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ABSTRACT 

Stephen Lee McDaniel: Expanding the function of histone H3 lysine 36 methylation in 
Saccharomyces cerevisiae 

(Under the direction of Brian Strahl) 

Eukaryotic DNA is wrapped around an octamer of histone proteins, two each of 

H2A, H2B, H3, and H4, to form chromatin.  The cell must negotiate the chromatin 

landscape to facilitate all DNA templated processes, including replication, repair, and 

transcription.  The histone proteins themselves can be heavily modified by small 

chemical moieties like methyl, phospho, or ubiquitin groups, called post-translational 

modifications (PTMs).  PTMs can both alter the electrostatic properties of chromatin, 

promoting an opening or closing of specific chromatin regions and/or as specific docking 

sites for effector proteins.  The spatial-temporal localization of histone PTMs is highly 

regulated and when disrupted can lead to a variety of diseases. Methylation of histone 

H3 at lysine 36 (H3K36me) is a very well conserved and highly regulated histone 

modification laid down by the histone methyltransferase Set2 in the budding yeast S. 

cerevisiae.  H3K36me occurs co-transcriptionally, thus marking actively transcribed 

genes.  Though, H3K36me is associated with active transcription, it actually functions 

as a repressive mark, recruiting the Isw1b chromatin remodeling complex and the 

Rpd3S histone deacetylase complex (HDAC) to chromatin following the elongating RNA 

polymerase II (RNAPII) complex, preventing the binding of RNAPII to cryptic promoters 

within gene bodies.  Here, three new aspects of H3K36me are elucidated.  First, a new 

H3K36me binding protein is characterized, Pdp3.  Pdp3 binds to H3K36me and is a 



 iv 

member of the newly described NuA3b histone acetyltrasferase (HAT) complex.  The 

binding of Pdp3 to H3K36me is necessary for the function of NuA3b for in the absence 

of Pdp3 or H3K36me, NuA3 target genes are down regulated and several other 

transcriptional defects are observed.  Second, the role of the second plant 

homeodomain (PHD) finger in Rco1 of the Rpd3S complex is elucidated.  Like the first 

PHD finger, it is necessary for Rpd3S localization to chromatin in addition to preventing 

aberrant transcription from occurring within gene bodies.  Finally, a novel role for Set2 

and H3K36me in the nutrient stress response is uncovered.  Surprisingly, it is found that 

Set2 genetically interacts with several pathways critical for nutrient response signaling 

such as the Tor1, Tor2, and Slt2 mitogen-activated protein (MAP kinase) pathways.  

Without Set2 present, the kinetics and overall levels of signaling in these pathways is 

altered.  Together, the work in this dissertation expands our understanding of the role 

H3K36me plays in transcription and cellular signaling and hopefully will guide future 

work in higher eukaryotes to better understand and treat human diseases.  
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CHAPTER 1 –INTRODUCTION 

Animals face two fundamental problems during development:  proper packaging 

of their DNA and proper gene expression.  First, they must compact all of their DNA into 

a very small nucleus (humans have about two meters of DNA which must fit into a ten 

micron nucleus), while at the same time ensuring that the information contained within 

the genome can be accessed when needed.  Second, they need to ensure that genes 

are expressed when needed and are repressed when they are not necessary.  

Throughout development, gene expression programs change as cells move through the 

cell cycle, respond to stress, or differentiate into different cell types.  Gene expression is 

tightly controlled throughout development to prevent the aberrant expression of 

oncogenes.   

To accomplish these feats, eukaryotic cells package their genomes as chromatin, 

a complex of DNA and proteins.  147 base pairs of DNA is wrapped around eight 

histone proteins:  two each of H2A, H2B, H3, and H4 (Luger et al., 1997).  This DNA 

histone complex forms the fundamental unit of chromatin—the nucleosome.  The 

positively charged histone proteins have a high affinity for the negatively charged DNA 

residues, and thus bind DNA readily (Dutnall and Ramakrishnan, 1997), and also 

interact with other histone proteins.  Together with a plethora of specialized proteins that 

assemble, disassemble, and move nucleosomes along the DNA, the entire genome is 

packaged into chromatin.   
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All chromatin is not created equal, however. Broadly, chromatin can be classified 

into two distinct categories:  euchromatin and heterochromatin.  Euchromatin is gene 

rich and is characterized by high levels of gene transcription.  It is localized to the 

middle of the chromosome arms as well as the nuclear interior (Pueschel et al., 2016).  

Heterochromatin, on the other hand, is gene poor and sees low levels of transcription.  

It is found at the telomeres and centromeres of chromosomes as well as the exterior of 

the nuclear space.   

While a great deal is known about how chromatin influences DNA templated 

processes such as transcription, repair, and replication, many questions regarding its 

function remain.  One of the key questions in regards to transcription is how are large 

numbers of genes turned on and off throughout development?  Further, how are precise 

transcriptional programs quickly and efficiently carried out in the cell?  Finally, how are 

gene expression patterns replicated from parent to daughter cell (and even further 

across organismal generations)?  While certainly not the sole determinant of these 

functions, post-translational modifications (PTMs) to the histone proteins themselves 

play a foundational role in the regulation of all DNA templated processes.  The work 

contained in this dissertation focuses specifically on the role of PTMs in transcription. 

 

The Histone Code Hypothesis 

 Histone PTMs were discovered in the mid-1960s (Allfrey et al., 1964).  Then the 

modifications of histones were limited to lysine and arginine methylation and lysine 

acetylation.  Now, with the tremendous advances in mass spectrometry technology, the 

diversity of modified residues and the modifications themselves continues to expand 
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(Zhao and Garcia, 2015).  For many years, it was thought that histone modifications 

played some role in cellular processes, but it was not until 2000 that these ideas were 

formulated into The Histone Code Hypothesis (Strahl and Allis, 2000).  This hypothesis 

suggests that the differential modification of histone proteins acts as a sort of code that 

can be “read” by specialized proteins in the nucleus to carry out specific downstream 

biological functions such as activation or repression of transcription, DNA repair, or DNA 

replication.  These reader or effector proteins have conserved binding domains that are 

able to recognize specific modified residues and either further modify histones, remodel 

them, or recruit other proteins or complexes to chromatin (Gardner et al., 2011).   

 While there many different kinds of histone PTMs, this work will focus on lysine 

methylation and to a lesser extent on lysine acetylation.  Unmodified lysine residues are 

naturally positively charged.  When lysine residues are acetylated, however, that 

positive charge is neutralized.  The same is not true for lysine methylation.  Lysine 

residues can be mono-, di-, or tri-methylated and retain their positive charge regardless 

of the number of methyl groups added.  Generally, acetylation is associated with active 

transcription due to the decreased electrostatic interactions between the neutralized 

charge of histones with DNA and decreased inter-nucleosome interactions, while lysine 

methylation is often associated with repressed areas of transcription, by maintaining the 

electrostatic interactions between the positively charged methylated lysine residues and 

the negatively charged DNA bases.   

 In the budding yeast Saccharomyces cerevisiae, there are three known lysine 

residues that are methylated:  histone H3 lysine 4 methylation (H3K4me), histone H3 

lysine 36 methylation (H3K36me), and histone H3 lysine 79 methylation (H3K79me).  All 
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three residues and their methylation are conserved from yeast to humans, making 

budding yeast an attractive model system to study each of these marks.  While all three 

marks are known to function in transcriptional regulation in both yeast and human cells, 

the precise molecular underpinnings of their role in this and other biological processes 

remains poorly understood.   

 One of the key findings in recent years is that each histone PTM has distinct loci 

of the genome in which it inhabits (Ho et al., 2014; Weiner et al., 2015).  In 

Saccharomyces cerevisiae, H3K4me is found primarily at promoters (at enhancers in 

metazoans), while H3K36me is localized more to the 3’ regions of gene bodies.  

H3K79me is generally uniform across actively transcribed regions of the genome.  

Because these marks are differentially localized, they also recruit their effector proteins 

to distinct loci in the genome as well (Yun et al., 2011).  Proteins that bind to H3K4me 

will localize more at the promoters of genes and be more important for transcriptional 

initiation, while proteins that bind to H3K36me will bind at the 3’ ends of genes and be 

associated with transcriptional elongation.  Thus, in addition to providing a diverse set of 

platforms for effector proteins to bind, histone PTMs also regulate where in the genome 

these effector proteins can act. 

 

Set2 and H3K36 Methylation 

 In Saccharomyces cerevisiae, there is a single histone methyltransferase (HMT) 

that acts on H3K36,  Set2 (Strahl et al., 2002).  Set2 is responsible for all H3K36 

methyltransferase activity in yeast, but its homologs in higher eukaryotes are not (Figure 

1.1).  For example, in Drosophila melanogaster, dMes-4 is responsible for H3K36 
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mono- and di-methyltation (H3K36me1 and H3K36me2), whereas dSet2 is primarily 

responsible for H3K36 tri-methylation (H3K36me3) (Bell et al., 2007).  Because Set2 is 

responsible for all H3K36me in yeast, and strains where SET2 has been deleted are 

viable, yeast is an ideal model system for studying this histone PTM.  

 

The Domain Structure of Set2 

The SET Domain 

 Set2 has several well conserved domains, the first being the SET domain itself, 

which consists of the AWS-SET-PS motif.  This is the catalytic domain of Set2 and 

carries out the H3K36me transfer.  In budding yeast, this domain is at the extreme N-

terminus of the protein, which differs in higher eukaryotes.  SETD2, the human homolog 

of Set2, has an extended N-terminus with no conserved domains and no known 

function.  This extended N-terminus is common in non-yeast eukaryotes and could 

possibly restrict the enzyme’s ability to methylate H3K36.   

 

The H4 Interaction Domain 

 Preceeding the budding yeast Set2 domain there is a small histone H4 

interaction domain (Du et al., 2008).  This domain has been shown to physically bind to 

H4 and the corresponding residues in histone H4 (H4K44) are necessary for proper 

H3K36me in vivo.  It is currently unknown if the interaction of Set2 with H4 is conserved 

in higher eukaryotes, though due to the increasing size of Set2 seen throughout 

evolution, it is likely that the Set2 homologs make multiple histone interactions. 

 



 6 

The WW and CC Domains 

The SET domain is followed by two protein-protein interaction domains, a WW 

and CC domain.  The WW domain, named so for containing two conserved tryptophan 

residues, binds to proline rich proteins (Sudol et al., 1995).  In the nucleus, proteins with 

this domain are known to regulate transcription by binding to the C-terminal domain 

(CTD) of RNA polymerase II (RNAPII) (Sudol et al., 2001).  While this domain is 

conserved in the homologs of Set2, it is currently unknown if it is functional and, if so, 

what its binding partners are.  This is also true of the coiled-coiled (CC) domain which 

follows the WW domain.  This is also a well conserved protein-protein interaction motif, 

which in certain proteins promotes homo-dimerization (Poon and Mekhail, 2011).  

Intriguingly, although Set2 originally was purified from yeast and showed a relative 

mass that is equivalent to a dimer of Set2, co-expression studies employing alternately 

tagged versions of Set2 that lack the ability to bind to RNAPII (see below) showed no 

evidence of dimerization (unpublished results). 

 

The SRI Domain 

Finally, Set2 contains a Set2-Rpb1 interacting (SRI) domain.  This domain binds 

to the hyper-phosphorylated CTD of RNAPII, specifically the Ser2/Ser5 phosphorylated 

form (Kizer et al., 2005; Schaft et al., 2003) and is conserved in humans (Hacker et al., 

2016; Li et al., 2005).  Specifically, it appears that the SRI domain recognizes these 

phosphorylated residues across two heptapeptide repeats of the CTD (Vojnic et al., 

2006).  
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Importantly, the loss of the SRI domain does not abolish chromatin localization of 

the Set2 truncation (Youdell et al., 2008).  Interestingly, while they do not localize as 

efficiently to chromatin, ectopic expression of Set2 truncation constructs lacking the SRI 

domain are able to catalyze H3K36me1 and limited H3K36me2, but are unable to 

catalyze H3K36me3 (Kizer et al., 2005).  This suggests that the Set2/RNAPII interaction 

is critical in stabilizing Set2 on chromatin long enough to carry out the H3K36me1 to 

me2 and especially, the me2 to me3 reactions.  

 

The Regulation of Set2 and H3K36me 

Serine 2 and Serine 5 Phosphorylation on the CTD of RNAPII 

 CTD phosphorylation plays a critical role in the regulation of H3K36me and Set2 

protein levels.  If Set2 is unable to bind to the phosphorylated CTD of RNAPII, 

H3K36me3 is lost (Kizer et al., 2005).  Further, if the CTD is mutated such that the 

number of Ser5 or Ser2 residues are critically reduced, H3K36me3 is lost (Fuchs et al., 

2012; Xiao et al., 2003).  Interestingly, Set2 protein levels are also reduced in these 

mutants, severely so when Ser5 is mutated to alanine (Fuchs et al., 2012).  There is 

also evidence that demonstrates that mutations of BUR1 a RNAPII CTD Ser2 kinase 

(Qiu et al., 2009), also disrupt H3K36me3 (Chu et al., 2006).  This is also true of the 

other Ser2 kinase, Ctk1 (Dronamraju and Strahl, 2014).  Ctk1 mutants see extreme loss 

of Set2 protein stability as well as a complete abolishment of H3K36me3 (Dronamraju 

and Strahl, 2014; Fuchs et al., 2012). 
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SPT6 

 Yet another regulator of Set2 and H3K36me is Spt6.  Spt6 is a histone 

chaperone (Bortvin and Winston, 1996) that also binds to the phosphorylated CTD of 

RNAPII to help facilitate transcription elongation (Diebold et al., 2010; Sun et al., 2010).  

Mutations in multiple regions of Spt6 result in a loss of H3K36me2 and/or H3K36me3 

levels (Dronamraju and Strahl, 2014; Youdell et al., 2008).  Like Ctk1, mutations in Spt6 

also reduce Set2 protein stability (Dronamraju and Strahl, 2014; Youdell et al., 2008).  

Interestingly, Ctk1 and Spt6 also mutually regulate each other’s protein stability 

(Dronamraju and Strahl, 2014), forming a feed-forward loop that maintains CTD Ser2 

phosphorylation, and consequently, Set2 levels. 

 

The Paf1 Complex 

 The Paf1 complex, which associates with RNAPII, coordinates multiple histone 

PTMs, and facilitates transcription, functions upstream of Spt6 and Ctk1.  Specific 

deletions of members of the Paf1 complex (PAF1 and CTR9) lead to reduced levels of 

Spt6 and Ctk1 (Dronamraju and Strahl, 2014).  Spt6 is likely stabilized via direct 

interaction with Paf1 (Dronamraju and Strahl, 2014), which allows for the co-stabilization 

of Ctk1.  Because a loss of Paf1 complex function leads to a loss in Spt6 and Ctk1 

levels, this also affects Set2, which functions further downstream.  Deletions of PAF1 

and CTR9 also result in lower Set2 levels and a loss of H3K36me3 (Dronamraju and 

Strahl, 2014; Fuchs et al., 2012).  Together, these data suggest a model where the Paf1 

complex helps to recruit Spt6 and Ctk1 to chromatin.  Once recruited to chromatin, Ctk1 
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can then phosphorylate Ser2 of the CTD of RNAPII.  Set2 is then recruited to chromatin 

via the hyperphosphorylated CTD and is capable of tri-methylating H3K36 (Figure 1.2). 

 

Proteins that Interact with H3K36me 

ASF1 

 Asf1 is a histone chaperone for histones H3 and H4 (Adkins and Tyler, 2004; 

Schwabish and Struhl, 2006).  Asf1 is necessary to deposit H3K56ac histones during 

transcription and replication (Rufiange et al., 2007).  This is important as nucleosomes 

must be disassembled ahead of the elongating polymerase before it can successfully 

transcribe a gene.  After RNAPII has travelled through a locus, nucleosomes must be 

replaced.  Asf1 is necessary for both the eviction and redeposition of the H3/H4 

tetramer in vivo (Schwabish and Struhl, 2006).  Interestingly, cells deleted for ASF1 also 

show a depletion of H3K36me in some strains (Lin et al., 2010), indicating a connection 

between histone eviction/deposition during transcription and Set2.  Further, recent work 

has shown that set2∆ cells show increased H3K56ac, a PTM found on newly 

synthesized histones, and H4ac levels at the 3’ ends of genes in G1 arrested cells 

(Venkatesh et al., 2012), indicating increased levels of histone exchange.  Cells lacking 

Asf1, on the other hand, demonstrated lower levels of H3K56ac and H4ac, indicating 

Asf1 and Set2 have opposing function (Venkatesh et al., 2012).  Critically, Asf1 shows a 

decreased affinity for peptides that are H3K36me3 (Venkatesh et al., 2012), suggesting 

a model where Set2 mediated H3K36me may actively inhibit histone exchange after 

transcription by preventing Asf1 from binding to and removing H3K36me histones. 
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IOC4 

 Ioc4 is a member of the Isw1b ATP-dependent chromatin remodeling complex 

(Vary et al., 2003).  Isw1 is the catalytic subunit of the complex and forms two distinct 

complexes in vivo, one with Ioc4 (Isw1b) and one without (Isw1a).  Ioc4 has a PWWP 

domain, named for to the conserved proline and tryptophan residues, which in humans, 

have shown preferential binding to H3K36me3 (Vermeulen et al., 2010).  The PWWP 

domain of Ioc4 has also been shown to recognize and bind H3K36me3 (Maltby et al., 

2012; Smolle et al., 2012).  This facilitates the recruitment of Isw1b to the 3’ regions of 

gene bodies where Isw1 can then slide nucleosomes along the DNA (Smolle et al., 

2012).  In the absence of Set2 or H3K36me, Isw1b is no longer able to properly 

associate with chromatin (Maltby et al., 2012; Smolle et al., 2012), creating regions of 

improperly placed nucleosomes.  Finally, though the mechanism is not yet known, 

Isw1b also functions, in concert with Set2, to prevent histone exchange and limit H4ac 

(Smolle et al., 2012), again stressing the importance of Set2 and H3K36me in limiting 

both of these actions once RNAPII has successfully transcribed a gene. 

 

EAF3 and the Rpd3S Complex 

 Rpd3S, a histone deacetylase complex (HDAC), contains two proteins with 

reader domains that interact with chromatin:  Eaf3 and Rco1.  Eaf3 contains a chromo 

domain that recognizes H3K36me2 (Carrozza et al., 2005; Joshi and Struhl, 2005; Sun 

et al., 2008; Xu et al., 2008), while Rco1 contains a dual plant homeodomain (PHD) 

finger motif that is necessary for chromatin engagement (Li et al., 2007a).  As discussed 

in Chapter 3, both PHD fingers are essential for chromatin binding and prefer to bind the 
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unmodified N-terminus of H3.  Interestingly, it has recently been shown that Rco1 exists 

as a dimer within the Rpd3S complex, adding an additional two chromatin contacts to 

the complex (Ruan et al., 2016a).  Like the Isw1b complex, Eaf3’s recognition of 

H3K36me helps to localize the Rpd3S complex to the 3’ ends of gene bodies (Carrozza 

et al., 2005; Keogh et al., 2005; Li et al., 2007a) where it can deacetylate acetylated H4 

tails.  In the absence of Set2, Rco1, or Eaf3, or if Eaf3 is unable to bind H3K36me2, 

H4ac increases at the 3’ end of gene bodies (Carrozza et al., 2005; Joshi and Struhl, 

2005; Keogh et al., 2005; Li et al., 2007a) leading to inappropriate transcription initiation 

at cryptic promoters within the gene bodies.  This is known as cryptic transcription and 

will be described in detail in the next section.  

 While Eaf3 and Rco1 play an important role in localizing Rpd3S across the 

genome, Rpd3S can be recruited to gene bodies independently of Eaf3, Rco1, or 

H3K36me.  Like Set2, Rpd3S can be recruited to chromatin via the phosphorylated CTD 

of RNAPII, specifically the Ser2/Ser5 dually phosphorylated form (Drouin et al., 2010; 

Govind et al., 2010).  Although, without Eaf3 binding to H3K36me2, or the PHD fingers 

of Rco1, the Rpd3S complex is catalytically inactive.  Recent work has suggested that 

H3K36me stimulates a conformational change in Rpd3S which increases its affinity for 

chromatin, perhaps stimulating its enzymatic activity (Ruan et al., 2015). 

 Interestingly, Rpd3S prefers an H3K36me di-nucleosome substrate (Huh et al., 

2012).  Rpd3S deacetylase activity is further promoted if these nucleosomes are 

properly spaced from one another (Lee et al., 2013).  The correct spacing is likely 

ensured by the nucleosome sliding activity of Isw1b, which could explain the increased 

H4ac levels in isw1∆ and ioc4∆ cells (Smolle et al., 2012).  Without proper spacing, and 
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even with proper H3K36me, the affinity of Rpd3S for chromatin is decreased to a 

degree where the naturally low binding affinity of Eaf3 for H3K36me2 is not able to 

sufficiently engage nucleosomes and stimulate Rpd3’s deacetylase activity.  Further, 

Rpd3S also depends on the PHD finger in Rco1 to maintain its localization on chromatin 

(Li et al., 2007a).  If any of these conditions are not met, the net result is increased 

H4ac levels in gene bodies. 

 Together, H3K36me functions to maintain nucleosome stability by repelling Asf1 

and ensure low levels of H4ac by recruiting the Isw1b chromatin remodeling complex 

and the Rpd3S HDAC.  These activities ensure that RNAPII is not able to engage 

cryptic promoters within gene bodies (Figure 1.3). 

 

Cryptic Transcription 

 One of the main functions of Set2 and H3K36me is to prevent cryptic 

transcription from occurring across the genome.  Cryptic transcripts are traditionally 

defined as transcripts that originate from inside the gene body as opposed to the 

canonical 5’ promoter region (Kaplan et al., 2003).  Cryptic transcripts can arise from 

both the sense and anti-sense direction (Neil et al., 2009; Xu et al., 2009) and seem to 

occur preferentially at longer genes (Li et al., 2007b).  Cryptic transcripts can also be 

further classified depending on how stable the transcripts are and how they are 

degraded.  Generally, cryptic transcripts are quickly degraded by the exosome (Wyers 

et al., 2005) and are referred to as cryptic unstable transcripts (CUTs) (Neil et al., 2009; 

Xu et al., 2009).  These transcripts are very unstable and can only be seen when the 

exosome has been compromised (Wyers et al., 2005), rendering them difficult to study 
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under normal conditions.  Further, their rapid degradation suggests that if left to 

accumulate within the cell, there may be negative consequences.  There is, however, a 

separate class of transcripts that is much more stable within the cell, the stable 

unannotated transcripts (SUTs) (Xu et al., 2009).  Finally, there is third separate class of 

transcripts that are reliant on the Xrn1 5’-3’ exonuclease for degradation.  These are the 

Xrn1-sensitive unstable transcripts (XUTs) (van Dijk et al., 2011).  Genome-wide studies 

in yeast have shown that cryptic transcripts can arise from within the 3’ region of gene 

bodies, but result from bi-directional transcription events at promoters even more 

frequently (Neil et al., 2009; Xu et al., 2009). 

 There are two main mechanisms by which cryptic transcripts are thought to arise:  

increased histone acetylation and decreased numbers or mis-localization of histones 

across the gene body.  As discussed above, Set2 and H3K36me play an important role 

in both of these aspects.  The main way H3K36me represses cryptic promoters is to 

limit histone acetylation in gene bodies.  It does this by recruiting Rpd3S and Isw1b to 

the 3’ ends of open reading frames (Carrozza et al., 2005; Keogh et al., 2005; Smolle et 

al., 2012).  Rpd3S has five characterized chromatin binding domains:  two PHD finger 

motifs in each copy of Rco1 and the chromo domain of Eaf3.  Both PHD fingers and the 

chromo domain are essential for Rpd3S function (Li et al., 2007a).  It is also the case 

that the uncharacterized N- and C-termini of Rco1 are also critical for Rpd3S function 

(Ruan et al., 2016b).  These regions likely contain the dimerization domains and offer 

other surfaces for protein-protein contacts necessary for Rpd3S complex integrity, and 

thus, its proper function. 
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 Isw1b also likely plays a pivotal role in ensuring the gene body remains hypo-

acetylated after the elongating RNAPII.  A deletion of ISW1 or IOC4 results in increased 

H4ac and increased cryptic transcription (Smolle et al., 2012).  This is likely due to the 

fact that nucleosomes are no longer positioned correctly for Rpd3S to engage a di-

nucleosome pair (Lee et al., 2013).  Biochemical experiments have demonstrated that 

Rpd3S has a preferred linker length of ~50 base pairs of DNA (Lee et al., 2013).  The 

addition of Isw1 leads to increased deacetylase activity of Rpd3S (Lee et al., 2013).  

Isw1b, along with other chromatin remodelers, are likely necessary to accurately prime 

the chromatin template for deacetylation by Rpd3S.  In total, H3K36me serves a double 

duty both to activate Rpd3S activity through the binding of Eaf3’s chromo domain, as 

well as ensuring that nucleosome spacing is ideal for Rdp3S binding through Isw1b 

recruitment via the PWWP domain of Ioc4.  These functions maintain a repressive 

chromatin environment behind RNAPII, and reinforce transcription in the sense direction 

(Churchman and Weissman, 2011). 

 The other mechanism by which cryptic transcription is repressed is by ensuring 

that nucleosomes are properly restored after the elongating RNAPII complex has 

moved through the gene body.  In addition to its role in regulating Set2 and H3K36me, 

Spt6 also plays an important role in this process as well.  Spt6 helps to disassemble 

nucleosomes ahead of RNAPII and reassemble them behind (Kaplan et al., 2003).  If 

Spt6 function is compromised, in addition to a loss of H3K36me, there are also fewer 

intact nucleosomes on chromatin, allowing for RNAPII access to cryptic promoters 

(Cheung et al., 2008; DeGennaro et al., 2013).  This is also true of other histone 

chaperones, like Asf1.  Here, H3K36me is refractory to Asf1 binding to chromatin, thus 
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ensuring that once nucleosomes are assembled into chromatin behind RNAPII, they 

remain so (Venkatesh et al., 2012).   

Increased histone acetylation and defects in nucleosome reassembly are likely 

not the only two mechanisms by which cryptic transcripts arise, however.  Surveys of 

deletions of many chromatin modifying, remodeling, and maintenance factors have 

shown the ability to promote cryptic transcription (Cheung et al., 2008; Silva et al., 

2012).  What is also interesting is that the pools of cryptic transcripts produced from 

these different mutants varies (Smolle et al., 2012), offering further support of different 

underlying mechanisms regulating cryptic transcript production.  What is also curious is 

that widespread production of cryptic transcripts does not necessarily have a 

deleterious effect on cell growth.  set2∆ cells are viable, as are many other deletions 

that lead to the production of cryptic transcripts.  Further, under normal laboratory 

conditions, a deletion of SET2 results in relatively few changes to the transcriptome 

(Lenstra et al., 2011), indicating that production of these transcripts does not drive 

large-scale transcriptional change.  However, there is limited evidence that severe 

nutrient stress is capable of producing cryptic transcripts in wild-type cells (Cheung et 

al., 2008).  This suggests that cryptic transcripts could act as a defense mechanism or 

have relevant functions during times of cellular stress. 

 While cryptic transcripts have historically not had generally characterized 

functions associated with them, there are currently two thoughts as to their possible 

effects in the cell.  The first is that they could function as transcriptional inhibitors.  

Genes containing anti-sense transcripts that overlapped with their promoters have 

recently been shown to have statistically significant drops in full-length transcript 



 16 

amounts (Huber et al., 2016), though this did not dramatically alter protein levels.  With 

the recent advances in sequencing technology, it has become easier to sequence the 

transcriptome at great depth, increasing the discoverability and ability to map cryptic 

transcripts, with the end goal being the elucidation of their function genome wide. 

 The other function of cryptic transcripts could be the production of cryptic 

proteins.  Using a Spt6 mutation that produces a very strong cryptic transcription 

phenotype, the Winston lab has observed the translation of a select few cryptic 

transcripts (Cheung et al., 2008).  While there has been no function ascribed to these 

proteins yet, they raise the intriguing possibility that the increasing complexity that we 

are just beginning to uncover in the transcriptome could be translated to the proteome.  

One particularly compelling hypothesis is that these cryptic proteins could behave as 

dominant negative variants of their full-length counterparts.  This is primarily relevant to 

in-frame, sense, cryptic transcripts as they would theoretically contain fully functional C-

terminal domains of a protein, while lacking domains at the N-terminus.  Quantitative 

mass spectrometry data sets examining the proteomes of wild-type and cryptic 

transcript producing cells will be needed to understand how wide-spread the production 

of cryptic proteins are and what role they may be playing in the cell. 

 

Other Functions of Set2 and H3K36me and Their Evolutionary Conservation 

Aging 

 In addition to the repression of cryptic transcription, Set2 and H3K36me play 

several other critical roles in the cell.  The first is to regulate aging, likely through the 

maintenance of transcriptional fidelity across the genome (Sen et al., 2015).  The 
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Berger group showed that a loss of Set2 or a mutation of H3K36 decreased the lifespan 

of yeast cells and critically, removal of Rph1, an H3K36me3 demethylase, extended the 

lifespan of these cells significantly.  Interestingly, they found that as yeast cells aged, 

they lost H3K36me genome-wide and a significant increase in cryptic transcription was 

observed.  The loss in H3K36me as yeast cells age could be due to a global loss in 

histones.  It has been observed that older yeast cells can lose as much as 50% of their 

histones as they age, further increasing the likelihood of transcriptional de-repression 

genome-wide (Hu et al., 2014).  Critically, these functions are likely conserved in higher 

eukaryotes as the Set2 homolog in C. elegans, MET-1, has also been shown to extend 

the lifespan of worms (Hamilton et al., 2005; Pu et al., 2015; Sen et al., 2015).  In 

summary, H3K36me functions in yeast and worms to regulate the transcriptome by 

preventing cryptic transcription and thus decreasing the transcriptional noise in the 

genome.  This ensures that genes are properly expressed throughout the organism’s 

lifespan, promoting longevity. 

 

RNA Splicing 

 The role of H3K36me in regulating splicing was first observed in human cells 

(Luco et al., 2010). It was found that H3K36me3 regulated the exon choice in the 

FGFR2 gene.  In epithelial cells exon IIIb is included in the mRNA transcript, whereas in 

mesenchymal cells, exon IIIc is included.  Overexpression or siRNA mediated 

knockdown of SETD2 demonstrated a shift in exon inclusion in both cell lines.  The 

mechanism of exon choice was shown to be the recruitment of the splicing factor PTB 

via an interaction with MRG15, the human EAF3 homolog.  MRG15 was recruited to this 
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locus in an H3K36me3 dependent manner and when there, recruited PTB to carry out a 

specific splicing pattern. 

 The role of SETD2 in splicing has been confirmed genome-wide using next 

generation sequencing techniques (Guo et al., 2014; Simon et al., 2014).  Here, a 

plethora of RNA splicing defects, including intron retention and aberrantly spliced genes 

were observed.  Interestingly, nucleosome positioning was altered at many sites of RNA 

processing defects, suggesting that H3K36me’s chromatin remodeling function and 

repression of histone exchange may also be conserved in human cells. 

Finally, Set2 has also been shown to regulate splicing in yeast.  Mutants lacking 

H3K36me demonstrated reduced splicing efficiency across the genome (Sorenson et 

al., 2016).  Interestingly, the correct splicing of these genes was dependent on the 

association of Set2 with the CTD of RNAPII as well as H3K36me2.  The importance of 

the SRI domain suggests that Set2 may act co-transcriptionally to recruit splicing factors 

while the necessity of H3K36me2 suggests that Rpd3S may also play an important role 

in this process. 

 

DNA Damage Response 

 As DNA is packaged into chromatin, histones play a key role in the DNA damage 

response pathways.  Like the above discussions, Set2 and H3K36me are necessary for 

the DNA damage response, though the mechanism differs between organisms. 

 In both fission yeast and budding yeast, cells lacking Set2 and H3K36me display 

strong sensitivity to DNA damaging agents (Jha and Strahl, 2014; Pai et al., 2014; 

Winsor et al., 2013).  In both systems, Set2 regulates chromatin compaction and limits 
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resection, the creation of single stranded DNA at sights of DNA damage, allowing for 

the binding of DNA damage response proteins like RPA.  Limiting resection promotes 

non-homologous end joining (NHEJ) (Jha and Strahl, 2014; Pai et al., 2014).  In 

budding yeast it was shown that there were also defects in the DNA damaging response 

signaling pathways (Jha and Strahl, 2014), suggesting that the chromatin state 

surrounding the damage site is critical for recruiting DNA damage response proteins 

and their proper signaling activities.  In fission yeast, H3K36me was shown to be cell 

cycle regulated, further delineating the choice between homologous recombination (HR) 

and NHEJ (Pai et al., 2014). 

 In human cells, HR is defective in SETD2 mutant cells (Carvalho et al., 2014; 

Kanu et al., 2015; Pfister et al., 2014).  This seems to be the result of a lack of RPA and 

RAD51 binding to the DNA damage sites (Kanu et al., 2015; Pfister et al., 2014).  

Further, upon loss of H3K36me3, DNA damage persists in cells, likely due to an inability 

of downstream signaling proteins critical for efficient repair, like p53,  to be activated 

(Carvalho et al., 2014). 

 Together, this work demonstrates that Set2 and H3K36me play an important role 

in maintaining the integrity and stability of the genome.   

 

DNA Methylation 

 Finally, H3K36me has been shown to be necessary for establishing DNA 

methylation in gene bodies.  DNA methylation is a critical regulator of gene expression, 

where hyper-methylation of genes results in repression.  Both of the de novo DNA 

methyltranferases, DNMT3a and DMNT3b contain PWWP domains.  Both of the PWWP 
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domains in DMNT3a and DNMT3b have been shown to bind to H3K36me3 (Dhayalan 

et al., 2010; Rondelet et al., 2016) and are necessary for their DNA methyltransferase 

activity (Baubec et al., 2015; Dhayalan et al., 2010).  In the absence of SETD2, DNA 

methylation is not able to be targeted to transcribed sequences in the genome (Baubec 

et al., 2015; Morselli et al., 2015).  In addition to the other problems with the 

transcriptome, a loss of genic DNA methylation is likely to cause a further destabilization 

in the cellular pool of RNA. 

 

The Role of SETD2 and H3K36me in Cancer 

  SETD2 has been found to be mutated in up to 15% of patients with clear cell 

renal cell carcinoma (ccRCC) (Dalgliesh et al., 2010; Gerlinger et al., 2012; Varela et 

al., 2011). SETD2 is located on chromosome 3p and this region is commonly deleted in 

ccRCC tumors (Varela et al., 2011). ccRCC tumors are very heterogeneous, but 

mutations in SETD2 arise frequently and independently in a single tumor (Gerlinger et 

al., 2012).  SETD2 mutations have also been observed in acute leukemias (Mar et al., 

2014; Zhu et al., 2014). 

 While the exact molecular underpinnings of the role SETD2 and H3K36me play 

in preventing cancer, regulation of the transcriptome and DNA damage repair are likely 

candidates.  As discussed above, SETD2 plays a critical role in maintaining 

transcriptional fidelity.  In its absence, there are mRNA processing defects at as many 

as 25% of expressed genes across the genome (Simon et al., 2014).  Further, it has 

recently been shown in ccRCC that there are many transcription termination defects in 

SETD2 mutant cancer cell lines (Grosso et al., 2015).  These termination defects lead to 
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the creation of chimeric transcripts, some involving oncogenes, providing yet another 

potential mechanism that could lead to cancer development.  Together, the defects in 

mRNA processing, termination defects, and impaired DNA damage signaling likely 

provide an ideal environment for tumorigenesis. 

 Finally, it has recently been shown that mutations of the histone H3 lysine 36 

residue can also lead to cancer.  When this residue is mutated to a methionine at a 

single copy of the gene, H3K36me is lost genome-wide, leading to tumor formation 

(Fang et al., 2016; Lu et al., 2016).  As H3K36me is lost from the genome, this leads to 

a redistribution of H3K27me, a PTM laid down by the polycomb repressive complex.  

Though rather than increasing gene repression globally, this redistribution instead 

dilutes the polycomb repressive complex 1 across the genome and results in increased 

gene expression (Lu et al., 2016).  This disrupts the normal differentiation progression 

and locks the cells in an undifferentiated state.  Thus, mutating either SETD2 or H3K36 

is sufficient to promote cancer progression. 

 

Concluding Thoughts and the Contributions of this Work 

 H3K36me is one of the few histone PTMs that is conserved from yeast to 

humans, suggesting that it is extremely important for proper cellular function.  Much of 

the research to date has demonstrated that H3K36me is necessary for transcriptional 

fidelity across the genome by repressing cryptic transcription.  Through the co-

transcriptional recruitment of the Isw1b and Rpd3S complexes, H3K36me ensures that 

nucleosomes are remodeled correctly and that they are deacetylated in the wake of the 

elongating RNAPII complex.  Further, H3K36me ensures that the histone chaperone, 
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Asf1, cannot remove histones H3 and H4 from chromatin once they have been 

replaced.  Together, these functions act together to ensure that chromatin is in a 

repressive state behind RNAPII and is refractory to RNAPII binding within the open 

reading frame.   

 In addition, this control of nucleosome retention plays a key role in the DNA 

damage response.  In the absence of Set2 and H3K36me, there is increased amounts 

of DNA resection, which leads to a failure of the DNA damage response system to 

function properly.  While the importance of Set2 is well established in this process, it is 

currently unknown what role the H3K36me effector proteins play in this process. 

 Finally, H3K36me is necessary to correctly process mRNAs.  Incorrectly spliced 

and terminated transcripts increase in the absence of H3K36me and likely lead to 

tumorigenesis.  Though, again, it is currently unknown mechanistically how H3K36me 

properly mediates these processes. 

 The work in this dissertation seeks to broaden our understanding of the role of 

H3K36me in the cell.  This mission has been undertaken in three separate ways:  first, I 

characterized a novel H3K36me effector protein, Pdp3.  This protein is a member of the 

newly characterized NuA3b histone acetyltransferase (HAT) complex and its recognition 

of H3K36me is necessary for its function.  Second, I further characterized how Rpd3S 

interacts with chromatin.  I found that the previously uncharacterized second PHD finger 

domain was essential for Rpd3S function and acts cooperatively with the N-terminal 

PHD finger domain to engage the unmodified H3 N-terminus.  Finally, I demonstrate 

that both Set2 and H3K36me are necessary for the cellular response to nutrient stress.  

This is likely due to a disruption of the transcriptome that leads the cells poorly able to 
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effectively respond to cellular stress.  Critically, in the absence of Set2, Tor1 and a 

mitogen-activated protein (MAP) kinase pathway are disrupted and cells are unable to 

respond properly to nutrient stress.  Interestingly, this relationship is likely conserved as 

human cancer cells treated with mammalian target of rapamycin (mTOR) inhibitors in 

combination with SETD2 knockdown see significant growth defects and cell death (Zhu 

et al., 2014).  Taken together, this work provides new insight into the function of Set2 

and H3K36me in the cell. 
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Figure Legends 
 
 
Figure 1.1:  Domain Architecture and Function of Set2 

Set2 is a 733 amino acid long protein that contains a N-terminal SET domain as well as 

a C-terminal WW, CC, and SRI domain.  There is also a small H4 interaction domain at 

the N-terminus of the protein.  Set2 methylates histone H3 at lysine 36.  In S. 

cerevisiae, Set2 carries out mono-, di-, and tri-methylation of this residue. 

Figure 1.2:  The Regulation of Set2 and H3K36 Methylation 

Many factors come together to regulate the stability of Set2 and the production of 

H3K36me.  The Paf1 complex directly interacts with Spt6, stabilizing its protein levels.  

Spt6 and the CTD Ser2 kinase also interact and mutually regulate each other’s protein 

levels.  Spt6 likely helps to recruit Ctk1 to the CTD.  Phospho-Ser2 recruits Set2 to the 

CTD of RNAPII and stabilizes its protein levels while promoting H3K36me3. 

Figure 1.3:  The Role of H3K36me Effector Proteins 

Rpd3S binds H3K36me2 via the chromo domain of Eaf3.  This allows for the 

deacetylation of histones.  Isw1b binds H3K36me3 via the PWWP domain of Ioc4 

promoting proper nucleosome spacing across the gene body.  Finally, Asf1, a histone 

chaperone, is repelled by H3K36me3, ensuring that nucleosomes are stable once 

incorporated into chromatin.  In wild-type cells, these functions act together to regulate 

nucleosome position and repress cryptic promoters.  In the absence of Set2, 

nucleosomes are not positioned correctly and normally obscured promoters become 

active. 
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Figure 1.1 
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Figure 1.2 
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Figure 1.3 
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CHAPTER 2 – AN H3K36me3 BINDING PWWP PROTEIN TARGETS THE NuA3 

ACETYLTRANSFERASE COMPLEX TO COORDINATE TRANSCRIPTIONAL 

ELONGATION AT CODING REGIONS1 

 
Introduction 

Eukaryotic DNA is wrapped around octamers of evolutionarily conserved core 

histone proteins H3, H4, H2A, and H2B, forming nucleosomes, the fundamental unit of 

chromatin.  Chromatin acts as a barrier to the transcriptional machinery, and therefore 

precise coordination of nucleosome organization is required for the passage of RNA 

polymerase II (RNAPII) (Kulaeva et al., 2009; Kulaeva et al., 2010; Smolle et al., 2013).  

Nucleosome organization is regulated by chromatin remodelers, histone chaperones, 

and other complexes that enzymatically add, remove, or bind (“write”, “erase”, or “read”, 

respectively) post-translational modification (PTM) states of histones (Gardner et al., 

2011; Petesch and Lis, 2012; Strahl and Allis, 2000; Taverna et al., 2007).  Together, 

these factors ensure that genes remain accessible to transcription factors, activators/co-

activators, and RNAPII (Petesch and Lis, 2012).  Critically, these factors also function to 

                                                        
1
 Portions of this chapter were adapted from Gilbert, T.M., McDaniel, S.L., Byrum, S.D., 

Cades, J.A., Dancy, B.C., Wade, H., Tackett, A.J., Strahl, B.D., and Taverna, S.D. 
(2014). A PWWP domain-containing protein targets the NuA3 acetyltransferase 
complex via histone H3 lysine 36 trimethylation to coordinate transcriptional elongation 
at coding regions. Molecular & cellular proteomics : MCP 13, 2883-2895. 
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restore chromatin structure following the passage of RNAPII during transcription 

elongation (Lee and Shilatifard, 2007; Smolle et al., 2013). 

Histone PTMs are established at gene loci in a context specific manner, typically 

defined by the position along a gene (i.e., promoters versus open reading frames 

(ORFs)), as well as the transcriptional status of that gene (Barrera and Ren, 2006; 

Fuchs et al., 2009; Gardner et al., 2011; Heyse et al., 2009; Liang et al., 2004; Pokholok 

et al., 2005; Rando, 2007; Strahl and Allis, 2000). The dual capacity of chromatin 

complexes to read and write histone PTMs confines certain PTM combinations to 

discrete regions within genomic loci (Bian et al., 2011; Choy et al., 2001; Klein et al., 

2013; Li et al., 2007a; Taverna et al., 2006; Vermeulen et al., 2010). For example, 

histone H3 is often combinatorially modified by tri-methylation on lysine 4 (H3K4me3) 

and acetylation, particularly on lysine 14 (H3K14ac), at the 5’-ends of actively 

transcribed genes (Liang et al., 2004; Pokholok et al., 2005). NuA3, a conserved S. 

cerevisiae histone acetyltransferase (HAT) complex (Eberharter et al., 1998), 

specifically binds H3K4me3 that is generated by the histone methyltransferase (HMT) 

Set1, through the plant homeodomain (PHD) finger in the Yng1 subunit (an ortholog of 

human ING5) (Briggs et al., 2001; Doyon et al., 2006; Howe et al., 2002; John et al., 

2000; Martin et al., 2006a; Martin et al., 2006b; Taverna et al., 2006). NuA3 then 

acetylates H3K14 on the same H3 molecule through the HAT domain of Sas3 (an 

ortholog of human MYST3) (Doyon et al., 2006; Howe et al., 2002; John et al., 2000; 

Taverna et al., 2006). Subsequently, additional factors bind either NuA3-catalyzed 

acetylation or NuA3 subunits themselves, including the chromatin remodeling complex 

RSC (which contains an H3K14ac-binding bromodomain), and the histone chaperone 
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complex FACT (which binds to Sas3), to promote transcription initiation at a subset of 

genes (Ishimi and Kikuchi, 1991; John et al., 2000; Park et al., 2005; Smart et al., 2009; 

Taverna et al., 2006; VanDemark et al., 2008).   

Other histone PTMs positioned within gene bodies further facilitate transcription 

and maintain transcript fidelity (Fuchs et al., 2009; Lee and Shilatifard, 2007; Smolle et 

al., 2013; Wagner and Carpenter, 2012). In S. cerevisiae, the Set2 HMT localizes to the 

bodies of actively transcribed genes (Pokholok et al., 2005; Strahl et al., 2002) by 

physically binding to the hyperphosphorylated C-terminal domain (CTD) of RNAPII 

(Kizer et al., 2005; Krogan et al., 2003; Li et al., 2003; Li et al., 2002; Schaft et al., 2003; 

Xiao et al., 2003). CTD binding by Set2 is required for the establishment of H3K36me3 

(Kizer et al., 2005). H3K36 methylation correlates with transcription elongation in yeast 

(Kizer et al., 2005; Krogan et al., 2003; Morris et al., 2005; Pokholok et al., 2005; Schaft 

et al., 2003) and maintains chromatin integrity by recruiting complexes that collectively 

restore chromatin structure (Lee and Shilatifard, 2007; Smolle et al., 2013; Wagner and 

Carpenter, 2012).  For example, the histone deacetylase (HDAC) complex, Rpd3S, 

engages H3K36me2 via the chromodomain of Eaf3 and the PHD finger of Rco1 

(Carrozza et al., 2005; Huh et al., 2012; Joshi and Struhl, 2005; Keogh et al., 2005; Li et 

al., 2007a; Li et al., 2009; Sun et al., 2008; Xu et al., 2008).  Rpd3S generates a 

hypoacetylated environment behind the elongating RNAPII, which compacts chromatin 

and represses cryptic transcription (Carrozza et al., 2005; Keogh et al., 2005; Li et al., 

2007b; Li et al., 2009; Lickwar et al., 2009). H3K36me3 also maintains chromatin 

integrity by blocking trans-histone exchange through at least two mechanisms: the steric 

reduction of histone chaperone affinity for histone targets (Venkatesh et al., 2012) and 
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the recruitment of chromatin remodelers that preserve H3K36me3/hypoacetylated 

histones (Maltby et al., 2012; Smolle et al., 2012; Smolle et al., 2013). Specifically, 

H3K36me3 precludes Asf1 from depositing newly synthesized histones (Venkatesh et 

al., 2012) and recruits the ATP-dependent remodeler, Iws1b, via the Pro-Trp-Trp-Pro 

(PWWP) domain of the Ioc4 subunit, to position nucleosomes in a manner that 

stimulates Rpd3S activity (Lee et al., 2013; Maltby et al., 2012; Smolle et al., 2012).  

Recently, human PWWP domain proteins have been shown to bind H3K36me3 

(Vermeulen et al., 2010; Wu et al., 2011) and perform a variety of functions, including 

the regulation of transcription (Laue et al., 2008; Vezzoli et al., 2010), DNA methylation 

guidance (Dhayalan et al., 2010), and alternative splicing  (Pradeepa et al., 2012). 

Using recent advances in mass spectrometry, we previously found that Ylr455w, 

an uncharacterized PWWP domain-containing protein (Krogan et al., 2006; Maurer-

Stroh et al., 2003; Tackett et al., 2005b), co-purified with stable members of the NuA3 

HAT complex (Taverna et al., 2006). We propose that Ylr455w be called Pdp3: PWWP 

domain protein in NuA3.  Moreover, Pdp3 (Q09842) is also the name of a PWWP 

domain-containing protein in S. pombe that interacts with homologus subunits of the 

NuA3 complex (Wang et al., 2012).  

Here, we further characterize NuA3 and find two functionally distinct forms: 

NuA3a and NuA3b.  NuA3a binds H3K4me3, through the PHD finger of Yng1, and 

acetylates H3K14 at the 5’-ends of actively transcribed genes to promote transcription 

initiation (Howe et al., 2002; Martin et al., 2006a; Martin et al., 2006b; Taverna et al., 

2006). In contrast, NuA3b contains the unique member, Pdp3, which recruits the 

complex to chromatin through its PWWP domain binding to H3K36me3. Deletion of the 
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PDP3 gene decreases NuA3-directed transcription and results in growth defects when 

combined with transcription elongation mutants, suggesting NuA3b functions in the 

transcription elongation process. While H3K36me2/3 can act as a repressive mark that 

protects chromatin integrity during transcription elongation (Lee and Shilatifard, 2007; 

Smolle et al., 2013; Wagner and Carpenter, 2012), the work described in this study 

suggests that H3K36me3 can also act to positively regulate transcription elongation 

through the recruitment of the NuA3b complex via Pdp3.   

 

Materials and Methods 

Mass Spectrometric Protein Identification 

Pdp3-TAP protein complex purification was performed with S. cerevisiae grown 

to log phase in YPD essentially as described to maintain complex integrity (Tackett et 

al., 2005a; Tackett et al., 2005b).  Proteins co-purifying with Pdp3 were subjected to 

tandem MS analysis of peptides with a Thermo LTQ-XL mass spectrometer coupled to 

an Eksigent nanoLC 2D system as described (Smart et al., 2009). Spectral counts and 

proteins were identified with Mascot.   

 

Database Searching 

Tandem mass spectra were extracted by Thermo ExtractMSn version 1.0.0.8. 

Charge state deconvolution and deisotoping were not performed. All MS/MS samples 

were analyzed using Mascot (Matrix Science, London, UK; version 2.3.01). Mascot was 

set up to search the SwissProt_57.15 database (selected for Saccharomyces 

cerevisiae, 57.15, 6973 entries), assuming the digestion enzyme was non-specific. 
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Mascot was searched with a fragment ion mass tolerance of 0.60 Da and a parent ion 

tolerance of 2.0 Da. Iodoacetamide derivative of cysteine was specified in Mascot as a 

fixed modification. S-carbamoylmethylcysteine cyclization (N-terminus) of the N-

terminus, oxidation of methionine, pyro-carbamidomethyl of the N-terminus and acetyl 

of asparagine, proline and the N-terminus were specified in Mascot as variable 

modifications. 

 

Criteria for Protein Identification 

Scaffold (version Scaffold_4.0.1, Proteome Software Inc., Portland, OR) was 

used to validate MS/MS based peptide and protein identifications. Peptide 

identifications were accepted if they could be established at greater than 20.0% 

probability by the Peptide Prophet algorithm (Keller et al., 2002). Protein identifications 

were accepted if they could be established at greater than 95.0% probability and 

contained at least 1 identified peptide.  Protein probabilities were assigned by the 

Protein Prophet algorithm (Nesvizhskii et al., 2003). Proteins that contained similar 

peptides and could not be differentiated based on MS/MS analysis alone were grouped 

to satisfy the principles of parsimony. 

 

Protein Expression 

PDP3 constructs were made with an N-terminal HIS6-pfuMBP(60-434)-FLAG tag 

(pET28a derivative vector obtained from the G. Bowman Laboratory, Johns Hopkins 

University) and/or an N-terminal Thioredoxin-HIS6-S•tag tag (pET32a vector, Millipore).  

Proteins were exogenously expressed in BL21 chemically competent E. coli (Invitrogen) 
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after overnight induction with 1 mM IPTG at 18-20 ºC in LB medium.  Point mutants 

were made with the QuikChange Site-Directed Mutagenesis Kit (Stratagene) and 

expressed as described.   

 

Protein Purification 

For pull-down assays, BL21 cells (pET28a constructs) were resuspended in 

purification buffer (50 mM Tris pH 7.5, 500 mM NaCl, 40 mM imidazole, 10% glycerol, 2 

mM -ME, 1 mM PMSF, 2 mM benzamidine, pH 8.0) and lysed by sonication (Branson).  

Clarified lysate was nutated with Ni-NTA agarose resin (Invitrogen) for at least 1 hour at 

4 °C.  Resin was washed with purification buffer and protein was eluted with purification 

buffer containing 300 mM imidazole. Protein was flash frozen in liquid nitrogen and 

stored at −80 °C.  For fluorescence polarization assays, BL21 cells (pET32a constructs) 

were resuspended in purification buffer (50 mM Tris pH 7.7, 500 mM NaCl, 10% 

glycerol, 5 mM DTT, 1 mM PMSF, 2 mM benzamidine) and lysed with a microfluidizer 

(Watts Fluidair). Clarified lysate was run through a BioScale Mini Profinity IMAC 

cartridge (BioRad) using an AKTA Purifier system (GE Healthcare).  The cartridge was 

washed with purification buffer containing 12 mM imidazole and protein was eluted with 

purification buffer containing 125 mM imidazole.  Protein was exchanged into gel 

filtration buffer (50 mM Tris pH 7.5, 500 mM NaCl, 10% glycerol, 5 mM DTT) and 

separated by a Superdex 200 26/60 column (GE Healthcare) using an AKTA Purifier 

system (GE Healthcare).  Monomeric protein was flash frozen in liquid nitrogen and 

stored at −80 °C.     
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In Vivo Pull-down Assays 

TAP-tagged S. cerevisiae strains were grown to mid-log phase in YPD, 

cryogenically lysed with a mixer mill (Retsch MM301), and stored at −80 °C.  Cells (1 g 

per pull-down condition) were homogenized (ProScientific) in 650 mM extraction buffer 

(650 mM NaCl, 20 mM HEPES pH 7.9, 25% glycerol, 1.5 mM MgCl2, 0.2 mM EDTA, 1 

mM PMSF, 0.2% Triton X-100, 1% BSA, 40 mM imidazole) at a ratio of 1 mL buffer per 

1 g yeast and nutated for 1 hour at 4 °C.  Clarified extracts were diluted to 300 mM NaCl 

with ‘no-salt’ extraction buffer, mixed with Ni-NTA agarose resin (Invitrogen) (100 μl per 

sample pre-coated with Pdp3 protein), and nutated for 30 minutes at 4 °C.  Resin was 

washed 5 times in 300 mM wash buffer (300 mM KCl, 20 mM HEPES pH 7.9, 0.2% 

Triton X-100, 1% BSA, 40 mM imidazole) and 1 time in buffer containing 10 mM NaCl 

and 4 mM HEPES pH 7.9.  Resin was incubated in 2X SDS-PAGE loading buffer 

containing 300 mM imidazole for 10 minutes to elute Pdp3-bound proteins.  Samples 

were boiled for 5 minutes, resolved on 8% SDS-polyacrylamide gels, transferred to 

PVDF membrane, and probed with antibodies recognizing the PrA (DAKO P0450, 

1/1500) and FLAG (SIGMA F3165, 1/1000) tags. Immunoblots were visualized using 

HRP-conjugated secondary antibodies and ECL solution (GE Healthcare). Inputs 

represent ~0.02-0 .05% of total yeast lysate.  

 

Peptide Synthesis for Peptide Pull-down Assays 

Peptides were synthesized as previously described by the C. D. Allis Laboratory 

(The Rockefeller University) or the UNC Peptide Synthesis and Arraying Core Facility 

(Rothbart et al., 2012b). 
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Peptide Pull-down Assays 

Steptavidin-coupled Dynabeads (Invitrogen) (25 μl per sample) were incubated 

with biotinylated histone peptides (1 μg per sample) in binding buffer (20 mM HEPES 

pH 7.9, 150 mM NaCl, 0.5 mM PMSF, 20% glycerol, 0.2% Triton X-100, 1% BSA) for 1 

hour at r.t.  Unbound peptide was washed in binding buffer and beads were incubated 

with purified Pdp3 proteins (20 μg per sample) for 1 hour at r.t.  Beads were washed 3 

times for 5 minutes each with binding buffer, and 1 time with buffer containing 4 mM 

HEPES pH 7.9, 10 mM NaCl, 0.5 mM PMSF, 20% glycerol, and 0.2% Triton X-100.  

Peptide-bound proteins were eluted in boiling 2X SDS-PAGE loading buffer.  Samples 

were resolved on 15% SDS-polyacrylamide gels, transferred to PVDF membrane, and 

probed with antibodies recognizing the FLAG (SIGMA F3165, 1/1000) and streptavidin 

(Molecular Probes S-911, 1/10,000) tags. Immunoblots were visualized using HRP-

conjugated secondary antibodies and ECL solution (GE Healthcare).  Inputs represent 

.5μg of Pdp3 proteins.  

 

Peptide Synthesis for Fluorescence Polarization Assays 

Fluorescent peptides were synthesized using standard Fmoc-solid phase peptide 

chemistry on a Prelude Peptide Synthesizer (Protein Technologies). Peptides were 

made on a 0.05 mMol scale with 4 eqs. of amino acids using Rink Amide AM resin 

(Novabiochem) to generate peptide amides. 5-Carboxyfluorescein (5-FAM) (Chempep) 

was coupled to the peptides using Lys(ivDde) (Chempep). The ivDde protecting group 

was orthogonally removed using standard deprotection procedures. The resulting 
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peptides were cleaved using TFA/thioanisole/water/triisopropylsilane/phenol 

(87.5:2.5:2.5:2.5:5 v/v) and purified with a Varian Dynamax Microsorb C18 preparative 

column (Agilent). Purified peptide was lyophilized and its mass was confirmed with an 

Applied Biosystems Voyager DE-STR MALDI-TOF mass spectrometer (Life 

Technologies).  Of note, to obtain the H3K79me3 5-FAM linked peptide, it was 

necessary to install Fmoc-(FmocHmb)Phe-OH (Novabiochem) at F84.    

 

Fluorescence Polarization Assays 

Binding assays were performed as previously described by (Rothbart et al., 

2012a) with the following modifications. Full-length purified wildtype Pdp3, F18A, and 

W21A proteins were exchanged into FP buffer (50 mM Tris pH 7.5, 150 mM NaCl, 5 

mM DTT) and concentrated to ~260-430 μM using Amicon Centrifugal Filter Units 

MWCO 30,000 (Millipore).  Binding assays were performed in a 60 μl volume with 96 

well half area black flat bottom non-binding surface plates (Corning).   Protein was 

serially diluted with FP Buffer in 2-fold increments and incubated with 120 nM of 5-FAM 

labeled histone peptides.  Following a 30-minute equilibration period, fluorescence was 

detected at r.t. with an Infinite M1000 plate reader (Tecan) using a 470 nm excitation 

filter and 527± 20 nm emission filter.  Binding curves were analyzed by the total binding 

equation Y= Bmax* X / (Kd + X) + NS * X + Background, where Bmax= 1 and non-specific 

(NS) and background variables are constrained to be equal between peptides, using 

Prism 5.0 (GraphPad Inc.). Error bars represent the SD of a representative experiment 

(n= 2) performed in triplicate.  
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Yeast Strains and Cell Spotting Assays 

S. cerevisiae strains were created using heterologous gene replacement (Janke 

et al., 2004).  Strains were grown on YPD or synthetic complete (SC) media as 

indicated.  BUR1 delete shuffle strains were grown on SC-Ura plates to maintain the 

wild-type BUR1 plasmid prior to plating on media containing the drug 5-Fluoroorotic acid 

(5-FOA) (Boeke et al., 1987). For cell spotting assays, either 0.5 or 2 ODs of cells were 

5-fold serially diluted, spotted onto the appropriate plates, and incubated at 30 °C for 2-

3 days as indicated. 

 

Immunoblot Analyses for Chromatin Association Assay 

5 ODs of cells were isolated and lysed by bead beating in SUTEB buffer (1% 

SDS, 8 M urea, 10 mM Tris pH 6.8, 10 mM EDTA, 0.01% bromphenol blue) for 3 

minutes.  The lysates were then boiled for 10 minutes and the supernatant was clarified 

and isolated.  5 µl of extracts were resolved on 15% SDS-polyacrylamide gels and then 

transferred to PVDF membrane for 90 minutes at 45 mA.  Blots were dried in methanol, 

washed in TBST (Tris buffered saline with 0.05% Tween 20), and then incubated 

overnight at 4 °C with the indicated antibodies: Protein A (Sigma Aldrich), G6PDH 

(Sigma Aldrich), H3 (in house), H4 (Abcam:  ab10158), H3K14ac (Millipore:  07-353), 

H3K36me3 (Abcam:  ab9050), and H3K4me3 (Active Motif:  39159). Immunoblots were 

visualized using HRP-conjugated secondary antibodies and ECL Prime solution (GE 

Healthcare). 
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Chromatin Association Assay 

Strains were grown overnight in YPD to confluence.  Each strain was diluted to 

0.1 ODs in 50 mLs of YPD and grown to an OD of ~0.8-1.  40-50 ODs of cells were then 

isolated, washed with water and SB buffer (1 M Sorbitol, 20 mM Tris.Cl pH 7.4), and 

frozen at -80 °C until ready for isolation.  Cells were resuspended in 1 mL of PSB buffer 

(20 mM Tris.Cl pH 7.4, 2 mM EDTA, 100 mM NaCl, 10 mM β-ME) and then 1 mL of SB 

buffer.  Cells were then spheroplasted with Zymolyase (Seikagaku Biobusiness) for 30 

minutes at r.t.  Spheroplasts were spun down at 2000 x g and washed with LB (0.4 M 

Sorbitol, 150 mM potassium acetate, 2 mM magnesium acetate, 20 mM PIPES pH 6.8) 

twice.  TritonX-100 was added to LB (final concentration 1%).  Cells were lysed for 15 

minutes on ice.  Chromatin was isolated by spinning down lysates at 5000 x g for 15 

minutes.  The supernatant was collected and saved as the “soluble” fraction.  The 

chromatin was washed with LB once more and then resuspended into an equal volume 

to that of the “soluble” fraction.   Volume equivalents were resolved on 15% SDS-

polyacrylamide gels and subjected to immunoblot analysis. 

 

Relative Transcript Levels 

Total RNA was prepared from TAP-tagged YNG1, PDP3, yng1∆, and pdp3∆ S. 

cerevisiae strains via Trizol (Life Technologies) and digested with Turbo DNase (Life 

Technologies). cDNA was synthesized with the Superscript III First Strand Synthesis 

System (Invitrogen).  Differences in the transcript levels of control genes and NuA3 

target genes were measured by qPCR using Power SYBR Green PCR Master Mix (Life 
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Technologies) and a Real Time PCR system (Applied Biosystems v2.1). Primers were 

designed by Primer3 to target the 5’-end of our genes of interest.  Relative transcript 

levels were calculated using the relative standard curve method. Error bars represent 

the SEM of a representative experiment (n=4) done in triplicate.  Statistical significance 

was determined by an unpaired two-tailed t-test. 

 

Results 

Pdp3 interacts with members of the NuA3 HAT complex 

Eaf6, Nto1, Sas3, Taf14, and Yng1 were previously identified as stable members 

of the S. cerevisiae NuA3 HAT complex (Eberharter et al., 1998; Howe et al., 2002; 

John et al., 2000; Taverna et al., 2006).  Pdp3 (Ylr455w), an uncharacterized PWWP 

domain-containing protein (Krogan et al., 2006; Maurer-Stroh et al., 2003; Tackett et al., 

2005b), also showed modest association with the complex (Taverna et al., 2006), as 

determined through isotopic differentiation of interactions as random or targeted (i-

DIRT) technology (Tackett et al., 2005a).  Interestingly, BRPF1, a component of human 

MOZ/MORF HAT complexes and a homolog of yeast Nto1, contains a PWWP domain 

that is absent in Nto1 (Doyon et al., 2006; Laue et al., 2008; Vezzoli et al., 2010).  We 

reasoned Pdp3 might function similarly to the PWWP domain of BRPF1 in the NuA3 

complex.  Genomically TAP-tagged Pdp3 was isolated from S. cerevisiae using a 

method that preserves complex integrity (Tackett et al., 2005a; Tackett et al., 2005b).  

Proteins co-purifying with Pdp3-TAP were resolved by SDS-PAGE and subjected to 

MS/MS analysis.  Using a 95% protein confidence threshold, 96 proteins were identified 

by MS/MS (Figure 2.1A). A functional classification of the proteins identified revealed 12 
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proteins with functions related to transcription (Figure 2.1A). The remaining 84 proteins 

were “non-specific” co-purifying proteins (e.g., ribosomal, metabolic, nucleolar, heat 

shock) typically observed in these types of large-scale affinity enrichments (Byrum et 

al., 2012; Byrum et al., 2013; Smart et al., 2009; Tackett et al., 2005a). Specific proteins 

co-purifying with Pdp3-TAP include all stable members of NuA3 (Eaf6, Nto1, Sas3, 

Taf14, Yng1) (Eberharter et al., 1998; Howe et al., 2002; John et al., 2000; Taverna et 

al., 2006), core histones (H3, H4, H2A, H2B), and components of RNAPII (Rpb2, Rpb4). 

These co-purifications suggest that Pdp3 is a component of the NuA3 complex and that 

Pdp3 is involved transcriptional regulation.     

To confirm that Pdp3 is a member of the NuA3 complex, we tested the ability of 

full-length recombinant Pdp3 to pull-down NuA3 subunits from cellular extracts (Figure 

2.1B).   HIS6-FLAG-tagged Pdp3 was purified from E. coli and incubated with lysates 

from S. cerevisiae endogenously expressing TAP-tagged NuA3 subunits.  

Immunoprecipitated samples were resolved by SDS-PAGE and visualized with an 

antibody against the TAP tag.  HIS6-FLAG-Pdp3 interacts with Yng1, Nto1, and Sas3 

(Figure 2.1B), supporting the MS/MS results (Figure 2.1A).  Neither Taf14 nor Eaf6 

were detected in recombinant Pdp3 pull-downs, which may indicate that these proteins 

do not interact with Pdp3 (Figure 2.1B, data not shown); however, we cannot exclude 

the possibility that the TAP tag disrupts native interactions.  Also, since Taf14 is a 

member of multiple chromatin-associated complexes (Kabani et al., 2005), the quantity 

of soluble Taf14 available to be pulled down in this assay may be insufficient to detect.  
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Pdp3 specifically engages H3K36me3 through a conserved PWWP domain 

H3K36me3 localizes to actively transcribed gene bodies and is associated with 

transcription elongation in yeast (Kizer et al., 2005; Krogan et al., 2003; Morris et al., 

2005; Pokholok et al., 2005; Schaft et al., 2003).  BRPF1, a human homolog of yeast 

Nto1 (Doyon et al., 2006), engages H3K36me3 through a PWWP domain (Laue et al., 

2008; Vezzoli et al., 2010) (Figure 2.2) that is absent in Nto1.  Interestingly, structural 

modeling predicts that Pdp3 contains a PWWP domain with aromatic residues critical 

for methyl-lysine binding, as well as beta strands and alpha helices conserved in other 

PWWP-domain containing proteins that bind methyl-lysine (Figures 2.2, 2.3A, 2.3B). 

Because of the structural conservation with the BRPF1 PWWP domain and the 

homology between the human and yeast HAT complexes, we reasoned that Pdp3 might 

bind H3K36me3. Therefore, we tested the ability of tri-methylated histone peptides to 

pull down full-length recombinant Pdp3 (Figure 2.3C). Biotinylated peptides were 

immobilized on streptavidin resin and incubated with HIS6-FLAG-Pdp3.  

Immunoprecipitated samples were resolved by SDS-PAGE and visualized with 

antibodies against FLAG and streptavidin. Pdp3 preferentially engages H3K36me3 

compared to all other tri-methylated lysine residues tested (Figure 2.3C). 

 

A conserved aromatic cage within the Pdp3 PWWP domain is required for binding 

H3K36me3 

Like other Royal Family reader modules, PWWP domains employ an aromatic 

cage to interact with specific tri-methylated histones (Figure 2.2) (Taverna et al., 2007; 
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Vermeulen et al., 2010; Vezzoli et al., 2010; Yap and Zhou, 2010).  For example, 

BRPF1 requires aromatic residues Y1096, Y1099, and F1147 to coordinate the tri-

methylammonium group of H3K36me3 (Figure 2.2) (Vezzoli et al., 2010). These 

aromatic residues are conserved in the PWWP domain of Pdp3 at positions F18, W21, 

and F48 (Figures 2.2, 2.3A, 2.3B).  To determine whether Pdp3 uses an aromatic cage 

to bind H3K36me3, we tested the ability of H3K36me3 peptide to pull down full-length 

recombinant Pdp3 mutated at residues F18, W21, or F48 (Figure 2.3D). All three 

mutations independently abolish the interaction between Pdp3 and H3K36me3 peptide 

(Figure 2.3D), suggesting Pdp3 requires a conserved aromatic cage to bind chromatin. 

 

The Pdp3 PWWP domain is necessary and sufficient for binding H3K36me3 

 We next wanted to determine whether the predicted PWWP domain of Pdp3 was 

sufficient for H3K36me3 binding. Uniprot defined the Pdp3 PWWP domain as the amino 

acid residues spanning 7-68 (Figure 2.3B) (Dimmer et al., 2012). However, we found 

that truncated Pdp3 (PWWP1-74) is unable to bind H3K36me3 peptide (Figure 2.3D), 

suggesting residues beyond the predicted PWWP domain are necessary for Pdp3 

function. From the crystal structure of BRPF1 (Vezzoli et al., 2010), we observed that 

two C-terminal alpha-helices support the aromatic cage and may be critical for 

engagement of H3K36me3 (Figure 2.2). These alpha-helices are conserved in the 

structural model of Pdp3 (Figure 2.2) (Kelley and Sternberg, 2009), yet extend beyond 

the predicted PWWP domain (Figures 2.3A, 2.3B ).  We created Pdp3 constructs to 

include increasing segments of the (modeled) C-terminal alpha-helices and tested the 

ability of H3K36me3 peptide to pull-down PWWP1-110, PWWP2-150, and PWWP1-219.  As 
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shown in Figure 2D, PWWP2-150 restores binding to H3K36me3 and thus represents the 

functional PWWP domain of Pdp3 (Figure 2.3B). These data suggest Pdp3, and likely 

other PWWP domain proteins, require extended alpha-helical regions for aromatic cage 

stability and function. 

 

Biophysical characterization of the interaction between Pdp3 and H3K36me3 

To biophysically quantitate the specificity of the interaction between Pdp3 and 

H3K36me3, we performed fluorescence polarization assays using full-length 

recombinant S·tag-Pdp3 and 5-FAM labeled histone peptides (Figure 2.3E). As 

expected from our pull-down assays, Pdp3 favors binding to the H3K36me3 peptide 

over other known targets of PWWP domain proteins, such as H3K79me3 and 

H4K20me3, with a Kd of 69.51  3.7 μM (Figure 2.3E) (Qiu et al., 2012; Wu et al., 2011). 

Notably, this value is one of the lowest reported dissociation constants for PWWP 

domain proteins that bind histones (Dhayalan et al., 2010; Qiu et al., 2012; Vezzoli et 

al., 2010; Wen et al., 2014; Wu et al., 2011), which suggests Pdp3 is present in a 

subset of H3K36me3 enriched chromatin. Pdp3 mutants F18A and W21A bind 

H3K36me3 peptide ~10 fold weaker than wildtype Pdp3 (Figure 2.3E), further indicating 

Pdp3 requires the aromatic cage within its PWWP domain to engage H3K36me3.  Pdp3 

also binds weakly to H3K36me2 peptide with a Kd of ~414 μM (Figure 2.3E). 

Importantly, the ~6 fold increase in specificity of Pdp3 for H3K36me3 over H3K36me2 

suggests Pdp3 has a distinct function from the Rpd3S HDAC complex, which 

preferentially engages H3K36me2 (Carrozza et al., 2005; Huh et al., 2012; Li et al., 

2007a; Li et al., 2009; Youdell et al., 2008) and restores chromatin compaction behind 
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elongating RNAPII (Carrozza et al., 2005; Keogh et al., 2005; Li et al., 2007b; Li et al., 

2009; Lickwar et al., 2009). 

 

Pdp3 requires H3K36me3 to bind chromatin 

To further understand the biological role of Pdp3, we next determined whether 

Pdp3 binds H3K36me3 in vivo.  We deleted the H3K36me3 methyltransferase, SET2, in 

the PDP3-TAP background and used a chromatin association assay to separate soluble 

proteins from those that bind to chromatin.  For added controls, we also deleted the 

H3K4me3 methyltransferase, SET1, and the NuA3 H3K4me3 binding protein, YNG1. 

Strikingly, in the absence of Set2, and thus H3K36me3, we observe an almost complete 

ablation of Pdp3 binding to chromatin (Figure 2.4A), indicating H3K36me3 is critical for 

Pdp3 localization in vivo. In contrast, Pdp3 remains bound to chromatin in the absence 

of Set1 (H3K4me3) and Yng1 (Figure 2.4A).  The observation that Pdp3 engages 

chromatin independently of both H3K4me3 and Yng1 suggests that Pdp3 targets NuA3 

and other associated proteins to active coding regions, where the majority of 

H3K36me3 is confined within yeast chromatin (Pokholok et al., 2005; Rando, 2007; 

Venkatesh et al., 2012). Interestingly, in the absence of Yng1 we note a slight decrease 

in the amount of chromatin-bound Pdp3 (Figure 2.4A), as well as lower levels of cellular 

Pdp3 (Figure 2.5A). Together, these data suggest Pdp3 is moderately unstable in 

yng1∆ cells, perhaps due to an inability to be incorporated into NuA3.     

 We next deleted SET1, SET2, and PDP3 in the YNG1-TAP background. In 

contrast to Pdp3, Yng1 remains bound to chromatin in the absence of either Set1 or 

Set2 (Figure 2.4B).  Furthermore, Yng1 levels are not significantly altered in pdp3∆ cells 
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(Figure 2.5B). These results are consistent with past studies (Chruscicki et al., 2010; 

Martin et al., 2006a; Martin et al., 2006b) and further suggest that while Yng1 can 

engage chromatin through both methyl-dependent and independent means, the 

interaction between Pdp3 and chromatin requires H3K36me3.  

 

Pdp3 is required for NuA3-regulated transcription  

Mutation of the Yng1 PHD finger results in genome-wide mislocalization of NuA3 

and decreased transcription of NuA3-regulated loci (Taverna et al., 2006). To further 

assess the function of Pdp3 in vivo, we performed RT-qPCR with wildtype, pdp3∆, and 

yng1∆ cells, and calculated the relative transcript levels of NuA3-regulated loci (Figure 

2.6A). As expected, in yng1∆ cells relative transcript levels of NuA3 target genes show 

a slight but significant decrease, indicating a positive role for Yng1 in NuA3 activity at 

these genes (Figure 2.6A) (Doolin et al., 2001; Tadauchi et al., 2001; Taverna et al., 

2006).  Interestingly, in pdp3∆ cells relative transcript levels of NuA3 target genes also 

decrease (Figure 2.6A). These data indicate that NuA3 binding to both H3K4me3, via 

Yng1, and H3K36me3, via Pdp3, is required for proper NuA3-directed transcription. 

 

PDP3 and other NuA3 members show genetic interactions with SET2 

Since Pdp3 binds H3K36me3 and is required for proper transcription in vivo, we 

wanted to determine what role, if any, Pdp3 and NuA3 have in the Set2/H3K36 

methylation pathway.  One key function of H3K36 methylation is to act as a negative 

regulator of transcription elongation, which is achieved in part through the recruitment of 

the HDAC Rpd3S (Carrozza et al., 2005; Joshi and Struhl, 2005; Keogh et al., 2005; Li 
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et al., 2007b; Li et al., 2009; Lickwar et al., 2009). Conversely, the cyclin-dependent 

kinase, Bur1, acts as a positive regulator of transcription through the phosphorylation of 

several components of elongating RNAPII, including the CTD of RNAPII and the Spt5 

C-terminal repeat domain (Keogh et al., 2003; Liu et al., 2009). Under normal conditions 

deletion of BUR1 is lethal; however, deletion of SET2 or RCO1, a unique member of 

Rpd3S, bypasses this lethality (Keogh et al., 2005; Kizer et al., 2005). To explore 

whether Pdp3 and/or Yng1 contribute to transcription elongation, we examined 

deletions of SET2, RCO1, PDP3, and YNG1 in the bur1∆ background.  While the 

bur1∆set2∆ and bur1∆rco1∆ strains bypass the lethality of BUR1 deletion as expected, 

neither bur1∆pdp3∆ nor bur1∆yng1∆ cells are viable (Figure 2.6B).  This suggests that 

either the bypass phenotype is too weak to observe, or Pdp3 and Yng1 function as 

positive elongation factors, and thus would not display a positive growth phenotype in 

this assay. To distinguish between these two possibilities, we created triple mutant 

strains with PDP3 or YNG1 deleted in the bur1∆rco1∆ background. Since this 

background shows a bypass phenotype, we could now observe positive or negative 

growth changes resulting from the absence of Pdp3 or Yng1. Significantly, the triple 

mutant strains both show a decrease in growth as compared to the bur1∆rco1∆ 

background (Figure 2.6B). This suggests that Pdp3 and Yng1 positively regulate 

transcription elongation. These data are consistent with the idea that NuA3 functions at 

promoters and gene bodies to facilitate the passage of RNAPII across ORFs. 

To further connect NuA3 activity to the transcription elongation pathway, we 

asked whether the absence of NuA3 complex members resulted in sensitivity or 

resistance to the transcription elongation inhibitor 6-azauracil (6-AU). Strains containing 
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a deletion of SET2, or downstream effectors, show a 6-AU resistance phenotype 

(Keogh et al., 2005; Kizer et al., 2005). As expected, strains lacking Set2, Rco1, and 

Eaf3, a member of the Rpd3S HDAC and NuA4 HAT complexes, display resistance to 

6-AU as compared to wild-type (Figure 2.6C).  Of all tested NuA3 members, only pdp3∆ 

cells show resistance to 6-AU, a result consistent with the idea that Pdp3 functions in 

the Set2/H3K36 methylation pathway (Figure 2.6C). 

 

PDP3 is not synthetically lethal with GCN5 

It has previously been determined that NuA3 complex members Sas3 and Yng1 

display synthetic lethality with the HAT Gcn5, (Howe et al., 2001) which indicates Gcn5 

and Sas3 likely collaborate to promote gene activation and/or transcription elongation, 

as Gcn5 is found in both the promoters and transcribed regions of genes (Govind et al., 

2007; Sterner et al., 2002). Given the physical interaction and functional overlap 

between NuA3 and Pdp3, we wanted to determine if Pdp3 is also synthetically lethal 

with Gcn5.  We created GCN5 shuffle strains that allowed us to delete YNG1 or PDP3 

in a gcn5∆ background.  Upon shuffling out the wild-type GCN5 plasmid, only the 

gcn5∆yng1∆ cells display synthetic lethality (Figure 2.7). Surprisingly, the gcn5∆pdp3∆ 

cells show no deleterious phenotype (Figure 2.7), indicating PDP3 does not genetically 

interact with GCN5.  These results suggest that NuA3 participates in alternate 

transcriptional pathways, one of which is likely to involve Pdp3 and be distinct from the 

role of Gcn5 in gene bodies. 
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Discussion  

 In this study we characterize a unique form of the NuA3 HAT complex that 

contains the PWWP domain protein Pdp3. Using mass spectrometric, biochemical, and 

genetic approaches, our collective findings suggest that NuA3 exists in two functionally 

distinct forms: NuA3a and NuA3b (Figure 2.8). This nomenclature can be used to 

distinguish different variations of related protein complexes. For example, while the 

ATP-dependent chromatin remodeling complexes Isw1a and Isw1b both have the same 

catalytic protein, Isw1, Isw1b contains a unique PWWP domain protein, Ioc4, required 

for targeting remodeling activity to H3K36me3 enriched nucleosomes (Maltby et al., 

2012; Smolle et al., 2012). For NuA3 complexes, we hypothesize that promoter-

associated NuA3a contains the proteins Eaf6, Nto1, Sas3, Taf14, and Yng1, and 

specifically associates with H3K4me3 using the PHD finger of Yng1 (Figure 2.8A) 

(Howe et al., 2002; John et al., 2000; Martin et al., 2006a; Martin et al., 2006b; Taverna 

et al., 2006).  NuA3a subsequently acetylates H3K14 through the HAT domain of Sas3, 

initiating transcription at a subset of genes (Figure 2.8A) (Howe et al., 2002; John et al., 

2000; Taverna et al., 2006).  In contrast, NuA3b fosters transcription elongation and 

contains the H3K36me3-binding PWWP domain protein Pdp3, in addition to all stable 

components of NuA3a (Figure 2.8B). Accordingly, our previous mass spectrometry (i-

DIRT) data supports the model that NuA3b is compositionally distinct from NuA3a 

(Taverna et al., 2006). However, we cannot exclude the alternate possibility that Pdp3 is 

a member of both NuA3a and NuA3b. To this end, human H3K36me3-binding BRPF 

proteins resemble a fusion of yeast Nto1 and Pdp3, as if these separate NuA3 proteins 

are physically linked within the human MOZ/MORF complexes. This brings up the 
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intriguing possibility that the PWWP domain of Pdp3 (and potentially BRPFs) has a 

regulated capacity to bind H3K36me3, becoming active or inactive in a context 

dependent manner. 

Our data clearly place Pdp3 and NuA3b within the Set2-dependent 

transcriptional elongation pathway. Pdp3 binds to H3K36me3, a Set2-catalyzed histone 

PTM found almost exclusively within transcriptionally active gene bodies (Kizer et al., 

2005; Krogan et al., 2003; Morris et al., 2005; Pokholok et al., 2005; Schaft et al., 2003; 

Strahl et al., 2002); and deletion of the PDP3 gene results in growth defects when 

combined with transcription elongation mutants.   The interaction of Pdp3 with Rpb4 

further supports a role for NuA3b in transcriptional elongation given the links between 

Rpb4 and actively transcribing RNAPII in S. pombe (Kimura et al., 2002). While our data 

indicate that NuA3b positively regulates transcription elongation, the exact function of 

NuA3b remains unclear. Since NuA3-directed transcription is decreased in pdp3∆ cells, 

NuA3b could participate in acetylation-dependent nucleosome eviction within the ORF, 

similar to the proposed function of Gcn5 at coding regions (Ginsburg et al., 2009; 

Govind et al., 2007; Sanso et al., 2011). While both Gcn5 and Sas3 favor acetylation of 

H3K14 (Balasubramanian et al., 2002; Grant et al., 1999; Howe et al., 2002; John et al., 

2000; Kuo and Andrews, 2013; Taverna et al., 2006; Zhang et al., 1998), unlike NuA3a, 

NuA3b is not synthetically lethal with Gcn5, suggesting Sas3 within the context of 

NuA3b may have a distinct target(s) at ORFs (Figure 2.8B). This result and the finding 

that HBO1 (a related human MYST family HAT) can switch between H4 and H3 

acetylation depending on its association with JADE1/2/3 or BRPF1, support the idea 

that NuA3b may target non-H3K14 substrates (Lalonde et al., 2013). However, future 
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work is needed to determine the precise mechanism of NuA3b function in the 

transcription elongation process. 

A recurring question in chromatin biology is how the addition or removal of 

methylation groups on specific lysine residues can alter functional properties of the 

associated chromatin.  In yeast, Set2 catalyzes all three forms of H3K36 methylation 

(Strahl et al., 2002).  To date, H3K36me1 is suggested to function in DNA replication 

(Pryde et al., 2009), and while H3K36me2 and me3 are both linked to transcriptional 

elongation, H3K36me2 is essential for Rpd3S recruitment (Carrozza et al., 2005; Huh et 

al., 2012; Joshi and Struhl, 2005; Keogh et al., 2005; Li et al., 2007a; Li et al., 2009; 

Sun et al., 2008; Xu et al., 2008) and H3K36me3 is implicated in nucleosomal 

positioning and repression of trans-histone exchange (Maltby et al., 2012; Smolle et al., 

2012; Venkatesh et al., 2012). Interestingly, unlike H3K36me2, the establishment of 

H3K36me3 specifically requires Set2 association with the CTD of RNAPII, and 

H3K36me3 is positively correlated with the rate of transcription (Pokholok et al., 2005). 

In this report, we determine that H3K36me3 associates with Pdp3, thereby providing a 

novel effector protein for this mark in yeast. The finding that the HDAC Rpd3S is linked 

to H3K36me2 while the HAT complex NuA3b is linked to CTD-dependent H3K36me3, 

suggests differential methylation of H3K36 may act as a “chromatin switch” to regulate 

overall levels of transcription. For example, on lowly transcribed genes, the H3K36me2 

state may predominate and recruit Rpd3S to maintain a more repressed chromatin 

environment suitable for low-level transcription.  Conversely, on highly transcribed 

genes, H3K36me3 may predominate and recruit NuA3b to facilitate nucleosome 

disruption for RNAPII elongation.  Alternatively, both H3K36me2 and me3 may be 
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coordinating HDAC and HAT activities together, within the same coding region, to 

properly modulate the progression of RNAPII during transcriptional elongation. Although 

speculative, these intriguing models await testing. 

Finally, NuA3 joins a growing list of HAT complexes, which can localize to both 

promoters and gene bodies by modulating complex components (Ginsburg et al., 2009; 

Govind et al., 2007; Kremer and Gross, 2009; Kristjuhan and Svejstrup, 2004; Wyce et 

al., 2007). Whether NuA3b engages a dual H3K4me/H3K36me signature through the 

combinatorial action of the PHD finger of Yng1 and the PWWP domain of Pdp3, to fine 

tune transcription initiation and elongation pathways, remains an important question 

(Taverna et al., 2006) as mutations in chromatin effector proteins are linked to a wide 

array of epigenetic diseases (Baker et al., 2008; Butler et al., 2012). Relevant to this 

work, mutations of NuA3 human homologs (Doyon et al., 2006; Vezzoli et al., 2010) are 

associated with oral squamous cell carcinoma (Cengiz et al., 2010) and acute myeloid 

leukemia (Avvakumov and Cote, 2007).  Accordingly, HATs and many other chromatin-

bound protein complexes are gaining favor as pharmaceutical targets (Gunduz et al., 

2008; Helin and Dhanak, 2013; Natoli, 2009; Taverna and Cole, 2010).  Therefore, 

future studies of Pdp3 and NuA3 functions in yeast may elucidate how human 

chromatin effector proteins that are dysregulated in disease can be modulated by drugs 

targeting the epigenome. 
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Figure Legends 

Figure 2.1:  Pdp3/YLR455W is associated with the NuA3 complex, chromatin, and 

RNAPII   

A. Proteins co-purifying with Pdp3-TAP bait that are involved in transcriptional 

regulation. Bulk MS/MS data are reported for proteins affinity purified by Pdp3 after 

searching with Mascot.  B.  Whole cell extracts (WCEs) from the indicated TAP-tagged 

yeast strains were immunoprecipitated with HIS6-FLAG-Pdp3 treated (+) and untreated 

(-) resin.  WCEs (inputs) and immunoprecipitated samples (IPs) were resolved by SDS-

PAGE. The presence of NuA3 complex members was monitored by western blotting. 

 

Figure 2.2:  The PWWP domain of Pdp3 is structurally conserved 

Crystal structure of human BRPF1 (slate) bound to H3K36me3 peptide (purple) (top) 

(PDB ID: 2X4w) and the predicted structure of Pdp3 (brown) bound to H3K36me3 

peptide (purple) in the same orientation (bottom).  Note that Pdp3 is predicted to have 

similar placement of the three hydrophobic residues (yellow) in BRPF1 that are required 

for binding to H3K36me3.  The Pdp3 structure was modeled on 2X4W using Phyre2, 

minimized with MOE, and rendered with PyMOL. 

 

Figure 2.3:  NuA3 specifically interacts with H3K36me3 through the PWWP domain of 

Pdp3 

A.  Clustal W alignment of PWWP domain-containing proteins.  Beta sheets 

(arrows/underlined sequence) and alpha helices (cylinders/grey shading) are annotated.  

Aromatic cage residues are highlighted in yellow.  B.  Schematic representation of the 
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Pdp3 protein.  The predicted (red outline) and functional (tan hexagon) PWWP domains 

are annotated.  Aromatic cage residues F18, W21 and F48 are highlighted in yellow. 

C.  Peptide pull-down assays were performed with full-length HIS6-FLAG-Pdp3 and 

biotinylated histone peptides. Purified protein (input) and immunoprecipitated samples 

(IPs) were resolved by SDS-PAGE.  Direct binding was monitored by western blotting. 

D. Peptide pull-down assays were performed with full-length HIS6-FLAG-Pdp3, mutants 

F18A, W21A, and F48A, truncations PWWP(1-74), PWWP(1-110), PWWP(2-150), PWWP(1-

219), and C-term(74-304), and biotinylated histone peptides. Purified proteins (inputs) and 

immunoprecipitated samples (me0 and 36me3) were resolved by SDS-PAGE. Direct 

binding was monitored by western blotting.  E.  Fluorescence polarization assays were 

used to measure binding affinities of full-length S·tag-Pdp3 and mutants F18A and 

W21A to the indicated 5-FAM labeled histone peptides. Error bars are the standard 

deviation from triplicate analyses of a representative experiment (n= 2). 

 

Figure 2.4:  Pdp3, but not Yng1, requires H3K36me3 for chromatin association in vivo 

A.  TAP-tagged Pdp3 yeast strains and B.  TAP-tagged Yng1 yeast strains were 

biochemically fractionated into chromatin-associated proteins and soluble proteins.  

Fractions were probed for the presence of Pdp3 and Yng1, respectively.  G6PDH and 

H4 serve as both loading and fractionation controls.   
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Figure 2.5:  Input levels for Pdp3 and Yng1 used in chromatin association assays 

A.  Whole cell extracts (WCEs) were made from 5 ODs of the indicated TAP-tagged 

Pdp3 or B.  Yng1 yeast strains.  WCEs were resolved by SDS-PAGE, transferred to 

PVDF membrane, and probed with the indicated antibodies. 

 

Figure 2.6:  NuA3 requires both Yng1 and Pdp3 to promote transcription 

A.  RT-qPCR analysis of pdp3Δ and yng1Δ cells to determine the relative transcript 

levels of NuA3-target genes and non-target genes (SSA1 and SSB1) as compared to 

WT.  Transcript levels were normalized to Actin expression.  Error bars represent the 

SEM of a representative experiment (n=4) done in triplicate. Asterisks indicate statistical 

significance as determined by an unpaired two-tailed t-test.   * = p< .05, ** =  p< .01, *** 

= p< .001.  B.  2 ODs of the indicated yeast strains were 5-fold serially diluted on SC-

Ura (left) or SC-Ura + 5-FOA (right) plates and grown at 30 oC for two or three days, 

respectively.  C.  0.5 ODs of the indicated yeast strains were 5-fold serially diluted onto 

SC-Ura (left) or SC-Ura + 150 µg/mL 6-AU (right) plates and grown at 30 oC for two 

days. 

 

Figure 2.7:  The NuA3a complex, but not the NuA3b complex, is synthetically lethal with 

Gcn5 

0.5 ODs of the indicated yeast strains were 5-fold serially diluted onto SC-Ura (top) or 

SC-Ura + 5-FOA (bottom) plates and grown at 30 oC for two days. 
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Figure 2.8:  The NuA3 HAT complex has two functionally distinct forms that participate 

in transcription 

A.  Model of the NuA3a HAT complex. Yng1 binds to H3K4me3 through its PHD finger, 

thereby recruiting NuA3a to the promoter regions of actively transcribed genes.  Sas3 

then acetylates H3K14, leading to transcription initiation at a subset of genes (Howe et 

al., 2002; John et al., 2000; Martin et al., 2006a; Martin et al., 2006b; Taverna et al., 

2006).  B.  Model of the NuA3b HAT complex.  NuA3b contains a unique member, 

Pdp3.  Pdp3 binds to H3K36me3 through its PWWP domain, thereby recruiting NuA3b 

to the coding regions of actively transcribed genes.  Sas3 may then acetylate histones 

and provide a more open chromatin environment to facilitate the passage of RNAPII 

during transcription elongation. 
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Figure 2.1: 
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Figure 2.2: 

  



 59 

Figure 2.3: 
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Figure 2.4: 
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Figure 2.5: 
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Figure 2.6: 
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Figure 2.7: 
 

 
  



 64 

Figure 2.8: 
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CHAPTER 3 – COMBINATORIAL HISTONE READOUT BY THE DUAL PLANT 

HOMEODOMAIN (PHD) FINGERS OF RCO1 MEDIATES RPD3S CHROMATIN 

RECRUITMENT AND THE MAINTENANCE OF TRANSCRIPTIONAL FIDELITY2 

 
Introduction 

Post-translational modifications (PTMs) on histone proteins play a critical role in 

many DNA-templated processes, particularly the control of gene transcription.  

Complexes that modify and remodel chromatin to regulate proper transcription contain 

proteins with conserved recognition domains that bind either modified or unmodified 

residues within histone proteins (Lalonde et al., 2014; Musselman et al., 2012; Yun et 

al., 2011).  Because these PTMs are dynamically regulated and are targeted to specific 

locations across the open reading frame of genes, effector proteins/complexes that read 

these PTMs can be recruited in a spatio-temporal manner to control chromatin structure 

and RNA polymerase II (RNAPII) elongation during transcription (Bannister and 

Kouzarides, 2011).  For example, histones are hyperacetylated in front of elongating 

                                                        
2 Portions of this chapter were adapted from McDaniel, S.L., Fligor, J.E., Ruan, C., Cui, 
H., Bridgers, J.B., DiFiore, J.V., Guo, A.H., Li, B., and Strahl, B.D. (2016). Combinatorial 
Histone Readout by the Dual Plant Homeodomain (PHD) Fingers of Rco1 Mediates 
Rpd3S Chromatin Recruitment and the Maintenance of Transcriptional Fidelity. The 
Journal of biological chemistry 291, 14796-14802. 
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RNAPII allowing for nucleosome disassociation and are hypoacetylated behind RNAPII 

to maintain chromatin structure and prevent inappropriate cryptic transcription (Wagner 

and Carpenter, 2012).  The deacetylation of nucleosomes in transcription is carried out 

by histone deacetylase complexes (HDAC), which typically have one or more reader 

domains that are able to engage chromatin.  This multi-domain structure allows for 

recognition of increasingly complex and specific chromatin environments.   

Rpd3S, an HDAC that functions in a co-transcriptional manner, has five 

conserved chromatin-binding domains: a chromodomain in Eaf3, which recognizes 

Set2-mediated histone H3 lysine 36 methylation (H3K36me) (Carrozza et al., 2005; 

Joshi and Struhl, 2005; Keogh et al., 2005), and four plant homeo-domains (PHDs), two 

per copy of Rco1, which has recently been shown to form a homo-dimer in Rpd3S 

(Figure 1A) (Ruan et al., 2016a).  The chromodomain of Eaf3 and the N-terminal PHD 

finger of Rco1 (PHD1) have previously been characterized and are necessary for 

Rpd3S function and nucleosome engagement (Carrozza et al., 2005; Joshi and Struhl, 

2005; Keogh et al., 2005; Li et al., 2007a).  PHD1 is thought to engage H3 on one 

nucleosome while the chromodomain of Eaf3 recognizes H3K36me on a neighboring 

nucleosome, allosterically activating the deacetylase activity of Rpd3 (Lee et al., 2013; 

Ruan et al., 2015).  This activity is necessary to enforce chromatin integrity and 

transcriptional fidelity across the transcribed regions of genes, thereby preventing the 

formation of pervasive cryptic unstable transcripts (CUTs) and stable untranslated 

transcripts (SUTs) (Carrozza et al., 2005; Churchman and Weissman, 2011; Li et al., 

2007a; Lickwar et al., 2009).  It has been recently shown that the Set2/Rpd3S pathway 

is particularly important for repressing antisense transcription from divergent promoters 
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(Churchman and Weissman, 2011).  While significant advances have been made in 

understanding the role of Rpd3S in cells, the precise mechanism by which Rpd3S is 

targeted to chromatin and mediates its function is still poorly understood.  

In this report, we interrogated the role of the C-terminal PHD finger in Rco1 

(PHD2), which had not been previously investigated.  We show that PHD2 is a 

functional domain and recognizes the unmodified N-terminus of H3, as does PHD1.  

Further, mutational analysis shows that nucleosome binding in vitro and chromatin 

association of Rpd3S in vivo depend on the function of both PHD fingers.  Consistent 

with this finding, we demonstrate that mutation of either PHD1 or PHD2 leads to 

chromatin and transcriptional fidelity defects.  Together, our data unveils a critical role 

for two adjacent PHD fingers in coordinating Rpd3S recruitment and function.   

 

Materials and Methods 

Mutagenesis 

Conserved residues were identified and specifically mutated using the Site 

Directed Mutagenesis kit (Stratagene) and confirmed via Sanger sequencing. 

 

Immunoblot 

A single colony was inoculated overnight to saturation and then diluted to an 

OD600=0.2 and grown to mid-log phase.  Five ODs of cells were isolated and lysed via 

bead beating in SUTEB (1% SDS, 8 M urea, 10 mM Tris pH 6.8, 10 mM EDTA, 0.01% 

bromphenol blue) for 3 minutes.  Lysates were boiled for 10 minutes and then isolated.  

Cell debris were removed via centrifugation and the supernatant was isolated.  Cleared 
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lysates were loaded onto 8% SDS-PAGE gels and then transferred to PVDF 

membrane.  Membranes were probed overnight (4oC) with anti-HA (UNC Antibody 

Core) or anti-G6PDH (Sigma). Immunoblots were visualized using HRP-conjugated 

secondary antibodies and ECL Prime solution (GE Healthcare).  

 

Alignment and Molecular Modeling 

Yeast PHD fingers were isolated from the SMART database and aligned using 

the Espript 3.0 tool (Gouet et al., 1999).  PHD1 and PHD2 sequences were then 

modeled using the HHpred tool (Soding et al., 2005) and visualized in Pymol. 

 

Purification of GST-tagged PHD fingers 

The PHD fingers of Rco1 were purified from SOLUBL21 competent E. coli cells. 

Cells were grown in the presence of 1mM zinc. Bacteria pellets were lysed in 50mM 

Tris-HCl, pH 7.4, 130 mM NaCl, 1mM DTT, 1uM ZnCl2, 1mM PMSF, Universal 

Nuclease for Cell Lysis (Pierce, 1:20,000), 1 Roche Protease Inhibitor Cocktail 

tablet/50mL, 1 mg/mL lysozyme (Sigma), 0.1% Triton. Cleared lysate was incubated 

with Pierce glutathione resin for two hours at 4°C. Protein was eluted from the resin in 

50mM Tris-HCl, pH 8.0, 130 mM NaCl, 10mM glutathione, 1mM DTT, and 1 uM ZnCl2. 

Protein was then dialyzed overnight into a storage buffer composed of 50mM Tris-HCl, 

pH 7.4, 130 mM NaCl, 1mM DTT, and 1uM ZnCl2. 
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Overnight Peptide Pull-down  

1 µg of biotinylated histone peptide (Table S3) was incubated with 1 µg of 

purified GST-fusion protein in 1mL of Peptide Binding Buffer (PBB, 50mM Tris-HCl, pH 

7.5, 130 mM NaCl, 0.1% (v/v) NP-40, 1mM phenylmethylsulphonyl fluoride (PMSF), 

1mM DTT, 1uM ZnCl2, and 1 Roche Protease Inhibitor Cocktail tablet/100mL of PBB) 

overnight at 4°C. After incubation for 1 hour at 4°C with streptavidin beads (Pierce), the 

beads were washed three times with 1 mL of PBB. Peptide was then eluted from the 

bead into SDS-loading buffer by boiling for 5 minutes at 98°C. Samples were then 

subjected to western blot analysis and the membrane was probed with GST antibody 

(Sigma, 1:4000) for 1hr at room temperature. Peptide loading was assessed by probing 

the membrane with Streptavidin-HRP (Cell Signaling, 1:5000) for 30 minutes at room 

temperature.  

 

Rpd3 Complex Isolation 

Recombinant Rpd3S complexes were purified from a Sf21 insect cell-based 

baculovirus expression system as described previously (Ruan et al., 2016a; Ruan et al., 

2015). Briefly, freshly passed Sf21 cells were co-infected with individual virus that 

encodes each subunit of Rpd3S for 48 hrs. Cells were collected and lysed in BV lysis 

buffer (50 mM HEPES pH7.9; 300 mM NaCl; 2 mM MgCl2; 0.2% Triton X-100; 10% 

glycerol; 0.5 mM EDTA and freshly added protease inhibitors) on ice for 30 min. Cell 

lysates were clarified by ultra-centrifugation and incubated with anti-FLAG M2 resin 

(Sigma) at 4°C for 2 hr. After extensive washing, each complexes were eluted using 500 
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µg/ml 3xFlag peptides in BV elution buffer (50 mM HEPES pH7.9; 100 mM NaCl; 2 mM 

MgCl2; 0.02% NP40 and 10% glycerol) and concentrated using Amicon concentrators. 

 

EMSA 

 Mono-nucleosomes were reconstituted using a 222bp 601-positioning sequence 

containing DNA template and purified as described previously (Huh et al., 2012; Yun et 

al., 2012).  EMSA reactions were carried out in a 15 μl system containing 10 mM 

HEPES pH7.8, 50 mM KCl, 4 mM MgCl2, 5 mM DTT, 0.25 mg/ml BSA, 5% glycerol and 

0.1 mM PMSF. The samples were incubated at 30°C for 45 min and run on a 3.5% 

acrylamide (37.5:1, acrylamide:bis-acrylamide) gel at 4°C. 

 

Chromatin Association Assay 

Fifty ODs of mid-log phase cells were isolated and fractionated as previously 

described (Gilbert et al., 2014).  Fractions were immunoblotted and probed with anti-HA 

(UNC Antibody Core), anti-G6PDH (Sigma), or anti-H4 (Millipore). 

 

Rco1 Co-Immunoprecipitation 

All strains were grown overnight in SC-Leu. Cultures were diluted to an OD600 of 

0.2 and grown to log phase in 100 mL of SC-Leu. Cells were pelleted and washed with 

50 mL of dH2O. The pellets were resuspended in 500 µl of Lysis Buffer (Keogh et al., 

2006) and split equally into two tubes. Glass beads were added to bring the total 

volume to 750 µl and samples were vortexed for 12 min, rested for 10 min on ice for a 

total of two times at 4C. Lysates were collected into fresh tubes via centrifugation and 
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the lysates were cleared at max speed for 15 min at 4C. Protein concentration was 

quantified via Bradford assay. An aliquot was taken for input and 1.5 mg/mL of protein 

was incubated overnight in 1 mL of Lysis Buffer at 4C with 1:1000 dilution of Protein A 

antibody (Sigma). Antibody was conjugated to IgG Sepharose beads (GE Healthcare) 

for 2 hours at 4C before being washed with Lysis Buffer and protein eluted with 100 µl of 

5x SDS buffer. Samples were boiled at 95C for 5 min before loaded onto an 8% SDS-

PAGE gel. 

 

Spotting Assays 

All spotting assays were performed with 5-fold serial dilutions of saturated 

overnight cultures of the indicated strains.  Growth was assayed after 2-5 days.  All 

yeast strains used in this study are described in Table S1 and all plasmids are 

described in Table S2. 

 

Results 

Rco1 contains two PHD fingers that bind to the N-terminus of H3  

 Rco1 is a unique member of the Rpd3S complex, which is defined by a N-

terminal PHD finger followed by an auto-inhibitory domain (AI), a Sin3 interaction 

domain (SID), which associates with the MRG domain of Eaf3 (Ruan et al., 2015), and a 

second C-terminal PHD finger (Figure 3.1A).  Although the first PHD finger is required 

for nucleosome binding and Rpd3S function (Li et al., 2007a), its second PHD finger 

(PHD2) remained uncharacterized.  To explore whether PHD2 would encode a 

functional domain, we first performed a sequence alignment of the known PHD fingers 
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from S. cerevisiae (Figure 3.1B) and created structure prediction models in HHpred of 

PHD1 and PHD2 using a PHD domain from CHD4 (PDB ID:  1MM2) as a scaffold 

(Figure 3.1C, 3.1D, and 3.1E) (Kwan et al., 2003).  Our sequence alignments showed 

that both PHD fingers of Rco1 contain the necessary conserved cysteine and histidine 

residues needed for the coordination of two zinc ions – a feature that defines functional 

PHD fingers.  In addition, structural modeling predicted PHD2 as being a folded domain 

with high structural similarities to PHD1.  Interestingly, PHD2 contains a small sequence 

insertion between the first and second grouping of cysteines and has substituted a 

conserved cysteine residue for an additional histidine at its C-terminus, thus suggesting 

PHD2 slightly differs from other PHD fingers.   

We next interrogated the ability of both PHD1 and PHD2 to directly associate 

with histones. Each domain was expressed and purified as a GST fusion and assayed 

in solution peptide pull-downs for their ability to bind differentially modified biotinylated 

histone peptides from distinct regions of the H3 N-terminus.  As shown in Figure 3.1F, 

we consistently found that both PHD1 and PHD2 preferentially bound to the N-terminal 

region (residues 1-20) of the H3 tail. This result is consistent with previous analyses of 

PHD1 (Kumar et al., 2012; Shi et al., 2007). Interestingly, we also found that tri-

methlyation of K4 (H3K4me3) decreases the ability of both PHD1 and PHD2 to bind N-

terminal H31-20 peptides, suggesting that these domains bind to the extreme N-terminus 

of H3 and are affected by N-terminal PTMs.  Furthermore, this finding may account, at 

least in part, for how Rpd3S is restricted from binding to promoter nucleosomes 

normally marked with H3K4me3.  
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PHD2 is required for Rpd3S association on chromatin in vitro  

Our previous studies demonstrated that PHD1 was essential in mediating Rpd3S 

association on nucleosomes (Li et al., 2007a). Given this, we wondered what the 

contribution would be, if any, for Rco1’s second PHD finger in nucleosome binding or 

Rco1’s homo-dimerization. To ascertain this, we recombinantly expressed the five 

Rpd3S members and assembled in vitro complexes competent for nucleosome binding 

(Figure 3.2A).  In addition to a complete deletion of PHD2 (rco1∆ phd2), we made a 

point mutant in PHD2 predicted to disrupt zinc binding and PHD function (rco1-C417A).  

As shown in Figure 3.2A, both the deletion of PHD2 and the C417A point mutation had 

no effect on Rpd3S complex assembly.  Furthermore, mutation of PHD2 showed no 

defects in Rco1 homo-dimerization by co-immunoprecipitation analysis (Figure 3.3).  

Surprisingly, even though the integrity of Rpd3S complexes with PHD2 mutants was 

fully intact, the ability of these complexes to bind nucleosomes was completely 

abolished (Figure 3.2B) – a result that is identical to the loss of PHD1 (Li et al., 2007a).  

These results imply that both PHD fingers of Rco1 function in a coordinated fashion to 

bind nucleosomes.   

 

PHD1 and PHD2 are required for chromatin association in vivo 

To determine the significance of PHD1 and PHD2 in Rpd3S function in cells, we 

generated a panel of mutations at conserved residues found in both PHD1 and PHD2 

that we predicted to be critical for their function (C275, D276 and H283 in PHD1 and 

C417, M438, C440, and D441 in PHD2).  As shown in Figure 3.2C, nearly wild-type 

levels of protein were obtained for all of the mutants made in PHD2, but two mutants in 
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PHD1 proved to be unstable (C275A and H283A), and therefore were not used further 

in our analyses.  We next assessed the ability of these mutants to affect the association 

of Rpd3S on chromatin in vivo using chromatin-association assays. Yeast cells 

expressing wild-type or mutated versions of Rco1 were fractionated into soluble or 

chromatin-associated fractions (Figure 3.2D). As expected, wild-type Rco1 was 

predominantly found in the chromatin fraction.  In stark contrast, however, the D276A 

PHD1 mutant and C417A and C440A PHD2 mutants were unable to maintain 

association with chromatin.  Hence, PHD1 and PHD2 are both required for chromatin 

association of Rpd3S in vitro and in vivo.   

 

Loss of PHD1 or PHD2 function in Rco1 leads to chromatin structure and 

transcriptional fidelity defects  

 One of the key functions of Rpd3S is to restore chromatin to a hypo-acetylated 

state after the passage of RNAPII during gene transcription (Wagner and Carpenter, 

2012).  This locally compacts chromatin structure, thereby preventing bi-directional 

transcription and RNAPII complexes from binding to cryptic promoter elements along 

the gene and aberrantly initiating transcription.  To monitor cryptic transcription, we 

employed a yeast strain wherein the HIS3 gene is fused to a naturally occurring cryptic 

promoter in the FLO8 gene (Silva et al., 2012). Importantly, HIS3 is out of frame with the 

normal 5’ promoter and only produces a functional transcript if the 3’ cryptic promoter is 

used (see schematic in Figure 3.4A).  Under growth conditions using media lacking 

histidine, cells will not grow if chromatin structure is normal.  As expected, strains 

deleted for RCO1 resulted in a growth phenotype on plates lacking histidine (Figure 
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3.4B), signifying a significant disruption to the chromatin structure at this locus, resulting 

in cryptic transcription occurring at the internal promoter.  This phenotype is rescued by 

the addition of wild-type RCO1. In complete contrast, however, mutations of PHD1 and 

PHD2 that disrupt Rpd3S association to chromatin also result in a cryptic transcription 

phenotype (Figure 3.4B).  Comparison of another reporter gene, STE11, whose natural 

cryptic promoter is also fused to the HIS3 gene showed identical results, thus verifying 

that the cryptic transcription defect we were observing is not a gene specific effect 

(Figure 3.5).  Together, these results show that without PHD1 or PHD2 function, Rpd3S 

is unable to engage chromatin and properly regulate chromatin structure during gene 

transcription. 

 In addition to cryptic transcription, another assay that has been used for the 

analysis of chromatin and transcription defects is the bur1∆ bypass assay. BUR1 is an 

essential kinase that acts positively on transcription by phosphorylating several 

members of the elongating RNAPII including the C-terminal domain of Rpb1 and the C-

terminal repeat domain of Spt5 (Chu et al., 2006; Keogh et al., 2003; Liu et al., 2009).  

However, in the absence of Set2 and other factors in the SET2 genetic pathway (e.g., 

Rpd3S), cells lacking BUR1 are viable.  As expected, loss of RCO1 resulted in a bypass 

of lethality that was rescued upon restoring wild-type RCO1.  Consistent with the role of 

both PHD1 and PHD2 in Rpd3S function, we observed that mutation of either domain 

renders cells resistant to the loss of BUR1 (Figure 3.4C).  Together with the cryptic 

initiation assay, these data show that combinatorial engagement of histone H3 by the 

PHD1 and PHD2 is critical for Rpd3S chromatin recruitment and function during gene 

transcription.  
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Discussion 

Based on the work herein and other recent publications, we propose that Rco1 is 

a critical scaffolding protein that engages the N-termini of histone H3 to stabilize Rpd3S 

on chromatin, thereby optimally positioning Eaf3 for H3K36me2/me3 binding.  With two 

copies of Rco1 per Rpd3S complex, it is likely that one Rpd3S complex is engaged on 

two adjacent nucleosomes whereby all four H3 tails are co-occupied to maintain Rpd3S 

stability on chromatin (see model in Figure 3.4D). Future studies will be needed to 

resolve whether the PHD domains from the same molecule of Rco1 bind both H3 tails in 

a single nucleosome, or if they bind a separate H3 tail from two neighboring 

nucleosomes.  Regardless, having Rco1 co-occupy two nucleosomes would further 

highlight the need and role of Isw1b, which utilizes its ATP-dependent chromatin-

remodeling activities to position adjacent nucleosomes in close proximity for Rpd3S 

binding (Smolle et al., 2012; Venkatesh et al., 2012). Together, these events function to 

allow Rpd3 to deacetylate histones and maintain chromatin integrity during the 

transcription process.   

Our studies showed that both PHD fingers of Rco1 have a similar preference for 

binding to the extreme N-terminus of H3, and further, that this binding is highly sensitive 

to H3K4 tri-methylation.  This result may help to provide an explanation for how Rpd3L 

and Rpd3S binding to discrete regions along the gene are controlled.  Rpd3L, which 

localizes to promoters, does not contain Rco1 but rather two other PHD-containing 

proteins (Cti6 and Pho23) specific for H3K4me3 (Shi et al., 2007; Wang et al., 2011).  

This would help to maintain Rpd3L in promoter regions where H3K4me3 is restricted.  
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In contrast, Rpd3S, which lacks these other PHD-containing proteins for Rco1, is 

repelled by H3K4me3 thereby restricting this complex to gene bodies.  Consequently, 

this would localize the Rpd3S complex in regions with high levels of H3K36me, which is 

then recognized by the chromodomain of Eaf3 (Carrozza et al., 2005; Joshi and Struhl, 

2005; Keogh et al., 2005).  Thus, the different PHD fingers found in Rpd3L and Rpd3S 

likely govern their discrete localizations at genes (see model in Figure 3.4D).   

Finally, we note that while a previous survey of yeast PHD domains was 

performed using solution peptide pull-downs (Shi et al., 2007), our studies differ in 

regards to the ability of PHD1 and PHD2 to bind H3K36me3 – a result that is also true 

for the characterized PHD1 domain of the human Rco1 counterpart, Pf1 (Kumar et al., 

2012). We note that PHD1 and PHD2 expression and maintaining their stability in vitro 

was found to be extremely difficult, and further, that binding and washing conditions 

greatly impacted weak interactions and non-specific binding.  These challenges with 

studying Rco1 may explain how different observations were observed.  

Our results showed that both PHD fingers in Rco1 are required for chromatin 

targeting and Rpd3S function.  This finding strongly argues that Rpd3S is targeted to 

chromatin via combinatorial readout of H3.  We propose that in isolation, PHD1 or 

PHD2 is not robust enough to maintain stable Rpd3S association to nucleosomes, but 

rather, is reinforced when both domains operate in unison, and further, when this occurs 

as a homo-dimer capable of binding four H3 tails.  These four histone binding events 

likely enforce a strict reading of the chromatin environment that requires the appropriate 

spacing of the di-nucleosome substrate imposed by the Isw1b chromatin remodeling 

complex.   
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Finally, we show that loss of H3 binding by either PHD finger of Rco1 results in a 

disruption of chromatin structure that leads to cryptic transcription and transcriptional 

defects. Given the significant role these PHD fingers play, it will be interesting to explore 

whether other chromatin-associated proteins/complexes with multiple PHD fingers 

behave similarly.  In regards to Rpd3L, we predict that this complex’s association to 

promoters will require each of the two PHD domains found in the complex that show 

binding to H3K4me3 (speculated in Figure 3.4D). Taken together, our results with Rco1 

highlight the significance of combinatorial readout in chromatin function and provide 

further support for the ‘histone code’ hypothesis (Strahl and Allis, 2000).  
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Figure Legends 

 

Figure 3.1:  The PHD fingers of Rco1 bind to the extreme N-terminus of H3  

(A) A schematic representation of the Rco1 protein.  PHD fingers are highlighted in 

green with the AI and SID domains in blue and gray, respectively. (B)  An alignment of 

yeast PHD fingers, highlighting the conserved cysteine and histidine residues. (C) A 

molecular model of PHD1.  Zinc atoms are in gray.  (D) A molecular model of PHD2.  

Zinc atoms are in gray.  (E)  A merge of the models of PHD1 and PHD2 show a high 

degree of similarity.  (F) In-solution peptide pull-down assays with PHD1 and PHD2 

were carried out with the indicated histone H3 peptides.  Both domains bind the 

unmodified H3 N-terminus and show sensitivity to H3K4me3.   

 

Figure 3.2:  Both PHD fingers of Rco1 are necessary for association with chromatin 

(A) Coomassie Blue stained gels showing that the Rpd3S complex can be purified intact 

with Rco1 that is WT, C417A, or lacking PHD2. (B) An EMSA assay showing that the 

PHD2 finger of Rco1 is necessary for Rpd3S association with nucleosomes.  (C)  A 

western blot of the indicated strains to examine the stability of the mutated RCO1 

constructs.  All mutations except C275A and H283A were able to sustain near wild-type 

levels of Rco1 protein. (D) Western blot analysis of soluble and chromatin fractions from 

the indicated strains.  Mutation of conserved residues in either PHD finger renders Rco1 

unable to associate with chromatin in vivo. 
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Figure 3.3:  Rco1 dimerization is independent of its PHD fingers 

(A)  Co-immunoprecipitation of endogenous Rco1-TAP with either wild-type or PHD 

mutant Rco1-HA constructs.  Mutation of either PHD finger does not affect Rco1 

dimerization. 

 

Figure 3.4:  Chromatin structure and transcriptional fidelity requires both PHD fingers in 

Rco1   

(A) A schematic of the FLO8-HIS3 fusion gene reporter to detect changes in chromatin 

structure and cryptic transcription.  Cells will only grow in the absence of histidine and if 

the cryptic promoter in front of HIS3 is utilized.  (B) Cryptic initiation spotting assay 

using the FLO8-HIS3 fusion gene reporter.  The indicated strains are spotted in a 5-fold 

serial dilution from a starting OD600 of 0.5.  Plates are imaged after 2-5 days.  (C) A 

BUR1 bypass assay reveals transcriptional elongation defects in Rco1 PHD mutations.  

The indicated strains are spotted in a 5-fold serial dilution from a starting OD600 of 2.0.  

Plates are imaged after 2-3 days.  (D) A model of how Rpd3S and Rpd3L engage 

chromatin.  Each PHD finger of Rco1 engages the N-terminus of H3 while the 

chromodomain of Eaf3 recognizes methylated H3K36, which allosterically activates the 

HDAC activity of Rpd3.  The selectivity of each PHD finger for unmodified H3K4 

(H3K4me0) may be an important contributing factor in Rpd3S localization to gene 

bodies, which are not marked with H3K4me3.  In contrast, Rpd3L contains two PHD 

fingers (one each in Cti6 and Pho23) that do bind to H3K4me3, thus enabling this 

complex to maintain its localization to promoter regions and not gene bodies.  These 
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findings help to further our understanding of combinatorial readout in recruitment of 

chromatin-associated proteins. 

 

Figure 3.5:  Chromatin structure is aberrant in PHD2 mutants   

Cryptic initiation spotting assay using the STE11-HIS3 fusion gene reporter.  The 

indicated strains are spotted in a 5-fold serial dilution from saturated culture.  Plates are 

imaged after 2-5 days. 
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Figure 3.1: 
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Figure 3.2: 
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Figure 3.3: 
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Figure 3.4: 
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Figure 3.5: 
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CHAPTER 4 – HISTONE H3 LYSINE 36 METHYLATION IS NECESSARY FOR 

PROPER TRANSCRIPTIONAL REGULATION DURING THE NUTRIENT STRESS 

RESPONSE IN SACCHAROMYCES CEREVISIAE 

 
Introduction: 

 Eukaryotic DNA complexes with histone proteins to form the basic unit of 

chromatin, the nucleosome.  A vast array of post-translational modifications (PTMs) 

occur on histones and provide distinct binding sites for a wide variety of effector proteins 

to interact with the genome and direct essential DNA-based functions such as gene 

expression and DNA repair (Strahl and Allis, 2000).  Set2 is a highly conserved histone 

methyltransferase that methylates histone H3 at lysine 36 (H3K36) (Strahl et al., 2002; 

Wagner and Carpenter, 2012).  In contrast to higher eukaryotes, Set2 is the sole H3K36 

methyltransferase and is responsible for modifying H3K36 with up to three methyl 

groups, creating mono-, di-, and tri-methylated H3K36 species in the budding yeast 

Saccharomyces cerevisiae. Significantly, increasing evidence in yeast and human cells 

suggest that each H3K36 methyl state is capable of recruiting distinct effector proteins 

(Carrozza et al., 2005; Gilbert et al., 2014; Keogh et al., 2005; Smolle et al., 2012; 

Vermeulen et al., 2010), thereby increasing the signaling capacity of this important 

histone residue.   

 A major function of H3K36me in yeast is to repress bi-directional transcription at 

promoters and the aberrant localization of RNA polymerase II (RNAPII) in gene bodies 
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– each leading to the production of “cryptic” transcripts (Carrozza et al., 2005; Keogh et 

al., 2005).  In large part, H3K36me prevents the production of cryptic transcripts by 

recruiting the ISW1b chromatin remodeling complex, via binding of H3K36me3 by the 

PWWP domain of Ioc4 (Maltby et al., 2012; Smolle et al., 2012), and the Rpd3S histone 

deacetylase complex, via binding of the chromodomain of Eaf3 to H3K36me2/3 

(Carrozza et al., 2005; Joshi and Struhl, 2005; Sun et al., 2008; Xu et al., 2008).  

Together, these complexes function to deacetylate histones in the wake of the 

elongating RNAPII complex (Rpd3S) and restore the nucleosomes to their proper 

positions (ISW1b), thereby preventing RNAPII from aberrantly binding to cryptic 

promoters inside the gene body and preventing bi-directional transcription – thus 

maintaining the proper directionality of transcription (Churchman and Weissman, 2011).  

It is notable that the production of anti-sense transcripts is known to have deleterious 

effects on normal transcript levels, particularly if they overlap with the native promoter 

for that gene (Huber et al., 2016).  Despite the potential for such deleterious effects, it is 

surprising that a loss of Set2 and the production of cryptic transcripts that arise from the 

deletion of SET2 do not result in global changes in the transcriptome (Lenstra et al., 

2011) or loss of cell viability (Strahl et al., 2002); although the loss of transcriptional 

fidelity in set2∆ cells has been shown to result in decreased lifespan in yeast and worms 

(Sen et al., 2015).   

Given the lack of gross transcription changes, but the significance of preventing 

cryptic transcription in set2∆ cells, we asked if Set2 and H3K36me would be important 

for the transcription and/or transcriptional fidelity of other aspects of cellular biology that 

have not yet been investigated.  In particular, we investigated if the loss of 



 

 89 

transcriptional fidelity observed in set2∆ cells would have a negative impact on the 

nutrient stress response, a genetic pathway centered on the highly conserved Tor1 

complex (TORC1).  During stress conditions, cells must initiate well-timed 

transcriptional programs to ensure that they are able to quickly and accurately respond 

to stress.  Because cells lacking H3K36me see a global reduction of transcriptional 

fidelity, we hypothesized that set2∆ cells would be unable to properly respond to stress 

and would show a significant deregulation of their transcriptional response to that 

stress. 

 In this report, we interrogated the importance of Set2 and H3K36me in nutrient 

stress response by carrying out a genetic, molecular, biochemical analysis of WT and 

set2∆ cells.  We find that set2∆ cells are sensitive to caffeine, a drug that can inhibit 

Tor1, Tor2, and MAP kinases (Reinke et al., 2006) and rapamycin, a specific inhibitor of 

the TORC1 (Heitman et al., 1991).  Further, we demonstrate that SET2 deleted cells 

show synthetic genetic interactions with the TOR1, TOR2, flocculation, and protein 

kinase C (PKC) MAP kinase genetic pathways.  Critically, TORC1 and PKC signaling 

are also disrupted in set2∆ cells.  Together, this work suggests that under ideal growth 

conditions, high levels of transcriptional noise is permitted and has little impact upon 

cellular fitness.  However, when cells encounter stress and must execute a precise and 

rapid transcriptional program to appropriately deal with this stress, a loss of 

transcriptional fidelity is highly detrimental. 
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Materials and Methods: 

Yeast Strains 

Yeast strains were created using standard methods (Janke et al., 2004) 

employing PCR amplified cassettes with ~50 base pairs of homology to the gene of 

interest (Janke et al., 2004).   

 

Spotting Assays 

Strains were grown in YPD (1% yeast extract, 2% peptone, and 2% glucose) and 

diluted to an OD600 of 0.5 prior to spotting the indicated strains over a 5-fold serial 

dilution on the indicated plates at 30C for 2-3 days.   

 

H3K36 Methylation Analyses 

Protein was isolated from 5*107 cells as previously described (Gilbert et al., 

2014).  Extracts were loaded onto 15% SDS-PAGE gels and transferred to PVDF.  

Membranes were incubated overnight with H3 C-term (EpiCypher), H3K36me1 (Abcam 

9048), H3K36me2 (Active Motif 39255), H3K36me3 (Abcam 9050), Set2 (in house), or 

G6PDH (Sigma A9521) antibodies.  Membranes were then washed in TBS-Tween (50 

mM Tris, 150 mM NaCl, and 0.5% Tween 20), incubated in secondary antibody 

(Jackson Labs) and then probed with ECL solution (GE Healthcare). 
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Genome-wide Suppressor Screen 

Three isolates of a high-copy number 2µ library of Sau3AI digested genomic 

fragments (Carlson and Botstein, 1982) were transformed into 1*108 set2∆ cells.  

Transformations were re-suspended in 1 ml of SC-Ura media and plated onto 20 SC-

Ura + 20 mM caffeine plates.  Plasmids were recovered from the indicated yeast strains 

using Qiagen mini-prep columns and sequenced by Sanger sequencing using one of 

two primers flanking the region of insertion: pBR-1:  CACTATCGACTACGCGATCA or 

pBR-2:  CGATGCGTCCGGCGTAGA.   

 

Phospho-Protein Analysis 

WT or set2∆ cells were grown overnight in YPD and diluted to an OD600 of 0.2 

and grown to an OD600 of ~1.0.  Upon reaching log phase, cells were isolated and 

washed with water twice and resuspended in SD media.  Ten ODs of cells were isolated 

at each time point and protein was isolated via TCA extraction as previously described 

(Fillingham et al., 2008).  Extracts were then loaded onto 10% SDS-PAGE gels and 

transferred to PVDF membrane.  Membranes were incubated overnight with the 

following antibodies:  Rps6 (Abcam ab40820), ph-S6K (Cell Signaling 2211S), ph-EIF2α 

(Cell Signaling 9721S), ph-MAPK (Cell Signaling 9101S), Set2 (in house), and G6PDH 

(Sigma A9521).  Membranes were then washed in TBS-Tween (50 mM Tris, 150 mM 

NaCl, and 0.5% Tween 20) and then incubated in secondary antibody (Jackson Labs) 

and then probed with SuperSignal West Fempto Maximum Sensitivity Substrate 

(Thermofisher). 
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Results: 

Cells Lacking Set2 or H3K36 Methylation are Sensitive to Caffeine and Rapamycin 

 Recent work from our lab and others show that Set2-mediated H3K36 

methylation is also linked to DNA repair (Jha and Strahl, 2014; Pai et al., 2014; Winsor 

et al., 2013) and mRNA splicing in yeast (Jha and Strahl, 2014; Sorenson et al., 2016), 

suggesting Set2 and H3K36 methylation may have additional functions in chromatin not 

yet identified.  As Set2 and H3K36 methylation function to suppress cryptic 

transcription, we reasoned that one of these functions might be to ensure the proper 

transcriptional fidelity of transcription programs that are both rapid and highly timed, 

such as the nutrient stress response.  To explore this hypothesis, we exposed set2∆ 

cells to caffeine (which inhibits Tor1, Tor2, and MAP kinases, among other things) and 

rapamycin (a potent and specific inhibitor of the Tor1 complex (TORC1)).  As shown in 

Figure 4.1A, we found set2∆ cells from three distinct genetic backgrounds tested show 

a slow growth phenotype in the presence of caffeine and rapamycin, indicating that the 

stress response pathway is disrupted in the absence of Set2. 

 While non-histone substrates for Set2 have not been reported, we could not 

eliminate the possibility that the growth defects we observed in the set2∆ cells on 

caffeine and rapamycin were due to non-histone targets of Set2.  To explore this 

possibility, we employed histone mutant strains in which H3K36 was mutated to alanine 

or arginine (H3K36A and H3K36R), thereby creating non-methylatable forms of H3.  As 

shown in Figure 4.1B, the H3K36A and H3K36R mutant strains showed a slow growth 

phenotype similar to that observed for set2∆ when plated on caffeine and rapamycin.  

Taken together, these data show that Set2-mediated H3K36 methylation is necessary 
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for yeast cells to respond properly to nutrient stress, rather than methylation of a non-

histone substrate. 

 

H3K36me3, but not H3K36me2, is Dispensable for the Nutrient Stress Response 

 To further understand the role of Set2/H3K36me in the nutrient stress response, 

we next asked which methyl states of H3K36 were necessary for cells to respond 

properly to nutrient stress. To do this, we employed a variety of SET2 mutants that 

either affect the association of Set2 with RNAPII (set2-1-618), the ability of Set2 to 

interact with the nucleosome (set2-∆31-39) or impact its catalytic function (set2-R195C 

and set2-H199L) – all of which result in limiting degrees of H3K36 methylation in vivo 

(Figure 4.2).  Before performing this analysis, we confirmed that the phenotypes in 

set2∆ cells are specific to a loss of SET2, as a WT SET2 expression construct was able 

to rescue the growth defect observed in set2∆ cells on caffeine (Figure 4.1C) and 

rapamycin (data not shown).  Interestingly, mutants that lack H3K36me3, but not 

H3K36me1 or me2, were able to rescue the phenotype as well (set2-∆31-39 and set2-

R195C).  In contrast, the catalytically-dead SET2 mutant (set2-H199L) and a construct 

with a truncation of the RNAPII interaction domain (set2-1-618) (Kizer et al., 2005; 

Schaft et al., 2003; Vojnic et al., 2006) failed to rescue the phenotype of set2∆ cells.  

These results highlight a critical role for H3K36me1 and H3K36me2 in mediating proper 

nutrient response, and show that H3K36me3 is dispensable for this phenotype.  They 

also show that the interaction of Set2 with elongating RNAPII is critical for viability 

during the nutrient stress response. 
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Multiple H3K36me Effector Complexes are Necessary to Properly Respond to 

Nutrient Stress 

 Given H3K36 methylation is critical for responding to caffeine and rapamycin 

stress, we next asked which of the known effector proteins that are recruited to this 

mark are responsible for mediating the nutrient stress response.  To this end, we first 

examined the caffeine sensitivity of EAF3 or RCO1 – two key members of the Rpd3S 

histone deacetylase complex – singly or in combination with SET2.  Unexpectedly, 

neither eaf3∆ nor rco1∆ cells showed sensitivity to caffeine when deleted alone (Figure 

4.1D).  Further, eaf3∆ and rco1∆ double deletions with set2∆ also phenocopied the 

deletion of SET2.  These data indicate that the Rpd3S complex is not solely mediating 

the cellular response to nutrient stress. 

 Because Rpd3S loss did not phenocopy the caffeine sensitivity observed in 

set2∆ cells, we expanded our search to other effector proteins for H3K36me: Ioc4 of the 

Isw1b chromatin-remodeling complex (Smolle et al., 2012), and Pdp3, a member of the 

NuA3b histone acetyltransferase complex which also recognizes H3K36me3 (Gilbert et 

al., 2014).  We also examined the chromatin remodeler CHD1, which does not directly 

associate with H3K36me and functions in a separate genetic pathway (Biswas et al., 

2007; Park et al., 2014) as a control.  Similar to the deletions of EAF3 and RCO1, single 

deletions of PDP3, IOC4, and CHD1 did not show sensitivity to caffeine, indicating that 

the slow growth phenotype observed in set2∆ cells is not mediated by any single 

H3K36me effector complex (Figure 4.1E).  In contrast, the rco1∆ ioc4∆ double mutant 

strain showed a subtle sensitivity to caffeine, but did not fully recapitulate the phenotype 

observed for set2∆ cells.  Unexpectedly, only the rco1∆ ioc4∆ pdp3∆ triple mutant strain 
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was able to fully phenocopy a deletion of SET2 (Figure 4.1E).  These results are 

intriguing, as they argue that it is the function of all currently known H3K36me-binding 

complexes (Rpd3S, Isw1b and NuA3b) that mediate the effects of Set2/H3K36me 

during stress.  NuA3b is necessary for expression of Sas3 target genes, however, our 

data may suggest a more broad function for this complex in Set2 biology.  Interestingly, 

the rco1∆ ioc4∆ chd1∆ triple mutant also displays strong synthetic sickness on caffeine 

plates, but did not recapitulate the phenotype observed for set2∆ cells in the presence 

of caffeine.  Taken together, our data suggest it is the combination of histone-modifying 

and chromatin-remodeling factors that signal downstream of H3K36me to promote 

proper nutrient stress response. 

 

Nutrient and PKC Signaling Pathways Genetically Interact with SET2 

 Having established that SET2 and H3K36me play a role during the caffeine and 

rapamycin stress response, we next elucidated which particular genetic pathways SET2 

interacts with during this response.  To accomplish this, we transformed set2∆ cells with 

2µ plasmid overexpression library of genomic fragments (Carlson and Botstein, 1982) 

and plated the cells on plates with a concentration of caffeine (20 µM) that set2∆ cells 

are normally inviable.  This suppression screen yielded genes that fell into one of three 

distinct pathways: the nutrient signaling pathway (Pho85 and Bmh1), the flocculation 

MAPK pathway (Sfl1) and the PKC signaling pathway (Lre1, Kkk1 and Slt2) (Figure 

4.3A).  To explore the results of the suppression screen further, we created single 

deletions representing all of the recovered genes, along with double deletions of these 

genes with SET2, and analyzed their genetic interactions on caffeine-containing plates 
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as described above.  Genes recovered from all three major pathways in the screen 

displayed negative genetic interactions with SET2, thus further confirming these 

pathways genetically interact with SET2 (Figure 4.3B).   

 

SET2 Genetically Interacts with Both TOR1 and TOR2 

Although components of the TOR1 and TOR2 pathways showed genetic 

interactions with SET2 in the suppressor screen above, neither kinase was directly 

isolated in the screen.  To specifically examine if TOR1 and TOR2 would show genetic 

interactions with SET2, we combined a deletion of SET2 with either a deletion of TOR1 

or a temperature sensitive mutant of TOR2 (tor2-1), as TOR2 is essential in budding 

yeast, and plated these strains on caffeine and rapamycin.  Consistent with our 

synthetic genetic interactions in Figure 2B, a double deletion of tor1∆ and set2∆ resulted 

in a synthetic growth defect on both caffeine and rapamycin plates (Figure 4.3C).  This 

was also the case with the tor2-1 set2∆ double mutant strain (Figure 4.3D).  Notably, 

lower concentrations of caffeine and rapamycin were used in these experiments, as the 

TOR1 and TOR2 mutant alleles are extremely sensitive to rapamycin and caffeine 

respectively; thus, in this context, set2∆ cells do not show a significant growth defect on 

either drug.  

Given the differential sensitivities of the SET2 deletion compared to the TOR1 

and TOR2 mutants, we next verified that the sensitivity that we were observing with 

rapamycin in the set2∆ cells was occurring through TORC1 and not through an off-

target effect of the drug.  To examine this, we combined a SET2 deletion with a deletion 

of FPR1, the key mediator of rapamycin inhibition through its ability to bind this drug and 
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inhibit TORC1 kinase activity (Heitman et al., 1991).  When plated on rapamycin, set2∆ 

fpr1∆ cells do not show sensitivity to rapamycin, indicating that the decreased growth 

rate seen in set2∆ cells is due to inhibition of the TORC1 (Figure 4.4).  These results 

further validate our screen and suggest that SET2 is playing an important role in the 

nutrient stress response pathway. 

 

Tor1 and MAPK Activity is Aberrant in set2∆ Cells 

 Given SET2 genetically interacts with both TOR1 and TOR2, we hypothesized 

that set2∆ cells would show significant disruptions in TORC1 and nutrient response 

signaling in the absence of SET2 and H3K36me.  We shifted WT and set2∆ cells from 

nutrient rich YPD media to media lacking amino acids (SD media) and began collecting 

samples every 30-60 minutes over a 2 hour time period.  Extracts from these samples 

were then used to examine the protein and phosphorylation levels of multiple signaling 

proteins in the nutrient signaling pathway: Rps6, the Saccharomyces cerevisiae S6K 

homolog (Gonzalez et al., 2015), EIF2α, and the Slt2 MAPK (involved in PKC signaling).  

As shown in Figure 4.5, the phosphorylation levels of EIF2α, along with the protein 

levels of our loading control, G6PDH, were not altered during the stress response in the 

absence of SET2.  In striking contrast, however, we found that set2∆ cells have much 

lower levels of Rps6 compared to their isogenic WT counterparts, and further, have 

drastically increased levels of phosphorylation at the start of the nutrient response.  The 

increased levels of phosphorylation of Rps6 found in set2∆ cells is indicative of aberrant 

TORC1 kinase signaling.  In addition, we observed a change and disruption in the 

pattern and timing of phosphorylation of the MAPK Slt2.  Specifically, levels of ph-Slt2 in 
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set2∆ cells begin at WT levels and increase like their WT counterpart, but persist at high 

levels to 60 minutes after stress whereas in WT cells, phosphorylation levels of Slt2 are 

more transient reach background levels at 60 minutes.  Together, these results show 

that Set2 is necessary at a biochemical level for proper nutrient response signaling, 

which is in agreement with our genetic analyses that Set2 and H3K36me are needed for 

proper nutrient response signaling. 

 

Set2 and the Exosome Independently Regulate the Nutrient Stress Response 

 If cryptic transcripts and a resulting loss of transcriptional fidelity are truly 

detrimental to the cellular stress response, then inhibiting the destruction of these 

aberrant transcripts should exacerbate the growth defects we observe in set2∆ cells.  

To test this hypothesis, we combined deletions of SET2 with a component of the 

exosome, RRP6.  Consistent with this hypothesis, the set2∆ rrp6∆ double mutant 

displays a synthetic growth defect on caffeine plates (Figure 4.6).  This suggests that 

the increased levels of cryptic transcripts, which already interfere with proper signaling, 

are protected in the exosome mutants, and thus are able to further increase the 

disruption to the nutrient stress response. 

 

Discussion and Future Directions: 
 

Together, these results show that SET2 is genetically interacting with pathways 

involving both Tor and MAP kinases.  Each kinase is critical for controlling various 

aspects of the cellular response to stress.  While SET2 has been previously shown to 

genetically interact with the DNA damage response pathways (Jha and Strahl, 2014; 
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Pai et al., 2014; Winsor et al., 2013), this is the first demonstration that SET2 genetically 

interacts with the Tor complexes in Saccharomyces cerevisiae.  Further, this is the first 

evidence that not only shows that SET2 genetically interacts with these pathways, but 

also demonstrates that H3K36me is biochemically necessary for proper signaling.  Yet, 

it remains to be seen what the full impact of a loss of SET2 and H3K36me have on the 

transcriptional response during this particular stress.   

One of the reasons that set2∆ cells grows poorly on inhibitors of these pathways 

could be due to the inability of these cells to signal properly during the stress response.  

Critically, we observe that set2∆ cells have different biochemical ground states when 

compared to WT cells.  While not overtly deleterious to cell growth, this differential 

ground state could be partially responsible for the delayed phosphorylation kinetics 

observed in the TORC1 and PKC signaling pathways.  In addition, based on the genetic 

interaction with the exosome and SET2 during this response, it is equally likely that 

set2∆ cells are also not able to respond properly at the transcriptional level either.  Like 

the differential ground state observed biochemically, there have been subtle differences 

observed in the transcriptomes of set2∆ cells (Lenstra et al., 2011).  It is quite possible 

that these initial differences in the transcriptome could ultimately change the starting 

pool of signaling proteins, further inhibiting the cell’s ability to quickly and accurately 

respond to nutrient stress.   

It is also possible, and likely, that cryptic transcription events could lead to 

alterations in the transcriptome during nutrient stress.  Cryptic transcripts that overlap 

the promoters of genes are very likely to have negative impacts on the transcript levels 

of those genes (Huber et al., 2016).  Future studies will be needed to identify the cryptic 
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transcripts produced in set2∆ cells to test if any of them are directly responsible for 

changes in nutrient response gene induction during stress.   

While we have no direct molecular evidence that the transcriptome is altered 

during the nutrient stress response in set2∆ cells, the isolation of the flocculation 

pathway in our screen is indicative of transcriptional deregulation.  The flocculation 

pathway is a MAPK pathway in Saccharomyces cerevisiae and is normally 

transcriptionally repressed in laboratory strains of yeast.  It is possible that this pathway 

was isolated in our screen because the flocculation of cells acts as a defensive 

mechanism, but we do note that the sfl1∆ set2∆ double mutant strain displays a strong 

synthetic flocculation phenotype, whereas neither single mutant alone does (data not 

shown).  Because this pathway is normally repressed, this indicates a high level of 

transcriptional deregulation in the double mutant and supports the hypothesis that set2∆ 

cells are not able to regulate their transcriptional programs accurately.  

set2∆ cells alone do not show robust levels of transcriptional degregulation 

genome-wide (Lenstra et al., 2011).  This is also true of many other chromatin 

remodeling and modifying factors (Lenstra et al., 2011).  However, most studies looking 

at the transcriptomes of these mutants, do so in the context of non-stress conditions.  

Because relatively few of these mutants are essential or show any growth defects when 

deleted, it is clear the minor alterations observed to their aberrant transcriptomes are 

not overtly deleterious.  However, this may not be the case during stress conditions.  

Here, we clearly demonstrate that while set2∆ cells are viable under normal growth 

conditions, they are unable to properly respond to nutrient stress.  Whether this 

response is unique to the nutrient stress response, or can be applied to other types of 
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stress remains to be seen and will followed up in the future.  It is clear, however, that we 

may not fully appreciate the function of these chromatin factors until we examine them 

in a broader context outside of ideal laboratory conditions.   

Finally, it is likely that the function of Set2 and H3K36me is conserved in higher 

eukaryotes.  H3K36me is one of the few histone modifications that is conserved from 

yeast to humans.  Further, Set2 itself is also highly conserved.  Its human homolog, 

SETD2 also methylates H3K36, though only the H3K36me2/3 forms (Sun et al., 2005; 

Yoh et al., 2008).  SETD2 is also one of the most mutated genes in a wide spectrum of 

cancers (Dalgliesh et al., 2010; Gerlinger et al., 2012; Mar et al., 2014; Varela et al., 

2011; Zhu et al., 2014), making it a very attractive target for treatment.  Interestingly, 

TOR inhibitors combined with SETD2 knockdown  

has shown promise in killing leukemia cells (Zhu et al., 2014).  It is possible, due to the 

high level of conservation of both SET2 and the TOR pathway, that the interactions 

seen here in Saccharomyces cerevisiae are conserved in humans as well.  
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Figure Legends 

Figure 4.1:  Cells lacking H3K36me are sensitive to caffeine and rapamycin  

A. – D.   Five-fold serial dilutions of the indicated strains were plated on SC plates or 

plates containing caffeine (7-10 mM or rapamycin (8-12.5 nM).   

 

Figure 4.2:  Set2 mutants differentially methylate histones 

Western blots of the indicated strains were probed with different H3K36me antibodies.  

H3 and G6PDH serve as loading controls. 

 

Figure 4.3:  Nutrient response and PKC signaling pathways genetically interact with 

SET2.   

A.  A genome-wide high copy suppressor screen carried out revealed three pathways 

that are able to suppress the lethality of set2∆ cells on a high concentration of caffeine 

(20 mM).  B.  Five-fold serial dilutions of the indicated strains were plated on control or 

5-10 mM caffeine plates. C. and D. Five-fold serial dilutions of the indicated strains were 

plated on control, caffeine (5 mM), and rapamycin (8 nM) plates.   

 

Figure 4.4:  Bypass of the Tor1 pathway renders set2∆ cells resistant to rapamycin 

The indicated strains were 5-fold serial diluted and plated on control or rapamycin plates 

(25 nM) and grown for 2 days.  

 

 

Figure 4.5:  Set2 is required to properly activate pathways necessary to respond to 

nutrient stress   



 

 103 

Log phase cells were transferred from nutrient rich YPD media to SD media that lacks 

amino acids.  1*108 cells were isolated at the indicated times and submitted to 

immunoblot.  G6PDH serves as a loading control. 

 

Figure 4.6:  Cryptic transcripts within the SET2 pathway may be responsible for the 

growth defects on caffeine and rapamycin 

The indicated strains were 5-fold serial diluted and plated on control or caffeine (7 mM) 

plates and grown for 2-3 days.  
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Figure 4.1: 
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Figure 4.2: 
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Figure 4.3: 
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Figure 4.4: 
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Figure 4.5: 
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Figure 4.6: 
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CHAPTER 5 - CONCLUSIONS AND FUTURE DIRECTIONS 

 Prior to this work, H3K36me was thought primarily to function during transcription 

as a repressor.  This was mainly accomplished via the binding of Rpd3S to H3K36me 

and deacetylating histones in the wake of the elongating RNAPII complex (Carrozza et 

al., 2005; Joshi and Struhl, 2005; Sun et al., 2008; Xu et al., 2008).  In the absence of 

H3K36me, histones were rendered hyperacetylated and chromatin structure would 

become more open, leading to cryptic transcription events (Carrozza et al., 2005; Keogh 

et al., 2005).   Together, this work has expanded the role of H3K36me, demonstrating 

that while it still functions largely during transcription, its role there is much more 

multifaceted and important than previously thought. 

 

H3K36me Recruits a Novel Histone Acetyltransferase Complex 

 H3K36me has previously been linked to histone acetylation via Eaf3’s presence 

in the NuA4 HAT complex (Ginsburg et al., 2014; Sathianathan et al., 2016).  Here, we 

add to Set2’s role in histone acetylation by characterizing a novel H3K36me effector 

protein, Pdp3, which is a member of the NuA3b HAT complex.  Like many other PWWP 

domain containing proteins, Pdp3 prefers to bind H3K36me3 (Vermeulen et al., 2010) 

and in the absence of Set2 and H3K36me, cannot associate with chromatin.  Finally, we 

demonstrate molecularly and genetically that the interaction between Pdp3 and 

H3K36me is necessary for proper gene expression.   
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 Yet, there are still several unanswered questions regarding the function of Pdp3 

and NuA3b.  The first being what is the catalytic target of this complex?  NuA3a, a 

second, promoter bound complex, binds chromatin via the PHD finger of Yng1 and 

acetylates histone H3 at lysine 14.  It is possible that NuA3b, like NuA3a, also 

acetylates H3K14, but because NuA3b is engaging chromatin in a fundamentally 

different way; i.e. mainly at H3K36 rather than at H3K4, it is distinctly possible that this 

complex has an entirely different enzymatic target.  This hypothesis is supported by the 

fact that NuA3b does not display synthetic lethality with the other H3K14 

acetyltransferase, Gcn5, while NuA3a does.  This change of target would not be unique 

as human HAT complexes have been shown to change their catalytic targets from H3 to 

H4 depending on which chromatin binding subunits they contain (Lalonde et al., 2013).  

It is quite possible that NuA3a/b function similarly, by switching out Yng1 for Pdp3. 

 Once the catalytic target of NuA3b has been elucidated, it will be easier to 

identify the broader role of NuA3b.  Here, we show that it is necessary for the proper 

expression of several genes, but do not yet understand precisely how this is regulated 

and if it truly plays a different role than NuA3a. 

 

The Second PHD Finger of Rco1 is Necessary for Rpd3S Function 

 In 2007, the Workman group demonstrated that the chromo domain of Eaf3 and 

the first PHD finger of Rco1 were necessary for Rpd3S function (Li et al., 2007a).  Rco1 

contains a second, less well conserved PHD finger that was not characterized.  Here, 

we show that both PHD fingers are essential for chromatin association of Rpd3S.  

Further, they are also essential for the repression of cryptic transcription.  Many 
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chromatin associated complexes contain multiple proteins with putative chromatin 

binding domains and this work demonstrates that they are all likely functionally relevant.  

Further, it is also important to note that these chromatin reader proteins can 

preferentially bind to unmodified residues as well, as do both of the PHD fingers in 

Rco1.  This adds a further layer of complexity to the “histone code” and is particularly 

relevant in transcription as certain histone modifications only exist in certain regions of 

the genome.  Interestingly, by switching out members that read H3K4me for Rco1 that 

recognizes unmodified H3K4 (Shi et al., 2007; Wang et al., 2011), the histone 

deacetylase Rpd3 can deacetylate histones across the whole open reading frame.  

 This conservation of function is also realized with H3K36me.  Because both HAT 

complexes and HDACs can read H3K36me, the levels of histone acetylation can be 

finely tuned throughout the transcription process.  This supposes a model that 

H3K36me acts as a beacon of transcriptional memory within the cell, ensuring not only 

that RNAPII binds to the proper 5’ promoters of genes, by facilitating the deacetylation 

of histones in the middle of gene bodies after transcription, but H3K36me also play a 

positive role in transcription by opening up chromatin through the recruitment of HAT 

complexes like NuA4 and NuA3b to chromatin ahead of RNAPII.  This model supports a 

role for H3K36me only after a gene has been transcribed.  Pioneering rounds of 

transcription likely operate under a different mechanism and whether or not H3K36me 

plays a role during this process is currently unknown.  Though because H3K36me1 and 

H3K36me2 can be laid down in gene bodies independent of RNAPII association (Kizer 

et al., 2005), it is possible that the lower methylation states could play a role during the 
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pioneering rounds of transcription while H3K36me3 helps to regulate transcription only 

after a gene has already been transcribed. 

 

Set2 and H3K36me are Essential for Proper Nutrient Stress Response 

 It has previously been shown by our lab and others that Set2 plays a role in the 

DNA damage response pathway (Jha and Strahl, 2014; Pai et al., 2014; Winsor et al., 

2013) where it limits the amount of resection at the sites of DNA damage and allows for 

NHEJ to occur.  The work presented here demonstrates that Set2 and H3K36me also 

are necessary for proper nutrient stress response signaling.  We show that H3K36me3 

is not necessary for proper nutrient signaling, though H3K36me1/me2 and the 

association of Set2 with RNAPII is.  Further, we provide evidence that Set2 genetically 

interacts with Tor1 and Tor2, as well as several MAP kinase pathways in the cell.  

Further, in the absence of Set2, both Tor1 and MAP kinase signaling are disrupted, both 

in terms of their kinetics as well as their overall levels.  Finally, we demonstrate that 

when the exosome is compromised, in addition to the loss of Set2, cells fare even more 

poorly under stress conditions, implicating a functional role for cryptic transcription in 

this process.   

 

 

The Role of Cryptic Transcription During the Nutrient Stress Response 

Of course this leads to two important questions, what role does Set2 play in 

regulating the transcriptome during (or prior to) the nutrient stress response and is the 

regulation of cryptic transcription necessary for the proper stress response?  In an 
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attempt to answer these questions, we are in the process of analyzing RNA-seq data 

from wild-type (WT) and set2∆ cells after nutrient stress.  Libraries were made from total 

strand-specific RNA to analyze both sense and anti-sense transcripts across the 

genome.  We are currently in the process of analyzing our data set, but the initial results 

appear to be promising and will be discussed below. 

While previous data showed only ~80 genes were differentially expressed 

(Lenstra et al., 2011), our data preliminary analysis shows that ~400 genes are 

differentially expressed between WT and set2∆ cells.  The difference in the observed 

number is likely due to the fact that our data relies on RNA-seq data where the genome 

is sequenced to a very high depth, while the earlier data comes from a micro-array 

experiment, which is much less sensitive.  

Upon stress however, our initial analysis indicates that nearly half of the genes in 

the genome do not respond properly to nutrient stress.  This result suggests that Set2 

and H3K36me are critical for proper initiation of the transcriptional programs required to 

respond to nutrient stress.  While it seems that set2∆ cells eventually do catch up to 

their WT counterparts, the initial misfiring of the transcriptome could explain the altered 

kinetics and gross differences observed in the Tor1 and MAP kinase signaling after 

nutrient stress in set2∆ cells.   

Additionally, this highlights a significant gap in the chromatin field.  Most 

experiments looking at the function of chromatin factors do so in the context of ideal 

growth conditions.  Under these conditions, most of these factors are not essential for 

viability and their loss does not show any overt growth defects.  This is true of all three 

histone methyltransferases in yeast.  Set1, Set2, and Dot1 are all non-essential genes.  
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While a great deal can be learned about their basic functions using standard growth 

conditions, it is becoming clear that using stress conditions is critical for understanding 

the true breadth of their role in the cell.  Set2, for instance, has until recently only 

thought to play a role in repressing cryptic transcription.  Now it has been shown to be 

critical for the proper function of two distinct signaling pathways (Jha and Strahl, 2014; 

Pai et al., 2014; Winsor et al., 2013), raising the possibility of Set2 and H3K36me being 

important for the function of other conserved pathways in the cell. 

Of course, the role of Set2 in repressing cryptic transcription could play an 

important function in these signaling pathways.  Before stress, set2∆ cells have sense 

and anti-sense transcripts that arise at some genes.  Interestingly, as the amount of 

time the cells are undergoing stress increases, the level of cryptic transcripts increases 

as well.  It seems that the stress conditions themselves exacerbate the predisposition of 

set2∆ cells to create aberrant transcripts which could lead to decreased full-length 

transcripts at these loci.  This phenotype is not entirely unexpected as nutrient stress 

conditions have been previously shown to produce cryptic transcripts in WT cells 

(Cheung et al., 2008), however, these transcripts were extremely transient and did not 

increase over time like they do in set2∆ cells.  While we see robust induction of cryptic 

transcription during nutrient stress, it is currently unknown if this is a general phenotype 

during stress or specific to nutrient stress.  To test this hypothesis, similar RNA-seq 

experiments will be needed in a spectrum of stress conditions to track the alterations to 

the transcriptome as well as the production of cryptic transcripts. 

Further, we observe an interesting correlation in that sense and anti-sense 

transcription seem to co-occur at many genes, originating at the same location. The 
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Set2 pathway has already been shown to be important in enforcing directionality at 

promoters (Churchman and Weissman, 2011), and these data suggest that cryptic 

promoters are behaving in the same fashion.  Thus, bi-directional transcription seems to 

be extremely common in the absence of Set2 and H3K36me.   

Together, these data suggest that the increased transcriptional noise due to 

cryptic transcription could disrupt the finely tuned transcriptional programs necessary for 

dealing with the nutrient stress response.  But, does the increase in cryptic transcription 

result in changes to the levels of full-length mRNA transcripts?  Anti-sense transcription 

can interfere with sense transcription if it overlaps with the promoters (Huber et al., 

2016).  It is possible that the dramatic increase in cryptic transcription observed in set2∆ 

cells across the time course could decrease transcript levels, and thus the protein 

levels, of critical stress response factors.  To address this, we are currently determining 

if a correlation between levels of anti-sense transcription and the fold-change of the full-

length transcript is present in our data.  

Further, it has also been shown that some cryptic transcripts are translated in 

vivo (Cheung et al., 2008).  It is possible that as the cryptic transcript levels increase in 

set2∆ cells, they could begin to be translated, creating an entirely new pool of proteins.  

The cryptic proteins previously observed do not seem to exist in set2∆ cells, but that 

does not preclude the possibility that they would not be present under stress.  The 

translation of cryptic transcripts could be particularly detrimental during nutrient stress 

because ribosome production is severely limited (Powers and Walter, 1999).  On top of 

the potential for transcriptional interference due to anti-sense transcription, increased 

competition of full-length and cryptic transcripts for a limited pool of ribosomes could 
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further decrease the protein levels of critical nutrient stress response factors.  

Quantitative mass-spectrometry experiments will be needed to test this hypothesis.   

Finally, it is also distinctly possible that the cryptic proteins in and of themselves 

could be functional, particularly as dominant negative proteins.  Because cryptic 

proteins would begin from the middle of their open reading frames, they would certainly 

lack many N-terminal domains, but retain their C-terminal domains.  As long as the 

protein was nominally stable, these proteins could act as sponges for protein-protein 

interactions while lacking their full functionality.  In the case of Set2, it is easy to 

envision a C-terminal fragment of the protein which contains the WW, CC, and SRI 

domains, but lacks the catalytic SET domain.  This cryptic protein could compete with 

full-length Set2 for a position on the CTD of RNAPII, potentially limiting the levels of 

H3K36me3 in the cell.  Again, quantitative mass-spectrometry experiments will be 

needed to identify the cryptic proteome and further molecular experiments will be 

needed to test the function of these cryptic proteins. 

 

Concluding Remarks 

 Great strides have been recently made in understanding the broader function of 

H3K36me in the cell.  It is clear that it plays a pivotal role in maintaining transcriptional 

fidelity by ensuring that RNAPII only transcribes from the natural 5’ promoters of genes.  

Together, the work contained here suggests the hypothesis that Set2 and H3K36me 

function is to maintain the proper “ground state” of the transcriptome, priming the cell to 

adapt to various kinds of stress.  We see that in the absence of Set2, cryptic transcripts 

arise, the DNA damage response is attenuated (Jha and Strahl, 2014; Pai et al., 2014; 
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Winsor et al., 2013), and cells cannot respond properly to nutrient stress.  Because cells 

must rapidly and accurately respond to the various environmental stresses they 

encounter, they likely must limit the transcriptional noise to allow them to quickly 

establish a programmed response. 

 Further, we see these roles conserved in higher eukaryotes.  Mutations in 

SETD2 or at H3K36 in humans are a major driver of cancer (Dalgliesh et al., 2010; 

Gerlinger et al., 2012; Lu et al., 2016; Varela et al., 2011) and likely cause a loss of 

regulation over the transcriptome, facilitating tumor development.  RNA is mis-spliced 

(Simon et al., 2014) and is not terminated properly (Grosso et al., 2015) in ccRCC 

cancers and may play a similar role in other cancer types.  Thus, it is critical that we 

learn more about the role of H3K36me in cells in the hopes of developing treatments to 

these devastating diseases.  
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