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ABSTRACT

Valerie Anne Smith: Marginalized Two-part Models for Semicontinuous Data with
Application to Medical Costs

(Under the direction of John Preisser and Brian Neelon)

In health services research, it is common to encounter semicontinuous data characterized

by a point mass at zero followed by a right-skewed continuous distribution with positive

support. Examples include health expenditures, in which the zeros represent a subpopulation

of patients who do not use health services, while the continuous distribution describes the

level of expenditures among health services users. Semicontinuous data are typically analyzed

using two-part mixture models that separately model the probability of health services use

and the distribution of positive expenditures among users. However, because the second part

conditions on a nonzero response, conventional two-part models do not provide a marginal

interpretation of covariate effects on the overall population of health service users and non-

users, even though this is often of greatest interest to investigators. Here, we propose a

marginalized two-part model that yields more interpretable effect estimates in two-part models

by parameterizing the model in terms of the marginal mean. This model maintains many of

the important features of conventional two-part models, such as capturing zero-inflation and

skewness, but allows investigators to examine covariate effects on the overall marginal mean,

a target of primary interest in many applications. Using a simulation study, we examine

properties of the maximum likelihood estimators from this model. We illustrate the approach

by evaluating the effect of a behavioral weight loss intervention on health care expenditures

in the Veterans Affairs (VA) health care system. We then extend this marginalized two-part

model to clustered or longitudinal data structures by incorporating random effects. This

longitudinal marginalized two-part model is fit following a fully Bayesian approach with non-

informative or weakly informative prior distributions, and we illustrate it by analyzing the
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effect of a copayment increase in the VA health system. Finally, using simulation studies,

we compare the performance of the marginalized two-part model to commonly used one-part

generalized linear models (GLMs) fit via quasi-likelihood estimation over a range of simulated

data scenarios with varying percentages of zero-valued observations.
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CHAPTER 1: LITERATURE REVIEW

1.1 Semicontinuous Data

In health services research, it is common to encounter semicontinuous data, such as medical

expenditures (Manning et al. 1981; Duan et al. 1983), which are characterized by a point mass

at zero followed by a right-skewed continuous distribution with positive support. In the case

of medical expenditures, the point mass at zero represents a population of “non-users” who do

not receive medical care in a given time interval and therefore have no medical expenditures;

the continuous distribution, on the other hand, represents the level of expenditures among

health services users given that expenditures were incurred. Considering the two defining

components of such outcomes, semicontinuous data can be viewed as arising from two distinct

stochastic processes: one governing the occurrence of zeros and the second determining the

observed value conditional on it being a nonzero response. The first process is commonly

referred to as the “occurrence” or “binary” part of the data, while the second is often termed

the “intensity” or “continuous” part. Other examples of semicontinuous outcomes include

hospital length of stay (Xie et al. 2004), health assessment scores (Su et al. 2009), and average

daily alcohol consumption (Olsen and Schafer 2001; Liu et al. 2012).

The statistical modeling of such data provide unique challenges due to the “clumping”

of observations at zero combined with the frequently right-skewed continuous distribution.

A log transformation is often desired to normalize the distribution of the positive outcomes,

but when employing such a transformation, one must decide how to address the zero values

in the data. Some alternatives have been to either discard them or add a small constant

to allow transformation. These solutions, however, are not ideal. Discarding zero values is

not appropriate unless interest only lies in inference on the positive values, and adding a

constant does not remove the discrete point mass, but rather only shifts it. Therefore, others
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have chosen to model the probability of the outcome being zero separately from the value

of the outcome conditional on it being positive in a “two-part” model. Each approach has

advantages and disadvantages regarding statistical properties and interpretable results, and

often one must compromise on one of these aspects in order to improve the properties of the

other.

1.2 Two-Part Models for Independent Responses

1.2.1 Conventional Two-Part Model

There is extensive literature describing two-part mixture models for analyzing semicon-

tinuous data. Aitchison (1955) initially highlighted the need for these two defining processes

for unbiased estimation in applications involving estimation of expenditures and number of

children per household. Deriving semicontinuous counterparts to many commonly used prob-

ability distributions, such as the exponential and log-normal, he defined these distributions

as a mixture of the binary stochastic process and the continuous positive-valued process con-

ditional on observing a positive response. In particular, for the log-normal distribution where

the conditionally positive portion of the data follow the density

g(y) =
1

yσ
√

(2π)
exp

{
− 1

2σ2
[ln(y)− µ]2

}
, y > 0,

he defined the mean and variance of the semicontinuous outcome as

E(Y ) = (1− θ) exp

(
µ+

1

2σ2

)
and

Var(Y ) = (1− θ) exp(2µ+ σ2)
[
exp(σ2)− (1− θ)

]
,

where θ = Pr(Y = 0).

Cragg (1971) extended this approach to the regression setting, modeling the binary and

continuous components as functions of covariates. Manning and Duan (Manning et al. 1981;

2



Duan et al. 1983), as part of the RAND Health Insurance Experiment, introduced the most

commonly used two-part model, termed throughout this document as the “conventional”

two-part model. For data consisting of independent observations, the generic form of the

conventional two-part model can be written as

f(yi) = (1− πi)1(yi=0) × [πig(yi|yi > 0)]1(yi>0) , yi ≥ 0, i = 1, . . . , n, (1.1)

where πi = Pr(Yi > 0), 1(·) is the indicator function, and g(yi|yi > 0) is any density function

applicable to the positive values of Yi, although the log-normal density is often chosen. This

model is parameterized as

η(πi) = z′iα and (1.2)

µi = E(lnYi|Yi > 0) = x′iγ. (1.3)

where η(·) is an appropriate link function, typically a probit or logit function. When fitting

this model to independent responses, the binary and conditionally continuous components

of the likelihood are separable, and therefore, these two parts are fit separately. The binary

component is often modeled using logistic regression, and the continuous component can be

fit using standard regression models, such as the log-normal.

1.2.2 The Log-Skew-Normal Distribution

Because the log-normal distribution imposes a sometimes unrealistic condition of symme-

try on the log-scale, alternative distributions such as the log-skew-normal have recently been

proposed for the continuous part in an effort to relax these somewhat restrictive assumptions

(Azzalini 1985; Chai and Bailey 2008). Azzalini (1985) first introduced the skew-normal dis-

tribution through the inclusion of a shape parameter, λ, that permitted skewness in a family

of distributions related to the normal distribution. His family of skew-normal distributions

offered strict inclusion of the normal density when λ = 0, was mathematically tractable, and
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allowed for varying levels of skewness.

In the case of data that are positively-valued and right-skewed, such as medical expendi-

tures, a log transformation can be useful to restrict the range of the predicted original values

to the positive scale. Using this transformation, the log-skew-normal density of the positively

valued observations becomes

g(yi|yi > 0) =
2

ωyi
φ

(
ln yi − ξi

ω

)
Φ

(
λ

ω
(ln yi − ξi)

)
.

with location parameter ξi, scale parameter ω > 0, and shape parameter λ, all on the log

scale, and where φ(·) is the probability density function and Φ(·) is the cumulative distribution

function for the standard normal distribution.

Chai and Bailey (2008) showed the superior performance of the log-skew-normal (LSN)

distribution compared to a log-normal distribution when conducting inference on the positive

continuous part of positively skewed semicontinuous data. They additionally highlighted

that the log-normal distribution is a special case of the LSN distribution, when λ = 0, so the

appropriateness of the LSN vs. log-normal distribution can be assessed via a likelihood ratio

test.

The generalized gamma distribution has also been proposed as a more general and flexible

alternative to the standard log-normal distribution to model the continuous part of the data

(Manning et al. 2005; Liu et al. 2010; 2012). This distribution takes as special cases the

standard gamma, inverse gamma, Weibull, and log-normal distributions. Liu et al. (2012)

compared the performance of models using the generalized gamma and LSN distributions for

an analysis of alcohol-drinking outcomes from a clinical trial of a drug intended to reduce

alcohol dependence. They found that the generalized gamma provided a better fit in this

example, although different data sets could provide different preferred distributional assump-

tions. They also found the LSN distribution provided a better fit compared to a log-normal

distribution.
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1.2.3 Parameter Interpretation

Because they explicitly accommodate both data generating processes, two-part mixture

models are an ideal choice for modeling semicontinuous data. Regardless of the distribution

used, however, covariates in the second, or continuous, part of such two-part models are

interpreted conditionally upon having observed a positive outcome. Consequently, attempts

to combine these two parts to form the overall marginal mean effect of any covariate relies

on specifying values for each of the other covariates in the model. As such, it is generally

challenging to obtain a straightforward interpretation of covariate effects on the marginal

mean in two-part models.

In many cases, however, investigators’ main interest lies in examining such effects on the

marginal mean in order to draw conclusions about the impact of predictors on the population

as a whole. For example, in economic studies of system-wide health care expenditures, inves-

tigators and policy makers may wish to understand the average effect on medical expenditures

of increasing specialty care copayments (Maciejewski et al. 2012a) or of bariatric surgery for

weight loss (Maciejewski et al. 2010b; 2012b) on the entire affected or eligible populations

rather than estimating separate effects for the probability of incurring expenditures and the

level of expenditures given that any are incurred. In particular, an intervention may have one

effect on the probability of occurrence but the opposite effect on the intensity given occur-

rence. In such cases, policy makers may be left without a true understanding of the overall

population-level effect of such an intervention.

To achieve more interpretable effects, Mullahy (1998) and Buntin and Zaslavsky (2004)

proposed using a one-part exponential conditional mean model to estimate effects of covariates

on the marginal mean. While this one-part model provides interpretable estimates, it does

not explicitly account for the zero-inflated nature of the data or provide investigators with

estimates of covariate effects on the probability of occurrence. Thus, alternative models must

be considered when interest lies in estimating both the binary component and the overall

marginal mean.
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1.3 Two-Part Models for Clustered Semicontinuous Data

Clustered semicontinuous data arise from many situations. In the example of medical

expenditures, analysts may be interested in trajectories of a population’s expenditures on

health care over several years, or alternatively, may be interested in expenditures on pre-

scription drugs incurred by patients clustered within physicians (Zhang et al. 2006). All of

the issues related to model estimation of cross-sectional semicontinuous data are relevant to

clustered semicontinuous outcomes as well. However, there are additional complications and

considerations with clustered outcomes. As with any clustered outcome, the model estima-

tion approach needs to incorporate the correlation of repeated measurements in addition to

accounting for missing data due to loss of follow-up or death. Furthermore, in the case of lon-

gitudinal data, the distribution of longitudinal outcomes, and in particular, the proportion of

zeros, is dependent upon the length of time interval under consideration. In many situations,

particularly with health expenditures, the longer the time interval, the smaller the proportion

of observed zeros in the expenditure distribution.

1.3.1 Conventional Two-Part Model for Clustered Semicontinuous Data

Olsen and Schafer (2001) first extended two-part models to longitudinal data. They

proposed a logistic regression model with random effects for the binary part of the data

combined with a linear mixed effects model for the log of the conditionally positive part and

assumed that the random effects from these two models were jointly normally distributed

and possibly correlated. This allowed the probability of occurrence at one time point to be

associated with the level of the outcome given occurrence at another time point. Such a

model can take the notation

logit(πi) = Xiα+Zici and (1.4)

µi = E(lnYi|Yi > 0) = X∗i γ +Z∗i di. (1.5)
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with

bi =

 ci

di

 ∼ N
0,Ψ =

 Ψcc Ψcd

Ψdc Ψdd




Olsen and Schafer suggested a Laplace approximation with a Fisher scoring algorithm to

obtain maximum likelihood estimates, and illustrated their model using data from a longitu-

dinal study of middle and high school students on alcohol use. They additionally conducted a

simulation study showing low bias and good coverage probabilities for the parameter estimates

of both the fixed effects and variance components.

Tooze et al. (2002) proposed a very similar two-part model with correlated random effects,

utilizing quasi-Newton optimization of the likelihood approximated by Gaussian quadrature

rather than a Laplace approximation. This provided the ability to fit the model in standard

statistical software packages, such as SAS (SAS Institute, Cary, NC), and they provided a

SAS macro that calls procedures GENMOD and NLMIXED to fit such models. Rather than

illustrating their model on a longitudinal data set as in Olsen and Schafer, they provided an

example of its use for cross-sectional medical expenditure data that was clustered by house-

hold. Their method, however, could also be applied to longitudinal repeated measurements

data.

The models proposed by Olsen and Schafer and Tooze et al. both account for potential

correlation between the binary and continuous parts of the data. If, however, the occurrence

and intensity are uncorrelated, the likelihoods are separable and thus each can be fit separately

by maximum likelihood methods. This independence assumption can be very attractive as

the inclusion of correlated random effects can introduce severe computational difficulties, at

times so extreme that it may not even be possible to fit such a model. However, in many

situations, it is quite reasonable to believe that the probability of occurrence, such as having

any medical expenditures, at one time point may be related to the intensity, such as level

of expenditures, at another time point. For example, patients who are more likely to incur

expenditures may also have higher expenditures when they are incurred.

Su et al. (2009) discussed the bias introduced by incorrectly assuming independence be-
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tween the binary and continuous parts of the model. Because the second part of a conventional

two-part model includes only those who had a positive outcome, bias from informative clus-

ter sizes arises as parameters in the binary part of the model influence the cluster size in the

continuous part of the model. For example, if those who are more likely to have a positive

outcome are also more likely to have a higher level of the outcome given occurrence, then

higher levels of the outcome will be over sampled in the continuous model. Su et al. showed

that an incorrect assumption of independence between the occurrence and intensity models

can produce bias in the estimation of both the regression coefficients and variance components

in the continuous part of the model. Further, the direction and size of this bias for most of

the estimates relies on true values of the other parameters, including variance components,

in both parts of the model. As such, it can be difficult to quantify in a general pattern.

Since the introduction of the correlated, longitudinal two-part model, others have extended

it to additional situations. For example, Liu et al. (2008a) incorporated four parts rather

than two parts, modeling separately the probability of incurring inpatient and outpatient

expenditures and the level of each given they were incurred. In a different manuscript, Liu

et al. (2008b) also extended two-part models to multi-level models, incorporating a third

level of clustering and correlated random effects. The correlated, longitudinal model thus

provides a strong foundation from which many more flexible models can be adapted, although

complicated model structures can at times be hampered by computational challenges.

1.3.2 Extension to Bayesian Modeling

Fitting correlated two-part models in a maximum likelihood framework requires optimiz-

ing over often intractable, multidimensional integrals which can lead to severe computational

difficulties. Because of this, Bayesian approaches have been considered for fitting multi-level

models to semicontinuous data. Bayesian methods also offer the advantage of incorporating

prior information when it is available and eliminate the need to rely on asymptotic properties.

While the potential for using Bayesian methodology was briefly mentioned in prior literature,

Zhang et al. (2006) first thoroughly developed and implemented a Bayesian approach for a
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two-part hierarchical model. They fit nearly the same underlying model as Olsen and Schafer,

but replaced the logit link function in the binary part with a probit link function for compu-

tational simplicity. Using non-informative prior distributions and Markov Chain Monte Carlo

(MCMC) sampling, they used this two-part model to examine physician- and patient-level

patterns in pharmaceutical expenditures among patients clustered within physician.

Similarly, Cooper et al. (2007) applied two-part models to longitudinal data, using Gibbs

sampling MCMC methods and ‘vague’ prior distributions to analyze health care costs over

time among individuals with early inflammatory polyarthritis. They compared the results

of four models, including both one-part and two-part models, with varying specifications of

random effects and distributional assumptions.

Bayesian approaches have been proposed for other extensions to two-part models as well.

Ghosh and Albert (2009) developed a two-part model using penalized splines to model the

effect of time and the time by treatment interaction. They fit their model using Gibbs

sampling MCMC methods and illustrated it by analyzing clinical trial data on acupuncture

for treating chemotherapy-induced vomiting in breast cancer patients. Additionally, Neelon

et al. (2011) developed a Bayesian two-part growth mixture model to characterize the effect of

increased mental health and substance abuse benefits in the Federal Employee Health Benefits

Program on mental health use and expenditures. They used an MCMC algorithm to fit a two-

part latent class model under weakly informative prior distributions for all parameters, and

provided a simulation study showing low bias for all parameter estimates and good coverage

rates for the 95% credible intervals. In short, Bayesian approaches to fitting a wide array

of two-part models have been shown to maintain good statistical properties while providing

computational simplicity and flexibility.

1.3.3 Two-Part Population Average Models for Clustered Data

It is well known that, in the presence of random effects, parameters estimates in general-

ized linear models have a subject-specific interpretation as opposed to a population average

interpretation. Unless linear models with an identity link are used, the subject-specific param-
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eter estimates differ in magnitude from their population average counterparts (Diggle et al.

2002). Most work in two-part model marginalization has been with regard to marginalizing

over the random effects, converting subject-specific parameter estimates into population av-

erage estimates. Hall and Zhang (2004) proposed one such method for obtaining population

average parameter estimates from zero-inflated models, utilizing an expectation solution (ES)

algorithm, a generalization of the EM algorithm. This algorithm used generalized estimating

equations (GEEs) in the S-step to estimate population average covariate effects while ac-

counting for correlation within clusters. They applied their algorithm to several zero-inflated

models, including zero-inflated Poisson, zero-inflated negative binomial, and zero-inflated cen-

sored log-normal models, in which they assumed that some zeros were true zeros and some

were small positive values that were censored. However, due to the complexity of their algo-

rithm, such estimation is not available in standard statistical software and therefore has not

been widely implemented in practice.

Su et al. (2011) proposed a likelihood-based population average model for longitudinal

semicontinuous data. Assuming a bridge distribution for the binary random intercept, as

opposed to the ordinary normal distribution assumption, they provided a simple formula for

converting the subject-specific binary parameter estimates into population average estimates

based on an estimated parameter of the bridge distribution. Although later corrected, they

incorrectly assumed that the continuous model would provide population average parameter

estimates on the log scale due to using a linear mixed model with an identity link. In a

correction, however, Tom et al. (2013) showed that, when correlation exists between the

binary and continuous parts of the model, the population average parameter estimate is

no longer equivalent to the subject-specific estimate when using an identity link. While

there is no closed form for the conversion between subject-specific and population average

parameter estimates in such scenarios, they provided mathematical bounds for the difference

and suggested numerical techniques to calculate the conversion. Tom et al. also suggested

marginalizing over the two parts of the two-part model to obtain estimates of the overall

marginal mean, E(Yij), when the outcome variable was log-transformed. A closed form was

again not available, but they provided bounds within which the overall marginal mean would
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lie and again suggested numerical evaluation.

As with independent data, an investigator’s main interest often lies in examining covariate

effects on the marginal overall mean, E(Yij), in order to draw relevant policy conclusions about

the impact of predictors on the population as a whole after accounting for clustering. While

Tom et al. preliminarily addressed methods to calculate the overall mean, E(Yij), under a

log-transformation, their method did not estimate covariate effects on the overall mean. None

of the two-part models for semicontinuous data provided in the literature provide parameter

estimates that allow easy and interpretable estimation of such effects.

In the zero-inflated count literature, however, Long et al. (2014) proposed a marginalized

model for zero-inflated Poisson (ZIP) regression. They parameterized their model in a two-

part formulation, with the first part modeling the probability of an observation being a zero

observed in excess of what is expected from a Poisson distribution. In the second part,

they parameterized the model in terms of the overall mean, combining excess zeros with the

Poisson-generated data. Utilizing this parameterization within the ZIP likelihood framework,

they accounted for the zero-inflated nature of the data while also providing estimates of

covariate effects on the overall mean, marginalized over the excess zeros in the distribution.

Through several simulation studies, they showed low bias and good coverage probabilities

for the model parameters and showed that, particularly in the presence of highly skewed

covariates, their model out-performed standard Poisson regression and ZIP regression models.

Illustrating their method with data from an intervention designed to reduce the number of

risky sexual behaviors, they obtained an incidence density ratio for the intervention effect

that was easily interpretable as the effect on the overall population mean number of risky

sexual encounters. Hereafter, in this proposal, the term “two-part model” refers to two-part

models for semicontinuous data rather than count data.

1.4 Comparison of One-Part vs. Two-Part Models

Two-part models, particularly for clustered data, can be computationally challenging to

estimate. Additionally, conventional two-part models do not provide easily interpretable
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effects of covariates on the overall marginal mean of both users and non-users, a quantity often

of primary interest to investigators. Rather, two-part models provide estimates of covariate

effects on the probability of having a positive outcome and on the level of the outcome

conditional upon it being positive. The conventional two-part model thus may not be ideal

for an analyst wishing to estimate the effect of covariates on the overall marginal mean.

One-part models, on the other hand, incorporate both the zero and positively continuous

values as arising from the same stochastic process and permit interpretation of covariate

effects on the overall mean. One-part models typically take one of two general forms. In

one form, a small constant is added to the outcome to ensure all values are positive and the

outcome is then transformed to minimize skewness. Most commonly, the log transform is

used. Alternatively, a generalized linear model (GLM) can be utilized, often with a log link,

to avoid transformation and the need to add a constant to all values. Because these models

allow simpler computation and interpretation, it is therefore of interest to question whether

one-part models may be possible to use for semicontinuous data without creating bias or

sacrificing too much precision.

Duan et al. (1983), when introducing the conventional two-part model, compared the

performance of multiple models in estimating medical expenses from the RAND health in-

surance experiment. With approximately 20% of the sample incurring zero expenses, they

examined an analysis of variance (ANOVA) model on untransformed (i.e., original scale)

medical expenses, analysis of covariance (ANOCOVA) model on untransformed expenses, a

one-part ordinary least squares (OLS) model on the log of the medical expenses, adding $5 to

ensure all expenses were positive, a two-part model with a probit model for the probability

of incurring expenses and an OLS model for the log of the expenses given that they were

incurred, and a four-part model, which was similar to the two-part model but modeled inpa-

tient expenses with a separate two-part model. Using statistical consistency and minimum

mean squared error as the criteria for judging the performance of the models, they found the

ANOVA and ANOCOVA models yielded highly imprecise and noisy results, while the one-

part model produced inconsistent results. Their two-part model also produced inconsistent

results for inpatient expenses, and they found their four-part model to be the most accurate
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and precise. Using a split-sample analysis for cross validation and comparing mean squared

forecast error among the models, they found that the two-part and four-part models were

indistinguishable while performing significantly better than their one-part counterpart and

the ANOVA and ANOCOVA models. Ultimately, they recommended the four-part model

when needing to assess inpatient expenses in an analysis.

Diehr et al. (1999) examined the performance of one-part and two-part models using data

from Washington State’s Basic Health Plan, where 21% of the sample incurred zero expenses.

They fit three one-part models, including OLS on raw-scale dollars, OLS on log-scale dollars

plus $1 to ensure positive values, and a generalized linear model (GLM) using a gamma

distribution and log link. For the two-part models, they fit a logistic regression to estimate

the probability of incurring expenses, then analogously to the one-part models, fit three

models to the continuous, positive part of the data: OLS on raw-scale dollars, OLS on log-

scale dollars, and a GLM using a gamma distribution and log link. Fitting these models to a

randomly selected half of the data, they used the other half to obtain root mean squared error

(RMSE) and mean absolute error (MAE) for the predicted individual expenses of the other

half of the sample. They found that the one-part log-normal model did not perform well using

either RMSE or MAE, but that the other models showed no noticeable difference. Because

of the lack of differences found, they recommended using a one-part model when the goal of

inference is to understand the effects of individual covariates on total overall cost or when it

is to predict future costs. They recommended using the two-part model when one’s goal is to

understand the processes driving the decision to obtain care, and thus incur costs, and then

the level of expenditures given that they are incurred. Madden et al. (2000) also examined

one-part vs. two-part models using data from Washington State, estimating expenditures

separately for public employees and their dependents, including 21% with zero expenses, and

individuals enrolled in the joint federal/state Medicaid program, including 8.5% with zero

expenses. They compared a one-part OLS model on raw dollars to a two-part model with

a logistic regression combined with a GLM using a gamma distribution and log link. They

found that the more complex two-part model clearly outperformed the untransformed OLS

model.
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Mullahy (1998) emphasized the need for analysts to consider their modeling approach

when inferences on E(y|x) are of primary interest. In particular, he focused on two main issues

that arise in such two-part models: removing the conditioning on y > 0 and re-transforming

from ln y to y. Emphasizing that re-transformation, and thus inferences on E(y|x), can be

greatly biased if the model error term is dependent on the covariates, he advocated consid-

eration of a modified two-part model, specified as E(y|y > 0,x) = exp(xβM ) or a one-part

exponential conditional mean (ECM) model, specified as E(y|x) = exp(xζ). Analyzing the

number of doctor visits in a 12 month period among 36,111 individuals ages 25 to 64, which

included 23.6% having zero visits, he examined the performance of the ECM model, fit via

non-linear least squares, compared to the conventional and modified two-part models. He

found that parameter estimates were quite similar among the models and conjectured that

larger differences may be found in a sample with a larger proportion of zero values. Examin-

ing mean prediction error (MPE) and mean squared error (MSE), he found that the modified

two-part model performed slightly better than the ECM model, and both performed better

than the conventional two-part model.

Expanding on the ideas presented in Mullahy’s manuscript, Buntin and Zaslavsky (2004)

compared nine potential modeling strategies, including variations of both one- and two-part

models, for estimating mean Medicare expenditures on a sample with 8.6% of individuals

having zero expenditures. Among the one-part models examined were an untransformed (i.e.,

raw scale) OLS model and three GLMs fit with quasi-likelihood, using constant variance,

variance proportional to the mean, and variance proportional to the square of the mean.

For the two-part models, they fit the second part using OLS on the log-scale expenditures,

using four different re-transformation methods, and a GLM fit with quasi-likelihood and an

assumption of constant variance. All GLMs used a log link. To examine the performance

of these models, they evaluated predicted expenditures among relevant subgroups compared

to actual mean expenditures in these groups and mean squared error (MSE), mean absolute

prediction error (MAPE), and mean squared forecast error (MSFE) using split sample cross-

validation. They concluded that four of the proposed models fit well, including the two-

part OLS model with two smearing factors, the one- and two-part GLMs with constant
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variance, and the one-part GLM with variance proportional to the mean. Ultimately, they

recommended that researchers not specifically interested in the probability of use begin by

fitting one-part models citing that zero observations can be included in such models without

difficulty. If the probability of use were of specific interest, or if the researcher were unable to

find a suitably fitting one-part model, they then suggested proceeding to examine two-part

models.

Cooper et al. (2007) extended this comparison to a longitudinal setting, comparing four

models to predict the costs incurred over time by individuals with inflammatory polyarthritis.

Using a Bayesian perspective with vague priors and Gibbs sampling MCMC methods, they

compared two one-part log-normal models, one with a random intercept only and one with

a random intercept and slope for year, and two two-part models. The one-part models used

log-transformed expenditures as the outcome with $1 added to ensure positive values. The

two-part models both used logistic regression with a random intercept for the first part, and

the second parts were a log-normal model with random intercept and slope for year and a

gamma regression with log link, also including a random intercept and slope. The models

were fit to a random sample of 76% of the data, and the remaining 24% was used to assess the

predictive abilities of the models. In the 76% learning sample, the percentage of individuals

with zero expenditures ranged from 32% to 54% over the years of the study. The models

were also compared using the Bayesian Deviance Information Criterion (DIC). Under both of

these criteria, the two-part models compared favorably to the one-part models.

Given the mixed conclusions from prior literature, there is no clear solution as to under

what scenarios one-part models may provide a suitable alternative to their two-part counter-

parts when one’s goal is to make inferences regarding the effect of covariates on the overall

marginal mean of semicontinuous data.

1.5 Proposed Marginalized Two-Part Model

The debate regarding one-part vs. two-part models highlights the conflicting demands

associated with modeling semicontinuous data. On the one hand, modeling approaches must
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appropriately account for the unique statistical properties of semicontinuous data, but on the

other, investigators need model estimates that are interpretable for their policy questions of

interest. Previously, methods have not existed that simultaneously accounted for the excess

zeros and skewness while also providing easily interpretable estimates of covariate effects on

the overall marginal mean, E(Y ).

This dissertation develops a new marginalized two-part (MTP) model that overcomes

many of the drawbacks of previous approaches, including difficulty in interpreting covariate

effects on the overall mean, a target of primary interest in many studies. Rather than param-

eterizing the model in terms of the mean of the transformed, conditionally positive outcomes

in the second part, the MTP model parameterizes covariate effects directly on the overall

mean, E(Y ), on the untransformed scale. This allows parameter estimates to be interpreted

as the multiplicative effect on the overall mean rather than on the conditional mean of only

the positive outcomes. Our approach also has the advantage of providing estimates of co-

variate effects on the probability of incurring a positive-valued outcome, as in the first part

of two-part models, as well as accounting for the zero-inflated and skewed nature of many

semicontinuous outcomes.

We extend the MTP model to longitudinal or clustered data via the inclusion of random

effects. This model can be fit using maximum likelihood or Bayesian approaches, although we

propose the latter to increase flexibility and overcome computational difficulties when model-

ing complex random effect structures. This approach provides easily computed predictions of

the overall mean outcome, and the parameter interpretations obtained from the MTP model

provide the same simple interpretation as those from the one-part GLMs without sacrificing

statistical appropriateness. Thus, the MTP model can provide useful policy conclusions while

remaining rooted in good statistical practice.

Finally, we conduct a simulation study to compare the performance of the MTP model to

that of one-part GLMs fit with quasi-likelihood. GLMs rely less on parametric assumptions

but fail to directly address the discrete point mass at zero, while the fully parametric MTP

model requires stronger distributional assumptions but accounts for the clumping at zero.
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With such trade-offs, it is natural to question under what conditions each modeling approach

exhibits better performance. Assessing bias, test size, and coverage of nominal 95% confidence

intervals for covariate effects and model predictions, we fit these models to data generated

under varying distributions, proportion of zeros, and sample sizes to inform under what

scenarios the models are appropriate and when they encounter difficulties.

The remainder of this document is divided into three chapters. Chapter 2 describes the

MTP model for cross-sectional data, examines properties via a simulation, and applies the

model to assess the effect of a behavioral weight loss program on health care expenditures

among an obese population in the Veterans Affairs health care system. Chapter 3 extends

the approach to the longitudinal setting by developing a MTP mixed model with correlated

random effects to allow dependence between the probability of incurring a positive outcome

and the level of the outcome. For inference, we adopt a Bayesian approach because it avoids

the computational challenges imposed in frequentist estimation, such as Gaussian quadrature

approximation. The Bayesian approach also has the advantage of incorporating prior infor-

mation and avoiding reliance on asymptotic inference. We illustrate the longitudinal model

using a study of the effect of a copayment increase in the Veterans Affairs health care system.

Chapter 4 compares one-part models fit using quasi-likelihood with the MTP model under

a variety of simulated data generating mechanisms to assess under which scenarios one may

be able to fit the simpler one-part models without inducing excessive bias or sacrificing too

much precision, or alternatively, when two-part models are needed for appropriate statistical

inference. Chapter 5 provides a discussion and points to future areas of research.
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CHAPTER 2: A MARGINALIZED TWO-PART MODEL FOR
SEMICONTINUOUS DATA1

2.1 Introduction

In health services research, it is common to encounter semicontinuous data, such as medical

expenditures (Manning et al. 1981; Duan et al. 1983), which are characterized by a point mass

at zero followed by a right-skewed continuous distribution with positive support. In the case

of medical expenditures, the point mass at zero represents a population of “non-users” who do

not receive medical care in a given time interval and therefore have no medical expenditures;

the continuous distribution, on the other hand, represents the level of expenditures among

health services users given that expenditures were incurred. Considering the two defining

components of such outcomes, semicontinuous data can be viewed as arising from two distinct

stochastic processes: one governing the occurrence of zeros and the second determining the

observed value conditional on it being a nonzero response. The first process is commonly

referred to as the “occurrence” or “binary” part of the data, while the second is often termed

the “intensity” or “continuous” part. Other examples of semicontinuous outcomes include

hospital length of stay (Xie et al. 2004), health assessment scores (Su et al. 2009), and average

daily alcohol consumption (Olsen and Schafer 2001; Liu et al. 2012).

There is extensive literature describing two-part mixture models for analyzing semicon-

tinuous data. Aitchison (1955) initially highlighted the need for these two defining processes

for unbiased estimation in applications involving estimation of expenditures and number of

children per household. Deriving semicontinuous counterparts to many commonly used prob-

ability distributions, he defined these distributions as a mixture of the binary stochastic

1This chapter previously appeared as an article in Statistics in Medicine. The original citation is as follows:
Smith VA, Preisser JS, Neelon B, et al. “A marginalized two-part model for semicontinuous data,” Statistics
in Medicine. December 2014; 33(28):4891-4903.
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process and the continuous positive-valued process conditional on observing a positive re-

sponse. Cragg (1971), Manning and Duan (Manning et al. 1981; Duan et al. 1983), and

others extended this approach to the regression setting, modeling the binary and continuous

components as functions of covariates. Most commonly, the binary part is modeled via lo-

gistic regression and the continuous component via a log-normal model. However, because

the log-normal distribution imposes a sometimes unrealistic condition of symmetry on the

log-scale, alternative distributions such as the log-skew-normal have recently been proposed

for the continuous part in an effort to relax these somewhat restrictive assumptions (Azzalini

1985; Chai and Bailey 2008). More recent extensions include incorporating longitudinal data

(Olsen and Schafer 2001; Tooze et al. 2002), assessing bias (Su et al. 2009), and examining

alternative data transformations (Mullahy 1998).

Because they explicitly accommodate both data generating processes, two-part mixture

models are an ideal choice for modeling semicontinuous data. When adjusting for covariates,

these models typically include one set of parameters for the binary response and a second set

for the continuous component conditional on a positive response. In particular, covariates in

the second, or continuous, part are interpreted conditionally upon having observed a positive

outcome. Consequently, attempts to combine these two parts to form the overall marginal

mean effect of any covariate relies on specifying values for each of the other covariates in

the model. As such, it is generally challenging to obtain a straightforward interpretation of

covariate effects on the marginal mean in two-part models.

In many cases, however, investigators’ main interest lies in examining such effects on the

marginal mean in order to draw conclusions about the impact of predictors on the population

as a whole. For example, in economic studies of system-wide health care expenditures, inves-

tigators and policy makers may wish to understand the average effect on medical expenditures

of increasing specialty care copayments (Maciejewski et al. 2012a) or of bariatric surgery for

weight loss (Maciejewski et al. 2010b; 2012b) on the entire affected or eligible populations

rather than estimating separate effects for the probability of incurring expenditures and the

level of expenditures given that any are incurred. In particular, an intervention may have one
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effect on the probability of occurrence but the opposite effect on the intensity given occur-

rence. In such cases, policy makers may be left without a true understanding of the overall

population-level effect of such an intervention.

To achieve more interpretable effects, Mullahy (1998) and Buntin and Zaslavsky (2004)

propose using a one-part exponential conditional mean model to estimate effects of covariates

on the marginal mean. While this one-part model provides interpretable estimates, it does

not explicitly account for the zero-inflated nature of the data or provide investigators with

estimates of covariate effects on the probability of occurrence. Thus, alternative models must

be considered when interest lies in estimating both the binary component and the overall

marginal mean.

We propose a new “marginalized” two-part model for semicontinuous data which yields

more interpretable effect estimates in two-part models by parameterizing the model in terms

of the marginal mean. This model maintains many of the important features of conventional

two-part models, such as capturing zero-inflation and skewness, but allows investigators to

examine covariate effects on the overall marginal mean, a target of primary interest in many

applications. We also propose an extension to accommodate log-skew-normal data to relax

the commonly used log-normal assumption for the continuous part of the model. We illustrate

the approach by evaluating the effect of a behavioral weight loss intervention on health care

expenditures in the Veterans Affairs (VA) health care system.

The remainder of the paper is organized as follows: Section 2.2 introduces the marginal-

ized two-part log-normal model and extends it to a log-skew-normal distribution. Section 2.3

presents results from a simulation study highlighting important features of our method. Sec-

tion 2.4 applies the approach to the behavioral weight loss program, and Section 2.5 provides

a discussion and points to areas for future work.
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2.2 Marginalized Two-Part Models for Semicontinuous Data

2.2.1 Conventional Two-Part Model

We begin with a review of the conventional two-part model presented in Cragg (1971),

Manning and Duan (Manning et al. 1981; Duan et al. 1983) and elsewhere. For data consisting

of independent observations, the generic form of the conventional two-part model can be

written as

f(yi) = (1− πi)1(yi=0) × [πig(yi|yi > 0)]1(yi>0) , yi ≥ 0, i = 1, . . . , n, (2.1)

where πi = Pr(Yi > 0), 1(·) is the indicator function, and g(yi|yi > 0) is any density function

applicable to the positive values of Yi, although the log-normal density is often chosen. This

model is parameterized as

logit(πi) = z′iα and (2.2)

µi = E(lnYi|Yi > 0) = x′iγ. (2.3)

When fitting this model to independent responses, the binary and conditionally continuous

components of the likelihood are separable, and therefore, these two parts are fit separately.

The binary component is often modeled using logistic regression, and the continuous compo-

nent can be fit using standard regression models, such as the log-normal.

2.2.2 Marginalized Two-Part Model

To obtain interpretable covariate effects on the marginal mean, we propose the following

marginalized two-part model that parameterizes the covariate effects directly in terms of the

marginal mean, νi = E(Yi), on the original (i.e., untransformed) data scale. The marginalized
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two-part (MTP) model specifies the linear predictors

logit(πi) = z′iα and (2.4)

E(Yi) = νi = exp(x′iβ). (2.5)

Parameter estimates can be obtained using standard optimization routines such as Newton-

Raphson or Fisher scoring. Model-predicted means and standard errors can also be easily

obtained under this parameterization in a single step by estimating exp(x′iβ) at the desired

values of the covariates.

2.2.3 Comparison of Treatment Effect Estimates

Using the conventional model shown in equation (2.3), γj is interpreted as the effect of a

unit increase in the jth covariate, xij , on the conditional mean of ln(Yi) given Yi is positive.

In many applications, however, this interpretation has limited usefulness as it is only relevant

for the population of health services users. Rather, interest often lies in estimating the effect

of covariates xi on the marginal mean of Yi for the combined population of health services

users and non-users; that is the effect of xi on E(Yi) unconditionally. In the case of the

log-normal distribution, that is the effect of xi on

E(Yi) = νi = πi exp(µi + σ2/2) =
ez

′
iα

1 + ez
′
iα

exp(x′iγ + σ2/2), (2.6)

where σ2 is the variance of Yi on the log scale. Assuming xi = zi, as is commonly specified,

it follows from (2.6) that the per-unit effect of the j-th covariate, xij , on the marginal mean

is

E(Yi|xij = j + 1, x̃i)

E(Yi|xij = j, x̃i)
=

1 + exp [x̃i
′α̃+ αj · j]

1 + exp [x̃i
′α̃+ αj · (j + 1)]

exp(αj + γj), (2.7)

where x̃i is xi with xij removed and α̃ is α with αj removed. Thus, unless αj = 0, one must
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specify fixed values for the remaining covariates in order to obtain a marginal interpretation

for the effect of xij . Further, to obtain confidence intervals or formal inference on this marginal

effect, the delta method or resampling techniques must be employed.

Using the MTP model as parameterized in equation (2.5), β is estimated for the entire

population as opposed to γ, which is conditional on Yi > 0. Unlike γj in the conventional

model, exp(βj) can be interpreted as the multiplicative effect on the unconditional marginal

mean, νi, when covariate xij increases by one unit. In other words, the left-hand-side of

(2.7) equals exp(βj) under model (2.5). Unlike the conventional model, standard errors and

confidence intervals for covariate effects on the marginal mean are easily obtained as part of

the standard model output.

There are other important distinctions between the models. In particular, when the model

includes ancillary covariates with no interactions, the MTP model assumes a homogeneous

treatment effect on E(Yi) whereas the conventional model yields heterogeneous effects that

depend on the specific values of the additional covariates, potentially creating misleading

results. As an illustrative example, we generated a simulated dataset of sample size 10,000

using the following specification:

logit(πi) = α0 + α1xi1 + α2xi2 and

E(Yi) = νi = exp(β0 + β1xi1 + β2xi2),

where xi1 ∼ N(50, 100) and xi2 ∼ Bernoulli(0.5). We specified parameters values as α0 = 14.4,

α1 = −0.3, α2 = 1.6, β0 = 5, β1 = 0.05, and β2 = 1.1 and assumed Yi followed the

standard two-part distribution given in equation (2.1) with a log-normal density specified

for g(yi|yi > 0). Under this scenario, the true multiplicative “treatment effect” on E(Yi) of

xi2 taking a value of 1 versus 0 is exp(β2) = exp(1.1) = 3.0. Because the ratio E(Yi|xi2 =

1, xi1)/E(Yi|xi2 = 0, xi1) = exp(β2) does not rely on specification of other covariate values,

note that this treatment effect is the same regardless of the values for xi1. Next, using equation

(2.7), we estimated treatment effects under the conventional model at the first, second, and
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third quartiles of xi1, taking values 43, 50, and 57, respectively. Under the conventional

model, the estimated effects of an increase in xi2 on E(Yi) were multiplicative increases of

2.5, 4.4, and 8.3, respectively, while the true multiplicative increase was 3.0 regardless of

the value of xi1. It is worth pointing out that when treatment effect heterogeneity truly

exists, the MTP model can accommodate this through the systematic inclusion of interactions,

which should be driven by subject-matter considerations. While the conventional model also

accommodates the systematic inclusion of subject-matter driven interactions, it imposes an

arbitrary heterogeneity that always exists unless one omits the treatment covariate from the

binary part of the model.

Because the interpretation of the marginal treatment effect from the conventional model

relies on specified values of each other covariate in the model and includes arbitrary het-

erogeneity, “standardization” (Hernan and Robins 2014) is often used to obtain marginal

treatment effect estimates by averaging across the observed heterogeneous estimates. In this

approach, after modeling is complete, expected outcomes are estimated for each individual

in the sample by first assuming they were a member of the treatment group then assuming

they were a member of the control group; the overall treatment effect is then estimated as the

difference in means of these constructed treatment and control groups. This approach has

several disadvantages, however. First, bootstrapping or other resampling techniques must be

employed to obtain standard errors and confidence intervals for estimated treatment effects.

Further, the effect estimates are averaged over the sample distribution of the observed values

of the other covariates in the model. Thus, if the sample distribution of these covariates

does not represent the distribution in the target population, the treatment effect estimate is

sample-specific and not as easily generalized to the overall population. This is not likely to

be a problem in large datasets where the sample covariate distributions accurately represent

those in the overall population. However, in smaller samples, the covariate distributions may

not be representative of the population as a whole, leading to biased inferences. Additionally,

estimates obtained via standardization lack generalizability to other populations which vary

in the distribution of these covariates. As a result, the conventional two-part model lacks ap-

peal when the objective is to estimate the effect of a covariate on the marginal mean. When
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using the MTP model, however, estimation of the treatment effect does not require averag-

ing over the observed values of the other covariates in the sample; therefore, these estimates

provide much greater generalizability and ease of computation.

This is not to say that the MTP model should be preferred over the conventional model

in all cases. Indeed, when the primary target of inference is E(Yi|Yi > 0), the MTP model

engenders arbitrary heterogeneity and provides less interpretable estimates on the conditional

mean of Y among the positive values. Ultimately, the choice between models should be guided

by the aims of the analyst. If the aim is to model treatment effects on E(Yi) in the presence

of confounders, one should use the MTP model; on the other hand, if the target of inference

is E(Yi|Yi > 0), the conventional model should be used.

2.2.4 Marginalized Two-Part Log-Normal Model

When modeling semicontinuous data, the continuous component is most frequently mod-

eled using a log-normal distribution. The generic form of the two-part log-normal model for

independent responses can be written as in (2.1) with g(yi|yi > 0) taking the log-normal

density function LN(·;µ, σ2) with mean µ and variance σ2 on the log scale. The marginal

mean and variance of Yi are then given by (Aitchison 1955):

E(Yi) = νi = πi exp(µi + σ2/2) and (2.8)

Var(Yi) = πi exp(2µi + σ2)
[
exp(σ2)− πi

]
. (2.9)

The likelihood, parameterized in terms of πi and µi, is:

L(π,µ|y) =
∏
i

(1− πi)1(yi=0)

{
πi

yi
√

2πσ
exp

[
− 1

2σ2
(ln yi − µi)2

]}1(yi>0)

.

In order to utilize this log-normal likelihood framework, the marginal mean in equation
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(2.8) can be rearranged to solve for µi, yielding

µi = ln νi − lnπi − σ2/2

= x′iβ − lnπi − σ2/2.

Noting that

πi =
ez

′
iα

1 + ez
′
iα
⇒ lnπi = z′iα− ln(1 + ez

′
iα), and

ln(1− πi) = − ln(1 + ez
′
iα),

we can express the log-likelihood in terms of α, β, and σ:

l(α,β, σ) =
∑
i

− ln(1 + ez
′
iα) +

∑
yi>0

{
z′iα− ln yi −

1

2
ln 2π − lnσ

− 1

2σ2

[
ln yi + z′iα− ln(1 + ez

′
iα) + σ2/2− x′iβ

]2}

with score equations

Ui =

[
∂li(α,β,σ)

∂α
∂li(α,β,σ)

∂β
∂li(α,β,σ)

∂σ

]′
,

where

∂li(α,β, σ)

∂α
=

{
−ez

′
iα

1 + ez
′
iα

+

[
1− 1

σ2

[
ln yi + z′iα− ln(1 + ez

′
iα) +

1

σ2
− x′iβ

]

·
(

1

1 + ez
′
iα

)]
1(yi>0)

}
z′i,

∂li(α,β, σ)

∂β
=

{
1

σ2

[
ln yi + z′iα− ln(1 + ez

′
iα)− x′iβ

]
+

1

2

}
x′i,

∂li(α,β, σ)

∂σ
=
−1

σ

{
1− 1

σ2

[
ln yi + z′iα− ln(1 + ez

′
iα) + σ2/2− x′iβ

]2
+ ln yi + z′iα− ln(1 + ez

′
iα) +

σ2

2
− x′iβ

}
.
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With the conventional model the likelihood and score equations can be separated into

two independent components: one for the binary part and one for the continuous part. In

contrast, note that the score equations for the MTP model are not separable, and thus the

binary and continuous parts are fit simultaneously. Model-based asymptotic standard errors

are computed using Fisher’s information matrix, I(α,β, σ) as

s.e.(α̂, β̂, σ̂) =
√

diag
[
I−1(α,β, σ)

]

with the maximum likelihood estimates substituted for α, β, and σ.

2.2.5 Extension to the Log-Skew-Normal Distribution

While the log-normal distribution is suitable for many outcomes, it requires the some-

what restrictive assumption that the log-transformed outcome is symmetric and normally

distributed, an assumption that is often violated in practice. We can relax this assumption

by instead selecting for the positive responses a log-skew-normal distribution, which accommo-

dates skewness through the inclusion of a shape parameter. Using the same linear predictors

as in equations (2.4) and (2.5), the generic form of the two-part log-skew-normal model for

independent data is given by:

f(yi) = (1− πi)1(yi=0) × [πiLSN(yi; ξi, ω, κ)]1(yi>0) , yi ≥ 0, i = 1, . . . , n,

where LSN(·; ξi, ω, κ) denotes the log-skew-normal (LSN) distribution with location parameter

ξi, scale parameter ω > 0, and shape parameter κ, all on the log scale, given by

g(yi|yi > 0) =
2

ωyi
φ

(
ln yi − ξi

ω

)
Φ
(κ
ω

(ln yi − ξi)
)
.

The marginal mean and variance of Yi for the MTP LSN model are given by:

E(Yi) = νi = 2πi exp

(
ξi +

ω2

2

)
Φ(ωδ) and
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Var(Yi) = 2πi exp
(
2ξi + ω2

) [
exp(ω2)Φ(2ωδ)− 2πi (Φ(ωδ))2

]
,

where δ = κ√
1+κ2

and Φ(·) is the cumulative distribution function of the standard normal

density. The likelihood, parameterized in terms of π and ξ, is then

L(π, ξ, ω, κ) =
∏
i

(1− πi)1(yi=0)

{
2πi
ωyi

φ

(
ln yi − ξi

ω

)
Φ
(κ
ω

(ln yi − ξi)
)}1(yi>0)

,

where φ(·) is the probability density function for the standard normal distribution. Thus, the

log-likelihood in terms of π and ξ is:

l(π, ξ, ω, κ) =
∑
yi=0

ln(1− πi) +
∑
yi>0

{
lnπi + ln 2− ln(ω)− ln(yi) + ln

[
φ

(
ln yi − ξi

ω

)]

+ ln
[
Φ
(κ
ω

(ln yi − ξi)
)]}

. (2.11)

In order to re-express the LSN likelihood as a function of β, we first solve for ξi in terms

of β:

ξi = ln νi − ln 2− lnπi − ln [Φ(ωδ)]− ω2

2

=x′iβ − ln 2− lnπi − ln [Φ(ωδ)]− ω2

2
.

Plugging this into equation (2.11) above, the log-likelihood expressed in terms of α, β, ω,

and κ is:

l(α,β, ω, κ) =
∑
i

− ln(1 + ez
′
iα) +

∑
yi>0

{
z′iα+ ln 2− lnω − ln(yi)

+ ln

[
φ

(
1

ω

(
ln yi − x′iβ + ln 2 + z′iα− ln(1 + ez

′
iα) + ln(Φ(ωδ)) +

ω2

2

))]
+ ln

[
Φ

(
κ

ω

(
ln yi − x′iβ + ln 2 + z′iα− ln(1 + ez

′
iα) + ln(Φ(ωδ)) +

ω2

2

))]}
.
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Because the LSN reduces to the log-normal model when κ = 0, the choice between the

log-normal model and the LSN model can be easily assessed using a likelihood ratio test. It

should be noted that the LSN likelihood can be somewhat more sensitive to starting values

with small sample sizes (say, n< 30) when using software such as SAS PROC NLMIXED

(SAS Institute, Cary, NC) that require initial values to be prespecified. This likelihood also

has a stationary point at κ = 0 (Azzalini 1985); as such, 0 should not be provided as a starting

value for κ in such estimation routines.

2.3 Simulation Study

To assess the performance of our proposed marginalized two-part model, we generated

simulated data using the following specification:

logit(πi) = α0 + α1xi1 + α2xi2 and

E(Yi) = νi = exp(β0 + β1xi1 + β2xi2),

where xi1 ∼ N(50, 100) and xi2 ∼ Bernoulli(0.5). We specified parameters values as α0 = 14.4,

α1 = −0.3, α2 = 1.6, β0 = 5, β1 = 0.05, and β2 = 1.1. Using this specification, we generated

1,000 samples of size 10,000 under three scenarios with varying levels of skewness in the

distribution:

i) f(yi) = (1− πi)1(yi=0) ×
[
πiLN(yi;µi, σ

2)
]1(yi>0) with σ2 = 4, or equivalently,

f(yi) = (1− πi)1(yi=0) × [πiLSN(yi; ξi, ω, κ)]1(yi>0) with ω = 2 and κ = 0;

ii) f(yi) = (1− πi)1(yi=0) × [πiLSN(yi; ξi, ω, κ)]1(yi>0) with ω = 2 and κ = 2; and

iii) f(yi) = (1− πi)1(yi=0) × [πiLSN(yi; ξi, ω, κ)]1(yi>0) with ω = 2 and κ = 10.

Under scenario (i), data were initially generated from a log-normal distribution with mean

µi as shown in Section 2.2.4 and variance σ2 on the log scale. Similarly, under scenarios (ii)

and (iii), the data were generated from a LSN distribution with location parameter ξi as
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defined in Section 2.2.5, scale parameter ω, and shape parameter κ, all on the log scale.

Excess zeros were introduced in the Yi’s with probability πi, resulting in 48% zeros. The

log-normal data were generated using SAS 9.3 and the LSN data were generated using R

version 2.15.2 (R Core Team 2012) using the SN package (Azzalini 2013). All models were fit

using SAS 9.3 NLMIXED. The SAS code for fitting the log-normal and LSN MTP models is

provided in Appendix A.

Table 2.1 shows the percent relative bias, median standard error, and coverage probability

of each parameter from fitting each sample to both the log-normal and LSN MTP models.

The log-normal marginalized model failed to converge 3 times when κ = 0 and once each

when κ = 2 and κ = 10; the LSN model failed to converge 46 times when κ = 0, twice when

κ = 2, and once when κ = 10. Likelihood ratio tests favored the LSN model in 3.2% of

samples when κ = 0 and in 100% of samples when κ = 2 or κ = 10.

Under all scenarios, bias remained small and coverage probabilities were approximately

0.95 for all parameters except β0. As skewness increased, bias increased for β0 under the

log-normal MTP model, and the coverage probability dropped to as low as 0.11 when κ = 10.

While estimates of the remaining parameters would still be valid regardless of which model

were used, when the data are skewed, the log-normal model is not appropriate for making

predictions or estimating the overall mean, exp(x′iβ), due to the bias in β0. Efficiency gains

were also observed for the LSN MTP model when skewness was present; standard errors

were somewhat smaller under the LSN model than the log-normal model when κ = 2 and

even more so when κ = 10. These results indicate that the proposed MTP models provide

unbiased estimates of regression coefficients. In the presence of skewness, however, the LSN

model should be used to improve efficiency and yield unbiased predictions of the marginal

mean, exp(x′iβ), since this is a function of β0.

2.4 Analysis of MOVE! Intervention Data

The Veterans Affairs (VA) health care system implemented a system-wide weight loss

intervention (MOVE!) beginning in 2006 to address the high prevalence of obesity among

30



VA patients (Kahwati et al. 2011). The high cost of obesity is well documented (Arterburn

et al. 2005; Finkelstein et al. 2009), and the MOVE! intervention is the first behavioral

weight loss program implemented across an entire health system. MOVE! was implemented

as an unfunded mandate, so understanding its effect on average health care expenditures

is important to guide program planning and refinement in VA. Assessment of the effect of

MOVE! on the marginal mean of the entire VA population is also important for other health

care systems that are also considering the adoption of behavioral interventions for reigning

in the increasing costs of obesity. We use our marginalized two-part model to provide an

estimate of the effect of the MOVE! intervention on the marginal mean expenditures among

obese veterans.

The data for this analysis was drawn from a retrospective cohort study of obese VA

patients eligible for MOVE! in fiscal years 2006-2009 who were identified from a longitudinal

study of the VA cost of obesity. Data were obtained from the VA Corporate Data Warehouse

(CDW) and the VA Outpatient Care File (OPC). As a part of a larger study, data were first

obtained on all veterans who had received VA services and had a weight measurement in

2002 (N=3,365,004). This sample was then stratified into veterans who ever had one or more

MOVE! clinic visits in 2006-2009 (MOVE! enrollees) or veterans who did not have a MOVE!

clinic visit in this timeframe (non-enrollees).

Veterans were excluded from both cohorts if they were older than 70 in 2010, had a BMI

of less than 30 kg/m2 within 30 days of the index date, did not have sex data available,

or had contraindications to MOVE! use during year of MOVE! initiation. Weight loss con-

traindications that warranted exclusion were central nervous system infections, organic brain

syndromes or dementias, anorexia, anterior horn diseases, Huntington’s disease, cirrhosis,

dialysis, emphysema, neurological disorders, hepatitis, recent transplant surgery, or recent

cancer treatment. Patients residing in nursing homes, hospice, or residential or adult day

health care were also excluded.

To reduce the non-equivalence of MOVE! enrollees and non-enrollees due to imbalance in

observed covariates, MOVE! enrollees and non-enrollees were first matched exactly on sex,
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race (white or non-white), marital status (married or non-married), copay status (exempt vs.

non-exempt), and veterans integrated service network (VISN) of residence. Then, potential

matches were retained on the basis of BMI and comorbidity burden, assessed via the 2002

diagnostic cost group (DCG) score. Only matches with the same integer BMI measure oc-

curring within 7 days of baseline measure of their respective MOVE! enrollee and the same

DCG score (closest integer) were retained. The final cohort included 18,214 MOVE! enrollees

and 18,214 non-enrollees.

The expenditure outcome of interest was total VA expenditures in the fiscal year following

MOVE! initiation and was obtained from the VA Health Economics Resource Center. Ex-

penditures for non-VA services were excluded as this analysis took a VA payer perspective.

Total expenditures were inflation-adjusted to 2011 dollars using the general Consumer Price

Index (CPI) because medical CPI does not adequately account for technological improvement,

quality change and improved health outcomes (Berndt et al. 2002). The explanatory variable

of primary interest was MOVE! initiation, which could occur any time between October 2005

and September 2009.

Descriptive statistics for the covariates and outcome are shown in Table 2.2. Of note,

17% percent of MOVE! enrollees and 14% percent of non-enrollees had zero health care

expenditures in the year following initiation, yielding standard one-part log-normal or LSN

models inappropriate. To assess the effect of MOVE! enrollment on health care expenditures

in the following year, we fit the MTP model:

logit(πi) = α0 + α1xi1 + α2xi2 + α3xi3 + α4xi4

E(Yi) = exp(β0 + β1xi1 + β2xi2 + β3xi3 + β4xi4)

where xi1 = 1 if individual i was enrolled in MOVE! and 0 otherwise, and we additionally

adjusted for xi2, xi3, and xi4, individual i’s BMI, age, and DCG score, respectively. We fit

this model twice, first assuming a log-normal distribution for the positive-valued observations,

then assuming the more flexible LSN distribution. Table 2.3 presents the parameter estimates
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and standard errors from the log-normal and LSN MTP models. Table 2.4 presents model-

estimated mean expenditures from the LSN model at the quartile values of age, BMI, and

DCG score for MOVE! enrollees and non-enrollees.

The estimates from the two models are quite similar, although a likelihood ratio test

indicated that the LSN model was the more appropriate fit (p < 0.0001). Both models

estimate an odds ratio of exp(−0.24) = 0.79, indicating that the odds of incurring health care

expenditures in the fiscal year following MOVE! enrollment were approximately 21% lower for

those enrolled in MOVE! compared to non-enrollees with 95% confidence interval [CI] (17%,

26%). Despite the lower probability of incurring expenditures, however, we estimated from the

log-normal MTP model that enrollment in MOVE! was associated with exp(0.1749) = 1.19

times higher total health care expenditures on average in the following fiscal year with 95%

Wald-type CI (1.16, 1.23). Similarly, the LSN MTP model estimated that MOVE! enrollment

was associated with exp(0.1790) = 1.20 times higher total health care expenditures on average

in the following fiscal year with 95% CI (1.16, 1.23). While expenditures for non-enrollees

remained lower than those of MOVE! enrollees, expenditures for both groups trended upward

with increasing BMI and DCG score. Note that the estimated means for MOVE! enrollees at

each quartile were 1.20 times higher than those of non-enrollees, reflecting the homogeneous

model-estimated treatment effect across the distribution of age, BMI, and DCG score.

For comparison, we additionally fit the conventional two-part mixture model to these

data. Using the same covariates as in the original analyses, we fit a logistic regression model

to estimate the probability of incurring positive expenditures among the 36,428 individuals in

our cohort and a log-skew-normal model on the subset of 30,847 individuals who had positive

expenditures to estimate the level of expenditures conditional on occurrence. Thus, we fit the

model:

logit(πi) = α0 + α1xi1 + α2xi2 + α3xi3 + α4xi4

E(lnYi|Yi > 0) = γ0 + γ1xi1 + γ2xi2 + γ3xi3 + γ4xi4
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Table 2.5 presents the regression estimates and standard errors from this model. The

parameter estimates were similar to those estimated from the MTP model in Table 2.3. This

reflects the fact that the percentage of zeros was not large, and hence the marginal mean

was primarily driven by the positive expenditure values. Similar to our proposed model, the

logistic regression suggested that MOVE! enrollment was associated with 21% lower odds of

incurring health care costs in the following fiscal year compared to non-enrollees (95% CI [16%,

26%]). In contrast, the LSN model estimated that, conditional on incurring expenditures,

those enrolled in MOVE! had 0.22 higher expenditures on the log scale on average than those

not enrolled in MOVE! (p < 0.0001). However, with such conflicting results in the binary and

continuous parts of this model, investigators are left without a clear sense of the combined

overall effect of such an intervention on the average population cost. The MTP model, on

the other hand, provides a single, easily interpreted estimate of the overall effect.

These MTP model results suggest that VA expenditures are not reduced in the year follow-

ing MOVE! initiation, possibly because few veterans have sustained an intense participation

in this behavioral weight loss program (Kahwati et al. 2011). This finding has important im-

plications for VA policymakers needing to address the increasing incidence and prevalence of

obesity among veterans. In particular, these results suggest that VA may need to introduce

alternative weight management strategies to reduce expenditures among obese veterans or

increase the effectiveness of MOVE! to induce expenditure reductions. It is possible that vet-

erans’ more recent (2012-2014) experience with MOVE! is more sustained and translates into

VA expenditure reductions, but these findings suggest that enrollment in MOVE! in its initial

four years was not associated with lower VA expenditures in the year following initiation,

compared to non-enrollees.

2.5 Conclusion

We proposed a marginalized two-part model for semicontinuous data that allows investi-

gators to obtain the population-average effect of covariates in the model. Our model directly

parameterizes the covariates in terms of the population mean while still appropriately account-
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ing for the excess number of zeros. While log-normal models are most commonly used, we

also extended our MTP model to the broader and more flexible log-skew-normal distribution

which allows asymmetry and skewness in the data and contains the log-normal distribution

as a special case. In our simulation study, the maximum likelihood parameter estimates had

near zero bias and good coverage properties in all scenarios except for the intercept from the

log-normal model when fit to skewed data. As such, using either the log-normal or LSN MTP

model should be reliable for estimating effects of covariates, although additional care should

be used when predicting marginal means for specified covariate groups.

Using the LSN MTP model, we estimated that enrollment in the MOVE! weight loss

intervention was associated with 20% higher average health care expenditures in the year

after MOVE! initiation compared to a control group of non-enrollees. VA policymakers may

need to refine the MOVE! program or introduce alternative behavioral weight programs to

reduce expenditures among obese veterans. In contrast, the conventional two-part model

found that MOVE! enrollment was associated with a decrease in the probability of incurring

positive expenditures, but was also associated with an increase in the level of expenditures

given they were incurred, leading to conflicting conclusions about the overall effect of the

MOVE! program. Future directions for the MTP model could include extensions to clustered

or spatially correlated data and applications to other fields, such as substance abuse or psy-

chometric research. We are currently working to extend the MTP model to longitudinal data,

allowing investigators to examine trends in the marginal mean over time. For example, it is

possible that the effect of the MOVE! weight loss intervention may vary after additional years

of enrollment, and estimating this effect would have important policy implications.

In short, the proposed MTP model provides a straightforward method for estimating

covariate effects on the marginal mean of the population as a whole, which is not possible

in conventional two-part models in a straightforward way. As such, it simplifies economic

evaluations that are increasingly critical to understanding the return on investment of new

interventions, policies and programs.
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Table 2.1: Marginalized two-part model performance with 1,000 simulations and varying
skewness

Log-normal model Log-skew-normal model

% Relative % Relative
True Median Median Coverage Median Median Coverage

κ Parameter Value Bias Std Error Probability Bias Std Error Probability

0 α0 14.4 0.09 0.2846 0.9488 0.08 0.2846 0.9486
α1 -0.3 -0.06 0.0058 0.9509 -0.05 0.0058 0.9497
α2 1.6 -0.08 0.0624 0.9468 -0.07 0.0624 0.9455
β0 5.0 0.11 0.1728 0.9478 0.44 0.1774 0.9486
β1 0.05 -0.41 0.0039 0.9549 -0.37 0.0039 0.9549
β2 1.1 -0.10 0.0585 0.9428 -0.12 0.0585 0.9444

2 α0 14.4 0.12 0.2738 0.9489 0.13 0.2716 0.9429
α1 -0.3 -0.11 0.0055 0.9469 -0.14 0.0055 0.9419
α2 1.6 0.23 0.0604 0.9550 0.22 0.0599 0.9539
β0 5.0 -4.82 0.1218 0.4865 0.07 0.1222 0.9469
β1 0.05 -0.35 0.0028 0.9560 -0.19 0.0027 0.9539
β2 1.1 0.22 0.0419 0.9520 0.18 0.0400 0.9419

10 α0 14.4 0.11 0.2672 0.9459 0.12 0.2298 0.9449
α1 -0.3 -0.12 0.0054 0.9429 -0.14 0.0046 0.9469
α2 1.6 0.19 0.0591 0.9520 0.05 0.0513 0.9570
β0 5.0 -6.81 0.1067 0.1111 0.0007 0.0764 0.9469
β1 0.05 -0.26 0.0025 0.9449 -0.06 0.0016 0.9489
β2 1.1 -0.08 0.0369 0.9580 0.09 0.0228 0.9309
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Table 2.2: Means (SD) for MOVE! data

MOVE! Non-
Enrollees Enrollees

(n=18,214) (n=18,214)

Covariates
Age 61 (9.3) 61 (9.3)
BMI 35.2 (3.9) 35.1 (3.9)
DCG Score 0.24 (0.17) 0.24 (0.17)

Outcomes
% Positive Cost 83.2 86.2
Total Costs 7005 (18866) 6542 (18641)
Total Costs Among Users 8424 (20398) 7588 (19878)
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Table 2.3: Marginalized two-part model results: MOVE! example

Log-normal model Log-skew-normal model

Parameter Standard Parameter Standard
Parameter Estimate Error Estimate Error

Pr(Yi > 0)
Intercept α0 2.5653 0.1659 2.5680 0.1658
MOVE! Enrollment α1 -0.2381 0.0292 -0.2382 0.0292
BMI α2 -0.0321 0.0036 -0.0321 0.0036
Age α3 0.0080 0.0016 0.0080 0.0016
DCG Score α4 -0.3454 0.0849 -0.3457 0.0848

E(Yi)
Intercept β0 9.1179 0.0875 9.1142 0.0872
MOVE! Enrollment β1 0.1749 0.0145 0.1790 0.0145
BMI β2 0.0079 0.0019 0.0084 0.0019
Age β3 -0.0176 0.0008 -0.0174 0.0008
DCG Score β4 1.2933 0.0446 1.2946 0.0444

σ2 1.4680 0.0118
ω 1.4123 0.0183
κ 0.8426 0.0484
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Table 2.4: LSN model-estimated means (standard errors) at quartiles of age, BMI, and DCG
Score

MOVE! Enrollees Non-Enrollees

Age 55, BMI 32, DCG 0.11 $6303 (101) $5270 (83)
Age 61, BMI 34, DCG 0.22 $6660 (90) $5568 (73)
Age 66, BMI 37, DCG 0.32 $7127 (107) $5958 (97)
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Table 2.5: Conventional two-part LSN mixture model results: MOVE! example

Parameter Standard
Parameter Estimate Error

Pr(Yi > 0)
Intercept α0 2.4906 0.1686
MOVE! Enrollment α1 -0.2369 0.0293
BMI α2 -0.0320 0.0036
Age α3 0.0093 0.0017
DCG Score α4 -0.3668 0.0859

E(lnYi|Yi > 0)
Intercept γ0 7.6503 0.0909
MOVE! Enrollment γ1 0.2153 0.0138
BMI γ2 0.0136 0.0018
Age γ3 -0.0186 0.0008
DCG Score γ4 1.3492 0.0421

ω 1.4123 0.0183
κ 0.8428 0.0484
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CHAPTER 3: A MARGINALIZED TWO-PART MODEL FOR
LONGITUDINAL SEMICONTINUOUS DATA

3.1 Introduction

In health services research, it is common to encounter semicontinuous data, characterized

by a point mass at zero followed by a right-skewed continuous distribution with positive sup-

port. For example, medical expenditures typically include a point mass at zero representing

a population of “non-users” who do not receive medical care in a given time interval and

a continuous distribution that represents the level of expenditures among those who receive

care. It is natural to view semicontinuous data as arising from two distinct stochastic pro-

cesses. The first process, often referred to as the “occurrence” or “binary” part, governs the

occurrence of zeros, while the second part, often referred to as the “intensity” or “continuous”

part, determines the observed value conditional on it being nonzero.

There is an extensive body of work on analysis of cross-sectional semicontinuous data

(Manning et al. 1981; Duan et al. 1983; Aitchison 1955; Mullahy 1998). Typically, semicon-

tinuous data are analyzed using two-part models that explicitly accommodate both the binary

and continuous data-generating processes. In the regression setting, the binary part is most

commonly modeled via logistic regression and the continuous component via a log-normal

model, although alternative distributions such as the log-skew-normal have been proposed for

the continuous part to allow for additional flexibility (Azzalini 1985; Chai and Bailey 2008).

Two-part models have more recently been extended to accommodate longitudinal and

clustered data (Olsen and Schafer 2001; Tooze et al. 2002). Typically, such models include

a logistic regression with random effects for the binary part combined with a mixed effects

model for the log-scale positive values. The random effects from these two parts are usually

assumed to be jointly normally distributed and possibly correlated. Because the two pro-
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cesses are allowed to be correlated, the two parts must be fit simultaneously rather than as

two separate models. As a result, standard estimation approaches can encounter computa-

tional challenges when complex random effect structures are included in the model. Intensive

procedures such as multi-dimensional quadrature approximations are needed, often creating

long computational run times and convergence difficulties. Consequently, several authors have

adopted a Bayesian inferential approach, which provides a flexible alternative ideally suited

for more complex data structures (Zhang et al. 2006; Cooper et al. 2007).

Despite its widespread use, the conventional two-part model is limited in that it provides

conditional interpretations for the regression coefficients in the continuous part of the model.

Specifically, these parameters represent a location shift on the log scale that is conditional on

both the random effects and on having observed a positive response. Therefore, it only refers

to the population of “users”, or those who incur a positive response, rather than the entire

population of users and non-users, which is often of interest in health services studies. Further,

the subpopulation of users changes over time in a longitudinal setting, so it is challenging

to draw meaningful conclusions about the impact of covariates on expenditures for a fixed

subpopulation of users. In many cases, however, investigators are primarily interested in

examining the effect of covariates on the overall mean for the entire population in order to draw

policy conclusions about their impact on that population and how that impact may change

over time. For example, a medical system may wish to understand the long-term effect over

many years of undergoing bariatric surgery on health care expenditures (Maciejewski et al.

2010b; 2012b) for the entire population eligible for surgery rather than estimating separate

effects for the probability of incurring expenditures and the level of expenditures among those

receiving care. Unfortunately, such marginal assessments are not easily obtained using the

conventional two-part model.

To overcome these challenges, we develop a marginalized two-part (MTP) model for longi-

tudinal semicontinuous data that yields more interpretable effect estimates when the primary

focus is to estimate covariate effects on the average expenditures among the entire population

of users and non-users. This model maintains many of the important features of conventional
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longitudinal two-part models, such as capturing zero-inflation and skewness and accounting

for clustering among observations through random effects, but allows investigators to examine

covariate effects on the overall mean, a target of primary interest in many applications. We

fit this model using a Bayesian approach, which can accommodate complex random effect

structures in a computationally tractable manner using standard software such as SAS (SAS

Institute, Cary, NC). We illustrate this approach by evaluating the effect of a copay increase

on health care expenditures in the Veterans Affairs (VA) health care system over a four-year

period.

The rest of the paper is organized as follows: Section 3.2 briefly reviews the conven-

tional two-part model used with longitudinal semicontinuous data. Section 3.3 introduces

the marginalized two-part model for longitudinal data, while Section 3.4 describes its com-

putation in the Bayesian framework. Section 3.5 applies the approach to the VA study, and

Section 3.6 provides a discussion and points to areas for future work.

3.2 Conventional Two-Part Model for Longitudinal Data

We begin with a review of the conventional two-part model. This model is commonly

expressed as a two-part mixture of a point mass at zero and a distribution with positive

support. The contribution of a given observation to this model is given by:

f(yij) = (1− πij)
1(yij=0) × [πijg(yij |yij > 0;µij , ω, κ)]

1(yij>0) (3.1)

yij ≥ 0, j = 1, . . . , ni, i = 1, . . . , n,

where yij is the semicontinuous non-negative response for individual i at time j, πij = Pr(Yij >

0), µij is the observation-level location parameter, ω is a scale parameter, κ is a skewness

parameter, 1(·) is the indicator function, ni is the number of responses observed for individual

i, and n is the number of individuals. Any continuous density with positive support can be

used for g(yij |yij > 0). For example, the log-skew-normal (LSN) distribution offers a flexible

choice for g(·) that accommodates skewness on the log scale and includes the log-normal
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distribution as a special case when κ = 0.

In the longitudinal setting, the probability and the location parameter, πij and µij , are

typically modeled in terms of fixed covariates and random effects as follows:

logit(πij) = x′1ijα+ z′1ijai and

µij = x′2ijγ + z′2ijci, (3.2)

where πij = Pr (Yij > 0|bi), µij is the location parameter for subject i at time j, ai and ci are

random effects for the binary and continuous parts of the model, respectively; b′i = (a′i, c
′
i) is

assumed to follow a multivariate normal distribution; x1ij and x2ij are the vectors of the fixed

effect covariates for subject i at time j and z1ij and z2ij are the corresponding vectors of the

random effect covariates in the binary and continuous parts of the model, respectively. The

fixed effect covariates, x1ij and x2ij , are often chosen to be identical so that x1ij = x2ij = xij .

Note that while the binary part is commonly modeled with a logit link, a probit model could

also be used.

Under this parameterization, γk, the kth regression coefficient in the continuous part of

the model, represents the location shift in ln(Yij |Yij > 0) corresponding to a one-unit increase

in the kth element of x2ij . In the simplest case, when g(·) in (3.1) is assumed to be lognormal,

γk represents the shift in the subject-specific mean of ln(Yij |Yij > 0). If the more flexible LSN

distribution is chosen, interpretation is further complicated as µij is the location parameter

rather than the mean; with either density, transformation back to the original scale is not

straightforward. As a result, γk lacks a pragmatic interpretation in many settings.

Often, greater interest lies in estimating the effect of covariates on the marginal mean of

Yij on the original (unlogged) scale for the combined population of users and non-users. For

example, investigators may want to examine the association between a treatment and average

cost among all patients, including health care users and non-users. As discussed in Smith

et al. (2014), estimation of this effect is challenging under the conventional two-part model.

Under the conventional model, the estimate of the treatment effect is conditional on fixed
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values of the remaining covariates and will thus vary depending on values of these covariates.

Moreoever, when random effects are included, point estimates of covariate effects on the

overall mean require averaging over the random effects via numerical integration techniques

(Liu et al. 2010; Tom et al. 2013). Further, to obtain confidence intervals on these estimates,

resampling techniques such as bootstrapping must be employed (Liu et al. 2010). Because of

the computational burden required to obtain inference on the covariate effects on the overall

mean, some have considered population-average models that omit the random effects (Lu

et al. 2004), inducing the assumption of independence between the binary and continuous

parts, while adjusting the standard errors for correlation among repeated measures within

each of the two parts separately. Ignoring the cross-part correlation, however, has been

shown to induce bias in parameter estimates (Albert 2005; Su et al. 2009; Liu et al. 2010),

leaving this as an unappealing solution. Thus, there remains the need for a flexible two-part

model that accommodates dependence between components while providing an interpretable

parameterization of the marginal mean in longitudinal studies.

3.3 Marginalized Two-Part Longitudinal Model

3.3.1 Model Specification

To overcome the limitations posed by the conventional two-part model, we propose a

new marginalized two-part (MTP) longitudinal model that directly parameterizes the effect

of covariates on the marginal mean of Yij , extending the MTP model developed in Smith

et al. (2014) for cross-sectional semicontinuous data. The MTP model has the same two-

part structure as the conventional model given in (3.1), but rather than parameterizing the

model in terms of µij , the log-scale location parameter of the conditionally positive values,

we parameterize the model in terms of νij = E(Yij |bi), the overall mean among users and

non-users combined. Thus, we have

logit(πij) = x′1ijα+ z′1ijai and
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ln(νij) = x′2ijβ + z′2ijdi or equivalently, (3.3)

νij = E(Yij |bi) = exp
(
x′2ijβ + z′2ijdi

)
.

In contrast to γ and ci in the conventional two-part model of (3.2), which represent effects

on the subpopulation of users, β and di represent the fixed and random effects on the overall

mean of combined users and non-users. Allowing bi to now take b′i = (a′i, d
′
i), the random

effects are assumed to jointly follow a multivariate normal distribution, inducing cross-part

correlation as in the conventional two-part model:

bi =

 ai

di

 ∼ N
0,Σ =

 Σaa Σad

Σ′ad Σdd


 . (3.4)

Under the MTP model parameterization, βk is the increment in the log of the overall mean,

E(Yij |bi), corresponding to a unit increase in the kth covariate, x2kij . This is in contrast to γk

in equation (3.2) which represents a location shift in ln(Yij |Yij > 0). Thus, exp(βk) represents

the multiplicative effect of a unit increase in the kth covariate on the mean E(Yij |bi) for the

entire population, including the users and non-users. Because this relationship is dependent

on the parameterization and not specific to the distribution chosen for g(·) in (3.1), this

interpretation remains the same regardless of the density chosen for the positive values.

3.3.2 Subject-Specific and Population Average Interpretations

Because random effects are included in the model, parameters naturally take a subject-

specific interpretation. However, investigators are often interested in the effect of a covariate

on population average outcomes as opposed to subject-specific ones. While a population

average interpretation is often also referred to as a “marginal” interpretation, for clarity we

reserve “marginal” in this chapter to refer to marginalizing over the populations of users and

non-users. As detailed in Appendix B, under the MTP, the population average marginal mean
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E(Yij) is expressed as

E(Yij) = exp

(
x′2ijβ +

1

2
z′2ijΣddz2ij

)
. (3.5)

It is therefore a simple computation to estimate both subject-specific and population

average marginal means, and functions thereof, under the MTP model parameterization.

Specifically, differences in expected means between groups or ratios of such means are easily

estimated from standard model output. Additionally, for covariates not included in z2ij , the

regression effects take both subject-specific and population average interpretations. Specifi-

cally, for x2kij not included in z2ij , the ratio of the population average means is given by:

E(Yij |x2kij = l + 1,x2(−k)ij)

E(Yij |x2kij = l,x2(−k)ij)
=

exp
(
x2(−k)ijβ(−k) + βk · (l + 1) + 1

2

(
z′2ijΣddz2ij

)]
exp

[
x2(−k)ijβ(−k) + βk · l + 1

2

(
z′2ijΣddz2ij

)]
= exp(βk),

where x2(−k)ij is x2ij with the k covariate removed and β(−k) is β with βk removed. Details

are provided in Appendix B. Under the MTP model, then, exp(βk) has a dual interpretation

as both a subject-specific and population average multiplicative effect on the marginal mean

per unit increase in the kth covariate so long as that covariate is not included as a random

effect. In many cases, investigators are interested in the effect of a binary covariate indicating

receipt of some form of treatment or intervention, and this covariate is most often not included

as a random effect, creating a dual interpretation for treatment effects commonly estimated by

two-part models. In the special case when a random intercept alone is included in the overall

mean specification, all covariate effects can be interpreted as population average effects.

3.4 Parameter Estimation, Computation, and Model Evaluation

Maximum likelihood estimation for the MTP model can present significant computational

challenges, particularly when higher dimensional random effects are included in the model.
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Our experience suggests that maximum likelihood estimation using an adaptive Gaussian

quadrature often fails to converge for models that include random slopes. Even when models

converge, run times can exceed several hours or even days for moderately large datasets (e.g.,

24,000 individuals). We therefore adopt a fully Bayesian approach, which we have found

to improve computational tractability relative to maximum likelihood and to accommodate

models with correlated multidimensional random effects for both components of the MTP

model.

To facilitate posterior inference, we make use of the likelihood in equation (3.1) by re-

expressing the location parameter µij in terms of νij given in equation (3.3). For example,

suppose we consider the LSN distribution for g(·) in equation (3.1), which takes the log-

normal density as a special case while allowing greater flexibility (Azzalini 1985; Chai and

Bailey 2008). The LSN density is given by

g(yij |yij > 0;µij , ω, κ, bi) =
2

ωyij
φ

(
ln yij − µij

ω

)
Φ
(κ
ω

(ln yij − µij)
)
,

where µij is a subject-specific location parameter, ω > 0 represents the scale parameter, and

κ represents the shape parameter, all on the log scale; φ(·) is the probability density function

and Φ(·) is the cumulative distribution function of the standard normal density. In previous

work (Smith et al. 2014), we found that the LSN density displayed better properties and

more appropriately accounted for skewness commonly observed in semicontinuous data than

the log-normal distribution. Using this density, the overall marginal subject-specific mean is

given by

E(Yij |bi) = νij = 2πij exp

(
µij +

ω2

2

)
Φ(ωδ), (3.6)

where δ = κ√
1+κ2

, providing the link between µij and νij . The likelihood for the MTP model

using the LSN distribution is in turn expressed as

f(y|α,β, ω2, κ,Σ) =
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n∏
i=1

∫ ∞
−∞

 ni∏
j=1

(1− πij)1(yij=0)

{
2πij
ωyij

φ

(
ln yij − µij

ω

)
Φ
(κ
ω

(ln yij − µij)
)}1(yij>0)

N(bi; 0,Σ)dbi.

(3.7)

In order to utilize this likelihood for estimation of the MTP model, we solve equation (3.6)

for µij as a function of νij , obtaining

µij = ln νij − ln 2− lnπij − ln [Φ(ωδ)]− ω2

2

= x′2ijβ + z′2ijdi − ln 2− lnπij − ln [Φ(ωδ)]− ω2

2
. (3.8)

We then plug this expression for µij into (3.7) to proceed with model estimation.

Assuming prior independence, the joint posterior distribution of the parameters is given

by

p(α,β, ω2, κ,Σ|y) ∝ f(y|α,β, ω2, κ,Σ)× p(α)p(β)p(ω2)p(κ)p(Σ), (3.9)

where f(y|α,β, ω2, κ,Σ) is given in equation (3.7) with µij parameterized as in (3.8), and

the p(·)’s denote prior distributions for the respective parameters. To complete the Bayesian

specification, we assign proper but diffuse priors to model parameters. For the fixed effects,

we assume α,β ∼ N(0,Σ0) where Σ0 is a diagonal matrix with diagonal elements of 1000.

We assume Σ, the covariance of the random effects, follows an inverse-Wishart IW(q, I) prior

distribution with q degrees of freedom, where I is the q × q identity matrix. Scale and

shape parameters, ω2 and κ are assumed to follow an inverse-Gamma IG(0.001, 0.001) and a

Uniform(-10, 10) prior distribution, respectively. In our experience, the range from -10 to 10

for κ is sufficient to capture any degree of skewness that is likely to be observed in practice.

For posterior computation we use Markov chain Monte Carlo (MCMC), which iteratively

draws samples of the model parameters. At convergence, the chain achieves a stationary

distribution that is the joint posterior distribution of the model parameters. The MCMC

computation can be implemented conveniently in standard software such as SAS PROC MCMC,
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which employs a hybrid of random walk Metropolis-Hastings steps and conjugate Gibbs up-

dates. Appendix C provides PROC MCMC code for fitting the LSN MTP model.

We assess model fit, and in particular, the complexity of the random effects specifica-

tion needed, via model selection using the deviance information criterion (DIC) proposed by

Spiegelhalter et al. (2002). Letting θ = (α,β, ω2, κ,Σ)′ denote the collection of all model

parameters, the DIC is defined as D̄(θ) + pD, where D̄(θ) is considered a measure of the

goodness of fit and pD is a penalty for model complexity. As with other penalized selection

criteria, lower DIC values indicate better model fit (Spiegelhalter et al. 2002).

3.5 Analysis of Change in VA Specialty Care Copayment

The Veterans Health Administration (VA) significantly increased its outpatient visit co-

payments in December 2001, with primary care copayments increasing from $0 to $15 per

visit and specialty care copayments increasing from $15 per visit to $50. Reflecting changes

in the health care market, this change created a natural experiment to examine the impact of

copayments on health expenditures for outpatient specialty care. Veterans with sufficiently

low income or with sufficient disability from military service are exempt from outpatient visit

copayments, creating a control group that did not experience this increase in price. The data

used to assess the impact of this copay change have been described previously (Maciejewski

et al. 2010a; 2012a). Briefly, 51,503 veterans with hypertension who were diagnosed and pre-

scribed an antihypertensive medication in 2000 at four VA Medical Centers (VAMCs) were

identified. Veterans were then excluded if they: (i) were not alive during the entire study

period (2000-2003) (n=7007); (ii) had a majority of their primary care visits outside of these

four VAMCs (n=10,317); (iii) had an unknown military-service-connected disability needed

to determine copayment exemption (n=47); or (iv) were hospitalized when the copayment

increase went into effect or for more than one year during the study period (n=29).

Because the data were originally drawn for a study designed to assess the impact of a

medication copayment increase in 2002, veterans were also excluded if they did not have

a required history of medication fills (n=13,095) or their medication copayment exemption
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status was unknown (n=13,068). These exclusions resulted in an sample of 7940 veterans

with hypertension, including 4395 copay-exempt veterans and 3545 veterans required to pay

copayments.

To reduce non-equivalence between the copay exempt and required cohorts, veterans in

the two groups were matched via one-to-one propensity score matching without replacement

using a modified version of the Parsons’ nearest neighbor greedy matching algorithm (Parsons

2001). The propensity score model included age, sex, race, marital status, comorbidity burden

in 2000 via the Diagnostic Cost Group (DCG) score, depression diagnosis in 2000, number

of antihypertensive medications in 2000, VAMC, and ZIP code-level variables based on year

2000 census data of proportion of the population in each category of highest education level

attained (less than high school, high school, college or higher) and mean per capita income.

Matching resulted in an analytic sample of 1693 veterans exempt from copayments and 1693

veterans required to pay copayments who were well matched. Descriptive statistics for these

two cohorts are presented in Table 3.1.

The expenditure outcome of interest included all outpatient expenditures for specialty

care, identified using clinic identifiers in the VA administrative data. The annual VA expen-

ditures for outpatient specialty visits were constructed for each patient in each observation

year (2000-2003), two years prior to and two years after the copayment change. All expen-

ditures were inflation adjusted to 2003 dollars using the medical component of the consumer

price index.

The percentage of patients with zero expenditures ranged from 36% to 16% over the study

period, yielding the need for a two-part model. To assess the effect of the copayment increase

on specialty care expenditures, we fit the MTP model with identical explanatory variables in

the binary and overall mean components: (i) an indicator of whether or not a veteran was

required to pay copayments, (ii) fixed effects for each year with year 2000 as reference, and (iii)

interactions between the year fixed effects and copay exemption status. Random intercepts

and slopes were included in both components with a 4×4 covariance matrix. For comparison,

we fit a reduced model that excluded the random slope in the binary part, resulting in a 3×3
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covariance matrix for the random effects.

The DIC values for the full and reduced models were 167,798 and 168,235, respectively,

indicating the better fit for the full model with random intercepts and slopes in both compo-

nents. Posterior means and standard deviations of the parameters from both components of

this model are presented in Table 3.2, and Figure 3.1 displays the model estimated means at

each year with their 95% credible intervals (CIs). Model specification details and convergence

diagnostics are presented in Appendix D.

Specialty care expenditures remained lower for those required to pay copays throughout

the study period than for those exempt. After the copayment increased in December 2001,

expenditures among the copay-required cohort decreased very slightly while the expenditures

among the copay-exempt cohort continued to increase. Specifically, we can estimate the

multiplicative difference in expenditures among those having to pay the copayment compared

to those exempt in each year by exponentiating β4 through β7 in Table 3.2 for years 2000

through 2003, respectively. Note that because the copayment indicator and interactions

were not included as random effects, these differences can be interpreted as both population

average and subject-specific effects. Additionally, by computing the difference in means using

equation (3.5) at each iteration of the MCMC chain, we can estimate the additive difference

in population average means with 95% CIs. These results are shown in Table 3.3.

Those required to pay copayments had 0.71 times the expenditures (95% CI: [0.61, 0.81])

of those exempt in 2000, prior to the copayment increase. Two years after the increase, those

required to pay copayments had 0.51 times the expenditures (95% CI: [0.45, 0.58]), suggesting

a notable impact of the copayment increase on mean outpatient specialty care expenditures.

Similarly, those required to pay copayments had on average $363 lower expenditures (95%

CI: [-$519, -$219]) in 2000 than those exempt, but had on average $803 lower expenditures

in 2003 (95% CI: [-$988, -$639]).
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3.6 Conclusion

We proposed a marginalized two-part model for longitudinal semicontinuous data that

allows investigators to obtain the effect of covariates on the overall population mean. Our

model directly parameterizes the covariates in terms of the population mean while still ap-

propriately accounting for the excess number of zeros and correlation between the two model

components. It allows for estimation of the overall population average mean, in addition

to subject-specific means, and many covariates take a dual population average and subject-

specific interpretation. The proposed Bayesian inferential approach can easily accommodate

complex random effect structures and estimate credible intervals for quantities of practical

interest, such as differences in mean expenditures.

Using the MTP model, we estimated that the requirement to pay a VA copayment for

specialty care outpatient visits was associated with lower specialty care outpatient expendi-

tures compared to a control group that was exempt from copayments, and that an increase in

this copayment was associated with a larger difference in expenditures. Specifically, the mean

difference in outpatient specialty care expenditures among those required to pay compared to

those exempt increased from $363 in 2000, two years prior to the copayment increase, to $803

in 2003, two years after the copayment increase. In contrast to the conventional two-part

model, which provides estimates of the effect of a policy change separately on the probability

of incurring expenditures and on the log of expenditures given that are incurred, these MTP

results are directly interpretable and useful for informing policy decisions.

These results suggest that copayment increases can significantly reduce demand for out-

patient specialty care, which contributes to the continued escalation in health expenditures

in the United States. As health expenditures continue to increase, the MTP model will be

useful for examining a variety of interventions that may be utilized to restrain the continued

growth. Further, the MTP model could also be more generally useful in estimating aggregate

health expenditures in a population, which private insurers must do annually for premium

rate setting and government agencies must do when preparing budget requests for Congress.
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Future directions for the MTP model could include extensions to spatially correlated data

or multi-level hierarchical models and applications to other fields, such as substance abuse or

psychometric research. The MTP model could also be extended to incorporate latent classes

for examining heterogeneous treatment effects across patient subpopulations.

In short, the proposed longitudinal MTP model provides a straightforward method for

estimating covariate effects on the marginal mean of the population as a whole. Such effects

are challenging to estimate in conventional two-part models. Further, many other quantities,

such as the overall mean and differences in means, can be easily estimated on the original scale

of the data. As such, the MTP model simplifies economic evaluations that are increasingly

critical to understanding the return on investment of new interventions, policies and programs.
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Figure 3.1: Model estimated mean expenditures and 95% credible intervals (shaded regions)
for the outpatient specialty care analysis
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Table 3.1: Descriptive statistics of the matched cohorts in the outpatient specialty care copay
study

Copayment Status
Exempt Nonexempt
n = 1693 n = 1693

Mean (SD)
Age 65.8 (10.9) 66.1 (10.8)
DCG score in 2000 0.76 (1.16) 0.75 (1.13)
Baseline number of antihypertensive medications 7.3 (4.3) 7.1 (4.0)
Proportion with < high school education in ZIP code 18 (11) 18 (10)
Proportion with high school education in ZIP code 53 (10) 53 (10)
Proportion with college education in ZIP code 28 (16) 29 (16)
Mean per capita income in ZIP code in $10,000 5.19 (1.70) 5.21 (1.70)

Percent
Male 97.3 97.3
White 65.3 65.8
Nonwhite 13.6 13.6
Unknown race 21.1 20.6
Married 69.9 69.1
Depression diagnosis at baseline (%) 3.8 3.2
VAMC A 15.6 16.0
VAMC B 25.1 23.6
VAMC C 36.0 36.7
VAMC D 23.3 23.7
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Table 3.2: Posterior means and 95% credible intervals of MTP model parameters
Posterior 95% Credible

Parameter Mean Interval
Binary Component

Intercept α0 2.13 (1.89, 2.35)
Year 2001 α1 0.31 (0.09, 0.53)
Year 2002 α2 0.83 (0.56, 1.12)
Year 2003 α3 0.65 (0.30, 0.99)
Must Pay Copay α4 -1.06 (-1.33, -0.78)
Year 2001 × Must Pay α5 0.005 (-0.28, 0.30)
Year 2002 × Must Pay α6 -0.15 (-0.49, 0.15)
Year 2003 × Must Pay α7 -0.34 (-0.68, -0.0004)

Overall Mean Component
Intercept β0 6.24 (6.15, 6.33)
Year 2001 β1 0.13 (0.05, 0.22)
Year 2002 β2 0.23 (0.13, 0.32)
Year 2003 β3 0.28 (0.17, 0.37)
Copay Required β4 -0.34 (-0.49, -0.21)
Year 2001 × Must Pay β5 -0.02 (-0.15, 0.10)
Year 2002 × Must Pay β6 -0.20 (-0.33, -0.08)
Year 2003 × Must Pay β7 -0.32 (-0.46, -0.18)

Shape and Scale Parameters
Shape κ -0.95 (-1.22, -0.61)
Scale ω2 1.54 (1.30, 1.75)

Covariance of Random Effects
Variance of Binary Random Intercept σ2

11 5.18 (4.19, 6.21)
Variance of Binary Random Slope σ2

22 0.46 (0.31, 0.62)
Variance of Overall Random Intercept σ2

33 1.77 (1.59, 1.98)
Variance of Overall Random Slope σ2

44 0.10 (0.08, 0.13)
Covariance Parameters: σ12 -0.30 (-0.59, -0.01)

σ13 2.51 (2.18, 2.84)
σ14 -0.18 (-0.28, -0.07)
σ23 -0.0004 (-0.12, 0.14)
σ24 0.11 (0.06, 0.16)
σ34 -0.15 (-0.21, -0.10)
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Table 3.3: Model estimated effects of copayment requirement
Multiplicative Effect Additive Effect

Estimated Estimated
Mathematical Effect Mathematical Effect

Year Expression (95% CI) Expression (95% CI)

2000 eβ4
0.71

E(Yi,2000|Pay = 1)− E(Yi,2000|Pay = 0)
-$363

(0.61, 0.81) (-$519, -$219)

2001 eβ5
0.69

E(Yi,2001|Pay = 1)− E(Yi,2001|Pay = 0)
-$396

(0.61, 0.78) (-$549, -$265)

2002 eβ6
0.58

E(Yi,2002|Pay = 1)− E(Yi,2002|Pay = 0)
-$597

(0.51, 0.65) (-$746, -$455)

2003 eβ7
0.51

E(Yi,2003|Pay = 1)− E(Yi,2003|Pay = 0)
-$803

(0.45, 0.58) (-$988, -$639)
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CHAPTER 4: COMPARISON OF ONE-PART MODELS AND
A TWO-PART MARGINALIZED MODEL FOR THE
ANALYSIS OF HEALTH CARE EXPENDITURES

4.1 Introduction

There are a number of analytic challenges associated with the analysis of health care

expenditures. They are often characterized by two defining features: a portion of the sample

who are non-users with zero expenditures, and a highly skewed distribution of expenditures

among those who are users. Data with such features are often deemed “semicontinuous” to

describe the mixture of the discrete point mass at zero with the skewed distribution of positive

values. They are often thought of as arising from two distinct stochastic processes: one

governing the occurrence of zeros and the second determining the observed value conditional

on it being a nonzero response. The first process is commonly referred to as the “binary”

part of the data, while the second is often termed the “continuous” part.

To accommodate these two processes, analysts often consider two-part models. Because

they explicitly accommodate both data generating processes, two-part models can be an ideal

choice for modeling semicontinuous data. Most commonly, the binary part is modeled via

logistic regression and the continuous component via a log-normal model. However, because

the log-normal distribution imposes a sometimes unrealistic condition of symmetry on the

log-scale, alternative distributions such as the log-skew-normal or generalized gamma have

recently been proposed for the continuous part in an effort to relax these assumptions (Az-

zalini 1985; Chai and Bailey 2008; Manning et al. 2005; Liu et al. 2010). When adjusting for

covariates, these models typically include one set of parameters for the binary response and

a second set for the continuous component conditional on a positive response. In particular,

covariates in the second, or continuous, part are interpreted conditionally upon having ob-
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served a positive outcome. Attempts to combine these two parts to form the overall marginal

mean effect of any covariate relies on specifying values for each of the other covariates in the

model, and therefore varies depending on those values. As such, it is generally challenging to

obtain a straightforward interpretation of covariate effects on the marginal mean in two-part

models.

In many cases, however, investigators’ main interest lies in examining effects on the

marginal mean in order to draw conclusions about the impact of predictors on the popu-

lation as a whole. To accomplish this, “one-part” models provide an attractive alternative.

One-part models incorporate both the zero and positively continuous values as arising from

the same stochastic process rather than explicitly accounting for the point mass at zero, and

in doing so, they permit interpretation of covariate effects on the overall mean. These models

typically take one of two general forms. In one form, a small constant is added to the outcome

to ensure all values are positive and the outcome is then transformed to minimize skewness.

Most commonly, a linear model for the log transformed outcome is used. Alternatively, a gen-

eralized linear model (GLM) can be utilized, often with a log link, to avoid transformation

and the need to add a constant to all values. Further, these GLMs can be fit using quasilike-

lihood with empirical sandwich standard errors (Royall 1986; Kauermann and Carroll 2001),

avoiding parametric assumptions. While these standard errors provide asymptotically valid

inference even if the variance model is misspecified, their finite sample performance in the

presence of many zero values has not been fully evaluated.

Recently, Smith et al. (2014) proposed a fully parametric marginalized two-part (MTP)

modeling approach that specifies the same marginal mean model as a typical one-part GLM

with log link while simultaneously accounting for the point mass at zero. Rather than param-

eterizing the model in terms of the mean of the transformed, conditionally positive outcomes

in the second part, as in other two-part models, the MTP model parameterizes covariate

effects directly on the overall mean, E(Y ), on the untransformed scale. This allows param-

eter estimates to be interpreted as the multiplicative effect on the overall mean rather than

on the conditional mean of only the positive outcomes. This approach also has the advan-
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tage of separately providing estimates of covariate effects on the probability of incurring a

positive-valued outcome, as in the first part of two-part models, as well as accounting for

the zero-inflated and skewed nature of many semicontinuous outcomes. On the other hand,

however, it relies on fully parametric assumptions, unlike GLMs fit with quasilikelihood.

Because these GLMs rely on fewer assumptions, it may be natural to question whether

one-part models fit to semicontinuous data perform better than MTP models in terms of

bias and precision when interest lies in marginal inferences on the overall mean. Duan et al.

(1983), Diehr et al. (1999), Madden et al. (2000), and Buntin and Zaslavsky (2004) have each

compared the performance of “conventional” two-part models with various one-part models.

In each case, the models were assessed using real datasets and performance was determined

using a combination of goodness of fit criteria and predictive accuracy. Conclusions were

mixed, with one-part models performing equally well or better on some datasets and two-

part models exhibiting better performance on others.

In particular, Buntin and Zaslavsky fit one-part GLMs with quasi-likelihood, suggesting

that excess zeros in the data pose no problem when fitting a GLM due to the use of a link

function rather than using a log-transformed outcome. They tested several one- and two-part

models with the goal of predicting Medicare expenditures using a sample with 8.6% of indi-

viduals having zero expenditures and assessed each model’s predictive ability via split-sample

cross-validation. They concluded that, unless there is specific interest in separately modeling

the probability of positive expenditures, researchers begin by fitting one-part models, with the

caveat that this may lead to reduced efficiency in standard errors relative to correctly-specified

parametric models. If the probability of positive expenditures were of specific interest, or if

the researchers were unable to find a suitably fitting one-part model, they then suggested

proceeding to examine two-part models.

While Buntin and Zaslavsky have provided the main comparison to date between the pre-

dictive abilities of one-part GLMs and conventional two-part models, more work is needed to

assess model performance under the presence of a greater proportion of zeros as well as the

ability of one- and two-part models to accurately estimate the effects of covariates. Previously,
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comparing model-estimated covariate effects across one- and two-part models was not gener-

ally possible because the conventional two-part model separately specified the probability of a

positive expenditure and the level of expenditure conditional on it being positive. The recent

introduction of the MTP model, however, provides an analysis approach that that explicitly

accounts for excess zeros without sacrificing the interpretability of covariate effects on the

overall mean. The performance of the MTP model has not been examined in comparison to

one-part models, nor has a formal simulation study comparing such one- and two-part models

been conducted.

To further evaluate differences in these modeling approaches, we report simulation results

on the performance of the MTP model and three different GLMs fit with quasilikelihood

using empirical standard errors. This simulation design was motivated in part by an analysis

to assess the impact of a behavioral weight loss program on health care expenditures in the

year following enrollment, presented in Smith et al. (2014). We evaluate bias, test size, and

coverage of nominal 95% confidence intervals under varying data generating mechanisms.

The remainder of this paper is laid out as follows. Section 4.2 briefly reviews the MTP

model and GLMs fit with quasilikelihood, while Section 4.3 discusses the details of the simu-

lations conducted. Section 4.4 shows the results of the simulations, and Section 4.5 provides

a discussion of the implications of the results and points to areas for future research and

investigation.

4.2 Models Compared

In this simulation study, we compare the MTP model developed in Smith et al. (2014)

and GLMs fit with quasilikelihood. These models take the same mean structure, providing

easily comparable quantities, and both fit the data on the original untransformed scale, so

retransformation methods are not required. We begin with a brief review of the models

considered.
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4.2.1 MTP Model

For data consisting of independent observations, the generic form of a two-part model can

be written as

f(yi) = (1− πi)1(yi=0) × [πig(yi|yi > 0)]1(yi>0) , yi ≥ 0, i = 1, . . . , n, (4.1)

where πi = Pr(Yi > 0), 1(·) is the indicator function, and g(yi|yi > 0) is any density function

applicable to the positive values of Yi. To obtain interpretable covariate effects on the marginal

mean, Smith et al. (2014) proposed the MTP model that parameterizes the covariate effects

directly in terms of the marginal mean, νi = E(Yi), on the original (i.e., untransformed) data

scale. The MTP model specifies the linear predictors

logit(πi) = z′iα and

E(Yi) = νi = exp(x′iβ). (4.2)

Smith et al. developed this model with g(yi|yi > 0) taking either the log-normal or log-

skew-normal (LSN) density. The LSN density relaxes the the log-normal density’s assumption

of log-scale normality through inclusion of a shape parameter, κ, allowing skewness on the

log-scale, with the log-normal density taking the special case of κ = 0. In previous work

(Smith et al. 2014), we found that the LSN density displayed better properties and more

appropriately accounted for skewness commonly observed in semicontinuous data than the

log-normal distribution. For this reason, we focus on the LSN MTP model here.

Using the linear predictors as in equation (4.2), the generic form of the two-part LSN

model for independent data is given by:

f(yi) = (1− πi)1(yi=0) × [πiLSN(yi; ξi, ω, κ)]1(yi>0) , yi ≥ 0, i = 1, . . . , n, (4.3)

where LSN(·; ξi, ω, κ) denotes LSN distribution with location parameter ξi, scale parameter

63



ω > 0, and shape parameter κ, all on the log scale, given by

g(yi|yi > 0) =
2

ωyi
φ

(
ln yi − ξi

ω

)
Φ
(κ
ω

(ln yi − ξi)
)
, (4.4)

where φ(·) and Φ(·) are the probability density function and cumulative distribution function,

respectively, of the standard normal density. The marginal mean of Yi is then given by:

E(Yi) = νi = 2πi exp

(
ξi +

ω2

2

)
Φ(ωδ), (4.5)

where δ = κ√
1+κ2

. In order to re-express the LSN likelihood as a function of β, we solve

equation (4.5) for ξi in terms of β:

ξi = ln νi − ln 2− lnπi − ln [Φ(ωδ)]− ω2

2

=x′iβ − ln 2− lnπi − ln [Φ(ωδ)]− ω2

2
.

After plugging this expression into equation (4.3) above, parameter estimates can be

obtained using standard optimization routines such as Newton-Raphson or Fisher scoring.

Model-predicted means and standard errors can also be easily obtained under this param-

eterization in a single step by estimating exp(x′iβ) at the desired values of the covariates.

SAS code (SAS Institute, Cary, NC) implementing the MTP model using PROC NLMIXED is

provided in Smith et al. (2014).

4.2.2 GLMs Fit with Quasilikelihood

GLMs fit using quasilikelihood require only the specification of the mean and variance,

as opposed to the full distribution, making them an attractive alternative when assumptions

regarding the underlying parametric distribution are questionable. Specifically, when using a

log link as is most commonly specified for health care expenditures, the overall mean model
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is given by

E(Yi) = νi = exp(x′iβ), (4.6)

the same as specified in the MTP model. A commonly used family of variance functions is

the power family, taking the form

Var(Yi) = ρνλi = ρ exp(x′iβ)λ, (4.7)

and methods have been proposed to assist in determining the optimal value of λ (Manning

and Mullahy 2001; Park 1966; Basu and Rathouz 2005). Specifically, commonly used values

include λ = 0, constant variance, λ = 1, variance proportional to the mean, and λ = 2,

variance proportional to the square of the mean, or equivalently, standard deviation propor-

tional to the mean. Empirical “sandwich” variance estimators (Royall 1986; Kauermann and

Carroll 2001) are commonly paired with such GLMs, such that if the variance is misspecified,

they yield valid inference under many conditions where the marginal mean model is correctly

specified (Fitzmaurice et al. 2012). For this comparison, we utilize the empirical standard

errors and fit GLMs with λ = 0, 1, and 2, or with constant variance, variance proportional to

the mean, and standard deviation proportional to the mean. Such models are implementable

in most standard statistical software packages.

4.3 Simulation Details

4.3.1 Mean Structure and Properties Examined

To evaluate the performance of the LSN MTP and the GLMs, we conducted a series

of simulation studies motivated in part by the analysis of a behavioral weight loss program

presented in Smith et al. (2014). That study evaluated the effect of a system-wide weight

loss intervention (MOVE!) implemented by the Veterans Affairs (VA) health care system

beginning in 2006 to address the high prevalence of obesity among VA patients (Kahwati et al.
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2011). As part of that study, the total expenditures in the year following enrollment of 18,214

MOVE! enrollees were compared to those of 18,214 non-enrollees who were matched to the

enrollees on sex, race (white or non-white), marital status (married or non-married), copay

status (exempt vs. non-exempt), veterans integrated service network (VISN) of residence,

BMI, and comorbidity burden, assessed via the 2002 diagnostic cost group (DCG) score. The

goal of the analysis was to assess whether MOVE! enrollment was associated with a difference

in total health care costs in the following year. With 17% of the MOVE! enrollees having zero

expenditures in the year, results from one-part GLMs may have been unreliable, and use of

the MTP model was therefore motivated.

Basing covariate distributions and parameter values on those of the MOVE! study, all

simulated data scenarios considered here were generated assuming the following marginal

mean structure:

E(Yi) = νi = exp(6 + 0.2x1i − 0.01x2i + 0.05x3i), (4.8)

where x1i ∼ Bernoulli(0.5), x2i ∼ N(0, 1), and x3i ∼ Pois(1). We considered three different

scenarios for the distribution of the positive values of Yi: (1) distributed as LSN with low

log-scale skewness, (2) distributed as LSN with higher log-scale skewness, and (3) distributed

as generalized gamma (GG). For each of these three scenarios, we considered data with

approximately 20% zeros and approximately 40% zeros to assess the influence of the size of

the discrete point mass on the performance of each model. Specifically, zeros were introduced

in the Yi’s with probability πi, where πi was given by logit(πi) = 3−4x1i+3.5x2i+2.5x3i and

logit(πi) = 3− 7x1i + 5x2i + 2x3i to achieve approximately 20% and 40% zeros, respectively.

For each of these six combinations of distributions and percentages of zeros, we evaluated

datasets of sample sizes 200, 1,000, and 10,000 to assess the impact of sample size on model

performance, resulting in a total of 18 simulations with 1,000 datasets each. In each case,

the mean model of the GLMs and MTP models fit to the data were correctly specified as

E(Yi) = exp(β0 + β1x1i + β2x2i + β3x3i).

To assess the performance of each model, we examined the mean bias, median bias, and
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percent relative median bias of parameter estimates, as well as mean and median bias of

model-predicted “total cost”, the simulated outcome. Total cost bias was calculated as the

average difference in the prediction of individuals’ observations and their true theoretical

means, based on their respective combination of covariates. We also examined coverage

probability of nominal 95% Wald-type confidence intervals for each parameter as well as total

cost predictions. For each of the 18 scenarios, we then re-generated data with β1 = 0 to

mimic a null hypothesis of no treatment effect for the binary variable x1i in order to evaluate

Type I error rates for each model at a nominal 0.05 significance level.

4.3.2 Simulation 1: Log-Skew-Normal Data

In the first set of simulations, we assumed the positive values of Yi followed the LSN

density shown in equation (4.4). Thus, in this simulation, the parametric assumptions of

the MTP model were met. We set the scale parameter, ω, at 1.2 and set the log-scale

skewness parameter κ at 0.5 and 5.0 for the low log-scale skewness and high log-scale skewness

simulations, respectively.

4.3.3 Simulation 2: Generalized Gamma Data

In the second set of simulations, we investigated the performance of the MTP relative to

that of the one-part GLMs when the parametric distributional assumptions were not met.

The generalized gamma is a flexible, three-parameter distribution that takes as special cases

the standard gamma, inverse gamma, Weibull, and log-normal distributions (Manning et al.

2005; Liu et al. 2010). The density is given by

f(yi;κ, µi, σ) =
ηη

σyiΓ(η)
√
η

exp [u
√
η − η exp(|κ|u)] ,

where η = |κ|−2, u = sign(κ) (log(yi)− µi) /σ, µi is the location parameter, σ > 0 is the scale

parameter, and κ is the shape parameter. As in Simulation 1, we set the scale parameter, σ,

at 1.2, and we and set the shape parameter, κ, at 0.63 based on the analysis from Liu et al.
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(2010). Computational details from both simulations are provided in Appendix E.

4.4 Simulation Results

4.4.1 Log-Skew-Normal Results

Descriptive statistics on the six datasets generated from the LSN distribution with lower

log-scale skewness are shown in Table 4.1, and median bias from the models fit on each of

these datasets is shown in Table 4.2. Results with higher log-scale skewness were similar and

are shown in Appendix E, along with mean bias and percent relative median bias. The MTP

model provided the least biased estimates under all scenarios, which is expected given the

parametric assumptions of the model were met. Among all models, bias generally decreased

with sample size, and among the GLMs, was noticeably larger when the data had 40% zeros

as opposed to 20%. In particular, β1, the treatment effect of main interest, was negatively

biased under all of the GLMs. With 40% zeros, the negative bias increased such that, for

sample sizes of 200 and 1,000, the GLMs were on average producing negative treatment effect

estimates instead of positive ones.

Table 4.3 shows coverage probabilities of the 95% Wald-type confidence intervals from the

models fit to each of the LSN generated datasets. The MTP model maintained approximately

0.95 coverage probability under all scenarios. Even with empirical standard errors, modest

reductions in coverage probability were seen for the GLMs with 20% zeros, with coverage

ranging from 0.74 to 0.93. With 40% zeros, coverage dropped significantly for the GLMs,

particularly for the effects of covariates. In particular, coverage for β1, the treatment effect,

ranged from 0.48 to 0.75 for the GLMs with 40% zeros. No clear pattern was seen in the

coverage probability with increasing sample size.

4.4.2 Generalized Gamma Results

Descriptive statistics on the six datasets generated from the GG distribution are shown

in Table 4.4, and median bias from the models fit on each of these datasets is shown in Table
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4.5. Under this scenario, when the parametric assumptions of the MTP model were no longer

met, the MTP model appeared to incur slightly more bias in estimating the intercept, β0,

and subsequently, in total cost prediction. Notably, the bias in the intercept and total cost

prediction did not improve with increased sample size. For the estimation of covariate effects,

however, bias remained low for the MTP model regardless of sample size or percentage of

zeros. The GLMs again performed much better with 20% zeros than with 40%, and the bias

incurred appeared to decrease with sample size. Even with a sample of 10,000, however, the

estimate of treatment effect under the GLMs with 40% zeros was strongly negatively biased,

and with the smaller sample sizes, often resulted in estimates of treatment effect that were

in the wrong direction.

Similar trends were seen in the coverage probabilities shown in Table 4.6. Coverage

probabilities for the intercept and total cost prediction under the MTP model dropped to as

low as 0.35 with a sample size of 10,000. Coverage for the covariate effect parameters, however,

remained close to 0.95 under the MTP model regardless of sample size or percentage of zeros.

Similar to the results using the LSN data, the GLMs showed a modest reduction in coverage

with 20% zeros, with values ranging from 0.74 to 0.92. With 40% zeros, however, coverage

for the GLMs dropped significantly for all parameters. In particular, coverage for β1, the

treatment effect, ranged from 0.48 to 0.74 in this scenario. Coverage for total cost prediction

with 40% zeros was higher for the MTP under the smaller sample sizes of 200 and 1,000, but

with 10,000 subjects, the MTP model coverage of total cost prediction dropped substantially

and the GLMs provided higher coverage. None of the models provided particularly good

coverage with 40% zeros and 10,000 subjects, with the highest coverage probability being

0.70.

4.4.3 Type I Error Rates

Type I error rates from each of the models re-run on data simulated with β1 = 0 under

the LSN distribution with low log-scale skewness and the GG distibution are shown in Table

4.7. Results were again similar for the LSN distribution with high log-scale skewness and
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are included in Appendix E. Type I error rates remained close to 0.05 for the MTP model

under all scenarios, while type I errors remained at least somewhat inflated under almost all

scenarios for the GLMs. When the data contained 20% zeros, the GLM type I error rates

ranged from 0.07 to 0.16. With 40% zeros, they ranged from 0.26 to 0.52. Type I errors

seemed to generally decrease with increasing sample size for the GLMs, but particularly with

40% zeros, rates remained significantly higher than the nominal 0.05 significance level at all

sample sizes examined.

4.5 Discussion

Results suggest one-part GLMs fit with quasilikelihood may not in general provide good

alternatives for modeling datasets consisting of a significant proportion of zeros. Even with

20% zeros, some bias and decreased coverage was seen, although this improved with larger

sample sizes. When the distributional assumptions of the MTP were not met, however, the

GLMs provided better predictive accuracy for the total cost outcome, especially when the

percentage of zeros was lower and the sample size was large.

As most health care expenditure datasets are quite complex, there does not appear to

be a single easy solution to finding easily interpretable models that also provide good fit.

Analysts must carefully consider both the properties of their datasets as well as the goals

of their analysis. Our results suggest that if the primary goal is to estimate the effect of a

covariate or treatment on expenditures, the MTP model provided less biased estimates with

appropriate coverage probabilities for the effect, even when the distributional assumptions of

the model were not met. The GLMs consistently provided higher bias and lower coverage for

the effects of covariates than did the MTP model, particularly with a higher percentage of

zeros. In particular, the estimated treatment effects from the GLMs were negatively biased,

often suggesting that the treatment had the opposite effect on expenditures than it actually

did.

Additionally, an analyst may want to consider the implications of a type I error. Even

with only 20% zeros, the GLMs with empirical sandwich standard errors incurred inflated
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type I error rates, and with 40% zeros, the GLMs incurred type I errors in one-quarter to

one-half of all cases. If the cost of a type I error were high, the MTP model may be a safer

alternative, with type I error rates never reaching higher than 7%.

On the other hand, if an analyst’s primary goal is prediction of expenditures, the MTP

model may not be a preferred option if the distributional assumptions are in question. The

MTP model provided biased results with low coverage probabilities for total cost prediction

when data were generated from the GG distribution, and these results did not appear to

improve with increasing sample size. The GLMs, however, provided reasonably low bias in

total cost prediction when the dataset had 20% zeros and the sample size was large.

If one were interested in prediction with a larger percentage of zeros when the distribu-

tional assumptions of the MTP were not met, none of the models we examined provided good

predictions in this scenario. Particularly with larger sample sizes, the MTP model showed

increased bias and lower coverage for predictions when data arose from the GG distribution.

While decreasing with sample size in the GLMs, bias was still substantial and coverage fell

well below the nominal 0.95 level when the data contained a larger percentage of zeros, even

with the largest sample sizes assessed. To accommodate such cases, when interest is in pre-

diction with questionable distributional assumptions and a substantial proportion of zeros,

future work may be needed to find methods that accommodate a large proportion of zeros

with less reliance on parametric assumptions. The MTP model could be extended to fit the

GG distribution, and addition of empirical standard errors to the MTP model may increase

coverage probabilities for predictions under questionable distributional assumptions. Regard-

less of modeling approach chosen, however, analysts will continue to need to carefully balance

trade-offs in model fit, robustness, and interpretability with their specific analytic goals in

mind.
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Table 4.1: Descriptive statistics on LSN simulated data

20% zeros 40% zeros
Percent Mean Median Percent Mean Median

Sample Size Zeros (SD) (Q1-Q3) Zeros (SD) (Q1-Q3)

200 21%
466 184

40%
472 89

(1511) (41-478) (9082) (0-351)

1,000 21%
470 184

40%
452 88

(1804) (40-476) (6489) (0-351)

10,000 21%
472 184

40%
466 88

(2368) (41-477) (12301) (0-351)
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Table 4.2: Median bias of estimated regression coefficients and total cost predictions in the
marginal mean model from LSN data

20% zeros 40% zeros
True GLM GLM GLM GLM GLM GLM

Parameter Value n MTP λ = 0 λ = 1 λ = 2 MTP λ = 0 λ = 1 λ = 2

β0 6 200 -0.02 -0.08 -0.07 -0.08 -0.02 -0.19 -0.18 -0.15
1,000 -0.0009 -0.04 -0.03 -0.03 -0.002 -0.15 -0.14 -0.11
10,000 0.0003 -0.04 -0.006 -0.005 0.0009 -0.07 -0.06 -0.05

β1 0.2 200 0.0009 -0.05 -0.08 -0.13 0.008 -0.29 -0.43 -0.91
1,000 0.005 -0.01 -0.03 -0.05 0.01 -0.16 -0.26 -0.47
10,000 -0.0004 -0.01 -0.01 -0.01 -0.001 -0.09 -0.12 -0.17

β2 -0.01 200 -0.002 0.06 0.10 0.16 -0.001 0.25 0.35 0.79
1,000 0.0001 0.06 0.07 0.08 -0.002 0.21 0.28 0.47
10,000 0.0004 0.06 0.03 0.03 -0.0003 0.14 0.16 0.20

β3 0.05 200 -0.003 0.01 0.03 0.06 -0.002 0.05 0.09 0.24
1,000 0.003 0.02 0.02 0.03 0.003 0.06 0.09 0.16
10,000 0.00004 0.02 0.007 0.008 0.0001 0.04 0.05 0.06

Total Cost 200 -9.47 -50.19 -35.52 -30.44 -9.20 -112.26 -95.16 -82.25
1,000 -0.81 -19.86 -14.11 -11.26 0.36 -64.72 -58.91 -48.93
10,000 -0.26 -3.86 -2.48 -1.79 0.42 -26.07 -20.02 -14.49
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Table 4.3: Coverage of 95% Wald-type confidence intervals for the marginal mean model
parameters and total costs predictions from LSN data

20% zeros 40% zeros
GLM GLM GLM GLM GLM GLM

Parameter n MTP λ = 0 λ = 1 λ = 2 MTP λ = 0 λ = 1 λ = 2
β0 200 0.944 0.881 0.866 0.850 0.936 0.806 0.788 0.833

1,000 0.953 0.883 0.881 0.882 0.951 0.764 0.740 0.817
10,000 0.959 0.882 0.921 0.926 0.958 0.737 0.760 0.838

β1 200 0.936 0.856 0.883 0.842 0.939 0.684 0.673 0.482
1,000 0.932 0.904 0.903 0.880 0.956 0.746 0.695 0.552
10,000 0.960 0.904 0.929 0.916 0.954 0.751 0.726 0.664

β2 200 0.945 0.877 0.834 0.739 0.944 0.682 0.555 0.334
1,000 0.948 0.821 0.817 0.756 0.956 0.553 0.472 0.351
10,000 0.949 0.821 0.830 0.820 0.948 0.557 0.544 0.485

β3 200 0.941 0.884 0.899 0.810 0.934 0.805 0.790 0.566
1,000 0.960 0.906 0.888 0848 0.952 0.776 0.720 0.579
10,000 0.946 0.906 0.909 0.892 0.947 0.751 0.728 0.683

Total Cost 200 0.924 0.855 0.857 0.815 0.907 0.704 0.696 0.583
1,000 0.949 0.873 0.875 0.854 0.951 0.718 0.683 0.611
10,000 0.956 0.898 0.903 0.896 0.952 0.723 0.714 0.687
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Table 4.4: Descriptive statistics on data simulated from the generalized gamma distribution

20% zeros 40% zeros
Percent Mean Median Percent Mean Median

Sample Size Zeros (SD) (Q1-Q3) Zeros (SD) (Q1-Q3)

200 21%
475 188

40%
498 74

(1703) (23-538) (15784) (0-390)

1,000 21%
471 186

40%
470 72

(1664) (22-535) (13132) (0-387)

10,000 21%
473 187

40%
460 72

(6344) (22-537) (7907) (0-389)
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Table 4.5: Median bias of estimated regression coefficients and total cost predictions in the
marginal mean model from GG data

20% zeros 40% zeros
True GLM GLM GLM GLM GLM GLM

Parameter Value n MTP λ = 0 λ = 1 λ = 2 MTP λ = 0 λ = 1 λ = 2

β0 6 200 0.02 -0.08 -0.05 -0.06 0.02 -0.17 -0.16 -0.12
1,000 0.02 -0.04 -0.03 -0.03 -0.003 -0.13 -0.12 -0.10
10,000 0.17 -0.009 -0.006 -0.005 0.04 -0.07 -0.06 -0.05

β1 0.2 200 -0.008 -0.03 -0.07 -0.11 0.004 -0.24 -0.42 -0.89
1,000 0.005 -0.02 -0.03 -0.04 0.002 -0.18 -0.27 -0.46
10,000 -0.002 -0.01 -0.01 -0.02 -0.003 -0.10 -0.12 -0.17

β2 -0.01 200 -0.003 0.07 0.09 0.14 0.009 0.23 0.36 0.83
1,000 0.002 0.06 0.06 0.08 -0.003 0.21 0.28 0.47
10,000 0.001 0.03 0.03 0.03 <0.0001 0.14 0.17 0.21

β3 0.05 200 -0.003 0.01 0.03 0.05 -0.003 0.06 0.09 0.25
1,000 0.001 0.02 0.02 0.03 0.0009 0.06 0.08 0.15
10,000 0.0009 0.006 0.007 0.008 0.001 0.04 0.05 0.06

Total Cost 200 3.18 -35.57 -24.04 -19.35 6.94 -101.05 -86.45 -74.79
1,000 11.44 -14.14 -9.62 -7.36 -1.99 -60.39 -51.04 -38.35
10,000 79.86 -3.55 -2.36 -1.67 27.14 -27.30 -22.23 -16.72
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Table 4.6: Coverage of 95% Wald-type confidence intervals for the marginal mean model
parameters and total costs predictions from GG data

20% zeros 40% zeros
GLM GLM GLM GLM GLM GLM

Parameter n MTP λ = 0 λ = 1 λ = 2 MTP λ = 0 λ = 1 λ = 2
β0 200 0.946 0.917 0.905 0.890 0.938 0.828 0.823 0.848

1,000 0.863 0.906 0.912 0.915 0.943 0.756 0.734 0.825
10,000 0.348 0.903 0.905 0.916 0.509 0.703 0.725 0.795

β1 200 0.944 0.870 0.887 0.851 0.944 0.710 0.686 0.475
1,000 0.956 0.905 0.916 0.896 0.948 0.715 0.667 0.538
10,000 0.955 0.907 0.899 0.889 0.938 0.738 0.719 0.664

β2 200 0.940 0.864 0.824 0.735 0.940 0.669 0.545 0.322
1,000 0.944 0.808 0.797 0.756 0.941 0.512 0.448 0.350
10,000 0.960 0.806 0.802 0.793 0.951 0.527 0.507 0.464

β3 200 0.928 0.877 0.880 0.797 0.924 0.792 0.777 0.560
1,000 0.945 0.901 0.906 0.863 0.945 0.750 0.705 0.596
10,000 0.952 0.889 0.882 0.871 0.936 0.724 0.693 0.651

Total Cost 200 0.929 0.873 0.876 0.834 0.926 0.720 0.708 0.581
1,000 0.893 0.884 0.888 0.869 0.937 0.697 0.670 0.610
10,000 0.353 0.886 0.887 0.882 0.539 0.702 0.693 0.666

77



Table 4.7: Type I error rates at nominal significance level 0.05 for LSN and GG data

20% zeros 40% zeros
GLM GLM GLM GLM GLM GLM

Distribution n MTP λ = 0 λ = 1 λ = 2 MTP λ = 0 λ = 1 λ = 2
LSN 200 0.068 0.157 0.115 0.158 0.062 0.328 0.325 0.518

1,000 0.066 0.100 0.098 0.120 0.044 0.265 0.305 0.448
10,000 0.042 0.073 0.071 0.084 0.047 0.256 0.274 0.335

GG 200 0.054 0.133 0.113 0.149 0.057 0.304 0.316 0.524
1,000 0.047 0.099 0.084 0.104 0.051 0.304 0.333 0.462
10,000 0.044 0.097 0.101 0.111 0.055 0.264 0.280 0.336
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CHAPTER 5: CONCLUSION

Analyzing semicontinuous data, such as medical expenditures, has posed challenges to an-

alysts for decades. Modeling approaches must appropriately account for the unique statistical

properties of semicontinuous data, but at the same time, investigators need model estimates

that are interpretable for their policy questions of interest. Previously, methods have not

existed that simultaneously accounted for the excess zeros and skewness while also providing

easily interpretable estimates of covariate effects on the overall marginal mean, E(Y ).

This dissertation developed a new marginalized two-part (MTP) model that overcomes

many of the drawbacks of previous approaches, including difficulty in interpreting covariate

effects on the overall mean, a target of primary interest in many studies. Rather than param-

eterizing the model in terms of the mean of the transformed, conditionally positive outcomes

in the second part, the MTP model parameterized covariate effects directly on the overall

mean, E(Y ), on the untransformed scale. This allows parameter estimates to be interpreted

as the multiplicative effect on the overall mean rather than on the conditional mean of only

the positive outcomes. Our approach also has the advantage of providing estimates of co-

variate effects on the probability of incurring a positive-valued outcome, as in the first part

of two-part models, as well as accounting for the zero-inflated and skewed nature of many

semicontinuous outcomes.

We extended the MTP model to longitudinal data via the inclusion of random effects. This

model could be fit using maximum likelihood or Bayesian approaches, although we proposed

the latter to increase flexibility to model complex random effect structures. Specifically, we fit

correlated random effects to allow dependence between the probability of incurring a positive

outcome and the level of the outcome. This approach provided easily computed predictions

of the overall mean outcome, and the parameter estimates obtained from the MTP model
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provided the same simple interpretation as those from the one-part GLMs without sacrificing

statistical appropriateness. Additionally, while the model was subject-specific with random

effects, many parameters had dual interpretations as both subject-specific and population av-

erage, further increasing interpretability of model results. Thus, the MTP model can provide

useful policy conclusions while remaining rooted in good statistical practice.

Finally, we compared one-part GLMs fit using quasi-likelihood with the MTP model under

a variety of simulated data generating mechanisms to assess under which scenarios one may

be able to fit the simpler one-part models without inducing too much bias or sacrificing too

much precision, or alternatively, when two-part models are needed for appropriate statistical

inference. One-part models, while simpler to fit, often displayed substantial bias, particularly

when the percentage of zeros was higher. Although it decreased with sample size, we found

that even with a sample size of 10,000, bias was still problematic. Similarly, under-coverage of

nominal 95% confidence intervals for parameters and model predictions was also problematic

for the GLMs in the presence of many zero-valued observations. The MTP model, on the

other hand, provided very low bias and appropriate coverage of covariate effects, even when

the distributional assumptions were not met. However, when the parametric assumptions for

the MTP were not met, bias increased and coverage dropped for model predictions.

The MTP models provide a step forward in the quest for statistically appropriate and

interpretable analytic methods for semicontinuous data. Future research is needed to extend

these methods in many other directions, such as the addition of more flexible distributions,

the development of model evaluation approaches, or the incorporation of methods for spatially

correlated data.
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APPENDIX A: SAS CODE FROM CHAPTER 2

Marginalized log-normal model

proc nlmixed data=mydata;

bounds 0 <= sigma2;

parms /* initial values for parameters */ ;

linbin = a0 + a1*x1 + a2*x2;

binprob = exp(linbin)/(1+exp(linbin)); /* probability y > 0 */

mu = b0 + b1*x1 + b2*x2 - log(binprob) - sigma2/2;

if y=0 then loglik=log(1-binprob);

else if y>0 then loglik=log(binprob)-log(y)-.5*log(2*CONSTANT(‘PI’))

-log(sqrt(sigma2))-(1/(2*sigma2))*(log(y)-mu)**2;

model y~general(loglik);

estimate ‘marginal mean at x1=50 and x2=1’ exp(b0+b1*50+b2*1);

run;

Marginalized log-skew-normal model

proc nlmixed data=mydata;

bounds 0<=omega;

parms /* initial values for parameters */ ;

linbin = a0 + a1*x1 + a2*x2;

binprob = exp(linbin)/(1+exp(linbin)); /* probability y > 0 */

delta = kappa/sqrt(1+kappa**2);

xi = b0 + b1*x1 + b2*x2 - log(2) - log(binprob)

- log(CDF(‘NORMAL’,omega*delta, 0, 1))-(omega**2)/2;

if y=0 then loglik=log(1-binprob);

else if y>0 then do;

pdfnormvar=(log(y)-xi)/omega;

cdfnormvar=kappa*((log(y)-xi)/omega);

loglik=log(binprob)+log(2)-log(y)-log(omega)
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+log(PDF(‘NORMAL’, pdfnormvar, 0, 1))

+log(CDF(‘NORMAL’, cdfnormvar, 0,1));

end;

model y~general(loglik);

estimate ‘marginal mean at x1=50 and x2=1’ exp(b0+b1*50+b2*1);

run;

82



APPENDIX B: DERIVATION OF E(YIJ) FROM CHAPTER 3

Recall that the random effects, b′i = (a′i, d
′
i), are specified as in equation (3.4). We must

find:

E(Yij) = Ebi {E [Yij |bi]} = Ebi

[
ex

′
2ijβ+z

′
2ijdi

]
= Ebi

[
ex

′
2ijβ
]
· Ebi

[
ez

′
2ijdi

]
= ex

′
2ijβ · Ebi

[
ez

′
2ijdi

]
. (B.1)

Now consider Ebi

[
ez

′
2ijdi

]
= Eai

{
Edi

[
ez

′
2ijdi |ai

]}
. Assuming bi follows the multivari-

ate normal distribution as shown in equation (3.4), we have di|ai ∼ N(Σ′adΣ
−1
aa ai,Σdd −

Σ′adΣ
−1
aa Σad). Utilizing the moment generating function of the multivariate normal distribu-

tion, Mdi(t) = E
(
etdi
)

with t = 1, we therefore have

Ebi

[
ez

′
2ijdi

]
= Eai

{
Edi

[
ez

′
2ijdi |ai

]}
= Eai

[
exp

(
z′2ijΣ

′
adΣ

−1
aa ai +

1

2
z′2ij

(
Σdd −Σ′adΣ

−1
aa Σad

)
z2ij

)]
= Eai

[
exp

(
z′2ijΣ

′
adΣ

−1
aa ai

)]
· exp

[
1

2
z′2ij

(
Σdd −Σ′adΣ

−1
aa Σad

)
z2ij

]
. (B.2)

Now, because ai is marginally distributed as N(0,Σaa), it follows that

z′2ijΣ
′
adΣ

−1
aa ai ∼ N

(
0, z′2ijΣ

′
adΣ

−1
aa ΣaaΣ

−1
aa Σadz2ij

)
∼ N

(
0, z′2ijΣ

′
adΣ

−1
aa Σadz2ij

)
.

Then using the moment-generating function of the univariate normal distribution, we find

Eai

[
exp

(
z′2ijΣ

′
adΣ

−1
aa ai

)]
= exp

[
1

2
z′2ijΣ

′
adΣ

−1
aa Σadz2ij

]
.
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Plugging this back into (B.2), we have

Ebi

[
ez

′
2ijdi

]
= exp

[
1

2
z′2ijΣ

′
adΣ

−1
aa Σadz2ij +

1

2
z′2ij

(
Σdd −Σ′adΣ

−1
aa Σad

)
z2ij

]
= exp

[
1

2
z′2ij

(
Σ′adΣ

−1
aa Σad + Σdd −Σ′adΣ

−1
aa Σad

)
z2ij

]
= exp

(
1

2
z′2ijΣddz2ij

)
.

Plugging this back into equation (B.1) for E(Yij), we have

E(Yij) = exp

(
x′2ijβ +

1

2
z′2ijΣddz2ij

)

as the overall population average marginal mean.

Examining the effect of a unit increase in covariate x2kij on this mean, where x2kij is not

an element of z2ij , we obtain

E(Yij |x2kij = l + 1,x2(−k)ij)

E(Yij |x2kij = l,x2(−k)ij)
=

exp
(
x2(−k)ijβ(−k) + βk · (l + 1) + 1

2

(
z′2ijΣddz2ij

)]
exp

[
x2(−k)ijβ(−k) + βk · l + 1

2

(
z′2ijΣddz2ij

)]
= exp(βk).
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APPENDIX C: SAS PROC MCMC CODE FROM CHAPTER 3

proc mcmc data=one nbi=10000 nmc=20000 thin=5 seed=41514

propcov=quanew dic statistics=all

monitor=(alph bet meancopay meanexempt copaymultiplicative copayadditive

kappa omegasq sigbi1-sigbi16);

array mu0a[8];

array sig0a[8,8];

array mu0b[8];

array sig0b[8,8];

array alph[8];

array bet[8];

/* Specify the random effects */

array sigbi[4,4];

array bi[4];

array mubi[4] (0 0 0 0 0);

array sig0bi[4,4] (1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1);

/* Arrays for desired functions of parameters */

array meancopay[4];

array meanexempt[4];

array copaymultiplicative[4];

array copayadditive[4];

begincnst;

call zeromatrix(mu0a); * prior mean of 0 for alphas;

call identity(Sig0a);

call mult(Sig0a, 1000, Sig0a);

call zeromatrix(mu0b); * prior mean of 0 for betas;

call identity(Sig0b);

call mult(Sig0b, 1000, Sig0b);
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endcnst;

beginnodata;

delta=kappa/sqrt(1+kappa**2);

omega=sqrt(omegasq);

/* Model estimated population average overall means */

* year 2000, copay required;

meancopay[1]=exp(bet[1]+bet[5]+.5*(sigbi11));

* year 2001, copay required;

meancopay[2]=exp(bet[1]+bet[2]+bet[5]+bet[6]+.5*(sigbi11+2*sigbi12+sigbi16));

* year 2002, copay required;

meancopay[3]=exp(bet[1]+bet[3]+bet[5]+bet[7]+.5*(sigbi11+4*sigbi12+4*sigbi16));

* year 2003, copay required;

meancopay[4]=exp(bet[1]+bet[4]+bet[5]+bet[8]+.5*(sigbi11+6*sigbi12+9*sigbi16));

* year 2000, copay exempt;

meanexempt[1]=exp(bet[1]+.5*(sigbi11));

* year 2001, copay exempt;

meanexempt[2]=exp(bet[1]+bet[2]+.5*(sigbi11+2*sigbi12+sigbi16));

* year 2002, copay exempt;

meanexempt[3]=exp(bet[1]+bet[3]+.5*(sigbi11+4*sigbi12+4*sigbi16));

* year 2003, copay exempt;

meanexempt[4]=exp(bet[1]+bet[4]+.5*(sigbi11+6*sigbi12+9*sigbi16));

/* Multiplicative and additive effects of copay requirement */

* year 2000;

copaymultiplicative[1]=exp(bet[5]);

copayadditive[1]=exp(bet[1]+bet[5]+.5*(sigbi11))-exp(bet[1]+.5*(sigbi11));

* year 2001;

copaymultiplicative[2]=exp(bet[5]+bet[6]);

copayadditive[2]=exp(bet[1]+bet[2]+bet[5]+bet[6]+.5*(sigbi11+2*sigbi12+sigbi16))

-exp(bet[1]+bet[2]+.5*(sigbi11+2*sigbi12+sigbi16));

* year 2002;
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copaymultiplicative[3]=exp(bet[5]+bet[7]);

copayadditive[3]=exp(bet[1]+bet[3]+bet[5]+bet[7]+.5*(sigbi11+4*sigbi12+4*sigbi16))

-exp(bet[1]+bet[3]+.5*(sigbi11+4*sigbi12+4*sigbi16));

* year 2003;

copaymultiplicative[4]=exp(bet[5]+bet[8]);

copayadditive[4]=exp(bet[1]+bet[4]+bet[5]+bet[8]+.5*(sigbi11+6*sigbi12+9*sigbi16))

-exp(bet[1]+bet[4]+.5*(sigbi11+6*sigbi12+9*sigbi16));

endnodata;

/* Specify parameters */

parm alph {0 0.3 0.6 0.3 -1.1 -.06 -.2 -.2};

parm bet {0 0.07 0.12 0.23 -.09 -.02 -.19 -.28};

parm kappa 1 omegasq 0.8;

parm sigbi;

/* Specify prior distributions */

prior alph ~ mvn(mu0a, sig0a);

prior bet ~ mvn(mu0b, sig0b);

prior sigbi ~ iwish(4, sig0bi); * random effects covariance prior;

prior kappa ~ uniform(-10,10);

prior omegasq ~ igamma(0.001, scale=0.001);

random bi ~ mvn(mean=mubi, cov=sigbi) subject=id;

linbin = alph[1] + alph[2]*yr2001 + alph[3]*yr2002 + alph[4]*yr2003

+ alph[5]*mustpay + alph[6]*payyr01 + alph[7]*payyr02 + alph[8]*payyr03

+ bi[1] + bi[2]*time;

binprob = exp(linbin)/(1+exp(linbin));

mu = bet[1] + bet[2]*yr2001 + bet[3]*yr2002 + bet[4]*yr2003 + bet[5]*mustpay

+ bet[6]*payyr01 + bet[7]*payyr02 + bet[8]*payyr03 + bi[3] + bi[4]*time

- log(2) - log(binprob) - log(CDF(’NORMAL’,omega*delta, 0, 1))-omega**2/2;

if spcost=0 then loglik=log(1-binprob);
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else if spcost>0 then do;

pdfnormvar=(log(spcost)-mu)/omega;

cdfnormvar=kappa*((log(spcost)-mu)/omega);

loglik=log(binprob)+log(2)-log(spcost)

-log(omega)+log(PDF(’NORMAL’, pdfnormvar, 0, 1))

+ log(CDF(’NORMAL’, cdfnormvar, 0,1));

end;

model spcost~general(loglik);

run;
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APPENDIX D: CONVERGENCE DIAGNOSTICS FROM CHAPTER 3

The final MTP model used in the analysis of the VA specialty care copayment increase in Section

3.5 was specified as:

logit(πij) = α0 + α1YR01ij + α2YR02ij + α3YR03ij + α4COPAYi + α5COPAYi ×YR01ij

+ α6COPAYi ×YR02ij + α7COPAYi ×YR03ij + a1i + a2itij , and

E(Yij |bi) = exp(β0 + β1YR01ij + β2YR02ij + β3YR03ij + β4COPAYi + β5COPAYi ×YR01ij

+ β6COPAYi ×YR02ij + β7COPAYi ×YR03ij + d1i + d2itij),

where tij = 0, 1, 2, 3 for years 2000, 2001, 2002, and 2003, respectively. Convergence diagnostics for all

model parameters are shown in the figures below. Due to indexing in SAS software, the diagnostics

labeled “alph1” correspond to parameter α0, those labeled “alph2” correspond to α1, and so on.
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Figure D.1: Convergence diagnostics for α0
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Figure D.2: Convergence diagnostics for α1

91



Figure D.3: Convergence diagnostics for α2
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Figure D.4: Convergence diagnostics for α3
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Figure D.5: Convergence diagnostics for α4
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Figure D.6: Convergence diagnostics for α5
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Figure D.7: Convergence diagnostics for α6
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Figure D.8: Convergence diagnostics for α7
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Figure D.9: Convergence diagnostics for β0
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Figure D.10: Convergence diagnostics for β1
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Figure D.11: Convergence diagnostics for β2
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Figure D.12: Convergence diagnostics for β3
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Figure D.13: Convergence diagnostics for β4
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Figure D.14: Convergence diagnostics for β5
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Figure D.15: Convergence diagnostics for β6
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Figure D.16: Convergence diagnostics for β7
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Figure D.17: Convergence diagnostics for scale parameter, ω2
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Figure D.18: Convergence diagnostics for shape parameter, κ
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Figure D.19: Convergence diagnostics for the random effects covariance parameter, σ11 =
Var(a1i)
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Figure D.20: Convergence diagnostics for the random effects covariance parameter, σ22 =
Var(a2i)
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Figure D.21: Convergence diagnostics for the random effects covariance parameter, σ33 =
Var(d1i)
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Figure D.22: Convergence diagnostics for the random effects covariance parameter, σ44 =
Var(d2i)
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Figure D.23: Convergence diagnostics for the random effects covariance parameter, σ12 =
Cov(a1i, a2i)

112



Figure D.24: Convergence diagnostics for the random effects covariance parameter, σ13 =
Cov(a1i, d1i)
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Figure D.25: Convergence diagnostics for the random effects covariance parameter, σ14 =
Cov(a1i, d2i)
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Figure D.26: Convergence diagnostics for the random effects covariance parameter, σ23 =
Cov(a2i, d1i)
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Figure D.27: Convergence diagnostics for the random effects covariance parameter, σ24 =
Cov(a2i, d2i)
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Figure D.28: Convergence diagnostics for the random effects covariance parameter, σ34 =
Cov(d1i, d2i)
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APPENDIX E: SIMULATION DETAILS FROM CHAPTER 4

Simulation 1a: Data generated as LSN with lower skewness on the log scale and approx-

imately 20% zeros

The simulated data were generated as:

logit(πi) = 3− 4x1i + 3.5x2i + 2.5x3i and

E(Yi) = νi = exp(6 + 0.2x1i − 0.01x2i + 0.05x3i) (E.1)

where x1i ∼ Bernoulli(0.5), x2i ∼ N(0, 1) and x3i ∼ Pois(1). We generated 1,000 samples of size 200,

1,000, and 10,000 assuming the positive values followed a LSN distribution with ω = 1.2 and κ = 0.5.

Excess zeros were introduced in the Yi’s with probability πi.

The mean model specification in all four models was E(Yi) = νi = exp(β0 +β1x1i+β2x2i+β3x3i),

and robust sandwich standard errors were used for the GLMs. We examined the bias and coverage

probabilities of 95% Wald-type confidence intervals for the parameters included in the overall mean

model as well as the prediction of total costs. We assumed that x1i was a binary indicator of treatment

arm and the covariate of main interest, and we generated data following the same specification as above

in equation (E.1) but with β1 = 0 to assess type 1 error at the nominal 0.05 significance level under

each model. Results, including mean and median bias, coverage probabilities, and type 1 error rates

are included below in Tables E.1, E.2, and E.3 for sample sizes 200, 1,000, and 10,000, respectively.
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Table E.1: Model performance on independent outcomes of sample size 200 generated from
the model in equation (E.1) with κ = 0.5 and 1,000 simulations

Percent
True Mean Median Relative Coverage Type 1

Model Parameter Value Bias Bias Median Bias Probability Error

LSN MTP

β0 6 -0.0123 -0.0154 -0.3 0.944

0.068
β1 0.2 0.0005 0.0009 0.5 0.936
β2 -0.01 -0.0037 -0.0016 15.7 0.945
β3 0.05 -0.0056 -0.0032 -6.4 0.941

Total Cost 3.18 -9.47 0.924

One-part GLM with
constant variance

β0 6 -1.9408 -0.0836 -1.4 0.881

0.157
β1 0.2 0.0508 -0.0485 -24.2 0.856
β2 -0.01 -1.0906 0.0611 -611 0.877
β3 0.05 -0.1005 0.0111 22.2 0.884

Total Cost -28.30 -50.19 0.855

One-part GLM with
variance proportional
to the mean

β0 6 -0.0598 -0.0699 -1.2 0.866

0.115
β1 0.2 -0.0587 -0.0823 -41.1 0.883
β2 -0.01 0.0609 0.1029 -1029 0.834
β3 0.05 0.0081 0.0286 57.2 0.899

Total Cost -5.28 -35.52 0.857

One-part GLM with
standard deviation
proportional to the
mean

β0 6 -0.0712 -0.0785 -1.3 0.850

0.158
β1 0.2 -0.1247 -0.1281 -64.0 0.842
β2 -0.01 0.1505 0.1580 -1580 0.739
β3 0.05 0.0563 0.0586 117 0.810

Total Cost -3.25 -30.44 0.815
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Table E.2: Model performance on independent outcomes of sample size 1,000 generated from
the model in equation (E.1) with κ = 0.5 and 1,000 simulations

Percent
True Mean Median Relative Coverage Type 1

Model Parameter Value Bias Bias Median Bias Probability Error

LSN MTP

β0 6 -0.0035 -0.0009 -0.02 0.953

0.066
β1 0.2 0.0008 0.0050 2.5 0.932
β2 -0.01 -0.0012 0.0001 -1.1 0.948
β3 0.05 0.0019 0.0027 5.3 0.960

Total Cost 1.71 -0.81 0.949

One-part GLM with
constant variance

β0 6 -3.2312 -0.0426 -0.7 0.883

0.100
β1 0.2 0.5217 -0.0128 -6.4 0.904
β2 -0.01 -1.6124 0.0601 -601 0.821
β3 0.05 -0.0954 0.0157 31.4 0.906

Total Cost -13.86 -19.86 0.873

One-part GLM with
variance proportional
to the mean

β0 6 -0.0289 -0.0316 -0.5 0.881

0.098
β1 0.2 -0.0133 -0.0282 -14.1 0.903
β2 -0.01 0.0276 0.0665 -665 0.817
β3 0.05 0.0055 0.0217 43.4 0.888

Total Cost -1.86 -14.11 0.875

One-part GLM with
standard deviation
proportional to the
mean

β0 6 -0.0291 -0.0296 -0.5 0.882

0.120
β1 0.2 -0.0417 -0.0503 -25.1 0.880
β2 -0.01 0.0650 0.0768 -768 0.756
β3 0.05 0.0240 0.0286 57.1 0.848

Total Cost -2.61 -11.26 0.854
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Table E.3: Model performance on independent outcomes of sample size 10,000 generated from
the model in equation (E.1) with κ = 0.5 and 1,000 simulations

Percent
True Mean Median Relative Coverage Type 1

Model Parameter Value Bias Bias Median Bias Probability Error

LSN MTP

β0 6 -0.0007 0.0003 0.005 0.959

0.042
β1 0.2 -0.0006 -0.0004 -0.2 0.960
β2 -0.01 0.0003 0.0004 -4.1 0.949
β3 0.05 0 0.00004 0.1 0.946

Total Cost -0.29 -0.26 0.956

One-part GLM with
constant variance

β0 6 -3.2281 -0.0428 -0.7 0.882

0.073
β1 0.2 0.5212 -0.0127 -6.4 0.904
β2 -0.01 -1.6106 0.0601 -601 0.821
β3 0.05 -0.0952 0.0159 31.8 0.906

Total Cost -5.68 -3.86 0.898

One-part GLM with
variance proportional
to the mean

β0 6 -0.0027 -0.0061 -0.1 0.921

0.071
β1 0.2 -0.0010 -0.0116 -5.8 0.929
β2 -0.01 0.0016 0.0261 -261 0.830
β3 0.05 -0.0007 0.0068 13.6 0.909

Total Cost 0.79 -2.48 0.903

One-part GLM with
standard deviation
proportional to the
mean

β0 6 -0.0024 -0.0052 -0.1 0.926

0.084
β1 0.2 -0.0084 -0.0137 -6.9 0.916
β2 -0.01 0.0132 0.0261 -261 0.820
β3 0.05 0.0040 0.0078 15.5 0.892

Total Cost 0.43 -1.79 0.896

121



Simulation 1b: Data generated as LSN with higher skewness on the log scale and ap-

proximately 20% zeros

The simulated data were generated as in equation (E.1) with the log-scale skewness parameter of

the LSN distribution set to κ = 5. Fitting the same models as above, results from these simulated

datasets are included below in Tables E.4, E.5, and E.6 for sample sizes 200, 1,000, and 10,000,

respectively.
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Table E.4: Model performance on independent outcomes of sample size 200 generated from
the model in equation (E.1) with κ = 5 and 1,000 simulations

Percent
True Mean Median Relative Coverage Type 1

Model Parameter Value Bias Bias Median Bias Probability Error

LSN MTP

β0 6 -0.0158 -0.0212 -0.4 0.925

0.107
β1 0.2 0.0067 0.0055 2.7 0.896
β2 -0.01 -0.0011 0.0004 -4.5 0.908
β3 0.05 0.0003 -0.0013 -2.6 0.891

Total Cost -0.40 -6.98 0.914

One-part GLM with
constant variance

β0 6 -4.0899 -0.0846 -1.4 0.857

0.127
β1 0.2 1.1798 -0.0402 -20.1 0.882
β2 -0.01 -2.2080 0.0823 -823 0.846
β3 0.05 -0.1945 0.0199 39.9 0.895

Total Cost -25.30 -41.06 0.849

One-part GLM with
variance proportional
to the mean

β0 6 -0.0533 -0.0694 -1.2 0.871

0.110
β1 0.2 -0.0529 -0.0704 -35.2 0.890
β2 -0.01 0.0601 0.1046 -1046 0.807
β3 0.05 0.0128 0.0309 61.8 0.887

Total Cost -6.21 -29.13 0.853

One-part GLM with
standard deviation
proportional to the
mean

β0 6 -0.0613 -0.0727 -1.2 0.859

0.152
β1 0.2 -0.1125 -0.1061 -53.1 0.848
β2 -0.01 0.1376 0.1409 -1409 0.730
β3 0.05 0.0538 0.0497 99.3 0.797

Total Cost -4.77 -24.25 0.816
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Table E.5: Model performance on independent outcomes of sample size 1,000 generated from
the model in equation (E.1) with κ = 5 and 1,000 simulations

Percent
True Mean Median Relative Coverage Type 1

Model Parameter Value Bias Bias Median Bias Probability Error

LSN MTP

β0 6 -0.0051 -0.0061 -0.1 0.960

0.055
β1 0.2 0.0023 0.0011 0.5 0.945
β2 -0.01 0.0018 0.0007 -6.9 0.934
β3 0.05 0.0007 0.0007 1.4 0.961

Total Cost -0.58 -1.63 0.950

One-part GLM with
constant variance

β0 6 -2.4745 -0.0415 -0.7 0.892

0.098
β1 0.2 0.5008 -0.0180 -9.0 0.906
β2 -0.01 -1.1942 0.0563 -563 0.805
β3 0.05 -0.1091 0.0159 31.9 0.898

Total Cost -12.21 -15.99 0.874

One-part GLM with
variance proportional
to the mean

β0 6 -0.0232 -0.0294 -0.5 0.896

0.090
β1 0.2 -0.0123 -0.0356 -17.8 0.909
β2 -0.01 0.0231 0.0629 -629 0.794
β3 0.05 0.0057 0.0195 38.9 0.881

Total Cost -1.76 -11.23 0.875

One-part GLM with
standard deviation
proportional to the
mean

β0 6 -0.0230 -0.0277 -0.5 0.895

0.116
β1 0.2 -0.0369 -0.0510 -25.5 0.884
β2 -0.01 0.0560 0.0722 -722 0.760
β3 0.05 0.0210 0.0267 53.3 0.838

Total Cost -2.35 -8.76 0.857
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Table E.6: Model performance on independent outcomes of sample size 10,000 generated from
the model in equation (E.1) with κ = 5 and 1,000 simulations

Percent
True Mean Median Relative Coverage Type 1

Model Parameter Value Bias Bias Median Bias Probability Error

LSN MTP

β0 6 -0.0008 -0.0005 -0.008 0.956

0.045
β1 0.2 -0.0013 -0.0018 -0.9 0.955
β2 -0.01 0.0002 -0.0002 1.7 0.952
β3 0.05 0.0003 0.0003 0.6 0.945

Total Cost -0.47 -0.59 0.953

One-part GLM with
constant variance

β0 6 -0.1478 -0.0079 -0.1 0.916

0.092
β1 0.2 0.0214 -0.0075 -3.7 0.911
β2 -0.01 -0.0794 0.0231 -231 0.818
β3 0.05 -0.0362 0.0052 10.5 0.908

Total Cost -5.92 -3.15 0.896

One-part GLM with
variance proportional
to the mean

β0 6 -0.0027 -0.0061 -0.1 0.925

0.083
β1 0.2 -0.0015 -0.0096 -4.8 0.916
β2 -0.01 0.0019 0.0231 -231 0.823
β3 0.05 -0.0001 0.0060 12.0 0.907

Total Cost 0.32 -2.04 0.902

One-part GLM with
standard deviation
proportional to the
mean

β0 6 -0.0023 -0.0052 -0.1 0.925

0.094
β1 0.2 -0.0077 -0.0116 -5.8 0.906
β2 -0.01 0.0115 0.0235 -235 0.814
β3 0.05 0.0036 0.0065 13.0 0.893

Total Cost 0.04 -1.51 0.896
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Simulation 1c: Data generated as LSN with lower skewness on the log scale and approx-

imately 40% zeros

The simulated data were generated as:

logit(πi) = 3− 7x1i + 5x2i + 2x3i and

E(Yi) = νi = exp(6 + 0.2x1i − 0.01x2i + 0.05x3i) (E.2)

where, as above, x1i ∼ Bernoulli(0.5), x2i ∼ N(0, 1) and x3i ∼ Pois(1). We again generated 1,000

samples of size 200, 1,000, and 10,000 assuming the positive values followed a LSN distribution with

ω = 1.2 and κ = 0.5. Excess zeros were introduced in the Yi’s with probability πi. Note that the

overall mean model remained the same. Results from fitting the four models to these datasets are

included below in Tables E.7, E.8, and E.9 for sample sizes 200, 1,000, and 10,000, respectively.
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Table E.7: Model performance on independent outcomes of sample size 200 generated from
the model in equation (E.2) with κ = 0.5 and 1,000 simulations

Percent
True Mean Median Relative Coverage Type 1

Model Parameter Value Bias Bias Median Bias Probability Error

LSN MTP

β0 6 -0.0182 -0.0230 -0.4 0.936

0.062
β1 0.2 -0.0031 0.0084 4.2 0.939
β2 -0.01 -0.0013 -0.0011 10.6 0.944
β3 0.05 -0.0031 -0.0017 -3.3 0.934

Total Cost 10.38 -9.20 0.907

One-part GLM with
constant variance

β0 6 -2.3632 -0.1941 -3.2 0.806

0.328
β1 0.2 -0.2215 -0.2905 -145 0.684
β2 -0.01 -0.7365 0.2532 -2532 0.682
β3 0.05 -0.0106 0.0502 100 0.805

Total Cost -17.83 -112.26 0.704

One-part GLM with
variance proportional
to the mean

β0 6 -0.1560 -0.1813 -3.0 0.788

0.325
β1 0.2 -0.3316 -0.4307 -215 0.673
β2 -0.01 0.2861 0.3485 -3485 0.555
β3 0.05 0.0321 0.0889 178 0.790

Total Cost 0.12 -95.16 0.696

One-part GLM with
standard deviation
proportional to the
mean

β0 6 -0.1314 -0.1462 -2.4 0.833

0.518
β1 0.2 -0.9569 -0.9077 -454 0.482
β2 -0.01 0.8759 0.7910 -7910 0.334
β3 0.05 0.2675 0.2445 489 0.566

Total Cost 330.17 -82.25 0.583
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Table E.8: Model performance on independent outcomes of sample size 1,000 generated from
the model in equation (E.2) with κ = 0.5 and 1,000 simulations

Percent
True Mean Median Relative Coverage Type 1

Model Parameter Value Bias Bias Median Bias Probability Error

LSN MTP

β0 6 -0.0053 -0.0022 -0.04 0.951

0.044
β1 0.2 0.0043 0.0105 5.2 0.956
β2 -0.01 -0.0046 -0.0022 22.5 0.956
β3 0.05 0.0020 0.0032 6.3 0.952

Total Cost 3.28 0.36 0.951

One-part GLM with
constant variance

β0 6 -0.5069 -0.1488 -2.5 0.764

0.265
β1 0.2 -0.1279 -0.1600 -80.0 0.746
β2 -0.01 -0.0075 0.2118 -2118 0.553
β3 0.05 0.0172 0.0625 125 0.776

Total Cost -25.63 -64.72 0.718

One-part GLM with
variance proportional
to the mean

β0 6 -0.1242 -0.1407 -2.3 0.740

0.305
β1 0.2 -0.1796 -0.2611 -131 0.695
β2 -0.01 0.2099 0.2786 -2786 0.472
β3 0.05 0.0549 0.0864 173 0.720

Total Cost -19.75 -58.91 0.683

One-part GLM with
standard deviation
proportional to the
mean

β0 6 -0.1027 -0.1126 -1.9 0.817

0.448
β1 0.2 -0.4380 -0.4651 -233 0.552
β2 -0.01 0.4502 0.4750 -4750 0.351
β3 0.05 0.1508 0.1599 320 0.579

Total Cost 0.71 -48.93 0.611
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Table E.9: Model performance on independent outcomes of sample size 10,000 generated from
the model in equation (E.2) with κ = 0.5 and 1,000 simulations

Percent
True Mean Median Relative Coverage Type 1

Model Parameter Value Bias Bias Median Bias Probability Error

LSN MTP

β0 6 0.0008 0.0009 0.01 0.958

0.047
β1 0.2 -0.0008 -0.0013 -0.7 0.954
β2 -0.01 0.00004 -0.0003 2.9 0.948
β3 0.05 0.0001 0.0001 0.3 0.947

Total Cost 0.62 0.42 0.952

One-part GLM with
constant variance

β0 6 -0.1088 -0.0680 -1.1 0.737

0.256
β1 0.2 -0.0202 -0.0938 -46.9 0.751
β2 -0.01 0.0246 0.1353 -1353 0.557
β3 0.05 -0.0532 0.0365 73.0 0.751

Total Cost -11.22 -26.07 0.723

One-part GLM with
variance proportional
to the mean

β0 6 -0.0418 -0.0600 -1.0 0.760

0.274
β1 0.2 -0.0658 -0.1192 -59.6 0.726
β2 -0.01 0.0933 0.1574 -1574 0.544
β3 0.05 0.0184 0.0454 90.8 0.728

Total Cost -5.70 -20.02 0.714

One-part GLM with
standard deviation
proportional to the
mean

β0 6 -0.0317 -0.0492 -0.8 0.838

0.335
β1 0.2 -0.1407 -0.1686 -84.3 0.664
β2 -0.01 0.1708 0.2023 -2203 0.485
β3 0.05 0.0485 0.0601 120 0.683

Total Cost -7.74 -14.49 0.687
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Simulation 1d: Data generated as LSN with higher skewness on the log scale and ap-

proximately 40% zeros

The simulated data were generated as in equation (E.2) with the log-scale skewness parameter of

the LSN distribution set to κ = 5. Fitting the same models as above, results from these simulated

datasets are included below in Tables E.10, E.11, and E.12 for sample sizes 200, 1,000, and 10,000,

respectively.
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Table E.10: Model performance on independent outcomes of sample size 200 generated from
the model in equation (E.2) with κ = 5 and 1,000 simulations

Percent
True Mean Median Relative Coverage Type 1

Model Parameter Value Bias Bias Median Bias Probability Error

LSN MTP

β0 6 -0.0260 -0.0212 -0.4 0.905

0.145
β1 0.2 0.0199 0.0210 10.5 0.861
β2 -0.01 0.0028 -0.0017 17.1 0.883
β3 0.05 0.0021 -0.0010 -2.0 0.864

Total Cost 3.44 -6.99 0.878

One-part GLM with
constant variance

β0 6 -1.7351 -0.1764 -2.9 0.793

0.325
β1 0.2 -0.1327 -0.2510 -125 0.689
β2 -0.01 -0.6421 0.2619 -2619 0.632
β3 0.05 -0.0637 0.0509 102 0.810

Total Cost -14.85 -100.15 0.700

One-part GLM with
variance proportional
to the mean

β0 6 -0.1463 -0.1613 -2.7 0.780

0.338
β1 0.2 -0.3000 -0.4135 -207 0.661
β2 -0.01 0.2711 0.3549 -3549 0.506
β3 0.05 0.0373 0.0864 173 0.779

Total Cost 0.64 -85.52 0.688

One-part GLM with
standard deviation
proportional to the
mean

β0 6 -0.1177 -0.1329 -2.2 0.831

0.520
β1 0.2 -0.8678 -0.8546 -427 0.480
β2 -0.01 0.8051 0.7658 -7658 0.317
β3 0.05 0.2485 0.2296 459 0.577

Total Cost 218.24 -72.19 0.581
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Table E.11: Model performance on independent outcomes of sample size 1,000 generated from
the model in equation (E.2) with κ = 5 and 1,000 simulations

Percent
True Mean Median Relative Coverage Type 1

Model Parameter Value Bias Bias Median Bias Probability Error

LSN MTP

β0 6 -0.0067 -0.0081 -0.1 0.959

0.064
β1 0.2 0.0077 0.0065 3.3 0.936
β2 -0.01 -0.0002 -0.0008 8.2 0.934
β3 0.05 0.0009 0.0011 2.2 0.957

Total Cost 0.81 -0.83 0.948

One-part GLM with
constant variance

β0 6 -0.8801 -0.1310 -2.2 0.723

0.261
β1 0.2 -0.1091 -0.1568 -78.4 0.755
β2 -0.01 -0.2470 0.2050 -2050 0.519
β3 0.05 0.0591 0.0621 124 0.755

Total Cost -24.94 -58.26 0.711

One-part GLM with
variance proportional
to the mean

β0 6 -0.1087 -0.1214 -2.0 0.728

0.301
β1 0.2 -0.1588 -0.2284 -114 0.700
β2 -0.01 0.1910 0.2666 -2666 0.461
β3 0.05 0.0496 0.0808 162 0.706

Total Cost -17.68 -51.41 0.685

One-part GLM with
standard deviation
proportional to the
mean

β0 6 -0.0904 -0.1010 -1.7 0.804

0.416
β1 0.2 -0.3835 -0.4029 -201 0.584
β2 -0.01 0.4040 0.4286 -4286 0.364
β3 0.05 0.1351 0.1384 277 0.582

Total Cost -1.89 -41.19 0.623
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Table E.12: Model performance on independent outcomes of sample size 10,000 generated
from the model in equation (E.2) with κ = 5 and 1,000 simulations

Percent
True Mean Median Relative Coverage Type 1

Model Parameter Value Bias Bias Median Bias Probability Error

LSN MTP

β0 6 -0.0010 -0.0012 -0.02 0.959

0.052
β1 0.2 -0.0007 -0.0020 -1.0 0.948
β2 -0.01 0.00005 0.00005 -0.5 0.951
β3 0.05 0.0004 0.0004 0.9 0.931

Total Cost -0.30 -0.43 0.952

One-part GLM with
constant variance

β0 6 -0.1016 -0.0633 -1.1 0.734

0.265
β1 0.2 -0.0177 -0.0823 -41.2 0.742
β2 -0.01 0.0169 0.1280 -1280 0.561
β3 0.05 -0.0489 0.0342 68.5 0.746

Total Cost -11.16 -23.47 0.720

One-part GLM with
variance proportional
to the mean

β0 6 -0.0398 -0.0541 -0.9 0.755

0.284
β1 0.2 -0.0582 -0.1078 -53.9 0.716
β2 -0.01 0.0839 0.1474 -1474 0.551
β3 0.05 0.0183 0.0413 82.6 0.738

Total Cost -5.28 -17.59 0.713

One-part GLM with
standard deviation
proportional to the
mean

β0 6 -0.0287 -0.0410 -0.7 0.825

0.336
β1 0.2 -0.1250 -0.1475 -73.7 0.664
β2 -0.01 0.1532 0.1802 -1802 0.518
β3 0.05 0.0444 0.0542 108 0.684

Total Cost -6.43 -11.96 0.691
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Simulation 2a: Data generated as generalized gamma distributed and approximately 20%

zeros

As above, the simulated data were generated under the model:

logit(πi) = 3− 4x1i + 3.5x2i + 2.5x3i and

E(Yi) = νi = exp(6 + 0.2x1i − 0.01x2i + 0.05x3i) (E.3)

where x1i ∼ Bernoulli(0.5), x2i ∼ N(0, 1) and x3i ∼ Pois(1). We generated 1,000 samples of size 200,

1,000, and 10,000 assuming the positive values followed a generalized gamma distribution with σ = 1.2

and κ = 0.63. This is following the parameterization used in Liu et al. (2010) with

f(yi;κ, µi, σ) =
ηη

σyiΓ(η)
√
η

exp [ui
√
η − η exp(|κ|ui)] ,

where η = |κ|−2, ui = sign(κ) (log(yi)− µi) /σ, µi is the location parameter, σ > 0 is the scale

parameter, and κ is the shape parameter. We then have

E(Yi) = νi = exp (β0 + β1x1i + β2x2i + β3x3i)

= πi exp

{
µi +

σ log(κ2)

κ
+ log

[
Γ
(
1/κ2 + σ/κ

)]
− log

[
Γ
(
1/κ2

)]}
.

Solving for µi in terms of νi, we obtain

µi = log(νi)− log(πi)−
σ log(κ2)

κ
− log

[
Γ
(
1/κ2 + σ/κ

)]
+ log

[
Γ
(
1/κ2

)]
= β0 + β1x1i + β2x2i + β3x3i − log(πi)−

σ log(κ2)

κ
− log

[
Γ
(
1/κ2 + σ/κ

)]
+ log

[
Γ
(
1/κ2

)]
,

and use this form to generate the positive values of yi with σ = 1.2 and κ = 0.63. Excess zeros

were introduced in the Yi’s with probability πi. Fitting the same models as above, results from these

simulated datasets are included below in Tables E.13, E.14, and E.15 for sample sizes 200, 1,000, and

10,000, respectively.
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Table E.13: Model performance on independent outcomes of sample size 200 generated from
the model in equation (E.3) under the generalized gamma distribution and 1,000 simulations

Percent
True Mean Median Relative Coverage Type 1

Model Parameter Value Bias Bias Median Bias Probability Error

LSN MTP

β0 6 0.0114 0.0170 0.3 0.946

0.054
β1 0.2 -0.0053 -0.0080 -4.0 0.944
β2 -0.01 -0.0038 -0.0032 -32.2 0.940
β3 0.05 -0.0048 -0.0035 -6.9 0.928

Total Cost 14.16 3.18 0.929

One-part GLM with
constant variance

β0 6 -1.4756 -0.0775 -1.3 0.917

0.133
β1 0.2 -0.0342 -0.0312 -15.6 0.870
β2 -0.01 -1.0509 0.0733 -733 0.864
β3 0.05 -0.1031 0.0137 27.4 0.877

Total Cost -14.89 -35.57 0.873

One-part GLM with
variance proportional
to the mean

β0 6 -0.0487 -0.0526 -0.9 0.905

0.113
β1 0.2 -0.0416 -0.0737 -36.9 0.887
β2 -0.01 0.0471 0.0906 -906 0.824
β3 0.05 0.0068 0.0271 54.2 0.880

Total Cost 3.24 -24.04 0.876

One-part GLM with
standard deviation
proportional to the
mean

β0 6 -0.0574 -0.0610 -1.0 0.890

0.149
β1 0.2 -0.1080 -0.1117 -55.9 0.851
β2 -0.01 0.1362 0.1376 -1376 0.735
β3 0.05 0.0560 0.0527 105 0.797

Total Cost 3.48 -19.35 0.834
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Table E.14: Model performance on independent outcomes of sample size 1,000 generated from
the model in equation (E.3) under the generalized gamma distribution and 1,000 simulations

Percent
True Mean Median Relative Coverage Type 1

Model Parameter Value Bias Bias Median Bias Probability Error

LSN MTP

β0 6 0.0340 0.0227 0.4 0.863

0.047
β1 0.2 0.0047 0.0046 2.3 0.956
β2 -0.01 0.0005 0.0019 -19.1 0.944
β3 0.05 0.0001 0.0012 2.4 0.945

Total Cost 21.53 11.44 0.893

One-part GLM with
constant variance

β0 6 -3.5240 -0.0362 -0.6 0.906

0.099
β1 0.2 0.2910 -0.0201 -10.1 0.905
β2 -0.01 -1.7346 0.0551 -551 0.808
β3 0.05 -0.2322 0.0155 31.0 0.901

Total Cost -12.90 -14.14 0.884

One-part GLM with
variance proportional
to the mean

β0 6 -0.0234 -0.0288 -0.5 0.912

0.084
β1 0.2 -0.0108 -0.0289 -14.5 0.916
β2 -0.01 0.0254 0.0625 -625 0.797
β3 0.05 0.0049 0.0214 42.9 0.906

Total Cost -0.82 -9.62 0.888

One-part GLM with
standard deviation
proportional to the
mean

β0 6 -0.0233 -0.0312 -0.5 0.915

0.104
β1 0.2 -0.0372 -0.0418 -20.9 0.896
β2 -0.01 0.0600 0.0750 -750 0.756
β3 0.05 0.0218 0.0293 58.5 0.863

Total Cost -1.72 -7.36 0.869
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Table E.15: Model performance on independent outcomes of sample size 10,000 generated
from the model in equation (E.3) under the generalized gamma distribution and 1,000 simu-
lations

Percent
True Mean Median Relative Coverage Type 1

Model Parameter Value Bias Bias Median Bias Probability Error

LSN MTP

β0 6 0.1197 0.1673 2.8 0.348

0.044
β1 0.2 -0.0018 -0.0015 -0.8 0.955
β2 -0.01 0.0008 0.0011 -11.0 0.960
β3 0.05 0.0009 0.0009 1.9 0.952

Total Cost 62.28 79.86 0.353

One-part GLM with
constant variance

β0 6 -0.1629 -0.0093 -0.2 0.903

0.097
β1 0.2 0.0545 -0.0109 -5.5 0.907
β2 -0.01 -0.0735 0.0301 -301 0.806
β3 0.05 -0.0385 0.0063 12.6 0.889

Total Cost -4.67 -3.55 0.886

One-part GLM with
variance proportional
to the mean

β0 6 -0.0092 -0.0063 -0.1 0.905

0.101
β1 0.2 -0.0044 -0.0130 -6.5 0.899
β2 -0.01 0.0022 0.0301 -301 0.802
β3 0.05 0.0012 0.0071 14.2 0.882

Total Cost 1.10 -2.36 0.887

One-part GLM with
standard deviation
proportional to the
mean

β0 6 -0.0047 -0.0049 -0.1 0.916

0.111
β1 0.2 -0.0121 -0.0151 -7.5 0.889
β2 -0.01 0.0165 0.0309 -309 0.793
β3 0.05 0.0062 0.0077 15.4 0.871

Total Cost -0.63 -1.67 0.882
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Simulation 2b: Data generated as generalized gamma distributed and approximately 40%

zeros

The simulated data were generated as:

logit(πi) = 3− 7x1i + 5x2i + 2x3i and

E(Yi) = νi = exp(6 + 0.2x1i − 0.01x2i + 0.05x3i) (E.4)

with all covariates as defined above. Fitting the same models as above, results from these simulated

datasets are included below in Tables E.16, E.17, and E.18 for sample sizes 200, 1,000, and 10,000,

respectively.
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Table E.16: Model performance on independent outcomes of sample size 200 generated from
the model in equation (E.4) under the generalized gamma distribution and 1,000 simulations

Percent
True Mean Median Relative Coverage Type 1

Model Parameter Value Bias Bias Median Bias Probability Error

LSN MTP

β0 6 0.0167 0.0184 0.3 0.938

0.057
β1 0.2 -0.0070 0.0039 2.0 0.944
β2 -0.01 -0.0024 0.0091 -90.6 0.940
β3 0.05 -0.0039 -0.0035 -7.0 0.924

Total Cost 28.02 6.94 0.926

One-part GLM with
constant variance

β0 6 -4.7434 -0.1700 -2.8 0.828

0.304
β1 0.2 -0.4318 -0.2422 -121 0.710
β2 -0.01 -2.1603 0.2321 -2321 0.669
β3 0.05 0.5211 0.0621 124 0.792

Total Cost 24.74 -101.05 0.720

One-part GLM with
variance proportional
to the mean

β0 6 -0.1627 -0.1560 -2.6 0.823

0.316
β1 0.2 -0.3136 -0.4169 -208 0.686
β2 -0.01 0.2759 0.3562 -3562 0.545
β3 0.05 0.0556 0.0931 186 0.777

Total Cost 26.61 -86.45 0.708

One-part GLM with
standard deviation
proportional to the
mean

β0 6 -0.1292 -0.1181 -2.0 0.848

0.524
β1 0.2 -0.9536 -0.8879 -444 0.475
β2 -0.01 0.8648 0.8263 -8263 0.322
β3 0.05 0.2847 0.2509 502 0.560

Total Cost 3090.55 -74.79 0.581
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Table E.17: Model performance on independent outcomes of sample size 1,000 generated from
the model in equation (E.4) under the generalized gamma distribution and 1,000 simulations

Percent
True Mean Median Relative Coverage Type 1

Model Parameter Value Bias Bias Median Bias Probability Error

LSN MTP

β0 6 -0.0036 -0.0033 -0.1 0.943

0.051
β1 0.2 -0.0006 0.0016 0.8 0.948
β2 -0.01 -0.0005 -0.0029 29.0 0.941
β3 0.05 0.0013 0.0009 1.9 0.945

Total Cost 3.17 -1.99 0.937

One-part GLM with
constant variance

β0 6 -2.0154 -0.1289 -2.1 0.756

0.304
β1 0.2 0.0340 -0.1841 -92.1 0.715
β2 -0.01 -0.6988 0.2126 -2126 0.512
β3 0.05 -0.0070 0.0564 113 0.750

Total Cost -9.25 -60.39 0.697

One-part GLM with
variance proportional
to the mean

β0 6 -0.0921 -0.1225 -2.0 0.734

0.333
β1 0.2 -0.1658 -0.2738 -137 0.667
β2 -0.01 0.2024 0.2803 -2803 0.448
β3 0.05 0.0315 0.0776 155 0.705

Total Cost -1.64 -51.04 0.670

One-part GLM with
standard deviation
proportional to the
mean

β0 6 -0.0777 -0.0986 -1.6 0.825

0.462
β1 0.2 -0.4146 -0.4574 -229 0.538
β2 -0.01 0.4309 0.4688 -4688 0.350
β3 0.05 0.1317 0.1456 291 0.596

Total Cost 10.09 -38.35 0.610
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Table E.18: Model performance on independent outcomes of sample size 10,000 generated
from the model in equation (E.4) under the generalized gamma distribution and 1,000 simu-
lations

Percent
True Mean Median Relative Coverage Type 1

Model Parameter Value Bias Bias Median Bias Probability Error

LSN MTP

β0 6 0.0862 0.0394 0.7 0.509

0.055
β1 0.2 -0.0018 -0.0030 -1.5 0.938
β2 -0.01 -0.0002 0 -0.04 0.951
β3 0.05 0.0009 0.0014 2.8 0.936

Total Cost 45.08 27.14 0.539

One-part GLM with
constant variance

β0 6 -0.7292 -0.0732 -1.2 0.703

0.264
β1 0.2 -0.1119 -0.0950 -47.5 0.738
β2 -0.01 -0.2084 0.1430 -1430 0.527
β3 0.05 -0.0569 0.0384 76.8 0.724

Total Cost -18.74 -27.30 0.702

One-part GLM with
variance proportional
to the mean

β0 6 -0.0478 -0.0640 -1.1 0.725

0.280
β1 0.2 -0.0760 -0.1243 -62.1 0.719
β2 -0.01 0.1068 0.1693 -1693 0.507
β3 0.05 0.0253 0.0465 92.9 0.693

Total Cost -11.66 -22.23 0.693

One-part GLM with
standard deviation
proportional to the
mean

β0 6 -0.0370 -0.0493 -0.8 0.795

0.336
β1 0.2 -0.1499 -0.1736 -86.8 0.664
β2 -0.01 0.1827 0.2091 -2091 0.464
β3 0.05 0.0530 0.0615 123 0.651

Total Cost -10.99 -16.72 0.666
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