
ADVANCED BIOSTATISTICAL METHODS FOR CURVED AND CENSORED
BIOMEDICAL DATA

Emil A. Cornea

A dissertation submitted to the faculty at the University of North Carolina at Chapel
Hill in partial fulfillment of the requirements for the degree of Doctor of Philosophy in

the Department of Biostatistics in the Gillings School of Global Public Health.

Chapel Hill
2014

Approved by:

Joseph G. Ibrahim

Hongtu T. Zhu

Donglin Zeng

Amy Herring

Martin Styner



c○ 2014
Emil A. Cornea

ALL RIGHTS RESERVED

ii



ABSTRACT

EMIL A. CORNEA: Advanced Biostatistical Methods for Curved and Censored
Biomedical Data

(Under the direction of Joseph G. Ibrahim and Hongtu T. Zhu)

This research was dedicated to analyze two types of biomedical data: curved data

lying on a manifold and censored survival data from clinical trials.

The main part of the research aims at developing a general regression framework

for the analysis of a manifold-valued response in a Riemannian symmetric space (RSS)

and its association with Euclidean covariates of interest, such as age. Such data arises

frequently in medical imaging, computational biology, and computer vision, among

many others. We developed an intrinsic regression model solely based on an intrinsic

conditional moment assumption, avoiding specifying any parametric distribution on

RSS. We proposed various link functions from the Euclidean space of covariates to the

RSS of responses. We constructed parameter estimates and test statistics, and deter-

mined their asymptotic distributions and geometric invariant properties. Simulation

studies were used to evaluate the finite sample properties of our method. We applied

our model to investigate the association between covariates, including gender, age, and

diagnosis, and the shape of the Corpus Callosum contours from the Alzheimer’s Disease

Neuroimaging Initiative dataset, in both cross-sectional and longitudinal cases.

In oncology clinical trials, progression-free survival (PFS) has been a key endpoint

to support licensing approval, and it is recommended to have the investigator’s tumor

assessments verified by an independent review committee blinded to study treatments,

especially in open-label studies. Agreement between these evaluations may vary for
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subjects with short or long PFS, while there exist no such statistical quantities that

can completely account for this temporal pattern of agreements. We proposed a new

method to assess temporal agreement between two time-to-event endpoints, assuming

they have a positive probability of being identical. Overall scores of agreement over a

period of time are also proposed. We used maximum likelihood estimation to infer the

proposed agreement measures using empirical data, accounting for different censoring

mechanisms including reader’s censoring (event from one reader dependently censored

by event from the other reader). The proposed method is demonstrated to perform

well in small-sample via extensive simulation studies and is illustrated through a head

and neck cancer trial.
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CHAPTER 1: LITERATURE REVIEW

We first review the literature on curved data in non-Euclidean spaces, such as

differential manifolds. We then focus on the existing literature on agreement measures

in bivariate time-to-event censored data.

1.1 Manifold-Valued Data

Statistical inference for distributions on manifolds is a broad discipline with wide

ranging applications. Its study has gained momentum, due to its applications in bio-

sciences and medicine, geosciences, astronomy, computer vision and image analysis,

electrical engineering, and other fields.

Statisticians are working more and more with nonlinear object data, regarding the

observations as points on manifolds. The idea of a data analysis on abstract metric

space goes back to a visionary paper by Fréchet (1948), where he suggested to analyze

object data on separable metric spaces rather than just on linear spaces in an effort to

accommodate a large variety of elements (objects) that need to be analyzed statistically.

Fréchet’s ideas got exploited much later, especially with the increase of compu-

tational capabilities, so that his approach could be followed numerically. The first

examples of data analysis on manifolds are due to Watson (1983), for directional data

analysis (on spheres and real projective spaces), to Kendall (1984a), for similarity shape

data analysis (on complex projective spaces), and to Chang (1988), for tectonic plates

data analysis (on groups of rotations).

During late 1990s and early 2000s, the focus of modern statistical methodology was

on data analysis on more complicated sample spaces, including some Lie groups - Kim
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(2000), Stiefel manifolds - Hendriks and Landsman (1998), projective shape manifolds

(product of real projective spaces) - Patrangenaru (2001), or on affine shape manifolds

(Grassmannians) - Patrangenaru and Mardia (2003).

The common features of all these sample spaces are reflected in the fact that they

are all homogeneous spaces. Given data in a homogeneous space to be analyzed, it is

statistician’s choice of selecting an appropriate Riemannian structure on the sample

space, that would best address the data analysis.

In the areas of directional data analysis or shape data analysis that dominated

object data analysis in its initial phase, the homogeneous spaces considered as sample

spaces were compact spaces. In recent years, the attention has turned to brain imaging

data and size-and-shape data analysis in structural genomics for which the sample

spaces considered are noncompact (see Bandulasiri et al. (2009a) and Bandulasiri et al.

(2009b)). One object of our research is to develop a unified framework for data analysis

on compact and noncompact Riemanian homogeneous spaces.

Statistical analysis on general homogeneous spaces was first considered in the con-

text of density estimation with the pioneering paper by Beran (1968). This line of

research was also pursued for function estimation on Lie groups via Fourier analysis

by Kim (1998; 2000), Lesosky et al. (2008), and Koo and Kim (2008a). Such method-

ologies found applications in medical imaging, robotics, and polymer science (Yarman

and Yazici (2003; 2005), Koo and Kim (2008b)).

Data analysis of data taking values in an homogeneous spaces that admit a non-

compact Riemannian structure appeared first in Diffusion Tensor Imaging (DTI) and

in Cosmic Microwave Background (CMB) radiation (Schwartzman et al. 2008b). Both

areas lead to analysis of random objects on the set of symmetric positive definite ma-

trices Sym+(m). The main statistical techniques used for DTI data were parametric

in nature (Schwartzman 2006, Schwartzman et al. 2008a;b). Most recently, Haff et al.
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(2011), Osborne and Patrangenaru (2011), Osborne (2012), Zhu et al. (2009a), Yuan

et al. (2012a), Yuan et al. (2012b), and Shi et al. (2012) used the geometric approach

of Lie group action, which is related to the approach in our research.

Data belonging to some m-dimensional compact submanifold M of Euclidean space

RN appear in many areas of natural sciences. Directional statistics, image analysis,

vector cardiography in medicine, orientational statistics, plate tectonics, astronomy,

and shape analysis comprise a (by no means exhaustive) list of examples. Research

in the statistical analysis of such data is well documented in the pioneering book by

Mardia (1972) and more recently in the book by Mardia and Jupp (2000). In these

books, as well as in many research papers , the primary emphasis is placed on the

analysis of data on a circle or a sphere Sd. These are the simplest examples of compact

manifolds and do not manifest the generic features of statistical inference intrinsic to

compact submanifolds of Euclidean spaces.

There is an immense literature that has been devoted to shape representation, shape

descriptors, or shape signatures in computer vision. An overview of several shape

space models with Riemannian manifold structure, including some shape representation

methods, shape spaces structures (from metric spaces to manifolds), and applications

that result from such models, is given in Younes (2010). There are many ways to define

the notion of shape. To simplify, a shape can be interpreted as the boundary of a two-

or three-dimensional object. A shape representation is a function that assigns to a

given shape a well-defined mathematical feature that will simplify further algorithms

and analysis. For example, the shape of an m-dimensional object is represented by

k > m points in Rm called landmarks, which represent k locations on an object. The

configuration of k landmarks is called a k-ad. The choice of landmarks is generally

made with expert help in the particular field of application. Depending on the way

the data are collected or recorded, the appropriate shape of a k-ad is its orbit under

3



a group of transformations. For example, one may look at k-ads modulo size and

Euclidean rigid body motions of translation and rotation. The analysis of shapes under

this invariance was pioneered by Kendall (1977; 1984b) and Bookstein (1978). Kendall

identified a shape with the orbit under m-dimensional rotations of a k-ad centered at

the origin and scaled to have unit size. The resulting shape spaces are called similarity

shape spaces, or Kendall’s shape space, and denoted by Σk
m. A fairly comprehensive

account of parametric inference on these spaces, with many references to the literature,

may be found in Dryden and Mardia (1998). When the orbits are considered under all

orthogonal transformations and scaling, the resulting shape spaces are called reflection

shape spaces and denoted by RΣk
m. A computation of the extrinsic mean reflection

shape, which has remained unresolved in earlier works, was given by Bhattacharya

(2008) in arbitrary dimensions, enabling one to extend nonparametric inference on

Kendall type shape manifolds from 2D to higher dimensions.

Data belonging to noncompact submanifold M appears in many applications in-

cluding Diffusion Tensor Imaging (DTI), Cosmic Microwave Background radiation

(Schwartzman et al. 2008b), medical imaging, brain imaging (Zhu et al. 2009a, Os-

borne and Patrangenaru 2011, Ellingson et al. 2012), structural genomics (Bandulasiri

et al. 2009a;b), computational anatomy, and statistics. A specific such a manifold is

the space Sym+(m) of m × m symmetric positive-definite (SPD) matrices defined as

follows.

Sym+(m) = {S ∈ Sym(m) : x>Sx > 0, for all nonzero x ∈ Rm},

where Sym(m) ⊂ M(m,R) denote the linear space of all m ×m symmetric matrices,

and M(m,R) is the space of all m×m matrices with real entries.

The aim of our research is to develop a general regression framework for the analysis
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of manifold-valued response in a Riemannian symmetric space (RSS) and its relation-

ship with covariates of interest, such as age, in Euclidean space. Such manifold-valued

data, such as directional data and symmetric positive-definite matrices, arises frequently

in medical imaging, computational biology, molecular imaging, surface modeling, and

computer vision, among many others. However, little has been done when the response

is in a general RSS. We develop an intrinsic regression model solely based on an intrinsic

conditional moment assumption, avoiding specifying any parametric distribution in RS

space. We propose various link functions to map from the Euclidean space of covari-

ates to the the RS space of responses. We develop a two-stage procedure to calculate

the parameter estimates, and determine their asymptotic distributions. We construct

the Wald and geodesic test statistics to test hypotheses on unknown parameters. Sim-

ulations studies are used to evaluate the finite sample property of our methods and

a real data set from Alzheimer’s Disease Neuroimaging Initiative (ADNI) database is

analyzed to illustrate the use of our test statistics.

1.2 Statistical Analysis of Manifold-Valued Data in the Literature

1.2.1 Fréchet Mean Set

The earliest literature on statistical analysis on spaces other than Euclidean ones

goes back to mid 20-th century, when Fréchet (1948) introduced the notion of the

mean for a distribution on a metric space (M,d). Let Q be a probability distribution

on (M,d), i.e. on the Borel σ-algebra ofM .

Definition 1.2.1. The Fréchet mean set of Q, denoted CQ, is the set of all minimizers

of the Fréchet function F on M defined by

F (p) =

ˆ
M

d2(y, p)Q(dy),

5



assuming that F (p) <∞ for some p ∈M . If there is a unique minimizer, say µF , then

CQ = {µF} and µF is called the Fréchet mean of Q.

The Fréchet mean set CQ is a natural index of location for the probability distribu-

tion Q.

Since their original definition as metrical means by Fréchet in 1948 such means

have found much interest. Independently, on Riemannian manifolds with respect to the

Riemannian metric, Kobayashi and Nomizu (1996) defined the corresponding metrical

means in the original space as centers of gravity. With application in landmark based

shape analysis in mind, Ziezold (1977) extended the concept to quasi-metrical means

(in the sense that the distance function d : M ×M → [0,∞) is not required to be

symmetric). Further generalizations can be found in Huckemann (2011).

Applications of this concept for data analysis did not get too much traction until

it could have been followed numerically. Due to the high computational complexity on

the manifolds, it was not before mid-late 1980s when data analyses on manifolds were

performed.

The concept of variation was introduced in Bhattacharya and Patrangenaru (2002),

where it has been referred to as the total variance, as the minimum value of F on M .

It is called the Fréchet variation of Q and denoted by V .

Definition 1.2.2. If Y1, Y2, ..., Yn are independent and identically distributed (iid) M-

valued random variables defined on some probability space (Ω,F ,P) with common dis-

tribution Q, and Q̂n := 1/n
∑n

i=1 δYi is the corresponding empirical distribution, then

the Fréchet mean set of Q̂n is called the sample Fréchet mean set, denoted by CQ̂n. The

Fréchet variation of Q̂n is called the sample Fréchet variation and denoted by V̂n.

Existence of the Fréchet mean set. It was shows that under mild assumptions, the

minimum value of F on M is attained, thereby proving that the Fréchet mean set
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is nonempty, as proved by Bhattacharya and Patrangenaru (2003) and Bhattacharya

(2008).

Proposition 1.2.1. Suppose (M,d) is a metric space such that every closed and bounded

subset of M is compact (the Heine-Borel property). If the Fréchet function F of Q is

finite for some p ∈M , then CQ is nonempty and compact.

Consistency of the Fréchet mean set. An important question on estimation of loca-

tion is that of consistency. Two different Strong-Consistency results for Fréchet sample

means have been obtained by Ziezold (1977), Theorem I, for quasi-metrical means on

separable spaces (i.e. containing a dense countable subset) and by Bhattacharya and

Patrangenaru (2003), Theorem 2.3, for metrical means on spaces with Heine-Borel

property (i.e. that every closed bounded set is compact).

Theorem 1.2.1. (Strong Consistency - Ziezold (1977)) Let (Ω,F ,P) be a probability

space and (M,d) a separable quasi-metric space. Let Y1, Y2, . . . be independent, identi-

cally distributed random M-valued variables, Yi : Ω → M , i = 1, 2, . . ., with common

distribution Q, such that F (p) <∞ for some p ∈M . Then for almost all ω ∈ Ω

∞⋂
n=1

∞⋃
k=n

CQk(ω) ⊆ CQ,

where A denotes the closure of the set A.

Theorem 1.2.2. (Uniform Strong Consistency - Bhattacharya and Patrangenaru (2003))

Let (Ω,F ,P) be a probability space and (M,d) a metric space such that every closed

and bounded subset of M is compact (the Heine-Borel property). Let Y1, Y2, . . . be inde-

pendent, identically distributed random M-valued variables, Yi : Ω → M , i = 1, 2, . . .,

with common distribution Q, such that F (p) < ∞ for some p ∈ M . Then given any
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ε > 0 and almost all ω ∈ Ω, there exist a number N = N(ε, ω) such that

∞⋃
k=N

CQ̂k(ω) ⊆ {p ∈M : d(CQ, p) ≤ ε}.

In particular, if CQ = {µF}, then the sample Fréchet mean µFn (any measurable selec-

tion from CQ̂n) is a strongly consistent estimator of µF .

Bhattacharya and Patrangenaru, 2003„ in Remark 2.5, note that Ziezold’s strong-

consistency implies theirs for compact metric spaces M , but not for noncompact M .

The following strong consistency of V̂n as an estimator of V is due to Bhattacharya

and Bhattacharya (2008).

Theorem 1.2.3. Suppose (M,d) is a metric space with Heine-Borel property and F is

finite on M . Then V̂n is a strongly consistent estimator of V .

Asymptotic theories for the Fréchet means on manifolds was established in Bhat-

tacharya and Patrangenaru (2003; 2005) and Huckemann (2011).

Central Limit Theorems. The ”δ-method” allows to formulate Central-Limit Theo-

rems (CLTs) for differentiable images of random variables. The following definition of

CTL for random manifold-valued variables was given in Huckemann (2011).

Definition 1.2.3. Let M be a smooth m-dimensional manifold. We say that a M-

valued estimator µn(ω) of µ ∈ M satisfies a Central-Limit-Theorem (CLT), if in any

local chart (U, φ) near µ there is a suitable m × m matrix Aφ and a m × m positive

semi-definite symmetric matrix Σφ such that

√
nAφ (φ(µn)− φ(µ))

d→ Nm(0,Σφ)

in distribution as n→∞.
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In most applications Aφ is non-singular, then as a consequence of the ”δ-method”,

for any other chart (U ′, φ′) near µ, we have

A−1
φ′ Σφ′

(
A−1
φ′

)>
= J(φ′ ◦ φ−1)φ(µ)A

−1
φ Σφ

(
A−1
φ

)>
J(φ′ ◦ φ−1)>φ(µ)

where J(·)a denotes the Jacobi-matrix of the first order derivatives at a.

Suppose now that d is a metric on a differentiable manifold M , and p→ d(q, p) is

at least twice continuously differentiable on M , for any q ∈ M . We can only expect a

CLT for the Fréchet mean set to hold under additional regularity conditions concerning

the expectation of derivatives of d. To this end, in a local chart (U, φ) on M , denote

by grad2d(q, p)2 the gradient of u → d2(q, φ−1(u)) at u = φ−1(p) for p ∈ U , and

Hess2d(q, p)2 the corresponding Hessian matrix of the second order derivatives. We

mention here two CLT results.

First, Bhattacharya and Patrangenaru (2005) establish a CLT when there is a unique

Fréchet mean µF of Q and there is a local (U, φ) that almost covers M , i.e. Q(U) = 1.

Theorem 1.2.4. (CLT for Fréchet means - Bhattacharya and Patrangenaru (2005))

Let Q be a probability measure on a differentiable manifold M endowed with a metric

d(·, ·) such that (M,d) has the Heine-Borel property. Let Yi, i = 1, 2, . . ., be i.i.d.

random variables onM with common distribution Q, and µn,F be a measurable selection

from the Fréchet mean set (w.r.t. d) of the empirical Q̂n = 1
n

∑n
i=1 δYi. Assume

(i) the Fréchet mean µF exists,

(ii) there exists a local chart (U, φ) such that Q(U) = 1,

(iii) the map u→ d2(q, φ−1(u)) is twice differentiable on φ(U),

(iv) EQ(‖grad2d(Y1, µF )2‖2) <∞, EQ
(∣∣∣(Hess2d(Y1, µF )2)k,l

∣∣∣2) <∞, and
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(v) EQ

(
sup

p : d(p,µF )<ε

∣∣∣(Hess2d(Y1, p)2)k,l − (Hess2d(Y1, µF )2)k,l

∣∣∣) → 0 as ε → 0, k, l =

1, . . . ,m.

Then,

(a) µn,F is a consistent estimator of µF , and

(b)
√
nAφ(φ(µn,F )− φ(µF ))

d→ Nm(0,Σφ),

with

Aφ = EQ(Hess2d(Y1, p)2) and Σφ = Cov(grad2d(Y1, µF )2). (1.1)

The assumption above on the existence of a local chart (U, φ) such that Q(U) = 1

is less restrictive than it may seem. If m is a Riemannian structure on M and Q is

absolutely continuous with respect to the volume measure, then, for any given p ∈M ,

the complement U of the cut locus C(p), is the domain of definition of such a local

chart, φ = Logp, the Riemannian logarithmic map of M at p. For example, when

M = Sm, the unit sphere in Rm+1 with the canonical Riemanian structure, for a given

p ∈ Sm, the maximal normal chart centered at p is given by U = Sm \ {−p} and

φ(y) = Logp(y) = (y − (p>y)p) arccos(p>y)/
√

1− (p>y)2. Any probability measure Q

on Sm that has no mass concentrated at −p satisfies Q(U) = 1.

Second, the most general CLT result to date is due to Huckemann (2011). The

so-called Fréchet ρ-mean set of a probability distribution Q on M is defined in a more

general setting, where the distance d is replaced by a continuous function ρ : M ×P →

[0,∞), where M is a topological space and (P, dP ) is a space with distance (in the sense

that P is a topological space and dP : P×P → [0,∞) is a continuous map that vanishes

on the diagonal {(p, p) : p ∈ P}). Fréchet ρ-mean set of Q is a subset of P . In this

setting, Huckemann assumes the following two properties for ρ: (c1) continuity in the
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second argument uniform over the first argument, and (c2) a version of coercivity in

the second argument: there are p0 ∈ P and C > 0 such that Pr(ρ(Y, p0) < C) > 0, for

Y ∼ Q, and that such that for every sequence pn ∈ P with dP (p0, pn) → ∞ there is a

sequence Kn → ∞ with ρ(y, pn) > Kn for all y ∈ M with ρ(y, p0) < C; moreover, if

pn ∈ P with dP (p∗, pn) → ∞ for some p∗ ∈ P , then dP (p0, pn) → ∞. Both properties

are valid if M = P and ρ is a quasi-metric. Huckemann showed that property (c1)

implies the strong consistency, assuming that the Fréchet function is finite at least

at one point in P (Theorem 3.4 in Huckemann (2011)). He also showed that, when P

enjoys the Heine-Borel property and the Fréchet ρ-mean set is nonempty, the conditions

(c1) and (c2) together imply uniform strong consistency (Theorem 3.5 in Huckemann

(2011)). It may be pointed out that it is the assumption of some symmetries of P

that often causes the Fréchet ρ-mean set to contain more than one element (see, e.g.,

Proposition 2.2 in Bhattacharya and Patrangenaru (2005)). This situation is taken care

of too in Huckemann’s CLT result as follows.

Theorem 1.2.5. (CLT - Theorem 3.8 in Huckemann (2011)) Assume P = R, where R

is a smooth manifold, and there is a self-understood discrete group H acting smoothly on

R such that {p′ ∈ R : dR(p, p′) = 0} = {hp : h ∈ H}, for any p ∈ R. Suppose that µ is

a point in the Fréchet ρ-mean set unique up to the action of H on the manifold R (i.e.

Fréchet ρ-mean set equals Hµ) with respect to a continuous ρ : M × R → [0,∞), ρ2

smooth in the second argument, satisfying uniform consistency, whereM is a topological

space. Let Yi, i = 1, 2, . . ., be i.i.d. random variables on M with common distribution

Q. If

(i) probability measure Q on M has compact support or

(ii) in a suitable local chart on R near µ, EQ (grad2ρ(Y1, µ)2) exists,

CovQ (grad2ρ(Y1, µ)2) exists, and EQ (Hess2ρ(Y1, ν)2) exists for ν near µ and is

continuous at ν = µ ,
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then for any measurable choice µon in the sample Fréchet ρ-mean set there is a sequence

hn ∈ H such that µn = hnµ
o
n satisfies a CLT. In a suitable local chart (U, φ) on R

near µ the corresponding matrices in CLT are given by Aφ = EQ (Hess2ρ(Y1, µ)2) and

Σφ = CovQ (grad2ρ(Y1, µ)2).

1.2.2 Intrinsic and Extrinsic Mean Sets

If M is a Riemannian manifold, the Fréchet mean (set) with respect to the geodesic

distance d = dm is defined to be the intrinsic mean (set) of Q and denoted µI(Q).

The corresponding Fréchet variation is called the intrinsic variation of Q and denoted

VI(Q).

In the case of M is connected C∞ Riemannian manifold with a metric tensor m

and geodesic distance dm, with (M,dm) a complete metric space, Theorem 2.1 in Bhat-

tacharya and Patrangenaru (2003) shows that (i) the intrinsic Fréchet mean set is

compact, (ii) for each point µ in the intrinsic mean set, the Euclidean mean of the of

the distribution on the tangent space at µ of the Riemanian logarithmic map is zero,

and (iii) in the case of simply connectedM of nonpositive curvature, the intrinsic mean

exists if F (·) is finite. A particular case of this result, when M is a Bookstein’s shape

space of labeled triangles, with Riemannian metric of constant negative curvature is

due to Le and Kume (2000). From a result of Karcher (1977) it follows that if the

distribution is sufficiently concentrated then the intrinsic mean exists. For complete

Riemannian manifolds, it seems that the sharpest uniqueness result to date for the

intrinsic mean is due to Afsari (2011): if Q is supported in a ball of radius less than

the geodesic convexity radius of (M,m), then the minimizer of FQ (for d = dm) is

unique. For planar shape space CPk−2, a useful necessary and sufficient condition for

the existence of an intrinsic mean is proved by Le (1998) for distributions Q which are

absolutely continuous (with respect to the volume measure) with a density that is a
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function only of the distance from a given point.

Much of the literature in the field deals with special cases of what it is called extrinsic

mean, perhaps because of the difficulties involved in proving the existence of an intrinsic

mean and in computing the intrinsic sample mean, even when it exists. It is simpler

both mathematically and computationally to carry out an extrinsic analysis on M , by

embedding it into some Euclidean space RN via some map J : M → RN such that both

J and its derivative are injective, and for which J(M) has the induced topology from

RN . Then J induces the metric dJ(x, y) = ‖J(x)−J(y)‖RN onM , where ‖·‖RN denotes

Euclidean norm (‖u‖2
RN =

∑N
i=1 u

2
i , for any u = (u1, u2, ..., uN)>). This is called the

extrinsic distance on M . Among the possible embeddings, one seeks out equivariant

embeddings which preserve many of the geometric features of M . For a Lie group H

acting on a manifold M, an embedding J : M → RN is H-equivariant, if there exists a

group homomorphism ϕ : H → GL(N,R) such that J(a · p) = ϕ(a)J(p) for all p ∈ M

and all a ∈ H. Here, GL(N,R) is the general linear group of all N × N non-singular

matrices. The extrinsic mean and variations of a probability distribution Q on M are

defined (see below) with respect to the embedding J . The notion of extrinsic mean

on a manifold was introduced independently by Hendriks and Landsman (1998) and

Patrangenaru (1998), and later considered in detail in Bhattacharya and Patrangenaru

(2003; 2005).

The Fréchet mean set of Q with respect to the distance dJ is called the extrinsic

mean set of Q and the Fréchet variation of Q is called the extrinsic variation of Q. If Yi,

i = 1, . . . , n, are iid observations from Q, then the Fréchet mean set of Q̂n is called the

sample extrinsic mean set and the Fréchet variation of Q̂n is called the sample extrinsic

variation.

In case J(M) = M̃ is a closed subset of RN , for every u ∈ RN , there exists a

compact set of points in M̃ whose distance from u is the smallest among all points in
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M̃ . This set is the set of projections of u on M̃ and denote it by PM̃(u) = {x ∈ M̃ :

‖x − u‖RN ≤ ‖y − u‖RN for any y ∈ M̃}. If this set is a singleton, u is said to be a

nonfocal point of RN (with respect to M̃), otherwise it is said to be a focal point of

RN .

For a given embedding J , Bhattacharya and Patrangenaru (2003) established the

relationships between the extrinsic mean and variation of Q on M and the mean and

variation of the push forward probability distribution Q̃ = Q◦J−1 of Q onto RN . They

showed that the extrinsic mean set of Q is given by J−1(PM̃(µ̃)), where µ̃ is the mean

of Q̃, and the extrinsic variation of Q is given by

V =

ˆ
RN

‖x− µ̃‖2Q̃(dx) + ‖µ̃− µ‖2,

where µ ∈ PM̃(µ̃).

An asymptotic theory for the intrinsic and extrinsic means on manifolds was es-

tablished in Bhattacharya and Patrangenaru (2003; 2005). Asymptotic distributions of

extrinsic sample means were derived. Explicit computations of these means of Q̃n and

their asymptotic dispersions were carried out for distributions on the sphere Sd (direc-

tional spaces), real projective space RPN−1 (axial spaces), and CPk−2 (planar shape

spaces). Nonparametric inference procedures for estimation and testing problems for

sample Fréchet means on manifolds were also derived and bootstrap methods for these

problems were presented, with applications to distributions on Sd, RPN−1, CPk−2

with respect to Veronese-Whitney embeddings, and a 3-dimensional shape space Σ4
3. A

detailed theory of shape-spaces Σk
m can be found in the pioneering paper by Kendall

(1984b), and a brief description of these spaces is presented below.

Central Limit Theorems for Intrinsic Means. In the case Q is a probability distri-

bution on M whose support is compact and is contained in a local chart, an immediate

CLT result for intrinsic sample means follows from Theorem 1.2.4 above.

14



Corollary 1.2.1. Let (M,m) be a m-dimensional Riemannian manifold and d = dm

be the geodesic distance. Let Q be a probability distribution on M whose support is

compact and is contained in a local chart (U, φ). Assume that (i) the intrinsic mean µI

exists, (ii) the map u → d2(q, φ−1(u)) is twice continuously differentiable on φ(U) for

each q ∈ U and Aφ and Σφ defined as in (1.1). Then the conclusion of Theorem 1.2.4

holds for the intrinsic sample mean µn,I .

Two main CLT results for intrinsic means are established by Bhattacharya and

Patrangenaru (2005). One is relative to normal charts on M when the support of Q

is in a geodesically convex ball whose radius depends on the sectional curvature of M ,

and the second when the uniqueness of the intrinsic mean is assumed. The other allows

for multiple intrinsic means due to the invariance of Q under a group of symmetries.

Theorem 1.2.6. Let (M,m) be a Riemannian manifold and let d = dm be the geodesic

distance. Let Q be a probability measure on M whose support is contained in a closed

geodesic ball Br = Br(p0) with center p0 and radius r which is disjoint from the cut

locus C(p0). Assume r < π
4K

, where K2 is the supremum of the sectional curvatures in

Br if this supremum is positive, or zero if this supremum is nonpositive. Then

(a) the intrinsic mean µI (of Q) exists, and

(b) then the CLT from the conclusion of Theorem 1.2.4 holds for any measurable

intrinsic sample mean µn,I of Q̂n = 1
n

∑n
i=1 δYi, under the normal chart φ = Logp0

.

We note here, that if the supremum of the sectional curvatures (of a complete

manifold M) is nonpositive, and support of Q is contained in Br, for some r > 0, then

the hypotheses of Theorem 1.2.6 are satisfied, and the conclusions (a) and (b) hold.

One may apply this theorem even with r =∞.

The assumptions in Theorem 1.2.6 on the support of Q for the existence of µI are

too restrictive for general applications. But without additional structures they cannot
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be entirely dispensed with, as can be shown by letting Q be the uniform distribution on

the equator of S2. For example, as it was mentioned above, Le (1998) gives necessary

and sufficient conditions for the existence of the intrinsic mean µI of an absolutely

continuous (w.r.t to the volume measure) Q on the projective space CPk−2, k ≥ 3, with

radially symmetric density. The standard Riemannian structure on CPk−2 is induced

by the circular arc metric, i.e. the geodesic distance d is given by cos(d([ζ], [ξ])) = |ζ>ξ|,

where ζ = (ζ1, . . . , ζk−1)>, ξ = (ξ1, . . . , ξk−1)> ∈ Ck−1, with
∑

i |ζi|2 =
∑

i |ξi|2 = 1. Let

f([ζ]) be the density function of Q with respect to the volume measure dω on Ck−2. If

f(·) can be expressed as a non-increasing function of the distance d of [ζ] from a fixed

point [µ] and is strictly decreasing on a set of positive measure, then [µ] is the unique

intrinsic Fréchet mean of Q.

Thus, assuming the that the intrinsic mean is unique, the following result may be

more generally applicable than Theorem 1.2.6.

Theorem 1.2.7. (CLT - Theorem 2.3 in Bhattacharya and Patrangenaru (2005)) Let

Q be absolutely continuous with respect to the volume measure on a Riemannian man-

ifold (M,m). Assume that µI is exists, the integrability conditions (iv) in Theorem

1.2.4 hold, the Hessian matrix Aφ of the Fréchet function F with respect to a local

chart φ near µI is is nonsingular, and the covariance matrix Σφ of the grad2d(Y1, µI)
2

is nonsingular. Then
√
n (φ(µn)− φ(µI))

d→ N(0, A−1
φ ΣφA

−>
φ ).

1.3 Longitudinal Data on Manifolds

Many scientific questions can be expressed in terms of changes or alterations of a

dynamical process. In camera surveillance, one aims at distinguishing normal from

abnormal behaviors behind the large variety of the shapes and the motions of the

silhouettes in video sequences. In neuroscience, one studies the neurodevelopment

or the neurodegeneration of the brain and its related structures. Every brain has
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a different shape, whereas its maturation may follow some common patterns that one

would like precisely to describe and quantify. The computational anatomy, an emerging

discipline at the interface of geometry, statistics and image analysis, aims at modeling

and analyzing the biological shape of tissues and organs. The goal is to estimate

representative organ anatomies across diseases, populations, species or ages, to model

the organ development across time (growth or aging), to establish their variability,

and to correlate this variability information with other functional, genetic or structural

information. In clinical studies, one wants to characterize anatomical or functional

changes due to disease progression, clinical intervention or therapy. In cardiac imaging,

one looks for abnormal patterns in the heart motion. What make these questions so

challenging is the nature of the object of interest and that it changes in appearance in

different situations. The observed object’s features, such as the shape, are is inherently

nonlinear and high-dimensional. Because of this, manifold representations of the data

have proven to be effective. These problems can be addressed by statistical analysis

of longitudinal data that takes values in a Riemannian manifold. The Riemannian

structure provides useful tools to carry out such analyzes.

Longitudinal analysis differs from the usual cross-sectional variability analysis in

that it takes into account the inherent correlation of repeated measurements of the

same individuals. It must also provide a model of how an individual subject’s trajec-

tory changes relative to another subject. At the population level, we typically analyze

how the subjects are distributed within a group by estimating a mean configuration

and its variance. For longitudinal data, the mean configuration may be a “mean growth

scenario”, which averages the growth patterns in the population. The analysis of its

variance explains how each subject’s trajectory differs from the mean growth scenario.

Such a statistical approach based on mean and variance is well-known for scalar mea-

surements and for analysis of cross-sectional shape data, for which the mean is usually
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called “template” or “atlas”. The extension of these concepts for longitudinal shape data

is challenging, as there is no consensus about how to combine shape changes over time

and shape changes across subjects.

There has been extensive research for the analysis of Euclidean longitudinal data

in the last few decades. Diggle et al. (2002) and Fitzmaurice et al. (2008) provided a

comprehensive overview of various models and methods for the analysis of longitudinal

data, among others. In the analysis of longitudinal data, three types of models are

commonly used: mixed effects models, GEE models, and transitional models.

Recent work suggests that attempts to describe anatomical shapes using flat Eu-

clidean spaces undermines our ability to represent natural biological variability (Fletcher

et al. 2004a, Grenander and Miller 1998).

A number of longitudinal growth models have been developed to provide this type of

analysis to time-series imagery of a single subject (e.g., Beg (2004); Clatz et al. (2005),

Miller (2004); Thompson et al. (2000)). While these methods provide important results,

their use is limited by their reliance on longitudinal data, which can be impractical to

obtain for many medical studies. Also, while these methods allow for the study of an

individualâĂŹs anatomy over time, they do not apply when the average growth for a

population is of interest.

Related work in longitudinal analysis includes several approaches in the setting of

diffeomorphic transformations, which form an infinite-dimensional manifold, applied

to image sequences. Durrleman et al. (2009) construct spatiotemporal image atlases

from longitudinal data. Qiu et al. (2009) use parallel translation to bring individual

trajectories to a common point for comparison. Lorenzi et al. (2011) use a hierarchical

model on stationary velocity fields, in a framework that does not include a Rieman-

nian metric on the manifold of diffeomorphisms. An important shortcoming of these

approaches is that they do not model distances between trajectories. This makes it
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difficult to compare the differences in trends of two groups, or even to rigorously define

the concept of the variance of a population of trends.

The aim of this research is to extended our framework of intrinsic regression models

for cross-sectional data to fixed and random effect models for the analysis of manifold-

valued measures from longitudinal studies.

1.4 Agreement Assessment in Bivariate Time-to-Event Times: Motivation

Assessing agreement is often of interest in clinical studies and biomedical sciences

to evaluate the similarity of measurements produced by different methods on the same

subjects. For examples, when a new assay or instrument is developed, it is important

to assess whether the new assay or instrument can reproduce the results of a traditional

method. Additionally, the strength of agreement can help researchers decide whether a

simple measurement is an acceptable replacement for a more expensive gold standard

method and whether measurements obtained by different methods or instruments are

comparable or not. Given the importance of agreement studies in biomedical sciences,

there has been extensive literature on measuring agreement for categorical and contin-

uous outcomes, e.g. Cohen (1960; 1968), Kraemer (1980), Kraemer et al. (2002), Lin

(1989; 2000) among others.

The time to an event is the main outcome variable of interest in many medical and

public health studies, including the number of years from an exposure to onset of a

disease, age of onset of an illness, and the number of weeks from entry into a clinical

trial to remission of a disease. A potential problem in all such researches is the fact

that raters may disagree about the occurrence of events, or raters who agree on the

occurrence of an event may disagree on the time to the event. Such inconsistencies also

can occur in studies involving age-of-onset of certain illnesses or disorders. However,

very limited work has been done to assess agreement between time-to-event data with
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censored observations.

Censoring is an issue complicating the assessment of reliability of time to event

data. The presence of censoring raises problems in the application of commonly used

measures of reliability or reproducibility. The nature of censoring depends on the study

design. Right censored data can be produced in follow up studies if no event is reported

by the time the study ends or if a subject drops out. Left-censored data may occur,

for example, in a study of age-of-onset when subjects of varying ages are diagnosed as

having the disease at baseline but no information is available on age of onset. In such

studies, age-of-onset is censored by baseline age.

There are several agreement measures for assessing dependence or agreement for

censored bivariate time-to-event data in the literature. The rank-based Kendall’s co-

efficient of concordance τ (Section 4.2, Hougaard (2000)) is a measure of overall de-

pendence. It is simple and can be estimated non-parametrically for censored data, but

does not measure the degree of agreement at a single time point. In the aforementioned

extreme case, the data achieves the maximum value of Kendall’s τ , even that there is

no agreement of PD time at all. Liu et al. (2005) provided an estimation method of the

concordance correlation coefficient for time-to-event data. It is a correlation type of

measure and has the same issue as Kendall’s τ . Guo and Manatunga (2009) proposed

a modified weighted kappa coefficient to measure agreement between discrete bivari-

ate survival times, but it requires discretization of continuous outcomes. Amit et al.

(2011) also proposed two discrepancy rates defined as the simple proportion of subjects

whose PD time is strictly greater by a reader than the other. These rates are naïve

approaches by definition and do not fully utilize the temporal nature of time-to-event

data. Guo et al. (2013) proposed a new agreement measure, which is formulated as

the chance-corrected concordance between survival processes on the absolute distance

scale.
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Our research in this area is motivated by a small phase 2 head and neck cancer trial.

Progression-free survival (PFS), the time from ramdomization until disease progression

(PD) or death, is a key endpoint to support licensing approval. The PD is determined

by the investigator (local assessment), and also assessed by an independent review

committee (IRC) blinded to the study (central assessment). Among a random subset

of 92 subjects followed-up in the trial, the local assessment yields 82 local PFS events

while the central assessment gives 72 events and the number of agreed events is 35.

We propose a new method to assess temporal agreement between two time-to-event

endpoints, where the two event times are assumed to have a positive probability of

being identical. This method measures agreement in terms of the two event times

being identical at a given time or both being greater than a given time. Overall scores

of agreement over a period of time are also proposed.

1.5 Agreement Assessment in Bivariate Time-to-Event Times: Background

1.5.1 Bivariate Dependence Measures

Correlation coefficient

A traditional way of evaluating dependence in a bivariate distribution is by means

of the correlation coefficient (Pearson correlation), defined as

ρ(T1, T2) =
Cov(T1, T2)

[Var(T1)Var(T2)]1/2
.

The correlation is undefined when the variances in the denominator are 0 or infi-

nite. An alternative expression based on the bivariate survivor function, S(t1, t2) =

Pr(T1 > t1, T2 > t2) is Cov(T1, T2) =
´∞

0

´∞
0

[S(t1, t2) − S1(t1)S2(t2)] dt1dt2, where

S1(t1) = S(t1, 0) and S2(t2) = S(0, t2) are the marginal survival functions. Similarly,

in the denominator the variance can be expressed as Var(T1) = 2
´∞

0

´∞
0
tS1(t) dt −
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[´∞
0
S1(t) dt

]2
. The properties of the measure ρ(T1, T2) are that the range is [−1, 1],

with the values ±1 if and only if T1 and T2 depend linearly each other, i.e. T2 = a+bT1,

in which case ρ = 1 for b > 0 and −1 for b < 0. When T1 and T2 are independent,

then ρ = 0. In general, the reverse statement is not true. However, a value of 0 for ρ

implies that there is no linear correlation between the variables. More generally, note

that (Ti1 − T̄1)(Ti2 − T̄2) is positive if and only if Ti1 and Ti2 lie on the same side of

their respective means. Thus the correlation coefficient is positive if Ti1 and Ti2 tend

to be simultaneously greater than, or simultaneously less than, their respective means.

The correlation coefficient is negative if Ti1 and Ti2 tend to lie on opposite sides of

their respective means. The measure ρ is symmetric and invariant under linear trans-

formations, that is, ρ(T1, T2) = ρ(T2, T1) and ρ(T1, a + bT2) = ρ(T1, T2) for any a, b,

with b > 0. In addition, it is L2-continuous, in the sense that ρ(Tn,1, Tn,2)→ ρ(T2, T1),

if Tn,1
L2→ T1 and Tn,2

L2→ T2, as n → ∞. For normally distributed random variable,

the correlation coefficient is intimately related to the conditional distributions. The

conditional mean and variance are

E[T2|T1] = E[T2]− ρ{Var(T2)/Var(T1)}1/2{T − 1− E[T1]},

Var(T2|T1) = 1− ρ2Var(T2).

The correlation is very well suited for measuring the linear dependence in the bivariate

normal distribution.

The estimation of ρ with complete data is straightforward, just substitute the em-

pirical mean and variances into the defining equation, i.e.

ρ̂ =

∑n
i=1(Ti1 − T̄1)(Ti2 − T̄2)

{[
∑n

i=1(Ti1 − T̄1)2][
∑n

i=1(Ti2 − T̄2)2]}1/2
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The properties of this estimate are well known, when the distribution is bivariate nor-

mal, but it is not known too much for general distributions.

Kendall’s Coefficient of Concordance

Another popular dependence measure is Kendall’s coefficient concordance which is

defined as a rank-based correlation type measure. It was suggested first by Fechner in

1897 and later rediscovered by Kendall in 1938, who examined it more completely. It is

a simple measure of concordance, which does not require the assumption of normality.

For a set of n independent observed values (Ti1, Ti2), i = 1, . . . , n, of a bivariate variable

(T1, T2), τ is defined as

τ = E{sign[(T11 − T21)(T12 − T22)]},

where sign(x) is the sign of x, −1 for x < 0, 0 for x = 0, and 1 for x > 0. A more

transparent formulation for continuous failure times is τ = 2p − 1, where p is the

probability that in two pairs the order of the first coordinates is the same as the order

of the second coordinates, i.e. p = Pr[(T11 − T21)(T12 − T22) > 0]. Kendall’s τ has the

same nice properties as the correlation coefficient and in addition τ is unchanged by

both linear and nonlinear monotonic transformations. If the agreement between the

two rankings is perfect (i.e. the two rankings are the same), then the coefficient τ has

value 1. If the disagreement between the two rankings is perfect (i.e. one ranking is the

reverse of the other), then the coefficient τ has value −1. If T1 and T2 are independent,

then τ = 0.

Alternatively, τ can be evaluated by integration of the bivariate survivor function,

τ = 4

¨
f(t1, t2)S(t1, t2) dt1dt2 − 1
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For bivariate normal distribution, τ = 2 sin−1(ρ)/π, where ρ is the correlation coeffi-

cient.

Kendall’s concordance coefficient can be estimated non-parametrically for complete

data, by considering each combination of two pairs, scoring each concordant pair as 1,

each discordant pair as −1, and each tie as 0. This is then normalized in a similar way

as a standard deviation. In the case of complete data, for each pair i and i′, let set

aii′ = sign(Ti1 − Ti′1) and bii′ = sign(Ti2 − Ti′2), i, i′ = 1, . . . , n. the sores for the first

coordinate and second coordinate, respectively. Then, the estimation formula is

τ̂ =
1

n(n− 1)

n∑
i,i′=1;i 6=i′

aii′bii′ ,

for data without ties, and

τ̂ =

n∑
i,i′=1;i 6=i′

aii′bii′

[(
n∑

i,i′=1;i 6=i′
a2
ii′)(

n∑
i,i′=1;i 6=i′

b2
ii′)]

1/2

.

for data with ties.

In the case of ties or censored data, the latter formula can be used with the scores aii′

and bii′ modified to account for censoring. A first suggestion is to use a score (a, b) of 0

in all cases, when the failure is not certain, due to censoring. This gives so-called simple

estimate. This will typically underestimate the dependence, and it does not account

for the fact that as censoring happens at different times, there is a higher probability

of early death for the subject censored first. In 1974, Brown et al. (1974), proposed the

use of a score based on the marginal Kaplan-Meier estimate. This is called adjusted
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estimate. The values for the a scores are

aij = δi1δi′1sign(Ti1 − Ti′1) + (1− δi1)δi′1{2[Ŝ1(Ti′1)/Ŝ1(Ti1)]I(Ti1<Ti′1) − 1}

+δi1(1− δi′1){1− 2[Ŝ1(Ti1)/Ŝ1(Ti′1)]I(Ti1>Ti′1)}

+(1− δi1)(1− δi′1){[Ŝ1(Ti′1)/Ŝ1(Ti1)]I(Ti1<Ti′1) − [Ŝ1(Ti1)/Ŝ1(Ti′1)]I(Ti1>Ti′1)}

The values for the b score are similar, just using the second coordinate for T and δ.

Spearman’s Correlation Coefficient

An alternative measure is Spearman’s correlation coefficient, denoted ρS, which was

suggested by Spearman in 1904. It is a nonparametric measure, which is independent

of marginal transformations and it is more like an ordinary correlation, in the sense

that it accounts for the values, and not just the order of the observations. It is defined

for arbitrary continuous marginal distributions by the formula

ρS = 12

ˆ 1

0

ˆ 1

0

S(S−1
1 (u), S−1

2 (v)) dudv − 3. (1.2)

When the marginals are uniform on [0, 1] the definition becomes

ρS = 12

ˆ 1

0

ˆ 1

0

S(S1(u), S2(v)) dudv − 3 = 12

ˆ 1

0

ˆ 1

0

uvf(u, v) dudv − 3,

which corresponds to the correlation coefficient. These expression are not simple to

integrate in most of the models, but they are simple to handle by numerical integration.

Equation (1.2) does not work for marginal distributions that are not continuous as the

inverse marginal survival function may be not well-defined. This is a particular issue

in survival data, where it is not certain that the event will happen, because there is a

mass point at infinity, and ρS cannot be evaluated.
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ρS assesses how well the relationship between two variables can be described using

a monotonic function. If there are no repeated data values, a perfect Spearman corre-

lation of +1 or âĹŠ1 occurs when each of the variables is a perfect monotone function

of the other. It can be be estimated for complete data, by considering the marginal

ranks, (Ri1, Ri2), as follows.

ρ̂S =

∑n
i=1[Ri1 − (n+ 1)/2][Ri2 − (n+ 1)/2]

n(n2 − 1)/12
= 1−

6
∑n

i=1 d
2
ij

n(n2 − 1)
,

where dij = Ri1 − Ri2, is the difference between ranks. Here, the two coordinates

T1 and T2 are ordered separately, that is, Ri1 is the rank of Ti1 among T11, . . . , Tn1,

and similarly for Ri2. In fact, this empirical formula was the original suggestion of

Spearman, in 1904. For the bivariate normal distribution, it can be calculated from the

correlation coefficient by ρS = 6 sin−1(ρ/2)/π. Spearman’s ρS can be approximated in

terms of the Kendall’s τ via ρS = 3τ/2, which is valid for most distributions.

Cross Ratio

In familial examples, researches tend to believe that genetic influences may exist only

in early ages. The global measures, such as Kendall’s tau, is not ideal for addressing the

concepts of early/late dependence. To address the question of local dependence, we need

measures which evaluate dependence at a single time point, such as the cross ratio. For

continuous (T1, T2), define the bivariate hazard function λ(t1, t2) = f(t1, t2)/S(t1, t2).

The cross ratio at (t1, t2) is defined as

θ(t1, t2) =
λ(T1 = t1|T2 = t2)

λ(T1 = t1|T2 > t2)
=

f(t1, t2)

∂s2S(t1, s2)|s2=t2

÷ ∂s1S(s1, t2)|s1=t1

S(t1, t2)

=
S(t1, t2)f(t1, t2)

∂s1S(s1, t2)|s1=t1∂s2S(t1, s2)|s2=t2
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The cross ratio θ(t1, t2) is interpreted as the ratio of one’s failure risk at time t1 if

his/her partner is known to have failed versus survived at time t2. The cross ratio

measures the degree of dependence between T1 and T2, where independence is implied

by θ(t1, t2) = 1. When two failure times are exchangeable, such as the failure times

from (identical) twins, the cross ratio is symmetric with respect to the two components;

that is, the cross ratio for (T1, T2) is the same as the cross ratio for (T2, T1)

1.5.2 Copula Model for Bivariate Failure Times

One of the earliest family of distributions for correlated bivariate measurements is

the Copula family, in which the marginal distributions are uniform on the unit inter-

val. The Copula family includes many popular bivariate failure time models and has

gained considerable attention in statistical literature because of its flexibility in build-

ing stochastic models. A copula is used as a general way of formulating a multivariate

distribution in such a way that various general types of dependence can be represented.

The approach to formulating a multivariate distribution using a copula is based on the

idea that a simple transformation can be made of each marginal variable in such a

way that each transformed marginal variable has a uniform distribution. Once this is

done, the dependence structure can be expressed as a multivariate distribution on the

obtained uniforms, and a copula is precisely a multivariate distribution on marginally

uniform random variables.

Suppose that C(u1, u2) is a joint cumulative distribution function with density

c(u1, u2) on [0, 1] × [0, 1], that is, C : [0, 1][0, 1][0, 1], and C(0, u2) = C(u1, 0) = 0,

C(u, 1) = C(1, u) = u. Let (T1, T2) denote the paired failure times, (S1, S2) and (f1, f2)

denote the corresponding marginal survival and density functions. Then the joint sur-

vival function of (T1, T2) in the Copula family is given by S(t1, t2) = C(S1(t1), S2(t2))

and its density by f(t1, t2) = c(S1(t1), S2(t2))f1(t1)f2(t2). The copula C contains all
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information on the dependence structure between T1 and T2, whereas the marginal

survival functions Si(ti) contain all information on marginal distributions.

Archimedian Copula model.

The survival function in this subclass has the following form

S(t1, t2) = φ[φ−1(S1(t1)) + φ1(S2(t2))],

where 0 ≤ φ ≤ 1, φ(0) = 1, φ′ < 0, phi > 0 (a convex decreasing function). If φ is a

Laplace transform of some distribution (ofW ), φ(t) = E(etW ), the Archimedian copula

model reduces to the proportional frailty model.

Gaussian Copula Model.

For a given correlation matrix Σ ∈ R2×2, the Gaussian copula with parameter

matrix Σ can be written as

C(u1, u2) = Φ−1
Σ (Φ−1(u1),Φ−1(u2)),

where Φ−1 is the inverse cumulative distribution function of the univariate standard

normal distribution and ΦΣ is the joint cumulative function of bivariate normal distri-

bution with mean zero and covariance matrix equal to the correlation matrix Σ.

The Copula models can be formulated by the marginal distributions and Copula.

This two-step approach of modeling is convenient because many tractable models are

readily available for the marginal distributions. Also, the Copula models make sense

for illustrating dependence. Other Copula models include Clayton’s Family, Frank’s

Family, Positive stable copula, etc. (Clayton, 1978; Hougaard, 1986; Frank,1979).
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1.5.3 Frailty Models for Multivariate Failure Times

A commonly used approach to model multivariate failure times, the frailty model, is

to specify independence among multivariate failure times conditional on an unobserved

positive-valued variable,W , called frailty. Assume that the hazard function of Tij given

Wi = w (frailty) is λj(tj|Wi = w) = wλ0j(tj), which is a proportional frailty model with

the baseline hazard function λ0j(). Let Bj(·) be the corresponding survival function for

λ0j(·).

Univariate Inference

The survival function of Tij given by Wi = w is S(tj|Wi = w) = Bj(tj)
w and the

multivariate survival function of (Ti1, . . . , Tim) givenWi = w by S(t1, . . . , tm|Wi = w) =∏m
j=1Bj(tj)

w. Thus, the unconditional survival function of Tij is Sj(tj) = φ( logBj(tj)),

where φ(·) is the Laplace transform of the random variable Wi, i.e., φ(t) = E(etWi).

By extending the proportional hazards model, a more general setting of the pro-

portional frailty model can be expressed as λj(tj;xij, wi) = wiλ0j(tj) exp(βxij), for

j = 1, . . . ,m.

Bivariate Inference

The bivariate survival function satisfies S(t1, t2) =
´

[B1(t1)B2(t2)]wdFW (w) where

FW denotes the the frailty cumulative distribution function of W . It follows that

S(t1, t2) = φ( logB1(t1) logB2(t2)), where φ(·) is the Laplace transform of the random

variable W .

Bivariate distributions generated by frailty models are seen to be a subclass of the

Archimedean distributions (Genest and MacKey, 1989, American Statistician). With

Bj(tj) = exp[φ1(Sj(tj)] and φ(·) a Laplace transform, the bivariate distribution can be
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written as

S(t1, t2) =

ˆ 2∏
i=1

exp[wφ1(Sj(tj))]dFW (w) = φ[φ−1(S1(t1) + φ−1(S2(t2))].

Gamma frailty models (Clayton model). Assume that the frailtyW follows a Gamma

distribution with mean 1 and variance α > 0. The corresponding Laplace transform

is φ(u) = (1 + u)1 . The failure times (T1, T2) are positively correlated when α > 0

and independent when α = 0. The joint survival function can be written as S(t1, t2) =

[S1(t1)α + S2(t2)α1]1/α.

Stable frailty models. Hougaard (1986) proposed a class of multivariate model,

where the frailty W follows the positive stable distribution with parameter α so that

the Laplace transform is φ(u) = exp(ua), 0 < a < 1. The corresponding joint survival

function is S(t1, t2) = exp([( logS1(t1))1/a + ( logS2(t2))1/a]a). A notable property of

the stable frailty model is that if the conditional hazards are proportional, then the

hazard in the marginal distributions are also proportional, but with different baseline

hazards and regression coefficients.

1.5.4 Agreement Measures for Time-to-Event Times

For time-to-event data, rater concordance has been calculated with two separate

analyses. Cohen’s kappa (Cohen 1960) was first calculated for ratings of event occur-

rence. Then, among subjects where raters agreed that the event occurred, the intraclass

correlation coefficient (ICC) (Lord and Novick 1968) was estimated for the observed

times to an event. This method does not properly evaluate concordance when data are

censored because the ICC estimate is biased upward when only using the time data for

consistently reported events. In addition, because it is less likely for a rater to observe

event occurrence in a short follow-up than in a longer follow-up, between-subject varia-

tion in length of follow up may impact on the kappa estimate for agreement in reported
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event occurrence. Finally, when reported rates are very large or small, kappa could

be low due to the well-known impact of extreme marginal probabilities on agreement

measures, see Feinstein and Cicchetti (1990).

Cohen (1960) introduced the kappa coefficient of agreement as simply the propor-

tion of chance-expected disagreements which do not occur, or alternatively, it is the

proportion agreement after chance agreement is removed from consideration:

κ =
po − pc
1− pc

,

where po is the probability of observed agreement among raters and pc is the hypo-

thetical probability of chance agreement. Or, equivalently, in terms of frequencies,

κ = fo−fc
1−fc . If the raters are in complete agreement then κ = 1. if there is no agreement

among the rates other than what would be expected by chance, then κ = 0. Later,

in (Cohen 1968), he further developed κ to a weighted kappa. This was motivated by

studies in which it is the sense of the investigator that some disagreements in assign-

ments by two raters, are of greater gravity than others. Cohen’s kappa and weighted

kappa are the most commonly used measures of the concordance of qualitative and

ordinal ratings between two rates, adjusting for chance of agreements. For extensions

and generalization of kappa we refer to Kraemer et al. (2002) and J. M. Williamson

et al. (2000).

In 1989, Lin first proposed the concordance correlation coefficient (CCC) to evaluate

reliability of quantitative ratings between two raters (see Lin (1989)), and then in 2000

he generalized it to measure overall agreement among multiple raters (see Lin (2000)).

Later, Barnhart et al. (2002) defined the concordance correlation coefficient as follows.

Let random variable Tj be the rating from the j-th rater with mean µj and variance σ2
j ,

j = 1, . . . ,m, and σjk = ρjkσjσk be the covariance of the ratings Tj and Tk for j 6= k.
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Then CCC is defined as

CCC(m) =

∑m
j=1

∑m
k=1,k 6=j σij

(m− 1)
∑m

j=1 σ
2
j +m

∑m
j=1(µj − µ̄)2

equivalent to Lin’s generalized CCC. Its possible values are ranging between −1/(m−

1) and 1. For the bivariate case, m = 2, CCC(2) = 2σ12
σ2
1+σ2

2+(µ1−µ2)2
and the values

are ranging between −1 and 1. When dealing with with data subject to censoring,

the likelihood-based approach to estimate CCC is attractive for the advantages that

censoring can be easily accommodated and the estimates have good properties. As

a function of the first two moments of rating measures, the CCC can be estimated

for censored data, using likelihood-based estimation method under the assumptions of

random censoring and parametric distribution models for the ratings of time to event,

see Liu et al. (2005).

Guo et al. (2013) proposes a framework for assessing agreement based on survival

processes that can be viewed as a natural representation of time-to-event outcomes.

Their agreement measure is formulated as the chance-corrected concordance between

survival processes. The key idea is to represent survival outcomes through survival

processes as, Uj(t) = I(Tj ≥ t), j = 1, 2, where T1 and T2 are the survival times of the

same subject based on different methods and I is the indicator function. The agreement

measure is based on the concordance between the survival processes over a finite range

of [0, a], and it is defined by

ρsp(a) = 1−
E
{´ a

0
[U1(t)− U2(t)]2 dt

}
E
{´ a

0
[U1(t)− U2(t)]2 dt |U1, U2 independent

} .
The measure ρsp(a) is well defined with nonzero denominator as long as Sj(a) < 1

for j = 1 or 2, where Sj(·) is the marginal survival function of Tj. It provides a

novel perspective for studying the relationship between correlated survival outcomes
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and offers an appealing interpretation as the agreement between survival times on the

absolute distance scale. The upper bound of ρsp(a) is 1 which is achieved when there

is perfect agreement between the two survival processes within the specified range,

i.e. Pr(U1(t) = U2(t)) = 1 for all t ∈ [0, a]. When the two survival processes are

statistically independent, ρsp(a) is 0 representing no agreement beyond that expected

by chance. When the discrepancy between the two survival processes is even larger

than what is expected by chance, ρsp(a) is negative. The lower bound of ρsp(a) is

achieved under the following conditions: (i) S(t, t)F (t, t) = 0 for all t ∈ [0, a]; and

(ii) S1(t) = S2(t) or all t ∈ [0, a]. Under these conditions, ρsp(a) reaches its lower

bound which is a function of the common marginal survival functions and the specified

range [0, a]. Nonparametric estimates of ρsp(a) are derived, and it is shown that the

estimators are strongly consistent and asymptotically normal.
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CHAPTER 2: REGRESSION MODELS ON RIEMANNIAN
SYMMETRIC SPACES

2.1 Introduction

Manifold-valued responses in curved spaces frequently arise in many disciplines in-

cluding medical imaging, computational biology, and computer vision, among many

others. For instance, in medical and molecular imaging, it is interesting to delineate

the changes in the shape and anatomy of a molecule. See Figure 2.1 for four differ-

ent examples of manifold-valued data. Regression analysis is a fundamental statistical

tool for relating a response variable to a set of covariates, such as age. In particular,

when both the response and the covariate are in Euclidean space, the classical linear

regression model and its variants have been widely used in various fields (McCullagh

and A.Nelder 1989, Fahrmeir and Tutz 2001). However, when the response is in RSS

and the covariate is in Euclidean space, developing regression models for this type of

data raises both computational and theoretical challenges. The aim of our research is

to develop a general regression framework to address these challenges.

Certain types of manifolds are encountered more frequently in practice. As an

illustration, we discuss three of them and their applications as follows.

1. Unit Sphere and Quotient Spaces of Spheres: Directional data on the unit

sphere in Rk, denoted by Sk−1 = {x ∈ Rk : ||x|| = 1}, are routinely encountered

in a wide variety of disciplines, where || · || denotes the L2 norm. For example, 3-

dimensional directions arise in analyzing the directions of moving objects (Mardia

and Jupp 2000, Healy and Kim 1996, Kim 1998). In the landmark-based shape

analysis of objects, 2-dimensional (2D) objects are represented by configurations
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of salient points and after removing the translation and scale, the space of all

such configurations with k landmarks is S2k−3 (Dryden and Mardia 1998). In

some problems, the spaces of interest are quotient spaces of spheres rather than

the spheres themselves. For example, in the shape analysis of k landmarks, after

removing the rotation variability, the space of all 2D-configurations becomes the

complex projective space CP k−2 = S2k−3/S1 (Kendall 1984a, Kendall et al. 1999,

Dryden and Mardia 1998, Huckemann et al. 2010).

2. Matrix Lie Groups: The transformation group, denoted by GL(k), is the set

of k × k invertible matrices, and its subgroups are important in many situations

involving the actions of these groups on objects in Euclidean space. For example,

a transformation of the type x → Ax + b with b ∈ Rk (i) is called an affine

transformation when A ∈ GL(k), (ii) is called a volume-preserving transformation

when A ∈ SL(k) = {A : det(A) = 1}, and (iii) is called a similarity transformation

when A ∈ SO(k) = {A : ATA = AAT = Ik}, in which Ik is a k×k identity matrix.

In the problem of tracking and recognizing objects in video data, their poses to

the camera are important. The pose of a rigid object is conveniently represented

as an element of SO(2) (or SO(3)) for planar objects (3-dimensional (3D) objects)

(Grenander et al. 1998, Moakher 2002).

3. Quotient Spaces of Matrix Lie Groups (RSS): Any RSS can be regarded as

a quotient space of Lie groups. The most prominent examples in this category are

the Grassmann and Stiefel manifolds that are used in orthogonal transformations.

The Sk can be viewed as a quotient space of SO(k + 1). In many applications,

the statistical analysis of symmetric positive-definite matrices is essential. The

manifold of k× k symmetric positive definite matrices Sym+(k) can be viewed as

a quotient space of GL(k), namely it can be identified with GL(k)/O(k), where

O(k) is the matrix group of orthogonal transformations of Rk. The Sym+(k)
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manifold, which can also be regarded as a Lie group, occurs in a wide variety of

important applications including diffusion tensor imaging, functional and struc-

tural connectivity, and computational anatomy, among others (Fletcher and Joshi

2007, Zhu et al. 2009a, Grenander and Miller 1998, Dryden et al. 2009).

(a) (b) (c) (d) 

Figure 2.1: Examples of manifold-valued data: (a) diffusion tensors along white mat-
ter fiber bundles and their ellipsoid representations; (b) principal direction map of a
selected slice and their directional representations on S2(1); (c) median representations
and median atoms; and (d) automatic corpus callosum segmentation and its contour
and landmarks of a selected subject.

Little has been done on the regression analyses of manifold-valued data. The ex-

isting statistical methods for general manifold-valued data are primarily developed to

characterize the population ‘mean’ and ‘variation’ across groups (Bhattacharya and

Patrangenaru 2003; 2005, Fletcher et al. 2004b, Dryden and Mardia 1998, Huckemann

et al. 2010, Younes 2010, Osborne et al. 2013). In contrast, even for the ‘simplest’
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directional data, there is a sparse literature on regression modeling of a single direc-

tional response and a set of covariates (Mardia and Jupp 2000, Jupp and Mardia 1989).

In addition, these regression models of directional data are primarily based on a spe-

cific parametric distribution, such as the von Mises-Fisher distribution (Mardia 1975,

Mardia and Jupp 2000, Kent 1982, Presnell et al. 1998). However, it can be very chal-

lenging to assume useful parametric distributions for general manifold-valued data, and

thus it is difficult to generalize these regression models of directional data to general

manifold-valued data. Recently, Zhu and his coauthors have proposed semiparametric

intrinsic regression models for manifold-valued response data lying in Sym+(k) and S2

(Shi et al. 2012; 2009, Zhu et al. 2009a).

In case the covariate is scalar and continuous (e.g. time), the problem is similar to

the that of fitting smooth trajectories to time-indexed point on a manifold. There is

a quite large amount of work in applied mathematics community on fitting splines to

observed points on a Riemannian manifold (Samir et al. 2012, Su et al. 2012, Muralid-

haran and Fletcher 2012, Machado and Leite 2006, Machado et al. 2010). Recently,

Samir et. al. developed an optimization framework for searching for smoothing splines

on manifolds based on a metric-based steepest-descend gradient algorithm. Su and his

coauthors apply Samir’s methods to some general manifolds relevant to problems in

computer vision, like SO(3), 3 × 3 SPDs space, and Kendall’s landmark-based shape

space (Su et al. 2012). In contrast, there is little work done in the case of multidimen-

sional covariates.

While aside of the situation considered here, but still related, we note there is some

literature on regression where both the responses and covariates lie on a manifold,

mainly for for the case of 3D-spherical data (Chang 1986; 1989, Downs 2003, Rosenthal

et al. 2014).
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An intriguing question is whether there is a general regression framework for manifold-

valued response in a RSS and covariates in a multidimensional Euclidean space. The

aim of this research work is to give an affirmative answer to such a question. The

theoretical development is challenging but of great interest for carrying out statistical

inferences on regression coefficients. We make five major contributions.

• We propose an intrinsic regression model solely based on an intrinsic conditional

moment for the response in a RSS, thus avoiding specifying any parametric distri-

butions in a general RSS. The model handles more than one Euclidean covariate.

• We develop a procedure for estimating the regression coefficients in this intrinsic

model.

• We develop several test statistics for testing linear hypotheses of the regression

coefficients.

• We develop a general asymptotic framework for the estimates of the regression

coefficients and test statistics.

• We systematically investigate the geometrical properties (e.g., chart invariance)

of these parameter estimates and test statistics.

The presentation of this work is organized as follows. In Section 2.2, we review

the basic notion and concepts of Riemannian geometry. In Section 2.3, we propose the

intrinsic regression models and develop estimation and inference procedures. In Section

2.4, we examine several specific RSS’s and propose various link functions to map from

the Euclidean space of covariates to the RSS of responses. In Section 2.5, we examine

a set of simulation studies with the known ground truth to examine the finite sample

performance of the test statistics. In Section 2.6, we introduced the ADNI dataset and

apply the estimation and inference procedures to investigate the association between
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the shape of Corpus Callosum (CC) contours and covariates including gender, age,

and diagnosis, in a Alzheimer’s disease study from the ADNI data. a attention deficit

hyperactivity disorder study. Finally, we conclude with a discussion in Section 2.7.

Technical conditions and proofs are deferred to the Appendix.

2.2 Differential Geometry - An Introduction

We briefly review some basic facts about the theory of Riemannian geometry and

present more technical details in the Appendix. The reader can refer to (Spivak 1979,

Lang 1999, Boothby 1986, do Carmo 1992, Pennec 2006) for more details.

A Riemannian manifold (M,m) is a smooth manifold M ⊂ RdM together with

an inner product m, where dM is the dimension ofM. We first introduce the tangent

vector and tangent space at p ∈M. For a small scalar δ > 0, let γ(t) be a differentiable

map from (−δ, δ) toM passing through γ(0) = p. A tangent vector at p is defined as

the derivative of the smooth curve γ(t) with respect to t evaluated at t = 0. The set

of all tangent vectors at p forms the tangent space ofM at p, denoted as TpM. The

TpM is equipped with an inner product mp, called a Riemannian metric, which varies

smoothly from point to point. IfM is complete, the exponential map at p is defined on

the tangent space TpM by ExpMp (V ) = γ(1; p, V ), where γ(1; p, V ) is the geodesic with

γ(0; p, V ) = p and γ′(0; p, V ) = V . An open subset U ofM containing p is a normal

chart near p if ExpMp is a diffeomorphism on an open neighborhood V of the origin in

TpM onto U with V such that tV ∈ V for 0 ≤ t ≤ 1 and V ∈ V . The inverse map is the

logarithmic map at p, denoted by LogMp . Then, for q ∈ U , distM(p, q) = ‖LogMp (q)‖p.

The radius of injectivity ofM at p, denoted by ρ∗(M, p), is the largest r > 0 such that

ExpMp is a diffeomorphism on the open ball B(0, r) ⊂ TpM onto an open set inM near

p. Any basis in the tangent space TpM induces an isomorphism from TpM to RdM ,
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and then the logarithmic map Logp provides a local chart near p. If TpM is endowed

with an orthonormal basis, such a chart is called a normal chart and the coordinates

are called normal coordinates.

A Lie group G is a group together with a smooth manifold structure such that

the operations of multiplication (a, b) 7→ ab and inversion a 7→ a−1 are smooth maps.

Throughout this work, we only consider finite dimensional Lie groups. The exponential

map of G at its identity element, denoted by e, is defined as ExpG(v) = γG(1;v) for any

v ∈ TeG, where γG(·;v) : R → G is the unique one-parameter subgroup of G whose

tangent vector at e is equal to v. For a ∈ G, the exponential map of G at a is defined

by ExpGa ◦ La∗ = La ◦ ExpGe , where La is the left multiplication by a and La∗ is its

tangent map. Many common geometric transformations of Euclidean spaces including

rotations, translations, dilations, and affine transformations on Rd form Lie groups. In

general, Lie groups can be used to describe transformations of smooth manifolds.

A RSS is a connected Riemannian manifoldM with the property that at each point,

the mapping that reverses geodesics through that point is an isometry. Examples of

RSS’s include Euclidean spaces, Rk, spheres, Sk, projective spaces, PRk, and hyperbolic

spaces, Hk, each with their standard Riemannian metrics. Symmetric spaces arise

naturally from Lie group actions on manifolds. Given a smooth manifold M and a

Lie group G, a smooth group action of G on M is a smooth mapping G ×M →M,

(a, p) 7→ a · p such that e · p = p and (aa′) · p = a · (a′ · p) for all a, a′ ∈ G and all

p ∈ M. The group action should be interpreted as a group of transformations of the

manifoldM, namely, {La}a∈G such that La : M→M, La(p) = a · p for p ∈ M and

a ∈ G. The La is a smooth transformation on M and its inverse is denoted by La−1 .

Given p ∈M, let ιp denote the action of G on the point p ∈M such that ιp : G→M,

ιp(a) = a · p = La(p) for all a ∈ G. Thus, ιp is a smooth map from G into M. The

orbit of a point p ∈M is defined as G(p) = {a · p | a ∈ G}. The orbits form a partition
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ofM. Specifically, two points p, p′ ∈ M are equivalent if there exists a ∈ G such that

a · p = p′. If M consists of a single orbit, the group action is transitive or G acts

transitively onM, and we callM as a homogeneous space. The isotropy subgroup of

a point p ∈M is defined as Gp = {a ∈ G | a · p = p}.

When a Lie groupG acts smoothly on a smooth manifoldM, for any p ∈M, there is

a natural bijection from the orbit G(p) onto the quotient manifold given by the smooth

mapping a ·p 7→ aGp such that G(p) ∼= G/Gp, where ∼= denotes the bijection. Let G be

a connected group of isometries of the RSSM such that distM(p, p′) = distM(a·p, a·p′),

for all p, p′ ∈ M and all a ∈ G. For any p ∈ M, the RSSM can always be viewed as

a homogeneous space,M∼= G/Gp, and the isotropy subgroup Gp is compact.

From now on, we will assume that the manifoldM is a RSS andM = G/Gp with G

being a Lie group of isometries acting transitively onM. Geodesics onM are computed

through the action of G onM. Due to the transitive action of the group G of isometries

on M, it suffices to consider only the geodesic starting at the base point p. For any

point y ∈M, geodesics starting from y are of the form a · γ(·), where γ(·) is a geodesic

starting from p, γ(0) = p and y = a · p for some a ∈ G. Due to the local uniqueness

of geodesics, if y = a′ · p for some other a′ ∈ G, then a · γ(·) = a′ · γ(·). Geodesics on

M starting from p are the images of the action of a 1-parameter subgroup of G acting

on the base point p. In other words, for any geodesic γ onM, γ(·) : R→M, starting

from p, there exists a 1-parameter subgroup c(·) : R → G such that γ(t) = c(t) · p for

all t ∈ R.

2.3 Intrinsic Regression Model

Let (M,m) be a (C∞) RSS of dimension dM and geodesically complete with an inner

product mp and let G be a Lie group of isometries acting smoothly and transitively on

M with the identity element e. Let p ∈ M be a base point ofM and ρ = ρ∗M be the
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radius of injectivity ofM.

2.3.1 Formulation

Consider n independent observations (y1,x1), . . . , (yn,xn), where yi is theM-valued

response variable and xi is a dx×1 vector of covariates. Our objective is to introduce an

intrinsic regression model for RSS responses and covariates of interest from n subjects.

The specification of the intrinsic regression model involves three key steps including

(i) a link function mapping from the space of covariates toM, (ii) the definition of a

residual, and (iii) the action of transporting all residuals to a common space. First, we

explicitly formalize the link function. From now on, all covariates have been centered

to have mean zero. We consider a single-center link function given by

µ(x, q,β) : Rdx ×M×Rdβ →M, (2.1)

where µ(xi, q,β) is a known link function, q ∈ M can be regarded as the intercept or

center, and β = (β1, . . . , βdβ)′ is a dβ × 1 vector of regression coefficients. Moreover, it

is assumed that µ(x, q,β) satisfies a single-center property as follows:

µ(0, q,β) = µ(x, q,0) = q. (2.2)

When the regression coefficient vector β equals 0, the link function is independent of

the covariates and thus, it reduces to the single center (or ’mean’) q ∈ M. When

all the covariates are equal to zero, the link function is independent of the regression

coefficients and reduces to the center q ∈M.

More generally, we may consider a multicenter link function to account for the pres-

ence of discrete covariates, such as gender and diagnostic group. Let xi = (xi,C ,xi,D),

where xi,D and xi,C are, respectively, a dx,D× 1 vector of all the discrete covariates and
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a dx,C × 1 vector of all the continuous covariates and their potential interactions with

xi,D. We may introduce a center for each covariate class based on xi,D (McCullagh and

A.Nelder 1989). In this case, we may define the multicenter link function as follows:

µ(x, q(xD),β) : Rdx ×MdD ×Rdβ →M, (2.3)

where dD is an integer associated with the number of covariate classes and β is primarily

associated with continuous covariates. Moreover, it is assumed that µ(x, q,β) satisfies

a multicenter property as follows:

µ((0,xD), q(xD),β) = µ(x, q(xD),0) = q(xD). (2.4)

When the regression coefficients vector β equals 0, the link function is independent of

continuous covariates and reduces to q(xD) inM. When all continuous covariates are

equal to zero, the link function is independent of the regression coefficients and reduces

to the center q(xD) in M. For notational simplicity, we focus on (2.1) from now on

and as the extension to (2.3) is trivial.

Secondly, we introduce a definition of “residual” to ensure that µ(xi, q,β) is the

proper “conditional mean” of yi given xi, which is the key concept of many regression

models (McCullagh and A.Nelder 1989, Fahrmeir and Tutz 2001). For instance, in

the classical linear regression model, the response can be written as the sum of the

regression function and a residual term and the regression function is the conditional

mean of the response only when the conditional mean of the residual is equal to zero.

Given the points yi and µ(xi, q,β) on the RSS M, we need to define the residual as

“a difference” between yi and µ(xi, q,β). Assume that yi and µ(xi, q,β) are “close

enough” to each other in the sense that there is an open ball B(0, ρ) ⊂ Tµ(xi,q,β)M
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such that for all i = 1, . . . , n,

yi ∈ Expµ(xi,q,β) (B(0, ρ)) or Logµ(xi,q,β)(yi) ⊂ B(0, ρ).

Thus, Logµ(xi,q,β)(yi) may make it a good candidate to play the role of a ‘residual’.

These residuals, however, lie on different tangent spaces toM, so it is difficult to carry

out a multivariate analysis of these residuals.

Thirdly, sinceM is a RSS, this enables us to “transport” all the residuals, separately,

to a common space, say TpM, by exploiting that the parallel transport along the

geodesics can be expressed in terms of the action of G on M. Indeed, since M is

a symmetric space, the base point p and the point µ(xi, q,β) can be joined in M

by a geodesic, denoted by γi(t; q,β) = γ(t;xi, q,β), satisfying γi(0; q,β) = p and

γi(1; q,β) = µ(xi, q,β). Moreover, γ can be seen as the action of a one-parameter

subgroup of G and γi(t; q,β) = ci(t; q,β) · p for t ∈ R, where ci(t; q,β) = c(t;xi, q,β) :

R→ G. Thus, since L−1
a∗ = La−1∗ on TM for a ∈ G, we have

L−1
c(1;xi,q,β)∗(Logµ(xi,q,β)(yi)) = Lc(1;xi,q,β)−1∗(Logµ(xi,q,β)(yi))

= Logp

(
Lc(1;xi,q,β)−1(yi)

)
= Logp

(
c(1;xi, q,β)−1 · yi

)
∈ TpM.

We define the rotated residual E(yi,xi; q,β) of yi ∈ M with respect to µ(xi, q,β)

as the parallel transport of the actual residual, Logµ(xi,q,β)(yi), along the geodesic from

the conditional mean, µ(xi, q,β), to the base point p. That is,

E(yi,xi; q,β) = Ei(q,β) := Logp

(
c(1;xi, q,β)−1 · yi

)
∈ TpM (2.5)

for i = 1, . . . , n, where TpM is identified with RdM . The intrinsic regression model on
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M is defined by

E[E(yi,xi; q∗,β∗)|xi] = 0, (2.6)

where (q∗,β∗) denotes the true value of (q,β) and the expectation is taken with

respect to the conditional distribution of yi given xi. Model (2.6) is equivalent to

E[Logµ(xi,q∗,β∗)(yi)|xi] = 0 for i = 1, . . . , n, since Lc(1;xi,q∗,β∗)−1∗ is an isomorphism of

linear spaces (invariant under the metric m) between the fibers of TM. This model

does not assume any parametric distribution for yi given xi, and thus it allows for a

large class of distributions. The model is essentially semi-parametric, since we do not

restrict the joint distribution of (y,x) except by the conditional moment restriction in

(2.6).

2.3.2 Generalized Method of Moment Estimators

We consider the generalized method of moment estimator (GMM estimator) to

estimate the unknown parameters in model (2.6) (Hansen 1982, Newey 1993, Korsholm

1999). By identifying TpM with RdM , we may assume that E is a function with values

in RdM . Let h(x; q,β) be a s × dM matrix of functions of (x, q,β) with s ≥ dM + dβ

andWn be a random sequence of positive definite s×s weight matrices. It follows from

(2.6) that

E{h(xi; q∗,β∗)E[E(yi,xi; q∗,β∗)|xi]} = 0. (2.7)

We define Qn(q,β) to be

[Pn(h(x; q,β)E(y,x; q,β))]>Wn [Pn(h(x; q,β)E(y,x; q,β))] ,
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where Pnf(y,x) = n−1
∑n

i=1 f(yi,xi) for a real-vector valued function f(y,x). The

GMM estimator (q̂GMM, β̂GMM), or simply (q̂, β̂), of (q,β) associated with (h(·, ·, ·),Wn)

is defined as

(q̂GMM, β̂GMM) = argmin
(q,β)∈M×Rdβ

Qn(q,β). (2.8)

Under some conditions detailed below, we can show the first order asymptotic

properties of (q̂GMM, β̂GMM) including consistency and asymptotic normality of GMM-

estimators. We introduce some notation. Let || · || denote the Euclidean norm of a

vector or a matrix; ∂lf(t,β)/{∂(t,β)l} = ∂l(t,β)f(t,β) for l = 1, . . . ; v⊗2 = vvT for

any vector v; V = Var[h(x; q∗,β∗)E(y,x; q∗,β∗)]; Id is a d × d identity matrix; and
d→ and p→, respectively, denote convergence in distribution and in probability. We ob-

tain the following theorems, whose detailed proofs can be found in the supplementary

document.

Theorem 2.3.1. Assume that (yi,xi), i = 1, . . . , n, are iid random variables in M×

Rdx. Let (q∗,β∗) be the exact value of the parameters satisfying (2.6). Let {Wn}n be a

random sequence of s× s symmetric positive semi-definite matrices, with s ≥ dM+ dβ.

(a) Assume

(C1) Wn
p→ W , as n→∞, where W is a positive semi-definite matrix;

(C2) W E[h(x; q,β)E(y,x; q,β)] = 0 only for (q,β) = (q∗,β∗);

(C3) (q∗,β∗) ∈ Θo, where Θ = K ×B is compact inM×Rdβ ;

(C4) the family of measurable functions {(y,x) 7→ h(x; q,β)E(y,x; q,β) : (q,β) ∈

Θ} forms a Glivenko-Cantelli class;

(C5) inf
(q,β)∈Θ:distM(q,q∗)+‖β−β∗‖≥ε ‖W E[h(x; q,β)E(y,x, q;β)]‖ > 0, for every

ε > 0.
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Then, (q̂, β̂) in (2.8) is consistent in probability, as n→∞.

(b) In addition to the assumptions (C1)-(C4), assume that in some neighborhood of

(q∗,β∗), denoted by N∗(δ), we have

(C6) h(x; q,β) and E(y,x; q,β) are continuously twice differentiable with proba-

bility one;

(C7) 0 < E[‖h(x; q,β)E(y,x; q,β)‖2] <∞ and W is positive definite;

(C8) E[sup(q,β)∈N∗(δ) ‖∇(q,β)[hj(x; q,β)E(y,x; q,β)]‖] < ∞, where hj(x; q,β) is

the j-th row of matrix h(x; q,β), j = 1, . . . , s;

(C9) for a chart (U, φ) near q∗ (and, thus for any chart near q∗),

Gφ = Gφ,h = E
[
h(x; q∗,β∗)∂(t,β)E(y,x;φ−1(t),β∗)

∣∣
t=φ(q∗)

]

is a s× (dM + dβ) matrix with full column rank;

(C10) E
[∥∥∥∂2

(t,β) [hj`(x;φ−1(t),β∗)E`(y,x;φ−1(t),β∗)]
∣∣
t=φ(q∗)

∥∥∥] <∞ for j = 1, . . . , s

and ` = 1, . . . , dM.

Then, for any local chart (U, φ) onM near q∗, as n→∞, we have

√
n [(φ(q̂)>, β̂>)> − (φ(q∗)

>,β>∗ )>]
d→ NdM+dβ(0,Σφ), (2.9)

where Σφ = (G>φWGφ)−1G>φWVWGφ(G>φWGφ)−1.Moreover, for any other chart (U, φ′)

near q∗, we have

Σφ′ = diag(J(φ′ ◦ φ−1)φ(q∗), Idβ)Σφdiag(J(φ′ ◦ φ−1)φ(q∗), Idβ)>, (2.10)

where J(·)t denotes the Jacobian matrix evaluated at t.
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Remark 1: Assumptions (C1)-(C10) are generalizations of standard conditions for

ensuring first order asymptotic properties of M-estimators (van der Vaart 1998). Some

conditions can be weakened with some intricate arguments. For instance, the unique-

ness condition (C2) can be relaxed, since the solution set of the equation

W E[h(x; q,β)E(y,x, q;β)] = 0

may have multiple elements. It can be shown that the distance between (q̂, β̂) and the

solution set converges to zero in probability. However, if different true values (q∗,β∗) are

isolated points, we can establish the same asymptotic properties of (q̂, β̂) as Theorem

2.3.1 for (q∗,β∗), which are close to (q̂, β̂).

Remark 2: When Θ is compact and the functions h(x; q,β)E(y,x; q∗,β∗) are con-

tinuous for every (y,x), the following condition

E[sup
(q,β)

‖h(x; q,β)E(y,x; q,β)‖] <∞

together with (C2) implies both (C4) and (C5). Also note that if the conditional mean

link function f(x, q,β) is continuous in (q,β) ∈M ×Rdβ uniformly with respect to x,

then c(1,x, q,β) ∈ G is continuous in (q,β) uniformly with respect to x, which yield

that the functions (q,β)→ E(y,x; q,β) are uniformly continuous with respect to x. If,

in addition, µ(x, q,β) and h(x; q,β) are twice continuously differentiable in (q,β) in

some neighborhood of (q∗,β∗) with probability one, then (C6) holds.

Theorem 2.3.1 establishes the first-order asymptotic properties of (q̂GMM, β̂GMM)

for the intrinsic regression model (2.6). Theorem 2.3.1 (a) establishes the consistency

of (q̂, β̂). The consistency result does not depend on the local chart. Theorem 2.3.1

(b) establishes the asymptotic normality of (φ(q̂), β̂) for a specific chart (U, φ) and the

relationship between the asymptotic covariances Σφ′ and Σφ for two different charts. It
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follows from the lower-right dβ × dβ submatrix of Σφ′ that the asymptotic covariance

matrix of β̂ does not depend on the chart. However, the asymptotic normality of q̂

does depend on a specific chart. A consistent estimator of the asymptotic covariance

matrix Σφ is given by

(Ĝ>φWnĜφ)−1Ĝ>φWnV̂ WnĜφ(Ĝ>φWnĜφ)−1,

with Ĝφ = n−1
∑n

i=1[h(xi; q̂, β̂) ∂
∂(t,β)

E(yi,xi;φ
−1(t), β̂)

∣∣
t=φ(q̂)

] and

V̂ = n−1

n∑
i=1

[h(xi; q̂, β̂)E(yi,xi; q̂, β̂)]⊗2,

where a⊗2 = aaT for any matrix or vector a. This estimator is also compatible with

the manifold structure ofM.

We consider the relationship between the GMM estimator and an intrinsic least

squares estimator (ILSE) of (q,β), denoted by (q̂I , β̂I). The (q̂I , β̂I) minimizes the

total residual sum of squares GI,n(q,β) as follows:

(q̂I , β̂I) = argmin
(q,β)∈M×Rdβ

GI,n(q,β) (2.11)

= argmin
(q,β)∈M×Rdβ

n∑
i=1

distM(yi,µ(xi, q,β))2.

According to (2.2), the ILSE is closely related to the intrinsic mean q̂IM of y1, · · · , yn ∈

M, which is defined as

q̂IM = argmin
q∈M

n∑
i=1

distM(yi, q)2 = argmin
q∈M

n∑
i=1

distM(yi,µ(0, q,β))2.

Recall that µ(0, q,β) is independent of both β and the covariates of interest.
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The (q̂I , β̂I) can be regarded as a special case of the GMM estimator when we

set Wn = IdM+dβ and h(x, q,β) =



(Lc(1;xi,q,β)−1.∗(∂t1µ(x, φ−1(t),β)|t=φ(q)))
>

...

(Lc(1;xi,q,β)−1.∗(∂tdMµ(x, φ−1(t),β)|t=φ(q)))
>

(Lc(1;xi,q,β)−1.∗(∂β1µ(x, q,β)))>

...

(Lc(1;xi,q,β)−1.∗(∂βdβµ(x, q,β)))>


∈

R(dM+dβ)×dM , where each row is in R1×dM via the identification TpM ∼= RdM , and

(U, φ) is a chart onM

Specifically, (q̂I , β̂I) solves a set of estimating equations given by

0 = ∂t`GI,n(φ−1(t),β)|t=φ(q)

= −2Pn[< ∂t`µ(·, φ−1(t),β)|t=φ(q) ,Logµ(·,q,β)(·) >Tµ(·,q,β)M]

= −2Pn[< Lc(1;xi,q,β)−1.∗(∂t`µ(·, φ−1(t),β)|t=φ(q)), E(·, ·; q,β) >TpM],

0 = ∂βkGI,n(q,β)

= −2Pn[< ∂β`µ(·, q,β),Logµ(·,q,β)(·) >Tµ(·,q,β)M]

= −2Pn[< Lc(1;xi,q,β)−1.∗(∂βkµ(·, q,β)), E(·, ·; q,β) >TpM],

for ` = 1, . . . , dM and k = 1, . . . , dβ. Theoretically, it follows from Theorem 2.3.1 that

under model (2.6), (q̂I , β̂I) enjoys the first-order asymptotic properties as well.

2.3.3 Efficient GMM Estimator

We investigate the most efficient estimator in the class of GMM estimators. For a

fixed h(·; ·, ·), the optimal choice of W is W opt = V −1, and the use of Wn = W opt leads

to the most efficient estimator in the class of all GMM estimators obtained using the

same h(·) function (Hansen 1982); its asymptotic covariance is given by (GφV
−1Gφ)−1.
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An interesting question is what the optimal choice of hopt(·) is.

To address this question, we introduce some notation. For a chart (U, φ) onM near

q∗, let

Dφ(x) = E[∂(t,β)E(y,x;φ−1(t),β∗)
∣∣
t=φ(q∗)

|x]>, h∗φ(x) = Dφ(x)Ω(x)−1,

W ∗
φ = E[Dφ(x)Ω(x)−1Dφ(x)>]−1, Ω(x) = Var(E(y,x; q∗,β∗)|x).

Let (q̂∗, β̂∗) be the GMM estimator of (q̂, β̂) based on h∗φ(x) and W ∗
φ . Generally, we

obtain an optimal result of hopt(·), which generalizes an existing result for Euclidean-

valued responses and covariates (Newey 1993), as follows.

Theorem 2.3.2. Suppose that (C2)-(C8) and (C10) hold for h∗φ(x) and W ∗
φ . Assume

that

(C11) Ω(x) is a dM × dM positive-definite matrix with probability 1;

(C12) E[Dφ(x)Ω(x)−1Dφ(x)>] is a positive-definite matrix.

We have the following results:

(i) (q̂∗, β̂∗) is asymptotically normally distributed with zero mean and covarianceW ∗
φ ;

(ii) (q̂∗, β̂∗) is optimal among all GMM estimators for model (2.6);

(iii) (q̂∗, β̂∗) is independent of the chart.

Theorem 2.3.2 characterizes the optimality of h∗φ(x) and W ∗
φ among regular GMM

estimators for model (2.6). Geometrically, (q̂∗, β̂∗) is independent of the chart. Specif-

ically, for any other chart (U, φ′) near q∗, we have

Dφ′(x) = diag
(
[J(φ′ ◦ φ−1)φ(q∗)]

−1, Idβ
)>
Dφ(x),

h∗φ′(x) = diag
(
[J(φ′ ◦ φ−1)φ(q∗)]

−1, Idβ
)>
h∗φ(x),

W ∗
φ′ = diag(J(φ′ ◦ φ−1)φ(q∗), Idβ)W ∗

φdiag(J(φ′ ◦ φ−1)φ(q∗), Idβ)>.
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Thus, the quadratic form in (2.8) associated with h∗φ′(x) and W ∗
φ′ is the same as that

which is associated with h∗φ(x) and W ∗
φ . It indicates that the GMM estimator (q̂∗, β̂∗)φ

based on h∗φ(x) and W ∗
φ is independent of the chart (U, φ).

The next challenging issue is the estimation of Dφ(x) and Ω(x). We may pro-

ceed in two steps. The first step is to calculate a
√
n-consistent estimator of (q,β),

such as (q̂I , β̂I). The second step is to plug (q̂I , β̂I) into the functions Ei(q̂I , β̂I) and

∂(t,β)E(yi,xi;φ
−1(t), β̂I)|t=φ(q̂I), for all i and then use them to construct the nonpara-

metric estimates of Dφ(x) and Ω(x) (Newey 1993). Specifically, let K(·) be a dx-

dimensional kernel function of the l0-th order satisfying
´
K(u)du = 1,

´
ulsK(u)du =

0, for any s = 1, . . . , dx and 1 ≤ l < l0, and
´
ul0s K(u)du 6= 0, where u = (u1, . . . , udx)T .

Let Kτ (u) = τ−1K(u/τ), where τ is a bandwidth. Then, a nonparametric estimator of

Dφ(x) can be written by

D̂φ(x)> =
n∑
i=1

ωi(x; τ)∂(t,β)E(yi,xi;φ
−1(t), β̂I)|t=φ(q̂I), (2.12)

where ωi(x; τ) = Kτ (x − xi)/{
∑n

k=1Kτ (x − xk)}. Although we may construct a non-

parametric estimator of Ω(x) similar to (2.12), we have found that even for moder-

ate dx, such an estimator is numerically unstable. Instead, we approximate Ω(xi) =

Var(E(y,x; q∗,β∗)|x = xi) by its mean VE∗ = Var(E(y,x; q∗,β∗)). In this case, h∗φ(x)

and W ∗
φ , respectively, reduce to

h∗E,φ(x) = Dφ(x)V −1
E∗ , W

∗
E,φ = {E[Dφ(x)V −1

E∗ Ω(x)V −1
E∗ Dφ(x)T ]}−1. (2.13)

For any local chart (U, φ) with q̂I ∈ U , we construct the estimators of h∗E,φ and
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W ∗
E,φ as follows. Let V̂ (q,β) = PnE(y,x; q,β)⊗2, we have

ĥE,φ(xi) = ĥE,φ,i = D̂φ(xi)V̂ (q̂I , β̂I)
−1,

ŴE,φ =
{
Pn[ĥE,φ(x)E(y,x; q̂I , β̂I)]

⊗2
}−1

. (2.14)

Then, we substitute ĥE,φ and ŴE,φ into (2.8) and then calculate the GMM estimator

of (q,β), denoted by (q̂E, β̂E). Similar to (q̂∗, β̂∗), it can be shown that (q̂E, β̂E) is

independent of the chart (U, φ) on M near q∗ with q̂I ∈ U . For sufficiently large n,

distM(q̂I , q∗) < ρ∗(M, p∗) and any maximal normal chart onM centered at q̂I contains

the true value q∗ with probability approaching one. Computationally, an annealing

evolutionary stochastic approximation Monte Carlo algorithm is developed to compute

(q̂I , β̂I) and (q̂E, β̂E). See the supplementary document for details.

We calculate a one-step linearized estimator of (q,β), denoted by (q̃E, β̃E), to ap-

proximate (q̂E, β̂E). Computationally, the linearized estimator does not require itera-

tion, whereas, theoretically, it shares the first asymptotic properties with (q̂E, β̂E) as

shown below. Specifically, in the chart (U, φ) near q̂I , we have

(t̃>E,φ, β̃
>
E,φ)> − (φ(q̂I)

>, β̂>I )> = (2.15){
−Pn[ĥE,φ(x)∂(t,β)E(y,x;φ−1(t), β̂I)|t=φ(q̂I)]

}−1

Pn
[
ĥE,φ(x)Ei(y,x; q̂I , β̂I)

]
.

Furthermore, if (U ′, φ′) is another chart onM near q̂I , then we have

(t̃>E,φ′ , β̃
>
E,φ′)

> − (φ′(q̂I)
>, β̂>I )>

=

Jφ(q̂I)(φ
′ ◦ φ−1) 0

0 Idβ

 [(t̃>E,φ, β̃
>
E,φ)> − (φ(q̂I)

>, β̂>I )>].

Thus, β̃E,φ is independent of the chart φ and {t̃E,φ− φ(q̂I) |φ is a chart on M} defines
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a tangent vector toM at q̂I . Moreover, if φ and φ′ are maximal normal charts centered

at q̂I , then γφ(τ) = φ−1(τ t̃E,φ) and γφ′(τ) = φ′−1(τ t̃E,φ′) are two geodesic curves onM

starting from the same point q̂I with the same initial velocity vector, and thus these two

geodesics coincide. Therefore, φ−1(t̃E,φ) is independent of the normal chart φ centered

at q̂I . Finally, we can establish the first order asymptotic properties of (q̃E, β̃E) as

follows.

Theorem 2.3.3. Assume that (C2)-(C11) are valid and

(C13) (q̂I , β̂I) is a
√
n-consistent estimator of (q∗,β∗);

(C14) (U, φ) is a maximal normal chart onM centered at q̂I , with q∗ ∈ U ;

(C15) VE∗, Gφ,h∗E,φ
= E[Dφ(x)V −1

E∗ Dφ(x)>] and W ∗
E,φ are positive-definite;

(C16) sup(q,β)∈Θ ‖E(y,x; q,β)‖ +
∑2

l=1 sup(q,β)∈B((q∗,β∗),δ) ‖∂l(q,β)E(y,x; q,β)‖ ≤ f0(y,x)

with E[f0(y,x)4] <∞ for a small δ > 0;

(C17) sup(q,β)∈B((q∗,β∗),δ) ‖E[∂l(q,β)E(y,x; q,β)|x]‖ ≤ f1(x) for l = 1 and 2 and δ > 0

with E[f0(y,x)4f1(x)2] <∞

(C18) Pn‖D̂φ(x) − Dφ(x)‖2 = op(1), and
√
nPn{[D̂φ(x) − Dφ(x)] ⊗ E(y,x; q∗,β∗)} =

op(1).

As n→∞, we have the following results:

√
n [(φ(q̃E)>, β̃>E)> − (φ(q∗)

>,β>∗ )>]
d→ NdM+dβ(0,ΣE,φ), (2.16)

where ΣE,φ = (Gφ,h∗E,φ
W ∗
E,φGφ,h∗E,φ

)−1. In addition, ΣE,φ is invariant under the change

of coordinates inM and the asymptotic distribution of β̃E does not depend on the chart
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(U, φ). Also, if we set

Σ̂E,φ = n−1
{
Pn[D̂φ(x)V̂ (q̂I , β̂I)

−1D̂φ(x)>]
}−1

×
{
Pn[D̂φ(x)V̂ (q̂I , β̂I)

−1E(y,x, q̃I , β̃I)
⊗2V̂ (q̂I , β̂I)

−1D̂φ(x)>]
}

(2.17)

×
{
Pn[D̂φ(x)V̂ (q̂I , β̂I)

−1D̂φ(x)>]
}−1

,

then nΣ̂E,φ is a consistent estimator of ΣE,φ, i.e. nΣ̂E,φ
p→ ΣE,φ. This estimator is also

compatible with the manifold structure ofM.

Theorem 2.3.3 establishes the first-order asymptotic properties of (q̃E, β̃E). If

Ω(x) = Ω for a constant matrix Ω, then it follows from Theorems 2.3.2 and 2.3.3

that (q̃E, β̃E) is optimal. If Ω(x) does not vary dramatically as a function of x, then

(q̃E, β̃E) is nearly optimal. If Ω(x) varies dramatically as a function of x, one can

replace V̂ (q̂I , β̂I) in (2.14) by Ω̂(xi) to obtain ĥE,φ(x) = D̂φ(x)Ω̂(x)−1 and ŴE,φ =

{Pn[ĥE,φ(x)E(y,x; q̂I , β̂I)]
⊗2}−1, where Ω̂(xi) is a consistent estimator of Ω(xi) for all

i, then the optimality of (q̃E, β̃E) still holds. We have the following theorem.

Theorem 2.3.4. Assume that (C2)-(C17) are valid and

(C19)
√
nPn{[D̂φ(x)Ω̂(x)−1 −Dφ(x)Ω(x)−1]E(y,x; q∗,β∗)} = op(1),

Pn‖D̂φ(x)−Dφ(x)‖4 = op(1), Pn‖Ω̂(x)−1 − Ω(x)−1‖4 = op(1).

Then, as n→∞, we have

√
n [(φ(q̃E)>, β̃>E)> − (φ(q∗)

>,β>∗ )>]
d→ NdM+dβ(0,Σ∗φ), (2.18)

in which Σ∗φ is given in Theorem 2.3.2. If we set

Σ̂E,φ = n−1
{
Pn[D̂φ(x)Ω̂(x)−1D̂φ(x)>]

}−1

, (2.19)
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then nΣ̂E,φ is a consistent estimator of Σ∗φ.

We note that our two-stage method estimates jointly q and β. This is different than

the naïve idea of estimating first q by the sample Fréchet mean q̂F of yi’s, and then

estimate β using the residuals at q̂F ; the asymptotic efficiency is not guaranteed.

2.3.4 Hypotheses Testing

Many scientific questions involve in the comparison of the M-valued data across

groups and subjects and the detection of the change in theM-valued data over time.

Such questions usually can be formulated as testing the hypotheses of q and β. We

consider two types of hypotheses as follows:

H
(1)
0 : C0β = b0 vs. H

(1)
1 : C0β 6= b0, (2.20)

H
(2)
0 : q = q0 vs. H

(2)
1 : q 6= q0, (2.21)

where C0 is a r × dβ matrix of full row rank and q0 and b0 are specified in M and

Rr, respectively. Further extensions of these hypotheses are definitely interesting and

possible. For instance, for the multicenter link function, we may be interested in testing

whether all q(xD) are independent of xD.

We develop several test statistics for testing the hypotheses given in (2.20) and

(2.21). Firstly, we consider the Wald test statistic for testing H
(1)
0 against H(1)

1 in

(2.20), which is given by

W
(1)
n,φ = (C0β̃E − b0)>

[
(0 C0)Σ̂E,φ(0 C0)>

]−1

(C0β̃E − b0)

= (C0β̃E − b0)>
[
C0Σ̂E,φ;22C>0

]−1

(C0β̃E − b0),

where Σ̂E,φ is given in Theorem 2.3.3 or Theorem 2.3.4 , and Σ̂E,φ;22 is its lower-right

dβ × dβ submatrix. Since β̃E and its asymptotic covariance matrix are independent of
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the chart onM, the test statistic W (1)
n,φ is independent of the chart.

Secondly, we consider the Wald test statistic for testing the hypotheses given in

(2.21) when there is a local chart (U, φ) onM containing both q̂E and q0. Specifically,

the Wald test statistic for testing (2.21) is defined by

W
(2)
n,φ = (φ(q̃E)− φ(q0))>

[
(IdM 0)Σ̂E,φ(IdM 0)>

]−1

(φ(q̃E)− φ(q0)).

Thirdly, we develop an intrinsic Wald test statistic, that is independent of the chart,

for testing the hypotheses given in (2.21). We consider the asymptotic covariance

estimator Σ̂E,φ based on q̃E and its upper-left dM × dM submatrix Σ̂E,φ;11. Since

both are compatible with the manifold structure of M, Σ̂E,φ;11 defines a unique non-

degenerate linear map Σ̂E;11(·) from the tangent space Tq̃EM of M at q̃E onto itself,

which is independent of the chart (U, φ). In a maximal normal chart centered at q̃E,

then in any such normal chart, the Wald test statistic for testing (2.21) is given by

W
(2)
M,n = mq̃E((Σ̂E;11)−1(Logq̃E

q0),Logq̃E
q0).

We obtain the asymptotic null distributions of W (1)
n,φ, W

(2)
n,φ, and W

(2)
M,n as follows.

Theorem 2.3.5. Let (U, φ) be a local chart on M so that q̃E, q∗ ∈ U . Assume that

all conditions in Theorem 2.3.3 hold. Under the corresponding null hypothesis, we have

the following results:

(i) W (1)
n,φ and W (2)

n,φ are asymptotically distributed as χ2
r and χ2

dM
, respectively;

(ii) W (1)
n,φ is independent of the chart (U, φ);

(iii) for any other local chart (U, φ′) with q̃E and q0 in U ,

W
(2)
n,φ′ = W

(2)
n,φ + op(1).
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(iv) For any normal chart (U, φ) centered at q̃E, W
(2)
n,φ = W

(2)
M,n.

Theorem 2.3.5 has several important implications. Theorem 2.3.5 (i) characterizes

the asymptotic null distributions ofW (1)
n,φ andW (2)

n,φ. Theorem 2.3.5 (ii) shows thatW (1)
n,φ

does not depend the choice of the chart (U, φ) on M. Theorem 2.3.5 (iii) shows that

W
(2)
n,φ′ and W

(2)
n,φ are asymptotically equivalent for any two local charts. Theorem 2.3.5

(iv) shows that W (2)
n,φ′ can be used to construct an intrinsic test statistic.

We consider a local alternative framework for (2.20) and (2.21) as follows:

H
(1)
0 : C0β = b0 vs. H

(1)
1,n : C0β = b0 + δ/

√
n+ o(1/

√
n), (2.22)

H
(2)
0 : q = q0 vs. H

(2)
1,n : q = Expq0

(v/
√
n+ o(1/

√
n)), (2.23)

where δ and v are specified (and fixed) in Rr and Tq0M, respectively, and we establish

the asymptotic distributions of W (1)
n,φ, W

(2)
n,φ, and W

(2)
M,n under these local alternatives.

Theorem 2.3.6. Let (U, φ) be a local chart onM so that q̃E, q∗ ∈ U . Assume that all

conditions in Theorem 2.3.3 hold. Under the local alternatives (2.22) and (2.23), we

have the following results:

(i) Under H(1)
1,n, W

(1)
n,φ is asymptotically distributed as noncentral χ2

r with noncentral-

ity parameter δ>
[
C0Σ̂E,φ;22C>0

]−1

δ.

(ii) Under H(2)
1,n, W

(2)
n,φ is asymptotically distributed as noncentral χ2

dM
, with noncen-

trality parameter

J(φ ◦ Expq0
)0(v)>

[
Σ̂E,φ;11

]−1

J(φ ◦ Expq0
)0(v).

The noncentrality parameter does not depend on the choice of the coordinate system at

q0. Here, J(f)a denotes the Jacobian matrix of map f at a.
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(iii) Under H(2)
1,n, W

(2)
M,n is asymptotically distributed as noncentral χ2

dM
, with non-

centrality parameter

mq̃E((Σ̂E;11)−1(J(Logq̃E
)q0(v)), (J(Logq̃E

)q0(v))).

The noncentrality parameter does not depend on the choice of the coordinate systems

at q̃E and q0, respectively.

We consider another scenario that there are no local charts onM containing both

q̃E and q0. In this case, we restate the hypotheses H(2)
0 and H(2)

1 as follows:

H
(2)
0 : distM(q, q0) = 0 vs. H

(2)
1 : distM(q, q0) 6= 0. (2.24)

We propose a geodesic test statistic given by

Wdist = distM(q̃E, q0)2, (2.25)

which is independent of the chart (U, φ). Theoretically, we can establish the asymptotic

distribution of Wdist under both the null and alternative hypotheses as follows.

Theorem 2.3.7. Assume that all conditions in Theorem 2.3.5 hold.

(a) Under H(2)
0 , nWdist is asymptotically weighted chi-square χ2(λ1, . . . , λdM) dis-

tributed, where the weights λ1, . . . , λdM are the eigenvalues of the matrix ΣE,Logq0
,11,

which is the upper-left dM×dM submatrix of the asymptotic covariance matrix ΣE,Logq0

of q̃E in a normal chart centered at q0. Moreover, the weights are independent, up to

a permutation, of the choice of the normal chart centered at q∗.

(b) Under the alternative hypothesis, Wdist is asymptotically normal distributed and

we have
√
n(Wdist − distM(q∗, q0)2)

d→ NdM(0, D>distΣE,Logq∗ ,11Ddist),
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where Ddist is the column vector representation of gradq∗(dist(·, q0)2) with respect to

the orthonormal basis of Tq∗M associated with the normal chart used to represent the

asymptotic covariance of q̃E as the matrix ΣE,Logq∗
. In particular, when q0 is close to

q∗, then

√
n(Wdist − distM(q∗, q0)2)

d→ NdM(0, 4[Logq∗q0]>ΣE,Logq∗ ,11[Logq∗q0]).

Theorem 2.3.7 establishes the asymptotic distribution of Wdist when q̃E and q0 do

not belong to the same chart ofM. In practice, the covariance matrix ΣE,Logq∗ ,11 is not

available, since ΣE,Logq∗
is not known; it also depends on the unknown true value β∗, so

we may use the estimate Σ̂E,Logq∗
as defined in Theorems 2.3.3 and 2.3.4 . Therefore,

under the null hypothesis, the asymptotic distribution ofWdist can be approximated by

the weighted chi-square distribution χ2(λ̂1, . . . , λ̂dM), in which the weights λ̂1, . . . , λ̂dM

are the eigenvalues of the covariance matrix (Σ̂E,Logq0
)11/n.

Finally, we develop a score test statistic for testing H(2)
0 against H(2)

1 . An advantage

of using the score test statistic is that it avoids the calculation of an estimator under

the alternative hypothesis H(2)
1 . For notational simplicity, we only consider the ILSE

estimator of (q,β), denoted by (q0, β̃I), under the null hypothesis H(2)
0 . For any chart

(U, φ) onM with q0 ∈ U , we define

Fφi = (F>φi,1, F
>
φi,2)> = ∂(t,β)distM(f(xi, φ

−1(t),β), yi)
2
∣∣
t=φ(q0),β̃I

,

Uφ =

 Utt Utβ

Uβt Uββ

 =
n∑
i=1

∂2
(t,β)distM(f(xi, φ

−1(t),β), yi)
2
∣∣
t=φ(q0),β̃I

,

where the subcomponents Fφi,1 and Fφi,2 correspond to t and β, respectively. It can be

60



shown that the score test WSC,φ reduces to

WSC,φ = (
n∑
i=1

Fφi,1)>Σ̃−1
φ,q(

n∑
i=1

Fφi,1), (2.26)

where Σ̃φ,q = (IdM ,−UtβU−1
ββ)[

∑n
i=1(Fφi − Fφ)⊗2](IdM ,−UtβU−1

ββ)>, in which Fφ =

n−1
∑n

i=1 Fφi. Theoretically, we can establish the asymptotic distribution of WSC,φ

under the null hypothesis.

Theorem 2.3.8. Assume that all conditions in Theorem 2.3.5 hold. We have the

following results:

(i) For any suitable local chart (U, φ), the score test statistic WSC,φ is asymptotically

distributed as χ2
dM

under the null hypothesis H(2)
0 .

(ii) Under H(2)
0 , for any other local chart (U, φ′) with q0 ∈ U , we have

WSC,φ′ = WSC,φ.

Theorem 2.3.8 establishes the asymptotic distribution ofWSC,φ forM−valued data.

2.4 Examples

We investigate the intrinsic regression model for four specific RSS’s and include

several other examples in the supplementary document.

2.4.1 Symmetric Positive-definite Matrices

We review some basic facts about the geometric structure of Sym+(k) (Schwartzman

2006, Lang 1999, Terras 1988, Fletcher et al. 2004b, Batchelor et al. 2005, Zhu et al.

2009a, Yuan et al. 2012, Osborne et al. 2013). Let Sym(k) be the set of k×k symmetric

matrices with real entries, which is a topological linear space of dimension k(k + 1)/2.
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The Sym+(k) is an open subset of Sym(k) and TqSym+(k) is a copy of Sym(k) for

q ∈ Sym+(k). Let q = CqC
>
q be the Cholesky decomposition of q, where Cq is a lower

triangular matrix with strictly positive diagonal entries. Then, for q, q′ ∈ Sym+(k),

the map (q, q′) → q ◦ q′ := Cqq′C>q induces a (non-commutative) Lie group structure

on Sym+(k), denoted by G. The unit element of G is the identity matrix Ik and the

inverse of a matrix q ∈ G with respect to the operation on G is q∼1 = C−1
q C−>q . The

Lie group G can be entirely covered with a single chart. We also have Lq(q′) = Cqq′C>q

and Lq∗(A) = CqAC
>
q for q, q′ ∈ Sym+(k) and A ∈ Sym(k). The associated Lie

algebra is sym(k) = Sym(k) with the bracket map being [A1, A2] = A1A2 − A2A1 for

A1, A2 ∈ Sym(k). Let exp(·) and log(·) be, respectively, the matrix exponential and

logarithm. The manifold exponential at Ik, ExpIk , is the matrix exponential exp(·) and

its inverse map is LogIk = Exp−1
Ik

= log(·). For A ∈ Sym(k) and q′ ∈ Sym+(k), we have

Expq(A) = (Lq ◦ ExpIk ◦ Lq∼1∗)(A) = Cq exp(C−1
q AC−>q )C>q ,

Logq(q′) = Exp−1
q (q′) = Cq log(C−1

q q′C−>q )C>q .

We consider the trace norm ‖A‖ =
√

tr(A2) on Sym(k), identified as TIkSym+(k).

This norm is actually the 2-norm of the in Rk2 of the vectorized form of the matrix.

This allows to introduce the following metric on Sym+(k)

< A1, A2 >q:=< Lq∼1 ∗ (A1), Lq∼1 ∗ (A2) >Ik= tr(A1q−1A2q−1),

for A1, A2 ∈ TqSym+(k) and q ∈ Sym+(k). This metric induces a Riemannian structure

on the group Sym+(k), and the above Expq and Logq are the Riemannian exponential

and logarithmic maps, respectively. The curve t → γ(t; q, A) := Expq(tA) is the

geodesic curve starting from q with initial tangent vector A ∈ TqSym+(k). The radius

of injectivity is ρ∗(Sym(k)) = ρ∗(Sym(k), Ik) =∞.
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We introduce the intrinsic regression model for Sym+(k)−valued responses. Suppose

that we observe {(yi,xi) : i = 1, . . . , n}, where yi ∈ Sym+(k) for all i. We define a

function f(x,β) given by

f(·, ·) : Rdx ×Rdβ → Rk(k+1)/2 with f(0, ·) = f(·,0) = 0.

An example of f(·, ·) is f(xi,β) = Bxi (Zhu et al. 2009a), where B is an k(k+1)/2×dx

matrix of regression coefficients and β includes all components of B. Let {Ej` : 1 ≤ ` ≤

j ≤ k} be the canonical basis of Sym(k), where Ej` is the m×m matrix with the (j, `)

and (`, j) entries being 1 and 0 otherwise; let f(xi,β)j(j−1)/2+` be the j(j − 1)/2 + `-th

component of f(xi,β). We consider a single-center link function given by

µ(x, q,β) = Expq(u(xi,β)) = Cq exp(C−1
q u(xi,β)C−>q )C>q ,

where u(xi,β) =
∑k

j=1

∑j
`=1 f(xi,β)j(j−1)/2+`Ej` and q = CqC

>
q ∈ Sym+(k) is the

’center’. The rotated residual is given by

E(yi,xi, q,β) = log(Ci(q,β)−1yiCi(q,β)−>),

where Ci(q,β)Ci(q,β)> is the Cholesky decomposition of f(xi, q,β).

2.4.2 Special Orthogonal Group SO(k)

We review some basic facts about the geometric structure of SO(k) (Grenander et al.

1998, Moakher 2002, Gallier and Xu 2002). This is a compact (C∞) submanifold ofRk×k

of dimension k(k − 1)/2 as well as a Lie group with respect to matrix multiplication.

The unit element of SO(k) is the identity matrix Ik and its associated Lie algebra

so(k) = TIkSO(k) is the linear space of all k × k skew-symmetric matrices q, i.e.
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q> = −q, denoted by SkewSym(k). For q ∈ SO(k), TqSO(k) is given by

TqSO(k) = {A ∈ Rk×k : A> = −q>Aq>} = q SkewSym(k).

We consider the trace metric on TqSO(k). The trace metric is also a left-invariant

Riemannian metric on SO(k). Specifically, since q q> = Ik, for A1, A2 ∈ TImSO(k), we

have

< qA1, qA2 >q= tr[(qA1)>(qA2)] = tr(A>1 A2) =< A1, A2 >Ik .

The Lie exponential map at Ik is given by the usual matrix exponentiation. Although

the Lie logarithmic map at Ik has a closed form, the formula for a general k is quite

complicated. We present the Lie logarithmic map for k = 2 and 3 in the supplementary

document. Generally, the Lie exponential map of A ∈ TqSO(k) at q ∈ SO(k) and its

corresponding Lie logarithmic map are, respectively, given by

Expq(A) = q ExpIk(q
>A) = q exp(q>A) and Logq(q′) = q LogIk(q

>q′).

We introduce the intrinsic regression model for SO(k)−valued responses. Suppose

that we observe {(yi,xi) : i = 1, . . . , n}, where yi ∈ SO(k) for all i. We define a function

f(x,β) given by

f(·, ·) : Rdx ×Rdβ → Rk(k−1)/2 with f(0, ·) = f(·,0) = 0.

An example of f(·, ·) is f(xi,β) = B1xi, where B1 is a k(k − 1)/2 × dx matrix of

regression coefficients and β includes all components of B1. Let {Ẽj` : 1 ≤ ` ≤ j ≤ k}

be the basis of SkewSym(k), where Ẽj` is a k × k matrix with the (j, `) and (`, j)

entries being (−1)j+`−1 and (−1)j+`, respectively, and 0 otherwise. Let q ∈ SO(k) be
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the ‘center’, and we consider a single-center link function given by

µ(x, q,β) = Expq(u(xi,β)) = q exp(u(xi,β)),

where u(xi,β) =
∑k

j=2

∑j−1
`=1 f(xi,β)(j−2)(j−1)/2+`Ẽj` ∈ SkewSym(k). The rotated resid-

ual is given by

E(yi,xi; q,β) = LogIk(exp(−u(xi,β))q>yi).

The explicit form of E(yi,xi; q,β) for k = 2, 3 can be found in the supplementary

document.

2.4.3 The Unit Sphere Sk

We review some basic facts about the geometric structure of Sk in Rk+1 (Shi et al.

2012, Mardia and Jupp 2000, Healy and Kim 1996, Huckemann et al. 2010). For q ∈ Sk,

TqS
k is given by TqS

k = {v ∈ Rk+1 : v>q = 0}. For two points q and q′ in Sk with

q 6= −q′, let Rq′,q(t) ∈ SO(k + 1) be the rotation matrix in the subspace generated by

q′ and q that rotates q′ towards q by the angle t ∈ R, if q′ 6= q, and Rq′,q(t) = I, t ∈ R,

if q′ = q. Here we use the usual convention that Rq′,q(t) rotates q′ towards q, if t > 0,

and Rq′,q(t) rotates q′ away from q, if t < 0. The rotation Rq′,q(·) takes the form

Rq′,q(t)v = v−(v>q′)q′ − (v>q̃)q̃

+ [(v>q′) cos t− (v>q̃) sin t]q′ + [(v>q′) sin t+ (v>q̃) cos t]q̃

for v ∈ Rk+1, where q̃ = q−(q>q′)q′√
1−(q>q′)2

. Thus, (−π, π) 3 t 7→ Rq′,q(t) · q′ is the

unique geodesic curve in Sk joining q′ with q. More precisely, Rq′,q(0) · q′ = q′

and Rq′,q(arccos(q>q′)) · q′ = q. We consider standard multiplication as the inner
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product. For v ∈ TqS
k, the Riemannian Exponential map is given by Expq(v) =

cos(‖v‖)q + sin(‖v‖)v/ ‖v‖ . If q and q′ are not antipodal, the Riemannian Logarith-

mic map is given by Logq(q′) = arccos(qTq′)v/ ‖v‖, where v = q′ − (qTq′)q 6= 0.

We introduce the intrinsic regression model for Sk−valued responses. Suppose that

we observe {(yi,xi) : i = 1, . . . , n}, where yi ∈ Sk for all i. We define a function f(x,β)

given by

f(·, ·) : Rdx ×Rdβ → Rk with f(0, ·) = f(·,0) = 0.

An example of f(·, ·) is f(xi,β) = Bxi, where B is a k × dx matrix of regression

coefficients and β includes all components of B. Without loss of generality, we fix the

“north pole” p = (0, . . . , 0, 1)> ∈ Rk+1 as a base point. The (k+ 1)× 1 vectors ej, with

a 1 at the j-th component and a 0 otherwise, j = 1, . . . , k, form an orthonormal basis

in TpS
k. Let q ∈ Sk be the ’center’, and we consider the following two examples of

single-center link functions

µ(xi, q,β) = Expq

(
k∑
j=1

f(xi,β)jcp,q(arccos(p>q))ej

)
(2.27)

and

µ(xi, q,β) = c−p,q(arccos(−p>q))(T−1
st,−p((f(xi,β)>,−1)>)), (2.28)

where Tst,−p is the stereographic projection mapping from Sk\{p} onto the d-dimensional

hyperplane Rk × {−1}. The rotated residual is given by

E(yi,xi; q,β) = Rp0,µ(xi,q,β)(arccos(p>0 µ(xi, q,β)))−1(Logµ(xi,q,β)yi)

= Logp0
(Rp0,µ(xi,q,β)(− arccos(p>0 µ(xi, q,β))) · yi). (2.29)
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2.4.4 Kendall’s Planar Shape Space Σk
2

We review the definition and some basic facts about the geometric structure of the

shape space Σk
2 formed by k landmarks in R2, k > 2 (Kendall 1984a, Kendall et al. 1999,

Dryden and Mardia 1998, Huckemann et al. 2010, Su et al. 2012). Geometrical planar

objects are studied by placing k > 2 landmarks at specific locations of each object,

usually on the boundary of the object. Then each object is described by a k×2 matrix

x ∈ Rk×2, each row xi denoting the coordinates of a point in R2, i = 1, . . . , k. It is often

convenient to identify points in R2 with complex numbers, i.e. xi ≡ zi = xi,1+jxi,2 ∈ C,

where j =
√
−1. In this representation, a configuration x of k landmarks is an element

z ∈ Ck. We remove the translations by restricting to those elements of Ck whose average

is zero,
∑k

i=1 z
i = 0, and the scale variability by rescaling the matrix to have norm one,

‖z‖2 = z̄>z =
∑k

i=1 z
iz̄i = 1, where the “overline” denotes complex conjugation. Thus,

we obtain a set Dk = {z = (z1, . . . , zk)> ∈ Ck | 1/n
∑k

i=1 z
i = 0, ‖z‖ = 1} called the

pre-shape space. Here, Dk is a unit sphere and we can utilize the geometry of a sphere

to analyze points on it. Thus, Dk has the canonical structure of a real Riemannian man-

ifold of real dimension (2k−3), with the metric induced by the standard inner product

on Rk×2 which is the real part of the complex inner product on Ck. The tangent space

of Dk at a point z is TzDk = {v = (v1, . . . , vk)> ∈ Ck |Re(z̄>v) = 0, 1/k
∑k

i=1 v
i = 0}

and the geodesic distance on Dk is the spherical distance dDk(z, z′) = arccos(Re(z̄′
>
z)).

The special unitary group G = SU(V) ∼= SU(k − 1) ⊂ SU(k) acts transitively on Dk,

where V is the complex-orthogonal complement of spanCk{(1, . . . , 1)>} in Ck. V has

complex dimension k− 1. SU(k− 1) is a real Lie group of dimension (k− 1)2− 1. The

isotropy subgroup of z is Gz
∼= SU(k− 2). Thus, Dk is a Riemannian symmetric space.

To get the shape space we remove the planar rotations of pre-shapes. For z ∈ Dk,

let [z] be the set of all planar rotations of a configuration z according to [z] = {z′ =

ejθz|θ ∈ S1}. One defines an equivalence relation on Dk by setting all elements of the
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set [z] as equivalent, i.e. z ∼ z′ if there is an angle θ such that z′ = ejθz. The set of

all such equivalence classes is the quotient space Dk/S1. This space is called Kendall’s

planar shape space and is denoted by Σk
2. Since S1 acts freely on Dk, i.e. the only

element of S1 whose action has fixed points is the unit element of S1, then the quotient

space Σk
2 is a (2k − 4)-dimensional real Riemannian manifold. In fact, this space can

be identified with a complex projective space CP k−2. Since, z ∼ z′ implies Uz ∼ Uz′,

for any z, z′ ∈ Dk and any U ∈ SU(V), the group G acts transitively on Σk
e as well, and

the isotropy subgroup is G[z]
∼= SU(k − 2)× S1. The natural Riemannian structure on

Σk
2 (as CP k−2) is given by the Fubini-Study metric, which is defined as follows.

The tangent space of Σk
2 at a point q = [zq], with zq ∈ Dk, is

TqΣk
2 = {v = (v1, . . . , vk)> ∈ Ck |Re

(
(ejθzq)

>
v
)

= 0, θ ∈ S1, 1/k
k∑
i=1

vi = 0}

= {v = (v1, . . . , vk)> ∈ Ck | zq
>v = 0, 1/k

k∑
i=1

vi = 0},

and it is equipped with the complex inner product induced from Ck, that is, < v,w >q:=

w>v, for v,w ∈ TqΣk
2, which is well-defined.

A geodesic between two elements q1, q2 ∈ Σk
2, with qi = [zqi ], i = 1, 2, is given

by a spherical geodesic on Dk between zq1 and z∗q2
, where z∗q2

= ejθ
∗
zq2 and θ∗ is the

optimal rotational alignment of zq2 to zq1 given by z̄>q2
zq1 = ejθ

∗|z̄>q2
zq1|. The geodesic

distance on Σk
2 between q1, q2, dΣk2

(q1, q2), is the spherical distance dDkm(zq1 , z
∗
q2

) =

arccos(z∗q2

>
zq1) = arccos(|zq2

>zq1|). The definitions of both the geodesics and geodesic

distance are independent of the choice of representatives for the equivalence classes

q1 and q2. For v ∈ TqΣk
2, the Riemannian Exponential map is given by Expq(v) =

cos(‖v‖)zq + sin(‖v‖) v
‖v‖ . The exponential map is well-defined and it is a bijection on

the set of [(zq,v)] so that ‖v‖ ∈ [0, π
2
). The Riemannian Logarithmic map is given by

Logq(q′) = arccos(|zq′
>zq|)v/‖v‖ = r

sin(r)
v, where v = z∗q′ − |zq′

>zq|zq, r = dΣk2
(q, q′),
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and z∗q′ is the optimal alignment of zq′ to zq. It is easy to check that all the definitions

above are independent of the choice of representatives for the corresponding equivalence

classes.

Note that with respect to a chosen complex orthonormal basis {Z1, . . . , Zk−2} for

TpΣk
2, the normal chart φ centered at p has the expression

φ(q) = ζ = (ζ1, . . . , ζk−2)> ∈ Ck−2,

∼= t = (t1, . . . , t2k−4)> ∈ R2k−4 (2.30)

where ζ` = t2`−1 + jt2` and

ζ` =
r

sin(r)
ejθ Z`

>
zq, r = dΣk2

(q, p) = arccos(|zq
>zp|), ejθ =

zq
>zp

|zq
>zp|

, (2.31)

` = 1, . . . , k − 2, (see Bhattacharya and Bhattacharya (2008)).

We introduce the intrinsic regression model for Σk
2-valued responses. Suppose that

we observe {(yi,xi) : i = 1, . . . , n}, where yi ∈ Σk
2 and xi ∈ Rdx , for all i. We define a

function f(x,β) given by

f(·, ·) : Rdx ×Rdβ → R2k−4 with f(0, ·) = f(·,0) = 0. (2.32)

An example of f(·, ·) is f(xi,β) = Bxi, where B is a (2k− 4)× dx matrix of regression

coefficients and β includes all components of B. We fix a point p0 ∈ Σk
2, as the base

point, and {Z1, . . . , Zk−2} an orthonormal basis for Tp0Σ
k
2. For example, set p0 =

[z0], with z0 = (1/
√

2,−1/
√

2, 0, . . . , 0)> ∈ Rn ⊂ Cn, and Z` ∈ Rn be the vector

with 1√
(`+1)(`+2)

as the first (` + 1) components, with `+1√
(`+1)(`+2)

as the (` + 2)-th

component, and 0 otherwise, for ` = 1, . . . , k−2. Thus, {Z1, . . . , Zk−2} forms a complex

orthonormal basis of Tp0Σ
k
2 when viewed as a complex linear space, and, equivalently,
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{Z1, jZ1, . . . , Zk−2, jZk−2} forms a real orthonormal basis of Tp0Σ
k
2 when viewed as a

real linear space. Letting q ∈ Σk
2 be the ‘center’, we consider a single-center link

function given by

µ(xi, q,β) = Expq(u(xi, q,β)) ∈ Σk
2, (2.33)

where u(xi, q,β) ∈ TqΣk
2. An example of u(xi, q,β) is given by

u(xi, q,β) =

[
k−2∑
`=1

(f(xi,β)2`−1 + jf(xi,β)2`)Uzp0 ,z∗qZ`

]
∈ TqΣk

2, (2.34)

where p0 = [zp0 ], q = [zq], with zp0 , zq ∈ Dk. Here, for z1, z2 ∈ Dk, Uz1,z2 ∈ SU(V) ⊂

SU(k) denotes the unique special unitary map in the subspace generated by z1 and z2

that maps z1 onto z2. The map Uz1,z2 takes the form

Uz1,z2v = v − (z1
>v)z1 − (z̃2

>
v)z̃2

+

(
(z1
>z2)(z1

>v)−
√

1− |z1
>z2|2 (z̃2

>
v)

)
z1

+

(√
1− |z1

>z2|2 (z1
>v) + (z1

>z2)(z̃2
>
v)

)
z̃2, (2.35)

for v ∈ Ck, where z̃2 = z2−(z1>z2)z1√
1−|z1>z2|2

. Thus, Uq1,q2v := Uzq1 ,z∗q2v ∈ V , v ∈ V , and

Uq1,q2q := [Uzq1 ,z∗q2zq] ∈ Σk
2, q ∈ Σk

2, are well defined, independently of the choice of

representatives zq1 , zq2 , and zq for q1, q2, and q, respectively. The rotated residual is

given by

E(yi,xi; q,β) = U−1
p0,µ(xi,q,β)(Logµ(xi,q,β)yi) = Logp0

(Up0,µ(xi,q,β)
>
yi). (2.36)
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We consider the intrinsic model

E(E(yi,xi, q,β) |xi) = 0, i = 1, . . . , n. (2.37)

2.5 Simulation Studies

We generated (yi,xi) ∈ S2 × R as follows. We generate directional data in S2

according to (2.29) and (2.28) given at the end of subsection 2.4.3. Moreover, we

set f(xi,β) = Bxi, in which xi ∈ R and β = (β1, β2)> ∈ R2, and q = (u, v, w) ∈

S2 \ {p0}. We independently simulated the xi’s from the standard normal distribution

N(0, 1) and fixed the true values of (q,β) to be (q∗,β∗) = ((2/3, 2/3, 1/3)>, (1, 1)>).

The parameterization is given by t1 = u/(1− w) and t2 = v/(1− w), and thus q∗

corresponds to t∗ = (t1∗, t2∗) = 12 = (1, 1)>. We generated residuals Ei(yi,xi; q,β)

from a N2(0, 0.5{ρ1121
>
2 + (1− ρ1)I2}) distribution on the tangent space, Tp0S

2, at the

north pole p0 = (0, 0, 1)>, rotated the residuals onto Tµ(xi,q,β)S
2, and then used the

exponential map Expµ(xi,q,β)(·) to calculate the response yi. We set n = 40, 80, and

120 in order to examine the finite sample performance of the parameter estimates and

their covariance estimates.

We first compared the biases and the root-mean-square errors of the two estimates:

(t̂I , β̂I) and (t̂E, β̂E). As seen in Table 2.1, t̂E and β̂E have smaller root-mean-square

errors than t̂I and β̂I for every component of t and β, respectively, confirming that

(t̂E, β̂E) is more efficient. We calculated the biases, root-mean-square error, and means

of the estimated standard error estimates of β̂E (Table 2.2). All relative efficiencies

(the ratio of root-mean-square error to standard deviation) are close to 1.0, indicating

that our covariance estimates are pretty accurate. As expected, the root-mean-square

error and relative efficiency improve as the sample size increases. We also note that for

β1 and β2, β̂E is more biased than β̂I .
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Table 2.1: Bias (×10−3) and MS(×10−2) of (t̂I , β̂I) and (t̂E, β̂E). Bias denotes the bias
of the mean of the estimates; MS denotes the root-mean-square error.

n = 40 n = 80 n = 120
Bias MS Bias MS Bias MS

I t1 5.29 13.91 5.86 9.18 6.24 7.83
E 4.67 12.97 5.10 9.09 6.22 7.20
I β1 5.86 18.39 5.98 12.45 4.16 10.05
E 7.40 15.39 6.16 11.46 5.42 9.05
I t2 4.35 13.73 6.48 8.97 3.64 8.62
E 4.21 12.84 4.36 8.56 3.05 8.04
I β2 6.94 18.64 4.49 12.09 5.06 10.04
E 7.35 14.52 4.74 10.85 5.64 9.98

Table 2.2: Bias (×10−3), MS(×10−2), SD(×10−2), and RE of (t̂E, β̂E). Bias denotes the
bias of the mean of the estimates; MS denotes the root-mean-square error; SD denotes
the mean of the standard deviation estimates; RE denotes the relative efficiency, which
is the ratio of MS over SD.

n = 40 n = 80 n = 120
Bias MS SD RE Bias MS SD RE Bias MS SD RE

t1 4.67 12.97 14.36 0.90 5.10 9.09 9.59 0.95 6.22 7.20 7.55 0.95
β1 7.40 15.39 17.69 0.87 6.16 11.46 12.58 0.91 5.42 9.05 9.33 0.97
t2 4.21 12.84 14.44 0.89 4.36 8.56 9.32 0.92 3.05 8.04 7.94 1.01
β2 7.35 14.52 17.59 0.83 4.74 10.85 12.54 0.87 5.64 9.98 10.32 0.97
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Table 2.3: Comparisons of the rejection rates for Wald test statistics. Three different
sample sizes n ∈ {40, 80, 120} and 2000 simulated datasets were used for each case and
two significance levels, 5% and 1%, were considered.

n = 40 n = 80 n = 120
5% 1% 5% 1% 5% 1%

1 0.062 0.019 0.056 0.015 0.054 0.014
1.2 0.251 0.101 0.430 0.218 0.599 0.364
1.4 0.644 0.413 0.898 0.716 0.977 0.927
1.6 0.842 0.680 0.994 0.952 0.998 0.994
1.8 0.965 0.899 0.998 0.994 1.000 1.000

To examine the finite sample performance of the Wald statistic W (1)
n,φ, we used the

same setup except that we varied the value of β2. To assess the Type I and II error

rates for Wn, we tested the following hypotheses

H0 : β2 = 1 and H1 : β2 6= 1.

We set β2 at 1.0, 1.2, 1.4, 1.6, and 1.8, respectively. Then, we set n = 40, 80, and 120

and simulated 2000 datasets for each case. The Wald statisticW (1)
n,φ performs reasonably

well for relatively small sample sizes (Table 2.3). The Type I error rates are not too

excessive even for both the 5% and 1% significance levels at n = 40. Increasing the

sample size can increase the statistical power in rejecting the null hypothesis.

Note: In order to demonstrate the performance of our method, we compared it

with more naïve approaches that ignore nonlinearity or deal with it in a simple minded

fashion. One example of such an approach is to compute a Fréchet mean of the observed

response variable, map the responses to the tangent space at this mean, using the

the logarithmic map, then apply a standard (Euclidean) regression framework in the

tangent space, and then map the results back on the manifold via the exponential

map. In Appendix, we provided an example of simulated data which illustrate that

our method outperforms the naïve method in terms of both prediction accuracy and
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estimation efficiency, when the distribution of the responses strongly depends on the

covariates and the covariates have substantial variation.

2.6 Real Data Example - ADNI Corpus Callosum Shape Data

2.6.1 The ADNI Data

Alzheimer’s disease (AD) is a disorder of cognitive and behavioral impairment that

markedly interferes with social and occupational functioning. It is an irreversible, pro-

gressive brain disease that slowly destroys memory and thinking skills, and eventually

even the ability to carry out the simplest tasks. In most people with Alzheimer’s,

symptoms first appear after age 60. AD affects almost 50% of those over the age of 85

and is the sixth leading cause of death in the US.

The corpus callosum (CC), the largest white matter structure in the brain, con-

nects the left and right cerebral hemispheres and facilitates homotopic and heterotopic

interhemispheric communication. It has been a structure of of high interest in many

neuro-imaging studies.of neuro-devlopmental pathology. Individual differences in CC,

and their possible implications regarding interhemispheric connectivity, have been in-

vestigated in last several decades (Witelson 1985, Paul et al. 2007). There is a substan-

tial work suggesting that CC plays an important role in neurological normal individuals

and its integrity in clinical populations diagnosed with AD (Preti et al. 2012, Di Paola

et al. 2010, Lebel et al. 2010).

We consider the CC contour data of ADNI dataset1 “ADNI data are disseminated by

the Laboratory for Neuro Imaging at the University of Southern California. The ADNI

was launched in 2003 by the National Institute on Aging (NIA), the National Institute

1http://adni.loni.usc.edu. Data used in preparation of this thesis were obtained from the
Alzheimer’s Disease Neuroimaging Initiative (ADNI) database. As such, the investigators within
the ADNI contributed to the design and implementation of ADNI and/or provided data but did not
participate in the work presented here. A complete listing of ADNI investigators can be found at:
http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf.

74



of Biomedical Imaging and Bioengineering (NIBIB), the Food and Drug Administra-

tion (FDA), private pharmaceutical companies and non-profitt organizations, as a $60

million, 5-year public-private partnership. The primary goal of ADNI has been to

test whether serial magnetic resonance imaging (MRI), positron emission tomography

(PET), other biological markers, and clinical and neuropsychological assessment can

be combined to measure the progression of mild cognitive impairment (MCI) and early

Alzheimer’s disease (AD). Determination of sensitive and specific markers of very early

AD progression is intended to aid researchers and clinicians to develop new treatments

and monitor their effectiveness, as well as lessen the time and cost of clinical trials. The

Principal Investigator of this initiative is Michael W. Weiner, MD, VA Medical Center

and University of California, San Francisco. ADNI is the result of efforts of many coin-

vestigators from a broad range of academic institutions and private corporations, and

subjects have been recruited from over 50 sites across the U.S. and Canada. The initial

goal of ADNI was to recruit 800 subjects but ADNI has been followed by ADNI-GO

and ADNI-2. To date these three protocols have recruited over 1500 adults, ages 55

to 90, to participate in the research, consisting of cognitively normal older individuals,

people with early or late MCI, and people with early AD. The follow up duration of

each group is specified in the protocols for ADNI-1, ADNI-2 and ADNI-GO. Subjects

originally recruited for ADNI-1 and ADNI-GO had the option to be followed in ADNI-2.

For up-to-date information, see www.adni-info.org.”

The CC shape data were processed for each subject in ADNI Dataset as follows.

We used FreeSurfer package2 (Dale et al. 1999) to process each subject to segment

the T1-weighted MRI. Then the intracranial volume (ICV) information was calculated

from the output of FreeSurfer package, while the midsagittal CC area was calculated

in the CCseg package, which is measured by using subdivisions in Witelson (1989)

2http://surfer.nmr.mgh.harvard.edu/
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Table 2.4: Demographic information about processed ADNI CC shape dataset, includ-
ing disease status, age, and gender.

Disease Range of age Gender
status Num. in years(mean) (female/male)

Normal Healthy Control 223 62-90 (76.25) 107/116
AD 186 55-92 (75.42) 88/98

motivated by neuro-histological studies. Finally, each T1-weighted MRI image and

tissue segmentation were used as the input files of CCSeg package to extract the planar

CC shape data, which contains 50 landmarks.

Our problem of interest is to investigate the association between the shape of the

CC contours and Euclidean covariates, including gender, age, and AD diagnosis.

2.6.2 Intrinsic Regression Model

We processed the CC shape data for each of the 409 subject in the ADNI dataset

as follows. Each planar CC contour data contain 50 landmarks. The demographic

information about the processed CC shape data set is presented in Table 2.4.

We are interested in whether the CC shape information is a promising bio-marker

for the diagnosis of AD and may provide a clue to the topological spread of disease.

We investigate that by using regression models for the Kendall’s planar shape space,

described in Section 2.4.4. The dataset we work with contains one observation for each

of the n = 409 subjects. Each observation consists of a CC planar contour Yi with 50

landmarks, as the response variable, and a vector (xi,1, xi,2, xi,3)> of three covariates:

gender (xi,1 = 0 -female, 1 - male), age (xi,2), and diagnosis (xi,3 = 0 -normal, 1 - AD),

i = 1, . . . , 409. For computational reason, we pre-processed the responses to reduce the

number of landmarks, so the dimensionality of the Kendall’s planar shape is reduced

too. We subsampled the CC contours by keeping every other landmark and those with

the top 20 variance and/or top 25 curvature, which resulted in k=32 landmarks. Each

CC contour Yi is specified as a k × 2 real matrix, each row representing the planar
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coordinates of a landmark in R2 on the CC contour for the i-th subject. Each such Yi

can be regarded as a complex vector Zi in C32, via the standard identification R2 ∼= C,

Zi = Yi,1 + jYi,2. After removing the translations and normalizing to the unit 2-norm,

each CC contour Yi can be view as an element zi ∈ D32, and after removing the 2D-

rotations, as an element yi ∈ Σ32
2
∼= CP 30, yi = [zi] (see Section 2.4.4). Note that here

k = 32. Thus, dimRΣ32
2 = 60 and dimCΣ32

2 = 30.

We consider a model like (2.37) with gender, age, diagnosis, and the age*diagnosis

interaction as covariates. First, we standardized the covariates x1, x2, and x3, and set

xi,4 = xi,2 ∗ xi,3, and xi = (xi,1, xi,2, xi,3, xi,4)>, i = 1, . . . , n. Here dx = 4. Initially,

we started with the base point p0 = [z0] and the orthonormal basis {Z1, . . . , Z30} for

Tp0Σ
32
2 as defined in Section 2.4.4, below Eq. (2.32). As the parameter estimates

depends on the choice of the base point, later, we redefined it “closer” to the data.

First, we projected the responses yi’s onto the tangent space Tp0Σ
32
2 via the logarithmic

map Logp0
. Then, in the tangent space, we computed the mean of those projections,

and we projected it back onto the manifold Σ32
2 via Expp0

. This new point is used to

redefine the base point p0. As for the orthonormal basis for the tangent space at the

new base point, we just rotate the initial basis to the new location via the tangent

map of the 2D-unitary map Up0,initial,p0,new (see Eq. (2.35)), which is in fact the parallel

transport of the basis at the initial base point along the geodesic path from the initial

base point to the the new one. The model parameters are (q,β) ∈ Σ32
2 × R240 (here,

dβ = 240). The intercept q is specified by q = φ−1
p0

(t) := Expp0

(∑30
`=1(t2`−1 + jt2`)Z`

)
,

t = (t1, . . . , t60)> ∈ R60.This φp0 is the normal chart centered at p0 defined by the

(complex) orthonormal basis {Z1, . . . , Z30} for Tp0Σ
32
2 , as defined in (2.30) and (2.31).

The regression coefficients β = (β(g)>,β(a)>,β(d)>,β(ad)>)>, with β(g) = (β1, . . . , β60)>

corresponding to the gender covariate, β(a) = (β61, . . . , β120)> corresponding to the age,

β(d) = (β121, . . . , β180)> corresponding to the diagnosis, and β(ad) = (β181, . . . , β240)>
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corresponding to the interaction age*diagnosis. Actually, the model has 300 parameters

to be estimated, namely, (t>,β>)> ∈ R300. We denoted

B =


β1 + jβ2 β61 + jβ62 β121 + jβ122 β181 + jβ182

...
...

...
...

β59 + jβ60 β119 + jβ120 β179 + jβ180 β239 + jβ240

 ∈ C30×4.

Each column of B corresponds to a covariate. The function in (2.32) becomes f(xi,β) =

Bxi, and the single-center link function (2.33) is now

µ(xi, q,β) = Expq ([Up0,qZ1, . . . , Up0,qZ30]Bxi) ∈ Σ32
2 .

The intrinsic regression model (2.37) is

E
[
Logp0

(
Up0,µ(xi,q,β)

>
yi

) ∣∣xi] = 0, i = 1, . . . , 409. (2.38)

2.6.3 Results

Note that Σ32
2 is a compact manifold of diameter π. The response data, Yi, i =

1, . . . , 409, lie in an open set of Σ32
2 of diameter less than 0.25. The two farthest away

responses are the CC contours of subjects 130 and 382, a 60-year old AD male and

a 77-year old normal healthy man, respectively. In Stage 1, we calculated the ILSE,

(q̂I , β̂I) = (φ−1
p0

(t̂I), β̂I), with respect to the normal chart φp0 , as defined in Eq. (2.11).

Then, we used it in Stage2, to find the efficient estimator (q̃E, β̃E) = (φ−1
p0

(t̃E), β̃E)

defined in Section 2.3.3, Eq. (2.15).

The intercept estimates q̂I and q̃E are estimates of the sample Fréchet mean of

Yi’s. The two estimates are very close to each other, with dist(q̂I , q̃E) < 0.0005.

The responses are within a distance less than 0.145 from the sample Fréchet mean.
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The estimates β̂I and β̃E of regression coefficients and their standard deviations are

displayed in Figure 2.2. The efficiency gain in Stage II is measured by the relative

reduction in the variances-covariances of βE relative to the to the variances of βI ,

which is shown in Figure 2.3. There is an overall average variance relative reduction

of about 16.77%. For the age ∗ diagnosis interaction coefficients, β(ad), the average

variance relative reduction of about 12.25%, while for the gender coefficients β(g) about

19.98% variance relative reduction.

Figure 2.2: Regression coefficient estimates and their standard deviations from stage I and
stage II.

We have visually checked the estimated rotated residuals in order to ensure the

goodness of fit of our model to the real dataset. The rotated residuals are shown in

Figures 2.4 and 2.5. Visually, we cannot find any outliers in the dataset. However,
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Figure 2.3: The relative reduction in the variances-covariances of βE relative to the to the
variances of βI . In average, there is about a 16.77% relative decrease in variances in average;
12.25% for β(ad) and 19.98% for β(g).

it is very interesting to develop some goodness-of-fit statistics. Technically, diagnostic

measures, such as residuals, to identify potential outliers and high leverage points,

and some residual processes to formally test whether the conditional mean assumption

(2.6) is valid can be developed (Zhu et al. 2009b; 2008). A such work will be part of a

separate paper.

To assess whether there is or not an age dependent diagnosis effect and/or gender

effect on the shape of the CC contour, we performed two sets of hypothesis testings.

First, we tested the null hypothesis H0 : β(ad) = 060 versus the alternative H1 :

β(ad) 6= 060 in both stages I and II. The Wald test statistics are W (ad)
I = 130.00 and
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W
(ad)
E = 98.20, in stage I and II, respectively, and they are χ2

60 distributed. The p-

values are < 0.0001 and 0.001, in stage I and II, respectively. Thus, the test statistics

are significant at both 0.05 and 0.01 levels of significance, in both stages I and II. The

data contains enough evidence to reject the null, that is, to reject that there is no age

dependent diagnosis effect on the shape of the CC contours. The mean age-trajectories

for normal and AD groups within each gender group, based on the stage II estimates,

are shown in Figure. 2.6. A similar graph yields using stage I estimates (not displayed

here). It can be observed that there is a difference in shape along the inner side of

the posterior splenium and isthmus subregions, for subjects age 50-70 in both male

and female groups. The splenium seems to be less rounded and the isthmus thinner in

subjects with AD than in normal healthy subjects. For subjects 75-95, it seems to be

no difference in the shape of CC between AD and normal healthy subjects. The display

is consistent with the result of the above hypothesis testing that there is a significant

age dependent difference in the CC shape between AD and normal subjects.

Second, we tested the null hypothesis H0 : β(g) = 060 versus the alternative H1 :

β(g) 6= 060 in both stages I and II. The Wald test statistics are W (g)
I = 63.78 and

W
(g)
E = 73.34, in stage I and II, respectively, and they are χ2

60 distributed. The p-values

are 0.345 and 0.116, in stage I and II, respectively. Thus, the test statistics are not

significant at the 0.05 level of significance, in both stages I and II. The data does not

contain enough evidence to reject the null, that is, it fails to reject that there is no

gender effect on the shape of the CC contours. The mean age-trajectories for female

and male groups within each diagnosis group, based on the stage II estimates, are shown

in Figure 2.7. A similar graph yields using stage I estimates (not displayed here). The

display shows that at any age (50-95) the CC contours have very similar shapes for

males and females, which is consistent with the results of the hypothesis testing, that

there is no significant gender effect on the CC shape.
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2.7 Discussion

We have developed a general statistical framework for intrinsic regression models

of responses valued in a Riemannian symmetric space in general, and Lie groups in

particular, and their association with a set of covariates in a Euclidean space. The

intrinsic regression models are based on the generalized method of moment estimator

and therefore the models avoid any parametric assumptions regarding the distribution

of the manifold-valued responses. We also proposed a large class of link functions to

map Euclidean covariates to the manifold of responses, including both one-center and

multicenter link functions as special cases. Essentially, the covariates are first mapped

to the tangent bundle to the Riemmanian manifold, and from there further mapped, via

the manifold exponential map, to the manifold itself. We have adapted an annealing

evolutionary stochastic algorithm to search for the ILSE, (q̂I , β̂I), of (q,β), in the

Stage I of the estimation process, and a one-step procedure to search for the efficient

estimator (q̃E, β̃E) in Stage II. Our simulation study for three-dimensional directional

data with covariates demonstrates that the relative efficiency of the Stage II estimator

improves as the sample size increases. We have provided a simulated dataset example

which illustrates that our method outperforms the naïve method in terms of both

prediction accuracy and estimation efficiency, when the distribution of the responses

strongly depends on the covariates and the covariates have substantial variation.

Our regression framework covers various link functions including both one-center

and multicenter link functions as special cases. We believe that our method should

outperform the naïve method in terms of both prediction accuracy and estimation

efficiency, when the distribution of the responses strongly depends on the covariates

and the covariates have substantial variation.

There are still many outstanding issues for further research. One major issue is

to construct goodness-of-fit statistics for testing for possible model misspecifications in
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(2.6). Another important issue is to develop diagnostic measures for assessing the in-

fluence of individual observations in the semiparametric regression for manifold-valued

data. We intend to dedicate future work to study these issues. The current work has

also motivated our interest for developing nonparametric Bayesian regression models

for manifold-valued data.
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Figure 2.4: The plots of the rotated residuals at the first 16 landmarks
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Figure 2.5: The plots of the rotated residuals at the last 16 landmarks
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Figure 2.6: Age-trajectories of the intrinsic mean shapes by diagnosis within each gender
group, based on the stage II parameter estimates.

Figure 2.7: Age-trajectories of the intrinsic mean shapes by gender within each diagnosis
group, based on the stage II parameter estimates.
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CHAPTER 3: LONGITUDINAL DATA ANALYSIS ON RIEMANNIAN
MANIFOLDS

3.1 Introduction

Longitudinal data arises in many applications in which the goal is to understand

changes in individual entities over time. Repeated measurements of anatomical shape

are examples of longitudinal data that takes values in a Riemannian manifold. A

driving application of such data is to characterize anatomical shape changes and to

distinguish between trends in anatomy that are healthy versus those that are due to

disease, adjusted for a set of covariates. The individual shape trajectory is consid-

ered as a perturbation of the mean trajectory for the population. For example, the

computational anatomy, an emerging discipline at the interface of geometry, statistics

and image analysis, aims at modeling and analyzing the biological shape of tissues and

organs. The goal is to estimate representative organ anatomies across diseases, popu-

lations, species or ages, to model the organ development across time (growth or aging),

to establish their variability, and to correlate this variability information with other

functional, genetic or structural information

A longitudinal study tracks changes in individuals by repeatedly collecting mea-

surements over time. Longitudinal studies are popular in medicine, where the goal is to

understand change processes, such as healthy development, aging, or disease progres-

sion. Often, shape is the quantity of interest being tracked. For example, understanding

changes in neuroanatomy is a critical goal in the study of degenerative diseases such as

Alzheimer’s and in developmental disorders such as autism. Longitudinal shape data

also arises in various branches of biology, such as as evolutionary biology, where the
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evolution of the shapes of bones in the fossil record is of interest. The main challenge for

these studies is that shape, i.e., the geometry of an object that is invariant to rotation,

scaling, and translation, is inherently nonlinear and high-dimensional. Because of this,

manifold representations of shape have proven to be effective. Therefore, analysis of

shape changes necessitates the development of models for dealing with manifold-valued

longitudinal data. Such models would also benefit other applications that involve se-

rial collection of manifold data, such as directional data, transformation groups, and

tensors.

Related to the longitudinal data analysis problem is the regression problem. How-

ever, regression does not model individual changes and is not appropriate for analyzing

longitudinal data. Instead, regression models are used for describing cross-sectional

data, where only one data point per individual is available. Several authors have pro-

posed methods for regression on manifolds. Jupp and Kent (1987) proposed an unrolling

method on shape spaces. Regression analysis on the group of diffeomorphisms has been

proposed as growth models by Miller (2004), nonparametric regression by Davis et al.

(2010), and second-order splines by Trouvé and Vialard (2010). Recently, parametric

models of regression, where the regression function is a geodesic curve, have been in-

troduced independently by Fletcher (2013) and Niethammer et al. (2011). Shi et al.

(2012) proposed a semiparametric regression model with multiple covariates for median

representation of subcortical structures. Cornea et al. proposed a general framework

for intrinsic regression models model with multiple Euclidean covariates for Riemannian

symmetric space response data.

Related work in longitudinal analysis includes several approaches in the setting of

diffeomorphic transformations, which form an infinite-dimensional manifold, applied to

image sequences. Durrleman et al. (2009) constructed spatiotemporal image atlases

from longitudinal data. Qiu et al. (2009) used parallel translation to bring individual

88



trajectories to a common point for comparison. Lorenzi et al. (2011) used a hierarchical

model on stationary velocity fields, in a framework that does not include a Rieman-

nian metric on the manifold of diffeomorphisms. An important shortcoming of these

approaches is that they do not model distances between trajectories. This makes it

difficult to compare the differences in trends of two groups, or even to rigorously define

the concept of the variance of a population of trends.

The aim of this work is to extend the framework of intrinsic regression models, pro-

posed by Cornea et al., to fixed and random effect models for the analysis of manifold-

valued measures from longitudinal studies.

3.2 Intrinsic Regression Model

Let (M,m) be an (C∞) RSS of dimension dM and geodesically complete with an

inner product mp and G be a Lie group of isometries acting smoothly and transitively

onM with the identity element e. Let p ∈ M be a base point ofM and ρ = ρ∗M be

the radius of injectivity ofM.

3.2.1 Formulation of Intrinsic Fixed Effect Regression Model

Consider a longitudinal response variable, yi, for the i-th subject, i = 1, . . . , n,

taking values inM. The observed values of the response is denoted yij, corresponding

to the j-th observation of the i-th subject, j = 1, . . . , ri. Let ti be the denote the

independent variable, typically time, with the value tij ∈ R corresponding to the

yij. Let xij = (xij,1, . . . , xij,dx)> be an Euclidean dx-dimensional vector of covariates

corresponding to the i-th subject at the j-th observation. Our objective is to introduce

intrinsic regression models for longitudinal data (yij, tij,xij), i = 1, . . . , n, j = 1, . . . , ri.

When j = 1, (yi1, ti1,xi1) is the data at the baseline for the i-th subject.
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Intrinsic Fixed Effect Model (IFEM). The specification of IFEM involves three key

steps: (i) a link function mapping from the space of covariates to the manifoldM, (ii)

the definition of residual, and (ii) the action of transporting all residuals to a common

space.

First, we explicitly formalize the link function. From now on, all covariates in

xij have been standardized and the times tij have been normalized by the standard

deviation and shifted so that ti1 = 0 represents the time at the baseline. We consider

a single-center link function given by

µ(t,x, q,β) : R×Rdx ×M×Rdβ →M, (3.1)

where µ(t,x, q,β) is a known function, q ∈ M can be regarded as the intercept or

center, and β = (β1, . . . , βdβ)> is a dβ × 1 vector of regression coefficients. Moreover, it

is assumed that µ(t,x, q,β) satisfies

µ(0,0, q,β) = µ(t,x, q,0) = q. (3.2)

When the regression coefficient vector β equals 0, the link function is independent

of time and covariates and thus, it reduces to a single center (or "‘mean"’) q.

Secondly, we introduce the concept of “residual" to ensure that µ(tij,xij, q,β) is the

proper “conditional mean” of yij given tij and xij, which is the key concept of regression

models. Given the points yij and µ(tij,xij, q,β) in M, we define the residual as “ a

difference” between yij and µ(tij,xij, q,β). Assumming that yij and µ(tij,xij, q,β) are

close enough to each other, namely,

dM(yij,µ(tij,xij, q,β)) < ρ.
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Thus, as in the cross-sectional case, Logµ(tij ,xij ,q,β)yij may make it a good candidate to

play the role of “residual.” As these residuals lie on different tangent spaces toM, it

is difficult to carry out a multivariate analysis of these residuals.

Thirdly, sinceM is a Riemannian manifold, this enable us to “transport” all resid-

uals, separately, to a common tangent space, say TpM at a base point p, by using the

parallel transport induced by the metric m. Indeed, the base point p and the point

µij(q,β) := µ(tij,xij, q,β) can be joined inM by a unique geodesic curve γij( · ; q,β),

with unit velocity and satisfying γij(0; q,β) = p and γij(dij; q,β) = µij(q,β), where dij

is the distance inM from p to µij(q,β). Let Γµij(q,β)→p denote the parallel transport

along γij( · ; q,β) from Tµij(q,β)M to TpM.

We define the transported (repositioned) residual of yij ∈M with respect to µij(q,β)

as

E(yij, tij,xij; q,β) = Eij(q,β) = Γµij(q,β)→p(Logµij(q,β)yij) (3.3)

= Lcij(1;q,β)−1∗(Logµij(q,β)yij)

= Logp(cij(1; q,β)−1 · yij) ∈ TpM

i = 1, . . . , n and j = 1, . . . , ri, where cij( · ; q,β) is the one-parameter subgroup of G

such that µij(q,β) = cij(1; q,β) · p, and TpM ≡ RdM via an orthonormal basis. The

intrinsic fixed effects onM is defined by

E[E(yij, tij,xij; q∗,β∗) |xij, tij] = 0, (3.4)

i = 1, . . . , n and j = 1, . . . , ni, where (q∗,β∗) denote the true value of (q,β) and the

distribution is taken with respect to the conditional distribution of yij given tij and xij.

The model is essentially semi-parametric, since we do not restrict the joint distribution

of (y, t,x) except by the conditional moment in (3.4). This IFEM is actually the intrinsic
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model from Section in which the time is incorporated as an additional covariate. Thus,

the same estimation procedure may apply here as well.

Let (q̂, β̂) be an estimator of (q∗,β∗). Then, t → µ(t,x(t), q̂, β̂) is the estimated

mean trajectory at the population level of an individual whose covariates at time t have

the values x(t), while t→ µ(t,x(t), q∗,β∗) is the true trajectory at the population level.

We note that the ILSE (q̂I , β̂I) coincides with the MLE under the assumption that

Eij(q,β)|q,β iid∼ NdM(0, σ2I) in TpM∼= RdM .

3.3 Longitudinal ADNI Corpus Callosum Shape Data Example

We use again the AD study and the CC shape data from the ADNI database, which

were described in Section 2.6.1 above.

3.3.1 Intrinsic Fixed Effects Model

We are interested in characterizing the change of the CC contour shape as a function

of three covariates including gender, age, and AD diagnosis at the baseline and the time

from baseline. We focused on n = 400 subjects with 214 healthy controls (HCs) and 186

AD patients at baseline of the ADNI1 database. We observed a CC planar contour yij

with 32 landmarks, three time independent clinical variables including gender (xi,1 = 0

for female and 1 for male), age (xi,2), and diagnosis (xi,3 = 0 for normal control and

1 for AD) assessed at the baseline, and the times tij measured from the baseline, for

i = 1, . . . , 409, and j = 1, . . . , ni. Here, ni is the number of measurements for the

i-th subjects, which for these data is between 1 and 6. Each subject has at least one

measurement - at the baseline ti1 = 0 - and at most 6 repeated measurements over

a period no longer than 52 months. The demographic information and number of

measurements of these 400 subjects are presented in Table 3.1 and Figure 3.1.

Throughout the rest of the section we use the notation and definitions for Sections
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Table 3.1: Demographic information about processed longitudinal ADNI CC shape
dataset, including disease status, age, gender, and number of measurements.

Disease Range of age Gender Range of # of
status Num. in years(mean) (female/male) measurements (mean)

Healthy Control (HC) 214 62-90 (76.09) 107/107 1-6 (3.79)
AD 186 55-92 (75.42) 88/98 1-4 (2.90)

Figure 3.1: Longitudinal ADNI Date: Histogram of the number of measurements.

2.4.4 and 2.6.2.

We consider an intrinsic fixed effects regression model with yij ∈ Σ32
2 as a re-

sponse vector shape and a vector of four covariates including gender, age, diagnosis,

age*diagnosis, time, time*age, and time*diagnosis, that is,

xij = (xi,1;xi,2;xi,3;xi,4, xij,5, xij,6, xij,7)T with xi,4 = xi,2xi,3, xij,5 = tij, xij,6 = tijxi,2,

and xij,7 = tijxi,3. We used a single-center link function with model parameters

(q,β) ∈ Σ32
2 × R420 as follow (here, dβ = 420). The intercept q is specified by

q = φ−1
p0

(τ ) := Expp0

(∑30
`=1(τ2`−1 + jτ2`)Z`

)
, where τ = (τ1, . . . , τ60)> ∈ R60. The

regression coefficients β includes seven 60 × 1 subvectors β(g), β(a), β(d), β(ad),β(t),

β(ta), and β(td), which correspond to xij,1, . . . , xij,6, and xij,7, respectively. Therefore,

93



there are 480 unknown parameters in (τ>,β>)> ∈ R480. We define a 30 × 7 complex

matrix as

B =


β1 + jβ2 β61 + jβ62 . . . β361 + jβ362

...
...

...
...

β59 + jβ60 β119 + jβ120 . . . β419 + jβ420

 ∈ C30×7.

The single-center link function is given by

µ(tij,xi, q,β) = Expq ([Up,qZ1, . . . , Up,qZ30]Bxij) ∈ Σ32
2 .

Finally, our intrinsic fixed effect regression model is defined by

E
[
Logp

(
U
T

p,µ(tij ,xi,q,β) yi

) ∣∣xi, tij] = 0 for i = 1, . . . , 400, j = 1, . . . , ni. (3.5)

3.3.2 Results

Recall that Σ32
2 is compact and its diameter is π. The 1352 response data, yij,

i = 1, . . . , 400, j = 1, . . . , ni, lie in an open subset of Σ32
2 of diameter less than 0.26.

The within-subject response data sets have diameter ranging between 0 and 0.1155,

with mean and median equal to 0.0382 and 0.0380, respectively. The maximum di-

ameter occurs for the 285-th subject, who is a 71-year old normal HC female with 4

measurements, at the baseline and 14, 25, and 37 months later, respectively. Among

the AD subjects, the largest diameter of within-subject response data is 0.1041, and

it occurs for the 185-th subject, who is a 87-year old AD male with 3 measurements,

at the baseline, and 7 and 13 months. The average follow-up period of time is about

22.11 months, with the maximum of 52 months.

Initially, we fitted the expanded model of (3.5) which includes the three-way inter-

action time*age*diagnosis. We found out that the effect of that term is non-significant
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and we remove it from the model. We ended up fitting the model (3.5). We calculated

the efficient estimator (q̃, β̃) = (φ−1
p0

(τ̃E, β̃E) defined in Section 2.3.3, Eq. (2.15). The

intercept estimate q̃ is an estimate of the Fréchet mean of yij’s, and distance between

them is less than 0.0004. The responses are within a distance less than 0.15 from

the sample Frëchet mean, and in an average distance of 0.057. The estimates β̃ of

the regression coefficients and their standard deviations are shown in Figure 3.2. The

estimated covariance matrix of β̃E is shown in Figure 3.3.

Figure 3.2: Longitudinal ADNI Data: Estimated regression coefficients and their standard
deviations.

We have visually inspected the standardized estimated rotated residuals in order to
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Figure 3.3: Longitudinal ADNI Data: Estimated regression coefficients and their standard
deviations.

ensure the goodness-of-fit of our model to the real data. The standardized estimated

rotated residuals are shown in Figures 3.4 and 3.5. Visually, we cannot find ant outlier

in the dataset.

To assess whether there are or not age dependent time and/or diagnosis dependent

effects and/or age dependent diagnosis effect on the shape of the CC contour, we

performed several sets of hypothesis testings. First, we tested the null hypothesis

H0 : β(ta) = 060 versus the alternative H1 : β(ta) 6= 060. The Wald test statistic is

W (ta) = 73.77 and it is χ2
60 distributed. The p-values are 0.109. Thus, the test statistic
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is not significant at both 0.05 and 0.01 levels of significance. There is not enough

evidence in the data to reject the null, that is, that these data do not provide evidence

that there is an age dependent time effect on the shape of the CC contours. One reason

for that it might be the relative short follow-up period and few subject-measurements.

Second, we tested the null hypothesis H0 : β(td) = 060 versus the alternative H1 :

β(td) 6= 060. The Wald test statistic is W (td) = 83.2 and it is χ2
60 distributed. The

p-values are 0.024. Thus, the test statistic is significant at 0.05, but not at 0.01, level

of significance. The data contains enough evidence to reject the null, that is, to reject

that there is no diagnosis dependent time effect on the shape of the CC contours.

Third, we tested the null hypothesis H0 : β(ad) = 060 versus the alternative H1 :

β(ad) 6= 060. The Wald test statistic is W (td) = 80.12 and it is χ2
60 distributed. The

p-values are 0.042. Thus, the test statistic is significant at 0.05, but not at 0.01, level

of significance. The data contains enough evidence to reject the null, that is, to reject

that there is no age dependent diagnosis effect on the shape of the CC contours.

Based on these tests, the data show enough evidence to conclude that the AD

subject trajectories at the population level have a CC shape that depends of the age

at the baseline and the CC shape changes over time.

To illustrate the subject-trajectories of conditional means at the population level,

we selected three subjects, the one with the most spread responses overall (who is a

normal HC female), the one with the most spread responses within the AD group (who

is a male), and one of those that have the largest number, 6, of measurements (who is

normal HC male). At the top of Figures 3.6, 3.7, and 3.8, there are shown the trajec-

tories of the subject and his/her would-be opposite diagnosis counterpart subject, i.e.

an hypothetical subject who has the same covariate values, but for diagnosis which is

the opposite one. We see that there is a diagnosis effect on the evolution of the condi-

tional mean shapes over time, adjusted for all the other baseline covariate at the same
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values. At the bottom of Figures 3.6, 3.7, and 3.8 there are displayed the conditional

mean shapes at the time of measurements together with the observed response shapes.

Visually, we observed a large variability between the within-subject response and the

corresponding conditional mean at the population level. These suggest the need to

account for subject specific random-effects. In this ongoing research, the next aim is

to define the framework of intrinsic random-effects models (IREM) for manifold data.

3.4 Simulation Study

We generate 3-D directional longitudinal data with random effects, (yij, xij, tij) ∈

S2 × R × [0,∞), i = 1, . . . , n, j = 1, . . . , ni, as follows. Let p = (0, . . . , 0,−1) ∈ S2

be the “South” pole. We set f(xij, tij,β) = B(xij, tij)
>, in which xij ∈ R, tij ∈ [0,∞),

and B =
[
β1 β3
β2 β4

]
, and q = (u, v, w) ∈ S2 \ {−p}. The subject conditional mean at

the population level is defined by µ(tij, xij, q,β) = T−1
st,q

(
Rp,q[(f(xij, tij,β)>,−1)>]

)
.

We set m the maximum number of observations per subject. We independently sim-

ulate xi, i = 1, . . . , n, from the standard normal distribution N(0, 1), and ni’s as

numbers between 1 and m. Each subject has at least one observation (at the base-

line) and no more than m observations. For each subject i, we set ti1 = 0, the

time at the baseline, and we randomly sample without replacement ni − 1 numbers

from {s/(m − 1) : s = 1, . . . ,m − 1}, sort them in increasing order, and label them

ti2, . . . , ti,ni , if ni > 1. For each j = 1, . . . , ni, we set xij = xi, i.e. xij is a time-

independent covariate; its value is set at the baseline. We fix the true values of (q,β)

to be (q∗,β∗) = ((2/3, 2/3, 1/3)>, (1, 1, 1, 1)>). The chart φ, given by the stereographic

projection from the “North” pole, −p, yields the parametrization τ1 = u/(1 − w) and

τ2 = v/(1− w), and thus q∗ corresponds to τ∗ = (1, 1)>. We independently generated

Vi’s in R6 from the multivariate normal distribution N6 (0, 0.1 (I3 ⊗ [ 1 0.2
0.2 1 ])) and set

the random effects Ui = (Vi,1 +Vi,3xi +Vi,5tij,Vi,2 +Vi,4xi +Vi,6tij,−1)> ∈ TpS
2, rotate
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Table 3.2: Bias (×10−2) and MS(×10−2) of (t̂I , β̂I) and (t̂E, β̂E). Bias denotes the bias
of the mean of the estimates; MS denotes the root-mean-square error.

n = 40 n = 80
Bias MS Bias MS

I τ1 2.94 6.13 0.55 4.04
E 2.69 5.15 0.32 3.45
I τ2 1.69 6.34 -0.28 5.05
E 1.56 5.71 -0.06 4.91
I β1 3.05 8.12 1.15 7.25
E 3.29 8.02 0.90 6.11
I β2 -0.39 9.68 -1.00 7.18
E 0.10 10.11 -0.47 6.44
I β3 -0.22 7.55 0.08 4.97
E 0.36 7.09 -0.05 4.57
I β4 0.73 6.80 -1.31 5.89
E 1.68 6.81 -0.99 5.10

them onto Tµ(tij ,xij ,q∗,β∗)S
2, and then map them on the S2 via the inverse stereographic

projection from −µ(tij, xij, q,β) to calculate the subject-specific conditional mean

η(tij, xij, q,β,Ui). Finally, we generate the error measurements residuals Eoij from the

distribution N2 (0, 0.2 [ 1 0.2
0.2 1 ]) on TpS

2, rotate them onto Tη(tij ,xij ,q∗,β∗,Ui)S
2, and then

map them on the S2 via the inverse stereographic projection from −η(tij, xij, q∗,β∗,Ui)

to calculate the responses yij. We set n=40,80 and m=8 in order to examine the finite

sample performance of the parameter estimates.

We compared the biases and the root-mean-square errors of the two estimates

(τ̂I , β̂I) and (τ̃E, β̃E). As seen in Table 3.2, τ̃E and β̃E have smaller root-mean-square

errors than τ̂I and β̂I for every component of τ and β, respectively, confirming that

(τ̃E, β̃E) is more efficient.
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Figure 3.4: Longitudinal ADNI Data: The plots of the rotated residuals at the first 16
landmarks
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Figure 3.5: Longitudinal ADNI Data: The plots of the rotated residuals at the last 16
landmarks
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Figure 3.6: Top: Conditional mean trajectories of a 71-year old normal HC female and her
would-be AD counterpart subject. Bottom: The conditional mean and observed shapes at the
measurement times.
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Figure 3.7: Top: Conditional mean trajectories of a 87-year old AD male and his would-be HC
counterpart subject. Bottom: The conditional mean and observed shapes at the measurement
times.
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Figure 3.8: Top: Conditional mean trajectories of a 71-year old normal HC male and his
would-be AD counterpart subject. Bottom: The conditional mean and observed shapes at the
measurement times.
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Figure 3.9: Longitudinal Simulation Study: Plots of the “true” and estimated fixed effect
trajectories for a subject, based on the longitudinal simulated data on S2.
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CHAPTER 4: ASSESSING TEMPORAL AGREEMENT BETWEEN
CENTRAL AND LOCAL PROGRESSION-FREE SURVIVAL TIMES

4.1 Introduction

Progression-free survival (PFS) has been a key endpoint to support licensing ap-

proval in some cancer settings (e.g. FDA (2007)). PFS is generally defined as the time

from randomization until disease progression (PD) or death. In oncology clinical trials,

radiologic tumor assessments are usually performed at pre-defined intervals until PD as

determined by an investigator. When PFS is the primary or co-primary endpoint, it is

recommended to have tumor assessments verified by an independent review committee

(IRC) blinded to study treatments, especially in open-label studies (see FDA (2007)).

The primary analysis of PFS for these studies may be based on the IRC’s evaluation

and a sensitivity analysis may be performed using the investigators’ evaluation, or vice

versa. It is generally considered reassuring about the lack of reader-evaluation bias if

treatment effect estimates from the investigators’ and IRC’s evaluations agree.

Historically, less attention has been paid to the agreement (or disagreement) between

the tumor assessments by the investigators and the IRC itself, compared to its impact on

the treatment effect estimate. The agreement is of interest for several reasons. First, an

agreement in treatment effect estimates does not necessarily mean the individual time-

to-event times are the same or close. As pointed out in Amit et al. (2011), hazard ratio

estimates based on the investigators’ and IRC’s evaluations were highly concordant in

their meta-analysis, but there existed a marked degree of individual patient discordance

in the timing or occurrence of PD. In an extreme case, when the PD time by the IRC’s

evaluation and the investigators’ evaluation differ by a constant for all subjects, the
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treatment effects measured by the hazard ratio are identical from both data sources,

even though the evaluations of PD times never agree. Second, the median PFS time by

treatment arm is often of great interest to clinicians. In the aforementioned extreme

case, the median PFS times differ by the same constant between two data sources, in

either treatment arm. Last, it is widely recognized that the investigators’ evaluation

of PD is potentially biased when the patients’ treatment assignments are known to the

investigators. Although the IRC is blinded to study treatments, and hence expected

to reduce observation bias in the investigators’ evaluation, results of the IRC’s review

may be subject to a new bias introduced by a special type of informative censoring:

in many clinical trials, tumor assessments are discontinued when PD is determined by

investigators, which precludes an IRC evaluation of PD in subsequent assessments. The

IRC’s evaluation of PD can be dependently censored by the investigator’s evaluation of

PD, which results in the IRC’s evaluation of PFS be dependently censored if death is

not further observed for the subject. Hence, informative censoring occurs for the IRC’s

evaluation of PFS endpoint. In this paper, we refer to this type of informative censoring

as Reader Censoring (RC). Therefore, it is desirable to have a measure that can directly

quantify the agreement between the IRC’s and the investigators’ evaluations, and also

develop a robust estimator of an agreement measure in the presence of RC.

There are several agreement measures for assessing dependence or agreement for

censored bivariate time-to-event data in the literature. The rank-based Kendall’s co-

efficient of concordance τ (Section 4.2, Hougaard (2000)) is a measure of overall de-

pendence. It is simple and can be estimated non-parametrically for censored data, but

does not measure the degree of agreement at a single time point. In the aforementioned

extreme case, the data achieves the maximum value of Kendall’s τ , even though there

is no agreement of PD time at all. Liu et al. (2005) provided an estimation method of

the concordance correlation coefficient for time-to-event data. It is a correlation type of
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measure and has the same issue as Kendall’s τ . Guo and Manatunga (2009) proposed

a modified weighted kappa coefficient to measure agreement between discrete bivari-

ate survival times, but it requires discretization of continuous outcomes. Amit et al.

(2011) also proposed two discrepancy rates defined as the simple proportion of subjects

whose PD time is strictly greater by a reader than the other. These rates are naïve

approaches by definition and do not fully utilize the temporal nature of time-to-event

data. Guo et al. (2013) proposed a new agreement measure, which is formulated as

the chance-corrected concordance between survival processes on the absolute distance

scale.

In this paper, we propose a new method to assess temporal agreement between

two time-to-event endpoints, where the two event times are assumed to have a posi-

tive probability of being identical. This method measures agreement in terms of the

two event times being identical at a given time or both being greater than a given

time. Overall scores of agreement over a period of time are also proposed. While the

agreement measures are defined based on the underlying distributions of the two time-

to-event endpoints, the proposed estimation method provides unbiased estimates of the

proposed agreement measures (at a given time and overall) in the presence of RC in the

observed data, for example, the IRC’s evaluation of PFS. Although the focus of this

paper is not to assess the impact of this agreement to the estimated treatment effect,

the proposed measures can be applied to combined treatment arms as well as within

each treatment arm to help assess the potential bias in estimating the treatment effect.

The development of our method is motivated by a small phase 2 head and neck

cancer trial. A random subset of all randomized subjects is used here for demonstration

purpose. Among 92 subjects followed-up in the trial, the local assessment yields 82

local PFS events while the central assessment gives 72 events and the number of agreed

events is 35. In this paper, we will apply our development method to assess temporal
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agreement of the PFS between the local and central assessments in this trial dataset.

The work presentation in this chapter is organized as follows. In Section 4.2, we

present the methodology and notation for the underlying two time-to-event distribu-

tions. Furthermore, we propose time-varying agreement measures to assess the tem-

poral agreement between two time-to-event endpoints. In Section 4.3, we propose a

mixture bivariate survival model and, in Section 4.4, we describe an EM algorithm to

estimate the agreement measures induced by this model. Section 4.5 studies the small-

sample performance of the proposed methods through extensive simulation studies. A

real data example from the aforementioned head and neck cancer study is analyzed in

Section 4.6. Finally, we conclude with a discussion in Section 4.7.

4.2 Time-Varying Agreement Measures

Let Tc and Tl denote the two time-to-event endpoints under consideration (e.g. PFS

per central and local assessment). The idea of defining an agreement measure is such

that the analysis results based on comparing the hazard rates of the two event times

should indicate similarity when the agreement between the two event times is high. In

censored data analysis, the estimates of the hazard ratios, for example, fitting the Cox

proportional hazards model or performing log-rank tests, are fully dependent on the

behavior of the subjects at risk at each time t. In other words, the analysis relies on

sufficient information regarding the number of events and the number of subjects at

risk at any time t. Therefore, if Tl and Tc agree perfectly, we expect (pretending Tl and

Tc to be discrete)

P (Tl = t) = P (Tc = t), P (Tl ≥ t) = P (Tc ≥ t),

or equivalently,

P (Tc = t|Tl = t) = 1, P (Tc > t|Tl > t) = 1.
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This motivates us to define the following two time-varying agreement measures:

pA(t) = P (Tc = t|Tl = t), nA(t) = P (Tc > t|Tl > t).

The above two quantities can be interpreted in terms of sensitivity and specificity as

well. Given that the local event has not occurred prior to time t, at time t, Tl either

occurs (“disease”) or not (“non-disease”). Treating Tc as a diagnostic measure, we then

observe that pA is the sensitivity measure while nA is the specificity measure in the

usual medical diagnostic context.

We vary time t from 0 to the maximum follow-up time TE to obtain the curves pA(t)

and nA(t). For practical purpose, it will be convenient to use a summary quantity of

the curves to assess an overall agreement between the two types of events. To this end,

we define the weighted area under these curves, denoted wAUC(pA) and wAUC(nA),

respectively, by

wAUC(pA) =

ˆ TE

0

pA(t)fTl(t)dt

/ˆ TE

0

fTl(t)dt ,

wAUC(nA) =

ˆ TE

0

nA(t)fTl(t)dt

/ˆ TE

0

fTl(t)dt ,

where fTl(t) is the probability density function of Tl. The areas wAUC(pA) and

wAUC(nA) can be used to measure the overall agreement. The measure wAUC(pA)

over the entire follow-up period of time is actually the agreement probability P (Tc = Tl).

4.3 Mixture Models for Estimating Time-Varying Agreements

To estimate the time-varying agreement measures pA(t) and nA(t) using censored

data, we introduce a mixture model for the bivariate distribution of (Tc, Tl). Specifically,

we assume that there is some positive chance for Tc and Tl to match. We define the
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agreement probability as p = Pr(Tc = Tl) and assume p > 0. Thus, we model the joint

distribution by considering two different situations: given Tc = Tl, Pr(Tc > t|Tc = Tl) =

S(t); while given Tc 6= Tl, we assume (Tc, Tl) follows a continuous bivariate distribution

with cumulative distribution function (CDF) denoted by Q(t, s). Therefore, for any t

and s with t ≤ s, we can write down the joint distribution for (Tc, Tl) as

Pr(Tc ≤ t, Tl ≤ s) = Pr(Tc ≤ t, Tl ≤ t, Tc = Tl) + Pr(Tc ≤ t, Tl ≤ s, Tc 6= Tl)

= p [1− S(t)] + (1− p)Pr(Tc ≤ t, Tl ≤ s|Tc 6= Tl)

= p [1− S(t)] + (1− p)Q(t, s).

By symmetry, for any t and s,

Pr(Tc ≤ t, Tl ≤ s) = p [1− S(min(t, s))] + (1− p)Q(t, s).

Another way of understanding this distribution is to introduce a latent Bernoulli vari-

able B = I(Tc = Tl). Then, given B = 1, Tc = Tl follows the distribution 1−S(t) while

given B = 0, (Tc, Tl) follows the distribution Q(t, s). This latent variable will be useful

for developing the EM algorithm for empirical estimation later.

With practical sample sizes, estimating S(t) non-parametrically may not be numer-

ically stable. On the other hand, estimating Q(t, s) nonparametrically is not feasible

if there exists RC in the observed data. Therefore, in the following development,

we will adopt a general class of parametric distributions for the estimation. Specifi-

cally, we will use the Weibull distribution to model S(t) while assume Q(t, s) to be

from a copula distribution (e.g. see Joe (1997), Durante and Sempi (2010)). We

take S(t) = exp [−(λ0t)
α0 ], which is the survival function of the Weibull distribution

Weibull(α0, λ0), with shape parameter α0 and inverse scale parameter λ0. We assume

Q(t, s) is from the following copula distribution: the CDFs of the marginal distributions
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of Tl and Tc given Tl 6= Tc are 1 − exp [−(λlt)
αl ] and 1 − exp [−(λct)

αc ], respectively;

the joint distribution of Tl and Tc is given as

{
Φ−1

(
1− e−(λcTc)αc

)
,Φ−1

(
1− e−(λlTl)

αl
)}
∼ N

(
0,
[

1 ρ
ρ 1

])
,

where Φ(·) is the CDF of the univariate standard normal distribution and ρ describes

their correlation. For this setting, we obtain

Q(t, s) = P
(
Z1 ≤ Φ−1

(
1− e−(λct)αc

)
, Z2 ≤ Φ−1

(
1− e−(λls)

αl
))
,

where (Z1, Z2) follows the above bivariate normal distribution.

With the above distributions, we can easily calculate the proposed time-varying

agreement measures as

pA(t) =
pfα0,λ0(t)

pfα0,λ0(t) + (1− p)fαl,λl(t)

=
pα0λ0(λ0t)

α0−1e−(λ0t)α0

pα0λ0(λ0t)α0−1e−(λ0t)α0 + (1− p)αlλl(λlt)αl−1e−(λlt)
αl
,

and

nA(t) =
pSα0,λ0(t) + (1− p) [Sαl,λl(t) + Sαc,λc(t)− 1 +Q(t, t)]

pSα0,λ0(t) + (1− p)Sαl,λl(t)

=
pe−(λ0t)α0 + (1− p)

[
e−(λlt)

αl + e−(λct)αc − 1 +Q(t, t)
]

pe−(λ0t)α0 + (1− p)e−(λlt)
αl

,

where fα,λ(t) and Sα,λ(t) are the density and, respectively, the survival functions of the

Weibull distribution Weibull(α, λ).

As an illustrative example, we use some distribution settings from the simulation

section and plot the curves of these agreement measures in Figure 4.1, where we fix

ρ = 0.5 while varying p = 0, 0.2, 0.4, 0.6, 0.8, 1, or we fix p = 0.5 while varying ρ,
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ρ = 0, 0.2, 0.4, 0.6, 0.8, while all the other parameters are set to the values in Tables

4.1 & 4.2. Values for pA and nA at selected times are also given in Tables 4.1 & 4.2.

Furthermore, we plot the weighted area under the curves from 0 to TE, where TE varies

from 0.5 to 3.0, p = 0.2, 0.4, 0.6, 0.8, and ρ = 0.5, in Figure 4.2. For comparison, we

also plot the Kendall’s τ values over [0, TE]. Values for wAUC(pA) and wAUC(nA)

for selected TE’s are also given in Table 4.3. Tables 4.1 and 4.2 and Figure 4.1 show

that for given TE, pA(t) and nA(t) vary over time. Table 4.3 and Figure 4.2 show that

by varying TE, wAUC(pA) and wAUC(nA) vary as well and become flat after most

events have occurred.

4.4 Observed Likelihood and Inference

In general, the observed data from n i.i.d subjects are

(Yci = min(Tci, Cci), Yli = min(Tli, Cli),∆ci,∆li), i = 1, ..., n, (4.1)

where Cci and Cli are the respective censoring times for Tci and Tli, ∆li = I(Tli ≤ Cli),

and ∆ci = I(Tci ≤ Cci). We can allow the situation when the RC is present, in which

case the observed data are

(Yci = min (Tci,min(Cci, {(1−∆li)∞+ ∆liTli})) , Yli = min(Tli, Cli),∆ci,∆li), (4.2)

i = 1, . . . , n, where Cci and Cli are the respective censoring times for Tci and Tli,

∆li = I(Tli ≤ Cli), and ∆ci = I(Tci ≤ min(Cci, {(1−∆li)∞+ ∆liTli}). Here, we use the

convention 0 · ∞ = 0.

Assuming that (Cci, Cli) is noninformative for the joint distribution of (Tci, Tli),

we can write down the observed likelihood function as follows. In the case of data

without RC, for a given observation (yci, yli, δci, δli), the likelihood contributions from

113



Figure 4.1: Plots of the curves of the agreement measures pA and nA. Top: ρ = 0.5
fixed and p varying, p = 0, 0.2, 0.4, 0.6, 0.8, 1; bottom: p = 0.5 fixed and ρ varying,
ρ = 0, 0.2, 0.4, 0.6, 0.8; all other parameters being set to the values as in Tables 4.1 &
4.2, and TE = 3.0.
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Figure 4.2: Plots of the areas, wAUC(pA) and wAUC(nA), under the agreement
measure curves pA and nA, respectively, and the Kendall’s coefficient of concordance
τ .
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each subject are from one of four groups:

(δci = 1, δli = 1) : Pr(Tc = yci, Tl = yli)Pr(Cc ≥ yci, Cl ≥ yli),

(δci = 1, δli = 0) : Pr(Tc = yci, Tl > yli)Pr(Cc ≥ yci, Cl = yli),

(δci = 0, δli = 1) : Pr(Tc > yci, Tl = yli)Pr(Cc = yci, Cl ≥ yli), (4.3)

(δci = 0, δ1i = 0) : Pr(Tc > yci, Tl > yli)Pr(Cc = yci, Cl = yli).

In the case of data with RC, it comes from one of the following four groups:

(δci = 1, δli = 1) : Pr(Tc = yci, Tl = yli)Pr(min(Cc, yli) ≥ yci, Cl ≥ yli),

(δci = 1, δli = 0) : Pr(Tc = yci, Tl > yli)Pr(Cc ≥ yci, Cl = yli),

(δci = 0, δli = 1) : Pr(Tc > yci, Tl = yli)Pr(min(Cc, yli) = yci, Cl ≥ yli), (4.4)

(δci = 0, δ1i = 0) : Pr(Tc > yci, Tl > yli)Pr(Cc = yci, Cl = yli).

It is clear from the above likelihood formulation that no matter if the censoring is RC

or even partially RC (i.e., only some central events may be censored by local events),

we only need the likelihood from the observed local/central events to make inference

about the agreement measures.

Specifically, we maximize the observed likelihood function where the part concerning

the joint distribution of (Cc, Cl) can be dropped. The maximization can be carried out

via the EM algorithm by treating the latent status, Bi = I(Tci = Tli) as missing data.
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Then the complete-data likelihood function for the above expression corresponds to:

(δci = 1, δli = 1) : {p f(yli)}Bi{(1− p)q(yci, yli)}1−Bi ,

(δci = 1, δli = 0) : {p f(yci)}Bi
{

(1− p)
ˆ
v>yli

q(yci, v)dv

}1−Bi
, (4.5)

(δci = 0, δli = 1) : {p f(yli)}Bi
{

(1− p)
ˆ
u>yci

q(u, yli)du

}1−Bi
,

(δci = 0, δ1i = 0) : {p S(max(yci, yli))}Bi {(1− p)Qc(yci, yli)}1−Bi ,

where f(t) is the derivative of −S(t), q(u, v) is ∂2Q(u, v)/∂u∂v, and Qc(t, s) is the

probability P (Tc > t, Tl > s), which is equal to 1 − Q(t,∞) − Q(∞, s) + Q(t, s). The

complete-data log-likelihood function becomes

∑n
i=1 δciδli {Bi log f(yli) + (1−Bi) log q(yci, yli)}

+
∑n

i=1 δciδli {Bi log p+ (1−Bi) log(1− p)}

+
∑n

i=1 δci(1− δli)
{
Bi log f(yci) + (1−Bi) log

´
ν>yli

q(yci, ν)dν
}

+
∑n

i=1 δci(1− δli) {Bi log p+ (1−Bi) log(1− p)}

+
∑n

i=1(1− δci)δli
{
Bi log f(yli) + (1−Bi) log

´
µ>yci

q(µ, yli)dµ
}

(4.6)

+
∑n

i=1(1− δci)δli {Bi log p+ (1−Bi) log(1− p)}

+
∑n

i=1(1− δci)(1− δli) {−Bi logS(max(yci, yli)) + (1−Bi) logQc(yci, yli)}

+
∑n

i=1(1− δci)(1− δli) {Bi log p+ (1−Bi) log(1− p)} .

For the E-step, we calculate the posterior probability of Bi = 1, denoted by pi,
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given the observed data as follows:

δci = 1, δli = 1 : pi = I(yci = yli);

δci = 1, δli = 0 : pi =
I(yli < yci)f(yci)p

I(yli < yci)f(yci)p+
´
ν>yli

q(yci, ν)dν(1− p)
; (4.7)

δci = 0, δli = 1 : pi =
I(yci < yli)f(yli)p

I(yci < yli)f(yli)p+
´
µ>yci

q(µ, yli)dµ(1− p)
;

δci = 0, δli = 0 : pi =
S(max(yci, yli))p

S(max(yci, yli))p+Qc(yci, yli)(1− p)
.

For the M-step, we estimate the parameters in S(t) by maximizing

∑n
i=1 pi {δciδli log f(yli) + δci(1− δli) log f(yci) + (1− δci)δli log f(yli)

+(1− δci)(1− δli) (− logS(max(yci, yli)))} , (4.8)

and the parameters in Q(u, v) by maximizing

n∑
i=1

(1− pi)
{
δciδli log q(yci, yli) + δci(1− δli)

ˆ
ν>yli

q(yci, ν)dν

+ (1− δci)δli
ˆ
µ>yci

q(µ, yli)dµ+ (1− δci)(1− δli) logQc(yci, yli)

}
. (4.9)

We estimate p by
∑n

i=1 pi/n. We iterate between the E- and M-steps until convergence.

For inference, the information is calculated based on the Louis (1982) formula and its

inverse is used as the sample estimate of the asymptotic covariance of the maximum

likelihood estimators.

4.5 Simulation Study

We conducted two sets of simulations, one for data with RC and the other for

data without RC, to evaluate the accuracy of the parameter estimates, their associated
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variance estimates, and the estimates of the agreement measures pA(t) and nA(t) for our

proposed method. We also evaluated the performance of the true pA, nA, wAUC(pA),

and wAUC(nA). In addition, we also evaluated the performance of Kendall’s τ and its

estimate. All computations were done in R.

For these sets of simulations, we assume that along the diagonal (i.e., Tc = Tl)

(Tc, Tl) is parametrically modeled by the Weibull distribution with shape parameter α0

and inverse scale parameter λ0, while outside of the diagonal (i.e., Tc 6= Tl), Tc and Tl

marginally follow Weibull distributions with parameters αc, λc and, respectively, αl, λl,

and their joint distribution is modeled by the copula distribution based on the bivariate

normal distribution with zero mean, unit variances, and correlation parameter ρ, as in

the example of Section 4.3. Recall that we denoted the agreement probability, P (Tc =

Tl), by p. For a sample size n, we generated the simulated data as follows. We generated

Bi ∈ {0, 1}, i = 1, . . . , n, independently from Bernoulli(p). The subjects with Bi = 1

have the event times along the diagonal, i.e. Tci = Tli, while those with Bi = 0 have the

event times outside the diagonal, i.e. Tci 6= Tli. Given Bi = 1, the common event time

Tci = Tli is generated as a random sample from a Weibull(α0, λ0) distribution, while

given Bi = 0, (Tci, Tli) is generated so that
(
Φ−1(1− e−(λcTci)

αc
),Φ−1(1− e−(λlTli)

αl )
)

is a random sample from the bivariate normal distribution N2(0,Σ), with Σ =
[

1 ρ
ρ 1

]
.

For the time-to-event without RC scenario, the simulated data (Yci, Yli,∆ci,∆li) are

obtained by censoring Tci and Tli with a single censoring time Ci, i.e. Cci = Cli, and

an end time TE (maximum follow-up time). That is, Yci = min(Tci, Ci, TE), Yli =

min(Tli, Ci, TE), ∆ci = I(Tci ≤ min(Ci, TE)), and ∆li = I(Tli ≤ min(Ci, TE)), i =

1, . . . , n. The censoring times (Ci’s) are independent of the T ’s and independently

distributed from Weibull(αcens, λcens), i = 1, . . . , n. For the time-to-event data with

RC scenario, in addition to the time-to-event data without RC case, the central time

Tci is further censored by the local time Tli, i = 1, . . . , n, as presented in Section 4.4.
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For each simulation setting, we considered sample sizes of n = 100 and 200 and

varied the agreement proportion p from 0.2 to 0.8. Furthermore, we let λ0 = 0.90,

α0 = 1.50, λc = 1.35, αc = 1.20, λl = 1.40, αl = 1.30, and ρ = 0.50. For censoring,

we set αcens = 1.10, λcens = 0.75, and TE = 3.0 resulting in 36.4% to 43.8% censoring

rates. The parametric estimation is based on the Weibull distribution. In each case, we

generated 500 datasets. For each simulated dataset, we applied the EM algorithm to

obtain the maximum likelihood estimators for the model parameters and their standard

errors using the Louis formula. Additionally, we calculated the agreement measures

pA(t) and nA(t), at time points t = 0.5, 1.5, and 2.5. The standard errors for the latter

quantities were obtained using the delta method.

Table 4.1 gives the results from the first simulation setting with RC, and Table

4.2 gives the results from the second simulation setting without RC, where column

“SD” denotes the empirical standard deviations of the obtained estimates, column “SE”

is the estimated standard errors by the Louis formula, and column “CP” is the 95%

coverage probability. Both tables indicate that the proposed estimation and inference

work well in small samples: the biases are small, the estimated standard errors agree

well with the empirical standard deviations, and the coverage probabilities are close to

the nominal level. The coverage probabilities of the estimated pA(t) or nA(t) tend to

be larger for the time point at the tail but are improved when increasing the sample

size. Additionally, for each agreement probability, p = 0.2, 0.6, 0.8, we calculated

the estimates and biases of the weighted areas under the curves, wAUC(pA)(TE) and

wAUC(nA)(TE), of pA and nA respectively, and Kendall’s coefficient of concordance

τ(TE) as functions of the maximum follow-up time TE, in the time-to-event data with

or without RC. The results for maximum follow-up times TE = 0.5, 1.5, 2.5, and 3.0.

are presented in Table 4.3. These results show that the estimates of these values are

quite accurate and that wAUC(pA) approximates the true p for large enough TE when
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most events have occurred.

Finally, we conducted some simulations to examine the robustness of the estimated

pA or nA to the model misspecification. In the simulations, instead of using the cop-

ula model for Q, we used the following distribution. Assume that Tc is marginally

Weibull(αc, λc) distributed and Pr(Tl = Tc|Tc = t) = p(t), where p(t), 0 ≤ p(t) ≤ 1,

for t ≥ 0, is a given probability function. Given Tl 6= Tc, we assume Tl given Tc = t

satisfies Tl = exp(X) where X is normally distributed with mean log(t) and variance

σ2. We set λC = 1.35, αC = 1.2, p(t) = ae−rt, with a = 0.8 and r = 0.4, and σ2 = 0.5.

For this setting, the true value of agreement probability is p = 0.620. For this simu-

lation study, we considered the sample size n = 200, and we generated 500 datasets.

The results are shown in Table 4.4. The biases of wAUC(pA) and wAUC(nA) are still

relatively small, even though the actual joint distribution of (Tc, Tl) given Tc 6= Tl is not

of copula type. The agreement measure nA seems to be more sensitive to this model

assumption than pA when t ≥ 1.

4.6 Head and Neck Cancer Trial

We consider data from a relatively small phase 2 head and neck cancer clinical trial

with n = 92 subjects (a random subset of all randomized subjects for demonstration

purpose). The PFS times (in days) were recorded from two different sources, an IRC’s

evaluation (central) and the investigators’ evaluation (local). The range of the central

PFS is from 0 to 861 days and for the local PFS times is from 0 to 832 days. There are

72 central and 82 local events, respectively. For the purpose of analyzin the data, we

exclude the subjects with zero central time or zero local time or zero both times from

the analysis. There are 89 subjects with nonzero observed times. For the purpose of

this analysis, we rescaled the times-to-event to years, i.e., we divided the event times (in
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Table 4.1: Summary of simulation results from data with RC

n = 100 n = 200
p Par True Mean SD SE CP Mean SD SE CP

0.2 p 0.20 0.201 0.053 0.055 0.96 0.203 0.039 0.039 0.94
λ0 0.90 0.978 0.264 0.307 0.91 0.921 0.165 0.187 0.96
α0 1.50 1.741 0.520 0.526 0.92 1.596 0.298 0.299 0.94
λC 1.35 1.348 0.220 0.225 0.95 1.359 0.156 0.159 0.95
αC 1.20 1.219 0.167 0.164 0.94 1.213 0.112 0.115 0.95
λL 1.40 1.400 0.160 0.166 0.95 1.410 0.124 0.117 0.93
αL 1.30 1.332 0.148 0.146 0.94 1.316 0.101 0.101 0.95
ρ 0.50 0.507 0.130 0.138 0.99 0.499 0.097 0.098 0.95

pA(0.5) 0.161 0.168 0.054 0.058 0.96 0.162 0.038 0.039 0.95
pA(1.5) 0.331 0.312 0.151 0.149 0.99 0.335 0.103 0.101 0.97
pA(2.5) 0.517 0.418 0.314 0.308 0.998 0.479 0.251 0.257 0.99
nA(0.5) 0.771 0.775 0.046 0.044 0.95 0.773 0.032 0.032 0.95
nA(1.5) 0.620 0.611 0.153 0.158 0.96 0.622 0.113 0.114 0.96
nA(2.5) 0.659 0.588 0.284 0.296 0.91 0.619 0.242 0.254 0.89

0.6 p 0.60 0.594 0.063 0.062 0.96 0.597 0.042 0.044 0.97
λ0 0.90 0.925 0.114 0.124 0.95 0.911 0.079 0.082 0.95
α0 1.50 1.544 0.226 0.216 0.94 1.532 0.151 0.148 0.93
λC 1.35 1.385 0.344 0.340 0.94 1.355 0.228 0.234 0.95
αC 1.20 1.277 0.283 0.256 0.92 1.229 0.171 0.169 0.95
λL 1.40 1.438 0.269 0.251 0.92 1.408 0.164 0.175 0.96
αL 1.30 1.365 0.222 0.216 0.92 1.332 0.145 0.147 0.95
ρ 0.50 0.494 0.167 0.211 0.996 0.496 0.131 0.143 0.99

pA(0.5) 0.535 0.529 0.075 0.076 0.96 0.532 0.052 0.054 0.97
pA(1.5) 0.748 0.753 0.118 0.106 0.97 0.749 0.073 0.075 0.96
pA(2.5) 0.865 0.802 0.221 0.182 0.98 0.832 0.148 0.133 0.97
nA(0.5) 0.900 0.900 0.030 0.030 0.96 0.900 0.022 0.022 0.94
nA(1.5) 0.877 0.870 0.094 0.085 0.96 0.874 0.061 0.061 0.96
nA(2.5) 0.913 0.848 0.194 0.164 0.94 0.875 0.138 0.119 0.95

0.8 p 0.80 0.794 0.050 0.051 0.96 0.800 0.037 0.037 0.94
λ0 0.90 0.914 0.095 0.098 0.94 0.904 0.071 0.070 0.95
α0 1.50 1.547 0.189 0.184 0.94 1.516 0.122 0.126 0.94
λC 1.35 1.436 0.478 0.537 0.95 1.377 0.312 0.365 0.96
αC 1.20 1.308 0.373 0.421 0.96 1.251 0.242 0.256 0.95
λL 1.40 1.450 0.363 0.386 0.93 1.423 0.245 0.273 0.95
αL 1.30 1.424 0.338 0.340 0.93 1.365 0.215 0.222 0.95
ρ 0.50 0.512 0.179 0.373 1.00 0.493 0.161 0.219 1.00

pA(0.50) 0.754 0.745 0.067 0.069 0.95 0.751 0.051 0.049 0.95
pA(1.5) 0.888 0.891 0.071 0.071 0.98 0.892 0.049 0.050 0.98
pA(2.5) 0.945 0.907 0.151 0.113 0.98 0.926 0.095 0.078 0.97
nA(0.5) 0.953 0.951 0.021 0.022 0.97 0.953 0.014 0.015 0.97
nA(1.5) 0.948 0.941 0.059 0.054 0.97 0.947 0.039 0.037 0.96
nA(2.5) 0.965 0.922 0.136 0.114 0.96 0.941 0.090 0.072 0.96
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Table 4.2: Summary of simulation results from data without RC

n = 100 n = 200
p Par True Mean SD SE CP Mean SD SE CP

0.2 p 0.20 0.202 0.053 0.055 0.95 0.202 0.039 0.038 0.94
λ0 0.90 0.966 0.300 0.308 0.91 0.920 0.165 0.175 0.95
α0 1.50 1.715 0.489 0.517 0.91 1.596 0.303 0.304 0.93
λC 1.35 1.354 0.169 0.174 0.95 1.362 0.125 0.122 0.93
αC 1.20 1.215 0.133 0.133 0.94 1.212 0.096 0.093 0.95
λL 1.40 1.405 0.154 0.165 0.96 1.409 0.125 0.116 0.93
αL 1.30 1.329 0.142 0.145 0.95 1.315 0.102 0.101 0.95
ρ 0.50 0.505 0.103 0.103 0.93 0.502 0.071 0.073 0.95

pA(0.5) 0.161 0.166 0.053 0.056 0.97 0.162 0.038 0.038 0.94
pA(1.5) 0.331 0.320 0.147 0.143 0.99 0.334 0.104 0.099 0.97
pA(2.5) 0.517 0.436 0.308 0.298 0.99 0.479 0.252 0.242 0.98
nA(0.5) 0.771 0.775 0.045 0.043 0.94 0.773 0.031 0.031 0.95
nA(1.5) 0.620 0.616 0.148 0.150 0.94 0.621 0.112 0.109 0.94
nA(2.5) 0.659 0.594 0.281 0.287 0.87 0.616 0.242 0.243 0.87

0.6 p 0.60 0.594 0.061 0.062 0.96 0.598 0.042 0.045 0.97
λ0 0.90 0.924 0.113 0.121 0.96 0.910 0.077 0.086 0.95
α0 1.50 1.539 0.221 0.216 0.95 1.533 0.151 0.155 0.93
λC 1.35 1.366 0.254 0.260 0.94 1.363 0.175 0.187 0.96
αC 1.20 1.262 0.211 0.200 0.93 1.230 0.141 0.140 0.94
λL 1.40 1.436 0.253 0.251 0.93 1.410 0.160 0.181 0.97
αL 1.30 1.365 0.221 0.216 0.93 1.334 0.144 0.148 0.95
ρ 0.50 0.490 0.145 0.152 0.99 0.500 0.102 0.108 0.96

pA(0.5) 0.535 0.528 0.074 0.076 0.97 0.532 0.052 0.054 0.97
pA(1.5) 0.748 0.752 0.114 0.105 0.97 0.751 0.072 0.074 0.97
pA(2.5) 0.865 0.807 0.207 0.180 0.98 0.835 0.140 0.133 0.97
nA(0.5) 0.900 0.900 0.029 0.030 0.96 0.900 0.022 0.021 0.95
nA(1.5) 0.877 0.869 0.092 0.085 0.96 0.874 0.061 0.061 0.96
nA(2.5) 0.913 0.846 0.194 0.165 0.94 0.875 0.137 0.122 0.95

0.8 p 0.80 0.791 0.046 0.051 0.96 0.801 0.036 0.035 0.95
λ0 0.90 0.915 0.090 0.098 0.95 0.903 0.070 0.067 0.95
α0 1.50 1.549 0.194 0.185 0.94 1.516 0.124 0.125 0.94
λC 1.35 1.387 0.387 0.404 0.95 1.372 0.262 0.273 0.95
αC 1.20 1.290 0.325 0.303 0.95 1.254 0.210 0.202 0.94
λL 1.40 1.468 0.367 0.395 0.94 1.422 0.242 0.258 0.94
αL 1.30 1.398 0.334 0.323 0.93 1.361 0.215 0.218 0.95
ρ 0.50 0.506 0.163 0.219 1.00 0.493 0.139 0.157 0.99

pA(0.5) 0.754 0.744 0.067 0.069 0.95 0.752 0.051 0.048 0.95
pA(1.5) 0.888 0.891 0.065 0.070 0.98 0.893 0.048 0.049 0.98
pA(2.5) 0.945 0.904 0.151 0.113 0.97 0.927 0.091 0.074 0.96
nA(0.5) 0.953 0.954 0.020 0.020 0.97 0.953 0.014 0.014 0.96
nA(1.5) 0.948 0.941 0.060 0.053 0.97 0.947 0.038 0.036 0.97
nA(2.5) 0.965 0.914 0.151 0.113 0.95 0.941 0.091 0.071 0.96

123



Table 4.3: True values, estimates, and biases of the weighted area under the curve of the
agreement measures pA and nA, and of Kendall’s coefficient of concordance τ , in both data
with RC and without RC cases, for maximum follow-up times TE = 0.5, 1.5, 2.5, 3.0, agree-
ment probabilities p = 0.2, 0.6, 0.8, sample size n = 200, and all the other parameters as in
Tables 4.1 and 4.2.

p Agreement Maximum True Data with RC Data without RC
Measure Follow-up Time Value Estimate Bias Estimate Bias

p = 0.2

wAUC(pA)

0.5 0.1224 0.1202 -0.0023 0.1197 -0.0027
1.5 0.1759 0.1814 0.0055 0.1809 0.0050
2.5 0.1955 0.1997 0.0042 0.1992 0.0038
3.0 0.1984 0.2017 0.0034 0.2013 0.0029

wAUC(nA)

0.5 0.8696 0.8695 -0.0001 0.8695 -0.0001
1.5 0.7734 0.7721 -0.0013 0.7720 -0.0013
2.5 0.7602 0.7580 -0.0022 0.7579 -0.0023
3.0 0.7595 0.7570 -0.0025 0.7569 -0.0026

τ

0.5 0.2602 0.3108 0.0506 0.4237 0.1634
1.5 0.3727 0.3457 -0.0270 0.4530 0.0803
2.5 0.4244 0.3476 -0.0769 0.4536 0.0291
3.0 0.4328 0.3477 -0.0851 0.4536 0.0208

p = 0.6

wAUC(pA)

0.5 0.4557 0.4520 -0.0037 0.4520 -0.0037
1.5 0.5615 0.5599 -0.0016 0.5602 -0.0012
2.5 0.5931 0.5911 -0.0020 0.5917 -0.0014
3.0 0.5975 0.5952 -0.0024 0.5958 -0.0018

wAUC(nA)

0.5 0.9379 0.9376 -0.0003 0.9375 -0.0004
1.5 0.9027 0.9018 -0.0009 0.9021 -0.0006
2.5 0.9009 0.9005 -0.0004 0.9010 9.5e-05
3.0 0.9012 0.9009 -0.0004 0.9014 0.0002

τ

0.5 0.5597 0.5876 0.0280 0.6532 0.0936
1.5 0.6392 0.6370 -0.0022 0.6925 0.0532
2.5 0.6797 0.6390 -0.0407 0.6934 0.0138
3.0 0.6863 0.6391 -0.0472 0.6934 0.0072

p = 0.8

wAUC(pA)

0.5 0.6906 0.6896 -0.0010 0.6900 -0.0006
1.5 0.7735 0.7719 -0.0015 0.7726 -0.0009
2.5 0.7954 0.7954 -0.0000 0.7959 0.0006
3.0 0.7983 0.7984 9.4e-05 0.7990 0.0007

wAUC(nA)

0.5 0.9695 0.9692 -0.0002 0.9696 9.9e-05
1.5 0.9543 0.9551 0.0008 0.9554 0.0011
2.5 0.9543 0.9564 0.0021 0.9566 0.0023
3.0 0.9546 0.9568 0.0023 0.9570 0.0024

τ

0.5 0.7596 0.7727 0.0131 0.8038 0.0443
1.5 0.8068 0.8103 0.0035 0.8359 0.0291
2.5 0.8315 0.8117 -0.0199 0.8369 0.0054
3.0 0.8356 0.8118 -0.0238 0.8369 0.0014
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Table 4.4: Summary of simulation results for data from the distribution described at the end
of Section 4.5, for which the model is misspecified. Sample size is n = 200.

Agreement Measure
Maximum wAUC(pA) wAUC(nA)
Follow-up True Rel. True Rel.

Time Value Estimate Bias Bias (%) Value Estimate Bias Bias (%)
0.50 0.6963 0.7176 0.0213 3.06 0.9763 0.9709 -0.0055 -0.56
1.00 0.6824 0.6727 -0.0098 -1.43 0.9596 0.9338 -0.0258 -2.69
1.50 0.6677 0.6511 -0.0167 -2.50 0.9524 0.9063 -0.0461 -4.84
2.00 0.6550 0.6416 -0.0134 -2.04 0.9499 0.8910 -0.0589 -6.20
2.50 0.6452 0.6379 -0.0073 -1.13 0.9492 0.8842 -0.0650 -6.85
3.00 0.6383 0.6367 -0.0016 -0.25 0.9491 0.8817 -0.0674 -7.10

days) by 365.25. The event times are now in the range [0,3], similar to the time range

in our simulation studies. The maximum follow-up time is TE = 2.36. A descriptive

data summary is shown in Table 4.5. The probability of exact agreement of Tc and Tl

is at least 30%.

We fit the model described in Section 4.3. The estimates, standard deviations, and

95% confidence intervals for the parameters p, λ0, α0, λc, αc, λl, αl, ρ are shown in Table

4.6. The estimate of the agreement probability p is p̂ = 0.413. The estimates of the

agreement measures pA(t) and nA(t), together with their 95% pointwise confidence

bands, are shown in Table 4.7 and displayed in Figure 4.3. The weighted area under

the estimated curves p̂A(t) and n̂A(t) are 0.412 and 0.843. The wAUCs are calculated

over the study duration, that is, over the time period from 0 to the last event/censoring

time, TE = 2.36. Table 4.8 shows the estimated values of wAUC(pA), wAUC(nA), and

Kendall’s coefficient of concordance τ . The statistic τ only reflect the rank correlation

between the two outcomes, Tc and Tl, at any time, while our measures pA(t) and

nA(t) give the exact agreement probabilities at any time t. Our measures are more

informative than the Kendall’s coefficient τ .

The results indicate that both the local and central times agreed well at the begin-

ning and end of this study. The relatively higher agreement at the end of the study
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Table 4.5: Head and neck cancer trial data information at times t = 0.5, 1.5, 2.5.
(n = 89)

Average percentage of subjects (%)
Time YC=YL YC<YL YC>YL

0.5
Both Censored 28.09 0.00 1.12
Central Event Only 1.12 11.24 1.12
Local Event Only 6.74 0.00 6.74
Both Events 31.46 12.36 0.00

1.5
Both Censored 4.49 0.00 1.12
Central Event Only 1.12 3.37 1.12
Local Event Only 11.24 0.00 7.87
Both Events 37.08 24.72 7.86

2.5
Both Censored 2.25 0.00 1.12
Central Event Only 1.12 2.25 1.12
Local Event Only 11.24 0.00 4.49
Both Events 39.33 25.84 11.24

is mostly due to death for subjects without either local or central PD. The local and

central diagnosis for the non-event cases were similar. The plots in Figure 4.3 indicate

a large variability of the agreements over time; thus, it is necessary to account for this

temporally variable agreement in any further analysis.

Table 4.6: Parameter estimates, standard deviations, and 95% confidence intervals of the
parameters for the head and neck cancer trial data. (sample size n = 89).

PFS
Standard 95% Confidence Interval

Parameter Estimated Deviation lower upper
Value (Louis) bound bound

p 0.413 0.053 0.314 0.520
λ0 2.209 0.419 1.522 3.205
α0 0.998 0.129 0.774 1.286
λC 1.284 0.194 0.955 1.727
αC 1.088 0.140 0.845 1.401
λL 1.463 0.139 1.215 1.762
αL 1.664 0.192 1.327 2.087
ρ 0.612 0.118 0.330 0.794
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Table 4.7: Estimated values, standard deviations, and 95% confidence intervals of the agree-
ment measures pA and nA for the head and neck cancer trial data..

PFS
Agreement Estimated Standard 95% Confidence Interval
Measure Time Value Deviation lower upper

(Louis) bound bound

pA
0.50 0.320 0.059 0.217 0.445
1.00 0.264 0.072 0.147 0.426
1.50 0.359 0.193 0.097 0.744
2.00 0.599 0.391 0.058 0.973
2.36 0.800 0.377 0.038 0.998

nA
0.50 0.808 0.044 0.708 0.880
1.00 0.770 0.078 0.585 0.888
1.50 0.826 0.124 0.465 0.963
2.00 0.924 0.128 0.254 0.998
2.36 0.972 0.074 0.136 0.999

Table 4.8: Estimated values of the weighted area under the agreement measures pA and nA,
and of the Kendall’s coefficient of concordance τ for the head and neck cancer trial data.

PFS
Maximum Estimated Values

Follow-up Time wAUC(pA) wAUC(nA) τ

0.50 0.512 0.890 0.617
1.00 0.425 0.849 0.587
1.50 0.410 0.842 0.600
2.00 0.411 0.843 0.609
2.36 0.412 0.843 0.613
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Figure 4.3: Plots of the estimated curves of the agreement measures pA and nA, together
with the pointwise 95% confidence bands, over the study duration for PFS data. The weighted
AUCs are wAUC(pA) = 0.412 and wAUC(nA) = 0.843.

4.7 Discussion

We have proposed a new method to assess agreement between two time-to-event

endpoints, where the two event times are assumed to have a positive probability of being

identical. Such an assumption is motivated by type of data we targeted. For example,

the head and neck cancer trial data show that the probability of exact agreement of the

two event times is at least 30%. We can view our model as a two-pattern mixture model,

so Tc = Tl is one pattern. Although, it is not uncommon that the two evaluations are

based on measurements which are usually performed at predefined time intervals, there

might be a large amount of variation in the two observed event times, with Tc 6= Tl,

with Tc and Tl continuous random variables, is another pattern (see head and neck

cancer trial data). Other approaches may be envisioned for modeling same type of
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data. For example, one can set up the two event times in a discrete failure time setting,

by considering a model arising from a single copula model, which is then discretized

according to the observation windows and estimate accordingly. However, such an

approach is not the scope of this paper. Nonetheless, it is an interesting alternative

approach and can be addressed in a separate research.

Our method measures agreement in terms of two event times of being identical at

a given time point or both being greater than a given time. The proposed agreement

measures are based on underlying joint distribution of the time-to-event endpoints.

We estimate the proposed agreement measures using a mixture parametric distribution

based on the Weibull distributions, which are general enough to cover a wide range

of applications. However, it is of interest to further relax this parametric assumption

while consider even more flexible or nonparametric distributions for both S(t) and

Q(t, s) in future work. Sieve estimation based on splines may be useful for carrying

out inference, but will increase the computation complexity. Although our agreement

measures are defined as the conditional probability of the central event given the local

event, this definition can be similarly defined as the reverse conditional probability or

the summation of both conditional probabilities, especially when there is no preference

to either event.

Our approach is fully likelihood-based and the informative censoring RC is naturally

accounted for in the likelihood formulation. So, RC has no impact on the validity of

our method. As shown in the simulation study, the relative biases of the proposed

agreement measures for data without RC and data with RC are very similar. Our

method yields robust estimators of the agreement measures in the presence of RC.

However, if the censoring is truly informative (depends on potential outcome value),

modeling mechanism is necessary to obtain a valid inference.

The proposed method can be directly applied to other commonly used endpoints
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for oncology clinical trials, for example, time-to-progression and disease free survival

(FDA (2007)), to assess their agreement between IRC’s and investigators’ evaluation.

In addition, by jointly modeling the IRC’s and investigators’ assessments, the proposed

estimation method can provide less-biased estimates of the parameters in the assumed

underlying distribution than those based on IRC’s assessment alone. One application

is to apply the method within each treatment arm and then make inference about

treatment effect with the estimated underlying distribution. High values (e.g., > 80%)

of the measure wAUC(pA) in both treatment and control arms provide a high assurance

of assessing treatment effects using the investigator’s evaluations only, which implies

investigator’s reading data are robust and reliable to estimate treatment effects; on

the contrast, lower values require the need for the IRC’s readings in clinical trials.

Another application is for event projection. The primary analysis in most oncology

trials are event driven (i.e., based on planned number of events). When the primary

analysis is based on IRC’s evaluation, event modeling based on the estimated underlying

distribution of the IRC’s data from joint modeling of IRC’s and investigator’s data

provide more accurate projection of future events than that from modeling of IRC’s

data alone.

The proposed temporal agreement measurements are potentially useful for future

trials when central assessment is needed for auditing purposes, since time-to-event out-

comes such as PFS, are usually subject to measurement error. For example, it was

reported in Dodd et al. (2011) that a discrepancy in PFS times between local and

central assessment could range from 23% to 36%. Recently, there has been some devel-

opment to address this discrepancy, see Dodd et al. (2011; 2013). With the development

of our temporal agreement measurements, we will be able to not only capture the over-

all agreement, but also assess the temporal discrepancy between these two assessments;

therefore, the differences in the analyses based on local and central assessments will
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be quantified more precisely. Furthermore, the proposed temporal agreement measure-

ments will also be useful to help design more effective and efficient audit strategies.

For instance, if the disagreement occurs most often for long survivals, an audit should

then be applied to those subjects. In future work, we will examine how to incorporate

this temporal agreement measure into designing an audit strategy to correct bias due

to imprecise local assessments.
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CHAPTER 5: CONCLUSIONS

We have developed a general statistical framework for intrinsic regression models

of responses valued in a Riemannian symmetric space in general, and Lie groups in

particular, and their association with a set of covariates in a Euclidean space. The

intrinsic regression models are based on the generalized method of moment estimator

and therefore the models avoid any parametric assumptions regarding the distribution

of the manifold-valued responses. We also proposed a large class of link functions to

map Euclidean covariates to the manifold of responses. Essentially, the covariates are

first mapped to the tangent bundle to the Riemmanian manifold, and from there further

mapped, via the manifold exponential map, to the manifold itself. We have adapted an

annealing evolutionary stochastic algorithm to search for the ILSE, (q̂I , β̂I), of (q,β),

in the Stage I of the estimation process, and a one-step procedure to search for the

efficient estimator (q̃E, β̃E) in Stage II. Our simulation study and real data analysis

demonstrate that the relative efficiency of the Stage II estimator improves as the sample

size increases.

There are still many outstanding issues for further research. One major issue is

to construct goodness-of-fit statistics for testing for possible model misspecifications in

(2.6). Another important issue is to develop diagnostic measures for assessing the in-

fluence of individual observations in the semiparametric regression for manifold-valued

data. Third, there is some interest in developing regression models where both re-

sponses and covariates lie on the same manifold (or different manifolds) (Chang 1986;

1989, Downs 2003, Rosenthal et al. 2014). Mathematically, most developments above
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are still valid with some modifications. Fourth, there is a great interest in develop-

ing nonparametric Bayesian regression models for manifold-valued response data and

multiple covariates (Bhattacharya and Dunson 2010; 2012). Fifth, smoothing spline

methods and local polynomial regression have been developed for the non-parametric

estimation of regression functions for manifold-valued response data given a continu-

ous covariate in Euclidean space (Samir et al. 2012, Su et al. 2012, Muralidharan and

Fletcher 2012, Machado and Leite 2006, Machado et al. 2010, Yuan et al. 2012). We

will develop an intrinsic local polynomial regression (or smoothing spline) estimate for

manifold-valued responses with multiple covariates and examine its asymptotic prop-

erties. These extensions are of great interest for our future research.

We extended the framework of intrinsic regression models to fixed effect models for

the analysis of manifold-valued data from longitudinal data. We performed a detailed

longitudinal data analysis of a corpus callosum shape data from the Alzheimer’s Disease

Neuroimaging Initiative database. Our investigation reveals that there is an association

between the the CC shape and the Alzheimer’s disease, which depends on the age, while

gender seems to have little or no relevance. The splenium seems to be less rounded

and the isthmus thinner in patients with Alzheimer’s disease than in normal healthy

patients. We also found that the evolution of the CC shape over time is different in

patients with AD than normal healthy patients. A large variability between the within-

subject response and the corresponding conditional mean at the population level was

detected as well. Therefore, developing intrinsic random effects models for manifold-

valued is of a great interest and need. Our ongoing research efforts aim to develop such

models.

We have proposed a new method to assess agreement between two time-to-event

endpoints, where the two event times are assumed to have a positive probability being

identical. Our method measures agreement in terms of two event times of being identical
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at a given time point or both being greater than a given time. The proposed agreement

measures are based on underlying joint distribution of the time-to-event endpoints.

We estimate the proposed agreement measures using a mixture parametric distribution

based on the Weibull distributions, which are general enough to cover a wide range

of applications. However, it is of interest to further relax this parametric assumption

while consider even more flexible or nonparametric distributions for both S(t) and

Q(t, s) in future work. Sieve estimation based on splines may be useful for carrying

out inference, but will increase the computation complexity. Although our agreement

measures are defined as the conditional probability of the central event given the local

event, this definition can be similarly defined as the reverse conditional probability or

the summation of both conditional probabilities, especially when there is no preference

to either event.

The proposed method can be directly applied to other commonly used endpoints

for oncology clinical trials, for example, time-to-progression and disease free survival

to assess their agreement between IRC’s and investigators’ evaluation. In addition,

by jointly modeling the IRC’s and investigators’ assessments, the proposed estimation

method can provide less-biased estimates of the parameters in the assumed underlying

distribution than those based on IRC’s assessment alone. One application is to apply

the method within each treatment arm and then make inference about treatment effect

with the estimated underlying distribution. One other application is for event pro-

jection. The primary analysis in most oncology trials are event driven (i.e., based on

planned number of events). When the primary analysis is based on IRC’s evaluation,

event modeling based on the estimated underlying distribution of the IRC’s data from

joint modeling of IRC’s and investigator’s data provide more accurate projection of

future events than that from modeling of IRC’s data alone.

The proposed temporal agreement measurements are potentially useful for future
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trials when central assessment is needed for auditing purposes, since time-to-event out-

comes such as PFS, are usually subject to measurement error. With the development of

our temporal agreement measurements, we will be able to not only capture the overall

agreement, but also assess the temporal discrepancy between these two assessments;

therefore, the differences in the analysis based on local and central assessments will

be quantified more precisely. Furthermore, the proposed temporal agreement measure-

ments will also be useful to help design more effective and efficient audit strategies.
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APPENDIX : TECHNICAL DETAILS FOR CHAPTER 2

A.1 Differential Geometry

A.1.1 Technical Details

Riemannian Metric, Distance, and Geodesics

A Riemannian manifold (M,m) is a smooth manifoldM together with a metric m.

The m = (mp)p∈M is a family of inner products mp on the tangent space TpM ofM

at p ∈M, and for any smooth vector fields X and Y on an open set U ⊂M, the real

valued map p 7→ mp(Xp, Yp) is smooth on U . Let dM be the dimension of M. The

tangent space TpM is isomorphic to RdM . For a local chart (U, φ), U is an open subset

of M and there is a homeomorphism φ : U → φ(U) ⊂ RdM , where φ(U) is an open

set containing φ(p) = t = (t1, . . . , tdM). Let ∂j denote the tangent vector with respect

to the coordinate curves ∂/∂tj for j = 1, . . . , dM. The vector fields ∂
∂t

= (∂1, . . . , ∂dM)

induce a basis at each of the tangent spaces Tφ−1(t)M for t ∈ φ(U). In this basis,

the metric can be expressed by a symmetric positive definite matrix Mφ(t) = [mjk(t)],

where mj,k(t) = mφ−1(t)(∂j, ∂k). The matrix Mφ(t) is called the local representation

of the Riemannian metric in the chart (U, φ), and for any p ∈ U , the inner product

of v and w ∈ TpM is given by mp(v,w) = ṽ>Mφ(φ(p))w̃, where ṽ = (v1, . . . , vdM)>

and w̃ = (w1, . . . , wdM)> are the representations of v and w, respectively, in the chart

(U, φ), i.e., v =
∑dM

j=1 v
j∂j.

The length `(γ) of a C1−curve γ : [t0, t1] → M on a Riemannian manifold M

is defined by `(γ) =
´ t1
t0

√
mγ(t)(γ′(t), γ′(t)) dt. The length of a continuous, piecewise

smooth curve on M is defined as the sum of the lengths of its smooth pieces. The

geodesic distance distM(p, q) between p and q ∈ M is defined as the infimum of L(γ)

taken over all continuous, piecewise smooth curves γ : [a, b] → M with γ(a) = p and

γ(b) = q. The Riemannian manifold (M, distM) is a metric space and geodesics are
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then, by definition, the locally distance-minimizing paths. The geodesics are the curves

satisfying the second order differential system in the chart (U, φ) given by

γ̈j +
∑
l′,l

Γjl′lγ̇
l′ γ̇l = 0,

where Γjl′l = 0.5
∑

j′ m
j′j(∂l′mli + ∂j′mll′ − ∂lmj′l′) are the Christoffel symbols of the

first kind.

For p ∈ M and v in TpM, there exists a unique geodesic γ = γ(·; p,v) : I → M

satisfying γ(0) = p and γ′(0) = V , where I is a maximal open interval in R containing

0. Moreover, γ depends smoothly on both p and v. In general, I may not be all of R.

The manifold is said to be geodesically complete if the maximal interval I is the entire

real line R for all geodesics. For example, the Euclidean space Rn and the unit sphere

Sn are geodesically complete manifolds, while R \ {0} is not. The Hopf-Rinow-De

Rham theorem states that a geodesically complete Riemannian manifold is complete

as a metric space with the distance induced by the Riemannian metric, and that there

always exists at least one distance minimizing geodesic between any two points of the

manifold.

Exponential and Logarithmic Maps

For a general Riemannian manifold, given a vector v in TpM and a real number τ ∈

R, we have that γ(t; p, τv) = γ(tτ ; p,v), for all t ∈ R with tτ in the definition domain of

γ(·; p,v). Therefore, for a tangent vector v ∈ TpM with ‖v‖p := (mp(v,v))1/2 < r(p)

for some small r(p) > 0, the geodesic starting from p and with initial velocity v is

defined on an interval containing [0, 1]. The manifold exponential map at a point p ∈M,

ExpMp : Bp(0, r(p)) → M is defined by ExpMp (V ) = γ(1; p, V ) for V ∈ Bp(0, r(p)),

where, Bp(0, r(p)) denotes the ball of radius r(p) centered at the origin in TpM. The
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exponential map ExpMp is a locally smooth diffeomorphism around 0 ∈ TpM, i.e. there

is a r∗(p) ∈ (0, r(p)) such that ExpMp is a diffeomorphism from Bp(0, r∗(p)) into M.

The inverse map is denoted by LogMp and it provides normal coordinates onM around

p.

For q ∈ ExpMp (Bp(0, r∗(p))), the geodesic distance from p to q can be expressed as

distM(p, q) = ‖Logpq‖p, and thus ExpMp (Bp(0, r∗(p))) is the ball BM(p, r∗(p)) inM,

with the induced distance, centered at p of radius r∗(p). As the tangent space TpM

is isomorphic to RdM , the logarithmic map Logp provides a local chart near p. If the

tangent space of M at p is endowed with an orthonormal basis, then such a chart is

called a normal chart and the coordinates are called normal coordinates.

Cut Locus and Radius of Injectivity

From now on, we will assume that the manifold M is geodesically complete, and

thus the exponential map Expp is defined on the entire tangent space TpM. A geodesic

γ(t; p,v) is either always minimizing the distance from p to γ(t; p,v) from t = 0 to ∞,

or it is minimizing up to a finite point t0 and no more thereafter. In the latter case, the

point γ(t0; p,v) is called a cut point for the geodesic γ(·; p,v) and the tangent vector

t0v is called a tangential cut point. The set of cut points of all geodesics starting from

p is called the cut locus of p and denoted by C(p) ⊂ M. The set of corresponding

tangent vectors is called the tangential cut locus of p and denoted by C(p) ⊂ TpM. We

have C(p) = Expp(C(p)) and thus, the maximal definition domain of the normal chart

centered at p is the domain D(p) ⊂ TpM containing 0 and bounded by C(p). The

domain D(p) is connected and star-shaped with respect to the origin and its image via

Expp is the entire manifold except the cut locus of p (Pennec 2006). Hence the normal
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chart centered at p is given by

Logp : D(p) = M \ C(p)→ D(p) ⊂ RdM .

Here TpM is endowed with an orthonormal basis and identified with RdM . The size of

this chart is quantified by the radius of injectivity ofM at p, ρ∗(M, p) = distTp(0, C(p)),

which is the maximal radius of origin centered balls in TpM on which the exponential

map is one-to-one. The radius of injectivity ρ∗M of the manifold M is the infimum

of the radii of injectivity at all points over the manifold. For example, in the case of

Euclidean space Rd, the maximal definition domain of the normal chart is D(t) = Rd,

for all t ∈ Rd, and therefore the radius of injectivity is ρ∗
Rd

=∞. In the case of the unit

sphere Sk, the Riemannian metric induced by the canonical inner product on Rd+1, the

cut locus of a point p ∈ Sk is C(p) = {−p}, and the tangential cut locus is C(p) =

Sd−1(π) ⊂ TpS
k. Therefore, we have D(p) = B(0, π) ⊂ TpS

k, D(p) = Sk \ {−p}, and

ρ∗(Sk, p) = π for all points p on Sk. Thus, the radius of injectivity of Sk is ρ∗
Sk

= π.

Taylor’s Series Expansion of Real Functions on Riemannian Manifolds

Let f : M → R be a smooth real-valued function. The gradient gradpf of f at

point p is the linear form on TpM. Thus, it can be uniquely identified with a vector in

TpM via the inner product mp(·, ·) such that gradpf(v) corresponds to the directional

derivative ∂vf . In a local chart (U, φ) near p with φ(p) = 0, the expression of the

gradient is

gradφ−1(t)f = M−1
φ (t)

∂(f ◦ φ−1)>

∂t
=

dM∑
l=1

mjl(t)∂l(f ◦ φ−1).
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The Hessian of f at p in a local chart (U, φ) near p is given by

Hessφ−1(t)f =

dM∑
j,j′=1

{∂jj′(f ◦ φ−1)−
dM∑
l=1

Γljj′∂l(f ◦ φ−1)}dtjdtj′ .

Let φp be a normal chart at p, i.e. φp(q) = Logp(q), and fp = f ◦ Expp. Thus,

fp(0) = f(p). The Taylor’s series expansion of fp(v) around 0 is given by

fp(v) = fp(0) + Jfp,0v +
1

2
v>Hfp,0v +O(‖v‖3),

where Jfp,0 = [∂jfp(0)] and Hfp,0 = [∂jj′fp(0)]. In a normal chart, Jfp,0 reduces to

gradpf
>, and the Christoffel symbols vanishes at the origin such that Hfp,0 corresponds

to the Hessian Hesspf of f at p. Thus, for all v ∈ D(p), we have

f(Expp(v)) = f(p) + gradpf(v) +
1

2
Hesspf(v,v) +O(‖v‖3). (A.1)

Lie Groups

A Lie group G is a group together with a smooth manifold structure such that the

group operations are compatible with the smooth structure, that is, the operations of

multiplication (a, b) 7→ ab and inversion a 7→ a−1 are smooth maps. Let G be a C∞

Lie group of dimension dG and with the identity element e. Let TaG be the tangent

space of G at a ∈ G, which is a dG dimensional linear space, and let TG be the tangent

bundle on G, which itself is a 2dG dimensional manifold. For a ∈ G, let La and Ra be,

respectively, the left and right multiplications by a, which are defined by

La : G→ G, La(b) = ab, b ∈ G,

Ra : G→ G, Ra(b) = ba, b ∈ G.
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These maps are C∞-diffeomorphisms and the inverses are L−1
a = La−1 and R−1

a = Ra−1 ,

respectively. They include maps of the tangent bundle to itself given by La∗ : ThG →

TahG and Ra∗ : ThG → ThaG for a, h ∈ G. They are C∞-diffeomorphisms and their

inverses are, respectively, L−1
a∗ = La−1∗ and R−1

a∗ = Ra−1∗. Moreover, for any b ∈ G,

we have TabG = La∗(TbG) and TbaG = Ra∗(TbG). The fiber map La∗,b (or Ra∗,b) is the

restriction and corestriction of La∗ (or Ra∗) to TbG and is a linear isomorphism from

TbG onto TabG (or TbaG) with their inverse L−1
a∗,b = La−1∗,ab (or R−1

a∗,b = Ra−1∗,ba).

A Lie group is equipped with a canonical vector-valued one form, the so called

Maurer-Cartan form ω(Xa) = La−1∗(Xa) for Xa ∈ TaG. Thus, the tangent bundle to

G is trivial TG ∼= G×TeG. A left-invariant vector is completely defined by its value at

the group unity e. In particular, there is an isomorphism between the tangent space at

the origin and left-invariant vector fields. Since the Lie bracket of such fields is again a

left-invariant vector field, the Lie algebra structure on vector fields is inherited by the

tangent space at the origin TeG. This algebra is called the Lie algebra of the group G

and it is denoted by g. We also have TaG = La∗(g), for any a ∈ G.

The exponential map of G at the unity e is the map ExpGe : g → G defined as

follows. For v ∈ g, the exponential of v is defined by ExpGe (v) = γG(1;v), where

γG(·;v) : R → G is the unique one-parameter subgroup of G with γG(0;v) = e and

d
dt
γG(0;v) = v. It follows easily from the chain rule that ExpGe (tv) = γG(t;v). The map

γG(·;v) may be constructed as the integral curve of either the left- or right-invariant

vector field associated with v. The integral curve exists for all real parameters followed

by left- or right-translation of the solution near zero. Therefore, ExpGe is globally

defined on g with ExpGe (0) = e, and ExpGe (−v) = (ExpGe (v))−1 for v ∈ g. Moreover,

the exponential map ExpGe is a local C∞-diffeomorphism around 0 ∈ g = TeG.

For a ∈ G, the exponential map of G at a, ExpGa , is the unique map from TaG into
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G that satisfies the following condition

ExpGa ◦ La∗ = La ◦ ExpGe (A.2)

on g. Therefore, ExpGa is globally defined on TaG, ExpGa (0) = a, and ExpGa is a local

C∞-diffeomorphism around 0 ∈ TaG. Assume that X1, . . . , XdG is a given basis for

g = TeG. Any v ∈ TeG can be uniquely written as

v =

dG∑
`=1

v`X`.

Let X1,a, . . . , XdG,a be the (unique) left invariant tangent vector fields with values

X1, . . . , XdG at e, i.e X`,a = La∗(X`) for ` = 1, . . . , dG, and a ∈ G. Then, X1,a, . . . , XdG,a

at a form a basis for TaG, for all a ∈ G, so they define a trivialization of the tangent

bundle of G as follows:

f : TG→ G×RdG , f(

dG∑
`=1

c`X`,a) = (a, (c1, . . . cdG)). (A.3)

Let < ·, · >e be an inner product on TeG and < ·, · > be the Riemannian metric

defined as in (A.4). A Riemannian or pseudo-Riemannian metric on a Lie group G is

left invariant if it is preserved under every left multiplication La, that is,

< v,w >b=< La,∗(v), La,∗(w) >ab, for v,w ∈ TbG, and b, a ∈ G.

A left-invariant metric is uniquely defined by its restriction to the tangent space to

the group at unity, hence by an inner product on g. Therefore, any inner product

< ·, · >e on TeG can be extended to a (unique) left invariant Riemannian metric
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< ·, · >= {< ·, · >a}a∈G on G, namely

< X, Y >a:=< La−1∗(X), La−1∗(Y ) >e, X, Y ∈ TaG, a ∈ G. (A.4)

The associated norm is denoted by ‖ · ‖a and ‖X‖a =< X,X >
1/2
a = ‖La−1∗(X)‖e.

It is easy to see that the exponential maps ExpGe and ExpGa defined as above using

the algebraic structure of G coincide with the manifold exponential maps defined when

G is viewed as a Riemannian manifold (with a left-invariant metric). Moreover, the

maximal domain on which the exponential map ExpGa is one-to-one isD(a) = La,∗(D(e))

and so ρ∗(G, e) = ρ∗(G, a), for all a ∈ G. Therefore, the radius of injectivity of G is

ρ∗G = ρ∗(G, e). Let LogGe and LogGa be the inverse maps of ExpGe and ExpGa . We have

that LogGe (b−1) = −LogGe (b) provided b ∈ D(e). For b ∈ D(a) = ExpGa (D(a)), the

geodesic distance from b to a can be expressed as

distG(b, a) = ‖LogGa (b)‖a = ‖LogGe (a−1b)‖e. (A.5)

Riemannian Symmetric Spaces

A map f : M → M defined on a neighborhood of p ∈ M is said to be a geodesic

symmetry if it fixes the point p and reverses geodesics through that point, i.e. if

γ(·) is a geodesic with γ(0) = p and f(γ(t)) = γ(−t), for any t. A Riemannian

symmetric space RSS is a connected Riemannian manifoldM with the property that

at each point, geodesic symmetries are isometric or distance preserving (Boothby 1986,

Helgason 1978). They arise in a wide variety of situations in both mathematics and

physics. Basic examples of RSS’s are Euclidean spaces, Rd, spheres, Sk, projective

spaces, PRd, and hyperbolic spaces, Hd, each with their standard Riemannian metric.

Symmetric spaces arise naturally from Lie group actions on manifolds. Many common

geometric transformations of Euclidean spaces - rotations, translations, dilations, and
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affine transformations on Rd - form Lie groups. In general, Lie groups can be used to

describe transformations of smooth manifolds.

Given a smooth manifold M and a Lie group G, a smooth group action of G on

M is a smooth mapping G × M → M, (a, y) 7→ a · y, such that e · y = y and

(ab) · y = a · (b · y) for all a, b ∈ G and all y ∈ M, where e is the identity element

of G. The group action should be interpreted as a group of transformations of the

manifold M, namely, {La}a∈G, where La is the action of the group element a on M,

La :M→M, La(y) = a · y for y ∈ M and a ∈ G. La is a smooth diffeomorphism on

M and its inverse is La−1 . Given y ∈ M a point onM, let ιy denote the action of G

on the point y, i.e. ιy : G→M, ιy(a) = a · y = La(y) for all a ∈ G. The ιy is a smooth

map from G into M. For example, for any Lie group G, the group multiplication

defines a group action of G on itself, and the action of an element a on the group itself

is exactly the left-multiplication by a. Another example is SO(d), which is a Lie group

and it acts on Rd as rotations, i. e. R · y = Ry for all R ∈ SO(d) and y ∈ Rd.

We now introduce some common concepts related to group actions. The orbit of a

point y ∈M is defined as G(y) = {a ·y | a ∈ G}. The orbits form a partition ofM, and

we say that two points y, y′ ∈ M are equivalent if they belong to the same orbit. In

the case thatM consists of a single orbit, we say that the group action is transitive or

G acts transitively onM, and we callM a homogeneous space. The isotropy subgroup

of a point y ofM is defined as Gy = {a ∈ G | a · y = y}. For example, for the action of

the group, SO(2), the isotropy subgroup of the zero vector is G0 = SO(2) and for any

non-zero vector y ∈ R2, the isotropy group Gy reduces to the trivial subgroup {I2}.

Let H be a closed Lie subgroup of the Lie group G. Then the left coset of an element

a ∈ G is defined by aH = {ah |h ∈ H}. The space of all such cosets is called a quotient

space of the group G with respect to the subgroup H, denoted by G/H, and it is a

smooth manifold with the quotient topology. When a Lie group G acts smoothly on a
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smooth manifold M for any y ∈ M, there is a natural bijection from the orbit G(y)

onto the quotient manifold given by the mapping a · y 7→ aGy, which is well-defined

and smooth, so G(y) ∼= G/Gy.

Now letM be a symmetric space and choose an arbitrary base point p ∈ M. We

can always viewM as a homogeneous spaceM∼= G/Gp, where G is a connected group

of isometries of M and the isotropy subgroup Gp is compact. We call G a group of

isometries ofM if for all a ∈ G, distM(y, z) = distM(a · y, a · z) for all y, z ∈ M. Any

Lie group G can be viewed as a symmetric space with a Riemannian structure induced

by an inner product on TeG, and G acting on itself by left multiplication. Obviously,

this action is transitive and the isotropy subgroups are trivial, i.e. Ga = {e}, for all

a ∈ G.

A very common example of a symmetric space is S2, which is a 2-dimensional com-

pact Riemannian manifold. The Lie group, SO(3), of all rotations in R3 acts smoothly

and transitively on S2. For example, let us choose the north pole p = (0, 0, 1) ∈ S2 as

the base point. It is easy to see that the orbit of p is the entire sphere and thus S2 is

a homogeneous space. The isotropy subgroup of p is the group of all rotations about

the z-axis in R3, which can be identified with the group of 2D rotations, SO(2). Hence,

S2 can be naturally identified with the quotient space SO(3)/SO(2). Similarly, the k-

dimensional unit sphere, Sk, can be identified as the quotient space SO(k + 1)/SO(k).

The sphere Sk is a compact Riemannian manifold.

Other examples of symmetric spaces can be obtained by taking Cartesian products

of symmetric spaces. Consider two manifoldsM1 andM2 and two Lie groups G1 and

G2 so that Gj acts transitively onMj for j = 1, 2. Thus, the group G = G1 ×G2 is a

Lie group and acts transitively on the manifoldM = M1 ×M2. Given a base point

p = (p1, p2) inM, the isotropy subgroup of p in G is Gp = G1,p1 ×G2,p2 . Thus, we can

writeM1 ×M2 as a homogeneous space G/Gp = (G1/G1,p1)× (G2/G2,p2).
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Figure A.1: (a) A medial representation model m = (O, r, s0, s1) at an atom, where O is the
center of the inscribed sphere, r is the common spoke length, abd {s0, s1} are the two unit
spoke directions; (b) a skeleton of a hippocampus with 24 medial atoms,; (c) the smoothed
surface of the hippocampus.

An example of a symmetric space used in the study of 3D geometric objects is the

space of medial atoms,M = R3 × R+ × S2 × S2 (Shi et al. 2012). See Figure A.1 for

an illustration. The group G = R3×R+×SO(3)×SO(3) acts smoothly onM. For an

element a = (O′, r′, R0, R1) ∈ G and an medial atom q = (O, r, s0, s1) ∈ M, the group

action is defined by

a · q = (O +O′, rr′, R0s0, R1s1),

which is a transitive action. Consider the atom p located at O = (0, 0, 0) with radius

r = 1 and spokes s0 = s1 = (0, 0, 1). Then, the isotropy subgroup of p is Gp =

{0} × {1} × SO(2) × SO(2), and we can write the medial atom space as the quotient

spaceM = R3 ×R+ × (SO(3)/SO(2))× (SO(3)/SO(2)).

From now on, it is assumed that the manifoldM is a symmetric space,M = G/Gp

with G being a Lie group of isometries acting transitively onM. Geodesics onM are

computed through the action of G onM. Due to the transitive action of the group G

of isometries onM, it suffices to consider only the geodesic starting at the base point

p. For an arbitrary point y ∈ M, geodesics starting from y are of the form a · γ(·),
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where γ(·) is a geodesic starting from p with γ(0) = p and y = a · p for some a ∈ G.

Due to the local uniqueness of geodesics, if y = a′ · p for some other a′ ∈ G, then

a · γ(·) = a′ · γ(·).

Geodesics on M starting from p are the images of the action of a 1-parameter

subgroup of G acting on the base point p. In other words, for any geodesic γ on M,

γ(·) : I →M, starting from p, there exists a 1-parameter subgroup c(·) : R→ G such

that γ(t) = c(t) ·p for all t ∈ I. The manifold exponential map ExpMp at the base point

p is defined by

ExpMp (tv) = γ(t; p,v) = c(t; e,u) · p,

where γ(0; p,v) = p, d
dt
γ(0; p,v) = v ∈ TpM, c(0; e,u) = e, and d

dt
c(0; p,u) = u ∈ TeG

with u so that ιp∗,e(u) = v for small t ∈ R. That is,

ExpMp (t ιp∗,e(u)) = ExpGp (tu) · p,

for all u ∈ TeG and t ∈ R with small ‖tu‖.

Moreover, the manifold exponential map ExpMq ofM at a point q is defined by

ExpMq (La∗,pv) = a · ExpMp (v)

for any a ∈ G with q = a · p and any small v ∈ TpM, where La is the action of the

element a on the points of M. Due to the uniqueness of geodesics, if q = a1 · p =

a2 · p with a1, a2 ∈ G and w = La1∗,p(v1) = La2∗,p(v2) with v1,v2 ∈ TpM, then

a1 · ExpMp (v1) = a2 · ExpMp (v2). Since G is a group of isometries onM, the radius of

injectivity ExpMq ofM at q is independent of the point q, so ρ∗M = ρ∗(M, p).

The unit sphere Sk is a compact Riemannian manifold of dimension d and injectivity
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radius ρ = π. The tangent space at q ∈ Sk is

TqS
k = {v ∈ Rk+1 : v>q = 0}.

The tangent space is endowed with the metric tensor from Rk+1, mq(v1,v2) = v>1 v2

for all v1,v2 ∈ TqS
k. The geodesic distance between two points q1, q2 ∈ Sk is given by

distM(q1, q2) = arccos(q>1 q2), which lies between 0 and π. The exponential map takes

the form

Expq : TqS
k → Sk, Expq(v) = cos(‖v‖)q +

sin(‖v‖)
‖v‖

v.

It is a diffeomorphism from B(0, π) ⊂ TqS
k onto Sk \ {−q}, and the logarithmic map

is given by

Logq : Sk \ {−q} → B(0, π), Expq(q1) =
arccos(q>1 q)√

1− (q>1 q)2

(
q1 − (q>1 q)q

)
,

for all q1 ∈ Sk with q1 6= −q.

A.1.2 Unit circle S1 in the complex plane

Let S1 = {z = cos(φ) + j sin(φ) : φ ∈ R} be the unit circle in the complex plane

C, where j =
√
−1. The S1 with the usual multiplication of complex numbers forms

a compact 1-dimensional C∞ Lie group with 1 as the unity. The tangent space of S1

at a = cos(θ0) + j sin(θ0) ∈ S1 is given by Ta(S1) = {t (− sin(θ0) + j cos(θ0)) : t ∈ R},

which is a 1-dimensional real linear subspace of C formed by all z = zx + jzy’s that are

orthogonal to a as vectors in R2. The Lie algebra of S1 is T1S
1 = {jt : t ∈ R} and the

exponential map at unity is given by Exp1(jt) = ejt = cos t+ j sin t. Thus, we have

Expa (t (− sin(θ0) + j cos(θ0))) = cos(t+ θ0) + j sin(t+ θ0).
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Geometrically, Expa “wraps” the tangent line at a around the circle, and thus the

injectivity radius ρ equals π.

Suppose that we observe {(yi,xi) : i = 1, . . . , n}, where yi = cos(φi)+ j sin(φi) ∈ S1

for all i. We define

I(·, ·) : Rdx ×Rdβ → R with I(0, ·) = I(·,0) = 0.

For an a ∈ S1, we consider a single-center link function and its corresponding rotated

residual, which are, respectively, given by

f(xi, a,β) = a ejI(xi,β) = ej(θ0+I(xi,β)),

Ei(a,β) = j(φi − θ0 − I(xi,β))mod 2π,

where tmod 2π is the unique number in (−π, π] so that t − tmod 2π ∈ 2πz. Thus, the

intrinsic regression model is written as

E[Ei(a,β)|xi] = 0, i = 1, . . . , n. (A.6)

A.1.3 Lie Logarithmic Maps of SO(2) and SO(3)

When k = 2, SO(2) is the set of all 2 × 2 matrices of the form

x −y
y x

 with

x2 + y2 = 1 for x, y ∈ R. The group SO(2) of rotations in R2 is isomorphic with S1.

The canonical isomorphism is

x −y
y x

→ z = x+jy. A 2×2 skew-symmetric matrix

B can be written as B = λJ , where λ ∈ R and

J =

0 −1

1 0

 .
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There is a canonical isomorphism from the linear space TI2SO(2) into the space of pure

imaginary numbers, jR, namely, λJ 7→ jλ for λ ∈ R. It can be shown that

eB = eλJ = cos(λ)I2 + sin(λ)J.

and, since J2 = −I2, it follows

cos(λ) =
1

2
tr(eB) sin(λ) = −1

2
tr(eBJ).

Thus eB determines λ uniquely up to an additive multiple of 2π.

Given a rotation matrix O ∈ SO(2), the Lie logarithmic map at I2 of O is given by

LogI2(O) = λJ, (A.7)

where cos(λ) = 0.5tr(R) and sin(λ) = −0.5tr(RJ) for λ ∈ (−π, π]. Thus, when SO(2)

is endowed with the trace metric, it follows immediately that the radius of injectivity

of SO(2) is ρ∗SO(2) =
√

2 π.

When k = 3, a 3× 3 skew-symmetric matrix B is of the form

B =


0 −c1 c2

c1 0 −c3

−c2 c3 0

 ,

and letting λ =
√
c2

1 + c2
2 + c2

3, we have the well-known Rodrigues formula

eB = I3 +
sin(λ)

λ
B +

[1− cos(λ)]

λ2
B2.

It may be more convenient to normalize B such that one can write B = λB1 (or,
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equivalently, B1 = B/λ, assuming λ 6= 0). In this case, eB can be written as

eB = eλB1 = I3 + sinλB1 + (1− cosλ)B2
1 .

Observing that tr(eB) = 1 + 2 cos(λ) and 0.5[eB − (eB)>] = sin(λ)B1, the logarithmic

map at I3 of a rotation O ∈ SO(3) is given by

LogI3(O) = λB1, (A.8)

where λ = arccos((tr(O)− 1)/2) and B1 = (O − O>)/(2 sinλ). When λ = 0 or λ = π,

the above formulae cannot be used. When λ = 0, we have O = I3 and B1 = 0, so

LogI(O) = LogI(I3) = O3, and Eq. (A.8) still holds. When λ = π, we need to find B1

such that B2
1 = 1

2
(O − I3). As B1 is a skew-symmetric matrix, this amounts to solving

a simple system of equations with three unknowns. When SO(3) is endowed with the

trace metric, elementary calculations on the Rodrigues formula yield that ExpI is one-

to-one on the ball B(0,
√

2 π) in TI2SO(3), but not on any ball B(0, ρ) with ρ >
√

2 π.

Therefore, the radius of injectivity of SO(3) is ρ∗SO(3) =
√

2 π.

Suppose we observe an element qi ∈ SO(k) and a dx × 1 covariate vector xi

for i = 1, . . . , n. We consider an intercept rotation matrix O. Then, for a given

map f(xi,β) with f(·, ·) : Rdx × Rdβ → Rk(k−1)/2 with f(0, ·) = 0, let Λ(xi,β) =∑m
k=2

∑k−1
`=1 f(xi,β)(k−1)(k−2)/2+`Xk` ∈ SkewSym(k), and consider the “directional” ma-

trix u(xi, q,β) = qΛ(xi,β) as a tangent vector to SO(k) at q ∈ SO(k). By considering

the “conditional mean”

µ(xi, q,β) = Expq(u(xi, q,β)) = q exp(Λ(xi,β)),
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the intrinsic residual is given by

E(xi, q,β) = Ei(q,β) = Log(e−Λ(xi,β)q>qi).

When k = 2, both the manifold SO(2) and the linear space SkewSym(2) have

dimension 1, so f(xi,β) is a scalar map. We have

Λ(xi,β) = f(xi,β)J =

 0 −f(xi,β)

f(xi,β) 0


q =

cos(θ0) − sin(θ0)

sin(θ0) cos(θ0)

 , qi =

cos(θi) − sin(θi)

sin(θi) cos(θi)


where θi are in (−π, π] for i = 0, . . . , n. The “conditional mean” becomes

µ(xi, q,β) =

cos(θ0 + f(xi,β)) − sin(θ0 + f(xi,β))

sin(θ0 + f(xi,β)) cos(θ0 + f(xi,β))


and the “intrinsic residual” is

E(xi, q,β) = (φi − θ0 − I(xi,β))mod 2πJ.

We observe that we recapture, via the canonical isomorphism between SO(2) and S1,

the intrinsic model presented in Example 2. When SO(2) is endowed with the trace

metric, the Riemannian distance on SO(2) between two rotations is a constant multiple

of the Riemannian distance on S1 between their counterparts in S1; the multiplicative

factor is
√

2.

When k = 3, the manifold SO(3) and the linear space SkewSym(3) have dimension
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3, and the above “conditional mean” becomes

µ(xi, q,β) = q

(
I3 +

sinλ(xi,β)

λ(xi,β)
Λ(xi,β) +

(1− cosλ(xi,β))

λ(xi,β)2
Λ(xi,β)2

)
,

where λ(xi,β) = ‖f(xi,β)‖, and the “intrinsic residual” is

E(xi, q,β) =
θi(q,β)

2 sin(θi(q,β))
×[

(q>qi − q>i q)

− sin(λ(xi,β))

λ(xi,β)

(
Λ(xi,β)q>qi + q>i qΛ(xi,β)

)
+

[1− cos(λ(xi,β))]

λ(xi,β)2

(
Λ(xi,β)2q>qi − q>i qΛ(xi,β)2

)]
,

where θi(q,β) is given by

arccos

{
1

2

[
tr (q>qi) −

sin(λ(xi,β))

λ(xi,β)
tr (Λ(xi,β)q>qi)

+
(1− cos(λ(xi,β)))

λ(xi,β)2
tr (Λ(xi,β)2q>qi)

]
− 1

}
.

A.2 Proofs for Chapter 2

Proof of Theorem 2.3.1. (a) Let

Q(q,β) := (E[h(x, q,β)E(y,x, q,β)])>W (E[h(x, q,β)E(y,x, q,β)]) (A.9)

and Qn(q,β) as in (2.8). Conditions (C1) and (C4) imply that sup(q,β) |Qn(q,β) −

Q(q,β)| p→ 0, while conditions (C2), (C3), and (C5) yield

Q(q∗,β∗) = 0 < inf
(q,β):distM (q,q∗)+‖β−β∗‖≥ε

Q(q,β),
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for any ε > 0. Thus, the consistency of (q̂, β̂) in (2.8) follows from Theorem 5.7 in van

der Vaart (1998) (van der Vaart 1998) applied to −Qn.

(b) In the case M is an open subset of the Euclidean space Rd and φ = id, the

CLT in (2.9) is a classical result, e.g. see Newey (1993) (Newey 1993). Under the

assumption (C6), the GMM estimator (q̂, β̂) is a zero of the real vector-valued function

Hn(q,β) := 1
2

∂
∂(q,β)

Qn(q,β), i.e.

Hn(q,β) =

[
∂

∂(q,β)
(Pn(h(·, q,β)E(·, ·, q,β)))

]>
WnPn(h(·, q,β)E(·, ·, q,β))

=

[
Pn
(

∂

∂(q,β)
[h(·, q,β)E(·, ·, q,β)]

)]>
WnPn(h(·, q,β)E(·, ·, q,β)).

(A.10)

The CLT (2.9) follows from the first order Taylor expasion of Hn(q,β) around the

true value (q∗,β∗) evaluated at the estimator (q̂, β̂). Indeed, under (C6) the function

Hn(·, ·) is continously differentiable, and its first order Taylor expansion gives

0 = Hn(q̂, β̂) = Hn(q∗,β∗) +
∂

∂(q,β)
Hn(q∗,β∗)[(q̂

>, β̂>)> − (q>∗ ,β
>
∗ )>]

+ Op(‖(q̂>, β̂>)> − (q>∗ ,β
>
∗ )>‖2)

= Hn(q∗,β∗) +

[
∂

∂(q,β)
Hn(q∗,β∗) + op(1)

]
[(q̂>, β̂>)> − (q>∗ ,β

>
∗ )>]

Solve and we get

√
n ((q̂>, β̂>)> − (q>∗ ,β

>
∗ )>) =−

[(
∂

∂(q,β)
Hn(q∗,β∗)

)−1

+ op(1)

] (√
n Hn(q∗,β∗)

)
.

(A.11)

Condition (C7) implies that the variance matrix V is well-defined and has finite entries.

Thus, the standard multivariate CLT for the random variables h(xi, q,β)E(yi, xi, q∗,β∗),
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i = 1, . . . , n, yields

√
n Pn(h(·, q∗,β∗)E(·, ·, q∗,β∗))

d→ Ns(0, V ). (A.12)

Under the model (2.7), we have

E

[
∂

∂(t,β)

[
h(x;φ−1(t),β∗)E(y,x;φ−1(t),β∗)

] ∣∣
t=φ(q∗)

]
= Gφ.

Thus, the condition (C8) and the Law of Large Numbers imply

Pn(
∂

∂(q,β)
[h(·, q,β)E(·, ·; q∗,β∗)])

p→ Gφ. (A.13)

Using this together with the condition (C1) and (A.12) in (A.10), by the Sluzky’s

theorem, we get

√
nHn(q∗,β∗)

d→ NdM+dβ(0, G>φWVWGφ). (A.14)

On the other hand, denoting Gn(q,β) = Pn
(

∂
∂(q,β)

[h(·; q,β)E(·, ·; q,β)]
)
, we have

∂

∂(q,β)
Hn(q∗,β∗) = Gn(q∗,β∗)

>WnGn(q∗,β∗)

+
(
IdM+dβ ⊗ [WnPn(h(·; q∗,β∗)E(·, ·; q∗,β∗))]

)> ∂Vec (Gn)

∂(q,β)
(q∗,β∗),

where ⊗ is the matrix Kronecker product. By the Law of Large Numbers, Gn(q∗,β∗)
p→

Gφ and Pn(h(·; q∗,β∗)E(·, ·; q∗,β∗))
p→ 0, and by the Slutky’s theorem and the assump-

tion (C10), the second term on the right-hand side of the above equality is op(1) and.

By the continuous mapping theorem, it follows that

(
∂

∂(q,β)
Hn(q∗,β∗)

)−1
p→ (G>φWGφ)−1. (A.15)
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Conditions (C7) and (C9) assure that G>φWGφ is a (dM + dβ) × (dM + dβ) invertible

matrix. Thus, the CLT (2.9) follows by using (A.14) and (A.15) in (A.11).

Let’s now consider the case when M is a RS space. For a chart (U, φ) on M

near q∗, let t∗ = φ(q∗). As (q̂, β̂) is a consistent estimator for (q∗,β∗), thus q̂ ∈ U

with probability approaching one, as n → ∞. Let denote t̂ = φ(q̂), when q̂ ∈

U . By the continuous mapping theorem, (φ(q̂)>, β̂>)> is a consistent estimator for

(φ(q∗)
>,β>∗ )> in R(dM+dβ). The conditions (C6) − (C10) hold for (φ(q∗)

>,β>∗ )> and

functions (t>,β>)> 7→ h(x, φ−1(t),β)E(y,x;φ−1(t),β). The Euclidean case applied

to (t>,β>)> 7→ Hn(φ−1(t),β) yields the CLT (2.9). Note that here, in contrast with

the Euclidean case, Hn(φ−1(t),β) is a function of random variables (yi,xi) with yi

being manifold-valued random variables. However, for all (t,β), the random variables

E(yi,xi, φ
−1(t),β) and ∂

∂(t,β)
E(yi,xi, φ

−1(t),β), i = 1, . . . , n, are real vector-valued vari-

ables, so all arguments still hold.

The relationship between Σφ′ and Σφ, i.e. the compatibility of the covariance matrix

with the manifold structure ofM , follows from the chain rule applied to φ′ = (φ′◦φ−1)◦φ

near q∗.

We note that when Θ is compact and the functions

(q,β)→ h(x; q,β)E(y,x; q∗,β∗)

are continuous for every (y, x), then the following condition

(C4′) E[sup
(q,β)

‖h(x; q,β)E(y,x; q,β)‖TpM ] <∞,

together with (C2), implies both (C4) and (C5). Also note that if the conditional mean

link function F (x, q,β) is continuous in (q,β) ∈ M × Rdβ uniformly with respect to

x, then the one-parameter subgroups c(·,x, q,β) of G, the definition of the intrinsic
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residuals E , have the property that c(1,x, q,β) ∈ G are continuous in (q,β) uniformly

with respect to x, which yield that the functions (q,β) → E(y,x; q,β) are uniformly

continuous with respect to x. If, in addition, F (x, q,β) and h(x; q,β) is twice continu-

ously differentiable in q,β) in some neighborhood of (q∗,β∗) with probability one, then

(C6) holds.

Optimal GMM estimator given an instrumental function h. Given h such that

V = Var[h(x; q,β)E(y,x; q∗,β∗)] is a s × s positive-definite matrix and taking Wn =

W opt
h = W opt = V −1 will result in the most efficient estimator in the class of all GMM

estimators that use h and its asymptotic variance is Σopt
φ,h = Σopt

φ = (G>φW
optGφ)−1.

Efficiency means that an estimator will have the smallest possible variance (for two

symmetric positive semi-definite matrices S and T , we say that matrix S is greater

than matrix T and write S ≥ T , if the matrix S − T is positive semi-definite), i.e for

any given weight matrix W the variance Σφ is greater than Σopt
φ . We have that the

variance difference

Σφ − Σopt
φ = (G>φWGφ)−1G>φWVWGφ(G>φWGφ)−1 − (G>φ V

−1Gφ)−1

= (G>φWGφ)−1G>φWV 1/2

×
(
I − V −1/2Gφ(G>φ V

−1Gφ)−1G>φ V
−1/2

)
×V 1/2WGφ(G>φWGφ)−1

= A(I −B)A′,

where A,B are (dM + dβ)× (dM + dβ) matrices, B symmetric, and B2 = B. Thus, the

variance difference is of the form A(I−B)(I−B)′A′, which is positive semi-definite, so

Σφ ≥ Σopt
φ . Therefore, given h, the use of Wn = W opt = V −1 yields the GMM estimator

with the smallest asymptotic covariance matrix among those using the same h.

Proof of Theorem 2.3.2. The asymptotic normality of (q̂∗, β̂∗) follows from Theorem
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2.3.1 (here, s = dM + dβ) with covariance matrix Σ∗φ = (G∗>φ W ∗
φG
∗
φ)−1, where

G∗φ = E

[
h∗φ(x)

∂

∂(t,β)
E(y,x;φ−1(t),β∗)

∣∣
t=φ(q∗)

|x
]

= E[Dφ(x)Ω(x)−1Dφ(x)>].

and

W ∗
φ =

(
Var[h∗φ(x)E(y,x; q∗,β∗)]

)−1

=
(
E
[
Var (h∗φ(x)E(y,x; q∗,β∗) |x)

])−1

=
(
E[h∗φ(x)Var (E(y,x; q∗,β∗) |x)h∗>φ (x)]

)−1

=
(
E[Dφ(x)Ω(x)−1Ω(x)Ω(x)−1Dφ(x)>]

)−1

=
(
E
[
Dφ(x)Ω(x)−1Dφ(x)>

])−1
= G∗−1

φ .

We also have G∗>φ = G∗φ, since Ω(x) is a symmetric positive definite matrix. Thus,

Σ∗φ = (G∗φG
∗−1
φ G∗φ)−1 = G∗−1

φ =
(
E[Dφ(x)Ω(x)−1Dφ(x)>]>

)−1
.

Finally, to prove the optimality of the GMM estimator (q̂∗, β̂∗) among all estimators

minimizing the quadratic form in the definition (2.8), it is enough to show that the

variance matrix Σopt
φ,h is greater than Σ∗φ or, equivalently, Σ∗−1

φ −Σopt−1
φ,h ≥ 0, in the sense

of positive semi-definite matrices, for any s×dM matrix-valued function h(x; q,β). With

the notations introduced in this theorem, we have Gφ,h = E[hD>φ ], W opt
h = E[hΩh>]−1,
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and Σopt
φ,h = (E[hD>φ ]>E[hΩh>]−1E[hD>φ ])−1. Thus, a simple calculation shows

Σ∗−1
φ − Σopt−1

φ,h =

=E[DφΩ−1D>φ ]− E[hD>φ ]>E[hΩh>]−1E[hD>φ ]

=E
[(
Dφ−Ωh>E[hΩh>]−1E[hD>φ ]

)>
Ω−1

(
Dφ−Ωh>E[hΩh>]−1E[hD>φ ]

)]
≥ 0,

since Ω−1 is a symmetric positive definite matrix. Therefore, the instrumental function

h∗φ, together with its associated optimal weight matrix W ∗
φ , yields the optimal GMM

estimator among all estimators minimizing the quadratic form in the definition (2.8).

Proof of Theorem 2.3.3. We use the following short notations, D̂i := D̂(xi), Di :=

D(xi), ĥE,φ,i := ĥE,φ(xi), h∗E,φ,i := h∗E,φ(xi), Ei(q,β) := E(yi,xi; q,β), and ∆i(q,β) =

∂Ei(q,β)/∂(q,β), for i = 1, . . . , n. For a matrix A let ‖A‖ be the Frobenius norm, i.e.

‖A‖2 = tr(A>A).

Consider any (q̄, β̄) ∈ Θ such that distM(q̄, q∗)+‖β̄−β∗‖ = op(1). With probability

approaching one (q̄, β̄) ∈ N∗(δ),

‖Pn(ĥE,φ(·) ∂

∂(t,β)
E(·, ·;φ−1(t), β̄)

∣∣
φ(q̄)

)− Pn(h∗E,φ(·) ∂

∂(t,β)
E(·, ·;φ−1(t), β̄)

∣∣
φ(q̄)

)‖

= ‖ 1

n

n∑
i=1

(ĥE,φ,i − h∗E,φ,i)∆i(q̄, β̄)‖ ≤ 1

n

n∑
i=1

‖ĥE,φ,i − h∗E,φ,i‖‖∆i(q̄, β̄)‖

≤ 1

n

n∑
i=1

‖ĥE,φ,i − h∗E,φ,i‖M1(yi,xi)

≤

(
1

n

n∑
i=1

‖ĥE,φ,i − h∗E,φ,i‖2

)1/2(
1

n

n∑
i=1

M1(yi,xi)
2

)1/2

=

(
1

n

n∑
i=1

‖ĥE,φ,i − h∗E,φ,i‖2

)1/2

Op(1), (A.16)
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by assumption E[M1(y,x)2] < ∞. Also E[‖D(x)‖2] < ∞. As (q̂I , β̂I) is consistent,

dist
M×Rdβ ((q̂I , β̂I), (q∗,β∗)) = op(1), by the uniform LLN and V (q∗,β∗) nonsingu-

lar, then with probability approaching one, V̂ (q̂I , β̂I) is nonsingular, V̂ (q̂I , β̂I)
−1 =

V (q∗,β∗)
−1 + op(1). Then,

1

n

n∑
i=1

‖ĥE,φ,i − h∗E,φ,i‖4 =
1

n

n∑
i=1

‖D̂φ,iV̂ (q̂I , β̂I)
−1 −Dφ,iV (q∗,β∗)

−1‖4

≤ 1

n

n∑
i=1

C
(
‖(D̂φ,i −Dφ,i)V̂ (q̂I , β̂I)

−1‖4 + ‖Dφ,i(V̂ (q̂I , β̂I)
−1 − V (q∗,β∗)

−1)‖4
)

≤ C‖V̂ (q̂I , β̂I)
−1‖4

(
1

n

n∑
i=1

‖D̂φ,i −Dφ,i‖4

)

+ C‖V̂ (q̂I , β̂I)
−1 − V (q∗,β∗)

−1)‖4

(
1

n

n∑
i=1

‖Dφ,i‖4

)
= Op(1)op(1) + op(1)Op(1) = op(1), (A.17)

where C is an absolute positive constant.

Note that sup(q,β)∈N(δ) ‖h∗E,φ,i∆i(q,β)‖ ≤ ‖Dφ,i‖‖V (q∗,β∗)
−1‖M1(yi,xi), by the

uniform LLN 1
n

∑n
i=1 h

∗
E,φ,i∆i(q̄, β̄) = E[Dφ(x)V (q∗,β∗)

−1Dφ(x)>] + op(1) = Gφ,h∗E,φ
+

op(1). Then by (A.16) and (A.17), it follows

1

n

n∑
i=1

ĥE,φ,i∆i(q̄, β̄) = Gφ,h∗E,φ
+ op(1) (A.18)

In particular, for (q̄, β̄) = (q∗,β∗), we have 1
n

∑n
i=1 D̂φ,iV̂ (q̂I , β̂I)

−1D>φ,i = Gφ,h∗E,φ
+

op(1). Also,

‖ 1

n

n∑
i=1

(D̂φ,iV̂ (q̂I , β̂I)D̂
>
φ,i − D̂φ,iV̂ (q̂I , β̂I)

−1D>φ,i)‖

≤ (n−1

n∑
i=1

‖ĥE,φ,i‖2)1/2(n−1

n∑
i=1

‖D̂φ,i −Dφ,i‖2)1/2

= Op(1)op(1) = op(1).
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It follows that

1

n

n∑
i=1

D̂φ,iV̂ (q̂I , β̂I)
−1D̂>φ,i = Gφ,h∗E,φ

+ op(1). (A.19)

Next, note that for matrices A1 and A2 , ‖A1A
>
1 −A2A

>
2 ‖ = ‖(A1−A2)(A1−A2)>+

A2(A1 − A2)> + (A1 − A2)A>2 ‖ ≤ ‖A1 − A2‖2 + 2‖A1 − A2‖‖A2‖.

Let B̂i = ĥE,φ,iEi(q̂I , β̂I) and B̃i = h∗E,φ,iEi(q̂I , β̂I). Then,

‖ 1

n

n∑
i=1

(
ĥE,φ,iEi(q̂I , β̂I)⊗2ĥ>E,φ,i − h∗E,φ,iEi(q̂I , β̂I)⊗2h∗>E,φ,i

)
‖

≤ 1

n

n∑
i=1

‖B̂iB̂
>
i − B̃iB̃

>
i ‖ ≤

1

n

n∑
i=1

‖B̂i − B̃i‖2 +
2

n

n∑
i=1

‖B̂i − B̃i‖‖B̃i‖

≤ 1

n

n∑
i=1

‖ĥE,φ,i − h∗E,φ,i‖2M0(yi,xi)
2

+ 2

(
1

n

n∑
i=1

‖ĥE,φ,i − h∗E,φ,i‖2M0(yi,xi)
2

)1/2(
1

n

n∑
i=1

‖h∗E,φ,i‖2M0(yi,xi)
2

)1/2

≤

(
1

n

n∑
i=1

‖ĥE,φ,i − h∗E,φ,i‖4

)1/2(
1

n

n∑
i=1

M0(yi,xi)
4

)1/2

+ 2

(
1

n

n∑
i=1

‖ĥE,φ,i − h∗E,φ,i‖4

)1/4(
1

n

n∑
i=1

‖h∗E,φ,i‖4

)1/4(
1

n

n∑
i=1

M0(yi,xi)
4

)1/2

= (op(1)Op(1))1/2 + (op(1)Op(1))1/4Op(1)1/2 = op(1). (A.20)

Note that sup(q,β)∈N(δ) ‖h∗E,φ,iEi(q,β)⊗2h∗>E,φ,i‖ ≤ ‖Dφ,i‖2‖V (q∗,β∗)
−1‖2M0(yi,xi)

2, by

the uniform LLN

1

n

n∑
i=1

h∗E,φ,iEi(q̂I , β̂I)⊗2h∗>E,φ,i = E[Dφ(x)V (q∗,β∗)
−1Ω(x)V (q∗,β∗)

−1D(φx)>] + op(1).
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Then, from (A.20), we have

1

n

n∑
i=1

ĥE,φ,iEi(q̂I , β̂I)⊗2ĥ>E,φ,i = E[Dφ(x)V (q∗,β∗)
−1Ω(x)V (q∗,β∗)

−1Dφ(x)>] + op(1)

(A.21)

The conclusion (2.17) that Σ̂E,φ is a consistent estimator for ΣE,φ follows from (A.19),

(A.21), the continuous mapping theorem and the Slutzky’s theorem.

Next, with Aj denoting the j-th row of a matrix A, we have

∣∣n−1/2

n∑
i=1

(D̂φ,i;j −Dφ,i;j)V̂ (q̂I , β̂I)
−1Ei(q∗,β∗)

∣∣
=
∣∣tr[V̂ (q̂I , β̂I)

−1 n−1/2

n∑
i=1

Ei(q∗,β∗)(D̂φ,i;j −Dφ,i;j)]
∣∣

≤ C ‖V̂ (q̂I , β̂I)
−1‖ ‖n−1/2

n∑
i=1

Ei(q∗,β∗)(D̂φ,i;j −Dφ,i;j)‖

≤ Op(1)‖n−1/2

n∑
i=1

(D̂φ,i −Dφ,i)⊗ Ei(q∗,β∗)‖

= Op(1)op(1) = op(1). (A.22)

Also, we have E[Dφ(x)⊗ E(y,x; q∗,β∗)] = 0 and

E[‖n−1/2
∑n

i=1 Dφ,i⊗Ei(q∗,β∗)‖2] = E[‖Dφ(x)‖2‖E(y,x; q∗,β∗)‖2] <∞. It follows that

∣∣n−1/2

n∑
i=1

Dφ,i,j(V̂ (q̂I , β̂I)
−1 − V (q∗,β∗)

−1)Ei(q∗,β∗)
∣∣

=

∣∣∣∣∣tr
[

(V̂ (q̂I , β̂I)
−1 − V (q∗,β∗)

−1)n−1/2

n∑
i=1

Ei(q∗,β∗)Dφ,i,j

]∣∣∣∣∣
≤ C ‖V̂ (q̂I , β̂I)

−1 − V (q∗,β∗)
−1‖ ‖n−1/2

n∑
i=1

Ei(q∗,β∗)Dφ,i,j‖

≤ op(1)‖n−1/2

n∑
i=1

Dφ,i ⊗ Ei(q∗,β∗)‖ = op(1). (A.23)
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Since this is true for each j, j = 1, . . . , dM + dβ, it follows that

‖n−1/2

n∑
i=1

(ĥE,φ,i − h∗E,φ,i)Ei(q∗,β∗)‖ = op(1). (A.24)

From (2.15), using the Taylor expansion of
∑n

i=1 h
∗
E,φ,iEi(q̂I , β̂I) at (q∗,β∗), twice (A.18)

with (q̄, β̄) = (q̂I , β̂I) and (q̄, β̄) = (q∗,β∗), respectively, (A.24), and the Slutzky’s

theorem, it follows that

√
n[(φ(q̃E)>, β̃>E)> − (φ(q∗)

>,β>∗ )>]

=

[
1

n

n∑
i=1

ĥE,φ,i
∂Ei

∂(t,β)
(φ−1(t), β̂I)∣∣

t=φ(q̂I )

]−1 [
1√
n

n∑
i=1

ĥE,φ,iEi(q∗,β∗)

]
+ op(1).

The first conclusion, (2.16), of the theorem follows now from the above equation by

standard central limit arguments, namely, n−1/2
∑n

i=1 h
∗
E,φ,iEi(q∗,β∗)

d→ N(0,W ∗
E,φ),

with W ∗
E,φ as defined in (2.13), and then using (A.18) with (q̄, β̄) = (q̂I , β̂I) and the

Slutzky’s theorem. This completes the proof.

Proof of Theorem 2.3.4. The proof follows similar steps as in Theorem 4.3 with straight-

forward modifications, which for brevity are omitted.

Proof of Theorem 2.3.5. Let (U, φ) be a chart onM near q∗.

(i) We only prove the result forW (2)
n,φ as follows. Under H

(2)
0 , the true value q∗ equals

q0 and (U, φ) is a chart near q0. As q̃E is a consistent estimator for q, it follows that

q̃E ∈ U , for n large enough, with probability approaching 1. From the CLT for q̃E, we

have that, under H(2)
0 ,

√
n (φ(q̃E)− φ(q0))

d→ NdM(0, (IdM 0)ΣE,φ(IdM 0)T )
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As nΣ̂E,φ
p→ ΣE,φ, by the continuous mapping theorem, we get

1√
n

[
(IdM 0)Σ̂E,φ(IdM 0)T

]−1/2 p→
[
(IdM 0)ΣE,φ(IdM 0)T

]−1/2
.

Then, using Slutzky’s theorem, we have

[
(IdM 0)Σ̂E,φ(IdM 0)T

]−1/2

(φ(q̃E)− φ(q0))
d→ NdM(0, IdM)

which implies W (2)
n,φ

d→ χ2
dM

.

(ii) Since β̃E and the lower-right dβ × dβ submatrix of Σ̂E,φ are independent of the

chart (U, φ), so is W (1)
n,φ.

(iii) Let (U ′, φ′) be another chart near q0 with q̂E ∈ U ′. A Taylor’s series ex-

pansion of the transition function φ′ ◦ φ about φ(q0) shows that φ′(qE) − φ′(q0) =

(J(φ′ ◦ φ)φ(q0) + op(1))(φ(qE) − φ(q0)). Let q̂ be the consistent estimator of q that

the asymptotic covariance estimator Σ̂E,φ is based on. As Σ̂E,φ is compatible with the

manifold structure ofM and J(φ′ ◦ φ)φ(q̂) = J(φ′ ◦ φ)φ(q0) + op(1), we have

W
(2)
n,φ′ = [φ(q̃E)− φ(q0)]T [J(φ′ ◦ φ)φ(q0) + op(1)]T

×
[(
J(φ′ ◦ φ)φ(q̂) 0

)
Σ̂E,φ

(
J(φ′ ◦ φ)φ(q̂) 0

)T]−1

×[J(φ′ ◦ φ)φ(q0) + op(1)][φ(q̃E)− φ(q0)]

= [φ(q̃E)− φ(q0)]T [J(φ′ ◦ φ)−1
φ(q0) + op(1)]−>

×
[(
J(φ′ ◦ φ)φ(q0) + op(1) 0

)
Σ̂E,φ

(
J(φ′ ◦ φ)φ(q0) + op(1) 0

)T]−1

×[J(φ′ ◦ φ)−1
φ(q0) + op(1)]−1[φ(q̃E)− φ(q0)]

= [φ(q̃E)− φ(q0)]T
[
(IdM 0) Σ̂E,φ (IdM 0)T + op(1)

]−1

[φ(q̃E)− φ(q0)]

= W
(2)
n,φ + op(1).
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Thus, W (2)
n,φ′ and W

(2)
n,φ are asymptotically equivalent.

(iv) Let φ and φ′ be two normal charts on M centered at q̃E. Thus, φ(·) = A ◦

Logq̃E
(·) and φ′(·) = A′ ◦ Logq̃E

(·), where A,A′ : Tq̃EM→ RdM are two isomorphisms

of linear spaces induced by the coordinates with respect to two orthonormal bases of

Tq̃EM. Therefore, φ′(·) = Oφ(·), where O = A′A−1 corresponds to an orthonormal

matrix, and Σ̂E,φ′;11 = OΣ̂E,φ;11O
T . Thus, Σ̂E;11 := A−1 ◦ Σ̂E,φ;11 ◦ A is independent of

the chart φ and is a 1-1 linear map from Tq̃EM onto itself. Since A preserves the inner

product, we have

W
(2)
n,φ = tr{[Σ̂−1

E,φ;11A(Logq̃E
(q0))]>A(Logq̃E

(q0))}

= tr{[A((Σ̂E;11)−1Logq̃E
(q0))]>A(Logq̃E

(q0))}

= mq̃E(Σ̂E;11)−1Logq̃E
(q0),Logq̃E

(q0)) = W
(2)
M,n.

Proof of Theorem 2.3.6. The proof follows from a straightforward application of a Tay-

lor’s series expansion and Slutzky’s theorem. We only prove (ii). We have that, under

H
(2)
1,n,

√
n (φ(q̃E)− φ(qn))

d→ NdM(0, (IdM 0)ΣE,φ(IdM 0)T ),

where qn = Expq0
(v/
√
n + o(1/

√
n)). As nΣ̂E,φ

p→ ΣE,φ, by the continuous mapping

theorem, we get nΣ̂E,φ;11
p→ ΣE,φ;11 Then, using Slutzky’s theorem, we have

[
Σ̂E,φ;11

]−1/2

(φ(q̃E)− φ(qn))
d→ NdM(0, IdM)
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From Taylor’s series expansion of the map φ ◦ Expq0
at 0, we have

√
n(φ(qn)− φ(q0)) = J(φ ◦ Expq0

)0(v) + o(1).

Thus, again using Slutzky’s theorem, we obtain that

[
Σ̂E,φ;11

]−1/2

(φ(q̃E)− φ(q0))
d→ NdM([ΣE,φ;11]−1/2 J(φ ◦ Expq0

)0(v), IdM),

which implies that, under H(2)
1,n,W

(2)
n,φ converges in distribution to a noncentral χ2

dM
with

noncentrality parameter

J(φ ◦ Expq0
)0(v)T

[
Σ̂E,φ;11

]−1

J(φ ◦ Expq0
)0(v).

(iii) It follows from (ii) applied to a normal chart φ = Logq̃E
near q̃E.

Proof of Theorem 2.3.7. Consider a Taylor’s series expansion of the real-valued func-

tion distM(q, q0)2 around the point q∗

distM(q, q0)2 = distM(q∗, q0)2 + gradq∗(distM(·, q0)2)(Logq∗(q))

+
1

2
Hessq∗(distM(·, q0)2)(Logq∗(q),Logq∗(q))

+ O(‖Logq∗(q)‖3),

for any q in a normal chart centered at q∗ with distM(q, q∗) < ρ∗M. The result depending

on which method is used, implies

√
nLogq∗(q̃E)

d→ NdM(0,ΣE,Logq∗;11
), (A.25)
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where ΣE,Logq∗
is the matrix representation of the asymptotic covariance matrix of

q̃E with respect to the orthonormal basis in Tq∗M associated with the normal chart

under consideration. The squared distance function becomes distM(Expq∗(v), q∗)
2 =

‖v‖2
Tq∗M

, for any v ∈ Tq∗M with ‖v‖Tq∗M < ρ∗M, and the matrix representation of

its Hessian at the chart center q∗ is the identity matrix IdM , with respect to any

orthonormal basis of Tq∗M.

(a) Under the null hypothesis H(2)
0 , q̃E belongs to a normal chart centered at q0

with probability approaching one, and

Wdist = mq0(Logq0
(q̂E),Logq0

(q̂E)) = (Logq0
(q̂E))T (Logq0

(q̂E)),

when Logq0
(q̂E) is expressed in the orthonormal basis of Tq0M associated with the

normal chart centered at q∗ = q0. From this and (A.25), it follows that nWdist
d→

χ2(λ1, . . . , λdM), where λ1, . . . , λdM are the eigenvalues of the matrix ΣE,Logq0
,11. Let

ΣE,Logq0
and Σ′E,Logq0

be the matrix representations of the asymptotic covariance matrix

of q̃E in two normal charts centered at q0. Then Σ′E,Logq0
,11 = OΣE,Logq0

,11O
T , for some

dM × dM orthogonal matrix O, so the eigenvalues λ1, . . . , λdM are independent of the

normal chart.

(b) Under the alternative hypothesis H(2)
1 , from the Taylor’s series expansion above,

we have

Wdist − distM(q∗, q0)2 = gradq∗(distM(·, q0)2)[Logq∗(q̃E) +Op(‖Logq∗ q̃E‖
2)]

= [DT
dist + op(1)]Logq∗(q̃E).

Using Slutzky’s theorem, we get

√
n(Wdist − distM(q∗, q0)2)

d→ NdM(0, DT
distΣE,Logq∗ ,11Ddist).
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In the case when q0 is close to q∗ so that q0 is in a normal chart centered at q∗, then

Ddist = gradq∗(distM(·, q0)2) = −2Logq∗q0 and we have

√
n(Wdist − distM(q∗, q0)2)

d→ NdM(0, 4[Logq∗q0]TΣE,Logq∗ ,11 [Logq∗q0],

which completes the proof.

Proof of Theorem 2.3.8. We introduce some notation. For any chart (U, φ) onM with

q0 ∈ U , we define F ∗φi and U∗ in a similar way as Fφi and U∗, respectively, by replacing

(q0, β̃I) with (q∗,β∗). That is,

F ∗φi = (F ∗>φi,1, F
∗>
φi,2)> = ∂(t,β)distM(f(xi, φ

−1(t),β), yi)
2
∣∣
t=φ(q∗),β∗

,

U∗ =

 U∗tt U∗tβ

U∗βt U∗ββ

 =
n∑
i=1

∂2
(t,β)distM(f(xi, φ

−1(t),β), yi)
2
∣∣
t=φ(q∗),β∗

,

where the subcomponents F ∗>φi,1 and F ∗>φi,2 correspond to t and β, respectively.

(i) The key idea in deriving the asymptotic distribution of WSC,φ consists of two

steps. In Step 1, using a Taylor’s series expansion of
∑n

i=1 Ũi,2 at (φ(q∗),β∗), we can

show that, under the null hypothesis H(2)
0 ,

β̃I − β∗ = (−U∗ββ)−1

n∑
i=1

F ∗φi,2 +Op(n
−1).
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In Step 2, under H(2)
0 , we expand

∑n
i=1 Fφi,1 at (φ(q∗),β∗) to get

n∑
i=1

Fφi,1 =
n∑
i=1

F ∗φi,1 + U∗tβ(β̃I − β∗)[1 + op(1)]

=
n∑
i=1

F ∗φi,1 − U∗tβU∗−1
ββ (

n∑
i=1

F ∗φi,2)[1 + op(1)]

= (IdM ,−U∗tβ(U∗ββ)−1)

(
n∑
i=1

F ∗φi

)
[1 + op(1)].

Thus, by using Slutzky’s theorem, we have

(IdM ,−U∗tβ(U∗ββ)−1)
1√
n

(
n∑
i=1

F ∗φi

)
d→ NdM(0,Σφ,q∗),

where Σφ,q∗ is given by

E
{

[(IdM ,−U∗tβ(U∗ββ)−1)∂t,βdistM(f(x, φ−1(t),β∗), y)2
∣∣
t=φ(q∗)

]⊗2
}
.

Since Σ̃φ,q =[n−1
∑n

i=1[(IdM ,−UtβU−1
ββ)(Fφi − F φ)]⊗2]

p→Σφ, it follows from the contin-

uous mapping theorem and Slutzky’s theorem that under H(2)
0 , the score test statistic

WSC,φ = (
∑n

i=1 Fφi,1)>Σ̃−1
φ,q(
∑n

i=1 Fφi,1)
d→ χ2

dM
.

(ii) Let (U ′, φ′) be another chart onM with q0 ∈ U ′. Under H(2)
0 , by the chain rule,

we have Fφ′,i = diag(J(φ ◦ φ′−1)φ′(q0), Idβ)TFφ,i and Uφ′,t′β = J(φ ◦ φ′−1)Tφ′(q0)Uφ,tβ. It

immediately follows that

Fφ′i,1 = J(φ ◦ φ′−1
)Tφ′(q0)Fφi,1,

Σ̃φ′,q = J(φ ◦ φ′−1
)Tφ′(q0)Σ̃φ,qJ(φ ◦ φ′−1

)φ′(q0),

which implies WSC,φ′ = WSC,φ. Thus, the score test statistic WSC,φ is independent of

the chart (U, φ) near q0.
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A.3 RSS method versus more naïve approaches

More naïve approaches that ignore nonlinearity or deal with it in a simple minded

fashion may be considered. One example of such an approach is to compute a Fréchet

mean of the observed response variable, map the responses to the tangent space at this

mean, using the the logarithmic map, then apply a standard (Euclidean) regression

framework in the tangent space, and then map the results back on the manifold via

the exponential map. We simulated circular data, i.e. M = S1, to illustrate that

our method outperforms the naïve method in terms of both prediction accuracy and

estimation efficiency, when the distribution of the responses strongly depends on the

covariates and the covariates have substantial variation.

Let M = S1 be the unit circle in R2 and the âĂĲtrueâĂİ data y∗1, . . . , y∗16 ∈ S1

be the vertices of a polygon with all the sides of equal length, except for the side

y∗8, y
∗
9 which has a longer length, and it is symmetric about the diameter through the

East point E(1, 0) . For simplicity, we distorted the regular polygon to ensure that

there is no rotational invariance of data and the FrÃľchet mean of y∗i âĂŹs is unique,

in this case the point E. Let xi be the covariate associated with the response y∗i , xi

be the polar angle of y∗i from the East point. The covariates are assumed fixed and

known. We set xi = 0.9π
8
(2i − 1) for i = 1, . . . , 8, and xi = −0.9π

8
[2(16 − i) + 1] for

i = 9, . . . , 16. We generated noisy data yi, i = 1, . . . , 16, from the âĂĲtrueâĂİ data

as follows. We introduced a random N(0, σ2) noise around 0 in the tangent space to

S1 at each y∗i and then project it onto S1 via the exponential map at y∗i to obtain

the observed data yi. We consider different levels of noise by varying σ and the link
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Table A.1: Comparison of the performance of RSS model and naïve method for the
simulated circular data in Section A.3.

True Values RSS model estimates Naïve method estimates
q (1, 0) (0.999,−0.001) (0.001, 0.999)
β 1 0.869 -0.070

SSR 0 17.840 38.759

function: µ(x, q, β) : (−pi, π)× S1 ×R→ S1 given by

µ(x, q, β) = T−1
st;−q(βTst;−qRE,q(cosx, sinx))

= RE,q(cos(2 tan−1(β tan(x/2))), sin(2 tan−1(β tan(x/2))))

= RE,q

(
1− β2 tan2(x/2)

1 + β2 tan2(x/2)
,

2β tan(x/2)

1 + β2 tan2(x/2)

)
,

where Tst;−q is the stereographic projection of S1 from the point −q onto the tan-

gent space of S1 at q and Rp,q is the 2D-rotation that maps p over q. Note that

Tst;−E(cosx, sinx) = (1, 2 tan(x/2)), µ(0, q, β) = µ(x, q, 0) = q, and µ(x, q, 1) =

RE,q((cosx, sinx)) = (cos(x + xq), sin(x + xq)), where xq is the polar angle of q from

the East point. For the “true” data, we have y∗i = µ(xi, E, 1), for i = 1, . . . , 16. The

true values of q and β are q∗ = E = (1, 0) and β∗ = 1, respectively.

To compare the performance of our model and the naïve method, we consider the

circular data presented above with random standard normal distributed noise (σ = 1).

Under our model, we estimate q and σ simultaneously, while under the naïve method,

q is estimated first, as the FrÃľchet mean of the observed data, and thenβ. Table

A.1 and Figure A.2 below display the results from both methods, indicating that our

method outperforms the naïve method.
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Figure A.2: RSS model vs. naïve method: predicted responses an rotated residuals, for the
simulated circular data in Section A.3.

A.4 Annealing evolutionary stochastic approximation Monte Carlo

We now develop an annealing evolutionary stochastic approximation Monte Carlo

algorithm for computing θ̂I = (q̂I , β̂I) and θ̂E = (q̂E, β̂E). Quite recently, the stochastic

approximation Monte Carlo algorithm (Liang et al. 2010) has been proposed in the
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literature as a general simulation technique, which possesses a nice feature in that the

moves are self-adjustable and thus not likely to get trapped by local energy minima.

The annealing evolutionary SAMC algorithm (Liang et al. 2010) represents a further

improvement of stochastic approximation Monte Carlo for optimization problems by

incorporating some features of simulated annealing and the genetic algorithm into its

search process.

Like the genetic algorithm, annealing evolutionary stochastic approximation Monte

Carlo works on a population of samples. Let θl = (θ(1), . . . ,θ(l)) denote the population,

where l is the population size, and θ(k) = (θk1, . . . , θkpθ) is a pθ-dimensional vector called

an individual or chromosome in terms of genetic algorithms. Thus, the minimum of

the objective function Qn(θ), θ ∈ Θ, can be obtained by minimizing the function

U(θl) =
∑l

k=1Qn(θ(k)). An unnormalized Boltzmann density can be defined for the

population as follows,

ψ(θl) = exp
{
−U(θl)/τ

}
, θl ∈ Θl, (A.26)

where τ = 1 is called the temperature, and Θl = Θ×· · ·×Θ is a product sample space.

The sample space can be partitioned according to the function U(θl) into b subregions:

E1 = {θl : U(θl) ≤ δ1}, E2 = {θl : δ1 < U(θl) ≤ δ2}, · · · , Eb−1 = {θl : δb−2 < U(θl) ≤

δb−1}, and Eb = {θl : U(θl) > δb−1}, where δ1 < δ2 < . . . < δb−1 are b − 1 known real

numbers. We note that here the sample space is not necessarily partitioned according

to the function U(θl), for example, the function λ(θl) = min{Qn(θ(1)), . . . ,Qn(θ(l))}

also works.

Let $(δ) denote the index of the subregion that a sample with energy U(θl) belongs

to. For example, if θl ∈ Ej, then $(U(θl)) = j. Let B(t) denote the sample space at

iteration t. The algorithm initiates its search in the entire sample space B0 =
⋃b
j=1 Ej,
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and then iteratively searches in the set

Bt =

$(U
(t)
min+ℵ)⋃
j=1

Ej, t = 1, 2, . . . , (A.27)

where U (t)
min is the best function value obtained until iteration t, and ℵ > 0 is a user

specified parameter which determines the broadness of the sample space at each iter-

ation. Note that in this method, the sample space shrinks iteration by iteration. To

ensure the convergence of the algorithm to the set of global minima, the moves at each

itertaion are required to admit the following distribution as the invariant distribution,

fw(t)(θl) ∝
$(U

(t)
min+ℵ)∑
j=1

ψ(θl)

ew
(t)
j

I(θl ∈ Ej), (A.28)

where w(t)
j are the working parameters which will be updated from itertaion to iteration

as described in the algorithm below.

The annealing evolutionary stochastic approximation Monte Carlo includes five

types of moves, the MH-Gibbs mutation, K-point mutation, K-point crossover, snooker

crossover, and linear crossover operators. See Liang et al. (2010) for the details of the

moves. Let ρ1, . . . , ρ5, 0 < ρk < 1 and
∑5

k=1 ρk = 1, denote the respective working

probabilities of the five types of moves. The algorithm can be summarized as follows.

The algorithm:

(a) (Initialization) Partition the sample space Bl into b disjoint subregions E1, . . . ,Eb;

choose the threshold value ℵ and the working probabilities ρ1, . . . , ρ5; initialize a

population θl(0) at random; and set w(0) = (w
(0)
1 , . . . , w

(0)
b ) = (0, 0, . . . , 0), Bl0 =⋃b

j=1 Ej, U
(0)
min = U(θl(0)) and t = 0. Let W be a compact set in Rb.

(b) (Sampling) Update the current population θl(t) using the MH-Gibbs mutation,
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K-point mutation, K-point crossover, snooker crossover, and linear crossover op-

erators according to the respective working probabilities.

(c) (Working weight updating) Update the working weight w(t) by setting

w∗j = w
(t)
j + γt+1Hj(w

(t),θl(t+1)), j = 1, . . . , $(U
(t)
min + ℵ),

where Hj(w
(t),θl(t+1)) = I(θl(t+1) ∈ Ej) for the crossover operators,

Hj(w
(t),θl(t+1)) =

∑l
k=1 I(θl(t+1,k) ∈ Ej)/l for the mutation operators, and γt+1 is

called the gain factor. If w∗ ∈ W , set w(t+1) = w∗; otherwise, set w(t+1) = w∗+c∗,

where c∗ = (c∗, . . . , c∗) and c∗ is chosen such that w∗ + c∗ ∈ W .

(d) (Termination Checking) Check the termination condition, e.g., whether a fixed

number of iterations has been reached. Otherwise, set t → t + 1 and go to step

(b).

In this article, we follow Liang et al. (2010) to set ρ1 = ρ2 = 0.05, ρ3 = ρ4 = ρ5 = 0.3,

and the gain factor sequence

γt =
t0

max(t0, t)
, t = 0, 1, 2, . . . , (A.29)

with t0 = 5000. In general, a large value of t0 will allow the sampler to reach all

the subregions very quickly even for a large system. As shown in Liang et al. (2010),

it can converge weakly toward a neighboring set of global minima of U(θl) in the

space of energy. More precisely, the sample θl(t) converges in distribution to a random

population with the density function

fw(θl) ∝
$(Umin+ℵ)∑

j=1

ψ(θl)´
Ej
ψ(θl)dθl

I(x ∈ Ej), (A.30)
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where Umin is the global minimum value of U(θ),

Regarding the setting of other parameters, we have the following suggestions. In the

algorithm, the moves are reduced to the Metropolis-Hastings moves Metropolis et al.

(1953), Hastings (1970) within the same subregions. Hence, the sample space should

be partitioned such that the MH moves within the same subregion have a reasonable

acceptance rate. In this article, we set δj+1 − δj ≡ 0.2 for j = 1, . . . , b− 1.

The crossover operator has been modified to serve as a proposal for the moves, and

it is no longer as critical as to the genetic algorithm. Hence, the population size l is

usually set to a moderate number, ranging from 10 to 100. Since ℵ determines the

size of the neighboring set toward which the method converges, ℵ should be chosen

carefully for efficiency of the algorithm. If ℵ is too small, it may take a long time for

the algorithm to locate the global minima. In this case, the sample space may contain

a lot of separated regions, and most of the proposed transitions will be rejected if the

proposal distribution is not spread out enough. If ℵ is too large, it may also take a long

time for the algorithm to locate the global energy minimum due to the broadness of

the sample space. In practice, the values of l and ℵ can be determined through a trial

and error process based on the diagnosis for the convergence of the algorithm. If it fails

to converge, the parameters should be tuned to larger values. The convergence of the

method can be diagnosed by examining the difference of the patterns of the working

weights obtained in multiple runs. In this article, we set l = 50 and ℵ = 50.
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