesterol Education Program Ex-

pert Panel 2001)

Finally, informative diagnosis outside of observational studies, which causes alter

observations after the diagnosis. It is well known that the complete case analysis

excluding the externally diagnosed subjects can be biased when diagnosis does not

occur completely at random (Ibrahim et al. 2005).

We are motivated by the Atherosclerosis Risk in Communities (ARIC) study and

an ancillary ARIC study, which present the problems described above. The ARIC

Study recruited a population-based cohort from four U.S. communities, namely, Forsyth

County, NC, Jackson, MS, suburbs of Minneapolis, MN, and Washington County, MD.

Participants underwent a baseline examination in 1987-1989 had three follow-up exam-

inations at approximately three-year intervals, and a further examination in 2011-2013.

The ARIC Study was designed to investigate the causes of atherosclerosis, and hyper-

cholesterolemia is a crucial risk factor for atherosclerosis. Hence, assessing risk factors

associated with time-to-hypercholesterolemia is of interest. An ancillary study of the

ARIC study investigated type 2 diabetes mellitus The standard ARIC definition of

diabetes is having a fasting plasma glucose (FPG) ≥ 126mg/dL, non-fasting glucose ≥

200mg/dL, a self-reported physician diagnosis of diabetes, or use of diabetes medication

in the two weeks prior to the study visit. The outcome variables of the two studies are
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time-to-disease occurrence, diabetes or hypercholesterolemia, and in the dissertation,

we focus on the time until the biomarkers reach the corresponding threshold levels.

To resolve these four issues, we consider a semiparametric model for analyzing

threshold-dependent time-to-event defined by extreme-value-distributed and longitudi-

nal biomarkers and break down the problems into the three steps:

(1) Threshold-Dependent Proportional Hazards Model for Analyzing Time-to-Event

Defined by Biomarker with Subject to Measurement Error : to mitigate the prob-

lems, we concentrate on the first follow-up visit after baseline and ignore the infor-

mative external diagnosis altogether. We propose a semiparametric model based

on a generalized extreme value distribution for the time-to-disease occurrence.

By assuming the latent error-free biomarkers to be non-decreasing, the proposed

model has a natural class of proportional hazards models for the time-to-event

defined for any given threshold value. To account for the additive measurement

errors, we estimate the model parameters using the nonparametric maximum

likelihood approach.

(2) Semiparametric Regression Model for Analyzing Time-to-Event Defined by Ex-

treme Longitudinal Biomarkers : the model proposed in the first step is extended

to model the longitudinal biomarkers at follow-ups by constructing a pseudo-

likelihood, which is multiplying the marginal likelihoods at follow-ups.

(3) Weighted Pseudo-Likelihood for Adjusting Informative Diagnosis: an Application

to Time-to-Hypercholesterolemia in the ARIC study : to adjust for cases with

external diagnosis, we consider a weighted pseudo-likelihood estimator by incor-

porating inverse probability weights into the pseudo-likelihood proposed in the

second step by assuming that external diagnosis depends on observed data rather
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than unobserved data. We employ a marginal structure model based on auxil-

iary information and subject’s status at the previous visits to predict an external

diagnosis.

We estimate the three model parameters via the nonparametric Expectation Maxi-

mization (EM), pseudo-EM, and weighted-pseudo-EM algorithm, respectively. In this

dissertation, we theoretically investigate the models and estimation methods. We pro-

vide a series of simulations, to examine each model and estimation method comparing

them with the existing methods. Consistency, convergence rates, and asymptotic dis-

tribution of estimators are investigated using the empirical process techniques. We

illustrate the first marginal model by applying it to data from the diabetes ancillary

ARIC study and the other two models by applying those to data from the ARIC study.

In Chapter 2, existing methods to address each problem, interval censored data,

measurement error in response, and missing data are reviewed. In Chapter 3 to 5, we

elaborate the three methods briefly described in (1) to (3). Conclusion with a discussion

on the proposed three methods and future work are contained in Chapter 6.
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CHAPTER2: LITERATURE REVIEW

Interval censoring in survival analysis is a generalized scheme of left or right censor-

ing. Observed exact failure times practically correspond to narrow intervals (Turnbull

1976, Kalbfleisch and Prentice 2002). In left or right censoring, the probability that

exact failure time is observed is positive; however, we are unable to observe it at all in

interval censored data. Therefore, statistical methods and inferences for interval cen-

sored data are more complicated than left or right censored data (Huang and Wellner

1997).

Commonly used methods in survival analysis with right censoring such as the

Kaplan-Meier estimator for survival functions and the partial likelihood for the Cox

proportional hazards (PH) model are inapplicable to interval censored data due to the

incomplete event times. Moreover, it is difficult to incorporate counting processes and

martingale theory into interval censored data, and this leads to the need for alternatives

for investigating asymptotic properties. One alternative is using empirical processes re-

quiring advanced mathematical techniques (Zhang and Sun 2010). Furthermore, unlike

most semiparametric models for right censored data as nuisance parameters infinite

dimensional parameters are not removed from the inference for regression parameters.

Interval censoring can be classified into four types: current status data, case 2

interval censored data, panel count data, and a mixed case. Along with the definition of

each interval censoring type, corresponding survival function estimators and regression

models are summarized in the following subsections.
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2.1 Interval Censored Data

2.1.1 Current Status Data

When only one observation time is applied and each patient is known to experience

the onset of the event either before or after the observation time, the data are called as

case 1 interval censored data or current status data. Current status data often occur

in cross-sectional studies when the outcome is a mile-stone event such as the onset of

chronic disease. Also, current status data are easily found in animal studies such as

tumorigenicity experiments on nonlethal tumors (Hoel and Walburg 1991).

For the subject i with a vector of covariates Xi, let Ti be the unobservable failure

time and Vi be the examination or observation time. Then the observed data of the

subject i are (Vi, δi,Xi) denote as W1,i, where δi = I(Ti ≤ Vi). It is assumed that T

is independent of V given X. In addition, the joint distribution of (V,X) is assumed

to be independent on θ-that is a vector of coefficients for the covariate X-and any

unspecified non-decreasing baseline function of T .

Survival Estimation with Current Status Data

In this section, nonparametric maximum likelihood estimators (NPMLEs) for the

survival or distribution function of current status data are reviewed. Denote the ordered

observed times by {V(i)∣i = 1, . . . , n}, that is, V(i) ≤ V(i+1) for i = 1, . . . , n − 1.

The observed log likelihood function for current status data {(Vi, δi)∣i = 1, . . . , n} is

ln(F ) =
n

∑
i=1

{δi logF (Vi) + (1 − δi) log(1 − F (Vi))} , (2.1)

where F (⋅) is the distribution function of T .

Maximizing the log likelihood in (2.1) with respect to {F (Vi)}ni=1 is equivalent to
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minimizing

n

∑
i=1

ni [
δi
ni
− F (V(i))]

2

, subject to F (V(1)) ≤ . . . ≤ F (V(n)), (2.2)

where n1 = n and ni = n−i+1 (Robertson et al. 1988). The NPMLE for F are determined

only at the observation times {Vi} with δi = 1, 1 ≤ i ≤ n. Let {sj}mj=1 be the uniquely

ordered observation times at which δi = 1 for 1 ≤ i ≤ n. The set of values of {F (sj)}mj=1

that minimizes (2.2) is referred to as the isotonic regression of {1/n1, . . . ,1/nm} with

weights {n1, . . . , nm}

We can find a NPMLE for F minimizing (2.2) by various approaches. Using the

max-min formula for isotonic regression, Ayer et al. (1955) obtained the explicit forms

for {F̂ (sj)}mj=1 as

F̂ (sj) = max
u≤j

min
v≥j

∑
v
l=u δl

v − u + 1
. (2.3)

They also introduced the pool adjacent violators algorithm (PAVA) and recommended

this algorithm rather than direct calculation of the formula in (2.3) to facilitate the

computation.

Huang and Wellner (1997) proposed an algorithm: after plotting (i,∑
i
j=1 δ(j)), i =

1, . . . , n and forming the Greatest Convex Minorant (GCM), G∗ of the points in the

plot, then left-derivative of G∗ at i is calculated for F̂n(V(i)), i = 1, . . . , n. This algorithm

obtains the same NPMLE as the max-min formula in (2.3). The GCM algorithm is

faster than the PAVA algorithm from a small to a large sample size except when the

left truncation probability is over 0.85 (Zhang and Newton 1997).

The NPMLEs calculated through the max-min formula, the PAVA algorithm, and

the GCM algorithm are mutually equivalent and consistent under certain regularity

conditions (Ayer et al. 1955, Huang and Wellner 1997).
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Regression Model with Current Status Data

Regression analysis of survival data is used to quantify the effect of some covariates

on the survival time or to predict the survival probabilities for new individuals. In this

section, we review commonly used regression models for current status data such as

the Cox proportional hazards (PH) models, proportional odds models, additive hazard

models, and accelerated failure time (AFT) models, etc.

The observed log likelihood for current status data is given by

ln(F ∣W1) =
n

∑
i=1

{δi logF (Vi∣W1,i) + (1 − δi) log(1 − F (Vi∣W1,i))}, (2.4)

where F (t∣W1) is the distribution function of T given the observed data.

Current status data almost allows us to obtain explicit forms of the efficient influence

function and semiparametric efficient variance for regression parameters.

Each regression model is the special case of the following transformation model. The

transformation model postulates that the conditional distribution F (t∣x) of T given the

covariates X = x satisfies

g(F (t∣x)) = h(t) + θTx, (2.5)

where g is a specified function; h(t) is an unknown non-decreasing function; θ is the

unknown finite d-dimensional regression parameter.

First, if we take g(s) = log[− log(1 − s)], 0 < s < 1, then (2.5) results in the propor-

tional hazards model by Cox (1972). The Cox proportional hazards model has been

the most commonly used for survival analysis due to the availability of efficient infer-

ence procedures that are implemented in all statistical software packages. The model

postulates

λ(t∣X = x) = λ0(t)e
θTx (2.6)
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for the hazard function of the survival time T given the covariate x, where λ0(t) denotes

an unknown baseline hazard function. The regression parameter of θ provides the log

hazard ratio of x on time to the event. Between two levels of the covariate X, the PH

model constrains the ratio of the hazards to be constant over time. The model in (2.6)

can be cast as a transformed linear model of log
´ t

0
λ(u)du=−θTX + ε, where ε follows

the extreme value distribution of 1 − exp(−eε) (Dabrowska and Doksum 1988).

The observed log likelihood under the model in (2.6) is

ln(θ,Λ∣W1) =
n

∑
i=1

{δi log [1 − exp (−Λ(Vi) exp(θTXi)) ] − (1 − δi) exp(θTXi)Λ(Vi)},

where Λ(t) =
´ t

0
λ(u)du.

Related to PH regression models for current status data, Huang (1996) provided very

influential and thorough study. He obtained a maximum profile likelihood estimator

(profile-MLE) for (θ,Λ) by the iterative convex minorant algorithm (this algorithm

will be reviewed in detail in section 2.1.2). The consistency, asymptotic normality, and

semiparametric efficiency of the profile-MLE for regression parameters were established

under certain regularity conditions. The convergence rate of the estimators Λ̂ dominates

the convergence rate of (θ̂, Λ̂) by n1/3. Nonetheless, it was shown that the regression

parameter estimates asymptotically converges to normal distribution in the rate of
√
n. The profile likelihood method requires intensive computation for data with large

covariates.

Second, if we take g(s) = logit(s) ≡ log[s/(1 − s)] for 0 < s < 1 in the regression

model of (2.5), then we obtain a proportional odds regression model:

logit[F (t∣X = x)] = h(t) + θTx. (2.7)

Let h(t) = logitF (t∣X = 0), the baseline non-decreasing log odds function. Then θk
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is the log odds ratio for two samples with unit difference in the kth covariate. In

the proportional odds model, the hazard ratio for two samples is not constant over

time but converges to unity as time t increases. The model (2.7) can be described

as a transformed linear model of h(t)=θTX + ε, where ε has the logistic distribution

of [1 + exp(−ε)]
−1 (Dabrowska and Doksum 1988). For right censored data, Bennett

(1983a;b) provided a proportional odds model and a log-logistic regression model. Pet-

titt (1984) suggested several levels of specification about h(t) in the proportional odds

model (2.7).

The observed log likelihood function under the model (2.7) is

ln(θ, h∣W1) =
n

∑
i=1

δi {h(Vi) + θ
TXi} − log [1 + exp{h(Vi) + θ

TXi} ]. (2.8)

Rossini and Tsiatis (1996) suggested a semiparametric proportional odds model for

current status data using an approximate maximum likelihood. The approximate like-

lihood is replacing h(t) in the likelihood (2.8) with a non-decreasing step function. The

maximum likelihood estimator (MLE) maximizing the approximate likelihood can be

viewed as a sieve MLE based on the sieve of non-decreasing continuous piecewise con-

stant functions. They showed consistency, asymptotic normality, and semiparametric

efficiency of the regression parameters estimates under certain regularity conditions and

provided the explicit form of the asymptotic variance for the estimates.

Third, we consider an accelerated failure time model:

log(T ) = θTX + ε, (2.9)

where the distribution function F of ε is completely unspecified and ε is i.i.d. We

transform the failure time by logarithm to avoid restriction on the distribution for

ε; however, the failure time can be transformed by any appropriate functions. This
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model can be written as F{log(T )∣X} = F{log(T ) − θTX} in terms of a conditional

distribution.

The observed log likelihood under the model (2.9) is

ln(F ∣W1) =
n

∑
i=1

[δi logF (logVi − θ
TXi) + (1 − δi) log {1 − F (logVi − θ

TXi)} ]. (2.10)

Huang and Wellner (1997) proposed a profile-MLE under the AFT model. They

showed consistency of the profile-MLE and provided the information bound for θ under

certain regularity conditions; however, left an open problem about the convergence rate

of θ̂. The estimated MLE of F (⋅∣θ) for each fixed θ is not smooth, and it results in the

non-smooth profile likelihood with respect to θ, so the convergence rate is unspecified

yet.

Tian and Cai (2006) constructed an estimator under the AFT model by inverting a

Wald-type statistics for testing a null proportional hazards. Due to the equivalence be-

tween two assumptions: residual in (2.9) is independent ofX; Sε(t∣X) = S0(t)exp(γTX),

the regression parameters can be estimated by solving the estimating equation, γ̂(θ) =

op(n−1/2), where γ̂ is the NPMLE of Huang (1996). Using the semiparametric efficient

variance of γ, B calculated by Huang (1996), the asymptotic variance of θ̂ can be

approximated by sandwich variance, D−1B(DT )−1, where D = dγ0(θ)/dθ∣θ=θ0 . The

estimator was proved to be consistent under certain regularity conditions.

Finally, if we take g(s) = − log(1 − s), 0 < s < 1, in the regression model of (2.5),

then we have an additive hazard regression model:

λ(t∣X = x) = λ0(t) + θ
Tx(t), (2.11)

where λ0(t) is an unspecified baseline hazard function. This model describes the asso-

ciation between the failure time and covariates in difference between two hazards.
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Lin et al. (1998) proposed an additive hazard model based on a counting process

and martingale theory for current status data. When the counting process is defined

as Ni(t) = (1 − δi)I(Vi ≤ t), which jumps by unit whenever the subject i is observed at

time t and found still to be failure-free, the probability that the counting process has

one is: under the assumption that T and V are independent

dHi(t) = e
−θTX∗(t)dH0(t), (2.12)

where dH0(t) = e−Λ0(t)dΛV (t) and X∗
i (t) =

´ t
0
Xi(s)ds. This form is the Cox propor-

tional hazards model and this mediates using the partial likelihood principle to estimate

the regression parameters. When the assumption-that is independence of V and T -is

changed to the more flexible assumption that V is independent of T given X, they

formulated the association through the proportional hazards model. The latter model

improves efficiency but does not achieve the semiparametric efficiency.

Related to other regression models for current status data, Shen (2000) proposed

a linear regression model using a constructed random-sieve likelihood and constraints

that combine benefits of a semiparametric likelihood with estimating equations. It was

assumed that ε in the linear model, T = θTX + ε, is independent of (V,X); ε has zero

mean and a finite variance; the true residual (ε = T − θTX) and the observed residual

(ε(θ) = V −θTX) have the same support. For inference, the asymptotic distribution for

the regression parameter estimates and the profile likelihood ratio test statistics were

obtained. Graphical tools for model diagnostics were proposed.

Ma and Kosorok (2005) extended Huang (1996)’s model for current status data

by adding a smooth nonparametric covariate effect: λ(t∣X) = λ0(t)eθ
TX+a(u), where

a(u) is an unknown smooth function of a continuous variable u. To resolve issues

arising in carrying out this extension, they used a nonparametric maximum penalized
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log likelihood,

lpn(θ, a,H) ≡
n

∑
i=1

l(θ, a,H ∣W1,i) − λ
2
nJ

2(a),

where the log likelihood l(θ, a,H ∣W1,i) is the log likelihood in (2.4) with the condi-

tional distribution function F (Vi∣W1,i)=F{θTXi +a(u) +H(Vi)} and H is an unknown

non-decreasing transformation. They suggested a sieve approximation for the nonpara-

metric covariate effect a(u) and showed that the cumulative sum diagram approach as

discussed by Groeneboom and Wellner (1992) works for general transformation mod-

els. For the convergence rate, the estimator for the nonparametric transformation H

achieves the optimal rate of n1/3, but it slows down the convergence of â in ordinary

spline settings. The penalized MLE for θ̂ is asymptotically normal in the convergence

rate of
√
n and is efficient. The semiparametric efficient variance for θ̂ was obtained,

and the block jackknife method was suggested for the asymptotic variance estimation.

Ma (2009) applied Ma and Kosorok (2005)’s approach to current status data from

heterogeneous mixture population such as the mixture population of a cured subgroup

and a disease susceptibility subgroup. A generalized linear model for the cure probabil-

ity is applied. For subjects not cured, both of the linear Cox model and the partly

linear Cox model were considered to model the survival risk. Under the assump-

tions and the partly linear model, the conditional survival function is S(t∣X,Z, u) =

p(Z)+{1 − p(Z)} exp{−Λ0(t)eθ
TX+a(u)}, where the cure probability p(Z) = g−1(αTZ);

g(⋅) is a known link function; α and Z are the unknown regression parameter and co-

variates in the generalized linear model, respectively. It was shown that the regression

parameters estimators are consistent, asymptotically normal, and efficient under certain

regularity conditions. The nonparametric baseline function and covariate effect can be

estimated with the convergence rate of n1/3. The weighted bootstrap was proposed for

the asymptotic variance estimation of θ̂.
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2.1.2 Case 2 Interval Censored Data

When more than one observation time is applied and each patient is known to ex-

perience the onset of the event of interest either before the first observed time, between

the two observation times, or after the last observation time, such data are called case

2 interval-censored data. Longitudinal studies with periodic follow-up often produce

case 2 interval censored data. For the subject i with a vector of covariates Xi, let

two observation times be given by VLi and VUi, where VLi < VUi. The observed data

of the subject i are (δ1i, δ2i, VLi, VUi,Xi) denote as W2,i, where δ1i = I(Ti ≤ VLi) and

δ2i = I(VLi < Ti ≤ VUi).

We assume that T is independent of (VL, VU) givenX and that (VL, VU) are random

variables from a distribution with support {(vL, vU)∣0 < τL ≤ vL, vU ≤ τU < ∞, vU ≥

vL + c}, where c is a positive constant. In addition, the joint distribution of (V,X) is

assumed to be independent of θ and any unspecified non-decreasing baseline function

of T .

Survival Estimation with Case 2 Interval Censored Data

Unlike current status data, the NPMLE for the distribution function of case 2

or general interval censored data has no explicit form available, so using of iterative

algorithm is inevitable.

Turnbull (1976) used the expectation maximization (EM) algorithm for incomplete

data due to grouping, general censoring and/or truncation, and this corresponds to

the self-consistency introduced by Efron (1967). For case 2 interval censored data,

{[VLi, VUi]∣i = 1, . . . , n}, when Ti is truncated by Bi ⊆ R and [VLi, VUi] ⊂ Bi for the

subject i, the likelihood is proportional to

ln(F ) =
n

∏
i=1

[F (VUi) − F (VLi)]/PF (Bi). (2.13)
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If Ti is not truncated, then Bi=R with P (Bi) = 1.

Let {lj}mj=1 and {rj}mj=1 denote the unique ordered elements of {VUi∣i = 1, . . . , n} and

{VLi∣i = 1, . . . , n} respectively and satisfy l1 ≤ r1 < l2 ≤ r2 < . . . < lm ≤ rm. That is, for

each j,1 ≤ j ≤ m, lj=Li for some i, 1 ≤ i ≤ n and rj=Rk for some k, 1 ≤ k ≤ n. Hence,

two or more intervals of {[VLi, VUi]}ni=1 include [lj, rj]. Define pj = F (rj)−F (lj) ≥ 0 for

1 ≤ j ≤m and ∑m
j=1 pj = 1.

Using the fact that any distribution function increasing outside ⋃mj=1[lj, rj] cannot

be a maximum likelihood estimate of F except in the trivial case when [VLi, VUi]⋂

⋃
m
j=1[lj, rj] = Bi⋂⋃

m
j=1[lj, rj] for all i, the problem maximizing (2.13) reduces to max-

imizing the following likelihood with respect to the vector of p = (p1, . . . , pm)

Ln(p1, . . . , pm) =
n

∏
i=1

∑
m
j=1αijpj

∑
m
j=1 βijpj

, subject to
m

∑
j=1

pj = 1, pj ≥ 0, (2.14)

where αij = I([lj, rj] ⊂ [VLi, VUi]) and βij = I([lj, rj] ⊂ Bi) for 1 ≤ i ≤ n and 1 ≤ j ≤m.

The proportion of observations in interval [lj, rj] to be used in the EM algorithm is

given by
∑
n
i=1 (µij + νij)

∑
n
i=1∑

m
j=1 (µij + νij)

= πj(p), (2.15)

where µij(p) and νij(p) are the probabilities that the exact time is in [lj, rj] and that

the interval [lj, rj] is truncated respectively. Hence, µij(p) = αijpj/∑
m
k=1αikpk and

νij(p) = (1 − βij)pj/∑
m
k=1 βikpk.

The vector of probabilities p is called self-consistent if pj = πj(p), 1 ≤ j ≤ m. The

self-consistent algorithm is an example of the EM algorithm. It was shown that the

self-consistent algorithm converges monotonically.

The candidates obtained from the self-consistency algorithm is not guaranteed to

be the NPMLE. Gentleman and Geyer (1994) provided easily verifiable conditions, the

Lagrange multiplier criterion for the self-consistent estimator to be the NPMLE. They
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also provided sufficient conditions for the uniqueness of the NPMLE. This result is

similar to the approach of Peto (1973) for interval censoring with no truncation using

the constrained Newton-Raphson (NR) method.

Groeneboom (1991) characterized the NPMLE for case 2 interval censored data

even though the NPMLE has no closed form. Groeneboom and Wellner (1992) intro-

duced the iterative convex minorant (ICM) algorithm for NPMLEs. Jongbloed (1998)

described the ICM algorithm in its general form and showed that it does not converge

under mild regularity conditions and proposed a modified version by adding a line

search into the algorithm so that it achieves global convergence.

Compared with the ICM algorithm, the EM algorithm converges rather slowly to the

solution of the optimization problem; however, global convergence of the EM algorithm

under certain regularity conditions was proved by Dempster et al. (1977) andWu (1983).

For censoring problems, a combination of the EM and ICM algorithm was proposed in

Zhan and Wellner (1995). Simulation results indicate this hybrid algorithm to behave

very well for the double censoring model.

Hudgens et al. (2001) extended Turnbull (1976)’s NPMLE to the general setting

of competing risks allowing for any number of failure types and for each failure time

to be subject to interval censoring and truncation. The cumulative incidence function

NPMLE gives rise to an estimate of the survival function that can be undefined over

a potentially larger set of regions than the NPMLE of the marginal survival function.

Alternatively, a pseudo-likelihood estimator was considered. Without truncation, the

pseudo-likelihood estimate of the cumulative incidence function has fewer undefined

regions than the NPMLE of the cumulative incidence function. However, when trun-

cation is included, the result has trade-off. Consistency of the NPMLEs of cumulative

incidence functions was proved by Hudgens et al. (2007).

Hudgens (2005) adapted the graph theories to characterize the support set of the
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NPMLE of a survival function and derived conditions for the existence of the NPMLE

when data are interval censored and left-truncated. These results help to explain the

NPMLEs’ underestimation of survival functions in practice.

Regression Model with Case 2 Interval Censored Data

The observed log likelihood function for case 2 interval censored data is

ln(F ∣W2) =
n

∑
i=1

[δ1i log {F (VLi∣W2,i)} + δ2 log {F (VUi∣W2,i) − F (VL∣W2,i)}

+(1 − δ1i − δ2i) log {1 − F (VUi∣W2,i)} ], (2.16)

where F (t∣W2) is a conditional distribution function of T given the data.

First, for the Cox PH model with case 2 interval censored data, Finkelstein (1986)

proposed a MLE based on the approach of Turnbull (1976) discarding truncation. By

replacing pj in (2.14) with exp(− exp(θTX +γlj))− exp(− exp(θTX +γrj)), where γlj =

log {Λ(lj)} and γrj = log {Λ(rj)}, the log likelihood (2.14) is re-expressed in terms of

the Cox PH model. Then the MLE is calculated by treating the log likelihood function

as the one arising from a parametric model, that is, considering the observation time

as a discrete random variable. The score function and the information bound for the

MLE are easily obtained; however, the relevant asymptotic property was not figured

out.

Huang and Wellner (1997) proposed a MLE under the Cox PH model using the

log likelihood in (2.16), where F (t∣X) = 1 − exp{−Λ(t) exp(θTX)}. The consistency,

asymptotic normality, and efficiency of the MLE were established under certain reg-

ularity conditions. They suggested the use of the observed Fisher information or the

curvature of the profile likelihood to estimate the asymptotic variance of θ̂ (Murphy

and van der Vaart 2000).
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Second, in the proportional odds model for case 2 interval censored data, Huang

and Rossini (1997) presented a sieve maximum likelihood estimator for the regression

parameter based on the observed log likelihood in (2.16) with F (t∣W2) = exp{h(t) +

θTX}/{1+ exp(h(t)+ θTX)}. The sieve used by Huang and Rossini (1997) is the col-

lection of non-decreasing continuous piecewise linear functions. Asymptotic properties

the estimator were thoroughly established. The form of semiparametric efficient vari-

ance of θ̂ is intractable since the efficient score function has no closed form. Instead,

they proposed an alternative to estimate the variance matrix of θ̂ by the inverse of the

curvature of the profile likelihood at the estimate of the regression parameter.

Third, for the AFT model with case 2 interval censored data, Huang and Wellner

(1997) proposed a profile MLE, which is similar to the approach for current status data

by Huang and Rossini (1997). The MLE is based on the log likelihood (2.16) by letting

F (t∣X) be F (t − θTX). In contrast to current status data, the information bound for

the regression parameter has no explicit expression. Moreover, since the information

calculation includes an integral equation with a singular kernel, the Fredholm theory of

integral equations cannot be directly applied. Instead, this equation is similar to the one

encountered in calculating the information for smooth functionals of the distribution

function in the NPMLE setting, and this is solved by Geksus and Groeneboom (1996a;b;

1999).

Tian and Cai (2006) extended their approach explained in section 2.1.1 to case 2

interval censored data using Huang and Wellner (1997)’s MLE based on the PH model

for case 2 interval censored data.

Finally, Zeng et al. (2006) provided an additive model using the log likelihood

in (2.16) in which F (t∣X) is replaced with 1 − exp{−Λ(t) − θTX(t)}, where X(t) =

´ t
0
X(u)du. The MLE can be derived by maximizing the log likelihood under the

constraint that exp(−Λ(t)) holds monotonicity in the uniquely ordered observation
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times. Since the information bound for the regression parameter has no explicit form,

alternatively, Zeng et al. (2006) proposed to use the curvature of the profile likelihood for

the information estimation. The consistency, asymptotic normality, and semiparametric

efficiency of the estimator were shown.

2.1.3 Panel Count Data

For recurrent event data such as tumor or disease symptoms, if the occurrence

process is observed only at discrete time points, what is only known are the num-

bers of the event occurrences between observation times. Such data are referred to

panel count data (Sun 2006). The observation data for the subject i consist of W3,i =

(Ki,Vi,Ki ,Ni,Ki ,Xi), whereKi is a random number of random times 0 ≡ Vi,Ki,0 < Vi,Ki,1 <

. . . < Vi,Ki,Ki , Vi,Ki = (Vi,Ki,1, . . . , Vi,Ki,Ki), and Ni,Ki = (N(Vi,Ki,1), . . . ,N(Vi,Ki,Ki)) for a

univariate counting process N(t), t > 0. It is assume that K and VK is conditionally

independent of the counting process N given a covariate vector X.

Survival Estimation with Panel Count Data

For panel count data, a non-homogeneous Poisson process for the counting process is

often assumed. The marginal distributions of N is P (N(t) = k) = exp{−Λ0(t)}Λ0(t)k/k!,

where Λ0(t) = E{N(t)} the mean function of the counting process of N. Then the log

pseudo-likelihood function ignoring the dependence is

lpsn (Λ) =
n

∑
i=1

Kj

∑
j=1

{N(Vi,Ki,j) log Λ(Vi,Ki,j) −Λ(Vi,Ki,j)}. (2.17)

According to the definition of a non-homogeneous Poisson process, the increments of

the counting process are independent. The marginal distribution of △N is P{△N(s, t) =
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k} = exp{−△Λ0(s, t)} {△Λ0(s, t)}
k
/k! and the log likelihood function under the as-

sumption is followed by

ln(Λ) =
n

∑
i=1

Kj

∑
j=1

{△N(Vi,Ki,j) log△Λ(Vi,Ki,j) −△Λ(Vi,Ki,j)}. (2.18)

Wellner and Zhang (2000) studied both a nonparametric maximum pseudo-likelihood

estimator based on (2.17) and a nonparametric maximum likelihood estimator based on

(2.18) using the assumption that the counting process is a non-homogeneous Poisson

process. They showed that the maximum pseudo-likelihood estimator is exactly the

one proposed by Sun and Kalbfleisch (1995). The two estimators were established to

be consistent, and both estimators at a fixed time point have the asymptotic distribu-

tion of a two-sided Brownian motion process starting from zero. The NPMLE is more

efficient than the maximum pseudo-likelihood estimator, but its computation is more

difficult.

Sen and Banerjee (2007) constructed a pseudo-likelihood ratio statistic from (2.17)

for testing the value of the distribution function at a fixed time point and showed

that this converges to a known limit distribution-that can be expressed as a function of

different convex minorants of a two-sided Brownian motion process with parabolic drift-

under the null hypothesis and certain regularity conditions. Unlike the Wald-based

approach, the likelihood-ratio-based method excludes nuisance parameter estimation

and provides an extremely clear-cut way of constructing confidence intervals for the

survival rate at a fixed time point. Simulation result comparing confidence intervals

showed the estimation based on the pseudo-likelihood ratio is superior to the estimates

based on the limit distribution of the maximum pseudo-likelihood estimator with kernel-

based estimation of nuisance parameters and sub-sampling with appropriate block-size

in terms of precision.
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Lu et al. (2007) proposed two NPMLEs based on the log likelihood in (2.18) and

the log pseudo-likelihood in (2.17) using monotone polynomial splines to ease intensive

computation required in Wellner and Zhang (2000)’s approach. I−spline basis func-

tions were used to linearly span the class of polynomial splines, and the non-negativity

and monotonicity of the I−splines are guaranteed by the non-negativity of coefficients

(Ramsay1988). The generalized Rosen algorithm proposed by Zhang and Jamshidian

(2004) was used to compute the estimators. The proposed spline likelihood/pseudo-

likelihood-based estimators are consistent and have faster convergence rate than n1/3

when the true baseline hazard function is sufficiently smooth. Simulation study showed

that the two estimators have smaller variance and mean square error than their alter-

natives proposed by Wellner and Zhang (2000).

Regression Model with Panel Count Data

Wellner and Zhang (2007) established two likelihood-based semiparametric esti-

mators with the Cox model that is the mean function of a counting process. The

pseudo-likelihood and likelihood from which the two models are derived are

lpsn (θ,Λ) =
n

∑
i=1

Kj

∑
j=1

{N(Vi,Ki,j) log Λ(Vi,Ki,j) +Ni(Vi,Ki,j)θ
TXi

−eθ
TXiΛ(Vi,Ki,j)}, (2.19)

ln(θ,Λ) =
n

∑
i=1

Kj

∑
j=1

{△N(Vi,Ki,j) log△Λ(Vi,Ki,j) +△N(Vi,ki,j)θ
TXi

−eθ
TXi △Λ(Vi,Ki,j)}, (2.20)

under the assumptions that the counting process and the increment of the counting pro-

cess are a non-homogeneous Poisson process. For the asymptotic variance estimation,
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bootstrap resampling was utilized because the asymptotic variance is too complicated to

be consistently estimated. The asymptotic properties of consistency, convergence rate,

and asymptotic normality of the both models were established under certain regular-

ity conditions. The proposed semiparametric estimation methods are robust against

the underlying conditional Poisson process assumption. Simulation studies provided

that the maximum likelihood method based on the Poisson process assumption is more

efficient than the pseudo-likelihood method both on and off the Poisson model.

Lu et al. (2009) was motivated by the advantage that the spline likelihood estima-

tors of Lu et al. (2007) outperform the semiparametric estimators proposed by Wellner

and Zhang (2007) in view of the convergence rate and performance at finite samples.

They developed semiparametric likelihood-based methods for panel count data using

B−spline approximation for the cumulative hazard function in the models (2.19) and

(2.20) in order to ease the intensive computation in the bootstrap semiparametric infer-

ence procedure utilized by Wellner and Zhang (2007). The monotonicity of the resulting

spline function is guaranteed by imposing non-decreasing constraints on the coefficients.

It was shown that the proposed spline-based likelihood estimator of the cumulative haz-

ard function is consistent and asymptotic normal under certain regularity conditions.

The ease of computing spline estimators make the statistical inference based on the

bootstrap procedure feasible. Moreover, the spline estimation is insensitive to selection

of the number and placement of the knots.

Although the independent random-censorship model is often reasonable, in many

situations the censoring process is linked to the failure time process. For example, the

termination date for a medical trial is not fixed before the study commences but is

chosen later, with the choice influenced by the results of the study up to that time.

Sun and Wei (2000) proposed a semiparametric regression model for analyzing panel

count data when both observation and censoring times may depend on covariates. One
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limitation of this approach is that both the observation time process and censoring time

depend on the event time process, so if we stop following up the subject immediately

after the occurrence of a certain number of events, the proposed method is inapplicable.

2.1.4 Mixed Case of Interval Censored Data

In the mixed-case interval censoring model each individual is followed up for a

number of times, where the number and the times of observation can vary from person

to person (Schick and Yu 2000). It is determined between which two consecutive

observation times that the event of interest occurs. Current status data or case 2

interval censored data are special cases of the mixed-case interval censored data.

Hudgens et al. (2007) compared three nonparametric estimators of the joint dis-

tribution function for a survival time and a continuous mark variable in view of the

uniqueness and consistency of NPMLE when the survival time is interval censored and

the mark variable may be missing for the interval-censored observations. The three

estimators compared are the NPMLE, estimators based on midpoint imputation, and

estimators based on discretizing the mark variable. The estimator obtained by dis-

cretizing the mark variable results in interval-censored competing risks survival data

for which the NPMLE characterized by Hudgens et al. (2001). Regardless of whether

the mark variable is missing, the estimators based on discretizing the mark variable is

consistent, whereas the NPMLE and the estimators based on midpoint imputation are

inconsistent under certain regularity conditions.

Ma (2010) extends Ma (2009)’s Cox PH linear model for current status data to the

one for mixed case of interval censored data with a cured subgroup. Identifiability and

the asymptotic properties of consistency and weak convergence were established under

certain regularity conditions, and the inference based on the weighted bootstrap was

investigated because information matrix has no explicit form.
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Random Effect Model with Interval Censored Data

In longitudinal data or clustered data, correlation among failure times is of interest.

Frailty models have been proposed to accommodate the correlation. Frailty models

specify the intra-subject correlation explicitly through an unobservable random variable

(frailty). For a commonly used frailty model, it is assumed that the failure times

given the frailty are independent and the conditional hazard given the frailty Ui is

λik(t∣Ui) = Uiλ0(t) exp(θTXik) for the ith cluster and kth observation, where {Ui}ni=1

are i.i.d.

While frailty models with right censored data have been studied by many re-

searchers, frailty models for interval censored data have been less developed. Almost all

regression models for correlated data with interval censoring use parametric approaches

to describe the covariate effects although semiparametric models can be more flexible.

Li and Ma (2010) developed two-part models, which consist of the cure process

and event process. The cure rate is described in a generalized linear model, and the

survival rate is expressed in a location-scale parametric model including normal, logistic

and Gumbel distributions. Each model includes one random effect to account for

correlations between measurements. The cure rate depends on a random effect, as

a consequence, the cure rate may change over time. Semiparametric models to address

both the cure and event processes simultaneously need to be considered.

Interval censored and clustered data often occur in dental studies. Exact dates of

tooth eruption and caries occurrence are practically unobservable. Moreover, when

the response variable is time from tooth eruption to caries occurrence, doubly interval

censoring occurs. Also, teeth of a subject are correlated. Komárek and Lesaffre (2007)

was motivated by such dental data and proposed a Bayesian approach for an accelerated

failure time model with interval censored data. The likelihood contribution of the ith
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cluster is given by

Li =

ˆ
Rq

{
ni

∏
k=1

ˆ VU,i,k

VL,i,k

f(v − θTXi,k − b
TZi,k)dv}g(b)db, (2.21)

whereX is a vector of covariates for fixed effects; θ is the unknown vector of regression

coefficients; bi is a vector of random effects with the density g(b); bis are i.i.d for

1 ≤ i ≤ n; Z is a vector of covariates for random effects. The density of the error f is

assumed to follow a penalized normal mixture distribution with unspecified components

and the density of random effect g is assumed to follow multivariate normal distribution.

The prior distributions for mean, variance, and the covariance matrix are assumed to be

normal, inverse-gamma, and inverse-Wishart, respectively. Simulation results showed

that the estimators nearly correct estimate the shape of the survival curves, and the

regression parameter estimates have acceptable bias and precision.

Komárek and Lesaffre (2008) suggested an accelerated failure time model with ran-

dom effects taking account of correlated observations and doubly interval censoring in

the failure time from tooth emergence to caries occurrence. The assumed model is

given by

log(Ei,k) = di + δ
TZi,k + ζi,k, (2.22)

log(Ti,k) = bi +β
TXi,k + εi,k, (2.23)

where E is the chronological emerging time; T is the time to caries occurrence; the

two times of Ei,k and Ti,k are independent for each i and k; δ and β are the unknown

regression parameter; ζi,k, εi,k, bi, and di are mutually independent for all i and k. The

likelihood contribution of the ith cluster is given by
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where the density p is assumed to be a penalized normal mixture distribution with

an overspecified number of components and non-informative priors for hyperparmeters

are used. For sensitivity analysis, a model assuming that (bi, di) follows bivariate

normal distribution was also considered, and the proposed estimate is robust against

the underlying correlation of (bi, di) assumption. Simulation results showed that the

regression parameter are estimated with only small bias and reasonable precision. The

shape of the survivor curves is correctly estimated. However, the both approaches

provided by Komárek and Lesaffre (2007; 2008) can not handle time-varying covariates.

2.2 Measurement Error in Data

In regression analysis, measurement error in response variables is mingled with the

error residual, so it is generally ignored or less focused than error in predictor variables

(Abrevaya and Hausman 2004). In this section, we primarily concentrate on statistical

modeling to account for error-prone dependent variables. Let Y indicate the response

variable without error and S be the observed response variable with measurement

error. Let X be observed covariates without measurement error. The measurement

error process is specified by modeling the relationship between Y and S, possibly

depending on X. This is called measurement error model. The classical error model

is an additive model, S = Y + U , where U has mean zero and finite variance, and

is independent of Y such that E(S ∣ Y ) = Y . An alternative model is the Berkson

error model: the model connect Y and S as Y = S +U , where U has mean zero and

finite variance and is independent of S. In the Berkson model E(Y ∣ S) = S, and

S is said to be an unbiased predictor of Y (Guolo 2008). Models for the unobserved

variable Y can be interpreted in two ways: it is a functional method if Y is modeled

as parameters, whereas it is a structural method if Y is regarded as random variables.

If the density or mass function for S given (Y ,X), fS∣Y ,X(s ∣ y, x, γ) depends only on
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the true response, that is, fS∣Y ,X(s ∣ y, x, γ) = fS∣Y (s ∣ y, γ), then S is called surrogate

response, and the error is called non-differential.

Generally, the likelihood function for the observed response is

fS∣X(s ∣ x,B,γ) =

ˆ
fY ∣X(s ∣ y, x,B)fS∣Y ,X(s ∣ y, x,γ)dy, (2.24)

where B and γ are unknown parameters. If S is a surrogate, the second density

function in (2.24) is replaced by fS∣Y (s ∣ y,γ). Hence, we can use naive methods to

test whether there is association between the predictors and the true response, if S is

a surrogate. However, note that we lose power in contrast to tests derived from true

response (Prentice 1989). The likelihood in (2.24) shows that we need to model the

distribution of response error model. Usually, additional information is needed for the

identifiability of the parameters for the error model. It is called validation data.

Suppose that there is validation subsample data obtained by measuring the true

response in the primary sample selected with probability π(S,X). Let an indicator

variable, △i = 1 if subject i’s true response is measured in the validation data, △i = 0

otherwise. As taking account of the validation data, the observed likelihood for a

general S is

n

∏
i=1

[{f(Si ∣ Yi,Xi,γ)f(Yi ∣Xi,B)}△i{f(Si ∣Xi,B,γ)}
1−△i] . (2.25)

Here the distribution of S ∣ (Y ,X) is a crucial component. This likelihood approach

requires a correctly specified model for the measurement error. Calculation of the

likelihood could be challenging in implementation of maximizing the likelihood.

In this review, we restrict our interest to the surrogate and observed response vari-

ables.
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2.2.1 Linear Regression with Response Error

Suppose Y ∣ X follows a normal linear model with mean β0 + βTXX and variance

σ2
ε , while S ∣ (Y ,X) follows a normal linear with mean γ0 + γ1Y and variance σ2

U .

Then S is biased, and the observed data follow a normal linear model with mean

γ0+β0γ1+γ1βTXX and variance σ2
U +γ

2
1σ

2
ε . Thus naive regression ignoring measurement

error in S estimates γ1βX rather than βX .

To make S unbiased variables, we can transform S to (S − γ0)/γ1. If we obtain

information about (γ0, γ1), we can apply any existing analysis method to an estimated

unbiased response as (S − γ̂0)/γ̂1. Suppose that there exists available validation data.

Buonaccorsi and Tosteson (1993) and Buonaccorsi (1996) proposed the following proce-

dure. We use the validation subsample data to obtain the estimates B, the parameters

relating Y andX, and (γ0, γ1). Denote the estimator obtained from the validation data

as B̂1 and the estimator obtained from the analysis based on the original data with the

transformed estimator (S−γ̂0)/γ̂1 as B̂T
2 . Then we estimate the joint covariance matrix

of these estimates, (B̂T
1 , B̂

T
2 ) using the bootstrap, and it is called Σ. We form the best

weighted combination of the two estimates, namely B̂ = (JTΣ−1J)−1JTΣ−1(B̂T
1 , B̂

T
2 )T ,

where J = (I,I) and I is the r × r identity matrix, r is sum of the dimensions of B1

and B2. An estimated covariance matrix for the combined estimates B̂ is (JT Σ̂−1J)−1.

If there is no validation data, instead one might have two independent replicate

unbiased measurements of Y denoted by (S1∗,S2∗). These unbiased replicates are in

addition to the biased surrogate S measured on the main study sample. In this case,

we use the same algorithm as for validation data, with the following changes (Carroll

2006): we use the unbiased response the average of S1∗ and S2∗ to get B̂1. In fact,

the replication data is modeled: S = γ0 + γ1Y + V and Sj∗ = Y +Uj∗ for j = 1 and 2,

where U1∗ and U2∗ are independent with mean zero, and V has mean zero and finitie

variance.
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We have considered homoscedastic regression models so far, but when the data

are heteroscedastic, in the additive unbiased response measurement error model the

variance function for Y has general form of σ2
ε g

2(X,B). However, we can keep applying

the same procedure used for homoscedastic data with the changed variance form.

2.2.2 Logistic Regression with Response Error

Response error in binary dependent variables is called misclassification. Assuming

misclassification is independent of X, we classify observed responses with probabilities

pr(S = 1 ∣ Y = 1,X) = π1 and pr(S = 0 ∣ Y = 0,X) = π0. Then

pr(S = 1 ∣X) = (1 − π0) + (π1 + π0 − 1)H(β0 +β
T
XX), (2.26)

where pr(Y = 1 ∣X) =H(β0 +βTXX), and H(x) = exp(x)/{1 + exp(x)}.

If the misclassification probabilities are unknown and independent of the covari-

ates, then the parameters (π1, π0, β0,βX) can be estimated by using the following log-

likelihood function: let the probability in (2.26) be Ψ(S = 1,X, π1, π0, β0,βTX),

n

∑
i=1

[Si log{Ψ(S = 1,X, π1, π0, β0,β
T
X)}

+(1 −Si) log{1 −Ψ(S = 1,X, π1, π0, β0,β
T
X)}]. (2.27)

There are many existing algorithms to maximize the log-likelihood in (2.27): scoring, it-

eratively reweighted least squares, and the EM-algorithm (Carroll 2006). In practice, it

is difficult to identify the classification probabilities. Paulino et al. (2003) resolved this

identifiability problem by using informative prior distribution under Bayesian frame-

work.

When one has validation data, the classification probabilities can be estimated as the

proportion of correct classification among each group with Y = 1 or 0. The estimates
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π̂1 and π̂0 are incorporated into the log-likelihood in (2.27) as if it is known parameters.

This is called a pseudo-likelihood approach (Carroll et al. 1984, Schafer 1987). If

selection into the validation study is independent on the observed values of S and X,

the pseudo-likelihood approach is valid, but not guaranteed to be efficient. Prescott and

Garthwaite (2002) presented a two-stage Bayesian method for analyzing case-control

studies when binary outcomes are subject to measurement error. In the first stage,

analysis of the data from the validation study yields in prior information for the second

stage.

We need to consider what if there is no validation study. Previous studies can pro-

vide the information about the misclassification with standard error.On the other hand,

replication of the observed variables can be used for the misclassification probabilities.

For example, if the misclassification probability is the same for both values of Y , then

two independent replicates of S a subject suffice to identify the probability.

2.2.3 Semiparametric Methods for Validation Data

Semiparametric analysis by allowing a nonparametric specification of the error

model is an alternative to the likelihood method with a drawback, which is sensitive to

the assumption about the distribution for the error-prone response (Carroll et al. 1984,

Pepe et al. 1989).

Similar to the approaches for the mismeasured covariate with validation data by

Carroll and Wand (1991) and Pepe and Fleming (1991), Pepe (1992) proposed a pseudo-

likelihood method by assuming that the selection into the second stage validation study

is by simple random sampling. For the likelihood in (2.25), the validation data is used

to nonparametrically estimate f(S ∣ Y ,X) by kernel regression methods. Then the

estimator f̂(S ∣ Y ,X) is substituted into the likelihood in (2.25). Eventually, the
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pseudo-likelihood to maximize is

n

∏
i=1

f(Yi ∣Xi,B)△i f̂(Si ∣Xi,B,γ)
1−△i , (2.28)

where f̂(Si ∣ Xi,B,γ) =
´
f(Yi = y ∣ Xi,B)f̂(Si ∣ Yi = y,Xi,B,γ)dy. In this ap-

proach, estimating f(Si ∣ Yi,Xi,B,γ) is challenging because the number of condi-

tional distribution is proportional to the number of all possible combinations of both

levels of Y and X. Moreover when S is continuous, it is more complicated. In prac-

tice, numerical performance of this approach in finite sample sizes needs to be studied

further.

2.3 Weighted Estimating Equations Accounting for MAR Data

Missing data is a crucial problem arising in longitudinal and observational studies.

A simple approach to missing data is a complete case analysis, that is, analyzing only

subjects with complete observations. However, it is well know that the complete case

analysis can be biased when the data are not missing complete at random (MCAR).

Another ad hoc method for missing covariate data is to exclude the corresponding co-

variates from the analysis. However, this can result in model misspecification (Ibrahim

et al. 2005). There are several approaches of dealing with missing data problem: max-

imum likelihood (ML), multiple imputation (MI), fully Bayesian (FB), and weighted

estimating equations (WEEs). In contrast to ML, MI, and FB methods for missing data,

WEEs-based estimates are robust because WEEs require no distributional assumption.

In this section, we review mainly weighted estimating equations in a regression setting.

Without loss of generality, we assume that response variables are always observed.

However, the four methods can be extended to the case that there is missing data in

both responses and covariates by minor adjustments.
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Horvitz and Thompson (1952) proposed a method for survey data analysis account-

ing for different proportions of observations within strata by using inverse probability

weights (IPW), which are the inverse of the inclusion probability in sampling data anal-

ysis, and then the method can be applied to the missing data problem. Motivated from

the Horvitz-Thomson estimator, Rotnitzky and Robins (1995), Robins and Rotnitzky

(1995), and Robins et al. (1994; 1995) developed a class of estimating equations based

on inverse probability weights in a regression setting when data are missing at random

(MAR), namely, missingness depends on only observed data rather unobserved data.

Following Ibrahim et al. (2005), denote the mean model by µi = µ(Xi,β) = E(yi ∣

Xi,β), where µi(Xi;β) is a known twice-differentiable function of β. For missing data,

we define an indicator variable Ri = 1 if covariates are fully observed, Ri = 0 otherwise.

The distribution of Ri ∣ (Yi,Xi) is Bernoulli with probability πi(α) = Pr(Ri = 1 ∣

Yi,Xi,α), where α denotes unknown parameters.

For now, let us assume that πi is known. Robins et al. (1994) proposed weighted

quasi-likelihood estimating equations in the complete case:

uWEE(β) =
n

∑
i=1

Riπ
−1
i div

−1
i (yi − µi), (2.29)

where di = ∂µi/∂β and vi = vi(β) = var(yi ∣Xi). Although only subjects with complete

data contribute to the equation in (2.29), the weighting equations in (2.29) provide a

consistent estimate of β because

E {Ripi
−1
i div

−1
i (yi − µi)}

= EXi
[Eyi∣Xi

{div
−1
i (yi − µi)}{ERi∣yi,Xi

(Riπ
−1
i )}]

= EXi
[Eyi∣Xi

{div
−1
i (yi − µi)}] = EXi

(0) = 0. (2.30)

The key point of the derivation in (2.30) is E(Ri ∣ yi,Xi) = πi. As a consequence, if πi in
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the weighted equations in (2.29) is known or replaced by a consistent estimate, then the

weighted estimating equation leads to an unbiased estimator for β. Zhao et al. (1996)

presented a consistent and robust sandwich variance estimator for β̂. To estimate the

probability of being observed, we can apply a logistic regression model under the MAR

assumption. In practice, to apply an ordinary logistic model, we need to assume that

πi depends only on yi andXall,i, whereXall,i are the variables observed on all subjects.

However, this is a stronger assumption than MAR. Ideally, when covariates are fully

observed, the weighted quasi-likelihood estimating equations are most useful.

Robins et al. (1995) proposed semiparametric regression models for longitudinal

outcomes with MAR data. Their approach can be regarded as an extension of gen-

eralized estimating equations. Under the assumption of monotone missing pattern, a

marginal structure model with past history is used to estimate the probability for be-

ing observed. Robins et al. (1995) also considered extension to arbitrary missing data

patterns.

In fact, the estimates from the weighted estimating equations described above are

inefficient because it uses only the information in the complete cases. To improve

efficiency, Robins and Rotnitzky (1995) extended (2.30) by using the incomplete cases

to estimate the weights.

uWEE2(β) =
n

∑
i=1

{Riπ
−1
i div

−1
i (yi − µi) + (1 −Riπ

−1
i )q(yi,Xobs,i;β,α)} , (2.31)

where q(yi,Xobs,i;β,α) is a specified function of the observed data (yi,Xobs,i), β is

the parameters of interest, and α is the parameter related to πi. IF πi is correctly

specified, then ERi∣yi,Xi
(1−Riπ1

i ) = 0. Expectation of the second term in (2.31) will have

0 regardless of the function q(yi,Xobs,i;β,α). Moreover, if πi is correctly specified, the

first term in (2.31) will have zero expectation. Hence, the estimates of β̂WEE2 obtained

from the equations in (2.31) will be consistent.
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Rotnitzky and Robins (1995) showed the optimal function for q to minimize the

asymptotic variance of β̂WEE2 by

q(yi,Xobs,i;β,α) = E(ui(β) ∣ yi,Xobs;β,α), (2.32)

where ui(β) = div−1
i (yi − µi). To calculate the optimal function in (2.32), we need

to know the distribution of the covariates, p(Xmissing,i ∣ Xobs,i;β,α). Thus we need

another set of estimating equations to estimate α̂.

Lipsitz et al. (1999) proposed a WEEs with γ = (β,α,φ) as following:

S(γ) =
n

∑
i=1

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Riπ−1
i ui(β) + (1 −Riπ−1

i )EXmissing ∣yi,Xobs
{ui(β)}

Riπ−1
i si(α) + (1 −Riπ−1

i )EXmissing ∣yi,Xobs
{si(α)}

(yi,XT
i )

T (Ri − πi)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (2.33)

where ui(β) = u(β; yi,Xi) and si(α) = s(α;Xi). To solve S(γ̂) = 0, the weighted EM-

algorithm or Monte Carlo EM algorithm is used when missing covariate is categorical

or continuous, respectively (Lipsitz et al. 1999). Robbins and Ritov (1997) showed

the estimator from (2.33) is doubly robust, that is, it remains consistent when either

a model for the missingness mechanism or the score vector for the missing data given

the observed data is correctly specified. However, these are asymptotic properties, and

the estimating equations in (2.33) does not extend easily when missing data pattern is

non-monotone.
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CHAPTER3: THRESHOLD-DEPENDENT PROPORTIONAL
HAZARDS MODEL FOR ANALYZING TIME-TO-EVENT DEFINED
BY BIOMARKER WITH SUBJECT TO MEASUREMENT ERROR

3.1 Introduction

Type 2 diabetes mellitus (hereafter referred to simply as diabetes) is an adult-onset

metabolic disorder and is one of the leading causes of morbidity and mortality (Kumar

et al. 2005, pp. 1194–1195). The incidence of diabetes has been increasing over several

decades, and many studies have been conducted in various communities to investigate

the pathogenesis of diabesity, with the eventual goal being to control or prevent dia-

betes (Duncan et al. 2003; UK Prospective Diabetes Study Group 1998; Isomaa et al.

2001). During 1987-1989, the Atherosclerosis Risk in Communities (ARIC) Study re-

cruited a population-based cohort from four U.S. communities, Forsyth County, NC,

Jackson, MS, suburbs of Minneapolis, MN, and Washington County, MD. Participants

underwent a baseline examination in 1987-1989, three follow-up examinations at ap-

proximately three-year intervals, and a further examination in 2011-2013. The ARIC

Study was designed to investigate the causes of atherosclerosis, but various ancillary

studies have investigated several other diseases, including diabetes. The standard ARIC

definition of diabetes is a fasting plasma glucose (FPG) ≥ 126mg/dL, non-fasting glu-

cose ≥ 200mg/dL, a self-reported physician diagnosis of diabetes, or use of diabetes

medication in the two weeks preceding the study visit.

The diabetes data from the ARIC Study pose three challenges for analysis. For

incident diabetes determined by the FPG value, because of the relatively long intervals
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between visits, the exact date of crossing the specified threshold, and hence the exact

incident date was unobservable. What is known is the date of the visits at which an

individual’s FPG values were below or above the threshold. This can be regarded as

measurement error of the event time or as interval censoring. Using as event time the

visit time at which a value above the threshold is first recorded may lead to invalid

inferences (Lindsey and Ryan 1998).

Secondly, the threshold of FPG (126 mg/dL) used as the diagnostic criterion for di-

abetes is based on the World Health Organization (WHO) guidelines updated in 2005.

According to the guidelines, two sets of information have influenced determination of

diagnostic cutpoints for diabetes: plasma glucose levels associated with micro-vascular

(particularly retinopathy) and cardiovascular complications, and the population distri-

bution of plasma glucose. The Expert Committee on the Diagnosis & Classification of

Diabetes Mellitus (2003) reported history of changing the diagnostic threshold for the

FPG over time and some countries. Miyazaki et al. (2004) suggested that the thresh-

old for diagnostic fasting plasma glucose level based on prevalence of retinopathy in a

Japanese population is lower than that of the current diagnostic criteria. This implies

the criterion proposed by WHO has limitations because of the data from which the

diagnostic criterion for diabetes was derived. Not only FPG but other biomarkers have

different distributions across populations (Vasan 2006; Rule et al. 2004). In analyzing

the data from the ARIC Study, we found that factors significantly associated with time

to diabetes onset varied with the criteria used to define diabetes. This motivated us to

investigate methods for relaxing the requirement of using a specified, fixed threshold.

Finally, there is marked variability (both pre-analytical and analytical) involved

in glucose testing, and the pre-analytical variation results from intra-individual and

inter-individual variation, whereas analytical variation results from methodology used

in measurement of glucose (Schwartz, Reichberg, and Gambino 2005; Schrot, Patel, and
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Foulis 2007;Tonyushkina and Nichols 2009; Hellman 2012). Generally, we are unable to

distinguish measurement error and individual variability. The pre-analytical variation

can be inferred by blood glucose values measured repeatedly over time. The National

Institute of Standards and Technology maintains the glucose sample materials that

are the gold standard by which instrument manufacturers determine the accuracy of

their glucose measurement devices. Variation due to measurement error or individual

variability complicates defining time to diabetes occurrence. Moreover, if measurement

error is non-ignorable but ignored in the analysis, the analysis may yield an inaccurate

conclusion.

In the literature, there exist different methods to address each of the three issues

described above. For interval censoring in data with only one follow-up after base-

line, Huang (1996) provided a thorough study based on a proportional hazards model

and Rossini and Tsiatis (1996), Shen (2000), Ma and Kosorok (2005), and Xue, Lam,

and Li (2004) developed several semi-parametric models for interval censored data

based on events determined by a fixed threshold. Measurement error in categorical

response is called misclassification, and various approaches to account for misclassifi-

cation have been developed (Hausmana, Abrevayab, and Scott-Mortonb 1998;Neuhaus

2002;Paulino, Soares, and Neuhaus 2003). For measurement error in a continuous re-

sponse, some authors have proposed methods adjusting for measurement error (Carroll

2006). As a likelihood method, Pepe (1992) developed a nonparametric estimator for

the conditional probability of a surrogate response given covariates. Huang and Wang

(2000) and Tsiatis and Davidian (2001) handled covariates subject to measurement

error in the context of time-to-event subject to right censoring. However, none of

these approaches can simultaneously handle the challenges as seen in the ARIC Study,

including imprecise event time, non-fixed threshold and measurement error.

In this paper, we propose a novel semiparametric regression model for modelling
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the FPG values. Our model is based on an extension of the generalized extreme value

distribution. Interestingly, the proposed model is equivalent to modelling threshold-

dependent time to diabetes via a Cox proportional hazards model, where the event

time is defined as the FPG value crossing the given threshold. To account for measure-

ment error, we develop nonparametric maximum likelihood estimation for inference.

The paper is structured as follows. We describe the ARIC Study in Section 3.2. We

then propose our method and inference procedure in Section 3.3. Asymptotic Results

and the technical details are summarized in Section 3.4 and Application A, respec-

tively. Simulation study and application to the ARIC Study are in Sections 3.5 and

sec ∶ application, respectively. We give some conclusions in Section sec ∶ discussion.

3.2 The ARIC Study

The ARIC Study recruited a population-based cohort of 15,792 (Duncan et al.

2003). The study participants were predominantly white or African-American, and

they underwent a baseline examination in 1987-1989, three follow-up examinations

at approximately three-year intervals, and a further examination in 2011-2013. We

excluded 2,018 participants with prevalent diabetes, 95 participants who were neither

white nor African-American and African-Americans in the Minnesota and Washington

County cohorts because of small numbers, 853 not returning to any follow-up visit,

26 having no valid diabetes determination at follow-ups, 7 with restrictions on stored

plasma use, 12 with missing baseline anthropometrics, and 1,011 with missing FPG

values or baseline characteristics. To study the association between baseline risk factors

and time to diabetes, although we have the FPG values from multiple follow-up visits,

we use only the value at the first follow-up visit because once diagnosed as diabetic by

non-study physicians, participants may have started taking medication for diabetes or

have adjusted their life style and their FPG levels at the subsequent visits may have
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been influenced by these changes. For the same reason, we excluded 128 subjects (1%)

diagnosed with diabetes by their own physicians between baseline and the first follow-

up visit. We summarize the demographics and baseline characteristics of the 11,642

participants to be included in the analysis in Table 1.

If we ignore the complicated issues arising in the data and simplify the problem

by focusing on the binary outcome of presence or absence of diabetes, we can apply

a logistic regression model. Defining presence of diabetes as an observed FPG value

≥ 126mg/dL, the logistic regression model for the probability of diabetes (refer to the

supplemental material) leads to a result that differs from the well-known facts: African-

Americans and people with a parental history of diabetes have significantly lower risk

of diabetes than whites and people without a parental history of diabetes, respectively.

This incorrect conclusion drove us to consider another approach.

We examined the distributions of the FPG values at the follow-up visits as shown

in Figure 3.1. Clearly, the distribution of FPG values is very skewed and has a long

right tail. Even after logarithm transformation, the distribution remains skewed. We

fitted a parametric generalized extreme value distribution (the dashed curve in Figure

3.1), and this suggests that it is a good approximation to the distribution of the FPG

values. There appears to be some mismatch at the mode of the FPG distribution,

but we believe this is primarily due to measurement errors in the FPG values. This

empirical observation motivated us to propose a semiparametric regression model based

on the generalized extreme value distribution as described in the methods section.

3.3 Method

3.3.1 Model

For subject i, letXi be time-invariant covariates such as demographic characteristics

and risk factors at baseline such as race, sex, hypertension, parents diabetes history,
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age, body mass index, fasting plasma glucose value, high-density lipoprotein, and total

cholesterol, and Y ∗
i (t) and Yi(t) be the true FPG value and observed FPG value at

time t, respectively. Observed visit time is denoted by V , which can be fixed or random

and is assumed to be independent of Y ∗
i (t) given Xi. Thus, the observed data from

n independently and identically distributed subjects are {Yi(Vi), Vi,Xi ∣ i = 1, . . . , n},

where Vi is the visit time for subject i. The observed data is denoted by {Wi ∣ i =

1, . . . , n} hereafter.

Motivated by the empirical observation in Section 2, we assume that the true FPG

values follow one type of generalized extreme value distribution: exp{−α exp(−µy∗ +

γ)}, for parameters α > 0, µ > 0, and −∞ < γ, y∗ < ∞. The underlying trend of the

true biomarker values is never observable because of intra-individual variability and

measurement error; however, it is reasonable to assume that in a population of middle-

aged and older adults the underlying trend of Y ∗
i (t) is non-decreasing over time t

within the follow-up period because chronic diseases such as diabetes, hypertension,

and asthma are irreversible without medication or lifestyle changes. To incorporate

baseline covariates and account for the time-dependent nature of the FPG values, our

proposed semiparametric regression model is

P (Y ∗
i (t) ≤ y∗ ∣Xi) = exp{−Λ0(t) exp(−µy∗ +βTXi)}, (3.1)

where Λ0(t) is non-decreasing over time and positive when t > 0, and both µ and β

are unknown parameters. In the absence of covariates, this model can be regarded

as a stochastic process with the mean function µ−1(log Λ0(t) + γ0) , where γ0 is the

Euler-Mascheroni constant.

Interestingly, the above model is equivalent to modeling the threshold-dependent

time-to-diabetes events. Specifically, for any given threshold value ξ, we define Tiξ to

be the first time that Yi(t) crosses the threshold ξ. Then under the assumption that
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Y ∗
i (t) is non-decreasing, we have P (Tiξ > t ∣Xi) = P (Y ∗

i (t) ≤ ξ ∣Xi). The equation in

(3.1) is equivalent to

P (Tiξ > t ∣Xi) = exp{−Λ0(t) exp(−µξ +βTXi)}.

That is, we obtain a proportional hazard model with a threshold-dependent baseline

hazard function for Tiξ as

λi(t) = exp(−µξ)λ0(t) exp(βTXi), (3.2)

where λ0(t) = dΛ0(t)/dt. Equivalently, log Λ0(T (ξ))=−βTXi + µξ + ε, where ε is inde-

pendent of Xi and has the extreme value distribution. This new expression gives a

nice interpretation of the parameters µ and β: µ > 0 is essentially the effect of using

different thresholds for the threshold-dependent time to diabetes. Clearly, the larger

the threshold, the longer the time to diabetes. The regression parameter β in the model

(3.2) gives the log-hazard ratio of X on time to diabetes occurrence after controlling

for any given threshold value. Therefore, β being positive implies that greater risk of

developing diabetes is associated with larger values of X.

Our second model considers the effect of measurement error using the classical

additive measurement error model (Carroll 2006; Fuller 1987; Tsiatis, DeGruttola, and

Wulfsohn 1995)

Yi(t) = Y
∗
i (t) + εi(t), i = 1, . . . , n. (3.3)

We assume the measurement error εi(t) has a normal distribution with mean zero and

variance σ2 for any time t and is independent of Y ∗
i (t), Xi, and ξ. The measurement

error variance of σ2 may be estimated in practice by taking repeated measurements

(Schwartz et al. 2005;Tonyushkina and Nichols 2009). Since information about the

measurement error variation can be obtained from outside the dataset being analyzed,
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we consider σ2 to be known. The measurement error model can be regarded as a

mixture model to give flexibility to the distribution for the observed FPG values.

Under the above two models, we construct the likelihood for the observed biomarker

Yi(Vi) given (Vi,Xi), i = 1, .., n:

n

∏
i=1

ˆ ∞

−∞

exp{−Λ0(Vi)e
βTXi−µξ}Λ0(Vi)µ exp(βTXi − µξ)

1

σ
φ{

Yi(Vi) − ξ

σ
}dξ, (3.4)

where φ(⋅) is the standard normal density function.

3.3.2 Inference Procedure

We maximize (3.4) to estimate all the parameters, including θ = (µ,βT )T and Λ0.

Specifically, we estimate Λ0 as a step function, with jumps at the observed Vi’s. Let

v(1) < . . . < v(K) be ordered observed times of {vi ∣ i = 1, . . . , n} and Λk = Λ0(v(k)) and

v(0) = 0. Then we maximize (3.4) over θ and Λk’s subject to constraints 0 ≤ Λ1 ≤ . . . ≤

ΛK .

To facilitate the maximization, we introduce a latent threshold variable ξi for each

subject. Furthermore, the random variables of (Yi(Vi), Vi,Xi, ξi) follow a joint distri-

bution given by

exp{−Λ0(Vi)e
βTXi−µξi}Λ0(Vi)µ exp(βTXi − µξi)

1

σ
φ{

Yi(Vi) − ξi
σ

} .

Then the likelihood (3.4) is the observed likelihood function with ξi, i = 1, ..., n being

missing. Therefore, we adopt the expectation-maximization (EM) algorithm. Then the
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complete log-likelihood function is

lc(θ) =
K

∑
k=1

n

∑
i=1

I(Vi = V(k))[ −Λk exp(βTXi − µξi) + log Λk + logµ +βTXi − µξi

−
1

2
logσ2 −

{Yi(Vi) − ξi}2

2σ2
].

In the M-step at the lth iteration of the EM algorithm, we first maximize the conditional

expectation of the complete log-likelihood function given observed data over Λk’s. We

then update θ via the Newton-Raphson algorithm. Specifically, we maximize Q(Λ)

defined by

Q(Λ) =
K

∑
k=1

n

∑
i=1

I(Vi = V(k))E{−Λk exp(βTXi − µξi) + log Λk ∣Wi, θ
(l)}. (3.5)

Since Q(Λ) is a concave function over a convex cone satisfying Λ1 ≤ . . . ≤ ΛK , this

maximization can be carried out using one of the many existing algorithms for convex

optimization. To update θ, we apply the following one-step Newton-Raphson algorithm,

θ(l+1) = θ(l) +E(−∂2lc/(∂θ)2 ∣W , θ(l))−1
θ=θ(l)E(∂lc/∂θ ∣W , θ(l))θ=θ(l) . (3.6)

The conditional expectations in (3.6) are calculated in the E-step of the EM algorithm

based on the following expression,

E(g(ξi) ∣Wi, θ
(l)) =

I(Vi = V(k))
´∞
−∞

g(ξi) exp(−Λkeβ
TXi−µξi)e−µξiφ(Yi(Vi)−ξiσ

)dξi´∞
−∞

exp(−Λkeβ
TXi−µξi)e−µξiφ(Yi(Vi)−ξiσ

)dξi
,

where the g(ξ)’s to be calculated are ξ, ξ2, e−µξ, e−µξξ, and e−µξξ2. This integration can

be approximated by the Gauss-Hermite quadrature (Davis 1984, pp. 190), so it can be
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approximated by

N

∑
k=1

(
√

2σwkg{
√

2σwk + Yi(Vi)} exp [−Λ0(Vij)e
βTXi−µ{

√
2σzk+Yi(Vi)}] e−µ{

√
2σzk+Yi(Vi)}) ,

(3.7)

where N is the number of the quadratures and ωk and zk are weights and abscissae for

the Gauss-Hermite quadrature, respectively. This loop of the E-step and the M-step is

repeated until ∣θ(l+1) − θ(l)∣ is smaller than a pre-specified criterion. We denote the final

estimators as θ̂T = (µ̂, β̂T ) and Λ̂.

3.3.3 Variance Estimation

In the asymptotic results given in the Appendix and the supplemental material, we

show that the proposed estimator for θ0 is semiparametrically efficient. Moreover, the

efficient score function for θ at θ = θ0 is

l∗θ(θ0,Λ0,W ) =

⎛
⎜
⎜
⎝

µ−1
0 −E(κξ ∣W ) −E(κ ∣W )R1(V )

E(κ ∣W ){X −R2(V )}

⎞
⎟
⎟
⎠

, (3.8)

where κ=1 −Λ0(V ) exp(βT0 X − µ0ξ), and

R1(V ) = E[E(κ ∣W ) {µ−1
0 −E(κξ ∣W )} ∣ V ]/E{E(κ ∣W )2 ∣ V },

R2(V ) = E {XE(κ ∣W )2 ∣ V }/E {E(κ ∣W )2 ∣ V } .

Therefore, the asymptotic variance of n1/2θ̂ is the inverse of the information for θ0, that

is, I(θ0) = E(l∗⊗2
θ ), where a⊗2 = aaT for any vector a.

For the asymptotic variance of n1/2θ̂, we estimate I(θ0) by n−1∑
n
i=1 l̂

∗⊗2
θi , where

l̂∗θi =

⎛
⎜
⎜
⎝

µ̂−1 − Ê(κξ ∣Wi) − Ê(κ ∣Wi)R̂1(Vi)

Ê(κ ∣Wi){Xi − R̂2(Vi)}

⎞
⎟
⎟
⎠

, (3.9)
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and Ê(κ ∣ W ), Ê(κξ ∣ W ), R̂1(Vi), and R̂2(Vi) are some consistent estimators for

E(κ ∣ W ), E(κξ ∣ W ), R1(Vi), and R2(Vi), respectively. Specifically, Ê(κ ∣ W ) and

Ê(κξ ∣W ) are

Ê(κ ∣W ) = 1 − Λ̂(V ) exp(β̂TX)Ê(exp(−µ̂ξ) ∣W ),

Ê(κξ ∣W ) = Ê(ξ ∣W ) − Λ̂(V ) exp(β̂TX)Ê(exp(−µ̂ξ)ξ ∣W ),

and the other two estimators are some type of kernel estimators with bandwidth hn:

R̂1(v) =
∑
n
j=1Khn(Vj − v)Ê(κ ∣Wj){µ̂−1 − Ê(κξ ∣Wj)}

∑
n
j=1Khn(Vj − v)Ê(κ ∣Wj)

2
,

R̂2(v) =
∑
n
j=1XjKhn(Vj − v)Ê(κ ∣Wj)

2

∑
n
j=1Khn(Vj − v)Ê(κ ∣Wj)

2
,

where Khn(x) = h
−1
n exp(−x2/hn). In the Appendix, we establish the consistency of this

variance estimator assuming that hn → 0 and nhn →∞ as n→∞. We choose (n/2)−1/2

for hn.

When the number of observations is large, as in the ARIC Study, an alternative

approach to estimating the variance is via the profile likelihood. Specifically, for each

parameter in θ, we fix it in the proposed EM algorithm and at convergence, we compute

the log-likelihood function as its profile likelihood function. Then based on the profile

likelihood theory, the inverse of the negative curvature of the profile likelihood function

should give a consistent estimator for the variance.

3.4 Asymptotic Results

We establish asymptotic properties for the proposed estimators under the following

conditions and the proofs are summarized in Appendix A. Let θ0 and Λ0 denote the

true regression parameter and cumulative hazard function, respectively.
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(A1) The finite-dimensional parameter space Θ is a compact subset of the domain of

θ.

(A2) The covariate X has bounded support with probability 1. If βTX +α = 0 almost

surely (a.s.), then β = 0 and α = 0.

(A3) The support of the observation time, V , is an interval S [V ] = [lV , uV ], with

0 < lV ≤ uV <∞.

(A4) The cumulative hazard function Λ0 has strictly positive derivative on S [V ].

The assumptions that parameter, covariate, and observation time are bounded are

standard. Condition (A2) ensures the identifiability of θ and Λ. These conditions hold

naturally in most applications.

For convergence of the estimates to the true parameters, we need to define a topol-

ogy. Let the bounded regression parameter space Θ(⊂ Rd) be equipped with the

Euclidean topology. Regarding infinite dimensional nonparametric space, let F be the

set of all Borel subprobability measures on S [V ]. Then F can be equipped with the

vague topology by defining that, for any sequence Fn ∈ F and F ∈ F , Fn converges

vaguely to F if and only if

ˆ
fdFn →

ˆ
fdF for every f ∈ C0(S [V ]),

where C0(S [V ]) is the set of all continuous functions that vanish outside a compact

subset of S [V ]. Then the product space Θ × F can be equipped with the product

topology of the Euclidean topology and the vague topology. In the product topology, it

is said that (θ̂, F̂ ) converges to (θ, F ) when θ̂ and F̂ converge to θ and F , respectively.

Theorem 3.4.1. (Consistency of the MLE) Under conditions (A1)–(A3), θ̂ → θ0 al-

most surely, and if v ∈ S [V ] is a continuity point of Λ0, Λ̂(v) → Λ0(v) almost surely.
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Moreover, if Λ0 is continuous, then supv∈S [V ] ∣ Λ̂(v) −Λ0(v) ∣→ 0 almost surely.

Before discussing the overall convergence rate, we define the distance d on Rd ×Φ

as follows:

d{(θ1,Λ1), (θ2,Λ2)} = ∣θ1 − θ2∣ + ∥Λ1 −Λ2∥2,PV
,

where ∣θ1 − θ2∣ is the Euclidean distance in Rd,

∥Λ1 −Λ2∥2,PV
= [

ˆ
{Λ1(v) −Λ2(v)}

2dPV ]
1/2

,

and PV is the marginal probability measure of the measurement time variable V .

Our next theorem gives the convergence rates of the estimators in terms of this

distance.

Theorem 3.4.2. (Rate of convergence) Under Conditions (A1)–(A3),

d{(θ̂, Λ̂), (θ0,Λ0)} = Op(n
−1/3).

The overall rate of convergence is dominated by Λ̂. However, it is shown in the next

theorem that the convergence rate of θ̂ can be refined to achieve a rate of n1/2.

Theorem 3.4.3. (Asymptotic normality and efficiency) Suppose that θ0 is an interior

point of Θ and that conditions (A1)–(A4) are satisfied. Then

n1/2(θ̂ − θ0) = n
1/2(Pn − P )I(θ0)

−1l∗θ0(W ) + op(1)→ N(0, I(θ0)
−1) in distribution,

where Pn is the empirical measure ofWi, i = 1, . . . , n, that is, Pnl∗θ0(W ) = n−1∑
n
i=1 l

∗
θ0
(Wi),

P is the probability measure, that is, Pl∗θ0(W )=
´
l∗θ0(W )dP , l∗θ0(W ) is the efficient

score defined in (3.8), and I(θ0) is the information.
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Since θ̂ is asymptotically linear with efficient influence function, and the model

(the likelihood function) is sufficiently smooth (Hellinger differentiable) with respect

to (θ,Λ), it is asymptotically efficient in the sense that any regular estimator has

asymptotic variance matrix no less than that of θ̂.

Theorem 3.4.4. (Consistency of information estimator) When the bandwidth hn sat-

isfies that hn and logn/(nhn) converge to 0 as n→∞, Pnl̂∗⊗2
θi converges to Pl∗⊗2

θ0
.

3.5 Simulation Study

Simulation studies were conducted to assess the performance of the estimators pro-

posed in Section 3. We considered two sets of simulations in which the observation

times were either discrete or continuous random variables. For discrete measurement

times, the time point for each subject was chosen randomly from {0.1,0.2,0.4,0.8},

while continuous observation times were generated from the uniform distribution over

[0,1]. In each simulation, two covariates were included in the model: one generated

from the Bernoulli distribution with probability 0.5, and the other from the normal

distribution with mean 0 and variance 0.1. The true values for (β1, β2) were set as (0.3,

0.3), and the true cumulative baseline hazard assumed to be 2t1/5. Consequently, the

true FPG value was generated as:

Y ∗
i (ti) = µ−1[βTXi − log { − log(pi)/Λ0(ti)}], (3.10)

where ti and pi were from the uniform distribution over [0,1]. For the observed

biomarker values, Yi’s were obtained by adding Y ∗
i and εi, where εi was independently

generated from a normal distribution with mean 0 and variance σ2=0.25. In the sim-

ulations, we used µ=0.5 or 1.0, where the corresponding ratios of measurement error

variance to true biomarker variance were 0.04 and 0.16, respectively. We varied sample
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sizes from 400 to 800 and conducted 1,000 replicates for each simulation.

For each simulated dataset, we applied the proposed the EM algorithm to estimate

the parameters. The initial values for β and Λ0(t) were 0 and observed times, respec-

tively. In the M-step, the spectral projected gradient method was used for constrained

optimization in (3.5). The convergence criterion for the EM algorithm was 10−6. In

the simulations, we noticed that the threshold effect of µ was sensitive to the initial

values. Therefore, we first calculated the profile likelihood µ using the same algorithm

except that µ was held at some fixed value; we then carried out a grid search to find

the maximizer for µ. The variance estimation was based on the formula in Section3.3.3.

For comparison, we also calculated the maximum likelihood estimates assuming that

the threshold value was fixed for all the subjects, and there was no measurement error.

Every subject may have a different threshold in the simulation scenario; however, we

need a fixed threshold value for the ICM method. We set fixed thresholds to be at the

90%, 80%, or 70% quantiles of the true biomarker.

In both scenarios, for the discrete and continuous time points, we observed similar

results. We present the results of simulations for continuous time points. Table 3.2

shows that bias of the proposed estimators is small, and it decreases as the sample

size increases or the variance ratio decreases; the estimated variances agree well with

the empirical variance, and the coverage probability is reasonable. Under the setting

that the threshold value varies from person to person, and the FPG value includes

measurement error, the empirical standard deviation of our estimators are much smaller

than the ICM method, and the bias is smaller than the ICM method when sample size

increases.

Table 3.2 shows that for the ICM method bias increases and efficiency improves

as the fixed threshold increases; the standard deviation and bias of the ICM method

decrease when the sample size increases; and accuracy and efficiency of the ICM method
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are influenced more by the choice of the fixed threshold than by the measurement error.

In additional simulation studies, we examined the robustness of our method against

misspecification of the measurement error distribution in the case of the random con-

tinuous time points. Specifically, we let the true distribution for the measurement error

be the log-gamma distribution with mean 0 and variance 0.33 or with mean 0.85 and

variance 0.28; but we misspecified it in the model (3.4) as the normal distribution with

the same mean and variance as the true distribution. The resulting bias and variance

(not shown) were similar to those in Table 3.2. The coverage rates of the estimated

regression parameters and the estimated threshold parameters were still around 95%.

This shows that the proposed method is not sensitive to the distribution of the measure-

ment errors. Finally, to investigate which of measurement error and varying threshold

contributes more to the difference in numerical performance between our estimators

and the ICM method, we applied the ICM method to the simulated data excluding the

measurement error. Bias and empirical standard deviation are similar in the simula-

tions with and without measurement error. Hence, accuracy and efficiency of the ICM

method is influenced more by having a fixed threshold than by measurement error.

3.6 Analysis of the ARIC Study Data

We analyzed the ARIC Study data using the proposed model. As potential risk

factors, we considered baseline characteristics of participants such as race, gender,

hypertension, parents diabetes history, age, BMI, FPG, HDL cholesterol, and total

cholesterol. These variables are regarded as major factors associated with diabetes

(Duncan et al. 2003).

Both the College of American Pathologists (CAP) and the Clinical Laboratory Im-

provement Amendments of 1988 determined the total allowable error, 10% for glucose,

and generally laboratories are well within the total allowable error (Schwartz et al.
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2005). Hence we chose σ2 = 0.32, corresponding to 0.09 ratio of measurement error

variance to the standardized FPG variance.

In order to facilitate calculations, we standardized FPG values as well as baseline

continuous covariates to have mean zero and unit variance. Also, the observation time

was scaled to (0,1]. FPG values below 75mg/dL were winsorized to reduce the influence

of outliers in the lower tail of the distribution because our interest is in crossing a

threshold towards the upper end of the distribution. The number of subjects having

FPG values below 75 mg/dL is 204 (1.7%). In winsorization of FPG at 70 or 65 mg/dL,

estimates of parameters for continuous covariates are practically unchanged, whereas

estimates for those of discrete covariates changed slightly. However, the statistical

significance of the risk factors for diabetes remained unchanged.

Although we proposed the variance estimator in Section3.3.3, we adopted the profile

likelihood function as described in Section3.3.3 to estimate the asymptotic variance of

the estimators. For each regression parameter, we computed the log-likelihood function

as its profile likelihood function in the way described in section 3.3.3. The estimated

profile likelihood functions appeared to be unimodal, and we obtained the MLE from

the profile likelihood for age, which has the maximum value among all the profile

likelihood functions (Table 3.3). Then we numerically calculated the inverse of the

negative curvature of the profile likelihood function for each parameter at the MLE.

For comparison, we considered two semiparametric models using the fixed threshold

of 126mg/dL, a naive method and Pan (1999)’s method, both ignoring the measurement

error in the observed FPG value; for the naive method, we treated the interval-censored

data as right-censored data and applied the Cox proportional hazard model. When the

FPG value is above the threshold at the next visit after baseline, the event time is

set to be the mid-point between baseline and the next visit. Otherwise, data are

regarded as right-censored at the visit after baseline. Pan (1999)’s method modified
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the iterative convex minorant algorithm as a generalized gradient projection method,

and the algorithm can be implemented using the R-package, INTCOX, developed by

Henschel et al. (2007)(referred to as the ICM method hereafter). In the ICM method,

we treat the visit times as current status data for time to diabetes. These two methods

ignore measurement error in FPG values and use the fixed threshold of 126 mg/dL for

the counting processes. Moreover, the naive method improperly accounts for interval

censoring. The ICM method does not provide standard errors, so we used the simple

bootstrap sampling method with 200 replications to estimate the standard errors of the

regression parameters.

The ICM method yielded similar results to the naive method for most risk factors,

but the effect size and significance of gender and age are different; from the ICM

method, it is found that African-Americans, people with parental history of diabetes,

older age, higher BMI and FPG, and lower HDL cholesterol have significantly higher risk

of diabetes than people with the opposite characteristics. Our method found additional

significant factors for diabetes such as hypertension and higher total cholesterol. The

factors associated with diabetes found from the proposed model agree with the generally

known factors (Mokdad et al. 2003). Total cholesterol consists of HDL cholesterol, LDL

cholesterol, and triglycerides. It is known that higher LDL cholesterol and triglycerides

and lower HDL cholesterol increase diabetes risk, and high total cholesterol plays a

more critical role as a diabetes risk indicator than low HDL cholesterol. We gain less

biased and more precise risk estimates from the proposed model.

In the four US communities, African-Americans, males, people with hypertension,

and people with parents diabetes history have 1.20, 1.45, 1.31, and 1.42 times greater

hazard of diabetes than whites, females, people with hypotension or normal blood

pressure, and people without parental diabetes history, respectively. When baseline

BMI, FPG, and total cholesterol increase by 1 unit, and HDL cholesterol decreases by
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1 unit, where the unit is on the original measurement scale, then the hazard of diabetes

increases by a factor of 0.024, 0.052, 0.001, and 0.002, respectively. To investigate

the goodness-of-fit of our model, we used the log-likelihood ratio test to compare the

model in (3.4) with the model with no measurement error, and the test based on

the mixture chi-square distribution shows that there is significant measurement error

(p < 0.001). In addition, we generated the predicted glucose values and the empirical

marginal distribution for the predicted values using the density formula in (3.10) and

the formula in (3.4) based on the estimates, respectively. We compared the histogram

of the observed FPG values with the empirical marginal distribution for the model-fit

(left in Figure 3.2). The marginal distribution in Figure 3.2 shows better fit to the

observed distribution of FPG values than the generalized extreme value distribution in

the mode of the distribution. Using the predicted values, we suggest another graphical

method for model diagnosis, a residual plot, subtracting the predicted means from the

real observed glucose values (right in Figure 3.2). The residual plot of Figure 3.2 shows

a fairly good fit and the residuals are randomly scattered around 0.

However, in the residual plot, we observe that there are 52 observations with rel-

atively large residuals. The observations with large residuals are above the 99.7%

quantiles of FPG values (inter-quartile ranges: 179–246 mg/dL) and their observation

times are relatively early. As a sensitivity analysis, we reanalyzed the data excluding

those observations to investigate the influence of these observations on the result. After

excluding the observations, the estimated hazard ratios barely changed and significance

of the factors remains unchanged.

3.7 Concluding Remarks

Motivated by the ARIC Study to find associations between potential risk factors

and time to diabetes occurrence determined by FPG and a threshold, we propose a
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semiparametric regression model based on the generalized extreme value distribution,

which turns out to be equivalent to a class of proportional hazard models for threshold-

dependent time to diabetes. We account for measurement error in observed FPG by

incorporating the additive measurement error model into the observed likelihood. The

application to the ARIC Study reveals significant risk factors which are consistent with

clinical findings from this study. Compared to the existing methods, the proposed

model yields risk effect estimates in the correct direction and with improved efficiency.

Although we have focused on only one follow-up time per subject, the proposed

model can be generalized to repeated observations using pseudo-likelihood ignoring

dependence between biomarker values within the same subject. On the other hand,

when a covariance structure for the true biomarker values is postulated, semiparametric

maximum likelihood methods can be constructed. Furthermore, we can generalize the

linear model with respect to threshold to a nonparametric model.
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Figure 3.1: Distribution of Fasting Blood Glucose Values

Distribution of FPG values (n=11,642)

Fasting plamsa glucose (mg/dL)

D
en

si
ty

100 200 300 400 500

0.
00

0
0.

01
0

0.
02

0
0.

03
0

The dashed probability density curve is for the generalized extreme value distribution:
exp (−14 exp(−0.07y + 4.1)) I(−∞ < y <∞).
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Figure 3.2: Quantile-Quantile and Residual Plots

Distribution of FPG values
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In the left plot, the dashed curve is the generalized extreme value distribution:
exp (−14 exp(−0.07y + 4.1)) I(−∞ < y <∞). The solid curve is the distribution for the

predicted values based on the estimates using our method.
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Table 3.1: Baseline Characteristics of the Study Participants

Baseline Factor n=11,642
N (%) or mean (±SE)

Center
Forsyth 3,132 (26.9%)
Jackson 2,224 (19.1%)
Minneapolis 3,318 (28.5%)
Washington 2,968 (25.5%)

Race
White 9,120 (78.3%)

Gender
Female 6,499 (55.8%)

Parental history of diabetes
Yes 2,935 (25.2%)

Hypertension
Yes 3,471 (29.8%)

Age (years) 53.9(±5.7)
BMI (kg/m2) 27.2 (±5.0)
FPG (mg/dL) 97.7 (±10.4)
HDL (mg/dL) 52.7 (±17.1)
Total cholesterol (mg/dL) 214.1 (±40.9)
SE: standard error
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CHAPTER4: SEMIPARAMETRIC REGRESSION MODEL FOR
ANALYZING TIME-TO-EVENT DEFINED BY EXTREME

LONGITUDINAL BIOMARKERS

4.1 Introduction

In many medical studies, interest focuses on studying the effects of potential risk

factors on some disease events, where the occurrence time of disease events is often de-

fined in terms of the behavior of a biomarker. For example, in diabetic studies, diabetes

is defined in terms of fasting plasma glucose (FPG) being 126 mg/dl or higher. In prac-

tice, due to discrete study follow-up times, the exact time when a biomarker crosses a

given threshold is unobservable, yielding so-called interval censored events (Schick and

Yu 2000). In addition, most biomarker values are subject to measurement error due

to imperfect technologies, so the observed biomarker values may not reflect the actual

trend of the underlying biomarker. Finally, using a common threshold for defining a

disease event may not be appropriate due to patient heterogeneity, which could lead to

potential over-treating or under-treating some patients. Hypercholesterolemia does not

cause symptoms but can significantly increase risk of developing coronary heart dis-

ease (CHD). To reduce risk, including that of CHD, people with substantially elevated

cholesterol levels are advised to start therapeutic lifestyle changes or drug therapy. The

cholesterol level at which to consider therapeutic intervention varies across different risk

categories such as cigarette smoking, hypertension, family history of premature CHD,

age, etc. (the National Cholesterol Education Program Expert Panel 2001).

Our work is motivated by the Atherosclerosis Risk in Communities (ARIC) study. In
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1987-1989, the ARIC Study recruited a population-based cohort from four U.S. commu-

nities, Forsyth County, NC, Jackson, MS, suburbs of Minneapolis, MN, and Washington

County, MD. Participants underwent a baseline examination in 1987-1989, three follow-

up examinations at approximately three-year intervals, and a further examination in

2011-2013. The ARIC Study was designed to investigate the causes of atherosclero-

sis, and hypercholesterolemia is a crucial risk factor for cardiovascular disease. Hence,

assessing risk factors associated with time-to- hypercholesterolemia appears to be of

interest. The time-to-hypercholesterolemia data from the ARIC study pose the dif-

ficulties in analysis that we described above. Hypercholesterolemia is determined by

the total cholesterol value, and this is observed at the study visits. Hence the exact

incidence date for hypercholesterolemia was unobservable, and instead what is known is

only the dates of the visits at which a subject’s cholesterol values were below or above

the specified threshold defining hypercholesterolemia. Also, total cholesterol is sub-

ject to measurement error, which is undifferentiated from intra-individual variability

(Oppenheim et al. 1994). Based on total cholesterol for determining disease, the cor-

responding threshold levels can vary across sub-populations (the National Cholesterol

Education Program Expert Panel 2001).

Despite the fact that many statistical methods have been developed for analyzing

interval censored data (Ma 2010; Wen 2012; Pan 1999;Komárek and Lesaffre 2007)

and measurement errors (Hausmana, Abrevayab, and Scott-Mortonb 1998; Neuhaus

2002;Paulino, Soares, and Neuhaus 2003;Pepe 1992), there is no work to address the

challenges discussed above, including biomarkers measured at discrete times (interval-

censored data), imperfect measurements (measurement errors), and heterogeneous thresh-

old values for disease events. In this paper, we propose a novel semiparametric regres-

sion model for modeling biomarker values at each observed time. Our model is based

on an extension of the generalized extreme value distribution, and it is equivalent to
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modeling threshold-defined time-to-event via a class of Cox proportional hazards mod-

els. The paper is structured as follows. Inference procedures using the expectation-

maximization (EM) algorithm for parameter estimation are presented and variance

estimation are provided in Section 4.2. Asymptotic results for the proposed estimators

are established in Section 4.3 and the technical detail is described in Appendix B. A

simulation study and an application to the data of the ARIC study are given in Section

4.4 and Section 4.5, respectively. Some discussion is given in Section 4.6.

4.2 Method

4.2.1 Model

For subject i, let Xi be time-invariant covariates and Y ∗
i (t) and Yi(t) be the true

biomarker value and observed biomarker value at time t, respectively. We assume

Y ∗
i (t) to be non-decreasing over the study period, which is plausible for many chronic

diseases or conditions such as diabetes, hypertension, and hypercholesterolemia as they

are usually irreversible without medication or other intervention. The observed data

from n i.i.d subjects are {Xi, Yi(vij), vij ∣ i = 1, . . . , n, j = 1, ..., ni}, abbreviated as

{ℵi ∣ i = 1, . . . , n} hereafter, where vi1, ..., vini are the observed times and these are

assumed to be independent of Yi(t) given Xi.

Since the disease event is determined by the tail behavior of the true biomarker

Y ∗(t), our model for the distribution of Y ∗(t) is based on the generalized extreme value

distribution, which has the form exp{−α exp(−µy∗ + γ)} with parameters α > 0, µ > 0,

and −∞ < γ, y∗ < ∞. To further incorporate baseline covariates and account for the

time-dependent nature of the biomarker values, our proposed semiparametric regression

model is

P (Y ∗
i (t) ≤ y∗ ∣Xi) = exp{−Λ0(t) exp(−µy∗ +βTXi)}, (4.1)
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where Λ0(t) is non-decreasing over time and positive when t > 0, and both µ and β are

unknown parameters. Interestingly, the above model in (4.1) is equivalent to modeling

the threshold-defined time-to-disease events. Specifically, for any given threshold value

ξ, we define Tiξ to be the first time that Y ∗
i (t) crosses the threshold ξ. Then we have

P (Tiξ > t ∣ Xi) = P (Y ∗
i (t) ≤ ξ ∣ Xi). Therefore, the model in (4.1) is equivalent

to assuming P (Tiξ > t ∣ Xi) = exp{−Λ0(t) exp(−µξ + βTXi)}. That is, we obtain a

proportional hazard model with a threshold-dependent baseline hazard function for Tiξ

as

λi(t) = exp(−µξ)λ0(t) exp(βTXi), (4.2)

where λ0(t) = dΛ0(t)/dt. This new expression gives a nice interpretation of the pa-

rameters µ and β: µ > 0 is essentially the effect of using different thresholds for the

threshold-defined time to disease occurrence. Clearly, the larger the threshold, the

longer the time to disease. The regression parameter β in model (4.2) gives the log-

hazard ratio of X on time to disease occurrence defined based on any arbitrary thresh-

old value. Therefore, β being positive implies that greater risk of developing disease is

associated with larger values of X.

Since the observed biomarker values contain measurement error, our second model

considers the effect of measurement error using the classical additive measurement

error model (Carroll 2006; Fuller 1987; Tsiatis, DeGruttola, and Wulfsohn 1995):

Yi(t) = Y ∗
i (t) + εi(t), i = 1, . . . , n. We assume the measurement error εi(t) has a

normal distribution with mean zero and variance σ2 for any time t and is indepen-

dent of Y ∗
i (t), Xi, and ξ. The measurement error variance of σ2 may be estimated in

practice by taking repeated measurements. As an example, the National Cholesterol

Education Program and Laboratory Standardization Panel established the goal that

a single serum total cholesterol measurement should be accurate within 8.9 percent.

Since information about the measurement error variation can be obtained from outside
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the dataset being analyzed, we consider σ2 to be known.

Under the above two models, we obtain the marginal likelihood for the observed

biomarker {Yi(vij)} given Xi,i = 1, . . . , n, j = 1, . . . , ni as

lpsn =
n

∑
i=1

∑
v∶dNi(v)=1

log

ˆ ∞

−∞

exp{−Λ0(v)e
βTXi−µξiv}Λ0(v)µ exp(βTXi − µξiv)

×
1

σ
φ{

Yi(v) − ξiv
σ

}dξiv, (4.3)

where φ(⋅) is the standard normal density function.

4.2.2 Inference Procedure

We maximize (4.3) to estimate all the parameters, including θ = (µ,βT )T and Λ(t).

Specifically, we estimate Λ(t) as a step function, with jumps at the observed times.

Let v(1) < . . . < v(K) be ordered observed times of {vij ∣ i = 1, . . . , n, j = 1, . . . , ni} and

Λk = Λ0(v(k)) and v(0) = 0. Then we maximize (4.3) over θ and the Λk’s, subject to

constraints 0 ≤ Λ1 ≤ ⋯ ≤ ΛK .

To facilitate the maximization, we adopt the EM algorithm by treating the threshold

values ξ as missing data. Then the complete log marginal likelihood function is

lpsc {θ,Λ,ℵ} =
K

∑
k=1

n

∑
i=1

ni

∑
j=1

I(vij = v(k))[ −Λk exp(βTXi − µξij) + log Λk + logµ

+βTXi − µξij −
1

2
logσ2 −

{Yi(vij) − ξij}2

2σ2
]. (4.4)

In the maximization step at the lth iteration of the EM algorithm, we first maximize the

conditional expectation of the complete log marginal likelihood function given observed

data over Λk’s. We then update θ via the Newton-Raphson algorithm. Specifically, we
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maximize Q(Λ) defined by

Q(Λ) =
K

∑
k=1

n

∑
i=1

ni

∑
j=1

I(vij = v(k))E {−Λk exp(βTXi − µξij) + log Λk ∣ ℵi,θ
(l)} . (4.5)

Since Q(Λ) is a concave function over a convex cone satisfying Λ1 ≤ . . . ≤ ΛK , this

maximization can be carried out using one of the many existing algorithms for convex

optimization. To update θ, we apply the following one-step Newton-Raphson algo-

rithm, θ(l+1) = θ(l) +E (−∂2lpsc /(∂θ)2 ∣ ℵ,θ(l))
−1

θ=θ(l) E (∂lpsc /∂θ ∣ ℵ,θ(l))θ=θ(l) . The condi-

tional expectations are calculated in the expectation step of the EM algorithm based

on the following expression

E{g(ξ)∣ℵi,θ
(l)} =

I(vij = v(k))
´∞
−∞

g(ξ) exp(−Λkeβ
TXi−µξ)e−µξφ{

Yi(vij)−ξ

σ }dξ´∞
−∞

exp(−Λkeβ
TXi−µξ)e−µξφ{

Yi(vij)−ξ

σ
}dξ

, (4.6)

where the g(ξ)’s to be calculated are ξ, ξ2, e−µξ, e−µξξ, and e−µξξ2. This integration

can be approximated by the Gauss-Hermite quadrature (Davis 1984), so it can be

approximated by

N

∑
k=1

(
√

2σwkg{
√

2σwk + Yi(vij)} exp [−Λ0(vij)e
βTXi−µ{

√
2σzk+Yi(vij)}] e−µ{

√
2σzk+Yi(vij)}) ,

(4.7)

where N is the number of the quadratures and ωk and zk are weights and abscissae for

the Gauss-Hermite quadrature, respectively. This loop of the E-step and the M-steps

is repeated until ∣θ(l+1) − θ(l)∣ is smaller than a pre-specified criterion. We denote the

final estimators as θ̂ = (µ̂, β̂T )T and Λ̂.

4.2.3 Variance Estimation

To derive the marginal influence functions leading to asymptotic variance estimation

for the regression parameter, we need the complete log marginal likelihood function and
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the marginal score function with respect to θ. These are given by

lpsc {θ,Λ,ℵ} =

ˆ ∞

0

[ −Λ(v) exp(βTX − µξ) + log Λ(v) + logµ +βTX

−µξ −
1

2
logσ2 −

{Y (v) − ξ}2

2σ2
]dN(v), (4.8)

l̇psµ {θ,Λ,ℵ} = Eξ{∂l
ps
c /∂µ ∣ ℵ} =

ˆ ∞

0

[µ−1 −Eξ {κ(v)ξ ∣ ℵ}]dN(v), (4.9)

l̇psβ {θ,Λ,ℵ} = Eξ{∂l
ps
c /∂β ∣ ℵ} =X

ˆ ∞

0

Eξ {κ(v) ∣ ℵ}dN(v), (4.10)

where N(v) denotes the counting process associated with measurement times and

κ(v) = 1 −Λ(v) exp(βTX − µξ).

Let {Pθ,Λη} be a regular parametric subfamily of models, {Pθ,Λ ∣ Pθ,Λ ≪m,m:Lebesque

measure} and set ∂/∂η∣η=0Λη(v)=h(v) for v > 0 and h(v) ∈ L2(PV ). Then we have a

score operator for Λ:

l̇psΛ {θ,Λ,ℵ}[h(v)] =

ˆ ∞

0

h(v)E(κ(v) ∣ ℵ)/Λ(v)dN(v). (4.11)

Furthermore, we define

h1(v) = E{eβ
TX(E{ξ ∣ ℵ}E{e−µξ ∣ ℵ} − 2E{ξe−µξ ∣ ℵ}

−eβ
TXΛ(v) [E{ξe−µξ ∣ ℵ}E{e−µξ ∣ ℵ} −E{ξe−2µξ ∣ ℵ}] ) ∣ V = v},

h2(v) = E{Xeβ
TX(Λ(v)eβ

TX [E{e−µξ ∣ ℵ}2 −E{e−2µξ ∣ ℵ}] +E{e−µξ ∣ ℵ}) ∣ V = v},

h3(v) = E(Λ(v)−2 + e2βTX [E{e−µξ ∣ ℵ}2 −E{e−2µξ ∣ ℵ}] ∣ V = v),

h∗µ(v) = h1(v)/h3(v), (4.12)

h∗β(v) = h2(v)/h3(v). (4.13)

In the asymptotic proofs given later, we show that the asymptotic covariance of θ̂
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takes a sandwich variance form:

I(θ0) =D
−1P [AAT ](D−1)T , (4.14)

where A = l̇psθ (θ0,Λ0) − l̇
ps
Λ (θ0,Λ0)[h∗θ(v)] and

D = P (l̈psθθ(θ0,Λ0) − l̈
ps
θΛ(θ0,Λ0)[h

∗
θ(v)]) .

Therefore, we can use the empirical data to estimate this covariance matrix. Specif-

ically, the matrix D can be estimated as

D̂ = n−1
n

∑
i=1

⎛
⎜
⎜
⎝

ˆ̈l
ps(i)
µµ

ˆ̈l
ps(i)
µβ

ˆ̈l
ps(i)
βµ

ˆ̈l
ps(i)
ββ

⎞
⎟
⎟
⎠

− n−1
n

∑
i=1

⎛
⎜
⎜
⎝

ˆ̈lpsθΛ[ĥ
∗
µ(v)]

ˆ̈lpsθΛ[ĥ
∗
β(v)]

⎞
⎟
⎟
⎠

,

where

ˆ̈l
ps(i)
µµ =

ˆ ∞

0

( − µ̂−2 − Λ̂(v)eβ̂
TXi [3Ê{ξ2e−µξ ∣ ℵi} − 2Ê{ξ ∣ ℵi}Ê{ξe−µξ ∣ ℵi}]

+Λ̂(v)2e2β̂TXi [Ê{ξ2e−2µξ ∣ ℵi} − Ê{ξe−µξ ∣ ℵi}
2] − Ê{ξ ∣ ℵi}

2

+Ê{ξ2∣ℵi})dNi(v),

ˆ̈l
ps(i)
µβ =

ˆ ∞

0

XiΛ̂(v)eβ̂
TXi(2Ê(ξe−µξ ∣ ℵi) − Ê{e−µξ ∣ ℵi}Ê{ξ ∣ ℵi}

+Λ̂(v)eβ̂
TXi [Ê{e−µξ ∣ ℵi}Ê{ξe−µξ ∣ ℵi} − Ê{ξe−2µξ ∣ ℵi}] )dNi(v),

ˆ̈l
ps(i)
ββ = −XiX

T
i

ˆ ∞

0

Λ̂(v)eβ̂
TXi(Λ̂(v)eβ̂

TXi [Ê{e−µξ ∣ ℵi}
2 − Ê{e−2µξ ∣ ℵi}]

+Ê{e−µξ ∣ ℵi})dNi(v),

̂̈
l
ps(i)
µΛ [ĥ∗µ(v)] =

ˆ ∞

0

ĥ∗µ(v)e
β̂TXi(2Ê{ξe−µξ ∣ ℵi} − Ê{ξ ∣ ℵi}Ê{e−µξ ∣ ℵi}

+Λ̂(v)eβ̂
TXi [Ê{ξe−µξ ∣ ℵ}Ê{e−µξ ∣ ℵi} − Ê{ξe−2µξ ∣ ℵi}] )dNi(v),
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̂̈
l
ps(i)
βΛ [ĥ∗β(v)] = −Xi

ˆ ∞

0

ĥ∗β(v)e
β̂TXi(Λ̂(v)eβ̂

TXi [Ê{e−µξ ∣ ℵi}
2 − Ê{e−2µξ ∣ ℵ}]

+Ê{e−µξ ∣ ℵi})dNi(v).

Here, ĥ∗θ(v) = (ĥ∗µ(v), ĥ
∗
β(v))

T is estimated as follows:

ĥ∗µ(v) =
n

∑
i=1

ni

∑
j=1

Khn(vij − v)e
β̂TXi(Ê{ξ ∣ ℵ}Ê{e−µξ ∣ ℵ} − 2Ê{ξe−µξ ∣ ℵ}

−eβ̂
TXiΛ̂(vij)[Ê(ξe−µξ ∣ ℵ)Ê{e−µξ ∣ ℵ} − Ê{ξe−2µξ ∣ ℵ}])

/
n

∑
i=1

ni

∑
j=1

Khn(vij − v)g{ℵ}, (4.15)

ĥ∗β(v) =
n

∑
i=1

ni

∑
j=1

Khn(vij − v)Xie
β̂TXi(Ê{e−µξ ∣ ℵ}

+Λ̂(vij)e
β̂TXi [Ê{e−µξ ∣ ℵ}2 − Ê{e−2µξ ∣ ℵ}] )

/
n

∑
i=1

ni

∑
j=1

Khn(vij − v)g{ℵ}, (4.16)

where g{ℵ} = Λ̂(vij)−2+e2β̂TXi [Ê{e−µξ ∣ ℵ}2 − Ê{e−2µξ ∣ ℵ}] andKhn(x) = h
−1
n exp(−x2/hn)

with hn being a kernel bandwidth. In particular, we choose hn as (cn)−1/2 for some

constant c > 0. We estimate the middle term in the sandwich variance form as follows:

P̂ (AAT ) = n−1
n

∑
i=1

{(
ˆ̇l
ps(i)
θ −

ˆ̇l
ps(i)
Λ [ĥ∗θ(v)])(

ˆ̇l
ps(i)
θ −

ˆ̇l
ps(i)
Λ [ĥ∗θ(v)])

T

} ,

where ˆ̇l
ps(i)
θ = (

ˆ̇l
ps(i)
µ , ˆ̇l

ps(i)T
β )T ,

ˆ̇l
ps(i)
µ =

ni

∑
j=1

[µ̂−1 −E {κ̂(vij)ξ) ∣ ℵi}] ,

ˆ̇l
ps(i)
β = Xi

ni

∑
j=1

Eξ {κ̂(vij) ∣ ℵi} ,

ˆ̇l
ps(i)
Λ [ĥ∗θ(v)] =

ni

∑
j=1

Eξ {κ̂(vij) ∣ ℵi} ĥ
∗
θ(vij)/Λ̂(vij),
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and κ̂(v) = 1 − Λ̂(v) exp(β̂TX − µ̂ξ). Consequently, an estimator for the asymptotic

covariance of θ̂ is Î = D̂P̂ (AAT ) D̂−1. In the next section, we show that this variance

estimator is consistent if assuming that hn and log{n/(nhn)} go to 0 as n→∞.

4.3 Asymptotic Results

In this section, we provide asymptotic results for the proposed estimators and the

technical detail is summrized in Appendix II Let θ0 and Λ0 denote the true regres-

sion parameter and cumulative hazard function, respectively. We need the following

conditions:

(A1) The finite-dimensional parameter space Θ is a compact subset of the domain of

θ.

(A2) The covariate X has bounded support with probability 1. If βTX +α = 0 almost

surely (a.s.), then β = 0 and α = 0.

(A3) The support of the observation time, V , is an interval S [V ] = [lV , uV ], with

0 < lV ≤ uV <∞.

(A4) The number of the observation times,
´ uV

0
dN(V ) is PV -almost surely finite.

(A5) The cumulative hazard function Λ0 has strictly positive derivative on S [V ].

The assumptions that parameter, covariate, and observation time are bounded are

standard. Condition (A2) ensures the identifiability of θ and Λ0. These conditions

hold naturally in most applications.

For convergence of the estimators to the true parameters, we need to define a topol-

ogy. Let the bounded regression parameter space Θ(⊂ Rd) be equipped with the Eu-

clidean topology. Regarding infinite dimensional nonparametric space, let F be the

set of all Borel subprobability measures on S [V ]. Then F can be equipped with the
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vague topology by defining that, for any sequence Fn ∈ F and F ∈ F , Fn converges

vaguely to F if and only if

ˆ
fdFn →

ˆ
fdF for every f ∈ C0(S [V ]),

where C0(S [V ]) is the set of all continuous functions that vanish outside a compact

subset of S [V ]. Then the product space Θ × F can be equipped with the product

topology of the Euclidean topology and the vague topology. In the product topology, it

is said that (θ̂, F̂ ) converges to (θ, F ), when θ̂ and F̂ converge to θ and F , respectively.

Theorem 4.3.1. (Consistency of the MLE) Suppose that conditions, (A1), (A2), (A3),

and (A4) are satisfied, then θ̂ converges to θ0 a.s., and if v ∈ S [V ] is a continuity point

of Λ0, Λ̂(v) converges to Λ0(v) a.s. Moreover, if Λ0 is continuous, then supv∈S [V ]∣Λ̂(v)−

Λ0(v)∣ converges to 0 a.s.

Before discussing the overall convergence rate, we define the distance d on Rd×Φ as

follows: d{(θ1,Λ1), (θ2,Λ2)}=∣θ1 − θ2∣ + ∥Λ1 −Λ2∥2,P , where ∣θ1 − θ2∣ is the Euclidean

distance in Rd, ∥Λ1−Λ2∥2,PV
=(
´
(Λ1(v) −Λ2(v))2dPV )

1/2
and PV is the marginal prob-

ability measure of the measurement time variable V .

We apply Theorem 3.4.1 of van der Vaart and Wellner (1996) and Lemma B.2.1 in

Appendix B to obtain the rate of convergence.

Theorem 4.3.2. (Rate of convergence) Suppose that conditions (A1), (A2), (A3), and

(A4) are satisfied. Then d{(θ̂, Λ̂), (θ0,Λ0)} = Op(n−1/3).

The overall rate of convergence is dominated by Λ̂. However, it is shown in the

next theorem that the convergence rate of θ̂ can be refined to achieve a rate of
√
n.

The convergence rate we found is applied to prove the asymptotic normality of the

regression parameter MLE.
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Theorem 4.3.3. (Asymptotic normality) Suppose that θ0 is an interior point of Θ and

that conditions (A1)–(A5) are satisfied. Then

n1/2(θ̂ − θ0) = −n
1/2(Pn − P )ψ̃ps(ℵ) + op(1)→ N(0, I(θ0)) in distribution,

where P is the probability measure, that is, Pψ̃ps(ℵ)=
´
ψ̃ps(ℵ)dP , Pn is the empirical

measure of ℵi, i = 1, . . . , n, that is, Pnψ̃ps(ℵ) = n−1∑
n
i=1 ψ̃

ps(ℵ), ψ̃ps(ℵ) is the marginal

influence function defined as ψ̃ps = D−1 {l̇psθ (θ0,Λ0) − l̇
ps
Λ (θ0,Λ0)[h∗θ(v)]}, and I(θ0) is

the information in (4.14).

Theorem 4.3.4. (Consistency of the asymptotic variance estimator) When the band-

width hn satisfies that hn and log{n/(nhn)} converge to 0 as n →∞, then Î converges

to I(θ0) in probability.

4.4 Simulation Study

We consider scenarios of longitudinal and random measurement time points. The

number of the measurement times per subject is three, and the measurement times,

vij, j = 1,2,3 are independently generated from the normal distributions with means of

0.5, 1.2, and 1.9, respectively and with the common standard deviation of 0.1, because

study visit windows are usually fixed, but each visit time varies across subjects. In the

simulation, two covariates are included in the model: one is generated from the Bernoulli

distribution with probability 0.5, and the other is from the normal distribution with

mean 0 and variance 0.1. The true values for (β1, β2) were set as (0.3, 0.3), and the

true cumulative baseline hazard assumed to be 2t1/5.

Consequently, the true biomarker value is generated as following:

Y ∗
i (vij) = µ−1{βTXi + log Λ0(vij) − log (− log pi) } for 1 ≤ i ≤ n,1 ≤ j ≤ 3,(4.17)
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where pi independently follows the uniform distribution (0,1) for all i. The observed

biomarker value is generated by Yi(vij) = Y ∗
i (vij)+ ε(vij), where ε(vij) is independently

generated from the normal distribution with zero mean and some finite variance for all

i and j and is independent of Y ∗
i (vij). We consider two measurement error variances of

0.25 and 1.0. The measurement error variance determines a ratio of measurement error

variance to true biomarker value variance and correlations of observed biomarker values

within a subject; using measurement error variances of 0.25 and 1.0, the variance ratios

are 0.15 and 0.60, respectively, and the correlations are 0.87 and 0.62, respectively.

We varied sample sizes from 200 (600 observations) to 400 (1,200 observations) and

conducted 1,000 replications.

For each simulated dataset, we applied the proposed EM algorithm to estimate the

parameters. The initial values used for β and Λ0(t) in the algorithm were 0’s and

observed times, respectively. In the maximization-step, the spectral projected gradient

method was used for constrained optimization in (4.5). The convergence criterion

for the expectation-maximization algorithm was set as 10−10. In the simulations, we

noticed that the threshold effect µ was sensitive to the initial values. Therefore, we first

calculated the profile likelihood of µ using the same algorithm except that µ was held

at some fixed value; we then carried out a grid search to find the maximum likelihood

estimate for µ. The variance estimation was based on the formula in Section 4.2.3.

We need to decide bandwidth for the variance estimation, and it depends on data.

Relatively sparse data in measurement time causes unstable kernel estimate for h∗θ(v)

in (4.12) and (4.13). The bandwidth is set to be (n/20)−1/2. For comparison, we also

calculated the maximum likelihood estimates assuming that the threshold value was

the same for all the subjects, and there was no measurement error. These estimates

can be calculated using the algorithm suggested by Pan (1999) and implemented in the

R package, "‘intcox"’ version 0.9.3 developed by Henschel et al. (2007). Pan (1999)’s
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method (referred to as the ICM method hereafter) does not provide a variance estimate.

Every subject may have a different threshold in the simulation scenario; however, we

need a fixed threshold value for Pan (1999)’s estimate. Then we set fixed thresholds to

be 90%, 80%, or 70% quantiles of observed biomarker values.

Table 4.1 shows that bias of the proposed estimators is small, and decreases as the

sample size increases or the variance ratio decreases; the estimated variance estimates

(summarized by their median value) agree with the empirical variance. Out of 1,000 sets

of the simulated data, the asymptotic variance estimate is likely to be overestimated in

10-15 % datasets because of unstable cumulative hazard function estimates at the last

observation times. Hence, when the asymptotic variance is calculated using the MLEs,

we excluded 2% observations from the simulated data, which corresponds to the last

observation times. Consequently, the coverage probability is larger than 95 % when the

measurement error variance is 1.0; however it seems to be acceptable as the sample size

increases. In the setting in which the threshold value varies from person to person, and

the biomarker value includes measurement error, the empirical standard errors of our

estimates are much smaller than the estimates of the ICM method, and the bias of our

estimate is smaller than that of the ICM method’s estimate when measurement error

variance is large. From the simulation study, it is also seen that the ICM method is less

biased and less efficient the higher the fixed threshold; and the standard error and bias

of the ICM method decrease when the sample size increases; accuracy and efficiency

of the ICM method are more influenced by measurement error than by the choice of

fixed threshold. Additionally, we examined the numerical performance of our method

when measurement errors dominate true biomarker values, particularly, the variance

ratio of measurement error to observed values is 1.5. In the case, bias increases but is

still acceptable; however, the asymptotic variance estimate based on the band-width of

(n/100)−1/2 is very likely to be overestimated.
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4.5 Application

Hypercholesterolemia, that is, high blood cholesterol, is not a disease but a metabolic

derangement that can be secondary to many diseases and can contribute to many forms

of disease, most notably cardiovascular disease. We are interested in assessing risk fac-

tors associated with time-to-hypercholesterolemia, so we apply our proposed models to

the data of 10,236 subjects from the four U.S. communities in the ARIC study, Jackson,

MS; Forsyth County, NC; suburbs of Minneapolis, MN; and Washington County, MD.

The participants were predominantly white or African-American, and the few partic-

ipants of other races are excluded from the analysis, as is usually done in analyses of

ARIC Study data.

In the models, we consider the baseline covariates including race, gender, hyper-

tension, parents’ coronary heart disease (CHD) history, categorized age (<50,50-60,

≥60), total cholesterol, and interaction effect between age and sex. These variables are

generally regarded as major factors associated with time-to-hypercholesterolemia. All

subjects with complete data for the baseline (visit 1) covariates are included in the anal-

ysis. Demographic characteristics of the participants in the dataset used here include

average age of 53.7 years (range 44-66 years), white race 7,832 (76.5%), and females

5,748 (56.2%). The average total cholesterol at visit 1 was 208.6 (±38.0) mg/dL, and

the number of the participants with hypertension and parental history of CHD were

2,920 (28.5 %) and 4,003(39.1%), respectively.

To facilitate calculation, we standardized total cholesterol by the sample mean of

203.4mg/dl and standard deviation of 35.9mg/dl so that it has zero mean and the

unit variance. The observation time is scaled down to (0,1]. The standardized value

and the rescaled observation time better facilitate the estimation process than the

original value or log-transformed value. The National Cholesterol Education Program

and Laboratory Standardization Panel established the goal that a single serum total
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cholesterol measurement should be accurate within ±8.9 percent. The Health Care

Financing Administration (HCFA) has also established similar testing requirements

for total cholesterol (±10 percent), authored by the Centers for Disease Control and

Prevention (Oppenheim et al. 1994). Hence, we chose σ2 = 0.32 for the measurement

error of the standardized FPG value, which corresponds to 0.09 for the variance ratio

of measurement error to total cholesterol value.

For comparison, we also applied the ICM method, which ignores the measurement

errors and uses a fixed threshold. In the ICM method, the fixed threshold value was

set to be 240 mg/dL. We used the simple bootstrap sampling method with 200 replica-

tions to estimate the standard error of the regression parameter estimates for the ICM

method. We investigated the robustness of the ICM model to the choice of threshold

(200 and 270mg/dL); the effect directions remained unchanged but the effect sizes var-

ied; significant factors related to time-to-hypercholesterolemia differed according to the

threshold used.

The variance estimate for effect size is somewhat sensitive to the choice of band-

width, so we employed a subsampling bootstrap with sample size of 500 subjects and

350 repetitions and adjusted the standard error based on the bootstrap by multiplying

by the factor
√

500/10,236. In simulation data, the subsample bootstrap based stan-

dard error precisely estimates the true standard error. The average of the bootstrap-

based estimates is also very close to the estimate of our method. The bootstrap-based

estimate and the adjusted standard error are presented in Table 4.2.

In the ARIC Study data, African-Americans, having parental history of CHD, and

high baseline total cholesterol have 1.56, 1.31, and 1.03 times greater hazard of hy-

percholesterolemia than people with the opposite characteristics, respectively. When

baseline total cholesterol increases by 1 unit, the hazard of hypercholesterolemia in-

creases by a factor of 0.025. There is significant interaction effect between age and
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sex; men is very likely to be high-risk for hypercholesterolemia than women; as getting

older, hazard ratio for men to women in hypercholesterolemia increases from 1.56 to

1.59, respectively; however, it decreases to 1.43 after 60-year old because of menopause.

To investigate the goodness-of-fit of our model, we generated predicted total choles-

terol values using the formula in (4.17) based on the estimates. Using the predicted

values, we suggest two graphical methods for model diagnosis. First, a quantile-quantile

plot is generated to compare the distribution of the real observed total cholesterol val-

ues with the predicted distribution (left panel in Figure 4.1). The quantile-quantile plot

shows that the distribution of predicted values matches the distribution of observations

very closely. Secondly, we calculated the residuals by subtracting the predicted means

from the real total cholesterol values (right panel in Figure 4.1). The residual plot in

Figure 4.1 shows a fairly good fit and the residuals are randomly scattered around 0.

The estimated cumulative hazard function at the last time points is less stable, so the

residual of the observation at the last time is relatively large.

4.6 Concluding Remarks

We proposed a semiparametric extreme-value regression model for the highly skewed

distribution of a biomarker subject to measurement error, estimated the model param-

eters using the marginal likelihood, and implemented computation via the pseudo-EM

algorithm. In a numerical study, the proposed method shows good accuracy and ac-

ceptable coverage probability unless measurement error dominates observed values. The

method is illustrated through an application to data from the ARIC Study.

The proposed model is based on the marginal likelihood method, so it is not guar-

anteed to satisfy semiparametric efficiency. To enhance the efficiency of the regression
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parameter estimate, we can consider weighted estimating equations based on score func-

tions. The weights would be optimal when they lead to the lower bound of the asymp-

totic variance. However, for ease of calculation we can consider alternative weights to

reduce variance of the regression parameters and to be piecewise constants over time.

Then based on the estimates from the pseudo-EM algorithm and the optimal weight,

we would be able to obtain a weighted sandwich variance, which is smaller than the

proposed asymptotic variance.

The proposed model can be extended in various ways; instead of a linear model

for the time-invariant threshold effect, we can incorporate a time-dependent and non-

parametric function for the threshold effect in the model; when a covariance structure

for true biomarker values is postulated, a semiparametric maximum likelihood method

can be constructed; the proposed model can also be extended to a frailty model ac-

counting for random effects for clusters.
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Figure 4.1: Quantile-Quantile and Residual Plots
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Table 4.2: Application to the ARIC Study Data

ICM method Our method
Estimate SE∗. p-value Estimate SE∗∗. p-value

Threshold effect - - - 1.576 0.0218 <0.0001
Race=African-Americans 0.409 0.096 <0.0001 0.130 0.0269 <0.0001
Gender=male 0.160 0.180 0.3729 0.447 0.0353 <0.0001
Hypertension -0.279 0.134 0.0369 -0.022 0.0238 0.3458
History of Parents’ CHD -0.078 0.097 0.4251 0.274 0.0215 <0.0001
Age (50-59 yrs) at visit 1 0.451 0.240 0.0608 0.728 0.0293 <0.0001
Age (≥60 yrs) at visit 1 0.634 0.237 0.0076 0.714 0.0352 <0.0001
Male× age (50-59 yrs) -0.562 0.238 0.0183 -0.714 0.0465 <0.0001
Male× age (≥60 yrs) -0.938 0.221 <0.0001 -0.802 0.0552 <0.0001
Total cholesterol at visit 1 (mg/dL) 0.017 0.005 0.0003 0.025 0.0008 <0.0001
SE∗, simple bootstrap-based standard error;
SE∗∗, adjusted subsample bootstrap-based standard error;
measurement error variance = 0.32, n = 10,236, observations = 27,467
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CHAPTER5: WEIGHTED PSEUDO-LIKELIHOOD FOR ADJUSTING
INFORMATIVE DIAGNOSIS: AN APPLICATION TO

TIME-TO-HYPERCHOLESTEROLEMIA IN THE ARIC STUDY

5.1 Introduction

The Atherosclerosis Risk in Communities (ARIC) study was designed to investigate

the causes of atherosclerosis. Hypercholesterolemia is a crucial risk factor for cardiovas-

cular disease; hence, assessing risk factors associated with time-to- hypercholesterolemia

also is of interest. Total cholesterol was measured at each clinic visit to determine hy-

percholesterolemia status. However, total cholesterol is subject to measurement error

and even if an accurate total cholesterol level can be taken, the most appropriate

threshold value to determine hypercholesterolemia may vary from patient to patient.

In our previous work provided in Chapter 3 and 4, we introduced a threshold-dependent

proportional hazards model to study the association between risk factors and time to

hypercholesterolemia while accounting for measurement errors in the total cholesterol

level.

The time-to-hypercholesterolemia data from the ARIC study poses another difficulty

to statistical analysis: some subjects were diagnosed with hypercholesterolemia outside

of this study (we call this “externally diagnosed”). After being diagnosed, these subjects

may have started therapeutic treatment for hypercholesterolemia. As a result, their

total cholesterol levels at subsequent visits may be lower than if they had not been

diagnosed with hypercholesterolemia Figure 5.1 illustrates that the mean trend of total

cholesterol levels in the subpopulation with external diagnosis and complete cases drops
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off over time, and it has the similar mean to the mean total cholesterol level at visit

4 in the subpopulation with no external diagnosis and complete cases. In this study,

there were 1,546 (13.2%) externally diagnosed subjects out of 11,718 subjects satisfying

inclusion and exclusion criteria. Table 5.1 summarizes the number of subjects with

externally diagnosed hypercholesterolemia by each visit.

Our previous analysis in Section 4.5 did not include these subjects because the total

cholesterol level after being externally diagnosed was potentially attenuated. So, the

conclusions from our previous study only apply to the subjects who were not externally

diagnosed. However, the externally diagnosed subjects were likely to be high-risk for

the disease. Therefore, it is prudent to incorporate them into the analysis. We can

regard it as informative missing data problem.

Horvitz and Thompson (1952) proposed a method for survey data analysis account-

ing for different proportions of observations within strata by using inverse probability

weights (IPW), which are the inverse of the inclusion probability in sampling data

analysis, and then the method can be applied to the missing data problem. Rotnitzky

and Robins (1995), Robins and Rotnitzky (1995), and Robins, Rotnitzky, and Zhao

(1994; 1995) proposed weighted estimating equations in a regression setting using in-

verse probability weighting when data are missing at random (MAR). Robbins and

Ritov (1997) showed the estimator is doubly robust, that is, it remains consistent when

either a model for the missingness mechanism or the score vector for the missing data

given the observed data is correctly specified. Rotnitzky et al. (1998) extended this

method to address non-ignorable nonresponse in either the covariates or the outcomes

by using augmented orthogonal inverse probability weighting. Breslow and Wellner

(2006) considered a weighted likelihood estimator for semiparametric models with data

from complex probability samples, and Li et al. (2008) proposed a weighted likelihood

method for grouped interval censored data in case-cohort studies.
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In Section 5.2, we extent the pseudo-likelihood approach proposed in Chapter 4

to a weighted pseudo-likelihood estimator to account for the sampling bias using in-

verse probability weighting, and also present the inference procedures using a weighted

pseudo-likelihood EM algorithm for parameter estimation. Variance estimation is also

proposed in Section 5.2. Asymptotic results for the proposed method are established in

Section 5.3. We examine the numerical performance of the method for finite samples

through a simulation study in Section 5.4. Application to the data of the ARIC study

is presented in Section 5.5, and a discussion of the proposed method and related future

work are in Section 5.6.

5.2 Method

5.2.1 Weighted Pseudo-Likelihood

As in our previous work in Chapter 4, we apply the threshold dependent model con-

sidering measurement error for longitudinal data to obtain the distribution of observed

biomarker values. However, the proportion excluded may be non-ignorable (about

13.18 %) and it probably leads to selection bias. This issue can be viewed as infor-

mative missingness. To account for the selection bias, we weight observations by the

inverse probability that subjects are not externally diagnosed in the previous estima-

tion approach (Robins et al. 1995). We restrict attention to monotone missing data

patterns because participants would control their total cholesterol values after the ex-

ternal diagnosis. We also assume that the external diagnosis occurs at random because

the presence or absence of the external diagnosis depends on the previous (observed)

total cholesterol value and is independent of the future (unobserved) total cholesterol

values.

For subject i, let Y ∗
i (t) and Yi(t) be the true biomarker value and observed biomarker

value at continuous time t ≥ 0, respectively. We assume Y ∗
i (t) is non-decreasing over
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the study period, which is plausible for many chronic diseases such as diabetes, hy-

pertension, and hypercholesterolemia as they are usually irreversible for aged patients

without additional medication or treatment. Let Xi be time-invariant covariates in

regards to potential risk factors associated disease and Zi(t) be time-varying auxil-

iary information related to subject i’s health status and eventually the external disease

diagnosis. Then denote (Zi(t)T , Yi(t)) as Ai(t) and define the accumulated infor-

mation {Zi(s)T , Yi(s)}
t
s>0 as A(t). Let Ni(t) = 1 if subject i has a pre-scheduled

visit at time t, Ni(t) = 0, otherwise. We assume that the visit time Vi of subject

i is independent of Yi(Vi) given Xi. The visit time Vi for subject i is practically

discrete: (vi0, vi1, . . . , vini), where vi0 = 0, baseline visit. Define Rij = 1 if subject i

has no external diagnosis as hypercholesterolemia at jth follow-up visit, and this im-

plies Ri(j−1) = 1 for j ≥ 1. We simplify the notation of A(vij) to Aij. Note that

Ri0 = 1 because of the inclusion criteria. The observed data from n i.i.d subjects are

{Xi, Yi(vij), Zi(vij),Ni(vij), vij,Rij ∣ i = 1, . . . , n, j = 0, ..., ni}, and is abbreviated as

{ℵi ∣ i = 1, . . . , n} hereafter.

We assume that there exists for j ≥ 1, a known function of unknown parameter(s)

α0 and Ai(j−1), πij(α) taking values (0,1] such that

πij(α) = P [Rij = 1 ∣ Ri(j−1) = 1,Xi,Ai(j−1)] . (5.1)

Typically, a logistic function would be chosen for πij(α). The probability of no external

diagnosis by the jth follow-up visit is πi1(α) × ⋯ × πij(α) denoted by πij(α). The

observed partial likelihood for {πij(α)} is then

Ln(α) =
n

∏
i

ni

∏
j=1

(πij(α)Rij [1 − πij(α)]
1−Rij)

Ri(j−1)
. (5.2)

Assuming that the missing model is correct, we add the inverse probability weights
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to the observed pseudo-likelihood function:

lwpsn (θ,Λ,α ∣ ℵi) =
n

∑
i=1

ni

∑
j=1

Rijπij(α)−1 log

ˆ ∞

−∞

exp{−Λ(vij)e
βTXi−µξ}

×Λ(vij)µ exp(βTXi − µξ)
1

σ
φ{

Yi(vij) − ξ

σ
}dξ, (5.3)

where θ = (µ,βT )T and φ(⋅) is the standard normal density function. The weight used

in (5.3) can be interpreted: as the number of subjects the observation would represent.

5.2.2 Inference Procedure

To obtain the partial likelihood estimate α̂, we solve the following partial score equa-

tion, and the score function is derived through differentiation of the partial likelihood

in (5.2) with respect to α,

Sn(α) = ∂ logLn(α)/∂α =
n

∑
i=1

ni

∑
j=1

{Rij −Ri(j−1)πij(α)}{∂logit{πij(α)} /∂α} = 0. (5.4)

Note that Sn(α) simplifies to ∑n
i=1∑

ni
j=1 {Rij −Ri(j−1)πij(α)} g {Ai(j−1)} if πij(α) fol-

lows the logistic regression model, logit{πij(α)} = αTg {Ai(j−1)} for some known vector

function g(⋅). The estimate α̂ is incorporated in the weighted pseudo-likelihood.

We consider the log complete pseudo-likelihood with weights. Specifically, we esti-

mate Λ(t) as a step function with jumps at the observed times. Let v(1) < . . . < v(K)

be uniquely ordered observed times of {vij ∣ i = 1, . . . , n, j = 1, . . . , ni} and Λk = Λ0(V(k))

and V(0) = 0.

To facilitate the maximization, we adopt the weighted-pseudo-EM algorithm by

85



treating threshold values ξ as missing data. Then the weighted complete log pseudo-

likelihood function is

lwpsc {θ,α,Λ} =
K

∑
k=1

n

∑
i=1

ni

∑
j=1

I(vij = v(k))Rij

πij {α̂}
[ −Λk exp(βTXi − µξij) + log Λk

+ logµ +βTXi − µξij −
1

2
logσ2 −

{Yi(vij) − ξij}2

2σ2
]. (5.5)

In the maximization step of the lth iteration of the EM algorithm, we first maximize

the conditional expectation of the weighted complete log pseudo-likelihood function

given observed data over Λk’s. We then update θ via the Newton-Raphson algorithm.

Specifically, we maximize Q(Λ) defined by

Qw(Λ) =
K

∑
k=1

n

∑
i=1

ni

∑
j=1

I(Vij = V(k))Rij

πij {α̂}
E {−Λk exp(βTXi − µξij) + log Λk ∣ ℵi,θ

(l)} . (5.6)

Since Qw(Λ) is a concave function over a convex cone satisfying Λ1 ≤ . . . ≤ ΛK , this

maximization can be carried out using one of the many existing algorithms for convex

optimization. To update θ, we apply the following one-step Newton-Raphson algo-

rithm, θ(l+1) = θ(l)+E (−∂2lwpsc /(∂θ)2 ∣ ℵ(t),θ(l))
−1

θ=θ(l) E (∂lwpsc /∂θ ∣ ℵ(t),θ(l))θ=θ(l) . The

conditional expectations are calculated in the expectation step of the EM algorithm

based on the following expression

E{g(ξ)∣ℵi(Vij),θ
(l)} =

I(vij = v(k))
´∞
−∞

g(ξ) exp(−Λkeβ
TXi−µξ)e−µξφ{

Yi(vij)−ξ

σ }dξ´∞
−∞

exp(−Λkeβ
TXi−µξ)e−µξφ{

Yi(vij)−ξ

σ
}dξ

,

(5.7)

where the g(ξ)’s to be calculated are ξ, ξ2, e−µξ, e−µξξ, and e−µξξ2. This integration

can be approximated by the Gauss-Hermite quadrature (Davis 1984):

N

∑
k=1

(
√

2σwkg{
√

2σwk + Yi(vij)} exp [−Λ0(vij)e
βTXi−µ{

√
2σzk+Yi(vij)}] e−µ{

√
2σzk+Yi(vij)}) ,

86



where N is the number of the quadratures and ωk and zk are weights and abscissae for

the Gauss-Hermite quadrature, respectively. This EM loop is repeated until ∣θ(l+1)−θ(l)∣

is smaller than a pre-specified criterion. We denote the final estimators as θ̂ = (µ̂, β̂T )T

and Λ̂.

5.2.3 Variance Estimation

To derive the weighted marginal influence functions leading to asymptotic variance

estimation for the regression parameter θ, we need the complete log pseudo-likelihood

function with the weights. For subject i, the weighted pseudo-score functions with

respect to θ and α are given by

lwpsc {θ,α,Λ} =

ˆ ∞

0

Rj

πj{α}
[ −Λ(v) exp(βTX − µξ) + log Λ(v) + logµ

+βTX − µξ −
1

2
logσ2 −

{Y (v) − ξ}2

2σ2
]dN(v), (5.8)

l̇wpsµ {θ,α,Λ} = Eξ{∂l
wps
c /∂µ ∣ ℵ}

=

ˆ ∞

0

Rj

πj{α}
[µ−1 −Eξ {κ(v)ξ ∣ ℵ}]dN(v), (5.9)

l̇wpsβ {θ,α,Λ} = Eξ{∂l
wps
c /∂β ∣ ℵ}

= X

ˆ ∞

0

Rj

πj{α}
Eξ {κi(v) ∣ ℵ}dN(v), (5.10)

where κ(v) = 1−Λ(v) exp(βTX−µξ) and N(v) denotes the counting process associated

with prescheduled visiting time, so
´

0≤s≤v
dN(s) = j,that is, the number of occasions.

The random variable of Rj and the parameter of πj follow the same definitions of the

subject-specific variable and parameter Rij and πij, respectively.

Let {Pθ,Λη} be a regular parametric subfamily of models, {Pθ,Λ ∣ Pθ,Λ ≪ m,m is

Lebesque measure} and set ∂/∂η∣η=0Λη(v)=h(v) for v > 0 and h(v) ∈ L2(PV ). Then the
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score operator for Λ is

l̇wpsΛ {θ,α,Λ}[h(v)] =

ˆ ∞

0

Rj

πj{α}
h(v)E(κ(v) ∣ ℵ)/Λ(v)dN(v). (5.11)

We define h∗µ(v) and h∗β(v):

h1(v) = E{W1(v)e
βTX(E{ξ ∣ ℵ}E{e−µξ ∣ ℵ} − 2E{ξe−µξ ∣ ℵ}

−eβ
TXΛ(v) [E{ξe−µξ ∣ ℵ}E{e−µξ ∣ ℵ} −E{ξe−2µξ ∣ ℵ}] ) ∣ V = v},

h2(v) = E{W1(v)Xeβ
TX(Λ(v)eβ

TX [E{e−µξ ∣ ℵ}2 −E{e−2µξ ∣ ℵ}] +E{e−µξ ∣ ℵ}) ∣ V = v},

h3(v) = E(W1(v)Λ(v)−2 +W1(v)e
2βTX [E{e−µξ ∣ ℵ}2 −E{e−2µξ ∣ ℵ}] ∣ V = v),

h∗µ(v) = h1(v)/h3(v),

h∗β(v) = h2(v)/h3(v),

and W1(v)=Rj/πj(α).

In the asymptotic proofs given later, we show that the asymptotic covariance of θ̂

has a sandwich variance form. For the sandwich variance form, we need to summarize

notations. Denote P{l̈wpsθθ (θ0,α0,Λ0) − l̈
wps
Λθ (θ0,α0,Λ0)[h∗θ]} as Dw, and

l̇wpsµα {θ,α,Λ} =

ˆ ∞

v=0

W2(v) [µ
−1 −E {κ(v)ξ ∣ ℵ}]dN(v),

l̇wpsβα {θ,α,Λ} =

ˆ ∞

v=0

XW2(v)E {κ(v) ∣ ℵ}dN(v),

l̇wpsΛα {θ,α,Λ}[h(v)] =

ˆ ∞

v=0

W2(v)h(v)E {κ(v) ∣ ℵ} /Λ(v)dN(v),

where W2(v) = −Rjπj{α}−2∂πv(α)/∂α, and
´

0≤s≤v
dN(s) = j. The partial score func-

tion for α is

S(α) = ∂ logL(α)/∂α =

ˆ ∞

0

{Rj −R(j−1)πj(α)}{∂logit{πj(α)} /∂α}dN(t).
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Then if Dw is invertible, the information matrix for θ̂ is

Iw = D−1
w P {(Mθ +Mα)(Mθ +Mα)

T}{D−1
w }

T

= D−1
w P {(MθM

T
θ + 2MθM

T
α +MαM

T
α }{D−1

w }
T
, (5.12)

whereMα = P {l̈wpsθα (θ0,α0,Λ0) − l̈
wps
Λα (θ0,α0,Λ0)[h∗θ]}P {−∂2 logL/(∂α)2}

−1
S(α0) and

Mθ = l̇
wps
θ (θ0,α0,Λ0) − l̇

wps
Λ (θ0,α0,Λ0)[h∗θ].

We estimate the information matrix in (5.12) using the estimated parameters (θ̂, α̂, Λ̂)

and empirical measure Pn = n−1∑
n
i=1 instead of P .

5.3 Asymptotic Results

In this section, we provide asymptotic results for the proposed estimators and the

proofs are summarized in Appendix C. Let θ0 and α0 denote the true regression pa-

rameters, and let Λ0 denote the cumulative hazard function. The asymptotic results

will use the following conditions:

(A1) The finite-dimensional parameter spaces Θ1 and Θ2 are compact subsets of the

domains of θ and α, respectively.

(A2) The covariate X has bounded support with probability 1. If βTX +α = 0 almost

surely (a.s.), then β = 0 and α = 0.

(A3) The support of the visit time, V , is an interval S [V ] = [lV , uV ], with 0 < lV ≤

uV <∞.

(A4) The number of the visit times,
´ uV

0
dN(V ) is PV -almost surely finite.

(A5) The cumulative hazard function Λ0 has strictly positive derivative on S [V ].
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(A6) The auxiliary information A(t) has bounded support with probability 1. If

αTg{A(t)} + γ = 0 almost surely (a.s.), then α = 0 and γ = 0, where g(⋅) is a

known bounded function.

(A7) πV (α) ≥ c > 0 for all α ∈ Θ2 and some constant c.

(A8) The link function for πV (α) in the generalized linear model, H(⋅) is one-to-

one. There exists a measurable function m(⋅) such that ∣H−1(αT1 g{A(t)}) −

H−1(αT2 g{A(t)})∣ ≤m{A(t)}∣α1 −α2∣ and P ∣m∣
2
<∞.

The assumptions that parameter, covariate, and visit time are bounded in (A1), (A2),

and (A3), respectively are standard. Condition (A2) and (A6) ensure the identifiability

of θ and α, respectively. Condition (A7) ensures that each subject i, the probability

of no external diagnosis during the follow-up period is bounded away from zero, so

the inverse weight is bounded. Condition (A8) means that the derivative of the in-

verse function of the link function is uniformly bounded by the measurable function,

m(⋅). Link functions commonly used in generalized linear models satisfy Condition

(A8) on Θ2, particularly the logit function. These conditions hold naturally in most

applications.

For convergence of the estimators to the true parameters, we need to define a topol-

ogy. Let the bounded regression parameter space Θ1×Θ2(⊂ Rd1×Rd2) be equipped with

the Euclidean topology. Regarding the infinite dimensional nonparametric space, let

F be the set of all Borel subprobability measures on S [V ]. Then F can be equipped

with the vague topology by defining that, for any sequence Fn ∈ F and F ∈ F , Fn

converges vaguely to F if and only if

ˆ
fdFn →

ˆ
fdF for every f ∈ C0(S [V ]),
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where C0(S [V ]) is the set of all continuous functions that vanish outside a compact

subset of S [V ]. The product space Θ1 ×Θ2 ×F equipped with the product topology

is equivalent to convergence of (θ̂T , α̂T , F̂ ) to (θT ,αT , F ) in those respective domains.

Theorem 5.3.1. (Consistency of the MLE) Suppose that conditions, (A1), (A2), (A3),

(A4), (A6), (A7), and (A8) are satisfied, then θ̂ converges to θ0 a.s., and if v ∈ S [V ]

is a continuity point of Λ0, Λ̂(v) converges to Λ0(v) a.s. Moreover, if Λ0 is continuous,

then supv∈S [V ]∣Λ̂(v) −Λ0(v)∣ converges to 0 a.s.

Before discussing the overall convergence rate, we define the distance d on Rd1 ×

Rd2×Φ as follows: d{(θ1,α1,Λ1), (θ2,α2,Λ2)}=∣θ1−θ2∣ + ∣α1−α2∣+∥Λ1−Λ2∥2,P , where

∣θ1 − θ2∣ and ∣α1 −α2∣ are the Euclidean distance in Rd1 and Rd2 ,

∥Λ1 −Λ2∥2,PV
=(
´
(Λ1(v) −Λ2(v))2dPV )

1/2
, where PV is the marginal probability mea-

sure of the measurement time variable V .

Theorem 5.3.2. (Rate of convergence) Suppose that conditions (A1), (A2), (A3),

(A4), and (A7) are satisfied. Then d{(θ̂, α̂, Λ̂), (θ0,α0,Λ0)} = Op(n−1/3).

The convergence rate we found is applied to prove the asymptotic normality of the

regression parameter MLE, θ̂.

Theorem 5.3.3. (Asymptotic normality) Suppose that θ0 is an interior point of Θ and

that conditions (A1)–(A8) are satisfied. Then

n1/2(θ̂ − θ0) = −n
1/2(Pn − P )ψ̃wps(ℵ) + op(1)→ N(0, Iw(θ0)) in distribution,

where P is the probability measure, that is, Pψ̃wps(ℵ)=
´
ψ̃wps(ℵ)dP , Pn is the em-

pirical measure of ℵi, i = 1, . . . , n, that is, Pnψ̃wps(ℵ) = n−1∑
n
i=1 ψ̃

wps(ℵ), ψ̃wps(ℵ) is

the marginal influence function defined as ψ̃wps = D−1
w {Mθ +Mα}, and Iw(θ0) is the

information in (5.12).
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Theorem 5.3.4. (Consistency of the asymptotic variance estimator) When the band-

width hn satisfies that hn and log{n/(nhn)} converge to 0 as n→∞, then Îw converges

to I(θ0) in probability.

5.4 Simulation Study

We consider scenarios of longitudinal data with random measurement time points.

The number of measurement times per subject is three, baseline and two follow-ups, and

the measurement times are independently generated from the normal distribution with

means of 0.5, 1.2, and 1.9, respectively and with the common standard deviation of 0.1

since study visit window is usually fixed, but each visit time varies across subjects. Two

covariates are included in the model: one is generated from the Bernoulli distribution

with probability 0.5, and the other is from the normal distribution with mean 0 and

variance 0.1. The true values for (β1, β2) are set as (0.3, 0.3), and the true cumulative

baseline hazard is assumed to be 2t1/5.

Consequently, the true biomarker value is generated by:

Y ∗
i (vij) = µ−1{βTXi + log Λ0(vij) − log (− log pi) } for 1 ≤ i ≤ n,0 ≤ j ≤ 2,(5.13)

where pi are independent draws from the uniform distribution (0,1) for each i.

The observed biomarker value is generated by

Yi(vij) = Y
∗
i (vij) + εi(vij), (5.14)

where ε(vij) is independently generated from the normal distribution with zero mean

and some finite variance for all i and j and is independent of Y ∗
i (vij). We consider two

measurement error variances of 0.25 and 1.0 and two sample sizes from 300 (600 follow-

ups) to 600 (1,200 follow-ups. For each combination we conducted 1,000 repetitions.

92



We apply the following logistic regression model for the missing rule with the miss-

ing rate of 13% based on the previous biomarker values: logit{Pr(observable at visit

j)}=3.0-0.25Yi(vi(j−1)). That is to say we calculate the probability of non-missingness,

πij for each subject i at measurement times j=1 and 2. We then we generate a uniform

[0,1] random variable for each observation, uij, and include observations at visit j when

uij < πij. If subject i has missing value at visit j, then the following observations are

set to be missing, which simulates a monotone missing pattern.

For each simulated dataset, the proposed weighted-pseudo-EM algorithm was used

to estimate the parameters accounting for the predicted probability of non-missingness.

The initial values used for β and Λ0(t) in the algorithm were 0’s and observed times,

respectively. In the maximization-step, the spectral projected gradient method was used

for the constrained optimization in (3.5). The convergence criterion for the algorithm

was set as 10−10. In the simulations, we noticed that threshold effect of µ was sensitive

to the initial values. Therefore, we first calculated the profile likelihood of µ using the

same algorithm except that µ was held at some fixed value. We then carried out a grid

search to find the maximum likelihood estimate for µ.

Table 5.2 shows that bias of the regression coefficient estimates β̂ is small, whereas

the bias of the threshold effect estimate µ̂ is relative large, but this is acceptable. The

bias of the estimates decreases as the sample size increases or the variance ratio de-

creases. The estimated variance estimates (summarized by those median value) tend

to overestimate the empirical variance. Out of 1,000 sets of the simulated data, the

asymptotic variance estimate is likely to be overestimated in 10-15 % of datasets be-

cause of unstable cumulative hazard function estimates at the last observation times.

Hence, when the asymptotic variance is calculated using the MLEs, we excluded 2%

observations from the simulated data, which corresponds to the last observation times.

Consequently, the coverage probability is greater than 95 %.
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5.5 Application

The Atherosclerosis Risk in Communities (ARIC) study is a population-based co-

hort study from four U.S. communities, Forsyth County, NC, Jackson, MS, suburbs of

Minneapolis, MN, and Washington County, MD, and participants underwent a baseline

examination in 1987-1989, had three follow-up examinations at approximately three-

year intervals, and a further examination in 2011-2013. The ARIC Study was designed

to investigate the causes of atherosclerosis, and hypercholesterolemia is a crucial risk

factor for cardiovascular disease. Hypercholesterolemia, that is, high blood cholesterol,

is not a disease but a metabolic derangement that can be secondary to many dis-

eases and contributes to many diseases, most notably cardiovascular disease. Hence,

assessing risk factors associated with time-to-hypercholesterolemia is of interest. The

participants were predominantly white or African-American: the few participants of

other races are excluded from the analysis. Subjects with complete covariates and at

least one valid follow-up visit data are included in the analysis

The time-to-hypercholesterolemia data from the ARIC study pose the informative

missing data as we described in Section 5.1. In the preceding analysis, 1,546 (13.2%)

out of 11,718 subjects satisfying inclusion and exclusion criteria were excluded due to

an external diagnosis. To account for this informative and monotone missingness, we

apply the weighted pseudo-likelihood approach to the ARIC data.

In the first step, we employ a logistic regression model for the external diagnosis

outcomeRij for 1 ≤ i ≤ n and 1 ≤ j ≤ 3 to predict the probability for no external diagnosis

based on the baseline and previous auxiliary information. We distinguish missing visits

or drop-out with the external diagnosis and let Rij = . when subject i is missing or drop

out at visit j. As predictors for the probability of no external diagnosis, we include

sex, race, hypertension, previous coronary heart disease (CHD) history, parents CHD

history, former smoking, high-density lipoprotein (HDL), and previous total cholesterol
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level. When the previous visit is missing, then the last previous cholesterol value is

carried forward to impute the missing previous cholesterol value. In addition, we take

account of age effect, visit effect (categorical time lag effect), and interaction effect

between previous total cholesterol level and visit.

By removing insignificant predictors, we reach the following final logistic regression

model for the probability of no external diagnosis as hypercholesterolemic in table

5.3. Whites, people with hypertension, people with previous CHD history, people with

parents CHD history, and former smoker are more likely to be externally diagnosed

as hypercholesterolemia than people with the opposite characteristics. As previous

cholesterol or HDL at baseline is higher, the probability of the external diagnosis is

higher. The interquartile range of the weight obtained from the predicted probability

for no external diagnosis is 1.02 to 1.12, and the weight greater than 99.9% quantile

ranges from 9.25 to 40.77 with one extreme value of 361.15.

In the model, we consider baseline covariates including race, gender, hypertension,

parents coronary heart disease (CHD) history, categorized age (<50,50-60, ≥60), and

total cholesterol. These variables are generally regarded as major factors associated

with hypercholesterolemia. All subjects with complete data for the baseline covariates

are included in the analysis. Demographic characteristics of the subjects included in

the analysis set include average age of 53.9 years (range 44-66 years), white race 9,166

(78.2%), and women 6,498 (55.5%). The average total cholesterol at baseline is 213.6

(±40.7) mg/dL, and the number of the participants with hypertension and parental

history of CHD are 3,473 (29.6 %) and 4,719(40.3%), respectively.

To enhance estimations, we standardized the total cholesterol by the sample mean

of 205.7mg/dl and standard deviation of 37.3mg/dl so that it has zero mean and the

unit variance. The observation time is scaled to (0,1]. The standardized value and

the rescaled visit time better facilitate the estimation process than either the original

95



values or log-transformed values.

The National Cholesterol Education Program and Laboratory Standardization Panel

established the goal that a single serum total cholesterol measurement should be accu-

rate within ±8.9 percent. The Health Care Financing Administration (HCFA) has also

established similar testing requirements for total cholesterol (±10 percent), authored

by the Centers for Disease Control and Prevention (Oppenheim et al. 1994). Hence,

we chose σ2 = 0.32 for the measurement error of the standardized total cholesterol

value, which corresponds to 0.09 for the variance ratio of measurement error to total

cholesterol value.

For comparison, we applied the unweighted pseudo-likelihood method to the sub-

sample (11,718) with no external diagnosis or data before external diagnosis during

the follow-up period. The variance estimate for effect size is somewhat sensitive to the

choice of bandwidth, so we employed a subsampling bootstrap with sample size of 500

subjects and 400 repetitions then adjusted the standard error based on the bootstrap

by multiplying the factors
√

500/11,718. In simulation data, the subsample bootstrap

based standard error precisely estimates the true standard error. The bootstrap-based

estimate and the adjusted standard error are presented in Table 5.4.

Overall, there is no marked difference between the effect sizes from the unweighted

and weighted pseudo-likelihood method, and variance from the weighted pseudo-likelihood

estimates is greater than variance of the unweighted estimates because of the variation

due to the estimated weight. In the ARIC Study data, African-Americans, having

parental history of CHD, and high baseline total cholesterol have 1.15, 1.32, and 1.02

times greater hazard of hypercholesterolemia than people with the opposite character-

istics, respectively. When baseline total cholesterol level increases by 1 unit, the hazard

for hypercholesterolemia increases by a factor of 0.024. There is significant interaction

effect between age and sex; men is very likely to be high-risk for hypercholesterolemia
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than women; up to 60-year old, hazard ratio for men to women in hypercholesterolemia

is 1.67; however, it decreases to 1.51 after 60-year old because of menopause.

5.6 Concluding Remarks

We proposed a weighted pseudo-likelihood estimator based on a marginal semipara-

metric regression model for analyzing time-to-event of longitudinal biomarkers with

missing data. We estimated the weight using a logistic regression model for the infor-

mative and monotone missing response. Parameter estimation was carried out by the

weighted-pseudo-EM algorithm. The weighted estimator requires greater sample sizes

to perform as well as the unweighted estimator for complete data because the weight

estimation causes increased variation. The proposed method appears to be fairly accu-

rate, but variance estimates are likely to be conservative. The method was illustrated

through an application to data from the ARIC study.

The proposed model is based on the marginal likelihood method, so it is not guaran-

teed to satisfy semiparametric efficiency and is not doubly robust, that is, the estimator

is consistent only when the model chosen for the missing data is correct. However, de-

veloping a doubly-robust estimator is a challenging open problem because of the score

functions with respect to infinite dimensional nuisance parameters.

The proposed model can be extended in various ways: We could consider general

missing mechanism rather than monotone missing patterns; When a covariance struc-

ture for the true biomarker values is postulated, a weighted semiparametric maximum

likelihood method could be constructed.
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Figure 5.1: Mean Trend of Total Cholesterol Levels in Subpopulation with Complete
Follow-Ups
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Table 5.1: Prevalence of Externally Diagnosed Hypercholesterolemia

Visit 2 Visit 3 Visit 4
n=11,699 n=10,487 n=9,571

507 (4.33%) 974 (9.25%) 1,546 (15.92%)
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Table 5.2: Simulation Result When Missing Rate is 13%

Sample Measurement Parameter Bias SE. SEE. CP.
Size Error Variance (median)

n=300 σ2 = 0.25 µ = 1.0 0.042 0.055 0.061 0.962
β1 = 0.3 0.013 0.144 0.184 0.983
β2 = 0.3 0.011 0.215 0.249 0.978

n=300 σ2 = 1.0 µ = 1.0 0.049 0.073 0.077 0.980
β1 = 0.3 0.010 0.175 0.289 0.983
β2 = 0.3 0.026 0.278 0.362 0.983

n=600 σ2 = 0.25 µ = 1.0 0.033 0.040 0.042 0.966
β1 = 0.3 0.010 0.102 0.129 0.986
β2 = 0.3 0.006 0.156 0.175 0.975

n=600 σ2 = 1.0 µ = 1.0 0.037 0.055 0.052 0.967
β1 = 0.3 0.008 0.121 0.210 0.984
β2 = 0.3 0.000 0.190 0.246 0.978

SE.: standard error; SEE. is standard error estimate; CP. is coverage probability.

Table 5.3: Logistic Regression for the Probability of No External Diagnosis as Hyper-
cholesterolemia

Predictor Estimate SE. p-value
Intercept 2.403 0.130 <0.0001
Male -0.058 0.064 0.3670
African-Americans 0.773 0.087 <0.0001
Hypertension -0.471 0.059 <0.0001
Previous CHD history -1.088 0.104 <0.0001
Parents CHD history -0.174 0.056 0.002
Former Smoking -0.151 0.059 0.011
HDL (mg/dL) 0.026 0.002 <0.0001
Visit 4 -0.697 0.066 <0.0001
Previoius Cholesterl (40mg/dL) at Visit 2 -0.919 0.038 <0.0001
Previoius Cholesterl (40mg/dL) at Visit 3 -1.048 0.047 <0.0001
Previoius Cholesterl (40mg/dL) at Visit 4 -0.999 0.049 <0.0001
SE : Standard Error

99



Table 5.4: Application to the ARIC Study Data

unweighted EM method weighted EM method
Risk Factors Estimate SE. p-value Estimate SE. p-value
Threshold effect 1.576 0.0204 <0.0001 1.573 0.0227 <0.0001
Race=African-Americans 0.137 0.0243 <0.0001 0.143 0.0372 0.0002
Gender=male 0.454 0.0330 <0.0001 0.514 0.0491 <0.0001
Hypertension -0.013 0.0219 0.5528 -0.015 0.0319 0.6480
History of Parents’ CHD 0.267 0.0201 <0.0001 0.277 0.0382 <0.0001
Age (50-59 yrs) at visit 1 0.725 0.0300 <0.0001 0.765 0.0475 <0.0001
Age (≥60 yrs) at visit 1 0.696 0.0341 <0.0001 0.758 0.0539 <0.0001
Male×Age (50-59 yrs) at visit 1 -0.737 0.0451 <0.0001 -0.766 0.0664 <0.0001
Male×Age (≥60 yrs) at visit 1 -0.819 0.0528 <0.0001 -0.862 0.0720 <0.0001
Total cholesterol at visit 1 (mg/dL) 0.025 0.0007 <0.0001 0.024 0.0008 <0.0001
Measurement error variance is 0.32 and n=11,718

Table 5.5: Age Distribution by Whether or Not Being Externally Diagnosed with Hy-
percholesterolemia

External Diagnosis Variable Age (year) at Baseline Total
<50 ≥50 and <60 ≥60 (n=11,718)

No Frequency 2,978 5,083 2,111 10,172
Percentage 29.3% 50.0% 20.8%

Yes Frequency 325 838 383 1,546
Percentage 21.0% 54.0% 24.8%
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CHAPTER6: SUMMARY AND FUTURE WORK

We had proposed statistical methods for several problems arising in longitudinal

and observational studies when time-to-disease occurrence defined by biomarkers is

the outcome variable of interest, namely, interval censored data, measurement error

in biomarker values, determination of diagnostic cutoff point for biomarkers, and in-

formative external diagnosis. First, we restricted attention to the first follow-up after

baseline. Observed biomarker values were analyzed separately as true values and mea-

surement error. An additive model was applied to account for biomarker values subject

to measurement error by assuming that measurement error follows a zero-mean and

finite variance Gaussian process and is independent of the true biomarker values. As-

suming that the true underlying trend of biomarker values is non-decreasing over time,

and observation time is independent of time-to-disease occurrence, we adopted gener-

alized extreme value distributions to construct a stochastic model for the time-varying

true biomarker values. Then we constructed the marginal observed likelihood for the

observed biomarker values using a mixture of a normal distribution and a generalized

extreme value distribution. This marginal model is equivalent to a class of proportional

hazards models for threshold-dependent time-to-event. For the marginal likelihood, we

considered all probabilities that disease occurs for each threshold and integrated over

all of the information. By considering all possible threshold values we simultaneously

resolved the problems of unobservable disease occurrence time and flexible threshold.

We thoroughly investigated this marginal model in Chapter 3 via simulation studies

and asymptotic properties establishment. The marginal likelihood estimator for the
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simulations was both accurate and semiparametrically efficient. The explicit asymptotic

variance formula and estimation were presented. The variance estimates based on the

observed information matrix approximated the true variance in finite samples well.

This marginal likelihood was extended to the pseudo-likelihood as provided in Chap-

ter 4 by ignoring correlations between biomarker values within a subject. Compared

to the marginal likelihood, the pseudo-likelihood estimator is more stable and accu-

rate in data with considerable measurement error. In addition, we improved efficiency

slightly as the correlation within a subject is reduced. For inference of the regression

parameter estimates, we derived the variance formula using a sandwich form. The

variance estimate approximated the true variance in finite samples well. However, this

pseudo-likelihood model is not guaranteed to satisfy semiparametric efficiency.

To adjust for informative external diagnosis, the pseudo-likelihood estimator was

extended to the weighted pseudo-likelihood estimator in Chapter 5 by employing inverse

probability weighting in the pseudo-likelihood model. We applied a marginal structure

model to predict the probabilities. The proposed method appears to be fairly accurate,

but the asymptotic variance estimates are likely to be over-conservative.

All three estimators are consistent and the regression parameter estimators satisfy

asymptotic normality. In both the marginal and pseudo-likelihood model, the pro-

posed estimators are more accurate and efficient than Pan’s (1999) method, which is a

proportional hazards model with a fixed threshold for interval censored data.

Through the three model, we were able to resolve the four issues in statistical

analysis of interest. The proposed class of proportional hazards model for threshold-

dependent time-to-disease occurrence can not directly estimate the diagnosis cutoff

point for biomarkers, but can provide evidence about whether or not the threshold

should differ across sub-populations by testing the interaction between the threshold

effect and corresponding risk factors. We considered all possible ranges of thresholds,
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which may be regarded as a non-informative prior to the threshold. In practice, we may

need to restrict our scientific interest to narrower range of thresholds, so informative

prior models could be chosen.

All proposed models were illustrated on either the main ARIC study data or the

diabetes data. Compared to Pan’s (1999) method, we found it easier identify risk

factors because the proposed method is more efficient. The estimated effect sizes and

directions agree well with the previous studies.

We may extend our models in several directions. First, the models and associated

estimators could be implemented for multiple outcomes in biomedical studies. For

example, both high blood pressure and hypercholesterolemia could be simultaneously

important. We assumed that observation time is independent of time-to-event since the

ARIC study scheduled visits ahead of time; however observation time can be dependent

on the event of interest. Therefore, we could consider models accounting for the depen-

dency of the observation time on a subject’s health status. For semiparametric models

for time-to-event data the baseline hazard functions are time-dependent and assumed

to be unknown; however, time-varying coefficients as well as baseline information would

be needed to account for time-dependent latent variables. The proposed method could

be extended to models including time-varying risk factors or time-varying thresholds.
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APPENDIX A: Technical Details for Chapter 3

A.1 Identifiability and Derivation of Efficient Score Functions

Lemma A.1.1. The folowing model is identifiable, that is, if probability at Θ1 is equal

to the one at Θ2, then Θ1 = Θ2.

n

∏
i=1

ˆ ∞

−∞

exp{−Λ0(Vi)e
βTXi−µξ}Λ0(Vi)µ exp(βTXi − µξ)

1

σ
φ{
Yi(Vi) − ξ

σ
}dξ,

where φ(⋅) is the standard normal density function.

Proof. We let the likelihood function for Θk,

f(Θk) =

ˆ ∞

−∞

exp ( −Λk(V )eβ
T
k X−µkξ)Λk(V )µke

βTk X−µkξ
1

σ
φ(
Y (V ) − ξ

σ
)dξ, k = 1,2

(6.1)

and suppose that two likelihood functions with Θ1 and Θ2 are the same, that is,

f(Θ1) = f(Θ2). For any W = (Y (V ), V,X), the likelihood function f(Θk) can be

simplified as following:

ˆ ∞

−∞

exp{ −Λk(V )eβ
T
k X−µkξ}Λk(V )µke

βTk X−µkξ−
ξ2

2σ2 exp{−
Y (V )ξ

σ2
}dξ. (6.2)

Since Y (V ) can be arbitrary real number, the integration in (6.2) are bilateral Laplace

transformation of gk(ξ), where

gk(ξ) = exp{−Λk(V )eβ
T
k X−µkξ}Λk(V )µk exp (βTkX − µkξ − ξ

2/2σ2) , k = 1,2.

Hence f(Θ1) = f(Θ2) implies g1 = g2 by one-to-one property of Laplace transformation.
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Thus, for any ξ,

−Λ1(V )eβ
T
1 X−µ1ξ + log (Λ1(V )) + logµ1 +β

T
1 X − µ1ξ

= −Λ2(V )eβ
T
2 X−µ2ξ + log (Λ2(V )) + logµ2 +β

T
2 X − µ2ξ.

Examining the behavior when ξ goes to −∞, we obtain µ1 = µ2 and Λ1(V )eβ
T
1 X=

Λ2(V )eβ
T
2 X . So by(A2), β1=β2 and Λ1(V )=Λ2(V ).

Lemma A.1.2. The efficient score function for θ is

l∗θ(θ,Λ,W ) =

⎛
⎜
⎜
⎜
⎝

µ−1 −E(κξ ∣W ) −E(κ ∣W )
E(E(κ∣W ){µ−1−E(κξ∣W )}∣V )

E(E(κ∣W )2∣V )

E(κ∣W )[X −
E(XE(κ∣W )2∣V )

E(E(κ∣W )2∣V )
]

⎞
⎟
⎟
⎟
⎠

, (6.3)

where κ=1 −Λ(V )eβ
TX−µξ.

Proof. First, we have

l̇µ(θ,Λ,W ) = E(∂/∂µlc ∣W ) = µ−1 −Eξ(κξ ∣W ),

l̇β(θ,Λ,W ) = E(∂/∂βlc ∣W ) =XEξ(κ ∣W ),

where lc denotes the log complete likelihood function based on a single observation.

Let {Pθ,Λη} be a regular parametric subfamily of models, {Pθ,Λ ∣ Pθ,Λ ≪m,m:Lebesque

measure} and set ∂/∂η ∣η=0 Λη(V )=h(V ) for V > 0 and h(V ) ∈ L2(F ), then we have a

score operator for Λ:

l̇Λ(θ,Λ,W )[h(V )] = h(V )/Λ(V ) − h(V )eβ
TXE(e−µξ ∣W ) = h(V )/Λ(V )E(κ ∣W ).

105



To obtain the efficient score function for µ, we need to find h∗µ(V ) satisfying

E[ {l̇µ(θ,Λ,W ) − l̇Λ(θ,Λ,W )[h∗µ(V )]} l̇Λ(θ,Λ,W )[h(V )]] = 0, for every h(V ).

That is,

EW [{l̇µ(θ,Λ,W ) − l̇Λ(θ,Λ,W )[h∗µ])}l̇Λ(θ,Λ,W )[h]]

= E [{µ−1 −E(κξ ∣W ) − h∗µ(V )Λ(V )−1E(κ ∣W )}{h(V )Λ(V )−1E(κ ∣W )}]

= EV (h(V )Λ(V )−1EY,X [E(κ ∣W ){µ−1 −E(κξ ∣W )} − h∗µ(V )Λ(V )−1E(κ ∣W )2 ∣ V ] )

= 0.

Therefore, EY,X[E(κ ∣ W ) {µ−1 −E(κξ ∣W )} − h∗µ(V )Λ(V )−1E(κ ∣ W )2 ∣ V ] = 0.

We then obtain

h∗µ(V ) = Λ(V )E[E(κ ∣W ) {µ−1 −E(κξ ∣W )} ∣ V ]/E {E(κ ∣W )2 ∣ V } . (6.4)

Using the h∗µ(V ) in (6.4), the efficient score function for µ is

l∗µ(θ,Λ,W ) = l̇µ(θ,Λ,W ) − l̇Λ(θ,Λ,W )[h∗µ(V )]

= µ−1 −E(κξ ∣W ) −E(κ ∣W )
E[E(κ ∣W ) {µ−1 −E(κξ ∣W )} ∣ V ]

E{E(κ ∣W )2 ∣ V }
.

Similarly, the efficient score function for β is obtained by solving equation:

EW [{l̇β(θ,Λ,W ) − l̇Λ(θ,Λ,W )[h∗β]}l̇Λ(θ,Λ,W )[h]]

= EW [{XE(κ ∣W ) − h∗β(V )Λ(V )−1E(κ ∣W )}{h(V )Λ(V )−1E(κ ∣W )}]

= EV [h(V )Λ(V )−1EY,X{XE(κ ∣W )2 − h∗β(V )Λ(V )−1E(κ ∣W )2 ∣ V }]

= 0.
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Thus, EY,X{XE(κ ∣W )2 − h∗β(V )Λ(V )−1E(κ ∣W )2 ∣ V } = 0. So,

E{XE(κ ∣W )2 ∣ V } = h∗β(V )Λ(V )−1E{E(κ ∣W )2 ∣ V }.

We hence obtain h∗β(V ) as

h∗β(V ) = Λ(V )E{XE(κ ∣W )2 ∣ V }/E{E(κ ∣W )2 ∣ V }. (6.5)

So the efficient score function for β is

l∗β(θ,Λ,W ) = l̇β(θ,Λ,W ) − l̇Λ(θ,Λ,W )[h∗β] = E(κ ∣W )[X −
E{XE(κ ∣W )2 ∣ V }

E{E(κ ∣W )2 ∣ V }
].

Lemma A.1.3. The information operator E [(l̇θ, l̇Λ)∗(l̇θ, l̇Λ)], which maps Θ×H to the

dual space of Θ×H (equivalent to Θ×H), is continuously invertible at θ0,Λ0, where l̇∗θ

and l̇∗Λ are the adjoint operators of the linear operators, l̇θ and l̇Λ,respectively.

Proof. It suffices to show that E(l̇∗Λl̇Λ), and E(l̇∗θ l̇θ)−E(l̇∗θ l̇Λ)E(l̇∗Λl̇Λ)
−1E(l̇∗Λl̇θ) (denote

as the matrix A) are invertible. By taking linear operator of l̇Λ, we obtain

E(l̇∗Λl̇Λ[h, h̃]) = E [h̃(V )h(V )Λ(V )−2E {E(κ ∣W )2 ∣ V }] .

Therefore, E(l̇∗Λl̇Λ[h]) = h(V )Λ(V )−2E {E(κ ∣W )2 ∣ V } so is invertible from L2(PV )

to L2(PV ).

If A is singular, then there exists some non-zero vector ν such that νTAν = 0.

Therefore,it gives E{(νT l̇θ − l̇Λ[h])⊗2} = 0, where h = νTE[l̇∗Λl̇Λ]
−1E[l̇∗Λl̇θ]. As the
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result, νT l̇θ − l̇Λ[h] = 0 almost surely. We obtain

E [{νT (−ξ,X) − h(V )/Λ0(V )}{1 −Λ0(V )eβ
T
0 X−µ0ξ} + ν1/µ0 ∣W ] = 0,

where ν1 is the component of ν corresponding to µ. The left-hand side can be treated

as a Laplace transformation of some function of ξ so we immediately conclude

{νT (−ξ,X) − h(V )/Λ0(V )}{1 −Λ0(V )eβ
T
0 X−µ0ξ} + ν1/µ0 = 0.

Since ξ is arbitrary, ν1 = 0, νT−1X = 0, h(V )/Λ0(V ) = 0, where ν−1 = (ν2, . . . , νd).

Therefore, ν = 0, and this leads to the contradiction.

A.2 Proof of Asymptotic Results

Proof of Theorem 3.4.1. :

We reparametrize F=1 − e−Λ, θ = θ and let

f(θ,F ∣W )

= −

ˆ ∞

−∞

{1 − F (V )}
exp(βTX−µξ)

log {1 − F (V )}µeβ
TX−µξ 1

σ
φ{

Y (V ) − ξ

σ
}dξ.(6.6)

Let 0 < α < 1 be a fixed constant throughout the proof. By concavity of the log

function, the model identifiability and Jensen’s inequality,

E( log [1 + α{
f(θ,F ∣W )

f(θ0, F0 ∣W )
− 1}]) < 0. (6.7)

For an open neighborhood N around (θ, F ), define f̄(W ∣ N )=supθ,F ∈N f(θ, F ∣

W ). For a sequence of open balls Nε with radius ε shrinking to (θ, F ) as ε goes to 0,

we have f̄(W ∣ Nε)→ f(θ, F ∣W ). By (6.7), for ε sufficiently small, there is an ηε > 0
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so that

E( log [1 + α{
f̄(W ∣ Nε)

f(θ0, F0 ∣W )
− 1}] ∧ ηε) < 0. (6.8)

On the other hand, since (θ̂n, F̂n) is the maximum likelihood estimator, we have

n

∑
i=1

log f(θ̂n, F̂n ∣Wi) ≥
n

∑
i=1

log f(θ0, F0 ∣Wi).

By concavity of log function, this implies

n

∑
i=1

log [1 + α{
f(θ̂n, F̂n ∣Wi)

f(θ0, F0 ∣Wi)
− 1}] ≥ 0. (6.9)

For any vaguely open neighborhood N0 of the true (θ0, F0), its complement in

Θ ×F is a vaguely closed subset of a compact set, hence also vaguely compact. Then

open cover {N(θ,F ) ∣ (θ, F ) ∉ N0} of this complement has a finite subcover N(θ1,F1), . . .,

N(θk,Fm). If (θ̂n, F̂n) is not in N0, it is in one of the subcovers. By (6.9), we have

{(θ̂, F̂ ∉ N0)} ⊂ ∪
m
k=1(

n

∑
i=1

log [1 + α{
f̄(W ∣ N(θk,Fk))

f(θ0, F0 ∣Wi)
− 1}] ∧ η(θk,Fk) ≥ 0).

The probability of each of the sets in the union is the probability that an average of

uniformly bounded and independent random variables is non-negative. However, these

random variables have negative expectation by (6.8). By Hoeffding’s inequality, each of

the probabilities is of the order e−εn where ε can be chosen equal to 2µ2/(η0−log(1−α))2.

Here η0=max{η(θk,Fk) ∣ 1 ≤ k ≤m} , and µ is any negative number that is greater than

the expectation in (6.8). This is true for all n ≥ 1. Hence,

∞

∑
n=1

P{(θ̂n, F̂n) ∉ N0} <∞.

By the Borel-Cantelli lemma, it follows that, with probability 1, (θ̂n, F̂n) ∈ N0 for
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all n sufficiently large. By the definition of our product topology, this implies that

θ̂n converges to θ0 in P(θ0,F0)-almost surely and F̂n converges to F0 in P(θ0,F0)-almost

surely. In particular, if F0 is continuous, this implies

lim
n→∞

sup
v∈S [V ]

∣F̂n(v) − F0(v)∣ = 0 P(θ0,F0)-almost surely.

Since Λ̂=− log(1 − F̂n), Theorem 1 is proved.

Once consistency of θ̂ is proved, we can concentrate on a neighborhood of θ0. For

any η > 0, let B(θ0, η) be the ball centered at θ0 with radius η. If θ0 is on the boundary

of Θ, then take B(θ0, η) ∩Θ instead of B(θ0, η). Then B(θ0, η) is included in Θ. We

suppose that condition3 is satisfied so that Λ0 is bounded and away from 0 on S [V ].

Since we have proved that Λ̂ converges on S [V ], we may restrict Λ̂ to the following

class of functions:

Φ = {Λ ∣ Λ is non-decreasing and 0 < 1/M ≤ Λ(t) ≤M <∞ for all t ∈ S [V ]} ,

where M is a large positive constant.

For any probability measure P , define L2(P ) = {g ∣
´
g2dP <∞}. Let ∥⋅∥2,P be the

usual L2,P norm. For any subclass F of L2(P ), define the bracketing number N[ ](ε,F ,

L2(P )) as infimum of cardinal numbers for {gLi , g
U
i ∣ gLi ≤ g ≤ gUi , g ∈ F , for some i, and

∥gUi − gLi ∥ ≤ ε}. By the following lemma, we figure out size of the class for likelihood

functions of our interest.

Lemma A.2.1. Let

H = { log f(θ,Λ∣W )∣θ ∈ B(θ0, η),Λ ∈ Φ}, (6.10)
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where f(θ,Λ∣W ) is the re-parametrized function with Λ instead of F from (6.6). Sup-

pose that (A2) is satisfied. Then there exists a constant C > 0 such that

sup
Q
N[ ] (ε,H , L2(Q)) ≤ C(1/εd)e1/ε for all ε > 0,

where d is the dimension of θ. Hence, for ε small enough, we have

sup
Q

logN[ ] (ε,H , L2(Q)) ≤ C(1/ε).

Here Q runs through the class of all probability measures.

The proof of Lemma A.2.1 is adapted from Huang (1996), where the author provided

the order of the entropy for a class of log-likelihood functions over bounded parameter

space in current status data.

Proof of Lemma A.2.1. We first calculate the order of the bracketing number for class

H
′ , where H

′={f ∣log f ∈ H }. It is known that for the class of functions,

Φ = {Λ ∣ Λ is non-decreasing and 0 < 1/M ≤ Λ(v) ≤M <∞ for all v ∈ S [V ]} ,

where M is a constant and it is known that its ε bracketing number is of the order of

m = N[ ](ε,Φ, L2(P )) = O(e1/ε). This means that the class Φ has the finite entropy. Let

Λ∗L
i = ΛL

i − ε and Λ∗U
i = ΛU

i + ε for 1 ≤ i ≤ m. Then for any Λ ∈ Φ, we have, for some

i, Λ∗L
i + ε ≤ Λ ≤ Λ∗U

i − ε and ∥Λ∗U
i − Λ∗L

i ∥2,PV
≤ 3ε. Since Φ is uniformly bounded away

from 0, we can choose ε small enough such that all the bracketing functions stay away

from 0.

For the true µ0 > 0, we can find a constant δ0 such that µ0 > δ0 > 0. Related to θ,

we can also choose k points (β1, µ1) = θ1, . . . , (βk, µk) = θk in B(θ0, η) such that for any

(β, µ) ∈ B(θ0, η), ∣βj −β∣ < δ1 and ∣µj −µ∣ < δ2 for given constants δ1 > 0 and 0 < δ2 < δ0,
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since Θ0 is compact by (A1). Then for any (β, µ) ∈ B(θ0, η) and for some 1 ≤ j ≤ k,

there exist a positive constant C1 such that ∣(βj −β)TX − (µj − µ)ξ∣ ≤ C1δ1 + δ2∣ξ∣.

Using the chosen k regression parameters θ1, . . . ,θk and m cumulative hazard func-

tions {Λ∗L
i ,Λ∗U

i }mi=1, we will show how to construct upper and lower envelope functions

for the log likelihood functions belonging to (6.10). For any (θ,Λ) ∈ B(θ0, η) × Φ, we

can choose θj,{Λ∗L
i (V ),Λ∗L

i (V )} satisfying

exp{ −Λ∗U(V )eβ
T
j X+C1δ1−µjξ+δ2∣ξ∣}Λ∗L(V )(µj − δ2∣ξ∣)e

βTj X−C1δ1−µjξ−δ2∣ξ∣

≤ exp{ −Λ(V )eβ
TX−µξ}Λ(V )µeβ

TX−µξ

≤ exp{ −Λ∗L(V )eβ
T
j X−C1δ1−µjξ−δ2∣ξ∣}Λ∗U(V )(µj + δ2∣ξ∣)e

βTj X+C1δ1−µjξ+δ2∣ξ∣.

It is well known that the minimum value of k can be on the order of O(ε−d).

Then we let

f∗Lij =

ˆ
exp{ −Λ∗U(V )eβ

T
j X+C1δ1−µjξ+δ2∣ξ∣}Λ∗L(V ){µj − δ2∣ξ∣}e

βTj X−C1δ1−µjξ−δ2∣ξ∣

×φ(
Y (V ) − ξ

σ
)dξ,

f∗Uij =

ˆ
exp{ −Λ∗L(V )eβ

T
j X−C1δ1−µjξ−δ2∣ξ∣}Λ∗U(V ){µj + δ2∣ξ∣}e

βTj X+C1δ1−µjξ+δ2∣ξ∣

×φ(
Y (V ) − ξ

σ
)dξ,

so f∗Lij and f∗Uij are finite envelope functions for f(θ,Λ ∣ W ), which is log(f) ∈ H .

Finally, we need to show that ∣f∗Uij − f∗Lij ∣ can be small enough to be less than an

arbitrary constant ε.

∣f∗Uij − f∗Lij ∣ ≤

ˆ
(C2∣Λ

∗U(V ) −Λ∗L(V )∣ +C3δ1 +C4δ2∣ξ∣)φ{
Y (V ) − ξ

σ
}dξ,
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for some constant C2, C3, and C4. Thus,

∥f∗Uij − f∗Lij ∥2,P ≤ C2∥Λ
∗U(v) −Λ∗L(v)∥2,PV

+C3δ1 +C
′
4δ2

≤ 3C2ε +C3δ1 +C
′
4δ2,

for some constant C ′
4. This implies that there exist f∗Uij , f∗Lij , i = 1, . . . ,m and j = 1, . . . , k

such that, for any f ∈ H
′ . f∗Lij ≤ f ≤ f∗Uij , for some 1 ≤ i ≤ m, 1 ≤ j ≤ k, and ∣f∗Uij −

f∗Lij ∣2,P≤ 3C2ε+C3δ1+C4δ
′
2. This means that the bracketing number N[ ](ε,H

′
, L2(P ))

for the class H
′ is of ordermk = O(ε−de1/ε). Note that since log function on the domain

bounded away from 0 is Lipschitz continuous and any function f ∈ H
′ is bounded and

away from 0, by (A2) and (A3), the bracketing number of H is dominated by the

bracketing number of the class H
′ .

Proof of Theorem 3.4.2. We apply Theorem 3.4.1 of van der Vaart and Wellner (1996)

to the prove the results. Specifically, we need to check the following conditions: let

0 ≤ δ < η be arbitrary and C be a generic constant, then for δ < d ((θ,θ0), (Λ,Λ0)) ≤ η,

(i) sup
δ/2<d{(θ,θ0),(Λ,Λ0)}≤δ,θ∈Θ0

E{l(β,Λ,W ) − l(β0,Λ0,W )} ≤ −δ2,

(ii) E∗ sup
δ/2<d{(θ,θ0),(Λ,Λ0)}≤δ,θ∈Θ0

n1/2∣(Pn − P ){l(β,Λ,W ) − l(β0,Λ0,W )}∣ ≤ Cψ(δ),

for function ψ such that δ → ψ(δ)/δα is increasing on (δ, η) for some α < 2.

For the first condition, we perform the Taylor expansion to obtain

E{l(θ0,Λ0) − l(θ,Λ)} = E[l {(1 − ε)θ0 + εθ, (1 − ε)Λ0 + εΛ} ]∣

0

1

= −
1

2

∂2

∂ε2
∣
ε=ε∗

E [l {(1 − ε)θ0 + εθ, (1 − ε)Λ0 + εΛ}] ,

113



for some ε∗ ∈ (0,1). For η small enough, we note that right-hand side is equal to

[{I(θ0,Λ0) + o(1)} (θ − θ0,Λ −Λ0)(θ − θ0,Λ −Λ0)] ,

where I(θ0,Λ0) is the information operator in Lemma A.1.3.

Since the information operator is invertible linear operator and uniformly bounded

and away from 0, for some constant C,

∥I(θ0,Λ0)(a, h)(a, h)∥ ≥ C{∣a∣
2
+ ∥h∥

2
2,PV

}.

Hence, for some constant C,

[{I(θ0,Λ0) + o(1)} (θ − θ0,Λ −Λ0)(θ − θ0,Λ −Λ0)] ≥ C(∣θ − θ0∣
2
+ ∥Λ −Λ0∥

2
2,PV

).

Thus, condition (i) holds.

For the second condition, by LemmaA.2.1, for some constants C and M ,

J[ ](η,H , L2(P )) ≤

ˆ η

0

√
1 +Cε−1dε ≤

ˆ η

0

Mε−1/2dε =Mη1/2.

Then, according to Lemma 3.4.2 of van der Vaart and Wellner (1996),

E∗ sup
d{(θ,Λ),(θ0,Λ0)}≤η

∣n1/2(Pn − P ) {l(θ,Λ ∣W ) − l(θ0,Λ0 ∣W )}∣ = O(1)η1/2(1+
η1/2

η2n1/2
M).

Finally, let

ψ(η) = η1/2(1 +
η1/2

η2n1/2
).

Then φ(δ)/δα is an increasing function for some 0 < α < 1/2, so the condition (ii) is

satisfied. In addition, since (θ̂, Λ̂) maximizes l(θ,Λ), Pl(θ̂, Λ̂,W ) ≥ Pl(β0,Λ0 ∣W ) is

also satisfied. When rn = n1/3, then n2/3ψ(n−1/3) = O(n1/2) for every n.
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Hence, all the conditions of Theorem 3.4.1 of van der Vaart and Wellner (1996) are

satisfied. This implies

d{(θ̂, Λ̂), (θ0,Λ0)} = Op(n
−1/3).

Proof of Theorem 3.4.3. We will prove that asymptotic distribution of the MLE θ̂ is

normal distribution with mean 0 and semiparametric efficient variance by following

the approach (p.1007) of Zeng, Yin, and Ibrahim (2005). For simplicity of notations,

l̇θ(θ,Λ,W ) and l̇Λ(θ,Λ,W ) also denoted as l̇θ(θ,Λ) and l̇Λ(θ,Λ), respectively.

Since (θ̂, Λ̂) are maximum likelihood estimator for (θ,Λ), we immediately obtain

that

Pn{l̇θ(θ̂, Λ̂) − l̇Λ(θ̂, Λ̂)[h∗]} = 0.

Thus,

Gn{l̇θ(θ̂, Λ̂) − l̇Λ(θ̂, Λ̂)[h∗]} = −n1/2P{l̇θ(θ̂, Λ̂) − l̇Λ(θ̂, Λ̂)[h∗]},

where Gn = n1/2(Pn − P ).

Let us consider the following two classes of functions:

{l̇θ(θ,Λ) − l̇θ(θ0,Λ0) ∣ ∣θ − θ0∣ ≤ η and ∥Λ −Λ0∥2,PV
≤ η} and

{l̇Λ(θ,Λ)[h∗] − l̇Λ(θ0,Λ0)[h
∗] ∣ ∣θ − θ0∣ ≤ η and ∥Λ −Λ0∥2,PV

≤ η},

where η is near 0. The entropy numbers for the two classes are of order 1/η and this

implies that these two classes are P-Donsker. Hence, l̇θ(θ̂, Λ̂)− l̇Λ(θ̂, Λ̂)[h∗] belongs to

a P-Donsker class. This leads to

Gn{l̇θ(θ0,Λ0) − l̇Λ(θ0,Λ0)[h
∗]} + op(1) = −n

1/2P{l̇θ(θ̂, Λ̂) − l̇Λ(θ̂, Λ̂)[h∗]}. (6.11)
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We perform a Taylor’s series expansion of the right side in (6.11) at (θ0,Λ0):

Gn{l̇θ(θ0,Λ0) − l̇Λ(θ0,Λ0)[h
∗]} + op(1)

= −n1/2P{l̈θθ(θ0,Λ0) − l̈Λθ(θ0,Λ0)[h
∗]}(θ̂ − θ0)

−n1/2P{l̈θΛ(θ0,Λ0)[Λ̂ −Λ0] − l̈ΛΛ(θ0,Λ0)[h
∗, Λ̂ −Λ0]}

+n1/2O(∣θ̂ − θ0∣
2
+ ∥Λ̂ −Λ0∥

2
2,PV

). (6.12)

Here l̈θΛ(θ0,Λ0)[Λ̂−Λ0] is the derivative of l̇θ along the path θ = θ0, Λ = Λ0+ε(Λ̂−Λ0),

and l̈ΛΛ(θ0,Λ0)[h∗, Λ̂ − Λ0] is the derivative of l̇Λ[h∗] along the path θ = θ0, Λ =

Λ0 + ε(Λ̂ −Λ0).

The second term on the right side of (6.12) is 0, because the second term can be

re-expressed as

−n1/2P [{l̇θ(θ0,Λ0)(θ̂ − θ0) − l̇Λ(θ0,Λ0)[h
∗]} (l̇Λ[Λ̂ −Λ0])] (6.13)

and h∗ satisfies that the equation (6.13) is 0. The third term on the right side of (6.12)

is op(1), because of the convergence rate for (θ̂, Λ̂). Hence,

−n1/2P {l̈θθ(θ0,Λ0) − l̈θΛ(θ0,Λ0)[h
∗]} (θ̂ − θ0)

= Gn {l̇θ(θ0,Λ0) − l̇Λ(θ0,Λ0)[h
∗]} + op(1). (6.14)

We show that the matrix P {l̈θθ(θ0,Λ0) − l̈θΛ(θ0,Λ0)[h∗]} is non-singular. Suppose

that the matrix is singular, then there exist a non-0 vector b such that

bTP {l̈θθ(θ0,Λ0) − l̈θΛ(θ0,Λ0)[h
∗]} b = 0,
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that is, P {(bT l̇θ − bT l̇Λ[h∗])
2
} = 0. Then

bT l̇θ − b
T l̇Λ[h

∗] = bT
⎛
⎜
⎜
⎝

µ−1 −Eξ(κξ ∣W ) − h∗µ(V )Λ(V )−1E(κ ∣W )

XEξ(κ ∣W ) − h∗β(V )Λ(V )−1E(κ ∣W )

⎞
⎟
⎟
⎠

= 0 almost surely,

where κ = 1 − Λ(V )eβ
TX−µξ and h∗µ(V ) and h∗θ(V ) are in (6.4) and (6.5), respectively.

We obtain a contradiction that b = 0 with similar argument in the proof of LemmaA.1.3.

Finally, from (6.14), we obtain that

n1/2(θ̂ − θ0) = − [P {l̈θθ(θ0,Λ0) − l̈θΛ(θ0,Λ0)[h
∗]}]

−1
Gn {l̇θ(θ0,Λ0) − l̇Λ(θ0,Λ0)[h

∗]}

+op(1).

Therefore, n1/2(θ̂ − θ0) converges to a normal distribution and has influence function

given by

[P {l̇θθ(θ0,Λ0) − l̇θΛ(θ0,Λ0)[h
∗]}]

−1
{l̇θ(θ0,Λ0) − l̇Λ(θ0,Λ0)[h

∗]} .

Because this influence function is on the linear space spanned by the score functions

l̇θ and l̇Λ[h], the influence function is the same as the efficient influence function for

θ0. Hence the asymptotic variance of n1/2(θ̂−θ0) attains the semiparametric efficiency

bound.

Proof of Theorem 3.4.4. First, by the uniform convergence of (θ̂, Λ̂) almost surely, we

conclude that Ê(κ∣W ) and Ê(κξ∣W ) converges to E(κ∣W ) and E(κξ∣W ) uniformly

in W with probability one. Therefore,

sup
v

∣
∑
n
i=1Khn(Vi − v)Ê(κ∣Wi)

∑
n
i=1Khn(Vi − v)

−
∑
n
i=1Khn(Vi − v)E(κ∣Wi)

∑
n
i=1Khn(Vi − v)

∣→ 0
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where Khn(x) = h
−1
n exp{−x2/hn}. On the other hand, following the general results in

Hansen (2008), under the conditions for hn, we obtain

sup
v

∣
∑
n
i=1Khn(Vi − v)E(κ∣Wi)

∑
n
i=1Khn(Vi − v)

−E[E(κ∣W )∣V = v]∣→ 0

with probability one. Similarly, we can show the uniform convergence of Ê(XE(κ∣W )2∣V =

v) to E(XE(κ∣W )2∣V = v) and the uniform convergence of Ê(E(κ∣W ){µ−1−E(κξ∣W )}∣V =

v) to E(E(κ∣W ){µ−1 − E(κξ∣W )}∣V = v). Consequently, R̂1(v) and R̂2(v) converge

to R1(v) and R2(v) respectively and uniformly in v. This immediately gives that l̂∗iθ

converges uniformly in Wi to l∗(θ). Thus, the result of this theorem holds.
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APPENDIX B: Technical Details for Chapter 4

B.1 Identifiability and Derivation of Pseudo-Efficient Score Functions

Lemma B.1.1. The model in (4.3) is identifiable, that is, if the probability at Θ1 is

equal to that at Θ2, then Θ1 = Θ2.

Proof. We first show model identifiability in the case with only one observation time.

Suppose that two likelihood functions with Θ1 and Θ2 are the same:

ˆ ∞

−∞

exp{−Λ1(t)e
βT1 X−µ1ξ}Λ1(t)µ1e

βT1 X−µ1ξ
1

σ
φ{

Y (t) − ξ

σ
}dξ

=

ˆ ∞

−∞

exp{−Λ2(t)e
βT2 X−µ2ξ}Λ2(t)µ2e

βT2 X−µ2ξ
1

σ
φ{

Y (t) − ξ

σ
}dξ. (6.15)

For any ℵ = (Y (v), v,X), the models in (6.15) can be simplified as follows: For k = 1,2,

ˆ ∞

−∞

exp{−Λk(v)e
βTkX−µkξ}Λk(v)µke

βTkX−µkξ−
ξ2

2σ2 exp{−
Y (v)ξ

σ2
}dξ. (6.16)

Since Y (v) can be an arbitrary real number, the integration in (6.16) is a bilateral

Laplace transformation of fkv(ξ), where

fkv(ξ) = exp{−Λk(v)e
βTkX−µkξ}Λk(v)µk exp{βTkX − µkξ − ξ

2/(2σ2)}, k = 1,2. (6.17)

This implies f1v = f2v by the one-to-one property of Laplace transformation. Thus,

for any ξ,

−Λ1(v)e
βT1 X−µ1ξ + log {Λ1(v)} + logµ1 +β

T
1X − µ1ξ

= −Λ2(v)e
βT2 X−µ2ξ + log {Λ2(v)} + logµ2 +β

T
2X − µ2ξ. (6.18)
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Examining the behavior when ξ → −∞, we obtain µ1 = µ2 and Λ1(v)eβ
T
1 X= Λ2(v)eβ

T
2 X .

So by (A2), β1 = β2 and Λ1(v) = Λ2(v). Hence, we proved the model identifiability in

case with only one observation.

Now suppose that the number of observation times is J > 1, and

J

∏
j=1

ˆ ∞

−∞

exp{−Λ1(vj)e
βT1 X−µ1ξj}Λ1(vj)µ1e

βT1 X−µ1ξj
1

σ
φ{

Y (vj) − ξj
σ

}dξj

=
J

∏
j=1

ˆ ∞

−∞

exp{−Λ2(vj)e
βT2 X−µ2ξj}Λ2(vj)µ2e

βT2 X−µ2ξj
1

σ
φ{

Y (vj) − ξj
σ

}dξj.(6.19)

By the one-to-one property of the Laplace bilateral transformation, the equation in

(6.19) implies that ∏J
j=1 f1vj(ξj) =∏

J
j=1 f2vj(ξj) for any ξ1, . . . , ξJ .

Then this leads to ∑J
j=1 log{f1vj(ξj)} = ∑

J
j=1 log{f2vj(ξj)} for any ξ1, . . . , ξJ . Sup-

posing that the ξ’s are all 0 except ξj and examining the behavior when ξj → −∞, we

complete the proof by the same argument as in the case with only one observation.

We denote the log-likelihood at time v by

l(θ,Λ(v) ∣ ℵ) = log [

ˆ ∞

−∞

− exp{−Λ(v)eβ
TX−µξ}Λ(v)µeβ

TX−µξ 1

σ
φ{

Y (v) − ξ

σ
}dξ]

hereafter. Then, the log pseudo-likelihood is re-expressed as lps =
´
l{θ,Λ(v) ∣ ℵ}dN(v).

Lemma B.1.2. The linear operator at time v, E [{l̇θ(v), l̇Λ(v)}
∗
{l̇θ(v), l̇Λ(v)}], which

maps Θ×H to the dual space of Θ×H (equivalent to Θ×H), is continuously invertible

at (θ0,Λ0(v)), where l̇∗θ(v) and l̇∗Λ(v) are the adjoint operators of the linear operators

at time v, l̇θ(v) and l̇Λ(v), respectively. Here, l̇θ(v) = ∂l(v)/∂θ.

Proof. It suffices to show that E {l̇∗Λ(v)l̇Λ(v)}, and

E {l̇∗θ(v)l̇θ(v)) −E(l̇∗θ(v)l̇Λ(v)}E {l̇∗Λ(v)l̇Λ(v)}
−1
E {l̇∗Λ(v)l̇θ(v)} (denoted as the matrix
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A(v)) are invertible. By taking linear operator of l̇Λ, we obtain

E(l̇∗Λ(v)l̇Λ(v)[h, h̃]) = E [h̃(v)h(v)Λ(v)−2E {E(κ(v) ∣ ℵ)2 ∣ v}] .

Therefore, E {l̇∗Λ(v)l̇Λ(v)[h]} = h(v)Λ(v)−2E {E(κ(v) ∣ ℵ)2 ∣ v} and so is invertible

from L2(PV ) to L2(PV ).

If A(v) is singular, then there exists some non-zero vector b such that bTA(v)b =

0. Therefore, E{(bT l̇θ − l̇Λ[h])⊗2} = 0, where h = bTE[l̇∗Λl̇Λ]
−1E(l̇∗Λl̇θ). As a result,

bT l̇θ − l̇Λ[h] = 0 almost surely. We obtain

E [{bT (−ξ,X) − h(v)/Λ0(v)}{1 −Λ0(v)e
βT0 X−µ0ξ} + b1/µ0 ∣ ℵ] = 0,

where b1 is the component of b corresponding to µ. The left-hand side can be treated

as a Laplace transformation of some function of ξ so we immediately conclude

{bT (−ξ,X) − h(v)/Λ0(v)}{1 −Λ0(v)e
βT0 X−µ0ξ} + b1/µ0 = 0.

Since ξ is arbitrary, b1 = 0, bT−1X = 0, h(v)/Λ0(v) = 0, where b−1 = (b2, . . . , bd).

Therefore, b = 0, and this leads to a contradiction.

B.2 Proof of Asymptotic Results

Proof of Theorem 4.3.1. From the model (4.3), we let

H = {lps(θ,Λ,ℵ) ∣ θ ∈ Θ,Λ(t) ∈ Φ∗} , (6.20)

where the parameter space, Φ∗ = {Λ(t) ∣ Λ(t) = − logS(t), S(t) is a non-increasing

function with S(0) = 1, S(t) ≥ 0}. If the following conditions are satisfied, we prove
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asymptotic consistency of (θ̂, Λ̂) by Theorem 2.12 (Kosorok 2008).

(a) For any sequence {(θn,Λn)} ∈ Θ ×Φ∗, limn→∞l
ps(θn,Λn ∣ ℵ) ≥ lps(θ0,Λ0 ∣ ℵ)

implies d ((θn,Λn), (θ0,Λ0))→ 0,

(b) Pnlps(θ̂, Λ̂) = sup
(θ,Λ)∈Θ×Φ∗

Pnlps(θ,Λ) − op(1),

(c) sup
(θ,Λ)∈Θ×Φ∗

∣Pnlps(θ,Λ) − Plps(θ,Λ)∣→ 0 in probability, as n→∞.

Condition (a) is satisfied by identifiability of the marginal likelihood proved in Lemma

B.1.1, and condition (b) is satisfied because (θ̂, Λ̂) is the MLE. For the last condition,

we calculate the bracket covering number for the class in (6.20). For any (µ1,β1,Λ1),

(µ2,β2,Λ2) ∈ Θ×Φ∗ such that supv∈S [V ]∣Λ1(v)−Λ2(v)∣ < ε, ∣µ1−µ2∣ < ε, and ∣β1−β2∣ < ε,

for ε > 0, we wish to set boundaries for the bracket covering number for the class H .

There exists a positive constant C1 such that ∣(β1 − β2)
TX − (µ1 − µ2)ξ∣ ≤ C1ε + ε∣ξ∣.

Then for some positive constants, C2,C3, and C4,

∣lps(µ1,β1,Λ1,ℵ) − l
ps(µ2,β2,Λ2,ℵ)∣

≤ ∑
v∶dN(v)=1

∣l{µ1,β1,Λ1(v),ℵ} − l{µ2,β2,Λ2(v),ℵ}∣,

≤ ∑
v∶dN(v)=1

ˆ
{C2∣Λ1(v) −Λ2(v)∣ +C3ε +C4ε∣ξ∣}φ{

Y (v) − ξ

σ
}dξ.

Thus, ∥lps(µ1,β1,Λ1 ∣ ℵ) − lps(µ2,β2,Λ2 ∣ ℵ)∥1,P ≤ C
′
2ε +C

′
3ε +C

′
4ε for some positive

constants, C ′
2,C

′
3, and C

′
4. We obtain that logN[ ](O(1)ε,H , L1(P )) ≤ logN[ ](ε,Θ ×

Φ∗, ∥⋅∥l∞) ≤ O(1/ε). Hence, H is P-Glivenko-Cantelli class, and Theorem 3.4.1 is

proved.

Once consistency of θ̂ is established, we can concentrate on a neighborhood of θ0.

For any η > 0, let B(θ0, η) be the ball with radius η centered at θ0. If θ0 is on the
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boundary of Θ, then take B(θ0, η) ∩Θ instead of B(θ0, η). Then B(θ0, η) is included

in Θ. We suppose that condition (A3) is satisfied so that Λ0 is bounded and away from

0 on S [V ]. Since we have proved that Λ̂ converges on S [V ], we may restrict Λ̂ to the

following class of functions:

Φ = {Λ ∣ Λ is non-decreasing and 0 < 1/M ≤ Λ(t) ≤M <∞ for all t ∈ S [V ]} , (6.21)

where M is a large positive constant. For any probability measure P , define L2(P ) =

{g ∣
´
g2dP <∞}. Let ∥⋅∥2,P be the usual L2,P norm. For any subclass F of L2(P ),

define the bracketing number N[ ](ε,F , L2(P )) as the infimum of the cardinal numbers

for {gLi , g
U
i ∣ gLi ≤ g ≤ gUi , g ∈ F , for some i, and ∥gUi − g

L
i ∥ ≤ ε}.

By the following lemma, we determine the size of the class for marginal likelihood

functions of interest.

Lemma B.2.1. Let

H = {lps(θ,Λ,ℵ(t)) ∣ θ ∈ B(θ0, η),Λ ∈ Φ} . (6.22)

Suppose that (A2) is satisfied. Then there exists a constant C > 0 such that

sup
Q
N[ ] (ε,H , L2(Q)) ≤ C(1/εd)e1/ε for all ε > 0,

where d is the dimension of θ. Hence, for ε small enough, we have

sup
Q

logN[ ] (ε,H , L2(Q)) ≤ C(1/ε).

Here Q runs through the class of all probability measures.

The proof of Lemma B.2.1 is adapted from Huang (1996), where the author provided
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the order of the entropy for a class of log-likelihood functions over bounded parameter

space in current status data.

Proof of Lemma B.2.1. We first calculate the order of the bracketing number for class

H
′ , where H

′={f ∣ log f ∈ H and
´∞

0
dN(V ) = 1}. It is known that for the class of

functions

Φ = {Λ∣Λ is non-decreasing and 0 < 1/M ≤ Λ(t) ≤M <∞ for all t ∈ S [V ]} ,

whereM is a constant, its ε bracketing number is of the order of m = N[ ](ε,Φ, L2(P )) =

O(e1/ε). This means that the class Φ has finite entropy. Let Λ∗L
i = ΛL

i −ε and Λ∗U
i = ΛU

i +ε

for 1 ≤ i ≤ m. Then for any Λ ∈ Φ, we have, for some i, Λ∗L
i + ε ≤ Λ ≤ Λ∗U

i − ε and

∥Λ∗U
i −Λ∗L

i ∥2,PV ≤ 3ε. Since Φ is uniformly bounded away from 0, we can choose ε small

enough such that all the bracketing functions stay away from 0.

For the true µ0 > 0, we can find a constant δ0 such that µ0 > δ0 > 0. Related to θ, we

can also choose k points (β1, µ1) = θ1, . . . , (βk, µk) = θk in B(θ0, η) such that for any

(β, µ) ∈ B(θ0, η), ∣βj −β∣ < δ1 and ∣µj −µ∣ < δ2 for given constants δ1 > 0 and 0 < δ2 < δ0,

since Θ0 is compact by (A1). Then for any (β, µ) ∈ B(θ0, η) and for some 1 ≤ j ≤ k,

there exists a positive constant C1 such that ∣(βj −β)TX − (µj − µ)ξ∣ ≤ C1δ1 + δ2∣ξ∣.

Using the chosen k regression parameters θ1, . . . ,θk and m cumulative hazard func-

tions {Λ∗L
i ,Λ∗U

i }mi=1, we will show how to construct upper and lower envelope func-

tions for the log marginal likelihood functions belonging to (6.22). For any (θ,Λ) ∈

B(θ0, η) ×Φ, we can choose θj,{Λ∗L
i (v),Λ∗U

i (v)} satisfying

exp{−Λ∗U
i (v)eβ

T
j X+C1δ1−µjξ+δ2∣ξ∣}Λ∗L

i (v)(µj − δ2∣ξ∣)e
βTj X−C1δ1−µjξ−δ2∣ξ∣

≤ exp{−Λ(v)eβ
TX−µξ}Λ(v)µeβ

TX−µξ

≤ exp{−Λ∗L
i (v)eβ

T
j X−C1δ1−µjξ−δ2∣ξ∣}Λ∗U

i (v)(µj + δ2∣ξ∣)e
βTj X+C1δ1−µjξ+δ2∣ξ∣.
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It is well known that the minimum value of k can be on the order of O(ε−d).

Then we let

f∗Lij =

ˆ
exp{−Λ∗U

i (v)eβ
T
j X+C1δ1−µjξ+δ2∣ξ∣}Λ∗L

i (v)(µj − δ2∣ξ∣)e
βTj X−C1δ1−µjξ−δ2∣ξ∣

×φ{
Y (v) − ξ

σ
}dξ, (6.23)

f∗Uij =

ˆ
exp{−Λ∗L

i (v)eβ
T
j X−C1δ1−µjξ−δ2∣ξ∣}Λ∗U

i (v)(µj + δ2∣ξ∣)e
βTj X+C1δ1−µjξ+δ2∣ξ∣

×φ{
Y (v) − ξ

σ
}dξ, (6.24)

so f∗Lij and f∗Uij are finite envelope functions for f(θ,Λ ∣ ℵ) ∈ H
′ and any time v.

Finally, we need to show that ∥f∗Uij − f∗Lij ∥2,P can be small enough to be less than an

arbitrary constant ε. For some constant C2, C3, and C4,

∣f∗Uij − f∗Lij ∣ ≤

ˆ
(C2∣Λ

∗U(v) −Λ∗L(v)∣ +C3δ1 +C4δ2∣ξ∣)φ(
Y (v) − ξ

σ
)dξ.

Thus,

∥f∗Uij − f∗Lij ∥2,P ≤ C2∥Λ
∗U(v) −Λ∗L(v)∥

2,PV
+C3δ1 +C

′
4δ2

≤ 3C2ε +C3δ1 +C
′
4δ2,

for some constant C ′
4. This implies that there exist f∗Lij , f∗Uij , i = 1, . . . ,m and j = 1, . . . , k

such that, for any f ∈ H
′ . f∗Lij ≤ f ≤ f∗Uij , for some 1 ≤ i ≤ m, 1 ≤ j ≤ k, and ∥f∗Uij −

f∗Lij ∥2,P≤ 3C2ε+C3δ1+C4δ
′
2. This means that the bracketing number N[ ](ε,H

′
, L2(P ))

for the class H
′ is of order mk = O(ε−de1/ε). Note that the log function on the domain

bounded away from 0 is Lipschitz continuous, and any function f ∈ H
′ is bounded and

away from 0; the bracket, [f∗Lij , f
∗U
ij ] for f ∈ H

′ covers f at any v ∈ S [V ], that is,
´ uV

0
log f∗Lij dN(v) ≤ ∑v∶dN(v)=1 log f(v) ≤

´ uV
0

log f∗Uij dN(v). Hence, by the assumptions
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(A2), (A3), and (A4), the bracketing number of H is dominated by the bracketing

number of the class H
′ .

Proof of Theorem 4.3.2. We apply Theorem 3.4.1 of van der Vaart and Wellner (1996)

to the prove the results. Specifically, we need to check the following conditions: Let

0 ≤ δ < η be arbitrary and C be a generic constant, then for δ < d ((θ,θ0), (Λ,Λ0)) ≤ η,

(i) sup
δ/2<d{(θ,θ0),(Λ,Λ0)}≤δ,θ∈Θ0

P{lps(θ,Λ,ℵ) − lps(θ0,Λ0,ℵ)} ≤ −δ
2,

(ii) E∗ sup
δ/2<d{(θ,θ0),(Λ,Λ0)}≤δ,θ∈Θ0

n1/2∣(Pn − P ){lps(θ,Λ,ℵ) − lps(θ0,Λ0,ℵ)}∣ ≤ Cψ(δ),

for function ψ such that δ → ψ(δ)/δα is increasing on (δ, η) for some α < 2.

For the first condition, we perform the Taylor expansion to obtain

P{lps(θ0,Λ0) − l
ps(θ,Λ)} = P [

ˆ
l {(1 − ε)θ0 + εθ, (1 − ε)Λ0 + εΛ}dN(v)]∣

0

1

= −
1

2

∂2

∂ε2
∣
ε=ε∗

P [

ˆ
l {(1 − ε)θ0 + εθ, (1 − ε)Λ0 + εΛ}dN(v)] ,

for some ε∗ ∈ (0,1). For η small enough, we note that right-hand side is equal to

P

ˆ
{E [{l̇θ(v), l̇Λ(v)}

∗
{l̇θ(v), l̇Λ(v)}] + o(1)} (θ − θ0,Λ −Λ0)(θ − θ0,Λ −Λ0)dN(v),

where E [{l̇θ(v), l̇Λ(v)}
∗
{l̇θ(v), l̇Λ(v)}] is the linear operator in Lemma B.1.2.

Since the linear operator is an invertible linear operator and uniformly bounded and

away from 0, for some constant C,

∥E [{l̇θ(v), l̇Λ(v)}
∗
{l̇θ(v), l̇Λ(v)}] (a, h)(a, h)∥ ≥ C{∣a∣

2
+ ∥h∥

2
2,PV

}.
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Hence, for some constant C,

P

ˆ
{E [{l̇θ(v), l̇Λ(v)}

∗
{l̇θ(v), l̇Λ(v)}] + o(1)} (θ − θ0,Λ −Λ0)(θ − θ0,Λ −Λ0)dN(v)

≥ C(∣θ − θ0∣
2
+ ∥Λ −Λ0∥

2
2,PV

).

Thus, condition (i) holds.

For the second condition, by LemmaB.2.1, for some constants C and M ,

J[ ](η,H , L2(P )) ≤

ˆ η

0

√
1 +Cε−1dε ≤

ˆ η

0

Mε−1/2dε =Mη1/2.

Then, according to Lemma 3.4.2 of van der Vaart and Wellner (1996),

E∗ sup
d{(θ,Λ),(θ0,Λ0)}≤η

∣n1/2(Pn − P ) {lps(θ,Λ ∣ ℵ) − lps(θ0,Λ0 ∣ ℵ)}∣ = O(1)η1/2(1+
η1/2

η2n1/2
M).

Finally, let

ψ(η) = η1/2(1 +
η1/2

η2n1/2
).

Then φ(δ)/δα is an increasing function for some 0 < α < 1/2, so the condition (ii) is

satisfied. In addition, since (θ̂, Λ̂) maximizes lps(θ,Λ), Plps(θ̂, Λ̂,ℵ) ≥ Plps(θ0,Λ0,ℵ)

is also satisfied. When rn = n1/3, then n2/3ψ(n−1/3) = O(n1/2) for every n.

Hence, all the conditions of Theorem 3.4.1 of van der Vaart and Wellner (1996) are

satisfied. This implies

d{(θ̂, Λ̂), (θ0,Λ0)} = Op(n
−1/3).

Proof of Theorem 4.3.3. We will prove that asymptotic distribution of the MLE, θ̂, is

normal distribution with mean 0 and variance in (4.14) by following the approach on

page 1007 of Zeng, Yin, and Ibrahim (2005). For simplicity of notation, l̇θ(θ,Λ,ℵ) and
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l̇psΛ (θ,Λ,ℵ) are denoted by l̇psθ (θ,Λ) and l̇psΛ (θ,Λ), respectively.

Since (θ̂, Λ̂) are maximum likelihood estimators for (θ,Λ), we immediately obtain

that Pn{l̇psθ (θ̂, Λ̂) − l̇psΛ (θ̂, Λ̂)[h∗]} = 0. Thus,

Gn {l̇
ps
θ (θ̂, Λ̂) − l̇psΛ (θ̂, Λ̂)[h∗]} = −n1/2P {l̇psθ (θ̂, Λ̂) − l̇psΛ (θ̂, Λ̂)[h∗]} ,

where Gn = n1/2(Pn − P ).

Let us consider the following two classes of functions:

{l̇θ(θ,Λ) − l̇θ(θ0,Λ0) ∣ ∣θ − θ0∣ ≤ η and ∥Λ −Λ0∥2,PV
≤ η} and

{l̇Λ(θ,Λ)[h∗] − l̇Λ(θ0,Λ0)[h
∗] ∣ ∣θ − θ0∣ ≤ η and ∥Λ −Λ0∥2,PV

≤ η} ,

where η is near 0. The entropy numbers for the two classes are of order 1/η and this

implies that these two classes are P-Donsker. Hence, l̇psθ (θ̂, Λ̂) − l̇psΛ (θ̂, Λ̂)[h∗] belongs

to a P-Donsker class. This leads to

Gn {l̇
ps
θ (θ0,Λ0) − l̇Λ(θ0,Λ0)[h

∗]} + op(1) = −n
1/2P {l̇psθ (θ̂, Λ̂) − l̇psΛ (θ̂, Λ̂)[h∗]} . (6.25)

We perform a Taylor’s series expansion of the right side of (6.25) at (θ0,Λ0):

Gn {l̇
ps
θ (θ0,Λ0) − l̇

ps
Λ (θ0,Λ0)[h

∗]} + op(1)

= −n1/2P {l̈psθθ(θ0,Λ0) − l̈
ps
Λθ(θ0,Λ0)[h

∗]} (θ̂ − θ0)

−n1/2P {l̈psθΛ(θ0,Λ0)[Λ̂ −Λ0] − l̈
ps
ΛΛ(θ0,Λ0)[h

∗, Λ̂ −Λ0]}

+n1/2O (∣θ̂ − θ0∣
2
+ ∥Λ̂ −Λ0∥

2
2,PV

) . (6.26)

Here l̈psθΛ(θ0,Λ0)[Λ̂−Λ0] is the derivative of l̇θ along the path θ = θ0, Λ = Λ0+ε(Λ̂−Λ0),

and l̈psΛΛ(θ0,Λ0)[h∗, Λ̂ − Λ0] is the derivative of l̇Λ[h∗] along the path θ = θ0, Λ =
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Λ0 + ε(Λ̂ −Λ0).

We need to find the h∗ to make the second term on the right side of (6.26) be 0.

The derivatives of the marginal score functions in (4.9), (4.10), and (4.11) with respect

to Λ at direction of h(v) are

l̈psµΛ[hµ(v)] =

ˆ ∞

0

hµ(v)e
βTX(2E{ξe−µξ ∣ ℵ} −E{ξ ∣ ℵ}E{e−µξ ∣ ℵ} +Λ(t)eβ

TX

× [E{ξe−µξ ∣ ℵ}E{e−µξ ∣ ℵ} −E{ξe−2µξ ∣ ℵ}] )dN(v), (6.27)

l̈psβΛ[hβ(v)] = −X

ˆ ∞

0

hβ(v)e
βTX(Λ(v)eβ

TX [E{e−µξ ∣ ℵ}2 −E{e−2µξ ∣ ℵ}]

+E{e−µξ ∣ ℵ})dN(v), (6.28)

l̈psΛΛ[h(v), h
∗
θ(v)] = −

ˆ ∞

0

h(v)h∗θ(v)(e
2βTX [E{e−µξ ∣ ℵ}2 −E{e−2µξ ∣ ℵ}]

+Λ(v)−2)dN(v). (6.29)

Based on the derivatives in (6.27), (6.28), and (6.29), we obtain h∗µ(v) and h∗β(v) in

(4.12) and (4.13) such that

∑
v∶dN(v)=1

E(h(v)E [g1v{ℵ} − h
∗
µ(v)g3v{ℵ}] ∣ V = v) = 0,

∑
v∶dN(v)=1

E(h(v)E [g2v{ℵ} − h
∗
β(v)g3v{ℵ}] ∣ V = v) = 0,

respectively, and

g1v{ℵ} = eβ
TX(2E{ξe−µξ ∣ ℵ} −E{ξ ∣ ℵ}E{e−µξ ∣ ℵ}

+Λ(v)eβ
TX [E{ξe−µξ ∣ ℵ}E{e−µξ ∣ ℵ} −E{ξe−2µξ ∣ ℵ}] ),
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g2v{ℵ} = Xeβ
TX(Λ(v)eβ

TX [E{e−µξ ∣ ℵ}2 −E{e−2µξ ∣ ℵ}] +E(e−µξ ∣ ℵ)),

g3v{ℵ} = e2βTX [E{e−µξ ∣ ℵ}2 −E{e−2µξ ∣ ℵ}] +Λ(v)−2.

The third term on the right side of (6.26) is op(1) because of the convergence rate

for (θ̂, Λ̂). Hence,

−n1/2P {l̈psθθ(θ0,Λ0) − l̈
ps
θΛ(θ0,Λ0)[h

∗
θ]} (θ̂ − θ0)

= Gn {l̇
ps
θ (θ0,Λ0) − l̇

ps
Λ (θ0,Λ0)[h

∗
θ]} + op(1). (6.30)

It remains to show that P {l̈psθθ(θ0,Λ0) − l̈
ps
θΛ(θ0,Λ0)[h∗θ(v)]} is non-singular. Sup-

pose that the matrix is singular, then there exists a non-0 vector b = (b1, . . . , bd) for

d ≥ 2 such that

bTP {l̈psθθ(θ0,Λ0) − l̈
ps
θΛ(θ0,Λ0)[h

∗
θ(v)]}b

= P [

ˆ
bT {l̈θθ(θ0,Λ0) − l̈θΛ(θ0,Λ0)[h

∗
θ(v)]}bdN(v)]

= 0. (6.31)

The equation in (6.31) is equivalent to P [
´
{bT (l̇θ − l̇Λ[h∗])}2dN(v)] = 0. Then

bT l̇θ−b
T l̇Λ[h

∗(v)] = bT
⎛
⎜
⎜
⎝

µ−1 −Eξ{κ(v)ξ ∣ ℵ} − h∗µ(v)Λ(v)−1E{κ(v) ∣ ℵ}

XEξ{κ(v) ∣ ℵ} − h∗β(v)Λ(v)−1E{κ(v) ∣ ℵ}

⎞
⎟
⎟
⎠

= 0 almost surely,

where κ(v) = 1−Λ(v)eβ
TX−µξ, and h∗µ(v) and h∗θ(v) are in (4.12) and (4.13), respectively.

We obtain :

E [bT (−ξ − h∗µ(v)/Λ(v),{X − h∗β(v)/Λ(v)}T ) {1 −Λ(v) exp(βTX − µξ)} + b1/µ ∣ ℵ] = 0,

and this expectation can be treated as the Laplace transformation of some function of
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ξ, so we immediately conclude

bT (−ξ − h∗µ(v)Λ(v)−1,{X − h∗β(v)Λ(v)−1}T ) {1 −Λ(v) exp(βTX − µξ)} + b1/µ = 0.

Since ξ is arbitrary, we can obtain b1 = 0, (b2, . . . , bd)TX = 0, and bTh∗(v)/Λ(v) = 0.

Therefore, b = 0, and this contradicts the assumption about singularity of the matrix.

Finally, from (6.30), we obtain that

n1/2(θ̂ − θ0) = − [P {l̈psθθ(θ0,Λ0) − l̈
ps
θΛ(θ0,Λ0)[h

∗]}]
−1
Gn {l̇

ps
θ (θ0,Λ0) − l̇

ps
Λ (θ0,Λ0)[h

∗]}

+op(1).

Therefore, n1/2(θ̂ − θ0) converges to a normal distribution and has marginal influence

function given by [P {l̇psθθ(θ0,Λ0) − l̇
ps
θΛ(θ0,Λ0)[h∗]}]

−1
{l̇psθ (θ0,Λ0) − l̇

ps
Λ (θ0,Λ0)[h∗]} .

Proof of Theorem 4.3.4. To prove the consistency of the variance estimator provided

in section 4.2.3, it is sufficient to show that D̂ and Â are consistent estimators, where

D = P (l̈psθθ(θ0,Λ0) − l̈
ps
θΛ(θ0,Λ0)[h∗θ(v)]) and A = l̇psθ (θ0,Λ0) − l̇

ps
Λ (θ0,Λ0)[h∗θ(v)].

By the uniform convergence of (Θ̂, Λ̂) almost surely, we conclude that Ê{g(ξ) ∣ ℵ}

converges to E{g(ξ) ∣ ℵ} uniformly in ℵ, where g(ξ) can be 1 − Λ(v) exp(βTX − µξ),

ξ, ξ2, exp(−µξ) , exp(−2µξ), ξ exp(−µξ), ξ exp(−2µξ), ξ2 exp(−µξ), and ξ2 exp(−2µξ).

Therefore,

sup
v

∣
∑
n
i=1∑

ni
j=1Khn(vij − v)Ê(g(ξ) ∣ ℵi)

∑
n
i=1∑

ni
j=1Khn(vij − v)

−
∑
n
i=1∑

ni
j=1Khn(vij − v)E(κ(v) ∣ ℵi)

∑
n
i=1∑

ni
j=1Khn(vij − v)

∣→ 0

where Khn(x) = h
−1
n exp{−x2/hn}. On the other hand, following the general results in

Hansen (2008), under the conditions for hn, we obtain

sup
v

∣
∑
n
i=1∑

ni
j=1Khn(vij − v)E {g(ξ) ∣ ℵi}

∑
n
i=1∑

ni
j=1Khn(vij − v)

−E [E {g(ξ)∣ℵ} ∣V = v] ∣→ 0
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with probability one. Similarly, we can show the uniform convergence of the estimators

for E [exp(βTX)E{ξ ∣ ℵ}E{exp(−µξ) ∣ ℵ} ∣ V = v],

E [exp(βTX)E{ξ exp(−µξ) ∣ ℵ} ∣ V = v],

E [exp(2βTX)Λ(v)E{ξ exp(−µξ) ∣ ℵ}E{exp(−µξ) ∣ ℵ} ∣ V = v],

E [exp(2βTX)Λ(v)E{ξ exp(−2µξ) ∣ ℵ} ∣ V = v],

E [X exp(2βTX)E{exp(−µξ) ∣ ℵ}2 ∣ V = v],

E [X exp(C1βTX)Λ(v)E{ξ exp(−C2µξ) ∣ ℵ} ∣ V = v], and

E [X exp(2βTX)E{exp(−2µξ) ∣ ℵ} ∣ V = v], where C1 and C2 are constants. Conse-

quently, ĥ∗θ(v) converges to h∗θ(v) uniformly in v. This immediately gives that Â

converges uniformly to A given ℵ. Thus, n−1∑
n
i=1(AiAT

i ) converges to P (AAT ). Us-

ing a similar argument, it can be shown that D̂ converges uniformly to D given ℵ.

Hence, the result of the theorem holds.
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APPENDIX C: Technical Details for Chapter 5

Theorems in Chapter 5 are easily derived from theorems Chapter 4. So, we sketch

the different proofs from those for theorems in Chapter 4.

C.1 Proof of Asymptotic Results

Proof of Theorem 5.3.1. The following conditions are needed to examined to apply The-

orem 2.12 (Kosorok 2008):

(a) For any sequence {(θn,αn,Λn)} ∈ Θ1 ×Θ2 ×Φ∗,

limn→∞l
wps(θn,αn,Λn ∣ ℵ) ≥ lwps(θ0,α0,Λ0 ∣ ℵ)

implies d ((θn,αn,Λn), (θ0,α0,Λ0))→ 0,

(b) Pnlps(θ̂, α̂, Λ̂) = sup
(θ,α,Λ)∈Θ1×Θ2×Φ∗

Pnlps(θ,α,Λ) − op(1),

(c) sup
(θ,α,Λ)∈Θ1×Θ2×Φ∗

∣Pnlwps(θ,αΛ) − Plwps(θ,α,Λ)∣→ 0 in probability, as n→∞.

Condition (a) is satisfied by identifiability of the marginal likelihood proved in Lemma

B.1.1 and a generalized linear model with Condition (A2) and (A6). Condition (b) is

satisfied by the continuous mapping theorem and MLE, α̂ of the partial likelihood in

(5.2):

Pnlwps(θ̂, α̂, Λ̂) = sup
(θ,Λ)∈Θ×Φ∗

Pnlwps(θ, α̂,Λ)− op(1) = sup
(θ,α,Λ)∈Θ×Φ∗

Pnlwps(θ,α,Λ)− op(1).

Define

Hw = {lwps(θ,α,Λ,ℵ) ∣ (θ,α) ∈ Θ1 ×Θ2,Λ(t) ∈ Φ∗} , (6.32)

where the parameter space, Φ∗ = {Λ(t) ∣ Λ(t) = − logS(t), S(t) is a non-increasing

function with S(0) = 1, S(t) ≥ 0}.
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We calculate the bracket covering number for the class in (6.32). For any (µ1,β1,α1,Λ1)

and (µ2,β2,α2,Λ2) ∈ Θ1 ×Θ2 ×Φ∗ such that supv∈S [V ]∣Λ1(v) − Λ2(v)∣ < ε, ∣µ1 − µ2∣ <

ε, ∣β1 − β2∣ < ε, and ∣α1 − α2∣ < ε for ε > 0, we wish to set boundaries for the

bracket covering number for the class Hw. There exist positive constants C1 such

that ∣(β1 −β2)
TX − (µ1 −µ2)ξ∣ ≤ C1ε+ ε∣ξ∣ and C2 such that ∣(α1 −α2)

Tg{A(t)}∣ ≤ C2ε.

Then for some positive constants, C2, C3,C4, and C5 and by the properties of the link

function for the generalized linear model in Condition (A8),

∣lwps(µ1,β1,α1,Λ1,ℵ) − l
wps(µ2,β2,α2,Λ2,ℵ)∣

≤ ∑
v∶dN(v)=1

∣π(v)(α1)
−1[l{µ1,β1,Λ1(v),ℵ} − l{µ2,β2,Λ2(v),ℵ}]∣

+ ∑
v∶dN(v)=1

∣π(v)(α1)
−1l{µ2,β2,Λ2(v),ℵ} − π(v)(α2)

−1l{µ2,β2,Λ2(v),ℵ}∣

≤ ∑
v∶dN(v)=1

[

ˆ
{C3∣Λ1(v) −Λ2(v)∣ +C4ε +C5ε∣ξ∣}φ{

Y (v) − ξ

σ
}dξ +m(A(t))C2ε] .

Thus, ∥lwps(µ1,β1,α1,Λ1 ∣ ℵ) − lwps(µ2,β2,α2,Λ2 ∣ ℵ)∥1,P ≤ (C
′
2 +C

′
3 +C

′
4 +C

′
5)ε for

some positive constants, C ′
2,C

′
3,C

′
4, and C

′
5. We obtain that logN[ ](O(1)ε,Hw, L1(P ))

≤ logN[ ](ε,Θ1 ×Θ2 ×Φ∗, ∥⋅∥l∞) ≤ O(1/ε). Hence, Hw is P-Glivenko-Cantelli class, and

theorem 5.3.1 is proved.

Once consistency of θ̂ and α̂ is established, we can concentrate on a neighborhoods

of θ0 and α0. For any η1 > 0 and η2 > 0 let B(θ0, η1) and B(α0, η2) be the balls with

radius η1 and η2 centered at θ0 and α0, respectively. If θ0 or α0 is on the boundary of

Θ1 or Θ2, respectively, then take B(θ0, η1)∩Θ1 or B(α0, η2)∩Θ2 instead of B(θ0, η1)

or B(α0, η2). Then B(θ0, η1) and B(α0, η2) are included in Θ1 and Θ2, respectively.

We suppose that condition (A3) is satisfied so that Λ0 is bounded and away from 0

on S [V ]. Since we have proved that Λ̂ converges on S [V ], we may restrict Λ̂ to the
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following class of functions:

Φ = {Λ ∣ Λ is non-decreasing and 0 < 1/M ≤ Λ(t) ≤M <∞ for all t ∈ S [V ]} , (6.33)

where M is a large positive constant.

Using LemmaB.2.1, we determine the size of the class for weighted pseudo-likelihood

functions of interest.

Lemma C.1.1. Let

Hw = {lwps(θ,α,Λ,ℵ(t)) ∣ θ ∈ B(θ0, η1),α ∈ B(α0, η2), and Λ ∈ Φ} . (6.34)

Suppose that (A2), (A6), (A7), and (A8) are satisfied. Then there exists a constant

C > 0 such that

sup
Q
N[ ] (ε,Hw, L2(Q)) ≤ C(1/ε(d1+d2))e1/ε for all ε > 0,

where d1 and d2 are the dimension of Θ1 and Θ2, respectively. Hence, for ε small

enough, we have

sup
Q

logN[ ] (ε,Hw, L2(Q)) ≤ C(1/ε).

Here Q runs through the class of all probability measures.

Proof. For H = {lps(θ,Λ,ℵ(t)) ∣ θ ∈ B(θ0, η1)and Λ ∈ Φ} we obtained the bracketing

functions in Lemma B.2.1:

ˆ uV

0

log f∗Lij dN(v) ≤ ∑
v∶dN(v)=1

log f(v) ≤

ˆ uV

0

log f∗Uij dN(v),

where f∗Lij and f∗Uij are the marginal envelope functions in (6.23) and (6.24), respectively.

By Condition (A6), (A7), and (A8) we can also construct the bracketing functions
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for Hα = {H−1
α ∣ α ∈ B(Θ2, η2)} where H−1

α = link−1[αTg{A(v)}]. Then Condition

(A8) yields in H−1
α1
− δm ≤ H−1

α2
≤ gα1 − δm for any ∣α1 −α2∣ ≤ ε. Hence, the bracketing

number N[ ](ε,Hα, L2(P )) is of order O(ε−d2). Thus the entroy is of smaller order than

log(1/ε). Hence the bracketing entropy integral certainly converges, and the class of

functions Hα is Donsker. The envelopes of H and Halpha are integrable, and Hw is

H ⋅Hα, so N[ ] (ε,Hw, L2(Q)) is of order O(ε−(d1+d2)e1/ε).

Theorem 5.3.2 is trivially justified by the same argument for Theorem 4.3.2.

Proof of Theorem 5.3.3. Since (θ̂, α̂, Λ̂) are maximum likelihood estimators for (θ,α,Λ),

we immediately obtain that Pn {l̇wpsθ (θ̂, α̂, Λ̂) − l̇wpsΛ (θ̂, α̂, Λ̂)[h∗]} = 0. Thus

Gn{l̇
wps
θ (θ̂, α̂, Λ̂) − l̇wpsΛ (θ̂, α̂, Λ̂)[h∗]} + op(1)

= −n1/2P{l̇wpsθ (θ̂, α̂, Λ̂) − l̇wpsΛ (θ̂, α̂, Λ̂)[h∗]},

where Gn =
√
n(Pn − P ).

Let us consider the following classes of functions when ∣θ −θ0∣ ≤ η, ∣α−α0∣ ≤ η, and

∥Λ −Λ0∥2,PV
≤ η where η is near 0:

{l̇wpsθ (θ,α,Λ) − l̇wpsθ (θ0,α0,Λ0)} and {l̇wpsΛ (θ,α,Λ)[h∗] − l̇wpsΛ (θ0,α0,Λ0)[h
∗]} .

The entropy numbers for the classes are of order 1/η and this implies that these classes

are P-Donsker. Hence, l̇wpsθ (θ̂, α̂, Λ̂) − l̇wpsΛ (θ̂, α̂, Λ̂)[h∗] belongs to a P-Donsker class.

This leads to

Gn {l̇
wps
θ (θ0,α0,Λ0) − l̇Λ(θ0,α0,Λ0)[h

∗]} + op(1) (6.35)

= −n1/2P {l̇wpsθ (θ̂, α̂, Λ̂) − l̇wpsΛ (θ̂, α̂, Λ̂)[h∗]} . (6.36)
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We perform a Taylor’s series expansion of the right side in (6.36) at (θ0,α0,Λ0):

Gn{l̇
wps
θ (θ0,α0,Λ0) − l̇

wps
Λ (θ0,α0,Λ0)[h

∗]} + op(1)

= −n1/2P{l̈wpsθθ (θ0,α0,Λ0) − l̈
wps
Λθ (θ0,α0,Λ0)[h

∗]}(θ̂ − θ0)

−n1/2P{l̈wpsθΛ (θ0,α0,Λ0)[Λ̂ −Λ0] − l̈
wps
ΛΛ (θ0,α0,Λ0)[h

∗, Λ̂ −Λ0]}

−n1/2P{l̈wpsθα (θ0,α0,Λ0) − l̈
wps
Λα (θ0,α0,Λ0)[h

∗]}(α̂ −α0)

+n1/2O(∣θ̂ − θ0∣
2
+ ∣α̂ −α0∣

2
+ ∥Λ̂ −Λ0∥

2
2,PV

). (6.37)

Here l̈wpsθΛ (θ0,α0,Λ0)[Λ̂ − Λ0] is the derivative of l̇wpsθ along the path θ = θ0,α = α0,

Λ = Λ0 + ε(Λ̂−Λ0), and l̈wpsΛΛ (θ0,α0,Λ0)[h∗, Λ̂−Λ0] is the derivative of l̇Λ[h∗] along the

path θ = θ0,α = α0, Λ = Λ0 + ε(Λ̂ −Λ0).

Let Dw be P{l̈wpsθθ (θ0,α0,Λ0) − l̈
wps
Λθ (θ0,α0,Λ0)[h∗]} in the first term in right side

of (6.37). Then we need to calculate the following second derivatives for Dw:

l̈wpsµµ =

ˆ ∞

0

W1(v)( − µ
−2 −Λ(v)eβ

TX [3E{ξ2e−µξ ∣ ℵ} − 2E{ξ ∣ ℵ}E{ξe−µξ ∣ ℵ}]

+Λ(v)2e2βTX [E{ξ2e−2µξ ∣ ℵ} −E{ξe−µξ ∣ ℵ}2] −E{ξ ∣ ℵ}2

+E{ξ2∣ℵ})dN(v),

l̈wpsµβ =

ˆ ∞

0

XW1(v)Λ(v)eβ
TX(2E(ξe−µξ ∣ ℵ) −E{e−µξ ∣ ℵ}E{ξ ∣ ℵ}

+Λ(v)eβ
TX [E{e−µξ ∣ ℵ}E{ξe−µξ ∣ ℵ} −E{ξe−2µξ ∣ ℵ}] )dN(v),

l̈wpsββ = −XXT

ˆ ∞

0

W1(v)Λ(v)eβ
TX(Λ(v)eβ

TX [E{e−µξ ∣ ℵ}2 −E{e−2µξ ∣ ℵ}]

+E{e−µξ ∣ ℵ})dN(v),

where W1(v) = Rjπj(α)−1 and
´

0≤s≤v
dN(s) = j.

Focusing on the second term in the right side (6.37), we need to find the h∗ to

make the second term on the right side of (6.37) be 0. The derivatives of the weighted
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pseudo-score functions in (5.9),(5.10), and (5.11) with respect to Λ at direction of h(v)

are

l̈wpsµΛ [hµ(v)] =

ˆ ∞

0

W1(v)hµ(v)e
βTX(2E{ξe−µξ ∣ ℵ} −E{ξ ∣ ℵ}E{e−µξ} +

Λ(v)eβ
TX [E{ξe−µξ ∣ ℵ}E{e−µξ ∣ ℵ} −E{ξe−2µξ}] )dN(v),(6.38)

l̈wpsβΛ [hβ(v)] = −X

ˆ ∞

0

W1(v)hθ(v)e
βTX(Λ(v)eβ

TX [E{e−µξ}2 −E{e−2µξ}]

+E{e−µξ})dN(v), (6.39)

l̈wpsΛΛ [h(v), h∗(v)] = −

ˆ ∞

0

W1(v)h(v)h
∗(v)(e2βTX [E{e−µξ}2 −E{e−2µξ ∣ ℵ}]

+Λ(v)−2)dN(v). (6.40)

Based on the derivatives in (6.38), (6.39), and (6.40), we obtain h∗µ(v) and h∗β(v)

such that respectively

∑
v∶dN(v)=1

E(h(v)E [g1{ℵ} − h
∗
µ(v)g3{ℵ}] ∣ V = v) = 0,

∑
v∶dN(v)=1

E(h(v)E [g2{ℵ} − h
∗
β(v)g3{ℵ}] ∣ V = v) = 0,

respectively, and

g1{ℵ} = W1(v)e
βTX(2E{ξe−µξ ∣ ℵ} −E{ξ ∣ ℵ}E{e−µξ ∣ ℵ}

+Λ(v)eβ
TX [E{ξe−µξ ∣ ℵ}E{e−µξ ∣ ℵ} −E{ξe−2µξ ∣ ℵ}] ),

g2{ℵ} = W1(v)Xeβ
TX(Λ(v)eβ

TX [E{e−µξ ∣ ℵ}2 −E{e−2µξ ∣ ℵ}] +E(e−µξ ∣ ℵ)),

g3{ℵ} = W1(v)e
2βTX [E{e−µξ ∣ ℵ}2 −E{e−2µξ ∣ ℵ}] +W1(v)Λ(v)−2.
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Then

h1(v) = E{W1(v)e
βTX(E{ξ ∣ ℵ}E{e−µξ ∣ ℵ} − 2E{ξe−µξ ∣ ℵ}

−eβ
TXΛ(v) [E{ξe−µξ ∣ ℵ}E{e−µξ ∣ ℵ} −E{ξe−2µξ ∣ ℵ}] ) ∣ V = v},

h2(v) = E{W1(v)Xeβ
TX(Λ(v)eβ

TX [E{e−µξ ∣ ℵ}2 −E{e−2µξ ∣ ℵ}] +E{e−µξ ∣ ℵ}) ∣ V = v},

h3(v) = E(W1(v)Λ(v)−2 +W1(v)e
2βTX [E{e−µξ ∣ ℵ}2 −E{e−2µξ ∣ ℵ}] ∣ V = v),

h∗µ(v) = h1(v)/h3(v),

h∗β(v) = h2(v)/h3(v).

Regarding the third term in (6.37),

l̇wpsµα {θ,α,Λ} =

ˆ ∞

v=0

W2(v) [µ
−1 −E {κ(v)ξ ∣ ℵ}]dN(v),

l̇wpsβα {θ,α,Λ} =

ˆ ∞

v=0

XW2(v)E {κ(v) ∣ ℵ}dN(v),

l̇wpsΛα {θ,α,Λ}[h(v)] =

ˆ ∞

v=0

W2(v)h(v)E {κ(v) ∣ ℵ} /Λ(v)dN(v),

where W2(v) = −Rjπj{α}−2∂πj(α)/∂α and
´

0≤s≤v
dN(s) = j.

Then we have

√
n(α̂ −α0) = n

1/2P (−∂2 logL/(∂α)2)−1PnS(α0) + op(1), (6.41)

where S(α) = ∂ logL(α)/∂α =
´∞

0
{Rj −R(j−1)πj(α)}{∂logitπj(α)/∂α}dN(t), and Pn =

n−1∑
n
i=1. The asymptotic expression in the right side of (6.41) replaces

√
n(α̂ − α0)

in (6.37). Finally, the fourth term on the right side of (6.37) is op(1) because of the

convergence rate for (θ̂, α̂, Λ̂).

We can asymptotically reexpress
√
n (θ̂ − θ0) from the equation in (6.37) as fol-

lowing and Dw is invertible (this can be proved by the same argument used for the
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invertible property of D in Theorem 4.3.3):

√
n (θ̂ − θ0) = −D−1

w Gn[l̇
wps
θ (θ0,α0,Λ0) − l̇

wps
Λ (θ0,α0,Λ0)[h

∗]

−P {l̈wpsθα (θ0,α0,Λ0) − l̈
wps
Λα (θ0,α0,Λ0)[h

∗]}P {∂2 logL/(∂α)2}
−1
S(α0)]

= Gnψ̃w. (6.42)

Hence we obtain the pseudo-influence function for θ, ψ̃w from the equation in (6.42),

so we can calculate the information matrix for θ̂:

Iw = P (ψ̃wψ̃
T
w) =D

−1
w P {(Mθ +Mα)(Mθ +Mα)

T}{D−1
w }

T

= D−1
w P {(MθM

T
θ + 2MθM

T
α +MαM

T
α }{D−1

w }
T

(6.43)

where Mθ = l̇
wps
θ (θ0,α0,Λ0) − l̇

wps
Λ (θ0,α0,Λ0)[h∗], and

Mα = P {l̈wpsθα (θ0,α0,Λ0) − l̈
wps
Λα (θ0,α0,Λ0)[h∗]}P {−∂2 logL/(∂α)2}

−1
S(α0).
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