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ABSTRACT 

Bradley Gordon Hammill: The Use of Propensity Score Methods to  
Address Confounding by Provider 

(Under the direction of Amy H. Herring) 

For research questions regarding the real-world effectiveness and safety of medical 

therapies and devices, researchers must often rely on observational data.  Unlike controlled 

clinical trials, the assignment of treatment to patients in routine medical practice is not 

randomized.  One class of methods used extensively by researchers to address this selection 

problem is propensity score methods.  The role of the healthcare provider has not typically 

been accounted for when propensity score methods are employed, despite the fact that 

provider, by imparting an effect on both patient-level treatment assignment and patient-level 

outcomes, is a potential confounding factor.

When a healthcare provider has measurable impacts on both a patient’s treatment 

assignment and their downstream outcomes, simulation results demonstrated that not 

accounting for these provider effects could lead to biased estimates of treatment effect when 

using propensity score methods. This was true specifically when a provider’s direct effect on 

treatment was correlated with their effect on outcome; a situation that occurs when providers 

having better patient outcomes use therapies at higher (or lower) rates than other providers.  

Propensity score methods that incorporated provider were able to control this error. 

Even when provider effects on treatment and outcome were uncorrelated, it was still 

important to account for provider in the propensity score treatment model.  Failure to do so 
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resulted in confidence intervals around the estimated treatment effect that were either 

substantially too wide or too narrow, depending on the estimation methods used. 

A criticism of typical 1:1 propensity score matching, whether stratified by provider or 

not, is that the data from many patients are not utilized in the outcomes analysis.  Full 

matching addresses this issue by optimally assigning all treated patients and all comparison 

patients into variably-sized matched sets.  The result is closer matches between study groups 

than those obtained by other matching methods.  Full matching is not currently utilized 

frequently because it is difficult to implement.  A macro to perform full matching by 

leveraging SAS optimization procedures is presented. 
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CHAPTER 1 

INTRODUCTION AND LITERATURE REVIEW 

Background

For research questions regarding the real-world effectiveness and safety of medical 

therapies and devices, researchers must often rely on observational data.  Unlike controlled 

clinical trials, the assignment of treatment to patients in real world settings is not randomized.  

This differential selection of patients to treatment leaves analyses susceptible to confounding, 

which can result in biased effect estimates unless properly addressed. 

One class of methods used extensively by researchers to address this treatment 

selection problem is propensity score methods (Austin, 2008; Sturmer et al., 2006).  The goal 

of propensity score methods, in short, is to balance confounding factors between the treated 

and comparison groups (Rosenbaum & Rubin, 1983).  Assuming all confounding factors are 

measured, this balance leads to consistent estimates for the effect of the treatment on the 

response.   

The role of the healthcare provider has not typically been accounted for in clinical 

research when propensity score methods are employed.  This despite the fact that provider, 

by imparting an effect on both patient-level treatment assignment and patient-level outcome, 

is a potential confounding factor.  In analyses that utilize propensity score methods for data 

scenarios where providers act as confounder factors, important questions remain about how 
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best to incorporate provider into the analysis and about the costs of ignoring provider in the 

analysis.   

In this chapter, we review the theoretical basis of propensity scores and describe how 

they are typically used in analyses.  We discuss the issues surrounding providers in 

healthcare research and possible extensions of propensity score methods to address the 

problem of confounding by provider.  And we will examine prior research that has addressed 

similar ideas about clustered data within propensity score analyses.   

 

Propensity Score Methods  

Theory

The theoretical justification for propensity score methods is based on the Rubin 

causal model (Rubin, 1974).  In this model, it is supposed that every experimental unit has 

multiple potential outcomes, one for each experimental condition.  Suppose A represents a 

point exposure, with 9 : . when the subject is exposed to the experimental treatment of 

interest (“treatment”) and 9 : - when the patient is not exposed to the experimental 

treatment (“comparison”).  Whether the comparison group is simply unexposed to the 

experimental treatment or exposed to an alternative treatment is not a critical distinction, 

theoretically.  For each subject, there is an outcome associated with each condition.  We let 

Y1 denote the outcome the subject would have experienced if they received treatment and Y0 

denote the outcome the subject would have experience if they did not receive treatment.  The 

outcome, Y, we actually observe for each subject corresponds to one of these potential 

outcomes.  For subjects in the treatment group, ; : ;<and for subjects in the comparison 

group, ; : ;=.  Even though we can only observe one of these outcomes per subject, we rely 
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on the existence of the other unobserved outcome, the counterfactual, to draw conclusions 

about causation. 

If it were possible for all subjects in the population to belong to both the treatment 

and comparison groups, the population average treatment effect, �, would be easily estimated 

as the average of each subject’s individual treatment effect, as >?;< @ ;=A : >?;<A @
>?;=A : B< @ B= : C, where B= and B< are population outcomes for the comparison and 

treatment conditions.  Instead, what is estimable is dependent on the treatment actually 

received, or >?;<D9 : .A @ >?;=D9 : -A which typically does not equal � due to 

confounding.  Meaning, if subjects have known values for covariates X that affect outcomes, 

and treatment is assigned with respect to those covariates, then >E>?;<D9 : .F GAH I >?;<A. 
Randomized trials are able to properly estimate the average treatment effect by assigning 

treatment independent of a subject’s covariates, and therefore, potential outcomes.  Formally, 

in these cases, ?;<F ;=A J 9DG, where J indicates independence.

Rosenbaum and Rubin (1983) introduced the propensity score as a balancing score 

which would lead to this same conditional independence when formal randomization was not 

present.  The propensity score K?GA : L?9 : .DGA is the probability of receiving treatment 

for a particular set of covariate values.  Use of the propensity score requires sufficient 

conditions. First, assuming X includes all confounders, then ?;<F ;=A J 9DK?GA, meaning all 

potential responses are conditionally independent of the treatment given the measured 

variables.  This is the condition of no unmeasured confounding.  Second, there must be a 

non-deterministic probability of receiving each treatment at all values of the measured 

variables, or - M LN9 : ODK?GAP M ..  When these both hold, then >?;<D9 : .F K?GAA :
>?;<DK?GAA and >?;=D9 : -F K?GAA : >?;=DK?GAA which allows unbiased estimation of the 
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treatment effect.  Different propensity score methods achieve this in slightly different ways, 

as will be discussed below. 

 

Estimation and Application of Propensity Scores 

The propensity score is a subject-specific probability of treatment.  It is usually 

estimated with a logistic regression model having treatment as the dependent variable and 

other measured factors as the independent variables.  Prior research has demonstrated that the 

most important factors to include in this treatment model are those that confound the 

relationship between treatment and outcome.  If important confounders are not included, the 

eventual estimate of the treatment effect will be biased (Austin, Grootendorst, & Anderson, 

2007; Brookhart et al., 2006).  Inclusion of other factors, those related only to the treatment 

or only to the outcome, may be helpful, but can lead to fewer matches being made, if 

propensity score matching is used, and may result in a treatment effect estimate with reduced 

efficiency (Austin et al., 2007; Brookhart et al., 2006; Bhattacharya & Vogt, 2007). 

A number of methods have been proposed for utilizing propensity scores in ways that 

induce the covariate balance between treatment groups that is so critical.  Three were 

proposed by Rosenbaum and Rubin (1983) in their manuscript that initially described the 

basis and use of propensity scores.  These methods are stratification (or subclassification), 

model-based adjustment, and matching.  The newest application of propensity scores is 

inverse probability of treatment weighting, proposed by Robins, Hernán, and Brumback 

(2000) and Hirano and Imbens (2001).  Propensity score matching and inverse probability of 

treatment weighting are the two methods most commonly applied in clinical research today 

and will be discussed in more detail than the other two methods. 
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Stratification, or subclassification, on the propensity score is done by first creating 

equally sized strata of subjects based on quantiles of the estimated propensity score 

distribution, then estimating the treatment effect within each stratum (Rosenbaum & Rubin, 

1984).  These individual stratum-specific estimates may be combined using Mantel-Haenszel 

methods to arrive at an overall treatment effect estimate.  Quintiles are often used to define 

the group, because Cochran (1968) showed that five groups is often adequate to reduce 90% 

of the bias for many distributions.  For stratification to yield accurate treatment effect 

estimates, there needs to be balance on the covariates between treated and comparison groups 

within each stratum.  This should happen because propensity scores should be similar 

between the treated and comparison groups within each of these strata.  Stratification has the 

advantage of utilizing all subjects in the data.  It is also very easy to implement and balance 

between study groups within the strata is easy to assess.  In practice, however, it has been 

demonstrated that in the extreme strata, containing the highest and lowest propensity score 

estimates, there is often residual imbalance between study groups that results in poor 

performance of the resulting effect estimates (Austin et al., 2007).   

Model-based adjustment involves simply replacing the covariates in a traditional 

regression model with the estimated propensity score or some function of the estimated 

propensity score, such as the linear predictor from the treatment model.  While this method is 

simple to implement and uses data from all available study subjects, it does not allow for 

evaluation of covariate balance between study groups.  It is also the method with the weakest 

theoretical basis.  Rosenbaum and Rubin (1983), themselves, urge caution using this method 

and list several scenarios common within observational data analysis where it may perform 
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poorly. For example, if the covariance matrices, for the observed covariates, are not equal 

between the study groups then this method can lead to bias in estimates of treatment effect.   

Propensity score matching seeks to create covariate balance between the treated and 

comparison groups more directly than stratification, by matching individual patients from 

each group to each other.  The goal of any matching scheme is to identify appropriate 

comparison patients for all treated patients such that the only difference between the group of 

treated patients and comparison patients, after matching, is the treatment itself.  This 

independence between treatment assignment and potential outcomes is required for the 

causal model presented earlier to be valid, as: 

>Q>N;<D9 : .F K?GAP @ >N;=D9 : -F K?GAPR : >Q>N;<D�K?GAP @ >N;=D�K?GAPR
: >?;< @ ;=A 

If it were possible to find exact matches for all treated patients on all covariates, that would 

be ideal.  However, given the number of covariates typically used in clinical research, that 

goal is often unattainable.  Matching on the propensity score, or some function of the 

propensity score, instead of on individual covariates allows for multivariate matching 

through the use of a scalar balancing score.   

The goal listed above contain a few, sometimes competing ideas.  First, the distance 

between covariates for individual sets of matched patients should be as minimal as possible.  

Second, the total distance between covariates for the matched groups should be as minimal as 

possible.  And third, all treated patients should be matched.  Regarding the first two, there are 

many ways to specify how propensity score matching is accomplished (Rosenbaum & Rubin, 

1985a), some that prioritize patient-level distance and some that prioritize group-level 

distance.  These will be discussed below.  But the third idea is also important.  Incomplete 
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matching occurs when there are treated patients without suitable matches from the 

comparison group.  Rosenbaum and Rubin (1985) demonstrated that incomplete matching 

opens the door for bias in the resulting effect estimates, especially if the response curves for 

each study group are not parallel across all levels of the propensity score. 

The most commonly used matching method is greedy matching.  To perform a greedy 

match, patients in the treatment group are matched, one by one, to the closest matching 

patient in the comparison group.  Once a match is made, both patients are removed from the 

pool of eligible patients used for matching and there is no reconsideration of the complete 

matches.  An alternative to greedy matching is optimal matching.  Instead of prioritizing 

close matches at the patient-level, optimal matching methods seek to minimize the total 

distance between the treated and comparison groups among the matched patients.  This 

process is more intensive computationally in that it is iterative and does not often have a 

closed-form solution.  Research has found some advantage of using optimal matches to 

achieve balance, although greedy matching has been found to balance study groups 

adequately (Gu & Rosenbaum, 1993; Rosenbaum, 1989).   

Other issues related to the mechanics of matching include the use of calipers 

(D’Agostino, 1998) and the number of treated and comparison patients in the matched sets.  

Using calipers when matching means that two patients whose propensity scores are farther 

apart than the set caliper size cannot be matched.  There is some evidence to indicate that this 

may be beneficial for balance when any of the covariates to be matched are continuous 

(Austin, 2011), although this usually means that some treated patients will not have any 

eligible comparison patients for matching.  And while most matched sets include one treated 

and one comparison patient, matching multiple comparison patients to a single treated patient 
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in a fixed m:1 ratio has shown mixed results.  Austin (2010) found that matching multiple 

patients from the comparison group to each treated patient, if sample size allows, may lead to 

better efficiency of the treatment effect estimate.  Hansen (2004), on the other hand, has 

shown that the use of multiple comparison patients per treated patients can actually introduce 

substantial imbalance on covariates between the matched sets.  As a more flexible option, Gu 

and Rosenbaum (1993) showed that “full” matching—using all records in the data and 

allowing for unequal sized matching sets—may be an even better strategy. 

Once a matched sample has been created, the outcomes analysis proceeds using usual 

methods.  Analysis with unequally sized matched sets, resulting from methods like “full” 

matching, require conditional statistical methods, accounting for the matched sets.  In fact, 

some insist that conditional statistical methods should be used in all cases (Austin, 2008), 

while others disagree that it is essential for 1:1 or 1:m matching (Hill, 2008).  Advantages of 

propensity score matching include ease of implementation and analysis.  As usually 

performed, disadvantages include reduced sample size that is representative of the treated 

population, not the overall population.  Estimates generated from this method are not the 

average treatment effect of the population, but the average treatment effect among the 

treated, which can be a different quantity.  

Propensity score weighting is more appropriately called inverse probability of 

treatment weighting (IPTW).  Each patient is weighted by the inverse of the estimated 

probability that they would have, based on their covariate, received the treatment they were 

assigned.  For treated patients, this weight is just the inverse of the estimated propensity 

score.  For comparison patients, this weight is the inverse of 1 minus the propensity score, as: 

ST : .U?9T : .AKVW?GA X U?9T : -A?. @ KVW?GAA 
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This weighting creates pseudo-populations in which the covariates are no longer associated 

with the outcome.  There is a direct relationship between these weights and post-stratification 

weights based on Horvitz-Thompson estimators in the survey sampling literature (Horvitz & 

Thompson, 1952).  The weight above is based on a point exposure.  IPTW methods can be 

extended for exposures that vary over time.  If appropriate time-varying covariates are also 

available, the marginal structural model (Robins et al., 2000) is one such extension that 

entails re-estimation of the propensity score and reweighting at multiple time points during a 

follow-up period. 

Once weights are assigned, they can be used within usual analytic methods.  Because 

the weights are based on estimated propensity scores that have their own variance, however, 

standard errors should be estimated appropriately, using bootstrapping or derived formulas 

(for example, Lunceford & Davidian, 2004).  An advantage of IPTW is that it utilizes all 

study subjects.  Unlike matching, this means the estimand associated with IPTW is the 

average treatment effect, so the results are generalizable back to the source population that 

generated the treated and comparison patients.  Of course, because all patients are utilized, 

problems can arise if there are values of the propensity score for which no treated (or 

comparison) patients can be found, as this violates one of the basic assumptions of propensity 

score analysis.  A disadvantage of IPTW is that results are subject to extreme weights, which 

occur when patients who are very likely to be treated are not treated and vice versa.  

Stabilized versions of the weight may alleviate some of these problems, by rescaling all 

weights around 1.0 to prevent very large weights from affecting the calculations and results. 
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Assessing Covariate Balance 

For valid inference, all propensity score methods aim to make the treatment 

conditionally independent of the potential outcomes given measured covariates.  One way to 

check the success of the propensity score method chosen is to measure the covariate balance 

between the treatment and comparison groups after matching on the propensity score (or on 

some function of the propensity score) or after weighting by the inverse probability of 

treatment.   

The measure most frequently recommended for balance is the standardized 

difference, (Rosenbaum & Rubin, 1985a).  The standardized difference is a metric for 

determining the distance between two samples for a given covariate free of the effects of 

sample size.  For continuous variables, the standardized difference, d, is defined as: 

Y : ?Z[\ @ Z[]A^_\̀ X _]̀,
 

Note that this difference depends only on the sample means and a pooled estimate of 

standard deviation.  The analogous measure for dichotomous variables (Austin 2009) is often 

given as: 

Y : ?a\ @ a]A^a\?. @ a\A X a]?. @ a]A,
 

Variables are usually assessed one at a time and said to be balanced if the standardized 

difference is less than 0.10 between groups.  It is often helpful to show the standardized 

difference in both the original sample and the matched or weighted sample, to demonstrate 

the reduction in imbalance that resulted from the specific propensity score methods being 

utilized.  Standard hypothesis testing is not recommended for the assessment of balance since 
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the sample size in the matched cohort or weighted cohort could vary from the original 

sample, resulting in potential differences in statistical significance due to sample size alone.   

It may be more appropriate to assess the distance between the matched (or weighted) 

treatment and comparison samples across all measured variable simultaneously, instead of a 

single variable at a time.   A multivariate distance metric like the Mahalanobis distance,  

Y : ^?xb @ xcA\Sde?xb @ xcA 
based on the mean vectors x\ and x] for the treated and comparison groups, respectively, and 

the pooled covariance matrix S (Mahalanobis, 1936), would result in a scalar that could be 

used for this purpose.  Currently, however, there is no guidance on the use of such a measure 

within propensity score-based analyses.   

 

The Role of the Provider in Clinical Research 

Provider Effects on Treatment and Outcome 

In clinical practice, a provider is the individual or collection of individuals that 

provides healthcare to patients.  This could be an individual physician, a physician practice, a 

clinic, or even a hospital.  Practically, in research evaluating specific healthcare treatments, 

providers are often whatever identifiable unit available in the data is most proximate to the 

assignment of that treatment to the patient.  Substantial evidence exists to demonstrate that 

providers can have profound effects on both treatment assignment and outcomes. 

The Dartmouth Health Atlas is a primary source of information about how the 

likelihood of treatment varies by location, beyond that which would be expected by patient 

characteristics alone.  They note that some care is preference-sensitive—varying because of 

physician preferences for different alternative treatments—and some care is supply-
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sensitive—varying because of differences in physician availability or technological capacity 

(Wennberg, 2002).  Recent research based on Dartmouth Health Atlas data has demonstrated 

that there is, often substantial, regional variability in rates of joint replacement procedures 

(Fisher et al., 2010), interventional carotid procedures (Goodney et al., 2010), and even 

prescription drug utilization (Munson et al., 2013).  

Diffusion of technological and pharmaceutical innovations is another factor in the 

differences between treatment rates by provider.  Research has suggested that certain 

provider factors are associated with adoption of newer treatments.  For example, providers 

associated with an oncology research network were more likely to implement novel 

diagnostic procedures (Carpenter et al., 2011); larger hospitals and teaching hospitals were 

more likely than other hospitals to adopt robotic surgical technology (Barbash et al., 2014); 

and prescription of novel schizophrenia drugs varied by location in ways that correlated with 

the distribution of ethnic minorities (Horvitz-Lennon, Alegría, & Normand, 2012).  All of 

these mechanisms of diffusion affect the probability that a patient will receive the treatment 

and may also be relevant for patient outcomes.  

There is also abundant research demonstrating that providers have effects on 

outcomes.  Some of the earliest organized programs to publicly report provider quality was 

undertaken by cardiac surgeons.  Patients in New York (New York State Department of 

Health, 2012), Massachusetts (Massachusetts Department of Public Health, 2013), and 

Pennsylvania (Pennsylvania Health Care Cost Containment Council, 2013), among others, 

have access to reports detailing physician-specific risk-adjusted mortality rates associated 

with common cardiovascular surgical procedures.  Similarly, the Hospital Compare program 

was initiated by the Centers for Medicare and Medicaid Services (web) to report on and draw 
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attention to hospital-level differences in outcomes experienced by patients hospitalized for 

specific conditions.  Published reports based on these data demonstrate the hospital-level 

variability in short-term mortality and readmission outcomes, after controlling for patient 

factors, among patients admitted for pneumonia, heart failure and acute myocardial infarction 

(Bernheim et al., 2010; Krumholz et al., 2009; Lindenauer et al., 2009).  And the Dartmouth 

Health Atlas, in addition to documenting different in treatment rates, reports differences in 

outcomes by geography (Goodman, Fisher, & Chang, 2011). 

Health services researchers have delved into reasons why certain providers may have 

different outcome profiles.  They have found differences associated with whether or not the 

hospital was located in an urban or rural setting (Casey, Burlew, & Moscovice, 2010; 

Goldman & Dudley, 2008); whether or not the hospital was a teaching facility (Shahian et al., 

2012); whether or not the hospital was considered a safety net hospital treating primarily 

uninsured or underinsured patients (Ross et al., 2007); and to what extent the hospital 

invested in major medical equipment and information technology (Coye & Kell, 2006).  

Even within these broad categories of hospitals, however, there was still broad variation. 

 

Provider as a Confounding Factor 

Figure 1.1 shows the potential role of providers in an analysis of a treatment on an 

outcome.  If, controlling for measured patient factors, providers do not exert an effect on 

either treatment assignment or outcome (panel A), then provider is not a confounding factor.  

If, on the other hand, provider exerts either a direct or indirect effect on both treatment and 

outcome (panel B), provider is a confounding factor.  Direct effects on outcomes could be 

provider-specific factors such as the skill or experience of a surgeon or the care processes in 
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place at a hospital.  Indirect effects on outcomes could arise if providers don’t have a direct 

influence on the outcome, but the patient population they serve is distinct in ways that may 

advantage or disadvantage their outcomes.  Factors that may differentiate patient populations 

could include socioeconomic status, disease severity, or cultural attitudes toward healthcare, 

in general.  As examples, providers who serve distinct patient populations could include 

those at safety net hospitals that treat the uninsured and those at exemplary hospitals that 

attract the most difficult cases for a specific condition.  A key point is that whatever is 

generating the provider effect is otherwise unmeasured.  To account for provider is to 

control, implicitly, for all these other factors that are common to their patient population, but 

different from other providers’ patient populations.   

There are numerous examples within the epidemiology literature where the idea that 

providers have an effect on outcome is explicitly discounted.  Arguing that this provider-

outcome link is ignorable (Walker, 2013) allows them to leverage the variability in provider 

treatment rates as instrumental variables (Brookhart & Schneeweiss, 2007).  Such 

preference-based instruments have been used to estimate the safety and effectiveness of 

specific pharmaceutical therapies (Rassen et al., 2010; Schneeweiss et al., 2006), radiation 

therapy among prostate cancer patients (Sheets et al., 2012), and drug-eluting stents among 

patients undergoing coronary interventions (Venkitachalam et al., 2011). 

Of course, these epidemiologic studies may not be wrong to ignore the provider-

outcome link.  The specific treatments, outcomes, and healthcare settings involved may 

affect whether or not the analysis question suffers from confounding by provider.  For 

example, outcomes of surgical treatments are subject to direct physician effects in ways that 

outcomes of pharmaceutical treatments are not.  Similarly, brief office visits may not be 



15 

associated with the intensity of care that is associated with hospital stays.  And finally, 

provider effects may be of primary interest in the study of short-term outcomes, as compared 

to long-term outcomes.  Indirect provider effects—those associated with the patient 

population served—should be less differentiated by specific treatment or setting, however. 

As noted by Bhattacharya and Vogt (2007), because there is no test to determine if a 

variable is an instrument, researchers must use their own understanding of the problem to 

guide them.  And because providers have been documented as affecting both treatment and 

outcomes, it is reasonable to at least consider them as potential confounding factors in any 

analysis examining treatment effectiveness.  Clinical trials routinely stratify randomization 

by provider to account for potential confounding at the provider level (Friedman, Furberg, & 

DeMets, 2010); and the importance of accounting for clustering by provider within 

observational clinical studies is recognized (Localio, Berlin, Ten Have, & Kimmel, 2001).  

Specific to the propensity score methods of interest here, excluding provider when it is truly 

a confounding factor should result in biased estimates of treatment effect just as it would if 

we excluded any confounding factor (Brookhart et al., 2006; Austin et al., 2007).   

 

Accounting for Provider in Propensity Score Methods 

Assuming for a particular clinical question that provider acts as a confounding factor 

between an exposure and an outcome, then it needs to be accounted for in the methods.  As 

with any confounding factor in a propensity score analysis, the goal is to achieve balance in 

the distribution of that factor between treatment groups.  Currently, there is no consensus 

about how best to incorporate provider into an analysis that utilizes propensity score 

methods.  Note that because propensity score matching and inverse probability of treatment 
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weighting are the most theoretically sound and most commonly utilized propensity score-

based methods, these will be the only methods discussed in this section.   

For inverse probability of treatment weighting, the decision to incorporate provider 

effects into the treatment model should be all that is needed.  This will be typically be done 

using a set of provider-specific indicator variables as covariates, specified as either fixed 

effects or random effects in the logistic regression predicting treatment.  These covariates 

may allow for provider-specific intercepts and/or provider-specific covariate effects.  Typical 

model fit metrics can be used to guide the specification of the model.  A full review of the 

choice between using fixed or random effects will not be undertaken here, but factors such as 

the number of providers, the average number of records per provider, and the overall 

treatment prevalence should guide the decision.   Weights based on probability of treatment 

estimates from such a model should balance providers between study groups along with 

balancing all other covariates.  There should be no assumption that provider will balance 

between study groups if not included in the treatment model.   

For propensity score matching, there are two ways to incorporate provider into the 

analysis.  First, in the treatment model, as described above.  Second, as strata within which 

the matching takes place.  This leads to a few possible strategies: (1) Matching within 

provider based on a treatment model that ignores provider; (2) matching within provider 

based on a treatment model that incorporates provider; or possibly (3) matching across 

providers based on a treatment model that incorporates provider.  The first strategy could be 

problematic.  If provider is not included in the treatment model, the parameter estimates 

associated with the other covariates will be biased (Neuhaus, Hauck, & Kalbfleisch, 1992) 

and will not reflect the actual, within-site treatment assignment mechanism.  This may be a 
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problem for matching when there are substantial between-site differences in the distribution 

of covariates at the patient level.  The second strategy would account for this potential 

problem.  The third strategy does not guarantee balance on providers by study group.  Since 

matching necessarily only results in a fraction of the original study sample being utilized, it 

may be that treated patients at providers with high treatment rates may match to comparison 

patients at providers with low treatment rates. 

 

Prior Research on Clustering and Propensity Score Methods 

 Much of the previous research on incorporating clustering into propensity score 

analyses has taken place within the social science literature to evaluate educational 

interventions applied to students within schools.   Hong and Raudenbush (2006) were some 

of the first researchers to attempt to incorporate school membership into a propensity score-

based analysis.  Their question of interest was whether or not grade retention (i.e. holding a 

student back a grade), compared to social promotion, led to increased academic learning.  

Because some schools are more likely than others to retain students making slow progress, 

they incorporated school effects into the grade retention (treatment) model.  The resulting 

propensity scores were used to create strata of students within which outcomes were 

compared.  There were other aspects of their analysis—later formalized (Hong, 2010) and 

called marginal mean weighting through stratification—that went beyond the standard 

propensity score approach.  

Similar to Hong and Raudenbush, Thoemmes & West (2011) studied the effect of 

early grade retention on future test scores using propensity score stratification.  They 

performed substantial simulation work that examined stratifying within schools and across 

schools using treatment probabilities from both pooled models and hierarchical models.  
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When the intraclass correlation of the covariates was low, there were very few differences in 

the results by stratification method or treatment model.  When intraclass correlation was 

high, the within-school stratification methods outperformed the across-school methods, as 

long as a treatment model that allowed for school-specific effects was used. 

Arpino and Mealli (2008) and Kelcey (2011) approach the problem of cluster-level 

confounding as a missing variable problem.  Although this may implicitly be the scenario 

described earlier, both of these researchers explicitly generated data for their simulation work 

using contextual, or cluster-level, factors that were then treated as unmeasured.  Using 

propensity score matching, their results were similar to those from Thoemmes and West, 

above, in that methods were least biased if the treatment model incorporated cluster in some 

way.  Additionally, they found that within-cluster matching based on a pooled treatment 

model did not perform well. 

Kim and Seltzer (2007) was interested in evaluating a program that provided 

enrichment during high school to certain students, with the goal of promoting enrollment in 

post-secondary education.  As with many researchers in the education literature, one of their 

primary focuses was estimating school-specific treatment effects.  [The only example found 

in the clinical literature that used propensity score methods and considered estimating 

provider-specific treatment effects was Griswold, Localio, and Mulrow (2010), summarized 

below.]  While they do not present any simulation results, they discuss and demonstrate 

matching on propensity scores within site; noting that treatment models which allow for 

random slopes and intercepts will balance student-level factors within schools better than 

treatment models that do not.   
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 There has been some work on or discussion about incorporating clustering into 

propensity score analyses within the clinical literature as well.   One of the earliest articles 

that discussed the role of provider as a potential confounding factor within clinical research 

was Joffe, et al. (2004).  From their perspective, there was widespread understanding that 

provider may affect outcome, but there was less understanding that they may also affect 

treatment assignment.  They propose that marginal structural models or inverse probability of 

treatment weighting could be done using weights based on provider-specific probabilities of 

treatment and demonstrate this within an analysis of the complication rates associated with 

different type of coronary percutaneous interventions.  They found substantial differences in 

results when provider-specific weights were used compared to weights from a pooled 

treatment model was used.  

In a short editorial, Griswold, et al. (2010) noted that a safety study regarding proton 

pump inhibitors (Ray et al., 2010) used propensity score methods without accounting for 

provider.  They reanalyzed the data incorporating provider in the treatment model in multiple 

ways—as fully stratified models and as hierarchical models with provider-specific random 

effects.  They used propensity score covariate adjustment and found no differences in the 

overall conclusions.  They concluded by suggesting that researchers using propensity score 

methods run sensitivity analyses that incorporate provider, to see if the results are robust.   

 A working group report from the Mini-Sentinel program (Cook, et al. 2012) 

examined whether or not effect estimates from analyses that used inverse probability of 

treatment weighting where the treatment model was estimated correctly (i.e. incorporating 

provider) using all data were comparable to an IPTW analysis where the treatment model 

was fully stratified by provider.  This work answers a slightly different question than other 
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research that compared methods that did or did not ignore provider.  Their research question 

was less about whether or not providers (or data partners, in their project) were sources of 

confounding, and more about whether or not combining treatment estimates generated by 

each provider using IPTW would result in similar estimates from a pooled approach.  This 

question is important for their program since patient-level data cannot leave the data partner, 

requiring all analyses to be stratified.  They found that results between methods were similar 

when estimating the risk difference.   

Li, Zaslavsky, and Landrum (2013) examined, in more theoretical detail, methods to 

incorporate clustering into analyses that use inverse probability of treatment weighting.  In 

simulation studies, they found that modeling the propensity score correctly, by including 

cluster-specific parameters, resulted in less bias than methods that ignore cluster.  They also 

showed, as may be expected, that estimates were more efficient when there were large 

clusters, as opposed to small clusters.  Their data generation process was complicated in 

many ways.  Similar to work described above, they generated data including a cluster-level 

covariate that was then ignored in the estimation of the treatment model.  In the outcome 

model, they also specified cluster-specific treatment effect heterogeneity in addition to 

cluster-specific intercepts.  Finally, the clinical example presented was unusual.  They 

estimated the “average controlled difference” in receipt of breast cancer screening between 

black patients and white patients.  Race is the type of non-manipulable exposure that fails to 

satisfy the requirements of the potential outcomes framework (Hernán, 2005). 

 Drawing conclusions from this prior work is challenging.  Results from simulations 

seem to indicate that incorporating cluster into the treatment model is important for achieving 

balancing and minimizing bias in the treatment effect estimate when there is strong cluster-
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level confounding and/or large differences in covariate distributions between clusters.   

Results from actual clinical questions analyzed with and without provider-specific propensity 

score methods sometimes demonstrated a difference in the results and sometimes did not.  It 

is likely that the characteristics of the data used for these questions were responsible for these 

findings, but relatively little is known about the data conditions that should lead researchers 

to anticipate problems. 

 

Objectives of the Current Research 

 There are a number of unanswered questions regarding the use of propensity score 

methods in situations where confounding by provider exists.  The chapters that follow will 

address a few key, practical issues that should guide researchers.  Chapter 2 will examine the 

impact that different data scenarios have on the results of propensity score analyses when 

confounding by provider exists.  Specifically, it is assumed providers exhibit a distribution 

on treatment rate, outcome rate, population size, and distribution of patient characteristics.  

When using propensity score matching or inverse probability of treatment weighting 

methods, it is not known whether the mere existence of these differences leads to bias or if 

these factors need to be correlated for there to be an important effect on the results.   

Chapter 3 will address the question of whether or not there are risks to incorporating 

provider into propensity score methods when the provider effects on treatment and outcomes 

are not correlated.  In addition, we will explore whether or not the standard errors associated 

with estimates based on different propensity score methods properly account for the 

clustering of patients within providers.  Most researchers, when using multivariable 

regression models, will incorporate provider in some manner if clustering by provider exists 

in the data, so perhaps that should be a default for propensity score analyses as well.    
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Chapter 4 will present a SAS macro for performing optimal matching and full 

matching on the propensity score, as alternatives to less optimal greedy matching methods.  

Full matching, in particular, does not result in reduced sample size and should lead to more 

efficient treatment estimates compared to greedy matching.  The macro includes a provision 

to match within strata, like providers.  While full matching was proposed as a propensity 

score matching method decades ago, its use is limited due to the complexity of 

implementation.  This goal of the SAS macro and of this paper is to make full matching 

methods available to researchers. 

Each of these chapters will provide an applied clinical research example.  In addition, 

Chapters 2 and 3 will include results from Monte Carlo simulations.   
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Figure 1.1. Potential relationships between treatment (A), outcome (Y), measured patient factors (X), unmeasured patient factors (U), 
and healthcare provider (P) 

A

Provider is not a confounding factor 

B

Provider is a confounding factor 
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CHAPTER 2 

DATA CHARACTERISTICS AND THE PERFORMANCE OF PROPENSITY  
SCORE METHODS IN THE PRESENCE OF CONFOUNDING BY PROVIDER 

Introduction 

In comparative effectiveness research, confounding may arise at the level of the 

healthcare provider because both treatment assignment and outcome can vary by provider.  

Numerous studies have documented the variability of treatment rates by geography (e.g. 

Wennberg, 2002; Fisher et al., 2010; Munson et al., 2013) or provider (e.g. Carpenter et al., 

2011; Barbash et al., 2014).  Treatment rates may differ for a variety of reasons, including 

differential rates of adoption for new therapies or simple provider preferences for a specific 

therapy.  In addition, there is evidence that outcomes differ by provider.  Provider profiling 

reports produced by Hospital Compare (Centers for Medicare and Medicaid Services, web) 

and regional programs (e.g. New York State Department of Health, 2012; Massachusetts 

Department of Public Health, 2013; Pennsylvania Health Care Cost Containment Council, 

2013) among others, demonstrate that substantial provider-level variation exists in different 

patient populations after controlling for patient risk.  These differential outcomes may result 

from provider differences in the quality of patient care or from unmeasured differences in 

provider case-mix.  

Previous research on the use of propensity score methods in the presence of 

confounding by some clustering level, such as provider, has demonstrated the risks of 
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ignoring cluster in the analysis (Thoemmes & West, 2011; Arpino & Mealli, 2008; Kelcey, 

2011; Li, Zaslavsky, & Landrum, 2013).  These risks include inefficient or biased treatment 

effect estimates.  Previous applications of propensity score methods, however, have been less 

conclusive about the benefit of conditioning on provider (Joffe, 2004; Griswold, Localio, & 

Mulrow, 2010).  Compared to results from pooled analyses that ignore provider, sometimes 

the results have differed and sometimes they have been similar.  It is very likely that the 

characteristics of the data, for both simulation work and real-world clinical examples, dictate 

when incorporating provider into propensity score methods is most essential. 

Relevant provider-level data characteristics include treatment rate, outcome rate, 

patient population size, and average patient characteristics.  For there to be confounding by 

provider, it is necessary that providers exhibit a distribution on treatment rate and outcome 

rate beyond that expected by the characteristics of the patients they care for.  Additionally, it 

is reasonable to expect that providers differ by the size of their patient population and by the 

distribution of patient characteristics.  I conducted a simulation study to explore whether or 

not the mere existence of these differences leads to bias and inefficiency in the treatment 

effect estimate or if these factors need to be correlated for there to be important effects on the 

results.  We then explored the characteristics of provider data in a clinical example.  

 

Simulation Study 

We used Monte Carlo methods to simulate situations where patients were clustered 

within healthcare providers, and where those providers exhibited effects on both the 

treatment assignment and the resulting outcome of patients, independent of the observed 
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patient-level covariates.  We were specifically interested in examining different cluster-level 

specifications within the data generation process.  

 

Data Generation Process 

For each provider j in the simulated data, we first generated provider-level 

information that was subsequently used to generate patient-level data.  Specifically, we 

generated five random variables—fgF O<gF higF jgF kg—distributed as: 

��NfgPlm?nF -+/A 
O<glm?@.F -+/A 
higlm?-F .A 
jglm?-F .A 
kglm?-F .A 

These variables were generated with the following correlations: 

o
pq

. rst rsu rsv rswrst . rtu rtv rtwrsu rtu . ruv ruwrsv rtv ruv . rvwrsw rtw ruw rvw . x
yz :

o
pq

. - {su {sv {sw- . - - -{su - . - -{sv - - . {vw{sw - - {vw . x
yz 

The correlations that remain unspecified are noted below in the specific data scenarios.   

Each of these provider-level variables has a specific purpose.  The number of patients 

per provider was set by fg, which was rounded to the nearest integer.  The distribution of 

provider sizes is log-normally distributed and the mean of the log-distribution ?nA was set to 

either 5.0 to generate “large” providers or 3.5 to generate “small” providers.  The large 

providers range in size (based on ±2 standard deviations) from about 55 to 400 patients.  The 

small providers range in size from about 12 to 90 patients.  The proportion of patients within 
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each provider having characteristic |<F�described below, is determined by O<g. Provider-level 

proportions for this variable ranged from about 12% to 50%.  The provider-level mean value 

of |iF�described below, is determined by hig. And the values of jg and  kg are deviations 

about the overall intercept in the treatment and outcome models, respectively.  The terms 

O<gF higF jgF�and�kg all induce intraclass correlation for the associated covariates, for the 

treatment, or for the outcome.   

Next, for each patient } within provider ~, we generated four random variables—

|<TgF |`TgF |�TgF |iTg—distributed as: 

|<Tgl�K�f �logitd<NO<gP� 

|`Tglm?h`F .A 
|�Tglm?h�F .A 
|iTglmNhigF .P 

The terms O<g�and�hig�are provider-specific terms described above and resulted in intraclass 

correlations of about 0.10 and 0.50 for |< and |i respectively. The terms h`�and�h��are set 

based on the value of |<Tg+  When |<Tg : .F�then h` : -+/�and�h� : @-+/.  When |<Tg :
-F�then h` : @-+/�and�h� : -+/.  The three normal random variables were generated with the 

following correlations: 

� . r��F�� r��F��r��F�� . r��F��r��F�� r��F�� . � : � . @+� @+.@+� . + .@+. + . . � 

The idea was to generate a set of covariates for each patient that exhibited interesting 

correlation and were not all independent of each other.  
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We then randomly assigned each patient a treatment, Aij, as a Bernoulli random 

variable having a mean parameter equal to probability pij,A, which was determined by the 

following function: 

logitNaTgF�P : �= X jg X �<|<Tg X �`|`Tg X ��|�Tg X �i|iTg 

The parameters ��=F �<F �`F ��F �i� were fixed within all simulations to the values [–1.5, 

ln(1.5), ln(1.5), ln(0.8), ln(0.67)].  This yielded a treatment rate of just over 20%. We also 

randomly generated an outcome, Yij, for each patient as a normal random variable having a 

standard deviation equal to 1 and a mean parameter equal to �ij,Y, which was determined by 

the following function: 

BTgF� : �= X kg X �<|<Tg X �`|`Tg X ��|�Tg X �i|iTg X �\�\9Tg 

The terms jg�and�kg�are provider-specific terms described above, leading to intraclass 

correlations of about 0.25 and 0.50 for the treatment and outcome, respectively.  While some 

of the intraclass correlations indicated may be higher than typically seen in actual data, they 

serve to make patterns in the results more recognizable.  The parameters 

��=F �<F �`F ��F �iF �\�\� were fixed within all simulations to the values [0, –1, –1, 1, 1, 2].  

This resulted in an observed outcome equal to about 0.8 in the unexposed group. Note that 

covariates associated with higher probability of treatment were associated with lower 

outcomes values, and vice versa.  If we assume that a higher outcome value is optimal, then 

the treatment is working to improve outcomes and is assigned most frequently to the patients 

that would otherwise have poor outcomes. 
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Simulation Scenarios 

We generated 1000 data sets with “large” providers and 1000 data sets with “small” 

providers for six different scenarios involving correlations between the provider-level 

quantities generated—provider size, mean of |i, deviation from average treatment rate, and 

deviation from average outcome.  Scenario #1 specified zero correlation between each of 

these quantities.  Scenario #2 specified a positive correlation between provider size and 

deviation from average treatment rate ?{sv : -+/A; meaning large providers were more 

likely than average to assign treatment.  Scenario #3 specified a positive correlation between 

provider size and deviation from average outcome ?{sw : -+/A; meaning large providers 

were more likely than average to be associated with better outcomes.  Scenario #4 specified a 

positive correlation between provider size and mean of |i�?{su : -+/A; meaning larger 

providers were more likely to have higher averages for that covariate.  Scenario #5 specified 

a positive correlation between a provider’s deviation from average treatment rate and it’s 

deviation from average outcomes ?{vw : -+/A; meaning providers that were more likely to 

assign treatment were also more likely to have better outcomes.  And scenario #6 specified 

each of these correlations simultaneously.   

Within each generated data set, we applied different of propensity score matching and 

inverse probability of treatment weighting methods.  After matching or weighting, we 

estimated the balance between treatment and comparison groups with respect to both 

covariates and providers and we estimated the treatment difference. 
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Propensity Score Methods 

We first estimated three different treatment regression models.  All models were 

specified as generalized linear models with logit links and binary error distributions having 

treatment A as the dependent variable and patient-level covariates X1 to X4 as predictors.  

They differed in how provider was incorporated.  The first, or pooled, model ignored 

provider.  The second model incorporated provider through the specification of provider-

specific fixed effects.  The third model incorporated provider through the specification of 

random effects as provider-specific deviations around the intercept.  These random effects 

were assumed to be normal with mean 0 and this third model was estimated using 

generalized linear mixed model methods. 

Using the predicted probabilities of treatment from each of the models described 

above, we applied two general propensity score-based methods—propensity score matching 

(Rosenbaum & Rubin, 1985) and inverse probability of treatment weighting (Robins, 

Hernán, & Brumback (2000); Hirano & Imbens, 2001).  Inverse probability of treatment 

weighting (IPTW) creates pseudo-populations in which the other measured covariates are not 

associated with treatment, allowing outcomes between the weighted study groups to be 

compared directly.  Patient-level weights were calculated as the inverse of the estimated 

probability of receiving the treatment that the patient actually received.  For a patient that 

received treatment, this weight was the inverse of the predicted probability generated from 

the treatment models.  For a patient in the comparison group, this weight was the inverse of 1 

minus the model-based predicted probability.  Propensity score matching creates sets of 

treated and comparison patients on the basis of their estimated propensity scores.  Outcomes 

can be compared between the matched sets.  We made 1:1 matches between treated and 
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comparison patients both within provider and ignoring provider.  Matches were made on the 

linear predictor from each treatment model using a greedy matching algorithm within 

calipers having a width of 0.2 SD of the linear predictor (Austin, 2011).   

To estimate the adjusted effect of treatment on outcome when using IPTW methods, 

we calculated the difference between the weighted mean outcomes for each study group.  To 

estimate the adjusted effect of treatment on outcome when using propensity score matching, 

we calculated the difference between the mean outcomes for each study group among the 

matched patients.  For comparison to the treatment effect estimated by these propensity score 

methods, we estimated the observed treatment effect by taking the difference between the 

mean outcomes for each study group in the full data set prior to weighting or matching.   

 

Metrics 

Within each simulation scenario and for each combination of propensity score 

method and treatment model, we describe the validity and efficiency of the treatment effect 

estimates.  Metrics to assess the treatment effect estimates include the mean, bias, variance, 

and mean squared error of each estimator, defined as: 

Mean : �d< � C�����< : C� 

Bias : C� @ C\�\ 

Variance : ?� @ .Ad< � �C�� @ C��`���<  

Mean squared error : �d< � �C�� @ C\�\�`���<  

where S is the number of simulated data sets; C\�\ is the true treatment effect; and C�� is the 

estimated treatment effect for data set s.   
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All simulations were conducted in SAS version 9.3 (SAS Institute Inc, Cary, North 

Carolina).  Sample SAS code for estimating propensity scores, calculating weights, 

performing matching, and estimating treatment effects and standard errors is shown in 

Appendix 1. 

 

Simulation Study Results 

Table 2.1 reports the simulation results for inverse probability of treatment 

weighting.  The most striking result occurred for the scenarios where the provider-level 

average treatment rate was correlated with the outcome rate, even after controlling for patient 

characteristics (#5 and #6).  In these situations, using weights based on a treatment model 

that does not incorporate provider effects yielded substantially biased estimates of treatment 

effect.  Including provider-specific effects into the treatment model, as either fixed or random 

effects, largely ameliorated this problem.  These findings were true for both small providers 

and large providers.   

 For the other simulation scenarios (#1 through #4), when the provider sizes were 

small, the results were less clear.  In each of these four scenarios, weights based on the 

pooled treatment model led to treatment effect estimates with the lowest mean squared error.  

Use of weights based on a treatment model that included provider-specific random effects 

tended to produce estimates that were less biased than those based on other weights.  But 

these estimates also tended to have higher variance, resulting in little, if any, reduction in 

mean squared error compared to estimates based on other weights.  Weights based on a 

treatment model with fixed provider-specific effects were consistently biased.   
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When provider sizes were large, some of these inconsistencies disappeared.  Weights 

based on a treatment model that included provider-specific random effects were least biased, 

and these estimates exhibited similar mean squared error to those from weights based on a 

treatment model with fixed provider effects.  Results from using a pooled treatment model 

always had highest mean squared error.   

Table 2.2 reports the simulation results for propensity score matching that was not 

conditional on provider.  Similar to results based on weighting, results from unconditional 

matches based on estimates from the pooled treatment model were severely biased when the 

provider-level outcome rate was correlated with the provider-level treatment rate.  Unlike 

above, this problem did not always disappear when matching was done based on estimates 

from provider-specific treatment models.   

For small providers, unconditional matches made based on results from treatment 

models that incorporated providers as fixed effects resulted in treatment effect estimates that 

exhibited substantial bias across all scenarios.  Using random effects instead did not 

completely solve the problem for small providers either.  In fact, within small providers, the 

least biased estimates for Scenarios #1 through #4 were those from matching based on 

estimates from the pooled treatment model.  The variability of these estimates, however, was 

always higher.  

Matching without regard to provider, when provider sizes were large, exhibited more 

predictable behavior.  Estimates from matching based on treatment models with provider-

specific random effects had the lowest mean squared error.  And estimates from matching 

based on pooled treatment models had the highest mean squared error—sometimes five or 
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times as high as others within the same simulation scenario.  This inflated MSE was not due 

to higher bias, but rather to substantially more variable estimates. 

Table 2.3 reports the results for propensity score matching performed within 

provider.  Across all of the simulation scenarios and all of the treatment model specifications, 

results were remarkably similar.  In general, both bias and variance of the treatment estimates 

were minimal—especially when compared to results obtained from unconditional matching 

(Table 2.2).  While the mean squared error for estimates from matching within provider 

based on results from the pooled treatment model was always higher than those from 

matching based on results from either provider-specific treatment model, the differences 

were not substantial.  The problem noted above for the other two methods—when provider-

level treatment and outcome rates were correlated and a pooled treatment model was used—

was not found here.   

 

Clinical Example

 To demonstrate the potential impact of these different statistical methods, we present 

an analysis of the association between receipt of high-dose intravenous loop diuretics and in-

hospital mortality among a population of patients admitted to the hospital for acute 

decompensated heart failure.  Intravenous diuretics are a recommended therapy to address 

volume overload in patients with decompensated heart failure.  Loop diuretics act in the 

kidney to block sodium and water reabsorption, which leads to effective symptomatic relief 

and decreased blood pressure.  The benefits associated with diuretic use need to be balanced 

against the potential harms.  It is suggested that diuretics, potentially because of the drop in 

blood pressure they induce, may lead to increased risk of renal dysfunction, which can lead 
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to increased morbidity or mortality.  For this reason, dosing of diuretics is important and 

should be limited to the lowest effective dose.  Receipt of high doses of diuretics are often 

observed in a hospitalized heart failure population because response to diuretics decreases as 

heart failure severity progresses.   

Higher mortality associated with high-dose diuretics has previously been reported by 

Peacock, et al. but that analysis did not consider the role of provider (Peacock, 2009).  For 

this study, providers were hospitals.  It is of interest to see if the strength or direction of the 

association changes when provider is taken into account.    Many aspects of this research 

question make it plausible that provider is a confounding factor.  Across different hospitals, it 

is likely that case-mix differs in systematic ways, leading patients who are more like each 

other to be clustered.  The exposure is directly under the control of the hospital and, at the 

time of patient enrollment, there were no guidelines regarding the ideal dosing of diuretics in 

decompensated heart failure patients.  Finally, it is possible that hospitals differ in the care 

they provide to heart failure patients, which may result in differences in outcomes by 

hospital.  

 For this analysis, we used data from heart failure hospitalizations that occurred 

between January 2001 and December 2003 and were entered into the Acute Decompensated 

Heart Failure National Registry (ADHERE) (Adams, et al., 2005).  Similar to the previous 

study, we identified patients aged 65+ years old, not on vasoactive therapy, who received 

diuretics within one day of presenting to the hospital.   The treatment of interest was receipt 

of high-dose diuretics.  The dosing window of interest was the 24 hours following initiation 

of intravenous diuretics.  A high dose was defined as �160 mg.  The comparison group 
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comprised those who received <160 mg of diuretic during that 24 hour dosing period.  The 

outcome of interest was in-hospital mortality.   

All of the propensity score-based methods and treatment model specifications used in 

the simulation study were used for this study as well.  The estimation of treatment effect 

from these data differed from the simulation study since the outcome here was binary and the 

treatment effect of interest was the relative risk.  To estimate the relative risk directly, we 

used a generalized linear mixed model with a log link and the binary error distribution.  

When applying IPTW methods, we estimated this model on the weighted patient data and 

requested robust standard errors with clusters defined by patient.  When applying propensity 

score matching, we estimated this model using only patients in the resulting matched sets.  

Generalized estimating equation methods with an exchangeable working correlation matrix 

were used to account for the potential correlation of patients outcomes within the matched 

sets.  We present the relative risk estimates and 95% confidence intervals from each method.  

All analyses were conducted in SAS v9.3. 

 

Clinical Example Results 

There were 43,434 patients within 236 providers in the study population.  The 

number of patients per provider ranged from 9 to over 1,000, with the median (Q1, Q3) equal 

to 144 (63, 259).  Among study patients, 9,469 (21.8%) were treated with a high dose of 

diuretics.  High-dose diuretic treatment rates across providers ranged from 1.6% to 55.6% 

with median (Q1, Q3) rates equal to 19.7% (12.3%, 29.8%).  Controlling for patient 

demographics, the intraclass correlation of treatment was 0.14.  This intraclass correlation 

coefficient was estimated as r : ��������� �� , where  v̀  was the estimated variance of the 
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provider random effects about the overall intercept in a hierarchical logistic model 

(Rodr�guez & Elo, 2003). 

 The observed in-hospital mortality rate in the high-dose group was 3.3%, about 30% 

higher than the rate among the low-dose group.  Outcome rates for comparison patients 

across providers ranged from 0% to over 10%. The estimated intraclass correlation of the 

outcome, estimated among the comparison patients, was 0.03.  The correlation between the 

estimated provider effects on treatment and outcomes was about –0.10. 

Table  2.4 describes the sample characteristics and outcome rates for the two study 

groups.  There were some differences between the groups with respect to age and gender.  

The high-dose group was, on average, two years younger than the low-dose group and had a 

higher proportion of males.  Many of the medical history variables were similar between the 

groups.  The largest differences were seen for chronic renal insufficiency and diabetes 

mellitus, both of which were more prevalent in the high-dose group.  The high-dose group 

also had substantially higher rates of edema at initial evaluation and higher average blood 

urea nitrogen (BUN) values than the low-dose group.   

Table 2.4 also shows the intracluster correlation of the patient characteristics.  For the 

medical history and laboratory variables, these correlations ranged from near 0 to just over 

0.06, except for hemoglobin, which had an intraclass correlation equal to 0.155.  And while 

age and gender had low intraclass correlations, those associated with race were quite high, 

around 0.40 for each category shown.  Clustering by provider was more pronounced for the 

initial evaluation characteristics.  Indications of rales and congestion had intraclass 

correlations over 0.10 and the value associated with fatigue was 0.20.   
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The relative risks estimated by each different propensity score method and treatment 

model specification are shown in Table 2.5.  Estimates from application of inverse 

probability of treatment weighting methods differed by treatment model used.  Estimates of 

the risk associated with treatment were higher when weights were based on results from 

models that incorporated provider.  The results from both matching methods did not show 

this same pattern.  However, relative risk estimates from matches made without regard to 

provider were substantially lower than estimates from matches made within provider.  The 

variability of these estimates did not appear to differ by propensity score method or treatment 

model specification. 

 

Discussion

 When a healthcare provider has measurable impacts on both a patient’s treatment 

assignment and their downstream outcomes, we found that not accounting for these provider 

effects could lead to biased estimates of relative risk when using propensity score methods.  

This was true for our simulation study specifically when a provider’s direct effect on 

treatment was correlated with their effect on outcome; a situation that occurs when providers 

with better patient outcomes use therapies at higher (or lower) rates than other providers.  

Propensity score methods that incorporated provider in some manner were able to control 

this error. 

 We examined the performance of propensity score matching and inverse probability 

of treatment weighting for estimating treatment effects across a number of data scenarios.  

For both large and small provider sizes, we examined the impact that correlation had on 

different combinations of provider-level characteristics.  We were specifically interested in 
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provider treatment rate, outcome rate, patient population size, and average patient 

characteristics.  Only scenarios that included a correlation between provider treatment rate 

and outcome rate led to bias in the resulting effect estimates when provider was not 

incorporated into the propensity score analysis.  When provider was ignored in other 

scenarios, variance of the effect estimates tended to be inflated when compared to effect 

estimates from analyses that incorporated provider.  

 These findings are consistent with prior research that found that ignoring provider, or 

some other sort of clustering, in propensity score methods led to biased estimates of 

treatment effect (Arpino & Mealli, 2008; Kelcey, 2011; Li, Zaslavsky, & Landrum, 2013).  

In the simulation work reported by these authors, the problem of cluster-level confounding 

was approached as a missing variable problem.  Data was generated that included contextual, 

or cluster-level, factors which had consistent effects on both treatment and outcome.  In the 

propensity score methods applied to these data, these cluster-level factors were treated as 

unmeasured, but cluster-level indicators were used instead.  Naturally, the effect of these 

cluster-level indicators on treatment and their effect on outcomes were correlated as a result 

of the data generation process.  That is the situation we found that led to the most bias if not 

properly handled. 

Our findings are also consistent with results from Griswold, Localio, & Mulrow 

(2010).  In a re-analysis of data from a safety study of proton pump inhibitors, they found 

that including provider effects into the propensity score treatment model did not lead to a 

different estimate of effects compared to results based on a treatment model without provider 

effects.  This result may be expected, as we have demonstrated, when the provider effects on 

treatment are not correlated with provider effect on outcome.   
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 Clusters, generally, can be incorporated into propensity score analyses in different 

ways.  First, in the treatment model, through the inclusion of either fixed or random cluster-

specific effects.  If using inverse probability of treatment weighting, creating weights from 

the results of these conditional treatment models suffices.  In our simulations, estimates 

based on these weights performed well when clusters were large, even when cluster effects 

on treatment and outcome were correlated.  For smaller clusters, IPTW may not always be 

the best choice.   

Second, cluster can be controlled directly through the use of conditional matching.  In 

our simulations, estimates based on matching within cluster performed well regardless of the 

treatment model specification and regardless of the cluster size.  The estimates having the 

least error, in general, were those from matching within cluster based on treatment models 

that incorporated cluster effects.  When the treatment rate is low and there are sufficient 

number of comparison patients available for matching within cluster, it may make sense to 

use this method as a primary strategy.   

There are times when within-cluster matching may not be the best strategy though.  

First, if there are many providers with high treatment rates, it may be impossible to match all 

treated patients with comparison patients, even using 1:1 matching.  More flexible matching, 

where the number of treatment and comparison patients within each matched set is not 

rigidly fixed, should be explored in these situations.  Second, within-provider matching 

requires that each provider, or at least the substantial majority of providers, contribute a 

relatively large number of patients to the data.  A study having a large number of providers, 

each with a small number of patients, is not well-suited to this this approach since many 

providers may not be represented at all in the final sample.  Third, exclusive providers, those 
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with 0% or 100% treatment rates, will fall out of the analysis.  Theoretically, the loss of these 

providers is sound, because their patients will have a true probability of treatment equal to 0 

or 1, which violates a basic assumption underlying propensity score analysis. 

It is difficult to recommend the use of a pooled treatment model when strong cluster 

effects on both treatment and outcome are found to exist, even though propensity score 

methods that used treatment probabilities from these models did not always fare poorly.  Our 

simulations were primarily designed to identify problems due to correlations among specific 

cluster-level quantities, and thus we did not vary the strength of the associations between 

covariates and treatment by cluster.  It is possible that substantial differences in the treatment 

mechanism across clusters would lead to problems when using a pooled treatment model, 

since it may not lead to the balance expected when propensity score methods conditional on 

cluster are used.  

In a clinical example examining diuretic dosing and in-hospital mortality among 

hospitalized heart failure patients, these different propensity score methods and treatment 

model specifications yielded quite different estimates of risk.  While we did not have a gold 

standard against which to compare, it should be noted that the results from IPTW methods 

indicated higher risk when cluster was included in the treatment model.  Similarly, all 

estimates associated with within-provider matching were higher than estimates that matched 

across providers.   

The presumption that providers can act as a confounding factor has intuitive appeal.  

They certainly act to affect the treatment rates of patients and can, through different direct or 

indirect pathways, be associated with differential outcome rates for their patients.  A 

provider’s effect on patient-level treatment assignment, as modeled in this study, can be 
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thought of as a simple preference for one treatment over another.  More complicated provider 

effects could result if different providers weighed certain patient characteristics differentially 

when determining a treatment strategy.  Provider effects on outcomes could be direct or 

indirect.  Indirect effects would include unmeasured factors associated with the provider’s 

patient case-mix.  Urban safety net hospitals, for example, serve a very different patient 

population than other hospitals, and it’s possible that those patients would have had less 

favorable outcomes regardless of the provider they saw.  Direct provider effects would 

include factors that are, in some way, under the control of the provider.  This could be the 

provision of high-quality care by a hospital.   

Indirect provider effects on outcomes, due to systematic differences in case-mix, are 

possible in all analyses.  These effects may be relatively weak, but may be expected to persist 

regardless of the length of follow-up in the study.  Direct provider effects on outcome, on the 

other hand, may only arise in specific settings or for specific treatments and may have a time-

limited effect.  For example, there may be no plausible direct provider effect associated with 

outcomes of a medication that was prescribed in an office setting.  This differs from the 

likely provider effect associated with outcomes of a complex surgical procedure or medical 

device implant that requires hospitalization; and it is likely that these effects are most 

pronounced during the hospitalization and during the period immediately following 

discharge.   

Ignoring the role of providers in the face of this confounding can therefore lead to 

effect estimates for a treatment that are contaminated with provider effects.  When we 

account for provider properly, we estimate a treatment effect that controls for any otherwise 

unmeasured provider-level factors common to both the treated and comparison groups. The 
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use of these methods does not, however, relieve us of the assumption that there is no 

unmeasured confounding.  If providers assign treatment according to criteria that are related 

to outcome and not fully measured, resulting estimates of treatment effects can be biased. 

One argument against conditioning analyses on provider is that treatment decisions 

are highly protocol-driven and consistently made by applying the same criteria to all patients.  

If this happens, assuming all confounders are measured, then the treated and comparison 

groups within a provider should be clinically distinct groups and have propensity score 

distributions that do not overlap, rendering within-provider propensity score methods 

unusable.  Ignoring provider in this scenario is not the solution, since any systematic 

differences in outcomes by provider would remain unaccounted for.  In some way, this 

suggests that we rely on inconsistency within provider regarding treatment assignment in 

order to properly estimate that treatment’s effect on outcome.  A provider’s consistency in 

treatment assignment may differ by type of therapies, whether due to supply of the therapy—

which is relatively unlimited for pharmaceuticals and can be limited for major devices or 

surgical procedures—due to the level of patient involvement in the treatment decision, or due 

to a provider’s equipoise regarding treatment options.  Inconsistency may also arise when the 

provider in an analysis is actually a practice group, hospital, or other conglomeration of 

physicians, since physicians within such groups may not always act in concert.   

Related to the above scenario, consider a situation where providers are consistently 

making treatment decisions based on information that is not measured and that may also 

affect outcomes.  As an example, analyses that use administrative health data (e.g. Medicare 

claims) often do not have information about patient frailty or disease severity.  Even though 

some providers may decide to treat sicker patients more frequently than other providers 
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would, there is no way around the fact that this variation is not benign, but systematic.  

Whether or not provider is taken into account during the analysis, this is a basic example of 

unmeasured confounding, which violates a fundamental assumption of propensity score 

analyses (Rosenbaum & Rubin, 1983) and will almost certainly yield incorrect treatment 

effect estimates. 

There are a number of issues that a researcher will want to consider before using 

conditional propensity score methods.  The most important of which is the plausibility of 

confounding by provider for the research question being asked.  Certain treatments, 

outcomes, and healthcare settings are more likely than others to require attention.  For 

example, outcomes of surgical treatments are patient to direct physician effects in ways that 

outcomes of pharmaceutical treatments are not.  Similarly, brief office visits may not be 

associated with the intensity of care and effect on outcomes that are more likely to be 

associated with hospital stays.  And provider effects may be a more important and relevant 

factor in the study of short-term outcomes, as compared to long-term outcomes.  Indirect 

provider effects on outcomes—those associated with the patient population served by the 

provider—should be less differentiated by specific treatment or setting, however.  It is 

possible to estimate the observed provider effects, as simple intraclass correlation 

coefficients, on treatment and outcomes using hierarchical regression models.  Non-zero 

intraclass correlation coefficients for both treatment and outcome may suggest confounding 

and favor the use cluster-specific methods for propensity score analyses.  Our clinical 

example, for example, had non-zero intraclass correlation coefficients for both treatment and 

outcome, controlling for other patient covariates.  The hospital setting and short-term nature 

of the outcome made the possibility of confounding by provider plausible.  The success of 
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cluster-specific propensity score methods may also depend on cluster sizes.  Study data that 

has information from a very large number of very small clusters may be inappropriate for 

these methods.  In the simulation work, our “small clusters” still included over 25 patients, 

on average, which was sufficient to give consistent estimates of treatment effects when 

propensity score matching within clusters was used.  With larger clusters, both conditional 

matching and inverse probability of treatment weighting methods performed very well. 

In conclusion, when the possibility of confounding by provider exists, we recommend 

estimating propensity scores using a provider-specific treatment model.  Appropriate 

estimates of treatment effect can then be found using either within-provider matching or 

inverse probability of treatment weighting. 
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Table 2.1 - Simulation results for inverse probability of treatment weighting methods.  Mean estimated treatment difference, relative 
bias, variance, and mean squared error of treatment effect estimators for each scenario by provider size distribution.  True treatment 
difference = 2.0. 

Simulation Scenario /  
Treatment Model Specification 

Treatment Different Estimates 
for Small Providers 

 Treatment Different Estimates 
for Large Providers 

Mean  Relative 
Bias

Variance 
(x1000) 

MSE
(x1000) 

 Mean  Relative 
Bias

Variance 
(x1000) 

MSE
(x1000) 

Scenario #1: No correlation between provider-level quantities
Pooled  1.988 –0.60% 9.68 9.83  1.975 –1.25% 6.55 7.17 
Provider fixed effects  1.888 –5.62% 6.78 19.42  1.959 –2.03% 2.44 4.09 
Provider random effects  1.987 –0.63% 14.05 14.21  1.992 –0.41% 3.27 3.34 

Scenario #2: Correlation between provider size and deviation from average treatment rate
Pooled  1.972 –1.40% 7.59 8.37  1.975 –1.23% 5.64 6.24 
Provider fixed effects  1.880 –6.01% 5.65 20.12  1.965 –1.73% 2.10 3.30 
Provider random effects  1.977 –1.13% 9.87 10.38  2.001 0.05% 3.03 3.03 

Scenario #3: Correlation between provider size and deviation from average outcome
Pooled  1.973 –1.37% 10.15 10.90  1.973 –1.34% 6.80 7.52 
Provider fixed effects  1.893 –5.36% 8.35 19.85  1.973 –1.33% 2.03 2.73 
Provider random effects  2.007 0.36% 16.67 16.72  2.006 0.32% 3.08 3.12 

Scenario #4: Correlation between provider size and mean of X4
Pooled  1.972 –1.41% 11.28 12.08  1.970 –1.49% 6.61 7.50 
Provider fixed effects  1.894 –5.32% 12.11 23.45  1.970 –1.49% 3.98 4.86 
Provider random effects  2.009 0.45% 18.84 18.92  2.005 0.24% 5.39 5.41 

Scenario #5: Correlation between a deviation from average treatment rate and deviation from average outcomes
Pooled  2.385 19.26% 9.89 158.28  2.387 19.36% 7.95 157.93 
Provider fixed effects  1.998 –0.10% 6.86 6.86  1.998 –0.09% 2.19 2.20 
Provider random effects  2.011 0.55% 10.78 10.90  1.999 –0.06% 3.13 3.13 

Scenario #6: All mentioned correlations simultaneously
Pooled  2.403 20.15% 14.12 176.50  2.404 20.20% 11.81 175.09 
Provider fixed effects  2.011 0.53% 6.57 6.68  2.008 0.38% 1.92 1.98 
Provider random effects  2.036 1.78% 11.17 12.44  2.002 0.10% 2.69 2.69 

Abbreviation: MSE = Mean squared error 
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Table 2.2 - Simulation results for propensity score matching methods (not conditional on provider).  Mean estimated treatment 
difference, relative bias, variance, and mean squared error of treatment effect estimators for each scenario by provider size 
distribution.  True treatment difference = 2.0. 

Simulation Scenario /  
Treatment Model Specification 

Treatment Different Estimates 
for Small Providers 

 Treatment Different Estimates 
for Large Providers 

Mean  Relative 
Bias

Variance 
(x1000) 

MSE
(x1000) 

 Mean  Relative 
Bias

Variance 
(x1000) 

MSE
(x1000) 

Scenario #1: No correlation between provider-level quantities
Pooled  2.002 0.09% 5.62 5.62  1.992 –0.40% 5.64 5.70 
Provider fixed effects  2.206 10.29% 3.19 45.53  2.039 1.95% 0.63 2.15 
Provider random effects  1.944 –2.82% 4.01 7.20  1.988 –0.61% 0.67 0.82 

Scenario #2: Correlation between provider size and deviation from average treatment rate
Pooled  1.990 –0.52% 6.33 6.44  1.990 –0.52% 5.14 5.25 
Provider fixed effects  2.169 8.45% 2.84 31.41  2.032 1.61% 0.61 1.65 
Provider random effects  1.933 –3.33% 3.44 7.89  1.983 –0.85% 0.48 0.77 

Scenario #3: Correlation between provider size and deviation from average outcome
Pooled  1.992 –0.42% 6.76 6.83  1.991 –0.45% 6.03 6.11 
Provider fixed effects  2.193 9.66% 3.99 41.30  2.033 1.63% 0.71 1.78 
Provider random effects  1.936 –3.22% 2.26 6.40  1.989 –0.54% 0.67 0.79 

Scenario #4: Correlation between provider size and mean of X4
Pooled  1.994 –0.31% 7.64 7.68  1.991 –0.45% 5.75 5.83 
Provider fixed effects  2.200 10.00% 2.68 42.67  2.043 2.17% 0.70 2.59 
Provider random effects  1.939 –3.07% 3.49 7.25  1.983 –0.83% 0.84 1.11 

Scenario #5: Correlation between a deviation from average treatment rate and deviation from average outcomes
Pooled  2.394 19.70% 6.57 161.84  2.398 19.92% 5.92 164.61 
Provider fixed effects  2.237 11.86% 3.56 59.79  2.052 2.61% 0.74 3.47 
Provider random effects  1.948 –2.60% 2.70 5.40  1.992 –0.41% 0.77 0.84 

Scenario #6: All mentioned correlations simultaneously
Pooled  2.421 21.05% 12.34 189.53  2.421 21.03% 9.72 186.63 
Provider fixed effects  2.208 10.42% 3.28 46.74  2.047 2.33% 0.62 2.79 
Provider random effects  1.929 –3.56% 3.06 8.14  1.985 –0.74% 0.67 0.88 

Abbreviation: MSE = Mean squared error 
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Table 2.3 - Simulation results for propensity score matching methods (within provider).  Mean estimated treatment difference, relative 
bias, variance, and mean squared error of treatment effect estimators for each scenario by provider size distribution.  True treatment 
difference = 2.0. 

Simulation Scenario /  
Treatment Model Specification 

Treatment Different Estimates 
for Small Providers 

 Treatment Different Estimates 
for Large Providers 

Mean  Relative 
Bias

Variance 
(x1000) 

MSE
(x1000) 

 Mean  Relative 
Bias

Variance 
(x1000) 

MSE
(x1000) 

Scenario #1: No correlation between provider-level quantities
Pooled  1.985 –0.76% 2.10 2.33  1.987 –0.65% 0.44 0.61 
Provider fixed effects  1.992 –0.39% 1.99 2.05  1.990 –0.48% 0.33 0.42 
Provider random effects  1.990 –0.50% 1.94 2.04  1.991 –0.47% 0.37 0.46 

Scenario #2: Correlation between provider size and deviation from average treatment rate
Pooled  1.975 –1.23% 2.28 2.88  1.979 –1.04% 0.37 0.80 
Provider fixed effects  1.985 –0.73% 1.98 2.20  1.986 –0.70% 0.26 0.46 
Provider random effects  1.985 –0.76% 1.86 2.10  1.985 –0.74% 0.23 0.45 

Scenario #3: Correlation between provider size and deviation from average outcome
Pooled  1.976 –1.19% 1.18 1.75  1.982 –0.92% 0.36 0.70 
Provider fixed effects  1.985 –0.75% 1.46 1.69  1.987 –0.65% 0.37 0.53 
Provider random effects  1.986 –0.71% 1.29 1.49  1.987 –0.67% 0.33 0.51 

Scenario #4: Correlation between provider size and mean of X4
Pooled  1.975 –1.27% 1.34 1.99  1.982 –0.92% 0.45 0.79 
Provider fixed effects  1.980 –1.01% 1.32 1.73  1.990 –0.49% 0.37 0.47 
Provider random effects  1.983 –0.87% 1.39 1.70  1.991 –0.47% 0.38 0.47 

Scenario #5: Correlation between a deviation from average treatment rate and deviation from average outcomes
Pooled  1.977 –1.13% 1.91 2.43  1.983 –0.86% 0.40 0.70 
Provider fixed effects  1.986 –0.70% 1.52 1.72  1.989 –0.53% 0.28 0.39 
Provider random effects  1.981 –0.93% 1.56 1.90  1.989 –0.55% 0.27 0.39 

Scenario #6: All mentioned correlations simultaneously
Pooled  1.981 –0.94% 1.55 1.90  1.981 –0.94% 0.35 0.71 
Provider fixed effects  1.985 –0.73% 1.49 1.71  1.987 –0.67% 0.38 0.56 
Provider random effects  1.984 –0.79% 1.36 1.61  1.986 –0.68% 0.34 0.53 

Abbreviation: MSE = Mean squared error   
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Table 2.4 - Characteristics of ADHERE-HF patients receiving low-dose and high-dose intravenous diuretics

 Variable Low-Dose 
(N = 33,965) 

High-Dose 
(N = 9,469) 

Standardized 
Difference, % 

Intracluster 
Correlation

Demographics Age (years), Mean (SD) 80.0 (7.9) 78.0 (7.6) 25.3 0.036 
 Gender, Male 13,782 (40.6%) 4,432 (46.8%) 12.6 0.051 
 Race   11.9  
 White 26,889 (79.2%) 7,190 (75.9%)  0.398 

 Black 4,396 (12.9%) 1,621 (17.1%)  0.460 
 Other/unknown 2,680 (7.9%) 658 (6.9%)  0.409 

Medical History Anemia 17,763 (52.3%) 5,639 (59.6%) 14.7 0.054 
 Atrial fibrillation 12,157 (35.8%) 3,692 (39.0%) 6.6 0.025 

 Coronary artery disease 19,172 (56.4%) 5,887 (62.2%) 11.7 0.029 
 Chronic renal insufficiency 7,952 (23.4%) 3,366 (35.5%) 26.9 0.041 
 Chronic obstructive pulmonary disease/Asthma 10,296 (30.3%) 3,290 (34.7%) 9.5 0.026 
 Diabetes mellitus 12,912 (38.0%) 4,677 (49.4%) 23.1 0.011 
 Hyperlipidemia 11,009 (32.4%) 3,408 (36.0%) 7.5 0.058 
 Hypertension 24,749 (72.9%) 7,058 (74.5%) 3.8 0.041 
 Prior myocardial infarction 9,861 (29.0%) 3,015 (31.8%) 6.1 0.034 
 Peripheral vascular disease 5,897 (17.4%) 1,994 (21.1%) 9.4 0.063 
 Prior stroke/Transient ischemic attack 6,297 (18.5%) 1,859 (19.6%) 2.8 0.030 
 Current smoker 2,502 (7.4%) 740 (7.8%) 1.7 0.046 

Initial Evaluation Fatigue 10,559 (31.1%) 2,790 (29.5%) 3.5 0.204 
 Rales 24,281 (71.5%) 7,037 (74.3%) 6.4 0.127 
 Edema 22,311 (65.7%) 7,277 (76.9%) 24.9 0.041 

 Congestion 24,131 (71.0%) 6,870 (72.6%) 3.3 0.103 
 Ejection fraction, <40% 11,036 (32.5%) 3,427 (36.2%) 8.5 0.044 

Laboratory results Systolic blood pressure (mmHg), Mean (SD) 146.4 (29.9) 144.8 (30.3) 5.3 0.019 
 BUN (mg/dL), Mean (SD) 28.8 (16.8) 34.3 (20.6) 29.6 0.013 
 Serum sodium (mmol/L), Mean (SD) 138.3 (4.7) 138.4 (4.6) 1.9 0.054 
 Hemoglobin (g/dL), Mean (SD) 12.4 (2.5) 12.0 (2.3) 15.9 0.155 

Values for Low-Dose and High-Dose groups presented as N (%) unless otherwise specified 
Abbreviation: SD = Standard deviation 
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Table 2.5 - Estimated relative risk and 95% confidence interval for association between 
receipt of high-dose diuretic and in-hospital mortality by propensity score method and 
treatment model specification  

Propensity Score Method /  
Treatment Model Specification 

Relative Risk (95% CI) 

Inverse probability of treatment weighting  
Pooled  1.32 (1.22, 1.43) 
Provider fixed effects  1.53 (1.42, 1.66) 
Provider random effects  1.56 (1.45, 1.69) 

Propensity score matching (unconditional)  
Pooled  1.15 (0.98, 1.36) 
Provider fixed effects  1.12 (0.94, 1.32) 
Provider random effects  1.19 (1.00, 1.41) 

Propensity score matching within provider  
Pooled  1.30 (1.08, 1.55) 
Provider fixed effects  1.26 (1.06, 1.52) 
Provider random effects  1.33 (1.11, 1.60) 

Abbreviation: CI = Confidence interval 
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CHAPTER 3 

STANDARD ERROR OF TREATMENT EFFECT ESTIMATES FROM 
PROPENSITY SCORE METHODS IN THE PRESENCE OF  

CONFOUNDING BY PROVIDER 

Introduction 

Data used for clinical research are often collected among patients clustered within 

providers.  These providers may affect the assignment of the treatment and may be associated 

with differential outcomes, above and beyond those expected by patient characteristics.  We 

demonstrated that propensity score methods that do not account for provider resulted in 

biased treatment effect estimates when provider effects on treatment are correlated with 

provider effects on outcome.  This could happen, for example, if certain hospitals that are 

more likely to offer certain treatments also tend to have lower adverse events rates than other 

hospitals.

Such correlation may not be the most common scenario encountered in practice, 

however.  It may be more likely that these provider effects are present, but uncorrelated.  In 

these scenarios, we showed that treatment effect estimates resulting from either propensity 

score matching or inverse probability of treatment weighting are generally unbiased.  We did 

not check to see how appropriate the related standard error estimates were for these treatment 

effects, though.  Typically, when clustered data are utilized for analysis, statistical methods 

must account for the correlation of subjects within the cluster (Gelman & Hill, 2006).  It is 

not clear when using propensity score methods (Rosenbaum & Rubin, 1983) if matching 
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within provider or including provider-specific effects in the estimation of the treatment 

model is adequate to yield standard error estimates that have the proper coverage of nominal 

95% confidence intervals.

We sought to understand how well various propensity score methods estimated the 

standard error of treatment effects in the presence of confounding by provider.  Using 

simulation studies and a clinical example, we aim to identify the analysis strategies that yield 

both unbiased estimation of the treatment effect and appropriate inference.   

Simulation Study 

We used Monte Carlo methods to simulate situations where patients were clustered 

within healthcare providers, and where those providers exhibited effects independent of the 

observed patient-level covariates on both patient-level treatment assignment and outcomes.  

We were specifically interested in examining different estimators based on data from 

situations where the provider effects on treatment and outcome were uncorrelated.  The only 

data generation parameter we varied between scenarios was the strength of the intraclass 

correlation (ICC) of the outcome. 

Data Generation Process 

For each provider j in the simulated data, we first generated provider-level

information that was subsequently used to generate patient-level data.  Specifically, we 

generated five independent random variables—fgF O<gF higF jgF kg—distributed as: 

��NfgPlm?/F -+/A
O<glm?@.F -+/A
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higlm?-F .A
jglm?-F .A
kglm?-F  ẁ A

The number of patients per provider is set by fg, which was rounded to the nearest integer. 

The distribution of provider sizes is log-normally distributed and the mean of the log-

distribution was set to 5.0 to generate providers that ranged in size from about 55 to 400 

patients.  The proportion of patients within each provider having characteristic |<F�described

below, is determined by O<g. Provider-level proportions for this variable averaged about 35% 

and ranged from about 12% to 50%.  The provider-level mean value of |iF�described below, 

is determined by hig. And the values of jg and kg are deviations around the overall intercept 

in the treatment and outcome models, respectively.  The terms jg�and�kg induce intraclass 

correlation. The value of  ẁ  was allowed to vary. 

For each patient } within provider ~, we generated four random variables—

|<TgF |`TgF |�TgF |iTg—distributed as: 

|<Tgl�K�f �logitd<NO<gP�
|`Tglm?h`F .A
|�Tglm?h�F .A
|iTglmNhigF .P

The provider-specific quantities O<g�and�hig�resulted in intraclass correlations of about 0.10 

for |< and 0.50 for |i respectively. The terms h`�and�h��are set for each patient based on that 

patient’s value for |<Tg.

h` : ¡ -+/F |<Tg : .@-+/F |<Tg : -
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h� : ¡@-+/F |<Tg : .-+/F |<Tg : -
The three patient-level normal random variables, |`F |�, and |i were generated with the 

following correlations: 

� . r��F�� r��F��r��F�� . r��F��r��F�� r��F�� . � : � . @+� @+.@+� . + .@+. + . . �
  We then randomly assigned each patient to a treatment, Aij, as a Bernoulli random 

variable having a mean parameter equal to probability pij,A, determined by the following 

function:

logitNaTgF�P : �= X jg X �<|<Tg X �`|`Tg X ��|�Tg X �i|iTg
The parameters ��=F �<F �`F ��F �i� were fixed within all simulations to the values [–1.0, 

ln(1.5), ln(1.5), ln(0.8), ln(0.67)].  This yielded a treatment rate of just over 30%. Due to the 

provider-specific term, jg, the intraclass correlation of the treatment was about 0.25. 

Finally, we randomly generated an outcome, Yij, for each patient as a normal random 

variable having a standard deviation equal to 1 and a mean parameter equal to �ij,Y, which 

was determined by the following function: 

BTgF� : �= X kg X �<|<Tg X �`|`Tg X ��|�Tg X �i|iTg X �\�\9Tg
The provider-specific term, kg, also resulted in intraclass correlation for the outcome.  The 

magnitude of this correlation was allowed to vary by scenarios described below. 

The parameters ��=F �<F �`F ��F �iF �\�\� were fixed within all simulations to the 

values [0, –1, –1, 1, 1, 2].  This resulted in an observed outcome equal to about 0.8 in the 

unexposed group. These parameters were set such that covariates associated with a higher 

probability of treatment were associated with a lower outcomes value, and vice versa.  By 
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defining higher outcome values as optimal, the treatment is seen to improve the outcome and 

is assigned more frequently to patients, based on their covariate values, that would otherwise 

had poor outcomes. 

Simulation Scenarios 

We generated 1000 data sets with 50 providers for three different values of  ẁ , the 

parameter that controls the provider-level intraclass correlation of the outcome.  At  ẁ :
-+--, there was no intraclass correlation for the outcome (� : -+-).  At  ẁ : -+-/, the 

intraclass correlation for the outcome was weak (� ¢ -+-/).  And at  ẁ : -+££, the intraclass 

correlation for the outcome was relatively strong (� ¢ -+,/).  In clinical research, it would 

likely be unusual to observe an intraclass correlation stronger than this for most outcomes.  

We applied multiple propensity score methods to each data set and calculated both the 

treatment effect point estimate and its standard error. 

The data generation specifications described above include many parameters that are 

provider-specific.  As a comparison to these data, we thought it would be helpful to 

additionally generate 1000 data sets that did not rely on any provider-specific quantities.  To 

do this, we generated data sets with 4000 records where |<F |`F |�F |iF 9F�and�; were created 

as described above, but with the quantities O<gF higF jgF�and�kg�all equal to zero.  We applied 

the same pooled propensity score and estimation methods described below to these data sets. 

Propensity Score Methods 

We first estimated two treatment regression models that differed in how provider was 

incorporated.  Both models were specified as generalized linear models with logit links and 
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binary error distributions having treatment A as the dependent variable and patient-level 

covariates X1–X4 as predictors.  The first model ignored provider.  This is referred to as the 

pooled model.  The second model was fit using generalized linear mixed model methods and 

incorporated provider through the specification of provider-specific intercepts, estimated 

using random effects.  These effects were assumed to be normal with mean 0.  This model is 

referred to as the provider-specific model. 

We applied multiple propensity score-based methods to the predicted probabilities 

from each of these models.  First, we used inverse probability of treatment weighting (Hirano 

& Imbens, 2001; Robins, Hernán, & Brumback, 2000).  This method utilizes patient-specific 

weights defined as the inverse of the estimated probability of treatment for the treatment that 

patient received.  For a patient who received treatment, this weight is the inverse of the 

predicted probability generated from the treatment models.  For a patient in the comparison 

group, this weight is the inverse of one minus the model-based predicted probability.

Second, we used 1:1 greedy matching (Rosenbaum & Rubin, 1985a), where treated patients 

(randomly ordered) were matched one at a time to comparison patients.  Third, we used full 

matching (Rosenbaum, 1991), where treated patients were matched to comparison patients in 

sets where the number of treated and comparison patients could vary and the overall distance 

between matched sets was minimized.  Both of these matches were made using the linear 

predictor from the treatment models with calipers equal to 0.2 SD of that quantity (Austin, 

2011), based on the values of the linear predictor within the entire sample.   
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Estimation Methods 

 Methods that are appropriate to estimate the treatment effect and its standard error 

differ by propensity score method used.  The list of different methods we use is shown in 

Table 3.1. For 1:1 matching, the treatment effect can be estimated by taking the difference 

between the averages of the matched patients from each set, as: 

C<0< : .m< ¤9T;T¥
T�< @ .m= ¤?. @ 9TA;T¥

T�< : .m< ¤E9T;T @ ?. @ 9TA;TH¥
T�<

where m< is the number of treated patients who were matched and m= is the number of 

comparison patients who were matched.  For any 1:1 matching, of course, m< : m=.  The 

standard error of this estimate can be estimated in two ways, treating the observations as 

pooled and treating the observations as paired.  For continuous outcomes, this is the 

difference between the standard error estimated when using a pooled t-test or a paired t-test.

The group differences will be identical, but the standard error estimates will differ.  Instead 

of using t-tests in this study, however, we will use two general linear regression models for 

the outcome, which will give the same results.  Using regression models allows for flexibility 

in estimation by letting us include other factors in addition to treatment as independent 

variables.  These other factors may be used to correct residual imbalance between groups or 

may account for factors that were not present at the treatment decision.  For this study, both 

models will include the treatment indicator as the only independent variable. The first 

outcome model will ignore the matched sets [labeled in the results tables as “GLM”] and will 

report the usual regression standard errors.  The second model will account for matched sets 

by using generalized estimating equation (GEE) methods (Liang & Zeger, 1986) where the 

clusters are matched sets and an exchangeable working correlation matrix is specified 
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[labeled “GEE”].  For 1:1 matching, the specification of the working correlation is not 

critical, since all structures are equivalent. 

 Adjustments in estimation are necessary when full matching is used, since full 

matching results in matched sets that can have differing numbers of treated and comparison 

patients.  Unweighted estimates from a t-test or basic linear model will be incorrect. Abadie 

& Imbens (2012) defines the treatment effect estimate from full matching results as 

C�¦�§ : .m< ¤9T �;T @ .̈
T ¤ ;gg©ª?TA �¥

T�<
with its variance as 

 «�¦�§` : .m< @ .¤9T �;T @ .̈
T ¤ ;gg©ª?TA @ C�¦�§�

`¥
T�<

where m< is the number of treated patients who were matched; T̈ is the number of patients 

matched to patient }; and ª?}A contains the indices of the T̈ patients matched to patient }.
For matched sets that contain one treated patient and multiple comparison patients, the right-

hand term in C�¦�§ is the difference between the outcome of the treated patient and the 

average of the outcomes of the matched comparison patients.  For matched sets that contain 

multiple treated patients and one comparison patient, the right-hand term in C�¦�§ is just the 

difference between one of those matched treated patients and the comparison patient, 

meaning the comparison patient will be represented in the overall average multiple times.  

We present these results labeled as “Abadie”.

Similar to the Abadie estimator, Hansen (2004) proposes weighting entire matched 

sets by the number of treated patients in the set.  This is referred to as ETT (effect of 

treatment on the treated) weighting.  Although not explicitly defined, the idea behind ETT 
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weighting is to first calculate the within-matched-set differences in the outcome by study 

group, and then calculating the weighted average of those differences across all sets.  It is 

easier to make this calculation by assigning patient-level weights to each matched record.  

Having weights is also useful when using methods that require patient-level data, such as 

regression models. For matched set ¬ with ¬ : .F F¨F�let ª® contain the indices for the 

m<F® treated patients and the m=F® comparison patients in the set. Consider a two-stage 

weight.  The first stage weight is a patient-level weight.  Within each set, equally weight each 

of the patients in each study group, as: 

S<T : ¯m=F®��d<F 9T : -F } © ª®m<F®��d<F 9T : .F } © ª®
The second stage weight is a set-level weight reflecting the number of treated patients in the 

set:

S`T : m<F®�for } © ª®
The combined weight is therefore: 

ST : S<T ° S`T : ±m<F®m=F® F 9T : -F } © ª®.F 9T : .
The treatment effect estimate based on these weights is given by: 

C²\\ : .m< ¤E9TST;T @ ?. @ 9TAST;TH¥
T�<

We used three different regression models to estimate the treatment effect and its 

standard error for the results of full matching.  The first two models used ETT-weighted data 

and included a general linear model without any variance correction [labeled “GLM (ETT)”] 

and a general linear model with variance correction through the estimation of robust standard 

errors [labeled “GLM (ETT, robust)”].  These robust standard errors were estimated using 
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GEE methods with the matched set as the cluster and an independence working correlation 

structure.  The third model we used also utilized GEE methods, but was run on unweighted 

data, included matched set as the cluster, and specified an exchangeable working correlation 

structure [labeled “GEE”]. 

For inverse probability of treatment weighting methods, the basic definition of the 

treatment effect is given by 

C�³´\µ : B¶<F³´\µ @ B¶=F³´\µ
where

B¶<F³´\µ : �¤9TK¶T
¥

T�< �d< ¤9T;TK¶T
¥

T�<
and

B¶=F³´\µ : �¤. @ 9T. @ K¶T
¥

T�< �d< ¤?. @ 9TA;T. @ K¶T
¥

T�<
Its standard error can be estimated as the square root of large-sample variance, given by 

 «³´\µ` : fd` ¤ U·³´\µFT`
¥

s�<
where

U·³´\µFT : 9TN;T @ B¶<F³´\µPK¶T @ ?. @ 9TAN;T @ B¶=F³´\µP. @ K¶T @ ?¸T @ K¶TA¹�º» ¼�ººd<GT

¹�º : fd< ¤¯9TN;T @ B¶<F³´\µP?. @ K¶TAK¶T @ ?. @ 9TAN;T @ B¶=F³´\µPK¶T. @ K¶T ½¥
T�< GT

and

¼�ººd< : fd< ¤K¶T?. @ K¶TAGTG¾»
¥

T�<
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We refer to this as the Lunceford method [labeled as such in the results], because their 

manuscript (Lunceford & Davidian, 2004) was one of the first to present a formula for the 

large-sample variance of the estimate. 

The regression-based method typically used to estimate C�³´\µ and approximate 

 «³´\µ`  is a generalized linear model on the weighted data with robust standard errors.  For our 

study, we estimated these robust standard errors in two ways.  The first estimated standard 

errors using GEE methods with the patient as the (single-member) grouping variable and an 

independence working correlation structure [labeled “GLM (robust, patient)”].  The second 

estimated standard errors using GEE methods with provider as the grouping variable and an 

independence working correlation structure [labeled “GLM (robust, provider)”].  It may 

seem appropriate to researchers to incorporate provider-level correlations at this stage to 

correct the standard errors for the grouping of patients within providers.  We include this 

specification to see how it affects results.  For comparison, we also present results from a 

general linear model without any post-hoc correction of the standard errors [labeled “GLM”].

We do not present results from regression models estimated using GEE methods with 

provider as the grouping variable and an exchangeable working correlation structure because 

the results would be incorrect.  IPTW creates appropriately weighted pseudo-populations in 

which the patient characteristics are balanced between study groups, and GEE methods with 

non-diagonal working correlation structures would disrupt this weighting. 

Finally, we used doubly robust (DR) estimation (Robins, Rotnitzky & Zhao, 1994), 

which is an extension of IPTW methods that augment the IPTW estimates with predicted 

values from outcomes models.  As long as either the treatment model or the outcome model 

is correctly specified, doubly robust methods give consistent results.  These methods may be 
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appropriate for situations like ours where providers have effects on both treatment 

assignment and outcomes.  For example, if we used a provider-specific treatment model 

along with a pooled outcome model, results should be correct.  Because we used both pooled 

and provider-specific treatment models, we also estimate DR results using pooled and 

provider-specific outcome models [labeled “Doubly robust (pooled)” and “Doubly robust 

(provider-specific)”].  In the formulas below, ¿W< is the vector of parameter estimates 

associated with patient characteristics, GT, from an outcome regression model based solely on 

data from treated patients.  These parameter estimates can be applied to each patient to 

estimate their predicted response, ¬<?GTF ¿W<A, had they received treatment.  Similarly, ¿W= is 

the vector of parameter estimates associated with patient characteristics from an outcome 

regression model based solely on data from the comparison patients.  Applying these 

parameter estimates to each patient’s covariate vector yields their predicted response, 

¬=?GTF ¿W=A, had they not received treatment.  The DR estimate of treatment effect is 

C�§� : B¶<F§� @ B¶=F§�
where

B¶<F§� : fd< ¤9T;T @ ?9T @ K¶TA¬<?GTF ¿W<AK¶T
¥

T�<
and

B¶=F§� : fd< ¤?. @ 9TA;T X ?9T @ K¶TA¬=?GTF ¿W=A. @ K¶T
¥

T�<
The standard error is the square root of the large-sample variance, given by 

 «§�` : fd` ¤ U·§�FT`
¥

s�<
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where

U·§�FT : 9T;T @ ?9T @ K¶TA¬<?GTF ¿W<AK¶T @ ?. @ 9TA;T X ?9T @ K¶TA¬=?GTF ¿W=A. @ K¶T @ C�§�

Metrics 

For each simulation scenario (including the comparison data) and for each 

combination of propensity score method, treatment model and estimation method, we 

calculated the following metrics: Mean treatment estimate, bias, mean squared error, mean 

width of the 95% confidence interval based on the standard error of the estimate, and 

coverage probability.  These were defined as: 

Mean : �d< � C�����< : C�
Bias : C� @ C\�\
Variance : ?� @ .Ad< � �C�� @ C��`���<
Mean squared error : �d< � �C�� @ C\�\�`���<
Mean width of estimated 95% CI = �d< � , À .+ÁÂÃW����<

where S is the number of simulated data sets, C\�\ is the true treatment effect, C�� is the 

estimated treatment effect for data set s and  «� is the estimated standard error of the treatment 

effect for data set s.  The coverage probability is the proportion of the S simulated data sets 

for which C\�\ falls within the estimated 95% confidence interval.   

All simulations were conducted in SAS version 9.3 (SAS Institute Inc., Cary, North 

Carolina).  Sample SAS code for estimating propensity scores, calculating weights, 

performing matching, and estimating treatment effects and standard errors is shown in 

Appendix 1. 
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Simulation Study Results 

 Results from propensity score matching applied to the data generated without 

provider effects are shown in Table 3.2.  These results demonstrate how well different 

methods perform before introducing provider effects into both the treatment assignment and 

outcome processes.  All combinations of matching methods and estimation methods shown 

resulted in unbiased estimates of treatment effect, but only three had coverage probabilities 

close to the nominal value: (1) Full matching + GEE methods, (2) full matching + ETT-

weighted GLM with robust standard errors, and (3) greedy matching + GEE methods.  The 

use of methods without any variance adjustment—weighted GLM applied to full matching 

results or unweighted GLM applied to greedy matching results—resulted in confidence 

intervals that were too wide.  We also found that confidence intervals based on the Abadie 

estimators were too narrow. 

 Results from inverse probability of treatment weighting methods applied to the data 

generated without provider effect are shown in Table 3.3.  Again, all treatment effect 

estimates were unbiased.  The confidence intervals for the doubly robust estimator and 

Lunceford estimator had appropriate coverage.  The GLM without variance adjustment 

resulted in confidence intervals that were too wide, while the use of robust standard errors 

overcompensated and resulted in confidence intervals that were too narrow. 

 In all the results that follow, the data used were generated with provider effects on 

treatment assignment.  The mean treatment effect estimates and mean squared errors from 

estimation methods applied to propensity score matching results are shown in Table 3.4.

None of the methods used exhibited substantial bias, with the average estimates all within 

3% of the true value.  For unstratified matches made using the linear predictor from the 
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pooled treatment model, mean squared error increased as the outcome ICC increased.  This 

was not observed when stratified matching was used or when a provider-specific treatment 

model was used.

 The mean width of nominal 95% confidence intervals and the Monte Carlo coverage 

probabilities for estimation methods applied to propensity score matching results are shown 

in Table 3.5.  When the outcome ICC was 0, the coverage probabilities associated with 

unstratified matches based on the pooled treatment model were similar to those found for 

data without any provider effects, where the use of GEE methods or robust standard errors 

performed best.  Coverage probabilities declined noticeably when the outcome ICC was non-

zero.  Even a weak outcome ICC (0.05) dropped coverage probabilities with these methods to 

about 85%. Coverage probabilities associated with stratified matching and a pooled treatment 

model were highly variable.  Stratified full matching and GEE methods resulted in especially 

poor coverage, although this may have been due somewhat to the bias of the actual effect 

estimate. 

 When a provider-specific treatment model was used along with propensity score 

matching methods, the coverage probabilities were closer to nominal for all estimation 

methods.  Full matching and ETT-weighted GLMs with robust standard errors performed 

very well whether the matching was stratified or unstratified.  Full matching and GEE 

methods performed best for unstratified matches, however, while greedy matching and GEE 

methods performed best for stratified matches.   

To summarize, when propensity score matching was used in data situations where 

patients were clustered within providers and there were independent provider-level effects on 

both treatment and outcome, the following combinations of methods performed best: (1) 
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Unstratified full matching and ETT-weighted GLM with robust standard errors, (2) 

unstratified full matching and GEE methods, (3) stratified full matching and ETT-weighted 

GLM with robust standard errors, and (4) stratified greedy matching and GEE methods.  All 

of these matches were made on the linear predictor from a provider-specific treatment model.  

Use of a pooled treatment model did not lead to estimators which had appropriate coverage 

when the outcome ICC was greater than zero. 

 The mean treatment effect estimates and mean squared errors from estimation 

methods applied to inverse probability of treatment weighted data are shown in Table 3.6.

As with matching, none of these estimators exhibit substantial bias, with all mean treatment 

estimates within 2% of the true value; and higher outcome ICC values led to higher MSE for 

most estimation methods when a pooled treatment model was used.  The exception here was 

the doubly robust estimator that used a provider-specific outcome model.  The doubly robust 

estimators consistently had the lowest mean squared errors among all methods, controlling 

for outcome ICC.  And, in general, there was more error associated with methods based on 

the provider-specific treatment model and the pooled treatment model.   

 The mean width of nominal 95% confidence intervals and the Monte Carlo coverage 

probabilities for estimation methods applied to inverse probability of treatment weighted data 

are shown in Table 3.7.  When a pooled treatment model was used, there were no methods 

that consistently achieved nominal coverage.  When the outcome ICC was 0, all methods 

except the doubly robust methods had confidence intervals that were too wide.  But when the 

outcome ICC was high (0.25) all estimation methods except the GLM with provider-level 

robust standard errors led to confidence intervals that were too narrow.  In fact, the use of 
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provider-level robust errors substantially overcorrected the standard errors, leading to 

confidence intervals that were twice, or more, as wide as those from other methods.   

 For IPTW methods using weights based on a provider-specific treatment model, 

coverage probabilities were much closer to nominal across all values of the outcome ICC.  

The exception was when a GLM was used without any variance correction.  As above, the 

doubly robust estimators had the smallest confidence interval width coupled with, perhaps, 

the most appropriate coverage probabilities. 

 To summarize, when inverse probability of treatment weighting methods were used in 

situations where patients were clustered within providers and there were independent 

provider-level effects on both treatment and outcome, the following estimation methods 

performed best: (1) GLM with patient-level robust standard errors, (2) GLM with provider-

level robust standard errors, (3) the Lunceford estimator, and (4) either doubly robust 

method.  All methods that made use of weights based on treatment probabilities from a 

pooled model led to estimators with undercoverage at high ICC values for the outcome.  

Clinical example 

 To demonstrate how different estimation methods associated with propensity score 

matching and inverse probability of treatment weighting may lead to difference variance 

estimates in practice, we revisit an analysis of the effect of different inotropes on short-term 

mortality.  Milrinone and dobutamine are both inotropic agents that are used to increase the 

cardiac output of patients with decompensated heart failure (Coons, McGraw, & Murali, 

2011), but the mechanism of action for each differs.  (Dopamine is also in this class of 

medications, but its use in the population we studied, described below, was negligible.)  Very 
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few studies have compared milrinone and dobutamine directly.  A few small studies found no 

difference in the effect of each medication on improvement of clinical symptoms (Karlsberg 

et al., 1996; Aranda et al., 2003; Yamani et al., 2001), but these studies were too small to 

evaluate clinical endpoints like short-term or long-term mortality.  Abraham, et al. (2005) 

used data from the Acute Decompensated Heart Failure Registry (ADHERE) to examine 

over 5000 patients who received inotropes.  After adjustment, they found significantly lower 

in-hospital mortality associated with milrinone compared to dobutamine [odds ratio (95% 

confidence interval) = 0.81 (0.65, 0.97)].  Their statistical methods differ from ours in that 

they did not account for clustering of patients within hospitals and they included the 

estimated propensity score as a covariate in a regression analysis, instead of using propensity 

score matching or inverse probability of treatment weighting. 

 For this analysis, we also used data from ADHERE registry (Adams, et al., 2005).  

This registry included heart failure hospitalizations from over 300 hospitals, so in this 

analysis providers are hospitals.  Between 2001 and 2004, the registry collected information 

about the timing of specific medications received.  We included only patients who received 

either milrinone or dobutamine within the first 48 hours of admission.  This differs from the 

population used by Abraham, et al. (2005), which included inotrope receipt at any point in 

the hospitalization.  We used this definition of exposure to identify patients receiving 

inotropes as an initial therapy, excluding those patients who may have received inotropes as a 

response to worsening heart failure later in a hospital stay.  For the purposes of this analysis, 

we considered patients receiving milrinone as the treatment group and patients receiving 

dobutamine as the comparison group.  The outcome of interest was in-hospital mortality, as 

recorded in the registry. 
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 As above, we estimated each patient’s probability of treatment (milrinone) using two 

different regression models.  The first treatment model was a pooled model, ignoring 

potential hospital effects.  The second treatment model was hospital-specific, estimated using 

a hierarchical logistic regression with hospital-specific random effects around the mean 

intercept.  Predictors included in the treatment model were those that were believed to impact 

both medication selection and in-hospital mortality.  These are shown in Table 3.8.

After estimating these models, we used the methods similar to those described above 

to estimate the treatment effect and associated confidence interval of milrinone, compared to 

dobutamine, on in-hospital mortality.  The methods for this example differed from those used 

in the simulation since the research question required methods appropriate for dichotomous 

outcomes.  Any regression models utilized—those with and without robust standard errors, 

including those that used GEE methods—were specified as generalized linear models with a 

log link and a binary error distribution.  This specification leads to the direct estimation of 

relative risk, which is important for any models that utilize weighting, as relative risks are 

collapsible, unlike odds ratios.  The IPTW and doubly robust relative risk estimators are  

ÄÄÅ³´\µ : B¶<F³´\µB¶=F³´\µ
and

ÄÄÅ§� : B¶<F§�B¶=F§�
respectively, given same B¶<F³´\µ, B¶=F³´\µ, B¶<F§�, and B¶=F§� calculated above.  The Lunceford 

large-sample variance estimator for the IPTW treatment effect is specific to linear outcomes 

(and risk differences), but we used a similar estimator from Williamson, Forbes & White 

(2014) for the variance of the log-relative risk, given as 
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 «��F³´\µ` : fd<ÆÇÈvs @ É«ÊN,Ë�< @ Ë�`PÉ«Ì
where

ÇÈvs : .f�SW<̀ B¶<F³´\µ` ¤9TN;T @ B¶<F³´\µP`K¶T`
s

T�< X .f�SW=̀ B¶=F³´\µ` ¤?. @ 9TAN;T @ B¶=F³´\µP`?. @ K¶TA`
s

T�<
É« : .f�SW<B¶<F³´\µ ¤ÍT9TN;T @ B¶<F³´\µP?. @ K¶TAK¶T

s
T�<

X .f�SW=B¶=F³´\µ ¤ÍT?. @ 9TAN;T @ B¶=F³´\µPK¶T. @ K¶T
s

T�<

Ë�< : �fd< ¤ÍTÍTÊs
T�< K¶T?. @ K¶TA�

d<

Ë�` : Ë�< �fd< ¤ÍTÍTÊs
T�< ?9T @ K¶TA`�Ë�<

SW< : fd< ¤9TK¶T
s

T�<
and

SW= : fd< ¤. @ 9T. @ K¶T
s

T�<
The large-sample variance of the log of the doubly robust relative risk estimator was taken 

from a SAS macro by Funk, Westreich, Weisen, & Davidian (2010), as: 

 «��F§�` : fd< Î_<F§�`B¶<F§�` X _=F§�`B¶=F§�` @ ,_<=F§�B¶<F§��B¶=F§�Ï
where _<F§�`  and _=F§�`  are the estimated variances of the patient-level components of B¶<F§�`
and B¶=F§�` , say Y<T and Y=T, respectively, given by 
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Y<T : 9T;T @ ?9T @ K¶TA¬<?GTF ¿W<AK¶T
and

Y=T : ?. @ 9TA;T X ?9T @ K¶TA¬=?GTF ¿W=A. @ K¶T
and _<=F§� is the estimated covariance of these values.  The only method from the simulation 

study without an analogue for dichotomous data was the Abadie estimator. 

Clinical Example Results 

 In the ADHERE-HF data, 6112 patients with heart failure from 81 hospitals received 

either milrinone or dobutamine within 48 hours of hospital admission.  The milrinone 

treatment rate was 38%, but ranged from 5% to 85% at different hospitals.  The intraclass 

correlation for this treatment was 0.33.  The in-hospital mortality outcome rate was just under 

10%.  This ranged from 0% to 32% across hospitals and had an associated intraclass 

correlation of 0.05.  The correlation between the hospital effects on treatment and outcome 

was neglible (<0.02).  These intraclass correlation coefficients were estimated as r :
��������� �� , where  v̀  was the estimated variance of the hospital random effects about the overall 

intercept in a hierarchical logistic model (Rodrıguez & Elo, 2003).  Characteristics of each 

study group are shown in Table 3.8.  While there were some statistically significant 

differences between the groups with respect to demographics and initial symptoms (e.g. 

rales, edema, and congestion), there were many similarities in medical history and initial lab 

results. The observed relative risk of the effect of milrinone vs. dobutamine on mortality was 

0.76.
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The relative risks and confidence intervals estimated by inverse probability of 

treatment weighting methods are shown in Table 3.9.  All estimates of relative risk are near 

0.92 and none were found to be significantly different from null (1.0).  These estimates did 

not vary by the specification of the treatment model, although we did see slightly wider 

confidence intervals for most estimation methods that used weights based on the hospital-

specific treatment model compared to weights based on the pooled treatment model.  The 

relative risk of 0.94 estimated by doubly robust methods was the result most unlike the 

others.  Given that this estimate was based on a pooled treatment model and a pooled 

outcome model, both of which ignore hospital effects that are known to exist, it is probably 

safe to assume this result is incorrect.   

As expected based on the simulation results, the confidence intervals from the 

weighted model without any variance correction [labeled GLM] were the narrowest among 

all the IPTW methods.  Also as expected, the widest confidence intervals were those 

associated with hospital-level robust standard errors [GLM (robust, provider)].  Among the 

other methods with more appropriate standard error estimates, the Williamson estimator had 

the smallest confidence interval.  Theoretically, the doubly robust methods should have the 

smallest confidence intervals (Lunceford & Davidian, 2004), but these were based on 

approximations and not more precise large-sample formulas. 

The relative risks and confidence intervals estimated by propensity score matching 

methods are shown in Table 3.10.  There is more variability in the treatment effect estimates 

among these methods than there was among the IPTW methods, although almost all 

estimates are still not significantly different from 1.0.  This variability may be related to the 

proportion of records that were able to be matched by each method.  Only the unstratified full 
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matches were able to assign all patients to matched sets.  Because of the calipers employed in 

the matching, about 70% of the dobutamine patients and about 90% of the milrinone patients 

were able to be matched when full matching was performed within hospitals.  Unstratified 

greedy matching based on the pooled treatment model was able to match 96% of milrinone 

patients to 59% of dobutamine patients.  When a hospital-specific treatment model was used, 

these dropped to 67% and 41%, respectively.  For greedy matches performed within 

hospitals, fewer than 60% of milrinone patients were matched and only 35% of dobutamine 

patients were matched.  Incomplete matching can result in biased treatment effect estimates 

(Rosenbaum & Rubin, 1985), especially if the true effect differs by estimated propensity 

score, which may be happening here. 

The proportion of patients matched does not explain why the estimates from GEE 

methods applied to unstratified full matching results were consistently stronger in favor of 

milrinone than estimates from the other estimation methods based on the same matches.  

Differences were less noticeable between results from GEE methods and other methods 

applied to stratified full matching results.  More exploration is needed to explain these 

results.

For the two methods that seemed to result in estimators with the appropriate coverage 

based on the simulation work—ETT-weighted regressions with robust standard errors based 

from full matching results and GEE methods applied to greedy matching results, where both 

matches were based on hospital-specific treatment model results—the width of the estimated 

confidence intervals were similar. 
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Discussion

 We sought to understand how well different propensity score methods performed 

when patients were clustered, as by provider, and there were cluster-level effects on both 

treatment and outcomes.  Unlike previous work, we only examined situations where the 

cluster effects on treatment and outcome were uncorrelated, since this is a scenario that is 

more likely to be encountered in clinical research than a scenario in which these effects are 

correlated.  Also, because we knew, from prior work, that treatment effect estimates from 

most propensity score methods would be unbiased, we were keen to investigate the quality of 

inference for these methods.  To do so, we applied multiple treatment effect estimation 

methods that calculated standard errors of the estimate in different ways.   

 The estimation methods that consistently led to appropriate standard errors for and 

confidence intervals about the treatment effect estimate were those that started by estimating 

a provider-specific propensity score treatment model.  Inverse probability of treatment 

weighting methods apply weights to each patient based on the patient-specific probabilities 

estimated by this model.  The following IPTW estimation methods led to confidence 

intervals having the proper coverage: A GLM with patient-level or provider-level robust 

standard errors; the Lunceford estimator; and doubly robust methods.   

The only IPTW-based method that did not lead to accurate confidence intervals was 

the GLM without any sort of variance correction.  It is worth noting that because of how the 

weights are created, the sum of the weights within each study group is roughly the total 

number of patients in the entire sample.  This means the total effectively sample size for the 

weighted data is twice the original sample size.  This extra sample size is irrelevant for the 

Lunceford estimator or for the doubly robust estimators.  Even the use of GEE methods to 
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calculate robust standard errors handles these weights correctly.  But maybe this extra sample 

size is what led to artificially small standard errors from the basic GLM.  To test this, we 

performed post-hoc simulations based on standardized weights (Robins, Hernán, & 

Brumback, 2000).  Standardized weights are created by scaling the weights for patients in 

each study group by the observed proportion of patients in that study group, yielding a new 

set of weights that sum to the original sample size.  We found that the use of standardized 

weights was not enough to inflate the standard errors up to where they should have been 

when using a basic GLM.  Confidence intervals were still too narrow. 

 The use of doubly robust estimators in this situation should be appealing.  They are 

relatively easy to calculate and resulted in the narrowest confidence intervals of all methods 

that achieved nominal coverage of the estimated 95% confidence intervals.  These estimators 

may appeal to researchers who do not want to estimate a provider-specific treatment effect, 

since it is possible to model the treatment process as a provider-specific process while 

modeling the outcome process as a pooled process. 

Propensity score matching methods that performed best were those that used the 

linear predictors from a provider-specific treatment model to match treated patients to 

comparison patients for analysis.  The combinations of matching and estimation methods that 

were most effective were: Unstratified full matching and either GEE methods or ETT-

weighted GLM with robust standard errors; stratified full matching and ETT-weighted GLM 

with robust standard errors; and stratified greedy matching and GEE methods. 

 We found that estimation methods that were conditional on the matched sets 

outperformed those that ignored the matched sets.  In this way, our results agree with Austin 

(2008) and others that argue for the use of conditional methods.  While Shafer and Kang 
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(2008) are correct that there is no overt dependence between matched treated and comparison 

patients, the idea that their outcomes may be correlated is not so far-fetched.  In our 

simulation, patients who were more likely to receive the treatment were also more likely to 

have poor outcomes. 

 It was reassuring to see that full matching performed well in our simulations.  Full 

matching addresses a major drawback associated with 1:1 matching methods—the problem 

of discarded data.  Full matching methods utilize all records in a sample, whereas the 

maximum possible proportion of records matched with 1:1 greedy (or optimal) matching is 

twice the rate of the smaller study group.  In a sample with a 20% treatment rate, this leaves 

over half of the sample unused when estimating the treatment effect.  Trying to match more 

comparison records to treated records through the use of m:1 fixed ratio matching is often 

ineffective.  It has been shown that as m increases, substantial imbalance between study 

groups can be introduced (Hansen, 2004).  The issue of discarded data may not be of utmost 

importance when comparing a treatment group to an untreated comparison group, but it is 

potentially very important for comparative effectiveness research when both study groups 

include actively treated patients.  Head-to-head comparisons of medication, of dosage, or of 

different treatment modalities are examples where this occurs.  Full matching may be the 

most appropriate matching method for these questions, since it is the only way to ensure 

complete matching of patients in both study groups. 

It is worth mentioning that we did briefly explore optimal matching methods in our 

simulation study, but found an unusual situation.  While optimal matching was able to match 

more treated patients to comparison patients than greedy matching, these extra matches were 

made at the far end of the allowable matching range (i.e. near the size of the calipers used).
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And because of the data generation process used, small changes in the linear predictor were 

so highly associated with changes in outcome that there was bias in the effect estimates due 

to these additional matched sets.  In practice we would not expect this.  Rather, we would 

expect results from optimal matching that are quite close to those from greedy matching. 

 One set of methods available for non-parametric estimation of confidence intervals 

around an estimated treatment effect that we did not explore is bootstrap methods (Efron & 

Tibshirani, 1994).  This has been advocated for use with inverse probability of treatment 

weighting methods (Curtis, Hammill, Eisenstein, Kramer & Anstrom, 2007) although it is 

time consuming and can be resource intensive.  For propensity score matching, the proper 

use of bootstrap methods is less clear.  Austin and Small (2014) presented a bootstrap method 

for matching that he found to generate appropriate confidence intervals.  But Abadie and 

Imbens (2008) have argued strongly that bootstrap estimates, in general, are inappropriate 

when applied to matching methods.   

In general, there are a few ways to consider addressing clustering of patients within 

provider in an analysis that uses propensity score methods.  First, clustering can be addressed 

by including provider-specific factors in the treatment model.  This, as noted above, most 

consistently led to accurate confidence intervals and the correct inference.  Both doubly 

robust estimators worked well, for example, because for our simulated data a provider-

specific treatment model was the correct specification of that model.  Second, clustering can 

be addressed in the application of the propensity score methods.  This is a method specific to 

matching.  We found that if provider was ignored in the treatment model, but used for 

stratified matching, the confidence intervals were often too narrow, sometimes considerably 

so.  However, if provider was incorporated into the treatment model, it turns out that 
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matching within provider was not absolutely necessary for the calculation of appropriate 

standard errors.  Third, clustering can be addressed during the estimation of the treatment 

effect.  This is a method specific to inverse probability of treatment weighting methods, since 

there is no practical way to include provider in regression models when propensity score 

matching is used and the matched sets themselves need to be accounted for.  Unfortunately, 

regression methods using inverse probability of treatment weighted data based on a pooled 

treatment model did not yield accurate confidence intervals by simply requesting provider-

level robust standard errors. It’s likely, by the way, that the provider-level robust standard 

errors performed as well as the patient-level robust standard errors when a provider-specific 

treatment model was used because weights based on that treatment model minimized or 

eliminated the correlation between provider and treatment.  In short, as found in prior 

research (Austin, Grootendorst, & Anderson, 2007; Brookhart et al., 2006) when cluster is a 

confounding factor between treatment and outcome, even if it does not have the kind of 

correlated effect that would yield bias of the treatment estimate, it seems that it should be 

included in the treatment model like any other confounder.
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Table 3.1 - List of Estimation Methods Utilized 
 

Label Weight Estimation Method 
Associated with propensity score matching 

GLM None General linear model 
GLM (ETT) ETT General linear model 

GLM (ETT, robust) ETT General linear model with robust standard errors via GEE methods with matched set-
level independence working correlation structure 

GEE None GEE methods with matched set-level exchangeable working correlation structure  
Abadie -- Abadie method: C�¦�§,  «�¦�§`  
   

Associated with inverse probability of treatment weighting 
GLM  General linear model 

GLM (robust, patient)  
� 

General linear model with robust standard errors via GEE methods with patient-level 
independence working correlation structure 

GLM (robust, provider) 
IPTW 

	 
General linear model with robust standard errors via GEE methods with provider-level 
independence working correlation structure 

Lunceford   Lunceford method: C�³´\µ,  «³´\µ`  
Doubly robust (pooled)  

Doubly robust method: C�§� ,  «§�` Ð  
Pooled outcome model 

Doubly robust (provider-specific)   Provider-specific outcome model 
   

Abbreviations: GLM = Generalized linear model; ETT = Effect of treatment on the treated; GEE = Generalized estimating equations
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Table 3.2 - Simulation results for propensity score matching methods on data generated 
without provider effects, by match type and estimation method.  True treatment difference = 
2.0. 
 

Match type Estimation method 
Mean Treatment 

Estimate 
Mean Squared 
Error (x1000) 

Mean Width 
of 95% CI 

Coverage 
Probability 

Full  GLM (ETT) 1.998 2.37 0.315 99.9 
 GLM (ETT, robust) 1.998 2.37 0.194 95.1 
 GEE 1.997 1.66 0.169 95.8 
 Abadie 1.998 2.37 0.164 90.4 
Greedy GLM 1.991 2.09 0.406 100.0 
 GEE 1.991 2.09 0.185 95.3 

 
Abbreviations: CI = Confidence interval; GLM = Generalized linear model; ETT = Effect of treatment on the 
treated; GEE = Generalized estimating equations 
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Table 3.3 - Simulation results for inverse probability of treatment weighting methods on data 
generated without provider effects, by match type and estimation method.  True treatment 
difference = 2.0. 
 

Estimation method 
Mean treatment 

estimate 
Mean Squared 
Error (x1000) 

Mean width of 
95% CI 

Coverage 
probability 

GLM 1.998 2.37 0.315 99.9 
GLM (robust, patient) 1.998 2.37 0.164 90.4 
Lunceford  1.998 2.37 0.194 95.1 
Doubly robust (pooled) 1.991 2.09 0.185 95.3 

 
Abbreviations: CI = Confidence interval; GLM = Generalized linear model 
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Table 3.4 - Simulation results for propensity score matching methods.  Mean estimated 
treatment difference and mean squared error, by match type and estimation method.  True 
treatment difference = 2.0. 
 

Match type Estimation method 

Mean Treatment Estimate 
Mean Squared Error 

(x1000) 
ICC 
0.00 

ICC 
0.05 

ICC 
0.25 

ICC 
0.00 

ICC 
0.05 

ICC 
0.25 

Pooled treatment model 
Unstratified        
 Full GLM (ETT) 1.999 2.000 2.001 1.03 2.14 7.15 
 GLM (ETT, robust) 1.999 2.000 2.001 1.03 2.14 7.15 
 GEE 1.999 2.001 2.001 0.71 1.73 6.86 
 Abadie 1.999 2.000 2.001 1.03 2.14 7.15 
 Greedy GLM 1.992 1.992 1.991 1.00 2.10 7.56 
 GEE 1.992 1.992 1.991 1.00 2.10 7.56 
Stratified        
 Full GLM (ETT) 1.973 1.971 1.971 2.78 2.99 2.95 
 GLM (ETT, robust) 1.973 1.971 1.971 2.78 2.99 2.95 
 GEE 1.943 1.941 1.942 5.15 5.64 5.57 
 Abadie 1.973 1.971 1.971 2.78 2.99 2.95 
 Greedy GLM 1.968 1.969 1.966 2.64 2.75 2.88 
 GEE 1.968 1.969 1.966 2.64 2.75 2.88 
        

Provider-specific treatment model 
Unstratified        
 Full GLM (ETT) 2.041 2.042 2.045 5.99 5.92 6.54 
 GLM (ETT, robust) 2.041 2.042 2.045 5.99 5.92 6.54 
 GEE 2.028 2.024 2.017 3.26 3.49 3.96 
 Abadie 2.041 2.042 2.045 5.99 5.92 6.54 
 Greedy GLM 2.024 2.023 2.019 9.36 9.63 10.76 
 GEE 2.024 2.023 2.019 9.36 9.63 10.76 
Stratified        
 Full GLM (ETT) 1.983 1.983 1.983 1.77 1.69 1.88 
 GLM (ETT, robust) 1.983 1.983 1.983 1.77 1.69 1.88 
 GEE 1.966 1.966 1.965 2.33 2.47 2.64 
 Abadie 1.983 1.983 1.983 1.77 1.69 1.88 
 Greedy GLM 1.985 1.986 1.985 1.33 1.32 1.40 
 GEE 1.985 1.986 1.985 1.33 1.32 1.40 

 
Abbreviations: ICC = Intraclass correlation coefficient; GLM = Generalized linear model; ETT = Effect of 
treatment on the treated; GEE = Generalized estimating equations 
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Table 3.5 - Simulation results for propensity score matching methods.  Mean width of 95% 
confidence interval and coverage probability, by match type and estimation method.   
 

Match type Estimation method 

Mean width of 95% CI Coverage probability 
ICC 
0.00 

ICC 
0.05 

ICC 
0.25 

ICC 
0.00 

ICC 
0.05 

ICC 
0.25 

Pooled treatment model 
Unstratified        
 Full GLM (ETT) 0.232 0.233 0.237 100.0 98.4 84.2 
 GLM (ETT, robust) 0.135 0.138 0.151 96.8 85.8 63.3 
 GEE 0.117 0.119 0.131 97.2 83.9 57.2 
 Abadie 0.111 0.114 0.125 92.2 78.3 53.0 
 Greedy GLM 0.283 0.284 0.290 100.0 99.6 90.4 
 GEE 0.125 0.128 0.140 95.5 83.8 58.0 
Stratified        
 Full GLM (ETT) 0.232 0.233 0.238 97.0 95.9 97.1 
 GLM (ETT, robust) 0.156 0.156 0.156 87.4 86.1 87.1 
 GEE 0.125 0.125 0.125 56.8 56.6 55.0 
 Abadie 0.114 0.115 0.114 75.1 73.0 73.1 
 Greedy GLM 0.316 0.318 0.325 99.5 99.3 99.3 
 GEE 0.139 0.139 0.139 84.0 84.5 81.9 
        

Provider-specific treatment model 
Unstratified        
 Full GLM (ETT) 0.232 0.233 0.238 86.7 87.1 85.5 
 GLM (ETT, robust) 0.321 0.323 0.333 97.2 97.2 95.8 
 GEE 0.244 0.246 0.252 97.9 97.5 96.4 
 Abadie 0.220 0.221 0.227 84.6 85.4 83.6 
 Greedy GLM 0.315 0.316 0.323 89.3 89.0 88.5 
 GEE 0.268 0.270 0.276 84.1 83.0 82.2 
Stratified        
 Full GLM (ETT) 0.230 0.231 0.236 99.4 99.8 99.1 
 GLM (ETT, robust) 0.156 0.156 0.156 93.8 94.3 93.1 
 GEE 0.122 0.122 0.122 79.1 77.9 75.7 
 Abadie 0.112 0.112 0.112 82.4 81.5 79.7 
 Greedy GLM 0.316 0.318 0.324 100.0 100.0 100.0 
 GEE 0.136 0.136 0.136 94.5 93.9 92.4 

 
Abbreviations: CI = Confidence interval; ICC = Intraclass correlation coefficient; GLM = Generalized linear 
model; ETT = Effect of treatment on the treated; GEE = Generalized estimating equations 
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Table 3.6 - Simulation results for inverse probability of treatment weighting methods.  Mean 
estimated treatment difference and mean squared error, by estimation method.  True 
treatment difference = 2.0. 
 

Estimation method 

Mean Treatment Estimate 
Mean Squared Error 

(x1000) 
ICC 
0.00 

ICC 
0.05 

ICC 
0.25 

ICC 
0.00 

ICC 
0.05 

ICC 
0.25 

Pooled treatment model 
GLM 1.983 1.986 1.983 2.37 3.58 8.84 
GLM (robust, patient) 1.983 1.986 1.983 2.37 3.58 8.84 
GLM (robust, provider) 1.983 1.986 1.983 2.37 3.58 8.84 
Lunceford  1.983 1.986 1.983 2.37 3.58 8.84 
Doubly robust (pooled) 2.000 1.999 2.000 0.68 1.77 7.02 
Doubly robust (provider-specific)  2.000 2.000 2.000 0.68 0.90 1.00 
       

Provider-specific treatment model 
GLM 1.964 1.970 1.962 7.23 6.78 7.26 
GLM (robust, patient) 1.964 1.970 1.962 7.23 6.78 7.26 
GLM (robust, provider) 1.964 1.970 1.962 7.23 6.78 7.26 
Lunceford  1.964 1.970 1.962 7.23 6.78 7.26 
Doubly robust (pooled) 2.001 2.001 2.000 1.05 1.12 1.27 
Doubly robust (provider-specific)  2.001 2.001 2.000 1.05 1.12 1.20 

 
Abbreviations: ICC = Intraclass correlation coefficient; GLM = Generalized linear model 
  



�

85 

Table 3.7 - Simulation results for inverse probability of treatment weighting methods.  Mean 
width of 95% confidence interval and coverage probability, by estimation method.   
 

Estimation method 

Mean width of 95% CI Coverage probability 
ICC 
0.00 

ICC 
0.05 

ICC 
0.25 

ICC 
0.00 

ICC 
0.05 

ICC 
0.25 

Pooled treatment model 
GLM 0.241 0.242 0.246 98.5 95.8 80.9 
GLM (robust, patient) 0.328 0.330 0.333 99.9 99.2 91.9 
GLM (robust, provider) 0.637 0.650 0.696 100.0 100.0 99.9 
Lunceford  0.303 0.306 0.308 99.8 98.8 88.6 
Doubly robust (pooled) 0.103 0.106 0.118 95.8 79.3 52.1 
Doubly robust (provider-specific)  0.103 0.103 0.103 95.6 91.7 89.7 
       

Provider-specific treatment model 
GLM 0.241 0.242 0.246 84.0 85.7 85.4 
GLM (robust, patient) 0.426 0.431 0.428 97.9 98.7 98.3 
GLM (robust, provider) 0.403 0.410 0.405 97.5 98.5 97.8 
Lunceford  0.402 0.408 0.404 96.9 98.0 97.3 
Doubly robust (pooled) 0.126 0.130 0.145 94.3 95.0 96.3 
Doubly robust (provider-specific)  0.126 0.125 0.123 94.3 93.9 93.0 

 
Abbreviations: CI = Confidence interval; ICC = Intraclass correlation coefficient; GLM = Generalized linear 
model 
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Table 3.8 - Characteristics of ADHERE-HF patients receiving milrinone and dobutamine  
 

Variable 
Dobutamine 
(N = 3794) 

Milrinone 
(N = 2318) 

Standardized 
Difference, % 

Demographics    
Age (years), Mean (SD) 69.4 (13.8) 65.7 (14.3) 26.3 
Gender, Male 2,445 (64.4%) 1,595 (68.8%) 9.3 
Race   8.7 

White 2,788 (73.5%) 1,612 (69.5%)  
Black 683 (18.0%) 478 (20.6%)  
Other/unknown 323 (8.5%) 228 (9.8%)  

    
Medical History    
Anemia 1,970 (51.9%) 1,207 (52.1%) 0.3 
Atrial fibrillation 1,358 (35.8%) 822 (35.5%) 0.7 
Coronary artery disease 2,555 (67.3%) 1,496 (64.5%) 5.9 
Chronic renal insufficiency 1,559 (41.1%) 912 (39.3%) 3.6 
Chronic obstructive pulmonary disease/Asthma 1,178 (31.0%) 645 (27.8%) 7.1 
Diabetes mellitus 1,617 (42.6%) 979 (42.2%) 0.8 
Hyperlipidemia 1,481 (39.0%) 874 (37.7%) 2.7 
Hypertension 2,317 (61.1%) 1,377 (59.4%) 3.4 
Prior myocardial infarction 1,514 (39.9%) 812 (35.0%) 10.1 
Peripheral vascular disease 759 (20.0%) 427 (18.4%) 4.0 
Prior stroke/Transient ischemic attack 564 (14.9%) 373 (16.1%) 3.4 
Current smoker 460 (12.1%) 278 (12.0%) 0.4 
    
Pacemaker, any 1,256 (33.1%) 821 (35.4%) 4.9 
Implantable cardioverter defibrillator 790 (20.8%) 616 (26.6%) 13.6 
    
Initial evaluation    
Fatigue 1,580 (41.6%) 1,020 (44.0%) 4.8 
Rales 2,439 (64.3%) 1,336 (57.6%) 13.7 
Edema 2,571 (67.8%) 1,409 (60.8%) 14.6 
Congestion 2,294 (60.5%) 1,266 (54.6%) 11.9 
Ejection fraction   15.7 

< 40 2,797 (73.7%) 1,859 (80.2%)  
 40 589 (15.5%) 257 (11.1%)  
Unknown 408 (10.8%) 202 (8.7%)  

    
Initial vital signs and laboratory results    
Systolic blood pressure (mmHg), Mean (SD) 120.1 (28.5) 119.5 (26.3) 2.1 
BUN (mg/dL), Mean (SD) 43.3 (27.1) 40.5 (25.8) 10.6 
Serum sodium (mmol/L), Mean (SD) 136.4 (5.3) 136.6 (5.0) 4.4 
Hemoglobin (g/dL), Mean (SD) 12.6 (2.5) 12.5 (2.4) 2.2 

   
Values for Dobutamine and Milrinone groups presented as N (%) unless otherwise specified 
Abbreviation: SD = Standard deviation 
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Table 3.9 - Estimated relative risk and 95% confidence interval from inverse probability of 
treatment weighting methods for association between milrinone (vs. dobutamine) and in-
hospital mortality.  
 

Estimation method Relative Risk (95% CI) 
Pooled treatment model 

GLM 0.92 (0.83, 1.03) 
GLM (robust, patient) 0.92 (0.78, 1.09) 
GLM (robust, provider) 0.92 (0.73, 1.17) 
Williamson 0.92 (0.79, 1.08) 
Doubly robust (pooled) 0.94 (0.79, 1.12) 
Doubly robust (provider-specific)  0.91 (0.77, 1.08) 
  

Provider-specific treatment model 
GLM 0.92 (0.83, 1.03) 
GLM (robust, patient) 0.92 (0.74, 1.15) 
GLM (robust, provider) 0.92 (0.71, 1.19) 
Williamson  0.92 (0.79, 1.07) 
Doubly robust (pooled) 0.93 (0.76, 1.14) 
Doubly robust (provider-specific)  0.92 (0.75, 1.12) 

 
Abbreviations: CI = Confidence interval; GLM = Generalized linear model   
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Table 3.10 - Estimated relative risk and 95% confidence interval from propensity score 
matching methods for association between milrinone (vs. dobutamine) and in-hospital 
mortality. 
 

Match type Estimation method Relative Risk (95% CI) 
Pooled treatment model 

Unstratified   
 Full GLM (ETT) 0.90 (0.75, 1.09) 
 GLM (ETT, robust) 0.90 (0.75, 1.10) 
 GEE 0.81 (0.69, 0.95) 
 Greedy GLM 0.94 (0.78, 1.14) 
 GEE 0.94 (0.78, 1.13) 
Stratified   
 Full GLM (ETT) 0.86 (0.71, 1.04) 
 GLM (ETT, robust) 0.86 (0.66, 1.11) 
 GEE 0.82 (0.69, 0.97) 
 Greedy GLM 0.85 (0.67, 1.07) 
 GEE 0.85 (0.67, 1.07) 
   

Provider-specific treatment model 
Unstratified   
 Full GLM (ETT) 0.86 (0.72, 1.04) 
 GLM (ETT, robust) 0.86 (0.65, 1.14) 
 GEE 0.77 (0.66, 0.91) 
 Greedy GLM 0.90 (0.73, 1.11) 
 GEE 0.90 (0.73, 1.11) 
Stratified   
 Full GLM (ETT) 0.89 (0.74, 1.09) 
 GLM (ETT, robust) 0.89 (0.66, 1.21) 
 GEE 0.91 (0.75, 1.09) 
 Greedy GLM 0.89 (0.69, 1.13) 
 GEE 0.89 (0.70, 1.13) 

 
Abbreviations: CI = Confidence interval; GLM = Generalized linear model; ETT = Effect of treatment on the 
treated; GEE  = Generalized estimating equations 



89 

CHAPTER 4 

A SAS MACRO FOR OPTIMAL MATCHING AND FULL MATCHING ON  
PROPENSITY SCORES 

Introduction 

 The use of propensity score matching methods to balance covariates between a 

treated group of patients and a comparison group of patients in clinical and epidemiological 

research is widespread (Stürmer et al., 2006).  Greedy matching (Rosenbaum & Rubin, 

1985a), a method in which patients from each study group are matched one at a time and 

without reconsideration, is the most frequently used matching method in these studies 

(Austin, 2008).  This preponderance of greedy matching is potentially unwarranted, given 

that other, often superior, matching methods have been described.  

Optimal matching (Rosenbaum, 1989) and full matching (Rosenbaum, 1991) are two 

such methods proposed as alternatives to greedy matching.  Unlike greedy matching, which 

seeks closely matched pairs without regard to the overall distance between matched sets, both 

optimal matching and full matching allow matches to be reconsidered in order to minimize 

the total distance between matched sets of treated and comparison patients.  The difference 

between optimal matching and full matching is in the make-up of the matched sets.  Optimal 

matching, like greedy matching, is a type of fixed ratio matching, where all resulting 

matched sets contain the same number of patients from each study group, with 1:1 matches 

most common.  With fixed ratio matching, many records remain unmatched.  Full matching 



90 

addresses this limitation by allowing flexibility in the make-up of the matched sets—multiple 

treatment records can be matched to a single comparison record and vice versa—which 

results in the utilization of all records in both study groups. 

When these matching methods have been compared, full matching has been shown to 

produce closer matched sets and better covariate balance between study groups than either 

optimal or greedy 1:1 matching (Ming & Rosenbaum, 2000; Gu & Rosenbaum, 1993).   

Others have demonstrated that trying to utilize more control patient data by performing m:1 

matches introduces greater imbalances in the matched sets (Hansen, 2004) compared to 1:1 

matching.  When matching on a single variable, greedy matching and optimal matching often 

produce similar results, especially if there are a substantial number of control patients 

available for matching to each treated patient.  When the number of controls per treated 

patient is low, optimal matching produces better matches (Gu & Rosenbaum, 1993). 

 The scarcity of optimal matching and full matching applications in the literature is 

likely due to fact that, as optimization problems, they are difficult to implement. Rosenbaum 

(1989 & 1991) demonstrated that one way to approach both optimal matching and full 

matching is by leveraging the theory and mechanics of network flow problems.  By casting 

these matching problems as network flow problems, linear programming solvers can be 

employed to find the minimum distance between the two sets of records (Tardos & 

Kleinberg, 2006).  Submitting data to these solvers requires understanding how to 

appropriately specify and program the nodes and arcs of a network problem.  And recovering 

the matched sets from the solution require understanding how to identify connected records 

in the resulting network (Tardos & Kleinberg, 2006).  Neither are trivial.  And while SAS 
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macros exist for greedy matching, full-featured macros for optimal matching and full 

matching do not exist (Bergstralh & Kosanke, 2003). 

 In this paper, we present a SAS macro for implementing both optimal matching and 

full matching on a scalar variable, such as the propensity score, using optimization tools 

found within SAS/OR, SAS’s operations research software.  We also review the methods and 

mechanics of matching and we will demonstrate the use of the macro with data from a 

clinical application. 

 

Matching Methods

 The propensity score was introduced by Rubin and Rosenbaum in the mid-1980s as a 

balancing score to be used for balancing measured characteristics between two study groups 

(Rosenbaum & Rubin, 1983).  [Note that in comparative effectiveness research, these two 

study groups may both be treatment groups, treated with different modalities or strengths of 

the same therapy.  For the purposes of this manuscript and for simplicity, we will refer to the 

two study groups as the treatment group and the comparison group; and we will refer to the 

members of these groups as patients.]  The propensity score is the probability of treatment 

associated with each study patient.  Propensity scores are usually estimated with a logistic 

regression having the treatment indicator as the dependent variable and factors that may 

confound the relationship between treatment and outcome as the predictors.   

 Different propensity score-based methods utilize these estimated probabilities in 

different ways to achieve balance, but a very common method is simply matching each 

patient in the treatment group to one or more patients in the comparison group having similar 

values on the propensity score or some function of the propensity score (e.g. linear 
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predictor).  Matching on the propensity score is a way to perform a multivariate match using 

a single variable, and Rubin and Rosenbaum (1985a) showed that such matching results in 

sets of patients from each study group that had similar distributions on measured 

confounders.  This, in turn, allows for a direct assessment of the outcomes in each group 

without further adjustment for confounders.  The resulting treatment effect estimate was 

shown to be a consistent estimator of the population-level treatment effect (Rosenbaum & 

Rubin, 1983). 

 There are many different ways to match records between two groups on a single 

variable like the propensity score.  The simplest way to do this is to perform greedy 

matching, which is also sometimes referred to as nearest neighbor matching (Rosenbaum & 

Rubin, 1985).  Implementation of greedy matching is easily programmable as a series of 

steps.  The general algorithm can be described as follows.  First, randomly order patients in 

the treatment group and work through them one-by-one.  For each treated patient, find the 

comparison patient with the closest match on the matching variable and output both records 

as a matched set.  Continue until all treated patients have been matched.  This match is 

“greedy” in that once a patient from the comparison group is assigned, that assignment is not 

revisited.  Most greedy matches are specified as 1:1 matches, resulting in two patients per 

matched set.  Alternatively, researchers may specify m:1 fixed ratio matches.  In this case, 

the above procedure is repeated for all patients in the treatment group and all remaining 

unmatched patients in the comparison group.  This continues until m matches have been 

made for each treated patient.   

One drawback with greedy matching is that it does not consider the total distance on 

the matching variables across all matched sets of treated and comparison patients.  Optimal 



93 

matching addresses this drawback.  Optimal matching methods, in general, assign every 

patient in the treated group to a different patient in the comparison group simultaneously.  It 

uses the total distance on the matching variable across all matched sets as the minimization 

criteria.  Matching assignments are reconsidered until it is believed that the optimal solution, 

with the lowest possible total distance, has been found.  As with greedy matching, most 

optimal matches are 1:1 matches, although it is possible to create m:1 matches in a manner 

similar to what is described above.  After 1:1 matches are match, another m-1 optimal 

matches would be performed using all the treated patients and the unmatched comparison 

patients. 

An obvious limitation with both greedy matching and optimal matching is that fact 

that there are, by definition, many records left unmatched at the end of the process that will 

not contribute to the outcomes analysis.  While m:1 matching attempts to utilize more of 

these unmatched records than 1:1 matching, it has been shown that requiring a fixed ratio of 

treated to comparison patients can result in very poor matches (Hansen, 2004) which in turn 

can lead to bias in the treatment effect estimate.  Full matching addresses these issues.  The 

core principle of full matching is to match all records in the treatment group to all records in 

the comparison without requiring a fixed ratio of treated to comparison patients in the 

matched sets.  In other words, matched set treated-to-comparison ratios are flexible and can 

be m:1 or 1:m, with almost no limit on the size of m in either direction.  As with optimal 

matching, full matching uses the total distance on the matching variable across all matched 

sets as the minimization criteria and reconsiders assignments until an optimal solution has 

been found. 
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The complexity of simultaneous assignment and optimization in both optimal 

matching and full matching make them less amenable to programming as a series of discrete 

steps.  Rosenbaum (1989 & 1991) recognized that each could be thought of as a minimum-

cost network flow problem, a standard optimization problem (Tardos & Kleinberg, 2006).  

Once recast as an optimization problem, it is possible to use existing linear programming 

solvers to perform optimal matching and full matching.  Setting up the necessary data 

structures and constraints for these solvers, however, can be a challenge.   

Network flow problems are described using nodes and links.  Links are also often 

referred to as arcs or edges.  Figure 4.1, Panel A shows the general set-up for a matching 

problem as a network flow problem.  Consider all the treated patients (1–5) in the center left-

hand column, T, and all the comparison patients (a–e) in the center right-hand column, C.  

Each patient is a node in the network.  All nodes in the treated column have directed links 

into all nodes in the comparison column.  By adding a source node, �, to the left of the 

treated patients, a sink node, �, to the right of the comparisons patients and all appropriately 

directed links, we can imagine “flow” moving from left to right across the network.  Using 

costs assigned to the links between patients in the treatment group and patients in the 

comparison group, it is possible to find the lowest cost way to move a specified amount of 

flow (in units) from the source node through each study group to the sink node.  The 

resulting paths represent the final links in the matching.  Figure 4.1 shows example paths for 

solved 1:1 optimal matching (Panel B) and solved full matching (Panel C).  Note in Panel C 

that the full matching here has resulted in two 1:1 matches, a single 1:2 match, and a single 

2:1 match.  This imbalance is handled in the eventual statistical analysis.  
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Before the network flow problem can be solved, constraints need to be specified, 

including the supply of flow to put through the network, the flow costs of the links to and 

from the source and sink nodes, and flow capacities for all links.  The first panel of Table 4.1 

lists these constraints for both optimal matching and full matching performed without 

stratification.  The total network flow is determined by the input quantity of supply node.  

The sink node balances this quantity to ensure that the entire flow moves across the network.  

No other nodes (i.e. none of the patient nodes) initiate or terminate flow.  The total units of 

network flow for optimal matching is the size of the smaller of the treated or comparison 

groups.  This will result in all the patients of the smaller group being matched, but, as 

expected, only some patients within the larger group being matched.  Total flow for full 

matching is, at a minimum, the size of the larger study group, which ensures all patients in 

both study groups get matched.  For full matching, the total flow will equal the size of the 

larger study group only if all matched sets include only one member of the smaller study 

group and one or more members of the larger study group.  Additional flow will be required 

if any of the matched sets include one member of the larger study group matched to multiple 

members of the smaller study group.  For both unstratified optimal and full matching, the 

cost of a single unit of flow associated with each link from a treated patient to a comparison 

patient is the difference in the matching variable between those patients.  In propensity score 

matching, this might be the difference in the linear predictors from the treatment model for 

each pair of patients. The capacity limits on these links are always [0, 1], with the minimum 

flow through the link as 0 units, or no flow, and the maximum flow as 1 unit.  In other words, 

each link between patients can be used either once or not at all.  For full matching, the link 

capacities out of the source node and into the sink node are all [1, 
], meaning each of those 
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links must be used once, but can be used multiple times.  This enables both 1:m and m:1 

matching.  For optimal matching, the link capacities from the source node and to the sink 

nodes differ.  For the smaller study group, the appropriate links will require 1 unit of flow 

across them, resulting in every patient being used.  For the larger study group, the appropriate 

links have capacity [0, 1].  Only the patients associated with the lowest costs will be used 

from this group. 

For stratified matches, some of these quantities change and some do not.  See Figure

4.2, Panel A for the network set-up of a stratified matching problem.  The difference from an 

unstratified match is that there are no links available from treated patients in one stratum to 

comparison patients in another.  This has effects on the constraints of the problem, shown in 

the second panel of Table 4.1.  The total flow through the network is now determined by the 

sum of the sizes of the smaller study group, for optimal matching, or larger study group, for 

full matching, within each stratum.  This will only lead to a different amount of flow 

compared to the unstratified match of the same type if some strata have a treatment 

proportion under 0.5, while others have a treatment proportion greater than 0.5.  Link 

capacities between treated and comparison patients are again based on the difference in the 

matching variable between pairs, with the additional note that this only applies to patients in 

the same stratum.  Patients from different strata are not linked.  One final difference has to do 

with the link capacities for links between the source node and the treated patients and 

between the comparison patients and the sink node.  These capacities are now based on the 

sizes of the study groups within each strata.  An example solution for a stratified optimal 

match is shown in Figure 4.2, Panel B.  Note that only 4 of the 5 patients in each group are 

able to be matched, due to the size of each study group within each strata. An example 
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solution for a stratified full match is shown in Figure 4.2, Panel C.  Here, all patients are still 

matched.  

There are a few common variations on the matches described above.  One important 

variation on all matching methods is the use of calipers.  In caliper matching, only records 

within a specified distance of each other are considered eligible to be matched.  Calipers are 

useful for preventing the matching of records deemed to be too far apart.  Unrestricted 

matches may result in too many disparate matches, which in turn can affect the balance on 

confounding factors between matched groups.  The width of calipers to be used can be set by 

the researcher, but at least one simulation study led to a recommendation of calipers equal to 

0.2 standard deviations of the matching variable (Austin, 2011).  While some researchers 

recommend trimming when the distribution of the matching variables do not entirely overlap 

(Stürmer, Rothman, Avorn & Glynn, 2010), the use of calipers may be an alternative, if the 

width of the caliper is set at the largest difference desired.  At one point, Rosenbaum (1989) 

actually called optimal matching within calipers his “method of choice”.  He also pointed out 

that greedy matching, compared to optimal matching, was less likely to result in a complete 

matching of treated patients when calipers were used.  As a network problem, implementing 

caliper matching is as simple as removing links between treated patients and comparison 

patients for whom the difference in the matching variable is too large (Figure 4.3, Panel A). 

Another variation on full matching, proposed by Hansen (2004), was to limit the 

maximum size of the matched sets through the use of ratio caps.  Typical full matches do not 

constrain the number of treated patients matched to a comparison patient, or vice versa.  It is 

possible to have matched sets from an unconstrained full match that contain an extreme 

number of treated or control patients—e.g. a set with a 100:1 treated to comparison ratio.  
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Hansen notes that constraining the ratios in the final matched set should have some 

advantages in the precision of estimates based on the matched data.  He introduced the idea 

of thinning and thickening ratio caps that, when applied to the observed treatment odds, 

define the minimum and maximum ratios allowable for matching.  He defined these as 

follows.  Given observed Group 1:Group 2 treatment odds, YOBS, a thickening cap of u (> 1) 

and a thinning cap of l (< 1), the maximum matching ratio, YMAX,  is given by: 

YMAX : ¡ ÑjYOBSÒ Ó .F jYOBS Ô .. Ó Õ?jYOBSAd<ÖF jYOBS × . 

And the minimum matching ratio, YMIN, is given by: 

YMIN : ¡ ÕØYOBSÖ Ó .F ØYOBS Ô .. Ó Ñ?ØjYOBSAd<ÒF ØYOBS × . 

These ratio limits can be implemented through manipulation of the minimum and maximum 

values for the link capacity associated with links out of the source node to the treated patients 

and associated with links from the comparison patients into the sink node.  This involves 

replacing the 
 found in the capacity limits shown in Table 4.1 with the finite number 

determined by the formulas above. 

Table 4.2 shows what different values of the minimum and maximum allowable 

matching ratios would be for a given treatment rate and for different combinations of 

thinning and thickening caps.  For example, assuming Group 1 is the treatment group, a 

treatment proportion of 25% is the same as an observed treated odds of 1:3.  A thinning cap 

of 0.2 yields a minimum matching ratio of 1:15 and a thickening cap of 5 yields a maximum 

matching ratio of 2:1.  While the sets of caps shown in this table are symmetric, they need 

not be in practice.  Hansen (2004) gives some guidance on how to choose these caps. 
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Once the problem is fully specified, with or without calipers and with or without ratio 

caps, it can be solved using optimization algorithms.  SAS solves general minimum cost 

network flow problems using the primary network simplex algorithm developed by Ahuja, 

Magnanti, and Orlin (1993).  Because optimal matching results in 1:1 matches, it is actually a 

special case of minimum cost network flow problem called a linear assignment problem.  

While linear assignment problems can be solved with the simplex algorithm, it may be more 

efficiently solved by algorithms developed especially for such problems.  SAS employs one 

developed by Jonker and Volgenant (1987). 

The solution to a minimum cost network flow problem is a list of all links utilized to 

move the specified flow across the network.  For matching, we are not interested in links 

from the source node to the treated patients or from the comparison patients to the sink node, 

and instead we need look only at the links from the treated patients to the comparison 

patients.  Given the list of links, the next requirement is to identify connected components, 

defined as the set of nodes that are reachable from one another through the determined links.  

Identifying matched sets allows us to take account for them in the outcomes analysis.  This is 

essential for full matching, since the size and composition of the matched sets can vary.  

Identifying connected components from optimal matches is simple.  The two patients 

associated with a link are a connected component.  It is not possible for other patients to be 

reachable by those patients because the matched sets only include one patient from each 

study group.  In full matching, on the other hand, multiple treated patients can be matched to 

a single comparison patient, and vice versa.  In this case, we need to use a depth-first search 

to traverse the network solution to identify all records in each matched set (Tardos & 

Kleinberg, 2006). 
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SAS Macro Details 

 The fmatch.sas macro presented here is available from 

http://people.duke.edu/~hammill/software.  The macro utilizes optimization procedures 

available in SAS/OR, the operations research software available from SAS Institute, to solve 

the network problems described above.  This macro transforms the input dataset into the 

format required by SAS/OR and appropriately specifies the constraints for the requested 

match type and match options.  The macro does not estimate a propensity score, but instead 

requires that it, or any other quantity to be used for matching, is pre-calculated and available 

on the data set.  There is some other, minor data preparation that must occur before calling 

the macro. 

The macro requires users to specify an input dataset, the matching variable, the study 

group variable, and the record-level identifier.  The matching variable must be numeric and is 

typically the estimated propensity score or the linear predictor from the treatment model.  

The study group variable typically reflects assigned treatment and must be a 2-level numeric 

variable.  The first level of this variable, sorted numerically, defines Group 1 and the other 

defines Group 2.  In this macro, the ordering of this variable is unimportant.  A reverse-coded 

group variable will yield identical results.  The record-level identifier can contain either 

numeric or character values, but must uniquely identify the records in the input dataset.   

 The default matching method used by the macro is full matching, but users may 

request an optimal match instead.  Additionally, users may specify a stratification variable in 

the macro call, to request that matching occur within strata.  For both unstratified and 

stratified full matching, the macro uses the network simplex algorithm described above.  For 

unstratified optimal matching without calipers (option described below), the macro uses the 
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linear assignment algorithm provided by SAS.  For unstratified optimal matching with 

calipers and for all stratified optimal matches, however, the macro uses the network simplex 

algorithm.  For stratified optimal matches, this is done because of the possibility that the 

number of matches to be made is less than the linear assignment algorithm expects (see Table 

4.1).  Regardless of the problem set-up, the linear assignment algorithm always expects 

���?mÙF mÚA matches to be made.  For stratified matches where some strata have mÙFÛ Ô mÚFÛ 

while others have mÙFÛ M mÚFÛ, the actual number of matches to be made will be less than 

���?mÙF mÚA and the linear assignment algorithm will report the solution to be, incorrectly, 

infeasible.  For unstratified optimal matching with calipers, it may not be possible to make 

���?mÙF mÚA matches due to the caliper-limited number of potential links between patients in 

each study group.  Figure 4.3, Panel A shows how this might happen.  The algorithm would 

expect to make 5 matched sets where only 4 are possible.  In this case (Figure 4.3, Panel B), 

extra arcs are created by the macro from all treated patients to an “excess” node and from 

that “excess” node to all comparison patients.  The weight of these links are set high such 

that they are only used as a last resort to accommodate flow that would otherwise not be able 

to flow through the network.  While this leaves some patients unmatched who we would 

otherwise expect to be matched, it avoids the optimization algorithms from reporting the 

problem as infeasible. The links utilized to direct flow for the 4 resulting matched sets will 

still reflect minimum cost.  

 Other macro options that can be specified are calipers and ratio caps, neither of which 

are used by default.  To request calipers matching, users must specify the width of the 

calipers.  This width can either be given directly or given as a multiple of the standard 

deviation.  To constrain the size of the matched sets within full matching, users can specify 
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the thinning or thickening ratio caps, discussed above, to be used.  Thinning caps must be < 1 

and thickening caps must be > 1.  It should be noted that the thinning and thickening caps are 

applied to the observed Group 1:Group 2 odds.  For stratified matches, these odds and ratio 

limits are determined within each stratum. 

Two output datasets are created for the user.  The link-level output dataset includes 

one record for every pair of linked records and contains the distance on the matching 

variables between each pair.  The main, patient-level output dataset, includes one patient per 

record, along with a variable to identify the set number to which that patient belongs.  Each 

record also includes the number of treated patients in the set, the number of comparison 

patients in the set, and the total number of patients in the set, which allows for the creation of 

individual or set weights as desired.  The patient-level dataset is easily merged back to the 

source data.  Both of these datasets include the stratification variable, if one was used. 

A sample macro call is shown in Figure 4.5.  Samples of the two output datasets 

created are shown in Figure 4.6 and 4.7.  The full code for the macro is shown in Appendix 

2. 

 

Clinical Example 

To demonstrate this macro, we used data from the Acute Decompensated Heart 

Failure National Registry (ADHERE) Core 1 registry (Adams, et al., 2005), which included 

patients hospitalized with acute decompensated heart failure from 2001 to 2003.  The 

exposure of interest is receipt of high-dose intravenous loop diuretics.  As the original study 

(Peacock, et al., 2009) noted, the optimal dose of diuretics is uncertain and some safety 

concerns had been raised about high doses of diuretics.  For this analysis, a high dose of 
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intravenous loop diuretics was defined as �160 mg within the first 24 hours of medication 

initiation.  The comparison group comprised those who received <160 mg. There were 

43,434 patients within 236 hospitals in the study population.  Of these patients, 9,469 

(21.8%) were treated with a high dose of diuretics. The hospital-level proportion of patients 

received high-dose diuretics varied substantially, ranging from under 2% to almost 56%. 

We estimated a propensity score treatment model and used the linear predictor from 

this model to match patients in the high dose group with patients in the low dose group under 

multiple matching specifications.  The treatment model was specified as a hierarchical 

logistic regression model, allowing for hospital-level random intercepts.  Independent 

variables included in this model (shown in Table 4.3) were those deemed to be factors that 

could potentially confound the relationship between diuretic dose and in-hospital mortality, 

the outcome studied in the manuscript referenced above.   

We used the fmatch.sas macro to perform optimal matching and full matching.  For 

comparison, we also performed greedy matching.  For optimal matches, we performed both 

an unrestricted match and a match with calipers.  For full matching, we performed an 

unrestricted match as well as a match with thinning/thickening ratio caps and a match with 

calipers.  For greedy matching, we performed 1:1 and 2:1 (treatment:comparison) matches 

with and without calipers.  For all caliper matches, the width of the caliper was set to 0.2 

standard deviations (SD) of the linear predictor, as recommended by Austin (2011).  Of 

special interest was the impact of stratification on each of these matches.  Therefore, all 

matches were performed both unstratified and stratified by hospital.   

Several metrics were used to compare these different matches.  First, we calculated 

the total distance between all matched patients from the treatment and comparison groups on 
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the matching variable, the linear predictor from the treatment model.  We also summarized, 

for matches that did not use calipers, the proportion of matches for which this distance was 

over 0.2SD of the matching variable.  We calculated the percentage of patients in each of the 

treatment and comparison groups that were matched.  We report the amount of computing 

time each match took to complete.  And we calculated the standardized difference between 

the matched study groups for selected variables.   

 

Clinical Example Results 

As an objective measure of match quality, the total distance between all matched 

pairs of records is useful.  Among the unstratified, unrestricted matches, Table 4.4 shows 

how well full matching performs compared to all other types of matches.  Even though full 

matching utilizes all records in both the treatment and comparison groups, its total distance is 

substantially lower than similarly unrestricted optimal and greedy 1:1 matches, both of which 

leave over 70% of the comparison patients unmatched.  The proportion of matches after full 

matching with a distance over 0.2SD is also minimal, whereas both optimal and greedy 

matches result in about 5% of matches that exceed that distance.  While greedy matching was 

the quickest method to finalize the matches, as might be expected, full matching was about 8 

times quicker to finish than optimal matching.  [Actual computing times will vary by specific 

hardware available, but the trends we observe should hold.] 

Among stratified, unrestricted matches, full matching does not display quite the 

advantages reported above.  In this case, the cost of matching all comparison patients to 

treated patients within hospitals comes at a cost reflected in the total distance metric.  And all 

three matches—full, optimal, and greedy (1:1)—result in nearly 9% of matched pairs having 
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a distance greater than 0.2SD on the linear predictor.  There was no time advantage for any 

matching method when stratification was used.  The limited number of potential matches 

resulted in very quick processing times even for those that required the use of optimization 

algorithms. 

There are a few reasons for the differences in performance observed between 

unstratified and stratified full matching.  The first is the often limited number of treated 

patients within a given hospital, which is associated with the total number of patients at that 

hospital.  The second, which is related, is the lack of common support across the range of 

estimated propensity scores within each hospital.  Consider an extreme example.  When there 

is only 1 treated patient at a hospital, all comparison patients will be matched to that patient 

in 1 large matched set, by default.  It is nearly certain that some of those comparison patients 

will have a value of the linear predictor that is far from that of the treated patient.  When 

there are a large number of treated patients at a hospital (or when the match is unstratified) it 

is more likely that there will be patients from both study groups at all levels of the estimated 

propensity score.  Figure 4.4, Panel A confirms this notion.  When there are small numbers 

of treated patients at a hospital (i.e. <20), the proportion of matched sets created by 

unrestricted full matching that have a large difference on the matching variable is high.  As 

the number of treated patients increases, this proportion decreases.  For large hospitals with 

sufficient numbers of treated patients (Figure 4.4, Panel B) the proportion of matches having 

a large difference is low. 

It may be advisable, therefore, to either only pursue stratified full matching for large 

hospitals with sufficient numbers of treated patients or to perform stratified full matching 

after disallowing distant matches.  One way to do the latter is through trimming (Stürmer, 
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2010), which reduces the data in both study groups to the region of common support.  

Trimming is done by removing treated patients from the data who have values of the 

estimated propensity score outside the range found for the comparison patients, and vice 

versa.  We do not perform trimming here, but instead use calipers to restrict potential 

matches.  By defining calipers, the maximum distance acceptable for a match, one has still 

effectively trimmed the data.  Note that both trimming and calipers can be used for stratified 

and unstratified matches. 

Table 4.4 shows the effect of the use of calipers on the different types of matches.  

Because the unrestricted, unstratified full match did not result in many distant matches, the 

use of calipers did not generate much improvement in the total distance.  It did substantially 

speed up the computing, however.  The results were similar for unstratified optimal 

matching—a slight improvement in total distance with a noticeable speed improvement.  For 

both of these matches, only a handful of patients that were able to be matched without the 

caliper restrictions were not able to be matched with them—1 patient remained unmatched 

by full matching and 10 patients remained unmatched by optimal matching.  When calipers 

were used in conjunction with unstratified greedy matching, the total distance dropped 

substantially, but at the expense of the number of matched patients.  Over 300 treated 

patients that were matchable when using optimal matching were not able to be matched by 

greedy matching.  It is worrisome when this many patients in the treated group are not able to 

be matched to comparison patients, as incomplete matching of treated patients has been 

shown to be a source of bias when estimating the treatment effect (Rosenbaum & Rubin, 

1985).  This pattern was seen among stratified matches as well.  The use of calipers yielded 
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lower total distance and lower numbers of matched patients.  Again, the decline in number of 

matched patients was greatest for greedy matching.   

The application of ratio caps to full matching, to restrict the size of matched sets, did 

not result in close matches.  Intuitively, this makes sense.  When the matching ratios are 

limited, excess comparison patients that would have made close matches to a particular 

treated patient must be reassigned, at a higher cost, to another treated patient.  Whatever gain 

these ratio caps may offer for precision of estimates based on the matched sets may be offset 

by the imbalance they induce in the matched sets.  For unstratified full matching, 0.5x 

thinning and 2x thickening caps led to a total distance that was orders of magnitude greater 

than the unrestricted match. Additionally, nearly a quarter of all matches had a distance 

greater than 0.2SD.  Less restrictive 0.2x thinning and 5x thickening caps still resulted in 

noticeable gains in both total distance and proportion of distant matches, compared to the 

unrestricted match.  In addition, these restricted matches took 5 to 10 times longer to 

complete.  Some increase in total distance was seen for the stratified full matches, but the 

increase was not as large as for the unstratified full matches. 

The minimum and maximum study group ratios in the matched sets from full 

matching are shown in Table 4.5.  The effect of ratio caps is immediately noticeable.  The 

minimum and maximum treatment-to-comparison ratios without caps are 1:108 and 11:1.  

With 0.5/2 thinning/thickening caps, these fall to 1:8 and 1:1. With 0.2/5 caps, these fall to 

1:18 and 2:1.  Reductions in these extremes are not seen for the stratified matches, since 

these ratios were adjusted at the hospital level and there were hospitals with treatment rates 

less than 2%. 
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The use of 2:1 fixed ratio greedy matching in this dataset also resulted in poor 

matches.  Nearly half of the matches made without stratification and over 36% of matches 

made with stratification had a distance over 0.2SD of the matching variable.  Applying 

calipers reduced the total distance, but did not yield complete matches.  Neither of the 

stratified 2:1 greedy matches nor the unstratified 2:1 greedy match with calipers resulted in 2 

comparison patients for each treated patient.  For these matches, between 15% and 30% of 

the matched sets only had 1 comparison patient.  For matches performed within hospitals, 

this should have been expected, since many hospitals had treatment rates greater than 33%, 

the maximum that will support a 2:1 match.  When calipers were used, the pool of potential 

matches shrank further. 

To see the practical effects of each matching method on the distribution of potential 

confounders in the matched groups, Table 4.6 shows the standardized differences for 

selected covariates that were particularly unbalanced between study groups in the complete, 

unmatched data.  The rule of thumb typically used is that a difference of 10% or greater 

indicates substantial imbalance (Rosenbaum & Rubin, 1985a-match), although well-balanced 

study groups will typically exhibit much lower values.  Note for the unstratified, unrestricted 

full match that none of the standardized differences shown are greater than 1.4%, for 

example.  Even for the stratified, unrestricted full match, which led to a higher total distance 

between matched pairs, all standard differences are below 3.0%.  The use of calipers with full 

matching did little to change these values, but applying the very restrictive 0.5/2 ratio caps 

resulted in noticeable increases in the standardized differences for several variables.  The 

standardized difference for blood urea nitrogen (BUN) was 8.8% for the stratified full match 

with these caps applied. 
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The standardized differences associated with both unstratified optimal matches and 

both unstratified greedy 1:1 matches were very low.  The unstratified 2:1 greedy matches led 

to substantial imbalance, however.  Perhaps reflecting the relatively higher proportion of 

matched sets with differences on the matching variable over 0.2SD, the stratified, 

unrestricted optimal and greedy matches had a few variables with standardized differences 

between the study groups over 5%.  The use of calipers in these cases did work to reduce 

these differences.  As with the unstratified 2:1 greedy matches, the attempt to match multiple 

comparison patients to each treated patient within hospitals led to unacceptable imbalances. 

It is interesting to note that even though nearly 9% of the matched pairs within the 

stratified full match had a large (>0.2SD) difference on the matching variable, the 

standardized differences did not seem to reflect this in the same way the optimal and 

matches, with a similar proportion of distant matches, did.  The reason for this has to do with 

the full matching results themselves.  A comparison patient with a distant match to a treated 

patient within a matched set may be but one of 10 or 20 comparison patients matched to that 

same treated patient; and because the values for all of these comparison patients are 

averaged, the contribution of any single comparison patient to the standardized difference is 

only 5% to 10% what it would be if they were the only comparison patient matched to that 

treated patient.  In other words, there is greater tolerance of imperfect matches in full 

matching than there is in optimal or greedy matching. 

Discussion

 Full matching has been shown to have certain advantages over both greedy matching 

and optimal matching, not the least of which is the incorporation of all patients into the final 
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matched sets.  The macro presented here makes the implementation of full matching methods 

possible.  Using calipers to restrict the possible links full matching can make is also 

recommended.  In addition to reducing the computing time necessary to arrive at a solution, 

the use of calipers results in only minimal, if any, loss of patients in the final matched sets.  If 

there is a need to perform stratified matching, it is also recommended that researchers 

perform full matching with calipers.  The use of calipers in this situation is, perhaps, more 

essential, if the data contain small hospitals or hospitals with insufficient numbers of treated 

patients. 

 Data set size is likely to be the factor that most limits the usefulness of this macro.  

The clinical example above had a fairly substantial sample size of over 40,000 patients and 

ran without problems.  Of course, the maximum size of the data set size that can be processed 

by the macro is determined more directly by the computing environment in which it is run.  

Specifically, the available memory is critical.  SAS/OR optimization procedures perform 

tasks in memory, and the memory workpace needs of these procedures expand at non-linear 

rate with respect to the sample size. 

 The variable size of the matched sets from full matching requires attention during 

analysis, through either the use of appropriate cluster-level weights or cluster-level 

conditional statistical methods.  Analyses that completely ignore the clustering by matched 

sets will not yield correct results.  It has been recommended that the matched sets be 

weighted by the number of treated patients in the set.  As for most other matches, an 

outcomes analysis with this weighting will yield the average treatment effect among the 

treated.   
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 The use of greedy matching within analyses that use propensity scores has been 

prevalent primarily because it is an easy matching method to implement.  With a macro, like 

the one we present here, available to perform optimal and full matching, maybe this trend can 

change.  If researchers would like to perform propensity score matching, the use of full 

matching methods should be encouraged.   
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Figure 4.1 - Network representation of unstratified matching. Panel A shows the nodes and 
available links. Nodes include a flow source (�), a flow sink (�), treated patients (1–5) and 
comparison patients (a–e). Gray lines indicate potential links between nodes. Panel B shows 
an example solution for optimal matching. Panel C shows an example solution for full 
matching.�
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Figure 4.2 - Network representation of stratified matching.  Panel A shows the nodes and 
available links. Nodes include a flow source (�), a flow sink (�), treated patients (1–5) and 
comparison patients (a–e). Gray lines indicate potential links between nodes. Panel B shows 
an example solution for optimal matching. Panel C shows an example solution for full 
matching. 
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Figure 4.3 - Network representation of matching with calipers. Panel A shows the nodes and 
available links. Nodes include a flow source (�), a flow sink (�), treated patients (1–5) and 
comparison patients (a–e). Gray lines indicate potential links between nodes. All potential 
links shown between patients in the treatment (T) and comparison (C) groups are those with 
distance less than the given caliper width. Panel B shows an example solution for optimal 
matching with calipers, which required the use of an excess node (�). 
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Figure 4.4 - Proportion of differences on the matching variable greater than 0.2SD within 
matched sets at each site.  Panel A shows these proportions by number of treated patients at 
the site.  Panel B shows these proportions by number of total patients at the site, with sites 
additionally categorized by number of treated patients. 
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Figure 4.5 - Sample macro call for the full matching macro, FMATCH.SAS 
 
 

* Macro available at: 
* http://www.duke.edu/~hammill/software.html 
;
%include “fmatch.sas”; 
%macro fmatch( 
    INDS          = mydata, 
    MATCHVAR      = ps, 
    GROUPVAR      = trt,
    IDVAR         = ptid,
    STRATVAR      = site, 
    CALIPER       = 0.5, 
    CALIPER_TYPE  = sd, 
    RATIO_MAX     = 10, 
    RATIO_MIN     = 0.1, 
    MATCHTYPE     = full, 
    OUTLINKS      = matchlinks, 
    OUTDS         = matchrecs 
);

 
  



117 

Figure 4.6 - Sample records from the link-level output dataset generated by the full matching 
macro, FMATCH.SAS 
 
 

 GRP1    GRP2   STRATA      DIST 
 A153    Q224      1      0.05424 
 K197    Q224      1      0.49399 
 B171    Q224      1      0.06481 
 G136    M268      1      0.44148 
 L146    M268      1      0.42249 
 Q249    M268      1      1.17942 
 K193    M268      1      0.80213 
 H126    M268      1      0.38412 
 W139    E137      2      0.15742 
 W139    R016      2      0.00820 
               ... 
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Figure 4.7 - Sample records from the record-level output dataset generated by the full 
matching macro, FMATCH.SAS 
 
 

STUDY_ID    TRT   STRATA    SETNUM    SET_N1    SET_N2    SET_N 
  A153       0       1         1         3         1        4
  B171       0       1         1         3         1        4
  K197       0       1         1         3         1        4
  Q224       1       1         1         3         1        4
  G136       0       1         2         5         1        6
  H126       0       1         2         5         1        6
  K193       0       1         2         5         1        6
  L146       0       1         2         5         1        6
  M268       1       1         2         5         1        6
  Q249       0       1         2         5         1        6
  E137       1       2         4         1         2        3
  R016       1       2         4         1         2        3
  W139       0       2         4         1         2        3

                                    ...  
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Table 4.1. - Network characteristics associated with optimal matching and full matching, performed with and without stratification 

Network Characteristic 
Unstratified Stratified 

Optimal Matching Full Matching Optimal Matching Full Matching 

Total Network Flow (in units) ���?mÙF mÚA Ü ��Ý?mÙF mÚA ¤ min
¥Þ
Û�< NmÙFÛF mÚFÛP Ü ¤ max

¥Þ
Û�< NmÙFÛF mÚFÛP 

Link Costs    

 ßT à ág â T̈ @ g̈â ¯â T̈ @ g̈âF ßTF ág same stratum
     no linkF ßTF ág different stratum

 

 � à ßT 0 0 

 ág à � 0 0 

Link Capacity [Min, Max]     

 ßT à ág �-F .� �-F .� 
 � à ßT ¡�.F .�F mÙ × mÚ�-F .�F mÙ Ô mÚ �.Fã� ¯�.F .�F mÙFÛ × mÚFÛ�-F .�F mÙFÛ Ô mÚFÛ �.Fã� 
 ág à � ¡�-F .�F mÙ × mÚ�.F .�F mÙ Ô mÚ �.Fã� ¯�-F .�F mÙFÛ × mÚFÛ�.F .�F mÙFÛ Ô mÚFÛ �.Fã� 

Where�mÙ� = # of treated patients mÙFÛ� = # of treated patients in strata h mÚ� = # of comparison patients  mÚFÛ� = # of comparison patients in strata h mÛ� = # of strata ßT� = Treated patient i
T̈ � = Value of the matching variable for treated patient i  ág� = Comparison patient j
g̈ � = Value of the matching variable for comparison patient j�� = source node�� = Sink node 
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Table 4.2 - Ratio bounds for full matching associated with different combinations of thinning 
caps, thickening caps and treatment group proportions 

Group 1 
Proportion 

Observed 
Group 1:Group 2 

Thinning  
Cap 

Thickening 
Cap 

Group 1:Group 2  
Bounds for Matching 

Minimum Maximum 
0.05 1:19 0.8 1.25 1:24 1:15 

  0.5 2 1:38 1:9 
  0.2 5 1:95 1:3 
  0.1 10 1:190 1:1 
      

0.25 1:3 0.8 1.25 1:4 1:2 
  0.5 2 1:6 1:1 
  0.2 5 1:15 2:1 
  0.1 10 1:30 4:1 
      

0.40 1:1.5 0.8 1.25 1:2 1:1 
  0.5 2 1:3 2:1 
  0.2 5 1:8 4:1 
  0.1 10 1:15 7:1 
      

0.50 1:1 0.8 1.25 1:2 2:1 
  0.5 2 1:2 2:1 
  0.2 5 1:5 5:1 
  0.1 10 1:10 10:1 
      

0.60 1.5:1 0.8 1.25 1:1 2:1 
  0.5 2 1:2 3:1 
  0.2 5 1:4 8:1 
  0.1 10 1:7 15:1 
      

0.75 3:1 0.8 1.25 2:1 4:1 
  0.5 2 1:1 6:1 
  0.2 5 1:2 15:1 
  0.1 10 1:4 30:1 
      

0.95 19:1 0.8 1.25 15:1 24:1 
  0.5 2 9:1 38:1 
  0.2 5 3:1 95:1 
  0.1 10 1:1 190:1 
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Table 4.3 - Patient characteristics included as independent variables in the treatment model  
 

Category Characteristic 
Demographics Age (years) 
 Gender (Male, Female) 
 Race (White, Black, Other/unknown) 
  
Medical History Anemia 
 Atrial fibrillation 
 Chronic renal insufficiency 
 Chronic obstructive pulmonary disorder 
 Coronary artery disease 
 Diabetes mellitus 
 Hypercholesterolemia 
 Hypertension 
 Peripheral vascular disease 
 Prior myocardial infarction 
 Smoker (current) 
  
Medical devices in place Pacemaker 
 Implantable cardioverter defibrillator 
  
Initial examination Fatigue 
 Rales 
 Edema 
 Congestion 
 Ejection fraction 
 Systolic blood pressure 
 Blood urea nitrogen (mg/dL)  
 Serum sodium (mEq/L) 
 Hemoglobin (g/dL) 
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Table 4.4 - Metrics describing match results, by matching method  
 

Matching Method 
Total 

Distance 
% Matches with 

Distance > 0.2 SD 
% Treated 

Patients Matched 
% Comparison 

Patients Matched 
Computing Time 
Used (minutes) 

Unstratified matches 
Full matching      
 Unrestricted* 47.0 0.1 100 100 29 
 0.2SD calipers 40.0 -- 100 99.9 2 
 0.5 / 2 ratio caps** 7278.2 24.6 100 100 336 
 0.2 / 5 ratio caps 1487.2 6.8 100 100 155 
Optimal matching      
 Unrestricted 293.5 4.9 100 27.9 232 
 0.2SD calipers 273.6 -- 99.9 27.8 9 
Greedy matching      
 1:1 match, unrestricted 297.9 5.0 100 27.9 < 1 
 1:1 match, 0.2SD calipers 20.5 -- 96.7 27.0 < 1 
 2:1 match, unrestricted 3994.5 49.3 100 55.8 < 1 
 2:1 match, 0.2SD calipers 106.9 -- 96.8 46.3 < 1 

Matches stratified by clinical site 
Full matching      
 Unrestricted 2258.4 8.9 100 100 < 1 
 0.2SD calipers 945.6 -- 98.4 91.2 < 1 
 0.5 / 2 ratio caps 3413.0 15.0 100 100 < 1 
 0.2 / 5 ratio caps 2334.4 9.2 100 100 < 1 
Optimal matching      
 Unrestricted 554.3 8.8 99.8 27.8 < 1 
 0.2SD calipers 257.0 -- 96.4 26.9 < 1 
Greedy matching      
 1:1 match, unrestricted 616.4 8.9 99.8 27.8 < 1 
 1:1 match, 0.2SD calipers 158.2 -- 93.7 26.1 < 1 
 2:1 match, unrestricted 2807.3 36.5 99.8 51.3 < 1 
 2:1 match, 0.2SD calipers 328.9 -- 93.7 44.7 < 1 

* Unrestricted matches are those without calipers or (for full matching) thinning and thickening ratio caps 
** Thinning, thickening ratio caps applied to observed treated:comparison ratio 
Abbreviation: SD = Standard deviation 
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Table 4.5 - Minimum and maximum treated-to-comparison ratios in matched sets resulting 
from full matching  
 

Full Matching Specification 
Minimum 

Treated:Comparison 
Maximum 

Treated:Comparison 
Unstratified   
 Unrestricted* 1:108 11:1 
 0.2SD calipers 1:108 11:1 
 0.5 / 2 ratio caps** 1:8 1:1 
 0.2 / 5 ratio caps 1:18 2:1 
Stratified   
 Unrestricted 1:142 10:1 
 0.2SD calipers 1:100 10:1 
 0.5 / 2 ratio caps 1:127 3:1 
 0.2 / 5 ratio caps 1:142 5:1 

* Unrestricted matches are those without calipers or thinning / thickening ratio caps 
** Thinning, thickening ratio caps applied to observed treated:comparison ratio 
Abbreviation: SD = Standard deviation
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Table 4.6 - Standardized differences for selected covariates between matched treatment and control groups, by matching method used  
 

Matching Method Anemia 
Coronary 

Artery Disease 
Chronic Renal 
Insufficiency 

Diabetes 
Mellitus Edema Age 

Blood Urea 
Nitrogen Hemoglobin 

Observed 14.0 8.4 25.5 24.3 25.9 21.8 27.4 14.8 
Unstratified matches 

Full matching         
 Unrestricted* 0.9 1.4 1.2 0.9 1.1 0.3 1.3 0.4 
 0.2SD calipers 1.0 1.3 1.3 0.7 1.1 0.4 1.3 0.2 
 0.5 / 2 ratio caps** 1.6 0.4 3.2 2.9 2.3 2.8 5.5 3.4 
 0.2 / 5 ratio caps 0.1 1.7 0.6 0.2 0.4 0.8 0.3 0.8 
Optimal matching         
 Unrestricted 0.7 1.3 2.4 0.7 1.4 0.1 4.0 1.8 
 0.2SD calipers 0.6 1.4 2.2 0.8 1.5 0.2 3.7 1.6 
Greedy matching         
 1:1 match, unrestricted 0.5 1.2 2.2 0.5 1.5 0.1 3.7 1.4 
 1:1 match, 0.2SD calipers 0.4 1.5 0.1 0.3 1.9 0.6 0.1 0.8 
 2:1 match, unrestricted 5.4 3.6 11.1 7.6 6.4 8.0 14.6 5.1 
 2:1 match, 0.2SD calipers 3.2 1.6 6.5 4.6 3.6 4.5 8.2 2.9 

Matches stratified by clinical site 
Full matching         
 Unrestricted 2.2 0.9 1.1 0.8 0.6 0.5 2.9 0.9 
 0.2SD calipers 2.8 1.2 0.9 0.7 0.2 0.6 3.3 1.2 
 0.5 / 2 ratio caps 0.7 0.8 3.8 2.8 3.7 3.4 8.8 1.8 
 0.2 / 5 ratio caps 2.1 0.8 1.2 0.7 0.7 0.8 3.2 1.2 
Optimal matching         
 Unrestricted 1.5 1.1 6.3 3.6 1.6 1.5 8.9 1.9 
 0.2SD calipers 0.1 0.1 3.6 1.7 0.1 0.7 4.6 0.7 
Greedy matching         
 1:1 match, unrestricted 1.5 1.2 6.2 4.3 1.5 1.5 9.1 2.0 
 1:1 match, 0.2SD calipers 0.5 0.3 2.0 0.9 0.9 1.3 2.6 0.2 
 2:1 match, unrestricted 6.7 6.1 14.7 11.7 11.4 10.8 18.5 6.3 
 2:1 match, 0.2SD calipers 2.0 2.3 6.8 4.7 3.7 3.4 9.5 2.5 

* Unrestricted matches are those without calipers or (for full matching) thinning and thickening ratio caps 
** Thinning, thickening ratio caps applied to observed treated:comparison ratio 
Standardized differences presented as % of SD  
Abbreviation: SD = Standard deviation 
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CHAPTER 5 

CONCLUSION 

For research questions regarding the real-world effectiveness and safety of medical 

therapies and devices, researchers must often rely on observational data.  Unlike controlled 

clinical trials, the assignment of treatment to patients in routine medical practice is not 

randomized.  One class of methods used extensively by researchers to address this selection 

problem is propensity score methods.  The role of the healthcare provider has not typically 

been accounted for when propensity score methods are employed, despite the fact that 

provider, by imparting an effect on both patient-level treatment assignment and patient-level 

outcomes, is a potential confounding factor.

When a healthcare provider has measurable impacts on both a patient’s treatment 

assignment and their downstream outcomes, simulation results demonstrated that not 

accounting for these provider effects could lead to biased estimates of treatment effect when 

using propensity score methods. This was true specifically when a provider’s direct effect on 

treatment was correlated with their effect on outcome; a situation that occurs when providers 

having better patient outcomes use therapies at higher (or lower) rates than other providers.  

Propensity score methods that incorporated provider were able to control this error.  Even 

when provider effects on treatment and outcome were uncorrelated, it was still important to 

account for provider in the propensity score treatment model.  Failure to do so resulted in 
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confidence intervals around the estimated treatment effect that were either substantially too 

wide or too narrow, depending on the estimation methods used. 

It may be that these methods are applicable only to a specific subset of clinical 

research questions.  Researchers should take the time to understand if the question at hand 

could involve confounding by provider.  One question to ask is whether or not there is a 

reasonable expectation that provider has an effect on treatment and outcome.  It is often 

easier to expect that providers exhibit differential treatment propensities.  Some providers 

may have a preference for certain therapies as first-line therapies and others as second-line, 

while other providers prefer the opposite.  Some providers are more likely to incorporate new 

therapies or techniques more quickly than others.   As a result, there is often a noticeable 

distribution of treatment rates among providers.  Considering whether or not providers have 

an effect on outcome can be more difficult, as this can vary by the outcome, the time horizon, 

the treatment setting, etc.  In general, short-term outcomes associated with direct treatment 

(e.g. surgical procedure) or prolonged care (e.g. hospital-based care) are more likely to result 

in stronger provider effects on outcomes.  As a preliminary step in data analysis, the presence 

of provider effects on treatment and outcome can be checked using hierarchical models and 

provider-specific random intercept terms.  The extent of variability of the random intercepts 

for both treatment and outcome is a guide to the strength of these effects.  To prevent 

estimating the treatment effect prematurely, we recommend modeling the outcome, at this 

stage, using just the comparison group (or just a single study group, if both include treated 

patients).

Researchers should also check to see that the distribution of provider treatment rates 

is not extremely bimodal.  If one group of providers has a very high treatment rate and 
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another group has a very low treatment rate, there may not be enough within-provider 

variation to allow for appropriate comparisons when adjusting for provider in the analysis.

In fact, if there are too many providers who exclusively treat or exclusively don’t treat 

patients with the treatment of interest, methods that control for provider are not even 

possible.  Ideally, the distribution of provider treatment rates should be somewhat normally 

distributed.  Data may include too many providers who exclusively (or nearly exclusively) 

treat or don’t treat patients for a few reasons.  First, it may be that provider, in the data, 

reflects the practice of a single physician.  Any single physician is more likely than a group 

of physicians to have strong preferences for a particular therapy or course of treatment.  

When provider reflects a group of physicians in a practice or in a hospital, there is usually 

variability in the preferences across those physicians.  Second, it may be there are many 

providers who seem to exclusively treat (or don’t treat) because the number of patients per 

physician in the data is very small.  If there is interest in incorporating provider into 

propensity score methods, a relatively large number of patients per provider is desirable. 

Finally, as with any propensity score analysis, researchers need to ensure that they 

have the data necessary to fully characterize the treatment assignment.  A critical assumption 

of all these methods is that there is no unmeasured confounding.  Whether or not provider is 

included as a factor in the propensity score treatment model or not, data that lacks important 

confounders will lead to biased treatment estimates.  

 Once a researcher is comfortable with the idea that their clinical question may involve 

confounding by provider, estimation of the treatment effect still needs to be done properly.

After including provider in the treatment model, there are a few directions the analysis can 

go.  If there is interest in using inverse probability of treatment weighting methods, strong 
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consideration should be given to the Lunceford estimator and to doubly robust methods.  If 

there is interest in using propensity score matching, consideration should be given to full 

matching.  Patients within the resulting matched sets either need to be appropriately weighted 

for analysis or the use of GEE methods is required. 

Full matching may not be familiar to most analysts.  A criticism of typical 1:1 

propensity score matching, whether stratified by provider or not, is that the data from many 

patients are not utilized in the outcomes analysis.  Full matching addresses this issue by 

optimally assigning all treated patients and all comparison patients into variably-sized 

matched sets.  The result is closer matches between study groups than those obtained by 

other matching methods.  For comparative effectiveness research, where head-to-head 

comparisons of therapies involve two study groups that both include treated patients, full 

matching should be considered as a primary matching method.  Full matching is not currently 

utilized frequently because it is difficult to implement.  A macro to perform full matching by 

leveraging SAS optimization procedures was presented.   

There are a few obvious extensions of this work that need to be explored.  The first is 

how well propensity score methods that incorporate provider perform when the outcome of 

interest in dichotomous.  We showed that these methods are appropriate when the outcome is 

continuous and the treatment effect reflects a simple difference between mean group 

outcomes.  Quantities of interest for binary data include risk differences, risk ratios, and odds 

ratio.  It may also be important to examine the situation where treatment models are entirely 

provider-specific. We simulated data scenarios where providers had baseline levels of 

treatment that were higher or lower than average, but we did not otherwise alter the treatment 

assignment mechanism by provider.  This may not reflect reality, but it’s not clear if provider 
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-specific intercepts in a treatment model are sufficient to produce correct treatment effect 

estimates or if the treatment model would need to more closely reflect the each provider’s 

treatment process.  
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APPENDIX 1 

MISCELLANEOUS SAS CODE FOR ESTIMATING PROPENSITY SCORES, 
CALCULATING WEIGHTS, PERFORMING MATCHING, AND ESTIMATING 

APPROPRIATE TREATMENT EFFECT ESTIMATES 

/****************************************************************
* Generated data set information                                 * 
*   Data set name = DS                                           * 
*   Variables:                                                   * 
*     A = Treatment (0/1)                                        * 
*     Y = Outcome (continuous)                                   * 
*     X1 = Covariate (0/1)                                       * 
*     X2 = Covariate (continuous)                                * 
*     X3 = Covariate (continuous)                                * 
*     X4 = Covariate (continuous)                                * 
*     IDX = Patient ID variable                                  * 
*     SITE = Cluster ID variable                                 * 
*                                                                * 
* For greedy matching, there is a macro (gmatch.sas) at          * 
*    http://people.duke.edu/~hammill/software                    * 
* that can be used for matching on a single variable like PS.    * 
 ****************************************************************/ 

/****************************************************************
* Pooled propensity score treatment model 
*  - Propensity score (PS1) and linear predictor (XB1) saved back 
*    onto input dataset DS 
 ****************************************************************/ 
proc logistic descending data=ds; 
    model a = x1 x2 x3 x4; 
    output out=ds pred=ps1 xbeta=xb1; 
run;

/****************************************************************
* Cluster-specific propensity score treatment model #1 
*  - Random effects (intercept only) for cluster
*    [random slopes can be added, if desired] 
*  - Propensity score (PS2) and linear predictor (XB2) saved back 
*    onto input dataset A 
*  - Sometimes you need to specify a less stringent ABSPCONV value 
*    (PROC GLIMMIX statement option) than the default of 1E-8 for 
*    this model to converge 
 ****************************************************************/ 
proc glimmix data=ds abspconv=1e-4; 
    class site; 
    model a = x1 x2 x3 x4 / link=logit dist=bin s; 
    nloptions maxiter = 50; 
    random intercept / subject=site; 
    output out=ds pred(ilink)=ps2 pred=xb2; 
run;
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/****************************************************************
* Cluster-specific propensity score treatment model #2 
*  - Fixed effects (intercept only) for cluster
*    [cluster-specific slopes can be created by adding
*     interactions with the cluster variable, if desired] 
*  - Propensity score (PS3) and linear predictor (XB3) saved back 
*    onto input dataset A 
 ****************************************************************/ 
proc logistic descending data=ds; 
    class site; 
    model a = site x1 x2 x3 x4; 
    output out=ds pred=ps3 xbeta=xb3; 
run;

/****************************************************************
* Create inverse probability of treatment weights (W1, W2, W3)
* based on estimated propensity scores (PS1, PS2, PS3).
 ****************************************************************/ 
data ds; 
    set ds; 

    * Keep estimated probabilities of treatment (A = 1) for Lunceford
    * estimator, doubly robust estimators, etc. 
    ; 
    e1 = ps1; 
    e2 = ps2; 
    e3 = ps3; 

    * When A = 0, need to flip b/c we need the probability of receiving
    * the treatment actually received 
    ; 
    if a = 0 then do; 
        ps1 = 1 - ps1; 
        ps2 = 1 - ps2; 
        ps3 = 1 - ps3; 
    end; 

    w1 = 1 / ps1; 
    w2 = 1 / ps2; 
    w3 = 1 / ps3; 
run;

/****************************************************************
* Create matched study groups using 1:1 unstratified greedy
* matching with calipers = 0.2SD 
 ****************************************************************/ 
%gmatch(
    inds = ds, 
    matchvar = xb1, 
    groupvar = a, 
    idvar = idx, 
    caliper = 0.2, 
    caliper_type = SD, 
    randseed = 20150603, 
    outds = matched1 
)
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/****************************************************************
* Create matched study groups using 1:1 cluster-stratified greedy
* matching with calipers = 0.2SD 
 ****************************************************************/ 
%gmatch(
    inds = ds, 
    matchvar = xb1, 
    groupvar = a, 
    idvar = idx, 
    stratvar = site, 
    caliper = 0.2, 
    caliper_type = SD, 
    randseed = 20150603, 
    outds = matched2 
)

/****************************************************************
* Create matched study groups using variable ratio unstratified
* full matching with calipers = 0.2SD 
 ****************************************************************/ 
%fmatch(
    inds = ds, 
    matchvar = xb1, 
    groupvar = a, 
    idvar = idx, 
    caliper = 0.2, 
    caliper_type = SD, 
    matchtype = FULL, 
    outds = matched3 
)

/****************************************************************
* Create matched study groups using variable ratio cluster- 
* stratified full matching with calipers = 0.2SD 
 ****************************************************************/ 
%fmatch(
    inds = ds, 
    matchvar = xb1, 
    groupvar = a, 
    idvar = idx, 
    stratvar = site, 
    caliper = 0.2, 
    caliper_type = SD, 
    matchtype = FULL, 
    outds = matched4 
)
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/****************************************************************
* Create ETT weights assuming A is coded 0/1 and "treatment" is 
* when A = 1.  The FMATCH.SAS macro outputs set counts based on 
* the sorted value of A, so it is essential to understand your 
* data.  For full matching results based on these data, SET_N1 
* (produced by the macro on the output dataset) is the count of 
* comparison patients in the matched set while SET_N2 is the
* count of treated patients in the matched set. 
 ****************************************************************/ 
data matched3; 
    set matched3; 

    select (a); 
        when (0) SETWT = set_n2 / set_n1; 
        when (1) SETWT = 1; 
        * no otherwise; 
    end; 
run;

/****************************************************************
* For analysis code below: 
*   - Be sure to use appropriate dataset (DS, MATCHED1, etc.) 
*   - Use desired weight (W1, W2, etc.) -- Note that you can
*     create a null weight (e.g. W0 = 1) for use with matched 
*     data that is otherwise unweighted 
*   - Some of this code may need to be put within a macro wrapper 
*     b/c of %do loops, etc. 
 ****************************************************************/ 

/****************************************************************
* Pooled t-test 
 ****************************************************************/ 
proc ttest data=ds; 
    var y; 
    class a; 
    weight w1; 
run;

/****************************************************************
* Matched t-test (for 1:1 matched results) 
*   - Requires transpose to flatten data within matched pairs 
 ****************************************************************/ 
proc transpose data=ds out=dst prefix=Y; 
    var y; 
    id a; 
    by setnum; 
run;

proc ttest data=dst; 
    paired y0 * y1; 
run;

/****************************************************************
* Regression models: 
*   GLM (via printmle) 
*   GLM w/robust SEs (subject-level) 
 ****************************************************************/ 
proc genmod data=ds; 
    class idx; 
    model y = a ; 
    weight w1; 
    repeated subject=idx / printmle; 
run;
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/****************************************************************
* Regression model: GLM w/robust SEs (cluster-level) 
 ****************************************************************/ 
proc genmod data=ds; 
    class site; 
    model y = a ; 
    weight w1; 
    repeated subject=site / type=ind; 
run;

/****************************************************************
* Regression model: GEE w/cluster-level exchangeable correrlation 
 ****************************************************************/ 
proc genmod data=ds; 
    class site; 
    model y = a ; 
    weight w1; 
    repeated subject=site / type=exch; 
run;

/****************************************************************
* Regression models: ETT-weighted GLM w/robust SEs (matched-set) 
*    (SETNUM output by matching macros) 
 ****************************************************************/ 
proc genmod data=ds; 
    class setnum; 
    model y = a ; 
    weight setwt; 
    repeated subject=setnum / type=ind; 
run;

/****************************************************************
* Regression model: GEE w/matched-set-level exchangeable
*    correlation (SETNUM output by matching macros) 
 ****************************************************************/ 
proc genmod data=ds; 
    class setnum; 
    model y = a ; 
    repeated subject=setnum / type=exch; 
run;

/****************************************************************
* Lunceford estimator + standard error (using IPTW weights); 
 ****************************************************************/ 
proc sql noprint; 
    select 
        sum(y * a0 / (1 - e1)) / sum(a0 / (1 - e1)) as mu0, 
        sum(y * a1 / e1) / sum(a1 / e1) as mu1, 
        count(*) as nall 
    into 
        :mu0, :mu1, :nall 
    from ds; 
quit;
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* If using a cluster-specific weight (W2 or W3), need to create individual 
* indicator variables for each cluster.  There are multiple ways to do this,
* below is one for a dataset with 50 sites where the sites are numbered 1 to 
* 50.  If using pooled weight (W1), can ignore this data step. 
;
data ds; 
    set ds; 

    array allsites(50) site1 - site50; 

    %do i = 1 %to 50; 
        allsites(&i) = 0; 
    %end; 

    allsites(site) = 1; 
run;

proc iml; 
    use ds; 

    read all var {x1 x2 x3 x4} into xraw; 
    ebbsum = j(4, 4, 0); 
    m2sum = j(4, 4, 0); 
    vsum1 = j(4, 1, 0); 
    vsum0 = j(4, 1, 0); 

    * If using a cluster-specific weight, need to replace the read 
    * and init code above to incorporate the cluster indicators like: 
    * 
    *    read all var { 
    *        %do s = 1 %to 50; 
    *            site&s 
    *        %end; 
    *        x1 x2 x3 x4} into xraw; 
    *    ebbsum = j(54, 54, 0); 
    *    m2sum = j(54, 54, 0); 
    *    vsum1 = j(54, 1, 0); 
    *    vsum0 = j(54, 1, 0); 
    * 
    ; 

    read all var {y} into y; 
    read all var {a} into a; 
    read all var {a0} into a0; 
    read all var {a1} into a1; 
    read all var {e1} into e; 

    x = xraw`; 
    isum = 0; 

    diff = &mu1 - &mu0; 
    v1 = (y - &mu1) # a1 / e; 
    v2 = (y - &mu0) # a0 / (1 - e); 
    v3pre = (a - e); 

    do i = 1 to &nall; 
        xxt = x[,i] * x[,i]`; 
        ebbsum = ebbsum + e[i] # (1 - e[i]) # xxt; 
        vsum1 = vsum1 + x[,i] # (y[i] - &mu1) # a1[i] # (1 - e[i]) / e[i]; 
        vsum0 = vsum0 + x[,i] # (y[i] - &mu0) # a0[i] # e[i] / (1 - e[i]); 
    end; 

    ebb = ebbsum / &nall; 
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    hb2 = (vsum1 + vsum0) / &nall; 

    do i = 1 to &nall; 
        toadd = v1[i] - v2[i] - v3pre[i] # (hb2` * ebb * x[,i]); 
        isum = isum + toadd # toadd; 
    end; 

    estvar = isum / (&nall * &nall); 
    se = sqrt(estvar); 

    outdata = diff || se; 

    create lunceford from outdata [colname={"diff" "se"}]; 
    append from outdata; 
    close outdata; 
quit;

/****************************************************************
* Doubly robust estimators + standard error (using IPTW weights) 
* DR estimates based on both a pooled outcome model and a
* cluster-specific outcome model are produced.
 ****************************************************************/ 
data ds; 
    set ds; 

    if not a then do; 
        y_notrt = y; 
        y_trt = .; 
    end; 
    else do; 
        y_notrt = .; 
        y_trt = y; 
    end; 
run;

* GLM predictors for DR; 
proc genmod data=ds;
    model y_notrt = x1 x2 x3 x4; 
    output out=ds pred=m0_glm; 
run;

proc genmod data=ds;
    model y_trt = x1 x2 x3 x4; 
    output out=ds pred=m1_glm; 
run;

* Mixed predictors for DR; 
proc mixed data=ds;
    class site; 
    model y_notrt = x1 x2 x3 x4 / outpred=ds( 
        drop=alpha df lower resid stderrpred upper _level_: 
        rename=(pred = m0_mix) 
    ); 
    random intercept / subject=site; 
run;

proc mixed data=ds;
    class site; 
    model y_trt = x1 x2 x3 x4 / outpred=ds( 
        drop=alpha df lower resid stderrpred upper _level_: 
        rename=(pred = m1_mix) 
    ); 
    random intercept / subject=site; 
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run;

proc sql noprint; 
    select 
        sum(y * a0 / (1 - &e)) / count(*) as part2_1, 
        sum(y * a1 / &e) / count(*) as part1_1, 
        sum((a - &e) * m0_mix / (1 - &e)) / count(*) as part2_2_mix, 
        sum((a - &e) * m1_mix / &e) / count(*) as part1_2_mix, 
        sum((a - &e) * m0_glm / (1 - &e)) / count(*) as part2_2_glm, 
        sum((a - &e) * m1_glm / &e) / count(*) as part1_2_glm 
    into 
        :p2_1, :p1_1, :p2_2x, :p1_2x, :p2_2l, :p1_2l
    from ds; 
quit;

data dr; 
    set ds end=final; 

    retain var_gee 0 var_mix 0 var_glm 0; 

    tau_mix = &p1_1 - &p1_2x - &p2_1 - &p2_2x; 
    tau_glm = &p1_1 - &p1_2l - &p2_1 - &p2_2l; 

    piece_mix =
        (y * a1 / e1) - 
        ((a - e1) * m1_mix / e1) -
        (y * a0 / (1 - e1)) - 
        ((a - e1) * m0_mix / (1 - e1)) - 
        tau_mix 
    ; 

    piece_glm =
        (y * a1 / e1) - 
        ((a - e1) * m1_glm / e1) -
        (y * a0 / (1 - e1)) - 
        ((a - e1) * m0_glm / (1 - e1)) - 
        tau_glm 
    ; 

    var_mix = var_mix + (piece_mix * piece_mix); 
    var_glm = var_glm + (piece_glm * piece_glm); 

    if final then do; 
        var_mix = var_mix / (_n_ * _n_); 
        se_mix = sqrt(var_mix); 

        var_glm = var_glm / (_n_ * _n_); 
        se_glm = sqrt(var_glm); 

        output; 
    end; 

    keep tau: var_: se_:; 
run;
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APPENDIX 2 

SAS CODE FOR THE FULL MATCHING MACRO, FMATCH.SAS 

/***************************************************************************
| Program: FMATCH.SAS                                                       | 
| Purpose: Perform full matching or optimal matching on a single scalar     | 
|          variable between 2 study groups                                  | 
| Author:  Brad Hammill                                                     | 
| Date:    2015Jan01                                                        | 
| Output:  Two datasets named by the &OUTLINKS and &OUTDS macro variables   | 
|          that contain link-level results and record-level results         | 
|                                                                           | 
| Modifications:                                                            | 
 ***************************************************************************/ 

/***************************************************************************
| INDS           Input dataset *REQUIRED*, no default                       | 
| MATCHVAR       Matching variable *REQUIRED*, no default                   | 
|                  The variable on which to match members of Group 1 to     | 
|                  to Group 2 (see GROUPVAR)                                | 
| GROUPVAR       Group variable *REQUIRED*, no default                      | 
|                  This variable defines study groups                       | 
|                  Only 2 non-missing levels allowed                        | 
|                  The first level (sorted alphanumeric) of this variable   | 
|                  defines Group 1.  The second level defines Group 2.      | 
| IDVAR          Record-level ID variable *REQUIRED*, no default            | 
|                  This variable must be unique across records              | 
| STRATVAR       Stratification variable, default = NONE                    | 
|                  This variable defines the strata within which matching   | 
|                  occurs, if desired                                       |
| CALIPER        Caliper width, default = NONE                              | 
|                  This variable defines the maximum distance allowable for | 
|                  matching on MATCHVAR between groups. Assumed to be an    | 
|                  absolute value unless noted as a multiple of the observed| 
|                  SD in CALIPER_TYPE option below                          | 
| CALIPER_TYPE   Type of caliper to apply, ABS (default) | SD               | 
|                  ABSolute calipers match records within the distance noted| 
|                  by the CALIPER option.                                   | 
|                  SD calipers match records within a multiple (noted with  | 
|                  the CALIPER option) of the observed standard deviation   | 
|                  of the MATCHVAR.                                         | 
|                  Ex: To match within 0.2SD of the MATCHVAR, specify       | 
|                      CALIPER=0.2 and CALIPER_TYPE=SD                      | 
| RATIO_MIN      Thinning cap, if specified must be < 1                     | 
| RATIO_MAX      Thickening cap, if specified must be > 1                   | 
|                  Both are applied to the observed ratio of Group 1 to     | 
|                  to Group 2 records.  Constrains the matching ratio to be | 
|                  within some multiple of the observed ratio.              | 
|                  [See: Hansen, JASA 99:467 pp 609-618]                    | 
|                  Default is NONE, which leads to an uncontrained match.   | 
|                  To apply limits, specify both RATIO_MIN and RATIO_MAX    | 
|                  options and ensure that RATIO_MAX > 1 and RATIO_MIN < 1. | 
| MATCHTYPE      Type of match to make: FULL (default) or OPT               | 
|                  FULL matching ensures that all records in Group 1 are    | 
|                  matched to all records in Group 2 (within calipers, if   | 
|                  specified).  Matched set sizes can vary.                 | 
|                  OPTimal matching performs optimal 1:1 matching (within   | 
|                  calipers, if specified).                                 | 
| OUTLINKS       Output dataset for links, default = _OUTLINKS              | 
|                  This is a link-level dataset that includes record IDs    | 
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|                  matched from each group and distance between records.    | 
|                  Dataset variables:                                       | 
|                    GRP1 = Record ID for Group 1 record                    | 
|                    GRP2 = Record ID for Group 2 record                    | 
|                    [STRATVAR] = Strata, if specified for link             | 
|                    DIST = Distance between MATCHVAR values                | 
| OUTDS          Output dataset for records, default = _OUTMATCH            | 
|                  This is a record-level dataset that includes record ID,  | 
|                  matched set number, and weights for analysis.            | 
|                  Dataset variables:                                       | 
|                    [IDVAR] = Record ID                                    | 
|                    [GROUPVAR] = Group variable value                      | 
|                    [STRATVAR] = Strata, if specified for link             | 
|                    SETNUM = Matched set index                             | 
 ***************************************************************************/ 

%macro fmatch( 
    INDS          = , 
    MATCHVAR      = , 
    GROUPVAR      = ,
    IDVAR         = ,
    STRATVAR      = NONE, 
    CALIPER       = NONE, 
    CALIPER_TYPE  = ABS, 
    RATIO_MAX     = NONE, 
    RATIO_MIN     = NONE, 
    MATCHTYPE     = FULL, 
    OUTLINKS      = _OUTLINKS, 
    OUTDS         = _OUTMATCH 
);

    * Local macro variables; 
    %local BREAK INFINITY G1 G2 SOLVER_STATUS; 
    %let BREAK = 0; 
    %let INFINITY = 1E14; 

    * Input parameter checks; 
    data _check1; 
        MERGEVAR = 1; 

        SPEC_INDS = upcase("&inds"); 
        SPEC_MATCHVAR = upcase("&matchvar"); 
        SPEC_GROUPVAR = upcase("&groupvar"); 
        SPEC_IDVAR = upcase("&idvar"); 
        SPEC_STRATVAR = upcase("&stratvar"); 
        SPEC_CALIPER = upcase("&caliper"); 
        SPEC_CALIPER_TYPE = upcase("&caliper_type"); 
        SPEC_RATIO_MAX = upcase("&ratio_max"); 
        SPEC_RATIO_MIN = upcase("&ratio_min"); 
        SPEC_MATCHTYPE = upcase("&matchtype"); 
        SPEC_OUTLINKS = upcase("&outlinks"); 
        SPEC_OUTDS = upcase("&outds"); 

        ABORT1 = 0; 
        PARM_NOMATCH = 0; 
        PARM_NOGROUP = 0; 
        PARM_NOID = 0; 
        PARM_1RATIO = 0; 
        PARM_HILORATIO = 0; 
        PARM_NOINDS = 0; 
        PARM_BADINDS = 0; 
        PARM_BADMATCHVAR = 0; 
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        PARM_BADGROUPVAR = 0; 
        PARM_BADIDVAR = 0; 
        PARM_BADSTRATVAR = 0; 
        PARM_BADCALIPTYPE = 0; 
        PARM_BADMATCHTYPE = 0; 

        %if %length(&matchvar) = 0 %then %do ; 
            PARM_NOMATCH = 1; 
            ABORT1 = 1; 
            call symput("BREAK", 1);
        %end; 

        %if %length(&groupvar) = 0 %then %do ; 
            PARM_NOGROUP = 1; 
            ABORT1 = 1; 
            call symput("BREAK", 1);
        %end; 

        %if %length(&idvar) = 0 %then %do ; 
            PARM_NOID = 1; 
            ABORT1 = 1; 
            call symput("BREAK", 1);
        %end; 

        %if &ratio_max ^= NONE | &ratio_min ^= NONE %then %do ; 
            %if &ratio_min = NONE | &ratio_max = NONE %then %do; 
                PARM_1RATIO = 1; 
                ABORT1 = 1; 
                call symput("BREAK", 1);
            %end; 
            %else %do; 
                if  not (&ratio_min < 1  and &ratio_max > 1) then do;
                    PARM_HILORATIO = 1; 
                    ABORT1 = 1; 
                    call symput("BREAK", 1);
                end; 
            %end; 
        %end; 

        %if %length(&inds) = 0 %then %do ; 
            PARM_NOINDS = 1; 
            ABORT1 = 1; 
            call symput("BREAK", 1);
        %end; 

        %if %sysfunc(exist(&inds)) = 0 %then %do ; 
            PARM_BADINDS = 1; 
            ABORT1 = 1; 
            call symput("BREAK", 1);
        %end; 
        %else %do; 
            dsid = open("&inds"); 
            if varnum(dsid, "&matchvar") = 0 then do; 
                PARM_BADMATCHVAR = 1; 
                ABORT1 = 1; 
                call symput("BREAK", 1); 
            end; 
            if varnum(dsid, "&groupvar") = 0 then do; 
                PARM_BADGROUPVAR = 1; 
                ABORT1 = 1; 
                call symput("BREAK", 1); 
            end; 
            if varnum(dsid, "&idvar") = 0 then do; 
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                PARM_BADIDVAR = 1; 
                ABORT1 = 1; 
                call symput("BREAK", 1); 
            end; 
            if "&stratvar" ne "NONE" and varnum(dsid, "&stratvar") = 0 then do; 
                PARM_BADSTRATVAR = 1; 
                ABORT1 = 1; 
                call symput("BREAK", 1); 
            end; 
            rc = close(dsid); 
            drop dsid rc; 
        %end; 

        %if &caliper ^= NONE %then %do; 
            select(upcase(substr("&caliper_type", 1, 1))); 
                when ("S") call symput("caliper_type", "SD"); 
                when ("A") call symput("caliper_type", "ABS"); 
                otherwise do; 
                    PARM_BADCALIPTYPE = 1; 
                    ABORT1 = 1; 
                    call symput("BREAK", 1); 
                end; 
            end; 
        %end; 

        select(upcase(substr("&matchtype", 1, 1))); 
            when ("O") call symput("matchtype", "OPT"); 
            when ("F") call symput("matchtype", "FULL"); 
            otherwise do; 
                PARM_BADMATCHTYPE = 1; 
                ABORT1 = 1; 
                call symput("BREAK", 1); 
            end; 
        end; 

        if "&stratvar" = "NONE" then 
            call symput("stratvar", "_ONE_"); 
    run; 

    %if &BREAK = 0 %then %do; 
        * Make working copy of input data; 
        data _useds; 
            set &inds; 

            _ONE_ = 1; 
        run; 

        * Data checks and input record counts; 
        proc sql noprint; 
            * Counts from input DS, including how many missing key variables; 
            create table _check2 as 
            select
                1 as MERGEVAR, 
                count(*) as N_INPUT, 
                sum(missing(&matchvar)) as NMISS_MATCH, 
                sum(missing(&groupvar)) as NMISS_GRP, 
                sum(missing(&idvar)) as NMISS_ID, 
                sum(missing(&stratvar)) as NMISS_STRAT, 
                count(&idvar) as N_NOMISS_ID, 
                count(distinct &idvar) as N_ID, 
                count(distinct &stratvar) as N_STRATA, 
                count(distinct &groupvar) as GRP_LEVELS 
            from _useds 
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            ; 
        quit; 

        data _check2; 
            set _check2; 

            ABORT2 = 0; 
            INDATA_BADGRP = 0; 
            INDATA_BADIDS = 0; 

            if grp_levels ne 2 then do; 
                INDATA_BADGRP = 1; 
                ABORT2 = 1; 
                call symput("BREAK", 1); 
            end; 
            if n_id ne n_nomiss_id then do; 
                INDATA_BADIDS = 1; 
                ABORT2 = 1; 
                call symput("BREAK", 1); 
            end; 
        run; 

    %end; 

    %if &BREAK = 0 %then %do; 

        * Check input group counts; 
        proc sql noprint; 
            select distinct &groupvar into :G1 - :G2 
            from _useds; 

            create table _check3 as 
            select 
                1 as MERGEVAR, 
                sum(&groupvar = &g1) as N_G1, 
                sum(&groupvar = &g2) as N_G2 
            from _useds; 
        quit; 

        * Keep useable data, add numeric index, output crosswalk; 
        data
            _useds
            _xwalk(keep = _IDX &idvar &groupvar &stratvar) 
        ; 
            set _useds; 
            where 
                not missing(&matchvar) and 
                not missing(&groupvar) and 
                not missing(&idvar) and 
                not missing(&stratvar) 
            ; 

            _IDX = _n_; 
        run; 

        * Figure caliper width, if based on SD; 
        %if &caliper ^= NONE & %upcase(&caliper_type) = SD %then %do; 

            %if &stratvar = _ONE_ %then %do; 
                proc means data=_useds noprint; 
                    var &matchvar; 
                    output out=_sd STD=SD_MATCH; 
                run; 
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            %end; 
            %else %do; 
                proc means data=_useds noprint; 
                    var &matchvar; 
                    class &stratvar; 
                    output out=_rawsd std=sitesd; 
                run; 

                proc means data=_rawsd noprint; 
                    var sitesd; 
                    output out=_sd mean=SD_MATCH; 
                run; 

                proc delete data=_rawsd; 
                run; 
            %end; 

            data _null_; 
                set _sd; 

                call symput("caliper", &caliper * sd_match); 
            run; 

            proc delete data=_sd; 
            run; 

        %end; 
        %put INFO: Caliper width = &caliper ; 

        proc sql; 
            create table _links as 
            select 
                use1._idx as FROM, 
                use2._idx as TO, 
                use1.&stratvar as STRAT, 
                abs(use1.&matchvar - use2.&matchvar) as WEIGHT, 
                . as LOWER, 
                1 as UPPER 
            from
                _useds use1, 
                _useds use2 
            where 
                use1.&groupvar = &g1 and 
                use2.&groupvar = &g2 and 
                use1.&stratvar = use2.&stratvar 
                %if &caliper ^= NONE %then 
                    and abs(use1.&matchvar - use2.&matchvar) < &caliper 
                ; 
            ; 
        quit; 

        proc sql; 
            create table _check4 as 
            select 
                1 as MERGEVAR, 
                count(distinct from) as USE_G1, 
                count(distinct to) as USE_G2, 
                count(distinct from) + count(distinct to) as USE_LIMIT, 
                count(distinct STRAT) as USE_STRATA 
            from _links; 
        quit; 

        data _check4; 
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            set _check4; 

            ABORT3 = 0; 
            LINK_NODATA = 0; 

            if use_limit = 0 then do; 
                LINK_NODATA = 1; 
                ABORT3 = 1; 
                call symput("BREAK", 1); 
            end; 
        run; 

    %end; 

    %if &BREAK = 0 %then %do; 
        * Optimal matching without strata and without calipers can use the linear
        * assignment solver.  Otherwise, create the graph input manually for the
        * simplex solver. 
        ; 
        %if &caliper = NONE &
            &stratvar = _ONE_ &
            &matchtype = OPT %then %do; 

            proc optnet
                loglevel = moderate 
                graph_direction = directed 
                data_links = _links 
            ; 
                linear_assignment 
                    out = _mcf 
                ; 
            run; 

            data _null_; 
                STATUS = scan(substr("&_OROPTNET_LAP_", 8), 1); 

                call symput("SOLVER_STATUS", STATUS); 
            run; 
        %end; 
        %else %do; 
            proc sql; 
                create table _stratinfo as 
                select 
                    strat, 
                    count(distinct from) as N_G1, 
                    count(distinct to) as N_G2, 
                    count(distinct from) / count(distinct to) as OBSRATIO 
                from _links 
                group by strat 
                order by strat; 
            quit; 

            data _stratinfo; 
                set _stratinfo;

                %if &matchtype = FULL %then %do; 
                    REQFLOW = max(n_g1, n_g2); 
                    %if &ratio_max ^= NONE & &ratio_min ^= NONE %then %do; 
                        U_RATIO = obsratio * &ratio_max; 
                        L_RATIO = obsratio * &ratio_min; 
                        format u_ratio l_ratio best5.; 

                        if u_ratio > 1 then do; 
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                            TO_MAX = ceil(u_ratio); 
                            FROM_MIN = 1; 
                        end; 
                        else do; 
                            TO_MAX = 1; 
                            FROM_MIN = floor(1 / u_ratio); 
                        end; 

                        if l_ratio > 1 then do; 
                            TO_MIN = floor(l_ratio); 
                            FROM_MAX = 1; 
                        end; 
                        else do; 
                            TO_MIN = 1; 
                            FROM_MAX = ceil(1 / l_ratio); 
                        end; 
                    %end; 
                    %else %do; 
                        FROM_MIN = 1; 
                        FROM_MAX = &INFINITY; 
                        TO_MIN = 1; 
                        TO_MAX = &INFINITY; 
                    %end; 
                %end; 
                %else %do; 
                    REQFLOW = min(n_g1, n_g2); 

                    FROM_MAX = 1; 
                    TO_MAX = 1; 

                    if n_g1 <= n_g2 then do; 
                        FROM_MIN = 1; 
                        TO_MIN = 0; 
                        *TO_MIN = .; 
                    end; 
                    else do; 
                        FROM_MIN = 0; 
                        *FROM_MIN = .; 
                        TO_MIN = 1; 
                    end; 
                %end; 

                format obsratio best5.; 
            run; 

            proc sql; 
                create table _nodes as 
                select 
                    sum(reqflow) as REQFLOW 
                from _stratinfo; 
            quit; 

            data _nodes; 
                set _nodes; 

                * FROM / SUPPLY node; 
                NODE = -1; 
                WEIGHT = reqflow; 
                WEIGHT2 = &infinity; 
                output; 

                * TO / DEMAND node; 
                NODE = -2; 
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                WEIGHT = -&infinity; 
                WEIGHT2 = 0; 
                output; 
            run; 

            proc sql; 
                create table _links2 as 
                select 
                    case FROM_IND 
                        when 1 then -1 
                        when 0 then NODE 
                    end as FROM, 
                    case FROM_IND 
                        when 1 then NODE 
                        when 0 then -2 
                    end as TO, 
                    case FROM_IND 
                        when 1 then FROM_MIN 
                        when 0 then TO_MIN 
                    end as LOWER, 
                    case FROM_IND 
                        when 1 then FROM_MAX 
                        when 0 then TO_MAX 
                    end as UPPER, 
                    0 as WEIGHT, 
                    s.STRAT 
                from 
                    _stratinfo s, 
                    (   select
                            1 as FROM_IND, 
                            FROM as NODE, 
                            STRAT
                        from _links 
                        UNION 
                        select
                            0 as FROM_IND, 
                            TO as NODE, 
                            STRAT
                        from _links 
                    ) l 
                where 
                    s.strat = l.strat 
                ; 
            quit; 

            %if &caliper ^= NONE &
                &matchtype = OPT %then %do; 

                * Set up excess node to prevent infeasibility; 
                data _links2; 
                    set _links2; 

                    output; 

                    if from = -1 then do; 
                        from = to; 
                        to = -9; 
                        weight = 10 * &caliper; 
                        lower = .; 
                        upper = 1; 
                        output; 
                    end; 
                    if to = -2 then do; 
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                        to = from; 
                        from = -9; 
                        weight = 10 * &caliper; 
                        lower = .; 
                        upper = 1; 
                        output; 
                    end; 
                run; 
            %end; 

            data _links; 
                set
                    _links 
                    _links2 
                ; 
            run; 

            proc optnet
                loglevel = moderate 
                graph_direction = directed 
                data_nodes = _nodes 
                data_links = _links 
                out_links = _mcf 
                internal_format = thin 
            ; 
                mincostflow 
                    logfreq = 1000 
                ; 
            run; 

            data _null_; 
                Status = scan(substr("&_OROPTNET_MCF_", 8), 1); 

                call symput("SOLVER_STATUS", Status); 
            run; 

            data _mcf; 
                set _mcf; 
                where 
                    mcf_flow and 
                    from not in (-1, -2, -9) and
                    to not in (-1, -2, -9) 
                ; 
            run; 
        %end; 

        proc optnet 
            data_links = _mcf 
            out_nodes = _connected 
        ; 
            concomp; 
        run; 

        proc sql; 
            create table &outlinks as 
            select 
                x1.&idvar as GRP1, 
                x2.&idvar as GRP2, 
                %if &stratvar ^= _ONE_ %then
                    x1.&stratvar,; 
                l.weight as DIST 
            from 
                _mcf l, 
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                _xwalk x1, 
                _xwalk x2 
            where 
                l.from = x1._idx and 
                l.to = x2._idx 
            ; 

            create table &outds as 
            select 
                x.&idvar, 
                x.&groupvar, 
                %if &stratvar ^= _ONE_ %then
                    x.&stratvar,; 
                c.concomp as SETNUM 
            from 
                _connected c, 
                _xwalk x 
            where 
                c.node = x._idx 
            order by 
                c.concomp, 
                x.&idvar, 
                x.&groupvar 
            ; 

            create table _stratwt as 
            select 
                setnum, 
                sum(&groupvar = &g1) as SET_N1, 
                sum(&groupvar = &g2) as SET_N2, 
                count(*) as SET_N 
            from &outds 
            group by setnum 
            order by setnum; 
        quit; 

        data &outds; 
            merge 
                &outds 
                _stratwt 
            ; 
            by setnum; 
        run; 

        proc sql; 
            create table _check5 as 
            select 
                1 as MERGEVAR, 
                count(distinct GRP1) as LINK_G1, 
                count(distinct GRP2) as LINK_G2, 
                count(distinct GRP1) + count(distinct GRP2) as LINK_N, 
                %if &stratvar ^= _ONE_ %then
                    count(distinct &stratvar) as LINK_STRATA, 
                ; 
                sum(DIST) as TOTAL_DIST 
            from &outlinks; 
        quit; 

    %end; 

    * Output specifications and status; 
    data _null_; 
        merge 
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            _check1 
            %if %sysfunc(exist(_check2)) %then 
                _check2 
            ; 
            %if %sysfunc(exist(_check3)) %then
                _check3 
            ; 
            %if %sysfunc(exist(_check4)) %then
                _check4 
            ; 
            %if %sysfunc(exist(_check5)) %then
                _check5 
            ; 
        ; 
        by mergevar; 

        * Macro info; 
        put "-----FMATCH macro called-----"; 
        put; 
        put "Macro parameters specified"; 
        put "  Input dataset:               " spec_inds; 
        put "  Matching variable:           " spec_matchvar; 
        put "  Group variable:              " spec_groupvar; 
        put "  ID variable:                 " spec_idvar; 
        put "  Stratification variable:     " spec_stratvar; 
        put "  Caliper width:               " spec_caliper; 
        if spec_caliper ne "NONE" then 
        put "  Caliper type:                " spec_caliper_type; 
        put "  Max ratio multiplier:        " spec_ratio_max; 
        put "  Min ratio multiplier:        " spec_ratio_min; 
        put "  Match type:                  " spec_matchtype; 
        put "  Link-level output dataset:   " spec_outlinks; 
        put "  Record-level output dataset: " spec_outds; 
        put; 

        * If aborted, indicate why 
        * Else, report results 
        ; 
        if abort1 then do; 
            put "ERROR: Macro aborted"; 
            if parm_nomatch then 
                put "ERROR: No matching variable specified"; 
            if parm_nogroup then 
                put "ERROR: No group variable specified"; 
            if parm_noid then 
                put "ERROR: No ID variable specified"; 
            if parm_1ratio then 
                put "ERROR: Both RATIO_MIN and RATIO_MAX need to be specified if
                     one is specified"; 
            if parm_hiloratio then 
                put "ERROR: RATIO_MIN must be < 1.0 and RATIO_MAX must be > 1.0"; 
            if parm_noinds then 
                put "ERROR: No input dataset specified"; 
            if parm_badinds then 
                put "ERROR: Input dataset does not exist"; 
            if parm_badmatchvar then 
                put "ERROR: Match variable does not exist"; 
            if parm_badgroupvar then 
                put "ERROR: Group variable does not exist"; 
            if parm_badidvar then 
                put "ERROR: ID variable does not exist"; 
            if parm_badstratvar then 
                put "ERROR: Stratification variable does not exist"; 
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            if parm_badcaliptype then 
                put "ERROR: Caliper type must be ABS or SD"; 
            if parm_badmatchtype then 
                put "ERROR: Match type must be OPT or FULL"; 
        end; 
        %if %sysfunc(exist(_check2)) %then %do; 
            else if abort2 then do; 
                put "ERROR: Macro aborted"; 
                if indata_badgrp then 
                    put "ERROR: Group variable has " grp_levels " levels -- 2 are
                         required"; 
                if indata_badids then 
                    put "ERROR: ID variable is not unique"; 
            end; 
        %end; 
        %if %sysfunc(exist(_check4)) %then %do; 
            else if abort3 then do; 
                put "ERROR: Macro aborted"; 
                if link_nodata then 
                    put "ERROR: No data to link after applying caliper (if 
                         specified) and after"; 
                    put "       removing records with missing data in key fields"; 
            end; 
        %end; 
        %if %sysfunc(exist(_check5)) %then %do; 
            else do; 
                USE_PCT = trim(left(put(link_n / n_input, percentn7.1))); 
                G1_PCT = trim(left(put(link_g1 / n_g1, percentn7.1))); 
                G2_PCT = trim(left(put(link_g2 / n_g2, percentn7.1))); 
                put "Matching completed"; 
                put "  " LINK_N "of " N_INPUT "(" USE_PCT +(-1) ") records used for
                     matching"; 
                if spec_caliper ne "NONE" and use_limit ne n_input then 
                put "    - Some records may have had no potential matches within
                     the caliper"; 
                if nmiss_match > 0 then 
                put "    - " nmiss_match "record(s) missing matching variable"; 
                if nmiss_grp > 0 then 
                put "    - " nmiss_grp "record(s) missing group variable"; 
                if nmiss_id > 0 then 
                put "    - " nmiss_id "record(s) missing ID variable"; 
                %if &stratvar ^= _ONE_ %then %do; 
                    STRAT_PCT = trim(left(put(link_strata / n_strata, 
                                percentn7.1))); 
                    put "  " LINK_STRATA "of " N_STRATA "(" STRAT_PCT +(-1) ")
                         strata used for matching"; 
                %end; 
                if nmiss_strat > 0 then 
                put "    - " nmiss_strat "record(s) missing stratification
                         variable"; 
                put "  Group 1 defined as %upcase(&groupvar) = &g1, " link_g1 "of "
                     n_g1 "(" g1_pct +(-1) ") used for matching"; 
                put "  Group 2 defined as %upcase(&groupvar) = &g2, " link_g2 "of "
                     n_g2 "(" g2_pct +(-1) ") used for matching"; 
                put "  Total distance between matched records is " total_dist; 
                put "  Solver status is %trim(&solver_status) (anything other than
                     OPTIMAL may indicate a problem)"; 
                put; 
            end; 
        %end; 
        put "------------------------------"; 
    run; 
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    proc datasets library=work nolist; 
        delete _check1; 
        %if %sysfunc(exist(_check2)) %then %do; delete _check2; %end; 
        %if %sysfunc(exist(_check3)) %then %do; delete _check3; %end; 
        %if %sysfunc(exist(_check4)) %then %do; delete _check4; %end; 
        %if %sysfunc(exist(_check5)) %then %do; delete _check5; %end; 
        %if %sysfunc(exist(_stratinfo)) %then %do; delete _stratinfo; %end; 
        %if %sysfunc(exist(_nodes)) %then %do; delete _nodes; %end; 
        %if %sysfunc(exist(_links)) %then %do; delete _links; %end; 
        %if %sysfunc(exist(_links2)) %then %do; delete _links2; %end; 
        %if %sysfunc(exist(_mcf)) %then %do; delete _mcf; %end; 
        %if %sysfunc(exist(_connected)) %then %do; delete _connected; %end; 
        %if %sysfunc(exist(_stratwt)) %then %do; delete _stratwt; %end; 
        %if %sysfunc(exist(_useds)) %then %do; delete _useds; %end; 
        %if %sysfunc(exist(_xwalk)) %then %do; delete _xwalk; %end; 
    run; 

%mend;
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