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ABSTRACT

Tian Cao: COUPLED DICTIONARY LEARNING FOR IMAGE ANALYSIS
(Under the direction of Marc Niethammer)

Modern imaging technologies provide different ways to visualize various objects ranging from

molecules in a cell to the tissue of a human body. Images from different imaging modalities

reveal distinct information about these objects. Thus a common problem in image analysis is

how to relate different information about the objects. For instance, relating protein locations from

fluorescence microscopy and the protein structures from electron microscopy. These problems

are challenging due to the difficulties in modeling the relationship between the information from

different modalities.

In this dissertation, a coupled dictionary learning based image analogy method is first introduced

to synthesize images in one modality from images in another. As a result, using my method multi-

modal registration (for example, registration between correlative microscopy images) is simplified to

a mono-modal one. Furthermore, a semi-coupled dictionary learning based framework is proposed to

estimate deformations from image appearances. Moreover, a coupled dictionary learning method is

explored to capture the relationship between GTPase activations and cell protrusions and retractions.

Finally, a probabilistic model is proposed for robust coupled dictionary learning to address learning a

coupled dictionary with non-corresponding data. This method discriminates between corresponding

and non-corresponding data thereby resulting in a “clean” coupled dictionary by removing non-

corresponding data during the learning process.
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CHAPTER 1: INTRODUCTION

1.1 Motivations

With the development of new imaging technologies, we can visualize various objects to explore

information ranging from molecular structures of cells to tissue of the human body. Different

imaging modalities provide distinct information about the objects. For example, in the context of

correlative microscopy, which combines different microscopy technologies such as conventional

light-, confocal- and electron transmission microscopy (Caplan et al., 2011), protein locations can

be revealed through fluorescence microscopy, while protein structures can be observed through

electron microscopy (Caplan et al., 2011).

Many image analysis applications require relating the information from different modalities or

sources. For example, joint analysis of correlative microscopic images needs registration of images

from different modalities as illustrated in Figure 1.1; estimating the deformation of an image with

respect to an atlas requires modeling the relationship between deformations and image appearances

as illustrated in Figure 1.2; investigating the coordination of GTPase activities and cell protrusions

of mouse embryonic fibroblasts (MEFs) requires establishing the spatio-temporal correspondences

between GTPase activations and cell movements as illustrated in Figure 1.3.

The similarity between these applications is that they require us to model the relationship of

data from different spaces.

1.1.1 Multi-modal image registration for correlative microscopy

Correlative microscopy is a methodology combining the functionality of light microscopy with

the high resolution of electron microscopy and other microscopy technologies. One of the most

important steps to combining the information from different types of microscopy is to perform

registration between two or more microscopic images (Cao et al., 2013b). Image registration is the
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process of estimating spatial transformations between images (to align them). Registration requires

a transformation model and a similarity measure. Direct intensity based similarity measures (such

as the sum of squared intensity differences (SSD)) is typically not applicable to multi-modal image

registration as image appearances/intensities differ. While a similarity measure such as mutual

information (MI) can account for image appearance differences (as MI does not rely on direct image

intensity comparisons), it is a very generic measure of image similarity not adapted to a particular

application scenario. In general, as images in correlative microscopy differ severely, measuring

image similarity is difficult and therefore image registration is challenging. Figure 1.1 shows an

example of correlative microscopy.

(a) Confocal Microscopic Image (b) Resampling of Region in (a) (c) TEM Image

Figure 1.1: Example of Correlative Microscopy. (a) is a stained confocal brain slice, where the red
box shows a selected region and (b) is a resampled image of the boxed region in (a). The goal is to
align (b) to (c).

1.1.2 Deformation estimation from appearances

Furthermore, some medical image analysis tasks, such as brain image analysis, require register-

ing subject images to a common atlas (reference) image, i.e, estimating the underlying deformation

fields that transform the subject images to the atlas image. Recent work has focused on learning

registration maps using example deformations, which can then be used to predict deformations

with respect to them, to accelerate the registration process or to initialize other registration meth-

ods (Chou et al., 2013; Wang et al., 2013). Figure 1.2 shows an example of an atlas image and a set

of corresponding subject images.
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The deformation estimation problem is challenging as it is difficult to model the relationship

between image appearances and deformations. For example, the relation between appearances and

deformations could be highly nonlinear.

Figure 1.2: Example of atlas image and the corresponding subject images.

1.1.3 Coordination between GTPase activities and cell movements

GTPases play key roles in controlling cell dynamics (Ridley et al., 2003; Machacek et al.,

2009). Exploring the spatiotemporal coordination of GTPase activations and cell protrusions is

crucial for the understanding of cell dynamics (Machacek et al., 2009; Ridley et al., 2003). GTPases

(Rac1, RhoA and Cdc42) are a family of enzymes that can bind GTP. GTPase activities can be

studied with biosensor imaging (Machacek et al., 2009). However, exploring the relationship

between GTPase activations and cell protrusions is challenging for the following reasons: (i) a

good data representation is required to capture the relationship between GTPase activations and cell

protrusions; (ii) establishing the spatiotemporal correspondences between GTPase activations and

cell protrusions is difficult as both the shapes and appearances (activations) of cells change during

cell movements. Figure 1.3 shows an example of GTPase activations of a cell.
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Figure 1.3: Example of GTPase activations of a cell. Intensities represent the GTPase activa-
tions. Some boundary points are tracked across different time points to extract the corresponding
activations and cell movements (velocities). Refer to Chapter 5 for more details.

1.1.4 Coupled dictionary learning

In this dissertation, coupled dictionary learning based approaches are proposed to learn these

relationships1 from given data. Dictionary learning is a method to learn a basis to represent

data (Mairal et al., 2009; Kreutz-Delgado et al., 2003). Typically over-complete dictionaries are

used where the number of basis vectors is larger than the dimensionality of the data. Similarly,

coupled dictionary learning learns a coupled basis for the data from two coupled spaces. Coupled

spaces can for example be the two appearance spaces from two different image modalities. A

coupled dictionary can then relate appearances between the two spaces.

1.1.5 Robust coupled dictionary learning

Coupled dictionary learning plays a key role in the previously discussed applications, but

presents some challenges: (i) it may fail without sufficient correspondences between the data

1For example, the relationships between appearances of images from different modalities, between appearances and
deformations and between GTPase activations and cell protrusions.
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from different spaces, for example, a low quality image deteriorated by noise in one modality can

hardly match a high quality image in another modality. (ii) Usually the data correspondence for

two different spaces needs to be obtained before learning the coupled dictionary, for example, by

pre-registering training images before dictionary learning. Errors can be introduced during the

process of establishing these correspondence.

Thus, a robust dictionary learning method under a probabilistic model is finally introduced

in Chapter 6. Instead of directly learning a coupled dictionary from training data, I distinguish

between image regions with and without good correspondence in the learning process and update

the learned dictionary iteratively.

1.2 Contributions

The main contributions of my work include:

1. a sparse representation and a coupled dictionary learning-based image analogy method to

convert and thereby simplify a multi-modal registration problem to a mono-modal one;

2. a general framework for deformation estimation using appearance information based on

coupled dictionary learning;

3. a framework for relating the spatio-temporal patterns between GTPase activations and cell

protrusion of mouse embryonic fibroblasts (MEFs) based on coupled dictionary learning;

4. a robust coupled dictionary learning method based on a probabilistic model which dis-

criminates between corresponding and non-corresponding patches automatically.

1.3 Thesis statement

Learning a coupled basis for the compact representation of two spaces can be achieved by

coupled dictionary learning. Such dictionaries can be learned to capture 1) appearance differences

of different imaging modalities, 2) dependencies between image appearance and deformation, and 3)

spatio-temporal patterns for cell signaling and boundary protrusions and retractions. To account for

data inconsistencies, a robust coupled dictionary can be obtained based on a probabilistic dictionary

model.
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1.4 Outline

The remainder of the document is organized as follows:

Chapter 2 introduces some background on related methods of this dissertation; Chapter 3

describes the image analogy based multi-modal registration; Chapter 4 explains the coupled dictio-

nary learning method for both appearances and deformations; Chapter 5 presents an application of

coupled dictionary learning for modeling GTPase activation and cell protrusion for MEFs; Chapter 6

proposes a robust multi-modal dictionary learning method; Chapter 7 concludes with a discussion

of contributions and some possible future work.
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CHAPTER 2: BACKGROUND

This chapter provides necessary background and approaches related to this dissertation. Sec-

tion 2.1 introduces image registration. Section 2.2 introduces the standard image analogy method.

Section 2.3 provides an introduction to the sparse representation model and its applications in image

processing and computer vision. Section 2.4 discusses the dictionary learning method and the

numerical solution of the associated learning problem. In Section 2.5, coupled dictionary learning

is introduced to capture the relationship between data in two spaces.

2.1 Image registration

Image registration estimates a spatial transformation between a source image and a target

image. Let φ(x) denote a transformation that moves a pixel at a location x in the image to another

location, y = φ(x). Let S and T represent the source (moving) image and the target (static) image

respectively. The goal of image registration is to estimate the transformation φ(·) for the entire

source image that transforms it to match the subject’s image in the sense that, the appearance at

a pixel y in the deformed source image, S̃(y) = S(φ−1(y)) best matches with the target image,

T (y). Figure 2.1 shows the framework for standard image registration (Ibanez et al., 2003; Hill

et al., 2001; Maintz and Viergever, 1998). In this framework, image registration is treated as an

optimization problem. The interpolator is used to estimate the intensity values of the source image

at non-grid locations (Ibanez et al., 2003), while the distance metric d measures the difference

between the transformed source image and the target image. The metric d provides a quantitative

measure which can be optimized by the optimizer in the search space defined by the transformation

parameters1 (Ibanez et al., 2003).

1more details can be found in Section 4.3.
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Figure 2.1: Framework of the standard image registration.

There are many image registration methods (Maintz and Viergever, 1998; Zitova and Flusser,

2003). One simple method is landmark-based registration. Here landmarks are a set of points in both

source and target images. The idea of landmark-based registration is to estimate a transformation

that minimizes the distance between corresponding landmarks in source and target images. Let

si = [sxi, syi] denote the position of the ith landmark in the source image and ti = [txi, tyi] the

position of the corresponding landmark in the target image, where i = 1, . . . , n, n is the number of

landmarks. Landmark-based registration solves the following minimization problem,

min
φ
d(si, ti, φ) = min

φ

n∑
i=1

‖φ(si)− ti‖2
2, (2.1)

where d is the distance between corresponding landmarks, here I use the sum of squared Euclidean

distances as an example.

If no landmarks are available, intensity-based registration methods can be applied to the source

and target images. Intensity-based methods solve,

min
φ
d(S, T, φ) = min

φ

∑
x∈Ω

‖S(φ−1(x))− T (x)‖2
2, (2.2)
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(a) source image (b) target image (c) transformed source image

Figure 2.2: Example of landmark-based registration. The landmarks are superimposed on (a) source
image and (b) target image. The transformed source image and corresponding landmarks are shown
in (c). The images are from (Modersitzki, 2009).

where Ω is the domain of the image, d is the distance which measures the similarity between

source and target images. Here I use the sum of squared difference (SSD) as an example. Another

commonly used distance measure is mutual information (MI) (Wells et al., 1996).

Which similarity measure to pick for image registration depends on the image pairs to be

registered. If they are from the same modality, SSD may be a good choice. For multi-modal

approaches more flexible similarity measures such as MI are typically used. However, for image

pairs with drastically different appearances such measures may also not be ideal. In this thesis I

therefore investigate creating a custom image similarity term via the process of image synthesis

which I will discuss next.

2.2 Image analogy

Image analogies, first introduced in (Hertzmann et al., 2001), have been widely used in texture

synthesis. Image analogy allows to relate the appearance between two images. In this method, a

pair of images A and A′ is provided as training data, where A′ is a “filtered” version of A. The

“filter” is learned from A and A′ and is later applied to a different image B in order to generate an

“analogous” filtered image B′. Fig. 2.3 shows an image analogy example.
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(a) A:training TEM (b) A′:training confocal

(c) B:input TEM (d) B′:output confocal

Figure 2.3: Result of Image Analogies: Based on a training set (A,A′) an input image B can be
transformed to B′ which mimics A′ in appearance. The red circles in (d) show inconsistent regions.

The standard image analogy algorithm achieves the mapping between B and B′ by looking up

best-matching image patches for each image location between A and B which then imply the patch

appearance for B′ from the corresponding patch A′ (A and A′ are assumed to be aligned). Examples

for image patches are shown in Figure 2.4. These best-matched patches are smoothly combined

to generate the overall output image B′. Figure 2.4 also shows the feature matching between the

points in A,A′ and B,B′. The algorithm description is presented in Algorithm 1.

2.2.1 Nearest neighbor search

For multi-modal image registration in Chapter 3, the image analogy approach can be used to

transfer a given image from one modality to another using the trained “filter”. Then the multi-modal

image registration problem simplifies to a mono-modal one. However, since this method uses a

nearest neighbor (NN) search of the image patch centered at each pixel, the resulting images are

usually noisy because the `2 norm based NN search does not preserve the local consistency well

(see Figure 2.3 (d)) (Hertzmann et al., 2001). Another problem is the size of the search space, i.e.
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Figure 2.4: Feature matching in the image analogy method: for a point p in training set (A,A′), the
feature fp for p is extracted from the image patches centered at p; similarly for a point q in the input
image B and the corresponding sythesized B′, the feature fq is extracted from the image patches
centered at q. The feature vector concatenates the intensity values for the image patches centered at
a point p in both A and A′ or B and B′. Suppose p is the closest point of q based on the `2 distance
of the feature vectors, the synthesized intensity at point q in B′ is set to the intensity value at p in A′.
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the number of patches in the NN search, is linearly related to the size of the training images. As

a result, NN search is time consuming for large training sets. I introduce a sparse representation

model to address these problems in Section 2.3.

Algorithm 1 Image Analogies.
Input:

Training images: A and A′;
Source image: B.

Output:
’Filtered’ source B′.

1: Construct Gaussian pyramids for A, A′ and B;
2: Generate features for A, A′ and B;
3: for each level l starting from coarsest do
4: for each pixel q ∈ B′l, in scan-line order do
5: Find best matching pixel p of q in Al and A′l;
6: Assign the value of pixel p in A′ to the value of pixel q in B′l;
7: Record the position of p.
8: end for
9: end for

10: Return B′L where L is the finest level.

2.3 Sparse representation

Sparse representation is a powerful model for representing and compressing signals (Wright

et al., 2010; Huang et al., 2011b). It represents a signal as a combination (usually linear) of a

few fixed basis signals from a typically over-complete dictionary (Bruckstein et al., 2009). It has

been successfully applied in many computer vision applications such as for object recognition and

classification in (Wright et al., 2009; Huang and Aviyente, 2007; Huang et al., 2011a; Zhang et al.,

2012a,b; Fang et al., 2013; Cao et al., 2013a). A dictionary is a collection of basis signals. The

number of dictionary elements in an over-complete dictionary exceeds the dimension of the signal

space (here the dimension of an image patch). Suppose a dictionary D is pre-defined. To sparsely

represent a signal x the following optimization problem is solved (Elad, 2010):

α̂ = argmin
α

‖α‖0, s.t. ‖x−Dα‖2 ≤ ε, (2.3)
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where α is a sparse vector that explains x as a linear combination of columns in dictionary D with

error ε and ‖ · ‖0 indicates the number of non-zero elements in the vector α. Solving Equation (2.3)

is an NP-hard problem. One possible solution of this problem is based on a relaxation that replaces

‖ · ‖0 by ‖ · ‖1, where ‖ · ‖1 is the 1-norm of a vector, resulting in the optimization problem,

α̂ = argmin
α

‖α‖1, s.t. ‖x−Dα‖2 ≤ ε. (2.4)

For a suitable choice of λ, an equivalent problem is given by Equation (2.4)

α̂ = argmin
α

‖x−Dα‖2
2 + λ‖α‖1, (2.5)

which is a convex optimization problem that can be solved efficiently (Bruckstein et al., 2009;

Boyd et al., 2010; Mairal et al., 2009). The optimization problem Equation (2.5) is a sparse coding

problem which finds the sparse codes α to represent x. Based on the sparse representation model,

an over-complete basis, i.e. a dictionary, can be learned for the reconstruction of data in some space.

2.4 Dictionary learning

Dictionary learning plays a key role in many applications using sparse models. As a result,

many dictionary learning methods have been introduced in recent literature (Aharon et al., 2006;

Yang et al., 2010; Mairal et al., 2008; Monaci et al., 2007). In (Aharon et al., 2006), a dictionary

is learned for image denoising, while in (Mairal et al., 2008), supervised dictionary learning is

performed for classification and recognition tasks. Given sets of training data xi, the goal is to

estimate the dictionary D as well as the coefficients αi for the sparse coding problem,

{α̂i, D̂} = argmin
αi,D

N∑
i=1

‖xi −Dαi‖2
2 + λ‖αi‖1, (2.6)

where N is the number of training datasets, and λ is the parameter to control the sparsity of αi.

The `1 regularity term induces sparsity in coefficients αi for the dictionary atoms (columns of D)

13



to approximate xi. To avoid D being arbitrarily large, each column of D is normalized to have `2

norm less than or equal to one, i.e. dTk dk ≤ 1, for k = 1, ..., p, and D = {d1, d2, ..., dq} ∈ Rp×q.

2.4.1 Data preprocessing

Let X be the data matrix X = {x1, x2, . . . , xn} ∈ Rp×n, each column in X represents a

data vector, while each row of X represents a feature. Usually X requires preprocessing before

dictionary learning. There are three commonly used data preprocessing methods.

Mean subtraction : Here, for each feature in the data matrix its mean across all data points is

subtracted. The geometric interpretation of mean subtraction is centering the data around the origin

for every feature dimension.

Feature Scaling : Here, each feature in the data matrix is divided by its standard deviation

across all data points after mean subtraction. It is usually applied to data where each feature

has a different scale but equal importance to the learning algorithm. For image patches, it is not

necessary to apply feature scaling because the relative scales of pixels are approximately equal

(usually between 0 and 255).

Normalization : Here, each data vector is normalized to unit norm by division with its `2 norm.

Note that it is not necessary to apply all the preprocessing steps to the data. Choosing appropriate

data preprocessing methods is based on the applications. I will give an example in Section 3.3.3.

2.4.2 Numerical solution

The optimization problem in Equation (2.6) is non-convex (bilinear in D and αi). The standard

approach (Elad, 2010) is alternating minimization, i.e., solving for αi keeping D fixed and vice

versa. By fixing D, we first solve the sparse coding problems,

α̂i = argmin
αi

N∑
i

‖xi −Dαi‖2
2 + λ‖αi‖1. (2.7)

Following (Li and Osher, 2009) I use a coordinate descent algorithm to solve Equation (2.7).

The coordinate descent algorithm to solve Equation (2.7) is described in Algorithm 2. This
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algorithm minimizes Equation (2.7) with respect to one component of α in one step, keeping all

other components constant. This step is repeated until convergence.

Algorithm 2 Coordinate Descent for Sparse Coding

Input: α = 0, λ > 0, β = DTx
Output: α

while not converged do
1. α̃ = Sλ(β)1;
2. j = argmaxi|αi − α̃i|, where i is the index of the component in α and α̃;
3. αk+1

i = αki , i 6= j, and αk+1
j = α̃j;

4. βk+1 = βk − |αkj − α̃j|(DTD)j , and βk+1
j = βkj , where (DTD)j is the jth column of

(DTD).
end while

After solving Equation (2.7), I can fix αi and then update D. Now the optimization of

Equation (2.6) can be changed to

D̂ = argmin
D

N∑
i=1

‖xi −Dαi‖2
2. (2.8)

The closed-form solution of Equation (2.8) is as follows,

D = (
N∑
i=1

xiα
T
i )(

N∑
i=1

αiα
T
i )−1. (2.9)

The columns are normalized according to

dj = dj/max(‖dj‖2, 1), j = 1, ...,m, (2.10)

where D = {d1, d2, ...dm} ∈ Rnxm. I iterate the optimization with respect to D and αi to conver-

gence.

2.5 Coupled dictionary learning

Coupled dictionary learning is a method to learn a joint basis for compact representation of

the data from two spaces (Yang et al., 2012a,b). In (Monaci et al., 2007), a coupled dictionary

2Sa(v) is soft thresholding operator where Sa(v) = (v − a)+ − (−v − a)+.
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is learned from audio-visual data. A coupled dictionary which has two parts corresponding to

different modalities, can be also applied to super-resolution (Yang et al., 2010) and multi-modal

image registration (Cao et al., 2012).

2.5.1 Standard coupled dictionary learning (CDL)

Given sets of corresponding training pairs {x(1)
i , x

(2)
i }, the coupled dictionary learning problem

can be formulated as

{ ˆ̃D, α̂} = argmin
D̃,α

N∑
i=1

1

2
‖x̃i − D̃αi‖2

2 + λ‖αi‖1, (2.11)

where D̃ = [D(1), D(2)]T stacks two different dictionaries and x̃i = [x
(1)
i , x

(2)
i ]T , is the corresponding

stacked training data from two different spaces. Note that there is only one set of coefficients αi per

datum, which enforces correspondence of the dictionaries between the two spaces. The numerical

solution for standard CDL is the same as the solution mentioned in Section 2.4.2.

2.5.2 Semi-coupled dictionary learning (SCDL)

In standard coupled dictionary learning, using only one set of coefficients imposes the strong

assumption that coefficients of the representation of the two spaces are equal. However, this strong

assumption sometimes does not hold. To relax this assumption, a semi-coupled dictionary learning

is proposed in (Wang et al., 2012),

{D̂(1), D̂(2), {α̂(1)
i }, {α̂

(2)
i }, Ŵ} = argmin

D(1),D(2),{α(1)
i },{α

(2)
i },W

N∑
i=1

1

2
‖x(1)

i −D(1)α
(1)
i ‖2

2+

1

2
‖x(2)

i −D(2)α
(2)
i ‖2

2 + λ1‖α(1)
i ‖1 + λ2‖α(2)

i ‖1 + γ1‖α(2)
i −Wα

(1)
i ‖2

2 + γ2‖W‖2
F ,

(2.12)

where λ1, λ2, γ1, γ2 are regularization parameters. Distinct from CDL, W is a matrix to define a

mapping between the coefficients in two spaces. Equation (2.11) is a special case of Equation (2.12)

when W equals the identity and α(1) equals α(2). Unlike for CDL the columns of the dictionaries

D(1) and D(2) are normalized separately. In Chapter 4, our experiments show that such a separate
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normalization is beneficial to jointly compute a basis for appearance differences and deformations.

Equation (2.12) is not convex with respect to D(1), D(2), α(1), α(2), W jointly, however, it is convex

with respect to each of them when others are fixed.

2.5.3 Numerical solution

Equation (2.12) can be solved by an iterative algorithm updating D(1), D(2), W alternatingly. I

initializeW as identity matrix andD(1) = {d(1)
1 , . . . , d

(1)
m } andD(2) = {d(2)

1 , . . . , d
(2)
m } asm random

x
(1)
i and x(2)

i pairs. With W , D(1), D(2) fixed, I solve the following sparse coding problems with

respect to α(1)
i and α(2)

i ,

min
α
(1)
i

N∑
i=1

1

2
‖x(1)

i −D(1)α
(1)
i ‖2

2 + γ1‖α(2)
i −Wα̂

(1)
i ‖2

2 + λ1‖α(1)
i ‖1,

min
α
(2)
i

N∑
i=1

1

2
‖x(2)

i −D(2)α
(2)
i ‖2

2 + γ1‖α̂(2)
i −Wα

(1)
i ‖2

2 + λ2‖α(2)
i ‖1,

(2.13)

where α̂(1)
i and α̂(2)

i are results obtained from the previous iteration. Equation (2.13) are lasso

problems which can be solved by Algorithm 2 or other existing `1 solvers such as coordinate

descent (Friedman et al., 2007), FISTA (Beck and Teboulle, 2009) and LARS (Efron et al., 2004).

By fixing W , α(1)
i and α(2)

i , based on Equation (2.11), I update D(1) and D(2) by solving

min
D(1),D(2)

N∑
i=1

1

2
‖x(1)

i −D(1)α
(1)
i ‖2

2 +
1

2
‖x(2)

i −D(2)α
(2)
i ‖2

2,

s.t. ‖d(1)
j ‖2 ≤ 1, ‖d(2)

j ‖ ≤ 1, j = 1, . . . ,m,

(2.14)

where D(1) = {d(1)
1 , . . . , d

(1)
m }, D(2) = {d(2)

1 , . . . , d
(2)
m }. Equation (2.14) can be decoupled into two

problems, thus the least-squares solutions for the dictionaries are obtained by computing

D(1) = (
N∑
i=1

x
(1)
i (α

(1)
i )T )(

N∑
i=1

α
(1)
i (α

(1)
i )T )−1,

D(2) = (
N∑
i=1

x
(2)
i (α

(2)
i )T )(

N∑
i=1

α
(2)
i (α

(2)
i )T )−1.

(2.15)
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Projection onto the `2 ball is achieved by

d
(1)
j = d

(1)
j /max(‖d(1)

j ‖2, 1), d
(2)
j = d

(2)
j /max(‖d(2)

j ‖2, 1).

Finally by fixing D(1), D(2), α(1)
i and α(2)

i , I can update W by solving,

min
W

N∑
i=1

γ1‖α(2)
i −Wα

(1)
i ‖2

w + γ2‖W‖2
F . (2.16)

The closed-form solution of Equation (2.16) is:

W = (
N∑
i=1

γ1α
(2)
i (α

(1)
i )T )(

N∑
i=1

γ1α
(1)
i (α

(1)
i )T + γ2I)

−1.

2.6 Conclusion

This chapter introduced methods related to the work in this dissertation. First a brief introduction

to image registration was given.Then, the image analogy method was introduced. It is a simple

method to relate image patches from different modalities. Then dictionary learning was explained to

learn an over-complete basis to represent the data in a space. Similar to dictionary learning, coupled

dictionary learning was discussed to learn an over-complete basis for the data in two coupled

spaces.
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CHAPTER 3: COUPLED DICTIONARY LEARNING FOR MULTI-MODAL REGISTRA-

TION

Multi-modal registration is a crucial step to analyze images from different modalities such

as correlative microscopy images (Lemoine et al., 1994; Caplan et al., 2011). The goal of image

registration is to compute the spatial alignment between images by maximizing the similarity

between images in the space of admissible transformations. Here, defining image similarity is

challenging as images may have strikingly different appearances. Hence, standard image similarity

measures may not apply. In this chapter, I propose a method to transform the appearance of an

image from one modality to another. By transforming the appearance of the image, a multi-modal

registration problem can be simplified to a mono-modal one. The appearance transformation can be

realized by image analogy1. The proposed image analogy method is based on coupled dictionary

learning. The flowchart of my method is shown in Figure 3.1.

3.1 Introduction

Correlative microscopy integrates different microscopy technologies including conventional

light-, confocal- and electron transmission microscopy (Caplan et al., 2011) for the improved

examination of biological specimens. For example, fluorescent markers can be used to highlight

regions of interest combined with an electron-microscopy image to provide high-resolution structural

information of the regions. To allow such joint analysis requires the registration of multi-modal

microscopy images. This is a challenging problem due to (large) appearance differences between

the image modalities.

1The standard image analogy method is introduced in Section 2.2.
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Figure 3.1: Flowchart of the proposed method. This method has three components: 1. dictionary
learning: learning coupled dictionaries for both training images from different modalities; 2. sparse
coding: computing sparse coefficients for the learned dictionaries to reconstruct the source image
while at the same time using the same coefficients to transfer the source image to another modality;
3. registration: registering both transferred source image and target image.
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Image registration which was introduced in Section 2.1 is an essential part of many image

analysis approaches. The registration of correlative microscopic images is very challenging: images

should carry distinct information to combine, for example, knowledge about protein locations (using

fluorescence microscopy) and high-resolution structural data (using electron microscopy). However,

this precludes the use of simple alignment measures such as the sum of squared intensity differences

because intensity patterns do not correspond well or a multi-channel image has to be registered to a

gray-valued image.

A solution for the registration of correlative microscopy images is to perform landmark-based

alignment (Section 2.1), which can be greatly simplified by adding fiducial markers (Fronczek

et al., 2011). Fiducial markers cannot easily be added to some specimens, hence an alternative

intensity-based method is needed. This can be accomplished in some cases by appropriate image

filtering. This filtering is designed to only preserve information which is indicative of the desired

transformation, to suppress spurious image information, or to use knowledge about the image

formation process to convert an image from one modality to another. For example, multichannel

microscopy images of cells can be registered by registering their cell segmentations (Yang et al.,

2008). However, such image-based approaches are highly application-specific and difficult to devise

for the non-expert. If the images are structurally similar (for example when aligning EM images of

different resolutions (Kaynig et al., 2007), standard feature point detectors can be used.

In this chapter I therefore propose a method inspired by early work on texture synthesis

in computer graphics using image analogies (Hertzmann et al., 2001). Here, the objective is to

transform the appearance of one image to the appearance of another image (for example transforming

an expressionistic into an impressionistic painting). The transformation rule is learned based on

example image pairs. For image registration this amounts to providing a set of (manually) aligned

images of the two modalities to be registered from which an appearance transformation rule can be

learned. A multi-modal registration problem can then be converted into a mono-modal one. The

learned transformation rule is still highly application-specific, however it only requires manual
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alignment of sets of training images which can easily be accomplished by a domain specialist who

does not need to be an expert in image registration.

Arguably, transforming image appearance is not necessary if using an image similarity measure

which is invariant to the observed appearance differences. In medical imaging, mutual information

(MI) (Wells et al., 1996) is the similarity measure of choice for multi-modal image registration. I

show for two correlative microscopy example problems that MI registration is indeed beneficial, but

that registration results can be improved by combining MI with an image analogies approach. To

obtain a method with better generalizability than standard image analogies (Hertzmann et al., 2001)

I devise an image analogies method using ideas from sparse coding (Bruckstein et al., 2009), where

corresponding image patches are represented by a learned basis (a dictionary). Dictionary elements

capture correspondences between image patches from different modalities and therefore allow to

transform one modality to another modality.

This chapter is organized as follows: First, I briefly introduce some related work in Section 3.2.

Section 3.3 describes the proposed method for multi-modal registration. Image registration results

are shown and discussed in Section 3.4. The chapter concludes with a summary of results and an

outlook on future work in Section 3.5.

3.2 Related work

3.2.1 Multi-modal image registration for correlative microscopy

Since correlative microscopy combines different microscopy modalities, resolution differences

between images are common. This poses challenges with respect to finding corresponding regions

in the images. If the images are structurally similar (for example when aligning EM images of

different resolutions (Kaynig et al., 2007)), standard feature point detectors can be used.

There are two groups of methods for more general multi-modal image registration (Wachinger

and Navab, 2010). The first set of approaches applies advanced similarity measures, such as mutual

information (Wells et al., 1996). The second group of techniques includes methods that transform a

multi-modal to a mono-modal registration (Wein et al., 2008). For example, Wachinger introduced

entropy images and Laplacian images which are general structural representations (Wachinger
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and Navab, 2010). The motivation of the proposed method is similar to Wachinger’s approach, i.e.

transform the modality of one image to another, but I use an image analogy approach to achieve

this goal thereby allowing for the reconstruction of a microscopy image in the appearance space of

another.

3.2.2 Image synthesis

Image synthesis is a process to create new images from given images or image descrip-

tions (Fisher et al., 1996). Image analogy, first introduced in (Hertzmann et al., 2001), is an image

synthesis method which has been used widely in texture synthesis. In (Prince et al., 1995; Fis-

chl et al., 2004), the authors proposed a method to synthesize magnetic resonance (MR) images.

In (Roy et al., 2011), the authors introduced a compressed sensing based approach for MR tissue

contrast synthesis, however, the dictionary is generated by random selection from the training data.

In (van Tulder and de Bruijne, 2015), the authors proposed a restricted Boltzmann machines (RBM)

based approach to synthesize MRI images for classification, however, the authors only reported the

accuracy and whether the method improved the image synthesis results (how similar a synthesized

image is compared to the original image is unknown). In (Iglesias et al., 2013), the authors applied

a simplified image analogy method to demonstrate the benefits of synthesis in registration and

segmentation for MRI images.

For multi-modal image registration, an image synthesis method can be used to transfer a

given image from one modality to another. Then the multi-modal image registration problem

simplifies to a mono-modal one. I use image analogy for modality transformation in this chapter

because image analogy is a simple and straightforward image synthesis method and many other

applications are based on this method such as image super-resolution (Freeman et al., 2002) and

image completion (Drori et al., 2003).

However, since this method uses a nearest neighbor (NN) search of the image patch centered at

each pixel, the resulting images are usually noisy because the `2 norm based NN search does not

preserve the local consistency well (see Figure 2.3 (d)) (Hertzmann et al., 2001). This problem can

be partially solved by a multi-scale search and a coherence search which enforce local consistency
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among neighboring pixels, but an effective solution is still missing. I introduce a dictionary learning

based image analogy method to address this problem in Section 3.3.1.

The contribution of this chapter is two-fold.

• I introduce a sparse representation model for image analogy with the goal of improving

the image analogy accuracy.

• I simplify multi-modal image registration by using the image analogy approach to convert

the registration problem to a mono-modal registration problem.

3.3 Method

The standard coupled dictionary learning (CDL) approach has been introduced in Section 2.5.

This section introduces the CDL based image analogy method.

3.3.1 CDL for image analogies

For the registration of correlative microscopy images, given two training images A and A′ from

different modalities, image B can be transformed to the other modality by synthesizing B′ using

the image analogy approach. Consider the sparse dictionary-based image denoising/reconstruction,

u, given by minimizing

E(u, {αi}) =
γ

2
‖Lu− f‖2

2 +
1

2

N∑
i=1

‖Riu−Dαi‖2
V + λ‖αi‖1, (3.1)

where f is the given (potentially noisy) image, D is the dictionary, {αi} are the patch coefficients,

Ri selects the ith patch from the image reconstruction u, γ, λ > 0 are balancing constants, L is a

linear operator (e.g., describing a convolution), and the norm is defined as ‖x‖2
v = xTV x, where

V > 0 is positive definite. I jointly optimize for the coefficients and the reconstructed/denoised
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image. Formulation Equation (3.1) can be extended to image analogies by minimizing

E(u(1), u(2), {αi}) =
γ

2
‖L(1)u(1) − f (1)‖2

2

+
1

2

N∑
i=1

‖Ri

 u(1)

u(2)

−
 D(1)

D(2)

αi‖2
V + λ‖αi‖1,

(3.2)

where I have corresponding dictionaries {D(1), D(2)} and only one image f (1) is given and I am

seeking a reconstruction of a denoised version of f (1), u(1), as well as the corresponding analogous

denoised image u(2) (without the knowledge of f (2)). Note that there is only one set of coefficients

αi per patch, which indirectly relates the two reconstructions. The problem is convex (for given

D(i)) which allows to compute a globally optimal solution.

Patch-based (non-sparse) denoising has also been proposed for the denoising of fluorescence

microscopy images (Boulanger et al., 2010). A conceptually similar approach using sparse coding

and image patch transfer has been proposed to relate different magnetic resonance images in (Roy

et al., 2011). However, this approach does not address dictionary learning or spatial consistency

considered in the sparse coding stage. My approach addresses both and learns the dictionaries D(1)

and D(2) explicitly.

3.3.2 Numerical solution

To simplify the optimization process of Equation (3.2), I apply an alternating optimization

approach (Elad, 2010) which initializes u(1) = f (1) and u(2) = D(2)α at the beginning, and then

computes the optimal α (the dictionaries D(1) and D(2) are assumed known here). Thus the

minimization problem breaks into many smaller subparts, for each subproblem I have,

α̂ = arg min
α

1

2
‖Riu

(1) −D(1)αi‖2
2 + λ‖αi‖1, i ∈ 1, ...N. (3.3)

Following (Li and Osher, 2009) I use a coordinate descent algorithm to solve Equation (3.3).
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Given A = D(1), x = αi and b = Riu
(1), then Equation (3.3) can be rewritten in the general

form

x̂ = arg min
x

1

2
‖b− Ax‖2

2 + λ‖x‖1. (3.4)

The coordinate descent algorithm to solve Equation (3.4) is described in Algorithm 2. This

algorithm minimizes Equation (3.4) with respect to one component of x in one step, keeping all

other components constant. This step is repeated until convergence.

After solving Equation (3.3), I can fix α and then update u(1). Now the optimization of

Equation (3.2) can be changed to

û(1) = arg min
u(1)

γ

2
‖u(1) − f (1)‖2

2 +
N∑
i=1

1

2
‖Riu

(1) −D(1)αi‖2
2. (3.5)

The closed-form solution of Equation (3.5) is as follows2,

û(1) = (γI +
N∑
i=1

RT
i Ri)

−1(γf (1) +
N∑
i=1

RT
i D

(1)αi). (3.6)

I iterate the optimization with respect to u(1) and α to convergence. Then u(2) = (
∑N

i R
T
i Ri)

−1D(2)α̂.

3.3.3 Intensity normalization

The image analogy approach may not be able to achieve a perfect prediction because: (i) image

intensities are normalized and hence the original dynamic range of the images is not preserved and

(ii) image contrast may be lost as the reconstruction is based on the weighted averaging of patches.

To reduce the intensity distribution discrepancy between the predicted image and original image, in

this method, I apply intensity normalization (normalize the different dynamic ranges of different

images to the same scale for example [0, 1]) to the training images before dictionary learning, and

also to the image analogy results.

2Refer to appendix 1 for more details.
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3.3.4 Use in multi-modal image registration

For image registration, I (i) reconstruct the “missing” analogous image and (ii) consistently

denoise the given image to be registered with (Elad and Aharon, 2006). By denoising the target

image using the learned dictionary for the target image from the joint dictionary learning step

I obtain two consistently denoised images: the denoised target image and the predicted source

image. The image registration is applied to the analogous image and the target image. I consider

rigid followed by affine and B-spline registrations in this chapter and use the implementation of

the Elastix toolbox (Klein et al., 2010; Ibanez et al., 2003). As similarity measures I use sum

of squared differences (SSD) and mutual information (MI). A standard gradient descent is used

for optimization. For B-spline registration, I use displacement magnitude regularization which

penalizes ‖T (x)− x‖2, where T (x) is the transformation of coordinate x in an image (Klein et al.,

2010). This is justified as I do not expect large deformations between the images as they represent

the same structure. Hence, small displacements are expected, which are favored by this form of

regularization.

3.4 Results

3.4.1 Data

I use both 2D correlative SEM/confocal images with fiducials and TEM/confocal images of

mouse brains for the experiment. All experiments are performed on a Dell OptiPlex 980 computer

with an Intel Core i7 860 2.9GHz CPU. The data description is shown in Table 3.1.

Table 3.1: Data Description

Data Types
SEM/confocal TEM/confocal

Number of datasets 8 6
Fiducial 100 nm gold none

Pixel Size 40 nm 0.069µm
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3.4.2 Registration of SEM/confocal images (with fiducials)

3.4.2.1 Data preparation

The confocal images are denoised by the sparse representation based denoising method (Elad,

2010). I use a landmark based registration on the fiducials to obtain the gold standard alignment

results. The image size is about 400× 400 pixels.

3.4.2.2 Image analogy (IA) results

I apply the standard IA method and the proposed method. I train the dictionaries using a

leave-one-out approach. The training image patches are extracted from pre-registered SEM/confocal

images as part of the preprocessing described in Section 3.4.2.1. In both IA methods I use 10× 10

patches, and in the proposed method I randomly sample 50000 patches and learn 1000 dictionary

elements in the dictionary learning phase. The learned dictionaries are shown in Figure 3.4. I choose

γ = 1 and λ = 0.15 in Equation (3.2). In Figure 3.2, both IA methods can reconstruct the confocal

image very well but the proposed method preserves more structure than the standard IA method. I

also show the prediction errors and the statistical scores of the proposed IA method and standard

IA method for SEM/confocal images in Table 3.2. The prediction error is defined as the sum of

squared intensity differences between the predicted confocal image and the original confocal image.

My method is based on patch-by-patch prediction using the learned multi-modal dictionary. Given

a particular patch-size the number of sparse coding problems in the model changes linearly with the

number of pixels in an image. My method is much faster than the standard image analogies method

which involves an exhaustive search of the whole training set as my method is based on a dictionary

representation. For example, my method takes about 500 secs for a 1024× 1024 image with image

patch size 10× 10 and dictionary size 1000 while the standard image analogy method takes more

than 30 mins for the same patch size. The CPU processing time for SEM/confocal data is shown in

Table 3.3. I also illustrate the convergence of solving Equation (2.6) for both SEM/confocal and

TEM/confocal images in Figure 3.6 which shows that 100 iterations are sufficient for both datasets.

The IA results are shown in Figure 3.2.
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(a) SEM Image (b) Confocal Image (c) Standard IA (d) Proposed IA

Figure 3.2: Results of estimating a confocal (b) from an SEM image (a) using the standard IA (c)
and the proposed IA method (d).

Figure 3.3: Prediction errors with respect to different λ values for SEM/confocal image. The λ
values are tested from 0.05-1.0 with step size 0.05.
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Figure 3.4: Results of dictionary learning: the left dictionary is learned from the SEM and the
corresponding right dictionary is learned from the confocal image.

Figure 3.5: Box plot for the registration results of SEM/confocal images on landmark errors of
different methods with three transformation models: rigid, affine and B-spline. The registration
methods include: Original Image SSD and Original Image MI, registrations with original images
based on SSD and MI metrics respectively; Standard IA SSD and Standard IA MI, registration with
standard IA algorithm based on SSD and MI metrics respectively; Proposed IA SSD and Proposed
IA MI, registration with the proposed IA algorithm based on SSD and MI metrics respectively. The
bottom and top edges of the boxes are the 25th and 75th percentiles, the central red lines are the
medians.
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Figure 3.6: Convergence test on SEM/confocal and TEM/confocal images. The objective function
is defined as in Equation (2.11). The maximum iteration number is 100. The patch size for
SEM/confocal images and TEM/confocal images are 10× 10 and 15× 15 respectively.
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Table 3.2: Prediction results for SEM/confocal images. Prediction is based on the proposed IA and
standard IA methods. I used sum of squared prediction residuals (SSR) to evaluate the prediction
results. The p-value is computed using a paired t-test.

Method mean std p-value
Proposed IA 1.52× 105 5.79× 104

0.0002
Standard IA 2.83× 105 7.11× 104

3.4.2.3 Image registration results

I resampled the estimated confocal images with up to ±600 nm (15 pixels) in translation in

the x and y directions (at steps of 5 pixel) and ±15◦ in rotation (at steps of 5 degree) with respect

to the gold standard alignment. Then I registered the resampled estimated confocal images to the

corresponding original confocal images. The goal of this experiment is to test the ability of the

proposed methods to recover from misalignments by translating and rotating the pre-aligned image

within a practically reasonable range. Such a rough initial automatic alignment can for example

be achieved by image correlation. The image registration results based on both image analogy

methods are compared to registration results using original images using both SSD and MI as

similarity measures3. Table 3.4 summarizes the registration results on translation and rotation errors

based on the rigid transformation model for each image pair over all these experiments. The results

are reported as physical distances instead of pixels. I also perform registrations using affine and

B-spline transformation models. These registrations are initialized with the result from the rigid

registration. Figure 3.5 shows the box plot for all the registration results. The proposed method

achieves the best registration results for all three transformation models compared with directly

registering the multi-modal images and the standard image analogy method. However, the proposed

methods increase the registration results little with more flexible transformation models i.e. affine

and b-spline models.

3I invert the grayscale values of the original SEM image for SSD based image registration of the SEM/confocal images.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 3.7: Results of registration for SEM/confocal images using MI similarity measure with direct
registration (first row), standard IA (second row) and the proposed IA method (third row) for (a,d,g)
rigid registration (b,e,h) affine registration and (c,f,i) b-spline registration. Some regions are zoomed
in to highlight the distances between corresponding fiducials. The images show the compositions of
the registered SEM images using the three registration methods (direct registration, standard IA and
proposed IA methods) and the registered SEM image based on fiducials respectively. Differences
are generally very small indicating that for these images a rigid transformation model may already
be sufficiently good.
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Table 3.3: CPU time (in seconds) for SEM/confocal images. The p-value is computed using a paired
t-test.

Method mean std p-value
Proposed IA 82.2 6.7

0.00006
Standard IA 407.3 10.1

3.4.2.4 Hypothesis test on registration results

In order to check whether the registration results from different methods are statistically

different from each other, I use hypothesis testing (Weiss and Weiss, 2012). I assume the registration

results (rotations and translations) are independent and normally distributed random variables with

means µi and variances σ2
i . For the results from 2 different methods, the null hypothesis (H0) is

µ1 = µ2, and the alternative hypothesis (H1) is µ1 ≤ µ2. I apply the one-sided paired sample

t-test for equal means using MATLAB (MATLAB, 2012). The level of significance is set at 5%.

Based on the hypothesis test results in Table 3.5, the proposed method shows significant differences

with respect to the standard IA method for the registration error with respect to the SSD metric on

rigid registration and both MI and SSD metrics for affine and B-spline registrations. Table 3.4 and

Table 3.5 also show that the proposed method outperforms the standard image analogy method as

well as the direct use of mutual information on the original images in terms of registration accuracy.

However, as deformations are generally relatively rigid no statistically significant improvements in

registration results could be found within a given method relative to the different transformation

models as illustrated in Table 3.6.
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Table 3.4: SEM/confocal rigid registration errors on translation (t) and rotation (r)( t =
√
t2x + t2y

where tx and ty are translation errors in x and y directions respectively; t is in nm; pixel size is
40nm; r is in degree.) Here, the registration methods include: Original Image SSD and Original
Image MI, registrations with original images based on SSD and MI metrics respectively; Standard
IA SSD and Standard IA MI, registration with standard IA algorithm based on SSD and MI metrics
respectively; Proposed IA SSD and Proposed IA MI, registration with the proposed IA algorithm
based on SSD and MI metrics respectively.

rmean rmedian rstd tmean tmedian tstd

Proposed IA SSD 0.357 0.255 0.226 92.457 91.940 56.178
Proposed IA MI 0.239 0.227 0.077 83.299 81.526 54.310
Standard IA SSD 0.377 0.319 0.215 178.782 104.362 162.266
Standard IA MI 0.3396 0.332 0.133 140.401 82.667 135.065

Original Image SSD 0.635 0.571 0.215 170.484 110.317 117.371
Original Image MI 0.516 0.423 0.320 176.203 104.574 116.290
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Table 3.6: Hypothesis test results (p-values) with multiple testing correction results (FDR corrected
p-values in parentheses) for registration results measured via landmark errors for SEM/confocal
images. I use a one-sided paired t-test. Comparison of different registration models (rigid, affine,
B-spline) within the same image types (original image, standard IA, proposed IA). Results are not
statistically significantly better after correcting for multiple comparisons with FDR.)

Rigid/Affine Rigid/B-spline Affine/B-spline

Original Image
SSD 0.7918 (0.8908) 0.3974 (0.6596) 0.1631 (0.5873)
MI 0.6122 (0.7952) 0.3902 (0.6596) 0.3635 (0.6596)

Standard IA
SSD 0.9181 (0.9371) 0.1593 (0.5873) 0.0726 (0.5873)
MI 0.5043 (0.7564) 0.6185 (0.7952) 0.7459 (0.8908)

Proposed IA
SSD 0.9371 (0.9371) 0.3742 (0.6596) 0.0448 (0.5873)
MI 0.4031 (0.6596) 0.1616 (0.5873) 0.2726 (0.6596)

3.4.2.5 Discussion

From Figure 3.5, the improvement of registration results within an individual registration

model from rigid registration to affine and B-spline registrations are not significant due to the

fact that both SEM/confocal images are acquired from the same piece of tissue section. The rigid

transformation model can capture the deformation well enough, though small improvements can

visually be observed using more flexible transformation models as illustrated in the composition

images between the registered SEM images using three registration methods (direct registration and

the two IA methods) and the registered SEM images based on fiducials of Figure 3.7. The proposed

method can achieve the best results for all the three registration models. See also Table 3.6. The

results show that the similarity measures matters (my method is best) for the registration. However,

the different transformation models do not matter much for this experiment.

3.4.3 Registration of TEM/confocal images (without fiducials)

3.4.3.1 Data preparation

The corresponding confocal image and TEM image are resampled to an intermediate resolution.

The final resolution is 14.52 pixels per µm, and the image size is about 256×256 pixels. The datasets

are already roughly registered based on manually labeled landmarks with a rigid transformation

model.
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3.4.3.2 Image analogy results

I tested the standard image analogy method and our proposed sparse method. For both image

analogy methods I use 15 × 15 patches, and for the proposed method I randomly sample 50000

patches and learn 1000 dictionary elements in the dictionary learning phase. The learned dictionaries

are shown in Figure 3.9. I choose γ = 1 and λ = 0.1 in Equation (3.2). The image analogies results

in Figure 3.10 show that the proposed method preserves more local structure than the standard

image analogy method. I show the prediction error of the proposed IA method and standard IA

method for TEM/confocal images in Table 3.7. The CPU processing time for the TEM/confocal

data is given in Table 3.8.

Figure 3.8: Prediction errors for different λ values for TEM/confocal image. The λ values are tested
from 0.05-1.0 with step size 0.05.

3.4.3.3 Image registration results

I manually determined 10 ∼ 15 corresponding landmark pairs on each dataset to establish

a gold standard for registration. The same type and magnitude of shifts and rotations as for the

SEM/confocal experiment are applied. The image registration results based on both image analogy

methods are compared to the landmark based image registration results using mean absolute errors

(MAE) and standard deviations (STD) of the absolute errors on all the corresponding landmarks.

I use both SSD and mutual information (MI) as similarity measures. The registration results are
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Figure 3.9: Results of dictionary learning: the left dictionary is learned from the TEM and the
corresponding right dictionary is learned from the confocal image.

(a) TEM image (b) Confocal image (c) Standard IA (d) Proposed IA

Figure 3.10: Result of estimating the confocal image (b) from the TEM image (a) for the standard
image analogy method (c) and the proposed sparse image analogy method (d) which shows better
preservation of structure.
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Figure 3.11: Results of registration for TEM/confocal images using MI similarity measure with
directly registration (first row) and the proposed IA method (second and third rows) using (a,d,g)
rigid registration (b,e,h) affine registration and (c,f,i) b-spline registration. The results are shown in
a checkerboard image for comparison. Here, first and second rows show the checkerboard images
of the original TEM/confocal images while the third row shows the checkerboard image of the
results of the proposed IA method. Differences are generally small, but some improvements can be
observed for B-spline registration. The grayscale values of the original TEM image are inverted for
better visualization.
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Table 3.7: Prediction results for TEM/confocal images. Prediction is based on the proposed IA and
standard IA methods, and I use SSR to evaluate the prediction results. The p-value is computed
using a paired t-test.

Method mean std p-value
Proposed IA 7.43× 104 4.72× 103

0.0015
Standard IA 8.62× 104 6.37× 103

Table 3.8: CPU time (in seconds) for TEM/confocal images. The p-value is computed using a
paired t-test.

Method mean std p-value
Proposed IA 35.2 4.4

0.00019
Standard IA 196.4 8.1

displayed in Figure 3.12 and Table 3.9. The landmark based image registration result is the best

result achievable given the affine transformation model. I show the results for both image analogy

methods as well as using the original TEM/confocal image pairs4. Figure 3.12 shows that the MI

based image registration results are similar among the three methods and the proposed method

performs slightly better. The results are reported as physical distances instead of pixels. Also the

results of the proposed method are close to the landmark based registration results (best registration

results). For SSD based image registration, the proposed method is more consistent than the other

two methods for the current dataset.

3.4.3.4 Hypothesis test on registration results

I use the same hypothesis test method as in Section 3.4.2.4, and test the means of different

methods on MAE of corresponding landmarks. Table 3.10 and Table 3.11 indicate that the registra-

tion result of the proposed method shows significant improvement over the result using original

images with both SSD and MI metric. Also, the result of the proposed method is significantly better

than the standard IA method with MI metric.

4I inverted the grayscale values of original TEM image for SSD based registration of original TEM/confocal images.
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Table 3.9: TEM/confocal rigid registration results (in µm, pixel size is 0.069 µm).

Proposed IA Standard IA Original Image Landmark

case MAE STD MAE STD MAE STD MAE STD

1
SSD 0.3174 0.2698 0.3219 0.2622 0.4352 0.2519 0.2705 0.1835
MI 0.3146 0.2657 0.3132 0.2601 0.5161 0.2270

2
SSD 0.4911 0.1642 0.5759 0.2160 2.5420 1.6877 0.3091 0.1594
MI 0.4473 0.1869 0.4747 0.3567 1.4245 0.1780

3
SSD 0.5379 0.2291 1.8940 1.0447 0.5067 0.2318 0.3636 0.1746
MI 0.3864 0.2649 0.5261 0.2008 0.4078 0.2608

4
SSD 0.4451 0.2194 0.4516 0.2215 0.4671 0.2484 0.3823 0.2049
MI 0.4554 0.2298 0.4250 0.2408 0.4740 0.2374

5
SSD 0.6268 0.2505 1.2724 0.6734 1.3174 0.3899 0.2898 0.2008
MI 0.3843 0.2346 0.6172 0.2429 0.7018 0.2519

6
SSD 0.7832 0.5575 0.8159 0.4975 2.2080 1.4228 0.3643 0.1435
MI 0.7259 0.4809 1.2772 0.4285 0.8383 0.4430

Figure 3.12: Box plot for the registration results of TEM/confocal images for different methods.
The bottom and top edges of the boxes are 25th and 75th percentiles, the central red lines indicate
the medians.
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Table 3.11: Hypothesis test results (p-values) with multiple testing correction results (FDR corrected
p-values in parentheses) for registration results evaluated via landmark errors for TEM/confocal
images. I use a one-sided paired t-test. Comparison of different image types (original image,
standard IA, proposed IA) using the same registration models (rigid, affine, B-spline). Results are
overall suggestive of the benefit of B-spline registration, but except for the standard IA do not reach
significance after correction for multiple comparisons. This may be due to the limited sample size.
(Bold indicates statistically significant improvement after correcting for multiple comparisons with
FDR.)

Rigid/Affine Rigid/B-spline Affine/B-spline

Original Image
SSD 0.0792(0.1583) 0.1149(0.2069) 0.3058(0.4865)
MI 0.4325(0.4865) 0.4091(0.4865) 0.3996(0.4865)

Standard IA
SSD 0.3818(0.4865) 0.0289(0.1041) 0.0280(0.1041)
MI 0.4899(0.5188) 0.0742(0.1583) 0.0009(0.0177)

Proposed IA
SSD 0.3823(0.4865) 0.0365(0.1096) 0.0216(0.1041)
MI 0.5431(0.5431) 0.0595(0.1531) 0.0150(0.1041)

3.4.3.5 Discussion

In Figure 3.12, the affine and B-spline registrations using the proposed IA method show

significant improvement compared with affine and B-spline registrations on the original images.

In comparison to the SEM/confocal experiment (Figure 3.7) the checkerboard image shown in

Figure 3.11 shows slightly stronger deformations for the more flexible B-spline model leading to

slightly better local alignment. The proposed method still achieves the best results for the three

registration models. The results show that both similarity measure and transformation model matter

for the data, and our proposed method combined with the B-spline model can achieve the best

results.

3.5 Conclusion

I developed a multi-modal registration method for correlative microscopy. The method is based

on image analogies with a sparse representation model. The proposed method can be regarded

as learning a mapping between image modalities such that either an SSD or MI image similarity

measure becomes appropriate for image registration. Any desired image registration model could

be combined with the proposed method as long as it supports either SSD or a MI as an image

similarity measure. The proposed method then becomes an image pre-processing step. I tested the
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method on SEM/confocal and TEM/confocal image pairs with rigid registration followed by affine

and B-spline registrations. The image registration results from Figure 3.5 and Figure 3.12 suggest

that the sparse image analogy method can improve registration robustness and accuracy. While the

proposed method does not show improvements for every individual dataset, the proposed method

improved registration results significantly for the SEM/confocal experiments for all transformation

models and for the TEM/confocal experiments for affine and B-spline registration. Furthermore,

when using the proposed image analogy method multi-modal registration based on SSD becomes

feasible. I also compare the runtime between the standard IA and the proposed IA methods. The

proposed method runs about 5 times faster than the standard method. While the runtime is far from

real-time performance, the method is sufficiently fast for correlative microscopy applications.

Future work includes additional validation on a larger number of datasets from different

modalities. The goal is also to estimate the local quality of the image analogy result. This quality

estimate could then be used to weight the registration similarity metrics to focus on regions of high

confidence. Other similarity measures can be modulated similarly. I will also apply the sparse

image analogy method to 3D images.
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CHAPTER 4: SEMI-COUPLED DICTIONARY LEARNING FOR DEFORMATION ESTI-

MATION

Some applications require registering a common reference, atlas, image to a set of subject

images, such as atlas based segmentation (Rohlfing and Maurer, 2005; Aljabar et al., 2009). The

standard approach for these applications is doing pairwise image registration. In this chapter, rather

than directly estimating deformations by standard image registration methods, I investigate how

to obtain a basis of the space of deformations. In particular, I explore how image appearance

differences with respect to a common reference image (atlas) can be used to estimate deformations

represented by such a basis. I use a coupled dictionary learning method to jointly learn a basis for

image appearance differences and their related deformations. The proposed method is based on

local image patches. The proposed method is evaluated on synthetically generated datasets as well

as on a structural magnetic resonance (MR) brain imaging dataset. The proposed method results in

an improved deformation estimation accuracy while reducing the search space compared to nearest

neighbor search and demonstrates that learning a deformation basis is feasible.

4.1 Introduction

Image registration is a critical medical image analysis task to establish spatial correspondences

between images. Standard image registration approaches are based on the numerical solution of

optimization problems. However, recent work has focused on learning registration maps using

example deformations, which can then be used to predict deformations instead of optimizing with

respect to them. For instance, using machine learning methods, Chou et al. (Chou et al., 2013)

and Wang et al. (Wang et al., 2013) propose prediction based models to estimate deformations

based on image appearances. In (Chou et al., 2013; Kim et al., 2012), the authors propose to

learn a global correlation between difference image and the deformation or the parameters for
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deformation. Image intensity differences or image level features are used to learn a regression model

on the corresponding deformation parameters. For a new test image, the regression models are

applied to predict the deformation field. In (Shi et al., 2012; Wang et al., 2013), the authors predict

the deformations on a couple of key points in a test image from a sparse linear combination of

deformations from training images based on the similarity of appearances in (Shi et al., 2012), and

then a dense deformation field is interpolated by the Thin-Plate Spline model in (Wang et al., 2013).

However, since these methods are based on finding the correspondences between the key points

in test image and training images, and key point detection is a nontrivial task (Zheng et al., 2010;

Guerrero et al., 2012), I propose a more general framework to solve the problem, i.e. estimation of

deformation based on difference images.

The deformation prediction problem is challenging as it is difficult to model the relationship

between difference images and deformations, for example, the correlation between appearances and

local deformations could be highly nonlinear. Also different deformation representation methods

further complicate the modeling of the relationship. My proposed coupled dictionary learning

method addresses these issues: it learns bases for both difference images as well as the associated

deformations. This is important (1) to establish if such bases can be learned, (2) to establish if

appearance differences can predict deformation differences, and (3) to understand how intensity

differences relate to deformations.

The main contributions of this chapter include:

• a coupled dictionary based framework for deformation prediction using appearance;

• an illustration of the broad applicability of the method to different types of deformations;

• a demonstration that a basis for deformations can indeed be learned with a relatively small

number of dictionary atoms.

This chapter is organized as follows: Section 4.2 describes the coupled dictionary learning method.

Section 4.3 introduces parametrization methods for deformations. Section 4.4 applies my model to

both synthetic and real data. The chapter concludes with a summary of results and an outlook on

future work in Section 4.5.
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4.2 Method

Image registration has been introduced in Section 2.1. There are several ways to parameterize

the deformation, φ. I will discuss some of the most common parametrization methods in Section 4.3.

The basic framework of my algorithm is illustrated in Figure 4.1. In the proposed framework,

I first extract patches from pairs of training images, original and deformed, and corresponding

deformation mapping, and train a coupled dictionary jointly on the patches. Here, the training

image patches are the patch-wise intensity differences between training subject images and the

atlas images in the atlas space. Given a test image, I reconstruct its intensity differences with

respect to the atlas image patch by patch with the dictionary corresponding to the image at the same

time predicting the deformation with the dictionary corresponding to the deformation. The overall

predicted deformation is reconstructed from local patches. The overlapping patches are averaged

during reconstruction.

4.2.1 SCDL for deformations and appearances

In the proposed method, a coupled dictionary is learned using the SCDL method on image

intensity differences of patches and corresponding deformation parameters. Although the dictionary

learning method is similar to the method proposed in Chapter 3, the goals of the dictionary learning

are different. Here, the coupled dictionary can directly be used for deformation estimation based

on intensity differences. However, in the previous section, the coupled dictionary is applied to

transform the image appearance from one modality to another.

4.2.2 Deformation estimation

After obtaining D1, D2 and the linear mapping W from training data x1
i and x2

i , given a

difference image I = T − S (S is an input source image, and T is the common target/atlas image),

similar to Equation (2.12), I solve the following sparse coding problem,

{α(1)
i } = argmin

α
(1)
i

1

2
‖I(1)

i −D(1)α
(1)
i ‖2

2 + λ1‖α(1)
i ‖1, (4.1)
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Figure 4.1: Framework of proposed method. In the training phase, I learn the coupled dictionary
from training difference images and their corresponding deformations. In the testing phase, I obtain
the coefficients for sparse coding of the difference image, and then predict the deformation using the
coefficients and the dictionary corresponding to the deformation. Finally applying the deformation
to an atlas image results in a registered atlas to a test image.
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Figure 4.2: Illustration of training set and atlas. Here, mi, i = 1, . . . , n are deformations generated
by atlas construction (Singh et al., 2013).

where Ii is a patch of I . Equation (4.1) is a sparse coding problem. The corresponding deformation

parameters pi of Ii can be estimated as,

pi = D(2)Wα
(1)
i .

Here pi are the parameters defining the deformation φi of the ith patch (for example, parameters

for a B-spline transformation). After estimating φi from pi for all the patches, I can determine the

overall φ. I summarize my algorithms in Algorithm 3 and Algorithm 4.

Algorithm 3 Semi-Coupled Dictionary Learning

Input: t1i and t2i , the corresponding patches from difference images and deformations. Initial
D1 = {d1

1, . . . , d
1
m} and D2 = {d2

1, . . . , d
2
m} with m random t1i and t2i pairs, and initial W with

identity matrix.
Output: D1, D2, W

while not converged do
1. Fix D1, D2 and W , update α1

i and α2
i in Eq. (2.13);

2. Fix α1
i , α

2
i and W , update D1 and D2 in Eq. (2.14);

3. Fix α1
i , α

2
i , D

1 and D2, update W in Eq. (2.16);
end while
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Algorithm 4 Deformation Estimation

Input: D1, D2, W , Ii patches from a difference image.
Output: φ

for each i do
1. Obtain α1

i by solving Eq. (4.1);
2. Estimate pi = D2Wα1

i ;
3. Obtain φi from pi;

end for
Estimate φ based on all the φi.

4.3 Deformation parametrization

Given a source image I and a target image T , the deformation φ establishes a mapping between

the coordinates of I and T , i.e. I(φ(x)) = T (x) and T (φ−1(y)) = I(y), where x and y are vectors

of the coordinates in T and I respectively.1 Three commonly used deformation parametrization

methods are introduced in the following sections.

4.3.1 Displacement

For any deformation φ, we can represent it as an identity map and a displacement at each pixel

(or voxel) position,

φ(x) = id(x) + U(x),

where id is the identity map, i.e. id(x) = x. The displacement field can be estimated by

registration methods such as optical flow and the demons algorithm (Horn and Schunck, 1981;

Pennec et al., 1999). In order to reduce the dimensionality, principal component analysis (PCA) can

be applied to the displacement U (Chou et al., 2013; Kim et al., 2012), and then the deformations

are parametrized as the coefficients of the principal components. PCA is beneficial for generating

compact representations for deformations which show certain patterns such as respiratory lung

motion (Chou et al., 2013).

1Assume there is a perfect mapping.
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4.3.2 B-spline transformation

Without loss of generality, let x = {x1, x2, x3} be a 3d vector to represent a location in a 3d

image volume. Let C denote a nx1 × nx2 × nx3 mesh of control points ci,j,k with uniform spacing σ.

Then the B-spline transformation can be parametrized as,

φ(x) = φglobal(x) + φlocal(x),

= φglobal(x) +
3∑
l=0

3∑
m=0

3∑
n=0

Bl(u)Bm(v)Bn(w)ci+l,j+m,k+n,
(4.2)

where i = bx1/nx1c − 1, j = bx2/nx2c − 1, k = bx3/nx3c − 1, u = x1/nx1 − bx1/nx1c,

v = x2/nx2 − bx2/nx2c, w = x3/nx3 − bx3/nx3c and where Bk represents the kth basis function

of the B-spline (Rueckert et al., 1999),

B0(u) = (1− u)3/6

B1(u) = (3u3 − 6u2 + 4)/6

B2(u) = (−3u3 + 3u2 + 3u+ 1)/6

B3(u) = u3/6.

(4.3)

φglobal describes the global deformation which is usually captured by rigid or affine transforma-

tion models. If no global deformation is modeled, then φglobal = id. The B-spline transformation

model can represent complex deformations with a limited number of parameters for each control

point.

4.3.3 Initial momentum

In the large deformation diffeomorphic metric mapping (LDDMM) framework (Miller et al.,

2006), initial momentum can be used as a parametrization for the deformation. Given a source
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image I0 and a target image I1, the LDDMM algorithm solves

min
vt

1

2

∫ 1

0

‖vt‖2
V dt+

1

σ2
‖I0 ◦ φ1,0 − I1‖2

2,

s.t. φ̇t,0 + (Dφt,0)vt = 0, φ0,0 = id,

(4.4)

where vt is the velocity vector field at time t, t ∈ [0, 1]. At a given time, t, vt is a smooth vector

field defined over the underlying image grid, Ω. The norm of this vector field image is defined using

a differential operator, L, which also controls the smoothness of the velocity fields. In particular,

‖vt‖2
V = 〈L†Lvt, vt〉2 =

∫
Ω

(L†Lvt(x))Tvt(x)dx. The φs,t defines a map for a pixel/voxel from its

position at time s to its position at time t. φ̇t,0 = ∂φt,0/∂t and D is the Jacobian operator.

The initial momentum, m0, is dual to the initial velocity, v0, and is defined by the linear

mapping, m0 = (L†L)v0. The initial momentum completely parameterizes the geodesic connecting

the source and target images. For a more in-depth discussion about LDDMM image registration

and momentum based parametrization, refer to (Younes, 2010; Younes et al., 2009).

4.4 Results

I present three experiments to validate the proposed method: a synthetic experiment capturing

translations only to illustrate the overall concept (Section 4.4.1), a synthetic experiment illustrating

the behavior for both b-spline and diffeomorphic transformations (Section 4.4.2), and an experiment

on real brain data (Section 4.4.3).

4.4.1 Experiment on synthetic data with translations

I first test the proposed method on synthetic data with simple random translations. Visual

inspection of experiment’s results provide insight into my method’s behavior. I created a binary

cross image as atlas, and then I translated the atlas with random translation vectors (xi, yi)
2

where −20 ≤ xi ≤ 20,−20 ≤ yi ≤ 20, i = 1, . . . , 5000 to generate the training space (shown in

Figure 4.3). This ensures that the cross is always fully contained within each training image. The

image size is 64×64.

2(xi, yi) are real valued translations, for example translation by (1.5, 2.3).
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Figure 4.3: Illustration of training set generation for experiment in Section 4.4.1. Here, ti, i =
1, . . . , n are translation vectors which translate the atlas.

Figure 4.4 shows an example of the training image and the atlas image. In order to capture

all translations, I considered each training image as a single patch. The coupled dictionary was

trained on difference images between the translated cross images and the atlas image as well as the

corresponding translation vectors. I fixed λ = 0.1 in Equation (2.11)) during the experiment. I used

translation errors (Euclidean distances between original and predicted translation vectors) and Dice

coefficient3 to evaluate my method. Let A, B be two sets of points, the Dice coefficient is defined

as, s = (2|A ∩B|)/(|A|+ |B|). If A = B, the Dice coefficient s = 1, similarly, if A ∩B = ∅, the

Dice coefficient s = 0.

I tested my method on 100 test images with random translations (generated separately from

the training images). Figure 4.5 illustrates that a dictionary size larger than 100 obtains Dice

coefficients larger than 90% and translation errors smaller than 1 (subpixel accuracy), demonstrating

good deformation prediction results.

Figure 4.6 and Figure 4.7 illustrate two examples of how the dictionary atoms are used to

reconstruct the test images for both SCDL and CDL methods. The dictionary atoms are more and

3Due to the fact that the atlas and translated images in this test are binary images, I can use Dice coefficient to evaluate
the performance of my method.
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Figure 4.4: Translation experiment: Illustration of synthetic (a) atlas image, (b) translated training
image, (c) difference image between atlas and translated images. (Intensities in (c) scaled for
visualization.)

more blurry when decreasing the number of dictionary atoms which also results in less precise image

reconstruction results. However, although the quality of the reconstruction of the image differences

is decreasing for less than 500 dictionary atoms, the deformation prediction can still achieve good

results (even when the dictionary has only 100 or 50 dictionary atoms). Both dictionary learning

methods demonstrate their capability to reduce the search space (from 5000 to about 100) at the

same time retaining the prediction accuracy in this experiment. In this test, nearest neighbor search

(NN) (reconstructing the image patch with its nearest neighbor in the training image) and global

regression (Chou et al., 2013) can also achieve good results, because the sampling was dense (5000

samples for about 40 × 40 possible integer translation vectors 4) of the translation space. The

results of SCDL and CDL are almost the same for this experiment because the transformation

model was simple (just translations) here. I will show that SCDL outperforms CDL in the following

experiments.

4.4.2 Experiment on synthetic data with local deformations

4.4.2.1 Local deformation with random b-spline parametrization

I tested the proposed method on more general deformations with B-spline transformations.

This transformation model is more complex than pure translation. I created a smoothed cross

image (in Figure 4.9) as atlas. The synthetic subject images are generated by applying B-spline

transformations (Rueckert et al., 1999). I generated coefficients for 3×3 control points by randomly

sampling from a Gaussian distribution with σ = 0.5. Thus the parametrization for the deformation is

4I sampled the translation space with real numbers thus the number of real translation vectors is larger than the number
of integer translation vectors.
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(a) Dice coefficients for CDL (b) Translation errors for CDL

(c) Dice coefficients for SCDL (d) Translation errors for SCDL

Figure 4.5: Deformation prediction results for expriment on synthetic data with random translations
in Section 4.4.1. (a,c) show the boxplot for the Dice coefficients (the red dashed line indicates
Dice coefficient = 0.9) and (b,d) show the boxplot for mean translation errors in pixels (the red
dashed line indicates translations = 1 pixel) for all the test images with respect to different dictionary
size for CDL and SCDL methods respectively. NN indicates nearest neighbor search method. GR
indicates global regression method (Chou et al., 2013).
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Figure 4.6: Image reconstruction results for experiment on synthetic data with random translations
with respect to different dictionary size for test image using CDL for experiment in Section 4.4.1.
The number on each dictionary item indicates the coefficient for the item to reconstruct the test
image. The red vectors under the cross images are the corresponding translation vectors. The blue
dashed circle indicates the unit circle. Note that the translation vectors for test images are unknown
in testing phase, thus my method predicts the translation vectors only based on appearances. Here
the translation vectors are not on the unit circle because they are jointly normalized with image
residuals during dictionary learning.

57



Figure 4.7: Image reconstruction results with different dictionary size for test image using SCDL
for experiment in Section 4.4.1. The number on each dictionary item indicates the coefficient for
the item to reconstruct the test image. The red vectors under the cross images are the corresponding
translation vectors. The blue dashed circle indicates the unit circle. Note that the translation vectors
for test images are unknown in testing phase, thus my method predicts the translation vectors only
based on appearances.
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Figure 4.8: Illustration of training set generation by shooting with initial momentum (Singh et al.,
2013) for the experiment in Section 4.2.2. Here, mi, i = 1, . . . , n are initial momenta obtained
from LDDMM by registering atlas to subject images in Section 4.2.1. The subject images are
generated by shooting the atlas image with initial momenta.

the parameters of the control points for the B-spline transformation. I trained the coupled dictionary

on difference images and B-spline transformation parameters. The dictionaries are learned on

the whole training images. I used 1000 training images with image size 128× 128, and learn the

dictionaries with different numbers of atoms. I compared my introduced SCDL method with CDL,

NN and global regression (GR) (Chou et al., 2013) methods on deformation prediction for 100

test images. The results are shown in Figure 4.10 and Table 4.1. Both SCDL and CDL methods

demonstrate better performance compared with the NN and GR methods. Given a dictionary size of

1000, the whole training set can be exactly represented by the dictionary (1000 images, and each

image for one column). However, the results for dictionary size with 1000 for both methods show

that the performance does not improve significantly (p-valueSCDL = 0.965, p-valueCDL = 0.98)

compared with the dictionary size equal to 500. This demonstrates the power of my method to

reduce the search space while at the same time maintaining the accuracy. Note that SCDL further

improves the performance over CDL method however the improvements are limited.

5The p-value is based on the paired t-test, and the null hypothesis is that the means of the paired samples are equal.
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Figure 4.9: Local deformation experiment (B-Spline): Illustration of synthetic (a) atlas image,
(b) deformed training image, (c) difference image between atlas and deformed images and (d, e)
corresponding initial momentum in x and y direction respectively for experiment in Section 4.2.2.
(Note that the intensities in (c), (d) and (e) are scaled for better visualization.)

(a) SSD of images (b) MAE of deformations

(c) SSD of images (d) MAE of deformations

Figure 4.10: Results of experiments for B-spline transformation and initial momenta parametrization
in Section 4.3.1 and 4.3.2 respectively. (a,b) shows the registration results by predicting B-spline
transformation parameters experiment in Section 4.3.1 while (c,d) illustrate the results of registration
by predicting initial momenta experiment in Section 4.3.2. (a,c) shows the boxplot of sum of squared
differences (SSD) between deformed test images and atlas images with predicted deformation, (b,d)
shows the mean absolute errors (MAE) (in pixels) of each pixel on the deformations for different
methods. CDL means standard coupled dictionary learning method, SCDL denotes semi-coupled
dictionary learning method, and the number besides the dictionary learning methods indicates the
dictionary size(number of items). Image size is 128× 128.
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Table 4.1: Statistics of registration results by predicting B-spline parameters for B-spline transfor-
mation experiment in Section 4.3.1. The numbers show the mean absolute errors (MAE) in pixels
of predicted deformation to the ground truth. RAW indicates the images without any registration,
NN indicates the method nearest neighbor search, GR denotes global regression method and CDL
and SCDL represent coupled and semi-coupled dictionary learning methods respectively.

Method median mean min max std
RAW 17.9776 19.2912 6.4132 45.1841 9.1304
NN 6.7063 6.5239 1.2399 12.2234 3.0948
GR 5.0712 5.2530 2.7510 10.1439 1.9895

CDL100 4.5859 4.5988 1.9389 7.0713 1.2891
CDL500 3.1325 3.1531 1.0824 8.5439 1.3158

CDL1000 3.1904 3.1464 1.0815 5.1018 1.1676
SCDL100 4.3747 4.1061 1.2246 5.7707 0.9841
SCDL500 2.7679 2.7454 0.7532 4.7582 1.1815

SCDL1000 2.7261 2.7189 0.7407 4.5759 1.1001

Table 4.2: Statistics of registration results by predicting of initial momenta for initial momenta
parametrization experiment in Section 4.3.2. The numbers show the mean absolute errors (MAE) in
pixels of predicted deformation to the ground truth.

Method median mean min max std
RAW 18.9566 19.8012 6.9132 45.1841 14.549
NN 7.1677 7.6787 2.1351 15.3961 2.1215
GR 8.2587 8.3353 3.1331 14.2234 2.2797

CDL100 5.8651 6.8965 2.3514 10.7019 1.6552
CDL500 4.6312 4.7447 1.7329 9.3345 1.5292

CDL1000 4.6864 4.6347 1.6185 6.1249 1.3584
SCDL100 5.2734 5.1659 2.2229 7.818 1.2951
SCDL500 4.0176 3.9974 1.3294 6.0656 1.1914

SCDL1000 3.9767 3.945 1.3439 6.0132 1.1752
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4.4.2.2 Random transformations with initial momentum parametrization

I used a similar setting to the previous experiment. Instead of directly using training subject

images generated by applying B-spline transformations, I registered the atlas image to the subject

images with LDDMM registration to obtain the initial momenta and also shoot the atlas with

obtained initial momenta to generate a set of new subject images as ground truth (shown in

Figure 4.8). Thus I obtained a different deformation parametrization compared with B-spline

transformation, i.e. initial momenta for LDDMM. The initial momenta parametrize the geodesics

between source and target images, and thus the linear combination of the initial momenta (in the SDL

and SCDL models) in the tangent space of the geodesic makes sense. I trained the coupled dictionary

on difference images and initial momenta. The dictionaries are learned on the whole training images.

I had 1000 training images with image size 128 × 128, and learn the dictionaries with different

numbers of items. I compared my introduced SCDL method with CDL, NN and GR methods on

deformation prediction for 100 test images. The results are shown in Figure 4.10 and Table 4.2.

The results are similar to the results of the previous experiment for B-spline transformations. Both

SCDL and CDL methods demonstrate better performance at the same time reducing the search

space compared with the NN method. However, the results for dictionary size with 1000 for

both methods show that the performance does not improve significantly (p-valueSCDL = 0.98,

p-valueCDL = 0.97) compared with the dictionary size equal to 500 which also demonstrates that

our method was able to achieve good deformation prediction with a moderately sized dictionary.

4.4.2.3 Local deformation with random initial momenta parametrization

In this experiment, I tested my methods on random local deformations. Similar to the B-

spline transformation experiment, I used the smoothed cross image (in Figure 4.12) as atlas. The

training data are generated by applying random deformations to the atlas (shown in Fig 4.11). The

deformations are parametrized by scalar initial momentum (Singh et al., 2013). The random initial

momenta are generated by random sampling from a Gaussian distribution with σ = 3 (corresponds

to maximum displacement about 10 pixels).
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I trained a coupled dictionary based on the intensity differences between atlas and deformed

training images and the deformation’s parameters, initial momenta. The image size is 128×128, and

I extracted 15×15 image patches from 200 difference images to train the coupled dictionary. The

image patches are extracted with 1 pixel stride, thus I obtained overlapping image patches. During

the testing, I first reconstruct each local patch, then reconstruct the whole image by averaging the

overlapped patches (Cao et al., 2013b). I compared the SCDL method with the CDL method, the

NN method and the GR method on deformation prediction for 50 test images. Figure 4.13 and

Table 4.3 show the results of deformation prediction by comparing the transformed test images

with the deformed atlas image, where the parameters of the deformation were predicted by the

model. Both SCDL and CDL methods show better performance compared with the NN method.

However, the SCDL method does not increase the performance too much. A dictionary of size

1000 is sufficient for accurate deformation prediction, since dictionaries of size 5000 do not yield

statistically significant improvement (p-valueSCDL = 0.97, p-valueCDL = 0.99). The difference

between this experiment and the experiments in Section 4.4.2.1 is that I learn the dictionary based

on image patches instead of whole images. In practice, it is unrealistic to have dictionary atoms

of the same size as the whole image. Also, for the dictionary learning in whole image cases,

the dictionaries are not over-complete, however, for image patches, the dictionaries are likely

over-complete.

4.4.3 Experiment on real data

The previous experiments were based on synthetic data. Here, I tested my method on the

Open Access Series of Imaging Studies (OASIS) Cross-sectional MRI data (Marcus et al., 2007). I

constructed an atlas from 100 subject images with LDDMM to obtain the initial momenta (shown

in Figure 4.14) (Singh et al., 2013). Figure 4.15 shows the atlas image and an example of the

subject image. The coupled dictionary is learned based on the intensity difference between atlas

and subject images and the corresponding initial momenta. The image size is 128×128, and I

extracted 15×15 image patches from training images. I tested my method on 50 test subject images.

Figure 4.16 and Table 4.4 show the results of deformation prediction by comparing the deformed
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Figure 4.11: Illustration of training set generation by shooting with random initial momentum for
the experiment in Section 4.3.3. Here, mi, i = 1, . . . , n are randomly generated initial momenta.

Figure 4.12: Local deformation experiment: Illustration of synthetic (a) atlas image, (b) deformed
training image, (c) difference image between atlas and deformed images and (d) corresponding
initial scalar momentum for experiment in Section 4.3.3. (Note that the intensities in (c) and (d) are
scaled for better visualization.)
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(a) SSD of images (b) MAE of deformations

Figure 4.13: Results of local deformation with random initial momenta parametrization experiment
in Section 4.3.3. (a) shows the boxplot of sum of squared differences (SSD) between deformed test
images and atlas images with predicted deformation (initial momentum), (b) shows the mean abso-
lute errors (MAE) (in pixels) of each pixel on the deformations for different methods. CDL means
standard coupled dictionary learning method, SCDL denotes proposed semi-coupled dictionary
learning method, and the number besides the dictionary learning methods indicates the dictionary
size (number of atoms).

Table 4.3: Statistics of registration results by predicting random initial momenta for synthetic data
(experiment in Section 4.3.3). The numbers show the mean absolute errors (MAE) in pixels of
predicted deformation to the ground truth. RAW indicates the images without any registration, NN
indicates the method nearest neighbor search, GR denotes global regression method and CDL and
SCDL represent coupled and semi-coupled dictionary learning methods respectively.

Method median mean min max std
RAW 6.0637 6.1669 3.7536 9.5566 1.7194
NN 3.4307 3.6619 1.7388 6.8764 1.9108
GR 4.0644 4.1099 2.1364 6.2764 1.5735

CDL100 3.3148 3.2546 0.9239 4.8432 1.3248
CDL500 2.3544 2.3155 0.5316 3.681 1.0838

CDL1000 1.8192 1.6761 0.262 2.7386 1.1135
CDL5000 1.5251 1.5703 0.222 2.5676 1.1808
SCDL100 2.841 2.6458 0.8508 4.2449 1.0992
SCDL500 1.8053 1.7281 0.3199 3.0272 1.111
SCDL1000 1.3331 1.2328 0.2287 2.0823 0.7631
SCDL5000 1.2253 1.1202 0.2231 1.8582 0.6538
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Figure 4.14: Illustration of training set and atlas for experiment on OASIA dataset in Section 4.4.3.
Here, mi, i = 1, . . . , n are initial momenta generated by atlas construction (Singh et al., 2013).

Figure 4.15: Illustration of brain (a) atlas image, (b) subject image, (c) difference image between
atlas and subject images and (d,e) corresponding initial momentum in x and y direction respectively
for experiment on OASIA dataset in Section 4.4.3. (Note that the intensities in (c), (d) and (e) are
scaled for better visualization.)

test images with the predicted deformation to the atlas images. The SCDL method shows better

performance compared with NN, GR and CDL methods, while at the same time reducing the search

space compared to the NN method. Also, the dictionary size 1000 is sufficient for deformation

prediction since increasing dictionary size to 5000 does not significantly (p-valueSCDL = 0.98,

p-valueCDL = 0.98) improve the performance.

4.5 Discussion and conclusion

I proposed two coupled dictionary learning methods (CDL and SCDL) for deformation pre-

diction from image appearance differences through a regression model. Both dictionary learning

methods are capable of learning a basis relating appearance differences to deformations. In par-
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(a) SSD of images (b) MAE of deformations

Figure 4.16: Results of experiment on OASIA dataset in Section 4.4.3. (a) shows the boxplot of
sum of squared differences (SSD) between deformed test images and atlas images with predicted
deformation (initial momentum), (b) shows the mean absolute errors (MAE) (in pixels) of each
pixel on the deformations for different methods. CDL means standard coupled dictionary learning
method, SCDL denotes proposed semi-coupled dictionary learning method, and the number besides
the dictionary learning methods indicates the dictionary size(number of items). Image size is
128× 128.

Table 4.4: Statistics of registration results by predicting initial momenta for OASIS dataset (experi-
ment in Section 4.4.3. The numbers show the mean absolute errors (MAE) in pixels of predicted
deformation to the ground truth.

Method median mean min max std
RAW 7.5166 7.4951 5.2495 9.9351 1.1859
NN 3.9619 4.3453 2.0205 8.5739 1.7895
GR 3.8719 4.0353 1.4205 7.9439 1.7254

CDL100 3.6301 3.5546 1.2149 5.1219 0.9597
CDL500 2.6255 2.6456 0.8432 3.981 0.7676

CDL1000 2.1182 1.9674 0.6102 3.0101 0.6896
CDL5000 2.0996 1.9308 0.6022 2.9101 0.6517
SCDL100 3.1454 2.9573 1.1829 4.5319 0.8165
SCDL500 2.1048 2.0209 0.6189 3.3272 0.7513
SCDL1000 1.6386 1.5384 0.5851 2.3821 0.6286
SCDL5000 1.6012 1.5154 0.5841 2.3289 0.6168
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ticular, they allow for faithful deformation prediction using moderately sized dictionaries even

for high- dimensional appearance and deformation spaces. Our experiments show that prediction

performance for CDL and SCDL saturates when moving towards larger dictionaries, indicating

that the learning procedure is able to capture a meaningful basis for the observed deformations.

Consequentially, both methods generalize better than the NN method when training data is scarce in

comparison to the deformation space, which is the case for general deformable registration. GR

performs comparable to the NN method and worse than CDL and SCDL. A possible reason is

that the relationship between the difference image and the deformation is non-linear for complex

transformation models (b-spline and LDDMM). SCDL further improves performance over CDL, be-

cause it enables flexible coupling between the appearance and the deformation spaces and provides

an improved way of learning dictionaries through independent normalization. This independent

normalization is important for the coupled dictionary learning of the data from two spaces with

large differences, for example the difference image and deformation parameters. Joint normalization

treats the data from two different spaces equally based on the assumption that the data from two

spaces have the same variance which may not be the case for the data in my experiments.

Another benefit of the dictionary learning based methods are the compression of search space

compared with NN method. NN method performs as well as or even better compared to the proposed

dictionary learning methods for the translation experiment. However, its performance is worse in

other deformable transformation experiments. The main reason is that in the translation case, I use

a dense sampling of the translation space while in the other experiments it is prohibitive to obtain

such a dense sampling of the deformation space which is usually high dimensional.

The proposed SCDL method can be used for modeling data in different spaces with large

discrepancies. It provides a more flexible modeling of the coupled data compared with CDL.
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CHAPTER 5: COUPLED DICTIONARY LEARNING FOR GTPASE ACTIVITIES AND

CELL MOVEMENTS

Exploring the spatio-temporal coordination of GTPase activities and cell movements is crucial

for understanding cell dynamics, for example, the initiation and termination of protein biosynthe-

sis (Scheffzek and Ahmadian, 2005). In this chapter, the spatio-temporal relationship between

GTPase activations and cell movements is investigated. Previous research in (Jaffe and Hall, 2005;

Ridley et al., 2003; Burridge and Wennerberg, 2004) has shown that GTPases are activated at the

edge of moving cells. Thus in this chapter, only the GTPase activations and cell movements on the

cell boundary are studied. The first question I try to answer is: Do the GTPase activations relate to

cell movement? To answer this question, I first apply enrichment analysis to test whether particular

patterns of activations tend to co-occur along with patterns of cell movement. If some groups of cell

movements show enrichment in some groups of activations, it indicates that for these groups, the

movements are related to activations, and therefore suggests the possibility of predicting cell move-

ments from activations. Hence, I investigate whether movements can be predicted from activations.

A coupled dictionary learning method is applied to learn a coupled basis for the prediction of cell

movements from GTPase activations.

5.1 Introduction

GTPases (Rac1, RhoA and Cdc42), a family of enzymes that can bind GTP, play important

roles in cell dynamics, such as controlling cytoskeleton dynamics (Machacek et al., 2009; Ridley

et al., 2003). Cell dynamics are related to many biological processes such as tissue repair and

regeneration, and disease progression of cancer (Ridley et al., 2003).

Previous research (Machacek et al., 2009; Ridley et al., 2003) shows that all three GTPases

are activated at the edge of migrating cells, and there exists a spatio-temporal relationship between
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GTPase activities and cell edge movements. Studying the relationship between GTPase activities

and cell edge movements provides a way to understand the mechanism of cell dynamics thereby

resulting in a better interpretation of biological processes. GTPase activities can be measured with

biosensor imaging of mouse embryonic fibroblasts (MEFs) (Machacek et al., 2009). Here, the

intensities of the biosensor images for MEFs indicate the activity of GTPases, i.e. the current of

GTPases.

However, learning the relationship between GTPase activities and cell movements is challenging

for the following reasons: (i) a good data representation is required to capture the relationship

between GTPase activities and cell movements; (ii) establishing the spatio-temporal correspondences

between GTPase activities and cell movements is difficult as both the shapes and appearances

(activations) of cells change during cell movements.

The spatio-temporal coordination between GTPase activities and cell movements is explored

in (Machacek et al., 2009). However, this approach has some drawbacks,

• the studied regions of MEFs are manually selected by experts;

• the spatial interactions between neighboring points are also ignored.

This chapter investigates the relationship between GTPase activities and cell movements. One

simple relationship between GTPase activities and cell movements can be uncovered by enrichment

analysis. It can determine whether groups of movements are enriched in activities. Data points can

then be selected based on enrichment analysis results. To further investigate the predictability of

movements from activities, a coupled dictionary learning method is used to learn common spatial

and temporal patterns for GTPase activation and cell movements. Fig 5.1 shows the flowchart of the

proposed method for this chapter.

This chapter is organized as follows: Section 5.2 describes the methods I use to analyze the

GTPase activation and cell movement data. Section 5.3 illustrates the results of the proposed method.

The chapter concludes with a summary of results and an outlook on future work in Section 5.4.
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Figure 5.1: Flowchart for coupled dictionary learning for activations and protrusions.

5.2 Method

Before analyzing the relationship between GTPase activities and cell movements, the data

relating the information between GTPase activation and cell movements needs to be extracted from

video frames.

5.2.1 Cell Edge Movement Measure

Measuring cell edge movements can be achieved by sampling a set of markers on the cell

boundary, and tracking the markers over time (Machacek and Danuser, 2006). The velocity v of a

marker is defined as the signed displacement d between two consecutive frames, i.e. v = d/t. The

cell shape at different time points can be recovered by integrating the velocities of the markers over

time from the initial positions of the markers. As a result, the velocities of markers are measured as

a proxy for the cell shape.

5.2.1.1 Definition of Protrusion and Retraction

Similar to the methods in (Machacek and Danuser, 2006; Machacek et al., 2009), protrusions

and retractions are only considered in the direction normal to the cell boundary (Machacek and

71



Danuser, 2006)1 where positive velocity corresponds to protrusion and negative velocity corresponds

to retraction. Note that the definition ignores the point movements which are not perpendicular

to the boundary and may not be an exact estimation of the point movements. An alternative

definition could include non-perpendicular motions, however, this will make the point tracking

more challenging because it is difficult to find proper features about the boundary points to track

(both shapes and appearances (intensities) of the cell boundary change of time).

5.2.1.2 Boundary Tracking

Due to the large intensity difference between background and foreground of the cell in each

frame, intensity thresholding is used to segment the cell. In order to obtain a smooth boundary, the

segmented binary image is first smoothed with a Gaussian filter. The boundary of the cell is then

extracted from the 0.5 level set. Figure 5.2 shows an example for the boundary extraction. Given

the boundary Γt at time t, a set of markers pi, i ∈ {1, . . . , n} are sampled with equal distance on Γt.

The distance is set to 7 pixels where the pixel size is 330nm. A level set function φt is defined as

the signed distance function with respect to Γt.

I use a simple tracking method by directly searching the corresponding markers along the

normal directions of the cell boundary. Let Γt, Γt+1 be the cell boundaries in two consecutive

frames at time t and t + 1 respectively. φt and φt+1 are level set functions with respect to Γt and

Γt+1. The value of φt at location (x, y) is the distance to the closest point of the boundary Γt

(Figure 5.3). The distance values at the locations inside the cell boundary have negative values and

at the locations outside have positive values.

For a marker pi = (xpi , ypi) on boundary Γt, ∇φt(xp, yp) is the gradient of the level set φt

at point pi, thus the direction of ∇φt(xp, yp) points in the direction with greatest increase of the

distance of φt.

The tracking process can be achieved by a line search along the normal direction for each

marker on the cell boundary as illustrated in Figure 5.4. The velocity vti at marker pi is defined as the

distance d between pi and qi on Γt and Γt+1 respectively which is computed by the tracking process

1This definition of protrusion and retraction simplifies the tracking process (Machacek and Danuser, 2006).
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(a) Raw image (b) Segmentation result

(c) Smoothed segmentation result (d) Boundary extraction result

Figure 5.2: An example of boundary extration.
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Figure 5.3: Example of the level set function φt for a boundary Γt. The intensity values at each
pixel indicates the distance to the boundary Γt. The points on each circle which are superimposed
on φt have the same distance to the boundary. The numbers on the circles indicate the distances to
the boundary with positive values outside the boundary and negative values inside the boundary.

Figure 5.4: Illustration of boundary tracking. p is the location of a marker on the boundary Γt, and
the goal is to find the corresponding location q of the marker on Γt+1. ∇φt is the gradient direction
of φt.
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divided by the time between frame t and t+1 (set to one for my data for simplicity). Positive velocity

indicates cell protrusion. The tracking algorithm is described in Appendix A.1. After boundary

tracking, the velocities are extracted for each marker at different frames vi = {v1
i , . . . , v

k−1
i } where

k is the total number of frames.

5.2.2 GTPase Activity Measure

As the relationship between GTPase activities and cell movements is concentrated at the cell

boundary (Machacek et al., 2009), GTPase activities are only extracted from the cell boundary.

Similar to (Machacek et al., 2009), sampling windows on the boundary Γt are defined as a 3 pixel

deep band (about 0.9 µm) at the cell edge with width of 7 pixels (about 2 µm) which are centered

at the markers during boundary tracking. The GTPase activations (Rac1, Cdc42 and RhoA) for

each sampling window can be obtained by averaging the respective activations inside each sampling

window. Thus I can obtain a(Rac1)i = {a1
(Rac1)i, . . . , a

k−1
(Rac1)i} , a(Cdc42)i = {a1

(Cdc42)i, . . . , a
k−1
(Cdc42)i}

and a(RhoA)i = {a1
(RhoA)i, . . . , a

k−1
(RhoA)i}.

5.2.3 Enrichment Analysis between GTPase Activities and Cell Edge Movements

In (Machacek et al., 2009), the authors investigate the coordination between GTPase activities

and cell edge movements by measuring the time shift between GTPase activations and cell velocities

when they achieve maximum cross-correlation2. Both Rac1 and Cdc42 are activated after the edge

movement with a delay of 40 seconds (10 seconds per frame) while RhoA is activated at the cell

edge synchronous with the cell movement (Machacek et al., 2009). In this chapter, I only focus

on a(RhoA)i in the analysis, but the method can also be applied to other GTPase types. I use ai to

represent a(RhoA)i in the following sections.

In this section, I first consider a simple relationship between activations and velocities. If the

activations or velocities for some boundary points are similar to each other, a group can be formed

for these boundary points. A priori it is not clear if the groups based on activations will have any

relationship to the groups based on velocities. Enrichment analysis can determine if groups share

2I will revisit this relationship in Section 5.3.2.1
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points with each other. If they do, it suggests that prediction of velocities from activations may be

possible.

5.2.3.1 Enrichment Analysis

Enrichment analysis is a method commonly used in gene or protein analysis to test whether

classes of genes or proteins are enriched in a set of genes or proteins (Subramanian et al., 2005).

This method uses a statistical approach to identify significantly enriched groups of genes. Given the

group information about GTPase activations and cell protrusions, enrichment analysis can identify

the groups of activations which are enriched in the groups of protrusions. The benefits of enrichment

analysis are as follows,

• no assumptions about the linear or nonlinear relationships between data points;

• easy to compute and interpret.

However, enrichment analysis needs group information of the data which is not available for ai

and vi. Therefore I use k-means clustering to determine groups.

5.2.3.2 K-means Clustering

K-means clustering aims to assign n data samples into k clusters so that each sample belongs to

the cluster with the closest mean.This problem is NP-hard, however, there are efficient algorithms

that are commonly used and converge quickly to a local optimum (Kanungo et al., 2002).

Given n data samplesX = {xi, x2, . . . , xn}, where xi ∈ Rd is a d-dimensional vector, k-means

clustering divides the n data samples into k groups S = {s1, . . . , sk}, where k ≤ n, and minimizes

the following within-cluster sum of squares,

minmize
k∑
i=1

∑
j∈si

‖xj − ci‖2, (5.1)

where ci is the mean of the data points in cluster si. The k-means clustering algorithm is described

in Algorithm 5.
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5.2.3.3 Data Concatenation

Applying k-means clustering on ai or vi for individual locations along the boundary may suffer

from the problem that neighboring points get assigned to different clusters. Because the spatial

consistency between different points is not taken into account if points are clustered individually.

Clustering on data “patches” by concatenating the data for neighboring points can obtain more

consistent results compared with clustering on single data points. For example, in Fig. 5.5 (a), the

blue point is assigned to a different cluster than its neighboring points. An example for a clustering

result based on point “patches” is shown in Fig. 5.5 (b).

Another reason to use “patches” is that the goal of this chapter is spatio-temporal analysis.

Clustering on individual points only uses temporal information. By using patches I can capture

spatio-temporal aspects of the data. The patch size is set to 11 points in the experiments. I use a(c)i

and v(c)i to represent the concatenated activations and velocities of “patches”.

(a) clustering on single points (b) clustering on point “patches”

Figure 5.5: Example of clustering results based on single points and point “patches”. Different
colors indicate different clusters.

Enrichment analysis of activations and velocities can be achieved by hypergeometric testing.

Hypergeometric testing provides p-values for the enrichment of velocities in activations.
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Algorithm 5 K-means clustering algorithm

Input: Data points: {xi}, i ∈ 1, ..., N ;
Output: Cluster centers {ci}, i ∈ 1, ..., k;

Cluster partitions {si}, i ∈ 1, ..., k.
1: Randomly select ‘k’ cluster centers;
2: Calculate the distance between each data point and the cluster centers;
3: Assign each data point to the cluster whose center is closest to the point. Let si be the set of

points assigned to cluster i;
4: Recalculate the new cluster centers using:

ci =
1

Ni

∑
j∈si

xj,

where Ni is the number of points in ith cluster;
5: Iterate 2-4 steps until converge.

5.2.3.4 Hypergeometric Testing

Hypergeometric testing is based on the hypergeometric distribution. The hypergeometric

distribution is a probability distribution that describes the probability of k successes in n samples

without replacement, from a population of size N with exactly K successes, where each sample is

either a success or a failure (Rice, 2006). The successes for the enrichment analysis on activations

and velocities corresponds to the number of shared points in the cluster of activations and the cluster

of velocities. In a test for over-representation of successes in the samples, the p-value is calculated

as the probability of randomly drawing k or more successes from the population in n draws. For the

enrichment analysis on activations and velocities, the p-value for the enrichment of velocities on

activations is calculated as the probability that there are k or more than k points shared in the cluster

with activations of size K and the cluster with velocities of size n for a total number of points is N .

A random variable X follows the hypergeometric distribution if its probability mass function is,

p(X = k) =

(
K
k

)(
N−K
n−k

)(
N
n

) , (5.2)

where
(
a
b

)
is a binomial coefficient,

(
a
b

)
= a!

b!(a−b)! , for 0 ≤ b ≤ a.
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Figure 5.6: Illustration for the parameters in the hypergeometric distribution for the clusters in
activations and velocities.

Assume cluster i by clustering with activations has K data samples, cluster j by clustering

with velocities has n data samples, the number of points shared in both clusters i and j is k, and

the total number of data samples is N . Figure 5.6 illustrate the parameters for the hypergeometric

distribution for the clusters in activations and velocities.

Figure 5.7 shows the results of hypergeometric testing for clustering results based on activations

(only RhoA is shown here) and velocities. The p-values are aligned to put the lowest value on the

diagonal. I can see the enrichment between clusters with GTPase activation and cell velocities, for

example, the enrichment of velocities in activation clusters 1, 4, 8, 9, 11, 12, 14, 15, 16 and 19

suggests that there is a relationship between activations and velocities. Figure 5.8 shows the number

of shared points between clusters based on activations and velocities.

5.2.3.5 Boundary Points Selection

For the clusters that show no enrichment, it means that the the null hypothesis cannot be rejected.

Thus the activations and velocities for these points may not be directly related to each other or may

have some complicated relationship that may not have been detected by the enrichment test. To

simplify further analysis, I only focus on the shared points in the clusters with enrichment. In these

clusters, the enrichment suggests that there may be common patterns for activations and velocities

and hence velocities may be predictable from the activations.
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Figure 5.7: Hypergeometric testing results. The values indicate the p-values for hypergeometric
testing for the enrichment of clusters based on clustering with GTPase activations and in clusters
based on clustering with cell velocities(p-values are corrected using Bonferroni method for multiple
tests (Shaffer, 1995)). The null hypothesis is that the clusters with cell velocities are not enriched in
clusters with GTPase activations. The left and top blue bars show the distributions of number of
data points in different clusters for activations and velocities respectively.
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Figure 5.8: Intersection between different clusters for activations and velocities. The values indicate
the number of intersected data points between different clusters for activations and velocities.
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5.2.4 Modeling the relationship between Activations and Velocities based on Coupled

Dictionary Learning

In Section 2.5, I introduced a coupled dictionary learning method to learn a joint basis for data

from two coupled spaces. Then the data from two coupled spaces can be reconstructed as a linear

combination of the basis vectors. These basis vectors can also be also considered as the common

patterns for the data in activations and velocities. As a result, a coupled dictionary D is learned on

concatenated data points for GTPase activations and cell velocities. Here, D is learned by solving

the following dictionary learning problem,

{D̂, α̂i} = argmin
D,αi

1

2

∑
i

‖xi −Dαi‖+ λ‖αi‖1, (5.3)

where α is the coefficient for dictionary atoms to reconstruct the data xi, xi is the ith data point xi =

[aT(c)iv
T
(c)i]

T , where a(c) and v(c) indicate the activation and velocity patches over time respectively.

The αi give us a new representation of the data xi based on dictionary atoms and can be used in

prediction. Figure 5.9 shows an example for a data point represented as a linear combination of

dictionary atoms.

Figure 5.9: Example of a data point which is represented as linear combination of dictionary atoms.
Blue and red curves indicates protrutions and activations respectively. The numbers are coefficients
α.
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5.2.5 Predicting Velocities from Activations based on Coupled Dictionary

Given a new boundary point with activations a(c)i, it can be reconstructed by solving the sparse

coding problem,

{α̂i} = argmin
αi

1

2
‖a(c)i −Daαi‖+ λ‖αi‖1, (5.4)

where Da is the part of the coupled dictionary corresponding to activations. Thus the prediction of

velocity vi is,

v(c)i = Dvαi, (5.5)

where Dv is the part of the coupled dictionary corresponding to velocities.

5.3 Results

The prediction method is tested on the selected data. These data points are first extracted from

19 cell boundaries with equal distance, then the 11 neighboring data points are concatenated into a

patch and each patch has an overlap of 5 data points with each other. About 2000 data patches are

extracted from 19 cells. The data patches are selected based on the enrichment analysis described in

the previous section, and 400 patches are left after selection.

Leave-one-out cross-validation is used to estimate generalization error. Each time the data

points from one cell are held out for testing and the other data points are used for training. The

prediction results based on coupled dictionary learning are compared with nearest neighbor search

(NN) and PCA.

5.3.1 Prediction Results

Table 5.2 and Table 5.1 show the prediction errors using CDL, PCA and NN for the data

with selection and without selection respectively. The prediction errors are larger for data without

selection. This indicates that the selection strategy was able to identify data for which prediction

is easier. However, for PCA and NN methods, the data without selection is more difficult to

predict based on the prediction errors. Surprisingly, the prediction errors for data without selection

are worse than the prediction errors for the trivial zero vector prediction. A possible reason is
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Table 5.1: Prediction results using coupled dictionary learning (CDL), PCA and Nearest Neighbor
search (NN) for GTPase activations(act) and velocities (vec) on all data. The numbers in the first
row indicate the number of cluster centers and dictionary atoms. ‘Dn’ means CDL with only ‘n’
atoms. The prediction error is 3.32 if the trivial prediction (an all zero vector) is used.

D1 D10 D50 D100 D200 PCA NN
3.95±0.49 3.84±0.43 3.85±0.51 3.82±0.46 3.81±0.45 4.31±0.81 4.28±0.98

Table 5.2: Prediction results using coupled dictionary learning (CDL), PCA and Nearest Neighbor
search (NN) for GTPase activations(act) and velocities (vec) on selected data after enrichment
analysis. The numbers in the first row indicate the number of cluster centers and dictionary atoms.
‘Dn’ means CDL with only ‘n’ atoms. The prediction error is 3.32 if the trivial prediction (an all
zero vector) is used.

D1 D10 D50 D100 D200 PCA NN
3.52±0.48 3.22±0.51 3.13±0.52 3.05±0.46 3.02±0.41 3.95±0.74 3.88±0.91

that most of the data involves complicated relationships or noise which cannot be captured by

enrichment analysis (about 80%), thus prediction of these data points may not be feasible. The

coupled dictionary learning based results achieve lower reconstruction errors for the selected data. I

also notice that the performance saturates when the number of dictionary atoms is larger than 100

which means that 100 dictionary atoms are sufficient to explain the data in the coupled spaces. The

data dimension is about 650.

Figure 5.10 shows an example of the prediction results. CDL based prediction can show a better

prediction result compared with other methods. A discussion of the results of different methods is

given in Section 5.3.1.1.

5.3.1.1 Discussion of Prediction Results

NN: The NN based method predicts the velocities of the test data by first finding the nearest

neighbor of activations for the test data in the training samples. These corresponding velocities are

used as the predictions.

This method works well when there are enough training samples which can cover the whole

space or the subspace that the data lives in. However, in my test, only 400 data points are used

for prediction which may not be enough to cover the whole space. Therefore, the test data’s

neighborhood may not be represented in the training data which results in an inaccurate prediction.
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PCA: The PCA method is introduced in Appendix A.2. It aims at maximizing the variance of

projected data along the principal components thus minimizing the reconstruction error between

the original data and its estimate (Qin and Dunia, 2000). Given data X = [x1 . . . xn] ∈ Rp×n, and

principal components Vm = [v1 . . . vm] ∈ Rp×m, the estimate of X is

X̂ = V T
mα, (5.6)

where α = V T
mX . The standard PCA only handles data in one space. In order to use PCA for two

coupled spaces, I concatenate the data from two different spaces. Thus I have X̃ = [x̃1, . . . , x̃n],

where x̃i = [aTi v
T
i ]T and the corresponding principal components Ṽm. To predict velocities based

on activations, the first step is to estimate the α. However, as I only know ai from the test data, the

α cannot be obtained from Ṽ T
m X̃ . I can estimate the α by minimizing the reconstruction error for

the activations

α̂ = argmin
α

∑
i

‖ai − Ṽ(a)mα‖, (5.7)

where Ṽ(a)m is the part of the principal components corresponding to activations. The velocities can

be obtained from Ṽ(v)mα̂ where Ṽ(v)m is the other part of the principal components corresponding to

the velocities. There is a potential problem for this approach. α in Equation (5.6) is the projection

of X on the orthogonal matrix V T
m , while α̂ is the estimate from solving Equation (5.7). Because α

is usually not α̂ which cannot be obtained by simple projections on the vectors of Ṽ(a)m. Instead

an equation system needs to be solved. Because α is usually not α̂, the α̂ coefficient which can

minimize the reconstruction error for activations may not be a good estimate of the coefficient for

velocities. There is no guarantee that α is equal to α̂. The result in Table 5.2 also shows that the

prediction based on PCA is not very good compared to CDL.

5.3.2 Common Patterns for Activations and Protrusions

A coupled dictionary is a set of basis vectors that can be used to represent the data from

two coupled spaces. Figure 5.9 shows an example of the representation of data using dictionary

atoms. Dictionary atoms can be considered as the common patterns for activations and protrusions.
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(a) raw data point to predict (b) CDL based prediction

(c) PCA based prediction (d) NN based prediction

Figure 5.10: Example of prediction results of (a) velocity data for (b) CDL, (c) PCA and (d) NN
methods. The data vectors are reshaped into 11× 59 matrices where 59 is the number of time points
of the boundary movement. The data matrices show the velocities for the boundary points in one
patch.
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Figure 5.11 shows two selected patterns for activations and velocities and their corresponding

cell regions. Here, the selected dictionary atoms are the dominant atoms used to explain the data

points. Pattern 1 and pattern 2 in Figure 5.11 show cell protrusions and retractions respectively,

and the corresponding dictionary atoms also show these patterns based on the displacement plots.

The activations in pattern 1 and pattern 2 are also similar to the activations in the corresponding

dictionary atoms which demonstrates that the dictionary atoms capture the pattern of activation and

cell movements.

5.3.2.1 Relation to the Previous Work

In (Machacek et al., 2009), the authors show that GTPase activations are correlated with cell

movement with some time shifts, and these time shifts can be found using cross correlation. I also

compute the cross correlation on the dictionary atoms from the learned coupled dictionary. The

result of the cross correlation on rhoA activations and cell velocities is shown in Figure 5.12. The

time delay for the activations with respect to velocities is about 10 seconds (time interval between

two frames is 10 seconds), which is similar to the result in (Machacek et al., 2009) (6 seconds in

paper). Note that the data I used to compute the cross correlation is different from the paper, but I

can still obtain a similar result.

5.4 Discussion and Conclusion

This chapter proposed methods for the analysis of the relationship between GTPase activations

and cell protrusions. Enrichment analysis is first applied to the data clusters after k-means clustering

on activations and protrusions. It provides information about whether one cluster or group of data

points is enriched in other clusters or groups. If boundary points clustered together according

to velocities, also cluster together according to activations, it means these clusters share some

boundary points which suggests that the activations and protrusions for these points are coupled

with each other. Then I investigated the predictability of velocities from activations by using coupled

dictionary learning. Coupled dictionary based prediction achieved the best results compared to
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(a) cell region corresponding to pattern 1 (b) dictionary atom corresponding to pattern 1

(c) cell region corresponding to pattern 2 (d) dictionary atom corresponding to pattern 2

Figure 5.11: Example of activations and cell movement patterns. In (a) and (c), the traces of
boundary points are superimposed on the cell images, the color of the line indicates time t where
blue indicate t = 0. The map below each cell image is the activation map corresponding to these
boundary points (y axis indicates the index of boundary points and x axis represents time). In (b)
and (d), the dictionary atoms are shown to match the corresponding cell movement and activation
patterns in (a) and (c) respectively. The displacement plots show the integral of velocities in
dictionary atoms, the map below the displacement plot is the corresponding activation map of the
dictionary atoms. 88



Figure 5.12: Cross correlation for dictionary atoms between rhoA activations and velocities. X axis
indicates different lags between GTPase activations and cell velocities.

other tested methods. I also provided a detailed discussion on the prediction results obtained from

other methods.

Future work includes testing the proposed method on a larger data set. The major problem for

the current project is the lack of data. If I have more data, I could potentially find stronger common

patterns for GTPase activations and cell velocities. Another future work could be real experiments

to validate these patterns, i.e. by creating activation patterns in a cell, I could test if they indeed

result in the predicted cell boundary changes.
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CHAPTER 6: ROBUST COUPLED DICTIONARY LEARNING

In Chapter 3, I proposed a coupled dictionary learning method for multi-modal registration.

The learned dictionary can be applied in a sparse representation framework to transform an input

image from one modality to another. However, coupled dictionary learning may be impaired by lack

of correspondence between image modalities in the training data, for example due to areas of low

quality in one of the modalities. Such non-corresponding areas can negatively influence dictionary

learning, thereby the joint representation of images, and consequentially the image analogy results.

In this chapter, I propose a probabilistic model that explicitly accounts for image areas that are

poorly corresponding between the image modalities. As a result, I can cast the problem of learning

a dictionary in the presence of problematic image patches as a likelihood maximization problem

and solve it with a variant of the EM algorithm (Dempster et al., 1977). The algorithm iterates

identification of the poorly corresponding patches and refinements of the learned dictionary. I tested

the method on both synthetic and real data which showing an improvement for image prediction

problem compared to the standard coupled dictionary learning method.

6.1 Introduction

Coupled dictionary learning is challenging: it may fail or provide inferior dictionary quality

without sufficient correspondences between modalities in the training data. This problem has so

far not been addressed in the literature. For example, a low quality image deteriorated by noise

in a modality can hardly match a high quality image in another modality. Furthermore, training

images are pre-registered. Registration error may harm image correspondence and hence dictionary

learning. Such noise- and correspondence- corrupted dictionaries will consequentially produce

inferior results for image reconstruction or prediction. Figure 6.1 shows an example of coupled

dictionary learning for both perfect and imperfect corresponding image pairs.
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Figure 6.1: An illustration of perfect (left) and imperfect (right) correspondence between multi-
modal images and their learned dictionaries. The imperfect correspondence (gray part in right
images) could result in learning an imperfect dictionary (gray dictionary words) which is not
desirable. Our goal is to robustly recover a compact dictionary of corresponding elements.
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In this chapter, instead of directly learning a coupled dictionary from training data as in (Cao

et al., 2012), I distinguish between image regions with and without good correspondence in the

learning process. I propose a probabilistic model for coupled dictionary learning which distinguishes

“noisy” training data (non-corresponding patch pairs) and refines the dictionary iteratively. The key

component of the proposed method is defining the “noisy” training data with a confidence measure.

The main contributions are as follows,

• I propose a probabilistic model for dictionary learning which discriminates between

corresponding and non-corresponding patches. This model is generally applicable to

coupled dictionary learning.

• I provide a method robust to noise and mis-correspondences. I demonstrate this using real

and synthetic data and obtain “cleaner” dictionaries.

• I demonstrate consistency of performance for a wide range of parameter settings. This

indicates the practicality of the proposed approach.

This chapter is organized as follows: first, I describe the method and my probabilistic model

in Section 6.2. I interpret the model in Section 6.3. In Section 6.4, I apply the model to both

synthetic and real data. I also apply the proposed dictionary learning method to multi-modal image

registration. This chapter concludes with a summary of results and an outlook on future work in

Section 6.5.

6.2 Method

Let I1 and I2 be two different training images acquired from different modalities for the same

area or object. Assume the two images have been registered already. A coupled dictionary can be

learned from corresponding image patches extracted from I1 and I2.

6.2.1 Probabilistic framework for dictionary learning

In Section 2.4, I introduced the standard dictionary learning problem. Dictionary learning can

also be interpreted in a probabilistic framework. The probabilistic model for dictionary learning
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suggests that for each image patch x (Aharon et al., 2006),

x = Dα + ε, (6.1)

where ε is Gaussian white noise with zero mean and variance σ2.

Assuming the reconstruction residual follows a Gaussian distribution, thus

p(xi|D,αi) = N (xi;Dαi, σ
2) ∝ exp{− 1

σ2
‖xi −Dαi‖2

2},

p(αi) = L(αi; 0, λ) ∝ exp{−λ‖αi‖1}.
(6.2)

Based on Bayes rule, I have the posterior p(D|xi) ∝ p(xi|D)p(D). Assuming the xi to be

independent, thus

p(xi|D) =

∫
p(xi, α|D)dα =

∫
p(xi|D,α)p(α)dα, (6.3)

where α is a latent variable with Laplace distribution (Aharon et al., 2006). Based on Equation (6.3),

Equation (6.2), and replacing the integration with the maximum of α (due to the high peak of the

posterior in Equation (6.3) and Laplace prior of α) (Aharon et al., 2006), I obtain D by maximizing

the log likelihood function,

{D̂, α̂i} = arg max
D

N∑
i=1

max
αi

{log(p(xi, αi|D))}

= arg max
D

N∑
i=1

max
αi

{log(p(xi|D,αi)p(αi))}

= arg max
D

N∑
i=1

max
αi

{log(p(xi|D,αi)) + log(p(αi))}

= arg min
{D,αi}

N∑
i=1

1

σ2
‖xi −Dαi‖2

2 + λ‖αi‖1.

(6.4)
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Equation (6.4) can be solved with alternating optimization. First fixing D, I calculate the

coefficients αi, and then update the dictionary based on αi. I update D and α iteratively until

convergence is reached (Elad and Aharon, 2006).

6.2.2 Confidence measure for image patch

Before proposing my method, I first introduce the confidence measure for an image patch. The

confidence can be defined as a conditional probability p(h|xi). Given image patches {xi}Ni=1, I

want to reconstruct them with our learned coupled dictionary. Here, h is the hypothesis of whether

the reconstruction of xi uses some “noisy” dictionary atoms (i.e. non-corresponding dictionary

atoms); h = 1 indicates that the reconstruction xi uses “noisy” dictionary atoms, while h = 0 means

reconstructing xi without “noisy” dictionary atoms. Thus a high p(h = 1|xi) corresponds to high

confidence that the reconstruction of xi is not a good estimation because the “noisy” dictionary

atoms are used in the reconstruction and vice versa.

Applying Bayes Rule (Mitchell, 1997; Besag, 1986), p(h = 1|xi) can be represented as,

p(h = 1|xi) =
p(xi|h = 1)p(h = 1)

p(xi|h = 1)p(h = 1) + p(xi|h = 0)p(h = 0)
. (6.5)

Now the problem becomes how to estimate the likelihood p(xi|h) and prior p(h). Assuming the

independence of each image patch xi and that the pixels in each patch follow a Gaussian distribution,

for p(xi|h) I assume

p(xi|h = 1, θ1) = N (xi;µ1, σ
2
1),

p(xi|h = 0, θ0;D,αi) = N (xi −Dαi; 0, σ2
0).

(6.6)

The parameters I need to estimate are θ1 = {µ1, σ1} and θ0 = σ0, as well as the prior probability

p(h), where

p(h = 1) = π, then p(h = 0) = 1− π. (6.7)
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Based on the assumption of conditional independence of the random variable xi given h and θ

(Gaussian Naive Bayes (GNB) assumption) (Mitchell, 1997), I can use either maximum likelihood

estimates (MLE) or maximum a posteriori (MAP) estimates for these parameters. The MLE

estimator for σ2
k is

σ̂2
0 =

1∑
i δ(hi = 0)

∑
i

(xi − µi)2δ(hi = 0),

σ̂2
1 =

1∑
i δ(hi = 1)

∑
i

(xi −Dαi)2δ(hi = 1),

(6.8)

where the subscript i refers to the ith training sample, and the indicator function δ(h = 1) equals to

1 if h = 1 and 0 otherwise.

6.2.3 EM algorithm

The EM algorithm is a popular technique which can be used to solve maximum-likelihood

parameter estimation problem in the presence of missing or hidden data(Dempster et al., 1977).

6.2.3.1 Maximum-likelihood

Suppose I have a density function p(x|θ) where θ indicates the set of parameters, for example,

for a Gaussian distribution, θ could be means and covariances. For a training set of size N,

X = {xi, . . . , xN} which is independently drawn from this distribution, the density for the samples

is,

p(X|θ) =
N∏
i=1

p(xi|θ) = L(θ|X).

The likelihood is a function of parameters θ given the data X. Thus in the maximum likelihood

problem, I find θ̂ such that,

θ̂ = argmax
θ

L(θ|X).

Usually I minimize the log likelihood instead, thus I have,

θ̂ = argmin
θ

− log L(θ|X).

95



Since log(x) is a strictly increasing function, the value of θ that maximizes p(X|θ) also maximizes

L(θ). Explicitly estimating the parameters θ by solving the maximum likelihood problem may be

hard depending on the form of p(x|θ).

6.2.3.2 EM algorithm

The EM algorithm gives an efficient iterative procedure to solve the maximum likelihood

estimation problem by introducing some latent variables (Dempster et al., 1977; Redner and Walker,

1984). Maximizing L(θ) explicitly might be difficult. The strategy of the EM algorithm is to

repeatedly construct a lower-bound of L (E-step), and then optimize the lower-bound (M-step).

Suppose I have some latent random vector Z. The total probability p(X|θ) can be written as,

p(X|θ) =
∑
z

p(X|z, θ)p(z|θ)

Our objective is to maximize L(θ). Assume after the nth iteration the current estimate for θ is

given by θn. I want to maximize the difference (Bishop, 2006),

L(θ)− L(θn) = log p(X|θ)− log p(X|θn)

= log
∑
z

p(X|z, θ)p(z|θ)− log p(X|θn)

= log
∑
z

p(X|z, θ)p(z|θ).p(z|X, θn)

p(z|X, θn)
− log p(X|θn)

= log
∑
z

p(z|X, θ)(p(X|z, θ)p(z|θ)
p(z|X, θn)

)− log p(X|θn)

≥ 1
∑
z

p(z|X, θ) log(
p(X|z, θ)p(z|θ)
p(z|X, θn)

)− log p(X|θn)

=
∑
z

p(z|X, θ) log(
p(X|z, θ)p(z|θ)
p(z|X, θn)p(X|θn)

)

= ∆(θ|θn).

(6.9)

1Using Jensen’s inequality. Refer to appendix for more details.
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I define `(θ|θn) = L(θn) + ∆(θ|θn), and based on Equation (6.9), I have

L(θ) ≥ `(θ|θn). (6.10)

From Equation (6.10), the `(θ|θn) is the lower-bound of the likelihood function L(θ) , and the value

of functions L(θ) and `(θ|θn) are equal when θ = θn. In order to maximize the value of L(θ), the

EM algorithm selects θ that can maximize `(θ|θn). Thus I have,

θn+1 = argmax
θ

{`(θ|θn)}

= argmax
θ

{L(θn) +
∑
z

p(z|X, θ) log(
p(X|z, θ)p(z|θ)
p(z|X, θn)p(X|θn)

)}

drop L(θn) which is constant with respect to θ

= argmax
θ

{
∑
z

p(z|X, θ) log(p(X|z, θ)p(z|θ))}

= argmax
θ

{
∑
z

p(z|X, θ) log(p(X, z|θ))}

= argmax
θ

{Ez|X,θ[log p(X, z|θ)]}

(6.11)

From Equation (6.11), I have the EM algorithm:

1. E-step : Determine the expectation Ez|X,θ[log p(X, z|θ)];

2. M-step : Maximize the expectation with respect to θ.

6.2.4 Robust coupled dictionary learning based on EM algorithm

For robust coupled dictionary learning, I want to estimate θ = {D̃, α} considering the latent

variable h. Based on the probabilistic framework of dictionary learning (Aharon et al., 2006), I have

p(x̃|θ) =
∑

h p(x̃, h|θ).

The ML estimation for θ is as follows

θ̂ = arg max
θ
p(x̃|θ) = arg max

θ
log
∑
h

p(x̃, h|θ). (6.12)
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Let `(θ) = log
∑

h p(x̃, h|θ). Instead of directly maximizing `(θ), I maximize the lower

bound Q(θ) =
∑

h p(h|x̃, θ) log p(x̃, h|θ) (Neal and Hinton, 1998). p(h|x̃, θ) is the confidence in

section 6.2.2. I can apply the following EM algorithm to maximize Q(θ),

E-step : Q(θ|θ(t)) = Eh|x̃,θ[log p(x̃, h|θ(t))];

M-step : θ(t+1) = arg max
θ
Q(θ|θ(t)).

(6.13)

Algorithm 6 EM algorithm for Coupled Dictionary Learning

Input: Training Coupled image patches: {x̃i}, i ∈ 1, ..., N ;
Initialize Coupled dictionary D̃ = D̃0, D̃0 is trained on all of the x̃i;

Output: Refined dictionary ˆ̃D
1: (E-step) determine Eh|x̃,θ[log p(x̃, h|θt)] =

∑
h δp(p(h = 0|x̃i, θt)) log p(x̃, h|θt)

by computing δp(p(h = 0|x̃i, θt)), where (Besag, 1986; Neal and Hinton, 1998)

δp(p) =

{
1, if p ≥ 0.5,
0, otherwise. (6.14)

p(h = 0|x̃i, θ) =
p(x̃i|h = 0, θ)p(h = 0)

p(x̃i|h = 1, θ)p(h = 1) + p(x̃i|h = 0, θ)p(h = 0)
. (6.15)

2: (M-step) maximize Eh|x̃,θ[log p(x̃, h|θt)]
by updating D̃ and α as follows,

D̃(t+1) = arg min
D̃

N∑
i=1

δp(p(h = 0|x̃i, θt))(
1

2
‖x̃i − D̃αti‖2

2 + λ‖αti‖1),

s.t. ‖D̃j‖2
2 ≤ 1, j = 1, 2, ..., k.

α
(t+1)
i = arg min

αi

δp(p(h = 0|x̃i, θt))(
1

2
‖x̃i − D̃(t+1)αi‖2

2 + λ‖αi‖1).

(6.16)

3: Iterate E and M steps until convergence reached.

In the E-step I compute p(hi|x̃, θ), hi ∈ {1, 0} which provides a confidence for each training

patch given D̃ and α. In the M-step p(hi|x̃, θ) corresponds to a weight for each image patch for

updating θ. In this chapter, I use a variant of EM algorithm for coupled dictionary learning. I

use δp(p(hi|x̃, θ)) replacing p(hi|x̃, θ). Here, δp(p) is an indicator function and δp(p) = 1, if p ≤

0.5, δp(p) = 0, otherwise. Thus in each iteration I rule out the image patches which have high

98



confidence that they are based on a reconstruction with non-corresponding coupled dictionary items,

and then refine the coupled dictionary using the corresponding training samples. The detailed

algorithm is shown in Algorithm 6.

6.3 Interpreting the model

In Section 6.3.1, I discuss the dictionary learning as a generative model. In Section 6.3.2, I

introduce a graphical model to interpret our method.

6.3.1 Generative model for dictionary learning

Based on the probabilistic framework for dictionary learning in Section 6.2.1, I can construct

a graphical model to interpret the generative learning process of our proposed algorithm. The

graphical model is shown in Figure 6.2.

Here the coupled dictionary D̃ is the parameter I want to estimate for the problem. hi are

latent variables and αi = [α1i, α2i]
T has a Laplace prior (Here, α1i and α2i are corresponding to

two modalities). hi is a hypothesis whether the multi-modal image patch x̃ is generated by D̃ or

by noise at mean {µ1i1, µ2i1}. Therefore p(hi = 1) = π is the prior of the noise level about the

training patches. When hi = 0, xi are generated with a Gaussian probability distribution given D̃

and αi, p(x̃i|D̃, αi) = p(x̃i|h = 0, D, αi) ∝ exp( 1
σ2
0
‖x̃i −Dαi‖2

2), and for h = 1, xi is generated

with a Gaussian distribution given µi1, p(x̃i|µi1) = p(x̃i|h = 1, µi1) ∝ exp( 1
σ2
1
‖x̃i − µi1‖2

2).

Now the maximum likelihood estimation of D̃ for our generative model according to the

marginal joint distribution

p({x̃i}Ni=1, D̃, α) =
∑
j

p({x̃i}Ni=1, hj, D̃, α)

∝
∑
j

p({x̃i}Ni=1, hj|D̃, α)

(6.17)

is exactly the same as the one what I discussed in section Section 6.2.4.
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Figure 6.2: Graphical model for the proposed generative learning framework

6.3.2 Criterion for corresponding multi-modal image patch

If there is no prior information about p(h), I assume p(h = 1) = p(h = 0) = 0.5. Based

on (6.6), (6.14), (6.15), I have

p(h = 0|x̃i, θ) ≥ 0.5⇔

p(x̃i|h = 0, θ) ≥ p(x̃i|h = 1, θ)⇔
1

σ2
0

‖x̃i − D̃α‖2
2 ≤

1

σ2
1

‖x̃i − µi1‖2
2 ⇔

‖x̃i − D̃α‖2
2 ≤

σ2
0

σ2
1

‖x̃i − µi1‖2
2 = c‖x̃i − µi1‖2

2.

(6.18)

Here ‖x̃i−D̃α‖2
2 is the sum of squares of reconstruction residuals of image patch x̃i, and ‖x̃i−µi1‖2

2

is the sum of squares of centered intensity value (removed mean µi1) in x̃i.

Thus (Equation (6.18)) defines a criterion for corresponding multi-modal image patches as

those that can be explained by the coupled dictionary D̃ better than by the patch’s mean intensity,

i.e. the sum of squared residuals should be smaller than a threshold T , and T is dependent on the

variance of x̃i, σ2
1 and the variances of reconstruction residual σ2

0 .

I first initialize σ0 = σ1 at the beginning of the EM algorithm. I can update σ0 from reconstruc-

tion residuals of training data during the iterations, then the only parameter I need to choose is σ1.

Intuitively, a small σ1 is in favor of more corresponding image patches and a large σ1 considers

more image patches as non-corresponding. Here, σ1 can be considered as a direct estimation of the
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noise level in the training set. I will show how different σ1 affect my iterative dictionary learning

and further the reconstruction results in Section 6.4.

6.4 Experimental validation

The image prediction problem (for a known dictionary D̃) amounts to solving

{α̂i} = arg min
αi

N∑
i

‖x̃′i − D̃αi‖2
2 + λ‖αi‖1. (6.19)

where x̃′i = Ri[I1, u2]T and u2 is the prediction of I2. Since I2 is not measured, I can effectively set

Riu2 = D2αi or equivalently remove it from the optimization. Given {α̂i}, I can then compute the

predicted image. Most applications using coupled dictionaries are concerned with the prediction

residuals, such as super-resolution and multi-modal registration (Yang et al., 2010; Cao et al., 2012).

I therefore first validate the algorithm based on the resulting sum of squared prediction residuals

(SSR).

I test the proposed coupled dictionary learning method on synthetic and real data. For the

synthetic data, I generate non-corresponding multi-modal image patches using the generative model

in Section 6.3.1. First I choose p(h = 1) which defines the noise level in the training set, i.e.

the percentage of non-corresponding multi-modal image patches in the training set. For each

non-corresponding patch x1
i , I generate µi1 as the mean of all training patches and add Gaussian

noise εµ. Finally, I generate a noise patch by adding Gaussian noise εx1i to the mean µi1. Then I

have x1
i = µi1 + εx1i .

6.4.1 Synthetic experiment on textures

I create multi-modal textures by smoothing a given texture with a Gaussian kernel and inverting

the intensity of the smoothed image. Thus I have corresponding textures from different ‘modalities’.

Figure 6.3 shows an example of my generated multi-modal textures. I generate both training and

testing multi-modal textures from Figure 6.3, i.e. use half of the multi-modal textures for training

(add noise as non-correspondence regions) and the other half of the multi-modal textures for testing.
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I extract 10× 10 image patches in both training images, and add ‘noise’ with non-corresponding

image patches to replace corresponding patches. The σ for the Gaussian noise is set to 0.2.

I test how σ1 influences my dictionary learning method at a fixed noise level p(h = 1) = 0.5.

Fig. 6.3 shows the result. In practice, I can either learn σ1 with an EM algorithm or manually choose

it. When σ1 is close to 0.2 (the σ for the noise), to be specific, σ1 ∈ (0.15, 0.4), I get consistently

lower SSRs. This indicates that the proposed algorithm is robust for a wide range of σ1 values and

noise. For σ1 < 0.15, all the patches are considered as corresponding patches while for σ1 > 0.4,

all the patches are classified as non-corresponding patches. The method has the same performance

as the standard method in (Cao et al., 2012) in these two cases. The learned coupled dictionaries are

illustrated in Fig. 6.3 showing that the proposed algorithm successfully removes non-corresponding

patches.

6.4.2 Synthetic experiment on multi-modal microscope images

I also test the proposed algorithm on correlative microscope images. I have 8 pairs of Scanning

Electron Microscopy (SEM) and confocal images. Image pairs have been aligned with fiducials.

Figure 6.4 (a) illustrates an example of SEM/confocal images. I add non-corresponding patches

using the same method as in Section 6.4.1. Figure 6.4 (a) shows the results. The dictionary

learned with the proposed method shows better structure and less noise compared with the standard

dictionary learning method. Figure 6.4 (b) shows the interaction between σ1 and SSR with fixed

p(h = 1) = 0.5. For σ1 < 0.16, all the image patches are categorized as corresponding patches

while for σ1 > 0.6, all the patches are classified as non-corresponding patches. The proposed

method has the same performance as the standard method under these conditions. I observe a large

range of σ1 values resulting in improved reconstruction results indicating robustness.

6.4.3 Multi-modal registration on correlative microscopy

I applied the proposed method for multi-modal registration (Cao et al., 2012). The multi-modal

image registration problem simplifies to a mono-modal one using the coupled dictionary in a sparse

representation framework. The test data is Transmission Electron Microscopy (TEM) and confocal
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(a) training textures and learned D̃
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Figure 6.3: D̃ is learned from training images with Gaussian noise (top). Standard method cannot
distinguish corresponding patches and non-corresponding patches while our proposed method can
remove non-corresponding patches in the dictionary learning process. The curve (bottom) shows
the robustness with respect to σ1. The vertical green dashed line indicates the learned σ1.
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(a) training images and learned D̃
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(b) SSR vs σ1

Figure 6.4: D̃ is learned from training SEM/confocal images with Gaussian noise (top). The curve
(bottom) shows the robustness with respect to σ1. The vertical green dashed line indicates the
learned σ1.
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(a) TEM (b) Confocal

Figure 6.5: TEM/Confocal images

microscopy which have been described in Section 3.4.1. I have six pairs of TEM/confocal images.

I train the coupled dictionary using leave-one-out cross-validation. Figure 6.5 shows an example

of our test data. I first registered the training images with manually chosen landmarks (no ground

truth available), then learned the coupled dictionary and applied it to predict the corresponding

image for a given source image. I resampled the predicted images with up to ±2.07µm (30 pixels)

in translation in the x and y directions (at steps of 10 pixels) and ±20◦ in rotation (at steps of 10

degrees). Then I registered the resampled predicted image to the corresponding target using a rigid

transformation model. σ1 is chosen as 0.15 based on cross-validation for the prediction errors in this

experiment. Table 6.1 shows a comparison of our method with the method in (Cao et al., 2012). The

result shows about 15% improvement in prediction error and a statistically significant improvement

in registration errors.

6.5 Conclusion

In this chapter, I proposed a robust coupled dictionary learning method based on a proba-

bilistic formulation. I directly model corresponding and non-corresponding multi-modal training

patches. The proposed method is based on a variant of the EM algorithm which classifies the

non-corresponding image patches and updates the coupled dictionary iteratively. I validated the

method using synthetic and real data. The proposed algorithm demonstrated its robustness to noise
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Table 6.1: Prediction and registration results. Prediction is based on the method in (Cao et al.,
2012), and I use SSR to evaluate the prediction results. Here, MD denotes my proposed coupled
dictionary learning method and ST denotes the dictionary learning method in (Cao et al., 2012).
The registrations use Sum of Squared Differences (SSD) and mutual information (MI) similarity
measures. I report the results of mean and standard deviation of the absolute error of corresponding
landmarks in micron (0.069 micron = 1 pixel). The p-value is computed using a paired t-test.

Metric Method mean std p-value

Prediction SSR
MD 6.28× 104 3.61× 103

<0.0001
ST 7.43× 104 4.72× 103

Registration
SSD

MD 0.760 0.124
0.0004

ST 0.801 0.139

MI
MD 0.754 0.127

0.0005
ST 0.795 0.140

(non-corresponding image patches). I also applied the method to multi-modal registration showing

an improvement in alignment accuracy compared with the traditional dictionary learning method.

The proposed method is expected to be of general use for coupled dictionary learning. While the

proposed method is based on a Gaussian noise model, it can easily be adapted to other noise models

such as Poisson noise.
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CHAPTER 7: DISCUSSION

This chapter revisits the thesis statement and contributions of this dissertation and discusses

possibilities of future work.

7.1 Summary of contributions

This section lists each claim of contributions presented in chapter 1, followed by a discussion

that relates to the claim and summarizes how it is addressed in this dissertation.

1. I propose a sparse representation and coupled dictionary learning-based image analogy

method to convert and thereby simplify a multi-modal registration problem to a mono-

modal one.

The proposed method in Section 3.3 provides a general framework to synthesize the

corresponding images of the input images based on example image pairs. The relationship

between example image pairs can be captured by a coupled dictionary. Then the input

images are reconstructed by the dictionary atoms corresponding to the modality of the

input images, at the same time, the synthesized images for the other modality are estimated

by the corresponding dictionary atoms for the other modality with the same coefficients

(weights) in reconstruction.

The major difference between the proposed method and the standard image analogy

method is that the proposed method uses a sparse linear combination of dictionary atoms

to predict each image patch instead of using a single nearest neighbor patch in standard

IA. Also the proposed method learns a coupled dictionary from training patches thus can

compress the search space (the number of dictionary atoms is much less than the training

patches).
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The proposed method converts image modalities from one to another, thereby simplifying

the multi-modal registration problem to a mono-modal one. The proposed method is

evaluated in Section 3.4 and shows its benefit for the registration between correlative

microscope images.

The proposed method is essentially learning a customized distance measure based on

the training data thereby better capturing differences between multi-modal images in

registration.

2. I propose a general framework for deformation estimation using appearance information

based on coupled dictionary learning.

A general framework for deformation estimation based on the differences between a

reference image and subject images is proposed in Chapter 4. The proposed method learns

a semi-coupled dictionary for the difference image and deformation parameters. The goal

of this project is to investigate the possibility of learning a coupled basis for difference

image and deformation parameters.

Different deformation parametrization methods are also studied in this section. As the

difference image and deformation parameters form two spaces with large difference, a

semi-coupled dictionary learning method is introduced to allow flexible coupling between

dictionaries for two spaces. The method is evaluated in Section 4.4 on synthetic and real

data for b-spline and initial momentum parametrization methods. The results show the

performance improvements for the proposed method.

3. I propose a framework for relating the spatio-temporal patterns between GTPase acti-

vations and cell movements of mouse embryonic fibroblasts (MEFs) based on coupled

dictionary learning.

In Section 5.2.3, I use enrichment analysis to analyze the spatio-temporal relationship

between GTPase activities and cell movements. The results suggest that predicting

velocities based on GTPase activations is possible. I propose a coupled dictionary learning

based prediction method in Section 5.2.4. The dictionary atoms can be considered as
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common patterns for GTPase activations and cell velocities. The results in Section 5.3

show the examples of common patterns and their connection to real data.

4. I develop a robust coupled dictionary learning method based on a probabilistic model

which discriminates between corresponding and non-corresponding patches automatically.

The standard coupled dictionary learning method may fail due to non-corresponding

image patches in the training data. In Chapter 6, I propose a robust coupled dictionary

method to solve this problem. I introduce a latent variable to indicate whether an image

patch is reconstructed by clean or noisy dictionary atoms during the learning process. As

a result, I propose a probabilistic model for the coupled dictionary learning which can

classify corresponding and non-corresponding patches. The model can be solved by an

EM algorithm which is presented in Section 6.2.4.

The proposed method is evaluated in Section 6.4 on both synthetic data and real data. The

dictionary learning results show that the proposed method can successfully learn a clean

dictionary by ruling out non-corresponding patches.

Having addressed the contributions above, I present again the thesis statement.

Thesis statement: Learning a coupled basis for the compact representation of two spaces

can be achieved by coupled dictionary learning. Such dictionaries can be learned to capture

appearance differences of different imaging modalities, dependencies between image appearance

and deformation as well as the spatio-temporal patterns for cell signaling and boundary protrusions

and retractions. To account for data inconsistencies, a robust coupled dictionary can be obtained

based on a probabilistic dictionary model.

7.2 Future Work

This section reviews possible directions of future research related to this dissertation.

7.2.1 Confidence in multi-modal registration

The coupled dictionary learning based image analogy usually cannot get perfect image synthesis

results. Therefore the reconstruction error can be used to estimate the local confidence of the image

109



analogy result (while the prediction error is not known). If the reconstruction error is large which

means that the local region is difficult to reconstruct the confidence of the image analogy result is

low. This confidence estimate could then be used to weight the registration similarity metrics to

focus on regions of high confidence.

7.2.2 Validation on large dataset from different modalities

The proposed method for multi-modal registration in Chapter 3 is only tested on a limited

dataset. To further evaluate the benefit of the proposed method, a larger dataset is required. Also

tests on different modalities would be interesting to see the limits of the proposed method.

7.2.3 Iterative deformation estimation

The proposed deformation estimation method is a one-pass algorithm, i.e. after learning the

dictionary, the deformation is estimated in one run of the algorithm. However, there is no guarantee

that the estimated result is good enough. It is possible to do this in an iterative approach, i.e.

each time after obtaining an estimated deformation, I transform the image based on the obtained

deformation and use the deformed image as an input of the algorithm. The process continues until

converge.

7.2.4 Validation of cell velocities prediction on real cell data

The common patterns of GTPase activities and cell velocities can be captured by the learned

coupled dictionary. However, the method is only validated on a limited dataset. It would be useful

to do real experiments to validate these patterns, i.e. by creating activation patterns in a cell, I could

test if they indeed result in the predicted cell boundary changes.

7.2.5 Robust dictionary learning for other noise models

The current robust dictionary learning method is based on the Gaussian noise model. Although

I validated it on real data where the noise model may not be Gaussian, it would be nice to directly

model the noise in the training data. The framework would be the same for different noise models,

the only difference is how to compute the confidence in the EM algorithm.
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APPENDIX A: APPENDIX FOR CHAPTER 5

A.1 Boundary Tracking

For a marker pi = (xpi , ypi) on boundary Γt, ∇φt(xp, yp) is the gradient of the level set φt

at point pi, thus the direction of ∇φt(xp, yp) points in the direction with greatest increase of the

distance of φt. Let Dt,t+1(pi) represent the distance from pi on Γt to the closest point on Γt+1,

Dt,t+1(pi) = −φt+1(xpi , ypi). If Dt,t+1(pi) is positive, there is a boundary protrusion from t to t+ 1

(the boundary point pi is inside of the cell at time t+1), thus the search direction should point in the

gradient direction∇φt(xp, yp) (based on the definition of protrusion and retraction). Similarly, if

Dt,t+1(pi) is negative, there is a boundary retraction and the search direction should point in the

negative gradient direction −∇φt(xp, yp). Thus the search distance for pi at time t is defined as

follows,

Spi = (Dt,t+1(pi)
∇φt+1(xpi , ypi)

|∇φt+1(xpi , ypi)|
) · ∇φt(xpi , ypi)
|∇φt(xpi , ypi)|

, (A.1)

where ‘·’ represents the inner product operator of two vectors, pi is the tracked ith boundary

point at time t, Dt,t+1(pi) is the distance of pi at t to the closest point on Γt+1, ∇φt(xpi , ypi) and

∇φt+1(xpi , ypi) are the gradients of pi on φt and φt+1 respectively. Equation (A.1) defines the search

distance as the projection of the closest distance from pi at t to the Γt+1 onto the gradient direction

of pi on φt. A positive search distance corresponds to cell protrusion. Figure A.1 explains the search

distance in Equation (A.1).

The tracking process can be achieved by computing search distances iteratively. The velocity vti

at marker pi is defined as the distance between pi on Γt and Γt+1 on the gradient direction ∇φt(pi)

computed from the tracking process and divided by the number of frames between time t and t+ 1

(which is one for my data). Positive velocity points to the direction of cell protrusion. The tracking

algorithm is described in Algorithm 7. After boundary tracking, the velocities are extracted for each

marker at different frames vi = {v1
i , . . . , v

k−1
i } where k is the total number of frames.
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Figure A.1: Illustration of search distance Spi in Equation (A.1). p0 is the location of a marker on Γt,
while q is the corresponding location of the marker on Γt+1. The goal is to estimate the location of
q. In this example, I use p2 as the estimation the location q. Green curve and blue curve represent
the cell boundaries Γt and Γt+1 at time t and t+ 1 respectively; p is the sampled boundary point;
∇φt and∇φt+1 are the gradient directions of level sets φt and φt+1 at point p respectively; Sp is the
search distance at point p which is a projection of Dt,t+1(p) onto the unit normal∇φt; θ is the angle
between ∇φt(pi) and ∇φt+1(pi) and cos θ can be computed from the inner product of ∇φt+1(pi)

|∇φt+1(pi)|

and ∇φt(pi)
|∇φt(pi)| .

A.2 Principal Component Analysis (PCA)

Principal component analysis is a method which determines orthogonal directions which explain

the maximum data variance. These directions are called principal components (PC)) (Wold et al.,

1987; Abdi and Williams, 2010). PCA is different from dictionary learning as for dictionary learning,

the dictionary atoms are usually not orthogonal with each other.

Consider the centered data points xi ∈ Rp, i ∈ {1, . . . , n}, the projection of xi onto a PC v is

vTxi. The variance of the projected data is

Var(vTX) =
1

n

n∑
i

(vTxi)
2 =

1

n
vTXXTv, (A.2)

where X ∈ Rp×n is the data matrix, and each column represent a data point xi. PCA can be

formulated as,

v̂ = argmax
v

vTXXTv,

s.t. vTv = 1.

(A.3)
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Algorithm 7 Boundary Tracking

Input: Locations of sampled markers in 1st frame: {Cp1i }, i ∈ {1, ..., n};
level set functions for different frames: φt, t ∈ {1, . . . , k − 1};

Output: velocities vi = {v1
i , . . . , v

k
i };

1: let v0
i = 0;

2: for each frame t, t ∈ {1, . . . , k − 1} do
3: for each boundary point pti do
4: Compute gradient∇φt(pti) and∇φt+1(pti) for each pti;
5: let p̂t+1

i = pti;
6: let v̂ti = vti ;
7: while φt+1(p̂t+1

i ) > ε do
8: Spti = (Dt,t+1(p̂ti)

∇φt+1(p̂ti)

|∇φt+1(p̂ti)|
).
∇φt(pti)
|∇φt(pti)|

;
9: v̂ti = v̂ti + Spti ;

10: p̂t+1
i = p̂t+1

i + Spi .
∇φt(pti)
|∇φt(pti)|

;
11: end while
12: vti = v̂ti .
13: end for
14: end for

The Lagrangian of Equation (A.3) is (Bellman, 1956),

L = vTXXTv + λ(I − vTv). (A.4)

Differentiating L respect to v and set to zero, we have,

(XXT )v = λv, (A.5)

where v is an eigenvector of XXT and the Lagrangian multiplier λ is the corresponding eigenvalue.

The 1st PC v1 is the eigenvector of the sample covariance matrix XXT associated with the largest

eigenvalue λ1, similarly, the 2nd PC v2 is eigenvector associated with the second largest eigenvalue

λ2 and so on.

For a givenm, we have Vm = [v1 . . . vm] ∈ Rp×m, then the original dataX can be approximated

as

X̂ = (V +
m )TV T

mX = V T
m (V T

mX), (A.6)
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where V +
m ∈ Rm×p is Moore-Penrose pseudoinverse (Albert, 1972). For orthogonal matrix Vm,

V +
m = Vm (Albert, 1972).

PCA can be used for dimensionality reduction. This has been widely used in computer vision

applications such as face recognition (Turk and Pentland, 1991).
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