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ABSTRACT

EUNJEE LEE: ADVANCED BAYESIAN MODELS FOR HIGH-DIMENSIONAL
BIOMEDICAL DATA

(Under the direction of Joseph G. Ibrahim and Hongtu Zhu)

Alzheimer’s Disease (AD) is a neurodegenerative and firmly incurable disease, and the

total number of AD patients is predicted to be 13.8 million by 2050 [68]. Our motivation

comes from needs to unravel a missing link between AD and biomedical information for a

better understanding of AD. With the advent of data acquisition techniques, we could obtain

more biomedical data with a massive and complex structure. Classical statistical models,

however, often fail to address the unique structures, which hinders rigorous analysis.

A fundamental question this dissertation is asking is how to use the data in a better

way. Bayesian methods for high-dimensional data have been successfully employed by us-

ing novel priors, MCMC algorithms, and hierarchical modeling. This dissertation proposes

novel Bayesian approaches to address statistical challenges arising in biomedical data in-

cluding brain imaging and genetic data. The first and second projects aim to quantify

effects of hippocampal morphology and genetic variants on the time to conversion to AD

within mild cognitive impairment (MCI) patients. We propose Bayesian survival models

with functional/high-dimensional covariates. The third project discusses a Bayesian matrix

decomposition method applicable to brain functional connectivity. It facilitates estimation

of clinical covariates, the examination of whether functional connectivity is different among

normal, MCI, and AD subjects.
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CHAPTER 1

INTRODUCTION

Alzheimer’s Disease (AD) is a neurodegenerative and firmly incurable disease, and the

total number of AD patients is predicted to be 13.8 million by 2050 [68]. Our motivation

comes from needs to unravel a missing link between AD and biomedical information for a

better understanding of AD. With the advent of data acquisition techniques, we could obtain

more biomedical data with a massive and complex structure. Classical statistical models,

however, often fail to address the unique structures, which hinders rigorous analysis

A fundamental question this dissertation is asking is how to use the data in a better

way. Bayesian methods for high-dimensional data have been successfully employed by using

novel priors, MCMC algorithms, and hierarchical modeling. This dissertation proposes novel

Bayesian approaches to address statistical challenges arising in biomedical data including

brain imaging and genetic data.

The first part of this dissertation aims to develop Bayesian survival models to quantify

the effects of hippocampal morphology and genetic variants on the time to conversion to AD

within mild cognitive impairment (MCI) patients. MCI is a clinical syndrome characterized

by the onset and evolution of cognitive impairments. It is often considered as a transitional

stage to Alzheimers disease, since around 50% of MCI patients progress to AD during the

first 5 years [125]. It has been revealed that some therapeutic interventions and a few

disease-modifying drugs are more effective at MCI or early stage of AD than at the severe

stage of AD [120, 32, 16]. Due to this pathological feature of AD, it is an ongoing quest for

prediction of the time to conversion from MCI to AD and detection of biomarkers affecting
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progression to AD. While hippocampus and genetic variants are important risk factors,

many classical survival models are not theoretically and computationally suitable because

they take the forms of functional and high dimensional data. Motivated by the limitations of

classical survival models, this dissertation proposes survival models with functional or high

dimensional covariates by taking a Bayesian approach. In order to make use of functional

data as covariates to predict the time to event, a Bayesian functional linear Cox regression

model is proposed in Chapter 3. In Chapter 4, we propose Bayesian bi-level variable selection

to enable variable selection in both group and element levels for high-dimensional predictors.

In the following sections, we discuss brief motivation and description of the two modern

survival models.

The second part discusses a Bayesian matrix decomposition method applicable to brain

functional connectivity. Functional connectivity is the connectivity between different brain

areas sharing information and functions [153]. It can be estimated by pairwise temporal cor-

relation between two spatially remote BOLD signals in rsfMRI. It is an important biomarker

in psychiatric disorders because its abnormality has been observed in subjects with brain

disorders including AD, schizophrenia, and ADHD [58]. One specific question will be“is

there any relationship between altered functional connectivity and neurological disorders?”.

In Chapter 5, we propose a Bayesian hierarchical group spectral clustering model to analyze

brain connectivity. It facilitates estimation of clinical covariates, which enables to examine

if functional connectivity had group difference among normal, MCI, and AD subjects.

1.1 Bayesian Functional Cox Regression Model

Hippocampus is one of the first brain regions that suffer from damage in Alzheimers

disease. Among various measures to quantify changes in hippocampus size, volume, or

shape, the hippocampal radial distance [151] has gained attention recently, since it reflects

different atrophy level in different subfields in the hippocampus rather than giving a single
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global measure. It is the distance from medial core of the hippocampus to its surface, which

takes the form of 2-dimensional curve quantifying the thickness of hippocampus relative to

its centerline. By comparing the radial distance of different individuals, the relative atrophy

against each other can be measured. Apostolova et al. [6] have shown that MCI patients

who progress to AD have smaller hippocampi around CA1 region than MCI patients who

does not develop AD. Also AD patients tend to have a higher annual atrophy rate on few

regions of CA1 than MCI patients [51].

Since the hippocampal radial distance is a 2-dimensional curve, which can be considered

as functional data, classical regression models should be adapted to incorporate functional

covariates. In order to describe the nature of functional data as covariates in linear models,

functional linear regression has been proposed and discussed in many literatures including

Cardot et al. [19], Ramsay and Silverman [131], Müller and Stadtmüller [114]. Functional

covariates can be estimated by employing functional principal component analysis (fPCA) on

a continuous covariance function of the functional covariates [19, 114, 18]. In the generalized

linear model framework, Müller and Stadtmüller [114] apply a Karhunen-Loeve expansion on

the functional predictor, which enables dimension reduction to a finite number of components

of the expansion. More reviews regarding functional regression models will be discussed in

section 2.2.

In chapter 3, we propose a Bayesian functional linear Cox regression model (BFLCRM)

to incorporate functional covariates in a Bayesian survival model by applying fPCA. The

BFLCRM can be an important extension of various statistical models including parametric,

semiparametric and nonparametric models for handling survival response data and scalar

covariates. Second, BFLCRM can be an important extension of various functional linear

models for handling discrete or continuous response data and functional covariates. Third,

BFLCRM can be regarded as an important extension of high-dimensional survival models.
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1.2 Bayesian Bi-level Variable Selection with Censored Outcomes

Since AD is highly heritable, genome-wide association studies (GWASs) have been con-

ducted for the purpose of identifying genetic variants contributing to AD. Typically, it is of

interest to elucidate the association between the traits and single-nucleotide polymorphisms

(SNPs), a DNA sequence variation occurring commonly within a population. A genome-

wide association study (GWAS) focuses on identifying important SNPs to relate to clinical

outcomes in this context. Since the SNP data is ultra high-dimensional (half a million or

more), the simple (and popular) GWASs conduct a number of marginal tests: examination of

the effect of each SNP one by one. It makes GWAS to be theoretically and computationally

feasible in the classical regression setup, p < n, where p is the number of covariates and n is

the number of observations. But the simple GWASs face two main challenges: dealing with

multiple testing issue and accounting for the dependency structure among SNPs.

One solution is to consider all the SNPs simultaneously in one model by applying penal-

ization methods or Bayesian variable selection methods. To detect effective SNPs to time to

conversion from MCI to AD, variable selection methods can be applied in survival models

in order to incorporate a number of SNPs in one survival model. In fact, several variable

selection schemes have been applied in the Cox proportional hazards model and accelerated

failure time (AFT) models in the high dimensional setting. Lasso penalization [63, 171, 56],

principled sure independence screening [173], a boosting procedure [95, 10], threshold gradi-

ent descent method [62] have been applied on the Cox regression. In the AFT models, Cai

et al. [17], Datta et al. [34], Huang et al. [70], Wang et al. [159] apply LASSO regularization

approaches, a nonlinear kernel based AFT model has been described in [100]. In the Bayesian

framework, iterative Bayesian model averaging (BMA) [4], Bayesian ensemble method [12]

have been proposed. Konrath et al. [88] take a Bayesian approach using a penalized Gaus-

sian mixture error distribution, a structured additive predictor with Bayesian P-splines. In

order to achieve sparsity, they also use Bayesian versions of ridge and LASSO, and a spike
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and slab priors. Bayesian variable selection approach [138] and Bayesian LASSO [92] are

considered in the AFT model. But these methods do not take into account any grouping

information among predictors.

In order to tackle the limitations that the existing variable selection methods have in

the context of GWAS, we propose a Bayesian bi-level variable selection (BBVS) method

in the accelerated failure time model in Chapter 4. Our main goal is (1) identification of

SNPs associated with time to conversion from MCI to AD (2) by considering all the SNPs

simultaneously and (3) incorporating the grouping information of the SNP data. Our method

has two hierarchical levels of variable selection: the first one is group-wise and the second

level is element-wise variable selection. In the first step, we identify important groups of

variables and update the censored event time from its predictive posterior distribution by

data augmentation [150, 138]. The dimension of the whole SNP data can be significantly

reduced by eliminating irrelevant groups to time to event. Since this step also provides

a posterior sample of censored time to event, the posterior mean will be used as imputed

censored event time in the second level of variable selection. It converts the AFT model

in the second level into a usual log-normal regression model. In the second level, we only

include variables in the selected groups as covariates in the AFT model with the imputed

event time as an outcome. To conduct element-wise variable selection, shrinkage priors are

employed on regression parameters. In particular, we extend Dirichlet-Laplace shrinkage

priors proposed by [9] to incorporate the grouping information.

1.3 Bayesian Hierarchical Group Spectral Clustering

The Human brain has been analyzed from a network perspective with the advent of

neuroimaging acquisition techniques and network theory. Functional magnetic resonance

imaging (fMRI) is a non-invasive neuroimaging procedure to assess brain neuronal activity

that can be measured by changes in blood oxygen level-dependent (BOLD) signal [101].
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Functional connectivity is the connectivity between different brain areas sharing informa-

tion and functions [153]. Unraveling a missing link between neurological disorder and brain

network is an ongoing quest in various fields including statistics, epidemiology, and neuro-

science. One specific question will be “is there any relationship between altered functional

connectivity and neurological disorders?”. There are two main standard methods to tackle

the question: univariate approaches to see if each correlation (node) has group difference

using Fisher’s z-transformation, and graph theoretical approaches based on some summary

statistic for a network structure (i.e., girth, diameter, modularity, small-worldness). The first

method easily faces high-dimensional multiple testing problem. If there is a small group dif-

ference in each correlation, the univariate approach is likely to miss the signal, which results

in low power. Also, it discards a spatial structure among close or related brain regions (vox-

els). The second methods often fail to detect local differences among subject groups, because

the connectivity structures are too simplified by the summary statistics. Thus, alternative

connectivity analysis methods are critically needed.

In this study, we aim to address the following four issues in connectivity studies: (1)

high-dimensionality of connectivity matrices, (2) detection of local differences in brain, but

at the same time, (3) need to utilize an underlying relational structure among brain areas.

Regarding (3), while the correlation between two marginal regions has weak group differ-

ence, two linear combinations of some brain regions can have strongly different connection

across groups. Here we call the linear combinations of brain regions underlying factors or

eigenmaps. We can identify more significant group differences in organization maps among

underlying factors instead among individual brain regions. The last thing to be considered

is (4) heterogeneity of functional connectivity. FMRI itself is noisy in terms of spatial res-

olution and head motion, which leads estimated functional connectivity to be varied across

subjects. Also, functional connectivity has individual and group variation, as Mueller et al.

[113] suggests that functional connectivity is individually heterogeneous across the cortex due

to the degree of evolutionary cortical expansion. The heterogeneity should be accordingly
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taken into account to have meaningful signals.

We propose a Bayesian hierarchical group spectral clustering model to take a global ap-

proach to analyze brain connectivity. We decompose a correlation matrix (possibly it can

be any symmetric matrix) with underlying common factors across subjects and the subject-

specific coefficient matrix (Λi). The Λi matrix preserves an individual network structure in

the low-dimensional space spanned by the common factors. One more intriguing part is a hi-

erarchical structure within a prior of Λi in order to estimate effects of clinical/demographic

covariates. We take a Bayesian approach to estimate the parameters involved in the de-

composition, and the regression model with clinical covariates. Our method automatically

estimates the effects of covariates on the Λi matrices within the same MCMC iterations.
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CHAPTER 2

LITERATURE REVIEWS

2.1 Survival Analysis

In survival analysis, the outcome of interest is the survival times of subjects. The sur-

vival times are denoted by T , a continuous nonnegative random variable, with cumulative

distribution function F (t) on the interval [0,∞). The probability that an individual survives

till specified time point t is given by the survival function,

S(t) = 1− F (t) = P (T > t).

The survival function S(t) is a monotone decreasing function with S(0) = 1 and limt→∞ S(t) =

0. The hazard function h(t) is defined as the ratio of the probability density function f(t)

to the survival function S(t), which is instantaneous rate of occurrence of the event. It can

be written as

h(t) = lim
t→∞

P (t ≤ T < t+ dt|T ≥ t)

dt
=
f(t)

S(t)
(2.1.1)

Note that f(t) = − d
dt
S(t). Thus, (2.1.1) implies that

h(t) = − d

dt
logS(t). (2.1.2)

Integrating both sides of (2.1.2) and exponentiating give the following:

S(t) = exp

(
−
∫ t

0

h(u)du

)
= exp(−H(t)),

where H(t) is is the cumulative hazard. From (2.1.2), it is derived that

f(t) = h(t) exp

(
−
∫ t

0

h(u)du

)
.
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2.2 Proportional Hazards Model

Survival models consist of two ingredients: the baseline hazard function, denoted h0(t)

and the effect covariates. The baseline hazard function h0(t) quantifies how the risk of

event per time unit varies over time when levels of covariates are fixed at baseline. The

proportional hazards condition (Cox 1972) is that effect of a unit increase in a covariate is

multiplicatively related to the hazard rate. Under the proportional hazards assumption, the

effect of covariates can be estimated without taking into account the hazard function. The

Proportional hazards model takes this approach on survival data. The hazard function of a

subject at time t can be specified as

h(t|x) = h0(t) exp{x′β}, (2.2.1)

where x = (x1, · · · , xp) is a p covariates vector and β = (β1, · · · , βp) is a vector of p regression

coefficients, and h0(t) is called the baseline hazard function. The model (2.2.1) implies that

the ratio of hazards between two subjects is time-invariant and actually depends on the

difference between their linear predictors, η = x′β. In biomedical research regarding survival

data, some individuals are still alive or normal at the end of the study so death or occurrence

of a disease has not happened. Therefore we have right censored data, that is, some of the

survival times exceed a certain value. The certain time point is called a censoring time. The

survival times tis are assumed to be independent and identically distributed with density

f(t) and survival function S(t). Then survival time ti for the i-th subject will be observed

only when ti ≤ ci, where ci is a fixed censoring time. The data D with a size n random

sample consists of (yi, νi, xi)
n
i=1, where yi = min(ti, ci), xi is the p × 1 vector of covariates

and νi is an (event) indicator variable taking 1 if ti ≤ ci or 0 if ti > ci. Then the likelihood
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function for (β, h0(·)) is given by

L(β, h0(t)|D) ∝
n∏
i=1

[h0(yi) exp(x′iβ)]νi
(
S0(yi)

exp(x′
iβ)
)

=
n∏
i=1

[h0(yi) exp(x′iβ)]νi exp

{
n∑
i=1

exp(x′iβ)H0(yi)

}
,

where S0(t) is the baseline survivor function such that S0(t) = exp
(
−
∫ t
0
h0(u)du

)
=

exp(H0(t)).

One of the most popular semiparametric survival models is a piecewise constant hazard

model. On the time axis, we set a finite partition as 0 < s1 < · · · < sJ with sJ > yi for

all i = 1, · · · , n, where s0 = 0. In the j-th interval, we assume a constant baseline hazard

h0(y) = λi for sj1 < y ≤ sj. Then the likelihood function can be written as

L(β,λ|D) =
n∏
i=1

J∏
j=1

[λj exp(x′iβ)]uijνi

×
n∏
i=1

J∏
j=1

exp

[
−uij

{
λj(yi − sj−1)

j−1∑
g=1

λg(sg − sg−1)

}
exp(xi

′β)

]
,

where uij = 1 if the i-th subject is right censored in the j-th interval and 0 otherwise.

2.3 Accelerated Failure Time Model

An accelerated failure time model (AFT model) is an alternative to the proportional

hazards model. Since the proportional hazards model assumes a multiplicative effect on

the hazard function, it is hard to interpret the estimates of regression parameters. The

AFT model assumes a multiplicative effect on the time to event. For the i-th subject, its

probability model is given by

Yi = exp(−x′iβ)νi, i = 1, · · · , n,

which becomes the linear model in log scale

log Yi = −x′iβ + εi, i = 1, · · · , n,
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where Y1, Y2, · · · , Yn are failure times, xi = (xi1, xi2, · · · , xip)′ is a vector of known explana-

tory variables for the i-th individual, β is a vector of p unknown regression coefficients,

and εi = log νi is the error term. Usually the error term is assumed to follow a parametric

distribution, such as the Normal distribution.

2.4 Functional Linear Regression

2.4.1 Functional Data and Smoothing

With the development of new technologies, data objects of interest are measured in a

continuous time fashion. Functional data includes daily temperature data [131], Spectro-

metric curves data, log-periodograms data [47], and many other objects in various fields.

Since those data objects are curves, functional methods should be taken to analyze their

global behavior. In practice, functional data is measured at (fine) discrete grid points. For

a random function X(s), s ∈ S, we measure a discretized observation {W (sl)}Ll=1 at grid

points {sl}Ll=1 ∈ S with measurement errors ε(sl). Assume that we have a random sample

{Xi(·)}ni=1, where the random functions Xi(·)s are independently and identically distributed

with the same distribution as Xi(·). For the i-th observation,

Wi(sl) = Xi(sl) + εi(sl) = µ(sl) + X̄i(sl) + εi(sl),

where Xi(s) characterizes individual functional variations from µ(s). The εi(s)s are measure-

ment errors with mean zero and variance σ2
ε (s) at each s and independent of each other for

s 6= s′. Moreover, µ(s) can be consistently estimated by µ̄(s) =
∑n

i=1Wi(s)/n. To proceed

with functional data analysis, one needs to obtain a continuous smooth functional data by

smoothing the discretized observations. We apply a cubic smoothing spline, which finds a

minimizer f(x) of the following penalized residual sum of squares

n∑
i=1

L∑
l=1

(wil − fi(sl))′(wil − fi(sl)) + λ

∫
{f ′′(t)}2dt.
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The second penalty term is the integrated squared second derivative and penalizes curvature

in the function. Then a unique minimizer is a natural cubic spline with knots at the unique

values of sl. In practice, we use the smoothed observations in the functional data analysis.

2.4.2 Model Setup

It is of interest to explain variation in a (scalar) response variable by relating with a

functional covariate. We consider a linear regression setting, where the response variable

Y is a real-valued continuous random variable and the covariate X(s), s ∈ S, is a square

integrable random function observed on S such that E(X(s)) = µ(s). The “functional”

linear regression model can be expressed as

Y = β0 +

∫
S
β(s)X(s)dt+ ε,

where εis are iid with E(ε|X(s), t ∈ S) = 0, Var(ε|X(s), t ∈ S) = σ2. A constant intercept

β0 is given by E(Y )−
∫
S β(s)µ(s)ds. Without loss of generality, we assume that the variables

X(·) and Y are centered so that we have a simplified regression model

Y =

∫
S
β(s)X(s)dt+ ε.

The coefficient function β(·) quantifies how much X(s) has an effect on Y across S, which

is a major parameter in the functional linear model.

2.4.3 Estimation of Functional Coefficients

There are two main methods to estimate the functional coefficient β(·). One is using basis

expansions on the functional covariates and functional coefficients. Ramsay and Silverman

[131] introduced regularization methods: using the truncated number of basis functions to

expand the functional coefficient and using roughness penalties. Cardot et al. [20] expressed

the functional coefficient as a B-splines expansion and used a penalty proportional to the
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squared norm of a derivative given the order of the functional coefficient in the estimation

step. The other widely used method is employing functional principal component analysis

(fPCA) on a continuous covariance function of X(s) [19, 114, 18]. In the generalized linear

model framework, Müller and Stadtmüller [114] apply a Karhunen-Loeve expansion on the

functional predictor, which enables dimension reduction to a finite number of components

of the expansion.

We review the fPCA approach in the functional linear regression setting. It is assumed

that Xi(s) and εi(s) are independent of each other and the covariance function of {Xi(s) :

s ∈ S}, denoted by K(s, s′) = E{X(s)X(s′)}, is continuous on S×S. According to Mercer’s

theorem, K(s, s′) also admits a spectral decomposition

K(s, s′) =
∞∑
j=1

ψjφj(s)φj(s
′),

where (ψj, φj(s))’s are the eigenvalue-eigenfunction pairs of K(s, s′) such that {ψj : j ≥

1} are the eigenvalues in decreasing order with
∑∞

j=1 ψ
2
j < ∞. Thus, Xi(s) admits the

Karhunen-Loeve expansion as

Xi(s) =
∞∑
j=1

ξijφj(s),

where the ξij are referred to functional principal component (fPC) scores and the ξij =∫
S X(s)φj(s)ds are uncorrelated random variables with mean zero and variance ψj = E(ξ2ij).

To estimate ξij based on the observed covariate functions Wi(s), we first employ the cubic

smoothing spline [65] to estimate the underlying signal Xi(s). We then use the sample mean

and covariance functions of the estimated Xi(s) to estimate µ(s) and K(s, s′). Subsequently,

we estimate ψj(s) and ξij for all i, j ≤ n. Since the eigenfunctions ψj(·) form a complete

orthonormal system on the space of square-integrable functions on S, the covariate function

γ(s) can be expanded as

β(s) =
∞∑
j=1

φj(s)βj with
∞∑
j=1

β2
j <∞. (2.4.1)
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Therefore, we have ∫
S
Xi(s)β(s)ds =

∞∑
i=1

ξijβj (2.4.2)

and with truncated linear predictors

Yi =
∞∑
i=1

ξijβj + εi ≈
qn∑
i=1

ξijβj + εi, (2.4.3)

where qn is a sufficiently large integer that may depend on n. One can control smoothness

of the functional coefficient by truncating the infinite summation in the equation (2.4.2) at

the first qn summation. Since the approximation error of the truncated model is bounded

by the variance of the truncated part and is controlled by a sequence of eigenvalues, ψj,

the truncation step would allow nice approximation for the infinite summation. Practically,

it is common to choose qn such that the percentage of variance explained by the first qn

fPCA components is 70%, 85%, or 95%. Alternatively, we may formulate it as a model selec-

tion procedure and choose it by using some model selection criterion, such as the deviance

information criterion (DIC) [146, 76].
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CHAPTER 3

BAYESIAN FUNCTIONAL LINEAR COX REGRESSION MODELS

3.1 Introduction

Alzheimer’s Disease (AD) is a firmly incurable and progressive disease [36]. In the pathol-

ogy of AD, mild cognitive impairment (MCI) is a clinical syndrome characterized by insidious

onset and gradual progression, and commonly arising as a result of underlying neurodegener-

ative pathology [53]. Since MCI is considered as a risk state for AD, a major research focus

in recent years has been to delineate a set of biomarkers that provide evidence of such a

neurodegenerative pathology in living individuals, with the goal of specifying the likelihood

that the pathophysiological process is due to Alzheimer’s disease (MCI due to AD; MCI-AD)

and will lead to dementia within a few years [1]. Accordingly, increasing attention has been

devoted to investigate the utility of various imaging, genetic, clinical, behavioral, and fluid

data to predict the conversion from MCI to AD.

Several studies have utilized a small subset of biosignatures and then assessed the relative

importance of different modalities in predicting the diagnostic change from MCI to AD

[31, 128, 170, 133, 45]. For example, in [31], the authors simultaneously examined multiple

features from different modalities, including structural magnetic resonance imaging (MRI)

morphometry, cerebrospinal fluid biomarkers, and neuropsychological measures to assess an

optimal set of predictors of conversion from MCI to AD. They observed that structural

changes within the medial temporal lobe (MTL), particularly the hippocampus, as well as

performance on cognitive tests that rely on MTL integrity (i.e., episodic memory), were good

predictors of MCI to AD conversion.
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Recently, most researchers have turned to the analysis of longitudinal data to assess the

dynamic changes of various biomarkers associated with the MCI-to-AD transition across

time. To begin, a prominent neural correlate of MCI-AD is volume loss within the MTL,

especially within the hippocampus and entorhinal cortex [42], with increasing atrophy in

these structures from normal aging to MCI to AD [123]. Longitudinal studies of individuals

with MCI-AD have also highlighted the importance of assessing MTL changes in tracking the

progression of MCI to AD. For example, several studies have documented diminished baseline

hippocampal and entorhinal volumes that are associated with an increased likelihood of

progressing to clinical dementia [85, 59]. Additionally, several modalities of disease indicators

have been studied to assess progression to AD, including neuroimaging biomarkers [154, 166,

133], biomedical markers [139], and neuropsychological assessments [124]. Finally, a number

of structural MRI studies, covering region of interest (ROI), volume of interest, voxel-based

morphometry, and shape analysis have reported that the degree of atrophy in several brain

regions, such as the hippocampus and entorhinal cortex, is not only sensitive to disease

progression, but also predicts MCI conversion [28, 108, 40].

Despite the importance of these investigations, a central question remains. Namely, how

do we accurately predict the time to conversion in individuals who harbor AD pathology,

as well as determine the optimal early markers of conversion? In [149], 148 MCI subjects

were used to identify the most predictive neuropsychological measures. In [97], 139 MCI

subjects in ADNI-1 were used to evaluate the predictive power of brain volume, ventricular

volume, hippocampus volume, APOE status, cerebrospinal fluid (CSF) biomarkers, and

behavioral scores. Their results show a moderately accurate prediction with the value of an

area under the curve of 0.757 at 36 months, whereas they found that baseline volumetric

MRI and behavioral scores were selectively predictive. Finally, in [33], 381 MCI subjects from

ADNI 1 were examined to evaluate several biomarkers for predicting MCI to AD conversion

including spatial patterns of brain atrophy, ADAS-Cog, APOE genotype, and cerebrospinal

fluid (CSF) biomarkers. Their findings suggest that a combination of spatial patterns of brain
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atrophy and ADAS-Cog offers good predictive power of conversion from MCI to AD, whereas

APOE genotype did not significantly improve prediction. To the best of our knowledge, no

prior study has examined the role of functional covariates including hippocampus surface

morphology in predicting time to conversion from MCI to AD with/without adjusting for

low-dimensional behavioral and clinical measures.

To assess the predictability of hippocampus surface morphology in survival models, we

develop a Bayesian functional linear Cox regression model (BFLCRM) with both functional

and scalar covariates. The BFLCRM integrates a Cox proportional hazard regression and

functional linear model into a single framework. First, BFLCRM can be an important exten-

sion of various statistical models including parametric, semiparametric and nonparametric

models for handling survival response data and scalar covariates. See overviews of various

survival models in [84, 75, 48] and the references therein. Recent advances in computation

and prior elicitation have made Bayesian analyses of these survival models with scalar co-

variates feasible. For instance, nonparametric prior processes including the gamma process

prior, the Beta process model, the correlated gamma process, and the Dirichlet process prior

have been developed as the prior distribution of the baseline cumulative hazard function

[144, 75]. Second, BFLCRM can be an important extension of various functional linear

models for handling discrete or continuous response data and functional covariates. The

existing literature focuses on the development of frequentist methods for functional linear

models. Some examples include [165, 47, 131, 81, 132] and the references therein. Third,

BFLCRM can be regarded as an important extension of high-dimensional survival models.

However, most high-dimensional survival models focus on the identification of a small set of

covariates and their overall effect on time-to-event outcomes [82, 96, 11]. These approaches

can be sub-optimal for high-dimensional imaging data, since the effect of imaging data on

clinical data and other imaging data is often non-sparse, which makes it notoriously difficult

for many existing regularization methods [44, 152].
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In Section 2, we will introduce BFLCRM and its associated Bayesian estimation proce-

dure. In Section 3, we will introduce the NIH Alzheimer’s Disease Neuroimaging Initiative

(ADNI) dataset and illustrate the use of BFLCRM in the prediction of time to conversion

from MCI to AD by using both functional and scalar covariates. In Section 4, we conduct

simulation studies to examine the finite sample performance of BFLCRM. In Section 5, we

interpret the findings obtained from the analysis of ADNI dataset.

3.2 Bayesian Functional Linear Cox Regression Models

3.2.1 Setup

Consider imaging, genetic, and clinical data from n = 346 independent MCI patients in

ADNI-1. For the i-th MCI patient, we observe a possibly right censored time to conversion

to AD, denoted by yi. Specifically, yi = Ti ∧ Ci is the minimum of the censoring time

Ci and the transition time Ti and νi = 1(yi = Ti), where 1(·) is an indicator function.

Moreover, we observe a p × 1 vector of scalar covariates, denoted by xi = (xi1, · · · , xip)T ,

and a functional covariate, denoted by Zi(·), on a compact set S. In this paper, we focus

on the noninformative censoring setting such that Ti and Ci are conditionally independent

given all covariates of interest. The scalar covariates of interest include age at baseline,

length of education, gender, handedness, marital status, retirement, and the well-known

Apolipoprotein E (APOE) SNPs. The APOE has three major forms, ε2, ε3, and ε4, where

ε3 is the most common form. The functional covariate of interest is the hippocampus surface

morphology. Figure 3.1 on page 19 shows the example hippocampus surface morphology data

in ADNI-1 data.

Our problems of interest are to establish the likelihood of conversion to Alzheimer’s

disease (AD) in 346 MCI patients enrolled in the ADNI-1 and to select the optimal early

markers of conversion from both the scalar covariates and the functional covariate. With the
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Figure 3.1: ADNI data: panel (a) is hippocampal subfields mapped onto a representative
hippocampal surface [5], and panels (b) and (c), respectively, show the top and bottom views
of the first subject’s hippocampal surface data where the corresponding radial distances are
color-coded by the colorbar in panel (d).

sole presence of xi, it is common to consider Cox’s proportional hazards model [29], which

assumes that the conditional hazard function of yi given xi is given by

h(y|xi) = h0(y) exp(xTi β) = h0(y) exp

(
p∑

k=1

xikβk

)
, (3.2.1)

where β = (β1, · · · , βp)T is a p× 1 vector of regression coefficients and h0(·) is an unknown

baseline hazard function. However, the Cox proportional hazards model (3.2.1) does not

incorporate the effect of the functional covariate Zi(·) on the time to conversion.
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3.2.2 Model Formulation

We propose a Bayesian functional linear Cox regression model with three main ingredients

for handling both functional and scalar covariates as a natural extension of (3.2.1). Based

on this formulation, we take a Bayesian approach to estimate the parameters of interest.

In the first component of BFLCRM, it is assumed that the hazard function of yi given

(xi, Zi(·)) is given by

h(y|xi, Zi(·)) = h0(y) exp

(
p∑

k=1

xikβk +

∫
S
γ(s)(Zi(s)− µ(s))ds

)
, (3.2.2)

where µ(s) is the mean function of Zi(s) and γ(·) is an unknown coefficient function, a square

integrable function on S.

The second component of BFLCRM is the functional principal component analysis (fPCA)

model of the Zi(·)’s. It is assumed that the Zi(s)’s are square integrable random functions

and Wi(s) is measured at a set of grid points in S with measurement errors such that

Wi(s) = Zi(s) + εi(s) = µ(s) + Z̄i(s) + εi(s), (3.2.3)

where Z̄i(s) characterizes individual functional variations from µ(s). The εi(s)’s are mea-

surement errors with mean zero and variance σ2
ε (s) at each s and independent of each other

for s 6= s′. Moreover, µ(s) can be consistently estimated by µ̂(s) =
∑n

i=1Wi(s)/n.

It is assumed that Zi(s) and εi(s) are independent of each other and the covariance

function of {Z̄i(s) : s ∈ S}, denoted by K(s, s′) = E{Z̄(s)Z̄(s′)}, is continuous on S × S.

According to Mercer’s theorem, K(s, s′) also admits a spectral decomposition K(s, s′) =∑∞
j=1 ψjφj(s)φj(s

′), where (ψj, φj(s))’s are the eigenvalue-eigenfunction pairs of K(s, s′) such

that {ψj : j ≥ 1} are the eigenvalues in decreasing order with
∑∞

j=1 ψ
2
j < ∞. Thus, Z̄i(s)

admits the Karhunen-Loeve expansion as Z̄i(s) =
∑∞

j=1 ξijφj(s), where the ξij are referred to

functional principal component (fPC) scores and the ξij =
∫
S Z̄(s)φj(s)ds are uncorrelated
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random variables with mean zero and variance ψj = E(ξ2ij). To estimate ξij based on

the observed covariate functions Wi(s) , we first employ the cubic smoothing spline [65] to

estimate the underlying signal Zi(s). We then use the sample mean and covariance functions

of the estimated Zi(s) to estimate µ(s) and K(s, s′). Subsequently, we estimate φj(s) and

ξij for all i, j ≤ n.

The third component of the BFLCRM is an approximation of
∫
S γ(s)Z̄(s)ds. Since the

eigenfunctions ψj(·) form a complete orthonormal system on the space of square-integrable

functions on S, the covariate function γ(s) can be expanded as

γ(s) =
∞∑
j=1

φj(s)γj with
∞∑
j=1

γ2j <∞. (3.2.4)

Therefore, we have ∫
S
Z̄i(s)γ(s)ds =

∞∑
j=1

ξijγj (3.2.5)

and approximate h(y|xi, Zi(·)) as

h0(y) exp

(
p∑

k=1

xikβk +
∞∑
j=1

ξijγj

)
≈ h0(y) exp

(
p∑

k=1

xikβk +

qn∑
j=1

ξijγj

)
, (3.2.6)

where qn is a sufficiently large integer that may depend on n. As shown in the literature,

such an approximation is accurate under some conditions on the decay rate of the γj’s.

Practically, it is common to choose qn such that the percentage of variance explained by the

first qn fPCA components is 70%, 85%, or 95%. Alternatively, we may formulate it as a

model selection procedure and choose it by using some model selection criterion, such as the

deviance information criterion (DIC) [146, 76].

3.2.3 Priors

To carry out a Bayesian analysis of model (3.2.6), we specify joint prior distributions

for all unknown parameters (β,γ, h0), where h0(·) is the baseline hazard function. We

first set p(β,γ, h0) = p(β,γ)p(h0) and assume (β,γ) ∼ N(µ0,Σ0), where N(µ0,Σ0) is the
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multivariate Normal distribution with a (p+ qn)×1 mean vector µ0 and a (p+ qn)× (p+ qn)

covariance matrix Σ0.

We may specify different prior distributions for h0(y). The most convenient and popular

distribution for h0(y) is the piecewise constant hazard model. Specifically, we first construct

a finite partition of the time axis, 0 < s1 < s2 < . . . < sJ , with sJ > yi for all i, which leads to

J intervals (0, s1], . . ., (sJ−1, sJ ]. In the j-th interval, we set h0(y) = λj for y ∈ Ij = (sj−1, sj].

A common prior of the baseline hazard λ = (λ1, · · · , λJ)T is the independent gamma prior

λj ∼ G(α0j, α1j) for j = 1, . . . , J , where α0j and α1j are prior hyperparameters. Another

approach is to build prior correlation among the λj’s using a prior ψ ∼ N(ψ0,ΣJ), where

ψj = log(λj) for j = 1, . . . , J and ψj = (ψ1, · · · , ψJ). For notational simplicity, we focus on

the piecewise constant hazard model with the independent gamma prior from here on.

We consider the strategy of choosing the hyperparameters Σ0, α0j and α1j as follows. We

can tune the eigenvalues of Σ0 in order to control the prior information for the regression

coefficients. If the smallest eigenvalue λmin(Σ0) converges to ∞, then N(µ0,Σ0) tends to

be an improper prior. In contrast, if the largest eigenvalue λmax(Σ0) is very small, then

N(µ0,Σ0) tends to be a strongly informative prior. In order to use a noninformative prior

for the λj’s, the shape and scale parameters of the gamma distributions are set to be α0j =

0.2 and α1j = 0.4 for all j = 1, · · · , J [143]. Also setting either (α0j, α1j) = (0.5, 1) or

(α0j, α1j) = (0.2, 1) would make the gamma distribution flat as well.
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3.2.4 Posterior Computation

The log-posterior distribution of (β,γ,λ) (unnormalized) is given by

n∑
i=1

J∑
j=1

[uijνi(log λj + zTi θ)− uij{λj(yi − sj−1) +

j−1∑
g=1

λg(sg − sg−1)} exp (zTi θ)

−{log|Σ0|+ (θ − µ0)
TΣ−10 (θ − µ0)}/2

+
J∑
j=1

{(α0j − 1) log λj − λjα1j + α0j log(α1j)− log Γ(α0j)}, (3.2.7)

where θ = (βT ,γT )T , zi = (xTi , ξi1, · · · , ξiqn)T , and s0 = 0. Moreover, uij = 1 if the i-th

subject fails or is right censored in the j-th interval and 0 otherwise. We propose a Gibbs

sampler for posterior computation after truncating the sum of the infinite series to have

qn < ∞ terms. The Gibbs sampler is computationally efficient and mixes rapidly. We first

specify the hyperparameters µ0,Σ0, α0j and α1j for all j at appropriate values to represent

prior opinion. Starting from the initiation step, the Gibbs sampler for model (3.2.6) with

the truncated term qn proceeds as follows:

1. Update (β,γ) according to their full conditional distribution in (3.2.7). Specifically, we

employ the random walk Metropolis-Hastings (M-H) [66, 106] algorithm and choose a

multivariate Normal proposal density yielding an average acceptance rate of 23.4% [54].

The mean of the proposal density is the posterior sample (βt−1,γt−1) from the previous

iteration. The covariance matrix is the inverse of the Fisher information matrix of the

posterior distribution evaluated at (βt−1,γt−1).

2. Update λj from its full conditional distribution

p(λj|λ(−j)
0 ,−) ∼ Gamma(α0j +

n∑
i=1

uijνi, α̃1j),
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where λ
(−j)
0 is the vector λ0 without the j-th element and α̃1j is given by

α̃1j =



α1j +
∑n

i=1{uij(yi − sj−1) + (sj − sj−1)
∑J

k=j+1 uik} exp (zTi θ),

if j ≤ J − 1;

α1J +
∑n

i=1{uiJ(yi − sJ−1) exp (zTi θ)},

if j = J.

3.3 Alzheimer’s Disease Neuroimaging Initiative Data Analysis

3.3.1 Alzheimer’s Disease Neuroimaging Initiative

The development of the BFLCRM is motivated by the analysis of imaging, genetic, and

clinical data collected by ADNI. “Data used in the preparation of this article were obtained

from the Alzheimers Disease Neuroimaging Initiative (ADNI) database (www.loni.usc.edu/ADNI).

The ADNI was launched in 2003 by the National Institute on Aging (NIA), the National

Institute of Biomedical Imaging and Bioengineering (NIBIB), the Food and Drug Admin-

istration (FDA), private pharmaceutical companies and non-profit organizations, as a $60

million, 5-year public private partnership. The primary goal of ADNI has been to test

whether serial magnetic resonance imaging (MRI), positron emission tomography (PET),

other biological markers, and clinical and neuropsychological assessment can be combined to

measure the progression of mild cognitive impairment (aMCI) and early Alzheimers disease

(AD). In specific, a subject will be classified as a MCI subject if the following conditions

are met: mini-mental state exam (MMSE) scores are between 24-30, a subject has a mem-

ory complaint, objective memory loss measured by education adjusted scores on Wechsler

Memory Scale Logical Memory II, a Clinical Dementia Rating (CDR) of 0.5, absence of

significant levels of impairment in other cognitive domains, essentially preserved activities

of daily living, and an absence of dementia. A subject will be classified as an AD subject if

the following conditions are met: MMSE scores between 20-26 (in- clusive), CDR of 0.5 or
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1.0, and meets NINCDS/ADRDA criteria for probable AD. The NINCDS/ADRDA criteria,

the most used ones for the diagnosis of AD, were developed by the National Institute of

Neurological and Communicative Disorders and Stroke and the Alzheimers Association.

Determination of sensitive and specific markers of very early AD progression is intended

to aid researchers and clinicians to develop new treatments and monitor their effectiveness,

as well as lessen the time and cost of clinical trials. The Principal Investigator of this

initiative is Michael W. Weiner, M.D., VA Medical Center and University of California -

San Francisco. ADNI is the result of efforts of many co-investigators from a broad range of

academic institutions and private corporations, and subjects have been recruited from over

50 sites across the U.S. and Canada. The initial goal of ADNI was to recruit 800 adults,

ages 55 to 90, to participate in the research approximately 200 cognitively normal older

individuals to be followed for 3 years, 400 people with aMCI to be followed for 3 years,

and 200 people with early AD to be followed for 2 years. For up-to-date information see

www.adni-info.org.”

3.3.2 Data Description

The aim of this ADNI data analysis is to examine the predictability of clinical, genetic,

and imaging data for the time to conversion to AD in MCI patients. Conversion is established

if the diagnosis has been changed from MCI at the baseline to AD at some visit. We focused

on 346 MCI patients at baseline of the ADNI-1 database. Among the 346 MCI patients, 151

of them are converters and 195 are non-converters at 48 months.

For each MCI patient, we included his/her clinical, genetic, and imaging variables at

baseline. The clinical characteristics include Gender (0=Male; 1=Female), Handedness

(0=Right; 1=Left), Marital Status (1=Married; 2=Widowed; 3=Divorced; 4=Never mar-

ried), Education length (in years), Retirement (1=Yes; 0=No), Age, and Alzheimer’s Disease
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Assessment Scale-Cognition (ADAS-Cog) score. Marriage status is coded using 3 dummy

variables: “Widowed”, “Divorced”, “Never married”. The ADAS-Cog test has been widely

used to assess the severity of dysfunction in adults [134], where the larger the ADAS-Cog

score, the greater the dysfunction.

The genetic variables include the APOE genetic covariates, since it is well known that

mutations in APOE raise the risk of progression from amnestic MCI to AD [126]. The

Apolipoprotein E (APOE) SNPs, rs429358 and rs7412 were, separately, genotyped in ADNI-

1. These two SNPs together define a 3 allele haplotype, namely the ε2, ε3, and ε4 variants

and the presence of each of these variants was available in the ADNI database for all the

individuals. Among these variants, APOE-ε3 is known to be most common allele, while

APOE-ε4 has been turned out to be a risk factor for early onset of AD [119]. In this model,

we consider the presence of APOE-ε4 as a covariate to incorporate its effect on the time

to conversion from MCI to AD. In addition, we selected 7 regions of interest (ROIs) that

may significantly influence MCI progression among the 93 ROI volume data [14, 80, 46].

These 7 ROIs are bilateral hippocampal formation, bilateral amygdala, posterior limb of

internal capsule, bilateral thalamus. In total, we have 17 scalar covariates. The imaging

data include the hippocampal radial distances of 30,000 surface points on the left and right

hippocampal surfaces. The hippocampal radial distance is a distance from its medial core

to the hippocampal surface and measures hippocampal thickness.

In the demographic information, 220 participants are male, and 126 are female; 316

are right-handed, and 30 are left-handed. For Marital Status, 283 were married, 40 were

widowed, 19 were divorced, and 4 were never married at baseline. Among these individuals,

276 were retired and 70 were not. On average, the subjects had 15.7 years of education with

standard deviation 3.0 years, the minimum 6 years, and the maximum 20 years. The average

age of subjects was 75.0 years with standard deviation of 7.3 years. The youngest person

was 55 years old, while the oldest person was 90 years old. For the genetics information
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on the first allele of APOE, 25 subjects had genotype 2, 277 subjects had genotype 3, and

44 subjects had genotype 4. For the second allele, 156 subjects had genotype 3, while 190

subjects had genotype 4. The average ADAS-cog score was 11.5, with standard deviation of

4.4. The lowest score was 2 and the highest score was 27.67.

3.3.3 Hippocampus Image Preprocessing

We used a hippocampal image analysis package to calculate hippocampal surface data

as follows [140, 161, 141, 142, 111, 26, 103]. Given the 3D MRI scans, we used FIRST [121]

to segment hippocampal substructures and then applied the marching cube method [102] to

automatically reconstructing hippocampal surfaces. Then, an automatic algorithm, called

topology optimization, was used to introduce two cuts on a hippocampal surface in order to

convert it into a genus zero surface with two open boundaries. The two cuts, whose locations

were at the front and back of the hippocampal surface, represent its anterior junction with

the amygdala and its posterior limit as it turns into the white matter of the fornix. We

then computed holomorphic 1-form basis functions [160]. It allows us to induce conformal

grids of the hippocampal surfaces which were consistent across subjects. The conformal

representation of the surface was computed with this conformal grid [140]. We also computed

the “feature image” of a surface by combining the conformal factor and mean curvature and

linearly scaling the dynamic range into [0, 255]. Finally, the feature image of each surface

in the dataset was registered to a common template by using an inverse consistent fluid

registration algorithm [142]. It establishes high-order correspondences between 3D surfaces.

Finally, we computed various surface statistics based on the registered surface, such as

multivariate tensor-based morphometry (mTBM) statistics [160].
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3.3.4 Data Analysis

We focused on 346 MCI patients in the ADNI-1 data in order to examine the predictability

of clinical, genetic, and imaging covariates for the time to conversion to AD from MCI. The

patients consist of 151 converters and 195 non-converters. We fit BFLCRM with time to

conversion to AD as the response yi, the clinical, genetic, and ROI volume data as scalar

covariates in xi, and the hippocampus surface data based on radial distance as functional

covariates in Zi(·) for the i-th subject. In all posterior computations, we centered the scalar

covariates xi using their mean. We chose the first 14 eigenfunctions of hippocampal surface

data, which explain about 73.48% of the variance in the hippocampus surface data. The first

14 largest eigenfunctions projected on the hippocampal surfaces were presented in Figure 3.8

in the supplementary section. For the piecewise constant hazards model of h0(·), we chose

J = 70 intervals so that each interval contains at least one failure or censored observation.

The full BFLCRM model (3.2.6) contains 19 scalar covariates and the first 14 fPC scores.

Due to the lack of prior information, all hyperparameters were chosen to reflect nearly

noninformative priors. For regression coefficients, the hyperparameters of the multivariate

Normal priors were set as µ0 = (0, · · · , 0) and Σ0 = diag(5, · · · , 5). For the λj’s, the shape

and scale parameters of the Gamma priors were set to be α0j = 0.2 and α1j = 0.4 for

j = 1, · · · , 70 [143]. We ran the Gibbs sampler for 25,000 iterations after 5,000 burn-in

iterations. Based on the 20,000 MCMC samples, we calculated various posterior quantities

of (β,γ,λ). For the full BFLCRM model, in section 3.3.5, we also conducted sensitivity

analyses in order to investigate the influence of different choices of hyperparameters in the

prior distributions. From the results shown in Tables 3.11-3.14 in the supplementary section,

we found that the proposed priors were robust to various choices of the hyperparameters in

the prior distributions. The computational time (in C/C++ using an 8-cores 2.80 GHz Intel

processors) was 350 seconds for running the Gibbs sampler for the full BFLCRM model with

25,000 iterations.
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Table 3.1: ADNI data analysis results for the full BFLCRM model: the posterior quantities
of 19 regression coefficients βks, that correspond to xi =(Gender, Handedness, Widowed,
Divorced, Never married, Length of Education, Retirement, Age, APOE-ε4 carrier, ADAS-
cog Score, posterior limb of internal capsule, Right hippocampal formation, Left hippocampal
formation, Left thalamus, Left amygdala, Right amygdala, and Right thalamus). Mean
denotes ‘posterior mean’, SD denotes ‘posterior standard deviation’, and lower and upper,
respectively, represent the ‘lower and upper limits’ of a 95% highest posterior density interval.

β1 β2 β3 β4 β5 β6 β7 β8
Female Left Widowed Divorced Never- Years of Retired Age

married education in years
Mean 0.4344 0.2255 0.3119 0.2729 0.7203 -0.0874 0.3455 -0.0519
SD 0.2513 0.3647 0.3827 0.4663 0.7867 0.0367 0.2482 0.0178

lower -0.0495 -0.5248 -0.4632 -0.6789 -0.9383 -0.1691 -0.0919 -0.0873
upper 0.9478 0.8628 1.0138 1.1195 2.2009 -0.0244 0.8608 -0.0188

β9 β10 β11 β12 β13 β14 β15 β16 β17
ApoE4 ADAS PLIC RHF LHF LT LA RA RT

Mean 0.5550 0.1568 0.0008 0.0006 -0.0011 -0.0004 0.0018 -0.0012 0.0003
SD 0.2341 0.0265 0.0005 0.0004 0.0004 0.0004 0.0009 0.0005 0.0004

lower 0.1258 0.1030 -0.0002 -0.0002 -0.0019 -0.0012 0.0000 -0.0023 -0.0004
upper 1.0258 0.2075 0.0019 0.0014 -0.0004 0.0003 0.0036 -0.0002 0.0010

Table 3.1 shows the posterior means of the regression coefficients β and their standard

deviations, as well as the lower and upper limits of the 95% highest posterior density (HPD)

intervals based on the full BFLCRM model. Six scalar covariates including “Length of

Education”, “Age”, “APOE-ε4 carrier”, “ADAS-cog score”, “Left Hippocampal formation”,

and “Right amygdala” have 95% HPD intervals that do not contain 0. This implies that

we can expect a worse prognosis of AD for MCI patients with lower ROI volume in the

left hippocampal formation and the right amygdala. This finding supports the finding that

atrophy of the hippocampal formation is a significant diagnostic marker [86, 78]. It also

confirms the previous finding that the amygdala volume tends to be reduced in the early

stage of AD [109, 127]. Moreover, the 95% HPD intervals of the 1st, 7th, and 14th fPCs

do not contain 0. This may indicate that the hippocampal radial distance is an important

functional covariate for predicting the time to conversion to AD in MCI subjects.
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Figure 3.2: ADNI data analysis results for the full BFLCRM model: panels (a) and (b),
respectively, show the top and bottom views of the estimated coefficient function associated
with the hippocampal surface data color-coded by the colorbar in panel (c).

We estimated the coefficient function γ(·) by using γ̂(s) =
∑14

j=1 φ̂j(s)γ̂j, where γ̂j is the

posterior mean of γj for each j. Figure 3.2 shows the estimated coefficient function γ̂(·)

associated with the hippocampal surface data. When hippocampal atrophy in a red region

is greater, a risk of progressing from MCI to AD is expected to be increased. A blue region

suggests that the thicker the area is on the hippocampus, the shorter the time to conversion

to AD is. Inspecting Figure 3.2 reveals that the subfields of CA1 and subiculum on the

hippocampi have positive effects on the hazard function, indicating that the thinner these

areas on the hippocampus are, the shorter the time is to conversion to AD.

Figure 3.3 on page 31 shows the estimated survival functions of the APOE-ε4 carriers

and non-carriers, when the values of the continuous covariates are set at their mean values

and the categorical variables are set at their reference levels. The dotted lines show the

95% HPD intervals of survival functions. The APOE-ε4 carriers are expected to convert

from MCI to AD faster than non-carriers. These results are consistent with several prior

studies suggesting that the presence of the APOE-ε4 allele increases the risk of developing

AD [148, 135, 27].

We compared the full BFLCRM model with three reduced models in terms of their

30



500 1000 1500

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Time (days)

S
ur

vi
va

l f
un

ct
io

n

95% HPD intervals for
Carriers
Non-carriers

Carriers

Non-carriers

Figure 3.3: ADNI data analysis results: the estimated survival curves of APOE-ε4 carriers
and non-carriers under the full BFLCRM model. Other continuous or categorical covariates
are fixed at the mean values or reference levels. The dotted lines show the 95% HPD intervals
of the estimated survival functions.

predictive performance. For Model 1, we excluded the ROI volume covariates from the full

BFLCRM model. For Model 2, we only included all the scalar covariates. For Model 3,

we only included the clinical covariates, APOE-ε4 status, and the ADAS-cog score. For all

three reduced models, we set J = 70 intervals so that each interval contains at least one

failure or censored observation. For the regression coefficients, the hyperparameters of the

multivariate Normal priors were set as µ0 = (0, · · · , 0) and Σ0 = diag(5, · · · , 5). We set

α0j = 0.2 and α1j = 0.4 for j = 1, · · · , 70. We ran the Gibbs sampler for 25,000 iterations

after 5,000 burn-in iterations. We also calculated the DIC and integrated AUC (iAUC) [74]

for all four models, where AUC denotes the area under the Receiver Operating Characteristic

(ROC) curve. The DIC can be estimated within the MCMC iterations. More details can be
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Table 3.2: ADNI data analysis results under the four models: DICs and the empirical means
of iAUC values and their corresponding standard errors in the parenthesis calculated from
the Monte Carlo cross-validation (MCCV).

the full BFLCRM model Model 1 Model 2 Model 3
DIC 427.19 413.08 417.04 438.22

iAUC 0.840 (0.003) 0.836 (0.003) 0.809 (0.003) 0.751 (0.004)

Table 3.3: ADNI data analysis results for Model 1: the posterior quantities of 12 regression
coefficients βks, that correspond to xi =(Gender, Handedness, Widowed, Divorced, Never
married, Length of Education, Retirement, Age, APOE-ε4 carrier, and ADAS-cog Score).
Mean denotes ‘posterior mean’, SD denotes ‘posterior standard deviation’, and lower and
upper, respectively, represent the ‘lower and upper limits’ of a 95% highest posterior density
interval.

β1 β2 β3 β4 β5 β6 β7 β8 β9 β10
Female Left Widowed Divorced Never- Years of Retired Age ApoE4 ADAS

married edu
Mean 0.3943 0.2826 0.2422 0.1409 0.5174 -0.0577 0.4045 -0.0406 0.5143 0.1572
SD 0.2016 0.3317 0.3121 0.4377 0.7682 0.0341 0.2442 0.0156 0.2190 0.0239

lower -0.0157 -0.3488 -0.4151 -0.7356 -0.9930 -0.1260 -0.0610 -0.0699 0.1069 0.1104
upper 0.7842 0.9094 0.8308 0.9196 1.9468 0.0045 0.8900 -0.0089 0.9634 0.2030

found in [146, 76].

Table 3.2 shows the values of DIC and iAUC for the four models. The full BFLCRM

model yields the DIC value of 427.19, which is smaller than that of Models 3, but larger

than those of Model 1 and 2. The Model 1 had the smallest DIC value as 413.08. For

Model 1, as shown in Table 3.8, “Age”, “APOE-ε4 carrier”, and “ADAS-cog score” have

their 95% HPD intervals that do not contain 0. See additional estimation results associated

with Models 1-3 in Tables 3.8, 3.9, and 3.10 and Figures 3.6 and 3.7 of the supplementary

section. Based on the iAUC values, however, the full model achieves the best predictive

performance. Moreover, the full model and Model 1, which include the hippocampal surface

data as functional covariates, provide better predictive performance than Models 2 and 3.

This may indicate that the hippocampal surface data contributes significantly to the time of

conversion from MCI to AD. We estimated the iAUC by using a Monte Carlo cross-validation

(MCCV) method. Specifically, the full data set was randomly split into a training set with
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200 subjects and a test set with 146 subjects. For each such split, we fitted each model to

the training set and then calculated iAUC based on the test set. This random split was

repeated 100 times yielding the estimated iAUC values for all models.

3.3.5 Sensitivity Analysis

We examine the effects of varying hyperparameters on the posterior estimation. In our

main paper, we first set p(β,γ,λ) = p(β,γ)p(λ) and assume (β,γ) ∼ N(µ0,Σ0), where

N(µ0,Σ0) is the multivariate normal distribution with a (p+ qn)× 1 mean vector µ0 and a

(p+qn)×(p+qn) covariance matrix Σ0. For the piecewise constant baseline hazard function,

λ = (λ1, · · · , λJ)T follows the independent gamma prior such that the λj are independent

and λj ∼ G(α0j, α1j) for j = 1, . . . , J , where α0j and α1j are prior hyperparameters. We

consider different choices of Σ0 and (α0j, α1j) and evaluate their effects on the estimation of

(β,γ,λ).

First, we varied the hyperparameter Σ0, while fixing (α0j, α1j) at (0.2, 0.4) for all

j = 1, · · · , 70 . The mean vector µ0 was set as (0, · · · , 0) in order to reflect an in-

sufficient prior information. For the covariance matrix Σ0, we considered three scenar-

ios including diag(5, · · · , 5), diag(25, · · · , 25), and diag(100, · · · , 100). Particularly, Σ0 =

diag(100, · · · , 100) represents an approximately non-informative prior. Tables 3.11 and 3.13

show that all posterior estimates are quite stable as Σ0 is varied.

Second, we varied the hyperparameters of the gamma priors on the piecewise constant

baseline hazard function, when µ0 and Σ0 were, respectively, set to be (0, · · · , 0) and

diag(100, · · · , 100). We considered three scenarios. To use non-informative priors for λj’s, we

set the shape and scale parameters of the gamma distributions to be α0j = 0.2 and α1j = 0.4

for all j = 1, · · · , 70 [143]. We then set either (α0j, α1j) = (0.2, 1) or (α0j, α1j) = (0.5, 1) in

order to make the gamma distribution flat. For the sake of space, we only report the first
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50 estimated λj’s. Tables 3.12 and 3.14 show that all posterior estimates are quite stable as

the hyper parameters (α0j, α1j) vary. Therefore, we may conclude that the proposed priors

for a large range of hyper-parameters can yield stable posterior estimates.

3.4 Simulation Studies

We conduct Monte Carlo simulations to evaluate the proposed BFLCRM across differ-

ent censoring rates and sample sizes. Moreover, we will evaluate the predictability of our

BFLCRM compared to proportional hazards models without the use of functional covariates.

3.4.1 Setup

We generated all simulated data sets according to model (3.2.1). The xi is a 4× 1 vector

and its corresponding elements were independently generated from N(0, 0.5). We set the

true value of β to be (0.7, 0.2,−0.5,−1)T . The functional covariate Zi(s) was generated from

model (3.2.3), where its underlying function follows the standard Gaussian process with the

covariance function K(s, t) = exp(−3(s− t)2). The observed functional covariate data Wi(s)

consists of noisy observations evaluated at 100 equally spaced grids in the interval [-4,4] with

some measurement errors. Specifically, the measurement errors εi(s) were independently

generated from a N(0, 0.5) across s. The functional coefficient γ(s) was generated from the

standard Gaussian process with covariance function Kγ(s, t) = exp(−2(s− t)2). To generate

the survival time, we considered two different baseline hazard functions h01(·) and h02(·) as

follows.

h01(t) = 1 if t > 0, (3.4.1)

h02(t) =


κω if 0 < t ≤ 2;

κω(t− 1)ω−1 if 2 < t ≤ 3;

κω2ω−1 if t > 3.

(3.4.2)
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The first baseline hazard function h01(·) assumes that it is constant over time. As a more

general form of hazard function, we consider a mixed form of baseline hazard functions for

the exponential and Weibull distributions. The hazard function h02(·) depends on κ and

ω. In this simulation study, we set κ = 1/3 and ω = 2. Finally, the censoring times were

independently generated from a uniform distribution with parameter chosen to achieve a

desired censoring rate of 30% or 50%. We considered sample sizes of n = 200 and n = 500

for each censoring rate and simulated 100 data sets for each case.

3.4.2 Simulation Results

We used the piecewise constant hazard model for h0(s), in which we set J = 5 and subin-

tervals (sj−1, sj] so that each interval contains at least one failure or censored observation.

We set (α0j, α1j) = (0.2, 0.4) for all j, Σ0 = diag(5, · · · , 5), and µ0 = (0, · · · , 0)T . We cal-

culated the first 12 fPC scores explaining 95% of the variation of the functional covariates,

and then compared the estimation results using the first 12 PC scores in order to investigate

the efficacy of using fPCA. For each simulated data set, we ran the Gibbs sampler for 20,000

iterations with 5,000 burn-in iterations.

To examine the estimation and prediction performance of BFLCRM, we calculated mean

squared errors (MSEs) and time-dependent integrated area under the curve (iAUC) [74] based

on 100 simulated data sets for each scenario. The computational time (in C/C++ using an

8-cores 2.80 GHz Intel processor) was 50.3 seconds for BFLCRM with sample size 200 for one

repetition. We let β̂ denote the posterior mean of β. The MSE of β̂ is defined by MSEβ̂ =∑p
j=1(β̂j − β)2, whereas the MSE for γ(·) is defined by MSEγ̂ =

∫ 4

−4{γ̂(s)− γ(s)}2ds, where

γ̂(s) denotes the posterior mean of γ at time s. A smaller MSE implies better estimation

accuracy, and a large value of iAUC implies a better predictive model. To evaluate the

predictive value of the functional covariate to the hazard function, we calculated iAUC for

two nested models including a reduced BFLCRM model with solely scalar covariates in xi
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Table 3.4: Simulation results corresponding to h01(·) under different censoring rates and

sample sizes: the deviance information criterion (DIC), the mean squared errors (MSE) of β̂
and γ̂ and the estimated integrated area under the curve (iAUCs) and their standard errors
in parentheses calculated from the 100 simulated data sets. The Gibbs sampler was run for
20,000 iterations with 5,000 burn-in iterations for each simulated data set.

sample censoring
size rate MSEβ̂ MSEγ̂ iAUC DIC

200 0.3 FPCA 0.109 (0.009) 0.614 (0.016) 0.935 (0.001) 42.99 (3.46)
PCA 0.113 (0.010) 0.847 (0.020) 0.934 (0.001) 44.66 (3.58)

0.5 FPCA 0.181 (0.014) 0.696 (0.021) 0.933 (0.002) -93.80 (3.44)
PCA 0.186 (0.014) 0.913 (0.025) 0.932 (0.002) -92.21 (3.46)

500 0.3 FPCA 0.045 (0.003) 0.445 (0.012) 0.932 (0.001) 83.52 (4.52)
PCA 0.047 (0.003) 0.581 (0.015) 0.930 (0.001) 85.50 (4.57)

0.5 FPCA 0.052 (0.004) 0.454 (0.013) 0.928 (0.001) -260.93 (4.58)
PCA 0.052 (0.004) 0.600 (0.015) 0.927 (0.001) -259.37 (4.63)

Table 3.5: Simulation results corresponding to h01(·): the mean iAUC and the correspond-
ing standard error in the parenthesis calculated from the 100 simulated data sets for each
scenario. The Gibbs sampler was run for 20,000 iterations with 5,000 burn-in iterations for
each simulated data set.

n 200 500
Censoring rate 0.3 0.5 0.3 0.5

reduced 0.675 (0.004) 0.612 (0.006) 0.668 (0.002) 0.666 (0.002)
full 0.935 (0.001) 0.933 (0.002) 0.932 (0.001) 0.928 (0.001)

and a full BFLCRM model with both Wi(·) and xi.

Table 3.4 presents the estimation results with h01(·) in (3.4.1) based on 100 simulated

data sets for each scenario. The MSE values of both β̂ and γ̂(·) are fairly small in all the

cases. The values of iAUC indicate reasonable predictive performance of our BFLCRM.

The MSE value decreases as either the sample size gets larger or the censoring rate gets

smaller. Also, estimation results of fPCA are better than those of PCA in both MSE and

iAUC. When the functional covariate has moderate measurement noise, fPCA will lead better

estimation and prediction results since the use of smoothing step in fPCA can dramatically

reduce measurement errors. Table 3.5 presents the means and standard errors of iAUC for

the reduced and full BFLCRM models under each scenario. The iAUC value of the full
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Figure 3.4: Simulation results corresponding to h01(·): panels (a) and (b) respectively show
the first 10 estimated baseline hazard functions with 0.3 and 0.5 censoring rates based on
the size 500 samples. The solid line is the true baseline hazard function, h01(·).

BFLCRM model is generally larger than that of the reduced model in all scenarios. This

may indicate that the use of functional covariates can improve predictability of the hazard

function. Figure 3.4 shows the baseline hazard functions estimated by the full BFLCRM

from the first 10 data sets in the sample size 500 cases. The dotted lines show the estimated

baseline hazard functions, and the true baseline hazard function h01(·) is plotted as a solid

line on each plot. When the true baseline hazard function is constant, our model estimates

the true function well in low to moderate censoring cases.

Table 3.6 presents the estimation results with h02(·) in (3.4.2) based on 100 simulated

data sets for each scenario. Table 3.7 shows iAUC values for the two nested models. These

results in Tables 3.6 and 3.7 are consistent with those based on h01(·). The estimated baseline

hazard functions are presented in Figure 3.5 on on page 39 for the sample size 500 cases. We

plot the estimated baseline hazard functions of the first 10 data sets using the full BFLCRM

model. The solid line shows the true baseline hazard function h02(·) on each plot. When

the true baseline hazard function is not piecewise constant, it is well approximated by the
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Table 3.6: Simulation results corresponding to h02(·) under different censoring rates and

sample sizes: the deviance information criterion (DIC), the mean squared errors (MSE) of β̂
and γ̂ and the estimated integrated area under the curve (iAUCs) and their standard errors
in parentheses calculated from the 100 simulated data sets. The Gibbs sampler was run for
20,000 iterations with 5,000 burn-in iterations for each simulated data set.

sample censoring
size rate MSEβ̂ MSEγ̂ iAUC DIC

200 0.3 FPCA 0.112 (0.009) 0.618 (0.018) 0.934 (0.001) 128.21 (3.57)
PCA 0.112 (0.010) 0.854 (0.021) 0.933 (0.001) 129.02 (3.66)

0.5 FPCA 0.183 (0.017) 0.698 (0.023) 0.933 (0.002) -15.26 (3.37)
PCA 0.189 (0.018) 0.913 (0.023) 0.932 (0.002) -13.70 (3.38)

500 0.3 FPCA 0.048 (0.003) 0.453 (0.012) 0.931 (0.001) 306.94 (4.46)
PCA 0.049 (0.005) 0.586 (0.015) 0.930 (0.001) 308.62 (4.49)

0.5 FPCA 0.054 (0.004) 0.457 (0.013) 0.927 (0.001) -69.55 (4.50)
PCA 0.054 (0.004) 0.611 (0.016) 0.926 (0.001) -68.00 (4.54)

Table 3.7: Simulation results corresponding to h02(·): the mean iAUC and the correspond-
ing standard error in the parenthesis calculated from the 100 simulated data sets for each
scenario. The Gibbs sampler was run for 20,000 iterations with 5,000 burn-in iterations for
each simulated data set.

n 200 500
Censoring rate 0.3 0.5 0.3 0.5

reduced 0.673 (0.004) 0.612 (0.006) 0.668 (0.002) 0.665 (0.002)
full 0.934 (0.001) 0.933 (0.002) 0.931 (0.001) 0.927 (0.001)

estimated baseline hazard function in the low censoring case. In the moderate censoring

case, our model captures the general pattern of the true baseline hazard function. It may

indicate that our BFLCRM approximates the general form of the baseline hazard function

fairly well and therefore it is applicable for most of the practical settings.

3.5 Discussion

The BFLCRM was developed to predict the time of conversion from MCI to AD, as well

as to determine the optimal set of predictors at baseline that effect the time of conversion.

We obtained estimation and prediction results for functional and scalar predictors. This

study has examined a very large set of predictors for predicting the time of conversion from
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Figure 3.5: Simulation results corresponding to h02(·): panels (a) and (b) respectively show
the first 10 estimated baseline hazard functions with 0.3 and 0.5 censoring rates based on
the size 500 samples. The solid line is the true baseline hazard function, h02(·).

MCI to AD. We observed several important predictors including (i) length of education, (ii)

age, (iii) APOE-ε4 carrier, (iv) ADAS-cog score, (v) the left hippocampal formation volume,

(vi) the right amygdala volume, and (vii) surface morphology changes with the right and

left hippocampi. These findings highlight the importance of including not only demographic

and clinical information, but also high-dimensional imaging data, in statistical analyses of

MCI-AD conversion. These results are also consistent with newly published clinical research

criteria which incorporate the use of an array of biomarkers in research settings and clinical

trials [1].

Several prior studies have highlighted the importance of hippocampal changes in the

context of AD-related neurodegeneration and prediction of MCI-AD conversion [43]. These

studies, however, commonly assess changes to hippocampal volume rather than surface mor-

phology. The current analysis includes both measures of volume and surface area, with the

changes in surface morphology adding additional predictive value.

As shown in Figure 3.2, the changes in surface area occur more prominently on the
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anterior portion of the long axis of the hippocampus. Functional MRI studies in healthy

adults suggest that anterior portions of the hippocampus are critical for the mnemonic

binding processes that are engaged in tasks of episodic (day-to-day) memory. Since episodic

memory tasks, particularly those that require binding operations, are some of the earliest

cognitive impairments observed in MCI-AD [2], the anterior surface changes identified in

the current analysis may underlie these early memory changes and serve as an important

predictor of time of conversion.

From Figure 3.2, we observed that when hippocampal atrophy was greater in the CA1

subfield and subiculum of the hippocampi, the hazard rate to develop AD was increased.

Similar to our finding, it was reported that greater atrophy of CA1 and subicular subfields

in hippocampi was related to increased risk for conversion from MCI to AD [6]. The subre-

gional atrophy rate in the CA1 and subicular subfields was also turned out to be the best

predictor to explain the progression to AD from MCI [51]. Also, it was revealed that left

hippocampal body volume was associated with delayed verbal memory [21], where the de-

layed verbal memory was one of important predictor for determining whether a subject was

a MCI converter or not [57]. Thus, our finding in Figure 3.2 supports these research results.

Beyond the important effects on hippocampal surface morphology, we observed important

volumetric changes in the left hippocampal formation and the right amygdala. There has

been extensive research to diagnose Alzheimer’s disease by using atrophy of various brain

regions [136, 79, 38, 41]. In particular, it was reported that the hippocampal formation

volume showed significant reduction in patients with clinically diagnosed Alzheimer’s disease

[86, 78]. It was also found that the amygdala volume was reduced in very early AD, which

suggested that MRI-based amygdaloid volumetric measurement was a relevant marker [109].

Also, as shown in [127], the level of amygdala atrophy is related to global illness severity in

the early stage of AD. Our ADNI-1 data analysis results agree with these findings in that

volumetric changes in the hippocampal formation is an important variable to predict the
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time to conversion from MCI to AD.

The analysis also shows that APOE status exerts important effects on the time of conver-

sion. Our results also agree with several prior studies that have documented that the presence

of the APOE ε4 allele increases the risk of developing Alzheimer’s disease. Particularly, if a

subject has APOE ε4, then MCI progression more likely occurs.

We have demonstrated the utility of BFLCRM as a valuable method for identifying

optimal early markers of conversion to AD in patients with MCI. The early markers identified

from our analysis could be used in case selection for various clinical trials for evaluating

drug/therapeutic efficiency in slowing or modifying AD-related pathophysiology, when such

drugs and therapeutic treatments are available.

There are some limitations to our analysis. Our findings survived internal cross validation,

but they need replication in an independent community-based sample. We did not include

measures of pathology (e.g. beta-amyloid) in our models since CSF and amyloid-PET were

available only in a small subset of individuals in ADNI-1. However, a study of ADNI-2

subjects has shown a robust correlation between the APOE ε4 allele and cortical amyloid

burden [115], suggesting that APOE ε4 may have served as a surrogate for cortical amyloid

plaque load in our analysis.

We have developed BFLCRM for the use of functional and scalar covariates to predict

time-to-event outcomes. Several important methodological issues need to be addressed in

future research. First, it would be interesting to investigate the theoretical properties of

our Bayesian procedure, including the support of the prior and truncation approximation

bounds qn. Second, it is interesting to develop a new Bayesian method to automatically

determine the distribution of qn. Third, it is interesting to incorporate high-dimensional

scalar covariates (e.g., genetic markers in the whole genome) in BFLCRM and develop its

associated estimation and testing procedures. Developing such statistical methods poses
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many new challenges both computationally and theoretically.

3.6 Supplementary: Posterior Estimation Results for the Reduced Models

We have introduced three reduced models (Models 1-3) in our real data analysis in order

to compare the full BFLCRM model with the reduced models. In this section, we discuss

the estimation results for the three reduced models.

For regression coefficients, the hyperparameters of the multivariate Normal priors were

set as µ0 = (0, · · · , 0) and Σ0 = diag(5, · · · , 5). We set J = 70 intervals so that each

interval contains at least one failure or censored observation. For λj’s, the shape and scale

parameters of gamma priors were set to be α0j = 0.2 and α1j = 0.4 for j = 1, · · · , 70 [143].

We ran the Gibbs sampler for 25,000 iterations after 5,000 burn-in iterations. We plotted

the estimated survival functions for patients with different APOE status for all four models

in Figure 3.6, where the values of continuous covariates were set as their mean values and

categorical variables were set at their reference levels.

Model 1 includes all the scalar and functional covariates except for the ROI volume co-

variates. We applied BFLCRM to obtain the estimation results for the 26 covariates. Among

them, “Age”, “APOE-ε4 carrier”, and “ADAS-cog score” have their 95% HPD intervals that

do not contain 0. Moreover, the 1st, 3rd, and 14th fPCs have their 95% HPD intervals that

do not contain 0. It suggests that the three scalar covariates and the functional covariate are

important predictors in Model 1. Inspecting Figure 3.7 reveals that the subfields of CA1,

CA2, CA3, and subiculum on the hippocampi have positive effects on the hazard function,

indicating that the thinner these areas on the hippocampus, the shorter the time to con-

version to AD is. Compared with the results obtained from the full BFLCRM model, the

red areas are broader for Model 1. Inspecting Figure 3.6(b) reveals that the subjects having

APOE-ε4 are more likely to progress to AD than the non-carriers. The dotted lines show
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the 95% HPD intervals of the survival functions.

For Model 2, we excluded the hippocampal surfaces covariates from the full BFLCRM.

The BFLCRM was fitted to obtain the estimation results for the 19 covariates. Among them,

“Age”, “APOE-ε4 carrier”, and “ADAS-cog score”, and “Left hippocampal formation” have

their 95% HPD intervals that do not contain 0, which implies that they play an important

role in predicting the conversion time to AD. Figure 3.6(c) shows that the APOE-ε4 carriers

tend to be more hazardous than the other subjects.

Model 3 only includes the clinical and genetic covariates, and ADAS-cog score. The

BFLCRM was applied to estimate the regression coefficients for the 12 covariates. There are

important predictors “APOE-ε4 carrier” and “ADAS-cog score” whose 95% HPD intervals

do not contain 0. Figure 3.6(d) shows the estimated survival curves for average patients with

different APOE status. It shows the similar pattern with the other models.

Table 3.8: ADNI data analysis results for Model 1: the posterior quantities of 10 regression
coefficients βks, that correspond to xi =(Gender, Handedness, Widowed, Divorced, Never
married, Length of Education, Retirement, Age, APOE-ε4 carrier, and ADAS-cog Score).
Mean denotes ‘posterior mean’, SD denotes ‘posterior standard deviation’, and lower and
upper, respectively, represent the ‘lower and upper limits’ of a 95% highest posterior density
interval.

β1 β2 β3 β4 β5 β6 β7 β8 β9 β10
Female Left Widowed Divorced Never- Years of Retired Age ApoE4 ADAS

married edu
Mean 0.3943 0.2826 0.2422 0.1409 0.5174 -0.0577 0.4045 -0.0406 0.5143 0.1572
SD 0.2016 0.3317 0.3121 0.4377 0.7682 0.0341 0.2442 0.0156 0.2190 0.0239

lower -0.0157 -0.3488 -0.4151 -0.7356 -0.9930 -0.1260 -0.0610 -0.0699 0.1069 0.1104
upper 0.7842 0.9094 0.8308 0.9196 1.9468 0.0045 0.8900 -0.0089 0.9634 0.2030
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Figure 3.6: ADNI data analysis results: the estimated survival curves of APOE-ε4 carriers
and non-carriers under the full and reduced BFLCRM models. Other continuous or cate-
gorical covariates are fixed at the mean values or reference levels. The dotted lines are the
95% HPD intervals of the estimated survival functions.
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Figure 3.7: ADNI data analysis results for Model 1: panels (a) and (b), respectively, show the
top and bottom views of the estimated coefficient function associated with the hippocampal
surface data color-coded by the colorbar in panel (c).

Table 3.9: ADNI data analysis results for Model 2: the posterior quantities of 17 regression
coefficients βks, that correspond to xi =(Gender, Handedness, Widowed, Divorced, Never
married, Length of Education, Retirement, Age, APOE-ε4 carrier, ADAS-cog Score, pos-
terior limb of internal capsule, Right hippocampal formation, Left hippocampal formation,
Left thalamus, Left amygdala, Right amygdala, and Right thalamus). Mean denotes ‘pos-
terior mean’, SD denotes ‘posterior standard deviation’, and lower and upper, respectively,
represent the ‘lower and upper limits’ of a 95% highest posterior density interval.

β1 β2 β3 β4 β5 β6 β7 β8
Female Left Widowed Divorced Never- Years of Retired Age

married education in years
Mean 0.2929 0.0524 0.0711 0.3212 0.9195 -0.0456 0.1739 -0.0344
SD 0.2249 0.3488 0.3209 0.4731 0.7498 0.0323 0.2386 0.0167

lower -0.1426 -0.6263 -0.5757 -0.6099 -0.5290 -0.1108 -0.2810 -0.0669
upper 0.7190 0.7409 0.6871 1.2075 2.3582 0.0162 0.6708 -0.0019

β9 β10 β11 β12 β13 β14 β15 β16 β17
ApoE4 ADAS PLIC RHF LHF LT LA RA RT

Mean 0.5183 0.1296 0.0008 -0.0001 -0.0009 -0.0005 0.0015 -0.0007 0.0004
SD 0.2149 0.0231 0.0005 0.0003 0.0003 0.0004 0.0008 0.0005 0.0004

lower 0.1052 0.0867 -0.0002 -0.0007 -0.0015 -0.0012 0.0000 -0.0016 -0.0003
upper 0.9639 0.1757 0.0017 0.0005 -0.0004 0.0002 0.0033 0.0002 0.0011
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Table 3.10: ADNI data analysis results for Model 3: the posterior quantities of 10 regression
coefficients βks, that correspond to xi =(Gender, Handedness, Widowed, Divorced, Never
married, Length of Education, Retirement, Age, APOE-ε4 carrier, and ADAS-cog Score).
Mean denotes ‘posterior mean’, SD denotes ‘posterior standard deviation’, and lower and
upper, respectively, represent the ‘lower and upper limits’ of a 95% highest posterior density
interval.

β1 β2 β3 β4 β5 β6 β7 β8 β9 β10
Female Left Widowed Divorced Never- Years of Retired Age ApoE4 ADAS

married edu
Mean 0.3214 0.2696 0.0853 0.1423 0.6547 -0.0094 0.1612 0.0066 0.6369 0.1475
SD 0.1942 0.3268 0.3069 0.4368 0.7398 0.0311 0.2259 0.0136 0.1931 0.0214

lower -0.0647 -0.3921 -0.5072 -0.7098 -0.7606 -0.0702 -0.2575 -0.0190 0.2790 0.1064
upper 0.6940 0.8669 0.6927 1.0022 2.0798 0.0551 0.6290 0.0339 1.0212 0.1896
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Figure 3.8: ADNI data analysis results: the first 12 largest estimated eigenfunctions pro-
jected on the hippocampal surface
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Table 3.11: Sensitivity analysis of (β,γ) for ADNI-1 data with different values of hyperpa-
rameters in the Normal priors on the regression coefficients.

σ2=5 σ2=25 σ2=100
Mean SD lower upper Mean SD lower upper Mean SD lower upper

β1 0.434 0.251 -0.049 0.948 0.462 0.250 -0.004 0.952 0.451 0.246 -0.069 0.893
β2 0.225 0.365 -0.525 0.863 0.216 0.360 -0.446 0.943 0.223 0.388 -0.652 0.903
β3 0.312 0.383 -0.463 1.014 0.362 0.337 -0.253 1.029 0.344 0.368 -0.402 1.070
β4 0.273 0.466 -0.679 1.119 0.276 0.474 -0.702 1.162 0.297 0.513 -0.769 1.225
β5 0.720 0.787 -0.938 2.201 0.792 0.773 -0.732 2.256 0.817 0.823 -0.798 2.364
β6 -0.087 0.037 -0.169 -0.024 -0.088 0.036 -0.155 -0.015 -0.090 0.035 -0.157 -0.021
β7 0.345 0.248 -0.092 0.861 0.370 0.255 -0.128 0.855 0.391 0.244 -0.090 0.832
β8 -0.052 0.018 -0.087 -0.019 -0.053 0.018 -0.091 -0.020 -0.052 0.019 -0.087 -0.016
β9 0.555 0.234 0.126 1.026 0.576 0.224 0.180 1.029 0.554 0.228 0.125 1.003
β10 0.157 0.027 0.103 0.208 0.160 0.027 0.111 0.215 0.156 0.027 0.106 0.215
β11 0.001 0.001 0.000 0.002 0.001 0.001 0.000 0.002 0.001 0.001 0.000 0.002
β12 0.001 0.000 0.000 0.001 0.001 0.000 0.000 0.001 0.001 0.000 0.000 0.001
β13 -0.001 0.000 -0.002 0.000 -0.001 0.000 -0.002 0.000 -0.001 0.000 -0.002 0.000
β14 0.000 0.000 -0.001 0.000 0.000 0.000 -0.001 0.000 0.000 0.000 -0.001 0.000
β15 0.002 0.001 0.000 0.004 0.002 0.001 0.000 0.004 0.002 0.001 0.000 0.003
β16 -0.001 0.001 -0.002 0.000 -0.001 0.001 -0.002 0.000 -0.001 0.001 -0.002 0.000
β17 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.001
γ1 0.007 0.002 0.003 0.011 0.007 0.002 0.003 0.011 0.007 0.002 0.002 0.011
γ2 0.003 0.003 -0.002 0.008 0.003 0.003 -0.002 0.008 0.004 0.003 -0.002 0.009
γ3 0.005 0.003 -0.002 0.012 0.005 0.003 -0.002 0.011 0.004 0.003 -0.002 0.011
γ4 -0.002 0.003 -0.009 0.004 -0.002 0.003 -0.009 0.004 -0.002 0.003 -0.009 0.005
γ5 -0.003 0.003 -0.009 0.004 -0.003 0.003 -0.009 0.004 -0.003 0.003 -0.010 0.003
γ6 0.000 0.004 -0.008 0.009 0.000 0.004 -0.008 0.009 0.000 0.004 -0.009 0.008
γ7 -0.009 0.005 -0.018 0.000 -0.009 0.005 -0.018 0.002 -0.008 0.005 -0.017 0.002
γ8 0.003 0.006 -0.008 0.015 0.003 0.006 -0.008 0.014 0.003 0.006 -0.009 0.014
γ9 -0.009 0.005 -0.019 0.002 -0.010 0.005 -0.021 0.000 -0.009 0.005 -0.020 0.001
γ10 0.008 0.006 -0.004 0.020 0.007 0.006 -0.005 0.019 0.007 0.006 -0.004 0.019
γ11 -0.014 0.007 -0.028 0.001 -0.015 0.007 -0.029 0.000 -0.015 0.007 -0.029 -0.001
γ12 0.001 0.007 -0.013 0.015 0.001 0.007 -0.013 0.015 0.001 0.007 -0.013 0.016
γ13 0.000 0.007 -0.014 0.014 0.000 0.007 -0.014 0.015 0.000 0.007 -0.013 0.016
γ14 -0.028 0.007 -0.043 -0.015 -0.028 0.008 -0.045 -0.013 -0.029 0.007 -0.042 -0.015
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Table 3.12: Sensitivity analysis of (β,γ) for ADNI-1 data with different values of hyperpa-
rameters in the Gamma priors on the piecewise constant baseline hazard function.

(α0, α1)=(0.2,0.4) (α0, α1)=(0.2,1) (α0, α1)=(0.5,1)
Mean SD lower upper Mean SD lower upper Mean SD lower upper

β1 0.434 0.251 -0.049 0.948 0.461 0.260 -0.031 0.966 0.482 0.256 -0.011 1.014
β2 0.225 0.365 -0.525 0.863 0.235 0.401 -0.564 0.948 0.232 0.396 -0.566 0.940
β3 0.312 0.383 -0.463 1.014 0.380 0.396 -0.383 1.137 0.397 0.366 -0.370 1.064
β4 0.273 0.466 -0.679 1.119 0.276 0.559 -0.743 1.457 0.254 0.513 -0.761 1.207
β5 0.720 0.787 -0.938 2.201 0.709 0.861 -1.041 2.279 0.714 0.820 -0.911 2.235
β6 -0.087 0.037 -0.169 -0.024 -0.100 0.041 -0.175 -0.016 -0.102 0.041 -0.183 -0.025
β7 0.345 0.248 -0.092 0.861 0.414 0.267 -0.149 0.896 0.398 0.272 -0.135 0.962
β8 -0.052 0.018 -0.087 -0.019 -0.055 0.019 -0.092 -0.020 -0.055 0.019 -0.093 -0.020
β9 0.555 0.234 0.126 1.026 0.656 0.265 0.171 1.233 0.669 0.246 0.184 1.138
β10 0.157 0.027 0.103 0.208 0.167 0.027 0.115 0.218 0.168 0.026 0.118 0.217
β11 0.001 0.001 0.000 0.002 0.001 0.001 0.000 0.002 0.001 0.001 0.000 0.002
β12 0.001 0.000 0.000 0.001 0.001 0.000 0.000 0.001 0.001 0.000 0.000 0.002
β13 -0.001 0.000 -0.002 0.000 -0.001 0.000 -0.002 -0.001 -0.001 0.000 -0.002 -0.001
β14 0.000 0.000 -0.001 0.000 0.000 0.000 -0.001 0.000 0.000 0.000 -0.001 0.000
β15 0.002 0.001 0.000 0.004 0.002 0.001 0.000 0.004 0.002 0.001 0.000 0.004
β16 -0.001 0.001 -0.002 0.000 -0.001 0.001 -0.002 0.000 -0.001 0.001 -0.003 0.000
β17 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.001
γ1 0.007 0.002 0.003 0.011 0.007 0.002 0.003 0.012 0.007 0.002 0.003 0.012
γ2 0.003 0.003 -0.002 0.008 0.004 0.003 -0.002 0.010 0.004 0.003 -0.002 0.009
γ3 0.005 0.003 -0.002 0.012 0.004 0.004 -0.003 0.011 0.004 0.004 -0.002 0.012
γ4 -0.002 0.003 -0.009 0.004 -0.002 0.004 -0.009 0.005 -0.002 0.004 -0.010 0.005
γ5 -0.003 0.003 -0.009 0.004 -0.004 0.004 -0.011 0.003 -0.003 0.003 -0.010 0.004
γ6 0.000 0.004 -0.008 0.009 0.000 0.005 -0.009 0.009 0.000 0.005 -0.009 0.009
γ7 -0.009 0.005 -0.018 0.000 -0.009 0.005 -0.019 0.001 -0.009 0.005 -0.019 0.001
γ8 0.003 0.006 -0.008 0.015 0.004 0.006 -0.007 0.017 0.004 0.006 -0.008 0.016
γ9 -0.009 0.005 -0.019 0.002 -0.010 0.006 -0.023 0.001 -0.011 0.006 -0.023 -0.001
γ10 0.008 0.006 -0.004 0.020 0.009 0.007 -0.005 0.021 0.008 0.007 -0.005 0.020
γ11 -0.014 0.007 -0.028 0.001 -0.017 0.008 -0.033 0.000 -0.016 0.008 -0.031 -0.002
γ12 0.001 0.007 -0.013 0.015 0.000 0.008 -0.015 0.017 -0.001 0.008 -0.017 0.015
γ13 0.000 0.007 -0.014 0.014 -0.002 0.008 -0.016 0.014 -0.001 0.008 -0.016 0.014
γ14 -0.028 0.007 -0.043 -0.015 -0.032 0.008 -0.047 -0.017 -0.031 0.008 -0.047 -0.015
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Table 3.13: Sensitivity analysis of λ for ADNI-1 data with different values of hyperparameters
in the Normal priors on the regression coefficients.

σ2=5 σ2=25 σ2=100
Mean SD lower upper Mean SD lower upper Mean SD lower upper

λ1 0.004 0.003 0.000 0.010 0.004 0.003 0.000 0.010 0.004 0.003 0.000 0.010
λ2 0.067 0.063 0.000 0.191 0.066 0.062 0.000 0.190 0.067 0.063 0.000 0.194
λ3 1.087 0.514 0.242 2.104 1.080 0.521 0.230 2.117 1.091 0.522 0.235 2.121
λ4 0.145 0.103 0.004 0.345 0.144 0.103 0.004 0.345 0.146 0.103 0.005 0.350
λ5 0.146 0.085 0.015 0.312 0.145 0.085 0.015 0.312 0.147 0.086 0.018 0.321
λ6 0.166 0.086 0.028 0.333 0.164 0.087 0.029 0.338 0.166 0.087 0.027 0.336
λ7 0.020 0.019 0.000 0.057 0.020 0.019 0.000 0.057 0.020 0.019 0.000 0.058
λ8 0.016 0.009 0.002 0.034 0.016 0.009 0.002 0.033 0.016 0.009 0.002 0.034
λ9 0.038 0.026 0.002 0.089 0.037 0.027 0.001 0.089 0.038 0.027 0.002 0.090
λ10 0.488 0.204 0.133 0.890 0.485 0.205 0.133 0.886 0.487 0.206 0.139 0.891
λ11 0.249 0.171 0.010 0.584 0.248 0.171 0.008 0.575 0.249 0.171 0.010 0.581
λ12 0.033 0.074 0.000 0.175 0.033 0.074 0.000 0.174 0.033 0.074 0.000 0.174
λ13 3.999 1.788 0.927 7.461 3.978 1.788 0.986 7.549 3.991 1.791 0.974 7.528
λ14 0.143 0.131 0.000 0.406 0.142 0.131 0.000 0.403 0.143 0.132 0.000 0.404
λ15 1.097 0.552 0.206 2.191 1.091 0.552 0.187 2.166 1.095 0.554 0.191 2.174
λ16 0.617 0.351 0.073 1.304 0.614 0.351 0.070 1.298 0.616 0.351 0.074 1.311
λ17 1.212 0.549 0.329 2.330 1.206 0.549 0.275 2.268 1.208 0.549 0.270 2.271
λ18 0.143 0.098 0.005 0.332 0.142 0.098 0.006 0.335 0.142 0.098 0.005 0.333
λ19 0.143 0.132 0.000 0.401 0.142 0.131 0.000 0.400 0.142 0.131 0.000 0.400
λ20 0.273 0.157 0.036 0.590 0.272 0.157 0.032 0.582 0.272 0.157 0.032 0.583
λ21 0.338 0.194 0.032 0.712 0.336 0.194 0.037 0.716 0.336 0.194 0.037 0.718
λ22 0.177 0.101 0.020 0.372 0.176 0.101 0.021 0.373 0.176 0.101 0.020 0.372
λ23 0.150 0.085 0.022 0.322 0.149 0.085 0.019 0.320 0.149 0.085 0.020 0.319
λ24 0.018 0.012 0.001 0.043 0.018 0.012 0.001 0.043 0.018 0.012 0.001 0.043
λ25 0.552 0.315 0.065 1.169 0.551 0.315 0.049 1.160 0.550 0.314 0.054 1.156
λ26 1.630 0.735 0.417 3.102 1.625 0.736 0.391 3.074 1.623 0.731 0.398 3.067
λ27 0.473 0.323 0.019 1.109 0.472 0.321 0.019 1.108 0.471 0.321 0.022 1.109
λ28 0.546 0.308 0.057 1.141 0.545 0.308 0.065 1.155 0.545 0.308 0.065 1.155
λ29 0.811 0.401 0.159 1.606 0.809 0.400 0.149 1.587 0.809 0.399 0.151 1.591
λ30 1.148 0.508 0.292 2.159 1.145 0.508 0.277 2.141 1.145 0.509 0.304 2.174
λ31 0.458 0.314 0.013 1.070 0.457 0.313 0.016 1.068 0.457 0.313 0.017 1.067
λ32 0.712 0.644 0.000 1.992 0.711 0.642 0.000 2.002 0.711 0.643 0.000 1.990
λ33 0.188 0.108 0.021 0.401 0.187 0.107 0.025 0.404 0.187 0.108 0.017 0.396
λ34 0.065 0.045 0.002 0.151 0.065 0.044 0.002 0.151 0.065 0.044 0.001 0.151
λ35 0.075 0.051 0.003 0.175 0.074 0.051 0.002 0.173 0.074 0.051 0.002 0.174
λ36 0.088 0.050 0.011 0.187 0.088 0.050 0.009 0.184 0.088 0.050 0.009 0.185
λ37 0.281 0.259 0.000 0.790 0.280 0.258 0.000 0.793 0.280 0.258 0.000 0.790
λ38 0.688 0.465 0.033 1.603 0.687 0.464 0.031 1.600 0.688 0.465 0.032 1.607
λ39 1.224 0.606 0.221 2.407 1.223 0.605 0.235 2.433 1.224 0.605 0.239 2.426
λ40 1.274 0.858 0.049 2.965 1.274 0.857 0.038 2.955 1.276 0.859 0.060 2.988
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Table 3.14: Sensitivity analysis of λ for ADNI-1 data with different values of hyperparameters
in the Gamma priors on the piecewise constant baseline hazard function.

(α0, α1)=(0.2,0.4) (α0, α1)=(0.2,1) (α0, α1)=(0.5,1)
Mean SD lower upper Mean SD lower upper Mean SD lower upper

λ1 0.004 0.003 0.000 0.010 0.003 0.002 0.000 0.008 0.003 0.002 0.000 0.008
λ2 0.067 0.063 0.000 0.191 0.051 0.048 0.000 0.147 0.051 0.048 0.000 0.145
λ3 1.087 0.514 0.242 2.104 0.783 0.378 0.152 1.528 0.775 0.370 0.183 1.519
λ4 0.145 0.103 0.004 0.345 0.112 0.080 0.005 0.270 0.110 0.078 0.003 0.262
λ5 0.146 0.085 0.015 0.312 0.115 0.068 0.012 0.250 0.113 0.067 0.010 0.242
λ6 0.166 0.086 0.028 0.333 0.131 0.069 0.018 0.265 0.129 0.067 0.022 0.261
λ7 0.020 0.019 0.000 0.057 0.016 0.015 0.000 0.046 0.016 0.015 0.000 0.045
λ8 0.016 0.009 0.002 0.034 0.013 0.007 0.002 0.028 0.013 0.007 0.001 0.027
λ9 0.038 0.026 0.002 0.089 0.031 0.022 0.001 0.073 0.031 0.022 0.001 0.072
λ10 0.488 0.204 0.133 0.890 0.391 0.166 0.109 0.725 0.387 0.162 0.120 0.724
λ11 0.249 0.171 0.010 0.584 0.197 0.136 0.011 0.464 0.195 0.134 0.006 0.454
λ12 0.033 0.074 0.000 0.175 0.026 0.057 0.000 0.135 0.026 0.056 0.000 0.133
λ13 3.999 1.788 0.927 7.461 2.491 1.109 0.621 4.701 2.478 1.097 0.572 4.599
λ14 0.143 0.131 0.000 0.406 0.113 0.104 0.000 0.318 0.112 0.103 0.000 0.316
λ15 1.097 0.552 0.206 2.191 0.818 0.413 0.145 1.625 0.811 0.407 0.159 1.631
λ16 0.617 0.351 0.073 1.304 0.476 0.272 0.056 1.010 0.473 0.268 0.056 1.002
λ17 1.212 0.549 0.329 2.330 0.920 0.418 0.237 1.760 0.913 0.413 0.232 1.737
λ18 0.143 0.098 0.005 0.332 0.117 0.081 0.005 0.273 0.116 0.080 0.004 0.269
λ19 0.143 0.132 0.000 0.401 0.114 0.105 0.000 0.322 0.113 0.104 0.000 0.319
λ20 0.273 0.157 0.036 0.590 0.222 0.129 0.023 0.477 0.220 0.127 0.027 0.474
λ21 0.338 0.194 0.032 0.712 0.272 0.157 0.037 0.587 0.270 0.155 0.027 0.571
λ22 0.177 0.101 0.020 0.372 0.145 0.084 0.016 0.309 0.145 0.083 0.017 0.305
λ23 0.150 0.085 0.022 0.322 0.124 0.071 0.016 0.266 0.123 0.070 0.015 0.262
λ24 0.018 0.012 0.001 0.043 0.015 0.011 0.001 0.036 0.015 0.010 0.000 0.036
λ25 0.552 0.315 0.065 1.169 0.432 0.247 0.050 0.919 0.432 0.246 0.046 0.914
λ26 1.630 0.735 0.417 3.102 1.210 0.546 0.291 2.279 1.209 0.543 0.279 2.267
λ27 0.473 0.323 0.019 1.109 0.366 0.250 0.014 0.858 0.366 0.249 0.015 0.856
λ28 0.546 0.308 0.057 1.141 0.432 0.245 0.057 0.922 0.433 0.244 0.042 0.903
λ29 0.811 0.401 0.159 1.606 0.638 0.317 0.123 1.268 0.639 0.316 0.119 1.259
λ30 1.148 0.508 0.292 2.159 0.894 0.397 0.213 1.674 0.896 0.397 0.222 1.679
λ31 0.458 0.314 0.013 1.070 0.359 0.246 0.013 0.840 0.359 0.246 0.013 0.839
λ32 0.712 0.644 0.000 1.992 0.479 0.434 0.000 1.343 0.480 0.434 0.000 1.342
λ33 0.188 0.108 0.021 0.401 0.157 0.091 0.014 0.337 0.157 0.090 0.017 0.335
λ34 0.065 0.045 0.002 0.151 0.055 0.038 0.002 0.128 0.055 0.038 0.002 0.129
λ35 0.075 0.051 0.003 0.175 0.063 0.043 0.001 0.147 0.063 0.043 0.002 0.148
λ36 0.088 0.050 0.011 0.187 0.075 0.043 0.008 0.158 0.076 0.043 0.008 0.159
λ37 0.281 0.259 0.000 0.790 0.220 0.203 0.000 0.623 0.220 0.203 0.000 0.623
λ38 0.688 0.465 0.033 1.603 0.520 0.352 0.025 1.214 0.521 0.352 0.023 1.207
λ39 1.224 0.606 0.221 2.407 0.934 0.462 0.192 1.863 0.938 0.463 0.175 1.856
λ40 1.274 0.858 0.049 2.965 0.867 0.584 0.045 2.031 0.869 0.585 0.038 2.022
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CHAPTER 4

BAYESIAN BI-LEVEL VARIABLE SELECTION IN SURVIVAL MODEL

4.1 Introduction

In genetic epidemiology, there has been increased interest to identify genetic variants

associated with traits. Typically, it is of interest to elucidate the association between the

traits and single-nucleotide polymorphisms (SNPs), a DNA sequence variation occurring

commonly within a population. A genome-wide association study (GWAS) focuses on iden-

tifying important SNPs to relate to clinical outcomes in this context. Since the SNP data is

ultra high-dimensional (half a million or more), the simple (and popular) GWASs conduct

a number of marginal tests: examination of the effect of each SNP one by one. It makes the

GWASs to be theoretically and computationally feasible in the classical regression setup,

when the number of covariates is less than the sample size. But the simple GWASs face

two main challenges: dealing with multiple testing issue and accounting for the intricate

dependency structure among SNPs. Due to the multiple comparison problem, GWAS re-

quires appropriate control for population stratification and false discovery rate. Also it does

not incorporate a joint structure within SNPs by only considering the marginal effect of

each SNP. Since SNPs are naturally grouped by genes or linkage disequilibrium (LD) blocks,

discarding the grouping information will result in the poor performance of GWAS.

In order to resolve the multiple testing issue, one may consider all the SNPs simultane-

ously in one model. It is a high-dimensional problem, which can be tackled by penalization

methods, sure independence screening (SIS) strategy, Bayesian variable selection methods.

After prescreening SNPs using marginal screening procedures, the LASSO and elastic-net
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penalties were used respectively in [163] and [24]. But these approaches are likely to remove

important features marginally uncorrelated with an outcome because the prescreening pro-

cedure is only conducted on their marginal correlations. Liu et al. [99] used a combination

of two penalties: the minimax concave penalty (MCP) and an L2 penalty that encourages a

smaller difference in genetic effect at adjacent SNPs that are in stronger LD. He and Lin [67]

proposed a modified ISIS including one marginal SIS and two rounds of conditional SIS in

order to capture important SNPs that are not marginally correlated with the outcome. Guan

and Stephens [60] used a Bayesian variable selection method by introducing a binary variable

indicating if a variable is important or not. These methods select relevant SNPs without

incorporating the natural grouping information such as LD blocks or genes. These methods

select relevant SNPs without using the grouping information of SNPs, while Zhang et al.

[172] enables bi-level selection by incorporating the grouping information to select genetic

variants in both gene and SNP level simultaneously. Zhang et al. [172] proposed integrative

Bayesian Variable Selection (iBVS) by introducing two binary variables to indicate the selec-

tion of genes and SNPs respectively into a Bayesian variable selection model. Although they

used group information, they prescreened SNPs using marginal testing, which may lead to

discard important features marginally uncorrelated with an outcome in their screening step.

In order to resolve those limitations in the GWASs, we propose a Bayesian bi-level variable

selection (BBVS) method. This method aims to detect SNPs associated with (continuous)

clinical outcomes (1) by considering all the SNPs simultaneously and (2) incorporating the

grouping information of the SNP data. In particular, this paper focuses on time to event

as an outcome, which is motivated by Alzheimers disease (AD) studies. In the pathology

of AD, mild cognitive impairment (MCI) is a clinical syndrome characterized by the onset

and evolution of cognitive impairments, which is often considered as a transitional stage to

AD. Since therapeutic interventions and a few disease-modifying drugs are more effective

at MCI or early stage of AD than at the severe stage of AD, early diagnosis of AD is a

critical concern. It is an ongoing quest to predict the time to conversion from MCI to AD
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and detect biomarkers affecting progression to AD. Although the effect of genetic factors on

the progression of AD is substantial, up to our knowledge, however, the time to conversion

from MCI to AD has not been addressed in the context of GWASs.

Our method has two hierarchical levels of variable selection: the first one is group-wise

and the second level is element-wise variable selection. In the first step, we identify impor-

tant groups of variables and update the censored event time from its predictive posterior

distribution by data augmentation [150, 138]. The dimension of the whole SNP data can be

significantly reduced by eliminating irrelevant groups to time to event. Since this step also

provides a posterior sample of censored time to event, the posterior mean will be used as

imputed censored event time in the second level of variable selection. It converts the AFT

model in the second level into a usual log-normal regression model. In the second level, we

only include variables in the selected groups as covariates in the AFT model with the im-

puted event time as an outcome. To conduct element-wise variable selection, shrinkage priors

are employed on regression parameters. In particular, we extend Dirichlet-Laplace shrinkage

priors proposed by Bhattacharya et al. [9] to incorporate the grouping information. The rest

of this paper is organized as follows. In section 4.2, a basic AFT model will be discussed. In

section 4.3, we discuss our Bayesian bi-level variable selection (BBVS) in the AFT model.

In section 4.4, we conduct simulation studies to validate and compare the performance of

BBVS with other group/bi-level selection methods. In section 4.5, the ADNI data will be

analyzed by BBVS to detect a set of SNPs associated with the time to conversion from MCI

to AD.

4.2 Accelerated Failure Time Model

While Cox regression postulates that covariates are multiplicatively related to the hazard,

accelerated failure time (AFT) model assumes a direct relationship between failure time and

covariates. AFT model can be very appealing, since it is straight-forward to interpret the
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effect of the estimated regression coefficients. For the i-th subject, its probability model is

given by

Yi = exp(x′iβ)νi, i = 1, · · · , n,

which becomes the linear model in log scale

log Yi = x′iβ + εi, i = 1, · · · , n,

where Y1, Y2, · · · , Yn are failure times, xi = (1, xi1, xi2, · · · , xip)′ is a vector of known explana-

tory variables (including the intercept) for the i-th individual, β is a vector of p+1 unknown

regression coefficients, and εi = log νi is the error term. Usually the error term is assumed to

follow the parametric distribution, such as Normal distribution. A parametric approach was

discussed by Kalbfleisch and Prentice [84]. There are extensive discussion about parametric

AFT model in [91, 105, 116] in the frequentist framework. A parametric Bayesian analysis

was presented by Bedrick et al. [7], while a semiparametric Bayesian approaches have been

described in Christensen and Johnson [25] where they model vi using a Dirichlet process. A

fully Bayesian analysis is developed for the estimation of regression coefficients in Johnson

and Christensen [83]. Kuo and Mallick [90] consider a Dirichlet process mixture prior for

βi, which provides a more flexible model than a Dirichlet. Instead of the Dirichlet process,

a Polya tree prior is considered in [155]. In this paper, we consider the parametric approach

to model the error term εi with a Normal distribution.

4.3 Bayesian Bi-level Variable Selection in Accelerated Failure Time Model

We propose a Bayesian bi-level variable selection method on the AFT model. This

method has two hierarchical levels of variable selection: the first one is group-wise and the

second level is element-wise variable selection. It is motivated by natural grouping structures

of SNPs, which can be captured by genes, or LD blocks. The dimension of SNP data can be

significantly reduced by eliminating irrelevant groups to disease susceptibility. By making
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use of the block structure in the model frame, we can efficiently select a small number of

SNPs associated with clinical outcomes, such as time to event. With predefined G blocks we

can write our model as follows.

log Yi = x′i,0β0 +
G∑
g=1

γgx
′
i,gβg + εi, i = 1, · · · , n, (4.3.1)

where xi,0 = (1, x0i,1, · · · , x0i,p0−1), β0 = (β0,0, β0,1, · · · , β0,p0−1). For each g-th group of vari-

ables, xi,g = (xgi,1, x
g
i,2, · · · , x

g
i,kg

), β1 = (β1,1, β1,2, · · · , β1,kg). Denote β = (β1, · · · ,βG),

γ=(γ1, · · · , γG), where γg is an indicator variable having 0 or 1. When γg = 1, the g-th

set of variables will be included in the model. If γg = 0, we remove the g-th group in the

model construction. The covariates x0i,1, · · · , x0i,p0−1 are included in the model to address

their effects on the time to event. They can be some clinical/demographic characteristics

of subjects. The error term εi are i.i.d. N(0, σ2) so that the failure time Yi follows a log-

Normal distribution. When yi is possibly right censored, we only observe ti = min(yi, ci)

and νi = I{yi < ci}, where ci is the censoring time. Here wi = log(yi) can be considered as

the augmented data such that

wi = log(ti) if νi = 1,

wi > log(ti) if νi = 0. (4.3.2)

Our bi-level variable selection method addresses issues that the model (4.3.1) has: the selec-

tion of the relevant groups of SNPs and the imputation of the censored time to event yi. In

the first step, we identify important groups of variables by only updating the group inclusion

vector γ and the censored time yi from their posterior distributions. In the second step, the

model (4.3.1) can be reduced by

log Yi = x′i,0β0 +

Q∑
g=1

γgx
∗
i,g
′θg + εi, i = 1, · · · , n, (4.3.3)

where x∗
i,g
′, g = 1, 2, · · · , Q are the Q selected groups in the first step, and θg, g = 1, 2, · · · , Q

are the corresponding regression coefficient vectors. The censored time to event yi is imputed
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by the mean of the posterior samples of wi collected in the first step. It converts the AFT

model to a usual log-linear regression problem. We employ a shrinkage prior on the regression

parameters θg to enable the element-wise variable selection within x∗
i,g
′, g = 1, 2, · · · , Q. We

consider a Dirichlet-Laplace prior proposed by Bhattacharya et al. [9] on the regression pa-

rameters and extend it to incorporate grouping information. Since the regression parameters

β0, β and the standard deviation σ of the error term are not of interests, the computational

burden in the first step can be reduced by integrating out the irrelevant parameters, β0,β, σ

from the full posterior distribution. This kind of strategy has been employed in Sha et al.

[138], although their variable selection has been conducted only in an element-wise fashion.

4.3.1 The First Step: Groupwise Variable Selection

In the first step, we consider the following conjugate priors.

β0|σ2 ∼ N(0, σ2h0Ip0)

βg|σ2 ∼ N(0, c0σ
2Σg), g = 1, · · · , G

σ2 ∼ IG(ν0/2, ν0σ
2
0/2)

γj ∼ Bernoulli(pj)

pj ∼ Beta(a, b),

whereX0 = [x1,0, · · · ,xn,0]′,Xg = [x1,g, · · · ,xn,g]′,X = [X0,X1, · · · ,XG], Σg = (X ′gXg)
−1

when kg ≤ n and Σg = (X ′gXg + λIkg)
−1 when kg > n for the g-th group with size kg. The

priors on βg are Information Matrix (IM) or Information Matrix Ridge (IMR) priors pro-

posed by Gupta and Ibrahim [64]. They are a generalization of Zellners g-prior [168], while

the IM prior is equal to the Zellners g-prior in the Gaussian linear regression setting. The
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full posterior distribution of (β0,β,γ, σ
2) is given by

L(β0,β,γ, σ
2|w,X) ∝ L(w|X,β0,β, σ

2,γ)π(β0|σ2)π(β|σ2)π(γ)π(σ2)

∝ (σ2)−n/2 exp

− 1

2σ2

n∑
i=1

(
wi − x′i,0β0 −

G∑
g=1

γgx
′
i,gβg

)2
× exp

{
− 1

2h0σ2
β′0β0

}

×
G∏
g=1

exp

{
− 1

2c0σ2
β′gΣ

−1
g βg

}
× (σ2)−ν0/2−1 exp

(
−ν0σ

2
0

2σ2

)

×
G∏
g=1

pγgg (1− pg)1−γg ×
G∏
g=1

1

B(a, b)
pa−1g (1− pg)b−1.

By integrating out β0,β, σ
2, we can obtain the posterior distribution of γ:

L(γ|w,X) ∝

ν0σ2
0 +w′

(
I + h0X0X

′
0 + c0

G∑
g=1

γgXgΣgX
′
g

)−1
w


−n+ν0

2

×
G∏
g=1

pγgg (1−pg)1−γg .

When γ(g) = (γ1, · · · , γg−1, γg+1, · · · , γG) is given, the posterior distribution of γg is the

Bernoulli distribution with success probability A
A+B

, whereAγ(g) = I+h0X0X
′
0+c0

∑G
k 6=g γkXkΣkX

′
k

and

A = ft(w|ν0, σ0(Aγ(g) + c0γgXgΣgX
′
g))× pg,

B = ft(w|ν0, σ0Aγ(g))× (1− pg),

Then update pg from its posterior distribution Beta(a+γg, b+1−γg). The marginal likelihood

of the augmented data w can be derived as

L(w|X,γ) ∝

1 +
1

ν0σ2
0

w′

(
I + h0X0X

′
0 + c0

G∑
g=1

γgXgΣgX
′
g

)−1
w


− ν0+n

2

,

which is proportional to the truncated n-dimensional multivariate t-distribution such that

w|X,γ ∼ tn

[
ν0,0, σ

2
0

(
I + h0X0X

′
0 + c0

G∑
g=1

γgXgΣgX
′
g

)]

with truncation given by (4.3.2). By using the full conditional distribution of wi for a

censored case νi = 0, the censored time wi can be imputed by its posterior mean. Denote
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Hγ = I + h0X0X
′
0 + c0

∑G
g=1 γgXgΣgX

′
g, where hi,j is a scalar element in i-th row, j-th

column of Hγ and H(i,j) is the matrix Hγ without its i-th row and j-th column, and h
(i)
i

is the i-th row of Hγ without its i-th element. Similarly, let w(i) be the vector w without

its i-th element. When wi is censored, its full conditional distribution can be written as a

truncated t location-scale distribution such that

wi|w(i),X,γ ∼ tn+ν0−1(µwi , swi), wi > log(ti) (4.3.4)

where µwi , swi , and n + ν0 − 1 are respectively the location, scale, and shape parameters.

The location and scale parameters are give by

µwi = h
(i)
i H

−1
(i,j)w

(i)
i ,

swi =

√(
h(i,i) − h(i)

i H
−1
(i,i)h

(i)′

i

)(
ν0σ2

0 +w
(i)
i H

−1
(i,i)w

(i)
i

)
/(n+ ν0 − 1).

The censored wi will be updated from (4.3.4) at each iteration and it will be imputed as

their posterior mean in the element-wise selection step.

After running Gibbs sampling with M iterations, posterior inclusion probability can be

calculated from the posterior sample of γ as their posterior mean,

p̂g =
1

M

M∑
m=1

γ(m)
g .

The posterior inclusion probability 1−p̂g can be considered as Bayesian q-values, or estimates

of the local false discovery rate (FDR) [117, 147], because they measure the probability of a

false positive if the g-th group is “decided” to be included in the model. In order to select

important groups, for some threshold p∗, we consider that any group with p̂g ≥ p∗ is relevant

and will include them in our model. We determine the threshold p∗ to control the average

Bayesian FDR by following the proposed method by Morris et al. [112].
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4.3.2 The Second Step: Element-wise Variable Selection

In this step, we include all the variables of the Q selected groups in the first step and

assume shrinkage priors on the regression parameters β1, · · · ,βQ to achieve further sparsity

in the element-wise level in the reduced model (4.3.3). As a shrinkage prior, Dirichlet-Laplace

(DL) prior is assumed and extended to incorporate grouping information. The DL prior has

been proposed in Bhattacharya et al. [9] as a novel form of shrinkage prior. Under the normal

means setting

yi = θi + εi, εi ∼ N(0, 1), 1 ≤ i ≤ p,

the true signal θi has a DL prior, which has a hierarchical structure such that

θj|ψj, φj, τ ∼ N(ψjφ
2
jτ

2), ψj ∼ Exp(1/2), φ ∼ Dir(a, · · · , a), τ ∼ Gamma(pa, 1/2),

(4.3.5)

where φ = (φ1, φ2, · · · , φp). In order to efficiently control the global shrinkage, they in-

troduced global (τ) and local (φ) scales, where the local scales have a joint structure such

that they lie in the (p− 1) dimensional simplex. Under the moderate-sized coefficients with

sparse signal setting, their simulation study has shown that the DL prior outperforms Lasso,

Bayesian Lasso, empirical Bayes median, and point mass prior, while its performance is

similar with that of Horseshoe prior.

In our model framework, we have prespecified grouping information. In order to get more

flexibility depending on the grouping structure, we allow the hyperparameters ψj, φj, and τ

in (4.3.5) to be group index(g)-dependent. In the selected group g, there are qg variables and

the total number of selected variables in the model (4.3.3) is q =
∑Q

g=q qg. Here, we impute

w by the posterior mean w̃ obtained from the group-wise selection step. For g = 1, 2, · · · , Q,
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the priors are set to be

θg|σ2,ψg,φg, τg ∼ N(0, σ2Σ∗g)

σ2 ∼ IG(ν0/2, ν0σ
2
0/2)

ψgj ∼ Exp(1/2), j = 1, · · · , qg

(φg1, · · · , φgqg) ∼ Dir(ag, · · · , ag)

τg ∼ gamma(qgag, 1/2)

ag ∼ Discrete uniform from
1

qg
to 1/2 with length 50, (4.3.6)

where Σ∗g = diag(ψg1φ
2
g1τ

2
g , · · · , ψgqgφ2

gqgτ
2
g ). Here IG(a, b) denotes the inverse gamma distri-

bution with shape parameter a and the rate parameter b.

DenoteX∗ = [X∗1, · · · ,X∗Q], φ = (φ1, · · · ,φQ),ψ = (ψ1, · · · ,ψQ), and τ = (τ1, · · · , τQ).

Σ∗ is a block diagonal matrix with element matrices Q. By combining (4.3.3) and (4.3.6),

the posterior distribution can be obtained as

L(β0,θ, σ
2,φ,ψ, τ |w̃,X∗)

∝ L(w̃|X∗,β0,θ, σ
2)π(β0|σ2)π(θ|σ2,φ,ψ, τ )π(σ2)π(φ)π(ψ)π(τ )

∝ (σ2)−n/2 exp

{
− 1

2σ2

n∑
i=1

(w̃i − x′i0β0 − x′i∗θ)
2

}
× exp

{
− 1

2h0σ2
β′0β0

}

×
G∏
g=1

exp

{
− 1

2c0σ2
θ′Σ−1θ

}
× (σ2)−ν0/2−1 exp

(
−ν0σ

2
0

2σ2

)
×

G∏
g=1

pγgg (1− pg)1−γg

×
G∏
g=1

1

B(a, b)
pa−1g (1− pg)b−1 × exp

(
−
∑Q

g=1

∑qg
j=1 ψgj

2

)

×
Q∏
g=1

(
1

B(φg)

qg∏
j=1

φgjag−1

)
×

Q∏
g=1

{
τ qgag−1g exp

(
−τg

2

)}
, (4.3.7)

where B(φg) denotes a multivariate Beta function. We propose a Gibbs sampler for poste-

rior computation, which enables parameter estimation and variable selection simultaneously.

The Gibbs sampler is computationally efficient and mixes rapidly. We first specify the hy-

perparameters h0, σ0, ν0, a1, · · · , ag at appropriate values. Starting from the initiation step,
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the Gibbs sampler for the model (4.3.3) and (4.3.7) proceeds as follows:

1. Update β0 according to its full conditional distribution

p(β0|−) ∼ Np0

((
X ′0X0 +

1

h0
I

)−1
X ′0(w̃ −X∗θ), σ2

(
X ′0X0 +

1

h0
I

)−1)
.

2. Update θg from its full conditional distribution Nqg(µ̃g, Σ̃g), where

µ̃g = (X∗g
′Xg

∗ + Σ−1)−1X∗
g
′(w̃ −X0β0 −X∗(g)θ(g)),

Σ̃g = σ2(X∗g
′X∗g + Σ−1g )−1.

3. Let N = n+ q + p0 + ν0 and η = X ′0β0 +X ′∗θ. Update σ2 from

p(σ2|−) ∼ IG

(
N

2
,
1

2

{
ν0σ

2
0 + ||w̃ − η||2 +

β′0β0

h0
+ θ′Σ−1θ

})
.

4. Independently sample ψgj from its full conditional distribution

p(ψgj|−) ∼ IG

(
φgjτgσ

|θgj|
, 1

)
.

5. Update τg from its full conditional distribution

p(τg|−) ∼ giG

(
qg × ag − qg, 1, 2

qg∑
j=1

|θgj|
φgjσ

)
.

6. Update φgj, where φgj = Tgj/Tg such that

p(Tgj|−) ∼ giG

(
ag − 1, 1, 2

|θgj|
σ

)
.

7. Update ag from MN(1, p̃1/p̃, · · · , p̃50/p̃), where p̃ =
∑50

l=1 p̃l and

p̃l = exp

(
(ul − 1)

qg∑
j=1

log(φgj) + (qgul − 1) log(τg)− log 50

)
.
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Because the DL prior does not give exactly zero coefficient value, an additional step is

needed to select relevant variables. We follow a simple approach proposed by Bhattacharya

et al. [9] to choose important variable by using k-means clustering. There can exist two

clusters of |θj|s, where (1) one cluster has nearly zero coefficient values while (2) the another

cluster has relatively bigger absolute coefficients away from zero. The clusters (1) and (2)

can be considered as noise and signal, respectively. We cluster |θj|s at each MCMC iteration

using k-means with k = 2 clusters. At each i-th iteration, the number of important variables

hi is set to be the smaller cluster size out of the two clusters. Then the number of important

variables is finally estimated by taking the mode from the whole MCMC iterations, i.e., H

= mode{hi}. The H largest elements of the absolute values of posterior medians |θ| are

identified as the important variables.

4.4 Simulation Study

We conduct simulation studies to examine the performance of the Bayesian bi-level vari-

able selection in the AFT model. Without censoring, the AFT model is the log-normal

regression model, we compare the performance of groupwise and element- wise variable se-

lection with other variable selection methods implemented based on the regression models.

4.4.1 Setup

In order to convey the correlation structure of SNP data in practice, our SNP data is

simulated from the Hapmap projects 2009 phase III data [77]. For each subject, we randomly

combined two haplotypes from the CEPH population to form its genotypes and used PLINK

[130] to form SNP-sets by determining LD blocks. Among blocks whose size are larger than

30, we randomly selected 2000 SNP-sets in each block, which results in about 86,000 total

number of SNPs. Since the SNP data has duplicated columns, we removed those SNPs. The

63



final total number of SNPs is about 45,000. Then the time to event outcome was generated

from the model (4.3.1), where γj = 1, j = 1, · · · , 10 and γ′j = 1, j′ = 11, · · · , 2000. Within

the 10 relevant blocks, we randomly selected 10 SNPs and assumed an additive model. The

additive model assumes that there is a uniform, linear increase in risk for each copy of

the minor allele. The corresponding non-zero regression coefficients were generated from

N(−1, 0.5), which mimics the situation in which a single copy of the minor allele decreases

the time to event in relation to major allele. The outcome variables were generated by the

model (4.3.1), where censored event times were independently generated from a uniform

distribution from 0 to c∗. The value of c∗ was set to achieve a desired censoring rate, here

30%. We replicated the simulation 50 times under the same setting. We assumed the

inclusion indicator γg ∼ Beta(10, 190) which gives average 5% of inclusion probability to

reflect prior information that the important signal is sparse in the GWAS.

4.4.2 Simulation Results

A. Non-censored case

After running the group-level selection, our method perfectly selected the 10 relevant

blocks where most of the posterior inclusion probabilities were 1. But there were 2 simulation

data sets that have identified 11 important groups including the important 10 groups. In

order to compare the performance of our group selection step with other group selection

methods [72], we ran the same simulation studies with non-censored responses, since all the

group selection methods are based on regression settings with fully observed responses. We

ran regression models with log-transformed time to event with group penalties such as the

group Lasso (grLasso)[167], the group MCP (grMCP)[169], the group bridge (gBridge)[71],

the group exponential lasso (gel) [13] , the composite MCP (cMCP)[13]. The cMCP, gel, and

gBridge penalties carry out bi-level selection, meaning that they carry out variable selection

at the group level and at the level of individual covariates (i.e., they select important groups
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Table 4.1: When the group-level variable selection performs perfectly, TP=10, FP=0,
TPR=TNR=PPV=NPV=1.

TP FP TPR TNR PPV NPV
BBVS 10.00 (0.00) 0.04 (0.03) 1.000 (0.000) 1.000 (0.000) 0.996 (0.003) 1.000 (0.000)
gBridge 9.86 (0.05) 0.00 (0.00) 0.986 (0.005) 1.000 (0.000) 1.000 (0.000) 1.000 (0.000)
gel 9.80 (0.07) 0.00 (0.00) 0.980 (0.007) 1.000 (0.000) 1.000 (0.000) 1.000 (0.000)
grMCP 9.98 (0.02) 0.34 (0.12) 0.998 (0.002) 1.000 (0.000) 0.972 (0.009) 1.000 (0.000)
grSCAD 10.00 (0.00) 11.46 (0.37) 1.000 (0.000) 1.000 (0.000) 0.472 (0.007) 1.000 (0.000)
grLASSO 10.00 (0.00) 19.20 (0.49) 1.000 (0.000) 0.990 (0.000) 0.348 (0.007) 1.000 (0.000)
cMCP 10.00 (0.00) 73.06 (4.30) 1.000 (0.000) 0.963 (0.002) 0.144 (0.011) 1.000 (0.000)

as well as important members of those groups). The grLasso, grMCP, and grSCAD penalties

carry out group selection, meaning that within a group, coefficients will either all be zero or

all nonzero. We use BIC to select the tuning parameter value for each method.

We consider the following performance measurements: true positive rate (TPR or sensi-

tivity), true negative rate (TNR or specificity), positive predictive value (PPV), and negative

predictive value (NPV). They are defined as follows.

TPR =
TP

10
, TNR =

TN

1990
, PPV =

TP

TP + FP
, NPV =

TN

TN + FN
,

where the TP and TN are the number of correctly identified significant variables and the

number of correctly rejected non-significant variables respectively. The FP and FN denote

the number of identified non-significant variables and the number of rejected significant

variables respectively. Under the true model, TP = 10, TN = 1990, and FP = FN = 0,

which implies that all the four rates are equal to one.

Table 4.1 shows the group level variable selection results. Our method achieves the high-

est values of all the criteria, TPR, TNR, NPV , and PPV compared with other group

penalty methods by not only removing the irrelevant groups consistently but also selecting

important groups very well. Since the group penalties with only group-level selection espe-

cially grSCAD, grLasso tend to select groups more generously, they select important groups

perfectly while the numbers of true positive cases are much bigger than other methods. The
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Table 4.2: When the element-wise variable selection performs perfectly, TPR=TNR=
PPV=NPV=1.

TPR TNR PPV NPV
BBVS 0.686 (0.012) 0.999 (0.000) 0.616 (0.009) 1.000 (0.000)
gBridge 0.643 (0.011) 0.999 (0.000) 0.503 (0.008) 1.000 (0.000)
gel 0.651 (0.012) 0.999 (0.000) 0.441 (0.009) 1.000 (0.000)
grMCP 0.306 (0.009) 0.998 (0.000) 0.165 (0.009) 0.999 (0.000)

bi-level selection penalties, gBridge and gel show comparative performance to our proposed

method.

Table 4.2 shows the element-wise variable selection results. Our method yields the highest

values of all the criteria, TPR, TNR, NPV , and PPV compared with other group penalty

methods enabling bi-level selection. Since the important signals are very sparse, all the bi-

level methods perform very well in terms of removing irrelevant signals. The BBVS shows

satisfactory performance in terms of selecting important variables, as well.

B. Censored case

Table 4.3: Group-level selection results. When the group-level variable selection performs
perfectly, TP=10, FP=0, TPR=TNR=PPV=NPV=1.

TP FP TPR TNR PPV NPV
BBVS 9.70(0.09) 0.00(0.00) 0.970(0.009) 1.000(0.000) 1.000(0.000) 1.000(0.000)

Table 4.4: Element-wise selection results.When the element-wise variable selection performs
perfectly, TPR=TNR=PPV=NPV=1.

TPR TNR PPV NPV
BBVS 0.634(0.012) 0.999(0.000) 0.589(0.011) 1.000(0.000)

Tables 4.3 and 4.4 show the group-level and element-wise variable selection results. Com-

pared with non-censored cases, the performance of BBVS is satisfactory in the censored case

as well.
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4.5 ADNI-1 Data Analysis

We applied BBVS on the ADNI-1 data. In order to reveal SNPs associated with the time

of conversion to AD, we ran our model using clinical and SNP covariates. The variable selec-

tion was only performed on the SNP data. We performed a stringent quality control (QC)

step on the raw genotype data to ensure that only high-quality data were included in the

final analysis. QC procedures include (i) call rate check per subject and per SNP marker, (ii)

gender check, (iii) sibling pair identification, (iv) the Hardy-Weinberg equilibrium test, (v)

marker removal by the minor allele frequency, and (vi) population stratification. The second

line preprocessing steps include removal of SNPs with (i) more than 5% missing values, (ii)

minor allele frequency smaller than 5%, and (iii) Hardy-Weinberg equilibrium p-value< 10−6.

Remaining missing genotype variables were imputed as the modal value. After the QC proce-

dures, 347 subjects and 494,564 SNPs remained in the current study. The above procedures

were carried out in PLINK version 1.9 with visualization performed in R (http://www.r-

project.org/) using the qqman package (http://cran.r-project.org/web/packages/qqman/).

We also calculated the LD blocks to form the SNP-sets and remove SNP-sets with a single

SNP. Eventually, 421,823 SNPs were left in our analysis grouped into 16,084 SNP-sets. Other

than the whole SNPs data, we also included gender, age, and the first 5 principle compo-

nents calculated by PLINK into the analysis. The 5 principle components would adjust for

population stratification in the model[129].

We determined the threshold α to control the average Bayesian FDR proposed by Morris

et al. [112] and consider any group whose posterior inclusion probability is greater than α.

In the ADNI data, the threshold is calculated by 0.941 (Figure 4.4). In total, 19 SNP sets

were detected as important groups and 106 SNPs were identified by the elementwise-level

selection. Figure 4.2 shows the estimated coefficient values for 795 SNPs included in the 19

SNP-sets. Figure 4.3 shows trace and ACF plots of the regression coefficients of the first

selected SNP-set θ1,1, θ1,2, and θ1,3 are respectively plotted in panels (a), (b), and (c) for 5000
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Figure 4.1: Posterior inclusion probabilities of 16,106 SNP-sets. Our proposed method
identified 19 important SNP-sets after Bayesian FDR correction. The solid line shows the
FDR criteria, 0.941 in this data.

iterations of the MCMC algorithm. They show fast convergence of the algorithm, indicating

its good mixing properties. We highlighted 106 selected SNPs in the elementwise-selection

step. We summarized the variable selection results of BBVS to present which genes are

involved in Table 4.5.

Among them, 4 genes have been reported in other studies to be related to AD directly or

indirectly. Dipeptidyl-Peptidase 10 (DPP10) is known to modulate the electrophysiological

properties, cell-surface expression and subcellular localization of voltage-gated potassium

channels [8]. Chen et al. [22] demonstrated that aggregation of DPP10 was related to

neurodegenerative disorders including Alzheimer’s, diffuse Lewy body disease and fronto-

temporal dementia. Also DPP10 had robust reactivity within neurofibrillary tangles and

plaque-associated dystrophic neurites in AD brains, which suggested that it is involved in the
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Figure 4.2: Estimated coefficient values for 795 SNPs included in the 19 SNP-sets. We
highlighted 106 selected SNPs in the elementwise-selection step.
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Figure 4.3: Trace and ACF plots of the regression coefficients of the first selected SNP-set
θ1,1, θ1,2, and θ1,3 are respectively plotted in panels (a), (b), and (c) for 5000 iterations of
the MCMC algorithm. The trace plots show fast convergence of the algorithm, indicating
its good mixing properties.

pathology of AD [23]. Furthermore, its mutations have been associated with asthma[107, 162]

and autism spectrum disorders (ASD) [55], while adult asthma is a potential risk factor of

developing AD [122] and ASD patients might have better progression in age-related cogni-

tive decline and dementia. All the findings indicate that DPP10 is associated with a risk to
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Table 4.5: Bilevel selection results on ADNI-1 data: It shows the list of selected SNP-
sets associated with time to conversion from MCI to AD. For each selected group, the
corresponding bp ranges, the number of SNPs, and gene names are shown.

Chr Begin bp End bp #(SNPs) #(Selected) Genes
2 50596 50665 70 13 DPP10
2 53530 53576 47 6 THSD7B
4 104778 104785 8 2 ATP8A1
4 117728 117780 53 4 FREM3, LOC101927636, GYPA
5 135218 135255 38 3
6 154825 154859 35 5
6 166701 166774 74 7
7 181879 181955 77 7 SDK1
7 197664 197675 12 1
8 216741 216762 22 2 PREX2
8 224172 224250 79 11 TNFRSF11B, COLEC10
8 228413 228427 15 2 TRAPPC9
10 261007 261038 32 4 SRGN, VPS26A, SUPV3L1, HKDC1
12 294754 294763 10 0 CLEC2A , KLRF2
14 332351 332416 66 12 HEATR5A, DTD2, NUBPL
14 334919 334956 38 7
19 394149 394164 16 1 CPAMD8, HAUS8, MYO9B
20 399491 399513 23 5
22 22468984 22671741 80 14 VPREB1, BMS1P20

develop AD in a direct/indirect manner. THSD7B has been reported to be related with age-

related cognitive decline based on repeated measures of 17 cognitive tests in the Religious

Orders Study by [35]. Also, several linkage mapping have identified VPS26A is associated

AD [61]. Sidekick Cell Adhesion Molecule 1 (SDK1) was reported as a susceptibility gene for

hypertension in Japanese individuals [118], where hypertension moderately increased risk of

AD [145].

For comparison purposes, we conducted two different types of GWASs: (1) a simple

GWAS, multiple testing on each SNP and (2) kernel-machine SNP set GWAS proposed by

Lin et al. [98]. Figure 4.4 shows a manhattan plot with -log 10(p-value) for the simple GWAS.

It only identified 6 SNPs at the 1 × 10−5 suggestive significance level, where none of them

had been reported in previous GWASs. For the kernel-machine method, we used LD blocks
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Figure 4.4: A manhattan plot with -log 10(p-value) for the simple GWAS. The solid line
shows the 5× 10−8 significance level.

information and it identified two genes CAMTA1 and RBFOX1 at the 5× 10−8 significance

level. CAMTA1 gene was detected under the linear kernel, where Huentelman et al. [73]

identified SNPs within the CAMTA1 gene that were significantly related to memory perfor-

mance and memory-related regions on human brain, which could be considered as potential

biomarkers of AD. RBFOX1 was identified under the quadratic kernel function. Hooli et al.

[69] reported that the gene co-segregates with disease status within Early-onset familial AD

(EO-FAD) and early/ mixed-onset AD families. While the kernel-machine method uses the

natural grouping information, it is a basically multiple testing method discarding possible

correlation among the groups.
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4.5.1 Sensitivity Analysis

We explored how varying hyperparameters of the IM/IMR priors affects posterior esti-

mation. Since the IM/IMR priors were only used for the group level selection, we focused

on how the group selection results were varied as changing the values of hyperparameters

in the IM/IMR priors. There are two hyperparameteres involved in the IM/IMR priors: c0

and λ, which are respectively dispersion and ‘ridge’ parameters. The ‘ridge’ parameter is

usually used to deal with high-dimensional and/or collinear covariates in regression settings.

We tested 0.001, 0.05, 0.1, 0.3, 0.6, and 1.0 for the parameter λ while fixing c0 = 1 and tried

0.5, 1, 2, and 4 for the parameter c0 with a fixed λ value as .1.

Tables 4.6 and 4.7 show that group selection results are quite stable as the hyper param-

eters vary. Therefore, we can conclude that the proposed priors can yield stable posterior

estimates in terms of group-level selection.

4.6 Discussion

The BBVS was developed to enable bi-level variable selection as incorporating grouping

information within covariates in the high-dimensional setting. In the context of GWAS,

our method addressed the challenging issues by making use of natural grouping information

of SNPs in the group-level variable selection step. In addition, DL priors were adapted to

reflect the grouping information in the element-wise variable selection. The simulation stud-

ies showed that our proposed method outperformed other bi-level and group-level variable

selection methods in the GWAS setting. We applied BBVS on the ADNI-1 data to iden-

tify relevant SNP sets associated with the time to develop AD within MCI patients. We

identified 106 informative SNPs located within 10 genes, where 4 genes were directly and

indirectly related to AD, while the simple form of GWAS only detected 3 SNPs that had not

been reported in the literature. As a future work, we need to analyze other AD data sets to
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Table 4.6: Sensitivity analysis of λ for ADNI-1 data with different values of hyperparameters
in the IM/IMR priors within the group-level selection.

λ
0.001 0.050 0.100 0.300 0.600 1.000

1876 • • •
1974 • • • • • •
2605 • • •
3656 •
3814 • • • • • •
4213 • • • • • •
4928 • • • • • •
5207 •
5669 • • • • • •
5990 • • • •
6527 • • •
7088 • • • • • •
7154 •
7725 •
7653 • • •
7742 • • • • • •
7945 •
7974 • •
8137 • • • • • •
8403 • • •
8458 •
9320 • • • • • •
9937 •
10618 • • • • • •
10789 •
12050 • • • • • •
12133 • • • • • •
12673 •
14785 • • • • • •
15093 • • • • • •
15865 • •
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Table 4.7: Sensitivity analysis of c0 for ADNI-1 data with different values of hyperparameters
in the IM/IMR priors within the group-level selection.

c0
0.5 1 2 4

1142 •
1647 •
1741 •
1876 • •
1922 •
1974 • • • •
3106 •
3814 • • • •
4213 • • • •
4214 • • • •
4928 •
5669 • • • •
5990 •
6527 •
7088 • • • •
7653 •
7742 • • • •
7974 •
8137 • • • •
8458 •
8964 •
9320 • • • •
10618 • • • •
12050 • • • •
12133 • • • •
12673 •
14785 • • • •
15093 • • • •
15865 •

see if the implicated genes are reproducible when we used different subjects.

Our BBVS method was established in the AFT model. Since the AFT model is a (log)

linear regression model without any censoring, the method can be directly used for any

continuous outcomes, such as brain MRI volumes, behavior score for AD patients, and so

on. As an extension, our method can be adapted in a logistic regression model with a

binary response variable. It is often of interest to detect SNPs that are associated with
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hippocampal morphology. In this case, we need to use functional regression models with

functional response.
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CHAPTER 5

BAYESIAN HIERARCHICAL GROUP SPECTRAL CLUSTERING

5.1 Introduction

The Human brain has been analyzed from a network perspective with the advent of

neuroimaging acquisition techniques and network theory. Functional magnetic resonance

imaging (fMRI) is a non-invasive neuroimaging procedure to assess brain neuronal activity

that can be measured by changes in blood oxygen level-dependent (BOLD) signal [101]. In

particular, resting state fMRI (rsfMRI) observes regional brain activity when a subject is

not performing any explicit task. The rsfMRI is useful for understanding how different brain

regions interact with each other, which can be called functional connectivity. Functional con-

nectivity is the connectivity between different brain areas sharing information and functions

[153]. It can be estimated by calculating pairwise temporal correlation between two spatially

remote BOLD signals in rsfMRI. It can be an important biomarker in psychiatric disorders

because its abnormality has been observed in subjects with brain disorders including AD,

schizophrenia, and ADHD [58].

Unraveling a missing link between neurological disorders and brain network is an ongo-

ing quest in various fields including statistics, epidemiology, and neuroscience. One specific

question will be “is there any relationship between altered functional connectivity and neu-

rological disorders?”. There are two main standard methods used to tackle the question:

univariate approaches to see if each correlation (node) has group difference using Fisher’s

z-transformation, and graph theoretical approaches based on some summary statistic for

a network structure (i.e., girth, diameter, modularity, small-worldness). The first method
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easily faces a high-dimensional multiple testing problem. If there is a small group difference

in each correlation, the univariate approach is likely to miss the signal, which results in low

power. Also, it discards a spatial structure among close or related brain regions (voxels).

The second methods often fail to detect local differences among subject groups, because

the connectivity structures are too simplified by the summary statistics. Thus, alternative

connectivity analysis methods are critically needed.

In this study, we aim to address the following four issues in connectivity studies: (1)

high-dimensionality of connectivity matrices, (2) detection of local differences in brain, but

at the same time, (3) need to utilize an underlying relational structure among brain areas.

Regarding (3), while the correlation between two marginal regions has weak group differ-

ence, two linear combinations of some brain regions can have strongly different connection

across groups. Here we call the linear combinations of brain regions “underlying factors” or

“eigenmaps”. We can identify more significant group differences among underlying factors

than among individual brain regions. The last thing to be considered is (4) heterogene-

ity of functional connectivity. FMRI itself is noisy in terms of spatial resolution and head

motion, which leads estimated functional connectivity to be varied across subjects. Also,

functional connectivity has individual and group variation, as Mueller et al. [113] suggests

that functional connectivity is individually heterogeneous across the cortex due to the de-

gree of evolutionary cortical expansion. The heterogeneity should be accordingly taken into

account to have meaningful signals.

In order to address the four issues, we propose a Bayesian group spectral clustering

model by taking a global approach to analyze brain connectivity. We decompose a corre-

lation matrix (possibly it can be any symmetric matrix) with underlying common factors

across subjects and the subject-specific coefficient matrix (Λi). The subject-specific coeffi-

cient matrix preserves an individual network structure in the low-dimensional space spanned

by the common factors. One more intriguing part is that we incorporate a hierarchical
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structure within a prior of Λi in order to estimate effects of clinical/demographic covariates.

We take a Bayesian approach to estimate the parameters involved in the decomposition,

and the regression model with clinical covariates. Our method automatically estimate the

effects of covariates on the Λi matrices while decomposing the connectivity structure within

MCMC iterations. A similar matrix decomposition method has been proposed by Wang

et al. [156], while they took a frequentist approach to estimate the parameters of interest.

But our method could enable to estimate the regression coefficient during the estimation

steps without explicit modelling.

In the next section, we describe the proposed method in detail, and discuss how our

method can deal with the previous four issues. In section 5.3, we present simulation results

to show validity of the method. We applied our method to Alzheimer’s disease data (ADNI)

to explore functional connectivity across subjects and see any group difference. The results

are presented in section 5.4. In the last section, we discuss how our finding can be utilized

in a clinical application perspective.

5.2 Bayesian Hierarchical Group Spectral Clustering

5.2.1 Model Formulation

For the i-th subject, denote a connectivity (or any symmetric data) matrix as Li =

(Li(g, g
′))g,g′=1,··· ,V with V vertices. For the relatively small number R << V , we propose a

group spectral clustering model as follows:

Li(g, g
′) =

R∑
r=1

R∑
s=1

βr(g)λi,(r,s)βs(g
′) + εi(g, g

′),

where εi(g, g
′) are measurement errors. Eigenmaps βs(g) are orthonormal underlying com-

mon factors (bases) for all subjects, and λi,(r,s) are individual coefficients and can be non-zero

even for r 6= s. The element λi,(r,s) globally determines the amount of contribution for con-

nection between r-th and s-th factors to the i-th connectivity structure. The subject-specific
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coefficient matrix Λi =
[
λi,(r,s)

]
r,s=1,··· ,R preserves an individual network structure in the low-

dimensional space spanned by the common factors βr. To express the proposed model in a

matrix form, let’s denote

LiV×V = [Li(g, g
′)]g,g′=1,··· ,V

BV×R = [β1, · · · ,βR]

ΛiR×R =
[
λi,(r,s)

]
r,s=1,··· ,R ,

where R << V . The group spectral clustering of L can be expressed by

Li = BΛiB
′ + εi. (5.2.1)

Model (5.2.1) has at least four unique features. First, it achieves substantial dimen-

sion reduction by reducing from V (V − 1)/2 to around V R + R(R + 1)/2 for each sub-

ject to deal with high-dimensionality of connectivity matrices. Second, the R eigenmaps

βr = {βr(g) : g ∈ G} can be considered as independent networks of vertices that character-

ize the latent organization of connectivity structures across subjects at a system level. Then,

the subject-specific coefficient matrix Λi preserves an individual network structure in the

low-dimensional space spanned by the eigenmaps. It enables us to construct an underlying

relational structure among brain areas and to reduce heterogeneity of functional connectivity
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in the low-dimensional space. Third, ηi,r = {ηi,r(g) =
∑R

s=1 βs(g)λi,(s,r) : g ∈ G} delineate

individual organization of connection maps between vertices across R different latent net-

works. One more intriguing part is that we assume a hierarchical structure within a prior

of Λi in order to estimate effects of clinical/demographic covariates. Our method facilitates

estimation of the effects of covariates on the Λi matrices while decomposing the connectivity

structure within MCMC iterations. By considering a diagnostic indicator as a covariate, e.g.,

Alzheimer’s disease or cognitively normal, local differences in functional connectivity can be

detected. Details will be followed in the next section.

5.2.2 Bayesian Approach

In order to estimate the parameters of interest, we take a Bayesian approach. For pa-

rameters of interest, the full posterior distribution is given by

π(Λ,B, σ2, σ2
0|L;X) ∝ p(L|Λ,B, σ2)π(Λ|Γ, σ2

0;X)π(Γ|σ2
γ)π(B)π(σ2)π(σ2

0)π(σ2
γ).

We assume that the measurement errors εi(g, g
′) follow i.i.d. symmetric Normal distribution

[137] with the mean 0 and the variance σ2. For the pre-specified number of factors R, the

likelihood of L1, · · · ,Ln can be written by

p(L1, · · · ,Ln|B,Λ1, · · · ,Λn) =

(
1√

2πσ2

)nV (V+1)/2 n∏
i=1

exp

[
− 1

2σ2
tr
((
Li −BΛiB

′)2)]

=

(
1√

2πσ2

)nV (V+1)/2

exp

[
− 1

2σ2

n∑
i=1

tr
((
Li −BΛiB

′)2)]

=

(
1√

2πσ2

)nV (V+1)/2

exp

[
− 1

2σ2

{
tr

(
n∑
i=1

L2
i

)
+ tr

(
n∑
i=1

(
BΛiB

′)2)− 2tr

(
n∑
i=1

LiBΛiB
′

)}]
.
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We assume following priors:

βr ∼ N

(
0,

1

V
IV

)
,

i.e., π(B) ∝ exp

(
−V

2
tr(B′B)

)
π(Λ1, · · · ,Λn|∆1, · · · ,∆n, σ

2
0) ∝

n∏
i=1

exp

[
− 1

2σ2
0

tr
(
(Λi −∆i)

2
)]

π(Γ) ∝ exp

[
− 1

2σ2
γ

tr (Γ′Γ)

]
σ2 ∼ Inverse-Gamma(a0, a1)

σ2
0 ∼ Inverse-Gamma(b0, b1)

σ2
γ ∼ Inverse-Gamma(c0, c1),

where vech(∆i) = Γ′xi =
[
x′iγ1,x

′
iγ2, · · · ,x′iγq

]′
, q = R(R+1)/2. The regression covariates

for the i-th subject are denoted by xi = (x0, · · · , xp−1)′ and the regression coefficients are

given by Γ = [γ1, · · · ,γq] = [γj]
q
j=1, where γj = (γ0j, · · · , γ(p−1)j)′. For βk’s, the assumed

prior yields approximate orthogonality of the columns in B when the value of R is large.

Let’s denote Q = B′B, P i = 1
σ2B

′LiB + 1
σ2
γ
∆i, and the matrix D is a diagonal matrix

with elements

( 1,
√

2, · · · ,
√

2︸ ︷︷ ︸
R elements

, 1,
√

2, · · · ,
√

2︸ ︷︷ ︸
(R− 1) elements

, · · · , 1︸︷︷︸
1 element

).

The posterior distribution for each parameter is given by

π(B|•) ∝ exp

[
− 1

2σ2

n∑
i=1

tr
(

(Li −BΛiB
′)
2
)
− V

2
tr(B′B)

]
, (5.2.2)

vech(Λi|•) ∼ N (µi,S) , (5.2.3)

where

µi = SDsvec (P i) , S =

(
D(Q⊗s Q)D

σ2
+
D2

σ2
0

)−1
.

The regression parameters are sampled from the following posterior:

vec(Γ|•) ∼ N
(
µγ,Sγ

)
, (5.2.4)
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where

µγ =
1

σ2
0

Sγ

n∑
i=1

vec (xisvec(Λi)
′D) , Sγ =

(
1

σ2
0

n∑
i=1

(
D2 ⊗ xix′i

)
+

1

σ2
γ

I

)−1
.

The hyper-parameters are sampled based on the following posterior distributions:

σ2 ∝ exp

{
− 1

σ2

(
1

2
tr

(
n∑
i=1

(Li −BΛiB
′)2

)
+ a1

)}(
1

σ2

)a0+nV (V+1)
4

−1

(5.2.5)

∼ IG

(
a0 +

nV (V + 1)

4
,
1

2
tr

(
n∑
i=1

(Li −BΛiB
′)2

)
+ a1

)
, IG (ã0, ã1)

σ2
0 ∝ exp

{
− 1

σ2
0

(
1

2
tr

(
n∑
i=1

Λ2
i

)
+ b1

)}(
1

σ2
0

)b0+nR(R+1)
4

−1

(5.2.6)

∼ IG

(
b0 +

nR(R + 1)

4
,
1

2
tr

(
n∑
i=1

Λ2
i

)
+ b1

)
, IG

(
b̃0, b̃1

)
σ2
γ ∝ exp

{
− 1

σ2
γ

(
1

2
tr (Γ′Γ) + c1

)}(
1

σ2
γ

)c0+nR(R+1)
4

−1

(5.2.7)

∼ IG

(
c0 +

pR(R + 1)

4
,
1

2
tr (Γ′Γ) + c1

)
, IG (c̃0, c̃1) .

In summary, the posterior sampling proceeds as follows.

1. Employ slice sampling to get a posterior sample from π(βg|B(−g), •) in (5.2.2) with

burn-in 100.

2. Update Λi generated from N (µi,S) in (5.2.3).

3. Update Γ generated from N
(
µγ,Sγ

)
in (5.2.4).

4. Update σ2 generated from IG(ã0, ã1) in (5.2.5).

5. Update σ2
0 generated from IG(̃b0, b̃1) in (5.2.6).

6. Update σ2
γ generated from IG(c̃0, c̃1) in (5.2.7).
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In terms of estimation of B and Λi, we cannot simply use posterior means of their poste-

rior samples, because our model does not assume any constraints for identifiability of B and

Λi. The identifiability issue comes from permutations of the factors, and arbitrary matrix ro-

tations, which makes the posterior means meaningless. [110] But in our method, estimation

of B, Λi, and Γ is essential for low-dimensional representation of Li and test of group differ-

ence in Li. In order to get meaningful estimates, we follow simple approaches discussed by

Mohamed et al. [110]. First, we estimate B as B̂ such that B̂ = arg max
B(m)

π(B(m), •|L, ;X),

where m denotes each MCMC iteration. We need variability information of Γ to find which

brain areas have group difference by using their HPD intervals. After fixing B as B̂, we

rerun the above steps and estimate Λi and Γ as their posterior means Λ̂i and Γ̂. They are

now meaningful because we add a constraint on B to deal with the permutation and rotation

issues.

In order to identify any group difference of functional connectivity, a diagnostic indicator

can be included as a covariate, for example, xi = 1 if the i-th subject has AD. Denote the

corresponding regression coefficient Γ1 such that vech(Γ1) = (γ11, γ12, · · · , γ1q)′. Then Γ1

quantifies a disease effect on any pair of two underlying factors. In order to find specific

brain areas that have group difference, we need to estimate regression coefficients for Li as

a response variable instead of Λi. We can map the estimated coefficient matrix Γ̂1 from the

factor space to the original node space by calculating B̂Γ̂1B̂
′
.

The number of factors R is chosen by a Bayesian information criterion (BIC) and the

reconstruction error is measured by the ratio of Frobenius norms as follows.

error =
1

n

n∑
i=1

||Li − B̂Λ̂iB̂
′
||F

||Li||F
. (5.2.8)
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5.3 Simulation study

In this section, we use simulation studies to illustrate the performance of the proposed

Bayesian hierarchical group spectral clustering method. We assume that there are 50 subjects

i = 1, · · · , 50 and their connectivity data are simulated from the following underlying model:

Li = BΛiB + εi,

whereLi denotes the network data. We applied our proposed method to recoverB,Λ1, · · · ,Λn

and L1, · · · ,Ln. We run 5,000 MCMC iterations with 1,000 burn-in. We repeated the sim-

ulation 20 times under the following four different scenarios.

In the section 5.3.1, we examine if the true number of underlying factors is correctly

chosen by BIC. We use two different scenarios: (1) there is a common basis B with rank 3,

and (2) there are two basis B1 and B2 with rank 3 respectively. In order to measure how the

raw data matrices are recovered accurately, we calculate the estimation error in 5.2.8. We

don’t include any covariates xi in this study. Section 5.3.2 discusses how accurately regression

coefficients are estimated by our method. We consider binary (case 1) and continuous (case

2) covariates with an intercept.

5.3.1 Simulation 1

A. Scenario 1

We generate all simulation data sets from Li = BΛiB
′+εi. There exist 3 true underlying

common eigenmaps (R = 3). We assume that B and Λis are 50 × 3 and 3 × 3 matrices,

respectively. The eigenmaps, subject-specific coefficient matrices, and measurement errors
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Table 5.1: In order to select the number of common factors, we used BIC. TP and FP denote
the number of true positive and the number of false positive, respectively.

Error TP FP
BIC-selected 0.025 (0.001) 3.00 (0.00) 0.00 (0.00)

are generated according to:

βk ∼ N(0, IV ), i.e., π(βk) = exp

(
−1

2
tr(B′B)

)
π(ε1, · · · , εn) =

n∏
i=1

exp

[
− 1

2σ2
tr
(
ε2i
)]

where σ = 1. Set σ0 = 1 and Λis are generated from

π(Λ1, · · · ,Λn) =
n∏
i=1

exp

[
− 1

2σ2
0

tr
(
Λ2
i

)]
.

(a) Raw structure (b) Approximated structure

Figure 5.1: Figure (a) shows the first raw data matrix L1 in the first simulation data set,
while figure (b) shows the approximated matrix by the proposed method.

Table 5.1 shows the simulation results. In order to select the number of common factors,

we used BIC. TP and FP denote the number of true positive and the number of false positive,

respectively. The BIC selects the correct number of factors consistently. Reconstruction error

and Figure 5.1 demonstrate that our decomposition method can approximate the raw matrix

well.
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Table 5.2: In order to select the number of common factors, we used BIC. TP and FP denote
the number of true positive and the number of false positive, respectively.

Error TP FP
BIC-selected 0.059 (0.002) 6.00 (0.00) 0.00 (0.00)

B. Scenario 2

We generate other simulation data sets from Lgi = BgΛiBg
′ + εi, g = 1, · · · , G, i =

1, · · · , ng, where n =
∑G

g=1 ng. We consider σ = 1, R = 3 and two groups, i.e., G = 2.

Bg = [βg1, · · · ,β
g
R] and Λis are generated from

βgk ∼ N(0, IV ), i.e., k = 1, · · · , R

π(Λ1, · · · ,Λn) =
n∏
i=1

exp

[
−1

2
tr
(
Λ2
i

)]
.

Because we have different (independent) eigenmaps for two groups, the total number of

common factors across subjects must be at most 6.

(a) Raw structure (b) Approximated structure

Figure 5.2: Figure (a) shows the first raw data matrix Li in the first simulation data set,
while figure (b) shows the approximated matrix by the proposed method.

As Table 5.2 presents, the true number of underlying factors was estimated correctly.

Reconstruction error in Table 5.2 and Figure 5.2 demonstrate that our decomposition method
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approximates the raw matrix well.

5.3.2 Simulation 2

This simulation study aims to examine if the coefficient values are estimated well by the

proposed method. We measure the estimation error for Γj (j = 1, 2) in the original space,

i.e., estimation error is defined by

errorγj =
||BΓjB

′ − B̂Γ̂jB̂
′
||F

||BΓjB
′||F

.

Also we check convergence of MCMC outputs by using trace and autocorrelation plots.

We generate all simulation data sets from Li = BΛiB
′ + εi, where R = 3. Set σ = 1

B = [β1, · · · ,βR] and Λis are generated from

βk ∼ N(0, IV )

π(Λ1, · · · ,Λn) =
n∏
i=1

exp

[
−1

2
tr
(
(Λi −∆i)

2
)]
.

A. Scenario 3

The scenario 3 includes a binary covariate such that vech(∆i) = Γ′xi, Γ = [vech(Γ1), vech(Γ2)],

xi = [1, x1i], and

x1i ∼ B

(
1

2

)
, Γ1 =

1 1 1

1 1 1

1 1 1

 , Γ2 =

0 4 0

4 0 4

0 4 0

 .

B. Scenario 4

In this scenario we consider a continuous covariate, where vech(∆i) = Γ′xi, Γ =
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Table 5.3: Estimation error for Γ0 and Γ1 in the two different cases. They are mean esti-
mation error with 20 replications and the corresponding standard errors are recorded in the
parentheses.

Scenario 3 Scenario 4
errorγ0 0.074 (0.004) 0.038 (0.003)
errorγ1 0.141 (0.009) 0.105 (0.010)

[vech(Γ1), vech(Γ2)], xi = [1, x1i], and

x1i ∼ N (0.5, 1) , Γ1 =

1 1 1

1 1 1

1 1 1

 , Γ2 =

0 4 0

4 0 4

0 4 0

 .

Table 5.3 shows estimation error for Γ0 and Γ1 in the two different cases. They are

mean estimation error with 20 replications with the corresponding standard errors in the

parentheses. One can see that the coefficients are estimated satisfactorily.

5.4 Application to Alzheimer’s Disease

Altered brain connectivity has been considered as a critical factor to explain cognitive

decline in Alzheimer’s disease (AD) [37, 39]. It has been reported that some regions in mild

AD brains have abnormal functional connectivity with other brain regions including medial

prefrontal cortex (MPFC), ventral anterior cingulate cortex (vACC), right inferotemporal

cortex, right cuneus extending into precuneus, left cuneus, right superior and middle tempo-

ral gyrus and posterior cingulate cortex (PCG or PCC) through a seed based approach using

Fisher’s z-transformation and t-tests [158]. Wang et al. [157] showed that AD patients had

decreased connectivity between prefrontal and parietal lobes and increased within-lobe func-

tional connectivity by whole brain ROI based t-tests. But they conducted 6670 (116*115/2)

multiple testing at 0.01 significance level, their results thus suffer from severe false positive

problems.

To overcome limitations of the current methods, we applied our proposed method and
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Figure 5.3: It shows process to estimate functional connectivity from resting-state fMRI
data.

tested group differences among normal control (NC), mild cognitive impairment (MCI), and

AD patient groups. We considered 4 covariates other than the intercept: gender (γ1), age(γ2),

MCI=1(γ3), and AD=1(γ4). By using HPD intervals of γ3, γ4, γ4−γ3, we determine if there

is any group difference in their connectivity patterns.

5.4.1 Data Acquisition and Pre-processing

For resting state fMRI, the imaging protocol is Field Strength=3.0 tesla; Flip Angle=80.0

degree; Manufacturer=Philips Medical Systems; Matrix X=64.0 pixels; Matrix Y=64.0 pix-

els; Mfg Model=Intera; Pixel Spacing X=3.3125 mm; Pixel Spacing Y=3.3125 mm; Pulse

Sequence=GR; Slices=6720.0; Slice Thickness=3.312999963760376 mm; TE=30.000999450683594
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ms; TR=3000.0 ms; to obtain 140 volumes.

The fMRI data was pre-processed with the following steps: 1) discarding the first 10

time points, 2) slice timing, 3) head motion correction, 4) intensity scaling of each fMRI

scan after motion correction to yield a whole-brain mean value of 10000, 5) temporally

band-pass filtering (0.01 Hz-0.08 Hz), 6) regression out of a set of nuisance signals including

signal averaged over the white matter, signal averaged over the cerebrospinal fluid, global

signal averaged over the whole-brain, and six motion parameters, 7) nonlinear normalization

into Montreal Neurological Institute (MNI) space with resolution 333mm3 using SPM8; 8)

spatially smoothing with a 6 mm full width at half maximum Gaussian kernel. The nonlinear

normalization of fMRI data was implemented using DARTEL of SPM8 with the deformation

fields of their co-registered T1-weighted images.

Figure 5.3 shows the overall procedure to calculate the resting-state functional connec-

tivity from fMRI data. We used an Automated Anatomical Labeling (AAL) atlas, a widely

used manual macroanatomical parcellation, and finally got 116 ROIs for a single subject.

We used AFNI package [30] to compute the average BOLD signal over a ROI of all voxel

values.

5.4.2 Data Analysis Results

In order to find the optimal number of factors, we used BIC values (Figure 5.4). We set

the number of factors, R to be 15. Figure 5.5 shows the estimated B matrix. For better

presentation, we plotted the standardized B matrix and the thresholded matrix having the

absolute standardize values greater than 2.1. Interestingly, the factor 9 mainly consists

of the left superior frontal gyrus, the left Cerebelum.7b, the right angular gyrus, and the

left/right precuneus(PCUN), while all the areas are in the default mode network or positively

correlated with PCUN/PCG [50, 52]. Also, the factor 11 mainly consists of the right angular
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Figure 5.4: It shows BIC values for the different number of underlying factors. The optimal
number can be selected as 15.

(a) Standardized (b) Thresholded

Figure 5.5: Figure (a) shows the estimated B matrix with standardized scale, while figure
(b) shows the standardized B matrix after thresholding the absolute values at 2.1.
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Figure 5.6: It shows how the raw correlation matrix of the first subject can be decomposed
by the BGSC.

gyrus, and the right posterior cingulate gyrus (PCG) that are in the default mode network

or positively correlated with PCUN/PCG [50, 52]. PCG/PCUN and angular gyrus are

functional hubs of default mode network, which is disrupted in people with AD, and autism

spectrum disorder [3]. For example of the factor 10, the corresponding ROIs are the left/right

paracentral lobule, the left calcarine fissure and surrounding cortex, mostly representing the

paracentral lobule. Figure 5.6 shows how well the raw correlation matrix of the first subject

is approximated by the proposed method. Figures 5.9, 5.10, and 5.11 show fast convergence

of the algorithm for some parameters, indicating its good mixing properties.

In order to see which ROI areas have functional connectivity differences among NC, MCI,

and AD, we map estimated coefficients Γ̂ from the factor space to the original ROI space.

We use “truncated/sparse” B̂ and Γ̂ to calculate the coefficient matrix by the following

steps:
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Table 5.4: AAL parcellation of the entire brain and their abbreviations used in this paper.

Abbreviation Name Classification
SFG Superior frontal gyrus Prefrontal Lobe

SFGO Superior frontal gyrus, orbital Prefrontal Lobe
MFG Middle frontal gyrus Prefrontal Lobe

IFGOP Inferior frontal gyrus, opercular Prefrontal lobe
PreCG Precentral gyrus Other frontal
ROL Rolandic operculum Other frontal
ANG Angular gyrus Parietal lobe
PCG Posterior cingulate gyrus Parietal lobe
PCL Paracentral lobule Parietal lobe

PCUN Precuneus Parietal lobe
CAL Calcarine fissure and surrounding cortex Occipital lobe
IOG Inferior occipital gyrus Occipital lobe

LING.L Lingual gyrus Occipital lobe
MOG Middle occipital gyrus Occipital lobe
INS Insula Insula
FFG Fusiform gyrus Temporal lobe
HES Heschl gyrus Temporal lobe
STG Superior temporal gyrus Temporal lobe

STGP Superior temporal gyrus, temporal pole Temporal lobe
CRBL Cerebellum Cerebellum

1. Estimate B and Γ by the proposed method.

2. Calculate 95% HPD interval of all the elements in Γ and find unimportant elements

(pairs of brain regions) whose HPD intervals include 0.

3. Set the corresponding coefficient values to be 0.

4. Threshold the B̂ matrix by truncating their standardized values at 2.1. Let’s denote

the thresholded one as B̃.

5. Use B̃Γ̂B̃
′

as estimated coefficients for the ROI space.

We found group difference between NC/MCI, NC/AD, and MCI/AD groups on several

locations in Λi by examining HPD intervals of γ3, γ4 and γ4 − γ3. By using the above

steps, we mapped the estimated coefficients from the Λi space to the Li space. The values

are summarized in Tables 5.5 for the MCI-AD group comparison. Then we plotted the
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Figure 5.7: It shows which connectivity is different between MCI and AD groups. The red line
represents the estimated coefficient value γ4−γ3 > 0, which implies that AD patients have a
stronger positive connection than MCI subjects between the corresponding two ROIs. The
blue line represents the estimated coefficient value γ4 − γ3 < 0 indicating that AD patients
have a weaker positive connection than MCI subjects between the corresponding two ROIs.

coefficients on the brain template using BrainNet Viewer [164]. Figures 5.12, 5.14, and

5.7 respectively show which brain regions have different positive (for each reference group)

connectivity between NC/MCI groups, NC/AD groups, and MCI/AD groups. Figures 5.13,

5.15, and 5.8 respectively show which brain regions have different negative (for each reference

group) connectivity between NC/MCI groups, NC/AD groups, and MCI/AD groups. For

example of Figure 5.7, the red line represents the estimated coefficient value γ4 − γ3 > 0,

which implies that AD patients have a stronger positive connection than MCI subjects

between the corresponding two ROIs. The blue line represents the estimated coefficient
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Figure 5.8: It shows which connectivity is different between MCI and AD groups. The red line
represents the estimated coefficient value γ4−γ3 < 0, which implies that AD patients have a
stronger negative connection than MCI subjects between the corresponding two ROIs. The
blue line represents the estimated coefficient value γ4 − γ3 > 0 indicating that AD patients
have a weaker negative connection than MCI subjects between the corresponding two ROIs.

value γ4 − γ3 < 0 indicating that AD patients have a weaker positive connection than MCI

subjects between the corresponding two ROIs. For the negative connectivity, in Figure 5.8,

the red line implies that AD patients have a stronger negative connection than MCI subjects

between the corresponding two ROIs. The blue line indicates that AD patients have a weaker

negative connection than MCI subjects between the corresponding two ROIs.

In order to examine functional connectivity difference between MCI and AD patients, we

focus on Figures 5.7, 5.8 and Table 5.5. The bilateral precuneus (PCUN) has weaker positive
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Figure 5.9: Trace and ACF plots of Λ1(1, 1), Λ1(1, 2), and Λ1(1, 3) are respectively plotted
in panels (a), (b), and (c) for 5000 iterations of the MCMC algorithm. The trace plots show
fast convergence of the algorithm, indicating its good mixing properties.
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Figure 5.10: Trace and ACF plots of Γ3(1, 1) and Γ4(1, 1) are respectively plotted in panels (a)
and (b) for 5000 iterations of the MCMC algorithm. The trace plots show fast convergence
of the algorithm, indicating its good mixing properties.
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Table 5.5: It shows group difference between NC and MCI subjects.

Region1 Region2 Coeff

PCL.L SFG.R -0.036
PCL.L PreCG.L 0.051
PCL.L CRBL8.L -0.035
PCL.L IOG.R 0.038
PCL.L FFG.R 0.032
PCL.L IFGOP.L -0.037
PCL.L MFG.R -0.037
PCL.R SFG.R -0.035
PCL.R PreCG.L 0.049
PCL.R CRBL8.L -0.034
PCL.R IOG.R 0.036
PCL.R FFG.R 0.031
PCL.R IFGOP.L -0.035
PCL.R MFG.R -0.035
ROL.R STGP.R -0.049
ROL.R SFGO.L -0.037
ROL.R IOG.L 0.047
ROL.R STG.R -0.047
ROL.R PreCG.L -0.036
ROL.R MOG.L 0.044
ROL.R LING.L 0.035
STGP.R HES.R -0.048
STGP.R INS.R -0.051
SFGO.L HES.R -0.036
SFGO.L INS.R -0.038
SFG.R PreCG.L 0.039

Region1 Region2 Coeff

SFG.R CAL.L 0.029
IOG.L HES.R 0.046
IOG.L INS.R 0.049
STG.R HES.R -0.046
STG.R INS.R -0.048
HES.R PreCG.L -0.035
HES.R MOG.L 0.043
HES.R LING.L 0.034
PreCG.L CAL.L -0.041
PreCG.L IFGOP.L 0.039
PreCG.L MFG.R 0.039
PreCG.L INS.R -0.037
CRBL8.L CAL.L 0.028
IOG.R CAL.L -0.030
FFG.R CAL.L -0.026
MOG.L INS.R 0.045
CAL.L IFGOP.L 0.030
CAL.L MFG.R 0.030
LING.L INS.R 0.036
ANG.L ANG.R -0.054
ANG.L PCUN.R -0.062
ANG.L PCUN.L -0.055
ANG.R PCG.R -0.054
PCG.R PCUN.R -0.062
PCG.R PCUN.L -0.055

connection between right posterior cingulate gyrus and left angular gyrus for AD patients

than MCI patients. In fact, PCG is often affected by neurodegenerative disease [15]. In

early Alzheimer’s disease, functional connectivity within the default mode network (DMN)

is reduced, which subsequently alters the connection between the PCG and the hippocampus

reflecting ApoE genetic status [93]. On the other hand, our study suggests that there is con-

nectivity difference of paracentral gyrus with other brain regions including superior, middle,

inferior frontal gyri (see Table 5.5). A fMRI study by Mason et al. [104] showed that, when

stimuli from some senses are deliberately reduced or removed, the mind recruits some brain
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Figure 5.11: Trace and ACF plots of σ2, σ2
0, and σ2

γ are respectively plotted in panels (a), (b),
and (c) for 5000 iterations of the MCMC algorithm. The trace plots show fast convergence
of the algorithm about 200 iterations, indicating its good mixing properties.

regions including the medial posterior cingulate, the precuneus (PCUN), paracentral lobule

(PCL), inferior parietal regions, the angular gyri, the inferior frontal cortices, superior and

middle frontal gyri, and a cluster spanning dorsal medial frontal regions. These distributed

foci have temporal coherence and constitute a tightly coupled, organized neural network. It

may indicate that brain network difference between MCI and AD patients can be explained

by certain brain reaction to sensory deprivation. These study results agree with our findings

by the proposed method.

5.5 Discussion

In this study, we proposed a Bayesian group spectral clustering model by taking a global

approach to analyze brain functional connectivity. It decomposes any symmetric data ma-

trices with underlying common factors across subjects and the subject-specific coefficient

matrix. We see that the subject-specific coefficient matrix preserves an individual network

structure in the low-dimensional space spanned by the common factors. We took a Bayesian

approach to estimate the underlying factors, individual coefficient matrix, and some param-
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Figure 5.12: It shows which connectivity is different between NC and MCI groups. The red
line represents the estimated coefficient value γ3 > 0, which implies that MCI patients have
a stronger positive connection than NC subjects between the corresponding two ROIs. The
blue line represents the estimated coefficient value γ3 < 0 indicating that MCI patients have
a weaker positive connection than NC subjects between the corresponding two ROIs.

eters involved in the prediction model for clinical outcomes. We assumed a hierarchical

structure within the prior of Λi, so that we could automatically estimate the effects of co-

variates on the Λi matrices within MCMC iterations. The simulation studies demonstrated

that our method efficiently approximated the raw symmetric data by the proposed decompo-

sition with good MCMC mixing properties. Also the regression parameters for Li could be

recovered satisfactorily. The ADNI real data analysis revealed that the bilateral precuneus

had weaker connection between right posterior cingulate gyrus (PCG) and left angular gyrus

for AD patients than MCI patients. It implies that AD patients have more disrupted default
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Figure 5.13: It shows which connectivity is different between NC and MCI groups. The red
line represents the estimated coefficient value γ3 < 0, which implies that MCI patients have
a stronger negative connection than NC subjects between the corresponding two ROIs. The
blue line represents the estimated coefficient value γ3 > 0 indicating that MCI patients have
a weaker negative connection than NC subjects between the corresponding two ROIs.

mode network than MCI subjects. Also, there was connectivity difference of paracentral

gyrus with other brain regions including superior, middle, inferior frontal gyri. This finding

agreed with other functional connectivity studies [15, 93, 104, 158].

This study could provide a guideline to elucidate hidden pathology of neurological disor-

ders in a brain connectivity perspective. In clinical application, the functional connectivity

can be used to (1) examine if normal subjects and patients (or among disease subtypes) have

a different functional connectivity structure and where the difference comes from. This ex-
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Figure 5.14: It shows which connectivity is different between NC and AD groups. The red
line represents the estimated coefficient value γ4 > 0, which implies that AD patients have
a stronger positive connection than NC subjects between the corresponding two ROIs. The
blue line represents the estimated coefficient value γ4 < 0 indicating that AD patients have
a weaker positive connection than NC subjects between the corresponding two ROIs.

ploratory analysis allows better understanding of the underlying mechanism and pathology

of a disorder, which further may help to develop future treatments targeting some identi-

fied brain regions. Also, altered connectivity can be used as (2) diagnostic and prognostic

information by relating with clinical outcomes [49], such as time to event, a binary outcome

(the presence of disease), or a categorical outcome indicating disease subtypes. Diagnosis

of psychiatric disorder is hard and subjective. For example ADHD, a subject is diagnosed

as ADHD if the subject meets the Diagnostic and Statistical Manual of Mental Disorders

(DSM) criteria. The test result can be varied depending on interview environment, examiners
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Figure 5.15: It shows which connectivity is different between NC and AD groups. The red
line represents the estimated coefficient value γ4 < 0, which implies that AD patients have
a stronger negative connection than NC subjects between the corresponding two ROIs. The
blue line represents the estimated coefficient value γ4 > 0 indicating that AD patients have
a weaker negative connection than NC subjects between the corresponding two ROIs.

and examinees. And it is still subjective criteria. If abnormality of functional connectivity

is a very early sign to develop a disorder or a biomarker characterizing prognosis, it will

be promising to use the information as an objective diagnostic/prognostic tool. One more

intriguing suggestion is that (3) abnormal functional connectivity will become prominent in

neurogenetic studies [87]. While genetic factors are emerging in psychiatric disorder research,

their effect size is very small and their working mechanism still needs to be elucidated. Be-

cause brain organization and function are influenced by genetic factors [89, 94] and brain

information has relatively large impact on disease progression, functional connectivity can
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be a mediator to explain connection among genetic mutations and disorders.

Our proposed method also provides a general framework to work on any symmetric form

of the data. It does not have any constraint on the Li other than symmetricity, for example,

this method can be applied on adjacency, weighted graph, and any distance matrices. There

is a remaining work to improve thresholding on the coefficient matrix B̂Γ̂jB̂
′

to efficiently

present it on the brain region space. Although the estimated coefficient matrix B̂Γ̂jB̂
′

is

invariant with respect to the choice of B matrix, the thresholded B matrix (using their

z-scores) and the thresholded coefficient matrix Γj(based on their HPD intervals) will be

varied. When we choose different B matrix, it will make it different which brain regions

have “more” connectivity difference than the others. It urges us to study a more rigorous

way of thresholding B and Γj matrices.
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Linera, M. Burgaleta, M. Quiroga, P. C. Shih, and P. M. Thompson. Hippocampal
structure and human cognition: Key role of spatial processing and evidence supporting
the efficiency hypothesis in females. Intelligence, 41(2):129–140, 2013.

[27] E. Corder, A. Saunders, W. Strittmatter, D. Schmechel, P. Gaskell, G. Small, A. Roses,
J. Haines, and M. A. Pericak-Vance. Gene dose of apolipoprotein e type 4 allele and
the risk of alzheimer’s disease in late onset families. Science, 261(5123):921–923, 1993.

[28] S. Costafreda, I. Dinov, Z. Tu, Y. Shi, C. Liu, I. Kloszewska, P. Mecocci, H. Soininen,
M. Tsolaki, B. Vellas, L. Wahlund, C. Spenger, A. Toga, S. Lovestone, and A. Sim-
mons. Automated hippocampal shape analysis predicts the onset of dementia in mild
cognitive impairment. Neuroimage, 56(1):212–219, 2011.

[29] D. R. Cox. Regression models and life tables. Journal of Royal Statistical Society.
Series B., 34(2):187–220, 1972.

[30] R. W. Cox. Afni: software for analysis and visualization of functional magnetic reso-
nance neuroimages. Computers and Biomedical research, 29(3):162–173, 1996.

[31] Y. Cui, B. Liu, S. Luo, X. Zhen, M. Fan, T. Liu, W. Zhu, M. Park, T. Jiang, J. Jin,
and ADNI. Identification of conversion from mild cognitive impairment to alzheimer’s
disease using multivariate predictors. PloS One, 6(7):e21896, 2011.

[32] J. L. Cummings, R. Doody, and C. Clark. Disease-modifying therapies for alzheimer
disease challenges to early intervention. Neurology, 69(16):1622–1634, 2007.

[33] X. Da, J. Toledo, J. Zee, D. Wolk, S. Xie., Y. Ou, A. Shacklett, P. Parmpi, L. Shaw,
J. Trojanowski, and C. Davatzikos. Integration and relative value of biomarkers for
prediction of mci to ad progression: spatial patterns of brain atrophy, cognitive scores,
apoe genotype, and csf markers. Neuroimage: Clinical, 4:164–173, 2014.

[34] S. Datta, J. Le-Rademacher, and S. Datta. Predicting patient survival from microar-
ray data by accelerated failure time modeling using partial least squares and lasso.
Biometrics, 63(1):259–271, 2007.

[35] P. L. De Jager, J. M. Shulman, L. B. Chibnik, B. T. Keenan, T. Raj, R. S. Wilson,
L. Yu, S. E. Leurgans, D. Tran, C. Aubin, et al. A genome-wide scan for common
variants affecting the rate of age-related cognitive decline. Neurobiology of aging, 33
(5):1017–e1, 2012.

[36] J. de la Torre. Alzheimer’s disease is incurable but preventable. Journal of Alzheimer’s
Disease, 20(3):861–870, 2010.

[37] M.-C. de LaCoste and C. L. White. The role of cortical connectivity in alzheimer’s
disease pathogenesis: a review and model system. Neurobiology of Aging, 14(1):1–16,
1993.

106



[38] M. De Leon, A. George, J. Golomb, C. Tarshish, A. Convit, A. Kluger, S. De Santi,
T. Mc Rae, S. Ferris, B. Reisberg, C. Ince, H. Rusinek, M. Bobinski, B. Quinn, D. C.
Miller, and H. M. Wisniewski. Frequency of hippocampal formation atrophy in normal
aging and alzheimer’s disease. Neurobiology of Aging, 18(1):1–11, 1997.

[39] X. Delbeuck, M. Van der Linden, and F. Collette. Alzheimer’disease as a disconnection
syndrome? Neuropsychology review, 13(2):79–92, 2003.

[40] R. S. Desikan, H. J. Cabral, B. Fischl, C. R. G. Guttmann, D. Blacker, B. T. Hyman,
M. S. Albert, and R. J. Killiany. Temporoparietal mr imaging measures of atrophy in
subjects with mild cognitive impairment that predict subsequent diagnosis of alzheimer
disease. American Journal of Neuroradiology, 30(3):532–538, 2009.

[41] D. Devanand, G. Pradhaban, X. Liu, A. Khandji, S. De Santi, S. Segal, H. Rusinek,
G. Pelton, L. Honig, R. Mayeux, Y. Stern, M. H. Tabert, and M. J. de Leon. Hip-
pocampal and entorhinal atrophy in mild cognitive impairment prediction of alzheimer
disease. Neurology, 68(11):828–836, 2007.

[42] B. Dickerson, I. Goncharova, M. Sullivan, C. Forchetti, R. Wilson, D. Bennett, L. Beck-
ett, and L. deToledo Morrell. Mri-derived entorhinal and hippocampal atrophy in in-
cipient and very mild alzheimer’s disease. Neurobiology of Aging, 22(5):747–754, 2001.

[43] B. Dickerson, D. A. Wolk, and ADNI. Biomarker-based prediction of progression in
mci: comparison of ad signature and hippocampal volume with spinal fluid amyloid-β
and tau. Frontiers in Aging Neuroscience, 5, 2013.

[44] J. Fan and J. Lv. A selective overview of variable selection in high dimen- sional feature
space. Statistica Sinica, 20:101–148, 2010.

[45] Y. Fan, N. Batmanghelich, C. M. Clark, and C. Davatzikos. Spatial patterns of brain
atrophy in mci patients, identified via high-dimensional pattern classification, predict
subsequent cognitive decline. Neuroimage, 39(4):1731–1743, 2008.

[46] C. Fennema-Notestine, D. Hagler, L. McEvoy, A. S. Fleisher, E. H. Wu, D. Karow,
and A. Dale. Structural mri biomarkers for preclinical and mild alzheimer’s disease.
Human Brain Mapping, 30(10):3238–3253, 2009.

[47] F. Ferraty and P. Vieu. Nonparametric Functional Data Analysis: Methods, Theory,
Applications and Implementation. Springer, New York, 2006.

[48] T. R. Fleming and D. P. Harrington. Counting processes and survival analysis, volume
169. John Wiley & Sons, 2011.

[49] M. D. Fox and M. Greicius. Clinical applications of resting state functional connectiv-
ity. Frontiers in systems neuroscience, 4:19, 2010.

[50] M. D. Fox, A. Z. Snyder, J. L. Vincent, M. Corbetta, D. C. Van Essen, and M. E.
Raichle. The human brain is intrinsically organized into dynamic, anticorrelated func-
tional networks. Proceedings of the National Academy of Sciences of the United States
of America, 102(27):9673–9678, 2005.

107
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berg, P. Scheltens, and G. Frisoni. Prediction of dementia in mci patients based on
core diagnostic markers for alzheimer disease. Neurology, 80(11):1048–1056, 2013.

[129] A. L. Price, N. A. Zaitlen, D. Reich, and N. Patterson. New approaches to population
stratification in genome-wide association studies. Nature Reviews Genetics, 11(7):459–
463, 2010.

[130] S. Purcell, B. Neale, K. Todd-Brown, L. Thomas, M. A. Ferreira, D. Bender, J. Maller,
P. Sklar, P. I. De Bakker, M. J. Daly, et al. Plink: a tool set for whole-genome
association and population-based linkage analyses. The American Journal of Human
Genetics, 81(3):559–575, 2007.

[131] J. O. Ramsay and B. W. Silverman. Functional data analysis. Springer Series in
Statistics. Springer, New York, second edition, 2005. ISBN 978-0387-40080-8; 0-387-
40080-X.

[132] P. T. Reiss and R. T. Ogden. Functional generalized linear models with images as
predictors. Biometrics, 66:61–69, 2010.

[133] S. Risacher, A. Saykin, J. D. Wes, L. Shen, H. A. Firpi, and B. McDonald. Baseline mri
predictors of conversion from mci to probable ad in the adni cohort. Current Alzheimer
Research, 6(4):347–361, 2009.

[134] W. G. Rosen, R. C. Mohs, and K. L. Davis. A new rating scale for alzheimer’s disease.
The American Journal of Psychiatry, 141:1356–1364, 1984.

[135] A. Saunders, W. Strittmatter, D. Schmechel, P. S. George-Hyslop, M. Pericak-Vance,
S. Joo, B. Rosi, J. Gusella, D. Crapper-MacLachlan, M. Alberts, C. Hulette, B. Crain,
D. Goldgaber, and A. D. Roses. Association of apolipoprotein e allele 4 with late-onset
familial and sporadic alzheimer’s disease. Neurology, 43(8):1467–1467, 1993.

[136] P. Scheltens, D. Leys, F. Barkhof, D. Huglo, H. Weinstein, P. Vermersch, M. Kuiper,
M. Steinling, E. C. Wolters, and J. Valk. Atrophy of medial temporal lobes on mri in”
probable” alzheimer’s disease and normal ageing: diagnostic value and neuropsycho-
logical correlates. Journal of Neurology, Neurosurgery & Psychiatry, 55(10):967–972,
1992.

[137] A. Schwartzman. Random ellipsoids and false discovery rates: Statistics for diffusion
tensor imaging data. Ph.D. thesis, Stanford University, 2006.

[138] N. Sha, M. G. Tadesse, and M. Vannucci. Bayesian variable selection for the analysis
of microarray data with censored outcomes. Bioinformatics, 22(18):2262–2268, 2006.

[139] L. Shaw, H. Vanderstichele, M. Knapik-Czajka, C. Clark, P. Aisen, R. Petersen,
K. Blennow, H. Soares, A. Simon, P. Lewczuk, R. Dean, E. Siemers, W. Potter, V. Lee,
J. Trojanowski, and ADNI. Cerebrospinal fluid biomarker signature in alzheimer’s dis-
ease neuroimaging initiative subjects. Annals of Neurology, 65(4):403–413, 2009.

114



[140] J. Shi, P. Thompson, B. Gutman, and Y. Wang. Surface fluid registration of con-
formal representation: Application to detect disease burden and genetic influence on
hippocampus. NeuroImage, 78:111–134, 2013.

[141] J. Shi, Y. Wang, R. Ceschin, X. An, Y. Lao, D. Vanderbilt, M. D. Nelson, P. Thompson,
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