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ABSTRACT 
 

KATHRYN PATRICIA KOHL:  Identification and characterization of the Drosophila 
melanogaster meiotic MCM complex 
(Under the direction of Jeff Sekelsky) 

 
Meiotic recombination increases genetic diversity and aids the proper segregation 

of homologous chromosomes through the formation of crossovers.  Since improper 

crossing over can lead to non-disjunction and aneuploidy, the formation of crossovers is 

highly regulated and their distribution is non-random across the genome.  My research 

has investigated the molecular mechanisms by which meiotic recombination occurs and 

the pathways involved in regulating this recombination.  Through the course of my 

studies, I have used a combination of genetic, biochemical and evolutionary biological 

techniques to identify a novel complex of meiotic mini-chromosome maintenance 

proteins (mei-MCMs) that is essential for proper meiotic recombination in Drosophila 

melanogaster.  I have found that this complex promotes crossover formation by 

antagonizing the anti-crossover protein BLM.  In this manner, the mei-MCMs fill the 

functional niche of Msh4-Msh5, a protein complex that is absent in Drosophila but is 

necessary for interfering crossover formation in other organisms.  In addition, I have 

discovered a role for the mei-MCMs in the regulation of crossover formation.  In 

particular, I have shown that the mei-MCMs affect the number and distribution of 

crossovers.  Collectively, these findings have provided insight into the pathways utilized 

in the regulation and formation of meiotic crossovers and have uncovered new avenues 

for future research in the meiotic recombination field. 
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CHAPTER 1 

INTRODUCTION 
 

Meiosis is essential to maintaining the proper complement of chromosomes in 

sexually reproducing organisms.  By following one round of DNA replication with two 

rounds of cellular division, meiosis effectively halves the chromosome content of 

participating cells.  Prior to the first meiotic division, homologous chromosomes pair and, 

in many organisms, undergo recombination.  Both crossovers (COs), characterized by the 

reciprocal exchange of flanking markers, and non-crossovers (NCOs), in which flanking 

DNA remains unchanged, result from these recombination events.  COs can also occur in 

mitotically proliferating cells during repair of certain types of DNA damage, especially 

double-strand breaks (DSBs).  Meiotic COs likewise are initiated from DSBs, and many 

of the proteins used in mitotic DSB repair are also used in meiotic recombination.  This 

has led to the suggestion that meiotic recombination evolved from mitotic recombination 

(Marcon and Moens, 2005).  However, several modifications were necessary to give rise 

to meiotic recombination in its current form (reviewed in Villeneuve and Hillers, 2001).  

First, a mechanism of generating programmed DSBs to initiate recombination was 

needed.  This was achieved through the use of Spo11, the catalytic subunit of a complex 

that generates regulated meiotic DSBs (Keeney et al., 1997).  Second, whereas COs are 

avoided in mitotic cells to prevent loss of heterozygosity and chromosome 

rearrangement, CO formation is emphasized in meiotic recombination to facilitate the 
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segregation of homologous chromosomes and to increase genetic diversity.  Third, the 

preferred repair template was changed from the sister chromatid in mitotic cells to the 

homologous chromosome in meiotic cells, since only COs between homologs give the 

aforementioned benefits.  Finally, exquisite CO control mechanisms arose to ensure the 

optimal number and distribution of COs across the genome and relative to one another.  

In particular, every chromosome pair receives at least one CO and if additional COs 

occur, they tend not to occur near one another, a phenomenon called crossover 

interference  (reviewed in Berchowitz and Copenhaver, 2010).   

A complication obscuring the relationship between the mitotic and meiotic 

recombination pathways has been the apparent existence of two meiotic CO pathways – 

one pathway that produces COs subject to interference and another that produces non-

interfering COs.  Recent studies suggest that the interfering CO pathway fits the scenario 

described above - i.e., it is a derivative of the mitotic DSB repair pathway that contains 

numerous meiosis-specific embellishments.  The non-interfering pathway, however, 

shares striking similarities to mitotic DSB repair in its original form.  Additional 

discoveries reveal functions that are essential for generating meiotic COs can be carried 

out by different proteins in different species.  These findings provide a new framework 

through which meiotic recombination pathways can be viewed and allow organisms 

previously thought to use disparate CO pathways to be brought under the same umbrella. 

 

COs and NCOs in meiotic recombination models 

In 1964, Holliday proposed a novel molecular model to explain how meiotic 

recombination could produce both COs and NCOs (Holliday, 1964).  The central 
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intermediate in his model is a structure in which strands from two homologous duplexes 

swap pairing partners across a short region, yielding a four-stranded intermediate now 

known as the Holliday junction (HJ).  Holliday proposed that these junctions are cleaved 

by DNA repair enzymes, now known as resolvases, to reestablish two separate duplexes.  

Depending on which strands are nicked, this process, now called resolution, could result 

in CO or NCO products.  The equally likely outcomes of resolution fit with fungal 

recombination studies that suggested that COs and NCOs occur in equal numbers. 

In Holliday’s model, meiotic recombination is initiated by symmetric nicks on 

homologous chromosomes, but this mechanism did not fit with subsequent observations 

(reviewed in Stahl, 1994).  To accommodate the new data, Szostak et al. (Szostak et al., 

1983) proposed that meiotic recombination is initiated by a DSB on one chromatid.  In 

the DSB repair (DSBR) model they proposed (Figure 1A), based largely on observations 

of double-strand gap repair in mitotic cells, the pre-CO intermediate has two HJs.  Each 

junction in this double-HJ (dHJ) intermediate is proposed to be resolved independently, 

but the outcome is similar to Holliday’s model:  COs and NCOs are produced in equal 

numbers.  Strong support for the DSBR model came from physical studies of meiotic 

recombination intermediates and products in Saccharomyces cerevisiae.  These studies 

identified joint molecules (JMs) that form between homologous chromosomes (Collins 

and Newlon, 1994; Schwacha and Kleckner, 1994).  These JMs have many of the 

properties expected of dHJs, the key intermediate in the DSBR model (Schwacha and 

Kleckner, 1995), and are widely considered to be dHJs.  In this review, we use JM to 

refer to the molecule detected in experiments, and dHJ to refer to the intermediate 

predicted in models. 
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Figure 1.  Models of meiotic double-strand break repair.  (A) In the Szostak et al. (Szostak et 
al., 1983) model recombination initiates with a double-strand break (DSB) that is processed into 
an extended displacement loop (D-loop) and then a double Holliday junction (dHJ) structure.  
The dHJ is resolved into either a crossover (CO) or non-crossover (NCO) with equal probability.  
(B) In the revised model of Allers and Lichten (Allers and Lichten, 2001), some extended D-
loops are unwound by an anti-CO helicase to produce NCOs, and dHJs are resolved by a pro-CO 
resolvase into COs. 

 

Subsequent studies of JMs also led to a major challenge to the DSBR model.  

Allers and Lichten (Allers and Lichten, 2001) discovered that NCOs arose at the same 

time as JMs and prior to COs, a finding incompatible with the Szostak et al. DSBR 

model.  In light of this finding, Allers and Lichten suggested that NCOs do not come 

from dHJs, as in the DSBR model, but from an earlier intermediate in the pathway, the 

extended D-loop (Figure 1B).  A D-loop is formed when a single-stranded DNA end 

invades a homologous duplex, annealing to one strand and displacing the other.  Allers 

and Lichten suggested that meiotic NCOs arise via synthesis dependent strand annealing 

(SDSA), a process proposed to be a major mechanism through which COs are avoided in 
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mitotic DSB repair (reviewed in Pâques and Haber, 1999).  In SDSA, after the invading 

strand is extended by DNA synthesis, helicases can disrupt the D-loop, freeing the 

nascent strand to anneal to the other end of the DSB. 

Allers and Lichten noted another departure from the original DSBR model:  Most 

JMs are processed into COs (Allers and Lichten, 2001) (Figure 1B).  Although this 

discovery opposes the notion that resolution of a dHJ can produce a CO or a NCO with 

equal probability, it more readily accommodates the finding that NCOs outnumber COs, 

sometimes by a factor of ten or more (reviewed in Cole et al., 2012).  Thus, in the revised 

model of Allers and Lichten, the backone of the original DSBR model is intact, but dHJs 

are now preferentially repaired as COs, and NCOs arise via SDSA instead of dHJ 

resolution.  In this revised model, helicases that promote SDSA act as anti-CO factors 

and HJ resolvases become pro-CO factors rather than proteins that produce both COs and 

NCOs. 

Rise of the two-pathway paradigm 

Another major impact on meiotic recombination models came from studies of the 

S. cerevisiae ZMM (Zip1-Zip4, Msh4–Msh5, Mer3) proteins.  Msh4 and Msh5 are two 

widely-conserved ZMM proteins that form a meiosis-specific complex (Pochart et al., 

1997).  Notably, loss of Msh4 or Msh5, like loss of other ZMM proteins, does not 

eliminate COs, but merely reduces them by ~50-70% (Hollingsworth et al., 1995; Ross-

Macdonald and Roeder, 1994).  In Caenorhabditis elegans, however, Msh4 and Msh5 

seem to be essential for all meiotic COs (Kelly et al., 2000; Zalevsky et al., 1999).  To 

reconcile these organismal differences and explain the remaining COs in S. cerevisiae 

msh4 and msh5 mutants, Zalevsky et al. (Zalevsky et al., 1999) proposed that there are 
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two different pathways for meiotic CO formation (Table 1).  The first pathway, which 

requires Msh4–Msh5, is responsible for a majority of COs in S. cerevisiae and all COs in 

C. elegans; the second, independent of Msh4–Msh5, produces the remaining COs in S. 

cerevisiae msh4 and msh5 mutants. 

 

Class Type of CO Defining 
Proteins 

Percentage of COs 
Sc Sp Ce At Dm 

I interfering Msh4–Msh5 50-70 0 100 75-85 0 

II non-
interfering Mus81–Mms4 30-50 100 0 9-12 <10 

 

Table 1.  Percentage of crossovers attributed to each pathway in the early two-pathway 
paradigm.  Organism abbreviations: Sc, Saccharomyces cerevisiae; Sp, Schizosaccharomyces 
pombe; Ce, Caenorhabditis elegans; At, Arabidopsis thaliana; Dm, Drosophila melanogaster.  
See text for references. 

 

The idea of two meiotic CO pathways helped explain additional seemingly 

disparate findings in other organisms.  The fission yeast Schizosaccharomyces  pombe 

lacks orthologs of Msh4 and Msh5 (Villeneuve and Hillers, 2001).  Instead, most or all 

COs are dependent on the Mus81–Mms4 resolvase (the ortholog of Mms4 is called Eme1 

in S. pombe and many other organisms; for simplicity, we use the S. cerevisiae protein 

name here) (Boddy et al., 2001; Smith et al., 2003).  In budding yeast, loss of Mus81–

Mms4 causes only ~30-50% reduction in meiotic COs (de los Santos et al., 2001).  In 

light of the two-pathway paradigm, these results suggested that Mus81–Mms4 functions 

in one of the two meiotic CO pathways, and that this pathway is responsible for all 

meiotic COs in S. pombe but only a subset of COs in S. cerevisiae.  This begged the 

question of whether Mus81–Mms4 and Msh4–Msh5 function in the same meiotic CO 

pathway or in two different pathways.  In both S. cerevisiae and Arabidopsis thaliana, 
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double mutants that lack both the Msh4–Msh5 and Mus81–Mms4 complexes have more 

severely reduced CO levels than mutants lacking either one, strongly supporting the 

existence of two pathways – one dependent on Msh4–Msh5 (Class I) and another on 

Mus81–Mms4 (Class II) (Berchowitz et al., 2007; de los Santos et al., 2003).  

The nature of the COs produced by the two pathways was also in question – i.e., 

if there are two meiotic CO pathways, do the COs produced by them have different 

properties?  A clue to the answer came from mathematical modeling of crossover 

interference. Copenhaver et al. (Copenhaver et al., 2002) were able to fit Arabidopsis 

data to a counting model for interference (Foss et al., 1993) if they assumed two types of 

COs, some that participate in interference and some that do not.  Consistent with this 

prediction, experimental studies demonstrated that the residual COs in Arabidopsis and 

budding yeast msh4 and msh5 mutants do not display interference (Argueso et al., 2004; 

Higgins et al., 2004; Lu et al., 2008; Novak et al., 2001).  Conversely, Mus81–Mms4-

independent COs in S. cerevisiae and Arabidopsis do exhibit interference (Berchowitz et 

al., 2007; de los Santos et al., 2003).   These results suggested that the Msh4–Msh5-

dependent pathway produces COs subject to interference, whereas the Mus81–Mms4-

dependent pathway produces non-interfering COs (Table 1).  This formulation explains 

the finding that COs are non-interfering in S. pombe (Munz, 1994), as these COs are 

produced from the Mus81–Mms4 pathway, and the strong interference of all COs in C. 

elegans (Meneely et al., 2002), as these are all produced by the Msh4–Msh5 pathway. 

Although the paradigm of two meiotic CO pathways helped to explain many 

observations, this model also had some weaknesses.  First, not all meiotic COs fit into 

these two pathways.  S. cerevisiae mutants lacking both Msh4–Msh5 and Mus81–Mms4 
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still have some residual COs (de los Santos et al., 2003).  In addition, though 

mathematical models of recombination in Drosophila fit best if most or all COs are 

interfering (Copenhaver et al., 2002), the Drosophila genome lacks Msh4 and Msh5 

(Sekelsky et al., 2000), suggesting that another pathway produces interfering COs in this 

species. 

Another shortcoming of the two-pathway paradigm is that the proteins used to 

define these pathways have very different functions:  Mus81–Mms4 is an HJ resolvase 

whose activity presumably directly produces CO products (Boddy et al., 2001) (i.e., it is a 

pro-CO resolvase).  Msh4–Msh5, however, does not directly produce COs, but instead 

blocks anti-CO helicases (i.e., it is an anti-anti-CO complex; see discussion below).  

Notably, the pro-CO resolvase that acts in the Msh4–Msh5-dependent pathway was 

unknown.  Furthermore, the relationship between these pathways and the revised model 

for meiotic COs was unclear.  Does the model fit both Class I and Class II pathways, with 

different proteins used for each, or is a second model necessary?  These apparent 

weaknesses in the two-pathway paradigm for meiotic COs have largely been solved in 

the past year, as studies in a number of laboratories using different model organisms have 

clarified the roles and identities of pro-CO resolvases, anti-CO helicases, and anti-anti-

CO complexes.   

 

Anti-CO and pro-CO activities of Sgs1 

Studies of anti-CO helicases have been particularly illuminating.  COs are a 

beneficial product of meiotic recombination, but they are avoided during mitotic 

recombination because they can cause genome instability.  DSBs in non-meiotic cells are 
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preferentially repaired into NCOs, largely through the action of anti-CO helicases.  One 

key anti-CO protein is the Bloom syndrome helicase BLM (reviewed in Andersen and 

Sekelsky, 2010).  Although BLM likely has many anti-CO functions, two activities are 

relevant to DSB repair.  First, studies in Drosophila suggested that BLM promotes 

SDSA, probably by disrupting D-loops after repair DNA synthesis (Adams et al., 2003; 

McVey et al., 2004).  Second, in vitro studies demonstrated that BLM, together with 

topoisomerase IIIα and other proteins, can catalyze dHJ dissolution, a process in which 

the two HJs are migrated toward one another and then decatenated (Wu and Hickson, 

2003).  Unlike resolution of dHJs, dissolution generates only NCOs. 

Genetic studies suggested a similar anti-CO role for the S. cerevisiae BLM 

ortholog Sgs1 in meiosis.  COs are reduced in mutants lacking ZMM proteins, including 

Msh4–Msh5, but, remarkably, COs are restored in double mutants that also lack Sgs1 

(Jessop et al., 2006; Oh et al., 2007).  An attractive interpretation of these results is that 

one function of ZMMs is to antagonize the anti-CO activity of Sgs1.  Thus, Msh4–Msh5 

is an anti-anti-CO protein. 

Although these experiments with ZMMs and Sgs1 are consistent with the known 

mitotic anti-CO functions of Sgs1, sgs1 mutants have only a modest increase in meiotic 

COs, much less than would be expected if all DSBs were processed through a pathway in 

which dHJs were produced and resolved into COs (Jessop et al., 2006; Rockmill et al., 

2003).  Novel insights into the solution to this apparent paradox came again from 

physical measurements of recombination intermediates and products.  De Muyt et al. (De 

Muyt et al., 2012) found that NCOs are still produced in sgs1 mutants, but, unlike the 

case in wild-type cells, these NCOs arise as JMs disappear and COs appear.  This 
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suggests that when Sgs1 is absent, dHJs are resolved into COs and NCOs, as in the 

original DSBR model. 

Additional insights came from physical studies of recombination in mutants 

lacking the known HJ resolvases.  Three proteins, Mus81–Mms4, Yen1, and Slx1–Slx4, 

possess resolvase activity in vitro (Boddy et al., 2001; Fekairi et al., 2009; Ip et al., 

2008).  Mus81–Mms4 was shown to be important in generating mitotic crossovers, with 

Yen1 playing a compensatory or partially redundant role (Ho et al., 2010).  Experiments 

by De Muyt et al. (De Muyt et al., 2012) and Zakharyevich et al. (Zakharyevich et al., 

2012) found that single mutants lacking any one of these enzymes were still able to 

resolve most JMs and produce approximately normal numbers of COs.  Even triple 

mutants lacking all three resolvases showed only a modest reduction in JM resolution and 

CO formation.  These results suggest that the known resolvases collectively process only 

a small fraction of JMs.  If these are JMs from the Class II pathway, then most JMs must 

be generated in the Class I pathway and be resolved by an unidentified resolvase. 

Yet another surprise came when the same experiments were done in the absence 

of Sgs1.  In this case, removing all three resolvases resulted in most JMs being left 

unresolved.  Again, this result indicates that JMs produced in the absence of Sgs1 are 

different from those produced in the presence of Sgs1.  In the absence of Sgs1, JMs are 

acted on by the known resolvases to produce both COs and NCOs, much like in the 

original DSBR model.  The known resolvases, functioning in the Class II pathway, are 

therefore neither pro-CO nor anti-CO, since they generate both outcomes.  Conversely, 

JMs produced in the presence of Sgs1 (Class I pathway) are cut by an unknown, pro-CO 

resolvase to produce exclusively COs. 
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What is the identity of the pro-CO resolvase that functions in the Class I pathway?   

It had previously been suggested that the mismatch repair proteins Mlh1–Mlh3 (MutLγ 

complex) and Exo1 might act in dHJ resolution (Nishant et al., 2008; Zakharyevich et al., 

2010).  COs are reduced in mlh3 mutants, but removal of Sgs1 restores COs, suggesting 

that Mlh3, like ZMMs, functions in the Class I pathway (Oh et al., 2007).  Consistent 

with this hypothesis, Zakharyevich et al. (Zakharyevich et al., 2012) found that when all 

three known resolvases were removed, eliminating Mlh3 resulted in a similar reduction in 

COs as eliminating Sgs1.  A parallel set of experiments suggested that Exo1 functions in 

a different pathway than Mus81–Mms4, putting Exo1 also in the Class I pathway. 

These results are consistent with Sgs1 having the expected anti-CO functions:  It 

promotes SDSA (in wild-type cells) and dHJ dissolution (when the three known 

resolvases and the putative pro-CO resolvase are all missing).  Unexpectedly, the results 

also reveal a pro-CO role of Sgs1.  This pro-CO role may be in influencing pathway 

choice:  In the presence of Sgs1, the ZMM-dependent Class I CO pathway can be used, 

but in the absence of Sgs1, the alternative Class II pathway gives rise to both COs and 

NCOs from dHJ resolution. 

 

Extending the two-pathway paradigm 

 The results discussed above provided substantial support for and clarification of 

the two-pathway paradigm for meiotic COs in S. cerevisiae.  Other recent results reveal 

the applicability of this paradigm to other model organisms.  In wild-type C. elegans all 

COs are generated through the Class I pathway (Kelly et al., 2000; Zalevsky et al., 1999).  

However, when additional COs are induced, either by induction of DSBs through 
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exposure to ionizing radiation or by removal of RTEL-1 (yet another anti-CO helicase), 

the additional COs require MUS-81 but not the ZMM protein ZHP-3 (Youds et al., 

2010).   Crossover interference is reduced, consistent with these extra COs being formed 

through the Class II pathway.  These findings expose the availability of the Class II 

pathway in C. elegans, even though it is normally not used to generate meiotic COs. 

Additionally, Crismani et al. (Crismani et al., 2012) found that Arabidopsis 

mutants lacking the FANCM helicase had elevated COs.  The additional COs were 

interference-insensitive, arose from a ZMM-independent pathway, and relied on Mus81 

for formation.  These findings parallel results seen in S. cerevisiae, where the absence of 

Sgs1 leads to COs being formed in an alternative, Mus81-dependent pathway.  

Furthermore, loss of FANCM rescues the meiotic defects of Arabidopsis zmm mutants, 

just like the removal of Sgs1 in S. cerevisiae zmm mutants (Crismani et al., 2012; Knoll 

et al., 2012).  These findings strongly suggest that Arabidopsis FANCM functions as a 

meiotic anti-CO protein in a role that is antagonized by the ZMM proteins, similar to the 

role of Sgs1 in budding yeast.  Thus, it appears that organisms can exchange proteins that 

occupy the same functional niche (in this case, swapping two anti-CO helicases) and still 

follow the framework of the two-pathway paradigm. 

 

Meiotic and mitotic DSB repair in meiosis 

These recent findings have added much to our understanding of the two CO 

pathways used in meiosis, and suggest a unified model that describes the relationship 

between the two pathways (Figure 2).  By understanding that organisms use each 

pathway to varying degrees and use different proteins to accomplish the same tasks, this 
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unified model appears to be applicable to a more diverse set of model organisms than 

previously recognized.  Furthermore, it is now apparent that the Class II pathway is 

strikingly similar to mitotic DSB repair in many respects.    First, NCOs – not COs – are 

the predominant product.  This outcome is achieved through SDSA, mediated by one or 

more anti-CO helicases.  In instances where SDSA does not occur and a dHJ is 

generated, this intermediate can be resolved in an unbiased manner by “mitotic” 

resolvases to give either an NCO or a CO, but these COs are non-interfering.  Despite 

these similarities, it should be noted that there are features of the Class II pathway that 

are unique to meiosis.  For example, DSBs are generated by meiosis-specific Spo11 

complexes, and engagement of DNA strands from the broken chromosome to the 

homologous chromosome is mediated in most species by meiosis-specific strand 

exchange proteins like Dmc1 (reviewed in Neale and Keeney, 2006).  These events, 

however, may occur prior to the split between the Class I and Class II pathways (Figure 

2).   

While the Class II pathway is similar to mitotic DSB repair, the Class I pathway is 

a meiosis-specific DSB repair mechanism with embellishments to favor the formation of 

interfering COs.  To ensure that dHJs are generated, anti-CO activities of helicases are 

blocked by meiosis-specific anti-anti-CO proteins.  These dHJs are resolved mostly or 

exclusively into CO products by a pro-CO, possibly meiosis-specific, resolvase.  Finally, 

Class I COs exert and are sensitive to CO interference, perhaps as a consequence of 

functional connections between this pathway and structural components of meiotic 

chromosomes, including the synaptonemal complex and meiosis-specific cohesins (de 

Boer and Heyting, 2006; Zickler and Kleckner, 1999).  



14 
 

 

Figure 2.  Two meiotic crossover pathways.  In this unified model, a DSB is processed into an 
extended D-loop.  In the “mitotic-like” pathway (blue, Class II), the extended D-loop can be 
unwound by an anti-CO helicase to produce NCOs.  In some cases a dHJ is generated and then 
resolved by an unbiased resolvase into either a CO or NCO product.  In the meiosis-specific CO 
pathway (purple, Class I), an anti-anti-CO complex blocks the action of anti-CO helicases to 
promote formation of a dHJ intermediate, which is then acted upon by a pro-CO resolvase to 
form exclusively CO products.  A dHJ is presented as a key intermediate to fit the original models 
and the detection of joint molecules (JMs) with properties of dHJs in physical assays.  However, 
there are other models which posit additional/alternative intermediates, including single HJs and 
multi-chromatid JMs.  Variations on the two-pathway model can accommodate these other 
intermediates and less-common fates of DSBs. 

 

The findings described above provide new insights into the evolution of meiotic 

recombination.  Meiosis has long been thought to have evolved from mitosis (Cavalier-

Smith, 1981; Wilkins and Holliday, 2009), and the evolution of meiotic DSB repair from 

mitotic DSB repair has been suggested previously (Marcon and Moens, 2005).  We 

hypothesize that early in the evolution of meiosis, meiotic recombination occurred only 

through the Class II pathway, a method of DSB repair already in use in somatic cells.  
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Over time, the Class I pathway evolved to place additional constraints on meiotic 

recombination to promote the optimal placement of COs.  To ensure CO formation, 

additional regulation of anti-CO helicases active during mitotic DSB repair was 

developed.  This functional niche was filled by meiosis-specific anti-anti-CO proteins 

like Msh4–Msh5.  The Class I pathway also evolved so that dHJs are resolved in a biased 

way to produce COs but not NCOs.  The Class II pathway remained available, perhaps as 

a failsafe to ensure that all DSBs are repaired. 

Many questions about meiotic recombination remain unsolved.  One key question 

is how the CO/NCO decision (i.e., whether a given DSB is repaired as a CO or an NCO) 

is made.  Studies in S. cerevisiae suggest that this decision is made early in the 

recombination process (reviewed in Bishop and Zickler, 2004).  In light of the two-

pathway paradigm, the CO/NCO decision must be enforced at or prior to divergence of 

the Class I and Class II pathways.  Since Sgs1 appears to control pathway choice (De 

Muyt et al., 2012; Zakharyevich et al., 2012), it stands to reason that this protein may 

play a role in the CO/NCO decision.  The CO/NCO decision must also be intertwined 

with the mechanism that mediates crossover interference.   In the two-pathway model 

presented in Fig. 2, interference could be mediated by crossovers themselves or by any 

pre-CO intermediate specific to the Class I pathway, such as D-loops or dHJs loaded with 

the anti-anti-CO complex.  Feedback from these pre-CO intermediates or Class I COs 

would have to impact the CO/NCO decision of nearby DSB repair events to ensure they 

go down the NCO pathway.  How the CO/NCO decision is made, how Sgs1 mediates this 

decision, and how crossover interference works are important areas for future research in 
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the meiotic recombination field.  The unified view of recombination pathways depicted in 

Figure 2 may help to guide some of these studies. 

 

Drosophila melanogaster as a meiotic model system 

The Drosophila model system is excellent for studying meiotic recombination.  

The long history of Drosophila meiotic research (Hawley, 1993), coupled with the 

absence of meiotic recombination in males (Morgan, 1912) (thus allowing the study of 

recombination events derived from a single parent only), the ability of Drosophila to 

tolerate high (0.5%) heterology (to aid in mapping recombination events) (Hilliker et al., 

1991), and the increased likelihood of recovering non-disjunction (NDJ) progeny (some 

aneuplodies involving both the first and fourth chromosomes are viable) (Ashburner, 

1989), all make Drosophila an ideal system for studying meiotic recombination. 

Historically, two classes of Drosophila meiotic recombination mutants have been 

described: exchange and precondition mutants (Carpenter and Sandler, 1974; Sandler et 

al., 1968).  The exchange class of mutants is characterized by a uniform decrease in COs 

across a chromosome arm.  Precondition mutants have a non-uniform decrease in 

crossing over such that the frequency of exchange in intervals distal to the centromere are 

the most greatly decreased, while the frequency of exchange in proximal intervals is 

approximately wild-type or even increased.  The first class was so named because these 

mutants were believed to be involved in the actual meiotic recombination exchange 

reaction, while the precondition mutants were believed to be necessary for establishing 

the preconditions of exchange. 
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The exchange class of meiotic recombination mutants contains four proteins 

hypothesized to form a complex necessary for HJ resolution: MEI-9, ERCC1, MUS312 

and HDM (Joyce et al., 2009; Radford et al., 2005; Sekelsky et al., 1995; Yildiz et al., 

2002).  The precondition class genes include: mei-217, mei-218, recombination defective 

(rec) and Mcm5 (Baker and Carpenter, 1972; Blanton et al., 2005; Lake et al., 2007; Liu 

et al., 2000).  Single mutants with null mutations in mei-217, mei-218 or rec exhibit 

identical phenotypes – a severe reduction in crossing over with residual COs showing the 

abnormal precondition distribution, high NDJ, normal synaptonemal complex formation, 

and no hypersensitivity to DNA damaging agents (Baker et al., 1976; Baker and 

Carpenter, 1972; Blanton et al., 2005; Carpenter, 1979; Grell, 1984; Liu et al., 2000).  

Epistasis experiments suggest that these precondition proteins function at an intermediate 

step in the meiotic recombination pathway (Blanton et al., 2005; Liu et al., 2000; 

Sekelsky et al., 1995).  Likewise, a separation-of-function allele in Mcm5, called 

Mcm5A7, shows these same precondition mutant phenotypes (Lake et al., 2007). 

 

Mini-chromosome maintenance proteins 

Two of the Drosophila precondition proteins are members of the mini-

chromosome maintenance (MCM) protein family: REC, the Drosophila ortholog of 

MCM8, and MCM5. The eukaryotic MCM protein family is comprised of MCM2-9 

(Bochman and Schwacha, 2009).  The MCM proteins are characterized by a highly 

conserved ATPase domain located within a larger “MCM domain” (Bochman and 

Schwacha, 2009).  At the core of this ATPase domain are Walker A and Walker B 

ATPase motifs (Walker et al., 1982).  The Walker A motif interacts with the β- and γ-
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phosphates of ATP (Lindegren, 1955), while residues in the Walker B motif bind Mg2+ 

necessary for ATP catalysis (Schulz, 1992).  MCM proteins are members of the AAA+ 

(ATPases Associated with a variety of cellular Activities) ATPase family (Koonin, 1993; 

Wu et al., 2007), which typically form toroidal, hexameric complexes (Hanson and 

Whiteheart, 2005). 

MCM2-7 are found in all eukaryotes and form a heterohexameric complex that is 

a component of the pre-replicative complex (pre-RC) (Bell and Dutta, 2002).  The 

formation of the pre-RC is one of many steps required to couple DNA replication with 

the cell cycle.  Once DNA replication is initiated, the MCM2-7 complex becomes the 

replicative helicase responsible for unwinding the DNA duplex ahead of the replication 

machinery (Bochman and Schwacha, 2009).  It is the binding and hydrolysis of ATP that 

provides the energy necessary for the MCM helicase to unwind DNA (Bochman and 

Schwacha, 2009).  The MCM2-7 proteins likely have additional roles in cellular 

processes beyond replication, potentially explaining the excess of MCM proteins that do 

not localize to replication forks (the “MCM paradox”) (Laskey and Madine, 2003).  

These processes include transcription, chromatin remodeling and checkpoint responses 

(Forsburg, 2004).  Additionally, an examination of the meiotic transcriptional profiles of 

three fungi – S. cerevisiae, S. pombe and Coprinus cinereus – found that one MCM 

protein (MCM2 in C. cinereus, MCM5 in S. cerevisiae and MCM6 in S. pombe) was up-

regulated separately from the remaining MCM2-7 complex members (Burns et al., 2010) 

– an intriguing finding as a meiotic role for Drosophila MCM5 has also been discovered 

(Lake et al., 2007).  These results suggest a specialized role for (at least) one MCM 

protein per organism in meiosis. 
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While MCM2-7 are found in all eukaryotes, MCM8 and MCM9 are absent in 

some lineages (Blanton et al., 2005), and less is known about their cellular function.  

Early experiments with MCM8 produced contradictory results, as one report found that 

MCM8 interacted with the MCM4,6,7 complex (Johnson et al., 2003), while three other 

groups failed to show this interaction (Gozuacik et al., 2003; Maiorano et al., 2005; 

Volkening and Hoffmann, 2005).  Furthermore, while one group provided evidence that 

MCM8 was required for loading the pre-RC (Volkening and Hoffmann, 2005), another 

group suggested MCM8 was required for DNA synthesis (Maiorano et al., 2005).  More 

recently, data from two studies has shown that MCM8 and MCM9 form a complex 

involved in homologous recombination-mediated DNA repair (Lutzmann et al., 2012; 

Nishimura et al., 2012).  In particular, Lutzmann et al. found that male and female 

MCM8-/- mice and MCM9-/- female mice are sterile, showing a role for the MCM8-

MCM9 complex in gametogenesis (Lutzmann et al., 2012).  Finally, the Drosophila 

ortholog of MCM8, REC, is required for normal meiotic CO formation (Blanton et al., 

2005).  Interestingly, whereas all other organisms possessing MCM8 also have MCM9, 

the Drosophila genome only encodes MCM8/REC (Blanton et al., 2005). 

 

Investigations into the role of the Drosophila precondition proteins 

 At the outset of this work, more questions than answers surrounded the 

Drosophila precondition proteins: REC, MEI-217, MEI-218 and MCM5.  Two of the 

precondition proteins were readily recognizable as members of the MCM family 

(MCM8/REC and MCM5), and MEI-218 had been suggested to have a weak, MCM-like 

domain at its C-terminus (Lake et al., 2007).  At first glance, this suggested the 
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precondition proteins might have some connection to the MCM family.  MEI-217, 

however, was an orphan protein, lacking identifiable homology to any known protein.  In 

this work, I investigated the possible connection between the MCM family and the 

precondition proteins.  Additionally, by definition, all precondition mutants had the same 

abnormal meiotic CO distribution.  It was unknown whether this phenotype was the result 

of a common function for the precondition proteins, or was merely a coincidence of the 

four proteins having varied roles in the meiotic recombination pathway.  To this end, I 

sought to identify the role of the precondition proteins and to determine whether the 

proteins functioned together.  Finally, I hoped to discover why Drosophila meiotic 

recombination did not fit into the two-pathway paradigm unlike so many other model 

systems.  For example, how was Drosophila, the organism in which meiotic 

recombination and interference were discovered (Morgan, 1911; Sturtevant, 1913), able 

to create interfering meiotic COs without key pathway members Msh4 and Msh5?  By 

utilizing genetic, biochemical and evolutionary biological techniques I was able to 

answer these fundamental questions and discover new avenues for future research. 



 
 

 

 

CHAPTER 2 

EVOLUTION OF AN MCM COMPLEX IN FLIES THAT PROMOTES 
MEIOTIC CROSSOVERS BY BLOCKING BLM HELICASE1 

 

Crossovers (COs) between homologous chromosomes can be beneficial or 

detrimental, depending on their context (Andersen and Sekelsky, 2010).  Meiotic COs 

increase genetic diversity and promote accurate chromosome segregation, whereas 

mitotic COs can lead to loss of heterozygosity, potentially triggering tumorigenesis.  

Mitotic COs are prevented by “anti-CO” proteins.  A key anti-CO protein is the Bloom 

syndrome helicase BLM, which generates non-CO products by unwinding recombination 

intermediates that might otherwise be processed into COs (Chu and Hickson, 2009).  In 

meiosis, CO formation is encouraged through inhibition of anti-CO proteins.  The 

budding yeast Msh4-Msh5 heterodimer antagonizes the BLM ortholog Sgs1 (Jessop et 

al., 2006).  Msh4 and Msh5 are found in all metazoans for which sequence is available, 

except Drosophila species and their fellow schizophoran Glossina morsitans, the tsetse 

fly (Figures 3 and 4).  The lack of recognizable orthologs of these proteins suggests that 

these species evolved another protein or complex to block the anti-CO activity of BLM. 

                                                 
1 This chapter was previously published as Evolution of an MCM Complex in Flies That Promotes Meiotic 
Crossovers by Blocking BLM Helicase.  Kohl KP, Jones CD and Sekelsky J.  Science.  2012.  338: 1363-
1365.  Molecular evolutionary analysis was conducted by Corbin Jones and all authors contributed to 
writing the manuscript. 
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Figure 3.  Drosophila and Glossina uniquely lack MSH4, MSH5, and MCM9.  The presence 
(filled black circles) or absence (open red circles) of MSH4, MSH5, MCM8, MCM9, and MEI-
218 orthologs within representative genera spanning the metazoa is indicated.  The topology of 
phylogenetic relationships was created from an alignment of DNA polymerase alpha catalytic 
subunit (this protein was not present in the Saccoglossus kovalevski sequences, so this species 
was inserted into its consensus location).  Protein absence was assumed when an ortholog could 
not be identified following multiple rounds of BLAST searches against several databases (see 
Materials and Methods). 
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Figure 4.  Drosophila and Glossina uniquely lack MSH4, MSH5, and MCM9.  This figure is 
similar to Figure 3, but includes only arthropods.  See Figure 3 for details. 

 

Like Saccharomyces cerevisiae Msh4 and Msh5 mutants, the only defects 

in Drosophila rec, mei-217, and mei-218 mutants are in meiotic recombination (Baker 

and Carpenter, 1972; Blanton et al., 2005; Hollingsworth et al., 1995; Liu et al., 2000; 

Manheim et al., 2002; Ross-Macdonald and Roeder, 1994).  REC is orthologous to 
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MCM8 (Blanton et al., 2005); MCMs have properties reminiscent of Msh4-Msh5.  

MCM2 through MCM7, which are essential for replication in eukaryotes, form a 

heterohexamer that encircles DNA (Remus et al., 2009).  Similarly, Msh4-Msh5 is 

thought to encircle recombination intermediates (Snowden et al., 2004).  In both cases, 

this activity is regulated by adenosine triphosphate (ATP) binding and hydrolysis (Remus 

et al., 2009; Snowden et al., 2004). 

MEI-217 initially appeared to be novel, because BLAST searches failed to 

identify homologs outside dipterans, and searches of the Conserved Domain Database 

(CDD) (Marchler-Bauer et al., 2011) did not detect any domains.  BLAST searches with 

MEI-218 identified a single putative ortholog in metazoans (Figures 3 and 4).  A CDD 

search returned a hit to the MCM domain in the C terminus of MEI-218, but the score 

was low and the match covered only one-third of the domain (Figure 5A).  To verify the 

presence of this domain, we conducted structure-based searches with PHYRE (Figure 

6A) (Kelley and Sternberg, 2009).  This analysis revealed that the C terminus of MEI-218 

has a structure similar to that of the AAA adenosine triphosphatase (ATPase) domain of 

MCMs (Figure 5B).  Canonical MCMs have both an N-terminal MCM domain and a C-

terminal ATPase domain.  The N-terminal domain is present in vertebrate MEI-218 but 

not in Drosophila MEI-218.  However, PHYRE with MEI-217 shows that its predicted 

structure is similar to the MCM N-terminal domain.  Because MEI-217 and MEI-218 are 

encoded by overlapping open reading frames on the same transcript (Liu et al., 2000), we 

infer that they evolved from an MCM-like protein represented by a single polypeptide in 

other metazoans. 
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Figure 5.  Domains identified by a search of the Conserved Domain Database in Drosophila 
melanogaster REC, MEI-217, MEI-218 and human MEI-218.  (A) In database descriptions 
COG1241 is “MCM2”, while smart00350 and pfam00493 are both listed as “MCM”.  To the 
right of each domain is the E value, percent identity/percent similarity between the domain and 
input sequences, and the percentage of the domain definition that the alignment spans.  For REC 
only the top three domain hits are shown.  (B) Alignment of the Walker A and B motifs in human 
and Drosophila melanogaster MCM5, MCM8/REC, and MEI-218.  These motifs are involved in 
ATP binding and hydrolysis.  Identical or conserved residues have a black background.  Numbers 
in parentheses denote number of amino acids between motifs.  The consensus sequences are 
given below the alignment.  The changes in both Drosophila and human MEI-218 suggest that 
this protein does not bind or hydrolyze ATP. 

 

The shared phenotypes and MCM domains suggest that REC, MEI-217, and MEI-

218 function together in meiotic recombination.  To distinguish them from the replicative 

MCMs, we refer to REC, MEI-217, and MEI-218 as “mei-MCMs.”  Because MCM2 

through MCM7 function together as a heterohexamer, we investigated whether the mei-

MCMs form a complex.  MEI-217 interacted strongly with both the C-terminal third of 
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MEI-218 and REC (Figure 6B and C), which suggests that the mei-MCMs form a 

complex.  This complex likely also contains one or more replicative MCMs.  A meiosis-

specific mutation in Mcm5 causes the same phenotypes as mei-MCM mutants (Lake et 

al., 2007), making MCM5 a strong candidate to be a component of the complex. 

 

 

Figure 6.  mei-MCM complex.  (A) Structural domains identified through PHYRE.  “MCM N-
terminal domain” corresponds to Protein Data Bank fold 3f9v and “AAA ATPase domain” to fold 
ID 3f8t.  The “x” on Drosophila and human (Hs) MEI-218 symbolizes changes in the ATP 
binding and hydrolysis motifs predicted to abolish ATPase activity (Figure 5).  Red arrows on 
MEI-218 indicate segments used in yeast two-hybrid analysis.  (B) Yeast two-hybrid interactions 
between MEI-217 and MEI-218.  Cells expressing the indicated fusions to the GAL4 DNA 
binding domain (BD) or activating domain (AD) were streaked onto selective media.  Growth on 
–trp –leu –his indicates an interaction.  (C) Co-immunoprecipitation of REC and MEI-217.  
Epitope-tagged mei-MCMs were co-expressed in insect cells, immunoprecipitated with 
antibodies to the indicated epitope tags, blotted and probed with antibodies to REC and to the 
hemagglutinin (HA) tag. 
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Noting the genetic and biochemical similarities between mei-MCMs and Msh4-

Msh5, we hypothesized that the mei-MCMs antagonize Drosophila melanogaster BLM 

(DmBLM) in lieu of Msh4-Msh5.  This hypothesis predicts that removing DmBLM 

should compensate for mei-MCM mutations; in budding yeast, the CO defect in msh4 

mutants is suppressed by removing Sgs1 (Jessop et al., 2006).  Few COs were made 

in rec and mei-218 single mutants, resulting in high nondisjunction (NDJ) of meiotic 

chromosomes (Figure 7A).  In contrast, mutations in mus309, which encodes DmBLM, 

caused only a mild reduction in COs and correspondingly low levels of NDJ.  Strikingly, 

mus309 mutations suppressed the high-NDJ phenotype of rec and mei-218 mutants 

(Figure 7A).  Furthermore, the low CO rate in rec mutants returned to an approximately 

wild-type rate in mus309 rec double mutants (Figures 7B and 8, and Table 2); this finding 

indicates that mei-MCMs are not essential for generating meiotic COs if DmBLM is 

absent, thereby supporting our hypothesis that mei-MCMs oppose the known anti-CO 

activities of DmBLM (Adams et al., 2003; McVey et al., 2007). 

 

      

Figure 7.  mei-MCMs antagonize DmBLM.  (A) X chromosome non-disjunction (NDJ) across 
more than 1500 individuals for each genotype except mei-218; mus309 (n=383). ***, P < 0.0001. 
(B) This graph shows the summed map distance in map units (m.u., equivalent to centiMorgans) 
across five intervals spanning ~20% of the genome for over 1000 individuals for each genotype. 
P < 0.0001 for all comparisons except WT versus mus309 rec, P = 0.0674. 



28 
 

 

Figure 8.  Crossovers in rec and mus309 mutants.  Crossover distribution across five intervals 
on chromosome 2L and proximal 2R is shown.  The markers used in mapping are shown above 
the graph.  Hash marks between pr and cn indicate the position of the centromere.  Solid lines 
depict the number of map units (m.u.) per megabase pair (Mb) in each interval for wild-type, rec, 
mus309, and mus309 rec for more than 1000 individuals for each genotype.  Dashed lines 
indicate the mean CO rate across the entire region.  Determining the cause of the increased COs 
in mus309 rec compared to mus309 is difficult, since we cannot distinguish between true meiotic 
COs and pre-meiotic mitotic COs occurring in the mus309 mutant background.  The occurrence 
of pre-meiotic mitotic crossovers also complicates efforts to determine whether crossover 
interference is altered in mus309 genotypes (McVey et al., 2007); however, there are significantly 
more double crossover (DCO) and triple crossover (TCO) progeny in mus309 rec compared to 
mus309 (Table 2) (P < 0.0001 for DCO, P = 0.046 for TCO, Fisher’s exact test) and to wild-type 
(P < 0.0001 for DCO, P = 0.0002 for TCO, Fisher’s exact test), suggesting that interference is 
disrupted in rec mutants even in the absence of DmBLM.  Recent studies suggest that Sgs1 has, 
in addition to its anti-CO functions, a pro-CO role in meiosis, perhaps directing recombination 
into the Msh4–Msh5 pathway (De Muyt et al., 2012; Zakharyevich et al., 2012).  If true in 
Drosophila, the COs in mus309 rec mutants may arise from a mei-MCM-independent CO 
pathway rather than the lack of need to block DmBLM anti-CO activities.  However, this scenario 
cannot explain the finding that REC regulates CO distribution even in the absence of DmBLM. 
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Table 2.  Crossover distribution.  Each row lists the number of non-crossover (NCO), single 
crossover (SCO), double crossover (DCO), and triple crossover (TCO) progeny for each indicated 
genotype.  For NCO and SCO, the + symbol indicates wild-type for a marker, while the gene 
name indicates mutant for a marker, in the order along the chromosome (net ho dp b pr cn).   
Intervals for DCOs and TCOs are given in the columns on the right, with interval I being net to 
ho, etc.  Numbers in parentheses denote number of times that particular TCO combination was 
observed in that genotype. 

 

mei-MCMs appear to functionally replace Msh4-Msh5 in Schizophora, and 

presumably evolved to do so in response to natural selection.  Several evolutionary 

scenarios could lead to this result (Figure 9), but most predict that there would be 

evidence of adaptive divergence of mei-MCM genes in Schizophora.  REC was 

previously noted to be highly diverged in Drosophila (Blanton et al., 2005; Liu et al., 

2009); we found that Glossina MCM8/REC is similarly divergent (Figure 10).  The 

presence or absence of MCM8 correlates with that of its functional partner MCM9 

throughout eukaryotes, except in Drosophila and Glossina, which retained MCM8/REC 

while losing MCM9 (Figures 3 and 4).  The loss of MCM9 suggests that MCM8 evolved 

a novel function in an ancestor to Schizophora. 
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Figure 9.  Possible evolutionary scenarios for the loss of Msh4–Msh5 in Drosophila and the 
evolution of mei-MCM complex.  Across metazoans Msh4–Msh5 antagonize the anti-CO 
activity of BLM to promote meiotic COs.  Given the presumed evolutionary stability of this 
interaction over hundreds of millions of years, loss of Msh4–Msh5 and its replacement by mei-
MCMs in the higher Dipterans is surprising.  A range of evolutionary scenarios could explain this 
pattern.  The four scenarios presented here depict archetypes of these possibilities (within a panel, 
top to bottom represents past to present).  (A) Sudden loss of Msh4–Msh5 (green), followed by 
recruitment and evolution of mei-MCMs (red).  This scenario would provide the strong signature 
of selection observed at REC (shift from blue, to purple, to red), as it would be needed to restore 
antagonism of BLM and promote the formation of crossovers.  However, this scenario seems 
unlikely, as a sudden loss of Msh4–Msh5 would lead to meiotic chromosome instability and 
could likely occur only in small populations with substantial genetic drift.  (B) Gradual recruit-
ment and replacement of Msh4–Msh5 by mei-MCMs.  MCM8 and MCM9 have a role in meiotic 
recombination and other DNA repair processes (Lutzmann et al., 2012; Nishimura et al., 2012).  
This may have been as a nascent BLM antagonist with a minor recombination role that gradually 
expanded and eventually supplanted that of Msh4–Msh5.  This scenario also seems unlikely as it 
does not necessarily result in a strong signature of selection.  The strong signature of selection we 
observed suggests that extensive evolution was needed in REC to replace Msh4–Msh5, but this 
also seems implausible given the evolutionary stability of Msh4–Msh5 in all other metazoans.  
(C) Selection against Msh4–Msh5 results in the repurposing and remodeling of REC from an 
ancestral MCM.  Either an endogenous force (e.g., transposon, driving chromosome, or other 
selfish element) or exogenous force (e.g., viruses integrating at breaks, highly consistent 
environment) selected for reduced crossover activity during meiosis.  This could result in a 
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gradual diminishing of Msh4–Msh5 activity.  Dollo’s law of irreversibility suggests that once a 
trait is lost, it never re-evolves exactly as before (Collin and Cipriani, 2003; Collin and Miglietta, 
2008).  It may have been evolutionarily simpler to evolve the mei-MCMs than to restore Msh4–
Msh5 activity (and potentially face the same evolutionary pressure that drove this activity down).  
(D) Positive selection for increased CO activity or antagonism of BLM drives evolution of mei-
MCMs.  CO rates are genetically labile and increased recombination rate is thought to facilitate 
adaptation (Adams et al., 2000).  Schizophora represents a recent rapid radiation of lineages that 
may have diversified along with flowering plants in an anciently tropical world (Grimaldi and 
Engel, 2005; Wiegmann et al., 2011).  Selection for increased crossover rate may have resulted in 
the repurposing of REC and its elevated rate of evolution.  Once these new niches were filled, the 
need for elevated crossing over may have reduced.  As Blanton et al. (Blanton et al., 2005) 
suggested, REC may promote repair synthesis to generate more stable intermediates that are 
refractory to unwinding by DmBLM.  Thus, in this reduced CO scenario selection would act to 
preserve REC at the cost of Msh4–Msh5. 

It is likely that the actual events encompassed elements of one or more of these scenarios.  
In three of these scenarios, the strong pressure to find a means to segregate chromosomes 
accurately may have driven the development of recombination-independent segregation in male 
Drosophila and Glossina (Gooding and Rolseth, 1995; Morgan, 1912).  Consistent with this 
speculative hypothesis, male recombination is retained in mosquitoes (Gilchrist and Haldane, 
1947; McClelland, 1966; Zheng et al., 1996), which also have conserved Msh4–Msh5 (Figures 3 
and 4). 
 

 

Figure 10.  Divergence of MCM8 in Drosophila.  Maximum-likelihood tree from an alignment 
of the conserved MCM domains of MCM8/REC and MCM5 from diverse taxa.  Branch lengths 
indicate the number of substitutions per site (see scale).  Numbers above branches show dN/dS 
estimates for selected branches; those with black background highlight branches with dN/dS 
estimates greater than one, suggesting positive selection. 
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Divergence in rec and loss of MCM9 occurred after the split between mosquitos 

and higher flies 200 to 250 million years ago, but prior to the emergence of the 

Schizophora 65 million years ago.  To test whether patterns of sequence evolution were 

consistent with positive selection leading to the divergence of rec, we estimated the ratio 

between the rate of base pair substitutions at nonsynonymous sites (dN) and the rate at 

synonymous sites (dS) among dipterans in MCM8/rec.  We compared 15 evolutionary 

models, ranging from conservation of dN/dS ratios across all taxa surveyed to allowing 

free evolution of dN/dS ratios along all branches, and including models testing specific 

hypotheses about the evolution of rec along different branches of the insect phylogeny.  

The best-fitting model (P = 0.0002 versus the next best model) supports the hypothesis 

that rapid protein-coding divergence was driven by positive selection prior to the split of 

tsetse flies from fruit flies (Figures 10 and 11, and Table 3).  Thus, we infer that natural 

selection likely drove the repurposing of REC into its new role as an antagonist of 

DmBLM.  Recent evolution of rec shows much lower levels of nonsynonymous changes, 

suggesting subsequent functional constraint (Figure 11).  MEI-217 and MEI-218 have 

also diverged substantially from the ancestral MCM structure: They split into two 

polypeptides, and MEI-218 acquired an N-terminal extension (Figures 12 and 13). 

Our data show that flies evolved a novel MCM complex to antagonize the anti-

CO functions of BLM during meiosis—a role held by Msh4-Msh5 in other organisms.  

Although we do not know what evolutionary forces ultimately drove the loss of Msh4-

Msh5 and the repurposing of mei-MCMs, it is tempting to speculate that these forces also 

led to another fundamental meiotic difference in Drosophila and Glossina relative to 

mosquitoes: the absence of recombination in males, which was first noted 
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in Drosophila by Morgan 100 years ago (Figure 9) (Morgan, 1912).  Resolving the 

conundrum of why the mei-MCMs supplanted Msh4-Msh5 will require a deeper 

understanding of both the evolutionary origins of the mei-MCMs and the functional 

differences between mei-MCMs and Msh4-Msh5. 

 

 

Figure 11.  Rates of evolution of REC/MCM8 in Dipteran insects and select outgroups.  The 
tree represents a topology of phylogenetic relationships among the insect species shown.  Branch 
lengths are proportional for ease of reading and do not reflect divergence, which is shown in 
Figure 10.  dN/dS ratios along each branch for the best fitting model (Model 15) are shown.  
Values less than one suggest purifying selection, whereas values greater than one suggest positive 
selection along that branch.  Consistent with our prediction of rapid evolution of REC before the 
emergence of Schizophora, the branch leading to Glossina and Drosophila has a high positive 
value (red).  The biological significance of the other high positive value, on the branch leading to 
Old World Sophophora (blue), is unknown, since our data do not suggest any hypotheses 
concerning evolution of REC along this branch.  
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Model Type1 Para-
meters 

Log-
Likelihood Description 

1 0 33 -29353.66955 One dN/dS rate for all taxa 

2 2 34 -29353.13881 One rate for D. melanogaster; 
one rate for all other taxa 

3 2 34 -29352.42575 One rate for mosquitoes; 
one rate for all other taxa 

4 2 34 -29348.27369 One rate for Old World Sophophora; 
one rate for all other taxa 

5 2 34 -29340.13854 One rate for Sophophora; 
one rate for all other taxa 

6 2 34 -29322.82126 One rate for higher flies 
one rate for all other taxa 

7 2 34 -29313.19077 One rate for Drosophila; 
one rate for all other taxa 

8 2 35 -29341.74626 One rate for Drosophila; 
one rate for Glossina; 
one rate for all other taxa 

9 2 35 -29313.18287 One rate for ancestor to higher flies; 
one rate for Drosophila; 
one rate for all other taxa 

10 2 35 -29313.15944 One rate for ancestor to higher flies; 
one rate for Sophophora; 
one rate for all other taxa 

11 2 36 -29313.15172 One rate for ancestor to higher flies; 
one rate for Drosophila; 
one rate for Glossina; 
one rate for all other taxa 

12 2 36 -29310.98226 One rate for ancestor to higher flies; 
one rate for Drosophila; 
one rate for Sophophora; 
one rate for all other taxa 

13 2 37 -29310.95229 One rate for ancestor to higher flies; 
one rate for Drosophila; 
one rate for Sophophora; 
one rate for Glossina; 
one rate for all other taxa 

14 2 51 -29300.10477 dN/dS rate varies for all higher flies 

15 1 63 -29280.42216 dN/dS rate varies for all taxa 

 

Table 3.  Models for the evolution of MCM8/rec in Diptera.  1Model-type: 0, common rate all 
lineages; 1, lineage-specific rates; 2, two or more rates assigned to different lineages (detailed in 
description). 
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Figure 12.  Conservation of MEI-217 and MEI-218 as separate polypeptides throughout 
Drosophila.  D. melanogaster MEI-217 and MEI-218 are predicted to be separate polypeptides 
encoded on a single transcript (Liu et al., 2000).  This figure shows an alignment of the sequence 
coding for the C-terminus of MEI-217 (purple) and the N-terminus of MEI-218 (orange) based on 
TBLASTN searches with D. melanogaster MEI-217.  Positions that are identical (or similar, for 
amino acid residues) in at least nine of the twelve species shown are in white text on a dark 
background.  This pattern is also seen in D. similans, D. elegans, D. rhopaloa, D. ficusphila, D. 
takahashii, D. biarmipes, and D. bipectinata.  Apparent conservation at the C-terminus of 
MEI-217 suggests that the coding sequences are accurately represented here.  Notably, the ATG 
predicted to begin the MEI-218 coding sequence is absolutely conserved, even though the A 
could have mutated to any other base without affecting the MEI-217 sequence.  These findings 
strongly support the conclusion that MEI-217 and MEI-218 are separate polypeptides and that 
there has been selection to maintain this configuration.  We could not detect conservation in this 
region in Glossina morsitans, so that sequence cannot be aligned to these sequences. 
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Figure 13.  Structural changes in MEI-218.  These schematics illustrate the structures of MEI-
218 orthologs from humans and several insects.  Purple cylinder represents the N-terminal MCM 
domain, orange the C-terminal AAA ATPase-like domain.  The human and Bombyx mori 
orthologs are similar in structure (as are other vertebrates and arthropods other than Drosophila 
and Glossina) to canonical MCMs, whereas Drosophila and Glossina are substantially longer.  In 
Drosophila the two domains are found on separate polypeptides.   

 

Materials and Methods 

Drosophila stocks and genetics 

Flies were maintained on standard medium at 25˚C.  All experimental flies were 

heteroallelic for null mutations that have been described previously: rec1 and rec2 

(Blanton et al., 2005); mus309N1 and mus309D2 (Boyd et al., 1981; McVey et al., 2007); 

mei-2181 and mei-2186 (Baker and Carpenter, 1972; McKim et al., 1996).  mus309 

mutant females produce few viable progeny due to a requirement for DmBLM in the 

early embryo (McVey et al., 2007).  To overcome this maternal-effect lethality, the 

mus309 coding sequence was cloned into the P{UASp} (Rørth, 1998) vector, creating 

P{UASp-mus309}.  This transgene was injected using standard P-element transformation 

procedures (Best Gene Inc., Chino Hills, CA).  mus309N1 P{UASp-mus309} / mus309D2 

P{matα4-GAL4::VP16} females express DmBLM during later stages of oocyte 

development, after meiotic recombination has taken place, thereby creating a mus309 
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meiotic null.  This genotype was used in all assays with mus309 mutants.  Nondisjunction 

was scored by crossing mutant females to y cv v f / T(1:Y)BS males.  The number of 

exceptional progeny indicative of nondisjunction (Bar-eyed females and wild-type-eyed 

males) was multiplied by two to account for triplo-X and nullo-X progeny, which do not 

survive to adulthood.  This number was divided by the total number of progeny and 

expressed as a percentage.  Crossovers were scored by crossing net dppd-ho dp b pr cn /+ 

virgin females of various genetic backgrounds to net dppd-ho dp b pr cn males. 

 

Identification of orthologs 

Orthologs were found through searches of public databases.  The amino acid 

sequence of the human protein was used in BLASTP searches of refseq_protein at NCBI 

(http://blast.ncbi.nlm.nih.gov/Blast.cgi), using the default parameters.  In cases where 

orthologs were not immediately identified, searches were repeated using sequence from a 

more closely related species and searching the nr database.  If this was unsuccessful, 

TBLASTN was done using the nr database.  Finally, species-specific databases were 

searched, either from the NCBI genomic BLAST page 

(http://www.ncbi.nlm.nih.gov/mapview/) or from species-specific websites.   

Additionally, a sequence for rec from D.  pseudoobscura was obtained from (McGaugh 

and Noor, 2012). 

Drosophila melanogaster mei-217 and mei-218 are well-annotated based on 

experimental data (cDNA sequences and RNA-seq data), but annotations for other 

species have less support.  To generate better predictions of the amino acid sequences of 

MEI-217 and MEI-218 in other species, we used D. melanogaster sequences in 
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TBLASTN searches.  Apparent conservation of MEI-217 allowed high-confidence CDS 

(coding sequence) predictions, but divergence of MEI-218 made predictions for this gene 

less reliable. 

 

Sequence alignments and phylogenetic analysis 

Protein sequences were aligned in MEGA5 (Tamura et al., 2011) using the 

MUSCLE algorithm (Edgar, 2004).  Maximum-likelihood trees were generated in 

MEGA5 using the method based on the Whelan and Goldman model (Whelan and 

Goldman, 2001).  Initial trees for the heuristic search were obtained automatically.  When 

the number of common sites was <100 or less than one fourth of the total number of sites, 

the maximum parsimony method was used; otherwise BIONJ method with MCL distance 

matrix was used.  A discrete Gamma distribution was used to model evolutionary rate 

differences among sites (5 categories (+G, parameter = 2.8099)).  The rate variation 

model allowed for some sites to be evolutionarily invariable ([+I], 0.0000% sites). 

 

Molecular evolutionary analysis 

We compared a suite of molecular evolutionary models of the evolution of rec 

using PAML, which provides a set of maximum likelihood-based tools for combining 

DNA sequence and phylogenetic data to test molecular evolutionary hypotheses (Yang, 

2007).  We used a phylogeny based on DNA polymerase alpha catalytic subunit and 

published trees of insects to identify good outgroups (Grimaldi and Engel, 2005).  We 

limited our analysis of rec to the region 3’ of position 135 (Figure 6) as this section was 

clearly homologous across taxa.  There are three major steps to using PAML: (i) choice 
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of appropriate model, (ii) parameterization of that model, and (iii) sequential comparison 

using log-likelihood ratio tests of simpler to more complex models to evaluate whether a 

more complex model provides a significantly better fit to the data.  In several cases, 

convergence to maximum likelihood estimates was verified by changing the “small 

difference” parameter see (Grimaldi and Engel, 2005), p. 19.  Evolution of protein-coding 

regions of rec was analyzed independently using the codon model CODEML (Goldman 

and Yang, 1994; Yang, 1997).  The difference in the log likelihood (∆lnl), for the 

relevant degrees of freedom, was used to infer a P-value.  Unless noted otherwise, model 

comparisons involving multiple tests remained significant after Bonferroni corrections.  

The estimated codon table fit the rec data the best.  When appropriate, κ, ω, and α fit the 

data had the best log-likelihood when estimated (Yang, 1997).  For the analyses 

discussed, we a priori hypothesized that the lineage prior to the split of Glossina from 

Drosophila rec underwent more rapid protein coding evolution because rec was under 

strong selective pressure to functionally compensate for the loss of the Msh4–Msh5.  As 

shown in Table 2-5, we tested a variety of simple and complex models motivated by our 

understanding of the evolutionary history of flies.  Model 1 is the most conservative as it 

assumes a single evolutionary rate for all branches.  Models 2 and 3 are controls that test 

the hypothesis that rec is “special” in D.  melanogaster (Model 2) and that the patterns 

observed are specific to higher flies, not just any clade of the tree (Model 3).  As 

expected neither of these models is different from Model 1.  The remaining models grow 

increasingly complex as they step through a variety of evolutionary scenarios (e.g., 

Drosophila differ from others; Sophophora, which have reported evidence of male 

recombination in D. willistoni and D. ananassae, differ; Old World Sophophora differ, 
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etc.).  All fit the data better than Models 1-3 and generally improve the fit as their 

complexity grows.  However, Model 15, which allows for dN/dS ratio to vary freely 

among all branches, has the best fit to the data and is a significantly better than any 

alternative.  This model suggests strong adaptive evolution prior to the divergence of the 

Schizophora and prior to the radiation of the Old World Sophophora.  Simpler models 

(e.g., 4-14) similarly support that the dN/dS rate of rec in higher flies is different 

compared to the other Dipteran and our outgroups. 

 

Immunoprecipitation 

rec was cloned into pFastBac with an N-terminal FLAG tag.  mei-217 and mei-

218 were cloned into pFastBacDual with N-terminal HA and Strep-II tags, respectively.  

As per the Bac-to-Bac Baculovirus System (Invitrogen, Carlsbad, CA) protocol, 

constructs were transformed into DH10Bac cells.  Sf9 cells were transfected with bacmid 

DNA extracted from transformed DH10Bac cells.  Following two rounds of viral 

amplification in Sf9 cells, High Five cells were infected with either a single virus or with 

both viruses.  Cells were harvested 2.5 days after infection and were stored at -80˚C until 

needed.  Pellets were resuspended in lysis buffer (50mM Tris-HCl pH 7.5, 150mM NaCl, 

1mM EDTA, 1% Triton X-100), sonicated using a Bioruptor (Diagenode, Denville, NJ) 

on highest setting with 30s on/30s off cycles for 20min at 4˚C.  Cell suspension was 

pelleted with centrifugation at 14k rpm for 5min.  Clarified supernatant containing 

FLAGREC and HAMEI-217 was added to either anti-HA agarose (Sigma, St. Louis, MO) or 

anti-FLAG M2 agarose (Sigma) for 2h.  Strep-MEI-218 was co-expressed with these two 

proteins but was insoluble and therefore not in the clarified lysate from which 
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immunoprecipitation was carried out.  Beads were washed in a cellulose acetate filter 

spin column (Pierce, Rockford, IL) with either TBS (FLAG purification) or PBS (HA 

purification) prior to boiling in SDS-PAGE sample buffer.  Samples were run on a 4-15% 

SDS-PAGE gel, transferred to PVDF membrane, and probed with appropriate antibodies: 

anti-HA (Sigma) 1:20,000; anti-REC-C (raised to amino acids 875-885; Pacific 

Immunology, San Diego, CA) 1:20,000; HRP-conjugated anti-rabbit secondary (Santa 

Cruz Biotechnology, Santa Cruz, CA) 1:20,000.  SuperSignal West Pico 

Chemiluminescent Substrate (Pierce) was used to detect proteins. 

 

Yeast two-hybrid assay 

mei-217 was cloned into pGBD-DEST, a Gateway-compatible derivative of 

pGBD-C1 (James et al., 1996) constructed with the Gateway Vector Conversion System 

(Life Technologies, Carlsbad, CA).  Full-length or truncated mei-218 was cloned into 

pACT2.2gtwy (Addgene plasmid 11346 deposited by Guy Caldwell), a Gateway-

compatible derivative of pACT2.2.  Constructs were transformed into Saccharomyces 

cerevisiae strain PJ69-4A (James et al., 1996).   Co-transformants were selected on plates 

of SD minimal medium containing dropout supplements lacking leucine (-leu) and 

tryptophan (-trp) for 3 days at 30˚C.  Single colonies were streaked onto fresh –trp –leu 

plates and grown for 3 days at 30˚.  Colonies were then streaked onto –trp –leu –histidine 

plates containing 3mM 3AT.  Interaction between proteins was scored 3 days later. 

 

 



 
 

 

 

CHAPTER 3 

MEI-MCMS AFFECT MEIOTIC CROSSOVER DISTRIBUTION 
 

Introduction 

Meiotic recombination initiates via a programmed double-strand break (DSB) 

created by the archaeal topoisomerase VI-like protein Spo11 in all organisms thus far 

examined (Keeney et al., 1997).  This step appears to be a hallmark of meiosis, and as 

such, the presence of a Spo11 homolog within a genome is used as part of a “meiosis 

detection toolkit” to identify organisms that undergo meiosis (Malik et al., 2008).  Not all 

breaks are created equal, however, as some DSBs are repaired into crossovers (COs), 

while others will form non-crossovers (NCOs) instead. 

 It is currently unknown how a given DSB is chosen to be repaired as either a CO 

or a NCO.  However, it is believed that this decision is made prior to the formation of the 

first stable strand exchange intermediates (Bishop and Zickler, 2004).  In a phenomenon 

called CO homeostasis, COs are formed at the expense of NCOs so that the organismal-

appropriate number of COs can be formed even if fewer DSBs are made than normal 

(Martini et al., 2006).  Additional levels of CO regulation appear to go into the CO/NCO 

decision, as COs are distributed non-randomly across the genome.  Most chromosomes 

receive at least one CO (the obligate CO) (Jones, 1984), and these COs tend to be located 

in regions optimal for aiding chromosome segregation – i.e., away from the centromere 
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and telomeres (Hassold and Hunt, 2007).  Also, when more than one CO occurs on a 

chromosome, they tend to be more widely-spaced than expected by random chance, a 

phenomenon called CO interference (Berchowitz and Copenhaver, 2010). 

Interference was first described in Drosophila melanogaster (Sturtevant, 1913), 

and has since been found to operate in many model systems including Arabidopsis 

thaliana, Caenorhabditis elegans and Saccharomyces cerevisiae (Copenhaver et al., 

2002; Fogel and Hurst, 1967; Meneely et al. 2002).  Notably, COs in the fission yeast 

Schizosaccharomyces pombe do not exhibit interference (Munz, 1994).  Although it is 

unknown how interference works, several models hypothesize how CO interference 

operates.  In the “polymerization model”, a CO produces some signal that is perpetuated 

along a chromosome, thus discouraging the formation of COs nearby (King and 

Mortimer, 1990).  The “stress relief model” invokes mechanical stress along 

chromosomes that is alleviated at CO sites, thus inhibiting nearby COs (Borner et al., 

2004).  Finally, a “counting model” suggests that an organismal-specific number of 

NCOs must separate COs (Foss et al., 1993). 

The Drosophila meiotic mini-chromosome maintenance (mei-MCM) proteins are 

members of the “precondition class” of Drosophila meiotic recombination mutants (Kohl 

et al., 2012), so named because they appear to be unable to complete the preconditions 

necessary for proper CO formation (Carpenter and Sandler, 1974; Sandler et al., 1968).  

The abnormal CO distribution characteristic of precondition mutants suggests that the 

precondition proteins play a role in CO designation.  In an assay scoring the selection of 

the pro-oocyte in the Drosophila germarium, the precondition genes were epistatic to 

genes necessary for strand invasion and exchange/CO formation (Joyce and McKim, 
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2009).  These results led to the suggestion that the mei-MCMs have an early role in 

committing some DSBs to the CO pathway (Joyce and McKim, 2009).  However, other 

epistasis experiments have placed RECOMBINATION DEFECTIVE (REC) at an 

intermediate step in the meiotic recombination pathway, downstream of strand invasion 

but upstream of exchange/CO formation (Blanton et al., 2005). 

 To investigate and tease apart the potential early and late roles of the mei-MCMs 

in CO formation, I created separation-of-function alleles of rec.  I used a non-disjunction 

(NDJ) assay to test the ability of these alleles to segregate chromosomes and a CO assay 

to study their effect on CO number and CO distribution.  I created a truncation mutant of 

another mei-MCM, MEI-218, to investigate the function of this protein’s conserved C-

terminus.  Similar to the rec separation-of-function alleles, I assayed this “mini-MEI” 

allele for NDJ, CO number and CO distribution. 

 

Results 

REC ATPase mutants differentially affect NDJ and COs 

  Previous studies of AAA+ proteins have identified mutations within key residues 

of the Walker A and Walker B motifs that differentially affect ATP binding and 

hydrolysis.  In particular, mutation of the conserved lysine residue in the Walker A motif 

prevents ATP binding, while mutation of the glutamate residue in the Walker B motif 

abolishes ATP hydrolysis but does not prevent ATP binding (Hanson and Whiteheart, 

2005).  As a member of the MCM family, REC has conserved Walker A and Walker B 

motifs containing these key residues (Figure 14).   
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Figure 14.  MCM Walker A/B alignment.  Protein sequence alignment of D. melanogaster 
MCM2-MCM8 (REC).  Positions that have identical or conserved residues in all proteins have a 
black background.  Positions with identical or conserved residues in six of the seven proteins 
have a dark gray background.  Positions with identical or conserved residues in four or five of the 
seven proteins have a light gray background.  Walker A and Walker B motifs are indicated.  
Asterisks mark residues mutated in {UAS-rec*} transgenes. 

 

Previous research has shown that mutation of the conserved lysine in the Walker 

A motif of a replicative MCM protein does not prevent the MCM2-7 complex from 

loading onto DNA (Ying and Gautier, 2005).  This Walker A mutant complex was unable 

to unwind DNA, however.  In other words, the early role of MCM2-7 in the pre-

replicative (pre-RC) complex was separable from MCM2-7’s later role during DNA 

replication via one mutation within one replicative MCM’s Walker A motif.  Similarly, I 

hypothesized that by creating Walker A and Walker B mutant versions of REC, I would 

be able to create alleles of rec that separated the protein’s early role in CO designation 

from its later role in CO formation.  To this end, I created three {UASp-rec*} transgenic 

fly lines – one wild-type copy of rec, one Walker A mutant (K479A), and one Walker B 

mutant (D537A) (Figure 14).  Each transgene was inserted into the same genomic 

location (99F) to control for position effects, was placed into an endogenous rec null 

mutant background, and was expressed using either the nanos-GAL4 or tubulin-GAL4 

driver.  The nanos-GAL4 driver expresses in the germarium (Rørth, 1998), where meiotic 

recombination takes place, while the tubulin-GAL4 driver has ubiquitous expression (Lee 
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and Luo, 1999).  Since meiotic COs are important for the proper segregation of 

homologous chromosomes, transgenes were scored for NDJ as a readout of CO formation 

(Figure 15).   

 

      

Figure 15.  rec transgene non-disjunction.  Percent non-disjunction (NDJ) was scored in the 
indicated genotypes.  “KA” and “DA” superscripts denote the Walker A and Walker B mutant 
alleles of rec, respectively, while “WT” superscript denotes the wild-type rec gene.  “nos” and 
“tub” indicate the rec transgene was under expression of the nanos-GAL4 or tubulin-GAL4 driver, 
respectively.  Over 1000 individuals were scored for each genotype.  ***p<0.0001, as compared 
to wild-type.  n.s., not statistically significant compared to either wild-type (blue lettering) or 
compared between paired genotypes. 

 

The {UASp-recWT} transgene rescued the high NDJ seen in rec mutants when 

driven by either GAL4 driver.  Therefore, the transgenes are able to be expressed in the 

99F genomic location using either driver.  The {UASp-recKA} transgenic (Walker A 

mutant) also completely rescued the high NDJ characteristic of rec mutants, indicating 

that abolishing REC’s ability to bind ATP does not prevent proper meiotic chromosome 

segregation.  Interestingly, the {UASp-recDA} transgenic (Walker B mutant) had NDJ 

levels similar to rec mutants and statistically significantly different (p<0.0001) from 
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wild-type.  This result suggests that allowing REC to bind, but not hydrolyze, ATP 

prevents proper meiotic chromosome segregation. 

To determine if the effects on NDJ paralleled effects on meiotic CO formation, I 

measured the formation of COs across 2L (Figure 16).  Similar to the results seen in the 

NDJ assay, the {UASp-recWT} and {UASp-recKA} transgenics had CO distributions very 

similar to wild-type.  At first glance, the rec mutant and Walker B mutant CO 

distributions appeared similar, as both mutants have very low levels of COs.  However, 

as a precondition mutant, rec mutants have a polar reduction in crossing over, with a 

stronger reduction in COs in the center of the chromosome arm as compared to the region 

closest to the centromere.  This phenotype can be easily seen by calculating the ratio 

between the reduction in crossing-over in the centromere-proximal region to the entire 

chromosome arm (Blanton et al., 2005).  Precondition mutants have a ratio greater than 

one, whereas wild-type and exchange mutants have a ratio of approximately one.  

Therefore, to further characterize the CO distribution in our transgenics, I calculated this 

ratio (Table 4).  Notably, while the rec mutant value is greater than one (6.6), the Walker 

B mutant value (2.4) is much closer to one.  Although using the strict definition of 

precondition versus exchange mutants would place the Walker B mutant into the 

precondition class as its ratio is greater than one, the striking difference in values between 

the rec mutant and the Walker B mutant suggests that the random distribution of residual 

COs seen in precondition mutants is lost in the {UASp-recDA} transgenic.  The actual 

number of COs observed in the centromere-proximal pr-cn interval in rec mutants (25 

out of 2036 flies scored) compared to those observed in the Walker B mutant (5 out of 
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2324 flies scored) is statistically significant (p<0.0001), further supporting the idea that 

the Walker B mutant does not have a precondition CO distribution. 

 

Figure 16.  rec transgene crossover distribution.  Crossover (CO) distribution across five 
intervals on chromosome 2L and proximal 2R is shown.  The markers used in mapping are shown 
above the graph.  Hash marks between pr and cn indicate the position of the centromere.  Solid 
lines depict the number of map units (m.u.) per megabase pair (Mb) in each interval for more than 
2000 individuals for each genotype.  Dashed lines indicate the mean CO rate across the entire 
region.  {UASp-rec*} transgenes were driven using the nanos-GAL4 driver. 

 

 

 

Table 4.  rec transgene recombination frequency.  Recombination frequency is expressed as 
map units across the intervals shown.  Numbers in parentheses denote the percentage of wild-type 
recombination frequency.  *The ratio of the percentage of wild-type recombination frequency 
across the centromere-proximal interval (pr-cn) compared to the percentage of wild-type 
frequency across the entire chromosome arm. 
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As expected based on their CO distribution pattern, the wild-type rec and Walker 

A mutant rec transgenics had ratios close to one, signifying that the change in CO 

frequency in the centromere-proximal region was similar to the change across the 

chromosome arm (Table 4).  Interestingly, however, it appeared that most of these 

intervals had increased recombination frequencies in the Walker A mutant compared to 

wild-type, even though the CO distribution appeared normal.  To investigate this 

possibility further, I calculated the number of multiple COs observed in these mutants 

(Table 5).  I found that the {UASp-recWT} transgene did not have a significantly different 

number of single (SCO), double (DCO), or triple (TCO) COs as compared to the wild-

type control.  In contrast, the {UASp-recKA} transgene had significantly more DCOs than 

wild-type.  The {UASp-recKA} transgene also had significantly more DCOs than the 

{UASp-recWT} transgene (p=0.0135).  Therefore, the difference in COs between the 

Walker A transgene and wild-type flies is not a consequence of rec being expressed off a 

transgene and instead is a result of the point mutation within the Walker A motif. 

 

 

Table 5.  rec transgene crossover number.  Number of single crossover (SCO), double 
crossover (DCO), and triple crossover (TCO) progeny observed in each genotype out of the total 
number of progeny (N) scored.  {UASp-rec*} transgenes were driven using the nanos-GAL4 
driver.  #p=0.0002, as compared to wild-type.  *p<0.0001, as compared to wild-type.  NSnot 
statistically significant, as compared to wild-type. 

 

N SCO DCO TCO
wild-type 2320 952 44 1

rec 2036 113* 0* 0NS

UAS-REC WT 3134 1399NS 80NS 1NS

UAS-REC KA 2281 949NS 86# 5NS

UAS-REC DA 2324 65* 0* 0NS
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Hyperrecombination in a MEI-218 truncation mutant 

While the C-terminus of MEI-218 contains a relatively well-conserved AAA 

ATPase domain, the protein’s N-terminus is disordered and much more divergent (Kohl 

et al., 2012).  In particular, the N-terminus is of variable lengths in the various 

Drosophilids for which genome sequence is available (Kohl et al., 2012), and this region 

can only be poorly aligned even in closely related Drosophilids (Figure 17).  

Furthermore, it is through the conserved C-terminus, not the N-terminus, that MEI-218 

interacts with MEI-217 (Kohl et al., 2012).  To investigate whether this divergent N-

terminal sequence was necessary for MEI-218’s meiotic function, I created a {UASp} 

transgenic truncation mutant of MEI-218 that eliminates the first 526 amino acids (44%) 

of the protein, called the “mini-MEI” allele (Figure 17).  This allele was placed into a 

mei-218 null mutant background, and was driven using the same nanos-GAL4 driver as 

the rec transgenics.   

I first assayed NDJ in the mini-MEI allele as a readout of CO formation (Figure 

18).  While mei-218 mutants have high NDJ, the mini-MEI allele rescued this high NDJ 

to near wild-type levels.  There was, however, a slight but statistically significant 

(p=0.0202) increase in NDJ in the mini-MEI allele as compared to wild-type.  These 

results suggest that the N-terminus of MEI-218 is mostly dispensable for the protein’s 

role in meiosis, although the slight defect in meiotic chromosome segregation suggests 

that the N-terminus may play a small part in meiosis.  To determine if this role is related 

to CO formation, I next scored CO distribution across 2L in the mini-MEI allele (Figure 

19).  The mini-MEI CO distribution appeared wild-type, although several of the intervals 

had an increased CO rate.  I investigated whether this increased CO rate was due to an  
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Figure 18.  mini-MEI transgene non-disjunction.  Percent non-disjunction (NDJ) was scored in 
the indicated genotypes.  Over 1200 individuals were scored for each genotype.  Color of 
asterisks indicates genotypes statistically compared.  ***p<0.0001, *p=0.0202.  

 

 

 

 

Figure 19.  mini-MEI transgene crossover distribution.  Crossover (CO) distribution across 
five intervals on chromosome 2L and proximal 2R is shown.  The markers used in mapping are 
shown above the graph.  Hash marks between pr and cn indicate the position of the centromere.  
Solid lines depict the number of map units (m.u.) per megabase pair (Mb) in each interval for 
more than 1700 individuals for each genotype.   
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increase in SCOs, multiple COs, or both (Table 6).  I found that the number of SCOs in 

the mini-MEI allele was not statistically different from wild-type, but that this allele did 

have a highly significant increase in DCOs compared to wild-type.  To determine if the 

increased CO rate was obscuring an altered CO distribution, I calculated the ratio of 

crossing-over in the centromere-proximal region to crossing-over across the entire 

chromosome arm (Table 7).  Interestingly, the mini-MEI allele showed a ratio greater 

than one (3.8).  Using the definition of precondition proteins of Blanton et al. (Blanton et 

al., 2005), this results suggests that like the mei-218 null, the mini-MEI allele exhibited a 

precondition distribution of COs.  However, the title “precondition mutant” has 

historically described flies which have a reduction in COs (Carpenter and Sandler, 1974; 

Sandler et al., 1968), which is clearly not the case for the mini-MEI allele. 

 

Table 6.  mini-MEI transgene crossover number.  Number of single crossover (SCO), double 
crossover (DCO), and triple crossover (TCO) progeny observed in each genotype out of the total 
number of progeny (N) scored.  *p<0.0001, as compared to wild-type.  NSnot statistically 
significant, as compared to wild-type. 

 

 

Table 7.  mini-MEI transgene recombination frequency.  Recombination frequency is 
expressed as map units across the intervals shown.  Numbers in parentheses denote the 
percentage of wild-type recombination frequency.  *The ratio of the percentage of wild-type 
recombination frequency across the centromere-proximal interval (pr-cn) compared to the 
percentage of wild-type frequency across the entire chromosome arm. 

N SCO DCO TCO
wild-type 2320 952 44 1
mei-218 1744 51* 0* 0NS

mini-MEI 1819 731NS 142* 4NS

net-dpp d-ho dpp d-ho -dp dp-b b-pr pr-cn total net-cn ratio pr-cn  / 
total*

wild-type 5.09 7.54 27.33 3.49 1.51 44.96 1.0
mei-218 0.23 (4.5) 0.34 (4.5) 0.92 (3.4) 1.03 (29.5) 0.4 (26.5) 2.92 (6.5) 4.1
mini-MEI 5.94 (117) 7.64 (101) 21.99 (80.5) 13.63 (391) 7.26 (480) 56.46 (126) 3.8
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Discussion 

  The results from the Walker A and Walker B mutant rec alleles (Table 8) are best 

analyzed in light of other MCM ATPase mutant analyses conducted previously.  Firstly, 

the oligomeric nature of MCM proteins is crucial to the complex’s ability to hydrolyze 

ATP since the active sites are formed in trans using the Walker A and Walker B motifs 

of one subunit and the conserved arginine finger from a neighboring subunit (Davey et 

al., 2003).  Of the several models for AAA+ protein ATP hydrolysis (“probabilistic” 

(Martin et al., 2005), “sequential” (Stitt and Xu, 1998), and “concerted” (Gai et al., 

2004)), only one has been suggested for an MCM protein.  A study of the archaeal 

Sulfolobus solfataricus MCM complex found that helicase activity was maintained even 

when multiple ATP binding sites were inactive, suggesting that MCM ATP hydrolysis is 

“probabilistic” (Moreau et al., 2007).  Unlike archaeal MCM complexes, which are most 

often homomultimers, the replicative MCM2-7 complex is comprised of six non-

redundant subunits.  It has been shown that the ATP active sites in the MCM2-7 complex 

are functionally distinct and that mutations within the different subunits’ Walker A and 

Walker B motifs have varying effects on viability and ATPase activity (Bochman et al., 

2008; Gomez et al., 2002).  

Despite being unable to bind ATP, the Walker A rec mutant was not inhibited in 

physically forming COs nor in localizing them properly (Figure 20).  Thus, this result 

suggests that REC functions as part of a larger complex such that another active site was 

able to rescue the mutation of REC’s active site.  While we have previously shown that 

REC is a component of the mei-MCM complex along with MEI-217 and MEI-218 (Kohl 

et al., 2012), this data suggests at least one additional MCM protein is part of the 
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Table 8.  mei-MCM transgene phenotypes.  Phenotypes for the various mei-MCM transgenes 
and mei-MCM (rec and mei-218) null mutants are summarized.  For non-disjunction (NDJ) and 
crossover (CO) number, “↑” indicates increased levels as compared to wild-type, “↓” indicates 
decreased levels as compared to wild-type, and “–” indicates a level comparable to wild-type.  
For CO distribution, “precondition” denotes a precondition mutant distribution of COs, whereas 
“normal” denotes a wild-type distribution of COs and “~normal” denotes an approximately wild-
type distribution of COs. 

 

complex, since MEI-217 and MEI-218 lack a Walker A motif and therefore would have 

been unable to provide this compensation (Kohl et al., 2012).  A separation-of-function 

allele in Mcm5 shares the same meiotic phenotypes of the mei-MCMs (Lake et al., 2007), 

suggesting MCM5 is an additional member of the complex.  It is unknown whether 

additional replicative MCMs are components of the mei-MCM complex, since four of the 

six DmMCM2-7 have been genetically characterized, and null mutations in each are 

pupal lethal (Feger et al., 1995; Lake et al., 2007; Schwed et al., 2002; Treisman et al., 

1995).  It is likely that all MCM2-7 are essential for viability in Drosophila, as they are in 

yeast (Tye, 1999), and thus without separation-of-functional alleles, like the Mcm5A7 

allele, we cannot ascertain the proteins’ roles in meiosis. 

NDJ
CO        

number
CO 

distribution
rec or mei-218 ↑ ↓ precondition

UAS-REC WT − − normal

UAS-REC KA − ↑ normal

UAS-REC DA ↑ ↓ ~normal

mini-MEI − ↑ precondition
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Figure 20.  rec ATPase mutant model.  (A) In wild-type, double-strand breaks (DSBs) are 
formed across a chromosome.  The mei-MCM complex is recruited to a DSB site, thereby 
designating that DSB as a future crossover (CO) in an ATP hydrolysis-independent reaction.  The 
chosen DSB occupies a central location on the chromosome arm.  During DSB repair, the mei-
MCM complex hydrolyzes ATP to facilitate CO formation.  Once all DSBs are repaired, a CO 
checkpoint verifies that at least one CO was formed per chromosome.  (B) In the rec Walker A 
mutant background, DSB formation, CO designation and DSB repair occur as in wild-type, 
resulting in CO formation.  The CO checkpoint does not recognize the CO, however, triggering 
the formation of additional DSBs.  (C) In the rec Walker B mutant, DSB formation and CO 
designation occur as in wild-type.  The mei-MCM complex is unable to hydrolyze ATP during 
DSB repair, however, preventing CO formation.  The CO checkpoint senses the lack of COs and 
triggers the formation of additional DSBs.  This model depicts one potential explanation for the 
phenotypes observed, although other scenarios are possible (see Discussion).  Relative timing of 
these events may also vary. 

 

Furthermore, the “hyperrecombination” phenotype seen in the rec Walker A 

mutant suggests that when REC is unable to bind ATP, a CO regulation mechanism is 

disrupted such that more DCOs are made than normal.  This could arise if increased 

DSBs were formed in this mutant, such that more NCOs and COs were produced than 

normal.  This defect could arise early, such that the increased DSBs are formed with 

normal timing.  Alternatively, a feedback mechanism that senses a CO-competent 

intermediate may be disrupted – either because the Walker A mutant creates these 

intermediates but they are unrecognized by the machinery or because the mutant cannot 

create these intermediates – and thus signals that more DSBs are necessary (Figure 20).  

Perhaps a CO-designation mechanism could be disrupted, such that more DSBs than 

normal are being “marked” as sites of future COs, thus reducing the number of NCOs 

formed while the number of DSBs are maintained at wild-type levels.  Additionally, with 

the increase in DCOs, it will be necessary to determine whether interference is operating 

normally.  It may be that the additional COs are formed via an alternative pathway, such 

as the non-interfering CO pathway that normally only produces a subset of Drosophila 

meiotic COs. 
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By using the rec Walker B mutant, I was able to uncouple the early and late roles 

for REC in meiotic recombination.  Standard null alleles of rec result in ~95% reduction 

in COs and an abnormal, precondition distribution of residual COs (Blanton et al., 2005).  

This suggests that REC is required to make a majority of meiotic COs and that REC has a 

role in CO distribution.  In a NDJ assay, the Walker B rec mutant also behaves like these 

null alleles of rec – both exhibit very high NDJ.  Interestingly, while this phenotype 

appears to result from a strong reduction in crossing over in both cases, the Walker B 

mutant has a different effect on CO distribution than other rec null alleles.  rec mutants 

show a polar reduction in crossing over but the Walker B mutant did not have this 

precondition distribution.  This suggests that when REC was prevented from hydrolyzing 

bound ATP because of a mutated Walker B motif, REC was able to localize to sites of 

future COs properly but was unable to complete some function – one that presumably 

requires ATP hydrolysis – to physically form COs (Figure 20).  This hypothesis that the 

mei-MCMs function as a pre-CO complex to mark sites of future COs is reminiscent of 

the pre-RC role of the replicative MCMs.   

Interestingly, the mini-MEI allele rescued the high NDJ of mei-218 null mutants 

(Table 8), suggesting that the N-terminus of MEI-218 is not necessary for the protein’s 

role in female meiosis.  There was, however, a slight but statistically significant increase 

in NDJ in the mini-MEI allele as compared to wild-type.  Perhaps this slight defect in 

chromosome disjunction results from the abnormal, precondition distribution of COs seen 

in the mini-MEI mutant, as it is well-known that improperly-placed COs can result in 

NDJ (Hassold and Hunt, 2007).   
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Like the rec Walker A mutant, the mini-MEI mutant had a hyperrecombination 

phenotype with increased DCOs as compared to wild-type.  As discussed above for the 

rec Walker A mutant, this phenotype could arise from an increase in DSBs, a change in 

defining the sites of future COs, a change in the CO-sensing pathway, or a combination 

of these possibilities.  It is noteworthy that I have identified mutant versions of two mei-

MCM proteins that show a significant increase in the number of DCOs but retain normal 

meiotic chromosome disjunction.  It should be noted that we have also observed the 

hyperrecombination phenotype previously, in the meiotic mus309 rec double mutants 

(Kohl et al., 2012).  In both the mini-MEI and mus309 rec mutants, the distribution of 

COs did not follow a wild-type pattern, but instead showed a more even distribution 

across the chromosome, reminiscent of the mus309 and rec single mutant distributions.  

The rec Walker A mutant, on the other hand, showed a wild-type distribution of COs.  

Despite these differences, the shared hyperrecombination phenotypes in these three cases 

suggests that the mei-MCM complex is necessary for some mechanism of CO regulation 

– whether this mechanism involves designating future COs, sensing COs, or interfering 

with neighboring COs remains to be seen.   

Finally, if the N-terminus of MEI-218 is not essential for female meiosis, what 

then is the function of this region?  Perhaps it is necessary for MEI-218’s as-yet-unknown 

role in the testis, where the protein is expressed (Chintapalli et al., 2007).  If the region 

were under strong selective pressure, as is often the case with Drosophila testes-

expressed genes (Haerty et al., 2007), this could explain the highly divergent nature of 

the N-terminus.   
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Materials and Methods 

Protein sequence alignments 

Protein sequences were aligned using the “Complete Alignment” setting on 

ClustalX (Larkin et al., 2007), using all default settings.  Alignments were then viewed 

using the GeneDoc program. 

 

Generating mei-MCM transgenic flies 

The rec cDNA was cloned into the p{attBUASpW} vector downstream of the 

UASp germline expression promoter (Rørth, 1998) using Gateway technology 

(Invitrogen, Carlsbad, CA).  The vector also contains a mini-white gene and PhiC31 attB 

site.  In addition to the wild-type (unchanged) version of rec, two additional vectors were 

created using QuikChange (Agilent Technologies, Inc., Santa Clara, CA) to insert the 

Walker A mutation (K479A) and Walker B mutation (D537A).  Each transgene was 

injected using standard PhiC31 transformation procedures (Best Gene Inc., Chino Hills, 

CA) into the 99F8 genomic location, creating {UASp-recWT}, {UASp-recKA}, and {UASp-

recDA}, respectively.   

The region of the mei-218 cDNA corresponding to amino acids 526-1186 was 

cloned into p{attBUASpW} using Gateway technology.  This transgene was injected 

using standard PhiC31 transformation procedures (Best Gene Inc.) into the 2A genomic 

location, creating the “mini-MEI” allele. 
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Non-disjunction assay 

Flies were maintained on standard medium at 25˚C.  For {UASp-rec*} assay, flies 

were heteroallelic for null mutations of rec (rec1 and rec2; (Blanton et al., 2005)), in 

addition to carrying one copy of the transgene and one copy of the P{GAL4::VP16-

nos.UTR}CG6325MVD1  driver (referred to herein as “nanos-GAL4”) or one copy of the 

P{tubP-GAL4}LL7 driver (herein referred to as “tubulin-GAL4”).  For the mini-MEI 

assay, flies were heteroallelic for null mutations of mei-218 (mei-2181 and mei-2186; 

(Baker and Carpenter, 1972; McKim et al., 1996)), in addition to carrying one copy of the 

transgene and one copy of the nanos-GAL4 driver.  Non-disjunction was scored by 

crossing virgin mutant females to y cv v f / T(1:Y)BS males.  The number of exceptional 

progeny indicative of non-disjunction (Bar-eyed females and wild-type-eyed males) was 

multiplied by two to account for triplo-X and nullo-X progeny, which do not survive to 

adulthood.  This number was divided by the total number of progeny (which included the 

additional exceptional progeny) and expressed as a percentage.  P values were calculated 

via a Fisher’s exact test using GraphPad online software (GraphPad, Inc., La Jolla, CA).  

 

Crossover assay 

Flies were maintained on standard medium at 25˚C.  The same heteroallelic gene 

combinations were used as in the non-disjunction assay for both rec and mei-218, in 

addition to one copy of the transgene of interest, and one copy of the nanos-GAL4 driver.  

Crossovers were scored by crossing net dppd-ho dp b pr cn / + virgin females of these 

genetic backgrounds to net dppd-ho dp b pr cn males.  Recombination frequency was 

calculated as the total number of crossover flies divided by the total number of flies 
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scored.  Recombination frequency was expressed in map units – 1 map unit is equal to a 

recombination frequency of 1%.  P values were calculated via a Fisher’s exact test using 

GraphPad online software (GraphPad, Inc., La Jolla, CA). 

 

 



 
 

 

 

 CHAPTER 4 

 ADDITIONAL GENETIC AND MOLECULAR INVESTIGATIONS OF 
rec2 

 

Introduction 

 Meiotic recombination initiates with a programmed double-strand break (DSB), 

and this break can be repaired into either a crossover (CO) or a non-crossover (NCO).  In 

the current model for the repair of this DSB (Figure 21), COs arise through resolution of 

a double-Holliday junction (dHJ) intermediate (Szostak et al., 1983), while NCOs are 

hypothesized to arise through synthesis-dependent strand annealing (SDSA) (Allers and 

Lichten, 2001) or through either resolution (Szostak et al., 1983) or dissolution (Wu and 

Hickson, 2003) of a dHJ intermediate.  Although the creation of heteroduplex DNA 

(hDNA), DNA in which each strand of the duplex is derived from a different parental 

chromosome, is a central aspect of these models, the models differ in the placement of 

hDNA.  hDNA is typically repaired by the mismatch repair (MMR) system, potentially 

resulting in gene conversion (GC).  If the heterologies within hDNA fail to be repaired, 

post-meiotic segregation (PMS) may occur, where the parental alleles segregate from 

each other during the first post-meiotic division (Borts et al., 2000). 

  

                                                 
2 Susan McMahan Cheek helped conduct the Msh6 rec gene conversion assay.  She assisted with the 
experiment’s virgin collection, fly crossing, purine selection and scoring. 
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Figure 21.  Double-strand break repair model.  Model for the repair of the programmed 
double-strand break (DSB) that initiates meiotic recombination.  In this model, resection occurs 
on either side of the DSB, leaving 3’ single-stranded overhangs, one of which invades the 
homologous chromosome.  Synthesis occurs along the homologous template, displacing one 
strand of the template chromosome to form a D-loop structure.  If sufficient synthesis occurs, this 
displaced strand can be captured by the non-invading 3’ overhang.  Following synthesis along the 
D-loop structure, a double-Holliday junction (dHJ) intermediate is formed.  Finally, depending on 
which combination of strands is cleaved, the dHJ is resolved to form either a CO (primarily) or a 
NCO.  Not shown is dHJ dissolution, wherein a helicase branch migrates the two Holliday 
junctions together, creating a structure that is acted upon by a topoisomerase, creating a NCO 
product.  Alternately, synthesis-dependent strand annealing (SDSA) can occur.  In SDSA, 
following some synthesis along the homologous template, the D-loop is disrupted as the invading 
strand dissociates from the template and anneals to the opposite side of the DSB, resulting in a 
NCO product.  Heteroduplex DNA (hDNA) arising from the two NCO pathways is depicted.  
NCOs arising through dHJ resolution can contain regions of hDNA adjacent to a region of gene 
conversion (GC), whereas NCOs arising through the SDSA pathway lack an adjacent region of 
GC.  Each line represents one strand of DNA with partial arrowhead indicating 3’ end of DNA.  
Black and gray lines differentiate two homologous chromosomes.  Dashed lines denote newly 
synthesized DNA.  Arrowheads indicate sites of endonuclease cleavage.   

 



65 
 

Previous research into the Drosophila melanogaster recombination defective (rec) 

gene found that rec mutants had reduced COs but nearly two-fold increased NCOs as 

compared to wild-type (Blanton et al., 2005).  Also in this study, it was shown that rec 

mutants had shorter GC tracts than wild-type flies and epistasis experiments placed rec at 

an intermediate step in the recombination pathway.  These findings, coupled with REC’s 

paralogy to the replicative mini-chromosome maintenance (MCM) proteins, which have a 

known role in DNA replication, led to the hypothesis that REC is involved in the repair 

synthesis step of meiotic recombination.  This hypothesis suggested that REC promotes 

repair synthesis, such that in its absence, a dHJ intermediate cannot form and DSBs are 

instead repaired via SDSA.  By undertaking a gene conversion assay in a MMR-defective 

rec mutant background, I sought to test this hypothesis, since NCOs arising through a 

dHJ versus SDSA are predicted to produce different patterns of hDNA.  NCOs arising 

through dHJ resolution can contain regions of hDNA adjacent to a region of GC, whereas 

NCOs arising through the SDSA pathway lack an adjacent region of GC.   

Furthermore, since MCM proteins in both archaeabacteria and eukaryotes 

function in hexameric complexes with other MCM proteins (Bochman and Schwacha, 

2009), we hypothesized that REC, as the Drosophila ortholog of MCM8 (Blanton et al., 

2005), also functions in a hexameric complex with other MCM proteins.  Thus, to gain 

further insight into REC’s role in meiotic recombination and to identify proteins REC 

interacted with, I sought to use various molecular biological techniques to study REC in 

vivo. 
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Results and Discussion 

Msh6 rec gene conversion assay 

It has previously been hypothesized that in the absence of REC, NCOs arise 

through the SDSA pathway rather than through a dHJ intermediate (Blanton et al., 2005).  

To test this model, we utilized a previously-developed system to screen for intragenic 

recombination at the rosy (ry) locus (Chovnick et al., 1970; Chovnick et al., 1971).  

Briefly, the ry gene encodes xanthine dehydrogenase, an enzyme required for purine 

metabolism.  After crossing females heteroallelic for two ry missense mutations, ry606 and 

ry531, to males homozygous for a deletion of most of the ry locus, rare ry+ recombinants 

are selected by treating the larvae with purine, as all ry- larvae die and only the rare ry+ 

recombinants, each representing a recombination event which converted one of the 

missense mutations into a functional wild-type allele, will survive (Figure 22).  COs and 

NCOs can be distinguished by the presence (or absence) of flanking markers associated 

with each ry allele.  For each recombination event recovered, 33 heterologies within and 

adjacent to the ry locus are utilized to map the hDNA and GC tracts by sequencing PCR 

products of the recombinant chromosome. 

Previously, Radford et al. recovered hDNA in a ry gene conversion assay by 

using two deletion alleles of Msh6, one of two MutS homologs in Drosophila (Sekelsky 

et al., 2000), to knock out MMR (Radford et al., 2007b).  As expected, PMS was 

observed, indicating the persistence of unrepaired hDNA.  However, unexpectedly, the 

GC and hDNA tracts were discontinuous, perhaps resulting from a short-patch repair 

system that functions in the absence of canonical MMR.  Thus, to recover hDNA tracts in 
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Figure 22.  rosy gene conversion assay.  (A) Schematic of the two “female” chromosomes 
utilized in the rosy (ry) gene conversion assay.  Distances between the ry missense mutations 
(ry606 and ry531) and the flanking markers (kar and cv-c) are indicated in kilobases (kb) and 
centiMorgans (cM).  (B) Cross to screen for recombination events within the ry locus.  Females 
heteroallelic for the two ry mutations are crossed to males homozygous for both flanking markers 
and a deletion of ry (ry506).  Larval progeny of this cross are treated with purine, and only ry+ 
recombinants survive to adulthood.  One potential class of ry+ recombinant progeny is 
represented as a ry531 non-crossover fly, as indicated by the presence of the flanking marker cv-c. 

 

rec mutant NCOs, I created Msh6 rec double mutants.  To facilitate collecting the large 

number of virgin females (~145,000) necessary for this experiment, I incorporated a self-

virgining scheme into the recombinant chromosomes, such that only females of the 

desired genotype survive the first cross to generate the experimental females (Figure 23). 

After screening over 1.7 million progeny of Msh6 rec mutant females, we 

recovered 17 ry606 conversions, 10 ry531 conversions and 1 CO.  rec mutants were 

previously found to have a strong reduction in CO frequency as compared to wild-type 

while the frequency of NCOs was nearly two-fold higher than wild-type (Blanton et al., 

2005).  It was hypothesized that since DSBs are not effectively processed into COs in rec 

mutants, additional DSBs are made in an attempt to produce more COs, resulting in the 
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Figure 23.  Self-virgining cross scheme for Msh6 rec gene conversion assay.  Females and 
males of the indicated genotypes are crossed together.  The only surviving progeny are females of 
the desired genotype, marked with a star.  The other progeny classes which do not survive are 
marked with gray boxes.  Bold font emphasizes the reason each genotype does not survive (GAL4 
driving expression of UAS-reaper (UAS-rpr), a cell death gene, or two copies of Stubble (Sb), 
which is homozygous lethal).  Not shown in the progeny class is the male class which does not 
survive because of the P{UAS-rpr} gene on the Y chromosome. 

 

increased NCOs observed as compared to wild-type.  It was also shown previously that 

Msh6 mutants exhibited increased COs and NCOs as compared to wild-type (Radford et 

al., 2007b).  This result can be readily explained since eliminating MMR prevents hDNA 

from being randomly restored to the mutant ry allele, as occurs in wild-type, thus 

increasing the number of events recovered.  I found that like in the rec mutant, COs 

remained very low in the Msh6 rec double mutant (2% of the wild-type level versus 8% 

in the rec single mutant) (Table 9).  The difference between these percentages is not 

likely biologically significant, as they represent very few CO flies recovered (2 in rec 

versus 1 in Msh6 rec).  Using the CO data, I thus conclude that rec is epistatic to Msh6, 

as the double mutants had the rec null level of COs.  Interestingly, the Msh6 rec double 

mutant had near wild-type levels of NCOs (110% of wild-type versus 184% of wild-type 

in rec).  It is difficult to interpret this finding.  It could be that Msh6 is necessary for the 
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formation of a subset of the NCOs that form in the rec mutant and thus in the double 

mutant only the Msh6-independent NCOs can be produced.  Alternatively, these results 

could indicate that NCO formation is sensitive to background effects.  The rec and Msh6 

rec experiments were conducted with the same rec alleles, but the mutations were placed 

into otherwise different genetic backgrounds.  Perhaps the mutant chromosomes should 

be placed into an otherwise isogenic background in the future to eliminate as much 

variation as possible from the experiment. 

 

 

Table 9.  Intragenic recombination at the rosy locus.  Frequency of crossovers (COs) and non-
crossovers (NCOs) observed in the indicated genetic backgrounds.  Numbers in parentheses 
denote percentage of wild-type frequency.  ^Data from (Radford et al., 2007a) and (Blanton et al., 
2005).  #Data from (Radford et al., 2007b).  *Data from (Blanton et al., 2005). 

  

I next sought to map the Msh6 rec NCO tracts to determine whether these NCOs 

arose through SDSA or via a dHJ intermediate, as each pathway is predicted to produce a 

different pattern of hDNA (Figure 21).  Eight of the ry606 conversion tracts were 

successfully mapped using the multiple polymorphisms between the two parental 

chromosomes (Figure 24).  Four of the tracts converted only the ry606 site.  The recovery 

of such short tracts was not unexpected, as rec mutant GCs were shorter than wild-type 

(Blanton et al., 2005).  Of the remaining tracts, three of the four contained one 

unconverted polymorphism within a stretch of otherwise converted DNA.  Similar results 

were seen in the Msh6 mutant assay, and are likely the result of a short-patch repair 
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system (Radford et al., 2007b).  One of these tracts also contained hDNA, indicating that 

the Msh6 mutation did eliminate at least some MMR.  In this case, the hDNA 

incorporated one polymorphism at each end of the converted tract, with the hDNA being 

in trans (i.e., the ry606-chromosome-derived polymorphism at one hDNA site was not on 

the same DNA strand as the other ry606-chromosome-derived polymorphism at the 

opposite hDNA site).  It is impossible to glean any information regarding recombination 

mechanisms from this data, with so few mapped conversion events (only one of which 

contained hDNA) and with the short-patch repair system potentially obscuring other 

conversion tracts. 

 

 

Figure 24.  Non-crossover events in Msh6 rec mutants.  Bars at top represent the two maternal 
chromosomes: ry606 chromosome (blue) and ry531 chromosome (orange).  Mapped ry606 conversion 
tracts are depicted below the maternal chromosomes.  Number in parentheses denotes number of 
times that tract was observed.  Open ovals represent the mutant ry allele, while filled circles 
represent the wild-type allele.  Vertical lines indicate polymorphisms between the two maternal 
chromosomes.  In mapped tracts, color denotes chromosome of origin, with vertical lines 
indicating converted sites.  Vertical lines of two colors denote heteroduplex DNA (hDNA) 
derived from both maternal chromosomes and the phase of this hDNA.  Dotted lines extend to the 
next unconverted polymorphism, indicating the maximum possible tract length.  Scale is in base 
pairs, using the coordinate system of (Bender et al., 1983). 
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Mapping the remaining tracts proved difficult, as many of the fly preps did not 

produce a PCR product with any primer combination.  Furthermore, analysis of mus210; 

Msh6 double mutant NCO tracts indicated that removing both the canonical MMR 

machinery (with the Msh6 mutation) and the nucleotide-excision repair pathway (with the 

mus210 (DmXPC) mutation) was necessary to eliminate the short-patch repair system (N. 

Crown, unpublished).  Since short-patch MMR was possibly obscuring the hDNA tracts 

in the Msh6 rec mutant, and since rec mutant GC tracts do not span as many SNPs as in 

wild-type (thus decreasing the likelihood that the conversion tracts would span multiple 

polymorphisms to aid mapping), I conclude that mapping additional tracts would not be a 

time beneficial endeavor.  

 

MCM yeast two-hybrid assay 

 I hypothesized that as a member of the MCM family, REC would interact with 

other MCM proteins.  To this end, I conducted a yeast two-hybrid assay in which I tested 

every MCM domain-containing protein in Drosophila (MCM2-7, REC, MEI-217 and 

MEI-218) for interaction with itself and every other Drosophila MCM protein (Figure 

25).  I was able to recapitulate some of the known MCM2-7 interactions (Bochman et al., 

2008), including MCM2:MCM6 and MCM3:MCM7, thus showing that the system can 

detect interactions between MCM proteins.  I also identified some other replicative MCM 

interactions, including MCM3:MCM6 and a self-interaction between MCM6 subunits.  

These additional interactions could represent other MCM sub-complexes within the cell, 

as it is known that many more MCM proteins are present in a cell than are necessary for 

DNA replication (the “MCM paradox”) (Laskey and Madine, 2003) and it is thus likely 
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that subsets of MCM proteins conduct other cellular processes as well.  Alternatively, 

these interactions could be artifacts of our artificial overexpression system.  To confirm if 

these interactions are biologically relevant, immunoprecipitation studies of the in vivo 

MCM proteins could be conducted.   

 

Figure 25.  MCM yeast two-hybrid assay.  Pairwise yeast two-hybrid assay testing for physical 
interaction between MCM proteins.  The protein listed above each pair of plates is the protein 
fused to the GAL4-binding domain (BD).  This protein is tested for interaction with all other 
MCM proteins fused to the GAL4-activating domain (AD), according to the legend above the 
plates, with abbreviations as follows: 2-7 represent MCM2-7, respectively; R, REC; M7, MEI-
217; M8, MEI-218; E, empty AD.  For each pair of plates, the plate on the left is –trp –leu.  
Growth on this plate indicates the presence of both AD and BD plasmids within the yeast.  The 
plate on the right is –trp –leu –his.  Growth on this plate indicates an interaction between the two 
tested proteins.  Contaminating yeast colonies that do not represent a real interaction are marked 
with an asterisk. 

 

I did not recapitulate many of the known interactions between MCM2-7 subunits.  

I did not expect to recover an interaction between MCM2 and MCM5, as these two 
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subunits are believed to form a “gate” in the heterohexamer (Bochman and Schwacha, 

2010).  The failure to detect an interaction between the remaining subunits could have 

arisen for several reasons.  Some of the MCM proteins may not have expressed in our 

system.  This is likely the case for MCM4, MCM5, MCM7 and REC in the binding 

domain, as these four proteins did not interact with any other subunit.  Since MCM2-7 

are essential proteins, expressing some Drosophila MCM proteins in Saccharomyces 

cerevisiae may poison yeast MCM complexes; thus, yeast which fail to express the fly 

MCM proteins could be selected for in this system.  Furthermore, fusing the GAL4 

domains to the MCM proteins could have disrupted some protein interactions.   

I also found that MEI-217 interacted with MEI-218.  As MEI-217 and MEI-218 

are encoded on one dicistronic mRNA (Liu et al., 2000), and the proteins contain MCM 

N- and C-terminal domains, respectively (Kohl et al., 2012), I believe this interaction is 

biologically relevant.  However, this interaction could not be confirmed in the reverse 

(with MEI-218 in the binding domain and MEI-217 in the activating domain (AD)) since 

MEI-218 self-activated, as shown by its interaction with every MCM in the AD, 

including the empty vector.  Thus, future experiments with MEI-218 will require the 

protein to be fused to the AD.  Alternatively, the MEI-218 protein may be truncated to 

determine the region of self-activation. 

 

Immunoprecipitation of REC 

In addition to conducting yeast two-hybrid analysis, interaction between proteins 

can also be identified by immunoprecipitating the protein(s) of interest.  This technique 

has several advantages over yeast two-hybrid, including the ability to detect endogenous 
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interactions in Drosophila tissue and the ability to detect unpredicted interactions – i.e., 

by pulling down the protein of interest, new proteins may be identified that otherwise 

might not have been tested using a candidate gene approach in a yeast two-hybrid assay.  

To this end, I created three antibodies to REC: an affinity-purified polyclonal antibody 

raised against amino acids (aa) 324-423, another affinity-purified polyclonal antibody (aa 

875-885), and a polyclonal antibody (aa 737-842) (Table 10).  These antibodies were 

tested on various Drosophila samples, including whole adult flies (females and males), 

whole larvae, ovaries and testes but an unambiguous REC band was never observed on 

western blots (data not shown).  Since Drosophila create ~6 COs per developing oocyte 

(reviewed in (McKim et al., 2002)), and each female fly has ~30 ovarioles, each 

containing one germarium – the anterior region of the ovariole wherein early oocyte 

differentiation and meiotic recombination takes place – with cells undergoing meiotic 

recombination (reviewed in (Lake and Hawley, 2012)), it may be that very few REC 

proteins exist in flies (if REC is necessary only to produce meiotic COs), and this number 

may be below the level of detection via western blot.  Alternatively, all of the antibodies 

could be unable to recognize REC.  To determine if the antibodies were capable of 

detecting REC, I tested the antibodies on a western blot against recombinant REC protein 

expressed in insect cells using the baculovirus system.  Each antibody was able to detect 

REC, as evidenced by the bands in the REC samples and absence of bands in the non-

REC samples (Figure 26).  
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Table 10.  REC antibodies.  Antibodies to REC and to the FLAG tag are compared for the 
amino acids (A.A.) they recognize and their ability to detect REC in Drosophila tissue (“flies”) 
and in an overexpression system (“overexpression”). 

 

      

Figure 26.  REC antibodies.  Recombinant protein samples from baculovirus-infected insect 
cells were western blotted and probed with indicated antibodies.  All samples were run on the 
same SDS-PAGE gel.  +, sample contains FLAGREC.  -, sample does not contain FLAGREC.   
Predicted molecular weight of FLAGREC is ~99 kDa. 

 

Since the REC antibodies were not sensitive enough to detect endogenous REC, I 

created an N-terminal FLAG-tagged rec transgene so that I could utilize a commercially 

available FLAG antibody to probe for REC.  This P{FLAGREC} transgene was tested in a 

non-disjunction (NDJ) assay to determine if it rescued the high NDJ phenotype 
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characteristic of rec null mutants (Grell, 1984) (Figure 27).  Since the NDJ in the 

P{FLAGREC} transgene was not statistically significantly different from wild-type 

(p=0.0873), I conclude that the transgene successfully expresses REC, presumably with 

an N-terminal FLAG tag.   

   

            

Figure 27.  P{FLAGREC} non-disjunction.  Percent non-disjunction (NDJ) was scored in the 
indicated genotypes.  FLAGrec data from insertion line #14-25, on 2.  Over 1100 individuals were 
scored for each genotype.  ***p<0.0001, as compared to wild-type.  n.s., not statistically 
significant as compared to wild-type. 

 

I next tested several samples from this P{FLAGREC} line, including both dissected 

ovaries and whole flies, via western blot with a commercial monoclonal FLAG antibody.  

However, as seen with the antibodies to REC, FLAGREC signal was not detectable (data 

not shown).  To increase the likelihood of detecting REC, we next attempted to 

immunoprecipitate REC using commercial anti-FLAG affinity agarose beads.  REC was 

still undetectable following immunoprecipitation, even after trichloroacetic acid 

precipitation to concentrate the sample.  The FLAG antibody was functional, however, as 
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I was able to detect another FLAG-tagged protein, MEI-9, using similar protein 

extraction and western blotting procedures (data not shown).   

Therefore, I have been unable to immunoprecipitate REC.  However, as these 

attempts were cursory and used un-optimized protocols, it may still be possible to 

immunoprecipitate endogenous REC.  In the future, researchers will need to weigh this 

experiment’s potential costs and benefits before deciding whether to repeat it.  While the 

possibility of identifying endogenous proteins interacting with REC is a tantalizing goal, 

the difficulties inherent with working with a low-abundance protein temper the 

enthusiasm for repeating this experiment.   

 

Immunofluorescence of REC 

 Since I was unable to identify proteins interacting with REC via yeast two-hybrid 

or immunoprecipitation, I next turned to using the antibodies described above in 

immunofluorescence assays.  By co-staining germaria with these anti-REC antibodies 

and antibodies against other candidate proteins, I hoped to determine whether the proteins 

co-localize, suggesting that the proteins function either in the same complex or in the 

same process.  Initially, to verify that REC could be visualized by confocal microscopy 

using these antibodies, I co-stained germaria from P{FLAGREC} females with one 

antibody to REC (either anti-REC-mid, anti-REC-756, or anti-REC-C) and another to 

FLAG.  Unfortunately, co-localization of these signals was never observed, and instead 

only varied background staining was seen (data not shown).  Thus, I was unable to detect 

REC via immunofluorescence using confocal microscopy.  Furthermore, I also co-stained 

P{FLAGMEI-218} germaria (stock obtained from Kim McKim, Rutgers University) with 
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anti-REC-C and anti-FLAG, but failed to see a convincing signal from either of these 

proteins (data not shown).  However, other proteins in germaria, including C(3)G, a 

component of the synaptonemal complex (Page and Hawley, 2001) (Figure 28), and Orb, 

an RNA-binding protein expressed in germline cells during oogenesis (Lantz et al., 1992) 

(data not shown), were able to be visualized, suggesting that the dissection, fixing, 

staining and imaging protocols were functional.   

 

        

Figure 28.  C(3)G staining.  w1118 ovariole stained to visualize DNA and C(3)G.  Anterior end 
of germarium is located at the bottom.  Image is a maximum projection of Z-stacks through the 
ovariole at 40X magnification.   

 

Since REC is presumed to be a low-abundance protein, future 

immunofluorescence experiments looking to visualize REC should seek to increase the 

fluorescent signal from the protein.  This could possibly be achieved by creating a 

multiply-epitope-tagged rec transgene.  From the aforementioned experiments, I believe 

that REC with one FLAG tag is not sufficient to be visualized via confocal microscopy.  



79 
 

Perhaps increasing the number of tags would increase the signal above the threshold 

necessary for visualization.  However, increasing the size of the tag could impede REC 

from conducting its normal cellular functions.  To test this possibility, it will be necessary 

to assay CO formation in the transgenic fly.  Alternatively, a “signal amplification kit” 

could be used to increase the fluorescent signal from the antibodies. 

 

MCM RNA in situ hybridization 

 As my various attempts to study REC protein were unsuccessful, I next sought to 

visualize rec mRNA via in situ hybridization.  By localizing rec mRNA in germaria, I 

hoped to gain additional insight into REC’s role in meiotic recombination.  Furthermore, 

by conducting similar RNA in situ hybridizations for all of the Drosophila MCM 

domain-containing proteins, I hoped to uncover evidence of shared functions between 

REC and the other MCM proteins.  After conducting in situs on ovarioles for Mcm2-7, 

rec, mei-217 and mei-218, I found that each showed seemingly random foci throughout 

the germaria (Figure 29).  As the in situs were only conducted a few times each (at most), 

this staining could represent non-specific background.  However, I believe the staining 

was real, and its localization fits with our hypothesis that REC, MEI-217 and MEI-218 

are involved in meiotic recombination, which occurs in the germarium.  Further, it is not 

surprising to find transcripts of MCM2-7 in germaria, as these essential proteins are 

necessary for DNA replication, which occurs in cells throughout the ovariole – including 

prior to the first meiotic division and in the endocycling nurse cells and follicle cells 

during later stages of oogenesis. 
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Figure 29.  RNA in situ hybridization.  Germaria stained to visualize DNA (with DAPI, blue) 
and (A) rec mRNA or (B) Mcm5 mRNA (with Cy3, red).  Anterior end of germaria are in the 
lower left corner.  Each image is a maximum projection of Z-stacks through the germarium at 
40X magnification.  Other replicative Mcm, mei-217 and mei-218 images appeared similar (data 
not shown). 

 

Interestingly, I also saw distinct rec foci on nurse cell nuclei in stage ~10 oocytes 

(Figure 30).  mRNA transcribed in nurse cells is deposited into the adjacent developing 

oocyte for use from fertilization until the initiation of zygotic transcription.  Discovering 

that rec mRNA was being transcribed in nurse cells was unexpected since rec null 

mutants have no obvious developmental defects that would suggest a role for REC in 

early development.  Similar staining was only observed for Mcm5 mRNA.  The absence 

of nurse cell foci for the other Mcm2-7 mRNAs is likely the result of experimental error 

due to an un-optimized hybridization protocol.  We predict that Mcm2-7 mRNA is highly 

transcribed in nurse cells, since numerous replicative MCM2-7 complexes are essential 

for DNA replication occurring prior to zygotic transcription.  Alternatively, the staining 

observed for Mcm5 may represent higher-than-normal levels of transcription (i.e., higher 
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than the other Mcm2-7 mRNAs), suggesting an additional role for MCM5 outside of the 

replicative MCM2-7 complex.  However, neither hypothesis explains the finding that rec 

mRNA was being transcribed in nurse cells – a finding that suggests REC plays a role in 

early embryonic development.  It would be of interest to discover this additional function 

of REC.  Perhaps REC acts with a subset of the replicative MCMs to assist the rapid 

rounds of DNA replication in the early embryo.  If MCM5 were a component of this sub-

complex, this could explain the high levels of Mcm5 mRNA observed in nurse cell 

nuclei.  As rec null flies are viable, it is clear that the function of REC in the early 

embryo is not essential. 

 

 

Figure 30.  rec RNA in situ hybridization.  Drosophila ovariole stained to visualize DNA (with 
DAPI, blue) and rec mRNA (with Cy3, red).  (A) ~Stage 10 oocyte at 40X zoom.  (B) Three 
nuclei from same oocyte as in (A) at 63X.  Both images are maximum projections of Z-stacks 
through the oocyte.  



82 
 

Thus, I initiated these genetic and immunochemical experiments hoping to better 

understand the role of REC in meiotic recombination.  Instead, I found evidence that 

REC is likely a low-abundance protein in Drosophila, making these experiments more 

technically challenging than anticipated.  However, I was able to show an interaction 

between MEI-217 and MEI-218 via yeast two-hybrid – an initial discovery that led to 

additional experiments discussed in Kohl et al. (Kohl et al., 2012).  I also made a 

potentially useful tool by creating P{FLAGREC}, an epitope-tagged rec transgene that fully 

rescues the high NDJ phenotype of rec null mutants.  Finally, I discovered an abundance 

of rec mRNA in nurse cells of the Drosophila oocyte, suggesting a potential role for REC 

in early embryonic development. 

 

Materials and Methods 

Msh6 rec gene conversion assay  

Flies were maintained on standard medium at 25˚C.  40 virgin females of the 

genotype P{GawB}h1J3 msh668 ry531 cv-c rec2 / TM3, P{w+mC=GAL4-twi.G}2.3, P{UAS-

2xEGFP}AH2.3, Sb, Ser were crossed to 15 males of the genotype Y, P{w+c=UAS-

rpr.Y}; msh610 kar ry606 red rec1 Sb / TM6B, P{w+mC=UAS-rpr.C}, Tb, Hu per bottle.  rec 

mutations (Blanton et al., 2005) and Msh6 mutations (Radford et al., 2007b) have been 

described previously.  From this self-virgining scheme, 100 virgin females of the 

genotype P{GawB}h1J3 msh668 ry531 cv-c rec2 / msh610 kar ry606 red rec1 Sb were 

collected and crossed to 20 males of the genotype kar ry506 cv-c per bottle.  Gene 

conversion assay was conducted as in Radford et al. (Radford et al., 2007b).  Surviving 

ry+ recombinants were homogenized in buffer containing proteinase K, as in Gloor et al. 
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(Gloor et al., 1993).  Conversion tracts were amplified using one primer anchored in the 

ry506 deletion to select for the recombinant, maternally-derived chromosome, using iProof 

polymerase (Bio-Rad, Hercules, CA).  PCR product was excised from an agarose gel 

which was then melted using QG buffer (Qiagen, Valencia, CA) and purified with a PCR 

purification kit (Fermentas, Burlington, ON).  From this clean DNA, smaller, nested PCR 

reactions were run, agarose-gel-excised, purified and sequenced using the UNC Genome 

Analysis Facility to finely map conversion tracts.  Phasing of the hDNA tract was 

determined using allele-specific PCR primers to one of the hDNA polymorphisms.    

Yeast two-hybrid assay 

Drosophila MCM2-7, REC, MEI-217 (aa 52-279) and MEI-218 were cloned 

using the Gateway system (Life Technologies, Carlsbad, CA) into pGBD-DEST, a 

Gateway-compatible derivative of pGBD-C1 (James et al., 1996) constructed with the 

Gateway Vector Conversion System (Life Technologies) and into pACT2.2gtwy 

(Addgene plasmid 11346 deposited by Guy Caldwell), a Gateway-compatible derivative 

of pACT2.2.  Constructs were transformed into S. cerevisiae strain PJ69-4A (James et al., 

1996).   Co-transformants were selected on plates of SD minimal medium containing 

dropout supplements lacking leucine (-leu) and tryptophan (-trp) for 3 days at 30˚C.  

Single colonies were streaked onto fresh –trp –leu plates and grown for 3 days at 30˚.  

Colonies were then streaked onto –trp –leu –histidine plates containing 3mM 3AT.  

Interaction between proteins was scored 3 days later.  Plates were left at 4˚C for several 

weeks to check for abnormal growth indicative of false-positive interactions. 
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Western blotting 

 Insoluble protein pellets containing either FLAGREC or HAMEI-217 and Strep-IIMEI-

218 expressed in High Five cells were boiled in SDS-PAGE sample buffer.  Samples 

were run on a 7.5% SDS-PAGE gel, transferred to PVDF membrane, and probed with the 

following antibodies at 1:20,000: anti-REC-mid (raised in rabbit to aa 324-423 (Strategic 

Diagnostics, Inc., Newark, DE), anti-REC-756 (raised in rabbit to aa 737-842; Covance, 

Denver, PA), anti-REC-C (raised in rabbit to aa 875-885; Pacific Immunology, San 

Diego, CA), anti-DYKDDDK (FLAG) monoclonal mouse antibody (Millipore, Billerica, 

MA), and HRP-conjugated anti-rabbit or anti-mouse secondary (Santa Cruz 

Biotechnology, Santa Cruz, CA) 1:21,000.  SuperSignal West Pico Chemiluminescent 

Substrate (Pierce) was used to detect proteins. 

 

FLAGREC transgene 

The 5’UTR of rec and the rec cDNA with an N-terminal FLAG tag were cloned 

into the P{CaSpeR4} vector.  Construct was then injected via standard P-element 

transformation procedures (Rainbow Transgenics, Thousand Oaks, CA) to create 

P{FLAGREC}. 

 

Non-disjunction 

Flies were maintained on standard medium at 25˚C.  For {FLAGrec} assay, flies 

were heteroallelic for null mutations of rec (rec1 and rec2; (Blanton et al., 2005)), in 

addition to carrying one copy of the transgene.  Non-disjunction was scored by crossing 

virgin females to y cv v f / T(1:Y)BS males.  The number of exceptional progeny indicative 
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of non-disjunction (Bar-eyed females and wild-type-eyed males) was multiplied by two 

to account for triplo-X and nullo-X progeny, which do not survive to adulthood.  This 

number was divided by the total number of progeny (which included the additional 

exceptional progeny) and expressed as a percentage.  P values were calculated via a 

Fisher’s exact test using GraphPad online software (GraphPad, Inc., La Jolla, CA).  

 

Immunofluorescence 

Females of the indicated genotypes were fattened overnight on yeast paste prior to 

dissection of the ovaries in Drosophila Ringer’s solution (182mM KCl, 46mM NaCl, 

3mM CaCl2, 10mM Tris, pH 7.2).  Ovaries were fixed and stained using the Buffer A 

protocol as in McKim et al. (McKim et al., 2009).  Primary antibodies included: rabbit 

anti-REC-C used at 1:300, rabbit anti-REC-mid used at 1:300, rabbit anti-REC-756 used 

at 1:300, mouse anti-FLAG used at 1:300 (Millipore), rabbit anti-FLAG used at 1:300 

(Sigma), mouse anti-C(3)G antibody used at 1:500 (Page and Hawley, 2001) and a 

combination of two mouse anti-ORB antibodies (4H8 and 6H4) used at 1:100 (Lantz et 

al., 1994).  Secondary antibodies were Alexa-Fluor goat anti-mouse 555 and Alexa-Fluor 

goat anti-rabbit 488 used at 1:1000 (Life Technologies).  DAPI staining was conducted 

for 1min using 1:1000 of 1mg/ml DAPI solution.  Ovaries were mounted in Fluoromount 

G (Southern Biotech, Birmingham, AL).  Slides were visualized using a Leica SP5 

confocal microscope. 
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RNA in situ hybridization 

 Forward primers were designed with the T7 RNA polymerase binding sequence 

followed by a gene-specific sequence, while reverse primers were designed with the T3 

RNA polymerase binding sequence prior to a gene-specific sequence.  Primers were 

spaced ~500 bp apart for each gene.  Following amplification of the DNA template using 

Taq polymerase, PCR products were excised from the agarose gel, melted in QG buffer 

(Qiagen), purified using a GeneJET PCR purification column (Fermentas), and eluted in 

50ul DEPC H2O.  Transcription reactions were as follows: 0.5ul RNasin (Promega, 

Madison, WI), 10ul purified PCR product, 2ul 10X transcription buffer, 4ul DEPC H2O, 

2ul T3 (or T7) RNA polymerase (Roche, Indianapolis, IN).  Reactions were placed at 

37˚C for 2.5h prior to adding 1ul RQ1 DNase (Promega) and 1ul RNasin, after which 

reactions were returned to 37˚C for 30min.   

w1118 females were fattened overnight on yeast paste prior to ovary dissection.  

Ovaries were fixed in 500ul fixation buffer (PBS, 0.05M EGTA, 9% formaldehyde) and 

500ul heptane for 25min.  Fixation buffer was removed and 750ul MeOH was added and 

immediately removed. Two 1.5ml 100% EtOH washes and six PBT (PBS, Tween-20) 

washes followed.  500ul hybridization buffer (50% deionized formamide, 5X SSC, 

100ug/ml sonicated denatured salmon sperm, 100ug/ml E. coli tRNA (Sigma), 50ug/ml 

heparin, 0.1% Tween-20, pH4.5) was added for 1h.  Probe was diluted 1:1000 in 

hybridization buffer containing 5% dextran sulfate prior to heating at 85˚C for 5min, 

cooling on ice 2min and heating again at 55˚C 2min.  Hybridization buffer was removed 

from ovaries and the warmed probe was added.  Reaction incubated overnight at 55˚C.  

Ovaries were washed twice for several minutes with wash buffer (125ml formamide, 
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25ml 20X SSC, 100ml DEPC H2O, 25ul Tween-20) at 55˚C.  Then ovaries were washed 

in wash buffer eight times for 30min each at 55˚C, and left overnight in wash buffer at 

55˚C.  Ovaries were rinsed in PBT for 30min and then blocked for 30min in blocking 

solution (0.5% blocking reagent in PBS).  Ovaries were rocked with anti-digoxigenin-

POD, Fab fragments (Roche) diluted 1:200 in blocking solution for 30min, washed three 

times for 5min with PBT, then rocked with tyramide amplification reagent working 

solution (6ul tyramide reagent Cy3, 294ul amplification solution) (Perkin-Elmer, 

Waltham, MA).  Ovaries were washed three times for 5min with PBT prior to staining for 

1min with 1:1000 1mg/ml DAPI diluted in PBT.  After one final 15min PBT wash 

ovaries were mounted in Fluoromount G (Southern Biotech).  Slides were imaged using a 

Leica SP5 confocal microscope. 

 

 



 
 

 

 

CHAPTER 5 

DISCUSSION AND FUTURE DIRECTIONS 
 

 Through the research detailed in this dissertation, I have sought to understand the 

genetic and molecular mechanisms by which meiotic recombination occurs and the 

pathways involved in regulating this recombination.  This research is important on many 

levels.  At its narrowest definition, this research incorporated genetic, biochemical and 

evolutionary analyses to increase our knowledge about the meiotic recombination 

pathway in Drosophila melanogaster.  I believe the importance of this research extends 

beyond Drosophila, however.  Our findings allowed us to see a connection between the 

meiotic and mitotic crossover (CO) pathways and to update a decade-old meiotic CO 

paradigm.  Furthermore, these studies have proven interesting from an evolutionary 

standpoint.  We found a strong signature of positive selection in the history of one 

recombination protein and were able to couple this finding with a convincing hypothesis 

for the source of this strong selection.  In another intriguing evolutionary finding, we 

showed that two recombination proteins are descendant from one ancestral protein, and in 

doing so, discovered a new member of a well-conserved protein family.  Here I 

summarize the key findings of this dissertation and look to the future of the meiotic 

recombination field by discussing the questions that arose from these new results. 
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Highlighted Findings 

 I began this work with the hypothesis that the Drosophila precondition proteins 

(REC, MEI-217, MEI-218 and MCM5) shared similar meiotic mutant phenotypes (Baker 

et al., 1976; Baker and Carpenter, 1972; Blanton et al., 2005; Carpenter, 1979; Grell, 

1984; Lake et al., 2007; Liu et al., 2000) because they worked together to accomplish 

some task necessary for meiotic CO formation.  However, I had no data to support this 

hypothesis beyond the shared phenotype and a possible connection that some, but 

certainly not all, of the proteins resembled mini-chromosome maintenance (MCM) 

family proteins (Blanton et al., 2005; Lake et al., 2007).  By utilizing a secondary 

structure prediction program, we discovered that MEI-217, formerly considered an 

orphan protein, structurally resembled the N-terminus of MCM proteins.  MEI-218, 

encoded on the same transcript as MEI-217, structurally resembled the C-terminus of 

MCM proteins, suggesting that MEI-217 and MEI-218 together represented one 

divergent MCM protein (Chapter 2).  Thus, the precondition proteins were indeed 

members of the MCM family.  Additionally, we were able to identify the homolog of 

MEI-218 in other organisms, including humans, and in doing so discover a previously 

unrecognized MCM protein.  Interestingly, according to the Mouse Transcriptome 

Project, the mouse MEI-218 protein is expressed in the ovary and testis, suggesting that 

this protein may have a role in meiosis in other organisms as well (Barrett et al., 2009).   

 At the conclusion of this work, I now know that the meiotic mutant phenotype 

shared by rec, mei-217 and mei-218 mutants is a result of the encoded proteins working 

together as a complex (mei-MCMs) (Chapter 2).  I further hypothesize that MCM5 is a 

component of this complex as well, not simply because of its shared mutant phenotype 
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and membership in the MCM family, but also in light of the rec ATPase mutant analyses 

I conducted.  These analyses suggested that another member of the complex existed in 

addition to REC – a member that was capable of binding and hydrolyzing ATP (Chapter 

3).   

 We found that the mei-MCMs function as pro-CO proteins by antagonizing the 

Drosophila BLM ortholog, DmBLM (Chapter 2).  This finding was particularly 

significant, as it explained how flies were able to form interfering meiotic COs without 

Msh4 and Msh5, two proteins necessary for interfering CO formation in other organisms 

(Berchowitz and Copenhaver, 2010).  Our results suggested that the strong positive 

selection observed for rec prior to the split of fruit flies from tsetse flies was a result of 

MCM8/REC evolving to fill the functional niche left open by the loss of Msh4 and Msh5 

(Chapter 2).  By showing that flies replaced one pro-CO complex (Msh4-Msh5) with 

another (mei-MCMs), we were able to place Drosophila into the two-pathway paradigm 

for meiotic CO formation.  This finding, coupled with recent research in a number of 

other labs (Crismani et al., 2012; De Muyt et al., 2012; Zakharyevich et al., 2012), 

allowed us to present a revised, more universal interpretation of the two-pathway 

paradigm that noted the meiotic novelties of the Class I interfering CO pathway and also 

the similarities between the Class II non-interfering CO pathway and the mitotic 

recombination pathway (Chapter 1). 

 Additionally, several experiments provided evidence that the mei-MCMs play a 

role in regulating CO formation and CO distribution.  The first evidence came from the 

ATPase mutant analyses which showed that the rec Walker B mutant had a wild-type CO 

distribution, in contrast to the rec null precondition distribution, despite being unable to 



91 
 

form a normal number of meiotic COs (Chapter 3).  This suggested that the mei-MCMs 

functioned early in meiotic recombination to affect the distribution of meiotic COs.  

Furthermore, I found three genetic backgrounds that induced a hyperrecombination 

phenotype.  One of these, the rec Walker A mutant, retained a wild-type distribution of 

COs, whereas the other two, the mini-MEI MEI-218 truncation mutant and the meiotic 

mus309 rec double mutant, showed a random CO distribution (Chapters 2 and 3).  These 

findings are important, as the mechanisms involved in regulating CO distribution are not 

understood in any organism.  In particular, the hyperrecombination phenotype hints at a 

possible role for the mei-MCMs in the interference pathway.  If so, these mutants will be 

invaluable in studying this pathway, as I am unaware of any other mutants in any 

organism that affect only the interference pathway but do not reduce the number of COs 

formed.   

 

Future Directions 

 While the work in this dissertation answered several long-standing questions in 

the Drosophila meiotic recombination field, it also raised new questions to be the subject 

of future studies.  The first of these questions asks, what is the source of the increased 

double COs (DCOs) in the three hyperrecombination genotypes we discovered?  Perhaps 

the mei-MCM complex is involved in CO interference.  To determine whether this is the 

case, COs need to be scored again in these genotypes using a different marked 

chromosome than the one originally used.  This new marked chromosome requires the 

markers to be more equally-spaced so that an appropriate comparison can be made 

between the number of COs in each interval and how this number is affected when a CO 
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occurs in an adjacent interval.  If the hyperrecombination in these genetic backgrounds is 

a result of an alteration to the interference pathway, I would expect to see an increased 

incidence of DCOs in adjacent intervals as compared to wild-type.  If, however, the mei-

MCMs do not play a role in CO interference, I would expect that the DCOs would be 

widely-spaced across the chromosome arm, as is normally the case when interference is 

functioning.   

If the hyperrecombination phenotype is not a result of an aberrant interference 

pathway, then perhaps there is an increase in the formation of double-strand breaks 

(DSBs) in these genetic backgrounds.  To assay this possibility, DSBs can be visualized 

using an antibody to γH2Av, a marker of DSBs (Madigan et al., 2002).  By staining both 

wild-type and mutant germaria, the anterior region of the ovariole wherein early oocyte 

differentiation and meiotic recombination takes place, with this antibody we can compare 

the number of DSBs that form.  An absence of an increase in DSBs in these genetic 

backgrounds could suggest that the CO/non-crossover (NCO) decision had been 

disrupted – i.e., COs were being formed at the expense of NCOs.  Additionally, the 

hyperrecombination phenotype begs the question as to whether the additional COs arise 

from canonical programmed DSBs?  For this experiment, the hyperrecombination 

genotypes can be placed into a mei-P22 mutant background.  MEI-P22 is required for 

programmed meiotic DSB formation in Drosophila (Liu et al., 2002).  Thus, if the 

additional COs in these genotypes arise from programmed DSBs, then the level of 

crossing over should approach zero in the mei-P22 mutant background.  Alternatively, 

the DSBs could arise as a result of DNA damage, in which case the increase in COs 

would not be affected by the mei-P22 mutant background.  To this end, I have created 
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mei-P22103 mus309N1 rec2 P{UASp-mus309} / mei-P22103 mus309D2 rec1 matα-GAL4 

female flies and found that these flies are highly infertile (i.e., from ~890 virgin females 

only 162 progeny were recovered).  This result suggests that the increased COs seen in 

the mus309 rec double mutants are a result of canonical programmed DSBs.  However, 

the low fertility does preclude measuring COs in this background. 

Looking in a mei-P22 mutant background is one way of assaying whether the 

extra COs are “normal” meiotic COs – i.e., arise from the normal meiotic CO pathway.  

Another way of assaying this is to determine whether the additional COs are dependent 

upon MEI-9.  MEI-9 is required for ~90% of Drosophila meiotic COs (Baker and 

Carpenter, 1972; Sekelsky et al., 1995) and is the Drosophila Class I CO pathway 

resolvase.  In this experiment we would place the hyperrecombination mutants into a mei-

9 mutant background and assay crossing over as before.  If the additional COs are formed 

through the Class I pathway, then in the absence of mei-9 we would see a drastic 

reduction in CO formation.  If, however, the additional COs arise from an alternative CO 

pathway, then we would still see many COs being formed in the mei-9 mutant 

background.  

Finally, recombination is exceedingly rare on the fourth chromosome – with most 

historical recombination events being attributed to gene conversion not COs (Arguello et 

al., 2010).  With this in mind, we need to ascertain whether COs are forming on the 

fourth chromosomes of the hyperrecombination mutants.  This would suggest that the 

normal methods of regulating recombination have been disrupted in these genotypes.  To 

accomplish this, fourth chromosome phenotypic markers will need to be placed into both 

wild-type and mutant backgrounds.  Then crossing over can be scored as in the original 
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CO assays I conducted.  If no fourth chromosome COs are seen in the 

hyperrecombination mutants, then we will know that the pathway suppressing 

recombination on the fourth chromosome is still intact. 

 

The next major question to arise from the research detailed in this dissertation is, 

what are the biochemical properties of the mei-MCM complex?  This question will be 

difficult to answer until all of the subunits within this complex have been identified.  I 

know that REC, MEI-217 and MEI-218 are components of the complex, and I 

hypothesize that MCM5 is as well.  To verify that MCM5 is a component of the complex, 

the baculovirus system can be utilized to express epitope-tagged MCM5 with the other 

mei-MCMs.  To this end, I have found that baculovirus-infected insect cells are unable to 

co-express full-length epitope-tagged REC, MEI-217, MEI-218 and MCM5 (data not 

shown).  To circumvent this problem, I attempted to reduce the strain on the cells by 

expressing the truncated form of MEI-218 (mini-MEI) – since this protein rescues the 

meiotic non-disjunction (NDJ) defects of mei-218 null mutants (Chapter 3) – in addition 

to REC, MEI-217 and MCM5.  I found that under these conditions, the insect cells were 

able to express all four proteins (data not shown).  Thus, by conducting 

immunoprecipitation experiments similar to the ones used to identify an interaction 

between REC and MEI-217 (Chapter 2), we may be able to determine if MCM5 is a mei-

MCM.  If it can be successfully shown that MCM5 is a component of the mei-MCM 

complex, the next logical experiment would be to repeat the interaction assay with the 

MCM5A7 mutant version of the protein.  This experiment would allow us to determine if 
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the MCM5A7 missense mutation prevents MCM5 from binding to the complex, thereby 

explaining the meiotic recombination mutant phenotype. 

Like MCM5, I do not know whether any of the other replicative MCM2-7 are 

components of the mei-MCM complex.  Unlike MCM5, however, I do not have the 

luxury of separation-of-function alleles of these genes – alleles that produce viable flies 

with a meiotic recombination mutant phenotype.  Transgenic point mutants of the 

replicative MCMs (similar to the ones used in Chapter 3) could be created if we could 

hypothesize mutations that would create such separation-of-function alleles.  A more 

likely source of these mutations would be in a genetic screen for meiotic mutants, like the 

screen which gave rise to the Mcm5A7 allele (Lake et al., 2007; Page et al., 2007).  As it is 

now believed that the X chromosome has now been saturated for meiotic alleles (Collins 

et al., 2012), I hypothesize that either MCM3 and MCM6, both encoded on the X 

chromosome, are not involved in meiotic recombination or that it is highly unlikely that 

such screens will hit upon an equally fortuitous mutation as was found in Mcm5.  

Alternatively, we could turn to immunoprecipitation of the mei-MCM complex from 

Drosophila in an attempt to identify any missing components.  However, as the mei-

MCMs appear to be in low abundance in vivo (Chapter 4), this technique would most 

likely be technically unfeasible.  Immunoprecipitation of the complex could also be 

attempted from the Drosophila S2 cell line, as this procedure could be easily scalable.  

However, as cells in culture are not undergoing a meiotic program, it is unlikely that the 

mei-MCM complex would be regulated properly.  To this end, REC, MEI-217 and MEI-

218 are only expressed at low levels in the S2 cell line (Roy et al., 2010). 
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 There are several biochemical assays that would help us better understand the 

mei-MCM complex.  First, as a control for the Walker A and Walker B rec mutant 

analyses I conducted (Chapter 3), ATPase activity should be measured using a wild-type 

complex along with Walker A and Walker B mutant REC versions of the complex.  Since 

I made well-characterized mutations in REC, I expect that the wild-type complex will be 

able to hydrolyze ATP, while the Walker B version will not.  I expect that a complex 

consisting solely of Walker A mutant REC would be unable to hydrolyze ATP, while a 

full mei-MCM complex that includes Walker A mutant REC would be able to hydrolyze 

ATP, based on the in vivo phenotypes I observed (Chapter 3).  Additionally, it would be 

informative to conduct a helicase assay using the mei-MCM complex.  The replicative 

MCM2-7 complex has helicase activity (Bochman and Schwacha, 2008), and since the 

mei-MCM complex is also comprised of MCM proteins, it stands to reason that the mei-

MCM complex may also be able to unwind DNA.  In this assay we could present the 

complex with various structures resembling recombination intermediates (for example, a 

5’ flap mimics a structure seen during repair synthesis) to determine when during 

recombination the mei-MCM helicase acts.  Perhaps the mei-MCM complex does not 

have helicase activity.  In this case, it would still be enlightening to incubate the mei-

MCM complex with various DNA structures, again mimicking recombination 

intermediates, to use in an electrophoretic mobility shift assay to see if the complex binds 

to DNA during certain steps of the recombination process.  Similarly, if the mei-MCM 

complex is found to bind to Holliday junctions (HJs), the DNA-protein complex could be 

visualized by electron microscopy to visualize how the mei-MCMs are bound (i.e., do 

they encircle the entire HJ, does more than one complex bind to one HJ, etc.). 
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 Another question remaining after this dissertation research is, what is the 

relationship between other Drosophila meiotic recombination proteins and the two 

meiotic CO pathways?  We have hypothesized that the mei-MCMs function in the Class I 

CO pathway in a role reminiscent of Msh4-Msh5 in other organisms (Chapter 2).  Further 

tests of this hypothesis can be conducted, including making double mutants with the mei-

MCMs and the Class II resolvases such as Gen or Mus81 to determine if there is an 

increase in NDJ and/or reduction in COs, as would be expected if both CO pathways are 

removed simultaneously.  If the Class II resolvases are redundant, as they are in 

Saccharomyces cerevisiae (De Muyt et al., 2012; Zakharyevich et al., 2012), then we 

may need to remove all of the resolves in the mei-MCM mutant background before we 

see a noticeable effect.  To this end, I have created mus81; rec double mutants and Gen 

rec double mutants and assayed NDJ in both genotypes.  In support of our hypothesis that 

the mei-MCMs function in the Class I CO pathway while Mus81 functions in the Class II 

pathway, mus81; rec double mutants had significantly higher NDJ levels than either 

mus81 or rec single mutants (Figure 31), as would be expected if two CO pathways were 

being disrupted.  Contrary to our hypothesis, however, the Gen rec double mutants had 

significantly lower NDJ levels than the rec single mutants.  Before this result can be 

properly interpreted, COs should be measured in both the Gen and Gen rec mutants.  

Perhaps Gen is a non-crossover specific resolvase, and in its absence more COs are 

formed than in wild-type, thus partially rescuing the low level of COs observed in rec 

mutants. 
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Figure 31.  Class I and Class II crossover mutant non-disjunction.  Percent non-disjunction 
(NDJ) was scored in the indicated genotypes.  Over 1300 individuals were scored for each 
genotype.  ***p<0.0001, as compared between paired genotypes. 

 

Additionally, removal of Sgs1, the S. cerevisiae BLM ortholog, creates a 

requirement for the Class II resolvases in meiotic CO formation (De Muyt et al., 2012; 

Zakharyevich et al., 2012).  To determine the universality of the two meiotic CO pathway 

paradigm presented in Chapter 1, we should determine if mutation of mus309, the gene 

encoding the Drosophila BLM ortholog, creates a similar requirement in flies.  This 

experiment is very technically challenging, however.  The first of these challenges – that 

mus309 mutant females produce few viable progeny due to a requirement for DmBLM in 

the early embryo (McVey et al., 2007) – was overcome by the mus309 meiotic mutant 

null I created (Chapter 2), wherein DmBLM is expressed after meiotic recombination has 



99 
 

taken place using the matα4-GAL4 driver.  However, even more challenging is that 

mus309 mutants are synthetically lethal with mutations in any of the Class II resolvases 

(Andersen et al., 2011; Trowbridge et al., 2007).  Perhaps this challenge can be overcome 

by creating Class II resolvase transgenes, similar to the mus309 transgene, such that the 

mus309 resolvase double mutants would lack DmBLM and the chosen resolvase during 

meiotic recombination, but would express all genes after recombination is completed.  

However, since it is believed that some of the synthetic lethality is due to replication and 

proliferation defects (Andersen et al., 2011), the double mutants created in this manner 

may not be able to produce functional ovarioles, preventing such experiments from being 

conducted. 

While creating mutants lacking both DmBLM and the Class II resolvases is 

technically challenging, I have tested the hypothesis that removal of DmBLM creates a 

requirement for the Class II pathway in an alternative way.  In this experiment, I removed 

the Drosophila Class I resolvase, MEI-9, in a mus309 mutant background.  Strikingly, the 

high NDJ phenotype of mei-9 mutants was rescued in mei-9; mus309 double mutants 

(Figure 32).  This result suggests that in the absence of DmBLM, the Class I pathway 

(and its resolvase MEI-9) are not utilized, thus implicating the Class II pathway in the 

formation of meiotic COs in the absence of DmBLM. 
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Figure 32.  mei-9; mus309 non-disjunction.  Percent non-disjunction (NDJ) was scored in the 
indicated genotypes.  Over 1100 individuals were scored for each genotype.  ***p<0.0001. 

 

Finally, the ability of the rec Walker B mutant to have a normal CO distribution 

despite being unable to physically form COs raises the question, do the mei-MCMs have 

a role in CO licensing?  In this CO licensing role, reminiscent of the replication licensing 

role of the replicative MCMs, I envision the mei-MCMs marking sites of future COs.  

Immunofluorescence assays can be utilized to test this hypothesis.  Firstly, by staining 

germaria for the mei-MCM complex, perhaps using an antibody to a multiply-epitope-

tagged protein since our current REC antibodies were unsuccessful in initial 

immunofluorescence assays (Chapter 4), we can determine how many mei-MCM 

complexes are present.  Since there is a ~3:1 ratio of NCOs to COs in Drosophila 

(Mehrotra and McKim, 2006), knowing how many mei-MCM complexes form will tell 

us whether mei-MCM complexes form at all sites of DSBs or whether they localize only 

to sites of future COs.  Furthermore, by conducting this same assay in a DSB-defective 

mutant, such as a mei-P22 mutant background, we will be able to determine whether the 
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mei-MCM complex marks future DSB sites.  If in a mei-P22 background we still see 

mei-MCM foci in the same number as in the original immunofluorescence assay, we will 

know that the complex marks sites prior to DSB formation.  Alternately, if mei-MCM 

foci are absent, we will know that the complex is only recruited to sites following DSB 

formation.   

 

In short, through the work described in this dissertation, I have made great 

advances in our understanding of Drosophila meiotic recombination and have uncovered 

new avenues for future research – research that will provide clues into the mechanisms of 

meiotic CO formation and CO regulation. 
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