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ABSTRACT

MINGHUI LIU: Elementary Reformulation and Succinct Certificates in Conic Linear
Programming

(Under the direction of Gábor Pataki)

The first part of this thesis deals with infeasibility in semidefinite programs (SDPs). In

SDP, unlike in linear programming, Farkas’ lemma may fail to prove infeasibility. We obtain

an exact, short certificate of infeasibility in SDP by an elementary approach: we reformulate

any equality constrained semidefinite system using only elementary row operations, and

rotations. When a system is infeasible, the reformulated system is trivially infeasible. When

a system is feasible, the reformulated system has strong duality with its Lagrange dual for

all objective functions.

The second part is about simple and exact duals, and certificates of infeasibility and

weak infeasibility in conic linear programming that do not rely on any constraint qualifi-

cation and retain most of the simplicity of the Lagrange dual. Some of our infeasibility

certificates generalize the row echelon form of a linear system of equations, as they consist

of a small, trivially infeasible subsystem. The “easy” proofs – as sufficiency of a certificate

to prove infeasibility – are elementary.

We also derived some fundamental geometric corollaries: 1) an exact characterization

of when the linear image of a closed convex cone is closed, 2) an exact characterization of

nice cones, and 3) bounds on the number of constraints that can be dropped from, or added

to a (weakly) infeasible conic LP while keeping it (weakly) infeasible.

Using our infeasibility certificates we generated a public domain library of infeasible

and weakly infeasible SDPs. The status of our instances is easy to verify by inspection in

exact arithmetic, but they turn out to be challenging for commercial and research codes.
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CHAPTER 1

Introduction

1.1 Lack of Strong duality in Conic Linear Programming

Conic linear programming (conic LP) is an important subclass of convex optimization.

A conic linear programming problem minimizes a linear function over the intersection of

an affine subspace and a closed convex cone. It generalizes a lot of useful problems, such

as linear programming (LP), semidefinite programming (SDP) and second order cone pro-

gramming (SOCP). These problems have great modeling power and efficient algorithms

have been designed to solve them, so, they are subjects of intensive research. Unlike in

LP, there are many challenging open theoretical questions for other conic-LP’s. A conic-LP

problem is usually stated as:

sup 〈c, x〉

s.t. Ax ≤K b,

(P)

where A is a linear operator, K is a closed convex cone, and we write s ≤K t to denote

t− s ∈ K, and s <K t to denote t− s ∈ riK, where riK is the relative interior of K.

A conic linear system is defined as the constraints of a conic LP problem. Duality theory

plays an important role in conic LP, and we have the following dual problem associated with



the problem (P) defined above:

inf 〈b, y〉

s.t. A∗y = c

y ≥K∗ 0,

(D)

where A∗ is the adjoint operator of A, and K∗ is the dual cone of K.

Similarly to LP, weak duality always holds for conic LP, that is the primal optimal value

is always less than or equal to the dual optimal value. Therefore, any feasible solution of

primal/dual problem gives an lower/upper bound for the dual/primal optimal value.

However, strong duality doesn’t always hold for conic LP. We say that strong duality

holds between the primal-dual pair, if their optimal values agree, and the latter optimal

value is attained, when it is finite. Strong duality holds in conic LP, when suitable constraint

qualifications (CQs) are specified. One of the CQs is Slater condition. When the primal

problem (P) satisfies Slater condition, i.e. ∃x, s.t. Ax <K b, the primal and dual optimal

values are the same and the dual optimal value is attained when they are finite. However,

strong duality doesn’t always hold when the appropriate CQ is not specified and the cone

is not polyhedral. Given the assumption that the primal problem is bounded and optimal

value is attained, the dual problem can be infeasible, have a different optimal value or

unattainable solution.

A conic LP system is called well behaved, if strong duality holds between the primal-

dual pair for all objective functions. A system is badly behaved, if it is not well behaved.

It has been shown that whether a system is well-behaved or not is related to one of the

most fundamental questions of convex analysis: when the linear image of a closed convex

cone is still closed? Pataki in [27] has given some intuitive results for this problem and a

characterization of well/badly behaved systems based on these results is given in [28] as

well.
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Due to the lack of strong duality, the simple generalization of the traditional Farkas’

lemma for LP doesn’t apply to all other conic LPs. The traditional Farkas’ lemma states

that the infeasibility of the original system is equivalent to the feasibility of a so called

alternative system. The alternative system is an exact certificate of infeasibility of the

original system. For general conic LPs, the feasibility of the alternative system trivially

implies that the original system is infeasible; however, there are also situations that both

the original and alternative systems are infeasible, meaning that the simple alternative

system fails to be an exact certificate of infeasibility. When there is no such certificate

of infeasibility, we call the system being weakly infeasible. From another point of view,

these problems are infeasible, but they can become either feasible or infeasible after a small

perturbation of the problem data. It is difficult to detect infeasibility for weakly infeasible

problems, since practical solvers usually deal with approximate solutions and certificates.

Currently, none of the conic optimization solvers indicate to the user that the feasibility

of the problem is in question and they simply return an approximate solution or declare

feasibility depending on their stopping criteria as pointed out in [33].

There are two fundamental approaches to obtain strong duality without assuming any

CQ. One of them is Ramana’s extended dual for semidefinite programs in [35], while another

approach is the facial reduction algorithm (FRA) proposed by Borwein and Wolkowicz in

[11; 10]. Original FRA can be used to prove the correctness of Ramana’s extended dual

and this connection was illustrated in [36].

Ramana’s extended dual is an explicit semidefinite program with a large but polyno-

mially many variables and constraints. It is feasible if and only if the primal problem

is bounded and it has the same optimal value with the primal, and the optimal value is

attained when the primal is bounded.

Facial reduction algorithm constructs a so-called minimal cone which is a special face of

the original closed convex cone K. When we replace the original cone with the minimal cone,

the feasible region remains the same and the system becomes strictly feasible; thereby, the

strong duality always holds in the new primal-dual pair. FRA has several variants, and they
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all try to find a sequence of elements in K to construct a decreasing chain of faces starting

with K and ending with the minimal cone. The fundamental facial reduction algorithm

of Borwein and Wolkowicz ensures strong duality in a possibly nonlinear conic system.

While this original algorithm requires the assumption of feasibility of the system, Waki and

Muramatsu presented a simplified FRA for conic-LP without assumption of feasibility in

[48]. Pataki in [30] also described a simplified facial reduction algorithm and generalized

Ramana’s dual to conic linear systems over nice cones. This class of cones includes the

semidefinite cone, second order cone and other important cones, so this generalization can

be applied to many important problems. Facial reduction algorithm can be considered as an

theoretical procedure which can provide some intuitive insight on theoretical work related

to the lack of strong duality. Also, it has been shown to be a useful preprocessing method

for the implementation of semidefinite programming solver.

1.2 Introduction to Semidefinite Programming

Besides the general conic linear programming problem, we will study semidefinite pro-

gramming (SDP), an important subclass, in detail in this dissertation. Semidefinite pro-

gramming is defined to optimize a linear function subject to a linear matrix inequality:

sup 〈c, x〉

s.t.
∑m

i=1 xiAi � B,

(1.2.1)

where c, x ∈ Rn, 〈c, x〉 is the inner product of two n dimensional vectors, and A � B means

that B −A is positive semidefinite.

It can be regarded as a natural extension of linear programming in two ways. First, it

can be obtained from LP by replacing component wise inequalities between vectors with

matrix inequalities. Second, it can also be obtained by replacing the first orthant with the

cone of positive semidefinite matrices in the general conic LP definition. It also has a dual
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problem defined as:

inf B • Y

s.t. Ai • Y = ci

Y � 0,

(1.2.2)

where the • dot product of symmetric matrices is the trace of their regular product.

Semidefinite programming has great modeling power: positive semidefinite constraints

appear directly in many applications, and many types of constraints in convex optimization

can also be cast as semidefinite constraints. These constraints include linear inequalities,

convex quadratic inequalities, lower bounds on matrix norms, lower bounds on determinants

of symmetric positive semidefinite matrices, lower bounds on the geometric mean of a

nonnegative vector and so on. Using these constraints, problems such as quadratically

constrained quadratic programming, matrix eigenvalue and norm maximization, and pattern

separation by ellipsoids, can all be modeled as SDP. A good survey on SDP can be found

in [45].

SDP can also be used for developing approximation algorithms for NP-hard combina-

torial optimization problems. In many cases, the SDP relaxation is very tight in practice

and the optimal solution to the SDP relaxation can be converted to a feasible solution for

the original problem with good objective value. One famous example is the maximum cut

problem, one of Karp’s original NP-complete problems; it tries to find the maximum sum of

weights of a cut in a graph. Goemans and Williamson in [19] constructed an SDP relaxation

and solve it within an arbitrarily small additive error. By doing so, they have shown that

their method achieves an expected approximation ratio of 0.87856 which is much better

than any previously known result.

Efficient algorithms have been designed and implemented for solving SDP. Most solvers,

such as SeDuMi, SDPT3 and MOSEK, implement interior point methods. While these

solvers performs well in general, they can’t always tackle problems that are not strictly

feasible. Meanwhile, most theoretical convergence results for interior point methods for

semidefinite programming rely on the assumption that SDP satisfies strict feasibility. In
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order to deal with these issues, some preprocessing methods have been proposed. One of

them is homogeneous self-dual embedding method and it has been implemented in SeDuMi.

More details about the implementation of SeDuMi can be found in [43]. An alternative way

to preprocess an SDP is to use FRA. Cheung in [14] studied numerical issues in implemen-

tation of this method and showed the result on a semidefinite programming relaxation of

the NP-hard side chain positioning problem by obtaining a smaller and more stable SDP

problem.

1.3 New contributions and key techniques

In this dissertation, the first contribution is focused on semidefinite programming. Sim-

ple generalization of the traditional Farkas’ Lemma for LP fails to prove infeasibility for all

semidefinite systems. We obtain an exact, short certificate of infeasibility for the following

semidefinite system in Chapter 2:

Ai •X = bi (i = 1, . . . ,m)

X � 0.

(1.3.3)

Our main technique is based on the reformulation of aforementioned semidefinite system.

We call our reformulation method elementary semidefinite (ESD-) reformulation. It applies

elementary row operations and rotation on the original system and is able to preserve

feasibility of the original system.

When the original system is infeasible, we can obtain an ESD-reformulation with a

staircase like structure with which its infeasibility is trivial to verify by inspection. This

result has a natural application: it can be used to generate all infeasible semidefinite pro-

grams. While there is a good selection of infeasible problems in problem libraries for linear,

quadratic and general nonlinear optimization problems, there are only a few small and triv-

ial infeasible SDP problems in the SDPLIB library and DIMACS Challenge problems, so
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a comprehensive library of infeasible problems would be extremely useful for development

and testing of new stopping criteria for the SDP solvers as mentioned in [33].

With similar technique, we can obtain an ESD-reformulation for feasible semidefinite

systems as well. Strong duality always holds between the reformulated system and its

Lagrange dual for all objective functions and it can be verified easily due to the nice com-

binatorial structure of the reformulated system. This result can be used to generate the

constraints of all feasible SDPs whose maximum rank feasible solution has a prescribed

rank. It is a good complement to the result in [28] that gives an exact characterization of

well/badly behaved semidefinite systems in an inequality constrained form.

The sets of data for infeasible and feasible semidefinite systems are non convex, neither

open, nor closed in general, so it is a rather surprising result that we can systematically

generate all of their elements. The procedure of obtaining the reformulation for infeasible

and feasible semidefinite systems can be unified as one algorithm which can be considered as

one theoretical algorithm of detecting infeasibility. We believe that it would also be useful

to verify the infeasibility of small instances.

Our another main contribution is short certificates of infeasibility and weak infeasibility

for conic LPs. We generalize ESD-reformulation, which is only applied on semidefinite

systems, to a reformulation on primal-dual pairs of conic LP’s. By using a classic theorem

of the alternative, we present a simplified version of facial reduction algorithm with a

half page proof of correctness. This facial reduction algorithm serves as our main tool to

construct strong duals for conic LP problems for both primal and dual forms, with which

we obtain exact certificates for infeasible conic linear systems and conic linear systems that

are not strongly infeasible. We combine these two certificates to obtain a certificate for

weakly infeasible systems. We generate a library of weakly infeasible SDPs. The status

of our instances is easy to verify by inspection, but they turn out to be challenging for

commercial and research codes.

Besides, We also derived some fundamental geometric corollaries: 1) an exact characteri-

zation of when the linear image of a closed convex cone is closed, 2) an exact characterization
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of nice cones, and 3) bounds on the number of constraints that can be dropped from, or

added to a (weakly) infeasible conic LP while keeping it (weakly) infeasible.

1.4 Outline of dissertation

• In chapter 2, we will focus on semidefinite programming. We demonstrate our result

on exact duality in semidefinite programming based on elementary semidefinite (ESD-

) reformulations. When the original system is infeasible, we obtain an exact, short

certificate of infeasibility by using ESD-reformulation. The reformulated system has

a nice combinatorial structure with which its infeasibility is easy to check. When

the original system is feasible, we can obtain a similar reformulation, which trivially

has strong duality with its Lagrange dual for all objective functions. With these

results, we obtain algorithms to systematically generate the constraints of all infeasible

semidefinite programs, and the constraints of all feasible SDPs whose maximum rank

feasible solution has a prescribed rank. Our method of obtaining the reformulation

can be considered as a theoretical algorithm to detect infeasibility and we believe that

it is useful to verify the infeasibility of small instances. Main result can be found

in section 2.2. Algorithms of construction of ESD-reformulation for infeasible and

feasible semidefinite systems can be found in section 2.5 and 2.7 respectively. Two

intuitive examples are presented in section 2.6 and 2.8 to illustrate our algorithm.

• In chapter 3, we will present our results on exact certificates of infeasibility and weak

infeasibility in general conic LPs. The main result with the proof of easy direction

can be found in section 3.2. We further simplified facial reduction algorithm based on

a classical theorem of the alternative. A strong dual for problems of both primal and

dual forms follows by using facial reduction sequences. They are both discussed in

section 3.6. We prove the correctness of certificates of infeasibility and weak infeasibil-

ity for conic LPs in section 3.7. We specify our results on SDP in section 3.8. Finally,

we demonstrate algorithms to systematically generate weakly infeasible semidefinite

8



systems in section 3.9, and computational experiments on popular SDP solvers with

our infeasible/weakly infeasible SDP problem instances are presented in section 3.10.

• In chapter 4, we describes our results on several basic questions in convex analysis.

We give the result on when the linear image of a closed convex cone is closed and

an exact characterization of nice cones. We also describe bounds on the number of

constraints that can be dropped from, or added to a (weakly) infeasible conic LP while

keeping it (weakly) infeasible.

9



CHAPTER 2

Exact duality in semidefinite programming based on elementary reformu-
lations

2.1 Abstract

In semidefinite programming (SDP), unlike in linear programming, Farkas’ lemma may

fail to prove infeasibility. Here we obtain an exact, short certificate of infeasibility in SDP

by an elementary approach: we reformulate any semidefinite system of the form

Ai •X = bi (i = 1, . . . ,m)

X � 0.

(P)

using only elementary row operations, and rotations. When (P ) is infeasible, the reformu-

lated system is trivially infeasible. When (P ) is feasible, the reformulated system has strong

duality with its Lagrange dual for all objective functions. As a corollary, we obtain algo-

rithms to generate the constraints of all infeasible SDPs and the constraints of all feasible

SDPs with a fixed rank maximal solution.

We give two methods to construct our elementary reformulations. One is direct, and

based on a simplified facial reduction algorithm, and the other is obtained by adapting the

facial reduction algorithm of Waki and Muramatsu.

In somewhat different language, our reformulations provide a standard form of spectra-

hedra, to easily verify either their emptiness, or a tight upper bound on the rank of feasible

solutions.



2.2 Introduction and the main result

Semidefinite programs (SDPs) naturally generalize linear programs and share some of

the duality theory of linear programming. However, the value of an SDP may not be

attained, it may differ from the value of its Lagrange dual, and the simplest version of

Farkas’ lemma may fail to prove infeasibility in semidefinite programming.

Several alternatives of the traditional Lagrange dual, and Farkas’ lemma are known,

which we will review in detail below: see Borwein and Wolkowicz [11; 10]; Ramana [35];

Ramana, Tunçel, and Wolkowicz [36]; Klep and Schweighofer [20]; Waki and Muramatsu

[49], and the second author [30].

We consider semidefinite systems of the form (P), where the Ai are n by n symmetric

matrices, the bi scalars, X � 0 means that X is symmetric, positive semidefinite (psd), and

the • dot product of symmetric matrices is the trace of their regular product. To motivate

our results on infeasibility, we consider the instance


1 0 0

0 0 0

0 0 0

 • X = 0


0 0 1

0 1 0

1 0 0

 • X = −1

X � 0,

(2.2.1)

which is trivially infeasible; to see why, suppose that X = (xij)
3
i,j=1 is feasible in it. Then

x11 = 0, hence the first row and column of X are zero by psdness, so the second constraint

implies x22 = −1, which is a contradiction.

Thus the internal structure of the system itself proves its infeasibility.
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The goal of this short note is twofold. In Theorem 1 we show that a basic transformation

reveals such a simple structure – which proves infeasibility – in every infeasible semidefinite

system. For feasible systems we give a similar reformulation – in Theorem 2 – which trivially

has strong duality with its Lagrange dual for all objective functions.

Definition 1. We obtain an elementary semidefinite (ESD-) reformulation, or elementary

reformulation of (P) by applying a sequence of the following operations:

(1) Replace (Aj , bj) by (
∑m

i=1 yiAi,
∑m

i=1 yibi), where y ∈ Rm, yj 6= 0.

(2) Exchange two equations.

(3) Replace Ai by V TAiV for all i, where V is an invertible matrix.

ESD-reformulations clearly preserve feasibility. Note that operations (1) and (2) are

also used in Gaussian elimination: we call them elementary row operations (eros). We call

operation (3) a rotation. Clearly, we can assume that a rotation is applied only once, when

reformulating (P); then X is feasible for (P) if and only if V −1XV −T is feasible for the

reformulation.

Theorem 1. The system (P) is infeasible, if and only if it has an ESD-reformulation of

the form

A′i •X = 0 (i = 1, . . . , k)

A′k+1 •X = −1

A′i •X = b′i (i = k + 2, . . . ,m)

X � 0

(Pref)

where k ≥ 0, and the A′i are of the form

A′i =



r1 + . . .+ ri−1︷ ︸︸ ︷ ri︷︸︸︷ n− r1 − . . .− ri︷ ︸︸ ︷
× × ×

× I 0

× 0 0


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for i = 1, . . . , k + 1, with r1, . . . , rk > 0, rk+1 ≥ 0, the × symbols correspond to blocks

with arbitrary elements, and matrices A′k+2, . . . , A
′
m and scalars b′k+2, . . . , b

′
m are arbitrary.

To motivate the reader, we now give a very simple, full proof of the “if” direction. It

suffices to prove that (Pref) is infeasible, so assume to the contrary that X is feasible in it.

The constraint A′1 • X = 0 and X � 0 implies that the upper left r1 by r1 block of X is

zero, and X � 0 proves that the first r1 rows and columns of X are zero. Inductively, from

the first k constraints we deduce that the first
∑k

i=1 ri rows and columns of X are zero.

Deleting the first
∑k

i=1 ri rows and columns from A′k+1 we obtain a psd matrix, hence

A′k+1 •X ≥ 0,

contradicting the (k + 1)st constraint in (Pref).

Note that Theorem 1 allows us to systematically generate all infeasible semidefinite

systems: to do so, we only need to generate systems of the form (Pref), and reformulate

them. We comment more on this in Section 2.10.

2.3 Literature Review

We now review relevant literature in detail, and its connection to our results. For

surveys and textbooks on SDP, we refer to Todd [44]; Ben-Tal and Nemirovskii [5]; Saigal

et al [41]; Boyd and Vandenberghe [12]. For treatments of their duality theory see Bonnans

and Shapiro [7]; Renegar [38] and Güler [18].

The fundamental facial reduction algorithm of Borwein and Wolkowicz [11; 10] ensures

strong duality in a possibly nonlinear conic system by replacing the underlying cone by a

suitable face. Ramana in [35] constructed an extended strong dual for SDPs, with polynomi-

ally many extra variables, which leads to an exact Farkas’ lemma. Though these approaches

seem at first quite different, Ramana, Tunçel, and Wolkowicz in [36] proved the correctness

of Ramana’s dual from the algorithm in [11; 10].
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While the algorithms in [11; 10] assume that the system is feasible, Waki and Muramatsu

in [49] presented a simplified facial reduction algorithm for conic linear systems, which

disposes with this assumption, and allows one to prove infeasibility. We state here that our

reformulations can be obtained by suitably modifying the algorithm in [49]; we describe the

connection in detail in Section 2.10. At the same time we provide a direct, and entirely

elementary construction.

More recently, Klep and Schweighofer in [20] proposed a strong dual and exact Farkas’

lemma for SDPs. Their dual resembles Ramana’s; however, it is based on ideas from

algebraic geometry, namely sums of squares representations, not convex analysis.

The second author in [30] described a simplified facial reduction algorithm, and gener-

alized Ramana’s dual to conic linear systems over nice cones (for literature on nice cones,

see [15], [40], [29]). We refer to Pólik and Terlaky [32] for a generalization of Ramana’s dual

for conic LPs over homogeneous cones. Elementary reformulations of semidefinite systems

first appear in [28]. There the second author uses them to bring a system into a form to

easily check whether it has strong duality with its dual for all objective functions.

Several papers, see for instance Pólik and Terlaky [33] on stopping criteria for conic

optimization, point to the need of having more infeasible instances and we hope that our

results will be useful in this respect. In more recent related work, Alfakih [1] gave a certifi-

cate of the maximum rank in a feasible semidefinite system, using a sequence of matrices,

somewhat similar to the constructions in the duals of [35; 20], and used it in an SDP based

proof of a result of Connelly and Gortler on rigidity [16]. Our Theorem 2 gives such a

certificate using elementary reformulations.

We say that an infeasible SDP is weakly infeasible, if the traditional version of Farkas’

lemma fails to prove its infeasibility. We refer to Waki [47] for a systematic method to gener-

ate weakly infeasible SDPs from Lasserre’s relaxation of polynomial optimization problems.

Lourenco et al. [22] recently presented an error-bound based reduction procedure to simplify

weakly infeasible SDPs.
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We organize the rest of the paper as follows. After introducing notation, we describe

an algorithm to find the reformulation (Pref), and a constructive proof of the “only if” part

of Theorem 1. The algorithm is based on facial reduction; however, it is simplified so we

do not need to explicitly refer to faces of the semidefinite cone. The algorithm needs a

subroutine to solve a primal-dual pair of SDPs. In the SDP pair the primal will always be

strictly feasible, but the dual possibly not, and we need to solve them in exact arithmetic.

Hence our algorithm may not run in polynomial time. At the same time it is quite simple,

and we believe that it will be useful to verify the infeasibility of small instances. We then

illustrate the algorithm with Example 1.

In Section 2.7 we present our reformulation of feasible systems. Here we modify our

algorithm to construct the reformulation (Pref) (and hence detect infeasibility); or to con-

struct a reformulation that is easily seen to have strong duality with its Lagrange dual for

all objective functions.

2.4 Some preliminaries

We denote by Sn, Sn+, and PDn the set of symmetric, symmetric psd, and symmetric

positive definite (pd) matrices of order n, respectively. For a closed, convex cone K we

write x ≥K y to denote x − y ∈ K, and denote the relative interior of K by riK, and its

dual cone by K∗, i.e.,

K∗ = { y | 〈x, y〉 ≥ 0 ∀x ∈ K }.

For some p < n we denote by 0⊕Sp+ the set of n by n matrices with the lower right p by p

corner psd, and the rest of the components zero. If K = 0⊕Sp+, then riK = 0⊕ PDp, and

K∗ =

{Z11 Z12

ZT
12 Z22

 : Z22 ∈ Sp+
}
.
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For a matrix Z ∈ K∗ partitioned as above, and Q ∈ Rp×p we will use the formula

In−p 0

0 Q


T

Z

In−p 0

0 Q

 =

 Z11 Z12Q

QTZT
12 QTZ22Q

 (2.4.2)

in the reduction step of our algorithm that converts (P) into (Pref): we will choose Q to be

full rank, so that QTZ22Q is diagonal.

We will rely on the following general conic linear system:

A(x) = b

B(x) ≤K d,

(2.4.3)

where K is a closed, convex cone, and A and B are linear operators, and consider the

primal-dual pair of conic LPs

sup 〈c, x〉 inf 〈b, y〉+ 〈d, z〉

(Pgen) s.t. x is feasible in (1.3) s.t. A∗(y) + B∗(z) = c (Dgen)

z ∈ K∗

where A∗ and B∗ are the adjoints of A and B, respectively.

Definition 2. We say that

(1) strong duality holds between (Pgen) and (Dgen), if their optimal values agree, and the

latter value is attained, when finite;

(2) (2.4.3) is well behaved, if strong duality holds betweeen (Pgen) and (Dgen) for all c

objective functions.

(3) (2.4.3) is strictly feasible, if d− B(x) ∈ riK for some feasible x.

We will use the following

Lemma 1. If (2.4.3) is strictly feasible, or K is polyhedral, then (2.4.3) is well behaved.
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When K = 0⊕ Sp+ for some p ≥ 0, then (Pgen)-(Dgen) are a primal-dual pair of SDPs.

To solve them efficiently, we must assume that both are strictly feasible; strict feasibility of

the latter means that there is a feasible (y, z) with z ∈ riK∗.

The system (P) is trivially infeasible, if the alternative system below is feasible:

y ∈ Rm

∑m
i=1 yiAi � 0∑m
i=1 yibi = −1;

(2.4.4)

in this case we say that (P) is strongly infeasible. Note that system (Palt) generalizes

Farkas’ lemma from linear programming. However, (P) and (Palt) may both be infeasible,

in which case we say that (P) is weakly infeasible. For instance, the system (2.2.1) is weakly

infeasible.

2.5 The certificate of infeasibility and its proof

Proof of ”only if” in Theorem 1 The proof relies only on Lemma 1. We start with

the system (P), which we assume to be infeasible.

In a general step we have a system

A′i •X = b′i (i = 1, . . . ,m)

X � 0,

(P′)

where for some ` ≥ 0 and r1 > 0, . . . , r` > 0 the A′i matrices are as required by Theorem 1,

and b′1 = . . . = b′` = 0. At the start ` = 0, and in a general step we have 0 ≤ ` < min{n,m}.

Let us define

r := r1 + · · ·+ r`, K := 0⊕ Sn−r+ ,
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and note that if X � 0 satisfies the first ` constraints of (P′), then X ∈ 0 ⊕ Sn−r+ (this

follows as in the proof of the “if” direction in Theorem 1).

Consider the homogenized SDP and its dual

sup x0 inf 0

(Phom) s.t. A′i •X − b′ix0 = 0 ∀i s.t.
∑

i yiA
′
i ∈ K∗ (Dhom)

−X ≤K 0
∑

i yib
′
i = −1.

The optimal value of (Phom) is 0, since if (X,x0) were feasible in it with x0 > 0, then

(1/x0)X would be feasible in (P′).

We first check whether (Phom) is strictly feasible, by solving the primal-dual pair of

auxiliary SDPs

sup t inf 0

(Paux) s.t. A′i •X − b′ix0 = 0 ∀i s.t.
∑

i yiA
′
i ∈ K∗ (Daux)

−X + t

0 0

0 I

 ≤K 0
∑

i yib
′
i = 0

(
∑

i yiA
′
i) •

0 0

0 I

 = 1.

Clearly, (Paux) is strictly feasible, with (X,x0, t) = (0, 0,−1) so it has strong duality

with (Daux). Therefore

(Phom) is not strictly feasible ⇔ the value of (Paux) is 0

⇔ (Paux) is bounded

⇔ (Daux) is feasible.

We distinguish two cases:
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Case 1: n− r ≥ 2 and (Phom) is not strictly feasible.

Let y be a feasible solution of (Daux) and apply the reduction step in Figure 2.1. Now

the lower (n−r) by (n−r) block of
∑

i yiA
′
i is nonzero, hence after Step 3 we have r`+1 > 0.

We then set ` = `+ 1, and continue.

Reduction step

Step 1: Using eros (1) and (2), replace (A′`+1, b
′
`+1) by (

∑m
i=1 yiA

′
i,
∑m

i=1 yib
′
i),

while keeping the first ` equations in (P′) the same.
Step 2: Find a full rank matrix Q s.t.(

Ir 0

0 Q

)T

A′`+1

(
Ir 0

0 Q

)

is of the form expected from A′`+1 in Theorem 1.

Step 3: Set A′i :=

(
Ir 0

0 Q

)T

A′i

(
Ir 0

0 Q

)
(i = 1, . . . ,m).

Figure 2.1: The reduction step used to obtain the reformulated system

Case 2: n− r ≤ 1 or (Phom) is strictly feasible.

Now strong duality holds between (Phom) and (Dhom); when n − r ≤ 1, this is true

because then K is polyhedral. Hence (Dhom) is feasible. Let y be feasible in (Dhom)

and apply the same reduction step in Figure 2.1. Then we set k = `, and stop with the

reformulation (Pref).

We now complete the correctness proof of the algorithm. First, we note that the choice

of the rotation matrix in Step 2 of the reduction steps implies that A′1, . . . , A
′
` remain in

the required form: cf. equation (2.4.2).

Second, we prove that after finitely many steps our algorithm ends in Case 2. In each

iteration both ` and r = r1 + . . . + r` increase. If n − r becomes less than or equal to 1,

then our claim is obviously true. Otherwise, at some point during the algorithm we find

` = m − 1. Then b′m 6= 0, since (P′) is infeasible. Hence for any X ∈ 0 ⊕ PDn− r we can
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choose x0 to satisfy the last equality constraint of (Phom), hence at this point we are in

Case 2.

2.6 Example of infeasibility reformulation

We next illustrate our algorithm:

Example 1. Consider the semidefinite system with m = 6, and data

A1 =



2 0 0 1

0 3 0 −1

0 0 4 2

1 −1 2 0


, A2 =



−1 2 1 −2

2 3 3 1

1 3 4 −3

−2 1 −3 3


, A3 =



−1 1 −2 0

1 −2 0 2

−2 0 −3 −2

0 2 −2 −1


,

A4 =



0 0 1 0

0 1 0 0

1 0 −1 0

0 0 0 1


, A5 =



0 −1 0 0

−1 0 0 −1

0 0 1 1

0 −1 1 0


, A6 =



−1 0 0 −1

0 0 1 0

0 1 0 −1

−1 0 −1 1


,

b = (0, 6,−3, 2, 1, 3).

In the first iteration we are in Case 1, and find

y = (1,−1,−1,−1,−4, 3),

∑
i

yiA
′
i =



1 1 0 0

1 1 0 0

0 0 0 0

0 0 0 0


,

∑
i

yibi = 0.
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We choose

Q =



1 −1 0 0

0 1 0 0

0 0 1 0

0 0 0 1


to diagonalize

∑
i yiA

′
i, and after the reduction step we have a reformulation with data

A′1 =



1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0


, A′2 =



−1 3 1 −2

3 −2 2 3

1 2 4 −3

−2 3 −3 3


, A′3 =



−1 2 −2 0

2 −5 2 2

−2 2 −3 −2

0 2 −2 −1


,

A′4 =



0 0 1 0

0 1 −1 0

1 −1 −1 0

0 0 0 1


, A′5 =



0 −1 0 0

−1 2 0 −1

0 0 1 1

0 −1 1 0


, A′6 =



−1 1 0 −1

1 −1 1 1

0 1 0 −1

−1 1 −1 1


,

b′ = (0, 6,−3, 2, 1, 3).

We start the next iteration with this data, and ` = 1, r1 = r = 1. We are again in Case 1,

and find

y = (0, 1, 1, 0, 3,−2),

∑
i

yiA
′
i =



0 0 −1 0

0 1 2 0

−1 2 4 0

0 0 0 0


,

∑
i

yib
′
i = 0.
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Now the lower right 3 by 3 block of
∑

i yiA
′
i is psd, and rank 1. We choose

Q =


1 −2 0

0 1 0

0 0 1


to diagonalize this block, and after the reduction step we have a reformulation with data

A′1 =



1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0


, A′2 =



0 0 −1 0

0 1 0 0

−1 0 0 0

0 0 0 0


, A′3 =



−1 2 −6 0

2 −5 12 2

−6 12 −31 −6

0 2 −6 −1


,

A′4 =



0 0 1 0

0 1 −3 0

1 −3 7 0

0 0 0 1


, A′5 =



0 −1 2 0

−1 2 −4 −1

2 −4 9 3

0 −1 3 0


, A′6 =



−1 1 −2 −1

1 −1 3 1

−2 3 −8 −3

−1 1 −3 1


,

b′ = (0, 0,−3, 2, 1, 3).

We start the last iteration with ` = 2, r1 = r2 = 1, r = 2. We end up in Case 2, with

y = (0, 0, 1, 2, 1,−1),

∑
i

yiA
′
i =



0 0 0 1

0 0 −1 0

0 −1 0 0

1 0 0 0


,

∑
i

yib
′
i = −1.
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Now the lower right 2 by 2 submatrix of
∑

i yiA
′
i is zero, so we don’t need to rotate. After

the reduction step the data of the final reformulation is

A′1 =



1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0


, A′2 =



0 0 −1 0

0 1 0 0

−1 0 0 0

0 0 0 0


, A′3 =



0 0 0 1

0 0 −1 0

0 −1 0 0

1 0 0 0


,

A′4 =



0 0 1 0

0 1 −3 0

1 −3 7 0

0 0 0 1


, A′5 =



0 −1 2 0

−1 2 −4 −1

2 −4 9 3

0 −1 3 0


, A′6 =



−1 1 −2 −1

1 −1 3 1

−2 3 −8 −3

−1 1 −3 1


,

b′ = (0, 0,−1, 2, 1, 3).

2.7 The elementary reformulation of feasible systems

For feasible systems we have the following result:

Theorem 2. Let p ≥ 0 be an integer. Then the following hold:

(1) The system (P) is feasible with a maximum rank solution of rank p if and only if it

has a a feasible solution with rank p and an elementary reformulation

A′i •X = 0 (i = 1, . . . , k)

A′i •X = b′i (i = k + 1, . . . ,m)

X � 0,

(Pref,feas)

where A′1, . . . , A
′
k are as in Theorem 1,

k ≥ 0, r1 > 0, . . . , rk > 0, r1 + · · ·+ rk = n− p,
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and matrices A′k+1, . . . , A
′
m and scalars b′k+1, . . . , b

′
m are arbitrary.

(2) Suppose that (P) is feasible. Let (Pref,feas) be as above, and (Pref,feas,red) the system

obtained from it by replacing the constraint X � 0 by X ∈ 0⊕ Sp+. Then (Pref,feas,red)

is well-behaved, i.e., for all C ∈ Sn the SDP

sup {C •X |X is feasible in (Pref,feas,red) } (2.7.5)

has strong duality with its Lagrange dual

inf {
m∑
i=1

yibi :

m∑
i=1

yiA
′
i − C ∈ (0⊕ Sp+)∗ }. (2.7.6)

Before the proof we remark that the case k = 0 corresponds to (P) being strictly feasible.

Proof of “if” in (1) This implication follows similarly as in Theorem 1.

Proof of (2) This implication follows, since (Pref,feas,red) is trivially strictly feasible.

Proof of “only if” in (1) We modify the algorithm that we used to prove Theorem

1. We now do not assume that (P) is infeasible, nor that the optimal value of (Phom) is

zero. As before, we keep iterating in Case 1, until we end up in Case 2, with strong duality

between (Phom) and (Dhom). We distinguish two subcases:

Case 2(a): The optimal value of (Phom) is 0. We proceed as before to construct the (k+1)st

equation in (Pref), which proves infeasibility of (P′).

Case 2(b): The optimal value of (Phom) is positive (i.e., it is +∞). We choose

(X,x0) ∈ K × R

to be feasible, with x0 > 0. Then (1/x0)X is feasible in (P′), but it may not have maximum

rank. We now construct a maximum rank feasible solution in (P′). If n − r ≤ 1, then a
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simple case checking can complete the construction. If n− r ≥ 2, then we take

(X ′, x′0) ∈ riK × R

as a strictly feasible solution of (Phom). Then for a small ε > 0 we have that

(X + εX ′, x0 + εx′0) ∈ riK × R

is feasible in (Phom) with x0 + εx′0 > 0. Hence

1

x0 + εx′0
(X + εX ′) ∈ riK

is feasible in (P′).

2.8 Example of feasibility reformulation

Example 2. Consider the feasible semidefinite system with m = 4, and data

A1 =



−2 2 7 −3

2 −2 −4 −6

7 −4 −15 −7

−3 −6 −7 0


, A2 =



2 0 −3 2

0 4 6 4

−3 6 14 5

2 4 5 0


, A3 =



2 0 −3 −1

0 −1 −3 0

−3 −3 −3 2

−1 0 2 0


,

A4 =



−1 1 4 2

1 6 11 2

4 11 16 1

2 2 1 0


, b = (−3, 2, 1, 0).
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The conversion algorithm produces the following y vectors, and rotation matrices: it pro-

duces

y = (1, 2,−1,−1), V =



1 −1 0 0

0 1 0 0

0 0 1 0

0 0 0 1


(2.8.7)

in step 1, and

y = (0, 1,−2,−1), V =



1 0 0 0

0 1 −2 0

0 0 1 0

0 0 0 1


(2.8.8)

in step 2 (for brevity, we now do not show the
∑

i yiAi matrices, and the intermediate data).

We obtain an elementary reformulation with data and maximum rank feasible solution

A′1 =



1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0


, A′2 =



−1 0 −1 2

0 1 0 0

−1 0 0 0

2 0 0 0


, A′3 =



2 −2 1 −1

−2 1 −2 1

1 −2 1 0

−1 1 0 0


,

A′4 =



−1 2 0 2

2 3 1 0

0 1 0 1

2 0 1 0


, b′ = (0, 0, 1, 0), X =



0 0 0 0

0 0 0 0

0 0 1 0

0 0 0 1


.

In the final system the first two constraints prove that the rank of any feasible solution

is at most 2. Thus the system itself and X are a certificate that X has maximum rank,
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hence it is easy to convince a “user” that (Pref,feas,red) (with p = 2) is strictly feasible, hence

well behaved.

2.9 Discussion

In this section we discuss our results in some more detail.

We first compare our conversion algorithm with facial reduction algorithms, and describe

how to adapt the algorithm of Waki and Muramatsu [49] to obtain our reformulations.

Remark 1. We say that a convex subset F of a convex set C is a face of C , if x, y ∈

C, 1/2(x+y) ∈ F implies that x and y are in F. When (P) is feasible, we define its minimal

cone as the smallest face of Sn+ that contains the feasible set of (P).

The algorithm of Borwein and Wolkowicz [11; 10] finds the minimal cone of a feasible,

but possibly nonlinear conic system. The algorithm of Waki and Muramatsu [49] is a

simplified variant which is applicable to conic linear systems, and can detect infeasibility.

We now describe their Algorithm 5.1, which specializes their general algorithm to SDPs,

and how to modify it to obtain our reformulations.

In the first step they find y ∈ Rm with

W := −
m∑
i=1

yiAi � 0,
m∑
i=1

yibi ≥ 0.

If the only such y is y = 0, they stop with F = Sn+; if
∑m

i=1 yibi > 0, they stop and report

that (P) is infeasible. Otherwise they replace Sn+ by Sn+ ∩W⊥, apply a rotation step to

reduce the order of the SDP to n− r, where r is the rank of W, and continue.

Waki and Muramatsu do not apply elementary row operations. We can obtain our

reformulations from their algorithm, if after each iteration ` = 0, 1, . . . we

• choose the rotation matrix to turn the psd part of W into Ir` for some r` ≥ 0.

• add eros to produce an equality constraint like the `th constraint in (Pref), or (Pref,feas).
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In their reduction step they also rely on Theorem 20.2 from Rockafellar [39], while we use

explicit SDP pairs. For an alternative approach to ensuring strong duality, called conic

expansion, we refer to Luo et al [23]; and to [49] for a detailed study of the connection of

the two approaches.

We next comment on how to find the optimal solution of a linear function over the

original system (P), and on duality properties of this system.

Remark 2. Assume that (P) is feasible, and we used the rotation matrix V to obtain

(Pref,feas) from (P). Let C ∈ Sn. Then one easily verifies

sup {C •X |X is feasible in (P ) } = sup {V TCV •X |X is feasible in (Pref,feas) }

= sup {V TCV •X |X is feasible in (Pref,feas,red) },

and by Theorem 2 the last SDP has strong duality with its Lagrange dual.

Clearly, (P) is well behaved, if and only if its ESD-reformulations are. The system (P),

or equivalently, system (Pref,feas) may not be well behaved, of course. We refer to [28] for

an exact characterization of well-behaved semidefinite systems (in an inequality constrained

form).

We next comment on algorithms to generate the data of all SDPs which are either

infeasible, or have a maximum rank solution with a prescribed rank.

Remark 3. Let us fix an integer p ≥ 0, and define the sets

INFEAS = { (Ai, bi)
m
i=1 ∈ (Sn × R)m : (P ) is infeasible },

FEAS(p) = { (Ai, bi)
m
i=1 ∈ (Sn × R)m : (P ) is feasible, with maximum

rank solution of rank p }.

These sets – in general – are nonconvex, neither open, nor closed. Despite this, we can

systematically generate all of their elements. To generate all elements of INFEAS, we use

Theorem 1, by which we only need to find systems of the form (Pref), then reformulate
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them. To generate all elements of FEAS(p) we first find constraint matrices in a system

like (Pref,feas), then choose X ∈ 0 ⊕ PDp, and set b′i := A′i •X for all i. By Theorem 2 all

elements of FEAS(p) arise as a reformulation of such a system.

Loosely speaking, Theorems 1 and 2 show that there are only finitely many “schemes”

to generate an infeasible semidefinite system, and a feasible system with a maximum rank

solution having a prescribed rank.

The paper [28] describes a systematic method to generate all well behaved semidefinite

systems (in an inequality constrained form), in particular, to generate all linear maps under

which the image of Sn+ is closed. Thus, our algorithms to generate INFEAS and FEAS(p)

complement the results of [28].

We next comment on strong infeasibility of (P).

Remark 4. Clearly, (P) is strongly infeasible (i.e., (Palt) is feasible), if and only if it has

a reformulation of the form (Pref) with k = 0. Thus we can easily generate the data of all

strongly infeasible SDPs: we only need to find systems of the form (Pref) with k = 0, then

reformulate them.

We can also easily generate weakly infeasible instances using Theorem 1: we can choose

k + 1 = m, and suitable blocks of the A′i in (Pref) to make sure that they do not have a

psd linear combination. (For instance, choosing the block of A′k+1 that corresponds to rows

r1 + · · ·+ rk−1 + 1 through r1 + · · ·+ rk and the last n− r1 − · · · − rk+1 columns will do.)

Then (Pref) is weakly infeasible. It is also likely to be weakly infeasible, if we choose the A′i

as above, and m only slightly larger than k + 1.
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Even when (P) is strongly infeasible, our conversion algorithm may only find a refor-

mulation with k > 0. To illustrate this point, consider the system with data

A1 =


1 0 0

0 0 0

0 0 0

 , A2 =


0 1 0

1 0 0

0 0 0

 , A3 =


0 0 0

0 1 0

0 0 1

 ,

b = (0,−1, 1).

(2.9.9)

This system is strongly infeasible ((Palt) is feasible with y = (4, 2, 1)), and it is already in the

form of (Pref) with k = 1. Our conversion algorithm, however, constructs a reformulation

with k = 2, since it finds (Phom) to be not strictly feasible in the first two steps.

We next discuss complexity implications.

Remark 5. Theorem 1 implies that semidefinite feasibility is in co-NP in the real num-

ber model of computing. This result was already proved by Ramana [35] and Klep and

Schweighofer [20] via their Farkas’ lemma that relies on extra variables. To check the in-

feasibility of (P) using our methods, we need to verify that (Pref) is a reformulation of (P),

using eros, and a rotation matrix V. Alternatively, one can check that

A′i = V T
( m∑
j=1

tijAj)V (i = 1, . . . ,m)

holds for V and an invertible matrix T = (tij)
m
i,j=1.

2.10 Conclusion

Two well-known pathological phenomena in semidefinite programming are that Farkas’

lemma may fail to prove infeasibility, and strong duality does not hold in general. Here

we described an exact certificate of infeasibility, and a strong dual for SDPs, which do not

assume any constraint qualification. Such certificates and duals have been known before:

see [11; 10; 35; 36; 49; 20; 30].
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Our approach appears to be simpler: in particular, the validity of our infeasibility

certificate – the infeasibility of the system (Pref) – is almost a tautology (we borrow this

terminology from the paper [25] on semidefinite representations). We can also easily con-

vince a “user” that the system (Pref,feas,red) is well behaved (i.e., strong duality holds for all

objective functions). To do so, we use a maximum rank feasible solution, and the system

itself, which proves that this solution has maximum rank.

In a somewhat different language, elementary reformulations provide a standard form

of spectrahedra – the feasible sets of SDPs – to easily check their emptiness, or a tight

upper bound on the rank of feasible solutions. We hope that these standard forms will

be useful in studying the geometry of spectrahedra – a subject of intensive recent research

[24; 6; 46; 42].
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CHAPTER 3

Short certificates in conic linear programming: infeasibility and weak in-
feasibility

3.1 Abstract

We describe simple and exact duals, and certificates of infeasibility and weak infeasibility

in conic linear programming which do not rely on any constraint qualification and retain

most of the simplicity of the Lagrange dual. Some of our infeasibility certificates generalize

the row echelon form of a linear system of equations, and the “easy” proofs – as sufficiency of

a certificate to prove infeasibility – are elementary. We derive some fundamental geometric

corollaries: 1) an exact characterization of when the linear image of a closed convex cone

is closed, 2) an exact characterization of nice cones, and 3) bounds on the number of

constraints that can be dropped from, or added to a (weakly) infeasible conic LP while

keeping it (weakly) infeasible.

Using our infeasibility certificates we generate a public domain library of infeasible and

weakly infeasible SDPs. The status of our instances is easy to verify by inspection in exact

arithmetic, but they turn out to be challenging for commercial and research codes.

3.2 Introduction and main results

Conic linear programs generalize linear programming by replacing the nonnegative or-

thant by a closed convex cone. They model a wide variety of practical optimization prob-

lems, and inherit some of the duality theory of linear programming: the Lagrange dual

provides a bound on their optimal value and a simple generalization of Farkas’ lemma

yields a proof of infeasibility.



However, strong duality may fail (i.e., the Lagrange dual may yield a positive gap, or not

attain its optimal value), and the simple Farkas’ lemma may fail to prove infeasibility. All

these pathologies occur in semidefinite programs (SDPs) and second order conic programs

(SOCPs), arguably the most useful classes of conic LPs.

To ground our discussion, we consider a conic linear program of the form

sup 〈c, x〉

s.t. Ax ≤K b,

(P)

where A : Rm → Y is a linear map, Y is a finite dimensional euclidean space, K ⊆ Y is a

closed convex cone, and s ≤K t stands for t − s ∈ K. Letting A∗ be the adjoint of A, and

K∗ the dual cone of K, the Lagrange dual of (P) is

inf 〈b, y〉

s.t. A∗y = c

y ≥K∗ 0.

(D)

Weak duality – the inequality 〈c, x〉 ≤ 〈b, y〉 between a pair of feasible solutions – is trivial.

However, the optimal values of (P) and of (D) may differ, and/or may not be attained.

A suitable conic linear system can prove the infeasibility of (P) or of (D). Since (for

convenience) we focus mostly on infeasibility of (D), we state its alternative system below:

Ax ≥K 0

〈c, x〉 = −1.

(Dalt)

When (Dalt) is feasible, (D) is trivially infeasible, and we call it strongly infeasible. However,

(Dalt) and (D) may both be infeasible, and in this case we call (D) weakly infeasible. Thus

(Dalt) is not an exact certificate of infeasibility.

While a suitable constraint qualification (CQ), (as the existence of an interior feasible

solution in (P)) can make (D), and (Dalt) exact, such CQs frequently fail to hold in practice.
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Three known approaches, which we review in detail below, provide exact duals, and certifi-

cates of infeasibility for conic LPs: facial reduction algorithms – see Borwein and Wolkowicz

[11], Waki and Muramatsu [49], Pataki [30]; extended duals for SDPs and generalizations

– see Ramana [35], Klep and Schweighofer [20] and [30]; and elementary reformulation for

SDPs – see Pataki [28] and Liu and Pataki [21]. For the connection of these approaches,

see Ramana, Tunçel and Wolkowicz [36], [30] and [21].

The nonexactness of the Lagrange dual and of Farkas’ lemma is caused by the possible

nonclosedness of the linear image of K or a related cone. For related studies, see Bauschke

and Borwein [4]; Pataki [27]; and Borwein and Moors [8; 9].

Here we unify, simplify and extend these approaches and develop a robust calculus of

exact duals, and certificates of infeasibility in conic LPs with the following features:

(1) They do not rely on a CQ, and inherit most of the simplicity of the Lagrange dual:

some of our infeasibility certificates generalize the row echelon form of a linear system

of equations, and the “easy” proofs, as weak duality, and the proofs of infeasibility

and weak infeasibility are nearly as simple as proofs in linear programming duality

(see Sections 3.6 and 3.7). Some of our duals generalize the exact SDP duals of

Ramana [35] and Klep and Schweighofer [20] to the context of general conic linear

programming.

(2) They provide algorithms to generate all infeasible conic LP instances over several

important cones (see Sections 3.7 and 3.11), and all weakly infeasible SDPs in a

natural class (Section 3.9);

(3) The above algorithms are easy to implement, and provide a challenging test set of

infeasible and weakly infeasible SDPs: while we can verify the status of our instances

by inspection in exact arithmetic, they are difficult for commercial and research codes

(Section 3.10).

(4) Of possible independent interest is an elementary facial reduction algorithm (Section

3.6) with a much simplified proof of convergence; and the geometry of the facial
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reduction cone, a cone that we introduce and use to encode facial reduction algorithms

(see Lemma 2).

We now describe our main tools, and some of our main results with full proofs of the

“easy” directions. We will often reformulate a conic LP in a suitable form from which its

status (as infeasibility) is easy to read off. This process is akin to bringing a matrix to row

echelon form, and most of the operations we use indeed come from Gaussian elimination.

To begin, we represent A and A∗ as

Ax =
m∑
i=1

xiai, A
∗y = (〈a1, y〉, . . . , 〈am, y〉)T , where ai ∈ Y for i = 1, . . . ,m.

Definition 3. We obtain an elementary reformulation or reformulation of (P )-(D) by a

sequence of the operations:

(1) Replace (ai, ci) by (Aλ, 〈c, λ〉) for some i ∈ {1, . . . ,m}, where λ ∈ Rm, λi 6= 0.

(2) Switch (ai, ci) with (aj , cj), where i 6= j.

(3) Replace b by b+Aµ, where µ ∈ Rm.

If K = K∗ we also allow the operation:

(4) Replace ai by Tai(i = 1, . . . ,m) and b by Tb, where T is an invertible linear map

with TK = K.

We call operations (1)-(3) elementary row operations (eros). Sometimes we reformulate

only (P) or (D), or only the underlying systems, ignoring the objective function. Clearly,

a conic linear system is infeasible, strongly infeasible, etc., exactly when its elementary

reformulations are.

Facial reduction cones “encode” a facial reduction algorithm, in a sense that we make

precise later, and will replace the usual dual cone to make our duals and certificates exact.
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Definition 4. The order k facial reduction cone of K is the set

FRk(K) = { (y1, . . . , yk) : k ≥ 0, y1 ∈ K∗, yi ∈ (K ∩ y⊥1 ∩ . . . ∩ y⊥i−1)∗, i = 2, . . . k }.

We drop the index k when its value is clear from context. Clearly K∗ = FR1(K) ⊆

FR2(K) ⊆ . . . holds. Surprisingly, FRk(K) is convex, which is only closed in trivial cases,

but behaves as well as the usual dual cone K∗ under the usual operations on convex sets –

see Lemma 2.

We now state an excerpt of our main results with full proofs of the “easy” directions:

Theorem I If K is a general closed convex cone, then

(1) (D) is infeasible, if and only if it has a reformulation

〈a′i, y〉 = 0 (i = 1, . . . , k)

〈a′k+1, y〉 = −1

〈a′i, y〉 = c′i (i = k + 2, . . . ,m)

y ≥K∗ 0

(Dref)

where k ≥ 0, (a′1, . . . , a
′
k+1) ∈ FR(K∗).

(2) (D) is not strongly infeasible, if and only if there is (y1, . . . , y`+1) ∈ FR(K), such that

A∗yi = 0 (i = 1, . . . , `)

A∗y`+1 = c.

To see how Theorem I extends known results, first assume that K∗ is the whole space,

hence (D) is a linear system of equations. Then FRk+1(K
∗) = {0}k+1, and the constraint

〈0, y〉 = −1 in (Dref) proves infeasibility, thus (Dref) generalizes the row echelon form of a
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linear system of equations. If k = 0 in part (1), then a′1 ∈ K, and (a′1,−1) = (Ax, 〈c, x〉)

for some x, so (D) is strongly infeasible. If ` = 0 in part (2), then (D) is actually feasible.

Also, the “if” directions are trivial:

Proof of if in part (1) We prove that (Dref) is infeasible, so suppose that y is feasible in

it to obtain the contradiction

y ∈ K∗ ∩ a′⊥1 ∩ . . . ∩ a′⊥k ⇒ 〈a′k+1, y〉 ≥ 0.

Proof of if in part (2) We prove that (D) is not strongly infeasible, so suppose it is. Let

x be feasible in (Dalt), and (y1, . . . , y`+1) as stated. Then

Ax ∈ K ∩R(A) ⊆ K ∩ y⊥1 ∩ . . . ∩ y⊥` ⇒ 〈Ax, y`+1〉 ≥ 0,

which yields the contradiction

〈Ax, y`+1〉 = 〈x,A∗y`+1〉 = 〈c, x〉 = −1.

We illustrate Theorem I with a semidefinite system, with Y = Sn the set of order n

symmetric matrices and K = K∗ = Sn+ as the set of order n positive semidefinite matrices.

The inner product of a, b ∈ Sn is a • b := 〈a, b〉 := trace(ab) and we write � in place of

≤K . Note that we denote the elements of Sn by small letters, and reserve capital letters

for operators.
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Example 3. The semidefinite system

1 0

0 0

 • y = 0

0 1

1 α

 • y = −1

y � 0

(3.2.1)

is infeasible for any α ≥ 0, and weakly infeasible exactly when α = 0.

Since the constraint matrices are in FR(S2+), we see that (3.2.1) is in the form of (Dref)

( and itself is a proof of infeasibility).

Suppose α = 0 and let

y1 =

0 0

0 1

 , y2 =

 0 −1/2

−1/2 0

 .

Then (y1, y2) ∈ FR(S2+), A∗(y1) = (0, 0)T , A∗(y2) = (0,−1)T , so (y1, y2) proves that (3.2.1)

is not strongly infeasible.

Classically, the set of right hand sides that make (D) weakly infeasible, is the frontier

of A∗K∗ defined as the difference between A∗K∗ and its closure. In this case

front(A∗K∗) = clA∗S2+ \A∗S2+ = { (0, λ) : λ 6= 0 }.

For all such right hand sides a suitable (y1, y2) proves that (3.2.1) is not strongly infeasible.

We organize the rest of the paper as follows. In the rest of the introduction we review

prior work, collect notation, and record basic properties of the facial reduction cone FRk(K).

In Section 3.6 we present our simple facial reduction algorithm, and our exact duals of (P)

and (D).
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In Section 3.7 we present our exact certificates of infeasibility and weak infeasibility of

general conic LPs, and in Section 3.8 we describe the corresponding certificates for SDPs.

We also present our geometric corollaries: an exact characterization of when the linear

image of a closed convex cone is closed, an exact characterization of nice cones (Pataki [29],

Roshchina [40]), and bounds on how many constraints can be dropped from, or added to a

(weakly) infeasible conic LP, while keeping its feasibility status. Note that when K∗ (and

K) is polyhedral, and (D) is infeasible, a single equality constraint obtained using eros and

membership in K∗ proves infeasibility (by Farkas’ lemma). In the general case the number

of necessary constraints is related to the length of the longest chain of faces in K. In Section

3.9 we define a natural class of weakly infeasible SDPs, and provide a simple algorithm to

generate all instances in this class. In Section 3.10 we present a library of infeasible, and

weakly infeasible SDPs, and our computational results. Section 3.11 concludes.

3.3 Literature Reviews

Facial reduction algorithms – see Borwein and Wolkowicz [11; 10], Waki and Muramatsu

[49], and Pataki [30] – achieve exact duality between (P) and (D) by constructing a suitable

smaller cone, say F , to replace K in (P), and to replace K∗ by F ∗ (a larger cone) in (D).

Extended strong duals for semidefinite programs and generalizations – see Ramana

[35], Klep and Schweighofer [20], Pataki [30] – use polynomially many extra variables

and constraints. We note that Ramana’s dual relies on convex analysis, while Klep and

Schweighofer’s uses ideas from algebraic geometry. The approaches of facial reduction and

extended duals are related – see Ramana, Tunçel and Wolkowicz [36], and [30] for proofs of

the correctness of Ramana’s dual relying on facial reduction algorithms. The paper [30] gen-

eralizes Ramana’s dual to the context of conic LPs over nice cones. See Pólik and Terlaky

[32] for a generalization of Ramana’s dual for conic LPs over homogeneous cones.

For recent studies on the closedness of the linear image of a closed convex cone we

refer to Bauschke and Borwein [4]; and Pataki [27]. The paper [4] gives a necessary and

sufficient condition for the continuous image of a closed convex cone to be closed, in terms of
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the strong conical hull intersection property. Pataki [27] gives necessary conditions, which

subsume well known sufficient conditions, and are necessary and sufficient for a broad class

of cones, called nice cones.

Borwein and Moors [8; 9] recently showed that the set of linear maps under which the

image is not closed is σ-porous, i.e., it has Lebesgue measure zero, and is also small in terms

of category. For characterizations of nice cones, see Pataki [29]; and Roshchina [40] for a

proof that not all facially exposed cones are nice.

Elementary reformulation for SDPs – see Pataki [28] and Liu and Pataki [21] – use

simple operations, as elementary row operations, to bring a semidefinite system into a form

from which its status (as infeasibility) is trivial to read off. We refer to Lourenco et al

[22] for an error-bound based reduction procedure to simplify weakly infeasible SDPs, and a

proof that weakly infeasible SDPs contain another such system whose dimension is at most

n− 1. We generalize this result in Theorem 12.

3.4 Notations and preliminaries

We assume throughout that the operator A is surjective. For x and y in the same

Euclidean space we sometimes write x∗y for 〈x, y〉. For a convex set C we denote its linear

span, the orthogonal complement of its linear span, its closure, and relative interior by

linC, C⊥, clC, and riC, respectively.

We define the dual cone of K as

K∗ = { y | 〈y, x〉 ≥ 0, ∀x ∈ K },

and for convenience we set

K∗\⊥ := K∗ \K⊥.
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We say that strong duality holds between (P) and (D) if their values agree and the latter

is attained when finite. This is true when (P) is strictly feasible, i.e., when there is x ∈ Rm

with b−Ax ∈ riK.

For F, a convex subset of K we say that F is a face of K, if y, z ∈ K, and 1/2(y+z) ∈ F

implies y, z ∈ F.

Definition 5. If H is an affine subspace with H ∩K 6= ∅, then we call the smallest face of

K that contains H ∩K the minimal cone of H ∩K.

The traditional alternative system of (P ) is

A∗y = 0

b∗y = −1

y ≥K∗ 0;

(Palt)

if it is feasible, then (P) is infeasible and we say that it is strongly infeasible.

For a nonnegative integer r we denote by Sr+ ⊕ {0} the subset of Sn+ (where n will be

clear from the context) with psd upper left r by r block, and the rest zero, and write

Sr+ ⊕ {0} =

⊕ 0

0 0

 , (Sr+ ⊕ {0})∗ =

⊕ ×

× ×

 (3.4.2)

where the × stand for matrix blocks with arbitrary elements. All faces of Sn+ are of the

form tT (Sr+ ⊕ 0)t where t is an invertible matrix [3; 26]. We write

Aut(K) = {T : Y → Y |T is linear and invertible, T (K) = K } (3.4.3)

for the automorphism group of a closed convex cone K.

Definition 6. We say that F1, . . . , Fk faces ofK form a chain of faces, if F1 ) F2 ) · · · ) Fk

and we write `K for the length of the longest chain of faces in K.

For instance, `Sn+ = `Rn
+

= n+ 1.
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3.5 The properties of the facial reduction cone

In Lemma 2 we record relevant properties of FRk(K). Its proof is given in Appendix A.

Lemma 2. For k ≥ 0 the following hold:

(1) FRk(K) is a convex cone.

(2) FRk(K) is only closed if K is a subspace or k = 1.

(3) If T ∈ Aut(K), and (y1, . . . , yk) ∈ FRk(K) then

(Ty1, . . . , T yk) ∈ FRk(K).

(4) If C is another closed convex cone, then

FRk(K × C) = FRk(K)× FRk(C).

Precisely, (
(y1, z1), . . . , (yk+1, zk+1)

)
∈ FRk(K × C) (3.5.4)

if and only if

(
y1, . . . , yk+1

)
∈ FRk(K) and

(
z1, . . . , zk+1

)
∈ FRk(C). (3.5.5)

Proof of Lemmas 2 and 3

Proof of Lemma 2

Proof of (1) It is trivial that FRk(K) contains all nonnegative multiples of its elements,

so we only need to show that it is convex. To this end, we use the following Claim, whose

proof is an easy exercise:
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Claim If C is a closed, convex cone and y, z ∈ C∗, then

C ∩ (y + z)⊥ = C ∩ y⊥ ∩ z⊥.

We let (y1, . . . , yk), (z1, . . . , zk) ∈ FRk(K), and for brevity, for i = 1, . . . , k we set

Ky,i = K ∩ y⊥1 ∩ · · · ∩ y⊥i ,

Kz,i = K ∩ z⊥1 ∩ · · · ∩ z⊥i ,

Ky+z,i = K ∩ (y1 + z1)
⊥ ∩ · · · ∩ (yi + zi)

⊥.

We first prove that for i = 1, . . . , k the relation

Ky+z,i = Ky,i ∩Kz,i holds. (3.5.6)

For i = 1 this follows from the Claim. Suppose now that (3.5.6) is true with i− 1 in place

of i. Then

yi ∈ K∗y,i−1 ⊆ (Ky,i−1 ∩Kz,i−1)
∗ = K∗y+z,i−1, (3.5.7)

where the first containment is by definition, the inclusion is trivial, and the equality is by

using the induction hypothesis. Analogously,

zi ∈ K∗y+z,i−1. (3.5.8)

Hence

Ky+z,i = Ky+z,i−1 ∩ (yi + zi)
⊥

= Ky+z,i−1 ∩ y⊥i ∩ z⊥i

= Ky,i−1 ∩Kz,i−1 ∩ y⊥i ∩ z⊥i

= Ky,i ∩Kz,i,
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where the first equation is trivial. The second follows since by (3.5.7) and (3.5.8) we can

use the Claim with C = Ky+z,i−1, y = yi, z = zi. The third is by the inductive hypothesis,

and the last is by definition. This completes the proof of (3.5.6).

Now we use (3.5.7), (3.5.8) and the convexity of K∗y+z,i−1 to deduce that

yi + zi ∈ K∗y+z,i−1 holds for i = 1, . . . , k.

This completes the proof of (1).

Proof of (2) Let L = K ∩−K, assume K 6= L, and k ≥ 2. Let {y1i} ⊆ riK∗, s.t. y1i → 0.

Then

K ∩ y⊥1i = L, ⇒ (K ∩ y⊥1i)∗ = L⊥

K ∩ 0⊥ = K ⇒ (K ∩ 0⊥)∗ = K∗.

Let y2 ∈ L⊥ \ K∗. (Such a y2 exists, since K∗ 6= L⊥.) Then (yi1, y2, 0, . . . , 0) ∈ FRk(K),

and it converges to (0, y2, 0, . . . , 0) 6∈ FRk(K).

Proof of (3) Let us fix T ∈ Aut(K) and let S be an arbitary set. Then we claim that

(TS)∗ = T−1S∗, (3.5.9)

(TS)⊥ = T−1S⊥, (3.5.10)

(K ∩ (TS)⊥)∗ = T (K ∩ S⊥)∗ (3.5.11)

hold. The first two statements are an easy calculation, and the third follows by

(K ∩ (TS)⊥)∗ = (K ∩ T−1S⊥)∗

= (T−1(K ∩ S⊥))∗

= T (K ∩ S⊥)∗,

where in the first equation we used (3.5.10), in the second equation we used T−1K = K

and in the last we used (3.5.9).
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Now let (y1, . . . , yk) ∈ FRk(K), and Si = {y1, . . . , yi−1} for i = 1, . . . , k. Then by

definition we have yi ∈ (K ∩ S⊥i )∗ and (3.5.11) implies

Tyi ∈ (K ∩ (TSi)
⊥)∗,

which completes the proof.

Proof of (4) The equivalence of (3.5.4) and of (3.5.5) is trivial for k = 0 so let us assume

that k ≥ 1 and we proved it for 0, . . . , k − 1. Statement (3.5.4) is equivalent to

(
(y1, z1), . . . , (yk, zk)

)
∈ FRk−1(K × C)

and

(yk+1, zk+1) ∈
(
(K × C) ∩ (y1, z1)

⊥ ∩ · · · ∩ (yk, zk)⊥
)∗
. (3.5.12)

By the inductive hypothesis the set on the right hand side of (3.5.12) is

(K ∩ y⊥1 ∩ · · · ∩ y⊥k )∗ × (C ∩ z⊥1 ∩ · · · ∩ z⊥k )∗,

and this completes the proof.

3.6 Facial reduction and strong duality for conic linear program

In this section we present a very simple facial reduction algorithm to find F, the minimal

cone of the system

H ∩K, (3.6.13)

where H is an affine subspace with H ∩K 6= ∅ and our exact duals of (P) and of (D). While

simple facial reduction algorithms are available, the convergence proof of Algorithm 1, with

an upper bound on the number of steps, is particularly simple.

To start, we note that if F is the minimal cone of (3.6.13) then H ∩ riF 6= ∅ (otherwise

H∩K would be contained in a proper face of F ). So if F is the minimal cone of (R(A)+b)∩K,
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then replacing K by F in (P) makes (P) strictly feasible, and keeps its feasible set the same.

Hence if we also replace K∗ by F ∗ in (D) then strong duality holds between (P) and (D).

To illustrate this point, we consider the following example:

Example 4. The optimal value of the SDP

sup x1

s.t. x1


0 1 0

1 0 0

0 0 0

+ x2


0 0 1

0 1 0

1 0 0

 �


1 0 0

0 0 0

0 0 0


(3.6.14)

is zero. Its usual SDP dual, in which we denote the dual matrix by y and its components

by yij , is equivalent to

inf y11

s.t.


y11 1/2 −y22/2

1/2 y22 y23

−y22/2 y23 y33

 � 0,
(3.6.15)

which does not have a feasible solution with y11 = 0 (in fact it has an unattained 0 infimum).

Since all slack matrices in (3.6.14) are contained in S1+ ⊕ 0 and there is a slack matrix

whose (1, 1) element is positive, the minimal cone of this system is F = S1+ ⊕ 0. If in the

dual program we replace S3+ by F ∗ then the new dual attains with

y :=


0 1/2 0

1/2 0 0

0 0 0

 ∈ F ∗ =


⊕ × ×

× × ×

× × ×

 (3.6.16)

being an optimal solution (cf. equation (3.4.2)).
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To construct the minimal cone we rely on the following classic theorem of the alternative

(recall K∗\⊥ = K∗ \K⊥).

H ∩ riK = ∅ ⇔ H⊥ ∩K∗\⊥ 6= ∅. (3.6.17)

Algorithm 1 repeatedly applies (3.6.17) to find F :

Algorithm 1 Facial Reduction

Initialization: Let y0 = 0, F0 = K, i = 1.

while ∃yi ∈ H⊥ ∩ F ∗\⊥i−1 do

Choose such a yi.

Let Fi = Fi−1 ∩ y⊥i .

Let i = i+ 1.

end while

To analyze Algorithm 1 we need a definition:

Definition 7. For k ≥ 1 we say that (y1, . . . , yk) ∈ FRk(K) is strict, if

yi ∈ (K ∩ y⊥1 ∩ · · · ∩ y⊥i−1)∗\⊥ for i = 1, . . . , k.

We say that it is pre-strict if (y1, . . . , yk−1) is strict.

If (y1, . . . , yk) is strict, then these vectors are linearly independent. Assuming that they

are not, for some 1 ≤ i ≤ k a contradiction follows:

yi ∈ lin { y1, . . . , yi−1 } ⊆ (K ∩ y⊥1 ∩ · · · ∩ y⊥i−1)⊥.

Recall that `K is the length of the longest chain of faces in K (Definition 6).

Theorem 3. The following hold:

(1) If y1, . . . , yk are found by Algorithm 1, then (y1, . . . , yk) ∈ FRk(K) and

F ⊆ K ∩ y⊥1 ∩ · · · ∩ y⊥k . (3.6.18)
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(2) Equality holds in (3.6.18) for some strict (y1, . . . , yk) ∈ FRk(K) with

k ≤ min { `K − 1, dimH⊥ }.

Proof To prove part (1) define

Fk = K ∩ y⊥1 ∩ · · · ∩ y⊥k .

The statement follows, since Fk is a face of K that contains H ∩K (by yi ∈ H⊥), and F is

the smallest such face.

We next prove part (2). If we choose (y1, y2, . . . ) in Algorithm 1 to be strict, then the

algorithm eventually stops. Suppose it stops after finding y1, . . . , yk and for brevity define

Fk as above. Then riFk ∩H 6= ∅, and

riFk ∩H = riFk ∩H ∩K = riFk ∩H ∩ F,

so riFk∩F 6= ∅. So by Theorem 18.1 in [39] we obtain Fk ⊆ F with the reverse containment

already given. The upper bound on k follows from strictness and the linear independence

of y1, . . . , yk.

Definition 8. The singularity degree of the system H ∩K which we denote by d(H,K) is

the minimum number of facial reduction steps needed to find its minimal cone.

When (P) (resp. (D)) are feasible, we define the minimal cone (degree of singularity)

of (P) and of (D) as the minimal cone (degree of singularity) of the systems

(R(A) + b) ∩K, and { y |A∗y = c } ∩K∗.

We write d(P ) and d(D) for the singularity degrees.
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Example 5. (Example 4 continued) Algorithm 1 applied to this example may output the

sequence

y1 =


0 0 0

0 0 0

0 0 1

 , F1 =


⊕ 0

0

0 0 0

 ,

y2 =


0 0 −1

0 2 0

−1 0 0

 , F2 = F.

(3.6.19)

Note that yi ∈ H⊥ in this context means that y1 and y2 are orthogonal to all constraint

matrices, and that the singularity degree of (3.6.14) is two.

From Theorem 3 we immediately obtain an extended strong dual for (P), described

below in (Dext). Note that (Dext) is an explicit conic linear program whose data is the

same as the data of (P), thus it extends the exact SDP duals of Ramana [35] and Klep and

Schweighofer [20] to the context of general conic LPs. The underlying cone in (Dext) is the

facial reduction cone: thus, somewhat counterintuitively, we find an exact dual of (P) over

a convex cone, which is not closed in all important cases.

Theorem 4. Let k ≥ d(P ). Then the problem

inf b∗yk+1

s.t. A∗yk+1 = c

A∗yi = 0 (i = 1, . . . , k)

b∗yi = 0 (i = 1, . . . , k)

(y1, . . . , yk+1) ∈ FRk+1(K)

(Dext)

is a strong dual of (P ). If k = d(P ) and the value of (P) is finite, then (Dext) has an optimal

solution which is pre-strict.
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Proof We first prove weak duality. Suppose that x is feasible in (P ) and (y1, . . . , yk+1)

in (Dext) then

〈b, yk+1〉 − 〈c, x〉 = 〈b, yk+1〉 − 〈A∗yk+1, x〉

= 〈b−Ax, yk+1〉 ≥ 0,

where the last inequality follows from b−Ax ∈ K ∩ y⊥1 ∩ · · · ∩ y⊥k .

To prove the rest of the statements, first assume that (P) is unbounded. Then by weak

duality (Dext) is infeasible. Suppose next that (P) has a finite value v and let F be the

minimal cone of (P). Let us choose y ∈ F ∗ to satisfy the affine constraints of (D) with

b∗y = v. We have that

F = K ∩ y⊥1 ∩ · · · ∩ y⊥k

for some (y1, . . . , yk) ∈ FRk(K), with all yi in (R(A) + b)⊥ and this sequence can be chosen

strict, if k = d(P ).

Hence (y1, . . . , yk, 0, . . . , 0, y) (where the number of zeros is k−d(P )) is feasible in (Dext)

with value v. This completes the proof.

Example 6. (Example 4 continued) If we choose y1, y2 as in (3.6.19) and y as in (3.6.16),

then (y1, y2, y) is an optimal solution to the extended dual of (3.6.14).

Theorem 5. If (D) is feasible then it has a strictly feasible reformulation

inf b∗y

s.t. 〈a′i, y〉 = 0 (i = 1, . . . , k)

〈a′i, y〉 = c′i (i = k + 1, . . . ,m)

y ∈ K∗ ∩ a′⊥1 ∩ · · · ∩ a′⊥k ,

(Dref,feas)

with k ≥ 0, (a′1, . . . , a
′
k) ∈ FR(K∗), which can be chosen strict.

50



Proof Let G be the minimal cone of (D) i.e., we fix y ∈ Y s.t. A∗y = c and let G

be the minimal cone of (N (A∗) + y) ∩ K∗. By Theorem 3 there is k ≥ 0 and a strict

(a′1, . . . , a
′
k) ∈ FR(K∗) such that

a′i ∈ R(A) ∩ y⊥ (i = 1, . . . , k),

G = K∗ ∩ a′⊥1 ∩ · · · ∩ a′⊥k .

Since a′1, . . . , a
′
k are linearly independent, we can expand them to

A′ = [a′1, . . . , a
′
k, a
′
k+1, . . . , a

′
m], a basis ofR(A).

Let us write A′ = AZ with Z an invertible matrix. Replacing A by A′ and c by ZT c yields

the required reformulation, since

ZT c = ZTA∗y = A′∗y,

so the first k components of ZT c are zero.

We now contrast Theorem 4 with Theorem 5. In the former the minimal cone of (P ) is

K ∩ y⊥1 ∩ · · · ∩ y⊥k ,

where (y1, . . . , yk, yk+1) is feasible in (Dext). In the latter the minimal cone of (D) is dis-

played by simply performing elementary row operations on the constraints. To illustrate

Theorem 5, we continue Example 4:
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Example 7. (Example 4 continued) We can rewrite the feasible set of this example in an

equality constrained form, and choose


0 0 0

0 0 0

0 0 1

 • y = 0


0 0 −1

0 2 0

−1 0 0

 • y = 0

to be among the constraints: these matrices form a sequence in FR(S3+).

To find the yi in Algorithm 1 one needs to solve a certain reducing conic linear program,

and if K is the semidefinite cone, one needs to solve an SDP. This task may not be easier

than solving the original problem (P), since the reducing conic LP is strictly feasible, but

its dual is not. We know of two approaches to overcome this difficulty. The first approach

by Cheung et al [13] is using a modified subproblem whose dual is also strictly feasible. The

second, by Permenter and Parrilo in [31] is a “partial” facial reduction algorithm, where

they solve linear programming approximations of the SDP subproblems.

3.7 Certificates of infeasibility and weak infeasibility in conic LPs

We now describe a collection of certificates of infeasibility and weak infeasibility of (P)

and of (D) below in Theorem 6, which contains Theorem I. The idea is simple: the exact

dual of (P) provides an exact certificate of infeasibility of (P) by homogenization, and the

remaining certificates are found by using duality and elementary linear algebra.

Theorem 6. When K is a general closed, convex cone, the following hold:
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(1) (D) is infeasible, if and only if it has a reformulation

〈a′i, y〉 = 0 (i = 1, . . . , k)

〈a′k+1, y〉 = −1

〈a′i, y〉 = c′i (i = k + 2, . . . ,m)

y ≥K∗ 0

(Dref)

where (a′1, . . . , a
′
k+1) ∈ FR(K∗).

(2) (D) is not strongly infeasible, if and only if there is (y1, . . . , y`+1) ∈ FR(K), such that

A∗yi = 0 (i = 1, . . . , `)

A∗y`+1 = c.

(3) (P ) is infeasible, if and only if there is (y1, . . . , yk+1) ∈ FR(K) such that

A∗yi = 0, b∗yi = 0 (i = 1, . . . , k)

A∗yk+1 = 0, b∗yk+1 = −1

(4) (P ) is not strongly infeasible, if and only if it has a reformulation

m∑
i=1

xia
′
i ≤K b′ (Pref)

where (a′1, . . . , a
′
`, b
′) ∈ FR(K∗) for some ` ≥ 0.

In all parts the facial reduction sequences can be chosen to be pre-strict.

We note that parts (1) through (4) in Theorem 6 should be read separately: the k

integers in parts (1) and (3), the ` in parts (2) and (4), etc. may be different. We use the

current notation for brevity. Also note that since K is a general closed, convex cone, in the

reformulations we only use elementary row operations.
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If k = 0 in part (3) then (P) is strongly infeasible; and if ` = 0 in part (4) then (P) is

actually feasible. The reader can check that the “if” directions are all trivial.

Part (3) in Theorem 6 essentially follows from [49], though their infeasbility certificate

is not stated as a conic linear system.

Note that Part (1) Theorem 6 allows us to generate all infeasible conic LP instances

over cones, whose facial structure (and hence their facial reduction cone) is well understood:

to do so, we only need to generate systems of the form (Dref) and reformulate them. By

Part (4) we can systematically generate all systems that are not strongly infeasible, though

this seems less interesting.

Example 3 already illustrates parts (1) and (2). A larger example, which also depicts

the frontier of A∗K∗ with K = K∗ = S3+ follows.

Example 8. Let

a1 =


1 0 0

0 0 0

0 0 0

 , a2 =


0 0 1

0 1 0

1 0 0

 , a3 =


1 0 0

0 1 0

0 0 0

 .

Then one easily checks

cl(A∗S3+) = R+ × R × R+

front(A∗S3+) = cl(A∗S3+) \A∗S3+ = {(0, λ, µ) |λ 6= µ ≥ 0 }.

The set A∗S3+ is shown on Figure 3.1 in blue, and its frontier in green. Note that the blue

diagonal segment inside the green frontier actually belongs to A∗S3+.
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To see how parts (1) and (2) of Theorem 6 certify that elements of front(A∗S3+) are

indeed in this set, for concreteness, consider the system

A∗(y) = (0, 1, 2)T

y � 0.

(3.7.20)

The operations: 1) multiply the second equation by 3 and 2) subtract twice the third

equation from it, bring (3.7.20) into the form of (Dref) and show that it is infeasible. The

y1 and y2 below prove that it is not strongly infeasible:

y1 =


0 0 0

0 0 0

0 0 1

 , y2 =


0 0 −1/2

0 2 0

−1/2 0 0

 . (3.7.21)

Figure 3.1: The set A∗S3+ is in blue, and its frontier is in green
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To illustrate parts (3) and (4) in Theorem 6, we modify Example 4 by simply exchanging

two constraint matrices.

Example 9. (Example 4 continued) The semidefinite system below is weakly infeasible.

x1


1 0 0

0 0 0

0 0 0

+ x2


0 1 0

1 0 0

0 0 0

 �


0 0 1

0 1 0

1 0 0

 . (3.7.22)

To prove it is infeasible, we use part (3) of Theorem 6 with (y1, y2, y3), where y1, y2 are

given in (3.6.19) and

y3 =


0 0 −1/2

0 0 0

−1/2 0 0

 ,

To prove it is not strongly infeasible, we use part (4). We write a1, a2, and b for the constraint

matrices, and observe that (a1, b) ∈ FR2(S3+), and is pre-strict, and (a1, a2, b) ∈ FR3(S3+).

We now prove Theorem 6. To make the proofs concise, we prove the statements out of

order.

Proof of (3) : Since the conic LP

sup{x0 : Ax− bx0 ≤K 0} (3.7.23)

has value 0 iff (P ) is infeasible, our claim follows from considering the strong dual of (3.7.23)

from Theorem 4.
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Proof of only if in (1) : Fix y ∈ Y such that A∗y = c. By part (3) there is k ≥ 0 and a

pre-strict (a′1, . . . , a
′
k, a
′
k+1) ∈ FR(K∗) such that

a′i ∈ R(A) ∩ y⊥ (i = 1, . . . , k),

a′k+1 ∈ R(A), 〈a′k+1, y〉 = −1.

Since (a′1, . . . , a
′
k, a
′
k+1) is pre-strict, a′1, . . . , a

′
k are linearly independent. Since 〈a′k+1, y〉 6= 0,

also a′1, . . . , a
′
k, a
′
k+1 are linearly independent. The proof now can be completed verbatim

as the proof of Theorem 5.

Proof of only if in (2) Since (D) is not strongly infeasible, the alternative system (Dalt)

is infeasible. By Lemma 4 we deduce that

FRk(K × {0}) = FRk(K)× Rk+1 holds for all k ≥ 0.

Combining this with part (3), there is a pre-strict (y1, . . . , yk+1) ∈ FR(K) and

(z1, . . . , zk+1) ∈ Rk+1 s.t.

A∗yi + c∗zi = 0, zi = 0 (i = 1, . . . , k)

A∗yk+1 + c∗zk+1 = 0, zk+1 = −1,

so our claim follows.

Proof of (4) Since (P ) is not strongly infeasible, the system (Palt) is infeasible, hence by

part (1) it has a reformulation

〈a′i, y〉 = 0 (i = 1, . . . , `)

〈b′, y〉 = −1

〈a′i, y〉 = c′i (i = `+ 1, . . . ,m)

y ≥K∗ 0

(3.7.24)
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with (a′1, . . . , a
′
`, b
′) ∈ FR(K∗) for some ` ≥ 0.

Since in (Palt) the only constraint with a nonzero right hand side is 〈b, y〉 = −1, we

must have b′ = b + Aµ for some µ ∈ Rm. Since (3.7.24) is the alternative system of (Pref),

the latter cannot be strongly infeasible. This completes the proof.

3.8 Certificates of infeasibility and weak infeasibility for SDPs

In this section we specialize the certificates of infeasibility and weak infeasibility of

Section 3.7 to semidefinite programming. For this purpose we first introduce regularized

facial reduction sequences in Sn+. These sequences have a certain staircase like structure and

we will use them in Theorem 7, which is essentially obtained from Theorem 6 by replacing

facial reduction sequences by regularized ones.

Definition 9. The set of order k regularized facial reduction sequences for Sn+ is

REGFRk(Sn+) =

{
(y1, . . . , yk) : yi =



p1 + . . .+ pi−1 pi n−
∑i

j=1 pj

× × ×

× I 0

× 0 0


where pi ≥ 0, i = 1, . . . , k

}
,

where the × symbols correspond to blocks with arbitrary elements. We drop the index k if

its value is clear from the context. We say that (y1, . . . , yk) has block sizes p1, . . . , pk if the

order of the identity block in yi is pi for all i.

Note that the constraint matrices in most examples actually form regularized facial

reduction sequences. Clearly,

REGFR(Sn+) ⊆ FR(Sn+)
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holds, and a sequence (y1, . . . , yk) ∈ REGFR(Sn+) with block sizes p1, . . . , pk is strict, iff

p1, . . . , pk are positive.

The set REGFRk(Sn+) is not convex. However, Lemma 3 below shows that any ele-

ment of FRk(Sn+) can be rotated to reside in REGFRk(Sn+), i.e., FRk(Sn+) is the orbit of

REGFRk(Sn+) under the automorphism group of Sn+. The proof of Lemma 3 is given in

Appendix A.

Lemma 3. Let (y1, . . . , yk) ∈ FR(Sn+). Then there is an invertible matrix t such that

(tT y1t, . . . , t
T ykt) ∈ REGFR(Sn+).

The main result of this section follows.

Theorem 7. When K = Sn+, the following hold:

(1) (D) is infeasible, if and only if it has a reformulation

〈a′i, y〉 = 0 (i = 1, . . . , k)

〈a′k+1, y〉 = −1

〈a′i, y〉 = c′i (i = k + 2, . . . ,m)

y � 0,

(Dref,sdp)

where (a′1, . . . , a
′
k+1) ∈ REGFR(Sn+).

(2) (D) is not strongly infeasible, if and only if it has a reformulation with data (A′′, c′′)

and (y1, . . . , y`+1) ∈ REGFR(Sn+) such that

A′′∗yi = 0 (i = 1, . . . , `)

A′′∗y`+1 = c′′.

59



(3) (P ) is infeasible, if and only if it has a reformulation with data (A′, b′) and

(y1, . . . , yk+1) ∈ REGFR(Sn+) such that

A′∗yi = 0, b′∗yi = 0 (i = 1, . . . , k)

A′∗yk+1 = 0, b′∗yk+1 = −1

(4) (P ) is not strongly infeasible, if and only if it has a reformulation

m∑
i=1

xia
′′
i � b′′ (Pref,sdp)

where (a′′1, . . . , a
′′
` , b
′′) ∈ REGFR(Sn+) for some ` ≥ 0.

In all parts the facial reduction sequences can be chosen as pre-strict.

We first note that parts (1) and (2) above should be read together, but separately from

parts (3) and (4), and vice versa. (So the k integers in parts (1) and in part (3) may be

different, and so on.) We use the double primes to emphasize that the reformulations in

the first two and the last two parts are different.

Example 3 illustrates part (1) in Theorem 7, since the constraint matrices are in

REGFR(S2+). It also illustrates part (2), after we apply a trivial rotation on the constraint

matrices:

Example 10. (Example 3 continued) After exchanging the first row and column in this

example, and assuming α = 0 we obtain the system

0 0

0 1

 • y = 0

0 1

1 0

 • y = −1

y � 0.

(3.8.25)
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The fact that (3.8.25) is not strongly infeasible is proved by

y1 =

1 0

0 0

 , y2 =

 0 −1/2

−1/2 0

 ,

and (y1, y2) ∈ REGFR(S2+).

Example 8 also illustrates part (2) in Theorem 7, since after a trivial rotation of the yj

in (3.7.21) they are in REGFR(S3+). Example 9 illustrates parts (3) and (4).

Proof of Theorem 7 To see part (1) we consider the reformulation given in part (1)

of Theorem 6, and a t invertible matrix such that (tTa′1t, . . . , t
Ta′k+1t) ∈ REGFR(Sn+). We

replace a′i by tTa′it for all i and obtain (Dref,sdp).

To see (2) we consider the sequence (y1, . . . , y`+1) ∈ FR(Sn+) given by part (2) of The-

orem 6, and a t invertible matrix such that

(tT y1t, . . . , t
T y`+1t) ∈ REGFR(Sn+).

For i = 1, . . . ,m and j = 1, . . . , `+ 1 we have

〈t−1ait−T , tT yjt〉 = 〈ai, yj〉. (3.8.26)

We set a′′i := t−1ait
−T and replace yj by tT yjt for all i and j and this completes the proof.

The proof of (3) is analogous to the proof of (2); and the proof of (4) to the proof of

(1), hence we omit these.

Note that part (1) in Theorem 7 recovers Theorem 1 in [21]. Parts (2) and (4) are related

to the recent paper of Lourenco et al [22]. The authors there show that if a semidefinite

system of the form (P) is weakly infeasible, then a sequence (a′1, . . . , a
′
`) ∈ REGFR`(Sn+)

can be found by taking linear combinations of the ai and applying rotations.
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In contrast, we exactly characterize systems that are infeasible and systems that are not

strongly infeasible. Putting these parts together yields our algorithm to generate weakly

infeasible SDPs (in Section 3.9).

3.9 Generating infeasible, and weakly infeasible SDPs

We now turn to a practical aspect of our work, generating infeasible, and weakly in-

feasible SDP instances. Having a library of such instances is important, since detecting

infeasibility is a weak point of commercial and research codes: when they report this sta-

tus, they also return a feasible solution to the alternative system (Dalt). When the instance

is weakly infeasible, the returned certificate is necessarily inaccurate.

We first state an elementary algorithm, based on part (1) of Theorem 7, to generate

infeasible SDPs.

Algorithm 2 Infeasible SDP

1: Choose integers m,n, k, p1, . . . , pk > 0 and pk+1 ≥ 0 s.t. k + 1 ≤ m,
∑k+1

i=1 pi ≤ n.

2: Let (a1, . . . , ak+1) ∈ REGFRk+1(Sn+) with block sizes p1, . . . , pk+1 and c1 = · · · = ck =

0, ck+1 = −1.

3: Let ak+2, . . . , am ∈ Sn and ck+2, . . . , cm ∈ R be arbitrary.

By Theorem 7 all infeasible SDPs are a reformulation of a possible output of Algorithm

2. This algorithm may generate a strongly or a weakly infeasible SDP, and the latter

outcome is likelier if k is large with respect to m, but weak infeasibility is not guaranteed.

Next we turn to generating weakly infeasible SDP instances with a proof of weak in-

feasibility. We first note that Waki in [47] described a method to generate such SDPs from

Lasserre’s relaxation of polynomial optimization problems. His instances turned out to be

very useful in computational testing of SDP solvers. In contrast, we will generate our

instances by solving simple systems of equations. In fact, we will define a natural class of

weakly infeasible SDPs, and show that a simple algorithm generates all instances in this

class.
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Although our framework is different – since we generate objects in an uncountably

infinite set – our algorithms to generate all SDP instances in a certain class fit into the

framework of listing combinatorial objects, as cycles, paths, spanning trees and cuts: see

e.g., [37; 34].

We will use part (1) of Theorem 6 to find an infeasible instance, and part (2) to find a

(yj) sequence to prove that it is not strongly infeasible, so we will solve a bilinear system

of equations over the (ai) and (yj). While this may be difficult in general, it is easy if we

impose a structure: we will require that the (ai) be regularized (cf. Definition 9), and that

the (yj) have the same structure, but “reversed” in the sense defined below:

Definition 10. The set of order ` reversed regularized facial reduction sequences in Sn+ is

REVREGFR`(Sn+) =

{
(y1, . . . , y`) : yi =



n−
∑i

j=1 qj qi
∑i−1

j=1 qj

0 0 ×

0 I ×

× × ×


where qi ≥ 0, i = 1, . . . , `

}
,

where the × symbols correspond to blocks with arbitrary elements. We drop the subscript,

if its value is clear from the context.

For instance, the yi matrices in Example 3 are in REVREGFR(S2+).

Definition 11. An SDP instance

A∗y = c

y � 0

(3.9.27)

is nonoverlapping weakly infeasible, if

(1) it is in the form (Dref) as in part (1) of Theorem 6 with (a1, . . . , ak+1) ∈ REGFR(Sn+)

for some k ≥ 1.
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(2) There is (y1, . . . , y`+1) ∈ REVREGFR(Sn+) as in part (2) of Theorem 6 which proves

it is not strongly infeasible;

(3) The block sizes pi of (a1, . . . , ak+1) and the block sizes qj of (y1, . . . , y`+1) satisfy

k+1∑
i=1

pi +
`+1∑
j=1

qj ≤ n. (3.9.28)

Note that condition (3.9.28) means that the identity blocks in the (ai) and (yj) sequences

do not overlap. Example 3 is such an instance with p1 = q1 = 1 and p2 = q2 = 0.

A larger example follows:

Example 11. The SDP

ai • y = 0 (i = 1, 2),

a3 • y = −1,

y � 0

(3.9.29)

is weakly infeasible, where a1, a2, a3 are given below:

a1 =



1 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0


, a2 =



5 1 2 2 0

1 1 0 0 0

2 0 0 0 0

2 0 0 0 0

0 0 0 0 0


, a3 =



3 2 1 3 −2

2 0 0 0.5 1

1 0 1 0 0

3 0.5 0 0 0

−2 1 0 0 0


.

(Some matrix entries are underlined, since we will return to this instance to explain our

algorithm.)
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Matrices y1, y2, y3 (again with some underlined entries) below show that (3.9.29) is

nonoverlapping weakly infeasible:

y1 =



0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 1


, y2 =



0 0 0 0 1

0 0 0 0 2

0 0 0 0 1

0 0 0 1 0

1 2 1 0 0


, y3 =



0 0 0 0 3

0 0 0 1 5

0 0 0 4 1

0 1 4 1 2

3 5 1 2 3


.

Note that here

k = ` = 2, p1 = p2 = p3 = 1, q1 = q2 = 1, q3 = 0.

It is of course easy to see directly that (3.9.29) is weakly infeasible. However, if we generate

matrices ai (i = 4, 5, . . . , ) orthogonal to y1 and y2 and add the contraints ai • y = ai • y3 to

(3.9.29), the resulting system is still weakly infeasible, but this would be difficult to confirm

directly. (A simple dimension count shows that this way we can extend (3.9.29) to have 13

constraints.)

To proceed with stating our algorithm, for (a1, . . . , ak+1) ∈ REGFR(Sn+) with block

sizes p1, . . . , pk+1 we denote the ith block containing pi integers by Pi, i.e.,

P1 =
{

1, . . . , p1}, P2 = {p1 + 1, . . . , p1 + p2}, . . .

For (y1, . . . , y`+1) ∈ REVREGFR(Sn+) with block sizes q1, . . . , q`+1 we similarly denote the

jth block containing qj integers by

Q1 =
{
n− q1 + 1, . . . , n

}
, Q2 =

{
n− q1 − q2 + 1, . . . , n− q1

}
, . . .

For instance, in Example 11

P1 = {1}, P2 = {2}, P3 = {3}, Q1 = {5}, Q2 = {4}, Q3 = ∅. (3.9.30)
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For a ∈ Sn and P,Q ⊆ {1, . . . , n} we denote by a(P,Q) the union of the block of a indexed

by rows corresponding to P and columns corresponding to Q; and the block symmetric with

it (i.e., rows indexed by Q and columns indexed by P.).

We are now ready to state our algorithm. The input of Algorithm 3 is (a1, . . . , ak+1) ∈

REGFR(Sn+) and (y1, . . . , y`+1) ∈ REVREGFR(Sn+) with block sizes pi and qj which satisfy

inequality (3.9.28). We fix all entries of all ai and of all yj in advance, except we leave free

the entries in

ai(Pi−1, Q1 ∪ · · · ∪Q`) and yj(Qj−1, P1 ∪ · · · ∪ Pk). (3.9.31)

The algorithm then sets the entries in these free blocks to satisfy the equations

ai • yj =


0 if (i, j) 6= (k + 1, `+ 1),

−1 if (i, j) = (k + 1, `+ 1).

(3.9.32)

This way we find the first k+1 equations in (D) and the last part of the algorithm generates

the remaining m− k − 1.

Algorithm 3 Nonoverlapping weakly infeasible SDP

for j = 2 : (`+ 1) do

for i = 2 : (k + 1) do

(*) Set ai(Pi−1, Qj−1) and yj(Pi−1, Qj−1) to satisfy the equation for ai • yj .

end for

end for

Find ak+2, . . . , am orthogonal to y1, . . . , y`.

Set c = (0, . . . , 0,−1, ak+2 • y`+1, . . . , am • y`+1)
T .

Algorithm 3 can generate Example 3 by starting with only the offdiagonal element of

a2 and y2 free, then setting these to satisfy the equation a2 • y2 = −1.

Algorithm 3 can also generate Example 11. It starts with the underlined entries free,

and successively sets the entries in the following submatrices (note the definition of Pi and

Qj in (3.9.30))
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(1) a2(P1, Q1) and y2(P1, Q1)

(2) a3(P2, Q1) and y2(P2, Q1)

(3) a2(P1, Q2) and y3(P1, Q2)

(4) a3(P2, Q2) and y3(P2, Q2)

Theorem 8. Algorithm 3 always succeeds, and every nonoverlapping weakly infeasible

instance is among its possible outputs.

Proof To show that the algorithm always succeeds assume that at some point we execute

Step (*). All previously satisfied equations which involve ai have left hand side

ai • yt with t ≤ j − 1.

Since for all such t we have

yt(Pi−1, Qj−1) = 0, sincePi−1 ⊆ {1, . . . , n} \ (Q1 ∪ · · · ∪Q`+1),

all these equations remain satisfied. Similarly, all previously satisfied equations that involve

yj remain true.

It is trivial to prove that all nonoverlapping instances are among the outputs: suppose

that such an instance is identified by (ā1, . . . , ām) and (ȳ1, . . . , ȳ`+1) with (ā1, . . . , āk+1)

having block sizes p1, . . . , pk+1, and the ȳj having block sizes qj . Suppose that before we

start Algorithm 3 we set all entries in (a1, . . . , ak+1) and (y1, . . . , y`+1) other than the ones

in (3.9.31) to the corresponding values in the (āi) and (ȳj). Then there is a possible run of

the algorithm which completes the ai and yj to be equal to the āi and ȳj .

3.10 Computational experiments

To generate a test suite of challenging infeasible and weakly infeasible SDPs (in the

dual form (D)) we implemented Algorithms 2 and 3 in Matlab. We ran Algorithm 2 with

67



parameters

n = 10, k = 2, p1 = 2, p2 = 3, p3 = 2, m = 10 orm = 20, (3.10.33)

and we call its outputs infeasible instances (these may be strongly or weakly infeasible). All

entries in the generated instances are integers.

We ran Algorithm 2 with parameters

n = 10, k = 2, ` = 1, r = (2, 3, 2), s = (2, 1), m = 10 orm = 20, (3.10.34)

and we call the instances it generates weakly infeasible. (These are guaranteed to be weakly

infeasible.) We chose the components of the a1, . . . , ak+1 in the support of the yj as integers

in [−2, 2] so the entries of ak+2, . . . , am and of y1, y2 turn out to be “near” integers with

components in {0,±1,±1/2, . . . ,±1/7}.

Hence one can easily verify the status of our instances in exact arithmetic.

To generate instances, in which the structure proving (weak) infeasibility is less readily

apparent, we add the optional

Messing step: Choose t = (tij) ∈ Zm×m and v = (vij) ∈ Zn×n random invertible

matrices with entries in [−2, 2] and let

ai = vT
( m∑
j=1

tijaj
)
v for i = 1, . . . ,m.

The t matrix encodes elementary row operations performed on (D), and v encodes a

rotation.

We call the instances output by Algorithms 2 and 3 clean, and the instances we find

after the Messing step messy.

68



The choices: “clean/messy, infeasible/weakly infeasible, m = 10/m = 20” provide eight

categories and we generated 100 instances in each. We set the objective function as I to

ensure that the primal problem (P ) is feasible.

We tested four solvers: we first ran the solvers Sedumi, SDPT3 and MOSEK from

the YALMIP environment, and the preprocessing algorithm of Permenter and Parrilo [31]

interfaced with Sedumi. The latter is marked by “PP+SEDUMI” in our tables.

As the solvers consider our dual problem to be the primal, the only correct solution

status is “primal infeasible.” In Tables 3.1 and 3.2 we report the number of solved instances

out of 100 for the various solvers.

Infeasible Weakly Infeasible

Clean Messy Clean Messy

SEDUMI 87 27 0 0

SDPT3 10 5 0 0

MOSEK 63 17 0 0

PP+SEDUMI 100 27 100 0

Table 3.1: Results with n = 10,m = 10

Infeasible Weakly Infeasible

Clean Messy Clean Messy

SEDUMI 100 100 1 0

SDPT3 100 96 0 0

MOSEK 100 100 11 0

PP+SEDUMI 100 100 0 0

Table 3.2: Results with n = 10,m = 20

We can see that

(1) The standalone solvers do better when m goes from 10 to 20 as for larger m the

portion of strongly infeasible instances is likely to be higher.

(2) The standalone solvers mostly fail on the weakly infeasible problems, though MOSEK

detects infeasibility of some. These are “almost” strongly infeasible, i.e., the alterna-
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tive system (Dalt) is almost feasible. (Of course, in exact arithmetic (Dalt) is infeasi-

ble.)

(3) The preprocessing of [31] considerably helps Sedumi when m = 10; and it is the only

method to work consistently well on the weakly infeasible instances with m = 10.

Somewhat surprisingly, it does not work, however, on the clean infeasible instances

with m = 20.

Clearly, a preprocessing algorithm like [31] could easily scan for entire facial reduction

sequences in the input, and it is likely that some of the instances coming from applications

also contain such sequences.

The SDP instances are available from

www.unc.edu/~pataki/SDP.zip

3.11 Discussion and Conclusion

Here we briefly discuss how some of our results can be further extended. First we note

that by Theorem 6 and part 4 in Lemma 2 we can write exact duals, and exact certificates

of infeasibility for more involved conic linear systems. For instance, the system

A1x ≤K1 b1,

A2x ≤K2 b2

(3.11.35)

(where K1 and K2 are closed convex cones) is infeasible iff there is k ≥ 0 and (y1, . . . , yk+1) ∈

FRk+1(K
∗
1 ) and (z1, . . . , zk+1) ∈ FRk+1(K

∗
2 ) with

A∗1yi +A∗2zi = 0, b∗1yi + b∗2zi = 0 (i = 1, . . . , k)

A∗1yk+1 +A∗2zk+1 = 0, b∗1yk+1 + b∗2zk+1 = −1,

and at least one of the yj and zj sequences can be chosen pre-strict.
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Further, if the cone K is well-described – which is the case for all the cones over which

one can efficiently optimize, as Sn+, polyhedral and p-order cones – then so is FRk(K). We

will say that K is a smooth cone if it is pointed, full-dimensional, and all faces distinct from

{0} and K itself are one-dimensional (i.e., extreme rays). For instance, the p-order cone

{ (x0, x) |x0 ≥‖x‖p }

is a smooth cone, when p is not equal to 1 or ∞. The facial reduction cone FR(K) is trivial

for such cones. Hence FRk(K) is also trivial if K is a direct product of such cones, using

part (4) of Lemma 2.

Therefore, using part (1) of Theorem 6 we can easily generate all infeasible conic LP

instances over direct products of smooth cones.
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CHAPTER 4

Results in convex analysis

In this chapter we use the preceding results to address several fundamental questions

in convex analysis.

We begin by asking the question:

• Under what conditions is the linear image of a closed convex cone closed?

This question is fundamental, due to its role in constraint qualifications in convex program-

ming. Due to its importance, Chapter 9 in Rockafellar’s classic text [39] is entirely devoted

to it: see e.g. Theorem 9.1 therein. Surprisingly, the literature on the subject (beyond [39]

and other textbooks) appears to be scant. Bauschke and Borwein [4] gave a necessary and

sufficient condition for the continuous image of a closed convex cone to be closed. Their

condition (due to its greater generality) is more involved than Theorem 9.1 in [39]. See also

[2], and the references in [27]. See Borwein and Moors [8; 9] for proofs that the set of linear

maps under which the image is not closed is small both in terms of measure and category.

For convenience we restate our question in an equivalent form:

• Given A and K, when is A∗K∗ closed?

In [27] we gave the very simple necessary condition

R(A) ∩ (cl dir(z,K) \ dir(z,K)) = ∅, (4.0.1)

for A∗K∗ to be closed: here z is in the relative interior of R(A) ∩K, and dir(z,K) is the

set of feasible directions at z in K. Note that (4.0.1) subsumes two seemingly unrelated



classical sufficient conditions for the closedness of A∗K∗, as it trivially holds when K is

polyhedral, or when z ∈ riK. It is also sufficient, when the set

K∗ + F⊥

is closed, where F is the minimal cone of R(A) ∩K. Thus (4.0.1) becomes an exact char-

acterization when K∗ + F⊥ is closed for all F faces of K. Such cones are called nice, and

reassuringly, most cones that occur in optimization (such as polyhedral, semidefinite, and

p-order cones) are nice. Nice cones also play a role in simpifying consstraint qualifications

in conic LPs: see [11; 10].

As a byproduct of the preceding results, here we obtain an exact and simple character-

ization of when A∗K∗ is closed when K is an arbitrary closed convex cone.

We build on the following basic fact:

A∗K∗ is not closed ⇔ (D) is weakly infeasible for some c. (4.0.2)

Theorem 9. The set A∗K∗ is not closed, if and only if there is (a1, . . . , ak+1) ∈ FRk+1(K
∗)

with k ≥ 1, and (y1, . . . , y`+1) ∈ FR`+1(K) with ` ≥ 1 such that

ai ∈ R(A) (i = 1, . . . , k + 1),

yj ∈ N (A∗) (j = 1, . . . , `)

(4.0.3)

and

〈ai, y`+1〉 =


0 if i ≤ k

−1 if i = k + 1.

(4.0.4)

Proof Starting with the forward implication, we choose c such that (D) is weakly infea-

sible. We take (a1, 0), . . . , (ak, 0), (ak+1,−1) as constraints in a reformulation that proves
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infeasibility of (D), and (y1, . . . , y`+1) that proves that it is not strongly infeasible: cf. parts

(1) and (2) in Theorem 6.

For the backward implication, fix a := (a1, . . . , ak+1) and y := (y1, . . . , y`+1) as stated.

First we prove that they can be assumed to be pre-strict, so suppose that, say, a is not.

Then

ai+1 ∈ (K ∩ a⊥1 . . . a⊥i )⊥ for some i < k.

Then a⊥i+1 ⊇ K ∩ a⊥1 · · · ∩ a⊥i , so

K ∩ a⊥1 · · · ∩ a⊥i = K ∩ a⊥1 · · · ∩ a⊥i ∩ a⊥i+1,

so we can drop ai+1 from a while keeping all required properties of a and y. Continuing

like this we arrive at both a and y being pre-strict, and to ease notation, we still assume

a ∈ FRk+1(K) and y ∈ FR`+1(K
∗).

Now a1, . . . , ak are linearly independent. Since 〈ak+1, y`+1〉 6= 0, so are a1, . . . , ak, ak+1.

Thus we can expand

A′ = [a1, . . . , ak, ak+1, ak+2, . . . , am] a basis of R(A),

and let

c′ = (0, . . . , 0,−1, 〈ak+1, y`+1〉, . . . , 〈am, y`+1〉)T .

Write A′ = TA, with T an m by m invertible matrix, and let c = T−1c′. Then (D) with this

c is weakly infeasible (since it has a reformulation with data (A′, c′) proving infeasibility;

and (y1, . . . , y`+1) proving that it is not strongly infeasible: cf. Theorem 6).

It is also of interest to characterize nice cones. To review previous results on nice cones

we recall that y ∈ K∗ is said to expose the face K ∩ y⊥; a face G of K is said to be exposed,

if it equals K ∩ y⊥ for some y ∈ K∗; and it is not exposed iff

K∗ ∩G⊥ = K∗ ∩ F⊥ (4.0.5)
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for some F face of K that strictly contains G (i.e. all vectors that expose G actually expose

a larger face). The cone K is said to be facially exposed if all of its faces are exposed.

Example 12 below shows a cone which is not facially exposed.

Example 12. Define K be as the sum of S2+ and the cone comprising all nonnegative

multiples of the matrix 0 1

1 0

 .

Figure 4.1: Cross section of a cone which is not facially exposed

The cross-section of this cone is shown on Figure 4.1, with faces G ( F that satisfy

(4.0.5).

For characterizations of nice cones, and a proof that they must be facially exposed, we

refer to [29]; for an example of a facially exposed, but not nice cone, see [40]; and [15] for a

proof that the linear pre-image of a nice cone is also nice.

Theorem 9 also characterizes when a cone is (not) nice:

Theorem 10. Let F be a face of K. Then K∗ + F⊥ is not closed, if and only if there is

(a1, . . . , ak+1) ∈ FRk+1(K
∗) with k ≥ 1, and (y1, . . . , y`+1) ∈ FR`+1(K) with ` ≥ 1 such
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that

ai ∈ linF (i = 1, . . . , k + 1),

yj ∈ F⊥ (j = 1, . . . , `)

(4.0.6)

and

〈ai, y`+1〉 =


0 if i ≤ k

−1 if i = k + 1.

(4.0.7)

Proof The result follows from Theorem 9 by considering a linear operator A with R(A) =

linF, N (A∗) = F⊥ and noting that A∗K∗ is not closed, iff N (A∗) +K∗ is.

Theorems 9 and 10 provide a hierarchy of conditions, and it is natural to ask, how these

relate to the simpler, but less general known conditions on closedness, and niceness. To

address this question, we need a definition:

Definition 12. We say that the nonclosedness of A∗K∗ (of K∗ + F⊥) has a (k+ 1, `+ 1)-

proof, if there is (a1, . . . , ak+1) and (y1, . . . , y`+1) as in Theorem 9 (Theorem 10).

Theorem 11. The following hold:

(1) Suppose that condition (4.0.1) is violated, and let ` be the degree of singularity of

R(A) ∩K. Then there is a (2, `+ 1)-proof of the nonclosedness of A∗K∗.

(2) Suppose that K has a nonexposed face, say G, and F is the smallest exposed face of

K that contains it. Then there is a (2, 2)-proof that K∗ + F⊥ is not closed.

Since the proof of this result is somewhat technical, we defer it to Appendix B. It is also

natural to ask, as to what values of k and ` are actually necessary to prove nonclosedness

of A∗K∗ (or of K∗ + F⊥). A recent result of Drusviyatsky et al [17] shows a surprising

connection between the degree of singularity of the dual problem (D), and the exposedness

of the smallest face of A∗K∗ that contains c. It would also be interesting to explore the

connection to this result and we will do so in a followup paper.
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Also, in recent work, Roshchina and Tunçel gave a condition to strengthen the facial

exposedness condition of [29]: it would be interesting to see how their condition fits into

our hierarchy.

We next turn to another basic question in the theory of conic LPs: given a (weakly)

infeasible conic linear system

H ∩K, (4.0.8)

where H is an affine subspace, what is the maximal/minimal dimension of an affine subspace

H ′ with H ′ ⊇ H (or H ′ ⊆ H) such that H ′ ∩K has the same feasibility status as (4.0.8)?

Note that by (weak) infeasibility of (4.0.8) we mean (weak) infeasibility of a represen-

tation in either the primal (P) or the dual (D) form.

For instance, if K is polyhedral, and (4.0.8) is infeasible, then by Farkas’ lemma we can

take H ′ as an affine subspace defined by a single equality constraint. To further illustrate

this question, consider the semidefinite system


1 0 0

0 0 0

0 0 0


• y = 0,


0 0 1

0 1 0

1 0 0


• y = −1,

which is weakly infeasible. Dropping the first constraint keeps it weakly infeasible, and so

does adding a constraint that fixes y12 to zero.

To state our main result, we recall that `K denotes the length of the longest chain of

faces in K (see Definition 6). Assume K = Sn+. Then in part (1) of Theorem 12 below the

bound n in place of `K follows from Theorem 1 in [21] when K = Sn+ and the bound on the

dimension of H ′′ in part (4) follows from [22].
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Theorem 12. The following hold.

(1) If (4.0.8) is infeasible, then there is H ′ ⊇ H such that

codimH ′ ≤ `K andH ′ ∩K is infeasible.

(2) If (4.0.8) is not strongly infeasible, then there is H ′′ ⊆ H such that

dimH ′′ ≤ `K − 1 andH ′′ ∩K is not strongly infeasible.

(3) If (4.0.8) is weakly infeasible, then there is H ′′ ⊆ H ⊆ H ′ as in parts (1) and (2) such

that

H ′ ∩K and H ′′ ∩K are both weakly infeasible.

(4) If K = K∗ is the cone of psd matrices, then the bounds above can be tightened to

codimH ′ ≤ `Sn+ − 1 = n, and dimH ′′ ≤ `Sn+ − 2 = n− 1.

Proof For part (1) we first represent (4.0.8) as a dual type problem (D) (with K in place

of K∗), and apply part (1) of Theorem 6. We let H ′ be the affine subspace defined by the

first k + 1 constraints in (Dref), and by pre-strictness of a′1, . . . , a
′
k we deduce

codimH ′ = k + 1 ≤ `K − 1 + 1 = `K ,

as required. For part (2) we represent (4.0.8) as a primal type problem (P) and apply part

(4) of Theorem 6. We let H ′′ be spanned by the first ` generators and the right hand side

in (Pref). By pre-strictness, we find

` ≤ `K − 1,

and this completes the proof.
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For part (3) we choose H ′ as in part (1). Since (4.0.8) is not strongly infeasible, and

H ′ ⊇ H, the system H ′ ∩K is also not strongly infeasible. We construct H ′′ as in part (2)

with an analogous justification.

For part (4) suppose that (4.0.8) is infeasible, represent it as a dual problem (with Sn+ in

place of K∗) and apply part (1) of Theorem 7, by which in the reformulated system (Dref)

we can drop all but k + 1 constraints while keeping it infeasible. We have

k ≤ `Sn+ − 1 = n.

If k < n, then there is nothing to prove. If k = n, then letting a′′n−1 = a′n−1 +λa′n for some

suitable λ > 0 we have that the lower right two by two block of a′′n−1 is positive definite,

hence in this case a subsystem with n − 1 constraints is infeasible. (In fact, one can show

inductively that a linear combination of all a′1, . . . , a
′
n is positive definite, so in this case a

subsystem with only two constraints is infeasible.)
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