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Abstract

YIMEI LI: Statistical Analysis of Complex Neuroimaging Data.
(Under the direction of Hongtu Zhu and Joseph G. Ibrahim.)

This dissertation is composed of two major topics: a) regression models for identify-

ing noise sources in magnetic resonance images, and b) multiscale Adaptive method in

neuroimaging studies.

The first topic is covered by the first thesis paper. In this paper, we formally in-

troduce three regression models including a Rician regression model and two associated

normal models to characterize stochastic noise in various magnetic resonance imaging

modalities, including diffusion weighted imaging (DWI) and functional MRI (fMRI).

Estimation algorithms are introduced to maximize the likelihood function of the three

regression models. We also develop a diagnostic procedure for systematically exploring

MR images to identify noise components other than simple stochastic noise, and to de-

tect discrepancies between the fitted regression models and MRI data. The diagnostic

procedure includes goodness-of-fit statistics, measures of influence, and tools for graph-

ical display. The goodness-of-fit statistics can assess the key assumptions of the three

regression models, whereas measures of influence can isolate outliers caused by certain

noise components, including motion artifact. The tools for graphical display permit

graphical visualization of the values for the goodness-of-fit statistic and influence mea-

sures. Finally, we conduct simulation studies to evaluate performance of these methods,

and we analyze a real dataset to illustrate how our diagnostic procedure localizes subtle

image artifacts by detecting intravoxel variability that is not captured by the regression

models.

The second topic, multiscale adaptive methods for neuroimaging data, consists of two
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thesis papers.The goal of the first paper is to develop a multiscale adaptive regression

model (MARM) for spatial and adaptive analysis of neuroimaging data. Compared with

the existing voxel-wise approach in the analysis of imaging data,MARM has three unique

features: being spatial, being hierarchical, and being adaptive. MARM creates a small

sphere with a given radius at each location (called voxel), analyzes all observations in

the sphere of each voxel, and then uses these consecutively connected spheres across all

voxels to capture spatial dependence among imaging observations. MARM builds hier-

archically nested spheres by increasing the radius of a spherical neighborhood around

each voxel and utilizes information in each of the nested spheres at each voxel. Finally,

MARM combine imaging observations with adaptive weights in the voxels within the

sphere of the current voxel to adaptively calculate parameter estimates and test statis-

tics. Theoretically, we establish the consistency and asymptotic normality of adaptive

estimates and the asymptotic distributions of adaptive test statistics under some mild

conditions. Three sets of simulation studies are used to demonstrate the methodology

and examine the finite sample performance of the adaptive estimates and test statis-

tics in MARM. We apply MARM to quantify spatiotemporal white matter maturation

patterns in early postnatal population using diffusion tensor imaging. Our simulation

studies and real data analysis confirm that the MARM significantly outperforms the

voxel-wise methods.

The goal of the second paper is to develop a multiscale adaptive generalized estima-

tion equation (MAGEE) for spatial and adaptive analysis of longitudinal neuroimaging

data. Longitudinal imaging studies have been valuable for better understanding disease

progression and normal brain development/aging. Compared to cross-sectional imaging

studies, longitudinal imaging studies can increase the statistical power in detecting sub-

tle spatiotemporal changes of brain structure and function. MAGEE is a hierarchical,

spatial, semiparametric, and adaptive procedure, compared with the existing voxel-wise

approach. The key ideas of MAGEE are to build hierarchically nested spheres with
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increasing radii at each location, to analyze all observations in the sphere of each voxel

using weighted generalized estimating equations, and to use the consecutively connected

spheres across all voxels to adaptively capture spatial pattern. Simulation studies and

real data analysis clearly show the advantage of MAGEE method over the existing voxel-

wise methods. Our results also reveal i) the increase of fractional anisotropy in this early

postnatal stage, and ii) five different growth patterns in the brain regions under exami-

nation.
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Chapter 1

Introduction and literature review

This dissertation is composed of two major topics in imaging data analysis: First,

regression models for identifying noise sources in magnetic resonance images. Second,

multiscale Adaptive method in neuroimaging studies.

The first topic is covered by the first thesis paper. In this paper, we formally in-

troduce three regression models including a Rician regression model and two associated

normal models to characterize stochastic noise in various magnetic resonance imaging

modalities, including diffusion weighted imaging (DWI) and functional MRI (fMRI).

Estimation algorithms are introduced to maximize the likelihood function of the three

regression models. We also develop a diagnostic procedure for systematically exploring

MR images to identify noise components other than simple stochastic noise, and to detect

discrepancies between the fitted regression models and MRI data. The diagnostic pro-

cedure includes goodness-of-fit statistics, measures of influence, and tools for graphical

display. The goodness-of-fit statistics can assess the key assumptions of the three regres-

sion models, whereas measures of influence can isolate outliers caused by certain noise

components, including motion artifact. The tools for graphical display permit graphical

visualization of the values for the goodness-of-fit statistic and influence measures.

The second topic, multiscale adaptive methods for neuroimaging data, consists of



two thesis papers. The goal of the first paper is to develop a multiscale adaptive regres-

sion model (MARM) for spatial and adaptive analysis of neuroimaging data. Compared

with the existing voxel-wise approach in the analysis of imaging data, MARM has three

unique features: being spatial, being hierarchical, and being adaptive. MARM creates a

small sphere with a given radius at each location (called voxel), analyzes all observations

in the sphere of each voxel, and then uses these consecutively connected spheres across

all voxels to capture spatial dependence among imaging observations. MARM builds hi-

erarchically nested spheres by increasing the radius of a spherical neighborhood around

each voxel and utilizes information in each of the nested spheres at each voxel. Finally,

MARM combine imaging observations with adaptive weights in the voxels within the

sphere of the current voxel to adaptively calculate parameter estimates and test statis-

tics. Theoretically, we establish the consistency and asymptotic normality of adaptive

estimates and the asymptotic distributions of adaptive test statistics under some mild

conditions.

The goal of the second paper is to develop a multiscale adaptive generalized esti-

mating equation (MAGEE) for the spatial and adaptive analysis of longitudinal neu-

roimaging data and to demonstrate its superiority over the voxel-wise approach using

simulated and real imaging data. Compared with the Gaussian distributional assump-

tion in the general linear model, MAGEE is a semiparametric method and explicitly

account for the temporal correlation existed between the repeated measurements from

the same subject. Thus, it is very desirable for the analysis of longitudinal neuroimaging

data. MAGEE also includes specific methods for approximating the standard errors of

the smoothed parametric estimates. We also theoretically examine the adaptive weights

in the MAGEE and their roles in ensuring the proper statistical properties of parameter

estimators. Finally, we formalize some technical conditions and formally establish the

asymptotic properties including consistency and asymptotic distributions of the param-

eter estimates and test statistics for MAGEE.
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The dissertation is organized as follows. The next section presents a literature review

for each of the two topics. The first covers a review on diagnostic measures for missing

data, and the second reviews existing statistical methods for neuroimaging studies. Then

we proceed to present each of the three papers: We assess how to identify noise sources in

magnetic resonance images by regression models in Chapter 2, and we formally develop

multiscale adaptive regression models for neuroimaging data in Chapter 3 and multiscale

adaptive generalized estimating equation (MAGEE) for the spatial and adaptive analysis

of longitudinal neuroimaging data in Chapter 4.

1.1 Regression Models for Identifying Noise Sources

in Magnetic Resonance Images

Magetnic resonance images contain various souces of temporal and spatial noises. The

thermal motion of elctrons within the subject and within the scanner slectronics leads

to the intrinsic thermal noise. The complicated imaging hardware system has its own

error called system noise. In addtion to noises resulting from intrinsic properties of the

magnetic resonance imaging, motion and phyisological noise is also one of the major

sources of noise when human subjects are scanned through MRI system. For example,

Muscle contraction, blood pulse, metabolism of neural system and large motions exists

typically during MRI scanning (Huettel, Song, and McCarthy 2004). Previous studies

have shown that those noise components can introduce substantial bias into measure-

ments and estimation made from those images, such as indices for the principle direction

of fiber tracts in diffusion tensor images (Skare, Li, Nordell, and Ingvar 2000; Luo and

Nichols 2003; Nowark 1999). Correct understanding the noise components is essential

for MRI data analysis.

The raw data obtained during MRI scanning are complex values that represent the

Fourier transformation of a magnetization distribution of a volume of tissue at a certain

point in time. An inverse Fourier transform converts these raw data into magnitude,

3



frequency, and phase components that more directly represent the physiological and

morphological features of interest in the person being scanned. The magnetic suscep-

tibility, chemical shift, and perfusion of tissues, for example, can be represented using

either the magnitude or the phase angle of these Fourier-transformed data.

The electronic noise in the real and imaginary parts of the raw MR data are usu-

ally assumed to be independently Gaussian distributed (Henkelman 1985; Gudbjartsson

and Patz 1995; Macovski 1996). Then, it can be shown theoretically that the Rician

distribution is the model for characterizing the stochastic noise in the magnitude of MR

data. Moreover, in practice, the Rician noise distribution of MR data has been experi-

mentally validated using MR data (Haacke, Brown, Thompson, and Venkatesan 1999).

Furthermore, the Rician distribution can be reasonably approximated by normal distri-

butions at high signal-to-noise (SNR) ratios (Gudbjartsson and Patz 1995; Rowe and

Logan 2005). Despite the extensive use of Rician and normal distributions in analyzing

MR images (Kristoffersen 2007; Rowe 2005; Sijbers and den Dekker 2004; Sijbers, den

Dekker, Scheunders, and van Dyck 1998a; Sijbers, den Dekker, Verhoye, van Audekerke,

and van Dyck 1998b), a formal statistical framework for characterizing stochastic noise

in various MR imaging modalities has not yet been developed. Rician regression model

is needed for better understanding the noise components in MRI.

Other non-stochastic noise can cause the magnitude data of the MRI deviates from

Rician distribution. Important tools to detect the outliers and influential oberservations

in regression models are diagnostic measures. Residuals and Cook’s distance have been

widely used to identify influential observations in various regression models (Cox and

Snell, 1968; Cook and Weisberg, 1982). Goodness-of-fit test statistics is used to iden-

tify the discrepancy between observed values and the values expected under the model

in question. Influence measures based on case-deletion diagnostics have been studied

extensively in regression models (Cook and Weisberg 1982; Wei 1998). However, the

diagnostic tools for the Rician regression model have not been developed previously.
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1.2 Multiscale Method for Neuroimaging Data

Magnetic resonance imaging becomes popular tool to study the detail and accurate

mesures of brain morphology (Ashburner and Fristion, 2000; Chung, Robbins, Dalton,

Davidson, Alexander and Evans, 2005; Styner, Lieberman,McClure, Weinberger, Jones

and Gerig 2005, Thompson and Toga, 2002). There is an extensive literature on develop-

ment of voxel-wise methods for analyzing high-dimensional data including particularly

MRI measures on the 2D surface or the 3D volume. The existing voxel-wise methods

for analyzing high-dimensional data are primarily executed in two sequential steps. The

first step involves fitting a statistical model, such as general linear model (LM) and a

linear mixed model (LMM), to data from all subjects at each location, such as voxel,

and generating a statistical parametric map of test statistics (or p-values) (Friston et

al., 1995; Beckmann, Jenkinson, and Smith, 2003). The second step is to compute ad-

justed p-values in order to account for testing multiple hypotheses across thousands to

millions of locations using various statistical methods (e.g., random field theory (RFT),

false discovery rate, or permutation methods) (Nichols and Hayasaka, 2003; Worsley et

al., 2004).

The existing voxel-wise methods have some obvious limitations for the analysis of

MRI imaging data, which underscore the great need for further methodological devel-

opment. (i) In essence, the voxel-wise methods treats all voxels as independent units

(Tabelow et al., 2006). Neuroimaging data, however, are spatially correlated in nature

and it is anticipated to observe spatially contiguous regions of activation with rather

sharp edges in many neuroimaging studies. (ii) It is common to apply a smoothing step

before applying for voxel-wise approach for analysis of neuroimaging data. Smoothing

imaging data, however, blurs the image data near the edges of activated regions and thus

it can dramatically increase the numbers of false positives and false negatives (Polzehl

and Spokoiny, 2000, 2003, 2006; Qiu, 2005, 2007; Tabelow et al., 2006). (iii) All voxel-

wise approaches are also based on a stringent assumption that after an image warping
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procedure, the location of a voxel in the image of one person is in precisely the same

location as the voxel identified in another person, which is demonstrably false in neu-

roimaging data. (iv) More seriously, as a new imaging technique enables people to collect

images with higher resolution, applying the voxel-wise methods to these new images,

which contain much more voxels with smaller sizes, has much less statistical power in

detecting statistically significant patterns. Besides high correlation, neuroimaging data

in the neighboring voxels are strongly linked with each other and noisy homogeneous

patches are usually expected.

Spatially modeling neuroimaging data in the 3D volume (or 2D surface) represents

both computational and theoretical challenges. It is common to use conditional autore-

gressive (CAR) or Markov random field (MRF) priors to characterize spatial depen-

dencies among spatially connected voxels (Besag, 1986; Banerjee, Carlin, and Gelfand,

2004), but estimating spatial correlation for a large number voxels, which ranges from

ten thousands to more than 500,000, in the 3D volume (or 2D surface) is computation-

ally prohibited. Moreover, it can be restrictive to assume a specific type of correlation

structure, such as CAR and MRF, for the whole 3D volume (or 2D surface). Although

the region-of-interest (ROI) method based on anatomically defined ROIs can model the

spatial correlation among these ROIs, it essentially ignores the spatial correlation struc-

ture in the neighboring voxels within each ROI (Bowman, 2007). Moreover, the ROI

method is also based on a stringent assumption that all voxels in the same ROI are

homogeneous, which is largely false.

1.3 Multiscale Adaptive Generalized Estimating Equa-

tions for Longitudinal Neuroimaging Data

The primary goal of a longitudinal neuroimaging study is to characterize individual

change in neuroimaging measurements (e.g., volumetric and morphometric) over time,

6



and the covariates of interest, such as age, diagnostic status, and gender, that influence

change (Whitwell, 2008). A distinctive feature of longitudinal neuroimaging data is that

neuroimaging data have a temporal order. Imaging measurements of the same individual

usually exhibit positive correlation and the strength of the correlation decreases with

the time separation. Ignoring temporal correlation structure in imaging measures likely

would influence subsequent statistical inference, such as increasing false positive and

negative errors, and lead to misleading scientific inference (Diggle, Heagerty, Liang and

Zeger 2002; Fitzmaurice, Laird, and Ware 2004).

Many large-scale longitudinal imaging studies including the Alzeimer’s Disease Neu-

roimaging Initiaitve (ADNI) and the NIH MRI study of normal brain have been or

are being widely conducted to better understand the progress of neuropsychiatric and

neurodegenerative diseases or the normal brain development/aging (Evans, and B.D.C.

Group, 2006; Almli, Rivkin, and McKinstry, 2007; Hua et al., 2009; Fan et al., 2008).

ADNI as one major ongoing neuroimaging longitudinal study is to search for the neu-

roimaging biomarkers for cognitive changes associated with Mild Cognitive Impairment

and Alzheimer’s Disease (Hua et al., 2009; Fan et al., 2008). However, analysis of these

longitudinal imaging data has been hindered by the lack of advanced image process-

ing and statistical tools for analyzing complex and correlated imaging data along with

behavioral and clinical data. Recently, cross-sectional image processing and voxel-wise

methods have been developed and used, but they are in general not optimal in power. For

instance, the popular neuroimaging software platforms including AFNI, statistical para-

metric mapping (SPM) and FMRIB Software Library (FSL) cannot serve the emerging

needs of these projects for voxel based longitudinal analysis.
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Chapter 2

Regression Models for Identifying

Noise Sources in Magnetic

Resonance Images

2.1 Introduction

MRI is an non-invasive imaging technique used extensively for clinical diagnosis and

medical research. MRIs, however, contain varying amounts of noise of diverse origins,

including noise from stochastic variation, numerous physiological processes, eddy cur-

rents, artifacts from the differing magnetic field susceptibilities of neighboring tissues,

rigid body motion, non-rigid motion, and many others (Huettel, Song, and McCarthy

2004). Some noise components, including bulk motion from cardiac pulsation and head

or body movement, generate unusual observations, or statistical ‘outliers’, that differ

substantially from most MR data that do not contain those noise sources (at least, not

to the same degree). Previous studies have shown that those noise components can intro-

duce substantial bias into measurements and estimation made from those images, such

as indices for the principle direction of fiber tracts in diffusion tensor images (Skare, Li,

Nordell, and Ingvar 2000; Luo and Nichols 2003; Nowark 1999). Identifying and reducing



these noise components in MR images is essential to improving the validity and accuracy

of studies designed to map the structure and function of the human body.

The Rician distribution will be shown below as the model for characterizing the

stochastic noise in the magnitude of MR data. Formal assessment of the quality of

MR images should include identification of non-stochastic noise components as well,

such as those from susceptibility artifacts and rigid body motion. These non-stochastic

noise sources usually introduce statistical outliers in some or all of the volume elements,

called “voxels”, of the image, the elemental units from which an image is constructed.

Diagnostic procedures, such as an analysis of residuals, can be useful tools for detecting

discrepancies between those outliers and other observations at all voxels. Moreover, even

under the sole presence of stochastic noise, diagnostic methods are valuable for detecting

discrepancies between MR data and fitted models at the voxel level. Such discrepancies

can be caused by partial volume effects in the MR image (i.e., the presence of multiple

tissues in the same volume element, or voxel in the tissue that corresponds with the

given pixel in the image). In diffusion tensor images (DTIs), for instance, modeling

these effects in voxels having multiple tissue compartments can be vitally important

for reconstructing complex tissue structure in the human brain in vivo (Tuch, Reese,

Wiegell, Makris, Belliveau, Wedeen 2002; Alexander, Barker, and Arridge 2002).

The aim of this paper is to introduce a Rician regression model and its related normal

models to characterize noise contributions in various MRI modalities and to develop its

associated estimation methods and diagnostic tools. We develop the estimation algo-

rithms for calculating the maximum likelihood estimates of three regression models for

MRI data. We develop a diagnostic procedure to systematically assess the quality of

MR images using a variety of diagnostic techniques, including an analysis of residuals,

Cook’s distance, goodness-of-fit test statistics, influence measures, and graphical anal-

yses. We use the p-values of test statistics to evaluate directly the goodness of fit of

the fitted regression models to the MRI data. Two diagnostic measures, standardized
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residuals and Cook’s distance, identify in each voxel of the image outliers that can be

caused by motion artifacts and other noise components. Graphical tools include three-

dimensional (3D) images of statistical measures that can isolate problematic voxels, as

well as two-dimensional (2D) plots for assessing the compatibility of the fitted regression

model with data in individual voxels. Finally, we apply these diagnostic techniques to

diffusion tensor images and demonstrate that the techniques are able to identify subtle

artifacts and experimental variation not captured by the Rician model.

We will next present the Rician regression model and its two related normal models

and discuss some of their statistical properties. Estimation algorithms will be used to

maximize the likelihood function of the regression models proposed. Then we will de-

velop diagnostic procedures consisting of goodness-of-fit statistics, influence measures,

and graphical analyses. Simulation studies will assess the empirical performance of the

estimation algorithms and goodness-of-fit statistics under different experimental con-

ditions. Finally, we will analyze a real data set to illustrate an application of these

methods, before offering some concluding remarks.

2.2 The Regression Models for MR Images

2.2.1 Model Formulation

We usually acquire n MR images for each subject. Each MRI contains N voxels, and

thus each voxel contains n measurements. We use {(Si, xi) : i = 1, · · · , n} to denote

the n measurements at a single voxel, where Si denotes the MRI signal intensity and

xi includes all the covariates of interest, such as the gradient directions and gradient

strengths for acquiring diffusion tensor images. In MR images, Si =
√
R2
i + I2

i and φi

are, respectively, the magnitude and phase of a complex number (Ri, Ii) from data in

the imaging domain such that Ri = Si sin(φi) and Ii = Si cos(φi) for i = 1, · · · , n.

The MR signal Si is assumed to follow a Rician distribution with parameters µi and
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σ2, denoted by Si ∼ R(µi, σ
2), under the presence solely of stochastic noise (Rice 1945).

Suppose that Ri and Ii are independent and follow normal distributions with the same

variance σ2, and with means µR,i and µI,i, respectively. Thus, the joint density function

of (Si, φi) can be written as

p(Si, φi) =
Si

2πσ2
exp{−0.5σ−2(Si sin(φi)− µR,i)2 − 0.5σ−2(Si cos(φi)− µI,i)2}.

Integrating out φi, we obtain the density function of the Rician distribution as follows:

p(Si|µi, σ2) =
Si
σ2

exp{−0.5σ−2(S2
i + µ2

i )}I0

(
µiSi
σ2

)
1(Si ≥ 0), (2.1)

where µi =
√
µ2
R,i + µ2

I,i, 1(·) is an indicator function, and I0(z) =
∫ 2π

0
exp(z cosφ)dφ/(2π)

denotes the 0th order modified Bessel function of the first kind (Abramowitz and Stegun

1965).

We formally define a Rician regression model by assuming that

Si ∼ R(µi(β), σ2) and µi(β) = f(xi, β), (2.2)

where β is a p×1 vector in Rp and f(·, ·) is a known link function, which depends on the

particular MR imaging modalities (e.g., anatomical, functional, DTI, etc). Because the

density in (2.1) does not belong to the exponential family, the Rician regression model

is not a special case of a generalized linear model (McCullagh and Nelder 1989).

We calculate the kth moment of Si given xi as follows. Let Ik(z) be the k-th modified

Bessel function of the first kind (Abramowitz and Stegun 1965) defined by Ik(z) =∫ 2π

0
cos(kφ)ez cosφdφ/(2π). It can be shown that the kth moment of Si given xi (Sijbers,

den Dekker, Scheunders, and van Dyck 1998a) is calculated as

E(Ski |xi) = (2σ2)k/2Γ(1 +
k

2
)M

(
−k

2
; 1;−µi(β)2

2σ2

)
, (2.3)
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where Γ(·) is the Gamma function and M(·) is the Kummer function (or confluent

hypergeometric function) (Abramowitz and Stegun, 1965). The even moments of Si

given xi are simple polynomials. For instance,

E(S2
i |xi) = µi(β)2 + 2σ2 and E(S4

i |xi) = µi(β)4 + 8σ2µi(β)2 + 8σ4. (2.4)

However, the odd moments of Si given xi are much more complex; for instance,

E(Si|xi) = σ

√
π

2
exp{−µi(β)2

4σ2
}
[(

1 +
µi(β)2

2σ2

)
I0

(
µi(β)2

4σ2

)
+
µi(β)2

2σ2
I1

(
µi(β)2

4σ2

)]
.

(2.5)

The Rician distribution can be well approximated by a normal distribution at high

signal-to-noise ratios (SNR), defined by µi(β)/σ. When SNR≤ 1, the Rician distribution

is far from being Gaussian. When SNR≥ 2, R(µi(β), σ2) can be closely approximated

by a normal regression model (Gudbjartsson and Patz 1995) (Fig. 2.1a), which is given

by

Si ∼ N(
√
µi(β)2 + σ2, σ2) and µi(β) = f(xi, β). (2.6)

Moreover, the second moment of R(µi(β), σ2) equals that of N(
√
µi(β)2 + σ2, σ2), while

E(Si|xi) in (2.5) can be accurately approximated by
√
µi(β)2 + σ2 even when SNR is

close to 1 (Fig. 2.1b). Furthermore, if SNR is greater than 5, then
√
µi(β)2 + σ2 =

µi(β)
√

1 + 1/SNR2 ≈ µi(β). Thus, R(µi(β), σ2) can be approximated by another normal

regression model given by

Si ∼ N(µi(β), σ2) and µi(β) = f(xi, β). (2.7)

2.2.2 Examples

The regression models proposed here include statistical models for various MRI modal-

ities, including DTI and functional MRI. For the purposes of illustration, we consider
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Figure 2.1: Rician distribution: (a)R(µ, 1) andN(
√
µ2 + 1, 1) for µ = 0, 1, 2, 3, 4; (b) the

mean functions of R(µ, 1) (red), N(
√
µ2 + 1, 1) (blue) and N(µ, 1) (green) for µ ∈ [0, 5].

the following five examples.

Example 1. Stochastic noise in MRI data follows a R(0, σ2) distribution, which is a

highly skewed Rayleigh distribution. The first two moments of R(0, σ2) are given by

E(Si|xi) = σ
√

0.5π and E(S2
i |xi) = 2σ2. Without any other noise components present,

such as ghosting artifacts, we can use the MR data in the background of the image to

estimate σ2. However, under the presence of non-stochastic noise components, such as

ghosting artifacts, the background MR signals do not follow a Rician distribution, and

the estimate of σ2 is usually a biased estimate of σ2. Therefore, testing whether the MR

signal in a single voxel truly follows a Rician model is useful to detect the presence of

non-stochastic noise components.

Example 2. If we apply an inversion snapshot FLASH imaging sequence to measure T1

relaxation times, then we have µi(β) = ρ
(
1− 2 exp

(
−tiT−1

1

))
, where xi is time ti and

β includes a pseudo proton density ρ and spin-lattice or longitudinal relaxation constant

T1. It has been shown that the use of the Rician model leads to a substantial increase

in precision of the estimated T1 (Karlsen, Verhagen, and Bovee 1999).

If the decay of transverse magnetization is mono-exponential and conventional spin-

echo imaging is used, then f(xi, β) is given by µi(β) = ρ exp
(
−TEi × T2

−1
)
, where xi

is the echo time TEi and β = (ρ, T2), in which T2 is the spin-spin relaxation constant.
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Example 3. In a fMRI session, fMRI volumes are acquired repeatedly over time while

a subject performs a cognitive or behavioral task. Over the course of the experiment,

n fMRI volumes are typically recorded at acquisition times t1, · · · , tn. The standard

method for computing the statistical significance of task-related activations is to use

only the magnitude MR image at time ti for i = 1, · · · , n. The magnitude image at time

ti follows a Rician distribution with µi(β) = xTi β, the superscript T denotes transpose

and xi may include responses to differing stimulus types, the rest status, and various

reference functions (Rowe and Logan 2005; den Dekker and Sijbers 2005).

Example 4. Diffusion tensor images (DTI) have been widely used to reconstruct the

pathways of white matter fibers in the human brain in vivo (Basser, Mattiello, and

LeBihan 1994 a, b; Xu et al. 2002). A single shot echo-planar imaging (EPI) technique

is often used to acquire DWIs with moderate resolution (e.g., 2.5 mm×2.5 mm× 2.5

mm), and then diffusion tensors can estimated using DWI data. In voxels with a single

fiber population, a simple diffusion model assumes that

µi(β) = S0 exp(−birTi Dri) (2.8)

for i = 1, · · · , n, where xi = (bi, ri, ti), in which ti is the acquisition time for the ith image,

ri = (ri,1, ri,2, ri,3)T is an applied gradient direction and bi is the corresponding gradient

strength. In addition, S0 is the signal intensity in the absence of any diffusion-weighted

gradient and the diffusion tensor D = (Di,j) is a 3 × 3 positive definite matrix. The

three eigenvectors of D constitute the three diffusion directions and the corresponding

eigenvalues define the degrees of diffusivity along each of the three spatial directions.

Many tractography algorithms attempt to reconstruct fiber tracts by connecting spatially

consecutive eigenvectors corresponding to the largest eigenvalues of the diffusion tensors

(DTs) across adjacent voxels.

The SNRs in DW images are relatively low. The DW imaging acquisition scheme

usually consists of few baseline images with b = 0s/mm2 and many DW images with
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b−values greater than zero. As an illustration, we selected a representative subject from

an existing DTI data set and calculated the estimates of S0/σ and eigenvalues of D,

denoted by λ1 ≥ λ2 ≥ λ3, in all voxels containing anisotropic tensors (λ1 was much

larger than λ3) (Fig. 2.2a and 2.2b). For these anisotropic tensors, SNR= S0/σ in

baseline images varied from 0 to 15 with a mean close to 6 (Fig. 2.2c), while λ1 varied

from 0.5 (10−3 mm2/s) to 2.0 (10−3mm2/s) with a mean close to 1.0 (10−3 mm2/s). For

a moderate gradient strength bi ≈ 1000s/mm2, SNR= exp(−birTi Dri)× (S0/σ) in DWIs

varied from 0 to 8 with a mean close to 2.5 (Fig. 2.2d).

Figure 2.2: Maps of (a) FA; (b) S0/σ; (c) the kernel density of S0/σ values for
anisotropic tensors having FA≥ 0.5 at a selective slice from a single subject; and
(d) the signal-to-noise ratio S0 exp(−bi)/σ as a function of bi (×1000 s/mm2) at each
S0/σ ∈ {5, 10, 15, 20, 25, 30}.

To account for the presence of multiple fibers within a single voxel, a diffusion model
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with M compartments may be written as

µi(β) = S0

M∑
k=1

pk exp(−birTi Dkri), (2.9)

where pk denotes the proportion of each compartment such that
∑M

k=1 pk = 1 and pk ≥ 0

and where Dk is the diffusion tensor for the kth compartment. Recent studies have

shown that elucidating multiple fibers need large b values (Tuch et al. 2002; Alexander,

Barker, and Arridge 2002; Jones and Basser 2004). For instance, Alexander and Barker

(2005) have shown that the optimal values of b for recovering two fibers are in the range

[2200, 2800]s/mm2. For large b values, SNR in DWIs can be very close to zero (Fig.

2.2d).

Example 5. If we are only interested in the apparent diffusion coefficient (ADC) nor-

mal to the fiber direction in white matter, then we can use a single EPI technique to

acquire MR images based on multiple bi factors in the absence of a diffusion-weighted

gradient (Kristoffersen 2007). A simple mono-exponential diffusion model assumes that

µi(β) = S0 exp(−bid) for i = 1, · · · , n. The values of ADC are in the range of [0.2, 3]

(×10−3mm2/s) for the human brain. Furthermore, a diffusion model with M compart-

ments may be written as µi(β) = S0

∑M
k=1 pk exp(−bidk).

2.2.3 Estimation methods

We consider estimation algorithms for the two normal models (2.6) and (2.7). Because

the normal model (2.7) is a standard nonlinear regression model, we can directly use the

standard Levenberg-Marquardt method to calculate the maximum likelihood estimate

of θ. For the normal model (2.6), we propose an iterative procedure to maximize its

log-likelihood function given by

`(β, σ2) = −0.5n log σ2 − 0.5
n∑
i=1

{Si −
√
µi(β)2 + σ2}2/(σ2).
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We use the Levenberg-Marquardt method to minimize
∑n

i=1{Si − µi(β)}2, which yields

an initial estimator β(0), and we subsequently calculate (σ2)(0) =
∑n

i=1{Si−µi(β(0))}2/n.

Given (σ2)(r), we use the Levenberg-Marquardt method to calculate β(r+1) that mini-

mizes
∑n

i=1{Si−
√
µi(β)2 + (σ2)(r)}2. Conditional on β(r+1), we use the Newton-Raphson

algorithm to calculate σ(r+1) by maximizing `(β(r+1), σ2). This iterative algorithm stops

when the absolute difference between consecutive θ(t)s is smaller than a predefined small

number, say 10−4.

We introduce an efficient EM algorithm (Dempster, Laird and Rubin 1977) for max-

imizing the likelihood function of the Rician model (2.2). The key idea is to introduce

a latent phase variable φi ∈ [0, 2π] for each Si such that the joint density of (Si, φi) is

given by

p(Si, φi|xi) =
1

2πσ2
Si exp

(
−µi(β)2 + S2

i − 2Siµi(β) cos(φi)

2σ2

)
.

Let Yo = (S1, x1, · · · , Sn, xn) denote the observed data and Ym = (φ1, · · · , φn) denotes

the missing data. The log-likelihood function of Yc = (Yo, Ym), defined by Lc(θ|Yc), can

be written as

−n log(2πσ2) +
n∑
i=1

logSi − 0.5σ−2

n∑
i=1

{µ2
i (β) + S2

i − 2Siµi(β) cos(φi)}. (2.10)

A standard EM algorithm consists of two steps: the expectation (E) step and the

maximization (M) step as follows. The E-step evaluates Q(θ|θ(r)) = E{Lc(θ|Yc)|Yo, θ(r)},

where the expectation is taken with respect to the conditional distribution p(Ym|Yo, θ(r)) =∏n
i=1 p(φi|Si, θ(r)). We can show that

p(φi|Si, θ) =
1

2πI0(σ−2Siµi(β))
exp{σ−2Siµi(β) cos(φi)}1(φi ∈ [0, 2π]).
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Thus, Q(θ|θ(r)) is given by

−n log(σ2)− 0.5σ−2

n∑
i=1

{
µ2
i (β) + S2

i − 2Siµi(β)Wi(θ
(r))
}
, (2.11)

where Wi(θ) = I1(σ−2f(xi, β)Si)/I0(σ−2f(xi, β)Si).

The M-step is to determine the θ(r+1) that maximizes Q(θ|θ(r)). However, because the

M-step does not have a closed form, θ(r+1) is obtained via two conditional maximization

steps (Meng and Rubin 1993). Given β(r), we can derive

(σ2)(r+1) = 0.5n−1

n∑
i=1

{
µ2
i (β

(r)) + S2
i − 2Siµi(β

(r))Wi(θ
(r))
}
.

Conditional on (σ2)(r+1), we can determine β(r+1) by minimizingG(β|β(r)) =
∑n

i=1{µi(β)−

Wi(θ
(r))Si}2. This is a standard nonlinear least squares problem, to which the Levenberg-

Marquardt method can be applied. Furthermore, we may employ a generalized EM al-

gorithm, in which the E-step is unchanged, but we replace the M-step with a generalized

M-step to identify a β(r+1) such that G(β(r+1)|β(r)) ≤ G(β(r)|β(r)). Under mild condi-

tions, the sequence {θ(r)} obtained from the EM algorithm converges to the maximum

likelihood estimate, denoted by θ̂ (Meng and Rubin 1993).

The next important issue is to evaluate the covariance matrix of θ̂, which can be

obtained by inverting either the Hessian matrix or the Fisher information matrix of

the observed-data log-likelihood function. For instance, for the normal model (2.6), it

is straightforward to calculate the second derivative of `(β, σ2). For the Rician model

(2.2), we use the missing information principle (Louis 1982). Calculation of the first and

second derivatives of Lc(θ|Yc) with respect to θ is straightforward and hence is omitted

here for brevity.
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2.3 A Diagnostic Procedure

We propose a diagnostic procedure to identify noise components in MR images at all

levels of the SNR. Our diagnostic procedure has three major components: (a) the use of

goodness-of-fit test statistics to test the assumptions of the Rician model across all voxels

of the image; (b) the use of influence measures to identify outliers; (c) the use of 2D and

3D graphs to search for various artifacts and to detect intravoxel variability. At a high

SNR, these diagnostic measures of the Rician model reduce to those of the normal models

(2.6) and (2.7). Thus, we will not specifically develop diagnostic measures of the two

normal models. Furthermore, in the normal models (2.6) and (2.7), the goodness-of-fit

statistics developed here are completely new.

2.3.1 Goodness-of-fit test statistics

We develop test statistics to check model misspecification in the Rician model (2.2).

These test statistics are valuable for revealing two kinds of challenges in working with MR

images. The first is to identify those voxels in which the MR signal contains substantial

noise components that are other than stochastic noise. The second challenge is to identify

those voxels in which the signal is affected strongly by partial volume effects.

Thus, we are interested in testing whether f(xi, β) is correctly specified. In most

statistical models including generalized linear models, testing the specification of the

link function is equivalent to testing the mean structure of the response variable (Stute

1997). However, because, in the Rician model (2.2), E(Si|xi) does not have a simple

form, testing directly the mean structure of the response is likely to be tedious and

difficult. Let W (θ) = I1(B(θ))/I0(B(θ)), where B(θ) = σ−2f(x, β)S. We also note

the simple equality E[W (θ)S|x] = f(x, β), when the Rician model (2.2) is correctly

specified. Thus, we suggest testing h(θ) = E[W (θ)S|x]− f(x, β) = 0, for which the null
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and alternative hypotheses are stated as follows:

H
(1)
0 : h(θ) = 0 for some θ ∈ Θ versus H

(1)
1 : h(θ) 6= 0 for all θ ∈ Θ. (2.12)

Because W (θ) is close to one at a high SNR, testing H
(1)
0 is essentially testing whether

E(S|x) = f(x, β) in the normal model (2.7).

To test H
(1)
0 , we develop two test statistics as follows. The first of these, the condi-

tional Kolmogorov test (CK), is

CK1 = sup
u
|T1(u; θ̂)|, (2.13)

where T1(u; θ̂) is defined as

T1(u; θ̂) = n−1/2

n∑
i=1

1(xTi β̂ ≤ u)[Wi(θ̂)Si − µi(xi, β̂)]. (2.14)

Under the null hypothesis, E[T1(u; θ∗)] should be close to zero, where θ∗ = (β∗, σ
2
∗) is the

true value of θ. Therefore, a large value of CK1 leads to rejection of the null hypothesis

H
(1)
0 .

We must derive the asymptotic null distribution of CK1 to test rigorously whether

H
(1)
0 is true. We regard T1(u; θ̂) as a stochastic process indexed by u ∈ R. We can show

that under H
(1)
0 , as n→∞,

T1(u; θ̂) = T1(u; θ∗) + ∂θT1(u; θ∗)(θ̂ − θ∗) + op(1) = T1(u; θ∗) + ∆1(u)
√
n(θ̂ − θ∗) + op(1),

where ∆1(u) is defined by

∆1(u) =

∫
[∂θW (θ∗)S − ∂θf(x, β∗)] 1(xTβ∗ ≤ u)p(S|x, θ∗)p(x)dSdx.

Moreover, using the central limit theorem (van der Vaart and Wellner 1996), we can
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show that
√
n(θ̂ − θ∗) = n−1/2

n∑
i=1

ψ(Si, xi; θ∗) + op(1), (2.15)

where ψ(·, ·; θ∗) is a known influence function depending on the likelihood function of

the Rician model (2.2). Finally, using empirical process theory (van der Vaart and

Wellner 1996), we can show that the asymptotic null distribution of CK1 depends on the

asymptotic distribution of (T1(·, θ∗),
√
n(θ̂ − θ∗)T )T , which is given in Theorem 1.

The second test statistic that we propose is based on

T2(α, u; θ̂) = n−1/2

n∑
i=1

[Wi(θ̂)Si − µi(β̂)]1(xTi α ≤ u), (2.16)

where Π = {α ∈ Rd : αTα = 1} × [−∞,∞]. Following the reasoning in Escanciano

(2006), we can show that H
(1)
0 is equivalent to testing

E{[Wi(θ)Si − µi(β)]1(xTα ≤ u)} = 0 (2.17)

for almost every (α, u) ∈ Π for some θ∗ ∈ Θ. Let Fn,α(u) be the empirical distribution

function of {αTxi : i = 1, · · · , n}. Then, we define the Cramer-von Mises test statistic

as follows:

CM1 =

∫
Π

T2(α, u; θ̂)2Fn,α(du)dα, (2.18)

where dα is taken with respect to the uniform density on the unit sphere. A simple

algorithm for computing CM1 can be found in Escanciano (2006). A large value of CM1

leads to rejection of H
(1)
0 . Similar to CK1, we can show that T2(α, u; θ̂) is approximated

as

T2(α, u; θ̂) = T2(α, u; θ∗) + ∆2(α, u)
√
n(θ̂ − θ∗) + op(1),

where ∆2(α, u) =
∫

[∂θW (θ∗)S − ∂θf(x, β∗)] 1(αTx ≤ u)p(S|x, θ∗)p(x)dSdx. Therefore,

the asymptotic null distribution of CM1 depends on the asymptotic distribution of

(T2(α, u; θ∗),
√
n(θ̂ − θ∗)

T )T , which is also given in Theorem 1. The detailed proof of
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Theorem 1 can be found in a supplementary report. We are now led to the following

theorem.

Theorem 1. Under the null hypothesis H
(1)
0 , we have the following results:

i)
√
n(θ̂ − θ∗) = n−1/2

∑n
i=1 ψn,i + op(1).

ii) (T1(·; θ∗),
√
n(θ̂−θ∗)T )T converges in distribution to (G1(·; θ∗), νT1 )T , where (G1(·; θ∗),

νT1 ) is a Gaussian process with mean zero and covariance function C1(u1, u2), which is

given by

C1(u1, u2) =

∫ ∫  [W (θ∗)Si − f(x, β∗)]1(xTβ∗ ≤ u1)

ψ(S, x; θ∗)

× (2.19)

 [W (θ∗)S − f(x, β∗)]1(xTβ∗ ≤ u2)

ψ(S, x; θ∗)


T

p(S|x, θ∗)dSdp(x).

iii) CK1 converges in distribution to supu |T1(u; θ∗) + ∆1(u)Tν1|.

iv) (T2(·, ·; θ∗),
√
n(θ̂ − θ∗)

T )T converges in distribution to (G2(·, ·; θ∗), νT1 )T , where

(G2(·, ·; θ∗), νT1 ) is a Gaussian process with mean zero and covariance function C2((α1, u1),

(α2, u2)), which is given by

C2((α1, u1), (α2, u2)) =

∫ ∫  [W (θ∗)S − f(x, β∗)]1(xTα1 ≤ u1)

ψ(S, x; θ∗)

× (2.20)

 [W (θ∗)S − f(x, β∗)]1(xTα2 ≤ u2)

ψ(S, x; θ∗)


T

p(S|x, θ∗)dSdp(x).

v) CM1 converges in distribution to
∫

Π
|T2(α, u; θ∗) + ∆2(α, u)ν1|2Fα(du)dα, where

Fα(u) is the true cumulative distribution function of αTx.

Theorem 1 characterizes the limiting distributions of CK1 and CM1 under the null

hypotheses.

Because E(S2
i |xi) has a simple form, we further use the second moment of Si given
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xi to test the specification of the link function. Specifically, the null and alternative

hypotheses are given by

H
(2)
0 : E(S2|x) = f(x, β)2 + 2σ2 for some θ ∈ Θ,

H
(2)
1 : E(S2|x) 6= f(x, β)2 + 2σ2 for all θ ∈ Θ.

Similar to testing H
(1)
0 against H

(1)
1 , we introduce two other stochastic processes given

by

T3(u; θ) = n−1/2

n∑
i=1

1(xTi β ≤ u)[S2
i − µi(β)2 − 2σ2] and

T4(α, u; θ) = n−1/2

n∑
i=1

[S2
i − µi(β)2 − 2σ2]1(xTi α ≤ u).

Based on T3(u; θ) and T4(α, u; θ), we can develop two additional test statistics:

CK2 = sup
u
|T3(u; θ̂)| and CM2 =

∫
Π

T4(α, u; θ̂)2Fn,α(du)dα. (2.21)

Similar to the reasoning in Theorem 1, we can establish the asymptotic null distributions

of CK2 and CM2, which we therefore omit here. Because the normal model (2.6) has

the same second moment as the Rician model (2.2), the test statistics CK2 and CM2

are valid for model (2.6) at all levels of the SNR. So far, we have introduced four test

statistics CK1, CK2, CM1, and CM2, each of which may have different sensitivities in

detecting the misspecification of a Rician model in various circumstances, which we will

investigate with the simulation studies of Section 2.4.

We note two types of correlation existing in CK1, CK2, CM1, and CM2 at the local

and global levels. At the local level, there may be strong correlations among these four

test statistics in each voxel, because the same MRI data within the voxel are used to

calculate them. At the global level, we calculate these four test statistics across multiple

brain regions or across the many voxels of the imaging volume. MRI data in small spatial
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neighborhoods show strong similarlity, whereas MRI data in voxels more distant from one

another show less similarity. Thus, the same test statistics CK1(d) (or CK2(d), CM1(d),

and CM2(d)) are likely to be positively correlated in small spatial neighborhoods, where

d denotes a particular voxel in an MRI. Finally, we need to compute the uncorrected

and corrected p-values of these four test statistics at the local and global levels.

2.3.2 Resampling method

Although the asymptotic distributions of CK1(d), CK2(d), CM1(d), and CM2(d) have

been derived in Theorem 1, these limiting distributions usually have complicated analytic

forms. To alleviate this difficulty, we develop a resampling method to estimate the null

distribution of the statistic CK1(d) in each of the voxels in the MRI data. The next issue

is to solve the issue of multiple testing. Because it is difficult to compute an accurate

p-value of CK1(d) at each voxel, we avoid use of the false discovery rate and choose to

control the family-wise error rate based on the maxima of the CK1(d) statistics defined

by CK1,D = maxd∈DCK1(d), where D denotes the brain region. Specifically, we can

easily extend the proposed resampling method to approximate the null distribution of

the statistic CK1,D. In the following, we will introduce voxel d into all of the notation,

if necessary. Because we can develop similar methods for CK2, CM1, and CM2, we

avoid such repetition and simply present the six key steps in generating the stochastic

processes that have the same asymptotic distribution as CK1(d) and CK1,D.

Step 1. Generate independent and identically distributed random variables, {v(q)
i :

i = 1, · · · , n}, from a N(0, 1) distribution for q = 1, · · · , Q, where Q is the number of

replications, say Q = 1000.

Step 2. Calculate

T1(u; θ̂(d))(q) = n−1/2

n∑
i=1

v
(q)
i {Ei(θ̂(d))1(x′iβ̂(d) ≤ u)− ∆̂1(d, u)ψni(d)}
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where Ei(θ̂(d)) = Wi(θ̂(d))Si−µ(xi, β̂(d)) and ∆̂1(d, u) = n−1
∑n

i=1 ∂θEi(θ̂(d))1(x′iβ̂(d) ≤

u). Note that conditional on the observed data, T1(u; θ̂(d))(q) converges weakly to the

desired Gaussian process in Theorem 1 as n→∞ (van der Vaart & Wellner, 1996).

Step 3. Calculate the test statistics CK
(q)
1 (d) = supu |T1(u; θ̂(d))(q)| and CK

(q)
1,D =

supd∈D CK
(q)
1 (d) and obtain {CK

(q)
1 (d) : q = 1, · · · , Q} and {CK

(q)
1,D : q = 1, · · · , Q}.

Step 4. Calculate the p−value of CK1(d) using {CK
(q)
1 (d) : q = 1, · · · , Q}.

Step 5. Calculate the p−value of CK1(d) at each voxel d of the region according to

p(d) ≈ Q−1
Q∑
q=1

1(CK
(q)
1 (d) ≥ CK1(d)).

Step 6. Calculate the corrected p−value of CK1(d) at each voxel d of the region using

pD(d) ≈ Q−1
Q∑
q=1

1(CK
(q)
1,D ≥ CK1(d)).

Finally, we present a plot of the uncorrected and corrected − log10(p) values for our

various test statistics, such as CM1. Since the above procedure only requires the com-

putation of all components of T1(u; θ̂(d)) once and the repeated calculation of CK
(q)
1 (d),

it is computationally efficient. To identify the precise source of noise that is responsible

for misspecification of the model, we need to develop influence measures to quantify the

influence of each data point at each voxel.

2.3.3 Influence measures

Next we develop two influence measures that identify in each voxel of an MR image

statistical ’outliers’ which exert undue influence on the estimation of the parameters and

fitted values of the model. These influence measures are based on case-deletion diagnos-

tics, which have been studied extensively in regression models (Cook and Weisberg 1982;

Wei 1998). Influence measures for the Rician regression model, however, have not been

developed previously. Therefore, we now discuss how to develop case-deletion measures

for the Rician model.

Henceforth, we assume that σ2 is a nuisance parameter and define U(β) = (µ1(β), · · · ,

µn(β))T , V (θ) = diag(V1(θ), · · · , Vn(θ)), and SW (θ) = (W1(θ)S1, · · · ,Wn(θ)Sn)T , where
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Vi(θ) = σ−2Var(SiWi(θ)) = −σ−2µi(β)2 + E[σ−2S2
iWi(θ)

2]. Thus, the score function for

β is given by SCn(β) = σ−2D(β)TV (θ)e(β), where D(β) = ∂U(β)/∂βT is an n× p ma-

trix with the ith row ∂µi(β)/∂βT and e(θ) = V (θ)−1[SW (θ) − U(β)]. Furthermore, the

Fisher information matrix for β takes the form

Fn(β) = σ−2

n∑
i=1

∂µi(β)

∂β
Vi(θ)

∂µi(β)

∂βT
= σ−2D(β)TV (θ)D(β).

To develop influence measures, we can write the maximum likelihood estimate of β

as β̂ = [D(β̂)TV (θ̂)D(β̂)]−1D(β̂)TV (θ̂)Ẑ, where Ẑ = Z(β̂) and Z(β) = D(β)β + e(β)

(Jorgensen 1992). Thus, β̂ can be regarded as the generalized least-squares estimate of

the following linear model:

Ẑ = D(β̂)β + e and Var(e) = σ2V (θ̂)−1. (2.22)

We can extend the existing diagnostics for linear regression to Rician regression (Cook

and Weisberg 1982; Jorgensen 1992; Wei 1998). Because V (θ̂)−1 reduces to an identity

matrix at a high SNR, model (2.22) just reduces to a standard linear regression model.

We introduce two influence measures based on the representation of the linear model

(2.22) as follows.

i) The residuals and standardized residuals are given by

r̂i = uTi V̂ (θ̂)1/2{Ẑ −D(β̂)β̂} and t̂i = σ−1r̂i/
√

1− hi,i, (2.23)

where ui is an n×1 vector with i−th element and all others zero, and where {hi,i : i ≤ n}

are the diagonal elements of the hat matrix H defined by

H = V (θ̂)1/2D(β̂)
[
D(β̂)TV (θ̂)D(β̂)

]−1

D(β̂)TV (θ̂)1/2. (2.24)

Residuals are highly informative about the compatibility of a postulated model with the
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observed data. If a Rician model is correct, residuals should be centered around zero,

and plots of the residuals should exhibit no systematic tendencies. Exploring residual

plots may reveal non-constant variance, curvature and the need for transformation in

the regression, and therefore the analysis of residuals has been among the most widely

used tools for assessing the validity of model specification (Cook and Weisberg 1982).

To assess the magnitudes of the residuals, we compare the standardized residuals with

the conventional benchmark 2.5. In other words, we regard the i−th data point (Si, xi)

as having excess influence if |t̂i| is larger than 2.5. We will plot the number of outliers at

each voxel of the MR image. Voxels with many outliers need some further exploration.

ii) Cook’s distance (Cook and Weisberg 1982) can be defined as

Ci = (β̂ − β̂(i))
T [D(β̂)TV (θ̂)D(β̂)](β̂ − β̂(i))/σ

2, (2.25)

where β̂(i) denotes the maximum likelihood estimate of β based on a sample size of n−1

with the i−th case deleted. Instead of calculating β̂(i) directly, we compute the first

order approximation of β̂(i), denoted by β̂I(i), which is given by

β̂I(i) ≈ β̂ − [D(β̂)TV (θ̂)D(β̂)]−1Vi(θ̂)
1/2Di(β̂)r̂i/(1− hi,i),

where Di(β̂)T is the i−th row of D(β̂). Therefore, we get the first-order approximation

of Ci, denoted by CI
i , as CI

i = hi,it̂
2
i /(1− hi,i). Following Zhu and Zhang (2004), we

compare nCI
i with 3p to reveal the level of influence of (Si, xi) for each i at each voxel.

2.3.4 3D and 2D Graphics

We use 3D images of our various statistical measures to isolate all voxels in the image

where specification of a Rician model is problematic. After computing the p-value of

each test statistic (CM1, CM2, CK1, or CK2) at each voxel of the image, we create a 3D

image of the − log10(p) values for each statistic and then explore these values efficiently
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across all voxels. In addition, we calculate ti and CI
i , compute the number of outliers at

each voxel, and create a 3D image for each of these influence measures (Luo and Nichols

2003). For instance, if the p-value of CK1 in a specific voxel is smaller than a given

significance level, then we have strong evidence that the noise characteristics at that

voxel are non-Rician and are likely to derive from non-physiological sources that may

obscure valid statistical testing in those regions. Moreover, a large number of outliers

appearing in several images taken sequentially, as they are in fMRI, may indicate a

problematic noise source spanning the duration over which those images are obtained,

as is often true of head motion, signal drift, and other similar artifacts. In addition,

we also inspect the spatial clustering behavior of the voxels, which have large values

of influence measures and test statistics, such as the cluster sizes of groups of outliers.

More detailed examination of the 2D graphs for these voxels is indicated. These graphs

include maps of the number of outliers pre slice and per image, index plots of influcence

measures, and various plots of residuals that can reveal anomalies such as non-constant

variance, curvature, transformations, and outliers in the data (Cook and Weisberg 1982;

Luo and Nichols 2002). Thus, these 2D graphs of our diagnostic measures are used to

help identify the nature and source of the disagreement between the Rician model and

the observed MR signals at a particular voxel.

2.4 Simulation Studies

We conducted three sets of Monte Carlo simulations to examine the accuracy of using

the Rician model, the two normal models and test statistics under differing experimental

settings. The first set illustrated the performance of the Rician model and the two

normal models for ADC imaging. The second set of simulations evaluated the sensitivity

of the goodness-of-fit test statistics in detecting multiple tensor compartments within

individual voxels of a DTI data set. The third set of Monte Carlo simulations evaluated

the sensitivity of the goodness-of-fit statistics in detecting head motion in MR images.
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2.4.1 Apparent diffusion coefficient mapping

The first set of Monte Carlo simulations was to compare the estimated ADC using the

Rician model (2.2) and the two normal models (2.6) and (2.7). We set d = 2 × 10−3

mm2/s, S0 = 500, b = [0, 50, 100, · · · , 1100]s/mm2, and five different S0/σ {2, 4, 6, 10, 15}

for all Monte Carlo simulations. For S0/σ = 2, the values of the SNR were in the range of

[0.366, 2]. At each S0/σ, 4,000 diffusion weighted data sets were generated. Under each

model, we calculated the parameter estimates θ̂ = (d̂, Ŝ0, σ̂
2). We finally calculated the

biases, the empirical standard errors (SE), and the mean of the standard error estimates

(SEE) based on the results from the 4,000 simulated ADC data sets (Table 2.1). At all

S0/σ, the estimates from model (2.2) had smaller biases, but larger SEs, whereas models

(2.6) and (2.7) had larger biases, but smaller SEs. When S0/σ ≥ 15, models (2.2), (2.6)

and (2.7) had comparable biases and SEs in the parameter estimates. In addition, the

SE and its corresponding SEE are relatively close to each other when S0/σ ≥ 4.

2.4.2 Evaluating the test statistics for DTI data assuming the

presence of fiber crossings

We assessed the empirical performance of CKi and CMi for i = 1, 2 as our test statistics

for detecting the misspecified single diffusion model (2.8) when two diffusion compart-

ments were actually present in the same voxel. Simulated data were drawn from the

diffusion model (2.9) with 2 diffusion compartments, in which p1 = 1 − p2 was set at

either 0.0 or 0.5, D1 = diag(1.7, 0.2, 0.2) (×10−3mm2/s), and D2 = diag(0.2, 1.7, 0.2)

(×10−3mm2/s). In particular, p1 = 0.0 corresponded to a single diffusion compartment,

whereas p1 = 0.5 corresponded to two diffusion compartments. The principal directions

of D1 and D2 were, respectively, at (1, 0, 0) and (0, 1, 0). The mean diffusivity trace(D)/3

for both D1 and D2 was set equal to 1× 10−3 mm2/s, which is typical of values for nor-

mal cerebral tissue (Skare et al. 2000). We generated the Rician noise with S0 = 150

and selected S0/σ to be 5, 10, 15, 20, and 25, respectively. Our DTI scheme comprised
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Table 2.1: ADC imaging: Bias and SD of three components of θ̂. TRUE denotes the
true value of the regression parameters; BIAS denotes the bias of the mean of the re-
gression estimates; SE denotes the empirical standard errors; SEE denotes the mean of
the standard error estimates. Five different S0/σ {2, 4, 6, 10, 15} and 10,000 simulated
datasets were used for each case.

R(µi, σ2) N(
√
µ2
i + σ2, σ2) N(µi, σ2)

S0/σ σ2 S0 d σ2 S0 d σ2 S0 d

TRUE 2 62500 500.00 2.000 62500 500.00 2.000 62500 500.00 2.000
BIAS 2 -13413 14.31 0.249 -23715 18.87 -0.749 -29683 15.73 -1.403
SE 2 19023 168.52 1.960 15494 139.40 1.241 10719 102.62 0.364

SEE 2 24123 255.12 2.460 16320 175.54 1.419 13009 88.91 0.378
TRUE 4 15625 500.00 2.000 15625 500.00 2.000 15625 500.00 2.000
BIAS 4 -1938 -5.46 0.080 -4542 -6.32 -0.284 -5014 -19.73 -0.711
SE 4 5218 82.05 0.909 3658 76.92 0.637 3488 65.95 0.332

SEE 4 6106 108.88 0.998 4285 79.48 0.611 4040 60.23 0.343
TRUE 6 6944 500.00 2.000 6944 500.00 2.000 6944 500.00 2.000
BIAS 6 -718 -2.26 0.016 -1680 -4.55 -0.127 -1746 -12.39 -0.371
SE 6 2409 51.99 0.469 1710 50.02 0.353 1702 65.95 0.332

SEE 6 2708 66.86 0.500 1998 55.36 0.392 1972 60.23 0.343
TRUE 10 2500 500.00 2.000 2500 500.00 2.000 2500 500.00 2.000
BIAS 10 -230 0.43 -0.025 -414 -1.08 -0.033 -422 -4.20 -0.138
SE 10 893 31.45 0.218 651 30.68 0.204 661 29.32 181.80

SEE 10 938 37.34 0.242 683 34.65 0.228 786 32.62 196.24
TRUE 15 1111 500.00 2.000 1111 500.00 2.000 1111 500.00 2.000
BIAS 15 -109 -0.23 0.008 -141 -0.60 -0.015 -143 -2.03 -0.065
SE 15 339 20.20 0.136 303 20.18 0.135 307 19.94 0.127

SEE 15 396 24.24 0.149 365 23.68 0.148 366 23.04 0.138
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6 baselines, 30 diffusion weighted uniformly arranged directions at b1, and the same

set of gradient directions at b2. We chose three combinations of (b1, b2): (1000, 1000),

(1000, 3000), and (3000, 3000) s/mm2 in order to examine the sensitivity of differing b

factors in detecting multiple fiber directions. For each simulation, 1,000 simulated data

sets were used to estimate the nominal significance level (i.e., rejection levels for the

null hypothesis). Finally, for each simulated data set, we applied the resampling method

with Q = 1000 replications to calculate the four p-values of CKi and CMi for i = 1, 2

and then applied the false discovery rate procedure to correct for multiple comparisons

at a significance level 5% as suggested by a reviewer.

Table 2.2 presents estimates for the rejection rates of the four test statistics after

correction for multiple comparions based on the false discovery rate procedure. We

observed that in a single compartment, the rejection rates of CKi and CMi for i =

1, 2 were smaller than the nominal level. Overall, the rejection rates in all cases were

relatively accurate, and the Type I errors were not excessive. These findings suggested

that the resampling method worked reasonably well under the null hypothesis. Differing

(b1, b2) combinations strongly influenced the finite performance of the four test statistics

in detecting the presence of two compartments. Specifically, compared with other (b1, b2)

combinations, (b1, b2) = (1000, 3000) s/mm2 provided the best performance. Under

(b1, b2) = (1000, 3000) s/mm2, CK1 and CM1 provided substantial power to detect the

presence of two diffusion compartments. Compared with the other three statistics, CK1

performed well; moreover, consistent with our expectations, increasing S0/σ reduced the

Type II errors and improved the power of the statistic CK1 to detect the presence of

two compartments. Therefore, these simulations suggested that the choice of b strongly

influenced the performance of these test statistics and the test CK1 was a useful tool

for detecting the presence of multiple compartments. The selection of optimal b values

in detecting multiple compartments warrants further research (Alexander et al. 2002;

Jones et al. 1999).
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Table 2.2: Comparison of the rejection rates for the test statistics CK1, CM1, CK2,
and CM2 under the two-DT model, in which f(xi, β) = S0[p1 exp(−birTi D1ri) + (1 −
p1) exp(−birTi D2ri)] at a significance level of 0.05 after correction for multiple com-
parisons based on the false discovery rate. The first DT compartment is D1 =
diag(1.7, 0.2, 0.2) and the second DT compartment is D2 = diag(0.2, 1.7, 0.2). Five
different S0/σ values {5, 10, 15, 20, 25} and 1,000 simulated data sets were used for each
case.

(b1, b2) ×1000s/mm2

(1, 1) (1, 3) (3, 3)
SNR p1 CK1 CK2 CM1 CM2 CK1 CK2 CM1 CM2 CK1 CK2 CM1 CM2

5 1 0.02 0.01 0.03 0.04 0.05 0.03 0.04 0.04 0.07 0.07 0.05 0.06
10 1 0.04 0.03 0.03 0.03 0.04 0.04 0.04 0.04 0.03 0.03 0.04 0.04
15 1 0.04 0.03 0.03 0.03 0.03 0.03 0.04 0.04 0.02 0.03 0.03 0.04
20 1 0.02 0.02 0.03 0.04 0.03 0.04 0.03 0.04 0.02 0.03 0.03 0.04
25 1 0.01 0.02 0.02 0.02 0.04 0.03 0.05 0.04 0.02 0.02 0.026 0.02
5 1 0.01 0.02 0.03 0.03 0.05 0.05 0.08 0.07 0.08 0.09 0.05 0.06
10 1 0.05 0.04 0.02 0.02 0.23 0.08 0.22 0.12 0.04 0.02 0.01 0.02
15 1 0.09 0.05 0.02 0.02 0.43 0.11 0.39 0.15 0.08 0.01 0.01 0.01
20 1 0.16 0.09 0.03 0.03 0.61 0.11 0.59 0.22 0.09 0 0 0
25 1 0.26 0.18 0.02 0.02 0.75 0.14 0.71 0.19 0.12 0 0 0

2.4.3 Evaluating the test statistics in the presence of head mo-

tion

We also assessed the empirical performances of CKi and CMi for i = 1, 2 as test statistics

for detecting the misspecified single diffusion model (2.8) at a single voxel in the presence

of head motion. We simulated data contaminating head motion in the image as follows.

We used a DTI scheme starting with 5 baselines and followed with 45 diffusion weighted

uniformly arranged directions at b1 = 1000s/mm2. We simulated data from the diffusion

model (2.8) with D1 = diag(0.2, 1.7, 0.2) (×10−3mm2/s) in the first [50×p1] acquisitions,

and then generated data from the diffusion model (2.8) with D2 = diag(0.7, 0.7, 0.7)

(×10−3mm2/s) from the last 50 − [50 × p1] acquisitions, where [·] denoted the largest

integer smaller than 50× p1. In addition, the probability p1 was selected to be 0.5 and

0.7, which reflected the different degrees of head motion. We also generated Rician noise
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Table 2.3: Comparison of the rejection rates for the test statistics CK1, CK2, CM1, and
CM2, under the presence of head motion at a significance level of 0.05 after correction for
multiple comparisons based on the false discovery rate. The first [50 × p1] acquisitions
were generated from a single diffusion model with D1 = diag(0.2, 1.7, 0.2) and the last
50 − [50 × p1] acquisitions were generated from a single diffusion model with D2 =
diag(0.7, 0.7, 0.7). Five different S0/σ values {5, 10, 15, 20, 25} and 1,000 simulated data
sets were used for each case.

p1

0.7 0.5
SNR CK1 CK2 CM1 CM2 CK1 CK2 CM1 CM2

5 0.02 0.02 0.05 0.05 0.03 0.01 0.05 0.05
10 0.04 0.08 0.09 0.16 0.07 0.06 0.11 0.16
15 0.09 0.14 0.10 0.23 0.08 0.09 0.10 0.23
20 0.11 0.19 0.09 0.31 0.12 0.13 0.12 0.31
25 0.12 0.23 0.08 0.32 0.13 0.13 0.10 0.31

from (2.1) with S0 = 150 and set S0/σ to be 5, 10, 15, 20, and 25 respectively. For each

simulation, 1,000 simulated data sets were used to estimate the nominal significance level

(i.e., rejection levels for the null hypothesis). Finally, for each simulated data set, we

applied the resampling method with Q = 1000 replications to calculate the four p-values

of CKi and CMi for i = 1, 2 and then applied the false discovery rate procedure to correct

for multiple comparisons at a significance level of 5% as suggested by a reviewer.

Table 2.3 presented estimates for the rejection rates of our four statistics after cor-

rection for multiple comparions based on the false discovery rate procedure. Compared

with the other three statistics, CM2 was the most sensitive statistic in detecting head

motion. Moreover, consistent with our expectations, increasing S0/σ reduced the Type

II errors and improved the power of the statistic CM2 for detecting the presence of

two compartments. However, the other three statistics CK1, CM1, and CK2 were not

particularly sensitive in detecting head motion.
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2.4.4 Diffusion Weighted Images with Head Motion

We acquired DWIs of the brain of a healthy adult male subject (right-handed; age 34

years). The imaging acquisition scheme {(bi, ri) : i = 1, · · · , 38} consisted of 3 baseline

images with b = 0 s/mm2 and 35 directions of diffusion gradients that were arranged

uniformly in the 3-dimensional space at b = 1000 s/mm2 (Hardin, Sloane and Smith

1994). Each DWI contained 256×256×65 voxels. The subject was instructed to move his

head deliberately during acquisition of images from the 28th to the 38th direction. Head

motion varied from 2- to 6-degrees of rotation and 0- to 10- millimetres of translation,

causing the diffusion weighted images to be moderately misaligned.

We used the Rician DTI model (2.8) for this analysis. We subsequently calculated at

each voxel the ML estimate (D̂, Ŝ0, σ̂), three eigenvalue-eigenvector pairs of D̂, denoted

by {(mi, ei) : i = 1, 2, 3}, and the invariant measures including CL = (m1 − m2)/M1,

CP = 2(m2−m3)/M1, RA =
√

1− 3M2M
−2
1 , and FA =

√
1−M2(M2

1 − 2M2)−1, where

m1 ≥ m2 ≥ m3, M1 = tr(D̂), M2 = m1m2 +m1m3 +m2m3, and M3 = m1m2m3. We also

calculated three test statistics Ta = FA, Tb = S(D̂)+W (D̂)1.5, and Tc = S(D̂)−W (D̂)1.5,

and their associated p-values, where S(D̂) = (M1/3)3 −M1M2/6 + M3/2 and W (D̂) =

(M1/3)2−M2/3. We further set the significance level at 1% and used the p-values of Ta,

Tb, and Tc to classify the morphology of the tensor at each voxel (Zhu, Xu, Amir, Hao,

Zhang, Alayar, Ravi, and Peterson 2006).

We then assessed the quality of these diffusion weighted images using our diagnostic

methods. We searched for artifacts, scanner instability problems, and voxels that con-

tained outliers; in addition, we obtained diagnostic measures, generated scan summaries,

and applied graphical tools. We estimated the p-values of the four test statistics CK1,

CK2, CM1, and CM2 using the resampling method in Section 2.3 of this paper.

We plotted maps of scan summaries to identify possible artifacts and acquisition

problems in the DW images. Translational and rotational parameters (Fig. 2.3), ob-

tained from FLIRT in FSL (http://www.fmrib.ox.ac.uk), detected rightward rotation of
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2 to 6 degrees and 0 to 10 mm translation beginning in the 28th acquisition (Jenkinson

and Smith 2001; Jenkinson, Bannister, and Smith 2002). Outlier statistics detected these

head motions as well. The outlier count per slice and per direction showed clearly that

a large batch of outliers appeared in almost all of the slices along the last ten directions

(red to white on the color spectrum in Fig. 2.4). Furthermore, we performed a spatial

independent component analysis (ICA) on the 16 slices covering the middle part of each

directional DWI (baseline images excluded). Using the Bayesian Information Criterion

(BIC), we selected 8 independent components and plotted the associated time series

from the spatial ICA. The time series associated with the 4th, 7th, and 8th components

revealed the deliberate rotation and translation from the 28th to 33rd acquisitions. The

detailed information about the ICA results can be found in the supplementary report.

Figure 2.3: Scan summaries for a set of DWIs from a single subject: (a) translational
parameters; (b) rotational parameters.

To reduce or eliminate motion artifacts, we used the rigid-body transformation

method to co-register all other DW images to the first DW image while properly reorient-

ing the diffusion gradients (Rohde, Barnett, Basser, Marenco, and Pierpaoli 2004). Par-

ticularly, we applied the translational and rotational parameters obtained from FLIRT

and used a 7th order interpolation method to resample the DW images. After coregis-

tration, new translational and rotational parameters (not shown here) revealed that the

DW images were properly aligned. We then assessed the realigned DW images using
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Figure 2.4: Assessing the effect of applying a coregistration algorithm to diffusion
weighted images from a single subject: outlier count per slice and per direction (a)
before coregistration and (c) after coregistration; percentages of outliers per slice and
per direction (b) before coregistration and (d) after coregistration.

our diagnostic procedure and used the Rician model (2.8) to process the reoriented DW

images.

Our diagnostic procedure can be used to quantify the efficacy of the coregistration and

reslicing algorithms, and to identify potential problems that remain in the DW images

after registration and reslicing. We observed a substantial decline in the number of outlier

counts per slice and per direction compared with the non-realigned images, as well as

a decline in the percentage of outliers per slice and per direction after coregistration

(Figs. 2.4 a, b, c, and d). Furthermore, we examined voxels having 0-10 outliers and

found that motion correction using coregistration significantly decreased the percentage

of voxels having 4-10 outliers from 2.85% to 1.41%. However, despite the efficacy of

this method for correcting motion artifacts, 5.7% of the voxels still contained at least

three outliers after coregistration, and the 28th to 33rd acquisitions (red to white on

the color spectrum) contained a number of outliers (Fig. 2.4c, red to white on the color
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spectrum). This may indicate that the rigid-body transformation and the interpolation

method cannot completely remove the effect of moderate and large head motions in

MRIs.

The 3D images of the − log10(p) values for the test statistics CK1, CK2, CM1, and

CM2 were more sensitive and specific in assessing the quality of the DW images (Figs.

2.6). A p-value of 0.001 corresponded to a − log10(p) value of 3; thus a voxel having a

− log10(p) value greater than or equal to 3.0 was conventionally regarded as statistically

significant and in need of further investigation. In all maps of − log10(p) values of the

test statistics, we focused on voxels having significant p-values (white) and then searched

for systematic patterns of these voxels in the brain. We found several notable changes

after coregistration as follows. The number of voxels having large − log10(p) values for

the CK1, CK2, CM1, and CM2 statistics declined dramatically following coregistration

(Fig. 2.6). We also used the resampling methods in Section 2.3 to calculate the corrected

− log10(p) values, but no significant voxel was detected for all four test statistics at the

5% significance level before and after coregistration. Moreover, compared with CK1 and

CK2, CM1 and CM2 were more sensitive measures for detecting head motion.

Assessing the quality of DW images was crucial for further processing images. As

shown above (Fig. 2.6), the maps of the − log10(p) values of the test statistics not only

provided detailed information about the goodness of fit of the fitted Rician model with

the DW images (Fig. 2.6), but also these maps indicated possible artifacts existing in

the DWIs. Those artifacts strongly influenced the estimation of the DTs, the classifi-

cation of tensor morphologies, the reconstruction of fiber tracts, and the quantification

of uncertainty in tensor estimation and tractography. Therefore, we also assessed the

prevalence of the four morphological classes of DTs (nondegenerate, oblate, prolate and

isotropic) in a single slice before and after coregistration. Before coregistration, we found

that 59.97% were isotropic, 9.37% were oblate, 23.06% were prolate and 7.61% were non-

degenerate. Following coregistration, we found that 48.09% were isotropic, 11.35% were
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oblate, 28.11% were prolate and 12.45% were nondegenerate. Most tractography al-

gorithms can only track fibers across voxels containing either nondegenerate or prolate

DTs, which accounted for 40.56% of the total number of voxels on this slice after coregis-

tration, compared with 30.67% before coregistration. Moreover, we also found moderate

discrepancy between the estimated principal directions before and after coregistration

(not presented here).

To assess these DW images before and after coregistration, we also examined 3D

images of standardized residuals and Cook’s distances. Specifically, we searched the

standardized residuals (or Cook’s distance) in all voxels across all slices and directions

to identify voxels having large numbers of positive and negative outliers (i.e., data points

of excessive influence). For illustration, we compared the standardized residuals at the

30th slice from the 32nd acquisition before and after coregistration (Fig. 2.7). Before

coregistration, this slice contained many positive and negative residuals (Figs. 2.6a and

2.6b). After coregistration, the number of positive and negative residuals dramatically

declined (Figs. 2.6c and 2.6d). However, even after coregistration, some motion artifacts

or other unspecified problems remained in the resliced DW images. Developing methods

for identifying the precise sources of non-Rician noise and correcting for them in the

resliced DW images will require further research.

For voxels having either many outliers or substantial misspecification of the Rician

model, we examined multiple 2D graphs to try to identify the causes of the outliers

and of model misspecifications. To illustrate this process, we considered the data at

a single voxel (at location (100, 69, 30)) before coregistration. The p-values for CK1,

CK2, CM1, and CM2 were 0.21, 0.13, 0.03, and 0.01, respectively. The index plots of

the standardized residuals and Cook’s distances (Fig. 2.8a, 2.8b) revealed that the 4th,

8th, and 34th observations were likely outliers. A plot of the standardized residuals

against the raw MRI values (Fig. 2.8c) revealed a strong linear relationship between

residuals and the raw MRI values (Cook and Weisberg 1982). Furthermore, we observed
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a nonlinear relationship (Fig. 2.8d) of Cook’s distances against raw MRI values. Together

these plots (Fig. 2.8c, 2.7d) indicated that a Rician model (2.8) did not fit the MRI data

satisfactorily. Further improvements in model specification or post-acquisition processing

are needed to identify and address the non-Rician sources of noise in the images.

Our diagnostic procedure effectively identified head motion artifacts in DW images.

Coregistration improved image quality, but substantial non-stochastic noise sources re-

mained in the 28th to 33rd acquisitions. One solution is to remove these slices from the

subsequent analysis; alternatively, we may resort to a robust estimate of DTs to reduce

the deleterious statistical effects of these outliers. The 3D images of the test statistics

further detected additional physiological noise, such as cardiac pulsation, in DW images.

Additional 2D statistical maps may identify the causes of statistically significant voxels

and the location of outliers.

2.4.5 Concluding Remarks

We have developed estimation algorithms for fitting a Rician regression model and the

associated two normal models, and proposed a diagnostic procedure for systematically

assessing the quality of MR images at all levels of the SNR. The key features of our

procedures include: calculating test statistics that assess the validity of the assumptions

of the statistical models for stochastic noise in MR images; use of influence measures to

identify artifacts and problems with image acquisition; and multiple graphical tools for

visual evaluation of the appropriateness of the model assumptions. Simulations showed

the effectiveness of our test statistics in detecting the presence of multiple compartments.

Moreover, an in-vivo study demonstrated the effectiveness of our procedures in locating

voxels that contain unreliable data due to motion artifacts or to problems with imaging

acquisition. Our findings suggest that our approach to assessing the quality of MR

images is both rigorous and computationally practical.

Our diagnostic procedure differs substantially from previous model-free methods,
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such as independent-component analysis and motion correction algorithms, for detect-

ing noise components in MRI. Most of those model-free methods cannot be used to

detect non-stochastic noise components at the voxel level, since they can only provide

information about MRI at the whole brain level. In addition, some of those model-

free methods are limited to a specific imaging modality. For instance, although an

independent-component analysis (ICA) method was recently proposed to identify inde-

pendent componts (ICs) associated with task-related motion, and then discard those ICs

in order to reduce motion effects on realigned fMRI data (Kochiyama, Morita, Okada,

Yonekura, Matsumura, Sadato 2005), this ICA method cannot be directly applied to

other imaging modalities, such as DWI. Particularly, for DWI, we cannot discard the

ICs corresponding to head motion without changing the gradient directions, which re-

quires further research. In contrast, as shown in Section 2.4.4, our diagnostic procedure

is a model-based method that uses goodness-of-fit statistics and diagnostic measures to

systematically detect non-stochastic noise components at each voxel of the MRI data.

Subsequently, our diagnostic procedure can combine the information from all voxels of

the brain volume to identify large non-stochastic noise sources, such as head motion at

the whole volume level.

Our procedure takes a further step by studying how to use existing information in

the MRI data to check model assumptions and to identify imaging artifacts that may

undermine applications or interpretations of the MR images. Our diagnostic procedure

can also be applied to systematically check the MRI data even after these MRI data

have been processed by existing noise removal methods such as rigid-motion correction

and ICA. Moreover, our diagnostic procedure can be used to detect the presence of the

partial volume effect, whereas those existing methods, such as the motion correction

method, cannot. Nevertheless, our procedure assesses the quality of MRI statistically

and cannot replace various preprocessing techniques, such as registration and smoothing

methods.
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2.5 Appendix

The following assumptions are needed to facilitate the technical details, although they

are not the weakest possible conditions.

(C1) (Si,xi) are independently and identically distributed and the conditional distri-

bution of Si given xi, denoted by p(Si|xi, θ), follows the Rician distribution R(µi(β), σ2)

with µi(β) = f(xi, β).

(C2) The true value θ∗ = (β∗, σ
2
∗) is unique and an interior point of Θ = B × [a0, b0],

where B is a compact set in Rp and ∞ > b0 > a0 > 0.

(C3) f(x, β) is twice continuously differentiable with respect to β and |f(x, β)|,

||∂βf(x, β)||, and ||∂2
βf(x, β)|| are bounded by some integrable function F0(x) with

E[F0(x)4] <∞, where ∂β = ∂/∂β.

(C4) f(x, β) is identifiable, that is f(x, β1) = f(x, β2) for all x ensures that β1 = β2.

(C5) The elements of I(θ) =
∫
{∂θ log p(S|x, θ)}⊗2p(S,x)dSdx are continuous in θ

and is nonsingular at θ = θ∗, where ∂θ = ∂/∂θ and a⊗2 = aaT for any vector a.

2.5.1 Proof of Theorem 1

The proof of Theorem 1 (i) consists of two steps as follows:

Step 1. θ̂ is a consistent estimate of θ∗ and

√
n(θ̂ − θ∗) = n−1/2

n∑
i=1

ψ(Si,xi; θ∗) + op(1). (2.26)

Step 2. (T1(·; θ∗),
√
n(θ̂ − θ∗)T )T converges to the Gaussian process as described in

Theorem 1 (i).

In Step 1, we primarily prove that θ̂ is a consistent estimate of θ∗, because assumptions

(C3) and (C5) and the consistency of θ̂ ensure (2.26) (Theorem 5.39 in van der Vaart,
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1998; p.65). Let

Mn(θ) = n−1

n∑
i=1

log
p(Si, θ)

p(Si, θ∗)
and M(θ) = E{log

p(Si, θ)

p(Si, θ∗)
}.

To show θ̂ is a consistent estimate of θ∗, we check two sufficient conditions (Theorem 5.7

in ver der Varrt, 1998; p.45) as follows:

sup
θ∈Θ
|Mn(θ)−M(θ)| →p 0 and sup

θ:||θ−θ∗||≥ε
M(θ) < M(θ∗).

Because log p(S|x, θ) is Lipschitz in θ, {log p(S|x; θ) : θ ∈ Θ} is Glinvenko Cantelli (van

der Vaart and Wellner, 1996; p. 122). Thus, supθ∈Θ |Mn(θ) −M(θ)| converges to zero

almost surely.

To show supθ:||θ−θ∗||≥εM(θ) < M(θ∗), we check that log p(Si; β, τ) is identifiable

(Lemma 5.35 in van der Vaart, 1998). Suppose that

G(S,x) = log p(S|x, β1, τ1)− log p(Si|x, β2, τ2) (2.27)

= S2(τ2 − τ1) + µ2
2τ2 − µ2

1τ1 + 2 log I0(µ1τS)− 2 log I0(µ2τ2S),

where τ1 = σ−2
1 , τ2 = σ−2

2 , µ1 = f(x, β1), and µ2 = f(x, β2). We want to show that

if G(S|x) = 0 holds for all (S,x), then (β1, τ1) must equal (β2, τ2). If G(S,x) = 0,

then G(0,x) = 0 and ∂SG(S,x)|S=0 = 0 hold. Thus, it can be shown that G(0,x) =

µ2
2τ − µ2

1τ1 = 0 and τ1µ1 = τ2µ2. Thus, f(x, β2) = f(x, β1) and τ2 = τ1. Assumption

(C4) ensures that β1 must equal β2. Therefore, we can conclude that θ̂ converges to θ∗

in probability and (2.26) holds.

In Step 2, we first show that the marginals of (T1(·; θ∗),
√
n(θ̂−θ∗)T )T converge weakly

to the corresponding marginals of the zero-mean Gaussian process (G1(·; θ∗), ν1). Based

on Step 1, we only need to show T1(u; θ∗) converges weakly to the marginal of Gaussian
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process, G1(u; θ∗). Because |Wi| = |I1(µiSi/σ
2)/I0(µiSi/σ

2)| ≤ 1, we have

Var{1(xTi β∗ ≤ u)[Wi(θ∗)Si − µi(xi, β∗)]} ≤ Var{Wi(θ∗)Si} ≤ Var(Si) <∞.

Therefore, the standard central limit theorem ensures that T1(u; θ∗) converges toG1(u; θ∗).

Second, we consider a class of measurable functions F = {f(u) = [W (θ∗)S −

µ(x, β∗)]1(xTβ∗ ≤ u), u ∈ [−∞,∞]}. First, F is a Vapnik and Cervonenkis (VC) class,

which satisfies uniform entropy condition (van der Vaart and Weller, 1996; Sections

2.5 and 2.6). Based on Theorem 2.5.2 in ver der Vaart and Wellner (1996), to ensure

that F is P-Donsker, we need to show: (a) Fδ = {f(u1) − f(u2) : f(u1), f(u2) ∈

F ,
∫

[f(u1) − f(u2)]2p(S,x)dSdx < δ} and F 2
∞ are P-measurable for every δ > 0.

(b) E[F (u)]2 < ∞, where F (u) is the envelop function of F . We can show that

supu1,u2
|
∑n

i=1 ei[Wi(θ∗)Si − µ(xi, β∗)]1(u2 ≤ xTi β∗ ≤ u1)| is measurable for every n

and every vector (e1, ..., en) ∈ {−1,+1}n, because 1(u2 ≤ xTi β∗ ≤ u1) is a measurable

function and |
∑n

i=1 ei[Wi(θ∗)Si−µ(xi, β∗)]1(u2 ≤ xTi β∗ ≤ u1)| can only take 2n possible

values. Similarly, we also can show that F 2
∞ is P-measurable. Furthermore, because

F (u) can be chosen to be Si + f(x, β∗), assumption (C3) ensures that E[F (u)2] < ∞.

Finally, F is P-Donsker.

(ii) Applying the continuous mapping theorem yields Theorem 1 (ii).

(iii) The proof of Theorem (iii) is similar to that of Theorem (i), so details are omitted

here.

(iv) Applying the continuous mapping theorem yields Theorem 1 (iv).

43



Figure 2.5: Maps of the eight selected independent components and their associated
time series from a single subject. The 4th, 7th and 8th independent components are
associated with the delibrate head motion.
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Figure 2.6: Maps of 3D images before coregistration (a-e) and after coregistration (f-j)
in a single slice from a single subject. Before coregistration: (a) FA value; (b) − log10(p)
values of CK1; (c) − log10(p) values of CK2; (d) − log10(p) values of CM1; (e) − log10(p)
values of CM2. After coregistration: (f) FA value; (g) − log10(p) values of CK1; (h)
− log10(p) values of CK2; (i) − log10(p) values of CM1; (j) − log10(p) values of CM2.
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Figure 2.7: Plots of standardized residuals at the 30th slice of the 32nd acquisition
before and after coregistration from a single subject: standardized residuals (a) before
coregistration and (c) after coregistration; histgrams of standardized residuals (b) before
coregistration and (d) after coregistration. Voxels in the black-to-blue range have large
negative standardized residuals (< −2.5), while yellow to white voxels have large positive
standardized residuals (> 2.5).
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Figure 2.8: Multiple 2D graphs for a selected voxel (110, 69, 30) before coregistration
from a single subject: (b) index plot of standardized residuals; (b) index plot of Cook’s
distances; (c) standardized residuals against raw data; (d) Cook’s distances against raw
data.
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Chapter 3

Multiscale Adaptive Regression

Models for Neuroimaging Data

3.1 Introduction

Magnetic resonance imaging (MRI) is an important medical imaging technique com-

monly used for understanding the neural development of neuropsychiatric and neurode-

generative disorders, and normal brains. For instance, by using anatomical MRI, sta-

tistical shape modeling and analysis have emerged as important tools for understanding

neuroanatomical differences in cortical and subcortical structures (e.g., hippocampus)

of the human brain in vivo across different populations or time (Thompson and Toga,

2002; Styner et al., 2005). Diffusion tensor imaging can quantitatively assess the in-

tegrity of anatomical connectivity in white matter in the human brain in vivo (Basser

et al., 1994a, b; Schwartzman, 2005; Zhu et al., 2007b). Functional MRI (fMRI) is a

type of MRI scan for measuring the haemodynamic response relative to specific stimuli

and behavioral tasks and has been widely used to understand functional integration of

different brain regions (Friston, 2007; Huettel et al., 2004).

The goal of this article is to develop and apply a multiscale adaptive regression

model (MARM) for the spatial and adaptive analysis of neuroimaging data and then to



demonstrate its superiority over the voxel-wise approach using simulated and real imag-

ing data. MARM has three unique features: being spatial, being hierarchical and being

adaptive. MARM builds a sphere with a given radius at all voxels, and then uses these

consecutively overlapping spheres to capture local and global spatial dependence among

different voxels. Thus, the MARM explicitly utilizes the spatial information to carry out

statistical inference. The MARM also builds hierarchically nested spheres by increasing

the radius of a spherical neighborhood around each voxel and utilizes information in

each of the nested spheres across all voxels. Finally, MARM combine all observations

with adaptive weights in the voxels within the sphere of the current voxel to adaptively

calculate parameter estimate and test statistic. Due to its hierarchical and adaptive

natures, MARM slightly increases the amount of computational time in computing pa-

rameter estimate and testing statistic compared with the voxel-wise approach. Due to

its spatial and adaptive features, MARM can efficiently utilize available information in

the neighboring voxles to increase the precision of parameter estimates and the power

of test statistics in detecting the subtle changes of brain structure and function.

MARM represents a novel generalization of the propagation−separation (PS) ap-

proach, which was originally developed for nonparametric estimation of regression curves

or surfaces (Polzehl and Spokoiny, 2000, 2003, 2006). The PS approach has been used

to smooth the image of parameter estimates and its associated image of standard er-

rors, which are the output of the voxel-wise approach (Tabelow et al., 2006). Recently,

Tabelow et al (2008) borrowed the original PS idea and developed a multiscale adaptive

linear model to adaptively and spatially denoise diffusion tensor images. Compared with

the Gaussian distribution assumption of the multiscale adaptive linear model (Tabelow

et al., 2006), MARM is solely based on the pseudo-likelihood function, which is very

desirable for the analysis of real neuroimaging data, since the distribution of the uni-

variate (or multivariate) neuroimaging measurements often deviates from the Gaussian

distribution (Ashburner and Friston, 2000; Luo and Nichols, 2003; Zhu et al., 2007a).

49



More importantly, MARM provides a new probability framework for carrying out sta-

tistical inference on neuroimaging data from multiple subjects. The adaptive weights

in the MARM differ from those in the PS approach and the covariance estimate of the

adaptive estimator in MARM has a simpler form compared with that in Tabelow et al.,

(2006).

According to the best of our knowledge, it is the first time that we establish the

asymptotic properties of the parameter estimates and test statistics for MARM under

some mild conditions. The existing theory for the PS approach was established for

a class of nonparametric models based on exponential families under the propagation

condition (Polzehl and Spokoiny, 2006). Since MARM is developed for neuroimaging

data from multiple subjects, the theory of PS does not yield the asymptotic distributions

of parameter estimates and test statistics obtained from MARM. Our new theoretical

results show that in MARM, the adaptively weighting idea of the novel PS approach

is valid without imposing the propagation condition, which is very difficult to check in

real neuroimaging studies. There are several additional theoretical challenges. The first

challenge is that the number of voxels, which is much larger than the number of subjects,

depends on imaging resolution, not the number of subjects. Thus, we cannot really use

the infill asymptotic in the literature of spatial statistics. The second challenge is to

choose appropriate kernel functions in constructing adaptive weights, which depend on

both the numbers of subjects and voxels.

Section 3.2 of this paper presents MARM just described and establishes the associated

theoretical properties. We establish the consistency and asymptotic normality of the

adaptive estimator and the asymptotic distribution of the adaptive test statistic for

MARM. In Section 3.3, we conduct three sets of simulation studies with the known

ground truth to examine the finite sample performance of the adaptive estimate and test

statistic in MARM. Section 3.4 illustrates an application of the proposed methods in a

real neuroimaging dataset. We present concluding remarks in Section 3.5.
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3.2 Multiscale Adaptive Regression Model

3.2.1 Model Formulation

We consider MRI measures in the 3D volume (or on the 2D surface) and clinical variables

from n subjects. Without loss of generality, we focus on the 3D volume of MRI measures.

For the ith subject, we observe an mND×1 vector of MRI measures, denoted by Yi,D =

{Yi(d) : d ∈ D}, and a k × 1 vector of clinical variables xi, where Yi(d) is an m × 1

vector of MRI measures, D and d, respectively, represent a 3D volume and a voxel in D

and ND equals the number of voxels in D. In neuroimaging studies, MRI measures can

include the shape representation of the surfaces of cortical or subcortical structures, the

determinant of the Jacobian matrices based on the deformation fields estimated by the

registration algorithm, functional MRI signals, diffusion tensors, and so on (Ashburner

and Friston, 2000; Styner et al., 2005; Thompson and Toga, 2002). Clinical variables

often include pedigree information, time, demographic characteristics (e.g., age, gender,

height), and diagnostic status, among others.

Statistically, our primary interest is to build the conditional distribution of YD =

{Yi,D : i = 1, · · · , n} given X = {xi : i = 1, · · · , n}, that is, p(YD|X). For a cross-

sectional design, it is natural to assume that data from different subjects are independent,

that is p(YD|X) =
∏n

i=1 p(Yi,D|Xi). Thus, we only need to specify p(Yi,D|Xi) for each

i. However, the number of voxels in each brain region can be more than 500,000 voxels,

and at each voxel, the dimension of Yi(d) can be univariate or multivariate, thus totaling

a billion or more data points in an entire study. In addition, imaging data Yi,D are

spatially correlated in nature, and thus given the large number of voxels on each brain

structure, it is statistically challenging to simultaneously model the spatial relationship

among all pairs of points.
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The voxel-wise approach essentially assumes that

p(Yi,D|Xi) =
∏
d∈D

p(Yi(d)|xi,θ(d)), (3.1)

where p(Yi(d)|xi,θ(d)) is the marginal density of p(Yi,D|Xi) and θ(d) = (θ1(d), · · · ,θp(d))T

is a p×1 vector in an open subset Θ of Rp. Note that due to possible model misspecifica-

tion, p(Yi(d)|xi,θ(d)) is only a ‘pseudo’ density function for Yi(d). Model (3.1) is general

enough to comprise most statistical models in the existing voxel-wise approach. However,

since the voxel-wise approach does not account for the spatial nature of neuroimaging

data, which often contain spatially contiguous regions of activation with rather sharp

edges, it may lead to the loss of power in detecting statistical significance in the analysis

of neuroimaging data.

We propose the multiscale adaptive regression model as follows. Assume that for

a relatively large radius r0, p(Yi,D|Xi) can be well approximated by the product of

p({Yi(d′) : d′ ∈ B(d, r0)}|xi), that is

p(Yi,D|Xi) ≈
∏
d∈D

p({Yi(d′) : d′ ∈ B(d, r0)}|xi), (3.2)

where B(d, r0) denotes the set of all voxels in a spherical neighborhood of a voxel d with

radius r0. Using all data in all B(d, r0)s can at least preserve the local spatial correlation

structure in the imaging data; see panels (a)-(c) in Fig. 3.1. Moreover, since for a given

radius r0, the spherical neighborhoods B(d, r0) of all voxels are consecutively connected,

(3.2) can capture a substantial amount of global spatial information in the neuroimaging

data. Statistically, the right hand-side of (3.2) can be regarded as a composite likelihood

(Lindsay, 1988; Varin, 2008).

In many neuroimaging studies, our primary interest is to make statistical inference

about a vector of parameters of interest, denoted by θ(d), at each voxel d ∈ D. It would

be very efficient to utilize all data {Yi(d′) : d′ ∈ B(d, r0)} to estimate θ(d). Instead
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Figure 3.1: Illustrating the key features of the multiscale adaptive regression model.
For a relatively large radius r0, panel (a) shows the overlapping spherical neighborhoods
B(d, r0) of multiple points (or voxels) d on the cortical surface. Panel (b) shows the
spherical neighborhoods with four different bandwidths h of the six selected points d
on the cortical surface. Panel (c) shows the spherical neighborhoods B(d, r0) of three
selected voxels in a 3D volume, in which voxels A and C are inside the activated regions,
whereas voxel B is on the boundary of an activated region.

of specifying spatial correlations among all the {Yi(d′) : d′ ∈ B(d, r0)}, assume that

p({Yi(d′) : d′ ∈ B(d, r0)}|xi) can be approximated by

p({Yi(d
′) : d′ ∈ B(d, r0)}|xi) ≈

∏
d′∈B(d,r0)

p(Yi(d
′)|xi,θ(d′))ω(d,d′;r0), (3.3)

where ω(d, d′;h) as a weight function of two voxels and a radius h characterizes the

similarity between the data in voxels d and d′. We require that ω(d, d′;h) be independent

of i just for simplicity. In neuroimaging data, voxels, which are not on the boundary of

regions of activation, often have a neighborhood in which θ(d) is nearly constant. This

assumption reflects the fact that neuroimaging data are spatially correlated and contain

spatially contiguous regions of activation with rather sharp edges. Moreover, the weights

ω(d, d′; r0) can prevent incorporating voxels whose data do not contain information on

θ(d), and thus preserve the edges of the regions of activation. Finally, we obtain an
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approximation of p(Yi,D|Xi) given by

p(Yi,D|Xi) ≈
∏
d∈D

{
∏

d′∈B(d,r0)

p(Yi(d
′)|xi,θ(d))ω(d,d′;r0)}. (3.4)

An important issue for MARM is to determine ω(d, d′; r0). We use a multiscale strat-

egy to adaptively determine {ω(d, d′; r0) : d, d′ ∈ D} and then we adaptively estimate

θ(d) and its associated test statistic. Our multiscale strategy starts with building a

sequence of nested spheres with increasing radiuses h0 = 0 < h1 < · · · < hS = r0

ranging from the smallest scale h0 = 0 to a large scale hS = r0 at each d ∈ D (panel

(b) in Fig. 3.1). By setting ω(d, d′;h0) = 1, we can estimate θ(d) at scale h0, denoted

by θ̂(d;h0), and construct a test statistic Wµ(d, h0). Then, based on the information

contained in {θ̂(d;h0) : d ∈ D}, we use some methods as detailed below to calculate

weights ω(d, d′;h1) at scale h1 for all d ∈ D. In this way, we can sequentially determine

ω(d, d′;hs) and adaptively update θ̂(d;hs) and Wµ(d, hs) from h0 = 0 to hS = r0. A

path diagram of the multiscale strategy is given below:

ω(d, d′;h0) ω(d, d′;h1) · · · ω(d, d′;hS = r0)

⇓ ↗ ⇓ ↗ · · · ↗ ⇓

θ̂(d;h0) θ̂(d;h1) · · · θ̂(d;hS)

⇓ ⇓ · · · ⇓

Wµ(d;h0) Wµ(d;h1) · · · Wµ(d;hS)

(3.5)

At each iteration, the computation involved for MARM is of the same order as that

for the voxel-wise approach. Thus, this multiscale method provides an efficient method

for adaptively exploring the neighboring areas of each voxel. Since MARM sequentially

includes more data at each iteration, it will adaptively increase the statistical efficiency

in estimating θ(d) in a homogenous region and decreases the variation of the weights

ω(d, d′;h). This multiscale strategy distinguishes MARM from the composite likelihood
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methods in the literature (Lindsay, 1988; Varin, 2008).

3.2.2 Estimation and Hypothesis Testing At a Fixed Radius

We present the estimation method and test statistic at each d ∈ D for a fixed radius

h. Specifically, we consider maximum weighted likelihood estimates of θ(d) across all

voxels d ∈ D given the current weights {ω(d, d′;h) : d, d′ ∈ D}. For the sphere with the

radius h of the voxel d, the weighted quasi-likelihood function `n(θ(d);h, ω̃) is given by

`n(θ(d);h, ω̃) =
n∑
i=1

∑
d′∈B(d,h)

ω̃(d, d′;h) log p(Yi(d
′)|xi,θ(d)), (3.6)

which utilizes all data in {Yi(d′) : d′ ∈ B(d, h)} and the weights {ω(d, d′;h) : d′ ∈

B(d, h)}, where ω̃(d, d′;h) = ω(d, d′;h)/
∑

d′∈B(d,h) ω(d, d′;h). Thus, the maximum weighted

quasi-likelihood (MWQL) estimate of θ(d), denoted by θ̂(d, h), is defined by

θ̂(d, h) = argmaxθ(d)
n−1`n(θ(d);h, ω̃). (3.7)

Numerically, we use various algorithms, such as Newton-type algorithms, to estimate

θ̂(d, h). Throughout the paper, the Newton-Raphson algorithm is used to calculate

θ̂(d, h) by iterating

θ̂(d, h)(t+1) = θ̂(d, h)(t) + {−∂2

θ(d)
`n(θ̂(d, h)(t);h, ω̃)}−1∂θ(d)

`n(θ̂(d, h)(t);h, ω̃),

where ∂θ(d)
and ∂2

θ(d)
denote, respectively, the first- and second-order partial derivatives

with respect to θ(d) evaluated at θ̂(d, h)(t). To stabilize the Newton-Raphson algorithm,

we approximate −∂2

θ(d)
`n(θ̂(d, h)(t);h, ω̃) by E[−∂2

θ(d)
`n(θ̂(d, h)(t);h, ω̃)]. We stop the

Newton-Raphson algorithm when the absolute difference between consecutive θ̂(d, h)(t)s

is smaller than a predefined small number, say 10−4. After convergence, Cov[θ̂(d, h)] can
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be approximated by

Cov[θ̂(d, h)] ≈ Σn(θ̂(d, h)) = [Σn,1(θ̂(d, h))]−1Σn,2(θ̂(d, h))[Σn,1(θ̂(d, h))]−1, (3.8)

where Σn,1(θ(d)) = −∂2

θ(d)
`n(θ(d);h, ω̃) and

Σn,2(θ(d)) =
n∑
i=1

[
∑

d′∈B(d,h)

ω̃(d, d′;h)∂θ(d)
log p(Yi(d

′)|xi,θ(d))]⊗2,

in which a⊗2 = aaT for any vector a.

Our choice of which hypotheses to test was motivated by either a comparison of

brain structure (or function) across diagnostic groups or the detection of a change in

brain structure (or function) across time (Styner et al., 2005; Thompson and Toga,

2002; Zhu et al., 2007a). These questions of interest usually can be formulated as testing

hypotheses about θ(d) as follows:

H0,µ : R(θ(d)) = b0 vs. H1,µ : R(θ(d)) 6= b0, (3.9)

where µ = R(θ(d)) is an r × 1 vector function of the k−vector θ(d) with r ≥ k and b0

is an r × 1 specified vector. We test the null hypothesis H0,µ : R(θ(d)) = b0 using the

Wald test statistic Wµ(d, h), which is given by

[R(θ̂(d;h))− b0]T{∂θ(d)
R(θ̂(d;h))Σ̂n(θ̂(d;h))∂θ(d)

R(θ̂(d;h))T}−1[R(θ̂(d;h))− b0].

(3.10)

To test whetherH0,µ holds in all voxels of the region under study, we may consider various

statistical methods including the false discovery rate (FDR) method (Benjamini and

Hochberg, 1995) and the random field theory (Worsley et al., 2004). In most applications,

we are interested in testing R(θ(d)) = R0θ(d) for a given r×k matrix R0. For simplicity,

we only consider testing H0 : R0θ(d) = b0 from now on.
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3.2.3 Adaptive Estimation and Testing Procedure

We develop an adaptive estimation and testing (AET) procedure evolving from the

smallest scale h0 = 0 to the largest scale hS = r0 for MARM. The AET procedure starts

with individual voxel d ∈ D and then successively increases the radius (or bandwidth) hs

of a spherical neighborhood around each d ∈ D. For a given d ∈ D, each voxel d′ in the

neighborhood of d will be given a weight ω(d, d′;hs) that depends on the distance between

d and d′ and the similarity between θ̂(d, hs−1) and θ̂(d′, hs−1). Then, we utilize all data

in B(d, hs) and the adaptive weights in all these voxels to obtain updated estimates

θ̂(d, hs) and Wµ(d, hs) at each voxel d ∈ D, respectively.

The AET procedure consists of four key steps: initialization, weights adaptation,

estimation, and stopping. In the initialization step (i), we prefix a geometric series

{hs = csh : s = 1, · · · , S} of radiuses with h0 = 0, where ch ∈ (1, 2), say ch = 1.25.

At each voxel d, we calculate the MWQL estimate θ̂(d, h0) and its associated Wald test

statistic Wµ(d, h0), which are the same as those from the voxel-wise approach. We then

set s = 1 and h1 = ch.

In the weight adaptation step (ii), we compute adaptive weights given by

ω(d, d′;hs) = Kloc(||d− d′||2/hs)Kst(Dθ(d, d′;hs−1)/Cn), (3.11)

where Kloc(u) and Kst(u) are two kernel functions with compact support such that both

Kloc(u) and Kst(u) decrease to zero as u increases, Cn is a number, which may be associ-

ated with n, and || · ||2 denotes the Euclidean norm of a vector (or a matrix). Moreover,

Dθ(d, d′;hs−1) denotes a weighted function of the MWQL estimates of {θ(d) : d ∈ D}

calculated as the radius equals hs−1. The adaptive weight Kst(Dθ(d, d′;hs−1)/Cn) down-

weight the role of a voxel d′ ∈ B(d, hs) in `n(θ(d);hs, ω̃) if the value of Dθ(d, d′;hs−1) is

large. The weights Kloc(||d− d′||2/hs) give less weight to the voxel d′ ∈ B(d, hs), whose

location is far from the voxel d.
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In the estimation step (iii), for the radius hs, we calculate θ̂(d, hs) and Wµ(d, hs),

which are defined in (3.7) and (3.10), respectively, at each voxel d ∈ D.

In the stopping step (iv), when s = S, we compute the p-values for Wµ(d, hS),

apply either FDR or RFT to detect significant voxels and then stop. Otherwise, we set

hs+1 = chhs, increase s by 1 and continue with the weight adaptation step (ii). The

maximal step S can be taken to be relatively small, say 5, such that the largest spherical

neighborhood of each voxel only contains a relatively small number of voxels compared

with the whole volume.

Remark 1. We have developed the AET procedure for spatially and adaptively carry-

ing out statistical inference on all components of θ(d) in the 3D volume (or 2D surface) as

a whole. However, in many applications, θ(d) may be decomposed as (θ1(d)T ,θ2(d)T )T ,

in which θ1(d) is the parameter of interest and θ2(d) is the nuisance parameter. We can

also develop the AET procedure for θ1(d) only. Specifically, we can calculate θ̂(d, h0)

and then fix θ2(d) at θ̂2(d, h0) after the initialization step (i). In this way, we only update

θ1(d) and calculate adaptive weights based on estimates of θ1(d) at each iteration.

Remark 2. Setting θ̂(d, hs)
(0) = θ̂(d, hs−1) for each s > 0 is an efficient way of

selecting the initial value θ̂(d, hs)
(0) in the Newton-Raphson algorithm. Since the AET

procedure always downweights voxel d′ ∈ B(d, h) in `n(θ(d);h, ω̃) when the value of

Dθ(d, d′;hs−1) is large, θ̂(d, hs−1) and θ̂(d, hs) should be close to each other. By starting

from θ̂(d, hs)
(0) = θ̂(d, hs−1), the Newton-Raphson algorithm converges very fast, and

thus the additional computational time for MARM is very light compared to the voxel-

wise approach.

Remark 3. There are two different kernel functions in the AET procedure. The

Kloc(u) is a regular kernel function for smoothing the smoothed curves or surfaces. Some

common choices of Kloc(u) include the Gaussian kernel and the Epanechnikov kernel

(Tabelow et al., 2006; Polzehl and Spokoiny, 2000, 2006). Without loss of generality, we

use Kloc(u) = (1− u)+. The Kst(u) is the kernel function for downweighting the voxels
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that are dissimilar to voxel d during the process of making inference on θ(d). In practice,

we set Kst(u) = e−u1(u ≤ 5) and

Dθ(d, d′;hs−1) = [θ̂(d, hs−1)− θ̂(d′, hs−1)]T Σ̂(θ̂(d;hs−1))−1[θ̂(d, hs−1)− θ̂(d′, hs−1)].

(3.12)

The Dθ(d, d′;hs−1) in (3.12) is close to s
(k)
ij in equation (14) of Tabelow et al. (2008).

Moreover, although different choices of Kloc(u) and Kst(u) have been suggested in the

original PS approach (Polzehl and Spokoiny 2000, 2006), it is unclear what kinds of

kernel functions should be chosen in MARM both theoretically and numerically.

Remark 4. A crucial issue in the MARM approach is to appropriately select Cn in

(3.11). In the PS procedure, various choices of Cn including the logarithm of the number

of voxels in B(d, h) and the quantile of the χ2 distribution have been suggested (Polzehl

and Spokoiny 2000, 2006; Katkovnik and Spokoiny 2008). We will formally examine

what kinds of Cn should be used in MARM.

3.2.4 Theoretical Properties

Throughout the paper, we only consider the asymptotic properties of θ̂(d, hs) and

Wµ(d, hs) for finite number of iterations and bounded r0 for MARM. We assume that

the number of voxels in brain volume does not increase with the sample size, since the

resolution of a given imaging dataset is always fixed. One might attempt to consider

‘infill asymptotics’ in spatial statistics, in which the brain volume is fixed and the voxel

size approaches zero as the sample size increases, but the voxel size in neuroimaging is

associated with imaging resolution, not the sample size. Therefore, we will not consider

the infill asymptotics.

We establish consistency and asymptotically normality of θ̂(d, h) and Wµ(d, h) for

each h obtained from the AET procedure in Section 3.2.4. We first discuss the case with

fixed weights ω(d, d′;h) for a fixed scale h. Let Yi(d, h) = (Yi(d
′) : d′ ∈ B(d, h)) for i =
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1, · · · , n. Without loss of generality, we assume that the (Yi(d, h),xi) are independently

and identically distributed as the true density p(Y (d, h),x). According to (3.6), the

MWQL estimator θ̂(d, h) maximizes the function n−1`n(θ(d);h, ω̃), which converges to

M(θ(d);h, ω̃) =
∑

d′∈B(d,h)

ω̃(d, d′;h)E[log p(Y (d′)|x,θ(d))] (3.13)

in probability (or almost surely) under some mild conditions as n → ∞, where the

expectation is taken with respect to p(Y (d, h),x). Under some identifiability conditions,

θ̂(d;h) converges to θ∗(d;h), which maximizes M(θ(d);h, ω̃) (van der Vaart, 1998).

When h = 0, θ∗(d; 0) = θ∗(d) is the ‘pseudo’ true value in voxel d and the parameter

of interest. When h > 0, θ∗(d;h) can only be regarded as a weighted combination of all

θ∗(d
′) for d′ ∈ B(d, h). In a homogeneous region, that is θ∗(d

′) = θ∗(d), θ∗(d;h) = θ∗(d)

even for h > 0. However, in a nonhomogeneous region, an arbitrary set of weights

ω(d, d′;h) can lead to undesirable consequences, such as smoothing out the boundary of

activated regions and reducing statistical power in detecting activated regions.

We need to address several important questions for MARM with stochastic adaptive

weights. A critical question is that what kinds of stochastic weights can automatically

incorporate the ’good’ information and prevent the ’bad’ information from neighboring

voxels. By appropriately utilizing information from neighboring voxels, the AET proce-

dure can dramatically increase the accuracy and efficiency in estimating θ∗(d) in each

voxel. Another important question is whether the stochastic weights chosen can ensure

the consistency and asymptotical normality of θ̂(d, h) at each fixed scale h. To have a

better understanding of the AET procedure, we focus on the asymptotic behavior of the

adaptive weights as s = 1 and then we discuss the scenario with s > 1.

We obtain the following theorems, whose detailed assumptions and proofs can be

found in the Appendix.

Theorem 1. If assumptions (C1)-(C7) in the Appendix are true, then we have

(a) θ̂(d, h0) converges to θ∗(d) in probability;
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(b) {Σn,2(θ̂(d, h0))}−1/2Σn,1(θ̂(d, h0))[θ̂(d, h0)− θ∗(d)]→L N(0, Ip);

(c) Dθ(d, d′;h0) and Kst(Dθ(d, d′;h0)C−1
n ) can be, respectively, approximated by

Dθ(d, d′;h0) = 1(4∗(d, d′) = 0)×Op(log(N(D))) + 1(4∗(d, d′) 6= 0)×(3.14)

n||[Σ∗(d, h)]−1/2[4∗(d, d′) +Op(
√

log(N(D))/n)]||22,

Kst(Dθ(d, d′;h0)C−1
n ) = 1(4∗(d, d′) 6= 0)Kst(C

−1
n nOp(1)) (3.15)

+ 1(4∗(d, d′) = 0)Kst(log(N(D))C−1
n Op(1)),

where 4∗(d, d′) = θ∗(d)− θ∗(d′) and N(D) denotes the number of voxels in D;

(d) For any ε0 > 0,

lim
n→∞

P (|Kst(Dθ(d, d′;h0)/Cn)− 1(4∗(d, d′) = 0)| > ε0) = 0.

Theorem 1 (a) and (b) characterize the asymptotic behavior of Dθ(d, d′;h0) and

Kst(Dθ(d, d′;h0)/Cn). Theorem 1 (c) and (d) show that if the two voxels d and d′

have the same true values, then Kst(Dθ(d, d′;h0)/Cn) and ω(d, d′;h0) converges to 1

and Kloc(||d − d′||2/h1), respectively. However, if the two voxels d and d′ substantially

differ from each other, then Kst(Dθ(d, d′;h0)/Cn) imposes an decreasing weight on the

voxel d′. Thus, Kst(Dθ(d, d′;h0)/Cn) can efficiently incorporate information from ’good’

voxels, whereas it prevents incorporating information from ’bad’ voxels.

For h > 0, we can also establish important theoretical results to characterize the nice

behavior of θ̂(d, h) and Wµ(d, h) from the MARM as follows.

Theorem 2. Suppose that Assumptions (C1)-(C7) in the Appendix are true. We have

the following results for the MARM:

(a) θ̂(d, h) converges to θ∗(d) in probability;

(b) {Σn,2(θ̂(d, h))}−1/2Σn,1(θ̂(d, h))[θ̂(d, h)− θ∗(d)]→L N(0, Ip);

(c) If R0θ∗(d) = b0 is true, then the statistic Wµ(d, h) is asymptotically distributed

as χ2(r), a chi-square distribution with r degrees of freedom.
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Theorem 2 shows that the AET procedure has several remarkable features. Theorem

2 (a) ensures that θ̂(d, h) is a consistent estimate of θ∗(d) for the adaptive weights in

(3.10) for any h. Theorem 2 (b) ensures that θ̂(d, h) is a
√
n estimate of θ∗(d). Theorem

3 (c) ensures that the Wald test statistic Wµ(d, hs) is asymptotically χ2(r) distributed

under the null hypothesis R0θ∗(d) = b0. However, for small sample size n, it would be

better to adjust for sample uncertainty in estimating the covariance matrix of θ̂(d, h).

Following Hotelling’s T 2 test, we suggest calibrating Wµ(d, h) with a critical value of

r(n−1)
n−r F

1−α
r,n−r, where F 1−α

r,n−r is the upper α-percentile of the Fr,n−r distribution. That is,

we reject H0 if Wµ(d, h) ≥ r(n−1)
n−r F

1−α
r,n−r, and do not reject H0 otherwise.

We can characterize the asymptotic behavior of θ̂(d, h) and Wµ(d, h) even when Cn

is bounded. Our results show the unpleasant behavior of θ̂(d, h) and Wµ(d, h) as h > 0.

Corollary 1. Suppose assumptions (C1)-(C6) in the Appendix are true and Cn = O(1)

and limn→∞ log(N(D))/n = 0. Then we have the following results:

(a) θ̂(d, h1) converges to θ∗(d) in probability;

(b) If there is a d′ ∈ B(d, h1)/{d} such that θ∗(d) = θ∗(d
′), then θ̂(d, h1) may not

be asymptotically normal and the statistic Wµ(d, h1) is not asymptotically distributed as

χ2(r) even though R0θ∗(d) = b0 is true.

Corollary 1 shows that bounded Cn can lead to several unpleasant consequences.

Although bounded Cn has been proposed in the PS approach to smooth the parameter

estimates from linear models, it is the first time that we establish the consistency of

θ̂(d, h) as an estimate of θ∗(d) under a general setup. However, if there is a voxel

d′ ∈ B(d, h)/{d} such that θ∗(d) = θ∗(d
′), Corollary 1 (b) shows that θ̂(d, h) is not

asymptotically normal and the Wald test statistic Wµ(d, hs) is not asymptotically χ2(r)

distributed under the null hypothesis Rθ∗(d) = b0. Thus, we cannot directly calibrate

Wµ(d, h) using the critical values of χ2(r).

62



3.2.5 Multiscale Adaptive Generalized Linear Models

We consider a generalized linear model (GLM) for the conditional distribution of Yi(d)

given xi (McCullagh and Nelder 1989). Specifically, Yi(d) given xi has a density in the

exponential family

exp {τ(d)[Yi(d)ηi(β(d))− b(ηi(β(d)))] + c(Yi(d), τ(d))} , (3.16)

i = 1, . . . , n, indexed by the canonical parameter ηi and the scale parameter τ(d),

where the functions b(·) and c(·, ·) determine a particular distributional family in the

class, such as the binomial, normal or Poisson distributions. Furthermore, the ηi’s sat-

isfy the equations ηi(β(d)) = η(µi(d)), i = 1, . . . , n, and µi(d) = g(xTi β(d)), where

θ(d) = (β(d), τ(d)) and g(·) is an known and monotonic link function and β(d) is a

p− 1-dimensional vector of regression coefficients. The GLMs include many well-known

regression models, such as normal linear regression, logistic and probit regression, Pois-

son regression, gamma regression, and some proportional hazards models (McCullagh

and Nelder, 1989).

We develop the multiscale GLM and present several key formula below. Our primary

interest is β(d), so τ(d) is fixed at τ̂(d, h0) from now on. For the scale h, we define

ω̃(d, d′;h) = τ(d′)ω(d, d′;h)/ω(d;ω, h),

ci(τ(d); ω̃, h) =
∑

d′∈B(d,h)

ω̃(d, d′;h)c(Yi(d
′), τ(d′)),

ω(d;ω, h) =
∑

d′∈B(d,h)

τ(d′)ω(d, d′;h), and Yi(d; ω̃, h) =
∑

d′∈B(d,h)

ω̃(d, d′;h)Yi(d
′),

in which Yi(d; ω̃, h) is a weighted response at voxel d for i = 1, · · · , n at the scale h. The

weighted quasi-likelihood function at voxel d for the scale h is given by

n∑
i=1

{Yi(d; ω̃, h)ηi(β(d))− b(ηi(β(d)))}+
n∑
i=1

ci(τ(d); ω̃, h). (3.17)
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With some calculations, we get

∂β(d)
`n(θ(d);h, ω̃) =

n∑
i=1

{Yi(d;ω, h)− ḃ(ηi(β(d)))}∂β(d)
ηi(β(d)),

−∂2

β(d)
`n(θ(d);h, ω̃) =

n∑
i=1

b̈(ηi(β(d)))[∂β(d)
ηi(β(d))]⊗2

−
n∑
i=1

{Yi(d; ω̃, h)− ḃ(ηi(β(d)))}∂2

β(d)
ηi(β(d)),

where ḃ(t) = db(t)/dt and b̈(t) = d2b(t)/dt2. Based on these preparations, we can develop

the Newton-Raphson algorithm and calculate Σn,1(β(d)) and Σn,2(β(d)), which lead an

approximation of Cov(β̂(d, h)). For the canonical link ηi(β(d)) = xTi β(d), all formula

such as ∂β(d)
ηi(β(d)) = xi can be further simplified.

As an illustration, we focus on the well-known linear model and develop a multiscale

linear model. In particular, we examine the asymptotic properties of β̂(d, h). Assume

that Yi(d) = xTi β(d) + εi(d), where εi(d) ∼ N(0, τ(d)−1). With simple calculation, we

have

β̂(d, h) = (
n∑
i=1

x⊗2
i )−1

n∑
i=1

xiYi(d; ω̃, h)

=
∑

d′∈B(d,h)

ω̃(d, d′;h)β∗(d
′) +

∑
d′∈B(d,h)

ω̃(d, d′;h)(
n∑
i=1

x⊗2
i )−1

n∑
i=1

xiεi(d
′),(3.18)

Cov[β̂(d, h)] ≈ (
n∑
i=1

x⊗2
i )−1

n∑
i=1

x⊗2
i ε̂i(d;ω, h)2(

n∑
i=1

x⊗2
i )−1, (3.19)

where ε̂i(d;ω, h) =
∑

d′∈B(d,h) ω̃(d, d′;h)[Yi(d
′) − xTi β̂(d′, h)]. Although Tabelow et al.

(2006) have obtained the same β̂(d, h) as in (3.18), the MARM developed here has

several advantages over the PS approach. We will show below that β̂(d, h) based on the

adaptive weights in the PS approach may not be asymptotically normal. The covariance

estimate of β̂(d, h) in (3.19) has a simpler form compared to that in Tabelow et al.

(2006), in which they first estimated a spatial correlation factor and applied it to all
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voxels. In real neuroimaging studies, it is unrealistic to assume the homogeneous spatial

correlation, while it is unnecessary to estimate the spatial correlation. We obtain the

following results for linear model. For simplicity, we assume that all τ(d) are known.

Theorem 3. (a) If Assumptions (C1), (C2), (C6) and (C7) are true and E[||x||22] < ∞

and E[maxd∈D |ε(d)| × ||x||22] <∞, then
√
n[β̂(d, h)−β∗] is asymptotically equivalent to

A1(d;h) =

∑
d′∈B(d,h) C(d, d′;h)τ(d′)E[x⊗2]−1n−1/2

∑n
i=1 xiεi(d

′)∑
d′∈B(d,h) C(d, d′;h)τ(d′)

, (3.20)

where C(d, d′;h) = 1(4∗(d, d′) = 0)Kloc(||d− d′||2/h). The A1(d;h) converges in distri-

bution to ∑
d′∈B(d,h) C(d, d′;h)τ(d′)E[x⊗2]−1/2Z(d′)∑

d′∈B(d,h)C(d, d′;h)τ(d′)
, (3.21)

where (Z(d) : d ∈ B(d, h)) is a Gaussian vector with mean zero and a covariance struc-

ture Cov(Z(d)) = τ(d)−1Ip−1 and Cov(Z(d), Z(d′)) = E[ε1(d)ε1(d′)]Ip−1.

(b) If Assumptions (C1), (C2) and (C6) are true and Cn = O(1) and

limn∞ log(N(D))/n = 0, then
√
n[β̂(d, h1)− β∗] is asymptotically equivalent to

A2(d;h1) =

∑
d′∈B(d,h1)C(d, d′;h1)Kst(En(d, d′))τ(d′)E[x⊗2]−1n−1/2

∑n
i=1 xiεi(d

′)∑
d′∈B(d,h1) C(d, d′;h1)Kst(En(d, d′))τ(d′)

,

(3.22)

where En(d, d′) = τ(d)tr({E[x⊗2]−1/2n−1/2
∑n

i=1 xi[εi(d)−εi(d′)]}⊗2). As n→∞, A2(d;h1)

converges in distribution to a random vector given by

∑
d′∈B(d,h)C(d, d′;h1)Kst(τ(d)tr{[Z(d)− Z(d′)]⊗2})τ(d′)E[x⊗2]−1/2Z(d′)∑

d′∈B(d,h) C(d, d′;h1)Kst(τ(d)tr{[Z(d)− Z(d′)]⊗2)}τ(d′)
. (3.23)

Theorem 3 first time gives a theoretical justification of the multiscale adaptive linear

model in Tabelow et al. (2006). Theorem 3 (a) and (b) formally characterize the key

differences between bounded and unbounded Cn in general linear model. Theorem 3

(a) shows that for certain unbounded Cn, the asymptotic distributions of β̂(d, h) are

always normally distributed. For bounded Cn, however, Theorem 3 (b) only gives the
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asymptotic distribution of β̂(d, h1), which may not be normally distributed when there

is a voxel d′ ∈ B(d, h1) being close to the voxel d. Particularly, the covariance estimate

β̂(d, h) in Tabelow et al. (2006) may not be valid for bounded Cn even for h = h1.

3.3 Simulation Studies

We conducted three sets of Monte Carlo simulations to examine the finite sample perfor-

mance of β̂(d, h) and Wµ(d, h) with respect to different scales h at the levels of a single

voxel and an entire brain region. The first two were based on simulated data on the

2D surface with the known ground truth. The third one was based on simulated MRI

datasets in the 3D volume with the known ground truth.

3.3.1 Simulation Studies Part I

We simulated data at all m = 4002 points on the surface of a hippocampus for n subjects.

At a given voxel d in D, yi(d) was simulated according to yi(d) = xTi β(d) + εi(d) for

i = 1, · · · , n, where β(d) = (β1(d), β2(d), β3(d))T , xi = (1, xi2, xi3)T and the εi(d) were

independently generated from N(0, 1). We set n = 60 and n = 80. We generated xi2

independently from a Bernoulli distribution with the probability of success being 0.5,

and generated xi3 independently from the uniform distribution in [0, 1]. The xi2 and

xi3 were chosen to represent group identity and standardized age, respectively. We also

created ROI1 and ROI2, which are two nested circles with radius at 3 and 5, respectively,

and labeled the region outside of ROI1 and ROI2 as ROI3. We set β2(d) as 0 in ROI3,

1 in ROI2, and 2 in ROI3, respectively (Fig. 3.2(a)).

We fitted the linear model yi(d) = xTi β(d) + ε(d), where εi(d) ∼ N(0, σ2(d)). The

θ(d) includes β(d) and σ2(d). We used MARM to calculate adaptive parameter estimates

across all voxels at 6 different scales. Since our primary interest is β(d) and σ2(d) was

treated as nuisance parameters and fixed at σ̂2(d, h0) after the h0-th iteration. In each
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Figure 3.2: Setups for simulation studies parts I and II: (a) three regions of interest
(R1: ROI1 with yellow color; R2: ROI2 with red color; R3: ROI3 with green color) on
a reference hippocampus; (b) a reference sphere with a red ROI; (c) a reference sphere
with two red ROIs.

Table 3.1: Bias (×10−2), RMS(×10−2), SD (×10−2), and RS of β parameters. BIAS
denotes the bias of the mean of the MARM estimates; RMS denotes the root-mean-
square error; SD denotes the mean of the standard deviation estimates; RS denotes the
ratio of RMS over SD. sample size=60.

β1 β2 β3
BIAS RMS SD RS BIAS RMS SD RS BIAS RMS SD RS

n = 60
ROI1: h0 4.1 1.61 1.88 0.86 -2.1 1.35 1.19 1.12 -2.1 1.35 1.19 1.13
ROI1: h5 4.3 0.62 0.59 1.05 -2.7 0.41 0.41 0.99 -5.7 0.79 0.85 0.92
ROI2: h0 0.66 1.97 1.86 1.06 0.69 1.16 1.18 0.98 3.3 2.71 2.54 1.06
ROI2: h5 0.41 0.68 0.60 1.14 0.61 0.44 0.38 1.14 3.1 0.81 0.82 0.99
ROI3: h0 0.27 1.92 1.85 1.04 -0.19 1.28 1.20 1.06 -0.58 2.61 2.53 1.03
ROI3: h5 0.30 0.55 0.51 1.09 -0.13 0.36 0.33 1.06 -0.65 0.74 0.69 1.07

n = 80
ROI1: h0 -2.4 1.56 1.589 0.98 -0.56 1.05 1.06 0.99 1.8 2.37 2.16 1.10
ROI1: h5 -3.1 0.60 0.53 1.14 -0.83 0.35 0.35 0.99 2.5 0.71 0.71 1.00
ROI2: h0 -0.66 1.83 1.64 1.11 1.9 1.28 1.05 1.23 0.99 2.36 2.20 1.08
ROI2: h5 -0.70 0.56 0.54 1.04 1.8 0.43 0.34 1.26 1.0 0.64 0.71. 0.89
ROI3: h0 -0.12 1.69 1.66 1.02 -0.12 1.69 1.66 1.02 0.17 2.29 2.21 1.03
ROI3: h5 -0.05 0.48 0.46 1.05 -0.04 0.32 0.29 1.09 0.11 0.66 0.61 1.08

ROI, we calculated the bias, the empirical standard errors (RMS), and the mean of the

standard error estimates (SD) based on the results from the 100 simulated hippocampus

data sets. We observed the following results. The biases are similar at h0 and h5. The

RMS and SD at h5 are much smaller than those at h0. In addition, the RMS and its

corresponding SD are relatively close to each other at both h0 and h5 scales in each of

the three ROIs (Table 3.1). As expected, increasing n decreases the bias, RMS and SD

of parameter estimates.

67



3.3.2 Simulation Studies Part II

In this simulation, we simulated data at all m = 2064 points on the surface of a reference

sphere for n subjects. At a given voxel d in D, a 2×1 vector yi(d) was simulated according

to yi(d) = B(d)xi + εi(d), where B(d) = (βjk(d)) is a 2 × 3 matrix, xi = (1, xi2, xi3)T

and the εi(d) were independently generated from N(0, I2), in which I2 is a 2× 2 identity

matrix. We generated xi2 independently from a Bernoulli distribution with an equal

probability and generated xi3 independently from the uniform distribution in [0, 1]. We

set n = 20, n = 40 and n = 60.

We fitted the linear model yi(d) = B(d)xi + εi(d), where εi(d) ∼ N(0,Σe(d)). The

θ(d) includes B(d) and the elements in Σe(d). Since our primary interest is B(d) and

the elements in Σe(d) was treated as nuisance parameters, we fixed Σe(d) = Σ̂e(d, 0)

after the h0-th iteration. Let β(d) = (β11(d), β12(d), β13(d), β21(d), β22(d), β23(d))T be a

6× 1 unknown parameter vector. To assess both Type I and II error rates at the voxel

level, we selected a region-of-interest (ROI) with 64 points on the reference sphere. We

set β(d) = 06 across the whole sphere and then change β12(d) from 0 to 2 for all points

d in ROI (Fig 2(b)). We test the hypotheses H0 : β12(d) = 0 and H1 : β12(d) 6= 0

across all voxels. We applied the MARM with ch = 1.25, S = 6 and computed the

p-values of Wµ(d, h) at each iteration. The 10,000 replications were used to estimate the

rejection rate with the significance level α = 5%. For the test statistic Wµ(d, h), the

Type I rejection rates outside the ROI were relatively accurate for all radius, while the

statistical power for rejecting the null hypothesis in the ROI was significantly increased

with the the radius h (Table 3.2).

We simulated additional imaging datasets to examine the accuracy of Wµ(d, h) at

the level of an entire brain region. To further assess the power and account for testing

multiple hypotheses, we added an additional ROI with 17 voxels, in which β12(d) was

also set at 2 (Fig. 3.2(c)). To introduce spatial correlation in the simulated imaging

data, we smoothed the simulated residual data {εi(d) : d ∈ D} on the sphere using
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Table 3.2: Simulation Study for Wµ(d, h): True average rejection rate for voxels inside
the ROI and false average rejection rate for voxels outside the ROI were reported at 6
different bandwidths (hs = 1.25s and h0 = 0) and 3 different sample sizes (n = 20, 40, 60)
at α = 5%. For each case, 10,000 simulated datasets were used.

n = 20 n = 40 n = 60
s True False True False True False
0 0.2963 0.1029 0.3457 0.0782 0.6543 0.0762
1 0.5432 0.1311 0.8395 0.1104 0.9259 0.1145
2 0.6049 0.1256 0.8889 0.0938 0.9753 0.0787
3 0.8272 0.1205 0.9506 0.0872 0.9630 0.0777
4 0.8272 0.1130 0.9506 0.0877 0.9753 0.0792
5 0.8642 0.1225 0.9136 0.0837 0.9753 0.0772

heat kernel smoothing with 16 iterations. We used the rejection threshold based on

the false discovery rate (FDR) at a q value equal to 0.2. Based on this threshold, we

calculated the average of the probabilities of rejecting each of the 81 (=17+64) points

in the two ROIs as an estimate of the average power using 1,000 replications and then

we calculated the average of probabilities of rejecting the points outside of the two ROIs

as an estimate of the average type I error. For Wµ(d, h), our test procedure worked

very well and significantly outperformed the voxel-wise approach. The average power

dramatically increases in detecting the significant voxels in the two ROIs as the radius

increases, while the average type I error rates outside of the two ROIs are relatively low

(Table 3.3).

3.3.3 Simulation Studies Part III

Following the setup in Section 3.3.1., we simulated an additional dataset at all the

m = 4002 points on the surface of a hippocampus for 50 subjects, except that six new

ROIs were constructed as three sets of nested circles. In the first set of nested circles,

β2(d) were set at 1 and 2 in the inner and outer circles with radius being 2 and 4,

respectively. In the second set of nested circles, β2(d) were set at 0.6 and 0.8 in the

inner and outer circles at radius being 3 and 5, respectively. In the third set of nested
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Table 3.3: Simulation Study for Wµ(d, h): true average rejection rate for voxels inside
the two ROIs and false average rejection rate for voxels outside the two ROIs were
reported at 6 different bandwidths (hs = 1.25s and h0 = 0) and 3 different sample sizes
(n = 20, 40, 60) at a FDR q value at 0.2. For each case, 1,000 simulated datasets were
used.

n = 20 n = 40 n = 60
s True False True False True False
0 0.1612 0.0325 0.1801 0.0098 0.3522 0.0072
1 0.5798 0.0799 0.8194 0.0451 0.9428 0.0325
2 0.6220 0.0601 0.8577 0.0315 0.9652 0.0289
3 0.7436 0.0566 0.9207 0.0319 0.9819 0.0276
4 0.7274 0.0541 0.9109 0.0312 0.9759 0.0275
5 0.8104 0.0594 0.9457 0.0352 0.9848 0.0279

circles, β2(d) was set 0.4 and 0.6 in the inner and outer circles at radius being 3 and 4,

respectively. The β2(d) outside of these six ROIs were always set at 0. We use MARM

to calculate the parameter estimate of β at 6 different scales. It is obviously that the

estimate is more precisely estimated at h5 compared with at h0 at different signal to

noise ratios (Fig. 3.3 (a) and (c)). Similarly, the p-value map generated for testing

H0 : β2(d)=0 at h5 also performs much better than that at h0 = 0 (Fig. 3.3(b) and (d)).

We simulated MRI images using a state-of-art imaging method (Xue et al., 2006). We

first selected T1-weighted MR brain images from a group of 12 subjects, whose ages were

over 65, and then simulated the atrophy at both precentral gyrus and superior temporal

gyrus of these MR images to obtain an atrophy group. All of these 24 images, including

12 original images and 12 images with simulated atrophy, are spatially normalized on a

template space by HAMMER. We calculated the grey matter tissue density maps from

the estimated deformation fields. We used simulated deformations and images with the

known ground truth to demonstrate the superiority of the MARM over the voxel-wise

approach. We applied the MARM with ch = 1.25, S = 6 and computed the p-values of

Wµ(d, h) across the 3D volume at each iteration. Note that the results obtained from

h0 = 0 correspond to those from the voxel-wise approach. Our results show a clear

advantage of the MARM in detecting an accurate group difference as we increase the
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Figure 3.3: The maps of FDR corrected − log10(p) values from two selected slices based
on the voxel-wise approach (panels (a) and (c)) and MARM (panels (b) and (d)).

bandwidth h of the spherical neighborhood (Fig. 3.4 (b) and (d)). The MARM can

correctly identify the simulated atrophy (Fig. 3.4 (b) and (d)), whereas the classical

voxel-wise approach cannot (Fig. 3.4 (a) and (c)).

Figure 3.4: The maps of FDR corrected − log10(p) values from two selected slices based
on the voxel-wise approach (panels (a) and (c)) and MARM (panels (b) and (d)).
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3.4 Real Data Analysis

Understanding white matter development in human brain in vivo is critical to the un-

derstanding of the functional formation of the central nervous system. An important

feature of diffusion tensor imaging (DTI) is its capability in revealing white matter mat-

uration process in human brain using a set of water diffusion related parameters, such as

fractional anisotropy (FA) and radial (RD) diffusivity. For instance, FA represents the

inhomogeneous extent of local barriers to water diffusion and has been widely used to

investigate early brain development from identifying transient brain structures such as

ganglionic eminance and cortical subpliate to estimating the correlation of white matter

maturation with functional development measures such as IQ and working memory.

We considered 38 subjects from the neonatal project on early brain development led

by Dr. Gilmore at the University of North Carolina at Chapel Hill. For each subject,

diffusion-weighted images were acquired at 2 week, year 1 and year 2. Diffusion gradients

with a b−value of 1000 s/mm2 were applied in six non-collinear directions, (1,0,1), (-

1,0,1), (0,1,1), (0,1,-1), (1,1,0), and (-1,1,0). A b = 0 reference scan was also obtained

for diffusion tensor matrix calculations. Forty-six contiguous slices with a slice thickness

of 2 mm covered a field of view (FOV) of 256×256 mm2 with an isotropic voxel size

of 2 × 2 × 2 mm3. Eighteen acquisitions were used to improve the signal-to-noise ratio

(SNR) in the images. High resolution T1 weighted (T1W) images were acquired using

a 3D MP-RAGE sequence. Then, a weighted least squares estimation method was used

to construct the diffusion tensors (Basser, Mattiello, and LeBihan 1994 b; Zhu et al.,

2007b). All images were visually inspected before analysis to ensure no bulk motion.

All DT images (38 subjects, 3 time points each) were registered, using TIMER, onto a

randomly selected brain DT image of a 2-year-old. The aligned images were then voxel-

wise averaged to create the mean DT image, from which the FA map can be computed

(Yap et al., 2009).

Fractional anisotropy (FA) calculated from DTIs is widely used as a measurement to
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assess directional organization of the brain which is greatly influenced by the magnitude

and orientation of white matter tracts. We use FA images to identify the spatial patterns

of white matter maturation. We considered a linear model yi(d) = β0(d) + tiβ1(d) +

t2iβ2(d) + εi(d) for i = 1, · · · , n, at each voxel of FA images. We applied the AET

procedure with ch = 1.25 and S = 6 to carry out statistical analysis and test H0 :

β1(d) = β2(d) = 0 for time effect across all voxels d. Compared with the results at h0

(Fig. 3.5 (a)-(c)), MARM shows a clear advantage in detecting more significant and

smooth activation areas as the bandwidth h increases (Fig. 3.5 (e)-(g)). In FA, internal

capsule and corpus callosum including both splenium and genu have high FA values at

birth. The linear coefficient in FA is positive in white matter region, while the quadratic

coefficient in FA is mostly negative. Thus, a non-linear increasing pattern was observed

for FA. We also selected two voxels with raw − log10(p) values for Wµ(d, h5) being 24.08

and 1.16 and plotted growth trajectories of FA values in these two voxels (Fig. 3.6 (a)

and (b)).

Figure 3.5: Results from the neonate project on brain development. Panels (a), (b) and
(c): the raw − log10(p) values of the Wald test statistics Wµ(d, h0) from three selected
slices; panels (e), (f) and (g): the raw − log10(p) values of the Wald test statistics
Ŵµ(d, h5) from the selected slices; (d) the comparison of the histograms for Wµ(d, h0)
and Wµ(d, h5) across all voxels.
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Figure 3.6: Growth trajectories of FA values in two selected voxels with the − log10(p)
values being: (a) − log10(p) = 24.08; (b) − log10(p) = 1.16.

3.5 Discussion

We have developed the MARM for spatial and adaptive analysis of imaging data. We

have established consistency and asymptotic normality of the adaptive estimates and

the asymptotic distributions of the adaptive test statistics. We have used simulation

studies and real imaging data to demonstrate that the MARM significantly outperforms

classical voxel-wise approach.

Many issues still merit further research. We will develop the multiscale method for

generalized estimating equations, models with nonparametric component, and varying

coefficient models and present them elsewhere.

3.6 Appendix

The following assumptions are needed to facilitate development of our methods, although

they are not the weakest possible conditions.

(C1) 1 ≥ ω(d, d′;h) ≥ 0 and ω(d, d;h) = 1 for all d, d′ ∈ D and h ≥ 0.

(C2) The data {Zi = (xi,Yi,D) : i = 1, · · · , n} form an independent and identical

sequence.

(C3) For any d ∈ D, the maxima θ∗(d) of E[log p(Y (d)|x,θ(d))] is an unique interior

point of B, where B is a compact set in Rp and the expectation is take with respect to

74



the true distribution of Y (d) given x.

(C4) For all voxels d ∈ D, `(θ(d)) = log p(Y (d)|x,θ(d)) is twice continuously dif-

ferentiable on Θ. For all j, k, l = 1, · · · , p, `(θ(d)), |∂j`(θ(d))|2, and |∂j∂k`(θ(d))|2 are

dominated by an integral function G(Y (d),x) such that E[maxd∈D |G(Y (d),x)|r] < ∞

for a r > 1, where ∂j = ∂/∂θj(d), in which θj(d) is the j−th component of θ(d).

(C5) For a fixed δ > 0,

∞ > sup
d∈D

max
θ(d)∈B(θ∗(d),δ)

(λmax{E[−∂2

θ(d)
`(θ(d))]})

≥ inf
d∈D

min
θ(d)∈B(θ∗(d),δ)

(λmin{E[−∂2

θ(d)
`(θ(d))]}) > 0,

∞ > sup
d∈D

max
θ(d)∈B(θ∗(d),δ)

(λmax{E[∂θ(d)
`(θ(d))⊗2]})

≥ inf
d∈D

min
θ(d)∈B(θ∗(d),δ)

(λmin{E[∂θ(d)
`(θ(d))⊗2]}) > 0,

where λmin(·) and λmax(·) denote the smallest and largest eigenvalues of a matrix, re-

spectively.

(C6) The kernel functions Kst(u) and Kloc(u) are continuous decreasing functions

of u ≥ 0 such that Kst(0) = Kloc(0) = 1, limu→∞Kst(u) = limu→∞Kloc(u) = 0, and

limu→∞ u
1/2Kst(u) = 0.

(C7) limn→∞Cn/n = limn→∞C
−1
n log(N(D)) = limn→∞C

−1
n = 0.

Remarks A1: For each fixed d ∈ D, Assumptions (C2)-(C5) are generalizations of the

standard conditions for ensuring the first order asymptotic properties (e.g., consistency

and asymptotic normality) of M-estimators (van der Vaart, 1998). Assumption (C2) is

needed just for notational simplicity and can be easily modified to accommodate inde-

pendent and non-identical distributed scenarios. Assumption (C3) is an identification

condition, whereas Assumption (C4) is a uniform smoothness and integration condition.

Particularly, Assumption (C4) ensures that `(θ(d)), |∂j`(θ(d))|2, and |∂k∂j`(θ(d))|2 are

uniformly integrable for all d ∈ D. Assumption (C5) is needed to ensure that the co-

variance matrix of θ̂(d, h) is positive definite for all d ∈ D. Assumptions (C6) and (C7)
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on Kst(·) and Kloc(·) is needed just for ensuring the desirable asymptotic properties of

θ̂(d, h) and Wµ(d, h) based on the stochastic weights for the AET procedure.

Remarks A2: Assumption (C7) ensures that limn→∞ log(N(D))/n = 0. In neu-

roimaging data, although N(D) is much larger than the sample size n, Assumption (C7)

claims that we just need a relative large sample size compared with log(N(D)). For

instance, in most neuroimaging data, N(D) ≈ 1003 and log(103) = 14. Therefore, a

sample size such as 100 may be reasonable to use asymptotic normality to make statis-

tical inference using MARM. Assumption (C7) is needed to invoke maximal inequalities

(var der Vaart and Wellner, 1996). Moreover, Assumption (C7) also requires a large

value of Cn relative to logN(D), but it may be weakened. In practice, we suggest to

choose Cn = nα for α ∈ (0, 1).

Proof of Theorem 1. The proof of Theorem 1 consists of three steps. In Step 1, we will

show that θ̂(h0) = (θ̂(d, h0) : d ∈ D) converges θ∗ = (θ̂∗(d) : d ∈ D) in probability. We

need to introduce some notation. Let T be a bounded brain region in Rg containing

all voxels d ∈ D, where g = 2 for the 2D surface and g = 3 for the 3D volume. Let

Θ =
∏

d∈D B be the parameter space for θ and `∞(T)p is the product of p `∞(T) = {z :

T → R, supt∈T |z(t)| < ∞}. Let Ψn : Θ → `∞(T)p and Ψ : Θ → `∞(T)p be random

maps and a deterministic map, respectively, such that

Ψn(θ)(t) = n−1

n∑
i=1

∂θ(dt)
log p(Yi(dt)|xi,θ(dt)) and

Ψ(θ)(t) = E[∂θ(dt)
log p(Y (dt)|x,θ(dt))],

in which dt denotes the voxel covering t.

To prove the consistency of θ̂(h0), we will show that

sup
θ∈Θ

sup
t∈T
||Ψn(θ)(t)−Ψ(θ)(t)||2 → 0 and inf

θ∈Θ:||θ−θ0||≥ε
sup
t∈T
||Ψ(θ)(t)||2 > sup

t∈T
||Ψ(θ∗)(t)||2.

(3.24)
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It follows from Assumptions (C3) and (C4) that the second term in equation (4.22) is

true. To prove the first term in equation (4.22), we note that

sup
θ∈Θ

sup
t∈T
||Ψn(θ)(t)−Ψ(θ)(t)||2 = max

d∈D
An(d), (3.25)

whereAn(d) = supθ(d)∈B |n
−1
∑n

i=1 ∂θ(d)
log p(Yi(d)|xi,θ(d))−E[∂θ(d)

log p(Y (d)|x,θ(d))]|.

Then, we consider F = {∂θ(d)
log p(Y (d)|x,θ(d)) : d ∈ D,θ(d) ∈ B} with envelop

maxd∈DG(Y (d),x). Following the arguments in Theorem 2.4.3 of van der Vaart and

Wellner (1996), we can show that E[maxd∈D An(d)] is upper bounded by

√
[1 + p log(C1(ε)K) + log(N(D))]/nC2K

+2E[max
d∈D

G(Y (d),x)1{max
d∈D

G(Y (d),x) > K}] + ε→ 0,

where C2 is a constant independent of ε, K can be chosen such that the second term of

the above equation is arbitrarily small, and C1(ε) is a constant depending on ε. Finally,

following the arguments in Theorems 5.7 and 5.9 of van der Vaart (1998), we can prove

the consistency of θ̂(h0).

In Step 2, we will prove the asymptotic normality of
√
n(θ̂(h0)−θ∗). For each d ∈ D,

a Taylor expansion gives

0 = Ψn(θ̂(h0))(d) = Ψn(θ∗)(d) + ∂θ(d)
Ψn(θ̃)(d)[θ̂(d, h0)− θ∗(d)], (3.26)

where θ̃ ∈ Θ and θ̃(d) is on the line connecting θ(d) and θ∗(d). Similar to the proof of

(4.23), we can show that

sup
θ∈Θ:||θ−θ∗||2≤ε

sup
t∈T
||∂θ(dt)

Ψn(θ)(t)− ∂θ(dt)
Ψ(θ)(t)||2 → 0 (3.27)
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in probability, when log(N(D))/n is sufficiently small. Therefore, we can show that

√
n[θ̂(d, h0)− θ∗(d)] = [−∂θ(d)

Ψ(θ∗)(d) + op,D(1)]−1
√
nΨn(θ∗)(d), (3.28)

for all d ∈ D, where op,D(1) denotes the uniform convergence to zero for all d ∈ D.

It is easy to prove the asymptotic normality of
√
n[θ̂(d, h0) − θ∗(d)] for each d ∈ D.

Furthermore, by using Theorem 2.14.1 of van der Vaart and Wellner (1996), we can

show that supd∈D ||Ψn(θ∗)(d)||2 = Op(
√

log(N(D))/n), which yields

max
d∈D
||θ̂(d, h0)− θ∗(d)||2 = Op(

√
logN(D)/n). (3.29)

In Step 3, we will derive the rate of Dθ(d, d′;h0). Since Dθ(d, d′;h0) can be rewritten

as

n[∆̂(d, 0)− ∆̂(d′, 0) +4∗(d, d′)]TΣ∗(d, h)−1[∆̂(d, 0)− ∆̂(d′, 0) +4∗(d, d′)][1 + op(1)],

it follows from (4.27) that if4∗(d, d′) = 0, then maxd,d′∈D |Dθ(d, d′;h0)| = Op(log(N(D)))

andKst(Dθ(d, d′;h0)/Cn) = Kst(Op(log(N(D)))/Cn) = 1+op(1). However, if4∗(d, d′) 6=

0, then we have

Dθ(d, d′;h0) = n||[Σ∗(d, h)]−1/2[4∗(d, d′) +Op(
√

logN(D)/n)]||22,

which yields the proof of Theorem 1.

Proof of Theorem 2. We prove Theorem 2 (a) and (b) by induction. The proof primarily

consists of three steps: (i) s = 0; (ii) s = 1; (iii) s ≥ 1. In Step 1, we have already

proved the case s = 0 in Theorem 1.

78



We prove Step 2 as follows. It follows from the definition of ω̃(d, d′;h1) that

sup
θ(d)∈B

|n−1`n(θ(d);h1, ω̃)−M(θ(d);h1, ω̃)| ≤
∑

d′∈B(d,h1)

ω̃(d, d′;h1)δn(d′) ≤ max
d′∈B(d,h1)

δn(d′),

where δn(d) = supθ(d)∈B |n
−1
∑n

i=1 log p(Yi(d)|xi,θ(d)) − E[log p(Y (d)|x,θ(d))]|. Then,

following arguments in Theorems 2.7.11 and 2.4.3 of van der Vaart and Wellner (1996)

and assumptions (C2)-(C4), we can show that

E[max
d∈D

δn(d)] ≤
√

[1 + p log(C1(ε)K) + log(N(D))]/nC2K +

2E[max
d∈D

G(Y (d),x)1{max
d∈D

G(Y (d),x) > K}] + ε→ 0.

Since the above arguments are independent of ω̃(d, d′;h1), we can conclude that

max
d∈D

sup
θ(d)∈B

|n−1`n(θ(d);h1, ω̃)−M(θ(d);h1, ω̃)| → 0 (3.30)

in probability holds for any adaptive weights ω̃(d, d′;h).

Let D∗(d)c = {d′ : 4∗(d, d′) 6= 0} and D∗(d) = {d′ : 4∗(d, d′) = 0}. According to

Theorem 1 (c), for all d′ ∈ B(d, h1) ∩ D∗(d)c and any d ∈ D, we have

C−1
n Dθ(d, d′;h0) = nC−1

n λmax(Σ∗(d, h0))−1 ×

inf
d′∈D∗(d)c

||4∗(d, d′) +Op(n
−1/2)||22 = δ̃n(d)→∞. (3.31)

It follows from (3.31) and (4.27) that

max
d∈D

sup
θ(d)

∣∣∣∣∣∣M(θ(d);h1, ω̃)−
∑

d′∈B(d,h1)∩D∗(d)

ω̃(d, d′;h)E[log p(Y (d)|x,θ(d))]

∣∣∣∣∣∣
≤ max

d∈D
Kst(δ̃n(d))E[max

d∈D
G(Y (d),x)]→ 0. (3.32)

Since θ∗(d) = argmaxθ(d)

∑
d′∈B(d,h1)∩D∗(d) ω̃(d, d′;h)E[log p(Y (d)|x,θ(d))], it follows from
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Theorem 5.7 of var der Vaart (1998) and the arguments in the proof of Theorem 1 (a)

that θ̂(h1) = (θ̂(d, h1) : d ∈ D) converges to θ∗ in probability.

To prove the asymptotic normality of θ̂(d, h1), we can use a Taylor expansion to show

that

0 = ∂θ(d)
`n(θ̂(d, h1);h1, ω̃) = ∂θ(d)

`n(θ∗(d);h1, ω̃)+∂2

θ(d)
`n(θ̃(d, h1);h1, ω̃)[θ̂(d, h1)−θ∗(d)],

where θ̃(d, h1) is on the segment joining θ̂(d, h1) and θ∗(d). Similar to the Taylor’s series

expansion to show that and (4.29), we can show that

max
d∈D

sup
||θ∗(d)−θ(d)||2≤ε

|n−1∂2

θ(d)
`n(θ(d);h1, ω̃)−∑

d′∈B(d,h1)∩D∗(d)

ω̃(d, d′;h1)E[∂2

θ(d)
log p(Y (d′)|x,θ(d))]| → 0,

max
d∈D

n−1/2|∂θ(d)
`n(θ∗(d);h1, ω̃)−∑

d′∈B(d,h1)∩D∗(d)

ω̃(d, d′;h1)
n∑
i=1

∂θ(d)
log p(Yi(d

′)|x,θ∗(d))|

≤ n1/2Kst(Op(nC
−1
n ))E[sup

d∈D
G(Y (d),x)]O(1)→ 0.

Finally, we obtain

√
n[θ̂(d, h1)− θ∗(d)] = {−

∑
d′∈B(d,h1)∩D∗(d)

ω̃(d, d′;h1)E[∂2

θ(d)
log p(Y (d′)|x,θ∗(d))]

+op,D(1)}−1 × n−1/2
∑

d′∈B(d,h1)∩D∗(d)

ω̃(d, d′;h1)

n∑
i=1

∂θ(d)
log p(Yi(d

′)|x,θ∗(d)). (3.33)

By using Theorem 2.14.1 of van der Vaart and Wellner (1996), we can show that

max
d∈D
||n−1/2

n∑
i=1

∂θ(d)
log p(Yi(d

′)|x,θ∗(d))||2 = Op(
√

logN(D)),
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which yields that maxd∈D ||[θ̂(d, h) − θ∗(d)]||2 = Op(
√

logN(D)/n). Based on these re-

sults for θ̂(d, h1), we can prove the same results as Theorem 1 (c) and (d) for Dθ(d, d′;h1)

and Kst(Dθ(d, d′;h1)C−1
n ).

In Step 3, by using the induction and the above arguments in Step 2, we can prove

Theorem 2 (a) and (b) for any fixed s > 1.

Given the results in Theorem 2 (a) and (b), we can apply the standard arguments in

the literature to prove Theorem 2 (c). We omit the details for simplicity.

Proof of Corollary 1. Because we can prove Corollary 1 (a) using the same arguments

in proving Theorem 2 (a), we omit the details.

The proof of Corollary 1 (b) consists of two steps. In Step 1, following the same

arguments in Theorem 2 (a), we can prove (4.30). In Step 2, we examine the asymptotic

distribution of

A(d;h1) =
∑

d′∈B(d,h1)∩D∗(d)

ω(d, d′;h)n−1/2

n∑
i=1

∂θ(d)
log p(Yi(d

′)|x,θ(d)∗).

For any d′ ∈ B(d, h1) ∩ D∗(d), Dθ(d, d′;h0) converges to a random variable, denoted by

Z(d, d′;h0), in distribution, and thus ω(d, d′;h) converges to Kst(Z(d, d′;h0)) in distri-

bution. In addition, for any d′ ∈ B(d, h1) ∩ D∗(d), n−1/2
∑n

i=1 ∂θ(d)
log p(Yi(d

′)|x,θ(d)∗)

converges to a normal random vector, denoted by Z(d′), in distribution. Note that Z(d′)

and Z(d, d′;h0) are correlated with each other. Finally, using the continuous mapping

theorem, we can claim that A(d;h1) converges to

∑
d′∈B(d,h1)∩D∗(d)

Kloc(||d− d′||2/h1)Kst(Z(d, d′;h0))Z(d),

which is not a normal random variable when there is a d′ ∈ B(d, h1) ∩ D∗(d). Thus,

Wµ(d, h1) is not asymptotically χ2 distributed.

Proof of Theorem 3. We prove Theorem 3 (a) using induction. The proof primarily con-

sists of two steps: (i)
√
n[β̂(d, h0)−β∗(d)] = A1(d;h0) in probability; (ii)

√
n[β̂(d, h1)−
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β∗(d)] = A1(d;h1) + op(1) for each voxel d. Moreover, for notational simplicity, we

assume that τ(d) are known through the proof.

In Step 1, since β̂(d, h0) = (
∑n

i=1 x⊗2
i )−1

∑n
i=1 xiYi(d) = β∗(d) + A1(d;h0)/

√
n =

β∗(d) + (
∑n

i=1 x⊗2
i )−1

∑n
i=1 xiεi(d) holds and A1(d;h0) converges to E[x⊗2]−1/2Z(d) in

distribution for any voxel d. Following the arguments in Theorem 2.4.3, we can show

that maxd∈D ||n−1
∑n

i=1 xiεi(d)||2 = Op(
√

log(N(D))/n).

In Step 2, since Dβ(d, d′;h0) can be rewritten as

nτ(d)||E[x⊗2]−1/2{4∗(d, d′) + (
n∑
i=1

x⊗2
i )−1

n∑
i=1

xi[εi(d
′)− εi(d)]}||22,

where4∗(d, d′) = β∗(d)−β∗(d′), we can check thatDβ(d, d′;h0) andKst(Dβ(d, d′;h0)/Cn)

have the asymptotic expansions as described in Lemma 1. We can show that ω̃(d, d′;h1)

are smaller than Kst(Op(nC
−1
n )) for all d′ ∈ B(d, h1) ∩ D∗(d)c and ω̂(d, d′;h1) converges

to C(d, d′;h1) for all d′ ∈ B(d, h1) ∩ D∗(d). Therefore, we have

√
n[β̂(d, h1)− β∗(d)] =

∑
d′∈B(d,h1)∩D∗(d)

ω̃(d, d′;h1)E[x⊗2]−1/2n−1/2

n∑
i=1

xiεi(d
′) + op(1)

= A1(d, h) + op(1).

Applying the continuous mapping theorem yields the weak convergence of A1(d, h1) and

√
n[β̂(d, h1) − β∗(d)]. We can use the same arguments in Corollary 1 (b) to prove

Theorem 3 (b). Note that for the PS approach, ω̂(d, d′;h1) converges in distribution to

C(d, d′;h1)Kst(τ(d)||Z(d)− Z(d′)||22) for all d′ ∈ B(d, h1) ∩ D∗(d).
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Chapter 4

Multiscale Adaptive Generalized

Estimating Equations for

Longitudinal Neuroimaging Data

4.1 Introduction

Longitudinal imaging studies have been valuable for better understanding disease pro-

gression and normal brain development/aging. Compared to cross-sectional imaging

studies, longitudinal imaging studies can increase the statistical power in detecting sub-

tle spatiotemporal changes of brain structure and function.

The existing voxel analysis of neuroimaging data is sequentially executed in two

stages. The first stage is a model fitting stage. It fits a general linear model or a simple

linear mixed model to the data from all subjects at each voxel. The second stage is a

multiple testing stage. It generates a statistical parametric map that contains a statistic

(or a p-value) at each voxel (Worsley et al., 2004; Friston, 2007; Lau et al., 2008).

The general linear model used in the neuroimaging literature usually involves two key

assumptions: that the variance of the imaging data is homogeneous across subjects and

that the data conform to a Gaussian distribution at each voxel. These two assumptions



are important for the valid calculation of parametric distributions in conventional tests

(e.g., F test) that assess the statistical significance of parameter estimates in general

linear model. It has been well known in the neuroimaging literature that the distribution

of the univariate (or multivariate) neuroimaging measurements often deviates from the

Gaussian distribution (Ashburner and Friston, 2000; Luo and Nichols, 2003; Zhu et al.,

2007a).

The existing voxel-wise methods have major limitations for analyzing neuroimaging

data. (i) Spatial smoothing is commonly applied to all kinds of real imaging data includ-

ing functional magnetic resonance images and diffusion tensor images prior to the formal

model fitting stage. It has been well-known that the final results of voxel-based analysis

can strongly depend on the amount of smoothing in the smoothed imaging data (Jones

et al., 2005; Scouten et al., 2006; Weibull et al., 2008). The use of the common Gaussian

kernel with arbitrary bandwidth for smoothing imaging data can blur the image data

near the edges of the activated regions and subsequently, it will dramatically increase

the numbers of false positives and negatives (Jones et al., 2005; Tabelow et al., 2006).

(ii) All voxel-wise approaches suffer from misalignment problem. That is, even after an

image warping procedure, the location of a voxel in the image of one person is not in

precisely the same location as the voxel identified in another person. Spatial smoothing

real imaging data may potentially reduce the effect of imaging misalignment on final

group analysis. (iii) The voxel-wise methods essentially treat all voxels as independent

units in the model fitting stage (Tabelow et al., 2006). In contrast, neuroimaging data

are anticipated to contain spatially contiguous regions of activation with rather sharp

edges.

The aims of this article are to develop a multiscale adaptive generalized estimating

equation (MAGEE) for the spatial and adaptive analysis of longitudinal neuroimaging

data and to demonstrate its superiority over the voxel-wise approach using simulated
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and real imaging data. There are four features for MAGEE: being spatial, being semi-

parametric, being hierarchical and being adaptive. MAGEE explicitly utilizes the spatial

information to carry out statistical inference by constructing nested spheres with increas-

ing radius at all voxels. Then, instead using any parametric distribution, MAGEE uses

weighted generalized estimating equations to fit all observations in the voxels within

the sphere of the current voxel. MAGEE constructs hierarchically nested spheres in

adaptively computing parameter estimates and testing statistics. Thus, MAGEE can

adaptively utilize available information in the neighboring voxels to increase the preci-

sion of parameter estimates and the power of test statistics in detecting subtle changes

of brain structure and function.

MAGEE represents a novel generalization of the standard spatial smoothing tech-

niques and the voxel-wise statistical methods for the analysis of longitudinal imaging

data. The standard voxel-wise methods are sequentially executed in two independent

steps: a smoothing step using an ‘arbitrary’ bandwidth and a statistical analysis step. In

contrast, MAGEE is a simultaneous smoothing and estimation method, allowing adap-

tively smoothing images while accounting for the spatial pattern of activation regions.

Most spatial smoothing techniques directly smoothing raw images from each subject at

each time point independently. In contrast, MAGEE simultaneously smooth all raw

images from all subjects across all time points using the learned information during the

statistical estimation step. More importantly, instead of smoothing raw images, MAGEE

can smooth images of all parameters of interest, while fixing images of other nuisance

parameters. For instance, the scientific interests of many neuroimaging studies typically

focus on the comparison of full tensors across groups, while controlling for age, gender,

and other covariates of interest. MAGEE allows solely smoothing the image of diagnostic

effect without distorting the images associated with other covariates, such as age and

gender.

Compared with the Gaussian distributional assumption in the general linear model,
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MAGEE is a semiparametric method and explicitly account for the temporal correlation

existed between the repeated measurements from the same subject. Thus, it is very de-

sirable for the analysis of longitudinal neuroimaging data. MAGEE also includes specific

methods for approximating the standard errors of the smoothed parametric estimates.

We also theoretically examine the adaptive weights in the MAGEE and their roles in

ensuring the proper statistical properties of parameter estimators. Finally, we formal-

ize some technical conditions and formally establish the asymptotic properties including

consistency and asymptotic distributions of the parameter estimates and test statistics

for MAGEE.

In Section 4.2 of this paper, we will present MAGEE just described and establish

the associated theoretical properties. Particularly, we will establish consistency and

asymptotic normality of the adaptive estimator and the asymptotic distribution of the

adaptive score test statistic for MAGEE. In Section 4.3, we will conduct two sets of

simulation studies with the known ground truth to examine the finite sample performance

of MAGEE. Section 4.4 illustrates an application of MAGEE in a longitudinal DTI

dataset acquired from 38 healthy full term unsedated babies at approximately two weeks,

one year, and two years after birth. We present concluding remarks in Section 4.5.

4.2 Multiscale Adaptive Generalized Estimating Equa-

tions

4.2.1 Model Formulation

We observe imaging, behavioral and clinical data from n subjects in a longitudinal study.

Let xij be a qx × 1 covariate vector of interest, which may include age, gender, height,

and many others, for the i-th subject at the j-th time point tij for i = 1, · · · , n and

j = 1, · · · ,mi. Here mi denotes the number of time points for the i−th subject and thus

there are a total
∑n

i=1mi = N images in the longitudinal study. For instance, in our
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longitudinal study, we acquired the anatomical magnetic resonance images and diffusion

weighted images of one cohort of neonates at birth, around one and two years old. Based

on registered image data on the template, we can obtain neuroimaging measures from

the ith subject, denoted by Yi = {yij(d) : d ∈ D, j = 1, · · · ,mi}, where yij(d) is a p× 1

vector and d represents a voxel on the template D. The dimension of yij(d) can be

either univariate or multivariate. For example, the spherical harmonic shape description

(SPHARM) of subcortical surfaces is a set of three dimensional imaging measures across

the subcortical surfaces (Styner and Gerig, 2003).

4.2.2 Voxel-wise Generalized Estimating Equations

We apply the generalized estimating equation (GEE) approach for jointly modeling mul-

tivariate (or univariate) imaging measures with behavioral and clinical variables at each

voxel in longitudinal study settings (Liang and Zeger, 1986; Diggles et al., 2002). The

GEE method as a semiparametric method is free of distributional assumption. More-

over, even under the misspecified correlation structure, the GEE estimators of regression

parameters are consistent and the covariate matrix of the regression parameters can be

consistently estimated using a sandwich estimator.

For simplicity, we temporarily drop voxel d from our notation. At a voxel d on the

brain subregion, we consider the moments model

E(yij) = µij = µ(xij, β) for i = 1, · · · , n; j = 1, · · · ,mi, (4.1)

where β is a q × 1 vector and µ(·, ·) is a p × 1 vector of known monotonic func-

tions, called link functions. Furthermore, we assume that the covariance matrix of

Yi = (yTi1, · · · , yTimi)
T is given by

Vi(θ) = A
1/2
i (β, γ)[Rmi(α1)⊗Rp,i(α2)]A

1/2
i (β, γ) for i = 1, · · · , n, (4.2)
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where θ = (α, β, γ), Rmi(α1) and RP (α2), respectively, represent the correlation among

all mi repeated measurements over time and the correlation among all p imaging mea-

sures and α = (α1, α2) characterizes the unknown parameters in the correlation matri-

ces. In addition, A
1/2
i (β, γ) is a pmi × pmi diagonal matrix and contains the standard

deviations of all pmi measurements, where γ is the additional parameter vector for char-

acterizing the variances of imaging measures.

If α and γ are known, then the GEE for β is given by

n∑
i=1

Di(β)TA
−1/2
i (β, γ)[Rmi(α1)−1 ⊗Rp,i(α2)−1]A

−1/2
i (β, γ)[Yi − µi(β)] = 0, (4.3)

where Di(β) = ∂µi(β)/∂β is a mip × q matrix and µi(β) = (µTi1, · · · , µTimi)
T . If Vi(θ) is

correctly specified, then the GEE for β is Godambe efficient for estimating β (Godambe,

1960). However, α and γ are unknown and must be estimated. It is common to set up

additional estimation equations for estimating α and γ. For instance, similar to Ye and

Pan (2006), we may construct a set of estimating equations for estimating γ as follows:

n∑
i=1

∂diag(Ai(β, γ))

∂γT
Wi[diag((Yi − µi(β))⊗2)− diag(Ai(β, γ))] = 0, (4.4)

where a⊗2 = aaT for any vector a and diag(A) denotes the vector of all diagonal elements

of matrix A. Moreover, Wi is a prespecified weighted matrix. For instance, we may set Wi

to be an identity matrix to avoid making additional assumptions on the fourth moments

of imaging measures. Numerically, we can resort to the Newton-Raphson algorithm to

solve θ̂.

Generally, it is difficult to correctly specify Rmi(α1) and Rp,i(α2), called working

correlation matrices, in the GEE setting. Common used working correlation structures

include m−dependent, exchangeable, autoregressive AR(1), and unstructured (Diggle

et al., 2002). Under a selected working correlation structure, estimation procedures for

estimating α1 and α2 can be constructed using the Pearson residuals. Even under the
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misspecified correlation structures, the estimator of β for (4.1), denoted by β̂, can be

consistent and asymptotically normal (Liang and Zeger, 1986). Assume that θ̂ includes

β̂ and an estimator of (α, γ), denoted by (α̂, γ̂). The covariance matrix of β̂ can be

approximated by

[
n∑
i=1

D̂T
i V̂
−1
i D̂i]

−1[
n∑
i=1

D̂T
i V̂
−1
i (Yi − µ̂i)⊗2V̂ −1

i D̂i][
n∑
i=1

D̂T
i V̂
−1
i D̂i]

−1, (4.5)

where D̂i = Di(β̂), V̂i = Vi(θ̂), and µ̂i = µi(β̂).

4.2.3 Weighted Generalized Estimating Equations

Neuroimaging data often contain spatially contiguous regions of activation with rather

sharp edges, but the voxel-wise approach does not account for such spatial structure

in neuroimaging data, which can lead to great loss of power in detecting statistical

significance in the analysis of neuroimaging data. We propose a weighted GEE as a

possible solution for accounting for the spatial structure in neuroimaging data as follows.

In longitudinal studies, β(d) is the parameter of interest, while (α(d), γ(d)) may be

regarded as nuisance parameters. In neuroimaging data, voxels, which are not on the

boundary of regions of activation, often have a neighborhood in which β(d) is nearly

constant. Thus, we may combine the GEEs for β(d) in a neighboring sphere of d to

make inference on β(d). Specifically, let B(d, h) be a sphere of d with the radius h, we

introduce a weighted GEE, denoted by Gn(β(d);ω, h), which is defined as follows:

n∑
i=1

∑
d′∈B(d,h)

ω(d, d′;h)Di(β(d))TVi(α(d′), β(d), γ(d′))−1[Yi(d
′)− µi(β(d))] = 0, (4.6)

where ω(d, d′;h) characterizes the similarity between the data in voxels d and d′. More-

over, as detailed below, ω(d, d′;h) can prevent incorporating voxels whose data do not

contain information on β(d), and thus preserve the edges of the regions of activation. We

require that ω(d, d′; r0) be independent of i just for simplicity. Note that the weighted
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GEE utilizes all data in {Yi(d′) : d′ ∈ B(d, h)}.

We present the estimation method and test statistic based on the weighted GEE at

each d ∈ D for a fixed radius h. Specifically, given the current weights {ω(d, d′;h) :

d, d′ ∈ D}, we consider the weighted GEE estimator of β(d), denoted by β̂(d, h), which

is the solution of Gn(β̂(d, h);ω, h) = 0. It should be noted that Gn(β̂(d, h);ω, h) con-

tains nuisance parameters {(α(d′), γ(d′)) : d′ ∈ B(d, h)}, but these nuisance parame-

ters have negligible effects on the asymptotic distribution of β̂(d, h). Specifically, let

D̂i(d, h) = Di(β̂(d, h)), V̂i,ω(d, h)−1 =
∑

d′∈B(d,h) ω(d, d′;h)Vi(α̂(d′), β̂(d, h), γ̂(d′))−1, and

ei(d
′, β̂(d, h)) = Yi(d

′) − µi(β̂(d, h)). The covariance matrix of β̂(d, h) can be approxi-

mated by

Cov(β̂(d, h)) ≈ C0(d, h)−1C(d, h)C0(d, h)−1, (4.7)

where C0(d, h) =
∑n

i=1 D̂i(d, h)T V̂i,ω(d, h)−1D̂i(d, h) and

C(d, h) =
n∑
i=1

D̂i(d, h)T [
∑

d′∈B(d,h)

ω(d, d′;h)Vi(α(d′), β(d), γ(d′))−1ei(d
′, β̂(d, h))]⊗2D̂i(d, h).

We develop the score test statistic for testing hypothesis of interest. In neuroimaging

studies, the primary hypotheses of interest include a comparison of brain structure (or

function) across diagnostic groups or the detection of a spatialtemporal change in brain

structure (or function) (Styner et al., 2005; Thompson and Toga, 2002; Zhu et al., 2007a).

Without loss of generality, we assume that these hypotheses can be formulated as follows:

H0(d) : Rβ(d) = b0 vs. H1(d) : Rβ(d) 6= b0, (4.8)

where R is a r × k matrix of full row rank and b0 is a r × 1 specified vector.

We consider a score test statistic SW (d, h) defined by

SW (d, h) = UW (d, h)T ÎW (d, h)−1UW (d, h) (4.9)
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where UW (d, h) =
∑n

i=1 Ûi,w(β̃(d, h)) and ÎW (d, h) =
∑n

i=1 Ûi,w(β̃(d, h))⊗2, in which

β̃(d, h) denotes the estimate of β under H0(d) and the explicit expressions of Ûi,w(β̃(d, h))

and UW (d, h) are given in Appendix. As shown in Theorem 1, under H0(d) and some

mild conditions, SW (d, h) is asymptotically distributed as χ2(r), a chi-square distribution

with r degrees of freedom. To test whether H0(d) holds in all voxels of the region under

study, we may consider resampling method, false discovery rate (FDR) method and the

random field theory (Benjamini and Hochberg, 1995; Worsley et al., 2004; Zhu et al.,

2008).

4.2.4 Adaptive Estimation and Testing Procedure

We develop an adaptive estimation and testing procedure (AET) to determine {ω(d, d′; r0) :

d, d′ ∈ D} and then we adaptively estimate β(d) based on the weighted GEEs. At each

d ∈ D, the AET procedure evolves along a sequence of nested spheres with increasing

radiuses h0 = 0 < h1 < · · · < hS = r0 (panel (a) in Fig. 4.1). At the scale h0 = 0,

we use the voxel-wise GEE to estimate θ̂(d) = (α̂(d), β̂(d), γ̂(d)). This is equivalent

to estimating θ(d) in the weighted GEE with fixing ω(d, d′;h0) = 1(d = d′), in which

1(A) is an indicator of an event A. We then fix (α(d), γ(d)) at (α̂(d), γ̂(d)) and combine

all information contained in {β̂(d) : d ∈ D} to calculate weights ω(d, d′;h1) at scale

h1 for all d ∈ D. Subsequently, we utilize all data in {B(d, h1) : d ∈ D}, all weights

{ω(d, d′;h1) : d, d′ ∈ D}, and the weighted GEEs to estimate β̂(d;h1) across D. In

this way, we can sequentially determine ω(d, d′;hs) and adaptively update β̂(d;hs) from

h0 = 0 to hS = r0. The key feature of the AET method is to gradually smooth the

images of parameter estimates, which can also decrease the variability of the calculated

weights. At the end of AET, we calculate the score test statistics across all voxels. A
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path diagram of the AET procedure is given as follows:

ω(d, d′;h0) ω(d, d′;h1) · · · ω(d, d′;hS = r0)

⇓ ↗ ⇓ ↗ · · · ↗ ⇓

θ̂(d) β̂(d;h1) · · · (β̂(d;hS), SW (d, hS)).

(4.10)

The AET procedure has four key steps: initialization, weights adaptation, estimation,

and stopping. In the initialization step (i), we prefix a geometric series {hs = csh : s =

1, · · · , S} of radiuses with h0 = 0, where ch ∈ (1, 2), say ch = 1.5. At each voxel d, we

calculate the GEE estimate θ̂(d) = (α̂(d), β̂(d), γ̂(d)). From now on, we fix (α(d), γ(d))

at (α̂(d), γ̂(d)). We then set s = 1 and h1 = ch.

In the weight adaptation step (ii), we calculate the adaptive weights as follows:

ω(d, d′;hs) = Kloc(||d− d′||2/hs)Kst(d, d
′;n, hs−1), (4.11)

where Kloc(u) is a regular kernel function for smoothing curves or surfaces and || · ||2

denotes the Euclidean norm of a vector (or a matrix). The weight Kloc(||d − d′||2/hs)

gives less weight to the voxel d′ ∈ B(d, hs), whose location is far from the voxel d. Some

common choices of Kloc(u) include the Gaussian kernel and the Epanechnikov kernel (Fan

and Gijbels, 1996; Tabelow et al., 2006; Polzehl and Spokoiny, 2000, 2006). Without loss

of generality, we use Kloc(u) = (1− u)+. Moreover, Kst(d, d
′;n, h) is a function of voxels

d and d′, the sample size n and the radius h. The adaptive weight Kst(d, d
′;n, hs−1)

downweights the role of a voxel d′ ∈ B(d, hs) in the weighted GEE Gn(β;ω, h) = 0 in

(4.6), if the data in voxel d differs substantially from those in voxel d′. Specific choices

of Kst(d, d
′;n, h) will be detailed later.

In the estimation step (iii), for the radius hs, we calculate the weighted GEE estimator

β̂(d, hs), which is defined in (4.11), at each voxel d ∈ D.

In the stopping step (iv), when s = S, we compute β̂(d;hS) and the p-values for
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SW (d, hS), apply either FDR or RFT to detect significant voxels and then stop. Other-

wise, we set hs+1 = chhs, increase s by 1 and continue with the weight adaptation step

(ii). The maximal step S can be taken to be relatively small, say 6, such that the largest

spherical neighborhood of each voxel only contains a relatively small number of voxels

compared to the whole volume.

Remark 1. The additional computational time for MAGEE is very light compared

to the voxel-wise approach. At the s-th iteration, we always set the final estimator

β̂(d, hs−1) from the (s − 1)-th iteration as the initial value β̂(d, hs)
(0) in the Newton-

Raphson algorithm. Since the AET procedure always downweights the data in voxel d′ ∈

B(d, h) when the data in voxel d′ differs substantially from those in voxel d, β̂(d, hs−1)

and β̂(d, hs) should be close to each other. By starting from β̂(d, hs−1), the Newton-

Raphson algorithm for the s-th iteration converges very fast.

Remark 2. The Kst(d, d
′;n, h) is a kernel function for downweighting voxel d′, whose

feature is dissimilar to that of voxel d during the process of making inference on β(d).

A particular choice of Kst(d, d
′;n, h) is a weighted distance between β̂(d, hs−1) and

β̂(d′, hs−1) as follows:

Kst(d, d
′;n, h) = e−Dβ(d,d′;hs−1)/Cn1(Dβ(d, d′;hs−1)/Cn ≤ C0) (4.12)

where Cn is a scalar associated with n, C0 is a prefixed number, and Dβ(d, d′;hs−1) is

defined by

[β̂(d, hs−1)− β̂(d′, hs−1)]TCov(β̂(d;hs−1))−1[β̂(d, hs−1)− β̂(d′, hs−1)]. (4.13)

We may select Cn as the logarithm of the number of voxels in B(d, h) and the quantile

of the χ2 distribution (Polzehl and Spokoiny 2000, 2006). Note that Kst(d, d
′;n, h) in

(4.13) changes across iterations.

We may consider another choice of Kst(d, d
′;n, h) based on a multivariate signed-rank
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test statistic as follows (Haataja et al., 2009). We consider the data from voxels d and

d′ and define a p×mi matrix given by

Zi(d, d
′) = (∆yi1(d, d′), · · · ,∆yimi(d, d′)), i = 1, · · · , n, (4.14)

where ∆yij(d, d
′) = yij(d) − yij(d

′). Let the spatial sign of ∆yij(d, d
′), denoted by

S(∆yij(d, d
′)), equal ||yj(d) − yij(d

′)||−1
2 [yij(d) − yij(d

′)] if yij(d) − yij(d
′) 6= 0 and 0

if yij(d)− yij(d′) = 0. The multivariate signed-rank test statistic is given by

U(d, d′) =
n∑
i=1

mi∑
j=1

Q(∆yij(d, d
′)), (4.15)

where Q(∆yij(d, d
′)) is the spatial signed-rank centered around 0 as follows:

0.5N−1

n∑
r=1

mr∑
s=1

[S(∆yij(d, d
′)−∆yrs(d, d

′))− S(∆yij(d, d
′) + ∆yrs(d, d

′))]. (4.16)

We introduce a weighted distance of U(d, d′), denoted by DU(d, d′), as follows:

DU(d, d′) = U(d, d′)T{
n∑
i=1

[

mi∑
j=1

Q(∆yij(d, d
′))]⊗2}−1U(d, d′). (4.17)

If µi(β(d)) = µi(β(d′)), then it can be shown under some mild conditions that DU(d, d′)

converges to χ2(p) in distribution as n→∞ (Haataja et al., 2009). For the unbalanced

design, we may consider a weighted version of DU(d, d′). Finally, we can use DU(d, d′)

to define Kst(d, d
′;n, h) as follows:

Kst(d, d
′;n, h) = e−DU (d,d′)/Cn1(DU(d, d′)/Cn ≤ C0). (4.18)

It should be noted that Kst(d, d
′;n, h) in (4.18) solely depends the data in voxels d and

d′ and does not change during iterations.
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Remark 3. We have developed the AET procedure for solely smoothing all compo-

nents of β(d) in the 3D volume (or 2D surface). Because β(d) is statistically ‘orthogonal’

to (α(d), γ(d)), we can develop the above AET procedure without updating (α(d), γ(d))

at each iteration. However, we can easily modify the AET procedure to simultaneously

smooth all components of θ(d).

4.2.5 Theoretical Properties

Throughout the paper, we only consider the asymptotic properties of β̂(d, hs) and

SW (d;hs) for a finite number of iterations and bounded r0 for MAGEE. We assume

that the number of voxels in the brain volume does not increase with the sample size,

since the resolution of a given imaging dataset is always fixed.

We establish consistency and asymptotically normality of β̂(d, h) and SW (d;h) for

each h obtained from the AET procedure in Section 4.2.2. We first discuss the case with

fixed weights ω(d, d′;h) for a fixed scale h. According to (4.6), the WGEE estimator

β̂(d, h) solves the equation 0 = n−1Gn(β(d);ω, h), which converges to

G(β(d);ω, h) =
n∑
i=1

∑
d′∈B(d,h)

ω(d, d′;h)E{Di(β(d))TVi(β(d), d′)−1ei(d
′, β(d))}, (4.19)

in probability under some mild conditions as n → ∞ (var der Vaart, 1998), where

Vi(β(d), d′) = Vi(α(d′), β(d), γ(d′)) and the expectation is taken with respect to {(Y (d′, h),

x) : d′ ∈ B(d, h)}. Under some identifiability conditions, β̂(d;h) converges to β∗(d;h),

which solve the equation G(β(d);ω, h) = 0 (van der Vaart, 1998). When h = 0,

β∗(d; 0) = β∗(d) is the ‘pseudo’ true value in voxel d. When h > 0, β∗(d;h) can only

be regarded as a weighted combination of all β∗(d
′) for d′ ∈ B(d, h). In a homogeneous

region, that is β∗(d
′) = β∗(d), β∗(d;h) = β∗(d) even for h > 0. However, in a nonhomoge-

neous region, an arbitrary set of weights ω(d, d′;h) can lead to undesirable consequences,

such as smoothing out the boundary of activated regions and reducing statistical power
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in detecting activated regions.

We obtain the following theorems, whose detailed assumptions and proofs can be

found in the Appendix. We can establish important theoretical results to characterize

the nice behavior of β̂(d, h) and SW (d, h) from the weighted GEE as follows.

Theorem 1. Suppose that Assumptions (C1)-(C7) in the Appendix are true. We have

the following results for MAGEE:

(a) β̂(d, h) converges to β∗(d) in probability;

(b) {Cov(β̂(d, h))}−1/2[β̂(d, h)− β∗(d)]→L N(0, Ip);

(c) If R0β∗(d) = b0 is true, then the statistic SW (d, h) is asymptotically distributed

as χ2(r), a chi-square distribution with r degrees of freedom.

Theorem 1 shows that the MAGEE procedure has several remarkable features. The-

orem 1 (a) ensures that under some conditions detailed in the Appendix, β̂(d, h) is a

consistent estimate of β∗(d) for the adaptive weights in the weighted GEE for any h ≥ 0.

Theorem 1 (b) ensures that β̂(d, h) is a
√
n estimate of β∗(d) and asymptotic normal.

Theorem 1 (c) ensures that the score test statistic SW (d, hs) is asymptotically χ2(r)

distributed under the null hypothesis R0β∗(d) = b0. These asymptotic properties ensure

that it is reliable to apply MAGEE for the analysis of longitudinal imaging data when

the sample size is relatively large.

We discuss whether the stochastic adaptive weight defined in (4.12) ensure consis-

tency and asymptotic normality of β̂(d, h) at each fixed scale h. To have a better

understanding of the MAGEE procedure, we focus on the asymptotic behavior of the

adaptive weight as s = 1 and then we discuss the scenario with s > 1.

Theorem 2. Suppose that Assumptions (C1)-(C5) and (C7) in the Appendix are true.

We have the following results for Kst(d, d
′;n, h) in (4.12):
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(a) Dβ(d, d′;h) can be approximated by

Dβ(d, d′;h0) = 1(4∗(d, d′) = 0)×Op(log(N(D))) + 1(4∗(d, d′) 6= 0)×

n||4∗(d, d′) +Op(
√

log(N(D))/n)||22Op(1),

where 4∗(d, d′) = β∗(d)− β∗(d′) and N(D) denotes the number of voxels in D;

(b) If limn→∞Cn/n = limn→∞C
−1
n log(N(D)) = limn→∞C

−1
n = 0, then we have

max
d∈D

max
d′∈B(d,h)∩{d′:4∗(d,d′)6=0}

|Kst(d, d
′;n, h)| = Op(exp(−n))→p 0, and

max
d∈D

max
d′∈B(d,h)∩{d′:4∗(d,d′)=0}

|Kst(d, d
′;n, h)− 1| →p 0.

Theorem 2 (a) and (b) show that if the two voxels d and d′ have the same true

values, then Kst(d, d
′;n, h) in (4.12) converges to 1. However, if the two voxels d and d′

substantially differ from each other, then Kst(d, d
′;n, h) in (4.12) imposes a decreasing

weight on the voxel d′. Thus, Kst(d, d
′;n, h) in (4.12) can efficiently incorporate in-

formation from ‘good’ voxels, whereas it prevents incorporating information from ‘bad’

voxels. Particularly, Theorem 2 ensures that assumption (C6) is valid. Thus, the AET

procedure with stochastic weights Kst(d, d
′;n, h) in (4.12) ensures the consistency and

asymptotic normality of β̂(d, h) at each fixed scale h. Similarly, we can also show that

the AET procedure with Kst(d, d
′;n, h) in (4.18) has the similar property.

In many applications, β(d) may be further decomposed as (β1(d)T , β2(d)T )T , in which

β1(d) is a q1 × 1 vector of parameters of interest and β2(d) is a q2 × 1 vector containing

additional nuisance parameters. We can calculate β̂(d) and then fix β2(d) at β̂2(d) after

the initialization step (i). In this way, we only update β1(d) and calculate adaptive

weights based on the estimates of β1(d) at each iteration. However, one must modify the

weighted GEE method for β1(d) in order to properly account for uncertainty in using

β̂2(d), because β1(d) and β2(d) are not ’orthogonal’ to each other.

Let Di(β(d)) = (Di,1(β(d)), Di,2(β(d))), where Di,k(β(d)) = ∂µi(β(d))/∂βk(d) for
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k = 1, 2. We introduce a weighted GEE for β1(d) as follows:

n∑
i=1

∑
d′∈B(d,h)

ω(d, d′;h)Di,1(β1(d), β̂2(d′))TVi((β1(d), β̂2(d)), d′)−1ei(d
′, β1(d), β̂2(d)) = 0.

It will be shown that β̂2(d) does have some effects on the asymptotic distribution of

β̂1(d, h). Following the arguments of Theorem 1, we can obtain the asymptotic properties

of β̂1(d, h) for d ∈ D.

Corollary 1. Suppose that Assumptions (C1)-(C7) in the Appendix are true. We have

the following results for MAGEE:

(a) β̂1(d, h) converges to β∗,1(d) in probability;

(b) {Cov(β̂1(d, h))}−1/2[β̂1(d, h)− β∗(d)]→L N(0, Iq1), in which Cov(β̂1(d, h)) will be

given in the Appendix.

Corollary 1 shows that under some mild conditions, the MAGEE ensures that β̂1(d, h)

has the desirable asymptotic properties including consistency and asymptotic normality.

Thus, MAGEE can smooth solely the image of β1(d), while fixing images of β2(d), α(d)

and γ(d). For instance, if β1(d) corresponds to diagnosis effect and β2(d) corresponds to

age, gender, and other covariates of interest, then MAGEE for only β1(d) allows us to

smooth the diagnostic effect image without distorting the images associated with other

covariates of interest. This new feature distinguishes our MAGEE significantly from the

existing smoothing techniques, which solely smooth the raw images.

4.3 Simulation Studies

We conducted two sets of Monte Carlo simulations to examine the finite sample perfor-

mance of β̂(d, h) and SW (d, h) with respect to different scales h at the levels of a single

voxel and an entire region.
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4.3.1 Simulation Studies Part I

We simulated univariate measures across all m = 4002 points on the surface of a

hippocampus for n subjects. At a given voxel d in D, yij(d) was simulated accord-

ing to yij(d) = xTijβ(d) + εij(d) for j = 1, · · · ,mi and i = 1, · · · , n, where β(d) =

(β1(d), β2(d), β3(d))T and xij = (1, xij2, xij3)T . We set mi = 2 for i = 1, · · · , n/2 and

mi = 3 for i = n/2 + 1, · · · , n. We independently generated εi(d) = (εi1(d), ·, εimi(d))T

from a multivariate N(0,Ω) distribution, where diag(Ω) equals a mi × 1 vector with all

ones and the correlation between εij1(d) and εij2(d) equals 0.7|j1−j2| for j1, j2 = 1, · · · ,mi

and i = 1, · · · , n. We generated xi12, xi22, and xi32 from U [0, 1], U [1, 2], and U [2, 3],

respectively, where U [a, b] denotes the uniform distribution on [a, b]. xij3 was a time in-

variant covariate representing diagnostic effect generated independently from a Bernoulli

distribution with equal probability for each i. We also created ROI1 and ROI2, which

are two nested circles with radius at 3 and 5, respectively, and labeled the region outside

of ROI1 and ROI2 as ROI3. We set (β1(d), β3(d)) = (1, 1) across all voxels, whereas we

set β2(d) as 0 in ROI3, 1 in ROI2, and 2 in ROI3, respectively (Fig. 4.2). We chose two

sample sizes: n = 50 and n = 80.

Figure 4.1: Simulation study parts I: three regions of interest (R1: ROI1 with yellow
color; R2: ROI2 with red color; R3: ROI3 with green color) on a reference hippocampus.

We fitted GEE with E[yij(d)] = xTijβ(d) and AR(1) working correlation structure.
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Table 4.1: Bias (×10−3), RMS(×10−1), SD(×10−1), and RS of β parameters. BIAS
denotes the bias of the mean of the MARM estimates; RMS denotes the root-mean-
square error; SD denotes the mean of the standard deviation estimates; RS denotes the
ratio of RMS over SD.

β1 β2 β3
BIAS RMS SD RS BIAS RMS SD RS BIAS RMS SD RS

n = 50
ROI1: h0 0.11 2.62 2.61 1.01 1.30 0.85 0.83 1.02 -4.86 2.55 2.48 1.03
ROI1: h5 0.54 0.77 0.75 1.03 0.93 0.25 0.24 1.03 -3.54 0.75 0.71 1.05
ROI2: h0 -2.00 2.64 2.61 1.01 0.77 0.84 0.83 1.01 2.78 2.55 2.48 1.03
ROI2: h5 -1.09 0.72 0.70 1.03 0.84 0.23 0.22 1.02 0.90 0.71 0.66 1.07
ROI3: h0 0.09 2.66 2.60 1.02 0.09 0.84 0.83 1.02 0.15 2.54 2.48 1.03
ROI3: h5 0.11 0.74 0.71 1.05 0.08 0.23 0.23 1.04 0.20 0.72 0.67 1.07

n = 80
ROI1: h0 1.15 2.11 2.09 1.01 -0.72 0.62 0.63 0.98 1.53 2.08 2.00 1.04
ROI1: h5 -0.07 0.70 0.69 1.01 5.30 0.24 0.21 1.14 2.73 0.68 0.66 1.03
ROI2: h0 2.83 2.10 2.09 1.00 -0.57 0.63 0.63 1.00 -0.37 2.02 2.00 1.01
ROI2: h5 2.96 0.68 0.67 1.01 - 2.62 0.21 0.20 1.03 -0.62 0.65 0.63 1.03
ROI3: h0 -0.09 2.11 2.09 1.01 0.01 0.64 0.63 1.01 0.34 2.03 2.00 1.01
ROI3: h5 -0.03 0.59 0.57 1.03 0.03 0.18 0.17 1.03 0.20 0.57 0.55 1.04

We used MAGEE to adaptively calculate the parameter estimates across all voxels at 6

different scales. Our primary interest is to make inference on β(d) and other parameters

such as α(d) in AR(1) are regarded nuisance parameters and fixed at their estimators

after the initialization step. In each ROI, we calculated the bias, the empirical standard

errors (RMS), and the mean of the standard error estimates (SD) based on the results

from the 1,000 simulated hippocampus data sets. We observed the following results. The

biases are similar at h0 and h5. The RMS and SD at h5 are much smaller than those at

h0. In addition, the RMS and its corresponding SD are relatively close to each other at

both the h0 and h5 scales in each of the three ROIs (Table 4.1). As expected, increasing

n decreases the RMS and SD of the parameter estimates.

4.3.2 Simulation Studies Part II

Following the setup in Section 4.3.1, we simulated an additional dataset at all the m =

4002 points on the surface of a hippocampus for 50 subjects, except that six new ROIs

were constructed as three sets of nested circles. In the first set of nested circles, β2(d)

were set at 1 and 2 in the inner and outer circles with radii being 2 and 4, respectively.

In the second set of nested circles, β2(d) were set at 0.6 and 0.8 in the inner and outer

circles at radii being 3 and 5, respectively. In the third set of nested circles, β2(d) was

set to 0.4 and 0.6 in the inner and outer circles with radii being 3 and 4, respectively.
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The parameter β2(d) outside of these six ROIs was always set at 0. We used MAGEE

to calculate the estimate of β at 6 different scales. It is clear that the estimate of β2(d)

is more precisely estimated at h5 compared with at h0 at different signal to noise ratios

(Fig. 4.2 (a) and (c)). Similarly, the p-value map generated for testing H0 : β2(d)=0 at

h5 also performs much better than that at h0 = 0 (Fig. 4.2(b) and (d)).

Figure 4.2: Comparison of the voxel-wise approach and MAGEE for the simulated hip-
pocampus dataset with three sets of nested circles (panel (e)): the maps of resampling
corrected − log10(p) values and estimated parameters β2(d) based on the voxel-wise GEE
approach (panels (a) and (b)) and MAGEE (panels (c) and (d)).

4.4 Real Data Analysis

A wealth of cross-sectional diffusion tensor imaging (DTI) studies has been conducted on

characterizing white matter development (prenatal to adolescent stages) using various
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DTI parameters such as fractional anistropy (FA) and radial (RD) diffusivity in the

past decade. Current DTI studies including neonates have revealed three phases in the

early postnatal brain development: the rapid changes within first 12 months, the slow

maturation from 12 to 24 months, and the steady state afterwardss. Particularly, in white

matter, neonates have significantly lower anistropy values and significantly higher MD

values compared to adults (Neil et al., 1998; Zhai et al., 2003). These DTI studies also

reveal the temporal non-linearity and spatial inhomogeneity of the apparent changes in

DTI parameters within brain (Mukherjee et al., 2001; Mukherjee et al., 2002; Schneider

et al., 2004).

We used 38 subjects from a larger study designated to the investigation of early brain

development led by Dr. Gilmore at the University of North Carolina at Chapel Hill. For

each subject, diffusion-weighted images were acquired at 2 weeks, year 1 and year 2.

Diffusion gradients with a b−value of 1000 s/mm2 were applied in six non-collinear

directions, (1,0,1), (-1,0,1), (0,1,1), (0,1,-1), (1,1,0), and (-1,1,0) and a b = 0 reference

scan. Forty-six contiguous slices with a slice thickness of 2 mm covered a field of view

(FOV) of 256×256 mm2 with an isotropic voxel size of 2×2×2 mm3. A total of eighteen

acquisitions were used to improve the signal-to-noise ratio (SNR). High resolution T1

weighted (T1W) images were acquired using a 3D MP-RAGE sequence.

We then calculated a weighted least squares estimation method to construct the dif-

fusion tensors (Basser, Mattiello, and LeBihan 1994 b; Zhu et al., 2007b). All images

were visually inspected before analysis to ensure no bulk motion. All DT images (38

subjects, 3 time points each) were registered, using TIMER, onto a randomly selected

brain DT image of a 2-year-old subject. The aligned images were then voxel-wise aver-

aged to create the mean DT image, from which the FA map can be computed (Yap et

al., 2009).

Fractional anisotropy (FA) calculated from DTIs has been widely used as a mea-

surement to assess directional organization of the brain which is greatly influenced by
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the magnitude and orientation of white matter tracts. We use FA images to charac-

terize the spatial pattern of white matter maturation. We fitted GEE with E[yij(d)] =

β0(d)+tiβ1(d) and the AR(1) working correlation structure at each voxel of the template.

We applied the MAGEE procedure with ch = 1.25 and S = 6 to carry out the statistical

analysis and tested H0 : β1(d) = 0 for time effect across all voxels d. We treated other

parameters (e.g., the parameter in the AR(1)) as nuisance parameters and fixed them

after the initialization iteration. Compared with the results from the standard voxel-

wise method at h0 (Fig. 4.3 (a)-(d)), MAGEE shows a clear advantage in detecting more

significant and smooth activation areas as the bandwidth h increases (Fig. 4.3 (e)-(h)).

To identify different spatial patterns of white matter maturation, we further clustered

the growth trajectories according to the two dimensional features (β0(d), β1(d)) across the

template. Standard mixture package from SPM8 was used to cluster the two-dimensional

data and to choose 5 as the optimal number of clusters (Fig. 4.4 (a)). These 5 clusters

well represent the gray matter, the boundary of gray matter and white matter and 3

components of white matter. To show the superiority of MAGEE, the clustering results

based on the MAGEE estimates from the scale 5 are visually more smoother than the

clustering results based on the MAGEE estimates from scale 0 (Fig 4.4 (b)). We also

compared the probability maps for each of these 5 clusters at scale 5 and scale 0. The

probability maps also show more smooth pattern for scale 5 versus scale 0 (Fig. 4.5).

4.5 Discussion

This article has developed a unified estimation and smoothing procedure for the spatial

and adaptive analysis of neuroimaging data from longitudinal studies. We have demon-

strated its superiority over the voxel-wise approach using simulated and real imaging

data. MAGEE is semiparametric, spatial, hierarchical and adaptive. MAGEE can

adaptively utilize available information in the neighboring voxels to increase the pre-

cision of parameter estimates and the power of test statistics in detecting subtle changes
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Figure 4.3: Results from the neonatal project on brain development. Panels (a), (b),(c)
and (d) : the corrected − log10(p) values of the Score test statistics SW (d, h0) from three
selected slices; panels (e), (f),(g) and (h): the corrected − log10(p) values of the Score
test statistics SW (d, h5) from the selected slices; (I) the comparison of the histograms
for SW (d, h0) and SW (d, h5) across all voxels.

of brain structure and function. We have shown that MAGEE can adaptively smooth

images while accounting for the spatial pattern of activation regions. We have shown

that MAGEE can simultaneously smooth all raw images from all subjects across all

time points using the learned information during the statistical estimation step, while

MAGEE can smooth images of all parameters of interest after fixing images of other nui-

sance parameters. We have theoretically examined the adaptive weights in the MAGEE

and formally establish the asymptotic properties including consistency and asymptotic

distributions of the parameter estimates and test statistics for MAGEE.
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Figure 4.4: Clustering results for the neonatal project on brain development. Panel (a):
5 clusters are the optimal clusters selected by negative free energy criteria. Panel (b):
Clustering maps show 5 components for scale at 0 (left) and scale at 5 (right).

4.6 Appendix

We need some notation. To avoid notational complexity, we assume that all nuisance

parameters (α(d), γ(d)) are known. Let Vi(β, d
′) denote Vi(α(d′), β, γ(d′)). We define

Mn(β(d)) = n−1

n∑
i=1

Di(β(d))TV −1
i (β(d), d)Di(β(d)),

Hn(β(d)) = n−1

n∑
i=1

Di(β(d))TV −1
i (β(d), d)Σi(β(d))Vi(β(d), d)−1Di(β(d)), and

gn,i(β(d), d′) = Di(β(d))TV −1
i (β(d), d′)[Yi(d

′)− µi(β(d))].

We also define D∗(d, h)c = {d′ ∈ B(d, h) : 4∗(d, d′) 6= 0} and D∗(d, h) = {d′ ∈ B(d, h) :

4∗(d, d′) = 0}, where 4∗(d, d′) = β∗(d)− β∗(d′).

The following assumptions are needed to facilitate development of our methods, al-

though they are not the weakest possible conditions.

(C1) 1 ≥ ω(d, d′;h) ≥ 0 and ω(d, d;h) = 1 for all d, d′ ∈ D and h ≥ 0.

(C2) Let Zi = (xi1, · · · , ximi , Yi,D)} for i = 1, · · · , n. The data Z1, · · · , Zn form

independent clusters.

(C3) For any d ∈ D, there is an unique interior point of B, denoted by β∗(d), such

that E[Yi(d)|xi1, · · · , ximi ] = µi(β∗(d)) for all i, where B is a compact set in Rq and
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Figure 4.5: Probability maps for five clusters for the neonatal project on brain devel-
opment. The upper row of each panel of (A)-(E) shows the three selected probability
maps based on the results obtained from MAGEE at scale 0, whereas the lower row of
each panel of (A)-(E) presents the three selected probability maps based on the results
obtained from MAGEE at scale 5.

the expectation is taken with respect to the true conditional distribution of Y (d) given

covariate.

(C4) For all voxels d ∈ D, gn,i(β(d), d) is continuously differentiable on B. For all

j, k, l = 1, · · · , p, ||gn,i(β(d), d)||22, and ||∂β(d)gn,i(β(d), d)||2 are dominated by an integral

function g(Y (d), x) such that E[maxd∈D |g(Y (d), x)|2] <∞ and

E[max
d∈D
|g(Y (d), x)|21(max

d∈D
|g(Y (d), x)| > η

√
n)]→ 0

for every η > 0.
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(C5) For all d ∈ D, limn→∞Mn(β∗(d)) = M(β∗(d)) and limn→∞Hn(β∗(d)) =

H(β∗(d)). For a fixed δ > 0,

∞ > sup
d∈D

max
β(d)∈B(β∗(d),δ)

(λmaxMn(β(d))) ≥ inf
d∈D

min
β(d)∈B(β∗(d),δ)

(λminMn(β(d))) > 0,

∞ > sup
d∈D

max
β(d)∈B(β∗(d),δ)

(λmaxHn(β(d))) ≥ inf
d∈D

min
β(d)∈B(β∗(d),δ)

(λminHn(β(d))) > 0,

where λmin(·) and λmax(·) denote the smallest and largest eigenvalues of a matrix, re-

spectively.

(C6) Let maxd∈Dmaxd′∈D∗(d,h)c Kst(d, d
′;n, h) = Kc

st(n, h). As n→∞,

√
nKc

st(n, h)→p 0 and max
d∈D

max
d′∈D∗(d,h)

|Kst(d, d
′;n, h)−Kst(d, d

′, h)| →p 0,

where →p denotes convergence in probability and Kst(d, d
′, h) is a nonrandom function

of (d, d′, h).

(C7) limn→∞ log(N(D))/n = 0.

Remarks A1: For each fixed d ∈ D, Assumptions (C3)-(C5) are generalizations of

the standard conditions for ensuring first order asymptotic properties (e.g., consistency

and asymptotic normality) of Z-estimators (van der Vaart, 1998). Assumption (C3)

is an identification condition, whereas Assumption (C4) is a uniform smoothness and

integration condition. Particularly, Assumption (C4) ensures that |gn,i(β(d), d)|2 and

|∂β(d)gn,i(β(d), d)| are uniformly integrable for all d ∈ D. Assumption (C5) is needed to

ensure that the covariance matrix of β̂(d, h) is positive definite for all d ∈ D.

Remarks A2: Assumption (C6) is needed just for ensuring desirable asymptotic prop-

erties of β̂(d, h) based on the weighted GEE. Assumption (C6) requires that for two sim-

ilar voxels d and d′, Kst(d, d;n, h) converge to a nonrandom Kst(d, d
′, h), whereas for two

distinctive voxels, Kc
st(n, h) converge to zero faster than

√
n. We have already proposed

two different choices of Kst(d, d;n, h) and will examine whether they satisfy Assumption

(C6). Actually, we can show that for Kst(d, d
′, h) in (4.12) satisfies Assumption (C6)
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such that Kst(d, d
′, h) = 1.

Remarks A3: In neuroimaging data, although N(D) is much larger than the sample

size n, Assumption (C7) claims that we just need a relatively large sample size compared

to log(N(D)). For instance, in most neuroimaging data, N(D) ≈ 1003 and log(103) = 14.

Therefore, a sample size such as 100 may be reasonable to use asymptotic normality in

making statistical inferences for MAGEE. Assumption (C7) is needed to invoke maximal

inequalities (var der Vaart and Wellner, 1996).

Derivation of Score Test Statistic. To consider the test statistic SW (d, h), we need

additional notation as follows:

Gn(β(d);ω, h) =
∑

d′∈B(d,h)

ω(d, d′;h)
n∑
i=1

Di(β(d))TV −1
i (β(d), d′)[Yi(d

′)− µi(β(d))],

∂βGn(β(d);ω, h) ≈ −
∑

d′∈B(d,h)

ω(d, d′;h)
n∑
i=1

Di(β(d))TV −1
i (β(d), d′)Di(β(d)).

Without loss of generality, we assume that R = (R1, R2), in which R1 is an r × r

nonsingular matrix and R2 is an r × (q − r) matrix. Let β = (βT(1), β
T
(2))

T , where β(1) is

an r× 1 vector corresponding to R1 and β(2) is a (q− r)× 1 vector corresponding to R2.

If we define

ν1 = R1β(1) +R2β(2) − b0 and ν2 = (β(2)), (4.20)

then there exists a one-to-one correspondence between (ν1, ν2) = f(β) and β = f−1(ν1, ν2).

Thus, we have

∂(β(1), β(2))

∂(ν1, β(2))
=

 R−1
1 −R−1

1 R2

0 Iq−r

 .
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Let ∂ν(d) = ∂/∂ν(d). We define

Gn(ν(d);ω, h) =

 Gn,1(ν(d);ω, h)

Gn,2(ν(d);ω, h)


=

∑
d′∈B(d,h)

ω(d, d′;h)
n∑
i=1

∂ν(d)µi(β(d))TV −1
i (β(d), d′)ei(d

′, β(d)),

−∂ν(d)Gn(ν(d);ω, h) ≈ Σ(ν1, ν2) =

 Σν1ν1 Σν1ν2

Σν2ν1 Σν2ν2


≈

∑
d′∈B(d,h)

ω(d, d′;h)
n∑
i=1

∂ν(d)µi(β(d))TV −1
i (β(d), d′)∂ν(d)µi(β(d)),

where Gn,1(ν(d);ω, h) and Gn,2(ν(d);ω, h) are the r × 1 and (q − r)× 1 subcomponents

of Gn(ν(d);ω, h) corresponding to ν1(d) and ν2(d), respectively.

Let ν∗(d) = (0, ν2∗(d)) be the true parameter vector of β(d) under H0(d) and ν̃(d) =

(0, ν̃2(d)) is the maximum quasi-likelihood estimate of ν(d) under H0(d). We use a

Taylor’s series expansion to obtain

0 = Gn,2(ν̃(d);ω, h) ≈ Gn,2(ν∗(d);ω, h) + ∂ν2(d)Gn,2(ν∗(d);ω, h)[ν̃2(d)− ν2∗(d)].

Thus, we have ν̃2(d)− ν2∗(d) ≈ Σ−1
ν2ν2

Gn,2(ν∗(d);ω, h). We apply a Taylor’s expansion to

obtain

Gn,1(ν̃(d);ω, h) ≈ Gn,1(ν∗(d);ω, h)− Σν1ν2Σ
−1
ν2ν2

Gn,2(ν∗(d);ω, h) ≈
n∑
i=1

Ûi,ω(β̃(d, h)),

where Ûi,ω(β̃(d, h)) is given by

[Ir
... − Σν1ν2Σ

−1
ν2ν2

]∂ν(d)µi(β(d))TV −1
i (β(d), d′)ei(d

′, β(d)). (4.21)

Proof of Theorem 1. We prove Theorem 1 (a) and (b) by induction. The proof primarily
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consists of three major steps: (i) s = 0; (ii) s = 1; (iii) s ≥ 1.

The proof of Step (i) for s = 0 consists of two steps. In Step (1.1), we will show

that β̂ = (β̂(d) : d ∈ D) converges β∗ = (β∗(d) : d ∈ D) in probability. We need to

introduce some notation. Let T be a bounded brain region in Rg containing all voxels

d ∈ D, where g = 2 for the 2D surface and g = 3 for the 3D volume. Let BD =
∏

d∈D B

be the parameter space for β and `∞(T )q is the product of q `∞(T ) = {z : T →

R, supt∈T |z(t)| <∞}. Let Ψn : BD → `∞(T )q and Ψ : BD → `∞(T )q be random maps

and a deterministic map, respectively, such that

Ψn(β)(t) = n−1

n∑
i=1

gn,i(β(dt)) and Ψ(β)(t) = E[gn,i(β(dt))],

in which dt denotes the voxel covering t.

To prove the consistency of β̂, we will show that

sup
β∈BD

sup
t∈T
||Ψn(β)(t)−Ψ(β)(t)||2 → 0 and

inf
β∈BD:||β−β∗||≥ε

sup
t∈T
||Ψ(β)(t)||2 > sup

t∈T
||Ψ(β∗)(t)||2. (4.22)

It follows from Assumptions (C3) and (C4) that the second term in equation (4.22) is

true. To prove the first term in equation (4.22), we note that

sup
β∈BD

sup
t∈T
||Ψn(β)(t)−Ψ(β)(t)||2 = max

d∈D
An(d), (4.23)

where An(d) = supβ(d)∈B |n−1
∑n

i=1{gn,i(β(d))− E[gn,i(β(d))]}|. Then, we consider F =

{gn,i(β(d)) : d ∈ D, β(d) ∈ B} with an envelope maxd∈D g(Y (d), x). Following the

arguments in Theorem 2.4.3 of van der Vaart and Wellner (1996), we can show that
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E[maxd∈D An(d)] is bounded above by

√
[1 + p log(C1(ε)K) + log(N(D))]/nC2K +

2E[max
d∈D

g(Y (d), x)1{max
d∈D

g(Y (d), x) > K}] + ε→ 0,

where C2 is a constant independent of ε, K can be chosen such that the second term of

the above equation is arbitrarily small, and C1(ε) is a constant depending on ε. Finally,

following the arguments in Theorems 5.7 and 5.9 of van der Vaart (1998), we can prove

consistency of β̂.

In Step (1.2), we will prove the asymptotic normality of
√
n(β̂−β∗). For each d ∈ D,

a Taylor’s series expansion gives

0 = Ψn(β̂)(d) = Ψn(β∗)(d) + ∂β(d)Ψn(β̃)(d)[β̂(d, h0)− β∗(d)], (4.24)

where β̃ ∈ BD and β̃(d) is on the line connecting β(d) and β∗(d). Similar to the proof of

(4.23), we can show that

sup
β∈BD:||β−β∗||2≤ε

sup
t∈T
||∂β(dt)Ψn(β)(t)− ∂β(dt)Ψ(β)(t)||2 → 0 (4.25)

in probability, when log(N(D))/n is sufficiently small. Therefore, we can show that

√
n[β̂(d, h0)− β∗(d)] = [−∂β(d)Ψ(β∗)(d) + op,D(1)]−1

√
nΨn(β∗)(d), (4.26)

for all d ∈ D, where op,D(1) denotes uniform convergence to zero for all d ∈ D. It is

easy to prove the asymptotic normality of
√
n[β̂(d, h0)− β∗(d)] for each d ∈ D. Further-

more, by using Theorem 2.14.1 of van der Vaart and Wellner (1996), we can show that

supd∈D ||Ψn(β∗)(d)||2 = Op(
√

log(N(D))/n), which yields

max
d∈D
||β̂(d, h0)− β∗(d)||2 = Op(

√
logN(D)/n). (4.27)
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We prove Step (ii) for s = 1 as follows. Let ω̃(d, d′;h1) = ω(d, d′;h1)/
∑

d′∈B ω(d, d′;h1).

It follows that

sup
β(d)∈B

|n−1Gn(β(d); ω̃, h1)−G(β(d); ω̃, h1)| ≤
∑

d′∈B(d,h1)

ω̃(d, d′;h1)δn(d′) ≤ max
d′∈B(d,h1)

δn(d′),

where δn(d) = supβ(d)∈B |n−1
∑n

i=1 gn,i(β(d)) − n−1E[
∑n

i=1 gn,i(β(d))]|. Then, following

arguments in Theorems 2.7.11 and 2.4.3 of van der Vaart and Wellner (1996) and as-

sumptions (C2)-(C4), we can show that

E[max
d∈D

δn(d)] ≤
√

[1 + p log(C1(ε)K) + log(N(D))]/nC2K

+2E[max
d∈D

g(Y (d), x)1{max
d∈D

g(Y (d), x) > K}] + ε→ 0.

Since the above arguments are independent of ω̃(d, d′;h1), we can conclude that

max
d∈D

sup
β(d)∈B

|n−1Gn(β(d); ω̃, h1)−G(θ(d); ω̃, h1)| → 0 (4.28)

in probability, and it holds for any adaptive weights ω̃(d, d′;h).

It follows from (4.27) that

max
d∈D

sup
β(d)

|n−1G(β(d); ω̃, h1)−
∑

d′∈B(d,h1)∩D∗(d)

ω̃(d, d′;h)
n∑
i=1

E[gn,i(β(d′))]|

≤ Kc
st(n, h)E[max

d∈D
g(Y (d), x)]→ 0. (4.29)

Since 0 =
∑

d′∈B(d,h1)∩D∗(d) ω̃(d, d′;h)
∑n

i=1E[gn,i(β∗(d))], it follows from Theorem 5.7 of

var der Vaart (1998) and the arguments in the proof of Theorem 1 (a) that β̂(h1) =

(β̂(d, h1) : d ∈ D) converges to β∗ in probability.

To prove asymptotic normality of β̂(d, h1), we can use a Taylor’s series expansion to
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show that

0 = Gn(β̂(d, h1); ω̃, h1) = Gn(β̂∗(d); ω̃, h1) + ∂β(d)Gn(β̃∗(d); ω̃, h1)[β̂(d, h1)− β∗(d)],

where β̃(d, h1) is on the segment joining β̂(d, h1) and β∗(d). Similar to the arguments in

the proof of Theorem 1 (b) and (4.29), we can show that

max
d∈D

sup
||β∗(d)−β(d)||2≤ε

|n−1∂β(d)Gn(β(d); ω̃, h1)−

∑
d′∈B(d,h1)∩D∗(d)

ω̃(d, d′;h1)n−1

n∑
i=1

E[∂β(d)gn,i(β(d), d′)]| → 0,

max
d∈D

n−1/2|Gn(β∗(d); ω̃, h1)−
∑

d′∈B(d,h1)∩D∗(d)

ω̃(d, d′;h1)
n∑
i=1

gn,i(β∗(d), d′)|

≤ n1/2Kc
st(n, h)E[sup

d∈D
g(Y (d), x)]O(1)→ 0.

Finally,
√
n[β̂(d, h1)− β∗(d)] can be represented as

{−
∑

d′∈B(d,h1)∩D∗(d)

ω̃(d, d′;h1)n−1

n∑
i=1

E[∂β(d)gn,i(β∗(d), d′)] + op,D(1)}−1 ×

n−1/2
∑

d′∈B(d,h1)∩D∗(d)

ω̃(d, d′;h1)
n∑
i=1

gn,i(β∗(d), d′). (4.30)

By using Theorem 2.14.1 of van der Vaart and Wellner (1996), we can show that

max
d∈D
||n−1/2

n∑
i=1

gn,i(β∗(d), d′)||2 = Op(
√

logN(D)),

which yields that maxd∈D ||β̂(d, h)− β∗(d)||2 = Op(
√

logN(D)/n).

In Step (iii), by using induction and the above arguments in Step (ii), we can prove

Theorem 1 (a) and (b) for any fixed s > 1.

Given the results in Theorem 1 (a) and (b), we can apply standard arguments in the

literature to prove Theorem 1 (c). We omit the details for simplicity.
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Proof of Theorem 2. Let ∆̂(d, h) = β̂(d, h)− β∗(d). Since Dβ(d, d′;h0) can be rewritten

as

n[∆̂(d, 0)− ∆̂(d′, 0) +4∗(d, d′)]TΣ∗(d, h)−1[∆̂(d, 0)− ∆̂(d′, 0) +4∗(d, d′)][1 + op(1)],

it follows from (4.27) that if4∗(d, d′) = 0, then maxd,d′∈D |Dβ(d, d′;h0)| = Op(log(N(D)))

and

exp(−Dβ(d, d′;h0)/Cn) = exp(−Op(log(N(D)))/Cn) = 1 + op(1).

However, if 4∗(d, d′) 6= 0, then we have

Dβ(d, d′;h0) = n||[Σ∗(d, h)]−1/2[4∗(d, d′) +Op(
√

logN(D)/n)]||22.

Similarly, by following the proof of Theorem 1, we can prove similar results forDβ(d, d′;h),

which finishes the proof of Theorem 2.

Proof of Corollary 1. For the sake of space, we only highlight the key difference between

Theorem 1 and Corollary 1. It follows from Step (i) of Theorem 1 that for all d ∈ D, we

have

β̂(d)− β∗(d) = Mn(β∗(d))−1n−1

n∑
i=1

gn,i(β∗(d), d) + op(n
−1/2). (4.31)

Let P1 = [Iq1
... 0] and P2 = [0

... Iq2 ] be a q× q1 matrix and a q2× q matrix, respectively.

Thus, we have β̂2(d)−β∗2(d) = P2Mn(β∗(d))−1n−1
∑n

i=1 gn,i(β∗(d), d)+op(n
−1/2). Recall

that β̂1(d, h) is the solution to
∑

d′∈B(d,h) ω(d, d′;h)
∑n

i=1 P1gn,i((β1(d), β̂2(d′)), d′) = 0.

We then use a Taylor’s series expansion to show that

β̂1(d, h)− β∗1(d) = [
∑

d′∈B(d,h)

ω(d, d′;h)P1Mn(β∗(d
′))P T

1 ]−1 ×

n−1

n∑
i=1

∑
d′∈B(d,h)

ω(d, d′;h)P1[Iq −Mn(β∗(d
′))P T

2 P2Mn(β∗(d
′))−1]gn,i(β∗(d

′), d′)

+op(n
−1/2).

114



Finally, we can approximate the covariance matrix of
√
nβ̂1(d, h) by using

[
∑

d′∈B(d,h)

ω(d, d′;h)P1Mn(β∗(d
′))P T

1 ]−1 ×

n−1

n∑
i=1

[
∑

d′∈B(d,h)

ω(d, d′;h)P1[Iq −Mn(β∗(d
′))P T

2 P2Mn(β∗(d
′))−1]gn,i(β∗(d

′), d′)]⊗2 ×

[
∑

d′∈B(d,h)

ω(d, d′;h)P1Mn(β∗(d
′))P T

1 ]−1.
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