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ABSTRACT 
 
KAYLA SUE BLOOME: Palladium-Catalyzed Reactions of Unactivated Alkyl Halides 

(Under the direction of Erik J. Alexanian) 
 
 

I. Palladium-Catalyzed Reactions of Unactivated Alkyl Electrophiles 

 An overview of palladium-catalyzed reactions with sp3-hybridized electrophiles is 

presented.  Cross-coupling reactions and carbonylations with alkyl halides and sulfonates 

are discussed in detail. 

II. Carbonylative Alkyl-Heck Type Cyclization of Alkyl Iodides 

 

A palladium-catalyzed carbonylative Heck-type cyclization of alkyl halides is 

described. Treatment of a range of primary and secondary alkyl iodides with catalytic 

palladium(0) under CO pressure forms a variety of synthetically versatile enone products. 

The reactivity described represents a rare example of a palladium-catalyzed Heck-type 

cyclization involving unactivated alkyl halides with β-hydrogens. Alkene substitution is 

well tolerated, and mono- and bicyclic carbocycles may be easily accessed. 
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III. Alkyl-Heck Type Cyclizations of Alkyl Halides 

 

A palladium-catalyzed Heck-type reaction of unactivated alkyl iodides is 

described. This process displays broad substrate scope with respect to both alkene and 

alkyl iodide components and provides efficient access to a variety of cyclic products. The 

reaction is proposed to proceed via a hybrid organometallic-radical mechanism, 

facilitating the Heck-type process with alkyl halide coupling partners. 

IV.  Palladium-Catalyzed Enantioselective Carbonylation of Alkyl Iodides 

 
A palladium-catalyzed enantioselective carbonylation of unactivated secondary 

alkyl iodides is reported.  Preliminary results serve as proof-of-principle that hybrid 

radical-organometallic reactivity enables the stereoselective synthesis of α-chiral 

carbonyl compounds.   

   
V. Palladium-Catalyzed Ring Forming C-H Alkylations of Aromatic Systems 

 

70% yield

TsN I Ts
N

Me

10 mol % Pd(PPh3)4
2 equiv PMP

10 atm CO
PhH, 130 °C

10 mol % Pd(OAc)2

OO
I

OO O

OEt
2 equiv NEt3

11 mol % (S)-DM-Segphos

1:1 PhH/EtOH, 100 °C
20 atm CO

50% yield
21% ee

10 mol % Pd(PPh3)4
2 equiv K3PO4

PhH, 130 °C

73%

EtO2C
EtO2C

EtO2C
EtO2C

I



 v 

 A palladium-catalyzed intramolecular C-H alkylation of heteroarenes and arenes 

with unactivated alkyl halides is described.  Preliminary results suggest this process is 

applicable to primary alkyl bromides and iodides and tolerates electron-rich and –poor 

aromatic systems.  Our goal to be able to readily synthesize medium-ring fused aromatic 

structures so they can be readily applied to a variety of biologically active compounds.   
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CHAPTER 1 

Palladium-Catalyzed Reactions of Unactivated Alkyl Electrophiles 

1.1 Introduction 

Transition metal-catalyzed cross couplings are among the premier methods of carbon-

carbon bond forming reactions as is exemplified by their essential role in the synthesis of 

organic building blocks and pharmaceutical and agrochemical targets.1-5  Their appeal is 

chiefly derived from their efficiency and selectivity, tolerance of several functional 

groups, and mild reaction conditions.  One of the most commonly employed metal 

sources is palladium.  Several palladium-catalyzed cross-couplings have been developed 

to allow concise generation of targets of high importance in both academia and industry 

(Figure 1-1).  This is reflected by the 2010 Nobel Prize in chemistry that was awarded to 

pioneers in palladium-catalyzed carbon-carbon bond formation.6   

 

 

Figure 1-1. Palladium-Catalyzed Cross-Coupling Reactions 
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The majority of developed reactions for palladium-catalyzed cross-couplings 

involve the use of sp2-hybridized electrophiles.7-10  In contrast, examples employing sp3-

hybridized electrophiles are more scarce due to the synthetic challenges they present, 

which includes slow oxidative addition to the metal species (Figure 1-2).11-13  

Furthermore, once generated, the transient alkyl-metal species will readily participate in 

unproductive side reactions, namely β-hydride elimination (Scheme 1-1).14-16    

Oxidative addition for aryl and vinyl halides typically proceeds through a three-

centered transition state as they cannot react by an SN2 pathway and are typically too 

electron rich to react via nucleophilic aromatic substitution (Figure 1-2).17  The oxidative 

addition of sp2-hybridized electrophiles to coordinatively unsaturated palladium(0) occurs 

by initial coordination of the arene or olefin, followed by insertion of the metal into the 

carbon-halide bond.  Conversely, a SN2 pathway is believed to be operative for oxidative 

addition for the majority of alkyl halides.18  These reactions are accelerated in polar 

solvents and demonstrate inversion in stereochemistry at the carbon in an appropriately 

substituted alkyl halide.  In the polar mechanism, a pair of electrons from the metal center 

directly attacks the C-X σ* orbital, generating alkyl palladium species 1.2.  

Recombination of the ion pair is accomplished through ligand exchange to furnish alkyl 

palladium 1.3.  
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Figure 1-2. Mechanisms for Oxidative Addition of Palladium to sp2- and sp3-Hybridized 
Electrophiles 
 

 A pathway for β-hydride elimination of palladium-alkyl species 1.4 is depicted in 

Scheme 1-1.  The product of oxidative addition forms the coordinatively unsaturated 

palladium-alkyl species 1.4.  The vacant site on palladium is filled by an agostic 

interaction from a C-H bond on the carbon β− to the palladium-metal center, allowing for 

a co-planar arrangement that results in rapid collapse via β-hydride elimination to form 

an olefin and palladium-hydride 1.5.    

 

 

Scheme 1-1. Mechanism for β-Hydride Elimination of Alkylpalladium Species 
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Figure 1-3. Examples of Activated Alkyl Electrophiles 

 

1.2 Palladium-Catalyzed Cross Couplings of sp3-Hybridized Electrophiles 

Within the past ten years, unactivated alkyl electrophiles have been successfully 

employed in several cross-coupling reactions.  General catalytic systems have been 

developed that prove that the aforementioned synthetic challenges can be overcome, and 

mechanistic studies have begun to provide insight into these catalyst systems.  Examples 

of these powerful transformations are discussed herein. 

1.2.1. Alkyl Suzuki Cross-Coupling 

 In 1992, Suzuki reported the first cross-coupling reaction that utilized unactivated 

alkyl electrophiles (Scheme 1-2).25  This pioneering methodology coupled aliphatic 

iodides with organoboranes by using commercially available Pd(PPh3)4.  The reaction 

proved tolerant of several functional groups, but secondary alkyl iodides were not viable 

in the reaction. Notably, β-hydride elimination was generally inhibited, and substantial 

amounts of dehydrohalogentation of the iodide were observed.   
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Scheme 1-2. Seminal Cross-Coupling of Unactivated Electrophiles Reported by Suzuki 
and Co-workers 
 

In 2001, the Fu lab was able to readily employ alkyl bromides in the Suzuki cross-

coupling reaction (Scheme 1-3).26  Their method was reliant upon the use of the 

tricyclohexylphosphine ligand.  The application of trialkylphosphines in couplings of 

alkyl electrophiles was inspired by previous investigations in the Fu laboratory, which 

utilized aryl chlorides in palladium-catalyzed cross-coupling reactions.27  Like alkyl 

electrophiles, they were considered poor coupling partners due to their reluctance to 

undergo oxidative addition, but were successfully reacted when bulky, electron-rich 

phosphines were utilized.  Interestingly, trialkylphosphines with similar steric and 

electronic properties (e.g. P(tBu)3 and P(nBu)3) were significantly less effective in the 

Suzuki reaction of alkyl bromides, generating <2% yield of the desired product and 

producing increased amounts of β-hydride elimination.  In this study, functional group 

compatibility was exemplified by the use of amines, alkynes, esters, acetals, ethers, 

cyanides, and alkyl chlorides.  Methods have also been reported that allow for the facile 

use of alkyl chlorides28 and tosylates29 in the Suzuki coupling reaction.   
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Scheme 1-3. Suzuki Coupling of Alkyl Bromides Utilizing Alkyl Phosphines 

 

The Fu group also reported the Suzuki cross-coupling reaction of alkyl bromides 

and boronic acids (Scheme 1-4).30  Boronic acids are desirable coupling partners as, 

unlike their organoborane counterparts, they are air stable.  Moreover, several boronic 

acid derivatives are commercially available.  Cross-coupling was realized at room 

temperature with conditions similar to those developed for coupling with boronates.  In 

this case, KOtBu was found to be a superior activator when compared to other Lewis 

bases such as K3PO4H2O, KF, and NaOMe, and a polar protic solvent was utilized. 

 

 

Scheme 1-4. Suzuki Cross-Coupling of Alkyl Bromides and Boronic Acids  

 

1.2.2. Alkyl Kumada Cross-Coupling 

 The Kumada coupling, a metal-catalyzed coupling of an electrophile and a 

grignard reagent, was one of the first reported cross-coupling reactions.  In 2002, Beller 

reported the first palladium-catalyzed coupling of aryl grignards and alkyl chlorides 

(Scheme 1-5).31  While Grignard reagent’s high nucleophilicity as well as Brønsted 
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basicity limit the functionality that is compatible with Kumada couplings, cyanides, 

esters, amides, and acetals proved to be tolerant to the reaction conditions.  NMP was 

found to be crucial to the success of the reaction.  It is proposed that NMP weakly 

coordinates to the palladium, saturating the metal center and therefore out-competing β-

hydride elimination of the initially formed alkyl palladium species.     

 

 

Scheme 1-5. Seminal Palladium-Catalyzed Kumada Coupling Utilizing Alkyl Chlorides 

 

In 2003, Kambe was able to extend the substrate scope to include alkyl bromides 

and tosylates (Scheme 1-6).32  Catalytic Pd(acac)2 with 1,3-butadiene as an additive was 

able to effect coupling with both aryl and alkyl Grignard reagents.  Interestingly, the 

palladium exhibited higher chemoselectivites in favor of the tosylates when compared to 

bromides and chlorides.    

 

 

Scheme 1-6. Palladium-Catalyzed Kumada Coupling of Aliphatic Bromides and 
Tosylates 
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1.2.3. Alkyl Stille Cross-Coupling 

The Stille reaction utilizes palladium to cross-coupling organostannanes with 

electrophiles.  The Fu lab described the coupling of alkyl bromides with vinyl stannanes 

(Scheme 1-7).33  Similar conditions to their alkyl Suzuki reaction were employed, but 

required the addition of tetramethylammonium fluoride, which acts as a Lewis base in the  

activation of the tin towards transmetalation.  Additionally, 3 Å molecular sieves were 

effective in raising the efficiency of the reaction.   

 

 

Scheme 1-7. Stille Cross-Coupling of Primary Alkyl Halides with Vinyl Tin Reagents 

 

 Arylations of β-perfluoroalkyl-substituted alkyl iodides with aryl stannanes have 

been catalyzed by PdCl2(PPh3)2 catalysis; however, high catalyst loadings were required 

(up to 50 mol %) and moderate yields were observed.34  The Fu lab reported a method 

that was generally applicable to unactivated alkyl electrophiles (Scheme 1-8).  By 

varying the ligand in conditions developed for the coupling of alkyl electrophiles with 

vinyl stannanes, arylation products were efficiently accessed from unactivated alkyl 

bromides and iodides.35    
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Scheme 1-8. Stille Cross-Couplings of Alkyl Iodides and Bromides with Vinyl and Aryl 
Stannanes 
 

1.2.4. Alkyl Hiyama Cross-Coupling 

The Hiyama coupling is a palladium-catalyzed cross-coupling of an electrophile 

to an organosilane.  Typically fluoride is added to the reaction, presumably to generate a 

hypervalent silicate intermediate that is more reactive towards transmetalation than its 

tetravalent organosilane precursor.  Under identical conditions to those previously 

employed in the coupling of alkyl electrophiles to organostannanes, the Fu group did not 

observe any conversion with aryl silanes (Scheme 1-9);36 however, addition of a different 

fluoride source allowed the reaction to proceed cleanly at room temperature. The reaction 

proved tolerant of functional groups including esters, cyanides, acetals, and ketones on 

the alkyl bromide.  Electronically varied aryl groups were employed with electronic-

deficient aryl silanes providing lower yields.   

 

 

Scheme 1-9. Hiyama Cross-Coupling of Unactivated Alkyl Haides 
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1.2.5. Alkyl Negishi Cross-Coupling 

 The Negishi cross-coupling utilizes catalytic palladium or nickel to couple an 

organic halide and an organozinc.  The Fu group reported the first example of a 

palladium-catalyzed Negishi reaction that employed alkyl iodides, bromides, chlorides, 

and tosylates (Scheme 1-10).37  In addition to a wide variety of electrophiles, alkene, 

ether, nitrile, amide, and ester functionalities are compatible with the reaction conditions.  

The N-methylimidazole (NMI) is proposed to facilitate transmetalation via activation of 

the organozinc halide.   

 

 

Scheme 1-10. Negishi Cross-Coupling of Alkyl Electrophiles  

 

The first Negishi cross-coupling of unactivated alkyl bromides in the presence of 

a N-heterocyclic carbene (NHC) ligand was reported by the Organ group (Scheme 1-

11).38  NHC ligands have similar σ-donor properties as the trialkylphosphine ligands 

from which the Fu group has enjoyed a large amount of success.39,40  By employing a 

NHC ligand, the reaction did not require the NMI additive or heating.  In addition to the 

mild reaction conditions, the reaction proved tolerant of acetal, ester, amide, alkyne, and 

nitrile functional groups.   
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Scheme 1-11. Mild Negishi Cross-Coupling of Alkyl Bromides and Alkyl Zinc Reagents 

 

1.2.6. Alkyl Sonogashira Cross-Coupling 

The Sonogashira reaction, employs palladium and copper catalysts to facilitate 

cross-coupling to a terminal alkyne and is proposed to undergo transmetalation with a 

copper acetylide (Scheme 1-12).41  Species 1.9 is produced in situ from a low catalyst 

loading of copper.  This is in contrast to the aforementioned cross-coupling reactions, 

which employ a stoichiometric amount of an organometallic reagent (organoboron, -zinc, 

-magnesium, -silicon, or -tin).  Moreover, higher concentrations of the organometallic 

coupling partner helps to efficiently favor transmetalation product 1.7 over β-hydride 

elimination 1.8.  Therefore, the substiochiometric concentration of 1.9 generates a 

significant challenge in promoting the desired reaction when an alkyl electophile are 

utilized.   
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Scheme 1-12. Potential Pathway for a Sonogashira reaction 

 

To date, there are no reported examples of a palladium-catalyzed Sonogashira 

reaction in the presence of phosphine ligands.  All known examples in the literature rely 

upon NHC ligands. In 2003, the Fu group reported seminal work employing primary 

alkyl bromides and iodides (Scheme 1-13).42  The absence of a harsh base and high 

temperature enabled excellent functional group tolerance including ester, nitrile, chloro, 

and acetal functionalities, olefins, and unprotected hydroxy groups; however, the 

substitution pattern of the alkyne had a pronounced effect on reaction outcome, and the 

reaction conditions had to be adjusted accordingly.   

 

 

 

Scheme 1-13. Sonogashira Coupling of Primary Alkyl Halides 
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In 2006, the Glorius group reported the first Sonogashira reactions of secondary 

alkyl bromides (Scheme 1-14).43  The reaction employs similar reaction conditions as 

those previously utilized by the Fu group; however, higher reaction temperatures and 

polarity were required.  A bioxazoline-derived NHC ligand was employed; this ligand 

family is electron-rich and sterically demanding, but exhibits a high degree of 

conformational flexibility.44  The reaction exhibited excellent levels of functional group 

tolerance with olefins, acetates, esters, and epoxides installed on the alkyl bromides.  

Notably, the use of enantiomerically pure (R)-2-bromooctane led to complete formation 

of the racemic product.   

 

 

Scheme 1-14. Sonogashira Coupling of Secondary Alkyl Bromides 

 

1.2.7. Alkyl Heck Cross-Coupling 

The Heck reaction is the palladium-catalyzed cross-coupling of sp2-hybridized 

halides or sulfonates with alkenes.  The use of an unfunctionalized coupling partner 

results in a significantly different mechanism (Scheme 1-15).  The alkene 1.11 must 

undergo coordination to the metal, species 1.12, prior to undergoing insertion to generate 

alkyl palladium species.  This requires the use of a coordinatively unsaturated palladium 

species; however, the open coordination site on palladium will facilitate rapid β-hydride 

elimination.  Moreover, in order to generate the product 1.15, β-hydride elimination is 
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required.  In order to successfully employ sp3-hybridized electrophiles in the reaction, the 

rate of insertion must be faster than the rate of the initial β-hydride elimination 

 

 

Scheme 1-15. Plausible Catalytic Cycle for an Alkyl-Heck Reaction 

 

In 2007, the Fu laboratory reported the only known organometallic alkyl-Heck 

reaction (Scheme 1-16).45  They relied upon the intramolecular 5-exo cyclization to 

outcompete the initial β-hydride elimination.  Primary alkyl bromides and chlorides were 

cyclized with mono-substituted to alkenes to provide cyclopentene products.  Pd2(MeO-

dba)3 was employed as the precatalyst in the reaction as electron rich dba ligands have 

resulted in a more active catalyst; a bench stable NHC ligand was also utilized; however, 

this method’s substrate scope is quite limited as secondary halides and further olefin 

substitution were not tolerated. 
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Scheme 1-16. Intramolecular Heck Cyclization of Alkyl Bromide and Chlorides 

 

1.3 Palladium-Catalyzed Carbonylations of sp3-Hybridized Electrophiles 

 Carbonylation of alkyl halides is one of the most important industrial processes.46  

Palladium-catalyzed carbonylation can allow for the direct synthesis of carboxylic acids, 

aldehydes, ketones, esters, and amides.  Although generally, the use of alkyl electrophiles 

is limited to methyl, benzyl, and allyl halides.47,48 

The first palladium-catalyzed carbonylation of alkyl iodides was reported in 1989 

by Fuchikami (Scheme 1-17).  Carboxylic acids and esters were generated from primary 

and secondary polyfluorinated iodides when KF or NEt3 were present in the reaction.49,50  

Interestingly, when secondary amines were used as the nucleophile, a mixture of amide 

and α-ketoamides was isolated.51 
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Scheme 1-17. Palladium-Catalyzed Carbonylation of Perfluoroalkyl Iodides 

 

It was found that employing TMU, DMI, or DMPU instead of a commonly 

employed amine or inorganic bases allowed base-sensitive compounds such as 1.17 to be 

carbonylated in good yields (Scheme 1-18).52  It was also found that molecular sieves 

could facilitate the reaction as well.53   
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carbonylation and nucleophilic displacement of the palladium complex55 to provide a 

wide range of α-amino acids such as  hydantoins and aryl glycines.56-60 

 

 

Scheme 1-19. Palladium-Catalyzed Amidocarbonylation 
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contrast to the previous examples, Ryu’s method was proposed to proceed by single 
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Scheme 1-20. Palladium-Catalyzed Carbonylative Cyclization of Alkyl Iodides via a 
Radical/Metal Pathway 
 

 

Ryu and co-workes have also published a carbonylation of primary, secondary, 

and tertiary alkyl halides (Scheme 1-21).62  While commercially available Pd(PPh3)4 

routinely afforded good to excellent yields of product, palladium dimer 

[Pd2(CNMe)6][PF6]2 provided similar yields.  The reaction was proposed to proceed via a 

palladium/light mediated mechanism as well, beginning with generation of the carbon-

centered free radical from the halide precursor.  Free-radical carbon-carbon bond 

formation is followed by generation of the acylpalladium species, which, upon 

nucleophilic displacement by the nucleophile, affords the product.  Additionally the 

reaction boasted high functional group compatibility and could also generate amide 

products in addition to ester products when a secondary amine was employed as the 

nucleophile. 

 

I

O

5 mol % Pd(PPh3)4
1.2 equiv NEt3

40 atm CO

10 mol % DMAP

hv (500 W Xe)
PhH, rt 82%

60 equiv BuOH
O

OBu

O

O
PdIILn

O

O

O

O

PdILn

Pd0Ln/hν

PdILn

CO

CO

Pd0Ln

BuOH
•

• •
•



 19 

 
Scheme 1-21. Palladium-Catalyzed Carbonylation of Primary, Secondary, and Tertiary 
Alkyl Halides 
 
 
1.4 Summary and Outlook 

Despite significant challenges, alkyl electrophiles have been employed in several 

palladium-catalyzed reactions including important organometallic cross-coupling 

reactions as well as carbonylation reactions.  Typically bulky, electron-rich alkyl 

phosphines or NHC ligands are employed to achieve these processes.  While primary 

alkyl electrophiles have been used in several couplings with organoboron, -magnesium, -

tin, -zinc, -silicon, and -zinc reagents, the use of secondary alkyl electrophiles is 

considerably more scarce.   

Nevertheless, there are several interesting challenges that have not been 

successfully met.  The alkyl-Heck reaction reported by Fu and co-workers has a limited 

substrate scope.  Extension of this methodology would prove highly desirable, 

particularly for secondary alkyl electrophiles (Chapter 2 and 3).  To date, examples of 

palladium-catalyzed carbonylation of secondary alkyl electrophiles are also rare.  
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synthesis of a wide variety of bioactive natural products that contain a polycyclic 

aromatic core (Chapter 5).  Novel synthetic methodologies have been developed to meet 

these challenges and are described herein. 
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Chapter 2 
 
Palladium-Catalyzed Carbonylative Heck-Type Cyclizations of 
Alkyl Iodides 
 
2.1 Introduction 

Palladium-catalyzed cross-coupling reactions have had a profound impact on 

carbon-carbon bond forming processes.1,2  This is reflected by the 2010 Nobel Prize in 

chemistry that was awarded to pioneers in palladium-catalyzed carbon-carbon bond 

synthesis.3  The palladium-catalyzed Heck reaction, which couples aryl or vinyl halides 

or sulfonates with simple alkenes, has emerged as a premier method for carbon-carbon 

bond construction.4  The Heck reaction boasts excellent functional group tolerance, 

obviates the need for prefunctionalization of the coupling partner, and generates an olefin 

product can be readily utilized in subsequent transformations.  In 1972, seminal work for 

the Heck reaction described the palladium-catalyzed coupling of aryl halides with 

styrenes or acrylates in the presence of an amine base (Scheme 2-1). 5  

 

 

Scheme 2-1.  Seminal Example of the Heck Reaction 

 

1.0 equiv nBu3N
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75%

1 mol % Pd(OAc)2
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Over the past forty years, the utility of the Heck reaction has been well 

demonstrated in synthesis, finding widespread applications in various fields of chemical 

science, which includes more than 100 different syntheses of natural products and 

bioactive compounds.6,7  One remarkable example was disclosed by the Overman lab in 

their syntheses of psycholeine and quadrigemine C, in which an enantioselective double 

Heck cyclization provided two quaternary centers with excellent regioselectivity and 

stereoselectivity (Scheme 2-2);8 however, despite the broad applicability of the Heck 

reaction, there are significant fundamental limitations associated with the reaction scope, 

as the Heck reaction is not generally applicable to alkyl electrophiles.  As such, it is our 

goal to develop synthetic strategies, which will enable this important transformation.   

 

 

Scheme 2-2. Application of the Enantioselective Heck Reaction in the Total Syntheses of 
Psychloleine and Quadrigemine C  
 
 
2.2 Background 

Extension of the Heck reaction to include alkyl electrophiles would be extremely 

beneficial; however, there are inherent issues impeding such a realization (Figure 2-1).  
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second, once the alkyl palladium species is generated, it typically undergoes rapid β-

hydride elimination.14,15  Previously, palladium-catalyzed Heck reactions of alkyl halides 

has been accomplished by either by employing activated substrates such as benzylic,16-18 

allylic,19 and α-halo carbonyl20,21 compounds to enable oxidative addition or utilizing 

alkyl electrophiles without accessible β-hydrogens.22   

 

 

Figure 2-1.  Challenges in Developing Alkyl-Heck Processes 

 

In 2007, the first example that relied upon catalyst control to overcome the 

aforementioned issues was reported. The Fu laboratory described a palladium-catalyzed 

intramolecular Heck cyclization of primary alkyl bromides and chlorides with mono-

substituted alkenes (Figure 2-2).23  In these transformations Pd2(MeO-dba)3 was utilized 

as the precatalyst.  The electron rich dba ligand variant is an especially active catalyst 

because of its weaker affinity for the metal, which allows for more facile dissociation.24,25  

An NHC ligand was successful as it shares the same σ-donation properties as the trialkyl 

phosphine ligands that the Fu lab has successfully utilized in other palladium-catalyzed 

cross-couplings with alkyl electrophiles.26,27  This metal/ligand combination was able to 

effectively mitigate β-hydride elimination after oxidative addition and promote β-hydride 

elimination after cyclization.  This was attributed to the increased steric bulk around the 

metal after cyclization, which promoted dissociation of the palladium(II) species.  While 
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these preliminary findings are encouraging, this method is limited to cyclopentene 

synthesis with primary halides and mono-substituted alkenes.  

 

 

Figure 2-2. Palladium-Catalyzed Heck Cyclization of Aliphatic Bromides and Chlorides 

 

 Other research groups have reported useful alkyl Heck-type processes that possess 

free radical intermediates.  Lebedev and Beletskaya reported a Ni-mediated method that 

couples alkyl bromides with styrene in the presence of zinc.28  Kambe described a 

titanocene-catalyzed system that requires stoichiometric grignard addition.29  Oshima has 

also reported a cobalt-catalyzed method that coupled alkyl iodides, bromides, and 

chlorides in the presence of stoichiometric Grignard reagent.30   

We hypothesized trapping an alkyl palladium species by migratory carbon 

monoxide insertion would allow access to carbonylative Heck-type products (Figure 2-3).  

Carbonylative Heck-type reactions have been reported; however, they are limited to aryl 

or vinyl electrophiles.31-33  Furthermore, carbonylative cyclization products would 
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provide synthetically useful enone products which are important building blocks for 

organic synthesis.34   

 

 
 

Figure 2-3.  Proposed Palladium-Catalyzed Carbonylative Alkyl-Heck Cyclization  

 

Migratory insertion of carbon monoxide ligands has been shown to outcompete β-

hydride elimination from the unstable alkyl palladium species generated upon reaction 

with an alkyl halide.35  This was demonstrated by the Semmelhack lab as 

alkoxypalladiation of 2.1 generated  alkylpalladium species 2.2 that underwent migratory 

CO insertion to generate acyl palladium 2.3, instead of undergoing β-hydride elimination.  

Methanolysis then displaced palladium, generating ester 2.4 as a single stereoisomer 

(Scheme 2-3).36   Herein, we demonstrate that a commercially available palladium 

catalyst is capable of catalyzing carbonylative Heck-type reactions of unactivated alkyl 

iodide electrophiles. 
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Scheme 2-3. Precedence for Palladium-Catalyzed Migratory CO Insertion Out-
Competing β-Hydride Elimination 
 

2.3 Results and Discussion 

2.3.1 Reaction Development 

Our studies commenced with alkyl iodide 2.5.  Iodide substrate 2.5 was chosen as it 

includes a number of control elements that will allow facile analysis of the reaction 

outcome.  Our preliminary proposed mechanism is show in Scheme 2-4.  Please refer to 

Scheme 2-8 or Scheme 2-9 for our current hypothesis.  If β-hydride elimination were to 

occur to provide 2.7, the methylene installed on the alkyl tether would prevent 

isomerization of the resulting terminal olefin.  Cyclization of alkyl-palladium 2.6 to form 

cyclobutane is highly unlikely; however, rapid 5-exo cyclization should occur if acyl-

palladium 2.8 is generated.  The dimethyl substitution was employed to limit the number 

of alkene isomers that could be formed if reinsertion of the eliminated hydrido-palladium 

species into products 2.10 or 2.11 occurs.   
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Scheme 2-4. Potential Reaction Pathway for Palladium-Catalyzed Carbonylative Alkyl 
Heck Cyclization 

 

Optimization studies began with commercially available Pd(PPh3)2Cl2 as a 

catalyst.  Pd(PPh3)2Cl2 has successfully catalyzed intramolecular carbonylative Heck 

reactions employing aryl iodides.33  Upon heating to 130 °C in the presence of 10 mol % 

palladium catalyst with 2.0 equiv of iPr2NEt in toluene under 50 atm CO for 5 hours, the 

desired enone products were observed in a 60% combined yield (Table 2-1, entry 1).  

Employing commercially available tetrakis(triphenylphosphine)palladium(0) (Pd(PPh3)4) 

further increased the yield to 79% (entry 2).    Reactions utilizing other palladium catalyst 

systems resulted in decreased yields (entries 3 and 4), and no product formation was 

observed in the absence of Pd(PPh3)4 (entry 5).  When the reaction temperature was 
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Similarly, decreasing the reaction pressure resulted in a less effective reaction (entry 7).  

We also found that inorganic bases such as Cs2CO3 proved inferior to amine bases (entry 

8).  This is likely due to the decreased solubility of the inorganic base in nonpolar 

solvent.  Notably, substrate dehydrohalogenation (Scheme 2-4, 2.7) was not a significant 

side reaction in these experiments; however, polar solvents systems were much less 

effective due to the increased formation of phosphonium salt byproducts (entry 9).  

 

Table 2-1. Influence of Reaction Conditions on the Carbonylative Cyclization  

 
 

 

It was determined that generation of the phosphonium salt was an unproductive 

side reaction, as when it was resubmitted to the reaction conditions from which it was 

generated, product formation was not observed (Scheme 2-5).   
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Scheme 2-5. Phosphonium Salt Control Reaction 

 

2.3.2 Substrate Scope Development 

We then examined the substrate scope of the reaction with a wide variety of 

unsaturated alkyl iodides using the optimized reaction conditions (Table 2-1).  The study 

began with primary alkyl iodides.  The reaction performed well with simple acyclic 

substrates as predominantly (E)-disubstituted alkyl iodide 2.12 (85:15 E:Z) (entry 1) 

provided cyclohexenone 2.13 in  77% yield as a 10:1 mixture of E:Z isomers.  

Conjugated alkenes were useful substrates, as (Z)-styrenyl substrate 2.14 provided enone 

2.15 in 55% yield.  We also found that different classes of ring systems were easily 

accessible.  Under the standard conditions, bicyclo[3.3.0]octenones (entry 3) and 

bicyclo[4.3.0]nonenones (entry 4) were furnished from substrates 2.16 and 2.5.  Notably, 

this process was not limited to 5-exo cyclizations, as bicyclodecenone 2.19 was 

synthesized in 69% yield from 2.20 via a 6-endo cyclization.   

 
 
 
 
 
 
 
 
 
 
 
 
 
 

PPh3

10 mol % Pd(PPh3)4
2 equiv iPr2NEt

50 atm CO
1:1 THF/MeCN, 130 °C

I
no conversion
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Table 2-2. Palladium-Catalyzed Carbonylative Cyclization of Primary Alkyl Iodidesa 

 
 

 
 Secondary alkyl iodides also readily reacted under the standard conditions.  

Secondary alkyl halides 2.21 (Table 2-3, entry 1) and 2.23 (entry 2) with tri-substituted 

alkenes generated tetra-substituted enone products in 91% and 82% yields, respectively.  

Notably, bicyclo[5.3.0]decanone 2.24 was synthesized in good yield, and is a common 

2.5

I

I

OMe

Me

2.12

I

2.14

I

2.16

O

Me

H O

Me
2.112.10

O

2.15

O

Me

MeO
2.13

2.19

Entry Substrate Product %Yieldb,c

1

2

3

4

2.20

O

H

H

O H

H

O

2.182.17

5
I

77
10:1
E:Z

55
>25:1
E:Z

63
1.3:1

2.17:2.18

74
7.1:1

69

2.10:2.11

aAll reactions run 0.5 M in PhMe at 130 °C under 50 atm CO in the presence of 10 
mol % Pd(PPh3)4 and 2.0 equiv of iPr2NEt for 5-12 h. bAll yields are isolated. cThe
diastereomeric ratios were determined by 1H NMR spectroscopy of the isolated 
products.
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motif in bioactive natural products.37-39  Neopentyl iodide 2.25 efficiently transformed 

into spriocyclic product 2.26 in 90% yield, demonstrating that sterically hindered alkyl 

iodides are well tolerated in this system.   

 
Table 2-3. Palladium-Catalyzed Carbonylative Cyclization of Secondary and Sterically 
Hindered Secondary Alkyl Iodides 

 

 

Despite these significant advancements, there were also limitations to the 

substrate scope as well.  While the majority of the products favored the generation of 

conjugated enones, alkene isomerization was noted in certain cases (Scheme 2-6).  When 

acyclic alkyl iodide 2.27 was subjected to the standard conditions, trace amounts of 

alkene isomers 2.29 were noted by 1H and 13C NMR in addition to conjugated enone 

I

2.23

2.25 2.26

O

OH

2.24

Entry Substrate Product %Yieldb,c

1

2

3

91
1.2:1 dr

82
1.6:1 dr

90

I

2.21

OH

2.22

I

aAll reactions run 0.5 M in PhMe at 130 °C under 50 atm CO in the presence of 10 
mol % Pd(PPh3)4 and 2.0 equiv of iPr2NEt for 5-12 h. bAll yields are isolated. cThe
diastereomeric ratios were determined by 1H NMR spectroscopy of the isolated 
products.
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product 2.28.  Alkene isomerization was also found to increase with reaction time as 

well.   

 

 
Scheme 2-6.  Isomerization of the Enone Products 

 

 When primary alkyl iodides with mono-substituted alkenes were subjected to the 

standard reaction conditions, < 20% yield was observed (Scheme 2-6).  Initially, the low 

boiling point of 2.30 was believed to be partially responsible for the low yield; however, 

iodide 2.31 possesses a substantially higher boiling point and resulted in a similar 

outcome.  Significant amounts of unidentified decomposition were noted by 1H NMR, 

indicating that an unstable intermediate may have been present.   

 

 
Figure 2-4.  Substrate Limitations with Respect to Alkene Substitution 

  

Furthermore, primary alkyl bromides were unreactive under the standard 

conditions (Figure 2-5, entry 1). This is most likely attributed the higher bond strength of 

a carbon–bromide bond in comparison to a carbon–iodide bond.  Attempts were made to 

generate the iodide in situ through the addition of 20 mol % sodium iodide (entry 2) and 

50 mol % tetrabutylammonium iodide (entry 3); however, these attempts were 

I

3
O O

66%
3:1 E:Z

trace amounts

10 mol % Pd(PPh3)4
2 equiv iPr2NEt

50 atm CO
PhMe, 130 °C

2.29

3

2.27

2.28

II

2.30 2.31
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unsuccessful, likely because the reaction was conducted in a non-polar solvent, 

significantly decreasing the rate of the polar substitution reaction.   

 

 

Figure 2-5. Attempted Reactions of Alkyl Bromides Substrates 

 

2.3.3 Mechanistic Studies 

The ability of palladium(0) to react with alkyl iodides by SN240,41  as well as 

through single-electron pathways,42,43 opens the door to a number of mechanistic 

possibilities.  To understand more about this reaction, we subjected enone 2.5 to the 

standard reaction conditions as well as one equivalent of TEMPO (Scheme 2-7).  

TEMPO has been previously utilized to trap radical intermediates in nickel-catalyzed 

reactions involving alkyl iodides.44  The reaction produced 65% of enone products 2.10 

and 2.11 as well as 17% of TEMPO adduct 2.34.  Although the efficiency of the reaction 

is comparable to that of the reaction performed in the absence of TEMPO, these results 

suggest the involvement of carbon-centered radicals in the reaction.   

Br

3

10 mol % Pd(PPh3)4
2 equiv iPr2NEt

50 atm CO
PhMe, 130 °C

no conversion

Br 20 mol % NaI
2 equiv iPr2NEt

50 atm CO
PhMe, 130 °C

no conversion

10 mol % Pd(PPh3)4

2.33

2.32

Br 50 mol % Bu4NI
2 equiv iPr2NEt

50 atm CO
PhMe, 130 °C

no conversion

10 mol % Pd(PPh3)4

2.33

(1)

(2)

(3)
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Scheme 2-7. Reaction Run in the Presence of a Radical Trap 

 

Hybrid organometallic-radical mechanisms have been proposed in reactions 

involving the palladium-catalyzed carbonylation of alkyl iodides;45-47 however, 

photoirradiation is required to achieve oxidative addition via single electron transfer to 

generate a carbon-centered radical.  It is possible that in our system, the oxidative 

addition occurs thermally instead of photolytically.  A possible catalytic cycle for the 

reaction could begin with oxidative addition of the palladium(0) to alkyl iodide 2.5 via a 

single-electron transfer, which could generate carbon-centered radical 2.35 and a putative 

palladium(I) species (Scheme 2-8).  Generation of 2.35 would account for the presence of 

the TEMPO adduct 2.34.  Carbon-centered radical 2.35 could then reaction with the react 

with the palladium(I) species.  Alkyl palladium species 2.6 could then undergo migratory 

carbon monoxide insertion, generating acyl palladium 2.8.   5-exo cyclization to alkyl 

palladium 2.9 would be immediately followed by β-hydride elimination to furnish enone 

10 mol % Pd(PPh3)4
2 equiv iPr2NEt
1 equiv TEMPO
50 atm CO
PhMe, 130 °C, 5 h

O
Me

2.34

N2.5

I

O

Me

H O

Me
2.112.10

8.3 : 1
65% isolated yield

17% yield
(1H NMR analysis)
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2.10.  Base could then regenerate the active catalyst.  The absence of any other TEMPO 

adducts supports this catalytic cycle.    

 
Scheme 2-8. Plausible Organometallic-Radical Hybrid Mechanism for the Carbonylative 
Cyclization of Alkyl Iodides 

 

Another potential mechanism could occur by the same oxidative addition via 

single electron transfer to generate carbon-centered radical 2.35.  Trapping of the radical 

with carbon monoxide could generate acyl radical 2.36, which could undergo then 5-exo 

cyclization to generate 2.37.  Formation of alkyl palladium 2.9 could be accomplished 

through reaction with palladium(I).  β-hydride elimination could then provide enone 2.10.  

Although an appreciable amount of any other TEMPO-trapped adduct was not observed, 

it is possible that other radical intermediates participate in the mechanism.  5-exo 

cyclization could occur too quickly for TEMPO to intercept 2.36.  A radical cyclization 

would also account for the observed low diastereomeric ratios of 2.22 and 2.24 (1.2:1 and 
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1.6:1, respectively) ((Table 2-3, entries 1 and 2).  The success of secondary halides 

(Table 2-3, entries 1, 2, and 3) in the reaction may be additional evidence for the 

formation of a carbon-centered radical via single electron transfer oxidative addition. 

 

 
 
Scheme 2-9. Plausible Organometallic-Radical Hybrid Mechanism with Increased 
Radical Character for the Carbonylative Cyclization of Alkyl Iodides 

 
 

2.4 Summary 

In conclusion, we have developed a palladium-catalyzed intramolecular 

carbonylative Heck-type cyclization of unactivated alkyl iodides.  The reaction possesses 

a broad substrate scope as primary and secondary iodides and substituted alkenes are 

efficiently reacted to generate synthetically valuable mono- and bicyclic enones.  

Notably, the isolation of trapped carbon-centered radicals indicates that the reaction 

proceeds via a hybrid organometallic-radical pathway, although further studies will be 

required to elucidate the precise reaction pathway. 
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2.5 Experimental 

2.5.1 General Methods  

Infrared (IR) spectra were obtained using a Jasco 260 Plus Fourier transform 

infrared spectrometer. Proton and carbon magnetic resonance spectra (1H NMR and 13C 

NMR) were recorded on a Bruker model DRX 400 or 500 or a Bruker AMX 300 (1H 

NMR at 300 MHz, 400 MHz or 500 MHz and 13C NMR at 100 MHz) spectrometer with 

solvent resonance as the internal standard (1H NMR:  CDCl3 at 7.28 ppm, 13C NMR: 

CDCl3 at 77.0 ppm).  1H NMR data are reported as follows: chemical shift, multiplicity (s 

= singlet, d = doublet, t = triplet, q = quartet, dd = doublet of doublets, ddd = doublet of 

doublet of doublets, td = triplet of doublets, qd = quartet of doublets, m = multiplet, br. s. 

= broad singlet), coupling constants (Hz), and integration.  Mass spectra were obtained 

either using a positive ion mode flow injection ESI (electrospray ionization) on a Bruker 

Daltonics, Inc., Billerica, MA, USA, BioToF Mass Spectrometer or electron impact 

ionization on an Agilent Technologies, Inc., Santa Clara, CA, USA, GCMS, 5973N Mass 

Selective Detector, using a HP-5MS, 30mx0.25mmx0.25um capillary column.  

Visualization was accomplished with short wave UV light (254 nm), aqueous basic 

potassium permanganate solution, or ethanolic acidic p-anisaldehyde solution followed 

by heating.  Flash chromatography was performed using SiliaFlash P60 silica gel (40-63 

µm) purchased from Silicycle.  Tetrahydrofuran, diethyl ether, and toluene were dried by 

passage through a column of neutral alumina under nitrogen prior to use.  Carbon 

Monoxide, Research Purity 99.998% was purchased from Matheson Tri-Gas.  All other 

reagents were obtained from commercial sources and used without further purification 

unless otherwise noted.  The pressure reactors used were purchased from Parr Instrument 
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Company that included a 4310 Gage Block Assembly and a GP VS 22 mL A SKT 316SS 

ST CLS. 

 

2.5.2  Preparation of Iodide and Bromide Substrates 

 Note: As a precaution alkyl iodides were immediately stored in a dark, inert 

atmosphere at -40 °C upon purification. 

 

 

3-(2-iodoethyl)-3,5,5-trimethylcyclohex-1-ene (2.5, Table 2-2, entry 4).  The 

title compound was synthesized according to a literature Claisen rearrangment 

procedure,49 followed by a standard sodium borohydride reduction, and an iodination.   

For 2-(1,5,5-trimethylcyclohex-2-enyl)acetaldehyde, physical and spectral data 

were in accordance with literature data.50  For 2-(1,5,5-trimethylcyclohex-2-enyl)ethanol, 

physical and spectral data were in accordance with literature data.51 

To a 0 °C solution of alcohol (1.00 g, 5.94 mmol), triphenylphosphine (1.87 g, 

7.13 mmol), and pyridine (910 uL, 11.29 mmol) in DCM (45.7 mL) was added iodine 

(1.81 g, 7.13 mmol) under Ar.  The reaction mixture was stirred at 0 °C for 1 hr.  The 

reaction as then washed with 1 N HCl, sat. aq. Na2S2O3, sat. aq. NaHCO3, and brine.  The 

organic layer was dried (MgSO4) and concentrated in vacuo.  The resulting oil was 

purified by flash chromatography (100:1 Hexanes/EtOAc) to provide 2.5 (1.12 g, 4.03 

mmol, 68%) as a colorless oil.  Analytical data for 2.5: IR (thin film, cm-1) 3011, 2950, 

2.5

OH

Hg(OAc)2
butyl vinyl ether

NaBH4O

H
OH IPPh3

imidazole
I2
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2903, 2866, 1455, 1363, 1171, 413; 1H NMR (500 MHz, CDCl3) δ 5.62 (dt, J = 10, J = 4 

Hz, 1 H), 5.34 (d, J = 10 Hz, 1 H), 3.11 (m, 2 H), 1.99 – 1.88 (m, 2 H), 1.72 (m, 2 H), 

1.39 (d, J = 13.75 Hz, 1 H), 1.23 (d, J = 13.75 Hz, 1H), 1.02, (s, 3 H), 0.95 (s, 6 H); 13C 

NMR (500 MHz, CDCl3) δ 133.38, 124.93, 49.37, 46.47, 38.55, 37.97, 31.68, 29.83, 

28.60, 27.69, 1.14; GCMS calculated for [M] 278.05, found 278.  

 

 

1-(1-iodohex-4-en-2-yl)-4-methoxybenzene (2.12, Table 2-2, entry 1).  To a 0 

°C solution of iPr2NH (2.9 mL, 21.0 mmol) in THF (90 mL) was added nBuLi (13.8 mL, 

22.0 mmol, 1.6 M in hexanes) dropwise under Ar.  The reaction mixture was stirred for 

10 minutes and then cooled to –78 °C. Methyl 2-(4-methoxyphenyl)acetate (3.6 g, 20.0 

mmol) was added dropwise in THF (10 mL).  The reaction mixture was stirred for 30 

minutes and then treated with crotyl bromide (3.24 g, 24.0 mmol, 85% pure from Acros).  

The reaction was then warmed to room temperature and stirred overnight.  The reaction 

mixture was then diluted with EtOAc, washed with sat. NH4Cl, dried with MgSO4, and 

concentrated in vacuo to give a crude oil that was purified by flash chromatography (20:1 

Br

OMe
O

OMe
OMe

O

OMe

LDA
LiAlH4

PPh3
imidazole

I2

2.392.38

OH

OMe

I

OMe
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Hexanes/EtOAc) to provide (3.33 g, 14.21 mmol, 71% yield) 2.38 as a colorless oil.  

Analytical data for 2.38: IR (thin film, cm-1) 2999, 2951, 2915, 2855, 2836, 1737, 1612, 

1512, 1436, 1302, 1250, 1179, 1160, 1035, 969, 833, 793; 1H NMR (500 MHz, CDCl3) δ 

7.25 (m, 2 H), 6.88 (m, 2 H), 5.52 (m, 1 H), 5.39 – 5.28 (m, 1 H), 3.81 (s, 3 H), 3.68 – 

3.66 (m, 3 H), 3.56 (m, 1 H), 2.82 (m, 0.17 H), 2.75 (m, 0.85 H), 2.52 (m, 0.17 H), 2.43 

(m, 0.85 H), 1.65 – 1.59 (m, 3 H); 13C NMR (500 MHz, CDCl3) δ ppm 174.42, 174.36, 

130.89, 130.86, 128.95, 128.92, 127.77, 127.57, 126.87, 126.26, 113.95, 60.40, 55.22, 

51.93, 51.88, 51.09, 50.68, 36.67, 31.01, 17.97, 14.21, 12.84; LRMS (ESI) calculated for 

[C14H18O3+Na]+ 257.12, found 257.10.   

To a 0 °C solution of lithium aluminum hydride (810 mg, 21.34 mmol) in THF 

(80 mL) was added 2.38 dropwise in THF (20 mL) under Ar.  The reaction mixture was 

stirred for 1 hr at 0 °C.  It was then quenched by the slow, dropwise addition of 810 µL 

H2O, followed by 1.62 mL 10 wt % NaOH, and then 2.43 mL H2O.  The reaction mixture 

was stirred vigorously until a white solid appeared.  The white precipitate was filtered, 

and the filtrate was concentrated in vacuo.  The resulting oil was purified by flash 

chromatography (3:1 Hexanes/EtOAc) to provide (2.22 g, 10.76 mmol, 76% yield) 2.39 

as a colorless oil.    Analytical data for 2.39: IR (thin film, cm-1) 3376, 2998, 2915, 2835, 

1513, 2058, 1301, 1242, 1178, 1036, 968, 912, 829; 1H NMR (500 MHz, CDCl3) δ 7.15 

(m, 2 H), 6.87 (m, 2 H), 5.49 – 5.41 (m, 1 H), 5.37 – 5.30 (m,  1 H), 3.77 (s, 3 H), 3.75 – 

3.61 (m, 2 H), 2.76 (m, 1 H), 2.48 (m, 0.18 H), 2.41 – 2.33 (m, 0.86 H), 2.32 – 2.23 (m, 1 

H), 2.04 (s, 0.07 H), 1.97 (s, 0.95 H), 1.62 – 1.57 (m, 3 H); 13C NMR (500 MHz, CDCl3) 

δ ppm 158.10, 158.05, 134.09, 134.03, 128.69, 127.93, 126.53, 125.04, 113.73, 66.80, 
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66.75, 54.98, 47.52, 47.47, 35.42. 29.59, 17.76, 12.68; LRMS (ESI) calculated for 

[C13H18O2+Na]+ 229.12, found 229.10 

To a room temperature solution of alcohol 2.39 (2.0 g, 9.70 mol) in acetonitrile 

(15 mL) and diethyl ether (58 mL) under Ar, triphenylphosphine (5.09 g, 19.39 mmol), 

imidazole (1.32 g, 19.39 mmol) and iodine (4.92 g, 19.39 mmol) were added 

successively.  The reaction mixture was stirred approximately fifteen minutes. SiO2 was 

then added, and the mixture was concentrated in vacuo.  The crude iodide was purified by 

column chromatography (30:1 Hex:EtOAc) to provide 2.12 (2.25 g, 7.12 mmol, 79% 

yield) as a colorless oil an as inseparable mixture of stereoisomers (85:15) with cis as the 

major isomer.  Analytical data for 2.12: IR (thin film, cm-1) 2998, 2954, 2933, 2912, 

2833, 1611, 1583, 1512, 1461, 1439, 1302, 1249, 1178, 1036, 967, 828, 804, 556, 453; 

1H NMR (500 MHz, CDCl3) δ 7.12 – 7.08 (m, 2 H), 6.90 – 6.87 (m, 2 H ), 5.54 – 5.47 

(m, 1 H), 5.32 – 5.25 (m, 1 H), 3.81 (s, 3 H), 3.47 – 3.40 (m 1 H), 3.40 – 3.33 (m, 1 H), 

2.91 – 2.81 (m, 1 H), 2.68 – 2.61 (m, 0.19 H), 2.52 – 2.46 (m, 0.9 H), 2.40 – 2.34 (m, 1 

H), 1.64 – 1.59 (m, 3 H); 13C NMR (500 MHz, CDCl3) δ 

158.33, 158.27, 134.83, 134.74, 128.26, 128.22, 127.91, 127.52, 127.24, 125.87, 113..68, 

113.65, 55.08, 47.17, 47.00, 38.71, 33.03, 17.91, 14.14, 13.88, 12.96; LRMS (ESI) 

calculated for [C13H17IO+H]+ 317.04, found 317.04. 
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(Z)-(5-iodopent-1-en-1-yl)benzene (2.14, Table 2-2, entry 2).  The title 

compound was prepared according to a literature procedure by Kulawiec, et. al.52 and 

iodination as described below.  

To a room temperature solution of alcohol (670 mg, 4.13 mmol) in acetonitrile (6 

mL) and diethyl ether (24 mL) under Ar, Triphenylphosphine (2.17 g, 8.26 mmol), 

imidazole (562 mg, 8.26 mmol), and iodine (2.1 g, 8.26 mmol) were added successively.  

The reaction mixture was stirred approximately fifteen minutes. SiO2 was then added, 

and the mixture was concentrated in vacuo.  The crude iodide was purified by column 

chromatography (40:1 Hex:EtOAc) to provide 2.14 (700 mg, 2.57 mmol, 63%) as a 

colorless oil. Physical and spectral data for 2.14 were in accordance with literature data.53 

 

 

3-(2-iodoethyl)cyclopent-1-ene (2.16, Table 2-2, entry 3). The title compound 

was prepared via esterification and reduction according to the literature procedure by 

Lopp et. al54 followed by iodination.   

To a 0 °C solution of alcohol (1.33 g, 11.86 mmol), triphenylphosphine (3.73 g, 

14.23 mmol), and pyridine (1.8 mL, 22.53 mmol) in DCM (90 mL) was added iodine 

(3.61 g, 14.23 mmol) under Ar.  The reaction mixture was stirred at 0 °C for 1 hr.  The 

reaction was diluted with DCM and then washed with 1 N HCl, sat. aq. Na2S2O3, sat. aq. 

NaHCO3, and brine.  The organic layer was dried (MgSO4) and concentrated in vacuo.  

The resulting oil was purified by flash chromatography (100:1 Hexanes/EtOAc) to 

O

OH

O

OMe
OH Iconc. HCl

MeOH
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pyridine
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provide 2.16 (2.04 g, 9.19 mmol, 78% yield) as a colorless oil.  Physical and spectral data 

were in accordance with the literature data.55 

 

 

1-(3-iodopropyl)cyclohex-1-ene (2.19, Table 2-2, entry 5).  The title compound 

was synthesized via an alklylation56, followed by a standard LAH reduction, and an 

iodination57.   

Analytical data for tert-butyl 3-(cyclohex-1-en-1-yl)propanoate (2.40): IR 

(film) 3423, 2977, 2931.27, 2835, 1730, 1448, 1367, 1294, 1256, 1152, 827, 420 cm-1; 1H 

NMR (500 MHz, CDCl3) δ ppm 5.38 (s, 1H), 2.28 (t, J = 7.5 Hz, 2 H), 2.18, (t, J = 7.5 

Hz, 2 H), 1.94 (m, 2H), 1.89 (m, 2 H), 1.58 (m, 2 H), 1.50 (m, 2 H), 1.41 (s, 9 H); 13C 

NMR (500 MHz, CDCl3) δ ppm 172.92, 136.13, 121.37, 79.89, 33.98, 33.19, 28.09, 

25.09, 28.02, 22.83, 22.38; LRMS (ESI) calculated for [C13H22O2+H]+ 211.17, found 

211.08.  Physical and spectral data in accordance with literature data for 3-(cyclohex-1-

en-1-yl)propan-1-ol.58  Physical and spectral data were in accordance with the literature 

data for 2.19. 
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(cis)-1-iodo-2-(3-methylbut-2-en-1-yl)cyclohexane (2.21, Table 2-3, entry 1).  

The title compound was prepared by conjugate addition to cyclohexene59 to generate an 

alcohol whose physical and spectra data were in accordance with literature data60 

followed by an iodination. 

Triphenylphosphine (1.87 g, 7.13 mmol), imidazole (485 mg, 7.13 mmol), and 

iodine (1.81 g, 7.13 mmol) in DCM (11 mL) were combined at 0 °C under Ar and stirred 

for 15 min.  A solution of alcohol (800 mg, 4.75 mmol) in DCM (11 mL) was then added 

dropwise.  The reaction mixture was stirred at 0 °C for 30 min.  The reaction was then 

quenched with H2O and extracted with DCM three times.  The combined organic layers 

were washed with sat. aq. Na2S2O3 and brine, dried (MgSO4) and concentrated in vacuo.  

The resulting oil was purified by flash chromatography (50:1 Hexanes/EtOAc) to provide 

XX (925 mg, 3.33 mmol, 70%) as a colorless oil.  Analytical data for 2.21: IR (thin film, 

cm-1) 2927, 2852, 1708, 1637, 1446; 1H NMR (500 MHz, CDCl3) δ 5.06 (m, 1 H), 4.72 

(m, 1 H), 2.19 (m, 1 H), 1.93 (m, 1 H), 1.86 (m, 1 H), 1.78 – 1.68 (m, 5 H) 1.65 (s, 3 H), 

1.55 (m, 1 H), 1.47(m, 1 H), 1.33 – 1.25 (m, 3 H), 0.43 (m, 1 H); 13C NMR (500 MHz, 

CDCl3) δ 133.32, 121.47, 48.42, 43.45, 36.89, 36.71, 28.83, 25.87, 25.58, 22.78, 22.58, 

22.78, 18.32; LRMS (ESI) calculated for [C11H19I] 278.05, found 278. 

O
BrMg
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CuI
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(trans)-1-iodo-2-(3-methylbut-2-en-1-yl)cycloheptane (2.23, Table 2-3, entry 

2).  The title compound was synthesized via an oxidation of cycloheptene oxide61 and 

conjugate addition to the resulting epoxide.59   

Triphenylphosphine (1.04 g, 3.97 mmol), imidazole (270 mg, 3.97 mmol), and 

iodine (1.01 g, 3.97 mmol) in DCM (6 mL) were combined at 0 °C under Ar and stirred 

for 15 min.  A solution of alcohol (482 mg, 2.64 mmol) in DCM (6 mL) was then added 

dropwise.  The reaction mixture was stirred at 0 °C for 30 min.  The reaction was then 

quenched with H2O and extracted with DCM three times.  The combined organic layers 

were washed with sat. aq. Na2S2O3 and brine, dried (MgSO4) and concentrated in vacuo.  

The resulting oil was purified by flash chromatography (50:1 Hexanes/EtOAc) to provide 

2.23 (541 mg, 1.85 mmol, 70%) as a colorless oil.  Analytical data for 2.23: IR (thin film, 

cm-1) 2964, 2926, 2855, 1446, 1375, 485; 1H NMR (500 MHz, CDCl3) δ 5.04 (t, J = 7.25 

Hz, 1H), 4.70 (t, J = 2.8 Hz, 1H), 2.26 (m, 1H), 2.02 – 1.82 (m, 3H), 1.76 – 1.68 (m, 7 

H), 1.62 – 1.50 (m, 3 H), 1.43 – 1.35 (m, 1 H), 0.80 – 0.74 (m, 1H); 13C NMR (500 MHz, 

CDCl3) δ 133.55, 122.41, 49.67, 46.20, 36.49, 32.86,  27.00, 26.36, 25.90, 25.65, 18.33; 

GCMS calculated for [C12H21I] 292.07, found 292.  

OH
BrMgO

I

mCPBA CuI
PPh3

imidazole
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1-(iodomethyl)-1-(3-methylbut-2-en-1-yl)cyclohexane (2.25, Table 2-3, entry 

3).  The title compound was synthesized by an alkylation reaction62 followed by a 

standard LAH reduction, and an iodination reaction.   

Triphenylphosphine (908 mg, 3.46 mmol) was added to a 0 °C solution of (1-(3-

methylbut-2-en-1-yl)cyclohexyl)methanol (234 mg, 1.28 mmol) and imidazole (332 mg, 

4.88 mmol) in THF (15 mL) under Ar.  The reaction mixture was stirred 10 minutes, 

followed by addition of iodine (845 mg, 3.33 mmol).  The reaction mixture was then 

warmed to room temperature and stirred overnight.  The solution was quenched with 

Na2S2O3 and extracted with Et2O (x 3).  The combined organic layers were washed with 

brine, dried (MgSO4), and concentrated in vacuo.  The resulting oil was purified using 

flash chromatography (30:1 Hexanes/EtOAc) to provide 2.25 (179 mg, 0. 613 mmol, 

48%) as a colorless oil.  Analytical data for 2.25: IR (thin film, cm-1) 2926, 2855, 1453, 

412; 1H NMR (500 MHz, CDCl3) δ 5.06 (t, J = 7.65 Hz, 1 H), 3.24 (s, 2 H), 2.02 (d, J = 

7.6 Hz, 2 H), 1.71 (s, 3 H), 1.66 (s, 3 H), 1.48 – 1.33 (m, 10 H) ; 13C NMR (500 MHz, 

CDCl3) δ 134.32, 118.99, 36.25, 34.96, 26.22, 26.07, 22.56, 21.93, 18.39; LRMS (ESI) 

calculated for [C12H21I] 292.07, found 292. 
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(Z)-1-iododec-4-ene (2.27, Scheme 2-6).  The title compound was prepared 

according to a literature procedure by Yadav and co-workers.63 

 

 

5-iodopent-1-ene (2.30, Figure 2-4).  The title compound was prepared by an 

iodination reaction.64 

 

 

(1-iodopent-4-en-2-yl)benzene (2.31, Figure 2-4). The title compound was 

synthesized by an alkylation65 followed by a standard LAH reduction, and an iodination 

reaction.66 
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(Z)-1-bromodec-4-ene (2.32, Figure 2-5).  The title compound was prepared by a 

bromination reaction.67 

 

2.5.3 Intramolecular Carbonylative Alkyl Heck Results 

General Procedure for the Intramolecular Carbonylative Alkyl Heck Reaction: 

In a glovebox, the alkyl iodide (1.0 equiv), Pd(PPh3)4 (0.1 equiv), iPr2NEt (2.0 equiv), 

and toluene (0.5 M) were combined in a 20 mL Parr reactor.  The reactor was sealed and 

then removed from the glovebox.  The Parr reactor was purged with carbon monoxide at 

150 psi and then charged with 735 psi carbon monoxide.  The reaction vessel was then 

placed in a 130 °C oil bath for 12 hr, after which, it was allowed to cool to room 

temperature before depressurizing.  The Parr reactor was then opened and the reaction 

mixture was transferred out of the vessel by subsequent rinses with Et2O.  The combined 

organic layers were washed with brine.  The aqueous layer was then extracted with Et2O 

three times.  The combined organic layers were dried (MgSO4) and concentrated in 

vacuo.  The resulting enone was purified by flash chromatography with the specified 

solvent system. 
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(cis)-3a,5,5-trimethyl-2,3,3a,4,5,7a-hexahydro-1H-inden-1-one (2.10, Table 2-

2, entry 4) and 3a,5,5-trimethyl-2,3,3a,4,5,6-hexahydro-1H-inden-1-one (2.11, Table 

2-2, entry 4).   The title compounds were synthesized according to the general procedure 

using 2.5 (70 mg, 0.25 mmol), but the reaction time was 5 hr.  The resulting enones were 

purified by flash chromatography (20:1 Hexanes:EtOAc) to afford 2.10 and 2.11 (33.0 

mg, 0.185 mmol, 74% yield) as a yellow oil.  The two regioisomers were partially 

separable.  Analytical data for 2.10: IR (thin film, cm-1) 3011, 2918, 2848, 1443, 1226, 

1176, 689; 1H NMR (500 MHz, CDCl3) δ 5.58 (m, 2 H), 2.35 (s, 1 H), 2.29 (m, 2 H), 

1.90 (m, 1 H), 1.65 (m, 1 H), 1.39 (s, 2 H), 1.21 (s, 3 H), 1.06 (s, 3 H), 0.97 (s, 3 H); 13C 

NMR (500 MHz, CDCl3) δ 219.53, 138.63, 118.71, 56.28, 44.66, 38.25, 35.92, 35.17, 

32.59, 32.03, 30.18, 28.41; GCMS calculated for [M] 178.14, found 178.  Analytical data 

for 2.11: 1H NMR (400 MHz, CDCl3) δ ppm 6.57 (t, J = 4.4 Hz, 1 H), 2.44 – 2.19 (m, 2 

H), 2.03 (m, 2 H), 1.90  - 1.95 (m, 1 H), 1.69 (m, 1 H), 1.47 – 1.44 (m, 1 H), 1.23 (m, 1 

H), 1.16 (s, 3 H), 1.06 (s, 3 H), 0.98 (s, 3 H); 13C NMR (500 MHz, CDCl3) δ 207.04, 

145.42, 130.54, 49.94, 39.41, 37.55, 35.60, 35.27, 31.26, 31.16, 30.09, 25.96. 

 

 

2-ethylidene-4-(4-methoxyphenyl)cyclopentanone (2.13, Table 2-2, entry 1). 

The title compound was synthesized according to the general procedure using 2.12 (150 

mg, 0.474 mmol).  The resulting enone was purified by flash chromatography (30:1 

O

Me

MeO
2.13
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Hexanes/EtOAc) to afford 2.13 (79.0 mg, 0.365 mmol, 77% yield) as an inseparable 

mixture of stereoisomers (10:1 trans:cis) as a pale yellow oil.  Analytical data for 2.13-cis 

isomer: IR (thin film, cm-1) 2925, 2855, 1720, 1652, 1612, 1513, 1249, 1035, 829; 1H 

NMR (400 MHz, CDCl3) δ 7.16 (d, J = 8.6 Hz, 2 H), 6.87 (d, J = 8.6 Hz, 2 H), 6.09 (m, 

1 H), 3.79 (s, 3 H), 3.33 (m, 1 H), 2.96 (dd, J = 15.3, J = 7 Hz, 1 H), 2.77 – 2.63 (m, 2 H), 

2.47 (dd, J =17.6, J = Hz, 1 H), 2.16 (d, J = 7.2, 3 H); 13C NMR (400 MHz, CDCl3) δ 

206.92, 158.37, 136.20, 135.64, 135.38, 127.59, 114.08, 55.28, 48.14, 40.04, 38.7, 14.49; 

LRMS (ESI) calculated for [C14H16O2+Na]+ 239.10, found 239.10. Analytical data for 

2.13-trans isomer: IR (thin film, cm-1) 2925, 2854, 1721, 1652, 1513, 1248, 1203, 1180, 

1035, 829; 1H NMR (400 MHz, CDCl3) δ 7.17 (d, J = 8.5 Hz, 2 H), 6.87  (d, J = 8.5 Hz, 

2 H), 6.68 (m, 1 H), 3.79 (s, 3 H), 3.34 (p, J = 8.7 Hz, 1 H), 3.07 (dd, J = 16.3 Hz, J = 

7.75 Hz, 1 H), 2.74 (dd, J = 17.7 Hz, J = 7.6 Hz, 1 H), 2.63 – 2.40 (m, 2 H), 1.82 (d, J = 

6.9 Hz, 3 H); 13C NMR (400 MHz, CDCl3) δ 205.23, 158.23, 138.35, 135.78, 131.34, 

127.56, 113.98, 55.21, 46.34, 38.16, 35.24, 15.16; LRMS (ESI) calculated for 

[C14H16O2+Na]+ 239.10, found 239.10. 

 

 

(E)-2-benzylidenecyclopentanone (2.15, Table 2-2, entry 2).  The title 

compound was synthesized according to the general procedure using 2.14 (70 mg, 0.257 

mmol).  The resulting enone was purified by flash chromatography (20:1 

O

2.15
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hexanes/EtOAc) to afford 2.14 (24.3 mg, 0.141 mmol, 55% yield) as a pale yellow oil.  

Physical and spectral data were in accordance with the literature data.68 

 

 

(cis)-2,3,3a,4-tetrahydropentalen-1(6aH)-one (2.17, Table 2-2, entry 3) and 

(cis)-3,3a,6,6a-tetrahydropentalen-1(2H)-one (2.18, Table 2-2, entry 3).  The title 

compounds were synthesized according to the general procedure using 2.16 (200 mg, 

0.90 mmol).  The resulting enones were purified by flash chromatography (15:1 

Pentane/Et2O) to afford a 1.3:1 inseparable mixture of 2.17 and 2.18 (67.7 mg, 0.554 

mmol, 62% yield) as a yellow oil.  Warning: volatile compound.  Physical and spectral 

data were in accordance with the literature data.69 

 

3,4,5,6,7,8-hexahydronaphthalen-1(2H)-one (2.20, Table 2-2, entry 5.)  The 

title compound was synthesized according to the general procedure using 2.19 (150 mg, 

0.60 mmol).  The resulting enone was purified by flash chromatography (20:1 

Hexanes/EtOAc) to afford 2.20 (63.6 mg, 0.423 mmol, 70% yield) as a yellow oil.  

Physical and spectral data for 2.20 were in accordance with the literature data.70 
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2-(propan-2-ylidene)octahydro-1H-inden-1-one (2.22, Table 2-3, entry 1).  

The title compound was synthesized according to the general procedure using 2.21 (70 

mg, 0.25 mmol).  The resulting enone was purified by flash chromatography (25:1 

hexanes/EtOAc) to afford 2.22 (41.0 mg, 0.230 mmol, 92% yield) as an inseparable 

mixture of cis and trans stereoisomers as a colorless oil.  Analytical data for 2.22: IR 

(thin film, cm-1) 2927, 2852, 1708, 1637, 1446; 1H NMR (500 MHz, CDCl3) δ 2.63, (dd, 

J =  14.8, J = 6.2, Hz 1 H), 2.52 (m, 1 H), 2.31 – 0.77 (m, 22 H); 13C NMR (500 MHz, 

CDCl3) δ 207.63, 206.83, 147.77, 146.19, 131.19, 130.18, 56.80, 50.96, 40.65, 34.39, 

33.91, 33.02, 32.34, 29.66, 26.10, 25.71, 25.52, 24.27, 24.23, 24.09, 23.07, 22.71, 20.43, 

20.37; LRMS (ESI) calculated for [C12H18O+Na]+ 201.13, found 201.12. 

 

 

2-(propan-2-ylidene)octahydroazulen-1(2H)-one (2.24, Table 2-3, entry 2).  

The title compound was synthesized according to the general procedure using 2.23 (100 

mg, 0.34 mmol).  The resulting enone was purified by flash chromatography (30:1 

hexanes/EtOAc) to afford 2.24 (53.4 mg, 0.277 mmol, 82% yield) as an inseparable 

mixture of cis and trans stereoisomers as a colorless oil.  Analytical data for 2.24: IR 

(thin film, cm-1) 2924, 2851, 1704, 1636; 1H NMR (500 MHz, CDCl3) δ 2.78 – 2.66 (m, 

1 H), 2.48 – 1.19 (m, 19 H); 13C NMR (500 MHz, CDCl3) δ 209.79, 208.48, 146.51., 

OH

2.22

OH

2.24
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145.87, 131.51, 131.12, 56.49, 55.31, 40.40, 37.54, 36.48, 35.71, 35.68, 33.95, 31.44, 

28.44, 28.25. 28.21, 27.98, 27.60, 27.18, 26.89, 24.28, 24.19, 20.44, 20.40; LRMS (ESI) 

calculated for [C13H20O+H]+ 193.16, found 193.15. 

 

 

3-(propan-2-ylidene)spiro[4.5]decan-2-one (2.26, Table 2-3, entry 3).  The title 

compound was synthesized according to the general procedure using 2.25 (64.0 mg, 0.22 

mmol).  The resulting enone was purified by flash chromatography (20:1 

hexanes/EtOAc) to afford 2.26 (38.1 mg, 0.198 mmol, 90% yield) as a colorless oil.  

Analytical data for 2.26: IR (thin film, cm-1) 2925, 2853, 1708, 1633; 1H NMR (500 

MHz, CDCl3) δ 2.40 (t, J = 1.5 Hz, 2 H), 2.20 (s, 2 H), 2.19 (t, J = 1.9 Hz, 3 H), 1.80 (s, 3 

H), 1.49 = 1.35 (m, 10 H); 13C NMR (500 MHz, CDCl3) δ 207.12, 147.40, 130.87, 37.63, 

36.23, 25.94, 24.3, 22.83, 20.50 ; LRMS (ESI) calculated for [C13H20O+Na]+ 215.14, 

found 215.11. 

 

 

2,2,6,6-tetramethyl-1-(2-(1,5,5-trimethylcyclohex-2-en-1-yl)ethoxy)piperidine 

(TEMPO reaction byproduct) (2.35, Scheme 2-7).  The title compound was 

synthesized according to the procedure using 2.5 (111.3 mg, 0.41 mmol), but required the 

2.26

O

O
Me
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addition of TEMPO (64.1 mg, 0.41 mmol) and using a 5 hr reaction time.  The resulting 

product was purified by flash chromatography (50:1 Hexanes/EtOAc) to afford 2.35.  The 

yield was obtained using 1,4-dinitrobenzene as an internal NMR standard.  Analytical 

data for 2.35: IR (thin film, cm-1) 2929, 2869, 2360, 2342, 1455, 1373, 1359; 1H NMR 

(500 MHz, CDCl3) δ 5.56 – 5.52 (m, 1 H), 5.39 (d, J = 10 Hz, 1 H), 3.76 (m, 2 H), 1.79 – 

1.68 (m, 2 H), 1.59 – 1.22 (m , 10 H), 1.15 (s, 6 H), 1.07 (s, 6 H), 1.02 (s, 3 H), 0.94 (s, 6 

H); 13C NMR (500 MHz, CDCl3) δ 135.23, 123. 48, 73.86, 59.50, 47.57, 42.09, 39.52, 

38.64, 34.31, 33.03, 33.00, 31.44, 29.89, 29.16, 28.56, 20.20, 20.17, 17.13; LRMS (ESI) 

calculated for [C20H37NO+H]+ 308.30, found 308.29. 
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Chapter 3 
 
Palladium-Catalyzed Heck-Type Cyclizations of Alkyl Iodides 
 
3.1. Introduction 

 The palladium-catalyzed Heck reaction is a fundamental synthetic transformation 

in chemical synthesis, which enables the direct cross-coupling of aryl or vinyl halides or 

sulfonates and simple alkenes.1  The utility of this process has been well demonstrated in 

synthesis;2-4 however, the Heck reaction has not been generally applicable to alkyl 

electrophiles.5  The challenge in developing a Heck reaction that employs alkyl 

electrophiles has been largely attributed to the general reluctance of sp3-hybridized alkyl 

halides to undergo oxidative addition processes with low-valent transition metals,6-10 as 

well as the predisposition of the putative alkyl palladium species to undergo β-hydride 

elimination, resulting in overall dehydrohalogenation (Figure 3-1).11,12   

 

 

Figure 3-1. Challenges in Developing Alkyl-Heck Processes 
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3.2 Background 

 Despite the challenges that have impeded the development of a palladium-

catalyzed alkyl Heck transformation, useful strategies have emerged that facilitate alkyl 

Heck-type transformations utilizing metals other than palladium.  Nickel was found to 

catalyze an alkyl Heck-type reaction of alkyl bromides with styrene and methyl acrylate 

(Scheme 3-1).13  Stoichiometric zinc was required to regenerate the active catalyst.   

 

 

Scheme 3-1. Nickel-Catalyzed Alkyl Heck-Type Reaction  

 

Kambe and co-workers reported a titanocene mediated alkyl-Heck-type reaction 

(Scheme 3-2).14,15  Primary and secondary alkyl bromides as well as secondary alkyl 

chlorides were suitable electophiles to provide the corresponding E-alkenes; however, 

stoichiometric highly reactive Grignard reagents were required, greatly limiting the 

substrate scope of the reaction.    

 

 

Scheme 3-2. Titanocene-Catalyzed Alkyl Heck-Type Reaction 
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Oshima and coworkers reported a cobalt-catalyzed intramolecular Heck-type 

cyclization for alkyl iodides and bromides (Scheme 3-3).16  This transformation has been 

proposed to be radical mediated, and requires stoichiometric quantities of alkyl Grignard 

reagents to regenerate the active catalyst.  An intermolecular reaction that utilizes the 

same reaction conditions was also reported.   

 

 

Scheme 3-3. Cobalt-Catalyzed Alkyl Heck-Type Cyclization 

  

The Carreira lab reported a cobalt-catalyzed intramolecular alkyl-Heck-type 

cyclization of alkyl iodides (Scheme 3-4).17  The transformation did not require a 

Grignard reagent to regenerate the catalyst.  As such, the scope of the reaction included 

enones and acrylates.  A cobaloxime catalyst was employed that could be regenerated 

from hydridocobalt with amine base.  This method relied upon blue LED’s to introduce 

the homolytic cleavage of the cobalt-tin bond.  An isopropyl group could be utilized 

instead of the tin ligand, albeit providing the majority of the products in lower yields.   
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Scheme 3-4. Cobalt-Catalyzed Intramolecular Cyclization of Alkyl Iodides Employing 
Stannyl Cobaloximes and Blue LEDs 
 

Seminal work by the Fu lab demonstrated the ability of palladium to catalyze an 

intramolecular alkyl-Heck reaction (Schem 3-2).18  Pd2(MeO-dba)3 was employed as a 

precatalyst because the more electronically rich dba ligands have shown to dissociate 

from the metal as a higher rate, allowing for the active catalyst to be more efficiently 

generated; however, the scope of this reaction is limited to cyclopentene synthesis, 

utilizing only primary halides and mono-substituted alkenes.   

 

 

Figure 3-2. Palladium-Catalyzed Heck Reaction of Primary Halides with 
Monosubstituted Alkenes  
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Alkyl-Heck-type processes of broad substrate scope, capitalizing on the mild 

conditions afforded by palladium(0) catalysis while leveraging the synthetic accessibility 

of alkenes and alkyl halides, would constitute powerful transformations for organic 

synthesis. We recently reported our initial efforts toward the development of alkyl Heck-

type processes in the form of a palladium(0)-catalyzed carbonylative cyclization of 

simple unsaturated alkyl iodides, providing expedient access to numerous classes of 

cycloalkenones (Scheme 3-5).19  

 

 

Scheme 3-5. Palladium-Catalyzed Carbonylative Heck-Type Reaction of Alkyl Iodides 
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alkyl Heck-type reaction.  We found that mono- and bicyclic Heck products could be 
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substrate was examined to determine if a 5-exo alkyl Heck-type process would 

outcompete a possible 6-exo carbonylative alkyl-Heck-type cyclization.20  Iodide 3.1 was 

subjected to identical conditions to those previously employed in our laboratory to 

generate carbonylative alkyl Heck-type products. Upon reaction, cyclopentene 3.3 was 

formed in good yield from an alkyl-Heck-type process, and no formation of carbonylative 

cyclization product 3.2 was observed (Figure 3-3).   

 

 

Figure 3-3. Competition Experiment Between a 5-exo Alkyl Heck-Type Cyclization and 
a 6-exo Carbonylative Alkyl-Heck-Type Cyclization  

 

Furthermore, no product formation was observed in the absence of palladium 

(Scheme 3-6).   

 

 

Scheme 3-6. Carbocyclization Reaction Attempted in the Absence of Palladium 
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 Following this promising result, we sought to determine whether CO was 

necessary for the success of the cyclization reaction.  When iodide 3.1 was reacted in the 

presence of varying pressures of carbon monoxide, a significant difference in the amount 

of alkene isomerization was noted.  In the absence of carbon monoxide, alkene isomers 

3.3 and 3.4 were formed with a slight preference for the more substituted alkene 3.3 

(Table 3-1, entry 1).  Running the reaction under increasing amounts of carbon monoxide 

minimized the formation of alkene isomer 3.4 (entries 2 and 3); however, no benefit was 

observed over 10 atm of CO (entry 4).   

 

Table 3-1. Effect of Carbon Monoxide upon Alkene Isomer Formation  

 

 

Furthermore, the presence of CO was noted to significantly improve yields for 

certain substrates such as pyrrolidine 3.5.  When carbon monoxide was not present, 3.6 
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was generated in low yield, and significant amounts of unidentifiable decomposition were 

observed. (Scheme 3-7).   

 

 

Scheme 3-7. Palladium-Catalyzed Carbocyclization to a Pyrrolidine in the Absence of 
CO 

 

Further optimization studies were required for the alkyl iodide 3.5 as there were 
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Running the reaction under 10 atm of carbon monoxide greatly increased the efficiency 

of the reaction (entries 1 and 2).  It was found that lowering the temperature from 110 °C 

to 100 °C caused increased reduction formation (Table 3-2, entry 3).  Toluene was found 

to generate more reduction than when benzene was utilized, most likely attributed to 

facile benzylic hydrogen abstraction (entry 4).  Using a weaker base also resulted in more 

reduction formation (entry 5).  
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Table 3-2.  Optimization Efforts to Limit Reduction of Alkyl Iodides 

 

 

Next, we began to examine the substrate scope.  As previously mentioned, acyclic 

alkyl iodide 3.1 efficiently cyclizes to provide cyclopentene 3.3 in 80% yield (Table 3-3, 

entry 1).  Primary iodide 3.5 with a trisubstituted alkene provided pyrrolidine 3.6, 

demonstrating the ability of this carbocyclization to synthesize quaternary centers (entry 

2).  The ability to form quaternary centers was also showcased in the cyclization of acetal 

iodide 3.8 to provide substituted tetrahydrofuran 3.9 (entry 3).  Bicycles were also easily 

synthesized via carbocyclization of iodide 3.10 to provide alkene isomers 3.11, 3.12, 3.13 

in a 74% yield (entry 4).  Notably, this process is not limited to cyclopentene synthesis.  

6-exo cyclization of 3.14 was realized with Thorpe-Ingold diesters installed in the 

substrate to provide 3.15 and 3.16 in 70% yield.    
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Table 3-3. Palladium-Catalyzed Carbocyclizations of Primary Alkyl Iodidesa 

 

 

While running the reaction under 10 atm of CO pressure generally helped to 

mitigate the formation of alkene isomers, some substrates still generated multiple alkene 
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product ratios were determined by 1H NMR spectroscopy of crude reaction mixtures. dYield 
calculated by 1H NMR spectroscopy of crude reaction mixtures using internal standard. 
eReaction temperature is 130 °C.
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isomers in poor ratios.  For example, monosubstituted alkene 3.17 generated alkene 

isomers 3.18, 3.19, and 3.20 in a 5:1.6:1 ratio (Table 3-4, entry 1).  The lack of selectivity 

may be attributed to the relative energies of the tri-substitued alkenes formed.  This was 

also observed in reaction of iodide 3.21 as bicyclic products 3.22 and 3.23 were 

generated in a 1.5:1 ratio (entry 2).  Finally, acyclic iodide 3.24 was reacted, and 

demonstrated a slight preference was observed for the styrenyl product 3.25 over enol 

ether product 3.26 (entry 3).   

 

Table 3-4. Palladium-Catalyzed Carbocyclizations Resulting in Significant Alkene 
Isomerizationa 
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 We also explored the potential of a palladium-catalyzed carbocyclization using 

secondary alkyl halides.  Running the reaction under carbon monoxide did not help to 

increase the efficiency of the reaction.  As a result, reactions for secondary alkyl halides 

were able to be conducted in a glass pressure tube instead of a stainless steel pressure 

reactor.  Secondary alkyl iodide 3.27 was efficiently cyclized to [6,5]-bicycle 3.28 (Table 

3-5, entry 1).  Iodide 3.29 reacted successfully to produce 3.30 with high stereoselectivity 

(entry 2).    

  

Table 3-5. Palladium-Catalyzed Carbocyclization for Secondary Alkyl Iodidesa  

 

 

We also investigated the potential to employ alkyl bromides our palladium-

catalyzed carbocyclization; however, reaction of alkyl bromide 3.31 proceeded slowly, 

providing a 26% 1H NMR yield of cyclization products 3.28 and 3.29 after 24 hours 

(Scheme 3-8).  Significant amounts of unreacted starting material remained.    
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Scheme 3-8. Palladium-Catalyzed Carbocyclization of Alkyl Bromides 

 

3.3.2 Mechanistic Studies 

Alkyl halides are known to react with palladium(0) via both SN221,22 and single-

electron transfer pathways.23  In order to probe the potential intermediacy of carbon-

centered radicals in this reaction, we attempted the cyclization in the presence of 

TEMPO.24  We chose to employ iodide 3.14 that undergoes a 6-exo cyclization, which is 

slower than a 5-exo cyclization,  as a slower cyclization may increase the likelihood of 

the radical being intercepted (Scheme 3-9).  Upon reaction, formation of alkyl-Heck-type 

products were not observed.  Instead, TEMPO adduct 3.33 and a significant amount of 

unreacted starting material was noted.  This result suggests the presence of a carbon-

centered radical intermediate in the reaction mechanism.   
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Although the determination of a precise reaction pathway will require more 

extensive studies, our preliminary mechanistic hypothesis is illustrated in Scheme 3-10.  

Oxidative addition of palladium(0) to iodide 3.14 could occur via single-electron transfer 

to generate carbon-centered free radical 3.34.25-28  Cyclization of the radical onto the 

pendant alkene could then generate a second carbon-centered radical 3.35.  Subsequently, 

the interception of the carbon-centered radical by a putative palladium(I) species 

generates 3.36, and β-hydride elimination of alkylpalladium(II) 3.36 provides 

cyclohexene 3.15.  Lastly, base regenerates the active palladium(0) species.  Substrate 

dehydrohalogenation was not a significant side reaction in the carbocyclization, which is 

consistent with this mechanism.  

 

 

Scheme 3-10. Plausible Catalytic Cycle for the Carbocyclization 
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Presently, the role of carbon monoxide in the reaction is unclear.  It is possible 

that the formation of a less electron-rich Pd(PPh3)x(CO)y species, which are formed under 

CO pressure,29-31 results in a more efficient hybrid organometallic-radical process.  Other 

transition-metal-catalyzed reactions have benefited from the presence of carbon 

monoxide although it is not incorporated into the products.32-35 

In order to further probe the possibility of the hybrid organometallic-radical 

pathway, preliminary DFT mechanisitic calculations were employed to determine why a 

classical Pd(0) to Pd(II) oxidative addition is inoperative.  The Baik group at Indiana 

University performed all calculations. The reaction energy profile for the two-electron 

process is shown in Figure 3-4; however, the system employed in the DFT calculations is 

a simplified version of chemistry described.  Also trialkylphosphines were studied, not 

the triphenylphosphines employed in this work.  DFT calculations36-40 correctly indicate 

that the Pd(0) complex is most stable with two ligands attached to the metal center.  The 

oxidative addition of alkylpalladium species is only slightly uphill energetically, with an 

increase in 4.5 kcal/mol from the oxidative addition of iodide 3.39 to square-planar 

palladium(II) complex 3.40.  Rearrangement to trans-palladium species 3.41 would result 

the oxidative addition step being 4.4 kcal/mol downhill overall.  This finding is in 

agreement with the general propensity of palladium(0) complexes to promote oxidative 

addition.  The reason this traditional pathway is inoperative in this reaction that the 

lowest energy transition state from complex 3.41 to the desired product 3.43 is 3.42-TS, 

which is practically unreachable under standard conditions at 30.8 kcal/mol. 
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Figure 3-4. Preliminary DFT calculations of Palladium-Catalyzed Alkyl-Heck Reaction 
via a Two-Electron Pathway 
 

An alternate organometallic-radical pathway, which would proceed through a 

single-electron oxidative addition process and generate a palladium(I) species, is 

illustrated in Figure 3-5.  Preliminary calculations suggest this process is uphill by 9.1 

kcal/mol.  The cyclization of resulting carbon-centered radical 3.44 is associated with a 

reasonable barrier of 21.4 kcal/mol compared to 30.8 kcal/mol for the two-electron 

pathway.  Thus, the two-electron oxidative addition process is not a favored process 

because accessing the final product is kinetically uphill via this reaction.   
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Figure 3-5. Preliminary DFT calculations of Palladium-Catalyzed Alkyl-Heck Reaction 
via a Single-Electron Pathway 

  

3.4 Summary  

 In conclusion, we have disclosed a palladium-catalyzed Heck-type reaction of 

alkyl iodides of broad substrate scope.  This process is applicable to the synthesis of 

many types of common cyclic frameworks and tolerates a variety of substituted alkenes 

and alkyl iodides.  Notably, quaternary centers were easily synthesized.  We proposed the 

wide substrate scope of this transformation results from the hybrid organometallic-radical 

nature of the process, successfully overcoming the major challenges inherent in the 

development of palladium-catalyzed Heck reactions employing alkyl halide substrates.  

Finally, preliminary DFT studies conducted by the Baik group provide mechanistic 

support for the presence of a hybrid organometical-radical pathway, proposing it is ~10 

kcal/mol lower in energy than the classic two-electron oxidative addition process.  
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3.5 Experimental 

3.5.1 General Methods 

Infrared (IR) spectra were obtained using a Jasco 260 Plus Fourier transform 

infrared spectrometer. Proton and carbon magnetic resonance spectra (1H NMR and 13C 

NMR) were recorded on a Bruker model AVANCE III 400, 500, or 600 or a Bruker 

AMX 300 (1H NMR at 300 MHz, 400 MHz, 500 MHz, or 600 MHz and 13C NMR at 100 

MHz) spectrometer with solvent resonance as the internal standard (1H NMR:  CDCl3 at 

7.28 ppm, 13C NMR: CDCl3 at 77.0 ppm).  1H NMR data are reported as follows: 

chemical shift, multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, dd = doublet 

of doublets, ddd = doublet of doublet of doublets, td = triplet of doublets, qd = quartet of 

doublets, m = multiplet, br. s. = broad singlet), coupling constants (Hz), and integration.  

Mass spectra were obtained either using a positive ion mode flow injection ESI 

(electrospray ionization) on a Bruker Daltonics, Inc., Billerica, MA, USA, BioToF Mass 

Spectrometer or electron impact ionization on an Agilent Technologies, Inc., Santa Clara, 

CA, USA, GCMS, 5973N Mass Selective Detector, using a HP-5MS, 

30mx0.25mmx0.25um capillary column. Micromass (now Waters Corporation, 34 Maple 

Street, Milford, MA 01757) Quattro-II, Triple Quadrupole Mass Spectrometer, with a Z-

spray nano-Electrospray source design, in combination with a NanoMate (Advion, 19 

Brown Road, Ithaca, NY 14850)  chip based electrospray sample introduction system and 

nozzle was also used.  Visualization was accomplished with short wave UV light (254 

nm), aqueous basic potassium permanganate solution, or ethanolic acidic p-anisaldehyde 

solution followed by heating.  Flash chromatography was performed using SiliaFlash P60 

silica gel (40-63 µm) purchased from Silicycle.  Tetrahydrofuran, diethyl ether, and 
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dichloromethane were dried by passage through a column of neutral alumina under 

nitrogen prior to use.  Acetone, 99.8%, Extra Dry was purchased from Acros.  Carbon 

Monoxide, Research Purity 99.998% was purchased from Matheson Tri-Gas.  All other 

reagents were obtained from commercial sources and used without further purification 

unless otherwise noted.  The pressure reactors used were purchased from Parr Instrument 

Company that included a 4310 Gage Block Assembly and a GP VS 22 mL A SKT 316SS 

ST CLS reaction vessel.  The sealed tubes used were purchased from Ace Glass. 

 

3.5.2 Preparation of Alkyl Iodide Substrates 

 Note: As a precaution alkyl iodides were immediately stored in a dark, inert 

atmosphere at -40 °C upon purification. 

 

 

1-(1-iodo-6-methylhept-5-en-2-yl)-4-methoxybenzene (3.1, Table 3-3, entry 

1).  To a 0 °C solution of iPr2NH (3.2 mL, 22.48 mmol) in THF (73 mL) was added 

nBuLi (2.5 M in Et2O, 9.0 mL, 22.48 mmol) dropwise.  The reaction mixture was stirred 

3.47

3.1

O

Me
Br

OMe
O

OMe
OMe

O

OMe

OH

OMe

I

OMe

MeMgBr
LDA, HMPA

LiAlH4

PPh3
imidazole

I2



 87 

for 10 minutes, and then cooled to -78 °C.  Methyl 4-methoxyphenylacetate (3.68 g, 

20.44 mmol) in THF (5 mL) was added dropwise, and the reaction mixture was stirred 

for 30 minutes.  The 1-bromo-4-methyl-3-pentene41  (4.00 g, 24.53 mmol) was added in 

THF (5 mL) followed by HMPA (2.2 mL, 12.6 mmol). It was then warmed to room 

temperature and stirred overnight.  The reaction was diluted with 1:1 Et2O:Hexanes, 

washed with sat. aq. NH4Cl and brine, dried (MgSO4), and concentrated in vacuo.  

Purified by column chromatography (20:1 Hex:EtOAc) to provide 3.11 g (58%) of  3.47 

as a colorless oil. Analytical data for (3.47): IR (thin film, cm-1) 2951, 2857, 2837, 1738, 

1611, 1512, 1248, 1164, 1036, 830.2; 1H NMR (600 MHz, CDCl3) δ 7.23 (d, J = 8.4 Hz, 

2 H), 6.87 (d, J = 8.4 Hz, 2 H), 5.10 (t, J = 7.2 Hz, 1 H), 3.81 (s, 3 H), 3.66 (s, 3 H), 3.52 

(t, J = 7.8 Hz, 1 H), 2.10 (m, 1 H), 1.94 (q, J = 7.2 Hz, 2 H), 1.79 (m, 1 H), 1.70 (s, 3 H), 

1.54 (s, 3 H); 13C NMR (600 MHz, CDCl3) δ 174.8, 158.6, 132.5, 131.1, 128.9, 123.3, 

113.9, 55.22, 51.88, 49.97, 33.49, 25.80, 25.72, 17.67; LRMS (ESI) calculated for 

[C16H22O3+Na]+ 285.15 , found 285.17. 

To a 0 °C slurry of LiAlH4 (758 mg, 19.97 mmol) in Et2O (80 mL) was added a 

solution of 3.47 (2.62 g, 9.99 mmol) in Et2O (25 mL) dropwise.  After addition, the 

reaction mixture was warmed to room temperature and stirred overnight.  The reaction 

was quenched via the following workup:  758 µL H2O added slowly, followed by 

addition of 1.5 mL 10 wt % NaOH solution, and then 2.3 mL H2O.  The reaction was 

stirred vigorously until a white solid was formed.  The reaction mixture was filtered, 

dried (MgSO4), and concentrated to provide 2.33 g (~quant.) of the alcohol as a colorless 

oil that was taken on directly to the next reaction. 
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To a solution of the alcohol (1.3 g, 5.55 mmol) in Et2O (35 mL) and MeCN (9 

mL) was added PPh3 (2.91 g, 11.10 mmol) and imidazole (756 mg, 11.10 mmol), 

followed by iodine (2.82 g, 11.10 mmol) under Ar at room temperature.  The reaction 

stirred overnight.  It was then diluted with CH2Cl2 and washed with aq. Na2S2O3 and 

brine.  The reaction mixture was then dried (MgSO4), and concentrated in vacuo.  

Purified by column chromatography (20:1 Hex:EtOAc) to provide 1.54 g (80%) of 3.1 as 

a colorless oil.  (3.1): IR (thin film, cm-1) 3445, 1646, 1511, 1248, 1177, 829.2, 506.2; 1H 

NMR (600 MHz, CDCl3) δ 7.09 (d, J = 8.4 Hz, 2 H), 6.88 (d, J = 8.4 Hz, 2 H), 5.08 (t, J 

= 6.6 Hz, 1 H), 3.82 (s, 3 H), 3.39 (m, 1 H), 3.34 (m, 1 H), 2.81 (m, 1 H), 1.89 (m, 3 H), 

1.68 – 1.64 (m, 4 H), 1.54 (s, 3 H); 13C NMR (600 MHz, CDCl3) 

δ 158.4, 134.9, 132.1, 128.3, 123.6, 113.8, 55.20, 46.83, 35.79, 25.96, 25.70, 17.70, 14.82

;  LRMS (ESI) calculated for [C15H21IO+Na]+ 367.05, found 367.00. 
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(E)-N-(2-iodoethyl)-4-methyl-N-(2-methylbut-2-en-1-yl)benzenesulfonamide 

(3.5, Table 3-3, entry 2). Sulfonamide 3.5 was synthesized via a modified Mitsunobu 

reaction42 using (E)-2-methylbut-2-en-1-ol,43 followed by Boc deprotection,44 

alkylation,45 and iodination as described below. 

Analytical data for (3.48): IR (thin film, cm-1) 3648, 2931, 1715, 1598, 1257, 

910.2, 674..9; 1H NMR (600 MHz, CDCl3) δ 7.79 (d, J  = 8.4 Hz, 2 H), 7.30 (d, J = 7.8 

Hz, 2 H), 5.05 (m, 1 H), 4.40 (s, 2 H), 2.45 (s, 3 H), 1.66 (d, J = 7.2 Hz, 3 H), 1.61 (s, 3 

H), 1.36 (s, 9 H); 13C NMR (600 MHz, CDCl3) δ 151.0, 144.0, 137.1, 130.9, 129.0, 

128.1, 121.6, 83.95, 53.29, 27.78, 21.56, 13.72, 13.18; LRMS (ESI) calculated for 

[C17H25NO4S+H]+ 340.16, found 340.13. 

Analytical data for (3.49): IR (thin film, cm-1) 2920, 1732, 1540, 1338, 1159, 

571.7; 1H NMR (600 MHz, CDCl3) δ 7.71 (d, J = 7.8 Hz, 2 H), 7.34 (d, J = 7.8 Hz, 2 H), 

5.42 (m, 1 H), 3.64 (s, 2 H), 3.42 (m, 4 H), 2.45 (s, 3 H), 1.64 (m, 6 H); 13C NMR (600 

MHz, CDCl3) δ 143.6, 136.0, 130.9, 128.8, 127.1, 125.0, 57.75, 49.10, 29.12, 21.53, 

13.68, 13.55; LRMS (ESI) calculated for [C14H20BrNO2S+Na]+ 368.03, found 368.06. 

To a solution of 3.49 (422 mg, 1.22 mmol) in dried acetone (4.1 mL) was added 

NaI (548 mg, 3.66 mmol) and 15-crown-5 (120 µL, 0.61 mmol) at room temperature 

under Ar.  The reaction was then heated to a reflux and stirred overnight.  The reaction 

was cooled to room temperature and diluted with CH2Cl2.  The reaction mixture was 

stirred for ~15 minutes.  The organic layer was then washed with sat. aq. Na2S2O3 and 

brine, dried (MgSO4), and concentrated in vacuo.  The resulting oil was purified by 

column chromatography (10:1 Hex:EtOAc) to provide 357 mg (74%) 3.5 as a colorless 

oil.  Analytical data for (3.5): IR (thin film, cm-1) 2919, 1597, 1338, 1159, 911.2, 657.6; 
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1H NMR (600 MHz, CDCl3) δ 7.70 (d, J = 7.8 Hz, 2 H), 7.34 (d, J = 8.4 Hz, 2 H), 5.41 

(m, 1 H), 3.62 (s, 2 H), 3.35 (m, 2 H), 3.16 (m, 2 H), 2.45 (s, 3 H), 1.64 (m, 6 H); 13C 

NMR (600 MHz, CDCl3) δ 143.5, 136.2, 131.0, 129.8, 127.1, 124.9, 57.43, 50.44, 21.53, 

13.72, 13.58, 2.05; LRMS (ESI) calculated for [C14H20INO2S+Na]+ 416.02, found 

416.04. 

 

 
(E)-1-(1-butoxy-2-iodoethoxy)-2-methylbut-2-ene (3.8, Table 3-3, entry 3). 

Iodoacetal 3.8 was synthesized from (E)-2-methylbut-2-en-1-ol43  and butyl vinyl ether 

according to a modified literature procedure by Renaud et. al.46  Analytical data for 3.8: 

IR (thin film, cm-1) 3435, 2958, 2932, 2870, 1646, 1456, 1379, 1112, 1033; 1H NMR 

(600 MHz, CDCl3) δ 5.55 (q, J = 6.6 Hz, 1 H), 4.63 (t, J = 5.4 Hz, 1 H), 4.03 (d, J  = 11.4 

Hz, 1 H), 3.93 (d, J = 11.4 Hz, 1 H), 3.62 (m, 1 H), 3.51 (m, 1 H), 3.25 (d, J = 5.4 Hz, 2 

H), 1.71 (s, 3 H, 1.66 (d, J = 6.6 Hz, 3 H), 1.60 (m, 2 H), 1.43 (m, 2 H), 1.95 (t, J = 7.2 

Hz, 3 H); 13C NMR (600 MHz, CDCl3) δ 132.2, 123.51, 100.84, 72.88, 66.08, 31.73, 

19.32, 13.87, 13.86, 13.24, 5.46; LRMS (ESI) calculated for [C11H21IO2+Na]+ 335.05, 

found 335.12. 
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N-(cyclohex-2-en-1-yl)-N-(3-iodopropyl)-4-methylbenzenesulfonamide (3.10, 

Table 3-3, entry 4).  The title compound was prepared from N-(cyclohex-2-en-1-yl)-4-

methylbenzenesulfonamide,47 followed by alkylation,48 and iodination as described 

below. 

Analytical data for (3.50): IR (thin film, cm-1) 2933, 1597, 1448, 1342, 1160, 

585.3; 1H NMR (600 MHz, CDCl3) δ 7.74 (d, J = 8.4 Hz, 2 H), 7.33 (d, J = 7.8 Hz, 2 H), 

5.82 (d, J = 4.2 Hz, 1 H), 4.96 (d, J = 9.6 Hz, 1 H), 4.47 (brs, 1 H), 3.70 – 3.66 (m, 1 H), 

3.48 – 3.41 (m, 2 H), 3.26 (m, 1 H), 2.45 (s, 3 H), 1.97 (m, 2 H), 1.90 (m, 1 H), 1.80 – 

1.77 (m, 1 H), 1.64 – 1.57 (m, 1 H),  1.44 (dq, J = 12.6 Hz, J = 2.4 Hz, 1 H); 13C NMR 

(600 MHz, CDCl3) δ 143.5, 137.1, 133.3, 129.8, 127.0, 136.6, 55.36, 45.56, 31.11, 29.10, 

24.31, 21.54, 21.50; LRMS (ESI) calculated for [C15H20BrNO2S+Na]+ 380.03, found 

380.09.    

To a solution of 3.50 (1.12 g, 2.8 mmol) in dried acetone (9.2 mL) was added NaI 

(1.25 g, 8.3 mmol) and 15-crown-5 (274 µL, 1.4 mmol) at room temperature under Ar.  

The reaction was then heated to a reflux and stirred overnight.  The reaction was cooled 

to room temperature and diluted with CH2Cl2.  The reaction mixture was stirred for ~15 

minutes.  The organic layer was then washed with sat. aq. Na2S2O3 and brine, dried 

(MgSO4), and concentrated in vacuo.  The resulting oil was purified by column 
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chromatography (30:1 Hex:EtOAc) to provide 911.3 mg (81%) 7 as a white solid.  

Analytical data for (3.10): IR (thin film, cm-1) 3421, 2932, 1647, 1598, 1448, 1340, 1159, 

1006, 585.3, 548.6; 1H NMR (600 MHz, CDCl3) δ 7.73 (d, J = 7.8 Hz, 2 H), 7.32 (d, J = 

7.8 Hz, 2 H), 5.81 (d, J = 9.0 Hz, 1 H), 4.96 (d, J = 10.2 Hz, 1 H), 4.45 (s, I H), 3.50 – 

3.41 (m, 2 H), 3.30 – 3.23 (m, 2 H), 2.44 (s, 3 H), 1.97 (brs, 2 H), 1.90 (m, 1 H), 1.77 (m, 

1 H), 1.60 (m, 1 H), 1.41 (m, 1 H); 13C NMR (600 MHz, CDCl3) 

δ 143.5, 137.2, 133.2, 129.8, 127.0, 126.7, 55.33, 46.92, 29.23, 24.31, 21.55, 21.50, 4.87; 

LRMS (ESI) calculated for [C15H20INO2S+Na]+ 428.02, found 427.95. 

 
 

 
Synthesis of diethyl 2-(2-iodoethyl)-2-(4-methylpent-3-en-1-yl)malonate (3.14, 

Table 3-3, entry 5). Na (296 mg, 12.88 mmol) was added portionwise to ethanol (10 

mL) at room temperature under Ar.  Diethylmalonate (1.87 mL, 12.27 mmol) was then 

added dropwise to the solution of NaOEt.  The reaction was warmed to 50 °C and stirred 

for one hour. 1-bromo-4-methyl-3-pentene41 (2.0 g, 12.27 mmol) was then added 

dropwise.  The reaction was heated to reflux and stirred for 3 h.  The reaction was cooled 

to room temperature and poured into an ice cold 1:1 solution of sat. aq. NH4Cl:H2O, 

EtO
O

OEt
O

O

Me
BrMeMgBr EtO

O

OEt

O

NaOEt Br Br
NaH

EtO

O

OEt

O

Br

EtO

O

OEt

O

I

NaI
15-crown-5

3.14

3.51

3.52



 93 

followed by neutralization of the resulting solution.  The reaction mixture was extracted 

three times with ethyl acetate, dried (MgSO4), and concentrated in vacuo.  The resulting 

crude oil was purified by column chromatography (25:1 Hexanes:EtOAc) to provide 2.08 

g (70%) 3.51 as a colorless oil.  Analytical data for (3.51): IR (thin film, cm-1) 2981, 

2934, 1732, 1447, 1370, 1254, 1147, 1051; 1H NMR (600 MHz, CDCl3) δ 5.09 (t, J = 6 

Hz, 1 H), 4.21 (q, J = 3.6 Hz, 4 H), 3.34 (t, J = 7.2 Hz, 1 H), 2.05 (q, J = 7.2 Hz, 2 H), 

1.94 (q, J = 7.2 Hz, 2 H), 1.70 (s, 3 H), 1.60 (s, 3 H), 1.28 (t, J = 7.2 Hz); 13C NMR (600 

MHz, CDCl3) d 169.5, `133.2, 122.7, 61.26, 51.37, 28.80, 25.71, 25.68, 17.63, 14.08; 

LRMS (ESI) calculated for [C13H22O4+Na]+ 265.14, found 265.16. 

To a solution of 3.51 (1.24 g, 5.10 mmol) in THF (18.2 mL) at 0 °C under Ar was 

added NaH (266 mg, 6.65 mmol, 60 wt % mineral oil) portionwise.  The reaction was 

warmed to room temperature and stirred until the emission of H2(g) was complete.  1,2-

dibromoethane (1.77 mL, 20.4 mmol) was added neat.  The reaction was then heated to a 

reflux and stirred for 24 hrs.  The reaction was then quenched with 1:1 H2O/CH2Cl2.  The 

reaction was extracted with CH2Cl2 three times.  The combined organic layers were 

washed with brine, dried (MgSO4), and concentrated in vacuo.  The resulting oil was 

purified by column chromatography (10:1 Hex:EtOAc) to provide 1.32 g (74%) 3.52 as a 

pale yellow oil.  Analytical data for (3.52): IR (thin film, cm-1) 2979, 2932, 1730, 1446, 

1220, 1176, 1025, 512.9; 1H NMR (600 MHz, CDCl3) δ 5.08 (brs, 1 H), 4.22 (q, J = 7.2 

Hz, 4 H), 3.35 (t, J = 8.4 Hz, 2 H), 2.49 (t, J = 8.4 Hz, 2 H), 1.92 (s, 4 H), 1.69 (s, 3 H), 

1.60 (s, 3 H), 1.28 (t, J = 7.2 Hz, 6 H); 13C NMR (600 MHz, CDCl3) δ 170.6, 132.8, 

122.7, 61.48, 57.57, 36.25, 33.11, 27.27, 25.63, 22.82, 17.60, 14.05; LRMS (ESI) 

calculated for [C15H25BrO4+Na]+ 371.10, found 371.08. 
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To a solution of 3.52 (2.38 g, 6.8 mmol) in dried acetone (22.7 mL) was added 

NaI (3.06 g, 20.4 mmol) and 15-crown-5 (330 µL, 1.7 mmol) at room temperature under 

Ar.  The reaction was then heated to a reflux and stirred overnight.  The reaction was 

cooled to room temperature and diluted with CH2Cl2.  The reaction mixture was stirred 

for ~15 minutes.  The organic layer was then washed with sat. aq. Na2S2O3 and brine, 

dried (MgSO4), and concentrated in vacuo.  The resulting oil was purified by column 

chromatography (30:1 Hex:EtOAc) to provide 1.60 g (60%) 3.14 as a colorless oil.  

Analytical data for (3.14): IR (thin film, cm-1) 2978, 2933, 1730, 1258, 1233, 1176, 

507.2; 1H NMR (600 MHz, CDCl3) δ 5.08 (s, 1 H), 4.31 (q, J = 7.2 Hz, 4 H), 3.09 (m, 2 

H), 2.53 (m, 2 H), 1.90 (m, 4 H), 1.69 (s, 3 H), 1.58 (s, 3 H), 1.27 (t, J = 7.2 Hz, 6 H); 13C 

NMR (600 MHz, CDCl3) δ 170.5, 132.8, 122.7, 61.44, 59.03, 37.85, 32.80, 25.65, 22.83, 

17.61, 14.06, -2.16; LRMS (ESI) calculated for [C15H25IO4+Na]+ 419.07, found 419.04. 

 

 
Diethyl 2-allyl-2-(2-iodoethyl)malonate (3.17, Table 3-4, entry 1). The title 

compound was synthesized in two steps by an alkylation49 followed by an iodination as 

described below. 

To a solution of bromide (3.00 g, 9.76 mmol) in dried acetone (32.5 mL) was 

added NaI (4.4 g, 29.3 mmol) and 15-crown-5 (430 µL, 2.20 mmol) at room temperature 

under Ar. The reaction was stirred ~10 minutes then heated to a reflux and stirred 

overnight. The reaction was cooled to room temperature and diluted with CH2Cl2. The 
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reaction was stirred ~15 minutes and washed with sat. aq. Na2S2O3 and brine. Next the 

reaction was dried (MgSO4) and concentrated in vacuo. The crude oil was purified by 

column chromatography (20:1 Hex: EtOAc) to provide 2.75 g (80%) 3.17 as a pale 

yellow oil. Analytical data for 1-(1-iodo-6-methylhept-5-en-2-yl)-4-methoxybenzene 

(3.17): IR (thin film, cm-1) 2981, 2936, 1730, 1239, 1205, 532.2; 1H NMR (600 MHz, 

CDCl3) δ 5.67 (m, 1 H), 5.15 (m, 2 H), 4.22 (q, J = 7.2 Hz, 4 H), 3.12 (m, 2 H), 2.66 (d, J 

= 7.4 Hz, 2 H), 2.50 (m, 2 H), 1.28 (t, J = 7.2 Hz, 6 H); 
 13C NMR (600 MHz, CDCl3) δ 

170.0, 131.8, 119.6, 61.58, 58.99, 37.75, 37.44, 14.07, −2.43; LRMS (ESI) calculated for 

[C12H19IO4+Na]+ 377.02, found 376.99. 

 

 
Methyl 1-(3-iodopropyl)cyclopent-2-enecarboxylate (3.21, Table 3-4, entry 2).  

The title compound was synthesized by preparation of tert-butyl(3-

iodopropoxy)dimethylsilane,50 followed by alkylation,51 bromination,52 and iodination as 

described below. 

Analytical data for methyl 1-(3-bromopropyl)cyclopent-2-enecarboxylate 

(3.53): IR (thin film, cm-1) 2949, 2853, 1730, 1433, 1241, 1163, 559.2; 1H NMR (600 

MHz, CDCl3) δ 5.86 (m, 1 H), 5.69 (m, 1 H), 3.70, (s, 3 H), 3.39 (t, J = 6.0 Hz, 2 H), 

Br OTBS I OTBS

CO2Me

MeO2C
OTBS

MeO2C
Br

MeO2C
I

NaI
LDA, HMPA

PPh3•Br2NaI

3.21 3.53
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2.49-2.36 (m, 3 H), 1.90-1.74 (m, 5 H); 13C NMR (600 MHz, CDCl3) δ 176.5, 132.9, 

132.8, 59.50, 51.98, 37.00, 33.67, 32.76, 31.76, 28.73; LRMS (ESI) calculated for 

[C10H15BrO2+Na]+ 269.02, found 269.03. 

A solution of 3.53 (746 mg, 3.02 mmol), NaI (1.36 g, 9.06 mmol), and 15-crown-

5 (294 µL, 1.51 mmol) in dried acetone (15 mL) was heated to a reflux under Ar. The 

solution then stirred overnight. The reaction was diluted with CH2Cl2 and stirred for 15 

minutes, then washed with sat. aq. Na2S2O3 and brine, dried (MgSO4), and concentrated 

in vacuo. The crude oil was then purified using column chromatography (30:1 

Hex:EtOAc) to provide 808 mg (91%) of 3.21 as a colorless oil. Analytical data for 

methyl 1-(3- iodopropyl)cyclopent-2-enecarboxylate (3.21): IR (thin film, cm-1) 3443, 

2948, 1730,1432, 1216, 1161, 727.0, 603.6; 1H NMR (600 MHz, CDCl3) δ 5.85 (m, 1 H), 

5.69 (m, 1 H), 3.70 (s, 3 H), 3.16 (t, J = 6.0 Hz, 2 H), 2.46-2.36 (m, 3 H), 1.85-1.71 (m, 5 

H) ; 13C NMR (600 MHz, CDCl3) δ 176.4, 133.0 132.8, 59.42, 51.98, 39.27, 32.79, 31.75, 

29.49, 6.49; LRMS (ESI) calculated for [C10H15IO2+Na]+ 317.00, found 317.02. 

 

 

(E)-(3-(2-iodoethoxy)prop-1-en-1-yl)benzene (3.24, Table 3-4, entry 3).  The 

title compound was synthesized from 2-(cinnamyloxy)ethanol53 by iodination.54 

Br HO OH
NaH O OH

O I
PPh3

imidazole
I2

3.24
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(trans)-1-iodo-2-((3-methylbut-2-en-1-yl)oxy)cyclohexane (3.27, Table 3-5, 

entry 1).  The title compound was synthesized according to the literature procedure by 

Renaud et. al.46 

 

 
(2S,3R)-3-iodo-2-(((E)-2-methylbut-2-en-1-yl)oxy)tetrahydrofuran (3.29, 

Table 3-5, entry 2).  The title compound was synthesized according to a modified 

literature procedure by Renaud et. al.46  Analytical data for 3.29: IR (thin film, cm-1) 

3434, 1644, 1014, 594.9; 1H NMR (600 MHz, CDCl3) δ 5.52 (m, 1 H), 5.36 (s, 1 H), 

4.20 (dd, J = 6.0 Hz, J = 2.4 Hz, 1 H), 4.14 (m, 1 H), 4.07 – 4.03 (m, 2 H), 3.86 (d, J = 

11.4 Hz, 1 H), 2.65 (m, 1 H), 2.22 (m, 1 H), 1.65 (s, 6 H); 13C NMR (600 MHz, CDCl3) 

δ 132.1, 123.4, 109.4, 73.33, 66.92, 35.63, 24.88, 13.67, 13.26; LRMS (ESI) calculated 

for the sodium-bound dimer [2(C9H15IO2)+Na]+ 587.23, found 587.03. 

 

3.5.3 Alkyl-Heck-Type Reaction Results  

General Procedure for the Alkyl-Heck-Type Reaction, Method A:  In a 

glovebox, the alkyl iodide (1.0 equiv), Pd(PPh3)4 (10 mol %), 1,2,2,6,6-

pentamethylpiperidine (2.0 equiv), and benzene (0.5 M) were combined in a 22 mL Parr 

reactor with a stir bar added.  The pressure reactor was assembled and sealed in the 

O

HO

O O

I

NIS

3.27

HO

O
HOLiAlH4 NIS O O

I
O
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glovebox.  Upon removal, the pressure reactor was charged with 10 atm CO from a 

purged line.  The pressure was slowly released, followed by a second pressurization to 10 

atm CO.  The pressure reactor was then placed into an oil bath at 110 °C.  The reaction 

mixture was stirred for 24 h, after which it was cooled to room temperature and slowly 

depressurized.  The reaction was diluted with Et2O and washed with 1 N HCl.  The 

reaction was then extracted with Et2O three times.  The combined organic layers were 

dried (MgSO4), and concentrated.  The reaction mixture was then treated with CuCl and 

dissolved in CH2Cl2 in order to remove PPh3.55 The product was purified by flash column 

chromatography with the specified solvent system. 

General Procedure for the Alkyl-Heck-Type Reaction, Method B:  In a 

glovebox, the alkyl iodide (1.0 equiv), Pd(PPh3)4 (10 mol %), 1,2,2,6,6-

pentamethylpiperidine (2.0 equiv), and benzene (0.5 M) were combined in a sealed tube 

with a stir bar added.  Upon removal from the glovebox, the sealed tube was placed into 

an oil bath at 110 °C.  The reaction mixture was stirred for 24 h, after which it was cooled 

to room temperature and diluted with Et2O.  The reaction mixture was washed with 1 N 

HCl.  The reaction was then extracted with Et2O three times.  The combined organic 

layers were dried (MgSO4), and concentrated.  The reaction mixture was then treated 

with CuCl and dissolved in CH2Cl2 in order to remove PPh3.55 The product was purified 

by flash column chromatography with the specified solvent system. 

 

 

4-(OMe)C6H4 4-(OMe)C6H4

3.3 3.4
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1-methoxy-4-(3-(propan-2-ylidene)cyclopentyl)benzene (3.3, Table 3-3, entry 

1). The title compound was synthesized from 3.1 (80 mg, 0.232 mg) using Method A.  

The product was purified by flash column chromatography (10:1 Hex/Benzene) to afford 

3.3 (42.0 mg, 0.194 mmol, 84% yield) as a colorless oil. Less than 5% of minor alkene 

isomer 3.4 was observed.  Analytical data for 3.3: IR (thin film, cm-1) 3422, 2948, 1512, 

1246, 1179, 1038, 827.3; 1H NMR (600 MHz, CDCl3) δ 7.23 (d, J = 9.0 Hz, 2 H), 6.90 

(d, J = 8.4 Hz, 2 H), 3.83 (s, 3 H), 3.0 (m, 1 H), 2.75 (m, 1 H), 2.50 (m, 1 H), 2.28 (m, 2 

H), 2.15 (m, 1 H), 1.76 – 1.69 (m, 7 H); 13C NMR (600 MHz, CDCl3) δ 157.7, 137.4, 

134.7, 127.8, 121.6, 113.5, 55.19, 44.9, 39.04, 34.66, 30.41, 21.09, 20.77; LRMS (ESI) 

calculated for [C15H20O+K]+ 255.12, found 255.07.  Analytical data for 3.3 and 3.4 

(inseparable mixture): IR (thin film, cm-1) 3422, 2948, 1512, 1246, 1179, 1038, 827.3; 

1H NMR (500 MHz, CDCl3) δ 7.21 (m, 2 H), 6.88 (m, 2 H), 4.76 (m, 2 H), 3.82 (s, 3 H), 

3.15 (m, 0.33 H), 3.06 (m, 0.71 H), 2.81 – 2.63 (m, 0.88 H), 2.68 – 2.63 (m, 0.17 H), 2.48 

(dd, J = 16.5 Hz, J = 8.5 Hz, 0.56 H), 2.30 – 2.11 (m, 2.37 H), 2.03 – 1.98 (m, 0.84 H), 

1.89 – 1.85 (m, 0.37 H), 1.80 (s, 1.43 H), 1.75 – 1.62 (m, 4.72 H); 13C NMR (500 MHz, 

CDCl3) δ 157.8, 157.2, 157.6, 149.0, 148.7, 138.9, 138.2, 137.5, 134.8, 127.9, 127.8, 

121.6, 113.7, 113.6, 108.2, 108.1, 55.25, 47.14, 46.20, 45.00, 44.83, 43.83, 40.62, 39.04, 

38.93, 35.27, 34.67, 33.50, 31.87, 30.42, 30.31, 21.14, 21.09, 20.78; LRMS (ESI) 

calculated for [C15H20O+K]+ 255.12, found 255.07. 

 

 

Ts
N

Me
3.6
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3-methyl-1-tosyl-3-vinylpyrrolidine (3.6, Table 3-3, entry 2). The title 

compound was synthesized from 3.5 (100 mg, 0.254 mmol) using Method A to afford 3.6 

in 70% yield by 1H NMR analysis using 1,3,5-trimethyoxybenzene.  Yield by 1H NMR 

analysis was required due to the presence of a byproduct was inseparable by flash column 

chromatography.  Analytical data for 3.6: IR (thin film, cm-1) 2965, 2360, 1343, 1158, 

662.4, 548.6; 1H NMR (600 MHz, CDCl3) δ 7.73 (d, J = 7.8 Hz, 2 H), 7.34 (d, J = 7.8 

Hz, 2 H), 5.70 (dd, J = 17.4 Hz, J = 10.2 Hz, 1 H), 4.94 (m, 2 H), 3.36 (m, 2 H), 3.17 (d, 

J = 9.6 Hz, 1 H), 3.06 (d, J = 9.6 Hz, 1 H), 2.45 (s, 3 H), 1.76 (m, 1 H), 1.69 (m, 1 H), 

0.996 (s, 3 H); 13C NMR (600 MHz, CDCl3) δ 143.3, 142.8, 133.8, 129.5, 112.7, 58.15, 

46.63, 44.22, 37.48, 22.99, 21.54; LRMS (ESI) calculated for [C14H19NO2S+H]+ 266.12, 

found 266.09. 

 

 
2-butoxy-4-methyl-4-vinyltetrahydrofuran (3.9, Table 3-3, entry 3).  The title 

compound was synthesized from 3.8 (200 mg, 0.640 mmol) using Method A except the 

reaction temperature was 130 °C and the reaction time was 6 h.  The product was purified 

by flash column chromatography (30:1 Hex:EtOAc) to afford 3.9 (86.3 mg, 0.468 mmol, 

73%) as a 83:17 mixture of inseparable diastereomers as a colorless oil. Analytical data 

for 3.9: IR (thin film, cm-1) 3436, 2935, 2871, 1639, 1348, 1098, 1018, 921.8; 1H NMR 

(600 MHz, CDCl3) δ 5.98 – 5.88 (m, 1.2 H), 5.20 (dd, J = 5.4 Hz, J = 3.6 Hz, 1 H), 5.15 

(dd, J = 6.0 Hz, J = 3.0 Hz, 0.28 H), 5.08 – 4.99 (m, 2.4 H), 3.74 (d, J = 7.8 Hz, 1 H), 

3.70 (m, 1.7 H), 3.49 (d, J = 7.8 Hz, 1 H), 3.39 (m, 1.3 H), 2.16 (dd, J = 13.2 Hz, J = 6.0 

O

Me

OnBu

3.9
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Hz, 0.20 H), 1.96 (dd, J = 5.4 Hz, J = 0.6 Hz, 1 H), 1.85 (dd, J = 13.2 Hz, J = 3.6 Hz, 1 

H), 1.73 (dd, J = 13.2 Hz, J = 3.6 Hz, 0.2 H), 1.56 (m, 2.7 H), 1.37 (m, 2.7 H), 1.25 ( s, 

0.75 H), 1.18 (s, 3 H), 0.922 (t, J = 7.2 Hz, 3.9 H); 13C NMR (600 MHz, CDCl3) δ 145.1, 

143.54, 112.5, 111.1, 104.9, 104.9, 77.51, 77.32, 76.79, 67.67, 46.40, 45.67, 45.12, 44.56, 

31.80, 31.78, 23.68, 22.84, 19.34, 19.32, 13.85; LRMS (ESI) calculated for 

[C11H20O2+NH4]+ 202.18, found 202.13. 

 

 

1-tosyl-2,3,3a,6,7,7a-hexahydro-1H-indole (3.11, Table 3-3, entry 4), 1-tosyl-

2,3,4,5,6,7-hexahydro-1H-indole (3.12, Table 3-3, entry 4), 1-tosyl-2,3,5,6,7,7a-

hexahydro-1H-indole (3.13, Table 3-3, entry 4).  The title compounds were synthesized 

from 3.10 (80 mg, 0.197 mmol) using Method A.  It was not necessary to remove PPh3 

prior to purification. The product was purified by flash column chromatography (10:1 

Hex/EtOAc) to afford a 9.1:1.2:1 inseparable mixture of (40.6 mg, 0.146 mmol, 74% 

combined yield) as a colorless oil. Analytical data for 3.11, 3.12, and 3.13: IR (thin film, 

cm-1) 3437, 2925, 1344, 1161, 663.4, 600.7, 549.6; 1H NMR (600 MHz, CDCl3) δ 7.73 

(m, 2.5 H), 7.31 (m, 2.5 H), 5.78 (m, 1 H), 5.63 (m, 0.055 H), 3.70 (m, 1H), 3.55 (m, 0.22 

H), 3.48 (m, 0.13 H), 3.47 (m, 1 H), 3.41 (m, 0.11 H), 3.35 – 3.30 (m, 0.11 H), 3.16 (m, 

1.2 H), 2.50 (m, 0.22 H), 2.44 (s, 4 H), 2.33 (m, 1.1 H), 2.25 (m, 0.19 H), 2.15 – 2.11 (m, 

1.2 H), 2.03 – 1.97 (m, 2.5 H), 1.94 – 1.83 (m, 0.49 H), 1.81 – 1.75 (m, 2.3 H), 1.66 (s, 

0.42 H), 1.63 – 1.57 (m, 1.55 H), 1.41 – 1.35 (m, 0.41 H), 1.34 – 1.21 (m, 1.1 H); 13C 

NMR (600 MHz, CDCl3) δ 143.3 143.2, 143.0, 137.3, 135.3, 134.8, 134.5, 129.6, 129.6, 

TsNH

H

TsN TsN

3.11 3.12 3.13
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129.5, 128.6, 127.5, 127.4, 127.3, 126.7, 125.0, 124.0, 121.1, 59.54, 58.64, 58.32, 47.93, 

47.56, 47.17, 38.88, 37.67, 35.34, 30.79, 29.87, 29.85, 27.63, 27.13, 26.25, 24.25, 23.10, 

22.50, 21.47, 21.29, 20.22; LRMS (ESI) calculated for [C15H19NO2S+Na]+ 300.10, found 

300.08. 

 

 

Diethyl 4-(propan-2-ylidene)cyclohexane-1,1-dicarboxylate (3.15, Table 3-3, 

entry 5) and diethyl 4-(prop-1-en-2-yl)cyclohexane-1,1-dicarboxylate (3.16, Table 3-

3, entry 5).  The title compounds were synthesized from  3.14 (100 mg, 0.252 mmol) 

using Method A.  The products were purified by flash column chromatography (25:1 

Hex/EtOAc) to afford a 2.3:1 inseparable mixture of 3.15 and 3.16 (46.5 mg, 0.174 

mmol, 70% combined yield) as a pale yellow oil. Analytical data for 3.15 and 3.16: IR 

(thin film, cm-1) 3443, 2978, 2937, 1731, 1644, 1233, 1192; 1H NMR (500 MHz, CDCl3) 

δ 4.68 (d, J = 9.5 Hz, 2 H), 4.20 (m, 8.76 H), 2.43 (d, J = 13.5 Hz, 2 H), 2.24 (m, 3.5 H), 

2.04 (m, 3.7 H), 1.92 (m, 1.45 H), 1.81 – 1.57 (m, 14.3 H), 1.36 (m, 1.8 H), 1.25 (m, 14.4 

H); 13C NMR (500 MHz, CDCl3) δ 172.6, 171.8, 171.0, 148.6, 128.8, 121.8, 108.6, 

61.28, 61.15, 61.04, 54.95, 54.55, 43.97, 32.13, 31.23, 27.83, 26.11, 20.84, 19.92, 14.09, 

14.06, 14.01; LRMS (ESI) calculated for [C15H24O4+Na]+ 291.16, found 291.13. 

 

EtO2C
EtO2C

EtO2C
EtO2C

3.15 3.16
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Diethyl 3-methylenecyclopentane-1,1-dicarboxylate (3.18, Table 3-4, entry 1), 

diethyl 3-methylcyclopent-2- ene-1,1-dicarboxylate (3.19, Table 3-4, entry 1), diethyl 

3-methylcyclopent-3-ene-1,1-dicarboxylate (3.20, Table 3-4, entry 1). The title 

compounds were synthesized from the reaction of 3.17 (80 mg, 0.226 mmol) using 

Method A. The reaction was run for 18 hours. The product was purified by flash column 

chromatography (20:1 Hex/EtOAc) to afford a 5:1.6:1 partially separable mixture of 3.18, 

3.19, and 3.20 (36.7 mg, 0.162 mmol, 72% combined yield) as a clear oil. All physical 

and spectral data were in accordance with literature data for 3.18,18 3.19,56 and 3.20.57 

 

 

(cis)-methyl 1,2,3,3a,4,6a-hexahydropentalene-3a-carboxylate (3.22, Table 3-

4, entry 2) and (cis)-methyl 1,2,3,3a,6,6a-hexahydropentalene-3a-carboxylate (3.23, 

Table 3-4, entry 2).  The title compounds were synthesized from 3.21 (100 mg, 0.340 

mmol) using Method A, with a reaction time of 2.5 h. The product was purified by flash 

column chromatography (30:1 Hex/EtOAc) to afford a 1.5:1 inseparable mixture of 3.22 

and 3.23 (35.9 mg, 0.216 mmol, 64% combined yield) as clear oil. Analytical data for 

3.22 and 3.23: IR (thin film, cm-1) 3436, 2952, 1731, 1651; 1H NMR (500 MHz, CDCl3) 
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δ 5.74 (dt, J = 5.5 Hz, J = 2.5 Hz, 0.51 H), 5.57 (m, 1.48 H), 5.47 (m, 1 H), 3.70 (m, 4.66 

H), 3.47 (d, J = 8.5 Hz, 1 H), 3.04 (dq, J = 17 Hz, J = 2 Hz, 1.0 H), 2.98 (m, 0.55 H), 

2.75 (qt, J = 9 Hz, J = 2.5 Hz, 0.53 H), 2.32 (dq, J = 17.5 Hz, J = 2.5 Hz, 1.0 H), 2.12 (m, 

1.1 H), 2.03 (m, 1.1 H), 1.90 (m, 0.60 H), 2.80 (m, 1.1 H), 1.72 (m, 3.78 H), 1.58 – 1.51 

(m, 2.7 H), 1.42 (m, 0.70 H); 13C NMR (500 MHz, CDCl3) δ 178.7, 177.6, 133.2, 132.6, 

131.8, 128.2, 67.06, 57.72, 56.05, 51.95, 51.90, 45.55, 45.28, 40.78, 39.78, 37.24, 35.89, 

32.15, 25.48, 25.21; LRMS (ESI) calculated for [C10H14O2+Na]+ 189.09, found 189.08. 

 

 

3-benzylidenetetrahydrofuran (3.25, Table 3-4, entry 3) and 4-benzyl-2,3-

dihydrofuran (3.26, Table 3-4, entry 3).  The title compounds were synthesized 

according to Method B using 3.24 (80 mg, 0.278 mmol), but iPrNEt2 was used as the 

amine base. Reaction time was 18 hours. 3.25 and 3.26 were produced (18.8 mg, 0.117 

mmol, 42% combined yield) as a separable mixture of alkene isomers (8:1) and an 

inseparable mixture of alkene stereoisomers (1:1) as a colorless oil. The yield was 

calculated by 1H NMR analysis using 1,3,5-trimethoxybenzene as an internal standard 

due to the volatility of this compound. All physical and spectral data were in accordance 

with the literature data.58 
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3-(prop-1-en-2-yl)hexahydro-2H-furo[2,3-b]pyran (3.28, Table 3-5, entry 1).  

The title compound was synthesized from 3.27 (80 mg, 0.270 mmol) using Method B; 

however, the reaction time was shortened to 4 h. It was not necessary to remove the PPh3 

prior to purification.  The product was purified by flash column chromatography (10:1 

Hex/EtOAc) to afford 3.28 (29.6 mg, 0.176 mmol, 65% yield) as an inseparable mixture 

of stereoisomers (1.4:1) as a yellow oil. Less than 5% of minor alkene isomer 3.32 was 

observed.  All physical and spectral data were in accordance with the literature data for 

3.28.58  Analytical data for 3.32: IR (thin film, cm-1) 3460, 2937, 1447, 1399, 1156, 1028; 

1H NMR (500 MHz, CDCl3) δ 5.18 (d, J = 4 Hz, 1 H), 4.48 (d, J = 12.5 Hz, 1 H), 4.28 

(d, J  = 12.5 Hz, 1 H), 3.85 (td, J = 11 Hz, J = 3 Hz, 1 H), 3.70 (m, 1 H), 2.56 (p, J = 5.5 

Hz, 1 H), 1.83, (m, 1 H), 1.68 (s, 3 H), 1.62 – 1.53 (m, 8 H), 1.43 (m, 1 H); 13C NMR 

(500 MHz, CDCl3) δ 133.3, 122.5, 100.7, 66.73, 61.17, 37.83, 24.12, 22.91, 20.72, 19.79; 

LRMS (ESI) calculated for [C10H16O2+Na]+ 301.02, found 301.13. 

 

 

3-methyl-3-vinylhexahydrofuro[2,3-b]furan (3.30, Table 3-5, entry 2).  The 

title compound was synthesized from 3.29 (80 mg, 0.283 mmol) using Method B to 

afford a 66% of 3.30 by 1H NMR analysis using 1,3,5-trimethoxybenzene.  1H NMR 
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analysis was required due to product instability on silica gel.  Analytical data for 3.30: IR 

(thin film, cm-1) 2925, 2360, 1732, 1456, 1011, 923.7; 1H NMR (600 MHz, CDCl3) 

δ 5.91 (dd, J = 18.0 Hz, J = 10.8 Hz, 1 H), 5.80 (d, J = 4.8 Hz, 1 H), 5.14 (d, J = 11.4 Hz, 

1 H), 4.99 (d, J =18.0 Hz, 1 H) 3.92 – 3.82 (m, 3 H), 3.62 (d, J = 8.4 Hz, 1 H), 2.49 (m, 1 

H), 1.88 (m, 2 H), 1.22 (s, 3 H); 13C NMR (600 MHz, CDCl3) δ 140.4, 114.5, 109.3, 

76.00, 68.80, 53.43, 48.04, 27.46, 26.30; LRMS (ESI) calculated for [C9H14O2+H]+ 

155.11, found 154.99. 

 

 

Diethyl 2-(4-methylpent-3-en-1-yl)-2-(2-((2,2,6,6-tetramethylpiperidin-1-

yl)oxy)ethyl)malonate (3.33, Scheme 3-9).  The title compound was obtained from 3.14 

(100 mg, 0.25 mmol) using Method A, but with the addition of TEMPO (39.4 mg, 0.25 

mmol).  The resulting mixture was purified by flash column chromatography (30:1 

Hexanes:EtOAc) to afford 3.33 as a colorless oil.  The yield of 3.33  (24%) as well as the 

amount of unreacted 3.14 (54%) was determined using 1H NMR analysis with 1,3,5-

trimethoxybenzene as an internal standard.  When this reaction was run without 

Pd(PPh3)4 present, 3.33 (or product 3.15 or 3.16) was not observed. Analytical data for 

3.33: IR (thin film, cm-1) 3444, 2976, 2932, 1732, 1645, 1455, 1374, 1297, 1261, 1195, 

1104, 1031; 1H NMR (500 MHz, CDCl3) δ 5.10 (t, J = 6.5 Hz, 1 H), 4.18 (m, 4 H), 3.73 

(t, J = 6.9 Hz, 2 H), 2.23 (t, J = 7.0 Hz, 2 H), 1.97 (m, 2 H), 1.89 (m, 2 H), 1.68 (s, 3 H), 

1.58 (s, 3 H), 1.53 (m, 1 H), 1.43 (m, 4 H), 1.31 (dt, J = 12.9 Hz, J = 3.0 Hz, 1 H), 1.25 (t, 

3.33
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J = 7.0 Hz, 6 H), 1.14 (s, 6 H), 1.07 (s, 3 H); 13C NMR (500 MHz, CDCl3) δ 171.5, 

132.2, 123.2, 72.56, 61.10, 59.62, 55.83, 39.53, 32.89, 32.36, 30.75, 25.65, 22.89, 20.05, 

17.55, 17.07, 14.05; LRMS (ESI) calculated for [C24H43NO5+H]+ 426.32, found 426.40.   

 

3.5.4 Additional Experiments 

 

Initial Experiment Using Carbonylative Alkyl-Heck Conditions (Figure 3-3).  

3.3 was synthesized from the reaction of 3.1 (100 mg, 0.327 mmol) using Method A, 

except that iPr2NEt was the amine base used, toluene was the solvent used, the reaction 

was run under 50 atm CO, and the reaction temperture was 130 °C. The reaction afforded 

3.3 in 86% yield (determined by using the 1H NMR internal standard 1,3,5-

trimethoxybenzene).  Less than 5% of minor alkene isomer 3.4 was observed.  No 

carbonylative cyclization product was observed. 

 

 

Control Experiment in the Absence of Pd Catalyst (Scheme 3-6). 3.1 (80 mg, 

0.232 mmol) was reacted using Method A in the absence of Pd(PPh3)4.  No product was 

observed by 1H NMR analysis of the crude reaction mixture. 

 

4-(OMe)C6H4 4-(OMe)C6H4

3.3 3.4

10 mol % Pd(PPh3)4
2 equiv iPr2NEt

PhMe, 130 °C, 12 h
50 atm CO

4-(OMe)C6H4 I

3.1

3.1

4-(MeO)C6H4 I 2 equiv PMP
PhH, 110 °C, 24 h

no reaction
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Reaction of Iodide 3.5 in the Absence of CO (Scheme 3-7). Reaction of 

substrate 3.5 was performed using Method B (without CO present) (100 mg, 0.254 mmol) 

instead of Method A (with 10 atm CO present).  The reaction afforded 3.6 in 25% yield 

determined by using the 1H NMR internal standard 1,3,5-trimethoxybenzene.   

 

 

 
 

Attempted Cyclization Using Alkyl Bromide 3.31 (Scheme 3-8). 3.31 

(synthesized according to a procedure by Miura et. al.60) (80 mg, 0.321 mmol) was 

reacted under Method B to afford 3.28 and 3.32 (25.6% combined yield, as determined 

by 1H NMR analysis) as a 3.6:1 mixture of regioisomers and a 1.3:1 mixture of 

stereoisomers. 

 

 

 

 

 

 
 

3.5 3.6

TsN I Ts
N

Me

10 mol % Pd(PPh3)4
2 equiv PMP

PhH, 110 °C, 24 h

3.31 3.28

O

Br

O O O

H

H
3.32

O O

H

H

10 mol % Pd(PPh3)4
2 equiv PMP

PhH, 110 ϒC, 24 h
unreacted 3.31
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Chapter 4 
 
Palladium-Catalyzed Enantioselective Carbonylations of Alkyl 
Iodides  
  
4.1. Introduction 

 α-Alkylations of carbonyl compounds are essential carbon-carbon bond forming 

reactions in synthetic chemistry.1,2  Asymmetric variants are generally reliant upon the 

use of chiral auxiliaries.3,4  For practical and fundamental reasons, development of a 

catalytic asymmetric α-alkylation transformation has been highly sought after.5  Several 

distinct strategies for catalytic asymmetric alkylation have been reported that include 

organocatalysis, Lewis acid activation, and metal-catalyzed cross-coupling.6-9  

We propose an alternative approach for the synthesis of enantiopure α-chiral 

carbonyl compounds: enantioselective carbonylations of secondary alkyl halides (Figure 

4-1).  Realization of this highly modular synthesis would allow access to chiral α-

substituted amides, esters, and ketones via a single catalytic step.  
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Figure 4-1. General, Enantioselective Approaches to α-Substituted Carbonyl 
Compounds 
 

4.2. Background 

 We are proposing the synthesis of chiral α-alkylated carbonyl compounds through 

a different bond disconnection than are traditionally employed (Figure 4-1).  By utilizing 

a variety of nucleophiles (esterification, amidation, or cross coupling with the resulting 

acyl-palladium), many enantiopure chiral building blocks could be readily accessed; 

however, there are significant challenges that need to be addressed concerning this 

approach.   

Despite significant efforts, there are few general examples for the palladium-

catalyzed carbonylation of secondary sp3-hybridized electrophiles,10-12 due to the general 

reluctance of secondary electrophiles to undergo oxidative addition;13,14 however, β-

hydride elimination of the resulting the alkylpalladium species, traditionally a 

challenging issue for the palladium-catalyzed reaction of unactivated alkyl electrophiles, 

should not be problematic as migratory CO insertion outcompeting β-hydride elimination 

has been well-precendented.15,16   
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To date, there is only one example of an enantioselective carbonylation facilitated 

by catalytic palladium (Scheme 4-1).17  A kinetic resolution of benzyl bromide was 

reported that was catalyzed by an oxazaphospholane-palladium complex.  The kinetic 

resolution is enabled by a discriminative slow oxidative addition step.  Additionally, the 

reaction was shown to occur at the organic-aqueous interface, although the use of the 

phase transfer agent hexadecyltrimethylammonium bromide (CTAB) was required to 

achieve enantiomeric discrimination.  α-Methylbenzyl bromide was the only substrate 

examined, and the chemical yields and stereoselectivities were low for the ligands tested.  

As such, the general enantioselective carbonylation of alkyl halides has yet to be realized.   

 

 

Scheme 4-1. Asymmetric Carbonylation of Benzyl Bromides via a Kinetic Resolution 

 

Our lab has reported the successful palladium-catalyzed carbonylative Heck-type 

cyclization of primary and secondary alkyl halides (Scheme 4-2).18 We proposed a 

reaction pathway where oxidative addition to aliphatic halides occurs via single electron 

transfer.  Generation of the resulting carbon-centered radical was confirmed through 

trapping experiments employing TEMPO.  The mechanism for the proposed 

transformation displays both radical and organometallic properties, resulting in a unique 

combination of reactivity that allows access to a wide range of transformations.  We 
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hypothesized that application of this reactivity to the catalytic carbonylation of secondary 

halides will allow the synthesis of chiral α-alkylated carbonyl compounds (Scheme 4-3).   

 

 

Scheme 4-2. Palladium-Catalyzed Carbonylative Heck-Type Cyclization of Unactivated 
Alkyl Iodides 

 

 

Scheme 4-3. Proposed Palladium-Catalyzed Enantioselective Carbonylation of Racemic 
Alkyl Halides 
 

 Another challenge in developing a general enantioselective carbonylation is that 

little is understood for the reaction mechanism employing secondary alkyl halides in 

palladium-catalyzed cross-couplings that invoke a hybrid radical/organometallic 

mechanism.14,19  In particular, few details are available regarding the critical carbon-

carbon bond-forming step.  Palladium-catalyzed esterification has been reported under 

UV irradiation to proceed via a hybrid radical-organometallic mechanism (Figure 4-2).20  

It was determined that the purely radical catalyzed reaction and the palladium catalyzed 

reaction shared the same isomeric ratios of the carbonylation products, indicating that the 

metal was not a participant in the key carbon-carbon bond forming step.  The absence of 

metal makes asymmetric induction highly unlikely.   
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Figure 4-2. Palladium/Light-Accelerated Carbonylation Suggesting Metal Is Not 
Involved in the Carbon-Carbon Bond Forming Step 

 

 Despite these challenges, we set out to determine if it was possible to develop a 

palladium-catalyzed enantioselective carbonylation of alkyl halides.  Realization of this 

goal would provide expedient access to valuable enantiopure amides, esters, and ketones.  

Herein, we report our preliminary findings.    

 

4.3 Results and Discussion 

In order to develop an enantioselective carbonylation of secondary alkyl halides, 

the metal must be involved in the critical carbon-carbon bond forming step.  There are 

two general mechanistic scenarios for this to occur.  If single electron transfer occurs to 
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stereocenter, and the product could be furnished through nucleophilic displacement of 

palladium.  Alternatively, single electron transfer could be followed by the 

enantiodetermining addition of the carbon-centered radical to the metal-bound carbon 

monoxide (Path B).  The resulting enantiopure acylpalladium could then proceed to 

product; however, if the carbon-centered radical generated via single electron transfer 

adds to free carbon monoxide, a racemic product would ultimately be generated (Path C).  

In Path D, two-electron oxidative addition to palladium generates an alkyl metal species, 

which is followed by migratory CO insertion and nucleophilic displacement of palladium 

to generate the product; however, the product formed will be racemic as the starting 

material is racemic and the oxidative addition proceeds through an SN2-type mechanism.   

 

 

Figure 4-3. Potential Mechanisms for the Enantioselective Palladium-Catalyzed 
Carbonylation 
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Little precedent is available to suggest which pathway will be dominant.  The 

reactions of alkyl halides with low-valent transition metals have been shown to occur via 

both single electron transfer21,22 and SN2 pathways;23,24,25 however, the SET pathway 

should predominate, but perhaps not exclusively in the case of secondary halides, as the 

increased steric bulk of the electrophile disfavors the SN2 pathway.  In addition to the 

oxidative addition step, it is imperative to understand the role of carbon monoxide.  A 

recent report on the mechanism of alkane carbonylation has provided limited guidance as 

simple metal complexes were studied;26 however, calculations suggest that in many cases 

addition of carbon-centered radicals to free carbon monoxide have the lowest energy 

barrier, but are highly reversible.  Addition using a number of metal complexes including 

Pd(CO)4 is, overall, a more exergonic process.  Minimizing the addition to free carbon 

monoxide (Path C) will be critical to the development of a successful enantioselective 

reaction. 

Our preliminary investigation sought to determine whether Paths A or B were 

active mechanistic pathways in this reaction.  We employed racemic secondary iodide 4.2 

in our palladium-catalyzed reaction conditions. Evidence of the metal’s involvement in 

the carbon-carbon bond forming step would result in a different diastereomeric ratio of 

the carbonylated products than if the metal was absent (i.e. addition of the the carbon 

centered radical to free CO).  Our results are summarized in Table 4-1.  We first obtained 

the diastereomeric ratio of ester products anti-4.3 and syn-4.3 in a purely radical-

mediated reaction (entry 1).  We observed an approximately ten-point difference in the 

d.r. of the syn- and anti-products when the reaction was run in the presence of a 

palladium catalyst with a variety of ligands (entries 2- 8) with the exception of the NHC 
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ligand and inorganic base (entry 9). These conditions were similar to those invoked by 

the Fu laboratory in a purely organometallic reaction with aliphatic bromides and 

chlorides.27  Albeit slight, this difference does suggest that the presence of the palladium-

catalyst does have an impact on the carbon-carbon bond forming step in the reaction. 

 

Table 4-1. Investigation of the Influence of the Palladium-Catalyst upon the 
Diastereomeric Ratios of the Carbonylation Reaction 
 

 

 

 We also endeavored to study the difference in the isomeric ratio of carbonylation 

products with an alkyl bromide.  Carbon-bromine bonds are more difficult to activate 

O OMe

I

O OMe O OMe

O

OMe

O

OMe

10 mol % Palladium Catalyst

2 equiv NEt3
20 mol % Ligand

1:1 PhH/EtOH, 100 °C
50 atm CO

Palladum Catalyst LigandEntry d.r.a

1

2

3

4

5

6

7

8

9

-- --

Pd(dppf)Cl2 --

Pd(BINAP)Cl2 --

66:34b

76:24

75:25

77:23

73:27

75:25

75:25

75:25

66:34cSIMes-HBF4

Pd(OAc)2

Pd(OAc)2

Pd(OAc)2

Pd(OAc)2

Pd(OAc)2

Pd(OAc)2

(R)-DM-Segphos

(R)-Monophos

(R)-tol-BINAP

(R)-xylyl-BINAP

Josiphos

4.2 anti-4.3 syn-4.3

aThe diastereomeric ratios were determined by 1H NMR spectroscopy of the crude 
reaction mixtures. b10 mol % SnBu3(allyl) and 25 mol % AIBN.  c20 mol % KOtBu 
added.
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than their iodide counterparts.  As such, it is feasible that accessing the carbon-centered 

radical at a slower rate would allow for a more controlled carbonylation via increased 

participation of the metal-complex instead of free carbon monoxide.; however, alkyl 

bromide 4.4 wasn’t reactive under our conditions, even at elevated temperature (Scheme 

4-4). 

 

 

Scheme 4-4. Attempted Palladium-Catalyzed Carbonylation of Alkyl Bromides at 
Various Temperatures  
 

Encouraged by preliminary data, our studies commenced with alkyl iodide 4.5. 

Studies commenced with (R)-DM-Segphos as it provided the largest difference in d.r. in 

our previous screen (Table 4-1, entry 4).  Under these conditions, there was measurable 

enantioselectivity in the reaction (Scheme 4-5).  We then sought to optimize the 

enantioselectivity by varying manipulating conditions.  

 

 

O OMe

Br

10 mol % Pd(dppf)Cl2
2 equiv NEt3 no reaction

1:1 PhH/MeOH, 100 °C
50 atm CO

4.4

O OMe

Br

10 mol % Pd(dppf)Cl2
2 equiv NEt3 no reaction

1:1 PhH/MeOH, 130 °C
50 atm CO

4.4
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Scheme 4-5. Preliminary Enantioselective Carbonylation Result 

 

We began by investigating the effect of carbon monoxide pressure had on 

enantioselectivity.  We found that reducing the CO pressure from 50 atm (Table 4-2, 

entry 1) to 20 atm (entry 2) resulted in an increase of the ee of the reaction to 20 % 

without a large difference in yield’ however, further decreasing the pressure further 

resulted in significantly lower yields, while similar levels of enantioselectivity were 

maintained (entries 3 and 4).  The decrease in yield can be attributed to an increase in 

side reactions such as β-hydride elimination and nucleophilic displacement of the iodide 

with ethanol.  In order to validate our results, the reaction was run with the opposite 

ligand enantiomer (see: additional experiments).  Similar results were generated, 

indicating the enantioselectivity was imparted by the metal-ligand complex; however, the 

absolute stereochemistry of the product was not obtained. 

 

 

 

 

 

 

10 mol % Pd(OAc)2

OO
I

4.5 4.6

OO O

OEt
2 equiv NEt3

11 mol % (R)-DM-Segphos

1:1 PhH/EtOH, 100 °C
50 atm CO

53% yield
15% ee
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Table 4-2. Effect of Carbon Monoxide Pressure on the Carbonylation of Secondary 
Alkyl Iodides 
 

 

 

Next, we sought to determine the effect of different bases upon the 

enantioselectivity of the reaction.  When a bulkier amine base, Hunig’s base, was utilized 

(Table 4-3, entry 2), there was a significant drop in enantioselectivity.  Moreover, no 

stereoinduction was noted when K3PO4 was utilized, and moderate yields were obtained 

(entry 3).  The implementation of a weaker inorganic weaker base resulted in lower 

yields as well as low levels of enantioselectivity (entry 4).  These results were 

compelling, as the base should have a greater effect upon the yield rather than the ee 

since its presumed role in the mechanism is to turnover the catalyst.  It is possible that the 

other bases are not as efficient in regenerating the catalyst as triethylamine, and the 

background radical pathway (Figure 4-3, Path C) becomes more pronounced.  The low 

levels of stereoinduction and poor yields observed with inorganic bases may be attributed 

to their decreased solubility in benzene.   

10 mol % Pd(OAc)2
OO

I

4.5 4.6

OO O

OEt2 equiv NEt3

11 mol % (R)-DM-Segphos

1:1 PhH/EtOH, 100 °C

Entry CO (atm) %Yielda ee

1

2

3

20

10

5

20

15 22

47 20

4

50 53 15

aYield calculated by 1H NMR spectroscopy of crude reaction 
mixtures using 1,3,5-trimethoxybenzene.

ND
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Table 4-3. Effect of the Base on the Carbonylation of Secondary Alkyl Iodides 

 

 

Next we sought to determine the effect that temperature has upon the 

stereoselectivity of the reaction.  We wanted to lower the temperature in order provide 

more control in the stereodetermining step; however, when the temperature was 

decreased to 70 °C, there was a substantial drop in ee.  One potential cause for the drop in 

enantioselectivity is when the temperature is lowered, oxidative addition by an SN2 

mechanism is favored (Figure 4-3, Path D).  

 

 

 

 

 

 

10 mol % Pd(OAc)2

OO
I

4.5 4.6

OO O

OEt
2 equiv base

11 mol % (R)-DM-Segphos

1:1 PhH/EtOH, 100 °C
20 atm CO

entry base %yielda ee

1

2

3

iPr2NEt

K3PO4

NaOAc

50 0b

20 4

45 5

4

NEt3 47 20

aYield calculated by 1H NMR spectroscopy of crude reaction 
mixtures using 1,3,5-trimethoxybenzene. bReaction pressure 
is 50 atm CO.
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Table 4-4. Effect of Temperature on the Carbonylation of Secondary Alkyl Iodides 

 

 

We also studied the effect of the amount of nucleophile/solvent ratio had upon the 

stereoselectivity of the reaction.  It was observed that increasing concentrations of 

nucleophile relative to the solvent progressively increased the stereoselectivity of the 

reaction (Table 4-5, entries 1, 2, and 3); however, running the reaction in ethanol alone 

decreased the ee from 20% to 11% (entry 4).  

 

 

 

 

 

 

 

 

 

10 mol % Pd(OAc)2

OO
I

4.5 4.6

OO O

OEt
2 equiv NEt3

11 mol % (R)-DM-Segphos

1:1 PhH/EtOH
50 atm CO

Entry Temperature (°C) %Yielda ee

1

2 70 74 9

100 53 15

aYield calculated by 1H NMR spectroscopy of crude reaction 
mixtures using 1,3,5-trimethoxybenzene.
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Table 4-5. Effect of the Concentration of the Nucleophile on the Carbonylation of 
Secondary Alkyl Iodides 

 

 

With the reaction conditions optimized, we next examined different ligands 

(Table 4-6).  First we examined different segphos ligands due to our initial success with 

DM-Segphos.  No stereoinduction was observed when Segphos was utilized (entry 2) and 

the opposite enantiomer was generated with DTMB-Segphos (entry 3).  These results 

indicate that the steric bulk of the ligand has a significant impact on the stereoselectivity 

of the reaction.  A similar trend was noted for BINAP ligands as well (entries 4 and 5), as 

the ee of the reaction increased with the bulkier xylyl-BINAP ligand.  Interestingly, H8-

BINAP delivered similar levels of enantioinduction as DM-Segphos.  It is possible that 

the difference in dihedral angle (~10 degrees) facilitates more efficient stereoinduction.28  

Other phosphine ligands tested were not found to have a significant impact on the 

enantioselectivity (entries 7 – 17).  Structures for the ligands in Table 4-6 are shown in 

Figure 4-4. 

 

10 mol % Pd(OAc)2
OO

I

4.5 4.6

OO O

OEt2 equiv NEt3

11 mol % (R)-DM-Segphos

1:1 PhH/EtOH, 100 °C

Entry %Yielda ee

1

3

4

3:1

0:1 59

37 14

1:1 47 20

aYield calculated by 1H NMR spectroscopy of crude reaction 
mixtures using 1,3,5-trimethoxybenzene.

11

PhH:EtOH

2 23:1 9ND
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Table 4-6. Effect of the Ligand on the Carbonylation of Secondary Alkyl Iodides 

 

 

 

10 mol % Pd(OAc)2

OO
I

4.5 4.6

OO O

OEt
2 equiv base

11 mol % Ligand

1:1 PhH/EtOH, 100 °C
20 atm CO

Entry Ligand %Yielda ee

1

2

3

(R)-Segphos

(R)-DTMB-Segphos

(R)-BINAP

63 10c

75 0b

58 0

4

(R)-DM-Segphos 47 20

aYield calculated by 1H NMR spectroscopy of crude reaction mixtures 
using 1,3,5-trimethoxybenzene. bReaction pressure is 50 atm CO. c(S)-
enantiomer generated.

5

6

7

(R)-H8-BINAP

(S)-(S)-CHIRAPHOS

(R)-(R)-DIOP

0

47 0

45 23

8

(R)-xylyl-BINAP 58 7b

ND

9

10

11

CTH-(R)-BINAM

tBu-Josiphos

Ph-Cy-Josiphos

40 15

80 0

77 0b

12

CTH-(R)-P-Phos 60 0b

13

14

15

Ph-xylyl-Josiphos

Walphos

(R)-Cl-OMe-BIPHEP

38 0

46 7

68 0

16

Cy-Cy-Josiphos 79 0

(R)-xylyl-OMe-BIPHEP 45 1117
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Figure 4-4. Structures for the Ligands in Table 4-6 

 

 

In an attempt to make the reaction more general, we employed alkyl bromide 4.7 

under the optimized conditions (Scheme 4-6).  Since an alkyl bromide is less activated 

than an alkyl iodide, the reaction should be slower, resulting in a more controlled 

reaction.  Unfortunately, no reaction was observed.   

 

O

O

O

O

PR2
PR2

R = Ph, (R)-Segphos
R = 3,5-Me2-Ph, (R)-DM-Segphos
R = 4-MeO-3,5-tBu2-Ph, (R)-DTMB-Segphos

PR2
PR2

R = Ph, (R)-BINAP
R = 3,5-Me2-Ph, (R)-xylyl-BINAP

PPh2
PPh2

(R)-H8-BINAP

PPh2

PPh2

(S)-(S)-CHIRAPHOS

(R)-(R)-DIOP

O

OPh2P
Ph2P

MeO

MeO
PR2
PR2
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R = 3,5-Me2-Ph, R1 = H, (R)-xylyl-OMe-Segphos
R = Ph, R1 = Cl, (R)-Cl-OMe-Segphos

N

N

MeO

MeO
PPh2
PPh2

OMe

OMe
CTH-(R)-P-PHOS

N
N

CTH-(R)-BINAM

PPh2

PPh2

H

H
Fe

H
Me
PPh2

PPh2
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Fe
H
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PR1

2R2P

R = Ph, R1 = tBu, tBu-Josiphos
R = Ph, R1 = Cy, Ph-Cy-Josiphos
R = Cy, R1 = Cy, Cy-Cy-Josiphos
R = Ph, R1 = 3,5-Me2-Ph, Ph-xylyl-Josiphos
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Scheme 4-6. Attempted Palladium-Catalyzed Carbonylation Using an Alkyl Bromide 

 

We also wanted to determine if a stereoselective carbonylation could be achieved 

with a less sterically hindered iodide (Scheme 4-7).  Yet, when homo-benzylic iodide 4.8 

was reacted under our most promising conditions, no enantioselectivity was observed.   

 

 

Scheme 4-7. Palladium-Catalyzed Carbonylation of Homo-Benzylic Secondary Iodides 

 

4.4. Summary 

In conclusion, we have disclosed preliminary results for the asymmetric 

carbonylation of racemic secondary iodides.  These results suggest that ablation of the 

racemic iodide via palladium catalysis allows for stereoselective synthesis of α-chiral 

carbonyl compounds.  Further optimization of conditions as well as substrate scope 

investigation will be required to reveal the full potential of this transformation.   

 

 

10 mol % Pd(OAc)2

OO
Br

4.7

2 equiv NEt3
11 mol % (R)-DM-Segphos

1:1 PhH/EtOH, 100 °C
20 atm CO

no reaction

10 mol % Pd(OAc)2

2 equiv NEt3
11 mol % (R)-DM-Segphos

1:1 PhH/EtOH
100 °C

20 atm COI OMeO

73% yield
0% ee

4.8 4.9
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4.5. Experimental 

4.5.1. General Methods 

HPLC spectra were obtained using an Agilent 1200 series HPLC with detection at 

210, 230, 250, and 254 nm using a Chiralpak IB column using a flow rate of 1 mL/min.  

The solvent system was 99 Hexanes : 1 Isopropanol  GC spectra were obtained using an 

Agilent 6850 series GC with a Hydrodex-β-6TBDM column. Proton and carbon magnetic 

resonance spectra (1H NMR and 13C NMR) were recorded on a Bruker model AVANCE 

III 400 or 600 (1H NMR at 400 MHz, or 600 MHz and 13C NMR at 100 MHz) 

spectrometer with solvent resonance as the internal standard (1H NMR:  CDCl3 at 7.28 

ppm, 13C NMR: CDCl3 at 77.0 ppm).  1H NMR data are reported as follows: chemical 

shift, multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, dd = doublet of 

doublets, ddd = doublet of doublet of doublets, td = triplet of doublets, qd = quartet of 

doublets, m = multiplet, br. s. = broad singlet), coupling constants (Hz), and integration.  

Mass spectra were obtained either using a positive ion mode flow injection Visualization 

was accomplished with short wave UV light (254 nm), aqueous basic potassium 

permanganate solution, or ethanolic acidic p-anisaldehyde solution followed by heating.  

Flash chromatography was performed using SiliaFlash P60 silica gel (40-63 µm) 

purchased from Silicycle.  Tetrahydrofuran, diethyl ether, and dichloromethane were 

dried by passage through a column of neutral alumina under nitrogen prior to use.  

Acetone, 99.8%, Extra Dry was purchased from Acros.  Carbon Monoxide, Research 

Purity 99.998% was purchased from Matheson Tri-Gas.  All other reagents were obtained 

from commercial sources and used without further purification unless otherwise noted.  

The pressure reactors used were purchased from Parr Instrument Company that included 
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a 4310 Gage Block Assembly and a GP VS 22 mL A SKT 316SS ST CLS reaction 

vessel.  

4.5.2 Preparation of Alkyl Halide Substrates 

Note: As a precaution alkyl iodides were immediately stored in a dark, inert 

atmosphere at -40 °C upon purification. 

 

 

(trans)-3-iodo-2-methoxytetrahydro-2H-pyran (4.2, Table 4-1). The title 

compound was synthesized according to the literature procedure by Oshima and co-

workers.29 

 

 

(trans)-3-bromo-2-methoxytetrahydro-2H-pyran (4.4, Scheme 4-3). The title 

compound was synthesized according to the literature procedure by Iwata and co-

workers.30 

 

 
 

6-iodo-1,4-dioxaspiro[4.5]decane (4.5).  The title compound was prepared 

according to a procedure by Oshima, et. al.31 

O O OMe

I

NIS
MeOH

4.2

O O OMe

Br

NBS
MeOH

4.4

O
ethylene glycol

CAN, I2

OO
I

4.5
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6-bromo-1,4-dioxaspiro[4.5]decane (4.7, Scheme 4-5).  The title compound was 

prepared according to a procedure by Oshima and co-workers.31 

 

 

(2-iodopropyl)benzene (4.8, Scheme 4-6).  The title compound was prepared by 

tosylation of 1-phenyl-2-propanol, followed by iodination.32  1H NMR spectral data was 

in accordance with literature values.33 

 

4.5.3. Palladium-Catalyzed Stereoselective Carbonylation Results  

General Procedure: In a glovebox, the alkyl iodide (1.0 equiv), Pd(OAc)2 (0.1 

equiv), bidentate phosphine ligand (0.2 equiv), NEt3 (2.0 equiv), and benzene (0.5 M) 

were combined in a 20 mL Parr reactor.  The reactor was sealed and then removed from 

the glovebox.  The Parr reactor was purged with carbon monoxide at 150 psi and then 

charged with 735 psi carbon monoxide.  The reaction vessel was then placed in a 100 °C 

oil bath for 12 hr, after which, it was allowed to cool to room temperature before 

depressurizing.  The Parr reactor was then opened and the reaction mixture was 

transferred out of the vessel by subsequent rinses with DCM.  The combined organic 

layers were washed with 1 N HCl.  The aqueous layer was then extracted with DCM 

three times.  The combined organic layers were dried (MgSO4) and concentrated in 

O
ethylene glycol

CAN, Br2

OO
Br

4.7

OH OTs I
4.8

NEt3
TsCl NaI
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vacuo.  The resulting enone was either analyzed by crude 1H NMR analysis or purified by 

flash chromatography with the specified solvent system. 

 

 

Methyl (anti)-2-methoxytetrahydro-2H-pyran-3-carboxylate (anti-4.3, Table 

4-1) and methyl (syn)-2-methoxytetrahydro-2H-pyran-3-carboxylate (syn-4.3, Table 

4-1).  The title compounds were synthesized according to the general procedure using 4.2 

(60 mg, 0.25 mmol).  Diastereomeric ratios were obtained from the crude reaction 

mixtures.   

 

 

Ethyl 1,4-dioxaspiro[4.5]decane-6-carboxylate (4.6). The title compound was 

synthesized according to the general procedure using 4.5 (67 mg, 0.25 mmol).  The 

resulting ester was purified by flash chromatography (10:1 Hex:EtOAc).  Physical and 

spectral data were in accordance with the literature.34  Yields were calculated by 1H 

NMR spectroscopy using 1,3,5-trimethoxybenzene as an internal standard.  

Enantioselectivities were obtained by chiral GC. from a chiral GC at 120 °C with a flow 

rate of 1.5 mL/min.  

 

O OMe

OMe

O

O OMe

OMe

O
anti-4.3 syn-4.3

4.6

OO O

OEt
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Methyl 2-methyl-3-phenylpropanoate (4.9, Scheme 4-6). The title compound 

was synthesized according to the general procedure using 4.8 (65 mg, 0.264 mmol).  The 

resulting ester was purified by flash chromatography (10:1 Hex:EtOAc).  Physical and 

spectral data were in accordance with the literature.35  Yields were calculated by 1H 

NMR spectroscopy using 1,3,5-trimethoxybenzene as an internal standard.  

Enantioselectivity data was obtained by chiral HPLC. 

 

4.5.4 Additional Experiments 

 

 

The title compound was synthesized according to the general procedure using 4.5 

(67 mg, 0.25 mmol).  The resulting ester was purified by flash chromatography (10:1 

Hex:EtOAc).  Physical and spectral data were in accordance with the literature.34  Yields 

were calculated by 1H NMR spectroscopy using 1,3,5-trimethoxybenzene as an internal 

standard.  Enantioselectivities were obtained by chiral GC. from a chiral GC at 120 °C 

with a flow rate of 1.5 mL/min.  

 

 

OMeO
4.9

10 mol % Pd(OAc)2

OO
I

4.5 4.6

OO O

OEt
2 equiv NEt3

11 mol % (S)-DM-Segphos

1:1 PhH/EtOH, 100 °C
20 atm CO

50% yield
21% ee
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Chapter 5 
 
Palladium-Catalyzed Ring Forming C-H Alkylations of Aromatic Systems 
  
5.1. Introduction 

Aryl/heteroaryl sp2-sp3 carbon-carbon bond formation has become an 

indespensible tool in the synthesis of bioactive small molecules containing polycyclic 

aromatic core structures.1-3  Traditionally, the syntheses of the arenes/heteroarenes are 

accomplished through Friedel-Crafts or radical alkylations, both of which are limited to 

the electronics of the (hetero)aromatic moieties.   

However, the Friedel-Crafts reaction has significant limitations in synthesis.4,5  

Namely, the reaction commonly requires the use of a moderately electron rich aromatic 

component and harsh reaction conditions, namely the use of stoichiometric Lewis acids 

and high temperatures.  The harsh conditions also limit the functional group tolerance of 

the transformation (e.g. pyridines, alcohols).  These aspects severly limit the utility of this 

transformation.   

 Conversely, homolytic aromatic substitution (HAS) enjoys broad functional group 

compatibility;6-8 however, one significant constraint of the reaction is that electron poor 

aromatic systems are required for efficient reaction with relatively electron rich radicals.    

While many HAS reactions commonly require the use of stoichiometric tin reagents, 

reactions have been developed that employ milder radical initiators.  For example, 

superstoichiometric dilauroyl peroxide (DLP) has been used as radical mediator with 
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xanthate substrates.  Moreover, the synthesis of xanthate precursors is often not a trivial 

task.   

 Transition metal-catalyzed cross-coupling reactions have also facilitated sp3-sp2 

bond carbon-carbon bond formation with (hetero)arenes. Commonly, the substrate scope 

of these transformations is limited, and the yields are typically low.  We wanted to utilize 

the same mode of activation of alkyl halides previously reported in our lab to facilitate 

the efficient coupling of unactivated alkyl electrophiles and (hetero)aromatics (Figure 5-

1).   

 

 

Figure 5-1. General Approaches to C-H Alkylations of (Hetero)aromatics with sp3-
Hybridized Electrophiles 
 

5.2 Background 

 There are several examples of palladium-catalyzed C-H alkylation of aromatic 

compounds that employ sp2-hybridized electrophiles;9-16 however, examples that employ 

sp3-hybridized electrophiles are considerably more scarce.  This is due to the general 

reluctance of alkyl electrophiles to undergo nucleophilic addition,17-21 and the willingness 

of the transient alkyl palladium species to participate in rapid β-hydride elimination.22,23   
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Figure 5-2. Challenges for the Development of a C-H Arylation Using Alkyl 
Electrophiles 
 

Recently, examples have been reported that utilize sp3-hybridized electrophiles 

that do not have accessible β-hydrogens.  For example, the Sanford laboratory reported 

that the palladium-catalyzed perfluoroalkylation of arenes.24  Preliminary mechanistic 

data suggests the reaction does not proceed via radical intermediates, implicating an 

organometallic mechanism.  While this transformation is notable, the scope for the iodide 

is limited to only perfluoroalkyl iodides and a large excess of the arene must be used for 

an efficient reaction.   

 

 

Scheme 5-1. Palladium-Catalyzed Arylation of Perfluoroalkyl Iodides  

 

One successful strategy for the reaction of alkyl electrophiles and arenes is the use 

of norbornene to facilitate domino reactions.25  In this particular example by Lautens et. 
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reaction.26  Norbornene is able to facilitate the reaction for several reasons.  Norbornene 

readily undergoes oxidative addition to relieve significant ring strain.  The resulting alkyl 

palladium-species does not possess accessible β-hydrogens, thus enabling further 

reaction.  Unfavorable steric interactions, presumably results in elimination of 

norbornene.        

 

 

Scheme 5-2. Palladium-Catalyzed Intermolecular Alkylations Facilitated by Norbornene 

 

Notably, this strategy was recently employed to alkylate free indoles with alkyl 

bromides (5-3).27  The reaction was tolerant of the electronic nature of the indole and was 

compatible with several functional groups.  Furthermore, it was found that use of the free 
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indole was critical to the success of the reaction, and mechanistic investigations revealed 

that an N-norbornene-type palladacycle is a key intermediate in the synthesis.28 

 

 

Scheme 5-3. Palladium-Catalyzed Intermolecular Alkylation of Unprotected Indoles 
Enabled by Norbornene 
 
 
 The use of directing groups is another strategy that has been successfully 

employed to insert C-H alkylation of aromatic systems.29  A report by Yu and co-workers 

utilized a carboxylic acid to facilitate ortho-C-H activation, generating γ- and δ-

lactones.30  While a large excess of the alkylating agent was required, the reaction can be 

run in air.   

 

 

Scheme 5-4. Palladium-Catalyzed Ortho Alkylation/Lactonization of Benzoic Acids with 
1,2-Dichloroethane 
  
 
 Recently, the Fu laboratory reported the first example of a palladium-catalyzed C-

H alkylation of aromatic compounds that utilized secondary and tertiary alkyl 

electrophiles.31  It was discovered that secondary and tertiary alkyl bromides reacted 

neatly with pyridine N-oxides by employing 10 mol % Pd(OAc)2dppf with an inorganic 

base at elevated temperatures. The reaction proved to be tolerant of several functional 
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groups, including substituted olefins and was capable of generating heteroaromatic 

product on gram-scale.  Additionally, preliminary mechanistic studies suggested that this 

is a radical-type process.   

 

 

Scheme 5-5. Palladium-Catalyzed C-H Alkylation of Pyridine N-Oxides with Secondary 
and Tertiry Alkyl Bromides 
 
 

Our lab has demonstrated the potential for both primary and secondary alkyl 

electrophiles to undergo palladium-catalyzed reactions with alkenes.32,33  We hoped to 

apply the palladium-catalyzed activation of sp3-hybridized electrophiles to C-H 

alkylations of electronically varied heteroaromatic and aromatic systems.  In doing so, we 

sought to provide expedient access to bioactive small molecules in an atom-economical 

fashion without the required use of a directing group.  Our preliminary findings are 

reported herein. 

 

5.3 Results and Discussion 

With the goal of developing highly reactive conditions to facilitate a broad range 

of C-C bond forming reactions, we employed an aromatic moiety that did not possess an 

electronic bias, alkyl iodide 5.1.34  Additionally, diesters were installed on the alkyl tether 

to help promote 6-exo cyclization.  When primary iodide 5.1 was subjected to conditions 

previously employed by our group to promote activation of alkyl halides,33 

tetrahydronapthalene 5.2 was formed in 73% yield.  Dehydrohalogentation product 5.3 
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was also observed.  This was of particular interest as β-hydride elimination was not noted 

to be a significant pathway in reactions that had been previously developed in our 

laboratory;32,33 however, the cyclization with the aromatic moiety may be slower than 

cyclization with alkenes, allowing more time for deleterious side reactions, such as β-

hydride elimination, to occur.   

 

 

Scheme 5-6. Preliminary results for C-H Alkylation of an Aromatic System by an 
Unactivated Alkyl Iodide 
 

 We hypothesized that employing transition-metals other than palladium may 

facilitate the same transformation.  Our investigation focused on metals that have been 

utilized to activate primary alkyl halides in atom transfer radical polymerization (ATRP) 

processes;35 our findings are summarized in Table 5-1.  Wilkinson’s catalyst was able to 

effect a reaction with the aromatic moiety; however, in both non-polar and polar solvents 

the yield was poor (entries 1 and 2).  Catalytic iron systems that were successful for 

generating carbon-centered radicals from primary halides were not successful in 

catalyzing the C-H alkylation reaction (entries 3 and 4).  Additionally, copper catalysts, 

one of the most prolific catalysts in ATRP, were unable to promote the reaction.  No 

benefit was observed by employing different metal-ligand ratios (entries 5-10) or by 

using solvents that have been noted to stabilize radicals species (entries 11-12).   
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Table 5-1. Capability of Transition-Metals to Catalyze the Intramolecular C-H 
Alkylation of Primary Alkyl Iodides 

 

 

 Continuing our studies with palladium catalysts, we next sought to determine the 

effect the electronic nature of the aryl ring had upon the reaction (Table 5-2).  When 

K3PO4 was utilized as a base, β-hydride elimination was not observed as a side reaction 

in the synthesis of tetrahydronapthalene derivative 5.2 (entry 1).  Electron poor aromatic 

moieties gave much lower yields upon reaction, as para-chloro-substituted alkyl iodide 

5.6 cyclized to 5.7 in 29% yields (entry 2).  Trifluoromethyl-substitution on the aromatic 
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moiety (5.8) produced tetrahydronapthlathene derivative, 5.9, in a similar 25% yield 

(entry 3).  The majority of the remaining mass balance for both reactions was unreacted 

starting material.  Electron-rich aromatic systems reacted more readily, with all starting 

material being consumed after 24 h (entry 4).  When para-methoxy-substituted was 

utilized, cyclization product 5.9 was generated in 46% yield.   
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Table 5-2. Effect of Varying the Electronics of the Aromatic Ring in the Palladium-
Catalyzed C-H Alkylation of Primary Alkyl Iodidesa 

 

 

Interestingly, alkyl bromide 5.10 provided the C-H alkylation product in 49% 

yield (Scheme 5-7).  This result was exciting as we were unsuccessful in employing alkyl 

bromides in any of our other transformations developed in our laboratory.32,33  Reaction 

Entry Substrate Product %Yieldb

1

2

3

4

aAll reactions run 0.5 M in PhH at 130° C in a sealed tube in the presence of 10 mol % 
Pd(PPh3)4 and 2.0 equiv of K3PO4. bYield determined by 1H NMR spectroscopy using 
1,3,5-trimethoxybenzene as an internal standard.
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of the bromide was slower than reaction of the iodide, as 15% of the starting material 

remained after 24 hours.   Additionally, reaction with Pd(dppf)Cl2 instead of palladium-

tetrakis was observed to minimize β-hydride elimination. 

 

 

Scheme 5-7. Palladium-Catalyzed C-H Alkylation of Alkyl Bromides 

 

Indanes were also accessible via this method (Scheme 5-8).  Higher conversions 

were noted in polar solvent.  While very few side reactions were noted in the reaction of 

iodide 5.11, conversion to indane 5.12 was sluggish.  After 24 hours, 16% unreacted 

starting material still remained.   

 

 

Scheme 5-8. Formation of Indanes via Palladium-Catalyzed C-H Alkylation with 
Primary Alkyl Iodides 
 
 

Furthermore, the presence of the diesters in the alkyl tether was critical to the 

success of the reaction, as exemplified by alkyl iodide 5.13 (Scheme 5-9).  Upon reaction, 

none of the desired indane 5.14 was observed.   
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Scheme 5-9. Attempted Formation of an Indane without Substitution on the Alkyl Tether 

  

 Additionally, attempts were made to synthesize cyclopentane 5.16 (Scheme 5-10); 

however, upon reaction of iodide substrate 5.15, none of the desired C-H alkylation 

product was observed.  Instead, several side reactions had taken place including β-

hydride elimination and reduction of the alkyl iodide to the alkane.  This indicates that 

the iodide was indeed activated, but the rate of cyclization to the 7-membered ring was 

slower than the rates of the aforementioned side reactions.   

 

 

Scheme 5-10.  Attempted Cycloheptane Synthesis via Palladium-Catalyzed C-H 
Alkylation 
 
  
 Tetrahydroquinoline derivatives were also readily synthesized from sulfonamide 

precursors (Table 5-3).  Alkyl iodide 5.17 proved that electronically-neutral aromatic 

systems could undergo C-H alkylation to provide tetrahydroquinoline derivative 5.18 in 

31% yield (entry 1).  The reaction did not prove sensitive to the position of the 

sulfonamide in the alkyl tether, as tetraisoquinoline derivative 5.20 was synthesized in a 

similar 30% yield (entry 2).  The protecting group on nitrogen should be carefully 
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selected, though, to be electron-withdrawing enough not to promote the formation of 

mustard gases36 or not to contain aromatic compounds that can undergo C-H alkylation as 

well (e.g. tosylates).   

 

Table 5-3. Palladium-Catalyzed C-H Alkylation Reactions of Alkyl Iodides with a 
Sulfonamide Alkyl Tethera  

 

 

Heteroaromatic compounds were also studied (Table 5-4).  Pyrrole 5.21 was 

readily cyclized to 5.22 under slightly different conditions.  The use of dppp as a ligand 

significantly reduced the amount of β-hydride elimination, allowing for a more efficient 

process.  There was a polar background reaction, and 5.22 was generated in 34% yield in 

the absence of palladium.  Indoles were able to undergo C-H alkylation with tethered 

alkyl iodides to synthesize both cyclohexanes (5.24, entry 2) and cyclopentanes (5.26, 

entry 3).    

Entry Substrate Product %Yieldb

1

2

aAll reactions run 0.5 M in PhH at 130° C in a sealed tube in the presence of 10 mol % 
Pd(PPh3)4 and 2.0 equiv of K3PO4. bYield determined by 1H NMR spectroscopy using 
1,3,5-trimethoxybenzene as an internal standard.
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Table  5-4. Palladium-Catalyzed C-H Alkylation of Heteroaromatic Compound with 
Primary Alkyl Iodidesa 

 

 

We also investigated the potential to employ secondary alkyl iodides in the 

cyclization reaction (Scheme 5-11); however, little conversion to the cyclized product 

5.27 was observed.  Optimization efforts studied the effect of catalyst systems, base, 

solvent, and reaction temperature on the success of the reaction.  In all cases, further 

conversion to product 5.27 was not observed; instead, side reactions were promoted.  The 

electronics of the aromatic ring were varied with hopes of promoting the reaction; 

although, no increase in yield was observed (Scheme 5-12).  The low levels of cyclization 

could be attributed to increased stability of a secondary carbon-centered radical. 

Entry Substrate Product %Yieldb

1

2

3

aReaction run 0.5 M in PhH at 130° C in a sealed tube in the presence of 10 mol %
Pd(PPh3)4 and 2.0 equiv of K3PO4 for 18 h. bYield determined by 1H NMR 
spectroscopy using 1,3,5-trimethoxybenzene. cReaction run with 5 mol % [PdCl(allyl)]2 
and 11 mol % dppp instead of Pd(PPh3)4. dReaction run with PMP instead of K3PO4.
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Scheme 5-11. Palladium-Catalyzed C-H Alkylation of Secondary Alkyl Iodides 

 

 

Scheme 5-12. Varying the Electronics of the Aromatic System in the Reaction with 
Secondary Alkyl Iodides 
 

5.4 Summary 

 In conclusion, preliminary results for the alkylation of inert C-H bonds of 

aromatic and heteroaromatic systems with unactivated alkyl halides have been described.  

Primrary and secondary alkyl iodides and bromides were shown to react with electron-

rich and electron-poor aromatic components as well as electronically neutral phenyl 

rings.  Promising preliminary data also includes the cyclopentane as well as cyclohexane 

synthesis.  Future work will focus on further optimizing the reaction conditions to 

improve the yield as well as expanding the substrate scope to include different ring sizes 
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and substitution in the alkyl tether.  Additionally, mechanistic studies will be undertaken 

to elucidate the mechanism of the reaction.   

 

5.5 Experimental  

5.5.1 General Methods 

Infrared (IR) spectra were obtained using a Jasco 260 Plus Fourier transform 

infrared spectrometer. Proton and carbon magnetic resonance spectra (1H NMR and 13C 

NMR) were recorded on a Bruker model AVANCE III 400 or 600 (1H NMR at 400 MHz, 

or 600 MHz and 13C NMR at 100 MHz) spectrometer with solvent resonance as the 

internal standard (1H NMR:  CDCl3 at 7.28 ppm, 13C NMR: CDCl3 at 77.0 ppm).  1H 

NMR data are reported as follows: chemical shift, multiplicity (s = singlet, d = doublet, t 

= triplet, q = quartet, dd = doublet of doublets, ddd = doublet of doublet of doublets, td = 

triplet of doublets, qd = quartet of doublets, m = multiplet, br. s. = broad singlet), 

coupling constants (Hz), and integration.  Mass spectra were obtained using Micromass 

(now Waters Corporation, 34 Maple Street, Milford, MA 01757) Quattro-II, Triple 

Quadrupole Mass Spectrometer, with a Z-spray nano-Electrospray source design, in 

combination with a NanoMate (Advion, 19 Brown Road, Ithaca, NY 14850) chip based 

electrospray sample introduction system and nozzle.  Visualization was accomplished 

with short wave UV light (254 nm), aqueous basic potassium permanganate solution, or 

ethanolic acidic p-anisaldehyde solution followed by heating.  Flash chromatography was 

performed using SiliaFlash P60 silica gel (40-63 µm) purchased from Silicycle.  

Tetrahydrofuran, diethyl ether, and dichloromethane were dried by passage through a 

column of neutral alumina under nitrogen prior to use.  Acetone, 99.8%, Extra Dry was 
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purchased from Acros.  Carbon Monoxide, Research Purity 99.998% was purchased from 

Matheson Tri-Gas.  All other reagents were obtained from commercial sources and used 

without further purification unless otherwise noted.  The pressure reactors used were 

purchased from Parr Instrument Company that included a 4310 Gage Block Assembly 

and a GP VS 22 mL A SKT 316SS ST CLS reaction vessel.   

 

5.5.2 Preparation of Alkyl Iodide and Bromide Substrates 

 

Diethyl 2-benzyl-2-(2-iodoethyl)malonate (5.1, Table 5-2, entry 1).  The title 

compound was synthesized by an alkylation with benzyl bromide according to the 

literature procedure by Renaud et. al.37 followed by alkylation with dibromoethane, and 

an iodination.33 

Analytical data for (5.33): 1H NMR (600 MHz, CDCl3) δ 7.32 – 7.26 (m, 3 H), 

7.11 (d, J = 7.2 Hz, 2 H), 4.24 (m, 4 H), 3.41 (t, J = 8.4 Hz, 2 H), 3.28 (s, 2 H), 2.38 (t, J 

= 8.4 Hz, 2 H), 1.29 (t, J = 7.2 Hz, 6 H); 13C NMR (600 MHz, CDCl3) δ 170.2, 135.2, 

129.8, 127.2, 61.66, 61.64, 58.88, 39.22, 36.06, 27.23, 13.99 

Analytical data for (5.1): 1H NMR (600 MHz, CDCl3) δ 7.32-7.26 (m, 3 H), 7.10, 

(d, J = 7.2 Hz, 2 H), 4.23 (m, 4 H), 3.26 (s, 3 H), 3.15 (t, J = 8.4 Hz, 2 H), 2.41 (t, J = 8.4 
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Hz, 2 H), 1.28 (t, J = 7.2 Hz, 6 H); 13C NMR (600 MHz, CDCl3) 

δ 170.1, 135.3, 129.8, 128.4, 127.2, 61.58, 60.48, 38.88, 37.56, 14.00, −2.39 

 

 

Diethyl 2-(2-iodoethyl)-2-(4-chloro)benzyl)malonate (5.4, Table 5-2, entry 2).  

The title compound was synthesized by an alkylation followed by 

monodecarboxylation,38,39 alkylation with dibromoethane, and an iodination.33 

Analytical data for (5.33): 1H NMR (600 MHz, CDCl3) δ 7.27 (d, J = 10.8 Hz, 2 

H), 7.05 (d, J = 8.4 Hz, 2 H), 4.22 (m, 4 H), 3.39 (t, J = 7.8 Hz, 2 H), 3.24 (s, 2 H), 2.35 

(t, J = 7.8 Hz, 2 H), 1.28 (t, J = 7.2 Hz, 6 H); 13C NMR (600 MHz, CDCl3) 

δ 170.0, 133.8, 133.2, 131.2, 128.6, 61.76, 58.8, 38.70, 35.24, 26.99, 13.99. 

Analytical data for (5.4): 1H NMR (600 MHz, CDCl3) δ 7.26 (m, 2H), 7.03 (m, 2 

H), 4.21 (m, 4 H), 3.21 (s, 2 H), 3.12 (m, 2 H), 2.39 (m, 2 H), 1.27 (t, J = 7.2 Hz); 13C 

NMR (600 MHz, CDCl3) δ 169.8, 133.8, 133.2, 131.1, 128.6, 61.71, 60.34, 38.28, 37.64, 

14.00, -2.67. 

 

EtO OEt

O O

Cl

Br

Cl

C(CO2Et)3
(CO2Et)3CH

NaH

Cl

EtO OEt

O O

Br

Cl

EtO OEt

O O

I

Cl

NaH
1,2-dibromoethane

NaI
15-crown-5

NaH
EtOH

5.345.4



 159 

 

Diethyl 2-(2-iodoethyl)-2-(4-(trifluoromethyl)benzyl)malonate (5.6, Table 5-2, 

entry 3).  The title compound was synthesized by an alkylation followed by a 

monodecarboxylation,38 alkylation with dibromoethane, and an iodination.33 

Analytical data for (5.35): 1H NMR (600 MHz, CDCl3) δ 7.55 (d, J = 8.4 Hz, 2 H), 7.35 

(d, J = 7.8 Hz, 2 H), 4.18 (m, 4 H), 3.66 (t, J = 7.8 Hz, 1 H), 3.28 (d, J = 7.8 Hz, 2 H), 

1.22 (t, J = 7.2 Hz, 6 H); 13C NMR (600 MHz, CDCl3) δ 168.5, 126.8, 125.4 (q, J = 

4.05), 124.1 (q, J = 270), 121.4, 61.64, 53.36, 34.32, 13.95. 

Analytical data for (5.36): 1H NMR (600 MHz, CDCl3) δ 7.56 (d, J = 8.4 Hz, 2 

H), 7.24 (d, J = 8.4 Hz, 2 H), 4.22 (m, 4 H), 3.40 (t, J = 8.4 Hz, 2 H), 3.32 (s, 2 H), 2.37 

(t, J = 8.4 Hz, 2 H), 1.27 (t, J = 7.2 Hz, 6H); 13C NMR (600 MHz, CDCl3) δ 169.9, 

139.6, 130.3, 129.5 (q, J = 32 Hz), 125.3 (q, J = 3.6 Hz), 61.85, 58.76, 39.14, 36.37, 

26.83, 13.95. 

Analytical data for (5.6): 1H NMR (600 MHz, CDCl3) δ 7.56 (d, J = 8.4 Hz, 2 H), 

7.23 (d, J = 7.8 Hz, 2 H), 4.22 (m, 4 H), 3.29 (s, 2 H), 3.14 (m, 2 H), 2.32 (m, 2 H), 1.26 

(t, J = 7.2 Hz, 6 H); 13C NMR (600 MHz, CDCl3) δ 169.7, 139.6, 130.2, 129.5 (q, J = 32 

Hz), 125.3 (q, J = 3.3 Hz), 61.80, 60.31, 38.72, 37.79, 13.96, -2.92. 
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Diethyl 2-(2-iodoethyl)-2-(4-methoxybenzyl)malonate (5.8, Table 5-2, entry 4).  

The title compound was synthesized by an alkylation of diethyl malonate38 followed by 

alkylation with dibromoethane, and an iodination.33 

Analytical data for (5.10): 1H NMR (600 MHz, CDCl3) δ 7.11 (d, J = 8.6 Hz, 2 

H), 6.83 (d, J = 8.6 Hz, 2 H), 4.23 (m, 4 H), 3.80, (s, 3 H), 3.40 (m, 2 H), 3.21 (s, 2 H), 

2.35 (m, 2 H), 1.28 (t, J = 7.1 Hz, 3 H); 13C NMR (600 MHz, CDCl3) δ 170.3, 158.7, 

130.8, 127.1, 113.8, 61.60, 58.98, 55.19, 55.16, 38.45, 36.07, 27.32, 14.01 

Analytical data for (5.8): IR (thin film, cm-1) ; 1H NMR (600 MHz, CDCl3) δ 

7.00 (d, J = 9.0 Hz, 2 H), 6.83 (d, J = 9.0 Hz, 2 H), 4.22 (m, 4 H), 3.80 (s, 3 H), 3.19 (s, 2 

H), 3.14 (m, 2 H), 2.40 (m, 2 H), 1.28 (t, J = 7.2 Hz, 3 H); 13C NMR (600 MHz, CDCl3) 

δ 170.2, 158., 130.8, 127.1, 113.8, 61.56, 60.54, 55.18, 38.04, 37.46, 14.04, −2.18. 
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Diethyl 2-benzyl-2-(iodomethyl)malonate (5.12, Scheme 5-8).  The title 

compound was iodinated according to the literature procedure by List et. al.41  

Analytical data for (5.12): 1H NMR (600 MHz, CDCl3) δ 7.28 m, 3 H), 7.20 (m, 

2 H), 4.24 (m, 4 H), 3.47 (s, 2 H), 3.39 (s, 2 H), 1.28 (t, J = 7.2 Hz, 6 H); 13C NMR (600 

MHz, CDCl3) δ 168.2, 135.2, 129.6, 128.5, 127.4, 62.06, 59.41, 37.97, 14.01, 7.08. 

 

 

1-(3-iodopropyl)-4-methoxybenzene (5.13, Scheme 5-9).  The title compound 

was synthesized by an HWE olefination,42 reduction of the resulting ester,43,44 reduction 

of the allylic alcohol,45,46 and an iodination reaction.   
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Triphenylphosphine (1.77 g, 6.75 mmol), imidazole (460 mg, 6.75 mmol), and 

iodine (1.71 g, 6.75 mmol) in DCM (11.3 mL) were combined at 0 °C under Ar and 

stirred for 15 min.  A solution of alcohol (750 mg, 4.50 mmol) in DCM (11.3 mL) was 

then added dropwise.  The reaction mixture was stirred at 0 °C for 30 min.  The reaction 

was then quenched with H2O and extracted with DCM three times.  The combined 

organic layers were washed with sat. aq. Na2S2O3 and brine, dried (MgSO4) and 

concentrated in vacuo.  The resulting oil was purified by flash chromatography (20:1 

Hexanes/EtOAc) to provide 5.13 (967 mg, 3.50 mmol, 78%) as a pale yellow oil.  

Analytical data for (5.13): 1H NMR (600 MHz, CDCl3) δ 7.14 (d, J = 8.4 Hz, 2 H), 6.86 

(d, J = 8.4 Hz, 2 H), 3.82 (s, 3 H), 3.18 (t, J = 6.6 Hz, 2 H), 2.70 (t, J = 7.2 Hz, 2 H), 2.12 

(p, J = 7.2 Hz, 2 H); 13C NMR (600 MHz, CDCl3) δ 158.0, 132.4, 129.4, 113.8, 55.23, 

35.21, 35.04, 6.48. 

 

 

-(4-iodobutoxy)-4-methoxybenzene (5.15, Scheme 5-10).  The title compound 

was synthesized via an alkylation47 and an iodination. 

To a solution of chloride (2.8 g, 13.0 mmol) in dried acetone (43 mL) was added 

NaI (5.85 g, 39.0 mmol) and 15-crown-5 (250 µL, 1.3 mmol) at room temperature under 

Ar.  The reaction was then heated to a reflux and stirred overnight.  The reaction was 

O

MeO
Cl

MeO

OH

Br Cl
KOH NaI
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O
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I
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cooled to room temperature and diluted with CH2Cl2.  The reaction mixture was stirred 

for ~15 minutes.  The organic layer was then washed with sat. aq. Na2S2O3 and brine, 

dried (MgSO4), and concentrated in vacuo.  The resulting oil was purified by column 

chromatography (80:5:2 Hex:EtOAc:DCM) to provide 5.15 (1.46 g, 4.77 mmol, 37% 

yield) as a white solid.  Analytical data for (5.15): 1H NMR (600 MHz, CDCl3) δ 6.85 (s, 

4 H), 3.96 (t, J = 6.0 Hz, 2 H), 3.79 (s, 3 H), 3.28 (t, J = 6.6 Hz, 2 H), 2.05 (m, 2 H), 1.89 

(m, 2 H); 13C NMR (600 MHz, CDCl3) δ 153.8, 152.9, 115.3, 114.6, 67.24, 55.73, 30.24, 

30.18, 6.52. 

 

 

N-benzyl-N-(2-iodoethyl)methanesulfonamide (5.17, Table 5-3, entry 1).  The 

title compound was prepared by alkylation48 followed by a standard mesylate protection 

of the amine, a standard LAH reduction of the ester moiety, and an iodination.   

Analytical data for (5.36): 1H NMR (600 MHz, CDCl3) δ 7.35 (m, 5 H), 4.50 (s, 2 

H), 4.20 (q, J = 7.2 Hz, 2 H), 3.95 (s, 2 H), 3.12 (s, 3 H), 1.27 (t, J = 7.2 Hz, 3 H); 13C 
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NMR (600 MHz, CDCl3) δ 169.5, 134.9, 128.8, 128.4, 128.2, 61.44, 50.84, 46.76, 40.71, 

14.07. 

Analytical data for (5.37): 1H NMR (600 MHz, CDCl3) δ 7.36 (m, 5 H), 4.48 (s, 2 

H), 3.66 (t, J = 5.4 Hz, 2 H), 3.38 (t, J = 5.4 Hz, 2 H), 2.96 (s, 3 H); 13C NMR (600 MHz, 

CDCl3) δ 135.8, 128.8, 128.3, 128.1, 60.26, 51.68, 49.43, 38.79. 

Analytical data for (5.17): 1H NMR (600 MHz, CDCl3) δ 7.38 (m, 5 H), 4.45 (s, 2 

H), 3.55 (t, J = 7.8 Hz, 2 H), 3.10 (t, J = 7.8 Hz, 2 H), 2.93 (s, 3 H); 13C NMR (600 MHz, 

CDCl3) δ 135.7, 129.0, 128.4, 128.4, 52.06, 50.39, 39.48, 1.69. 

 

 

N-(3-iodopropyl)-N-phenylmethanesulfonamide (5.19, Table 5-3, entry 2).  The title 

compound was prepared mesyl protection of aniline49 followed by alkylation,50 and an 

iodination.   

Analytical data for (5.38): 1H NMR (600 MHz, CDCl3) δ 7.45 (m, 2 H), 7.38 (m, 

3 H), 3.86 (t J = 7.2 Hz, 2 H), 3.45 (t, J = 6.6 Hz, 2 H), 2.91 (s, 3 H), 2.08 (p, J = 6.6 Hz, 

2 H); 13C NMR (600 MHz, CDCl3) d 139.0, 129.6, 128.3, 128.3, 49.23, 36.82, 31.79, 

28.81.  
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Analytical data for (5.19): 1H NMR (600 MHz, CDCl3) δ 7.45 (m, 2 H), 7.38 (m, 

3 H), 3.80 (t, J = 6.6 Hz, 2 H), 3.20 (t, J = 6.6 Hz, 2 H), 2.91 (s, 3 H), 2.04 (p, J = 6.6 Hz, 

2 H); 13C NMR (600 MHz, CDCl3) d 139.0, 129.7, 128.4, 128.3, 51.18, 36.86, 32.54, 

1.72. 

 

 

1-(4-iodobutyl)-1H-pyrrole (5.21, Table 5-4, entry 1).  The title compound was 

synthesized by an alkylation of pyrrole51 and an iodination.   

Analytical data for (5.21): 1H NMR (600 MHz, CDCl3) δ 6.66 (t, J = 1.8 Hz, 2 

H), 6.17 (t, J = 1.8 Hz, 2 H), 3.93 (t, J = 6.6 Hz, 2 H), 3.17 (t, J = 6.6 Hz, 2 H), 1.91 (m, 2 

H), 1.81 (m, 2 H); 13C NMR (600 MHz, CDCl3) δ 120.4, 108.1, 48.46, 32.30, 30.42, 

5.85.  

 

 

1-(4-iodobutyl)-1H-indole (5.23, Table 5-4, entry 2).  The title compound was 

synthesized via an alkylation and an iodination.52,53 

Analytical data for (5.39): 1H NMR (600 MHz, CDCl3) δ 7.66 (d, J = 7.8 Hz, 1 

H), 7.37 (d, J = 8.4 Hz, 1 H, 7.24 (t, J = 7.2 Hz, 1 H), 7.14 (t, J = 7.2 Hz, 1 H), 7.12 (d, J 

= 3 Hz, 1 H), 6.53 (d, J = 3 Hz, 1 H), 4.20 (t, J = 6.6 Hz, 2 H), 3.54 (t, J = 6.6 Hz, 2 H), 
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N
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2.04 (m, 2 H), 1.80 (m, 2 H); 13C NMR (600 MHz, CDCl3) δ 135.8, 128.5, 127.6, 121.5, 

121.0, 119.3, 109.22, 101.2, 45.59, 44.44, 29.82, 27.58. 

 

 

1-(3-iodopropyl)-1H-indole (5.25, Table 5-4, entry 3). The title compound was 

prepared by alkylation and iodination.52  Physical data was in accordance with the 

literature for the chloride54 and iodide.55 

 

 

(trans)-2-(benzyloxy)-3-iodotetrahydro-2H-pyran (5.27, Scheme 5-11).  The 

title compound was synthesized according to the literature procedure by Oshima et. al.54  

Analytical data for (5.27): 1H NMR (600 MHz, CDCl3) δ 7.42 (d, J = 7.8 Hz, 2 H), 7.38 

(t, J = 7.2 Hz, 2 H), 7.33 (m, 1 H), 4.83 (d, J = 11.4 Hz, 1 H), 4.76 (d, J = 5.4 Hz, 1 H), 

4.59 (d, J = 12.0 Hz, 1 H), 4.17 (m, 1 H), 4.06 (m, 1 H), 3.64 (m, 1 H), 2.42, (m, 1 H), 

2.04 (m, 1 H), 1.81 (m, 1 H), 1.62 (m, 1 H); 13C NMR (600 MHz, CDCl3) 

δ 137.2, 128.4, 128.0, 127.8, 101.4, 69.79, 63.49, 32.54, 29.15, 25.43. 

 

5.5.3 Results for the Palladium-Catalyzed C-H Alkylation of Alkyl Halides 

General Procedure for the Alkyl-Heck-Type Reaction:  In a glovebox, the 

alkyl iodide (1.0 equiv), Pd(PPh3)4 (10 mol %), base (2.0 equiv), and solvent (0.5 M) 
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were combined in a sealed tube with a stir bar added.  Upon removal from the glovebox, 

the sealed tube was placed into an oil bath at 130 °C.  The reaction mixture was stirred 

for 24 h, after which it was cooled to room temperature and diluted with Et2O.  The 

reaction mixture was washed with 1 N HCl.  The reaction was then extracted with Et2O 

three times.  The combined organic layers were dried (MgSO4), and concentrated.   

 

 

Diethyl 3,4-dihydronaphthalene-2,2(1H)-dicarboxylate (5.2, Table 5-2, entry 

1).  The title compound was synthesized from 5.1 (101 mg, 0.25 mmol)  according to the 

general procedure to afford 67% 5.2 by 1H NMR analysis using 1,3,5-trimethoxybenzene.  

Analytical data for (5.2): 1H NMR (600 MHz, CDCl3) δ 7.26 – 7.06 (m, 4 H), 7.05 (m, 1 

H), 4.18 (q, J = 7.2 Hz, 4 H), 3.26 (s, 2 H), 2.84 (t, J = 6.6 Hz, 2 H), 2.32 (t, J = 7.2 Hz, 2 

H), 1.22 (t, J = 7.2 Hz, 3 H); 13C NMR (600 MHz, CDCl3) d 171.3, 134.6, 133.6, 128.8, 

128.6, 125.9, 61.38, 53.64, 34.66, 28.11, 14.00. 

 

 

Diethyl 6-chloro-3,4-dihydronaphthalene-2,2(1H)-dicarboxylate (5.5, Table 

5-2, entry 2).  The title compound was synthesized from 5.4 (110 mg, 0.25 mmol)  
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OO
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EtO OEt

OO

5.5

Cl
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according to the general procedure to afford 29% 5.5  by 1H NMR analysis using 1,3,5-

trimethoxybenzene.   

 

 

Diethyl 6-(trifluoromethyl)-3,4-dihydronaphthalene-2,2(1H)-dicarboxylate 

(5.7, Table 5-2, entry 3).  The title compound was synthesized from 5.6 (118 mg, 0.25 

mmol) according to the general procedure to afford 25% 5.5  by 1H NMR analysis using 

1,3,5-trimethoxybenzene.   

 

 

Diethyl 6-methoxy-3,4-dihydronaphthalene-2,2(1H)-dicarboxylate (5.9, Table 

5-2, entry 4).  The title compound was synthesized from 5.8 (109 mg, 0.25 mmol) 

according to the general procedure to afford 46% 5.9  by 1H NMR analysis using 1,3,5-

trimethoxybenzene.   
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Diethyl 2-benzyl-2-(iodomethyl)malonate (5.12, Scheme 5-8).  The title 

compound was synthesized from 5.11 (98 mg, 0.25 mmol) according to the general 

procedure except PhCF3 was used as a solvent instead of benzene to afford 50% 5.12 by 

1H NMR analysis using 1,3,5-trimethoxybenzene.  Physical and spectral data were in 

accordance with the literature data.57 

 

 

1-(methylsulfonyl)-1,2,3,4-tetrahydroquinoline (5.19, Table 4-3, entry 1).  The 

title compound was synthesized from 5.17 (85 mg, 0.25 mmol) according to the general 

procedure to afford 31% 5.18 by 1H NMR analysis using 1,3,5-trimethoxybenzene. 

Physical and spectral data were in accordance with the literature data.58 

 

 

2-(methylsulfonyl)-1,2,3,4-tetrahydroisoquinoline (5.20, Table 4-3, entry 2).  

The title compound was synthesized from 5.19 (85 mg, 0.25 mmol)  according to the 

general procedure to afford 30% 5.20 by 1H NMR analysis using 1,3,5-

CO2Et
EtO2C

5.12

5.18

MsN

5.20
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trimethoxybenzene. Physical and spectral data were in accordance with the literature 

data.59 

 

 

5,6,7,8-tetrahydroindolizine (5.21, Table 4-4, entry 1).  The title compound was 

synthesized according to the general procedure using 5.20 (60 mg, 0.24 mmol) except 5 

mol % [Pd(allyl)Cl]2 with 11 mol % dppp in was utilized.  A 64% yield of 5.21 was 

determined by 1H NMR analysis using 1,3,5-trimethoxybenzene as an internal standard.  

Physical and spectral data were in accordance with the literature data.60 

 

 

6,7,8,9-tetrahydropyrido[1,2-a]indole (5.23, Table 4-4, entry 2).  The title 

compound was synthesized according to the general procedure using 5.22 (75 mg, 0.25 

mmol), but PMP base was used instead of K3PO4.  5.23 was generated in 43% by 1H 

NMR analysis using 1,3,5-trimethoxybenzene.  Physical and spectral data were in 

accordance with the literature data.61 
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2,3-dihydro-1H-pyrrolo[1,2-a]indole (5.25, Table 4-4, entry 3).  The title 

compound was synthesized according to the general procedure using 5.24 (71 mg, 0.25 

mmol) to afford 34% 5.25 by 1H NMR analysis using 1,3,5-trimethoxybenzene.  Physical 

and spectral data were in accordance with the literature data.61 

 

5.5.4 Additional Experiments 

 

Control Experiment in the Absence of Pd Catalyst for 5.2 (Table 5-2, entry 

1): 5.1 (101 mg, 0.25 mmol) was reacted according to the general procedure in the 

absence of Pd(PPh3)4.  No product was observed by 1H NMR analysis of the crude 

reaction mixture. 

 

 

Control Experiment in the Absence of Pd Catalyst for 5.4 (Table 5-2, entry 

1): 5.4 (110 mg, 0.25 mmol) was reacted according to the general procedure in the 

absence of Pd(PPh3)4.  No product was observed by 1H NMR analysis of the crude 

reaction mixture. 
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Control Experiment in the Absence of Pd Catalyst for 5.6 (Table 5-2, entry 

3): 5.6 (118 mg, 0.25 mmol) was reacted according to the general procedure in the 

absence of Pd(PPh3)4.  No product was observed by 1H NMR analysis of the crude 

reaction mixture. 

 

 

Control Experiment in the Absence of Pd Catalyst for 5.8 (Table 5-2, entry 

4): 5.8 (109 mg, 0.25 mmol) was reacted according to the general procedure in the 

absence of Pd(PPh3)4.  No product was observed by 1H NMR analysis of the crude 

reaction mixture. 

 

 

Control Experiment in the Absence of Pd Catalyst for 5.11 (Scheme 5-8): 

5.11 (98 mg, 0.25 mmol) was reacted according to the general procedure in the absence 
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of Pd(PPh3)4.  No product was observed by 1H NMR analysis of the crude reaction 

mixture. 

 

 

Control Experiment in the Absence of Pd Catalyst for 5.17 (Table 5-3, entry 

1): 5.11 (85 mg, 0.25 mmol) was reacted according to the general procedure in the 

absence of Pd(PPh3)4.  No product was observed by 1H NMR analysis of the crude 

reaction mixture. 

 

 

Control Experiment in the Absence of Pd Catalyst for 5.19 (Table 5-3, entry 

2): 5.19 (85 mg, 0.25 mmol) was reacted according to the general procedure in the 

absence of Pd(PPh3)4.  No product was observed by 1H NMR analysis of the crude 

reaction mixture. 

 

 

Control Experiment in the Absence of Pd Catalyst for 5.21 (Table 5-4, entry 

1): 5.21 (62 mg, 0.25 mmol) was reacted according to the general procedure in the 

2 equiv K3PO4
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absence of Pd(PPh3)4.  34% product 5.22 and 43% 5.21 were observed by 1H NMR 

analysis using 1,3,5-trimethoxybenzene of the crude reaction mixture. 

 

 

Control Experiment in the Absence of Pd Catalyst for 5.23 (Table 5-4, entry 

2): 5.23 (75 mg, 0.25 mmol) was reacted according to the general procedure in the 

absence of Pd(PPh3)4.  No product was observed by 1H NMR analysis of the crude 

reaction mixture. 

 

 

Control Experiment in the Absence of Pd Catalyst for 5.25 (Table 5-4, entry 

3): 5.25 (71 mg, 0.25 mmol) was reacted according to the general procedure in the 

absence of Pd(PPh3)4.  No product was observed by 1H NMR analysis of the crude 

reaction mixture. 

 

 

Control Experiment in the Absence of Pd Catalyst for 5.27 (Scheme 5-11): 

5.27 (80 mg, 0.25 mmol) was reacted according to the general procedure in the absence 

2 equiv K3PO4
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of Pd(PPh3)4.  No product was observed by 1H NMR analysis of the crude reaction 

mixture. 
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Appendix A: Spectral Data for Chapter 2 
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Appendix B: Spectral Data for Chapter 3 
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Appendix C: Spectral Data for Chapter 4 
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Appendix D: GC & HPLC Trace Data for Chapter 4 
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Appendix E: Spectral Data for Chapter 5
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