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ABSTRACT 

Na Zhang 

ATOMIC FORCE MICROSCOPY STUDIES OF EUKARYOTIC CLAMP-CLAMP    
LOADER COMPLEX AND MISMATCH REPAIR INITIATION COMPLEX 

(Under the direction of Dr. Dorothy A. Erie
 

) 

            As an advanced single molecule technique, atomic force microscopy (AFM) is a 

powerful and versatile tool for high resolution surface imaging and probing physical 

properties of soft, nonconductive bio-materials in vitro. Imaging of protein-protein and 

protein-DNA complexes provides structural and conformational information about the 

interactions of these biomolecular assemblies. In this study, we have used AFM to 

examine two different protein complexes: the eukaryotic RFC complex function in 

loading PCNA clamp onto different DNA substrate and eukaryotic MutS homologs 

function in the initiation of DNA mismatch repair (MMR). 

          In the study of clamp loader RFC complex, we investigated the effect of nucleotide 

cofactors on the oligomerization states of RFC interacting with PCNA and DNA 

substrate.  We observed that ATP binding induces a conformational change of RFC and 

that ATP hydrolysis causes RFC dissociation into small subcomplexes. However, PCNA 

inhibits the ATP-induced disassembly of RFC. Intriguingly, we found in the presence of 

ATP, some of the RFC subunits are ejected from DNA substrate, leaving RFC 
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subcomplex bound to the DNA, and it appears that these subcomplexes form stable 

interaction with PCNA on the DNA. We proposed that this DNA-bound RFC 

subcomplex tethers PCNA ring at the single strand/double strand junction of primer-

template DNA or nick DNA. We further suggest that dissociation of RFC subcomplex 

from PCNA and DNA substrate is promoted by downstream PCNA-interacting proteins, 

such as DNA polymerase. In addition to these insights into the complicated potential 

loading mechanism of PCNA, we observed other RFC-DNA complexes such as RFC-

DNA filaments with nicked DNA without nucleotide cofactor and RFC-DNA spider-like 

complexes containing multiple RFCs and DNAs in the presence of ATP. Although we do 

not know the physiological role, if any, of such RFC-DNA complexes, these complexes 

suggest RFC can possess other functions besides as clamp loader, such as helicase. 

         In the study of MMR initiation complexes, eukaryotic MutS homologs (MutSα and 

MutSβ), we found, unlike their prokaryotic homologs, eukaryiotic MutS homologs bind 

different DNA substrates with similar conformation. MutSα and MutSβ both exhibits 

weak binding specificity to their specific DNA substrates, which makes it more 

complicated to analyze their specific complexes. However, it appears that eukaryotic 

MutS homologs do not recognize mismatched bases simply depending on the formation 

of unbent complexes as seen in the prokaryotic MutS.  It is possible they employ other 

high class mechanism in which the event of recognition of different mismatched DNA 

substrates happens downstream of mismatch binding. 
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CHAPTER ONE: INTRODUCTION OF DNA MISMATCH REPAIR AND 

CLAMP-CLAMP LOADER COMPLEX 

        Mismatched nucleotides arise from polymerase misincorporation errors, 

recombination between heteroallelic parental DNAs, and chemical or physical DNA 

damage. Mismatch repair (MMR) corrects DNA biosynthetic errors, increasing 

replication fidelity ~1000 fold,  ensures the fidelity of  recombination, and participates in 

the earliest steps of checkpoint, and apoptotic responses to several classes of DNA 

damage (Iyer, Pluciennik, et al, 2006; Kunkel, and Erie, 2005; Li, 2008; Modrich, 2006). 

Inactivation of MMR in humans is associated with hereditary nonpolyposis colon cancer 

and 15-25% sporadic tumors that occur in a number of tissues (Peltomaki, 2003; 

Peltomaki, 2005).  

1.1 Introduction of DNA mismatch repair (MMR)   

 The E.coli methyl-directed Mismatch Repair Reaction 

        E. coli MMR is initiated when MutS recognizes base-base mismatches and small 

nucleotide insertion/deletion (IDL) mispairs in DNA (Figure 1.1). MutL interacts 

physically with MutS, enhances mismatch recognition, and activates MutH to nick the 

daughter strand. Because MutL stimulates the loading and processivity of helicase II (or 

UvrD) at the MMR initiation site, MutL may play a role as a molecular matchmaker that 



- 2 - 

 

facilitates the assembly of a functional MMR complex (Dao, and Modrich, 1998; Guarne, 

Ramon-Maiques, et al, 2004). Both MutS and MutL function as homodimers and possess 

ATPase activity (Ban, and Yang, 1998a). In E. coli, DNA is methylated at the N6 

position of adenine in dGATC sequences. In replicating DNA, the daughter stand is 

transiently unmethlylated, and it is the presence of hemimenthylated dGATC sequence 

that molecularly distinguishes the newly synthesized daughter strand from the parental 

DNA strand. In MMR, MutH recognizes hemimethlyated dGATC sequences and 

functions as monomer. Upon its activation by MutS and MutL in the presence of ATP 

and a mismatch, MutH specially incises the unmethlyated daughter strand of hemi-

methlyated dGATC, and the strand specific nick is a starting point for mismatch-

provoked excision (Ban, and Yang, 1998b; Lee, Chang, et al, 2005; Ramilo, Gu, et al, 

2002). In the presence of MutL, helicase II (UvrD) loads at the nick and unwinds the 

duplex from the nick towards the mismatch, generating single-strand DNA. The parent 

strand is rapidly bound by single-stranded DNA-binding protein (SSB) and protected 

from nuclease attack (Dao, and Modrich, 1998; Ramilo, Gu, et al, 2002). Depending on 

the position of the strand break relative to the mismatch, ExoI or ExoX(3’-5’ 

exonuclease), or ExoVII or RecJ (5’-3’ exonuclease) excises the nicked strand from the 

nicked site (the dGATC site ) up to and slightly past the mismatch. The resulting single 

gap undergoes DNA resynethsis and ligation by DNA polymerase III holoenzyme, SSB 

and DNA ligase (Modrich, and Lahue, 1996). 

Proteins Homolog in Eukaryotic Mismatch Repair 
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         Several eukaryotic MMR proteins have been identified based on their homology to 

E.coli MMR proteins. These include eukaryotic homologs MutS, MutL, EXOI, single 

strand DNA-binding protein RPA, proliferation cellular nuclear antigen (PCNA), DNA 

polymerase δ or ε and DNA ligase I (Table 1.1).  

-MutS homologs- 

         Eukaryotic cells possess two MutS homologs that function as heterodimers and 

share Msh2 as common subunit: MutSα (Msh2·Msh6 heterodimer) and MutSβ 

(Msh2·Msh3 heterodimer). MutSα, which represents 80-90% of the cellular Msh2, 

preferentially recognizes base-base mismatches and insertion/ deletion (IDL) mispairs in 

which one strand contains 1 or 2 unpaired nucleotides, but it is also capable of 

recognizing of large IDL heterologies with reduced affinity (Drummond, Li, et al, 1995; 

Genschel, Littman, et al, 1998; Palombo, Gallinari, et al, 1995; Palombo, Iaccarino, et al, 

1996). MutSβ recognizes IDL mismatches of 2-to ~10 nucleotides, weakly recognizes 

single-nucleotide IDL mispairs, and is essentially inert on base-base mismatches 

(Genschel, Littman, et al, 1998; Palombo, Gallinari, et al, 1995). 

-MutL homologs- 

          Three eukaryotic MutL homologs have been identified and like eukaryotic MutS 

homologs, they function as heterodimeric complexes with MLH1 as a common subunit. 

MutLα, a heterodimer of MLH1 and PMS2 (PMS1 in yeast), is the primary MutL 

homolog, acting in human mitotic cells and supports repair initiated by either MutSα or 
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MutSβ (Li, and Modrich, 1995). In a reconstituted human MMR system, human MutLα 

regulates termination of mismatch-provoked excision (Zhang, Yuan, et al, 2005). Recent 

studies show that MutLα possesses a PCNA/RFC-dependent endonuclease activity that 

plays a critical role in 3’ nick –directed MMR involving EXO1 (Kadyrov, Dzantiev, et al, 

2006). Although MutLα accounts for ~90% of the MLH1 in human cells, two low 

abundance complexes involving MLH1 have also been identified. Human heterodimer 

MLH1·PMS1 (MutLβ) has been isolated, but its molecular activity have not been 

ascertained (Raschle, Marra, et al, 1999). MLH1 heterodimerizes with MLH3 to form 

MutLγ, and the MutLγ complex has been reported to support modest levels of base-base 

and single nucleotide IDL mismatch repair in vitro, events that are presumably initiated 

by MutS homologs in vitro (Cannavo, Marra, et al, 2005). 

-PCNA and RFC- 

      PCNA plays multiple roles in MMR. PCNA interacts with Msh2 and MLH1 and is 

thought to play roles in the initiation steps of MMR (Clark, Valle, et al, 2000; Gu, Hong, 

et al, 1998; Umar, Buermeyer, et al, 1996). PCNA also interacts with Msh2·Msh3 and 

Msh2·Msh6 via a conserved PCNA interation motifs in Msh3 and Msh6, termed the PIP 

box (Clark, Valle, et al, 2000; Warbrick, 2000). PCNA increases the mismatch –binding 

specificity of Msh2-Msh6, and it can assist in delivering of Msh2-Msh6 to mismatched 

DNA (Flores-Rozas, Clark, and Kolodner, 2000; Lau, and Kolodner, 2003). PCNA and 

polymerase δ also have been implicated in repair DNA resynthesis, as PCNA confers 

processivity on DNA polymerase δ (Genschel, and Modrich, 2003; Gu, Hong, et al, 1998; 
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Umar, Buermeyer, et al, 1996). PCNA is also required for mismatch-provoked excision. 

The most compelling evidence for PCNA involvement in the excision step of MMR has 

been provided by p21 inhibition study. p21 forms a stable complex with DNA-bound 

PCNA so that p21 interferes with downstream PCNA-dependent events after PCNA 

loading  in MMR. p21 is found to abolish 3’-directed mismatch-provoked excision in 

Hela cell extracts, however only 40-50% of 5’-directed excision events are subjected to 

p21 inhibition, implying occurrence of at least two hydrolytic modes of  5’-derected 

excision (Genschel, and Modrich, 2003; Guo, Presnell, et al, 2004; Umar, Buermeyer, et 

al, 1996). 

         RFC provides at least two functions in the reconstituted bidirectional excision 

system:  loading of PCNA onto helix and suppression of the 5’ to 3’ hydrolysis from a 3’ 

strand nick. In vital, the amino terminal ligase homology domain of the large RFC 

subunit, which is not required for PCNA loading on the helix, is important for 

suppression of 5’ to 3’ hydrolysis from a 3’-strand break but is not required for activation 

of 3’ directed excision. Domain II of the large RFC subunit (Figure 1.6, a), which 

functions in PCNA loading, is not necessary for suppression of 5’ to 3’ hydrolysis from 

the 3’-nick but it is required for activation of 3’-directed excision. There results suggest a 

mechanism in which face of PCNA would be oriented toward the mismatch in 3’ and 

5’heteroduplexes and the interaction of PCNA with ExoI will determine the direction of 

excision (Dzantiev, Constantin, et al, 2004). 

-ExoI- 
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       ExoI is a 5’-3’ exonuclease, and is involved in both 5’ and 3’ directed MMR. ExoI 

can readily carry out 5’ directed mismatch excision in the presence of MutSα or MutSβ 

and RPA (Genschel, and Modrich, 2003; Zhang, Yuan, et al, 2005); however, its role in 

catalyzing 3’ nick-directed excision requires the MutLα endonulcease activity, which is 

activated by PCNA and RFC. After recognition of the 3’ nick and the MutS- mismatch 

complex, MutLα endonuclease makes incisions 5’ and 3’ to the mismatch in a manner 

dependent on PCNA and RFC. Exo I performs 5’ to 3’ excision from the MutLα incision 

site through and beyond the site of the mismatch (Dzantiev, Constantin, et al, 2004; 

Kadyrov, Dzantiev, et al, 2006). 

-RPA- 

       RPA seems to be involved in all stages of MMR. It appears to bind to nicked 

heteroduplex DNA before MutSα and MutLα and stimulates mismatched-provoked 

excision. In addition, it protects the ssDNA gapped region generated during excision and 

facilitates DNA resynthesis (Dzantiev, Constantin, et al, 2004; Ramilo, Gu, et al, 2002; 

Zhang, Yuan, et al, 2005). Furthermore, RPA is phosphorylated after polyrmerase δ is 

recruited to the gapped DNA substrate. Recent studies indicate that (i) phosphorylation 

reduces the affinity of RPA to the DNA, (ii) Unphosphorylated RPA stimulates 

mismatch-provoked DNA excision more efficiently than phosphorylated RPA, and (iii) 

phosphorylated RPA facilitates MMR-associated DNA resynthesis more efficiently than 

unphosphorylated RPA. These results are consistent with the idea that a high affinity 

RPA-DNA complex might be required to protect nascent ssDNA and to displace DNA 
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bound MutSα/MutLα, while a lower affinity RPA-DNA complex might facilitate DNA 

resynthesis by Pol δ (Guo, Zhang, et al, 2006). 

-Polymerase δ and ε- 

        The editing exonuclease functions of DNA polymerase δ and ε have been postulated 

to provide hydrolytic functions in mismatch repair (Tran, Gordenin, and Resnick, 1999; 

Wang, and Hays, 2002), however this suggestion has been questioned (Datta, Schmeits, 

et al, 2000). The evidence for polymerase δ being involved in MMR resynthesis comes 

from the depleted in DNA polymerase extracts system that sustains mismatch-provoked 

excision but fails to support complete repair reaction is restored repair with highly 

purified fraction of polymerase δ devoid of datable pol α and pol ε. Thus polymerase δ is 

required for eukaryotic mismatch correction, but supporting roles for polymerase α and ε 

have not been ruled out (Longley, Pierce, and Modrich, 1997). 

-HMGB1- 

         HMGB1, a non-histone chromatin protein, binds to certain type of DNA damage, 

Interacts with MutSα and may play an important role in early steps of the reaction prior 

to excision (Zhang, Yuan, et al, 2005). 

 Reconstituted Eukaryotic Mismatch Excision/Repair System 

          Several systems have been reconstituted to support mismatch-provoked excision by 

purified human proteins (Figure, 1.2). The simplest one is comprised of only four 

proteins, MutSα, MutLα, ExoI and RPA, which supports mismatch-dependent 5’ to 3’ 
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hydrolysis from a 5’ strand break. MutSα activates ExoI hydrolysis on a 5’-heteroduplex 

in a mismatch- and ATP- dependent manner. In the absence of RPA, MutSα renders the 

ExoI highly processive, resulting removal of  ~2000 nucleotides prior to dissociation, an 

effect attributed to formation of a MuSα·ExoI complex. However, RPA modulates the 

behavior of this complex, reducing the processivity of ExoI to ~250 nucleotides. A single 

strand gap coated with RPA is an extremely poor substrate for ExoI, but MutSα promotes 

ExoI initiation at such sites provided that the DNA contains a mismatched base pair. It 

has been suggested that hydrolysis is dramatically attenuated upon mismatch removal 

because of the absence of MutSα. MutLα also plays an important role of acting   with 

MutSα to suppress ExoI hydrolysis on DNA that lacks a mispair (Genschel, and Modrich, 

2003; Zhang, Yuan, et al, 2005).  

            This four protein system also supports mismatch-provoked excision on 3’-

heteroduplex. However, the hydrolysis precedes 5’ to 3’ from 3’ strand break, which is 

the wrong polarity for mismatch removal. Adding PCNA and RFC to the reaction yields 

a system that supports mismatch removal from both 5’ and 3’ heteroduplex.  The 

nonspecific 5’to 3’ hydrolysis activity initiating at the 3’ nick is largely suppressed by 

RFC, and excision occurs with apparent 3’ to 5’ polarity resulting in mismatch removal 

(Dzantiev, Constantin, et al, 2004) . Furthermore, other research shows that MutSα, RFC, 

and PCNA activate a latent endonuclease activity in MutLα in an ATP and mismatch-

dependent manner. Incision by activated MutLα endonuclease occurs both 3’and 5’ to the 

mismatch on the nicked strand. In the case of 3’-heteroduplex which the  nick is on the 3’ 

side of mismatch, incision distal to the mismatch provides an initiation site for mismatch 
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removal by the 5’to 3’ action of MutSα·ExoI complex. The PCNA-dependent 

endonuleolyic system also incises 5’-heteroduplex strand (Kadyrov, Dzantiev, et al, 

2006).  This model posits that the nick serves as a strand signal but not as site for 

excision initiation, which actually occurs at strand break produced by mismatch-activated 

MutLα endonuclease. This result is consistent with the result found in Xenopus egg 

extracts, which demonstrated a significantly higher specific radioactivity in the vicinity of 

the mismatch relatively near the strand break, through analyzing the repair products 

incorporated with radiolabeled nucleotides (Varlet, Canard, et al, 1996).  

          The established systems to date are minimal systems. The fact the excision 

products in purified systems are more disperse than those observed in nuclear extracts 

indicates the probable existence of other excision activities that may function in a 

redundant manner with respect to ExoI (Genschel, Bazemore, and Modrich, 2002). 

Furthermore, the mismatch dependence of reconstituted 5’- directed excision is not as 

dramatic as that observed in nuclear extracts indicating that one or more specificity 

factors may be lacking (Dzantiev, Constantin, et al, 2004; Genschel, and Modrich, 2003) . 

 Coupling of Mismatch Recognition and Strand Discrimination 

       A major question of MMR is how the MMR proteins facilitate the communication 

between two physically distant DNA sites: the mismatch and the strand discrimination 

signal. The role of hemi-methylated dGATC sites as signal for strand discrimination is 

not conserved from E.coli MMR to eukaryotic MMR. However, because the hemi-

methlyated dGATC directs MutH-dependent nicking as a starting point for mismatch-
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provoked excision, human MMR is presumed to be nick directed in vital, it is generally 

agreed the strand discrimination signal is a strand specific nick in both prokaryotic and 

eukaryotic systems, but how the nick is generated in eukaryotes remains unknown. 

           Previous studies have proposed several alternative models for the mismatch and 

strand discrimination signal process, which can be classified into a “stationary” model, a 

“translocation” model and a “sliding clamp” model (Figure 1.5, a). The stationary model 

proposes that interaction among MMR proteins induces DNA bending or looping that 

brings these two distant sites together, while MutS remains bound at or near mismatch. In 

this model, the MutS ATPase activity acts in a proof-reading role to verify mismatch 

binding and authorize the downstream excision (Guarne, Ramon-Maiques, et al, 2004; 

Junop, Obmolova, et al, 2001). In the translocation model, ATP reduces the mismatch 

binding affinity of MutS or MSH heterodimer, and ATP hydrolysis drives bidirectional 

translocation of MutS proteins along the DNA helix. DNA is threaded through the protein 

complex until the latter reaches a strand discrimination signal in either orientation, 

resulting formation of a loop (Allen, Makhov, et al, 1997). In the “sliding clamp” model, 

MutS or MSH heterodimer binds to DNA in an ADP-bound state. The mismatch binding 

triggers a MutS or MSH herterodimer conformational change that allows an ADP to ATP 

exchanges. The ATP binding, not ATP hydrolysis signals downstream events, including 

formation of a ternary sliding clamp with MutL and sliding from mismatch to the nick 

(Fishel, 1998; Genschel, and Modrich, 2003; Jiang, Bai, et al, 2005; Mendillo, Mazur, 

and Kolodner, 2005). 
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Structure and Function of E.coli MutS and Human MutSα 

         The crystal structures of E. coli MutS with G-T, C-A, A-A, G-G and an unpaired T 

heteroduplex DNA, and Taq MutS with an unpaired T heteoduplex are strikingly similar 

(Lamers, Perrakis, et al, 2000; Natrajan, Lamers, et al, 2003; Obmolova, Ban, et al, 2000). 

MutS has domains (Figure 1.3). Domains I (mismatch binding domain) and VI (clamp) 

bind to DNA, and domain V (ATPase domain) contains the dimerization interface and 

nucleotide-binding site. The DNA and nucleotide binding sites are widely separated but 

connected by domain III (lever), which interacts directly with domain IV and indirectly 

with domain I via domain II (connecter).The homodimer of MutS forms a clamp-like 

structure similar to the Greek letter “Ɵ” with two large channels. The upper channel is 

large enough and has an electrostatic potential that could bind DNA, leading to the idea 

that it may function in DNA recombination or in the search for the strand discrimination 

signal; however, no evidence of DNA binding in the upper channel exists (Yang, Junop, 

et al, 2000). The heteroduplex DNA is kinked ~60° and bound to the lower channel of 

MutS dimer. In crystals without DNA, the DNA binding domains and part of the 

connecter domain are disordered. These results indicate that mismatched DNA binding 

induces large conformational changes both the DNA and in MutS. Although MutA is 

comprised two identical monomers, the heteroduplex bound dimer is structurally 

asymmetric with mismatch recognition contacts provided by only one subunit.  Two 

residues of Phe-X-Glu motif in the same subunit make mismatch base specific contacts. 

In both the E.coli and Taq structures, the unpaired or mispaired base is rotated into the 

minor groove by ~3Å and the phenylalanine of the Phe-X-Glu motif stacks with 
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mispaired base. The glutamic acid hydrogen bounds to the same base (to N7 if the base is 

a purine and to N3 if it is pyrimidine). Most contacts from two subunits are to the DNA 

backbone and are, therefore, DNA sequence nonspecific, as expected given the need to 

repair replication errors in a variety of different sequence contexts. 

            The crystal structure of human MutSα, with Msh6 lacking the first 340 amino 

acids, in complex with G: T mismatch DNA shares common domain architecture with 

prokaryotic MutS. Each protein can be divided into five domains, referred as mismatch 

binding domain, connector, levers, clamps and ATP binding domains (Figure 1.4). 

Msh2·Msh6 heterodimer forms an asymmetric oval disc, pierced by two channel, like the 

letter “Ɵ”. A DNA helix containing a single mispair is bent by ~45° and bound in the 

lower channel. Only Msh6 makes specific contacts with mispair through conserved Phe-

X-Glu motif. Furthermore, the N-terminus of Msh6 (residues 360-398) contains 

additional nonspecific contacts with the DNA backbone. By contrast, the DNA binding 

domain of Msh2 is rotated up and away from backbone and makes only one contact with 

the DNA, which is different from the prokaryotic homodimer. Interactions between Msh6 

and the DNA substrate bury 1142 Å2 (with domain I contributing 856 Å2), which is 

probably sufficient to bend the DNA without any contribution from Msh2. The upper 

channel is surrounded by disordered loops and is too small to contain a second DNA 

double strand as been proposed in prokaryotic analog (Warren, Pohlhaus, et al, 2007).    

           The ATPase domain (domain 5, Figure1.4, a) is the most highly conserved region 

of the MutS homologs. Domain 5 from E.coli and hMsh2 are 48% identical. As member 
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of ABC-transporter ATPase family, MutS homologs have two composite ATP sites, each 

consisting of a Walker A and Walker B motif from one monomer and ABC signature 

motif from alternative monomer. In addition, the C-termini of both ATPase domains form 

conserved helix-turn-helix motifs that interact with ATPase domain of the opposed 

protomer. This interaction stabilizes the ABC-ATPase dimer interface in the absence of 

ATP binding, and is required for dimerization of canonical ABC-transporter ATPase 

domains (Lamers, Perrakis, et al, 2000; Obmolova, Ban, et al, 2000; Warren, Pohlhaus, et 

al, 2007). The ATP binding sites are asymmetric as is the mismatch binding sites. In the 

absence of DNA, one site has a high affinity for ADP and the other has a high affinity for 

ATP (Antony, and Hingorani, 2004; Bjornson, and Modrich, 2003; Blackwell, Bjornson, 

et al, 2001). In eukaryotes, the Msh6 subunit contains a high-affinity ATP binding sites 

and Msh2 contains a high-affinity ADP binding site (Antony, and Hingorani, 2003; 

Blackwell, Martik, et al, 1998; Gradia, Acharya, and Fishel, 2000). Stable binding of 

ATP to Msh6 appears to cause a decreased affinity of Msh2 for ADP (Mazur, Mendillo, 

and Kolodner, 2006). Furthermore, the two classes of sites can be simultaneously 

occupied by ADP and an ATP analogue, suggesting that the ADP·MutS·ATP species 

may be highly populated in solution. However, the high concentrations of ATP or 

nonhydrolzable ATP analogs can apparent compete out the ADP, suggesting that a 

complex of MutS with two ATP molecules bound can form. ADP can also bind to both 

ATPase sites (Antony, and Hingorani, 2003; Antony, and Hingorani, 2004; Bjornson, and 

Modrich, 2003; Martik, Baitinger, and Modrich, 2004).  . 
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       Allosteric coupling between the ATPase sites and the DNA binding sites plays a 

central role in the MutS homologs mechanism. DNA substrate binding is known to 

modulate the ATPase activity: both hetero and homoduplex DNA stimulate ADP-ATP 

exchange, but only heteroduplex DNA appears to change the rate limiting step for 

turnover of ATP. In the presence of ATP alone or ATP and homoduplex DNA, there is 

burst of hydrolysis of one ATP equivalent per dimer; whereas, in the presence of 

mismatch, the burst of hydrolysis is suppressed (Acharya, Foster, et al, 2003; Antony, 

and Hingorani, 2003; Bjornson, Allen, and Modrich, 2000). Similarly, ATP binding 

modulates DNA substrate binding. ADP has little effect on the affinity of MutS proteins 

for mismatch DNA. However, ATP and ATP analogs decrease mismatched DNA-binding 

affinity, although substantial mismatch specificity is retained under conditions that 

support ATP hydrolysis (Blackwell, Martik, et al, 1998; Blackwell, Bjornson, et al, 2001; 

Gradia, Acharya, and Fishel, 1997; Hess, Gupta, and Kolodner, 2002; Joshi, Sen, and 

Rao, 2000; Martik, Baitinger, and Modrich, 2004). 

         Like other DNA repair enzymes, MutS homologs must locate a subtle base pair 

anomaly within a vast excess of nonsubstrate, correctly paired DNA.  Insights into repair 

specificity come from recent AFM studies that directly visualize a MutS bound to 

mismatched and to homoduplex DNA (Wang, Yang, et al, 2003). MutS- homoduplex 

complexes are bent at homoduplex site, but MutS –heteroduplex complexes are bimodal 

with a significant fraction of the complexes unbent. These results indicate the unbent 

state is the result of unique interactions between the mismatch base and MutS, and 

suggest that the bent conformation may be an intermediate in the formation of the unbent 
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state. These data led to the proposal that MutS binds to DNA nonspecifically and bends 

in search of mismatch (Figure 1.5, b), and upon specific recognition of a mismatch, MutS 

undergoes a conformational change to an initial recognition complex (IRC) in which the 

DNA is kinked, with interactions similar to those in the crystal structures. MutS then 

undergoes further conformational changes to the ultimate recognition complex (URC) in 

which the DNA is unbent with the mismatched base possibly being flipped out.  

       Similar AFM studies have not been conducted on the eukaryotic homologs. 

Strikingly, the crystal structure of human MutSα reveals that it recognizes different DNA 

substrates in a similar manner (Warren, Pohlhaus, et al, 2007) . MutSα recognizes the 

G·T mispair or a single base T insertion /deletion loop in the DNA MMR ,  as well as an 

O6-methyl guanine·T mispair in a similar manner although mismatch initiates repair and 

O6-methyl initiates apoptosis. MutSα also recognizes a G·dU mispair, a putative 

immediate in somatic hypermutation. All the crystal structures of MutSα-DNA 

complexes are virtually identical. This result is surprising given the significant 

differences in DNA base paring, conformation, and thermal stability of these mismatches 

(Kramer, Kramer, and Fritz, 1984; Kramer, Kramer, et al, 1989). This observation led to 

the suggestion that diversity of MutSα dependent responses to DNA lesions is generated 

in events downstream of the lesion recognition step or they all crystallize in the same 

conformation. 

 1.2 Introduction of clamps and clamp loaders 
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          Chromosome replication requires a DNA polymerase that can rapidly duplicate 

thousands of nucleotides. In all cells, the replicative polymerase is tethered to DNA by a 

ring- shaped clamp that encircles DNA and slides freely along it. This interaction confers 

a high degree of processivity to the replicative polymerase. Ring-shaped sliding clamps 

are constructed from either two or three identical crescent-shaped protomers and their 

closed circular structure requires an active mechanism to open them for assembly onto 

DNA. This loading process is carried out by multiprotein machines known as clamp 

loaders, which crack open the ring and place it around the primed DNA in an ATP driven 

reaction. 

Brief introduction of AAA+ proteins family 

        The defining feature of AAA+ proteins is a structurally conserved ATP-binding 

module that oligomerizes into active arrays. ATP binding and hydrolysis events at the 

face of neighboring subunits drive conformational changes within the AAA+ assembly 

that direct translocation  or remodeling of target substrates (Erzberger, and Berger, 2006).  

AAA+ proteins are involved in a myriad of biological process, including ATP-dependent 

proteolysis, membrane fusion, protein trafficking, and DNA replication, recombination, 

and repair. 

         As a subfamily of additional strand conserved E family (ASCE), AAA+ proteins 

have conserved ASCE core nucleotide-binding pocket lying at the apex of three adjacent, 

parallel β-strands in a compact αβα-fold (Figure,1.8 a). The primary distinguishing 

feature of AAA+ proteins is a β-strand addition to the ASCE core, together with a small 
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helical bundle fused to the C terminus of the central αβα-fold. Several other features are 

characteristic of this family (Figure 1.8, b).  For example, the conserved argnine residues 

(argnine finger) of homology SHC or SRC motif interact with nucleotide-binding pocket 

of neighboring subunit. In addition, there are two other nucleotide-interaction motifs 

termed sensor I and sensor II elements. The sensor I motif, which resides at the top of 

strand β4, is typically an Asn, although other polar residues, such as Ser, Thr, or Asp are 

also found. This residue is believed to act in concert with the second acidic residue of the 

Walker-B motif to properly orient a water molecule for nucleophilic attack on the γ-

phosphate of ATP. Sensor II usually contains an arginine at the base of helix α7 that 

interacts with the γ-phosphate of ATP (Guenther, Onrust, et al, 1997). 

       Seven major clades of AAA+ proteins have been defined on the basis of sequence 

alignments and structural information (Figure 1.8,c). The differences between clades 

arise from the insertion of secondary structural elements at defined places within and 

around the core AAA+ fold (Iyer, Leipe, et al, 2004). 

      Clade 1 is represented by the clamp loader family. The pentameric complex 

recognizes the primer-template junctions and promots the opening and loading of the 

polymerase processivity clamp onto DNA. 

     Clade 2, the initiator clade, includes all cellular origin-processing proteins, as well as 

the bacterial, archaeal, and eukaryal helicase-loading proteins. This group is defined by 

the presence of an extra α-helix inserted between the second and third strands of the 

central β sheets.  DNA replication is initiated at distinct chromosal sites known as 
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replication origins.  The initiators are responsible for properly recognizing replication 

origins and for enabling the subsequent assembly of the replication machinery (Messer, 

2002).   Most of AAA+ initiators are monomeric in solution and assemble into 

oligomeric structures when bound to specific target DNA sequences at origins 

(Cunningham, and Berger, 2005). Remarkably, DnaA has been revealed to form a helical 

filament on DNA in presence of ATP. The filament arrangement places DNA-binding 

domains appended to the C-terminus of the AAA+ module on the outside of the filament. 

This orientation suggests that the interaction with origin DNA sequences may lead to the 

introduction of right-handed helical wrap to this region, destabilizing adjacent DNA 

elements as a prelude to origin melting and replisome assembly. In addition, the 

assembly at the boundaries of the filament, exposing an arginine finger at one end and a 

nucleotide-binding pocket at the other end, may serve as a docking sites for auxiliary 

replication factors that also contain AAA+ domains (Erzberger, Mott, and Berger, 2006). 

     Clade 3 is a group of proteins that form closed hexameric assemblies. These classic 

clade proteins are involved in processes such as protein degradation, microtubule serving, 

membrane fusion, and peroxisome biogensis. Classic AAA+ modules share a small 

helical insertion before helix α2 of the ASCE fold. The classic clade is unique for 

possessing two argnine residues instead of a single residue commonly see in other AAA+ 

proteins (Erzberger, and Berger, 2006). 

      Clades 4, 5, 6 and 7 share a characteristic β-hairpin insertion between helix 3 and 

strand 4. They are composed of Pre-sensor I insertion superclade.  The β-hairpin 
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insertion appears to link ATP turnover to DNA translocation. Clade5, composed of the 

HslU, ClpAB-CTD, LonAB, and RuvB families (HCLR clade), represents the central 

group of the  PS-I superclade. Clade 4 differs from clade 5 with an unusual bundle 

formed by elements N- and C- terminal to the ASCE core instead of AAA+ lid. Clade 6 

and Clade 7 contain an additional β-hairpin insertion that disrupts helix α2. 

      There is little correlation between AAA+ protein subtypes and a specific remodeling 

activity. Nevertheless, Clade 1 and Clade 2 are characterized by open-ring assemblies 

that differ significantly from other AAA+ proteins, most of which form closed hexameric 

rings. These kinds of assemblies appear to function on as a single turnover allosteric 

switches, rather than processive molecular machines. ATP binding appears to flip these 

proteins into an activated state by influencing the conformation of the AAA+ modules 

and enabling them to remodel respective proteins. 

E.coli and bacteriophage T4 clamp loader 

       In E. coli, the β- clamp is a ring-shaped homodimer that encircles the double-

stranded DNA and tethers polymerase (Pol III) to the template for high processivity 

(Kong, Onrust, et al, 1992; Stukenberg, Studwell-Vaughan, and O'Donnell, 1991). The 

clamp loader is required to open the closed ring of the β clamp and load it onto the 

template in an ATP-driven process.  

      In E. coli, the clamp loader is known as γ-complex, which comprises five subunits: δ, 

δ’ and three copies of γ. Two other subunits associtated with clamp loader χ and ψ, are 
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not required for clamp loading in vitro (Onrust, and O'Donnell, 1993). However, the ψ·χ 

complex provides the linkage between the clamp loader and single strand binding 

proteins (SSB), and this linkage increases the replication activity. The ψ protein binds 

tightly to the collar domain of the γ complex and the χ tucks onto the C-terminal tail 

segment of SSB, thus bridging the clamp loader and SSB (Glover, and McHenry, 1998; 

Kelman, Yuzhakov, et al, 1998; Olson, Dallmann, and McHenry, 1995; Simonetta, 

Kazmirski, et al, 2009; Witte, Urbanke, and Curth, 2003). 

         The crystal structure of the γ-complex revealed that the five subunits are arranged in 

a spiral (Figure 1.6, a), with δ and δ’ bracketing the three γ subunits. The C-terminal 

domain of each subunit mediates oligomerization into a spiral heteropentamer. The 

primer-template DNA is thought to get out of the gap between δ and δ’ subunit. The three 

γ subunits are the only subunits of the clamp loader that bind ATP, and therefore 

comprise the ‘motor’ that drives the clamp loading reaction. The δ subunit crackes open 

the β-dimer, even in the absence of γ and δ’, at one interface, and thus is termed the 

‘wrench’. The δ’ seems to be a rigid protein that lacks the flexible motions that occur in 

the δ and γ subunits. The rigidity allows δ’ to act as a stator or a backboard, directing 

ATP-induced conformational changes, propagating from γ1 through γ2, γ3 and finally 

through δ, pulling δ away from δ’ (Jeruzalmi, Yurieva, et al, 2001). 

        The γ complex belongs to AAA+ family of ATPases, although only the γ subunits 

have functional ATPase sites. The ATP-binding sites are at the interface of the pairs of 

subunits, resulting in three ATP sites within the γ complex at the δ’/γ1, γ1/γ2 and γ3.The 
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argnine finger extends toward to the ATP binding site in the adjacent subunit and senses 

ATP binding and hydrolysis. Crystal structures of the nucleotide free and  ATPγS bound 

states  revealed that only two of three ATP binding sites (γ1 and γ3) are occupied by 

ATPγS, with the γ2 subunit binding site being physically blocked by the γ1 subunit 

(Jeruzalmi, O'Donnell, and Kuriyan, 2001; Kazmirski, Podobnik, et al, 2004). The sites 

that bind ATP do so with equal affinity and there appears to be little or no cooperativity 

in ATP binding. The conformation of γ complex with two ATP-bound is likely to 

represent a stable, but inactive state of the clamp loader. Modeling the kinetics of ATP 

hydrolysis in the absence of the clamp suggest that the clamp loader binds and hydrolyzes 

three molecules of ATP (Williams, Snyder, et al, 2004).  

          On binding ATP, the γ complex undergoes conformational changes that increase 

the affinity of the clamp loader for the clamp and DNA (Turner, Hingorani, et al, 1999) 

(Hingorani, and O'Donnell, 1998; Naktinis, Onrust, et al, 1995; Turner, Hingorani, et al, 

1999) (Bertram, Bloom, et al, 1998; Hingorani, and O'Donnell, 1998).  Within the γ 

complex, δ is blocked from interaction with β by δ’. However, ATP binding introduces a 

conformational change in the γ complex, exposing δ for interaction with β and 

subsequent ring opening (Naktinis, Onrust, et al, 1995).The δ subunit opens the β clamp 

using the energy from protein-protein interactions and does not need ATP. The binding of 

δ subunit relaxes the spring tension of α helix at the interface with the β clamp (Figure 

1.6 b), thus disrupting the structure of dimer interface (Jeruzalmi, Yurieva, et al, 2001; 

Turner, Hingorani, et al, 1999). 
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         ATP binding is sufficient for the formation of a ternary clamp loader–clamp- DNA 

complex; nevertheless, ATP hydrolysis is required for releasing the clamp onto the DNA 

(Bertram, Bloom, et al, 1998; Bloom, 2006; Turner, Hingorani, et al, 1999). Template 

DNA triggers three ATP sites in γ complex to hydrolyze ATP at the same global stage of 

reaction, releasing the clamp on DNA (Bertram, Bloom, et al, 2000). Although the β 

clamp does not induce the γ complex to hydrolyze ATP in the absence of DNA, the β 

clamp does increase the overall rate of hydrolysis in the presence of DNA. In the absence 

of the β clamp, the γ complex hydrolyzes two molecules of ATP more rapidly than the 

third one. In the presence of the β clamp, all three molecules of ATP hydrolyze as the 

same rapid rate as the two molecules of ATP hydrolyzed in the absence of the β clamp 

(Williams, Snyder, et al, 2004).  The results from studies of mutation of arginine finger of 

the clamp loader suggest that ATP binding at one subset, γ2 and γ3, is largely responsible 

for increasing the affinity of the complex for DNA, and ATP binding at γ1 is largely 

responsible for increasing the affinity of complex for β clamp (Bloom, 2006; Snyder, 

Williams, et al, 2004). 

       The recently published crystal structure of E.coli γ complex with primer template 

DNA provides insight into clamp loader and DNA interactions (Figure 1.6, c). In the 

crystal structure, the AAA+ modules of the γ and δ’ subunits form a right-handed spiral 

around the double-stranded portion of the DNA with a uniform rise and rotation around a 

common helical axis (Figure 1.6, c). The symmetry in the quaternary arrangement of the 

ATPase domains of the γ complex results in the configuration of each interfacial ATP-

binding site being essentially the same.  It has been suggested that the symmetrical 
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formation of catalytically competent ATP-binding sites facilitates release the clamp 

loader upon recognition of primer-template DNA. The positive ends of the helix dipoles 

of helices α4 and α5 within each subunit are positioned close to negatively charged 

phosphate groups, and the tips of these two helices are bisected by the backbone of the 

template strand.  Domain I of the δ subunit is disengaged from DNA. Domain III of the δ 

subunit positions the side chain containing Tyr 316 so that it stacks on the nucleotide 

base at the 3’ end of the primer strand,  resulting in termination of the primer strand and a 

sharp bend in the template strand as it exits the clamp loader chamber. The collar 

domains encircle a tunnel that leads into the site within the central chamber where the last 

nucleotide of 3’ primer strand is bound. The blocking function of the Tyr 316 side chain 

is reminiscent of the role of an aromatic side chain in the UvrD helicase that serves as a 

“separation pin” by splitting the path of DNA (Lee, and Yang, 2006).  The single-

stranded 5’ overhang of the template strand exits the central chamber of the clamp loader 

and binds to the exterior surface of the domain III of δ subunit (Simonetta, Kazmirski, et 

al, 2009).      

          T4 bacteriophage encodes its own replication machinery, including a clamp (gp45 

trimer) and clamp loader (gp44/gp62 complex). The T4 clamp loader is composed of five 

subunits; four gp44 subunits and one gp62 subunit. The gp44 subnunit is an AAA+ 

protein and contains both SRC and P-loop motifs, which bind and hydrolyze ATP. The 

gp62 subunit shares no significant sequence homology with AAA+ proteins. The ATPase 

activity of a tetramer of gp44 subunits is not responsive to the addition of gp45 clamp in 

the absence of the gp62 subunit, whereas the clamp does stimulate the ATPase activity of 
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the complete gp44/62 loader complex. This result suggests that the gp62 subunit may be 

analogous to the δ subunit of E.coli and this serves as the wrench of the T4 clamp loader 

complex (Rush, Lin, et al, 1989). 

         The T4 gp44/gp62 clamp loader initially binds four ATPs with equal affinity 

(Young, Weitzel, and von Hippel, 1996). On binding gp45, two of four molecules are 

hydrolyzed to open the clamp wide enough so that it could be loaded on dsDNA. The 

remaining two molecules of ATP are hydrolyzed to close the clamp on the DNA. The 

clamp loader gp44/gp62 plays an additional chaperone-like role in the formation of the 

DNA polymerase holoenzyme. Gp44/gp62 mediates the interaction between the gp45-

DNA complex and gp43 (T4 bacteriophage DNA polymerase). The transient formation of 

a multiple proteins complex of gp45·gp44/gp62·DNA·gp43 is observed before release of 

gp44/gp62 (Sexton, Kaboord, et al, 1998; Trakselis, Berdis, and Benkovic, 2003). 

       Gp45 is partially open in solution with a separation distance of 42 Å at one subunit 

interface and 17 Å at the other two interfaces (Alley, Shier, et al, 1999). Moreover, the 

T4 clamp is much less stable than γ complex with a Kd of 250 nM for the dimer 

compared to a Kd of < 60 pM for the β clamp (Yao, Turner, et al, 1996).  It is intriguing 

that the partially open gp45 clamp requires the hydrolysis of ATP by the clamp loader for 

further opening to facilitate its loading onto DNA. Another study suggests activation of 

the clamp loading process requires only ATP binding, and that the hydrolysis of a single 

ATP was required only to release  the activated clamp from the clamp loader and 
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complete its loading onto the primer-template DNA (Pietroni, Young, et al, 2001; 

Pietroni, and von Hippel, 2008).  

       The result that gp44/gp62 forms relatively stable complex with DNA in the presence 

of ATP is remarkably contrasted to the results from E.coli γ complex and eukaryotic 

RFC , in which ATP binding and hydrolysis destabilizes the clamp loader-DNA complex. 

In addition, this gp44/gp62-DNA binary complex is active in loading gp45 onto DNA. 

These results suggest that gp44/gp62 binds the clamp after binding DNA, whereas, it’s 

generally believed that for E.coli and eukaryotic RFC that the clamp must bind the clamp 

loader before binding DNA. The binding of ATP to gp44/gp62 induces a conformational 

change in gp44/gp62 that configures the clamp loader for effective DNA binding. A 

gp44/gp62-DNA complex is formed with the hydrolysis of one equiv of ATP to interact 

with the opened form of gp45 on primer-template DNA and orient the clamp properly 

(Zhuang, Berdis, and Benkovic, 2006). 

 RFC Structure    

        RFC was shown to be essential for simian virus40 (SV40) DNA replication in vitro 

(Tsurimoto, Stillman, 1989). It is involved in polymerase switching from Polα to Pol δ 

during initiation of leading strand DNA replication at the SV40 origin and for the 

synthesis of Okazaki fragments during lagging strand DNA synthesis.  Clamp loaders 

have to rapidly recognize primed sites on template DNA and assemble clamps on them 

for efficient initiation.        
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         The eukaryotic clamp PCNA is a trimer of three identical subunits arranged head to 

tail to generate a ring with a large central cavity for encircling DNA (Gulbis, Kelman, et 

al, 1996; Krishna, Kong, et al, 1994). Both DNA polymerase and clamp loader bind to 

the C-terminal face of PCNA in a hydrophobic pocket between two domains (Figure 1.7 

f). Studies in the E. coli system have shown that clamp loader and DNA polymerases 

compete for binding the clamp, and therefore the clamp loader must eject from the clamp 

for DNA polymerase to use it (Naktinis, Turner, and O'Donnell, 1996). Likewise, polδ 

also competes for binding to PCNA in eukaryotes (Mossi, Jonsson, et al, 1997; Oku, 

Ikeda, et al, 1998).  Therefore after PCNA is linked to DNA, RFC is thought to eject 

from the clamp to allow the polymerase access to the clamp (Podust, Tiwari, et al, 1998).  

         Yeast RFC consists of a large subunit RFC A (RFC1) with a molecular mass of 95 

kDa and four smaller subunits RFC B (RFC4), RFC C (RFC3), RFC D (RFC 2), RFC E 

(RFC5)   of 36-40 kDa (Figure ,1.7 a). The five subunits each contain three domains 

(domains I-III), and the primary sequence of these domains is homologous among the 

five subunits; only the RFCA (RFC1) subunit has additional N- and C-terminal regions 

(Bowman, O'Donnell, and Kuriyan, 2004; Cullmann, Fien, et al, 1995). The C termini of 

all five RFC subunits consisting of domain III, pack together to form a stable cylindrical 

structure, referred to as the “collar” (Figure 1.7, d), and are required for RFC complex 

formation. The N –terminal AAA+ ATPase modules, composed of domains I and II, are 

assembled into a right-handed spiral in the order of RFC1-4-3-2-5 or RFC A-B-C-D-E 

(Bowman, O'Donnell, and Kuriyan, 2004; Yao, Coryell, et al, 2003).  Peptide sequence 

alignment of all RFC subunits from human RFC and yeast RFC, compared with their 
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prokaryotic functional homologs, gp44 from phage T4 and γ subunit from E. coli, shows 

an overall sequence similarity (Figure 1.7, c). Stillman’s group named the similar regions 

RFC box I-VIII, numbered from N-terminal to C-terminal. RFC box I is presented only in 

large RFC subunits and shows similarity to a region in prokaryotic DNA ligases and in 

procyclic acidic repetitive protein (PARPs) from eukaryotes. The RFC large subunit has 

DNA binding activity by itself and the DNA-binding activity was mapped to a region 

containing the ligase homology domain (Tsurimoto, and Stillman, 1991). In fact, the 

homology domain increases the nonspecific DNA binding activity of RFC and deletion of 

N-terminal domain containing box I increases RFC clamp loading `activity (Gomes, Gary, 

and Burgers, 2000; Uhlmann, Cai, et al, 1997). RFC box II, III, IV and VI are conserved 

as ATP/GTP binding regions. The most conserved region is the phosphate-binding loop 

(P-loop) within box III. The “arginine finger”, Ser-Arg-Cys (SRC) motif is conserved 

within small RFC subunits, but only Cys is present in the large RFC subunit (RFCA). 

RFC box V bears similarity to the DEAD-Box proteins, a family of putative RNA 

helicases which also have P-loops and are ATPases. In addition to these functionally 

related proteins, a search of the sequence databases revealed sequence similarity to a 

predicted protein sequence from CHL 12 gene of S.cerevisia. There is significant 

similarity between the CHL 12 gene product and the RFC subunits, ranging from 20 to 

25% amino acid identity and up to50% similarity. CHL 12 was isolated as a chromosome 

loss mutation and is identical to CTF 18. Mutants in CHL 12 are incapable of stable 

maintenance of circular and linear artificial chromosomes (Cullmann, Fien, et al, 1995). 
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         Resent crystal structure results revealed a stabled RFC complex (Figure 1.7, d) with 

a closed PCNA clamp in the presence of ATPγS (Bowman, O'Donnell, and Kuriyan, 

2004). Because ATP hydrolysis weakens the interaction between clamp and clamp loader, 

they replaced the arginine finger residues that are present in the highly conserved Ser-

Arg-Cys (SRC) motifs of four RFC subunits (RFC B, C, D, and E) with glutamine, which 

resulted in a significant reduction in ATPase activity.  In the structure of RFC: PCNA 

complex, the five AAA+ modules of RFC assemble into a right- handed spiral, leaving a 

gap between  RFC-A and RFC-E. This gap serves the purpose of allowing DNA to enter 

the central chamber in the clamp loader and thereby positions DNA into the open clamp, 

which is docked underneath the clamp loader. The right-handed spiral arrangement of the 

five AAA+ domains of RFC displays roughly the same pitch as that of double-stranded 

B-form DNA, which suggests a mechanism of DNA recognition. Only three of the RFC 

subunits (RFC-A, RFC-B and RFC-C) make contact with closed PCNA clamp. RFC-A 

and RFC-C interact with two of PCNA conserved hydrophobic grooves. RFC-B which is 

located between RFC-A and RFC-C, makes limited and primarily polar interactions with 

the intersubunit region of the clamp. All three RFC subunits interact with PCNA 

primarily through the C-terminal end of the clamp-interaction helix (α4).  

        The PCNA ring is closed in this crystal structure, yet ATPγS enables the RFC: 

PCNA complex to bind DNA and therefore presumably promotes PCNA opening. An 

EM structure of RFC-PCNA-primer DNA ternary complex revealed an open spiral form 

of the RFC: PCNA: ATPγS complex and it is likely all the subunits of RFC have contacts 

with PCNA (Miyata, Suzuki, et al, 2005). Molecular dynamics simulations suggest that 
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the PCNA ring could open out of plane and have a tendency to form a right handed spiral 

(Kazmirski, Zhao, et al, 2005).  A fluorescence resonance energy transfer study indicates 

that PCNA is held open by RFC in response to bound nucleotide (Figure 1.7d) (Zhuang, 

Yoder, et al, 2006). Therefore this closed conformation of PCNA may be due to the 

specific point mutation that prevents nucleotide hydrolysis during crystal growth.  

         In this crystal structure, only two of three PCNA hydrophobic pockets interact with 

RFC subunits. RFC-D and RFC-E are suspended above PCNA with RFC-E positioned 

above the third hydrophobic pocket of PCNA. However, a surface plasmon study 

demonstrated that RFC-E and RFC-D both interact with PCNA, and a PCNA unloading 

experiment suggests that the RFC-(D,E) subcomplex is primarily responsible for the 

PCNA-clamp-opening function of  RFC (Yao, Johnson, et al, 2006).  Therefore, the 

crystal structure of RFC: PCNA (closed): ATPγS is suspected to represent the 

intermediate conformation after RFC loads PCNA onto DNA. Ring closure is presumed 

to lead to loss of RFC affinity for PCNA and dissociation of RFC from the PCNA-DNA 

complex. 

ATP utilization by yeast RFC  

        RFC belongs to the AAA+ ATPase family. This family includes a wide variety of 

factors that couple ATP binding and hydrolysis to remodel protein and substrates 

(Erzberger, and Berger, 2006). The ATP sites of AAA+ multimers are located at subunit 

interfaces, and the adjacent subunit contributes a catalytic Arg residue which is part of 

Ser-Arg-Cys (SRC) motif to facilitate ATP hydrolysis (Figure 1.7 b). This argnine side 
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chain is referred to as an “arginine finger” by analogy to an arginine residue inserted at 

the active site of Ras protein by the GTPase-activating proteins.  Interactions between 

AAA+ modules of RFC subunits create four interfacial ATP sites that are competent for 

hydrolysis (Bowman, O'Donnell, and Kuriyan, 2004; Yao, Coryell, et al, 2003). The four 

ATP sites are referred to as ATP sites A-D, with site A at the RFC-A/B interface and site 

D at the RFC-D/E interface. The RFC-B arginine finger functions in ATP site A, and the 

arginine finger of RFC-C functions in ATP site B and so on. RFC-E (RFC5) also binds 

nucleotide, but the nucleotide-binding pocked of RFC-E is not competent for hydrolysis 

nor is it needed for RFC activity (Bowman, O'Donnell, and Kuriyan, 2004; Podust, 

Tiwari, et al, 1998).  

         The process of RFC loading PCNA is an ATP driven pathway. RFC can load and 

release PCNA onto a primer-template site at a rate of 1-2 s-1, which is compatible with the 

estimated rate of Okazaki fragment synthesis in vital (0.5-1 s-1). There are four key steps 

of clamp loading, which are manipulated by ATP binding and hydrolysis, PCNA and 

primer DNA template binding (Figure 1.7, e). 

I.  ATP binding induces activation of RFC such that it can bind PCNA with high 

affinity. RFC has five nucleotide binding sites and shows weak ATPase activity 

(0.024s-1). Full length RFC alone can bind three molecules of  ATPγS, and when 

PCNA or primer DNA or both  are present in the reaction, full length RFC can 

bind five molecules of  ATPγS. ATP binding initiates a slow conformational 
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change in RFC, enabling it to bind and open PCNA, and subsequently bind DNA 

(Chen, Levin, et al, 2009). 

II. PCNA opening locks RFC into an active state, and the resulting RFC: ATP: 

PCNA (open) intermediate is ready for DNA entry into the clamp (Chen, Levin, 

et al, 2009; Gomes, Schmidt, and Burgers, 2001; Zhuang, Yoder, et al, 2006).  

Activated RFC has high affinity for both PCNA and primer-template DNA. 

However, RFC forms a stable complex with primer-template DNA only in the 

presence of ATPγS.  Interaction with primer-template DNA leads to rapid ATP 

hydrolysis and disassembly of RFC from the DNA (~25s-1). However, RFC and 

PCNA can form a relatively stable complex which slowly disassembles (~1.7s-1).  

Inclusion of PCNA results in a faster rate of RFC activation (1.5s-1-4.6s-1), and 

PCNA stimulates RFC-DNA-dependent ATPase activity downstream of DNA 

binding (~11s-1 to ~53s-1).  The conformation of PCNA docked underneath RFC 

is predicted to open into a spiral conformation complementary to that adopted by 

the RFC subunits. Conversely, the open conformation of PCNA locks RFC in an 

activated state (Chen, Levin, et al, 2009; Kazmirski, Zhao, et al, 2005; Miyata, 

Suzuki, et al, 2005; Zhuang, Yoder, et al, 2006). 

III. The RFC: ATP: PCNA (open) complex binds specially to primer-template DNA.  

It is RFC, not PCNA that provides the grip and holds RFC: ATP: PCNA (open) 

complex to DNA. RFC has at least two types of DNA binding domains. The 

ligase homolog domain at N-terminal of RFC-A subunit is ATP independent and 
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confers RFC nonspecific DNA binding properties (Gomes, Gary, and Burgers, 

2000; Schmidt, Gomes, and Burgers, 2001; Uhlmann, Cai, et al, 1997). Deletion 

of the ligase homolog domain increases the clamp loading activity.  The DNA 

binding domain at the C-terminal site of RFC-A and other RFC subunits may 

function as coordinate units that require ATP for binding with DNA. The RFC A-

D subunits contain several conserved positively charged and polar side chains 

that are oriented toward the central chamber and may function to bind DNA 

(Bowman, O'Donnell, and Kuriyan, 2004; Yao, Johnson, et al, 2006). Mutation of 

conserved basic residues in RFC subunit B, C, D, or all three subunits together 

dramatically decreases affinity to DNA (Johnson, Yao, et al, 2006; Yao, Johnson, 

et al, 2006). In addition, mutation analysis in yeast RFC has shown that ATP 

binding to site C and D of RFC is essential for DNA binding and the argining 

finger of RFC-D is likely needed for the ATP in site C to promote the 

conformation change in RFC required for DNA binding. RFC with an argining 

finger mutation of RFC-D subunit loses the affinity to primer-template DNA 

(Johnson, Yao, et al, 2006; Schmidt, Gomes, and Burgers, 2001) 

IV. ATP hydrolysis triggered by recognition of a DNA primer-template junction 

results in the dissociation of RFC from the clamp and PCNA closure (Chen, 

Levin, et al, 2009; Gomes, and Burgers, 2001; Yao, Johnson, et al, 2006).  RFC 

alone shows a slow ATPase activity (~0.024s-1). PCNA has a small but 

reproducible effect, increasing the rate to ~0.046s-1. In contrast, primer template 

DNA triggers rapid ATP hydrolysis of RFC ~54s-1 in the presence of PCNA, and 
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~11s-1 in the absence of PCNA. RFC hydrolyzes three molecules of ATP in the 

presence of PCNA, and two molecules of ATP in the absence of PCNA. Studies 

of the argnine finger mutation suggest that DNA triggers ATP hydrolysis in site 

C which in turn, may drive hydrolysis in additional ATP sites. ATP hydrolysis in 

site D is specially triggered by PCNA, and it has been proposed that this site 

leads to closure of PCNA around DNA It is not clear how the clamp loader is 

released from DNA for another cycle of clamp loading. (Chen, Levin, et al, 2009; 

Johnson, Yao, et al, 2006; Schmidt, Gomes, and Burgers, 2001).  

Alternative clamp loaders 

         There are three additional clamp loaders or putative clamp loaders and one clamp 

identified in eukaryotic cells. These three clamp loaders consist of four RFC small 

subunits in common and one pathway-specific large subunit instead of RFC-A (Majka, 

and Burgers, 2004). 

       Rad24-RFC clamp loader functions in DNA damage check-point pathway, loading 

Rad17-Mec3-Ddc1 PCNA- like clamp onto DNA (Kondo, Matsumoto, and Sugimoto, 

1999; Majka, and Burgers, 2003). Ctf18-RFC clamp loader is involved in establishment 

of sister chromatid cohesion (Hanna, Kroll, et al, 2001; Mayer, Gygi, et al, 2001). Elg1-

RFC is essential for maintainance of chromosome stability. Yeast Elg1 mutants show 

elevated levels of recombination, chromosome loss and gross chromosome 

rearrangement (Bellaoui, Chang, et al, 2003; Kanellis, Agyei, and Durocher, 2003; Smith, 

Hwang, et al, 2004). Recently, Elg1-RFC has been found to be involved in sister 



- 34 - 

 

chromatin cohesion too. However, Elg1-RFC cohesion activity is distinctive from that of 

Ctf18-RFC (Maradeo, and Skibbens, 2009; Parnas, Zipin-Roitman, et al, 2009). 

       Although it is well established from genetic studies that Rad24, Ctf18, and Elg1 

RFC-like clamps function in separate pathways, there is also cross-talk between these 

pathways. All three RFC-like clamp loaders interact with PCNA. Ctf18-RFC can load 

and unload PCNA onto a primer-template DNA substrate (Bermudez, Maniwa, et al, 

2003). A physical interaction between Elg and PCNA suggest Elg1-RFC may also open 

and thus load PCNA onto DNA (Kanellis, Agyei, and Durocher, 2003). Although 

Rad24-RFC could not load PCNA, it could open PCNA and unload it from DNA (Yao, 

Johnson, et al, 2006). PCNA is crucially involved in establishment of sister chromatid 

cohesion in S phase (Moldovan, Pfander, and Jentsch, 2006). Sister chromatid cohesion 

is essential for the equal segregation of replicated chromosomes to the daughter cell. 

Appropriate cohesion involves identifying the products of chromosome replication as 

sisters, depositing cohesions onto each sister and then modifying those cohesions to form 

structural bridges that tether together sister chromatids until anaphase onset. Ctf7/ Eco1 

is an acetyltransferase that activates cohesion during S-phase and is essential for sister 

chromatid paring (Skibbens, Corson, et al, 1999). Ctf7/Eco1 is found associated with all 

four clamp loading complexes, RFC-A, Rad24, Ctf18 and Elg1 (Kenna, and Skibbens, 

2003; Maradeo, and Skibbens, 2009). In addition, RFCs often compensate for one 

another during DNA replication checkpoint activation and repair (Bermudez, Maniwa, et 

al, 2003; Naiki, Kondo, et al, 2001). It is likely that RFC and any other alternative clamp 

loader will similarly participate in cohesion. 
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Figure1.1 Mechanism of E.coli methyl-directed mismatch repair (reproduced from G. 

Li, Cell Research, 2008). E. coli mismatch repair is initiated when MutS specifically 

recognizes mismatched DNA. MutS interaction with MutL activates the latent 

endonulease activity of MutH in an ATP-dependent manner, which cleaves the newly 

synthesized daughter strand at hemimethlated GATC sites. The resulting nick, which can 

either 3’ or 5’ to the mismatch, is the entry point for MutL-dependent  loading of DNA 

helicase II and binding  of single-strand DNA binding protein. Depending on the location 

of the nick to the mismatch, the generated single strand is digested by a 3’ or 5’ 

exonuclease. The excision removes the error and allows highly accurate DNA 

polymerase III to correctly resynthesize the strand. DNA ligase seals the nick to complete 

MMR. 
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Table 1.1 Identity and function of E. coli and eukaryotic proteins involved in MMR 

 

 

 

 

E coli          Function         Homologs                         Function 

MutS Binds mismatch Msh2·Msh6 (MutSα) 
 
 
Msh2·Msh3 (MutSβ) 

Repairs single base-base and 1-2 base 
IDL mismatches 
 
Repairs mismatches of 2 to ~10 
nucleotides and  some small single 
IDLs 

MutL Matchmaker that 
coordinates multisteps 
in MMR 

MLH1·PMS2 
(yPms1) (MutLα) 
 
MLH1·MLH2 
(hPMS1) (MutLβ) 
 
MLH1·MLH3(MutLγ) 

Matchmaker, endonuclease, 
termination of mismatch-provoked 
excision 
 
Unknown function in MMR 
 
Supports modest levels of base-base 
and single IDL 

MutH Strand discrimination, 
endonuclease 

None  

UvrD DNA helicase None  
SSB Participates in 

excision and DNA 
synthesis 

RPA ssDNA binding/protection, stimulates 
mismatch excision, termination of 
DNA excision, promoting DNA 
synthesis 

β-clam May recruit MutS to 
mismatch/ replication 
foci, enhances 
processivity of pol III 

PCNA Recruits MMR proteins to mismatch, 
participates in excision, activation of 
MutLα endonuclease, DNA 
resynthesis 

γ-complex β-clamp loader RFC PCNA clamp loader, ,modulates 
excision polarity, activation of MutLα 
endonuclease 

ExoI or 
ExoX 
 
RecJ or 
ExoVII 

3’ to 5’ excision of 
ssDNA 
 
5’ to 3’ excision of 
ssDNA 

ExoI 5’ to 3’ excision of ssDNA 

DNA pol 
III 

DNA resynthesis DNA pol δ and pol ε DNA resynthesis 

DNA 
ligase 

Nick ligation DNA ligase  Nick ligation 
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Figure 1.2 Reconstituted eukaryotic mismatch-provoked excision systems 

(reproduced from P.Mordrich, JBC,2006). a. 5’-heteroduplex excision depending on 

MutSα, MutLα, RPA and ExoI. MutSα actives ExoI 5’ to3’ hydrolysis on 5’ 

heteroduplex and renders ExoI highly processive about  ~2000 nucleotides, an effect 

attributed formation of MutSα·ExoI complex. RPA reduces the high processivity of 

MutSα·ExoI complex to ~250 nucleotides. MutLα acts in concert with MuSα to suppress 

ExoI hydrolysis on DNA that lacks mismatch. MutSα also activates ExoI hydrolysis on 

3’-heteroduplex, but in this case hydrolysis proceeds in the wrong direction. b. 

Reconstituted bidirection eukaryotic mismatch-provoked excision system is comprised of 

MutSα, MutLα, RPA, ExoI, PCNA and RFC. In this case, PCNA and RFC activate 

MutLα latent endonuclease. MutLα incises 5’ or 3’- heteroduplex strand in an ATP-

dependent manner, generating a strand break as the entry site of MutSα activated ExoI, 

which removes the error by the 5’ to 3’ hydrolysis. In this model, the original nick serves 

as a strand discrimination signal, but not as site of excision initiation. 
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Fig 1.3 Crystal structure of E. coli MutS binding to G·T mismatch (reproduce from 

M. H. Lamers, et. al, Nature, 2000). a. Overview of MutS-DNA complex. The 

asymmetric unit contains a MutS dimer with G·T mismatched DNA running through the 

lower channel. DNA and ADP are colored red, the mismatch-binding monomer light 

green, and the second monomer blue. b. Mismatch-binding monomer colored by domain. 

The mismatch-binding domain is colored dark blue, the connector domain light blue, the 

core and levers from red to orange, the clamp domain orange, the ATPase domain green, 

and HTH (helix-turn-helix turn involved in dimer contacts) yellow. c. Mismatch specific 

binding motif, Phe-X-Glu. Phe 36 stakes with the mismatched thymine, which is rotated 

out into the minor groove by 3Å. Glu 38 forms hydrogen bond to the N3 of thymine 22 of 

the mismatch. d. Only one monomer has specific mismatch-binding contacts which are 

exclusive to its N-terminal mismatch-recognition domain. The equivalent domain in the 

second monomer has only loose DNA backbone contacts. The interaction between DNA 

and the mismatch binding domain expands the minor groove of DNA , kinking the DNA 

~60 ̊  at G·T mismatch. Mismatch is colored yellow. 
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Figure 1.4 Crystal structure of Mutα binding with G·T mispair complex (reproduced 

from J.J. Warren, et.al, Molecular Cell, 2007). a. Ribbon diagram of the structure of 

MutSα-DNA complex. Msh6 is colored blue, Msh2 red, DNA green ribbon, and ADP 

green sphere. Long α helices connecting clamp and ATPase domains in Msh2 and Msh6 

are colored orange and cyan respectively. The whole structure looks like the Greek letter 

“Ɵ”, pierced by two channels . The enlarged upper channel is shown below the structure . 

Disordered loops are shown as dashed lines with residue numbers . The DNA is bent 

by~45 ̊, and bound in the lower channel of MutSα heteroduplex.  b. Each protein can be 

divided into 5 domains, mismatch binding (blue), connector (yellow), levers (yellow), 

clamp (brown) and ABC-ATPase domain (red). c. Conserved mismatch specific binding 

motif, Phe-X-Glu motif. Glu434 of the conserved motif hydrogen bonds to the mispair 

thymine, which is sandwiched between Phe432 and Met459, and the backbone carbonyl 

of Val429 accepts a hydrogen bond from the mispaired guanine. d. Only the mismatch 

binding domain of Msh6 makes specific contacts with mismatch. The equivalent domain 

of Msh2 is rotated up away from DNA backbone and makes only one contact with DNA 

backbone. An additional ordered region at the N-terminal of Msh6 makes extended 

nonspecific binding with DNA. 
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Figure1.5. Models for signaling downstream MMR events following mismatch 

recognition and mismatch recognition mechanism of E. coli MutS. a. A schematic 

diagram for signaling between the mismatch and the strand discrimination signal is 

shown (reproduced from G. Li, Cell Research, 2008). Here, a 5' nick is the strand 

discrimination signal. Similar models apply for 3' nick-directed MMR. The "stationary" 

or "trans" model (right) emphasizes that MutS or its homologous (MSH) proteins remain 

bound at the mismatch. It is the protein-protein interactions that induce DNA bending or 

looping that brings the two distant sites together. The two DNA sites can cooperate in a 

"trans" configuration. In two "cis" or "moving" models, one called the "translocation" 

model (left) and the other called the "molecular switch" or "sliding clamp" model 

(middle), it is hypothesized that the MSH proteins bind to the mismatch and then move 

away from the site to search for the strand discrimination signal. The translocation model 

suggests that ATP hydrolysis drives bidirectional movement of the MSH proteins, 

resulting in the formation of an -like loop. In the molecular switch model (center), 

binding of an MSH protein (in its ADP-bound state) to the mismatch triggers an ADP to 

ATP exchange that promotes bidirectional sliding of the protein away from the mismatch, 

thereby emptying the mismatch site for another incoming MSH protein. Mismatch 

excision begins when an MSH protein reaches the strand break. b.MutS binds to DNA 

nonspecifically and bends it  in search of mismatch(A) . Upon specific recognition of a 

mismatch, MutS undergoes a conformational change to an initial recognition complex 

(IRC) in which the DNA is kinked (B). MutS then undergoes further conformational 
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changes to the ultimate recognition complex (URC) in which the DNA is unbent (D), 

signaling the initiation of mismatch repair (D) (reproduced from H. Wang, PNAS, 2003) 
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Figure 1.6 Crystal structure of E.coli γ-complex and schematic view of the 

mechanism of opening β-clamp. a. The individual subunits from thecrystal structure of 

γ-complex (reproduced from M.J. Davey, J. Kuriyan, M. O’Donnell, Nature Review, 

2002).The three domains (I, II and III) are indicated. The amino and carboxyl termini are 

marked (N and C respectively). The colour of each subunit corresponds to the colour of 

the subunit in the structure of γ-complex below. The crystal structure reveals that the five 

subunits are arranged in a circle, with δ and δ’ bracketing the three γ subunits. b. The β 

clamp is composed of two crescent-shaped promoters (reproduced from M.J. Davey, J. 

Kuriyan, M. O’Donnell, Nature Review, 2002)., each consisting of three domains (each 

domain is indicated by a different color). In the dimer form (left) the promoters must 

adopt a bent shape to form the dimeric interfaces of the clamp, therefore placing the 

promoters under spring tension. When one interface of the clamp is disrupted by the δ 

wrench, the promoters relax (right), resulting in an opening at one interface of the clamp 

for DNA strand passage. c. . The structure of clamp loader with primer-template DNA is 

shown (refer to K. R. Simonetta, J. Kuriyan, M. O’Donnell, Cell, 2009)., with the δ’ 

subunit removed to reveal a tunnel leading through the collar, indicated by red spheres. In 

the expanded view on the right, side chains presented by the collar domain of the δ 

subunit and that interact with DNA are shown. Two side chains that line the collar 

channel are also shown. The Tyr316 side chain stacks on the nucleotide base at the 3’ end 

of the primer strand, resulting the termination of the primer strand and a sharp bend in the 

template strand as it exits the clamp loader chamber. 
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Figure 1.7 Crystal structure of RFC clamp loader complex and schematic of the 

clamp loading process. a. A schematic view of RFC complex viewed from the PCNA 

interacting face. The five subunits of the RFC complex are referred to as RFC-A, RFC-B, 

RFC-C, RFC-D, and RFC-E, respectively (reproduced from G.D. Bowman, M. 

O’Donnell, J. Kuriyan, Nature, 2004). b. Left: schematic diagram depicting ATPase site 

C from the crystal structure. Right: Schematic of the arrangement of ATP sites in the 

AAA+ modules of RFC heteropentamer. Each ATPase site is at a subunit interface. The 

neighboring subunit contains an arginine finger in a conserved SRC motif that interacts 

with the γ phosphate of the ATP bound to the adjacent subunit (reproduced from A. 

Jonson, J. Kuriyan, M, O’Donnell, JBC, 2006). c. The small subunits align to the middle 

part of the large subunit of RFC complex. There are eight conserved RFC boxes 

numbered consecutively from N-terminus to C-terminus. BoxI is the DNA ligase 

homolog domain, and boxes II to VIII contain with them an ATP binding region (refer to 

G. Cullmann, B. Stillman, Molecular and Cellular Biology, 1995). d. A stereoview of 

RFC: PCNA complex. The N-terminal domain I and domain II form the AAA+ ATPase 

modules, assembling into a right-handed spiral.  The C-terminal of each subunit packs 

together to form stable, cylindrical structure, referred as the ‘collar’. Left is the complex 

of RFC-PCNA (close) (reproduced from G.D. Bowman, M. O’Donnell, J. Kuriyan, 

Nature, 2004); right is the model of RFC-PCNA (open) (Z. Zhaung, S. J. Benkovic, 

PNAS, 2006). e.   The clamp loader cycle. ATP binding with RFC introduces RFC 

activation. Upon binding with PCNA, the activated RFC induces the conformational 

change in PCNA that opens one subunit interface. The RFC: PCNA complex 
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subsequently binds to primer-template DNA, and the recognition of the double strand/ 

single strand junction stimulates ATP hydrolysis by clamp loader. This hydrolysis results 

in the dissociation of RFC from the clamp and DNA, leaving PCNA encircling DNA 

(reproduced from G.D. Bowman, M. O’Donnell, J. Kuriyan, Nature, 2004). f. A proposed 

structural representation of the polymerase competing with clamp loader at the same 

clamp face. A clamp-clamp loader-polymerase media complex may be formed during the 

process that polymerase takes place of clamp loader after it completes loading the clamp 

onto DNA. Clamp is colored green, clamp loader blue and orange, and polymerase purple. 

DNA is demonstrated as black helix (adapted from M. A. Trakselis, S.J. Bencovic, JMB, 

2003). 
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Figure 1.8 Schematic view of AAA+ ATPase family (Taken from J.P. Erzberger and 

J.M. Berger, Annu. Rev. Biophys. Biomol. Struct., 2006). a. Topology diagram of AAA+ 

ATPase. The core ASCE fold is colored green, additional β strands colored grey and C-

terminal helical bundle colored yellow. b.  Detail of the active site of ATP-DnaA 

showing the position of nucleotide-interacting motifs and ATP. The coloring reflects 

subunit contribution. c. Basic AAA+clades. The first three AAA+ clades show few 

structural changes relative to the basic ASCE fold.  The last four AAA+ clades are Pre-

sensor I insert superclade members share a common β- hairpin insertion but are also 

distinguished by additional clade-specific features. Basic AAA+ secondary structure 

elements (blue and yellow) as well as clade-specific structure feature (red) are depicted.  
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CHAPTER TWO: AFM STUDY OF EUKARYOTIC RFC LOADING PCNA 

PROCESS 

              Sliding clamp proteins increase DNA polymerase processivity from a few 

hundred nucleotides to several thousand nucleotides. However, the conserved closed 

circular structure of the sliding clamps requires that they must be loaded onto a DNA 

substrate by multi-protein complexes known as clamp loaders ()(Bloom, 2006; Davey, 

Jeruzalmi, et al, 2002; Stukenberg, Studwell-Vaughan, and O'Donnell, 1991).   

2.1 Introduction 

            Numerous studies of clamp loaders, including the γ-complex of E.coli bacteria, 

gp44/gp62 of T4 bacteriophage, and human and yeast RFC complexes have revealed 

detailed information about their structures and mechanisms of function.  Clamp loaders 

from different organisms share some common features. (I) The peptide sequence and 

crystal structures of clamps are highly conserved from prokaryotes to eukaryotes 

(Bowman, O'Donnell, and Kuriyan, 2004; Cullmann, Fien, et al, 1995; Guenther, Onrust, 

et al, 1997; Jeruzalmi, O'Donnell, and Kuriyan, 2001; Yao, Turner, et al, 1996). All 

clamp loaders are composed of five subunits: δ, δ’ and three copies of γ of γ-complex of 

E.coli, one gp62 and four copies of gp44 of gp44/gp62 of T4 clamp loader, and one large 

subunit(RFC-A) and four small subunits(RFC-B-C-D-E) of RFC. II. All three clamps are 
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AAA+ ATPases, with ATP binding sites lying between two subunits and an argnine 

finger sticking out from neighboring subunit to sense of ATP binding and stimulate ATP 

hydrolysis. III. Comparison the crystal structure of the γ-complex and RFC reveals that 

the N-terminals of all five subunits are arranged into a right-handed spiral and the C-

termini of the five subunits form the C-terminal cylinder, termed “collar”, which is 

essential for oligomerization of the five subunits (Figure 1.6, 1.7). There is a DNA exit 

channel between the δ and δ’ subunit of γ-complex and RFC-A and RFC-E subunit. IV. 

In regard to the clamp loading function of the clamp loaders, both the γ-complex and 

RFC recognize primer-template DNA and posit the DNA helix into the center of clamp. 

ATP binding is essential for binding PCNA and PCNA ring opening. ATP hydrolysis 

triggered by DNA substrate ejects RFC, leaving a PCNA-DNA complex after PCNA ring 

closing (Chen, Levin, et al, 2009; Gomes, and Burgers, 2001; Hingorani, and O'Donnell, 

1998; Naktinis, Onrust, et al, 1995; Turner, Hingorani, et al, 1999). The clamp loading 

mechanism of γ-complex of E.coli has been well studied (Jeruzalmi, Yurieva, et al, 2001; 

Stewart, Hingorani, et al, 2001; Turner, Hingorani, et al, 1999). Crystal structure studies 

have led to a “wrench-motor-stator” model to explain how the five subunits of the γ-

complex cooperate to open the β-clamp subunit interface. In this model, the δ subunit 

cracks open the β-dimer, even in the absence of γ and δ’, at one interface, and thus is 

termed the ‘wrench’. The three γ subunits are the only subunits of the clamp loader that 

bind ATP (Xiao, Naktinis, and O'Donnell, 1995), and therefore comprise the ‘motor’ that 

drives the clamp loading reaction. The relatively rigid protein δ’ acts as a backboard, 

directing ATP-induced conformational changes of the other γ-complex subunits, and is 
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therefore termed the “stator”. ATP binding induces a conformational change in the γ 

complex, exposing δ for interaction with β and subsequent ring opening (Naktinis, Onrust, 

et al, 1995; Turner, Hingorani, et al, 1999). The δ subunit relaxes the spring tension of an 

α-helix at the interface of β clamp, thus disrupting the structure of the dimer interface 

(Jeruzalmi, Yurieva, et al, 2001). In the recently revealed structure of  γ-complex with  

primer-template DNA (Simonetta, Kazmirski, et al, 2009), all  the AAA+ residues of the  

three copies of γ  subunit and δ’ subunit form a right-handed spiral around the double-

stranded portion of DNA , which is in a slightly distorted B-form conformation. Domain I 

of the δ subunit is disengaged from DNA. The collar domain of the δ subunit positions 

the side chain of Tyr 316 so that it stacks on the nucleotide base at the 3’ end of the 

primer strand. This stacking results in a sharp bend in the template strand as it exits the 

clamp loader channel. 

          Although the γ clamp loader complex of   E. coli has been well characterized, some 

features of clamp loading mechanism do not appear to be conserved from prokaryotes to 

eukaryotes system.  In E. coli, the prossessivity clamp is termed as ‘β clamp’, which is 

homodimer, however, both T4 bacteriaphage clamp gp45 and eukaryotic PCNA clamp 

are homotrimers. In addition, unlike PCNA, which appears to have a tight trimer subunit 

interface (Yao, Turner, et al, 1996), gp45 clamp is appears to have one subunit interface 

open in solution (Alley, Shier, et al, 1999). These differences between clamps in different 

species suggest that they may be loaded on DNA by different mechanisms. In fact, a few 

of studies have suggested that there are distinct mechanisms among these three species. 

In terms of the clamp loader structure, the γ-complex only has three active ATP-binding 
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sites, located at subunit interface δ’/γ1, γ1/γ2 and γ2/γ3, and two or three molecules of 

ATP can be bound (Jeruzalmi, O'Donnell, and Kuriyan, 2001; Kazmirski, Podobnik, et al, 

2004; Williams, Snyder, et al, 2004). In contrast, the gp44/gp62 clamp loader of T4 

bacteriaphage and eukaryotic RFCs have four active ATP binding sites and RFC can bind 

five molecules of ATP in the presence of clamp and DNA (Bowman, O'Donnell, and 

Kuriyan, 2004; Chen, Levin, et al, 2009; Gomes, Schmidt, and Burgers, 2001; Gomes, 

and Burgers, 2001; Pietroni, Young, et al, 2001; Pietroni, and von Hippel, 2008; 

Trakselis, Berdis, and Benkovic, 2003). The fifth ATP is bound to RFC –E subunit which 

does not have a fully intact ATP binding site (Bowman, O'Donnell, and Kuriyan, 2004; 

Cai, Yao, et al, 1998; Cai, Yao, et al, 1998). So far, the function of the fifth ATP is 

unknown. Regarding the ATP utilization, three molecules of ATP of γ-complex are 

hydrolyzed upon DNA binding.  The β-clamp alone does not stimulate ATP hydrolysis, 

but it enhances the hydrolysis rate stimulated by DNA (Bertram, Bloom, et al, 2000; 

Snyder, Williams, et al, 2004; Williams, Snyder, et al, 2004). Three different mechanisms 

for the role of ATP in clamp loading by the gp44/gp62 clamp loader uses have been 

proposed. All three mechanisms suggest different numbers of ATP bound and a different 

order of ATP hydrolysis stimulated by DNA and the gp45 clamp (Pietroni, Young, et al, 

2001; Pietroni, and von Hippel, 2008; Sexton, Kaboord, et al, 1998; Trakselis, Berdis, 

and Benkovic, 2003; Zhuang, Berdis, and Benkovic, 2006). Recent research on RFC 

revealed that two of five RFC-bound ATPs are hydrolyzed in the presence of DNA and 

three of five RFC-bound ATPs hydrolyzed in the presence of DNA and PCNA (Chen, 

Levin, et al, 2009; Schmidt, Gomes, and Burgers, 2001).  
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          In this study, we use single molecule technique AFM to investigate the details of 

the oligomerizaiton of yeast RFC, and how the oligomerization is affected by nucleotide 

cofactors, PCNA, and DNA. Based on the intriguing observation that ATP causes the  

dissociation of RFC into small subunits and RFC subcomplex appears to remain with 

PCNA and DNA after ATP hydrolysis triggered by DNA binding, we hypothesize a 

putative mechanism of RFC clamp loading pathway.  In addition, to better understand 

how RFC is involved into DNA mismatch repair pathway, we examine the binding 

properties of RFC to nicked DNA substrates.  Intriguingly, we find that RFC forms 

filaments with nicked dsDNA in the absence of nucleotide cofactors and that RFC may 

possess helicase-like activity. Our results raise the possibility that RFC plays roles in 

other biological pathways. 

Protein purification. Yeast RFC was a gift from Manju M. Hingorani Lab. PCNA was 

purified as described previously (Xue, Ratcliff, et al, 2002) . 

2.2 Materials and Methods 

DNA substrates for AFM study. To make pUC18Nick DNA substrate, the pUC18 plasmid 

is nicked by restriction enzyme Nt. BstNBI and purified by 1% agrose gel.1077Nick 

DNA is made from pUC18Nick DNA substrate by cutting it using restriction enzymes, 

AlwNI and XmnI to make 1077 bp nicked DNA fragment.1077Homo is created by 

cutting pUC18 plasmid using AlwNI and XmnI restriction enzymes and purified by 1% 

agrose gel.  
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AFM Imaging. Approximately 30nM RFC complex is incubated with ~5mM of different 

nucleotide cofactors for about 1 minute at room temperature in low salt  binding buffer A 

(20mM Tris·HCl, pH 7.8, 50mM NaCl, 5mM BME, 5mM MgCl2, 5% glycerol). The 

protein-DNA complex is formed by incubating ~5nM RFC (sometime with ~5nM PCNA 

trimer) with ~10nM DNA substrates in the absence or presence of ~5mM nucleotide 

cofactors for about 1 minute at room temperature in low salt binding buffer A or high salt 

binding buffer B (20mM Tris·HCl, pH 7.8, 100mM NaCl, 5mM BME, 5mM MaCl2, 5% 

glycerol) in a total volume ~20µL. The reaction is deposited on freshly cleaved mica 

(Spruce Pina Mica Company) and quickly washed by deionized distilled water, blotted 

with filter paper and then dried under stream of nitrogen. All the images are collected at a 

scan rate ~3Hz in air with a Nanoscope IIIa (Digital Instrument) microscope in tapping 

mode. PiontprobeR tapping mode silicon probes (Molecular Imaging Corporation) with 

spring constants of ~50 N/m and resonance frequencies ~170 KHz are used for all 

imaging. The image resolution is 512 × 512 pixels. 

The oligomerization state of RFC depends on nucleotides 

2.3 Results 

         To examine the effects of nucleotide cofactors on the oligomerization state of RFC, 

we imaged RFC in the presence and absence of ATP, ADP and ATPγS. AFM is a 

powerful method for examining the oligomerization state of proteins (Ratcliff, and Erie, 

2001; Xue, Ratcliff, et al, 2002; Yang, Wang, and Erie, 2003). It has been demonstrated 
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that the volume of proteins determined from AFM images depends linearly on molecular 

weight (AFM Volume =1.2MW-14.7).  

      Representative AFM images of RFC deposited in the presence of different nucleotide 

cofactors are shown in Figure 2.1. To quantitatively examine the oligomerization state of 

RFC, the volume of the proteins was determined as described previously (Ratcliff, and 

Erie, 2001; Xue, Ratcliff, et al, 2002; Yang, Wang, and Erie, 2003) and compared to the 

possible subcomplexes of RFC. RFC is composed of one large subunit with an 

approximate volume of 100 nm3 and four small subunits with volumes of ~40 nm3. The 

predicated volumes of RFC and several RFC subcomplexes are shown in table 2.1. 

       To examine the effect of nucleotide on the oligomeric state of RFC, we deposited 

RFC with different nucleotide cofactors.  Inspection of the histogram of the volume of 

RFC in the absence of nucleotide reveals two peaks at ~30nm3, ~250nm3. The peak at ~ 

250nm3 is consistent with RFC existing as an intact pentamer and the peak at ~30 nm3 the 

combination of the small subunits (Figure 2.2, a, Table 2.1).  The ratio of the number of 

proteins in the peak at 30nm3 to that at 250nm3 is 1:5, which indicates ~4% of RFC  is 

dissociated in the absence of nucleotide cofactor. 

         The volume distribution of RFC in the presence of ATPγ (Figure 2.2, c) is similar to 

that in the absence of nucleotides except that the second peak is shifted to higher volume 

(from ~250nm3 to ~330nm3). The peak ration is around 1:6, which indicated ~3% is 

dissociated in the presence of ATPγS.  It seems unlikely that RFC has gained more 

subunits; however, another source of the volume increase could be from a conformational 
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change of the RFC complex, because an AFM image is dialation between the tip and 

surface (Brar, Sacho, et al, 2008). Consequently, it is likely that this increase in volume is 

the result of a conformation change in RFC. To test this possibility, we measured the 

height of each RFC complex both in the absence and presence of ATPγS. This statistical 

analysis (Figure 2.3) shows that the peak of the height distribution in the presence of 

ATPγS relative to its absence is shifted to higher height by ~0.5nm. This large change in 

height of proteins strongly suggests that ATPγS induces a conformational change in RFC. 

A pre-steady kinetic study indicates that nucleotide binding induces a slow 

conformational change of RFC, which resulting a high binding affinity for PCNA. Here, 

we termed RFC in the presence of ATPγS as “active” RFC and RFC without nucleotide 

binding as “inactive” RFC. 

          ATP causes dramatic dissociation of the RFC complex, depicted peaks at ~30nm3 

and ~90 nm3 (Figure 2.2, b).The peak ~90nm3 is consisted of the large subunit of RFC 

and subcomplexes of two small subunits, such as RFC (D, E). The peak at ~30nm3 is 

consistent with the size of the RFC small subunits. The ratio of these two peaks is about 

2:1. In the situation where RFC dissociates into one large subunit and four small subunits, 

the peak ration is expected to be 4:1.  If there are two small subunits and one larger 

subcomplex, the peak ratio is expected to be1:1. The peak ratio of 2:1 suggests the peak 

at 90nm3 is the mixture of RFC large subunit and subcomplex formed by two small 

subunits. 
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         The volume histogram of RFC in the presence of ADP is broad with additional 

peaks appearing. The peaks at ~30nm3 and~260nm3 are consistent with the peaks shown 

in the absence of nucleotide. The shoulder peak on the peak ~260nm3 is Gaussian fit 

centered ~100 nm3, which seems like the recurrence peak as RFC with ATP. This result 

suggests that RFC is partially dissociated in the presence of ADP. 

        Four major volume peaks, 30nm3, 90nm3, 250nm3 and 330nm3 observed in this 

study represent five different conformations of RFC complex, small subunits, large 

subunit or subcomplex composed of two small subunits, inactive RFC and active RFC 

respectively. 

RFC-PCNA complex in the presence of ATP or ATPγS 

        We investigated how PCNA affects the oligomerization states of RFC by incubating 

RFC and PCNA together with ATP or ATPγS. Representative AFM images in presence 

of ATP or ATPγS are shown in Figure 2.4. Figure 2.5 shows the results of the volume 

analysis. In addition, we present the normalized sum of the volume distributions of 

PCNA and RFC with corresponding nucleotide cofactor.  This sum distribution (pink) 

represents the null state in which no binding events happen between RFC and PCNA. In 

the presence of ATP, a nascent peak appears ~400nm3, consistent with the size of a RFC–

PCNA complex. In addition, compared with null state, there is a reduction in the peak at 

the volume of PCNA ~90nm3, supporting the formation of RFC-PCNA complex. 

Intriguingly, a peak at ~240nm3 appears. This peak is consistent with the size of RFC, or 

could possibly represent a subcomplex of RFC with PCNA. In the presence of ATPγS, 
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instead of RFC-PCNA complex, we only find RFC subcomplexes with PCNA with a 

broad peak at ~120nm3 to ~180nm3, however we cannot discriminate which complexes 

the peak represents (Figure 2.5, b). It seems like ATPγS binding causes dissociation of 

the RFC-PCNA complex, although we cannot rule out the possibility that the dissociation 

happens during the deposition. Compared with the histogram of null state, only the large 

size of RFC~330nm3 (active RFC) are appears to bind with PCNA, because the peak 

consistent with inactive RFC (~250nm3) is maintained. This result suggests that only 

active RFC efficiently interacts with PCNA in the presence of ATP or ATPγS, but the 

interaction of RFC with PCNA in the presence of ATPγS appears to result in partial 

dissociation of RFC. 

RFC oligmerization induced by binding with primer-template DNA with ATPγS 

          During the DNA replication process, RFC specifically recognizes the DNA 3’ 

primer-template DNA junction and loads PCNA with N-terminal facing to 3’ end and the 

C-terminal tethers DNA polymerase to DNA substrate (Goedken, Kazmirski, et al, 2005; 

Hingorani, and Coman, 2002). In this study we inspect how primer-template affects the 

oligomerization states of RFC or RFC-PCNA complexes in the presence of ATPγS. We 

use a 40/65 ptDNA substrate with a 40 base pair primer strand and 65 base pair template 

strand, leaving a 25 base 5’ overhang (Figure 2.6). Representative AFM images of RFC-

ptDNA complexes are shown in Figure 2.6 a. Most particles show a single RFC binding 

complex, some of them having a DNA tail sticking out of the complex (Figure 2.6 a, left).  

A small percentage of the particles contains a double RFC binding complex (Figure 2.6 a, 
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right). Volume calculations reveal that most single particles are consistent with full 

length of RFC, volume ~ 330nm3, and most of doubly bound complexes contain one full 

length of RFC and a smaller size RFC subcomplex, volume ~200nm3. Quantitative 

volume analysis shows the volume distribution of RFC- 40/65 ptDNA in the presence of 

ATPγS complex is double Gaussian centered ~ 40nm3 and ~330nm3 (Figure 2.6, b), 

however, the volume distribution of RFC-PCNA-40/65 ptDNA ternay complex is double 

Gaussian centered ~40nm3 and ~200nm3 (Figure 2.6,d). The size of 330nm3 is consistent 

with the size of RFC with ATPγS. The size of 200nm3 is approximatly the size of the 

particles occurring in the reaction of RFC incubation with PCNA in the presence of 

ATPγS. Once again, it is most likely that the RFC-PCNA complex is not stable in the 

presence of ATPγS, independent of in presence or absence of DNA substrate.  The 

200nm3 particle is close to various RFC-PCNA subcomplexes, such as RFC-A-B-C, 

RFC-D-E·PCNA (Table 2.1).  Determination of the composition of the complexes, 

however, requires further investigation. 

RFC forms filaments with nicked dsDNA in the absence of nucleotide 

         Very little is known about the properties of RFC-nicked DNA complexes. To 

characterize the properties of RFC binding to nicked DNA, we imaged RFC with nicked 

and unnicked DNA in the presence and absence of nucleotide cofactors at low and high 

salt concentrations.  

         First, we used a 1077 bp DNA fragment with a single nick 477 bp from one end 

(Figure 2.3).  In the absence of nucleotide cofactor and at low salt concentration (50mM 
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NaCl, Figure 2.8 a), we see several different classes of complexes of RFC with DNA 

(Examples shown in Table 2.2). Approximate 45% of the DNA fragments have no RFC 

bound (free DNA) and ~40% are fully coated with RFC. The average length of DNA 

covered by RFC is similar to that of free nicked dsDNA, indicating DNA maintains its 

natural conformation and it is not wrapped around RFC. In addition to fully coated DNA, 

we also see partially coated and more interestingly, partially and fully coated DNA 

branched structures (Table 2.1), where a RFC-coated side branch sticks out from the 

main DNA backbone and looks like letter “Y”. RFC appears to have promoted the 

unwinding of a short segment of the DNA at the nick. In addition, we found some fully 

coated RFC-DNA tracks, which are significantly shorter than full length DNA. We 

speculate that these complexes may be RFC–coated single-stranded DNA, because we 

know RFC can bind to single-stranded DNA (Hingorani, and Coman, 2002). Consistent 

with the idea that RFC binding can promote the melting of double stranded DNA 

containing a nick, we also observe two (or a few) RFCs bound with the DNA partially 

melted at the nick and similar to the double complexes seen with primer template DNA 

(Figure 2.6, a), one RFC bound at ss-ds junction and the other RFC bound to the single 

strand of DNA (Figure 2.8 d, Table 2.1). It seems like RFC is peeling the single strand 

DNA from the dsDNA.  Statistical analysis shows except for 50% of DNA without RFC 

binding, fully coated RFC-DNA track contributes 38.8% of all RFC-DNA complexes. 

These results may explain the observation by others that the addition of RFC to primer 

templates DNA results in aggregation (Chen, Levin, et al, 2009). DNA with few particle 

binding is RFC binds to DNA, rather than DNA track and RFC peeing DNA complex. 
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      To examine the dependency of the formation of the complexes, especially the 

filaments, on salt concentration, we used a high salt concentration buffer (100mM NaCl, 

Figure 2.8, b).  Similar classes of RFC-DNA complexes are found. However, there is a 

sharp drop in the number of fully coated DNA fragments and an increase in DNAs with a 

few particles bound. There is also a small increase in the percentage of free DNA. These 

results suggest that high salt concentration interrupts the RFC-RFC interaction between 

RFC. 

        To assess the role of the nick in the formation of these different complexes, we also 

imaged RFC with unnicked DNA, 1077Unnick, which has the same length and sequence 

as 1077Nick except there is no nick (Figure 2.4, c). We see very few RFCs binding to 

unnicked DNA, which suggests that the filament formation is initiated at the nick. 

RFC-DNA complexes formed in presence of ATP or ADP 

        We added ATP into the RFC- nicked DNA solution to examine how the nucleotide 

affects the RFC- DNA complex. Because we observed filament formation in the absence 

of ATP, we added all components in the order of RFC, ATP, and the DNA. In the 

presence of ATP, we see primarily very large RFC-DNA complexes (Figure 2.9 a). It 

appears that multiple RFCs aggregate with multiple 1077Nick DNAs and form “spider-

like” complexes. It is obvious that the length of DNA is shorter than the length of 

1077Nick DNA, indicating that DNA is wrapped up inside the complex. The size of the 

bulky clump in the center of the complex ranges from ~300nm3 to 15000nm3, which is 

corresponds to 1-50 RFCs (not including the DNA volume). Only 2% of the complexes 
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show a single RFC bound. To determine if the formation of these large complexes is 

dependent on salt concentration, as is the formation of the filaments in the absence of 

ATP, we increased the NaCl concentration from 50mM to 100mM. As can be seen in the 

image in Figure 2.9 b, similar complexes are found as in the low salt concentration. 

         To assess the role of the nick in the formation of these large complexes, we 

replaced 1077Nick with 1077Unnick DNA as we did in the absence of nucleotide (Figure 

2.9, c). RFC forms similar large complexes with unnicked DNA.  However, many of 

these complexes have both ends of the DNA contained within the large RFC-DNA 

complex. These results suggest that DNA ends may be necessary for the formation of 

these large complexes.  

         Because the N-terminal domain of RFC has a DNA ligase motif, that appears to 

increase nonspecific binding of RFC to double-stranded DNA (Uhlmann, Cai, et al, 

1997). We examined whether this domain was responsible for the formation of the large 

complexes. We deposited nicked DNA with the N-terminal-truncated RFC and ATP in 

low salt buffer (Figure 2.9, d). Smaller complexes are found in this situation. The average 

size of truncated RFC–DNA complex is ~1800nm3, which is smaller than that of full 

length RFC-DNA complexes (~2300nm3), suggesting a fewer number of RFCs bind with 

DNA. 

           To determine if different nucleotide cofactor affect the formation of RFC-DNA 

complexes, we replaced ATP with ADP or ATPγS. In the presence of ADP, we find 

complexes similar to those seen in the presence of ATP formed both in the case of 
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1077nick dsDNA and 1077 Unnick dsDNA (Figure 2.9, e,f). However, in the presence of 

ATPγS, we do see single RFCs bound to DNA (Figure 2.10, a). The analysis of these 

results is discussed in the following section. 

           To examine if DNA ends are responsible for the formation of large complexes, we 

used a circular nicked DNA substrate, pUC18Nick in the presence of ATP and low salt 

(Figure 2.13, a). Volume analysis results show only RFC subcomplexes bind to DNA 

(Figure, 2.13, c). This result indicates that DNA ends are essential for the formation of 

large RFC-DNA complexes. The physiological function of any of such large RFC-DNA 

complexes remains unknown. 

Bend angle and binding specificity analysis of RFC in the presence of ATPγS 

     To determine if RFC has any binding specificity to the nick, we employed the 

1077Nick DNA substrate which has a single nick positioned ~140 nm from one end and 

deposited it with RFC in the presence of ATPγS. A representative image of the RFC-

DNA complexes is shown in the Figure 2.10 a, left.  Because we know the position of the 

nick (specific site) on the DNA, we can discriminate between RFC bound at nick 

(specific complexes) and RFC bound to unnicked sites (nonspecific complexes). To 

determine the RFC binding specificity, we measure the distance from each end of the 

DNA to the center of the RFC-DNA complex. The distribution of binding positions is 

broad, indicating that RFC exhibits weak binding specificity to the nick (Figure 2.10 b). 

We also deposited RFC with homoduplex DNA, 1077Unnick, in the presence of ATPγS; 
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unfortunately, we did not see either RFC or RFC-DNA complexes on the surface (Figure 

2.10 a, right).   

  A recent crystal structure of the γ-complex from E.coli. with primer-template DNA 

predicts that clamp loaders bendsthe template ssDNA as it exits from the complex 

(Simonetta, Kazmirski, et al, 2009). A similar conformation has been proposed for RFC 

bound to primer-template DNA; however nothing is known about the conformation of 

RFC bound to nicked or fully double-stranded DNA. We measured bend angles induced 

by RFC bound at nick and at homoduplex sites. For this analysis, we excluded data in 

which multiple RFCs are bound to the same DNA to avoid counting aberrant bend angles. 

The distributions of bend angles induced at the specific site and at nonspecific sites are 

double Gaussian with peaks centered at ~50̊  and ~0̊  (Figure 2.10 c), ~36̊  and ~0̊  (Figure 

2.10 d), respectively.  The larger bend angle induced by RFC at nick is probably due to 

the flexible structure of DNA at the nick. Both bend angle distributions are broad. The 

breadth of bend angle distribution is related with the flexibility of protein-DNA complex. 

The breadth of bend angle distribution is ~40° at non-specific sites and ~20° at the 

specific site, which suggests that RFC forms more flexible complexes with DNA at non-

specific sites than at specific sites. It is unexpected that we find a peak with a 0̊  bend 

angle for RFC-DNA complexes. Non-specific binding produces more unbent complex 

than specific binding. In the crystal structure of the γ-complex with pt DNA, the DNA is 

bent as it exits from the crank formed by δ and δ’ subunit. We speculate that the unbent 

complex may result from different binding conformations of RFC, or that the DNA exits 

from another channel, like C-collar channel formed by RFC collar domains. The 
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population of unbent complexes at specific site is significantly smaller than that of 

nonspecific sites. There is possibility that peak at 0° from the contamination of the 

specific complexes with non-specific one. Because the two DNA ends are 

undistinguishable, we cannot discriminate between RFC bound to the to 40% from the 

short end (specific binding) and RFC bound to the position 40% from the other end, and 

given the low specificity of binding, the ‘specific’ complex distribution will have 

significant contamination with nonspecific complexes. 

     To characterize the oligomerization states of RFC, we measured the volume of RFC 

complexes bound to the specific sites, nonspecific site, and the protein distributed on the 

background. The results indicate that full length RFC binds to the DNA at both specific 

sites and nonspecific sites (Figure 2.11, a, b). In contrast, only RFC subcomplexes are 

found on the background (Figure 2.11, c). Because ATPγS alone does not cause the 

dissociation of RFC (Figure 2.1), this observation suggests that DNA is destabilizing the 

RFC-ATPγS complex. 

RFC forms five classes of complexes with nicked circular DNA in the absence of 

nucleotides 

         PUC18Nick is a circular DNA with a single nick. Nicked circular DNA is the 

typical substrates used in vital studies using RFC and PCNA. Although we cannot know 

the position of the nick with this substrate, it avoids complications from having DNA 

ends. From inspection of the AFM images (Figure 2.12a), we classified the complexes 

formed by RFC and nicked circular DNA in the absence of nucleotide into five categories, 
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which are shown in the Table 2.3.  Most of the nicked DNAs have either one (52.1%) or 

two (22.8%) RFC’s bound.  In addition, 6.6% of RFC-DNA complexes have more than 

two RFCs bound. Similar to the complexes found in the presence of nicked linear dsDNA 

without nucleotide cofactor, we also find that 12% of RFC complexes show the DNA 

partially melted (Table 2.3) and 6.6% show a track of RFC-bound DNA.  The difference 

between RFC-bound DNA track on nicked circular DNA and the RFC filament on nicked 

linear dsDNA (Figure 2.8, a) is that RFC appears to bring two dsDNA together with 

nicked circular DNA. Bend angle analysis for DNA with one or two RFCs bound shows 

similar bend angle distributions with peaks  at 0̊, 28̊  and 60̊   for single RFC binding 

(Figure 2.12, b) and at 0,̊ 22̊  and 52̊   for double RFC binding(Figure 2.12, c).  

Bend angle and volume analysis of RFC on nicked circular DNA in the presence of ATP 

       To examine the conformation of RFC bound to the nicked circular DNA in the 

presence of ATP which is required to load PCNA, we incubated RFC and pUC18Nick 

DNA together with ATP for ~1 min, and deposited the reaction on the mica for imaging. 

Inspection of Figure 2.13 shows small RFC or RFC subcomplexes bound to the DNA. 

These images are different markedly from those seen with linear nicked DNA in the 

presence of ATP (Figure 2.9), which shows the formation of large complexes. These 

results indicate that the formation of the large complexes requires DNA ends. In addition, 

analysis of the bend angles reveals a single peak, centered ~40̊  (Figure 2.13, b), which is 

different from the bimodal distribution seen in the absence of ATP (Figure 2.10, c, d).  

Volume analysis of these complexes yields a single peak at ~188nm3, which is too small 
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for full length RFC and is consistent with a RFC-A-B-C subcomplex (Table 2.1).  This 

size is also close to the predicted AFM volume of RFC-B-C-D-E subcomplex; however, a 

previous study showed that the RFC-B-C-D-E subcomplex exhibits poor binding affinity 

to DNA substrates (Gomes, and Burgers, 2001). The distribution of volumes of the 

protein distributed on the background, is Gaussian centered at ~94nm3, which is consisted 

with a RFC subcomplex with two small subunits and, or RFC large subunit. Because this 

size is complimentary to the size of RFC subcomplex bound with DNA, and because the 

RFC-D-E subcomplex is known to be stable to be in solution and can unload PCNA from 

DNA substrate by itself (Yao, Johnson, et al, 2006), we hypothesize this subcomplex is 

RFC-D-E subcomplex. 

  Bend angle and volume analysis of RFC-PCNA on nicked circular DNA substrate in the 

presence of ATP 

           It is surprising that we observe RFC subcomplex bound DNA after DNA-

stimulated ATP hydrolysis, because it is generally believed that full length RFC is ejected 

from the DNA as a result of ATP hydrolysis. To determine if this RFC subcomplex is due 

to the absence of PCNA, we added PCNA into previous system. This experiment was 

done in high salt concentration buffer (Figure 2.14 a), because in low salt concentration 

buffer, multiple RFCs and DNA warp up together (Image is not showed). The 

distribution of AFM volumes of the protein bound to DNA is a double Gaussian centered 

~190nm3 and ~290nm3 (Figure 2.14, b). The peak of ~ 190nm3 is similar to the peak seen 

with RFC alone and DNA (Figure 2.13, c),  which indicates a RFC subcomplex bound to 
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nicked circular DNA in the absence and presence of PCNA. The peak ~290nm3 is 

consistent with a complex of RFC-A-B-C and PCNA (Table 2.1). RFC-PCNA-

pUC18Nick DNA complex has a broader distribution of bend angle (Figure 2.14, c), 

compared with RFC-pUC18nick complex. It is probably caused by different binding 

conformations of RFC subcomplex and RFC+PCNA subcomplex. 

       As the PCNA clamp loader, RFC plays an essential role in DNA replicaiton. 

Currently, there are many questions that remain about the mechanism of RFC loading 

PCNA. These puzzles include how does RFC recognize and load PCNA onto different 

DNA substrates? What role dose ATP play in different loading steps? How does the 

DNA stimulate ATP hydrolysis? Do all four ATP binding sites act in a cooperative 

pathway or independently? How do nucleotides and PCNA binding introduce RFC 

conformation changes? How does the ATP-induced conformation change in RFC affect 

the binding affinity to PCNA and DNA? What is the mechanism by which RFC is ejected 

from DNA substrate after PCNA loading?  

 2.4 Discussion 

         In this study, we take advantage of the single molecule technique of AFM to 

investigate the conformational properties of RFC and its complexes with DNA and 

PCNA in the presence and absence of nucleotides cofactors.  We demonstrate that ATP-

dependent changes in the interactions between and within the clamp loader subunits 

promote conformational changes in the complex that alter interactions with the clamp and 
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DNA. Binding interactions with the clamp and DNA also promote changes in the clamp 

loader that alter interactions for the next step pathway.  

  ATP induces the dissociation of RFC into monomers and subcomplxes 

        Nucleotide cofactor binding to clamp loaders initiates the entire cycle of clamp 

loading (Bertram, Bloom, et al, 1998; Chen, Levin, et al, 2009; Gomes, and Burgers, 

2001; Hingorani, and O'Donnell, 1998; Yao, Coryell, et al, 2003). In E.coli, the δ subunit 

is blocked from interaction with β-clamp by δ’; however, ATP binding introduced a 

conformational change of γ complex, exposing the δ subunit for interaction with β-clamp 

(Jeruzalmi, Yurieva, et al, 2001; Turner, Hingorani, et al, 1999). In a pre-steady-state 

kinetic study of RFC, nucleotide binding appears to cause a slow conformational change 

of RFC before it can interact with PCNA (Chen, Levin, et al, 2009).  Our results are 

consistent with this suggestion, in that ATPγS causes an increase in both the height and 

volume of RFC (Figure 2.2, 2.3). The increase in height suggests that RFC undergoes a 

conformational change. ATP binding may drive a motion of RFC into a more spiral 

conformation, opening like a spring, resulting in increasing the height and volume of 

RFC. This ‘more spiral’ conformation may facilitate RFC opening of the closed PCNA 

ring and binding along the DNA helix. 

           Unlike ATPγS, ATP induces the dissociation of RFC. This dissociation is 

probably caused by the weak ATPase activity of RFC. The dissociation product is 

classified into two sizes of subcomplex; one consistent with the size of RFC small 

subunits and  the other consistent with the RFC large subunit or subcomplex of two small 
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subunits. Analyzing the peak ratio of these two sizes of protein, we found the peak of 

larger size protein probably represents the combination of large subunit and subcomplex 

of two small subunits. However, there is another possibility. Because only subcompelx of 

RFC-D-E, RFC-B-C, RFC-C-D, RFC-B and RFC-D are found to be soluble in solution 

(Yao, Coryell, et al, 2003), it is possible that the other insoluble subcomplexes or 

subunits, like RFC-A, have precipitated out of solution, which would affect the ratio of 

these two peaks representing different complexes.   

        The situation in the presence of ADP is a little more complicated. The size of most 

of RFCs in the presence of ADP is similar to that of RFC in the absence of nucleotide; 

however, some of the RFC is dissociated as there is a shoulder on the main peak with a 

volume ~100nm3. This volume is similar to one of the peaks seen in the presence of ATP. 

The observations that RFC does not dissociate into subunits in the presence of ATPγS, 

and that it is completely dissociated in the presence of ATP but only partially dissociated 

in the presence of ADP suggest that ATP hydrolysis and/ or the mixed occupancy of the 

ATPase site with both ATP and ADP leads to significant destabilization of the subunit 

interactions. These results suggest that interactions between nucleotide cofactor and 

arginine finger govern the stability of the subunit interactions. As discussed in Chapter 1, 

the ATPase site on RFC lie at the interface between the subunits, with the argnine finger 

of the ATPase site being contributed by the adjacent subunit. Perhaps in the absence of 

nucleotide, the five subunits of RFC are packed with the ATP binding sites and the 

argnine finger close to each other. ATP binding may open the ATPase site with the γ-

phosphate of ATP interacting with the argnine finger (Johnson, Yao, et al, 2006). After 
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ATP hydrolysis, the absence of γ-phosphate in ADP would remove the connection 

between ATP binding site and arginine finger, which in turn may destabilize the 

connection between each subunit, resulting in the dissociation of RFC.  

PCNA stabilizes RFC in the presence of ATP 

            It has been demonstrated that ATP or ATPγS increases the binding affinity of 

RFC for PCNA (Chen, Levin, et al, 2009; Gomes, and Burgers, 2001). It has been 

proposed that the interaction between clamp and clamp loader induces a conformational 

change in clamp, resulting in the opening of clamp subunits at one interface (Chen, Levin, 

et al, 2009).  To investigate how PCNA affects the conformation of RFC, we examine the 

oligomerization states of RFC-PCNA complex in the presence of ATP and ATPγS.  

       Although ATP binding and hydrolysis result in the dissociation of RFC, PCNA 

appears to weaken the effects caused by the hydrolysis of ATP. Inspection of the volume 

date in Figure 2.5 reveals that PCNA dramatically stabilizes RFC in the presence of ATP. 

Specifically, in the absence of PCNA,  ATP causes RFC to dissociation into monomers 

and small subcomplexes, whereas, in the presence of PCNA, a significant fraction of 

RFC exist as a full complex ( ~240nm3) and there is a peak consistent with RFC bound to 

PCNA (~400nm3). Studies of the ATPase activity of T4 clamp loaders have shown that 

the presence of clamp inhibits ATP hydrolysis by T4 clamp loader (Pietroni, and von 

Hippel, 2008). Based on our data, inhibition of hydrolysis is would be expected to 

stabilize RFC, and therefore, the RFC-PCNA complex. Notably, the presence of PCNA 

also appears to stabilize RFC alone (although it is possible that the peak ~240nm3 
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represents an interaction of a subcomplex of RFC with PCNA). RFC may be stabilized 

by PCNA if it is cycling on and off and the re-association of PCNA is faster than the 

dissociation of RFC into subcomplexes. 

        Surprisingly, in the presence of ATPγS, instead of full length RFC-PCNA complex, 

we only find subcomplexes of RFC with PCNA, indicated by the smaller size peaks from 

~160nm3 to ~200nm3; that is, PCNA appears to promote the disassembly of RFC in the 

presence of ATPγS (Figure 2.5 b). Even the addition of primer-template DNA into this 

does not inhibition the dissociation. We, however, could not identify the different 

subcomplexes that these peaks represent. This result suggests that RFC does not form 

stable complexes with PCNA in the presence of ATPγS which in conflict with an EM 

study that visualized an RFC-PCNA complex in the presence of ATPγS (Miyata, Suzuki, 

et al, 2005). However, in this study, the clamp-clamp loader complex was purified by gel 

filtration before the EM images were acquired. Consequently, this complex may not 

reflect the major population in the reaction. The PCNA-induced RFC dissociation in the 

presence of ATPγS may be because ATPγS binding induces RFC into a more spiral 

conformation, and this more spiral conformation of RFC, in turn, induces the PCNA 

docked under the RFC into an out-of-plan open conformation (Kazmirski, Zhao, et al, 

2005).  This RFC-PCNA (open) complex is a transient conformation during the clamp 

loading process. The out-of–plan conformation of PCNA does not appear to be the 

favorite conformation of PCNA. The motion of PCNA back to an in-plane conformation 

causes the loss of contact with RFC, which is indicated in the crystal structure of RFC-

PCNA complex (Bowman, O'Donnell, and Kuriyan, 2004), in which PCNA is in an in-



- 92 - 

 

plane conformation and does not contact the RFC-D and RFC-E subunits. If the 

interactions between PCNA and RFC subunits are more favorable than the interaction 

between RFC subunits, the interaction of RFC with PCNA may induce the disassembly 

of RFC, which is suggested by our results. This PCNA motion is probably combined with 

the PCNA-stimulated ATP hydrolysis because in the presence of ATP, we did not 

observe PCNA-induced RFC dissociation (Figure 2.5 a).  Previous studies indicate that  

in the ATP bound the ATP site between RFC-D and RFC-E is specifically stimulated 

hydrolysis by PCNA ((Johnson, Yao, et al, 2006). It is possible that this PCNA-

stimulated ATP hydrolysis reduces the binding affinity between PCNA and RFC subunits 

allowing PCNA to relax back to the in-plane conformation. Because ATPγS inhibits this 

ATP turnover reaction which this relaxation of PCNA is inhibited in turn, may cause the 

dissociation of RFC. In addition, a fluorescence energy transfer study indicates that ATP 

and ATPγS induces different conformations of RFC-PCNA complexes (Zhuang, Yoder, 

et al, 2006), with one of the PCNA interface being opened by RFC ~34Å in the presence 

of ATP and ~27Å in the presence of ATPγS. These results suggest that there are different 

conformations of the RFC-PCNA complex in the presence of different nucleotides, or 

that different RFC-PCNA complexes are formed. 

RFC recognition of nicked DNA substrate 

           RFC and PCNA are involved in DNA mismatch repair pathway. In a reconstituted 

bidirectional mismatch repair system, RFC and PCNA activate a latent endonuclease 

activity of MutLα in an ATP- and mismatch-dependent manner (Kadyrov, Dzantiev, et al, 
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2006). Incision by activated MutLα endonuclease occurs on both 3’- and 5’-heteroduplex 

strand. Exo I performs 5’ to 3’ excision from the MutLα incision site through and beyond 

the site of the mismatch (Genschel, Bazemore, and Modrich, 2002; Zhang, Yuan, et al, 

2005). PCNA is also required for MMR initiation and resynthesis step (Gu, Hong, et al, 

1998; Umar, Buermeyer, et al, 1996). Although substantive research suggest that RFC 

specially recognizes primer-template junctions and position DNA in the center of PCNA 

to form a topological link between these two, little is known about how RFC recognizes 

nick DNA substrate, which is the typical DNA substrate in the reconstituted DNA repair 

system. The nick provides the strand discrimination signal in the MMR process. To 

characterize the conformation of RFC bound to the nicked DNA, we examined the 

binding of RFC to nicked dsDNA in the presence of ATPγS. RFC exhibits weak binding 

specificity to the nick (Figure 2.10, b). It exhibits a bimodal population of bend angles: a 

bent population and an unbent population (Figure 2.10, c and d), at both nicked and 

unnicked sites. RFC bends DNA more at nick than at unnicked sites. In addition, more 

unbent RFC-DNA complexes are found at unnicked sites. These results suggest that RFC 

may have two different binding modes on the DNA and that the ease of bending nicked 

DNA (or primer-template DNA) may contribution of recognition.  

          We attempted to conduct a similar analysis with ATP instead of ATPγS; however 

addition of ATP to linear DNA (nicked and unnicked) led to large ‘spider-like’ 

complexes containing multiple RFCs and multiple DNAs. The formation of these large 

complexes appears to be dependent on DNA ends, because such complexes were not 

formed in the presence of nicked circular DNA (Figure 2.13, a).The physiological role of 
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these complexes, if any, is unclear; however, it is possible that similar complexes could 

be involved in processes such as recombination or on double strand break repair. 

Possible mechanism of PCNA loading 

          Although we cannot determine the position of the nick on nicked circular DNA, it 

is useful to analyze the size of complexes and the RFC induced conformational changes 

in the DNA. Interestingly, unlike in the presence of ATPγS, the distribution of bend 

angles is a single Gaussian , with a peak at ~40.̊ In addition, most of the DNAs have a 

only a single RFC bound. Perhaps these complexes represent RFC bound at the nick. This 

idea is consistent with the observation that more bent complexes are seen at the nick on 

linear DNA in the presence of ATPγS. If  true, this result would suggest that the ATP 

increases the specificity of RFC for a nick. 

        The most interesting observation comes from the volume analysis of RFC both 

bound to the DNA and free on the surface. The average volume of the complex bound to 

the DNA is ~180nm3 and that of the complexes on the surface is ~100nm3. Both of these 

volumes are too small to represent full length RFC and therefore, indicate that, in the 

absence of PCNA, ATP results in subcomplexes of RFC bound to the DNA. Because 

RFC bound to DNA in the presence of ATPγS appears to contain all five subunits (based 

on volume analysis), these results suggest that ATP hydrolysis ejects some the RFC 

subunits, which is also consistent with our observation that ATP induces dissociation of 

RFC into smaller subunits in the absence of DNA (Figure 2.2). Based on the volume 

analysis result, we speculate that the small RFC subcomplex that remains on the DNA is 
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RFC-A-B-C subcomplex and that free RFC distributed on the suface is the RFC-D-E 

subcomplex (Figure 2.13, Table 2.1). We make this hypothesis based on the observation 

that RFC-D-E subunit is stable in solution (Yao, Coryell, et al, 2003) and that RFC-D-E 

can unload PCNA from a circular DNA substrates (Yao, Johnson, et al, 2006). We also 

examine the oligomerizaiton of the complexes bound to the nicked DNA in the presence 

of both PCNA and ATP. Interestingly, we still find a population of complexes that are 

similar size (~190nm3) to the RFC subcomplex bound to DNA in the absence of PCNA. 

In addition, we also find larger complexes that are consisted with the size of RFC-A-B-C/ 

PCNA complex (~290nm3) (Figure 2.14, Table 2.1). Taking all these results together, we 

make a hypothesis about the clamp loading process, depicted in the Figure 2.15. In this 

model, RFC undergoes conformational change upon ATP binding, which increases 

binding affinity to the PCNA clamp. Interaction with RFC results in PCNA ring opening 

(Chen, Levin, et al, 2009; Gomes, and Burgers, 2001) and RFC positions the DNA helix 

into the center of PCNA. DNA triggers RFC-bound ATP hydrolysis (Naktinis, Turner, 

and O'Donnell, 1996; Podust, Tiwari, et al, 1998), which results in the two subunits RFC-

D-E being ejected from the PCNA-DNA complex. The RFC-A-B-C subcomplex 

maintains contact with PCNA and DNA, and topologically links these two. The idea that 

the subcomplex of RFC-D-E is ejected from DNA during the PCNA loading process is 

consistent with several other results. First, the interaction between RFC-D-E and PCNA 

appears to be primarily responsible for PCNA-ring opening (Yao, Johnson, et al, 2006). 

The ejection of RFC-D-E may cause PCNA-ring to close and circle around the DNA 

helix. Second, RFC-D-E is capable of unloading PCNA from DNA substrate (Yao, 
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Johnson, et al, 2006). The ejected RFC-D-E subcomplex could then attend unloading 

PCNA from synthesized okizaki segments. Regarding the function of RFC-A-B-C 

subcomplex, we speculate that this subcomplex could anchor PCNA at the junction of 

primer-template or nicked DNA. The N-terminal ligase homolog domain of RFC-A 

subunit, which is capable of non-specific to binding single-stranded and double-stranded 

DNA (Gomes, Gary, and Burgers, 2000; Hingorani, and Coman, 2002; Uhlmann, Cai, et 

al, 1997) and has a strong binding with PCNA (Bowman, O'Donnell, and Kuriyan, 2004; 

Yao, Johnson, et al, 2006), could stabilize this interaction.  RFC-B and RFC-C also 

interact with DNA and PCNA to some extent. Consequently, RFC-A-B-C subcomplex 

may be capable of fixing PCNA at specific sites. Maintaining PCNA at a primer-template 

junction or a nick would give downstream proteins, such as Pol δ time to interact with 

PCNA at the specific site. The competition between PCNA-binding proteins may 

stimulate the release of the RFC subcomplex from the DNA substrate. In support of this 

idea, in the T4 clamp/clamp loader system, gp44/gp62 plays a role as a molecular 

chaperone (Sexton, Kaboord, et al, 1998; Trakselis, Berdis, and Benkovic, 2003). A 

complex of gp44/gp62·gp45·DNA·gp43 has been identified as an intermediate in the 

formation of gp45·DNA·gp43. The gp43, a DNA polymerase in T4 bacteriaphage, 

interacts with the same PCNA face as the gp44/gp62 clamp loader. 

RFC may have functions other than loading PCNA on DNA 

       There is another surprising observation which is that RFC forms protein filaments 

with nicked dsDNA in the absence of nucleotide. RecA plays central in DNA 
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homologous recombination. The RecA protein binds strongly and in long clusters to 

ssDNA to form a nucleoprotein filament. The protein has more than one DNA binding 

site, and thus can hold a single strand and double strand together. This feature makes it 

possible to catalyze a DNA synapsis reaction between a DNA double helix and a 

homologous region of single stranded DNA. The reaction initiates the exchange of 

strands between two recombining DNA double helices(Guo, Zhang, et al, 2006). As a 

member of AAA+ ATPase family, RecA and RFC share the conserved ASCE core 

nucleotide-binding pocket. DnaA, another AAA+ ATPase protein, also  forms protein 

filaments on DNA (Erzberger, Mott, and Berger, 2006; Erzberger, and Berger, 2006). 

Based on the structural similarity with other AAA+ ATPase proteins and our 

observations, it is possible RFC could possess other activities besides functioning as 

clamp loader. Another potential capability of RFC is that it could function as a DNA.  We 

observed that in some RFC-DNA complexes, RFC splits DNA double strand from the 

nick and another RFC binds with the single stranded DNA (Figure 2.8, d). Considering 

many AAA+ ATPase proteins have helicase activity (Erzberger, and Berger, 2006), like 

DnaA, it would not be surprising if RFC had the helicase activity too, although more 

experiments will be required to assess this possibility. In support of this idea, the recently 

released E.coli γ-complex with primer-template DNA crystal structure mentioned that γ-

complex has side chain Try316, which is reminiscent of the role of an aromatic side chain 

in the UvrD helicase that serves as a “separation pin” by splitting the path of DNA (Lee, 

and Yang, 2006; Simonetta, Kazmirski, et al, 2009). In addition, they found a second 

channel formed by C-terminal collar domain that could accommodate DNA, although 
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they did not present any direct evidence that DNA goes through this second channel. 

Based on the highly conserved sequence and structure between RFC and γ-complex 

(Cullmann, Fien, et al, 1995), RFC is likely to have the similar second channel and 

separation pin structure.  

        Besides the clamp loader RFC, there are other clamp loaders termed ‘alternative 

clamp loader’ that shared the same small subunits RFC-B-C-D-E but RFC-A is replaced 

by other subunits, such as Rad24, Ctf18 and Elg1, (Majka, and Burgers, 2004). These 

proteins function in the DNA damage checkpoint pathway and establishment of sister 

chromatid cohesion, which is essential for maintaining chromosome stability. Some of 

them function in the same pathways, such as Elg1-RFC and Ctf18- RFC which are both 

involved in the establishment of sister chromatid cohesion, although they have different 

functions (Maradeo, and Skibbens, 2009; Parnas, Zipin-Roitman, et al, 2009). All three 

alternative clamp loaders could interact with PCNA and PCNA is also found involved in 

their pathways (Moldovan, Pfander, and Jentsch, 2006).  RFC shares a similar structure 

and clamp loader function with the alternative clamp loaders. Taken together, our 

observation that multiple RFCs and dsDNAs could form spider-like complex it suggest 

that RFC may be involved into these pathways too. 

           Briefly, RFC likely plays multiple roles in different pathways, like DNA 

recombination, DNA damage checkpoint, genome modification. As a complicated protein 

with multiple ATPase sites, it may have functions besides clamp loader function. 
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Figure2.1 AFM images of RFC in the presence of different nucleotide cofactors. The 

image’s size is 1µm×1µm. a, RFC  in the absence of  nucleotide. b, RFC in the presence 

of ATP. c, RFC in the presence of ATPγS. d, RFC in the presence of ADP. All the 

experiments are performed in the same conditions. The concentration of RFC is 30 nM. 

The concentration of nucleotide is 5 mM.  The protein and nucleotide are incubated in the 

buffer (Tris·HCl 20 mM (pH 7.4), NaCl,50 mM, BME, 5mM, MaCl2, 5mM,  5% 

Glycerol) for about 1 minute. 
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   Table2.1. Relationship of S.cerevisiae RFC’MW with AFM volumea 

 

a. RFC assembled into right handed spiral in the order of RFC (A-B-C-D-E). 
b. AFM volume is calculated based on the formula “AFM  Volume=1.2×MW-14.7” 

 

 

             MW(k Da)       AFM Volume (nm3)b 

      RFC                                 248.8              283.9 

      RFC-A                  94.9                99.2 

      RFC-E                        39.9                33.2 

      RFC-A-B-C-D                 208.9              236.0 

      RFC-B-C-D-E                 153.9              170.0 

      RFC-A-B-C                 169.2              188.3 

      RFC-D-E                  79.6                80.8 

      PCNA                                                         87.0                89.7 

      RFC+PCNA                 335.8               388.3 

      RFC-A-B-C+PCNA                 256.2               292.7 

      RFC-D-E+PCNA                 166.6               185.2 

      RFC-E+PCNA                 120.2               129.5 



- 102 - 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0 100 200 300 400 500 600 700
0

50

100

150

200

250

300

350

400

450

500

nu
m

be
r

volume

 

0 100 200 300 400 500 600 700
0

50

100

150

200

nu
m

be
r

volume

 

0 100 200 300 400 500 600 700
0

50

100

nu
m

be
r

volume

 

(a) (b) 

(c) (d) 

No Nucleotide ATP 

ATPγS 

0 100 200 300 400 500 600 700
0

50

100

150

nu
m

be
r

volume

 

ADP 

 



- 103 - 

 

Figure2.2 Histograms of RFC volume distributions with different nucleotide 

cofactors. a, RFC is in the absence of nucleotide. The double Gaussian fit is centered at 

21nm3, 258nm3, which is consistent with RFC small subunits and full length of RFC 

respectively. b, RFC is in presence of ATP. The double Gaussian fit is centered at 28nm3, 

82nm3, which is consistent with RFC small subunits and the RFC large subunit or a dimer 

of RFC small subunits. c, RFC in presence of ATPγS. The double Gaussian fit is centered 

at 34nm3 and 330nm3, which is consistent with RFC small subunits and full length RFC. 

d, RFC in presence of ADP. The multiple Gaussian fit is centered at 28nm3, 90nm3, 

260nm3, which is consistent with small RFC subunits, the RFC large subunit or a dimer 

of two RFC small subunit and full length RFC, respectively. 
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Figure 2.3 Nucleotide binding introduces RFC conformational change. The 

distribution of the height of RFC in the absence of nucleotide is fit by a single  Gaussian 

centered ~0.5nm (pink). The distribution of the height of RFC in the presence of ATPγS 

is fit by a single Gaussian centered ~1nm (blue).The AFM volume of RFC in the 

presence of ATPγS is much larger than that of RFC alone. The volume accretion is due to 

the increase height of RFC upon interaction with ATPγS. The center of the height 

histogram shifts to right by ~ 0.5 nm, comparing RFC alone (pink) with RFC·ATPγS 

(blue). The increase in height suggests that there is a conformational change of RFC 
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Figure 2.4 AFM images of RFC·PCNA complexes in the presence of ATP and 

ATPγS respectively. The images are size 1µm×1um. a.RFC (10nM) incubated with 

PCNA (10nM) in the presence of ATP (5mM). b. RFC (10nM) incubated   with PCNA 

(10nM) in the presence of ATPγS (5mM). 
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Figure 2.5 Histograms of volume of RFC-PCNA complexes in the presence of ATP 

and ATPγS, and of PCNA. The concentration of PCNA and RFC is 10nM, and 10nM 

respectively. The y-axis represents the percentage of various particles distributed on the 

surface. The volume histogram of RFC-PCNA complex (blue) is presented with the sum 

of volume histogram of RFC with corresponding nucleotide and volume histogram of 

PCNA (pink) together. a. In the presence of ATP, interaction with PCNA reduces the 

dissociation of RFC, inferred by the peak around 240 nm3. The peak centered on 400 nm3 

represents the RFC-PCNA complex.  The decreasing percent of the PCNA peak, ~ 90 

nm3, indicates the interaction between RFC and PCNA. b. In the presence of ATPγS, 

instead of full length RFC-PCNA, a putative RFC subcomplex-PCNA is found, inferred 

by the peak around 180nm3. There are four different particles fit the peak here. It is hard 

to distinguish using AFM technique. Compared with sum volume distribution, the peak 

~300nm3, which matches the size of activated RFC, is reduced.  The peak ~240nm3, 

which matches the size of inactive RFC, remains the same percentage. c. Histogram of 

volumes of PCNA (~30nM as trimer). The peak at~ 90nm3 represents PCNA trimer. 
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Figure 2.6 AFM images and histograms of the volume distributions of RFC–primer 

template DNA complex with ATPγS in the presence or absence of PCNA. a. Field 

view of RFC-40/65 ptDNA complex in the presence of ATPγS. Representative surface 

plots of a single RFC binding and a double RFC binding complex are shown under the 

field view image. b. Histogram of volumes of RFC-40/65 ptDNA complexes in the 

presence of ATPγS. The curves represents a double Gaussian fit with peaks are centered 

at 40nm3 and 330nm3, representing small subunits of RFC and full length RFC or a RFC-

DNA complex, respectively. The schematic view of DNA substrate used in this study is 

shown under the histogram. The template strand and the primer strand contain 65 and 40 

nucleotides respectively, resulting in a short 40/65 pt DNA substrate with a 5’ overhang. 

c. Field view of RFC-PCNA40/65 ptDNA ternary complex in the presence of ATPγS. d. 

Histogram of volumes of RFC-PCNA-40/65 ptDNA ternary complexes in the presence of 

ATPγS. The double Gaussian fit peaks are centered on 50nm3 and 200nm3 respectively. 

The low volume peak represents PCNA and/or small subunits of RFC.  The large size 

peak represent various subassemblies of the RFC-PCNA-pt DNA complex. The 

concentration of RFC, PCNA and ATPγS is 5nM, 10nM and 5mM, respectively. The 

image size is 2µm×2µm. 
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Figure 2.7 Schematic view of DNA substrates used in the AFM study. The DNA 

substrates are indentified on the right by the length of the fragment and existence of the 

nick. The 1077 piece is made from XmnI and AlwNI digested pUC18 plasmid and 

amplified by PCR. The pUC18 plasmid is nicked by Nbst.NBI to break the 1077Nick 

DNA substrate before the cutting. The existence of the nick is checked by gel 

electrophoresis. PUC18Nick is made from Nbst.NBI digested the pUC18 plasmid and 

purified by 1% Agrose gel. The 1077Homo and 1077Nick have the same length and 

nucleotide sequence. 1077Nick has a nick at ~40% of the length from the 5’ end of the 

bottom strand. 
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Figure 2.8 Representative AFM images of RFC complexes fromed on the 1077Nick 

substrate in the absence of nucleotide. a, Filament of RFC on 1077 nicked dsDNA. The 

RFC concentration is 5nM.  RFC and 1077 nicked dsDNA  are incubated in low salt 

concentration buffer (Tris·HCl 20 mM (pH 7.4), NaCl, 50 mM, BME, 5mM, MaCl2, 

5mM,  5% Glycerol) for ~1 minute. b, AFM image of RFC and nicked dsDNA  filament 

in high salt concentration buffer (Tris·HCl 20 mM (pH 7.4),   NaCl,100 mM  , BME, 

5mM ,MaCl2 ,5mM,  5% Glycerol). The DNA and protein concentrations are the same as 

above. c, RFC incubated with 1077Homo in the absence of nucleotide. d, Example of a 

RFC nicked DNA complex in which the DNA is partially melted at the nick. Arrow 

points to the single strand. Left is topview image. Right is a surface image.  
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Table2.2 Statistical conformation analysis of RFC on 1077Nick DNA substrate in  
absence of nucleotide 

  Low Salt (%) High Salt (%) 

 

Free DNA 

       

  44.6 

        

        58.1 

 

Fully coated 

       

      38.8 

          

        8.8 

 

Partially coated 

        

      5.8 

          

        2.5 

 

With branch 

       

      2.5 

           

        0.6 

 

RFC peeling dsDNA 

      

     4.1 

          

        2.5 

 

With few particle bound 

  

     5.0 

  

         27.5 

Total number of DNA       121         160 
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Figure 2.9 AFM images of RFC-DNA complexes in presence of ATP or ADP. a, 

RFC-1077Nick DNA complexes in low salt concentration buffer with ATP (NaCl, 

50mM). The concentrations of RFC and DNA are 5nM and 10nM, respectively. The 

concentration of ATP is 5mM. The image size is 2µm×2µm. b, RFC-1077Nick DNA 

complexes in high salt concentration buffer with ATP (NaCl, 100mM). c, RFC-

1077Homo DNA complexes in the low salt concentration buffer with ATP (NaCl, 

50mM).d Truncated RFC-1077Nick DNA complexes in low salt concentration buffer 

with ATP (NaCl, 50mM). Truncated RFC is mutated RFC without RFC1 ligase 

homology domain. e, RFC-1077Nick DNA complexes in the low salt concentration 

buffer with ADP (NaCl, 50nM). ADP is 5mM. f, RFC-1077Homo DNA complexes in the 

low salt concentration buffer with ADP (NaCl, 50nM). ADP is 5mM. 
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Figure 2.10 Representative AFM images and the bend angle and binding position 

distribution of RFC on nicked DNA in the presence of ATPγS. a, Left: RFC-

1077Nick DNA complexes in the presence of ATPγS, Right: RFC-1077Homo DNA 

complex in the presence of ATPγS. The concentration of RFC and DNA is 5nM and 

10nM, respectively. The image size is 2µm×2µm. RFC and DNA are incubated in the 

high salt concentration buffer. The red arrow points out RFC bound at the nick. The 

green arrow points out nonspecific complexes. b, Histogram of the binding position of 

RFC on the 1077Nick DNA substrate.  The contour DNA length is ~360 nm. The binding 

position is determined by measuring the distance from the center of RFC to the nearest 

DNA end. The arrow points to the RFC bound at the nick. The 1077Nick DNA substrate 

is 1077bp long and has a nick 477 nucleotides form the 3’ end of the top strand. c, The 

distribution of bend angles induced by RFC bound at the nick with a double Gaussian fit 

with peaks at 0̊  and 50̊. d, The distribution of bend angles induced by nonspecific binding 

of RFC fit to a double Gaussian with peaks at 0̊  and 36.̊ 
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Figure 2.11 Schematic view of RFC binding to the 1077Nick dsDNA in the presence 

of ATPγS and volume distribution of RFC bound at the nick (a), at nonspecific sites 

(b), and free on the surface (c). The distributions for RFC bound specifically (a) and 

nonspecifically (b) both fit to single Gaussian with peaks at ~360nm3. The volume 

distribution of free RFC fits to a double Gaussian with peaks at 30nm3 and 90nm3.  
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Figure 2.12: Representative AFM image and histograms of bend angle distribution 

of RFC on the pUC18Nick DNA substrate in the absence of nucleotide. a, RFC –

pUC18Nick DNA complexes. The experiment is performed in high salt buffer. The 

concentrations of RFC and DNA are 5nM and 10nM, respectively. The size of image is 

2µm×2µm. b, Bend angle distribution for RFC singly bound is the curve are triple 

Gaussian fits with peaks at 0̊, 28̊, 60̊. c, Bend angle distribution for double bound with 

triple RFC  Gaussian fit with peas at 0̊, 22̊, 52.̊  
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Table 2.3 Statistical analysis of the conformation of RFC on the PUC18Nick DNA 

substrate in the absence of nucleotide 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Single Binding  

 

135 

 

52.1% 

 

Double Binding  

 

59 

 

 22.8% 

 

Multiple Binding  

 

17 

 

 6.6% 

 

Single Strand Complex  

 

31 

 

 12% 

 

RFC-DNA Track  

 

17 

 

 6.6% 
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Figure2.13 AFM image of RFC and pUC18Nick DNA deposited in the presence of 

ATP in high salt buffer and histograms of bend angles and volumes of the RFC -

pUC18Nick DNA complexes. a, AFM image of RFC –pUC18Nick DNA complexes. 

RFC bound to DNA is pointed out by the red arrows. The size of image is 2µm×2µm. 

The concentrations of RFC and DNA are 5nM and 10nM, respectively. b, Histogram of 

the bend angles of RFC on pUC18Nick DNA substrate. The bend angle distribution 

induced by RFC is Gaussian centered at ~40.̊ c, Histogram of the volumes of RFC on 

pUC18Nick DNA substrate in the presence of ATP. The volume distribution of RFC on 

the DNA is Gaussian centered at ~177nm3. d, Histogram of volumes of RFC distributed 

on the background in the presence of pCU18Nick DNA and ATP. The volume 

distribution of RFC on the background is Gaussian centered at ~93nm3. 
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Figure2.14 AFM image of RFC and PCNA with pUC18Nick DNA in the presence of 

ATP in high salt buffer. Histograms of the bend angles and the volumes of RFC –

PCNA complexes on pUC18Nick DNA in the presence of ATP. a, AFM image of RFC 

–PCNA-pUC18Nick DNA complexes. The size of image is 2µm×2µm. The 

concentrations of RFC, PCNA and DNA are 5nM, 5nM and10nM, respectively. b, 

Histogram of the volumes of proteins bound to pUC18Nick DNA substrate. The volume 

distribution is fit by a double Gaussian centered at ~194nm3 and 286nm3 c, Histogram of 

the bend angles of RFC +PCNA on the pUC18Nick DNA substrate. 
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Figure 2.15 Schematic view of the proposed mechanism of RFC loading PCNA onto 

a primer-template DNA substrate. Combining previous research and our observations, 

we hypothesize a putative clamp loading mechanism. “Inactive” RFC is activated by 

binding with three ATPs. The “active” RFC is capable of binding with PCNA and 

another two ATPs. Interaction of PCNA with RFC introduces PCNA ring opening, and 

then RFC specifically loads PCNA at the primer-template junction. Three equivalent of 

ATP hydrolysis triggered by DNA binding ejects two subunits of RFC, RFC-D-E,  from 

PCNA-DNA complex. RFC-A-B-C remains with PCNA at primer-template junction. 

Downstream PCNA-binding proteins, such as polδ, promote the dissociation of the 

subcomplex from PCNA-DNA complex. RFC-D-E subcomplex may carry out the 

process of unloading PCNA from synthesized okazaki fragments.  
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CHAPTER THREE: AFM STUDY OF MISMATCH RECOGNITION BY 

EUKARYOTIC MUTS HOMOLOGS 

          Mismatched nucleotides arise from polymerase misincorporation errors, 

recombination between heteroallelic parental DNAs, and chemical or physical DNA 

damage. Postreplicatiive mismatch repair (MMR) corrects these errors before they lead to 

genomic instability. This repair pathway increases the fidelity of DNA replication by up 

to 1000 fold. Inactivation of the human mismatch repair system is the cause of hereditary 

nonpolyposis colon cancer (HNPCC) and has been implicated in the development of a 

subset of sporadic tumors that occur in a variety of tissues (Iyer, Pluciennik, et al, 2006; 

Kunkel, and Erie, 2005; Li, 2008; Modrich, and Lahue, 1996).  

3.1 Introduction 

       In E.coli, MutS, MutL and MutH promote strand-specific repair by taking advantage 

of the transiently unmethylyated state of the newly synthesized strand. MutS and MutL 

function as dimers and have intrinsic ATPase activities that are essentail for MMR. MMR 

is initiated by the binding of MutS to either a mismatch or short insertion/deletion loop 

(IDL). ATP binding introduces a conformational change of MutS and promotes its 

interaction with MutL. The MutS-MutL heterocomplex activates a latent endonulcease 

activity of MutH in an ATP-dependent manner, which incises the newly synthesized 
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strand at a nearest hemiemethylated d (GATC) site. The strand specific nick provides 

entry for other proteins that complete the downstream steps of the pathway (Iyer, 

Pluciennik, et al, 2006; Kunkel, and Erie, 2005; Li, 2008; Varlet, Canard, et al, 1996). 

      In E. coli, base-base and insertion/deletion mismatches of up to 4 nt which arise 

during DNA replication are recognized by MutS. The MutS structure reveals a disc-

shaped protein with two channels. The DNA is bound into the lower channel and kinked 

with an ~60° bend angle(Figure 1.3).  The crystal structure of MutS reveals that the MutS 

homodimer binds to mismatch DNA in an asymmetric fashion. While each MutS subunit 

contains two DNA binding domains, I and IV, only domain I from one subunit directly 

interacts with mismatch mismatched base. Specific interactions between the mispaired 

base and the Phe-X-Glu mismatch recognition motif are identified. The mismatch base is 

rotated into the minor groves by ~3Å and stacks with the phenylanliane. The glutamic 

acid forms a hydrogen bond to the same base. Most of the other contacts from the two 

subunits are to the backbone and are, therefore, DNA sequence nonspecific, as expected 

given the need to repair replication errors in a variety of different sequence contexts. 

These interactions narrow the major groove, and expand the minor groove where the 

phenylalanine interacts with the DNA mispair (Lamers, Perrakis, et al, 2000; Natrajan, 

Lamers, et al, 2003; Obmolova, Ban, et al, 2000). 

      In eukaryotes, two heterodimeric MutS homologs, Msh2Msh6 and Msh2Msh3 have 

been identified. These two complexes recognize different types of mismatches; 

Msh2Msh6 primarily acts in a pathway that repairs base-base and single 
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insertion/deletion mismatches, while Msh2Msh3 acts mainly to repair insertion/deletion 

loop mismatches 2 to 13 nt in size (Alani, 1996; Habraken, Sung, et al, 1996; Harrington, 

and Kolodner, 2007; Lee, Surtees, and Alani, 2007; Palombo, Iaccarino, et al, 1996). The 

Phe-X-Glu mismatch-recognition motif is conserved in Msh6 but is not in Msh2 or Msh3. 

In the recent crystal structures of Msh2Msh6 (the fist 340 amino acids of Msh6 are 

truncated) bound with various mismatched DNA substrates,  domain I of Msh6 

contributes most of contacts with DNA, including non-specific contacts with the DNA 

backbone made  by the N-terminal residues (360-398), and the specific contacts are made 

with the mispaired bases by the conserved Phe-X-Glu motif . By contrast, domain I of 

Msh2 makes only a few contacts with DNA and is dispensable for mismatch repair by 

Msh2Msh6.  Msh2Msh6 bends G-T mismatched DNA in to an angle of ~45̊  (Warren, 

Pohlhaus, et al, 2007). Although the crystal structure of Msh2Msh3 is unknown, domain I 

of Msh3 appears to be important for IDL binding specificity and for suppressing 

nonspecific binding, while domain I of Msh2 contributes a nonspecific binding activity. 

Deletion of domain I of Msh2 results in the loss Msh2Msh3-mediated MMR and 

recombination function (Lee, Surtees, and Alani, 2007). The Phe-X-Glu motif is not 

conserved in Msh3, instead two lysines in yeast and a lysine and an argnine in human 

Msh3are responsibe for the binding of Msh2Msh3 to IDL DNA. Msh2Msh3 involves 

protein-DNA contats that appear very different from those required for Msh2Msh6 

mismatch binding. 

         It has been inferred that MutS homologs initially bind to DNA through three -

dimension (3D) random collisions, and scan DNA for lesions or via 1D diffusion after 
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initial binding (Drummond, Li, et al, 1995).  The question is how MutS homologs 

specifically recognize various DNA lesions and initiate repair pathways. It has been 

shown that affinities of MutS homologs are ~10 fold higher for mismatched than 

perfectly mismatched DNA (Gradia, Acharya, and Fishel, 2000; Schofield, Brownewell, 

et al, 2001). Affinities vary with the composition of the mismatch and the local sequence 

context. The relatively low binding affinity difference between mismatched and matched 

DNA substrates may be caused, in part, by the small free energy differences between 

perfectly paired and mismatched base pairs (estimated to be in the range of 1-3 kcal/mol 

for internal pairs), which would correspond to only a 10-fold discrimination between the 

perfectly paired and mismatched bases (Echols, and Goodman, 1991; Loeb, and Kunkel, 

1982).  In addition, inspection the crystal structures of E. coli MutS with G-T, C-A, A-A, 

G-G, unpaired T heteroduplex, and Taq MutS with an unpaired T heteoduplex reveals a 

similar mismatch-recognition pathway for the different mismatches (Lamers, Perrakis, et 

al, 2000; Natrajan, Lamers, et al, 2003; Obmolova, Ban, et al, 2000). Human Msh2Msh6 

bound with a G-T mispair, unpaired T, O6-methyl G-T mispair, and G-dU mispair 

heteroduplexes also exhibit very similar structures (Warren, Pohlhaus, et al, 2007). 

          Insight into the mechanism of mismatch-recognition and specificity comes from a 

recent study using AFM to directly visualize MutS bound to mismatch and to 

homoduplex DNA (Wang, Yang, et al, 2003). This study demonstrates that MutS adopts 

a single population of conformations, in which the DNA is bent, when bound to a 

homoduplex sites, but two populations of conformation, bent and unbent, when bound at 

the mismatch site. These results suggest the unique unbent complex bound at mismatched 
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sites is a signal of mispaired bases being recognized, and that the bent complex at 

mismatched sites may be an intermediate in the formation of the unbent complex.                                    

          In this study, we adopt the same AFM method to study the mechanism of 

mismatch-recognition and specificity of eukaryotic MutS homologs, yeast Msh2Msh3 

and yeast Msh2Msh6. AFM is a single molecule technique which can resolve individual 

protein-DNA complexes. An ensemble of MutS-DNA complexes will provide snap-shots 

of the dynamic process during mismatch recognition. Furthermore, using AFM, the 

distribution of conformations within a complex population of molecules can be 

characterized (Bustamante, and Rivetti, 1996). 

       Our results demonstrate that yeast Msh2Msh3 and Msh2Msh6 bind different DNA 

substrates in a similar manner and exhibit low binding specificity to the mismatch. 

Intriguingly, unlike E. coli MutS or Taq MutS, two populations of conformations are 

observed both at mismatch sites and homoduplex sites. This bimodal distribution of 

conformations is independent on the presence or type of mismatch.  Even though the 

structure and contacts with DNA of Msh-2Msh3 appears different from Msh2Msh6, our 

results suggest that these differences maybe not affect the protein-DNA binding modes. 

Taken together, a higher-grade mismatch-recognition mechanism is suggested for 

eukaryotic MutS homologs.    

3.2 Materials and Methods  
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Msh2Msh3 and Msh2Msh6 proteins. Yeast Msh2Msh3 and Msh2Msh6 was provided 

from collaborator, Manju M. Hingorani Lab. 

DNA substrates for AFM studies. The 782Homo, 783Tbulge and 982GT are purified as 

described previously (Wang, Yang, et al, 2003). The 1124Tbulge and 1125TTbulge are 

created by annealing a single-strand DNA (ssDNA) with a complementary DNA 

fragment, with the exception of one or two bases. A plasmid (pBluescript II) containing a 

phage origin of replication was chosen for the purpose to exacting single-stranded DNA. 

pBluescript contains the f1 phage origin of replication and can be used to produce ssDNA 

using a helper phage ( VCSM13). ssDNA is isolated by precipitating in 2.5M NaCl/20% 

PEG8000 buffer and purified by phenol/chloroform extraction and ethanol precipitation. 

A point mutation is made in the XbaI site on pBluscript II plasmid to make 

complementary mismatched segment. The mutation knocks out the ability of XbaI to cut 

at the site which provides a method for screening for the mutation. A 6X concentration of 

ssDNA are annealed to 1X concentration of PCR fragments. To make a single T-bulge 

mismatch, a mutated PCR fragment with one T insertion is annealed to the WT ssDNA. 

To makde a double T- bulge mismatch a mutated PCR fragment with two T insertions is 

annealed to the WT ssDNA.  The annealing products are cut by XbaI, BseyI and NaeI to 

make 1124 or 1125 DNA fragment and purified by agarose gel.  

 Atomic force microscopy. Protein-DNA complexes are formed by incubating ~5nM of 

yeast MutSα or MuSβ with ~10nM of hetero- homoduplex DNA substrates for 1-5 

minutes at room temperature in binding buffer (25mM Hepes, pH 8.1, 120mM NaCl, 0.1 
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mM EDTA, and 1.0 mM DTT, 5mM MaCl2, 10% glycerol) in a total volume of 20µL. 

The reaction is deposited onto freshly cleaved mica (Spruce Pine Mica Company) at 

room temperature. The mica is quickly washed with HPLC grade water, blotted dry, and 

then dried under stream of nitrogen. The images are captured in air with the Nanoscope 

IIIa (Digital Instruments) microscope in tapping mode. PointprobeR tapping mode silicon 

probes (Molecular Imaging Corporation) with spring constants of ~50 N/m and resonance 

frequencies ~170 KHz are used for all imaging. Images are collected at a speed of 3-4 Hz 

and resolution of 512 ×512 pixels. 

Image analysis. DNA length and bend angles are measured using Nanoscope IIIa 

software. The angle, α, at the intersection of two extrapolated DNA arms extruding from 

MutS homologs is measured.  The bend angle Ɵ, is 180 -α. The length of DNA is 

determined by dividing the contour length into connected straight segments and then 

measuring the length of each segment and summing all lengths up. The positions of the 

RFC binding sites on DNA templates are determined by measuring the length of the 

DNA from intersection of the two extrapolated DNA arms to each end. The binding 

position is defined as the ratio of the length of the shorter DNA tract divided by the total 

contour length. Classification of specific complexes was based on the consideration of 

protein size measured from AFM images and uncertainty in the measurement of DNA 

contour length. Only those proteins-DNA complexes with centers positioned within one 

standard deviation of the expected mismatch position are categorized as specific 

complexes. We do not end-label the DNA to unequivocally identify the DNA ends, 

which means that some nonspecific complexes will counted as specific complexes, but 
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not vice versa. Volume analysis is performed as described previously (Erie, Yang, et al, 

1994; Ratcliff, and Erie, 2001; Yang, Wang, and Erie, 2003). The program Kaleidagraph 

and OriginPro are used to generate statistical plots. 

AFM volume analysis of Msh2Msh3 

3.3 Results 

 A representative AFM image of Msh2Msh3 is shown in Figure 3.1 (a). Msh2Msh3 is 

composed of two different proteins with similar molecular weight: Msh2 of 107kDa and 

Msh3 of 117kDa. To examine the oligomerization states of Msh2Msh3 under the 

conditions of our experiment, we analyzed Msh2Msh3 in the absence of nucleotide using 

a volume analysis method described previously (Ratcliff, and Erie, 2001; Yang, Wang, 

and Erie, 2003). The protein volume measured by AFM is linearly related with the 

molecular weight of protein (AFM Volume = 1.2 (MW)-14.7). The peaks at ~110nm3 and 

~ 290nm3 in the volume histogram (Figure 3.1, b) are consistent with the AFM volume of 

Msh2 or Msh3 and Msh2Msh3, respectively. The analysis reveals ~60% of Msh2Msh3 

complexes exist as heterodimers. Given that the dissociation equilibrium (Msh2Msh3 

↔Msh2+Msh3) and the concentration of Msh2Msh3 in the reaction (~20nM), we 

estimate the dissociation constant, Kd, to be ~ 5.3nM under our experiment conditions.     

   Yeast Msh2Msh3 bound to various DNA substrates exhibits two conformations: bent 

and unbent despite of the difference between DNA substrates 
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         In this study, we employed two different DNA substrates containing uniquely 

located mismatches (783Tbulge and 1125TTbulge; where the number indicates the length 

of the fragment, and the letters indicate the type of mismatch) and 782Homo homoduplex 

DNA (Figure 3.2). The 783Tbulge DNA has a single unpaired T positioned ~27% of the 

distance from one end, and 1125TTbulge DNA has two unpraired T ~33% from the end. 

782Homo substrate is the same as 783Tbulge except that there is no mismatch. A 

previous AFM study indicates that a single base bulge does not introduced significant 

intrinsic bending of DNA compared with homoduplex DNA (Wang, Yang, et al, 2003). 

Msh2Msh3 acts mainly to repair insertion/deletion loops of 2 to 13 nucleotides in size 

and DNA flap structures predicted to form during genetic recombination, and it is also 

redundant with Msh2Msh6 in the repair of small IDLs (Habraken, Sung, et al, 1996; 

Harrington, and Kolodner, 2007). Therefore, in this study, we use 782Homo as 

Msh2Msh3 nonspecific recognition substrate, 783Tbulge as Msh2Msh3 redundant 

substrate with Msh2Msh6, and 1125TTbulge as Msh2-Msh3 specific recognition 

substrate. 

-Yeast Msh2Msh3 binding specificity analysis- 

        Representative AFM images of yeast Msh2Msh3 deposited in the presence of 

782Homo, 783Tbulge and 1125TTbulge DNA substrates are shown in Figure 3.3 (a), 3.4 

(a), and 3.5 (a).  To determine the binding positions of Msh2Msh3 on the DNA substrate, 

we measured the length of the DNA arms extruded from Msh2Msh3 complex. The 

binding position is defined as the ratio of the length of the shorter DNA arm divided by 
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the total contour length. The distributions of Msh2Msh3 on 782Homo, 783Tbulge DNA 

and 1125TTbulge DNA substrates are random (Figure 3.3 b, 3.4 b, and 3.5, b). These 

results suggest Msh2Msh3 has no significant binding preference to the single T-bulge site 

and double T-bulge site. 

         Because we know the positions of the mismatches on the DNA, we can discriminate 

Msh2Msh3 bound at a mismatch (specific complex) and Msh2Msh3 bound at a 

homoduplex site (nonspecific complex). In the presence of 783Tbulge DNA (Figure 3.4 

b), we define Msh2Msh3 bound in the range of 24%-33% distance from the nearest DNA 

ends as specific complexes.  In the presence of 1125TTbulge DNA (Figure 3.5, b), we 

define Msh2Msh3 complexes in the range of 30%-38% distance from the nearest DNA 

end as specific complexes. We observed ~ 31of 102 Msh2Msh3 complexes bind 

specifically at T-bulge mismatch site, and ~44 of 145 Msh2Msh3 complexes bound at 

TT-bulge mismatch site (If Msh2Msh3 is bound at multiple position on the DNA, the 

complexes are included in binding position analysis, but not in the DNA bend angle 

analysis). These results suggest Msh2Msh3 exhibits weak binding specificity to both the 

single T-bulge site and the double T-bulge site.  

-Yeast Msh2Msh3-introduced DNA bend angle analysis- 

        Msh2Msh3 introduces significant DNA bending both with specific and nonspecific 

DNA substrates. Figure 3.3(c) and 3.4(c) show the distribution of bend angles introduced 

by Msh2Msh3 bound to782Homo and 783T-bulge DNA. A previous AFM study showed 

that the bend angle distribution of free DNA without protein binding is a half-Gaussian 
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distribution centered at 0 ̊with 35° breadth (Wang, Yang, et al, 2003). Inspection of the 

distributions of Msh2Msh3 bend angles for both homoduplex and T -bulge DNA 

substrates reveal a broad distribution with a bend angle centered at ~60.̊  Intriguingly, we 

also find a population of complexes that is not bent. The bimodal bend angle distributions 

are fit well by a double Gaussian distribution, but not single Gaussian distribution. 

Approximately 15% of unbent complexes and 85% of bent complexes are found in both 

distributions (The drop at ~50̊  in the bend angle distribution of 782Homo and 783Tbulge 

is the error of bins, which will disappear upon changing the bin size). Interestingly, 

analogous conformation distributions are also observed for Msh2Msh3 bound at 

mismatch and homoduplex sites on the 1125TTbulge DNA (Figure3.5 (c) and (d)). A 

double Gaussian fit reveals two peaks centered at ~0̊  and ~40̊  for both Msh2Msh3 bound 

at mismatch and at homdupex site. About 30% of Msh2Msh3 specific complexes are 

unbent and 20% of the nonspecific complexes are unbent. The ratio of the populations of 

the unbent state to the bent state represents the equilibrium between these two states. The 

ratio ranges from 0.2 for Msh2Msh3 bound to homoduplex or T-bulge DNA substrate to 

0.4 for Msh2Msh3 bound at TT-bulge mismatch, indicating that the unbent state is 

slightly less stable than the bent states. 

             In summary, these AFM data indicate that yeast Msh2Msh3 binds various DNA 

substrates in the same bimodal mode, imposing two conformations on the DNA, bent and 

unbent. These two Msh2Msh3-induced DNA conformations are independent on the 

presence of mismatch (homoduplex vs. heteroduplex), the type of mismatch (T-bulge vs. 

TT-bulge) and binding position (specific complex vs. nonspecific complex). In contrast 
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to E.coli MutS and Taq MutS (Wang, Yang, et al, 2003), Msh2Msh3 exhibits low 

binding specificity to mismatches. Taking all the results together, it appears Msh2Msh3 

adopts a mismatch-recognition mechanism that is different from that of E.coli MutS and 

Taq MutS. 

        To examine if the bimodal binding mode is conserved in other eukaryotic species, 

we examined human Msh2Msh3 in the presence of 1125TTbulge DNA substrate (Figure 

3.6). Human Msh2Msh3 appears to be distributed randomly on the TT-bulge DNA, 

suggesting low binding specificity. The distributions of DNA bend angles are double 

Gaussians with peaks at ~0̊  and ~45̊  for both specific and nonspecific complexes. About 

20% of specific complexes and 25% of nonspecific complexes are unbent, suggesting an 

equilibrium constant of ~0.3. A broader bend angle distribution of the bent states 

compared with the unbent states is seen for both specific and nonspecific complexes. 

These results suggest human Msh2Msh3 appears to recognize IDLs similarly to yeast 

Msh2Msh3.  

Yeast Msh2Msh6 bound to various DNA substrates exhibits two conformations: bent and 

unbent despite of the difference between DNA substrates 

           In this study, we also employed two different DNA substrates containing uniquely 

located mismatches (982G/T and 1124Tbulge; where the number indicates the length of 

the fragment, and the letters indicate the type of mismatch) (Figure 3.2), and a 400bp 

homodupelx DNA substrate made from PCR fragments of pUC18. The 982GT has G/T 
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mismatch posited 42% from one end, and 1124Tbulge has an unpaired T 33% from one 

end.  

-Yeast Msh2Msh6 binding specificity analysis-       

           Representative AFM images of yeast Msh2Msh6 bound to homoduplex, G/T 

mismatch and T-bulge DNA substrates are presented in Figure 3.7 (a), 3.8(a) and 3.9(a). 

Msh2Msh6 is uniformly distributed on the homoduplex DNA (nonspecific DNA) (Figure 

3.7, b). In the presence of mismatch-recognition substrates (specific DNA), 982GT DNA 

and 1124Tbulge DNA, Msh2Msh6 exhibits low binding specificity to a T-bulge or G/T 

mismatch. About 100 of 253 Msh2Msh6 complexes specifically bind to G/T mismatch, 

and ~38 of 94 Msh2Msh6 complexes specifically bind to single T-bulge mismatch 

(Figure 3.8 b; Figure 3.9 b). Here, we defined Msh2Msh6 complexes bound to 982GT or 

1124Tbulge DNA in the range of 40%-48%, 30%-38% respectively as specific 

complexes (The Msh2Msh6-DNA complexes with multiple Msh2Msh6 bound are 

counted in the binding specificity analysis, but not in the bend angle analysis).  

-Yeat Msh2Msh6 bend angle analysis- 

        Similar to yeast Msh2Msh3, two populations of Msh2Msh6- DNA complexes, bent 

and unbent, are observed in the presence of homoduplex, G/T mismatch and T-bulge 

DNA substrates. In the presence of homoduplex DNA, the distribution of DNA bend 

angles is a double Gaussians distribution with peaks at ~0̊  and ~40̊  (Figure 3.7, c).  The 

portion of unbent complex is ~20%, indicating an equilibrium constant of ~0.25. The 
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breadth of distribution for bent state is significantly broader than that of distribution of 

unbent state. 

       Intriguingly, Msh2Msh6 introduces similar distribution pattern of DNA bend angles 

at mismatch and homoduplex sites (Figure 3.8, c, d; Figure 3.9 c, d). The distribution are 

fit well to a double Gaussian distributions , with peaks centered~0̊  and ~50̊  for both 

specific and nonspecific complexes. In addition, these distributions do not appear to 

depend on the types of mismatch, because the DNA bend angles introduced by 

Msh2Msh6 at G/T mismatch site is similar to the angles introduced by Msh2Msh6  bound 

at unpaired T-bulge site. The angle of 50̊  is close to the bend angle observed in the human 

Msh2Msh6-DNA complex crystal structure (Warren, Pohlhaus, et al, 2007). Statistically 

analysis indicates that ~20% of the Msh2Msh6 complexes bound at the G/T mismatch, at 

homoduplex sites, and at unpaired T-bulge are in an unbent conformation. These results 

appear to suggest the distribution between bent and unbent states of the Msh2Msh6-DNA 

complexes is independent on the properties of DNA substrates. The breadth of 

distribution of bent states is much broader than that of unbent states, indicating a large 

ensemble of bent Msh2Msh6-DNA conformations that may be in a dynamic equilibrium 

with a relatively rigid unbent Msh2Msh6-DNA complex.   

      

        In this study, we employ the same AFM assays used for E.coli MutS to investigate 

the mechanism of mismatch recognition and specificity of eukaryotic MutS homologs, 

yeast Msh2Msh3 and yeast Msh2Msh6. 

3.4 Discussion 
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        In the study of Msh2Msh3, we examined the binding specificity of Msh2Msh3 to 

three different DNA substrates, homoduplx, single T-bulge and double T-bulge DNA. 

Although it is suggested that Msh2Msh3 is redundant with Msh2Msh6 with the respect to 

the repair of small IDLs (Harrington, and Kolodner, 2007; Marsischky, and Kolodner, 

1999), in our experiments, we do not observe any significant difference of binding 

affinity compared Msh2Msh3 bound to single T-bulge DNA substrate with homoduplex 

DNA. The distribution of Msh2Msh3 on the T-bulge DNA substrate is as random as that 

of Msh2Msh3 on homoduplex DNA.  Msh2Msh3 also recognizes larger IDLs (Habraken, 

Sung, et al, 1996). However, compared with homoduplex DNA substrate, Msh2Msh3 

does not show binding specificity to the specific site (double T –bulge), with only <30% 

of Msh2Msh3 bound at the specific site.  

       Msh2Msh6 functions in repair of base-base and small IDLs (Alani, 1996; 

Marsischky, and Kolodner, 1999). We examined the binding affinity of Msh2Msh6 in 

presence of these two kinds of mismatched DNAs: a G-T mismatched DNA and an 

unpaired T-bulge DNA.  Although G-T mispair is the most efficiently repaired mismatch 

(Kramer, Kramer, and Fritz, 1984; Kramer, Kramer, et al, 1989), Msh2Msh6 does not 

exhibit high binding specificity to the G-T mismatch site, and only <40% of specific 

complexes are found. In addition, Msh2Msh6 binds to unpaired T-bulge DNA with 

similar binding specificity.  Compared with Msh2Msh3 complexes, the relative higher 

binding specificity of Msh2Msh6 complex may be derived from the presence of Phe-X-

Glu mismatch-recognition motif of Msh6 (Warren, Pohlhaus, et al, 2007). Although we 

cannot exclude the influence of DNA sequence context surrounding the mispair on the 
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binding specificity (Marsischky, and Kolodner, 1999), it appears that the efficiency of 

mismatch-recognition is not simply determined by the binding affinity to the mispaired 

bases of eukaryotic MutS homologs. In addition, the low binding specificity of MutS 

homolos is consistent with the bulk solution studies (Jiang, Bai, et al, 2005; Kijas, 

Studamire, and Alani, 2003; Marsischky, and Kolodner, 1999; Mendillo, Mazur, and 

Kolodner, 2005).  

         This AFM technique allows us to compare the conformations of MuS homolog-

DNA complexes at homoduplex sites and at mismatches. In E.coli, the unbent state 

MutS-DNA complexes is unique for MutS bound at mispaired bases and is suggested to 

serve as the ultimate recognition complex (URC) in which the DNA is unbent with the 

mismatched base possibly being flipped out (Tessmer, Yang, et al, 2008; Wang, Yang, et 

al, 2003). It has been suggested that the repair efficiency will be determined in part, by 

the relative stability of the bent and unbent state. In regard to the eukaryotic MutS 

homologs, we find unbent complexes both at the mismatch and at homoduplex sites. It 

appears that eukaryotic MutS homologs may randomly check out any DNA nucleotide 

while diffusing along the DNA backbone.  The unbent state with a base flipped out is 

suggested to be more stable at mismatch than at correctly paired base (O'Gara, Horton, et 

al, 1998). However, our results suggest there is no significant stability difference of 

unbent complex between specific (at mismatch) and non-specific complexes (at 

homoduplex site), because the portion of the population of unbent complexes bound at 

mismatch (~20%) is similar to that of unbent complexes bound at homoduplex sites 

(~20%). This result may suggest that, in eukaryotic MMR, there is a different mechanism 
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of recognition or that ATP binding by MutS homologs leads to higher specificity. 

However, in this study, MutS homologs exhibit very low binding specificity to the 

specific site, which means there is higher level of nonspecific complex contamination for 

the complexes bound at specific sites, complicating the analysis of conformation. It is 

possible that a similar binding mode for MutS homologs bound at specific site and at 

nonspecific site results from contamination of the nonspecific complexes in the analysis 

of the specific complexes. 

        The breadths of distribution are related to the flexibility of the protein-DNA 

complex (Erie, Yang, et al, 1994; van Noort, Orsini, et al, 1999).The broad distribution of 

angles of bent complexes (For example, 10̊ vs. 40̊  for Msh2Msh3 bound to TT-bulge 

DNA at mismatch and at homoduplex site), represents an ensemble of a large number of 

potentially dynamic conformations of Msh2Msh3 or Msh2Msh6. The unbent 

conformation of the complexes may represent another dynamic conformation of the 

Msh2Msh3 or Msh2Msh6-DNA complexes, rather than a mismatch-recognition complex.  

        Msh2Msh6 appears to recognize different types of mismatch in a similar manner. 

The DNA bend angle distribution of Msh2Msh6 bound with G-T mismatched DNA is 

similar to that of Msh2Msh6 with unpaired T-bulge DNA, which is consistent with the 

crystal structure study of Msh2Msh6Δ340 with different substrates (Warren, Pohlhaus, et 

al, 2007). This result suggests that recognition of different DNA substrates is not 

dependent on the structure of Msh2Msh6 bound at mismatch. 
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          In a conclusion, unlike prokaryotic MutS, mispaired bases appear to be recognized 

in a different manner for the eukaryotic MutS homologs. So far, the detail about the 

mechanism is unknown. However, it appears that the mismatch-recognition mechanism 

of eukaryotic MutS homologs is not simply dependent on the binding specifidity of 

protein to the mismatch, the relative stability of unbent protein-DNA complex to bent 

protein-DNA complex or the conformation of eukaryotic MutS homolog bound with 

mismatch.  
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Figure 3.1 Representative AFM image of Msh2Msh3 and histogram of the volume 

distribution of Msh2msh3. a. AFM image of Msh2Msh3. The size of image is 

1µm×1µm. The Msh2Msh3 concentration is ~20 nM. The red arrow points to a 

Msh2Msh3 monomer. The green arrow points to a Msh2Msh3 dimer. b. The volume 

distribution of Msh2Msh3 is double Gaussian centered ~109nm3 and ~293nm3, 

representing monomers of Msh2 and Msh3 and Msh2Msh3 heterodimer, respectively. 
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Figure 3.2: Schematic view of the DNA substrates. The substrates are identified on the 

right with the length of the fragment and the type of mismatch. The length of the 

fragments and the position of the mismatch in nucleotides from the nearest end are shown 

by the black arrows. 783T bulge heteroduplex DNA substrate is the same as782Homo 

with the exception of having a 1T-bulge, 213 nucleotides from the 5’ end of bottom 

strand. 1124Tbulge and 1125TTbulge are the same DNA substrates with 1 T-bulge and 2 

T-bulge 372 nucleotides from the 5’ end of bottom strand respectively. The 982GT 

substrate has a G/T mismatch 412 nucleotides from the 5’ end of the bottom strand. 
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Figure 3.3 Representative AFM image of Msh2Msh3 in the presence homoduplex 

dsDNA substrate, the distribution of positions of Msh2Msh6 on homoduplex DNA 

and histogram of DNA bend angles induced by Msh2Msh3 binding. a. Image of 

Msh2Msh3 -782Homo DNA complexes. The size of image is 2µm×2µm. The 

concentrations of Msh2Msh3 and DNA are ~5nM and ~10nM, respectively. 

Representative “zoom in” images of four classes of Msh2Msh3-782Homo complex; free 

DNA (32%), cluster (31%), end binding (18.5%), single binding, (18.5%).  b. The 

distribution of Msh2Msh3 on homoduplex DNA substrate, 782Homo is random. c. The 

DNA bend angle distribution induced by Msh2Msh3 is fit by a double Gaussian with 

peaks centered ~0̊  and~60̊  respectively. 
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Figure 3.4 Representative AFM image of Msh2Msh3 in the presence of T-bulge 

DNA substrate, position distribution of Msh2Msh3 on T-bulge heteroduplex DNA, 

and histogram of DNA bend angle induced by Msh2Msh3 binding. a. Image of 

Msh2Msh3-783Tbulge DNA complexes. The size of image is 2µm×2µm. The 

concentrations of protein and DNA are ~5nm and ~10nM, respectively. b. The position 

distributions of Msh2Msh3 on single T-bulge DNA substrate and783Tbulge DNA are 

random. c. The DNA bend angle distribution induced by Msh2Msh3 binding is a double 

Gaussian with peaks centered at ~0̊  and ~60̊. 
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Figure 3.5 Representative AFM image of Msh2Msh3 in the presence of TT-bulge 

DNA substrate, position distribution of Msh2Msh3 on TT-bulge DNA and 

histogram of bend angle induced by Msh2Msh3 bound at double T-bulge sites and 

homoduplex sites on 1125TTbulge DNA. a, Msh2Msh3 - 1125TTBulge DNA 

complexes. The concentrations of Msh2Msh3 and 1125TTbulge DNA substrate are ~ 

5nM and ~20 nM, respectively. The size of image is 2µm×2µm.b. The distribution of 

binding positions of Msh2Msh3 on 1125TT-bulge DNA substrate suggests Msh2Msh3 

shows weak binding specificity to the mismatches.   c. DNA bend angles of specific 

complex are shown for Msh2Msh3 bound at double T-bulge site on 1125TTbulge DNA 

substrates. The distribution of bend angles is fit by a double Gaussian with peaks at ~0̊  

and ~40̊.d. DNA bend angles of nonspecific complex are shown for Msh2Msh3 bound at 

homogenous sites on 1125TTbulge DNA substrate. The distribution of bend angles is fit 

by a double Gaussian with peaks at at ~0̊  and ~40̊. 
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Figure 3.6 Representative AFM image of human Msh2Msh3 in the presence of TT-

bulge DNA substrates, position distribution of human Msh2Msh3 on TT-bulge DNA 

and histogram of bend angle induced by human Msh2Msh3 bound at double T-

bulge site and homoduplex site on 1125TTbulge DNA. a, hMsh2Msh3 - 1125TTBulge 

DNA complex. The concentrations of hMsh2Msh3 and 1125TTbulge DNA substrate are 

~ 5nM and ~20 nM, respectively. The size of image is 2µm×2µm.b. The distribution of 

binding positions of hMsh2Msh3 on 1125TT-bulge DNA substrate is random. c. DNA 

bend angles of specific complex are shown for hMsh2Msh3 bound at double T-bulge site 

on 1125TTbulge DNA substrate. The distribution of bend angles is fit by a double 

Gaussian with peaks at~0̊  and ~40̊.d. DNA bend angles of nonspecific complex are 

shown for hMsh2Msh3 bound at homogenous sites on 1125TTbulge DNA substrate. The 

distribution of bend angles is fit by a double Gaussian with peaks at ~0̊  and ~40̊. 
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Figure 3.7 Representative AFM image of Msh2Msh6 in presence of homoduplex 

DNA, position distribution of Msh2Msh6 on homoduplex DNA and histogram of 

DNA bend angles introduced by Msh2Msh6 binding. a. Msh2Msh6-homoduplex DNA 

complex. The image is 2µm×2µm. The concentrations of Msh2Msh6 and DNA are ~5nM 

and ~10nM, respectively. The homoduplex DNA substrate is piece of pUC18 PCR 

fragment with 400 nucleotides length. b. The distribution of binding positions of 

Msh2Msh6 on homoduplex DNA is random. c. The distribution of bend angles induced 

by Msh2Msh6 binding is fit by a double Gaussian with peaks at ~0̊  and ~40̊.  
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Figure 3.8 Representative AFM image of Msh2Msh6 in the presence of G/T 

mismatch DNA, position distribution of Msh2MSh6 on 982GT heteroduplex DNA 

and histogram of DNA bend angles introduced by Msh2Msh6 bound at G/T 

mismatch site and homogenous site on 982GT DNA substrate. a. Msh2Msh6 – 982GT 

DNA complex. The concentrations of Msh2Msh6 and 982GT DNA substrate are ~ 5nM 

and ~10 nM, respectively. The size of image is 2µm×2µm.b. The distribution of binding 

position of Msh2Msh6 on 982GT DNA substrate suggests Msh2Msh6 shows weak 

binding specificity to the G/T mismatch. c. DNA bend angles of specific complex are 

shown for Msh2Msh6 bound at G/T site on 982GT DNA substrate. The distribution of 

bend angles is fit by a double Gaussian with peaks at ~0̊  and ~50̊.d. DNA bend angles of 

nonspecific complex are shown for Msh 2Msh6 bound at homogenous sites on 982G/T 

DNA substrate. The distribution of DNA bend angles is fit by a double Gaussian with 

peaks at ~0̊  and ~50̊. 
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Figure 3.9 Representative AFM image of Msh2Msh6 in the presence of T-bulge 

DNA substrate, position distribution of Msh2Msh6 on T-bulge DNA and histogram 

of bend angle introduce by Msh2Msh6 bound at single T-bulge site and homoduplex 

site on 1124Tbulge DNA. a, Msh2Msh6 - 1124TBulge DNA complex. The 

concentrations of Msh2Msh6 and 1124Tbulge DNA substrate are ~ 5nM and ~10 nM, 

respectively. The size of image is 2µm×2µm.b.The distribution of binding position of 

Msh2Msh6 on 1124T-bulge DNA substrate suggests Msh2Msh6 shows weak binding 

specificity to the single T-bulge mismatch. c. DNA bend angles of specific complex are 

shown for Msh2Msh6 bound at single T-bulge site on 1124Tbulge DNA substrate. The 

distribution of bend angles is fit by a double Gaussian with peaks at~0̊  and ~50̊.d. DNA 

bend angles of nonspecific complex are shown for Msh 2Msh6 bound at homogenous 

sites on 1124Tbulge DNA substrate. The distribution of bend angles is fit by a double 

Gaussian with peaks at ~0̊  and ~50.̊ 
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